xref: /linux/kernel/sched/cputime.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 
9 
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11 
12 /*
13  * There are no locks covering percpu hardirq/softirq time.
14  * They are only modified in vtime_account, on corresponding CPU
15  * with interrupts disabled. So, writes are safe.
16  * They are read and saved off onto struct rq in update_rq_clock().
17  * This may result in other CPU reading this CPU's irq time and can
18  * race with irq/vtime_account on this CPU. We would either get old
19  * or new value with a side effect of accounting a slice of irq time to wrong
20  * task when irq is in progress while we read rq->clock. That is a worthy
21  * compromise in place of having locks on each irq in account_system_time.
22  */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25 
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28 
29 void enable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 1;
32 }
33 
34 void disable_sched_clock_irqtime(void)
35 {
36 	sched_clock_irqtime = 0;
37 }
38 
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42 
43 /*
44  * Called before incrementing preempt_count on {soft,}irq_enter
45  * and before decrementing preempt_count on {soft,}irq_exit.
46  */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 	unsigned long flags;
50 	s64 delta;
51 	int cpu;
52 
53 	if (!sched_clock_irqtime)
54 		return;
55 
56 	local_irq_save(flags);
57 
58 	cpu = smp_processor_id();
59 	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 	__this_cpu_add(irq_start_time, delta);
61 
62 	irq_time_write_begin();
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		__this_cpu_add(cpu_hardirq_time, delta);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		__this_cpu_add(cpu_softirq_time, delta);
73 
74 	irq_time_write_end();
75 	local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78 
79 static int irqtime_account_hi_update(void)
80 {
81 	u64 *cpustat = kcpustat_this_cpu->cpustat;
82 	unsigned long flags;
83 	u64 latest_ns;
84 	int ret = 0;
85 
86 	local_irq_save(flags);
87 	latest_ns = this_cpu_read(cpu_hardirq_time);
88 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 		ret = 1;
90 	local_irq_restore(flags);
91 	return ret;
92 }
93 
94 static int irqtime_account_si_update(void)
95 {
96 	u64 *cpustat = kcpustat_this_cpu->cpustat;
97 	unsigned long flags;
98 	u64 latest_ns;
99 	int ret = 0;
100 
101 	local_irq_save(flags);
102 	latest_ns = this_cpu_read(cpu_softirq_time);
103 	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 		ret = 1;
105 	local_irq_restore(flags);
106 	return ret;
107 }
108 
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110 
111 #define sched_clock_irqtime	(0)
112 
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114 
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 					    u64 tmp)
117 {
118 	/*
119 	 * Since all updates are sure to touch the root cgroup, we
120 	 * get ourselves ahead and touch it first. If the root cgroup
121 	 * is the only cgroup, then nothing else should be necessary.
122 	 *
123 	 */
124 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125 
126 	cpuacct_account_field(p, index, tmp);
127 }
128 
129 /*
130  * Account user cpu time to a process.
131  * @p: the process that the cpu time gets accounted to
132  * @cputime: the cpu time spent in user space since the last update
133  * @cputime_scaled: cputime scaled by cpu frequency
134  */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 		       cputime_t cputime_scaled)
137 {
138 	int index;
139 
140 	/* Add user time to process. */
141 	p->utime += cputime;
142 	p->utimescaled += cputime_scaled;
143 	account_group_user_time(p, cputime);
144 
145 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146 
147 	/* Add user time to cpustat. */
148 	task_group_account_field(p, index, (__force u64) cputime);
149 
150 	/* Account for user time used */
151 	acct_account_cputime(p);
152 }
153 
154 /*
155  * Account guest cpu time to a process.
156  * @p: the process that the cpu time gets accounted to
157  * @cputime: the cpu time spent in virtual machine since the last update
158  * @cputime_scaled: cputime scaled by cpu frequency
159  */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 			       cputime_t cputime_scaled)
162 {
163 	u64 *cpustat = kcpustat_this_cpu->cpustat;
164 
165 	/* Add guest time to process. */
166 	p->utime += cputime;
167 	p->utimescaled += cputime_scaled;
168 	account_group_user_time(p, cputime);
169 	p->gtime += cputime;
170 
171 	/* Add guest time to cpustat. */
172 	if (task_nice(p) > 0) {
173 		cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 	} else {
176 		cpustat[CPUTIME_USER] += (__force u64) cputime;
177 		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 	}
179 }
180 
181 /*
182  * Account system cpu time to a process and desired cpustat field
183  * @p: the process that the cpu time gets accounted to
184  * @cputime: the cpu time spent in kernel space since the last update
185  * @cputime_scaled: cputime scaled by cpu frequency
186  * @target_cputime64: pointer to cpustat field that has to be updated
187  */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 			cputime_t cputime_scaled, int index)
191 {
192 	/* Add system time to process. */
193 	p->stime += cputime;
194 	p->stimescaled += cputime_scaled;
195 	account_group_system_time(p, cputime);
196 
197 	/* Add system time to cpustat. */
198 	task_group_account_field(p, index, (__force u64) cputime);
199 
200 	/* Account for system time used */
201 	acct_account_cputime(p);
202 }
203 
204 /*
205  * Account system cpu time to a process.
206  * @p: the process that the cpu time gets accounted to
207  * @hardirq_offset: the offset to subtract from hardirq_count()
208  * @cputime: the cpu time spent in kernel space since the last update
209  * @cputime_scaled: cputime scaled by cpu frequency
210  */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 			 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 	int index;
215 
216 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 		account_guest_time(p, cputime, cputime_scaled);
218 		return;
219 	}
220 
221 	if (hardirq_count() - hardirq_offset)
222 		index = CPUTIME_IRQ;
223 	else if (in_serving_softirq())
224 		index = CPUTIME_SOFTIRQ;
225 	else
226 		index = CPUTIME_SYSTEM;
227 
228 	__account_system_time(p, cputime, cputime_scaled, index);
229 }
230 
231 /*
232  * Account for involuntary wait time.
233  * @cputime: the cpu time spent in involuntary wait
234  */
235 void account_steal_time(cputime_t cputime)
236 {
237 	u64 *cpustat = kcpustat_this_cpu->cpustat;
238 
239 	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241 
242 /*
243  * Account for idle time.
244  * @cputime: the cpu time spent in idle wait
245  */
246 void account_idle_time(cputime_t cputime)
247 {
248 	u64 *cpustat = kcpustat_this_cpu->cpustat;
249 	struct rq *rq = this_rq();
250 
251 	if (atomic_read(&rq->nr_iowait) > 0)
252 		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 	else
254 		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256 
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 	if (static_key_false(&paravirt_steal_enabled)) {
261 		u64 steal;
262 		cputime_t steal_ct;
263 
264 		steal = paravirt_steal_clock(smp_processor_id());
265 		steal -= this_rq()->prev_steal_time;
266 
267 		/*
268 		 * cputime_t may be less precise than nsecs (eg: if it's
269 		 * based on jiffies). Lets cast the result to cputime
270 		 * granularity and account the rest on the next rounds.
271 		 */
272 		steal_ct = nsecs_to_cputime(steal);
273 		this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274 
275 		account_steal_time(steal_ct);
276 		return steal_ct;
277 	}
278 #endif
279 	return false;
280 }
281 
282 /*
283  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284  * tasks (sum on group iteration) belonging to @tsk's group.
285  */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288 	struct signal_struct *sig = tsk->signal;
289 	cputime_t utime, stime;
290 	struct task_struct *t;
291 	unsigned int seq, nextseq;
292 	unsigned long flags;
293 
294 	rcu_read_lock();
295 	/* Attempt a lockless read on the first round. */
296 	nextseq = 0;
297 	do {
298 		seq = nextseq;
299 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300 		times->utime = sig->utime;
301 		times->stime = sig->stime;
302 		times->sum_exec_runtime = sig->sum_sched_runtime;
303 
304 		for_each_thread(tsk, t) {
305 			task_cputime(t, &utime, &stime);
306 			times->utime += utime;
307 			times->stime += stime;
308 			times->sum_exec_runtime += task_sched_runtime(t);
309 		}
310 		/* If lockless access failed, take the lock. */
311 		nextseq = 1;
312 	} while (need_seqretry(&sig->stats_lock, seq));
313 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314 	rcu_read_unlock();
315 }
316 
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
318 /*
319  * Account a tick to a process and cpustat
320  * @p: the process that the cpu time gets accounted to
321  * @user_tick: is the tick from userspace
322  * @rq: the pointer to rq
323  *
324  * Tick demultiplexing follows the order
325  * - pending hardirq update
326  * - pending softirq update
327  * - user_time
328  * - idle_time
329  * - system time
330  *   - check for guest_time
331  *   - else account as system_time
332  *
333  * Check for hardirq is done both for system and user time as there is
334  * no timer going off while we are on hardirq and hence we may never get an
335  * opportunity to update it solely in system time.
336  * p->stime and friends are only updated on system time and not on irq
337  * softirq as those do not count in task exec_runtime any more.
338  */
339 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340 					 struct rq *rq, int ticks)
341 {
342 	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 	u64 cputime = (__force u64) cputime_one_jiffy;
344 	u64 *cpustat = kcpustat_this_cpu->cpustat;
345 
346 	if (steal_account_process_tick())
347 		return;
348 
349 	cputime *= ticks;
350 	scaled *= ticks;
351 
352 	if (irqtime_account_hi_update()) {
353 		cpustat[CPUTIME_IRQ] += cputime;
354 	} else if (irqtime_account_si_update()) {
355 		cpustat[CPUTIME_SOFTIRQ] += cputime;
356 	} else if (this_cpu_ksoftirqd() == p) {
357 		/*
358 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 		 * So, we have to handle it separately here.
360 		 * Also, p->stime needs to be updated for ksoftirqd.
361 		 */
362 		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363 	} else if (user_tick) {
364 		account_user_time(p, cputime, scaled);
365 	} else if (p == rq->idle) {
366 		account_idle_time(cputime);
367 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
368 		account_guest_time(p, cputime, scaled);
369 	} else {
370 		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
371 	}
372 }
373 
374 static void irqtime_account_idle_ticks(int ticks)
375 {
376 	struct rq *rq = this_rq();
377 
378 	irqtime_account_process_tick(current, 0, rq, ticks);
379 }
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks) {}
382 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383 						struct rq *rq, int nr_ticks) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385 
386 /*
387  * Use precise platform statistics if available:
388  */
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
390 
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct *prev)
393 {
394 	if (is_idle_task(prev))
395 		vtime_account_idle(prev);
396 	else
397 		vtime_account_system(prev);
398 
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 	vtime_account_user(prev);
401 #endif
402 	arch_vtime_task_switch(prev);
403 }
404 #endif
405 
406 /*
407  * Archs that account the whole time spent in the idle task
408  * (outside irq) as idle time can rely on this and just implement
409  * vtime_account_system() and vtime_account_idle(). Archs that
410  * have other meaning of the idle time (s390 only includes the
411  * time spent by the CPU when it's in low power mode) must override
412  * vtime_account().
413  */
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct *tsk)
416 {
417 	if (!in_interrupt()) {
418 		/*
419 		 * If we interrupted user, context_tracking_in_user()
420 		 * is 1 because the context tracking don't hook
421 		 * on irq entry/exit. This way we know if
422 		 * we need to flush user time on kernel entry.
423 		 */
424 		if (context_tracking_in_user()) {
425 			vtime_account_user(tsk);
426 			return;
427 		}
428 
429 		if (is_idle_task(tsk)) {
430 			vtime_account_idle(tsk);
431 			return;
432 		}
433 	}
434 	vtime_account_system(tsk);
435 }
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439 
440 
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443 {
444 	*ut = p->utime;
445 	*st = p->stime;
446 }
447 
448 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449 {
450 	struct task_cputime cputime;
451 
452 	thread_group_cputime(p, &cputime);
453 
454 	*ut = cputime.utime;
455 	*st = cputime.stime;
456 }
457 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
458 /*
459  * Account a single tick of cpu time.
460  * @p: the process that the cpu time gets accounted to
461  * @user_tick: indicates if the tick is a user or a system tick
462  */
463 void account_process_tick(struct task_struct *p, int user_tick)
464 {
465 	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
466 	struct rq *rq = this_rq();
467 
468 	if (vtime_accounting_enabled())
469 		return;
470 
471 	if (sched_clock_irqtime) {
472 		irqtime_account_process_tick(p, user_tick, rq, 1);
473 		return;
474 	}
475 
476 	if (steal_account_process_tick())
477 		return;
478 
479 	if (user_tick)
480 		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
481 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
482 		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
483 				    one_jiffy_scaled);
484 	else
485 		account_idle_time(cputime_one_jiffy);
486 }
487 
488 /*
489  * Account multiple ticks of steal time.
490  * @p: the process from which the cpu time has been stolen
491  * @ticks: number of stolen ticks
492  */
493 void account_steal_ticks(unsigned long ticks)
494 {
495 	account_steal_time(jiffies_to_cputime(ticks));
496 }
497 
498 /*
499  * Account multiple ticks of idle time.
500  * @ticks: number of stolen ticks
501  */
502 void account_idle_ticks(unsigned long ticks)
503 {
504 
505 	if (sched_clock_irqtime) {
506 		irqtime_account_idle_ticks(ticks);
507 		return;
508 	}
509 
510 	account_idle_time(jiffies_to_cputime(ticks));
511 }
512 
513 /*
514  * Perform (stime * rtime) / total, but avoid multiplication overflow by
515  * loosing precision when the numbers are big.
516  */
517 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
518 {
519 	u64 scaled;
520 
521 	for (;;) {
522 		/* Make sure "rtime" is the bigger of stime/rtime */
523 		if (stime > rtime)
524 			swap(rtime, stime);
525 
526 		/* Make sure 'total' fits in 32 bits */
527 		if (total >> 32)
528 			goto drop_precision;
529 
530 		/* Does rtime (and thus stime) fit in 32 bits? */
531 		if (!(rtime >> 32))
532 			break;
533 
534 		/* Can we just balance rtime/stime rather than dropping bits? */
535 		if (stime >> 31)
536 			goto drop_precision;
537 
538 		/* We can grow stime and shrink rtime and try to make them both fit */
539 		stime <<= 1;
540 		rtime >>= 1;
541 		continue;
542 
543 drop_precision:
544 		/* We drop from rtime, it has more bits than stime */
545 		rtime >>= 1;
546 		total >>= 1;
547 	}
548 
549 	/*
550 	 * Make sure gcc understands that this is a 32x32->64 multiply,
551 	 * followed by a 64/32->64 divide.
552 	 */
553 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
554 	return (__force cputime_t) scaled;
555 }
556 
557 /*
558  * Adjust tick based cputime random precision against scheduler runtime
559  * accounting.
560  *
561  * Tick based cputime accounting depend on random scheduling timeslices of a
562  * task to be interrupted or not by the timer.  Depending on these
563  * circumstances, the number of these interrupts may be over or
564  * under-optimistic, matching the real user and system cputime with a variable
565  * precision.
566  *
567  * Fix this by scaling these tick based values against the total runtime
568  * accounted by the CFS scheduler.
569  *
570  * This code provides the following guarantees:
571  *
572  *   stime + utime == rtime
573  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
574  *
575  * Assuming that rtime_i+1 >= rtime_i.
576  */
577 static void cputime_adjust(struct task_cputime *curr,
578 			   struct prev_cputime *prev,
579 			   cputime_t *ut, cputime_t *st)
580 {
581 	cputime_t rtime, stime, utime;
582 	unsigned long flags;
583 
584 	/* Serialize concurrent callers such that we can honour our guarantees */
585 	raw_spin_lock_irqsave(&prev->lock, flags);
586 	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
587 
588 	/*
589 	 * This is possible under two circumstances:
590 	 *  - rtime isn't monotonic after all (a bug);
591 	 *  - we got reordered by the lock.
592 	 *
593 	 * In both cases this acts as a filter such that the rest of the code
594 	 * can assume it is monotonic regardless of anything else.
595 	 */
596 	if (prev->stime + prev->utime >= rtime)
597 		goto out;
598 
599 	stime = curr->stime;
600 	utime = curr->utime;
601 
602 	if (utime == 0) {
603 		stime = rtime;
604 		goto update;
605 	}
606 
607 	if (stime == 0) {
608 		utime = rtime;
609 		goto update;
610 	}
611 
612 	stime = scale_stime((__force u64)stime, (__force u64)rtime,
613 			    (__force u64)(stime + utime));
614 
615 	/*
616 	 * Make sure stime doesn't go backwards; this preserves monotonicity
617 	 * for utime because rtime is monotonic.
618 	 *
619 	 *  utime_i+1 = rtime_i+1 - stime_i
620 	 *            = rtime_i+1 - (rtime_i - utime_i)
621 	 *            = (rtime_i+1 - rtime_i) + utime_i
622 	 *            >= utime_i
623 	 */
624 	if (stime < prev->stime)
625 		stime = prev->stime;
626 	utime = rtime - stime;
627 
628 	/*
629 	 * Make sure utime doesn't go backwards; this still preserves
630 	 * monotonicity for stime, analogous argument to above.
631 	 */
632 	if (utime < prev->utime) {
633 		utime = prev->utime;
634 		stime = rtime - utime;
635 	}
636 
637 update:
638 	prev->stime = stime;
639 	prev->utime = utime;
640 out:
641 	*ut = prev->utime;
642 	*st = prev->stime;
643 	raw_spin_unlock_irqrestore(&prev->lock, flags);
644 }
645 
646 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
647 {
648 	struct task_cputime cputime = {
649 		.sum_exec_runtime = p->se.sum_exec_runtime,
650 	};
651 
652 	task_cputime(p, &cputime.utime, &cputime.stime);
653 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
654 }
655 
656 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
657 {
658 	struct task_cputime cputime;
659 
660 	thread_group_cputime(p, &cputime);
661 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
662 }
663 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
664 
665 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
666 static unsigned long long vtime_delta(struct task_struct *tsk)
667 {
668 	unsigned long long clock;
669 
670 	clock = local_clock();
671 	if (clock < tsk->vtime_snap)
672 		return 0;
673 
674 	return clock - tsk->vtime_snap;
675 }
676 
677 static cputime_t get_vtime_delta(struct task_struct *tsk)
678 {
679 	unsigned long long delta = vtime_delta(tsk);
680 
681 	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
682 	tsk->vtime_snap += delta;
683 
684 	/* CHECKME: always safe to convert nsecs to cputime? */
685 	return nsecs_to_cputime(delta);
686 }
687 
688 static void __vtime_account_system(struct task_struct *tsk)
689 {
690 	cputime_t delta_cpu = get_vtime_delta(tsk);
691 
692 	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
693 }
694 
695 void vtime_account_system(struct task_struct *tsk)
696 {
697 	write_seqlock(&tsk->vtime_seqlock);
698 	__vtime_account_system(tsk);
699 	write_sequnlock(&tsk->vtime_seqlock);
700 }
701 
702 void vtime_gen_account_irq_exit(struct task_struct *tsk)
703 {
704 	write_seqlock(&tsk->vtime_seqlock);
705 	__vtime_account_system(tsk);
706 	if (context_tracking_in_user())
707 		tsk->vtime_snap_whence = VTIME_USER;
708 	write_sequnlock(&tsk->vtime_seqlock);
709 }
710 
711 void vtime_account_user(struct task_struct *tsk)
712 {
713 	cputime_t delta_cpu;
714 
715 	write_seqlock(&tsk->vtime_seqlock);
716 	delta_cpu = get_vtime_delta(tsk);
717 	tsk->vtime_snap_whence = VTIME_SYS;
718 	account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
719 	write_sequnlock(&tsk->vtime_seqlock);
720 }
721 
722 void vtime_user_enter(struct task_struct *tsk)
723 {
724 	write_seqlock(&tsk->vtime_seqlock);
725 	__vtime_account_system(tsk);
726 	tsk->vtime_snap_whence = VTIME_USER;
727 	write_sequnlock(&tsk->vtime_seqlock);
728 }
729 
730 void vtime_guest_enter(struct task_struct *tsk)
731 {
732 	/*
733 	 * The flags must be updated under the lock with
734 	 * the vtime_snap flush and update.
735 	 * That enforces a right ordering and update sequence
736 	 * synchronization against the reader (task_gtime())
737 	 * that can thus safely catch up with a tickless delta.
738 	 */
739 	write_seqlock(&tsk->vtime_seqlock);
740 	__vtime_account_system(tsk);
741 	current->flags |= PF_VCPU;
742 	write_sequnlock(&tsk->vtime_seqlock);
743 }
744 EXPORT_SYMBOL_GPL(vtime_guest_enter);
745 
746 void vtime_guest_exit(struct task_struct *tsk)
747 {
748 	write_seqlock(&tsk->vtime_seqlock);
749 	__vtime_account_system(tsk);
750 	current->flags &= ~PF_VCPU;
751 	write_sequnlock(&tsk->vtime_seqlock);
752 }
753 EXPORT_SYMBOL_GPL(vtime_guest_exit);
754 
755 void vtime_account_idle(struct task_struct *tsk)
756 {
757 	cputime_t delta_cpu = get_vtime_delta(tsk);
758 
759 	account_idle_time(delta_cpu);
760 }
761 
762 void arch_vtime_task_switch(struct task_struct *prev)
763 {
764 	write_seqlock(&prev->vtime_seqlock);
765 	prev->vtime_snap_whence = VTIME_SLEEPING;
766 	write_sequnlock(&prev->vtime_seqlock);
767 
768 	write_seqlock(&current->vtime_seqlock);
769 	current->vtime_snap_whence = VTIME_SYS;
770 	current->vtime_snap = sched_clock_cpu(smp_processor_id());
771 	write_sequnlock(&current->vtime_seqlock);
772 }
773 
774 void vtime_init_idle(struct task_struct *t, int cpu)
775 {
776 	unsigned long flags;
777 
778 	write_seqlock_irqsave(&t->vtime_seqlock, flags);
779 	t->vtime_snap_whence = VTIME_SYS;
780 	t->vtime_snap = sched_clock_cpu(cpu);
781 	write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
782 }
783 
784 cputime_t task_gtime(struct task_struct *t)
785 {
786 	unsigned int seq;
787 	cputime_t gtime;
788 
789 	do {
790 		seq = read_seqbegin(&t->vtime_seqlock);
791 
792 		gtime = t->gtime;
793 		if (t->flags & PF_VCPU)
794 			gtime += vtime_delta(t);
795 
796 	} while (read_seqretry(&t->vtime_seqlock, seq));
797 
798 	return gtime;
799 }
800 
801 /*
802  * Fetch cputime raw values from fields of task_struct and
803  * add up the pending nohz execution time since the last
804  * cputime snapshot.
805  */
806 static void
807 fetch_task_cputime(struct task_struct *t,
808 		   cputime_t *u_dst, cputime_t *s_dst,
809 		   cputime_t *u_src, cputime_t *s_src,
810 		   cputime_t *udelta, cputime_t *sdelta)
811 {
812 	unsigned int seq;
813 	unsigned long long delta;
814 
815 	do {
816 		*udelta = 0;
817 		*sdelta = 0;
818 
819 		seq = read_seqbegin(&t->vtime_seqlock);
820 
821 		if (u_dst)
822 			*u_dst = *u_src;
823 		if (s_dst)
824 			*s_dst = *s_src;
825 
826 		/* Task is sleeping, nothing to add */
827 		if (t->vtime_snap_whence == VTIME_SLEEPING ||
828 		    is_idle_task(t))
829 			continue;
830 
831 		delta = vtime_delta(t);
832 
833 		/*
834 		 * Task runs either in user or kernel space, add pending nohz time to
835 		 * the right place.
836 		 */
837 		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
838 			*udelta = delta;
839 		} else {
840 			if (t->vtime_snap_whence == VTIME_SYS)
841 				*sdelta = delta;
842 		}
843 	} while (read_seqretry(&t->vtime_seqlock, seq));
844 }
845 
846 
847 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
848 {
849 	cputime_t udelta, sdelta;
850 
851 	fetch_task_cputime(t, utime, stime, &t->utime,
852 			   &t->stime, &udelta, &sdelta);
853 	if (utime)
854 		*utime += udelta;
855 	if (stime)
856 		*stime += sdelta;
857 }
858 
859 void task_cputime_scaled(struct task_struct *t,
860 			 cputime_t *utimescaled, cputime_t *stimescaled)
861 {
862 	cputime_t udelta, sdelta;
863 
864 	fetch_task_cputime(t, utimescaled, stimescaled,
865 			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
866 	if (utimescaled)
867 		*utimescaled += cputime_to_scaled(udelta);
868 	if (stimescaled)
869 		*stimescaled += cputime_to_scaled(sdelta);
870 }
871 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
872