1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(const struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(const struct task_struct *a, 178 const struct task_struct *b, bool in_fi) 179 { 180 181 int pa = __task_prio(a), pb = __task_prio(b); 182 183 if (-pa < -pb) 184 return true; 185 186 if (-pb < -pa) 187 return false; 188 189 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 190 return !dl_time_before(a->dl.deadline, b->dl.deadline); 191 192 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 193 return cfs_prio_less(a, b, in_fi); 194 195 return false; 196 } 197 198 static inline bool __sched_core_less(const struct task_struct *a, 199 const struct task_struct *b) 200 { 201 if (a->core_cookie < b->core_cookie) 202 return true; 203 204 if (a->core_cookie > b->core_cookie) 205 return false; 206 207 /* flip prio, so high prio is leftmost */ 208 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 209 return true; 210 211 return false; 212 } 213 214 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 215 216 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 217 { 218 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 219 } 220 221 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 222 { 223 const struct task_struct *p = __node_2_sc(node); 224 unsigned long cookie = (unsigned long)key; 225 226 if (cookie < p->core_cookie) 227 return -1; 228 229 if (cookie > p->core_cookie) 230 return 1; 231 232 return 0; 233 } 234 235 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 236 { 237 rq->core->core_task_seq++; 238 239 if (!p->core_cookie) 240 return; 241 242 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 243 } 244 245 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 246 { 247 rq->core->core_task_seq++; 248 249 if (sched_core_enqueued(p)) { 250 rb_erase(&p->core_node, &rq->core_tree); 251 RB_CLEAR_NODE(&p->core_node); 252 } 253 254 /* 255 * Migrating the last task off the cpu, with the cpu in forced idle 256 * state. Reschedule to create an accounting edge for forced idle, 257 * and re-examine whether the core is still in forced idle state. 258 */ 259 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 260 rq->core->core_forceidle_count && rq->curr == rq->idle) 261 resched_curr(rq); 262 } 263 264 /* 265 * Find left-most (aka, highest priority) task matching @cookie. 266 */ 267 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 268 { 269 struct rb_node *node; 270 271 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 272 /* 273 * The idle task always matches any cookie! 274 */ 275 if (!node) 276 return idle_sched_class.pick_task(rq); 277 278 return __node_2_sc(node); 279 } 280 281 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 282 { 283 struct rb_node *node = &p->core_node; 284 285 node = rb_next(node); 286 if (!node) 287 return NULL; 288 289 p = container_of(node, struct task_struct, core_node); 290 if (p->core_cookie != cookie) 291 return NULL; 292 293 return p; 294 } 295 296 /* 297 * Magic required such that: 298 * 299 * raw_spin_rq_lock(rq); 300 * ... 301 * raw_spin_rq_unlock(rq); 302 * 303 * ends up locking and unlocking the _same_ lock, and all CPUs 304 * always agree on what rq has what lock. 305 * 306 * XXX entirely possible to selectively enable cores, don't bother for now. 307 */ 308 309 static DEFINE_MUTEX(sched_core_mutex); 310 static atomic_t sched_core_count; 311 static struct cpumask sched_core_mask; 312 313 static void sched_core_lock(int cpu, unsigned long *flags) 314 { 315 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 316 int t, i = 0; 317 318 local_irq_save(*flags); 319 for_each_cpu(t, smt_mask) 320 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 321 } 322 323 static void sched_core_unlock(int cpu, unsigned long *flags) 324 { 325 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 326 int t; 327 328 for_each_cpu(t, smt_mask) 329 raw_spin_unlock(&cpu_rq(t)->__lock); 330 local_irq_restore(*flags); 331 } 332 333 static void __sched_core_flip(bool enabled) 334 { 335 unsigned long flags; 336 int cpu, t; 337 338 cpus_read_lock(); 339 340 /* 341 * Toggle the online cores, one by one. 342 */ 343 cpumask_copy(&sched_core_mask, cpu_online_mask); 344 for_each_cpu(cpu, &sched_core_mask) { 345 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 346 347 sched_core_lock(cpu, &flags); 348 349 for_each_cpu(t, smt_mask) 350 cpu_rq(t)->core_enabled = enabled; 351 352 cpu_rq(cpu)->core->core_forceidle_start = 0; 353 354 sched_core_unlock(cpu, &flags); 355 356 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 357 } 358 359 /* 360 * Toggle the offline CPUs. 361 */ 362 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 363 cpu_rq(cpu)->core_enabled = enabled; 364 365 cpus_read_unlock(); 366 } 367 368 static void sched_core_assert_empty(void) 369 { 370 int cpu; 371 372 for_each_possible_cpu(cpu) 373 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 374 } 375 376 static void __sched_core_enable(void) 377 { 378 static_branch_enable(&__sched_core_enabled); 379 /* 380 * Ensure all previous instances of raw_spin_rq_*lock() have finished 381 * and future ones will observe !sched_core_disabled(). 382 */ 383 synchronize_rcu(); 384 __sched_core_flip(true); 385 sched_core_assert_empty(); 386 } 387 388 static void __sched_core_disable(void) 389 { 390 sched_core_assert_empty(); 391 __sched_core_flip(false); 392 static_branch_disable(&__sched_core_enabled); 393 } 394 395 void sched_core_get(void) 396 { 397 if (atomic_inc_not_zero(&sched_core_count)) 398 return; 399 400 mutex_lock(&sched_core_mutex); 401 if (!atomic_read(&sched_core_count)) 402 __sched_core_enable(); 403 404 smp_mb__before_atomic(); 405 atomic_inc(&sched_core_count); 406 mutex_unlock(&sched_core_mutex); 407 } 408 409 static void __sched_core_put(struct work_struct *work) 410 { 411 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 412 __sched_core_disable(); 413 mutex_unlock(&sched_core_mutex); 414 } 415 } 416 417 void sched_core_put(void) 418 { 419 static DECLARE_WORK(_work, __sched_core_put); 420 421 /* 422 * "There can be only one" 423 * 424 * Either this is the last one, or we don't actually need to do any 425 * 'work'. If it is the last *again*, we rely on 426 * WORK_STRUCT_PENDING_BIT. 427 */ 428 if (!atomic_add_unless(&sched_core_count, -1, 1)) 429 schedule_work(&_work); 430 } 431 432 #else /* !CONFIG_SCHED_CORE */ 433 434 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 435 static inline void 436 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 437 438 #endif /* CONFIG_SCHED_CORE */ 439 440 /* 441 * Serialization rules: 442 * 443 * Lock order: 444 * 445 * p->pi_lock 446 * rq->lock 447 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 448 * 449 * rq1->lock 450 * rq2->lock where: rq1 < rq2 451 * 452 * Regular state: 453 * 454 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 455 * local CPU's rq->lock, it optionally removes the task from the runqueue and 456 * always looks at the local rq data structures to find the most eligible task 457 * to run next. 458 * 459 * Task enqueue is also under rq->lock, possibly taken from another CPU. 460 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 461 * the local CPU to avoid bouncing the runqueue state around [ see 462 * ttwu_queue_wakelist() ] 463 * 464 * Task wakeup, specifically wakeups that involve migration, are horribly 465 * complicated to avoid having to take two rq->locks. 466 * 467 * Special state: 468 * 469 * System-calls and anything external will use task_rq_lock() which acquires 470 * both p->pi_lock and rq->lock. As a consequence the state they change is 471 * stable while holding either lock: 472 * 473 * - sched_setaffinity()/ 474 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 475 * - set_user_nice(): p->se.load, p->*prio 476 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 477 * p->se.load, p->rt_priority, 478 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 479 * - sched_setnuma(): p->numa_preferred_nid 480 * - sched_move_task(): p->sched_task_group 481 * - uclamp_update_active() p->uclamp* 482 * 483 * p->state <- TASK_*: 484 * 485 * is changed locklessly using set_current_state(), __set_current_state() or 486 * set_special_state(), see their respective comments, or by 487 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 488 * concurrent self. 489 * 490 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 491 * 492 * is set by activate_task() and cleared by deactivate_task(), under 493 * rq->lock. Non-zero indicates the task is runnable, the special 494 * ON_RQ_MIGRATING state is used for migration without holding both 495 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 496 * 497 * p->on_cpu <- { 0, 1 }: 498 * 499 * is set by prepare_task() and cleared by finish_task() such that it will be 500 * set before p is scheduled-in and cleared after p is scheduled-out, both 501 * under rq->lock. Non-zero indicates the task is running on its CPU. 502 * 503 * [ The astute reader will observe that it is possible for two tasks on one 504 * CPU to have ->on_cpu = 1 at the same time. ] 505 * 506 * task_cpu(p): is changed by set_task_cpu(), the rules are: 507 * 508 * - Don't call set_task_cpu() on a blocked task: 509 * 510 * We don't care what CPU we're not running on, this simplifies hotplug, 511 * the CPU assignment of blocked tasks isn't required to be valid. 512 * 513 * - for try_to_wake_up(), called under p->pi_lock: 514 * 515 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 516 * 517 * - for migration called under rq->lock: 518 * [ see task_on_rq_migrating() in task_rq_lock() ] 519 * 520 * o move_queued_task() 521 * o detach_task() 522 * 523 * - for migration called under double_rq_lock(): 524 * 525 * o __migrate_swap_task() 526 * o push_rt_task() / pull_rt_task() 527 * o push_dl_task() / pull_dl_task() 528 * o dl_task_offline_migration() 529 * 530 */ 531 532 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 533 { 534 raw_spinlock_t *lock; 535 536 /* Matches synchronize_rcu() in __sched_core_enable() */ 537 preempt_disable(); 538 if (sched_core_disabled()) { 539 raw_spin_lock_nested(&rq->__lock, subclass); 540 /* preempt_count *MUST* be > 1 */ 541 preempt_enable_no_resched(); 542 return; 543 } 544 545 for (;;) { 546 lock = __rq_lockp(rq); 547 raw_spin_lock_nested(lock, subclass); 548 if (likely(lock == __rq_lockp(rq))) { 549 /* preempt_count *MUST* be > 1 */ 550 preempt_enable_no_resched(); 551 return; 552 } 553 raw_spin_unlock(lock); 554 } 555 } 556 557 bool raw_spin_rq_trylock(struct rq *rq) 558 { 559 raw_spinlock_t *lock; 560 bool ret; 561 562 /* Matches synchronize_rcu() in __sched_core_enable() */ 563 preempt_disable(); 564 if (sched_core_disabled()) { 565 ret = raw_spin_trylock(&rq->__lock); 566 preempt_enable(); 567 return ret; 568 } 569 570 for (;;) { 571 lock = __rq_lockp(rq); 572 ret = raw_spin_trylock(lock); 573 if (!ret || (likely(lock == __rq_lockp(rq)))) { 574 preempt_enable(); 575 return ret; 576 } 577 raw_spin_unlock(lock); 578 } 579 } 580 581 void raw_spin_rq_unlock(struct rq *rq) 582 { 583 raw_spin_unlock(rq_lockp(rq)); 584 } 585 586 #ifdef CONFIG_SMP 587 /* 588 * double_rq_lock - safely lock two runqueues 589 */ 590 void double_rq_lock(struct rq *rq1, struct rq *rq2) 591 { 592 lockdep_assert_irqs_disabled(); 593 594 if (rq_order_less(rq2, rq1)) 595 swap(rq1, rq2); 596 597 raw_spin_rq_lock(rq1); 598 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 599 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 600 601 double_rq_clock_clear_update(rq1, rq2); 602 } 603 #endif 604 605 /* 606 * __task_rq_lock - lock the rq @p resides on. 607 */ 608 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 609 __acquires(rq->lock) 610 { 611 struct rq *rq; 612 613 lockdep_assert_held(&p->pi_lock); 614 615 for (;;) { 616 rq = task_rq(p); 617 raw_spin_rq_lock(rq); 618 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 619 rq_pin_lock(rq, rf); 620 return rq; 621 } 622 raw_spin_rq_unlock(rq); 623 624 while (unlikely(task_on_rq_migrating(p))) 625 cpu_relax(); 626 } 627 } 628 629 /* 630 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 631 */ 632 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 633 __acquires(p->pi_lock) 634 __acquires(rq->lock) 635 { 636 struct rq *rq; 637 638 for (;;) { 639 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 640 rq = task_rq(p); 641 raw_spin_rq_lock(rq); 642 /* 643 * move_queued_task() task_rq_lock() 644 * 645 * ACQUIRE (rq->lock) 646 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 647 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 648 * [S] ->cpu = new_cpu [L] task_rq() 649 * [L] ->on_rq 650 * RELEASE (rq->lock) 651 * 652 * If we observe the old CPU in task_rq_lock(), the acquire of 653 * the old rq->lock will fully serialize against the stores. 654 * 655 * If we observe the new CPU in task_rq_lock(), the address 656 * dependency headed by '[L] rq = task_rq()' and the acquire 657 * will pair with the WMB to ensure we then also see migrating. 658 */ 659 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 660 rq_pin_lock(rq, rf); 661 return rq; 662 } 663 raw_spin_rq_unlock(rq); 664 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 665 666 while (unlikely(task_on_rq_migrating(p))) 667 cpu_relax(); 668 } 669 } 670 671 /* 672 * RQ-clock updating methods: 673 */ 674 675 static void update_rq_clock_task(struct rq *rq, s64 delta) 676 { 677 /* 678 * In theory, the compile should just see 0 here, and optimize out the call 679 * to sched_rt_avg_update. But I don't trust it... 680 */ 681 s64 __maybe_unused steal = 0, irq_delta = 0; 682 683 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 684 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 685 686 /* 687 * Since irq_time is only updated on {soft,}irq_exit, we might run into 688 * this case when a previous update_rq_clock() happened inside a 689 * {soft,}irq region. 690 * 691 * When this happens, we stop ->clock_task and only update the 692 * prev_irq_time stamp to account for the part that fit, so that a next 693 * update will consume the rest. This ensures ->clock_task is 694 * monotonic. 695 * 696 * It does however cause some slight miss-attribution of {soft,}irq 697 * time, a more accurate solution would be to update the irq_time using 698 * the current rq->clock timestamp, except that would require using 699 * atomic ops. 700 */ 701 if (irq_delta > delta) 702 irq_delta = delta; 703 704 rq->prev_irq_time += irq_delta; 705 delta -= irq_delta; 706 psi_account_irqtime(rq->curr, irq_delta); 707 #endif 708 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 709 if (static_key_false((¶virt_steal_rq_enabled))) { 710 steal = paravirt_steal_clock(cpu_of(rq)); 711 steal -= rq->prev_steal_time_rq; 712 713 if (unlikely(steal > delta)) 714 steal = delta; 715 716 rq->prev_steal_time_rq += steal; 717 delta -= steal; 718 } 719 #endif 720 721 rq->clock_task += delta; 722 723 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 724 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 725 update_irq_load_avg(rq, irq_delta + steal); 726 #endif 727 update_rq_clock_pelt(rq, delta); 728 } 729 730 void update_rq_clock(struct rq *rq) 731 { 732 s64 delta; 733 734 lockdep_assert_rq_held(rq); 735 736 if (rq->clock_update_flags & RQCF_ACT_SKIP) 737 return; 738 739 #ifdef CONFIG_SCHED_DEBUG 740 if (sched_feat(WARN_DOUBLE_CLOCK)) 741 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 742 rq->clock_update_flags |= RQCF_UPDATED; 743 #endif 744 745 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 746 if (delta < 0) 747 return; 748 rq->clock += delta; 749 update_rq_clock_task(rq, delta); 750 } 751 752 #ifdef CONFIG_SCHED_HRTICK 753 /* 754 * Use HR-timers to deliver accurate preemption points. 755 */ 756 757 static void hrtick_clear(struct rq *rq) 758 { 759 if (hrtimer_active(&rq->hrtick_timer)) 760 hrtimer_cancel(&rq->hrtick_timer); 761 } 762 763 /* 764 * High-resolution timer tick. 765 * Runs from hardirq context with interrupts disabled. 766 */ 767 static enum hrtimer_restart hrtick(struct hrtimer *timer) 768 { 769 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 770 struct rq_flags rf; 771 772 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 773 774 rq_lock(rq, &rf); 775 update_rq_clock(rq); 776 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 777 rq_unlock(rq, &rf); 778 779 return HRTIMER_NORESTART; 780 } 781 782 #ifdef CONFIG_SMP 783 784 static void __hrtick_restart(struct rq *rq) 785 { 786 struct hrtimer *timer = &rq->hrtick_timer; 787 ktime_t time = rq->hrtick_time; 788 789 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 790 } 791 792 /* 793 * called from hardirq (IPI) context 794 */ 795 static void __hrtick_start(void *arg) 796 { 797 struct rq *rq = arg; 798 struct rq_flags rf; 799 800 rq_lock(rq, &rf); 801 __hrtick_restart(rq); 802 rq_unlock(rq, &rf); 803 } 804 805 /* 806 * Called to set the hrtick timer state. 807 * 808 * called with rq->lock held and irqs disabled 809 */ 810 void hrtick_start(struct rq *rq, u64 delay) 811 { 812 struct hrtimer *timer = &rq->hrtick_timer; 813 s64 delta; 814 815 /* 816 * Don't schedule slices shorter than 10000ns, that just 817 * doesn't make sense and can cause timer DoS. 818 */ 819 delta = max_t(s64, delay, 10000LL); 820 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 821 822 if (rq == this_rq()) 823 __hrtick_restart(rq); 824 else 825 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 826 } 827 828 #else 829 /* 830 * Called to set the hrtick timer state. 831 * 832 * called with rq->lock held and irqs disabled 833 */ 834 void hrtick_start(struct rq *rq, u64 delay) 835 { 836 /* 837 * Don't schedule slices shorter than 10000ns, that just 838 * doesn't make sense. Rely on vruntime for fairness. 839 */ 840 delay = max_t(u64, delay, 10000LL); 841 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 842 HRTIMER_MODE_REL_PINNED_HARD); 843 } 844 845 #endif /* CONFIG_SMP */ 846 847 static void hrtick_rq_init(struct rq *rq) 848 { 849 #ifdef CONFIG_SMP 850 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 851 #endif 852 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 853 rq->hrtick_timer.function = hrtick; 854 } 855 #else /* CONFIG_SCHED_HRTICK */ 856 static inline void hrtick_clear(struct rq *rq) 857 { 858 } 859 860 static inline void hrtick_rq_init(struct rq *rq) 861 { 862 } 863 #endif /* CONFIG_SCHED_HRTICK */ 864 865 /* 866 * cmpxchg based fetch_or, macro so it works for different integer types 867 */ 868 #define fetch_or(ptr, mask) \ 869 ({ \ 870 typeof(ptr) _ptr = (ptr); \ 871 typeof(mask) _mask = (mask); \ 872 typeof(*_ptr) _val = *_ptr; \ 873 \ 874 do { \ 875 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 876 _val; \ 877 }) 878 879 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 880 /* 881 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 882 * this avoids any races wrt polling state changes and thereby avoids 883 * spurious IPIs. 884 */ 885 static inline bool set_nr_and_not_polling(struct task_struct *p) 886 { 887 struct thread_info *ti = task_thread_info(p); 888 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 889 } 890 891 /* 892 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 893 * 894 * If this returns true, then the idle task promises to call 895 * sched_ttwu_pending() and reschedule soon. 896 */ 897 static bool set_nr_if_polling(struct task_struct *p) 898 { 899 struct thread_info *ti = task_thread_info(p); 900 typeof(ti->flags) val = READ_ONCE(ti->flags); 901 902 for (;;) { 903 if (!(val & _TIF_POLLING_NRFLAG)) 904 return false; 905 if (val & _TIF_NEED_RESCHED) 906 return true; 907 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 908 break; 909 } 910 return true; 911 } 912 913 #else 914 static inline bool set_nr_and_not_polling(struct task_struct *p) 915 { 916 set_tsk_need_resched(p); 917 return true; 918 } 919 920 #ifdef CONFIG_SMP 921 static inline bool set_nr_if_polling(struct task_struct *p) 922 { 923 return false; 924 } 925 #endif 926 #endif 927 928 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 929 { 930 struct wake_q_node *node = &task->wake_q; 931 932 /* 933 * Atomically grab the task, if ->wake_q is !nil already it means 934 * it's already queued (either by us or someone else) and will get the 935 * wakeup due to that. 936 * 937 * In order to ensure that a pending wakeup will observe our pending 938 * state, even in the failed case, an explicit smp_mb() must be used. 939 */ 940 smp_mb__before_atomic(); 941 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 942 return false; 943 944 /* 945 * The head is context local, there can be no concurrency. 946 */ 947 *head->lastp = node; 948 head->lastp = &node->next; 949 return true; 950 } 951 952 /** 953 * wake_q_add() - queue a wakeup for 'later' waking. 954 * @head: the wake_q_head to add @task to 955 * @task: the task to queue for 'later' wakeup 956 * 957 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 958 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 959 * instantly. 960 * 961 * This function must be used as-if it were wake_up_process(); IOW the task 962 * must be ready to be woken at this location. 963 */ 964 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 965 { 966 if (__wake_q_add(head, task)) 967 get_task_struct(task); 968 } 969 970 /** 971 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 972 * @head: the wake_q_head to add @task to 973 * @task: the task to queue for 'later' wakeup 974 * 975 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 976 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 977 * instantly. 978 * 979 * This function must be used as-if it were wake_up_process(); IOW the task 980 * must be ready to be woken at this location. 981 * 982 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 983 * that already hold reference to @task can call the 'safe' version and trust 984 * wake_q to do the right thing depending whether or not the @task is already 985 * queued for wakeup. 986 */ 987 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 988 { 989 if (!__wake_q_add(head, task)) 990 put_task_struct(task); 991 } 992 993 void wake_up_q(struct wake_q_head *head) 994 { 995 struct wake_q_node *node = head->first; 996 997 while (node != WAKE_Q_TAIL) { 998 struct task_struct *task; 999 1000 task = container_of(node, struct task_struct, wake_q); 1001 /* Task can safely be re-inserted now: */ 1002 node = node->next; 1003 task->wake_q.next = NULL; 1004 1005 /* 1006 * wake_up_process() executes a full barrier, which pairs with 1007 * the queueing in wake_q_add() so as not to miss wakeups. 1008 */ 1009 wake_up_process(task); 1010 put_task_struct(task); 1011 } 1012 } 1013 1014 /* 1015 * resched_curr - mark rq's current task 'to be rescheduled now'. 1016 * 1017 * On UP this means the setting of the need_resched flag, on SMP it 1018 * might also involve a cross-CPU call to trigger the scheduler on 1019 * the target CPU. 1020 */ 1021 void resched_curr(struct rq *rq) 1022 { 1023 struct task_struct *curr = rq->curr; 1024 int cpu; 1025 1026 lockdep_assert_rq_held(rq); 1027 1028 if (test_tsk_need_resched(curr)) 1029 return; 1030 1031 cpu = cpu_of(rq); 1032 1033 if (cpu == smp_processor_id()) { 1034 set_tsk_need_resched(curr); 1035 set_preempt_need_resched(); 1036 return; 1037 } 1038 1039 if (set_nr_and_not_polling(curr)) 1040 smp_send_reschedule(cpu); 1041 else 1042 trace_sched_wake_idle_without_ipi(cpu); 1043 } 1044 1045 void resched_cpu(int cpu) 1046 { 1047 struct rq *rq = cpu_rq(cpu); 1048 unsigned long flags; 1049 1050 raw_spin_rq_lock_irqsave(rq, flags); 1051 if (cpu_online(cpu) || cpu == smp_processor_id()) 1052 resched_curr(rq); 1053 raw_spin_rq_unlock_irqrestore(rq, flags); 1054 } 1055 1056 #ifdef CONFIG_SMP 1057 #ifdef CONFIG_NO_HZ_COMMON 1058 /* 1059 * In the semi idle case, use the nearest busy CPU for migrating timers 1060 * from an idle CPU. This is good for power-savings. 1061 * 1062 * We don't do similar optimization for completely idle system, as 1063 * selecting an idle CPU will add more delays to the timers than intended 1064 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1065 */ 1066 int get_nohz_timer_target(void) 1067 { 1068 int i, cpu = smp_processor_id(), default_cpu = -1; 1069 struct sched_domain *sd; 1070 const struct cpumask *hk_mask; 1071 1072 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1073 if (!idle_cpu(cpu)) 1074 return cpu; 1075 default_cpu = cpu; 1076 } 1077 1078 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1079 1080 rcu_read_lock(); 1081 for_each_domain(cpu, sd) { 1082 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1083 if (cpu == i) 1084 continue; 1085 1086 if (!idle_cpu(i)) { 1087 cpu = i; 1088 goto unlock; 1089 } 1090 } 1091 } 1092 1093 if (default_cpu == -1) 1094 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1095 cpu = default_cpu; 1096 unlock: 1097 rcu_read_unlock(); 1098 return cpu; 1099 } 1100 1101 /* 1102 * When add_timer_on() enqueues a timer into the timer wheel of an 1103 * idle CPU then this timer might expire before the next timer event 1104 * which is scheduled to wake up that CPU. In case of a completely 1105 * idle system the next event might even be infinite time into the 1106 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1107 * leaves the inner idle loop so the newly added timer is taken into 1108 * account when the CPU goes back to idle and evaluates the timer 1109 * wheel for the next timer event. 1110 */ 1111 static void wake_up_idle_cpu(int cpu) 1112 { 1113 struct rq *rq = cpu_rq(cpu); 1114 1115 if (cpu == smp_processor_id()) 1116 return; 1117 1118 if (set_nr_and_not_polling(rq->idle)) 1119 smp_send_reschedule(cpu); 1120 else 1121 trace_sched_wake_idle_without_ipi(cpu); 1122 } 1123 1124 static bool wake_up_full_nohz_cpu(int cpu) 1125 { 1126 /* 1127 * We just need the target to call irq_exit() and re-evaluate 1128 * the next tick. The nohz full kick at least implies that. 1129 * If needed we can still optimize that later with an 1130 * empty IRQ. 1131 */ 1132 if (cpu_is_offline(cpu)) 1133 return true; /* Don't try to wake offline CPUs. */ 1134 if (tick_nohz_full_cpu(cpu)) { 1135 if (cpu != smp_processor_id() || 1136 tick_nohz_tick_stopped()) 1137 tick_nohz_full_kick_cpu(cpu); 1138 return true; 1139 } 1140 1141 return false; 1142 } 1143 1144 /* 1145 * Wake up the specified CPU. If the CPU is going offline, it is the 1146 * caller's responsibility to deal with the lost wakeup, for example, 1147 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1148 */ 1149 void wake_up_nohz_cpu(int cpu) 1150 { 1151 if (!wake_up_full_nohz_cpu(cpu)) 1152 wake_up_idle_cpu(cpu); 1153 } 1154 1155 static void nohz_csd_func(void *info) 1156 { 1157 struct rq *rq = info; 1158 int cpu = cpu_of(rq); 1159 unsigned int flags; 1160 1161 /* 1162 * Release the rq::nohz_csd. 1163 */ 1164 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1165 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1166 1167 rq->idle_balance = idle_cpu(cpu); 1168 if (rq->idle_balance && !need_resched()) { 1169 rq->nohz_idle_balance = flags; 1170 raise_softirq_irqoff(SCHED_SOFTIRQ); 1171 } 1172 } 1173 1174 #endif /* CONFIG_NO_HZ_COMMON */ 1175 1176 #ifdef CONFIG_NO_HZ_FULL 1177 bool sched_can_stop_tick(struct rq *rq) 1178 { 1179 int fifo_nr_running; 1180 1181 /* Deadline tasks, even if single, need the tick */ 1182 if (rq->dl.dl_nr_running) 1183 return false; 1184 1185 /* 1186 * If there are more than one RR tasks, we need the tick to affect the 1187 * actual RR behaviour. 1188 */ 1189 if (rq->rt.rr_nr_running) { 1190 if (rq->rt.rr_nr_running == 1) 1191 return true; 1192 else 1193 return false; 1194 } 1195 1196 /* 1197 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1198 * forced preemption between FIFO tasks. 1199 */ 1200 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1201 if (fifo_nr_running) 1202 return true; 1203 1204 /* 1205 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1206 * if there's more than one we need the tick for involuntary 1207 * preemption. 1208 */ 1209 if (rq->nr_running > 1) 1210 return false; 1211 1212 return true; 1213 } 1214 #endif /* CONFIG_NO_HZ_FULL */ 1215 #endif /* CONFIG_SMP */ 1216 1217 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1218 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1219 /* 1220 * Iterate task_group tree rooted at *from, calling @down when first entering a 1221 * node and @up when leaving it for the final time. 1222 * 1223 * Caller must hold rcu_lock or sufficient equivalent. 1224 */ 1225 int walk_tg_tree_from(struct task_group *from, 1226 tg_visitor down, tg_visitor up, void *data) 1227 { 1228 struct task_group *parent, *child; 1229 int ret; 1230 1231 parent = from; 1232 1233 down: 1234 ret = (*down)(parent, data); 1235 if (ret) 1236 goto out; 1237 list_for_each_entry_rcu(child, &parent->children, siblings) { 1238 parent = child; 1239 goto down; 1240 1241 up: 1242 continue; 1243 } 1244 ret = (*up)(parent, data); 1245 if (ret || parent == from) 1246 goto out; 1247 1248 child = parent; 1249 parent = parent->parent; 1250 if (parent) 1251 goto up; 1252 out: 1253 return ret; 1254 } 1255 1256 int tg_nop(struct task_group *tg, void *data) 1257 { 1258 return 0; 1259 } 1260 #endif 1261 1262 static void set_load_weight(struct task_struct *p, bool update_load) 1263 { 1264 int prio = p->static_prio - MAX_RT_PRIO; 1265 struct load_weight *load = &p->se.load; 1266 1267 /* 1268 * SCHED_IDLE tasks get minimal weight: 1269 */ 1270 if (task_has_idle_policy(p)) { 1271 load->weight = scale_load(WEIGHT_IDLEPRIO); 1272 load->inv_weight = WMULT_IDLEPRIO; 1273 return; 1274 } 1275 1276 /* 1277 * SCHED_OTHER tasks have to update their load when changing their 1278 * weight 1279 */ 1280 if (update_load && p->sched_class == &fair_sched_class) { 1281 reweight_task(p, prio); 1282 } else { 1283 load->weight = scale_load(sched_prio_to_weight[prio]); 1284 load->inv_weight = sched_prio_to_wmult[prio]; 1285 } 1286 } 1287 1288 #ifdef CONFIG_UCLAMP_TASK 1289 /* 1290 * Serializes updates of utilization clamp values 1291 * 1292 * The (slow-path) user-space triggers utilization clamp value updates which 1293 * can require updates on (fast-path) scheduler's data structures used to 1294 * support enqueue/dequeue operations. 1295 * While the per-CPU rq lock protects fast-path update operations, user-space 1296 * requests are serialized using a mutex to reduce the risk of conflicting 1297 * updates or API abuses. 1298 */ 1299 static DEFINE_MUTEX(uclamp_mutex); 1300 1301 /* Max allowed minimum utilization */ 1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1303 1304 /* Max allowed maximum utilization */ 1305 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1306 1307 /* 1308 * By default RT tasks run at the maximum performance point/capacity of the 1309 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1310 * SCHED_CAPACITY_SCALE. 1311 * 1312 * This knob allows admins to change the default behavior when uclamp is being 1313 * used. In battery powered devices, particularly, running at the maximum 1314 * capacity and frequency will increase energy consumption and shorten the 1315 * battery life. 1316 * 1317 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1318 * 1319 * This knob will not override the system default sched_util_clamp_min defined 1320 * above. 1321 */ 1322 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1323 1324 /* All clamps are required to be less or equal than these values */ 1325 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1326 1327 /* 1328 * This static key is used to reduce the uclamp overhead in the fast path. It 1329 * primarily disables the call to uclamp_rq_{inc, dec}() in 1330 * enqueue/dequeue_task(). 1331 * 1332 * This allows users to continue to enable uclamp in their kernel config with 1333 * minimum uclamp overhead in the fast path. 1334 * 1335 * As soon as userspace modifies any of the uclamp knobs, the static key is 1336 * enabled, since we have an actual users that make use of uclamp 1337 * functionality. 1338 * 1339 * The knobs that would enable this static key are: 1340 * 1341 * * A task modifying its uclamp value with sched_setattr(). 1342 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1343 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1344 */ 1345 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1346 1347 /* Integer rounded range for each bucket */ 1348 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1349 1350 #define for_each_clamp_id(clamp_id) \ 1351 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1352 1353 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1354 { 1355 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1356 } 1357 1358 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1359 { 1360 if (clamp_id == UCLAMP_MIN) 1361 return 0; 1362 return SCHED_CAPACITY_SCALE; 1363 } 1364 1365 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1366 unsigned int value, bool user_defined) 1367 { 1368 uc_se->value = value; 1369 uc_se->bucket_id = uclamp_bucket_id(value); 1370 uc_se->user_defined = user_defined; 1371 } 1372 1373 static inline unsigned int 1374 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1375 unsigned int clamp_value) 1376 { 1377 /* 1378 * Avoid blocked utilization pushing up the frequency when we go 1379 * idle (which drops the max-clamp) by retaining the last known 1380 * max-clamp. 1381 */ 1382 if (clamp_id == UCLAMP_MAX) { 1383 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1384 return clamp_value; 1385 } 1386 1387 return uclamp_none(UCLAMP_MIN); 1388 } 1389 1390 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1391 unsigned int clamp_value) 1392 { 1393 /* Reset max-clamp retention only on idle exit */ 1394 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1395 return; 1396 1397 uclamp_rq_set(rq, clamp_id, clamp_value); 1398 } 1399 1400 static inline 1401 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1402 unsigned int clamp_value) 1403 { 1404 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1405 int bucket_id = UCLAMP_BUCKETS - 1; 1406 1407 /* 1408 * Since both min and max clamps are max aggregated, find the 1409 * top most bucket with tasks in. 1410 */ 1411 for ( ; bucket_id >= 0; bucket_id--) { 1412 if (!bucket[bucket_id].tasks) 1413 continue; 1414 return bucket[bucket_id].value; 1415 } 1416 1417 /* No tasks -- default clamp values */ 1418 return uclamp_idle_value(rq, clamp_id, clamp_value); 1419 } 1420 1421 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1422 { 1423 unsigned int default_util_min; 1424 struct uclamp_se *uc_se; 1425 1426 lockdep_assert_held(&p->pi_lock); 1427 1428 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1429 1430 /* Only sync if user didn't override the default */ 1431 if (uc_se->user_defined) 1432 return; 1433 1434 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1435 uclamp_se_set(uc_se, default_util_min, false); 1436 } 1437 1438 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1439 { 1440 struct rq_flags rf; 1441 struct rq *rq; 1442 1443 if (!rt_task(p)) 1444 return; 1445 1446 /* Protect updates to p->uclamp_* */ 1447 rq = task_rq_lock(p, &rf); 1448 __uclamp_update_util_min_rt_default(p); 1449 task_rq_unlock(rq, p, &rf); 1450 } 1451 1452 static inline struct uclamp_se 1453 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1454 { 1455 /* Copy by value as we could modify it */ 1456 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1457 #ifdef CONFIG_UCLAMP_TASK_GROUP 1458 unsigned int tg_min, tg_max, value; 1459 1460 /* 1461 * Tasks in autogroups or root task group will be 1462 * restricted by system defaults. 1463 */ 1464 if (task_group_is_autogroup(task_group(p))) 1465 return uc_req; 1466 if (task_group(p) == &root_task_group) 1467 return uc_req; 1468 1469 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1470 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1471 value = uc_req.value; 1472 value = clamp(value, tg_min, tg_max); 1473 uclamp_se_set(&uc_req, value, false); 1474 #endif 1475 1476 return uc_req; 1477 } 1478 1479 /* 1480 * The effective clamp bucket index of a task depends on, by increasing 1481 * priority: 1482 * - the task specific clamp value, when explicitly requested from userspace 1483 * - the task group effective clamp value, for tasks not either in the root 1484 * group or in an autogroup 1485 * - the system default clamp value, defined by the sysadmin 1486 */ 1487 static inline struct uclamp_se 1488 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1489 { 1490 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1491 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1492 1493 /* System default restrictions always apply */ 1494 if (unlikely(uc_req.value > uc_max.value)) 1495 return uc_max; 1496 1497 return uc_req; 1498 } 1499 1500 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1501 { 1502 struct uclamp_se uc_eff; 1503 1504 /* Task currently refcounted: use back-annotated (effective) value */ 1505 if (p->uclamp[clamp_id].active) 1506 return (unsigned long)p->uclamp[clamp_id].value; 1507 1508 uc_eff = uclamp_eff_get(p, clamp_id); 1509 1510 return (unsigned long)uc_eff.value; 1511 } 1512 1513 /* 1514 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1515 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1516 * updates the rq's clamp value if required. 1517 * 1518 * Tasks can have a task-specific value requested from user-space, track 1519 * within each bucket the maximum value for tasks refcounted in it. 1520 * This "local max aggregation" allows to track the exact "requested" value 1521 * for each bucket when all its RUNNABLE tasks require the same clamp. 1522 */ 1523 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1524 enum uclamp_id clamp_id) 1525 { 1526 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1527 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1528 struct uclamp_bucket *bucket; 1529 1530 lockdep_assert_rq_held(rq); 1531 1532 /* Update task effective clamp */ 1533 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1534 1535 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1536 bucket->tasks++; 1537 uc_se->active = true; 1538 1539 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1540 1541 /* 1542 * Local max aggregation: rq buckets always track the max 1543 * "requested" clamp value of its RUNNABLE tasks. 1544 */ 1545 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1546 bucket->value = uc_se->value; 1547 1548 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1549 uclamp_rq_set(rq, clamp_id, uc_se->value); 1550 } 1551 1552 /* 1553 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1554 * is released. If this is the last task reference counting the rq's max 1555 * active clamp value, then the rq's clamp value is updated. 1556 * 1557 * Both refcounted tasks and rq's cached clamp values are expected to be 1558 * always valid. If it's detected they are not, as defensive programming, 1559 * enforce the expected state and warn. 1560 */ 1561 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1562 enum uclamp_id clamp_id) 1563 { 1564 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1565 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1566 struct uclamp_bucket *bucket; 1567 unsigned int bkt_clamp; 1568 unsigned int rq_clamp; 1569 1570 lockdep_assert_rq_held(rq); 1571 1572 /* 1573 * If sched_uclamp_used was enabled after task @p was enqueued, 1574 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1575 * 1576 * In this case the uc_se->active flag should be false since no uclamp 1577 * accounting was performed at enqueue time and we can just return 1578 * here. 1579 * 1580 * Need to be careful of the following enqueue/dequeue ordering 1581 * problem too 1582 * 1583 * enqueue(taskA) 1584 * // sched_uclamp_used gets enabled 1585 * enqueue(taskB) 1586 * dequeue(taskA) 1587 * // Must not decrement bucket->tasks here 1588 * dequeue(taskB) 1589 * 1590 * where we could end up with stale data in uc_se and 1591 * bucket[uc_se->bucket_id]. 1592 * 1593 * The following check here eliminates the possibility of such race. 1594 */ 1595 if (unlikely(!uc_se->active)) 1596 return; 1597 1598 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1599 1600 SCHED_WARN_ON(!bucket->tasks); 1601 if (likely(bucket->tasks)) 1602 bucket->tasks--; 1603 1604 uc_se->active = false; 1605 1606 /* 1607 * Keep "local max aggregation" simple and accept to (possibly) 1608 * overboost some RUNNABLE tasks in the same bucket. 1609 * The rq clamp bucket value is reset to its base value whenever 1610 * there are no more RUNNABLE tasks refcounting it. 1611 */ 1612 if (likely(bucket->tasks)) 1613 return; 1614 1615 rq_clamp = uclamp_rq_get(rq, clamp_id); 1616 /* 1617 * Defensive programming: this should never happen. If it happens, 1618 * e.g. due to future modification, warn and fixup the expected value. 1619 */ 1620 SCHED_WARN_ON(bucket->value > rq_clamp); 1621 if (bucket->value >= rq_clamp) { 1622 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1623 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1624 } 1625 } 1626 1627 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1628 { 1629 enum uclamp_id clamp_id; 1630 1631 /* 1632 * Avoid any overhead until uclamp is actually used by the userspace. 1633 * 1634 * The condition is constructed such that a NOP is generated when 1635 * sched_uclamp_used is disabled. 1636 */ 1637 if (!static_branch_unlikely(&sched_uclamp_used)) 1638 return; 1639 1640 if (unlikely(!p->sched_class->uclamp_enabled)) 1641 return; 1642 1643 for_each_clamp_id(clamp_id) 1644 uclamp_rq_inc_id(rq, p, clamp_id); 1645 1646 /* Reset clamp idle holding when there is one RUNNABLE task */ 1647 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1648 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1649 } 1650 1651 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1652 { 1653 enum uclamp_id clamp_id; 1654 1655 /* 1656 * Avoid any overhead until uclamp is actually used by the userspace. 1657 * 1658 * The condition is constructed such that a NOP is generated when 1659 * sched_uclamp_used is disabled. 1660 */ 1661 if (!static_branch_unlikely(&sched_uclamp_used)) 1662 return; 1663 1664 if (unlikely(!p->sched_class->uclamp_enabled)) 1665 return; 1666 1667 for_each_clamp_id(clamp_id) 1668 uclamp_rq_dec_id(rq, p, clamp_id); 1669 } 1670 1671 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1672 enum uclamp_id clamp_id) 1673 { 1674 if (!p->uclamp[clamp_id].active) 1675 return; 1676 1677 uclamp_rq_dec_id(rq, p, clamp_id); 1678 uclamp_rq_inc_id(rq, p, clamp_id); 1679 1680 /* 1681 * Make sure to clear the idle flag if we've transiently reached 0 1682 * active tasks on rq. 1683 */ 1684 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1685 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1686 } 1687 1688 static inline void 1689 uclamp_update_active(struct task_struct *p) 1690 { 1691 enum uclamp_id clamp_id; 1692 struct rq_flags rf; 1693 struct rq *rq; 1694 1695 /* 1696 * Lock the task and the rq where the task is (or was) queued. 1697 * 1698 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1699 * price to pay to safely serialize util_{min,max} updates with 1700 * enqueues, dequeues and migration operations. 1701 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1702 */ 1703 rq = task_rq_lock(p, &rf); 1704 1705 /* 1706 * Setting the clamp bucket is serialized by task_rq_lock(). 1707 * If the task is not yet RUNNABLE and its task_struct is not 1708 * affecting a valid clamp bucket, the next time it's enqueued, 1709 * it will already see the updated clamp bucket value. 1710 */ 1711 for_each_clamp_id(clamp_id) 1712 uclamp_rq_reinc_id(rq, p, clamp_id); 1713 1714 task_rq_unlock(rq, p, &rf); 1715 } 1716 1717 #ifdef CONFIG_UCLAMP_TASK_GROUP 1718 static inline void 1719 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1720 { 1721 struct css_task_iter it; 1722 struct task_struct *p; 1723 1724 css_task_iter_start(css, 0, &it); 1725 while ((p = css_task_iter_next(&it))) 1726 uclamp_update_active(p); 1727 css_task_iter_end(&it); 1728 } 1729 1730 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1731 #endif 1732 1733 #ifdef CONFIG_SYSCTL 1734 #ifdef CONFIG_UCLAMP_TASK 1735 #ifdef CONFIG_UCLAMP_TASK_GROUP 1736 static void uclamp_update_root_tg(void) 1737 { 1738 struct task_group *tg = &root_task_group; 1739 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1741 sysctl_sched_uclamp_util_min, false); 1742 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1743 sysctl_sched_uclamp_util_max, false); 1744 1745 rcu_read_lock(); 1746 cpu_util_update_eff(&root_task_group.css); 1747 rcu_read_unlock(); 1748 } 1749 #else 1750 static void uclamp_update_root_tg(void) { } 1751 #endif 1752 1753 static void uclamp_sync_util_min_rt_default(void) 1754 { 1755 struct task_struct *g, *p; 1756 1757 /* 1758 * copy_process() sysctl_uclamp 1759 * uclamp_min_rt = X; 1760 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1761 * // link thread smp_mb__after_spinlock() 1762 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1763 * sched_post_fork() for_each_process_thread() 1764 * __uclamp_sync_rt() __uclamp_sync_rt() 1765 * 1766 * Ensures that either sched_post_fork() will observe the new 1767 * uclamp_min_rt or for_each_process_thread() will observe the new 1768 * task. 1769 */ 1770 read_lock(&tasklist_lock); 1771 smp_mb__after_spinlock(); 1772 read_unlock(&tasklist_lock); 1773 1774 rcu_read_lock(); 1775 for_each_process_thread(g, p) 1776 uclamp_update_util_min_rt_default(p); 1777 rcu_read_unlock(); 1778 } 1779 1780 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1781 void *buffer, size_t *lenp, loff_t *ppos) 1782 { 1783 bool update_root_tg = false; 1784 int old_min, old_max, old_min_rt; 1785 int result; 1786 1787 mutex_lock(&uclamp_mutex); 1788 old_min = sysctl_sched_uclamp_util_min; 1789 old_max = sysctl_sched_uclamp_util_max; 1790 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1791 1792 result = proc_dointvec(table, write, buffer, lenp, ppos); 1793 if (result) 1794 goto undo; 1795 if (!write) 1796 goto done; 1797 1798 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1799 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1800 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1801 1802 result = -EINVAL; 1803 goto undo; 1804 } 1805 1806 if (old_min != sysctl_sched_uclamp_util_min) { 1807 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1808 sysctl_sched_uclamp_util_min, false); 1809 update_root_tg = true; 1810 } 1811 if (old_max != sysctl_sched_uclamp_util_max) { 1812 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1813 sysctl_sched_uclamp_util_max, false); 1814 update_root_tg = true; 1815 } 1816 1817 if (update_root_tg) { 1818 static_branch_enable(&sched_uclamp_used); 1819 uclamp_update_root_tg(); 1820 } 1821 1822 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1823 static_branch_enable(&sched_uclamp_used); 1824 uclamp_sync_util_min_rt_default(); 1825 } 1826 1827 /* 1828 * We update all RUNNABLE tasks only when task groups are in use. 1829 * Otherwise, keep it simple and do just a lazy update at each next 1830 * task enqueue time. 1831 */ 1832 1833 goto done; 1834 1835 undo: 1836 sysctl_sched_uclamp_util_min = old_min; 1837 sysctl_sched_uclamp_util_max = old_max; 1838 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1839 done: 1840 mutex_unlock(&uclamp_mutex); 1841 1842 return result; 1843 } 1844 #endif 1845 #endif 1846 1847 static int uclamp_validate(struct task_struct *p, 1848 const struct sched_attr *attr) 1849 { 1850 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1851 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1852 1853 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1854 util_min = attr->sched_util_min; 1855 1856 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1857 return -EINVAL; 1858 } 1859 1860 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1861 util_max = attr->sched_util_max; 1862 1863 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1864 return -EINVAL; 1865 } 1866 1867 if (util_min != -1 && util_max != -1 && util_min > util_max) 1868 return -EINVAL; 1869 1870 /* 1871 * We have valid uclamp attributes; make sure uclamp is enabled. 1872 * 1873 * We need to do that here, because enabling static branches is a 1874 * blocking operation which obviously cannot be done while holding 1875 * scheduler locks. 1876 */ 1877 static_branch_enable(&sched_uclamp_used); 1878 1879 return 0; 1880 } 1881 1882 static bool uclamp_reset(const struct sched_attr *attr, 1883 enum uclamp_id clamp_id, 1884 struct uclamp_se *uc_se) 1885 { 1886 /* Reset on sched class change for a non user-defined clamp value. */ 1887 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1888 !uc_se->user_defined) 1889 return true; 1890 1891 /* Reset on sched_util_{min,max} == -1. */ 1892 if (clamp_id == UCLAMP_MIN && 1893 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1894 attr->sched_util_min == -1) { 1895 return true; 1896 } 1897 1898 if (clamp_id == UCLAMP_MAX && 1899 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1900 attr->sched_util_max == -1) { 1901 return true; 1902 } 1903 1904 return false; 1905 } 1906 1907 static void __setscheduler_uclamp(struct task_struct *p, 1908 const struct sched_attr *attr) 1909 { 1910 enum uclamp_id clamp_id; 1911 1912 for_each_clamp_id(clamp_id) { 1913 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1914 unsigned int value; 1915 1916 if (!uclamp_reset(attr, clamp_id, uc_se)) 1917 continue; 1918 1919 /* 1920 * RT by default have a 100% boost value that could be modified 1921 * at runtime. 1922 */ 1923 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1924 value = sysctl_sched_uclamp_util_min_rt_default; 1925 else 1926 value = uclamp_none(clamp_id); 1927 1928 uclamp_se_set(uc_se, value, false); 1929 1930 } 1931 1932 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1933 return; 1934 1935 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1936 attr->sched_util_min != -1) { 1937 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1938 attr->sched_util_min, true); 1939 } 1940 1941 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1942 attr->sched_util_max != -1) { 1943 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1944 attr->sched_util_max, true); 1945 } 1946 } 1947 1948 static void uclamp_fork(struct task_struct *p) 1949 { 1950 enum uclamp_id clamp_id; 1951 1952 /* 1953 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1954 * as the task is still at its early fork stages. 1955 */ 1956 for_each_clamp_id(clamp_id) 1957 p->uclamp[clamp_id].active = false; 1958 1959 if (likely(!p->sched_reset_on_fork)) 1960 return; 1961 1962 for_each_clamp_id(clamp_id) { 1963 uclamp_se_set(&p->uclamp_req[clamp_id], 1964 uclamp_none(clamp_id), false); 1965 } 1966 } 1967 1968 static void uclamp_post_fork(struct task_struct *p) 1969 { 1970 uclamp_update_util_min_rt_default(p); 1971 } 1972 1973 static void __init init_uclamp_rq(struct rq *rq) 1974 { 1975 enum uclamp_id clamp_id; 1976 struct uclamp_rq *uc_rq = rq->uclamp; 1977 1978 for_each_clamp_id(clamp_id) { 1979 uc_rq[clamp_id] = (struct uclamp_rq) { 1980 .value = uclamp_none(clamp_id) 1981 }; 1982 } 1983 1984 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1985 } 1986 1987 static void __init init_uclamp(void) 1988 { 1989 struct uclamp_se uc_max = {}; 1990 enum uclamp_id clamp_id; 1991 int cpu; 1992 1993 for_each_possible_cpu(cpu) 1994 init_uclamp_rq(cpu_rq(cpu)); 1995 1996 for_each_clamp_id(clamp_id) { 1997 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1998 uclamp_none(clamp_id), false); 1999 } 2000 2001 /* System defaults allow max clamp values for both indexes */ 2002 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2003 for_each_clamp_id(clamp_id) { 2004 uclamp_default[clamp_id] = uc_max; 2005 #ifdef CONFIG_UCLAMP_TASK_GROUP 2006 root_task_group.uclamp_req[clamp_id] = uc_max; 2007 root_task_group.uclamp[clamp_id] = uc_max; 2008 #endif 2009 } 2010 } 2011 2012 #else /* CONFIG_UCLAMP_TASK */ 2013 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2014 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2015 static inline int uclamp_validate(struct task_struct *p, 2016 const struct sched_attr *attr) 2017 { 2018 return -EOPNOTSUPP; 2019 } 2020 static void __setscheduler_uclamp(struct task_struct *p, 2021 const struct sched_attr *attr) { } 2022 static inline void uclamp_fork(struct task_struct *p) { } 2023 static inline void uclamp_post_fork(struct task_struct *p) { } 2024 static inline void init_uclamp(void) { } 2025 #endif /* CONFIG_UCLAMP_TASK */ 2026 2027 bool sched_task_on_rq(struct task_struct *p) 2028 { 2029 return task_on_rq_queued(p); 2030 } 2031 2032 unsigned long get_wchan(struct task_struct *p) 2033 { 2034 unsigned long ip = 0; 2035 unsigned int state; 2036 2037 if (!p || p == current) 2038 return 0; 2039 2040 /* Only get wchan if task is blocked and we can keep it that way. */ 2041 raw_spin_lock_irq(&p->pi_lock); 2042 state = READ_ONCE(p->__state); 2043 smp_rmb(); /* see try_to_wake_up() */ 2044 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2045 ip = __get_wchan(p); 2046 raw_spin_unlock_irq(&p->pi_lock); 2047 2048 return ip; 2049 } 2050 2051 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2052 { 2053 if (!(flags & ENQUEUE_NOCLOCK)) 2054 update_rq_clock(rq); 2055 2056 if (!(flags & ENQUEUE_RESTORE)) { 2057 sched_info_enqueue(rq, p); 2058 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2059 } 2060 2061 uclamp_rq_inc(rq, p); 2062 p->sched_class->enqueue_task(rq, p, flags); 2063 2064 if (sched_core_enabled(rq)) 2065 sched_core_enqueue(rq, p); 2066 } 2067 2068 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2069 { 2070 if (sched_core_enabled(rq)) 2071 sched_core_dequeue(rq, p, flags); 2072 2073 if (!(flags & DEQUEUE_NOCLOCK)) 2074 update_rq_clock(rq); 2075 2076 if (!(flags & DEQUEUE_SAVE)) { 2077 sched_info_dequeue(rq, p); 2078 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2079 } 2080 2081 uclamp_rq_dec(rq, p); 2082 p->sched_class->dequeue_task(rq, p, flags); 2083 } 2084 2085 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2086 { 2087 enqueue_task(rq, p, flags); 2088 2089 p->on_rq = TASK_ON_RQ_QUEUED; 2090 } 2091 2092 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2093 { 2094 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2095 2096 dequeue_task(rq, p, flags); 2097 } 2098 2099 static inline int __normal_prio(int policy, int rt_prio, int nice) 2100 { 2101 int prio; 2102 2103 if (dl_policy(policy)) 2104 prio = MAX_DL_PRIO - 1; 2105 else if (rt_policy(policy)) 2106 prio = MAX_RT_PRIO - 1 - rt_prio; 2107 else 2108 prio = NICE_TO_PRIO(nice); 2109 2110 return prio; 2111 } 2112 2113 /* 2114 * Calculate the expected normal priority: i.e. priority 2115 * without taking RT-inheritance into account. Might be 2116 * boosted by interactivity modifiers. Changes upon fork, 2117 * setprio syscalls, and whenever the interactivity 2118 * estimator recalculates. 2119 */ 2120 static inline int normal_prio(struct task_struct *p) 2121 { 2122 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2123 } 2124 2125 /* 2126 * Calculate the current priority, i.e. the priority 2127 * taken into account by the scheduler. This value might 2128 * be boosted by RT tasks, or might be boosted by 2129 * interactivity modifiers. Will be RT if the task got 2130 * RT-boosted. If not then it returns p->normal_prio. 2131 */ 2132 static int effective_prio(struct task_struct *p) 2133 { 2134 p->normal_prio = normal_prio(p); 2135 /* 2136 * If we are RT tasks or we were boosted to RT priority, 2137 * keep the priority unchanged. Otherwise, update priority 2138 * to the normal priority: 2139 */ 2140 if (!rt_prio(p->prio)) 2141 return p->normal_prio; 2142 return p->prio; 2143 } 2144 2145 /** 2146 * task_curr - is this task currently executing on a CPU? 2147 * @p: the task in question. 2148 * 2149 * Return: 1 if the task is currently executing. 0 otherwise. 2150 */ 2151 inline int task_curr(const struct task_struct *p) 2152 { 2153 return cpu_curr(task_cpu(p)) == p; 2154 } 2155 2156 /* 2157 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2158 * use the balance_callback list if you want balancing. 2159 * 2160 * this means any call to check_class_changed() must be followed by a call to 2161 * balance_callback(). 2162 */ 2163 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2164 const struct sched_class *prev_class, 2165 int oldprio) 2166 { 2167 if (prev_class != p->sched_class) { 2168 if (prev_class->switched_from) 2169 prev_class->switched_from(rq, p); 2170 2171 p->sched_class->switched_to(rq, p); 2172 } else if (oldprio != p->prio || dl_task(p)) 2173 p->sched_class->prio_changed(rq, p, oldprio); 2174 } 2175 2176 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2177 { 2178 if (p->sched_class == rq->curr->sched_class) 2179 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2180 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2181 resched_curr(rq); 2182 2183 /* 2184 * A queue event has occurred, and we're going to schedule. In 2185 * this case, we can save a useless back to back clock update. 2186 */ 2187 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2188 rq_clock_skip_update(rq); 2189 } 2190 2191 #ifdef CONFIG_SMP 2192 2193 static void 2194 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2195 2196 static int __set_cpus_allowed_ptr(struct task_struct *p, 2197 struct affinity_context *ctx); 2198 2199 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2200 { 2201 struct affinity_context ac = { 2202 .new_mask = cpumask_of(rq->cpu), 2203 .flags = SCA_MIGRATE_DISABLE, 2204 }; 2205 2206 if (likely(!p->migration_disabled)) 2207 return; 2208 2209 if (p->cpus_ptr != &p->cpus_mask) 2210 return; 2211 2212 /* 2213 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2214 */ 2215 __do_set_cpus_allowed(p, &ac); 2216 } 2217 2218 void migrate_disable(void) 2219 { 2220 struct task_struct *p = current; 2221 2222 if (p->migration_disabled) { 2223 p->migration_disabled++; 2224 return; 2225 } 2226 2227 preempt_disable(); 2228 this_rq()->nr_pinned++; 2229 p->migration_disabled = 1; 2230 preempt_enable(); 2231 } 2232 EXPORT_SYMBOL_GPL(migrate_disable); 2233 2234 void migrate_enable(void) 2235 { 2236 struct task_struct *p = current; 2237 struct affinity_context ac = { 2238 .new_mask = &p->cpus_mask, 2239 .flags = SCA_MIGRATE_ENABLE, 2240 }; 2241 2242 if (p->migration_disabled > 1) { 2243 p->migration_disabled--; 2244 return; 2245 } 2246 2247 if (WARN_ON_ONCE(!p->migration_disabled)) 2248 return; 2249 2250 /* 2251 * Ensure stop_task runs either before or after this, and that 2252 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2253 */ 2254 preempt_disable(); 2255 if (p->cpus_ptr != &p->cpus_mask) 2256 __set_cpus_allowed_ptr(p, &ac); 2257 /* 2258 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2259 * regular cpus_mask, otherwise things that race (eg. 2260 * select_fallback_rq) get confused. 2261 */ 2262 barrier(); 2263 p->migration_disabled = 0; 2264 this_rq()->nr_pinned--; 2265 preempt_enable(); 2266 } 2267 EXPORT_SYMBOL_GPL(migrate_enable); 2268 2269 static inline bool rq_has_pinned_tasks(struct rq *rq) 2270 { 2271 return rq->nr_pinned; 2272 } 2273 2274 /* 2275 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2276 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2277 */ 2278 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2279 { 2280 /* When not in the task's cpumask, no point in looking further. */ 2281 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2282 return false; 2283 2284 /* migrate_disabled() must be allowed to finish. */ 2285 if (is_migration_disabled(p)) 2286 return cpu_online(cpu); 2287 2288 /* Non kernel threads are not allowed during either online or offline. */ 2289 if (!(p->flags & PF_KTHREAD)) 2290 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2291 2292 /* KTHREAD_IS_PER_CPU is always allowed. */ 2293 if (kthread_is_per_cpu(p)) 2294 return cpu_online(cpu); 2295 2296 /* Regular kernel threads don't get to stay during offline. */ 2297 if (cpu_dying(cpu)) 2298 return false; 2299 2300 /* But are allowed during online. */ 2301 return cpu_online(cpu); 2302 } 2303 2304 /* 2305 * This is how migration works: 2306 * 2307 * 1) we invoke migration_cpu_stop() on the target CPU using 2308 * stop_one_cpu(). 2309 * 2) stopper starts to run (implicitly forcing the migrated thread 2310 * off the CPU) 2311 * 3) it checks whether the migrated task is still in the wrong runqueue. 2312 * 4) if it's in the wrong runqueue then the migration thread removes 2313 * it and puts it into the right queue. 2314 * 5) stopper completes and stop_one_cpu() returns and the migration 2315 * is done. 2316 */ 2317 2318 /* 2319 * move_queued_task - move a queued task to new rq. 2320 * 2321 * Returns (locked) new rq. Old rq's lock is released. 2322 */ 2323 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2324 struct task_struct *p, int new_cpu) 2325 { 2326 lockdep_assert_rq_held(rq); 2327 2328 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2329 set_task_cpu(p, new_cpu); 2330 rq_unlock(rq, rf); 2331 2332 rq = cpu_rq(new_cpu); 2333 2334 rq_lock(rq, rf); 2335 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2336 activate_task(rq, p, 0); 2337 check_preempt_curr(rq, p, 0); 2338 2339 return rq; 2340 } 2341 2342 struct migration_arg { 2343 struct task_struct *task; 2344 int dest_cpu; 2345 struct set_affinity_pending *pending; 2346 }; 2347 2348 /* 2349 * @refs: number of wait_for_completion() 2350 * @stop_pending: is @stop_work in use 2351 */ 2352 struct set_affinity_pending { 2353 refcount_t refs; 2354 unsigned int stop_pending; 2355 struct completion done; 2356 struct cpu_stop_work stop_work; 2357 struct migration_arg arg; 2358 }; 2359 2360 /* 2361 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2362 * this because either it can't run here any more (set_cpus_allowed() 2363 * away from this CPU, or CPU going down), or because we're 2364 * attempting to rebalance this task on exec (sched_exec). 2365 * 2366 * So we race with normal scheduler movements, but that's OK, as long 2367 * as the task is no longer on this CPU. 2368 */ 2369 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2370 struct task_struct *p, int dest_cpu) 2371 { 2372 /* Affinity changed (again). */ 2373 if (!is_cpu_allowed(p, dest_cpu)) 2374 return rq; 2375 2376 update_rq_clock(rq); 2377 rq = move_queued_task(rq, rf, p, dest_cpu); 2378 2379 return rq; 2380 } 2381 2382 /* 2383 * migration_cpu_stop - this will be executed by a highprio stopper thread 2384 * and performs thread migration by bumping thread off CPU then 2385 * 'pushing' onto another runqueue. 2386 */ 2387 static int migration_cpu_stop(void *data) 2388 { 2389 struct migration_arg *arg = data; 2390 struct set_affinity_pending *pending = arg->pending; 2391 struct task_struct *p = arg->task; 2392 struct rq *rq = this_rq(); 2393 bool complete = false; 2394 struct rq_flags rf; 2395 2396 /* 2397 * The original target CPU might have gone down and we might 2398 * be on another CPU but it doesn't matter. 2399 */ 2400 local_irq_save(rf.flags); 2401 /* 2402 * We need to explicitly wake pending tasks before running 2403 * __migrate_task() such that we will not miss enforcing cpus_ptr 2404 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2405 */ 2406 flush_smp_call_function_queue(); 2407 2408 raw_spin_lock(&p->pi_lock); 2409 rq_lock(rq, &rf); 2410 2411 /* 2412 * If we were passed a pending, then ->stop_pending was set, thus 2413 * p->migration_pending must have remained stable. 2414 */ 2415 WARN_ON_ONCE(pending && pending != p->migration_pending); 2416 2417 /* 2418 * If task_rq(p) != rq, it cannot be migrated here, because we're 2419 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2420 * we're holding p->pi_lock. 2421 */ 2422 if (task_rq(p) == rq) { 2423 if (is_migration_disabled(p)) 2424 goto out; 2425 2426 if (pending) { 2427 p->migration_pending = NULL; 2428 complete = true; 2429 2430 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2431 goto out; 2432 } 2433 2434 if (task_on_rq_queued(p)) 2435 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2436 else 2437 p->wake_cpu = arg->dest_cpu; 2438 2439 /* 2440 * XXX __migrate_task() can fail, at which point we might end 2441 * up running on a dodgy CPU, AFAICT this can only happen 2442 * during CPU hotplug, at which point we'll get pushed out 2443 * anyway, so it's probably not a big deal. 2444 */ 2445 2446 } else if (pending) { 2447 /* 2448 * This happens when we get migrated between migrate_enable()'s 2449 * preempt_enable() and scheduling the stopper task. At that 2450 * point we're a regular task again and not current anymore. 2451 * 2452 * A !PREEMPT kernel has a giant hole here, which makes it far 2453 * more likely. 2454 */ 2455 2456 /* 2457 * The task moved before the stopper got to run. We're holding 2458 * ->pi_lock, so the allowed mask is stable - if it got 2459 * somewhere allowed, we're done. 2460 */ 2461 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2462 p->migration_pending = NULL; 2463 complete = true; 2464 goto out; 2465 } 2466 2467 /* 2468 * When migrate_enable() hits a rq mis-match we can't reliably 2469 * determine is_migration_disabled() and so have to chase after 2470 * it. 2471 */ 2472 WARN_ON_ONCE(!pending->stop_pending); 2473 task_rq_unlock(rq, p, &rf); 2474 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2475 &pending->arg, &pending->stop_work); 2476 return 0; 2477 } 2478 out: 2479 if (pending) 2480 pending->stop_pending = false; 2481 task_rq_unlock(rq, p, &rf); 2482 2483 if (complete) 2484 complete_all(&pending->done); 2485 2486 return 0; 2487 } 2488 2489 int push_cpu_stop(void *arg) 2490 { 2491 struct rq *lowest_rq = NULL, *rq = this_rq(); 2492 struct task_struct *p = arg; 2493 2494 raw_spin_lock_irq(&p->pi_lock); 2495 raw_spin_rq_lock(rq); 2496 2497 if (task_rq(p) != rq) 2498 goto out_unlock; 2499 2500 if (is_migration_disabled(p)) { 2501 p->migration_flags |= MDF_PUSH; 2502 goto out_unlock; 2503 } 2504 2505 p->migration_flags &= ~MDF_PUSH; 2506 2507 if (p->sched_class->find_lock_rq) 2508 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2509 2510 if (!lowest_rq) 2511 goto out_unlock; 2512 2513 // XXX validate p is still the highest prio task 2514 if (task_rq(p) == rq) { 2515 deactivate_task(rq, p, 0); 2516 set_task_cpu(p, lowest_rq->cpu); 2517 activate_task(lowest_rq, p, 0); 2518 resched_curr(lowest_rq); 2519 } 2520 2521 double_unlock_balance(rq, lowest_rq); 2522 2523 out_unlock: 2524 rq->push_busy = false; 2525 raw_spin_rq_unlock(rq); 2526 raw_spin_unlock_irq(&p->pi_lock); 2527 2528 put_task_struct(p); 2529 return 0; 2530 } 2531 2532 /* 2533 * sched_class::set_cpus_allowed must do the below, but is not required to 2534 * actually call this function. 2535 */ 2536 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2537 { 2538 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2539 p->cpus_ptr = ctx->new_mask; 2540 return; 2541 } 2542 2543 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2544 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2545 2546 /* 2547 * Swap in a new user_cpus_ptr if SCA_USER flag set 2548 */ 2549 if (ctx->flags & SCA_USER) 2550 swap(p->user_cpus_ptr, ctx->user_mask); 2551 } 2552 2553 static void 2554 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2555 { 2556 struct rq *rq = task_rq(p); 2557 bool queued, running; 2558 2559 /* 2560 * This here violates the locking rules for affinity, since we're only 2561 * supposed to change these variables while holding both rq->lock and 2562 * p->pi_lock. 2563 * 2564 * HOWEVER, it magically works, because ttwu() is the only code that 2565 * accesses these variables under p->pi_lock and only does so after 2566 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2567 * before finish_task(). 2568 * 2569 * XXX do further audits, this smells like something putrid. 2570 */ 2571 if (ctx->flags & SCA_MIGRATE_DISABLE) 2572 SCHED_WARN_ON(!p->on_cpu); 2573 else 2574 lockdep_assert_held(&p->pi_lock); 2575 2576 queued = task_on_rq_queued(p); 2577 running = task_current(rq, p); 2578 2579 if (queued) { 2580 /* 2581 * Because __kthread_bind() calls this on blocked tasks without 2582 * holding rq->lock. 2583 */ 2584 lockdep_assert_rq_held(rq); 2585 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2586 } 2587 if (running) 2588 put_prev_task(rq, p); 2589 2590 p->sched_class->set_cpus_allowed(p, ctx); 2591 2592 if (queued) 2593 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2594 if (running) 2595 set_next_task(rq, p); 2596 } 2597 2598 /* 2599 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2600 * affinity (if any) should be destroyed too. 2601 */ 2602 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2603 { 2604 struct affinity_context ac = { 2605 .new_mask = new_mask, 2606 .user_mask = NULL, 2607 .flags = SCA_USER, /* clear the user requested mask */ 2608 }; 2609 union cpumask_rcuhead { 2610 cpumask_t cpumask; 2611 struct rcu_head rcu; 2612 }; 2613 2614 __do_set_cpus_allowed(p, &ac); 2615 2616 /* 2617 * Because this is called with p->pi_lock held, it is not possible 2618 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2619 * kfree_rcu(). 2620 */ 2621 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2622 } 2623 2624 static cpumask_t *alloc_user_cpus_ptr(int node) 2625 { 2626 /* 2627 * See do_set_cpus_allowed() above for the rcu_head usage. 2628 */ 2629 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2630 2631 return kmalloc_node(size, GFP_KERNEL, node); 2632 } 2633 2634 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2635 int node) 2636 { 2637 cpumask_t *user_mask; 2638 unsigned long flags; 2639 2640 /* 2641 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2642 * may differ by now due to racing. 2643 */ 2644 dst->user_cpus_ptr = NULL; 2645 2646 /* 2647 * This check is racy and losing the race is a valid situation. 2648 * It is not worth the extra overhead of taking the pi_lock on 2649 * every fork/clone. 2650 */ 2651 if (data_race(!src->user_cpus_ptr)) 2652 return 0; 2653 2654 user_mask = alloc_user_cpus_ptr(node); 2655 if (!user_mask) 2656 return -ENOMEM; 2657 2658 /* 2659 * Use pi_lock to protect content of user_cpus_ptr 2660 * 2661 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2662 * do_set_cpus_allowed(). 2663 */ 2664 raw_spin_lock_irqsave(&src->pi_lock, flags); 2665 if (src->user_cpus_ptr) { 2666 swap(dst->user_cpus_ptr, user_mask); 2667 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2668 } 2669 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2670 2671 if (unlikely(user_mask)) 2672 kfree(user_mask); 2673 2674 return 0; 2675 } 2676 2677 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2678 { 2679 struct cpumask *user_mask = NULL; 2680 2681 swap(p->user_cpus_ptr, user_mask); 2682 2683 return user_mask; 2684 } 2685 2686 void release_user_cpus_ptr(struct task_struct *p) 2687 { 2688 kfree(clear_user_cpus_ptr(p)); 2689 } 2690 2691 /* 2692 * This function is wildly self concurrent; here be dragons. 2693 * 2694 * 2695 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2696 * designated task is enqueued on an allowed CPU. If that task is currently 2697 * running, we have to kick it out using the CPU stopper. 2698 * 2699 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2700 * Consider: 2701 * 2702 * Initial conditions: P0->cpus_mask = [0, 1] 2703 * 2704 * P0@CPU0 P1 2705 * 2706 * migrate_disable(); 2707 * <preempted> 2708 * set_cpus_allowed_ptr(P0, [1]); 2709 * 2710 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2711 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2712 * This means we need the following scheme: 2713 * 2714 * P0@CPU0 P1 2715 * 2716 * migrate_disable(); 2717 * <preempted> 2718 * set_cpus_allowed_ptr(P0, [1]); 2719 * <blocks> 2720 * <resumes> 2721 * migrate_enable(); 2722 * __set_cpus_allowed_ptr(); 2723 * <wakes local stopper> 2724 * `--> <woken on migration completion> 2725 * 2726 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2727 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2728 * task p are serialized by p->pi_lock, which we can leverage: the one that 2729 * should come into effect at the end of the Migrate-Disable region is the last 2730 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2731 * but we still need to properly signal those waiting tasks at the appropriate 2732 * moment. 2733 * 2734 * This is implemented using struct set_affinity_pending. The first 2735 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2736 * setup an instance of that struct and install it on the targeted task_struct. 2737 * Any and all further callers will reuse that instance. Those then wait for 2738 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2739 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2740 * 2741 * 2742 * (1) In the cases covered above. There is one more where the completion is 2743 * signaled within affine_move_task() itself: when a subsequent affinity request 2744 * occurs after the stopper bailed out due to the targeted task still being 2745 * Migrate-Disable. Consider: 2746 * 2747 * Initial conditions: P0->cpus_mask = [0, 1] 2748 * 2749 * CPU0 P1 P2 2750 * <P0> 2751 * migrate_disable(); 2752 * <preempted> 2753 * set_cpus_allowed_ptr(P0, [1]); 2754 * <blocks> 2755 * <migration/0> 2756 * migration_cpu_stop() 2757 * is_migration_disabled() 2758 * <bails> 2759 * set_cpus_allowed_ptr(P0, [0, 1]); 2760 * <signal completion> 2761 * <awakes> 2762 * 2763 * Note that the above is safe vs a concurrent migrate_enable(), as any 2764 * pending affinity completion is preceded by an uninstallation of 2765 * p->migration_pending done with p->pi_lock held. 2766 */ 2767 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2768 int dest_cpu, unsigned int flags) 2769 __releases(rq->lock) 2770 __releases(p->pi_lock) 2771 { 2772 struct set_affinity_pending my_pending = { }, *pending = NULL; 2773 bool stop_pending, complete = false; 2774 2775 /* Can the task run on the task's current CPU? If so, we're done */ 2776 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2777 struct task_struct *push_task = NULL; 2778 2779 if ((flags & SCA_MIGRATE_ENABLE) && 2780 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2781 rq->push_busy = true; 2782 push_task = get_task_struct(p); 2783 } 2784 2785 /* 2786 * If there are pending waiters, but no pending stop_work, 2787 * then complete now. 2788 */ 2789 pending = p->migration_pending; 2790 if (pending && !pending->stop_pending) { 2791 p->migration_pending = NULL; 2792 complete = true; 2793 } 2794 2795 task_rq_unlock(rq, p, rf); 2796 2797 if (push_task) { 2798 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2799 p, &rq->push_work); 2800 } 2801 2802 if (complete) 2803 complete_all(&pending->done); 2804 2805 return 0; 2806 } 2807 2808 if (!(flags & SCA_MIGRATE_ENABLE)) { 2809 /* serialized by p->pi_lock */ 2810 if (!p->migration_pending) { 2811 /* Install the request */ 2812 refcount_set(&my_pending.refs, 1); 2813 init_completion(&my_pending.done); 2814 my_pending.arg = (struct migration_arg) { 2815 .task = p, 2816 .dest_cpu = dest_cpu, 2817 .pending = &my_pending, 2818 }; 2819 2820 p->migration_pending = &my_pending; 2821 } else { 2822 pending = p->migration_pending; 2823 refcount_inc(&pending->refs); 2824 /* 2825 * Affinity has changed, but we've already installed a 2826 * pending. migration_cpu_stop() *must* see this, else 2827 * we risk a completion of the pending despite having a 2828 * task on a disallowed CPU. 2829 * 2830 * Serialized by p->pi_lock, so this is safe. 2831 */ 2832 pending->arg.dest_cpu = dest_cpu; 2833 } 2834 } 2835 pending = p->migration_pending; 2836 /* 2837 * - !MIGRATE_ENABLE: 2838 * we'll have installed a pending if there wasn't one already. 2839 * 2840 * - MIGRATE_ENABLE: 2841 * we're here because the current CPU isn't matching anymore, 2842 * the only way that can happen is because of a concurrent 2843 * set_cpus_allowed_ptr() call, which should then still be 2844 * pending completion. 2845 * 2846 * Either way, we really should have a @pending here. 2847 */ 2848 if (WARN_ON_ONCE(!pending)) { 2849 task_rq_unlock(rq, p, rf); 2850 return -EINVAL; 2851 } 2852 2853 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2854 /* 2855 * MIGRATE_ENABLE gets here because 'p == current', but for 2856 * anything else we cannot do is_migration_disabled(), punt 2857 * and have the stopper function handle it all race-free. 2858 */ 2859 stop_pending = pending->stop_pending; 2860 if (!stop_pending) 2861 pending->stop_pending = true; 2862 2863 if (flags & SCA_MIGRATE_ENABLE) 2864 p->migration_flags &= ~MDF_PUSH; 2865 2866 task_rq_unlock(rq, p, rf); 2867 2868 if (!stop_pending) { 2869 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2870 &pending->arg, &pending->stop_work); 2871 } 2872 2873 if (flags & SCA_MIGRATE_ENABLE) 2874 return 0; 2875 } else { 2876 2877 if (!is_migration_disabled(p)) { 2878 if (task_on_rq_queued(p)) 2879 rq = move_queued_task(rq, rf, p, dest_cpu); 2880 2881 if (!pending->stop_pending) { 2882 p->migration_pending = NULL; 2883 complete = true; 2884 } 2885 } 2886 task_rq_unlock(rq, p, rf); 2887 2888 if (complete) 2889 complete_all(&pending->done); 2890 } 2891 2892 wait_for_completion(&pending->done); 2893 2894 if (refcount_dec_and_test(&pending->refs)) 2895 wake_up_var(&pending->refs); /* No UaF, just an address */ 2896 2897 /* 2898 * Block the original owner of &pending until all subsequent callers 2899 * have seen the completion and decremented the refcount 2900 */ 2901 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2902 2903 /* ARGH */ 2904 WARN_ON_ONCE(my_pending.stop_pending); 2905 2906 return 0; 2907 } 2908 2909 /* 2910 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2911 */ 2912 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2913 struct affinity_context *ctx, 2914 struct rq *rq, 2915 struct rq_flags *rf) 2916 __releases(rq->lock) 2917 __releases(p->pi_lock) 2918 { 2919 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2920 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2921 bool kthread = p->flags & PF_KTHREAD; 2922 unsigned int dest_cpu; 2923 int ret = 0; 2924 2925 update_rq_clock(rq); 2926 2927 if (kthread || is_migration_disabled(p)) { 2928 /* 2929 * Kernel threads are allowed on online && !active CPUs, 2930 * however, during cpu-hot-unplug, even these might get pushed 2931 * away if not KTHREAD_IS_PER_CPU. 2932 * 2933 * Specifically, migration_disabled() tasks must not fail the 2934 * cpumask_any_and_distribute() pick below, esp. so on 2935 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2936 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2937 */ 2938 cpu_valid_mask = cpu_online_mask; 2939 } 2940 2941 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2942 ret = -EINVAL; 2943 goto out; 2944 } 2945 2946 /* 2947 * Must re-check here, to close a race against __kthread_bind(), 2948 * sched_setaffinity() is not guaranteed to observe the flag. 2949 */ 2950 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2951 ret = -EINVAL; 2952 goto out; 2953 } 2954 2955 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2956 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 2957 if (ctx->flags & SCA_USER) 2958 swap(p->user_cpus_ptr, ctx->user_mask); 2959 goto out; 2960 } 2961 2962 if (WARN_ON_ONCE(p == current && 2963 is_migration_disabled(p) && 2964 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2965 ret = -EBUSY; 2966 goto out; 2967 } 2968 } 2969 2970 /* 2971 * Picking a ~random cpu helps in cases where we are changing affinity 2972 * for groups of tasks (ie. cpuset), so that load balancing is not 2973 * immediately required to distribute the tasks within their new mask. 2974 */ 2975 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2976 if (dest_cpu >= nr_cpu_ids) { 2977 ret = -EINVAL; 2978 goto out; 2979 } 2980 2981 __do_set_cpus_allowed(p, ctx); 2982 2983 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2984 2985 out: 2986 task_rq_unlock(rq, p, rf); 2987 2988 return ret; 2989 } 2990 2991 /* 2992 * Change a given task's CPU affinity. Migrate the thread to a 2993 * proper CPU and schedule it away if the CPU it's executing on 2994 * is removed from the allowed bitmask. 2995 * 2996 * NOTE: the caller must have a valid reference to the task, the 2997 * task must not exit() & deallocate itself prematurely. The 2998 * call is not atomic; no spinlocks may be held. 2999 */ 3000 static int __set_cpus_allowed_ptr(struct task_struct *p, 3001 struct affinity_context *ctx) 3002 { 3003 struct rq_flags rf; 3004 struct rq *rq; 3005 3006 rq = task_rq_lock(p, &rf); 3007 /* 3008 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3009 * flags are set. 3010 */ 3011 if (p->user_cpus_ptr && 3012 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3013 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3014 ctx->new_mask = rq->scratch_mask; 3015 3016 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3017 } 3018 3019 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3020 { 3021 struct affinity_context ac = { 3022 .new_mask = new_mask, 3023 .flags = 0, 3024 }; 3025 3026 return __set_cpus_allowed_ptr(p, &ac); 3027 } 3028 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3029 3030 /* 3031 * Change a given task's CPU affinity to the intersection of its current 3032 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3033 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3034 * affinity or use cpu_online_mask instead. 3035 * 3036 * If the resulting mask is empty, leave the affinity unchanged and return 3037 * -EINVAL. 3038 */ 3039 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3040 struct cpumask *new_mask, 3041 const struct cpumask *subset_mask) 3042 { 3043 struct affinity_context ac = { 3044 .new_mask = new_mask, 3045 .flags = 0, 3046 }; 3047 struct rq_flags rf; 3048 struct rq *rq; 3049 int err; 3050 3051 rq = task_rq_lock(p, &rf); 3052 3053 /* 3054 * Forcefully restricting the affinity of a deadline task is 3055 * likely to cause problems, so fail and noisily override the 3056 * mask entirely. 3057 */ 3058 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3059 err = -EPERM; 3060 goto err_unlock; 3061 } 3062 3063 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3064 err = -EINVAL; 3065 goto err_unlock; 3066 } 3067 3068 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3069 3070 err_unlock: 3071 task_rq_unlock(rq, p, &rf); 3072 return err; 3073 } 3074 3075 /* 3076 * Restrict the CPU affinity of task @p so that it is a subset of 3077 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3078 * old affinity mask. If the resulting mask is empty, we warn and walk 3079 * up the cpuset hierarchy until we find a suitable mask. 3080 */ 3081 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3082 { 3083 cpumask_var_t new_mask; 3084 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3085 3086 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3087 3088 /* 3089 * __migrate_task() can fail silently in the face of concurrent 3090 * offlining of the chosen destination CPU, so take the hotplug 3091 * lock to ensure that the migration succeeds. 3092 */ 3093 cpus_read_lock(); 3094 if (!cpumask_available(new_mask)) 3095 goto out_set_mask; 3096 3097 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3098 goto out_free_mask; 3099 3100 /* 3101 * We failed to find a valid subset of the affinity mask for the 3102 * task, so override it based on its cpuset hierarchy. 3103 */ 3104 cpuset_cpus_allowed(p, new_mask); 3105 override_mask = new_mask; 3106 3107 out_set_mask: 3108 if (printk_ratelimit()) { 3109 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3110 task_pid_nr(p), p->comm, 3111 cpumask_pr_args(override_mask)); 3112 } 3113 3114 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3115 out_free_mask: 3116 cpus_read_unlock(); 3117 free_cpumask_var(new_mask); 3118 } 3119 3120 static int 3121 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3122 3123 /* 3124 * Restore the affinity of a task @p which was previously restricted by a 3125 * call to force_compatible_cpus_allowed_ptr(). 3126 * 3127 * It is the caller's responsibility to serialise this with any calls to 3128 * force_compatible_cpus_allowed_ptr(@p). 3129 */ 3130 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3131 { 3132 struct affinity_context ac = { 3133 .new_mask = task_user_cpus(p), 3134 .flags = 0, 3135 }; 3136 int ret; 3137 3138 /* 3139 * Try to restore the old affinity mask with __sched_setaffinity(). 3140 * Cpuset masking will be done there too. 3141 */ 3142 ret = __sched_setaffinity(p, &ac); 3143 WARN_ON_ONCE(ret); 3144 } 3145 3146 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3147 { 3148 #ifdef CONFIG_SCHED_DEBUG 3149 unsigned int state = READ_ONCE(p->__state); 3150 3151 /* 3152 * We should never call set_task_cpu() on a blocked task, 3153 * ttwu() will sort out the placement. 3154 */ 3155 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3156 3157 /* 3158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3159 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3160 * time relying on p->on_rq. 3161 */ 3162 WARN_ON_ONCE(state == TASK_RUNNING && 3163 p->sched_class == &fair_sched_class && 3164 (p->on_rq && !task_on_rq_migrating(p))); 3165 3166 #ifdef CONFIG_LOCKDEP 3167 /* 3168 * The caller should hold either p->pi_lock or rq->lock, when changing 3169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3170 * 3171 * sched_move_task() holds both and thus holding either pins the cgroup, 3172 * see task_group(). 3173 * 3174 * Furthermore, all task_rq users should acquire both locks, see 3175 * task_rq_lock(). 3176 */ 3177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3178 lockdep_is_held(__rq_lockp(task_rq(p))))); 3179 #endif 3180 /* 3181 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3182 */ 3183 WARN_ON_ONCE(!cpu_online(new_cpu)); 3184 3185 WARN_ON_ONCE(is_migration_disabled(p)); 3186 #endif 3187 3188 trace_sched_migrate_task(p, new_cpu); 3189 3190 if (task_cpu(p) != new_cpu) { 3191 if (p->sched_class->migrate_task_rq) 3192 p->sched_class->migrate_task_rq(p, new_cpu); 3193 p->se.nr_migrations++; 3194 rseq_migrate(p); 3195 perf_event_task_migrate(p); 3196 } 3197 3198 __set_task_cpu(p, new_cpu); 3199 } 3200 3201 #ifdef CONFIG_NUMA_BALANCING 3202 static void __migrate_swap_task(struct task_struct *p, int cpu) 3203 { 3204 if (task_on_rq_queued(p)) { 3205 struct rq *src_rq, *dst_rq; 3206 struct rq_flags srf, drf; 3207 3208 src_rq = task_rq(p); 3209 dst_rq = cpu_rq(cpu); 3210 3211 rq_pin_lock(src_rq, &srf); 3212 rq_pin_lock(dst_rq, &drf); 3213 3214 deactivate_task(src_rq, p, 0); 3215 set_task_cpu(p, cpu); 3216 activate_task(dst_rq, p, 0); 3217 check_preempt_curr(dst_rq, p, 0); 3218 3219 rq_unpin_lock(dst_rq, &drf); 3220 rq_unpin_lock(src_rq, &srf); 3221 3222 } else { 3223 /* 3224 * Task isn't running anymore; make it appear like we migrated 3225 * it before it went to sleep. This means on wakeup we make the 3226 * previous CPU our target instead of where it really is. 3227 */ 3228 p->wake_cpu = cpu; 3229 } 3230 } 3231 3232 struct migration_swap_arg { 3233 struct task_struct *src_task, *dst_task; 3234 int src_cpu, dst_cpu; 3235 }; 3236 3237 static int migrate_swap_stop(void *data) 3238 { 3239 struct migration_swap_arg *arg = data; 3240 struct rq *src_rq, *dst_rq; 3241 int ret = -EAGAIN; 3242 3243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3244 return -EAGAIN; 3245 3246 src_rq = cpu_rq(arg->src_cpu); 3247 dst_rq = cpu_rq(arg->dst_cpu); 3248 3249 double_raw_lock(&arg->src_task->pi_lock, 3250 &arg->dst_task->pi_lock); 3251 double_rq_lock(src_rq, dst_rq); 3252 3253 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3254 goto unlock; 3255 3256 if (task_cpu(arg->src_task) != arg->src_cpu) 3257 goto unlock; 3258 3259 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3260 goto unlock; 3261 3262 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3263 goto unlock; 3264 3265 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3266 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3267 3268 ret = 0; 3269 3270 unlock: 3271 double_rq_unlock(src_rq, dst_rq); 3272 raw_spin_unlock(&arg->dst_task->pi_lock); 3273 raw_spin_unlock(&arg->src_task->pi_lock); 3274 3275 return ret; 3276 } 3277 3278 /* 3279 * Cross migrate two tasks 3280 */ 3281 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3282 int target_cpu, int curr_cpu) 3283 { 3284 struct migration_swap_arg arg; 3285 int ret = -EINVAL; 3286 3287 arg = (struct migration_swap_arg){ 3288 .src_task = cur, 3289 .src_cpu = curr_cpu, 3290 .dst_task = p, 3291 .dst_cpu = target_cpu, 3292 }; 3293 3294 if (arg.src_cpu == arg.dst_cpu) 3295 goto out; 3296 3297 /* 3298 * These three tests are all lockless; this is OK since all of them 3299 * will be re-checked with proper locks held further down the line. 3300 */ 3301 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3302 goto out; 3303 3304 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3305 goto out; 3306 3307 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3308 goto out; 3309 3310 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3311 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3312 3313 out: 3314 return ret; 3315 } 3316 #endif /* CONFIG_NUMA_BALANCING */ 3317 3318 /* 3319 * wait_task_inactive - wait for a thread to unschedule. 3320 * 3321 * Wait for the thread to block in any of the states set in @match_state. 3322 * If it changes, i.e. @p might have woken up, then return zero. When we 3323 * succeed in waiting for @p to be off its CPU, we return a positive number 3324 * (its total switch count). If a second call a short while later returns the 3325 * same number, the caller can be sure that @p has remained unscheduled the 3326 * whole time. 3327 * 3328 * The caller must ensure that the task *will* unschedule sometime soon, 3329 * else this function might spin for a *long* time. This function can't 3330 * be called with interrupts off, or it may introduce deadlock with 3331 * smp_call_function() if an IPI is sent by the same process we are 3332 * waiting to become inactive. 3333 */ 3334 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3335 { 3336 int running, queued; 3337 struct rq_flags rf; 3338 unsigned long ncsw; 3339 struct rq *rq; 3340 3341 for (;;) { 3342 /* 3343 * We do the initial early heuristics without holding 3344 * any task-queue locks at all. We'll only try to get 3345 * the runqueue lock when things look like they will 3346 * work out! 3347 */ 3348 rq = task_rq(p); 3349 3350 /* 3351 * If the task is actively running on another CPU 3352 * still, just relax and busy-wait without holding 3353 * any locks. 3354 * 3355 * NOTE! Since we don't hold any locks, it's not 3356 * even sure that "rq" stays as the right runqueue! 3357 * But we don't care, since "task_on_cpu()" will 3358 * return false if the runqueue has changed and p 3359 * is actually now running somewhere else! 3360 */ 3361 while (task_on_cpu(rq, p)) { 3362 if (!(READ_ONCE(p->__state) & match_state)) 3363 return 0; 3364 cpu_relax(); 3365 } 3366 3367 /* 3368 * Ok, time to look more closely! We need the rq 3369 * lock now, to be *sure*. If we're wrong, we'll 3370 * just go back and repeat. 3371 */ 3372 rq = task_rq_lock(p, &rf); 3373 trace_sched_wait_task(p); 3374 running = task_on_cpu(rq, p); 3375 queued = task_on_rq_queued(p); 3376 ncsw = 0; 3377 if (READ_ONCE(p->__state) & match_state) 3378 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3379 task_rq_unlock(rq, p, &rf); 3380 3381 /* 3382 * If it changed from the expected state, bail out now. 3383 */ 3384 if (unlikely(!ncsw)) 3385 break; 3386 3387 /* 3388 * Was it really running after all now that we 3389 * checked with the proper locks actually held? 3390 * 3391 * Oops. Go back and try again.. 3392 */ 3393 if (unlikely(running)) { 3394 cpu_relax(); 3395 continue; 3396 } 3397 3398 /* 3399 * It's not enough that it's not actively running, 3400 * it must be off the runqueue _entirely_, and not 3401 * preempted! 3402 * 3403 * So if it was still runnable (but just not actively 3404 * running right now), it's preempted, and we should 3405 * yield - it could be a while. 3406 */ 3407 if (unlikely(queued)) { 3408 ktime_t to = NSEC_PER_SEC / HZ; 3409 3410 set_current_state(TASK_UNINTERRUPTIBLE); 3411 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3412 continue; 3413 } 3414 3415 /* 3416 * Ahh, all good. It wasn't running, and it wasn't 3417 * runnable, which means that it will never become 3418 * running in the future either. We're all done! 3419 */ 3420 break; 3421 } 3422 3423 return ncsw; 3424 } 3425 3426 /*** 3427 * kick_process - kick a running thread to enter/exit the kernel 3428 * @p: the to-be-kicked thread 3429 * 3430 * Cause a process which is running on another CPU to enter 3431 * kernel-mode, without any delay. (to get signals handled.) 3432 * 3433 * NOTE: this function doesn't have to take the runqueue lock, 3434 * because all it wants to ensure is that the remote task enters 3435 * the kernel. If the IPI races and the task has been migrated 3436 * to another CPU then no harm is done and the purpose has been 3437 * achieved as well. 3438 */ 3439 void kick_process(struct task_struct *p) 3440 { 3441 int cpu; 3442 3443 preempt_disable(); 3444 cpu = task_cpu(p); 3445 if ((cpu != smp_processor_id()) && task_curr(p)) 3446 smp_send_reschedule(cpu); 3447 preempt_enable(); 3448 } 3449 EXPORT_SYMBOL_GPL(kick_process); 3450 3451 /* 3452 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3453 * 3454 * A few notes on cpu_active vs cpu_online: 3455 * 3456 * - cpu_active must be a subset of cpu_online 3457 * 3458 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3459 * see __set_cpus_allowed_ptr(). At this point the newly online 3460 * CPU isn't yet part of the sched domains, and balancing will not 3461 * see it. 3462 * 3463 * - on CPU-down we clear cpu_active() to mask the sched domains and 3464 * avoid the load balancer to place new tasks on the to be removed 3465 * CPU. Existing tasks will remain running there and will be taken 3466 * off. 3467 * 3468 * This means that fallback selection must not select !active CPUs. 3469 * And can assume that any active CPU must be online. Conversely 3470 * select_task_rq() below may allow selection of !active CPUs in order 3471 * to satisfy the above rules. 3472 */ 3473 static int select_fallback_rq(int cpu, struct task_struct *p) 3474 { 3475 int nid = cpu_to_node(cpu); 3476 const struct cpumask *nodemask = NULL; 3477 enum { cpuset, possible, fail } state = cpuset; 3478 int dest_cpu; 3479 3480 /* 3481 * If the node that the CPU is on has been offlined, cpu_to_node() 3482 * will return -1. There is no CPU on the node, and we should 3483 * select the CPU on the other node. 3484 */ 3485 if (nid != -1) { 3486 nodemask = cpumask_of_node(nid); 3487 3488 /* Look for allowed, online CPU in same node. */ 3489 for_each_cpu(dest_cpu, nodemask) { 3490 if (is_cpu_allowed(p, dest_cpu)) 3491 return dest_cpu; 3492 } 3493 } 3494 3495 for (;;) { 3496 /* Any allowed, online CPU? */ 3497 for_each_cpu(dest_cpu, p->cpus_ptr) { 3498 if (!is_cpu_allowed(p, dest_cpu)) 3499 continue; 3500 3501 goto out; 3502 } 3503 3504 /* No more Mr. Nice Guy. */ 3505 switch (state) { 3506 case cpuset: 3507 if (cpuset_cpus_allowed_fallback(p)) { 3508 state = possible; 3509 break; 3510 } 3511 fallthrough; 3512 case possible: 3513 /* 3514 * XXX When called from select_task_rq() we only 3515 * hold p->pi_lock and again violate locking order. 3516 * 3517 * More yuck to audit. 3518 */ 3519 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3520 state = fail; 3521 break; 3522 case fail: 3523 BUG(); 3524 break; 3525 } 3526 } 3527 3528 out: 3529 if (state != cpuset) { 3530 /* 3531 * Don't tell them about moving exiting tasks or 3532 * kernel threads (both mm NULL), since they never 3533 * leave kernel. 3534 */ 3535 if (p->mm && printk_ratelimit()) { 3536 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3537 task_pid_nr(p), p->comm, cpu); 3538 } 3539 } 3540 3541 return dest_cpu; 3542 } 3543 3544 /* 3545 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3546 */ 3547 static inline 3548 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3549 { 3550 lockdep_assert_held(&p->pi_lock); 3551 3552 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3553 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3554 else 3555 cpu = cpumask_any(p->cpus_ptr); 3556 3557 /* 3558 * In order not to call set_task_cpu() on a blocking task we need 3559 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3560 * CPU. 3561 * 3562 * Since this is common to all placement strategies, this lives here. 3563 * 3564 * [ this allows ->select_task() to simply return task_cpu(p) and 3565 * not worry about this generic constraint ] 3566 */ 3567 if (unlikely(!is_cpu_allowed(p, cpu))) 3568 cpu = select_fallback_rq(task_cpu(p), p); 3569 3570 return cpu; 3571 } 3572 3573 void sched_set_stop_task(int cpu, struct task_struct *stop) 3574 { 3575 static struct lock_class_key stop_pi_lock; 3576 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3577 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3578 3579 if (stop) { 3580 /* 3581 * Make it appear like a SCHED_FIFO task, its something 3582 * userspace knows about and won't get confused about. 3583 * 3584 * Also, it will make PI more or less work without too 3585 * much confusion -- but then, stop work should not 3586 * rely on PI working anyway. 3587 */ 3588 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3589 3590 stop->sched_class = &stop_sched_class; 3591 3592 /* 3593 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3594 * adjust the effective priority of a task. As a result, 3595 * rt_mutex_setprio() can trigger (RT) balancing operations, 3596 * which can then trigger wakeups of the stop thread to push 3597 * around the current task. 3598 * 3599 * The stop task itself will never be part of the PI-chain, it 3600 * never blocks, therefore that ->pi_lock recursion is safe. 3601 * Tell lockdep about this by placing the stop->pi_lock in its 3602 * own class. 3603 */ 3604 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3605 } 3606 3607 cpu_rq(cpu)->stop = stop; 3608 3609 if (old_stop) { 3610 /* 3611 * Reset it back to a normal scheduling class so that 3612 * it can die in pieces. 3613 */ 3614 old_stop->sched_class = &rt_sched_class; 3615 } 3616 } 3617 3618 #else /* CONFIG_SMP */ 3619 3620 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3621 struct affinity_context *ctx) 3622 { 3623 return set_cpus_allowed_ptr(p, ctx->new_mask); 3624 } 3625 3626 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3627 3628 static inline bool rq_has_pinned_tasks(struct rq *rq) 3629 { 3630 return false; 3631 } 3632 3633 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3634 { 3635 return NULL; 3636 } 3637 3638 #endif /* !CONFIG_SMP */ 3639 3640 static void 3641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3642 { 3643 struct rq *rq; 3644 3645 if (!schedstat_enabled()) 3646 return; 3647 3648 rq = this_rq(); 3649 3650 #ifdef CONFIG_SMP 3651 if (cpu == rq->cpu) { 3652 __schedstat_inc(rq->ttwu_local); 3653 __schedstat_inc(p->stats.nr_wakeups_local); 3654 } else { 3655 struct sched_domain *sd; 3656 3657 __schedstat_inc(p->stats.nr_wakeups_remote); 3658 rcu_read_lock(); 3659 for_each_domain(rq->cpu, sd) { 3660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3661 __schedstat_inc(sd->ttwu_wake_remote); 3662 break; 3663 } 3664 } 3665 rcu_read_unlock(); 3666 } 3667 3668 if (wake_flags & WF_MIGRATED) 3669 __schedstat_inc(p->stats.nr_wakeups_migrate); 3670 #endif /* CONFIG_SMP */ 3671 3672 __schedstat_inc(rq->ttwu_count); 3673 __schedstat_inc(p->stats.nr_wakeups); 3674 3675 if (wake_flags & WF_SYNC) 3676 __schedstat_inc(p->stats.nr_wakeups_sync); 3677 } 3678 3679 /* 3680 * Mark the task runnable. 3681 */ 3682 static inline void ttwu_do_wakeup(struct task_struct *p) 3683 { 3684 WRITE_ONCE(p->__state, TASK_RUNNING); 3685 trace_sched_wakeup(p); 3686 } 3687 3688 static void 3689 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3690 struct rq_flags *rf) 3691 { 3692 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3693 3694 lockdep_assert_rq_held(rq); 3695 3696 if (p->sched_contributes_to_load) 3697 rq->nr_uninterruptible--; 3698 3699 #ifdef CONFIG_SMP 3700 if (wake_flags & WF_MIGRATED) 3701 en_flags |= ENQUEUE_MIGRATED; 3702 else 3703 #endif 3704 if (p->in_iowait) { 3705 delayacct_blkio_end(p); 3706 atomic_dec(&task_rq(p)->nr_iowait); 3707 } 3708 3709 activate_task(rq, p, en_flags); 3710 check_preempt_curr(rq, p, wake_flags); 3711 3712 ttwu_do_wakeup(p); 3713 3714 #ifdef CONFIG_SMP 3715 if (p->sched_class->task_woken) { 3716 /* 3717 * Our task @p is fully woken up and running; so it's safe to 3718 * drop the rq->lock, hereafter rq is only used for statistics. 3719 */ 3720 rq_unpin_lock(rq, rf); 3721 p->sched_class->task_woken(rq, p); 3722 rq_repin_lock(rq, rf); 3723 } 3724 3725 if (rq->idle_stamp) { 3726 u64 delta = rq_clock(rq) - rq->idle_stamp; 3727 u64 max = 2*rq->max_idle_balance_cost; 3728 3729 update_avg(&rq->avg_idle, delta); 3730 3731 if (rq->avg_idle > max) 3732 rq->avg_idle = max; 3733 3734 rq->wake_stamp = jiffies; 3735 rq->wake_avg_idle = rq->avg_idle / 2; 3736 3737 rq->idle_stamp = 0; 3738 } 3739 #endif 3740 } 3741 3742 /* 3743 * Consider @p being inside a wait loop: 3744 * 3745 * for (;;) { 3746 * set_current_state(TASK_UNINTERRUPTIBLE); 3747 * 3748 * if (CONDITION) 3749 * break; 3750 * 3751 * schedule(); 3752 * } 3753 * __set_current_state(TASK_RUNNING); 3754 * 3755 * between set_current_state() and schedule(). In this case @p is still 3756 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3757 * an atomic manner. 3758 * 3759 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3760 * then schedule() must still happen and p->state can be changed to 3761 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3762 * need to do a full wakeup with enqueue. 3763 * 3764 * Returns: %true when the wakeup is done, 3765 * %false otherwise. 3766 */ 3767 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3768 { 3769 struct rq_flags rf; 3770 struct rq *rq; 3771 int ret = 0; 3772 3773 rq = __task_rq_lock(p, &rf); 3774 if (task_on_rq_queued(p)) { 3775 if (!task_on_cpu(rq, p)) { 3776 /* 3777 * When on_rq && !on_cpu the task is preempted, see if 3778 * it should preempt the task that is current now. 3779 */ 3780 update_rq_clock(rq); 3781 check_preempt_curr(rq, p, wake_flags); 3782 } 3783 ttwu_do_wakeup(p); 3784 ret = 1; 3785 } 3786 __task_rq_unlock(rq, &rf); 3787 3788 return ret; 3789 } 3790 3791 #ifdef CONFIG_SMP 3792 void sched_ttwu_pending(void *arg) 3793 { 3794 struct llist_node *llist = arg; 3795 struct rq *rq = this_rq(); 3796 struct task_struct *p, *t; 3797 struct rq_flags rf; 3798 3799 if (!llist) 3800 return; 3801 3802 rq_lock_irqsave(rq, &rf); 3803 update_rq_clock(rq); 3804 3805 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3806 if (WARN_ON_ONCE(p->on_cpu)) 3807 smp_cond_load_acquire(&p->on_cpu, !VAL); 3808 3809 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3810 set_task_cpu(p, cpu_of(rq)); 3811 3812 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3813 } 3814 3815 /* 3816 * Must be after enqueueing at least once task such that 3817 * idle_cpu() does not observe a false-negative -- if it does, 3818 * it is possible for select_idle_siblings() to stack a number 3819 * of tasks on this CPU during that window. 3820 * 3821 * It is ok to clear ttwu_pending when another task pending. 3822 * We will receive IPI after local irq enabled and then enqueue it. 3823 * Since now nr_running > 0, idle_cpu() will always get correct result. 3824 */ 3825 WRITE_ONCE(rq->ttwu_pending, 0); 3826 rq_unlock_irqrestore(rq, &rf); 3827 } 3828 3829 void send_call_function_single_ipi(int cpu) 3830 { 3831 struct rq *rq = cpu_rq(cpu); 3832 3833 if (!set_nr_if_polling(rq->idle)) 3834 arch_send_call_function_single_ipi(cpu); 3835 else 3836 trace_sched_wake_idle_without_ipi(cpu); 3837 } 3838 3839 /* 3840 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3841 * necessary. The wakee CPU on receipt of the IPI will queue the task 3842 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3843 * of the wakeup instead of the waker. 3844 */ 3845 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3846 { 3847 struct rq *rq = cpu_rq(cpu); 3848 3849 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3850 3851 WRITE_ONCE(rq->ttwu_pending, 1); 3852 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3853 } 3854 3855 void wake_up_if_idle(int cpu) 3856 { 3857 struct rq *rq = cpu_rq(cpu); 3858 struct rq_flags rf; 3859 3860 rcu_read_lock(); 3861 3862 if (!is_idle_task(rcu_dereference(rq->curr))) 3863 goto out; 3864 3865 rq_lock_irqsave(rq, &rf); 3866 if (is_idle_task(rq->curr)) 3867 resched_curr(rq); 3868 /* Else CPU is not idle, do nothing here: */ 3869 rq_unlock_irqrestore(rq, &rf); 3870 3871 out: 3872 rcu_read_unlock(); 3873 } 3874 3875 bool cpus_share_cache(int this_cpu, int that_cpu) 3876 { 3877 if (this_cpu == that_cpu) 3878 return true; 3879 3880 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3881 } 3882 3883 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3884 { 3885 /* 3886 * Do not complicate things with the async wake_list while the CPU is 3887 * in hotplug state. 3888 */ 3889 if (!cpu_active(cpu)) 3890 return false; 3891 3892 /* Ensure the task will still be allowed to run on the CPU. */ 3893 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3894 return false; 3895 3896 /* 3897 * If the CPU does not share cache, then queue the task on the 3898 * remote rqs wakelist to avoid accessing remote data. 3899 */ 3900 if (!cpus_share_cache(smp_processor_id(), cpu)) 3901 return true; 3902 3903 if (cpu == smp_processor_id()) 3904 return false; 3905 3906 /* 3907 * If the wakee cpu is idle, or the task is descheduling and the 3908 * only running task on the CPU, then use the wakelist to offload 3909 * the task activation to the idle (or soon-to-be-idle) CPU as 3910 * the current CPU is likely busy. nr_running is checked to 3911 * avoid unnecessary task stacking. 3912 * 3913 * Note that we can only get here with (wakee) p->on_rq=0, 3914 * p->on_cpu can be whatever, we've done the dequeue, so 3915 * the wakee has been accounted out of ->nr_running. 3916 */ 3917 if (!cpu_rq(cpu)->nr_running) 3918 return true; 3919 3920 return false; 3921 } 3922 3923 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3924 { 3925 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3926 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3927 __ttwu_queue_wakelist(p, cpu, wake_flags); 3928 return true; 3929 } 3930 3931 return false; 3932 } 3933 3934 #else /* !CONFIG_SMP */ 3935 3936 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3937 { 3938 return false; 3939 } 3940 3941 #endif /* CONFIG_SMP */ 3942 3943 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3944 { 3945 struct rq *rq = cpu_rq(cpu); 3946 struct rq_flags rf; 3947 3948 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3949 return; 3950 3951 rq_lock(rq, &rf); 3952 update_rq_clock(rq); 3953 ttwu_do_activate(rq, p, wake_flags, &rf); 3954 rq_unlock(rq, &rf); 3955 } 3956 3957 /* 3958 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3959 * 3960 * The caller holds p::pi_lock if p != current or has preemption 3961 * disabled when p == current. 3962 * 3963 * The rules of PREEMPT_RT saved_state: 3964 * 3965 * The related locking code always holds p::pi_lock when updating 3966 * p::saved_state, which means the code is fully serialized in both cases. 3967 * 3968 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3969 * bits set. This allows to distinguish all wakeup scenarios. 3970 */ 3971 static __always_inline 3972 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3973 { 3974 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3975 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3976 state != TASK_RTLOCK_WAIT); 3977 } 3978 3979 if (READ_ONCE(p->__state) & state) { 3980 *success = 1; 3981 return true; 3982 } 3983 3984 #ifdef CONFIG_PREEMPT_RT 3985 /* 3986 * Saved state preserves the task state across blocking on 3987 * an RT lock. If the state matches, set p::saved_state to 3988 * TASK_RUNNING, but do not wake the task because it waits 3989 * for a lock wakeup. Also indicate success because from 3990 * the regular waker's point of view this has succeeded. 3991 * 3992 * After acquiring the lock the task will restore p::__state 3993 * from p::saved_state which ensures that the regular 3994 * wakeup is not lost. The restore will also set 3995 * p::saved_state to TASK_RUNNING so any further tests will 3996 * not result in false positives vs. @success 3997 */ 3998 if (p->saved_state & state) { 3999 p->saved_state = TASK_RUNNING; 4000 *success = 1; 4001 } 4002 #endif 4003 return false; 4004 } 4005 4006 /* 4007 * Notes on Program-Order guarantees on SMP systems. 4008 * 4009 * MIGRATION 4010 * 4011 * The basic program-order guarantee on SMP systems is that when a task [t] 4012 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4013 * execution on its new CPU [c1]. 4014 * 4015 * For migration (of runnable tasks) this is provided by the following means: 4016 * 4017 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4018 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4019 * rq(c1)->lock (if not at the same time, then in that order). 4020 * C) LOCK of the rq(c1)->lock scheduling in task 4021 * 4022 * Release/acquire chaining guarantees that B happens after A and C after B. 4023 * Note: the CPU doing B need not be c0 or c1 4024 * 4025 * Example: 4026 * 4027 * CPU0 CPU1 CPU2 4028 * 4029 * LOCK rq(0)->lock 4030 * sched-out X 4031 * sched-in Y 4032 * UNLOCK rq(0)->lock 4033 * 4034 * LOCK rq(0)->lock // orders against CPU0 4035 * dequeue X 4036 * UNLOCK rq(0)->lock 4037 * 4038 * LOCK rq(1)->lock 4039 * enqueue X 4040 * UNLOCK rq(1)->lock 4041 * 4042 * LOCK rq(1)->lock // orders against CPU2 4043 * sched-out Z 4044 * sched-in X 4045 * UNLOCK rq(1)->lock 4046 * 4047 * 4048 * BLOCKING -- aka. SLEEP + WAKEUP 4049 * 4050 * For blocking we (obviously) need to provide the same guarantee as for 4051 * migration. However the means are completely different as there is no lock 4052 * chain to provide order. Instead we do: 4053 * 4054 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4055 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4056 * 4057 * Example: 4058 * 4059 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4060 * 4061 * LOCK rq(0)->lock LOCK X->pi_lock 4062 * dequeue X 4063 * sched-out X 4064 * smp_store_release(X->on_cpu, 0); 4065 * 4066 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4067 * X->state = WAKING 4068 * set_task_cpu(X,2) 4069 * 4070 * LOCK rq(2)->lock 4071 * enqueue X 4072 * X->state = RUNNING 4073 * UNLOCK rq(2)->lock 4074 * 4075 * LOCK rq(2)->lock // orders against CPU1 4076 * sched-out Z 4077 * sched-in X 4078 * UNLOCK rq(2)->lock 4079 * 4080 * UNLOCK X->pi_lock 4081 * UNLOCK rq(0)->lock 4082 * 4083 * 4084 * However, for wakeups there is a second guarantee we must provide, namely we 4085 * must ensure that CONDITION=1 done by the caller can not be reordered with 4086 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4087 */ 4088 4089 /** 4090 * try_to_wake_up - wake up a thread 4091 * @p: the thread to be awakened 4092 * @state: the mask of task states that can be woken 4093 * @wake_flags: wake modifier flags (WF_*) 4094 * 4095 * Conceptually does: 4096 * 4097 * If (@state & @p->state) @p->state = TASK_RUNNING. 4098 * 4099 * If the task was not queued/runnable, also place it back on a runqueue. 4100 * 4101 * This function is atomic against schedule() which would dequeue the task. 4102 * 4103 * It issues a full memory barrier before accessing @p->state, see the comment 4104 * with set_current_state(). 4105 * 4106 * Uses p->pi_lock to serialize against concurrent wake-ups. 4107 * 4108 * Relies on p->pi_lock stabilizing: 4109 * - p->sched_class 4110 * - p->cpus_ptr 4111 * - p->sched_task_group 4112 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4113 * 4114 * Tries really hard to only take one task_rq(p)->lock for performance. 4115 * Takes rq->lock in: 4116 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4117 * - ttwu_queue() -- new rq, for enqueue of the task; 4118 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4119 * 4120 * As a consequence we race really badly with just about everything. See the 4121 * many memory barriers and their comments for details. 4122 * 4123 * Return: %true if @p->state changes (an actual wakeup was done), 4124 * %false otherwise. 4125 */ 4126 static int 4127 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4128 { 4129 unsigned long flags; 4130 int cpu, success = 0; 4131 4132 preempt_disable(); 4133 if (p == current) { 4134 /* 4135 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4136 * == smp_processor_id()'. Together this means we can special 4137 * case the whole 'p->on_rq && ttwu_runnable()' case below 4138 * without taking any locks. 4139 * 4140 * In particular: 4141 * - we rely on Program-Order guarantees for all the ordering, 4142 * - we're serialized against set_special_state() by virtue of 4143 * it disabling IRQs (this allows not taking ->pi_lock). 4144 */ 4145 if (!ttwu_state_match(p, state, &success)) 4146 goto out; 4147 4148 trace_sched_waking(p); 4149 ttwu_do_wakeup(p); 4150 goto out; 4151 } 4152 4153 /* 4154 * If we are going to wake up a thread waiting for CONDITION we 4155 * need to ensure that CONDITION=1 done by the caller can not be 4156 * reordered with p->state check below. This pairs with smp_store_mb() 4157 * in set_current_state() that the waiting thread does. 4158 */ 4159 raw_spin_lock_irqsave(&p->pi_lock, flags); 4160 smp_mb__after_spinlock(); 4161 if (!ttwu_state_match(p, state, &success)) 4162 goto unlock; 4163 4164 trace_sched_waking(p); 4165 4166 /* 4167 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4168 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4169 * in smp_cond_load_acquire() below. 4170 * 4171 * sched_ttwu_pending() try_to_wake_up() 4172 * STORE p->on_rq = 1 LOAD p->state 4173 * UNLOCK rq->lock 4174 * 4175 * __schedule() (switch to task 'p') 4176 * LOCK rq->lock smp_rmb(); 4177 * smp_mb__after_spinlock(); 4178 * UNLOCK rq->lock 4179 * 4180 * [task p] 4181 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4182 * 4183 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4184 * __schedule(). See the comment for smp_mb__after_spinlock(). 4185 * 4186 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4187 */ 4188 smp_rmb(); 4189 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4190 goto unlock; 4191 4192 #ifdef CONFIG_SMP 4193 /* 4194 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4195 * possible to, falsely, observe p->on_cpu == 0. 4196 * 4197 * One must be running (->on_cpu == 1) in order to remove oneself 4198 * from the runqueue. 4199 * 4200 * __schedule() (switch to task 'p') try_to_wake_up() 4201 * STORE p->on_cpu = 1 LOAD p->on_rq 4202 * UNLOCK rq->lock 4203 * 4204 * __schedule() (put 'p' to sleep) 4205 * LOCK rq->lock smp_rmb(); 4206 * smp_mb__after_spinlock(); 4207 * STORE p->on_rq = 0 LOAD p->on_cpu 4208 * 4209 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4210 * __schedule(). See the comment for smp_mb__after_spinlock(). 4211 * 4212 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4213 * schedule()'s deactivate_task() has 'happened' and p will no longer 4214 * care about it's own p->state. See the comment in __schedule(). 4215 */ 4216 smp_acquire__after_ctrl_dep(); 4217 4218 /* 4219 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4220 * == 0), which means we need to do an enqueue, change p->state to 4221 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4222 * enqueue, such as ttwu_queue_wakelist(). 4223 */ 4224 WRITE_ONCE(p->__state, TASK_WAKING); 4225 4226 /* 4227 * If the owning (remote) CPU is still in the middle of schedule() with 4228 * this task as prev, considering queueing p on the remote CPUs wake_list 4229 * which potentially sends an IPI instead of spinning on p->on_cpu to 4230 * let the waker make forward progress. This is safe because IRQs are 4231 * disabled and the IPI will deliver after on_cpu is cleared. 4232 * 4233 * Ensure we load task_cpu(p) after p->on_cpu: 4234 * 4235 * set_task_cpu(p, cpu); 4236 * STORE p->cpu = @cpu 4237 * __schedule() (switch to task 'p') 4238 * LOCK rq->lock 4239 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4240 * STORE p->on_cpu = 1 LOAD p->cpu 4241 * 4242 * to ensure we observe the correct CPU on which the task is currently 4243 * scheduling. 4244 */ 4245 if (smp_load_acquire(&p->on_cpu) && 4246 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4247 goto unlock; 4248 4249 /* 4250 * If the owning (remote) CPU is still in the middle of schedule() with 4251 * this task as prev, wait until it's done referencing the task. 4252 * 4253 * Pairs with the smp_store_release() in finish_task(). 4254 * 4255 * This ensures that tasks getting woken will be fully ordered against 4256 * their previous state and preserve Program Order. 4257 */ 4258 smp_cond_load_acquire(&p->on_cpu, !VAL); 4259 4260 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4261 if (task_cpu(p) != cpu) { 4262 if (p->in_iowait) { 4263 delayacct_blkio_end(p); 4264 atomic_dec(&task_rq(p)->nr_iowait); 4265 } 4266 4267 wake_flags |= WF_MIGRATED; 4268 psi_ttwu_dequeue(p); 4269 set_task_cpu(p, cpu); 4270 } 4271 #else 4272 cpu = task_cpu(p); 4273 #endif /* CONFIG_SMP */ 4274 4275 ttwu_queue(p, cpu, wake_flags); 4276 unlock: 4277 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4278 out: 4279 if (success) 4280 ttwu_stat(p, task_cpu(p), wake_flags); 4281 preempt_enable(); 4282 4283 return success; 4284 } 4285 4286 static bool __task_needs_rq_lock(struct task_struct *p) 4287 { 4288 unsigned int state = READ_ONCE(p->__state); 4289 4290 /* 4291 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4292 * the task is blocked. Make sure to check @state since ttwu() can drop 4293 * locks at the end, see ttwu_queue_wakelist(). 4294 */ 4295 if (state == TASK_RUNNING || state == TASK_WAKING) 4296 return true; 4297 4298 /* 4299 * Ensure we load p->on_rq after p->__state, otherwise it would be 4300 * possible to, falsely, observe p->on_rq == 0. 4301 * 4302 * See try_to_wake_up() for a longer comment. 4303 */ 4304 smp_rmb(); 4305 if (p->on_rq) 4306 return true; 4307 4308 #ifdef CONFIG_SMP 4309 /* 4310 * Ensure the task has finished __schedule() and will not be referenced 4311 * anymore. Again, see try_to_wake_up() for a longer comment. 4312 */ 4313 smp_rmb(); 4314 smp_cond_load_acquire(&p->on_cpu, !VAL); 4315 #endif 4316 4317 return false; 4318 } 4319 4320 /** 4321 * task_call_func - Invoke a function on task in fixed state 4322 * @p: Process for which the function is to be invoked, can be @current. 4323 * @func: Function to invoke. 4324 * @arg: Argument to function. 4325 * 4326 * Fix the task in it's current state by avoiding wakeups and or rq operations 4327 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4328 * to work out what the state is, if required. Given that @func can be invoked 4329 * with a runqueue lock held, it had better be quite lightweight. 4330 * 4331 * Returns: 4332 * Whatever @func returns 4333 */ 4334 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4335 { 4336 struct rq *rq = NULL; 4337 struct rq_flags rf; 4338 int ret; 4339 4340 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4341 4342 if (__task_needs_rq_lock(p)) 4343 rq = __task_rq_lock(p, &rf); 4344 4345 /* 4346 * At this point the task is pinned; either: 4347 * - blocked and we're holding off wakeups (pi->lock) 4348 * - woken, and we're holding off enqueue (rq->lock) 4349 * - queued, and we're holding off schedule (rq->lock) 4350 * - running, and we're holding off de-schedule (rq->lock) 4351 * 4352 * The called function (@func) can use: task_curr(), p->on_rq and 4353 * p->__state to differentiate between these states. 4354 */ 4355 ret = func(p, arg); 4356 4357 if (rq) 4358 rq_unlock(rq, &rf); 4359 4360 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4361 return ret; 4362 } 4363 4364 /** 4365 * cpu_curr_snapshot - Return a snapshot of the currently running task 4366 * @cpu: The CPU on which to snapshot the task. 4367 * 4368 * Returns the task_struct pointer of the task "currently" running on 4369 * the specified CPU. If the same task is running on that CPU throughout, 4370 * the return value will be a pointer to that task's task_struct structure. 4371 * If the CPU did any context switches even vaguely concurrently with the 4372 * execution of this function, the return value will be a pointer to the 4373 * task_struct structure of a randomly chosen task that was running on 4374 * that CPU somewhere around the time that this function was executing. 4375 * 4376 * If the specified CPU was offline, the return value is whatever it 4377 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4378 * task, but there is no guarantee. Callers wishing a useful return 4379 * value must take some action to ensure that the specified CPU remains 4380 * online throughout. 4381 * 4382 * This function executes full memory barriers before and after fetching 4383 * the pointer, which permits the caller to confine this function's fetch 4384 * with respect to the caller's accesses to other shared variables. 4385 */ 4386 struct task_struct *cpu_curr_snapshot(int cpu) 4387 { 4388 struct task_struct *t; 4389 4390 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4391 t = rcu_dereference(cpu_curr(cpu)); 4392 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4393 return t; 4394 } 4395 4396 /** 4397 * wake_up_process - Wake up a specific process 4398 * @p: The process to be woken up. 4399 * 4400 * Attempt to wake up the nominated process and move it to the set of runnable 4401 * processes. 4402 * 4403 * Return: 1 if the process was woken up, 0 if it was already running. 4404 * 4405 * This function executes a full memory barrier before accessing the task state. 4406 */ 4407 int wake_up_process(struct task_struct *p) 4408 { 4409 return try_to_wake_up(p, TASK_NORMAL, 0); 4410 } 4411 EXPORT_SYMBOL(wake_up_process); 4412 4413 int wake_up_state(struct task_struct *p, unsigned int state) 4414 { 4415 return try_to_wake_up(p, state, 0); 4416 } 4417 4418 /* 4419 * Perform scheduler related setup for a newly forked process p. 4420 * p is forked by current. 4421 * 4422 * __sched_fork() is basic setup used by init_idle() too: 4423 */ 4424 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4425 { 4426 p->on_rq = 0; 4427 4428 p->se.on_rq = 0; 4429 p->se.exec_start = 0; 4430 p->se.sum_exec_runtime = 0; 4431 p->se.prev_sum_exec_runtime = 0; 4432 p->se.nr_migrations = 0; 4433 p->se.vruntime = 0; 4434 INIT_LIST_HEAD(&p->se.group_node); 4435 4436 #ifdef CONFIG_FAIR_GROUP_SCHED 4437 p->se.cfs_rq = NULL; 4438 #endif 4439 4440 #ifdef CONFIG_SCHEDSTATS 4441 /* Even if schedstat is disabled, there should not be garbage */ 4442 memset(&p->stats, 0, sizeof(p->stats)); 4443 #endif 4444 4445 RB_CLEAR_NODE(&p->dl.rb_node); 4446 init_dl_task_timer(&p->dl); 4447 init_dl_inactive_task_timer(&p->dl); 4448 __dl_clear_params(p); 4449 4450 INIT_LIST_HEAD(&p->rt.run_list); 4451 p->rt.timeout = 0; 4452 p->rt.time_slice = sched_rr_timeslice; 4453 p->rt.on_rq = 0; 4454 p->rt.on_list = 0; 4455 4456 #ifdef CONFIG_PREEMPT_NOTIFIERS 4457 INIT_HLIST_HEAD(&p->preempt_notifiers); 4458 #endif 4459 4460 #ifdef CONFIG_COMPACTION 4461 p->capture_control = NULL; 4462 #endif 4463 init_numa_balancing(clone_flags, p); 4464 #ifdef CONFIG_SMP 4465 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4466 p->migration_pending = NULL; 4467 #endif 4468 } 4469 4470 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4471 4472 #ifdef CONFIG_NUMA_BALANCING 4473 4474 int sysctl_numa_balancing_mode; 4475 4476 static void __set_numabalancing_state(bool enabled) 4477 { 4478 if (enabled) 4479 static_branch_enable(&sched_numa_balancing); 4480 else 4481 static_branch_disable(&sched_numa_balancing); 4482 } 4483 4484 void set_numabalancing_state(bool enabled) 4485 { 4486 if (enabled) 4487 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4488 else 4489 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4490 __set_numabalancing_state(enabled); 4491 } 4492 4493 #ifdef CONFIG_PROC_SYSCTL 4494 static void reset_memory_tiering(void) 4495 { 4496 struct pglist_data *pgdat; 4497 4498 for_each_online_pgdat(pgdat) { 4499 pgdat->nbp_threshold = 0; 4500 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4501 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4502 } 4503 } 4504 4505 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4506 void *buffer, size_t *lenp, loff_t *ppos) 4507 { 4508 struct ctl_table t; 4509 int err; 4510 int state = sysctl_numa_balancing_mode; 4511 4512 if (write && !capable(CAP_SYS_ADMIN)) 4513 return -EPERM; 4514 4515 t = *table; 4516 t.data = &state; 4517 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4518 if (err < 0) 4519 return err; 4520 if (write) { 4521 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4522 (state & NUMA_BALANCING_MEMORY_TIERING)) 4523 reset_memory_tiering(); 4524 sysctl_numa_balancing_mode = state; 4525 __set_numabalancing_state(state); 4526 } 4527 return err; 4528 } 4529 #endif 4530 #endif 4531 4532 #ifdef CONFIG_SCHEDSTATS 4533 4534 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4535 4536 static void set_schedstats(bool enabled) 4537 { 4538 if (enabled) 4539 static_branch_enable(&sched_schedstats); 4540 else 4541 static_branch_disable(&sched_schedstats); 4542 } 4543 4544 void force_schedstat_enabled(void) 4545 { 4546 if (!schedstat_enabled()) { 4547 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4548 static_branch_enable(&sched_schedstats); 4549 } 4550 } 4551 4552 static int __init setup_schedstats(char *str) 4553 { 4554 int ret = 0; 4555 if (!str) 4556 goto out; 4557 4558 if (!strcmp(str, "enable")) { 4559 set_schedstats(true); 4560 ret = 1; 4561 } else if (!strcmp(str, "disable")) { 4562 set_schedstats(false); 4563 ret = 1; 4564 } 4565 out: 4566 if (!ret) 4567 pr_warn("Unable to parse schedstats=\n"); 4568 4569 return ret; 4570 } 4571 __setup("schedstats=", setup_schedstats); 4572 4573 #ifdef CONFIG_PROC_SYSCTL 4574 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4575 size_t *lenp, loff_t *ppos) 4576 { 4577 struct ctl_table t; 4578 int err; 4579 int state = static_branch_likely(&sched_schedstats); 4580 4581 if (write && !capable(CAP_SYS_ADMIN)) 4582 return -EPERM; 4583 4584 t = *table; 4585 t.data = &state; 4586 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4587 if (err < 0) 4588 return err; 4589 if (write) 4590 set_schedstats(state); 4591 return err; 4592 } 4593 #endif /* CONFIG_PROC_SYSCTL */ 4594 #endif /* CONFIG_SCHEDSTATS */ 4595 4596 #ifdef CONFIG_SYSCTL 4597 static struct ctl_table sched_core_sysctls[] = { 4598 #ifdef CONFIG_SCHEDSTATS 4599 { 4600 .procname = "sched_schedstats", 4601 .data = NULL, 4602 .maxlen = sizeof(unsigned int), 4603 .mode = 0644, 4604 .proc_handler = sysctl_schedstats, 4605 .extra1 = SYSCTL_ZERO, 4606 .extra2 = SYSCTL_ONE, 4607 }, 4608 #endif /* CONFIG_SCHEDSTATS */ 4609 #ifdef CONFIG_UCLAMP_TASK 4610 { 4611 .procname = "sched_util_clamp_min", 4612 .data = &sysctl_sched_uclamp_util_min, 4613 .maxlen = sizeof(unsigned int), 4614 .mode = 0644, 4615 .proc_handler = sysctl_sched_uclamp_handler, 4616 }, 4617 { 4618 .procname = "sched_util_clamp_max", 4619 .data = &sysctl_sched_uclamp_util_max, 4620 .maxlen = sizeof(unsigned int), 4621 .mode = 0644, 4622 .proc_handler = sysctl_sched_uclamp_handler, 4623 }, 4624 { 4625 .procname = "sched_util_clamp_min_rt_default", 4626 .data = &sysctl_sched_uclamp_util_min_rt_default, 4627 .maxlen = sizeof(unsigned int), 4628 .mode = 0644, 4629 .proc_handler = sysctl_sched_uclamp_handler, 4630 }, 4631 #endif /* CONFIG_UCLAMP_TASK */ 4632 #ifdef CONFIG_NUMA_BALANCING 4633 { 4634 .procname = "numa_balancing", 4635 .data = NULL, /* filled in by handler */ 4636 .maxlen = sizeof(unsigned int), 4637 .mode = 0644, 4638 .proc_handler = sysctl_numa_balancing, 4639 .extra1 = SYSCTL_ZERO, 4640 .extra2 = SYSCTL_FOUR, 4641 }, 4642 #endif /* CONFIG_NUMA_BALANCING */ 4643 {} 4644 }; 4645 static int __init sched_core_sysctl_init(void) 4646 { 4647 register_sysctl_init("kernel", sched_core_sysctls); 4648 return 0; 4649 } 4650 late_initcall(sched_core_sysctl_init); 4651 #endif /* CONFIG_SYSCTL */ 4652 4653 /* 4654 * fork()/clone()-time setup: 4655 */ 4656 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4657 { 4658 __sched_fork(clone_flags, p); 4659 /* 4660 * We mark the process as NEW here. This guarantees that 4661 * nobody will actually run it, and a signal or other external 4662 * event cannot wake it up and insert it on the runqueue either. 4663 */ 4664 p->__state = TASK_NEW; 4665 4666 /* 4667 * Make sure we do not leak PI boosting priority to the child. 4668 */ 4669 p->prio = current->normal_prio; 4670 4671 uclamp_fork(p); 4672 4673 /* 4674 * Revert to default priority/policy on fork if requested. 4675 */ 4676 if (unlikely(p->sched_reset_on_fork)) { 4677 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4678 p->policy = SCHED_NORMAL; 4679 p->static_prio = NICE_TO_PRIO(0); 4680 p->rt_priority = 0; 4681 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4682 p->static_prio = NICE_TO_PRIO(0); 4683 4684 p->prio = p->normal_prio = p->static_prio; 4685 set_load_weight(p, false); 4686 4687 /* 4688 * We don't need the reset flag anymore after the fork. It has 4689 * fulfilled its duty: 4690 */ 4691 p->sched_reset_on_fork = 0; 4692 } 4693 4694 if (dl_prio(p->prio)) 4695 return -EAGAIN; 4696 else if (rt_prio(p->prio)) 4697 p->sched_class = &rt_sched_class; 4698 else 4699 p->sched_class = &fair_sched_class; 4700 4701 init_entity_runnable_average(&p->se); 4702 4703 4704 #ifdef CONFIG_SCHED_INFO 4705 if (likely(sched_info_on())) 4706 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4707 #endif 4708 #if defined(CONFIG_SMP) 4709 p->on_cpu = 0; 4710 #endif 4711 init_task_preempt_count(p); 4712 #ifdef CONFIG_SMP 4713 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4714 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4715 #endif 4716 return 0; 4717 } 4718 4719 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4720 { 4721 unsigned long flags; 4722 4723 /* 4724 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4725 * required yet, but lockdep gets upset if rules are violated. 4726 */ 4727 raw_spin_lock_irqsave(&p->pi_lock, flags); 4728 #ifdef CONFIG_CGROUP_SCHED 4729 if (1) { 4730 struct task_group *tg; 4731 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4732 struct task_group, css); 4733 tg = autogroup_task_group(p, tg); 4734 p->sched_task_group = tg; 4735 } 4736 #endif 4737 rseq_migrate(p); 4738 /* 4739 * We're setting the CPU for the first time, we don't migrate, 4740 * so use __set_task_cpu(). 4741 */ 4742 __set_task_cpu(p, smp_processor_id()); 4743 if (p->sched_class->task_fork) 4744 p->sched_class->task_fork(p); 4745 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4746 } 4747 4748 void sched_post_fork(struct task_struct *p) 4749 { 4750 uclamp_post_fork(p); 4751 } 4752 4753 unsigned long to_ratio(u64 period, u64 runtime) 4754 { 4755 if (runtime == RUNTIME_INF) 4756 return BW_UNIT; 4757 4758 /* 4759 * Doing this here saves a lot of checks in all 4760 * the calling paths, and returning zero seems 4761 * safe for them anyway. 4762 */ 4763 if (period == 0) 4764 return 0; 4765 4766 return div64_u64(runtime << BW_SHIFT, period); 4767 } 4768 4769 /* 4770 * wake_up_new_task - wake up a newly created task for the first time. 4771 * 4772 * This function will do some initial scheduler statistics housekeeping 4773 * that must be done for every newly created context, then puts the task 4774 * on the runqueue and wakes it. 4775 */ 4776 void wake_up_new_task(struct task_struct *p) 4777 { 4778 struct rq_flags rf; 4779 struct rq *rq; 4780 4781 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4782 WRITE_ONCE(p->__state, TASK_RUNNING); 4783 #ifdef CONFIG_SMP 4784 /* 4785 * Fork balancing, do it here and not earlier because: 4786 * - cpus_ptr can change in the fork path 4787 * - any previously selected CPU might disappear through hotplug 4788 * 4789 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4790 * as we're not fully set-up yet. 4791 */ 4792 p->recent_used_cpu = task_cpu(p); 4793 rseq_migrate(p); 4794 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4795 #endif 4796 rq = __task_rq_lock(p, &rf); 4797 update_rq_clock(rq); 4798 post_init_entity_util_avg(p); 4799 4800 activate_task(rq, p, ENQUEUE_NOCLOCK); 4801 trace_sched_wakeup_new(p); 4802 check_preempt_curr(rq, p, WF_FORK); 4803 #ifdef CONFIG_SMP 4804 if (p->sched_class->task_woken) { 4805 /* 4806 * Nothing relies on rq->lock after this, so it's fine to 4807 * drop it. 4808 */ 4809 rq_unpin_lock(rq, &rf); 4810 p->sched_class->task_woken(rq, p); 4811 rq_repin_lock(rq, &rf); 4812 } 4813 #endif 4814 task_rq_unlock(rq, p, &rf); 4815 } 4816 4817 #ifdef CONFIG_PREEMPT_NOTIFIERS 4818 4819 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4820 4821 void preempt_notifier_inc(void) 4822 { 4823 static_branch_inc(&preempt_notifier_key); 4824 } 4825 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4826 4827 void preempt_notifier_dec(void) 4828 { 4829 static_branch_dec(&preempt_notifier_key); 4830 } 4831 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4832 4833 /** 4834 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4835 * @notifier: notifier struct to register 4836 */ 4837 void preempt_notifier_register(struct preempt_notifier *notifier) 4838 { 4839 if (!static_branch_unlikely(&preempt_notifier_key)) 4840 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4841 4842 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4843 } 4844 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4845 4846 /** 4847 * preempt_notifier_unregister - no longer interested in preemption notifications 4848 * @notifier: notifier struct to unregister 4849 * 4850 * This is *not* safe to call from within a preemption notifier. 4851 */ 4852 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4853 { 4854 hlist_del(¬ifier->link); 4855 } 4856 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4857 4858 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4859 { 4860 struct preempt_notifier *notifier; 4861 4862 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4863 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4864 } 4865 4866 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4867 { 4868 if (static_branch_unlikely(&preempt_notifier_key)) 4869 __fire_sched_in_preempt_notifiers(curr); 4870 } 4871 4872 static void 4873 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4874 struct task_struct *next) 4875 { 4876 struct preempt_notifier *notifier; 4877 4878 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4879 notifier->ops->sched_out(notifier, next); 4880 } 4881 4882 static __always_inline void 4883 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4884 struct task_struct *next) 4885 { 4886 if (static_branch_unlikely(&preempt_notifier_key)) 4887 __fire_sched_out_preempt_notifiers(curr, next); 4888 } 4889 4890 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4891 4892 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4893 { 4894 } 4895 4896 static inline void 4897 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4898 struct task_struct *next) 4899 { 4900 } 4901 4902 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4903 4904 static inline void prepare_task(struct task_struct *next) 4905 { 4906 #ifdef CONFIG_SMP 4907 /* 4908 * Claim the task as running, we do this before switching to it 4909 * such that any running task will have this set. 4910 * 4911 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4912 * its ordering comment. 4913 */ 4914 WRITE_ONCE(next->on_cpu, 1); 4915 #endif 4916 } 4917 4918 static inline void finish_task(struct task_struct *prev) 4919 { 4920 #ifdef CONFIG_SMP 4921 /* 4922 * This must be the very last reference to @prev from this CPU. After 4923 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4924 * must ensure this doesn't happen until the switch is completely 4925 * finished. 4926 * 4927 * In particular, the load of prev->state in finish_task_switch() must 4928 * happen before this. 4929 * 4930 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4931 */ 4932 smp_store_release(&prev->on_cpu, 0); 4933 #endif 4934 } 4935 4936 #ifdef CONFIG_SMP 4937 4938 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4939 { 4940 void (*func)(struct rq *rq); 4941 struct balance_callback *next; 4942 4943 lockdep_assert_rq_held(rq); 4944 4945 while (head) { 4946 func = (void (*)(struct rq *))head->func; 4947 next = head->next; 4948 head->next = NULL; 4949 head = next; 4950 4951 func(rq); 4952 } 4953 } 4954 4955 static void balance_push(struct rq *rq); 4956 4957 /* 4958 * balance_push_callback is a right abuse of the callback interface and plays 4959 * by significantly different rules. 4960 * 4961 * Where the normal balance_callback's purpose is to be ran in the same context 4962 * that queued it (only later, when it's safe to drop rq->lock again), 4963 * balance_push_callback is specifically targeted at __schedule(). 4964 * 4965 * This abuse is tolerated because it places all the unlikely/odd cases behind 4966 * a single test, namely: rq->balance_callback == NULL. 4967 */ 4968 struct balance_callback balance_push_callback = { 4969 .next = NULL, 4970 .func = balance_push, 4971 }; 4972 4973 static inline struct balance_callback * 4974 __splice_balance_callbacks(struct rq *rq, bool split) 4975 { 4976 struct balance_callback *head = rq->balance_callback; 4977 4978 if (likely(!head)) 4979 return NULL; 4980 4981 lockdep_assert_rq_held(rq); 4982 /* 4983 * Must not take balance_push_callback off the list when 4984 * splice_balance_callbacks() and balance_callbacks() are not 4985 * in the same rq->lock section. 4986 * 4987 * In that case it would be possible for __schedule() to interleave 4988 * and observe the list empty. 4989 */ 4990 if (split && head == &balance_push_callback) 4991 head = NULL; 4992 else 4993 rq->balance_callback = NULL; 4994 4995 return head; 4996 } 4997 4998 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4999 { 5000 return __splice_balance_callbacks(rq, true); 5001 } 5002 5003 static void __balance_callbacks(struct rq *rq) 5004 { 5005 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5006 } 5007 5008 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5009 { 5010 unsigned long flags; 5011 5012 if (unlikely(head)) { 5013 raw_spin_rq_lock_irqsave(rq, flags); 5014 do_balance_callbacks(rq, head); 5015 raw_spin_rq_unlock_irqrestore(rq, flags); 5016 } 5017 } 5018 5019 #else 5020 5021 static inline void __balance_callbacks(struct rq *rq) 5022 { 5023 } 5024 5025 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5026 { 5027 return NULL; 5028 } 5029 5030 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5031 { 5032 } 5033 5034 #endif 5035 5036 static inline void 5037 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5038 { 5039 /* 5040 * Since the runqueue lock will be released by the next 5041 * task (which is an invalid locking op but in the case 5042 * of the scheduler it's an obvious special-case), so we 5043 * do an early lockdep release here: 5044 */ 5045 rq_unpin_lock(rq, rf); 5046 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5047 #ifdef CONFIG_DEBUG_SPINLOCK 5048 /* this is a valid case when another task releases the spinlock */ 5049 rq_lockp(rq)->owner = next; 5050 #endif 5051 } 5052 5053 static inline void finish_lock_switch(struct rq *rq) 5054 { 5055 /* 5056 * If we are tracking spinlock dependencies then we have to 5057 * fix up the runqueue lock - which gets 'carried over' from 5058 * prev into current: 5059 */ 5060 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5061 __balance_callbacks(rq); 5062 raw_spin_rq_unlock_irq(rq); 5063 } 5064 5065 /* 5066 * NOP if the arch has not defined these: 5067 */ 5068 5069 #ifndef prepare_arch_switch 5070 # define prepare_arch_switch(next) do { } while (0) 5071 #endif 5072 5073 #ifndef finish_arch_post_lock_switch 5074 # define finish_arch_post_lock_switch() do { } while (0) 5075 #endif 5076 5077 static inline void kmap_local_sched_out(void) 5078 { 5079 #ifdef CONFIG_KMAP_LOCAL 5080 if (unlikely(current->kmap_ctrl.idx)) 5081 __kmap_local_sched_out(); 5082 #endif 5083 } 5084 5085 static inline void kmap_local_sched_in(void) 5086 { 5087 #ifdef CONFIG_KMAP_LOCAL 5088 if (unlikely(current->kmap_ctrl.idx)) 5089 __kmap_local_sched_in(); 5090 #endif 5091 } 5092 5093 /** 5094 * prepare_task_switch - prepare to switch tasks 5095 * @rq: the runqueue preparing to switch 5096 * @prev: the current task that is being switched out 5097 * @next: the task we are going to switch to. 5098 * 5099 * This is called with the rq lock held and interrupts off. It must 5100 * be paired with a subsequent finish_task_switch after the context 5101 * switch. 5102 * 5103 * prepare_task_switch sets up locking and calls architecture specific 5104 * hooks. 5105 */ 5106 static inline void 5107 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5108 struct task_struct *next) 5109 { 5110 kcov_prepare_switch(prev); 5111 sched_info_switch(rq, prev, next); 5112 perf_event_task_sched_out(prev, next); 5113 rseq_preempt(prev); 5114 switch_mm_cid(prev, next); 5115 fire_sched_out_preempt_notifiers(prev, next); 5116 kmap_local_sched_out(); 5117 prepare_task(next); 5118 prepare_arch_switch(next); 5119 } 5120 5121 /** 5122 * finish_task_switch - clean up after a task-switch 5123 * @prev: the thread we just switched away from. 5124 * 5125 * finish_task_switch must be called after the context switch, paired 5126 * with a prepare_task_switch call before the context switch. 5127 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5128 * and do any other architecture-specific cleanup actions. 5129 * 5130 * Note that we may have delayed dropping an mm in context_switch(). If 5131 * so, we finish that here outside of the runqueue lock. (Doing it 5132 * with the lock held can cause deadlocks; see schedule() for 5133 * details.) 5134 * 5135 * The context switch have flipped the stack from under us and restored the 5136 * local variables which were saved when this task called schedule() in the 5137 * past. prev == current is still correct but we need to recalculate this_rq 5138 * because prev may have moved to another CPU. 5139 */ 5140 static struct rq *finish_task_switch(struct task_struct *prev) 5141 __releases(rq->lock) 5142 { 5143 struct rq *rq = this_rq(); 5144 struct mm_struct *mm = rq->prev_mm; 5145 unsigned int prev_state; 5146 5147 /* 5148 * The previous task will have left us with a preempt_count of 2 5149 * because it left us after: 5150 * 5151 * schedule() 5152 * preempt_disable(); // 1 5153 * __schedule() 5154 * raw_spin_lock_irq(&rq->lock) // 2 5155 * 5156 * Also, see FORK_PREEMPT_COUNT. 5157 */ 5158 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5159 "corrupted preempt_count: %s/%d/0x%x\n", 5160 current->comm, current->pid, preempt_count())) 5161 preempt_count_set(FORK_PREEMPT_COUNT); 5162 5163 rq->prev_mm = NULL; 5164 5165 /* 5166 * A task struct has one reference for the use as "current". 5167 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5168 * schedule one last time. The schedule call will never return, and 5169 * the scheduled task must drop that reference. 5170 * 5171 * We must observe prev->state before clearing prev->on_cpu (in 5172 * finish_task), otherwise a concurrent wakeup can get prev 5173 * running on another CPU and we could rave with its RUNNING -> DEAD 5174 * transition, resulting in a double drop. 5175 */ 5176 prev_state = READ_ONCE(prev->__state); 5177 vtime_task_switch(prev); 5178 perf_event_task_sched_in(prev, current); 5179 finish_task(prev); 5180 tick_nohz_task_switch(); 5181 finish_lock_switch(rq); 5182 finish_arch_post_lock_switch(); 5183 kcov_finish_switch(current); 5184 /* 5185 * kmap_local_sched_out() is invoked with rq::lock held and 5186 * interrupts disabled. There is no requirement for that, but the 5187 * sched out code does not have an interrupt enabled section. 5188 * Restoring the maps on sched in does not require interrupts being 5189 * disabled either. 5190 */ 5191 kmap_local_sched_in(); 5192 5193 fire_sched_in_preempt_notifiers(current); 5194 /* 5195 * When switching through a kernel thread, the loop in 5196 * membarrier_{private,global}_expedited() may have observed that 5197 * kernel thread and not issued an IPI. It is therefore possible to 5198 * schedule between user->kernel->user threads without passing though 5199 * switch_mm(). Membarrier requires a barrier after storing to 5200 * rq->curr, before returning to userspace, so provide them here: 5201 * 5202 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5203 * provided by mmdrop(), 5204 * - a sync_core for SYNC_CORE. 5205 */ 5206 if (mm) { 5207 membarrier_mm_sync_core_before_usermode(mm); 5208 mmdrop_sched(mm); 5209 } 5210 if (unlikely(prev_state == TASK_DEAD)) { 5211 if (prev->sched_class->task_dead) 5212 prev->sched_class->task_dead(prev); 5213 5214 /* Task is done with its stack. */ 5215 put_task_stack(prev); 5216 5217 put_task_struct_rcu_user(prev); 5218 } 5219 5220 return rq; 5221 } 5222 5223 /** 5224 * schedule_tail - first thing a freshly forked thread must call. 5225 * @prev: the thread we just switched away from. 5226 */ 5227 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5228 __releases(rq->lock) 5229 { 5230 /* 5231 * New tasks start with FORK_PREEMPT_COUNT, see there and 5232 * finish_task_switch() for details. 5233 * 5234 * finish_task_switch() will drop rq->lock() and lower preempt_count 5235 * and the preempt_enable() will end up enabling preemption (on 5236 * PREEMPT_COUNT kernels). 5237 */ 5238 5239 finish_task_switch(prev); 5240 preempt_enable(); 5241 5242 if (current->set_child_tid) 5243 put_user(task_pid_vnr(current), current->set_child_tid); 5244 5245 calculate_sigpending(); 5246 } 5247 5248 /* 5249 * context_switch - switch to the new MM and the new thread's register state. 5250 */ 5251 static __always_inline struct rq * 5252 context_switch(struct rq *rq, struct task_struct *prev, 5253 struct task_struct *next, struct rq_flags *rf) 5254 { 5255 prepare_task_switch(rq, prev, next); 5256 5257 /* 5258 * For paravirt, this is coupled with an exit in switch_to to 5259 * combine the page table reload and the switch backend into 5260 * one hypercall. 5261 */ 5262 arch_start_context_switch(prev); 5263 5264 /* 5265 * kernel -> kernel lazy + transfer active 5266 * user -> kernel lazy + mmgrab() active 5267 * 5268 * kernel -> user switch + mmdrop() active 5269 * user -> user switch 5270 */ 5271 if (!next->mm) { // to kernel 5272 enter_lazy_tlb(prev->active_mm, next); 5273 5274 next->active_mm = prev->active_mm; 5275 if (prev->mm) // from user 5276 mmgrab(prev->active_mm); 5277 else 5278 prev->active_mm = NULL; 5279 } else { // to user 5280 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5281 /* 5282 * sys_membarrier() requires an smp_mb() between setting 5283 * rq->curr / membarrier_switch_mm() and returning to userspace. 5284 * 5285 * The below provides this either through switch_mm(), or in 5286 * case 'prev->active_mm == next->mm' through 5287 * finish_task_switch()'s mmdrop(). 5288 */ 5289 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5290 lru_gen_use_mm(next->mm); 5291 5292 if (!prev->mm) { // from kernel 5293 /* will mmdrop() in finish_task_switch(). */ 5294 rq->prev_mm = prev->active_mm; 5295 prev->active_mm = NULL; 5296 } 5297 } 5298 5299 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5300 5301 prepare_lock_switch(rq, next, rf); 5302 5303 /* Here we just switch the register state and the stack. */ 5304 switch_to(prev, next, prev); 5305 barrier(); 5306 5307 return finish_task_switch(prev); 5308 } 5309 5310 /* 5311 * nr_running and nr_context_switches: 5312 * 5313 * externally visible scheduler statistics: current number of runnable 5314 * threads, total number of context switches performed since bootup. 5315 */ 5316 unsigned int nr_running(void) 5317 { 5318 unsigned int i, sum = 0; 5319 5320 for_each_online_cpu(i) 5321 sum += cpu_rq(i)->nr_running; 5322 5323 return sum; 5324 } 5325 5326 /* 5327 * Check if only the current task is running on the CPU. 5328 * 5329 * Caution: this function does not check that the caller has disabled 5330 * preemption, thus the result might have a time-of-check-to-time-of-use 5331 * race. The caller is responsible to use it correctly, for example: 5332 * 5333 * - from a non-preemptible section (of course) 5334 * 5335 * - from a thread that is bound to a single CPU 5336 * 5337 * - in a loop with very short iterations (e.g. a polling loop) 5338 */ 5339 bool single_task_running(void) 5340 { 5341 return raw_rq()->nr_running == 1; 5342 } 5343 EXPORT_SYMBOL(single_task_running); 5344 5345 unsigned long long nr_context_switches_cpu(int cpu) 5346 { 5347 return cpu_rq(cpu)->nr_switches; 5348 } 5349 5350 unsigned long long nr_context_switches(void) 5351 { 5352 int i; 5353 unsigned long long sum = 0; 5354 5355 for_each_possible_cpu(i) 5356 sum += cpu_rq(i)->nr_switches; 5357 5358 return sum; 5359 } 5360 5361 /* 5362 * Consumers of these two interfaces, like for example the cpuidle menu 5363 * governor, are using nonsensical data. Preferring shallow idle state selection 5364 * for a CPU that has IO-wait which might not even end up running the task when 5365 * it does become runnable. 5366 */ 5367 5368 unsigned int nr_iowait_cpu(int cpu) 5369 { 5370 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5371 } 5372 5373 /* 5374 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5375 * 5376 * The idea behind IO-wait account is to account the idle time that we could 5377 * have spend running if it were not for IO. That is, if we were to improve the 5378 * storage performance, we'd have a proportional reduction in IO-wait time. 5379 * 5380 * This all works nicely on UP, where, when a task blocks on IO, we account 5381 * idle time as IO-wait, because if the storage were faster, it could've been 5382 * running and we'd not be idle. 5383 * 5384 * This has been extended to SMP, by doing the same for each CPU. This however 5385 * is broken. 5386 * 5387 * Imagine for instance the case where two tasks block on one CPU, only the one 5388 * CPU will have IO-wait accounted, while the other has regular idle. Even 5389 * though, if the storage were faster, both could've ran at the same time, 5390 * utilising both CPUs. 5391 * 5392 * This means, that when looking globally, the current IO-wait accounting on 5393 * SMP is a lower bound, by reason of under accounting. 5394 * 5395 * Worse, since the numbers are provided per CPU, they are sometimes 5396 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5397 * associated with any one particular CPU, it can wake to another CPU than it 5398 * blocked on. This means the per CPU IO-wait number is meaningless. 5399 * 5400 * Task CPU affinities can make all that even more 'interesting'. 5401 */ 5402 5403 unsigned int nr_iowait(void) 5404 { 5405 unsigned int i, sum = 0; 5406 5407 for_each_possible_cpu(i) 5408 sum += nr_iowait_cpu(i); 5409 5410 return sum; 5411 } 5412 5413 #ifdef CONFIG_SMP 5414 5415 /* 5416 * sched_exec - execve() is a valuable balancing opportunity, because at 5417 * this point the task has the smallest effective memory and cache footprint. 5418 */ 5419 void sched_exec(void) 5420 { 5421 struct task_struct *p = current; 5422 unsigned long flags; 5423 int dest_cpu; 5424 5425 raw_spin_lock_irqsave(&p->pi_lock, flags); 5426 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5427 if (dest_cpu == smp_processor_id()) 5428 goto unlock; 5429 5430 if (likely(cpu_active(dest_cpu))) { 5431 struct migration_arg arg = { p, dest_cpu }; 5432 5433 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5434 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5435 return; 5436 } 5437 unlock: 5438 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5439 } 5440 5441 #endif 5442 5443 DEFINE_PER_CPU(struct kernel_stat, kstat); 5444 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5445 5446 EXPORT_PER_CPU_SYMBOL(kstat); 5447 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5448 5449 /* 5450 * The function fair_sched_class.update_curr accesses the struct curr 5451 * and its field curr->exec_start; when called from task_sched_runtime(), 5452 * we observe a high rate of cache misses in practice. 5453 * Prefetching this data results in improved performance. 5454 */ 5455 static inline void prefetch_curr_exec_start(struct task_struct *p) 5456 { 5457 #ifdef CONFIG_FAIR_GROUP_SCHED 5458 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5459 #else 5460 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5461 #endif 5462 prefetch(curr); 5463 prefetch(&curr->exec_start); 5464 } 5465 5466 /* 5467 * Return accounted runtime for the task. 5468 * In case the task is currently running, return the runtime plus current's 5469 * pending runtime that have not been accounted yet. 5470 */ 5471 unsigned long long task_sched_runtime(struct task_struct *p) 5472 { 5473 struct rq_flags rf; 5474 struct rq *rq; 5475 u64 ns; 5476 5477 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5478 /* 5479 * 64-bit doesn't need locks to atomically read a 64-bit value. 5480 * So we have a optimization chance when the task's delta_exec is 0. 5481 * Reading ->on_cpu is racy, but this is ok. 5482 * 5483 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5484 * If we race with it entering CPU, unaccounted time is 0. This is 5485 * indistinguishable from the read occurring a few cycles earlier. 5486 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5487 * been accounted, so we're correct here as well. 5488 */ 5489 if (!p->on_cpu || !task_on_rq_queued(p)) 5490 return p->se.sum_exec_runtime; 5491 #endif 5492 5493 rq = task_rq_lock(p, &rf); 5494 /* 5495 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5496 * project cycles that may never be accounted to this 5497 * thread, breaking clock_gettime(). 5498 */ 5499 if (task_current(rq, p) && task_on_rq_queued(p)) { 5500 prefetch_curr_exec_start(p); 5501 update_rq_clock(rq); 5502 p->sched_class->update_curr(rq); 5503 } 5504 ns = p->se.sum_exec_runtime; 5505 task_rq_unlock(rq, p, &rf); 5506 5507 return ns; 5508 } 5509 5510 #ifdef CONFIG_SCHED_DEBUG 5511 static u64 cpu_resched_latency(struct rq *rq) 5512 { 5513 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5514 u64 resched_latency, now = rq_clock(rq); 5515 static bool warned_once; 5516 5517 if (sysctl_resched_latency_warn_once && warned_once) 5518 return 0; 5519 5520 if (!need_resched() || !latency_warn_ms) 5521 return 0; 5522 5523 if (system_state == SYSTEM_BOOTING) 5524 return 0; 5525 5526 if (!rq->last_seen_need_resched_ns) { 5527 rq->last_seen_need_resched_ns = now; 5528 rq->ticks_without_resched = 0; 5529 return 0; 5530 } 5531 5532 rq->ticks_without_resched++; 5533 resched_latency = now - rq->last_seen_need_resched_ns; 5534 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5535 return 0; 5536 5537 warned_once = true; 5538 5539 return resched_latency; 5540 } 5541 5542 static int __init setup_resched_latency_warn_ms(char *str) 5543 { 5544 long val; 5545 5546 if ((kstrtol(str, 0, &val))) { 5547 pr_warn("Unable to set resched_latency_warn_ms\n"); 5548 return 1; 5549 } 5550 5551 sysctl_resched_latency_warn_ms = val; 5552 return 1; 5553 } 5554 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5555 #else 5556 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5557 #endif /* CONFIG_SCHED_DEBUG */ 5558 5559 /* 5560 * This function gets called by the timer code, with HZ frequency. 5561 * We call it with interrupts disabled. 5562 */ 5563 void scheduler_tick(void) 5564 { 5565 int cpu = smp_processor_id(); 5566 struct rq *rq = cpu_rq(cpu); 5567 struct task_struct *curr = rq->curr; 5568 struct rq_flags rf; 5569 unsigned long thermal_pressure; 5570 u64 resched_latency; 5571 5572 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5573 arch_scale_freq_tick(); 5574 5575 sched_clock_tick(); 5576 5577 rq_lock(rq, &rf); 5578 5579 update_rq_clock(rq); 5580 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5581 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5582 curr->sched_class->task_tick(rq, curr, 0); 5583 if (sched_feat(LATENCY_WARN)) 5584 resched_latency = cpu_resched_latency(rq); 5585 calc_global_load_tick(rq); 5586 sched_core_tick(rq); 5587 5588 rq_unlock(rq, &rf); 5589 5590 if (sched_feat(LATENCY_WARN) && resched_latency) 5591 resched_latency_warn(cpu, resched_latency); 5592 5593 perf_event_task_tick(); 5594 5595 #ifdef CONFIG_SMP 5596 rq->idle_balance = idle_cpu(cpu); 5597 trigger_load_balance(rq); 5598 #endif 5599 } 5600 5601 #ifdef CONFIG_NO_HZ_FULL 5602 5603 struct tick_work { 5604 int cpu; 5605 atomic_t state; 5606 struct delayed_work work; 5607 }; 5608 /* Values for ->state, see diagram below. */ 5609 #define TICK_SCHED_REMOTE_OFFLINE 0 5610 #define TICK_SCHED_REMOTE_OFFLINING 1 5611 #define TICK_SCHED_REMOTE_RUNNING 2 5612 5613 /* 5614 * State diagram for ->state: 5615 * 5616 * 5617 * TICK_SCHED_REMOTE_OFFLINE 5618 * | ^ 5619 * | | 5620 * | | sched_tick_remote() 5621 * | | 5622 * | | 5623 * +--TICK_SCHED_REMOTE_OFFLINING 5624 * | ^ 5625 * | | 5626 * sched_tick_start() | | sched_tick_stop() 5627 * | | 5628 * V | 5629 * TICK_SCHED_REMOTE_RUNNING 5630 * 5631 * 5632 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5633 * and sched_tick_start() are happy to leave the state in RUNNING. 5634 */ 5635 5636 static struct tick_work __percpu *tick_work_cpu; 5637 5638 static void sched_tick_remote(struct work_struct *work) 5639 { 5640 struct delayed_work *dwork = to_delayed_work(work); 5641 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5642 int cpu = twork->cpu; 5643 struct rq *rq = cpu_rq(cpu); 5644 struct task_struct *curr; 5645 struct rq_flags rf; 5646 u64 delta; 5647 int os; 5648 5649 /* 5650 * Handle the tick only if it appears the remote CPU is running in full 5651 * dynticks mode. The check is racy by nature, but missing a tick or 5652 * having one too much is no big deal because the scheduler tick updates 5653 * statistics and checks timeslices in a time-independent way, regardless 5654 * of when exactly it is running. 5655 */ 5656 if (!tick_nohz_tick_stopped_cpu(cpu)) 5657 goto out_requeue; 5658 5659 rq_lock_irq(rq, &rf); 5660 curr = rq->curr; 5661 if (cpu_is_offline(cpu)) 5662 goto out_unlock; 5663 5664 update_rq_clock(rq); 5665 5666 if (!is_idle_task(curr)) { 5667 /* 5668 * Make sure the next tick runs within a reasonable 5669 * amount of time. 5670 */ 5671 delta = rq_clock_task(rq) - curr->se.exec_start; 5672 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5673 } 5674 curr->sched_class->task_tick(rq, curr, 0); 5675 5676 calc_load_nohz_remote(rq); 5677 out_unlock: 5678 rq_unlock_irq(rq, &rf); 5679 out_requeue: 5680 5681 /* 5682 * Run the remote tick once per second (1Hz). This arbitrary 5683 * frequency is large enough to avoid overload but short enough 5684 * to keep scheduler internal stats reasonably up to date. But 5685 * first update state to reflect hotplug activity if required. 5686 */ 5687 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5688 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5689 if (os == TICK_SCHED_REMOTE_RUNNING) 5690 queue_delayed_work(system_unbound_wq, dwork, HZ); 5691 } 5692 5693 static void sched_tick_start(int cpu) 5694 { 5695 int os; 5696 struct tick_work *twork; 5697 5698 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5699 return; 5700 5701 WARN_ON_ONCE(!tick_work_cpu); 5702 5703 twork = per_cpu_ptr(tick_work_cpu, cpu); 5704 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5705 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5706 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5707 twork->cpu = cpu; 5708 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5709 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5710 } 5711 } 5712 5713 #ifdef CONFIG_HOTPLUG_CPU 5714 static void sched_tick_stop(int cpu) 5715 { 5716 struct tick_work *twork; 5717 int os; 5718 5719 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5720 return; 5721 5722 WARN_ON_ONCE(!tick_work_cpu); 5723 5724 twork = per_cpu_ptr(tick_work_cpu, cpu); 5725 /* There cannot be competing actions, but don't rely on stop-machine. */ 5726 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5727 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5728 /* Don't cancel, as this would mess up the state machine. */ 5729 } 5730 #endif /* CONFIG_HOTPLUG_CPU */ 5731 5732 int __init sched_tick_offload_init(void) 5733 { 5734 tick_work_cpu = alloc_percpu(struct tick_work); 5735 BUG_ON(!tick_work_cpu); 5736 return 0; 5737 } 5738 5739 #else /* !CONFIG_NO_HZ_FULL */ 5740 static inline void sched_tick_start(int cpu) { } 5741 static inline void sched_tick_stop(int cpu) { } 5742 #endif 5743 5744 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5745 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5746 /* 5747 * If the value passed in is equal to the current preempt count 5748 * then we just disabled preemption. Start timing the latency. 5749 */ 5750 static inline void preempt_latency_start(int val) 5751 { 5752 if (preempt_count() == val) { 5753 unsigned long ip = get_lock_parent_ip(); 5754 #ifdef CONFIG_DEBUG_PREEMPT 5755 current->preempt_disable_ip = ip; 5756 #endif 5757 trace_preempt_off(CALLER_ADDR0, ip); 5758 } 5759 } 5760 5761 void preempt_count_add(int val) 5762 { 5763 #ifdef CONFIG_DEBUG_PREEMPT 5764 /* 5765 * Underflow? 5766 */ 5767 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5768 return; 5769 #endif 5770 __preempt_count_add(val); 5771 #ifdef CONFIG_DEBUG_PREEMPT 5772 /* 5773 * Spinlock count overflowing soon? 5774 */ 5775 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5776 PREEMPT_MASK - 10); 5777 #endif 5778 preempt_latency_start(val); 5779 } 5780 EXPORT_SYMBOL(preempt_count_add); 5781 NOKPROBE_SYMBOL(preempt_count_add); 5782 5783 /* 5784 * If the value passed in equals to the current preempt count 5785 * then we just enabled preemption. Stop timing the latency. 5786 */ 5787 static inline void preempt_latency_stop(int val) 5788 { 5789 if (preempt_count() == val) 5790 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5791 } 5792 5793 void preempt_count_sub(int val) 5794 { 5795 #ifdef CONFIG_DEBUG_PREEMPT 5796 /* 5797 * Underflow? 5798 */ 5799 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5800 return; 5801 /* 5802 * Is the spinlock portion underflowing? 5803 */ 5804 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5805 !(preempt_count() & PREEMPT_MASK))) 5806 return; 5807 #endif 5808 5809 preempt_latency_stop(val); 5810 __preempt_count_sub(val); 5811 } 5812 EXPORT_SYMBOL(preempt_count_sub); 5813 NOKPROBE_SYMBOL(preempt_count_sub); 5814 5815 #else 5816 static inline void preempt_latency_start(int val) { } 5817 static inline void preempt_latency_stop(int val) { } 5818 #endif 5819 5820 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5821 { 5822 #ifdef CONFIG_DEBUG_PREEMPT 5823 return p->preempt_disable_ip; 5824 #else 5825 return 0; 5826 #endif 5827 } 5828 5829 /* 5830 * Print scheduling while atomic bug: 5831 */ 5832 static noinline void __schedule_bug(struct task_struct *prev) 5833 { 5834 /* Save this before calling printk(), since that will clobber it */ 5835 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5836 5837 if (oops_in_progress) 5838 return; 5839 5840 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5841 prev->comm, prev->pid, preempt_count()); 5842 5843 debug_show_held_locks(prev); 5844 print_modules(); 5845 if (irqs_disabled()) 5846 print_irqtrace_events(prev); 5847 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5848 && in_atomic_preempt_off()) { 5849 pr_err("Preemption disabled at:"); 5850 print_ip_sym(KERN_ERR, preempt_disable_ip); 5851 } 5852 check_panic_on_warn("scheduling while atomic"); 5853 5854 dump_stack(); 5855 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5856 } 5857 5858 /* 5859 * Various schedule()-time debugging checks and statistics: 5860 */ 5861 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5862 { 5863 #ifdef CONFIG_SCHED_STACK_END_CHECK 5864 if (task_stack_end_corrupted(prev)) 5865 panic("corrupted stack end detected inside scheduler\n"); 5866 5867 if (task_scs_end_corrupted(prev)) 5868 panic("corrupted shadow stack detected inside scheduler\n"); 5869 #endif 5870 5871 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5872 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5873 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5874 prev->comm, prev->pid, prev->non_block_count); 5875 dump_stack(); 5876 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5877 } 5878 #endif 5879 5880 if (unlikely(in_atomic_preempt_off())) { 5881 __schedule_bug(prev); 5882 preempt_count_set(PREEMPT_DISABLED); 5883 } 5884 rcu_sleep_check(); 5885 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5886 5887 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5888 5889 schedstat_inc(this_rq()->sched_count); 5890 } 5891 5892 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5893 struct rq_flags *rf) 5894 { 5895 #ifdef CONFIG_SMP 5896 const struct sched_class *class; 5897 /* 5898 * We must do the balancing pass before put_prev_task(), such 5899 * that when we release the rq->lock the task is in the same 5900 * state as before we took rq->lock. 5901 * 5902 * We can terminate the balance pass as soon as we know there is 5903 * a runnable task of @class priority or higher. 5904 */ 5905 for_class_range(class, prev->sched_class, &idle_sched_class) { 5906 if (class->balance(rq, prev, rf)) 5907 break; 5908 } 5909 #endif 5910 5911 put_prev_task(rq, prev); 5912 } 5913 5914 /* 5915 * Pick up the highest-prio task: 5916 */ 5917 static inline struct task_struct * 5918 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5919 { 5920 const struct sched_class *class; 5921 struct task_struct *p; 5922 5923 /* 5924 * Optimization: we know that if all tasks are in the fair class we can 5925 * call that function directly, but only if the @prev task wasn't of a 5926 * higher scheduling class, because otherwise those lose the 5927 * opportunity to pull in more work from other CPUs. 5928 */ 5929 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5930 rq->nr_running == rq->cfs.h_nr_running)) { 5931 5932 p = pick_next_task_fair(rq, prev, rf); 5933 if (unlikely(p == RETRY_TASK)) 5934 goto restart; 5935 5936 /* Assume the next prioritized class is idle_sched_class */ 5937 if (!p) { 5938 put_prev_task(rq, prev); 5939 p = pick_next_task_idle(rq); 5940 } 5941 5942 return p; 5943 } 5944 5945 restart: 5946 put_prev_task_balance(rq, prev, rf); 5947 5948 for_each_class(class) { 5949 p = class->pick_next_task(rq); 5950 if (p) 5951 return p; 5952 } 5953 5954 BUG(); /* The idle class should always have a runnable task. */ 5955 } 5956 5957 #ifdef CONFIG_SCHED_CORE 5958 static inline bool is_task_rq_idle(struct task_struct *t) 5959 { 5960 return (task_rq(t)->idle == t); 5961 } 5962 5963 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5964 { 5965 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5966 } 5967 5968 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5969 { 5970 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5971 return true; 5972 5973 return a->core_cookie == b->core_cookie; 5974 } 5975 5976 static inline struct task_struct *pick_task(struct rq *rq) 5977 { 5978 const struct sched_class *class; 5979 struct task_struct *p; 5980 5981 for_each_class(class) { 5982 p = class->pick_task(rq); 5983 if (p) 5984 return p; 5985 } 5986 5987 BUG(); /* The idle class should always have a runnable task. */ 5988 } 5989 5990 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5991 5992 static void queue_core_balance(struct rq *rq); 5993 5994 static struct task_struct * 5995 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5996 { 5997 struct task_struct *next, *p, *max = NULL; 5998 const struct cpumask *smt_mask; 5999 bool fi_before = false; 6000 bool core_clock_updated = (rq == rq->core); 6001 unsigned long cookie; 6002 int i, cpu, occ = 0; 6003 struct rq *rq_i; 6004 bool need_sync; 6005 6006 if (!sched_core_enabled(rq)) 6007 return __pick_next_task(rq, prev, rf); 6008 6009 cpu = cpu_of(rq); 6010 6011 /* Stopper task is switching into idle, no need core-wide selection. */ 6012 if (cpu_is_offline(cpu)) { 6013 /* 6014 * Reset core_pick so that we don't enter the fastpath when 6015 * coming online. core_pick would already be migrated to 6016 * another cpu during offline. 6017 */ 6018 rq->core_pick = NULL; 6019 return __pick_next_task(rq, prev, rf); 6020 } 6021 6022 /* 6023 * If there were no {en,de}queues since we picked (IOW, the task 6024 * pointers are all still valid), and we haven't scheduled the last 6025 * pick yet, do so now. 6026 * 6027 * rq->core_pick can be NULL if no selection was made for a CPU because 6028 * it was either offline or went offline during a sibling's core-wide 6029 * selection. In this case, do a core-wide selection. 6030 */ 6031 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6032 rq->core->core_pick_seq != rq->core_sched_seq && 6033 rq->core_pick) { 6034 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6035 6036 next = rq->core_pick; 6037 if (next != prev) { 6038 put_prev_task(rq, prev); 6039 set_next_task(rq, next); 6040 } 6041 6042 rq->core_pick = NULL; 6043 goto out; 6044 } 6045 6046 put_prev_task_balance(rq, prev, rf); 6047 6048 smt_mask = cpu_smt_mask(cpu); 6049 need_sync = !!rq->core->core_cookie; 6050 6051 /* reset state */ 6052 rq->core->core_cookie = 0UL; 6053 if (rq->core->core_forceidle_count) { 6054 if (!core_clock_updated) { 6055 update_rq_clock(rq->core); 6056 core_clock_updated = true; 6057 } 6058 sched_core_account_forceidle(rq); 6059 /* reset after accounting force idle */ 6060 rq->core->core_forceidle_start = 0; 6061 rq->core->core_forceidle_count = 0; 6062 rq->core->core_forceidle_occupation = 0; 6063 need_sync = true; 6064 fi_before = true; 6065 } 6066 6067 /* 6068 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6069 * 6070 * @task_seq guards the task state ({en,de}queues) 6071 * @pick_seq is the @task_seq we did a selection on 6072 * @sched_seq is the @pick_seq we scheduled 6073 * 6074 * However, preemptions can cause multiple picks on the same task set. 6075 * 'Fix' this by also increasing @task_seq for every pick. 6076 */ 6077 rq->core->core_task_seq++; 6078 6079 /* 6080 * Optimize for common case where this CPU has no cookies 6081 * and there are no cookied tasks running on siblings. 6082 */ 6083 if (!need_sync) { 6084 next = pick_task(rq); 6085 if (!next->core_cookie) { 6086 rq->core_pick = NULL; 6087 /* 6088 * For robustness, update the min_vruntime_fi for 6089 * unconstrained picks as well. 6090 */ 6091 WARN_ON_ONCE(fi_before); 6092 task_vruntime_update(rq, next, false); 6093 goto out_set_next; 6094 } 6095 } 6096 6097 /* 6098 * For each thread: do the regular task pick and find the max prio task 6099 * amongst them. 6100 * 6101 * Tie-break prio towards the current CPU 6102 */ 6103 for_each_cpu_wrap(i, smt_mask, cpu) { 6104 rq_i = cpu_rq(i); 6105 6106 /* 6107 * Current cpu always has its clock updated on entrance to 6108 * pick_next_task(). If the current cpu is not the core, 6109 * the core may also have been updated above. 6110 */ 6111 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6112 update_rq_clock(rq_i); 6113 6114 p = rq_i->core_pick = pick_task(rq_i); 6115 if (!max || prio_less(max, p, fi_before)) 6116 max = p; 6117 } 6118 6119 cookie = rq->core->core_cookie = max->core_cookie; 6120 6121 /* 6122 * For each thread: try and find a runnable task that matches @max or 6123 * force idle. 6124 */ 6125 for_each_cpu(i, smt_mask) { 6126 rq_i = cpu_rq(i); 6127 p = rq_i->core_pick; 6128 6129 if (!cookie_equals(p, cookie)) { 6130 p = NULL; 6131 if (cookie) 6132 p = sched_core_find(rq_i, cookie); 6133 if (!p) 6134 p = idle_sched_class.pick_task(rq_i); 6135 } 6136 6137 rq_i->core_pick = p; 6138 6139 if (p == rq_i->idle) { 6140 if (rq_i->nr_running) { 6141 rq->core->core_forceidle_count++; 6142 if (!fi_before) 6143 rq->core->core_forceidle_seq++; 6144 } 6145 } else { 6146 occ++; 6147 } 6148 } 6149 6150 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6151 rq->core->core_forceidle_start = rq_clock(rq->core); 6152 rq->core->core_forceidle_occupation = occ; 6153 } 6154 6155 rq->core->core_pick_seq = rq->core->core_task_seq; 6156 next = rq->core_pick; 6157 rq->core_sched_seq = rq->core->core_pick_seq; 6158 6159 /* Something should have been selected for current CPU */ 6160 WARN_ON_ONCE(!next); 6161 6162 /* 6163 * Reschedule siblings 6164 * 6165 * NOTE: L1TF -- at this point we're no longer running the old task and 6166 * sending an IPI (below) ensures the sibling will no longer be running 6167 * their task. This ensures there is no inter-sibling overlap between 6168 * non-matching user state. 6169 */ 6170 for_each_cpu(i, smt_mask) { 6171 rq_i = cpu_rq(i); 6172 6173 /* 6174 * An online sibling might have gone offline before a task 6175 * could be picked for it, or it might be offline but later 6176 * happen to come online, but its too late and nothing was 6177 * picked for it. That's Ok - it will pick tasks for itself, 6178 * so ignore it. 6179 */ 6180 if (!rq_i->core_pick) 6181 continue; 6182 6183 /* 6184 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6185 * fi_before fi update? 6186 * 0 0 1 6187 * 0 1 1 6188 * 1 0 1 6189 * 1 1 0 6190 */ 6191 if (!(fi_before && rq->core->core_forceidle_count)) 6192 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6193 6194 rq_i->core_pick->core_occupation = occ; 6195 6196 if (i == cpu) { 6197 rq_i->core_pick = NULL; 6198 continue; 6199 } 6200 6201 /* Did we break L1TF mitigation requirements? */ 6202 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6203 6204 if (rq_i->curr == rq_i->core_pick) { 6205 rq_i->core_pick = NULL; 6206 continue; 6207 } 6208 6209 resched_curr(rq_i); 6210 } 6211 6212 out_set_next: 6213 set_next_task(rq, next); 6214 out: 6215 if (rq->core->core_forceidle_count && next == rq->idle) 6216 queue_core_balance(rq); 6217 6218 return next; 6219 } 6220 6221 static bool try_steal_cookie(int this, int that) 6222 { 6223 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6224 struct task_struct *p; 6225 unsigned long cookie; 6226 bool success = false; 6227 6228 local_irq_disable(); 6229 double_rq_lock(dst, src); 6230 6231 cookie = dst->core->core_cookie; 6232 if (!cookie) 6233 goto unlock; 6234 6235 if (dst->curr != dst->idle) 6236 goto unlock; 6237 6238 p = sched_core_find(src, cookie); 6239 if (p == src->idle) 6240 goto unlock; 6241 6242 do { 6243 if (p == src->core_pick || p == src->curr) 6244 goto next; 6245 6246 if (!is_cpu_allowed(p, this)) 6247 goto next; 6248 6249 if (p->core_occupation > dst->idle->core_occupation) 6250 goto next; 6251 6252 deactivate_task(src, p, 0); 6253 set_task_cpu(p, this); 6254 activate_task(dst, p, 0); 6255 6256 resched_curr(dst); 6257 6258 success = true; 6259 break; 6260 6261 next: 6262 p = sched_core_next(p, cookie); 6263 } while (p); 6264 6265 unlock: 6266 double_rq_unlock(dst, src); 6267 local_irq_enable(); 6268 6269 return success; 6270 } 6271 6272 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6273 { 6274 int i; 6275 6276 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6277 if (i == cpu) 6278 continue; 6279 6280 if (need_resched()) 6281 break; 6282 6283 if (try_steal_cookie(cpu, i)) 6284 return true; 6285 } 6286 6287 return false; 6288 } 6289 6290 static void sched_core_balance(struct rq *rq) 6291 { 6292 struct sched_domain *sd; 6293 int cpu = cpu_of(rq); 6294 6295 preempt_disable(); 6296 rcu_read_lock(); 6297 raw_spin_rq_unlock_irq(rq); 6298 for_each_domain(cpu, sd) { 6299 if (need_resched()) 6300 break; 6301 6302 if (steal_cookie_task(cpu, sd)) 6303 break; 6304 } 6305 raw_spin_rq_lock_irq(rq); 6306 rcu_read_unlock(); 6307 preempt_enable(); 6308 } 6309 6310 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6311 6312 static void queue_core_balance(struct rq *rq) 6313 { 6314 if (!sched_core_enabled(rq)) 6315 return; 6316 6317 if (!rq->core->core_cookie) 6318 return; 6319 6320 if (!rq->nr_running) /* not forced idle */ 6321 return; 6322 6323 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6324 } 6325 6326 static void sched_core_cpu_starting(unsigned int cpu) 6327 { 6328 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6329 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6330 unsigned long flags; 6331 int t; 6332 6333 sched_core_lock(cpu, &flags); 6334 6335 WARN_ON_ONCE(rq->core != rq); 6336 6337 /* if we're the first, we'll be our own leader */ 6338 if (cpumask_weight(smt_mask) == 1) 6339 goto unlock; 6340 6341 /* find the leader */ 6342 for_each_cpu(t, smt_mask) { 6343 if (t == cpu) 6344 continue; 6345 rq = cpu_rq(t); 6346 if (rq->core == rq) { 6347 core_rq = rq; 6348 break; 6349 } 6350 } 6351 6352 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6353 goto unlock; 6354 6355 /* install and validate core_rq */ 6356 for_each_cpu(t, smt_mask) { 6357 rq = cpu_rq(t); 6358 6359 if (t == cpu) 6360 rq->core = core_rq; 6361 6362 WARN_ON_ONCE(rq->core != core_rq); 6363 } 6364 6365 unlock: 6366 sched_core_unlock(cpu, &flags); 6367 } 6368 6369 static void sched_core_cpu_deactivate(unsigned int cpu) 6370 { 6371 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6372 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6373 unsigned long flags; 6374 int t; 6375 6376 sched_core_lock(cpu, &flags); 6377 6378 /* if we're the last man standing, nothing to do */ 6379 if (cpumask_weight(smt_mask) == 1) { 6380 WARN_ON_ONCE(rq->core != rq); 6381 goto unlock; 6382 } 6383 6384 /* if we're not the leader, nothing to do */ 6385 if (rq->core != rq) 6386 goto unlock; 6387 6388 /* find a new leader */ 6389 for_each_cpu(t, smt_mask) { 6390 if (t == cpu) 6391 continue; 6392 core_rq = cpu_rq(t); 6393 break; 6394 } 6395 6396 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6397 goto unlock; 6398 6399 /* copy the shared state to the new leader */ 6400 core_rq->core_task_seq = rq->core_task_seq; 6401 core_rq->core_pick_seq = rq->core_pick_seq; 6402 core_rq->core_cookie = rq->core_cookie; 6403 core_rq->core_forceidle_count = rq->core_forceidle_count; 6404 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6405 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6406 6407 /* 6408 * Accounting edge for forced idle is handled in pick_next_task(). 6409 * Don't need another one here, since the hotplug thread shouldn't 6410 * have a cookie. 6411 */ 6412 core_rq->core_forceidle_start = 0; 6413 6414 /* install new leader */ 6415 for_each_cpu(t, smt_mask) { 6416 rq = cpu_rq(t); 6417 rq->core = core_rq; 6418 } 6419 6420 unlock: 6421 sched_core_unlock(cpu, &flags); 6422 } 6423 6424 static inline void sched_core_cpu_dying(unsigned int cpu) 6425 { 6426 struct rq *rq = cpu_rq(cpu); 6427 6428 if (rq->core != rq) 6429 rq->core = rq; 6430 } 6431 6432 #else /* !CONFIG_SCHED_CORE */ 6433 6434 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6435 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6436 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6437 6438 static struct task_struct * 6439 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6440 { 6441 return __pick_next_task(rq, prev, rf); 6442 } 6443 6444 #endif /* CONFIG_SCHED_CORE */ 6445 6446 /* 6447 * Constants for the sched_mode argument of __schedule(). 6448 * 6449 * The mode argument allows RT enabled kernels to differentiate a 6450 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6451 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6452 * optimize the AND operation out and just check for zero. 6453 */ 6454 #define SM_NONE 0x0 6455 #define SM_PREEMPT 0x1 6456 #define SM_RTLOCK_WAIT 0x2 6457 6458 #ifndef CONFIG_PREEMPT_RT 6459 # define SM_MASK_PREEMPT (~0U) 6460 #else 6461 # define SM_MASK_PREEMPT SM_PREEMPT 6462 #endif 6463 6464 /* 6465 * __schedule() is the main scheduler function. 6466 * 6467 * The main means of driving the scheduler and thus entering this function are: 6468 * 6469 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6470 * 6471 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6472 * paths. For example, see arch/x86/entry_64.S. 6473 * 6474 * To drive preemption between tasks, the scheduler sets the flag in timer 6475 * interrupt handler scheduler_tick(). 6476 * 6477 * 3. Wakeups don't really cause entry into schedule(). They add a 6478 * task to the run-queue and that's it. 6479 * 6480 * Now, if the new task added to the run-queue preempts the current 6481 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6482 * called on the nearest possible occasion: 6483 * 6484 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6485 * 6486 * - in syscall or exception context, at the next outmost 6487 * preempt_enable(). (this might be as soon as the wake_up()'s 6488 * spin_unlock()!) 6489 * 6490 * - in IRQ context, return from interrupt-handler to 6491 * preemptible context 6492 * 6493 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6494 * then at the next: 6495 * 6496 * - cond_resched() call 6497 * - explicit schedule() call 6498 * - return from syscall or exception to user-space 6499 * - return from interrupt-handler to user-space 6500 * 6501 * WARNING: must be called with preemption disabled! 6502 */ 6503 static void __sched notrace __schedule(unsigned int sched_mode) 6504 { 6505 struct task_struct *prev, *next; 6506 unsigned long *switch_count; 6507 unsigned long prev_state; 6508 struct rq_flags rf; 6509 struct rq *rq; 6510 int cpu; 6511 6512 cpu = smp_processor_id(); 6513 rq = cpu_rq(cpu); 6514 prev = rq->curr; 6515 6516 schedule_debug(prev, !!sched_mode); 6517 6518 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6519 hrtick_clear(rq); 6520 6521 local_irq_disable(); 6522 rcu_note_context_switch(!!sched_mode); 6523 6524 /* 6525 * Make sure that signal_pending_state()->signal_pending() below 6526 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6527 * done by the caller to avoid the race with signal_wake_up(): 6528 * 6529 * __set_current_state(@state) signal_wake_up() 6530 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6531 * wake_up_state(p, state) 6532 * LOCK rq->lock LOCK p->pi_state 6533 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6534 * if (signal_pending_state()) if (p->state & @state) 6535 * 6536 * Also, the membarrier system call requires a full memory barrier 6537 * after coming from user-space, before storing to rq->curr. 6538 */ 6539 rq_lock(rq, &rf); 6540 smp_mb__after_spinlock(); 6541 6542 /* Promote REQ to ACT */ 6543 rq->clock_update_flags <<= 1; 6544 update_rq_clock(rq); 6545 6546 switch_count = &prev->nivcsw; 6547 6548 /* 6549 * We must load prev->state once (task_struct::state is volatile), such 6550 * that we form a control dependency vs deactivate_task() below. 6551 */ 6552 prev_state = READ_ONCE(prev->__state); 6553 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6554 if (signal_pending_state(prev_state, prev)) { 6555 WRITE_ONCE(prev->__state, TASK_RUNNING); 6556 } else { 6557 prev->sched_contributes_to_load = 6558 (prev_state & TASK_UNINTERRUPTIBLE) && 6559 !(prev_state & TASK_NOLOAD) && 6560 !(prev_state & TASK_FROZEN); 6561 6562 if (prev->sched_contributes_to_load) 6563 rq->nr_uninterruptible++; 6564 6565 /* 6566 * __schedule() ttwu() 6567 * prev_state = prev->state; if (p->on_rq && ...) 6568 * if (prev_state) goto out; 6569 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6570 * p->state = TASK_WAKING 6571 * 6572 * Where __schedule() and ttwu() have matching control dependencies. 6573 * 6574 * After this, schedule() must not care about p->state any more. 6575 */ 6576 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6577 6578 if (prev->in_iowait) { 6579 atomic_inc(&rq->nr_iowait); 6580 delayacct_blkio_start(); 6581 } 6582 } 6583 switch_count = &prev->nvcsw; 6584 } 6585 6586 next = pick_next_task(rq, prev, &rf); 6587 clear_tsk_need_resched(prev); 6588 clear_preempt_need_resched(); 6589 #ifdef CONFIG_SCHED_DEBUG 6590 rq->last_seen_need_resched_ns = 0; 6591 #endif 6592 6593 if (likely(prev != next)) { 6594 rq->nr_switches++; 6595 /* 6596 * RCU users of rcu_dereference(rq->curr) may not see 6597 * changes to task_struct made by pick_next_task(). 6598 */ 6599 RCU_INIT_POINTER(rq->curr, next); 6600 /* 6601 * The membarrier system call requires each architecture 6602 * to have a full memory barrier after updating 6603 * rq->curr, before returning to user-space. 6604 * 6605 * Here are the schemes providing that barrier on the 6606 * various architectures: 6607 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6608 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6609 * - finish_lock_switch() for weakly-ordered 6610 * architectures where spin_unlock is a full barrier, 6611 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6612 * is a RELEASE barrier), 6613 */ 6614 ++*switch_count; 6615 6616 migrate_disable_switch(rq, prev); 6617 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6618 6619 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6620 6621 /* Also unlocks the rq: */ 6622 rq = context_switch(rq, prev, next, &rf); 6623 } else { 6624 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6625 6626 rq_unpin_lock(rq, &rf); 6627 __balance_callbacks(rq); 6628 raw_spin_rq_unlock_irq(rq); 6629 } 6630 } 6631 6632 void __noreturn do_task_dead(void) 6633 { 6634 /* Causes final put_task_struct in finish_task_switch(): */ 6635 set_special_state(TASK_DEAD); 6636 6637 /* Tell freezer to ignore us: */ 6638 current->flags |= PF_NOFREEZE; 6639 6640 __schedule(SM_NONE); 6641 BUG(); 6642 6643 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6644 for (;;) 6645 cpu_relax(); 6646 } 6647 6648 static inline void sched_submit_work(struct task_struct *tsk) 6649 { 6650 unsigned int task_flags; 6651 6652 if (task_is_running(tsk)) 6653 return; 6654 6655 task_flags = tsk->flags; 6656 /* 6657 * If a worker goes to sleep, notify and ask workqueue whether it 6658 * wants to wake up a task to maintain concurrency. 6659 */ 6660 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6661 if (task_flags & PF_WQ_WORKER) 6662 wq_worker_sleeping(tsk); 6663 else 6664 io_wq_worker_sleeping(tsk); 6665 } 6666 6667 /* 6668 * spinlock and rwlock must not flush block requests. This will 6669 * deadlock if the callback attempts to acquire a lock which is 6670 * already acquired. 6671 */ 6672 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6673 6674 /* 6675 * If we are going to sleep and we have plugged IO queued, 6676 * make sure to submit it to avoid deadlocks. 6677 */ 6678 blk_flush_plug(tsk->plug, true); 6679 } 6680 6681 static void sched_update_worker(struct task_struct *tsk) 6682 { 6683 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6684 if (tsk->flags & PF_WQ_WORKER) 6685 wq_worker_running(tsk); 6686 else 6687 io_wq_worker_running(tsk); 6688 } 6689 } 6690 6691 asmlinkage __visible void __sched schedule(void) 6692 { 6693 struct task_struct *tsk = current; 6694 6695 sched_submit_work(tsk); 6696 do { 6697 preempt_disable(); 6698 __schedule(SM_NONE); 6699 sched_preempt_enable_no_resched(); 6700 } while (need_resched()); 6701 sched_update_worker(tsk); 6702 } 6703 EXPORT_SYMBOL(schedule); 6704 6705 /* 6706 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6707 * state (have scheduled out non-voluntarily) by making sure that all 6708 * tasks have either left the run queue or have gone into user space. 6709 * As idle tasks do not do either, they must not ever be preempted 6710 * (schedule out non-voluntarily). 6711 * 6712 * schedule_idle() is similar to schedule_preempt_disable() except that it 6713 * never enables preemption because it does not call sched_submit_work(). 6714 */ 6715 void __sched schedule_idle(void) 6716 { 6717 /* 6718 * As this skips calling sched_submit_work(), which the idle task does 6719 * regardless because that function is a nop when the task is in a 6720 * TASK_RUNNING state, make sure this isn't used someplace that the 6721 * current task can be in any other state. Note, idle is always in the 6722 * TASK_RUNNING state. 6723 */ 6724 WARN_ON_ONCE(current->__state); 6725 do { 6726 __schedule(SM_NONE); 6727 } while (need_resched()); 6728 } 6729 6730 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6731 asmlinkage __visible void __sched schedule_user(void) 6732 { 6733 /* 6734 * If we come here after a random call to set_need_resched(), 6735 * or we have been woken up remotely but the IPI has not yet arrived, 6736 * we haven't yet exited the RCU idle mode. Do it here manually until 6737 * we find a better solution. 6738 * 6739 * NB: There are buggy callers of this function. Ideally we 6740 * should warn if prev_state != CONTEXT_USER, but that will trigger 6741 * too frequently to make sense yet. 6742 */ 6743 enum ctx_state prev_state = exception_enter(); 6744 schedule(); 6745 exception_exit(prev_state); 6746 } 6747 #endif 6748 6749 /** 6750 * schedule_preempt_disabled - called with preemption disabled 6751 * 6752 * Returns with preemption disabled. Note: preempt_count must be 1 6753 */ 6754 void __sched schedule_preempt_disabled(void) 6755 { 6756 sched_preempt_enable_no_resched(); 6757 schedule(); 6758 preempt_disable(); 6759 } 6760 6761 #ifdef CONFIG_PREEMPT_RT 6762 void __sched notrace schedule_rtlock(void) 6763 { 6764 do { 6765 preempt_disable(); 6766 __schedule(SM_RTLOCK_WAIT); 6767 sched_preempt_enable_no_resched(); 6768 } while (need_resched()); 6769 } 6770 NOKPROBE_SYMBOL(schedule_rtlock); 6771 #endif 6772 6773 static void __sched notrace preempt_schedule_common(void) 6774 { 6775 do { 6776 /* 6777 * Because the function tracer can trace preempt_count_sub() 6778 * and it also uses preempt_enable/disable_notrace(), if 6779 * NEED_RESCHED is set, the preempt_enable_notrace() called 6780 * by the function tracer will call this function again and 6781 * cause infinite recursion. 6782 * 6783 * Preemption must be disabled here before the function 6784 * tracer can trace. Break up preempt_disable() into two 6785 * calls. One to disable preemption without fear of being 6786 * traced. The other to still record the preemption latency, 6787 * which can also be traced by the function tracer. 6788 */ 6789 preempt_disable_notrace(); 6790 preempt_latency_start(1); 6791 __schedule(SM_PREEMPT); 6792 preempt_latency_stop(1); 6793 preempt_enable_no_resched_notrace(); 6794 6795 /* 6796 * Check again in case we missed a preemption opportunity 6797 * between schedule and now. 6798 */ 6799 } while (need_resched()); 6800 } 6801 6802 #ifdef CONFIG_PREEMPTION 6803 /* 6804 * This is the entry point to schedule() from in-kernel preemption 6805 * off of preempt_enable. 6806 */ 6807 asmlinkage __visible void __sched notrace preempt_schedule(void) 6808 { 6809 /* 6810 * If there is a non-zero preempt_count or interrupts are disabled, 6811 * we do not want to preempt the current task. Just return.. 6812 */ 6813 if (likely(!preemptible())) 6814 return; 6815 preempt_schedule_common(); 6816 } 6817 NOKPROBE_SYMBOL(preempt_schedule); 6818 EXPORT_SYMBOL(preempt_schedule); 6819 6820 #ifdef CONFIG_PREEMPT_DYNAMIC 6821 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6822 #ifndef preempt_schedule_dynamic_enabled 6823 #define preempt_schedule_dynamic_enabled preempt_schedule 6824 #define preempt_schedule_dynamic_disabled NULL 6825 #endif 6826 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6827 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6828 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6829 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6830 void __sched notrace dynamic_preempt_schedule(void) 6831 { 6832 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6833 return; 6834 preempt_schedule(); 6835 } 6836 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6837 EXPORT_SYMBOL(dynamic_preempt_schedule); 6838 #endif 6839 #endif 6840 6841 /** 6842 * preempt_schedule_notrace - preempt_schedule called by tracing 6843 * 6844 * The tracing infrastructure uses preempt_enable_notrace to prevent 6845 * recursion and tracing preempt enabling caused by the tracing 6846 * infrastructure itself. But as tracing can happen in areas coming 6847 * from userspace or just about to enter userspace, a preempt enable 6848 * can occur before user_exit() is called. This will cause the scheduler 6849 * to be called when the system is still in usermode. 6850 * 6851 * To prevent this, the preempt_enable_notrace will use this function 6852 * instead of preempt_schedule() to exit user context if needed before 6853 * calling the scheduler. 6854 */ 6855 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6856 { 6857 enum ctx_state prev_ctx; 6858 6859 if (likely(!preemptible())) 6860 return; 6861 6862 do { 6863 /* 6864 * Because the function tracer can trace preempt_count_sub() 6865 * and it also uses preempt_enable/disable_notrace(), if 6866 * NEED_RESCHED is set, the preempt_enable_notrace() called 6867 * by the function tracer will call this function again and 6868 * cause infinite recursion. 6869 * 6870 * Preemption must be disabled here before the function 6871 * tracer can trace. Break up preempt_disable() into two 6872 * calls. One to disable preemption without fear of being 6873 * traced. The other to still record the preemption latency, 6874 * which can also be traced by the function tracer. 6875 */ 6876 preempt_disable_notrace(); 6877 preempt_latency_start(1); 6878 /* 6879 * Needs preempt disabled in case user_exit() is traced 6880 * and the tracer calls preempt_enable_notrace() causing 6881 * an infinite recursion. 6882 */ 6883 prev_ctx = exception_enter(); 6884 __schedule(SM_PREEMPT); 6885 exception_exit(prev_ctx); 6886 6887 preempt_latency_stop(1); 6888 preempt_enable_no_resched_notrace(); 6889 } while (need_resched()); 6890 } 6891 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6892 6893 #ifdef CONFIG_PREEMPT_DYNAMIC 6894 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6895 #ifndef preempt_schedule_notrace_dynamic_enabled 6896 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6897 #define preempt_schedule_notrace_dynamic_disabled NULL 6898 #endif 6899 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6900 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6901 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6902 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6903 void __sched notrace dynamic_preempt_schedule_notrace(void) 6904 { 6905 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6906 return; 6907 preempt_schedule_notrace(); 6908 } 6909 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6910 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6911 #endif 6912 #endif 6913 6914 #endif /* CONFIG_PREEMPTION */ 6915 6916 /* 6917 * This is the entry point to schedule() from kernel preemption 6918 * off of irq context. 6919 * Note, that this is called and return with irqs disabled. This will 6920 * protect us against recursive calling from irq. 6921 */ 6922 asmlinkage __visible void __sched preempt_schedule_irq(void) 6923 { 6924 enum ctx_state prev_state; 6925 6926 /* Catch callers which need to be fixed */ 6927 BUG_ON(preempt_count() || !irqs_disabled()); 6928 6929 prev_state = exception_enter(); 6930 6931 do { 6932 preempt_disable(); 6933 local_irq_enable(); 6934 __schedule(SM_PREEMPT); 6935 local_irq_disable(); 6936 sched_preempt_enable_no_resched(); 6937 } while (need_resched()); 6938 6939 exception_exit(prev_state); 6940 } 6941 6942 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6943 void *key) 6944 { 6945 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6946 return try_to_wake_up(curr->private, mode, wake_flags); 6947 } 6948 EXPORT_SYMBOL(default_wake_function); 6949 6950 static void __setscheduler_prio(struct task_struct *p, int prio) 6951 { 6952 if (dl_prio(prio)) 6953 p->sched_class = &dl_sched_class; 6954 else if (rt_prio(prio)) 6955 p->sched_class = &rt_sched_class; 6956 else 6957 p->sched_class = &fair_sched_class; 6958 6959 p->prio = prio; 6960 } 6961 6962 #ifdef CONFIG_RT_MUTEXES 6963 6964 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6965 { 6966 if (pi_task) 6967 prio = min(prio, pi_task->prio); 6968 6969 return prio; 6970 } 6971 6972 static inline int rt_effective_prio(struct task_struct *p, int prio) 6973 { 6974 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6975 6976 return __rt_effective_prio(pi_task, prio); 6977 } 6978 6979 /* 6980 * rt_mutex_setprio - set the current priority of a task 6981 * @p: task to boost 6982 * @pi_task: donor task 6983 * 6984 * This function changes the 'effective' priority of a task. It does 6985 * not touch ->normal_prio like __setscheduler(). 6986 * 6987 * Used by the rt_mutex code to implement priority inheritance 6988 * logic. Call site only calls if the priority of the task changed. 6989 */ 6990 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6991 { 6992 int prio, oldprio, queued, running, queue_flag = 6993 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6994 const struct sched_class *prev_class; 6995 struct rq_flags rf; 6996 struct rq *rq; 6997 6998 /* XXX used to be waiter->prio, not waiter->task->prio */ 6999 prio = __rt_effective_prio(pi_task, p->normal_prio); 7000 7001 /* 7002 * If nothing changed; bail early. 7003 */ 7004 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7005 return; 7006 7007 rq = __task_rq_lock(p, &rf); 7008 update_rq_clock(rq); 7009 /* 7010 * Set under pi_lock && rq->lock, such that the value can be used under 7011 * either lock. 7012 * 7013 * Note that there is loads of tricky to make this pointer cache work 7014 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7015 * ensure a task is de-boosted (pi_task is set to NULL) before the 7016 * task is allowed to run again (and can exit). This ensures the pointer 7017 * points to a blocked task -- which guarantees the task is present. 7018 */ 7019 p->pi_top_task = pi_task; 7020 7021 /* 7022 * For FIFO/RR we only need to set prio, if that matches we're done. 7023 */ 7024 if (prio == p->prio && !dl_prio(prio)) 7025 goto out_unlock; 7026 7027 /* 7028 * Idle task boosting is a nono in general. There is one 7029 * exception, when PREEMPT_RT and NOHZ is active: 7030 * 7031 * The idle task calls get_next_timer_interrupt() and holds 7032 * the timer wheel base->lock on the CPU and another CPU wants 7033 * to access the timer (probably to cancel it). We can safely 7034 * ignore the boosting request, as the idle CPU runs this code 7035 * with interrupts disabled and will complete the lock 7036 * protected section without being interrupted. So there is no 7037 * real need to boost. 7038 */ 7039 if (unlikely(p == rq->idle)) { 7040 WARN_ON(p != rq->curr); 7041 WARN_ON(p->pi_blocked_on); 7042 goto out_unlock; 7043 } 7044 7045 trace_sched_pi_setprio(p, pi_task); 7046 oldprio = p->prio; 7047 7048 if (oldprio == prio) 7049 queue_flag &= ~DEQUEUE_MOVE; 7050 7051 prev_class = p->sched_class; 7052 queued = task_on_rq_queued(p); 7053 running = task_current(rq, p); 7054 if (queued) 7055 dequeue_task(rq, p, queue_flag); 7056 if (running) 7057 put_prev_task(rq, p); 7058 7059 /* 7060 * Boosting condition are: 7061 * 1. -rt task is running and holds mutex A 7062 * --> -dl task blocks on mutex A 7063 * 7064 * 2. -dl task is running and holds mutex A 7065 * --> -dl task blocks on mutex A and could preempt the 7066 * running task 7067 */ 7068 if (dl_prio(prio)) { 7069 if (!dl_prio(p->normal_prio) || 7070 (pi_task && dl_prio(pi_task->prio) && 7071 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7072 p->dl.pi_se = pi_task->dl.pi_se; 7073 queue_flag |= ENQUEUE_REPLENISH; 7074 } else { 7075 p->dl.pi_se = &p->dl; 7076 } 7077 } else if (rt_prio(prio)) { 7078 if (dl_prio(oldprio)) 7079 p->dl.pi_se = &p->dl; 7080 if (oldprio < prio) 7081 queue_flag |= ENQUEUE_HEAD; 7082 } else { 7083 if (dl_prio(oldprio)) 7084 p->dl.pi_se = &p->dl; 7085 if (rt_prio(oldprio)) 7086 p->rt.timeout = 0; 7087 } 7088 7089 __setscheduler_prio(p, prio); 7090 7091 if (queued) 7092 enqueue_task(rq, p, queue_flag); 7093 if (running) 7094 set_next_task(rq, p); 7095 7096 check_class_changed(rq, p, prev_class, oldprio); 7097 out_unlock: 7098 /* Avoid rq from going away on us: */ 7099 preempt_disable(); 7100 7101 rq_unpin_lock(rq, &rf); 7102 __balance_callbacks(rq); 7103 raw_spin_rq_unlock(rq); 7104 7105 preempt_enable(); 7106 } 7107 #else 7108 static inline int rt_effective_prio(struct task_struct *p, int prio) 7109 { 7110 return prio; 7111 } 7112 #endif 7113 7114 void set_user_nice(struct task_struct *p, long nice) 7115 { 7116 bool queued, running; 7117 int old_prio; 7118 struct rq_flags rf; 7119 struct rq *rq; 7120 7121 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7122 return; 7123 /* 7124 * We have to be careful, if called from sys_setpriority(), 7125 * the task might be in the middle of scheduling on another CPU. 7126 */ 7127 rq = task_rq_lock(p, &rf); 7128 update_rq_clock(rq); 7129 7130 /* 7131 * The RT priorities are set via sched_setscheduler(), but we still 7132 * allow the 'normal' nice value to be set - but as expected 7133 * it won't have any effect on scheduling until the task is 7134 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7135 */ 7136 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7137 p->static_prio = NICE_TO_PRIO(nice); 7138 goto out_unlock; 7139 } 7140 queued = task_on_rq_queued(p); 7141 running = task_current(rq, p); 7142 if (queued) 7143 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7144 if (running) 7145 put_prev_task(rq, p); 7146 7147 p->static_prio = NICE_TO_PRIO(nice); 7148 set_load_weight(p, true); 7149 old_prio = p->prio; 7150 p->prio = effective_prio(p); 7151 7152 if (queued) 7153 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7154 if (running) 7155 set_next_task(rq, p); 7156 7157 /* 7158 * If the task increased its priority or is running and 7159 * lowered its priority, then reschedule its CPU: 7160 */ 7161 p->sched_class->prio_changed(rq, p, old_prio); 7162 7163 out_unlock: 7164 task_rq_unlock(rq, p, &rf); 7165 } 7166 EXPORT_SYMBOL(set_user_nice); 7167 7168 /* 7169 * is_nice_reduction - check if nice value is an actual reduction 7170 * 7171 * Similar to can_nice() but does not perform a capability check. 7172 * 7173 * @p: task 7174 * @nice: nice value 7175 */ 7176 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7177 { 7178 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7179 int nice_rlim = nice_to_rlimit(nice); 7180 7181 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7182 } 7183 7184 /* 7185 * can_nice - check if a task can reduce its nice value 7186 * @p: task 7187 * @nice: nice value 7188 */ 7189 int can_nice(const struct task_struct *p, const int nice) 7190 { 7191 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7192 } 7193 7194 #ifdef __ARCH_WANT_SYS_NICE 7195 7196 /* 7197 * sys_nice - change the priority of the current process. 7198 * @increment: priority increment 7199 * 7200 * sys_setpriority is a more generic, but much slower function that 7201 * does similar things. 7202 */ 7203 SYSCALL_DEFINE1(nice, int, increment) 7204 { 7205 long nice, retval; 7206 7207 /* 7208 * Setpriority might change our priority at the same moment. 7209 * We don't have to worry. Conceptually one call occurs first 7210 * and we have a single winner. 7211 */ 7212 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7213 nice = task_nice(current) + increment; 7214 7215 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7216 if (increment < 0 && !can_nice(current, nice)) 7217 return -EPERM; 7218 7219 retval = security_task_setnice(current, nice); 7220 if (retval) 7221 return retval; 7222 7223 set_user_nice(current, nice); 7224 return 0; 7225 } 7226 7227 #endif 7228 7229 /** 7230 * task_prio - return the priority value of a given task. 7231 * @p: the task in question. 7232 * 7233 * Return: The priority value as seen by users in /proc. 7234 * 7235 * sched policy return value kernel prio user prio/nice 7236 * 7237 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7238 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7239 * deadline -101 -1 0 7240 */ 7241 int task_prio(const struct task_struct *p) 7242 { 7243 return p->prio - MAX_RT_PRIO; 7244 } 7245 7246 /** 7247 * idle_cpu - is a given CPU idle currently? 7248 * @cpu: the processor in question. 7249 * 7250 * Return: 1 if the CPU is currently idle. 0 otherwise. 7251 */ 7252 int idle_cpu(int cpu) 7253 { 7254 struct rq *rq = cpu_rq(cpu); 7255 7256 if (rq->curr != rq->idle) 7257 return 0; 7258 7259 if (rq->nr_running) 7260 return 0; 7261 7262 #ifdef CONFIG_SMP 7263 if (rq->ttwu_pending) 7264 return 0; 7265 #endif 7266 7267 return 1; 7268 } 7269 7270 /** 7271 * available_idle_cpu - is a given CPU idle for enqueuing work. 7272 * @cpu: the CPU in question. 7273 * 7274 * Return: 1 if the CPU is currently idle. 0 otherwise. 7275 */ 7276 int available_idle_cpu(int cpu) 7277 { 7278 if (!idle_cpu(cpu)) 7279 return 0; 7280 7281 if (vcpu_is_preempted(cpu)) 7282 return 0; 7283 7284 return 1; 7285 } 7286 7287 /** 7288 * idle_task - return the idle task for a given CPU. 7289 * @cpu: the processor in question. 7290 * 7291 * Return: The idle task for the CPU @cpu. 7292 */ 7293 struct task_struct *idle_task(int cpu) 7294 { 7295 return cpu_rq(cpu)->idle; 7296 } 7297 7298 #ifdef CONFIG_SMP 7299 /* 7300 * This function computes an effective utilization for the given CPU, to be 7301 * used for frequency selection given the linear relation: f = u * f_max. 7302 * 7303 * The scheduler tracks the following metrics: 7304 * 7305 * cpu_util_{cfs,rt,dl,irq}() 7306 * cpu_bw_dl() 7307 * 7308 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7309 * synchronized windows and are thus directly comparable. 7310 * 7311 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7312 * which excludes things like IRQ and steal-time. These latter are then accrued 7313 * in the irq utilization. 7314 * 7315 * The DL bandwidth number otoh is not a measured metric but a value computed 7316 * based on the task model parameters and gives the minimal utilization 7317 * required to meet deadlines. 7318 */ 7319 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7320 enum cpu_util_type type, 7321 struct task_struct *p) 7322 { 7323 unsigned long dl_util, util, irq, max; 7324 struct rq *rq = cpu_rq(cpu); 7325 7326 max = arch_scale_cpu_capacity(cpu); 7327 7328 if (!uclamp_is_used() && 7329 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7330 return max; 7331 } 7332 7333 /* 7334 * Early check to see if IRQ/steal time saturates the CPU, can be 7335 * because of inaccuracies in how we track these -- see 7336 * update_irq_load_avg(). 7337 */ 7338 irq = cpu_util_irq(rq); 7339 if (unlikely(irq >= max)) 7340 return max; 7341 7342 /* 7343 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7344 * CFS tasks and we use the same metric to track the effective 7345 * utilization (PELT windows are synchronized) we can directly add them 7346 * to obtain the CPU's actual utilization. 7347 * 7348 * CFS and RT utilization can be boosted or capped, depending on 7349 * utilization clamp constraints requested by currently RUNNABLE 7350 * tasks. 7351 * When there are no CFS RUNNABLE tasks, clamps are released and 7352 * frequency will be gracefully reduced with the utilization decay. 7353 */ 7354 util = util_cfs + cpu_util_rt(rq); 7355 if (type == FREQUENCY_UTIL) 7356 util = uclamp_rq_util_with(rq, util, p); 7357 7358 dl_util = cpu_util_dl(rq); 7359 7360 /* 7361 * For frequency selection we do not make cpu_util_dl() a permanent part 7362 * of this sum because we want to use cpu_bw_dl() later on, but we need 7363 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7364 * that we select f_max when there is no idle time. 7365 * 7366 * NOTE: numerical errors or stop class might cause us to not quite hit 7367 * saturation when we should -- something for later. 7368 */ 7369 if (util + dl_util >= max) 7370 return max; 7371 7372 /* 7373 * OTOH, for energy computation we need the estimated running time, so 7374 * include util_dl and ignore dl_bw. 7375 */ 7376 if (type == ENERGY_UTIL) 7377 util += dl_util; 7378 7379 /* 7380 * There is still idle time; further improve the number by using the 7381 * irq metric. Because IRQ/steal time is hidden from the task clock we 7382 * need to scale the task numbers: 7383 * 7384 * max - irq 7385 * U' = irq + --------- * U 7386 * max 7387 */ 7388 util = scale_irq_capacity(util, irq, max); 7389 util += irq; 7390 7391 /* 7392 * Bandwidth required by DEADLINE must always be granted while, for 7393 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7394 * to gracefully reduce the frequency when no tasks show up for longer 7395 * periods of time. 7396 * 7397 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7398 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7399 * an interface. So, we only do the latter for now. 7400 */ 7401 if (type == FREQUENCY_UTIL) 7402 util += cpu_bw_dl(rq); 7403 7404 return min(max, util); 7405 } 7406 7407 unsigned long sched_cpu_util(int cpu) 7408 { 7409 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7410 } 7411 #endif /* CONFIG_SMP */ 7412 7413 /** 7414 * find_process_by_pid - find a process with a matching PID value. 7415 * @pid: the pid in question. 7416 * 7417 * The task of @pid, if found. %NULL otherwise. 7418 */ 7419 static struct task_struct *find_process_by_pid(pid_t pid) 7420 { 7421 return pid ? find_task_by_vpid(pid) : current; 7422 } 7423 7424 /* 7425 * sched_setparam() passes in -1 for its policy, to let the functions 7426 * it calls know not to change it. 7427 */ 7428 #define SETPARAM_POLICY -1 7429 7430 static void __setscheduler_params(struct task_struct *p, 7431 const struct sched_attr *attr) 7432 { 7433 int policy = attr->sched_policy; 7434 7435 if (policy == SETPARAM_POLICY) 7436 policy = p->policy; 7437 7438 p->policy = policy; 7439 7440 if (dl_policy(policy)) 7441 __setparam_dl(p, attr); 7442 else if (fair_policy(policy)) 7443 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7444 7445 /* 7446 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7447 * !rt_policy. Always setting this ensures that things like 7448 * getparam()/getattr() don't report silly values for !rt tasks. 7449 */ 7450 p->rt_priority = attr->sched_priority; 7451 p->normal_prio = normal_prio(p); 7452 set_load_weight(p, true); 7453 } 7454 7455 /* 7456 * Check the target process has a UID that matches the current process's: 7457 */ 7458 static bool check_same_owner(struct task_struct *p) 7459 { 7460 const struct cred *cred = current_cred(), *pcred; 7461 bool match; 7462 7463 rcu_read_lock(); 7464 pcred = __task_cred(p); 7465 match = (uid_eq(cred->euid, pcred->euid) || 7466 uid_eq(cred->euid, pcred->uid)); 7467 rcu_read_unlock(); 7468 return match; 7469 } 7470 7471 /* 7472 * Allow unprivileged RT tasks to decrease priority. 7473 * Only issue a capable test if needed and only once to avoid an audit 7474 * event on permitted non-privileged operations: 7475 */ 7476 static int user_check_sched_setscheduler(struct task_struct *p, 7477 const struct sched_attr *attr, 7478 int policy, int reset_on_fork) 7479 { 7480 if (fair_policy(policy)) { 7481 if (attr->sched_nice < task_nice(p) && 7482 !is_nice_reduction(p, attr->sched_nice)) 7483 goto req_priv; 7484 } 7485 7486 if (rt_policy(policy)) { 7487 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7488 7489 /* Can't set/change the rt policy: */ 7490 if (policy != p->policy && !rlim_rtprio) 7491 goto req_priv; 7492 7493 /* Can't increase priority: */ 7494 if (attr->sched_priority > p->rt_priority && 7495 attr->sched_priority > rlim_rtprio) 7496 goto req_priv; 7497 } 7498 7499 /* 7500 * Can't set/change SCHED_DEADLINE policy at all for now 7501 * (safest behavior); in the future we would like to allow 7502 * unprivileged DL tasks to increase their relative deadline 7503 * or reduce their runtime (both ways reducing utilization) 7504 */ 7505 if (dl_policy(policy)) 7506 goto req_priv; 7507 7508 /* 7509 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7510 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7511 */ 7512 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7513 if (!is_nice_reduction(p, task_nice(p))) 7514 goto req_priv; 7515 } 7516 7517 /* Can't change other user's priorities: */ 7518 if (!check_same_owner(p)) 7519 goto req_priv; 7520 7521 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7522 if (p->sched_reset_on_fork && !reset_on_fork) 7523 goto req_priv; 7524 7525 return 0; 7526 7527 req_priv: 7528 if (!capable(CAP_SYS_NICE)) 7529 return -EPERM; 7530 7531 return 0; 7532 } 7533 7534 static int __sched_setscheduler(struct task_struct *p, 7535 const struct sched_attr *attr, 7536 bool user, bool pi) 7537 { 7538 int oldpolicy = -1, policy = attr->sched_policy; 7539 int retval, oldprio, newprio, queued, running; 7540 const struct sched_class *prev_class; 7541 struct balance_callback *head; 7542 struct rq_flags rf; 7543 int reset_on_fork; 7544 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7545 struct rq *rq; 7546 7547 /* The pi code expects interrupts enabled */ 7548 BUG_ON(pi && in_interrupt()); 7549 recheck: 7550 /* Double check policy once rq lock held: */ 7551 if (policy < 0) { 7552 reset_on_fork = p->sched_reset_on_fork; 7553 policy = oldpolicy = p->policy; 7554 } else { 7555 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7556 7557 if (!valid_policy(policy)) 7558 return -EINVAL; 7559 } 7560 7561 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7562 return -EINVAL; 7563 7564 /* 7565 * Valid priorities for SCHED_FIFO and SCHED_RR are 7566 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7567 * SCHED_BATCH and SCHED_IDLE is 0. 7568 */ 7569 if (attr->sched_priority > MAX_RT_PRIO-1) 7570 return -EINVAL; 7571 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7572 (rt_policy(policy) != (attr->sched_priority != 0))) 7573 return -EINVAL; 7574 7575 if (user) { 7576 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7577 if (retval) 7578 return retval; 7579 7580 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7581 return -EINVAL; 7582 7583 retval = security_task_setscheduler(p); 7584 if (retval) 7585 return retval; 7586 } 7587 7588 /* Update task specific "requested" clamps */ 7589 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7590 retval = uclamp_validate(p, attr); 7591 if (retval) 7592 return retval; 7593 } 7594 7595 if (pi) 7596 cpuset_read_lock(); 7597 7598 /* 7599 * Make sure no PI-waiters arrive (or leave) while we are 7600 * changing the priority of the task: 7601 * 7602 * To be able to change p->policy safely, the appropriate 7603 * runqueue lock must be held. 7604 */ 7605 rq = task_rq_lock(p, &rf); 7606 update_rq_clock(rq); 7607 7608 /* 7609 * Changing the policy of the stop threads its a very bad idea: 7610 */ 7611 if (p == rq->stop) { 7612 retval = -EINVAL; 7613 goto unlock; 7614 } 7615 7616 /* 7617 * If not changing anything there's no need to proceed further, 7618 * but store a possible modification of reset_on_fork. 7619 */ 7620 if (unlikely(policy == p->policy)) { 7621 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7622 goto change; 7623 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7624 goto change; 7625 if (dl_policy(policy) && dl_param_changed(p, attr)) 7626 goto change; 7627 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7628 goto change; 7629 7630 p->sched_reset_on_fork = reset_on_fork; 7631 retval = 0; 7632 goto unlock; 7633 } 7634 change: 7635 7636 if (user) { 7637 #ifdef CONFIG_RT_GROUP_SCHED 7638 /* 7639 * Do not allow realtime tasks into groups that have no runtime 7640 * assigned. 7641 */ 7642 if (rt_bandwidth_enabled() && rt_policy(policy) && 7643 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7644 !task_group_is_autogroup(task_group(p))) { 7645 retval = -EPERM; 7646 goto unlock; 7647 } 7648 #endif 7649 #ifdef CONFIG_SMP 7650 if (dl_bandwidth_enabled() && dl_policy(policy) && 7651 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7652 cpumask_t *span = rq->rd->span; 7653 7654 /* 7655 * Don't allow tasks with an affinity mask smaller than 7656 * the entire root_domain to become SCHED_DEADLINE. We 7657 * will also fail if there's no bandwidth available. 7658 */ 7659 if (!cpumask_subset(span, p->cpus_ptr) || 7660 rq->rd->dl_bw.bw == 0) { 7661 retval = -EPERM; 7662 goto unlock; 7663 } 7664 } 7665 #endif 7666 } 7667 7668 /* Re-check policy now with rq lock held: */ 7669 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7670 policy = oldpolicy = -1; 7671 task_rq_unlock(rq, p, &rf); 7672 if (pi) 7673 cpuset_read_unlock(); 7674 goto recheck; 7675 } 7676 7677 /* 7678 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7679 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7680 * is available. 7681 */ 7682 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7683 retval = -EBUSY; 7684 goto unlock; 7685 } 7686 7687 p->sched_reset_on_fork = reset_on_fork; 7688 oldprio = p->prio; 7689 7690 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7691 if (pi) { 7692 /* 7693 * Take priority boosted tasks into account. If the new 7694 * effective priority is unchanged, we just store the new 7695 * normal parameters and do not touch the scheduler class and 7696 * the runqueue. This will be done when the task deboost 7697 * itself. 7698 */ 7699 newprio = rt_effective_prio(p, newprio); 7700 if (newprio == oldprio) 7701 queue_flags &= ~DEQUEUE_MOVE; 7702 } 7703 7704 queued = task_on_rq_queued(p); 7705 running = task_current(rq, p); 7706 if (queued) 7707 dequeue_task(rq, p, queue_flags); 7708 if (running) 7709 put_prev_task(rq, p); 7710 7711 prev_class = p->sched_class; 7712 7713 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7714 __setscheduler_params(p, attr); 7715 __setscheduler_prio(p, newprio); 7716 } 7717 __setscheduler_uclamp(p, attr); 7718 7719 if (queued) { 7720 /* 7721 * We enqueue to tail when the priority of a task is 7722 * increased (user space view). 7723 */ 7724 if (oldprio < p->prio) 7725 queue_flags |= ENQUEUE_HEAD; 7726 7727 enqueue_task(rq, p, queue_flags); 7728 } 7729 if (running) 7730 set_next_task(rq, p); 7731 7732 check_class_changed(rq, p, prev_class, oldprio); 7733 7734 /* Avoid rq from going away on us: */ 7735 preempt_disable(); 7736 head = splice_balance_callbacks(rq); 7737 task_rq_unlock(rq, p, &rf); 7738 7739 if (pi) { 7740 cpuset_read_unlock(); 7741 rt_mutex_adjust_pi(p); 7742 } 7743 7744 /* Run balance callbacks after we've adjusted the PI chain: */ 7745 balance_callbacks(rq, head); 7746 preempt_enable(); 7747 7748 return 0; 7749 7750 unlock: 7751 task_rq_unlock(rq, p, &rf); 7752 if (pi) 7753 cpuset_read_unlock(); 7754 return retval; 7755 } 7756 7757 static int _sched_setscheduler(struct task_struct *p, int policy, 7758 const struct sched_param *param, bool check) 7759 { 7760 struct sched_attr attr = { 7761 .sched_policy = policy, 7762 .sched_priority = param->sched_priority, 7763 .sched_nice = PRIO_TO_NICE(p->static_prio), 7764 }; 7765 7766 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7767 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7768 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7769 policy &= ~SCHED_RESET_ON_FORK; 7770 attr.sched_policy = policy; 7771 } 7772 7773 return __sched_setscheduler(p, &attr, check, true); 7774 } 7775 /** 7776 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7777 * @p: the task in question. 7778 * @policy: new policy. 7779 * @param: structure containing the new RT priority. 7780 * 7781 * Use sched_set_fifo(), read its comment. 7782 * 7783 * Return: 0 on success. An error code otherwise. 7784 * 7785 * NOTE that the task may be already dead. 7786 */ 7787 int sched_setscheduler(struct task_struct *p, int policy, 7788 const struct sched_param *param) 7789 { 7790 return _sched_setscheduler(p, policy, param, true); 7791 } 7792 7793 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7794 { 7795 return __sched_setscheduler(p, attr, true, true); 7796 } 7797 7798 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7799 { 7800 return __sched_setscheduler(p, attr, false, true); 7801 } 7802 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7803 7804 /** 7805 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7806 * @p: the task in question. 7807 * @policy: new policy. 7808 * @param: structure containing the new RT priority. 7809 * 7810 * Just like sched_setscheduler, only don't bother checking if the 7811 * current context has permission. For example, this is needed in 7812 * stop_machine(): we create temporary high priority worker threads, 7813 * but our caller might not have that capability. 7814 * 7815 * Return: 0 on success. An error code otherwise. 7816 */ 7817 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7818 const struct sched_param *param) 7819 { 7820 return _sched_setscheduler(p, policy, param, false); 7821 } 7822 7823 /* 7824 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7825 * incapable of resource management, which is the one thing an OS really should 7826 * be doing. 7827 * 7828 * This is of course the reason it is limited to privileged users only. 7829 * 7830 * Worse still; it is fundamentally impossible to compose static priority 7831 * workloads. You cannot take two correctly working static prio workloads 7832 * and smash them together and still expect them to work. 7833 * 7834 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7835 * 7836 * MAX_RT_PRIO / 2 7837 * 7838 * The administrator _MUST_ configure the system, the kernel simply doesn't 7839 * know enough information to make a sensible choice. 7840 */ 7841 void sched_set_fifo(struct task_struct *p) 7842 { 7843 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7844 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7845 } 7846 EXPORT_SYMBOL_GPL(sched_set_fifo); 7847 7848 /* 7849 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7850 */ 7851 void sched_set_fifo_low(struct task_struct *p) 7852 { 7853 struct sched_param sp = { .sched_priority = 1 }; 7854 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7855 } 7856 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7857 7858 void sched_set_normal(struct task_struct *p, int nice) 7859 { 7860 struct sched_attr attr = { 7861 .sched_policy = SCHED_NORMAL, 7862 .sched_nice = nice, 7863 }; 7864 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7865 } 7866 EXPORT_SYMBOL_GPL(sched_set_normal); 7867 7868 static int 7869 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7870 { 7871 struct sched_param lparam; 7872 struct task_struct *p; 7873 int retval; 7874 7875 if (!param || pid < 0) 7876 return -EINVAL; 7877 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7878 return -EFAULT; 7879 7880 rcu_read_lock(); 7881 retval = -ESRCH; 7882 p = find_process_by_pid(pid); 7883 if (likely(p)) 7884 get_task_struct(p); 7885 rcu_read_unlock(); 7886 7887 if (likely(p)) { 7888 retval = sched_setscheduler(p, policy, &lparam); 7889 put_task_struct(p); 7890 } 7891 7892 return retval; 7893 } 7894 7895 /* 7896 * Mimics kernel/events/core.c perf_copy_attr(). 7897 */ 7898 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7899 { 7900 u32 size; 7901 int ret; 7902 7903 /* Zero the full structure, so that a short copy will be nice: */ 7904 memset(attr, 0, sizeof(*attr)); 7905 7906 ret = get_user(size, &uattr->size); 7907 if (ret) 7908 return ret; 7909 7910 /* ABI compatibility quirk: */ 7911 if (!size) 7912 size = SCHED_ATTR_SIZE_VER0; 7913 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7914 goto err_size; 7915 7916 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7917 if (ret) { 7918 if (ret == -E2BIG) 7919 goto err_size; 7920 return ret; 7921 } 7922 7923 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7924 size < SCHED_ATTR_SIZE_VER1) 7925 return -EINVAL; 7926 7927 /* 7928 * XXX: Do we want to be lenient like existing syscalls; or do we want 7929 * to be strict and return an error on out-of-bounds values? 7930 */ 7931 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7932 7933 return 0; 7934 7935 err_size: 7936 put_user(sizeof(*attr), &uattr->size); 7937 return -E2BIG; 7938 } 7939 7940 static void get_params(struct task_struct *p, struct sched_attr *attr) 7941 { 7942 if (task_has_dl_policy(p)) 7943 __getparam_dl(p, attr); 7944 else if (task_has_rt_policy(p)) 7945 attr->sched_priority = p->rt_priority; 7946 else 7947 attr->sched_nice = task_nice(p); 7948 } 7949 7950 /** 7951 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7952 * @pid: the pid in question. 7953 * @policy: new policy. 7954 * @param: structure containing the new RT priority. 7955 * 7956 * Return: 0 on success. An error code otherwise. 7957 */ 7958 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7959 { 7960 if (policy < 0) 7961 return -EINVAL; 7962 7963 return do_sched_setscheduler(pid, policy, param); 7964 } 7965 7966 /** 7967 * sys_sched_setparam - set/change the RT priority of a thread 7968 * @pid: the pid in question. 7969 * @param: structure containing the new RT priority. 7970 * 7971 * Return: 0 on success. An error code otherwise. 7972 */ 7973 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7974 { 7975 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7976 } 7977 7978 /** 7979 * sys_sched_setattr - same as above, but with extended sched_attr 7980 * @pid: the pid in question. 7981 * @uattr: structure containing the extended parameters. 7982 * @flags: for future extension. 7983 */ 7984 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7985 unsigned int, flags) 7986 { 7987 struct sched_attr attr; 7988 struct task_struct *p; 7989 int retval; 7990 7991 if (!uattr || pid < 0 || flags) 7992 return -EINVAL; 7993 7994 retval = sched_copy_attr(uattr, &attr); 7995 if (retval) 7996 return retval; 7997 7998 if ((int)attr.sched_policy < 0) 7999 return -EINVAL; 8000 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 8001 attr.sched_policy = SETPARAM_POLICY; 8002 8003 rcu_read_lock(); 8004 retval = -ESRCH; 8005 p = find_process_by_pid(pid); 8006 if (likely(p)) 8007 get_task_struct(p); 8008 rcu_read_unlock(); 8009 8010 if (likely(p)) { 8011 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 8012 get_params(p, &attr); 8013 retval = sched_setattr(p, &attr); 8014 put_task_struct(p); 8015 } 8016 8017 return retval; 8018 } 8019 8020 /** 8021 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8022 * @pid: the pid in question. 8023 * 8024 * Return: On success, the policy of the thread. Otherwise, a negative error 8025 * code. 8026 */ 8027 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8028 { 8029 struct task_struct *p; 8030 int retval; 8031 8032 if (pid < 0) 8033 return -EINVAL; 8034 8035 retval = -ESRCH; 8036 rcu_read_lock(); 8037 p = find_process_by_pid(pid); 8038 if (p) { 8039 retval = security_task_getscheduler(p); 8040 if (!retval) 8041 retval = p->policy 8042 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 8043 } 8044 rcu_read_unlock(); 8045 return retval; 8046 } 8047 8048 /** 8049 * sys_sched_getparam - get the RT priority of a thread 8050 * @pid: the pid in question. 8051 * @param: structure containing the RT priority. 8052 * 8053 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8054 * code. 8055 */ 8056 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8057 { 8058 struct sched_param lp = { .sched_priority = 0 }; 8059 struct task_struct *p; 8060 int retval; 8061 8062 if (!param || pid < 0) 8063 return -EINVAL; 8064 8065 rcu_read_lock(); 8066 p = find_process_by_pid(pid); 8067 retval = -ESRCH; 8068 if (!p) 8069 goto out_unlock; 8070 8071 retval = security_task_getscheduler(p); 8072 if (retval) 8073 goto out_unlock; 8074 8075 if (task_has_rt_policy(p)) 8076 lp.sched_priority = p->rt_priority; 8077 rcu_read_unlock(); 8078 8079 /* 8080 * This one might sleep, we cannot do it with a spinlock held ... 8081 */ 8082 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8083 8084 return retval; 8085 8086 out_unlock: 8087 rcu_read_unlock(); 8088 return retval; 8089 } 8090 8091 /* 8092 * Copy the kernel size attribute structure (which might be larger 8093 * than what user-space knows about) to user-space. 8094 * 8095 * Note that all cases are valid: user-space buffer can be larger or 8096 * smaller than the kernel-space buffer. The usual case is that both 8097 * have the same size. 8098 */ 8099 static int 8100 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8101 struct sched_attr *kattr, 8102 unsigned int usize) 8103 { 8104 unsigned int ksize = sizeof(*kattr); 8105 8106 if (!access_ok(uattr, usize)) 8107 return -EFAULT; 8108 8109 /* 8110 * sched_getattr() ABI forwards and backwards compatibility: 8111 * 8112 * If usize == ksize then we just copy everything to user-space and all is good. 8113 * 8114 * If usize < ksize then we only copy as much as user-space has space for, 8115 * this keeps ABI compatibility as well. We skip the rest. 8116 * 8117 * If usize > ksize then user-space is using a newer version of the ABI, 8118 * which part the kernel doesn't know about. Just ignore it - tooling can 8119 * detect the kernel's knowledge of attributes from the attr->size value 8120 * which is set to ksize in this case. 8121 */ 8122 kattr->size = min(usize, ksize); 8123 8124 if (copy_to_user(uattr, kattr, kattr->size)) 8125 return -EFAULT; 8126 8127 return 0; 8128 } 8129 8130 /** 8131 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8132 * @pid: the pid in question. 8133 * @uattr: structure containing the extended parameters. 8134 * @usize: sizeof(attr) for fwd/bwd comp. 8135 * @flags: for future extension. 8136 */ 8137 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8138 unsigned int, usize, unsigned int, flags) 8139 { 8140 struct sched_attr kattr = { }; 8141 struct task_struct *p; 8142 int retval; 8143 8144 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8145 usize < SCHED_ATTR_SIZE_VER0 || flags) 8146 return -EINVAL; 8147 8148 rcu_read_lock(); 8149 p = find_process_by_pid(pid); 8150 retval = -ESRCH; 8151 if (!p) 8152 goto out_unlock; 8153 8154 retval = security_task_getscheduler(p); 8155 if (retval) 8156 goto out_unlock; 8157 8158 kattr.sched_policy = p->policy; 8159 if (p->sched_reset_on_fork) 8160 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8161 get_params(p, &kattr); 8162 kattr.sched_flags &= SCHED_FLAG_ALL; 8163 8164 #ifdef CONFIG_UCLAMP_TASK 8165 /* 8166 * This could race with another potential updater, but this is fine 8167 * because it'll correctly read the old or the new value. We don't need 8168 * to guarantee who wins the race as long as it doesn't return garbage. 8169 */ 8170 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8171 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8172 #endif 8173 8174 rcu_read_unlock(); 8175 8176 return sched_attr_copy_to_user(uattr, &kattr, usize); 8177 8178 out_unlock: 8179 rcu_read_unlock(); 8180 return retval; 8181 } 8182 8183 #ifdef CONFIG_SMP 8184 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8185 { 8186 int ret = 0; 8187 8188 /* 8189 * If the task isn't a deadline task or admission control is 8190 * disabled then we don't care about affinity changes. 8191 */ 8192 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8193 return 0; 8194 8195 /* 8196 * Since bandwidth control happens on root_domain basis, 8197 * if admission test is enabled, we only admit -deadline 8198 * tasks allowed to run on all the CPUs in the task's 8199 * root_domain. 8200 */ 8201 rcu_read_lock(); 8202 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8203 ret = -EBUSY; 8204 rcu_read_unlock(); 8205 return ret; 8206 } 8207 #endif 8208 8209 static int 8210 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8211 { 8212 int retval; 8213 cpumask_var_t cpus_allowed, new_mask; 8214 8215 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8216 return -ENOMEM; 8217 8218 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8219 retval = -ENOMEM; 8220 goto out_free_cpus_allowed; 8221 } 8222 8223 cpuset_cpus_allowed(p, cpus_allowed); 8224 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8225 8226 ctx->new_mask = new_mask; 8227 ctx->flags |= SCA_CHECK; 8228 8229 retval = dl_task_check_affinity(p, new_mask); 8230 if (retval) 8231 goto out_free_new_mask; 8232 8233 retval = __set_cpus_allowed_ptr(p, ctx); 8234 if (retval) 8235 goto out_free_new_mask; 8236 8237 cpuset_cpus_allowed(p, cpus_allowed); 8238 if (!cpumask_subset(new_mask, cpus_allowed)) { 8239 /* 8240 * We must have raced with a concurrent cpuset update. 8241 * Just reset the cpumask to the cpuset's cpus_allowed. 8242 */ 8243 cpumask_copy(new_mask, cpus_allowed); 8244 8245 /* 8246 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8247 * will restore the previous user_cpus_ptr value. 8248 * 8249 * In the unlikely event a previous user_cpus_ptr exists, 8250 * we need to further restrict the mask to what is allowed 8251 * by that old user_cpus_ptr. 8252 */ 8253 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8254 bool empty = !cpumask_and(new_mask, new_mask, 8255 ctx->user_mask); 8256 8257 if (WARN_ON_ONCE(empty)) 8258 cpumask_copy(new_mask, cpus_allowed); 8259 } 8260 __set_cpus_allowed_ptr(p, ctx); 8261 retval = -EINVAL; 8262 } 8263 8264 out_free_new_mask: 8265 free_cpumask_var(new_mask); 8266 out_free_cpus_allowed: 8267 free_cpumask_var(cpus_allowed); 8268 return retval; 8269 } 8270 8271 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8272 { 8273 struct affinity_context ac; 8274 struct cpumask *user_mask; 8275 struct task_struct *p; 8276 int retval; 8277 8278 rcu_read_lock(); 8279 8280 p = find_process_by_pid(pid); 8281 if (!p) { 8282 rcu_read_unlock(); 8283 return -ESRCH; 8284 } 8285 8286 /* Prevent p going away */ 8287 get_task_struct(p); 8288 rcu_read_unlock(); 8289 8290 if (p->flags & PF_NO_SETAFFINITY) { 8291 retval = -EINVAL; 8292 goto out_put_task; 8293 } 8294 8295 if (!check_same_owner(p)) { 8296 rcu_read_lock(); 8297 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8298 rcu_read_unlock(); 8299 retval = -EPERM; 8300 goto out_put_task; 8301 } 8302 rcu_read_unlock(); 8303 } 8304 8305 retval = security_task_setscheduler(p); 8306 if (retval) 8307 goto out_put_task; 8308 8309 /* 8310 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8311 * alloc_user_cpus_ptr() returns NULL. 8312 */ 8313 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8314 if (user_mask) { 8315 cpumask_copy(user_mask, in_mask); 8316 } else if (IS_ENABLED(CONFIG_SMP)) { 8317 retval = -ENOMEM; 8318 goto out_put_task; 8319 } 8320 8321 ac = (struct affinity_context){ 8322 .new_mask = in_mask, 8323 .user_mask = user_mask, 8324 .flags = SCA_USER, 8325 }; 8326 8327 retval = __sched_setaffinity(p, &ac); 8328 kfree(ac.user_mask); 8329 8330 out_put_task: 8331 put_task_struct(p); 8332 return retval; 8333 } 8334 8335 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8336 struct cpumask *new_mask) 8337 { 8338 if (len < cpumask_size()) 8339 cpumask_clear(new_mask); 8340 else if (len > cpumask_size()) 8341 len = cpumask_size(); 8342 8343 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8344 } 8345 8346 /** 8347 * sys_sched_setaffinity - set the CPU affinity of a process 8348 * @pid: pid of the process 8349 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8350 * @user_mask_ptr: user-space pointer to the new CPU mask 8351 * 8352 * Return: 0 on success. An error code otherwise. 8353 */ 8354 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8355 unsigned long __user *, user_mask_ptr) 8356 { 8357 cpumask_var_t new_mask; 8358 int retval; 8359 8360 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8361 return -ENOMEM; 8362 8363 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8364 if (retval == 0) 8365 retval = sched_setaffinity(pid, new_mask); 8366 free_cpumask_var(new_mask); 8367 return retval; 8368 } 8369 8370 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8371 { 8372 struct task_struct *p; 8373 unsigned long flags; 8374 int retval; 8375 8376 rcu_read_lock(); 8377 8378 retval = -ESRCH; 8379 p = find_process_by_pid(pid); 8380 if (!p) 8381 goto out_unlock; 8382 8383 retval = security_task_getscheduler(p); 8384 if (retval) 8385 goto out_unlock; 8386 8387 raw_spin_lock_irqsave(&p->pi_lock, flags); 8388 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8389 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8390 8391 out_unlock: 8392 rcu_read_unlock(); 8393 8394 return retval; 8395 } 8396 8397 /** 8398 * sys_sched_getaffinity - get the CPU affinity of a process 8399 * @pid: pid of the process 8400 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8401 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8402 * 8403 * Return: size of CPU mask copied to user_mask_ptr on success. An 8404 * error code otherwise. 8405 */ 8406 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8407 unsigned long __user *, user_mask_ptr) 8408 { 8409 int ret; 8410 cpumask_var_t mask; 8411 8412 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8413 return -EINVAL; 8414 if (len & (sizeof(unsigned long)-1)) 8415 return -EINVAL; 8416 8417 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8418 return -ENOMEM; 8419 8420 ret = sched_getaffinity(pid, mask); 8421 if (ret == 0) { 8422 unsigned int retlen = min(len, cpumask_size()); 8423 8424 if (copy_to_user(user_mask_ptr, mask, retlen)) 8425 ret = -EFAULT; 8426 else 8427 ret = retlen; 8428 } 8429 free_cpumask_var(mask); 8430 8431 return ret; 8432 } 8433 8434 static void do_sched_yield(void) 8435 { 8436 struct rq_flags rf; 8437 struct rq *rq; 8438 8439 rq = this_rq_lock_irq(&rf); 8440 8441 schedstat_inc(rq->yld_count); 8442 current->sched_class->yield_task(rq); 8443 8444 preempt_disable(); 8445 rq_unlock_irq(rq, &rf); 8446 sched_preempt_enable_no_resched(); 8447 8448 schedule(); 8449 } 8450 8451 /** 8452 * sys_sched_yield - yield the current processor to other threads. 8453 * 8454 * This function yields the current CPU to other tasks. If there are no 8455 * other threads running on this CPU then this function will return. 8456 * 8457 * Return: 0. 8458 */ 8459 SYSCALL_DEFINE0(sched_yield) 8460 { 8461 do_sched_yield(); 8462 return 0; 8463 } 8464 8465 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8466 int __sched __cond_resched(void) 8467 { 8468 if (should_resched(0)) { 8469 preempt_schedule_common(); 8470 return 1; 8471 } 8472 /* 8473 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8474 * whether the current CPU is in an RCU read-side critical section, 8475 * so the tick can report quiescent states even for CPUs looping 8476 * in kernel context. In contrast, in non-preemptible kernels, 8477 * RCU readers leave no in-memory hints, which means that CPU-bound 8478 * processes executing in kernel context might never report an 8479 * RCU quiescent state. Therefore, the following code causes 8480 * cond_resched() to report a quiescent state, but only when RCU 8481 * is in urgent need of one. 8482 */ 8483 #ifndef CONFIG_PREEMPT_RCU 8484 rcu_all_qs(); 8485 #endif 8486 return 0; 8487 } 8488 EXPORT_SYMBOL(__cond_resched); 8489 #endif 8490 8491 #ifdef CONFIG_PREEMPT_DYNAMIC 8492 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8493 #define cond_resched_dynamic_enabled __cond_resched 8494 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8495 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8496 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8497 8498 #define might_resched_dynamic_enabled __cond_resched 8499 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8500 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8501 EXPORT_STATIC_CALL_TRAMP(might_resched); 8502 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8503 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8504 int __sched dynamic_cond_resched(void) 8505 { 8506 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8507 return 0; 8508 return __cond_resched(); 8509 } 8510 EXPORT_SYMBOL(dynamic_cond_resched); 8511 8512 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8513 int __sched dynamic_might_resched(void) 8514 { 8515 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8516 return 0; 8517 return __cond_resched(); 8518 } 8519 EXPORT_SYMBOL(dynamic_might_resched); 8520 #endif 8521 #endif 8522 8523 /* 8524 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8525 * call schedule, and on return reacquire the lock. 8526 * 8527 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8528 * operations here to prevent schedule() from being called twice (once via 8529 * spin_unlock(), once by hand). 8530 */ 8531 int __cond_resched_lock(spinlock_t *lock) 8532 { 8533 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8534 int ret = 0; 8535 8536 lockdep_assert_held(lock); 8537 8538 if (spin_needbreak(lock) || resched) { 8539 spin_unlock(lock); 8540 if (!_cond_resched()) 8541 cpu_relax(); 8542 ret = 1; 8543 spin_lock(lock); 8544 } 8545 return ret; 8546 } 8547 EXPORT_SYMBOL(__cond_resched_lock); 8548 8549 int __cond_resched_rwlock_read(rwlock_t *lock) 8550 { 8551 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8552 int ret = 0; 8553 8554 lockdep_assert_held_read(lock); 8555 8556 if (rwlock_needbreak(lock) || resched) { 8557 read_unlock(lock); 8558 if (!_cond_resched()) 8559 cpu_relax(); 8560 ret = 1; 8561 read_lock(lock); 8562 } 8563 return ret; 8564 } 8565 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8566 8567 int __cond_resched_rwlock_write(rwlock_t *lock) 8568 { 8569 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8570 int ret = 0; 8571 8572 lockdep_assert_held_write(lock); 8573 8574 if (rwlock_needbreak(lock) || resched) { 8575 write_unlock(lock); 8576 if (!_cond_resched()) 8577 cpu_relax(); 8578 ret = 1; 8579 write_lock(lock); 8580 } 8581 return ret; 8582 } 8583 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8584 8585 #ifdef CONFIG_PREEMPT_DYNAMIC 8586 8587 #ifdef CONFIG_GENERIC_ENTRY 8588 #include <linux/entry-common.h> 8589 #endif 8590 8591 /* 8592 * SC:cond_resched 8593 * SC:might_resched 8594 * SC:preempt_schedule 8595 * SC:preempt_schedule_notrace 8596 * SC:irqentry_exit_cond_resched 8597 * 8598 * 8599 * NONE: 8600 * cond_resched <- __cond_resched 8601 * might_resched <- RET0 8602 * preempt_schedule <- NOP 8603 * preempt_schedule_notrace <- NOP 8604 * irqentry_exit_cond_resched <- NOP 8605 * 8606 * VOLUNTARY: 8607 * cond_resched <- __cond_resched 8608 * might_resched <- __cond_resched 8609 * preempt_schedule <- NOP 8610 * preempt_schedule_notrace <- NOP 8611 * irqentry_exit_cond_resched <- NOP 8612 * 8613 * FULL: 8614 * cond_resched <- RET0 8615 * might_resched <- RET0 8616 * preempt_schedule <- preempt_schedule 8617 * preempt_schedule_notrace <- preempt_schedule_notrace 8618 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8619 */ 8620 8621 enum { 8622 preempt_dynamic_undefined = -1, 8623 preempt_dynamic_none, 8624 preempt_dynamic_voluntary, 8625 preempt_dynamic_full, 8626 }; 8627 8628 int preempt_dynamic_mode = preempt_dynamic_undefined; 8629 8630 int sched_dynamic_mode(const char *str) 8631 { 8632 if (!strcmp(str, "none")) 8633 return preempt_dynamic_none; 8634 8635 if (!strcmp(str, "voluntary")) 8636 return preempt_dynamic_voluntary; 8637 8638 if (!strcmp(str, "full")) 8639 return preempt_dynamic_full; 8640 8641 return -EINVAL; 8642 } 8643 8644 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8645 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8646 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8647 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8648 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8649 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8650 #else 8651 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8652 #endif 8653 8654 void sched_dynamic_update(int mode) 8655 { 8656 /* 8657 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8658 * the ZERO state, which is invalid. 8659 */ 8660 preempt_dynamic_enable(cond_resched); 8661 preempt_dynamic_enable(might_resched); 8662 preempt_dynamic_enable(preempt_schedule); 8663 preempt_dynamic_enable(preempt_schedule_notrace); 8664 preempt_dynamic_enable(irqentry_exit_cond_resched); 8665 8666 switch (mode) { 8667 case preempt_dynamic_none: 8668 preempt_dynamic_enable(cond_resched); 8669 preempt_dynamic_disable(might_resched); 8670 preempt_dynamic_disable(preempt_schedule); 8671 preempt_dynamic_disable(preempt_schedule_notrace); 8672 preempt_dynamic_disable(irqentry_exit_cond_resched); 8673 pr_info("Dynamic Preempt: none\n"); 8674 break; 8675 8676 case preempt_dynamic_voluntary: 8677 preempt_dynamic_enable(cond_resched); 8678 preempt_dynamic_enable(might_resched); 8679 preempt_dynamic_disable(preempt_schedule); 8680 preempt_dynamic_disable(preempt_schedule_notrace); 8681 preempt_dynamic_disable(irqentry_exit_cond_resched); 8682 pr_info("Dynamic Preempt: voluntary\n"); 8683 break; 8684 8685 case preempt_dynamic_full: 8686 preempt_dynamic_disable(cond_resched); 8687 preempt_dynamic_disable(might_resched); 8688 preempt_dynamic_enable(preempt_schedule); 8689 preempt_dynamic_enable(preempt_schedule_notrace); 8690 preempt_dynamic_enable(irqentry_exit_cond_resched); 8691 pr_info("Dynamic Preempt: full\n"); 8692 break; 8693 } 8694 8695 preempt_dynamic_mode = mode; 8696 } 8697 8698 static int __init setup_preempt_mode(char *str) 8699 { 8700 int mode = sched_dynamic_mode(str); 8701 if (mode < 0) { 8702 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8703 return 0; 8704 } 8705 8706 sched_dynamic_update(mode); 8707 return 1; 8708 } 8709 __setup("preempt=", setup_preempt_mode); 8710 8711 static void __init preempt_dynamic_init(void) 8712 { 8713 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8714 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8715 sched_dynamic_update(preempt_dynamic_none); 8716 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8717 sched_dynamic_update(preempt_dynamic_voluntary); 8718 } else { 8719 /* Default static call setting, nothing to do */ 8720 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8721 preempt_dynamic_mode = preempt_dynamic_full; 8722 pr_info("Dynamic Preempt: full\n"); 8723 } 8724 } 8725 } 8726 8727 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8728 bool preempt_model_##mode(void) \ 8729 { \ 8730 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8731 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8732 } \ 8733 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8734 8735 PREEMPT_MODEL_ACCESSOR(none); 8736 PREEMPT_MODEL_ACCESSOR(voluntary); 8737 PREEMPT_MODEL_ACCESSOR(full); 8738 8739 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8740 8741 static inline void preempt_dynamic_init(void) { } 8742 8743 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8744 8745 /** 8746 * yield - yield the current processor to other threads. 8747 * 8748 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8749 * 8750 * The scheduler is at all times free to pick the calling task as the most 8751 * eligible task to run, if removing the yield() call from your code breaks 8752 * it, it's already broken. 8753 * 8754 * Typical broken usage is: 8755 * 8756 * while (!event) 8757 * yield(); 8758 * 8759 * where one assumes that yield() will let 'the other' process run that will 8760 * make event true. If the current task is a SCHED_FIFO task that will never 8761 * happen. Never use yield() as a progress guarantee!! 8762 * 8763 * If you want to use yield() to wait for something, use wait_event(). 8764 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8765 * If you still want to use yield(), do not! 8766 */ 8767 void __sched yield(void) 8768 { 8769 set_current_state(TASK_RUNNING); 8770 do_sched_yield(); 8771 } 8772 EXPORT_SYMBOL(yield); 8773 8774 /** 8775 * yield_to - yield the current processor to another thread in 8776 * your thread group, or accelerate that thread toward the 8777 * processor it's on. 8778 * @p: target task 8779 * @preempt: whether task preemption is allowed or not 8780 * 8781 * It's the caller's job to ensure that the target task struct 8782 * can't go away on us before we can do any checks. 8783 * 8784 * Return: 8785 * true (>0) if we indeed boosted the target task. 8786 * false (0) if we failed to boost the target. 8787 * -ESRCH if there's no task to yield to. 8788 */ 8789 int __sched yield_to(struct task_struct *p, bool preempt) 8790 { 8791 struct task_struct *curr = current; 8792 struct rq *rq, *p_rq; 8793 unsigned long flags; 8794 int yielded = 0; 8795 8796 local_irq_save(flags); 8797 rq = this_rq(); 8798 8799 again: 8800 p_rq = task_rq(p); 8801 /* 8802 * If we're the only runnable task on the rq and target rq also 8803 * has only one task, there's absolutely no point in yielding. 8804 */ 8805 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8806 yielded = -ESRCH; 8807 goto out_irq; 8808 } 8809 8810 double_rq_lock(rq, p_rq); 8811 if (task_rq(p) != p_rq) { 8812 double_rq_unlock(rq, p_rq); 8813 goto again; 8814 } 8815 8816 if (!curr->sched_class->yield_to_task) 8817 goto out_unlock; 8818 8819 if (curr->sched_class != p->sched_class) 8820 goto out_unlock; 8821 8822 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8823 goto out_unlock; 8824 8825 yielded = curr->sched_class->yield_to_task(rq, p); 8826 if (yielded) { 8827 schedstat_inc(rq->yld_count); 8828 /* 8829 * Make p's CPU reschedule; pick_next_entity takes care of 8830 * fairness. 8831 */ 8832 if (preempt && rq != p_rq) 8833 resched_curr(p_rq); 8834 } 8835 8836 out_unlock: 8837 double_rq_unlock(rq, p_rq); 8838 out_irq: 8839 local_irq_restore(flags); 8840 8841 if (yielded > 0) 8842 schedule(); 8843 8844 return yielded; 8845 } 8846 EXPORT_SYMBOL_GPL(yield_to); 8847 8848 int io_schedule_prepare(void) 8849 { 8850 int old_iowait = current->in_iowait; 8851 8852 current->in_iowait = 1; 8853 blk_flush_plug(current->plug, true); 8854 return old_iowait; 8855 } 8856 8857 void io_schedule_finish(int token) 8858 { 8859 current->in_iowait = token; 8860 } 8861 8862 /* 8863 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8864 * that process accounting knows that this is a task in IO wait state. 8865 */ 8866 long __sched io_schedule_timeout(long timeout) 8867 { 8868 int token; 8869 long ret; 8870 8871 token = io_schedule_prepare(); 8872 ret = schedule_timeout(timeout); 8873 io_schedule_finish(token); 8874 8875 return ret; 8876 } 8877 EXPORT_SYMBOL(io_schedule_timeout); 8878 8879 void __sched io_schedule(void) 8880 { 8881 int token; 8882 8883 token = io_schedule_prepare(); 8884 schedule(); 8885 io_schedule_finish(token); 8886 } 8887 EXPORT_SYMBOL(io_schedule); 8888 8889 /** 8890 * sys_sched_get_priority_max - return maximum RT priority. 8891 * @policy: scheduling class. 8892 * 8893 * Return: On success, this syscall returns the maximum 8894 * rt_priority that can be used by a given scheduling class. 8895 * On failure, a negative error code is returned. 8896 */ 8897 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8898 { 8899 int ret = -EINVAL; 8900 8901 switch (policy) { 8902 case SCHED_FIFO: 8903 case SCHED_RR: 8904 ret = MAX_RT_PRIO-1; 8905 break; 8906 case SCHED_DEADLINE: 8907 case SCHED_NORMAL: 8908 case SCHED_BATCH: 8909 case SCHED_IDLE: 8910 ret = 0; 8911 break; 8912 } 8913 return ret; 8914 } 8915 8916 /** 8917 * sys_sched_get_priority_min - return minimum RT priority. 8918 * @policy: scheduling class. 8919 * 8920 * Return: On success, this syscall returns the minimum 8921 * rt_priority that can be used by a given scheduling class. 8922 * On failure, a negative error code is returned. 8923 */ 8924 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8925 { 8926 int ret = -EINVAL; 8927 8928 switch (policy) { 8929 case SCHED_FIFO: 8930 case SCHED_RR: 8931 ret = 1; 8932 break; 8933 case SCHED_DEADLINE: 8934 case SCHED_NORMAL: 8935 case SCHED_BATCH: 8936 case SCHED_IDLE: 8937 ret = 0; 8938 } 8939 return ret; 8940 } 8941 8942 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8943 { 8944 struct task_struct *p; 8945 unsigned int time_slice; 8946 struct rq_flags rf; 8947 struct rq *rq; 8948 int retval; 8949 8950 if (pid < 0) 8951 return -EINVAL; 8952 8953 retval = -ESRCH; 8954 rcu_read_lock(); 8955 p = find_process_by_pid(pid); 8956 if (!p) 8957 goto out_unlock; 8958 8959 retval = security_task_getscheduler(p); 8960 if (retval) 8961 goto out_unlock; 8962 8963 rq = task_rq_lock(p, &rf); 8964 time_slice = 0; 8965 if (p->sched_class->get_rr_interval) 8966 time_slice = p->sched_class->get_rr_interval(rq, p); 8967 task_rq_unlock(rq, p, &rf); 8968 8969 rcu_read_unlock(); 8970 jiffies_to_timespec64(time_slice, t); 8971 return 0; 8972 8973 out_unlock: 8974 rcu_read_unlock(); 8975 return retval; 8976 } 8977 8978 /** 8979 * sys_sched_rr_get_interval - return the default timeslice of a process. 8980 * @pid: pid of the process. 8981 * @interval: userspace pointer to the timeslice value. 8982 * 8983 * this syscall writes the default timeslice value of a given process 8984 * into the user-space timespec buffer. A value of '0' means infinity. 8985 * 8986 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8987 * an error code. 8988 */ 8989 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8990 struct __kernel_timespec __user *, interval) 8991 { 8992 struct timespec64 t; 8993 int retval = sched_rr_get_interval(pid, &t); 8994 8995 if (retval == 0) 8996 retval = put_timespec64(&t, interval); 8997 8998 return retval; 8999 } 9000 9001 #ifdef CONFIG_COMPAT_32BIT_TIME 9002 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 9003 struct old_timespec32 __user *, interval) 9004 { 9005 struct timespec64 t; 9006 int retval = sched_rr_get_interval(pid, &t); 9007 9008 if (retval == 0) 9009 retval = put_old_timespec32(&t, interval); 9010 return retval; 9011 } 9012 #endif 9013 9014 void sched_show_task(struct task_struct *p) 9015 { 9016 unsigned long free = 0; 9017 int ppid; 9018 9019 if (!try_get_task_stack(p)) 9020 return; 9021 9022 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9023 9024 if (task_is_running(p)) 9025 pr_cont(" running task "); 9026 #ifdef CONFIG_DEBUG_STACK_USAGE 9027 free = stack_not_used(p); 9028 #endif 9029 ppid = 0; 9030 rcu_read_lock(); 9031 if (pid_alive(p)) 9032 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9033 rcu_read_unlock(); 9034 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 9035 free, task_pid_nr(p), ppid, 9036 read_task_thread_flags(p)); 9037 9038 print_worker_info(KERN_INFO, p); 9039 print_stop_info(KERN_INFO, p); 9040 show_stack(p, NULL, KERN_INFO); 9041 put_task_stack(p); 9042 } 9043 EXPORT_SYMBOL_GPL(sched_show_task); 9044 9045 static inline bool 9046 state_filter_match(unsigned long state_filter, struct task_struct *p) 9047 { 9048 unsigned int state = READ_ONCE(p->__state); 9049 9050 /* no filter, everything matches */ 9051 if (!state_filter) 9052 return true; 9053 9054 /* filter, but doesn't match */ 9055 if (!(state & state_filter)) 9056 return false; 9057 9058 /* 9059 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9060 * TASK_KILLABLE). 9061 */ 9062 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9063 return false; 9064 9065 return true; 9066 } 9067 9068 9069 void show_state_filter(unsigned int state_filter) 9070 { 9071 struct task_struct *g, *p; 9072 9073 rcu_read_lock(); 9074 for_each_process_thread(g, p) { 9075 /* 9076 * reset the NMI-timeout, listing all files on a slow 9077 * console might take a lot of time: 9078 * Also, reset softlockup watchdogs on all CPUs, because 9079 * another CPU might be blocked waiting for us to process 9080 * an IPI. 9081 */ 9082 touch_nmi_watchdog(); 9083 touch_all_softlockup_watchdogs(); 9084 if (state_filter_match(state_filter, p)) 9085 sched_show_task(p); 9086 } 9087 9088 #ifdef CONFIG_SCHED_DEBUG 9089 if (!state_filter) 9090 sysrq_sched_debug_show(); 9091 #endif 9092 rcu_read_unlock(); 9093 /* 9094 * Only show locks if all tasks are dumped: 9095 */ 9096 if (!state_filter) 9097 debug_show_all_locks(); 9098 } 9099 9100 /** 9101 * init_idle - set up an idle thread for a given CPU 9102 * @idle: task in question 9103 * @cpu: CPU the idle task belongs to 9104 * 9105 * NOTE: this function does not set the idle thread's NEED_RESCHED 9106 * flag, to make booting more robust. 9107 */ 9108 void __init init_idle(struct task_struct *idle, int cpu) 9109 { 9110 #ifdef CONFIG_SMP 9111 struct affinity_context ac = (struct affinity_context) { 9112 .new_mask = cpumask_of(cpu), 9113 .flags = 0, 9114 }; 9115 #endif 9116 struct rq *rq = cpu_rq(cpu); 9117 unsigned long flags; 9118 9119 __sched_fork(0, idle); 9120 9121 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9122 raw_spin_rq_lock(rq); 9123 9124 idle->__state = TASK_RUNNING; 9125 idle->se.exec_start = sched_clock(); 9126 /* 9127 * PF_KTHREAD should already be set at this point; regardless, make it 9128 * look like a proper per-CPU kthread. 9129 */ 9130 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9131 kthread_set_per_cpu(idle, cpu); 9132 9133 #ifdef CONFIG_SMP 9134 /* 9135 * It's possible that init_idle() gets called multiple times on a task, 9136 * in that case do_set_cpus_allowed() will not do the right thing. 9137 * 9138 * And since this is boot we can forgo the serialization. 9139 */ 9140 set_cpus_allowed_common(idle, &ac); 9141 #endif 9142 /* 9143 * We're having a chicken and egg problem, even though we are 9144 * holding rq->lock, the CPU isn't yet set to this CPU so the 9145 * lockdep check in task_group() will fail. 9146 * 9147 * Similar case to sched_fork(). / Alternatively we could 9148 * use task_rq_lock() here and obtain the other rq->lock. 9149 * 9150 * Silence PROVE_RCU 9151 */ 9152 rcu_read_lock(); 9153 __set_task_cpu(idle, cpu); 9154 rcu_read_unlock(); 9155 9156 rq->idle = idle; 9157 rcu_assign_pointer(rq->curr, idle); 9158 idle->on_rq = TASK_ON_RQ_QUEUED; 9159 #ifdef CONFIG_SMP 9160 idle->on_cpu = 1; 9161 #endif 9162 raw_spin_rq_unlock(rq); 9163 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9164 9165 /* Set the preempt count _outside_ the spinlocks! */ 9166 init_idle_preempt_count(idle, cpu); 9167 9168 /* 9169 * The idle tasks have their own, simple scheduling class: 9170 */ 9171 idle->sched_class = &idle_sched_class; 9172 ftrace_graph_init_idle_task(idle, cpu); 9173 vtime_init_idle(idle, cpu); 9174 #ifdef CONFIG_SMP 9175 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9176 #endif 9177 } 9178 9179 #ifdef CONFIG_SMP 9180 9181 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9182 const struct cpumask *trial) 9183 { 9184 int ret = 1; 9185 9186 if (cpumask_empty(cur)) 9187 return ret; 9188 9189 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9190 9191 return ret; 9192 } 9193 9194 int task_can_attach(struct task_struct *p, 9195 const struct cpumask *cs_effective_cpus) 9196 { 9197 int ret = 0; 9198 9199 /* 9200 * Kthreads which disallow setaffinity shouldn't be moved 9201 * to a new cpuset; we don't want to change their CPU 9202 * affinity and isolating such threads by their set of 9203 * allowed nodes is unnecessary. Thus, cpusets are not 9204 * applicable for such threads. This prevents checking for 9205 * success of set_cpus_allowed_ptr() on all attached tasks 9206 * before cpus_mask may be changed. 9207 */ 9208 if (p->flags & PF_NO_SETAFFINITY) { 9209 ret = -EINVAL; 9210 goto out; 9211 } 9212 9213 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9214 cs_effective_cpus)) { 9215 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9216 9217 if (unlikely(cpu >= nr_cpu_ids)) 9218 return -EINVAL; 9219 ret = dl_cpu_busy(cpu, p); 9220 } 9221 9222 out: 9223 return ret; 9224 } 9225 9226 bool sched_smp_initialized __read_mostly; 9227 9228 #ifdef CONFIG_NUMA_BALANCING 9229 /* Migrate current task p to target_cpu */ 9230 int migrate_task_to(struct task_struct *p, int target_cpu) 9231 { 9232 struct migration_arg arg = { p, target_cpu }; 9233 int curr_cpu = task_cpu(p); 9234 9235 if (curr_cpu == target_cpu) 9236 return 0; 9237 9238 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9239 return -EINVAL; 9240 9241 /* TODO: This is not properly updating schedstats */ 9242 9243 trace_sched_move_numa(p, curr_cpu, target_cpu); 9244 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9245 } 9246 9247 /* 9248 * Requeue a task on a given node and accurately track the number of NUMA 9249 * tasks on the runqueues 9250 */ 9251 void sched_setnuma(struct task_struct *p, int nid) 9252 { 9253 bool queued, running; 9254 struct rq_flags rf; 9255 struct rq *rq; 9256 9257 rq = task_rq_lock(p, &rf); 9258 queued = task_on_rq_queued(p); 9259 running = task_current(rq, p); 9260 9261 if (queued) 9262 dequeue_task(rq, p, DEQUEUE_SAVE); 9263 if (running) 9264 put_prev_task(rq, p); 9265 9266 p->numa_preferred_nid = nid; 9267 9268 if (queued) 9269 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9270 if (running) 9271 set_next_task(rq, p); 9272 task_rq_unlock(rq, p, &rf); 9273 } 9274 #endif /* CONFIG_NUMA_BALANCING */ 9275 9276 #ifdef CONFIG_HOTPLUG_CPU 9277 /* 9278 * Ensure that the idle task is using init_mm right before its CPU goes 9279 * offline. 9280 */ 9281 void idle_task_exit(void) 9282 { 9283 struct mm_struct *mm = current->active_mm; 9284 9285 BUG_ON(cpu_online(smp_processor_id())); 9286 BUG_ON(current != this_rq()->idle); 9287 9288 if (mm != &init_mm) { 9289 switch_mm(mm, &init_mm, current); 9290 finish_arch_post_lock_switch(); 9291 } 9292 9293 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9294 } 9295 9296 static int __balance_push_cpu_stop(void *arg) 9297 { 9298 struct task_struct *p = arg; 9299 struct rq *rq = this_rq(); 9300 struct rq_flags rf; 9301 int cpu; 9302 9303 raw_spin_lock_irq(&p->pi_lock); 9304 rq_lock(rq, &rf); 9305 9306 update_rq_clock(rq); 9307 9308 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9309 cpu = select_fallback_rq(rq->cpu, p); 9310 rq = __migrate_task(rq, &rf, p, cpu); 9311 } 9312 9313 rq_unlock(rq, &rf); 9314 raw_spin_unlock_irq(&p->pi_lock); 9315 9316 put_task_struct(p); 9317 9318 return 0; 9319 } 9320 9321 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9322 9323 /* 9324 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9325 * 9326 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9327 * effective when the hotplug motion is down. 9328 */ 9329 static void balance_push(struct rq *rq) 9330 { 9331 struct task_struct *push_task = rq->curr; 9332 9333 lockdep_assert_rq_held(rq); 9334 9335 /* 9336 * Ensure the thing is persistent until balance_push_set(.on = false); 9337 */ 9338 rq->balance_callback = &balance_push_callback; 9339 9340 /* 9341 * Only active while going offline and when invoked on the outgoing 9342 * CPU. 9343 */ 9344 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9345 return; 9346 9347 /* 9348 * Both the cpu-hotplug and stop task are in this case and are 9349 * required to complete the hotplug process. 9350 */ 9351 if (kthread_is_per_cpu(push_task) || 9352 is_migration_disabled(push_task)) { 9353 9354 /* 9355 * If this is the idle task on the outgoing CPU try to wake 9356 * up the hotplug control thread which might wait for the 9357 * last task to vanish. The rcuwait_active() check is 9358 * accurate here because the waiter is pinned on this CPU 9359 * and can't obviously be running in parallel. 9360 * 9361 * On RT kernels this also has to check whether there are 9362 * pinned and scheduled out tasks on the runqueue. They 9363 * need to leave the migrate disabled section first. 9364 */ 9365 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9366 rcuwait_active(&rq->hotplug_wait)) { 9367 raw_spin_rq_unlock(rq); 9368 rcuwait_wake_up(&rq->hotplug_wait); 9369 raw_spin_rq_lock(rq); 9370 } 9371 return; 9372 } 9373 9374 get_task_struct(push_task); 9375 /* 9376 * Temporarily drop rq->lock such that we can wake-up the stop task. 9377 * Both preemption and IRQs are still disabled. 9378 */ 9379 raw_spin_rq_unlock(rq); 9380 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9381 this_cpu_ptr(&push_work)); 9382 /* 9383 * At this point need_resched() is true and we'll take the loop in 9384 * schedule(). The next pick is obviously going to be the stop task 9385 * which kthread_is_per_cpu() and will push this task away. 9386 */ 9387 raw_spin_rq_lock(rq); 9388 } 9389 9390 static void balance_push_set(int cpu, bool on) 9391 { 9392 struct rq *rq = cpu_rq(cpu); 9393 struct rq_flags rf; 9394 9395 rq_lock_irqsave(rq, &rf); 9396 if (on) { 9397 WARN_ON_ONCE(rq->balance_callback); 9398 rq->balance_callback = &balance_push_callback; 9399 } else if (rq->balance_callback == &balance_push_callback) { 9400 rq->balance_callback = NULL; 9401 } 9402 rq_unlock_irqrestore(rq, &rf); 9403 } 9404 9405 /* 9406 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9407 * inactive. All tasks which are not per CPU kernel threads are either 9408 * pushed off this CPU now via balance_push() or placed on a different CPU 9409 * during wakeup. Wait until the CPU is quiescent. 9410 */ 9411 static void balance_hotplug_wait(void) 9412 { 9413 struct rq *rq = this_rq(); 9414 9415 rcuwait_wait_event(&rq->hotplug_wait, 9416 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9417 TASK_UNINTERRUPTIBLE); 9418 } 9419 9420 #else 9421 9422 static inline void balance_push(struct rq *rq) 9423 { 9424 } 9425 9426 static inline void balance_push_set(int cpu, bool on) 9427 { 9428 } 9429 9430 static inline void balance_hotplug_wait(void) 9431 { 9432 } 9433 9434 #endif /* CONFIG_HOTPLUG_CPU */ 9435 9436 void set_rq_online(struct rq *rq) 9437 { 9438 if (!rq->online) { 9439 const struct sched_class *class; 9440 9441 cpumask_set_cpu(rq->cpu, rq->rd->online); 9442 rq->online = 1; 9443 9444 for_each_class(class) { 9445 if (class->rq_online) 9446 class->rq_online(rq); 9447 } 9448 } 9449 } 9450 9451 void set_rq_offline(struct rq *rq) 9452 { 9453 if (rq->online) { 9454 const struct sched_class *class; 9455 9456 for_each_class(class) { 9457 if (class->rq_offline) 9458 class->rq_offline(rq); 9459 } 9460 9461 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9462 rq->online = 0; 9463 } 9464 } 9465 9466 /* 9467 * used to mark begin/end of suspend/resume: 9468 */ 9469 static int num_cpus_frozen; 9470 9471 /* 9472 * Update cpusets according to cpu_active mask. If cpusets are 9473 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9474 * around partition_sched_domains(). 9475 * 9476 * If we come here as part of a suspend/resume, don't touch cpusets because we 9477 * want to restore it back to its original state upon resume anyway. 9478 */ 9479 static void cpuset_cpu_active(void) 9480 { 9481 if (cpuhp_tasks_frozen) { 9482 /* 9483 * num_cpus_frozen tracks how many CPUs are involved in suspend 9484 * resume sequence. As long as this is not the last online 9485 * operation in the resume sequence, just build a single sched 9486 * domain, ignoring cpusets. 9487 */ 9488 partition_sched_domains(1, NULL, NULL); 9489 if (--num_cpus_frozen) 9490 return; 9491 /* 9492 * This is the last CPU online operation. So fall through and 9493 * restore the original sched domains by considering the 9494 * cpuset configurations. 9495 */ 9496 cpuset_force_rebuild(); 9497 } 9498 cpuset_update_active_cpus(); 9499 } 9500 9501 static int cpuset_cpu_inactive(unsigned int cpu) 9502 { 9503 if (!cpuhp_tasks_frozen) { 9504 int ret = dl_cpu_busy(cpu, NULL); 9505 9506 if (ret) 9507 return ret; 9508 cpuset_update_active_cpus(); 9509 } else { 9510 num_cpus_frozen++; 9511 partition_sched_domains(1, NULL, NULL); 9512 } 9513 return 0; 9514 } 9515 9516 int sched_cpu_activate(unsigned int cpu) 9517 { 9518 struct rq *rq = cpu_rq(cpu); 9519 struct rq_flags rf; 9520 9521 /* 9522 * Clear the balance_push callback and prepare to schedule 9523 * regular tasks. 9524 */ 9525 balance_push_set(cpu, false); 9526 9527 #ifdef CONFIG_SCHED_SMT 9528 /* 9529 * When going up, increment the number of cores with SMT present. 9530 */ 9531 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9532 static_branch_inc_cpuslocked(&sched_smt_present); 9533 #endif 9534 set_cpu_active(cpu, true); 9535 9536 if (sched_smp_initialized) { 9537 sched_update_numa(cpu, true); 9538 sched_domains_numa_masks_set(cpu); 9539 cpuset_cpu_active(); 9540 } 9541 9542 /* 9543 * Put the rq online, if not already. This happens: 9544 * 9545 * 1) In the early boot process, because we build the real domains 9546 * after all CPUs have been brought up. 9547 * 9548 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9549 * domains. 9550 */ 9551 rq_lock_irqsave(rq, &rf); 9552 if (rq->rd) { 9553 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9554 set_rq_online(rq); 9555 } 9556 rq_unlock_irqrestore(rq, &rf); 9557 9558 return 0; 9559 } 9560 9561 int sched_cpu_deactivate(unsigned int cpu) 9562 { 9563 struct rq *rq = cpu_rq(cpu); 9564 struct rq_flags rf; 9565 int ret; 9566 9567 /* 9568 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9569 * load balancing when not active 9570 */ 9571 nohz_balance_exit_idle(rq); 9572 9573 set_cpu_active(cpu, false); 9574 9575 /* 9576 * From this point forward, this CPU will refuse to run any task that 9577 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9578 * push those tasks away until this gets cleared, see 9579 * sched_cpu_dying(). 9580 */ 9581 balance_push_set(cpu, true); 9582 9583 /* 9584 * We've cleared cpu_active_mask / set balance_push, wait for all 9585 * preempt-disabled and RCU users of this state to go away such that 9586 * all new such users will observe it. 9587 * 9588 * Specifically, we rely on ttwu to no longer target this CPU, see 9589 * ttwu_queue_cond() and is_cpu_allowed(). 9590 * 9591 * Do sync before park smpboot threads to take care the rcu boost case. 9592 */ 9593 synchronize_rcu(); 9594 9595 rq_lock_irqsave(rq, &rf); 9596 if (rq->rd) { 9597 update_rq_clock(rq); 9598 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9599 set_rq_offline(rq); 9600 } 9601 rq_unlock_irqrestore(rq, &rf); 9602 9603 #ifdef CONFIG_SCHED_SMT 9604 /* 9605 * When going down, decrement the number of cores with SMT present. 9606 */ 9607 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9608 static_branch_dec_cpuslocked(&sched_smt_present); 9609 9610 sched_core_cpu_deactivate(cpu); 9611 #endif 9612 9613 if (!sched_smp_initialized) 9614 return 0; 9615 9616 sched_update_numa(cpu, false); 9617 ret = cpuset_cpu_inactive(cpu); 9618 if (ret) { 9619 balance_push_set(cpu, false); 9620 set_cpu_active(cpu, true); 9621 sched_update_numa(cpu, true); 9622 return ret; 9623 } 9624 sched_domains_numa_masks_clear(cpu); 9625 return 0; 9626 } 9627 9628 static void sched_rq_cpu_starting(unsigned int cpu) 9629 { 9630 struct rq *rq = cpu_rq(cpu); 9631 9632 rq->calc_load_update = calc_load_update; 9633 update_max_interval(); 9634 } 9635 9636 int sched_cpu_starting(unsigned int cpu) 9637 { 9638 sched_core_cpu_starting(cpu); 9639 sched_rq_cpu_starting(cpu); 9640 sched_tick_start(cpu); 9641 return 0; 9642 } 9643 9644 #ifdef CONFIG_HOTPLUG_CPU 9645 9646 /* 9647 * Invoked immediately before the stopper thread is invoked to bring the 9648 * CPU down completely. At this point all per CPU kthreads except the 9649 * hotplug thread (current) and the stopper thread (inactive) have been 9650 * either parked or have been unbound from the outgoing CPU. Ensure that 9651 * any of those which might be on the way out are gone. 9652 * 9653 * If after this point a bound task is being woken on this CPU then the 9654 * responsible hotplug callback has failed to do it's job. 9655 * sched_cpu_dying() will catch it with the appropriate fireworks. 9656 */ 9657 int sched_cpu_wait_empty(unsigned int cpu) 9658 { 9659 balance_hotplug_wait(); 9660 return 0; 9661 } 9662 9663 /* 9664 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9665 * might have. Called from the CPU stopper task after ensuring that the 9666 * stopper is the last running task on the CPU, so nr_active count is 9667 * stable. We need to take the teardown thread which is calling this into 9668 * account, so we hand in adjust = 1 to the load calculation. 9669 * 9670 * Also see the comment "Global load-average calculations". 9671 */ 9672 static void calc_load_migrate(struct rq *rq) 9673 { 9674 long delta = calc_load_fold_active(rq, 1); 9675 9676 if (delta) 9677 atomic_long_add(delta, &calc_load_tasks); 9678 } 9679 9680 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9681 { 9682 struct task_struct *g, *p; 9683 int cpu = cpu_of(rq); 9684 9685 lockdep_assert_rq_held(rq); 9686 9687 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9688 for_each_process_thread(g, p) { 9689 if (task_cpu(p) != cpu) 9690 continue; 9691 9692 if (!task_on_rq_queued(p)) 9693 continue; 9694 9695 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9696 } 9697 } 9698 9699 int sched_cpu_dying(unsigned int cpu) 9700 { 9701 struct rq *rq = cpu_rq(cpu); 9702 struct rq_flags rf; 9703 9704 /* Handle pending wakeups and then migrate everything off */ 9705 sched_tick_stop(cpu); 9706 9707 rq_lock_irqsave(rq, &rf); 9708 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9709 WARN(true, "Dying CPU not properly vacated!"); 9710 dump_rq_tasks(rq, KERN_WARNING); 9711 } 9712 rq_unlock_irqrestore(rq, &rf); 9713 9714 calc_load_migrate(rq); 9715 update_max_interval(); 9716 hrtick_clear(rq); 9717 sched_core_cpu_dying(cpu); 9718 return 0; 9719 } 9720 #endif 9721 9722 void __init sched_init_smp(void) 9723 { 9724 sched_init_numa(NUMA_NO_NODE); 9725 9726 /* 9727 * There's no userspace yet to cause hotplug operations; hence all the 9728 * CPU masks are stable and all blatant races in the below code cannot 9729 * happen. 9730 */ 9731 mutex_lock(&sched_domains_mutex); 9732 sched_init_domains(cpu_active_mask); 9733 mutex_unlock(&sched_domains_mutex); 9734 9735 /* Move init over to a non-isolated CPU */ 9736 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9737 BUG(); 9738 current->flags &= ~PF_NO_SETAFFINITY; 9739 sched_init_granularity(); 9740 9741 init_sched_rt_class(); 9742 init_sched_dl_class(); 9743 9744 sched_smp_initialized = true; 9745 } 9746 9747 static int __init migration_init(void) 9748 { 9749 sched_cpu_starting(smp_processor_id()); 9750 return 0; 9751 } 9752 early_initcall(migration_init); 9753 9754 #else 9755 void __init sched_init_smp(void) 9756 { 9757 sched_init_granularity(); 9758 } 9759 #endif /* CONFIG_SMP */ 9760 9761 int in_sched_functions(unsigned long addr) 9762 { 9763 return in_lock_functions(addr) || 9764 (addr >= (unsigned long)__sched_text_start 9765 && addr < (unsigned long)__sched_text_end); 9766 } 9767 9768 #ifdef CONFIG_CGROUP_SCHED 9769 /* 9770 * Default task group. 9771 * Every task in system belongs to this group at bootup. 9772 */ 9773 struct task_group root_task_group; 9774 LIST_HEAD(task_groups); 9775 9776 /* Cacheline aligned slab cache for task_group */ 9777 static struct kmem_cache *task_group_cache __read_mostly; 9778 #endif 9779 9780 void __init sched_init(void) 9781 { 9782 unsigned long ptr = 0; 9783 int i; 9784 9785 /* Make sure the linker didn't screw up */ 9786 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9787 &fair_sched_class != &rt_sched_class + 1 || 9788 &rt_sched_class != &dl_sched_class + 1); 9789 #ifdef CONFIG_SMP 9790 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9791 #endif 9792 9793 wait_bit_init(); 9794 9795 #ifdef CONFIG_FAIR_GROUP_SCHED 9796 ptr += 2 * nr_cpu_ids * sizeof(void **); 9797 #endif 9798 #ifdef CONFIG_RT_GROUP_SCHED 9799 ptr += 2 * nr_cpu_ids * sizeof(void **); 9800 #endif 9801 if (ptr) { 9802 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9803 9804 #ifdef CONFIG_FAIR_GROUP_SCHED 9805 root_task_group.se = (struct sched_entity **)ptr; 9806 ptr += nr_cpu_ids * sizeof(void **); 9807 9808 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9809 ptr += nr_cpu_ids * sizeof(void **); 9810 9811 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9812 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9813 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9814 #ifdef CONFIG_RT_GROUP_SCHED 9815 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9816 ptr += nr_cpu_ids * sizeof(void **); 9817 9818 root_task_group.rt_rq = (struct rt_rq **)ptr; 9819 ptr += nr_cpu_ids * sizeof(void **); 9820 9821 #endif /* CONFIG_RT_GROUP_SCHED */ 9822 } 9823 9824 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9825 9826 #ifdef CONFIG_SMP 9827 init_defrootdomain(); 9828 #endif 9829 9830 #ifdef CONFIG_RT_GROUP_SCHED 9831 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9832 global_rt_period(), global_rt_runtime()); 9833 #endif /* CONFIG_RT_GROUP_SCHED */ 9834 9835 #ifdef CONFIG_CGROUP_SCHED 9836 task_group_cache = KMEM_CACHE(task_group, 0); 9837 9838 list_add(&root_task_group.list, &task_groups); 9839 INIT_LIST_HEAD(&root_task_group.children); 9840 INIT_LIST_HEAD(&root_task_group.siblings); 9841 autogroup_init(&init_task); 9842 #endif /* CONFIG_CGROUP_SCHED */ 9843 9844 for_each_possible_cpu(i) { 9845 struct rq *rq; 9846 9847 rq = cpu_rq(i); 9848 raw_spin_lock_init(&rq->__lock); 9849 rq->nr_running = 0; 9850 rq->calc_load_active = 0; 9851 rq->calc_load_update = jiffies + LOAD_FREQ; 9852 init_cfs_rq(&rq->cfs); 9853 init_rt_rq(&rq->rt); 9854 init_dl_rq(&rq->dl); 9855 #ifdef CONFIG_FAIR_GROUP_SCHED 9856 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9857 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9858 /* 9859 * How much CPU bandwidth does root_task_group get? 9860 * 9861 * In case of task-groups formed thr' the cgroup filesystem, it 9862 * gets 100% of the CPU resources in the system. This overall 9863 * system CPU resource is divided among the tasks of 9864 * root_task_group and its child task-groups in a fair manner, 9865 * based on each entity's (task or task-group's) weight 9866 * (se->load.weight). 9867 * 9868 * In other words, if root_task_group has 10 tasks of weight 9869 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9870 * then A0's share of the CPU resource is: 9871 * 9872 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9873 * 9874 * We achieve this by letting root_task_group's tasks sit 9875 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9876 */ 9877 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9878 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9879 9880 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9881 #ifdef CONFIG_RT_GROUP_SCHED 9882 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9883 #endif 9884 #ifdef CONFIG_SMP 9885 rq->sd = NULL; 9886 rq->rd = NULL; 9887 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9888 rq->balance_callback = &balance_push_callback; 9889 rq->active_balance = 0; 9890 rq->next_balance = jiffies; 9891 rq->push_cpu = 0; 9892 rq->cpu = i; 9893 rq->online = 0; 9894 rq->idle_stamp = 0; 9895 rq->avg_idle = 2*sysctl_sched_migration_cost; 9896 rq->wake_stamp = jiffies; 9897 rq->wake_avg_idle = rq->avg_idle; 9898 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9899 9900 INIT_LIST_HEAD(&rq->cfs_tasks); 9901 9902 rq_attach_root(rq, &def_root_domain); 9903 #ifdef CONFIG_NO_HZ_COMMON 9904 rq->last_blocked_load_update_tick = jiffies; 9905 atomic_set(&rq->nohz_flags, 0); 9906 9907 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9908 #endif 9909 #ifdef CONFIG_HOTPLUG_CPU 9910 rcuwait_init(&rq->hotplug_wait); 9911 #endif 9912 #endif /* CONFIG_SMP */ 9913 hrtick_rq_init(rq); 9914 atomic_set(&rq->nr_iowait, 0); 9915 9916 #ifdef CONFIG_SCHED_CORE 9917 rq->core = rq; 9918 rq->core_pick = NULL; 9919 rq->core_enabled = 0; 9920 rq->core_tree = RB_ROOT; 9921 rq->core_forceidle_count = 0; 9922 rq->core_forceidle_occupation = 0; 9923 rq->core_forceidle_start = 0; 9924 9925 rq->core_cookie = 0UL; 9926 #endif 9927 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9928 } 9929 9930 set_load_weight(&init_task, false); 9931 9932 /* 9933 * The boot idle thread does lazy MMU switching as well: 9934 */ 9935 mmgrab(&init_mm); 9936 enter_lazy_tlb(&init_mm, current); 9937 9938 /* 9939 * The idle task doesn't need the kthread struct to function, but it 9940 * is dressed up as a per-CPU kthread and thus needs to play the part 9941 * if we want to avoid special-casing it in code that deals with per-CPU 9942 * kthreads. 9943 */ 9944 WARN_ON(!set_kthread_struct(current)); 9945 9946 /* 9947 * Make us the idle thread. Technically, schedule() should not be 9948 * called from this thread, however somewhere below it might be, 9949 * but because we are the idle thread, we just pick up running again 9950 * when this runqueue becomes "idle". 9951 */ 9952 init_idle(current, smp_processor_id()); 9953 9954 calc_load_update = jiffies + LOAD_FREQ; 9955 9956 #ifdef CONFIG_SMP 9957 idle_thread_set_boot_cpu(); 9958 balance_push_set(smp_processor_id(), false); 9959 #endif 9960 init_sched_fair_class(); 9961 9962 psi_init(); 9963 9964 init_uclamp(); 9965 9966 preempt_dynamic_init(); 9967 9968 scheduler_running = 1; 9969 } 9970 9971 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9972 9973 void __might_sleep(const char *file, int line) 9974 { 9975 unsigned int state = get_current_state(); 9976 /* 9977 * Blocking primitives will set (and therefore destroy) current->state, 9978 * since we will exit with TASK_RUNNING make sure we enter with it, 9979 * otherwise we will destroy state. 9980 */ 9981 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9982 "do not call blocking ops when !TASK_RUNNING; " 9983 "state=%x set at [<%p>] %pS\n", state, 9984 (void *)current->task_state_change, 9985 (void *)current->task_state_change); 9986 9987 __might_resched(file, line, 0); 9988 } 9989 EXPORT_SYMBOL(__might_sleep); 9990 9991 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9992 { 9993 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9994 return; 9995 9996 if (preempt_count() == preempt_offset) 9997 return; 9998 9999 pr_err("Preemption disabled at:"); 10000 print_ip_sym(KERN_ERR, ip); 10001 } 10002 10003 static inline bool resched_offsets_ok(unsigned int offsets) 10004 { 10005 unsigned int nested = preempt_count(); 10006 10007 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 10008 10009 return nested == offsets; 10010 } 10011 10012 void __might_resched(const char *file, int line, unsigned int offsets) 10013 { 10014 /* Ratelimiting timestamp: */ 10015 static unsigned long prev_jiffy; 10016 10017 unsigned long preempt_disable_ip; 10018 10019 /* WARN_ON_ONCE() by default, no rate limit required: */ 10020 rcu_sleep_check(); 10021 10022 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10023 !is_idle_task(current) && !current->non_block_count) || 10024 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10025 oops_in_progress) 10026 return; 10027 10028 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10029 return; 10030 prev_jiffy = jiffies; 10031 10032 /* Save this before calling printk(), since that will clobber it: */ 10033 preempt_disable_ip = get_preempt_disable_ip(current); 10034 10035 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10036 file, line); 10037 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10038 in_atomic(), irqs_disabled(), current->non_block_count, 10039 current->pid, current->comm); 10040 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10041 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10042 10043 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10044 pr_err("RCU nest depth: %d, expected: %u\n", 10045 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10046 } 10047 10048 if (task_stack_end_corrupted(current)) 10049 pr_emerg("Thread overran stack, or stack corrupted\n"); 10050 10051 debug_show_held_locks(current); 10052 if (irqs_disabled()) 10053 print_irqtrace_events(current); 10054 10055 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10056 preempt_disable_ip); 10057 10058 dump_stack(); 10059 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10060 } 10061 EXPORT_SYMBOL(__might_resched); 10062 10063 void __cant_sleep(const char *file, int line, int preempt_offset) 10064 { 10065 static unsigned long prev_jiffy; 10066 10067 if (irqs_disabled()) 10068 return; 10069 10070 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10071 return; 10072 10073 if (preempt_count() > preempt_offset) 10074 return; 10075 10076 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10077 return; 10078 prev_jiffy = jiffies; 10079 10080 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10081 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10082 in_atomic(), irqs_disabled(), 10083 current->pid, current->comm); 10084 10085 debug_show_held_locks(current); 10086 dump_stack(); 10087 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10088 } 10089 EXPORT_SYMBOL_GPL(__cant_sleep); 10090 10091 #ifdef CONFIG_SMP 10092 void __cant_migrate(const char *file, int line) 10093 { 10094 static unsigned long prev_jiffy; 10095 10096 if (irqs_disabled()) 10097 return; 10098 10099 if (is_migration_disabled(current)) 10100 return; 10101 10102 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10103 return; 10104 10105 if (preempt_count() > 0) 10106 return; 10107 10108 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10109 return; 10110 prev_jiffy = jiffies; 10111 10112 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10113 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10114 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10115 current->pid, current->comm); 10116 10117 debug_show_held_locks(current); 10118 dump_stack(); 10119 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10120 } 10121 EXPORT_SYMBOL_GPL(__cant_migrate); 10122 #endif 10123 #endif 10124 10125 #ifdef CONFIG_MAGIC_SYSRQ 10126 void normalize_rt_tasks(void) 10127 { 10128 struct task_struct *g, *p; 10129 struct sched_attr attr = { 10130 .sched_policy = SCHED_NORMAL, 10131 }; 10132 10133 read_lock(&tasklist_lock); 10134 for_each_process_thread(g, p) { 10135 /* 10136 * Only normalize user tasks: 10137 */ 10138 if (p->flags & PF_KTHREAD) 10139 continue; 10140 10141 p->se.exec_start = 0; 10142 schedstat_set(p->stats.wait_start, 0); 10143 schedstat_set(p->stats.sleep_start, 0); 10144 schedstat_set(p->stats.block_start, 0); 10145 10146 if (!dl_task(p) && !rt_task(p)) { 10147 /* 10148 * Renice negative nice level userspace 10149 * tasks back to 0: 10150 */ 10151 if (task_nice(p) < 0) 10152 set_user_nice(p, 0); 10153 continue; 10154 } 10155 10156 __sched_setscheduler(p, &attr, false, false); 10157 } 10158 read_unlock(&tasklist_lock); 10159 } 10160 10161 #endif /* CONFIG_MAGIC_SYSRQ */ 10162 10163 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10164 /* 10165 * These functions are only useful for the IA64 MCA handling, or kdb. 10166 * 10167 * They can only be called when the whole system has been 10168 * stopped - every CPU needs to be quiescent, and no scheduling 10169 * activity can take place. Using them for anything else would 10170 * be a serious bug, and as a result, they aren't even visible 10171 * under any other configuration. 10172 */ 10173 10174 /** 10175 * curr_task - return the current task for a given CPU. 10176 * @cpu: the processor in question. 10177 * 10178 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10179 * 10180 * Return: The current task for @cpu. 10181 */ 10182 struct task_struct *curr_task(int cpu) 10183 { 10184 return cpu_curr(cpu); 10185 } 10186 10187 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10188 10189 #ifdef CONFIG_IA64 10190 /** 10191 * ia64_set_curr_task - set the current task for a given CPU. 10192 * @cpu: the processor in question. 10193 * @p: the task pointer to set. 10194 * 10195 * Description: This function must only be used when non-maskable interrupts 10196 * are serviced on a separate stack. It allows the architecture to switch the 10197 * notion of the current task on a CPU in a non-blocking manner. This function 10198 * must be called with all CPU's synchronized, and interrupts disabled, the 10199 * and caller must save the original value of the current task (see 10200 * curr_task() above) and restore that value before reenabling interrupts and 10201 * re-starting the system. 10202 * 10203 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10204 */ 10205 void ia64_set_curr_task(int cpu, struct task_struct *p) 10206 { 10207 cpu_curr(cpu) = p; 10208 } 10209 10210 #endif 10211 10212 #ifdef CONFIG_CGROUP_SCHED 10213 /* task_group_lock serializes the addition/removal of task groups */ 10214 static DEFINE_SPINLOCK(task_group_lock); 10215 10216 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10217 struct task_group *parent) 10218 { 10219 #ifdef CONFIG_UCLAMP_TASK_GROUP 10220 enum uclamp_id clamp_id; 10221 10222 for_each_clamp_id(clamp_id) { 10223 uclamp_se_set(&tg->uclamp_req[clamp_id], 10224 uclamp_none(clamp_id), false); 10225 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10226 } 10227 #endif 10228 } 10229 10230 static void sched_free_group(struct task_group *tg) 10231 { 10232 free_fair_sched_group(tg); 10233 free_rt_sched_group(tg); 10234 autogroup_free(tg); 10235 kmem_cache_free(task_group_cache, tg); 10236 } 10237 10238 static void sched_free_group_rcu(struct rcu_head *rcu) 10239 { 10240 sched_free_group(container_of(rcu, struct task_group, rcu)); 10241 } 10242 10243 static void sched_unregister_group(struct task_group *tg) 10244 { 10245 unregister_fair_sched_group(tg); 10246 unregister_rt_sched_group(tg); 10247 /* 10248 * We have to wait for yet another RCU grace period to expire, as 10249 * print_cfs_stats() might run concurrently. 10250 */ 10251 call_rcu(&tg->rcu, sched_free_group_rcu); 10252 } 10253 10254 /* allocate runqueue etc for a new task group */ 10255 struct task_group *sched_create_group(struct task_group *parent) 10256 { 10257 struct task_group *tg; 10258 10259 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10260 if (!tg) 10261 return ERR_PTR(-ENOMEM); 10262 10263 if (!alloc_fair_sched_group(tg, parent)) 10264 goto err; 10265 10266 if (!alloc_rt_sched_group(tg, parent)) 10267 goto err; 10268 10269 alloc_uclamp_sched_group(tg, parent); 10270 10271 return tg; 10272 10273 err: 10274 sched_free_group(tg); 10275 return ERR_PTR(-ENOMEM); 10276 } 10277 10278 void sched_online_group(struct task_group *tg, struct task_group *parent) 10279 { 10280 unsigned long flags; 10281 10282 spin_lock_irqsave(&task_group_lock, flags); 10283 list_add_rcu(&tg->list, &task_groups); 10284 10285 /* Root should already exist: */ 10286 WARN_ON(!parent); 10287 10288 tg->parent = parent; 10289 INIT_LIST_HEAD(&tg->children); 10290 list_add_rcu(&tg->siblings, &parent->children); 10291 spin_unlock_irqrestore(&task_group_lock, flags); 10292 10293 online_fair_sched_group(tg); 10294 } 10295 10296 /* rcu callback to free various structures associated with a task group */ 10297 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10298 { 10299 /* Now it should be safe to free those cfs_rqs: */ 10300 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10301 } 10302 10303 void sched_destroy_group(struct task_group *tg) 10304 { 10305 /* Wait for possible concurrent references to cfs_rqs complete: */ 10306 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10307 } 10308 10309 void sched_release_group(struct task_group *tg) 10310 { 10311 unsigned long flags; 10312 10313 /* 10314 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10315 * sched_cfs_period_timer()). 10316 * 10317 * For this to be effective, we have to wait for all pending users of 10318 * this task group to leave their RCU critical section to ensure no new 10319 * user will see our dying task group any more. Specifically ensure 10320 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10321 * 10322 * We therefore defer calling unregister_fair_sched_group() to 10323 * sched_unregister_group() which is guarantied to get called only after the 10324 * current RCU grace period has expired. 10325 */ 10326 spin_lock_irqsave(&task_group_lock, flags); 10327 list_del_rcu(&tg->list); 10328 list_del_rcu(&tg->siblings); 10329 spin_unlock_irqrestore(&task_group_lock, flags); 10330 } 10331 10332 static void sched_change_group(struct task_struct *tsk) 10333 { 10334 struct task_group *tg; 10335 10336 /* 10337 * All callers are synchronized by task_rq_lock(); we do not use RCU 10338 * which is pointless here. Thus, we pass "true" to task_css_check() 10339 * to prevent lockdep warnings. 10340 */ 10341 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10342 struct task_group, css); 10343 tg = autogroup_task_group(tsk, tg); 10344 tsk->sched_task_group = tg; 10345 10346 #ifdef CONFIG_FAIR_GROUP_SCHED 10347 if (tsk->sched_class->task_change_group) 10348 tsk->sched_class->task_change_group(tsk); 10349 else 10350 #endif 10351 set_task_rq(tsk, task_cpu(tsk)); 10352 } 10353 10354 /* 10355 * Change task's runqueue when it moves between groups. 10356 * 10357 * The caller of this function should have put the task in its new group by 10358 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10359 * its new group. 10360 */ 10361 void sched_move_task(struct task_struct *tsk) 10362 { 10363 int queued, running, queue_flags = 10364 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10365 struct rq_flags rf; 10366 struct rq *rq; 10367 10368 rq = task_rq_lock(tsk, &rf); 10369 update_rq_clock(rq); 10370 10371 running = task_current(rq, tsk); 10372 queued = task_on_rq_queued(tsk); 10373 10374 if (queued) 10375 dequeue_task(rq, tsk, queue_flags); 10376 if (running) 10377 put_prev_task(rq, tsk); 10378 10379 sched_change_group(tsk); 10380 10381 if (queued) 10382 enqueue_task(rq, tsk, queue_flags); 10383 if (running) { 10384 set_next_task(rq, tsk); 10385 /* 10386 * After changing group, the running task may have joined a 10387 * throttled one but it's still the running task. Trigger a 10388 * resched to make sure that task can still run. 10389 */ 10390 resched_curr(rq); 10391 } 10392 10393 task_rq_unlock(rq, tsk, &rf); 10394 } 10395 10396 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10397 { 10398 return css ? container_of(css, struct task_group, css) : NULL; 10399 } 10400 10401 static struct cgroup_subsys_state * 10402 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10403 { 10404 struct task_group *parent = css_tg(parent_css); 10405 struct task_group *tg; 10406 10407 if (!parent) { 10408 /* This is early initialization for the top cgroup */ 10409 return &root_task_group.css; 10410 } 10411 10412 tg = sched_create_group(parent); 10413 if (IS_ERR(tg)) 10414 return ERR_PTR(-ENOMEM); 10415 10416 return &tg->css; 10417 } 10418 10419 /* Expose task group only after completing cgroup initialization */ 10420 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10421 { 10422 struct task_group *tg = css_tg(css); 10423 struct task_group *parent = css_tg(css->parent); 10424 10425 if (parent) 10426 sched_online_group(tg, parent); 10427 10428 #ifdef CONFIG_UCLAMP_TASK_GROUP 10429 /* Propagate the effective uclamp value for the new group */ 10430 mutex_lock(&uclamp_mutex); 10431 rcu_read_lock(); 10432 cpu_util_update_eff(css); 10433 rcu_read_unlock(); 10434 mutex_unlock(&uclamp_mutex); 10435 #endif 10436 10437 return 0; 10438 } 10439 10440 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10441 { 10442 struct task_group *tg = css_tg(css); 10443 10444 sched_release_group(tg); 10445 } 10446 10447 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10448 { 10449 struct task_group *tg = css_tg(css); 10450 10451 /* 10452 * Relies on the RCU grace period between css_released() and this. 10453 */ 10454 sched_unregister_group(tg); 10455 } 10456 10457 #ifdef CONFIG_RT_GROUP_SCHED 10458 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10459 { 10460 struct task_struct *task; 10461 struct cgroup_subsys_state *css; 10462 10463 cgroup_taskset_for_each(task, css, tset) { 10464 if (!sched_rt_can_attach(css_tg(css), task)) 10465 return -EINVAL; 10466 } 10467 return 0; 10468 } 10469 #endif 10470 10471 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10472 { 10473 struct task_struct *task; 10474 struct cgroup_subsys_state *css; 10475 10476 cgroup_taskset_for_each(task, css, tset) 10477 sched_move_task(task); 10478 } 10479 10480 #ifdef CONFIG_UCLAMP_TASK_GROUP 10481 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10482 { 10483 struct cgroup_subsys_state *top_css = css; 10484 struct uclamp_se *uc_parent = NULL; 10485 struct uclamp_se *uc_se = NULL; 10486 unsigned int eff[UCLAMP_CNT]; 10487 enum uclamp_id clamp_id; 10488 unsigned int clamps; 10489 10490 lockdep_assert_held(&uclamp_mutex); 10491 SCHED_WARN_ON(!rcu_read_lock_held()); 10492 10493 css_for_each_descendant_pre(css, top_css) { 10494 uc_parent = css_tg(css)->parent 10495 ? css_tg(css)->parent->uclamp : NULL; 10496 10497 for_each_clamp_id(clamp_id) { 10498 /* Assume effective clamps matches requested clamps */ 10499 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10500 /* Cap effective clamps with parent's effective clamps */ 10501 if (uc_parent && 10502 eff[clamp_id] > uc_parent[clamp_id].value) { 10503 eff[clamp_id] = uc_parent[clamp_id].value; 10504 } 10505 } 10506 /* Ensure protection is always capped by limit */ 10507 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10508 10509 /* Propagate most restrictive effective clamps */ 10510 clamps = 0x0; 10511 uc_se = css_tg(css)->uclamp; 10512 for_each_clamp_id(clamp_id) { 10513 if (eff[clamp_id] == uc_se[clamp_id].value) 10514 continue; 10515 uc_se[clamp_id].value = eff[clamp_id]; 10516 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10517 clamps |= (0x1 << clamp_id); 10518 } 10519 if (!clamps) { 10520 css = css_rightmost_descendant(css); 10521 continue; 10522 } 10523 10524 /* Immediately update descendants RUNNABLE tasks */ 10525 uclamp_update_active_tasks(css); 10526 } 10527 } 10528 10529 /* 10530 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10531 * C expression. Since there is no way to convert a macro argument (N) into a 10532 * character constant, use two levels of macros. 10533 */ 10534 #define _POW10(exp) ((unsigned int)1e##exp) 10535 #define POW10(exp) _POW10(exp) 10536 10537 struct uclamp_request { 10538 #define UCLAMP_PERCENT_SHIFT 2 10539 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10540 s64 percent; 10541 u64 util; 10542 int ret; 10543 }; 10544 10545 static inline struct uclamp_request 10546 capacity_from_percent(char *buf) 10547 { 10548 struct uclamp_request req = { 10549 .percent = UCLAMP_PERCENT_SCALE, 10550 .util = SCHED_CAPACITY_SCALE, 10551 .ret = 0, 10552 }; 10553 10554 buf = strim(buf); 10555 if (strcmp(buf, "max")) { 10556 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10557 &req.percent); 10558 if (req.ret) 10559 return req; 10560 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10561 req.ret = -ERANGE; 10562 return req; 10563 } 10564 10565 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10566 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10567 } 10568 10569 return req; 10570 } 10571 10572 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10573 size_t nbytes, loff_t off, 10574 enum uclamp_id clamp_id) 10575 { 10576 struct uclamp_request req; 10577 struct task_group *tg; 10578 10579 req = capacity_from_percent(buf); 10580 if (req.ret) 10581 return req.ret; 10582 10583 static_branch_enable(&sched_uclamp_used); 10584 10585 mutex_lock(&uclamp_mutex); 10586 rcu_read_lock(); 10587 10588 tg = css_tg(of_css(of)); 10589 if (tg->uclamp_req[clamp_id].value != req.util) 10590 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10591 10592 /* 10593 * Because of not recoverable conversion rounding we keep track of the 10594 * exact requested value 10595 */ 10596 tg->uclamp_pct[clamp_id] = req.percent; 10597 10598 /* Update effective clamps to track the most restrictive value */ 10599 cpu_util_update_eff(of_css(of)); 10600 10601 rcu_read_unlock(); 10602 mutex_unlock(&uclamp_mutex); 10603 10604 return nbytes; 10605 } 10606 10607 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10608 char *buf, size_t nbytes, 10609 loff_t off) 10610 { 10611 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10612 } 10613 10614 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10615 char *buf, size_t nbytes, 10616 loff_t off) 10617 { 10618 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10619 } 10620 10621 static inline void cpu_uclamp_print(struct seq_file *sf, 10622 enum uclamp_id clamp_id) 10623 { 10624 struct task_group *tg; 10625 u64 util_clamp; 10626 u64 percent; 10627 u32 rem; 10628 10629 rcu_read_lock(); 10630 tg = css_tg(seq_css(sf)); 10631 util_clamp = tg->uclamp_req[clamp_id].value; 10632 rcu_read_unlock(); 10633 10634 if (util_clamp == SCHED_CAPACITY_SCALE) { 10635 seq_puts(sf, "max\n"); 10636 return; 10637 } 10638 10639 percent = tg->uclamp_pct[clamp_id]; 10640 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10641 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10642 } 10643 10644 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10645 { 10646 cpu_uclamp_print(sf, UCLAMP_MIN); 10647 return 0; 10648 } 10649 10650 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10651 { 10652 cpu_uclamp_print(sf, UCLAMP_MAX); 10653 return 0; 10654 } 10655 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10656 10657 #ifdef CONFIG_FAIR_GROUP_SCHED 10658 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10659 struct cftype *cftype, u64 shareval) 10660 { 10661 if (shareval > scale_load_down(ULONG_MAX)) 10662 shareval = MAX_SHARES; 10663 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10664 } 10665 10666 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10667 struct cftype *cft) 10668 { 10669 struct task_group *tg = css_tg(css); 10670 10671 return (u64) scale_load_down(tg->shares); 10672 } 10673 10674 #ifdef CONFIG_CFS_BANDWIDTH 10675 static DEFINE_MUTEX(cfs_constraints_mutex); 10676 10677 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10678 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10679 /* More than 203 days if BW_SHIFT equals 20. */ 10680 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10681 10682 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10683 10684 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10685 u64 burst) 10686 { 10687 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10688 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10689 10690 if (tg == &root_task_group) 10691 return -EINVAL; 10692 10693 /* 10694 * Ensure we have at some amount of bandwidth every period. This is 10695 * to prevent reaching a state of large arrears when throttled via 10696 * entity_tick() resulting in prolonged exit starvation. 10697 */ 10698 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10699 return -EINVAL; 10700 10701 /* 10702 * Likewise, bound things on the other side by preventing insane quota 10703 * periods. This also allows us to normalize in computing quota 10704 * feasibility. 10705 */ 10706 if (period > max_cfs_quota_period) 10707 return -EINVAL; 10708 10709 /* 10710 * Bound quota to defend quota against overflow during bandwidth shift. 10711 */ 10712 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10713 return -EINVAL; 10714 10715 if (quota != RUNTIME_INF && (burst > quota || 10716 burst + quota > max_cfs_runtime)) 10717 return -EINVAL; 10718 10719 /* 10720 * Prevent race between setting of cfs_rq->runtime_enabled and 10721 * unthrottle_offline_cfs_rqs(). 10722 */ 10723 cpus_read_lock(); 10724 mutex_lock(&cfs_constraints_mutex); 10725 ret = __cfs_schedulable(tg, period, quota); 10726 if (ret) 10727 goto out_unlock; 10728 10729 runtime_enabled = quota != RUNTIME_INF; 10730 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10731 /* 10732 * If we need to toggle cfs_bandwidth_used, off->on must occur 10733 * before making related changes, and on->off must occur afterwards 10734 */ 10735 if (runtime_enabled && !runtime_was_enabled) 10736 cfs_bandwidth_usage_inc(); 10737 raw_spin_lock_irq(&cfs_b->lock); 10738 cfs_b->period = ns_to_ktime(period); 10739 cfs_b->quota = quota; 10740 cfs_b->burst = burst; 10741 10742 __refill_cfs_bandwidth_runtime(cfs_b); 10743 10744 /* Restart the period timer (if active) to handle new period expiry: */ 10745 if (runtime_enabled) 10746 start_cfs_bandwidth(cfs_b); 10747 10748 raw_spin_unlock_irq(&cfs_b->lock); 10749 10750 for_each_online_cpu(i) { 10751 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10752 struct rq *rq = cfs_rq->rq; 10753 struct rq_flags rf; 10754 10755 rq_lock_irq(rq, &rf); 10756 cfs_rq->runtime_enabled = runtime_enabled; 10757 cfs_rq->runtime_remaining = 0; 10758 10759 if (cfs_rq->throttled) 10760 unthrottle_cfs_rq(cfs_rq); 10761 rq_unlock_irq(rq, &rf); 10762 } 10763 if (runtime_was_enabled && !runtime_enabled) 10764 cfs_bandwidth_usage_dec(); 10765 out_unlock: 10766 mutex_unlock(&cfs_constraints_mutex); 10767 cpus_read_unlock(); 10768 10769 return ret; 10770 } 10771 10772 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10773 { 10774 u64 quota, period, burst; 10775 10776 period = ktime_to_ns(tg->cfs_bandwidth.period); 10777 burst = tg->cfs_bandwidth.burst; 10778 if (cfs_quota_us < 0) 10779 quota = RUNTIME_INF; 10780 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10781 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10782 else 10783 return -EINVAL; 10784 10785 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10786 } 10787 10788 static long tg_get_cfs_quota(struct task_group *tg) 10789 { 10790 u64 quota_us; 10791 10792 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10793 return -1; 10794 10795 quota_us = tg->cfs_bandwidth.quota; 10796 do_div(quota_us, NSEC_PER_USEC); 10797 10798 return quota_us; 10799 } 10800 10801 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10802 { 10803 u64 quota, period, burst; 10804 10805 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10806 return -EINVAL; 10807 10808 period = (u64)cfs_period_us * NSEC_PER_USEC; 10809 quota = tg->cfs_bandwidth.quota; 10810 burst = tg->cfs_bandwidth.burst; 10811 10812 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10813 } 10814 10815 static long tg_get_cfs_period(struct task_group *tg) 10816 { 10817 u64 cfs_period_us; 10818 10819 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10820 do_div(cfs_period_us, NSEC_PER_USEC); 10821 10822 return cfs_period_us; 10823 } 10824 10825 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10826 { 10827 u64 quota, period, burst; 10828 10829 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10830 return -EINVAL; 10831 10832 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10833 period = ktime_to_ns(tg->cfs_bandwidth.period); 10834 quota = tg->cfs_bandwidth.quota; 10835 10836 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10837 } 10838 10839 static long tg_get_cfs_burst(struct task_group *tg) 10840 { 10841 u64 burst_us; 10842 10843 burst_us = tg->cfs_bandwidth.burst; 10844 do_div(burst_us, NSEC_PER_USEC); 10845 10846 return burst_us; 10847 } 10848 10849 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10850 struct cftype *cft) 10851 { 10852 return tg_get_cfs_quota(css_tg(css)); 10853 } 10854 10855 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10856 struct cftype *cftype, s64 cfs_quota_us) 10857 { 10858 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10859 } 10860 10861 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10862 struct cftype *cft) 10863 { 10864 return tg_get_cfs_period(css_tg(css)); 10865 } 10866 10867 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10868 struct cftype *cftype, u64 cfs_period_us) 10869 { 10870 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10871 } 10872 10873 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10874 struct cftype *cft) 10875 { 10876 return tg_get_cfs_burst(css_tg(css)); 10877 } 10878 10879 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10880 struct cftype *cftype, u64 cfs_burst_us) 10881 { 10882 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10883 } 10884 10885 struct cfs_schedulable_data { 10886 struct task_group *tg; 10887 u64 period, quota; 10888 }; 10889 10890 /* 10891 * normalize group quota/period to be quota/max_period 10892 * note: units are usecs 10893 */ 10894 static u64 normalize_cfs_quota(struct task_group *tg, 10895 struct cfs_schedulable_data *d) 10896 { 10897 u64 quota, period; 10898 10899 if (tg == d->tg) { 10900 period = d->period; 10901 quota = d->quota; 10902 } else { 10903 period = tg_get_cfs_period(tg); 10904 quota = tg_get_cfs_quota(tg); 10905 } 10906 10907 /* note: these should typically be equivalent */ 10908 if (quota == RUNTIME_INF || quota == -1) 10909 return RUNTIME_INF; 10910 10911 return to_ratio(period, quota); 10912 } 10913 10914 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10915 { 10916 struct cfs_schedulable_data *d = data; 10917 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10918 s64 quota = 0, parent_quota = -1; 10919 10920 if (!tg->parent) { 10921 quota = RUNTIME_INF; 10922 } else { 10923 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10924 10925 quota = normalize_cfs_quota(tg, d); 10926 parent_quota = parent_b->hierarchical_quota; 10927 10928 /* 10929 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10930 * always take the min. On cgroup1, only inherit when no 10931 * limit is set: 10932 */ 10933 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10934 quota = min(quota, parent_quota); 10935 } else { 10936 if (quota == RUNTIME_INF) 10937 quota = parent_quota; 10938 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10939 return -EINVAL; 10940 } 10941 } 10942 cfs_b->hierarchical_quota = quota; 10943 10944 return 0; 10945 } 10946 10947 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10948 { 10949 int ret; 10950 struct cfs_schedulable_data data = { 10951 .tg = tg, 10952 .period = period, 10953 .quota = quota, 10954 }; 10955 10956 if (quota != RUNTIME_INF) { 10957 do_div(data.period, NSEC_PER_USEC); 10958 do_div(data.quota, NSEC_PER_USEC); 10959 } 10960 10961 rcu_read_lock(); 10962 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10963 rcu_read_unlock(); 10964 10965 return ret; 10966 } 10967 10968 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10969 { 10970 struct task_group *tg = css_tg(seq_css(sf)); 10971 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10972 10973 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10974 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10975 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10976 10977 if (schedstat_enabled() && tg != &root_task_group) { 10978 struct sched_statistics *stats; 10979 u64 ws = 0; 10980 int i; 10981 10982 for_each_possible_cpu(i) { 10983 stats = __schedstats_from_se(tg->se[i]); 10984 ws += schedstat_val(stats->wait_sum); 10985 } 10986 10987 seq_printf(sf, "wait_sum %llu\n", ws); 10988 } 10989 10990 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10991 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10992 10993 return 0; 10994 } 10995 #endif /* CONFIG_CFS_BANDWIDTH */ 10996 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10997 10998 #ifdef CONFIG_RT_GROUP_SCHED 10999 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 11000 struct cftype *cft, s64 val) 11001 { 11002 return sched_group_set_rt_runtime(css_tg(css), val); 11003 } 11004 11005 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 11006 struct cftype *cft) 11007 { 11008 return sched_group_rt_runtime(css_tg(css)); 11009 } 11010 11011 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 11012 struct cftype *cftype, u64 rt_period_us) 11013 { 11014 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11015 } 11016 11017 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11018 struct cftype *cft) 11019 { 11020 return sched_group_rt_period(css_tg(css)); 11021 } 11022 #endif /* CONFIG_RT_GROUP_SCHED */ 11023 11024 #ifdef CONFIG_FAIR_GROUP_SCHED 11025 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11026 struct cftype *cft) 11027 { 11028 return css_tg(css)->idle; 11029 } 11030 11031 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11032 struct cftype *cft, s64 idle) 11033 { 11034 return sched_group_set_idle(css_tg(css), idle); 11035 } 11036 #endif 11037 11038 static struct cftype cpu_legacy_files[] = { 11039 #ifdef CONFIG_FAIR_GROUP_SCHED 11040 { 11041 .name = "shares", 11042 .read_u64 = cpu_shares_read_u64, 11043 .write_u64 = cpu_shares_write_u64, 11044 }, 11045 { 11046 .name = "idle", 11047 .read_s64 = cpu_idle_read_s64, 11048 .write_s64 = cpu_idle_write_s64, 11049 }, 11050 #endif 11051 #ifdef CONFIG_CFS_BANDWIDTH 11052 { 11053 .name = "cfs_quota_us", 11054 .read_s64 = cpu_cfs_quota_read_s64, 11055 .write_s64 = cpu_cfs_quota_write_s64, 11056 }, 11057 { 11058 .name = "cfs_period_us", 11059 .read_u64 = cpu_cfs_period_read_u64, 11060 .write_u64 = cpu_cfs_period_write_u64, 11061 }, 11062 { 11063 .name = "cfs_burst_us", 11064 .read_u64 = cpu_cfs_burst_read_u64, 11065 .write_u64 = cpu_cfs_burst_write_u64, 11066 }, 11067 { 11068 .name = "stat", 11069 .seq_show = cpu_cfs_stat_show, 11070 }, 11071 #endif 11072 #ifdef CONFIG_RT_GROUP_SCHED 11073 { 11074 .name = "rt_runtime_us", 11075 .read_s64 = cpu_rt_runtime_read, 11076 .write_s64 = cpu_rt_runtime_write, 11077 }, 11078 { 11079 .name = "rt_period_us", 11080 .read_u64 = cpu_rt_period_read_uint, 11081 .write_u64 = cpu_rt_period_write_uint, 11082 }, 11083 #endif 11084 #ifdef CONFIG_UCLAMP_TASK_GROUP 11085 { 11086 .name = "uclamp.min", 11087 .flags = CFTYPE_NOT_ON_ROOT, 11088 .seq_show = cpu_uclamp_min_show, 11089 .write = cpu_uclamp_min_write, 11090 }, 11091 { 11092 .name = "uclamp.max", 11093 .flags = CFTYPE_NOT_ON_ROOT, 11094 .seq_show = cpu_uclamp_max_show, 11095 .write = cpu_uclamp_max_write, 11096 }, 11097 #endif 11098 { } /* Terminate */ 11099 }; 11100 11101 static int cpu_extra_stat_show(struct seq_file *sf, 11102 struct cgroup_subsys_state *css) 11103 { 11104 #ifdef CONFIG_CFS_BANDWIDTH 11105 { 11106 struct task_group *tg = css_tg(css); 11107 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11108 u64 throttled_usec, burst_usec; 11109 11110 throttled_usec = cfs_b->throttled_time; 11111 do_div(throttled_usec, NSEC_PER_USEC); 11112 burst_usec = cfs_b->burst_time; 11113 do_div(burst_usec, NSEC_PER_USEC); 11114 11115 seq_printf(sf, "nr_periods %d\n" 11116 "nr_throttled %d\n" 11117 "throttled_usec %llu\n" 11118 "nr_bursts %d\n" 11119 "burst_usec %llu\n", 11120 cfs_b->nr_periods, cfs_b->nr_throttled, 11121 throttled_usec, cfs_b->nr_burst, burst_usec); 11122 } 11123 #endif 11124 return 0; 11125 } 11126 11127 #ifdef CONFIG_FAIR_GROUP_SCHED 11128 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11129 struct cftype *cft) 11130 { 11131 struct task_group *tg = css_tg(css); 11132 u64 weight = scale_load_down(tg->shares); 11133 11134 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11135 } 11136 11137 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11138 struct cftype *cft, u64 weight) 11139 { 11140 /* 11141 * cgroup weight knobs should use the common MIN, DFL and MAX 11142 * values which are 1, 100 and 10000 respectively. While it loses 11143 * a bit of range on both ends, it maps pretty well onto the shares 11144 * value used by scheduler and the round-trip conversions preserve 11145 * the original value over the entire range. 11146 */ 11147 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11148 return -ERANGE; 11149 11150 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11151 11152 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11153 } 11154 11155 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11156 struct cftype *cft) 11157 { 11158 unsigned long weight = scale_load_down(css_tg(css)->shares); 11159 int last_delta = INT_MAX; 11160 int prio, delta; 11161 11162 /* find the closest nice value to the current weight */ 11163 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11164 delta = abs(sched_prio_to_weight[prio] - weight); 11165 if (delta >= last_delta) 11166 break; 11167 last_delta = delta; 11168 } 11169 11170 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11171 } 11172 11173 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11174 struct cftype *cft, s64 nice) 11175 { 11176 unsigned long weight; 11177 int idx; 11178 11179 if (nice < MIN_NICE || nice > MAX_NICE) 11180 return -ERANGE; 11181 11182 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11183 idx = array_index_nospec(idx, 40); 11184 weight = sched_prio_to_weight[idx]; 11185 11186 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11187 } 11188 #endif 11189 11190 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11191 long period, long quota) 11192 { 11193 if (quota < 0) 11194 seq_puts(sf, "max"); 11195 else 11196 seq_printf(sf, "%ld", quota); 11197 11198 seq_printf(sf, " %ld\n", period); 11199 } 11200 11201 /* caller should put the current value in *@periodp before calling */ 11202 static int __maybe_unused cpu_period_quota_parse(char *buf, 11203 u64 *periodp, u64 *quotap) 11204 { 11205 char tok[21]; /* U64_MAX */ 11206 11207 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11208 return -EINVAL; 11209 11210 *periodp *= NSEC_PER_USEC; 11211 11212 if (sscanf(tok, "%llu", quotap)) 11213 *quotap *= NSEC_PER_USEC; 11214 else if (!strcmp(tok, "max")) 11215 *quotap = RUNTIME_INF; 11216 else 11217 return -EINVAL; 11218 11219 return 0; 11220 } 11221 11222 #ifdef CONFIG_CFS_BANDWIDTH 11223 static int cpu_max_show(struct seq_file *sf, void *v) 11224 { 11225 struct task_group *tg = css_tg(seq_css(sf)); 11226 11227 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11228 return 0; 11229 } 11230 11231 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11232 char *buf, size_t nbytes, loff_t off) 11233 { 11234 struct task_group *tg = css_tg(of_css(of)); 11235 u64 period = tg_get_cfs_period(tg); 11236 u64 burst = tg_get_cfs_burst(tg); 11237 u64 quota; 11238 int ret; 11239 11240 ret = cpu_period_quota_parse(buf, &period, "a); 11241 if (!ret) 11242 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11243 return ret ?: nbytes; 11244 } 11245 #endif 11246 11247 static struct cftype cpu_files[] = { 11248 #ifdef CONFIG_FAIR_GROUP_SCHED 11249 { 11250 .name = "weight", 11251 .flags = CFTYPE_NOT_ON_ROOT, 11252 .read_u64 = cpu_weight_read_u64, 11253 .write_u64 = cpu_weight_write_u64, 11254 }, 11255 { 11256 .name = "weight.nice", 11257 .flags = CFTYPE_NOT_ON_ROOT, 11258 .read_s64 = cpu_weight_nice_read_s64, 11259 .write_s64 = cpu_weight_nice_write_s64, 11260 }, 11261 { 11262 .name = "idle", 11263 .flags = CFTYPE_NOT_ON_ROOT, 11264 .read_s64 = cpu_idle_read_s64, 11265 .write_s64 = cpu_idle_write_s64, 11266 }, 11267 #endif 11268 #ifdef CONFIG_CFS_BANDWIDTH 11269 { 11270 .name = "max", 11271 .flags = CFTYPE_NOT_ON_ROOT, 11272 .seq_show = cpu_max_show, 11273 .write = cpu_max_write, 11274 }, 11275 { 11276 .name = "max.burst", 11277 .flags = CFTYPE_NOT_ON_ROOT, 11278 .read_u64 = cpu_cfs_burst_read_u64, 11279 .write_u64 = cpu_cfs_burst_write_u64, 11280 }, 11281 #endif 11282 #ifdef CONFIG_UCLAMP_TASK_GROUP 11283 { 11284 .name = "uclamp.min", 11285 .flags = CFTYPE_NOT_ON_ROOT, 11286 .seq_show = cpu_uclamp_min_show, 11287 .write = cpu_uclamp_min_write, 11288 }, 11289 { 11290 .name = "uclamp.max", 11291 .flags = CFTYPE_NOT_ON_ROOT, 11292 .seq_show = cpu_uclamp_max_show, 11293 .write = cpu_uclamp_max_write, 11294 }, 11295 #endif 11296 { } /* terminate */ 11297 }; 11298 11299 struct cgroup_subsys cpu_cgrp_subsys = { 11300 .css_alloc = cpu_cgroup_css_alloc, 11301 .css_online = cpu_cgroup_css_online, 11302 .css_released = cpu_cgroup_css_released, 11303 .css_free = cpu_cgroup_css_free, 11304 .css_extra_stat_show = cpu_extra_stat_show, 11305 #ifdef CONFIG_RT_GROUP_SCHED 11306 .can_attach = cpu_cgroup_can_attach, 11307 #endif 11308 .attach = cpu_cgroup_attach, 11309 .legacy_cftypes = cpu_legacy_files, 11310 .dfl_cftypes = cpu_files, 11311 .early_init = true, 11312 .threaded = true, 11313 }; 11314 11315 #endif /* CONFIG_CGROUP_SCHED */ 11316 11317 void dump_cpu_task(int cpu) 11318 { 11319 if (cpu == smp_processor_id() && in_hardirq()) { 11320 struct pt_regs *regs; 11321 11322 regs = get_irq_regs(); 11323 if (regs) { 11324 show_regs(regs); 11325 return; 11326 } 11327 } 11328 11329 if (trigger_single_cpu_backtrace(cpu)) 11330 return; 11331 11332 pr_info("Task dump for CPU %d:\n", cpu); 11333 sched_show_task(cpu_curr(cpu)); 11334 } 11335 11336 /* 11337 * Nice levels are multiplicative, with a gentle 10% change for every 11338 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11339 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11340 * that remained on nice 0. 11341 * 11342 * The "10% effect" is relative and cumulative: from _any_ nice level, 11343 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11344 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11345 * If a task goes up by ~10% and another task goes down by ~10% then 11346 * the relative distance between them is ~25%.) 11347 */ 11348 const int sched_prio_to_weight[40] = { 11349 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11350 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11351 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11352 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11353 /* 0 */ 1024, 820, 655, 526, 423, 11354 /* 5 */ 335, 272, 215, 172, 137, 11355 /* 10 */ 110, 87, 70, 56, 45, 11356 /* 15 */ 36, 29, 23, 18, 15, 11357 }; 11358 11359 /* 11360 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11361 * 11362 * In cases where the weight does not change often, we can use the 11363 * precalculated inverse to speed up arithmetics by turning divisions 11364 * into multiplications: 11365 */ 11366 const u32 sched_prio_to_wmult[40] = { 11367 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11368 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11369 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11370 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11371 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11372 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11373 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11374 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11375 }; 11376 11377 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11378 { 11379 trace_sched_update_nr_running_tp(rq, count); 11380 } 11381 11382 #ifdef CONFIG_SCHED_MM_CID 11383 void sched_mm_cid_exit_signals(struct task_struct *t) 11384 { 11385 struct mm_struct *mm = t->mm; 11386 unsigned long flags; 11387 11388 if (!mm) 11389 return; 11390 local_irq_save(flags); 11391 mm_cid_put(mm, t->mm_cid); 11392 t->mm_cid = -1; 11393 t->mm_cid_active = 0; 11394 local_irq_restore(flags); 11395 } 11396 11397 void sched_mm_cid_before_execve(struct task_struct *t) 11398 { 11399 struct mm_struct *mm = t->mm; 11400 unsigned long flags; 11401 11402 if (!mm) 11403 return; 11404 local_irq_save(flags); 11405 mm_cid_put(mm, t->mm_cid); 11406 t->mm_cid = -1; 11407 t->mm_cid_active = 0; 11408 local_irq_restore(flags); 11409 } 11410 11411 void sched_mm_cid_after_execve(struct task_struct *t) 11412 { 11413 struct mm_struct *mm = t->mm; 11414 unsigned long flags; 11415 11416 if (!mm) 11417 return; 11418 local_irq_save(flags); 11419 t->mm_cid = mm_cid_get(mm); 11420 t->mm_cid_active = 1; 11421 local_irq_restore(flags); 11422 rseq_set_notify_resume(t); 11423 } 11424 11425 void sched_mm_cid_fork(struct task_struct *t) 11426 { 11427 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 11428 t->mm_cid_active = 1; 11429 } 11430 #endif 11431