xref: /linux/kernel/sched/cputime.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7  #include <asm/cputime.h>
8 #endif
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called after incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	unsigned int pc;
57 	s64 delta;
58 	int cpu;
59 
60 	if (!sched_clock_irqtime)
61 		return;
62 
63 	cpu = smp_processor_id();
64 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 	irqtime->irq_start_time += delta;
66 	pc = irq_count() - offset;
67 
68 	/*
69 	 * We do not account for softirq time from ksoftirqd here.
70 	 * We want to continue accounting softirq time to ksoftirqd thread
71 	 * in that case, so as not to confuse scheduler with a special task
72 	 * that do not consume any time, but still wants to run.
73 	 */
74 	if (pc & HARDIRQ_MASK)
75 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 }
79 
80 static u64 irqtime_tick_accounted(u64 maxtime)
81 {
82 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 	u64 delta;
84 
85 	delta = min(irqtime->tick_delta, maxtime);
86 	irqtime->tick_delta -= delta;
87 
88 	return delta;
89 }
90 
91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92 
93 #define sched_clock_irqtime	(0)
94 
95 static u64 irqtime_tick_accounted(u64 dummy)
96 {
97 	return 0;
98 }
99 
100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 
102 static inline void task_group_account_field(struct task_struct *p, int index,
103 					    u64 tmp)
104 {
105 	/*
106 	 * Since all updates are sure to touch the root cgroup, we
107 	 * get ourselves ahead and touch it first. If the root cgroup
108 	 * is the only cgroup, then nothing else should be necessary.
109 	 *
110 	 */
111 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 
113 	cgroup_account_cputime_field(p, index, tmp);
114 }
115 
116 /*
117  * Account user CPU time to a process.
118  * @p: the process that the CPU time gets accounted to
119  * @cputime: the CPU time spent in user space since the last update
120  */
121 void account_user_time(struct task_struct *p, u64 cputime)
122 {
123 	int index;
124 
125 	/* Add user time to process. */
126 	p->utime += cputime;
127 	account_group_user_time(p, cputime);
128 
129 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 
131 	/* Add user time to cpustat. */
132 	task_group_account_field(p, index, cputime);
133 
134 	/* Account for user time used */
135 	acct_account_cputime(p);
136 }
137 
138 /*
139  * Account guest CPU time to a process.
140  * @p: the process that the CPU time gets accounted to
141  * @cputime: the CPU time spent in virtual machine since the last update
142  */
143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145 	u64 *cpustat = kcpustat_this_cpu->cpustat;
146 
147 	/* Add guest time to process. */
148 	p->utime += cputime;
149 	account_group_user_time(p, cputime);
150 	p->gtime += cputime;
151 
152 	/* Add guest time to cpustat. */
153 	if (task_nice(p) > 0) {
154 		task_group_account_field(p, CPUTIME_NICE, cputime);
155 		cpustat[CPUTIME_GUEST_NICE] += cputime;
156 	} else {
157 		task_group_account_field(p, CPUTIME_USER, cputime);
158 		cpustat[CPUTIME_GUEST] += cputime;
159 	}
160 }
161 
162 /*
163  * Account system CPU time to a process and desired cpustat field
164  * @p: the process that the CPU time gets accounted to
165  * @cputime: the CPU time spent in kernel space since the last update
166  * @index: pointer to cpustat field that has to be updated
167  */
168 void account_system_index_time(struct task_struct *p,
169 			       u64 cputime, enum cpu_usage_stat index)
170 {
171 	/* Add system time to process. */
172 	p->stime += cputime;
173 	account_group_system_time(p, cputime);
174 
175 	/* Add system time to cpustat. */
176 	task_group_account_field(p, index, cputime);
177 
178 	/* Account for system time used */
179 	acct_account_cputime(p);
180 }
181 
182 /*
183  * Account system CPU time to a process.
184  * @p: the process that the CPU time gets accounted to
185  * @hardirq_offset: the offset to subtract from hardirq_count()
186  * @cputime: the CPU time spent in kernel space since the last update
187  */
188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 {
190 	int index;
191 
192 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193 		account_guest_time(p, cputime);
194 		return;
195 	}
196 
197 	if (hardirq_count() - hardirq_offset)
198 		index = CPUTIME_IRQ;
199 	else if (in_serving_softirq())
200 		index = CPUTIME_SOFTIRQ;
201 	else
202 		index = CPUTIME_SYSTEM;
203 
204 	account_system_index_time(p, cputime, index);
205 }
206 
207 /*
208  * Account for involuntary wait time.
209  * @cputime: the CPU time spent in involuntary wait
210  */
211 void account_steal_time(u64 cputime)
212 {
213 	u64 *cpustat = kcpustat_this_cpu->cpustat;
214 
215 	cpustat[CPUTIME_STEAL] += cputime;
216 }
217 
218 /*
219  * Account for idle time.
220  * @cputime: the CPU time spent in idle wait
221  */
222 void account_idle_time(u64 cputime)
223 {
224 	u64 *cpustat = kcpustat_this_cpu->cpustat;
225 	struct rq *rq = this_rq();
226 
227 	if (atomic_read(&rq->nr_iowait) > 0)
228 		cpustat[CPUTIME_IOWAIT] += cputime;
229 	else
230 		cpustat[CPUTIME_IDLE] += cputime;
231 }
232 
233 
234 #ifdef CONFIG_SCHED_CORE
235 /*
236  * Account for forceidle time due to core scheduling.
237  *
238  * REQUIRES: schedstat is enabled.
239  */
240 void __account_forceidle_time(struct task_struct *p, u64 delta)
241 {
242 	__schedstat_add(p->stats.core_forceidle_sum, delta);
243 
244 	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 }
246 #endif
247 
248 /*
249  * When a guest is interrupted for a longer amount of time, missed clock
250  * ticks are not redelivered later. Due to that, this function may on
251  * occasion account more time than the calling functions think elapsed.
252  */
253 static __always_inline u64 steal_account_process_time(u64 maxtime)
254 {
255 #ifdef CONFIG_PARAVIRT
256 	if (static_key_false(&paravirt_steal_enabled)) {
257 		u64 steal;
258 
259 		steal = paravirt_steal_clock(smp_processor_id());
260 		steal -= this_rq()->prev_steal_time;
261 		steal = min(steal, maxtime);
262 		account_steal_time(steal);
263 		this_rq()->prev_steal_time += steal;
264 
265 		return steal;
266 	}
267 #endif
268 	return 0;
269 }
270 
271 /*
272  * Account how much elapsed time was spent in steal, irq, or softirq time.
273  */
274 static inline u64 account_other_time(u64 max)
275 {
276 	u64 accounted;
277 
278 	lockdep_assert_irqs_disabled();
279 
280 	accounted = steal_account_process_time(max);
281 
282 	if (accounted < max)
283 		accounted += irqtime_tick_accounted(max - accounted);
284 
285 	return accounted;
286 }
287 
288 #ifdef CONFIG_64BIT
289 static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 {
291 	return t->se.sum_exec_runtime;
292 }
293 #else
294 static u64 read_sum_exec_runtime(struct task_struct *t)
295 {
296 	u64 ns;
297 	struct rq_flags rf;
298 	struct rq *rq;
299 
300 	rq = task_rq_lock(t, &rf);
301 	ns = t->se.sum_exec_runtime;
302 	task_rq_unlock(rq, t, &rf);
303 
304 	return ns;
305 }
306 #endif
307 
308 /*
309  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310  * tasks (sum on group iteration) belonging to @tsk's group.
311  */
312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 {
314 	struct signal_struct *sig = tsk->signal;
315 	u64 utime, stime;
316 	struct task_struct *t;
317 	unsigned int seq, nextseq;
318 	unsigned long flags;
319 
320 	/*
321 	 * Update current task runtime to account pending time since last
322 	 * scheduler action or thread_group_cputime() call. This thread group
323 	 * might have other running tasks on different CPUs, but updating
324 	 * their runtime can affect syscall performance, so we skip account
325 	 * those pending times and rely only on values updated on tick or
326 	 * other scheduler action.
327 	 */
328 	if (same_thread_group(current, tsk))
329 		(void) task_sched_runtime(current);
330 
331 	rcu_read_lock();
332 	/* Attempt a lockless read on the first round. */
333 	nextseq = 0;
334 	do {
335 		seq = nextseq;
336 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337 		times->utime = sig->utime;
338 		times->stime = sig->stime;
339 		times->sum_exec_runtime = sig->sum_sched_runtime;
340 
341 		for_each_thread(tsk, t) {
342 			task_cputime(t, &utime, &stime);
343 			times->utime += utime;
344 			times->stime += stime;
345 			times->sum_exec_runtime += read_sum_exec_runtime(t);
346 		}
347 		/* If lockless access failed, take the lock. */
348 		nextseq = 1;
349 	} while (need_seqretry(&sig->stats_lock, seq));
350 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351 	rcu_read_unlock();
352 }
353 
354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 /*
356  * Account a tick to a process and cpustat
357  * @p: the process that the CPU time gets accounted to
358  * @user_tick: is the tick from userspace
359  * @rq: the pointer to rq
360  *
361  * Tick demultiplexing follows the order
362  * - pending hardirq update
363  * - pending softirq update
364  * - user_time
365  * - idle_time
366  * - system time
367  *   - check for guest_time
368  *   - else account as system_time
369  *
370  * Check for hardirq is done both for system and user time as there is
371  * no timer going off while we are on hardirq and hence we may never get an
372  * opportunity to update it solely in system time.
373  * p->stime and friends are only updated on system time and not on irq
374  * softirq as those do not count in task exec_runtime any more.
375  */
376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377 					 int ticks)
378 {
379 	u64 other, cputime = TICK_NSEC * ticks;
380 
381 	/*
382 	 * When returning from idle, many ticks can get accounted at
383 	 * once, including some ticks of steal, irq, and softirq time.
384 	 * Subtract those ticks from the amount of time accounted to
385 	 * idle, or potentially user or system time. Due to rounding,
386 	 * other time can exceed ticks occasionally.
387 	 */
388 	other = account_other_time(ULONG_MAX);
389 	if (other >= cputime)
390 		return;
391 
392 	cputime -= other;
393 
394 	if (this_cpu_ksoftirqd() == p) {
395 		/*
396 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
397 		 * So, we have to handle it separately here.
398 		 * Also, p->stime needs to be updated for ksoftirqd.
399 		 */
400 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401 	} else if (user_tick) {
402 		account_user_time(p, cputime);
403 	} else if (p == this_rq()->idle) {
404 		account_idle_time(cputime);
405 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
406 		account_guest_time(p, cputime);
407 	} else {
408 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409 	}
410 }
411 
412 static void irqtime_account_idle_ticks(int ticks)
413 {
414 	irqtime_account_process_tick(current, 0, ticks);
415 }
416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
417 static inline void irqtime_account_idle_ticks(int ticks) { }
418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419 						int nr_ticks) { }
420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421 
422 /*
423  * Use precise platform statistics if available:
424  */
425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426 
427 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
428 void vtime_task_switch(struct task_struct *prev)
429 {
430 	if (is_idle_task(prev))
431 		vtime_account_idle(prev);
432 	else
433 		vtime_account_kernel(prev);
434 
435 	vtime_flush(prev);
436 	arch_vtime_task_switch(prev);
437 }
438 # endif
439 
440 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
441 {
442 	unsigned int pc = irq_count() - offset;
443 
444 	if (pc & HARDIRQ_OFFSET) {
445 		vtime_account_hardirq(tsk);
446 	} else if (pc & SOFTIRQ_OFFSET) {
447 		vtime_account_softirq(tsk);
448 	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
449 		   is_idle_task(tsk)) {
450 		vtime_account_idle(tsk);
451 	} else {
452 		vtime_account_kernel(tsk);
453 	}
454 }
455 
456 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
457 		    u64 *ut, u64 *st)
458 {
459 	*ut = curr->utime;
460 	*st = curr->stime;
461 }
462 
463 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464 {
465 	*ut = p->utime;
466 	*st = p->stime;
467 }
468 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
469 
470 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
471 {
472 	struct task_cputime cputime;
473 
474 	thread_group_cputime(p, &cputime);
475 
476 	*ut = cputime.utime;
477 	*st = cputime.stime;
478 }
479 
480 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
481 
482 /*
483  * Account a single tick of CPU time.
484  * @p: the process that the CPU time gets accounted to
485  * @user_tick: indicates if the tick is a user or a system tick
486  */
487 void account_process_tick(struct task_struct *p, int user_tick)
488 {
489 	u64 cputime, steal;
490 
491 	if (vtime_accounting_enabled_this_cpu())
492 		return;
493 
494 	if (sched_clock_irqtime) {
495 		irqtime_account_process_tick(p, user_tick, 1);
496 		return;
497 	}
498 
499 	cputime = TICK_NSEC;
500 	steal = steal_account_process_time(ULONG_MAX);
501 
502 	if (steal >= cputime)
503 		return;
504 
505 	cputime -= steal;
506 
507 	if (user_tick)
508 		account_user_time(p, cputime);
509 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
510 		account_system_time(p, HARDIRQ_OFFSET, cputime);
511 	else
512 		account_idle_time(cputime);
513 }
514 
515 /*
516  * Account multiple ticks of idle time.
517  * @ticks: number of stolen ticks
518  */
519 void account_idle_ticks(unsigned long ticks)
520 {
521 	u64 cputime, steal;
522 
523 	if (sched_clock_irqtime) {
524 		irqtime_account_idle_ticks(ticks);
525 		return;
526 	}
527 
528 	cputime = ticks * TICK_NSEC;
529 	steal = steal_account_process_time(ULONG_MAX);
530 
531 	if (steal >= cputime)
532 		return;
533 
534 	cputime -= steal;
535 	account_idle_time(cputime);
536 }
537 
538 /*
539  * Adjust tick based cputime random precision against scheduler runtime
540  * accounting.
541  *
542  * Tick based cputime accounting depend on random scheduling timeslices of a
543  * task to be interrupted or not by the timer.  Depending on these
544  * circumstances, the number of these interrupts may be over or
545  * under-optimistic, matching the real user and system cputime with a variable
546  * precision.
547  *
548  * Fix this by scaling these tick based values against the total runtime
549  * accounted by the CFS scheduler.
550  *
551  * This code provides the following guarantees:
552  *
553  *   stime + utime == rtime
554  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
555  *
556  * Assuming that rtime_i+1 >= rtime_i.
557  */
558 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
559 		    u64 *ut, u64 *st)
560 {
561 	u64 rtime, stime, utime;
562 	unsigned long flags;
563 
564 	/* Serialize concurrent callers such that we can honour our guarantees */
565 	raw_spin_lock_irqsave(&prev->lock, flags);
566 	rtime = curr->sum_exec_runtime;
567 
568 	/*
569 	 * This is possible under two circumstances:
570 	 *  - rtime isn't monotonic after all (a bug);
571 	 *  - we got reordered by the lock.
572 	 *
573 	 * In both cases this acts as a filter such that the rest of the code
574 	 * can assume it is monotonic regardless of anything else.
575 	 */
576 	if (prev->stime + prev->utime >= rtime)
577 		goto out;
578 
579 	stime = curr->stime;
580 	utime = curr->utime;
581 
582 	/*
583 	 * If either stime or utime are 0, assume all runtime is userspace.
584 	 * Once a task gets some ticks, the monotonicity code at 'update:'
585 	 * will ensure things converge to the observed ratio.
586 	 */
587 	if (stime == 0) {
588 		utime = rtime;
589 		goto update;
590 	}
591 
592 	if (utime == 0) {
593 		stime = rtime;
594 		goto update;
595 	}
596 
597 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
598 
599 update:
600 	/*
601 	 * Make sure stime doesn't go backwards; this preserves monotonicity
602 	 * for utime because rtime is monotonic.
603 	 *
604 	 *  utime_i+1 = rtime_i+1 - stime_i
605 	 *            = rtime_i+1 - (rtime_i - utime_i)
606 	 *            = (rtime_i+1 - rtime_i) + utime_i
607 	 *            >= utime_i
608 	 */
609 	if (stime < prev->stime)
610 		stime = prev->stime;
611 	utime = rtime - stime;
612 
613 	/*
614 	 * Make sure utime doesn't go backwards; this still preserves
615 	 * monotonicity for stime, analogous argument to above.
616 	 */
617 	if (utime < prev->utime) {
618 		utime = prev->utime;
619 		stime = rtime - utime;
620 	}
621 
622 	prev->stime = stime;
623 	prev->utime = utime;
624 out:
625 	*ut = prev->utime;
626 	*st = prev->stime;
627 	raw_spin_unlock_irqrestore(&prev->lock, flags);
628 }
629 
630 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
631 {
632 	struct task_cputime cputime = {
633 		.sum_exec_runtime = p->se.sum_exec_runtime,
634 	};
635 
636 	if (task_cputime(p, &cputime.utime, &cputime.stime))
637 		cputime.sum_exec_runtime = task_sched_runtime(p);
638 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
639 }
640 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
641 
642 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
643 {
644 	struct task_cputime cputime;
645 
646 	thread_group_cputime(p, &cputime);
647 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
648 }
649 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
650 
651 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
652 static u64 vtime_delta(struct vtime *vtime)
653 {
654 	unsigned long long clock;
655 
656 	clock = sched_clock();
657 	if (clock < vtime->starttime)
658 		return 0;
659 
660 	return clock - vtime->starttime;
661 }
662 
663 static u64 get_vtime_delta(struct vtime *vtime)
664 {
665 	u64 delta = vtime_delta(vtime);
666 	u64 other;
667 
668 	/*
669 	 * Unlike tick based timing, vtime based timing never has lost
670 	 * ticks, and no need for steal time accounting to make up for
671 	 * lost ticks. Vtime accounts a rounded version of actual
672 	 * elapsed time. Limit account_other_time to prevent rounding
673 	 * errors from causing elapsed vtime to go negative.
674 	 */
675 	other = account_other_time(delta);
676 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
677 	vtime->starttime += delta;
678 
679 	return delta - other;
680 }
681 
682 static void vtime_account_system(struct task_struct *tsk,
683 				 struct vtime *vtime)
684 {
685 	vtime->stime += get_vtime_delta(vtime);
686 	if (vtime->stime >= TICK_NSEC) {
687 		account_system_time(tsk, irq_count(), vtime->stime);
688 		vtime->stime = 0;
689 	}
690 }
691 
692 static void vtime_account_guest(struct task_struct *tsk,
693 				struct vtime *vtime)
694 {
695 	vtime->gtime += get_vtime_delta(vtime);
696 	if (vtime->gtime >= TICK_NSEC) {
697 		account_guest_time(tsk, vtime->gtime);
698 		vtime->gtime = 0;
699 	}
700 }
701 
702 static void __vtime_account_kernel(struct task_struct *tsk,
703 				   struct vtime *vtime)
704 {
705 	/* We might have scheduled out from guest path */
706 	if (vtime->state == VTIME_GUEST)
707 		vtime_account_guest(tsk, vtime);
708 	else
709 		vtime_account_system(tsk, vtime);
710 }
711 
712 void vtime_account_kernel(struct task_struct *tsk)
713 {
714 	struct vtime *vtime = &tsk->vtime;
715 
716 	if (!vtime_delta(vtime))
717 		return;
718 
719 	write_seqcount_begin(&vtime->seqcount);
720 	__vtime_account_kernel(tsk, vtime);
721 	write_seqcount_end(&vtime->seqcount);
722 }
723 
724 void vtime_user_enter(struct task_struct *tsk)
725 {
726 	struct vtime *vtime = &tsk->vtime;
727 
728 	write_seqcount_begin(&vtime->seqcount);
729 	vtime_account_system(tsk, vtime);
730 	vtime->state = VTIME_USER;
731 	write_seqcount_end(&vtime->seqcount);
732 }
733 
734 void vtime_user_exit(struct task_struct *tsk)
735 {
736 	struct vtime *vtime = &tsk->vtime;
737 
738 	write_seqcount_begin(&vtime->seqcount);
739 	vtime->utime += get_vtime_delta(vtime);
740 	if (vtime->utime >= TICK_NSEC) {
741 		account_user_time(tsk, vtime->utime);
742 		vtime->utime = 0;
743 	}
744 	vtime->state = VTIME_SYS;
745 	write_seqcount_end(&vtime->seqcount);
746 }
747 
748 void vtime_guest_enter(struct task_struct *tsk)
749 {
750 	struct vtime *vtime = &tsk->vtime;
751 	/*
752 	 * The flags must be updated under the lock with
753 	 * the vtime_starttime flush and update.
754 	 * That enforces a right ordering and update sequence
755 	 * synchronization against the reader (task_gtime())
756 	 * that can thus safely catch up with a tickless delta.
757 	 */
758 	write_seqcount_begin(&vtime->seqcount);
759 	vtime_account_system(tsk, vtime);
760 	tsk->flags |= PF_VCPU;
761 	vtime->state = VTIME_GUEST;
762 	write_seqcount_end(&vtime->seqcount);
763 }
764 EXPORT_SYMBOL_GPL(vtime_guest_enter);
765 
766 void vtime_guest_exit(struct task_struct *tsk)
767 {
768 	struct vtime *vtime = &tsk->vtime;
769 
770 	write_seqcount_begin(&vtime->seqcount);
771 	vtime_account_guest(tsk, vtime);
772 	tsk->flags &= ~PF_VCPU;
773 	vtime->state = VTIME_SYS;
774 	write_seqcount_end(&vtime->seqcount);
775 }
776 EXPORT_SYMBOL_GPL(vtime_guest_exit);
777 
778 void vtime_account_idle(struct task_struct *tsk)
779 {
780 	account_idle_time(get_vtime_delta(&tsk->vtime));
781 }
782 
783 void vtime_task_switch_generic(struct task_struct *prev)
784 {
785 	struct vtime *vtime = &prev->vtime;
786 
787 	write_seqcount_begin(&vtime->seqcount);
788 	if (vtime->state == VTIME_IDLE)
789 		vtime_account_idle(prev);
790 	else
791 		__vtime_account_kernel(prev, vtime);
792 	vtime->state = VTIME_INACTIVE;
793 	vtime->cpu = -1;
794 	write_seqcount_end(&vtime->seqcount);
795 
796 	vtime = &current->vtime;
797 
798 	write_seqcount_begin(&vtime->seqcount);
799 	if (is_idle_task(current))
800 		vtime->state = VTIME_IDLE;
801 	else if (current->flags & PF_VCPU)
802 		vtime->state = VTIME_GUEST;
803 	else
804 		vtime->state = VTIME_SYS;
805 	vtime->starttime = sched_clock();
806 	vtime->cpu = smp_processor_id();
807 	write_seqcount_end(&vtime->seqcount);
808 }
809 
810 void vtime_init_idle(struct task_struct *t, int cpu)
811 {
812 	struct vtime *vtime = &t->vtime;
813 	unsigned long flags;
814 
815 	local_irq_save(flags);
816 	write_seqcount_begin(&vtime->seqcount);
817 	vtime->state = VTIME_IDLE;
818 	vtime->starttime = sched_clock();
819 	vtime->cpu = cpu;
820 	write_seqcount_end(&vtime->seqcount);
821 	local_irq_restore(flags);
822 }
823 
824 u64 task_gtime(struct task_struct *t)
825 {
826 	struct vtime *vtime = &t->vtime;
827 	unsigned int seq;
828 	u64 gtime;
829 
830 	if (!vtime_accounting_enabled())
831 		return t->gtime;
832 
833 	do {
834 		seq = read_seqcount_begin(&vtime->seqcount);
835 
836 		gtime = t->gtime;
837 		if (vtime->state == VTIME_GUEST)
838 			gtime += vtime->gtime + vtime_delta(vtime);
839 
840 	} while (read_seqcount_retry(&vtime->seqcount, seq));
841 
842 	return gtime;
843 }
844 
845 /*
846  * Fetch cputime raw values from fields of task_struct and
847  * add up the pending nohz execution time since the last
848  * cputime snapshot.
849  */
850 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
851 {
852 	struct vtime *vtime = &t->vtime;
853 	unsigned int seq;
854 	u64 delta;
855 	int ret;
856 
857 	if (!vtime_accounting_enabled()) {
858 		*utime = t->utime;
859 		*stime = t->stime;
860 		return false;
861 	}
862 
863 	do {
864 		ret = false;
865 		seq = read_seqcount_begin(&vtime->seqcount);
866 
867 		*utime = t->utime;
868 		*stime = t->stime;
869 
870 		/* Task is sleeping or idle, nothing to add */
871 		if (vtime->state < VTIME_SYS)
872 			continue;
873 
874 		ret = true;
875 		delta = vtime_delta(vtime);
876 
877 		/*
878 		 * Task runs either in user (including guest) or kernel space,
879 		 * add pending nohz time to the right place.
880 		 */
881 		if (vtime->state == VTIME_SYS)
882 			*stime += vtime->stime + delta;
883 		else
884 			*utime += vtime->utime + delta;
885 	} while (read_seqcount_retry(&vtime->seqcount, seq));
886 
887 	return ret;
888 }
889 
890 static int vtime_state_fetch(struct vtime *vtime, int cpu)
891 {
892 	int state = READ_ONCE(vtime->state);
893 
894 	/*
895 	 * We raced against a context switch, fetch the
896 	 * kcpustat task again.
897 	 */
898 	if (vtime->cpu != cpu && vtime->cpu != -1)
899 		return -EAGAIN;
900 
901 	/*
902 	 * Two possible things here:
903 	 * 1) We are seeing the scheduling out task (prev) or any past one.
904 	 * 2) We are seeing the scheduling in task (next) but it hasn't
905 	 *    passed though vtime_task_switch() yet so the pending
906 	 *    cputime of the prev task may not be flushed yet.
907 	 *
908 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
909 	 */
910 	if (state == VTIME_INACTIVE)
911 		return -EAGAIN;
912 
913 	return state;
914 }
915 
916 static u64 kcpustat_user_vtime(struct vtime *vtime)
917 {
918 	if (vtime->state == VTIME_USER)
919 		return vtime->utime + vtime_delta(vtime);
920 	else if (vtime->state == VTIME_GUEST)
921 		return vtime->gtime + vtime_delta(vtime);
922 	return 0;
923 }
924 
925 static int kcpustat_field_vtime(u64 *cpustat,
926 				struct task_struct *tsk,
927 				enum cpu_usage_stat usage,
928 				int cpu, u64 *val)
929 {
930 	struct vtime *vtime = &tsk->vtime;
931 	unsigned int seq;
932 
933 	do {
934 		int state;
935 
936 		seq = read_seqcount_begin(&vtime->seqcount);
937 
938 		state = vtime_state_fetch(vtime, cpu);
939 		if (state < 0)
940 			return state;
941 
942 		*val = cpustat[usage];
943 
944 		/*
945 		 * Nice VS unnice cputime accounting may be inaccurate if
946 		 * the nice value has changed since the last vtime update.
947 		 * But proper fix would involve interrupting target on nice
948 		 * updates which is a no go on nohz_full (although the scheduler
949 		 * may still interrupt the target if rescheduling is needed...)
950 		 */
951 		switch (usage) {
952 		case CPUTIME_SYSTEM:
953 			if (state == VTIME_SYS)
954 				*val += vtime->stime + vtime_delta(vtime);
955 			break;
956 		case CPUTIME_USER:
957 			if (task_nice(tsk) <= 0)
958 				*val += kcpustat_user_vtime(vtime);
959 			break;
960 		case CPUTIME_NICE:
961 			if (task_nice(tsk) > 0)
962 				*val += kcpustat_user_vtime(vtime);
963 			break;
964 		case CPUTIME_GUEST:
965 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
966 				*val += vtime->gtime + vtime_delta(vtime);
967 			break;
968 		case CPUTIME_GUEST_NICE:
969 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
970 				*val += vtime->gtime + vtime_delta(vtime);
971 			break;
972 		default:
973 			break;
974 		}
975 	} while (read_seqcount_retry(&vtime->seqcount, seq));
976 
977 	return 0;
978 }
979 
980 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
981 		   enum cpu_usage_stat usage, int cpu)
982 {
983 	u64 *cpustat = kcpustat->cpustat;
984 	u64 val = cpustat[usage];
985 	struct rq *rq;
986 	int err;
987 
988 	if (!vtime_accounting_enabled_cpu(cpu))
989 		return val;
990 
991 	rq = cpu_rq(cpu);
992 
993 	for (;;) {
994 		struct task_struct *curr;
995 
996 		rcu_read_lock();
997 		curr = rcu_dereference(rq->curr);
998 		if (WARN_ON_ONCE(!curr)) {
999 			rcu_read_unlock();
1000 			return cpustat[usage];
1001 		}
1002 
1003 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1004 		rcu_read_unlock();
1005 
1006 		if (!err)
1007 			return val;
1008 
1009 		cpu_relax();
1010 	}
1011 }
1012 EXPORT_SYMBOL_GPL(kcpustat_field);
1013 
1014 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1015 				    const struct kernel_cpustat *src,
1016 				    struct task_struct *tsk, int cpu)
1017 {
1018 	struct vtime *vtime = &tsk->vtime;
1019 	unsigned int seq;
1020 
1021 	do {
1022 		u64 *cpustat;
1023 		u64 delta;
1024 		int state;
1025 
1026 		seq = read_seqcount_begin(&vtime->seqcount);
1027 
1028 		state = vtime_state_fetch(vtime, cpu);
1029 		if (state < 0)
1030 			return state;
1031 
1032 		*dst = *src;
1033 		cpustat = dst->cpustat;
1034 
1035 		/* Task is sleeping, dead or idle, nothing to add */
1036 		if (state < VTIME_SYS)
1037 			continue;
1038 
1039 		delta = vtime_delta(vtime);
1040 
1041 		/*
1042 		 * Task runs either in user (including guest) or kernel space,
1043 		 * add pending nohz time to the right place.
1044 		 */
1045 		if (state == VTIME_SYS) {
1046 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1047 		} else if (state == VTIME_USER) {
1048 			if (task_nice(tsk) > 0)
1049 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1050 			else
1051 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1052 		} else {
1053 			WARN_ON_ONCE(state != VTIME_GUEST);
1054 			if (task_nice(tsk) > 0) {
1055 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1056 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1057 			} else {
1058 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1059 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1060 			}
1061 		}
1062 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1063 
1064 	return 0;
1065 }
1066 
1067 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1068 {
1069 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1070 	struct rq *rq;
1071 	int err;
1072 
1073 	if (!vtime_accounting_enabled_cpu(cpu)) {
1074 		*dst = *src;
1075 		return;
1076 	}
1077 
1078 	rq = cpu_rq(cpu);
1079 
1080 	for (;;) {
1081 		struct task_struct *curr;
1082 
1083 		rcu_read_lock();
1084 		curr = rcu_dereference(rq->curr);
1085 		if (WARN_ON_ONCE(!curr)) {
1086 			rcu_read_unlock();
1087 			*dst = *src;
1088 			return;
1089 		}
1090 
1091 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1092 		rcu_read_unlock();
1093 
1094 		if (!err)
1095 			return;
1096 
1097 		cpu_relax();
1098 	}
1099 }
1100 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1101 
1102 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1103