1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include <linux/sched/cputime.h> 8 #include "sched.h" 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 24 25 static int sched_clock_irqtime; 26 27 void enable_sched_clock_irqtime(void) 28 { 29 sched_clock_irqtime = 1; 30 } 31 32 void disable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 0; 35 } 36 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 38 enum cpu_usage_stat idx) 39 { 40 u64 *cpustat = kcpustat_this_cpu->cpustat; 41 42 u64_stats_update_begin(&irqtime->sync); 43 cpustat[idx] += delta; 44 irqtime->total += delta; 45 irqtime->tick_delta += delta; 46 u64_stats_update_end(&irqtime->sync); 47 } 48 49 /* 50 * Called before incrementing preempt_count on {soft,}irq_enter 51 * and before decrementing preempt_count on {soft,}irq_exit. 52 */ 53 void irqtime_account_irq(struct task_struct *curr) 54 { 55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 56 s64 delta; 57 int cpu; 58 59 if (!sched_clock_irqtime) 60 return; 61 62 cpu = smp_processor_id(); 63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 64 irqtime->irq_start_time += delta; 65 66 /* 67 * We do not account for softirq time from ksoftirqd here. 68 * We want to continue accounting softirq time to ksoftirqd thread 69 * in that case, so as not to confuse scheduler with a special task 70 * that do not consume any time, but still wants to run. 71 */ 72 if (hardirq_count()) 73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static u64 irqtime_tick_accounted(u64 maxtime) 80 { 81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 82 u64 delta; 83 84 delta = min(irqtime->tick_delta, maxtime); 85 irqtime->tick_delta -= delta; 86 87 return delta; 88 } 89 90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 91 92 #define sched_clock_irqtime (0) 93 94 static u64 irqtime_tick_accounted(u64 dummy) 95 { 96 return 0; 97 } 98 99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 100 101 static inline void task_group_account_field(struct task_struct *p, int index, 102 u64 tmp) 103 { 104 /* 105 * Since all updates are sure to touch the root cgroup, we 106 * get ourselves ahead and touch it first. If the root cgroup 107 * is the only cgroup, then nothing else should be necessary. 108 * 109 */ 110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 111 112 cpuacct_account_field(p, index, tmp); 113 } 114 115 /* 116 * Account user cpu time to a process. 117 * @p: the process that the cpu time gets accounted to 118 * @cputime: the cpu time spent in user space since the last update 119 */ 120 void account_user_time(struct task_struct *p, u64 cputime) 121 { 122 int index; 123 124 /* Add user time to process. */ 125 p->utime += cputime; 126 account_group_user_time(p, cputime); 127 128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 129 130 /* Add user time to cpustat. */ 131 task_group_account_field(p, index, cputime); 132 133 /* Account for user time used */ 134 acct_account_cputime(p); 135 } 136 137 /* 138 * Account guest cpu time to a process. 139 * @p: the process that the cpu time gets accounted to 140 * @cputime: the cpu time spent in virtual machine since the last update 141 */ 142 void account_guest_time(struct task_struct *p, u64 cputime) 143 { 144 u64 *cpustat = kcpustat_this_cpu->cpustat; 145 146 /* Add guest time to process. */ 147 p->utime += cputime; 148 account_group_user_time(p, cputime); 149 p->gtime += cputime; 150 151 /* Add guest time to cpustat. */ 152 if (task_nice(p) > 0) { 153 cpustat[CPUTIME_NICE] += cputime; 154 cpustat[CPUTIME_GUEST_NICE] += cputime; 155 } else { 156 cpustat[CPUTIME_USER] += cputime; 157 cpustat[CPUTIME_GUEST] += cputime; 158 } 159 } 160 161 /* 162 * Account system cpu time to a process and desired cpustat field 163 * @p: the process that the cpu time gets accounted to 164 * @cputime: the cpu time spent in kernel space since the last update 165 * @index: pointer to cpustat field that has to be updated 166 */ 167 void account_system_index_time(struct task_struct *p, 168 u64 cputime, enum cpu_usage_stat index) 169 { 170 /* Add system time to process. */ 171 p->stime += cputime; 172 account_group_system_time(p, cputime); 173 174 /* Add system time to cpustat. */ 175 task_group_account_field(p, index, cputime); 176 177 /* Account for system time used */ 178 acct_account_cputime(p); 179 } 180 181 /* 182 * Account system cpu time to a process. 183 * @p: the process that the cpu time gets accounted to 184 * @hardirq_offset: the offset to subtract from hardirq_count() 185 * @cputime: the cpu time spent in kernel space since the last update 186 */ 187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 188 { 189 int index; 190 191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 192 account_guest_time(p, cputime); 193 return; 194 } 195 196 if (hardirq_count() - hardirq_offset) 197 index = CPUTIME_IRQ; 198 else if (in_serving_softirq()) 199 index = CPUTIME_SOFTIRQ; 200 else 201 index = CPUTIME_SYSTEM; 202 203 account_system_index_time(p, cputime, index); 204 } 205 206 /* 207 * Account for involuntary wait time. 208 * @cputime: the cpu time spent in involuntary wait 209 */ 210 void account_steal_time(u64 cputime) 211 { 212 u64 *cpustat = kcpustat_this_cpu->cpustat; 213 214 cpustat[CPUTIME_STEAL] += cputime; 215 } 216 217 /* 218 * Account for idle time. 219 * @cputime: the cpu time spent in idle wait 220 */ 221 void account_idle_time(u64 cputime) 222 { 223 u64 *cpustat = kcpustat_this_cpu->cpustat; 224 struct rq *rq = this_rq(); 225 226 if (atomic_read(&rq->nr_iowait) > 0) 227 cpustat[CPUTIME_IOWAIT] += cputime; 228 else 229 cpustat[CPUTIME_IDLE] += cputime; 230 } 231 232 /* 233 * When a guest is interrupted for a longer amount of time, missed clock 234 * ticks are not redelivered later. Due to that, this function may on 235 * occasion account more time than the calling functions think elapsed. 236 */ 237 static __always_inline u64 steal_account_process_time(u64 maxtime) 238 { 239 #ifdef CONFIG_PARAVIRT 240 if (static_key_false(¶virt_steal_enabled)) { 241 u64 steal; 242 243 steal = paravirt_steal_clock(smp_processor_id()); 244 steal -= this_rq()->prev_steal_time; 245 steal = min(steal, maxtime); 246 account_steal_time(steal); 247 this_rq()->prev_steal_time += steal; 248 249 return steal; 250 } 251 #endif 252 return 0; 253 } 254 255 /* 256 * Account how much elapsed time was spent in steal, irq, or softirq time. 257 */ 258 static inline u64 account_other_time(u64 max) 259 { 260 u64 accounted; 261 262 /* Shall be converted to a lockdep-enabled lightweight check */ 263 WARN_ON_ONCE(!irqs_disabled()); 264 265 accounted = steal_account_process_time(max); 266 267 if (accounted < max) 268 accounted += irqtime_tick_accounted(max - accounted); 269 270 return accounted; 271 } 272 273 #ifdef CONFIG_64BIT 274 static inline u64 read_sum_exec_runtime(struct task_struct *t) 275 { 276 return t->se.sum_exec_runtime; 277 } 278 #else 279 static u64 read_sum_exec_runtime(struct task_struct *t) 280 { 281 u64 ns; 282 struct rq_flags rf; 283 struct rq *rq; 284 285 rq = task_rq_lock(t, &rf); 286 ns = t->se.sum_exec_runtime; 287 task_rq_unlock(rq, t, &rf); 288 289 return ns; 290 } 291 #endif 292 293 /* 294 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 295 * tasks (sum on group iteration) belonging to @tsk's group. 296 */ 297 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 298 { 299 struct signal_struct *sig = tsk->signal; 300 u64 utime, stime; 301 struct task_struct *t; 302 unsigned int seq, nextseq; 303 unsigned long flags; 304 305 /* 306 * Update current task runtime to account pending time since last 307 * scheduler action or thread_group_cputime() call. This thread group 308 * might have other running tasks on different CPUs, but updating 309 * their runtime can affect syscall performance, so we skip account 310 * those pending times and rely only on values updated on tick or 311 * other scheduler action. 312 */ 313 if (same_thread_group(current, tsk)) 314 (void) task_sched_runtime(current); 315 316 rcu_read_lock(); 317 /* Attempt a lockless read on the first round. */ 318 nextseq = 0; 319 do { 320 seq = nextseq; 321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 322 times->utime = sig->utime; 323 times->stime = sig->stime; 324 times->sum_exec_runtime = sig->sum_sched_runtime; 325 326 for_each_thread(tsk, t) { 327 task_cputime(t, &utime, &stime); 328 times->utime += utime; 329 times->stime += stime; 330 times->sum_exec_runtime += read_sum_exec_runtime(t); 331 } 332 /* If lockless access failed, take the lock. */ 333 nextseq = 1; 334 } while (need_seqretry(&sig->stats_lock, seq)); 335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 336 rcu_read_unlock(); 337 } 338 339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 340 /* 341 * Account a tick to a process and cpustat 342 * @p: the process that the cpu time gets accounted to 343 * @user_tick: is the tick from userspace 344 * @rq: the pointer to rq 345 * 346 * Tick demultiplexing follows the order 347 * - pending hardirq update 348 * - pending softirq update 349 * - user_time 350 * - idle_time 351 * - system time 352 * - check for guest_time 353 * - else account as system_time 354 * 355 * Check for hardirq is done both for system and user time as there is 356 * no timer going off while we are on hardirq and hence we may never get an 357 * opportunity to update it solely in system time. 358 * p->stime and friends are only updated on system time and not on irq 359 * softirq as those do not count in task exec_runtime any more. 360 */ 361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 362 struct rq *rq, int ticks) 363 { 364 u64 other, cputime = TICK_NSEC * ticks; 365 366 /* 367 * When returning from idle, many ticks can get accounted at 368 * once, including some ticks of steal, irq, and softirq time. 369 * Subtract those ticks from the amount of time accounted to 370 * idle, or potentially user or system time. Due to rounding, 371 * other time can exceed ticks occasionally. 372 */ 373 other = account_other_time(ULONG_MAX); 374 if (other >= cputime) 375 return; 376 377 cputime -= other; 378 379 if (this_cpu_ksoftirqd() == p) { 380 /* 381 * ksoftirqd time do not get accounted in cpu_softirq_time. 382 * So, we have to handle it separately here. 383 * Also, p->stime needs to be updated for ksoftirqd. 384 */ 385 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 386 } else if (user_tick) { 387 account_user_time(p, cputime); 388 } else if (p == rq->idle) { 389 account_idle_time(cputime); 390 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 391 account_guest_time(p, cputime); 392 } else { 393 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 394 } 395 } 396 397 static void irqtime_account_idle_ticks(int ticks) 398 { 399 struct rq *rq = this_rq(); 400 401 irqtime_account_process_tick(current, 0, rq, ticks); 402 } 403 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 404 static inline void irqtime_account_idle_ticks(int ticks) {} 405 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 406 struct rq *rq, int nr_ticks) {} 407 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 408 409 /* 410 * Use precise platform statistics if available: 411 */ 412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 413 414 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 415 void vtime_common_task_switch(struct task_struct *prev) 416 { 417 if (is_idle_task(prev)) 418 vtime_account_idle(prev); 419 else 420 vtime_account_system(prev); 421 422 vtime_flush(prev); 423 arch_vtime_task_switch(prev); 424 } 425 #endif 426 427 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 428 429 430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 431 /* 432 * Archs that account the whole time spent in the idle task 433 * (outside irq) as idle time can rely on this and just implement 434 * vtime_account_system() and vtime_account_idle(). Archs that 435 * have other meaning of the idle time (s390 only includes the 436 * time spent by the CPU when it's in low power mode) must override 437 * vtime_account(). 438 */ 439 #ifndef __ARCH_HAS_VTIME_ACCOUNT 440 void vtime_account_irq_enter(struct task_struct *tsk) 441 { 442 if (!in_interrupt() && is_idle_task(tsk)) 443 vtime_account_idle(tsk); 444 else 445 vtime_account_system(tsk); 446 } 447 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 448 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 449 450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 451 { 452 *ut = p->utime; 453 *st = p->stime; 454 } 455 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 456 457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 458 { 459 struct task_cputime cputime; 460 461 thread_group_cputime(p, &cputime); 462 463 *ut = cputime.utime; 464 *st = cputime.stime; 465 } 466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 467 /* 468 * Account a single tick of cpu time. 469 * @p: the process that the cpu time gets accounted to 470 * @user_tick: indicates if the tick is a user or a system tick 471 */ 472 void account_process_tick(struct task_struct *p, int user_tick) 473 { 474 u64 cputime, steal; 475 struct rq *rq = this_rq(); 476 477 if (vtime_accounting_cpu_enabled()) 478 return; 479 480 if (sched_clock_irqtime) { 481 irqtime_account_process_tick(p, user_tick, rq, 1); 482 return; 483 } 484 485 cputime = TICK_NSEC; 486 steal = steal_account_process_time(ULONG_MAX); 487 488 if (steal >= cputime) 489 return; 490 491 cputime -= steal; 492 493 if (user_tick) 494 account_user_time(p, cputime); 495 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 496 account_system_time(p, HARDIRQ_OFFSET, cputime); 497 else 498 account_idle_time(cputime); 499 } 500 501 /* 502 * Account multiple ticks of idle time. 503 * @ticks: number of stolen ticks 504 */ 505 void account_idle_ticks(unsigned long ticks) 506 { 507 u64 cputime, steal; 508 509 if (sched_clock_irqtime) { 510 irqtime_account_idle_ticks(ticks); 511 return; 512 } 513 514 cputime = ticks * TICK_NSEC; 515 steal = steal_account_process_time(ULONG_MAX); 516 517 if (steal >= cputime) 518 return; 519 520 cputime -= steal; 521 account_idle_time(cputime); 522 } 523 524 /* 525 * Perform (stime * rtime) / total, but avoid multiplication overflow by 526 * loosing precision when the numbers are big. 527 */ 528 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 529 { 530 u64 scaled; 531 532 for (;;) { 533 /* Make sure "rtime" is the bigger of stime/rtime */ 534 if (stime > rtime) 535 swap(rtime, stime); 536 537 /* Make sure 'total' fits in 32 bits */ 538 if (total >> 32) 539 goto drop_precision; 540 541 /* Does rtime (and thus stime) fit in 32 bits? */ 542 if (!(rtime >> 32)) 543 break; 544 545 /* Can we just balance rtime/stime rather than dropping bits? */ 546 if (stime >> 31) 547 goto drop_precision; 548 549 /* We can grow stime and shrink rtime and try to make them both fit */ 550 stime <<= 1; 551 rtime >>= 1; 552 continue; 553 554 drop_precision: 555 /* We drop from rtime, it has more bits than stime */ 556 rtime >>= 1; 557 total >>= 1; 558 } 559 560 /* 561 * Make sure gcc understands that this is a 32x32->64 multiply, 562 * followed by a 64/32->64 divide. 563 */ 564 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 565 return scaled; 566 } 567 568 /* 569 * Adjust tick based cputime random precision against scheduler runtime 570 * accounting. 571 * 572 * Tick based cputime accounting depend on random scheduling timeslices of a 573 * task to be interrupted or not by the timer. Depending on these 574 * circumstances, the number of these interrupts may be over or 575 * under-optimistic, matching the real user and system cputime with a variable 576 * precision. 577 * 578 * Fix this by scaling these tick based values against the total runtime 579 * accounted by the CFS scheduler. 580 * 581 * This code provides the following guarantees: 582 * 583 * stime + utime == rtime 584 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 585 * 586 * Assuming that rtime_i+1 >= rtime_i. 587 */ 588 static void cputime_adjust(struct task_cputime *curr, 589 struct prev_cputime *prev, 590 u64 *ut, u64 *st) 591 { 592 u64 rtime, stime, utime; 593 unsigned long flags; 594 595 /* Serialize concurrent callers such that we can honour our guarantees */ 596 raw_spin_lock_irqsave(&prev->lock, flags); 597 rtime = curr->sum_exec_runtime; 598 599 /* 600 * This is possible under two circumstances: 601 * - rtime isn't monotonic after all (a bug); 602 * - we got reordered by the lock. 603 * 604 * In both cases this acts as a filter such that the rest of the code 605 * can assume it is monotonic regardless of anything else. 606 */ 607 if (prev->stime + prev->utime >= rtime) 608 goto out; 609 610 stime = curr->stime; 611 utime = curr->utime; 612 613 /* 614 * If either stime or utime are 0, assume all runtime is userspace. 615 * Once a task gets some ticks, the monotonicy code at 'update:' 616 * will ensure things converge to the observed ratio. 617 */ 618 if (stime == 0) { 619 utime = rtime; 620 goto update; 621 } 622 623 if (utime == 0) { 624 stime = rtime; 625 goto update; 626 } 627 628 stime = scale_stime(stime, rtime, stime + utime); 629 630 update: 631 /* 632 * Make sure stime doesn't go backwards; this preserves monotonicity 633 * for utime because rtime is monotonic. 634 * 635 * utime_i+1 = rtime_i+1 - stime_i 636 * = rtime_i+1 - (rtime_i - utime_i) 637 * = (rtime_i+1 - rtime_i) + utime_i 638 * >= utime_i 639 */ 640 if (stime < prev->stime) 641 stime = prev->stime; 642 utime = rtime - stime; 643 644 /* 645 * Make sure utime doesn't go backwards; this still preserves 646 * monotonicity for stime, analogous argument to above. 647 */ 648 if (utime < prev->utime) { 649 utime = prev->utime; 650 stime = rtime - utime; 651 } 652 653 prev->stime = stime; 654 prev->utime = utime; 655 out: 656 *ut = prev->utime; 657 *st = prev->stime; 658 raw_spin_unlock_irqrestore(&prev->lock, flags); 659 } 660 661 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 662 { 663 struct task_cputime cputime = { 664 .sum_exec_runtime = p->se.sum_exec_runtime, 665 }; 666 667 task_cputime(p, &cputime.utime, &cputime.stime); 668 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 669 } 670 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 671 672 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 673 { 674 struct task_cputime cputime; 675 676 thread_group_cputime(p, &cputime); 677 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 678 } 679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 680 681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 682 static u64 vtime_delta(struct vtime *vtime) 683 { 684 unsigned long long clock; 685 686 clock = sched_clock(); 687 if (clock < vtime->starttime) 688 return 0; 689 690 return clock - vtime->starttime; 691 } 692 693 static u64 get_vtime_delta(struct vtime *vtime) 694 { 695 u64 delta = vtime_delta(vtime); 696 u64 other; 697 698 /* 699 * Unlike tick based timing, vtime based timing never has lost 700 * ticks, and no need for steal time accounting to make up for 701 * lost ticks. Vtime accounts a rounded version of actual 702 * elapsed time. Limit account_other_time to prevent rounding 703 * errors from causing elapsed vtime to go negative. 704 */ 705 other = account_other_time(delta); 706 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 707 vtime->starttime += delta; 708 709 return delta - other; 710 } 711 712 static void __vtime_account_system(struct task_struct *tsk, 713 struct vtime *vtime) 714 { 715 vtime->stime += get_vtime_delta(vtime); 716 if (vtime->stime >= TICK_NSEC) { 717 account_system_time(tsk, irq_count(), vtime->stime); 718 vtime->stime = 0; 719 } 720 } 721 722 static void vtime_account_guest(struct task_struct *tsk, 723 struct vtime *vtime) 724 { 725 vtime->gtime += get_vtime_delta(vtime); 726 if (vtime->gtime >= TICK_NSEC) { 727 account_guest_time(tsk, vtime->gtime); 728 vtime->gtime = 0; 729 } 730 } 731 732 void vtime_account_system(struct task_struct *tsk) 733 { 734 struct vtime *vtime = &tsk->vtime; 735 736 if (!vtime_delta(vtime)) 737 return; 738 739 write_seqcount_begin(&vtime->seqcount); 740 /* We might have scheduled out from guest path */ 741 if (current->flags & PF_VCPU) 742 vtime_account_guest(tsk, vtime); 743 else 744 __vtime_account_system(tsk, vtime); 745 write_seqcount_end(&vtime->seqcount); 746 } 747 748 void vtime_user_enter(struct task_struct *tsk) 749 { 750 struct vtime *vtime = &tsk->vtime; 751 752 write_seqcount_begin(&vtime->seqcount); 753 __vtime_account_system(tsk, vtime); 754 vtime->state = VTIME_USER; 755 write_seqcount_end(&vtime->seqcount); 756 } 757 758 void vtime_user_exit(struct task_struct *tsk) 759 { 760 struct vtime *vtime = &tsk->vtime; 761 762 write_seqcount_begin(&vtime->seqcount); 763 vtime->utime += get_vtime_delta(vtime); 764 if (vtime->utime >= TICK_NSEC) { 765 account_user_time(tsk, vtime->utime); 766 vtime->utime = 0; 767 } 768 vtime->state = VTIME_SYS; 769 write_seqcount_end(&vtime->seqcount); 770 } 771 772 void vtime_guest_enter(struct task_struct *tsk) 773 { 774 struct vtime *vtime = &tsk->vtime; 775 /* 776 * The flags must be updated under the lock with 777 * the vtime_starttime flush and update. 778 * That enforces a right ordering and update sequence 779 * synchronization against the reader (task_gtime()) 780 * that can thus safely catch up with a tickless delta. 781 */ 782 write_seqcount_begin(&vtime->seqcount); 783 __vtime_account_system(tsk, vtime); 784 current->flags |= PF_VCPU; 785 write_seqcount_end(&vtime->seqcount); 786 } 787 EXPORT_SYMBOL_GPL(vtime_guest_enter); 788 789 void vtime_guest_exit(struct task_struct *tsk) 790 { 791 struct vtime *vtime = &tsk->vtime; 792 793 write_seqcount_begin(&vtime->seqcount); 794 vtime_account_guest(tsk, vtime); 795 current->flags &= ~PF_VCPU; 796 write_seqcount_end(&vtime->seqcount); 797 } 798 EXPORT_SYMBOL_GPL(vtime_guest_exit); 799 800 void vtime_account_idle(struct task_struct *tsk) 801 { 802 account_idle_time(get_vtime_delta(&tsk->vtime)); 803 } 804 805 void arch_vtime_task_switch(struct task_struct *prev) 806 { 807 struct vtime *vtime = &prev->vtime; 808 809 write_seqcount_begin(&vtime->seqcount); 810 vtime->state = VTIME_INACTIVE; 811 write_seqcount_end(&vtime->seqcount); 812 813 vtime = ¤t->vtime; 814 815 write_seqcount_begin(&vtime->seqcount); 816 vtime->state = VTIME_SYS; 817 vtime->starttime = sched_clock(); 818 write_seqcount_end(&vtime->seqcount); 819 } 820 821 void vtime_init_idle(struct task_struct *t, int cpu) 822 { 823 struct vtime *vtime = &t->vtime; 824 unsigned long flags; 825 826 local_irq_save(flags); 827 write_seqcount_begin(&vtime->seqcount); 828 vtime->state = VTIME_SYS; 829 vtime->starttime = sched_clock(); 830 write_seqcount_end(&vtime->seqcount); 831 local_irq_restore(flags); 832 } 833 834 u64 task_gtime(struct task_struct *t) 835 { 836 struct vtime *vtime = &t->vtime; 837 unsigned int seq; 838 u64 gtime; 839 840 if (!vtime_accounting_enabled()) 841 return t->gtime; 842 843 do { 844 seq = read_seqcount_begin(&vtime->seqcount); 845 846 gtime = t->gtime; 847 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU) 848 gtime += vtime->gtime + vtime_delta(vtime); 849 850 } while (read_seqcount_retry(&vtime->seqcount, seq)); 851 852 return gtime; 853 } 854 855 /* 856 * Fetch cputime raw values from fields of task_struct and 857 * add up the pending nohz execution time since the last 858 * cputime snapshot. 859 */ 860 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 861 { 862 struct vtime *vtime = &t->vtime; 863 unsigned int seq; 864 u64 delta; 865 866 if (!vtime_accounting_enabled()) { 867 *utime = t->utime; 868 *stime = t->stime; 869 return; 870 } 871 872 do { 873 seq = read_seqcount_begin(&vtime->seqcount); 874 875 *utime = t->utime; 876 *stime = t->stime; 877 878 /* Task is sleeping, nothing to add */ 879 if (vtime->state == VTIME_INACTIVE || is_idle_task(t)) 880 continue; 881 882 delta = vtime_delta(vtime); 883 884 /* 885 * Task runs either in user or kernel space, add pending nohz time to 886 * the right place. 887 */ 888 if (vtime->state == VTIME_USER || t->flags & PF_VCPU) 889 *utime += vtime->utime + delta; 890 else if (vtime->state == VTIME_SYS) 891 *stime += vtime->stime + delta; 892 } while (read_seqcount_retry(&vtime->seqcount, seq)); 893 } 894 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 895