xref: /linux/kernel/sched/cpufreq_schedutil.c (revision 2a43434675b2114e8f909a5039cc421d35d35ce9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
10 
11 struct sugov_tunables {
12 	struct gov_attr_set	attr_set;
13 	unsigned int		rate_limit_us;
14 };
15 
16 struct sugov_policy {
17 	struct cpufreq_policy	*policy;
18 
19 	struct sugov_tunables	*tunables;
20 	struct list_head	tunables_hook;
21 
22 	raw_spinlock_t		update_lock;
23 	u64			last_freq_update_time;
24 	s64			freq_update_delay_ns;
25 	unsigned int		next_freq;
26 	unsigned int		cached_raw_freq;
27 
28 	/* The next fields are only needed if fast switch cannot be used: */
29 	struct			irq_work irq_work;
30 	struct			kthread_work work;
31 	struct			mutex work_lock;
32 	struct			kthread_worker worker;
33 	struct task_struct	*thread;
34 	bool			work_in_progress;
35 
36 	bool			limits_changed;
37 	bool			need_freq_update;
38 };
39 
40 struct sugov_cpu {
41 	struct update_util_data	update_util;
42 	struct sugov_policy	*sg_policy;
43 	unsigned int		cpu;
44 
45 	bool			iowait_boost_pending;
46 	unsigned int		iowait_boost;
47 	u64			last_update;
48 
49 	unsigned long		util;
50 	unsigned long		bw_min;
51 
52 	/* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 	unsigned long		saved_idle_calls;
55 #endif
56 };
57 
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59 
60 /************************ Governor internals ***********************/
61 
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 	s64 delta_ns;
65 
66 	/*
67 	 * Since cpufreq_update_util() is called with rq->lock held for
68 	 * the @target_cpu, our per-CPU data is fully serialized.
69 	 *
70 	 * However, drivers cannot in general deal with cross-CPU
71 	 * requests, so while get_next_freq() will work, our
72 	 * sugov_update_commit() call may not for the fast switching platforms.
73 	 *
74 	 * Hence stop here for remote requests if they aren't supported
75 	 * by the hardware, as calculating the frequency is pointless if
76 	 * we cannot in fact act on it.
77 	 *
78 	 * This is needed on the slow switching platforms too to prevent CPUs
79 	 * going offline from leaving stale IRQ work items behind.
80 	 */
81 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 		return false;
83 
84 	if (unlikely(sg_policy->limits_changed)) {
85 		sg_policy->limits_changed = false;
86 		sg_policy->need_freq_update = true;
87 		return true;
88 	}
89 
90 	delta_ns = time - sg_policy->last_freq_update_time;
91 
92 	return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94 
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 				   unsigned int next_freq)
97 {
98 	if (sg_policy->need_freq_update)
99 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100 	else if (sg_policy->next_freq == next_freq)
101 		return false;
102 
103 	sg_policy->next_freq = next_freq;
104 	sg_policy->last_freq_update_time = time;
105 
106 	return true;
107 }
108 
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111 	if (!sg_policy->work_in_progress) {
112 		sg_policy->work_in_progress = true;
113 		irq_work_queue(&sg_policy->irq_work);
114 	}
115 }
116 
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128 	unsigned int freq = arch_scale_freq_ref(policy->cpu);
129 
130 	if (freq)
131 		return freq;
132 
133 	if (arch_scale_freq_invariant())
134 		return policy->cpuinfo.max_freq;
135 
136 	return policy->cur;
137 }
138 
139 /**
140  * get_next_freq - Compute a new frequency for a given cpufreq policy.
141  * @sg_policy: schedutil policy object to compute the new frequency for.
142  * @util: Current CPU utilization.
143  * @max: CPU capacity.
144  *
145  * If the utilization is frequency-invariant, choose the new frequency to be
146  * proportional to it, that is
147  *
148  * next_freq = C * max_freq * util / max
149  *
150  * Otherwise, approximate the would-be frequency-invariant utilization by
151  * util_raw * (curr_freq / max_freq) which leads to
152  *
153  * next_freq = C * curr_freq * util_raw / max
154  *
155  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156  *
157  * The lowest driver-supported frequency which is equal or greater than the raw
158  * next_freq (as calculated above) is returned, subject to policy min/max and
159  * cpufreq driver limitations.
160  */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162 				  unsigned long util, unsigned long max)
163 {
164 	struct cpufreq_policy *policy = sg_policy->policy;
165 	unsigned int freq;
166 
167 	freq = get_capacity_ref_freq(policy);
168 	freq = map_util_freq(util, freq, max);
169 
170 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171 		return sg_policy->next_freq;
172 
173 	sg_policy->cached_raw_freq = freq;
174 	return cpufreq_driver_resolve_freq(policy, freq);
175 }
176 
177 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
178 				 unsigned long min,
179 				 unsigned long max)
180 {
181 	/* Add dvfs headroom to actual utilization */
182 	actual = map_util_perf(actual);
183 	/* Actually we don't need to target the max performance */
184 	if (actual < max)
185 		max = actual;
186 
187 	/*
188 	 * Ensure at least minimum performance while providing more compute
189 	 * capacity when possible.
190 	 */
191 	return max(min, max);
192 }
193 
194 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
195 {
196 	unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
197 
198 	util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
199 	util = max(util, boost);
200 	sg_cpu->bw_min = min;
201 	sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
202 }
203 
204 /**
205  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
206  * @sg_cpu: the sugov data for the CPU to boost
207  * @time: the update time from the caller
208  * @set_iowait_boost: true if an IO boost has been requested
209  *
210  * The IO wait boost of a task is disabled after a tick since the last update
211  * of a CPU. If a new IO wait boost is requested after more then a tick, then
212  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
213  * efficiency by ignoring sporadic wakeups from IO.
214  */
215 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
216 			       bool set_iowait_boost)
217 {
218 	s64 delta_ns = time - sg_cpu->last_update;
219 
220 	/* Reset boost only if a tick has elapsed since last request */
221 	if (delta_ns <= TICK_NSEC)
222 		return false;
223 
224 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
225 	sg_cpu->iowait_boost_pending = set_iowait_boost;
226 
227 	return true;
228 }
229 
230 /**
231  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
232  * @sg_cpu: the sugov data for the CPU to boost
233  * @time: the update time from the caller
234  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
235  *
236  * Each time a task wakes up after an IO operation, the CPU utilization can be
237  * boosted to a certain utilization which doubles at each "frequent and
238  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
239  * of the maximum OPP.
240  *
241  * To keep doubling, an IO boost has to be requested at least once per tick,
242  * otherwise we restart from the utilization of the minimum OPP.
243  */
244 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
245 			       unsigned int flags)
246 {
247 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
248 
249 	/* Reset boost if the CPU appears to have been idle enough */
250 	if (sg_cpu->iowait_boost &&
251 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
252 		return;
253 
254 	/* Boost only tasks waking up after IO */
255 	if (!set_iowait_boost)
256 		return;
257 
258 	/* Ensure boost doubles only one time at each request */
259 	if (sg_cpu->iowait_boost_pending)
260 		return;
261 	sg_cpu->iowait_boost_pending = true;
262 
263 	/* Double the boost at each request */
264 	if (sg_cpu->iowait_boost) {
265 		sg_cpu->iowait_boost =
266 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
267 		return;
268 	}
269 
270 	/* First wakeup after IO: start with minimum boost */
271 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
272 }
273 
274 /**
275  * sugov_iowait_apply() - Apply the IO boost to a CPU.
276  * @sg_cpu: the sugov data for the cpu to boost
277  * @time: the update time from the caller
278  * @max_cap: the max CPU capacity
279  *
280  * A CPU running a task which woken up after an IO operation can have its
281  * utilization boosted to speed up the completion of those IO operations.
282  * The IO boost value is increased each time a task wakes up from IO, in
283  * sugov_iowait_apply(), and it's instead decreased by this function,
284  * each time an increase has not been requested (!iowait_boost_pending).
285  *
286  * A CPU which also appears to have been idle for at least one tick has also
287  * its IO boost utilization reset.
288  *
289  * This mechanism is designed to boost high frequently IO waiting tasks, while
290  * being more conservative on tasks which does sporadic IO operations.
291  */
292 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
293 			       unsigned long max_cap)
294 {
295 	/* No boost currently required */
296 	if (!sg_cpu->iowait_boost)
297 		return 0;
298 
299 	/* Reset boost if the CPU appears to have been idle enough */
300 	if (sugov_iowait_reset(sg_cpu, time, false))
301 		return 0;
302 
303 	if (!sg_cpu->iowait_boost_pending) {
304 		/*
305 		 * No boost pending; reduce the boost value.
306 		 */
307 		sg_cpu->iowait_boost >>= 1;
308 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
309 			sg_cpu->iowait_boost = 0;
310 			return 0;
311 		}
312 	}
313 
314 	sg_cpu->iowait_boost_pending = false;
315 
316 	/*
317 	 * sg_cpu->util is already in capacity scale; convert iowait_boost
318 	 * into the same scale so we can compare.
319 	 */
320 	return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
321 }
322 
323 #ifdef CONFIG_NO_HZ_COMMON
324 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
325 {
326 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
327 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
328 
329 	sg_cpu->saved_idle_calls = idle_calls;
330 	return ret;
331 }
332 #else
333 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
334 #endif /* CONFIG_NO_HZ_COMMON */
335 
336 /*
337  * Make sugov_should_update_freq() ignore the rate limit when DL
338  * has increased the utilization.
339  */
340 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
341 {
342 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
343 		sg_cpu->sg_policy->limits_changed = true;
344 }
345 
346 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
347 					      u64 time, unsigned long max_cap,
348 					      unsigned int flags)
349 {
350 	unsigned long boost;
351 
352 	sugov_iowait_boost(sg_cpu, time, flags);
353 	sg_cpu->last_update = time;
354 
355 	ignore_dl_rate_limit(sg_cpu);
356 
357 	if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
358 		return false;
359 
360 	boost = sugov_iowait_apply(sg_cpu, time, max_cap);
361 	sugov_get_util(sg_cpu, boost);
362 
363 	return true;
364 }
365 
366 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
367 				     unsigned int flags)
368 {
369 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
370 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
371 	unsigned int cached_freq = sg_policy->cached_raw_freq;
372 	unsigned long max_cap;
373 	unsigned int next_f;
374 
375 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
376 
377 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
378 		return;
379 
380 	next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
381 	/*
382 	 * Do not reduce the frequency if the CPU has not been idle
383 	 * recently, as the reduction is likely to be premature then.
384 	 *
385 	 * Except when the rq is capped by uclamp_max.
386 	 */
387 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
388 	    sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
389 	    !sg_policy->need_freq_update) {
390 		next_f = sg_policy->next_freq;
391 
392 		/* Restore cached freq as next_freq has changed */
393 		sg_policy->cached_raw_freq = cached_freq;
394 	}
395 
396 	if (!sugov_update_next_freq(sg_policy, time, next_f))
397 		return;
398 
399 	/*
400 	 * This code runs under rq->lock for the target CPU, so it won't run
401 	 * concurrently on two different CPUs for the same target and it is not
402 	 * necessary to acquire the lock in the fast switch case.
403 	 */
404 	if (sg_policy->policy->fast_switch_enabled) {
405 		cpufreq_driver_fast_switch(sg_policy->policy, next_f);
406 	} else {
407 		raw_spin_lock(&sg_policy->update_lock);
408 		sugov_deferred_update(sg_policy);
409 		raw_spin_unlock(&sg_policy->update_lock);
410 	}
411 }
412 
413 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
414 				     unsigned int flags)
415 {
416 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
417 	unsigned long prev_util = sg_cpu->util;
418 	unsigned long max_cap;
419 
420 	/*
421 	 * Fall back to the "frequency" path if frequency invariance is not
422 	 * supported, because the direct mapping between the utilization and
423 	 * the performance levels depends on the frequency invariance.
424 	 */
425 	if (!arch_scale_freq_invariant()) {
426 		sugov_update_single_freq(hook, time, flags);
427 		return;
428 	}
429 
430 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
431 
432 	if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
433 		return;
434 
435 	/*
436 	 * Do not reduce the target performance level if the CPU has not been
437 	 * idle recently, as the reduction is likely to be premature then.
438 	 *
439 	 * Except when the rq is capped by uclamp_max.
440 	 */
441 	if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
442 	    sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
443 		sg_cpu->util = prev_util;
444 
445 	cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
446 				   sg_cpu->util, max_cap);
447 
448 	sg_cpu->sg_policy->last_freq_update_time = time;
449 }
450 
451 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
452 {
453 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
454 	struct cpufreq_policy *policy = sg_policy->policy;
455 	unsigned long util = 0, max_cap;
456 	unsigned int j;
457 
458 	max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
459 
460 	for_each_cpu(j, policy->cpus) {
461 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
462 		unsigned long boost;
463 
464 		boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
465 		sugov_get_util(j_sg_cpu, boost);
466 
467 		util = max(j_sg_cpu->util, util);
468 	}
469 
470 	return get_next_freq(sg_policy, util, max_cap);
471 }
472 
473 static void
474 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
475 {
476 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
477 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
478 	unsigned int next_f;
479 
480 	raw_spin_lock(&sg_policy->update_lock);
481 
482 	sugov_iowait_boost(sg_cpu, time, flags);
483 	sg_cpu->last_update = time;
484 
485 	ignore_dl_rate_limit(sg_cpu);
486 
487 	if (sugov_should_update_freq(sg_policy, time)) {
488 		next_f = sugov_next_freq_shared(sg_cpu, time);
489 
490 		if (!sugov_update_next_freq(sg_policy, time, next_f))
491 			goto unlock;
492 
493 		if (sg_policy->policy->fast_switch_enabled)
494 			cpufreq_driver_fast_switch(sg_policy->policy, next_f);
495 		else
496 			sugov_deferred_update(sg_policy);
497 	}
498 unlock:
499 	raw_spin_unlock(&sg_policy->update_lock);
500 }
501 
502 static void sugov_work(struct kthread_work *work)
503 {
504 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
505 	unsigned int freq;
506 	unsigned long flags;
507 
508 	/*
509 	 * Hold sg_policy->update_lock shortly to handle the case where:
510 	 * in case sg_policy->next_freq is read here, and then updated by
511 	 * sugov_deferred_update() just before work_in_progress is set to false
512 	 * here, we may miss queueing the new update.
513 	 *
514 	 * Note: If a work was queued after the update_lock is released,
515 	 * sugov_work() will just be called again by kthread_work code; and the
516 	 * request will be proceed before the sugov thread sleeps.
517 	 */
518 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
519 	freq = sg_policy->next_freq;
520 	sg_policy->work_in_progress = false;
521 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
522 
523 	mutex_lock(&sg_policy->work_lock);
524 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
525 	mutex_unlock(&sg_policy->work_lock);
526 }
527 
528 static void sugov_irq_work(struct irq_work *irq_work)
529 {
530 	struct sugov_policy *sg_policy;
531 
532 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
533 
534 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
535 }
536 
537 /************************** sysfs interface ************************/
538 
539 static struct sugov_tunables *global_tunables;
540 static DEFINE_MUTEX(global_tunables_lock);
541 
542 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
543 {
544 	return container_of(attr_set, struct sugov_tunables, attr_set);
545 }
546 
547 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
548 {
549 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
550 
551 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
552 }
553 
554 static ssize_t
555 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
556 {
557 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
558 	struct sugov_policy *sg_policy;
559 	unsigned int rate_limit_us;
560 
561 	if (kstrtouint(buf, 10, &rate_limit_us))
562 		return -EINVAL;
563 
564 	tunables->rate_limit_us = rate_limit_us;
565 
566 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
567 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
568 
569 	return count;
570 }
571 
572 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
573 
574 static struct attribute *sugov_attrs[] = {
575 	&rate_limit_us.attr,
576 	NULL
577 };
578 ATTRIBUTE_GROUPS(sugov);
579 
580 static void sugov_tunables_free(struct kobject *kobj)
581 {
582 	struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
583 
584 	kfree(to_sugov_tunables(attr_set));
585 }
586 
587 static const struct kobj_type sugov_tunables_ktype = {
588 	.default_groups = sugov_groups,
589 	.sysfs_ops = &governor_sysfs_ops,
590 	.release = &sugov_tunables_free,
591 };
592 
593 /********************** cpufreq governor interface *********************/
594 
595 #ifdef CONFIG_ENERGY_MODEL
596 static void rebuild_sd_workfn(struct work_struct *work)
597 {
598 	rebuild_sched_domains_energy();
599 }
600 
601 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
602 
603 /*
604  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
605  * on governor changes to make sure the scheduler knows about it.
606  */
607 static void sugov_eas_rebuild_sd(void)
608 {
609 	/*
610 	 * When called from the cpufreq_register_driver() path, the
611 	 * cpu_hotplug_lock is already held, so use a work item to
612 	 * avoid nested locking in rebuild_sched_domains().
613 	 */
614 	schedule_work(&rebuild_sd_work);
615 }
616 #else
617 static inline void sugov_eas_rebuild_sd(void) { };
618 #endif
619 
620 struct cpufreq_governor schedutil_gov;
621 
622 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
623 {
624 	struct sugov_policy *sg_policy;
625 
626 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
627 	if (!sg_policy)
628 		return NULL;
629 
630 	sg_policy->policy = policy;
631 	raw_spin_lock_init(&sg_policy->update_lock);
632 	return sg_policy;
633 }
634 
635 static void sugov_policy_free(struct sugov_policy *sg_policy)
636 {
637 	kfree(sg_policy);
638 }
639 
640 static int sugov_kthread_create(struct sugov_policy *sg_policy)
641 {
642 	struct task_struct *thread;
643 	struct sched_attr attr = {
644 		.size		= sizeof(struct sched_attr),
645 		.sched_policy	= SCHED_DEADLINE,
646 		.sched_flags	= SCHED_FLAG_SUGOV,
647 		.sched_nice	= 0,
648 		.sched_priority	= 0,
649 		/*
650 		 * Fake (unused) bandwidth; workaround to "fix"
651 		 * priority inheritance.
652 		 */
653 		.sched_runtime	=  1000000,
654 		.sched_deadline = 10000000,
655 		.sched_period	= 10000000,
656 	};
657 	struct cpufreq_policy *policy = sg_policy->policy;
658 	int ret;
659 
660 	/* kthread only required for slow path */
661 	if (policy->fast_switch_enabled)
662 		return 0;
663 
664 	kthread_init_work(&sg_policy->work, sugov_work);
665 	kthread_init_worker(&sg_policy->worker);
666 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
667 				"sugov:%d",
668 				cpumask_first(policy->related_cpus));
669 	if (IS_ERR(thread)) {
670 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
671 		return PTR_ERR(thread);
672 	}
673 
674 	ret = sched_setattr_nocheck(thread, &attr);
675 	if (ret) {
676 		kthread_stop(thread);
677 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
678 		return ret;
679 	}
680 
681 	sg_policy->thread = thread;
682 	kthread_bind_mask(thread, policy->related_cpus);
683 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
684 	mutex_init(&sg_policy->work_lock);
685 
686 	wake_up_process(thread);
687 
688 	return 0;
689 }
690 
691 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
692 {
693 	/* kthread only required for slow path */
694 	if (sg_policy->policy->fast_switch_enabled)
695 		return;
696 
697 	kthread_flush_worker(&sg_policy->worker);
698 	kthread_stop(sg_policy->thread);
699 	mutex_destroy(&sg_policy->work_lock);
700 }
701 
702 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
703 {
704 	struct sugov_tunables *tunables;
705 
706 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
707 	if (tunables) {
708 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
709 		if (!have_governor_per_policy())
710 			global_tunables = tunables;
711 	}
712 	return tunables;
713 }
714 
715 static void sugov_clear_global_tunables(void)
716 {
717 	if (!have_governor_per_policy())
718 		global_tunables = NULL;
719 }
720 
721 static int sugov_init(struct cpufreq_policy *policy)
722 {
723 	struct sugov_policy *sg_policy;
724 	struct sugov_tunables *tunables;
725 	int ret = 0;
726 
727 	/* State should be equivalent to EXIT */
728 	if (policy->governor_data)
729 		return -EBUSY;
730 
731 	cpufreq_enable_fast_switch(policy);
732 
733 	sg_policy = sugov_policy_alloc(policy);
734 	if (!sg_policy) {
735 		ret = -ENOMEM;
736 		goto disable_fast_switch;
737 	}
738 
739 	ret = sugov_kthread_create(sg_policy);
740 	if (ret)
741 		goto free_sg_policy;
742 
743 	mutex_lock(&global_tunables_lock);
744 
745 	if (global_tunables) {
746 		if (WARN_ON(have_governor_per_policy())) {
747 			ret = -EINVAL;
748 			goto stop_kthread;
749 		}
750 		policy->governor_data = sg_policy;
751 		sg_policy->tunables = global_tunables;
752 
753 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
754 		goto out;
755 	}
756 
757 	tunables = sugov_tunables_alloc(sg_policy);
758 	if (!tunables) {
759 		ret = -ENOMEM;
760 		goto stop_kthread;
761 	}
762 
763 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
764 
765 	policy->governor_data = sg_policy;
766 	sg_policy->tunables = tunables;
767 
768 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
769 				   get_governor_parent_kobj(policy), "%s",
770 				   schedutil_gov.name);
771 	if (ret)
772 		goto fail;
773 
774 	sugov_eas_rebuild_sd();
775 
776 out:
777 	mutex_unlock(&global_tunables_lock);
778 	return 0;
779 
780 fail:
781 	kobject_put(&tunables->attr_set.kobj);
782 	policy->governor_data = NULL;
783 	sugov_clear_global_tunables();
784 
785 stop_kthread:
786 	sugov_kthread_stop(sg_policy);
787 	mutex_unlock(&global_tunables_lock);
788 
789 free_sg_policy:
790 	sugov_policy_free(sg_policy);
791 
792 disable_fast_switch:
793 	cpufreq_disable_fast_switch(policy);
794 
795 	pr_err("initialization failed (error %d)\n", ret);
796 	return ret;
797 }
798 
799 static void sugov_exit(struct cpufreq_policy *policy)
800 {
801 	struct sugov_policy *sg_policy = policy->governor_data;
802 	struct sugov_tunables *tunables = sg_policy->tunables;
803 	unsigned int count;
804 
805 	mutex_lock(&global_tunables_lock);
806 
807 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
808 	policy->governor_data = NULL;
809 	if (!count)
810 		sugov_clear_global_tunables();
811 
812 	mutex_unlock(&global_tunables_lock);
813 
814 	sugov_kthread_stop(sg_policy);
815 	sugov_policy_free(sg_policy);
816 	cpufreq_disable_fast_switch(policy);
817 
818 	sugov_eas_rebuild_sd();
819 }
820 
821 static int sugov_start(struct cpufreq_policy *policy)
822 {
823 	struct sugov_policy *sg_policy = policy->governor_data;
824 	void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
825 	unsigned int cpu;
826 
827 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
828 	sg_policy->last_freq_update_time	= 0;
829 	sg_policy->next_freq			= 0;
830 	sg_policy->work_in_progress		= false;
831 	sg_policy->limits_changed		= false;
832 	sg_policy->cached_raw_freq		= 0;
833 
834 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
835 
836 	if (policy_is_shared(policy))
837 		uu = sugov_update_shared;
838 	else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
839 		uu = sugov_update_single_perf;
840 	else
841 		uu = sugov_update_single_freq;
842 
843 	for_each_cpu(cpu, policy->cpus) {
844 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845 
846 		memset(sg_cpu, 0, sizeof(*sg_cpu));
847 		sg_cpu->cpu = cpu;
848 		sg_cpu->sg_policy = sg_policy;
849 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
850 	}
851 	return 0;
852 }
853 
854 static void sugov_stop(struct cpufreq_policy *policy)
855 {
856 	struct sugov_policy *sg_policy = policy->governor_data;
857 	unsigned int cpu;
858 
859 	for_each_cpu(cpu, policy->cpus)
860 		cpufreq_remove_update_util_hook(cpu);
861 
862 	synchronize_rcu();
863 
864 	if (!policy->fast_switch_enabled) {
865 		irq_work_sync(&sg_policy->irq_work);
866 		kthread_cancel_work_sync(&sg_policy->work);
867 	}
868 }
869 
870 static void sugov_limits(struct cpufreq_policy *policy)
871 {
872 	struct sugov_policy *sg_policy = policy->governor_data;
873 
874 	if (!policy->fast_switch_enabled) {
875 		mutex_lock(&sg_policy->work_lock);
876 		cpufreq_policy_apply_limits(policy);
877 		mutex_unlock(&sg_policy->work_lock);
878 	}
879 
880 	sg_policy->limits_changed = true;
881 }
882 
883 struct cpufreq_governor schedutil_gov = {
884 	.name			= "schedutil",
885 	.owner			= THIS_MODULE,
886 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
887 	.init			= sugov_init,
888 	.exit			= sugov_exit,
889 	.start			= sugov_start,
890 	.stop			= sugov_stop,
891 	.limits			= sugov_limits,
892 };
893 
894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
895 struct cpufreq_governor *cpufreq_default_governor(void)
896 {
897 	return &schedutil_gov;
898 }
899 #endif
900 
901 cpufreq_governor_init(schedutil_gov);
902