1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 7 #include <asm/cputime.h> 8 #endif 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's IRQ time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of IRQ time to wrong 20 * task when IRQ is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each IRQ in account_system_time. 22 */ 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 24 25 static int sched_clock_irqtime; 26 27 void enable_sched_clock_irqtime(void) 28 { 29 sched_clock_irqtime = 1; 30 } 31 32 void disable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 0; 35 } 36 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 38 enum cpu_usage_stat idx) 39 { 40 u64 *cpustat = kcpustat_this_cpu->cpustat; 41 42 u64_stats_update_begin(&irqtime->sync); 43 cpustat[idx] += delta; 44 irqtime->total += delta; 45 irqtime->tick_delta += delta; 46 u64_stats_update_end(&irqtime->sync); 47 } 48 49 /* 50 * Called after incrementing preempt_count on {soft,}irq_enter 51 * and before decrementing preempt_count on {soft,}irq_exit. 52 */ 53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset) 54 { 55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 56 unsigned int pc; 57 s64 delta; 58 int cpu; 59 60 if (!sched_clock_irqtime) 61 return; 62 63 cpu = smp_processor_id(); 64 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 65 irqtime->irq_start_time += delta; 66 pc = irq_count() - offset; 67 68 /* 69 * We do not account for softirq time from ksoftirqd here. 70 * We want to continue accounting softirq time to ksoftirqd thread 71 * in that case, so as not to confuse scheduler with a special task 72 * that do not consume any time, but still wants to run. 73 */ 74 if (pc & HARDIRQ_MASK) 75 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 76 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) 77 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 78 } 79 80 static u64 irqtime_tick_accounted(u64 maxtime) 81 { 82 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 83 u64 delta; 84 85 delta = min(irqtime->tick_delta, maxtime); 86 irqtime->tick_delta -= delta; 87 88 return delta; 89 } 90 91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 92 93 #define sched_clock_irqtime (0) 94 95 static u64 irqtime_tick_accounted(u64 dummy) 96 { 97 return 0; 98 } 99 100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 101 102 static inline void task_group_account_field(struct task_struct *p, int index, 103 u64 tmp) 104 { 105 /* 106 * Since all updates are sure to touch the root cgroup, we 107 * get ourselves ahead and touch it first. If the root cgroup 108 * is the only cgroup, then nothing else should be necessary. 109 * 110 */ 111 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 112 113 cgroup_account_cputime_field(p, index, tmp); 114 } 115 116 /* 117 * Account user CPU time to a process. 118 * @p: the process that the CPU time gets accounted to 119 * @cputime: the CPU time spent in user space since the last update 120 */ 121 void account_user_time(struct task_struct *p, u64 cputime) 122 { 123 int index; 124 125 /* Add user time to process. */ 126 p->utime += cputime; 127 account_group_user_time(p, cputime); 128 129 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 130 131 /* Add user time to cpustat. */ 132 task_group_account_field(p, index, cputime); 133 134 /* Account for user time used */ 135 acct_account_cputime(p); 136 } 137 138 /* 139 * Account guest CPU time to a process. 140 * @p: the process that the CPU time gets accounted to 141 * @cputime: the CPU time spent in virtual machine since the last update 142 */ 143 void account_guest_time(struct task_struct *p, u64 cputime) 144 { 145 u64 *cpustat = kcpustat_this_cpu->cpustat; 146 147 /* Add guest time to process. */ 148 p->utime += cputime; 149 account_group_user_time(p, cputime); 150 p->gtime += cputime; 151 152 /* Add guest time to cpustat. */ 153 if (task_nice(p) > 0) { 154 task_group_account_field(p, CPUTIME_NICE, cputime); 155 cpustat[CPUTIME_GUEST_NICE] += cputime; 156 } else { 157 task_group_account_field(p, CPUTIME_USER, cputime); 158 cpustat[CPUTIME_GUEST] += cputime; 159 } 160 } 161 162 /* 163 * Account system CPU time to a process and desired cpustat field 164 * @p: the process that the CPU time gets accounted to 165 * @cputime: the CPU time spent in kernel space since the last update 166 * @index: pointer to cpustat field that has to be updated 167 */ 168 void account_system_index_time(struct task_struct *p, 169 u64 cputime, enum cpu_usage_stat index) 170 { 171 /* Add system time to process. */ 172 p->stime += cputime; 173 account_group_system_time(p, cputime); 174 175 /* Add system time to cpustat. */ 176 task_group_account_field(p, index, cputime); 177 178 /* Account for system time used */ 179 acct_account_cputime(p); 180 } 181 182 /* 183 * Account system CPU time to a process. 184 * @p: the process that the CPU time gets accounted to 185 * @hardirq_offset: the offset to subtract from hardirq_count() 186 * @cputime: the CPU time spent in kernel space since the last update 187 */ 188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 189 { 190 int index; 191 192 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 193 account_guest_time(p, cputime); 194 return; 195 } 196 197 if (hardirq_count() - hardirq_offset) 198 index = CPUTIME_IRQ; 199 else if (in_serving_softirq()) 200 index = CPUTIME_SOFTIRQ; 201 else 202 index = CPUTIME_SYSTEM; 203 204 account_system_index_time(p, cputime, index); 205 } 206 207 /* 208 * Account for involuntary wait time. 209 * @cputime: the CPU time spent in involuntary wait 210 */ 211 void account_steal_time(u64 cputime) 212 { 213 u64 *cpustat = kcpustat_this_cpu->cpustat; 214 215 cpustat[CPUTIME_STEAL] += cputime; 216 } 217 218 /* 219 * Account for idle time. 220 * @cputime: the CPU time spent in idle wait 221 */ 222 void account_idle_time(u64 cputime) 223 { 224 u64 *cpustat = kcpustat_this_cpu->cpustat; 225 struct rq *rq = this_rq(); 226 227 if (atomic_read(&rq->nr_iowait) > 0) 228 cpustat[CPUTIME_IOWAIT] += cputime; 229 else 230 cpustat[CPUTIME_IDLE] += cputime; 231 } 232 233 234 #ifdef CONFIG_SCHED_CORE 235 /* 236 * Account for forceidle time due to core scheduling. 237 * 238 * REQUIRES: schedstat is enabled. 239 */ 240 void __account_forceidle_time(struct task_struct *p, u64 delta) 241 { 242 __schedstat_add(p->stats.core_forceidle_sum, delta); 243 244 task_group_account_field(p, CPUTIME_FORCEIDLE, delta); 245 } 246 #endif 247 248 /* 249 * When a guest is interrupted for a longer amount of time, missed clock 250 * ticks are not redelivered later. Due to that, this function may on 251 * occasion account more time than the calling functions think elapsed. 252 */ 253 static __always_inline u64 steal_account_process_time(u64 maxtime) 254 { 255 #ifdef CONFIG_PARAVIRT 256 if (static_key_false(¶virt_steal_enabled)) { 257 u64 steal; 258 259 steal = paravirt_steal_clock(smp_processor_id()); 260 steal -= this_rq()->prev_steal_time; 261 steal = min(steal, maxtime); 262 account_steal_time(steal); 263 this_rq()->prev_steal_time += steal; 264 265 return steal; 266 } 267 #endif 268 return 0; 269 } 270 271 /* 272 * Account how much elapsed time was spent in steal, IRQ, or softirq time. 273 */ 274 static inline u64 account_other_time(u64 max) 275 { 276 u64 accounted; 277 278 lockdep_assert_irqs_disabled(); 279 280 accounted = steal_account_process_time(max); 281 282 if (accounted < max) 283 accounted += irqtime_tick_accounted(max - accounted); 284 285 return accounted; 286 } 287 288 #ifdef CONFIG_64BIT 289 static inline u64 read_sum_exec_runtime(struct task_struct *t) 290 { 291 return t->se.sum_exec_runtime; 292 } 293 #else 294 static u64 read_sum_exec_runtime(struct task_struct *t) 295 { 296 u64 ns; 297 struct rq_flags rf; 298 struct rq *rq; 299 300 rq = task_rq_lock(t, &rf); 301 ns = t->se.sum_exec_runtime; 302 task_rq_unlock(rq, t, &rf); 303 304 return ns; 305 } 306 #endif 307 308 /* 309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 310 * tasks (sum on group iteration) belonging to @tsk's group. 311 */ 312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 313 { 314 struct signal_struct *sig = tsk->signal; 315 u64 utime, stime; 316 struct task_struct *t; 317 unsigned int seq, nextseq; 318 unsigned long flags; 319 320 /* 321 * Update current task runtime to account pending time since last 322 * scheduler action or thread_group_cputime() call. This thread group 323 * might have other running tasks on different CPUs, but updating 324 * their runtime can affect syscall performance, so we skip account 325 * those pending times and rely only on values updated on tick or 326 * other scheduler action. 327 */ 328 if (same_thread_group(current, tsk)) 329 (void) task_sched_runtime(current); 330 331 rcu_read_lock(); 332 /* Attempt a lockless read on the first round. */ 333 nextseq = 0; 334 do { 335 seq = nextseq; 336 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 337 times->utime = sig->utime; 338 times->stime = sig->stime; 339 times->sum_exec_runtime = sig->sum_sched_runtime; 340 341 for_each_thread(tsk, t) { 342 task_cputime(t, &utime, &stime); 343 times->utime += utime; 344 times->stime += stime; 345 times->sum_exec_runtime += read_sum_exec_runtime(t); 346 } 347 /* If lockless access failed, take the lock. */ 348 nextseq = 1; 349 } while (need_seqretry(&sig->stats_lock, seq)); 350 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 351 rcu_read_unlock(); 352 } 353 354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 355 /* 356 * Account a tick to a process and cpustat 357 * @p: the process that the CPU time gets accounted to 358 * @user_tick: is the tick from userspace 359 * @rq: the pointer to rq 360 * 361 * Tick demultiplexing follows the order 362 * - pending hardirq update 363 * - pending softirq update 364 * - user_time 365 * - idle_time 366 * - system time 367 * - check for guest_time 368 * - else account as system_time 369 * 370 * Check for hardirq is done both for system and user time as there is 371 * no timer going off while we are on hardirq and hence we may never get an 372 * opportunity to update it solely in system time. 373 * p->stime and friends are only updated on system time and not on IRQ 374 * softirq as those do not count in task exec_runtime any more. 375 */ 376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 377 int ticks) 378 { 379 u64 other, cputime = TICK_NSEC * ticks; 380 381 /* 382 * When returning from idle, many ticks can get accounted at 383 * once, including some ticks of steal, IRQ, and softirq time. 384 * Subtract those ticks from the amount of time accounted to 385 * idle, or potentially user or system time. Due to rounding, 386 * other time can exceed ticks occasionally. 387 */ 388 other = account_other_time(ULONG_MAX); 389 if (other >= cputime) 390 return; 391 392 cputime -= other; 393 394 if (this_cpu_ksoftirqd() == p) { 395 /* 396 * ksoftirqd time do not get accounted in cpu_softirq_time. 397 * So, we have to handle it separately here. 398 * Also, p->stime needs to be updated for ksoftirqd. 399 */ 400 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 401 } else if (user_tick) { 402 account_user_time(p, cputime); 403 } else if (p == this_rq()->idle) { 404 account_idle_time(cputime); 405 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 406 account_guest_time(p, cputime); 407 } else { 408 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 409 } 410 } 411 412 static void irqtime_account_idle_ticks(int ticks) 413 { 414 irqtime_account_process_tick(current, 0, ticks); 415 } 416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 417 static inline void irqtime_account_idle_ticks(int ticks) { } 418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 419 int nr_ticks) { } 420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 421 422 /* 423 * Use precise platform statistics if available: 424 */ 425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 426 427 void vtime_account_irq(struct task_struct *tsk, unsigned int offset) 428 { 429 unsigned int pc = irq_count() - offset; 430 431 if (pc & HARDIRQ_OFFSET) { 432 vtime_account_hardirq(tsk); 433 } else if (pc & SOFTIRQ_OFFSET) { 434 vtime_account_softirq(tsk); 435 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && 436 is_idle_task(tsk)) { 437 vtime_account_idle(tsk); 438 } else { 439 vtime_account_kernel(tsk); 440 } 441 } 442 443 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 444 u64 *ut, u64 *st) 445 { 446 *ut = curr->utime; 447 *st = curr->stime; 448 } 449 450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 451 { 452 *ut = p->utime; 453 *st = p->stime; 454 } 455 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 456 457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 458 { 459 struct task_cputime cputime; 460 461 thread_group_cputime(p, &cputime); 462 463 *ut = cputime.utime; 464 *st = cputime.stime; 465 } 466 467 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 468 469 /* 470 * Account a single tick of CPU time. 471 * @p: the process that the CPU time gets accounted to 472 * @user_tick: indicates if the tick is a user or a system tick 473 */ 474 void account_process_tick(struct task_struct *p, int user_tick) 475 { 476 u64 cputime, steal; 477 478 if (vtime_accounting_enabled_this_cpu()) 479 return; 480 481 if (sched_clock_irqtime) { 482 irqtime_account_process_tick(p, user_tick, 1); 483 return; 484 } 485 486 cputime = TICK_NSEC; 487 steal = steal_account_process_time(ULONG_MAX); 488 489 if (steal >= cputime) 490 return; 491 492 cputime -= steal; 493 494 if (user_tick) 495 account_user_time(p, cputime); 496 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 497 account_system_time(p, HARDIRQ_OFFSET, cputime); 498 else 499 account_idle_time(cputime); 500 } 501 502 /* 503 * Account multiple ticks of idle time. 504 * @ticks: number of stolen ticks 505 */ 506 void account_idle_ticks(unsigned long ticks) 507 { 508 u64 cputime, steal; 509 510 if (sched_clock_irqtime) { 511 irqtime_account_idle_ticks(ticks); 512 return; 513 } 514 515 cputime = ticks * TICK_NSEC; 516 steal = steal_account_process_time(ULONG_MAX); 517 518 if (steal >= cputime) 519 return; 520 521 cputime -= steal; 522 account_idle_time(cputime); 523 } 524 525 /* 526 * Adjust tick based cputime random precision against scheduler runtime 527 * accounting. 528 * 529 * Tick based cputime accounting depend on random scheduling timeslices of a 530 * task to be interrupted or not by the timer. Depending on these 531 * circumstances, the number of these interrupts may be over or 532 * under-optimistic, matching the real user and system cputime with a variable 533 * precision. 534 * 535 * Fix this by scaling these tick based values against the total runtime 536 * accounted by the CFS scheduler. 537 * 538 * This code provides the following guarantees: 539 * 540 * stime + utime == rtime 541 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 542 * 543 * Assuming that rtime_i+1 >= rtime_i. 544 */ 545 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 546 u64 *ut, u64 *st) 547 { 548 u64 rtime, stime, utime; 549 unsigned long flags; 550 551 /* Serialize concurrent callers such that we can honour our guarantees */ 552 raw_spin_lock_irqsave(&prev->lock, flags); 553 rtime = curr->sum_exec_runtime; 554 555 /* 556 * This is possible under two circumstances: 557 * - rtime isn't monotonic after all (a bug); 558 * - we got reordered by the lock. 559 * 560 * In both cases this acts as a filter such that the rest of the code 561 * can assume it is monotonic regardless of anything else. 562 */ 563 if (prev->stime + prev->utime >= rtime) 564 goto out; 565 566 stime = curr->stime; 567 utime = curr->utime; 568 569 /* 570 * If either stime or utime are 0, assume all runtime is userspace. 571 * Once a task gets some ticks, the monotonicity code at 'update:' 572 * will ensure things converge to the observed ratio. 573 */ 574 if (stime == 0) { 575 utime = rtime; 576 goto update; 577 } 578 579 if (utime == 0) { 580 stime = rtime; 581 goto update; 582 } 583 584 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 585 /* 586 * Because mul_u64_u64_div_u64() can approximate on some 587 * achitectures; enforce the constraint that: a*b/(b+c) <= a. 588 */ 589 if (unlikely(stime > rtime)) 590 stime = rtime; 591 592 update: 593 /* 594 * Make sure stime doesn't go backwards; this preserves monotonicity 595 * for utime because rtime is monotonic. 596 * 597 * utime_i+1 = rtime_i+1 - stime_i 598 * = rtime_i+1 - (rtime_i - utime_i) 599 * = (rtime_i+1 - rtime_i) + utime_i 600 * >= utime_i 601 */ 602 if (stime < prev->stime) 603 stime = prev->stime; 604 utime = rtime - stime; 605 606 /* 607 * Make sure utime doesn't go backwards; this still preserves 608 * monotonicity for stime, analogous argument to above. 609 */ 610 if (utime < prev->utime) { 611 utime = prev->utime; 612 stime = rtime - utime; 613 } 614 615 prev->stime = stime; 616 prev->utime = utime; 617 out: 618 *ut = prev->utime; 619 *st = prev->stime; 620 raw_spin_unlock_irqrestore(&prev->lock, flags); 621 } 622 623 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 624 { 625 struct task_cputime cputime = { 626 .sum_exec_runtime = p->se.sum_exec_runtime, 627 }; 628 629 if (task_cputime(p, &cputime.utime, &cputime.stime)) 630 cputime.sum_exec_runtime = task_sched_runtime(p); 631 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 632 } 633 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 634 635 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 636 { 637 struct task_cputime cputime; 638 639 thread_group_cputime(p, &cputime); 640 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 641 } 642 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 643 644 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 645 static u64 vtime_delta(struct vtime *vtime) 646 { 647 unsigned long long clock; 648 649 clock = sched_clock(); 650 if (clock < vtime->starttime) 651 return 0; 652 653 return clock - vtime->starttime; 654 } 655 656 static u64 get_vtime_delta(struct vtime *vtime) 657 { 658 u64 delta = vtime_delta(vtime); 659 u64 other; 660 661 /* 662 * Unlike tick based timing, vtime based timing never has lost 663 * ticks, and no need for steal time accounting to make up for 664 * lost ticks. Vtime accounts a rounded version of actual 665 * elapsed time. Limit account_other_time to prevent rounding 666 * errors from causing elapsed vtime to go negative. 667 */ 668 other = account_other_time(delta); 669 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 670 vtime->starttime += delta; 671 672 return delta - other; 673 } 674 675 static void vtime_account_system(struct task_struct *tsk, 676 struct vtime *vtime) 677 { 678 vtime->stime += get_vtime_delta(vtime); 679 if (vtime->stime >= TICK_NSEC) { 680 account_system_time(tsk, irq_count(), vtime->stime); 681 vtime->stime = 0; 682 } 683 } 684 685 static void vtime_account_guest(struct task_struct *tsk, 686 struct vtime *vtime) 687 { 688 vtime->gtime += get_vtime_delta(vtime); 689 if (vtime->gtime >= TICK_NSEC) { 690 account_guest_time(tsk, vtime->gtime); 691 vtime->gtime = 0; 692 } 693 } 694 695 static void __vtime_account_kernel(struct task_struct *tsk, 696 struct vtime *vtime) 697 { 698 /* We might have scheduled out from guest path */ 699 if (vtime->state == VTIME_GUEST) 700 vtime_account_guest(tsk, vtime); 701 else 702 vtime_account_system(tsk, vtime); 703 } 704 705 void vtime_account_kernel(struct task_struct *tsk) 706 { 707 struct vtime *vtime = &tsk->vtime; 708 709 if (!vtime_delta(vtime)) 710 return; 711 712 write_seqcount_begin(&vtime->seqcount); 713 __vtime_account_kernel(tsk, vtime); 714 write_seqcount_end(&vtime->seqcount); 715 } 716 717 void vtime_user_enter(struct task_struct *tsk) 718 { 719 struct vtime *vtime = &tsk->vtime; 720 721 write_seqcount_begin(&vtime->seqcount); 722 vtime_account_system(tsk, vtime); 723 vtime->state = VTIME_USER; 724 write_seqcount_end(&vtime->seqcount); 725 } 726 727 void vtime_user_exit(struct task_struct *tsk) 728 { 729 struct vtime *vtime = &tsk->vtime; 730 731 write_seqcount_begin(&vtime->seqcount); 732 vtime->utime += get_vtime_delta(vtime); 733 if (vtime->utime >= TICK_NSEC) { 734 account_user_time(tsk, vtime->utime); 735 vtime->utime = 0; 736 } 737 vtime->state = VTIME_SYS; 738 write_seqcount_end(&vtime->seqcount); 739 } 740 741 void vtime_guest_enter(struct task_struct *tsk) 742 { 743 struct vtime *vtime = &tsk->vtime; 744 /* 745 * The flags must be updated under the lock with 746 * the vtime_starttime flush and update. 747 * That enforces a right ordering and update sequence 748 * synchronization against the reader (task_gtime()) 749 * that can thus safely catch up with a tickless delta. 750 */ 751 write_seqcount_begin(&vtime->seqcount); 752 vtime_account_system(tsk, vtime); 753 tsk->flags |= PF_VCPU; 754 vtime->state = VTIME_GUEST; 755 write_seqcount_end(&vtime->seqcount); 756 } 757 EXPORT_SYMBOL_GPL(vtime_guest_enter); 758 759 void vtime_guest_exit(struct task_struct *tsk) 760 { 761 struct vtime *vtime = &tsk->vtime; 762 763 write_seqcount_begin(&vtime->seqcount); 764 vtime_account_guest(tsk, vtime); 765 tsk->flags &= ~PF_VCPU; 766 vtime->state = VTIME_SYS; 767 write_seqcount_end(&vtime->seqcount); 768 } 769 EXPORT_SYMBOL_GPL(vtime_guest_exit); 770 771 void vtime_account_idle(struct task_struct *tsk) 772 { 773 account_idle_time(get_vtime_delta(&tsk->vtime)); 774 } 775 776 void vtime_task_switch_generic(struct task_struct *prev) 777 { 778 struct vtime *vtime = &prev->vtime; 779 780 write_seqcount_begin(&vtime->seqcount); 781 if (vtime->state == VTIME_IDLE) 782 vtime_account_idle(prev); 783 else 784 __vtime_account_kernel(prev, vtime); 785 vtime->state = VTIME_INACTIVE; 786 vtime->cpu = -1; 787 write_seqcount_end(&vtime->seqcount); 788 789 vtime = ¤t->vtime; 790 791 write_seqcount_begin(&vtime->seqcount); 792 if (is_idle_task(current)) 793 vtime->state = VTIME_IDLE; 794 else if (current->flags & PF_VCPU) 795 vtime->state = VTIME_GUEST; 796 else 797 vtime->state = VTIME_SYS; 798 vtime->starttime = sched_clock(); 799 vtime->cpu = smp_processor_id(); 800 write_seqcount_end(&vtime->seqcount); 801 } 802 803 void vtime_init_idle(struct task_struct *t, int cpu) 804 { 805 struct vtime *vtime = &t->vtime; 806 unsigned long flags; 807 808 local_irq_save(flags); 809 write_seqcount_begin(&vtime->seqcount); 810 vtime->state = VTIME_IDLE; 811 vtime->starttime = sched_clock(); 812 vtime->cpu = cpu; 813 write_seqcount_end(&vtime->seqcount); 814 local_irq_restore(flags); 815 } 816 817 u64 task_gtime(struct task_struct *t) 818 { 819 struct vtime *vtime = &t->vtime; 820 unsigned int seq; 821 u64 gtime; 822 823 if (!vtime_accounting_enabled()) 824 return t->gtime; 825 826 do { 827 seq = read_seqcount_begin(&vtime->seqcount); 828 829 gtime = t->gtime; 830 if (vtime->state == VTIME_GUEST) 831 gtime += vtime->gtime + vtime_delta(vtime); 832 833 } while (read_seqcount_retry(&vtime->seqcount, seq)); 834 835 return gtime; 836 } 837 838 /* 839 * Fetch cputime raw values from fields of task_struct and 840 * add up the pending nohz execution time since the last 841 * cputime snapshot. 842 */ 843 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 844 { 845 struct vtime *vtime = &t->vtime; 846 unsigned int seq; 847 u64 delta; 848 int ret; 849 850 if (!vtime_accounting_enabled()) { 851 *utime = t->utime; 852 *stime = t->stime; 853 return false; 854 } 855 856 do { 857 ret = false; 858 seq = read_seqcount_begin(&vtime->seqcount); 859 860 *utime = t->utime; 861 *stime = t->stime; 862 863 /* Task is sleeping or idle, nothing to add */ 864 if (vtime->state < VTIME_SYS) 865 continue; 866 867 ret = true; 868 delta = vtime_delta(vtime); 869 870 /* 871 * Task runs either in user (including guest) or kernel space, 872 * add pending nohz time to the right place. 873 */ 874 if (vtime->state == VTIME_SYS) 875 *stime += vtime->stime + delta; 876 else 877 *utime += vtime->utime + delta; 878 } while (read_seqcount_retry(&vtime->seqcount, seq)); 879 880 return ret; 881 } 882 883 static int vtime_state_fetch(struct vtime *vtime, int cpu) 884 { 885 int state = READ_ONCE(vtime->state); 886 887 /* 888 * We raced against a context switch, fetch the 889 * kcpustat task again. 890 */ 891 if (vtime->cpu != cpu && vtime->cpu != -1) 892 return -EAGAIN; 893 894 /* 895 * Two possible things here: 896 * 1) We are seeing the scheduling out task (prev) or any past one. 897 * 2) We are seeing the scheduling in task (next) but it hasn't 898 * passed though vtime_task_switch() yet so the pending 899 * cputime of the prev task may not be flushed yet. 900 * 901 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 902 */ 903 if (state == VTIME_INACTIVE) 904 return -EAGAIN; 905 906 return state; 907 } 908 909 static u64 kcpustat_user_vtime(struct vtime *vtime) 910 { 911 if (vtime->state == VTIME_USER) 912 return vtime->utime + vtime_delta(vtime); 913 else if (vtime->state == VTIME_GUEST) 914 return vtime->gtime + vtime_delta(vtime); 915 return 0; 916 } 917 918 static int kcpustat_field_vtime(u64 *cpustat, 919 struct task_struct *tsk, 920 enum cpu_usage_stat usage, 921 int cpu, u64 *val) 922 { 923 struct vtime *vtime = &tsk->vtime; 924 unsigned int seq; 925 926 do { 927 int state; 928 929 seq = read_seqcount_begin(&vtime->seqcount); 930 931 state = vtime_state_fetch(vtime, cpu); 932 if (state < 0) 933 return state; 934 935 *val = cpustat[usage]; 936 937 /* 938 * Nice VS unnice cputime accounting may be inaccurate if 939 * the nice value has changed since the last vtime update. 940 * But proper fix would involve interrupting target on nice 941 * updates which is a no go on nohz_full (although the scheduler 942 * may still interrupt the target if rescheduling is needed...) 943 */ 944 switch (usage) { 945 case CPUTIME_SYSTEM: 946 if (state == VTIME_SYS) 947 *val += vtime->stime + vtime_delta(vtime); 948 break; 949 case CPUTIME_USER: 950 if (task_nice(tsk) <= 0) 951 *val += kcpustat_user_vtime(vtime); 952 break; 953 case CPUTIME_NICE: 954 if (task_nice(tsk) > 0) 955 *val += kcpustat_user_vtime(vtime); 956 break; 957 case CPUTIME_GUEST: 958 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 959 *val += vtime->gtime + vtime_delta(vtime); 960 break; 961 case CPUTIME_GUEST_NICE: 962 if (state == VTIME_GUEST && task_nice(tsk) > 0) 963 *val += vtime->gtime + vtime_delta(vtime); 964 break; 965 default: 966 break; 967 } 968 } while (read_seqcount_retry(&vtime->seqcount, seq)); 969 970 return 0; 971 } 972 973 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 974 enum cpu_usage_stat usage, int cpu) 975 { 976 u64 *cpustat = kcpustat->cpustat; 977 u64 val = cpustat[usage]; 978 struct rq *rq; 979 int err; 980 981 if (!vtime_accounting_enabled_cpu(cpu)) 982 return val; 983 984 rq = cpu_rq(cpu); 985 986 for (;;) { 987 struct task_struct *curr; 988 989 rcu_read_lock(); 990 curr = rcu_dereference(rq->curr); 991 if (WARN_ON_ONCE(!curr)) { 992 rcu_read_unlock(); 993 return cpustat[usage]; 994 } 995 996 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 997 rcu_read_unlock(); 998 999 if (!err) 1000 return val; 1001 1002 cpu_relax(); 1003 } 1004 } 1005 EXPORT_SYMBOL_GPL(kcpustat_field); 1006 1007 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 1008 const struct kernel_cpustat *src, 1009 struct task_struct *tsk, int cpu) 1010 { 1011 struct vtime *vtime = &tsk->vtime; 1012 unsigned int seq; 1013 1014 do { 1015 u64 *cpustat; 1016 u64 delta; 1017 int state; 1018 1019 seq = read_seqcount_begin(&vtime->seqcount); 1020 1021 state = vtime_state_fetch(vtime, cpu); 1022 if (state < 0) 1023 return state; 1024 1025 *dst = *src; 1026 cpustat = dst->cpustat; 1027 1028 /* Task is sleeping, dead or idle, nothing to add */ 1029 if (state < VTIME_SYS) 1030 continue; 1031 1032 delta = vtime_delta(vtime); 1033 1034 /* 1035 * Task runs either in user (including guest) or kernel space, 1036 * add pending nohz time to the right place. 1037 */ 1038 if (state == VTIME_SYS) { 1039 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1040 } else if (state == VTIME_USER) { 1041 if (task_nice(tsk) > 0) 1042 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1043 else 1044 cpustat[CPUTIME_USER] += vtime->utime + delta; 1045 } else { 1046 WARN_ON_ONCE(state != VTIME_GUEST); 1047 if (task_nice(tsk) > 0) { 1048 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1049 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1050 } else { 1051 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1052 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1053 } 1054 } 1055 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1056 1057 return 0; 1058 } 1059 1060 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1061 { 1062 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1063 struct rq *rq; 1064 int err; 1065 1066 if (!vtime_accounting_enabled_cpu(cpu)) { 1067 *dst = *src; 1068 return; 1069 } 1070 1071 rq = cpu_rq(cpu); 1072 1073 for (;;) { 1074 struct task_struct *curr; 1075 1076 rcu_read_lock(); 1077 curr = rcu_dereference(rq->curr); 1078 if (WARN_ON_ONCE(!curr)) { 1079 rcu_read_unlock(); 1080 *dst = *src; 1081 return; 1082 } 1083 1084 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1085 rcu_read_unlock(); 1086 1087 if (!err) 1088 return; 1089 1090 cpu_relax(); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1094 1095 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1096