1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 6 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 7 8 /* 9 * There are no locks covering percpu hardirq/softirq time. 10 * They are only modified in vtime_account, on corresponding CPU 11 * with interrupts disabled. So, writes are safe. 12 * They are read and saved off onto struct rq in update_rq_clock(). 13 * This may result in other CPU reading this CPU's irq time and can 14 * race with irq/vtime_account on this CPU. We would either get old 15 * or new value with a side effect of accounting a slice of irq time to wrong 16 * task when irq is in progress while we read rq->clock. That is a worthy 17 * compromise in place of having locks on each irq in account_system_time. 18 */ 19 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 20 21 static int sched_clock_irqtime; 22 23 void enable_sched_clock_irqtime(void) 24 { 25 sched_clock_irqtime = 1; 26 } 27 28 void disable_sched_clock_irqtime(void) 29 { 30 sched_clock_irqtime = 0; 31 } 32 33 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 34 enum cpu_usage_stat idx) 35 { 36 u64 *cpustat = kcpustat_this_cpu->cpustat; 37 38 u64_stats_update_begin(&irqtime->sync); 39 cpustat[idx] += delta; 40 irqtime->total += delta; 41 irqtime->tick_delta += delta; 42 u64_stats_update_end(&irqtime->sync); 43 } 44 45 /* 46 * Called after incrementing preempt_count on {soft,}irq_enter 47 * and before decrementing preempt_count on {soft,}irq_exit. 48 */ 49 void irqtime_account_irq(struct task_struct *curr, unsigned int offset) 50 { 51 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 52 unsigned int pc; 53 s64 delta; 54 int cpu; 55 56 if (!sched_clock_irqtime) 57 return; 58 59 cpu = smp_processor_id(); 60 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 61 irqtime->irq_start_time += delta; 62 pc = irq_count() - offset; 63 64 /* 65 * We do not account for softirq time from ksoftirqd here. 66 * We want to continue accounting softirq time to ksoftirqd thread 67 * in that case, so as not to confuse scheduler with a special task 68 * that do not consume any time, but still wants to run. 69 */ 70 if (pc & HARDIRQ_MASK) 71 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 72 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) 73 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 74 } 75 76 static u64 irqtime_tick_accounted(u64 maxtime) 77 { 78 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 79 u64 delta; 80 81 delta = min(irqtime->tick_delta, maxtime); 82 irqtime->tick_delta -= delta; 83 84 return delta; 85 } 86 87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 88 89 #define sched_clock_irqtime (0) 90 91 static u64 irqtime_tick_accounted(u64 dummy) 92 { 93 return 0; 94 } 95 96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 97 98 static inline void task_group_account_field(struct task_struct *p, int index, 99 u64 tmp) 100 { 101 /* 102 * Since all updates are sure to touch the root cgroup, we 103 * get ourselves ahead and touch it first. If the root cgroup 104 * is the only cgroup, then nothing else should be necessary. 105 * 106 */ 107 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 108 109 cgroup_account_cputime_field(p, index, tmp); 110 } 111 112 /* 113 * Account user CPU time to a process. 114 * @p: the process that the CPU time gets accounted to 115 * @cputime: the CPU time spent in user space since the last update 116 */ 117 void account_user_time(struct task_struct *p, u64 cputime) 118 { 119 int index; 120 121 /* Add user time to process. */ 122 p->utime += cputime; 123 account_group_user_time(p, cputime); 124 125 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 126 127 /* Add user time to cpustat. */ 128 task_group_account_field(p, index, cputime); 129 130 /* Account for user time used */ 131 acct_account_cputime(p); 132 } 133 134 /* 135 * Account guest CPU time to a process. 136 * @p: the process that the CPU time gets accounted to 137 * @cputime: the CPU time spent in virtual machine since the last update 138 */ 139 void account_guest_time(struct task_struct *p, u64 cputime) 140 { 141 u64 *cpustat = kcpustat_this_cpu->cpustat; 142 143 /* Add guest time to process. */ 144 p->utime += cputime; 145 account_group_user_time(p, cputime); 146 p->gtime += cputime; 147 148 /* Add guest time to cpustat. */ 149 if (task_nice(p) > 0) { 150 task_group_account_field(p, CPUTIME_NICE, cputime); 151 cpustat[CPUTIME_GUEST_NICE] += cputime; 152 } else { 153 task_group_account_field(p, CPUTIME_USER, cputime); 154 cpustat[CPUTIME_GUEST] += cputime; 155 } 156 } 157 158 /* 159 * Account system CPU time to a process and desired cpustat field 160 * @p: the process that the CPU time gets accounted to 161 * @cputime: the CPU time spent in kernel space since the last update 162 * @index: pointer to cpustat field that has to be updated 163 */ 164 void account_system_index_time(struct task_struct *p, 165 u64 cputime, enum cpu_usage_stat index) 166 { 167 /* Add system time to process. */ 168 p->stime += cputime; 169 account_group_system_time(p, cputime); 170 171 /* Add system time to cpustat. */ 172 task_group_account_field(p, index, cputime); 173 174 /* Account for system time used */ 175 acct_account_cputime(p); 176 } 177 178 /* 179 * Account system CPU time to a process. 180 * @p: the process that the CPU time gets accounted to 181 * @hardirq_offset: the offset to subtract from hardirq_count() 182 * @cputime: the CPU time spent in kernel space since the last update 183 */ 184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 185 { 186 int index; 187 188 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 189 account_guest_time(p, cputime); 190 return; 191 } 192 193 if (hardirq_count() - hardirq_offset) 194 index = CPUTIME_IRQ; 195 else if (in_serving_softirq()) 196 index = CPUTIME_SOFTIRQ; 197 else 198 index = CPUTIME_SYSTEM; 199 200 account_system_index_time(p, cputime, index); 201 } 202 203 /* 204 * Account for involuntary wait time. 205 * @cputime: the CPU time spent in involuntary wait 206 */ 207 void account_steal_time(u64 cputime) 208 { 209 u64 *cpustat = kcpustat_this_cpu->cpustat; 210 211 cpustat[CPUTIME_STEAL] += cputime; 212 } 213 214 /* 215 * Account for idle time. 216 * @cputime: the CPU time spent in idle wait 217 */ 218 void account_idle_time(u64 cputime) 219 { 220 u64 *cpustat = kcpustat_this_cpu->cpustat; 221 struct rq *rq = this_rq(); 222 223 if (atomic_read(&rq->nr_iowait) > 0) 224 cpustat[CPUTIME_IOWAIT] += cputime; 225 else 226 cpustat[CPUTIME_IDLE] += cputime; 227 } 228 229 /* 230 * When a guest is interrupted for a longer amount of time, missed clock 231 * ticks are not redelivered later. Due to that, this function may on 232 * occasion account more time than the calling functions think elapsed. 233 */ 234 static __always_inline u64 steal_account_process_time(u64 maxtime) 235 { 236 #ifdef CONFIG_PARAVIRT 237 if (static_key_false(¶virt_steal_enabled)) { 238 u64 steal; 239 240 steal = paravirt_steal_clock(smp_processor_id()); 241 steal -= this_rq()->prev_steal_time; 242 steal = min(steal, maxtime); 243 account_steal_time(steal); 244 this_rq()->prev_steal_time += steal; 245 246 return steal; 247 } 248 #endif 249 return 0; 250 } 251 252 /* 253 * Account how much elapsed time was spent in steal, irq, or softirq time. 254 */ 255 static inline u64 account_other_time(u64 max) 256 { 257 u64 accounted; 258 259 lockdep_assert_irqs_disabled(); 260 261 accounted = steal_account_process_time(max); 262 263 if (accounted < max) 264 accounted += irqtime_tick_accounted(max - accounted); 265 266 return accounted; 267 } 268 269 #ifdef CONFIG_64BIT 270 static inline u64 read_sum_exec_runtime(struct task_struct *t) 271 { 272 return t->se.sum_exec_runtime; 273 } 274 #else 275 static u64 read_sum_exec_runtime(struct task_struct *t) 276 { 277 u64 ns; 278 struct rq_flags rf; 279 struct rq *rq; 280 281 rq = task_rq_lock(t, &rf); 282 ns = t->se.sum_exec_runtime; 283 task_rq_unlock(rq, t, &rf); 284 285 return ns; 286 } 287 #endif 288 289 /* 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 291 * tasks (sum on group iteration) belonging to @tsk's group. 292 */ 293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 294 { 295 struct signal_struct *sig = tsk->signal; 296 u64 utime, stime; 297 struct task_struct *t; 298 unsigned int seq, nextseq; 299 unsigned long flags; 300 301 /* 302 * Update current task runtime to account pending time since last 303 * scheduler action or thread_group_cputime() call. This thread group 304 * might have other running tasks on different CPUs, but updating 305 * their runtime can affect syscall performance, so we skip account 306 * those pending times and rely only on values updated on tick or 307 * other scheduler action. 308 */ 309 if (same_thread_group(current, tsk)) 310 (void) task_sched_runtime(current); 311 312 rcu_read_lock(); 313 /* Attempt a lockless read on the first round. */ 314 nextseq = 0; 315 do { 316 seq = nextseq; 317 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 318 times->utime = sig->utime; 319 times->stime = sig->stime; 320 times->sum_exec_runtime = sig->sum_sched_runtime; 321 322 for_each_thread(tsk, t) { 323 task_cputime(t, &utime, &stime); 324 times->utime += utime; 325 times->stime += stime; 326 times->sum_exec_runtime += read_sum_exec_runtime(t); 327 } 328 /* If lockless access failed, take the lock. */ 329 nextseq = 1; 330 } while (need_seqretry(&sig->stats_lock, seq)); 331 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 332 rcu_read_unlock(); 333 } 334 335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 336 /* 337 * Account a tick to a process and cpustat 338 * @p: the process that the CPU time gets accounted to 339 * @user_tick: is the tick from userspace 340 * @rq: the pointer to rq 341 * 342 * Tick demultiplexing follows the order 343 * - pending hardirq update 344 * - pending softirq update 345 * - user_time 346 * - idle_time 347 * - system time 348 * - check for guest_time 349 * - else account as system_time 350 * 351 * Check for hardirq is done both for system and user time as there is 352 * no timer going off while we are on hardirq and hence we may never get an 353 * opportunity to update it solely in system time. 354 * p->stime and friends are only updated on system time and not on irq 355 * softirq as those do not count in task exec_runtime any more. 356 */ 357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 358 int ticks) 359 { 360 u64 other, cputime = TICK_NSEC * ticks; 361 362 /* 363 * When returning from idle, many ticks can get accounted at 364 * once, including some ticks of steal, irq, and softirq time. 365 * Subtract those ticks from the amount of time accounted to 366 * idle, or potentially user or system time. Due to rounding, 367 * other time can exceed ticks occasionally. 368 */ 369 other = account_other_time(ULONG_MAX); 370 if (other >= cputime) 371 return; 372 373 cputime -= other; 374 375 if (this_cpu_ksoftirqd() == p) { 376 /* 377 * ksoftirqd time do not get accounted in cpu_softirq_time. 378 * So, we have to handle it separately here. 379 * Also, p->stime needs to be updated for ksoftirqd. 380 */ 381 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 382 } else if (user_tick) { 383 account_user_time(p, cputime); 384 } else if (p == this_rq()->idle) { 385 account_idle_time(cputime); 386 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 387 account_guest_time(p, cputime); 388 } else { 389 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 390 } 391 } 392 393 static void irqtime_account_idle_ticks(int ticks) 394 { 395 irqtime_account_process_tick(current, 0, ticks); 396 } 397 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 398 static inline void irqtime_account_idle_ticks(int ticks) { } 399 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 400 int nr_ticks) { } 401 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 402 403 /* 404 * Use precise platform statistics if available: 405 */ 406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 407 408 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 409 void vtime_task_switch(struct task_struct *prev) 410 { 411 if (is_idle_task(prev)) 412 vtime_account_idle(prev); 413 else 414 vtime_account_kernel(prev); 415 416 vtime_flush(prev); 417 arch_vtime_task_switch(prev); 418 } 419 # endif 420 421 void vtime_account_irq(struct task_struct *tsk, unsigned int offset) 422 { 423 unsigned int pc = irq_count() - offset; 424 425 if (pc & HARDIRQ_OFFSET) { 426 vtime_account_hardirq(tsk); 427 } else if (pc & SOFTIRQ_OFFSET) { 428 vtime_account_softirq(tsk); 429 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && 430 is_idle_task(tsk)) { 431 vtime_account_idle(tsk); 432 } else { 433 vtime_account_kernel(tsk); 434 } 435 } 436 437 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 438 u64 *ut, u64 *st) 439 { 440 *ut = curr->utime; 441 *st = curr->stime; 442 } 443 444 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 445 { 446 *ut = p->utime; 447 *st = p->stime; 448 } 449 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 450 451 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 452 { 453 struct task_cputime cputime; 454 455 thread_group_cputime(p, &cputime); 456 457 *ut = cputime.utime; 458 *st = cputime.stime; 459 } 460 461 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 462 463 /* 464 * Account a single tick of CPU time. 465 * @p: the process that the CPU time gets accounted to 466 * @user_tick: indicates if the tick is a user or a system tick 467 */ 468 void account_process_tick(struct task_struct *p, int user_tick) 469 { 470 u64 cputime, steal; 471 472 if (vtime_accounting_enabled_this_cpu()) 473 return; 474 475 if (sched_clock_irqtime) { 476 irqtime_account_process_tick(p, user_tick, 1); 477 return; 478 } 479 480 cputime = TICK_NSEC; 481 steal = steal_account_process_time(ULONG_MAX); 482 483 if (steal >= cputime) 484 return; 485 486 cputime -= steal; 487 488 if (user_tick) 489 account_user_time(p, cputime); 490 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 491 account_system_time(p, HARDIRQ_OFFSET, cputime); 492 else 493 account_idle_time(cputime); 494 } 495 496 /* 497 * Account multiple ticks of idle time. 498 * @ticks: number of stolen ticks 499 */ 500 void account_idle_ticks(unsigned long ticks) 501 { 502 u64 cputime, steal; 503 504 if (sched_clock_irqtime) { 505 irqtime_account_idle_ticks(ticks); 506 return; 507 } 508 509 cputime = ticks * TICK_NSEC; 510 steal = steal_account_process_time(ULONG_MAX); 511 512 if (steal >= cputime) 513 return; 514 515 cputime -= steal; 516 account_idle_time(cputime); 517 } 518 519 /* 520 * Adjust tick based cputime random precision against scheduler runtime 521 * accounting. 522 * 523 * Tick based cputime accounting depend on random scheduling timeslices of a 524 * task to be interrupted or not by the timer. Depending on these 525 * circumstances, the number of these interrupts may be over or 526 * under-optimistic, matching the real user and system cputime with a variable 527 * precision. 528 * 529 * Fix this by scaling these tick based values against the total runtime 530 * accounted by the CFS scheduler. 531 * 532 * This code provides the following guarantees: 533 * 534 * stime + utime == rtime 535 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 536 * 537 * Assuming that rtime_i+1 >= rtime_i. 538 */ 539 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 540 u64 *ut, u64 *st) 541 { 542 u64 rtime, stime, utime; 543 unsigned long flags; 544 545 /* Serialize concurrent callers such that we can honour our guarantees */ 546 raw_spin_lock_irqsave(&prev->lock, flags); 547 rtime = curr->sum_exec_runtime; 548 549 /* 550 * This is possible under two circumstances: 551 * - rtime isn't monotonic after all (a bug); 552 * - we got reordered by the lock. 553 * 554 * In both cases this acts as a filter such that the rest of the code 555 * can assume it is monotonic regardless of anything else. 556 */ 557 if (prev->stime + prev->utime >= rtime) 558 goto out; 559 560 stime = curr->stime; 561 utime = curr->utime; 562 563 /* 564 * If either stime or utime are 0, assume all runtime is userspace. 565 * Once a task gets some ticks, the monotonicity code at 'update:' 566 * will ensure things converge to the observed ratio. 567 */ 568 if (stime == 0) { 569 utime = rtime; 570 goto update; 571 } 572 573 if (utime == 0) { 574 stime = rtime; 575 goto update; 576 } 577 578 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 579 580 update: 581 /* 582 * Make sure stime doesn't go backwards; this preserves monotonicity 583 * for utime because rtime is monotonic. 584 * 585 * utime_i+1 = rtime_i+1 - stime_i 586 * = rtime_i+1 - (rtime_i - utime_i) 587 * = (rtime_i+1 - rtime_i) + utime_i 588 * >= utime_i 589 */ 590 if (stime < prev->stime) 591 stime = prev->stime; 592 utime = rtime - stime; 593 594 /* 595 * Make sure utime doesn't go backwards; this still preserves 596 * monotonicity for stime, analogous argument to above. 597 */ 598 if (utime < prev->utime) { 599 utime = prev->utime; 600 stime = rtime - utime; 601 } 602 603 prev->stime = stime; 604 prev->utime = utime; 605 out: 606 *ut = prev->utime; 607 *st = prev->stime; 608 raw_spin_unlock_irqrestore(&prev->lock, flags); 609 } 610 611 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 612 { 613 struct task_cputime cputime = { 614 .sum_exec_runtime = p->se.sum_exec_runtime, 615 }; 616 617 if (task_cputime(p, &cputime.utime, &cputime.stime)) 618 cputime.sum_exec_runtime = task_sched_runtime(p); 619 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 620 } 621 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 622 623 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 624 { 625 struct task_cputime cputime; 626 627 thread_group_cputime(p, &cputime); 628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 629 } 630 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 631 632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 633 static u64 vtime_delta(struct vtime *vtime) 634 { 635 unsigned long long clock; 636 637 clock = sched_clock(); 638 if (clock < vtime->starttime) 639 return 0; 640 641 return clock - vtime->starttime; 642 } 643 644 static u64 get_vtime_delta(struct vtime *vtime) 645 { 646 u64 delta = vtime_delta(vtime); 647 u64 other; 648 649 /* 650 * Unlike tick based timing, vtime based timing never has lost 651 * ticks, and no need for steal time accounting to make up for 652 * lost ticks. Vtime accounts a rounded version of actual 653 * elapsed time. Limit account_other_time to prevent rounding 654 * errors from causing elapsed vtime to go negative. 655 */ 656 other = account_other_time(delta); 657 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 658 vtime->starttime += delta; 659 660 return delta - other; 661 } 662 663 static void vtime_account_system(struct task_struct *tsk, 664 struct vtime *vtime) 665 { 666 vtime->stime += get_vtime_delta(vtime); 667 if (vtime->stime >= TICK_NSEC) { 668 account_system_time(tsk, irq_count(), vtime->stime); 669 vtime->stime = 0; 670 } 671 } 672 673 static void vtime_account_guest(struct task_struct *tsk, 674 struct vtime *vtime) 675 { 676 vtime->gtime += get_vtime_delta(vtime); 677 if (vtime->gtime >= TICK_NSEC) { 678 account_guest_time(tsk, vtime->gtime); 679 vtime->gtime = 0; 680 } 681 } 682 683 static void __vtime_account_kernel(struct task_struct *tsk, 684 struct vtime *vtime) 685 { 686 /* We might have scheduled out from guest path */ 687 if (vtime->state == VTIME_GUEST) 688 vtime_account_guest(tsk, vtime); 689 else 690 vtime_account_system(tsk, vtime); 691 } 692 693 void vtime_account_kernel(struct task_struct *tsk) 694 { 695 struct vtime *vtime = &tsk->vtime; 696 697 if (!vtime_delta(vtime)) 698 return; 699 700 write_seqcount_begin(&vtime->seqcount); 701 __vtime_account_kernel(tsk, vtime); 702 write_seqcount_end(&vtime->seqcount); 703 } 704 705 void vtime_user_enter(struct task_struct *tsk) 706 { 707 struct vtime *vtime = &tsk->vtime; 708 709 write_seqcount_begin(&vtime->seqcount); 710 vtime_account_system(tsk, vtime); 711 vtime->state = VTIME_USER; 712 write_seqcount_end(&vtime->seqcount); 713 } 714 715 void vtime_user_exit(struct task_struct *tsk) 716 { 717 struct vtime *vtime = &tsk->vtime; 718 719 write_seqcount_begin(&vtime->seqcount); 720 vtime->utime += get_vtime_delta(vtime); 721 if (vtime->utime >= TICK_NSEC) { 722 account_user_time(tsk, vtime->utime); 723 vtime->utime = 0; 724 } 725 vtime->state = VTIME_SYS; 726 write_seqcount_end(&vtime->seqcount); 727 } 728 729 void vtime_guest_enter(struct task_struct *tsk) 730 { 731 struct vtime *vtime = &tsk->vtime; 732 /* 733 * The flags must be updated under the lock with 734 * the vtime_starttime flush and update. 735 * That enforces a right ordering and update sequence 736 * synchronization against the reader (task_gtime()) 737 * that can thus safely catch up with a tickless delta. 738 */ 739 write_seqcount_begin(&vtime->seqcount); 740 vtime_account_system(tsk, vtime); 741 tsk->flags |= PF_VCPU; 742 vtime->state = VTIME_GUEST; 743 write_seqcount_end(&vtime->seqcount); 744 } 745 EXPORT_SYMBOL_GPL(vtime_guest_enter); 746 747 void vtime_guest_exit(struct task_struct *tsk) 748 { 749 struct vtime *vtime = &tsk->vtime; 750 751 write_seqcount_begin(&vtime->seqcount); 752 vtime_account_guest(tsk, vtime); 753 tsk->flags &= ~PF_VCPU; 754 vtime->state = VTIME_SYS; 755 write_seqcount_end(&vtime->seqcount); 756 } 757 EXPORT_SYMBOL_GPL(vtime_guest_exit); 758 759 void vtime_account_idle(struct task_struct *tsk) 760 { 761 account_idle_time(get_vtime_delta(&tsk->vtime)); 762 } 763 764 void vtime_task_switch_generic(struct task_struct *prev) 765 { 766 struct vtime *vtime = &prev->vtime; 767 768 write_seqcount_begin(&vtime->seqcount); 769 if (vtime->state == VTIME_IDLE) 770 vtime_account_idle(prev); 771 else 772 __vtime_account_kernel(prev, vtime); 773 vtime->state = VTIME_INACTIVE; 774 vtime->cpu = -1; 775 write_seqcount_end(&vtime->seqcount); 776 777 vtime = ¤t->vtime; 778 779 write_seqcount_begin(&vtime->seqcount); 780 if (is_idle_task(current)) 781 vtime->state = VTIME_IDLE; 782 else if (current->flags & PF_VCPU) 783 vtime->state = VTIME_GUEST; 784 else 785 vtime->state = VTIME_SYS; 786 vtime->starttime = sched_clock(); 787 vtime->cpu = smp_processor_id(); 788 write_seqcount_end(&vtime->seqcount); 789 } 790 791 void vtime_init_idle(struct task_struct *t, int cpu) 792 { 793 struct vtime *vtime = &t->vtime; 794 unsigned long flags; 795 796 local_irq_save(flags); 797 write_seqcount_begin(&vtime->seqcount); 798 vtime->state = VTIME_IDLE; 799 vtime->starttime = sched_clock(); 800 vtime->cpu = cpu; 801 write_seqcount_end(&vtime->seqcount); 802 local_irq_restore(flags); 803 } 804 805 u64 task_gtime(struct task_struct *t) 806 { 807 struct vtime *vtime = &t->vtime; 808 unsigned int seq; 809 u64 gtime; 810 811 if (!vtime_accounting_enabled()) 812 return t->gtime; 813 814 do { 815 seq = read_seqcount_begin(&vtime->seqcount); 816 817 gtime = t->gtime; 818 if (vtime->state == VTIME_GUEST) 819 gtime += vtime->gtime + vtime_delta(vtime); 820 821 } while (read_seqcount_retry(&vtime->seqcount, seq)); 822 823 return gtime; 824 } 825 826 /* 827 * Fetch cputime raw values from fields of task_struct and 828 * add up the pending nohz execution time since the last 829 * cputime snapshot. 830 */ 831 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 832 { 833 struct vtime *vtime = &t->vtime; 834 unsigned int seq; 835 u64 delta; 836 int ret; 837 838 if (!vtime_accounting_enabled()) { 839 *utime = t->utime; 840 *stime = t->stime; 841 return false; 842 } 843 844 do { 845 ret = false; 846 seq = read_seqcount_begin(&vtime->seqcount); 847 848 *utime = t->utime; 849 *stime = t->stime; 850 851 /* Task is sleeping or idle, nothing to add */ 852 if (vtime->state < VTIME_SYS) 853 continue; 854 855 ret = true; 856 delta = vtime_delta(vtime); 857 858 /* 859 * Task runs either in user (including guest) or kernel space, 860 * add pending nohz time to the right place. 861 */ 862 if (vtime->state == VTIME_SYS) 863 *stime += vtime->stime + delta; 864 else 865 *utime += vtime->utime + delta; 866 } while (read_seqcount_retry(&vtime->seqcount, seq)); 867 868 return ret; 869 } 870 871 static int vtime_state_fetch(struct vtime *vtime, int cpu) 872 { 873 int state = READ_ONCE(vtime->state); 874 875 /* 876 * We raced against a context switch, fetch the 877 * kcpustat task again. 878 */ 879 if (vtime->cpu != cpu && vtime->cpu != -1) 880 return -EAGAIN; 881 882 /* 883 * Two possible things here: 884 * 1) We are seeing the scheduling out task (prev) or any past one. 885 * 2) We are seeing the scheduling in task (next) but it hasn't 886 * passed though vtime_task_switch() yet so the pending 887 * cputime of the prev task may not be flushed yet. 888 * 889 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 890 */ 891 if (state == VTIME_INACTIVE) 892 return -EAGAIN; 893 894 return state; 895 } 896 897 static u64 kcpustat_user_vtime(struct vtime *vtime) 898 { 899 if (vtime->state == VTIME_USER) 900 return vtime->utime + vtime_delta(vtime); 901 else if (vtime->state == VTIME_GUEST) 902 return vtime->gtime + vtime_delta(vtime); 903 return 0; 904 } 905 906 static int kcpustat_field_vtime(u64 *cpustat, 907 struct task_struct *tsk, 908 enum cpu_usage_stat usage, 909 int cpu, u64 *val) 910 { 911 struct vtime *vtime = &tsk->vtime; 912 unsigned int seq; 913 914 do { 915 int state; 916 917 seq = read_seqcount_begin(&vtime->seqcount); 918 919 state = vtime_state_fetch(vtime, cpu); 920 if (state < 0) 921 return state; 922 923 *val = cpustat[usage]; 924 925 /* 926 * Nice VS unnice cputime accounting may be inaccurate if 927 * the nice value has changed since the last vtime update. 928 * But proper fix would involve interrupting target on nice 929 * updates which is a no go on nohz_full (although the scheduler 930 * may still interrupt the target if rescheduling is needed...) 931 */ 932 switch (usage) { 933 case CPUTIME_SYSTEM: 934 if (state == VTIME_SYS) 935 *val += vtime->stime + vtime_delta(vtime); 936 break; 937 case CPUTIME_USER: 938 if (task_nice(tsk) <= 0) 939 *val += kcpustat_user_vtime(vtime); 940 break; 941 case CPUTIME_NICE: 942 if (task_nice(tsk) > 0) 943 *val += kcpustat_user_vtime(vtime); 944 break; 945 case CPUTIME_GUEST: 946 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 947 *val += vtime->gtime + vtime_delta(vtime); 948 break; 949 case CPUTIME_GUEST_NICE: 950 if (state == VTIME_GUEST && task_nice(tsk) > 0) 951 *val += vtime->gtime + vtime_delta(vtime); 952 break; 953 default: 954 break; 955 } 956 } while (read_seqcount_retry(&vtime->seqcount, seq)); 957 958 return 0; 959 } 960 961 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 962 enum cpu_usage_stat usage, int cpu) 963 { 964 u64 *cpustat = kcpustat->cpustat; 965 u64 val = cpustat[usage]; 966 struct rq *rq; 967 int err; 968 969 if (!vtime_accounting_enabled_cpu(cpu)) 970 return val; 971 972 rq = cpu_rq(cpu); 973 974 for (;;) { 975 struct task_struct *curr; 976 977 rcu_read_lock(); 978 curr = rcu_dereference(rq->curr); 979 if (WARN_ON_ONCE(!curr)) { 980 rcu_read_unlock(); 981 return cpustat[usage]; 982 } 983 984 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 985 rcu_read_unlock(); 986 987 if (!err) 988 return val; 989 990 cpu_relax(); 991 } 992 } 993 EXPORT_SYMBOL_GPL(kcpustat_field); 994 995 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 996 const struct kernel_cpustat *src, 997 struct task_struct *tsk, int cpu) 998 { 999 struct vtime *vtime = &tsk->vtime; 1000 unsigned int seq; 1001 1002 do { 1003 u64 *cpustat; 1004 u64 delta; 1005 int state; 1006 1007 seq = read_seqcount_begin(&vtime->seqcount); 1008 1009 state = vtime_state_fetch(vtime, cpu); 1010 if (state < 0) 1011 return state; 1012 1013 *dst = *src; 1014 cpustat = dst->cpustat; 1015 1016 /* Task is sleeping, dead or idle, nothing to add */ 1017 if (state < VTIME_SYS) 1018 continue; 1019 1020 delta = vtime_delta(vtime); 1021 1022 /* 1023 * Task runs either in user (including guest) or kernel space, 1024 * add pending nohz time to the right place. 1025 */ 1026 if (state == VTIME_SYS) { 1027 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1028 } else if (state == VTIME_USER) { 1029 if (task_nice(tsk) > 0) 1030 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1031 else 1032 cpustat[CPUTIME_USER] += vtime->utime + delta; 1033 } else { 1034 WARN_ON_ONCE(state != VTIME_GUEST); 1035 if (task_nice(tsk) > 0) { 1036 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1037 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1038 } else { 1039 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1040 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1041 } 1042 } 1043 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1044 1045 return 0; 1046 } 1047 1048 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1049 { 1050 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1051 struct rq *rq; 1052 int err; 1053 1054 if (!vtime_accounting_enabled_cpu(cpu)) { 1055 *dst = *src; 1056 return; 1057 } 1058 1059 rq = cpu_rq(cpu); 1060 1061 for (;;) { 1062 struct task_struct *curr; 1063 1064 rcu_read_lock(); 1065 curr = rcu_dereference(rq->curr); 1066 if (WARN_ON_ONCE(!curr)) { 1067 rcu_read_unlock(); 1068 *dst = *src; 1069 return; 1070 } 1071 1072 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1073 rcu_read_unlock(); 1074 1075 if (!err) 1076 return; 1077 1078 cpu_relax(); 1079 } 1080 } 1081 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1082 1083 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1084