xref: /linux/kernel/sched/cputime.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11 
12 
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14 
15 /*
16  * There are no locks covering percpu hardirq/softirq time.
17  * They are only modified in vtime_account, on corresponding CPU
18  * with interrupts disabled. So, writes are safe.
19  * They are read and saved off onto struct rq in update_rq_clock().
20  * This may result in other CPU reading this CPU's irq time and can
21  * race with irq/vtime_account on this CPU. We would either get old
22  * or new value with a side effect of accounting a slice of irq time to wrong
23  * task when irq is in progress while we read rq->clock. That is a worthy
24  * compromise in place of having locks on each irq in account_system_time.
25  */
26 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
27 
28 static int sched_clock_irqtime;
29 
30 void enable_sched_clock_irqtime(void)
31 {
32 	sched_clock_irqtime = 1;
33 }
34 
35 void disable_sched_clock_irqtime(void)
36 {
37 	sched_clock_irqtime = 0;
38 }
39 
40 /*
41  * Called before incrementing preempt_count on {soft,}irq_enter
42  * and before decrementing preempt_count on {soft,}irq_exit.
43  */
44 void irqtime_account_irq(struct task_struct *curr)
45 {
46 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
47 	s64 delta;
48 	int cpu;
49 
50 	if (!sched_clock_irqtime)
51 		return;
52 
53 	cpu = smp_processor_id();
54 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
55 	irqtime->irq_start_time += delta;
56 
57 	u64_stats_update_begin(&irqtime->sync);
58 	/*
59 	 * We do not account for softirq time from ksoftirqd here.
60 	 * We want to continue accounting softirq time to ksoftirqd thread
61 	 * in that case, so as not to confuse scheduler with a special task
62 	 * that do not consume any time, but still wants to run.
63 	 */
64 	if (hardirq_count())
65 		irqtime->hardirq_time += delta;
66 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
67 		irqtime->softirq_time += delta;
68 
69 	u64_stats_update_end(&irqtime->sync);
70 }
71 EXPORT_SYMBOL_GPL(irqtime_account_irq);
72 
73 static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
74 {
75 	u64 *cpustat = kcpustat_this_cpu->cpustat;
76 	cputime_t irq_cputime;
77 
78 	irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
79 	irq_cputime = min(irq_cputime, maxtime);
80 	cpustat[idx] += irq_cputime;
81 
82 	return irq_cputime;
83 }
84 
85 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
86 {
87 	return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
88 				      CPUTIME_IRQ, maxtime);
89 }
90 
91 static cputime_t irqtime_account_si_update(cputime_t maxtime)
92 {
93 	return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
94 				      CPUTIME_SOFTIRQ, maxtime);
95 }
96 
97 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
98 
99 #define sched_clock_irqtime	(0)
100 
101 static cputime_t irqtime_account_hi_update(cputime_t dummy)
102 {
103 	return 0;
104 }
105 
106 static cputime_t irqtime_account_si_update(cputime_t dummy)
107 {
108 	return 0;
109 }
110 
111 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112 
113 static inline void task_group_account_field(struct task_struct *p, int index,
114 					    u64 tmp)
115 {
116 	/*
117 	 * Since all updates are sure to touch the root cgroup, we
118 	 * get ourselves ahead and touch it first. If the root cgroup
119 	 * is the only cgroup, then nothing else should be necessary.
120 	 *
121 	 */
122 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123 
124 	cpuacct_account_field(p, index, tmp);
125 }
126 
127 /*
128  * Account user cpu time to a process.
129  * @p: the process that the cpu time gets accounted to
130  * @cputime: the cpu time spent in user space since the last update
131  * @cputime_scaled: cputime scaled by cpu frequency
132  */
133 void account_user_time(struct task_struct *p, cputime_t cputime,
134 		       cputime_t cputime_scaled)
135 {
136 	int index;
137 
138 	/* Add user time to process. */
139 	p->utime += cputime;
140 	p->utimescaled += cputime_scaled;
141 	account_group_user_time(p, cputime);
142 
143 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
144 
145 	/* Add user time to cpustat. */
146 	task_group_account_field(p, index, (__force u64) cputime);
147 
148 	/* Account for user time used */
149 	acct_account_cputime(p);
150 }
151 
152 /*
153  * Account guest cpu time to a process.
154  * @p: the process that the cpu time gets accounted to
155  * @cputime: the cpu time spent in virtual machine since the last update
156  * @cputime_scaled: cputime scaled by cpu frequency
157  */
158 static void account_guest_time(struct task_struct *p, cputime_t cputime,
159 			       cputime_t cputime_scaled)
160 {
161 	u64 *cpustat = kcpustat_this_cpu->cpustat;
162 
163 	/* Add guest time to process. */
164 	p->utime += cputime;
165 	p->utimescaled += cputime_scaled;
166 	account_group_user_time(p, cputime);
167 	p->gtime += cputime;
168 
169 	/* Add guest time to cpustat. */
170 	if (task_nice(p) > 0) {
171 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
172 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
173 	} else {
174 		cpustat[CPUTIME_USER] += (__force u64) cputime;
175 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
176 	}
177 }
178 
179 /*
180  * Account system cpu time to a process and desired cpustat field
181  * @p: the process that the cpu time gets accounted to
182  * @cputime: the cpu time spent in kernel space since the last update
183  * @cputime_scaled: cputime scaled by cpu frequency
184  * @target_cputime64: pointer to cpustat field that has to be updated
185  */
186 static inline
187 void __account_system_time(struct task_struct *p, cputime_t cputime,
188 			cputime_t cputime_scaled, int index)
189 {
190 	/* Add system time to process. */
191 	p->stime += cputime;
192 	p->stimescaled += cputime_scaled;
193 	account_group_system_time(p, cputime);
194 
195 	/* Add system time to cpustat. */
196 	task_group_account_field(p, index, (__force u64) cputime);
197 
198 	/* Account for system time used */
199 	acct_account_cputime(p);
200 }
201 
202 /*
203  * Account system cpu time to a process.
204  * @p: the process that the cpu time gets accounted to
205  * @hardirq_offset: the offset to subtract from hardirq_count()
206  * @cputime: the cpu time spent in kernel space since the last update
207  * @cputime_scaled: cputime scaled by cpu frequency
208  */
209 void account_system_time(struct task_struct *p, int hardirq_offset,
210 			 cputime_t cputime, cputime_t cputime_scaled)
211 {
212 	int index;
213 
214 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
215 		account_guest_time(p, cputime, cputime_scaled);
216 		return;
217 	}
218 
219 	if (hardirq_count() - hardirq_offset)
220 		index = CPUTIME_IRQ;
221 	else if (in_serving_softirq())
222 		index = CPUTIME_SOFTIRQ;
223 	else
224 		index = CPUTIME_SYSTEM;
225 
226 	__account_system_time(p, cputime, cputime_scaled, index);
227 }
228 
229 /*
230  * Account for involuntary wait time.
231  * @cputime: the cpu time spent in involuntary wait
232  */
233 void account_steal_time(cputime_t cputime)
234 {
235 	u64 *cpustat = kcpustat_this_cpu->cpustat;
236 
237 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
238 }
239 
240 /*
241  * Account for idle time.
242  * @cputime: the cpu time spent in idle wait
243  */
244 void account_idle_time(cputime_t cputime)
245 {
246 	u64 *cpustat = kcpustat_this_cpu->cpustat;
247 	struct rq *rq = this_rq();
248 
249 	if (atomic_read(&rq->nr_iowait) > 0)
250 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
251 	else
252 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
253 }
254 
255 /*
256  * When a guest is interrupted for a longer amount of time, missed clock
257  * ticks are not redelivered later. Due to that, this function may on
258  * occasion account more time than the calling functions think elapsed.
259  */
260 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
261 {
262 #ifdef CONFIG_PARAVIRT
263 	if (static_key_false(&paravirt_steal_enabled)) {
264 		cputime_t steal_cputime;
265 		u64 steal;
266 
267 		steal = paravirt_steal_clock(smp_processor_id());
268 		steal -= this_rq()->prev_steal_time;
269 
270 		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
271 		account_steal_time(steal_cputime);
272 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
273 
274 		return steal_cputime;
275 	}
276 #endif
277 	return 0;
278 }
279 
280 /*
281  * Account how much elapsed time was spent in steal, irq, or softirq time.
282  */
283 static inline cputime_t account_other_time(cputime_t max)
284 {
285 	cputime_t accounted;
286 
287 	/* Shall be converted to a lockdep-enabled lightweight check */
288 	WARN_ON_ONCE(!irqs_disabled());
289 
290 	accounted = steal_account_process_time(max);
291 
292 	if (accounted < max)
293 		accounted += irqtime_account_hi_update(max - accounted);
294 
295 	if (accounted < max)
296 		accounted += irqtime_account_si_update(max - accounted);
297 
298 	return accounted;
299 }
300 
301 #ifdef CONFIG_64BIT
302 static inline u64 read_sum_exec_runtime(struct task_struct *t)
303 {
304 	return t->se.sum_exec_runtime;
305 }
306 #else
307 static u64 read_sum_exec_runtime(struct task_struct *t)
308 {
309 	u64 ns;
310 	struct rq_flags rf;
311 	struct rq *rq;
312 
313 	rq = task_rq_lock(t, &rf);
314 	ns = t->se.sum_exec_runtime;
315 	task_rq_unlock(rq, t, &rf);
316 
317 	return ns;
318 }
319 #endif
320 
321 /*
322  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
323  * tasks (sum on group iteration) belonging to @tsk's group.
324  */
325 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
326 {
327 	struct signal_struct *sig = tsk->signal;
328 	cputime_t utime, stime;
329 	struct task_struct *t;
330 	unsigned int seq, nextseq;
331 	unsigned long flags;
332 
333 	/*
334 	 * Update current task runtime to account pending time since last
335 	 * scheduler action or thread_group_cputime() call. This thread group
336 	 * might have other running tasks on different CPUs, but updating
337 	 * their runtime can affect syscall performance, so we skip account
338 	 * those pending times and rely only on values updated on tick or
339 	 * other scheduler action.
340 	 */
341 	if (same_thread_group(current, tsk))
342 		(void) task_sched_runtime(current);
343 
344 	rcu_read_lock();
345 	/* Attempt a lockless read on the first round. */
346 	nextseq = 0;
347 	do {
348 		seq = nextseq;
349 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
350 		times->utime = sig->utime;
351 		times->stime = sig->stime;
352 		times->sum_exec_runtime = sig->sum_sched_runtime;
353 
354 		for_each_thread(tsk, t) {
355 			task_cputime(t, &utime, &stime);
356 			times->utime += utime;
357 			times->stime += stime;
358 			times->sum_exec_runtime += read_sum_exec_runtime(t);
359 		}
360 		/* If lockless access failed, take the lock. */
361 		nextseq = 1;
362 	} while (need_seqretry(&sig->stats_lock, seq));
363 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
364 	rcu_read_unlock();
365 }
366 
367 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
368 /*
369  * Account a tick to a process and cpustat
370  * @p: the process that the cpu time gets accounted to
371  * @user_tick: is the tick from userspace
372  * @rq: the pointer to rq
373  *
374  * Tick demultiplexing follows the order
375  * - pending hardirq update
376  * - pending softirq update
377  * - user_time
378  * - idle_time
379  * - system time
380  *   - check for guest_time
381  *   - else account as system_time
382  *
383  * Check for hardirq is done both for system and user time as there is
384  * no timer going off while we are on hardirq and hence we may never get an
385  * opportunity to update it solely in system time.
386  * p->stime and friends are only updated on system time and not on irq
387  * softirq as those do not count in task exec_runtime any more.
388  */
389 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
390 					 struct rq *rq, int ticks)
391 {
392 	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
393 	cputime_t scaled, other;
394 
395 	/*
396 	 * When returning from idle, many ticks can get accounted at
397 	 * once, including some ticks of steal, irq, and softirq time.
398 	 * Subtract those ticks from the amount of time accounted to
399 	 * idle, or potentially user or system time. Due to rounding,
400 	 * other time can exceed ticks occasionally.
401 	 */
402 	other = account_other_time(ULONG_MAX);
403 	if (other >= cputime)
404 		return;
405 	cputime -= other;
406 	scaled = cputime_to_scaled(cputime);
407 
408 	if (this_cpu_ksoftirqd() == p) {
409 		/*
410 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
411 		 * So, we have to handle it separately here.
412 		 * Also, p->stime needs to be updated for ksoftirqd.
413 		 */
414 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
415 	} else if (user_tick) {
416 		account_user_time(p, cputime, scaled);
417 	} else if (p == rq->idle) {
418 		account_idle_time(cputime);
419 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
420 		account_guest_time(p, cputime, scaled);
421 	} else {
422 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
423 	}
424 }
425 
426 static void irqtime_account_idle_ticks(int ticks)
427 {
428 	struct rq *rq = this_rq();
429 
430 	irqtime_account_process_tick(current, 0, rq, ticks);
431 }
432 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
433 static inline void irqtime_account_idle_ticks(int ticks) {}
434 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
435 						struct rq *rq, int nr_ticks) {}
436 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
437 
438 /*
439  * Use precise platform statistics if available:
440  */
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
442 
443 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
444 void vtime_common_task_switch(struct task_struct *prev)
445 {
446 	if (is_idle_task(prev))
447 		vtime_account_idle(prev);
448 	else
449 		vtime_account_system(prev);
450 
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 	vtime_account_user(prev);
453 #endif
454 	arch_vtime_task_switch(prev);
455 }
456 #endif
457 
458 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
459 
460 
461 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
462 /*
463  * Archs that account the whole time spent in the idle task
464  * (outside irq) as idle time can rely on this and just implement
465  * vtime_account_system() and vtime_account_idle(). Archs that
466  * have other meaning of the idle time (s390 only includes the
467  * time spent by the CPU when it's in low power mode) must override
468  * vtime_account().
469  */
470 #ifndef __ARCH_HAS_VTIME_ACCOUNT
471 void vtime_account_irq_enter(struct task_struct *tsk)
472 {
473 	if (!in_interrupt() && is_idle_task(tsk))
474 		vtime_account_idle(tsk);
475 	else
476 		vtime_account_system(tsk);
477 }
478 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
479 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
480 
481 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
482 {
483 	*ut = p->utime;
484 	*st = p->stime;
485 }
486 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
487 
488 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
489 {
490 	struct task_cputime cputime;
491 
492 	thread_group_cputime(p, &cputime);
493 
494 	*ut = cputime.utime;
495 	*st = cputime.stime;
496 }
497 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
498 /*
499  * Account a single tick of cpu time.
500  * @p: the process that the cpu time gets accounted to
501  * @user_tick: indicates if the tick is a user or a system tick
502  */
503 void account_process_tick(struct task_struct *p, int user_tick)
504 {
505 	cputime_t cputime, scaled, steal;
506 	struct rq *rq = this_rq();
507 
508 	if (vtime_accounting_cpu_enabled())
509 		return;
510 
511 	if (sched_clock_irqtime) {
512 		irqtime_account_process_tick(p, user_tick, rq, 1);
513 		return;
514 	}
515 
516 	cputime = cputime_one_jiffy;
517 	steal = steal_account_process_time(ULONG_MAX);
518 
519 	if (steal >= cputime)
520 		return;
521 
522 	cputime -= steal;
523 	scaled = cputime_to_scaled(cputime);
524 
525 	if (user_tick)
526 		account_user_time(p, cputime, scaled);
527 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
528 		account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
529 	else
530 		account_idle_time(cputime);
531 }
532 
533 /*
534  * Account multiple ticks of idle time.
535  * @ticks: number of stolen ticks
536  */
537 void account_idle_ticks(unsigned long ticks)
538 {
539 	cputime_t cputime, steal;
540 
541 	if (sched_clock_irqtime) {
542 		irqtime_account_idle_ticks(ticks);
543 		return;
544 	}
545 
546 	cputime = jiffies_to_cputime(ticks);
547 	steal = steal_account_process_time(ULONG_MAX);
548 
549 	if (steal >= cputime)
550 		return;
551 
552 	cputime -= steal;
553 	account_idle_time(cputime);
554 }
555 
556 /*
557  * Perform (stime * rtime) / total, but avoid multiplication overflow by
558  * loosing precision when the numbers are big.
559  */
560 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
561 {
562 	u64 scaled;
563 
564 	for (;;) {
565 		/* Make sure "rtime" is the bigger of stime/rtime */
566 		if (stime > rtime)
567 			swap(rtime, stime);
568 
569 		/* Make sure 'total' fits in 32 bits */
570 		if (total >> 32)
571 			goto drop_precision;
572 
573 		/* Does rtime (and thus stime) fit in 32 bits? */
574 		if (!(rtime >> 32))
575 			break;
576 
577 		/* Can we just balance rtime/stime rather than dropping bits? */
578 		if (stime >> 31)
579 			goto drop_precision;
580 
581 		/* We can grow stime and shrink rtime and try to make them both fit */
582 		stime <<= 1;
583 		rtime >>= 1;
584 		continue;
585 
586 drop_precision:
587 		/* We drop from rtime, it has more bits than stime */
588 		rtime >>= 1;
589 		total >>= 1;
590 	}
591 
592 	/*
593 	 * Make sure gcc understands that this is a 32x32->64 multiply,
594 	 * followed by a 64/32->64 divide.
595 	 */
596 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
597 	return (__force cputime_t) scaled;
598 }
599 
600 /*
601  * Adjust tick based cputime random precision against scheduler runtime
602  * accounting.
603  *
604  * Tick based cputime accounting depend on random scheduling timeslices of a
605  * task to be interrupted or not by the timer.  Depending on these
606  * circumstances, the number of these interrupts may be over or
607  * under-optimistic, matching the real user and system cputime with a variable
608  * precision.
609  *
610  * Fix this by scaling these tick based values against the total runtime
611  * accounted by the CFS scheduler.
612  *
613  * This code provides the following guarantees:
614  *
615  *   stime + utime == rtime
616  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
617  *
618  * Assuming that rtime_i+1 >= rtime_i.
619  */
620 static void cputime_adjust(struct task_cputime *curr,
621 			   struct prev_cputime *prev,
622 			   cputime_t *ut, cputime_t *st)
623 {
624 	cputime_t rtime, stime, utime;
625 	unsigned long flags;
626 
627 	/* Serialize concurrent callers such that we can honour our guarantees */
628 	raw_spin_lock_irqsave(&prev->lock, flags);
629 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
630 
631 	/*
632 	 * This is possible under two circumstances:
633 	 *  - rtime isn't monotonic after all (a bug);
634 	 *  - we got reordered by the lock.
635 	 *
636 	 * In both cases this acts as a filter such that the rest of the code
637 	 * can assume it is monotonic regardless of anything else.
638 	 */
639 	if (prev->stime + prev->utime >= rtime)
640 		goto out;
641 
642 	stime = curr->stime;
643 	utime = curr->utime;
644 
645 	/*
646 	 * If either stime or both stime and utime are 0, assume all runtime is
647 	 * userspace. Once a task gets some ticks, the monotonicy code at
648 	 * 'update' will ensure things converge to the observed ratio.
649 	 */
650 	if (stime == 0) {
651 		utime = rtime;
652 		goto update;
653 	}
654 
655 	if (utime == 0) {
656 		stime = rtime;
657 		goto update;
658 	}
659 
660 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
661 			    (__force u64)(stime + utime));
662 
663 update:
664 	/*
665 	 * Make sure stime doesn't go backwards; this preserves monotonicity
666 	 * for utime because rtime is monotonic.
667 	 *
668 	 *  utime_i+1 = rtime_i+1 - stime_i
669 	 *            = rtime_i+1 - (rtime_i - utime_i)
670 	 *            = (rtime_i+1 - rtime_i) + utime_i
671 	 *            >= utime_i
672 	 */
673 	if (stime < prev->stime)
674 		stime = prev->stime;
675 	utime = rtime - stime;
676 
677 	/*
678 	 * Make sure utime doesn't go backwards; this still preserves
679 	 * monotonicity for stime, analogous argument to above.
680 	 */
681 	if (utime < prev->utime) {
682 		utime = prev->utime;
683 		stime = rtime - utime;
684 	}
685 
686 	prev->stime = stime;
687 	prev->utime = utime;
688 out:
689 	*ut = prev->utime;
690 	*st = prev->stime;
691 	raw_spin_unlock_irqrestore(&prev->lock, flags);
692 }
693 
694 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
695 {
696 	struct task_cputime cputime = {
697 		.sum_exec_runtime = p->se.sum_exec_runtime,
698 	};
699 
700 	task_cputime(p, &cputime.utime, &cputime.stime);
701 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
702 }
703 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
704 
705 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
706 {
707 	struct task_cputime cputime;
708 
709 	thread_group_cputime(p, &cputime);
710 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
711 }
712 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
713 
714 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
715 static cputime_t vtime_delta(struct task_struct *tsk)
716 {
717 	unsigned long now = READ_ONCE(jiffies);
718 
719 	if (time_before(now, (unsigned long)tsk->vtime_snap))
720 		return 0;
721 
722 	return jiffies_to_cputime(now - tsk->vtime_snap);
723 }
724 
725 static cputime_t get_vtime_delta(struct task_struct *tsk)
726 {
727 	unsigned long now = READ_ONCE(jiffies);
728 	cputime_t delta, other;
729 
730 	/*
731 	 * Unlike tick based timing, vtime based timing never has lost
732 	 * ticks, and no need for steal time accounting to make up for
733 	 * lost ticks. Vtime accounts a rounded version of actual
734 	 * elapsed time. Limit account_other_time to prevent rounding
735 	 * errors from causing elapsed vtime to go negative.
736 	 */
737 	delta = jiffies_to_cputime(now - tsk->vtime_snap);
738 	other = account_other_time(delta);
739 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
740 	tsk->vtime_snap = now;
741 
742 	return delta - other;
743 }
744 
745 static void __vtime_account_system(struct task_struct *tsk)
746 {
747 	cputime_t delta_cpu = get_vtime_delta(tsk);
748 
749 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
750 }
751 
752 void vtime_account_system(struct task_struct *tsk)
753 {
754 	if (!vtime_delta(tsk))
755 		return;
756 
757 	write_seqcount_begin(&tsk->vtime_seqcount);
758 	__vtime_account_system(tsk);
759 	write_seqcount_end(&tsk->vtime_seqcount);
760 }
761 
762 void vtime_account_user(struct task_struct *tsk)
763 {
764 	cputime_t delta_cpu;
765 
766 	write_seqcount_begin(&tsk->vtime_seqcount);
767 	tsk->vtime_snap_whence = VTIME_SYS;
768 	if (vtime_delta(tsk)) {
769 		delta_cpu = get_vtime_delta(tsk);
770 		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
771 	}
772 	write_seqcount_end(&tsk->vtime_seqcount);
773 }
774 
775 void vtime_user_enter(struct task_struct *tsk)
776 {
777 	write_seqcount_begin(&tsk->vtime_seqcount);
778 	if (vtime_delta(tsk))
779 		__vtime_account_system(tsk);
780 	tsk->vtime_snap_whence = VTIME_USER;
781 	write_seqcount_end(&tsk->vtime_seqcount);
782 }
783 
784 void vtime_guest_enter(struct task_struct *tsk)
785 {
786 	/*
787 	 * The flags must be updated under the lock with
788 	 * the vtime_snap flush and update.
789 	 * That enforces a right ordering and update sequence
790 	 * synchronization against the reader (task_gtime())
791 	 * that can thus safely catch up with a tickless delta.
792 	 */
793 	write_seqcount_begin(&tsk->vtime_seqcount);
794 	if (vtime_delta(tsk))
795 		__vtime_account_system(tsk);
796 	current->flags |= PF_VCPU;
797 	write_seqcount_end(&tsk->vtime_seqcount);
798 }
799 EXPORT_SYMBOL_GPL(vtime_guest_enter);
800 
801 void vtime_guest_exit(struct task_struct *tsk)
802 {
803 	write_seqcount_begin(&tsk->vtime_seqcount);
804 	__vtime_account_system(tsk);
805 	current->flags &= ~PF_VCPU;
806 	write_seqcount_end(&tsk->vtime_seqcount);
807 }
808 EXPORT_SYMBOL_GPL(vtime_guest_exit);
809 
810 void vtime_account_idle(struct task_struct *tsk)
811 {
812 	cputime_t delta_cpu = get_vtime_delta(tsk);
813 
814 	account_idle_time(delta_cpu);
815 }
816 
817 void arch_vtime_task_switch(struct task_struct *prev)
818 {
819 	write_seqcount_begin(&prev->vtime_seqcount);
820 	prev->vtime_snap_whence = VTIME_INACTIVE;
821 	write_seqcount_end(&prev->vtime_seqcount);
822 
823 	write_seqcount_begin(&current->vtime_seqcount);
824 	current->vtime_snap_whence = VTIME_SYS;
825 	current->vtime_snap = jiffies;
826 	write_seqcount_end(&current->vtime_seqcount);
827 }
828 
829 void vtime_init_idle(struct task_struct *t, int cpu)
830 {
831 	unsigned long flags;
832 
833 	local_irq_save(flags);
834 	write_seqcount_begin(&t->vtime_seqcount);
835 	t->vtime_snap_whence = VTIME_SYS;
836 	t->vtime_snap = jiffies;
837 	write_seqcount_end(&t->vtime_seqcount);
838 	local_irq_restore(flags);
839 }
840 
841 cputime_t task_gtime(struct task_struct *t)
842 {
843 	unsigned int seq;
844 	cputime_t gtime;
845 
846 	if (!vtime_accounting_enabled())
847 		return t->gtime;
848 
849 	do {
850 		seq = read_seqcount_begin(&t->vtime_seqcount);
851 
852 		gtime = t->gtime;
853 		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
854 			gtime += vtime_delta(t);
855 
856 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
857 
858 	return gtime;
859 }
860 
861 /*
862  * Fetch cputime raw values from fields of task_struct and
863  * add up the pending nohz execution time since the last
864  * cputime snapshot.
865  */
866 static void
867 fetch_task_cputime(struct task_struct *t,
868 		   cputime_t *u_dst, cputime_t *s_dst,
869 		   cputime_t *u_src, cputime_t *s_src,
870 		   cputime_t *udelta, cputime_t *sdelta)
871 {
872 	unsigned int seq;
873 	unsigned long long delta;
874 
875 	do {
876 		*udelta = 0;
877 		*sdelta = 0;
878 
879 		seq = read_seqcount_begin(&t->vtime_seqcount);
880 
881 		if (u_dst)
882 			*u_dst = *u_src;
883 		if (s_dst)
884 			*s_dst = *s_src;
885 
886 		/* Task is sleeping, nothing to add */
887 		if (t->vtime_snap_whence == VTIME_INACTIVE ||
888 		    is_idle_task(t))
889 			continue;
890 
891 		delta = vtime_delta(t);
892 
893 		/*
894 		 * Task runs either in user or kernel space, add pending nohz time to
895 		 * the right place.
896 		 */
897 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
898 			*udelta = delta;
899 		} else {
900 			if (t->vtime_snap_whence == VTIME_SYS)
901 				*sdelta = delta;
902 		}
903 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
904 }
905 
906 
907 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
908 {
909 	cputime_t udelta, sdelta;
910 
911 	if (!vtime_accounting_enabled()) {
912 		if (utime)
913 			*utime = t->utime;
914 		if (stime)
915 			*stime = t->stime;
916 		return;
917 	}
918 
919 	fetch_task_cputime(t, utime, stime, &t->utime,
920 			   &t->stime, &udelta, &sdelta);
921 	if (utime)
922 		*utime += udelta;
923 	if (stime)
924 		*stime += sdelta;
925 }
926 
927 void task_cputime_scaled(struct task_struct *t,
928 			 cputime_t *utimescaled, cputime_t *stimescaled)
929 {
930 	cputime_t udelta, sdelta;
931 
932 	if (!vtime_accounting_enabled()) {
933 		if (utimescaled)
934 			*utimescaled = t->utimescaled;
935 		if (stimescaled)
936 			*stimescaled = t->stimescaled;
937 		return;
938 	}
939 
940 	fetch_task_cputime(t, utimescaled, stimescaled,
941 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
942 	if (utimescaled)
943 		*utimescaled += cputime_to_scaled(udelta);
944 	if (stimescaled)
945 		*stimescaled += cputime_to_scaled(sdelta);
946 }
947 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
948