1 #include <linux/export.h> 2 #include <linux/sched.h> 3 #include <linux/tsacct_kern.h> 4 #include <linux/kernel_stat.h> 5 #include <linux/static_key.h> 6 #include <linux/context_tracking.h> 7 #include "sched.h" 8 #ifdef CONFIG_PARAVIRT 9 #include <asm/paravirt.h> 10 #endif 11 12 13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 14 15 /* 16 * There are no locks covering percpu hardirq/softirq time. 17 * They are only modified in vtime_account, on corresponding CPU 18 * with interrupts disabled. So, writes are safe. 19 * They are read and saved off onto struct rq in update_rq_clock(). 20 * This may result in other CPU reading this CPU's irq time and can 21 * race with irq/vtime_account on this CPU. We would either get old 22 * or new value with a side effect of accounting a slice of irq time to wrong 23 * task when irq is in progress while we read rq->clock. That is a worthy 24 * compromise in place of having locks on each irq in account_system_time. 25 */ 26 DEFINE_PER_CPU(u64, cpu_hardirq_time); 27 DEFINE_PER_CPU(u64, cpu_softirq_time); 28 29 static DEFINE_PER_CPU(u64, irq_start_time); 30 static int sched_clock_irqtime; 31 32 void enable_sched_clock_irqtime(void) 33 { 34 sched_clock_irqtime = 1; 35 } 36 37 void disable_sched_clock_irqtime(void) 38 { 39 sched_clock_irqtime = 0; 40 } 41 42 #ifndef CONFIG_64BIT 43 DEFINE_PER_CPU(seqcount_t, irq_time_seq); 44 #endif /* CONFIG_64BIT */ 45 46 /* 47 * Called before incrementing preempt_count on {soft,}irq_enter 48 * and before decrementing preempt_count on {soft,}irq_exit. 49 */ 50 void irqtime_account_irq(struct task_struct *curr) 51 { 52 s64 delta; 53 int cpu; 54 55 if (!sched_clock_irqtime) 56 return; 57 58 cpu = smp_processor_id(); 59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 60 __this_cpu_add(irq_start_time, delta); 61 62 irq_time_write_begin(); 63 /* 64 * We do not account for softirq time from ksoftirqd here. 65 * We want to continue accounting softirq time to ksoftirqd thread 66 * in that case, so as not to confuse scheduler with a special task 67 * that do not consume any time, but still wants to run. 68 */ 69 if (hardirq_count()) 70 __this_cpu_add(cpu_hardirq_time, delta); 71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 72 __this_cpu_add(cpu_softirq_time, delta); 73 74 irq_time_write_end(); 75 } 76 EXPORT_SYMBOL_GPL(irqtime_account_irq); 77 78 static cputime_t irqtime_account_hi_update(cputime_t maxtime) 79 { 80 u64 *cpustat = kcpustat_this_cpu->cpustat; 81 unsigned long flags; 82 cputime_t irq_cputime; 83 84 local_irq_save(flags); 85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) - 86 cpustat[CPUTIME_IRQ]; 87 irq_cputime = min(irq_cputime, maxtime); 88 cpustat[CPUTIME_IRQ] += irq_cputime; 89 local_irq_restore(flags); 90 return irq_cputime; 91 } 92 93 static cputime_t irqtime_account_si_update(cputime_t maxtime) 94 { 95 u64 *cpustat = kcpustat_this_cpu->cpustat; 96 unsigned long flags; 97 cputime_t softirq_cputime; 98 99 local_irq_save(flags); 100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) - 101 cpustat[CPUTIME_SOFTIRQ]; 102 softirq_cputime = min(softirq_cputime, maxtime); 103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime; 104 local_irq_restore(flags); 105 return softirq_cputime; 106 } 107 108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 109 110 #define sched_clock_irqtime (0) 111 112 static cputime_t irqtime_account_hi_update(cputime_t dummy) 113 { 114 return 0; 115 } 116 117 static cputime_t irqtime_account_si_update(cputime_t dummy) 118 { 119 return 0; 120 } 121 122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 123 124 static inline void task_group_account_field(struct task_struct *p, int index, 125 u64 tmp) 126 { 127 /* 128 * Since all updates are sure to touch the root cgroup, we 129 * get ourselves ahead and touch it first. If the root cgroup 130 * is the only cgroup, then nothing else should be necessary. 131 * 132 */ 133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp); 134 135 cpuacct_account_field(p, index, tmp); 136 } 137 138 /* 139 * Account user cpu time to a process. 140 * @p: the process that the cpu time gets accounted to 141 * @cputime: the cpu time spent in user space since the last update 142 * @cputime_scaled: cputime scaled by cpu frequency 143 */ 144 void account_user_time(struct task_struct *p, cputime_t cputime, 145 cputime_t cputime_scaled) 146 { 147 int index; 148 149 /* Add user time to process. */ 150 p->utime += cputime; 151 p->utimescaled += cputime_scaled; 152 account_group_user_time(p, cputime); 153 154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 155 156 /* Add user time to cpustat. */ 157 task_group_account_field(p, index, (__force u64) cputime); 158 159 /* Account for user time used */ 160 acct_account_cputime(p); 161 } 162 163 /* 164 * Account guest cpu time to a process. 165 * @p: the process that the cpu time gets accounted to 166 * @cputime: the cpu time spent in virtual machine since the last update 167 * @cputime_scaled: cputime scaled by cpu frequency 168 */ 169 static void account_guest_time(struct task_struct *p, cputime_t cputime, 170 cputime_t cputime_scaled) 171 { 172 u64 *cpustat = kcpustat_this_cpu->cpustat; 173 174 /* Add guest time to process. */ 175 p->utime += cputime; 176 p->utimescaled += cputime_scaled; 177 account_group_user_time(p, cputime); 178 p->gtime += cputime; 179 180 /* Add guest time to cpustat. */ 181 if (task_nice(p) > 0) { 182 cpustat[CPUTIME_NICE] += (__force u64) cputime; 183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 184 } else { 185 cpustat[CPUTIME_USER] += (__force u64) cputime; 186 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 187 } 188 } 189 190 /* 191 * Account system cpu time to a process and desired cpustat field 192 * @p: the process that the cpu time gets accounted to 193 * @cputime: the cpu time spent in kernel space since the last update 194 * @cputime_scaled: cputime scaled by cpu frequency 195 * @target_cputime64: pointer to cpustat field that has to be updated 196 */ 197 static inline 198 void __account_system_time(struct task_struct *p, cputime_t cputime, 199 cputime_t cputime_scaled, int index) 200 { 201 /* Add system time to process. */ 202 p->stime += cputime; 203 p->stimescaled += cputime_scaled; 204 account_group_system_time(p, cputime); 205 206 /* Add system time to cpustat. */ 207 task_group_account_field(p, index, (__force u64) cputime); 208 209 /* Account for system time used */ 210 acct_account_cputime(p); 211 } 212 213 /* 214 * Account system cpu time to a process. 215 * @p: the process that the cpu time gets accounted to 216 * @hardirq_offset: the offset to subtract from hardirq_count() 217 * @cputime: the cpu time spent in kernel space since the last update 218 * @cputime_scaled: cputime scaled by cpu frequency 219 */ 220 void account_system_time(struct task_struct *p, int hardirq_offset, 221 cputime_t cputime, cputime_t cputime_scaled) 222 { 223 int index; 224 225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 226 account_guest_time(p, cputime, cputime_scaled); 227 return; 228 } 229 230 if (hardirq_count() - hardirq_offset) 231 index = CPUTIME_IRQ; 232 else if (in_serving_softirq()) 233 index = CPUTIME_SOFTIRQ; 234 else 235 index = CPUTIME_SYSTEM; 236 237 __account_system_time(p, cputime, cputime_scaled, index); 238 } 239 240 /* 241 * Account for involuntary wait time. 242 * @cputime: the cpu time spent in involuntary wait 243 */ 244 void account_steal_time(cputime_t cputime) 245 { 246 u64 *cpustat = kcpustat_this_cpu->cpustat; 247 248 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 249 } 250 251 /* 252 * Account for idle time. 253 * @cputime: the cpu time spent in idle wait 254 */ 255 void account_idle_time(cputime_t cputime) 256 { 257 u64 *cpustat = kcpustat_this_cpu->cpustat; 258 struct rq *rq = this_rq(); 259 260 if (atomic_read(&rq->nr_iowait) > 0) 261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 262 else 263 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 264 } 265 266 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime) 267 { 268 #ifdef CONFIG_PARAVIRT 269 if (static_key_false(¶virt_steal_enabled)) { 270 cputime_t steal_cputime; 271 u64 steal; 272 273 steal = paravirt_steal_clock(smp_processor_id()); 274 steal -= this_rq()->prev_steal_time; 275 276 steal_cputime = min(nsecs_to_cputime(steal), maxtime); 277 account_steal_time(steal_cputime); 278 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime); 279 280 return steal_cputime; 281 } 282 #endif 283 return 0; 284 } 285 286 /* 287 * Account how much elapsed time was spent in steal, irq, or softirq time. 288 */ 289 static inline cputime_t account_other_time(cputime_t max) 290 { 291 cputime_t accounted; 292 293 accounted = steal_account_process_time(max); 294 295 if (accounted < max) 296 accounted += irqtime_account_hi_update(max - accounted); 297 298 if (accounted < max) 299 accounted += irqtime_account_si_update(max - accounted); 300 301 return accounted; 302 } 303 304 /* 305 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live 306 * tasks (sum on group iteration) belonging to @tsk's group. 307 */ 308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) 309 { 310 struct signal_struct *sig = tsk->signal; 311 cputime_t utime, stime; 312 struct task_struct *t; 313 unsigned int seq, nextseq; 314 unsigned long flags; 315 316 rcu_read_lock(); 317 /* Attempt a lockless read on the first round. */ 318 nextseq = 0; 319 do { 320 seq = nextseq; 321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq); 322 times->utime = sig->utime; 323 times->stime = sig->stime; 324 times->sum_exec_runtime = sig->sum_sched_runtime; 325 326 for_each_thread(tsk, t) { 327 task_cputime(t, &utime, &stime); 328 times->utime += utime; 329 times->stime += stime; 330 times->sum_exec_runtime += task_sched_runtime(t); 331 } 332 /* If lockless access failed, take the lock. */ 333 nextseq = 1; 334 } while (need_seqretry(&sig->stats_lock, seq)); 335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags); 336 rcu_read_unlock(); 337 } 338 339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 340 /* 341 * Account a tick to a process and cpustat 342 * @p: the process that the cpu time gets accounted to 343 * @user_tick: is the tick from userspace 344 * @rq: the pointer to rq 345 * 346 * Tick demultiplexing follows the order 347 * - pending hardirq update 348 * - pending softirq update 349 * - user_time 350 * - idle_time 351 * - system time 352 * - check for guest_time 353 * - else account as system_time 354 * 355 * Check for hardirq is done both for system and user time as there is 356 * no timer going off while we are on hardirq and hence we may never get an 357 * opportunity to update it solely in system time. 358 * p->stime and friends are only updated on system time and not on irq 359 * softirq as those do not count in task exec_runtime any more. 360 */ 361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 362 struct rq *rq, int ticks) 363 { 364 u64 cputime = (__force u64) cputime_one_jiffy * ticks; 365 cputime_t scaled, other; 366 367 /* 368 * When returning from idle, many ticks can get accounted at 369 * once, including some ticks of steal, irq, and softirq time. 370 * Subtract those ticks from the amount of time accounted to 371 * idle, or potentially user or system time. Due to rounding, 372 * other time can exceed ticks occasionally. 373 */ 374 other = account_other_time(cputime); 375 if (other >= cputime) 376 return; 377 cputime -= other; 378 scaled = cputime_to_scaled(cputime); 379 380 if (this_cpu_ksoftirqd() == p) { 381 /* 382 * ksoftirqd time do not get accounted in cpu_softirq_time. 383 * So, we have to handle it separately here. 384 * Also, p->stime needs to be updated for ksoftirqd. 385 */ 386 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ); 387 } else if (user_tick) { 388 account_user_time(p, cputime, scaled); 389 } else if (p == rq->idle) { 390 account_idle_time(cputime); 391 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 392 account_guest_time(p, cputime, scaled); 393 } else { 394 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM); 395 } 396 } 397 398 static void irqtime_account_idle_ticks(int ticks) 399 { 400 struct rq *rq = this_rq(); 401 402 irqtime_account_process_tick(current, 0, rq, ticks); 403 } 404 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 405 static inline void irqtime_account_idle_ticks(int ticks) {} 406 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick, 407 struct rq *rq, int nr_ticks) {} 408 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 409 410 /* 411 * Use precise platform statistics if available: 412 */ 413 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 414 415 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH 416 void vtime_common_task_switch(struct task_struct *prev) 417 { 418 if (is_idle_task(prev)) 419 vtime_account_idle(prev); 420 else 421 vtime_account_system(prev); 422 423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 424 vtime_account_user(prev); 425 #endif 426 arch_vtime_task_switch(prev); 427 } 428 #endif 429 430 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ 431 432 433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 434 /* 435 * Archs that account the whole time spent in the idle task 436 * (outside irq) as idle time can rely on this and just implement 437 * vtime_account_system() and vtime_account_idle(). Archs that 438 * have other meaning of the idle time (s390 only includes the 439 * time spent by the CPU when it's in low power mode) must override 440 * vtime_account(). 441 */ 442 #ifndef __ARCH_HAS_VTIME_ACCOUNT 443 void vtime_account_irq_enter(struct task_struct *tsk) 444 { 445 if (!in_interrupt() && is_idle_task(tsk)) 446 vtime_account_idle(tsk); 447 else 448 vtime_account_system(tsk); 449 } 450 EXPORT_SYMBOL_GPL(vtime_account_irq_enter); 451 #endif /* __ARCH_HAS_VTIME_ACCOUNT */ 452 453 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 454 { 455 *ut = p->utime; 456 *st = p->stime; 457 } 458 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 459 460 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 461 { 462 struct task_cputime cputime; 463 464 thread_group_cputime(p, &cputime); 465 466 *ut = cputime.utime; 467 *st = cputime.stime; 468 } 469 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 470 /* 471 * Account a single tick of cpu time. 472 * @p: the process that the cpu time gets accounted to 473 * @user_tick: indicates if the tick is a user or a system tick 474 */ 475 void account_process_tick(struct task_struct *p, int user_tick) 476 { 477 cputime_t cputime, scaled, steal; 478 struct rq *rq = this_rq(); 479 480 if (vtime_accounting_cpu_enabled()) 481 return; 482 483 if (sched_clock_irqtime) { 484 irqtime_account_process_tick(p, user_tick, rq, 1); 485 return; 486 } 487 488 cputime = cputime_one_jiffy; 489 steal = steal_account_process_time(cputime); 490 491 if (steal >= cputime) 492 return; 493 494 cputime -= steal; 495 scaled = cputime_to_scaled(cputime); 496 497 if (user_tick) 498 account_user_time(p, cputime, scaled); 499 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 500 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled); 501 else 502 account_idle_time(cputime); 503 } 504 505 /* 506 * Account multiple ticks of idle time. 507 * @ticks: number of stolen ticks 508 */ 509 void account_idle_ticks(unsigned long ticks) 510 { 511 512 if (sched_clock_irqtime) { 513 irqtime_account_idle_ticks(ticks); 514 return; 515 } 516 517 account_idle_time(jiffies_to_cputime(ticks)); 518 } 519 520 /* 521 * Perform (stime * rtime) / total, but avoid multiplication overflow by 522 * loosing precision when the numbers are big. 523 */ 524 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total) 525 { 526 u64 scaled; 527 528 for (;;) { 529 /* Make sure "rtime" is the bigger of stime/rtime */ 530 if (stime > rtime) 531 swap(rtime, stime); 532 533 /* Make sure 'total' fits in 32 bits */ 534 if (total >> 32) 535 goto drop_precision; 536 537 /* Does rtime (and thus stime) fit in 32 bits? */ 538 if (!(rtime >> 32)) 539 break; 540 541 /* Can we just balance rtime/stime rather than dropping bits? */ 542 if (stime >> 31) 543 goto drop_precision; 544 545 /* We can grow stime and shrink rtime and try to make them both fit */ 546 stime <<= 1; 547 rtime >>= 1; 548 continue; 549 550 drop_precision: 551 /* We drop from rtime, it has more bits than stime */ 552 rtime >>= 1; 553 total >>= 1; 554 } 555 556 /* 557 * Make sure gcc understands that this is a 32x32->64 multiply, 558 * followed by a 64/32->64 divide. 559 */ 560 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total); 561 return (__force cputime_t) scaled; 562 } 563 564 /* 565 * Adjust tick based cputime random precision against scheduler runtime 566 * accounting. 567 * 568 * Tick based cputime accounting depend on random scheduling timeslices of a 569 * task to be interrupted or not by the timer. Depending on these 570 * circumstances, the number of these interrupts may be over or 571 * under-optimistic, matching the real user and system cputime with a variable 572 * precision. 573 * 574 * Fix this by scaling these tick based values against the total runtime 575 * accounted by the CFS scheduler. 576 * 577 * This code provides the following guarantees: 578 * 579 * stime + utime == rtime 580 * stime_i+1 >= stime_i, utime_i+1 >= utime_i 581 * 582 * Assuming that rtime_i+1 >= rtime_i. 583 */ 584 static void cputime_adjust(struct task_cputime *curr, 585 struct prev_cputime *prev, 586 cputime_t *ut, cputime_t *st) 587 { 588 cputime_t rtime, stime, utime; 589 unsigned long flags; 590 591 /* Serialize concurrent callers such that we can honour our guarantees */ 592 raw_spin_lock_irqsave(&prev->lock, flags); 593 rtime = nsecs_to_cputime(curr->sum_exec_runtime); 594 595 /* 596 * This is possible under two circumstances: 597 * - rtime isn't monotonic after all (a bug); 598 * - we got reordered by the lock. 599 * 600 * In both cases this acts as a filter such that the rest of the code 601 * can assume it is monotonic regardless of anything else. 602 */ 603 if (prev->stime + prev->utime >= rtime) 604 goto out; 605 606 stime = curr->stime; 607 utime = curr->utime; 608 609 if (utime == 0) { 610 stime = rtime; 611 goto update; 612 } 613 614 if (stime == 0) { 615 utime = rtime; 616 goto update; 617 } 618 619 stime = scale_stime((__force u64)stime, (__force u64)rtime, 620 (__force u64)(stime + utime)); 621 622 /* 623 * Make sure stime doesn't go backwards; this preserves monotonicity 624 * for utime because rtime is monotonic. 625 * 626 * utime_i+1 = rtime_i+1 - stime_i 627 * = rtime_i+1 - (rtime_i - utime_i) 628 * = (rtime_i+1 - rtime_i) + utime_i 629 * >= utime_i 630 */ 631 if (stime < prev->stime) 632 stime = prev->stime; 633 utime = rtime - stime; 634 635 /* 636 * Make sure utime doesn't go backwards; this still preserves 637 * monotonicity for stime, analogous argument to above. 638 */ 639 if (utime < prev->utime) { 640 utime = prev->utime; 641 stime = rtime - utime; 642 } 643 644 update: 645 prev->stime = stime; 646 prev->utime = utime; 647 out: 648 *ut = prev->utime; 649 *st = prev->stime; 650 raw_spin_unlock_irqrestore(&prev->lock, flags); 651 } 652 653 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 654 { 655 struct task_cputime cputime = { 656 .sum_exec_runtime = p->se.sum_exec_runtime, 657 }; 658 659 task_cputime(p, &cputime.utime, &cputime.stime); 660 cputime_adjust(&cputime, &p->prev_cputime, ut, st); 661 } 662 EXPORT_SYMBOL_GPL(task_cputime_adjusted); 663 664 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st) 665 { 666 struct task_cputime cputime; 667 668 thread_group_cputime(p, &cputime); 669 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st); 670 } 671 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ 672 673 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 674 static cputime_t vtime_delta(struct task_struct *tsk) 675 { 676 unsigned long now = READ_ONCE(jiffies); 677 678 if (time_before(now, (unsigned long)tsk->vtime_snap)) 679 return 0; 680 681 return jiffies_to_cputime(now - tsk->vtime_snap); 682 } 683 684 static cputime_t get_vtime_delta(struct task_struct *tsk) 685 { 686 unsigned long now = READ_ONCE(jiffies); 687 cputime_t delta, other; 688 689 delta = jiffies_to_cputime(now - tsk->vtime_snap); 690 other = account_other_time(delta); 691 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE); 692 tsk->vtime_snap = now; 693 694 return delta - other; 695 } 696 697 static void __vtime_account_system(struct task_struct *tsk) 698 { 699 cputime_t delta_cpu = get_vtime_delta(tsk); 700 701 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu)); 702 } 703 704 void vtime_account_system(struct task_struct *tsk) 705 { 706 if (!vtime_delta(tsk)) 707 return; 708 709 write_seqcount_begin(&tsk->vtime_seqcount); 710 __vtime_account_system(tsk); 711 write_seqcount_end(&tsk->vtime_seqcount); 712 } 713 714 void vtime_account_user(struct task_struct *tsk) 715 { 716 cputime_t delta_cpu; 717 718 write_seqcount_begin(&tsk->vtime_seqcount); 719 tsk->vtime_snap_whence = VTIME_SYS; 720 if (vtime_delta(tsk)) { 721 delta_cpu = get_vtime_delta(tsk); 722 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu)); 723 } 724 write_seqcount_end(&tsk->vtime_seqcount); 725 } 726 727 void vtime_user_enter(struct task_struct *tsk) 728 { 729 write_seqcount_begin(&tsk->vtime_seqcount); 730 if (vtime_delta(tsk)) 731 __vtime_account_system(tsk); 732 tsk->vtime_snap_whence = VTIME_USER; 733 write_seqcount_end(&tsk->vtime_seqcount); 734 } 735 736 void vtime_guest_enter(struct task_struct *tsk) 737 { 738 /* 739 * The flags must be updated under the lock with 740 * the vtime_snap flush and update. 741 * That enforces a right ordering and update sequence 742 * synchronization against the reader (task_gtime()) 743 * that can thus safely catch up with a tickless delta. 744 */ 745 write_seqcount_begin(&tsk->vtime_seqcount); 746 if (vtime_delta(tsk)) 747 __vtime_account_system(tsk); 748 current->flags |= PF_VCPU; 749 write_seqcount_end(&tsk->vtime_seqcount); 750 } 751 EXPORT_SYMBOL_GPL(vtime_guest_enter); 752 753 void vtime_guest_exit(struct task_struct *tsk) 754 { 755 write_seqcount_begin(&tsk->vtime_seqcount); 756 __vtime_account_system(tsk); 757 current->flags &= ~PF_VCPU; 758 write_seqcount_end(&tsk->vtime_seqcount); 759 } 760 EXPORT_SYMBOL_GPL(vtime_guest_exit); 761 762 void vtime_account_idle(struct task_struct *tsk) 763 { 764 cputime_t delta_cpu = get_vtime_delta(tsk); 765 766 account_idle_time(delta_cpu); 767 } 768 769 void arch_vtime_task_switch(struct task_struct *prev) 770 { 771 write_seqcount_begin(&prev->vtime_seqcount); 772 prev->vtime_snap_whence = VTIME_INACTIVE; 773 write_seqcount_end(&prev->vtime_seqcount); 774 775 write_seqcount_begin(¤t->vtime_seqcount); 776 current->vtime_snap_whence = VTIME_SYS; 777 current->vtime_snap = jiffies; 778 write_seqcount_end(¤t->vtime_seqcount); 779 } 780 781 void vtime_init_idle(struct task_struct *t, int cpu) 782 { 783 unsigned long flags; 784 785 local_irq_save(flags); 786 write_seqcount_begin(&t->vtime_seqcount); 787 t->vtime_snap_whence = VTIME_SYS; 788 t->vtime_snap = jiffies; 789 write_seqcount_end(&t->vtime_seqcount); 790 local_irq_restore(flags); 791 } 792 793 cputime_t task_gtime(struct task_struct *t) 794 { 795 unsigned int seq; 796 cputime_t gtime; 797 798 if (!vtime_accounting_enabled()) 799 return t->gtime; 800 801 do { 802 seq = read_seqcount_begin(&t->vtime_seqcount); 803 804 gtime = t->gtime; 805 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU) 806 gtime += vtime_delta(t); 807 808 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 809 810 return gtime; 811 } 812 813 /* 814 * Fetch cputime raw values from fields of task_struct and 815 * add up the pending nohz execution time since the last 816 * cputime snapshot. 817 */ 818 static void 819 fetch_task_cputime(struct task_struct *t, 820 cputime_t *u_dst, cputime_t *s_dst, 821 cputime_t *u_src, cputime_t *s_src, 822 cputime_t *udelta, cputime_t *sdelta) 823 { 824 unsigned int seq; 825 unsigned long long delta; 826 827 do { 828 *udelta = 0; 829 *sdelta = 0; 830 831 seq = read_seqcount_begin(&t->vtime_seqcount); 832 833 if (u_dst) 834 *u_dst = *u_src; 835 if (s_dst) 836 *s_dst = *s_src; 837 838 /* Task is sleeping, nothing to add */ 839 if (t->vtime_snap_whence == VTIME_INACTIVE || 840 is_idle_task(t)) 841 continue; 842 843 delta = vtime_delta(t); 844 845 /* 846 * Task runs either in user or kernel space, add pending nohz time to 847 * the right place. 848 */ 849 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) { 850 *udelta = delta; 851 } else { 852 if (t->vtime_snap_whence == VTIME_SYS) 853 *sdelta = delta; 854 } 855 } while (read_seqcount_retry(&t->vtime_seqcount, seq)); 856 } 857 858 859 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) 860 { 861 cputime_t udelta, sdelta; 862 863 if (!vtime_accounting_enabled()) { 864 if (utime) 865 *utime = t->utime; 866 if (stime) 867 *stime = t->stime; 868 return; 869 } 870 871 fetch_task_cputime(t, utime, stime, &t->utime, 872 &t->stime, &udelta, &sdelta); 873 if (utime) 874 *utime += udelta; 875 if (stime) 876 *stime += sdelta; 877 } 878 879 void task_cputime_scaled(struct task_struct *t, 880 cputime_t *utimescaled, cputime_t *stimescaled) 881 { 882 cputime_t udelta, sdelta; 883 884 if (!vtime_accounting_enabled()) { 885 if (utimescaled) 886 *utimescaled = t->utimescaled; 887 if (stimescaled) 888 *stimescaled = t->stimescaled; 889 return; 890 } 891 892 fetch_task_cputime(t, utimescaled, stimescaled, 893 &t->utimescaled, &t->stimescaled, &udelta, &sdelta); 894 if (utimescaled) 895 *utimescaled += cputime_to_scaled(udelta); 896 if (stimescaled) 897 *stimescaled += cputime_to_scaled(sdelta); 898 } 899 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */ 900