1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 10 11 struct sugov_tunables { 12 struct gov_attr_set attr_set; 13 unsigned int rate_limit_us; 14 }; 15 16 struct sugov_policy { 17 struct cpufreq_policy *policy; 18 19 struct sugov_tunables *tunables; 20 struct list_head tunables_hook; 21 22 raw_spinlock_t update_lock; 23 u64 last_freq_update_time; 24 s64 freq_update_delay_ns; 25 unsigned int next_freq; 26 unsigned int cached_raw_freq; 27 28 /* The next fields are only needed if fast switch cannot be used: */ 29 struct irq_work irq_work; 30 struct kthread_work work; 31 struct mutex work_lock; 32 struct kthread_worker worker; 33 struct task_struct *thread; 34 bool work_in_progress; 35 36 bool limits_changed; 37 bool need_freq_update; 38 }; 39 40 struct sugov_cpu { 41 struct update_util_data update_util; 42 struct sugov_policy *sg_policy; 43 unsigned int cpu; 44 45 bool iowait_boost_pending; 46 unsigned int iowait_boost; 47 u64 last_update; 48 49 unsigned long util; 50 unsigned long bw_min; 51 52 /* The field below is for single-CPU policies only: */ 53 #ifdef CONFIG_NO_HZ_COMMON 54 unsigned long saved_idle_calls; 55 #endif 56 }; 57 58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 59 60 /************************ Governor internals ***********************/ 61 62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 63 { 64 s64 delta_ns; 65 66 /* 67 * Since cpufreq_update_util() is called with rq->lock held for 68 * the @target_cpu, our per-CPU data is fully serialized. 69 * 70 * However, drivers cannot in general deal with cross-CPU 71 * requests, so while get_next_freq() will work, our 72 * sugov_update_commit() call may not for the fast switching platforms. 73 * 74 * Hence stop here for remote requests if they aren't supported 75 * by the hardware, as calculating the frequency is pointless if 76 * we cannot in fact act on it. 77 * 78 * This is needed on the slow switching platforms too to prevent CPUs 79 * going offline from leaving stale IRQ work items behind. 80 */ 81 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 82 return false; 83 84 if (unlikely(sg_policy->limits_changed)) { 85 sg_policy->limits_changed = false; 86 sg_policy->need_freq_update = true; 87 return true; 88 } 89 90 delta_ns = time - sg_policy->last_freq_update_time; 91 92 return delta_ns >= sg_policy->freq_update_delay_ns; 93 } 94 95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 96 unsigned int next_freq) 97 { 98 if (sg_policy->need_freq_update) 99 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 100 else if (sg_policy->next_freq == next_freq) 101 return false; 102 103 sg_policy->next_freq = next_freq; 104 sg_policy->last_freq_update_time = time; 105 106 return true; 107 } 108 109 static void sugov_deferred_update(struct sugov_policy *sg_policy) 110 { 111 if (!sg_policy->work_in_progress) { 112 sg_policy->work_in_progress = true; 113 irq_work_queue(&sg_policy->irq_work); 114 } 115 } 116 117 /** 118 * get_capacity_ref_freq - get the reference frequency that has been used to 119 * correlate frequency and compute capacity for a given cpufreq policy. We use 120 * the CPU managing it for the arch_scale_freq_ref() call in the function. 121 * @policy: the cpufreq policy of the CPU in question. 122 * 123 * Return: the reference CPU frequency to compute a capacity. 124 */ 125 static __always_inline 126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy) 127 { 128 unsigned int freq = arch_scale_freq_ref(policy->cpu); 129 130 if (freq) 131 return freq; 132 133 if (arch_scale_freq_invariant()) 134 return policy->cpuinfo.max_freq; 135 136 /* 137 * Apply a 25% margin so that we select a higher frequency than 138 * the current one before the CPU is fully busy: 139 */ 140 return policy->cur + (policy->cur >> 2); 141 } 142 143 /** 144 * get_next_freq - Compute a new frequency for a given cpufreq policy. 145 * @sg_policy: schedutil policy object to compute the new frequency for. 146 * @util: Current CPU utilization. 147 * @max: CPU capacity. 148 * 149 * If the utilization is frequency-invariant, choose the new frequency to be 150 * proportional to it, that is 151 * 152 * next_freq = C * max_freq * util / max 153 * 154 * Otherwise, approximate the would-be frequency-invariant utilization by 155 * util_raw * (curr_freq / max_freq) which leads to 156 * 157 * next_freq = C * curr_freq * util_raw / max 158 * 159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 160 * 161 * The lowest driver-supported frequency which is equal or greater than the raw 162 * next_freq (as calculated above) is returned, subject to policy min/max and 163 * cpufreq driver limitations. 164 */ 165 static unsigned int get_next_freq(struct sugov_policy *sg_policy, 166 unsigned long util, unsigned long max) 167 { 168 struct cpufreq_policy *policy = sg_policy->policy; 169 unsigned int freq; 170 171 freq = get_capacity_ref_freq(policy); 172 freq = map_util_freq(util, freq, max); 173 174 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 175 return sg_policy->next_freq; 176 177 sg_policy->cached_raw_freq = freq; 178 return cpufreq_driver_resolve_freq(policy, freq); 179 } 180 181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 182 unsigned long min, 183 unsigned long max) 184 { 185 /* Add dvfs headroom to actual utilization */ 186 actual = map_util_perf(actual); 187 /* Actually we don't need to target the max performance */ 188 if (actual < max) 189 max = actual; 190 191 /* 192 * Ensure at least minimum performance while providing more compute 193 * capacity when possible. 194 */ 195 return max(min, max); 196 } 197 198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost) 199 { 200 unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu); 201 202 if (!scx_switched_all()) 203 util += cpu_util_cfs_boost(sg_cpu->cpu); 204 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max); 205 util = max(util, boost); 206 sg_cpu->bw_min = min; 207 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max); 208 } 209 210 /** 211 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 212 * @sg_cpu: the sugov data for the CPU to boost 213 * @time: the update time from the caller 214 * @set_iowait_boost: true if an IO boost has been requested 215 * 216 * The IO wait boost of a task is disabled after a tick since the last update 217 * of a CPU. If a new IO wait boost is requested after more then a tick, then 218 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 219 * efficiency by ignoring sporadic wakeups from IO. 220 */ 221 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 222 bool set_iowait_boost) 223 { 224 s64 delta_ns = time - sg_cpu->last_update; 225 226 /* Reset boost only if a tick has elapsed since last request */ 227 if (delta_ns <= TICK_NSEC) 228 return false; 229 230 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 231 sg_cpu->iowait_boost_pending = set_iowait_boost; 232 233 return true; 234 } 235 236 /** 237 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 238 * @sg_cpu: the sugov data for the CPU to boost 239 * @time: the update time from the caller 240 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 241 * 242 * Each time a task wakes up after an IO operation, the CPU utilization can be 243 * boosted to a certain utilization which doubles at each "frequent and 244 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 245 * of the maximum OPP. 246 * 247 * To keep doubling, an IO boost has to be requested at least once per tick, 248 * otherwise we restart from the utilization of the minimum OPP. 249 */ 250 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 251 unsigned int flags) 252 { 253 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 254 255 /* Reset boost if the CPU appears to have been idle enough */ 256 if (sg_cpu->iowait_boost && 257 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 258 return; 259 260 /* Boost only tasks waking up after IO */ 261 if (!set_iowait_boost) 262 return; 263 264 /* Ensure boost doubles only one time at each request */ 265 if (sg_cpu->iowait_boost_pending) 266 return; 267 sg_cpu->iowait_boost_pending = true; 268 269 /* Double the boost at each request */ 270 if (sg_cpu->iowait_boost) { 271 sg_cpu->iowait_boost = 272 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 273 return; 274 } 275 276 /* First wakeup after IO: start with minimum boost */ 277 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 278 } 279 280 /** 281 * sugov_iowait_apply() - Apply the IO boost to a CPU. 282 * @sg_cpu: the sugov data for the cpu to boost 283 * @time: the update time from the caller 284 * @max_cap: the max CPU capacity 285 * 286 * A CPU running a task which woken up after an IO operation can have its 287 * utilization boosted to speed up the completion of those IO operations. 288 * The IO boost value is increased each time a task wakes up from IO, in 289 * sugov_iowait_apply(), and it's instead decreased by this function, 290 * each time an increase has not been requested (!iowait_boost_pending). 291 * 292 * A CPU which also appears to have been idle for at least one tick has also 293 * its IO boost utilization reset. 294 * 295 * This mechanism is designed to boost high frequently IO waiting tasks, while 296 * being more conservative on tasks which does sporadic IO operations. 297 */ 298 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, 299 unsigned long max_cap) 300 { 301 /* No boost currently required */ 302 if (!sg_cpu->iowait_boost) 303 return 0; 304 305 /* Reset boost if the CPU appears to have been idle enough */ 306 if (sugov_iowait_reset(sg_cpu, time, false)) 307 return 0; 308 309 if (!sg_cpu->iowait_boost_pending) { 310 /* 311 * No boost pending; reduce the boost value. 312 */ 313 sg_cpu->iowait_boost >>= 1; 314 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 315 sg_cpu->iowait_boost = 0; 316 return 0; 317 } 318 } 319 320 sg_cpu->iowait_boost_pending = false; 321 322 /* 323 * sg_cpu->util is already in capacity scale; convert iowait_boost 324 * into the same scale so we can compare. 325 */ 326 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT; 327 } 328 329 #ifdef CONFIG_NO_HZ_COMMON 330 static bool sugov_hold_freq(struct sugov_cpu *sg_cpu) 331 { 332 unsigned long idle_calls; 333 bool ret; 334 335 /* 336 * The heuristics in this function is for the fair class. For SCX, the 337 * performance target comes directly from the BPF scheduler. Let's just 338 * follow it. 339 */ 340 if (scx_switched_all()) 341 return false; 342 343 /* if capped by uclamp_max, always update to be in compliance */ 344 if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu))) 345 return false; 346 347 /* 348 * Maintain the frequency if the CPU has not been idle recently, as 349 * reduction is likely to be premature. 350 */ 351 idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 352 ret = idle_calls == sg_cpu->saved_idle_calls; 353 354 sg_cpu->saved_idle_calls = idle_calls; 355 return ret; 356 } 357 #else 358 static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; } 359 #endif /* CONFIG_NO_HZ_COMMON */ 360 361 /* 362 * Make sugov_should_update_freq() ignore the rate limit when DL 363 * has increased the utilization. 364 */ 365 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu) 366 { 367 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min) 368 sg_cpu->sg_policy->limits_changed = true; 369 } 370 371 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 372 u64 time, unsigned long max_cap, 373 unsigned int flags) 374 { 375 unsigned long boost; 376 377 sugov_iowait_boost(sg_cpu, time, flags); 378 sg_cpu->last_update = time; 379 380 ignore_dl_rate_limit(sg_cpu); 381 382 if (!sugov_should_update_freq(sg_cpu->sg_policy, time)) 383 return false; 384 385 boost = sugov_iowait_apply(sg_cpu, time, max_cap); 386 sugov_get_util(sg_cpu, boost); 387 388 return true; 389 } 390 391 static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 392 unsigned int flags) 393 { 394 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 395 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 396 unsigned int cached_freq = sg_policy->cached_raw_freq; 397 unsigned long max_cap; 398 unsigned int next_f; 399 400 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 401 402 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 403 return; 404 405 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap); 406 407 if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq && 408 !sg_policy->need_freq_update) { 409 next_f = sg_policy->next_freq; 410 411 /* Restore cached freq as next_freq has changed */ 412 sg_policy->cached_raw_freq = cached_freq; 413 } 414 415 if (!sugov_update_next_freq(sg_policy, time, next_f)) 416 return; 417 418 /* 419 * This code runs under rq->lock for the target CPU, so it won't run 420 * concurrently on two different CPUs for the same target and it is not 421 * necessary to acquire the lock in the fast switch case. 422 */ 423 if (sg_policy->policy->fast_switch_enabled) { 424 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 425 } else { 426 raw_spin_lock(&sg_policy->update_lock); 427 sugov_deferred_update(sg_policy); 428 raw_spin_unlock(&sg_policy->update_lock); 429 } 430 } 431 432 static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 433 unsigned int flags) 434 { 435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 436 unsigned long prev_util = sg_cpu->util; 437 unsigned long max_cap; 438 439 /* 440 * Fall back to the "frequency" path if frequency invariance is not 441 * supported, because the direct mapping between the utilization and 442 * the performance levels depends on the frequency invariance. 443 */ 444 if (!arch_scale_freq_invariant()) { 445 sugov_update_single_freq(hook, time, flags); 446 return; 447 } 448 449 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 450 451 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) 452 return; 453 454 if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util) 455 sg_cpu->util = prev_util; 456 457 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min, 458 sg_cpu->util, max_cap); 459 460 sg_cpu->sg_policy->last_freq_update_time = time; 461 } 462 463 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 464 { 465 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 466 struct cpufreq_policy *policy = sg_policy->policy; 467 unsigned long util = 0, max_cap; 468 unsigned int j; 469 470 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu); 471 472 for_each_cpu(j, policy->cpus) { 473 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 474 unsigned long boost; 475 476 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap); 477 sugov_get_util(j_sg_cpu, boost); 478 479 util = max(j_sg_cpu->util, util); 480 } 481 482 return get_next_freq(sg_policy, util, max_cap); 483 } 484 485 static void 486 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 487 { 488 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 489 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 490 unsigned int next_f; 491 492 raw_spin_lock(&sg_policy->update_lock); 493 494 sugov_iowait_boost(sg_cpu, time, flags); 495 sg_cpu->last_update = time; 496 497 ignore_dl_rate_limit(sg_cpu); 498 499 if (sugov_should_update_freq(sg_policy, time)) { 500 next_f = sugov_next_freq_shared(sg_cpu, time); 501 502 if (!sugov_update_next_freq(sg_policy, time, next_f)) 503 goto unlock; 504 505 if (sg_policy->policy->fast_switch_enabled) 506 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 507 else 508 sugov_deferred_update(sg_policy); 509 } 510 unlock: 511 raw_spin_unlock(&sg_policy->update_lock); 512 } 513 514 static void sugov_work(struct kthread_work *work) 515 { 516 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 517 unsigned int freq; 518 unsigned long flags; 519 520 /* 521 * Hold sg_policy->update_lock shortly to handle the case where: 522 * in case sg_policy->next_freq is read here, and then updated by 523 * sugov_deferred_update() just before work_in_progress is set to false 524 * here, we may miss queueing the new update. 525 * 526 * Note: If a work was queued after the update_lock is released, 527 * sugov_work() will just be called again by kthread_work code; and the 528 * request will be proceed before the sugov thread sleeps. 529 */ 530 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 531 freq = sg_policy->next_freq; 532 sg_policy->work_in_progress = false; 533 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 534 535 mutex_lock(&sg_policy->work_lock); 536 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 537 mutex_unlock(&sg_policy->work_lock); 538 } 539 540 static void sugov_irq_work(struct irq_work *irq_work) 541 { 542 struct sugov_policy *sg_policy; 543 544 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 545 546 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 547 } 548 549 /************************** sysfs interface ************************/ 550 551 static struct sugov_tunables *global_tunables; 552 static DEFINE_MUTEX(global_tunables_lock); 553 554 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 555 { 556 return container_of(attr_set, struct sugov_tunables, attr_set); 557 } 558 559 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 560 { 561 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 562 563 return sprintf(buf, "%u\n", tunables->rate_limit_us); 564 } 565 566 static ssize_t 567 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 568 { 569 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 570 struct sugov_policy *sg_policy; 571 unsigned int rate_limit_us; 572 573 if (kstrtouint(buf, 10, &rate_limit_us)) 574 return -EINVAL; 575 576 tunables->rate_limit_us = rate_limit_us; 577 578 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 579 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 580 581 return count; 582 } 583 584 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 585 586 static struct attribute *sugov_attrs[] = { 587 &rate_limit_us.attr, 588 NULL 589 }; 590 ATTRIBUTE_GROUPS(sugov); 591 592 static void sugov_tunables_free(struct kobject *kobj) 593 { 594 struct gov_attr_set *attr_set = to_gov_attr_set(kobj); 595 596 kfree(to_sugov_tunables(attr_set)); 597 } 598 599 static const struct kobj_type sugov_tunables_ktype = { 600 .default_groups = sugov_groups, 601 .sysfs_ops = &governor_sysfs_ops, 602 .release = &sugov_tunables_free, 603 }; 604 605 /********************** cpufreq governor interface *********************/ 606 607 #ifdef CONFIG_ENERGY_MODEL 608 static void rebuild_sd_workfn(struct work_struct *work) 609 { 610 rebuild_sched_domains_energy(); 611 } 612 613 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 614 615 /* 616 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 617 * on governor changes to make sure the scheduler knows about it. 618 */ 619 static void sugov_eas_rebuild_sd(void) 620 { 621 /* 622 * When called from the cpufreq_register_driver() path, the 623 * cpu_hotplug_lock is already held, so use a work item to 624 * avoid nested locking in rebuild_sched_domains(). 625 */ 626 schedule_work(&rebuild_sd_work); 627 } 628 #else 629 static inline void sugov_eas_rebuild_sd(void) { }; 630 #endif 631 632 struct cpufreq_governor schedutil_gov; 633 634 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 635 { 636 struct sugov_policy *sg_policy; 637 638 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 639 if (!sg_policy) 640 return NULL; 641 642 sg_policy->policy = policy; 643 raw_spin_lock_init(&sg_policy->update_lock); 644 return sg_policy; 645 } 646 647 static void sugov_policy_free(struct sugov_policy *sg_policy) 648 { 649 kfree(sg_policy); 650 } 651 652 static int sugov_kthread_create(struct sugov_policy *sg_policy) 653 { 654 struct task_struct *thread; 655 struct sched_attr attr = { 656 .size = sizeof(struct sched_attr), 657 .sched_policy = SCHED_DEADLINE, 658 .sched_flags = SCHED_FLAG_SUGOV, 659 .sched_nice = 0, 660 .sched_priority = 0, 661 /* 662 * Fake (unused) bandwidth; workaround to "fix" 663 * priority inheritance. 664 */ 665 .sched_runtime = NSEC_PER_MSEC, 666 .sched_deadline = 10 * NSEC_PER_MSEC, 667 .sched_period = 10 * NSEC_PER_MSEC, 668 }; 669 struct cpufreq_policy *policy = sg_policy->policy; 670 int ret; 671 672 /* kthread only required for slow path */ 673 if (policy->fast_switch_enabled) 674 return 0; 675 676 kthread_init_work(&sg_policy->work, sugov_work); 677 kthread_init_worker(&sg_policy->worker); 678 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 679 "sugov:%d", 680 cpumask_first(policy->related_cpus)); 681 if (IS_ERR(thread)) { 682 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 683 return PTR_ERR(thread); 684 } 685 686 ret = sched_setattr_nocheck(thread, &attr); 687 if (ret) { 688 kthread_stop(thread); 689 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 690 return ret; 691 } 692 693 sg_policy->thread = thread; 694 kthread_bind_mask(thread, policy->related_cpus); 695 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 696 mutex_init(&sg_policy->work_lock); 697 698 wake_up_process(thread); 699 700 return 0; 701 } 702 703 static void sugov_kthread_stop(struct sugov_policy *sg_policy) 704 { 705 /* kthread only required for slow path */ 706 if (sg_policy->policy->fast_switch_enabled) 707 return; 708 709 kthread_flush_worker(&sg_policy->worker); 710 kthread_stop(sg_policy->thread); 711 mutex_destroy(&sg_policy->work_lock); 712 } 713 714 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 715 { 716 struct sugov_tunables *tunables; 717 718 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 719 if (tunables) { 720 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 721 if (!have_governor_per_policy()) 722 global_tunables = tunables; 723 } 724 return tunables; 725 } 726 727 static void sugov_clear_global_tunables(void) 728 { 729 if (!have_governor_per_policy()) 730 global_tunables = NULL; 731 } 732 733 static int sugov_init(struct cpufreq_policy *policy) 734 { 735 struct sugov_policy *sg_policy; 736 struct sugov_tunables *tunables; 737 int ret = 0; 738 739 /* State should be equivalent to EXIT */ 740 if (policy->governor_data) 741 return -EBUSY; 742 743 cpufreq_enable_fast_switch(policy); 744 745 sg_policy = sugov_policy_alloc(policy); 746 if (!sg_policy) { 747 ret = -ENOMEM; 748 goto disable_fast_switch; 749 } 750 751 ret = sugov_kthread_create(sg_policy); 752 if (ret) 753 goto free_sg_policy; 754 755 mutex_lock(&global_tunables_lock); 756 757 if (global_tunables) { 758 if (WARN_ON(have_governor_per_policy())) { 759 ret = -EINVAL; 760 goto stop_kthread; 761 } 762 policy->governor_data = sg_policy; 763 sg_policy->tunables = global_tunables; 764 765 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 766 goto out; 767 } 768 769 tunables = sugov_tunables_alloc(sg_policy); 770 if (!tunables) { 771 ret = -ENOMEM; 772 goto stop_kthread; 773 } 774 775 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 776 777 policy->governor_data = sg_policy; 778 sg_policy->tunables = tunables; 779 780 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 781 get_governor_parent_kobj(policy), "%s", 782 schedutil_gov.name); 783 if (ret) 784 goto fail; 785 786 sugov_eas_rebuild_sd(); 787 788 out: 789 mutex_unlock(&global_tunables_lock); 790 return 0; 791 792 fail: 793 kobject_put(&tunables->attr_set.kobj); 794 policy->governor_data = NULL; 795 sugov_clear_global_tunables(); 796 797 stop_kthread: 798 sugov_kthread_stop(sg_policy); 799 mutex_unlock(&global_tunables_lock); 800 801 free_sg_policy: 802 sugov_policy_free(sg_policy); 803 804 disable_fast_switch: 805 cpufreq_disable_fast_switch(policy); 806 807 pr_err("initialization failed (error %d)\n", ret); 808 return ret; 809 } 810 811 static void sugov_exit(struct cpufreq_policy *policy) 812 { 813 struct sugov_policy *sg_policy = policy->governor_data; 814 struct sugov_tunables *tunables = sg_policy->tunables; 815 unsigned int count; 816 817 mutex_lock(&global_tunables_lock); 818 819 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 820 policy->governor_data = NULL; 821 if (!count) 822 sugov_clear_global_tunables(); 823 824 mutex_unlock(&global_tunables_lock); 825 826 sugov_kthread_stop(sg_policy); 827 sugov_policy_free(sg_policy); 828 cpufreq_disable_fast_switch(policy); 829 830 sugov_eas_rebuild_sd(); 831 } 832 833 static int sugov_start(struct cpufreq_policy *policy) 834 { 835 struct sugov_policy *sg_policy = policy->governor_data; 836 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 837 unsigned int cpu; 838 839 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 840 sg_policy->last_freq_update_time = 0; 841 sg_policy->next_freq = 0; 842 sg_policy->work_in_progress = false; 843 sg_policy->limits_changed = false; 844 sg_policy->cached_raw_freq = 0; 845 846 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 847 848 if (policy_is_shared(policy)) 849 uu = sugov_update_shared; 850 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 851 uu = sugov_update_single_perf; 852 else 853 uu = sugov_update_single_freq; 854 855 for_each_cpu(cpu, policy->cpus) { 856 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 857 858 memset(sg_cpu, 0, sizeof(*sg_cpu)); 859 sg_cpu->cpu = cpu; 860 sg_cpu->sg_policy = sg_policy; 861 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 862 } 863 return 0; 864 } 865 866 static void sugov_stop(struct cpufreq_policy *policy) 867 { 868 struct sugov_policy *sg_policy = policy->governor_data; 869 unsigned int cpu; 870 871 for_each_cpu(cpu, policy->cpus) 872 cpufreq_remove_update_util_hook(cpu); 873 874 synchronize_rcu(); 875 876 if (!policy->fast_switch_enabled) { 877 irq_work_sync(&sg_policy->irq_work); 878 kthread_cancel_work_sync(&sg_policy->work); 879 } 880 } 881 882 static void sugov_limits(struct cpufreq_policy *policy) 883 { 884 struct sugov_policy *sg_policy = policy->governor_data; 885 886 if (!policy->fast_switch_enabled) { 887 mutex_lock(&sg_policy->work_lock); 888 cpufreq_policy_apply_limits(policy); 889 mutex_unlock(&sg_policy->work_lock); 890 } 891 892 sg_policy->limits_changed = true; 893 } 894 895 struct cpufreq_governor schedutil_gov = { 896 .name = "schedutil", 897 .owner = THIS_MODULE, 898 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 899 .init = sugov_init, 900 .exit = sugov_exit, 901 .start = sugov_start, 902 .stop = sugov_stop, 903 .limits = sugov_limits, 904 }; 905 906 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 907 struct cpufreq_governor *cpufreq_default_governor(void) 908 { 909 return &schedutil_gov; 910 } 911 #endif 912 913 cpufreq_governor_init(schedutil_gov); 914