xref: /linux/kernel/sched/cputime.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7  #include <asm/cputime.h>
8 #endif
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's IRQ time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of IRQ time to wrong
20  * task when IRQ is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each IRQ in account_system_time.
22  */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24 
25 static int sched_clock_irqtime;
26 
27 void enable_sched_clock_irqtime(void)
28 {
29 	sched_clock_irqtime = 1;
30 }
31 
32 void disable_sched_clock_irqtime(void)
33 {
34 	sched_clock_irqtime = 0;
35 }
36 
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 				  enum cpu_usage_stat idx)
39 {
40 	u64 *cpustat = kcpustat_this_cpu->cpustat;
41 
42 	u64_stats_update_begin(&irqtime->sync);
43 	cpustat[idx] += delta;
44 	irqtime->total += delta;
45 	irqtime->tick_delta += delta;
46 	u64_stats_update_end(&irqtime->sync);
47 }
48 
49 /*
50  * Called after incrementing preempt_count on {soft,}irq_enter
51  * and before decrementing preempt_count on {soft,}irq_exit.
52  */
53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 	unsigned int pc;
57 	s64 delta;
58 	int cpu;
59 
60 	if (!sched_clock_irqtime)
61 		return;
62 
63 	cpu = smp_processor_id();
64 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
65 	irqtime->irq_start_time += delta;
66 	pc = irq_count() - offset;
67 
68 	/*
69 	 * We do not account for softirq time from ksoftirqd here.
70 	 * We want to continue accounting softirq time to ksoftirqd thread
71 	 * in that case, so as not to confuse scheduler with a special task
72 	 * that do not consume any time, but still wants to run.
73 	 */
74 	if (pc & HARDIRQ_MASK)
75 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
76 	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
77 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
78 }
79 
80 static u64 irqtime_tick_accounted(u64 maxtime)
81 {
82 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
83 	u64 delta;
84 
85 	delta = min(irqtime->tick_delta, maxtime);
86 	irqtime->tick_delta -= delta;
87 
88 	return delta;
89 }
90 
91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
92 
93 #define sched_clock_irqtime	(0)
94 
95 static u64 irqtime_tick_accounted(u64 dummy)
96 {
97 	return 0;
98 }
99 
100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
101 
102 static inline void task_group_account_field(struct task_struct *p, int index,
103 					    u64 tmp)
104 {
105 	/*
106 	 * Since all updates are sure to touch the root cgroup, we
107 	 * get ourselves ahead and touch it first. If the root cgroup
108 	 * is the only cgroup, then nothing else should be necessary.
109 	 *
110 	 */
111 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
112 
113 	cgroup_account_cputime_field(p, index, tmp);
114 }
115 
116 /*
117  * Account user CPU time to a process.
118  * @p: the process that the CPU time gets accounted to
119  * @cputime: the CPU time spent in user space since the last update
120  */
121 void account_user_time(struct task_struct *p, u64 cputime)
122 {
123 	int index;
124 
125 	/* Add user time to process. */
126 	p->utime += cputime;
127 	account_group_user_time(p, cputime);
128 
129 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
130 
131 	/* Add user time to cpustat. */
132 	task_group_account_field(p, index, cputime);
133 
134 	/* Account for user time used */
135 	acct_account_cputime(p);
136 }
137 
138 /*
139  * Account guest CPU time to a process.
140  * @p: the process that the CPU time gets accounted to
141  * @cputime: the CPU time spent in virtual machine since the last update
142  */
143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145 	u64 *cpustat = kcpustat_this_cpu->cpustat;
146 
147 	/* Add guest time to process. */
148 	p->utime += cputime;
149 	account_group_user_time(p, cputime);
150 	p->gtime += cputime;
151 
152 	/* Add guest time to cpustat. */
153 	if (task_nice(p) > 0) {
154 		task_group_account_field(p, CPUTIME_NICE, cputime);
155 		cpustat[CPUTIME_GUEST_NICE] += cputime;
156 	} else {
157 		task_group_account_field(p, CPUTIME_USER, cputime);
158 		cpustat[CPUTIME_GUEST] += cputime;
159 	}
160 }
161 
162 /*
163  * Account system CPU time to a process and desired cpustat field
164  * @p: the process that the CPU time gets accounted to
165  * @cputime: the CPU time spent in kernel space since the last update
166  * @index: pointer to cpustat field that has to be updated
167  */
168 void account_system_index_time(struct task_struct *p,
169 			       u64 cputime, enum cpu_usage_stat index)
170 {
171 	/* Add system time to process. */
172 	p->stime += cputime;
173 	account_group_system_time(p, cputime);
174 
175 	/* Add system time to cpustat. */
176 	task_group_account_field(p, index, cputime);
177 
178 	/* Account for system time used */
179 	acct_account_cputime(p);
180 }
181 
182 /*
183  * Account system CPU time to a process.
184  * @p: the process that the CPU time gets accounted to
185  * @hardirq_offset: the offset to subtract from hardirq_count()
186  * @cputime: the CPU time spent in kernel space since the last update
187  */
188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
189 {
190 	int index;
191 
192 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
193 		account_guest_time(p, cputime);
194 		return;
195 	}
196 
197 	if (hardirq_count() - hardirq_offset)
198 		index = CPUTIME_IRQ;
199 	else if (in_serving_softirq())
200 		index = CPUTIME_SOFTIRQ;
201 	else
202 		index = CPUTIME_SYSTEM;
203 
204 	account_system_index_time(p, cputime, index);
205 }
206 
207 /*
208  * Account for involuntary wait time.
209  * @cputime: the CPU time spent in involuntary wait
210  */
211 void account_steal_time(u64 cputime)
212 {
213 	u64 *cpustat = kcpustat_this_cpu->cpustat;
214 
215 	cpustat[CPUTIME_STEAL] += cputime;
216 }
217 
218 /*
219  * Account for idle time.
220  * @cputime: the CPU time spent in idle wait
221  */
222 void account_idle_time(u64 cputime)
223 {
224 	u64 *cpustat = kcpustat_this_cpu->cpustat;
225 	struct rq *rq = this_rq();
226 
227 	if (atomic_read(&rq->nr_iowait) > 0)
228 		cpustat[CPUTIME_IOWAIT] += cputime;
229 	else
230 		cpustat[CPUTIME_IDLE] += cputime;
231 }
232 
233 
234 #ifdef CONFIG_SCHED_CORE
235 /*
236  * Account for forceidle time due to core scheduling.
237  *
238  * REQUIRES: schedstat is enabled.
239  */
240 void __account_forceidle_time(struct task_struct *p, u64 delta)
241 {
242 	__schedstat_add(p->stats.core_forceidle_sum, delta);
243 
244 	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
245 }
246 #endif
247 
248 /*
249  * When a guest is interrupted for a longer amount of time, missed clock
250  * ticks are not redelivered later. Due to that, this function may on
251  * occasion account more time than the calling functions think elapsed.
252  */
253 static __always_inline u64 steal_account_process_time(u64 maxtime)
254 {
255 #ifdef CONFIG_PARAVIRT
256 	if (static_key_false(&paravirt_steal_enabled)) {
257 		u64 steal;
258 
259 		steal = paravirt_steal_clock(smp_processor_id());
260 		steal -= this_rq()->prev_steal_time;
261 		steal = min(steal, maxtime);
262 		account_steal_time(steal);
263 		this_rq()->prev_steal_time += steal;
264 
265 		return steal;
266 	}
267 #endif
268 	return 0;
269 }
270 
271 /*
272  * Account how much elapsed time was spent in steal, IRQ, or softirq time.
273  */
274 static inline u64 account_other_time(u64 max)
275 {
276 	u64 accounted;
277 
278 	lockdep_assert_irqs_disabled();
279 
280 	accounted = steal_account_process_time(max);
281 
282 	if (accounted < max)
283 		accounted += irqtime_tick_accounted(max - accounted);
284 
285 	return accounted;
286 }
287 
288 #ifdef CONFIG_64BIT
289 static inline u64 read_sum_exec_runtime(struct task_struct *t)
290 {
291 	return t->se.sum_exec_runtime;
292 }
293 #else
294 static u64 read_sum_exec_runtime(struct task_struct *t)
295 {
296 	u64 ns;
297 	struct rq_flags rf;
298 	struct rq *rq;
299 
300 	rq = task_rq_lock(t, &rf);
301 	ns = t->se.sum_exec_runtime;
302 	task_rq_unlock(rq, t, &rf);
303 
304 	return ns;
305 }
306 #endif
307 
308 /*
309  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
310  * tasks (sum on group iteration) belonging to @tsk's group.
311  */
312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
313 {
314 	struct signal_struct *sig = tsk->signal;
315 	u64 utime, stime;
316 	struct task_struct *t;
317 	unsigned int seq, nextseq;
318 	unsigned long flags;
319 
320 	/*
321 	 * Update current task runtime to account pending time since last
322 	 * scheduler action or thread_group_cputime() call. This thread group
323 	 * might have other running tasks on different CPUs, but updating
324 	 * their runtime can affect syscall performance, so we skip account
325 	 * those pending times and rely only on values updated on tick or
326 	 * other scheduler action.
327 	 */
328 	if (same_thread_group(current, tsk))
329 		(void) task_sched_runtime(current);
330 
331 	rcu_read_lock();
332 	/* Attempt a lockless read on the first round. */
333 	nextseq = 0;
334 	do {
335 		seq = nextseq;
336 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
337 		times->utime = sig->utime;
338 		times->stime = sig->stime;
339 		times->sum_exec_runtime = sig->sum_sched_runtime;
340 
341 		for_each_thread(tsk, t) {
342 			task_cputime(t, &utime, &stime);
343 			times->utime += utime;
344 			times->stime += stime;
345 			times->sum_exec_runtime += read_sum_exec_runtime(t);
346 		}
347 		/* If lockless access failed, take the lock. */
348 		nextseq = 1;
349 	} while (need_seqretry(&sig->stats_lock, seq));
350 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
351 	rcu_read_unlock();
352 }
353 
354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
355 /*
356  * Account a tick to a process and cpustat
357  * @p: the process that the CPU time gets accounted to
358  * @user_tick: is the tick from userspace
359  * @rq: the pointer to rq
360  *
361  * Tick demultiplexing follows the order
362  * - pending hardirq update
363  * - pending softirq update
364  * - user_time
365  * - idle_time
366  * - system time
367  *   - check for guest_time
368  *   - else account as system_time
369  *
370  * Check for hardirq is done both for system and user time as there is
371  * no timer going off while we are on hardirq and hence we may never get an
372  * opportunity to update it solely in system time.
373  * p->stime and friends are only updated on system time and not on IRQ
374  * softirq as those do not count in task exec_runtime any more.
375  */
376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
377 					 int ticks)
378 {
379 	u64 other, cputime = TICK_NSEC * ticks;
380 
381 	/*
382 	 * When returning from idle, many ticks can get accounted at
383 	 * once, including some ticks of steal, IRQ, and softirq time.
384 	 * Subtract those ticks from the amount of time accounted to
385 	 * idle, or potentially user or system time. Due to rounding,
386 	 * other time can exceed ticks occasionally.
387 	 */
388 	other = account_other_time(ULONG_MAX);
389 	if (other >= cputime)
390 		return;
391 
392 	cputime -= other;
393 
394 	if (this_cpu_ksoftirqd() == p) {
395 		/*
396 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
397 		 * So, we have to handle it separately here.
398 		 * Also, p->stime needs to be updated for ksoftirqd.
399 		 */
400 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
401 	} else if (user_tick) {
402 		account_user_time(p, cputime);
403 	} else if (p == this_rq()->idle) {
404 		account_idle_time(cputime);
405 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
406 		account_guest_time(p, cputime);
407 	} else {
408 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
409 	}
410 }
411 
412 static void irqtime_account_idle_ticks(int ticks)
413 {
414 	irqtime_account_process_tick(current, 0, ticks);
415 }
416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
417 static inline void irqtime_account_idle_ticks(int ticks) { }
418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
419 						int nr_ticks) { }
420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
421 
422 /*
423  * Use precise platform statistics if available:
424  */
425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
426 
427 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
428 {
429 	unsigned int pc = irq_count() - offset;
430 
431 	if (pc & HARDIRQ_OFFSET) {
432 		vtime_account_hardirq(tsk);
433 	} else if (pc & SOFTIRQ_OFFSET) {
434 		vtime_account_softirq(tsk);
435 	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
436 		   is_idle_task(tsk)) {
437 		vtime_account_idle(tsk);
438 	} else {
439 		vtime_account_kernel(tsk);
440 	}
441 }
442 
443 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
444 		    u64 *ut, u64 *st)
445 {
446 	*ut = curr->utime;
447 	*st = curr->stime;
448 }
449 
450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 {
452 	*ut = p->utime;
453 	*st = p->stime;
454 }
455 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456 
457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459 	struct task_cputime cputime;
460 
461 	thread_group_cputime(p, &cputime);
462 
463 	*ut = cputime.utime;
464 	*st = cputime.stime;
465 }
466 
467 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
468 
469 /*
470  * Account a single tick of CPU time.
471  * @p: the process that the CPU time gets accounted to
472  * @user_tick: indicates if the tick is a user or a system tick
473  */
474 void account_process_tick(struct task_struct *p, int user_tick)
475 {
476 	u64 cputime, steal;
477 
478 	if (vtime_accounting_enabled_this_cpu())
479 		return;
480 
481 	if (sched_clock_irqtime) {
482 		irqtime_account_process_tick(p, user_tick, 1);
483 		return;
484 	}
485 
486 	cputime = TICK_NSEC;
487 	steal = steal_account_process_time(ULONG_MAX);
488 
489 	if (steal >= cputime)
490 		return;
491 
492 	cputime -= steal;
493 
494 	if (user_tick)
495 		account_user_time(p, cputime);
496 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
497 		account_system_time(p, HARDIRQ_OFFSET, cputime);
498 	else
499 		account_idle_time(cputime);
500 }
501 
502 /*
503  * Account multiple ticks of idle time.
504  * @ticks: number of stolen ticks
505  */
506 void account_idle_ticks(unsigned long ticks)
507 {
508 	u64 cputime, steal;
509 
510 	if (sched_clock_irqtime) {
511 		irqtime_account_idle_ticks(ticks);
512 		return;
513 	}
514 
515 	cputime = ticks * TICK_NSEC;
516 	steal = steal_account_process_time(ULONG_MAX);
517 
518 	if (steal >= cputime)
519 		return;
520 
521 	cputime -= steal;
522 	account_idle_time(cputime);
523 }
524 
525 /*
526  * Adjust tick based cputime random precision against scheduler runtime
527  * accounting.
528  *
529  * Tick based cputime accounting depend on random scheduling timeslices of a
530  * task to be interrupted or not by the timer.  Depending on these
531  * circumstances, the number of these interrupts may be over or
532  * under-optimistic, matching the real user and system cputime with a variable
533  * precision.
534  *
535  * Fix this by scaling these tick based values against the total runtime
536  * accounted by the CFS scheduler.
537  *
538  * This code provides the following guarantees:
539  *
540  *   stime + utime == rtime
541  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
542  *
543  * Assuming that rtime_i+1 >= rtime_i.
544  */
545 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
546 		    u64 *ut, u64 *st)
547 {
548 	u64 rtime, stime, utime;
549 	unsigned long flags;
550 
551 	/* Serialize concurrent callers such that we can honour our guarantees */
552 	raw_spin_lock_irqsave(&prev->lock, flags);
553 	rtime = curr->sum_exec_runtime;
554 
555 	/*
556 	 * This is possible under two circumstances:
557 	 *  - rtime isn't monotonic after all (a bug);
558 	 *  - we got reordered by the lock.
559 	 *
560 	 * In both cases this acts as a filter such that the rest of the code
561 	 * can assume it is monotonic regardless of anything else.
562 	 */
563 	if (prev->stime + prev->utime >= rtime)
564 		goto out;
565 
566 	stime = curr->stime;
567 	utime = curr->utime;
568 
569 	/*
570 	 * If either stime or utime are 0, assume all runtime is userspace.
571 	 * Once a task gets some ticks, the monotonicity code at 'update:'
572 	 * will ensure things converge to the observed ratio.
573 	 */
574 	if (stime == 0) {
575 		utime = rtime;
576 		goto update;
577 	}
578 
579 	if (utime == 0) {
580 		stime = rtime;
581 		goto update;
582 	}
583 
584 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
585 	/*
586 	 * Because mul_u64_u64_div_u64() can approximate on some
587 	 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
588 	 */
589 	if (unlikely(stime > rtime))
590 		stime = rtime;
591 
592 update:
593 	/*
594 	 * Make sure stime doesn't go backwards; this preserves monotonicity
595 	 * for utime because rtime is monotonic.
596 	 *
597 	 *  utime_i+1 = rtime_i+1 - stime_i
598 	 *            = rtime_i+1 - (rtime_i - utime_i)
599 	 *            = (rtime_i+1 - rtime_i) + utime_i
600 	 *            >= utime_i
601 	 */
602 	if (stime < prev->stime)
603 		stime = prev->stime;
604 	utime = rtime - stime;
605 
606 	/*
607 	 * Make sure utime doesn't go backwards; this still preserves
608 	 * monotonicity for stime, analogous argument to above.
609 	 */
610 	if (utime < prev->utime) {
611 		utime = prev->utime;
612 		stime = rtime - utime;
613 	}
614 
615 	prev->stime = stime;
616 	prev->utime = utime;
617 out:
618 	*ut = prev->utime;
619 	*st = prev->stime;
620 	raw_spin_unlock_irqrestore(&prev->lock, flags);
621 }
622 
623 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
624 {
625 	struct task_cputime cputime = {
626 		.sum_exec_runtime = p->se.sum_exec_runtime,
627 	};
628 
629 	if (task_cputime(p, &cputime.utime, &cputime.stime))
630 		cputime.sum_exec_runtime = task_sched_runtime(p);
631 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
632 }
633 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
634 
635 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
636 {
637 	struct task_cputime cputime;
638 
639 	thread_group_cputime(p, &cputime);
640 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
641 }
642 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
643 
644 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
645 static u64 vtime_delta(struct vtime *vtime)
646 {
647 	unsigned long long clock;
648 
649 	clock = sched_clock();
650 	if (clock < vtime->starttime)
651 		return 0;
652 
653 	return clock - vtime->starttime;
654 }
655 
656 static u64 get_vtime_delta(struct vtime *vtime)
657 {
658 	u64 delta = vtime_delta(vtime);
659 	u64 other;
660 
661 	/*
662 	 * Unlike tick based timing, vtime based timing never has lost
663 	 * ticks, and no need for steal time accounting to make up for
664 	 * lost ticks. Vtime accounts a rounded version of actual
665 	 * elapsed time. Limit account_other_time to prevent rounding
666 	 * errors from causing elapsed vtime to go negative.
667 	 */
668 	other = account_other_time(delta);
669 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
670 	vtime->starttime += delta;
671 
672 	return delta - other;
673 }
674 
675 static void vtime_account_system(struct task_struct *tsk,
676 				 struct vtime *vtime)
677 {
678 	vtime->stime += get_vtime_delta(vtime);
679 	if (vtime->stime >= TICK_NSEC) {
680 		account_system_time(tsk, irq_count(), vtime->stime);
681 		vtime->stime = 0;
682 	}
683 }
684 
685 static void vtime_account_guest(struct task_struct *tsk,
686 				struct vtime *vtime)
687 {
688 	vtime->gtime += get_vtime_delta(vtime);
689 	if (vtime->gtime >= TICK_NSEC) {
690 		account_guest_time(tsk, vtime->gtime);
691 		vtime->gtime = 0;
692 	}
693 }
694 
695 static void __vtime_account_kernel(struct task_struct *tsk,
696 				   struct vtime *vtime)
697 {
698 	/* We might have scheduled out from guest path */
699 	if (vtime->state == VTIME_GUEST)
700 		vtime_account_guest(tsk, vtime);
701 	else
702 		vtime_account_system(tsk, vtime);
703 }
704 
705 void vtime_account_kernel(struct task_struct *tsk)
706 {
707 	struct vtime *vtime = &tsk->vtime;
708 
709 	if (!vtime_delta(vtime))
710 		return;
711 
712 	write_seqcount_begin(&vtime->seqcount);
713 	__vtime_account_kernel(tsk, vtime);
714 	write_seqcount_end(&vtime->seqcount);
715 }
716 
717 void vtime_user_enter(struct task_struct *tsk)
718 {
719 	struct vtime *vtime = &tsk->vtime;
720 
721 	write_seqcount_begin(&vtime->seqcount);
722 	vtime_account_system(tsk, vtime);
723 	vtime->state = VTIME_USER;
724 	write_seqcount_end(&vtime->seqcount);
725 }
726 
727 void vtime_user_exit(struct task_struct *tsk)
728 {
729 	struct vtime *vtime = &tsk->vtime;
730 
731 	write_seqcount_begin(&vtime->seqcount);
732 	vtime->utime += get_vtime_delta(vtime);
733 	if (vtime->utime >= TICK_NSEC) {
734 		account_user_time(tsk, vtime->utime);
735 		vtime->utime = 0;
736 	}
737 	vtime->state = VTIME_SYS;
738 	write_seqcount_end(&vtime->seqcount);
739 }
740 
741 void vtime_guest_enter(struct task_struct *tsk)
742 {
743 	struct vtime *vtime = &tsk->vtime;
744 	/*
745 	 * The flags must be updated under the lock with
746 	 * the vtime_starttime flush and update.
747 	 * That enforces a right ordering and update sequence
748 	 * synchronization against the reader (task_gtime())
749 	 * that can thus safely catch up with a tickless delta.
750 	 */
751 	write_seqcount_begin(&vtime->seqcount);
752 	vtime_account_system(tsk, vtime);
753 	tsk->flags |= PF_VCPU;
754 	vtime->state = VTIME_GUEST;
755 	write_seqcount_end(&vtime->seqcount);
756 }
757 EXPORT_SYMBOL_GPL(vtime_guest_enter);
758 
759 void vtime_guest_exit(struct task_struct *tsk)
760 {
761 	struct vtime *vtime = &tsk->vtime;
762 
763 	write_seqcount_begin(&vtime->seqcount);
764 	vtime_account_guest(tsk, vtime);
765 	tsk->flags &= ~PF_VCPU;
766 	vtime->state = VTIME_SYS;
767 	write_seqcount_end(&vtime->seqcount);
768 }
769 EXPORT_SYMBOL_GPL(vtime_guest_exit);
770 
771 void vtime_account_idle(struct task_struct *tsk)
772 {
773 	account_idle_time(get_vtime_delta(&tsk->vtime));
774 }
775 
776 void vtime_task_switch_generic(struct task_struct *prev)
777 {
778 	struct vtime *vtime = &prev->vtime;
779 
780 	write_seqcount_begin(&vtime->seqcount);
781 	if (vtime->state == VTIME_IDLE)
782 		vtime_account_idle(prev);
783 	else
784 		__vtime_account_kernel(prev, vtime);
785 	vtime->state = VTIME_INACTIVE;
786 	vtime->cpu = -1;
787 	write_seqcount_end(&vtime->seqcount);
788 
789 	vtime = &current->vtime;
790 
791 	write_seqcount_begin(&vtime->seqcount);
792 	if (is_idle_task(current))
793 		vtime->state = VTIME_IDLE;
794 	else if (current->flags & PF_VCPU)
795 		vtime->state = VTIME_GUEST;
796 	else
797 		vtime->state = VTIME_SYS;
798 	vtime->starttime = sched_clock();
799 	vtime->cpu = smp_processor_id();
800 	write_seqcount_end(&vtime->seqcount);
801 }
802 
803 void vtime_init_idle(struct task_struct *t, int cpu)
804 {
805 	struct vtime *vtime = &t->vtime;
806 	unsigned long flags;
807 
808 	local_irq_save(flags);
809 	write_seqcount_begin(&vtime->seqcount);
810 	vtime->state = VTIME_IDLE;
811 	vtime->starttime = sched_clock();
812 	vtime->cpu = cpu;
813 	write_seqcount_end(&vtime->seqcount);
814 	local_irq_restore(flags);
815 }
816 
817 u64 task_gtime(struct task_struct *t)
818 {
819 	struct vtime *vtime = &t->vtime;
820 	unsigned int seq;
821 	u64 gtime;
822 
823 	if (!vtime_accounting_enabled())
824 		return t->gtime;
825 
826 	do {
827 		seq = read_seqcount_begin(&vtime->seqcount);
828 
829 		gtime = t->gtime;
830 		if (vtime->state == VTIME_GUEST)
831 			gtime += vtime->gtime + vtime_delta(vtime);
832 
833 	} while (read_seqcount_retry(&vtime->seqcount, seq));
834 
835 	return gtime;
836 }
837 
838 /*
839  * Fetch cputime raw values from fields of task_struct and
840  * add up the pending nohz execution time since the last
841  * cputime snapshot.
842  */
843 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
844 {
845 	struct vtime *vtime = &t->vtime;
846 	unsigned int seq;
847 	u64 delta;
848 	int ret;
849 
850 	if (!vtime_accounting_enabled()) {
851 		*utime = t->utime;
852 		*stime = t->stime;
853 		return false;
854 	}
855 
856 	do {
857 		ret = false;
858 		seq = read_seqcount_begin(&vtime->seqcount);
859 
860 		*utime = t->utime;
861 		*stime = t->stime;
862 
863 		/* Task is sleeping or idle, nothing to add */
864 		if (vtime->state < VTIME_SYS)
865 			continue;
866 
867 		ret = true;
868 		delta = vtime_delta(vtime);
869 
870 		/*
871 		 * Task runs either in user (including guest) or kernel space,
872 		 * add pending nohz time to the right place.
873 		 */
874 		if (vtime->state == VTIME_SYS)
875 			*stime += vtime->stime + delta;
876 		else
877 			*utime += vtime->utime + delta;
878 	} while (read_seqcount_retry(&vtime->seqcount, seq));
879 
880 	return ret;
881 }
882 
883 static int vtime_state_fetch(struct vtime *vtime, int cpu)
884 {
885 	int state = READ_ONCE(vtime->state);
886 
887 	/*
888 	 * We raced against a context switch, fetch the
889 	 * kcpustat task again.
890 	 */
891 	if (vtime->cpu != cpu && vtime->cpu != -1)
892 		return -EAGAIN;
893 
894 	/*
895 	 * Two possible things here:
896 	 * 1) We are seeing the scheduling out task (prev) or any past one.
897 	 * 2) We are seeing the scheduling in task (next) but it hasn't
898 	 *    passed though vtime_task_switch() yet so the pending
899 	 *    cputime of the prev task may not be flushed yet.
900 	 *
901 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
902 	 */
903 	if (state == VTIME_INACTIVE)
904 		return -EAGAIN;
905 
906 	return state;
907 }
908 
909 static u64 kcpustat_user_vtime(struct vtime *vtime)
910 {
911 	if (vtime->state == VTIME_USER)
912 		return vtime->utime + vtime_delta(vtime);
913 	else if (vtime->state == VTIME_GUEST)
914 		return vtime->gtime + vtime_delta(vtime);
915 	return 0;
916 }
917 
918 static int kcpustat_field_vtime(u64 *cpustat,
919 				struct task_struct *tsk,
920 				enum cpu_usage_stat usage,
921 				int cpu, u64 *val)
922 {
923 	struct vtime *vtime = &tsk->vtime;
924 	unsigned int seq;
925 
926 	do {
927 		int state;
928 
929 		seq = read_seqcount_begin(&vtime->seqcount);
930 
931 		state = vtime_state_fetch(vtime, cpu);
932 		if (state < 0)
933 			return state;
934 
935 		*val = cpustat[usage];
936 
937 		/*
938 		 * Nice VS unnice cputime accounting may be inaccurate if
939 		 * the nice value has changed since the last vtime update.
940 		 * But proper fix would involve interrupting target on nice
941 		 * updates which is a no go on nohz_full (although the scheduler
942 		 * may still interrupt the target if rescheduling is needed...)
943 		 */
944 		switch (usage) {
945 		case CPUTIME_SYSTEM:
946 			if (state == VTIME_SYS)
947 				*val += vtime->stime + vtime_delta(vtime);
948 			break;
949 		case CPUTIME_USER:
950 			if (task_nice(tsk) <= 0)
951 				*val += kcpustat_user_vtime(vtime);
952 			break;
953 		case CPUTIME_NICE:
954 			if (task_nice(tsk) > 0)
955 				*val += kcpustat_user_vtime(vtime);
956 			break;
957 		case CPUTIME_GUEST:
958 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
959 				*val += vtime->gtime + vtime_delta(vtime);
960 			break;
961 		case CPUTIME_GUEST_NICE:
962 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
963 				*val += vtime->gtime + vtime_delta(vtime);
964 			break;
965 		default:
966 			break;
967 		}
968 	} while (read_seqcount_retry(&vtime->seqcount, seq));
969 
970 	return 0;
971 }
972 
973 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
974 		   enum cpu_usage_stat usage, int cpu)
975 {
976 	u64 *cpustat = kcpustat->cpustat;
977 	u64 val = cpustat[usage];
978 	struct rq *rq;
979 	int err;
980 
981 	if (!vtime_accounting_enabled_cpu(cpu))
982 		return val;
983 
984 	rq = cpu_rq(cpu);
985 
986 	for (;;) {
987 		struct task_struct *curr;
988 
989 		rcu_read_lock();
990 		curr = rcu_dereference(rq->curr);
991 		if (WARN_ON_ONCE(!curr)) {
992 			rcu_read_unlock();
993 			return cpustat[usage];
994 		}
995 
996 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
997 		rcu_read_unlock();
998 
999 		if (!err)
1000 			return val;
1001 
1002 		cpu_relax();
1003 	}
1004 }
1005 EXPORT_SYMBOL_GPL(kcpustat_field);
1006 
1007 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1008 				    const struct kernel_cpustat *src,
1009 				    struct task_struct *tsk, int cpu)
1010 {
1011 	struct vtime *vtime = &tsk->vtime;
1012 	unsigned int seq;
1013 
1014 	do {
1015 		u64 *cpustat;
1016 		u64 delta;
1017 		int state;
1018 
1019 		seq = read_seqcount_begin(&vtime->seqcount);
1020 
1021 		state = vtime_state_fetch(vtime, cpu);
1022 		if (state < 0)
1023 			return state;
1024 
1025 		*dst = *src;
1026 		cpustat = dst->cpustat;
1027 
1028 		/* Task is sleeping, dead or idle, nothing to add */
1029 		if (state < VTIME_SYS)
1030 			continue;
1031 
1032 		delta = vtime_delta(vtime);
1033 
1034 		/*
1035 		 * Task runs either in user (including guest) or kernel space,
1036 		 * add pending nohz time to the right place.
1037 		 */
1038 		if (state == VTIME_SYS) {
1039 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1040 		} else if (state == VTIME_USER) {
1041 			if (task_nice(tsk) > 0)
1042 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1043 			else
1044 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1045 		} else {
1046 			WARN_ON_ONCE(state != VTIME_GUEST);
1047 			if (task_nice(tsk) > 0) {
1048 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1049 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1050 			} else {
1051 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1052 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1053 			}
1054 		}
1055 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1056 
1057 	return 0;
1058 }
1059 
1060 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1061 {
1062 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1063 	struct rq *rq;
1064 	int err;
1065 
1066 	if (!vtime_accounting_enabled_cpu(cpu)) {
1067 		*dst = *src;
1068 		return;
1069 	}
1070 
1071 	rq = cpu_rq(cpu);
1072 
1073 	for (;;) {
1074 		struct task_struct *curr;
1075 
1076 		rcu_read_lock();
1077 		curr = rcu_dereference(rq->curr);
1078 		if (WARN_ON_ONCE(!curr)) {
1079 			rcu_read_unlock();
1080 			*dst = *src;
1081 			return;
1082 		}
1083 
1084 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1085 		rcu_read_unlock();
1086 
1087 		if (!err)
1088 			return;
1089 
1090 		cpu_relax();
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1094 
1095 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1096