1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 10 11 struct sugov_tunables { 12 struct gov_attr_set attr_set; 13 unsigned int rate_limit_us; 14 }; 15 16 struct sugov_policy { 17 struct cpufreq_policy *policy; 18 19 struct sugov_tunables *tunables; 20 struct list_head tunables_hook; 21 22 raw_spinlock_t update_lock; 23 u64 last_freq_update_time; 24 s64 freq_update_delay_ns; 25 unsigned int next_freq; 26 unsigned int cached_raw_freq; 27 28 /* The next fields are only needed if fast switch cannot be used: */ 29 struct irq_work irq_work; 30 struct kthread_work work; 31 struct mutex work_lock; 32 struct kthread_worker worker; 33 struct task_struct *thread; 34 bool work_in_progress; 35 36 bool limits_changed; 37 bool need_freq_update; 38 }; 39 40 struct sugov_cpu { 41 struct update_util_data update_util; 42 struct sugov_policy *sg_policy; 43 unsigned int cpu; 44 45 bool iowait_boost_pending; 46 unsigned int iowait_boost; 47 u64 last_update; 48 49 unsigned long util; 50 unsigned long bw_min; 51 52 /* The field below is for single-CPU policies only: */ 53 #ifdef CONFIG_NO_HZ_COMMON 54 unsigned long saved_idle_calls; 55 #endif 56 }; 57 58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 59 60 /************************ Governor internals ***********************/ 61 62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 63 { 64 s64 delta_ns; 65 66 /* 67 * Since cpufreq_update_util() is called with rq->lock held for 68 * the @target_cpu, our per-CPU data is fully serialized. 69 * 70 * However, drivers cannot in general deal with cross-CPU 71 * requests, so while get_next_freq() will work, our 72 * sugov_update_commit() call may not for the fast switching platforms. 73 * 74 * Hence stop here for remote requests if they aren't supported 75 * by the hardware, as calculating the frequency is pointless if 76 * we cannot in fact act on it. 77 * 78 * This is needed on the slow switching platforms too to prevent CPUs 79 * going offline from leaving stale IRQ work items behind. 80 */ 81 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 82 return false; 83 84 if (unlikely(sg_policy->limits_changed)) { 85 sg_policy->limits_changed = false; 86 sg_policy->need_freq_update = true; 87 return true; 88 } 89 90 delta_ns = time - sg_policy->last_freq_update_time; 91 92 return delta_ns >= sg_policy->freq_update_delay_ns; 93 } 94 95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 96 unsigned int next_freq) 97 { 98 if (sg_policy->need_freq_update) 99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 100 else if (sg_policy->next_freq == next_freq) 101 return false; 102 103 sg_policy->next_freq = next_freq; 104 sg_policy->last_freq_update_time = time; 105 106 return true; 107 } 108 109 static void sugov_deferred_update(struct sugov_policy *sg_policy) 110 { 111 if (!sg_policy->work_in_progress) { 112 sg_policy->work_in_progress = true; 113 irq_work_queue(&sg_policy->irq_work); 114 } 115 } 116 117 /** 118 * get_capacity_ref_freq - get the reference frequency that has been used to 119 * correlate frequency and compute capacity for a given cpufreq policy. We use 120 * the CPU managing it for the arch_scale_freq_ref() call in the function. 121 * @policy: the cpufreq policy of the CPU in question. 122 * 123 * Return: the reference CPU frequency to compute a capacity. 124 */ 125 static __always_inline 126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy) 127 { 128 unsigned int freq = arch_scale_freq_ref(policy->cpu); 129 130 if (freq) 131 return freq; 132 133 if (arch_scale_freq_invariant()) 134 return policy->cpuinfo.max_freq; 135 136 return policy->cur; 137 } 138 139 /** 140 * get_next_freq - Compute a new frequency for a given cpufreq policy. 141 * @sg_policy: schedutil policy object to compute the new frequency for. 142 * @util: Current CPU utilization. 143 * @max: CPU capacity. 144 * 145 * If the utilization is frequency-invariant, choose the new frequency to be 146 * proportional to it, that is 147 * 148 * next_freq = C * max_freq * util / max 149 * 150 * Otherwise, approximate the would-be frequency-invariant utilization by 151 * util_raw * (curr_freq / max_freq) which leads to 152 * 153 * next_freq = C * curr_freq * util_raw / max 154 * 155 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 156 * 157 * The lowest driver-supported frequency which is equal or greater than the raw 158 * next_freq (as calculated above) is returned, subject to policy min/max and 159 * cpufreq driver limitations. 160 */ 161 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 162 unsigned long util, unsigned long max) 163 { 164 struct cpufreq_policy *policy = sg_policy->policy; 165 unsigned int freq; 166 167 freq = get_capacity_ref_freq(policy); 168 freq = map_util_freq(util, freq, max); 169 170 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 171 return sg_policy->next_freq; 172 173 sg_policy->cached_raw_freq = freq; 174 return cpufreq_driver_resolve_freq(policy, freq); 175 } 176 177 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 178 unsigned long min, 179 unsigned long max) 180 { 181 /* Add dvfs headroom to actual utilization */ 182 actual = map_util_perf(actual); 183 /* Actually we don't need to target the max performance */ 184 if (actual < max) 185 max = actual; 186 187 /* 188 * Ensure at least minimum performance while providing more compute 189 * capacity when possible. 190 */ 191 return max(min, max); 192 } 193 194 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost) 195 { 196 unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu); 197 198 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max); 199 util = max(util, boost); 200 sg_cpu->bw_min = min; 201 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max); 202 } 203 204 /** 205 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 206 * @sg_cpu: the sugov data for the CPU to boost 207 * @time: the update time from the caller 208 * @set_iowait_boost: true if an IO boost has been requested 209 * 210 * The IO wait boost of a task is disabled after a tick since the last update 211 * of a CPU. If a new IO wait boost is requested after more then a tick, then 212 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 213 * efficiency by ignoring sporadic wakeups from IO. 214 */ 215 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 216 bool set_iowait_boost) 217 { 218 s64 delta_ns = time - sg_cpu->last_update; 219 220 /* Reset boost only if a tick has elapsed since last request */ 221 if (delta_ns <= TICK_NSEC) 222 return false; 223 224 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 225 sg_cpu->iowait_boost_pending = set_iowait_boost; 226 227 return true; 228 } 229 230 /** 231 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 232 * @sg_cpu: the sugov data for the CPU to boost 233 * @time: the update time from the caller 234 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 235 * 236 * Each time a task wakes up after an IO operation, the CPU utilization can be 237 * boosted to a certain utilization which doubles at each "frequent and 238 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 239 * of the maximum OPP. 240 * 241 * To keep doubling, an IO boost has to be requested at least once per tick, 242 * otherwise we restart from the utilization of the minimum OPP. 243 */ 244 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 245 unsigned int flags) 246 { 247 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 248 249 /* Reset boost if the CPU appears to have been idle enough */ 250 if (sg_cpu->iowait_boost && 251 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 252 return; 253 254 /* Boost only tasks waking up after IO */ 255 if (!set_iowait_boost) 256 return; 257 258 /* Ensure boost doubles only one time at each request */ 259 if (sg_cpu->iowait_boost_pending) 260 return; 261 sg_cpu->iowait_boost_pending = true; 262 263 /* Double the boost at each request */ 264 if (sg_cpu->iowait_boost) { 265 sg_cpu->iowait_boost = 266 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 267 return; 268 } 269 270 /* First wakeup after IO: start with minimum boost */ 271 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 272 } 273 274 /** 275 * sugov_iowait_apply() - Apply the IO boost to a CPU. 276 * @sg_cpu: the sugov data for the cpu to boost 277 * @time: the update time from the caller 278 * @max_cap: the max CPU capacity 279 * 280 * A CPU running a task which woken up after an IO operation can have its 281 * utilization boosted to speed up the completion of those IO operations. 282 * The IO boost value is increased each time a task wakes up from IO, in 283 * sugov_iowait_apply(), and it's instead decreased by this function, 284 * each time an increase has not been requested (!iowait_boost_pending). 285 * 286 * A CPU which also appears to have been idle for at least one tick has also 287 * its IO boost utilization reset. 288 * 289 * This mechanism is designed to boost high frequently IO waiting tasks, while 290 * being more conservative on tasks which does sporadic IO operations. 291 */ 292 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 293 unsigned long max_cap) 294 { 295 /* No boost currently required */ 296 if (!sg_cpu->iowait_boost) 297 return 0; 298 299 /* Reset boost if the CPU appears to have been idle enough */ 300 if (sugov_iowait_reset(sg_cpu, time, false)) 301 return 0; 302 303 if (!sg_cpu->iowait_boost_pending) { 304 /* 305 * No boost pending; reduce the boost value. 306 */ 307 sg_cpu->iowait_boost >>= 1; 308 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 309 sg_cpu->iowait_boost = 0; 310 return 0; 311 } 312 } 313 314 sg_cpu->iowait_boost_pending = false; 315 316 /* 317 * sg_cpu->util is already in capacity scale; convert iowait_boost 318 * into the same scale so we can compare. 319 */ 320 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT; 321 } 322 323 #ifdef CONFIG_NO_HZ_COMMON 324 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 325 { 326 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 327 bool ret = idle_calls == sg_cpu->saved_idle_calls; 328 329 sg_cpu->saved_idle_calls = idle_calls; 330 return ret; 331 } 332 #else 333 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 334 #endif /* CONFIG_NO_HZ_COMMON */ 335 336 /* 337 * Make sugov_should_update_freq() ignore the rate limit when DL 338 * has increased the utilization. 339 */ 340 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu) 341 { 342 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min) 343 sg_cpu->sg_policy->limits_changed = true; 344 } 345 346 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 347 u64 time, unsigned long max_cap, 348 unsigned int flags) 349 { 350 unsigned long boost; 351 352 sugov_iowait_boost(sg_cpu, time, flags); 353 sg_cpu->last_update = time; 354 355 ignore_dl_rate_limit(sg_cpu); 356 357 if (!sugov_should_update_freq(sg_cpu->sg_policy, time)) 358 return false; 359 360 boost = sugov_iowait_apply(sg_cpu, time, max_cap); 361 sugov_get_util(sg_cpu, boost); 362 363 return true; 364 } 365 366 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 367 unsigned int flags) 368 { 369 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 370 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 371 unsigned int cached_freq = sg_policy->cached_raw_freq; 372 unsigned long max_cap; 373 unsigned int next_f; 374 375 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 376 377 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 378 return; 379 380 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap); 381 /* 382 * Do not reduce the frequency if the CPU has not been idle 383 * recently, as the reduction is likely to be premature then. 384 * 385 * Except when the rq is capped by uclamp_max. 386 */ 387 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 388 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq && 389 !sg_policy->need_freq_update) { 390 next_f = sg_policy->next_freq; 391 392 /* Restore cached freq as next_freq has changed */ 393 sg_policy->cached_raw_freq = cached_freq; 394 } 395 396 if (!sugov_update_next_freq(sg_policy, time, next_f)) 397 return; 398 399 /* 400 * This code runs under rq->lock for the target CPU, so it won't run 401 * concurrently on two different CPUs for the same target and it is not 402 * necessary to acquire the lock in the fast switch case. 403 */ 404 if (sg_policy->policy->fast_switch_enabled) { 405 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 406 } else { 407 raw_spin_lock(&sg_policy->update_lock); 408 sugov_deferred_update(sg_policy); 409 raw_spin_unlock(&sg_policy->update_lock); 410 } 411 } 412 413 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 414 unsigned int flags) 415 { 416 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 417 unsigned long prev_util = sg_cpu->util; 418 unsigned long max_cap; 419 420 /* 421 * Fall back to the "frequency" path if frequency invariance is not 422 * supported, because the direct mapping between the utilization and 423 * the performance levels depends on the frequency invariance. 424 */ 425 if (!arch_scale_freq_invariant()) { 426 sugov_update_single_freq(hook, time, flags); 427 return; 428 } 429 430 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 431 432 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 433 return; 434 435 /* 436 * Do not reduce the target performance level if the CPU has not been 437 * idle recently, as the reduction is likely to be premature then. 438 * 439 * Except when the rq is capped by uclamp_max. 440 */ 441 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 442 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 443 sg_cpu->util = prev_util; 444 445 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min, 446 sg_cpu->util, max_cap); 447 448 sg_cpu->sg_policy->last_freq_update_time = time; 449 } 450 451 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 452 { 453 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 454 struct cpufreq_policy *policy = sg_policy->policy; 455 unsigned long util = 0, max_cap; 456 unsigned int j; 457 458 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 459 460 for_each_cpu(j, policy->cpus) { 461 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 462 unsigned long boost; 463 464 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap); 465 sugov_get_util(j_sg_cpu, boost); 466 467 util = max(j_sg_cpu->util, util); 468 } 469 470 return get_next_freq(sg_policy, util, max_cap); 471 } 472 473 static void 474 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 475 { 476 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 477 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 478 unsigned int next_f; 479 480 raw_spin_lock(&sg_policy->update_lock); 481 482 sugov_iowait_boost(sg_cpu, time, flags); 483 sg_cpu->last_update = time; 484 485 ignore_dl_rate_limit(sg_cpu); 486 487 if (sugov_should_update_freq(sg_policy, time)) { 488 next_f = sugov_next_freq_shared(sg_cpu, time); 489 490 if (!sugov_update_next_freq(sg_policy, time, next_f)) 491 goto unlock; 492 493 if (sg_policy->policy->fast_switch_enabled) 494 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 495 else 496 sugov_deferred_update(sg_policy); 497 } 498 unlock: 499 raw_spin_unlock(&sg_policy->update_lock); 500 } 501 502 static void sugov_work(struct kthread_work *work) 503 { 504 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 505 unsigned int freq; 506 unsigned long flags; 507 508 /* 509 * Hold sg_policy->update_lock shortly to handle the case where: 510 * in case sg_policy->next_freq is read here, and then updated by 511 * sugov_deferred_update() just before work_in_progress is set to false 512 * here, we may miss queueing the new update. 513 * 514 * Note: If a work was queued after the update_lock is released, 515 * sugov_work() will just be called again by kthread_work code; and the 516 * request will be proceed before the sugov thread sleeps. 517 */ 518 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 519 freq = sg_policy->next_freq; 520 sg_policy->work_in_progress = false; 521 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 522 523 mutex_lock(&sg_policy->work_lock); 524 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 525 mutex_unlock(&sg_policy->work_lock); 526 } 527 528 static void sugov_irq_work(struct irq_work *irq_work) 529 { 530 struct sugov_policy *sg_policy; 531 532 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 533 534 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 535 } 536 537 /************************** sysfs interface ************************/ 538 539 static struct sugov_tunables *global_tunables; 540 static DEFINE_MUTEX(global_tunables_lock); 541 542 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 543 { 544 return container_of(attr_set, struct sugov_tunables, attr_set); 545 } 546 547 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 548 { 549 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 550 551 return sprintf(buf, "%u\n", tunables->rate_limit_us); 552 } 553 554 static ssize_t 555 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 556 { 557 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 558 struct sugov_policy *sg_policy; 559 unsigned int rate_limit_us; 560 561 if (kstrtouint(buf, 10, &rate_limit_us)) 562 return -EINVAL; 563 564 tunables->rate_limit_us = rate_limit_us; 565 566 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 567 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 568 569 return count; 570 } 571 572 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 573 574 static struct attribute *sugov_attrs[] = { 575 &rate_limit_us.attr, 576 NULL 577 }; 578 ATTRIBUTE_GROUPS(sugov); 579 580 static void sugov_tunables_free(struct kobject *kobj) 581 { 582 struct gov_attr_set *attr_set = to_gov_attr_set(kobj); 583 584 kfree(to_sugov_tunables(attr_set)); 585 } 586 587 static const struct kobj_type sugov_tunables_ktype = { 588 .default_groups = sugov_groups, 589 .sysfs_ops = &governor_sysfs_ops, 590 .release = &sugov_tunables_free, 591 }; 592 593 /********************** cpufreq governor interface *********************/ 594 595 #ifdef CONFIG_ENERGY_MODEL 596 static void rebuild_sd_workfn(struct work_struct *work) 597 { 598 rebuild_sched_domains_energy(); 599 } 600 601 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 602 603 /* 604 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 605 * on governor changes to make sure the scheduler knows about it. 606 */ 607 static void sugov_eas_rebuild_sd(void) 608 { 609 /* 610 * When called from the cpufreq_register_driver() path, the 611 * cpu_hotplug_lock is already held, so use a work item to 612 * avoid nested locking in rebuild_sched_domains(). 613 */ 614 schedule_work(&rebuild_sd_work); 615 } 616 #else 617 static inline void sugov_eas_rebuild_sd(void) { }; 618 #endif 619 620 struct cpufreq_governor schedutil_gov; 621 622 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 623 { 624 struct sugov_policy *sg_policy; 625 626 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 627 if (!sg_policy) 628 return NULL; 629 630 sg_policy->policy = policy; 631 raw_spin_lock_init(&sg_policy->update_lock); 632 return sg_policy; 633 } 634 635 static void sugov_policy_free(struct sugov_policy *sg_policy) 636 { 637 kfree(sg_policy); 638 } 639 640 static int sugov_kthread_create(struct sugov_policy *sg_policy) 641 { 642 struct task_struct *thread; 643 struct sched_attr attr = { 644 .size = sizeof(struct sched_attr), 645 .sched_policy = SCHED_DEADLINE, 646 .sched_flags = SCHED_FLAG_SUGOV, 647 .sched_nice = 0, 648 .sched_priority = 0, 649 /* 650 * Fake (unused) bandwidth; workaround to "fix" 651 * priority inheritance. 652 */ 653 .sched_runtime = 1000000, 654 .sched_deadline = 10000000, 655 .sched_period = 10000000, 656 }; 657 struct cpufreq_policy *policy = sg_policy->policy; 658 int ret; 659 660 /* kthread only required for slow path */ 661 if (policy->fast_switch_enabled) 662 return 0; 663 664 kthread_init_work(&sg_policy->work, sugov_work); 665 kthread_init_worker(&sg_policy->worker); 666 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 667 "sugov:%d", 668 cpumask_first(policy->related_cpus)); 669 if (IS_ERR(thread)) { 670 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 671 return PTR_ERR(thread); 672 } 673 674 ret = sched_setattr_nocheck(thread, &attr); 675 if (ret) { 676 kthread_stop(thread); 677 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 678 return ret; 679 } 680 681 sg_policy->thread = thread; 682 kthread_bind_mask(thread, policy->related_cpus); 683 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 684 mutex_init(&sg_policy->work_lock); 685 686 wake_up_process(thread); 687 688 return 0; 689 } 690 691 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 692 { 693 /* kthread only required for slow path */ 694 if (sg_policy->policy->fast_switch_enabled) 695 return; 696 697 kthread_flush_worker(&sg_policy->worker); 698 kthread_stop(sg_policy->thread); 699 mutex_destroy(&sg_policy->work_lock); 700 } 701 702 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 703 { 704 struct sugov_tunables *tunables; 705 706 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 707 if (tunables) { 708 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 709 if (!have_governor_per_policy()) 710 global_tunables = tunables; 711 } 712 return tunables; 713 } 714 715 static void sugov_clear_global_tunables(void) 716 { 717 if (!have_governor_per_policy()) 718 global_tunables = NULL; 719 } 720 721 static int sugov_init(struct cpufreq_policy *policy) 722 { 723 struct sugov_policy *sg_policy; 724 struct sugov_tunables *tunables; 725 int ret = 0; 726 727 /* State should be equivalent to EXIT */ 728 if (policy->governor_data) 729 return -EBUSY; 730 731 cpufreq_enable_fast_switch(policy); 732 733 sg_policy = sugov_policy_alloc(policy); 734 if (!sg_policy) { 735 ret = -ENOMEM; 736 goto disable_fast_switch; 737 } 738 739 ret = sugov_kthread_create(sg_policy); 740 if (ret) 741 goto free_sg_policy; 742 743 mutex_lock(&global_tunables_lock); 744 745 if (global_tunables) { 746 if (WARN_ON(have_governor_per_policy())) { 747 ret = -EINVAL; 748 goto stop_kthread; 749 } 750 policy->governor_data = sg_policy; 751 sg_policy->tunables = global_tunables; 752 753 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 754 goto out; 755 } 756 757 tunables = sugov_tunables_alloc(sg_policy); 758 if (!tunables) { 759 ret = -ENOMEM; 760 goto stop_kthread; 761 } 762 763 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 764 765 policy->governor_data = sg_policy; 766 sg_policy->tunables = tunables; 767 768 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 769 get_governor_parent_kobj(policy), "%s", 770 schedutil_gov.name); 771 if (ret) 772 goto fail; 773 774 sugov_eas_rebuild_sd(); 775 776 out: 777 mutex_unlock(&global_tunables_lock); 778 return 0; 779 780 fail: 781 kobject_put(&tunables->attr_set.kobj); 782 policy->governor_data = NULL; 783 sugov_clear_global_tunables(); 784 785 stop_kthread: 786 sugov_kthread_stop(sg_policy); 787 mutex_unlock(&global_tunables_lock); 788 789 free_sg_policy: 790 sugov_policy_free(sg_policy); 791 792 disable_fast_switch: 793 cpufreq_disable_fast_switch(policy); 794 795 pr_err("initialization failed (error %d)\n", ret); 796 return ret; 797 } 798 799 static void sugov_exit(struct cpufreq_policy *policy) 800 { 801 struct sugov_policy *sg_policy = policy->governor_data; 802 struct sugov_tunables *tunables = sg_policy->tunables; 803 unsigned int count; 804 805 mutex_lock(&global_tunables_lock); 806 807 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 808 policy->governor_data = NULL; 809 if (!count) 810 sugov_clear_global_tunables(); 811 812 mutex_unlock(&global_tunables_lock); 813 814 sugov_kthread_stop(sg_policy); 815 sugov_policy_free(sg_policy); 816 cpufreq_disable_fast_switch(policy); 817 818 sugov_eas_rebuild_sd(); 819 } 820 821 static int sugov_start(struct cpufreq_policy *policy) 822 { 823 struct sugov_policy *sg_policy = policy->governor_data; 824 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 825 unsigned int cpu; 826 827 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 828 sg_policy->last_freq_update_time = 0; 829 sg_policy->next_freq = 0; 830 sg_policy->work_in_progress = false; 831 sg_policy->limits_changed = false; 832 sg_policy->cached_raw_freq = 0; 833 834 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 835 836 if (policy_is_shared(policy)) 837 uu = sugov_update_shared; 838 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 839 uu = sugov_update_single_perf; 840 else 841 uu = sugov_update_single_freq; 842 843 for_each_cpu(cpu, policy->cpus) { 844 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 845 846 memset(sg_cpu, 0, sizeof(*sg_cpu)); 847 sg_cpu->cpu = cpu; 848 sg_cpu->sg_policy = sg_policy; 849 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 850 } 851 return 0; 852 } 853 854 static void sugov_stop(struct cpufreq_policy *policy) 855 { 856 struct sugov_policy *sg_policy = policy->governor_data; 857 unsigned int cpu; 858 859 for_each_cpu(cpu, policy->cpus) 860 cpufreq_remove_update_util_hook(cpu); 861 862 synchronize_rcu(); 863 864 if (!policy->fast_switch_enabled) { 865 irq_work_sync(&sg_policy->irq_work); 866 kthread_cancel_work_sync(&sg_policy->work); 867 } 868 } 869 870 static void sugov_limits(struct cpufreq_policy *policy) 871 { 872 struct sugov_policy *sg_policy = policy->governor_data; 873 874 if (!policy->fast_switch_enabled) { 875 mutex_lock(&sg_policy->work_lock); 876 cpufreq_policy_apply_limits(policy); 877 mutex_unlock(&sg_policy->work_lock); 878 } 879 880 sg_policy->limits_changed = true; 881 } 882 883 struct cpufreq_governor schedutil_gov = { 884 .name = "schedutil", 885 .owner = THIS_MODULE, 886 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 887 .init = sugov_init, 888 .exit = sugov_exit, 889 .start = sugov_start, 890 .stop = sugov_stop, 891 .limits = sugov_limits, 892 }; 893 894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 895 struct cpufreq_governor *cpufreq_default_governor(void) 896 { 897 return &schedutil_gov; 898 } 899 #endif 900 901 cpufreq_governor_init(schedutil_gov); 902