xref: /linux/kernel/sched/cputime.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 #include "sched.h"
6 
7 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
8 
9 /*
10  * There are no locks covering percpu hardirq/softirq time.
11  * They are only modified in vtime_account, on corresponding CPU
12  * with interrupts disabled. So, writes are safe.
13  * They are read and saved off onto struct rq in update_rq_clock().
14  * This may result in other CPU reading this CPU's irq time and can
15  * race with irq/vtime_account on this CPU. We would either get old
16  * or new value with a side effect of accounting a slice of irq time to wrong
17  * task when irq is in progress while we read rq->clock. That is a worthy
18  * compromise in place of having locks on each irq in account_system_time.
19  */
20 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
21 
22 static int sched_clock_irqtime;
23 
24 void enable_sched_clock_irqtime(void)
25 {
26 	sched_clock_irqtime = 1;
27 }
28 
29 void disable_sched_clock_irqtime(void)
30 {
31 	sched_clock_irqtime = 0;
32 }
33 
34 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
35 				  enum cpu_usage_stat idx)
36 {
37 	u64 *cpustat = kcpustat_this_cpu->cpustat;
38 
39 	u64_stats_update_begin(&irqtime->sync);
40 	cpustat[idx] += delta;
41 	irqtime->total += delta;
42 	irqtime->tick_delta += delta;
43 	u64_stats_update_end(&irqtime->sync);
44 }
45 
46 /*
47  * Called before incrementing preempt_count on {soft,}irq_enter
48  * and before decrementing preempt_count on {soft,}irq_exit.
49  */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
53 	s64 delta;
54 	int cpu;
55 
56 	if (!sched_clock_irqtime)
57 		return;
58 
59 	cpu = smp_processor_id();
60 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
61 	irqtime->irq_start_time += delta;
62 
63 	/*
64 	 * We do not account for softirq time from ksoftirqd here.
65 	 * We want to continue accounting softirq time to ksoftirqd thread
66 	 * in that case, so as not to confuse scheduler with a special task
67 	 * that do not consume any time, but still wants to run.
68 	 */
69 	if (hardirq_count())
70 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
71 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
73 }
74 EXPORT_SYMBOL_GPL(irqtime_account_irq);
75 
76 static u64 irqtime_tick_accounted(u64 maxtime)
77 {
78 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
79 	u64 delta;
80 
81 	delta = min(irqtime->tick_delta, maxtime);
82 	irqtime->tick_delta -= delta;
83 
84 	return delta;
85 }
86 
87 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
88 
89 #define sched_clock_irqtime	(0)
90 
91 static u64 irqtime_tick_accounted(u64 dummy)
92 {
93 	return 0;
94 }
95 
96 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
97 
98 static inline void task_group_account_field(struct task_struct *p, int index,
99 					    u64 tmp)
100 {
101 	/*
102 	 * Since all updates are sure to touch the root cgroup, we
103 	 * get ourselves ahead and touch it first. If the root cgroup
104 	 * is the only cgroup, then nothing else should be necessary.
105 	 *
106 	 */
107 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
108 
109 	cgroup_account_cputime_field(p, index, tmp);
110 }
111 
112 /*
113  * Account user CPU time to a process.
114  * @p: the process that the CPU time gets accounted to
115  * @cputime: the CPU time spent in user space since the last update
116  */
117 void account_user_time(struct task_struct *p, u64 cputime)
118 {
119 	int index;
120 
121 	/* Add user time to process. */
122 	p->utime += cputime;
123 	account_group_user_time(p, cputime);
124 
125 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
126 
127 	/* Add user time to cpustat. */
128 	task_group_account_field(p, index, cputime);
129 
130 	/* Account for user time used */
131 	acct_account_cputime(p);
132 }
133 
134 /*
135  * Account guest CPU time to a process.
136  * @p: the process that the CPU time gets accounted to
137  * @cputime: the CPU time spent in virtual machine since the last update
138  */
139 void account_guest_time(struct task_struct *p, u64 cputime)
140 {
141 	u64 *cpustat = kcpustat_this_cpu->cpustat;
142 
143 	/* Add guest time to process. */
144 	p->utime += cputime;
145 	account_group_user_time(p, cputime);
146 	p->gtime += cputime;
147 
148 	/* Add guest time to cpustat. */
149 	if (task_nice(p) > 0) {
150 		cpustat[CPUTIME_NICE] += cputime;
151 		cpustat[CPUTIME_GUEST_NICE] += cputime;
152 	} else {
153 		cpustat[CPUTIME_USER] += cputime;
154 		cpustat[CPUTIME_GUEST] += cputime;
155 	}
156 }
157 
158 /*
159  * Account system CPU time to a process and desired cpustat field
160  * @p: the process that the CPU time gets accounted to
161  * @cputime: the CPU time spent in kernel space since the last update
162  * @index: pointer to cpustat field that has to be updated
163  */
164 void account_system_index_time(struct task_struct *p,
165 			       u64 cputime, enum cpu_usage_stat index)
166 {
167 	/* Add system time to process. */
168 	p->stime += cputime;
169 	account_group_system_time(p, cputime);
170 
171 	/* Add system time to cpustat. */
172 	task_group_account_field(p, index, cputime);
173 
174 	/* Account for system time used */
175 	acct_account_cputime(p);
176 }
177 
178 /*
179  * Account system CPU time to a process.
180  * @p: the process that the CPU time gets accounted to
181  * @hardirq_offset: the offset to subtract from hardirq_count()
182  * @cputime: the CPU time spent in kernel space since the last update
183  */
184 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
185 {
186 	int index;
187 
188 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
189 		account_guest_time(p, cputime);
190 		return;
191 	}
192 
193 	if (hardirq_count() - hardirq_offset)
194 		index = CPUTIME_IRQ;
195 	else if (in_serving_softirq())
196 		index = CPUTIME_SOFTIRQ;
197 	else
198 		index = CPUTIME_SYSTEM;
199 
200 	account_system_index_time(p, cputime, index);
201 }
202 
203 /*
204  * Account for involuntary wait time.
205  * @cputime: the CPU time spent in involuntary wait
206  */
207 void account_steal_time(u64 cputime)
208 {
209 	u64 *cpustat = kcpustat_this_cpu->cpustat;
210 
211 	cpustat[CPUTIME_STEAL] += cputime;
212 }
213 
214 /*
215  * Account for idle time.
216  * @cputime: the CPU time spent in idle wait
217  */
218 void account_idle_time(u64 cputime)
219 {
220 	u64 *cpustat = kcpustat_this_cpu->cpustat;
221 	struct rq *rq = this_rq();
222 
223 	if (atomic_read(&rq->nr_iowait) > 0)
224 		cpustat[CPUTIME_IOWAIT] += cputime;
225 	else
226 		cpustat[CPUTIME_IDLE] += cputime;
227 }
228 
229 /*
230  * When a guest is interrupted for a longer amount of time, missed clock
231  * ticks are not redelivered later. Due to that, this function may on
232  * occasion account more time than the calling functions think elapsed.
233  */
234 static __always_inline u64 steal_account_process_time(u64 maxtime)
235 {
236 #ifdef CONFIG_PARAVIRT
237 	if (static_key_false(&paravirt_steal_enabled)) {
238 		u64 steal;
239 
240 		steal = paravirt_steal_clock(smp_processor_id());
241 		steal -= this_rq()->prev_steal_time;
242 		steal = min(steal, maxtime);
243 		account_steal_time(steal);
244 		this_rq()->prev_steal_time += steal;
245 
246 		return steal;
247 	}
248 #endif
249 	return 0;
250 }
251 
252 /*
253  * Account how much elapsed time was spent in steal, irq, or softirq time.
254  */
255 static inline u64 account_other_time(u64 max)
256 {
257 	u64 accounted;
258 
259 	lockdep_assert_irqs_disabled();
260 
261 	accounted = steal_account_process_time(max);
262 
263 	if (accounted < max)
264 		accounted += irqtime_tick_accounted(max - accounted);
265 
266 	return accounted;
267 }
268 
269 #ifdef CONFIG_64BIT
270 static inline u64 read_sum_exec_runtime(struct task_struct *t)
271 {
272 	return t->se.sum_exec_runtime;
273 }
274 #else
275 static u64 read_sum_exec_runtime(struct task_struct *t)
276 {
277 	u64 ns;
278 	struct rq_flags rf;
279 	struct rq *rq;
280 
281 	rq = task_rq_lock(t, &rf);
282 	ns = t->se.sum_exec_runtime;
283 	task_rq_unlock(rq, t, &rf);
284 
285 	return ns;
286 }
287 #endif
288 
289 /*
290  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
291  * tasks (sum on group iteration) belonging to @tsk's group.
292  */
293 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
294 {
295 	struct signal_struct *sig = tsk->signal;
296 	u64 utime, stime;
297 	struct task_struct *t;
298 	unsigned int seq, nextseq;
299 	unsigned long flags;
300 
301 	/*
302 	 * Update current task runtime to account pending time since last
303 	 * scheduler action or thread_group_cputime() call. This thread group
304 	 * might have other running tasks on different CPUs, but updating
305 	 * their runtime can affect syscall performance, so we skip account
306 	 * those pending times and rely only on values updated on tick or
307 	 * other scheduler action.
308 	 */
309 	if (same_thread_group(current, tsk))
310 		(void) task_sched_runtime(current);
311 
312 	rcu_read_lock();
313 	/* Attempt a lockless read on the first round. */
314 	nextseq = 0;
315 	do {
316 		seq = nextseq;
317 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
318 		times->utime = sig->utime;
319 		times->stime = sig->stime;
320 		times->sum_exec_runtime = sig->sum_sched_runtime;
321 
322 		for_each_thread(tsk, t) {
323 			task_cputime(t, &utime, &stime);
324 			times->utime += utime;
325 			times->stime += stime;
326 			times->sum_exec_runtime += read_sum_exec_runtime(t);
327 		}
328 		/* If lockless access failed, take the lock. */
329 		nextseq = 1;
330 	} while (need_seqretry(&sig->stats_lock, seq));
331 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
332 	rcu_read_unlock();
333 }
334 
335 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
336 /*
337  * Account a tick to a process and cpustat
338  * @p: the process that the CPU time gets accounted to
339  * @user_tick: is the tick from userspace
340  * @rq: the pointer to rq
341  *
342  * Tick demultiplexing follows the order
343  * - pending hardirq update
344  * - pending softirq update
345  * - user_time
346  * - idle_time
347  * - system time
348  *   - check for guest_time
349  *   - else account as system_time
350  *
351  * Check for hardirq is done both for system and user time as there is
352  * no timer going off while we are on hardirq and hence we may never get an
353  * opportunity to update it solely in system time.
354  * p->stime and friends are only updated on system time and not on irq
355  * softirq as those do not count in task exec_runtime any more.
356  */
357 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
358 					 struct rq *rq, int ticks)
359 {
360 	u64 other, cputime = TICK_NSEC * ticks;
361 
362 	/*
363 	 * When returning from idle, many ticks can get accounted at
364 	 * once, including some ticks of steal, irq, and softirq time.
365 	 * Subtract those ticks from the amount of time accounted to
366 	 * idle, or potentially user or system time. Due to rounding,
367 	 * other time can exceed ticks occasionally.
368 	 */
369 	other = account_other_time(ULONG_MAX);
370 	if (other >= cputime)
371 		return;
372 
373 	cputime -= other;
374 
375 	if (this_cpu_ksoftirqd() == p) {
376 		/*
377 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
378 		 * So, we have to handle it separately here.
379 		 * Also, p->stime needs to be updated for ksoftirqd.
380 		 */
381 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
382 	} else if (user_tick) {
383 		account_user_time(p, cputime);
384 	} else if (p == rq->idle) {
385 		account_idle_time(cputime);
386 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
387 		account_guest_time(p, cputime);
388 	} else {
389 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
390 	}
391 }
392 
393 static void irqtime_account_idle_ticks(int ticks)
394 {
395 	struct rq *rq = this_rq();
396 
397 	irqtime_account_process_tick(current, 0, rq, ticks);
398 }
399 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
400 static inline void irqtime_account_idle_ticks(int ticks) { }
401 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
402 						struct rq *rq, int nr_ticks) { }
403 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
404 
405 /*
406  * Use precise platform statistics if available:
407  */
408 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
409 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
410 void vtime_common_task_switch(struct task_struct *prev)
411 {
412 	if (is_idle_task(prev))
413 		vtime_account_idle(prev);
414 	else
415 		vtime_account_system(prev);
416 
417 	vtime_flush(prev);
418 	arch_vtime_task_switch(prev);
419 }
420 # endif
421 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
422 
423 
424 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
425 /*
426  * Archs that account the whole time spent in the idle task
427  * (outside irq) as idle time can rely on this and just implement
428  * vtime_account_system() and vtime_account_idle(). Archs that
429  * have other meaning of the idle time (s390 only includes the
430  * time spent by the CPU when it's in low power mode) must override
431  * vtime_account().
432  */
433 #ifndef __ARCH_HAS_VTIME_ACCOUNT
434 void vtime_account_irq_enter(struct task_struct *tsk)
435 {
436 	if (!in_interrupt() && is_idle_task(tsk))
437 		vtime_account_idle(tsk);
438 	else
439 		vtime_account_system(tsk);
440 }
441 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
442 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
443 
444 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
445 		    u64 *ut, u64 *st)
446 {
447 	*ut = curr->utime;
448 	*st = curr->stime;
449 }
450 
451 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
452 {
453 	*ut = p->utime;
454 	*st = p->stime;
455 }
456 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
457 
458 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
459 {
460 	struct task_cputime cputime;
461 
462 	thread_group_cputime(p, &cputime);
463 
464 	*ut = cputime.utime;
465 	*st = cputime.stime;
466 }
467 
468 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
469 
470 /*
471  * Account a single tick of CPU time.
472  * @p: the process that the CPU time gets accounted to
473  * @user_tick: indicates if the tick is a user or a system tick
474  */
475 void account_process_tick(struct task_struct *p, int user_tick)
476 {
477 	u64 cputime, steal;
478 	struct rq *rq = this_rq();
479 
480 	if (vtime_accounting_cpu_enabled())
481 		return;
482 
483 	if (sched_clock_irqtime) {
484 		irqtime_account_process_tick(p, user_tick, rq, 1);
485 		return;
486 	}
487 
488 	cputime = TICK_NSEC;
489 	steal = steal_account_process_time(ULONG_MAX);
490 
491 	if (steal >= cputime)
492 		return;
493 
494 	cputime -= steal;
495 
496 	if (user_tick)
497 		account_user_time(p, cputime);
498 	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
499 		account_system_time(p, HARDIRQ_OFFSET, cputime);
500 	else
501 		account_idle_time(cputime);
502 }
503 
504 /*
505  * Account multiple ticks of idle time.
506  * @ticks: number of stolen ticks
507  */
508 void account_idle_ticks(unsigned long ticks)
509 {
510 	u64 cputime, steal;
511 
512 	if (sched_clock_irqtime) {
513 		irqtime_account_idle_ticks(ticks);
514 		return;
515 	}
516 
517 	cputime = ticks * TICK_NSEC;
518 	steal = steal_account_process_time(ULONG_MAX);
519 
520 	if (steal >= cputime)
521 		return;
522 
523 	cputime -= steal;
524 	account_idle_time(cputime);
525 }
526 
527 /*
528  * Perform (stime * rtime) / total, but avoid multiplication overflow by
529  * losing precision when the numbers are big.
530  */
531 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
532 {
533 	u64 scaled;
534 
535 	for (;;) {
536 		/* Make sure "rtime" is the bigger of stime/rtime */
537 		if (stime > rtime)
538 			swap(rtime, stime);
539 
540 		/* Make sure 'total' fits in 32 bits */
541 		if (total >> 32)
542 			goto drop_precision;
543 
544 		/* Does rtime (and thus stime) fit in 32 bits? */
545 		if (!(rtime >> 32))
546 			break;
547 
548 		/* Can we just balance rtime/stime rather than dropping bits? */
549 		if (stime >> 31)
550 			goto drop_precision;
551 
552 		/* We can grow stime and shrink rtime and try to make them both fit */
553 		stime <<= 1;
554 		rtime >>= 1;
555 		continue;
556 
557 drop_precision:
558 		/* We drop from rtime, it has more bits than stime */
559 		rtime >>= 1;
560 		total >>= 1;
561 	}
562 
563 	/*
564 	 * Make sure gcc understands that this is a 32x32->64 multiply,
565 	 * followed by a 64/32->64 divide.
566 	 */
567 	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
568 	return scaled;
569 }
570 
571 /*
572  * Adjust tick based cputime random precision against scheduler runtime
573  * accounting.
574  *
575  * Tick based cputime accounting depend on random scheduling timeslices of a
576  * task to be interrupted or not by the timer.  Depending on these
577  * circumstances, the number of these interrupts may be over or
578  * under-optimistic, matching the real user and system cputime with a variable
579  * precision.
580  *
581  * Fix this by scaling these tick based values against the total runtime
582  * accounted by the CFS scheduler.
583  *
584  * This code provides the following guarantees:
585  *
586  *   stime + utime == rtime
587  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
588  *
589  * Assuming that rtime_i+1 >= rtime_i.
590  */
591 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
592 		    u64 *ut, u64 *st)
593 {
594 	u64 rtime, stime, utime;
595 	unsigned long flags;
596 
597 	/* Serialize concurrent callers such that we can honour our guarantees */
598 	raw_spin_lock_irqsave(&prev->lock, flags);
599 	rtime = curr->sum_exec_runtime;
600 
601 	/*
602 	 * This is possible under two circumstances:
603 	 *  - rtime isn't monotonic after all (a bug);
604 	 *  - we got reordered by the lock.
605 	 *
606 	 * In both cases this acts as a filter such that the rest of the code
607 	 * can assume it is monotonic regardless of anything else.
608 	 */
609 	if (prev->stime + prev->utime >= rtime)
610 		goto out;
611 
612 	stime = curr->stime;
613 	utime = curr->utime;
614 
615 	/*
616 	 * If either stime or utime are 0, assume all runtime is userspace.
617 	 * Once a task gets some ticks, the monotonicy code at 'update:'
618 	 * will ensure things converge to the observed ratio.
619 	 */
620 	if (stime == 0) {
621 		utime = rtime;
622 		goto update;
623 	}
624 
625 	if (utime == 0) {
626 		stime = rtime;
627 		goto update;
628 	}
629 
630 	stime = scale_stime(stime, rtime, stime + utime);
631 
632 update:
633 	/*
634 	 * Make sure stime doesn't go backwards; this preserves monotonicity
635 	 * for utime because rtime is monotonic.
636 	 *
637 	 *  utime_i+1 = rtime_i+1 - stime_i
638 	 *            = rtime_i+1 - (rtime_i - utime_i)
639 	 *            = (rtime_i+1 - rtime_i) + utime_i
640 	 *            >= utime_i
641 	 */
642 	if (stime < prev->stime)
643 		stime = prev->stime;
644 	utime = rtime - stime;
645 
646 	/*
647 	 * Make sure utime doesn't go backwards; this still preserves
648 	 * monotonicity for stime, analogous argument to above.
649 	 */
650 	if (utime < prev->utime) {
651 		utime = prev->utime;
652 		stime = rtime - utime;
653 	}
654 
655 	prev->stime = stime;
656 	prev->utime = utime;
657 out:
658 	*ut = prev->utime;
659 	*st = prev->stime;
660 	raw_spin_unlock_irqrestore(&prev->lock, flags);
661 }
662 
663 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
664 {
665 	struct task_cputime cputime = {
666 		.sum_exec_runtime = p->se.sum_exec_runtime,
667 	};
668 
669 	task_cputime(p, &cputime.utime, &cputime.stime);
670 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
671 }
672 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
673 
674 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
675 {
676 	struct task_cputime cputime;
677 
678 	thread_group_cputime(p, &cputime);
679 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
680 }
681 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
682 
683 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
684 static u64 vtime_delta(struct vtime *vtime)
685 {
686 	unsigned long long clock;
687 
688 	clock = sched_clock();
689 	if (clock < vtime->starttime)
690 		return 0;
691 
692 	return clock - vtime->starttime;
693 }
694 
695 static u64 get_vtime_delta(struct vtime *vtime)
696 {
697 	u64 delta = vtime_delta(vtime);
698 	u64 other;
699 
700 	/*
701 	 * Unlike tick based timing, vtime based timing never has lost
702 	 * ticks, and no need for steal time accounting to make up for
703 	 * lost ticks. Vtime accounts a rounded version of actual
704 	 * elapsed time. Limit account_other_time to prevent rounding
705 	 * errors from causing elapsed vtime to go negative.
706 	 */
707 	other = account_other_time(delta);
708 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
709 	vtime->starttime += delta;
710 
711 	return delta - other;
712 }
713 
714 static void __vtime_account_system(struct task_struct *tsk,
715 				   struct vtime *vtime)
716 {
717 	vtime->stime += get_vtime_delta(vtime);
718 	if (vtime->stime >= TICK_NSEC) {
719 		account_system_time(tsk, irq_count(), vtime->stime);
720 		vtime->stime = 0;
721 	}
722 }
723 
724 static void vtime_account_guest(struct task_struct *tsk,
725 				struct vtime *vtime)
726 {
727 	vtime->gtime += get_vtime_delta(vtime);
728 	if (vtime->gtime >= TICK_NSEC) {
729 		account_guest_time(tsk, vtime->gtime);
730 		vtime->gtime = 0;
731 	}
732 }
733 
734 void vtime_account_system(struct task_struct *tsk)
735 {
736 	struct vtime *vtime = &tsk->vtime;
737 
738 	if (!vtime_delta(vtime))
739 		return;
740 
741 	write_seqcount_begin(&vtime->seqcount);
742 	/* We might have scheduled out from guest path */
743 	if (tsk->flags & PF_VCPU)
744 		vtime_account_guest(tsk, vtime);
745 	else
746 		__vtime_account_system(tsk, vtime);
747 	write_seqcount_end(&vtime->seqcount);
748 }
749 
750 void vtime_user_enter(struct task_struct *tsk)
751 {
752 	struct vtime *vtime = &tsk->vtime;
753 
754 	write_seqcount_begin(&vtime->seqcount);
755 	__vtime_account_system(tsk, vtime);
756 	vtime->state = VTIME_USER;
757 	write_seqcount_end(&vtime->seqcount);
758 }
759 
760 void vtime_user_exit(struct task_struct *tsk)
761 {
762 	struct vtime *vtime = &tsk->vtime;
763 
764 	write_seqcount_begin(&vtime->seqcount);
765 	vtime->utime += get_vtime_delta(vtime);
766 	if (vtime->utime >= TICK_NSEC) {
767 		account_user_time(tsk, vtime->utime);
768 		vtime->utime = 0;
769 	}
770 	vtime->state = VTIME_SYS;
771 	write_seqcount_end(&vtime->seqcount);
772 }
773 
774 void vtime_guest_enter(struct task_struct *tsk)
775 {
776 	struct vtime *vtime = &tsk->vtime;
777 	/*
778 	 * The flags must be updated under the lock with
779 	 * the vtime_starttime flush and update.
780 	 * That enforces a right ordering and update sequence
781 	 * synchronization against the reader (task_gtime())
782 	 * that can thus safely catch up with a tickless delta.
783 	 */
784 	write_seqcount_begin(&vtime->seqcount);
785 	__vtime_account_system(tsk, vtime);
786 	tsk->flags |= PF_VCPU;
787 	write_seqcount_end(&vtime->seqcount);
788 }
789 EXPORT_SYMBOL_GPL(vtime_guest_enter);
790 
791 void vtime_guest_exit(struct task_struct *tsk)
792 {
793 	struct vtime *vtime = &tsk->vtime;
794 
795 	write_seqcount_begin(&vtime->seqcount);
796 	vtime_account_guest(tsk, vtime);
797 	tsk->flags &= ~PF_VCPU;
798 	write_seqcount_end(&vtime->seqcount);
799 }
800 EXPORT_SYMBOL_GPL(vtime_guest_exit);
801 
802 void vtime_account_idle(struct task_struct *tsk)
803 {
804 	account_idle_time(get_vtime_delta(&tsk->vtime));
805 }
806 
807 void arch_vtime_task_switch(struct task_struct *prev)
808 {
809 	struct vtime *vtime = &prev->vtime;
810 
811 	write_seqcount_begin(&vtime->seqcount);
812 	vtime->state = VTIME_INACTIVE;
813 	write_seqcount_end(&vtime->seqcount);
814 
815 	vtime = &current->vtime;
816 
817 	write_seqcount_begin(&vtime->seqcount);
818 	vtime->state = VTIME_SYS;
819 	vtime->starttime = sched_clock();
820 	write_seqcount_end(&vtime->seqcount);
821 }
822 
823 void vtime_init_idle(struct task_struct *t, int cpu)
824 {
825 	struct vtime *vtime = &t->vtime;
826 	unsigned long flags;
827 
828 	local_irq_save(flags);
829 	write_seqcount_begin(&vtime->seqcount);
830 	vtime->state = VTIME_SYS;
831 	vtime->starttime = sched_clock();
832 	write_seqcount_end(&vtime->seqcount);
833 	local_irq_restore(flags);
834 }
835 
836 u64 task_gtime(struct task_struct *t)
837 {
838 	struct vtime *vtime = &t->vtime;
839 	unsigned int seq;
840 	u64 gtime;
841 
842 	if (!vtime_accounting_enabled())
843 		return t->gtime;
844 
845 	do {
846 		seq = read_seqcount_begin(&vtime->seqcount);
847 
848 		gtime = t->gtime;
849 		if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
850 			gtime += vtime->gtime + vtime_delta(vtime);
851 
852 	} while (read_seqcount_retry(&vtime->seqcount, seq));
853 
854 	return gtime;
855 }
856 
857 /*
858  * Fetch cputime raw values from fields of task_struct and
859  * add up the pending nohz execution time since the last
860  * cputime snapshot.
861  */
862 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
863 {
864 	struct vtime *vtime = &t->vtime;
865 	unsigned int seq;
866 	u64 delta;
867 
868 	if (!vtime_accounting_enabled()) {
869 		*utime = t->utime;
870 		*stime = t->stime;
871 		return;
872 	}
873 
874 	do {
875 		seq = read_seqcount_begin(&vtime->seqcount);
876 
877 		*utime = t->utime;
878 		*stime = t->stime;
879 
880 		/* Task is sleeping, nothing to add */
881 		if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
882 			continue;
883 
884 		delta = vtime_delta(vtime);
885 
886 		/*
887 		 * Task runs either in user or kernel space, add pending nohz time to
888 		 * the right place.
889 		 */
890 		if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
891 			*utime += vtime->utime + delta;
892 		else if (vtime->state == VTIME_SYS)
893 			*stime += vtime->stime + delta;
894 	} while (read_seqcount_retry(&vtime->seqcount, seq));
895 }
896 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
897