1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Simple CPU accounting cgroup controller 4 */ 5 6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 7 #include <asm/cputime.h> 8 #endif 9 10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 11 12 /* 13 * There are no locks covering percpu hardirq/softirq time. 14 * They are only modified in vtime_account, on corresponding CPU 15 * with interrupts disabled. So, writes are safe. 16 * They are read and saved off onto struct rq in update_rq_clock(). 17 * This may result in other CPU reading this CPU's irq time and can 18 * race with irq/vtime_account on this CPU. We would either get old 19 * or new value with a side effect of accounting a slice of irq time to wrong 20 * task when irq is in progress while we read rq->clock. That is a worthy 21 * compromise in place of having locks on each irq in account_system_time. 22 */ 23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime); 24 25 static int sched_clock_irqtime; 26 27 void enable_sched_clock_irqtime(void) 28 { 29 sched_clock_irqtime = 1; 30 } 31 32 void disable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 0; 35 } 36 37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta, 38 enum cpu_usage_stat idx) 39 { 40 u64 *cpustat = kcpustat_this_cpu->cpustat; 41 42 u64_stats_update_begin(&irqtime->sync); 43 cpustat[idx] += delta; 44 irqtime->total += delta; 45 irqtime->tick_delta += delta; 46 u64_stats_update_end(&irqtime->sync); 47 } 48 49 /* 50 * Called after incrementing preempt_count on {soft,}irq_enter 51 * and before decrementing preempt_count on {soft,}irq_exit. 52 */ 53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset) 54 { 55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 56 unsigned int pc; 57 s64 delta; 58 int cpu; 59 60 if (!sched_clock_irqtime) 61 return; 62 63 cpu = smp_processor_id(); 64 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time; 65 irqtime->irq_start_time += delta; 66 pc = irq_count() - offset; 67 68 /* 69 * We do not account for softirq time from ksoftirqd here. 70 * We want to continue accounting softirq time to ksoftirqd thread 71 * in that case, so as not to confuse scheduler with a special task 72 * that do not consume any time, but still wants to run. 73 */ 74 if (pc & HARDIRQ_MASK) 75 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ); 76 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) 77 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ); 78 } 79 80 static u64 irqtime_tick_accounted(u64 maxtime) 81 { 82 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime); 83 u64 delta; 84 85 delta = min(irqtime->tick_delta, maxtime); 86 irqtime->tick_delta -= delta; 87 88 return delta; 89 } 90 91 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 92 93 #define sched_clock_irqtime (0) 94 95 static u64 irqtime_tick_accounted(u64 dummy) 96 { 97 return 0; 98 } 99 100 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 101 102 static inline void task_group_account_field(struct task_struct *p, int index, 103 u64 tmp) 104 { 105 /* 106 * Since all updates are sure to touch the root cgroup, we 107 * get ourselves ahead and touch it first. If the root cgroup 108 * is the only cgroup, then nothing else should be necessary. 109 * 110 */ 111 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 112 113 cgroup_account_cputime_field(p, index, tmp); 114 } 115 116 /* 117 * Account user CPU time to a process. 118 * @p: the process that the CPU time gets accounted to 119 * @cputime: the CPU time spent in user space since the last update 120 */ 121 void account_user_time(struct task_struct *p, u64 cputime) 122 { 123 int index; 124 125 /* Add user time to process. */ 126 p->utime += cputime; 127 account_group_user_time(p, cputime); 128 129 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 130 131 /* Add user time to cpustat. */ 132 task_group_account_field(p, index, cputime); 133 134 /* Account for user time used */ 135 acct_account_cputime(p); 136 } 137 138 /* 139 * Account guest CPU time to a process. 140 * @p: the process that the CPU time gets accounted to 141 * @cputime: the CPU time spent in virtual machine since the last update 142 */ 143 void account_guest_time(struct task_struct *p, u64 cputime) 144 { 145 u64 *cpustat = kcpustat_this_cpu->cpustat; 146 147 /* Add guest time to process. */ 148 p->utime += cputime; 149 account_group_user_time(p, cputime); 150 p->gtime += cputime; 151 152 /* Add guest time to cpustat. */ 153 if (task_nice(p) > 0) { 154 task_group_account_field(p, CPUTIME_NICE, cputime); 155 cpustat[CPUTIME_GUEST_NICE] += cputime; 156 } else { 157 task_group_account_field(p, CPUTIME_USER, cputime); 158 cpustat[CPUTIME_GUEST] += cputime; 159 } 160 } 161 162 /* 163 * Account system CPU time to a process and desired cpustat field 164 * @p: the process that the CPU time gets accounted to 165 * @cputime: the CPU time spent in kernel space since the last update 166 * @index: pointer to cpustat field that has to be updated 167 */ 168 void account_system_index_time(struct task_struct *p, 169 u64 cputime, enum cpu_usage_stat index) 170 { 171 /* Add system time to process. */ 172 p->stime += cputime; 173 account_group_system_time(p, cputime); 174 175 /* Add system time to cpustat. */ 176 task_group_account_field(p, index, cputime); 177 178 /* Account for system time used */ 179 acct_account_cputime(p); 180 } 181 182 /* 183 * Account system CPU time to a process. 184 * @p: the process that the CPU time gets accounted to 185 * @hardirq_offset: the offset to subtract from hardirq_count() 186 * @cputime: the CPU time spent in kernel space since the last update 187 */ 188 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime) 189 { 190 int index; 191 192 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 193 account_guest_time(p, cputime); 194 return; 195 } 196 197 if (hardirq_count() - hardirq_offset) 198 index = CPUTIME_IRQ; 199 else if (in_serving_softirq()) 200 index = CPUTIME_SOFTIRQ; 201 else 202 index = CPUTIME_SYSTEM; 203 204 account_system_index_time(p, cputime, index); 205 } 206 207 /* 208 * Account for involuntary wait time. 209 * @cputime: the CPU time spent in involuntary wait 210 */ 211 void account_steal_time(u64 cputime) 212 { 213 u64 *cpustat = kcpustat_this_cpu->cpustat; 214 215 cpustat[CPUTIME_STEAL] += cputime; 216 } 217 218 /* 219 * Account for idle time. 220 * @cputime: the CPU time spent in idle wait 221 */ 222 void account_idle_time(u64 cputime) 223 { 224 u64 *cpustat = kcpustat_this_cpu->cpustat; 225 struct rq *rq = this_rq(); 226 227 if (atomic_read(&rq->nr_iowait) > 0) 228 cpustat[CPUTIME_IOWAIT] += cputime; 229 else 230 cpustat[CPUTIME_IDLE] += cputime; 231 } 232 233 234 #ifdef CONFIG_SCHED_CORE 235 /* 236 * Account for forceidle time due to core scheduling. 237 * 238 * REQUIRES: schedstat is enabled. 239 */ 240 void __account_forceidle_time(struct task_struct *p, u64 delta) 241 { 242 __schedstat_add(p->stats.core_forceidle_sum, delta); 243 244 task_group_account_field(p, CPUTIME_FORCEIDLE, delta); 245 } 246 #endif 247 248 /* 249 * When a guest is interrupted for a longer amount of time, missed clock 250 * ticks are not redelivered later. Due to that, this function may on 251 * occasion account more time than the calling functions think elapsed. 252 */ 253 static __always_inline u64 steal_account_process_time(u64 maxtime) 254 { 255 #ifdef CONFIG_PARAVIRT 256 if (static_key_false(¶virt_steal_enabled)) { 257 u64 steal; 258 259 steal = paravirt_steal_clock(smp_processor_id()); 260 steal -= this_rq()->prev_steal_time; 261 steal = min(steal, maxtime); 262 account_steal_time(steal); 263 this_rq()->prev_steal_time += steal; 264 265 return steal; 266 } 267 #endif 268 return 0; 269 } 270 271 /* 272 * Account how much elapsed time was spent in steal, irq, or softirq time. 273 */ 274 static inline u64 account_other_time(u64 max) 275 { 276 u64 accounted; 277 278 lockdep_assert_irqs_disabled(); 279 280 accounted = steal_account_process_time(max); 281 282 if (accounted < max) 283 accounted += irqtime_tick_accounted(max - accounted); 284 285 return accounted; 286 } 287 288 #ifdef CONFIG_64BIT 289 static inline u64 read_sum_exec_runtime(struct task_struct *t) 290 { 291 return t->se.sum_exec_runtime; 292 } 293 #else 294 static u64 read_sum_exec_runtime(struct task_struct *t) 295 { 296 u64 ns; 297 struct rq_flags rf; 298 struct rq *rq; 299 300 rq = task_rq_lock(t, &rf); 301 ns = t->se.sum_exec_runtime; 302 task_rq_unlock(rq, t, &rf); 303 304 return ns; 305 } 306 #endif 307 308 /* 309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 310 * tasks (sum on group iteration) belonging to @tsk's group. 311 */ 312 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 313 { 314 struct signal_struct *sig = tsk->signal; 315 u64 utime, stime; 316 struct task_struct *t; 317 unsigned int seq, nextseq; 318 unsigned long flags; 319 320 /* 321 * Update current task runtime to account pending time since last 322 * scheduler action or thread_group_cputime() call. This thread group 323 * might have other running tasks on different CPUs, but updating 324 * their runtime can affect syscall performance, so we skip account 325 * those pending times and rely only on values updated on tick or 326 * other scheduler action. 327 */ 328 if (same_thread_group(current, tsk)) 329 (void) task_sched_runtime(current); 330 331 rcu_read_lock(); 332 /* Attempt a lockless read on the first round. */ 333 nextseq = 0; 334 do { 335 seq = nextseq; 336 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 337 times->utime = sig->utime; 338 times->stime = sig->stime; 339 times->sum_exec_runtime = sig->sum_sched_runtime; 340 341 for_each_thread(tsk, t) { 342 task_cputime(t, &utime, &stime); 343 times->utime += utime; 344 times->stime += stime; 345 times->sum_exec_runtime += read_sum_exec_runtime(t); 346 } 347 /* If lockless access failed, take the lock. */ 348 nextseq = 1; 349 } while (need_seqretry(&sig->stats_lock, seq)); 350 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 351 rcu_read_unlock(); 352 } 353 354 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 355 /* 356 * Account a tick to a process and cpustat 357 * @p: the process that the CPU time gets accounted to 358 * @user_tick: is the tick from userspace 359 * @rq: the pointer to rq 360 * 361 * Tick demultiplexing follows the order 362 * - pending hardirq update 363 * - pending softirq update 364 * - user_time 365 * - idle_time 366 * - system time 367 * - check for guest_time 368 * - else account as system_time 369 * 370 * Check for hardirq is done both for system and user time as there is 371 * no timer going off while we are on hardirq and hence we may never get an 372 * opportunity to update it solely in system time. 373 * p->stime and friends are only updated on system time and not on irq 374 * softirq as those do not count in task exec_runtime any more. 375 */ 376 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 377 int ticks) 378 { 379 u64 other, cputime = TICK_NSEC * ticks; 380 381 /* 382 * When returning from idle, many ticks can get accounted at 383 * once, including some ticks of steal, irq, and softirq time. 384 * Subtract those ticks from the amount of time accounted to 385 * idle, or potentially user or system time. Due to rounding, 386 * other time can exceed ticks occasionally. 387 */ 388 other = account_other_time(ULONG_MAX); 389 if (other >= cputime) 390 return; 391 392 cputime -= other; 393 394 if (this_cpu_ksoftirqd() == p) { 395 /* 396 * ksoftirqd time do not get accounted in cpu_softirq_time. 397 * So, we have to handle it separately here. 398 * Also, p->stime needs to be updated for ksoftirqd. 399 */ 400 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ); 401 } else if (user_tick) { 402 account_user_time(p, cputime); 403 } else if (p == this_rq()->idle) { 404 account_idle_time(cputime); 405 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 406 account_guest_time(p, cputime); 407 } else { 408 account_system_index_time(p, cputime, CPUTIME_SYSTEM); 409 } 410 } 411 412 static void irqtime_account_idle_ticks(int ticks) 413 { 414 irqtime_account_process_tick(current, 0, ticks); 415 } 416 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 417 static inline void irqtime_account_idle_ticks(int ticks) { } 418 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 419 int nr_ticks) { } 420 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 421 422 /* 423 * Use precise platform statistics if available: 424 */ 425 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 426 427 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH 428 void vtime_task_switch(struct task_struct *prev) 429 { 430 if (is_idle_task(prev)) 431 vtime_account_idle(prev); 432 else 433 vtime_account_kernel(prev); 434 435 vtime_flush(prev); 436 arch_vtime_task_switch(prev); 437 } 438 # endif 439 440 void vtime_account_irq(struct task_struct *tsk, unsigned int offset) 441 { 442 unsigned int pc = irq_count() - offset; 443 444 if (pc & HARDIRQ_OFFSET) { 445 vtime_account_hardirq(tsk); 446 } else if (pc & SOFTIRQ_OFFSET) { 447 vtime_account_softirq(tsk); 448 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) && 449 is_idle_task(tsk)) { 450 vtime_account_idle(tsk); 451 } else { 452 vtime_account_kernel(tsk); 453 } 454 } 455 456 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 457 u64 *ut, u64 *st) 458 { 459 *ut = curr->utime; 460 *st = curr->stime; 461 } 462 463 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 464 { 465 *ut = p->utime; 466 *st = p->stime; 467 } 468 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 469 470 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 471 { 472 struct task_cputime cputime; 473 474 thread_group_cputime(p, &cputime); 475 476 *ut = cputime.utime; 477 *st = cputime.stime; 478 } 479 480 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */ 481 482 /* 483 * Account a single tick of CPU time. 484 * @p: the process that the CPU time gets accounted to 485 * @user_tick: indicates if the tick is a user or a system tick 486 */ 487 void account_process_tick(struct task_struct *p, int user_tick) 488 { 489 u64 cputime, steal; 490 491 if (vtime_accounting_enabled_this_cpu()) 492 return; 493 494 if (sched_clock_irqtime) { 495 irqtime_account_process_tick(p, user_tick, 1); 496 return; 497 } 498 499 cputime = TICK_NSEC; 500 steal = steal_account_process_time(ULONG_MAX); 501 502 if (steal >= cputime) 503 return; 504 505 cputime -= steal; 506 507 if (user_tick) 508 account_user_time(p, cputime); 509 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET)) 510 account_system_time(p, HARDIRQ_OFFSET, cputime); 511 else 512 account_idle_time(cputime); 513 } 514 515 /* 516 * Account multiple ticks of idle time. 517 * @ticks: number of stolen ticks 518 */ 519 void account_idle_ticks(unsigned long ticks) 520 { 521 u64 cputime, steal; 522 523 if (sched_clock_irqtime) { 524 irqtime_account_idle_ticks(ticks); 525 return; 526 } 527 528 cputime = ticks * TICK_NSEC; 529 steal = steal_account_process_time(ULONG_MAX); 530 531 if (steal >= cputime) 532 return; 533 534 cputime -= steal; 535 account_idle_time(cputime); 536 } 537 538 /* 539 * Adjust tick based cputime random precision against scheduler runtime 540 * accounting. 541 * 542 * Tick based cputime accounting depend on random scheduling timeslices of a 543 * task to be interrupted or not by the timer. Depending on these 544 * circumstances, the number of these interrupts may be over or 545 * under-optimistic, matching the real user and system cputime with a variable 546 * precision. 547 * 548 * Fix this by scaling these tick based values against the total runtime 549 * accounted by the CFS scheduler. 550 * 551 * This code provides the following guarantees: 552 * 553 * stime + utime == rtime 554 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 555 * 556 * Assuming that rtime_i+1 >= rtime_i. 557 */ 558 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, 559 u64 *ut, u64 *st) 560 { 561 u64 rtime, stime, utime; 562 unsigned long flags; 563 564 /* Serialize concurrent callers such that we can honour our guarantees */ 565 raw_spin_lock_irqsave(&prev->lock, flags); 566 rtime = curr->sum_exec_runtime; 567 568 /* 569 * This is possible under two circumstances: 570 * - rtime isn't monotonic after all (a bug); 571 * - we got reordered by the lock. 572 * 573 * In both cases this acts as a filter such that the rest of the code 574 * can assume it is monotonic regardless of anything else. 575 */ 576 if (prev->stime + prev->utime >= rtime) 577 goto out; 578 579 stime = curr->stime; 580 utime = curr->utime; 581 582 /* 583 * If either stime or utime are 0, assume all runtime is userspace. 584 * Once a task gets some ticks, the monotonicity code at 'update:' 585 * will ensure things converge to the observed ratio. 586 */ 587 if (stime == 0) { 588 utime = rtime; 589 goto update; 590 } 591 592 if (utime == 0) { 593 stime = rtime; 594 goto update; 595 } 596 597 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime); 598 599 update: 600 /* 601 * Make sure stime doesn't go backwards; this preserves monotonicity 602 * for utime because rtime is monotonic. 603 * 604 * utime_i+1 = rtime_i+1 - stime_i 605 * = rtime_i+1 - (rtime_i - utime_i) 606 * = (rtime_i+1 - rtime_i) + utime_i 607 * >= utime_i 608 */ 609 if (stime < prev->stime) 610 stime = prev->stime; 611 utime = rtime - stime; 612 613 /* 614 * Make sure utime doesn't go backwards; this still preserves 615 * monotonicity for stime, analogous argument to above. 616 */ 617 if (utime < prev->utime) { 618 utime = prev->utime; 619 stime = rtime - utime; 620 } 621 622 prev->stime = stime; 623 prev->utime = utime; 624 out: 625 *ut = prev->utime; 626 *st = prev->stime; 627 raw_spin_unlock_irqrestore(&prev->lock, flags); 628 } 629 630 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 631 { 632 struct task_cputime cputime = { 633 .sum_exec_runtime = p->se.sum_exec_runtime, 634 }; 635 636 if (task_cputime(p, &cputime.utime, &cputime.stime)) 637 cputime.sum_exec_runtime = task_sched_runtime(p); 638 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 639 } 640 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 641 642 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st) 643 { 644 struct task_cputime cputime; 645 646 thread_group_cputime(p, &cputime); 647 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 648 } 649 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 650 651 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 652 static u64 vtime_delta(struct vtime *vtime) 653 { 654 unsigned long long clock; 655 656 clock = sched_clock(); 657 if (clock < vtime->starttime) 658 return 0; 659 660 return clock - vtime->starttime; 661 } 662 663 static u64 get_vtime_delta(struct vtime *vtime) 664 { 665 u64 delta = vtime_delta(vtime); 666 u64 other; 667 668 /* 669 * Unlike tick based timing, vtime based timing never has lost 670 * ticks, and no need for steal time accounting to make up for 671 * lost ticks. Vtime accounts a rounded version of actual 672 * elapsed time. Limit account_other_time to prevent rounding 673 * errors from causing elapsed vtime to go negative. 674 */ 675 other = account_other_time(delta); 676 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE); 677 vtime->starttime += delta; 678 679 return delta - other; 680 } 681 682 static void vtime_account_system(struct task_struct *tsk, 683 struct vtime *vtime) 684 { 685 vtime->stime += get_vtime_delta(vtime); 686 if (vtime->stime >= TICK_NSEC) { 687 account_system_time(tsk, irq_count(), vtime->stime); 688 vtime->stime = 0; 689 } 690 } 691 692 static void vtime_account_guest(struct task_struct *tsk, 693 struct vtime *vtime) 694 { 695 vtime->gtime += get_vtime_delta(vtime); 696 if (vtime->gtime >= TICK_NSEC) { 697 account_guest_time(tsk, vtime->gtime); 698 vtime->gtime = 0; 699 } 700 } 701 702 static void __vtime_account_kernel(struct task_struct *tsk, 703 struct vtime *vtime) 704 { 705 /* We might have scheduled out from guest path */ 706 if (vtime->state == VTIME_GUEST) 707 vtime_account_guest(tsk, vtime); 708 else 709 vtime_account_system(tsk, vtime); 710 } 711 712 void vtime_account_kernel(struct task_struct *tsk) 713 { 714 struct vtime *vtime = &tsk->vtime; 715 716 if (!vtime_delta(vtime)) 717 return; 718 719 write_seqcount_begin(&vtime->seqcount); 720 __vtime_account_kernel(tsk, vtime); 721 write_seqcount_end(&vtime->seqcount); 722 } 723 724 void vtime_user_enter(struct task_struct *tsk) 725 { 726 struct vtime *vtime = &tsk->vtime; 727 728 write_seqcount_begin(&vtime->seqcount); 729 vtime_account_system(tsk, vtime); 730 vtime->state = VTIME_USER; 731 write_seqcount_end(&vtime->seqcount); 732 } 733 734 void vtime_user_exit(struct task_struct *tsk) 735 { 736 struct vtime *vtime = &tsk->vtime; 737 738 write_seqcount_begin(&vtime->seqcount); 739 vtime->utime += get_vtime_delta(vtime); 740 if (vtime->utime >= TICK_NSEC) { 741 account_user_time(tsk, vtime->utime); 742 vtime->utime = 0; 743 } 744 vtime->state = VTIME_SYS; 745 write_seqcount_end(&vtime->seqcount); 746 } 747 748 void vtime_guest_enter(struct task_struct *tsk) 749 { 750 struct vtime *vtime = &tsk->vtime; 751 /* 752 * The flags must be updated under the lock with 753 * the vtime_starttime flush and update. 754 * That enforces a right ordering and update sequence 755 * synchronization against the reader (task_gtime()) 756 * that can thus safely catch up with a tickless delta. 757 */ 758 write_seqcount_begin(&vtime->seqcount); 759 vtime_account_system(tsk, vtime); 760 tsk->flags |= PF_VCPU; 761 vtime->state = VTIME_GUEST; 762 write_seqcount_end(&vtime->seqcount); 763 } 764 EXPORT_SYMBOL_GPL(vtime_guest_enter); 765 766 void vtime_guest_exit(struct task_struct *tsk) 767 { 768 struct vtime *vtime = &tsk->vtime; 769 770 write_seqcount_begin(&vtime->seqcount); 771 vtime_account_guest(tsk, vtime); 772 tsk->flags &= ~PF_VCPU; 773 vtime->state = VTIME_SYS; 774 write_seqcount_end(&vtime->seqcount); 775 } 776 EXPORT_SYMBOL_GPL(vtime_guest_exit); 777 778 void vtime_account_idle(struct task_struct *tsk) 779 { 780 account_idle_time(get_vtime_delta(&tsk->vtime)); 781 } 782 783 void vtime_task_switch_generic(struct task_struct *prev) 784 { 785 struct vtime *vtime = &prev->vtime; 786 787 write_seqcount_begin(&vtime->seqcount); 788 if (vtime->state == VTIME_IDLE) 789 vtime_account_idle(prev); 790 else 791 __vtime_account_kernel(prev, vtime); 792 vtime->state = VTIME_INACTIVE; 793 vtime->cpu = -1; 794 write_seqcount_end(&vtime->seqcount); 795 796 vtime = ¤t->vtime; 797 798 write_seqcount_begin(&vtime->seqcount); 799 if (is_idle_task(current)) 800 vtime->state = VTIME_IDLE; 801 else if (current->flags & PF_VCPU) 802 vtime->state = VTIME_GUEST; 803 else 804 vtime->state = VTIME_SYS; 805 vtime->starttime = sched_clock(); 806 vtime->cpu = smp_processor_id(); 807 write_seqcount_end(&vtime->seqcount); 808 } 809 810 void vtime_init_idle(struct task_struct *t, int cpu) 811 { 812 struct vtime *vtime = &t->vtime; 813 unsigned long flags; 814 815 local_irq_save(flags); 816 write_seqcount_begin(&vtime->seqcount); 817 vtime->state = VTIME_IDLE; 818 vtime->starttime = sched_clock(); 819 vtime->cpu = cpu; 820 write_seqcount_end(&vtime->seqcount); 821 local_irq_restore(flags); 822 } 823 824 u64 task_gtime(struct task_struct *t) 825 { 826 struct vtime *vtime = &t->vtime; 827 unsigned int seq; 828 u64 gtime; 829 830 if (!vtime_accounting_enabled()) 831 return t->gtime; 832 833 do { 834 seq = read_seqcount_begin(&vtime->seqcount); 835 836 gtime = t->gtime; 837 if (vtime->state == VTIME_GUEST) 838 gtime += vtime->gtime + vtime_delta(vtime); 839 840 } while (read_seqcount_retry(&vtime->seqcount, seq)); 841 842 return gtime; 843 } 844 845 /* 846 * Fetch cputime raw values from fields of task_struct and 847 * add up the pending nohz execution time since the last 848 * cputime snapshot. 849 */ 850 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime) 851 { 852 struct vtime *vtime = &t->vtime; 853 unsigned int seq; 854 u64 delta; 855 int ret; 856 857 if (!vtime_accounting_enabled()) { 858 *utime = t->utime; 859 *stime = t->stime; 860 return false; 861 } 862 863 do { 864 ret = false; 865 seq = read_seqcount_begin(&vtime->seqcount); 866 867 *utime = t->utime; 868 *stime = t->stime; 869 870 /* Task is sleeping or idle, nothing to add */ 871 if (vtime->state < VTIME_SYS) 872 continue; 873 874 ret = true; 875 delta = vtime_delta(vtime); 876 877 /* 878 * Task runs either in user (including guest) or kernel space, 879 * add pending nohz time to the right place. 880 */ 881 if (vtime->state == VTIME_SYS) 882 *stime += vtime->stime + delta; 883 else 884 *utime += vtime->utime + delta; 885 } while (read_seqcount_retry(&vtime->seqcount, seq)); 886 887 return ret; 888 } 889 890 static int vtime_state_fetch(struct vtime *vtime, int cpu) 891 { 892 int state = READ_ONCE(vtime->state); 893 894 /* 895 * We raced against a context switch, fetch the 896 * kcpustat task again. 897 */ 898 if (vtime->cpu != cpu && vtime->cpu != -1) 899 return -EAGAIN; 900 901 /* 902 * Two possible things here: 903 * 1) We are seeing the scheduling out task (prev) or any past one. 904 * 2) We are seeing the scheduling in task (next) but it hasn't 905 * passed though vtime_task_switch() yet so the pending 906 * cputime of the prev task may not be flushed yet. 907 * 908 * Case 1) is ok but 2) is not. So wait for a safe VTIME state. 909 */ 910 if (state == VTIME_INACTIVE) 911 return -EAGAIN; 912 913 return state; 914 } 915 916 static u64 kcpustat_user_vtime(struct vtime *vtime) 917 { 918 if (vtime->state == VTIME_USER) 919 return vtime->utime + vtime_delta(vtime); 920 else if (vtime->state == VTIME_GUEST) 921 return vtime->gtime + vtime_delta(vtime); 922 return 0; 923 } 924 925 static int kcpustat_field_vtime(u64 *cpustat, 926 struct task_struct *tsk, 927 enum cpu_usage_stat usage, 928 int cpu, u64 *val) 929 { 930 struct vtime *vtime = &tsk->vtime; 931 unsigned int seq; 932 933 do { 934 int state; 935 936 seq = read_seqcount_begin(&vtime->seqcount); 937 938 state = vtime_state_fetch(vtime, cpu); 939 if (state < 0) 940 return state; 941 942 *val = cpustat[usage]; 943 944 /* 945 * Nice VS unnice cputime accounting may be inaccurate if 946 * the nice value has changed since the last vtime update. 947 * But proper fix would involve interrupting target on nice 948 * updates which is a no go on nohz_full (although the scheduler 949 * may still interrupt the target if rescheduling is needed...) 950 */ 951 switch (usage) { 952 case CPUTIME_SYSTEM: 953 if (state == VTIME_SYS) 954 *val += vtime->stime + vtime_delta(vtime); 955 break; 956 case CPUTIME_USER: 957 if (task_nice(tsk) <= 0) 958 *val += kcpustat_user_vtime(vtime); 959 break; 960 case CPUTIME_NICE: 961 if (task_nice(tsk) > 0) 962 *val += kcpustat_user_vtime(vtime); 963 break; 964 case CPUTIME_GUEST: 965 if (state == VTIME_GUEST && task_nice(tsk) <= 0) 966 *val += vtime->gtime + vtime_delta(vtime); 967 break; 968 case CPUTIME_GUEST_NICE: 969 if (state == VTIME_GUEST && task_nice(tsk) > 0) 970 *val += vtime->gtime + vtime_delta(vtime); 971 break; 972 default: 973 break; 974 } 975 } while (read_seqcount_retry(&vtime->seqcount, seq)); 976 977 return 0; 978 } 979 980 u64 kcpustat_field(struct kernel_cpustat *kcpustat, 981 enum cpu_usage_stat usage, int cpu) 982 { 983 u64 *cpustat = kcpustat->cpustat; 984 u64 val = cpustat[usage]; 985 struct rq *rq; 986 int err; 987 988 if (!vtime_accounting_enabled_cpu(cpu)) 989 return val; 990 991 rq = cpu_rq(cpu); 992 993 for (;;) { 994 struct task_struct *curr; 995 996 rcu_read_lock(); 997 curr = rcu_dereference(rq->curr); 998 if (WARN_ON_ONCE(!curr)) { 999 rcu_read_unlock(); 1000 return cpustat[usage]; 1001 } 1002 1003 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val); 1004 rcu_read_unlock(); 1005 1006 if (!err) 1007 return val; 1008 1009 cpu_relax(); 1010 } 1011 } 1012 EXPORT_SYMBOL_GPL(kcpustat_field); 1013 1014 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst, 1015 const struct kernel_cpustat *src, 1016 struct task_struct *tsk, int cpu) 1017 { 1018 struct vtime *vtime = &tsk->vtime; 1019 unsigned int seq; 1020 1021 do { 1022 u64 *cpustat; 1023 u64 delta; 1024 int state; 1025 1026 seq = read_seqcount_begin(&vtime->seqcount); 1027 1028 state = vtime_state_fetch(vtime, cpu); 1029 if (state < 0) 1030 return state; 1031 1032 *dst = *src; 1033 cpustat = dst->cpustat; 1034 1035 /* Task is sleeping, dead or idle, nothing to add */ 1036 if (state < VTIME_SYS) 1037 continue; 1038 1039 delta = vtime_delta(vtime); 1040 1041 /* 1042 * Task runs either in user (including guest) or kernel space, 1043 * add pending nohz time to the right place. 1044 */ 1045 if (state == VTIME_SYS) { 1046 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta; 1047 } else if (state == VTIME_USER) { 1048 if (task_nice(tsk) > 0) 1049 cpustat[CPUTIME_NICE] += vtime->utime + delta; 1050 else 1051 cpustat[CPUTIME_USER] += vtime->utime + delta; 1052 } else { 1053 WARN_ON_ONCE(state != VTIME_GUEST); 1054 if (task_nice(tsk) > 0) { 1055 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta; 1056 cpustat[CPUTIME_NICE] += vtime->gtime + delta; 1057 } else { 1058 cpustat[CPUTIME_GUEST] += vtime->gtime + delta; 1059 cpustat[CPUTIME_USER] += vtime->gtime + delta; 1060 } 1061 } 1062 } while (read_seqcount_retry(&vtime->seqcount, seq)); 1063 1064 return 0; 1065 } 1066 1067 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) 1068 { 1069 const struct kernel_cpustat *src = &kcpustat_cpu(cpu); 1070 struct rq *rq; 1071 int err; 1072 1073 if (!vtime_accounting_enabled_cpu(cpu)) { 1074 *dst = *src; 1075 return; 1076 } 1077 1078 rq = cpu_rq(cpu); 1079 1080 for (;;) { 1081 struct task_struct *curr; 1082 1083 rcu_read_lock(); 1084 curr = rcu_dereference(rq->curr); 1085 if (WARN_ON_ONCE(!curr)) { 1086 rcu_read_unlock(); 1087 *dst = *src; 1088 return; 1089 } 1090 1091 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu); 1092 rcu_read_unlock(); 1093 1094 if (!err) 1095 return; 1096 1097 cpu_relax(); 1098 } 1099 } 1100 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch); 1101 1102 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 1103