xref: /linux/kernel/sched/core.c (revision fe7a11c78d2a9bdb8b50afc278a31ac177000948)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 #ifdef CONFIG_SCHED_DEBUG
123 /*
124  * Debugging: various feature bits
125  *
126  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
127  * sysctl_sched_features, defined in sched.h, to allow constants propagation
128  * at compile time and compiler optimization based on features default.
129  */
130 #define SCHED_FEAT(name, enabled)	\
131 	(1UL << __SCHED_FEAT_##name) * enabled |
132 const_debug unsigned int sysctl_sched_features =
133 #include "features.h"
134 	0;
135 #undef SCHED_FEAT
136 
137 /*
138  * Print a warning if need_resched is set for the given duration (if
139  * LATENCY_WARN is enabled).
140  *
141  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142  * per boot.
143  */
144 __read_mostly int sysctl_resched_latency_warn_ms = 100;
145 __read_mostly int sysctl_resched_latency_warn_once = 1;
146 #endif /* CONFIG_SCHED_DEBUG */
147 
148 /*
149  * Number of tasks to iterate in a single balance run.
150  * Limited because this is done with IRQs disabled.
151  */
152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
153 
154 __read_mostly int scheduler_running;
155 
156 #ifdef CONFIG_SCHED_CORE
157 
158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
159 
160 /* kernel prio, less is more */
161 static inline int __task_prio(const struct task_struct *p)
162 {
163 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 		return -2;
165 
166 	if (rt_prio(p->prio)) /* includes deadline */
167 		return p->prio; /* [-1, 99] */
168 
169 	if (p->sched_class == &idle_sched_class)
170 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
171 
172 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
173 }
174 
175 /*
176  * l(a,b)
177  * le(a,b) := !l(b,a)
178  * g(a,b)  := l(b,a)
179  * ge(a,b) := !l(a,b)
180  */
181 
182 /* real prio, less is less */
183 static inline bool prio_less(const struct task_struct *a,
184 			     const struct task_struct *b, bool in_fi)
185 {
186 
187 	int pa = __task_prio(a), pb = __task_prio(b);
188 
189 	if (-pa < -pb)
190 		return true;
191 
192 	if (-pb < -pa)
193 		return false;
194 
195 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
196 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
197 
198 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
199 		return cfs_prio_less(a, b, in_fi);
200 
201 	return false;
202 }
203 
204 static inline bool __sched_core_less(const struct task_struct *a,
205 				     const struct task_struct *b)
206 {
207 	if (a->core_cookie < b->core_cookie)
208 		return true;
209 
210 	if (a->core_cookie > b->core_cookie)
211 		return false;
212 
213 	/* flip prio, so high prio is leftmost */
214 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
215 		return true;
216 
217 	return false;
218 }
219 
220 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
221 
222 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
223 {
224 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
225 }
226 
227 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
228 {
229 	const struct task_struct *p = __node_2_sc(node);
230 	unsigned long cookie = (unsigned long)key;
231 
232 	if (cookie < p->core_cookie)
233 		return -1;
234 
235 	if (cookie > p->core_cookie)
236 		return 1;
237 
238 	return 0;
239 }
240 
241 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
242 {
243 	rq->core->core_task_seq++;
244 
245 	if (!p->core_cookie)
246 		return;
247 
248 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
249 }
250 
251 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
252 {
253 	rq->core->core_task_seq++;
254 
255 	if (sched_core_enqueued(p)) {
256 		rb_erase(&p->core_node, &rq->core_tree);
257 		RB_CLEAR_NODE(&p->core_node);
258 	}
259 
260 	/*
261 	 * Migrating the last task off the cpu, with the cpu in forced idle
262 	 * state. Reschedule to create an accounting edge for forced idle,
263 	 * and re-examine whether the core is still in forced idle state.
264 	 */
265 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
266 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
267 		resched_curr(rq);
268 }
269 
270 static int sched_task_is_throttled(struct task_struct *p, int cpu)
271 {
272 	if (p->sched_class->task_is_throttled)
273 		return p->sched_class->task_is_throttled(p, cpu);
274 
275 	return 0;
276 }
277 
278 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
279 {
280 	struct rb_node *node = &p->core_node;
281 	int cpu = task_cpu(p);
282 
283 	do {
284 		node = rb_next(node);
285 		if (!node)
286 			return NULL;
287 
288 		p = __node_2_sc(node);
289 		if (p->core_cookie != cookie)
290 			return NULL;
291 
292 	} while (sched_task_is_throttled(p, cpu));
293 
294 	return p;
295 }
296 
297 /*
298  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
299  * If no suitable task is found, NULL will be returned.
300  */
301 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
302 {
303 	struct task_struct *p;
304 	struct rb_node *node;
305 
306 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
307 	if (!node)
308 		return NULL;
309 
310 	p = __node_2_sc(node);
311 	if (!sched_task_is_throttled(p, rq->cpu))
312 		return p;
313 
314 	return sched_core_next(p, cookie);
315 }
316 
317 /*
318  * Magic required such that:
319  *
320  *	raw_spin_rq_lock(rq);
321  *	...
322  *	raw_spin_rq_unlock(rq);
323  *
324  * ends up locking and unlocking the _same_ lock, and all CPUs
325  * always agree on what rq has what lock.
326  *
327  * XXX entirely possible to selectively enable cores, don't bother for now.
328  */
329 
330 static DEFINE_MUTEX(sched_core_mutex);
331 static atomic_t sched_core_count;
332 static struct cpumask sched_core_mask;
333 
334 static void sched_core_lock(int cpu, unsigned long *flags)
335 {
336 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
337 	int t, i = 0;
338 
339 	local_irq_save(*flags);
340 	for_each_cpu(t, smt_mask)
341 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
342 }
343 
344 static void sched_core_unlock(int cpu, unsigned long *flags)
345 {
346 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
347 	int t;
348 
349 	for_each_cpu(t, smt_mask)
350 		raw_spin_unlock(&cpu_rq(t)->__lock);
351 	local_irq_restore(*flags);
352 }
353 
354 static void __sched_core_flip(bool enabled)
355 {
356 	unsigned long flags;
357 	int cpu, t;
358 
359 	cpus_read_lock();
360 
361 	/*
362 	 * Toggle the online cores, one by one.
363 	 */
364 	cpumask_copy(&sched_core_mask, cpu_online_mask);
365 	for_each_cpu(cpu, &sched_core_mask) {
366 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
367 
368 		sched_core_lock(cpu, &flags);
369 
370 		for_each_cpu(t, smt_mask)
371 			cpu_rq(t)->core_enabled = enabled;
372 
373 		cpu_rq(cpu)->core->core_forceidle_start = 0;
374 
375 		sched_core_unlock(cpu, &flags);
376 
377 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
378 	}
379 
380 	/*
381 	 * Toggle the offline CPUs.
382 	 */
383 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
384 		cpu_rq(cpu)->core_enabled = enabled;
385 
386 	cpus_read_unlock();
387 }
388 
389 static void sched_core_assert_empty(void)
390 {
391 	int cpu;
392 
393 	for_each_possible_cpu(cpu)
394 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
395 }
396 
397 static void __sched_core_enable(void)
398 {
399 	static_branch_enable(&__sched_core_enabled);
400 	/*
401 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
402 	 * and future ones will observe !sched_core_disabled().
403 	 */
404 	synchronize_rcu();
405 	__sched_core_flip(true);
406 	sched_core_assert_empty();
407 }
408 
409 static void __sched_core_disable(void)
410 {
411 	sched_core_assert_empty();
412 	__sched_core_flip(false);
413 	static_branch_disable(&__sched_core_enabled);
414 }
415 
416 void sched_core_get(void)
417 {
418 	if (atomic_inc_not_zero(&sched_core_count))
419 		return;
420 
421 	mutex_lock(&sched_core_mutex);
422 	if (!atomic_read(&sched_core_count))
423 		__sched_core_enable();
424 
425 	smp_mb__before_atomic();
426 	atomic_inc(&sched_core_count);
427 	mutex_unlock(&sched_core_mutex);
428 }
429 
430 static void __sched_core_put(struct work_struct *work)
431 {
432 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
433 		__sched_core_disable();
434 		mutex_unlock(&sched_core_mutex);
435 	}
436 }
437 
438 void sched_core_put(void)
439 {
440 	static DECLARE_WORK(_work, __sched_core_put);
441 
442 	/*
443 	 * "There can be only one"
444 	 *
445 	 * Either this is the last one, or we don't actually need to do any
446 	 * 'work'. If it is the last *again*, we rely on
447 	 * WORK_STRUCT_PENDING_BIT.
448 	 */
449 	if (!atomic_add_unless(&sched_core_count, -1, 1))
450 		schedule_work(&_work);
451 }
452 
453 #else /* !CONFIG_SCHED_CORE */
454 
455 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
456 static inline void
457 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
458 
459 #endif /* CONFIG_SCHED_CORE */
460 
461 /*
462  * Serialization rules:
463  *
464  * Lock order:
465  *
466  *   p->pi_lock
467  *     rq->lock
468  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
469  *
470  *  rq1->lock
471  *    rq2->lock  where: rq1 < rq2
472  *
473  * Regular state:
474  *
475  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
476  * local CPU's rq->lock, it optionally removes the task from the runqueue and
477  * always looks at the local rq data structures to find the most eligible task
478  * to run next.
479  *
480  * Task enqueue is also under rq->lock, possibly taken from another CPU.
481  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
482  * the local CPU to avoid bouncing the runqueue state around [ see
483  * ttwu_queue_wakelist() ]
484  *
485  * Task wakeup, specifically wakeups that involve migration, are horribly
486  * complicated to avoid having to take two rq->locks.
487  *
488  * Special state:
489  *
490  * System-calls and anything external will use task_rq_lock() which acquires
491  * both p->pi_lock and rq->lock. As a consequence the state they change is
492  * stable while holding either lock:
493  *
494  *  - sched_setaffinity()/
495  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
496  *  - set_user_nice():		p->se.load, p->*prio
497  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
498  *				p->se.load, p->rt_priority,
499  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
500  *  - sched_setnuma():		p->numa_preferred_nid
501  *  - sched_move_task():	p->sched_task_group
502  *  - uclamp_update_active()	p->uclamp*
503  *
504  * p->state <- TASK_*:
505  *
506  *   is changed locklessly using set_current_state(), __set_current_state() or
507  *   set_special_state(), see their respective comments, or by
508  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
509  *   concurrent self.
510  *
511  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
512  *
513  *   is set by activate_task() and cleared by deactivate_task(), under
514  *   rq->lock. Non-zero indicates the task is runnable, the special
515  *   ON_RQ_MIGRATING state is used for migration without holding both
516  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
517  *
518  * p->on_cpu <- { 0, 1 }:
519  *
520  *   is set by prepare_task() and cleared by finish_task() such that it will be
521  *   set before p is scheduled-in and cleared after p is scheduled-out, both
522  *   under rq->lock. Non-zero indicates the task is running on its CPU.
523  *
524  *   [ The astute reader will observe that it is possible for two tasks on one
525  *     CPU to have ->on_cpu = 1 at the same time. ]
526  *
527  * task_cpu(p): is changed by set_task_cpu(), the rules are:
528  *
529  *  - Don't call set_task_cpu() on a blocked task:
530  *
531  *    We don't care what CPU we're not running on, this simplifies hotplug,
532  *    the CPU assignment of blocked tasks isn't required to be valid.
533  *
534  *  - for try_to_wake_up(), called under p->pi_lock:
535  *
536  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
537  *
538  *  - for migration called under rq->lock:
539  *    [ see task_on_rq_migrating() in task_rq_lock() ]
540  *
541  *    o move_queued_task()
542  *    o detach_task()
543  *
544  *  - for migration called under double_rq_lock():
545  *
546  *    o __migrate_swap_task()
547  *    o push_rt_task() / pull_rt_task()
548  *    o push_dl_task() / pull_dl_task()
549  *    o dl_task_offline_migration()
550  *
551  */
552 
553 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
554 {
555 	raw_spinlock_t *lock;
556 
557 	/* Matches synchronize_rcu() in __sched_core_enable() */
558 	preempt_disable();
559 	if (sched_core_disabled()) {
560 		raw_spin_lock_nested(&rq->__lock, subclass);
561 		/* preempt_count *MUST* be > 1 */
562 		preempt_enable_no_resched();
563 		return;
564 	}
565 
566 	for (;;) {
567 		lock = __rq_lockp(rq);
568 		raw_spin_lock_nested(lock, subclass);
569 		if (likely(lock == __rq_lockp(rq))) {
570 			/* preempt_count *MUST* be > 1 */
571 			preempt_enable_no_resched();
572 			return;
573 		}
574 		raw_spin_unlock(lock);
575 	}
576 }
577 
578 bool raw_spin_rq_trylock(struct rq *rq)
579 {
580 	raw_spinlock_t *lock;
581 	bool ret;
582 
583 	/* Matches synchronize_rcu() in __sched_core_enable() */
584 	preempt_disable();
585 	if (sched_core_disabled()) {
586 		ret = raw_spin_trylock(&rq->__lock);
587 		preempt_enable();
588 		return ret;
589 	}
590 
591 	for (;;) {
592 		lock = __rq_lockp(rq);
593 		ret = raw_spin_trylock(lock);
594 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
595 			preempt_enable();
596 			return ret;
597 		}
598 		raw_spin_unlock(lock);
599 	}
600 }
601 
602 void raw_spin_rq_unlock(struct rq *rq)
603 {
604 	raw_spin_unlock(rq_lockp(rq));
605 }
606 
607 #ifdef CONFIG_SMP
608 /*
609  * double_rq_lock - safely lock two runqueues
610  */
611 void double_rq_lock(struct rq *rq1, struct rq *rq2)
612 {
613 	lockdep_assert_irqs_disabled();
614 
615 	if (rq_order_less(rq2, rq1))
616 		swap(rq1, rq2);
617 
618 	raw_spin_rq_lock(rq1);
619 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
620 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
621 
622 	double_rq_clock_clear_update(rq1, rq2);
623 }
624 #endif
625 
626 /*
627  * __task_rq_lock - lock the rq @p resides on.
628  */
629 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
630 	__acquires(rq->lock)
631 {
632 	struct rq *rq;
633 
634 	lockdep_assert_held(&p->pi_lock);
635 
636 	for (;;) {
637 		rq = task_rq(p);
638 		raw_spin_rq_lock(rq);
639 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
640 			rq_pin_lock(rq, rf);
641 			return rq;
642 		}
643 		raw_spin_rq_unlock(rq);
644 
645 		while (unlikely(task_on_rq_migrating(p)))
646 			cpu_relax();
647 	}
648 }
649 
650 /*
651  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
652  */
653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
654 	__acquires(p->pi_lock)
655 	__acquires(rq->lock)
656 {
657 	struct rq *rq;
658 
659 	for (;;) {
660 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
661 		rq = task_rq(p);
662 		raw_spin_rq_lock(rq);
663 		/*
664 		 *	move_queued_task()		task_rq_lock()
665 		 *
666 		 *	ACQUIRE (rq->lock)
667 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
668 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
669 		 *	[S] ->cpu = new_cpu		[L] task_rq()
670 		 *					[L] ->on_rq
671 		 *	RELEASE (rq->lock)
672 		 *
673 		 * If we observe the old CPU in task_rq_lock(), the acquire of
674 		 * the old rq->lock will fully serialize against the stores.
675 		 *
676 		 * If we observe the new CPU in task_rq_lock(), the address
677 		 * dependency headed by '[L] rq = task_rq()' and the acquire
678 		 * will pair with the WMB to ensure we then also see migrating.
679 		 */
680 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
681 			rq_pin_lock(rq, rf);
682 			return rq;
683 		}
684 		raw_spin_rq_unlock(rq);
685 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
686 
687 		while (unlikely(task_on_rq_migrating(p)))
688 			cpu_relax();
689 	}
690 }
691 
692 /*
693  * RQ-clock updating methods:
694  */
695 
696 static void update_rq_clock_task(struct rq *rq, s64 delta)
697 {
698 /*
699  * In theory, the compile should just see 0 here, and optimize out the call
700  * to sched_rt_avg_update. But I don't trust it...
701  */
702 	s64 __maybe_unused steal = 0, irq_delta = 0;
703 
704 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
705 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
706 
707 	/*
708 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
709 	 * this case when a previous update_rq_clock() happened inside a
710 	 * {soft,}IRQ region.
711 	 *
712 	 * When this happens, we stop ->clock_task and only update the
713 	 * prev_irq_time stamp to account for the part that fit, so that a next
714 	 * update will consume the rest. This ensures ->clock_task is
715 	 * monotonic.
716 	 *
717 	 * It does however cause some slight miss-attribution of {soft,}IRQ
718 	 * time, a more accurate solution would be to update the irq_time using
719 	 * the current rq->clock timestamp, except that would require using
720 	 * atomic ops.
721 	 */
722 	if (irq_delta > delta)
723 		irq_delta = delta;
724 
725 	rq->prev_irq_time += irq_delta;
726 	delta -= irq_delta;
727 	delayacct_irq(rq->curr, irq_delta);
728 #endif
729 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
730 	if (static_key_false((&paravirt_steal_rq_enabled))) {
731 		steal = paravirt_steal_clock(cpu_of(rq));
732 		steal -= rq->prev_steal_time_rq;
733 
734 		if (unlikely(steal > delta))
735 			steal = delta;
736 
737 		rq->prev_steal_time_rq += steal;
738 		delta -= steal;
739 	}
740 #endif
741 
742 	rq->clock_task += delta;
743 
744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 		update_irq_load_avg(rq, irq_delta + steal);
747 #endif
748 	update_rq_clock_pelt(rq, delta);
749 }
750 
751 void update_rq_clock(struct rq *rq)
752 {
753 	s64 delta;
754 
755 	lockdep_assert_rq_held(rq);
756 
757 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 		return;
759 
760 #ifdef CONFIG_SCHED_DEBUG
761 	if (sched_feat(WARN_DOUBLE_CLOCK))
762 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 	rq->clock_update_flags |= RQCF_UPDATED;
764 #endif
765 
766 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 	if (delta < 0)
768 		return;
769 	rq->clock += delta;
770 	update_rq_clock_task(rq, delta);
771 }
772 
773 #ifdef CONFIG_SCHED_HRTICK
774 /*
775  * Use HR-timers to deliver accurate preemption points.
776  */
777 
778 static void hrtick_clear(struct rq *rq)
779 {
780 	if (hrtimer_active(&rq->hrtick_timer))
781 		hrtimer_cancel(&rq->hrtick_timer);
782 }
783 
784 /*
785  * High-resolution timer tick.
786  * Runs from hardirq context with interrupts disabled.
787  */
788 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 {
790 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 	struct rq_flags rf;
792 
793 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794 
795 	rq_lock(rq, &rf);
796 	update_rq_clock(rq);
797 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 	rq_unlock(rq, &rf);
799 
800 	return HRTIMER_NORESTART;
801 }
802 
803 #ifdef CONFIG_SMP
804 
805 static void __hrtick_restart(struct rq *rq)
806 {
807 	struct hrtimer *timer = &rq->hrtick_timer;
808 	ktime_t time = rq->hrtick_time;
809 
810 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811 }
812 
813 /*
814  * called from hardirq (IPI) context
815  */
816 static void __hrtick_start(void *arg)
817 {
818 	struct rq *rq = arg;
819 	struct rq_flags rf;
820 
821 	rq_lock(rq, &rf);
822 	__hrtick_restart(rq);
823 	rq_unlock(rq, &rf);
824 }
825 
826 /*
827  * Called to set the hrtick timer state.
828  *
829  * called with rq->lock held and IRQs disabled
830  */
831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 	struct hrtimer *timer = &rq->hrtick_timer;
834 	s64 delta;
835 
836 	/*
837 	 * Don't schedule slices shorter than 10000ns, that just
838 	 * doesn't make sense and can cause timer DoS.
839 	 */
840 	delta = max_t(s64, delay, 10000LL);
841 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842 
843 	if (rq == this_rq())
844 		__hrtick_restart(rq);
845 	else
846 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847 }
848 
849 #else
850 /*
851  * Called to set the hrtick timer state.
852  *
853  * called with rq->lock held and IRQs disabled
854  */
855 void hrtick_start(struct rq *rq, u64 delay)
856 {
857 	/*
858 	 * Don't schedule slices shorter than 10000ns, that just
859 	 * doesn't make sense. Rely on vruntime for fairness.
860 	 */
861 	delay = max_t(u64, delay, 10000LL);
862 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 		      HRTIMER_MODE_REL_PINNED_HARD);
864 }
865 
866 #endif /* CONFIG_SMP */
867 
868 static void hrtick_rq_init(struct rq *rq)
869 {
870 #ifdef CONFIG_SMP
871 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 #endif
873 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 	rq->hrtick_timer.function = hrtick;
875 }
876 #else	/* CONFIG_SCHED_HRTICK */
877 static inline void hrtick_clear(struct rq *rq)
878 {
879 }
880 
881 static inline void hrtick_rq_init(struct rq *rq)
882 {
883 }
884 #endif	/* CONFIG_SCHED_HRTICK */
885 
886 /*
887  * try_cmpxchg based fetch_or() macro so it works for different integer types:
888  */
889 #define fetch_or(ptr, mask)						\
890 	({								\
891 		typeof(ptr) _ptr = (ptr);				\
892 		typeof(mask) _mask = (mask);				\
893 		typeof(*_ptr) _val = *_ptr;				\
894 									\
895 		do {							\
896 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
897 	_val;								\
898 })
899 
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903  * this avoids any races wrt polling state changes and thereby avoids
904  * spurious IPIs.
905  */
906 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 	struct thread_info *ti = task_thread_info(p);
909 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911 
912 /*
913  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914  *
915  * If this returns true, then the idle task promises to call
916  * sched_ttwu_pending() and reschedule soon.
917  */
918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 	struct thread_info *ti = task_thread_info(p);
921 	typeof(ti->flags) val = READ_ONCE(ti->flags);
922 
923 	do {
924 		if (!(val & _TIF_POLLING_NRFLAG))
925 			return false;
926 		if (val & _TIF_NEED_RESCHED)
927 			return true;
928 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
929 
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	/*
1136 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1137 	 * part of the idle loop. This forces an exit from the idle loop
1138 	 * and a round trip to schedule(). Now this could be optimized
1139 	 * because a simple new idle loop iteration is enough to
1140 	 * re-evaluate the next tick. Provided some re-ordering of tick
1141 	 * nohz functions that would need to follow TIF_NR_POLLING
1142 	 * clearing:
1143 	 *
1144 	 * - On most architectures, a simple fetch_or on ti::flags with a
1145 	 *   "0" value would be enough to know if an IPI needs to be sent.
1146 	 *
1147 	 * - x86 needs to perform a last need_resched() check between
1148 	 *   monitor and mwait which doesn't take timers into account.
1149 	 *   There a dedicated TIF_TIMER flag would be required to
1150 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1151 	 *   before mwait().
1152 	 *
1153 	 * However, remote timer enqueue is not such a frequent event
1154 	 * and testing of the above solutions didn't appear to report
1155 	 * much benefits.
1156 	 */
1157 	if (set_nr_and_not_polling(rq->idle))
1158 		smp_send_reschedule(cpu);
1159 	else
1160 		trace_sched_wake_idle_without_ipi(cpu);
1161 }
1162 
1163 static bool wake_up_full_nohz_cpu(int cpu)
1164 {
1165 	/*
1166 	 * We just need the target to call irq_exit() and re-evaluate
1167 	 * the next tick. The nohz full kick at least implies that.
1168 	 * If needed we can still optimize that later with an
1169 	 * empty IRQ.
1170 	 */
1171 	if (cpu_is_offline(cpu))
1172 		return true;  /* Don't try to wake offline CPUs. */
1173 	if (tick_nohz_full_cpu(cpu)) {
1174 		if (cpu != smp_processor_id() ||
1175 		    tick_nohz_tick_stopped())
1176 			tick_nohz_full_kick_cpu(cpu);
1177 		return true;
1178 	}
1179 
1180 	return false;
1181 }
1182 
1183 /*
1184  * Wake up the specified CPU.  If the CPU is going offline, it is the
1185  * caller's responsibility to deal with the lost wakeup, for example,
1186  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1187  */
1188 void wake_up_nohz_cpu(int cpu)
1189 {
1190 	if (!wake_up_full_nohz_cpu(cpu))
1191 		wake_up_idle_cpu(cpu);
1192 }
1193 
1194 static void nohz_csd_func(void *info)
1195 {
1196 	struct rq *rq = info;
1197 	int cpu = cpu_of(rq);
1198 	unsigned int flags;
1199 
1200 	/*
1201 	 * Release the rq::nohz_csd.
1202 	 */
1203 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1204 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1205 
1206 	rq->idle_balance = idle_cpu(cpu);
1207 	if (rq->idle_balance && !need_resched()) {
1208 		rq->nohz_idle_balance = flags;
1209 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1210 	}
1211 }
1212 
1213 #endif /* CONFIG_NO_HZ_COMMON */
1214 
1215 #ifdef CONFIG_NO_HZ_FULL
1216 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1217 {
1218 	if (rq->nr_running != 1)
1219 		return false;
1220 
1221 	if (p->sched_class != &fair_sched_class)
1222 		return false;
1223 
1224 	if (!task_on_rq_queued(p))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 bool sched_can_stop_tick(struct rq *rq)
1231 {
1232 	int fifo_nr_running;
1233 
1234 	/* Deadline tasks, even if single, need the tick */
1235 	if (rq->dl.dl_nr_running)
1236 		return false;
1237 
1238 	/*
1239 	 * If there are more than one RR tasks, we need the tick to affect the
1240 	 * actual RR behaviour.
1241 	 */
1242 	if (rq->rt.rr_nr_running) {
1243 		if (rq->rt.rr_nr_running == 1)
1244 			return true;
1245 		else
1246 			return false;
1247 	}
1248 
1249 	/*
1250 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1251 	 * forced preemption between FIFO tasks.
1252 	 */
1253 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1254 	if (fifo_nr_running)
1255 		return true;
1256 
1257 	/*
1258 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1259 	 * if there's more than one we need the tick for involuntary
1260 	 * preemption.
1261 	 */
1262 	if (rq->nr_running > 1)
1263 		return false;
1264 
1265 	/*
1266 	 * If there is one task and it has CFS runtime bandwidth constraints
1267 	 * and it's on the cpu now we don't want to stop the tick.
1268 	 * This check prevents clearing the bit if a newly enqueued task here is
1269 	 * dequeued by migrating while the constrained task continues to run.
1270 	 * E.g. going from 2->1 without going through pick_next_task().
1271 	 */
1272 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1273 		if (cfs_task_bw_constrained(rq->curr))
1274 			return false;
1275 	}
1276 
1277 	return true;
1278 }
1279 #endif /* CONFIG_NO_HZ_FULL */
1280 #endif /* CONFIG_SMP */
1281 
1282 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1283 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1284 /*
1285  * Iterate task_group tree rooted at *from, calling @down when first entering a
1286  * node and @up when leaving it for the final time.
1287  *
1288  * Caller must hold rcu_lock or sufficient equivalent.
1289  */
1290 int walk_tg_tree_from(struct task_group *from,
1291 			     tg_visitor down, tg_visitor up, void *data)
1292 {
1293 	struct task_group *parent, *child;
1294 	int ret;
1295 
1296 	parent = from;
1297 
1298 down:
1299 	ret = (*down)(parent, data);
1300 	if (ret)
1301 		goto out;
1302 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1303 		parent = child;
1304 		goto down;
1305 
1306 up:
1307 		continue;
1308 	}
1309 	ret = (*up)(parent, data);
1310 	if (ret || parent == from)
1311 		goto out;
1312 
1313 	child = parent;
1314 	parent = parent->parent;
1315 	if (parent)
1316 		goto up;
1317 out:
1318 	return ret;
1319 }
1320 
1321 int tg_nop(struct task_group *tg, void *data)
1322 {
1323 	return 0;
1324 }
1325 #endif
1326 
1327 void set_load_weight(struct task_struct *p, bool update_load)
1328 {
1329 	int prio = p->static_prio - MAX_RT_PRIO;
1330 	struct load_weight lw;
1331 
1332 	if (task_has_idle_policy(p)) {
1333 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1334 		lw.inv_weight = WMULT_IDLEPRIO;
1335 	} else {
1336 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1337 		lw.inv_weight = sched_prio_to_wmult[prio];
1338 	}
1339 
1340 	/*
1341 	 * SCHED_OTHER tasks have to update their load when changing their
1342 	 * weight
1343 	 */
1344 	if (update_load && p->sched_class == &fair_sched_class)
1345 		reweight_task(p, &lw);
1346 	else
1347 		p->se.load = lw;
1348 }
1349 
1350 #ifdef CONFIG_UCLAMP_TASK
1351 /*
1352  * Serializes updates of utilization clamp values
1353  *
1354  * The (slow-path) user-space triggers utilization clamp value updates which
1355  * can require updates on (fast-path) scheduler's data structures used to
1356  * support enqueue/dequeue operations.
1357  * While the per-CPU rq lock protects fast-path update operations, user-space
1358  * requests are serialized using a mutex to reduce the risk of conflicting
1359  * updates or API abuses.
1360  */
1361 static DEFINE_MUTEX(uclamp_mutex);
1362 
1363 /* Max allowed minimum utilization */
1364 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1365 
1366 /* Max allowed maximum utilization */
1367 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1368 
1369 /*
1370  * By default RT tasks run at the maximum performance point/capacity of the
1371  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1372  * SCHED_CAPACITY_SCALE.
1373  *
1374  * This knob allows admins to change the default behavior when uclamp is being
1375  * used. In battery powered devices, particularly, running at the maximum
1376  * capacity and frequency will increase energy consumption and shorten the
1377  * battery life.
1378  *
1379  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1380  *
1381  * This knob will not override the system default sched_util_clamp_min defined
1382  * above.
1383  */
1384 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1385 
1386 /* All clamps are required to be less or equal than these values */
1387 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1388 
1389 /*
1390  * This static key is used to reduce the uclamp overhead in the fast path. It
1391  * primarily disables the call to uclamp_rq_{inc, dec}() in
1392  * enqueue/dequeue_task().
1393  *
1394  * This allows users to continue to enable uclamp in their kernel config with
1395  * minimum uclamp overhead in the fast path.
1396  *
1397  * As soon as userspace modifies any of the uclamp knobs, the static key is
1398  * enabled, since we have an actual users that make use of uclamp
1399  * functionality.
1400  *
1401  * The knobs that would enable this static key are:
1402  *
1403  *   * A task modifying its uclamp value with sched_setattr().
1404  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1405  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1406  */
1407 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1408 
1409 static inline unsigned int
1410 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1411 		  unsigned int clamp_value)
1412 {
1413 	/*
1414 	 * Avoid blocked utilization pushing up the frequency when we go
1415 	 * idle (which drops the max-clamp) by retaining the last known
1416 	 * max-clamp.
1417 	 */
1418 	if (clamp_id == UCLAMP_MAX) {
1419 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1420 		return clamp_value;
1421 	}
1422 
1423 	return uclamp_none(UCLAMP_MIN);
1424 }
1425 
1426 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1427 				     unsigned int clamp_value)
1428 {
1429 	/* Reset max-clamp retention only on idle exit */
1430 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1431 		return;
1432 
1433 	uclamp_rq_set(rq, clamp_id, clamp_value);
1434 }
1435 
1436 static inline
1437 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1438 				   unsigned int clamp_value)
1439 {
1440 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1441 	int bucket_id = UCLAMP_BUCKETS - 1;
1442 
1443 	/*
1444 	 * Since both min and max clamps are max aggregated, find the
1445 	 * top most bucket with tasks in.
1446 	 */
1447 	for ( ; bucket_id >= 0; bucket_id--) {
1448 		if (!bucket[bucket_id].tasks)
1449 			continue;
1450 		return bucket[bucket_id].value;
1451 	}
1452 
1453 	/* No tasks -- default clamp values */
1454 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1455 }
1456 
1457 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1458 {
1459 	unsigned int default_util_min;
1460 	struct uclamp_se *uc_se;
1461 
1462 	lockdep_assert_held(&p->pi_lock);
1463 
1464 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1465 
1466 	/* Only sync if user didn't override the default */
1467 	if (uc_se->user_defined)
1468 		return;
1469 
1470 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1471 	uclamp_se_set(uc_se, default_util_min, false);
1472 }
1473 
1474 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1475 {
1476 	if (!rt_task(p))
1477 		return;
1478 
1479 	/* Protect updates to p->uclamp_* */
1480 	guard(task_rq_lock)(p);
1481 	__uclamp_update_util_min_rt_default(p);
1482 }
1483 
1484 static inline struct uclamp_se
1485 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1486 {
1487 	/* Copy by value as we could modify it */
1488 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1489 #ifdef CONFIG_UCLAMP_TASK_GROUP
1490 	unsigned int tg_min, tg_max, value;
1491 
1492 	/*
1493 	 * Tasks in autogroups or root task group will be
1494 	 * restricted by system defaults.
1495 	 */
1496 	if (task_group_is_autogroup(task_group(p)))
1497 		return uc_req;
1498 	if (task_group(p) == &root_task_group)
1499 		return uc_req;
1500 
1501 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1502 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1503 	value = uc_req.value;
1504 	value = clamp(value, tg_min, tg_max);
1505 	uclamp_se_set(&uc_req, value, false);
1506 #endif
1507 
1508 	return uc_req;
1509 }
1510 
1511 /*
1512  * The effective clamp bucket index of a task depends on, by increasing
1513  * priority:
1514  * - the task specific clamp value, when explicitly requested from userspace
1515  * - the task group effective clamp value, for tasks not either in the root
1516  *   group or in an autogroup
1517  * - the system default clamp value, defined by the sysadmin
1518  */
1519 static inline struct uclamp_se
1520 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1521 {
1522 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1523 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1524 
1525 	/* System default restrictions always apply */
1526 	if (unlikely(uc_req.value > uc_max.value))
1527 		return uc_max;
1528 
1529 	return uc_req;
1530 }
1531 
1532 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1533 {
1534 	struct uclamp_se uc_eff;
1535 
1536 	/* Task currently refcounted: use back-annotated (effective) value */
1537 	if (p->uclamp[clamp_id].active)
1538 		return (unsigned long)p->uclamp[clamp_id].value;
1539 
1540 	uc_eff = uclamp_eff_get(p, clamp_id);
1541 
1542 	return (unsigned long)uc_eff.value;
1543 }
1544 
1545 /*
1546  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1547  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1548  * updates the rq's clamp value if required.
1549  *
1550  * Tasks can have a task-specific value requested from user-space, track
1551  * within each bucket the maximum value for tasks refcounted in it.
1552  * This "local max aggregation" allows to track the exact "requested" value
1553  * for each bucket when all its RUNNABLE tasks require the same clamp.
1554  */
1555 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1556 				    enum uclamp_id clamp_id)
1557 {
1558 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1559 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1560 	struct uclamp_bucket *bucket;
1561 
1562 	lockdep_assert_rq_held(rq);
1563 
1564 	/* Update task effective clamp */
1565 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1566 
1567 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1568 	bucket->tasks++;
1569 	uc_se->active = true;
1570 
1571 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1572 
1573 	/*
1574 	 * Local max aggregation: rq buckets always track the max
1575 	 * "requested" clamp value of its RUNNABLE tasks.
1576 	 */
1577 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1578 		bucket->value = uc_se->value;
1579 
1580 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1581 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1582 }
1583 
1584 /*
1585  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1586  * is released. If this is the last task reference counting the rq's max
1587  * active clamp value, then the rq's clamp value is updated.
1588  *
1589  * Both refcounted tasks and rq's cached clamp values are expected to be
1590  * always valid. If it's detected they are not, as defensive programming,
1591  * enforce the expected state and warn.
1592  */
1593 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1594 				    enum uclamp_id clamp_id)
1595 {
1596 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1597 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1598 	struct uclamp_bucket *bucket;
1599 	unsigned int bkt_clamp;
1600 	unsigned int rq_clamp;
1601 
1602 	lockdep_assert_rq_held(rq);
1603 
1604 	/*
1605 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1606 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1607 	 *
1608 	 * In this case the uc_se->active flag should be false since no uclamp
1609 	 * accounting was performed at enqueue time and we can just return
1610 	 * here.
1611 	 *
1612 	 * Need to be careful of the following enqueue/dequeue ordering
1613 	 * problem too
1614 	 *
1615 	 *	enqueue(taskA)
1616 	 *	// sched_uclamp_used gets enabled
1617 	 *	enqueue(taskB)
1618 	 *	dequeue(taskA)
1619 	 *	// Must not decrement bucket->tasks here
1620 	 *	dequeue(taskB)
1621 	 *
1622 	 * where we could end up with stale data in uc_se and
1623 	 * bucket[uc_se->bucket_id].
1624 	 *
1625 	 * The following check here eliminates the possibility of such race.
1626 	 */
1627 	if (unlikely(!uc_se->active))
1628 		return;
1629 
1630 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1631 
1632 	SCHED_WARN_ON(!bucket->tasks);
1633 	if (likely(bucket->tasks))
1634 		bucket->tasks--;
1635 
1636 	uc_se->active = false;
1637 
1638 	/*
1639 	 * Keep "local max aggregation" simple and accept to (possibly)
1640 	 * overboost some RUNNABLE tasks in the same bucket.
1641 	 * The rq clamp bucket value is reset to its base value whenever
1642 	 * there are no more RUNNABLE tasks refcounting it.
1643 	 */
1644 	if (likely(bucket->tasks))
1645 		return;
1646 
1647 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1648 	/*
1649 	 * Defensive programming: this should never happen. If it happens,
1650 	 * e.g. due to future modification, warn and fix up the expected value.
1651 	 */
1652 	SCHED_WARN_ON(bucket->value > rq_clamp);
1653 	if (bucket->value >= rq_clamp) {
1654 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1655 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1656 	}
1657 }
1658 
1659 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1660 {
1661 	enum uclamp_id clamp_id;
1662 
1663 	/*
1664 	 * Avoid any overhead until uclamp is actually used by the userspace.
1665 	 *
1666 	 * The condition is constructed such that a NOP is generated when
1667 	 * sched_uclamp_used is disabled.
1668 	 */
1669 	if (!static_branch_unlikely(&sched_uclamp_used))
1670 		return;
1671 
1672 	if (unlikely(!p->sched_class->uclamp_enabled))
1673 		return;
1674 
1675 	for_each_clamp_id(clamp_id)
1676 		uclamp_rq_inc_id(rq, p, clamp_id);
1677 
1678 	/* Reset clamp idle holding when there is one RUNNABLE task */
1679 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1680 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1681 }
1682 
1683 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1684 {
1685 	enum uclamp_id clamp_id;
1686 
1687 	/*
1688 	 * Avoid any overhead until uclamp is actually used by the userspace.
1689 	 *
1690 	 * The condition is constructed such that a NOP is generated when
1691 	 * sched_uclamp_used is disabled.
1692 	 */
1693 	if (!static_branch_unlikely(&sched_uclamp_used))
1694 		return;
1695 
1696 	if (unlikely(!p->sched_class->uclamp_enabled))
1697 		return;
1698 
1699 	for_each_clamp_id(clamp_id)
1700 		uclamp_rq_dec_id(rq, p, clamp_id);
1701 }
1702 
1703 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1704 				      enum uclamp_id clamp_id)
1705 {
1706 	if (!p->uclamp[clamp_id].active)
1707 		return;
1708 
1709 	uclamp_rq_dec_id(rq, p, clamp_id);
1710 	uclamp_rq_inc_id(rq, p, clamp_id);
1711 
1712 	/*
1713 	 * Make sure to clear the idle flag if we've transiently reached 0
1714 	 * active tasks on rq.
1715 	 */
1716 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1717 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1718 }
1719 
1720 static inline void
1721 uclamp_update_active(struct task_struct *p)
1722 {
1723 	enum uclamp_id clamp_id;
1724 	struct rq_flags rf;
1725 	struct rq *rq;
1726 
1727 	/*
1728 	 * Lock the task and the rq where the task is (or was) queued.
1729 	 *
1730 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1731 	 * price to pay to safely serialize util_{min,max} updates with
1732 	 * enqueues, dequeues and migration operations.
1733 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1734 	 */
1735 	rq = task_rq_lock(p, &rf);
1736 
1737 	/*
1738 	 * Setting the clamp bucket is serialized by task_rq_lock().
1739 	 * If the task is not yet RUNNABLE and its task_struct is not
1740 	 * affecting a valid clamp bucket, the next time it's enqueued,
1741 	 * it will already see the updated clamp bucket value.
1742 	 */
1743 	for_each_clamp_id(clamp_id)
1744 		uclamp_rq_reinc_id(rq, p, clamp_id);
1745 
1746 	task_rq_unlock(rq, p, &rf);
1747 }
1748 
1749 #ifdef CONFIG_UCLAMP_TASK_GROUP
1750 static inline void
1751 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1752 {
1753 	struct css_task_iter it;
1754 	struct task_struct *p;
1755 
1756 	css_task_iter_start(css, 0, &it);
1757 	while ((p = css_task_iter_next(&it)))
1758 		uclamp_update_active(p);
1759 	css_task_iter_end(&it);
1760 }
1761 
1762 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1763 #endif
1764 
1765 #ifdef CONFIG_SYSCTL
1766 #ifdef CONFIG_UCLAMP_TASK_GROUP
1767 static void uclamp_update_root_tg(void)
1768 {
1769 	struct task_group *tg = &root_task_group;
1770 
1771 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1772 		      sysctl_sched_uclamp_util_min, false);
1773 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1774 		      sysctl_sched_uclamp_util_max, false);
1775 
1776 	guard(rcu)();
1777 	cpu_util_update_eff(&root_task_group.css);
1778 }
1779 #else
1780 static void uclamp_update_root_tg(void) { }
1781 #endif
1782 
1783 static void uclamp_sync_util_min_rt_default(void)
1784 {
1785 	struct task_struct *g, *p;
1786 
1787 	/*
1788 	 * copy_process()			sysctl_uclamp
1789 	 *					  uclamp_min_rt = X;
1790 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1791 	 *   // link thread			  smp_mb__after_spinlock()
1792 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1793 	 *   sched_post_fork()			  for_each_process_thread()
1794 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1795 	 *
1796 	 * Ensures that either sched_post_fork() will observe the new
1797 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1798 	 * task.
1799 	 */
1800 	read_lock(&tasklist_lock);
1801 	smp_mb__after_spinlock();
1802 	read_unlock(&tasklist_lock);
1803 
1804 	guard(rcu)();
1805 	for_each_process_thread(g, p)
1806 		uclamp_update_util_min_rt_default(p);
1807 }
1808 
1809 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1810 				void *buffer, size_t *lenp, loff_t *ppos)
1811 {
1812 	bool update_root_tg = false;
1813 	int old_min, old_max, old_min_rt;
1814 	int result;
1815 
1816 	guard(mutex)(&uclamp_mutex);
1817 
1818 	old_min = sysctl_sched_uclamp_util_min;
1819 	old_max = sysctl_sched_uclamp_util_max;
1820 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1821 
1822 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1823 	if (result)
1824 		goto undo;
1825 	if (!write)
1826 		return 0;
1827 
1828 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1829 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1830 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1831 
1832 		result = -EINVAL;
1833 		goto undo;
1834 	}
1835 
1836 	if (old_min != sysctl_sched_uclamp_util_min) {
1837 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1838 			      sysctl_sched_uclamp_util_min, false);
1839 		update_root_tg = true;
1840 	}
1841 	if (old_max != sysctl_sched_uclamp_util_max) {
1842 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1843 			      sysctl_sched_uclamp_util_max, false);
1844 		update_root_tg = true;
1845 	}
1846 
1847 	if (update_root_tg) {
1848 		static_branch_enable(&sched_uclamp_used);
1849 		uclamp_update_root_tg();
1850 	}
1851 
1852 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1853 		static_branch_enable(&sched_uclamp_used);
1854 		uclamp_sync_util_min_rt_default();
1855 	}
1856 
1857 	/*
1858 	 * We update all RUNNABLE tasks only when task groups are in use.
1859 	 * Otherwise, keep it simple and do just a lazy update at each next
1860 	 * task enqueue time.
1861 	 */
1862 	return 0;
1863 
1864 undo:
1865 	sysctl_sched_uclamp_util_min = old_min;
1866 	sysctl_sched_uclamp_util_max = old_max;
1867 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1868 	return result;
1869 }
1870 #endif
1871 
1872 static void uclamp_fork(struct task_struct *p)
1873 {
1874 	enum uclamp_id clamp_id;
1875 
1876 	/*
1877 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1878 	 * as the task is still at its early fork stages.
1879 	 */
1880 	for_each_clamp_id(clamp_id)
1881 		p->uclamp[clamp_id].active = false;
1882 
1883 	if (likely(!p->sched_reset_on_fork))
1884 		return;
1885 
1886 	for_each_clamp_id(clamp_id) {
1887 		uclamp_se_set(&p->uclamp_req[clamp_id],
1888 			      uclamp_none(clamp_id), false);
1889 	}
1890 }
1891 
1892 static void uclamp_post_fork(struct task_struct *p)
1893 {
1894 	uclamp_update_util_min_rt_default(p);
1895 }
1896 
1897 static void __init init_uclamp_rq(struct rq *rq)
1898 {
1899 	enum uclamp_id clamp_id;
1900 	struct uclamp_rq *uc_rq = rq->uclamp;
1901 
1902 	for_each_clamp_id(clamp_id) {
1903 		uc_rq[clamp_id] = (struct uclamp_rq) {
1904 			.value = uclamp_none(clamp_id)
1905 		};
1906 	}
1907 
1908 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1909 }
1910 
1911 static void __init init_uclamp(void)
1912 {
1913 	struct uclamp_se uc_max = {};
1914 	enum uclamp_id clamp_id;
1915 	int cpu;
1916 
1917 	for_each_possible_cpu(cpu)
1918 		init_uclamp_rq(cpu_rq(cpu));
1919 
1920 	for_each_clamp_id(clamp_id) {
1921 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1922 			      uclamp_none(clamp_id), false);
1923 	}
1924 
1925 	/* System defaults allow max clamp values for both indexes */
1926 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1927 	for_each_clamp_id(clamp_id) {
1928 		uclamp_default[clamp_id] = uc_max;
1929 #ifdef CONFIG_UCLAMP_TASK_GROUP
1930 		root_task_group.uclamp_req[clamp_id] = uc_max;
1931 		root_task_group.uclamp[clamp_id] = uc_max;
1932 #endif
1933 	}
1934 }
1935 
1936 #else /* !CONFIG_UCLAMP_TASK */
1937 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1938 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1939 static inline void uclamp_fork(struct task_struct *p) { }
1940 static inline void uclamp_post_fork(struct task_struct *p) { }
1941 static inline void init_uclamp(void) { }
1942 #endif /* CONFIG_UCLAMP_TASK */
1943 
1944 bool sched_task_on_rq(struct task_struct *p)
1945 {
1946 	return task_on_rq_queued(p);
1947 }
1948 
1949 unsigned long get_wchan(struct task_struct *p)
1950 {
1951 	unsigned long ip = 0;
1952 	unsigned int state;
1953 
1954 	if (!p || p == current)
1955 		return 0;
1956 
1957 	/* Only get wchan if task is blocked and we can keep it that way. */
1958 	raw_spin_lock_irq(&p->pi_lock);
1959 	state = READ_ONCE(p->__state);
1960 	smp_rmb(); /* see try_to_wake_up() */
1961 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
1962 		ip = __get_wchan(p);
1963 	raw_spin_unlock_irq(&p->pi_lock);
1964 
1965 	return ip;
1966 }
1967 
1968 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1969 {
1970 	if (!(flags & ENQUEUE_NOCLOCK))
1971 		update_rq_clock(rq);
1972 
1973 	if (!(flags & ENQUEUE_RESTORE)) {
1974 		sched_info_enqueue(rq, p);
1975 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
1976 	}
1977 
1978 	uclamp_rq_inc(rq, p);
1979 	p->sched_class->enqueue_task(rq, p, flags);
1980 
1981 	if (sched_core_enabled(rq))
1982 		sched_core_enqueue(rq, p);
1983 }
1984 
1985 void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1986 {
1987 	if (sched_core_enabled(rq))
1988 		sched_core_dequeue(rq, p, flags);
1989 
1990 	if (!(flags & DEQUEUE_NOCLOCK))
1991 		update_rq_clock(rq);
1992 
1993 	if (!(flags & DEQUEUE_SAVE)) {
1994 		sched_info_dequeue(rq, p);
1995 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1996 	}
1997 
1998 	uclamp_rq_dec(rq, p);
1999 	p->sched_class->dequeue_task(rq, p, flags);
2000 }
2001 
2002 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2003 {
2004 	if (task_on_rq_migrating(p))
2005 		flags |= ENQUEUE_MIGRATED;
2006 	if (flags & ENQUEUE_MIGRATED)
2007 		sched_mm_cid_migrate_to(rq, p);
2008 
2009 	enqueue_task(rq, p, flags);
2010 
2011 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2012 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2013 }
2014 
2015 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2016 {
2017 	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2018 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2019 
2020 	dequeue_task(rq, p, flags);
2021 }
2022 
2023 /**
2024  * task_curr - is this task currently executing on a CPU?
2025  * @p: the task in question.
2026  *
2027  * Return: 1 if the task is currently executing. 0 otherwise.
2028  */
2029 inline int task_curr(const struct task_struct *p)
2030 {
2031 	return cpu_curr(task_cpu(p)) == p;
2032 }
2033 
2034 /*
2035  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2036  * use the balance_callback list if you want balancing.
2037  *
2038  * this means any call to check_class_changed() must be followed by a call to
2039  * balance_callback().
2040  */
2041 void check_class_changed(struct rq *rq, struct task_struct *p,
2042 			 const struct sched_class *prev_class,
2043 			 int oldprio)
2044 {
2045 	if (prev_class != p->sched_class) {
2046 		if (prev_class->switched_from)
2047 			prev_class->switched_from(rq, p);
2048 
2049 		p->sched_class->switched_to(rq, p);
2050 	} else if (oldprio != p->prio || dl_task(p))
2051 		p->sched_class->prio_changed(rq, p, oldprio);
2052 }
2053 
2054 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2055 {
2056 	if (p->sched_class == rq->curr->sched_class)
2057 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2058 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2059 		resched_curr(rq);
2060 
2061 	/*
2062 	 * A queue event has occurred, and we're going to schedule.  In
2063 	 * this case, we can save a useless back to back clock update.
2064 	 */
2065 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2066 		rq_clock_skip_update(rq);
2067 }
2068 
2069 static __always_inline
2070 int __task_state_match(struct task_struct *p, unsigned int state)
2071 {
2072 	if (READ_ONCE(p->__state) & state)
2073 		return 1;
2074 
2075 	if (READ_ONCE(p->saved_state) & state)
2076 		return -1;
2077 
2078 	return 0;
2079 }
2080 
2081 static __always_inline
2082 int task_state_match(struct task_struct *p, unsigned int state)
2083 {
2084 	/*
2085 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2086 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2087 	 */
2088 	guard(raw_spinlock_irq)(&p->pi_lock);
2089 	return __task_state_match(p, state);
2090 }
2091 
2092 /*
2093  * wait_task_inactive - wait for a thread to unschedule.
2094  *
2095  * Wait for the thread to block in any of the states set in @match_state.
2096  * If it changes, i.e. @p might have woken up, then return zero.  When we
2097  * succeed in waiting for @p to be off its CPU, we return a positive number
2098  * (its total switch count).  If a second call a short while later returns the
2099  * same number, the caller can be sure that @p has remained unscheduled the
2100  * whole time.
2101  *
2102  * The caller must ensure that the task *will* unschedule sometime soon,
2103  * else this function might spin for a *long* time. This function can't
2104  * be called with interrupts off, or it may introduce deadlock with
2105  * smp_call_function() if an IPI is sent by the same process we are
2106  * waiting to become inactive.
2107  */
2108 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2109 {
2110 	int running, queued, match;
2111 	struct rq_flags rf;
2112 	unsigned long ncsw;
2113 	struct rq *rq;
2114 
2115 	for (;;) {
2116 		/*
2117 		 * We do the initial early heuristics without holding
2118 		 * any task-queue locks at all. We'll only try to get
2119 		 * the runqueue lock when things look like they will
2120 		 * work out!
2121 		 */
2122 		rq = task_rq(p);
2123 
2124 		/*
2125 		 * If the task is actively running on another CPU
2126 		 * still, just relax and busy-wait without holding
2127 		 * any locks.
2128 		 *
2129 		 * NOTE! Since we don't hold any locks, it's not
2130 		 * even sure that "rq" stays as the right runqueue!
2131 		 * But we don't care, since "task_on_cpu()" will
2132 		 * return false if the runqueue has changed and p
2133 		 * is actually now running somewhere else!
2134 		 */
2135 		while (task_on_cpu(rq, p)) {
2136 			if (!task_state_match(p, match_state))
2137 				return 0;
2138 			cpu_relax();
2139 		}
2140 
2141 		/*
2142 		 * Ok, time to look more closely! We need the rq
2143 		 * lock now, to be *sure*. If we're wrong, we'll
2144 		 * just go back and repeat.
2145 		 */
2146 		rq = task_rq_lock(p, &rf);
2147 		trace_sched_wait_task(p);
2148 		running = task_on_cpu(rq, p);
2149 		queued = task_on_rq_queued(p);
2150 		ncsw = 0;
2151 		if ((match = __task_state_match(p, match_state))) {
2152 			/*
2153 			 * When matching on p->saved_state, consider this task
2154 			 * still queued so it will wait.
2155 			 */
2156 			if (match < 0)
2157 				queued = 1;
2158 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2159 		}
2160 		task_rq_unlock(rq, p, &rf);
2161 
2162 		/*
2163 		 * If it changed from the expected state, bail out now.
2164 		 */
2165 		if (unlikely(!ncsw))
2166 			break;
2167 
2168 		/*
2169 		 * Was it really running after all now that we
2170 		 * checked with the proper locks actually held?
2171 		 *
2172 		 * Oops. Go back and try again..
2173 		 */
2174 		if (unlikely(running)) {
2175 			cpu_relax();
2176 			continue;
2177 		}
2178 
2179 		/*
2180 		 * It's not enough that it's not actively running,
2181 		 * it must be off the runqueue _entirely_, and not
2182 		 * preempted!
2183 		 *
2184 		 * So if it was still runnable (but just not actively
2185 		 * running right now), it's preempted, and we should
2186 		 * yield - it could be a while.
2187 		 */
2188 		if (unlikely(queued)) {
2189 			ktime_t to = NSEC_PER_SEC / HZ;
2190 
2191 			set_current_state(TASK_UNINTERRUPTIBLE);
2192 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2193 			continue;
2194 		}
2195 
2196 		/*
2197 		 * Ahh, all good. It wasn't running, and it wasn't
2198 		 * runnable, which means that it will never become
2199 		 * running in the future either. We're all done!
2200 		 */
2201 		break;
2202 	}
2203 
2204 	return ncsw;
2205 }
2206 
2207 #ifdef CONFIG_SMP
2208 
2209 static void
2210 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2211 
2212 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2213 {
2214 	struct affinity_context ac = {
2215 		.new_mask  = cpumask_of(rq->cpu),
2216 		.flags     = SCA_MIGRATE_DISABLE,
2217 	};
2218 
2219 	if (likely(!p->migration_disabled))
2220 		return;
2221 
2222 	if (p->cpus_ptr != &p->cpus_mask)
2223 		return;
2224 
2225 	/*
2226 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2227 	 */
2228 	__do_set_cpus_allowed(p, &ac);
2229 }
2230 
2231 void migrate_disable(void)
2232 {
2233 	struct task_struct *p = current;
2234 
2235 	if (p->migration_disabled) {
2236 		p->migration_disabled++;
2237 		return;
2238 	}
2239 
2240 	guard(preempt)();
2241 	this_rq()->nr_pinned++;
2242 	p->migration_disabled = 1;
2243 }
2244 EXPORT_SYMBOL_GPL(migrate_disable);
2245 
2246 void migrate_enable(void)
2247 {
2248 	struct task_struct *p = current;
2249 	struct affinity_context ac = {
2250 		.new_mask  = &p->cpus_mask,
2251 		.flags     = SCA_MIGRATE_ENABLE,
2252 	};
2253 
2254 	if (p->migration_disabled > 1) {
2255 		p->migration_disabled--;
2256 		return;
2257 	}
2258 
2259 	if (WARN_ON_ONCE(!p->migration_disabled))
2260 		return;
2261 
2262 	/*
2263 	 * Ensure stop_task runs either before or after this, and that
2264 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2265 	 */
2266 	guard(preempt)();
2267 	if (p->cpus_ptr != &p->cpus_mask)
2268 		__set_cpus_allowed_ptr(p, &ac);
2269 	/*
2270 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2271 	 * regular cpus_mask, otherwise things that race (eg.
2272 	 * select_fallback_rq) get confused.
2273 	 */
2274 	barrier();
2275 	p->migration_disabled = 0;
2276 	this_rq()->nr_pinned--;
2277 }
2278 EXPORT_SYMBOL_GPL(migrate_enable);
2279 
2280 static inline bool rq_has_pinned_tasks(struct rq *rq)
2281 {
2282 	return rq->nr_pinned;
2283 }
2284 
2285 /*
2286  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2287  * __set_cpus_allowed_ptr() and select_fallback_rq().
2288  */
2289 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2290 {
2291 	/* When not in the task's cpumask, no point in looking further. */
2292 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2293 		return false;
2294 
2295 	/* migrate_disabled() must be allowed to finish. */
2296 	if (is_migration_disabled(p))
2297 		return cpu_online(cpu);
2298 
2299 	/* Non kernel threads are not allowed during either online or offline. */
2300 	if (!(p->flags & PF_KTHREAD))
2301 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2302 
2303 	/* KTHREAD_IS_PER_CPU is always allowed. */
2304 	if (kthread_is_per_cpu(p))
2305 		return cpu_online(cpu);
2306 
2307 	/* Regular kernel threads don't get to stay during offline. */
2308 	if (cpu_dying(cpu))
2309 		return false;
2310 
2311 	/* But are allowed during online. */
2312 	return cpu_online(cpu);
2313 }
2314 
2315 /*
2316  * This is how migration works:
2317  *
2318  * 1) we invoke migration_cpu_stop() on the target CPU using
2319  *    stop_one_cpu().
2320  * 2) stopper starts to run (implicitly forcing the migrated thread
2321  *    off the CPU)
2322  * 3) it checks whether the migrated task is still in the wrong runqueue.
2323  * 4) if it's in the wrong runqueue then the migration thread removes
2324  *    it and puts it into the right queue.
2325  * 5) stopper completes and stop_one_cpu() returns and the migration
2326  *    is done.
2327  */
2328 
2329 /*
2330  * move_queued_task - move a queued task to new rq.
2331  *
2332  * Returns (locked) new rq. Old rq's lock is released.
2333  */
2334 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2335 				   struct task_struct *p, int new_cpu)
2336 {
2337 	lockdep_assert_rq_held(rq);
2338 
2339 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2340 	set_task_cpu(p, new_cpu);
2341 	rq_unlock(rq, rf);
2342 
2343 	rq = cpu_rq(new_cpu);
2344 
2345 	rq_lock(rq, rf);
2346 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2347 	activate_task(rq, p, 0);
2348 	wakeup_preempt(rq, p, 0);
2349 
2350 	return rq;
2351 }
2352 
2353 struct migration_arg {
2354 	struct task_struct		*task;
2355 	int				dest_cpu;
2356 	struct set_affinity_pending	*pending;
2357 };
2358 
2359 /*
2360  * @refs: number of wait_for_completion()
2361  * @stop_pending: is @stop_work in use
2362  */
2363 struct set_affinity_pending {
2364 	refcount_t		refs;
2365 	unsigned int		stop_pending;
2366 	struct completion	done;
2367 	struct cpu_stop_work	stop_work;
2368 	struct migration_arg	arg;
2369 };
2370 
2371 /*
2372  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2373  * this because either it can't run here any more (set_cpus_allowed()
2374  * away from this CPU, or CPU going down), or because we're
2375  * attempting to rebalance this task on exec (sched_exec).
2376  *
2377  * So we race with normal scheduler movements, but that's OK, as long
2378  * as the task is no longer on this CPU.
2379  */
2380 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2381 				 struct task_struct *p, int dest_cpu)
2382 {
2383 	/* Affinity changed (again). */
2384 	if (!is_cpu_allowed(p, dest_cpu))
2385 		return rq;
2386 
2387 	rq = move_queued_task(rq, rf, p, dest_cpu);
2388 
2389 	return rq;
2390 }
2391 
2392 /*
2393  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2394  * and performs thread migration by bumping thread off CPU then
2395  * 'pushing' onto another runqueue.
2396  */
2397 static int migration_cpu_stop(void *data)
2398 {
2399 	struct migration_arg *arg = data;
2400 	struct set_affinity_pending *pending = arg->pending;
2401 	struct task_struct *p = arg->task;
2402 	struct rq *rq = this_rq();
2403 	bool complete = false;
2404 	struct rq_flags rf;
2405 
2406 	/*
2407 	 * The original target CPU might have gone down and we might
2408 	 * be on another CPU but it doesn't matter.
2409 	 */
2410 	local_irq_save(rf.flags);
2411 	/*
2412 	 * We need to explicitly wake pending tasks before running
2413 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2414 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2415 	 */
2416 	flush_smp_call_function_queue();
2417 
2418 	raw_spin_lock(&p->pi_lock);
2419 	rq_lock(rq, &rf);
2420 
2421 	/*
2422 	 * If we were passed a pending, then ->stop_pending was set, thus
2423 	 * p->migration_pending must have remained stable.
2424 	 */
2425 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2426 
2427 	/*
2428 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2429 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2430 	 * we're holding p->pi_lock.
2431 	 */
2432 	if (task_rq(p) == rq) {
2433 		if (is_migration_disabled(p))
2434 			goto out;
2435 
2436 		if (pending) {
2437 			p->migration_pending = NULL;
2438 			complete = true;
2439 
2440 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2441 				goto out;
2442 		}
2443 
2444 		if (task_on_rq_queued(p)) {
2445 			update_rq_clock(rq);
2446 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2447 		} else {
2448 			p->wake_cpu = arg->dest_cpu;
2449 		}
2450 
2451 		/*
2452 		 * XXX __migrate_task() can fail, at which point we might end
2453 		 * up running on a dodgy CPU, AFAICT this can only happen
2454 		 * during CPU hotplug, at which point we'll get pushed out
2455 		 * anyway, so it's probably not a big deal.
2456 		 */
2457 
2458 	} else if (pending) {
2459 		/*
2460 		 * This happens when we get migrated between migrate_enable()'s
2461 		 * preempt_enable() and scheduling the stopper task. At that
2462 		 * point we're a regular task again and not current anymore.
2463 		 *
2464 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2465 		 * more likely.
2466 		 */
2467 
2468 		/*
2469 		 * The task moved before the stopper got to run. We're holding
2470 		 * ->pi_lock, so the allowed mask is stable - if it got
2471 		 * somewhere allowed, we're done.
2472 		 */
2473 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2474 			p->migration_pending = NULL;
2475 			complete = true;
2476 			goto out;
2477 		}
2478 
2479 		/*
2480 		 * When migrate_enable() hits a rq mis-match we can't reliably
2481 		 * determine is_migration_disabled() and so have to chase after
2482 		 * it.
2483 		 */
2484 		WARN_ON_ONCE(!pending->stop_pending);
2485 		preempt_disable();
2486 		task_rq_unlock(rq, p, &rf);
2487 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2488 				    &pending->arg, &pending->stop_work);
2489 		preempt_enable();
2490 		return 0;
2491 	}
2492 out:
2493 	if (pending)
2494 		pending->stop_pending = false;
2495 	task_rq_unlock(rq, p, &rf);
2496 
2497 	if (complete)
2498 		complete_all(&pending->done);
2499 
2500 	return 0;
2501 }
2502 
2503 int push_cpu_stop(void *arg)
2504 {
2505 	struct rq *lowest_rq = NULL, *rq = this_rq();
2506 	struct task_struct *p = arg;
2507 
2508 	raw_spin_lock_irq(&p->pi_lock);
2509 	raw_spin_rq_lock(rq);
2510 
2511 	if (task_rq(p) != rq)
2512 		goto out_unlock;
2513 
2514 	if (is_migration_disabled(p)) {
2515 		p->migration_flags |= MDF_PUSH;
2516 		goto out_unlock;
2517 	}
2518 
2519 	p->migration_flags &= ~MDF_PUSH;
2520 
2521 	if (p->sched_class->find_lock_rq)
2522 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2523 
2524 	if (!lowest_rq)
2525 		goto out_unlock;
2526 
2527 	// XXX validate p is still the highest prio task
2528 	if (task_rq(p) == rq) {
2529 		deactivate_task(rq, p, 0);
2530 		set_task_cpu(p, lowest_rq->cpu);
2531 		activate_task(lowest_rq, p, 0);
2532 		resched_curr(lowest_rq);
2533 	}
2534 
2535 	double_unlock_balance(rq, lowest_rq);
2536 
2537 out_unlock:
2538 	rq->push_busy = false;
2539 	raw_spin_rq_unlock(rq);
2540 	raw_spin_unlock_irq(&p->pi_lock);
2541 
2542 	put_task_struct(p);
2543 	return 0;
2544 }
2545 
2546 /*
2547  * sched_class::set_cpus_allowed must do the below, but is not required to
2548  * actually call this function.
2549  */
2550 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2551 {
2552 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2553 		p->cpus_ptr = ctx->new_mask;
2554 		return;
2555 	}
2556 
2557 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2558 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2559 
2560 	/*
2561 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2562 	 */
2563 	if (ctx->flags & SCA_USER)
2564 		swap(p->user_cpus_ptr, ctx->user_mask);
2565 }
2566 
2567 static void
2568 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2569 {
2570 	struct rq *rq = task_rq(p);
2571 	bool queued, running;
2572 
2573 	/*
2574 	 * This here violates the locking rules for affinity, since we're only
2575 	 * supposed to change these variables while holding both rq->lock and
2576 	 * p->pi_lock.
2577 	 *
2578 	 * HOWEVER, it magically works, because ttwu() is the only code that
2579 	 * accesses these variables under p->pi_lock and only does so after
2580 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2581 	 * before finish_task().
2582 	 *
2583 	 * XXX do further audits, this smells like something putrid.
2584 	 */
2585 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2586 		SCHED_WARN_ON(!p->on_cpu);
2587 	else
2588 		lockdep_assert_held(&p->pi_lock);
2589 
2590 	queued = task_on_rq_queued(p);
2591 	running = task_current(rq, p);
2592 
2593 	if (queued) {
2594 		/*
2595 		 * Because __kthread_bind() calls this on blocked tasks without
2596 		 * holding rq->lock.
2597 		 */
2598 		lockdep_assert_rq_held(rq);
2599 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2600 	}
2601 	if (running)
2602 		put_prev_task(rq, p);
2603 
2604 	p->sched_class->set_cpus_allowed(p, ctx);
2605 
2606 	if (queued)
2607 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2608 	if (running)
2609 		set_next_task(rq, p);
2610 }
2611 
2612 /*
2613  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2614  * affinity (if any) should be destroyed too.
2615  */
2616 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2617 {
2618 	struct affinity_context ac = {
2619 		.new_mask  = new_mask,
2620 		.user_mask = NULL,
2621 		.flags     = SCA_USER,	/* clear the user requested mask */
2622 	};
2623 	union cpumask_rcuhead {
2624 		cpumask_t cpumask;
2625 		struct rcu_head rcu;
2626 	};
2627 
2628 	__do_set_cpus_allowed(p, &ac);
2629 
2630 	/*
2631 	 * Because this is called with p->pi_lock held, it is not possible
2632 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2633 	 * kfree_rcu().
2634 	 */
2635 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2636 }
2637 
2638 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2639 		      int node)
2640 {
2641 	cpumask_t *user_mask;
2642 	unsigned long flags;
2643 
2644 	/*
2645 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2646 	 * may differ by now due to racing.
2647 	 */
2648 	dst->user_cpus_ptr = NULL;
2649 
2650 	/*
2651 	 * This check is racy and losing the race is a valid situation.
2652 	 * It is not worth the extra overhead of taking the pi_lock on
2653 	 * every fork/clone.
2654 	 */
2655 	if (data_race(!src->user_cpus_ptr))
2656 		return 0;
2657 
2658 	user_mask = alloc_user_cpus_ptr(node);
2659 	if (!user_mask)
2660 		return -ENOMEM;
2661 
2662 	/*
2663 	 * Use pi_lock to protect content of user_cpus_ptr
2664 	 *
2665 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2666 	 * do_set_cpus_allowed().
2667 	 */
2668 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2669 	if (src->user_cpus_ptr) {
2670 		swap(dst->user_cpus_ptr, user_mask);
2671 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2672 	}
2673 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2674 
2675 	if (unlikely(user_mask))
2676 		kfree(user_mask);
2677 
2678 	return 0;
2679 }
2680 
2681 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2682 {
2683 	struct cpumask *user_mask = NULL;
2684 
2685 	swap(p->user_cpus_ptr, user_mask);
2686 
2687 	return user_mask;
2688 }
2689 
2690 void release_user_cpus_ptr(struct task_struct *p)
2691 {
2692 	kfree(clear_user_cpus_ptr(p));
2693 }
2694 
2695 /*
2696  * This function is wildly self concurrent; here be dragons.
2697  *
2698  *
2699  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2700  * designated task is enqueued on an allowed CPU. If that task is currently
2701  * running, we have to kick it out using the CPU stopper.
2702  *
2703  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2704  * Consider:
2705  *
2706  *     Initial conditions: P0->cpus_mask = [0, 1]
2707  *
2708  *     P0@CPU0                  P1
2709  *
2710  *     migrate_disable();
2711  *     <preempted>
2712  *                              set_cpus_allowed_ptr(P0, [1]);
2713  *
2714  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2715  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2716  * This means we need the following scheme:
2717  *
2718  *     P0@CPU0                  P1
2719  *
2720  *     migrate_disable();
2721  *     <preempted>
2722  *                              set_cpus_allowed_ptr(P0, [1]);
2723  *                                <blocks>
2724  *     <resumes>
2725  *     migrate_enable();
2726  *       __set_cpus_allowed_ptr();
2727  *       <wakes local stopper>
2728  *                         `--> <woken on migration completion>
2729  *
2730  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2731  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2732  * task p are serialized by p->pi_lock, which we can leverage: the one that
2733  * should come into effect at the end of the Migrate-Disable region is the last
2734  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2735  * but we still need to properly signal those waiting tasks at the appropriate
2736  * moment.
2737  *
2738  * This is implemented using struct set_affinity_pending. The first
2739  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2740  * setup an instance of that struct and install it on the targeted task_struct.
2741  * Any and all further callers will reuse that instance. Those then wait for
2742  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2743  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2744  *
2745  *
2746  * (1) In the cases covered above. There is one more where the completion is
2747  * signaled within affine_move_task() itself: when a subsequent affinity request
2748  * occurs after the stopper bailed out due to the targeted task still being
2749  * Migrate-Disable. Consider:
2750  *
2751  *     Initial conditions: P0->cpus_mask = [0, 1]
2752  *
2753  *     CPU0		  P1				P2
2754  *     <P0>
2755  *       migrate_disable();
2756  *       <preempted>
2757  *                        set_cpus_allowed_ptr(P0, [1]);
2758  *                          <blocks>
2759  *     <migration/0>
2760  *       migration_cpu_stop()
2761  *         is_migration_disabled()
2762  *           <bails>
2763  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2764  *                                                         <signal completion>
2765  *                          <awakes>
2766  *
2767  * Note that the above is safe vs a concurrent migrate_enable(), as any
2768  * pending affinity completion is preceded by an uninstallation of
2769  * p->migration_pending done with p->pi_lock held.
2770  */
2771 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2772 			    int dest_cpu, unsigned int flags)
2773 	__releases(rq->lock)
2774 	__releases(p->pi_lock)
2775 {
2776 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2777 	bool stop_pending, complete = false;
2778 
2779 	/* Can the task run on the task's current CPU? If so, we're done */
2780 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2781 		struct task_struct *push_task = NULL;
2782 
2783 		if ((flags & SCA_MIGRATE_ENABLE) &&
2784 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2785 			rq->push_busy = true;
2786 			push_task = get_task_struct(p);
2787 		}
2788 
2789 		/*
2790 		 * If there are pending waiters, but no pending stop_work,
2791 		 * then complete now.
2792 		 */
2793 		pending = p->migration_pending;
2794 		if (pending && !pending->stop_pending) {
2795 			p->migration_pending = NULL;
2796 			complete = true;
2797 		}
2798 
2799 		preempt_disable();
2800 		task_rq_unlock(rq, p, rf);
2801 		if (push_task) {
2802 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2803 					    p, &rq->push_work);
2804 		}
2805 		preempt_enable();
2806 
2807 		if (complete)
2808 			complete_all(&pending->done);
2809 
2810 		return 0;
2811 	}
2812 
2813 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2814 		/* serialized by p->pi_lock */
2815 		if (!p->migration_pending) {
2816 			/* Install the request */
2817 			refcount_set(&my_pending.refs, 1);
2818 			init_completion(&my_pending.done);
2819 			my_pending.arg = (struct migration_arg) {
2820 				.task = p,
2821 				.dest_cpu = dest_cpu,
2822 				.pending = &my_pending,
2823 			};
2824 
2825 			p->migration_pending = &my_pending;
2826 		} else {
2827 			pending = p->migration_pending;
2828 			refcount_inc(&pending->refs);
2829 			/*
2830 			 * Affinity has changed, but we've already installed a
2831 			 * pending. migration_cpu_stop() *must* see this, else
2832 			 * we risk a completion of the pending despite having a
2833 			 * task on a disallowed CPU.
2834 			 *
2835 			 * Serialized by p->pi_lock, so this is safe.
2836 			 */
2837 			pending->arg.dest_cpu = dest_cpu;
2838 		}
2839 	}
2840 	pending = p->migration_pending;
2841 	/*
2842 	 * - !MIGRATE_ENABLE:
2843 	 *   we'll have installed a pending if there wasn't one already.
2844 	 *
2845 	 * - MIGRATE_ENABLE:
2846 	 *   we're here because the current CPU isn't matching anymore,
2847 	 *   the only way that can happen is because of a concurrent
2848 	 *   set_cpus_allowed_ptr() call, which should then still be
2849 	 *   pending completion.
2850 	 *
2851 	 * Either way, we really should have a @pending here.
2852 	 */
2853 	if (WARN_ON_ONCE(!pending)) {
2854 		task_rq_unlock(rq, p, rf);
2855 		return -EINVAL;
2856 	}
2857 
2858 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2859 		/*
2860 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2861 		 * anything else we cannot do is_migration_disabled(), punt
2862 		 * and have the stopper function handle it all race-free.
2863 		 */
2864 		stop_pending = pending->stop_pending;
2865 		if (!stop_pending)
2866 			pending->stop_pending = true;
2867 
2868 		if (flags & SCA_MIGRATE_ENABLE)
2869 			p->migration_flags &= ~MDF_PUSH;
2870 
2871 		preempt_disable();
2872 		task_rq_unlock(rq, p, rf);
2873 		if (!stop_pending) {
2874 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2875 					    &pending->arg, &pending->stop_work);
2876 		}
2877 		preempt_enable();
2878 
2879 		if (flags & SCA_MIGRATE_ENABLE)
2880 			return 0;
2881 	} else {
2882 
2883 		if (!is_migration_disabled(p)) {
2884 			if (task_on_rq_queued(p))
2885 				rq = move_queued_task(rq, rf, p, dest_cpu);
2886 
2887 			if (!pending->stop_pending) {
2888 				p->migration_pending = NULL;
2889 				complete = true;
2890 			}
2891 		}
2892 		task_rq_unlock(rq, p, rf);
2893 
2894 		if (complete)
2895 			complete_all(&pending->done);
2896 	}
2897 
2898 	wait_for_completion(&pending->done);
2899 
2900 	if (refcount_dec_and_test(&pending->refs))
2901 		wake_up_var(&pending->refs); /* No UaF, just an address */
2902 
2903 	/*
2904 	 * Block the original owner of &pending until all subsequent callers
2905 	 * have seen the completion and decremented the refcount
2906 	 */
2907 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2908 
2909 	/* ARGH */
2910 	WARN_ON_ONCE(my_pending.stop_pending);
2911 
2912 	return 0;
2913 }
2914 
2915 /*
2916  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2917  */
2918 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2919 					 struct affinity_context *ctx,
2920 					 struct rq *rq,
2921 					 struct rq_flags *rf)
2922 	__releases(rq->lock)
2923 	__releases(p->pi_lock)
2924 {
2925 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2926 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2927 	bool kthread = p->flags & PF_KTHREAD;
2928 	unsigned int dest_cpu;
2929 	int ret = 0;
2930 
2931 	update_rq_clock(rq);
2932 
2933 	if (kthread || is_migration_disabled(p)) {
2934 		/*
2935 		 * Kernel threads are allowed on online && !active CPUs,
2936 		 * however, during cpu-hot-unplug, even these might get pushed
2937 		 * away if not KTHREAD_IS_PER_CPU.
2938 		 *
2939 		 * Specifically, migration_disabled() tasks must not fail the
2940 		 * cpumask_any_and_distribute() pick below, esp. so on
2941 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2942 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2943 		 */
2944 		cpu_valid_mask = cpu_online_mask;
2945 	}
2946 
2947 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2948 		ret = -EINVAL;
2949 		goto out;
2950 	}
2951 
2952 	/*
2953 	 * Must re-check here, to close a race against __kthread_bind(),
2954 	 * sched_setaffinity() is not guaranteed to observe the flag.
2955 	 */
2956 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2957 		ret = -EINVAL;
2958 		goto out;
2959 	}
2960 
2961 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2962 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2963 			if (ctx->flags & SCA_USER)
2964 				swap(p->user_cpus_ptr, ctx->user_mask);
2965 			goto out;
2966 		}
2967 
2968 		if (WARN_ON_ONCE(p == current &&
2969 				 is_migration_disabled(p) &&
2970 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2971 			ret = -EBUSY;
2972 			goto out;
2973 		}
2974 	}
2975 
2976 	/*
2977 	 * Picking a ~random cpu helps in cases where we are changing affinity
2978 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2979 	 * immediately required to distribute the tasks within their new mask.
2980 	 */
2981 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2982 	if (dest_cpu >= nr_cpu_ids) {
2983 		ret = -EINVAL;
2984 		goto out;
2985 	}
2986 
2987 	__do_set_cpus_allowed(p, ctx);
2988 
2989 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2990 
2991 out:
2992 	task_rq_unlock(rq, p, rf);
2993 
2994 	return ret;
2995 }
2996 
2997 /*
2998  * Change a given task's CPU affinity. Migrate the thread to a
2999  * proper CPU and schedule it away if the CPU it's executing on
3000  * is removed from the allowed bitmask.
3001  *
3002  * NOTE: the caller must have a valid reference to the task, the
3003  * task must not exit() & deallocate itself prematurely. The
3004  * call is not atomic; no spinlocks may be held.
3005  */
3006 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3007 {
3008 	struct rq_flags rf;
3009 	struct rq *rq;
3010 
3011 	rq = task_rq_lock(p, &rf);
3012 	/*
3013 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3014 	 * flags are set.
3015 	 */
3016 	if (p->user_cpus_ptr &&
3017 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3018 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3019 		ctx->new_mask = rq->scratch_mask;
3020 
3021 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3022 }
3023 
3024 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3025 {
3026 	struct affinity_context ac = {
3027 		.new_mask  = new_mask,
3028 		.flags     = 0,
3029 	};
3030 
3031 	return __set_cpus_allowed_ptr(p, &ac);
3032 }
3033 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3034 
3035 /*
3036  * Change a given task's CPU affinity to the intersection of its current
3037  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3038  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3039  * affinity or use cpu_online_mask instead.
3040  *
3041  * If the resulting mask is empty, leave the affinity unchanged and return
3042  * -EINVAL.
3043  */
3044 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3045 				     struct cpumask *new_mask,
3046 				     const struct cpumask *subset_mask)
3047 {
3048 	struct affinity_context ac = {
3049 		.new_mask  = new_mask,
3050 		.flags     = 0,
3051 	};
3052 	struct rq_flags rf;
3053 	struct rq *rq;
3054 	int err;
3055 
3056 	rq = task_rq_lock(p, &rf);
3057 
3058 	/*
3059 	 * Forcefully restricting the affinity of a deadline task is
3060 	 * likely to cause problems, so fail and noisily override the
3061 	 * mask entirely.
3062 	 */
3063 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3064 		err = -EPERM;
3065 		goto err_unlock;
3066 	}
3067 
3068 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3069 		err = -EINVAL;
3070 		goto err_unlock;
3071 	}
3072 
3073 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3074 
3075 err_unlock:
3076 	task_rq_unlock(rq, p, &rf);
3077 	return err;
3078 }
3079 
3080 /*
3081  * Restrict the CPU affinity of task @p so that it is a subset of
3082  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3083  * old affinity mask. If the resulting mask is empty, we warn and walk
3084  * up the cpuset hierarchy until we find a suitable mask.
3085  */
3086 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3087 {
3088 	cpumask_var_t new_mask;
3089 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3090 
3091 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3092 
3093 	/*
3094 	 * __migrate_task() can fail silently in the face of concurrent
3095 	 * offlining of the chosen destination CPU, so take the hotplug
3096 	 * lock to ensure that the migration succeeds.
3097 	 */
3098 	cpus_read_lock();
3099 	if (!cpumask_available(new_mask))
3100 		goto out_set_mask;
3101 
3102 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3103 		goto out_free_mask;
3104 
3105 	/*
3106 	 * We failed to find a valid subset of the affinity mask for the
3107 	 * task, so override it based on its cpuset hierarchy.
3108 	 */
3109 	cpuset_cpus_allowed(p, new_mask);
3110 	override_mask = new_mask;
3111 
3112 out_set_mask:
3113 	if (printk_ratelimit()) {
3114 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3115 				task_pid_nr(p), p->comm,
3116 				cpumask_pr_args(override_mask));
3117 	}
3118 
3119 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3120 out_free_mask:
3121 	cpus_read_unlock();
3122 	free_cpumask_var(new_mask);
3123 }
3124 
3125 /*
3126  * Restore the affinity of a task @p which was previously restricted by a
3127  * call to force_compatible_cpus_allowed_ptr().
3128  *
3129  * It is the caller's responsibility to serialise this with any calls to
3130  * force_compatible_cpus_allowed_ptr(@p).
3131  */
3132 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3133 {
3134 	struct affinity_context ac = {
3135 		.new_mask  = task_user_cpus(p),
3136 		.flags     = 0,
3137 	};
3138 	int ret;
3139 
3140 	/*
3141 	 * Try to restore the old affinity mask with __sched_setaffinity().
3142 	 * Cpuset masking will be done there too.
3143 	 */
3144 	ret = __sched_setaffinity(p, &ac);
3145 	WARN_ON_ONCE(ret);
3146 }
3147 
3148 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3149 {
3150 #ifdef CONFIG_SCHED_DEBUG
3151 	unsigned int state = READ_ONCE(p->__state);
3152 
3153 	/*
3154 	 * We should never call set_task_cpu() on a blocked task,
3155 	 * ttwu() will sort out the placement.
3156 	 */
3157 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3158 
3159 	/*
3160 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3161 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3162 	 * time relying on p->on_rq.
3163 	 */
3164 	WARN_ON_ONCE(state == TASK_RUNNING &&
3165 		     p->sched_class == &fair_sched_class &&
3166 		     (p->on_rq && !task_on_rq_migrating(p)));
3167 
3168 #ifdef CONFIG_LOCKDEP
3169 	/*
3170 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3171 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3172 	 *
3173 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3174 	 * see task_group().
3175 	 *
3176 	 * Furthermore, all task_rq users should acquire both locks, see
3177 	 * task_rq_lock().
3178 	 */
3179 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3180 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3181 #endif
3182 	/*
3183 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3184 	 */
3185 	WARN_ON_ONCE(!cpu_online(new_cpu));
3186 
3187 	WARN_ON_ONCE(is_migration_disabled(p));
3188 #endif
3189 
3190 	trace_sched_migrate_task(p, new_cpu);
3191 
3192 	if (task_cpu(p) != new_cpu) {
3193 		if (p->sched_class->migrate_task_rq)
3194 			p->sched_class->migrate_task_rq(p, new_cpu);
3195 		p->se.nr_migrations++;
3196 		rseq_migrate(p);
3197 		sched_mm_cid_migrate_from(p);
3198 		perf_event_task_migrate(p);
3199 	}
3200 
3201 	__set_task_cpu(p, new_cpu);
3202 }
3203 
3204 #ifdef CONFIG_NUMA_BALANCING
3205 static void __migrate_swap_task(struct task_struct *p, int cpu)
3206 {
3207 	if (task_on_rq_queued(p)) {
3208 		struct rq *src_rq, *dst_rq;
3209 		struct rq_flags srf, drf;
3210 
3211 		src_rq = task_rq(p);
3212 		dst_rq = cpu_rq(cpu);
3213 
3214 		rq_pin_lock(src_rq, &srf);
3215 		rq_pin_lock(dst_rq, &drf);
3216 
3217 		deactivate_task(src_rq, p, 0);
3218 		set_task_cpu(p, cpu);
3219 		activate_task(dst_rq, p, 0);
3220 		wakeup_preempt(dst_rq, p, 0);
3221 
3222 		rq_unpin_lock(dst_rq, &drf);
3223 		rq_unpin_lock(src_rq, &srf);
3224 
3225 	} else {
3226 		/*
3227 		 * Task isn't running anymore; make it appear like we migrated
3228 		 * it before it went to sleep. This means on wakeup we make the
3229 		 * previous CPU our target instead of where it really is.
3230 		 */
3231 		p->wake_cpu = cpu;
3232 	}
3233 }
3234 
3235 struct migration_swap_arg {
3236 	struct task_struct *src_task, *dst_task;
3237 	int src_cpu, dst_cpu;
3238 };
3239 
3240 static int migrate_swap_stop(void *data)
3241 {
3242 	struct migration_swap_arg *arg = data;
3243 	struct rq *src_rq, *dst_rq;
3244 
3245 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3246 		return -EAGAIN;
3247 
3248 	src_rq = cpu_rq(arg->src_cpu);
3249 	dst_rq = cpu_rq(arg->dst_cpu);
3250 
3251 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3252 	guard(double_rq_lock)(src_rq, dst_rq);
3253 
3254 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3255 		return -EAGAIN;
3256 
3257 	if (task_cpu(arg->src_task) != arg->src_cpu)
3258 		return -EAGAIN;
3259 
3260 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3261 		return -EAGAIN;
3262 
3263 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3264 		return -EAGAIN;
3265 
3266 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3267 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3268 
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Cross migrate two tasks
3274  */
3275 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3276 		int target_cpu, int curr_cpu)
3277 {
3278 	struct migration_swap_arg arg;
3279 	int ret = -EINVAL;
3280 
3281 	arg = (struct migration_swap_arg){
3282 		.src_task = cur,
3283 		.src_cpu = curr_cpu,
3284 		.dst_task = p,
3285 		.dst_cpu = target_cpu,
3286 	};
3287 
3288 	if (arg.src_cpu == arg.dst_cpu)
3289 		goto out;
3290 
3291 	/*
3292 	 * These three tests are all lockless; this is OK since all of them
3293 	 * will be re-checked with proper locks held further down the line.
3294 	 */
3295 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3296 		goto out;
3297 
3298 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3299 		goto out;
3300 
3301 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3302 		goto out;
3303 
3304 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3305 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3306 
3307 out:
3308 	return ret;
3309 }
3310 #endif /* CONFIG_NUMA_BALANCING */
3311 
3312 /***
3313  * kick_process - kick a running thread to enter/exit the kernel
3314  * @p: the to-be-kicked thread
3315  *
3316  * Cause a process which is running on another CPU to enter
3317  * kernel-mode, without any delay. (to get signals handled.)
3318  *
3319  * NOTE: this function doesn't have to take the runqueue lock,
3320  * because all it wants to ensure is that the remote task enters
3321  * the kernel. If the IPI races and the task has been migrated
3322  * to another CPU then no harm is done and the purpose has been
3323  * achieved as well.
3324  */
3325 void kick_process(struct task_struct *p)
3326 {
3327 	guard(preempt)();
3328 	int cpu = task_cpu(p);
3329 
3330 	if ((cpu != smp_processor_id()) && task_curr(p))
3331 		smp_send_reschedule(cpu);
3332 }
3333 EXPORT_SYMBOL_GPL(kick_process);
3334 
3335 /*
3336  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3337  *
3338  * A few notes on cpu_active vs cpu_online:
3339  *
3340  *  - cpu_active must be a subset of cpu_online
3341  *
3342  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3343  *    see __set_cpus_allowed_ptr(). At this point the newly online
3344  *    CPU isn't yet part of the sched domains, and balancing will not
3345  *    see it.
3346  *
3347  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3348  *    avoid the load balancer to place new tasks on the to be removed
3349  *    CPU. Existing tasks will remain running there and will be taken
3350  *    off.
3351  *
3352  * This means that fallback selection must not select !active CPUs.
3353  * And can assume that any active CPU must be online. Conversely
3354  * select_task_rq() below may allow selection of !active CPUs in order
3355  * to satisfy the above rules.
3356  */
3357 static int select_fallback_rq(int cpu, struct task_struct *p)
3358 {
3359 	int nid = cpu_to_node(cpu);
3360 	const struct cpumask *nodemask = NULL;
3361 	enum { cpuset, possible, fail } state = cpuset;
3362 	int dest_cpu;
3363 
3364 	/*
3365 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3366 	 * will return -1. There is no CPU on the node, and we should
3367 	 * select the CPU on the other node.
3368 	 */
3369 	if (nid != -1) {
3370 		nodemask = cpumask_of_node(nid);
3371 
3372 		/* Look for allowed, online CPU in same node. */
3373 		for_each_cpu(dest_cpu, nodemask) {
3374 			if (is_cpu_allowed(p, dest_cpu))
3375 				return dest_cpu;
3376 		}
3377 	}
3378 
3379 	for (;;) {
3380 		/* Any allowed, online CPU? */
3381 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3382 			if (!is_cpu_allowed(p, dest_cpu))
3383 				continue;
3384 
3385 			goto out;
3386 		}
3387 
3388 		/* No more Mr. Nice Guy. */
3389 		switch (state) {
3390 		case cpuset:
3391 			if (cpuset_cpus_allowed_fallback(p)) {
3392 				state = possible;
3393 				break;
3394 			}
3395 			fallthrough;
3396 		case possible:
3397 			/*
3398 			 * XXX When called from select_task_rq() we only
3399 			 * hold p->pi_lock and again violate locking order.
3400 			 *
3401 			 * More yuck to audit.
3402 			 */
3403 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3404 			state = fail;
3405 			break;
3406 		case fail:
3407 			BUG();
3408 			break;
3409 		}
3410 	}
3411 
3412 out:
3413 	if (state != cpuset) {
3414 		/*
3415 		 * Don't tell them about moving exiting tasks or
3416 		 * kernel threads (both mm NULL), since they never
3417 		 * leave kernel.
3418 		 */
3419 		if (p->mm && printk_ratelimit()) {
3420 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3421 					task_pid_nr(p), p->comm, cpu);
3422 		}
3423 	}
3424 
3425 	return dest_cpu;
3426 }
3427 
3428 /*
3429  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3430  */
3431 static inline
3432 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3433 {
3434 	lockdep_assert_held(&p->pi_lock);
3435 
3436 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3437 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3438 	else
3439 		cpu = cpumask_any(p->cpus_ptr);
3440 
3441 	/*
3442 	 * In order not to call set_task_cpu() on a blocking task we need
3443 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3444 	 * CPU.
3445 	 *
3446 	 * Since this is common to all placement strategies, this lives here.
3447 	 *
3448 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3449 	 *   not worry about this generic constraint ]
3450 	 */
3451 	if (unlikely(!is_cpu_allowed(p, cpu)))
3452 		cpu = select_fallback_rq(task_cpu(p), p);
3453 
3454 	return cpu;
3455 }
3456 
3457 void sched_set_stop_task(int cpu, struct task_struct *stop)
3458 {
3459 	static struct lock_class_key stop_pi_lock;
3460 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3461 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3462 
3463 	if (stop) {
3464 		/*
3465 		 * Make it appear like a SCHED_FIFO task, its something
3466 		 * userspace knows about and won't get confused about.
3467 		 *
3468 		 * Also, it will make PI more or less work without too
3469 		 * much confusion -- but then, stop work should not
3470 		 * rely on PI working anyway.
3471 		 */
3472 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3473 
3474 		stop->sched_class = &stop_sched_class;
3475 
3476 		/*
3477 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3478 		 * adjust the effective priority of a task. As a result,
3479 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3480 		 * which can then trigger wakeups of the stop thread to push
3481 		 * around the current task.
3482 		 *
3483 		 * The stop task itself will never be part of the PI-chain, it
3484 		 * never blocks, therefore that ->pi_lock recursion is safe.
3485 		 * Tell lockdep about this by placing the stop->pi_lock in its
3486 		 * own class.
3487 		 */
3488 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3489 	}
3490 
3491 	cpu_rq(cpu)->stop = stop;
3492 
3493 	if (old_stop) {
3494 		/*
3495 		 * Reset it back to a normal scheduling class so that
3496 		 * it can die in pieces.
3497 		 */
3498 		old_stop->sched_class = &rt_sched_class;
3499 	}
3500 }
3501 
3502 #else /* CONFIG_SMP */
3503 
3504 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3505 
3506 static inline bool rq_has_pinned_tasks(struct rq *rq)
3507 {
3508 	return false;
3509 }
3510 
3511 #endif /* !CONFIG_SMP */
3512 
3513 static void
3514 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3515 {
3516 	struct rq *rq;
3517 
3518 	if (!schedstat_enabled())
3519 		return;
3520 
3521 	rq = this_rq();
3522 
3523 #ifdef CONFIG_SMP
3524 	if (cpu == rq->cpu) {
3525 		__schedstat_inc(rq->ttwu_local);
3526 		__schedstat_inc(p->stats.nr_wakeups_local);
3527 	} else {
3528 		struct sched_domain *sd;
3529 
3530 		__schedstat_inc(p->stats.nr_wakeups_remote);
3531 
3532 		guard(rcu)();
3533 		for_each_domain(rq->cpu, sd) {
3534 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3535 				__schedstat_inc(sd->ttwu_wake_remote);
3536 				break;
3537 			}
3538 		}
3539 	}
3540 
3541 	if (wake_flags & WF_MIGRATED)
3542 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3543 #endif /* CONFIG_SMP */
3544 
3545 	__schedstat_inc(rq->ttwu_count);
3546 	__schedstat_inc(p->stats.nr_wakeups);
3547 
3548 	if (wake_flags & WF_SYNC)
3549 		__schedstat_inc(p->stats.nr_wakeups_sync);
3550 }
3551 
3552 /*
3553  * Mark the task runnable.
3554  */
3555 static inline void ttwu_do_wakeup(struct task_struct *p)
3556 {
3557 	WRITE_ONCE(p->__state, TASK_RUNNING);
3558 	trace_sched_wakeup(p);
3559 }
3560 
3561 static void
3562 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3563 		 struct rq_flags *rf)
3564 {
3565 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3566 
3567 	lockdep_assert_rq_held(rq);
3568 
3569 	if (p->sched_contributes_to_load)
3570 		rq->nr_uninterruptible--;
3571 
3572 #ifdef CONFIG_SMP
3573 	if (wake_flags & WF_MIGRATED)
3574 		en_flags |= ENQUEUE_MIGRATED;
3575 	else
3576 #endif
3577 	if (p->in_iowait) {
3578 		delayacct_blkio_end(p);
3579 		atomic_dec(&task_rq(p)->nr_iowait);
3580 	}
3581 
3582 	activate_task(rq, p, en_flags);
3583 	wakeup_preempt(rq, p, wake_flags);
3584 
3585 	ttwu_do_wakeup(p);
3586 
3587 #ifdef CONFIG_SMP
3588 	if (p->sched_class->task_woken) {
3589 		/*
3590 		 * Our task @p is fully woken up and running; so it's safe to
3591 		 * drop the rq->lock, hereafter rq is only used for statistics.
3592 		 */
3593 		rq_unpin_lock(rq, rf);
3594 		p->sched_class->task_woken(rq, p);
3595 		rq_repin_lock(rq, rf);
3596 	}
3597 
3598 	if (rq->idle_stamp) {
3599 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3600 		u64 max = 2*rq->max_idle_balance_cost;
3601 
3602 		update_avg(&rq->avg_idle, delta);
3603 
3604 		if (rq->avg_idle > max)
3605 			rq->avg_idle = max;
3606 
3607 		rq->idle_stamp = 0;
3608 	}
3609 #endif
3610 
3611 	p->dl_server = NULL;
3612 }
3613 
3614 /*
3615  * Consider @p being inside a wait loop:
3616  *
3617  *   for (;;) {
3618  *      set_current_state(TASK_UNINTERRUPTIBLE);
3619  *
3620  *      if (CONDITION)
3621  *         break;
3622  *
3623  *      schedule();
3624  *   }
3625  *   __set_current_state(TASK_RUNNING);
3626  *
3627  * between set_current_state() and schedule(). In this case @p is still
3628  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3629  * an atomic manner.
3630  *
3631  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3632  * then schedule() must still happen and p->state can be changed to
3633  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3634  * need to do a full wakeup with enqueue.
3635  *
3636  * Returns: %true when the wakeup is done,
3637  *          %false otherwise.
3638  */
3639 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3640 {
3641 	struct rq_flags rf;
3642 	struct rq *rq;
3643 	int ret = 0;
3644 
3645 	rq = __task_rq_lock(p, &rf);
3646 	if (task_on_rq_queued(p)) {
3647 		if (!task_on_cpu(rq, p)) {
3648 			/*
3649 			 * When on_rq && !on_cpu the task is preempted, see if
3650 			 * it should preempt the task that is current now.
3651 			 */
3652 			update_rq_clock(rq);
3653 			wakeup_preempt(rq, p, wake_flags);
3654 		}
3655 		ttwu_do_wakeup(p);
3656 		ret = 1;
3657 	}
3658 	__task_rq_unlock(rq, &rf);
3659 
3660 	return ret;
3661 }
3662 
3663 #ifdef CONFIG_SMP
3664 void sched_ttwu_pending(void *arg)
3665 {
3666 	struct llist_node *llist = arg;
3667 	struct rq *rq = this_rq();
3668 	struct task_struct *p, *t;
3669 	struct rq_flags rf;
3670 
3671 	if (!llist)
3672 		return;
3673 
3674 	rq_lock_irqsave(rq, &rf);
3675 	update_rq_clock(rq);
3676 
3677 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3678 		if (WARN_ON_ONCE(p->on_cpu))
3679 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3680 
3681 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3682 			set_task_cpu(p, cpu_of(rq));
3683 
3684 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3685 	}
3686 
3687 	/*
3688 	 * Must be after enqueueing at least once task such that
3689 	 * idle_cpu() does not observe a false-negative -- if it does,
3690 	 * it is possible for select_idle_siblings() to stack a number
3691 	 * of tasks on this CPU during that window.
3692 	 *
3693 	 * It is OK to clear ttwu_pending when another task pending.
3694 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3695 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3696 	 */
3697 	WRITE_ONCE(rq->ttwu_pending, 0);
3698 	rq_unlock_irqrestore(rq, &rf);
3699 }
3700 
3701 /*
3702  * Prepare the scene for sending an IPI for a remote smp_call
3703  *
3704  * Returns true if the caller can proceed with sending the IPI.
3705  * Returns false otherwise.
3706  */
3707 bool call_function_single_prep_ipi(int cpu)
3708 {
3709 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3710 		trace_sched_wake_idle_without_ipi(cpu);
3711 		return false;
3712 	}
3713 
3714 	return true;
3715 }
3716 
3717 /*
3718  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3719  * necessary. The wakee CPU on receipt of the IPI will queue the task
3720  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3721  * of the wakeup instead of the waker.
3722  */
3723 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3724 {
3725 	struct rq *rq = cpu_rq(cpu);
3726 
3727 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3728 
3729 	WRITE_ONCE(rq->ttwu_pending, 1);
3730 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3731 }
3732 
3733 void wake_up_if_idle(int cpu)
3734 {
3735 	struct rq *rq = cpu_rq(cpu);
3736 
3737 	guard(rcu)();
3738 	if (is_idle_task(rcu_dereference(rq->curr))) {
3739 		guard(rq_lock_irqsave)(rq);
3740 		if (is_idle_task(rq->curr))
3741 			resched_curr(rq);
3742 	}
3743 }
3744 
3745 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3746 {
3747 	if (!sched_asym_cpucap_active())
3748 		return true;
3749 
3750 	if (this_cpu == that_cpu)
3751 		return true;
3752 
3753 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3754 }
3755 
3756 bool cpus_share_cache(int this_cpu, int that_cpu)
3757 {
3758 	if (this_cpu == that_cpu)
3759 		return true;
3760 
3761 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3762 }
3763 
3764 /*
3765  * Whether CPUs are share cache resources, which means LLC on non-cluster
3766  * machines and LLC tag or L2 on machines with clusters.
3767  */
3768 bool cpus_share_resources(int this_cpu, int that_cpu)
3769 {
3770 	if (this_cpu == that_cpu)
3771 		return true;
3772 
3773 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3774 }
3775 
3776 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3777 {
3778 	/*
3779 	 * Do not complicate things with the async wake_list while the CPU is
3780 	 * in hotplug state.
3781 	 */
3782 	if (!cpu_active(cpu))
3783 		return false;
3784 
3785 	/* Ensure the task will still be allowed to run on the CPU. */
3786 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3787 		return false;
3788 
3789 	/*
3790 	 * If the CPU does not share cache, then queue the task on the
3791 	 * remote rqs wakelist to avoid accessing remote data.
3792 	 */
3793 	if (!cpus_share_cache(smp_processor_id(), cpu))
3794 		return true;
3795 
3796 	if (cpu == smp_processor_id())
3797 		return false;
3798 
3799 	/*
3800 	 * If the wakee cpu is idle, or the task is descheduling and the
3801 	 * only running task on the CPU, then use the wakelist to offload
3802 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3803 	 * the current CPU is likely busy. nr_running is checked to
3804 	 * avoid unnecessary task stacking.
3805 	 *
3806 	 * Note that we can only get here with (wakee) p->on_rq=0,
3807 	 * p->on_cpu can be whatever, we've done the dequeue, so
3808 	 * the wakee has been accounted out of ->nr_running.
3809 	 */
3810 	if (!cpu_rq(cpu)->nr_running)
3811 		return true;
3812 
3813 	return false;
3814 }
3815 
3816 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3817 {
3818 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3819 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3820 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3821 		return true;
3822 	}
3823 
3824 	return false;
3825 }
3826 
3827 #else /* !CONFIG_SMP */
3828 
3829 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3830 {
3831 	return false;
3832 }
3833 
3834 #endif /* CONFIG_SMP */
3835 
3836 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3837 {
3838 	struct rq *rq = cpu_rq(cpu);
3839 	struct rq_flags rf;
3840 
3841 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3842 		return;
3843 
3844 	rq_lock(rq, &rf);
3845 	update_rq_clock(rq);
3846 	ttwu_do_activate(rq, p, wake_flags, &rf);
3847 	rq_unlock(rq, &rf);
3848 }
3849 
3850 /*
3851  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3852  *
3853  * The caller holds p::pi_lock if p != current or has preemption
3854  * disabled when p == current.
3855  *
3856  * The rules of saved_state:
3857  *
3858  *   The related locking code always holds p::pi_lock when updating
3859  *   p::saved_state, which means the code is fully serialized in both cases.
3860  *
3861  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
3862  *   No other bits set. This allows to distinguish all wakeup scenarios.
3863  *
3864  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
3865  *   allows us to prevent early wakeup of tasks before they can be run on
3866  *   asymmetric ISA architectures (eg ARMv9).
3867  */
3868 static __always_inline
3869 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3870 {
3871 	int match;
3872 
3873 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3874 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3875 			     state != TASK_RTLOCK_WAIT);
3876 	}
3877 
3878 	*success = !!(match = __task_state_match(p, state));
3879 
3880 	/*
3881 	 * Saved state preserves the task state across blocking on
3882 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
3883 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
3884 	 * because it waits for a lock wakeup or __thaw_task(). Also
3885 	 * indicate success because from the regular waker's point of
3886 	 * view this has succeeded.
3887 	 *
3888 	 * After acquiring the lock the task will restore p::__state
3889 	 * from p::saved_state which ensures that the regular
3890 	 * wakeup is not lost. The restore will also set
3891 	 * p::saved_state to TASK_RUNNING so any further tests will
3892 	 * not result in false positives vs. @success
3893 	 */
3894 	if (match < 0)
3895 		p->saved_state = TASK_RUNNING;
3896 
3897 	return match > 0;
3898 }
3899 
3900 /*
3901  * Notes on Program-Order guarantees on SMP systems.
3902  *
3903  *  MIGRATION
3904  *
3905  * The basic program-order guarantee on SMP systems is that when a task [t]
3906  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3907  * execution on its new CPU [c1].
3908  *
3909  * For migration (of runnable tasks) this is provided by the following means:
3910  *
3911  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3912  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3913  *     rq(c1)->lock (if not at the same time, then in that order).
3914  *  C) LOCK of the rq(c1)->lock scheduling in task
3915  *
3916  * Release/acquire chaining guarantees that B happens after A and C after B.
3917  * Note: the CPU doing B need not be c0 or c1
3918  *
3919  * Example:
3920  *
3921  *   CPU0            CPU1            CPU2
3922  *
3923  *   LOCK rq(0)->lock
3924  *   sched-out X
3925  *   sched-in Y
3926  *   UNLOCK rq(0)->lock
3927  *
3928  *                                   LOCK rq(0)->lock // orders against CPU0
3929  *                                   dequeue X
3930  *                                   UNLOCK rq(0)->lock
3931  *
3932  *                                   LOCK rq(1)->lock
3933  *                                   enqueue X
3934  *                                   UNLOCK rq(1)->lock
3935  *
3936  *                   LOCK rq(1)->lock // orders against CPU2
3937  *                   sched-out Z
3938  *                   sched-in X
3939  *                   UNLOCK rq(1)->lock
3940  *
3941  *
3942  *  BLOCKING -- aka. SLEEP + WAKEUP
3943  *
3944  * For blocking we (obviously) need to provide the same guarantee as for
3945  * migration. However the means are completely different as there is no lock
3946  * chain to provide order. Instead we do:
3947  *
3948  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3949  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3950  *
3951  * Example:
3952  *
3953  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3954  *
3955  *   LOCK rq(0)->lock LOCK X->pi_lock
3956  *   dequeue X
3957  *   sched-out X
3958  *   smp_store_release(X->on_cpu, 0);
3959  *
3960  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3961  *                    X->state = WAKING
3962  *                    set_task_cpu(X,2)
3963  *
3964  *                    LOCK rq(2)->lock
3965  *                    enqueue X
3966  *                    X->state = RUNNING
3967  *                    UNLOCK rq(2)->lock
3968  *
3969  *                                          LOCK rq(2)->lock // orders against CPU1
3970  *                                          sched-out Z
3971  *                                          sched-in X
3972  *                                          UNLOCK rq(2)->lock
3973  *
3974  *                    UNLOCK X->pi_lock
3975  *   UNLOCK rq(0)->lock
3976  *
3977  *
3978  * However, for wakeups there is a second guarantee we must provide, namely we
3979  * must ensure that CONDITION=1 done by the caller can not be reordered with
3980  * accesses to the task state; see try_to_wake_up() and set_current_state().
3981  */
3982 
3983 /**
3984  * try_to_wake_up - wake up a thread
3985  * @p: the thread to be awakened
3986  * @state: the mask of task states that can be woken
3987  * @wake_flags: wake modifier flags (WF_*)
3988  *
3989  * Conceptually does:
3990  *
3991  *   If (@state & @p->state) @p->state = TASK_RUNNING.
3992  *
3993  * If the task was not queued/runnable, also place it back on a runqueue.
3994  *
3995  * This function is atomic against schedule() which would dequeue the task.
3996  *
3997  * It issues a full memory barrier before accessing @p->state, see the comment
3998  * with set_current_state().
3999  *
4000  * Uses p->pi_lock to serialize against concurrent wake-ups.
4001  *
4002  * Relies on p->pi_lock stabilizing:
4003  *  - p->sched_class
4004  *  - p->cpus_ptr
4005  *  - p->sched_task_group
4006  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4007  *
4008  * Tries really hard to only take one task_rq(p)->lock for performance.
4009  * Takes rq->lock in:
4010  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4011  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4012  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4013  *
4014  * As a consequence we race really badly with just about everything. See the
4015  * many memory barriers and their comments for details.
4016  *
4017  * Return: %true if @p->state changes (an actual wakeup was done),
4018  *	   %false otherwise.
4019  */
4020 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4021 {
4022 	guard(preempt)();
4023 	int cpu, success = 0;
4024 
4025 	if (p == current) {
4026 		/*
4027 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4028 		 * == smp_processor_id()'. Together this means we can special
4029 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4030 		 * without taking any locks.
4031 		 *
4032 		 * In particular:
4033 		 *  - we rely on Program-Order guarantees for all the ordering,
4034 		 *  - we're serialized against set_special_state() by virtue of
4035 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4036 		 */
4037 		if (!ttwu_state_match(p, state, &success))
4038 			goto out;
4039 
4040 		trace_sched_waking(p);
4041 		ttwu_do_wakeup(p);
4042 		goto out;
4043 	}
4044 
4045 	/*
4046 	 * If we are going to wake up a thread waiting for CONDITION we
4047 	 * need to ensure that CONDITION=1 done by the caller can not be
4048 	 * reordered with p->state check below. This pairs with smp_store_mb()
4049 	 * in set_current_state() that the waiting thread does.
4050 	 */
4051 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4052 		smp_mb__after_spinlock();
4053 		if (!ttwu_state_match(p, state, &success))
4054 			break;
4055 
4056 		trace_sched_waking(p);
4057 
4058 		/*
4059 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4060 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4061 		 * in smp_cond_load_acquire() below.
4062 		 *
4063 		 * sched_ttwu_pending()			try_to_wake_up()
4064 		 *   STORE p->on_rq = 1			  LOAD p->state
4065 		 *   UNLOCK rq->lock
4066 		 *
4067 		 * __schedule() (switch to task 'p')
4068 		 *   LOCK rq->lock			  smp_rmb();
4069 		 *   smp_mb__after_spinlock();
4070 		 *   UNLOCK rq->lock
4071 		 *
4072 		 * [task p]
4073 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4074 		 *
4075 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4076 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4077 		 *
4078 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4079 		 */
4080 		smp_rmb();
4081 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4082 			break;
4083 
4084 #ifdef CONFIG_SMP
4085 		/*
4086 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4087 		 * possible to, falsely, observe p->on_cpu == 0.
4088 		 *
4089 		 * One must be running (->on_cpu == 1) in order to remove oneself
4090 		 * from the runqueue.
4091 		 *
4092 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4093 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4094 		 *   UNLOCK rq->lock
4095 		 *
4096 		 * __schedule() (put 'p' to sleep)
4097 		 *   LOCK rq->lock			  smp_rmb();
4098 		 *   smp_mb__after_spinlock();
4099 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4100 		 *
4101 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4102 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4103 		 *
4104 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4105 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4106 		 * care about it's own p->state. See the comment in __schedule().
4107 		 */
4108 		smp_acquire__after_ctrl_dep();
4109 
4110 		/*
4111 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4112 		 * == 0), which means we need to do an enqueue, change p->state to
4113 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4114 		 * enqueue, such as ttwu_queue_wakelist().
4115 		 */
4116 		WRITE_ONCE(p->__state, TASK_WAKING);
4117 
4118 		/*
4119 		 * If the owning (remote) CPU is still in the middle of schedule() with
4120 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4121 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4122 		 * let the waker make forward progress. This is safe because IRQs are
4123 		 * disabled and the IPI will deliver after on_cpu is cleared.
4124 		 *
4125 		 * Ensure we load task_cpu(p) after p->on_cpu:
4126 		 *
4127 		 * set_task_cpu(p, cpu);
4128 		 *   STORE p->cpu = @cpu
4129 		 * __schedule() (switch to task 'p')
4130 		 *   LOCK rq->lock
4131 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4132 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4133 		 *
4134 		 * to ensure we observe the correct CPU on which the task is currently
4135 		 * scheduling.
4136 		 */
4137 		if (smp_load_acquire(&p->on_cpu) &&
4138 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4139 			break;
4140 
4141 		/*
4142 		 * If the owning (remote) CPU is still in the middle of schedule() with
4143 		 * this task as prev, wait until it's done referencing the task.
4144 		 *
4145 		 * Pairs with the smp_store_release() in finish_task().
4146 		 *
4147 		 * This ensures that tasks getting woken will be fully ordered against
4148 		 * their previous state and preserve Program Order.
4149 		 */
4150 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4151 
4152 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4153 		if (task_cpu(p) != cpu) {
4154 			if (p->in_iowait) {
4155 				delayacct_blkio_end(p);
4156 				atomic_dec(&task_rq(p)->nr_iowait);
4157 			}
4158 
4159 			wake_flags |= WF_MIGRATED;
4160 			psi_ttwu_dequeue(p);
4161 			set_task_cpu(p, cpu);
4162 		}
4163 #else
4164 		cpu = task_cpu(p);
4165 #endif /* CONFIG_SMP */
4166 
4167 		ttwu_queue(p, cpu, wake_flags);
4168 	}
4169 out:
4170 	if (success)
4171 		ttwu_stat(p, task_cpu(p), wake_flags);
4172 
4173 	return success;
4174 }
4175 
4176 static bool __task_needs_rq_lock(struct task_struct *p)
4177 {
4178 	unsigned int state = READ_ONCE(p->__state);
4179 
4180 	/*
4181 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4182 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4183 	 * locks at the end, see ttwu_queue_wakelist().
4184 	 */
4185 	if (state == TASK_RUNNING || state == TASK_WAKING)
4186 		return true;
4187 
4188 	/*
4189 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4190 	 * possible to, falsely, observe p->on_rq == 0.
4191 	 *
4192 	 * See try_to_wake_up() for a longer comment.
4193 	 */
4194 	smp_rmb();
4195 	if (p->on_rq)
4196 		return true;
4197 
4198 #ifdef CONFIG_SMP
4199 	/*
4200 	 * Ensure the task has finished __schedule() and will not be referenced
4201 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4202 	 */
4203 	smp_rmb();
4204 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4205 #endif
4206 
4207 	return false;
4208 }
4209 
4210 /**
4211  * task_call_func - Invoke a function on task in fixed state
4212  * @p: Process for which the function is to be invoked, can be @current.
4213  * @func: Function to invoke.
4214  * @arg: Argument to function.
4215  *
4216  * Fix the task in it's current state by avoiding wakeups and or rq operations
4217  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4218  * to work out what the state is, if required.  Given that @func can be invoked
4219  * with a runqueue lock held, it had better be quite lightweight.
4220  *
4221  * Returns:
4222  *   Whatever @func returns
4223  */
4224 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4225 {
4226 	struct rq *rq = NULL;
4227 	struct rq_flags rf;
4228 	int ret;
4229 
4230 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4231 
4232 	if (__task_needs_rq_lock(p))
4233 		rq = __task_rq_lock(p, &rf);
4234 
4235 	/*
4236 	 * At this point the task is pinned; either:
4237 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4238 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4239 	 *  - queued, and we're holding off schedule	 (rq->lock)
4240 	 *  - running, and we're holding off de-schedule (rq->lock)
4241 	 *
4242 	 * The called function (@func) can use: task_curr(), p->on_rq and
4243 	 * p->__state to differentiate between these states.
4244 	 */
4245 	ret = func(p, arg);
4246 
4247 	if (rq)
4248 		rq_unlock(rq, &rf);
4249 
4250 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4251 	return ret;
4252 }
4253 
4254 /**
4255  * cpu_curr_snapshot - Return a snapshot of the currently running task
4256  * @cpu: The CPU on which to snapshot the task.
4257  *
4258  * Returns the task_struct pointer of the task "currently" running on
4259  * the specified CPU.
4260  *
4261  * If the specified CPU was offline, the return value is whatever it
4262  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4263  * task, but there is no guarantee.  Callers wishing a useful return
4264  * value must take some action to ensure that the specified CPU remains
4265  * online throughout.
4266  *
4267  * This function executes full memory barriers before and after fetching
4268  * the pointer, which permits the caller to confine this function's fetch
4269  * with respect to the caller's accesses to other shared variables.
4270  */
4271 struct task_struct *cpu_curr_snapshot(int cpu)
4272 {
4273 	struct rq *rq = cpu_rq(cpu);
4274 	struct task_struct *t;
4275 	struct rq_flags rf;
4276 
4277 	rq_lock_irqsave(rq, &rf);
4278 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4279 	t = rcu_dereference(cpu_curr(cpu));
4280 	rq_unlock_irqrestore(rq, &rf);
4281 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4282 
4283 	return t;
4284 }
4285 
4286 /**
4287  * wake_up_process - Wake up a specific process
4288  * @p: The process to be woken up.
4289  *
4290  * Attempt to wake up the nominated process and move it to the set of runnable
4291  * processes.
4292  *
4293  * Return: 1 if the process was woken up, 0 if it was already running.
4294  *
4295  * This function executes a full memory barrier before accessing the task state.
4296  */
4297 int wake_up_process(struct task_struct *p)
4298 {
4299 	return try_to_wake_up(p, TASK_NORMAL, 0);
4300 }
4301 EXPORT_SYMBOL(wake_up_process);
4302 
4303 int wake_up_state(struct task_struct *p, unsigned int state)
4304 {
4305 	return try_to_wake_up(p, state, 0);
4306 }
4307 
4308 /*
4309  * Perform scheduler related setup for a newly forked process p.
4310  * p is forked by current.
4311  *
4312  * __sched_fork() is basic setup used by init_idle() too:
4313  */
4314 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4315 {
4316 	p->on_rq			= 0;
4317 
4318 	p->se.on_rq			= 0;
4319 	p->se.exec_start		= 0;
4320 	p->se.sum_exec_runtime		= 0;
4321 	p->se.prev_sum_exec_runtime	= 0;
4322 	p->se.nr_migrations		= 0;
4323 	p->se.vruntime			= 0;
4324 	p->se.vlag			= 0;
4325 	p->se.slice			= sysctl_sched_base_slice;
4326 	INIT_LIST_HEAD(&p->se.group_node);
4327 
4328 #ifdef CONFIG_FAIR_GROUP_SCHED
4329 	p->se.cfs_rq			= NULL;
4330 #endif
4331 
4332 #ifdef CONFIG_SCHEDSTATS
4333 	/* Even if schedstat is disabled, there should not be garbage */
4334 	memset(&p->stats, 0, sizeof(p->stats));
4335 #endif
4336 
4337 	init_dl_entity(&p->dl);
4338 
4339 	INIT_LIST_HEAD(&p->rt.run_list);
4340 	p->rt.timeout		= 0;
4341 	p->rt.time_slice	= sched_rr_timeslice;
4342 	p->rt.on_rq		= 0;
4343 	p->rt.on_list		= 0;
4344 
4345 #ifdef CONFIG_PREEMPT_NOTIFIERS
4346 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4347 #endif
4348 
4349 #ifdef CONFIG_COMPACTION
4350 	p->capture_control = NULL;
4351 #endif
4352 	init_numa_balancing(clone_flags, p);
4353 #ifdef CONFIG_SMP
4354 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4355 	p->migration_pending = NULL;
4356 #endif
4357 	init_sched_mm_cid(p);
4358 }
4359 
4360 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4361 
4362 #ifdef CONFIG_NUMA_BALANCING
4363 
4364 int sysctl_numa_balancing_mode;
4365 
4366 static void __set_numabalancing_state(bool enabled)
4367 {
4368 	if (enabled)
4369 		static_branch_enable(&sched_numa_balancing);
4370 	else
4371 		static_branch_disable(&sched_numa_balancing);
4372 }
4373 
4374 void set_numabalancing_state(bool enabled)
4375 {
4376 	if (enabled)
4377 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4378 	else
4379 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4380 	__set_numabalancing_state(enabled);
4381 }
4382 
4383 #ifdef CONFIG_PROC_SYSCTL
4384 static void reset_memory_tiering(void)
4385 {
4386 	struct pglist_data *pgdat;
4387 
4388 	for_each_online_pgdat(pgdat) {
4389 		pgdat->nbp_threshold = 0;
4390 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4391 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4392 	}
4393 }
4394 
4395 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4396 			  void *buffer, size_t *lenp, loff_t *ppos)
4397 {
4398 	struct ctl_table t;
4399 	int err;
4400 	int state = sysctl_numa_balancing_mode;
4401 
4402 	if (write && !capable(CAP_SYS_ADMIN))
4403 		return -EPERM;
4404 
4405 	t = *table;
4406 	t.data = &state;
4407 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4408 	if (err < 0)
4409 		return err;
4410 	if (write) {
4411 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4412 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4413 			reset_memory_tiering();
4414 		sysctl_numa_balancing_mode = state;
4415 		__set_numabalancing_state(state);
4416 	}
4417 	return err;
4418 }
4419 #endif
4420 #endif
4421 
4422 #ifdef CONFIG_SCHEDSTATS
4423 
4424 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4425 
4426 static void set_schedstats(bool enabled)
4427 {
4428 	if (enabled)
4429 		static_branch_enable(&sched_schedstats);
4430 	else
4431 		static_branch_disable(&sched_schedstats);
4432 }
4433 
4434 void force_schedstat_enabled(void)
4435 {
4436 	if (!schedstat_enabled()) {
4437 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4438 		static_branch_enable(&sched_schedstats);
4439 	}
4440 }
4441 
4442 static int __init setup_schedstats(char *str)
4443 {
4444 	int ret = 0;
4445 	if (!str)
4446 		goto out;
4447 
4448 	if (!strcmp(str, "enable")) {
4449 		set_schedstats(true);
4450 		ret = 1;
4451 	} else if (!strcmp(str, "disable")) {
4452 		set_schedstats(false);
4453 		ret = 1;
4454 	}
4455 out:
4456 	if (!ret)
4457 		pr_warn("Unable to parse schedstats=\n");
4458 
4459 	return ret;
4460 }
4461 __setup("schedstats=", setup_schedstats);
4462 
4463 #ifdef CONFIG_PROC_SYSCTL
4464 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4465 		size_t *lenp, loff_t *ppos)
4466 {
4467 	struct ctl_table t;
4468 	int err;
4469 	int state = static_branch_likely(&sched_schedstats);
4470 
4471 	if (write && !capable(CAP_SYS_ADMIN))
4472 		return -EPERM;
4473 
4474 	t = *table;
4475 	t.data = &state;
4476 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4477 	if (err < 0)
4478 		return err;
4479 	if (write)
4480 		set_schedstats(state);
4481 	return err;
4482 }
4483 #endif /* CONFIG_PROC_SYSCTL */
4484 #endif /* CONFIG_SCHEDSTATS */
4485 
4486 #ifdef CONFIG_SYSCTL
4487 static struct ctl_table sched_core_sysctls[] = {
4488 #ifdef CONFIG_SCHEDSTATS
4489 	{
4490 		.procname       = "sched_schedstats",
4491 		.data           = NULL,
4492 		.maxlen         = sizeof(unsigned int),
4493 		.mode           = 0644,
4494 		.proc_handler   = sysctl_schedstats,
4495 		.extra1         = SYSCTL_ZERO,
4496 		.extra2         = SYSCTL_ONE,
4497 	},
4498 #endif /* CONFIG_SCHEDSTATS */
4499 #ifdef CONFIG_UCLAMP_TASK
4500 	{
4501 		.procname       = "sched_util_clamp_min",
4502 		.data           = &sysctl_sched_uclamp_util_min,
4503 		.maxlen         = sizeof(unsigned int),
4504 		.mode           = 0644,
4505 		.proc_handler   = sysctl_sched_uclamp_handler,
4506 	},
4507 	{
4508 		.procname       = "sched_util_clamp_max",
4509 		.data           = &sysctl_sched_uclamp_util_max,
4510 		.maxlen         = sizeof(unsigned int),
4511 		.mode           = 0644,
4512 		.proc_handler   = sysctl_sched_uclamp_handler,
4513 	},
4514 	{
4515 		.procname       = "sched_util_clamp_min_rt_default",
4516 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4517 		.maxlen         = sizeof(unsigned int),
4518 		.mode           = 0644,
4519 		.proc_handler   = sysctl_sched_uclamp_handler,
4520 	},
4521 #endif /* CONFIG_UCLAMP_TASK */
4522 #ifdef CONFIG_NUMA_BALANCING
4523 	{
4524 		.procname	= "numa_balancing",
4525 		.data		= NULL, /* filled in by handler */
4526 		.maxlen		= sizeof(unsigned int),
4527 		.mode		= 0644,
4528 		.proc_handler	= sysctl_numa_balancing,
4529 		.extra1		= SYSCTL_ZERO,
4530 		.extra2		= SYSCTL_FOUR,
4531 	},
4532 #endif /* CONFIG_NUMA_BALANCING */
4533 };
4534 static int __init sched_core_sysctl_init(void)
4535 {
4536 	register_sysctl_init("kernel", sched_core_sysctls);
4537 	return 0;
4538 }
4539 late_initcall(sched_core_sysctl_init);
4540 #endif /* CONFIG_SYSCTL */
4541 
4542 /*
4543  * fork()/clone()-time setup:
4544  */
4545 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4546 {
4547 	__sched_fork(clone_flags, p);
4548 	/*
4549 	 * We mark the process as NEW here. This guarantees that
4550 	 * nobody will actually run it, and a signal or other external
4551 	 * event cannot wake it up and insert it on the runqueue either.
4552 	 */
4553 	p->__state = TASK_NEW;
4554 
4555 	/*
4556 	 * Make sure we do not leak PI boosting priority to the child.
4557 	 */
4558 	p->prio = current->normal_prio;
4559 
4560 	uclamp_fork(p);
4561 
4562 	/*
4563 	 * Revert to default priority/policy on fork if requested.
4564 	 */
4565 	if (unlikely(p->sched_reset_on_fork)) {
4566 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4567 			p->policy = SCHED_NORMAL;
4568 			p->static_prio = NICE_TO_PRIO(0);
4569 			p->rt_priority = 0;
4570 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4571 			p->static_prio = NICE_TO_PRIO(0);
4572 
4573 		p->prio = p->normal_prio = p->static_prio;
4574 		set_load_weight(p, false);
4575 
4576 		/*
4577 		 * We don't need the reset flag anymore after the fork. It has
4578 		 * fulfilled its duty:
4579 		 */
4580 		p->sched_reset_on_fork = 0;
4581 	}
4582 
4583 	if (dl_prio(p->prio))
4584 		return -EAGAIN;
4585 	else if (rt_prio(p->prio))
4586 		p->sched_class = &rt_sched_class;
4587 	else
4588 		p->sched_class = &fair_sched_class;
4589 
4590 	init_entity_runnable_average(&p->se);
4591 
4592 
4593 #ifdef CONFIG_SCHED_INFO
4594 	if (likely(sched_info_on()))
4595 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4596 #endif
4597 #if defined(CONFIG_SMP)
4598 	p->on_cpu = 0;
4599 #endif
4600 	init_task_preempt_count(p);
4601 #ifdef CONFIG_SMP
4602 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4603 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4604 #endif
4605 	return 0;
4606 }
4607 
4608 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4609 {
4610 	unsigned long flags;
4611 
4612 	/*
4613 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4614 	 * required yet, but lockdep gets upset if rules are violated.
4615 	 */
4616 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4617 #ifdef CONFIG_CGROUP_SCHED
4618 	if (1) {
4619 		struct task_group *tg;
4620 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4621 				  struct task_group, css);
4622 		tg = autogroup_task_group(p, tg);
4623 		p->sched_task_group = tg;
4624 	}
4625 #endif
4626 	rseq_migrate(p);
4627 	/*
4628 	 * We're setting the CPU for the first time, we don't migrate,
4629 	 * so use __set_task_cpu().
4630 	 */
4631 	__set_task_cpu(p, smp_processor_id());
4632 	if (p->sched_class->task_fork)
4633 		p->sched_class->task_fork(p);
4634 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4635 }
4636 
4637 void sched_post_fork(struct task_struct *p)
4638 {
4639 	uclamp_post_fork(p);
4640 }
4641 
4642 unsigned long to_ratio(u64 period, u64 runtime)
4643 {
4644 	if (runtime == RUNTIME_INF)
4645 		return BW_UNIT;
4646 
4647 	/*
4648 	 * Doing this here saves a lot of checks in all
4649 	 * the calling paths, and returning zero seems
4650 	 * safe for them anyway.
4651 	 */
4652 	if (period == 0)
4653 		return 0;
4654 
4655 	return div64_u64(runtime << BW_SHIFT, period);
4656 }
4657 
4658 /*
4659  * wake_up_new_task - wake up a newly created task for the first time.
4660  *
4661  * This function will do some initial scheduler statistics housekeeping
4662  * that must be done for every newly created context, then puts the task
4663  * on the runqueue and wakes it.
4664  */
4665 void wake_up_new_task(struct task_struct *p)
4666 {
4667 	struct rq_flags rf;
4668 	struct rq *rq;
4669 
4670 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4671 	WRITE_ONCE(p->__state, TASK_RUNNING);
4672 #ifdef CONFIG_SMP
4673 	/*
4674 	 * Fork balancing, do it here and not earlier because:
4675 	 *  - cpus_ptr can change in the fork path
4676 	 *  - any previously selected CPU might disappear through hotplug
4677 	 *
4678 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4679 	 * as we're not fully set-up yet.
4680 	 */
4681 	p->recent_used_cpu = task_cpu(p);
4682 	rseq_migrate(p);
4683 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4684 #endif
4685 	rq = __task_rq_lock(p, &rf);
4686 	update_rq_clock(rq);
4687 	post_init_entity_util_avg(p);
4688 
4689 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4690 	trace_sched_wakeup_new(p);
4691 	wakeup_preempt(rq, p, WF_FORK);
4692 #ifdef CONFIG_SMP
4693 	if (p->sched_class->task_woken) {
4694 		/*
4695 		 * Nothing relies on rq->lock after this, so it's fine to
4696 		 * drop it.
4697 		 */
4698 		rq_unpin_lock(rq, &rf);
4699 		p->sched_class->task_woken(rq, p);
4700 		rq_repin_lock(rq, &rf);
4701 	}
4702 #endif
4703 	task_rq_unlock(rq, p, &rf);
4704 }
4705 
4706 #ifdef CONFIG_PREEMPT_NOTIFIERS
4707 
4708 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4709 
4710 void preempt_notifier_inc(void)
4711 {
4712 	static_branch_inc(&preempt_notifier_key);
4713 }
4714 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4715 
4716 void preempt_notifier_dec(void)
4717 {
4718 	static_branch_dec(&preempt_notifier_key);
4719 }
4720 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4721 
4722 /**
4723  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4724  * @notifier: notifier struct to register
4725  */
4726 void preempt_notifier_register(struct preempt_notifier *notifier)
4727 {
4728 	if (!static_branch_unlikely(&preempt_notifier_key))
4729 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4730 
4731 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4732 }
4733 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4734 
4735 /**
4736  * preempt_notifier_unregister - no longer interested in preemption notifications
4737  * @notifier: notifier struct to unregister
4738  *
4739  * This is *not* safe to call from within a preemption notifier.
4740  */
4741 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4742 {
4743 	hlist_del(&notifier->link);
4744 }
4745 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4746 
4747 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4748 {
4749 	struct preempt_notifier *notifier;
4750 
4751 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4752 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4753 }
4754 
4755 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4756 {
4757 	if (static_branch_unlikely(&preempt_notifier_key))
4758 		__fire_sched_in_preempt_notifiers(curr);
4759 }
4760 
4761 static void
4762 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4763 				   struct task_struct *next)
4764 {
4765 	struct preempt_notifier *notifier;
4766 
4767 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4768 		notifier->ops->sched_out(notifier, next);
4769 }
4770 
4771 static __always_inline void
4772 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4773 				 struct task_struct *next)
4774 {
4775 	if (static_branch_unlikely(&preempt_notifier_key))
4776 		__fire_sched_out_preempt_notifiers(curr, next);
4777 }
4778 
4779 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4780 
4781 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4782 {
4783 }
4784 
4785 static inline void
4786 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4787 				 struct task_struct *next)
4788 {
4789 }
4790 
4791 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4792 
4793 static inline void prepare_task(struct task_struct *next)
4794 {
4795 #ifdef CONFIG_SMP
4796 	/*
4797 	 * Claim the task as running, we do this before switching to it
4798 	 * such that any running task will have this set.
4799 	 *
4800 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4801 	 * its ordering comment.
4802 	 */
4803 	WRITE_ONCE(next->on_cpu, 1);
4804 #endif
4805 }
4806 
4807 static inline void finish_task(struct task_struct *prev)
4808 {
4809 #ifdef CONFIG_SMP
4810 	/*
4811 	 * This must be the very last reference to @prev from this CPU. After
4812 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4813 	 * must ensure this doesn't happen until the switch is completely
4814 	 * finished.
4815 	 *
4816 	 * In particular, the load of prev->state in finish_task_switch() must
4817 	 * happen before this.
4818 	 *
4819 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4820 	 */
4821 	smp_store_release(&prev->on_cpu, 0);
4822 #endif
4823 }
4824 
4825 #ifdef CONFIG_SMP
4826 
4827 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4828 {
4829 	void (*func)(struct rq *rq);
4830 	struct balance_callback *next;
4831 
4832 	lockdep_assert_rq_held(rq);
4833 
4834 	while (head) {
4835 		func = (void (*)(struct rq *))head->func;
4836 		next = head->next;
4837 		head->next = NULL;
4838 		head = next;
4839 
4840 		func(rq);
4841 	}
4842 }
4843 
4844 static void balance_push(struct rq *rq);
4845 
4846 /*
4847  * balance_push_callback is a right abuse of the callback interface and plays
4848  * by significantly different rules.
4849  *
4850  * Where the normal balance_callback's purpose is to be ran in the same context
4851  * that queued it (only later, when it's safe to drop rq->lock again),
4852  * balance_push_callback is specifically targeted at __schedule().
4853  *
4854  * This abuse is tolerated because it places all the unlikely/odd cases behind
4855  * a single test, namely: rq->balance_callback == NULL.
4856  */
4857 struct balance_callback balance_push_callback = {
4858 	.next = NULL,
4859 	.func = balance_push,
4860 };
4861 
4862 static inline struct balance_callback *
4863 __splice_balance_callbacks(struct rq *rq, bool split)
4864 {
4865 	struct balance_callback *head = rq->balance_callback;
4866 
4867 	if (likely(!head))
4868 		return NULL;
4869 
4870 	lockdep_assert_rq_held(rq);
4871 	/*
4872 	 * Must not take balance_push_callback off the list when
4873 	 * splice_balance_callbacks() and balance_callbacks() are not
4874 	 * in the same rq->lock section.
4875 	 *
4876 	 * In that case it would be possible for __schedule() to interleave
4877 	 * and observe the list empty.
4878 	 */
4879 	if (split && head == &balance_push_callback)
4880 		head = NULL;
4881 	else
4882 		rq->balance_callback = NULL;
4883 
4884 	return head;
4885 }
4886 
4887 struct balance_callback *splice_balance_callbacks(struct rq *rq)
4888 {
4889 	return __splice_balance_callbacks(rq, true);
4890 }
4891 
4892 static void __balance_callbacks(struct rq *rq)
4893 {
4894 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4895 }
4896 
4897 void balance_callbacks(struct rq *rq, struct balance_callback *head)
4898 {
4899 	unsigned long flags;
4900 
4901 	if (unlikely(head)) {
4902 		raw_spin_rq_lock_irqsave(rq, flags);
4903 		do_balance_callbacks(rq, head);
4904 		raw_spin_rq_unlock_irqrestore(rq, flags);
4905 	}
4906 }
4907 
4908 #else
4909 
4910 static inline void __balance_callbacks(struct rq *rq)
4911 {
4912 }
4913 
4914 #endif
4915 
4916 static inline void
4917 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4918 {
4919 	/*
4920 	 * Since the runqueue lock will be released by the next
4921 	 * task (which is an invalid locking op but in the case
4922 	 * of the scheduler it's an obvious special-case), so we
4923 	 * do an early lockdep release here:
4924 	 */
4925 	rq_unpin_lock(rq, rf);
4926 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4927 #ifdef CONFIG_DEBUG_SPINLOCK
4928 	/* this is a valid case when another task releases the spinlock */
4929 	rq_lockp(rq)->owner = next;
4930 #endif
4931 }
4932 
4933 static inline void finish_lock_switch(struct rq *rq)
4934 {
4935 	/*
4936 	 * If we are tracking spinlock dependencies then we have to
4937 	 * fix up the runqueue lock - which gets 'carried over' from
4938 	 * prev into current:
4939 	 */
4940 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4941 	__balance_callbacks(rq);
4942 	raw_spin_rq_unlock_irq(rq);
4943 }
4944 
4945 /*
4946  * NOP if the arch has not defined these:
4947  */
4948 
4949 #ifndef prepare_arch_switch
4950 # define prepare_arch_switch(next)	do { } while (0)
4951 #endif
4952 
4953 #ifndef finish_arch_post_lock_switch
4954 # define finish_arch_post_lock_switch()	do { } while (0)
4955 #endif
4956 
4957 static inline void kmap_local_sched_out(void)
4958 {
4959 #ifdef CONFIG_KMAP_LOCAL
4960 	if (unlikely(current->kmap_ctrl.idx))
4961 		__kmap_local_sched_out();
4962 #endif
4963 }
4964 
4965 static inline void kmap_local_sched_in(void)
4966 {
4967 #ifdef CONFIG_KMAP_LOCAL
4968 	if (unlikely(current->kmap_ctrl.idx))
4969 		__kmap_local_sched_in();
4970 #endif
4971 }
4972 
4973 /**
4974  * prepare_task_switch - prepare to switch tasks
4975  * @rq: the runqueue preparing to switch
4976  * @prev: the current task that is being switched out
4977  * @next: the task we are going to switch to.
4978  *
4979  * This is called with the rq lock held and interrupts off. It must
4980  * be paired with a subsequent finish_task_switch after the context
4981  * switch.
4982  *
4983  * prepare_task_switch sets up locking and calls architecture specific
4984  * hooks.
4985  */
4986 static inline void
4987 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4988 		    struct task_struct *next)
4989 {
4990 	kcov_prepare_switch(prev);
4991 	sched_info_switch(rq, prev, next);
4992 	perf_event_task_sched_out(prev, next);
4993 	rseq_preempt(prev);
4994 	fire_sched_out_preempt_notifiers(prev, next);
4995 	kmap_local_sched_out();
4996 	prepare_task(next);
4997 	prepare_arch_switch(next);
4998 }
4999 
5000 /**
5001  * finish_task_switch - clean up after a task-switch
5002  * @prev: the thread we just switched away from.
5003  *
5004  * finish_task_switch must be called after the context switch, paired
5005  * with a prepare_task_switch call before the context switch.
5006  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5007  * and do any other architecture-specific cleanup actions.
5008  *
5009  * Note that we may have delayed dropping an mm in context_switch(). If
5010  * so, we finish that here outside of the runqueue lock. (Doing it
5011  * with the lock held can cause deadlocks; see schedule() for
5012  * details.)
5013  *
5014  * The context switch have flipped the stack from under us and restored the
5015  * local variables which were saved when this task called schedule() in the
5016  * past. 'prev == current' is still correct but we need to recalculate this_rq
5017  * because prev may have moved to another CPU.
5018  */
5019 static struct rq *finish_task_switch(struct task_struct *prev)
5020 	__releases(rq->lock)
5021 {
5022 	struct rq *rq = this_rq();
5023 	struct mm_struct *mm = rq->prev_mm;
5024 	unsigned int prev_state;
5025 
5026 	/*
5027 	 * The previous task will have left us with a preempt_count of 2
5028 	 * because it left us after:
5029 	 *
5030 	 *	schedule()
5031 	 *	  preempt_disable();			// 1
5032 	 *	  __schedule()
5033 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5034 	 *
5035 	 * Also, see FORK_PREEMPT_COUNT.
5036 	 */
5037 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5038 		      "corrupted preempt_count: %s/%d/0x%x\n",
5039 		      current->comm, current->pid, preempt_count()))
5040 		preempt_count_set(FORK_PREEMPT_COUNT);
5041 
5042 	rq->prev_mm = NULL;
5043 
5044 	/*
5045 	 * A task struct has one reference for the use as "current".
5046 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5047 	 * schedule one last time. The schedule call will never return, and
5048 	 * the scheduled task must drop that reference.
5049 	 *
5050 	 * We must observe prev->state before clearing prev->on_cpu (in
5051 	 * finish_task), otherwise a concurrent wakeup can get prev
5052 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5053 	 * transition, resulting in a double drop.
5054 	 */
5055 	prev_state = READ_ONCE(prev->__state);
5056 	vtime_task_switch(prev);
5057 	perf_event_task_sched_in(prev, current);
5058 	finish_task(prev);
5059 	tick_nohz_task_switch();
5060 	finish_lock_switch(rq);
5061 	finish_arch_post_lock_switch();
5062 	kcov_finish_switch(current);
5063 	/*
5064 	 * kmap_local_sched_out() is invoked with rq::lock held and
5065 	 * interrupts disabled. There is no requirement for that, but the
5066 	 * sched out code does not have an interrupt enabled section.
5067 	 * Restoring the maps on sched in does not require interrupts being
5068 	 * disabled either.
5069 	 */
5070 	kmap_local_sched_in();
5071 
5072 	fire_sched_in_preempt_notifiers(current);
5073 	/*
5074 	 * When switching through a kernel thread, the loop in
5075 	 * membarrier_{private,global}_expedited() may have observed that
5076 	 * kernel thread and not issued an IPI. It is therefore possible to
5077 	 * schedule between user->kernel->user threads without passing though
5078 	 * switch_mm(). Membarrier requires a barrier after storing to
5079 	 * rq->curr, before returning to userspace, so provide them here:
5080 	 *
5081 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5082 	 *   provided by mmdrop_lazy_tlb(),
5083 	 * - a sync_core for SYNC_CORE.
5084 	 */
5085 	if (mm) {
5086 		membarrier_mm_sync_core_before_usermode(mm);
5087 		mmdrop_lazy_tlb_sched(mm);
5088 	}
5089 
5090 	if (unlikely(prev_state == TASK_DEAD)) {
5091 		if (prev->sched_class->task_dead)
5092 			prev->sched_class->task_dead(prev);
5093 
5094 		/* Task is done with its stack. */
5095 		put_task_stack(prev);
5096 
5097 		put_task_struct_rcu_user(prev);
5098 	}
5099 
5100 	return rq;
5101 }
5102 
5103 /**
5104  * schedule_tail - first thing a freshly forked thread must call.
5105  * @prev: the thread we just switched away from.
5106  */
5107 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5108 	__releases(rq->lock)
5109 {
5110 	/*
5111 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5112 	 * finish_task_switch() for details.
5113 	 *
5114 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5115 	 * and the preempt_enable() will end up enabling preemption (on
5116 	 * PREEMPT_COUNT kernels).
5117 	 */
5118 
5119 	finish_task_switch(prev);
5120 	preempt_enable();
5121 
5122 	if (current->set_child_tid)
5123 		put_user(task_pid_vnr(current), current->set_child_tid);
5124 
5125 	calculate_sigpending();
5126 }
5127 
5128 /*
5129  * context_switch - switch to the new MM and the new thread's register state.
5130  */
5131 static __always_inline struct rq *
5132 context_switch(struct rq *rq, struct task_struct *prev,
5133 	       struct task_struct *next, struct rq_flags *rf)
5134 {
5135 	prepare_task_switch(rq, prev, next);
5136 
5137 	/*
5138 	 * For paravirt, this is coupled with an exit in switch_to to
5139 	 * combine the page table reload and the switch backend into
5140 	 * one hypercall.
5141 	 */
5142 	arch_start_context_switch(prev);
5143 
5144 	/*
5145 	 * kernel -> kernel   lazy + transfer active
5146 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5147 	 *
5148 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5149 	 *   user ->   user   switch
5150 	 *
5151 	 * switch_mm_cid() needs to be updated if the barriers provided
5152 	 * by context_switch() are modified.
5153 	 */
5154 	if (!next->mm) {                                // to kernel
5155 		enter_lazy_tlb(prev->active_mm, next);
5156 
5157 		next->active_mm = prev->active_mm;
5158 		if (prev->mm)                           // from user
5159 			mmgrab_lazy_tlb(prev->active_mm);
5160 		else
5161 			prev->active_mm = NULL;
5162 	} else {                                        // to user
5163 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5164 		/*
5165 		 * sys_membarrier() requires an smp_mb() between setting
5166 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5167 		 *
5168 		 * The below provides this either through switch_mm(), or in
5169 		 * case 'prev->active_mm == next->mm' through
5170 		 * finish_task_switch()'s mmdrop().
5171 		 */
5172 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5173 		lru_gen_use_mm(next->mm);
5174 
5175 		if (!prev->mm) {                        // from kernel
5176 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5177 			rq->prev_mm = prev->active_mm;
5178 			prev->active_mm = NULL;
5179 		}
5180 	}
5181 
5182 	/* switch_mm_cid() requires the memory barriers above. */
5183 	switch_mm_cid(rq, prev, next);
5184 
5185 	prepare_lock_switch(rq, next, rf);
5186 
5187 	/* Here we just switch the register state and the stack. */
5188 	switch_to(prev, next, prev);
5189 	barrier();
5190 
5191 	return finish_task_switch(prev);
5192 }
5193 
5194 /*
5195  * nr_running and nr_context_switches:
5196  *
5197  * externally visible scheduler statistics: current number of runnable
5198  * threads, total number of context switches performed since bootup.
5199  */
5200 unsigned int nr_running(void)
5201 {
5202 	unsigned int i, sum = 0;
5203 
5204 	for_each_online_cpu(i)
5205 		sum += cpu_rq(i)->nr_running;
5206 
5207 	return sum;
5208 }
5209 
5210 /*
5211  * Check if only the current task is running on the CPU.
5212  *
5213  * Caution: this function does not check that the caller has disabled
5214  * preemption, thus the result might have a time-of-check-to-time-of-use
5215  * race.  The caller is responsible to use it correctly, for example:
5216  *
5217  * - from a non-preemptible section (of course)
5218  *
5219  * - from a thread that is bound to a single CPU
5220  *
5221  * - in a loop with very short iterations (e.g. a polling loop)
5222  */
5223 bool single_task_running(void)
5224 {
5225 	return raw_rq()->nr_running == 1;
5226 }
5227 EXPORT_SYMBOL(single_task_running);
5228 
5229 unsigned long long nr_context_switches_cpu(int cpu)
5230 {
5231 	return cpu_rq(cpu)->nr_switches;
5232 }
5233 
5234 unsigned long long nr_context_switches(void)
5235 {
5236 	int i;
5237 	unsigned long long sum = 0;
5238 
5239 	for_each_possible_cpu(i)
5240 		sum += cpu_rq(i)->nr_switches;
5241 
5242 	return sum;
5243 }
5244 
5245 /*
5246  * Consumers of these two interfaces, like for example the cpuidle menu
5247  * governor, are using nonsensical data. Preferring shallow idle state selection
5248  * for a CPU that has IO-wait which might not even end up running the task when
5249  * it does become runnable.
5250  */
5251 
5252 unsigned int nr_iowait_cpu(int cpu)
5253 {
5254 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5255 }
5256 
5257 /*
5258  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5259  *
5260  * The idea behind IO-wait account is to account the idle time that we could
5261  * have spend running if it were not for IO. That is, if we were to improve the
5262  * storage performance, we'd have a proportional reduction in IO-wait time.
5263  *
5264  * This all works nicely on UP, where, when a task blocks on IO, we account
5265  * idle time as IO-wait, because if the storage were faster, it could've been
5266  * running and we'd not be idle.
5267  *
5268  * This has been extended to SMP, by doing the same for each CPU. This however
5269  * is broken.
5270  *
5271  * Imagine for instance the case where two tasks block on one CPU, only the one
5272  * CPU will have IO-wait accounted, while the other has regular idle. Even
5273  * though, if the storage were faster, both could've ran at the same time,
5274  * utilising both CPUs.
5275  *
5276  * This means, that when looking globally, the current IO-wait accounting on
5277  * SMP is a lower bound, by reason of under accounting.
5278  *
5279  * Worse, since the numbers are provided per CPU, they are sometimes
5280  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5281  * associated with any one particular CPU, it can wake to another CPU than it
5282  * blocked on. This means the per CPU IO-wait number is meaningless.
5283  *
5284  * Task CPU affinities can make all that even more 'interesting'.
5285  */
5286 
5287 unsigned int nr_iowait(void)
5288 {
5289 	unsigned int i, sum = 0;
5290 
5291 	for_each_possible_cpu(i)
5292 		sum += nr_iowait_cpu(i);
5293 
5294 	return sum;
5295 }
5296 
5297 #ifdef CONFIG_SMP
5298 
5299 /*
5300  * sched_exec - execve() is a valuable balancing opportunity, because at
5301  * this point the task has the smallest effective memory and cache footprint.
5302  */
5303 void sched_exec(void)
5304 {
5305 	struct task_struct *p = current;
5306 	struct migration_arg arg;
5307 	int dest_cpu;
5308 
5309 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5310 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5311 		if (dest_cpu == smp_processor_id())
5312 			return;
5313 
5314 		if (unlikely(!cpu_active(dest_cpu)))
5315 			return;
5316 
5317 		arg = (struct migration_arg){ p, dest_cpu };
5318 	}
5319 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5320 }
5321 
5322 #endif
5323 
5324 DEFINE_PER_CPU(struct kernel_stat, kstat);
5325 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5326 
5327 EXPORT_PER_CPU_SYMBOL(kstat);
5328 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5329 
5330 /*
5331  * The function fair_sched_class.update_curr accesses the struct curr
5332  * and its field curr->exec_start; when called from task_sched_runtime(),
5333  * we observe a high rate of cache misses in practice.
5334  * Prefetching this data results in improved performance.
5335  */
5336 static inline void prefetch_curr_exec_start(struct task_struct *p)
5337 {
5338 #ifdef CONFIG_FAIR_GROUP_SCHED
5339 	struct sched_entity *curr = p->se.cfs_rq->curr;
5340 #else
5341 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5342 #endif
5343 	prefetch(curr);
5344 	prefetch(&curr->exec_start);
5345 }
5346 
5347 /*
5348  * Return accounted runtime for the task.
5349  * In case the task is currently running, return the runtime plus current's
5350  * pending runtime that have not been accounted yet.
5351  */
5352 unsigned long long task_sched_runtime(struct task_struct *p)
5353 {
5354 	struct rq_flags rf;
5355 	struct rq *rq;
5356 	u64 ns;
5357 
5358 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5359 	/*
5360 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5361 	 * So we have a optimization chance when the task's delta_exec is 0.
5362 	 * Reading ->on_cpu is racy, but this is OK.
5363 	 *
5364 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5365 	 * If we race with it entering CPU, unaccounted time is 0. This is
5366 	 * indistinguishable from the read occurring a few cycles earlier.
5367 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5368 	 * been accounted, so we're correct here as well.
5369 	 */
5370 	if (!p->on_cpu || !task_on_rq_queued(p))
5371 		return p->se.sum_exec_runtime;
5372 #endif
5373 
5374 	rq = task_rq_lock(p, &rf);
5375 	/*
5376 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5377 	 * project cycles that may never be accounted to this
5378 	 * thread, breaking clock_gettime().
5379 	 */
5380 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5381 		prefetch_curr_exec_start(p);
5382 		update_rq_clock(rq);
5383 		p->sched_class->update_curr(rq);
5384 	}
5385 	ns = p->se.sum_exec_runtime;
5386 	task_rq_unlock(rq, p, &rf);
5387 
5388 	return ns;
5389 }
5390 
5391 #ifdef CONFIG_SCHED_DEBUG
5392 static u64 cpu_resched_latency(struct rq *rq)
5393 {
5394 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5395 	u64 resched_latency, now = rq_clock(rq);
5396 	static bool warned_once;
5397 
5398 	if (sysctl_resched_latency_warn_once && warned_once)
5399 		return 0;
5400 
5401 	if (!need_resched() || !latency_warn_ms)
5402 		return 0;
5403 
5404 	if (system_state == SYSTEM_BOOTING)
5405 		return 0;
5406 
5407 	if (!rq->last_seen_need_resched_ns) {
5408 		rq->last_seen_need_resched_ns = now;
5409 		rq->ticks_without_resched = 0;
5410 		return 0;
5411 	}
5412 
5413 	rq->ticks_without_resched++;
5414 	resched_latency = now - rq->last_seen_need_resched_ns;
5415 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5416 		return 0;
5417 
5418 	warned_once = true;
5419 
5420 	return resched_latency;
5421 }
5422 
5423 static int __init setup_resched_latency_warn_ms(char *str)
5424 {
5425 	long val;
5426 
5427 	if ((kstrtol(str, 0, &val))) {
5428 		pr_warn("Unable to set resched_latency_warn_ms\n");
5429 		return 1;
5430 	}
5431 
5432 	sysctl_resched_latency_warn_ms = val;
5433 	return 1;
5434 }
5435 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5436 #else
5437 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5438 #endif /* CONFIG_SCHED_DEBUG */
5439 
5440 /*
5441  * This function gets called by the timer code, with HZ frequency.
5442  * We call it with interrupts disabled.
5443  */
5444 void sched_tick(void)
5445 {
5446 	int cpu = smp_processor_id();
5447 	struct rq *rq = cpu_rq(cpu);
5448 	struct task_struct *curr;
5449 	struct rq_flags rf;
5450 	unsigned long hw_pressure;
5451 	u64 resched_latency;
5452 
5453 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5454 		arch_scale_freq_tick();
5455 
5456 	sched_clock_tick();
5457 
5458 	rq_lock(rq, &rf);
5459 
5460 	curr = rq->curr;
5461 	psi_account_irqtime(rq, curr, NULL);
5462 
5463 	update_rq_clock(rq);
5464 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5465 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5466 	curr->sched_class->task_tick(rq, curr, 0);
5467 	if (sched_feat(LATENCY_WARN))
5468 		resched_latency = cpu_resched_latency(rq);
5469 	calc_global_load_tick(rq);
5470 	sched_core_tick(rq);
5471 	task_tick_mm_cid(rq, curr);
5472 
5473 	rq_unlock(rq, &rf);
5474 
5475 	if (sched_feat(LATENCY_WARN) && resched_latency)
5476 		resched_latency_warn(cpu, resched_latency);
5477 
5478 	perf_event_task_tick();
5479 
5480 	if (curr->flags & PF_WQ_WORKER)
5481 		wq_worker_tick(curr);
5482 
5483 #ifdef CONFIG_SMP
5484 	rq->idle_balance = idle_cpu(cpu);
5485 	sched_balance_trigger(rq);
5486 #endif
5487 }
5488 
5489 #ifdef CONFIG_NO_HZ_FULL
5490 
5491 struct tick_work {
5492 	int			cpu;
5493 	atomic_t		state;
5494 	struct delayed_work	work;
5495 };
5496 /* Values for ->state, see diagram below. */
5497 #define TICK_SCHED_REMOTE_OFFLINE	0
5498 #define TICK_SCHED_REMOTE_OFFLINING	1
5499 #define TICK_SCHED_REMOTE_RUNNING	2
5500 
5501 /*
5502  * State diagram for ->state:
5503  *
5504  *
5505  *          TICK_SCHED_REMOTE_OFFLINE
5506  *                    |   ^
5507  *                    |   |
5508  *                    |   | sched_tick_remote()
5509  *                    |   |
5510  *                    |   |
5511  *                    +--TICK_SCHED_REMOTE_OFFLINING
5512  *                    |   ^
5513  *                    |   |
5514  * sched_tick_start() |   | sched_tick_stop()
5515  *                    |   |
5516  *                    V   |
5517  *          TICK_SCHED_REMOTE_RUNNING
5518  *
5519  *
5520  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5521  * and sched_tick_start() are happy to leave the state in RUNNING.
5522  */
5523 
5524 static struct tick_work __percpu *tick_work_cpu;
5525 
5526 static void sched_tick_remote(struct work_struct *work)
5527 {
5528 	struct delayed_work *dwork = to_delayed_work(work);
5529 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5530 	int cpu = twork->cpu;
5531 	struct rq *rq = cpu_rq(cpu);
5532 	int os;
5533 
5534 	/*
5535 	 * Handle the tick only if it appears the remote CPU is running in full
5536 	 * dynticks mode. The check is racy by nature, but missing a tick or
5537 	 * having one too much is no big deal because the scheduler tick updates
5538 	 * statistics and checks timeslices in a time-independent way, regardless
5539 	 * of when exactly it is running.
5540 	 */
5541 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5542 		guard(rq_lock_irq)(rq);
5543 		struct task_struct *curr = rq->curr;
5544 
5545 		if (cpu_online(cpu)) {
5546 			update_rq_clock(rq);
5547 
5548 			if (!is_idle_task(curr)) {
5549 				/*
5550 				 * Make sure the next tick runs within a
5551 				 * reasonable amount of time.
5552 				 */
5553 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5554 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5555 			}
5556 			curr->sched_class->task_tick(rq, curr, 0);
5557 
5558 			calc_load_nohz_remote(rq);
5559 		}
5560 	}
5561 
5562 	/*
5563 	 * Run the remote tick once per second (1Hz). This arbitrary
5564 	 * frequency is large enough to avoid overload but short enough
5565 	 * to keep scheduler internal stats reasonably up to date.  But
5566 	 * first update state to reflect hotplug activity if required.
5567 	 */
5568 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5569 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5570 	if (os == TICK_SCHED_REMOTE_RUNNING)
5571 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5572 }
5573 
5574 static void sched_tick_start(int cpu)
5575 {
5576 	int os;
5577 	struct tick_work *twork;
5578 
5579 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5580 		return;
5581 
5582 	WARN_ON_ONCE(!tick_work_cpu);
5583 
5584 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5585 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5586 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5587 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5588 		twork->cpu = cpu;
5589 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5590 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5591 	}
5592 }
5593 
5594 #ifdef CONFIG_HOTPLUG_CPU
5595 static void sched_tick_stop(int cpu)
5596 {
5597 	struct tick_work *twork;
5598 	int os;
5599 
5600 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5601 		return;
5602 
5603 	WARN_ON_ONCE(!tick_work_cpu);
5604 
5605 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5606 	/* There cannot be competing actions, but don't rely on stop-machine. */
5607 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5608 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5609 	/* Don't cancel, as this would mess up the state machine. */
5610 }
5611 #endif /* CONFIG_HOTPLUG_CPU */
5612 
5613 int __init sched_tick_offload_init(void)
5614 {
5615 	tick_work_cpu = alloc_percpu(struct tick_work);
5616 	BUG_ON(!tick_work_cpu);
5617 	return 0;
5618 }
5619 
5620 #else /* !CONFIG_NO_HZ_FULL */
5621 static inline void sched_tick_start(int cpu) { }
5622 static inline void sched_tick_stop(int cpu) { }
5623 #endif
5624 
5625 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5626 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5627 /*
5628  * If the value passed in is equal to the current preempt count
5629  * then we just disabled preemption. Start timing the latency.
5630  */
5631 static inline void preempt_latency_start(int val)
5632 {
5633 	if (preempt_count() == val) {
5634 		unsigned long ip = get_lock_parent_ip();
5635 #ifdef CONFIG_DEBUG_PREEMPT
5636 		current->preempt_disable_ip = ip;
5637 #endif
5638 		trace_preempt_off(CALLER_ADDR0, ip);
5639 	}
5640 }
5641 
5642 void preempt_count_add(int val)
5643 {
5644 #ifdef CONFIG_DEBUG_PREEMPT
5645 	/*
5646 	 * Underflow?
5647 	 */
5648 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5649 		return;
5650 #endif
5651 	__preempt_count_add(val);
5652 #ifdef CONFIG_DEBUG_PREEMPT
5653 	/*
5654 	 * Spinlock count overflowing soon?
5655 	 */
5656 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5657 				PREEMPT_MASK - 10);
5658 #endif
5659 	preempt_latency_start(val);
5660 }
5661 EXPORT_SYMBOL(preempt_count_add);
5662 NOKPROBE_SYMBOL(preempt_count_add);
5663 
5664 /*
5665  * If the value passed in equals to the current preempt count
5666  * then we just enabled preemption. Stop timing the latency.
5667  */
5668 static inline void preempt_latency_stop(int val)
5669 {
5670 	if (preempt_count() == val)
5671 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5672 }
5673 
5674 void preempt_count_sub(int val)
5675 {
5676 #ifdef CONFIG_DEBUG_PREEMPT
5677 	/*
5678 	 * Underflow?
5679 	 */
5680 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5681 		return;
5682 	/*
5683 	 * Is the spinlock portion underflowing?
5684 	 */
5685 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5686 			!(preempt_count() & PREEMPT_MASK)))
5687 		return;
5688 #endif
5689 
5690 	preempt_latency_stop(val);
5691 	__preempt_count_sub(val);
5692 }
5693 EXPORT_SYMBOL(preempt_count_sub);
5694 NOKPROBE_SYMBOL(preempt_count_sub);
5695 
5696 #else
5697 static inline void preempt_latency_start(int val) { }
5698 static inline void preempt_latency_stop(int val) { }
5699 #endif
5700 
5701 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5702 {
5703 #ifdef CONFIG_DEBUG_PREEMPT
5704 	return p->preempt_disable_ip;
5705 #else
5706 	return 0;
5707 #endif
5708 }
5709 
5710 /*
5711  * Print scheduling while atomic bug:
5712  */
5713 static noinline void __schedule_bug(struct task_struct *prev)
5714 {
5715 	/* Save this before calling printk(), since that will clobber it */
5716 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5717 
5718 	if (oops_in_progress)
5719 		return;
5720 
5721 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5722 		prev->comm, prev->pid, preempt_count());
5723 
5724 	debug_show_held_locks(prev);
5725 	print_modules();
5726 	if (irqs_disabled())
5727 		print_irqtrace_events(prev);
5728 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5729 		pr_err("Preemption disabled at:");
5730 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5731 	}
5732 	check_panic_on_warn("scheduling while atomic");
5733 
5734 	dump_stack();
5735 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5736 }
5737 
5738 /*
5739  * Various schedule()-time debugging checks and statistics:
5740  */
5741 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5742 {
5743 #ifdef CONFIG_SCHED_STACK_END_CHECK
5744 	if (task_stack_end_corrupted(prev))
5745 		panic("corrupted stack end detected inside scheduler\n");
5746 
5747 	if (task_scs_end_corrupted(prev))
5748 		panic("corrupted shadow stack detected inside scheduler\n");
5749 #endif
5750 
5751 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5752 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5753 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5754 			prev->comm, prev->pid, prev->non_block_count);
5755 		dump_stack();
5756 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5757 	}
5758 #endif
5759 
5760 	if (unlikely(in_atomic_preempt_off())) {
5761 		__schedule_bug(prev);
5762 		preempt_count_set(PREEMPT_DISABLED);
5763 	}
5764 	rcu_sleep_check();
5765 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5766 
5767 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5768 
5769 	schedstat_inc(this_rq()->sched_count);
5770 }
5771 
5772 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5773 				  struct rq_flags *rf)
5774 {
5775 #ifdef CONFIG_SMP
5776 	const struct sched_class *class;
5777 	/*
5778 	 * We must do the balancing pass before put_prev_task(), such
5779 	 * that when we release the rq->lock the task is in the same
5780 	 * state as before we took rq->lock.
5781 	 *
5782 	 * We can terminate the balance pass as soon as we know there is
5783 	 * a runnable task of @class priority or higher.
5784 	 */
5785 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5786 		if (class->balance(rq, prev, rf))
5787 			break;
5788 	}
5789 #endif
5790 
5791 	put_prev_task(rq, prev);
5792 }
5793 
5794 /*
5795  * Pick up the highest-prio task:
5796  */
5797 static inline struct task_struct *
5798 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5799 {
5800 	const struct sched_class *class;
5801 	struct task_struct *p;
5802 
5803 	/*
5804 	 * Optimization: we know that if all tasks are in the fair class we can
5805 	 * call that function directly, but only if the @prev task wasn't of a
5806 	 * higher scheduling class, because otherwise those lose the
5807 	 * opportunity to pull in more work from other CPUs.
5808 	 */
5809 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5810 		   rq->nr_running == rq->cfs.h_nr_running)) {
5811 
5812 		p = pick_next_task_fair(rq, prev, rf);
5813 		if (unlikely(p == RETRY_TASK))
5814 			goto restart;
5815 
5816 		/* Assume the next prioritized class is idle_sched_class */
5817 		if (!p) {
5818 			put_prev_task(rq, prev);
5819 			p = pick_next_task_idle(rq);
5820 		}
5821 
5822 		/*
5823 		 * This is the fast path; it cannot be a DL server pick;
5824 		 * therefore even if @p == @prev, ->dl_server must be NULL.
5825 		 */
5826 		if (p->dl_server)
5827 			p->dl_server = NULL;
5828 
5829 		return p;
5830 	}
5831 
5832 restart:
5833 	put_prev_task_balance(rq, prev, rf);
5834 
5835 	/*
5836 	 * We've updated @prev and no longer need the server link, clear it.
5837 	 * Must be done before ->pick_next_task() because that can (re)set
5838 	 * ->dl_server.
5839 	 */
5840 	if (prev->dl_server)
5841 		prev->dl_server = NULL;
5842 
5843 	for_each_class(class) {
5844 		p = class->pick_next_task(rq);
5845 		if (p)
5846 			return p;
5847 	}
5848 
5849 	BUG(); /* The idle class should always have a runnable task. */
5850 }
5851 
5852 #ifdef CONFIG_SCHED_CORE
5853 static inline bool is_task_rq_idle(struct task_struct *t)
5854 {
5855 	return (task_rq(t)->idle == t);
5856 }
5857 
5858 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5859 {
5860 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5861 }
5862 
5863 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5864 {
5865 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5866 		return true;
5867 
5868 	return a->core_cookie == b->core_cookie;
5869 }
5870 
5871 static inline struct task_struct *pick_task(struct rq *rq)
5872 {
5873 	const struct sched_class *class;
5874 	struct task_struct *p;
5875 
5876 	for_each_class(class) {
5877 		p = class->pick_task(rq);
5878 		if (p)
5879 			return p;
5880 	}
5881 
5882 	BUG(); /* The idle class should always have a runnable task. */
5883 }
5884 
5885 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5886 
5887 static void queue_core_balance(struct rq *rq);
5888 
5889 static struct task_struct *
5890 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5891 {
5892 	struct task_struct *next, *p, *max = NULL;
5893 	const struct cpumask *smt_mask;
5894 	bool fi_before = false;
5895 	bool core_clock_updated = (rq == rq->core);
5896 	unsigned long cookie;
5897 	int i, cpu, occ = 0;
5898 	struct rq *rq_i;
5899 	bool need_sync;
5900 
5901 	if (!sched_core_enabled(rq))
5902 		return __pick_next_task(rq, prev, rf);
5903 
5904 	cpu = cpu_of(rq);
5905 
5906 	/* Stopper task is switching into idle, no need core-wide selection. */
5907 	if (cpu_is_offline(cpu)) {
5908 		/*
5909 		 * Reset core_pick so that we don't enter the fastpath when
5910 		 * coming online. core_pick would already be migrated to
5911 		 * another cpu during offline.
5912 		 */
5913 		rq->core_pick = NULL;
5914 		return __pick_next_task(rq, prev, rf);
5915 	}
5916 
5917 	/*
5918 	 * If there were no {en,de}queues since we picked (IOW, the task
5919 	 * pointers are all still valid), and we haven't scheduled the last
5920 	 * pick yet, do so now.
5921 	 *
5922 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5923 	 * it was either offline or went offline during a sibling's core-wide
5924 	 * selection. In this case, do a core-wide selection.
5925 	 */
5926 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5927 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5928 	    rq->core_pick) {
5929 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5930 
5931 		next = rq->core_pick;
5932 		if (next != prev) {
5933 			put_prev_task(rq, prev);
5934 			set_next_task(rq, next);
5935 		}
5936 
5937 		rq->core_pick = NULL;
5938 		goto out;
5939 	}
5940 
5941 	put_prev_task_balance(rq, prev, rf);
5942 
5943 	smt_mask = cpu_smt_mask(cpu);
5944 	need_sync = !!rq->core->core_cookie;
5945 
5946 	/* reset state */
5947 	rq->core->core_cookie = 0UL;
5948 	if (rq->core->core_forceidle_count) {
5949 		if (!core_clock_updated) {
5950 			update_rq_clock(rq->core);
5951 			core_clock_updated = true;
5952 		}
5953 		sched_core_account_forceidle(rq);
5954 		/* reset after accounting force idle */
5955 		rq->core->core_forceidle_start = 0;
5956 		rq->core->core_forceidle_count = 0;
5957 		rq->core->core_forceidle_occupation = 0;
5958 		need_sync = true;
5959 		fi_before = true;
5960 	}
5961 
5962 	/*
5963 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5964 	 *
5965 	 * @task_seq guards the task state ({en,de}queues)
5966 	 * @pick_seq is the @task_seq we did a selection on
5967 	 * @sched_seq is the @pick_seq we scheduled
5968 	 *
5969 	 * However, preemptions can cause multiple picks on the same task set.
5970 	 * 'Fix' this by also increasing @task_seq for every pick.
5971 	 */
5972 	rq->core->core_task_seq++;
5973 
5974 	/*
5975 	 * Optimize for common case where this CPU has no cookies
5976 	 * and there are no cookied tasks running on siblings.
5977 	 */
5978 	if (!need_sync) {
5979 		next = pick_task(rq);
5980 		if (!next->core_cookie) {
5981 			rq->core_pick = NULL;
5982 			/*
5983 			 * For robustness, update the min_vruntime_fi for
5984 			 * unconstrained picks as well.
5985 			 */
5986 			WARN_ON_ONCE(fi_before);
5987 			task_vruntime_update(rq, next, false);
5988 			goto out_set_next;
5989 		}
5990 	}
5991 
5992 	/*
5993 	 * For each thread: do the regular task pick and find the max prio task
5994 	 * amongst them.
5995 	 *
5996 	 * Tie-break prio towards the current CPU
5997 	 */
5998 	for_each_cpu_wrap(i, smt_mask, cpu) {
5999 		rq_i = cpu_rq(i);
6000 
6001 		/*
6002 		 * Current cpu always has its clock updated on entrance to
6003 		 * pick_next_task(). If the current cpu is not the core,
6004 		 * the core may also have been updated above.
6005 		 */
6006 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6007 			update_rq_clock(rq_i);
6008 
6009 		p = rq_i->core_pick = pick_task(rq_i);
6010 		if (!max || prio_less(max, p, fi_before))
6011 			max = p;
6012 	}
6013 
6014 	cookie = rq->core->core_cookie = max->core_cookie;
6015 
6016 	/*
6017 	 * For each thread: try and find a runnable task that matches @max or
6018 	 * force idle.
6019 	 */
6020 	for_each_cpu(i, smt_mask) {
6021 		rq_i = cpu_rq(i);
6022 		p = rq_i->core_pick;
6023 
6024 		if (!cookie_equals(p, cookie)) {
6025 			p = NULL;
6026 			if (cookie)
6027 				p = sched_core_find(rq_i, cookie);
6028 			if (!p)
6029 				p = idle_sched_class.pick_task(rq_i);
6030 		}
6031 
6032 		rq_i->core_pick = p;
6033 
6034 		if (p == rq_i->idle) {
6035 			if (rq_i->nr_running) {
6036 				rq->core->core_forceidle_count++;
6037 				if (!fi_before)
6038 					rq->core->core_forceidle_seq++;
6039 			}
6040 		} else {
6041 			occ++;
6042 		}
6043 	}
6044 
6045 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6046 		rq->core->core_forceidle_start = rq_clock(rq->core);
6047 		rq->core->core_forceidle_occupation = occ;
6048 	}
6049 
6050 	rq->core->core_pick_seq = rq->core->core_task_seq;
6051 	next = rq->core_pick;
6052 	rq->core_sched_seq = rq->core->core_pick_seq;
6053 
6054 	/* Something should have been selected for current CPU */
6055 	WARN_ON_ONCE(!next);
6056 
6057 	/*
6058 	 * Reschedule siblings
6059 	 *
6060 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6061 	 * sending an IPI (below) ensures the sibling will no longer be running
6062 	 * their task. This ensures there is no inter-sibling overlap between
6063 	 * non-matching user state.
6064 	 */
6065 	for_each_cpu(i, smt_mask) {
6066 		rq_i = cpu_rq(i);
6067 
6068 		/*
6069 		 * An online sibling might have gone offline before a task
6070 		 * could be picked for it, or it might be offline but later
6071 		 * happen to come online, but its too late and nothing was
6072 		 * picked for it.  That's Ok - it will pick tasks for itself,
6073 		 * so ignore it.
6074 		 */
6075 		if (!rq_i->core_pick)
6076 			continue;
6077 
6078 		/*
6079 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6080 		 * fi_before     fi      update?
6081 		 *  0            0       1
6082 		 *  0            1       1
6083 		 *  1            0       1
6084 		 *  1            1       0
6085 		 */
6086 		if (!(fi_before && rq->core->core_forceidle_count))
6087 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6088 
6089 		rq_i->core_pick->core_occupation = occ;
6090 
6091 		if (i == cpu) {
6092 			rq_i->core_pick = NULL;
6093 			continue;
6094 		}
6095 
6096 		/* Did we break L1TF mitigation requirements? */
6097 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6098 
6099 		if (rq_i->curr == rq_i->core_pick) {
6100 			rq_i->core_pick = NULL;
6101 			continue;
6102 		}
6103 
6104 		resched_curr(rq_i);
6105 	}
6106 
6107 out_set_next:
6108 	set_next_task(rq, next);
6109 out:
6110 	if (rq->core->core_forceidle_count && next == rq->idle)
6111 		queue_core_balance(rq);
6112 
6113 	return next;
6114 }
6115 
6116 static bool try_steal_cookie(int this, int that)
6117 {
6118 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6119 	struct task_struct *p;
6120 	unsigned long cookie;
6121 	bool success = false;
6122 
6123 	guard(irq)();
6124 	guard(double_rq_lock)(dst, src);
6125 
6126 	cookie = dst->core->core_cookie;
6127 	if (!cookie)
6128 		return false;
6129 
6130 	if (dst->curr != dst->idle)
6131 		return false;
6132 
6133 	p = sched_core_find(src, cookie);
6134 	if (!p)
6135 		return false;
6136 
6137 	do {
6138 		if (p == src->core_pick || p == src->curr)
6139 			goto next;
6140 
6141 		if (!is_cpu_allowed(p, this))
6142 			goto next;
6143 
6144 		if (p->core_occupation > dst->idle->core_occupation)
6145 			goto next;
6146 		/*
6147 		 * sched_core_find() and sched_core_next() will ensure
6148 		 * that task @p is not throttled now, we also need to
6149 		 * check whether the runqueue of the destination CPU is
6150 		 * being throttled.
6151 		 */
6152 		if (sched_task_is_throttled(p, this))
6153 			goto next;
6154 
6155 		deactivate_task(src, p, 0);
6156 		set_task_cpu(p, this);
6157 		activate_task(dst, p, 0);
6158 
6159 		resched_curr(dst);
6160 
6161 		success = true;
6162 		break;
6163 
6164 next:
6165 		p = sched_core_next(p, cookie);
6166 	} while (p);
6167 
6168 	return success;
6169 }
6170 
6171 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6172 {
6173 	int i;
6174 
6175 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6176 		if (i == cpu)
6177 			continue;
6178 
6179 		if (need_resched())
6180 			break;
6181 
6182 		if (try_steal_cookie(cpu, i))
6183 			return true;
6184 	}
6185 
6186 	return false;
6187 }
6188 
6189 static void sched_core_balance(struct rq *rq)
6190 {
6191 	struct sched_domain *sd;
6192 	int cpu = cpu_of(rq);
6193 
6194 	guard(preempt)();
6195 	guard(rcu)();
6196 
6197 	raw_spin_rq_unlock_irq(rq);
6198 	for_each_domain(cpu, sd) {
6199 		if (need_resched())
6200 			break;
6201 
6202 		if (steal_cookie_task(cpu, sd))
6203 			break;
6204 	}
6205 	raw_spin_rq_lock_irq(rq);
6206 }
6207 
6208 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6209 
6210 static void queue_core_balance(struct rq *rq)
6211 {
6212 	if (!sched_core_enabled(rq))
6213 		return;
6214 
6215 	if (!rq->core->core_cookie)
6216 		return;
6217 
6218 	if (!rq->nr_running) /* not forced idle */
6219 		return;
6220 
6221 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6222 }
6223 
6224 DEFINE_LOCK_GUARD_1(core_lock, int,
6225 		    sched_core_lock(*_T->lock, &_T->flags),
6226 		    sched_core_unlock(*_T->lock, &_T->flags),
6227 		    unsigned long flags)
6228 
6229 static void sched_core_cpu_starting(unsigned int cpu)
6230 {
6231 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6232 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6233 	int t;
6234 
6235 	guard(core_lock)(&cpu);
6236 
6237 	WARN_ON_ONCE(rq->core != rq);
6238 
6239 	/* if we're the first, we'll be our own leader */
6240 	if (cpumask_weight(smt_mask) == 1)
6241 		return;
6242 
6243 	/* find the leader */
6244 	for_each_cpu(t, smt_mask) {
6245 		if (t == cpu)
6246 			continue;
6247 		rq = cpu_rq(t);
6248 		if (rq->core == rq) {
6249 			core_rq = rq;
6250 			break;
6251 		}
6252 	}
6253 
6254 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6255 		return;
6256 
6257 	/* install and validate core_rq */
6258 	for_each_cpu(t, smt_mask) {
6259 		rq = cpu_rq(t);
6260 
6261 		if (t == cpu)
6262 			rq->core = core_rq;
6263 
6264 		WARN_ON_ONCE(rq->core != core_rq);
6265 	}
6266 }
6267 
6268 static void sched_core_cpu_deactivate(unsigned int cpu)
6269 {
6270 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6271 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6272 	int t;
6273 
6274 	guard(core_lock)(&cpu);
6275 
6276 	/* if we're the last man standing, nothing to do */
6277 	if (cpumask_weight(smt_mask) == 1) {
6278 		WARN_ON_ONCE(rq->core != rq);
6279 		return;
6280 	}
6281 
6282 	/* if we're not the leader, nothing to do */
6283 	if (rq->core != rq)
6284 		return;
6285 
6286 	/* find a new leader */
6287 	for_each_cpu(t, smt_mask) {
6288 		if (t == cpu)
6289 			continue;
6290 		core_rq = cpu_rq(t);
6291 		break;
6292 	}
6293 
6294 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6295 		return;
6296 
6297 	/* copy the shared state to the new leader */
6298 	core_rq->core_task_seq             = rq->core_task_seq;
6299 	core_rq->core_pick_seq             = rq->core_pick_seq;
6300 	core_rq->core_cookie               = rq->core_cookie;
6301 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6302 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6303 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6304 
6305 	/*
6306 	 * Accounting edge for forced idle is handled in pick_next_task().
6307 	 * Don't need another one here, since the hotplug thread shouldn't
6308 	 * have a cookie.
6309 	 */
6310 	core_rq->core_forceidle_start = 0;
6311 
6312 	/* install new leader */
6313 	for_each_cpu(t, smt_mask) {
6314 		rq = cpu_rq(t);
6315 		rq->core = core_rq;
6316 	}
6317 }
6318 
6319 static inline void sched_core_cpu_dying(unsigned int cpu)
6320 {
6321 	struct rq *rq = cpu_rq(cpu);
6322 
6323 	if (rq->core != rq)
6324 		rq->core = rq;
6325 }
6326 
6327 #else /* !CONFIG_SCHED_CORE */
6328 
6329 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6330 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6331 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6332 
6333 static struct task_struct *
6334 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6335 {
6336 	return __pick_next_task(rq, prev, rf);
6337 }
6338 
6339 #endif /* CONFIG_SCHED_CORE */
6340 
6341 /*
6342  * Constants for the sched_mode argument of __schedule().
6343  *
6344  * The mode argument allows RT enabled kernels to differentiate a
6345  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6346  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6347  * optimize the AND operation out and just check for zero.
6348  */
6349 #define SM_NONE			0x0
6350 #define SM_PREEMPT		0x1
6351 #define SM_RTLOCK_WAIT		0x2
6352 
6353 #ifndef CONFIG_PREEMPT_RT
6354 # define SM_MASK_PREEMPT	(~0U)
6355 #else
6356 # define SM_MASK_PREEMPT	SM_PREEMPT
6357 #endif
6358 
6359 /*
6360  * __schedule() is the main scheduler function.
6361  *
6362  * The main means of driving the scheduler and thus entering this function are:
6363  *
6364  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6365  *
6366  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6367  *      paths. For example, see arch/x86/entry_64.S.
6368  *
6369  *      To drive preemption between tasks, the scheduler sets the flag in timer
6370  *      interrupt handler sched_tick().
6371  *
6372  *   3. Wakeups don't really cause entry into schedule(). They add a
6373  *      task to the run-queue and that's it.
6374  *
6375  *      Now, if the new task added to the run-queue preempts the current
6376  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6377  *      called on the nearest possible occasion:
6378  *
6379  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6380  *
6381  *         - in syscall or exception context, at the next outmost
6382  *           preempt_enable(). (this might be as soon as the wake_up()'s
6383  *           spin_unlock()!)
6384  *
6385  *         - in IRQ context, return from interrupt-handler to
6386  *           preemptible context
6387  *
6388  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6389  *         then at the next:
6390  *
6391  *          - cond_resched() call
6392  *          - explicit schedule() call
6393  *          - return from syscall or exception to user-space
6394  *          - return from interrupt-handler to user-space
6395  *
6396  * WARNING: must be called with preemption disabled!
6397  */
6398 static void __sched notrace __schedule(unsigned int sched_mode)
6399 {
6400 	struct task_struct *prev, *next;
6401 	unsigned long *switch_count;
6402 	unsigned long prev_state;
6403 	struct rq_flags rf;
6404 	struct rq *rq;
6405 	int cpu;
6406 
6407 	cpu = smp_processor_id();
6408 	rq = cpu_rq(cpu);
6409 	prev = rq->curr;
6410 
6411 	schedule_debug(prev, !!sched_mode);
6412 
6413 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6414 		hrtick_clear(rq);
6415 
6416 	local_irq_disable();
6417 	rcu_note_context_switch(!!sched_mode);
6418 
6419 	/*
6420 	 * Make sure that signal_pending_state()->signal_pending() below
6421 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6422 	 * done by the caller to avoid the race with signal_wake_up():
6423 	 *
6424 	 * __set_current_state(@state)		signal_wake_up()
6425 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6426 	 *					  wake_up_state(p, state)
6427 	 *   LOCK rq->lock			    LOCK p->pi_state
6428 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6429 	 *     if (signal_pending_state())	    if (p->state & @state)
6430 	 *
6431 	 * Also, the membarrier system call requires a full memory barrier
6432 	 * after coming from user-space, before storing to rq->curr; this
6433 	 * barrier matches a full barrier in the proximity of the membarrier
6434 	 * system call exit.
6435 	 */
6436 	rq_lock(rq, &rf);
6437 	smp_mb__after_spinlock();
6438 
6439 	/* Promote REQ to ACT */
6440 	rq->clock_update_flags <<= 1;
6441 	update_rq_clock(rq);
6442 	rq->clock_update_flags = RQCF_UPDATED;
6443 
6444 	switch_count = &prev->nivcsw;
6445 
6446 	/*
6447 	 * We must load prev->state once (task_struct::state is volatile), such
6448 	 * that we form a control dependency vs deactivate_task() below.
6449 	 */
6450 	prev_state = READ_ONCE(prev->__state);
6451 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6452 		if (signal_pending_state(prev_state, prev)) {
6453 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6454 		} else {
6455 			prev->sched_contributes_to_load =
6456 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6457 				!(prev_state & TASK_NOLOAD) &&
6458 				!(prev_state & TASK_FROZEN);
6459 
6460 			if (prev->sched_contributes_to_load)
6461 				rq->nr_uninterruptible++;
6462 
6463 			/*
6464 			 * __schedule()			ttwu()
6465 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6466 			 *   if (prev_state)		    goto out;
6467 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6468 			 *				  p->state = TASK_WAKING
6469 			 *
6470 			 * Where __schedule() and ttwu() have matching control dependencies.
6471 			 *
6472 			 * After this, schedule() must not care about p->state any more.
6473 			 */
6474 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6475 
6476 			if (prev->in_iowait) {
6477 				atomic_inc(&rq->nr_iowait);
6478 				delayacct_blkio_start();
6479 			}
6480 		}
6481 		switch_count = &prev->nvcsw;
6482 	}
6483 
6484 	next = pick_next_task(rq, prev, &rf);
6485 	clear_tsk_need_resched(prev);
6486 	clear_preempt_need_resched();
6487 #ifdef CONFIG_SCHED_DEBUG
6488 	rq->last_seen_need_resched_ns = 0;
6489 #endif
6490 
6491 	if (likely(prev != next)) {
6492 		rq->nr_switches++;
6493 		/*
6494 		 * RCU users of rcu_dereference(rq->curr) may not see
6495 		 * changes to task_struct made by pick_next_task().
6496 		 */
6497 		RCU_INIT_POINTER(rq->curr, next);
6498 		/*
6499 		 * The membarrier system call requires each architecture
6500 		 * to have a full memory barrier after updating
6501 		 * rq->curr, before returning to user-space.
6502 		 *
6503 		 * Here are the schemes providing that barrier on the
6504 		 * various architectures:
6505 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6506 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6507 		 *   on PowerPC and on RISC-V.
6508 		 * - finish_lock_switch() for weakly-ordered
6509 		 *   architectures where spin_unlock is a full barrier,
6510 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6511 		 *   is a RELEASE barrier),
6512 		 *
6513 		 * The barrier matches a full barrier in the proximity of
6514 		 * the membarrier system call entry.
6515 		 *
6516 		 * On RISC-V, this barrier pairing is also needed for the
6517 		 * SYNC_CORE command when switching between processes, cf.
6518 		 * the inline comments in membarrier_arch_switch_mm().
6519 		 */
6520 		++*switch_count;
6521 
6522 		migrate_disable_switch(rq, prev);
6523 		psi_account_irqtime(rq, prev, next);
6524 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6525 
6526 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6527 
6528 		/* Also unlocks the rq: */
6529 		rq = context_switch(rq, prev, next, &rf);
6530 	} else {
6531 		rq_unpin_lock(rq, &rf);
6532 		__balance_callbacks(rq);
6533 		raw_spin_rq_unlock_irq(rq);
6534 	}
6535 }
6536 
6537 void __noreturn do_task_dead(void)
6538 {
6539 	/* Causes final put_task_struct in finish_task_switch(): */
6540 	set_special_state(TASK_DEAD);
6541 
6542 	/* Tell freezer to ignore us: */
6543 	current->flags |= PF_NOFREEZE;
6544 
6545 	__schedule(SM_NONE);
6546 	BUG();
6547 
6548 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6549 	for (;;)
6550 		cpu_relax();
6551 }
6552 
6553 static inline void sched_submit_work(struct task_struct *tsk)
6554 {
6555 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6556 	unsigned int task_flags;
6557 
6558 	/*
6559 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6560 	 * will use a blocking primitive -- which would lead to recursion.
6561 	 */
6562 	lock_map_acquire_try(&sched_map);
6563 
6564 	task_flags = tsk->flags;
6565 	/*
6566 	 * If a worker goes to sleep, notify and ask workqueue whether it
6567 	 * wants to wake up a task to maintain concurrency.
6568 	 */
6569 	if (task_flags & PF_WQ_WORKER)
6570 		wq_worker_sleeping(tsk);
6571 	else if (task_flags & PF_IO_WORKER)
6572 		io_wq_worker_sleeping(tsk);
6573 
6574 	/*
6575 	 * spinlock and rwlock must not flush block requests.  This will
6576 	 * deadlock if the callback attempts to acquire a lock which is
6577 	 * already acquired.
6578 	 */
6579 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6580 
6581 	/*
6582 	 * If we are going to sleep and we have plugged IO queued,
6583 	 * make sure to submit it to avoid deadlocks.
6584 	 */
6585 	blk_flush_plug(tsk->plug, true);
6586 
6587 	lock_map_release(&sched_map);
6588 }
6589 
6590 static void sched_update_worker(struct task_struct *tsk)
6591 {
6592 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6593 		if (tsk->flags & PF_BLOCK_TS)
6594 			blk_plug_invalidate_ts(tsk);
6595 		if (tsk->flags & PF_WQ_WORKER)
6596 			wq_worker_running(tsk);
6597 		else if (tsk->flags & PF_IO_WORKER)
6598 			io_wq_worker_running(tsk);
6599 	}
6600 }
6601 
6602 static __always_inline void __schedule_loop(unsigned int sched_mode)
6603 {
6604 	do {
6605 		preempt_disable();
6606 		__schedule(sched_mode);
6607 		sched_preempt_enable_no_resched();
6608 	} while (need_resched());
6609 }
6610 
6611 asmlinkage __visible void __sched schedule(void)
6612 {
6613 	struct task_struct *tsk = current;
6614 
6615 #ifdef CONFIG_RT_MUTEXES
6616 	lockdep_assert(!tsk->sched_rt_mutex);
6617 #endif
6618 
6619 	if (!task_is_running(tsk))
6620 		sched_submit_work(tsk);
6621 	__schedule_loop(SM_NONE);
6622 	sched_update_worker(tsk);
6623 }
6624 EXPORT_SYMBOL(schedule);
6625 
6626 /*
6627  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6628  * state (have scheduled out non-voluntarily) by making sure that all
6629  * tasks have either left the run queue or have gone into user space.
6630  * As idle tasks do not do either, they must not ever be preempted
6631  * (schedule out non-voluntarily).
6632  *
6633  * schedule_idle() is similar to schedule_preempt_disable() except that it
6634  * never enables preemption because it does not call sched_submit_work().
6635  */
6636 void __sched schedule_idle(void)
6637 {
6638 	/*
6639 	 * As this skips calling sched_submit_work(), which the idle task does
6640 	 * regardless because that function is a NOP when the task is in a
6641 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6642 	 * current task can be in any other state. Note, idle is always in the
6643 	 * TASK_RUNNING state.
6644 	 */
6645 	WARN_ON_ONCE(current->__state);
6646 	do {
6647 		__schedule(SM_NONE);
6648 	} while (need_resched());
6649 }
6650 
6651 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6652 asmlinkage __visible void __sched schedule_user(void)
6653 {
6654 	/*
6655 	 * If we come here after a random call to set_need_resched(),
6656 	 * or we have been woken up remotely but the IPI has not yet arrived,
6657 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6658 	 * we find a better solution.
6659 	 *
6660 	 * NB: There are buggy callers of this function.  Ideally we
6661 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6662 	 * too frequently to make sense yet.
6663 	 */
6664 	enum ctx_state prev_state = exception_enter();
6665 	schedule();
6666 	exception_exit(prev_state);
6667 }
6668 #endif
6669 
6670 /**
6671  * schedule_preempt_disabled - called with preemption disabled
6672  *
6673  * Returns with preemption disabled. Note: preempt_count must be 1
6674  */
6675 void __sched schedule_preempt_disabled(void)
6676 {
6677 	sched_preempt_enable_no_resched();
6678 	schedule();
6679 	preempt_disable();
6680 }
6681 
6682 #ifdef CONFIG_PREEMPT_RT
6683 void __sched notrace schedule_rtlock(void)
6684 {
6685 	__schedule_loop(SM_RTLOCK_WAIT);
6686 }
6687 NOKPROBE_SYMBOL(schedule_rtlock);
6688 #endif
6689 
6690 static void __sched notrace preempt_schedule_common(void)
6691 {
6692 	do {
6693 		/*
6694 		 * Because the function tracer can trace preempt_count_sub()
6695 		 * and it also uses preempt_enable/disable_notrace(), if
6696 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6697 		 * by the function tracer will call this function again and
6698 		 * cause infinite recursion.
6699 		 *
6700 		 * Preemption must be disabled here before the function
6701 		 * tracer can trace. Break up preempt_disable() into two
6702 		 * calls. One to disable preemption without fear of being
6703 		 * traced. The other to still record the preemption latency,
6704 		 * which can also be traced by the function tracer.
6705 		 */
6706 		preempt_disable_notrace();
6707 		preempt_latency_start(1);
6708 		__schedule(SM_PREEMPT);
6709 		preempt_latency_stop(1);
6710 		preempt_enable_no_resched_notrace();
6711 
6712 		/*
6713 		 * Check again in case we missed a preemption opportunity
6714 		 * between schedule and now.
6715 		 */
6716 	} while (need_resched());
6717 }
6718 
6719 #ifdef CONFIG_PREEMPTION
6720 /*
6721  * This is the entry point to schedule() from in-kernel preemption
6722  * off of preempt_enable.
6723  */
6724 asmlinkage __visible void __sched notrace preempt_schedule(void)
6725 {
6726 	/*
6727 	 * If there is a non-zero preempt_count or interrupts are disabled,
6728 	 * we do not want to preempt the current task. Just return..
6729 	 */
6730 	if (likely(!preemptible()))
6731 		return;
6732 	preempt_schedule_common();
6733 }
6734 NOKPROBE_SYMBOL(preempt_schedule);
6735 EXPORT_SYMBOL(preempt_schedule);
6736 
6737 #ifdef CONFIG_PREEMPT_DYNAMIC
6738 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6739 #ifndef preempt_schedule_dynamic_enabled
6740 #define preempt_schedule_dynamic_enabled	preempt_schedule
6741 #define preempt_schedule_dynamic_disabled	NULL
6742 #endif
6743 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6744 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6745 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6746 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6747 void __sched notrace dynamic_preempt_schedule(void)
6748 {
6749 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6750 		return;
6751 	preempt_schedule();
6752 }
6753 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6754 EXPORT_SYMBOL(dynamic_preempt_schedule);
6755 #endif
6756 #endif
6757 
6758 /**
6759  * preempt_schedule_notrace - preempt_schedule called by tracing
6760  *
6761  * The tracing infrastructure uses preempt_enable_notrace to prevent
6762  * recursion and tracing preempt enabling caused by the tracing
6763  * infrastructure itself. But as tracing can happen in areas coming
6764  * from userspace or just about to enter userspace, a preempt enable
6765  * can occur before user_exit() is called. This will cause the scheduler
6766  * to be called when the system is still in usermode.
6767  *
6768  * To prevent this, the preempt_enable_notrace will use this function
6769  * instead of preempt_schedule() to exit user context if needed before
6770  * calling the scheduler.
6771  */
6772 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6773 {
6774 	enum ctx_state prev_ctx;
6775 
6776 	if (likely(!preemptible()))
6777 		return;
6778 
6779 	do {
6780 		/*
6781 		 * Because the function tracer can trace preempt_count_sub()
6782 		 * and it also uses preempt_enable/disable_notrace(), if
6783 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6784 		 * by the function tracer will call this function again and
6785 		 * cause infinite recursion.
6786 		 *
6787 		 * Preemption must be disabled here before the function
6788 		 * tracer can trace. Break up preempt_disable() into two
6789 		 * calls. One to disable preemption without fear of being
6790 		 * traced. The other to still record the preemption latency,
6791 		 * which can also be traced by the function tracer.
6792 		 */
6793 		preempt_disable_notrace();
6794 		preempt_latency_start(1);
6795 		/*
6796 		 * Needs preempt disabled in case user_exit() is traced
6797 		 * and the tracer calls preempt_enable_notrace() causing
6798 		 * an infinite recursion.
6799 		 */
6800 		prev_ctx = exception_enter();
6801 		__schedule(SM_PREEMPT);
6802 		exception_exit(prev_ctx);
6803 
6804 		preempt_latency_stop(1);
6805 		preempt_enable_no_resched_notrace();
6806 	} while (need_resched());
6807 }
6808 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6809 
6810 #ifdef CONFIG_PREEMPT_DYNAMIC
6811 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6812 #ifndef preempt_schedule_notrace_dynamic_enabled
6813 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6814 #define preempt_schedule_notrace_dynamic_disabled	NULL
6815 #endif
6816 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6817 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6818 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6819 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6820 void __sched notrace dynamic_preempt_schedule_notrace(void)
6821 {
6822 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6823 		return;
6824 	preempt_schedule_notrace();
6825 }
6826 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6827 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6828 #endif
6829 #endif
6830 
6831 #endif /* CONFIG_PREEMPTION */
6832 
6833 /*
6834  * This is the entry point to schedule() from kernel preemption
6835  * off of IRQ context.
6836  * Note, that this is called and return with IRQs disabled. This will
6837  * protect us against recursive calling from IRQ contexts.
6838  */
6839 asmlinkage __visible void __sched preempt_schedule_irq(void)
6840 {
6841 	enum ctx_state prev_state;
6842 
6843 	/* Catch callers which need to be fixed */
6844 	BUG_ON(preempt_count() || !irqs_disabled());
6845 
6846 	prev_state = exception_enter();
6847 
6848 	do {
6849 		preempt_disable();
6850 		local_irq_enable();
6851 		__schedule(SM_PREEMPT);
6852 		local_irq_disable();
6853 		sched_preempt_enable_no_resched();
6854 	} while (need_resched());
6855 
6856 	exception_exit(prev_state);
6857 }
6858 
6859 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6860 			  void *key)
6861 {
6862 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
6863 	return try_to_wake_up(curr->private, mode, wake_flags);
6864 }
6865 EXPORT_SYMBOL(default_wake_function);
6866 
6867 void __setscheduler_prio(struct task_struct *p, int prio)
6868 {
6869 	if (dl_prio(prio))
6870 		p->sched_class = &dl_sched_class;
6871 	else if (rt_prio(prio))
6872 		p->sched_class = &rt_sched_class;
6873 	else
6874 		p->sched_class = &fair_sched_class;
6875 
6876 	p->prio = prio;
6877 }
6878 
6879 #ifdef CONFIG_RT_MUTEXES
6880 
6881 /*
6882  * Would be more useful with typeof()/auto_type but they don't mix with
6883  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
6884  * name such that if someone were to implement this function we get to compare
6885  * notes.
6886  */
6887 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
6888 
6889 void rt_mutex_pre_schedule(void)
6890 {
6891 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
6892 	sched_submit_work(current);
6893 }
6894 
6895 void rt_mutex_schedule(void)
6896 {
6897 	lockdep_assert(current->sched_rt_mutex);
6898 	__schedule_loop(SM_NONE);
6899 }
6900 
6901 void rt_mutex_post_schedule(void)
6902 {
6903 	sched_update_worker(current);
6904 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
6905 }
6906 
6907 /*
6908  * rt_mutex_setprio - set the current priority of a task
6909  * @p: task to boost
6910  * @pi_task: donor task
6911  *
6912  * This function changes the 'effective' priority of a task. It does
6913  * not touch ->normal_prio like __setscheduler().
6914  *
6915  * Used by the rt_mutex code to implement priority inheritance
6916  * logic. Call site only calls if the priority of the task changed.
6917  */
6918 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6919 {
6920 	int prio, oldprio, queued, running, queue_flag =
6921 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6922 	const struct sched_class *prev_class;
6923 	struct rq_flags rf;
6924 	struct rq *rq;
6925 
6926 	/* XXX used to be waiter->prio, not waiter->task->prio */
6927 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6928 
6929 	/*
6930 	 * If nothing changed; bail early.
6931 	 */
6932 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6933 		return;
6934 
6935 	rq = __task_rq_lock(p, &rf);
6936 	update_rq_clock(rq);
6937 	/*
6938 	 * Set under pi_lock && rq->lock, such that the value can be used under
6939 	 * either lock.
6940 	 *
6941 	 * Note that there is loads of tricky to make this pointer cache work
6942 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6943 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6944 	 * task is allowed to run again (and can exit). This ensures the pointer
6945 	 * points to a blocked task -- which guarantees the task is present.
6946 	 */
6947 	p->pi_top_task = pi_task;
6948 
6949 	/*
6950 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6951 	 */
6952 	if (prio == p->prio && !dl_prio(prio))
6953 		goto out_unlock;
6954 
6955 	/*
6956 	 * Idle task boosting is a no-no in general. There is one
6957 	 * exception, when PREEMPT_RT and NOHZ is active:
6958 	 *
6959 	 * The idle task calls get_next_timer_interrupt() and holds
6960 	 * the timer wheel base->lock on the CPU and another CPU wants
6961 	 * to access the timer (probably to cancel it). We can safely
6962 	 * ignore the boosting request, as the idle CPU runs this code
6963 	 * with interrupts disabled and will complete the lock
6964 	 * protected section without being interrupted. So there is no
6965 	 * real need to boost.
6966 	 */
6967 	if (unlikely(p == rq->idle)) {
6968 		WARN_ON(p != rq->curr);
6969 		WARN_ON(p->pi_blocked_on);
6970 		goto out_unlock;
6971 	}
6972 
6973 	trace_sched_pi_setprio(p, pi_task);
6974 	oldprio = p->prio;
6975 
6976 	if (oldprio == prio)
6977 		queue_flag &= ~DEQUEUE_MOVE;
6978 
6979 	prev_class = p->sched_class;
6980 	queued = task_on_rq_queued(p);
6981 	running = task_current(rq, p);
6982 	if (queued)
6983 		dequeue_task(rq, p, queue_flag);
6984 	if (running)
6985 		put_prev_task(rq, p);
6986 
6987 	/*
6988 	 * Boosting condition are:
6989 	 * 1. -rt task is running and holds mutex A
6990 	 *      --> -dl task blocks on mutex A
6991 	 *
6992 	 * 2. -dl task is running and holds mutex A
6993 	 *      --> -dl task blocks on mutex A and could preempt the
6994 	 *          running task
6995 	 */
6996 	if (dl_prio(prio)) {
6997 		if (!dl_prio(p->normal_prio) ||
6998 		    (pi_task && dl_prio(pi_task->prio) &&
6999 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7000 			p->dl.pi_se = pi_task->dl.pi_se;
7001 			queue_flag |= ENQUEUE_REPLENISH;
7002 		} else {
7003 			p->dl.pi_se = &p->dl;
7004 		}
7005 	} else if (rt_prio(prio)) {
7006 		if (dl_prio(oldprio))
7007 			p->dl.pi_se = &p->dl;
7008 		if (oldprio < prio)
7009 			queue_flag |= ENQUEUE_HEAD;
7010 	} else {
7011 		if (dl_prio(oldprio))
7012 			p->dl.pi_se = &p->dl;
7013 		if (rt_prio(oldprio))
7014 			p->rt.timeout = 0;
7015 	}
7016 
7017 	__setscheduler_prio(p, prio);
7018 
7019 	if (queued)
7020 		enqueue_task(rq, p, queue_flag);
7021 	if (running)
7022 		set_next_task(rq, p);
7023 
7024 	check_class_changed(rq, p, prev_class, oldprio);
7025 out_unlock:
7026 	/* Avoid rq from going away on us: */
7027 	preempt_disable();
7028 
7029 	rq_unpin_lock(rq, &rf);
7030 	__balance_callbacks(rq);
7031 	raw_spin_rq_unlock(rq);
7032 
7033 	preempt_enable();
7034 }
7035 #endif
7036 
7037 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7038 int __sched __cond_resched(void)
7039 {
7040 	if (should_resched(0)) {
7041 		preempt_schedule_common();
7042 		return 1;
7043 	}
7044 	/*
7045 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
7046 	 * whether the current CPU is in an RCU read-side critical section,
7047 	 * so the tick can report quiescent states even for CPUs looping
7048 	 * in kernel context.  In contrast, in non-preemptible kernels,
7049 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7050 	 * processes executing in kernel context might never report an
7051 	 * RCU quiescent state.  Therefore, the following code causes
7052 	 * cond_resched() to report a quiescent state, but only when RCU
7053 	 * is in urgent need of one.
7054 	 */
7055 #ifndef CONFIG_PREEMPT_RCU
7056 	rcu_all_qs();
7057 #endif
7058 	return 0;
7059 }
7060 EXPORT_SYMBOL(__cond_resched);
7061 #endif
7062 
7063 #ifdef CONFIG_PREEMPT_DYNAMIC
7064 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7065 #define cond_resched_dynamic_enabled	__cond_resched
7066 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7067 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7068 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7069 
7070 #define might_resched_dynamic_enabled	__cond_resched
7071 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7072 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7073 EXPORT_STATIC_CALL_TRAMP(might_resched);
7074 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7075 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7076 int __sched dynamic_cond_resched(void)
7077 {
7078 	klp_sched_try_switch();
7079 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7080 		return 0;
7081 	return __cond_resched();
7082 }
7083 EXPORT_SYMBOL(dynamic_cond_resched);
7084 
7085 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7086 int __sched dynamic_might_resched(void)
7087 {
7088 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7089 		return 0;
7090 	return __cond_resched();
7091 }
7092 EXPORT_SYMBOL(dynamic_might_resched);
7093 #endif
7094 #endif
7095 
7096 /*
7097  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7098  * call schedule, and on return reacquire the lock.
7099  *
7100  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7101  * operations here to prevent schedule() from being called twice (once via
7102  * spin_unlock(), once by hand).
7103  */
7104 int __cond_resched_lock(spinlock_t *lock)
7105 {
7106 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7107 	int ret = 0;
7108 
7109 	lockdep_assert_held(lock);
7110 
7111 	if (spin_needbreak(lock) || resched) {
7112 		spin_unlock(lock);
7113 		if (!_cond_resched())
7114 			cpu_relax();
7115 		ret = 1;
7116 		spin_lock(lock);
7117 	}
7118 	return ret;
7119 }
7120 EXPORT_SYMBOL(__cond_resched_lock);
7121 
7122 int __cond_resched_rwlock_read(rwlock_t *lock)
7123 {
7124 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7125 	int ret = 0;
7126 
7127 	lockdep_assert_held_read(lock);
7128 
7129 	if (rwlock_needbreak(lock) || resched) {
7130 		read_unlock(lock);
7131 		if (!_cond_resched())
7132 			cpu_relax();
7133 		ret = 1;
7134 		read_lock(lock);
7135 	}
7136 	return ret;
7137 }
7138 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7139 
7140 int __cond_resched_rwlock_write(rwlock_t *lock)
7141 {
7142 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7143 	int ret = 0;
7144 
7145 	lockdep_assert_held_write(lock);
7146 
7147 	if (rwlock_needbreak(lock) || resched) {
7148 		write_unlock(lock);
7149 		if (!_cond_resched())
7150 			cpu_relax();
7151 		ret = 1;
7152 		write_lock(lock);
7153 	}
7154 	return ret;
7155 }
7156 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7157 
7158 #ifdef CONFIG_PREEMPT_DYNAMIC
7159 
7160 #ifdef CONFIG_GENERIC_ENTRY
7161 #include <linux/entry-common.h>
7162 #endif
7163 
7164 /*
7165  * SC:cond_resched
7166  * SC:might_resched
7167  * SC:preempt_schedule
7168  * SC:preempt_schedule_notrace
7169  * SC:irqentry_exit_cond_resched
7170  *
7171  *
7172  * NONE:
7173  *   cond_resched               <- __cond_resched
7174  *   might_resched              <- RET0
7175  *   preempt_schedule           <- NOP
7176  *   preempt_schedule_notrace   <- NOP
7177  *   irqentry_exit_cond_resched <- NOP
7178  *
7179  * VOLUNTARY:
7180  *   cond_resched               <- __cond_resched
7181  *   might_resched              <- __cond_resched
7182  *   preempt_schedule           <- NOP
7183  *   preempt_schedule_notrace   <- NOP
7184  *   irqentry_exit_cond_resched <- NOP
7185  *
7186  * FULL:
7187  *   cond_resched               <- RET0
7188  *   might_resched              <- RET0
7189  *   preempt_schedule           <- preempt_schedule
7190  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7191  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7192  */
7193 
7194 enum {
7195 	preempt_dynamic_undefined = -1,
7196 	preempt_dynamic_none,
7197 	preempt_dynamic_voluntary,
7198 	preempt_dynamic_full,
7199 };
7200 
7201 int preempt_dynamic_mode = preempt_dynamic_undefined;
7202 
7203 int sched_dynamic_mode(const char *str)
7204 {
7205 	if (!strcmp(str, "none"))
7206 		return preempt_dynamic_none;
7207 
7208 	if (!strcmp(str, "voluntary"))
7209 		return preempt_dynamic_voluntary;
7210 
7211 	if (!strcmp(str, "full"))
7212 		return preempt_dynamic_full;
7213 
7214 	return -EINVAL;
7215 }
7216 
7217 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7218 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7219 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7220 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7221 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7222 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7223 #else
7224 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7225 #endif
7226 
7227 static DEFINE_MUTEX(sched_dynamic_mutex);
7228 static bool klp_override;
7229 
7230 static void __sched_dynamic_update(int mode)
7231 {
7232 	/*
7233 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7234 	 * the ZERO state, which is invalid.
7235 	 */
7236 	if (!klp_override)
7237 		preempt_dynamic_enable(cond_resched);
7238 	preempt_dynamic_enable(might_resched);
7239 	preempt_dynamic_enable(preempt_schedule);
7240 	preempt_dynamic_enable(preempt_schedule_notrace);
7241 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7242 
7243 	switch (mode) {
7244 	case preempt_dynamic_none:
7245 		if (!klp_override)
7246 			preempt_dynamic_enable(cond_resched);
7247 		preempt_dynamic_disable(might_resched);
7248 		preempt_dynamic_disable(preempt_schedule);
7249 		preempt_dynamic_disable(preempt_schedule_notrace);
7250 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7251 		if (mode != preempt_dynamic_mode)
7252 			pr_info("Dynamic Preempt: none\n");
7253 		break;
7254 
7255 	case preempt_dynamic_voluntary:
7256 		if (!klp_override)
7257 			preempt_dynamic_enable(cond_resched);
7258 		preempt_dynamic_enable(might_resched);
7259 		preempt_dynamic_disable(preempt_schedule);
7260 		preempt_dynamic_disable(preempt_schedule_notrace);
7261 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7262 		if (mode != preempt_dynamic_mode)
7263 			pr_info("Dynamic Preempt: voluntary\n");
7264 		break;
7265 
7266 	case preempt_dynamic_full:
7267 		if (!klp_override)
7268 			preempt_dynamic_disable(cond_resched);
7269 		preempt_dynamic_disable(might_resched);
7270 		preempt_dynamic_enable(preempt_schedule);
7271 		preempt_dynamic_enable(preempt_schedule_notrace);
7272 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7273 		if (mode != preempt_dynamic_mode)
7274 			pr_info("Dynamic Preempt: full\n");
7275 		break;
7276 	}
7277 
7278 	preempt_dynamic_mode = mode;
7279 }
7280 
7281 void sched_dynamic_update(int mode)
7282 {
7283 	mutex_lock(&sched_dynamic_mutex);
7284 	__sched_dynamic_update(mode);
7285 	mutex_unlock(&sched_dynamic_mutex);
7286 }
7287 
7288 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7289 
7290 static int klp_cond_resched(void)
7291 {
7292 	__klp_sched_try_switch();
7293 	return __cond_resched();
7294 }
7295 
7296 void sched_dynamic_klp_enable(void)
7297 {
7298 	mutex_lock(&sched_dynamic_mutex);
7299 
7300 	klp_override = true;
7301 	static_call_update(cond_resched, klp_cond_resched);
7302 
7303 	mutex_unlock(&sched_dynamic_mutex);
7304 }
7305 
7306 void sched_dynamic_klp_disable(void)
7307 {
7308 	mutex_lock(&sched_dynamic_mutex);
7309 
7310 	klp_override = false;
7311 	__sched_dynamic_update(preempt_dynamic_mode);
7312 
7313 	mutex_unlock(&sched_dynamic_mutex);
7314 }
7315 
7316 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
7317 
7318 static int __init setup_preempt_mode(char *str)
7319 {
7320 	int mode = sched_dynamic_mode(str);
7321 	if (mode < 0) {
7322 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7323 		return 0;
7324 	}
7325 
7326 	sched_dynamic_update(mode);
7327 	return 1;
7328 }
7329 __setup("preempt=", setup_preempt_mode);
7330 
7331 static void __init preempt_dynamic_init(void)
7332 {
7333 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7334 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7335 			sched_dynamic_update(preempt_dynamic_none);
7336 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7337 			sched_dynamic_update(preempt_dynamic_voluntary);
7338 		} else {
7339 			/* Default static call setting, nothing to do */
7340 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7341 			preempt_dynamic_mode = preempt_dynamic_full;
7342 			pr_info("Dynamic Preempt: full\n");
7343 		}
7344 	}
7345 }
7346 
7347 #define PREEMPT_MODEL_ACCESSOR(mode) \
7348 	bool preempt_model_##mode(void)						 \
7349 	{									 \
7350 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7351 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7352 	}									 \
7353 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7354 
7355 PREEMPT_MODEL_ACCESSOR(none);
7356 PREEMPT_MODEL_ACCESSOR(voluntary);
7357 PREEMPT_MODEL_ACCESSOR(full);
7358 
7359 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7360 
7361 static inline void preempt_dynamic_init(void) { }
7362 
7363 #endif /* CONFIG_PREEMPT_DYNAMIC */
7364 
7365 int io_schedule_prepare(void)
7366 {
7367 	int old_iowait = current->in_iowait;
7368 
7369 	current->in_iowait = 1;
7370 	blk_flush_plug(current->plug, true);
7371 	return old_iowait;
7372 }
7373 
7374 void io_schedule_finish(int token)
7375 {
7376 	current->in_iowait = token;
7377 }
7378 
7379 /*
7380  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7381  * that process accounting knows that this is a task in IO wait state.
7382  */
7383 long __sched io_schedule_timeout(long timeout)
7384 {
7385 	int token;
7386 	long ret;
7387 
7388 	token = io_schedule_prepare();
7389 	ret = schedule_timeout(timeout);
7390 	io_schedule_finish(token);
7391 
7392 	return ret;
7393 }
7394 EXPORT_SYMBOL(io_schedule_timeout);
7395 
7396 void __sched io_schedule(void)
7397 {
7398 	int token;
7399 
7400 	token = io_schedule_prepare();
7401 	schedule();
7402 	io_schedule_finish(token);
7403 }
7404 EXPORT_SYMBOL(io_schedule);
7405 
7406 void sched_show_task(struct task_struct *p)
7407 {
7408 	unsigned long free = 0;
7409 	int ppid;
7410 
7411 	if (!try_get_task_stack(p))
7412 		return;
7413 
7414 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7415 
7416 	if (task_is_running(p))
7417 		pr_cont("  running task    ");
7418 #ifdef CONFIG_DEBUG_STACK_USAGE
7419 	free = stack_not_used(p);
7420 #endif
7421 	ppid = 0;
7422 	rcu_read_lock();
7423 	if (pid_alive(p))
7424 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7425 	rcu_read_unlock();
7426 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
7427 		free, task_pid_nr(p), task_tgid_nr(p),
7428 		ppid, read_task_thread_flags(p));
7429 
7430 	print_worker_info(KERN_INFO, p);
7431 	print_stop_info(KERN_INFO, p);
7432 	show_stack(p, NULL, KERN_INFO);
7433 	put_task_stack(p);
7434 }
7435 EXPORT_SYMBOL_GPL(sched_show_task);
7436 
7437 static inline bool
7438 state_filter_match(unsigned long state_filter, struct task_struct *p)
7439 {
7440 	unsigned int state = READ_ONCE(p->__state);
7441 
7442 	/* no filter, everything matches */
7443 	if (!state_filter)
7444 		return true;
7445 
7446 	/* filter, but doesn't match */
7447 	if (!(state & state_filter))
7448 		return false;
7449 
7450 	/*
7451 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7452 	 * TASK_KILLABLE).
7453 	 */
7454 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7455 		return false;
7456 
7457 	return true;
7458 }
7459 
7460 
7461 void show_state_filter(unsigned int state_filter)
7462 {
7463 	struct task_struct *g, *p;
7464 
7465 	rcu_read_lock();
7466 	for_each_process_thread(g, p) {
7467 		/*
7468 		 * reset the NMI-timeout, listing all files on a slow
7469 		 * console might take a lot of time:
7470 		 * Also, reset softlockup watchdogs on all CPUs, because
7471 		 * another CPU might be blocked waiting for us to process
7472 		 * an IPI.
7473 		 */
7474 		touch_nmi_watchdog();
7475 		touch_all_softlockup_watchdogs();
7476 		if (state_filter_match(state_filter, p))
7477 			sched_show_task(p);
7478 	}
7479 
7480 #ifdef CONFIG_SCHED_DEBUG
7481 	if (!state_filter)
7482 		sysrq_sched_debug_show();
7483 #endif
7484 	rcu_read_unlock();
7485 	/*
7486 	 * Only show locks if all tasks are dumped:
7487 	 */
7488 	if (!state_filter)
7489 		debug_show_all_locks();
7490 }
7491 
7492 /**
7493  * init_idle - set up an idle thread for a given CPU
7494  * @idle: task in question
7495  * @cpu: CPU the idle task belongs to
7496  *
7497  * NOTE: this function does not set the idle thread's NEED_RESCHED
7498  * flag, to make booting more robust.
7499  */
7500 void __init init_idle(struct task_struct *idle, int cpu)
7501 {
7502 #ifdef CONFIG_SMP
7503 	struct affinity_context ac = (struct affinity_context) {
7504 		.new_mask  = cpumask_of(cpu),
7505 		.flags     = 0,
7506 	};
7507 #endif
7508 	struct rq *rq = cpu_rq(cpu);
7509 	unsigned long flags;
7510 
7511 	__sched_fork(0, idle);
7512 
7513 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7514 	raw_spin_rq_lock(rq);
7515 
7516 	idle->__state = TASK_RUNNING;
7517 	idle->se.exec_start = sched_clock();
7518 	/*
7519 	 * PF_KTHREAD should already be set at this point; regardless, make it
7520 	 * look like a proper per-CPU kthread.
7521 	 */
7522 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7523 	kthread_set_per_cpu(idle, cpu);
7524 
7525 #ifdef CONFIG_SMP
7526 	/*
7527 	 * It's possible that init_idle() gets called multiple times on a task,
7528 	 * in that case do_set_cpus_allowed() will not do the right thing.
7529 	 *
7530 	 * And since this is boot we can forgo the serialization.
7531 	 */
7532 	set_cpus_allowed_common(idle, &ac);
7533 #endif
7534 	/*
7535 	 * We're having a chicken and egg problem, even though we are
7536 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7537 	 * lockdep check in task_group() will fail.
7538 	 *
7539 	 * Similar case to sched_fork(). / Alternatively we could
7540 	 * use task_rq_lock() here and obtain the other rq->lock.
7541 	 *
7542 	 * Silence PROVE_RCU
7543 	 */
7544 	rcu_read_lock();
7545 	__set_task_cpu(idle, cpu);
7546 	rcu_read_unlock();
7547 
7548 	rq->idle = idle;
7549 	rcu_assign_pointer(rq->curr, idle);
7550 	idle->on_rq = TASK_ON_RQ_QUEUED;
7551 #ifdef CONFIG_SMP
7552 	idle->on_cpu = 1;
7553 #endif
7554 	raw_spin_rq_unlock(rq);
7555 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7556 
7557 	/* Set the preempt count _outside_ the spinlocks! */
7558 	init_idle_preempt_count(idle, cpu);
7559 
7560 	/*
7561 	 * The idle tasks have their own, simple scheduling class:
7562 	 */
7563 	idle->sched_class = &idle_sched_class;
7564 	ftrace_graph_init_idle_task(idle, cpu);
7565 	vtime_init_idle(idle, cpu);
7566 #ifdef CONFIG_SMP
7567 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7568 #endif
7569 }
7570 
7571 #ifdef CONFIG_SMP
7572 
7573 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7574 			      const struct cpumask *trial)
7575 {
7576 	int ret = 1;
7577 
7578 	if (cpumask_empty(cur))
7579 		return ret;
7580 
7581 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7582 
7583 	return ret;
7584 }
7585 
7586 int task_can_attach(struct task_struct *p)
7587 {
7588 	int ret = 0;
7589 
7590 	/*
7591 	 * Kthreads which disallow setaffinity shouldn't be moved
7592 	 * to a new cpuset; we don't want to change their CPU
7593 	 * affinity and isolating such threads by their set of
7594 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7595 	 * applicable for such threads.  This prevents checking for
7596 	 * success of set_cpus_allowed_ptr() on all attached tasks
7597 	 * before cpus_mask may be changed.
7598 	 */
7599 	if (p->flags & PF_NO_SETAFFINITY)
7600 		ret = -EINVAL;
7601 
7602 	return ret;
7603 }
7604 
7605 bool sched_smp_initialized __read_mostly;
7606 
7607 #ifdef CONFIG_NUMA_BALANCING
7608 /* Migrate current task p to target_cpu */
7609 int migrate_task_to(struct task_struct *p, int target_cpu)
7610 {
7611 	struct migration_arg arg = { p, target_cpu };
7612 	int curr_cpu = task_cpu(p);
7613 
7614 	if (curr_cpu == target_cpu)
7615 		return 0;
7616 
7617 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7618 		return -EINVAL;
7619 
7620 	/* TODO: This is not properly updating schedstats */
7621 
7622 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7623 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7624 }
7625 
7626 /*
7627  * Requeue a task on a given node and accurately track the number of NUMA
7628  * tasks on the runqueues
7629  */
7630 void sched_setnuma(struct task_struct *p, int nid)
7631 {
7632 	bool queued, running;
7633 	struct rq_flags rf;
7634 	struct rq *rq;
7635 
7636 	rq = task_rq_lock(p, &rf);
7637 	queued = task_on_rq_queued(p);
7638 	running = task_current(rq, p);
7639 
7640 	if (queued)
7641 		dequeue_task(rq, p, DEQUEUE_SAVE);
7642 	if (running)
7643 		put_prev_task(rq, p);
7644 
7645 	p->numa_preferred_nid = nid;
7646 
7647 	if (queued)
7648 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7649 	if (running)
7650 		set_next_task(rq, p);
7651 	task_rq_unlock(rq, p, &rf);
7652 }
7653 #endif /* CONFIG_NUMA_BALANCING */
7654 
7655 #ifdef CONFIG_HOTPLUG_CPU
7656 /*
7657  * Ensure that the idle task is using init_mm right before its CPU goes
7658  * offline.
7659  */
7660 void idle_task_exit(void)
7661 {
7662 	struct mm_struct *mm = current->active_mm;
7663 
7664 	BUG_ON(cpu_online(smp_processor_id()));
7665 	BUG_ON(current != this_rq()->idle);
7666 
7667 	if (mm != &init_mm) {
7668 		switch_mm(mm, &init_mm, current);
7669 		finish_arch_post_lock_switch();
7670 	}
7671 
7672 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7673 }
7674 
7675 static int __balance_push_cpu_stop(void *arg)
7676 {
7677 	struct task_struct *p = arg;
7678 	struct rq *rq = this_rq();
7679 	struct rq_flags rf;
7680 	int cpu;
7681 
7682 	raw_spin_lock_irq(&p->pi_lock);
7683 	rq_lock(rq, &rf);
7684 
7685 	update_rq_clock(rq);
7686 
7687 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
7688 		cpu = select_fallback_rq(rq->cpu, p);
7689 		rq = __migrate_task(rq, &rf, p, cpu);
7690 	}
7691 
7692 	rq_unlock(rq, &rf);
7693 	raw_spin_unlock_irq(&p->pi_lock);
7694 
7695 	put_task_struct(p);
7696 
7697 	return 0;
7698 }
7699 
7700 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7701 
7702 /*
7703  * Ensure we only run per-cpu kthreads once the CPU goes !active.
7704  *
7705  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7706  * effective when the hotplug motion is down.
7707  */
7708 static void balance_push(struct rq *rq)
7709 {
7710 	struct task_struct *push_task = rq->curr;
7711 
7712 	lockdep_assert_rq_held(rq);
7713 
7714 	/*
7715 	 * Ensure the thing is persistent until balance_push_set(.on = false);
7716 	 */
7717 	rq->balance_callback = &balance_push_callback;
7718 
7719 	/*
7720 	 * Only active while going offline and when invoked on the outgoing
7721 	 * CPU.
7722 	 */
7723 	if (!cpu_dying(rq->cpu) || rq != this_rq())
7724 		return;
7725 
7726 	/*
7727 	 * Both the cpu-hotplug and stop task are in this case and are
7728 	 * required to complete the hotplug process.
7729 	 */
7730 	if (kthread_is_per_cpu(push_task) ||
7731 	    is_migration_disabled(push_task)) {
7732 
7733 		/*
7734 		 * If this is the idle task on the outgoing CPU try to wake
7735 		 * up the hotplug control thread which might wait for the
7736 		 * last task to vanish. The rcuwait_active() check is
7737 		 * accurate here because the waiter is pinned on this CPU
7738 		 * and can't obviously be running in parallel.
7739 		 *
7740 		 * On RT kernels this also has to check whether there are
7741 		 * pinned and scheduled out tasks on the runqueue. They
7742 		 * need to leave the migrate disabled section first.
7743 		 */
7744 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7745 		    rcuwait_active(&rq->hotplug_wait)) {
7746 			raw_spin_rq_unlock(rq);
7747 			rcuwait_wake_up(&rq->hotplug_wait);
7748 			raw_spin_rq_lock(rq);
7749 		}
7750 		return;
7751 	}
7752 
7753 	get_task_struct(push_task);
7754 	/*
7755 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
7756 	 * Both preemption and IRQs are still disabled.
7757 	 */
7758 	preempt_disable();
7759 	raw_spin_rq_unlock(rq);
7760 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7761 			    this_cpu_ptr(&push_work));
7762 	preempt_enable();
7763 	/*
7764 	 * At this point need_resched() is true and we'll take the loop in
7765 	 * schedule(). The next pick is obviously going to be the stop task
7766 	 * which kthread_is_per_cpu() and will push this task away.
7767 	 */
7768 	raw_spin_rq_lock(rq);
7769 }
7770 
7771 static void balance_push_set(int cpu, bool on)
7772 {
7773 	struct rq *rq = cpu_rq(cpu);
7774 	struct rq_flags rf;
7775 
7776 	rq_lock_irqsave(rq, &rf);
7777 	if (on) {
7778 		WARN_ON_ONCE(rq->balance_callback);
7779 		rq->balance_callback = &balance_push_callback;
7780 	} else if (rq->balance_callback == &balance_push_callback) {
7781 		rq->balance_callback = NULL;
7782 	}
7783 	rq_unlock_irqrestore(rq, &rf);
7784 }
7785 
7786 /*
7787  * Invoked from a CPUs hotplug control thread after the CPU has been marked
7788  * inactive. All tasks which are not per CPU kernel threads are either
7789  * pushed off this CPU now via balance_push() or placed on a different CPU
7790  * during wakeup. Wait until the CPU is quiescent.
7791  */
7792 static void balance_hotplug_wait(void)
7793 {
7794 	struct rq *rq = this_rq();
7795 
7796 	rcuwait_wait_event(&rq->hotplug_wait,
7797 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7798 			   TASK_UNINTERRUPTIBLE);
7799 }
7800 
7801 #else
7802 
7803 static inline void balance_push(struct rq *rq)
7804 {
7805 }
7806 
7807 static inline void balance_push_set(int cpu, bool on)
7808 {
7809 }
7810 
7811 static inline void balance_hotplug_wait(void)
7812 {
7813 }
7814 
7815 #endif /* CONFIG_HOTPLUG_CPU */
7816 
7817 void set_rq_online(struct rq *rq)
7818 {
7819 	if (!rq->online) {
7820 		const struct sched_class *class;
7821 
7822 		cpumask_set_cpu(rq->cpu, rq->rd->online);
7823 		rq->online = 1;
7824 
7825 		for_each_class(class) {
7826 			if (class->rq_online)
7827 				class->rq_online(rq);
7828 		}
7829 	}
7830 }
7831 
7832 void set_rq_offline(struct rq *rq)
7833 {
7834 	if (rq->online) {
7835 		const struct sched_class *class;
7836 
7837 		update_rq_clock(rq);
7838 		for_each_class(class) {
7839 			if (class->rq_offline)
7840 				class->rq_offline(rq);
7841 		}
7842 
7843 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7844 		rq->online = 0;
7845 	}
7846 }
7847 
7848 static inline void sched_set_rq_online(struct rq *rq, int cpu)
7849 {
7850 	struct rq_flags rf;
7851 
7852 	rq_lock_irqsave(rq, &rf);
7853 	if (rq->rd) {
7854 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7855 		set_rq_online(rq);
7856 	}
7857 	rq_unlock_irqrestore(rq, &rf);
7858 }
7859 
7860 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
7861 {
7862 	struct rq_flags rf;
7863 
7864 	rq_lock_irqsave(rq, &rf);
7865 	if (rq->rd) {
7866 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7867 		set_rq_offline(rq);
7868 	}
7869 	rq_unlock_irqrestore(rq, &rf);
7870 }
7871 
7872 /*
7873  * used to mark begin/end of suspend/resume:
7874  */
7875 static int num_cpus_frozen;
7876 
7877 /*
7878  * Update cpusets according to cpu_active mask.  If cpusets are
7879  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7880  * around partition_sched_domains().
7881  *
7882  * If we come here as part of a suspend/resume, don't touch cpusets because we
7883  * want to restore it back to its original state upon resume anyway.
7884  */
7885 static void cpuset_cpu_active(void)
7886 {
7887 	if (cpuhp_tasks_frozen) {
7888 		/*
7889 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7890 		 * resume sequence. As long as this is not the last online
7891 		 * operation in the resume sequence, just build a single sched
7892 		 * domain, ignoring cpusets.
7893 		 */
7894 		partition_sched_domains(1, NULL, NULL);
7895 		if (--num_cpus_frozen)
7896 			return;
7897 		/*
7898 		 * This is the last CPU online operation. So fall through and
7899 		 * restore the original sched domains by considering the
7900 		 * cpuset configurations.
7901 		 */
7902 		cpuset_force_rebuild();
7903 	}
7904 	cpuset_update_active_cpus();
7905 }
7906 
7907 static int cpuset_cpu_inactive(unsigned int cpu)
7908 {
7909 	if (!cpuhp_tasks_frozen) {
7910 		int ret = dl_bw_check_overflow(cpu);
7911 
7912 		if (ret)
7913 			return ret;
7914 		cpuset_update_active_cpus();
7915 	} else {
7916 		num_cpus_frozen++;
7917 		partition_sched_domains(1, NULL, NULL);
7918 	}
7919 	return 0;
7920 }
7921 
7922 static inline void sched_smt_present_inc(int cpu)
7923 {
7924 #ifdef CONFIG_SCHED_SMT
7925 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7926 		static_branch_inc_cpuslocked(&sched_smt_present);
7927 #endif
7928 }
7929 
7930 static inline void sched_smt_present_dec(int cpu)
7931 {
7932 #ifdef CONFIG_SCHED_SMT
7933 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7934 		static_branch_dec_cpuslocked(&sched_smt_present);
7935 #endif
7936 }
7937 
7938 int sched_cpu_activate(unsigned int cpu)
7939 {
7940 	struct rq *rq = cpu_rq(cpu);
7941 
7942 	/*
7943 	 * Clear the balance_push callback and prepare to schedule
7944 	 * regular tasks.
7945 	 */
7946 	balance_push_set(cpu, false);
7947 
7948 	/*
7949 	 * When going up, increment the number of cores with SMT present.
7950 	 */
7951 	sched_smt_present_inc(cpu);
7952 	set_cpu_active(cpu, true);
7953 
7954 	if (sched_smp_initialized) {
7955 		sched_update_numa(cpu, true);
7956 		sched_domains_numa_masks_set(cpu);
7957 		cpuset_cpu_active();
7958 	}
7959 
7960 	/*
7961 	 * Put the rq online, if not already. This happens:
7962 	 *
7963 	 * 1) In the early boot process, because we build the real domains
7964 	 *    after all CPUs have been brought up.
7965 	 *
7966 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7967 	 *    domains.
7968 	 */
7969 	sched_set_rq_online(rq, cpu);
7970 
7971 	return 0;
7972 }
7973 
7974 int sched_cpu_deactivate(unsigned int cpu)
7975 {
7976 	struct rq *rq = cpu_rq(cpu);
7977 	int ret;
7978 
7979 	/*
7980 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7981 	 * load balancing when not active
7982 	 */
7983 	nohz_balance_exit_idle(rq);
7984 
7985 	set_cpu_active(cpu, false);
7986 
7987 	/*
7988 	 * From this point forward, this CPU will refuse to run any task that
7989 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7990 	 * push those tasks away until this gets cleared, see
7991 	 * sched_cpu_dying().
7992 	 */
7993 	balance_push_set(cpu, true);
7994 
7995 	/*
7996 	 * We've cleared cpu_active_mask / set balance_push, wait for all
7997 	 * preempt-disabled and RCU users of this state to go away such that
7998 	 * all new such users will observe it.
7999 	 *
8000 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8001 	 * ttwu_queue_cond() and is_cpu_allowed().
8002 	 *
8003 	 * Do sync before park smpboot threads to take care the RCU boost case.
8004 	 */
8005 	synchronize_rcu();
8006 
8007 	sched_set_rq_offline(rq, cpu);
8008 
8009 	/*
8010 	 * When going down, decrement the number of cores with SMT present.
8011 	 */
8012 	sched_smt_present_dec(cpu);
8013 
8014 #ifdef CONFIG_SCHED_SMT
8015 	sched_core_cpu_deactivate(cpu);
8016 #endif
8017 
8018 	if (!sched_smp_initialized)
8019 		return 0;
8020 
8021 	sched_update_numa(cpu, false);
8022 	ret = cpuset_cpu_inactive(cpu);
8023 	if (ret) {
8024 		sched_smt_present_inc(cpu);
8025 		sched_set_rq_online(rq, cpu);
8026 		balance_push_set(cpu, false);
8027 		set_cpu_active(cpu, true);
8028 		sched_update_numa(cpu, true);
8029 		return ret;
8030 	}
8031 	sched_domains_numa_masks_clear(cpu);
8032 	return 0;
8033 }
8034 
8035 static void sched_rq_cpu_starting(unsigned int cpu)
8036 {
8037 	struct rq *rq = cpu_rq(cpu);
8038 
8039 	rq->calc_load_update = calc_load_update;
8040 	update_max_interval();
8041 }
8042 
8043 int sched_cpu_starting(unsigned int cpu)
8044 {
8045 	sched_core_cpu_starting(cpu);
8046 	sched_rq_cpu_starting(cpu);
8047 	sched_tick_start(cpu);
8048 	return 0;
8049 }
8050 
8051 #ifdef CONFIG_HOTPLUG_CPU
8052 
8053 /*
8054  * Invoked immediately before the stopper thread is invoked to bring the
8055  * CPU down completely. At this point all per CPU kthreads except the
8056  * hotplug thread (current) and the stopper thread (inactive) have been
8057  * either parked or have been unbound from the outgoing CPU. Ensure that
8058  * any of those which might be on the way out are gone.
8059  *
8060  * If after this point a bound task is being woken on this CPU then the
8061  * responsible hotplug callback has failed to do it's job.
8062  * sched_cpu_dying() will catch it with the appropriate fireworks.
8063  */
8064 int sched_cpu_wait_empty(unsigned int cpu)
8065 {
8066 	balance_hotplug_wait();
8067 	return 0;
8068 }
8069 
8070 /*
8071  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8072  * might have. Called from the CPU stopper task after ensuring that the
8073  * stopper is the last running task on the CPU, so nr_active count is
8074  * stable. We need to take the tear-down thread which is calling this into
8075  * account, so we hand in adjust = 1 to the load calculation.
8076  *
8077  * Also see the comment "Global load-average calculations".
8078  */
8079 static void calc_load_migrate(struct rq *rq)
8080 {
8081 	long delta = calc_load_fold_active(rq, 1);
8082 
8083 	if (delta)
8084 		atomic_long_add(delta, &calc_load_tasks);
8085 }
8086 
8087 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8088 {
8089 	struct task_struct *g, *p;
8090 	int cpu = cpu_of(rq);
8091 
8092 	lockdep_assert_rq_held(rq);
8093 
8094 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8095 	for_each_process_thread(g, p) {
8096 		if (task_cpu(p) != cpu)
8097 			continue;
8098 
8099 		if (!task_on_rq_queued(p))
8100 			continue;
8101 
8102 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8103 	}
8104 }
8105 
8106 int sched_cpu_dying(unsigned int cpu)
8107 {
8108 	struct rq *rq = cpu_rq(cpu);
8109 	struct rq_flags rf;
8110 
8111 	/* Handle pending wakeups and then migrate everything off */
8112 	sched_tick_stop(cpu);
8113 
8114 	rq_lock_irqsave(rq, &rf);
8115 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8116 		WARN(true, "Dying CPU not properly vacated!");
8117 		dump_rq_tasks(rq, KERN_WARNING);
8118 	}
8119 	rq_unlock_irqrestore(rq, &rf);
8120 
8121 	calc_load_migrate(rq);
8122 	update_max_interval();
8123 	hrtick_clear(rq);
8124 	sched_core_cpu_dying(cpu);
8125 	return 0;
8126 }
8127 #endif
8128 
8129 void __init sched_init_smp(void)
8130 {
8131 	sched_init_numa(NUMA_NO_NODE);
8132 
8133 	/*
8134 	 * There's no userspace yet to cause hotplug operations; hence all the
8135 	 * CPU masks are stable and all blatant races in the below code cannot
8136 	 * happen.
8137 	 */
8138 	mutex_lock(&sched_domains_mutex);
8139 	sched_init_domains(cpu_active_mask);
8140 	mutex_unlock(&sched_domains_mutex);
8141 
8142 	/* Move init over to a non-isolated CPU */
8143 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8144 		BUG();
8145 	current->flags &= ~PF_NO_SETAFFINITY;
8146 	sched_init_granularity();
8147 
8148 	init_sched_rt_class();
8149 	init_sched_dl_class();
8150 
8151 	sched_smp_initialized = true;
8152 }
8153 
8154 static int __init migration_init(void)
8155 {
8156 	sched_cpu_starting(smp_processor_id());
8157 	return 0;
8158 }
8159 early_initcall(migration_init);
8160 
8161 #else
8162 void __init sched_init_smp(void)
8163 {
8164 	sched_init_granularity();
8165 }
8166 #endif /* CONFIG_SMP */
8167 
8168 int in_sched_functions(unsigned long addr)
8169 {
8170 	return in_lock_functions(addr) ||
8171 		(addr >= (unsigned long)__sched_text_start
8172 		&& addr < (unsigned long)__sched_text_end);
8173 }
8174 
8175 #ifdef CONFIG_CGROUP_SCHED
8176 /*
8177  * Default task group.
8178  * Every task in system belongs to this group at bootup.
8179  */
8180 struct task_group root_task_group;
8181 LIST_HEAD(task_groups);
8182 
8183 /* Cacheline aligned slab cache for task_group */
8184 static struct kmem_cache *task_group_cache __ro_after_init;
8185 #endif
8186 
8187 void __init sched_init(void)
8188 {
8189 	unsigned long ptr = 0;
8190 	int i;
8191 
8192 	/* Make sure the linker didn't screw up */
8193 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
8194 	       &fair_sched_class != &rt_sched_class + 1 ||
8195 	       &rt_sched_class   != &dl_sched_class + 1);
8196 #ifdef CONFIG_SMP
8197 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
8198 #endif
8199 
8200 	wait_bit_init();
8201 
8202 #ifdef CONFIG_FAIR_GROUP_SCHED
8203 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8204 #endif
8205 #ifdef CONFIG_RT_GROUP_SCHED
8206 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8207 #endif
8208 	if (ptr) {
8209 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8210 
8211 #ifdef CONFIG_FAIR_GROUP_SCHED
8212 		root_task_group.se = (struct sched_entity **)ptr;
8213 		ptr += nr_cpu_ids * sizeof(void **);
8214 
8215 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8216 		ptr += nr_cpu_ids * sizeof(void **);
8217 
8218 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8219 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8220 #endif /* CONFIG_FAIR_GROUP_SCHED */
8221 #ifdef CONFIG_RT_GROUP_SCHED
8222 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8223 		ptr += nr_cpu_ids * sizeof(void **);
8224 
8225 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8226 		ptr += nr_cpu_ids * sizeof(void **);
8227 
8228 #endif /* CONFIG_RT_GROUP_SCHED */
8229 	}
8230 
8231 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8232 
8233 #ifdef CONFIG_SMP
8234 	init_defrootdomain();
8235 #endif
8236 
8237 #ifdef CONFIG_RT_GROUP_SCHED
8238 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8239 			global_rt_period(), global_rt_runtime());
8240 #endif /* CONFIG_RT_GROUP_SCHED */
8241 
8242 #ifdef CONFIG_CGROUP_SCHED
8243 	task_group_cache = KMEM_CACHE(task_group, 0);
8244 
8245 	list_add(&root_task_group.list, &task_groups);
8246 	INIT_LIST_HEAD(&root_task_group.children);
8247 	INIT_LIST_HEAD(&root_task_group.siblings);
8248 	autogroup_init(&init_task);
8249 #endif /* CONFIG_CGROUP_SCHED */
8250 
8251 	for_each_possible_cpu(i) {
8252 		struct rq *rq;
8253 
8254 		rq = cpu_rq(i);
8255 		raw_spin_lock_init(&rq->__lock);
8256 		rq->nr_running = 0;
8257 		rq->calc_load_active = 0;
8258 		rq->calc_load_update = jiffies + LOAD_FREQ;
8259 		init_cfs_rq(&rq->cfs);
8260 		init_rt_rq(&rq->rt);
8261 		init_dl_rq(&rq->dl);
8262 #ifdef CONFIG_FAIR_GROUP_SCHED
8263 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8264 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8265 		/*
8266 		 * How much CPU bandwidth does root_task_group get?
8267 		 *
8268 		 * In case of task-groups formed through the cgroup filesystem, it
8269 		 * gets 100% of the CPU resources in the system. This overall
8270 		 * system CPU resource is divided among the tasks of
8271 		 * root_task_group and its child task-groups in a fair manner,
8272 		 * based on each entity's (task or task-group's) weight
8273 		 * (se->load.weight).
8274 		 *
8275 		 * In other words, if root_task_group has 10 tasks of weight
8276 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8277 		 * then A0's share of the CPU resource is:
8278 		 *
8279 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8280 		 *
8281 		 * We achieve this by letting root_task_group's tasks sit
8282 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8283 		 */
8284 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8285 #endif /* CONFIG_FAIR_GROUP_SCHED */
8286 
8287 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8288 #ifdef CONFIG_RT_GROUP_SCHED
8289 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8290 #endif
8291 #ifdef CONFIG_SMP
8292 		rq->sd = NULL;
8293 		rq->rd = NULL;
8294 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8295 		rq->balance_callback = &balance_push_callback;
8296 		rq->active_balance = 0;
8297 		rq->next_balance = jiffies;
8298 		rq->push_cpu = 0;
8299 		rq->cpu = i;
8300 		rq->online = 0;
8301 		rq->idle_stamp = 0;
8302 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8303 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8304 
8305 		INIT_LIST_HEAD(&rq->cfs_tasks);
8306 
8307 		rq_attach_root(rq, &def_root_domain);
8308 #ifdef CONFIG_NO_HZ_COMMON
8309 		rq->last_blocked_load_update_tick = jiffies;
8310 		atomic_set(&rq->nohz_flags, 0);
8311 
8312 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8313 #endif
8314 #ifdef CONFIG_HOTPLUG_CPU
8315 		rcuwait_init(&rq->hotplug_wait);
8316 #endif
8317 #endif /* CONFIG_SMP */
8318 		hrtick_rq_init(rq);
8319 		atomic_set(&rq->nr_iowait, 0);
8320 
8321 #ifdef CONFIG_SCHED_CORE
8322 		rq->core = rq;
8323 		rq->core_pick = NULL;
8324 		rq->core_enabled = 0;
8325 		rq->core_tree = RB_ROOT;
8326 		rq->core_forceidle_count = 0;
8327 		rq->core_forceidle_occupation = 0;
8328 		rq->core_forceidle_start = 0;
8329 
8330 		rq->core_cookie = 0UL;
8331 #endif
8332 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8333 	}
8334 
8335 	set_load_weight(&init_task, false);
8336 
8337 	/*
8338 	 * The boot idle thread does lazy MMU switching as well:
8339 	 */
8340 	mmgrab_lazy_tlb(&init_mm);
8341 	enter_lazy_tlb(&init_mm, current);
8342 
8343 	/*
8344 	 * The idle task doesn't need the kthread struct to function, but it
8345 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8346 	 * if we want to avoid special-casing it in code that deals with per-CPU
8347 	 * kthreads.
8348 	 */
8349 	WARN_ON(!set_kthread_struct(current));
8350 
8351 	/*
8352 	 * Make us the idle thread. Technically, schedule() should not be
8353 	 * called from this thread, however somewhere below it might be,
8354 	 * but because we are the idle thread, we just pick up running again
8355 	 * when this runqueue becomes "idle".
8356 	 */
8357 	init_idle(current, smp_processor_id());
8358 
8359 	calc_load_update = jiffies + LOAD_FREQ;
8360 
8361 #ifdef CONFIG_SMP
8362 	idle_thread_set_boot_cpu();
8363 	balance_push_set(smp_processor_id(), false);
8364 #endif
8365 	init_sched_fair_class();
8366 
8367 	psi_init();
8368 
8369 	init_uclamp();
8370 
8371 	preempt_dynamic_init();
8372 
8373 	scheduler_running = 1;
8374 }
8375 
8376 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8377 
8378 void __might_sleep(const char *file, int line)
8379 {
8380 	unsigned int state = get_current_state();
8381 	/*
8382 	 * Blocking primitives will set (and therefore destroy) current->state,
8383 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8384 	 * otherwise we will destroy state.
8385 	 */
8386 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8387 			"do not call blocking ops when !TASK_RUNNING; "
8388 			"state=%x set at [<%p>] %pS\n", state,
8389 			(void *)current->task_state_change,
8390 			(void *)current->task_state_change);
8391 
8392 	__might_resched(file, line, 0);
8393 }
8394 EXPORT_SYMBOL(__might_sleep);
8395 
8396 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8397 {
8398 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8399 		return;
8400 
8401 	if (preempt_count() == preempt_offset)
8402 		return;
8403 
8404 	pr_err("Preemption disabled at:");
8405 	print_ip_sym(KERN_ERR, ip);
8406 }
8407 
8408 static inline bool resched_offsets_ok(unsigned int offsets)
8409 {
8410 	unsigned int nested = preempt_count();
8411 
8412 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8413 
8414 	return nested == offsets;
8415 }
8416 
8417 void __might_resched(const char *file, int line, unsigned int offsets)
8418 {
8419 	/* Ratelimiting timestamp: */
8420 	static unsigned long prev_jiffy;
8421 
8422 	unsigned long preempt_disable_ip;
8423 
8424 	/* WARN_ON_ONCE() by default, no rate limit required: */
8425 	rcu_sleep_check();
8426 
8427 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8428 	     !is_idle_task(current) && !current->non_block_count) ||
8429 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8430 	    oops_in_progress)
8431 		return;
8432 
8433 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8434 		return;
8435 	prev_jiffy = jiffies;
8436 
8437 	/* Save this before calling printk(), since that will clobber it: */
8438 	preempt_disable_ip = get_preempt_disable_ip(current);
8439 
8440 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8441 	       file, line);
8442 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8443 	       in_atomic(), irqs_disabled(), current->non_block_count,
8444 	       current->pid, current->comm);
8445 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8446 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8447 
8448 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8449 		pr_err("RCU nest depth: %d, expected: %u\n",
8450 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8451 	}
8452 
8453 	if (task_stack_end_corrupted(current))
8454 		pr_emerg("Thread overran stack, or stack corrupted\n");
8455 
8456 	debug_show_held_locks(current);
8457 	if (irqs_disabled())
8458 		print_irqtrace_events(current);
8459 
8460 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8461 				 preempt_disable_ip);
8462 
8463 	dump_stack();
8464 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8465 }
8466 EXPORT_SYMBOL(__might_resched);
8467 
8468 void __cant_sleep(const char *file, int line, int preempt_offset)
8469 {
8470 	static unsigned long prev_jiffy;
8471 
8472 	if (irqs_disabled())
8473 		return;
8474 
8475 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8476 		return;
8477 
8478 	if (preempt_count() > preempt_offset)
8479 		return;
8480 
8481 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8482 		return;
8483 	prev_jiffy = jiffies;
8484 
8485 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8486 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8487 			in_atomic(), irqs_disabled(),
8488 			current->pid, current->comm);
8489 
8490 	debug_show_held_locks(current);
8491 	dump_stack();
8492 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8493 }
8494 EXPORT_SYMBOL_GPL(__cant_sleep);
8495 
8496 #ifdef CONFIG_SMP
8497 void __cant_migrate(const char *file, int line)
8498 {
8499 	static unsigned long prev_jiffy;
8500 
8501 	if (irqs_disabled())
8502 		return;
8503 
8504 	if (is_migration_disabled(current))
8505 		return;
8506 
8507 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8508 		return;
8509 
8510 	if (preempt_count() > 0)
8511 		return;
8512 
8513 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8514 		return;
8515 	prev_jiffy = jiffies;
8516 
8517 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8518 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8519 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8520 	       current->pid, current->comm);
8521 
8522 	debug_show_held_locks(current);
8523 	dump_stack();
8524 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8525 }
8526 EXPORT_SYMBOL_GPL(__cant_migrate);
8527 #endif
8528 #endif
8529 
8530 #ifdef CONFIG_MAGIC_SYSRQ
8531 void normalize_rt_tasks(void)
8532 {
8533 	struct task_struct *g, *p;
8534 	struct sched_attr attr = {
8535 		.sched_policy = SCHED_NORMAL,
8536 	};
8537 
8538 	read_lock(&tasklist_lock);
8539 	for_each_process_thread(g, p) {
8540 		/*
8541 		 * Only normalize user tasks:
8542 		 */
8543 		if (p->flags & PF_KTHREAD)
8544 			continue;
8545 
8546 		p->se.exec_start = 0;
8547 		schedstat_set(p->stats.wait_start,  0);
8548 		schedstat_set(p->stats.sleep_start, 0);
8549 		schedstat_set(p->stats.block_start, 0);
8550 
8551 		if (!dl_task(p) && !rt_task(p)) {
8552 			/*
8553 			 * Renice negative nice level userspace
8554 			 * tasks back to 0:
8555 			 */
8556 			if (task_nice(p) < 0)
8557 				set_user_nice(p, 0);
8558 			continue;
8559 		}
8560 
8561 		__sched_setscheduler(p, &attr, false, false);
8562 	}
8563 	read_unlock(&tasklist_lock);
8564 }
8565 
8566 #endif /* CONFIG_MAGIC_SYSRQ */
8567 
8568 #if defined(CONFIG_KGDB_KDB)
8569 /*
8570  * These functions are only useful for KDB.
8571  *
8572  * They can only be called when the whole system has been
8573  * stopped - every CPU needs to be quiescent, and no scheduling
8574  * activity can take place. Using them for anything else would
8575  * be a serious bug, and as a result, they aren't even visible
8576  * under any other configuration.
8577  */
8578 
8579 /**
8580  * curr_task - return the current task for a given CPU.
8581  * @cpu: the processor in question.
8582  *
8583  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8584  *
8585  * Return: The current task for @cpu.
8586  */
8587 struct task_struct *curr_task(int cpu)
8588 {
8589 	return cpu_curr(cpu);
8590 }
8591 
8592 #endif /* defined(CONFIG_KGDB_KDB) */
8593 
8594 #ifdef CONFIG_CGROUP_SCHED
8595 /* task_group_lock serializes the addition/removal of task groups */
8596 static DEFINE_SPINLOCK(task_group_lock);
8597 
8598 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8599 					    struct task_group *parent)
8600 {
8601 #ifdef CONFIG_UCLAMP_TASK_GROUP
8602 	enum uclamp_id clamp_id;
8603 
8604 	for_each_clamp_id(clamp_id) {
8605 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8606 			      uclamp_none(clamp_id), false);
8607 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8608 	}
8609 #endif
8610 }
8611 
8612 static void sched_free_group(struct task_group *tg)
8613 {
8614 	free_fair_sched_group(tg);
8615 	free_rt_sched_group(tg);
8616 	autogroup_free(tg);
8617 	kmem_cache_free(task_group_cache, tg);
8618 }
8619 
8620 static void sched_free_group_rcu(struct rcu_head *rcu)
8621 {
8622 	sched_free_group(container_of(rcu, struct task_group, rcu));
8623 }
8624 
8625 static void sched_unregister_group(struct task_group *tg)
8626 {
8627 	unregister_fair_sched_group(tg);
8628 	unregister_rt_sched_group(tg);
8629 	/*
8630 	 * We have to wait for yet another RCU grace period to expire, as
8631 	 * print_cfs_stats() might run concurrently.
8632 	 */
8633 	call_rcu(&tg->rcu, sched_free_group_rcu);
8634 }
8635 
8636 /* allocate runqueue etc for a new task group */
8637 struct task_group *sched_create_group(struct task_group *parent)
8638 {
8639 	struct task_group *tg;
8640 
8641 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8642 	if (!tg)
8643 		return ERR_PTR(-ENOMEM);
8644 
8645 	if (!alloc_fair_sched_group(tg, parent))
8646 		goto err;
8647 
8648 	if (!alloc_rt_sched_group(tg, parent))
8649 		goto err;
8650 
8651 	alloc_uclamp_sched_group(tg, parent);
8652 
8653 	return tg;
8654 
8655 err:
8656 	sched_free_group(tg);
8657 	return ERR_PTR(-ENOMEM);
8658 }
8659 
8660 void sched_online_group(struct task_group *tg, struct task_group *parent)
8661 {
8662 	unsigned long flags;
8663 
8664 	spin_lock_irqsave(&task_group_lock, flags);
8665 	list_add_rcu(&tg->list, &task_groups);
8666 
8667 	/* Root should already exist: */
8668 	WARN_ON(!parent);
8669 
8670 	tg->parent = parent;
8671 	INIT_LIST_HEAD(&tg->children);
8672 	list_add_rcu(&tg->siblings, &parent->children);
8673 	spin_unlock_irqrestore(&task_group_lock, flags);
8674 
8675 	online_fair_sched_group(tg);
8676 }
8677 
8678 /* RCU callback to free various structures associated with a task group */
8679 static void sched_unregister_group_rcu(struct rcu_head *rhp)
8680 {
8681 	/* Now it should be safe to free those cfs_rqs: */
8682 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
8683 }
8684 
8685 void sched_destroy_group(struct task_group *tg)
8686 {
8687 	/* Wait for possible concurrent references to cfs_rqs complete: */
8688 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
8689 }
8690 
8691 void sched_release_group(struct task_group *tg)
8692 {
8693 	unsigned long flags;
8694 
8695 	/*
8696 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
8697 	 * sched_cfs_period_timer()).
8698 	 *
8699 	 * For this to be effective, we have to wait for all pending users of
8700 	 * this task group to leave their RCU critical section to ensure no new
8701 	 * user will see our dying task group any more. Specifically ensure
8702 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
8703 	 *
8704 	 * We therefore defer calling unregister_fair_sched_group() to
8705 	 * sched_unregister_group() which is guarantied to get called only after the
8706 	 * current RCU grace period has expired.
8707 	 */
8708 	spin_lock_irqsave(&task_group_lock, flags);
8709 	list_del_rcu(&tg->list);
8710 	list_del_rcu(&tg->siblings);
8711 	spin_unlock_irqrestore(&task_group_lock, flags);
8712 }
8713 
8714 static struct task_group *sched_get_task_group(struct task_struct *tsk)
8715 {
8716 	struct task_group *tg;
8717 
8718 	/*
8719 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8720 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8721 	 * to prevent lockdep warnings.
8722 	 */
8723 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8724 			  struct task_group, css);
8725 	tg = autogroup_task_group(tsk, tg);
8726 
8727 	return tg;
8728 }
8729 
8730 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
8731 {
8732 	tsk->sched_task_group = group;
8733 
8734 #ifdef CONFIG_FAIR_GROUP_SCHED
8735 	if (tsk->sched_class->task_change_group)
8736 		tsk->sched_class->task_change_group(tsk);
8737 	else
8738 #endif
8739 		set_task_rq(tsk, task_cpu(tsk));
8740 }
8741 
8742 /*
8743  * Change task's runqueue when it moves between groups.
8744  *
8745  * The caller of this function should have put the task in its new group by
8746  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8747  * its new group.
8748  */
8749 void sched_move_task(struct task_struct *tsk)
8750 {
8751 	int queued, running, queue_flags =
8752 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8753 	struct task_group *group;
8754 	struct rq *rq;
8755 
8756 	CLASS(task_rq_lock, rq_guard)(tsk);
8757 	rq = rq_guard.rq;
8758 
8759 	/*
8760 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
8761 	 * group changes.
8762 	 */
8763 	group = sched_get_task_group(tsk);
8764 	if (group == tsk->sched_task_group)
8765 		return;
8766 
8767 	update_rq_clock(rq);
8768 
8769 	running = task_current(rq, tsk);
8770 	queued = task_on_rq_queued(tsk);
8771 
8772 	if (queued)
8773 		dequeue_task(rq, tsk, queue_flags);
8774 	if (running)
8775 		put_prev_task(rq, tsk);
8776 
8777 	sched_change_group(tsk, group);
8778 
8779 	if (queued)
8780 		enqueue_task(rq, tsk, queue_flags);
8781 	if (running) {
8782 		set_next_task(rq, tsk);
8783 		/*
8784 		 * After changing group, the running task may have joined a
8785 		 * throttled one but it's still the running task. Trigger a
8786 		 * resched to make sure that task can still run.
8787 		 */
8788 		resched_curr(rq);
8789 	}
8790 }
8791 
8792 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8793 {
8794 	return css ? container_of(css, struct task_group, css) : NULL;
8795 }
8796 
8797 static struct cgroup_subsys_state *
8798 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8799 {
8800 	struct task_group *parent = css_tg(parent_css);
8801 	struct task_group *tg;
8802 
8803 	if (!parent) {
8804 		/* This is early initialization for the top cgroup */
8805 		return &root_task_group.css;
8806 	}
8807 
8808 	tg = sched_create_group(parent);
8809 	if (IS_ERR(tg))
8810 		return ERR_PTR(-ENOMEM);
8811 
8812 	return &tg->css;
8813 }
8814 
8815 /* Expose task group only after completing cgroup initialization */
8816 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8817 {
8818 	struct task_group *tg = css_tg(css);
8819 	struct task_group *parent = css_tg(css->parent);
8820 
8821 	if (parent)
8822 		sched_online_group(tg, parent);
8823 
8824 #ifdef CONFIG_UCLAMP_TASK_GROUP
8825 	/* Propagate the effective uclamp value for the new group */
8826 	guard(mutex)(&uclamp_mutex);
8827 	guard(rcu)();
8828 	cpu_util_update_eff(css);
8829 #endif
8830 
8831 	return 0;
8832 }
8833 
8834 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8835 {
8836 	struct task_group *tg = css_tg(css);
8837 
8838 	sched_release_group(tg);
8839 }
8840 
8841 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8842 {
8843 	struct task_group *tg = css_tg(css);
8844 
8845 	/*
8846 	 * Relies on the RCU grace period between css_released() and this.
8847 	 */
8848 	sched_unregister_group(tg);
8849 }
8850 
8851 #ifdef CONFIG_RT_GROUP_SCHED
8852 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8853 {
8854 	struct task_struct *task;
8855 	struct cgroup_subsys_state *css;
8856 
8857 	cgroup_taskset_for_each(task, css, tset) {
8858 		if (!sched_rt_can_attach(css_tg(css), task))
8859 			return -EINVAL;
8860 	}
8861 	return 0;
8862 }
8863 #endif
8864 
8865 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8866 {
8867 	struct task_struct *task;
8868 	struct cgroup_subsys_state *css;
8869 
8870 	cgroup_taskset_for_each(task, css, tset)
8871 		sched_move_task(task);
8872 }
8873 
8874 #ifdef CONFIG_UCLAMP_TASK_GROUP
8875 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8876 {
8877 	struct cgroup_subsys_state *top_css = css;
8878 	struct uclamp_se *uc_parent = NULL;
8879 	struct uclamp_se *uc_se = NULL;
8880 	unsigned int eff[UCLAMP_CNT];
8881 	enum uclamp_id clamp_id;
8882 	unsigned int clamps;
8883 
8884 	lockdep_assert_held(&uclamp_mutex);
8885 	SCHED_WARN_ON(!rcu_read_lock_held());
8886 
8887 	css_for_each_descendant_pre(css, top_css) {
8888 		uc_parent = css_tg(css)->parent
8889 			? css_tg(css)->parent->uclamp : NULL;
8890 
8891 		for_each_clamp_id(clamp_id) {
8892 			/* Assume effective clamps matches requested clamps */
8893 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8894 			/* Cap effective clamps with parent's effective clamps */
8895 			if (uc_parent &&
8896 			    eff[clamp_id] > uc_parent[clamp_id].value) {
8897 				eff[clamp_id] = uc_parent[clamp_id].value;
8898 			}
8899 		}
8900 		/* Ensure protection is always capped by limit */
8901 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8902 
8903 		/* Propagate most restrictive effective clamps */
8904 		clamps = 0x0;
8905 		uc_se = css_tg(css)->uclamp;
8906 		for_each_clamp_id(clamp_id) {
8907 			if (eff[clamp_id] == uc_se[clamp_id].value)
8908 				continue;
8909 			uc_se[clamp_id].value = eff[clamp_id];
8910 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8911 			clamps |= (0x1 << clamp_id);
8912 		}
8913 		if (!clamps) {
8914 			css = css_rightmost_descendant(css);
8915 			continue;
8916 		}
8917 
8918 		/* Immediately update descendants RUNNABLE tasks */
8919 		uclamp_update_active_tasks(css);
8920 	}
8921 }
8922 
8923 /*
8924  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8925  * C expression. Since there is no way to convert a macro argument (N) into a
8926  * character constant, use two levels of macros.
8927  */
8928 #define _POW10(exp) ((unsigned int)1e##exp)
8929 #define POW10(exp) _POW10(exp)
8930 
8931 struct uclamp_request {
8932 #define UCLAMP_PERCENT_SHIFT	2
8933 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
8934 	s64 percent;
8935 	u64 util;
8936 	int ret;
8937 };
8938 
8939 static inline struct uclamp_request
8940 capacity_from_percent(char *buf)
8941 {
8942 	struct uclamp_request req = {
8943 		.percent = UCLAMP_PERCENT_SCALE,
8944 		.util = SCHED_CAPACITY_SCALE,
8945 		.ret = 0,
8946 	};
8947 
8948 	buf = strim(buf);
8949 	if (strcmp(buf, "max")) {
8950 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8951 					     &req.percent);
8952 		if (req.ret)
8953 			return req;
8954 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8955 			req.ret = -ERANGE;
8956 			return req;
8957 		}
8958 
8959 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
8960 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8961 	}
8962 
8963 	return req;
8964 }
8965 
8966 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8967 				size_t nbytes, loff_t off,
8968 				enum uclamp_id clamp_id)
8969 {
8970 	struct uclamp_request req;
8971 	struct task_group *tg;
8972 
8973 	req = capacity_from_percent(buf);
8974 	if (req.ret)
8975 		return req.ret;
8976 
8977 	static_branch_enable(&sched_uclamp_used);
8978 
8979 	guard(mutex)(&uclamp_mutex);
8980 	guard(rcu)();
8981 
8982 	tg = css_tg(of_css(of));
8983 	if (tg->uclamp_req[clamp_id].value != req.util)
8984 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8985 
8986 	/*
8987 	 * Because of not recoverable conversion rounding we keep track of the
8988 	 * exact requested value
8989 	 */
8990 	tg->uclamp_pct[clamp_id] = req.percent;
8991 
8992 	/* Update effective clamps to track the most restrictive value */
8993 	cpu_util_update_eff(of_css(of));
8994 
8995 	return nbytes;
8996 }
8997 
8998 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8999 				    char *buf, size_t nbytes,
9000 				    loff_t off)
9001 {
9002 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9003 }
9004 
9005 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9006 				    char *buf, size_t nbytes,
9007 				    loff_t off)
9008 {
9009 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9010 }
9011 
9012 static inline void cpu_uclamp_print(struct seq_file *sf,
9013 				    enum uclamp_id clamp_id)
9014 {
9015 	struct task_group *tg;
9016 	u64 util_clamp;
9017 	u64 percent;
9018 	u32 rem;
9019 
9020 	scoped_guard (rcu) {
9021 		tg = css_tg(seq_css(sf));
9022 		util_clamp = tg->uclamp_req[clamp_id].value;
9023 	}
9024 
9025 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9026 		seq_puts(sf, "max\n");
9027 		return;
9028 	}
9029 
9030 	percent = tg->uclamp_pct[clamp_id];
9031 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9032 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9033 }
9034 
9035 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9036 {
9037 	cpu_uclamp_print(sf, UCLAMP_MIN);
9038 	return 0;
9039 }
9040 
9041 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9042 {
9043 	cpu_uclamp_print(sf, UCLAMP_MAX);
9044 	return 0;
9045 }
9046 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9047 
9048 #ifdef CONFIG_FAIR_GROUP_SCHED
9049 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9050 				struct cftype *cftype, u64 shareval)
9051 {
9052 	if (shareval > scale_load_down(ULONG_MAX))
9053 		shareval = MAX_SHARES;
9054 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
9055 }
9056 
9057 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9058 			       struct cftype *cft)
9059 {
9060 	struct task_group *tg = css_tg(css);
9061 
9062 	return (u64) scale_load_down(tg->shares);
9063 }
9064 
9065 #ifdef CONFIG_CFS_BANDWIDTH
9066 static DEFINE_MUTEX(cfs_constraints_mutex);
9067 
9068 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9069 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9070 /* More than 203 days if BW_SHIFT equals 20. */
9071 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9072 
9073 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9074 
9075 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9076 				u64 burst)
9077 {
9078 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9079 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9080 
9081 	if (tg == &root_task_group)
9082 		return -EINVAL;
9083 
9084 	/*
9085 	 * Ensure we have at some amount of bandwidth every period.  This is
9086 	 * to prevent reaching a state of large arrears when throttled via
9087 	 * entity_tick() resulting in prolonged exit starvation.
9088 	 */
9089 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9090 		return -EINVAL;
9091 
9092 	/*
9093 	 * Likewise, bound things on the other side by preventing insane quota
9094 	 * periods.  This also allows us to normalize in computing quota
9095 	 * feasibility.
9096 	 */
9097 	if (period > max_cfs_quota_period)
9098 		return -EINVAL;
9099 
9100 	/*
9101 	 * Bound quota to defend quota against overflow during bandwidth shift.
9102 	 */
9103 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9104 		return -EINVAL;
9105 
9106 	if (quota != RUNTIME_INF && (burst > quota ||
9107 				     burst + quota > max_cfs_runtime))
9108 		return -EINVAL;
9109 
9110 	/*
9111 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9112 	 * unthrottle_offline_cfs_rqs().
9113 	 */
9114 	guard(cpus_read_lock)();
9115 	guard(mutex)(&cfs_constraints_mutex);
9116 
9117 	ret = __cfs_schedulable(tg, period, quota);
9118 	if (ret)
9119 		return ret;
9120 
9121 	runtime_enabled = quota != RUNTIME_INF;
9122 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9123 	/*
9124 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9125 	 * before making related changes, and on->off must occur afterwards
9126 	 */
9127 	if (runtime_enabled && !runtime_was_enabled)
9128 		cfs_bandwidth_usage_inc();
9129 
9130 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9131 		cfs_b->period = ns_to_ktime(period);
9132 		cfs_b->quota = quota;
9133 		cfs_b->burst = burst;
9134 
9135 		__refill_cfs_bandwidth_runtime(cfs_b);
9136 
9137 		/*
9138 		 * Restart the period timer (if active) to handle new
9139 		 * period expiry:
9140 		 */
9141 		if (runtime_enabled)
9142 			start_cfs_bandwidth(cfs_b);
9143 	}
9144 
9145 	for_each_online_cpu(i) {
9146 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9147 		struct rq *rq = cfs_rq->rq;
9148 
9149 		guard(rq_lock_irq)(rq);
9150 		cfs_rq->runtime_enabled = runtime_enabled;
9151 		cfs_rq->runtime_remaining = 0;
9152 
9153 		if (cfs_rq->throttled)
9154 			unthrottle_cfs_rq(cfs_rq);
9155 	}
9156 
9157 	if (runtime_was_enabled && !runtime_enabled)
9158 		cfs_bandwidth_usage_dec();
9159 
9160 	return 0;
9161 }
9162 
9163 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9164 {
9165 	u64 quota, period, burst;
9166 
9167 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9168 	burst = tg->cfs_bandwidth.burst;
9169 	if (cfs_quota_us < 0)
9170 		quota = RUNTIME_INF;
9171 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9172 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9173 	else
9174 		return -EINVAL;
9175 
9176 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9177 }
9178 
9179 static long tg_get_cfs_quota(struct task_group *tg)
9180 {
9181 	u64 quota_us;
9182 
9183 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9184 		return -1;
9185 
9186 	quota_us = tg->cfs_bandwidth.quota;
9187 	do_div(quota_us, NSEC_PER_USEC);
9188 
9189 	return quota_us;
9190 }
9191 
9192 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9193 {
9194 	u64 quota, period, burst;
9195 
9196 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9197 		return -EINVAL;
9198 
9199 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9200 	quota = tg->cfs_bandwidth.quota;
9201 	burst = tg->cfs_bandwidth.burst;
9202 
9203 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9204 }
9205 
9206 static long tg_get_cfs_period(struct task_group *tg)
9207 {
9208 	u64 cfs_period_us;
9209 
9210 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9211 	do_div(cfs_period_us, NSEC_PER_USEC);
9212 
9213 	return cfs_period_us;
9214 }
9215 
9216 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9217 {
9218 	u64 quota, period, burst;
9219 
9220 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9221 		return -EINVAL;
9222 
9223 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9224 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9225 	quota = tg->cfs_bandwidth.quota;
9226 
9227 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9228 }
9229 
9230 static long tg_get_cfs_burst(struct task_group *tg)
9231 {
9232 	u64 burst_us;
9233 
9234 	burst_us = tg->cfs_bandwidth.burst;
9235 	do_div(burst_us, NSEC_PER_USEC);
9236 
9237 	return burst_us;
9238 }
9239 
9240 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9241 				  struct cftype *cft)
9242 {
9243 	return tg_get_cfs_quota(css_tg(css));
9244 }
9245 
9246 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9247 				   struct cftype *cftype, s64 cfs_quota_us)
9248 {
9249 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9250 }
9251 
9252 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9253 				   struct cftype *cft)
9254 {
9255 	return tg_get_cfs_period(css_tg(css));
9256 }
9257 
9258 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9259 				    struct cftype *cftype, u64 cfs_period_us)
9260 {
9261 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9262 }
9263 
9264 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9265 				  struct cftype *cft)
9266 {
9267 	return tg_get_cfs_burst(css_tg(css));
9268 }
9269 
9270 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9271 				   struct cftype *cftype, u64 cfs_burst_us)
9272 {
9273 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9274 }
9275 
9276 struct cfs_schedulable_data {
9277 	struct task_group *tg;
9278 	u64 period, quota;
9279 };
9280 
9281 /*
9282  * normalize group quota/period to be quota/max_period
9283  * note: units are usecs
9284  */
9285 static u64 normalize_cfs_quota(struct task_group *tg,
9286 			       struct cfs_schedulable_data *d)
9287 {
9288 	u64 quota, period;
9289 
9290 	if (tg == d->tg) {
9291 		period = d->period;
9292 		quota = d->quota;
9293 	} else {
9294 		period = tg_get_cfs_period(tg);
9295 		quota = tg_get_cfs_quota(tg);
9296 	}
9297 
9298 	/* note: these should typically be equivalent */
9299 	if (quota == RUNTIME_INF || quota == -1)
9300 		return RUNTIME_INF;
9301 
9302 	return to_ratio(period, quota);
9303 }
9304 
9305 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9306 {
9307 	struct cfs_schedulable_data *d = data;
9308 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9309 	s64 quota = 0, parent_quota = -1;
9310 
9311 	if (!tg->parent) {
9312 		quota = RUNTIME_INF;
9313 	} else {
9314 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9315 
9316 		quota = normalize_cfs_quota(tg, d);
9317 		parent_quota = parent_b->hierarchical_quota;
9318 
9319 		/*
9320 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9321 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9322 		 * inherit when no limit is set. In both cases this is used
9323 		 * by the scheduler to determine if a given CFS task has a
9324 		 * bandwidth constraint at some higher level.
9325 		 */
9326 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9327 			if (quota == RUNTIME_INF)
9328 				quota = parent_quota;
9329 			else if (parent_quota != RUNTIME_INF)
9330 				quota = min(quota, parent_quota);
9331 		} else {
9332 			if (quota == RUNTIME_INF)
9333 				quota = parent_quota;
9334 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9335 				return -EINVAL;
9336 		}
9337 	}
9338 	cfs_b->hierarchical_quota = quota;
9339 
9340 	return 0;
9341 }
9342 
9343 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9344 {
9345 	struct cfs_schedulable_data data = {
9346 		.tg = tg,
9347 		.period = period,
9348 		.quota = quota,
9349 	};
9350 
9351 	if (quota != RUNTIME_INF) {
9352 		do_div(data.period, NSEC_PER_USEC);
9353 		do_div(data.quota, NSEC_PER_USEC);
9354 	}
9355 
9356 	guard(rcu)();
9357 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9358 }
9359 
9360 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9361 {
9362 	struct task_group *tg = css_tg(seq_css(sf));
9363 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9364 
9365 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9366 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9367 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9368 
9369 	if (schedstat_enabled() && tg != &root_task_group) {
9370 		struct sched_statistics *stats;
9371 		u64 ws = 0;
9372 		int i;
9373 
9374 		for_each_possible_cpu(i) {
9375 			stats = __schedstats_from_se(tg->se[i]);
9376 			ws += schedstat_val(stats->wait_sum);
9377 		}
9378 
9379 		seq_printf(sf, "wait_sum %llu\n", ws);
9380 	}
9381 
9382 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9383 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9384 
9385 	return 0;
9386 }
9387 
9388 static u64 throttled_time_self(struct task_group *tg)
9389 {
9390 	int i;
9391 	u64 total = 0;
9392 
9393 	for_each_possible_cpu(i) {
9394 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9395 	}
9396 
9397 	return total;
9398 }
9399 
9400 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9401 {
9402 	struct task_group *tg = css_tg(seq_css(sf));
9403 
9404 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9405 
9406 	return 0;
9407 }
9408 #endif /* CONFIG_CFS_BANDWIDTH */
9409 #endif /* CONFIG_FAIR_GROUP_SCHED */
9410 
9411 #ifdef CONFIG_RT_GROUP_SCHED
9412 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9413 				struct cftype *cft, s64 val)
9414 {
9415 	return sched_group_set_rt_runtime(css_tg(css), val);
9416 }
9417 
9418 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9419 			       struct cftype *cft)
9420 {
9421 	return sched_group_rt_runtime(css_tg(css));
9422 }
9423 
9424 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9425 				    struct cftype *cftype, u64 rt_period_us)
9426 {
9427 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9428 }
9429 
9430 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9431 				   struct cftype *cft)
9432 {
9433 	return sched_group_rt_period(css_tg(css));
9434 }
9435 #endif /* CONFIG_RT_GROUP_SCHED */
9436 
9437 #ifdef CONFIG_FAIR_GROUP_SCHED
9438 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9439 			       struct cftype *cft)
9440 {
9441 	return css_tg(css)->idle;
9442 }
9443 
9444 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9445 				struct cftype *cft, s64 idle)
9446 {
9447 	return sched_group_set_idle(css_tg(css), idle);
9448 }
9449 #endif
9450 
9451 static struct cftype cpu_legacy_files[] = {
9452 #ifdef CONFIG_FAIR_GROUP_SCHED
9453 	{
9454 		.name = "shares",
9455 		.read_u64 = cpu_shares_read_u64,
9456 		.write_u64 = cpu_shares_write_u64,
9457 	},
9458 	{
9459 		.name = "idle",
9460 		.read_s64 = cpu_idle_read_s64,
9461 		.write_s64 = cpu_idle_write_s64,
9462 	},
9463 #endif
9464 #ifdef CONFIG_CFS_BANDWIDTH
9465 	{
9466 		.name = "cfs_quota_us",
9467 		.read_s64 = cpu_cfs_quota_read_s64,
9468 		.write_s64 = cpu_cfs_quota_write_s64,
9469 	},
9470 	{
9471 		.name = "cfs_period_us",
9472 		.read_u64 = cpu_cfs_period_read_u64,
9473 		.write_u64 = cpu_cfs_period_write_u64,
9474 	},
9475 	{
9476 		.name = "cfs_burst_us",
9477 		.read_u64 = cpu_cfs_burst_read_u64,
9478 		.write_u64 = cpu_cfs_burst_write_u64,
9479 	},
9480 	{
9481 		.name = "stat",
9482 		.seq_show = cpu_cfs_stat_show,
9483 	},
9484 	{
9485 		.name = "stat.local",
9486 		.seq_show = cpu_cfs_local_stat_show,
9487 	},
9488 #endif
9489 #ifdef CONFIG_RT_GROUP_SCHED
9490 	{
9491 		.name = "rt_runtime_us",
9492 		.read_s64 = cpu_rt_runtime_read,
9493 		.write_s64 = cpu_rt_runtime_write,
9494 	},
9495 	{
9496 		.name = "rt_period_us",
9497 		.read_u64 = cpu_rt_period_read_uint,
9498 		.write_u64 = cpu_rt_period_write_uint,
9499 	},
9500 #endif
9501 #ifdef CONFIG_UCLAMP_TASK_GROUP
9502 	{
9503 		.name = "uclamp.min",
9504 		.flags = CFTYPE_NOT_ON_ROOT,
9505 		.seq_show = cpu_uclamp_min_show,
9506 		.write = cpu_uclamp_min_write,
9507 	},
9508 	{
9509 		.name = "uclamp.max",
9510 		.flags = CFTYPE_NOT_ON_ROOT,
9511 		.seq_show = cpu_uclamp_max_show,
9512 		.write = cpu_uclamp_max_write,
9513 	},
9514 #endif
9515 	{ }	/* Terminate */
9516 };
9517 
9518 static int cpu_extra_stat_show(struct seq_file *sf,
9519 			       struct cgroup_subsys_state *css)
9520 {
9521 #ifdef CONFIG_CFS_BANDWIDTH
9522 	{
9523 		struct task_group *tg = css_tg(css);
9524 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9525 		u64 throttled_usec, burst_usec;
9526 
9527 		throttled_usec = cfs_b->throttled_time;
9528 		do_div(throttled_usec, NSEC_PER_USEC);
9529 		burst_usec = cfs_b->burst_time;
9530 		do_div(burst_usec, NSEC_PER_USEC);
9531 
9532 		seq_printf(sf, "nr_periods %d\n"
9533 			   "nr_throttled %d\n"
9534 			   "throttled_usec %llu\n"
9535 			   "nr_bursts %d\n"
9536 			   "burst_usec %llu\n",
9537 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9538 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9539 	}
9540 #endif
9541 	return 0;
9542 }
9543 
9544 static int cpu_local_stat_show(struct seq_file *sf,
9545 			       struct cgroup_subsys_state *css)
9546 {
9547 #ifdef CONFIG_CFS_BANDWIDTH
9548 	{
9549 		struct task_group *tg = css_tg(css);
9550 		u64 throttled_self_usec;
9551 
9552 		throttled_self_usec = throttled_time_self(tg);
9553 		do_div(throttled_self_usec, NSEC_PER_USEC);
9554 
9555 		seq_printf(sf, "throttled_usec %llu\n",
9556 			   throttled_self_usec);
9557 	}
9558 #endif
9559 	return 0;
9560 }
9561 
9562 #ifdef CONFIG_FAIR_GROUP_SCHED
9563 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9564 			       struct cftype *cft)
9565 {
9566 	struct task_group *tg = css_tg(css);
9567 	u64 weight = scale_load_down(tg->shares);
9568 
9569 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9570 }
9571 
9572 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9573 				struct cftype *cft, u64 weight)
9574 {
9575 	/*
9576 	 * cgroup weight knobs should use the common MIN, DFL and MAX
9577 	 * values which are 1, 100 and 10000 respectively.  While it loses
9578 	 * a bit of range on both ends, it maps pretty well onto the shares
9579 	 * value used by scheduler and the round-trip conversions preserve
9580 	 * the original value over the entire range.
9581 	 */
9582 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9583 		return -ERANGE;
9584 
9585 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9586 
9587 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9588 }
9589 
9590 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9591 				    struct cftype *cft)
9592 {
9593 	unsigned long weight = scale_load_down(css_tg(css)->shares);
9594 	int last_delta = INT_MAX;
9595 	int prio, delta;
9596 
9597 	/* find the closest nice value to the current weight */
9598 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9599 		delta = abs(sched_prio_to_weight[prio] - weight);
9600 		if (delta >= last_delta)
9601 			break;
9602 		last_delta = delta;
9603 	}
9604 
9605 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9606 }
9607 
9608 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9609 				     struct cftype *cft, s64 nice)
9610 {
9611 	unsigned long weight;
9612 	int idx;
9613 
9614 	if (nice < MIN_NICE || nice > MAX_NICE)
9615 		return -ERANGE;
9616 
9617 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9618 	idx = array_index_nospec(idx, 40);
9619 	weight = sched_prio_to_weight[idx];
9620 
9621 	return sched_group_set_shares(css_tg(css), scale_load(weight));
9622 }
9623 #endif
9624 
9625 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9626 						  long period, long quota)
9627 {
9628 	if (quota < 0)
9629 		seq_puts(sf, "max");
9630 	else
9631 		seq_printf(sf, "%ld", quota);
9632 
9633 	seq_printf(sf, " %ld\n", period);
9634 }
9635 
9636 /* caller should put the current value in *@periodp before calling */
9637 static int __maybe_unused cpu_period_quota_parse(char *buf,
9638 						 u64 *periodp, u64 *quotap)
9639 {
9640 	char tok[21];	/* U64_MAX */
9641 
9642 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9643 		return -EINVAL;
9644 
9645 	*periodp *= NSEC_PER_USEC;
9646 
9647 	if (sscanf(tok, "%llu", quotap))
9648 		*quotap *= NSEC_PER_USEC;
9649 	else if (!strcmp(tok, "max"))
9650 		*quotap = RUNTIME_INF;
9651 	else
9652 		return -EINVAL;
9653 
9654 	return 0;
9655 }
9656 
9657 #ifdef CONFIG_CFS_BANDWIDTH
9658 static int cpu_max_show(struct seq_file *sf, void *v)
9659 {
9660 	struct task_group *tg = css_tg(seq_css(sf));
9661 
9662 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9663 	return 0;
9664 }
9665 
9666 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9667 			     char *buf, size_t nbytes, loff_t off)
9668 {
9669 	struct task_group *tg = css_tg(of_css(of));
9670 	u64 period = tg_get_cfs_period(tg);
9671 	u64 burst = tg->cfs_bandwidth.burst;
9672 	u64 quota;
9673 	int ret;
9674 
9675 	ret = cpu_period_quota_parse(buf, &period, &quota);
9676 	if (!ret)
9677 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
9678 	return ret ?: nbytes;
9679 }
9680 #endif
9681 
9682 static struct cftype cpu_files[] = {
9683 #ifdef CONFIG_FAIR_GROUP_SCHED
9684 	{
9685 		.name = "weight",
9686 		.flags = CFTYPE_NOT_ON_ROOT,
9687 		.read_u64 = cpu_weight_read_u64,
9688 		.write_u64 = cpu_weight_write_u64,
9689 	},
9690 	{
9691 		.name = "weight.nice",
9692 		.flags = CFTYPE_NOT_ON_ROOT,
9693 		.read_s64 = cpu_weight_nice_read_s64,
9694 		.write_s64 = cpu_weight_nice_write_s64,
9695 	},
9696 	{
9697 		.name = "idle",
9698 		.flags = CFTYPE_NOT_ON_ROOT,
9699 		.read_s64 = cpu_idle_read_s64,
9700 		.write_s64 = cpu_idle_write_s64,
9701 	},
9702 #endif
9703 #ifdef CONFIG_CFS_BANDWIDTH
9704 	{
9705 		.name = "max",
9706 		.flags = CFTYPE_NOT_ON_ROOT,
9707 		.seq_show = cpu_max_show,
9708 		.write = cpu_max_write,
9709 	},
9710 	{
9711 		.name = "max.burst",
9712 		.flags = CFTYPE_NOT_ON_ROOT,
9713 		.read_u64 = cpu_cfs_burst_read_u64,
9714 		.write_u64 = cpu_cfs_burst_write_u64,
9715 	},
9716 #endif
9717 #ifdef CONFIG_UCLAMP_TASK_GROUP
9718 	{
9719 		.name = "uclamp.min",
9720 		.flags = CFTYPE_NOT_ON_ROOT,
9721 		.seq_show = cpu_uclamp_min_show,
9722 		.write = cpu_uclamp_min_write,
9723 	},
9724 	{
9725 		.name = "uclamp.max",
9726 		.flags = CFTYPE_NOT_ON_ROOT,
9727 		.seq_show = cpu_uclamp_max_show,
9728 		.write = cpu_uclamp_max_write,
9729 	},
9730 #endif
9731 	{ }	/* terminate */
9732 };
9733 
9734 struct cgroup_subsys cpu_cgrp_subsys = {
9735 	.css_alloc	= cpu_cgroup_css_alloc,
9736 	.css_online	= cpu_cgroup_css_online,
9737 	.css_released	= cpu_cgroup_css_released,
9738 	.css_free	= cpu_cgroup_css_free,
9739 	.css_extra_stat_show = cpu_extra_stat_show,
9740 	.css_local_stat_show = cpu_local_stat_show,
9741 #ifdef CONFIG_RT_GROUP_SCHED
9742 	.can_attach	= cpu_cgroup_can_attach,
9743 #endif
9744 	.attach		= cpu_cgroup_attach,
9745 	.legacy_cftypes	= cpu_legacy_files,
9746 	.dfl_cftypes	= cpu_files,
9747 	.early_init	= true,
9748 	.threaded	= true,
9749 };
9750 
9751 #endif	/* CONFIG_CGROUP_SCHED */
9752 
9753 void dump_cpu_task(int cpu)
9754 {
9755 	if (cpu == smp_processor_id() && in_hardirq()) {
9756 		struct pt_regs *regs;
9757 
9758 		regs = get_irq_regs();
9759 		if (regs) {
9760 			show_regs(regs);
9761 			return;
9762 		}
9763 	}
9764 
9765 	if (trigger_single_cpu_backtrace(cpu))
9766 		return;
9767 
9768 	pr_info("Task dump for CPU %d:\n", cpu);
9769 	sched_show_task(cpu_curr(cpu));
9770 }
9771 
9772 /*
9773  * Nice levels are multiplicative, with a gentle 10% change for every
9774  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9775  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9776  * that remained on nice 0.
9777  *
9778  * The "10% effect" is relative and cumulative: from _any_ nice level,
9779  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9780  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9781  * If a task goes up by ~10% and another task goes down by ~10% then
9782  * the relative distance between them is ~25%.)
9783  */
9784 const int sched_prio_to_weight[40] = {
9785  /* -20 */     88761,     71755,     56483,     46273,     36291,
9786  /* -15 */     29154,     23254,     18705,     14949,     11916,
9787  /* -10 */      9548,      7620,      6100,      4904,      3906,
9788  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9789  /*   0 */      1024,       820,       655,       526,       423,
9790  /*   5 */       335,       272,       215,       172,       137,
9791  /*  10 */       110,        87,        70,        56,        45,
9792  /*  15 */        36,        29,        23,        18,        15,
9793 };
9794 
9795 /*
9796  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
9797  *
9798  * In cases where the weight does not change often, we can use the
9799  * pre-calculated inverse to speed up arithmetics by turning divisions
9800  * into multiplications:
9801  */
9802 const u32 sched_prio_to_wmult[40] = {
9803  /* -20 */     48388,     59856,     76040,     92818,    118348,
9804  /* -15 */    147320,    184698,    229616,    287308,    360437,
9805  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9806  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9807  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9808  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9809  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9810  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9811 };
9812 
9813 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9814 {
9815         trace_sched_update_nr_running_tp(rq, count);
9816 }
9817 
9818 #ifdef CONFIG_SCHED_MM_CID
9819 
9820 /*
9821  * @cid_lock: Guarantee forward-progress of cid allocation.
9822  *
9823  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
9824  * is only used when contention is detected by the lock-free allocation so
9825  * forward progress can be guaranteed.
9826  */
9827 DEFINE_RAW_SPINLOCK(cid_lock);
9828 
9829 /*
9830  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
9831  *
9832  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
9833  * detected, it is set to 1 to ensure that all newly coming allocations are
9834  * serialized by @cid_lock until the allocation which detected contention
9835  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
9836  * of a cid allocation.
9837  */
9838 int use_cid_lock;
9839 
9840 /*
9841  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
9842  * concurrently with respect to the execution of the source runqueue context
9843  * switch.
9844  *
9845  * There is one basic properties we want to guarantee here:
9846  *
9847  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
9848  * used by a task. That would lead to concurrent allocation of the cid and
9849  * userspace corruption.
9850  *
9851  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
9852  * that a pair of loads observe at least one of a pair of stores, which can be
9853  * shown as:
9854  *
9855  *      X = Y = 0
9856  *
9857  *      w[X]=1          w[Y]=1
9858  *      MB              MB
9859  *      r[Y]=y          r[X]=x
9860  *
9861  * Which guarantees that x==0 && y==0 is impossible. But rather than using
9862  * values 0 and 1, this algorithm cares about specific state transitions of the
9863  * runqueue current task (as updated by the scheduler context switch), and the
9864  * per-mm/cpu cid value.
9865  *
9866  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
9867  * task->mm != mm for the rest of the discussion. There are two scheduler state
9868  * transitions on context switch we care about:
9869  *
9870  * (TSA) Store to rq->curr with transition from (N) to (Y)
9871  *
9872  * (TSB) Store to rq->curr with transition from (Y) to (N)
9873  *
9874  * On the remote-clear side, there is one transition we care about:
9875  *
9876  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
9877  *
9878  * There is also a transition to UNSET state which can be performed from all
9879  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
9880  * guarantees that only a single thread will succeed:
9881  *
9882  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
9883  *
9884  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
9885  * when a thread is actively using the cid (property (1)).
9886  *
9887  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
9888  *
9889  * Scenario A) (TSA)+(TMA) (from next task perspective)
9890  *
9891  * CPU0                                      CPU1
9892  *
9893  * Context switch CS-1                       Remote-clear
9894  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
9895  *                                             (implied barrier after cmpxchg)
9896  *   - switch_mm_cid()
9897  *     - memory barrier (see switch_mm_cid()
9898  *       comment explaining how this barrier
9899  *       is combined with other scheduler
9900  *       barriers)
9901  *     - mm_cid_get (next)
9902  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
9903  *
9904  * This Dekker ensures that either task (Y) is observed by the
9905  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
9906  * observed.
9907  *
9908  * If task (Y) store is observed by rcu_dereference(), it means that there is
9909  * still an active task on the cpu. Remote-clear will therefore not transition
9910  * to UNSET, which fulfills property (1).
9911  *
9912  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
9913  * it will move its state to UNSET, which clears the percpu cid perhaps
9914  * uselessly (which is not an issue for correctness). Because task (Y) is not
9915  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
9916  * state to UNSET is done with a cmpxchg expecting that the old state has the
9917  * LAZY flag set, only one thread will successfully UNSET.
9918  *
9919  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
9920  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
9921  * CPU1 will observe task (Y) and do nothing more, which is fine.
9922  *
9923  * What we are effectively preventing with this Dekker is a scenario where
9924  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
9925  * because this would UNSET a cid which is actively used.
9926  */
9927 
9928 void sched_mm_cid_migrate_from(struct task_struct *t)
9929 {
9930 	t->migrate_from_cpu = task_cpu(t);
9931 }
9932 
9933 static
9934 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
9935 					  struct task_struct *t,
9936 					  struct mm_cid *src_pcpu_cid)
9937 {
9938 	struct mm_struct *mm = t->mm;
9939 	struct task_struct *src_task;
9940 	int src_cid, last_mm_cid;
9941 
9942 	if (!mm)
9943 		return -1;
9944 
9945 	last_mm_cid = t->last_mm_cid;
9946 	/*
9947 	 * If the migrated task has no last cid, or if the current
9948 	 * task on src rq uses the cid, it means the source cid does not need
9949 	 * to be moved to the destination cpu.
9950 	 */
9951 	if (last_mm_cid == -1)
9952 		return -1;
9953 	src_cid = READ_ONCE(src_pcpu_cid->cid);
9954 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
9955 		return -1;
9956 
9957 	/*
9958 	 * If we observe an active task using the mm on this rq, it means we
9959 	 * are not the last task to be migrated from this cpu for this mm, so
9960 	 * there is no need to move src_cid to the destination cpu.
9961 	 */
9962 	guard(rcu)();
9963 	src_task = rcu_dereference(src_rq->curr);
9964 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
9965 		t->last_mm_cid = -1;
9966 		return -1;
9967 	}
9968 
9969 	return src_cid;
9970 }
9971 
9972 static
9973 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
9974 					      struct task_struct *t,
9975 					      struct mm_cid *src_pcpu_cid,
9976 					      int src_cid)
9977 {
9978 	struct task_struct *src_task;
9979 	struct mm_struct *mm = t->mm;
9980 	int lazy_cid;
9981 
9982 	if (src_cid == -1)
9983 		return -1;
9984 
9985 	/*
9986 	 * Attempt to clear the source cpu cid to move it to the destination
9987 	 * cpu.
9988 	 */
9989 	lazy_cid = mm_cid_set_lazy_put(src_cid);
9990 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
9991 		return -1;
9992 
9993 	/*
9994 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
9995 	 * rq->curr->mm matches the scheduler barrier in context_switch()
9996 	 * between store to rq->curr and load of prev and next task's
9997 	 * per-mm/cpu cid.
9998 	 *
9999 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10000 	 * rq->curr->mm_cid_active matches the barrier in
10001 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10002 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10003 	 * load of per-mm/cpu cid.
10004 	 */
10005 
10006 	/*
10007 	 * If we observe an active task using the mm on this rq after setting
10008 	 * the lazy-put flag, this task will be responsible for transitioning
10009 	 * from lazy-put flag set to MM_CID_UNSET.
10010 	 */
10011 	scoped_guard (rcu) {
10012 		src_task = rcu_dereference(src_rq->curr);
10013 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10014 			/*
10015 			 * We observed an active task for this mm, there is therefore
10016 			 * no point in moving this cid to the destination cpu.
10017 			 */
10018 			t->last_mm_cid = -1;
10019 			return -1;
10020 		}
10021 	}
10022 
10023 	/*
10024 	 * The src_cid is unused, so it can be unset.
10025 	 */
10026 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10027 		return -1;
10028 	return src_cid;
10029 }
10030 
10031 /*
10032  * Migration to dst cpu. Called with dst_rq lock held.
10033  * Interrupts are disabled, which keeps the window of cid ownership without the
10034  * source rq lock held small.
10035  */
10036 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10037 {
10038 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10039 	struct mm_struct *mm = t->mm;
10040 	int src_cid, dst_cid, src_cpu;
10041 	struct rq *src_rq;
10042 
10043 	lockdep_assert_rq_held(dst_rq);
10044 
10045 	if (!mm)
10046 		return;
10047 	src_cpu = t->migrate_from_cpu;
10048 	if (src_cpu == -1) {
10049 		t->last_mm_cid = -1;
10050 		return;
10051 	}
10052 	/*
10053 	 * Move the src cid if the dst cid is unset. This keeps id
10054 	 * allocation closest to 0 in cases where few threads migrate around
10055 	 * many CPUs.
10056 	 *
10057 	 * If destination cid is already set, we may have to just clear
10058 	 * the src cid to ensure compactness in frequent migrations
10059 	 * scenarios.
10060 	 *
10061 	 * It is not useful to clear the src cid when the number of threads is
10062 	 * greater or equal to the number of allowed CPUs, because user-space
10063 	 * can expect that the number of allowed cids can reach the number of
10064 	 * allowed CPUs.
10065 	 */
10066 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10067 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
10068 	if (!mm_cid_is_unset(dst_cid) &&
10069 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
10070 		return;
10071 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10072 	src_rq = cpu_rq(src_cpu);
10073 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10074 	if (src_cid == -1)
10075 		return;
10076 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10077 							    src_cid);
10078 	if (src_cid == -1)
10079 		return;
10080 	if (!mm_cid_is_unset(dst_cid)) {
10081 		__mm_cid_put(mm, src_cid);
10082 		return;
10083 	}
10084 	/* Move src_cid to dst cpu. */
10085 	mm_cid_snapshot_time(dst_rq, mm);
10086 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10087 }
10088 
10089 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10090 				      int cpu)
10091 {
10092 	struct rq *rq = cpu_rq(cpu);
10093 	struct task_struct *t;
10094 	int cid, lazy_cid;
10095 
10096 	cid = READ_ONCE(pcpu_cid->cid);
10097 	if (!mm_cid_is_valid(cid))
10098 		return;
10099 
10100 	/*
10101 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10102 	 * there happens to be other tasks left on the source cpu using this
10103 	 * mm, the next task using this mm will reallocate its cid on context
10104 	 * switch.
10105 	 */
10106 	lazy_cid = mm_cid_set_lazy_put(cid);
10107 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10108 		return;
10109 
10110 	/*
10111 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10112 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10113 	 * between store to rq->curr and load of prev and next task's
10114 	 * per-mm/cpu cid.
10115 	 *
10116 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10117 	 * rq->curr->mm_cid_active matches the barrier in
10118 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10119 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10120 	 * load of per-mm/cpu cid.
10121 	 */
10122 
10123 	/*
10124 	 * If we observe an active task using the mm on this rq after setting
10125 	 * the lazy-put flag, that task will be responsible for transitioning
10126 	 * from lazy-put flag set to MM_CID_UNSET.
10127 	 */
10128 	scoped_guard (rcu) {
10129 		t = rcu_dereference(rq->curr);
10130 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10131 			return;
10132 	}
10133 
10134 	/*
10135 	 * The cid is unused, so it can be unset.
10136 	 * Disable interrupts to keep the window of cid ownership without rq
10137 	 * lock small.
10138 	 */
10139 	scoped_guard (irqsave) {
10140 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10141 			__mm_cid_put(mm, cid);
10142 	}
10143 }
10144 
10145 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10146 {
10147 	struct rq *rq = cpu_rq(cpu);
10148 	struct mm_cid *pcpu_cid;
10149 	struct task_struct *curr;
10150 	u64 rq_clock;
10151 
10152 	/*
10153 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10154 	 * while is irrelevant.
10155 	 */
10156 	rq_clock = READ_ONCE(rq->clock);
10157 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10158 
10159 	/*
10160 	 * In order to take care of infrequently scheduled tasks, bump the time
10161 	 * snapshot associated with this cid if an active task using the mm is
10162 	 * observed on this rq.
10163 	 */
10164 	scoped_guard (rcu) {
10165 		curr = rcu_dereference(rq->curr);
10166 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10167 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10168 			return;
10169 		}
10170 	}
10171 
10172 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10173 		return;
10174 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10175 }
10176 
10177 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10178 					     int weight)
10179 {
10180 	struct mm_cid *pcpu_cid;
10181 	int cid;
10182 
10183 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10184 	cid = READ_ONCE(pcpu_cid->cid);
10185 	if (!mm_cid_is_valid(cid) || cid < weight)
10186 		return;
10187 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10188 }
10189 
10190 static void task_mm_cid_work(struct callback_head *work)
10191 {
10192 	unsigned long now = jiffies, old_scan, next_scan;
10193 	struct task_struct *t = current;
10194 	struct cpumask *cidmask;
10195 	struct mm_struct *mm;
10196 	int weight, cpu;
10197 
10198 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
10199 
10200 	work->next = work;	/* Prevent double-add */
10201 	if (t->flags & PF_EXITING)
10202 		return;
10203 	mm = t->mm;
10204 	if (!mm)
10205 		return;
10206 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10207 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10208 	if (!old_scan) {
10209 		unsigned long res;
10210 
10211 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10212 		if (res != old_scan)
10213 			old_scan = res;
10214 		else
10215 			old_scan = next_scan;
10216 	}
10217 	if (time_before(now, old_scan))
10218 		return;
10219 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10220 		return;
10221 	cidmask = mm_cidmask(mm);
10222 	/* Clear cids that were not recently used. */
10223 	for_each_possible_cpu(cpu)
10224 		sched_mm_cid_remote_clear_old(mm, cpu);
10225 	weight = cpumask_weight(cidmask);
10226 	/*
10227 	 * Clear cids that are greater or equal to the cidmask weight to
10228 	 * recompact it.
10229 	 */
10230 	for_each_possible_cpu(cpu)
10231 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10232 }
10233 
10234 void init_sched_mm_cid(struct task_struct *t)
10235 {
10236 	struct mm_struct *mm = t->mm;
10237 	int mm_users = 0;
10238 
10239 	if (mm) {
10240 		mm_users = atomic_read(&mm->mm_users);
10241 		if (mm_users == 1)
10242 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10243 	}
10244 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10245 	init_task_work(&t->cid_work, task_mm_cid_work);
10246 }
10247 
10248 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10249 {
10250 	struct callback_head *work = &curr->cid_work;
10251 	unsigned long now = jiffies;
10252 
10253 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10254 	    work->next != work)
10255 		return;
10256 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10257 		return;
10258 	task_work_add(curr, work, TWA_RESUME);
10259 }
10260 
10261 void sched_mm_cid_exit_signals(struct task_struct *t)
10262 {
10263 	struct mm_struct *mm = t->mm;
10264 	struct rq *rq;
10265 
10266 	if (!mm)
10267 		return;
10268 
10269 	preempt_disable();
10270 	rq = this_rq();
10271 	guard(rq_lock_irqsave)(rq);
10272 	preempt_enable_no_resched();	/* holding spinlock */
10273 	WRITE_ONCE(t->mm_cid_active, 0);
10274 	/*
10275 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10276 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10277 	 */
10278 	smp_mb();
10279 	mm_cid_put(mm);
10280 	t->last_mm_cid = t->mm_cid = -1;
10281 }
10282 
10283 void sched_mm_cid_before_execve(struct task_struct *t)
10284 {
10285 	struct mm_struct *mm = t->mm;
10286 	struct rq *rq;
10287 
10288 	if (!mm)
10289 		return;
10290 
10291 	preempt_disable();
10292 	rq = this_rq();
10293 	guard(rq_lock_irqsave)(rq);
10294 	preempt_enable_no_resched();	/* holding spinlock */
10295 	WRITE_ONCE(t->mm_cid_active, 0);
10296 	/*
10297 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10298 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10299 	 */
10300 	smp_mb();
10301 	mm_cid_put(mm);
10302 	t->last_mm_cid = t->mm_cid = -1;
10303 }
10304 
10305 void sched_mm_cid_after_execve(struct task_struct *t)
10306 {
10307 	struct mm_struct *mm = t->mm;
10308 	struct rq *rq;
10309 
10310 	if (!mm)
10311 		return;
10312 
10313 	preempt_disable();
10314 	rq = this_rq();
10315 	scoped_guard (rq_lock_irqsave, rq) {
10316 		preempt_enable_no_resched();	/* holding spinlock */
10317 		WRITE_ONCE(t->mm_cid_active, 1);
10318 		/*
10319 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10320 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10321 		 */
10322 		smp_mb();
10323 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
10324 	}
10325 	rseq_set_notify_resume(t);
10326 }
10327 
10328 void sched_mm_cid_fork(struct task_struct *t)
10329 {
10330 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10331 	t->mm_cid_active = 1;
10332 }
10333 #endif
10334