1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 10 11 struct sugov_tunables { 12 struct gov_attr_set attr_set; 13 unsigned int rate_limit_us; 14 }; 15 16 struct sugov_policy { 17 struct cpufreq_policy *policy; 18 19 struct sugov_tunables *tunables; 20 struct list_head tunables_hook; 21 22 raw_spinlock_t update_lock; 23 u64 last_freq_update_time; 24 s64 freq_update_delay_ns; 25 unsigned int next_freq; 26 unsigned int cached_raw_freq; 27 28 /* The next fields are only needed if fast switch cannot be used: */ 29 struct irq_work irq_work; 30 struct kthread_work work; 31 struct mutex work_lock; 32 struct kthread_worker worker; 33 struct task_struct *thread; 34 bool work_in_progress; 35 36 bool limits_changed; 37 bool need_freq_update; 38 }; 39 40 struct sugov_cpu { 41 struct update_util_data update_util; 42 struct sugov_policy *sg_policy; 43 unsigned int cpu; 44 45 bool iowait_boost_pending; 46 unsigned int iowait_boost; 47 u64 last_update; 48 49 unsigned long util; 50 unsigned long bw_dl; 51 unsigned long max; 52 53 /* The field below is for single-CPU policies only: */ 54 #ifdef CONFIG_NO_HZ_COMMON 55 unsigned long saved_idle_calls; 56 #endif 57 }; 58 59 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 60 61 /************************ Governor internals ***********************/ 62 63 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 64 { 65 s64 delta_ns; 66 67 /* 68 * Since cpufreq_update_util() is called with rq->lock held for 69 * the @target_cpu, our per-CPU data is fully serialized. 70 * 71 * However, drivers cannot in general deal with cross-CPU 72 * requests, so while get_next_freq() will work, our 73 * sugov_update_commit() call may not for the fast switching platforms. 74 * 75 * Hence stop here for remote requests if they aren't supported 76 * by the hardware, as calculating the frequency is pointless if 77 * we cannot in fact act on it. 78 * 79 * This is needed on the slow switching platforms too to prevent CPUs 80 * going offline from leaving stale IRQ work items behind. 81 */ 82 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 83 return false; 84 85 if (unlikely(sg_policy->limits_changed)) { 86 sg_policy->limits_changed = false; 87 sg_policy->need_freq_update = true; 88 return true; 89 } 90 91 delta_ns = time - sg_policy->last_freq_update_time; 92 93 return delta_ns >= sg_policy->freq_update_delay_ns; 94 } 95 96 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 97 unsigned int next_freq) 98 { 99 if (sg_policy->need_freq_update) 100 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 101 else if (sg_policy->next_freq == next_freq) 102 return false; 103 104 sg_policy->next_freq = next_freq; 105 sg_policy->last_freq_update_time = time; 106 107 return true; 108 } 109 110 static void sugov_deferred_update(struct sugov_policy *sg_policy) 111 { 112 if (!sg_policy->work_in_progress) { 113 sg_policy->work_in_progress = true; 114 irq_work_queue(&sg_policy->irq_work); 115 } 116 } 117 118 /** 119 * get_next_freq - Compute a new frequency for a given cpufreq policy. 120 * @sg_policy: schedutil policy object to compute the new frequency for. 121 * @util: Current CPU utilization. 122 * @max: CPU capacity. 123 * 124 * If the utilization is frequency-invariant, choose the new frequency to be 125 * proportional to it, that is 126 * 127 * next_freq = C * max_freq * util / max 128 * 129 * Otherwise, approximate the would-be frequency-invariant utilization by 130 * util_raw * (curr_freq / max_freq) which leads to 131 * 132 * next_freq = C * curr_freq * util_raw / max 133 * 134 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 135 * 136 * The lowest driver-supported frequency which is equal or greater than the raw 137 * next_freq (as calculated above) is returned, subject to policy min/max and 138 * cpufreq driver limitations. 139 */ 140 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 141 unsigned long util, unsigned long max) 142 { 143 struct cpufreq_policy *policy = sg_policy->policy; 144 unsigned int freq = arch_scale_freq_invariant() ? 145 policy->cpuinfo.max_freq : policy->cur; 146 147 util = map_util_perf(util); 148 freq = map_util_freq(util, freq, max); 149 150 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 151 return sg_policy->next_freq; 152 153 sg_policy->cached_raw_freq = freq; 154 return cpufreq_driver_resolve_freq(policy, freq); 155 } 156 157 static void sugov_get_util(struct sugov_cpu *sg_cpu) 158 { 159 struct rq *rq = cpu_rq(sg_cpu->cpu); 160 161 sg_cpu->max = arch_scale_cpu_capacity(sg_cpu->cpu); 162 sg_cpu->bw_dl = cpu_bw_dl(rq); 163 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), 164 FREQUENCY_UTIL, NULL); 165 } 166 167 /** 168 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 169 * @sg_cpu: the sugov data for the CPU to boost 170 * @time: the update time from the caller 171 * @set_iowait_boost: true if an IO boost has been requested 172 * 173 * The IO wait boost of a task is disabled after a tick since the last update 174 * of a CPU. If a new IO wait boost is requested after more then a tick, then 175 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 176 * efficiency by ignoring sporadic wakeups from IO. 177 */ 178 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 179 bool set_iowait_boost) 180 { 181 s64 delta_ns = time - sg_cpu->last_update; 182 183 /* Reset boost only if a tick has elapsed since last request */ 184 if (delta_ns <= TICK_NSEC) 185 return false; 186 187 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 188 sg_cpu->iowait_boost_pending = set_iowait_boost; 189 190 return true; 191 } 192 193 /** 194 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 195 * @sg_cpu: the sugov data for the CPU to boost 196 * @time: the update time from the caller 197 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 198 * 199 * Each time a task wakes up after an IO operation, the CPU utilization can be 200 * boosted to a certain utilization which doubles at each "frequent and 201 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 202 * of the maximum OPP. 203 * 204 * To keep doubling, an IO boost has to be requested at least once per tick, 205 * otherwise we restart from the utilization of the minimum OPP. 206 */ 207 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 208 unsigned int flags) 209 { 210 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 211 212 /* Reset boost if the CPU appears to have been idle enough */ 213 if (sg_cpu->iowait_boost && 214 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 215 return; 216 217 /* Boost only tasks waking up after IO */ 218 if (!set_iowait_boost) 219 return; 220 221 /* Ensure boost doubles only one time at each request */ 222 if (sg_cpu->iowait_boost_pending) 223 return; 224 sg_cpu->iowait_boost_pending = true; 225 226 /* Double the boost at each request */ 227 if (sg_cpu->iowait_boost) { 228 sg_cpu->iowait_boost = 229 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 230 return; 231 } 232 233 /* First wakeup after IO: start with minimum boost */ 234 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 235 } 236 237 /** 238 * sugov_iowait_apply() - Apply the IO boost to a CPU. 239 * @sg_cpu: the sugov data for the cpu to boost 240 * @time: the update time from the caller 241 * 242 * A CPU running a task which woken up after an IO operation can have its 243 * utilization boosted to speed up the completion of those IO operations. 244 * The IO boost value is increased each time a task wakes up from IO, in 245 * sugov_iowait_apply(), and it's instead decreased by this function, 246 * each time an increase has not been requested (!iowait_boost_pending). 247 * 248 * A CPU which also appears to have been idle for at least one tick has also 249 * its IO boost utilization reset. 250 * 251 * This mechanism is designed to boost high frequently IO waiting tasks, while 252 * being more conservative on tasks which does sporadic IO operations. 253 */ 254 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time) 255 { 256 unsigned long boost; 257 258 /* No boost currently required */ 259 if (!sg_cpu->iowait_boost) 260 return; 261 262 /* Reset boost if the CPU appears to have been idle enough */ 263 if (sugov_iowait_reset(sg_cpu, time, false)) 264 return; 265 266 if (!sg_cpu->iowait_boost_pending) { 267 /* 268 * No boost pending; reduce the boost value. 269 */ 270 sg_cpu->iowait_boost >>= 1; 271 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 272 sg_cpu->iowait_boost = 0; 273 return; 274 } 275 } 276 277 sg_cpu->iowait_boost_pending = false; 278 279 /* 280 * sg_cpu->util is already in capacity scale; convert iowait_boost 281 * into the same scale so we can compare. 282 */ 283 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT; 284 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL); 285 if (sg_cpu->util < boost) 286 sg_cpu->util = boost; 287 } 288 289 #ifdef CONFIG_NO_HZ_COMMON 290 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 291 { 292 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 293 bool ret = idle_calls == sg_cpu->saved_idle_calls; 294 295 sg_cpu->saved_idle_calls = idle_calls; 296 return ret; 297 } 298 #else 299 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 300 #endif /* CONFIG_NO_HZ_COMMON */ 301 302 /* 303 * Make sugov_should_update_freq() ignore the rate limit when DL 304 * has increased the utilization. 305 */ 306 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu) 307 { 308 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 309 sg_cpu->sg_policy->limits_changed = true; 310 } 311 312 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 313 u64 time, unsigned int flags) 314 { 315 sugov_iowait_boost(sg_cpu, time, flags); 316 sg_cpu->last_update = time; 317 318 ignore_dl_rate_limit(sg_cpu); 319 320 if (!sugov_should_update_freq(sg_cpu->sg_policy, time)) 321 return false; 322 323 sugov_get_util(sg_cpu); 324 sugov_iowait_apply(sg_cpu, time); 325 326 return true; 327 } 328 329 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 330 unsigned int flags) 331 { 332 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 333 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 334 unsigned int cached_freq = sg_policy->cached_raw_freq; 335 unsigned int next_f; 336 337 if (!sugov_update_single_common(sg_cpu, time, flags)) 338 return; 339 340 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max); 341 /* 342 * Do not reduce the frequency if the CPU has not been idle 343 * recently, as the reduction is likely to be premature then. 344 * 345 * Except when the rq is capped by uclamp_max. 346 */ 347 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 348 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 349 next_f = sg_policy->next_freq; 350 351 /* Restore cached freq as next_freq has changed */ 352 sg_policy->cached_raw_freq = cached_freq; 353 } 354 355 if (!sugov_update_next_freq(sg_policy, time, next_f)) 356 return; 357 358 /* 359 * This code runs under rq->lock for the target CPU, so it won't run 360 * concurrently on two different CPUs for the same target and it is not 361 * necessary to acquire the lock in the fast switch case. 362 */ 363 if (sg_policy->policy->fast_switch_enabled) { 364 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 365 } else { 366 raw_spin_lock(&sg_policy->update_lock); 367 sugov_deferred_update(sg_policy); 368 raw_spin_unlock(&sg_policy->update_lock); 369 } 370 } 371 372 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 373 unsigned int flags) 374 { 375 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 376 unsigned long prev_util = sg_cpu->util; 377 378 /* 379 * Fall back to the "frequency" path if frequency invariance is not 380 * supported, because the direct mapping between the utilization and 381 * the performance levels depends on the frequency invariance. 382 */ 383 if (!arch_scale_freq_invariant()) { 384 sugov_update_single_freq(hook, time, flags); 385 return; 386 } 387 388 if (!sugov_update_single_common(sg_cpu, time, flags)) 389 return; 390 391 /* 392 * Do not reduce the target performance level if the CPU has not been 393 * idle recently, as the reduction is likely to be premature then. 394 * 395 * Except when the rq is capped by uclamp_max. 396 */ 397 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 398 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 399 sg_cpu->util = prev_util; 400 401 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl), 402 map_util_perf(sg_cpu->util), sg_cpu->max); 403 404 sg_cpu->sg_policy->last_freq_update_time = time; 405 } 406 407 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 408 { 409 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 410 struct cpufreq_policy *policy = sg_policy->policy; 411 unsigned long util = 0, max = 1; 412 unsigned int j; 413 414 for_each_cpu(j, policy->cpus) { 415 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 416 unsigned long j_util, j_max; 417 418 sugov_get_util(j_sg_cpu); 419 sugov_iowait_apply(j_sg_cpu, time); 420 j_util = j_sg_cpu->util; 421 j_max = j_sg_cpu->max; 422 423 if (j_util * max > j_max * util) { 424 util = j_util; 425 max = j_max; 426 } 427 } 428 429 return get_next_freq(sg_policy, util, max); 430 } 431 432 static void 433 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 434 { 435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 436 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 437 unsigned int next_f; 438 439 raw_spin_lock(&sg_policy->update_lock); 440 441 sugov_iowait_boost(sg_cpu, time, flags); 442 sg_cpu->last_update = time; 443 444 ignore_dl_rate_limit(sg_cpu); 445 446 if (sugov_should_update_freq(sg_policy, time)) { 447 next_f = sugov_next_freq_shared(sg_cpu, time); 448 449 if (!sugov_update_next_freq(sg_policy, time, next_f)) 450 goto unlock; 451 452 if (sg_policy->policy->fast_switch_enabled) 453 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 454 else 455 sugov_deferred_update(sg_policy); 456 } 457 unlock: 458 raw_spin_unlock(&sg_policy->update_lock); 459 } 460 461 static void sugov_work(struct kthread_work *work) 462 { 463 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 464 unsigned int freq; 465 unsigned long flags; 466 467 /* 468 * Hold sg_policy->update_lock shortly to handle the case where: 469 * in case sg_policy->next_freq is read here, and then updated by 470 * sugov_deferred_update() just before work_in_progress is set to false 471 * here, we may miss queueing the new update. 472 * 473 * Note: If a work was queued after the update_lock is released, 474 * sugov_work() will just be called again by kthread_work code; and the 475 * request will be proceed before the sugov thread sleeps. 476 */ 477 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 478 freq = sg_policy->next_freq; 479 sg_policy->work_in_progress = false; 480 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 481 482 mutex_lock(&sg_policy->work_lock); 483 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 484 mutex_unlock(&sg_policy->work_lock); 485 } 486 487 static void sugov_irq_work(struct irq_work *irq_work) 488 { 489 struct sugov_policy *sg_policy; 490 491 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 492 493 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 494 } 495 496 /************************** sysfs interface ************************/ 497 498 static struct sugov_tunables *global_tunables; 499 static DEFINE_MUTEX(global_tunables_lock); 500 501 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 502 { 503 return container_of(attr_set, struct sugov_tunables, attr_set); 504 } 505 506 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 507 { 508 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 509 510 return sprintf(buf, "%u\n", tunables->rate_limit_us); 511 } 512 513 static ssize_t 514 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 515 { 516 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 517 struct sugov_policy *sg_policy; 518 unsigned int rate_limit_us; 519 520 if (kstrtouint(buf, 10, &rate_limit_us)) 521 return -EINVAL; 522 523 tunables->rate_limit_us = rate_limit_us; 524 525 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 526 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 527 528 return count; 529 } 530 531 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 532 533 static struct attribute *sugov_attrs[] = { 534 &rate_limit_us.attr, 535 NULL 536 }; 537 ATTRIBUTE_GROUPS(sugov); 538 539 static void sugov_tunables_free(struct kobject *kobj) 540 { 541 struct gov_attr_set *attr_set = to_gov_attr_set(kobj); 542 543 kfree(to_sugov_tunables(attr_set)); 544 } 545 546 static struct kobj_type sugov_tunables_ktype = { 547 .default_groups = sugov_groups, 548 .sysfs_ops = &governor_sysfs_ops, 549 .release = &sugov_tunables_free, 550 }; 551 552 /********************** cpufreq governor interface *********************/ 553 554 struct cpufreq_governor schedutil_gov; 555 556 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 557 { 558 struct sugov_policy *sg_policy; 559 560 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 561 if (!sg_policy) 562 return NULL; 563 564 sg_policy->policy = policy; 565 raw_spin_lock_init(&sg_policy->update_lock); 566 return sg_policy; 567 } 568 569 static void sugov_policy_free(struct sugov_policy *sg_policy) 570 { 571 kfree(sg_policy); 572 } 573 574 static int sugov_kthread_create(struct sugov_policy *sg_policy) 575 { 576 struct task_struct *thread; 577 struct sched_attr attr = { 578 .size = sizeof(struct sched_attr), 579 .sched_policy = SCHED_DEADLINE, 580 .sched_flags = SCHED_FLAG_SUGOV, 581 .sched_nice = 0, 582 .sched_priority = 0, 583 /* 584 * Fake (unused) bandwidth; workaround to "fix" 585 * priority inheritance. 586 */ 587 .sched_runtime = 1000000, 588 .sched_deadline = 10000000, 589 .sched_period = 10000000, 590 }; 591 struct cpufreq_policy *policy = sg_policy->policy; 592 int ret; 593 594 /* kthread only required for slow path */ 595 if (policy->fast_switch_enabled) 596 return 0; 597 598 kthread_init_work(&sg_policy->work, sugov_work); 599 kthread_init_worker(&sg_policy->worker); 600 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 601 "sugov:%d", 602 cpumask_first(policy->related_cpus)); 603 if (IS_ERR(thread)) { 604 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 605 return PTR_ERR(thread); 606 } 607 608 ret = sched_setattr_nocheck(thread, &attr); 609 if (ret) { 610 kthread_stop(thread); 611 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 612 return ret; 613 } 614 615 sg_policy->thread = thread; 616 kthread_bind_mask(thread, policy->related_cpus); 617 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 618 mutex_init(&sg_policy->work_lock); 619 620 wake_up_process(thread); 621 622 return 0; 623 } 624 625 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 626 { 627 /* kthread only required for slow path */ 628 if (sg_policy->policy->fast_switch_enabled) 629 return; 630 631 kthread_flush_worker(&sg_policy->worker); 632 kthread_stop(sg_policy->thread); 633 mutex_destroy(&sg_policy->work_lock); 634 } 635 636 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 637 { 638 struct sugov_tunables *tunables; 639 640 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 641 if (tunables) { 642 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 643 if (!have_governor_per_policy()) 644 global_tunables = tunables; 645 } 646 return tunables; 647 } 648 649 static void sugov_clear_global_tunables(void) 650 { 651 if (!have_governor_per_policy()) 652 global_tunables = NULL; 653 } 654 655 static int sugov_init(struct cpufreq_policy *policy) 656 { 657 struct sugov_policy *sg_policy; 658 struct sugov_tunables *tunables; 659 int ret = 0; 660 661 /* State should be equivalent to EXIT */ 662 if (policy->governor_data) 663 return -EBUSY; 664 665 cpufreq_enable_fast_switch(policy); 666 667 sg_policy = sugov_policy_alloc(policy); 668 if (!sg_policy) { 669 ret = -ENOMEM; 670 goto disable_fast_switch; 671 } 672 673 ret = sugov_kthread_create(sg_policy); 674 if (ret) 675 goto free_sg_policy; 676 677 mutex_lock(&global_tunables_lock); 678 679 if (global_tunables) { 680 if (WARN_ON(have_governor_per_policy())) { 681 ret = -EINVAL; 682 goto stop_kthread; 683 } 684 policy->governor_data = sg_policy; 685 sg_policy->tunables = global_tunables; 686 687 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 688 goto out; 689 } 690 691 tunables = sugov_tunables_alloc(sg_policy); 692 if (!tunables) { 693 ret = -ENOMEM; 694 goto stop_kthread; 695 } 696 697 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 698 699 policy->governor_data = sg_policy; 700 sg_policy->tunables = tunables; 701 702 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 703 get_governor_parent_kobj(policy), "%s", 704 schedutil_gov.name); 705 if (ret) 706 goto fail; 707 708 out: 709 mutex_unlock(&global_tunables_lock); 710 return 0; 711 712 fail: 713 kobject_put(&tunables->attr_set.kobj); 714 policy->governor_data = NULL; 715 sugov_clear_global_tunables(); 716 717 stop_kthread: 718 sugov_kthread_stop(sg_policy); 719 mutex_unlock(&global_tunables_lock); 720 721 free_sg_policy: 722 sugov_policy_free(sg_policy); 723 724 disable_fast_switch: 725 cpufreq_disable_fast_switch(policy); 726 727 pr_err("initialization failed (error %d)\n", ret); 728 return ret; 729 } 730 731 static void sugov_exit(struct cpufreq_policy *policy) 732 { 733 struct sugov_policy *sg_policy = policy->governor_data; 734 struct sugov_tunables *tunables = sg_policy->tunables; 735 unsigned int count; 736 737 mutex_lock(&global_tunables_lock); 738 739 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 740 policy->governor_data = NULL; 741 if (!count) 742 sugov_clear_global_tunables(); 743 744 mutex_unlock(&global_tunables_lock); 745 746 sugov_kthread_stop(sg_policy); 747 sugov_policy_free(sg_policy); 748 cpufreq_disable_fast_switch(policy); 749 } 750 751 static int sugov_start(struct cpufreq_policy *policy) 752 { 753 struct sugov_policy *sg_policy = policy->governor_data; 754 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 755 unsigned int cpu; 756 757 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 758 sg_policy->last_freq_update_time = 0; 759 sg_policy->next_freq = 0; 760 sg_policy->work_in_progress = false; 761 sg_policy->limits_changed = false; 762 sg_policy->cached_raw_freq = 0; 763 764 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 765 766 for_each_cpu(cpu, policy->cpus) { 767 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 768 769 memset(sg_cpu, 0, sizeof(*sg_cpu)); 770 sg_cpu->cpu = cpu; 771 sg_cpu->sg_policy = sg_policy; 772 } 773 774 if (policy_is_shared(policy)) 775 uu = sugov_update_shared; 776 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 777 uu = sugov_update_single_perf; 778 else 779 uu = sugov_update_single_freq; 780 781 for_each_cpu(cpu, policy->cpus) { 782 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 783 784 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 785 } 786 return 0; 787 } 788 789 static void sugov_stop(struct cpufreq_policy *policy) 790 { 791 struct sugov_policy *sg_policy = policy->governor_data; 792 unsigned int cpu; 793 794 for_each_cpu(cpu, policy->cpus) 795 cpufreq_remove_update_util_hook(cpu); 796 797 synchronize_rcu(); 798 799 if (!policy->fast_switch_enabled) { 800 irq_work_sync(&sg_policy->irq_work); 801 kthread_cancel_work_sync(&sg_policy->work); 802 } 803 } 804 805 static void sugov_limits(struct cpufreq_policy *policy) 806 { 807 struct sugov_policy *sg_policy = policy->governor_data; 808 809 if (!policy->fast_switch_enabled) { 810 mutex_lock(&sg_policy->work_lock); 811 cpufreq_policy_apply_limits(policy); 812 mutex_unlock(&sg_policy->work_lock); 813 } 814 815 sg_policy->limits_changed = true; 816 } 817 818 struct cpufreq_governor schedutil_gov = { 819 .name = "schedutil", 820 .owner = THIS_MODULE, 821 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 822 .init = sugov_init, 823 .exit = sugov_exit, 824 .start = sugov_start, 825 .stop = sugov_stop, 826 .limits = sugov_limits, 827 }; 828 829 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 830 struct cpufreq_governor *cpufreq_default_governor(void) 831 { 832 return &schedutil_gov; 833 } 834 #endif 835 836 cpufreq_governor_init(schedutil_gov); 837 838 #ifdef CONFIG_ENERGY_MODEL 839 static void rebuild_sd_workfn(struct work_struct *work) 840 { 841 rebuild_sched_domains_energy(); 842 } 843 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 844 845 /* 846 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 847 * on governor changes to make sure the scheduler knows about it. 848 */ 849 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 850 struct cpufreq_governor *old_gov) 851 { 852 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 853 /* 854 * When called from the cpufreq_register_driver() path, the 855 * cpu_hotplug_lock is already held, so use a work item to 856 * avoid nested locking in rebuild_sched_domains(). 857 */ 858 schedule_work(&rebuild_sd_work); 859 } 860 861 } 862 #endif 863