1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 #ifdef CONFIG_PARAVIRT 9 #include <asm/paravirt.h> 10 #endif 11 12 13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 14 15 /* 16 * There are no locks covering percpu hardirq/softirq time. 17 * They are only modified in vtime_account, on corresponding CPU 18 * with interrupts disabled. So, writes are safe. 19 * They are read and saved off onto struct rq in update_rq_clock(). 20 * This may result in other CPU reading this CPU's irq time and can 21 * race with irq/vtime_account on this CPU. We would either get old 22 * or new value with a side effect of accounting a slice of irq time to wrong 23 * task when irq is in progress while we read rq->clock. That is a worthy 24 * compromise in place of having locks on each irq in account_system_time. 25 */ 26 DEFINE_PER_CPU(u64, cpu_hardirq_time); 27 DEFINE_PER_CPU(u64, cpu_softirq_time); 28 29 static DEFINE_PER_CPU(u64, irq_start_time); 30 static int sched_clock_irqtime; 31 32 void enable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 1; 35 } 36 37 void disable_sched_clock_irqtime(void) 38 { 39 sched_clock_irqtime = 0; 40 } 41 42 #ifndef CONFIG_64BIT 43 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 44 #endif /* CONFIG_64BIT */ 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 unsigned long flags; 53 s64 delta; 54 int cpu; 55 56 if (!sched_clock_irqtime) 57 return; 58 59 local_irq_save(flags); 60 61 cpu = smp_processor_id(); 62 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 63 __this_cpu_add(irq_start_time, delta); 64 65 irq_time_write_begin(); 66 /* 67 * We do not account for softirq time from ksoftirqd here. 68 * We want to continue accounting softirq time to ksoftirqd thread 69 * in that case, so as not to confuse scheduler with a special task 70 * that do not consume any time, but still wants to run. 71 */ 72 if (hardirq_count()) 73 __this_cpu_add(cpu_hardirq_time, delta); 74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 75 __this_cpu_add(cpu_softirq_time, delta); 76 77 irq_time_write_end(); 78 local_irq_restore(flags); 79 } 80 EXPORT_SYMBOL_GPL(irqtime_account_irq); 81 82 static int irqtime_account_hi_update(void) 83 { 84 u64 *cpustat = kcpustat_this_cpu->cpustat; 85 unsigned long flags; 86 u64 latest_ns; 87 int ret = 0; 88 89 local_irq_save(flags); 90 latest_ns = this_cpu_read(cpu_hardirq_time); 91 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 92 ret = 1; 93 local_irq_restore(flags); 94 return ret; 95 } 96 97 static int irqtime_account_si_update(void) 98 { 99 u64 *cpustat = kcpustat_this_cpu->cpustat; 100 unsigned long flags; 101 u64 latest_ns; 102 int ret = 0; 103 104 local_irq_save(flags); 105 latest_ns = this_cpu_read(cpu_softirq_time); 106 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 107 ret = 1; 108 local_irq_restore(flags); 109 return ret; 110 } 111 112 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 113 114 #define sched_clock_irqtime (0) 115 116 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 117 118 static inline void task_group_account_field(struct task_struct *p, int index, 119 u64 tmp) 120 { 121 /* 122 * Since all updates are sure to touch the root cgroup, we 123 * get ourselves ahead and touch it first. If the root cgroup 124 * is the only cgroup, then nothing else should be necessary. 125 * 126 */ 127 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 128 129 cpuacct_account_field(p, index, tmp); 130 } 131 132 /* 133 * Account user cpu time to a process. 134 * @p: the process that the cpu time gets accounted to 135 * @cputime: the cpu time spent in user space since the last update 136 * @cputime_scaled: cputime scaled by cpu frequency 137 */ 138 void account_user_time(struct task_struct *p, cputime_t cputime, 139 cputime_t cputime_scaled) 140 { 141 int index; 142 143 /* Add user time to process. */ 144 p->utime += cputime; 145 p->utimescaled += cputime_scaled; 146 account_group_user_time(p, cputime); 147 148 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 149 150 /* Add user time to cpustat. */ 151 task_group_account_field(p, index, (__force u64) cputime); 152 153 /* Account for user time used */ 154 acct_account_cputime(p); 155 } 156 157 /* 158 * Account guest cpu time to a process. 159 * @p: the process that the cpu time gets accounted to 160 * @cputime: the cpu time spent in virtual machine since the last update 161 * @cputime_scaled: cputime scaled by cpu frequency 162 */ 163 static void account_guest_time(struct task_struct *p, cputime_t cputime, 164 cputime_t cputime_scaled) 165 { 166 u64 *cpustat = kcpustat_this_cpu->cpustat; 167 168 /* Add guest time to process. */ 169 p->utime += cputime; 170 p->utimescaled += cputime_scaled; 171 account_group_user_time(p, cputime); 172 p->gtime += cputime; 173 174 /* Add guest time to cpustat. */ 175 if (task_nice(p) > 0) { 176 cpustat[CPUTIME_NICE] += (__force u64) cputime; 177 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 178 } else { 179 cpustat[CPUTIME_USER] += (__force u64) cputime; 180 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 181 } 182 } 183 184 /* 185 * Account system cpu time to a process and desired cpustat field 186 * @p: the process that the cpu time gets accounted to 187 * @cputime: the cpu time spent in kernel space since the last update 188 * @cputime_scaled: cputime scaled by cpu frequency 189 * @target_cputime64: pointer to cpustat field that has to be updated 190 */ 191 static inline 192 void __account_system_time(struct task_struct *p, cputime_t cputime, 193 cputime_t cputime_scaled, int index) 194 { 195 /* Add system time to process. */ 196 p->stime += cputime; 197 p->stimescaled += cputime_scaled; 198 account_group_system_time(p, cputime); 199 200 /* Add system time to cpustat. */ 201 task_group_account_field(p, index, (__force u64) cputime); 202 203 /* Account for system time used */ 204 acct_account_cputime(p); 205 } 206 207 /* 208 * Account system cpu time to a process. 209 * @p: the process that the cpu time gets accounted to 210 * @hardirq_offset: the offset to subtract from hardirq_count() 211 * @cputime: the cpu time spent in kernel space since the last update 212 * @cputime_scaled: cputime scaled by cpu frequency 213 */ 214 void account_system_time(struct task_struct *p, int hardirq_offset, 215 cputime_t cputime, cputime_t cputime_scaled) 216 { 217 int index; 218 219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 220 account_guest_time(p, cputime, cputime_scaled); 221 return; 222 } 223 224 if (hardirq_count() - hardirq_offset) 225 index = CPUTIME_IRQ; 226 else if (in_serving_softirq()) 227 index = CPUTIME_SOFTIRQ; 228 else 229 index = CPUTIME_SYSTEM; 230 231 __account_system_time(p, cputime, cputime_scaled, index); 232 } 233 234 /* 235 * Account for involuntary wait time. 236 * @cputime: the cpu time spent in involuntary wait 237 */ 238 void account_steal_time(cputime_t cputime) 239 { 240 u64 *cpustat = kcpustat_this_cpu->cpustat; 241 242 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 243 } 244 245 /* 246 * Account for idle time. 247 * @cputime: the cpu time spent in idle wait 248 */ 249 void account_idle_time(cputime_t cputime) 250 { 251 u64 *cpustat = kcpustat_this_cpu->cpustat; 252 struct rq *rq = this_rq(); 253 254 if (atomic_read(&rq->nr_iowait) > 0) 255 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 256 else 257 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 258 } 259 260 static __always_inline bool steal_account_process_tick(void) 261 { 262 #ifdef CONFIG_PARAVIRT 263 if (static_key_false(¶virt_steal_enabled)) { 264 u64 steal; 265 unsigned long steal_jiffies; 266 267 steal = paravirt_steal_clock(smp_processor_id()); 268 steal -= this_rq()->prev_steal_time; 269 270 /* 271 * steal is in nsecs but our caller is expecting steal 272 * time in jiffies. Lets cast the result to jiffies 273 * granularity and account the rest on the next rounds. 274 */ 275 steal_jiffies = nsecs_to_jiffies(steal); 276 this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies); 277 278 account_steal_time(jiffies_to_cputime(steal_jiffies)); 279 return steal_jiffies; 280 } 281 #endif 282 return false; 283 } 284 285 /* 286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 287 * tasks (sum on group iteration) belonging to @tsk's group. 288 */ 289 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 290 { 291 struct signal_struct *sig = tsk->signal; 292 cputime_t utime, stime; 293 struct task_struct *t; 294 unsigned int seq, nextseq; 295 unsigned long flags; 296 297 rcu_read_lock(); 298 /* Attempt a lockless read on the first round. */ 299 nextseq = 0; 300 do { 301 seq = nextseq; 302 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 303 times->utime = sig->utime; 304 times->stime = sig->stime; 305 times->sum_exec_runtime = sig->sum_sched_runtime; 306 307 for_each_thread(tsk, t) { 308 task_cputime(t, &utime, &stime); 309 times->utime += utime; 310 times->stime += stime; 311 times->sum_exec_runtime += task_sched_runtime(t); 312 } 313 /* If lockless access failed, take the lock. */ 314 nextseq = 1; 315 } while (need_seqretry(&sig->stats_lock, seq)); 316 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 317 rcu_read_unlock(); 318 } 319 320 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 321 /* 322 * Account a tick to a process and cpustat 323 * @p: the process that the cpu time gets accounted to 324 * @user_tick: is the tick from userspace 325 * @rq: the pointer to rq 326 * 327 * Tick demultiplexing follows the order 328 * - pending hardirq update 329 * - pending softirq update 330 * - user_time 331 * - idle_time 332 * - system time 333 * - check for guest_time 334 * - else account as system_time 335 * 336 * Check for hardirq is done both for system and user time as there is 337 * no timer going off while we are on hardirq and hence we may never get an 338 * opportunity to update it solely in system time. 339 * p->stime and friends are only updated on system time and not on irq 340 * softirq as those do not count in task exec_runtime any more. 341 */ 342 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 343 struct rq *rq, int ticks) 344 { 345 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy); 346 u64 cputime = (__force u64) cputime_one_jiffy; 347 u64 *cpustat = kcpustat_this_cpu->cpustat; 348 349 if (steal_account_process_tick()) 350 return; 351 352 cputime *= ticks; 353 scaled *= ticks; 354 355 if (irqtime_account_hi_update()) { 356 cpustat[CPUTIME_IRQ] += cputime; 357 } else if (irqtime_account_si_update()) { 358 cpustat[CPUTIME_SOFTIRQ] += cputime; 359 } else if (this_cpu_ksoftirqd() == p) { 360 /* 361 * ksoftirqd time do not get accounted in cpu_softirq_time. 362 * So, we have to handle it separately here. 363 * Also, p->stime needs to be updated for ksoftirqd. 364 */ 365 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); 366 } else if (user_tick) { 367 account_user_time(p, cputime, scaled); 368 } else if (p == rq->idle) { 369 account_idle_time(cputime); 370 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 371 account_guest_time(p, cputime, scaled); 372 } else { 373 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); 374 } 375 } 376 377 static void irqtime_account_idle_ticks(int ticks) 378 { 379 struct rq *rq = this_rq(); 380 381 irqtime_account_process_tick(current, 0, rq, ticks); 382 } 383 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 384 static inline void irqtime_account_idle_ticks(int ticks) {} 385 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 386 struct rq *rq, int nr_ticks) {} 387 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 388 389 /* 390 * Use precise platform statistics if available: 391 */ 392 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 393 394 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 395 void vtime_common_task_switch(struct task_struct *prev) 396 { 397 if (is_idle_task(prev)) 398 vtime_account_idle(prev); 399 else 400 vtime_account_system(prev); 401 402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 403 vtime_account_user(prev); 404 #endif 405 arch_vtime_task_switch(prev); 406 } 407 #endif 408 409 /* 410 * Archs that account the whole time spent in the idle task 411 * (outside irq) as idle time can rely on this and just implement 412 * vtime_account_system() and vtime_account_idle(). Archs that 413 * have other meaning of the idle time (s390 only includes the 414 * time spent by the CPU when it's in low power mode) must override 415 * vtime_account(). 416 */ 417 #ifndef __ARCH_HAS_VTIME_ACCOUNT 418 void vtime_common_account_irq_enter(struct task_struct *tsk) 419 { 420 if (!in_interrupt()) { 421 /* 422 * If we interrupted user, context_tracking_in_user() 423 * is 1 because the context tracking don't hook 424 * on irq entry/exit. This way we know if 425 * we need to flush user time on kernel entry. 426 */ 427 if (context_tracking_in_user()) { 428 vtime_account_user(tsk); 429 return; 430 } 431 432 if (is_idle_task(tsk)) { 433 vtime_account_idle(tsk); 434 return; 435 } 436 } 437 vtime_account_system(tsk); 438 } 439 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter); 440 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 441 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 442 443 444 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 445 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 446 { 447 *ut = p->utime; 448 *st = p->stime; 449 } 450 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 451 452 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 453 { 454 struct task_cputime cputime; 455 456 thread_group_cputime(p, &cputime); 457 458 *ut = cputime.utime; 459 *st = cputime.stime; 460 } 461 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 462 /* 463 * Account a single tick of cpu time. 464 * @p: the process that the cpu time gets accounted to 465 * @user_tick: indicates if the tick is a user or a system tick 466 */ 467 void account_process_tick(struct task_struct *p, int user_tick) 468 { 469 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 470 struct rq *rq = this_rq(); 471 472 if (vtime_accounting_cpu_enabled()) 473 return; 474 475 if (sched_clock_irqtime) { 476 irqtime_account_process_tick(p, user_tick, rq, 1); 477 return; 478 } 479 480 if (steal_account_process_tick()) 481 return; 482 483 if (user_tick) 484 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 485 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 486 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 487 one_jiffy_scaled); 488 else 489 account_idle_time(cputime_one_jiffy); 490 } 491 492 /* 493 * Account multiple ticks of steal time. 494 * @p: the process from which the cpu time has been stolen 495 * @ticks: number of stolen ticks 496 */ 497 void account_steal_ticks(unsigned long ticks) 498 { 499 account_steal_time(jiffies_to_cputime(ticks)); 500 } 501 502 /* 503 * Account multiple ticks of idle time. 504 * @ticks: number of stolen ticks 505 */ 506 void account_idle_ticks(unsigned long ticks) 507 { 508 509 if (sched_clock_irqtime) { 510 irqtime_account_idle_ticks(ticks); 511 return; 512 } 513 514 account_idle_time(jiffies_to_cputime(ticks)); 515 } 516 517 /* 518 * Perform (stime * rtime) / total, but avoid multiplication overflow by 519 * loosing precision when the numbers are big. 520 */ 521 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 522 { 523 u64 scaled; 524 525 for (;;) { 526 /* Make sure "rtime" is the bigger of stime/rtime */ 527 if (stime > rtime) 528 swap(rtime, stime); 529 530 /* Make sure 'total' fits in 32 bits */ 531 if (total >> 32) 532 goto drop_precision; 533 534 /* Does rtime (and thus stime) fit in 32 bits? */ 535 if (!(rtime >> 32)) 536 break; 537 538 /* Can we just balance rtime/stime rather than dropping bits? */ 539 if (stime >> 31) 540 goto drop_precision; 541 542 /* We can grow stime and shrink rtime and try to make them both fit */ 543 stime <<= 1; 544 rtime >>= 1; 545 continue; 546 547 drop_precision: 548 /* We drop from rtime, it has more bits than stime */ 549 rtime >>= 1; 550 total >>= 1; 551 } 552 553 /* 554 * Make sure gcc understands that this is a 32x32->64 multiply, 555 * followed by a 64/32->64 divide. 556 */ 557 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 558 return (__force cputime_t) scaled; 559 } 560 561 /* 562 * Adjust tick based cputime random precision against scheduler runtime 563 * accounting. 564 * 565 * Tick based cputime accounting depend on random scheduling timeslices of a 566 * task to be interrupted or not by the timer. Depending on these 567 * circumstances, the number of these interrupts may be over or 568 * under-optimistic, matching the real user and system cputime with a variable 569 * precision. 570 * 571 * Fix this by scaling these tick based values against the total runtime 572 * accounted by the CFS scheduler. 573 * 574 * This code provides the following guarantees: 575 * 576 * stime + utime == rtime 577 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 578 * 579 * Assuming that rtime_i+1 >= rtime_i. 580 */ 581 static void cputime_adjust(struct task_cputime *curr, 582 struct prev_cputime *prev, 583 cputime_t *ut, cputime_t *st) 584 { 585 cputime_t rtime, stime, utime; 586 unsigned long flags; 587 588 /* Serialize concurrent callers such that we can honour our guarantees */ 589 raw_spin_lock_irqsave(&prev->lock, flags); 590 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 591 592 /* 593 * This is possible under two circumstances: 594 * - rtime isn't monotonic after all (a bug); 595 * - we got reordered by the lock. 596 * 597 * In both cases this acts as a filter such that the rest of the code 598 * can assume it is monotonic regardless of anything else. 599 */ 600 if (prev->stime + prev->utime >= rtime) 601 goto out; 602 603 stime = curr->stime; 604 utime = curr->utime; 605 606 if (utime == 0) { 607 stime = rtime; 608 goto update; 609 } 610 611 if (stime == 0) { 612 utime = rtime; 613 goto update; 614 } 615 616 stime = scale_stime((__force u64)stime, (__force u64)rtime, 617 (__force u64)(stime + utime)); 618 619 /* 620 * Make sure stime doesn't go backwards; this preserves monotonicity 621 * for utime because rtime is monotonic. 622 * 623 * utime_i+1 = rtime_i+1 - stime_i 624 * = rtime_i+1 - (rtime_i - utime_i) 625 * = (rtime_i+1 - rtime_i) + utime_i 626 * >= utime_i 627 */ 628 if (stime < prev->stime) 629 stime = prev->stime; 630 utime = rtime - stime; 631 632 /* 633 * Make sure utime doesn't go backwards; this still preserves 634 * monotonicity for stime, analogous argument to above. 635 */ 636 if (utime < prev->utime) { 637 utime = prev->utime; 638 stime = rtime - utime; 639 } 640 641 update: 642 prev->stime = stime; 643 prev->utime = utime; 644 out: 645 *ut = prev->utime; 646 *st = prev->stime; 647 raw_spin_unlock_irqrestore(&prev->lock, flags); 648 } 649 650 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 651 { 652 struct task_cputime cputime = { 653 .sum_exec_runtime = p->se.sum_exec_runtime, 654 }; 655 656 task_cputime(p, &cputime.utime, &cputime.stime); 657 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 658 } 659 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 660 661 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 662 { 663 struct task_cputime cputime; 664 665 thread_group_cputime(p, &cputime); 666 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 667 } 668 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 669 670 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 671 static cputime_t vtime_delta(struct task_struct *tsk) 672 { 673 unsigned long now = READ_ONCE(jiffies); 674 675 if (time_before(now, (unsigned long)tsk->vtime_snap)) 676 return 0; 677 678 return jiffies_to_cputime(now - tsk->vtime_snap); 679 } 680 681 static cputime_t get_vtime_delta(struct task_struct *tsk) 682 { 683 unsigned long now = READ_ONCE(jiffies); 684 unsigned long delta = now - tsk->vtime_snap; 685 686 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 687 tsk->vtime_snap = now; 688 689 return jiffies_to_cputime(delta); 690 } 691 692 static void __vtime_account_system(struct task_struct *tsk) 693 { 694 cputime_t delta_cpu = get_vtime_delta(tsk); 695 696 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 697 } 698 699 void vtime_account_system(struct task_struct *tsk) 700 { 701 if (!vtime_delta(tsk)) 702 return; 703 704 write_seqcount_begin(&tsk->vtime_seqcount); 705 __vtime_account_system(tsk); 706 write_seqcount_end(&tsk->vtime_seqcount); 707 } 708 709 void vtime_gen_account_irq_exit(struct task_struct *tsk) 710 { 711 write_seqcount_begin(&tsk->vtime_seqcount); 712 if (vtime_delta(tsk)) 713 __vtime_account_system(tsk); 714 if (context_tracking_in_user()) 715 tsk->vtime_snap_whence = VTIME_USER; 716 write_seqcount_end(&tsk->vtime_seqcount); 717 } 718 719 void vtime_account_user(struct task_struct *tsk) 720 { 721 cputime_t delta_cpu; 722 723 write_seqcount_begin(&tsk->vtime_seqcount); 724 tsk->vtime_snap_whence = VTIME_SYS; 725 if (vtime_delta(tsk)) { 726 delta_cpu = get_vtime_delta(tsk); 727 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 728 } 729 write_seqcount_end(&tsk->vtime_seqcount); 730 } 731 732 void vtime_user_enter(struct task_struct *tsk) 733 { 734 write_seqcount_begin(&tsk->vtime_seqcount); 735 if (vtime_delta(tsk)) 736 __vtime_account_system(tsk); 737 tsk->vtime_snap_whence = VTIME_USER; 738 write_seqcount_end(&tsk->vtime_seqcount); 739 } 740 741 void vtime_guest_enter(struct task_struct *tsk) 742 { 743 /* 744 * The flags must be updated under the lock with 745 * the vtime_snap flush and update. 746 * That enforces a right ordering and update sequence 747 * synchronization against the reader (task_gtime()) 748 * that can thus safely catch up with a tickless delta. 749 */ 750 write_seqcount_begin(&tsk->vtime_seqcount); 751 if (vtime_delta(tsk)) 752 __vtime_account_system(tsk); 753 current->flags |= PF_VCPU; 754 write_seqcount_end(&tsk->vtime_seqcount); 755 } 756 EXPORT_SYMBOL_GPL(vtime_guest_enter); 757 758 void vtime_guest_exit(struct task_struct *tsk) 759 { 760 write_seqcount_begin(&tsk->vtime_seqcount); 761 __vtime_account_system(tsk); 762 current->flags &= ~PF_VCPU; 763 write_seqcount_end(&tsk->vtime_seqcount); 764 } 765 EXPORT_SYMBOL_GPL(vtime_guest_exit); 766 767 void vtime_account_idle(struct task_struct *tsk) 768 { 769 cputime_t delta_cpu = get_vtime_delta(tsk); 770 771 account_idle_time(delta_cpu); 772 } 773 774 void arch_vtime_task_switch(struct task_struct *prev) 775 { 776 write_seqcount_begin(&prev->vtime_seqcount); 777 prev->vtime_snap_whence = VTIME_INACTIVE; 778 write_seqcount_end(&prev->vtime_seqcount); 779 780 write_seqcount_begin(¤t->vtime_seqcount); 781 current->vtime_snap_whence = VTIME_SYS; 782 current->vtime_snap = jiffies; 783 write_seqcount_end(¤t->vtime_seqcount); 784 } 785 786 void vtime_init_idle(struct task_struct *t, int cpu) 787 { 788 unsigned long flags; 789 790 local_irq_save(flags); 791 write_seqcount_begin(&t->vtime_seqcount); 792 t->vtime_snap_whence = VTIME_SYS; 793 t->vtime_snap = jiffies; 794 write_seqcount_end(&t->vtime_seqcount); 795 local_irq_restore(flags); 796 } 797 798 cputime_t task_gtime(struct task_struct *t) 799 { 800 unsigned int seq; 801 cputime_t gtime; 802 803 if (!vtime_accounting_enabled()) 804 return t->gtime; 805 806 do { 807 seq = read_seqcount_begin(&t->vtime_seqcount); 808 809 gtime = t->gtime; 810 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 811 gtime += vtime_delta(t); 812 813 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 814 815 return gtime; 816 } 817 818 /* 819 * Fetch cputime raw values from fields of task_struct and 820 * add up the pending nohz execution time since the last 821 * cputime snapshot. 822 */ 823 static void 824 fetch_task_cputime(struct task_struct *t, 825 cputime_t *u_dst, cputime_t *s_dst, 826 cputime_t *u_src, cputime_t *s_src, 827 cputime_t *udelta, cputime_t *sdelta) 828 { 829 unsigned int seq; 830 unsigned long long delta; 831 832 do { 833 *udelta = 0; 834 *sdelta = 0; 835 836 seq = read_seqcount_begin(&t->vtime_seqcount); 837 838 if (u_dst) 839 *u_dst = *u_src; 840 if (s_dst) 841 *s_dst = *s_src; 842 843 /* Task is sleeping, nothing to add */ 844 if (t->vtime_snap_whence == VTIME_INACTIVE || 845 is_idle_task(t)) 846 continue; 847 848 delta = vtime_delta(t); 849 850 /* 851 * Task runs either in user or kernel space, add pending nohz time to 852 * the right place. 853 */ 854 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 855 *udelta = delta; 856 } else { 857 if (t->vtime_snap_whence == VTIME_SYS) 858 *sdelta = delta; 859 } 860 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 861 } 862 863 864 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 865 { 866 cputime_t udelta, sdelta; 867 868 if (!vtime_accounting_enabled()) { 869 if (utime) 870 *utime = t->utime; 871 if (stime) 872 *stime = t->stime; 873 return; 874 } 875 876 fetch_task_cputime(t, utime, stime, &t->utime, 877 &t->stime, &udelta, &sdelta); 878 if (utime) 879 *utime += udelta; 880 if (stime) 881 *stime += sdelta; 882 } 883 884 void task_cputime_scaled(struct task_struct *t, 885 cputime_t *utimescaled, cputime_t *stimescaled) 886 { 887 cputime_t udelta, sdelta; 888 889 if (!vtime_accounting_enabled()) { 890 if (utimescaled) 891 *utimescaled = t->utimescaled; 892 if (stimescaled) 893 *stimescaled = t->stimescaled; 894 return; 895 } 896 897 fetch_task_cputime(t, utimescaled, stimescaled, 898 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 899 if (utimescaled) 900 *utimescaled += cputime_to_scaled(udelta); 901 if (stimescaled) 902 *stimescaled += cputime_to_scaled(sdelta); 903 } 904 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 905