xref: /linux/kernel/sched/cpufreq_schedutil.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 
16 struct sugov_tunables {
17 	struct gov_attr_set	attr_set;
18 	unsigned int		rate_limit_us;
19 };
20 
21 struct sugov_policy {
22 	struct cpufreq_policy	*policy;
23 
24 	struct sugov_tunables	*tunables;
25 	struct list_head	tunables_hook;
26 
27 	raw_spinlock_t		update_lock;	/* For shared policies */
28 	u64			last_freq_update_time;
29 	s64			freq_update_delay_ns;
30 	unsigned int		next_freq;
31 	unsigned int		cached_raw_freq;
32 
33 	/* The next fields are only needed if fast switch cannot be used: */
34 	struct			irq_work irq_work;
35 	struct			kthread_work work;
36 	struct			mutex work_lock;
37 	struct			kthread_worker worker;
38 	struct task_struct	*thread;
39 	bool			work_in_progress;
40 
41 	bool			need_freq_update;
42 };
43 
44 struct sugov_cpu {
45 	struct update_util_data	update_util;
46 	struct sugov_policy	*sg_policy;
47 	unsigned int		cpu;
48 
49 	bool			iowait_boost_pending;
50 	unsigned int		iowait_boost;
51 	unsigned int		iowait_boost_max;
52 	u64			last_update;
53 
54 	unsigned long		bw_dl;
55 	unsigned long		max;
56 
57 	/* The field below is for single-CPU policies only: */
58 #ifdef CONFIG_NO_HZ_COMMON
59 	unsigned long		saved_idle_calls;
60 #endif
61 };
62 
63 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
64 
65 /************************ Governor internals ***********************/
66 
67 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
68 {
69 	s64 delta_ns;
70 
71 	/*
72 	 * Since cpufreq_update_util() is called with rq->lock held for
73 	 * the @target_cpu, our per-CPU data is fully serialized.
74 	 *
75 	 * However, drivers cannot in general deal with cross-CPU
76 	 * requests, so while get_next_freq() will work, our
77 	 * sugov_update_commit() call may not for the fast switching platforms.
78 	 *
79 	 * Hence stop here for remote requests if they aren't supported
80 	 * by the hardware, as calculating the frequency is pointless if
81 	 * we cannot in fact act on it.
82 	 *
83 	 * For the slow switching platforms, the kthread is always scheduled on
84 	 * the right set of CPUs and any CPU can find the next frequency and
85 	 * schedule the kthread.
86 	 */
87 	if (sg_policy->policy->fast_switch_enabled &&
88 	    !cpufreq_this_cpu_can_update(sg_policy->policy))
89 		return false;
90 
91 	if (unlikely(sg_policy->need_freq_update))
92 		return true;
93 
94 	delta_ns = time - sg_policy->last_freq_update_time;
95 
96 	return delta_ns >= sg_policy->freq_update_delay_ns;
97 }
98 
99 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
100 				   unsigned int next_freq)
101 {
102 	if (sg_policy->next_freq == next_freq)
103 		return false;
104 
105 	sg_policy->next_freq = next_freq;
106 	sg_policy->last_freq_update_time = time;
107 
108 	return true;
109 }
110 
111 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
112 			      unsigned int next_freq)
113 {
114 	struct cpufreq_policy *policy = sg_policy->policy;
115 
116 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
117 		return;
118 
119 	next_freq = cpufreq_driver_fast_switch(policy, next_freq);
120 	if (!next_freq)
121 		return;
122 
123 	policy->cur = next_freq;
124 	trace_cpu_frequency(next_freq, smp_processor_id());
125 }
126 
127 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
128 				  unsigned int next_freq)
129 {
130 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
131 		return;
132 
133 	if (!sg_policy->work_in_progress) {
134 		sg_policy->work_in_progress = true;
135 		irq_work_queue(&sg_policy->irq_work);
136 	}
137 }
138 
139 /**
140  * get_next_freq - Compute a new frequency for a given cpufreq policy.
141  * @sg_policy: schedutil policy object to compute the new frequency for.
142  * @util: Current CPU utilization.
143  * @max: CPU capacity.
144  *
145  * If the utilization is frequency-invariant, choose the new frequency to be
146  * proportional to it, that is
147  *
148  * next_freq = C * max_freq * util / max
149  *
150  * Otherwise, approximate the would-be frequency-invariant utilization by
151  * util_raw * (curr_freq / max_freq) which leads to
152  *
153  * next_freq = C * curr_freq * util_raw / max
154  *
155  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156  *
157  * The lowest driver-supported frequency which is equal or greater than the raw
158  * next_freq (as calculated above) is returned, subject to policy min/max and
159  * cpufreq driver limitations.
160  */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162 				  unsigned long util, unsigned long max)
163 {
164 	struct cpufreq_policy *policy = sg_policy->policy;
165 	unsigned int freq = arch_scale_freq_invariant() ?
166 				policy->cpuinfo.max_freq : policy->cur;
167 
168 	freq = map_util_freq(util, freq, max);
169 
170 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171 		return sg_policy->next_freq;
172 
173 	sg_policy->need_freq_update = false;
174 	sg_policy->cached_raw_freq = freq;
175 	return cpufreq_driver_resolve_freq(policy, freq);
176 }
177 
178 /*
179  * This function computes an effective utilization for the given CPU, to be
180  * used for frequency selection given the linear relation: f = u * f_max.
181  *
182  * The scheduler tracks the following metrics:
183  *
184  *   cpu_util_{cfs,rt,dl,irq}()
185  *   cpu_bw_dl()
186  *
187  * Where the cfs,rt and dl util numbers are tracked with the same metric and
188  * synchronized windows and are thus directly comparable.
189  *
190  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
191  * which excludes things like IRQ and steal-time. These latter are then accrued
192  * in the irq utilization.
193  *
194  * The DL bandwidth number otoh is not a measured metric but a value computed
195  * based on the task model parameters and gives the minimal utilization
196  * required to meet deadlines.
197  */
198 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
199 				  unsigned long max, enum schedutil_type type)
200 {
201 	unsigned long dl_util, util, irq;
202 	struct rq *rq = cpu_rq(cpu);
203 
204 	if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
205 		return max;
206 
207 	/*
208 	 * Early check to see if IRQ/steal time saturates the CPU, can be
209 	 * because of inaccuracies in how we track these -- see
210 	 * update_irq_load_avg().
211 	 */
212 	irq = cpu_util_irq(rq);
213 	if (unlikely(irq >= max))
214 		return max;
215 
216 	/*
217 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
218 	 * CFS tasks and we use the same metric to track the effective
219 	 * utilization (PELT windows are synchronized) we can directly add them
220 	 * to obtain the CPU's actual utilization.
221 	 */
222 	util = util_cfs;
223 	util += cpu_util_rt(rq);
224 
225 	dl_util = cpu_util_dl(rq);
226 
227 	/*
228 	 * For frequency selection we do not make cpu_util_dl() a permanent part
229 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
230 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
231 	 * that we select f_max when there is no idle time.
232 	 *
233 	 * NOTE: numerical errors or stop class might cause us to not quite hit
234 	 * saturation when we should -- something for later.
235 	 */
236 	if (util + dl_util >= max)
237 		return max;
238 
239 	/*
240 	 * OTOH, for energy computation we need the estimated running time, so
241 	 * include util_dl and ignore dl_bw.
242 	 */
243 	if (type == ENERGY_UTIL)
244 		util += dl_util;
245 
246 	/*
247 	 * There is still idle time; further improve the number by using the
248 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
249 	 * need to scale the task numbers:
250 	 *
251 	 *              1 - irq
252 	 *   U' = irq + ------- * U
253 	 *                max
254 	 */
255 	util = scale_irq_capacity(util, irq, max);
256 	util += irq;
257 
258 	/*
259 	 * Bandwidth required by DEADLINE must always be granted while, for
260 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
261 	 * to gracefully reduce the frequency when no tasks show up for longer
262 	 * periods of time.
263 	 *
264 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
265 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
266 	 * an interface. So, we only do the latter for now.
267 	 */
268 	if (type == FREQUENCY_UTIL)
269 		util += cpu_bw_dl(rq);
270 
271 	return min(max, util);
272 }
273 
274 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
275 {
276 	struct rq *rq = cpu_rq(sg_cpu->cpu);
277 	unsigned long util = cpu_util_cfs(rq);
278 	unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
279 
280 	sg_cpu->max = max;
281 	sg_cpu->bw_dl = cpu_bw_dl(rq);
282 
283 	return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
284 }
285 
286 /**
287  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
288  * @sg_cpu: the sugov data for the CPU to boost
289  * @time: the update time from the caller
290  * @set_iowait_boost: true if an IO boost has been requested
291  *
292  * The IO wait boost of a task is disabled after a tick since the last update
293  * of a CPU. If a new IO wait boost is requested after more then a tick, then
294  * we enable the boost starting from the minimum frequency, which improves
295  * energy efficiency by ignoring sporadic wakeups from IO.
296  */
297 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
298 			       bool set_iowait_boost)
299 {
300 	s64 delta_ns = time - sg_cpu->last_update;
301 
302 	/* Reset boost only if a tick has elapsed since last request */
303 	if (delta_ns <= TICK_NSEC)
304 		return false;
305 
306 	sg_cpu->iowait_boost = set_iowait_boost
307 		? sg_cpu->sg_policy->policy->min : 0;
308 	sg_cpu->iowait_boost_pending = set_iowait_boost;
309 
310 	return true;
311 }
312 
313 /**
314  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
315  * @sg_cpu: the sugov data for the CPU to boost
316  * @time: the update time from the caller
317  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
318  *
319  * Each time a task wakes up after an IO operation, the CPU utilization can be
320  * boosted to a certain utilization which doubles at each "frequent and
321  * successive" wakeup from IO, ranging from the utilization of the minimum
322  * OPP to the utilization of the maximum OPP.
323  * To keep doubling, an IO boost has to be requested at least once per tick,
324  * otherwise we restart from the utilization of the minimum OPP.
325  */
326 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
327 			       unsigned int flags)
328 {
329 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
330 
331 	/* Reset boost if the CPU appears to have been idle enough */
332 	if (sg_cpu->iowait_boost &&
333 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
334 		return;
335 
336 	/* Boost only tasks waking up after IO */
337 	if (!set_iowait_boost)
338 		return;
339 
340 	/* Ensure boost doubles only one time at each request */
341 	if (sg_cpu->iowait_boost_pending)
342 		return;
343 	sg_cpu->iowait_boost_pending = true;
344 
345 	/* Double the boost at each request */
346 	if (sg_cpu->iowait_boost) {
347 		sg_cpu->iowait_boost <<= 1;
348 		if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
349 			sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
350 		return;
351 	}
352 
353 	/* First wakeup after IO: start with minimum boost */
354 	sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
355 }
356 
357 /**
358  * sugov_iowait_apply() - Apply the IO boost to a CPU.
359  * @sg_cpu: the sugov data for the cpu to boost
360  * @time: the update time from the caller
361  * @util: the utilization to (eventually) boost
362  * @max: the maximum value the utilization can be boosted to
363  *
364  * A CPU running a task which woken up after an IO operation can have its
365  * utilization boosted to speed up the completion of those IO operations.
366  * The IO boost value is increased each time a task wakes up from IO, in
367  * sugov_iowait_apply(), and it's instead decreased by this function,
368  * each time an increase has not been requested (!iowait_boost_pending).
369  *
370  * A CPU which also appears to have been idle for at least one tick has also
371  * its IO boost utilization reset.
372  *
373  * This mechanism is designed to boost high frequently IO waiting tasks, while
374  * being more conservative on tasks which does sporadic IO operations.
375  */
376 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
377 			       unsigned long *util, unsigned long *max)
378 {
379 	unsigned int boost_util, boost_max;
380 
381 	/* No boost currently required */
382 	if (!sg_cpu->iowait_boost)
383 		return;
384 
385 	/* Reset boost if the CPU appears to have been idle enough */
386 	if (sugov_iowait_reset(sg_cpu, time, false))
387 		return;
388 
389 	/*
390 	 * An IO waiting task has just woken up:
391 	 * allow to further double the boost value
392 	 */
393 	if (sg_cpu->iowait_boost_pending) {
394 		sg_cpu->iowait_boost_pending = false;
395 	} else {
396 		/*
397 		 * Otherwise: reduce the boost value and disable it when we
398 		 * reach the minimum.
399 		 */
400 		sg_cpu->iowait_boost >>= 1;
401 		if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
402 			sg_cpu->iowait_boost = 0;
403 			return;
404 		}
405 	}
406 
407 	/*
408 	 * Apply the current boost value: a CPU is boosted only if its current
409 	 * utilization is smaller then the current IO boost level.
410 	 */
411 	boost_util = sg_cpu->iowait_boost;
412 	boost_max = sg_cpu->iowait_boost_max;
413 	if (*util * boost_max < *max * boost_util) {
414 		*util = boost_util;
415 		*max = boost_max;
416 	}
417 }
418 
419 #ifdef CONFIG_NO_HZ_COMMON
420 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
421 {
422 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
423 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
424 
425 	sg_cpu->saved_idle_calls = idle_calls;
426 	return ret;
427 }
428 #else
429 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
430 #endif /* CONFIG_NO_HZ_COMMON */
431 
432 /*
433  * Make sugov_should_update_freq() ignore the rate limit when DL
434  * has increased the utilization.
435  */
436 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
437 {
438 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
439 		sg_policy->need_freq_update = true;
440 }
441 
442 static void sugov_update_single(struct update_util_data *hook, u64 time,
443 				unsigned int flags)
444 {
445 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
446 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
447 	unsigned long util, max;
448 	unsigned int next_f;
449 	bool busy;
450 
451 	sugov_iowait_boost(sg_cpu, time, flags);
452 	sg_cpu->last_update = time;
453 
454 	ignore_dl_rate_limit(sg_cpu, sg_policy);
455 
456 	if (!sugov_should_update_freq(sg_policy, time))
457 		return;
458 
459 	busy = sugov_cpu_is_busy(sg_cpu);
460 
461 	util = sugov_get_util(sg_cpu);
462 	max = sg_cpu->max;
463 	sugov_iowait_apply(sg_cpu, time, &util, &max);
464 	next_f = get_next_freq(sg_policy, util, max);
465 	/*
466 	 * Do not reduce the frequency if the CPU has not been idle
467 	 * recently, as the reduction is likely to be premature then.
468 	 */
469 	if (busy && next_f < sg_policy->next_freq) {
470 		next_f = sg_policy->next_freq;
471 
472 		/* Reset cached freq as next_freq has changed */
473 		sg_policy->cached_raw_freq = 0;
474 	}
475 
476 	/*
477 	 * This code runs under rq->lock for the target CPU, so it won't run
478 	 * concurrently on two different CPUs for the same target and it is not
479 	 * necessary to acquire the lock in the fast switch case.
480 	 */
481 	if (sg_policy->policy->fast_switch_enabled) {
482 		sugov_fast_switch(sg_policy, time, next_f);
483 	} else {
484 		raw_spin_lock(&sg_policy->update_lock);
485 		sugov_deferred_update(sg_policy, time, next_f);
486 		raw_spin_unlock(&sg_policy->update_lock);
487 	}
488 }
489 
490 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
491 {
492 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
493 	struct cpufreq_policy *policy = sg_policy->policy;
494 	unsigned long util = 0, max = 1;
495 	unsigned int j;
496 
497 	for_each_cpu(j, policy->cpus) {
498 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
499 		unsigned long j_util, j_max;
500 
501 		j_util = sugov_get_util(j_sg_cpu);
502 		j_max = j_sg_cpu->max;
503 		sugov_iowait_apply(j_sg_cpu, time, &j_util, &j_max);
504 
505 		if (j_util * max > j_max * util) {
506 			util = j_util;
507 			max = j_max;
508 		}
509 	}
510 
511 	return get_next_freq(sg_policy, util, max);
512 }
513 
514 static void
515 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
516 {
517 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
518 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
519 	unsigned int next_f;
520 
521 	raw_spin_lock(&sg_policy->update_lock);
522 
523 	sugov_iowait_boost(sg_cpu, time, flags);
524 	sg_cpu->last_update = time;
525 
526 	ignore_dl_rate_limit(sg_cpu, sg_policy);
527 
528 	if (sugov_should_update_freq(sg_policy, time)) {
529 		next_f = sugov_next_freq_shared(sg_cpu, time);
530 
531 		if (sg_policy->policy->fast_switch_enabled)
532 			sugov_fast_switch(sg_policy, time, next_f);
533 		else
534 			sugov_deferred_update(sg_policy, time, next_f);
535 	}
536 
537 	raw_spin_unlock(&sg_policy->update_lock);
538 }
539 
540 static void sugov_work(struct kthread_work *work)
541 {
542 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
543 	unsigned int freq;
544 	unsigned long flags;
545 
546 	/*
547 	 * Hold sg_policy->update_lock shortly to handle the case where:
548 	 * incase sg_policy->next_freq is read here, and then updated by
549 	 * sugov_deferred_update() just before work_in_progress is set to false
550 	 * here, we may miss queueing the new update.
551 	 *
552 	 * Note: If a work was queued after the update_lock is released,
553 	 * sugov_work() will just be called again by kthread_work code; and the
554 	 * request will be proceed before the sugov thread sleeps.
555 	 */
556 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
557 	freq = sg_policy->next_freq;
558 	sg_policy->work_in_progress = false;
559 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
560 
561 	mutex_lock(&sg_policy->work_lock);
562 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
563 	mutex_unlock(&sg_policy->work_lock);
564 }
565 
566 static void sugov_irq_work(struct irq_work *irq_work)
567 {
568 	struct sugov_policy *sg_policy;
569 
570 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
571 
572 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
573 }
574 
575 /************************** sysfs interface ************************/
576 
577 static struct sugov_tunables *global_tunables;
578 static DEFINE_MUTEX(global_tunables_lock);
579 
580 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
581 {
582 	return container_of(attr_set, struct sugov_tunables, attr_set);
583 }
584 
585 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
586 {
587 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
588 
589 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
590 }
591 
592 static ssize_t
593 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
594 {
595 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
596 	struct sugov_policy *sg_policy;
597 	unsigned int rate_limit_us;
598 
599 	if (kstrtouint(buf, 10, &rate_limit_us))
600 		return -EINVAL;
601 
602 	tunables->rate_limit_us = rate_limit_us;
603 
604 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
605 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
606 
607 	return count;
608 }
609 
610 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
611 
612 static struct attribute *sugov_attributes[] = {
613 	&rate_limit_us.attr,
614 	NULL
615 };
616 
617 static struct kobj_type sugov_tunables_ktype = {
618 	.default_attrs = sugov_attributes,
619 	.sysfs_ops = &governor_sysfs_ops,
620 };
621 
622 /********************** cpufreq governor interface *********************/
623 
624 struct cpufreq_governor schedutil_gov;
625 
626 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627 {
628 	struct sugov_policy *sg_policy;
629 
630 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631 	if (!sg_policy)
632 		return NULL;
633 
634 	sg_policy->policy = policy;
635 	raw_spin_lock_init(&sg_policy->update_lock);
636 	return sg_policy;
637 }
638 
639 static void sugov_policy_free(struct sugov_policy *sg_policy)
640 {
641 	kfree(sg_policy);
642 }
643 
644 static int sugov_kthread_create(struct sugov_policy *sg_policy)
645 {
646 	struct task_struct *thread;
647 	struct sched_attr attr = {
648 		.size		= sizeof(struct sched_attr),
649 		.sched_policy	= SCHED_DEADLINE,
650 		.sched_flags	= SCHED_FLAG_SUGOV,
651 		.sched_nice	= 0,
652 		.sched_priority	= 0,
653 		/*
654 		 * Fake (unused) bandwidth; workaround to "fix"
655 		 * priority inheritance.
656 		 */
657 		.sched_runtime	=  1000000,
658 		.sched_deadline = 10000000,
659 		.sched_period	= 10000000,
660 	};
661 	struct cpufreq_policy *policy = sg_policy->policy;
662 	int ret;
663 
664 	/* kthread only required for slow path */
665 	if (policy->fast_switch_enabled)
666 		return 0;
667 
668 	kthread_init_work(&sg_policy->work, sugov_work);
669 	kthread_init_worker(&sg_policy->worker);
670 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671 				"sugov:%d",
672 				cpumask_first(policy->related_cpus));
673 	if (IS_ERR(thread)) {
674 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675 		return PTR_ERR(thread);
676 	}
677 
678 	ret = sched_setattr_nocheck(thread, &attr);
679 	if (ret) {
680 		kthread_stop(thread);
681 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682 		return ret;
683 	}
684 
685 	sg_policy->thread = thread;
686 	kthread_bind_mask(thread, policy->related_cpus);
687 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688 	mutex_init(&sg_policy->work_lock);
689 
690 	wake_up_process(thread);
691 
692 	return 0;
693 }
694 
695 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696 {
697 	/* kthread only required for slow path */
698 	if (sg_policy->policy->fast_switch_enabled)
699 		return;
700 
701 	kthread_flush_worker(&sg_policy->worker);
702 	kthread_stop(sg_policy->thread);
703 	mutex_destroy(&sg_policy->work_lock);
704 }
705 
706 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707 {
708 	struct sugov_tunables *tunables;
709 
710 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711 	if (tunables) {
712 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713 		if (!have_governor_per_policy())
714 			global_tunables = tunables;
715 	}
716 	return tunables;
717 }
718 
719 static void sugov_tunables_free(struct sugov_tunables *tunables)
720 {
721 	if (!have_governor_per_policy())
722 		global_tunables = NULL;
723 
724 	kfree(tunables);
725 }
726 
727 static int sugov_init(struct cpufreq_policy *policy)
728 {
729 	struct sugov_policy *sg_policy;
730 	struct sugov_tunables *tunables;
731 	int ret = 0;
732 
733 	/* State should be equivalent to EXIT */
734 	if (policy->governor_data)
735 		return -EBUSY;
736 
737 	cpufreq_enable_fast_switch(policy);
738 
739 	sg_policy = sugov_policy_alloc(policy);
740 	if (!sg_policy) {
741 		ret = -ENOMEM;
742 		goto disable_fast_switch;
743 	}
744 
745 	ret = sugov_kthread_create(sg_policy);
746 	if (ret)
747 		goto free_sg_policy;
748 
749 	mutex_lock(&global_tunables_lock);
750 
751 	if (global_tunables) {
752 		if (WARN_ON(have_governor_per_policy())) {
753 			ret = -EINVAL;
754 			goto stop_kthread;
755 		}
756 		policy->governor_data = sg_policy;
757 		sg_policy->tunables = global_tunables;
758 
759 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
760 		goto out;
761 	}
762 
763 	tunables = sugov_tunables_alloc(sg_policy);
764 	if (!tunables) {
765 		ret = -ENOMEM;
766 		goto stop_kthread;
767 	}
768 
769 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
770 
771 	policy->governor_data = sg_policy;
772 	sg_policy->tunables = tunables;
773 
774 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
775 				   get_governor_parent_kobj(policy), "%s",
776 				   schedutil_gov.name);
777 	if (ret)
778 		goto fail;
779 
780 out:
781 	mutex_unlock(&global_tunables_lock);
782 	return 0;
783 
784 fail:
785 	policy->governor_data = NULL;
786 	sugov_tunables_free(tunables);
787 
788 stop_kthread:
789 	sugov_kthread_stop(sg_policy);
790 	mutex_unlock(&global_tunables_lock);
791 
792 free_sg_policy:
793 	sugov_policy_free(sg_policy);
794 
795 disable_fast_switch:
796 	cpufreq_disable_fast_switch(policy);
797 
798 	pr_err("initialization failed (error %d)\n", ret);
799 	return ret;
800 }
801 
802 static void sugov_exit(struct cpufreq_policy *policy)
803 {
804 	struct sugov_policy *sg_policy = policy->governor_data;
805 	struct sugov_tunables *tunables = sg_policy->tunables;
806 	unsigned int count;
807 
808 	mutex_lock(&global_tunables_lock);
809 
810 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
811 	policy->governor_data = NULL;
812 	if (!count)
813 		sugov_tunables_free(tunables);
814 
815 	mutex_unlock(&global_tunables_lock);
816 
817 	sugov_kthread_stop(sg_policy);
818 	sugov_policy_free(sg_policy);
819 	cpufreq_disable_fast_switch(policy);
820 }
821 
822 static int sugov_start(struct cpufreq_policy *policy)
823 {
824 	struct sugov_policy *sg_policy = policy->governor_data;
825 	unsigned int cpu;
826 
827 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
828 	sg_policy->last_freq_update_time	= 0;
829 	sg_policy->next_freq			= 0;
830 	sg_policy->work_in_progress		= false;
831 	sg_policy->need_freq_update		= false;
832 	sg_policy->cached_raw_freq		= 0;
833 
834 	for_each_cpu(cpu, policy->cpus) {
835 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
836 
837 		memset(sg_cpu, 0, sizeof(*sg_cpu));
838 		sg_cpu->cpu			= cpu;
839 		sg_cpu->sg_policy		= sg_policy;
840 		sg_cpu->iowait_boost_max	= policy->cpuinfo.max_freq;
841 	}
842 
843 	for_each_cpu(cpu, policy->cpus) {
844 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845 
846 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
847 					     policy_is_shared(policy) ?
848 							sugov_update_shared :
849 							sugov_update_single);
850 	}
851 	return 0;
852 }
853 
854 static void sugov_stop(struct cpufreq_policy *policy)
855 {
856 	struct sugov_policy *sg_policy = policy->governor_data;
857 	unsigned int cpu;
858 
859 	for_each_cpu(cpu, policy->cpus)
860 		cpufreq_remove_update_util_hook(cpu);
861 
862 	synchronize_sched();
863 
864 	if (!policy->fast_switch_enabled) {
865 		irq_work_sync(&sg_policy->irq_work);
866 		kthread_cancel_work_sync(&sg_policy->work);
867 	}
868 }
869 
870 static void sugov_limits(struct cpufreq_policy *policy)
871 {
872 	struct sugov_policy *sg_policy = policy->governor_data;
873 
874 	if (!policy->fast_switch_enabled) {
875 		mutex_lock(&sg_policy->work_lock);
876 		cpufreq_policy_apply_limits(policy);
877 		mutex_unlock(&sg_policy->work_lock);
878 	}
879 
880 	sg_policy->need_freq_update = true;
881 }
882 
883 struct cpufreq_governor schedutil_gov = {
884 	.name			= "schedutil",
885 	.owner			= THIS_MODULE,
886 	.dynamic_switching	= true,
887 	.init			= sugov_init,
888 	.exit			= sugov_exit,
889 	.start			= sugov_start,
890 	.stop			= sugov_stop,
891 	.limits			= sugov_limits,
892 };
893 
894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
895 struct cpufreq_governor *cpufreq_default_governor(void)
896 {
897 	return &schedutil_gov;
898 }
899 #endif
900 
901 static int __init sugov_register(void)
902 {
903 	return cpufreq_register_governor(&schedutil_gov);
904 }
905 fs_initcall(sugov_register);
906 
907 #ifdef CONFIG_ENERGY_MODEL
908 extern bool sched_energy_update;
909 extern struct mutex sched_energy_mutex;
910 
911 static void rebuild_sd_workfn(struct work_struct *work)
912 {
913 	mutex_lock(&sched_energy_mutex);
914 	sched_energy_update = true;
915 	rebuild_sched_domains();
916 	sched_energy_update = false;
917 	mutex_unlock(&sched_energy_mutex);
918 }
919 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
920 
921 /*
922  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
923  * on governor changes to make sure the scheduler knows about it.
924  */
925 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
926 				  struct cpufreq_governor *old_gov)
927 {
928 	if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
929 		/*
930 		 * When called from the cpufreq_register_driver() path, the
931 		 * cpu_hotplug_lock is already held, so use a work item to
932 		 * avoid nested locking in rebuild_sched_domains().
933 		 */
934 		schedule_work(&rebuild_sd_work);
935 	}
936 
937 }
938 #endif
939