xref: /linux/kernel/sched/cpuacct.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPU accounting code for task groups.
4  *
5  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
6  * (balbir@in.ibm.com).
7  */
8 #include <asm/irq_regs.h>
9 #include "sched.h"
10 
11 /* Time spent by the tasks of the CPU accounting group executing in ... */
12 enum cpuacct_stat_index {
13 	CPUACCT_STAT_USER,	/* ... user mode */
14 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
15 
16 	CPUACCT_STAT_NSTATS,
17 };
18 
19 static const char * const cpuacct_stat_desc[] = {
20 	[CPUACCT_STAT_USER] = "user",
21 	[CPUACCT_STAT_SYSTEM] = "system",
22 };
23 
24 struct cpuacct_usage {
25 	u64	usages[CPUACCT_STAT_NSTATS];
26 };
27 
28 /* track CPU usage of a group of tasks and its child groups */
29 struct cpuacct {
30 	struct cgroup_subsys_state	css;
31 	/* cpuusage holds pointer to a u64-type object on every CPU */
32 	struct cpuacct_usage __percpu	*cpuusage;
33 	struct kernel_cpustat __percpu	*cpustat;
34 };
35 
36 static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
37 {
38 	return css ? container_of(css, struct cpuacct, css) : NULL;
39 }
40 
41 /* Return CPU accounting group to which this task belongs */
42 static inline struct cpuacct *task_ca(struct task_struct *tsk)
43 {
44 	return css_ca(task_css(tsk, cpuacct_cgrp_id));
45 }
46 
47 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
48 {
49 	return css_ca(ca->css.parent);
50 }
51 
52 static DEFINE_PER_CPU(struct cpuacct_usage, root_cpuacct_cpuusage);
53 static struct cpuacct root_cpuacct = {
54 	.cpustat	= &kernel_cpustat,
55 	.cpuusage	= &root_cpuacct_cpuusage,
56 };
57 
58 /* Create a new CPU accounting group */
59 static struct cgroup_subsys_state *
60 cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
61 {
62 	struct cpuacct *ca;
63 
64 	if (!parent_css)
65 		return &root_cpuacct.css;
66 
67 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
68 	if (!ca)
69 		goto out;
70 
71 	ca->cpuusage = alloc_percpu(struct cpuacct_usage);
72 	if (!ca->cpuusage)
73 		goto out_free_ca;
74 
75 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
76 	if (!ca->cpustat)
77 		goto out_free_cpuusage;
78 
79 	return &ca->css;
80 
81 out_free_cpuusage:
82 	free_percpu(ca->cpuusage);
83 out_free_ca:
84 	kfree(ca);
85 out:
86 	return ERR_PTR(-ENOMEM);
87 }
88 
89 /* Destroy an existing CPU accounting group */
90 static void cpuacct_css_free(struct cgroup_subsys_state *css)
91 {
92 	struct cpuacct *ca = css_ca(css);
93 
94 	free_percpu(ca->cpustat);
95 	free_percpu(ca->cpuusage);
96 	kfree(ca);
97 }
98 
99 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu,
100 				 enum cpuacct_stat_index index)
101 {
102 	struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
103 	u64 data;
104 
105 	/*
106 	 * We allow index == CPUACCT_STAT_NSTATS here to read
107 	 * the sum of usages.
108 	 */
109 	BUG_ON(index > CPUACCT_STAT_NSTATS);
110 
111 #ifndef CONFIG_64BIT
112 	/*
113 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
114 	 */
115 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
116 #endif
117 
118 	if (index == CPUACCT_STAT_NSTATS) {
119 		int i = 0;
120 
121 		data = 0;
122 		for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
123 			data += cpuusage->usages[i];
124 	} else {
125 		data = cpuusage->usages[index];
126 	}
127 
128 #ifndef CONFIG_64BIT
129 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
130 #endif
131 
132 	return data;
133 }
134 
135 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
136 {
137 	struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
138 	int i;
139 
140 #ifndef CONFIG_64BIT
141 	/*
142 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
143 	 */
144 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
145 #endif
146 
147 	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
148 		cpuusage->usages[i] = val;
149 
150 #ifndef CONFIG_64BIT
151 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
152 #endif
153 }
154 
155 /* Return total CPU usage (in nanoseconds) of a group */
156 static u64 __cpuusage_read(struct cgroup_subsys_state *css,
157 			   enum cpuacct_stat_index index)
158 {
159 	struct cpuacct *ca = css_ca(css);
160 	u64 totalcpuusage = 0;
161 	int i;
162 
163 	for_each_possible_cpu(i)
164 		totalcpuusage += cpuacct_cpuusage_read(ca, i, index);
165 
166 	return totalcpuusage;
167 }
168 
169 static u64 cpuusage_user_read(struct cgroup_subsys_state *css,
170 			      struct cftype *cft)
171 {
172 	return __cpuusage_read(css, CPUACCT_STAT_USER);
173 }
174 
175 static u64 cpuusage_sys_read(struct cgroup_subsys_state *css,
176 			     struct cftype *cft)
177 {
178 	return __cpuusage_read(css, CPUACCT_STAT_SYSTEM);
179 }
180 
181 static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft)
182 {
183 	return __cpuusage_read(css, CPUACCT_STAT_NSTATS);
184 }
185 
186 static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft,
187 			  u64 val)
188 {
189 	struct cpuacct *ca = css_ca(css);
190 	int cpu;
191 
192 	/*
193 	 * Only allow '0' here to do a reset.
194 	 */
195 	if (val)
196 		return -EINVAL;
197 
198 	for_each_possible_cpu(cpu)
199 		cpuacct_cpuusage_write(ca, cpu, 0);
200 
201 	return 0;
202 }
203 
204 static int __cpuacct_percpu_seq_show(struct seq_file *m,
205 				     enum cpuacct_stat_index index)
206 {
207 	struct cpuacct *ca = css_ca(seq_css(m));
208 	u64 percpu;
209 	int i;
210 
211 	for_each_possible_cpu(i) {
212 		percpu = cpuacct_cpuusage_read(ca, i, index);
213 		seq_printf(m, "%llu ", (unsigned long long) percpu);
214 	}
215 	seq_printf(m, "\n");
216 	return 0;
217 }
218 
219 static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V)
220 {
221 	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_USER);
222 }
223 
224 static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V)
225 {
226 	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_SYSTEM);
227 }
228 
229 static int cpuacct_percpu_seq_show(struct seq_file *m, void *V)
230 {
231 	return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_NSTATS);
232 }
233 
234 static int cpuacct_all_seq_show(struct seq_file *m, void *V)
235 {
236 	struct cpuacct *ca = css_ca(seq_css(m));
237 	int index;
238 	int cpu;
239 
240 	seq_puts(m, "cpu");
241 	for (index = 0; index < CPUACCT_STAT_NSTATS; index++)
242 		seq_printf(m, " %s", cpuacct_stat_desc[index]);
243 	seq_puts(m, "\n");
244 
245 	for_each_possible_cpu(cpu) {
246 		struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
247 
248 		seq_printf(m, "%d", cpu);
249 
250 		for (index = 0; index < CPUACCT_STAT_NSTATS; index++) {
251 #ifndef CONFIG_64BIT
252 			/*
253 			 * Take rq->lock to make 64-bit read safe on 32-bit
254 			 * platforms.
255 			 */
256 			raw_spin_lock_irq(&cpu_rq(cpu)->lock);
257 #endif
258 
259 			seq_printf(m, " %llu", cpuusage->usages[index]);
260 
261 #ifndef CONFIG_64BIT
262 			raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
263 #endif
264 		}
265 		seq_puts(m, "\n");
266 	}
267 	return 0;
268 }
269 
270 static int cpuacct_stats_show(struct seq_file *sf, void *v)
271 {
272 	struct cpuacct *ca = css_ca(seq_css(sf));
273 	s64 val[CPUACCT_STAT_NSTATS];
274 	int cpu;
275 	int stat;
276 
277 	memset(val, 0, sizeof(val));
278 	for_each_possible_cpu(cpu) {
279 		u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat;
280 
281 		val[CPUACCT_STAT_USER]   += cpustat[CPUTIME_USER];
282 		val[CPUACCT_STAT_USER]   += cpustat[CPUTIME_NICE];
283 		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SYSTEM];
284 		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_IRQ];
285 		val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SOFTIRQ];
286 	}
287 
288 	for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
289 		seq_printf(sf, "%s %lld\n",
290 			   cpuacct_stat_desc[stat],
291 			   (long long)nsec_to_clock_t(val[stat]));
292 	}
293 
294 	return 0;
295 }
296 
297 static struct cftype files[] = {
298 	{
299 		.name = "usage",
300 		.read_u64 = cpuusage_read,
301 		.write_u64 = cpuusage_write,
302 	},
303 	{
304 		.name = "usage_user",
305 		.read_u64 = cpuusage_user_read,
306 	},
307 	{
308 		.name = "usage_sys",
309 		.read_u64 = cpuusage_sys_read,
310 	},
311 	{
312 		.name = "usage_percpu",
313 		.seq_show = cpuacct_percpu_seq_show,
314 	},
315 	{
316 		.name = "usage_percpu_user",
317 		.seq_show = cpuacct_percpu_user_seq_show,
318 	},
319 	{
320 		.name = "usage_percpu_sys",
321 		.seq_show = cpuacct_percpu_sys_seq_show,
322 	},
323 	{
324 		.name = "usage_all",
325 		.seq_show = cpuacct_all_seq_show,
326 	},
327 	{
328 		.name = "stat",
329 		.seq_show = cpuacct_stats_show,
330 	},
331 	{ }	/* terminate */
332 };
333 
334 /*
335  * charge this task's execution time to its accounting group.
336  *
337  * called with rq->lock held.
338  */
339 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
340 {
341 	struct cpuacct *ca;
342 	int index = CPUACCT_STAT_SYSTEM;
343 	struct pt_regs *regs = get_irq_regs() ? : task_pt_regs(tsk);
344 
345 	if (regs && user_mode(regs))
346 		index = CPUACCT_STAT_USER;
347 
348 	rcu_read_lock();
349 
350 	for (ca = task_ca(tsk); ca; ca = parent_ca(ca))
351 		__this_cpu_add(ca->cpuusage->usages[index], cputime);
352 
353 	rcu_read_unlock();
354 }
355 
356 /*
357  * Add user/system time to cpuacct.
358  *
359  * Note: it's the caller that updates the account of the root cgroup.
360  */
361 void cpuacct_account_field(struct task_struct *tsk, int index, u64 val)
362 {
363 	struct cpuacct *ca;
364 
365 	rcu_read_lock();
366 	for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca))
367 		__this_cpu_add(ca->cpustat->cpustat[index], val);
368 	rcu_read_unlock();
369 }
370 
371 struct cgroup_subsys cpuacct_cgrp_subsys = {
372 	.css_alloc	= cpuacct_css_alloc,
373 	.css_free	= cpuacct_css_free,
374 	.legacy_cftypes	= files,
375 	.early_init	= true,
376 };
377