1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 #ifdef CONFIG_PARAVIRT 9 #include <asm/paravirt.h> 10 #endif 11 12 13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 14 15 /* 16 * There are no locks covering percpu hardirq/softirq time. 17 * They are only modified in vtime_account, on corresponding CPU 18 * with interrupts disabled. So, writes are safe. 19 * They are read and saved off onto struct rq in update_rq_clock(). 20 * This may result in other CPU reading this CPU's irq time and can 21 * race with irq/vtime_account on this CPU. We would either get old 22 * or new value with a side effect of accounting a slice of irq time to wrong 23 * task when irq is in progress while we read rq->clock. That is a worthy 24 * compromise in place of having locks on each irq in account_system_time. 25 */ 26 DEFINE_PER_CPU(u64, cpu_hardirq_time); 27 DEFINE_PER_CPU(u64, cpu_softirq_time); 28 29 static DEFINE_PER_CPU(u64, irq_start_time); 30 static int sched_clock_irqtime; 31 32 void enable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 1; 35 } 36 37 void disable_sched_clock_irqtime(void) 38 { 39 sched_clock_irqtime = 0; 40 } 41 42 #ifndef CONFIG_64BIT 43 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 44 #endif /* CONFIG_64BIT */ 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 s64 delta; 53 int cpu; 54 55 if (!sched_clock_irqtime) 56 return; 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 } 76 EXPORT_SYMBOL_GPL(irqtime_account_irq); 77 78 static cputime_t irqtime_account_hi_update(cputime_t maxtime) 79 { 80 u64 *cpustat = kcpustat_this_cpu->cpustat; 81 unsigned long flags; 82 cputime_t irq_cputime; 83 84 local_irq_save(flags); 85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) - 86 cpustat[CPUTIME_IRQ]; 87 irq_cputime = min(irq_cputime, maxtime); 88 cpustat[CPUTIME_IRQ] += irq_cputime; 89 local_irq_restore(flags); 90 return irq_cputime; 91 } 92 93 static cputime_t irqtime_account_si_update(cputime_t maxtime) 94 { 95 u64 *cpustat = kcpustat_this_cpu->cpustat; 96 unsigned long flags; 97 cputime_t softirq_cputime; 98 99 local_irq_save(flags); 100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) - 101 cpustat[CPUTIME_SOFTIRQ]; 102 softirq_cputime = min(softirq_cputime, maxtime); 103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime; 104 local_irq_restore(flags); 105 return softirq_cputime; 106 } 107 108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 109 110 #define sched_clock_irqtime (0) 111 112 static cputime_t irqtime_account_hi_update(cputime_t dummy) 113 { 114 return 0; 115 } 116 117 static cputime_t irqtime_account_si_update(cputime_t dummy) 118 { 119 return 0; 120 } 121 122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 123 124 static inline void task_group_account_field(struct task_struct *p, int index, 125 u64 tmp) 126 { 127 /* 128 * Since all updates are sure to touch the root cgroup, we 129 * get ourselves ahead and touch it first. If the root cgroup 130 * is the only cgroup, then nothing else should be necessary. 131 * 132 */ 133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 134 135 cpuacct_account_field(p, index, tmp); 136 } 137 138 /* 139 * Account user cpu time to a process. 140 * @p: the process that the cpu time gets accounted to 141 * @cputime: the cpu time spent in user space since the last update 142 * @cputime_scaled: cputime scaled by cpu frequency 143 */ 144 void account_user_time(struct task_struct *p, cputime_t cputime, 145 cputime_t cputime_scaled) 146 { 147 int index; 148 149 /* Add user time to process. */ 150 p->utime += cputime; 151 p->utimescaled += cputime_scaled; 152 account_group_user_time(p, cputime); 153 154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 155 156 /* Add user time to cpustat. */ 157 task_group_account_field(p, index, (__force u64) cputime); 158 159 /* Account for user time used */ 160 acct_account_cputime(p); 161 } 162 163 /* 164 * Account guest cpu time to a process. 165 * @p: the process that the cpu time gets accounted to 166 * @cputime: the cpu time spent in virtual machine since the last update 167 * @cputime_scaled: cputime scaled by cpu frequency 168 */ 169 static void account_guest_time(struct task_struct *p, cputime_t cputime, 170 cputime_t cputime_scaled) 171 { 172 u64 *cpustat = kcpustat_this_cpu->cpustat; 173 174 /* Add guest time to process. */ 175 p->utime += cputime; 176 p->utimescaled += cputime_scaled; 177 account_group_user_time(p, cputime); 178 p->gtime += cputime; 179 180 /* Add guest time to cpustat. */ 181 if (task_nice(p) > 0) { 182 cpustat[CPUTIME_NICE] += (__force u64) cputime; 183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 184 } else { 185 cpustat[CPUTIME_USER] += (__force u64) cputime; 186 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 187 } 188 } 189 190 /* 191 * Account system cpu time to a process and desired cpustat field 192 * @p: the process that the cpu time gets accounted to 193 * @cputime: the cpu time spent in kernel space since the last update 194 * @cputime_scaled: cputime scaled by cpu frequency 195 * @target_cputime64: pointer to cpustat field that has to be updated 196 */ 197 static inline 198 void __account_system_time(struct task_struct *p, cputime_t cputime, 199 cputime_t cputime_scaled, int index) 200 { 201 /* Add system time to process. */ 202 p->stime += cputime; 203 p->stimescaled += cputime_scaled; 204 account_group_system_time(p, cputime); 205 206 /* Add system time to cpustat. */ 207 task_group_account_field(p, index, (__force u64) cputime); 208 209 /* Account for system time used */ 210 acct_account_cputime(p); 211 } 212 213 /* 214 * Account system cpu time to a process. 215 * @p: the process that the cpu time gets accounted to 216 * @hardirq_offset: the offset to subtract from hardirq_count() 217 * @cputime: the cpu time spent in kernel space since the last update 218 * @cputime_scaled: cputime scaled by cpu frequency 219 */ 220 void account_system_time(struct task_struct *p, int hardirq_offset, 221 cputime_t cputime, cputime_t cputime_scaled) 222 { 223 int index; 224 225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 226 account_guest_time(p, cputime, cputime_scaled); 227 return; 228 } 229 230 if (hardirq_count() - hardirq_offset) 231 index = CPUTIME_IRQ; 232 else if (in_serving_softirq()) 233 index = CPUTIME_SOFTIRQ; 234 else 235 index = CPUTIME_SYSTEM; 236 237 __account_system_time(p, cputime, cputime_scaled, index); 238 } 239 240 /* 241 * Account for involuntary wait time. 242 * @cputime: the cpu time spent in involuntary wait 243 */ 244 void account_steal_time(cputime_t cputime) 245 { 246 u64 *cpustat = kcpustat_this_cpu->cpustat; 247 248 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 249 } 250 251 /* 252 * Account for idle time. 253 * @cputime: the cpu time spent in idle wait 254 */ 255 void account_idle_time(cputime_t cputime) 256 { 257 u64 *cpustat = kcpustat_this_cpu->cpustat; 258 struct rq *rq = this_rq(); 259 260 if (atomic_read(&rq->nr_iowait) > 0) 261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 262 else 263 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 264 } 265 266 /* 267 * When a guest is interrupted for a longer amount of time, missed clock 268 * ticks are not redelivered later. Due to that, this function may on 269 * occasion account more time than the calling functions think elapsed. 270 */ 271 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime) 272 { 273 #ifdef CONFIG_PARAVIRT 274 if (static_key_false(¶virt_steal_enabled)) { 275 cputime_t steal_cputime; 276 u64 steal; 277 278 steal = paravirt_steal_clock(smp_processor_id()); 279 steal -= this_rq()->prev_steal_time; 280 281 steal_cputime = min(nsecs_to_cputime(steal), maxtime); 282 account_steal_time(steal_cputime); 283 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime); 284 285 return steal_cputime; 286 } 287 #endif 288 return 0; 289 } 290 291 /* 292 * Account how much elapsed time was spent in steal, irq, or softirq time. 293 */ 294 static inline cputime_t account_other_time(cputime_t max) 295 { 296 cputime_t accounted; 297 298 accounted = steal_account_process_time(max); 299 300 if (accounted < max) 301 accounted += irqtime_account_hi_update(max - accounted); 302 303 if (accounted < max) 304 accounted += irqtime_account_si_update(max - accounted); 305 306 return accounted; 307 } 308 309 /* 310 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 311 * tasks (sum on group iteration) belonging to @tsk's group. 312 */ 313 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 314 { 315 struct signal_struct *sig = tsk->signal; 316 cputime_t utime, stime; 317 struct task_struct *t; 318 unsigned int seq, nextseq; 319 unsigned long flags; 320 321 rcu_read_lock(); 322 /* Attempt a lockless read on the first round. */ 323 nextseq = 0; 324 do { 325 seq = nextseq; 326 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 327 times->utime = sig->utime; 328 times->stime = sig->stime; 329 times->sum_exec_runtime = sig->sum_sched_runtime; 330 331 for_each_thread(tsk, t) { 332 task_cputime(t, &utime, &stime); 333 times->utime += utime; 334 times->stime += stime; 335 times->sum_exec_runtime += task_sched_runtime(t); 336 } 337 /* If lockless access failed, take the lock. */ 338 nextseq = 1; 339 } while (need_seqretry(&sig->stats_lock, seq)); 340 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 341 rcu_read_unlock(); 342 } 343 344 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 345 /* 346 * Account a tick to a process and cpustat 347 * @p: the process that the cpu time gets accounted to 348 * @user_tick: is the tick from userspace 349 * @rq: the pointer to rq 350 * 351 * Tick demultiplexing follows the order 352 * - pending hardirq update 353 * - pending softirq update 354 * - user_time 355 * - idle_time 356 * - system time 357 * - check for guest_time 358 * - else account as system_time 359 * 360 * Check for hardirq is done both for system and user time as there is 361 * no timer going off while we are on hardirq and hence we may never get an 362 * opportunity to update it solely in system time. 363 * p->stime and friends are only updated on system time and not on irq 364 * softirq as those do not count in task exec_runtime any more. 365 */ 366 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 367 struct rq *rq, int ticks) 368 { 369 u64 cputime = (__force u64) cputime_one_jiffy * ticks; 370 cputime_t scaled, other; 371 372 /* 373 * When returning from idle, many ticks can get accounted at 374 * once, including some ticks of steal, irq, and softirq time. 375 * Subtract those ticks from the amount of time accounted to 376 * idle, or potentially user or system time. Due to rounding, 377 * other time can exceed ticks occasionally. 378 */ 379 other = account_other_time(ULONG_MAX); 380 if (other >= cputime) 381 return; 382 cputime -= other; 383 scaled = cputime_to_scaled(cputime); 384 385 if (this_cpu_ksoftirqd() == p) { 386 /* 387 * ksoftirqd time do not get accounted in cpu_softirq_time. 388 * So, we have to handle it separately here. 389 * Also, p->stime needs to be updated for ksoftirqd. 390 */ 391 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); 392 } else if (user_tick) { 393 account_user_time(p, cputime, scaled); 394 } else if (p == rq->idle) { 395 account_idle_time(cputime); 396 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 397 account_guest_time(p, cputime, scaled); 398 } else { 399 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); 400 } 401 } 402 403 static void irqtime_account_idle_ticks(int ticks) 404 { 405 struct rq *rq = this_rq(); 406 407 irqtime_account_process_tick(current, 0, rq, ticks); 408 } 409 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 410 static inline void irqtime_account_idle_ticks(int ticks) {} 411 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 412 struct rq *rq, int nr_ticks) {} 413 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 414 415 /* 416 * Use precise platform statistics if available: 417 */ 418 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 419 420 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 421 void vtime_common_task_switch(struct task_struct *prev) 422 { 423 if (is_idle_task(prev)) 424 vtime_account_idle(prev); 425 else 426 vtime_account_system(prev); 427 428 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 429 vtime_account_user(prev); 430 #endif 431 arch_vtime_task_switch(prev); 432 } 433 #endif 434 435 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 436 437 438 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 439 /* 440 * Archs that account the whole time spent in the idle task 441 * (outside irq) as idle time can rely on this and just implement 442 * vtime_account_system() and vtime_account_idle(). Archs that 443 * have other meaning of the idle time (s390 only includes the 444 * time spent by the CPU when it's in low power mode) must override 445 * vtime_account(). 446 */ 447 #ifndef __ARCH_HAS_VTIME_ACCOUNT 448 void vtime_account_irq_enter(struct task_struct *tsk) 449 { 450 if (!in_interrupt() && is_idle_task(tsk)) 451 vtime_account_idle(tsk); 452 else 453 vtime_account_system(tsk); 454 } 455 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 456 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 457 458 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 459 { 460 *ut = p->utime; 461 *st = p->stime; 462 } 463 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 464 465 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 466 { 467 struct task_cputime cputime; 468 469 thread_group_cputime(p, &cputime); 470 471 *ut = cputime.utime; 472 *st = cputime.stime; 473 } 474 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 475 /* 476 * Account a single tick of cpu time. 477 * @p: the process that the cpu time gets accounted to 478 * @user_tick: indicates if the tick is a user or a system tick 479 */ 480 void account_process_tick(struct task_struct *p, int user_tick) 481 { 482 cputime_t cputime, scaled, steal; 483 struct rq *rq = this_rq(); 484 485 if (vtime_accounting_cpu_enabled()) 486 return; 487 488 if (sched_clock_irqtime) { 489 irqtime_account_process_tick(p, user_tick, rq, 1); 490 return; 491 } 492 493 cputime = cputime_one_jiffy; 494 steal = steal_account_process_time(ULONG_MAX); 495 496 if (steal >= cputime) 497 return; 498 499 cputime -= steal; 500 scaled = cputime_to_scaled(cputime); 501 502 if (user_tick) 503 account_user_time(p, cputime, scaled); 504 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 505 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled); 506 else 507 account_idle_time(cputime); 508 } 509 510 /* 511 * Account multiple ticks of idle time. 512 * @ticks: number of stolen ticks 513 */ 514 void account_idle_ticks(unsigned long ticks) 515 { 516 cputime_t cputime, steal; 517 518 if (sched_clock_irqtime) { 519 irqtime_account_idle_ticks(ticks); 520 return; 521 } 522 523 cputime = jiffies_to_cputime(ticks); 524 steal = steal_account_process_time(ULONG_MAX); 525 526 if (steal >= cputime) 527 return; 528 529 cputime -= steal; 530 account_idle_time(cputime); 531 } 532 533 /* 534 * Perform (stime * rtime) / total, but avoid multiplication overflow by 535 * loosing precision when the numbers are big. 536 */ 537 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 538 { 539 u64 scaled; 540 541 for (;;) { 542 /* Make sure "rtime" is the bigger of stime/rtime */ 543 if (stime > rtime) 544 swap(rtime, stime); 545 546 /* Make sure 'total' fits in 32 bits */ 547 if (total >> 32) 548 goto drop_precision; 549 550 /* Does rtime (and thus stime) fit in 32 bits? */ 551 if (!(rtime >> 32)) 552 break; 553 554 /* Can we just balance rtime/stime rather than dropping bits? */ 555 if (stime >> 31) 556 goto drop_precision; 557 558 /* We can grow stime and shrink rtime and try to make them both fit */ 559 stime <<= 1; 560 rtime >>= 1; 561 continue; 562 563 drop_precision: 564 /* We drop from rtime, it has more bits than stime */ 565 rtime >>= 1; 566 total >>= 1; 567 } 568 569 /* 570 * Make sure gcc understands that this is a 32x32->64 multiply, 571 * followed by a 64/32->64 divide. 572 */ 573 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 574 return (__force cputime_t) scaled; 575 } 576 577 /* 578 * Adjust tick based cputime random precision against scheduler runtime 579 * accounting. 580 * 581 * Tick based cputime accounting depend on random scheduling timeslices of a 582 * task to be interrupted or not by the timer. Depending on these 583 * circumstances, the number of these interrupts may be over or 584 * under-optimistic, matching the real user and system cputime with a variable 585 * precision. 586 * 587 * Fix this by scaling these tick based values against the total runtime 588 * accounted by the CFS scheduler. 589 * 590 * This code provides the following guarantees: 591 * 592 * stime + utime == rtime 593 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 594 * 595 * Assuming that rtime_i+1 >= rtime_i. 596 */ 597 static void cputime_adjust(struct task_cputime *curr, 598 struct prev_cputime *prev, 599 cputime_t *ut, cputime_t *st) 600 { 601 cputime_t rtime, stime, utime; 602 unsigned long flags; 603 604 /* Serialize concurrent callers such that we can honour our guarantees */ 605 raw_spin_lock_irqsave(&prev->lock, flags); 606 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 607 608 /* 609 * This is possible under two circumstances: 610 * - rtime isn't monotonic after all (a bug); 611 * - we got reordered by the lock. 612 * 613 * In both cases this acts as a filter such that the rest of the code 614 * can assume it is monotonic regardless of anything else. 615 */ 616 if (prev->stime + prev->utime >= rtime) 617 goto out; 618 619 stime = curr->stime; 620 utime = curr->utime; 621 622 /* 623 * If either stime or both stime and utime are 0, assume all runtime is 624 * userspace. Once a task gets some ticks, the monotonicy code at 625 * 'update' will ensure things converge to the observed ratio. 626 */ 627 if (stime == 0) { 628 utime = rtime; 629 goto update; 630 } 631 632 if (utime == 0) { 633 stime = rtime; 634 goto update; 635 } 636 637 stime = scale_stime((__force u64)stime, (__force u64)rtime, 638 (__force u64)(stime + utime)); 639 640 update: 641 /* 642 * Make sure stime doesn't go backwards; this preserves monotonicity 643 * for utime because rtime is monotonic. 644 * 645 * utime_i+1 = rtime_i+1 - stime_i 646 * = rtime_i+1 - (rtime_i - utime_i) 647 * = (rtime_i+1 - rtime_i) + utime_i 648 * >= utime_i 649 */ 650 if (stime < prev->stime) 651 stime = prev->stime; 652 utime = rtime - stime; 653 654 /* 655 * Make sure utime doesn't go backwards; this still preserves 656 * monotonicity for stime, analogous argument to above. 657 */ 658 if (utime < prev->utime) { 659 utime = prev->utime; 660 stime = rtime - utime; 661 } 662 663 prev->stime = stime; 664 prev->utime = utime; 665 out: 666 *ut = prev->utime; 667 *st = prev->stime; 668 raw_spin_unlock_irqrestore(&prev->lock, flags); 669 } 670 671 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 672 { 673 struct task_cputime cputime = { 674 .sum_exec_runtime = p->se.sum_exec_runtime, 675 }; 676 677 task_cputime(p, &cputime.utime, &cputime.stime); 678 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 679 } 680 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 681 682 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 683 { 684 struct task_cputime cputime; 685 686 thread_group_cputime(p, &cputime); 687 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 688 } 689 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 690 691 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 692 static cputime_t vtime_delta(struct task_struct *tsk) 693 { 694 unsigned long now = READ_ONCE(jiffies); 695 696 if (time_before(now, (unsigned long)tsk->vtime_snap)) 697 return 0; 698 699 return jiffies_to_cputime(now - tsk->vtime_snap); 700 } 701 702 static cputime_t get_vtime_delta(struct task_struct *tsk) 703 { 704 unsigned long now = READ_ONCE(jiffies); 705 cputime_t delta, other; 706 707 /* 708 * Unlike tick based timing, vtime based timing never has lost 709 * ticks, and no need for steal time accounting to make up for 710 * lost ticks. Vtime accounts a rounded version of actual 711 * elapsed time. Limit account_other_time to prevent rounding 712 * errors from causing elapsed vtime to go negative. 713 */ 714 delta = jiffies_to_cputime(now - tsk->vtime_snap); 715 other = account_other_time(delta); 716 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 717 tsk->vtime_snap = now; 718 719 return delta - other; 720 } 721 722 static void __vtime_account_system(struct task_struct *tsk) 723 { 724 cputime_t delta_cpu = get_vtime_delta(tsk); 725 726 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 727 } 728 729 void vtime_account_system(struct task_struct *tsk) 730 { 731 if (!vtime_delta(tsk)) 732 return; 733 734 write_seqcount_begin(&tsk->vtime_seqcount); 735 __vtime_account_system(tsk); 736 write_seqcount_end(&tsk->vtime_seqcount); 737 } 738 739 void vtime_account_user(struct task_struct *tsk) 740 { 741 cputime_t delta_cpu; 742 743 write_seqcount_begin(&tsk->vtime_seqcount); 744 tsk->vtime_snap_whence = VTIME_SYS; 745 if (vtime_delta(tsk)) { 746 delta_cpu = get_vtime_delta(tsk); 747 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 748 } 749 write_seqcount_end(&tsk->vtime_seqcount); 750 } 751 752 void vtime_user_enter(struct task_struct *tsk) 753 { 754 write_seqcount_begin(&tsk->vtime_seqcount); 755 if (vtime_delta(tsk)) 756 __vtime_account_system(tsk); 757 tsk->vtime_snap_whence = VTIME_USER; 758 write_seqcount_end(&tsk->vtime_seqcount); 759 } 760 761 void vtime_guest_enter(struct task_struct *tsk) 762 { 763 /* 764 * The flags must be updated under the lock with 765 * the vtime_snap flush and update. 766 * That enforces a right ordering and update sequence 767 * synchronization against the reader (task_gtime()) 768 * that can thus safely catch up with a tickless delta. 769 */ 770 write_seqcount_begin(&tsk->vtime_seqcount); 771 if (vtime_delta(tsk)) 772 __vtime_account_system(tsk); 773 current->flags |= PF_VCPU; 774 write_seqcount_end(&tsk->vtime_seqcount); 775 } 776 EXPORT_SYMBOL_GPL(vtime_guest_enter); 777 778 void vtime_guest_exit(struct task_struct *tsk) 779 { 780 write_seqcount_begin(&tsk->vtime_seqcount); 781 __vtime_account_system(tsk); 782 current->flags &= ~PF_VCPU; 783 write_seqcount_end(&tsk->vtime_seqcount); 784 } 785 EXPORT_SYMBOL_GPL(vtime_guest_exit); 786 787 void vtime_account_idle(struct task_struct *tsk) 788 { 789 cputime_t delta_cpu = get_vtime_delta(tsk); 790 791 account_idle_time(delta_cpu); 792 } 793 794 void arch_vtime_task_switch(struct task_struct *prev) 795 { 796 write_seqcount_begin(&prev->vtime_seqcount); 797 prev->vtime_snap_whence = VTIME_INACTIVE; 798 write_seqcount_end(&prev->vtime_seqcount); 799 800 write_seqcount_begin(¤t->vtime_seqcount); 801 current->vtime_snap_whence = VTIME_SYS; 802 current->vtime_snap = jiffies; 803 write_seqcount_end(¤t->vtime_seqcount); 804 } 805 806 void vtime_init_idle(struct task_struct *t, int cpu) 807 { 808 unsigned long flags; 809 810 local_irq_save(flags); 811 write_seqcount_begin(&t->vtime_seqcount); 812 t->vtime_snap_whence = VTIME_SYS; 813 t->vtime_snap = jiffies; 814 write_seqcount_end(&t->vtime_seqcount); 815 local_irq_restore(flags); 816 } 817 818 cputime_t task_gtime(struct task_struct *t) 819 { 820 unsigned int seq; 821 cputime_t gtime; 822 823 if (!vtime_accounting_enabled()) 824 return t->gtime; 825 826 do { 827 seq = read_seqcount_begin(&t->vtime_seqcount); 828 829 gtime = t->gtime; 830 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 831 gtime += vtime_delta(t); 832 833 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 834 835 return gtime; 836 } 837 838 /* 839 * Fetch cputime raw values from fields of task_struct and 840 * add up the pending nohz execution time since the last 841 * cputime snapshot. 842 */ 843 static void 844 fetch_task_cputime(struct task_struct *t, 845 cputime_t *u_dst, cputime_t *s_dst, 846 cputime_t *u_src, cputime_t *s_src, 847 cputime_t *udelta, cputime_t *sdelta) 848 { 849 unsigned int seq; 850 unsigned long long delta; 851 852 do { 853 *udelta = 0; 854 *sdelta = 0; 855 856 seq = read_seqcount_begin(&t->vtime_seqcount); 857 858 if (u_dst) 859 *u_dst = *u_src; 860 if (s_dst) 861 *s_dst = *s_src; 862 863 /* Task is sleeping, nothing to add */ 864 if (t->vtime_snap_whence == VTIME_INACTIVE || 865 is_idle_task(t)) 866 continue; 867 868 delta = vtime_delta(t); 869 870 /* 871 * Task runs either in user or kernel space, add pending nohz time to 872 * the right place. 873 */ 874 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 875 *udelta = delta; 876 } else { 877 if (t->vtime_snap_whence == VTIME_SYS) 878 *sdelta = delta; 879 } 880 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 881 } 882 883 884 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 885 { 886 cputime_t udelta, sdelta; 887 888 if (!vtime_accounting_enabled()) { 889 if (utime) 890 *utime = t->utime; 891 if (stime) 892 *stime = t->stime; 893 return; 894 } 895 896 fetch_task_cputime(t, utime, stime, &t->utime, 897 &t->stime, &udelta, &sdelta); 898 if (utime) 899 *utime += udelta; 900 if (stime) 901 *stime += sdelta; 902 } 903 904 void task_cputime_scaled(struct task_struct *t, 905 cputime_t *utimescaled, cputime_t *stimescaled) 906 { 907 cputime_t udelta, sdelta; 908 909 if (!vtime_accounting_enabled()) { 910 if (utimescaled) 911 *utimescaled = t->utimescaled; 912 if (stimescaled) 913 *stimescaled = t->stimescaled; 914 return; 915 } 916 917 fetch_task_cputime(t, utimescaled, stimescaled, 918 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 919 if (utimescaled) 920 *utimescaled += cputime_to_scaled(udelta); 921 if (stimescaled) 922 *stimescaled += cputime_to_scaled(sdelta); 923 } 924 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 925