1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include <linux/sched/cputime.h> 8 #include "sched.h" 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 24 25 static int sched_clock_irqtime; 26 27 void enable_sched_clock_irqtime(void) 28 { 29 sched_clock_irqtime = 1; 30 } 31 32 void disable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 0; 35 } 36 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 38 enum cpu_usage_stat idx) 39 { 40 u64 *cpustat = kcpustat_this_cpu->cpustat; 41 42 u64_stats_update_begin(&irqtime->sync); 43 cpustat[idx] += delta; 44 irqtime->total += delta; 45 irqtime->tick_delta += delta; 46 u64_stats_update_end(&irqtime->sync); 47 } 48 49 /* 50 * Called before incrementing preempt_count on {soft,}irq_enter 51 * and before decrementing preempt_count on {soft,}irq_exit. 52 */ 53 void irqtime_account_irq(struct task_struct *curr) 54 { 55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 56 s64 delta; 57 int cpu; 58 59 if (!sched_clock_irqtime) 60 return; 61 62 cpu = smp_processor_id(); 63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 64 irqtime->irq_start_time += delta; 65 66 /* 67 * We do not account for softirq time from ksoftirqd here. 68 * We want to continue accounting softirq time to ksoftirqd thread 69 * in that case, so as not to confuse scheduler with a special task 70 * that do not consume any time, but still wants to run. 71 */ 72 if (hardirq_count()) 73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 76 } 77 EXPORT_SYMBOL_GPL(irqtime_account_irq); 78 79 static u64 irqtime_tick_accounted(u64 maxtime) 80 { 81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 82 u64 delta; 83 84 delta = min(irqtime->tick_delta, maxtime); 85 irqtime->tick_delta -= delta; 86 87 return delta; 88 } 89 90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 91 92 #define sched_clock_irqtime (0) 93 94 static u64 irqtime_tick_accounted(u64 dummy) 95 { 96 return 0; 97 } 98 99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 100 101 static inline void task_group_account_field(struct task_struct *p, int index, 102 u64 tmp) 103 { 104 /* 105 * Since all updates are sure to touch the root cgroup, we 106 * get ourselves ahead and touch it first. If the root cgroup 107 * is the only cgroup, then nothing else should be necessary. 108 * 109 */ 110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 111 112 cpuacct_account_field(p, index, tmp); 113 } 114 115 /* 116 * Account user cpu time to a process. 117 * @p: the process that the cpu time gets accounted to 118 * @cputime: the cpu time spent in user space since the last update 119 */ 120 void account_user_time(struct task_struct *p, u64 cputime) 121 { 122 int index; 123 124 /* Add user time to process. */ 125 p->utime += cputime; 126 account_group_user_time(p, cputime); 127 128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 129 130 /* Add user time to cpustat. */ 131 task_group_account_field(p, index, cputime); 132 133 /* Account for user time used */ 134 acct_account_cputime(p); 135 } 136 137 /* 138 * Account guest cpu time to a process. 139 * @p: the process that the cpu time gets accounted to 140 * @cputime: the cpu time spent in virtual machine since the last update 141 */ 142 void account_guest_time(struct task_struct *p, u64 cputime) 143 { 144 u64 *cpustat = kcpustat_this_cpu->cpustat; 145 146 /* Add guest time to process. */ 147 p->utime += cputime; 148 account_group_user_time(p, cputime); 149 p->gtime += cputime; 150 151 /* Add guest time to cpustat. */ 152 if (task_nice(p) > 0) { 153 cpustat[CPUTIME_NICE] += cputime; 154 cpustat[CPUTIME_GUEST_NICE] += cputime; 155 } else { 156 cpustat[CPUTIME_USER] += cputime; 157 cpustat[CPUTIME_GUEST] += cputime; 158 } 159 } 160 161 /* 162 * Account system cpu time to a process and desired cpustat field 163 * @p: the process that the cpu time gets accounted to 164 * @cputime: the cpu time spent in kernel space since the last update 165 * @index: pointer to cpustat field that has to be updated 166 */ 167 void account_system_index_time(struct task_struct *p, 168 u64 cputime, enum cpu_usage_stat index) 169 { 170 /* Add system time to process. */ 171 p->stime += cputime; 172 account_group_system_time(p, cputime); 173 174 /* Add system time to cpustat. */ 175 task_group_account_field(p, index, cputime); 176 177 /* Account for system time used */ 178 acct_account_cputime(p); 179 } 180 181 /* 182 * Account system cpu time to a process. 183 * @p: the process that the cpu time gets accounted to 184 * @hardirq_offset: the offset to subtract from hardirq_count() 185 * @cputime: the cpu time spent in kernel space since the last update 186 */ 187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 188 { 189 int index; 190 191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 192 account_guest_time(p, cputime); 193 return; 194 } 195 196 if (hardirq_count() - hardirq_offset) 197 index = CPUTIME_IRQ; 198 else if (in_serving_softirq()) 199 index = CPUTIME_SOFTIRQ; 200 else 201 index = CPUTIME_SYSTEM; 202 203 account_system_index_time(p, cputime, index); 204 } 205 206 /* 207 * Account for involuntary wait time. 208 * @cputime: the cpu time spent in involuntary wait 209 */ 210 void account_steal_time(u64 cputime) 211 { 212 u64 *cpustat = kcpustat_this_cpu->cpustat; 213 214 cpustat[CPUTIME_STEAL] += cputime; 215 } 216 217 /* 218 * Account for idle time. 219 * @cputime: the cpu time spent in idle wait 220 */ 221 void account_idle_time(u64 cputime) 222 { 223 u64 *cpustat = kcpustat_this_cpu->cpustat; 224 struct rq *rq = this_rq(); 225 226 if (atomic_read(&rq->nr_iowait) > 0) 227 cpustat[CPUTIME_IOWAIT] += cputime; 228 else 229 cpustat[CPUTIME_IDLE] += cputime; 230 } 231 232 /* 233 * When a guest is interrupted for a longer amount of time, missed clock 234 * ticks are not redelivered later. Due to that, this function may on 235 * occasion account more time than the calling functions think elapsed. 236 */ 237 static __always_inline u64 steal_account_process_time(u64 maxtime) 238 { 239 #ifdef CONFIG_PARAVIRT 240 if (static_key_false(¶virt_steal_enabled)) { 241 u64 steal; 242 243 steal = paravirt_steal_clock(smp_processor_id()); 244 steal -= this_rq()->prev_steal_time; 245 steal = min(steal, maxtime); 246 account_steal_time(steal); 247 this_rq()->prev_steal_time += steal; 248 249 return steal; 250 } 251 #endif 252 return 0; 253 } 254 255 /* 256 * Account how much elapsed time was spent in steal, irq, or softirq time. 257 */ 258 static inline u64 account_other_time(u64 max) 259 { 260 u64 accounted; 261 262 /* Shall be converted to a lockdep-enabled lightweight check */ 263 WARN_ON_ONCE(!irqs_disabled()); 264 265 accounted = steal_account_process_time(max); 266 267 if (accounted < max) 268 accounted += irqtime_tick_accounted(max - accounted); 269 270 return accounted; 271 } 272 273 #ifdef CONFIG_64BIT 274 static inline u64 read_sum_exec_runtime(struct task_struct *t) 275 { 276 return t->se.sum_exec_runtime; 277 } 278 #else 279 static u64 read_sum_exec_runtime(struct task_struct *t) 280 { 281 u64 ns; 282 struct rq_flags rf; 283 struct rq *rq; 284 285 rq = task_rq_lock(t, &rf); 286 ns = t->se.sum_exec_runtime; 287 task_rq_unlock(rq, t, &rf); 288 289 return ns; 290 } 291 #endif 292 293 /* 294 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 295 * tasks (sum on group iteration) belonging to @tsk's group. 296 */ 297 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 298 { 299 struct signal_struct *sig = tsk->signal; 300 u64 utime, stime; 301 struct task_struct *t; 302 unsigned int seq, nextseq; 303 unsigned long flags; 304 305 /* 306 * Update current task runtime to account pending time since last 307 * scheduler action or thread_group_cputime() call. This thread group 308 * might have other running tasks on different CPUs, but updating 309 * their runtime can affect syscall performance, so we skip account 310 * those pending times and rely only on values updated on tick or 311 * other scheduler action. 312 */ 313 if (same_thread_group(current, tsk)) 314 (void) task_sched_runtime(current); 315 316 rcu_read_lock(); 317 /* Attempt a lockless read on the first round. */ 318 nextseq = 0; 319 do { 320 seq = nextseq; 321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 322 times->utime = sig->utime; 323 times->stime = sig->stime; 324 times->sum_exec_runtime = sig->sum_sched_runtime; 325 326 for_each_thread(tsk, t) { 327 task_cputime(t, &utime, &stime); 328 times->utime += utime; 329 times->stime += stime; 330 times->sum_exec_runtime += read_sum_exec_runtime(t); 331 } 332 /* If lockless access failed, take the lock. */ 333 nextseq = 1; 334 } while (need_seqretry(&sig->stats_lock, seq)); 335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 336 rcu_read_unlock(); 337 } 338 339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 340 /* 341 * Account a tick to a process and cpustat 342 * @p: the process that the cpu time gets accounted to 343 * @user_tick: is the tick from userspace 344 * @rq: the pointer to rq 345 * 346 * Tick demultiplexing follows the order 347 * - pending hardirq update 348 * - pending softirq update 349 * - user_time 350 * - idle_time 351 * - system time 352 * - check for guest_time 353 * - else account as system_time 354 * 355 * Check for hardirq is done both for system and user time as there is 356 * no timer going off while we are on hardirq and hence we may never get an 357 * opportunity to update it solely in system time. 358 * p->stime and friends are only updated on system time and not on irq 359 * softirq as those do not count in task exec_runtime any more. 360 */ 361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 362 struct rq *rq, int ticks) 363 { 364 u64 other, cputime = TICK_NSEC * ticks; 365 366 /* 367 * When returning from idle, many ticks can get accounted at 368 * once, including some ticks of steal, irq, and softirq time. 369 * Subtract those ticks from the amount of time accounted to 370 * idle, or potentially user or system time. Due to rounding, 371 * other time can exceed ticks occasionally. 372 */ 373 other = account_other_time(ULONG_MAX); 374 if (other >= cputime) 375 return; 376 377 cputime -= other; 378 379 if (this_cpu_ksoftirqd() == p) { 380 /* 381 * ksoftirqd time do not get accounted in cpu_softirq_time. 382 * So, we have to handle it separately here. 383 * Also, p->stime needs to be updated for ksoftirqd. 384 */ 385 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 386 } else if (user_tick) { 387 account_user_time(p, cputime); 388 } else if (p == rq->idle) { 389 account_idle_time(cputime); 390 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 391 account_guest_time(p, cputime); 392 } else { 393 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 394 } 395 } 396 397 static void irqtime_account_idle_ticks(int ticks) 398 { 399 struct rq *rq = this_rq(); 400 401 irqtime_account_process_tick(current, 0, rq, ticks); 402 } 403 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 404 static inline void irqtime_account_idle_ticks(int ticks) {} 405 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 406 struct rq *rq, int nr_ticks) {} 407 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 408 409 /* 410 * Use precise platform statistics if available: 411 */ 412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 413 414 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 415 void vtime_common_task_switch(struct task_struct *prev) 416 { 417 if (is_idle_task(prev)) 418 vtime_account_idle(prev); 419 else 420 vtime_account_system(prev); 421 422 vtime_flush(prev); 423 arch_vtime_task_switch(prev); 424 } 425 #endif 426 427 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 428 429 430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 431 /* 432 * Archs that account the whole time spent in the idle task 433 * (outside irq) as idle time can rely on this and just implement 434 * vtime_account_system() and vtime_account_idle(). Archs that 435 * have other meaning of the idle time (s390 only includes the 436 * time spent by the CPU when it's in low power mode) must override 437 * vtime_account(). 438 */ 439 #ifndef __ARCH_HAS_VTIME_ACCOUNT 440 void vtime_account_irq_enter(struct task_struct *tsk) 441 { 442 if (!in_interrupt() && is_idle_task(tsk)) 443 vtime_account_idle(tsk); 444 else 445 vtime_account_system(tsk); 446 } 447 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 448 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 449 450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 451 { 452 *ut = p->utime; 453 *st = p->stime; 454 } 455 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 456 457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 458 { 459 struct task_cputime cputime; 460 461 thread_group_cputime(p, &cputime); 462 463 *ut = cputime.utime; 464 *st = cputime.stime; 465 } 466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 467 /* 468 * Account a single tick of cpu time. 469 * @p: the process that the cpu time gets accounted to 470 * @user_tick: indicates if the tick is a user or a system tick 471 */ 472 void account_process_tick(struct task_struct *p, int user_tick) 473 { 474 u64 cputime, steal; 475 struct rq *rq = this_rq(); 476 477 if (vtime_accounting_cpu_enabled()) 478 return; 479 480 if (sched_clock_irqtime) { 481 irqtime_account_process_tick(p, user_tick, rq, 1); 482 return; 483 } 484 485 cputime = TICK_NSEC; 486 steal = steal_account_process_time(ULONG_MAX); 487 488 if (steal >= cputime) 489 return; 490 491 cputime -= steal; 492 493 if (user_tick) 494 account_user_time(p, cputime); 495 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 496 account_system_time(p, HARDIRQ_OFFSET, cputime); 497 else 498 account_idle_time(cputime); 499 } 500 501 /* 502 * Account multiple ticks of idle time. 503 * @ticks: number of stolen ticks 504 */ 505 void account_idle_ticks(unsigned long ticks) 506 { 507 u64 cputime, steal; 508 509 if (sched_clock_irqtime) { 510 irqtime_account_idle_ticks(ticks); 511 return; 512 } 513 514 cputime = ticks * TICK_NSEC; 515 steal = steal_account_process_time(ULONG_MAX); 516 517 if (steal >= cputime) 518 return; 519 520 cputime -= steal; 521 account_idle_time(cputime); 522 } 523 524 /* 525 * Perform (stime * rtime) / total, but avoid multiplication overflow by 526 * loosing precision when the numbers are big. 527 */ 528 static u64 scale_stime(u64 stime, u64 rtime, u64 total) 529 { 530 u64 scaled; 531 532 for (;;) { 533 /* Make sure "rtime" is the bigger of stime/rtime */ 534 if (stime > rtime) 535 swap(rtime, stime); 536 537 /* Make sure 'total' fits in 32 bits */ 538 if (total >> 32) 539 goto drop_precision; 540 541 /* Does rtime (and thus stime) fit in 32 bits? */ 542 if (!(rtime >> 32)) 543 break; 544 545 /* Can we just balance rtime/stime rather than dropping bits? */ 546 if (stime >> 31) 547 goto drop_precision; 548 549 /* We can grow stime and shrink rtime and try to make them both fit */ 550 stime <<= 1; 551 rtime >>= 1; 552 continue; 553 554 drop_precision: 555 /* We drop from rtime, it has more bits than stime */ 556 rtime >>= 1; 557 total >>= 1; 558 } 559 560 /* 561 * Make sure gcc understands that this is a 32x32->64 multiply, 562 * followed by a 64/32->64 divide. 563 */ 564 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 565 return scaled; 566 } 567 568 /* 569 * Adjust tick based cputime random precision against scheduler runtime 570 * accounting. 571 * 572 * Tick based cputime accounting depend on random scheduling timeslices of a 573 * task to be interrupted or not by the timer. Depending on these 574 * circumstances, the number of these interrupts may be over or 575 * under-optimistic, matching the real user and system cputime with a variable 576 * precision. 577 * 578 * Fix this by scaling these tick based values against the total runtime 579 * accounted by the CFS scheduler. 580 * 581 * This code provides the following guarantees: 582 * 583 * stime + utime == rtime 584 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 585 * 586 * Assuming that rtime_i+1 >= rtime_i. 587 */ 588 static void cputime_adjust(struct task_cputime *curr, 589 struct prev_cputime *prev, 590 u64 *ut, u64 *st) 591 { 592 u64 rtime, stime, utime; 593 unsigned long flags; 594 595 /* Serialize concurrent callers such that we can honour our guarantees */ 596 raw_spin_lock_irqsave(&prev->lock, flags); 597 rtime = curr->sum_exec_runtime; 598 599 /* 600 * This is possible under two circumstances: 601 * - rtime isn't monotonic after all (a bug); 602 * - we got reordered by the lock. 603 * 604 * In both cases this acts as a filter such that the rest of the code 605 * can assume it is monotonic regardless of anything else. 606 */ 607 if (prev->stime + prev->utime >= rtime) 608 goto out; 609 610 stime = curr->stime; 611 utime = curr->utime; 612 613 /* 614 * If either stime or both stime and utime are 0, assume all runtime is 615 * userspace. Once a task gets some ticks, the monotonicy code at 616 * 'update' will ensure things converge to the observed ratio. 617 */ 618 if (stime != 0) { 619 if (utime == 0) 620 stime = rtime; 621 else 622 stime = scale_stime(stime, rtime, stime + utime); 623 } 624 625 /* 626 * Make sure stime doesn't go backwards; this preserves monotonicity 627 * for utime because rtime is monotonic. 628 * 629 * utime_i+1 = rtime_i+1 - stime_i 630 * = rtime_i+1 - (rtime_i - utime_i) 631 * = (rtime_i+1 - rtime_i) + utime_i 632 * >= utime_i 633 */ 634 if (stime < prev->stime) 635 stime = prev->stime; 636 utime = rtime - stime; 637 638 /* 639 * Make sure utime doesn't go backwards; this still preserves 640 * monotonicity for stime, analogous argument to above. 641 */ 642 if (utime < prev->utime) { 643 utime = prev->utime; 644 stime = rtime - utime; 645 } 646 647 prev->stime = stime; 648 prev->utime = utime; 649 out: 650 *ut = prev->utime; 651 *st = prev->stime; 652 raw_spin_unlock_irqrestore(&prev->lock, flags); 653 } 654 655 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 656 { 657 struct task_cputime cputime = { 658 .sum_exec_runtime = p->se.sum_exec_runtime, 659 }; 660 661 task_cputime(p, &cputime.utime, &cputime.stime); 662 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 663 } 664 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 665 666 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 667 { 668 struct task_cputime cputime; 669 670 thread_group_cputime(p, &cputime); 671 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 672 } 673 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 674 675 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 676 static u64 vtime_delta(struct task_struct *tsk) 677 { 678 unsigned long now = READ_ONCE(jiffies); 679 680 if (time_before(now, (unsigned long)tsk->vtime_snap)) 681 return 0; 682 683 return jiffies_to_nsecs(now - tsk->vtime_snap); 684 } 685 686 static u64 get_vtime_delta(struct task_struct *tsk) 687 { 688 unsigned long now = READ_ONCE(jiffies); 689 u64 delta, other; 690 691 /* 692 * Unlike tick based timing, vtime based timing never has lost 693 * ticks, and no need for steal time accounting to make up for 694 * lost ticks. Vtime accounts a rounded version of actual 695 * elapsed time. Limit account_other_time to prevent rounding 696 * errors from causing elapsed vtime to go negative. 697 */ 698 delta = jiffies_to_nsecs(now - tsk->vtime_snap); 699 other = account_other_time(delta); 700 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 701 tsk->vtime_snap = now; 702 703 return delta - other; 704 } 705 706 static void __vtime_account_system(struct task_struct *tsk) 707 { 708 account_system_time(tsk, irq_count(), get_vtime_delta(tsk)); 709 } 710 711 void vtime_account_system(struct task_struct *tsk) 712 { 713 if (!vtime_delta(tsk)) 714 return; 715 716 write_seqcount_begin(&tsk->vtime_seqcount); 717 __vtime_account_system(tsk); 718 write_seqcount_end(&tsk->vtime_seqcount); 719 } 720 721 void vtime_account_user(struct task_struct *tsk) 722 { 723 write_seqcount_begin(&tsk->vtime_seqcount); 724 tsk->vtime_snap_whence = VTIME_SYS; 725 if (vtime_delta(tsk)) 726 account_user_time(tsk, get_vtime_delta(tsk)); 727 write_seqcount_end(&tsk->vtime_seqcount); 728 } 729 730 void vtime_user_enter(struct task_struct *tsk) 731 { 732 write_seqcount_begin(&tsk->vtime_seqcount); 733 if (vtime_delta(tsk)) 734 __vtime_account_system(tsk); 735 tsk->vtime_snap_whence = VTIME_USER; 736 write_seqcount_end(&tsk->vtime_seqcount); 737 } 738 739 void vtime_guest_enter(struct task_struct *tsk) 740 { 741 /* 742 * The flags must be updated under the lock with 743 * the vtime_snap flush and update. 744 * That enforces a right ordering and update sequence 745 * synchronization against the reader (task_gtime()) 746 * that can thus safely catch up with a tickless delta. 747 */ 748 write_seqcount_begin(&tsk->vtime_seqcount); 749 if (vtime_delta(tsk)) 750 __vtime_account_system(tsk); 751 current->flags |= PF_VCPU; 752 write_seqcount_end(&tsk->vtime_seqcount); 753 } 754 EXPORT_SYMBOL_GPL(vtime_guest_enter); 755 756 void vtime_guest_exit(struct task_struct *tsk) 757 { 758 write_seqcount_begin(&tsk->vtime_seqcount); 759 __vtime_account_system(tsk); 760 current->flags &= ~PF_VCPU; 761 write_seqcount_end(&tsk->vtime_seqcount); 762 } 763 EXPORT_SYMBOL_GPL(vtime_guest_exit); 764 765 void vtime_account_idle(struct task_struct *tsk) 766 { 767 account_idle_time(get_vtime_delta(tsk)); 768 } 769 770 void arch_vtime_task_switch(struct task_struct *prev) 771 { 772 write_seqcount_begin(&prev->vtime_seqcount); 773 prev->vtime_snap_whence = VTIME_INACTIVE; 774 write_seqcount_end(&prev->vtime_seqcount); 775 776 write_seqcount_begin(¤t->vtime_seqcount); 777 current->vtime_snap_whence = VTIME_SYS; 778 current->vtime_snap = jiffies; 779 write_seqcount_end(¤t->vtime_seqcount); 780 } 781 782 void vtime_init_idle(struct task_struct *t, int cpu) 783 { 784 unsigned long flags; 785 786 local_irq_save(flags); 787 write_seqcount_begin(&t->vtime_seqcount); 788 t->vtime_snap_whence = VTIME_SYS; 789 t->vtime_snap = jiffies; 790 write_seqcount_end(&t->vtime_seqcount); 791 local_irq_restore(flags); 792 } 793 794 u64 task_gtime(struct task_struct *t) 795 { 796 unsigned int seq; 797 u64 gtime; 798 799 if (!vtime_accounting_enabled()) 800 return t->gtime; 801 802 do { 803 seq = read_seqcount_begin(&t->vtime_seqcount); 804 805 gtime = t->gtime; 806 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 807 gtime += vtime_delta(t); 808 809 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 810 811 return gtime; 812 } 813 814 /* 815 * Fetch cputime raw values from fields of task_struct and 816 * add up the pending nohz execution time since the last 817 * cputime snapshot. 818 */ 819 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 820 { 821 u64 delta; 822 unsigned int seq; 823 824 if (!vtime_accounting_enabled()) { 825 *utime = t->utime; 826 *stime = t->stime; 827 return; 828 } 829 830 do { 831 seq = read_seqcount_begin(&t->vtime_seqcount); 832 833 *utime = t->utime; 834 *stime = t->stime; 835 836 /* Task is sleeping, nothing to add */ 837 if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t)) 838 continue; 839 840 delta = vtime_delta(t); 841 842 /* 843 * Task runs either in user or kernel space, add pending nohz time to 844 * the right place. 845 */ 846 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) 847 *utime += delta; 848 else if (t->vtime_snap_whence == VTIME_SYS) 849 *stime += delta; 850 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 851 } 852 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 853