xref: /linux/kernel/sched/cputime.c (revision f3539c12d8196ce0a1993364d30b3a18908470d1)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11 
12 
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14 
15 /*
16  * There are no locks covering percpu hardirq/softirq time.
17  * They are only modified in vtime_account, on corresponding CPU
18  * with interrupts disabled. So, writes are safe.
19  * They are read and saved off onto struct rq in update_rq_clock().
20  * This may result in other CPU reading this CPU's irq time and can
21  * race with irq/vtime_account on this CPU. We would either get old
22  * or new value with a side effect of accounting a slice of irq time to wrong
23  * task when irq is in progress while we read rq->clock. That is a worthy
24  * compromise in place of having locks on each irq in account_system_time.
25  */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28 
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31 
32 void enable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 1;
35 }
36 
37 void disable_sched_clock_irqtime(void)
38 {
39 	sched_clock_irqtime = 0;
40 }
41 
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45 
46 /*
47  * Called before incrementing preempt_count on {soft,}irq_enter
48  * and before decrementing preempt_count on {soft,}irq_exit.
49  */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 	s64 delta;
53 	int cpu;
54 
55 	if (!sched_clock_irqtime)
56 		return;
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77 
78 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 {
80 	u64 *cpustat = kcpustat_this_cpu->cpustat;
81 	unsigned long flags;
82 	cputime_t irq_cputime;
83 
84 	local_irq_save(flags);
85 	irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
86 		      cpustat[CPUTIME_IRQ];
87 	irq_cputime = min(irq_cputime, maxtime);
88 	cpustat[CPUTIME_IRQ] += irq_cputime;
89 	local_irq_restore(flags);
90 	return irq_cputime;
91 }
92 
93 static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 {
95 	u64 *cpustat = kcpustat_this_cpu->cpustat;
96 	unsigned long flags;
97 	cputime_t softirq_cputime;
98 
99 	local_irq_save(flags);
100 	softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
101 			  cpustat[CPUTIME_SOFTIRQ];
102 	softirq_cputime = min(softirq_cputime, maxtime);
103 	cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104 	local_irq_restore(flags);
105 	return softirq_cputime;
106 }
107 
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109 
110 #define sched_clock_irqtime	(0)
111 
112 static cputime_t irqtime_account_hi_update(cputime_t dummy)
113 {
114 	return 0;
115 }
116 
117 static cputime_t irqtime_account_si_update(cputime_t dummy)
118 {
119 	return 0;
120 }
121 
122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
123 
124 static inline void task_group_account_field(struct task_struct *p, int index,
125 					    u64 tmp)
126 {
127 	/*
128 	 * Since all updates are sure to touch the root cgroup, we
129 	 * get ourselves ahead and touch it first. If the root cgroup
130 	 * is the only cgroup, then nothing else should be necessary.
131 	 *
132 	 */
133 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134 
135 	cpuacct_account_field(p, index, tmp);
136 }
137 
138 /*
139  * Account user cpu time to a process.
140  * @p: the process that the cpu time gets accounted to
141  * @cputime: the cpu time spent in user space since the last update
142  * @cputime_scaled: cputime scaled by cpu frequency
143  */
144 void account_user_time(struct task_struct *p, cputime_t cputime,
145 		       cputime_t cputime_scaled)
146 {
147 	int index;
148 
149 	/* Add user time to process. */
150 	p->utime += cputime;
151 	p->utimescaled += cputime_scaled;
152 	account_group_user_time(p, cputime);
153 
154 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155 
156 	/* Add user time to cpustat. */
157 	task_group_account_field(p, index, (__force u64) cputime);
158 
159 	/* Account for user time used */
160 	acct_account_cputime(p);
161 }
162 
163 /*
164  * Account guest cpu time to a process.
165  * @p: the process that the cpu time gets accounted to
166  * @cputime: the cpu time spent in virtual machine since the last update
167  * @cputime_scaled: cputime scaled by cpu frequency
168  */
169 static void account_guest_time(struct task_struct *p, cputime_t cputime,
170 			       cputime_t cputime_scaled)
171 {
172 	u64 *cpustat = kcpustat_this_cpu->cpustat;
173 
174 	/* Add guest time to process. */
175 	p->utime += cputime;
176 	p->utimescaled += cputime_scaled;
177 	account_group_user_time(p, cputime);
178 	p->gtime += cputime;
179 
180 	/* Add guest time to cpustat. */
181 	if (task_nice(p) > 0) {
182 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
183 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
184 	} else {
185 		cpustat[CPUTIME_USER] += (__force u64) cputime;
186 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
187 	}
188 }
189 
190 /*
191  * Account system cpu time to a process and desired cpustat field
192  * @p: the process that the cpu time gets accounted to
193  * @cputime: the cpu time spent in kernel space since the last update
194  * @cputime_scaled: cputime scaled by cpu frequency
195  * @target_cputime64: pointer to cpustat field that has to be updated
196  */
197 static inline
198 void __account_system_time(struct task_struct *p, cputime_t cputime,
199 			cputime_t cputime_scaled, int index)
200 {
201 	/* Add system time to process. */
202 	p->stime += cputime;
203 	p->stimescaled += cputime_scaled;
204 	account_group_system_time(p, cputime);
205 
206 	/* Add system time to cpustat. */
207 	task_group_account_field(p, index, (__force u64) cputime);
208 
209 	/* Account for system time used */
210 	acct_account_cputime(p);
211 }
212 
213 /*
214  * Account system cpu time to a process.
215  * @p: the process that the cpu time gets accounted to
216  * @hardirq_offset: the offset to subtract from hardirq_count()
217  * @cputime: the cpu time spent in kernel space since the last update
218  * @cputime_scaled: cputime scaled by cpu frequency
219  */
220 void account_system_time(struct task_struct *p, int hardirq_offset,
221 			 cputime_t cputime, cputime_t cputime_scaled)
222 {
223 	int index;
224 
225 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
226 		account_guest_time(p, cputime, cputime_scaled);
227 		return;
228 	}
229 
230 	if (hardirq_count() - hardirq_offset)
231 		index = CPUTIME_IRQ;
232 	else if (in_serving_softirq())
233 		index = CPUTIME_SOFTIRQ;
234 	else
235 		index = CPUTIME_SYSTEM;
236 
237 	__account_system_time(p, cputime, cputime_scaled, index);
238 }
239 
240 /*
241  * Account for involuntary wait time.
242  * @cputime: the cpu time spent in involuntary wait
243  */
244 void account_steal_time(cputime_t cputime)
245 {
246 	u64 *cpustat = kcpustat_this_cpu->cpustat;
247 
248 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
249 }
250 
251 /*
252  * Account for idle time.
253  * @cputime: the cpu time spent in idle wait
254  */
255 void account_idle_time(cputime_t cputime)
256 {
257 	u64 *cpustat = kcpustat_this_cpu->cpustat;
258 	struct rq *rq = this_rq();
259 
260 	if (atomic_read(&rq->nr_iowait) > 0)
261 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
262 	else
263 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
264 }
265 
266 /*
267  * When a guest is interrupted for a longer amount of time, missed clock
268  * ticks are not redelivered later. Due to that, this function may on
269  * occasion account more time than the calling functions think elapsed.
270  */
271 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
272 {
273 #ifdef CONFIG_PARAVIRT
274 	if (static_key_false(&paravirt_steal_enabled)) {
275 		cputime_t steal_cputime;
276 		u64 steal;
277 
278 		steal = paravirt_steal_clock(smp_processor_id());
279 		steal -= this_rq()->prev_steal_time;
280 
281 		steal_cputime = min(nsecs_to_cputime(steal), maxtime);
282 		account_steal_time(steal_cputime);
283 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
284 
285 		return steal_cputime;
286 	}
287 #endif
288 	return 0;
289 }
290 
291 /*
292  * Account how much elapsed time was spent in steal, irq, or softirq time.
293  */
294 static inline cputime_t account_other_time(cputime_t max)
295 {
296 	cputime_t accounted;
297 
298 	accounted = steal_account_process_time(max);
299 
300 	if (accounted < max)
301 		accounted += irqtime_account_hi_update(max - accounted);
302 
303 	if (accounted < max)
304 		accounted += irqtime_account_si_update(max - accounted);
305 
306 	return accounted;
307 }
308 
309 /*
310  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
311  * tasks (sum on group iteration) belonging to @tsk's group.
312  */
313 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
314 {
315 	struct signal_struct *sig = tsk->signal;
316 	cputime_t utime, stime;
317 	struct task_struct *t;
318 	unsigned int seq, nextseq;
319 	unsigned long flags;
320 
321 	rcu_read_lock();
322 	/* Attempt a lockless read on the first round. */
323 	nextseq = 0;
324 	do {
325 		seq = nextseq;
326 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
327 		times->utime = sig->utime;
328 		times->stime = sig->stime;
329 		times->sum_exec_runtime = sig->sum_sched_runtime;
330 
331 		for_each_thread(tsk, t) {
332 			task_cputime(t, &utime, &stime);
333 			times->utime += utime;
334 			times->stime += stime;
335 			times->sum_exec_runtime += task_sched_runtime(t);
336 		}
337 		/* If lockless access failed, take the lock. */
338 		nextseq = 1;
339 	} while (need_seqretry(&sig->stats_lock, seq));
340 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
341 	rcu_read_unlock();
342 }
343 
344 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
345 /*
346  * Account a tick to a process and cpustat
347  * @p: the process that the cpu time gets accounted to
348  * @user_tick: is the tick from userspace
349  * @rq: the pointer to rq
350  *
351  * Tick demultiplexing follows the order
352  * - pending hardirq update
353  * - pending softirq update
354  * - user_time
355  * - idle_time
356  * - system time
357  *   - check for guest_time
358  *   - else account as system_time
359  *
360  * Check for hardirq is done both for system and user time as there is
361  * no timer going off while we are on hardirq and hence we may never get an
362  * opportunity to update it solely in system time.
363  * p->stime and friends are only updated on system time and not on irq
364  * softirq as those do not count in task exec_runtime any more.
365  */
366 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
367 					 struct rq *rq, int ticks)
368 {
369 	u64 cputime = (__force u64) cputime_one_jiffy * ticks;
370 	cputime_t scaled, other;
371 
372 	/*
373 	 * When returning from idle, many ticks can get accounted at
374 	 * once, including some ticks of steal, irq, and softirq time.
375 	 * Subtract those ticks from the amount of time accounted to
376 	 * idle, or potentially user or system time. Due to rounding,
377 	 * other time can exceed ticks occasionally.
378 	 */
379 	other = account_other_time(ULONG_MAX);
380 	if (other >= cputime)
381 		return;
382 	cputime -= other;
383 	scaled = cputime_to_scaled(cputime);
384 
385 	if (this_cpu_ksoftirqd() == p) {
386 		/*
387 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
388 		 * So, we have to handle it separately here.
389 		 * Also, p->stime needs to be updated for ksoftirqd.
390 		 */
391 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
392 	} else if (user_tick) {
393 		account_user_time(p, cputime, scaled);
394 	} else if (p == rq->idle) {
395 		account_idle_time(cputime);
396 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
397 		account_guest_time(p, cputime, scaled);
398 	} else {
399 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
400 	}
401 }
402 
403 static void irqtime_account_idle_ticks(int ticks)
404 {
405 	struct rq *rq = this_rq();
406 
407 	irqtime_account_process_tick(current, 0, rq, ticks);
408 }
409 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
410 static inline void irqtime_account_idle_ticks(int ticks) {}
411 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
412 						struct rq *rq, int nr_ticks) {}
413 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
414 
415 /*
416  * Use precise platform statistics if available:
417  */
418 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
419 
420 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
421 void vtime_common_task_switch(struct task_struct *prev)
422 {
423 	if (is_idle_task(prev))
424 		vtime_account_idle(prev);
425 	else
426 		vtime_account_system(prev);
427 
428 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
429 	vtime_account_user(prev);
430 #endif
431 	arch_vtime_task_switch(prev);
432 }
433 #endif
434 
435 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
436 
437 
438 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
439 /*
440  * Archs that account the whole time spent in the idle task
441  * (outside irq) as idle time can rely on this and just implement
442  * vtime_account_system() and vtime_account_idle(). Archs that
443  * have other meaning of the idle time (s390 only includes the
444  * time spent by the CPU when it's in low power mode) must override
445  * vtime_account().
446  */
447 #ifndef __ARCH_HAS_VTIME_ACCOUNT
448 void vtime_account_irq_enter(struct task_struct *tsk)
449 {
450 	if (!in_interrupt() && is_idle_task(tsk))
451 		vtime_account_idle(tsk);
452 	else
453 		vtime_account_system(tsk);
454 }
455 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
456 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
457 
458 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
459 {
460 	*ut = p->utime;
461 	*st = p->stime;
462 }
463 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
464 
465 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
466 {
467 	struct task_cputime cputime;
468 
469 	thread_group_cputime(p, &cputime);
470 
471 	*ut = cputime.utime;
472 	*st = cputime.stime;
473 }
474 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
475 /*
476  * Account a single tick of cpu time.
477  * @p: the process that the cpu time gets accounted to
478  * @user_tick: indicates if the tick is a user or a system tick
479  */
480 void account_process_tick(struct task_struct *p, int user_tick)
481 {
482 	cputime_t cputime, scaled, steal;
483 	struct rq *rq = this_rq();
484 
485 	if (vtime_accounting_cpu_enabled())
486 		return;
487 
488 	if (sched_clock_irqtime) {
489 		irqtime_account_process_tick(p, user_tick, rq, 1);
490 		return;
491 	}
492 
493 	cputime = cputime_one_jiffy;
494 	steal = steal_account_process_time(ULONG_MAX);
495 
496 	if (steal >= cputime)
497 		return;
498 
499 	cputime -= steal;
500 	scaled = cputime_to_scaled(cputime);
501 
502 	if (user_tick)
503 		account_user_time(p, cputime, scaled);
504 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
505 		account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
506 	else
507 		account_idle_time(cputime);
508 }
509 
510 /*
511  * Account multiple ticks of idle time.
512  * @ticks: number of stolen ticks
513  */
514 void account_idle_ticks(unsigned long ticks)
515 {
516 	cputime_t cputime, steal;
517 
518 	if (sched_clock_irqtime) {
519 		irqtime_account_idle_ticks(ticks);
520 		return;
521 	}
522 
523 	cputime = jiffies_to_cputime(ticks);
524 	steal = steal_account_process_time(ULONG_MAX);
525 
526 	if (steal >= cputime)
527 		return;
528 
529 	cputime -= steal;
530 	account_idle_time(cputime);
531 }
532 
533 /*
534  * Perform (stime * rtime) / total, but avoid multiplication overflow by
535  * loosing precision when the numbers are big.
536  */
537 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
538 {
539 	u64 scaled;
540 
541 	for (;;) {
542 		/* Make sure "rtime" is the bigger of stime/rtime */
543 		if (stime > rtime)
544 			swap(rtime, stime);
545 
546 		/* Make sure 'total' fits in 32 bits */
547 		if (total >> 32)
548 			goto drop_precision;
549 
550 		/* Does rtime (and thus stime) fit in 32 bits? */
551 		if (!(rtime >> 32))
552 			break;
553 
554 		/* Can we just balance rtime/stime rather than dropping bits? */
555 		if (stime >> 31)
556 			goto drop_precision;
557 
558 		/* We can grow stime and shrink rtime and try to make them both fit */
559 		stime <<= 1;
560 		rtime >>= 1;
561 		continue;
562 
563 drop_precision:
564 		/* We drop from rtime, it has more bits than stime */
565 		rtime >>= 1;
566 		total >>= 1;
567 	}
568 
569 	/*
570 	 * Make sure gcc understands that this is a 32x32->64 multiply,
571 	 * followed by a 64/32->64 divide.
572 	 */
573 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
574 	return (__force cputime_t) scaled;
575 }
576 
577 /*
578  * Adjust tick based cputime random precision against scheduler runtime
579  * accounting.
580  *
581  * Tick based cputime accounting depend on random scheduling timeslices of a
582  * task to be interrupted or not by the timer.  Depending on these
583  * circumstances, the number of these interrupts may be over or
584  * under-optimistic, matching the real user and system cputime with a variable
585  * precision.
586  *
587  * Fix this by scaling these tick based values against the total runtime
588  * accounted by the CFS scheduler.
589  *
590  * This code provides the following guarantees:
591  *
592  *   stime + utime == rtime
593  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
594  *
595  * Assuming that rtime_i+1 >= rtime_i.
596  */
597 static void cputime_adjust(struct task_cputime *curr,
598 			   struct prev_cputime *prev,
599 			   cputime_t *ut, cputime_t *st)
600 {
601 	cputime_t rtime, stime, utime;
602 	unsigned long flags;
603 
604 	/* Serialize concurrent callers such that we can honour our guarantees */
605 	raw_spin_lock_irqsave(&prev->lock, flags);
606 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
607 
608 	/*
609 	 * This is possible under two circumstances:
610 	 *  - rtime isn't monotonic after all (a bug);
611 	 *  - we got reordered by the lock.
612 	 *
613 	 * In both cases this acts as a filter such that the rest of the code
614 	 * can assume it is monotonic regardless of anything else.
615 	 */
616 	if (prev->stime + prev->utime >= rtime)
617 		goto out;
618 
619 	stime = curr->stime;
620 	utime = curr->utime;
621 
622 	/*
623 	 * If either stime or both stime and utime are 0, assume all runtime is
624 	 * userspace. Once a task gets some ticks, the monotonicy code at
625 	 * 'update' will ensure things converge to the observed ratio.
626 	 */
627 	if (stime == 0) {
628 		utime = rtime;
629 		goto update;
630 	}
631 
632 	if (utime == 0) {
633 		stime = rtime;
634 		goto update;
635 	}
636 
637 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
638 			    (__force u64)(stime + utime));
639 
640 update:
641 	/*
642 	 * Make sure stime doesn't go backwards; this preserves monotonicity
643 	 * for utime because rtime is monotonic.
644 	 *
645 	 *  utime_i+1 = rtime_i+1 - stime_i
646 	 *            = rtime_i+1 - (rtime_i - utime_i)
647 	 *            = (rtime_i+1 - rtime_i) + utime_i
648 	 *            >= utime_i
649 	 */
650 	if (stime < prev->stime)
651 		stime = prev->stime;
652 	utime = rtime - stime;
653 
654 	/*
655 	 * Make sure utime doesn't go backwards; this still preserves
656 	 * monotonicity for stime, analogous argument to above.
657 	 */
658 	if (utime < prev->utime) {
659 		utime = prev->utime;
660 		stime = rtime - utime;
661 	}
662 
663 	prev->stime = stime;
664 	prev->utime = utime;
665 out:
666 	*ut = prev->utime;
667 	*st = prev->stime;
668 	raw_spin_unlock_irqrestore(&prev->lock, flags);
669 }
670 
671 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
672 {
673 	struct task_cputime cputime = {
674 		.sum_exec_runtime = p->se.sum_exec_runtime,
675 	};
676 
677 	task_cputime(p, &cputime.utime, &cputime.stime);
678 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
679 }
680 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
681 
682 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
683 {
684 	struct task_cputime cputime;
685 
686 	thread_group_cputime(p, &cputime);
687 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
688 }
689 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
690 
691 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
692 static cputime_t vtime_delta(struct task_struct *tsk)
693 {
694 	unsigned long now = READ_ONCE(jiffies);
695 
696 	if (time_before(now, (unsigned long)tsk->vtime_snap))
697 		return 0;
698 
699 	return jiffies_to_cputime(now - tsk->vtime_snap);
700 }
701 
702 static cputime_t get_vtime_delta(struct task_struct *tsk)
703 {
704 	unsigned long now = READ_ONCE(jiffies);
705 	cputime_t delta, other;
706 
707 	/*
708 	 * Unlike tick based timing, vtime based timing never has lost
709 	 * ticks, and no need for steal time accounting to make up for
710 	 * lost ticks. Vtime accounts a rounded version of actual
711 	 * elapsed time. Limit account_other_time to prevent rounding
712 	 * errors from causing elapsed vtime to go negative.
713 	 */
714 	delta = jiffies_to_cputime(now - tsk->vtime_snap);
715 	other = account_other_time(delta);
716 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
717 	tsk->vtime_snap = now;
718 
719 	return delta - other;
720 }
721 
722 static void __vtime_account_system(struct task_struct *tsk)
723 {
724 	cputime_t delta_cpu = get_vtime_delta(tsk);
725 
726 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
727 }
728 
729 void vtime_account_system(struct task_struct *tsk)
730 {
731 	if (!vtime_delta(tsk))
732 		return;
733 
734 	write_seqcount_begin(&tsk->vtime_seqcount);
735 	__vtime_account_system(tsk);
736 	write_seqcount_end(&tsk->vtime_seqcount);
737 }
738 
739 void vtime_account_user(struct task_struct *tsk)
740 {
741 	cputime_t delta_cpu;
742 
743 	write_seqcount_begin(&tsk->vtime_seqcount);
744 	tsk->vtime_snap_whence = VTIME_SYS;
745 	if (vtime_delta(tsk)) {
746 		delta_cpu = get_vtime_delta(tsk);
747 		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
748 	}
749 	write_seqcount_end(&tsk->vtime_seqcount);
750 }
751 
752 void vtime_user_enter(struct task_struct *tsk)
753 {
754 	write_seqcount_begin(&tsk->vtime_seqcount);
755 	if (vtime_delta(tsk))
756 		__vtime_account_system(tsk);
757 	tsk->vtime_snap_whence = VTIME_USER;
758 	write_seqcount_end(&tsk->vtime_seqcount);
759 }
760 
761 void vtime_guest_enter(struct task_struct *tsk)
762 {
763 	/*
764 	 * The flags must be updated under the lock with
765 	 * the vtime_snap flush and update.
766 	 * That enforces a right ordering and update sequence
767 	 * synchronization against the reader (task_gtime())
768 	 * that can thus safely catch up with a tickless delta.
769 	 */
770 	write_seqcount_begin(&tsk->vtime_seqcount);
771 	if (vtime_delta(tsk))
772 		__vtime_account_system(tsk);
773 	current->flags |= PF_VCPU;
774 	write_seqcount_end(&tsk->vtime_seqcount);
775 }
776 EXPORT_SYMBOL_GPL(vtime_guest_enter);
777 
778 void vtime_guest_exit(struct task_struct *tsk)
779 {
780 	write_seqcount_begin(&tsk->vtime_seqcount);
781 	__vtime_account_system(tsk);
782 	current->flags &= ~PF_VCPU;
783 	write_seqcount_end(&tsk->vtime_seqcount);
784 }
785 EXPORT_SYMBOL_GPL(vtime_guest_exit);
786 
787 void vtime_account_idle(struct task_struct *tsk)
788 {
789 	cputime_t delta_cpu = get_vtime_delta(tsk);
790 
791 	account_idle_time(delta_cpu);
792 }
793 
794 void arch_vtime_task_switch(struct task_struct *prev)
795 {
796 	write_seqcount_begin(&prev->vtime_seqcount);
797 	prev->vtime_snap_whence = VTIME_INACTIVE;
798 	write_seqcount_end(&prev->vtime_seqcount);
799 
800 	write_seqcount_begin(&current->vtime_seqcount);
801 	current->vtime_snap_whence = VTIME_SYS;
802 	current->vtime_snap = jiffies;
803 	write_seqcount_end(&current->vtime_seqcount);
804 }
805 
806 void vtime_init_idle(struct task_struct *t, int cpu)
807 {
808 	unsigned long flags;
809 
810 	local_irq_save(flags);
811 	write_seqcount_begin(&t->vtime_seqcount);
812 	t->vtime_snap_whence = VTIME_SYS;
813 	t->vtime_snap = jiffies;
814 	write_seqcount_end(&t->vtime_seqcount);
815 	local_irq_restore(flags);
816 }
817 
818 cputime_t task_gtime(struct task_struct *t)
819 {
820 	unsigned int seq;
821 	cputime_t gtime;
822 
823 	if (!vtime_accounting_enabled())
824 		return t->gtime;
825 
826 	do {
827 		seq = read_seqcount_begin(&t->vtime_seqcount);
828 
829 		gtime = t->gtime;
830 		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
831 			gtime += vtime_delta(t);
832 
833 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
834 
835 	return gtime;
836 }
837 
838 /*
839  * Fetch cputime raw values from fields of task_struct and
840  * add up the pending nohz execution time since the last
841  * cputime snapshot.
842  */
843 static void
844 fetch_task_cputime(struct task_struct *t,
845 		   cputime_t *u_dst, cputime_t *s_dst,
846 		   cputime_t *u_src, cputime_t *s_src,
847 		   cputime_t *udelta, cputime_t *sdelta)
848 {
849 	unsigned int seq;
850 	unsigned long long delta;
851 
852 	do {
853 		*udelta = 0;
854 		*sdelta = 0;
855 
856 		seq = read_seqcount_begin(&t->vtime_seqcount);
857 
858 		if (u_dst)
859 			*u_dst = *u_src;
860 		if (s_dst)
861 			*s_dst = *s_src;
862 
863 		/* Task is sleeping, nothing to add */
864 		if (t->vtime_snap_whence == VTIME_INACTIVE ||
865 		    is_idle_task(t))
866 			continue;
867 
868 		delta = vtime_delta(t);
869 
870 		/*
871 		 * Task runs either in user or kernel space, add pending nohz time to
872 		 * the right place.
873 		 */
874 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
875 			*udelta = delta;
876 		} else {
877 			if (t->vtime_snap_whence == VTIME_SYS)
878 				*sdelta = delta;
879 		}
880 	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
881 }
882 
883 
884 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
885 {
886 	cputime_t udelta, sdelta;
887 
888 	if (!vtime_accounting_enabled()) {
889 		if (utime)
890 			*utime = t->utime;
891 		if (stime)
892 			*stime = t->stime;
893 		return;
894 	}
895 
896 	fetch_task_cputime(t, utime, stime, &t->utime,
897 			   &t->stime, &udelta, &sdelta);
898 	if (utime)
899 		*utime += udelta;
900 	if (stime)
901 		*stime += sdelta;
902 }
903 
904 void task_cputime_scaled(struct task_struct *t,
905 			 cputime_t *utimescaled, cputime_t *stimescaled)
906 {
907 	cputime_t udelta, sdelta;
908 
909 	if (!vtime_accounting_enabled()) {
910 		if (utimescaled)
911 			*utimescaled = t->utimescaled;
912 		if (stimescaled)
913 			*stimescaled = t->stimescaled;
914 		return;
915 	}
916 
917 	fetch_task_cputime(t, utimescaled, stimescaled,
918 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
919 	if (utimescaled)
920 		*utimescaled += cputime_to_scaled(udelta);
921 	if (stimescaled)
922 		*stimescaled += cputime_to_scaled(sdelta);
923 }
924 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
925