1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(u64, cpu_hardirq_time); 24 DEFINE_PER_CPU(u64, cpu_softirq_time); 25 26 static DEFINE_PER_CPU(u64, irq_start_time); 27 static int sched_clock_irqtime; 28 29 void enable_sched_clock_irqtime(void) 30 { 31 sched_clock_irqtime = 1; 32 } 33 34 void disable_sched_clock_irqtime(void) 35 { 36 sched_clock_irqtime = 0; 37 } 38 39 #ifndef CONFIG_64BIT 40 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 41 #endif /* CONFIG_64BIT */ 42 43 /* 44 * Called before incrementing preempt_count on {soft,}irq_enter 45 * and before decrementing preempt_count on {soft,}irq_exit. 46 */ 47 void irqtime_account_irq(struct task_struct *curr) 48 { 49 unsigned long flags; 50 s64 delta; 51 int cpu; 52 53 if (!sched_clock_irqtime) 54 return; 55 56 local_irq_save(flags); 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 local_irq_restore(flags); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static int irqtime_account_hi_update(void) 80 { 81 u64 *cpustat = kcpustat_this_cpu->cpustat; 82 unsigned long flags; 83 u64 latest_ns; 84 int ret = 0; 85 86 local_irq_save(flags); 87 latest_ns = this_cpu_read(cpu_hardirq_time); 88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 89 ret = 1; 90 local_irq_restore(flags); 91 return ret; 92 } 93 94 static int irqtime_account_si_update(void) 95 { 96 u64 *cpustat = kcpustat_this_cpu->cpustat; 97 unsigned long flags; 98 u64 latest_ns; 99 int ret = 0; 100 101 local_irq_save(flags); 102 latest_ns = this_cpu_read(cpu_softirq_time); 103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 104 ret = 1; 105 local_irq_restore(flags); 106 return ret; 107 } 108 109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 110 111 #define sched_clock_irqtime (0) 112 113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 114 115 static inline void task_group_account_field(struct task_struct *p, int index, 116 u64 tmp) 117 { 118 /* 119 * Since all updates are sure to touch the root cgroup, we 120 * get ourselves ahead and touch it first. If the root cgroup 121 * is the only cgroup, then nothing else should be necessary. 122 * 123 */ 124 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 125 126 cpuacct_account_field(p, index, tmp); 127 } 128 129 /* 130 * Account user cpu time to a process. 131 * @p: the process that the cpu time gets accounted to 132 * @cputime: the cpu time spent in user space since the last update 133 * @cputime_scaled: cputime scaled by cpu frequency 134 */ 135 void account_user_time(struct task_struct *p, cputime_t cputime, 136 cputime_t cputime_scaled) 137 { 138 int index; 139 140 /* Add user time to process. */ 141 p->utime += cputime; 142 p->utimescaled += cputime_scaled; 143 account_group_user_time(p, cputime); 144 145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 146 147 /* Add user time to cpustat. */ 148 task_group_account_field(p, index, (__force u64) cputime); 149 150 /* Account for user time used */ 151 acct_account_cputime(p); 152 } 153 154 /* 155 * Account guest cpu time to a process. 156 * @p: the process that the cpu time gets accounted to 157 * @cputime: the cpu time spent in virtual machine since the last update 158 * @cputime_scaled: cputime scaled by cpu frequency 159 */ 160 static void account_guest_time(struct task_struct *p, cputime_t cputime, 161 cputime_t cputime_scaled) 162 { 163 u64 *cpustat = kcpustat_this_cpu->cpustat; 164 165 /* Add guest time to process. */ 166 p->utime += cputime; 167 p->utimescaled += cputime_scaled; 168 account_group_user_time(p, cputime); 169 p->gtime += cputime; 170 171 /* Add guest time to cpustat. */ 172 if (TASK_NICE(p) > 0) { 173 cpustat[CPUTIME_NICE] += (__force u64) cputime; 174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 175 } else { 176 cpustat[CPUTIME_USER] += (__force u64) cputime; 177 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 178 } 179 } 180 181 /* 182 * Account system cpu time to a process and desired cpustat field 183 * @p: the process that the cpu time gets accounted to 184 * @cputime: the cpu time spent in kernel space since the last update 185 * @cputime_scaled: cputime scaled by cpu frequency 186 * @target_cputime64: pointer to cpustat field that has to be updated 187 */ 188 static inline 189 void __account_system_time(struct task_struct *p, cputime_t cputime, 190 cputime_t cputime_scaled, int index) 191 { 192 /* Add system time to process. */ 193 p->stime += cputime; 194 p->stimescaled += cputime_scaled; 195 account_group_system_time(p, cputime); 196 197 /* Add system time to cpustat. */ 198 task_group_account_field(p, index, (__force u64) cputime); 199 200 /* Account for system time used */ 201 acct_account_cputime(p); 202 } 203 204 /* 205 * Account system cpu time to a process. 206 * @p: the process that the cpu time gets accounted to 207 * @hardirq_offset: the offset to subtract from hardirq_count() 208 * @cputime: the cpu time spent in kernel space since the last update 209 * @cputime_scaled: cputime scaled by cpu frequency 210 */ 211 void account_system_time(struct task_struct *p, int hardirq_offset, 212 cputime_t cputime, cputime_t cputime_scaled) 213 { 214 int index; 215 216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 217 account_guest_time(p, cputime, cputime_scaled); 218 return; 219 } 220 221 if (hardirq_count() - hardirq_offset) 222 index = CPUTIME_IRQ; 223 else if (in_serving_softirq()) 224 index = CPUTIME_SOFTIRQ; 225 else 226 index = CPUTIME_SYSTEM; 227 228 __account_system_time(p, cputime, cputime_scaled, index); 229 } 230 231 /* 232 * Account for involuntary wait time. 233 * @cputime: the cpu time spent in involuntary wait 234 */ 235 void account_steal_time(cputime_t cputime) 236 { 237 u64 *cpustat = kcpustat_this_cpu->cpustat; 238 239 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 240 } 241 242 /* 243 * Account for idle time. 244 * @cputime: the cpu time spent in idle wait 245 */ 246 void account_idle_time(cputime_t cputime) 247 { 248 u64 *cpustat = kcpustat_this_cpu->cpustat; 249 struct rq *rq = this_rq(); 250 251 if (atomic_read(&rq->nr_iowait) > 0) 252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 253 else 254 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 255 } 256 257 static __always_inline bool steal_account_process_tick(void) 258 { 259 #ifdef CONFIG_PARAVIRT 260 if (static_key_false(¶virt_steal_enabled)) { 261 u64 steal, st = 0; 262 263 steal = paravirt_steal_clock(smp_processor_id()); 264 steal -= this_rq()->prev_steal_time; 265 266 st = steal_ticks(steal); 267 this_rq()->prev_steal_time += st * TICK_NSEC; 268 269 account_steal_time(st); 270 return st; 271 } 272 #endif 273 return false; 274 } 275 276 /* 277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 278 * tasks (sum on group iteration) belonging to @tsk's group. 279 */ 280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 281 { 282 struct signal_struct *sig = tsk->signal; 283 cputime_t utime, stime; 284 struct task_struct *t; 285 286 times->utime = sig->utime; 287 times->stime = sig->stime; 288 times->sum_exec_runtime = sig->sum_sched_runtime; 289 290 rcu_read_lock(); 291 /* make sure we can trust tsk->thread_group list */ 292 if (!likely(pid_alive(tsk))) 293 goto out; 294 295 t = tsk; 296 do { 297 task_cputime(t, &utime, &stime); 298 times->utime += utime; 299 times->stime += stime; 300 times->sum_exec_runtime += task_sched_runtime(t); 301 } while_each_thread(tsk, t); 302 out: 303 rcu_read_unlock(); 304 } 305 306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 307 /* 308 * Account a tick to a process and cpustat 309 * @p: the process that the cpu time gets accounted to 310 * @user_tick: is the tick from userspace 311 * @rq: the pointer to rq 312 * 313 * Tick demultiplexing follows the order 314 * - pending hardirq update 315 * - pending softirq update 316 * - user_time 317 * - idle_time 318 * - system time 319 * - check for guest_time 320 * - else account as system_time 321 * 322 * Check for hardirq is done both for system and user time as there is 323 * no timer going off while we are on hardirq and hence we may never get an 324 * opportunity to update it solely in system time. 325 * p->stime and friends are only updated on system time and not on irq 326 * softirq as those do not count in task exec_runtime any more. 327 */ 328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 329 struct rq *rq) 330 { 331 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 332 u64 *cpustat = kcpustat_this_cpu->cpustat; 333 334 if (steal_account_process_tick()) 335 return; 336 337 if (irqtime_account_hi_update()) { 338 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 339 } else if (irqtime_account_si_update()) { 340 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 341 } else if (this_cpu_ksoftirqd() == p) { 342 /* 343 * ksoftirqd time do not get accounted in cpu_softirq_time. 344 * So, we have to handle it separately here. 345 * Also, p->stime needs to be updated for ksoftirqd. 346 */ 347 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 348 CPUTIME_SOFTIRQ); 349 } else if (user_tick) { 350 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 351 } else if (p == rq->idle) { 352 account_idle_time(cputime_one_jiffy); 353 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 354 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 355 } else { 356 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 357 CPUTIME_SYSTEM); 358 } 359 } 360 361 static void irqtime_account_idle_ticks(int ticks) 362 { 363 int i; 364 struct rq *rq = this_rq(); 365 366 for (i = 0; i < ticks; i++) 367 irqtime_account_process_tick(current, 0, rq); 368 } 369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 370 static inline void irqtime_account_idle_ticks(int ticks) {} 371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 372 struct rq *rq) {} 373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 374 375 /* 376 * Use precise platform statistics if available: 377 */ 378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 379 380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 381 void vtime_task_switch(struct task_struct *prev) 382 { 383 if (!vtime_accounting_enabled()) 384 return; 385 386 if (is_idle_task(prev)) 387 vtime_account_idle(prev); 388 else 389 vtime_account_system(prev); 390 391 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 392 vtime_account_user(prev); 393 #endif 394 arch_vtime_task_switch(prev); 395 } 396 #endif 397 398 /* 399 * Archs that account the whole time spent in the idle task 400 * (outside irq) as idle time can rely on this and just implement 401 * vtime_account_system() and vtime_account_idle(). Archs that 402 * have other meaning of the idle time (s390 only includes the 403 * time spent by the CPU when it's in low power mode) must override 404 * vtime_account(). 405 */ 406 #ifndef __ARCH_HAS_VTIME_ACCOUNT 407 void vtime_account_irq_enter(struct task_struct *tsk) 408 { 409 if (!vtime_accounting_enabled()) 410 return; 411 412 if (!in_interrupt()) { 413 /* 414 * If we interrupted user, context_tracking_in_user() 415 * is 1 because the context tracking don't hook 416 * on irq entry/exit. This way we know if 417 * we need to flush user time on kernel entry. 418 */ 419 if (context_tracking_in_user()) { 420 vtime_account_user(tsk); 421 return; 422 } 423 424 if (is_idle_task(tsk)) { 425 vtime_account_idle(tsk); 426 return; 427 } 428 } 429 vtime_account_system(tsk); 430 } 431 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 432 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 433 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 434 435 436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 437 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 438 { 439 *ut = p->utime; 440 *st = p->stime; 441 } 442 443 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 444 { 445 struct task_cputime cputime; 446 447 thread_group_cputime(p, &cputime); 448 449 *ut = cputime.utime; 450 *st = cputime.stime; 451 } 452 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 453 /* 454 * Account a single tick of cpu time. 455 * @p: the process that the cpu time gets accounted to 456 * @user_tick: indicates if the tick is a user or a system tick 457 */ 458 void account_process_tick(struct task_struct *p, int user_tick) 459 { 460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 461 struct rq *rq = this_rq(); 462 463 if (vtime_accounting_enabled()) 464 return; 465 466 if (sched_clock_irqtime) { 467 irqtime_account_process_tick(p, user_tick, rq); 468 return; 469 } 470 471 if (steal_account_process_tick()) 472 return; 473 474 if (user_tick) 475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 478 one_jiffy_scaled); 479 else 480 account_idle_time(cputime_one_jiffy); 481 } 482 483 /* 484 * Account multiple ticks of steal time. 485 * @p: the process from which the cpu time has been stolen 486 * @ticks: number of stolen ticks 487 */ 488 void account_steal_ticks(unsigned long ticks) 489 { 490 account_steal_time(jiffies_to_cputime(ticks)); 491 } 492 493 /* 494 * Account multiple ticks of idle time. 495 * @ticks: number of stolen ticks 496 */ 497 void account_idle_ticks(unsigned long ticks) 498 { 499 500 if (sched_clock_irqtime) { 501 irqtime_account_idle_ticks(ticks); 502 return; 503 } 504 505 account_idle_time(jiffies_to_cputime(ticks)); 506 } 507 508 /* 509 * Perform (stime * rtime) / total, but avoid multiplication overflow by 510 * loosing precision when the numbers are big. 511 */ 512 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 513 { 514 u64 scaled; 515 516 for (;;) { 517 /* Make sure "rtime" is the bigger of stime/rtime */ 518 if (stime > rtime) 519 swap(rtime, stime); 520 521 /* Make sure 'total' fits in 32 bits */ 522 if (total >> 32) 523 goto drop_precision; 524 525 /* Does rtime (and thus stime) fit in 32 bits? */ 526 if (!(rtime >> 32)) 527 break; 528 529 /* Can we just balance rtime/stime rather than dropping bits? */ 530 if (stime >> 31) 531 goto drop_precision; 532 533 /* We can grow stime and shrink rtime and try to make them both fit */ 534 stime <<= 1; 535 rtime >>= 1; 536 continue; 537 538 drop_precision: 539 /* We drop from rtime, it has more bits than stime */ 540 rtime >>= 1; 541 total >>= 1; 542 } 543 544 /* 545 * Make sure gcc understands that this is a 32x32->64 multiply, 546 * followed by a 64/32->64 divide. 547 */ 548 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 549 return (__force cputime_t) scaled; 550 } 551 552 /* 553 * Adjust tick based cputime random precision against scheduler 554 * runtime accounting. 555 */ 556 static void cputime_adjust(struct task_cputime *curr, 557 struct cputime *prev, 558 cputime_t *ut, cputime_t *st) 559 { 560 cputime_t rtime, stime, utime, total; 561 562 if (vtime_accounting_enabled()) { 563 *ut = curr->utime; 564 *st = curr->stime; 565 return; 566 } 567 568 stime = curr->stime; 569 total = stime + curr->utime; 570 571 /* 572 * Tick based cputime accounting depend on random scheduling 573 * timeslices of a task to be interrupted or not by the timer. 574 * Depending on these circumstances, the number of these interrupts 575 * may be over or under-optimistic, matching the real user and system 576 * cputime with a variable precision. 577 * 578 * Fix this by scaling these tick based values against the total 579 * runtime accounted by the CFS scheduler. 580 */ 581 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 582 583 /* 584 * Update userspace visible utime/stime values only if actual execution 585 * time is bigger than already exported. Note that can happen, that we 586 * provided bigger values due to scaling inaccuracy on big numbers. 587 */ 588 if (prev->stime + prev->utime >= rtime) 589 goto out; 590 591 if (total) { 592 stime = scale_stime((__force u64)stime, 593 (__force u64)rtime, (__force u64)total); 594 utime = rtime - stime; 595 } else { 596 stime = rtime; 597 utime = 0; 598 } 599 600 /* 601 * If the tick based count grows faster than the scheduler one, 602 * the result of the scaling may go backward. 603 * Let's enforce monotonicity. 604 */ 605 prev->stime = max(prev->stime, stime); 606 prev->utime = max(prev->utime, utime); 607 608 out: 609 *ut = prev->utime; 610 *st = prev->stime; 611 } 612 613 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 614 { 615 struct task_cputime cputime = { 616 .sum_exec_runtime = p->se.sum_exec_runtime, 617 }; 618 619 task_cputime(p, &cputime.utime, &cputime.stime); 620 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 621 } 622 623 /* 624 * Must be called with siglock held. 625 */ 626 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 627 { 628 struct task_cputime cputime; 629 630 thread_group_cputime(p, &cputime); 631 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 632 } 633 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 634 635 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 636 static unsigned long long vtime_delta(struct task_struct *tsk) 637 { 638 unsigned long long clock; 639 640 clock = local_clock(); 641 if (clock < tsk->vtime_snap) 642 return 0; 643 644 return clock - tsk->vtime_snap; 645 } 646 647 static cputime_t get_vtime_delta(struct task_struct *tsk) 648 { 649 unsigned long long delta = vtime_delta(tsk); 650 651 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING); 652 tsk->vtime_snap += delta; 653 654 /* CHECKME: always safe to convert nsecs to cputime? */ 655 return nsecs_to_cputime(delta); 656 } 657 658 static void __vtime_account_system(struct task_struct *tsk) 659 { 660 cputime_t delta_cpu = get_vtime_delta(tsk); 661 662 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 663 } 664 665 void vtime_account_system(struct task_struct *tsk) 666 { 667 if (!vtime_accounting_enabled()) 668 return; 669 670 write_seqlock(&tsk->vtime_seqlock); 671 __vtime_account_system(tsk); 672 write_sequnlock(&tsk->vtime_seqlock); 673 } 674 675 void vtime_account_irq_exit(struct task_struct *tsk) 676 { 677 if (!vtime_accounting_enabled()) 678 return; 679 680 write_seqlock(&tsk->vtime_seqlock); 681 if (context_tracking_in_user()) 682 tsk->vtime_snap_whence = VTIME_USER; 683 __vtime_account_system(tsk); 684 write_sequnlock(&tsk->vtime_seqlock); 685 } 686 687 void vtime_account_user(struct task_struct *tsk) 688 { 689 cputime_t delta_cpu; 690 691 if (!vtime_accounting_enabled()) 692 return; 693 694 delta_cpu = get_vtime_delta(tsk); 695 696 write_seqlock(&tsk->vtime_seqlock); 697 tsk->vtime_snap_whence = VTIME_SYS; 698 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 699 write_sequnlock(&tsk->vtime_seqlock); 700 } 701 702 void vtime_user_enter(struct task_struct *tsk) 703 { 704 if (!vtime_accounting_enabled()) 705 return; 706 707 write_seqlock(&tsk->vtime_seqlock); 708 tsk->vtime_snap_whence = VTIME_USER; 709 __vtime_account_system(tsk); 710 write_sequnlock(&tsk->vtime_seqlock); 711 } 712 713 void vtime_guest_enter(struct task_struct *tsk) 714 { 715 write_seqlock(&tsk->vtime_seqlock); 716 __vtime_account_system(tsk); 717 current->flags |= PF_VCPU; 718 write_sequnlock(&tsk->vtime_seqlock); 719 } 720 721 void vtime_guest_exit(struct task_struct *tsk) 722 { 723 write_seqlock(&tsk->vtime_seqlock); 724 __vtime_account_system(tsk); 725 current->flags &= ~PF_VCPU; 726 write_sequnlock(&tsk->vtime_seqlock); 727 } 728 729 void vtime_account_idle(struct task_struct *tsk) 730 { 731 cputime_t delta_cpu = get_vtime_delta(tsk); 732 733 account_idle_time(delta_cpu); 734 } 735 736 bool vtime_accounting_enabled(void) 737 { 738 return context_tracking_active(); 739 } 740 741 void arch_vtime_task_switch(struct task_struct *prev) 742 { 743 write_seqlock(&prev->vtime_seqlock); 744 prev->vtime_snap_whence = VTIME_SLEEPING; 745 write_sequnlock(&prev->vtime_seqlock); 746 747 write_seqlock(¤t->vtime_seqlock); 748 current->vtime_snap_whence = VTIME_SYS; 749 current->vtime_snap = sched_clock_cpu(smp_processor_id()); 750 write_sequnlock(¤t->vtime_seqlock); 751 } 752 753 void vtime_init_idle(struct task_struct *t, int cpu) 754 { 755 unsigned long flags; 756 757 write_seqlock_irqsave(&t->vtime_seqlock, flags); 758 t->vtime_snap_whence = VTIME_SYS; 759 t->vtime_snap = sched_clock_cpu(cpu); 760 write_sequnlock_irqrestore(&t->vtime_seqlock, flags); 761 } 762 763 cputime_t task_gtime(struct task_struct *t) 764 { 765 unsigned int seq; 766 cputime_t gtime; 767 768 do { 769 seq = read_seqbegin(&t->vtime_seqlock); 770 771 gtime = t->gtime; 772 if (t->flags & PF_VCPU) 773 gtime += vtime_delta(t); 774 775 } while (read_seqretry(&t->vtime_seqlock, seq)); 776 777 return gtime; 778 } 779 780 /* 781 * Fetch cputime raw values from fields of task_struct and 782 * add up the pending nohz execution time since the last 783 * cputime snapshot. 784 */ 785 static void 786 fetch_task_cputime(struct task_struct *t, 787 cputime_t *u_dst, cputime_t *s_dst, 788 cputime_t *u_src, cputime_t *s_src, 789 cputime_t *udelta, cputime_t *sdelta) 790 { 791 unsigned int seq; 792 unsigned long long delta; 793 794 do { 795 *udelta = 0; 796 *sdelta = 0; 797 798 seq = read_seqbegin(&t->vtime_seqlock); 799 800 if (u_dst) 801 *u_dst = *u_src; 802 if (s_dst) 803 *s_dst = *s_src; 804 805 /* Task is sleeping, nothing to add */ 806 if (t->vtime_snap_whence == VTIME_SLEEPING || 807 is_idle_task(t)) 808 continue; 809 810 delta = vtime_delta(t); 811 812 /* 813 * Task runs either in user or kernel space, add pending nohz time to 814 * the right place. 815 */ 816 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 817 *udelta = delta; 818 } else { 819 if (t->vtime_snap_whence == VTIME_SYS) 820 *sdelta = delta; 821 } 822 } while (read_seqretry(&t->vtime_seqlock, seq)); 823 } 824 825 826 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 827 { 828 cputime_t udelta, sdelta; 829 830 fetch_task_cputime(t, utime, stime, &t->utime, 831 &t->stime, &udelta, &sdelta); 832 if (utime) 833 *utime += udelta; 834 if (stime) 835 *stime += sdelta; 836 } 837 838 void task_cputime_scaled(struct task_struct *t, 839 cputime_t *utimescaled, cputime_t *stimescaled) 840 { 841 cputime_t udelta, sdelta; 842 843 fetch_task_cputime(t, utimescaled, stimescaled, 844 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 845 if (utimescaled) 846 *utimescaled += cputime_to_scaled(udelta); 847 if (stimescaled) 848 *stimescaled += cputime_to_scaled(sdelta); 849 } 850 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 851