1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 10 11 struct sugov_tunables { 12 struct gov_attr_set attr_set; 13 unsigned int rate_limit_us; 14 }; 15 16 struct sugov_policy { 17 struct cpufreq_policy *policy; 18 19 struct sugov_tunables *tunables; 20 struct list_head tunables_hook; 21 22 raw_spinlock_t update_lock; 23 u64 last_freq_update_time; 24 s64 freq_update_delay_ns; 25 unsigned int next_freq; 26 unsigned int cached_raw_freq; 27 28 /* The next fields are only needed if fast switch cannot be used: */ 29 struct irq_work irq_work; 30 struct kthread_work work; 31 struct mutex work_lock; 32 struct kthread_worker worker; 33 struct task_struct *thread; 34 bool work_in_progress; 35 36 bool limits_changed; 37 bool need_freq_update; 38 }; 39 40 struct sugov_cpu { 41 struct update_util_data update_util; 42 struct sugov_policy *sg_policy; 43 unsigned int cpu; 44 45 bool iowait_boost_pending; 46 unsigned int iowait_boost; 47 u64 last_update; 48 49 unsigned long util; 50 unsigned long bw_dl; 51 52 /* The field below is for single-CPU policies only: */ 53 #ifdef CONFIG_NO_HZ_COMMON 54 unsigned long saved_idle_calls; 55 #endif 56 }; 57 58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 59 60 /************************ Governor internals ***********************/ 61 62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 63 { 64 s64 delta_ns; 65 66 /* 67 * Since cpufreq_update_util() is called with rq->lock held for 68 * the @target_cpu, our per-CPU data is fully serialized. 69 * 70 * However, drivers cannot in general deal with cross-CPU 71 * requests, so while get_next_freq() will work, our 72 * sugov_update_commit() call may not for the fast switching platforms. 73 * 74 * Hence stop here for remote requests if they aren't supported 75 * by the hardware, as calculating the frequency is pointless if 76 * we cannot in fact act on it. 77 * 78 * This is needed on the slow switching platforms too to prevent CPUs 79 * going offline from leaving stale IRQ work items behind. 80 */ 81 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 82 return false; 83 84 if (unlikely(sg_policy->limits_changed)) { 85 sg_policy->limits_changed = false; 86 sg_policy->need_freq_update = true; 87 return true; 88 } 89 90 delta_ns = time - sg_policy->last_freq_update_time; 91 92 return delta_ns >= sg_policy->freq_update_delay_ns; 93 } 94 95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 96 unsigned int next_freq) 97 { 98 if (sg_policy->need_freq_update) 99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 100 else if (sg_policy->next_freq == next_freq) 101 return false; 102 103 sg_policy->next_freq = next_freq; 104 sg_policy->last_freq_update_time = time; 105 106 return true; 107 } 108 109 static void sugov_deferred_update(struct sugov_policy *sg_policy) 110 { 111 if (!sg_policy->work_in_progress) { 112 sg_policy->work_in_progress = true; 113 irq_work_queue(&sg_policy->irq_work); 114 } 115 } 116 117 /** 118 * get_next_freq - Compute a new frequency for a given cpufreq policy. 119 * @sg_policy: schedutil policy object to compute the new frequency for. 120 * @util: Current CPU utilization. 121 * @max: CPU capacity. 122 * 123 * If the utilization is frequency-invariant, choose the new frequency to be 124 * proportional to it, that is 125 * 126 * next_freq = C * max_freq * util / max 127 * 128 * Otherwise, approximate the would-be frequency-invariant utilization by 129 * util_raw * (curr_freq / max_freq) which leads to 130 * 131 * next_freq = C * curr_freq * util_raw / max 132 * 133 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 134 * 135 * The lowest driver-supported frequency which is equal or greater than the raw 136 * next_freq (as calculated above) is returned, subject to policy min/max and 137 * cpufreq driver limitations. 138 */ 139 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 140 unsigned long util, unsigned long max) 141 { 142 struct cpufreq_policy *policy = sg_policy->policy; 143 unsigned int freq = arch_scale_freq_invariant() ? 144 policy->cpuinfo.max_freq : policy->cur; 145 146 util = map_util_perf(util); 147 freq = map_util_freq(util, freq, max); 148 149 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 150 return sg_policy->next_freq; 151 152 sg_policy->cached_raw_freq = freq; 153 return cpufreq_driver_resolve_freq(policy, freq); 154 } 155 156 static void sugov_get_util(struct sugov_cpu *sg_cpu) 157 { 158 struct rq *rq = cpu_rq(sg_cpu->cpu); 159 160 sg_cpu->bw_dl = cpu_bw_dl(rq); 161 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), 162 FREQUENCY_UTIL, NULL); 163 } 164 165 /** 166 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 167 * @sg_cpu: the sugov data for the CPU to boost 168 * @time: the update time from the caller 169 * @set_iowait_boost: true if an IO boost has been requested 170 * 171 * The IO wait boost of a task is disabled after a tick since the last update 172 * of a CPU. If a new IO wait boost is requested after more then a tick, then 173 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 174 * efficiency by ignoring sporadic wakeups from IO. 175 */ 176 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 177 bool set_iowait_boost) 178 { 179 s64 delta_ns = time - sg_cpu->last_update; 180 181 /* Reset boost only if a tick has elapsed since last request */ 182 if (delta_ns <= TICK_NSEC) 183 return false; 184 185 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 186 sg_cpu->iowait_boost_pending = set_iowait_boost; 187 188 return true; 189 } 190 191 /** 192 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 193 * @sg_cpu: the sugov data for the CPU to boost 194 * @time: the update time from the caller 195 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 196 * 197 * Each time a task wakes up after an IO operation, the CPU utilization can be 198 * boosted to a certain utilization which doubles at each "frequent and 199 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 200 * of the maximum OPP. 201 * 202 * To keep doubling, an IO boost has to be requested at least once per tick, 203 * otherwise we restart from the utilization of the minimum OPP. 204 */ 205 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 206 unsigned int flags) 207 { 208 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 209 210 /* Reset boost if the CPU appears to have been idle enough */ 211 if (sg_cpu->iowait_boost && 212 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 213 return; 214 215 /* Boost only tasks waking up after IO */ 216 if (!set_iowait_boost) 217 return; 218 219 /* Ensure boost doubles only one time at each request */ 220 if (sg_cpu->iowait_boost_pending) 221 return; 222 sg_cpu->iowait_boost_pending = true; 223 224 /* Double the boost at each request */ 225 if (sg_cpu->iowait_boost) { 226 sg_cpu->iowait_boost = 227 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 228 return; 229 } 230 231 /* First wakeup after IO: start with minimum boost */ 232 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 233 } 234 235 /** 236 * sugov_iowait_apply() - Apply the IO boost to a CPU. 237 * @sg_cpu: the sugov data for the cpu to boost 238 * @time: the update time from the caller 239 * @max_cap: the max CPU capacity 240 * 241 * A CPU running a task which woken up after an IO operation can have its 242 * utilization boosted to speed up the completion of those IO operations. 243 * The IO boost value is increased each time a task wakes up from IO, in 244 * sugov_iowait_apply(), and it's instead decreased by this function, 245 * each time an increase has not been requested (!iowait_boost_pending). 246 * 247 * A CPU which also appears to have been idle for at least one tick has also 248 * its IO boost utilization reset. 249 * 250 * This mechanism is designed to boost high frequently IO waiting tasks, while 251 * being more conservative on tasks which does sporadic IO operations. 252 */ 253 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 254 unsigned long max_cap) 255 { 256 unsigned long boost; 257 258 /* No boost currently required */ 259 if (!sg_cpu->iowait_boost) 260 return; 261 262 /* Reset boost if the CPU appears to have been idle enough */ 263 if (sugov_iowait_reset(sg_cpu, time, false)) 264 return; 265 266 if (!sg_cpu->iowait_boost_pending) { 267 /* 268 * No boost pending; reduce the boost value. 269 */ 270 sg_cpu->iowait_boost >>= 1; 271 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 272 sg_cpu->iowait_boost = 0; 273 return; 274 } 275 } 276 277 sg_cpu->iowait_boost_pending = false; 278 279 /* 280 * sg_cpu->util is already in capacity scale; convert iowait_boost 281 * into the same scale so we can compare. 282 */ 283 boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT; 284 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL); 285 if (sg_cpu->util < boost) 286 sg_cpu->util = boost; 287 } 288 289 #ifdef CONFIG_NO_HZ_COMMON 290 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 291 { 292 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 293 bool ret = idle_calls == sg_cpu->saved_idle_calls; 294 295 sg_cpu->saved_idle_calls = idle_calls; 296 return ret; 297 } 298 #else 299 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 300 #endif /* CONFIG_NO_HZ_COMMON */ 301 302 /* 303 * Make sugov_should_update_freq() ignore the rate limit when DL 304 * has increased the utilization. 305 */ 306 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu) 307 { 308 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 309 sg_cpu->sg_policy->limits_changed = true; 310 } 311 312 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 313 u64 time, unsigned long max_cap, 314 unsigned int flags) 315 { 316 sugov_iowait_boost(sg_cpu, time, flags); 317 sg_cpu->last_update = time; 318 319 ignore_dl_rate_limit(sg_cpu); 320 321 if (!sugov_should_update_freq(sg_cpu->sg_policy, time)) 322 return false; 323 324 sugov_get_util(sg_cpu); 325 sugov_iowait_apply(sg_cpu, time, max_cap); 326 327 return true; 328 } 329 330 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 331 unsigned int flags) 332 { 333 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 334 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 335 unsigned int cached_freq = sg_policy->cached_raw_freq; 336 unsigned long max_cap; 337 unsigned int next_f; 338 339 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 340 341 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 342 return; 343 344 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap); 345 /* 346 * Do not reduce the frequency if the CPU has not been idle 347 * recently, as the reduction is likely to be premature then. 348 * 349 * Except when the rq is capped by uclamp_max. 350 */ 351 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 352 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 353 next_f = sg_policy->next_freq; 354 355 /* Restore cached freq as next_freq has changed */ 356 sg_policy->cached_raw_freq = cached_freq; 357 } 358 359 if (!sugov_update_next_freq(sg_policy, time, next_f)) 360 return; 361 362 /* 363 * This code runs under rq->lock for the target CPU, so it won't run 364 * concurrently on two different CPUs for the same target and it is not 365 * necessary to acquire the lock in the fast switch case. 366 */ 367 if (sg_policy->policy->fast_switch_enabled) { 368 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 369 } else { 370 raw_spin_lock(&sg_policy->update_lock); 371 sugov_deferred_update(sg_policy); 372 raw_spin_unlock(&sg_policy->update_lock); 373 } 374 } 375 376 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 377 unsigned int flags) 378 { 379 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 380 unsigned long prev_util = sg_cpu->util; 381 unsigned long max_cap; 382 383 /* 384 * Fall back to the "frequency" path if frequency invariance is not 385 * supported, because the direct mapping between the utilization and 386 * the performance levels depends on the frequency invariance. 387 */ 388 if (!arch_scale_freq_invariant()) { 389 sugov_update_single_freq(hook, time, flags); 390 return; 391 } 392 393 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 394 395 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 396 return; 397 398 /* 399 * Do not reduce the target performance level if the CPU has not been 400 * idle recently, as the reduction is likely to be premature then. 401 * 402 * Except when the rq is capped by uclamp_max. 403 */ 404 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 405 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 406 sg_cpu->util = prev_util; 407 408 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl), 409 map_util_perf(sg_cpu->util), max_cap); 410 411 sg_cpu->sg_policy->last_freq_update_time = time; 412 } 413 414 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 415 { 416 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 417 struct cpufreq_policy *policy = sg_policy->policy; 418 unsigned long util = 0, max_cap; 419 unsigned int j; 420 421 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 422 423 for_each_cpu(j, policy->cpus) { 424 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 425 426 sugov_get_util(j_sg_cpu); 427 sugov_iowait_apply(j_sg_cpu, time, max_cap); 428 429 util = max(j_sg_cpu->util, util); 430 } 431 432 return get_next_freq(sg_policy, util, max_cap); 433 } 434 435 static void 436 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 437 { 438 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 439 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 440 unsigned int next_f; 441 442 raw_spin_lock(&sg_policy->update_lock); 443 444 sugov_iowait_boost(sg_cpu, time, flags); 445 sg_cpu->last_update = time; 446 447 ignore_dl_rate_limit(sg_cpu); 448 449 if (sugov_should_update_freq(sg_policy, time)) { 450 next_f = sugov_next_freq_shared(sg_cpu, time); 451 452 if (!sugov_update_next_freq(sg_policy, time, next_f)) 453 goto unlock; 454 455 if (sg_policy->policy->fast_switch_enabled) 456 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 457 else 458 sugov_deferred_update(sg_policy); 459 } 460 unlock: 461 raw_spin_unlock(&sg_policy->update_lock); 462 } 463 464 static void sugov_work(struct kthread_work *work) 465 { 466 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 467 unsigned int freq; 468 unsigned long flags; 469 470 /* 471 * Hold sg_policy->update_lock shortly to handle the case where: 472 * in case sg_policy->next_freq is read here, and then updated by 473 * sugov_deferred_update() just before work_in_progress is set to false 474 * here, we may miss queueing the new update. 475 * 476 * Note: If a work was queued after the update_lock is released, 477 * sugov_work() will just be called again by kthread_work code; and the 478 * request will be proceed before the sugov thread sleeps. 479 */ 480 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 481 freq = sg_policy->next_freq; 482 sg_policy->work_in_progress = false; 483 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 484 485 mutex_lock(&sg_policy->work_lock); 486 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 487 mutex_unlock(&sg_policy->work_lock); 488 } 489 490 static void sugov_irq_work(struct irq_work *irq_work) 491 { 492 struct sugov_policy *sg_policy; 493 494 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 495 496 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 497 } 498 499 /************************** sysfs interface ************************/ 500 501 static struct sugov_tunables *global_tunables; 502 static DEFINE_MUTEX(global_tunables_lock); 503 504 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 505 { 506 return container_of(attr_set, struct sugov_tunables, attr_set); 507 } 508 509 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 510 { 511 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 512 513 return sprintf(buf, "%u\n", tunables->rate_limit_us); 514 } 515 516 static ssize_t 517 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 518 { 519 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 520 struct sugov_policy *sg_policy; 521 unsigned int rate_limit_us; 522 523 if (kstrtouint(buf, 10, &rate_limit_us)) 524 return -EINVAL; 525 526 tunables->rate_limit_us = rate_limit_us; 527 528 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 529 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 530 531 return count; 532 } 533 534 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 535 536 static struct attribute *sugov_attrs[] = { 537 &rate_limit_us.attr, 538 NULL 539 }; 540 ATTRIBUTE_GROUPS(sugov); 541 542 static void sugov_tunables_free(struct kobject *kobj) 543 { 544 struct gov_attr_set *attr_set = to_gov_attr_set(kobj); 545 546 kfree(to_sugov_tunables(attr_set)); 547 } 548 549 static const struct kobj_type sugov_tunables_ktype = { 550 .default_groups = sugov_groups, 551 .sysfs_ops = &governor_sysfs_ops, 552 .release = &sugov_tunables_free, 553 }; 554 555 /********************** cpufreq governor interface *********************/ 556 557 struct cpufreq_governor schedutil_gov; 558 559 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 560 { 561 struct sugov_policy *sg_policy; 562 563 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 564 if (!sg_policy) 565 return NULL; 566 567 sg_policy->policy = policy; 568 raw_spin_lock_init(&sg_policy->update_lock); 569 return sg_policy; 570 } 571 572 static void sugov_policy_free(struct sugov_policy *sg_policy) 573 { 574 kfree(sg_policy); 575 } 576 577 static int sugov_kthread_create(struct sugov_policy *sg_policy) 578 { 579 struct task_struct *thread; 580 struct sched_attr attr = { 581 .size = sizeof(struct sched_attr), 582 .sched_policy = SCHED_DEADLINE, 583 .sched_flags = SCHED_FLAG_SUGOV, 584 .sched_nice = 0, 585 .sched_priority = 0, 586 /* 587 * Fake (unused) bandwidth; workaround to "fix" 588 * priority inheritance. 589 */ 590 .sched_runtime = 1000000, 591 .sched_deadline = 10000000, 592 .sched_period = 10000000, 593 }; 594 struct cpufreq_policy *policy = sg_policy->policy; 595 int ret; 596 597 /* kthread only required for slow path */ 598 if (policy->fast_switch_enabled) 599 return 0; 600 601 kthread_init_work(&sg_policy->work, sugov_work); 602 kthread_init_worker(&sg_policy->worker); 603 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 604 "sugov:%d", 605 cpumask_first(policy->related_cpus)); 606 if (IS_ERR(thread)) { 607 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 608 return PTR_ERR(thread); 609 } 610 611 ret = sched_setattr_nocheck(thread, &attr); 612 if (ret) { 613 kthread_stop(thread); 614 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 615 return ret; 616 } 617 618 sg_policy->thread = thread; 619 kthread_bind_mask(thread, policy->related_cpus); 620 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 621 mutex_init(&sg_policy->work_lock); 622 623 wake_up_process(thread); 624 625 return 0; 626 } 627 628 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 629 { 630 /* kthread only required for slow path */ 631 if (sg_policy->policy->fast_switch_enabled) 632 return; 633 634 kthread_flush_worker(&sg_policy->worker); 635 kthread_stop(sg_policy->thread); 636 mutex_destroy(&sg_policy->work_lock); 637 } 638 639 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 640 { 641 struct sugov_tunables *tunables; 642 643 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 644 if (tunables) { 645 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 646 if (!have_governor_per_policy()) 647 global_tunables = tunables; 648 } 649 return tunables; 650 } 651 652 static void sugov_clear_global_tunables(void) 653 { 654 if (!have_governor_per_policy()) 655 global_tunables = NULL; 656 } 657 658 static int sugov_init(struct cpufreq_policy *policy) 659 { 660 struct sugov_policy *sg_policy; 661 struct sugov_tunables *tunables; 662 int ret = 0; 663 664 /* State should be equivalent to EXIT */ 665 if (policy->governor_data) 666 return -EBUSY; 667 668 cpufreq_enable_fast_switch(policy); 669 670 sg_policy = sugov_policy_alloc(policy); 671 if (!sg_policy) { 672 ret = -ENOMEM; 673 goto disable_fast_switch; 674 } 675 676 ret = sugov_kthread_create(sg_policy); 677 if (ret) 678 goto free_sg_policy; 679 680 mutex_lock(&global_tunables_lock); 681 682 if (global_tunables) { 683 if (WARN_ON(have_governor_per_policy())) { 684 ret = -EINVAL; 685 goto stop_kthread; 686 } 687 policy->governor_data = sg_policy; 688 sg_policy->tunables = global_tunables; 689 690 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 691 goto out; 692 } 693 694 tunables = sugov_tunables_alloc(sg_policy); 695 if (!tunables) { 696 ret = -ENOMEM; 697 goto stop_kthread; 698 } 699 700 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 701 702 policy->governor_data = sg_policy; 703 sg_policy->tunables = tunables; 704 705 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 706 get_governor_parent_kobj(policy), "%s", 707 schedutil_gov.name); 708 if (ret) 709 goto fail; 710 711 out: 712 mutex_unlock(&global_tunables_lock); 713 return 0; 714 715 fail: 716 kobject_put(&tunables->attr_set.kobj); 717 policy->governor_data = NULL; 718 sugov_clear_global_tunables(); 719 720 stop_kthread: 721 sugov_kthread_stop(sg_policy); 722 mutex_unlock(&global_tunables_lock); 723 724 free_sg_policy: 725 sugov_policy_free(sg_policy); 726 727 disable_fast_switch: 728 cpufreq_disable_fast_switch(policy); 729 730 pr_err("initialization failed (error %d)\n", ret); 731 return ret; 732 } 733 734 static void sugov_exit(struct cpufreq_policy *policy) 735 { 736 struct sugov_policy *sg_policy = policy->governor_data; 737 struct sugov_tunables *tunables = sg_policy->tunables; 738 unsigned int count; 739 740 mutex_lock(&global_tunables_lock); 741 742 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 743 policy->governor_data = NULL; 744 if (!count) 745 sugov_clear_global_tunables(); 746 747 mutex_unlock(&global_tunables_lock); 748 749 sugov_kthread_stop(sg_policy); 750 sugov_policy_free(sg_policy); 751 cpufreq_disable_fast_switch(policy); 752 } 753 754 static int sugov_start(struct cpufreq_policy *policy) 755 { 756 struct sugov_policy *sg_policy = policy->governor_data; 757 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 758 unsigned int cpu; 759 760 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 761 sg_policy->last_freq_update_time = 0; 762 sg_policy->next_freq = 0; 763 sg_policy->work_in_progress = false; 764 sg_policy->limits_changed = false; 765 sg_policy->cached_raw_freq = 0; 766 767 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 768 769 for_each_cpu(cpu, policy->cpus) { 770 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 771 772 memset(sg_cpu, 0, sizeof(*sg_cpu)); 773 sg_cpu->cpu = cpu; 774 sg_cpu->sg_policy = sg_policy; 775 } 776 777 if (policy_is_shared(policy)) 778 uu = sugov_update_shared; 779 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 780 uu = sugov_update_single_perf; 781 else 782 uu = sugov_update_single_freq; 783 784 for_each_cpu(cpu, policy->cpus) { 785 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 786 787 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 788 } 789 return 0; 790 } 791 792 static void sugov_stop(struct cpufreq_policy *policy) 793 { 794 struct sugov_policy *sg_policy = policy->governor_data; 795 unsigned int cpu; 796 797 for_each_cpu(cpu, policy->cpus) 798 cpufreq_remove_update_util_hook(cpu); 799 800 synchronize_rcu(); 801 802 if (!policy->fast_switch_enabled) { 803 irq_work_sync(&sg_policy->irq_work); 804 kthread_cancel_work_sync(&sg_policy->work); 805 } 806 } 807 808 static void sugov_limits(struct cpufreq_policy *policy) 809 { 810 struct sugov_policy *sg_policy = policy->governor_data; 811 812 if (!policy->fast_switch_enabled) { 813 mutex_lock(&sg_policy->work_lock); 814 cpufreq_policy_apply_limits(policy); 815 mutex_unlock(&sg_policy->work_lock); 816 } 817 818 sg_policy->limits_changed = true; 819 } 820 821 struct cpufreq_governor schedutil_gov = { 822 .name = "schedutil", 823 .owner = THIS_MODULE, 824 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 825 .init = sugov_init, 826 .exit = sugov_exit, 827 .start = sugov_start, 828 .stop = sugov_stop, 829 .limits = sugov_limits, 830 }; 831 832 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 833 struct cpufreq_governor *cpufreq_default_governor(void) 834 { 835 return &schedutil_gov; 836 } 837 #endif 838 839 cpufreq_governor_init(schedutil_gov); 840 841 #ifdef CONFIG_ENERGY_MODEL 842 static void rebuild_sd_workfn(struct work_struct *work) 843 { 844 rebuild_sched_domains_energy(); 845 } 846 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 847 848 /* 849 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 850 * on governor changes to make sure the scheduler knows about it. 851 */ 852 void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 853 struct cpufreq_governor *old_gov) 854 { 855 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 856 /* 857 * When called from the cpufreq_register_driver() path, the 858 * cpu_hotplug_lock is already held, so use a work item to 859 * avoid nested locking in rebuild_sched_domains(). 860 */ 861 schedule_work(&rebuild_sd_work); 862 } 863 864 } 865 #endif 866