xref: /linux/kernel/sched/cpufreq_schedutil.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
10 
11 struct sugov_tunables {
12 	struct gov_attr_set	attr_set;
13 	unsigned int		rate_limit_us;
14 };
15 
16 struct sugov_policy {
17 	struct cpufreq_policy	*policy;
18 
19 	struct sugov_tunables	*tunables;
20 	struct list_head	tunables_hook;
21 
22 	raw_spinlock_t		update_lock;
23 	u64			last_freq_update_time;
24 	s64			freq_update_delay_ns;
25 	unsigned int		next_freq;
26 	unsigned int		cached_raw_freq;
27 
28 	/* The next fields are only needed if fast switch cannot be used: */
29 	struct			irq_work irq_work;
30 	struct			kthread_work work;
31 	struct			mutex work_lock;
32 	struct			kthread_worker worker;
33 	struct task_struct	*thread;
34 	bool			work_in_progress;
35 
36 	bool			limits_changed;
37 	bool			need_freq_update;
38 };
39 
40 struct sugov_cpu {
41 	struct update_util_data	update_util;
42 	struct sugov_policy	*sg_policy;
43 	unsigned int		cpu;
44 
45 	bool			iowait_boost_pending;
46 	unsigned int		iowait_boost;
47 	u64			last_update;
48 
49 	unsigned long		util;
50 	unsigned long		bw_min;
51 
52 	/* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 	unsigned long		saved_idle_calls;
55 #endif
56 };
57 
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59 
60 /************************ Governor internals ***********************/
61 
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 	s64 delta_ns;
65 
66 	/*
67 	 * Since cpufreq_update_util() is called with rq->lock held for
68 	 * the @target_cpu, our per-CPU data is fully serialized.
69 	 *
70 	 * However, drivers cannot in general deal with cross-CPU
71 	 * requests, so while get_next_freq() will work, our
72 	 * sugov_update_commit() call may not for the fast switching platforms.
73 	 *
74 	 * Hence stop here for remote requests if they aren't supported
75 	 * by the hardware, as calculating the frequency is pointless if
76 	 * we cannot in fact act on it.
77 	 *
78 	 * This is needed on the slow switching platforms too to prevent CPUs
79 	 * going offline from leaving stale IRQ work items behind.
80 	 */
81 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 		return false;
83 
84 	if (unlikely(sg_policy->limits_changed)) {
85 		sg_policy->limits_changed = false;
86 		sg_policy->need_freq_update = true;
87 		return true;
88 	}
89 
90 	delta_ns = time - sg_policy->last_freq_update_time;
91 
92 	return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94 
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 				   unsigned int next_freq)
97 {
98 	if (sg_policy->need_freq_update)
99 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 	else if (sg_policy->next_freq == next_freq)
101 		return false;
102 
103 	sg_policy->next_freq = next_freq;
104 	sg_policy->last_freq_update_time = time;
105 
106 	return true;
107 }
108 
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 	if (!sg_policy->work_in_progress) {
112 		sg_policy->work_in_progress = true;
113 		irq_work_queue(&sg_policy->irq_work);
114 	}
115 }
116 
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128 	unsigned int freq = arch_scale_freq_ref(policy->cpu);
129 
130 	if (freq)
131 		return freq;
132 
133 	if (arch_scale_freq_invariant())
134 		return policy->cpuinfo.max_freq;
135 
136 	/*
137 	 * Apply a 25% margin so that we select a higher frequency than
138 	 * the current one before the CPU is fully busy:
139 	 */
140 	return policy->cur + (policy->cur >> 2);
141 }
142 
143 /**
144  * get_next_freq - Compute a new frequency for a given cpufreq policy.
145  * @sg_policy: schedutil policy object to compute the new frequency for.
146  * @util: Current CPU utilization.
147  * @max: CPU capacity.
148  *
149  * If the utilization is frequency-invariant, choose the new frequency to be
150  * proportional to it, that is
151  *
152  * next_freq = C * max_freq * util / max
153  *
154  * Otherwise, approximate the would-be frequency-invariant utilization by
155  * util_raw * (curr_freq / max_freq) which leads to
156  *
157  * next_freq = C * curr_freq * util_raw / max
158  *
159  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160  *
161  * The lowest driver-supported frequency which is equal or greater than the raw
162  * next_freq (as calculated above) is returned, subject to policy min/max and
163  * cpufreq driver limitations.
164  */
165 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 				  unsigned long util, unsigned long max)
167 {
168 	struct cpufreq_policy *policy = sg_policy->policy;
169 	unsigned int freq;
170 
171 	freq = get_capacity_ref_freq(policy);
172 	freq = map_util_freq(util, freq, max);
173 
174 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 		return sg_policy->next_freq;
176 
177 	sg_policy->cached_raw_freq = freq;
178 	return cpufreq_driver_resolve_freq(policy, freq);
179 }
180 
181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 				 unsigned long min,
183 				 unsigned long max)
184 {
185 	/* Add dvfs headroom to actual utilization */
186 	actual = map_util_perf(actual);
187 	/* Actually we don't need to target the max performance */
188 	if (actual < max)
189 		max = actual;
190 
191 	/*
192 	 * Ensure at least minimum performance while providing more compute
193 	 * capacity when possible.
194 	 */
195 	return max(min, max);
196 }
197 
198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199 {
200 	unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
201 
202 	util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
203 	util = max(util, boost);
204 	sg_cpu->bw_min = min;
205 	sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
206 }
207 
208 /**
209  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
210  * @sg_cpu: the sugov data for the CPU to boost
211  * @time: the update time from the caller
212  * @set_iowait_boost: true if an IO boost has been requested
213  *
214  * The IO wait boost of a task is disabled after a tick since the last update
215  * of a CPU. If a new IO wait boost is requested after more then a tick, then
216  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
217  * efficiency by ignoring sporadic wakeups from IO.
218  */
219 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
220 			       bool set_iowait_boost)
221 {
222 	s64 delta_ns = time - sg_cpu->last_update;
223 
224 	/* Reset boost only if a tick has elapsed since last request */
225 	if (delta_ns <= TICK_NSEC)
226 		return false;
227 
228 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
229 	sg_cpu->iowait_boost_pending = set_iowait_boost;
230 
231 	return true;
232 }
233 
234 /**
235  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
236  * @sg_cpu: the sugov data for the CPU to boost
237  * @time: the update time from the caller
238  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
239  *
240  * Each time a task wakes up after an IO operation, the CPU utilization can be
241  * boosted to a certain utilization which doubles at each "frequent and
242  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
243  * of the maximum OPP.
244  *
245  * To keep doubling, an IO boost has to be requested at least once per tick,
246  * otherwise we restart from the utilization of the minimum OPP.
247  */
248 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
249 			       unsigned int flags)
250 {
251 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
252 
253 	/* Reset boost if the CPU appears to have been idle enough */
254 	if (sg_cpu->iowait_boost &&
255 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
256 		return;
257 
258 	/* Boost only tasks waking up after IO */
259 	if (!set_iowait_boost)
260 		return;
261 
262 	/* Ensure boost doubles only one time at each request */
263 	if (sg_cpu->iowait_boost_pending)
264 		return;
265 	sg_cpu->iowait_boost_pending = true;
266 
267 	/* Double the boost at each request */
268 	if (sg_cpu->iowait_boost) {
269 		sg_cpu->iowait_boost =
270 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
271 		return;
272 	}
273 
274 	/* First wakeup after IO: start with minimum boost */
275 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
276 }
277 
278 /**
279  * sugov_iowait_apply() - Apply the IO boost to a CPU.
280  * @sg_cpu: the sugov data for the cpu to boost
281  * @time: the update time from the caller
282  * @max_cap: the max CPU capacity
283  *
284  * A CPU running a task which woken up after an IO operation can have its
285  * utilization boosted to speed up the completion of those IO operations.
286  * The IO boost value is increased each time a task wakes up from IO, in
287  * sugov_iowait_apply(), and it's instead decreased by this function,
288  * each time an increase has not been requested (!iowait_boost_pending).
289  *
290  * A CPU which also appears to have been idle for at least one tick has also
291  * its IO boost utilization reset.
292  *
293  * This mechanism is designed to boost high frequently IO waiting tasks, while
294  * being more conservative on tasks which does sporadic IO operations.
295  */
296 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
297 			       unsigned long max_cap)
298 {
299 	/* No boost currently required */
300 	if (!sg_cpu->iowait_boost)
301 		return 0;
302 
303 	/* Reset boost if the CPU appears to have been idle enough */
304 	if (sugov_iowait_reset(sg_cpu, time, false))
305 		return 0;
306 
307 	if (!sg_cpu->iowait_boost_pending) {
308 		/*
309 		 * No boost pending; reduce the boost value.
310 		 */
311 		sg_cpu->iowait_boost >>= 1;
312 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
313 			sg_cpu->iowait_boost = 0;
314 			return 0;
315 		}
316 	}
317 
318 	sg_cpu->iowait_boost_pending = false;
319 
320 	/*
321 	 * sg_cpu->util is already in capacity scale; convert iowait_boost
322 	 * into the same scale so we can compare.
323 	 */
324 	return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
325 }
326 
327 #ifdef CONFIG_NO_HZ_COMMON
328 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
329 {
330 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
331 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
332 
333 	sg_cpu->saved_idle_calls = idle_calls;
334 	return ret;
335 }
336 #else
337 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
338 #endif /* CONFIG_NO_HZ_COMMON */
339 
340 /*
341  * Make sugov_should_update_freq() ignore the rate limit when DL
342  * has increased the utilization.
343  */
344 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
345 {
346 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
347 		sg_cpu->sg_policy->limits_changed = true;
348 }
349 
350 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
351 					      u64 time, unsigned long max_cap,
352 					      unsigned int flags)
353 {
354 	unsigned long boost;
355 
356 	sugov_iowait_boost(sg_cpu, time, flags);
357 	sg_cpu->last_update = time;
358 
359 	ignore_dl_rate_limit(sg_cpu);
360 
361 	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
362 		return false;
363 
364 	boost = sugov_iowait_apply(sg_cpu, time, max_cap);
365 	sugov_get_util(sg_cpu, boost);
366 
367 	return true;
368 }
369 
370 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
371 				     unsigned int flags)
372 {
373 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
374 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
375 	unsigned int cached_freq = sg_policy->cached_raw_freq;
376 	unsigned long max_cap;
377 	unsigned int next_f;
378 
379 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
380 
381 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
382 		return;
383 
384 	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
385 	/*
386 	 * Do not reduce the frequency if the CPU has not been idle
387 	 * recently, as the reduction is likely to be premature then.
388 	 *
389 	 * Except when the rq is capped by uclamp_max.
390 	 */
391 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
392 	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
393 	    !sg_policy->need_freq_update) {
394 		next_f = sg_policy->next_freq;
395 
396 		/* Restore cached freq as next_freq has changed */
397 		sg_policy->cached_raw_freq = cached_freq;
398 	}
399 
400 	if (!sugov_update_next_freq(sg_policy, time, next_f))
401 		return;
402 
403 	/*
404 	 * This code runs under rq->lock for the target CPU, so it won't run
405 	 * concurrently on two different CPUs for the same target and it is not
406 	 * necessary to acquire the lock in the fast switch case.
407 	 */
408 	if (sg_policy->policy->fast_switch_enabled) {
409 		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
410 	} else {
411 		raw_spin_lock(&sg_policy->update_lock);
412 		sugov_deferred_update(sg_policy);
413 		raw_spin_unlock(&sg_policy->update_lock);
414 	}
415 }
416 
417 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
418 				     unsigned int flags)
419 {
420 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
421 	unsigned long prev_util = sg_cpu->util;
422 	unsigned long max_cap;
423 
424 	/*
425 	 * Fall back to the "frequency" path if frequency invariance is not
426 	 * supported, because the direct mapping between the utilization and
427 	 * the performance levels depends on the frequency invariance.
428 	 */
429 	if (!arch_scale_freq_invariant()) {
430 		sugov_update_single_freq(hook, time, flags);
431 		return;
432 	}
433 
434 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
435 
436 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
437 		return;
438 
439 	/*
440 	 * Do not reduce the target performance level if the CPU has not been
441 	 * idle recently, as the reduction is likely to be premature then.
442 	 *
443 	 * Except when the rq is capped by uclamp_max.
444 	 */
445 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
446 	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
447 		sg_cpu->util = prev_util;
448 
449 	cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
450 				   sg_cpu->util, max_cap);
451 
452 	sg_cpu->sg_policy->last_freq_update_time = time;
453 }
454 
455 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
456 {
457 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
458 	struct cpufreq_policy *policy = sg_policy->policy;
459 	unsigned long util = 0, max_cap;
460 	unsigned int j;
461 
462 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
463 
464 	for_each_cpu(j, policy->cpus) {
465 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
466 		unsigned long boost;
467 
468 		boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
469 		sugov_get_util(j_sg_cpu, boost);
470 
471 		util = max(j_sg_cpu->util, util);
472 	}
473 
474 	return get_next_freq(sg_policy, util, max_cap);
475 }
476 
477 static void
478 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
479 {
480 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
481 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482 	unsigned int next_f;
483 
484 	raw_spin_lock(&sg_policy->update_lock);
485 
486 	sugov_iowait_boost(sg_cpu, time, flags);
487 	sg_cpu->last_update = time;
488 
489 	ignore_dl_rate_limit(sg_cpu);
490 
491 	if (sugov_should_update_freq(sg_policy, time)) {
492 		next_f = sugov_next_freq_shared(sg_cpu, time);
493 
494 		if (!sugov_update_next_freq(sg_policy, time, next_f))
495 			goto unlock;
496 
497 		if (sg_policy->policy->fast_switch_enabled)
498 			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
499 		else
500 			sugov_deferred_update(sg_policy);
501 	}
502 unlock:
503 	raw_spin_unlock(&sg_policy->update_lock);
504 }
505 
506 static void sugov_work(struct kthread_work *work)
507 {
508 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
509 	unsigned int freq;
510 	unsigned long flags;
511 
512 	/*
513 	 * Hold sg_policy->update_lock shortly to handle the case where:
514 	 * in case sg_policy->next_freq is read here, and then updated by
515 	 * sugov_deferred_update() just before work_in_progress is set to false
516 	 * here, we may miss queueing the new update.
517 	 *
518 	 * Note: If a work was queued after the update_lock is released,
519 	 * sugov_work() will just be called again by kthread_work code; and the
520 	 * request will be proceed before the sugov thread sleeps.
521 	 */
522 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
523 	freq = sg_policy->next_freq;
524 	sg_policy->work_in_progress = false;
525 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
526 
527 	mutex_lock(&sg_policy->work_lock);
528 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
529 	mutex_unlock(&sg_policy->work_lock);
530 }
531 
532 static void sugov_irq_work(struct irq_work *irq_work)
533 {
534 	struct sugov_policy *sg_policy;
535 
536 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
537 
538 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
539 }
540 
541 /************************** sysfs interface ************************/
542 
543 static struct sugov_tunables *global_tunables;
544 static DEFINE_MUTEX(global_tunables_lock);
545 
546 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
547 {
548 	return container_of(attr_set, struct sugov_tunables, attr_set);
549 }
550 
551 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
552 {
553 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
554 
555 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
556 }
557 
558 static ssize_t
559 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
560 {
561 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562 	struct sugov_policy *sg_policy;
563 	unsigned int rate_limit_us;
564 
565 	if (kstrtouint(buf, 10, &rate_limit_us))
566 		return -EINVAL;
567 
568 	tunables->rate_limit_us = rate_limit_us;
569 
570 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
571 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
572 
573 	return count;
574 }
575 
576 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
577 
578 static struct attribute *sugov_attrs[] = {
579 	&rate_limit_us.attr,
580 	NULL
581 };
582 ATTRIBUTE_GROUPS(sugov);
583 
584 static void sugov_tunables_free(struct kobject *kobj)
585 {
586 	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
587 
588 	kfree(to_sugov_tunables(attr_set));
589 }
590 
591 static const struct kobj_type sugov_tunables_ktype = {
592 	.default_groups = sugov_groups,
593 	.sysfs_ops = &governor_sysfs_ops,
594 	.release = &sugov_tunables_free,
595 };
596 
597 /********************** cpufreq governor interface *********************/
598 
599 #ifdef CONFIG_ENERGY_MODEL
600 static void rebuild_sd_workfn(struct work_struct *work)
601 {
602 	rebuild_sched_domains_energy();
603 }
604 
605 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
606 
607 /*
608  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
609  * on governor changes to make sure the scheduler knows about it.
610  */
611 static void sugov_eas_rebuild_sd(void)
612 {
613 	/*
614 	 * When called from the cpufreq_register_driver() path, the
615 	 * cpu_hotplug_lock is already held, so use a work item to
616 	 * avoid nested locking in rebuild_sched_domains().
617 	 */
618 	schedule_work(&rebuild_sd_work);
619 }
620 #else
621 static inline void sugov_eas_rebuild_sd(void) { };
622 #endif
623 
624 struct cpufreq_governor schedutil_gov;
625 
626 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627 {
628 	struct sugov_policy *sg_policy;
629 
630 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631 	if (!sg_policy)
632 		return NULL;
633 
634 	sg_policy->policy = policy;
635 	raw_spin_lock_init(&sg_policy->update_lock);
636 	return sg_policy;
637 }
638 
639 static void sugov_policy_free(struct sugov_policy *sg_policy)
640 {
641 	kfree(sg_policy);
642 }
643 
644 static int sugov_kthread_create(struct sugov_policy *sg_policy)
645 {
646 	struct task_struct *thread;
647 	struct sched_attr attr = {
648 		.size		= sizeof(struct sched_attr),
649 		.sched_policy	= SCHED_DEADLINE,
650 		.sched_flags	= SCHED_FLAG_SUGOV,
651 		.sched_nice	= 0,
652 		.sched_priority	= 0,
653 		/*
654 		 * Fake (unused) bandwidth; workaround to "fix"
655 		 * priority inheritance.
656 		 */
657 		.sched_runtime	=  1000000,
658 		.sched_deadline = 10000000,
659 		.sched_period	= 10000000,
660 	};
661 	struct cpufreq_policy *policy = sg_policy->policy;
662 	int ret;
663 
664 	/* kthread only required for slow path */
665 	if (policy->fast_switch_enabled)
666 		return 0;
667 
668 	kthread_init_work(&sg_policy->work, sugov_work);
669 	kthread_init_worker(&sg_policy->worker);
670 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671 				"sugov:%d",
672 				cpumask_first(policy->related_cpus));
673 	if (IS_ERR(thread)) {
674 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675 		return PTR_ERR(thread);
676 	}
677 
678 	ret = sched_setattr_nocheck(thread, &attr);
679 	if (ret) {
680 		kthread_stop(thread);
681 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682 		return ret;
683 	}
684 
685 	sg_policy->thread = thread;
686 	kthread_bind_mask(thread, policy->related_cpus);
687 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688 	mutex_init(&sg_policy->work_lock);
689 
690 	wake_up_process(thread);
691 
692 	return 0;
693 }
694 
695 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696 {
697 	/* kthread only required for slow path */
698 	if (sg_policy->policy->fast_switch_enabled)
699 		return;
700 
701 	kthread_flush_worker(&sg_policy->worker);
702 	kthread_stop(sg_policy->thread);
703 	mutex_destroy(&sg_policy->work_lock);
704 }
705 
706 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707 {
708 	struct sugov_tunables *tunables;
709 
710 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711 	if (tunables) {
712 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713 		if (!have_governor_per_policy())
714 			global_tunables = tunables;
715 	}
716 	return tunables;
717 }
718 
719 static void sugov_clear_global_tunables(void)
720 {
721 	if (!have_governor_per_policy())
722 		global_tunables = NULL;
723 }
724 
725 static int sugov_init(struct cpufreq_policy *policy)
726 {
727 	struct sugov_policy *sg_policy;
728 	struct sugov_tunables *tunables;
729 	int ret = 0;
730 
731 	/* State should be equivalent to EXIT */
732 	if (policy->governor_data)
733 		return -EBUSY;
734 
735 	cpufreq_enable_fast_switch(policy);
736 
737 	sg_policy = sugov_policy_alloc(policy);
738 	if (!sg_policy) {
739 		ret = -ENOMEM;
740 		goto disable_fast_switch;
741 	}
742 
743 	ret = sugov_kthread_create(sg_policy);
744 	if (ret)
745 		goto free_sg_policy;
746 
747 	mutex_lock(&global_tunables_lock);
748 
749 	if (global_tunables) {
750 		if (WARN_ON(have_governor_per_policy())) {
751 			ret = -EINVAL;
752 			goto stop_kthread;
753 		}
754 		policy->governor_data = sg_policy;
755 		sg_policy->tunables = global_tunables;
756 
757 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
758 		goto out;
759 	}
760 
761 	tunables = sugov_tunables_alloc(sg_policy);
762 	if (!tunables) {
763 		ret = -ENOMEM;
764 		goto stop_kthread;
765 	}
766 
767 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
768 
769 	policy->governor_data = sg_policy;
770 	sg_policy->tunables = tunables;
771 
772 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
773 				   get_governor_parent_kobj(policy), "%s",
774 				   schedutil_gov.name);
775 	if (ret)
776 		goto fail;
777 
778 	sugov_eas_rebuild_sd();
779 
780 out:
781 	mutex_unlock(&global_tunables_lock);
782 	return 0;
783 
784 fail:
785 	kobject_put(&tunables->attr_set.kobj);
786 	policy->governor_data = NULL;
787 	sugov_clear_global_tunables();
788 
789 stop_kthread:
790 	sugov_kthread_stop(sg_policy);
791 	mutex_unlock(&global_tunables_lock);
792 
793 free_sg_policy:
794 	sugov_policy_free(sg_policy);
795 
796 disable_fast_switch:
797 	cpufreq_disable_fast_switch(policy);
798 
799 	pr_err("initialization failed (error %d)\n", ret);
800 	return ret;
801 }
802 
803 static void sugov_exit(struct cpufreq_policy *policy)
804 {
805 	struct sugov_policy *sg_policy = policy->governor_data;
806 	struct sugov_tunables *tunables = sg_policy->tunables;
807 	unsigned int count;
808 
809 	mutex_lock(&global_tunables_lock);
810 
811 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
812 	policy->governor_data = NULL;
813 	if (!count)
814 		sugov_clear_global_tunables();
815 
816 	mutex_unlock(&global_tunables_lock);
817 
818 	sugov_kthread_stop(sg_policy);
819 	sugov_policy_free(sg_policy);
820 	cpufreq_disable_fast_switch(policy);
821 
822 	sugov_eas_rebuild_sd();
823 }
824 
825 static int sugov_start(struct cpufreq_policy *policy)
826 {
827 	struct sugov_policy *sg_policy = policy->governor_data;
828 	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
829 	unsigned int cpu;
830 
831 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
832 	sg_policy->last_freq_update_time	= 0;
833 	sg_policy->next_freq			= 0;
834 	sg_policy->work_in_progress		= false;
835 	sg_policy->limits_changed		= false;
836 	sg_policy->cached_raw_freq		= 0;
837 
838 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
839 
840 	if (policy_is_shared(policy))
841 		uu = sugov_update_shared;
842 	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
843 		uu = sugov_update_single_perf;
844 	else
845 		uu = sugov_update_single_freq;
846 
847 	for_each_cpu(cpu, policy->cpus) {
848 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
849 
850 		memset(sg_cpu, 0, sizeof(*sg_cpu));
851 		sg_cpu->cpu = cpu;
852 		sg_cpu->sg_policy = sg_policy;
853 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
854 	}
855 	return 0;
856 }
857 
858 static void sugov_stop(struct cpufreq_policy *policy)
859 {
860 	struct sugov_policy *sg_policy = policy->governor_data;
861 	unsigned int cpu;
862 
863 	for_each_cpu(cpu, policy->cpus)
864 		cpufreq_remove_update_util_hook(cpu);
865 
866 	synchronize_rcu();
867 
868 	if (!policy->fast_switch_enabled) {
869 		irq_work_sync(&sg_policy->irq_work);
870 		kthread_cancel_work_sync(&sg_policy->work);
871 	}
872 }
873 
874 static void sugov_limits(struct cpufreq_policy *policy)
875 {
876 	struct sugov_policy *sg_policy = policy->governor_data;
877 
878 	if (!policy->fast_switch_enabled) {
879 		mutex_lock(&sg_policy->work_lock);
880 		cpufreq_policy_apply_limits(policy);
881 		mutex_unlock(&sg_policy->work_lock);
882 	}
883 
884 	sg_policy->limits_changed = true;
885 }
886 
887 struct cpufreq_governor schedutil_gov = {
888 	.name			= "schedutil",
889 	.owner			= THIS_MODULE,
890 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
891 	.init			= sugov_init,
892 	.exit			= sugov_exit,
893 	.start			= sugov_start,
894 	.stop			= sugov_stop,
895 	.limits			= sugov_limits,
896 };
897 
898 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
899 struct cpufreq_governor *cpufreq_default_governor(void)
900 {
901 	return &schedutil_gov;
902 }
903 #endif
904 
905 cpufreq_governor_init(schedutil_gov);
906