1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include "sched.h" 7 8 9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 10 11 /* 12 * There are no locks covering percpu hardirq/softirq time. 13 * They are only modified in vtime_account, on corresponding CPU 14 * with interrupts disabled. So, writes are safe. 15 * They are read and saved off onto struct rq in update_rq_clock(). 16 * This may result in other CPU reading this CPU's irq time and can 17 * race with irq/vtime_account on this CPU. We would either get old 18 * or new value with a side effect of accounting a slice of irq time to wrong 19 * task when irq is in progress while we read rq->clock. That is a worthy 20 * compromise in place of having locks on each irq in account_system_time. 21 */ 22 DEFINE_PER_CPU(u64, cpu_hardirq_time); 23 DEFINE_PER_CPU(u64, cpu_softirq_time); 24 25 static DEFINE_PER_CPU(u64, irq_start_time); 26 static int sched_clock_irqtime; 27 28 void enable_sched_clock_irqtime(void) 29 { 30 sched_clock_irqtime = 1; 31 } 32 33 void disable_sched_clock_irqtime(void) 34 { 35 sched_clock_irqtime = 0; 36 } 37 38 #ifndef CONFIG_64BIT 39 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 40 #endif /* CONFIG_64BIT */ 41 42 /* 43 * Called before incrementing preempt_count on {soft,}irq_enter 44 * and before decrementing preempt_count on {soft,}irq_exit. 45 */ 46 void vtime_account(struct task_struct *curr) 47 { 48 unsigned long flags; 49 s64 delta; 50 int cpu; 51 52 if (!sched_clock_irqtime) 53 return; 54 55 local_irq_save(flags); 56 57 cpu = smp_processor_id(); 58 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 59 __this_cpu_add(irq_start_time, delta); 60 61 irq_time_write_begin(); 62 /* 63 * We do not account for softirq time from ksoftirqd here. 64 * We want to continue accounting softirq time to ksoftirqd thread 65 * in that case, so as not to confuse scheduler with a special task 66 * that do not consume any time, but still wants to run. 67 */ 68 if (hardirq_count()) 69 __this_cpu_add(cpu_hardirq_time, delta); 70 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 71 __this_cpu_add(cpu_softirq_time, delta); 72 73 irq_time_write_end(); 74 local_irq_restore(flags); 75 } 76 EXPORT_SYMBOL_GPL(vtime_account); 77 78 static int irqtime_account_hi_update(void) 79 { 80 u64 *cpustat = kcpustat_this_cpu->cpustat; 81 unsigned long flags; 82 u64 latest_ns; 83 int ret = 0; 84 85 local_irq_save(flags); 86 latest_ns = this_cpu_read(cpu_hardirq_time); 87 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 88 ret = 1; 89 local_irq_restore(flags); 90 return ret; 91 } 92 93 static int irqtime_account_si_update(void) 94 { 95 u64 *cpustat = kcpustat_this_cpu->cpustat; 96 unsigned long flags; 97 u64 latest_ns; 98 int ret = 0; 99 100 local_irq_save(flags); 101 latest_ns = this_cpu_read(cpu_softirq_time); 102 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 103 ret = 1; 104 local_irq_restore(flags); 105 return ret; 106 } 107 108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 109 110 #define sched_clock_irqtime (0) 111 112 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 113 114 static inline void task_group_account_field(struct task_struct *p, int index, 115 u64 tmp) 116 { 117 #ifdef CONFIG_CGROUP_CPUACCT 118 struct kernel_cpustat *kcpustat; 119 struct cpuacct *ca; 120 #endif 121 /* 122 * Since all updates are sure to touch the root cgroup, we 123 * get ourselves ahead and touch it first. If the root cgroup 124 * is the only cgroup, then nothing else should be necessary. 125 * 126 */ 127 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 128 129 #ifdef CONFIG_CGROUP_CPUACCT 130 if (unlikely(!cpuacct_subsys.active)) 131 return; 132 133 rcu_read_lock(); 134 ca = task_ca(p); 135 while (ca && (ca != &root_cpuacct)) { 136 kcpustat = this_cpu_ptr(ca->cpustat); 137 kcpustat->cpustat[index] += tmp; 138 ca = parent_ca(ca); 139 } 140 rcu_read_unlock(); 141 #endif 142 } 143 144 /* 145 * Account user cpu time to a process. 146 * @p: the process that the cpu time gets accounted to 147 * @cputime: the cpu time spent in user space since the last update 148 * @cputime_scaled: cputime scaled by cpu frequency 149 */ 150 void account_user_time(struct task_struct *p, cputime_t cputime, 151 cputime_t cputime_scaled) 152 { 153 int index; 154 155 /* Add user time to process. */ 156 p->utime += cputime; 157 p->utimescaled += cputime_scaled; 158 account_group_user_time(p, cputime); 159 160 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 161 162 /* Add user time to cpustat. */ 163 task_group_account_field(p, index, (__force u64) cputime); 164 165 /* Account for user time used */ 166 acct_update_integrals(p); 167 } 168 169 /* 170 * Account guest cpu time to a process. 171 * @p: the process that the cpu time gets accounted to 172 * @cputime: the cpu time spent in virtual machine since the last update 173 * @cputime_scaled: cputime scaled by cpu frequency 174 */ 175 static void account_guest_time(struct task_struct *p, cputime_t cputime, 176 cputime_t cputime_scaled) 177 { 178 u64 *cpustat = kcpustat_this_cpu->cpustat; 179 180 /* Add guest time to process. */ 181 p->utime += cputime; 182 p->utimescaled += cputime_scaled; 183 account_group_user_time(p, cputime); 184 p->gtime += cputime; 185 186 /* Add guest time to cpustat. */ 187 if (TASK_NICE(p) > 0) { 188 cpustat[CPUTIME_NICE] += (__force u64) cputime; 189 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 190 } else { 191 cpustat[CPUTIME_USER] += (__force u64) cputime; 192 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 193 } 194 } 195 196 /* 197 * Account system cpu time to a process and desired cpustat field 198 * @p: the process that the cpu time gets accounted to 199 * @cputime: the cpu time spent in kernel space since the last update 200 * @cputime_scaled: cputime scaled by cpu frequency 201 * @target_cputime64: pointer to cpustat field that has to be updated 202 */ 203 static inline 204 void __account_system_time(struct task_struct *p, cputime_t cputime, 205 cputime_t cputime_scaled, int index) 206 { 207 /* Add system time to process. */ 208 p->stime += cputime; 209 p->stimescaled += cputime_scaled; 210 account_group_system_time(p, cputime); 211 212 /* Add system time to cpustat. */ 213 task_group_account_field(p, index, (__force u64) cputime); 214 215 /* Account for system time used */ 216 acct_update_integrals(p); 217 } 218 219 /* 220 * Account system cpu time to a process. 221 * @p: the process that the cpu time gets accounted to 222 * @hardirq_offset: the offset to subtract from hardirq_count() 223 * @cputime: the cpu time spent in kernel space since the last update 224 * @cputime_scaled: cputime scaled by cpu frequency 225 */ 226 void account_system_time(struct task_struct *p, int hardirq_offset, 227 cputime_t cputime, cputime_t cputime_scaled) 228 { 229 int index; 230 231 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 232 account_guest_time(p, cputime, cputime_scaled); 233 return; 234 } 235 236 if (hardirq_count() - hardirq_offset) 237 index = CPUTIME_IRQ; 238 else if (in_serving_softirq()) 239 index = CPUTIME_SOFTIRQ; 240 else 241 index = CPUTIME_SYSTEM; 242 243 __account_system_time(p, cputime, cputime_scaled, index); 244 } 245 246 /* 247 * Account for involuntary wait time. 248 * @cputime: the cpu time spent in involuntary wait 249 */ 250 void account_steal_time(cputime_t cputime) 251 { 252 u64 *cpustat = kcpustat_this_cpu->cpustat; 253 254 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 255 } 256 257 /* 258 * Account for idle time. 259 * @cputime: the cpu time spent in idle wait 260 */ 261 void account_idle_time(cputime_t cputime) 262 { 263 u64 *cpustat = kcpustat_this_cpu->cpustat; 264 struct rq *rq = this_rq(); 265 266 if (atomic_read(&rq->nr_iowait) > 0) 267 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 268 else 269 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 270 } 271 272 static __always_inline bool steal_account_process_tick(void) 273 { 274 #ifdef CONFIG_PARAVIRT 275 if (static_key_false(¶virt_steal_enabled)) { 276 u64 steal, st = 0; 277 278 steal = paravirt_steal_clock(smp_processor_id()); 279 steal -= this_rq()->prev_steal_time; 280 281 st = steal_ticks(steal); 282 this_rq()->prev_steal_time += st * TICK_NSEC; 283 284 account_steal_time(st); 285 return st; 286 } 287 #endif 288 return false; 289 } 290 291 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 292 293 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 294 /* 295 * Account a tick to a process and cpustat 296 * @p: the process that the cpu time gets accounted to 297 * @user_tick: is the tick from userspace 298 * @rq: the pointer to rq 299 * 300 * Tick demultiplexing follows the order 301 * - pending hardirq update 302 * - pending softirq update 303 * - user_time 304 * - idle_time 305 * - system time 306 * - check for guest_time 307 * - else account as system_time 308 * 309 * Check for hardirq is done both for system and user time as there is 310 * no timer going off while we are on hardirq and hence we may never get an 311 * opportunity to update it solely in system time. 312 * p->stime and friends are only updated on system time and not on irq 313 * softirq as those do not count in task exec_runtime any more. 314 */ 315 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 316 struct rq *rq) 317 { 318 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 319 u64 *cpustat = kcpustat_this_cpu->cpustat; 320 321 if (steal_account_process_tick()) 322 return; 323 324 if (irqtime_account_hi_update()) { 325 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 326 } else if (irqtime_account_si_update()) { 327 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 328 } else if (this_cpu_ksoftirqd() == p) { 329 /* 330 * ksoftirqd time do not get accounted in cpu_softirq_time. 331 * So, we have to handle it separately here. 332 * Also, p->stime needs to be updated for ksoftirqd. 333 */ 334 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 335 CPUTIME_SOFTIRQ); 336 } else if (user_tick) { 337 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 338 } else if (p == rq->idle) { 339 account_idle_time(cputime_one_jiffy); 340 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 341 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 342 } else { 343 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 344 CPUTIME_SYSTEM); 345 } 346 } 347 348 static void irqtime_account_idle_ticks(int ticks) 349 { 350 int i; 351 struct rq *rq = this_rq(); 352 353 for (i = 0; i < ticks; i++) 354 irqtime_account_process_tick(current, 0, rq); 355 } 356 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 357 static void irqtime_account_idle_ticks(int ticks) {} 358 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 359 struct rq *rq) {} 360 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 361 362 /* 363 * Account a single tick of cpu time. 364 * @p: the process that the cpu time gets accounted to 365 * @user_tick: indicates if the tick is a user or a system tick 366 */ 367 void account_process_tick(struct task_struct *p, int user_tick) 368 { 369 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 370 struct rq *rq = this_rq(); 371 372 if (sched_clock_irqtime) { 373 irqtime_account_process_tick(p, user_tick, rq); 374 return; 375 } 376 377 if (steal_account_process_tick()) 378 return; 379 380 if (user_tick) 381 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 382 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 383 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 384 one_jiffy_scaled); 385 else 386 account_idle_time(cputime_one_jiffy); 387 } 388 389 /* 390 * Account multiple ticks of steal time. 391 * @p: the process from which the cpu time has been stolen 392 * @ticks: number of stolen ticks 393 */ 394 void account_steal_ticks(unsigned long ticks) 395 { 396 account_steal_time(jiffies_to_cputime(ticks)); 397 } 398 399 /* 400 * Account multiple ticks of idle time. 401 * @ticks: number of stolen ticks 402 */ 403 void account_idle_ticks(unsigned long ticks) 404 { 405 406 if (sched_clock_irqtime) { 407 irqtime_account_idle_ticks(ticks); 408 return; 409 } 410 411 account_idle_time(jiffies_to_cputime(ticks)); 412 } 413 414 #endif 415 416 /* 417 * Use precise platform statistics if available: 418 */ 419 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 420 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 421 { 422 *ut = p->utime; 423 *st = p->stime; 424 } 425 426 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 427 { 428 struct task_cputime cputime; 429 430 thread_group_cputime(p, &cputime); 431 432 *ut = cputime.utime; 433 *st = cputime.stime; 434 } 435 436 /* 437 * Archs that account the whole time spent in the idle task 438 * (outside irq) as idle time can rely on this and just implement 439 * vtime_account_system() and vtime_account_idle(). Archs that 440 * have other meaning of the idle time (s390 only includes the 441 * time spent by the CPU when it's in low power mode) must override 442 * vtime_account(). 443 */ 444 #ifndef __ARCH_HAS_VTIME_ACCOUNT 445 void vtime_account(struct task_struct *tsk) 446 { 447 unsigned long flags; 448 449 local_irq_save(flags); 450 451 if (in_interrupt() || !is_idle_task(tsk)) 452 vtime_account_system(tsk); 453 else 454 vtime_account_idle(tsk); 455 456 local_irq_restore(flags); 457 } 458 EXPORT_SYMBOL_GPL(vtime_account); 459 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 460 461 #else 462 463 #ifndef nsecs_to_cputime 464 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 465 #endif 466 467 static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) 468 { 469 u64 temp = (__force u64) rtime; 470 471 temp *= (__force u64) utime; 472 473 if (sizeof(cputime_t) == 4) 474 temp = div_u64(temp, (__force u32) total); 475 else 476 temp = div64_u64(temp, (__force u64) total); 477 478 return (__force cputime_t) temp; 479 } 480 481 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 482 { 483 cputime_t rtime, utime = p->utime, total = utime + p->stime; 484 485 /* 486 * Use CFS's precise accounting: 487 */ 488 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 489 490 if (total) 491 utime = scale_utime(utime, rtime, total); 492 else 493 utime = rtime; 494 495 /* 496 * Compare with previous values, to keep monotonicity: 497 */ 498 p->prev_utime = max(p->prev_utime, utime); 499 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 500 501 *ut = p->prev_utime; 502 *st = p->prev_stime; 503 } 504 505 /* 506 * Must be called with siglock held. 507 */ 508 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 509 { 510 struct signal_struct *sig = p->signal; 511 struct task_cputime cputime; 512 cputime_t rtime, utime, total; 513 514 thread_group_cputime(p, &cputime); 515 516 total = cputime.utime + cputime.stime; 517 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 518 519 if (total) 520 utime = scale_utime(cputime.utime, rtime, total); 521 else 522 utime = rtime; 523 524 sig->prev_utime = max(sig->prev_utime, utime); 525 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 526 527 *ut = sig->prev_utime; 528 *st = sig->prev_stime; 529 } 530 #endif 531