1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 95 #include "../workqueue_internal.h" 96 #include "../../io_uring/io-wq.h" 97 #include "../smpboot.h" 98 99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 101 102 /* 103 * Export tracepoints that act as a bare tracehook (ie: have no trace event 104 * associated with them) to allow external modules to probe them. 105 */ 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 118 119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 120 121 /* 122 * Debugging: various feature bits 123 * 124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 125 * sysctl_sched_features, defined in sched.h, to allow constants propagation 126 * at compile time and compiler optimization based on features default. 127 */ 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 __read_mostly unsigned int sysctl_sched_features = 131 #include "features.h" 132 0; 133 #undef SCHED_FEAT 134 135 /* 136 * Print a warning if need_resched is set for the given duration (if 137 * LATENCY_WARN is enabled). 138 * 139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 140 * per boot. 141 */ 142 __read_mostly int sysctl_resched_latency_warn_ms = 100; 143 __read_mostly int sysctl_resched_latency_warn_once = 1; 144 145 /* 146 * Number of tasks to iterate in a single balance run. 147 * Limited because this is done with IRQs disabled. 148 */ 149 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 150 151 __read_mostly int scheduler_running; 152 153 #ifdef CONFIG_SCHED_CORE 154 155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 156 157 /* kernel prio, less is more */ 158 static inline int __task_prio(const struct task_struct *p) 159 { 160 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 161 return -2; 162 163 if (p->dl_server) 164 return -1; /* deadline */ 165 166 if (rt_or_dl_prio(p->prio)) 167 return p->prio; /* [-1, 99] */ 168 169 if (p->sched_class == &idle_sched_class) 170 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 171 172 if (task_on_scx(p)) 173 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 174 175 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 176 } 177 178 /* 179 * l(a,b) 180 * le(a,b) := !l(b,a) 181 * g(a,b) := l(b,a) 182 * ge(a,b) := !l(a,b) 183 */ 184 185 /* real prio, less is less */ 186 static inline bool prio_less(const struct task_struct *a, 187 const struct task_struct *b, bool in_fi) 188 { 189 190 int pa = __task_prio(a), pb = __task_prio(b); 191 192 if (-pa < -pb) 193 return true; 194 195 if (-pb < -pa) 196 return false; 197 198 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 199 const struct sched_dl_entity *a_dl, *b_dl; 200 201 a_dl = &a->dl; 202 /* 203 * Since,'a' and 'b' can be CFS tasks served by DL server, 204 * __task_prio() can return -1 (for DL) even for those. In that 205 * case, get to the dl_server's DL entity. 206 */ 207 if (a->dl_server) 208 a_dl = a->dl_server; 209 210 b_dl = &b->dl; 211 if (b->dl_server) 212 b_dl = b->dl_server; 213 214 return !dl_time_before(a_dl->deadline, b_dl->deadline); 215 } 216 217 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 218 return cfs_prio_less(a, b, in_fi); 219 220 #ifdef CONFIG_SCHED_CLASS_EXT 221 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 222 return scx_prio_less(a, b, in_fi); 223 #endif 224 225 return false; 226 } 227 228 static inline bool __sched_core_less(const struct task_struct *a, 229 const struct task_struct *b) 230 { 231 if (a->core_cookie < b->core_cookie) 232 return true; 233 234 if (a->core_cookie > b->core_cookie) 235 return false; 236 237 /* flip prio, so high prio is leftmost */ 238 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 239 return true; 240 241 return false; 242 } 243 244 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 245 246 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 247 { 248 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 249 } 250 251 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 252 { 253 const struct task_struct *p = __node_2_sc(node); 254 unsigned long cookie = (unsigned long)key; 255 256 if (cookie < p->core_cookie) 257 return -1; 258 259 if (cookie > p->core_cookie) 260 return 1; 261 262 return 0; 263 } 264 265 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 266 { 267 if (p->se.sched_delayed) 268 return; 269 270 rq->core->core_task_seq++; 271 272 if (!p->core_cookie) 273 return; 274 275 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 276 } 277 278 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 279 { 280 if (p->se.sched_delayed) 281 return; 282 283 rq->core->core_task_seq++; 284 285 if (sched_core_enqueued(p)) { 286 rb_erase(&p->core_node, &rq->core_tree); 287 RB_CLEAR_NODE(&p->core_node); 288 } 289 290 /* 291 * Migrating the last task off the cpu, with the cpu in forced idle 292 * state. Reschedule to create an accounting edge for forced idle, 293 * and re-examine whether the core is still in forced idle state. 294 */ 295 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 296 rq->core->core_forceidle_count && rq->curr == rq->idle) 297 resched_curr(rq); 298 } 299 300 static int sched_task_is_throttled(struct task_struct *p, int cpu) 301 { 302 if (p->sched_class->task_is_throttled) 303 return p->sched_class->task_is_throttled(p, cpu); 304 305 return 0; 306 } 307 308 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 309 { 310 struct rb_node *node = &p->core_node; 311 int cpu = task_cpu(p); 312 313 do { 314 node = rb_next(node); 315 if (!node) 316 return NULL; 317 318 p = __node_2_sc(node); 319 if (p->core_cookie != cookie) 320 return NULL; 321 322 } while (sched_task_is_throttled(p, cpu)); 323 324 return p; 325 } 326 327 /* 328 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 329 * If no suitable task is found, NULL will be returned. 330 */ 331 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 332 { 333 struct task_struct *p; 334 struct rb_node *node; 335 336 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 337 if (!node) 338 return NULL; 339 340 p = __node_2_sc(node); 341 if (!sched_task_is_throttled(p, rq->cpu)) 342 return p; 343 344 return sched_core_next(p, cookie); 345 } 346 347 /* 348 * Magic required such that: 349 * 350 * raw_spin_rq_lock(rq); 351 * ... 352 * raw_spin_rq_unlock(rq); 353 * 354 * ends up locking and unlocking the _same_ lock, and all CPUs 355 * always agree on what rq has what lock. 356 * 357 * XXX entirely possible to selectively enable cores, don't bother for now. 358 */ 359 360 static DEFINE_MUTEX(sched_core_mutex); 361 static atomic_t sched_core_count; 362 static struct cpumask sched_core_mask; 363 364 static void sched_core_lock(int cpu, unsigned long *flags) 365 { 366 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 367 int t, i = 0; 368 369 local_irq_save(*flags); 370 for_each_cpu(t, smt_mask) 371 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 372 } 373 374 static void sched_core_unlock(int cpu, unsigned long *flags) 375 { 376 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 377 int t; 378 379 for_each_cpu(t, smt_mask) 380 raw_spin_unlock(&cpu_rq(t)->__lock); 381 local_irq_restore(*flags); 382 } 383 384 static void __sched_core_flip(bool enabled) 385 { 386 unsigned long flags; 387 int cpu, t; 388 389 cpus_read_lock(); 390 391 /* 392 * Toggle the online cores, one by one. 393 */ 394 cpumask_copy(&sched_core_mask, cpu_online_mask); 395 for_each_cpu(cpu, &sched_core_mask) { 396 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 397 398 sched_core_lock(cpu, &flags); 399 400 for_each_cpu(t, smt_mask) 401 cpu_rq(t)->core_enabled = enabled; 402 403 cpu_rq(cpu)->core->core_forceidle_start = 0; 404 405 sched_core_unlock(cpu, &flags); 406 407 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 408 } 409 410 /* 411 * Toggle the offline CPUs. 412 */ 413 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 414 cpu_rq(cpu)->core_enabled = enabled; 415 416 cpus_read_unlock(); 417 } 418 419 static void sched_core_assert_empty(void) 420 { 421 int cpu; 422 423 for_each_possible_cpu(cpu) 424 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 425 } 426 427 static void __sched_core_enable(void) 428 { 429 static_branch_enable(&__sched_core_enabled); 430 /* 431 * Ensure all previous instances of raw_spin_rq_*lock() have finished 432 * and future ones will observe !sched_core_disabled(). 433 */ 434 synchronize_rcu(); 435 __sched_core_flip(true); 436 sched_core_assert_empty(); 437 } 438 439 static void __sched_core_disable(void) 440 { 441 sched_core_assert_empty(); 442 __sched_core_flip(false); 443 static_branch_disable(&__sched_core_enabled); 444 } 445 446 void sched_core_get(void) 447 { 448 if (atomic_inc_not_zero(&sched_core_count)) 449 return; 450 451 mutex_lock(&sched_core_mutex); 452 if (!atomic_read(&sched_core_count)) 453 __sched_core_enable(); 454 455 smp_mb__before_atomic(); 456 atomic_inc(&sched_core_count); 457 mutex_unlock(&sched_core_mutex); 458 } 459 460 static void __sched_core_put(struct work_struct *work) 461 { 462 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 463 __sched_core_disable(); 464 mutex_unlock(&sched_core_mutex); 465 } 466 } 467 468 void sched_core_put(void) 469 { 470 static DECLARE_WORK(_work, __sched_core_put); 471 472 /* 473 * "There can be only one" 474 * 475 * Either this is the last one, or we don't actually need to do any 476 * 'work'. If it is the last *again*, we rely on 477 * WORK_STRUCT_PENDING_BIT. 478 */ 479 if (!atomic_add_unless(&sched_core_count, -1, 1)) 480 schedule_work(&_work); 481 } 482 483 #else /* !CONFIG_SCHED_CORE */ 484 485 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 486 static inline void 487 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 488 489 #endif /* CONFIG_SCHED_CORE */ 490 491 /* 492 * Serialization rules: 493 * 494 * Lock order: 495 * 496 * p->pi_lock 497 * rq->lock 498 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 499 * 500 * rq1->lock 501 * rq2->lock where: rq1 < rq2 502 * 503 * Regular state: 504 * 505 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 506 * local CPU's rq->lock, it optionally removes the task from the runqueue and 507 * always looks at the local rq data structures to find the most eligible task 508 * to run next. 509 * 510 * Task enqueue is also under rq->lock, possibly taken from another CPU. 511 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 512 * the local CPU to avoid bouncing the runqueue state around [ see 513 * ttwu_queue_wakelist() ] 514 * 515 * Task wakeup, specifically wakeups that involve migration, are horribly 516 * complicated to avoid having to take two rq->locks. 517 * 518 * Special state: 519 * 520 * System-calls and anything external will use task_rq_lock() which acquires 521 * both p->pi_lock and rq->lock. As a consequence the state they change is 522 * stable while holding either lock: 523 * 524 * - sched_setaffinity()/ 525 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 526 * - set_user_nice(): p->se.load, p->*prio 527 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 528 * p->se.load, p->rt_priority, 529 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 530 * - sched_setnuma(): p->numa_preferred_nid 531 * - sched_move_task(): p->sched_task_group 532 * - uclamp_update_active() p->uclamp* 533 * 534 * p->state <- TASK_*: 535 * 536 * is changed locklessly using set_current_state(), __set_current_state() or 537 * set_special_state(), see their respective comments, or by 538 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 539 * concurrent self. 540 * 541 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 542 * 543 * is set by activate_task() and cleared by deactivate_task(), under 544 * rq->lock. Non-zero indicates the task is runnable, the special 545 * ON_RQ_MIGRATING state is used for migration without holding both 546 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 547 * 548 * Additionally it is possible to be ->on_rq but still be considered not 549 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 550 * but will be dequeued as soon as they get picked again. See the 551 * task_is_runnable() helper. 552 * 553 * p->on_cpu <- { 0, 1 }: 554 * 555 * is set by prepare_task() and cleared by finish_task() such that it will be 556 * set before p is scheduled-in and cleared after p is scheduled-out, both 557 * under rq->lock. Non-zero indicates the task is running on its CPU. 558 * 559 * [ The astute reader will observe that it is possible for two tasks on one 560 * CPU to have ->on_cpu = 1 at the same time. ] 561 * 562 * task_cpu(p): is changed by set_task_cpu(), the rules are: 563 * 564 * - Don't call set_task_cpu() on a blocked task: 565 * 566 * We don't care what CPU we're not running on, this simplifies hotplug, 567 * the CPU assignment of blocked tasks isn't required to be valid. 568 * 569 * - for try_to_wake_up(), called under p->pi_lock: 570 * 571 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 572 * 573 * - for migration called under rq->lock: 574 * [ see task_on_rq_migrating() in task_rq_lock() ] 575 * 576 * o move_queued_task() 577 * o detach_task() 578 * 579 * - for migration called under double_rq_lock(): 580 * 581 * o __migrate_swap_task() 582 * o push_rt_task() / pull_rt_task() 583 * o push_dl_task() / pull_dl_task() 584 * o dl_task_offline_migration() 585 * 586 */ 587 588 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 589 { 590 raw_spinlock_t *lock; 591 592 /* Matches synchronize_rcu() in __sched_core_enable() */ 593 preempt_disable(); 594 if (sched_core_disabled()) { 595 raw_spin_lock_nested(&rq->__lock, subclass); 596 /* preempt_count *MUST* be > 1 */ 597 preempt_enable_no_resched(); 598 return; 599 } 600 601 for (;;) { 602 lock = __rq_lockp(rq); 603 raw_spin_lock_nested(lock, subclass); 604 if (likely(lock == __rq_lockp(rq))) { 605 /* preempt_count *MUST* be > 1 */ 606 preempt_enable_no_resched(); 607 return; 608 } 609 raw_spin_unlock(lock); 610 } 611 } 612 613 bool raw_spin_rq_trylock(struct rq *rq) 614 { 615 raw_spinlock_t *lock; 616 bool ret; 617 618 /* Matches synchronize_rcu() in __sched_core_enable() */ 619 preempt_disable(); 620 if (sched_core_disabled()) { 621 ret = raw_spin_trylock(&rq->__lock); 622 preempt_enable(); 623 return ret; 624 } 625 626 for (;;) { 627 lock = __rq_lockp(rq); 628 ret = raw_spin_trylock(lock); 629 if (!ret || (likely(lock == __rq_lockp(rq)))) { 630 preempt_enable(); 631 return ret; 632 } 633 raw_spin_unlock(lock); 634 } 635 } 636 637 void raw_spin_rq_unlock(struct rq *rq) 638 { 639 raw_spin_unlock(rq_lockp(rq)); 640 } 641 642 #ifdef CONFIG_SMP 643 /* 644 * double_rq_lock - safely lock two runqueues 645 */ 646 void double_rq_lock(struct rq *rq1, struct rq *rq2) 647 { 648 lockdep_assert_irqs_disabled(); 649 650 if (rq_order_less(rq2, rq1)) 651 swap(rq1, rq2); 652 653 raw_spin_rq_lock(rq1); 654 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 655 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 656 657 double_rq_clock_clear_update(rq1, rq2); 658 } 659 #endif 660 661 /* 662 * __task_rq_lock - lock the rq @p resides on. 663 */ 664 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 665 __acquires(rq->lock) 666 { 667 struct rq *rq; 668 669 lockdep_assert_held(&p->pi_lock); 670 671 for (;;) { 672 rq = task_rq(p); 673 raw_spin_rq_lock(rq); 674 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 675 rq_pin_lock(rq, rf); 676 return rq; 677 } 678 raw_spin_rq_unlock(rq); 679 680 while (unlikely(task_on_rq_migrating(p))) 681 cpu_relax(); 682 } 683 } 684 685 /* 686 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 687 */ 688 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 689 __acquires(p->pi_lock) 690 __acquires(rq->lock) 691 { 692 struct rq *rq; 693 694 for (;;) { 695 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 696 rq = task_rq(p); 697 raw_spin_rq_lock(rq); 698 /* 699 * move_queued_task() task_rq_lock() 700 * 701 * ACQUIRE (rq->lock) 702 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 703 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 704 * [S] ->cpu = new_cpu [L] task_rq() 705 * [L] ->on_rq 706 * RELEASE (rq->lock) 707 * 708 * If we observe the old CPU in task_rq_lock(), the acquire of 709 * the old rq->lock will fully serialize against the stores. 710 * 711 * If we observe the new CPU in task_rq_lock(), the address 712 * dependency headed by '[L] rq = task_rq()' and the acquire 713 * will pair with the WMB to ensure we then also see migrating. 714 */ 715 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 716 rq_pin_lock(rq, rf); 717 return rq; 718 } 719 raw_spin_rq_unlock(rq); 720 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 721 722 while (unlikely(task_on_rq_migrating(p))) 723 cpu_relax(); 724 } 725 } 726 727 /* 728 * RQ-clock updating methods: 729 */ 730 731 static void update_rq_clock_task(struct rq *rq, s64 delta) 732 { 733 /* 734 * In theory, the compile should just see 0 here, and optimize out the call 735 * to sched_rt_avg_update. But I don't trust it... 736 */ 737 s64 __maybe_unused steal = 0, irq_delta = 0; 738 739 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 740 if (irqtime_enabled()) { 741 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 742 743 /* 744 * Since irq_time is only updated on {soft,}irq_exit, we might run into 745 * this case when a previous update_rq_clock() happened inside a 746 * {soft,}IRQ region. 747 * 748 * When this happens, we stop ->clock_task and only update the 749 * prev_irq_time stamp to account for the part that fit, so that a next 750 * update will consume the rest. This ensures ->clock_task is 751 * monotonic. 752 * 753 * It does however cause some slight miss-attribution of {soft,}IRQ 754 * time, a more accurate solution would be to update the irq_time using 755 * the current rq->clock timestamp, except that would require using 756 * atomic ops. 757 */ 758 if (irq_delta > delta) 759 irq_delta = delta; 760 761 rq->prev_irq_time += irq_delta; 762 delta -= irq_delta; 763 delayacct_irq(rq->curr, irq_delta); 764 } 765 #endif 766 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 767 if (static_key_false((¶virt_steal_rq_enabled))) { 768 u64 prev_steal; 769 770 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 771 steal -= rq->prev_steal_time_rq; 772 773 if (unlikely(steal > delta)) 774 steal = delta; 775 776 rq->prev_steal_time_rq = prev_steal; 777 delta -= steal; 778 } 779 #endif 780 781 rq->clock_task += delta; 782 783 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 784 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 785 update_irq_load_avg(rq, irq_delta + steal); 786 #endif 787 update_rq_clock_pelt(rq, delta); 788 } 789 790 void update_rq_clock(struct rq *rq) 791 { 792 s64 delta; 793 u64 clock; 794 795 lockdep_assert_rq_held(rq); 796 797 if (rq->clock_update_flags & RQCF_ACT_SKIP) 798 return; 799 800 if (sched_feat(WARN_DOUBLE_CLOCK)) 801 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); 802 rq->clock_update_flags |= RQCF_UPDATED; 803 804 clock = sched_clock_cpu(cpu_of(rq)); 805 scx_rq_clock_update(rq, clock); 806 807 delta = clock - rq->clock; 808 if (delta < 0) 809 return; 810 rq->clock += delta; 811 812 update_rq_clock_task(rq, delta); 813 } 814 815 #ifdef CONFIG_SCHED_HRTICK 816 /* 817 * Use HR-timers to deliver accurate preemption points. 818 */ 819 820 static void hrtick_clear(struct rq *rq) 821 { 822 if (hrtimer_active(&rq->hrtick_timer)) 823 hrtimer_cancel(&rq->hrtick_timer); 824 } 825 826 /* 827 * High-resolution timer tick. 828 * Runs from hardirq context with interrupts disabled. 829 */ 830 static enum hrtimer_restart hrtick(struct hrtimer *timer) 831 { 832 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 833 struct rq_flags rf; 834 835 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 836 837 rq_lock(rq, &rf); 838 update_rq_clock(rq); 839 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 840 rq_unlock(rq, &rf); 841 842 return HRTIMER_NORESTART; 843 } 844 845 #ifdef CONFIG_SMP 846 847 static void __hrtick_restart(struct rq *rq) 848 { 849 struct hrtimer *timer = &rq->hrtick_timer; 850 ktime_t time = rq->hrtick_time; 851 852 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 853 } 854 855 /* 856 * called from hardirq (IPI) context 857 */ 858 static void __hrtick_start(void *arg) 859 { 860 struct rq *rq = arg; 861 struct rq_flags rf; 862 863 rq_lock(rq, &rf); 864 __hrtick_restart(rq); 865 rq_unlock(rq, &rf); 866 } 867 868 /* 869 * Called to set the hrtick timer state. 870 * 871 * called with rq->lock held and IRQs disabled 872 */ 873 void hrtick_start(struct rq *rq, u64 delay) 874 { 875 struct hrtimer *timer = &rq->hrtick_timer; 876 s64 delta; 877 878 /* 879 * Don't schedule slices shorter than 10000ns, that just 880 * doesn't make sense and can cause timer DoS. 881 */ 882 delta = max_t(s64, delay, 10000LL); 883 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 884 885 if (rq == this_rq()) 886 __hrtick_restart(rq); 887 else 888 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 889 } 890 891 #else 892 /* 893 * Called to set the hrtick timer state. 894 * 895 * called with rq->lock held and IRQs disabled 896 */ 897 void hrtick_start(struct rq *rq, u64 delay) 898 { 899 /* 900 * Don't schedule slices shorter than 10000ns, that just 901 * doesn't make sense. Rely on vruntime for fairness. 902 */ 903 delay = max_t(u64, delay, 10000LL); 904 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 905 HRTIMER_MODE_REL_PINNED_HARD); 906 } 907 908 #endif /* CONFIG_SMP */ 909 910 static void hrtick_rq_init(struct rq *rq) 911 { 912 #ifdef CONFIG_SMP 913 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 914 #endif 915 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 916 rq->hrtick_timer.function = hrtick; 917 } 918 #else /* CONFIG_SCHED_HRTICK */ 919 static inline void hrtick_clear(struct rq *rq) 920 { 921 } 922 923 static inline void hrtick_rq_init(struct rq *rq) 924 { 925 } 926 #endif /* CONFIG_SCHED_HRTICK */ 927 928 /* 929 * try_cmpxchg based fetch_or() macro so it works for different integer types: 930 */ 931 #define fetch_or(ptr, mask) \ 932 ({ \ 933 typeof(ptr) _ptr = (ptr); \ 934 typeof(mask) _mask = (mask); \ 935 typeof(*_ptr) _val = *_ptr; \ 936 \ 937 do { \ 938 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 939 _val; \ 940 }) 941 942 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 943 /* 944 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 945 * this avoids any races wrt polling state changes and thereby avoids 946 * spurious IPIs. 947 */ 948 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 949 { 950 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 951 } 952 953 /* 954 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 955 * 956 * If this returns true, then the idle task promises to call 957 * sched_ttwu_pending() and reschedule soon. 958 */ 959 static bool set_nr_if_polling(struct task_struct *p) 960 { 961 struct thread_info *ti = task_thread_info(p); 962 typeof(ti->flags) val = READ_ONCE(ti->flags); 963 964 do { 965 if (!(val & _TIF_POLLING_NRFLAG)) 966 return false; 967 if (val & _TIF_NEED_RESCHED) 968 return true; 969 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 970 971 return true; 972 } 973 974 #else 975 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 976 { 977 set_ti_thread_flag(ti, tif); 978 return true; 979 } 980 981 #ifdef CONFIG_SMP 982 static inline bool set_nr_if_polling(struct task_struct *p) 983 { 984 return false; 985 } 986 #endif 987 #endif 988 989 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 990 { 991 struct wake_q_node *node = &task->wake_q; 992 993 /* 994 * Atomically grab the task, if ->wake_q is !nil already it means 995 * it's already queued (either by us or someone else) and will get the 996 * wakeup due to that. 997 * 998 * In order to ensure that a pending wakeup will observe our pending 999 * state, even in the failed case, an explicit smp_mb() must be used. 1000 */ 1001 smp_mb__before_atomic(); 1002 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1003 return false; 1004 1005 /* 1006 * The head is context local, there can be no concurrency. 1007 */ 1008 *head->lastp = node; 1009 head->lastp = &node->next; 1010 return true; 1011 } 1012 1013 /** 1014 * wake_q_add() - queue a wakeup for 'later' waking. 1015 * @head: the wake_q_head to add @task to 1016 * @task: the task to queue for 'later' wakeup 1017 * 1018 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1019 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1020 * instantly. 1021 * 1022 * This function must be used as-if it were wake_up_process(); IOW the task 1023 * must be ready to be woken at this location. 1024 */ 1025 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1026 { 1027 if (__wake_q_add(head, task)) 1028 get_task_struct(task); 1029 } 1030 1031 /** 1032 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1033 * @head: the wake_q_head to add @task to 1034 * @task: the task to queue for 'later' wakeup 1035 * 1036 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1037 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1038 * instantly. 1039 * 1040 * This function must be used as-if it were wake_up_process(); IOW the task 1041 * must be ready to be woken at this location. 1042 * 1043 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1044 * that already hold reference to @task can call the 'safe' version and trust 1045 * wake_q to do the right thing depending whether or not the @task is already 1046 * queued for wakeup. 1047 */ 1048 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1049 { 1050 if (!__wake_q_add(head, task)) 1051 put_task_struct(task); 1052 } 1053 1054 void wake_up_q(struct wake_q_head *head) 1055 { 1056 struct wake_q_node *node = head->first; 1057 1058 while (node != WAKE_Q_TAIL) { 1059 struct task_struct *task; 1060 1061 task = container_of(node, struct task_struct, wake_q); 1062 node = node->next; 1063 /* pairs with cmpxchg_relaxed() in __wake_q_add() */ 1064 WRITE_ONCE(task->wake_q.next, NULL); 1065 /* Task can safely be re-inserted now. */ 1066 1067 /* 1068 * wake_up_process() executes a full barrier, which pairs with 1069 * the queueing in wake_q_add() so as not to miss wakeups. 1070 */ 1071 wake_up_process(task); 1072 put_task_struct(task); 1073 } 1074 } 1075 1076 /* 1077 * resched_curr - mark rq's current task 'to be rescheduled now'. 1078 * 1079 * On UP this means the setting of the need_resched flag, on SMP it 1080 * might also involve a cross-CPU call to trigger the scheduler on 1081 * the target CPU. 1082 */ 1083 static void __resched_curr(struct rq *rq, int tif) 1084 { 1085 struct task_struct *curr = rq->curr; 1086 struct thread_info *cti = task_thread_info(curr); 1087 int cpu; 1088 1089 lockdep_assert_rq_held(rq); 1090 1091 /* 1092 * Always immediately preempt the idle task; no point in delaying doing 1093 * actual work. 1094 */ 1095 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1096 tif = TIF_NEED_RESCHED; 1097 1098 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1099 return; 1100 1101 cpu = cpu_of(rq); 1102 1103 if (cpu == smp_processor_id()) { 1104 set_ti_thread_flag(cti, tif); 1105 if (tif == TIF_NEED_RESCHED) 1106 set_preempt_need_resched(); 1107 return; 1108 } 1109 1110 if (set_nr_and_not_polling(cti, tif)) { 1111 if (tif == TIF_NEED_RESCHED) 1112 smp_send_reschedule(cpu); 1113 } else { 1114 trace_sched_wake_idle_without_ipi(cpu); 1115 } 1116 } 1117 1118 void resched_curr(struct rq *rq) 1119 { 1120 __resched_curr(rq, TIF_NEED_RESCHED); 1121 } 1122 1123 #ifdef CONFIG_PREEMPT_DYNAMIC 1124 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1125 static __always_inline bool dynamic_preempt_lazy(void) 1126 { 1127 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1128 } 1129 #else 1130 static __always_inline bool dynamic_preempt_lazy(void) 1131 { 1132 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1133 } 1134 #endif 1135 1136 static __always_inline int get_lazy_tif_bit(void) 1137 { 1138 if (dynamic_preempt_lazy()) 1139 return TIF_NEED_RESCHED_LAZY; 1140 1141 return TIF_NEED_RESCHED; 1142 } 1143 1144 void resched_curr_lazy(struct rq *rq) 1145 { 1146 __resched_curr(rq, get_lazy_tif_bit()); 1147 } 1148 1149 void resched_cpu(int cpu) 1150 { 1151 struct rq *rq = cpu_rq(cpu); 1152 unsigned long flags; 1153 1154 raw_spin_rq_lock_irqsave(rq, flags); 1155 if (cpu_online(cpu) || cpu == smp_processor_id()) 1156 resched_curr(rq); 1157 raw_spin_rq_unlock_irqrestore(rq, flags); 1158 } 1159 1160 #ifdef CONFIG_SMP 1161 #ifdef CONFIG_NO_HZ_COMMON 1162 /* 1163 * In the semi idle case, use the nearest busy CPU for migrating timers 1164 * from an idle CPU. This is good for power-savings. 1165 * 1166 * We don't do similar optimization for completely idle system, as 1167 * selecting an idle CPU will add more delays to the timers than intended 1168 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1169 */ 1170 int get_nohz_timer_target(void) 1171 { 1172 int i, cpu = smp_processor_id(), default_cpu = -1; 1173 struct sched_domain *sd; 1174 const struct cpumask *hk_mask; 1175 1176 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1177 if (!idle_cpu(cpu)) 1178 return cpu; 1179 default_cpu = cpu; 1180 } 1181 1182 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1183 1184 guard(rcu)(); 1185 1186 for_each_domain(cpu, sd) { 1187 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1188 if (cpu == i) 1189 continue; 1190 1191 if (!idle_cpu(i)) 1192 return i; 1193 } 1194 } 1195 1196 if (default_cpu == -1) 1197 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1198 1199 return default_cpu; 1200 } 1201 1202 /* 1203 * When add_timer_on() enqueues a timer into the timer wheel of an 1204 * idle CPU then this timer might expire before the next timer event 1205 * which is scheduled to wake up that CPU. In case of a completely 1206 * idle system the next event might even be infinite time into the 1207 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1208 * leaves the inner idle loop so the newly added timer is taken into 1209 * account when the CPU goes back to idle and evaluates the timer 1210 * wheel for the next timer event. 1211 */ 1212 static void wake_up_idle_cpu(int cpu) 1213 { 1214 struct rq *rq = cpu_rq(cpu); 1215 1216 if (cpu == smp_processor_id()) 1217 return; 1218 1219 /* 1220 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1221 * part of the idle loop. This forces an exit from the idle loop 1222 * and a round trip to schedule(). Now this could be optimized 1223 * because a simple new idle loop iteration is enough to 1224 * re-evaluate the next tick. Provided some re-ordering of tick 1225 * nohz functions that would need to follow TIF_NR_POLLING 1226 * clearing: 1227 * 1228 * - On most architectures, a simple fetch_or on ti::flags with a 1229 * "0" value would be enough to know if an IPI needs to be sent. 1230 * 1231 * - x86 needs to perform a last need_resched() check between 1232 * monitor and mwait which doesn't take timers into account. 1233 * There a dedicated TIF_TIMER flag would be required to 1234 * fetch_or here and be checked along with TIF_NEED_RESCHED 1235 * before mwait(). 1236 * 1237 * However, remote timer enqueue is not such a frequent event 1238 * and testing of the above solutions didn't appear to report 1239 * much benefits. 1240 */ 1241 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1242 smp_send_reschedule(cpu); 1243 else 1244 trace_sched_wake_idle_without_ipi(cpu); 1245 } 1246 1247 static bool wake_up_full_nohz_cpu(int cpu) 1248 { 1249 /* 1250 * We just need the target to call irq_exit() and re-evaluate 1251 * the next tick. The nohz full kick at least implies that. 1252 * If needed we can still optimize that later with an 1253 * empty IRQ. 1254 */ 1255 if (cpu_is_offline(cpu)) 1256 return true; /* Don't try to wake offline CPUs. */ 1257 if (tick_nohz_full_cpu(cpu)) { 1258 if (cpu != smp_processor_id() || 1259 tick_nohz_tick_stopped()) 1260 tick_nohz_full_kick_cpu(cpu); 1261 return true; 1262 } 1263 1264 return false; 1265 } 1266 1267 /* 1268 * Wake up the specified CPU. If the CPU is going offline, it is the 1269 * caller's responsibility to deal with the lost wakeup, for example, 1270 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1271 */ 1272 void wake_up_nohz_cpu(int cpu) 1273 { 1274 if (!wake_up_full_nohz_cpu(cpu)) 1275 wake_up_idle_cpu(cpu); 1276 } 1277 1278 static void nohz_csd_func(void *info) 1279 { 1280 struct rq *rq = info; 1281 int cpu = cpu_of(rq); 1282 unsigned int flags; 1283 1284 /* 1285 * Release the rq::nohz_csd. 1286 */ 1287 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1288 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1289 1290 rq->idle_balance = idle_cpu(cpu); 1291 if (rq->idle_balance) { 1292 rq->nohz_idle_balance = flags; 1293 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1294 } 1295 } 1296 1297 #endif /* CONFIG_NO_HZ_COMMON */ 1298 1299 #ifdef CONFIG_NO_HZ_FULL 1300 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1301 { 1302 if (rq->nr_running != 1) 1303 return false; 1304 1305 if (p->sched_class != &fair_sched_class) 1306 return false; 1307 1308 if (!task_on_rq_queued(p)) 1309 return false; 1310 1311 return true; 1312 } 1313 1314 bool sched_can_stop_tick(struct rq *rq) 1315 { 1316 int fifo_nr_running; 1317 1318 /* Deadline tasks, even if single, need the tick */ 1319 if (rq->dl.dl_nr_running) 1320 return false; 1321 1322 /* 1323 * If there are more than one RR tasks, we need the tick to affect the 1324 * actual RR behaviour. 1325 */ 1326 if (rq->rt.rr_nr_running) { 1327 if (rq->rt.rr_nr_running == 1) 1328 return true; 1329 else 1330 return false; 1331 } 1332 1333 /* 1334 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1335 * forced preemption between FIFO tasks. 1336 */ 1337 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1338 if (fifo_nr_running) 1339 return true; 1340 1341 /* 1342 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1343 * left. For CFS, if there's more than one we need the tick for 1344 * involuntary preemption. For SCX, ask. 1345 */ 1346 if (scx_enabled() && !scx_can_stop_tick(rq)) 1347 return false; 1348 1349 if (rq->cfs.h_nr_queued > 1) 1350 return false; 1351 1352 /* 1353 * If there is one task and it has CFS runtime bandwidth constraints 1354 * and it's on the cpu now we don't want to stop the tick. 1355 * This check prevents clearing the bit if a newly enqueued task here is 1356 * dequeued by migrating while the constrained task continues to run. 1357 * E.g. going from 2->1 without going through pick_next_task(). 1358 */ 1359 if (__need_bw_check(rq, rq->curr)) { 1360 if (cfs_task_bw_constrained(rq->curr)) 1361 return false; 1362 } 1363 1364 return true; 1365 } 1366 #endif /* CONFIG_NO_HZ_FULL */ 1367 #endif /* CONFIG_SMP */ 1368 1369 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1370 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1371 /* 1372 * Iterate task_group tree rooted at *from, calling @down when first entering a 1373 * node and @up when leaving it for the final time. 1374 * 1375 * Caller must hold rcu_lock or sufficient equivalent. 1376 */ 1377 int walk_tg_tree_from(struct task_group *from, 1378 tg_visitor down, tg_visitor up, void *data) 1379 { 1380 struct task_group *parent, *child; 1381 int ret; 1382 1383 parent = from; 1384 1385 down: 1386 ret = (*down)(parent, data); 1387 if (ret) 1388 goto out; 1389 list_for_each_entry_rcu(child, &parent->children, siblings) { 1390 parent = child; 1391 goto down; 1392 1393 up: 1394 continue; 1395 } 1396 ret = (*up)(parent, data); 1397 if (ret || parent == from) 1398 goto out; 1399 1400 child = parent; 1401 parent = parent->parent; 1402 if (parent) 1403 goto up; 1404 out: 1405 return ret; 1406 } 1407 1408 int tg_nop(struct task_group *tg, void *data) 1409 { 1410 return 0; 1411 } 1412 #endif 1413 1414 void set_load_weight(struct task_struct *p, bool update_load) 1415 { 1416 int prio = p->static_prio - MAX_RT_PRIO; 1417 struct load_weight lw; 1418 1419 if (task_has_idle_policy(p)) { 1420 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1421 lw.inv_weight = WMULT_IDLEPRIO; 1422 } else { 1423 lw.weight = scale_load(sched_prio_to_weight[prio]); 1424 lw.inv_weight = sched_prio_to_wmult[prio]; 1425 } 1426 1427 /* 1428 * SCHED_OTHER tasks have to update their load when changing their 1429 * weight 1430 */ 1431 if (update_load && p->sched_class->reweight_task) 1432 p->sched_class->reweight_task(task_rq(p), p, &lw); 1433 else 1434 p->se.load = lw; 1435 } 1436 1437 #ifdef CONFIG_UCLAMP_TASK 1438 /* 1439 * Serializes updates of utilization clamp values 1440 * 1441 * The (slow-path) user-space triggers utilization clamp value updates which 1442 * can require updates on (fast-path) scheduler's data structures used to 1443 * support enqueue/dequeue operations. 1444 * While the per-CPU rq lock protects fast-path update operations, user-space 1445 * requests are serialized using a mutex to reduce the risk of conflicting 1446 * updates or API abuses. 1447 */ 1448 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1449 1450 /* Max allowed minimum utilization */ 1451 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1452 1453 /* Max allowed maximum utilization */ 1454 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1455 1456 /* 1457 * By default RT tasks run at the maximum performance point/capacity of the 1458 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1459 * SCHED_CAPACITY_SCALE. 1460 * 1461 * This knob allows admins to change the default behavior when uclamp is being 1462 * used. In battery powered devices, particularly, running at the maximum 1463 * capacity and frequency will increase energy consumption and shorten the 1464 * battery life. 1465 * 1466 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1467 * 1468 * This knob will not override the system default sched_util_clamp_min defined 1469 * above. 1470 */ 1471 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1472 1473 /* All clamps are required to be less or equal than these values */ 1474 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1475 1476 /* 1477 * This static key is used to reduce the uclamp overhead in the fast path. It 1478 * primarily disables the call to uclamp_rq_{inc, dec}() in 1479 * enqueue/dequeue_task(). 1480 * 1481 * This allows users to continue to enable uclamp in their kernel config with 1482 * minimum uclamp overhead in the fast path. 1483 * 1484 * As soon as userspace modifies any of the uclamp knobs, the static key is 1485 * enabled, since we have an actual users that make use of uclamp 1486 * functionality. 1487 * 1488 * The knobs that would enable this static key are: 1489 * 1490 * * A task modifying its uclamp value with sched_setattr(). 1491 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1492 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1493 */ 1494 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1495 1496 static inline unsigned int 1497 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1498 unsigned int clamp_value) 1499 { 1500 /* 1501 * Avoid blocked utilization pushing up the frequency when we go 1502 * idle (which drops the max-clamp) by retaining the last known 1503 * max-clamp. 1504 */ 1505 if (clamp_id == UCLAMP_MAX) { 1506 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1507 return clamp_value; 1508 } 1509 1510 return uclamp_none(UCLAMP_MIN); 1511 } 1512 1513 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1514 unsigned int clamp_value) 1515 { 1516 /* Reset max-clamp retention only on idle exit */ 1517 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1518 return; 1519 1520 uclamp_rq_set(rq, clamp_id, clamp_value); 1521 } 1522 1523 static inline 1524 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1525 unsigned int clamp_value) 1526 { 1527 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1528 int bucket_id = UCLAMP_BUCKETS - 1; 1529 1530 /* 1531 * Since both min and max clamps are max aggregated, find the 1532 * top most bucket with tasks in. 1533 */ 1534 for ( ; bucket_id >= 0; bucket_id--) { 1535 if (!bucket[bucket_id].tasks) 1536 continue; 1537 return bucket[bucket_id].value; 1538 } 1539 1540 /* No tasks -- default clamp values */ 1541 return uclamp_idle_value(rq, clamp_id, clamp_value); 1542 } 1543 1544 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1545 { 1546 unsigned int default_util_min; 1547 struct uclamp_se *uc_se; 1548 1549 lockdep_assert_held(&p->pi_lock); 1550 1551 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1552 1553 /* Only sync if user didn't override the default */ 1554 if (uc_se->user_defined) 1555 return; 1556 1557 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1558 uclamp_se_set(uc_se, default_util_min, false); 1559 } 1560 1561 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1562 { 1563 if (!rt_task(p)) 1564 return; 1565 1566 /* Protect updates to p->uclamp_* */ 1567 guard(task_rq_lock)(p); 1568 __uclamp_update_util_min_rt_default(p); 1569 } 1570 1571 static inline struct uclamp_se 1572 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1573 { 1574 /* Copy by value as we could modify it */ 1575 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1576 #ifdef CONFIG_UCLAMP_TASK_GROUP 1577 unsigned int tg_min, tg_max, value; 1578 1579 /* 1580 * Tasks in autogroups or root task group will be 1581 * restricted by system defaults. 1582 */ 1583 if (task_group_is_autogroup(task_group(p))) 1584 return uc_req; 1585 if (task_group(p) == &root_task_group) 1586 return uc_req; 1587 1588 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1589 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1590 value = uc_req.value; 1591 value = clamp(value, tg_min, tg_max); 1592 uclamp_se_set(&uc_req, value, false); 1593 #endif 1594 1595 return uc_req; 1596 } 1597 1598 /* 1599 * The effective clamp bucket index of a task depends on, by increasing 1600 * priority: 1601 * - the task specific clamp value, when explicitly requested from userspace 1602 * - the task group effective clamp value, for tasks not either in the root 1603 * group or in an autogroup 1604 * - the system default clamp value, defined by the sysadmin 1605 */ 1606 static inline struct uclamp_se 1607 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1608 { 1609 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1610 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1611 1612 /* System default restrictions always apply */ 1613 if (unlikely(uc_req.value > uc_max.value)) 1614 return uc_max; 1615 1616 return uc_req; 1617 } 1618 1619 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1620 { 1621 struct uclamp_se uc_eff; 1622 1623 /* Task currently refcounted: use back-annotated (effective) value */ 1624 if (p->uclamp[clamp_id].active) 1625 return (unsigned long)p->uclamp[clamp_id].value; 1626 1627 uc_eff = uclamp_eff_get(p, clamp_id); 1628 1629 return (unsigned long)uc_eff.value; 1630 } 1631 1632 /* 1633 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1634 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1635 * updates the rq's clamp value if required. 1636 * 1637 * Tasks can have a task-specific value requested from user-space, track 1638 * within each bucket the maximum value for tasks refcounted in it. 1639 * This "local max aggregation" allows to track the exact "requested" value 1640 * for each bucket when all its RUNNABLE tasks require the same clamp. 1641 */ 1642 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1643 enum uclamp_id clamp_id) 1644 { 1645 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1646 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1647 struct uclamp_bucket *bucket; 1648 1649 lockdep_assert_rq_held(rq); 1650 1651 /* Update task effective clamp */ 1652 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1653 1654 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1655 bucket->tasks++; 1656 uc_se->active = true; 1657 1658 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1659 1660 /* 1661 * Local max aggregation: rq buckets always track the max 1662 * "requested" clamp value of its RUNNABLE tasks. 1663 */ 1664 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1665 bucket->value = uc_se->value; 1666 1667 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1668 uclamp_rq_set(rq, clamp_id, uc_se->value); 1669 } 1670 1671 /* 1672 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1673 * is released. If this is the last task reference counting the rq's max 1674 * active clamp value, then the rq's clamp value is updated. 1675 * 1676 * Both refcounted tasks and rq's cached clamp values are expected to be 1677 * always valid. If it's detected they are not, as defensive programming, 1678 * enforce the expected state and warn. 1679 */ 1680 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1681 enum uclamp_id clamp_id) 1682 { 1683 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1684 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1685 struct uclamp_bucket *bucket; 1686 unsigned int bkt_clamp; 1687 unsigned int rq_clamp; 1688 1689 lockdep_assert_rq_held(rq); 1690 1691 /* 1692 * If sched_uclamp_used was enabled after task @p was enqueued, 1693 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1694 * 1695 * In this case the uc_se->active flag should be false since no uclamp 1696 * accounting was performed at enqueue time and we can just return 1697 * here. 1698 * 1699 * Need to be careful of the following enqueue/dequeue ordering 1700 * problem too 1701 * 1702 * enqueue(taskA) 1703 * // sched_uclamp_used gets enabled 1704 * enqueue(taskB) 1705 * dequeue(taskA) 1706 * // Must not decrement bucket->tasks here 1707 * dequeue(taskB) 1708 * 1709 * where we could end up with stale data in uc_se and 1710 * bucket[uc_se->bucket_id]. 1711 * 1712 * The following check here eliminates the possibility of such race. 1713 */ 1714 if (unlikely(!uc_se->active)) 1715 return; 1716 1717 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1718 1719 WARN_ON_ONCE(!bucket->tasks); 1720 if (likely(bucket->tasks)) 1721 bucket->tasks--; 1722 1723 uc_se->active = false; 1724 1725 /* 1726 * Keep "local max aggregation" simple and accept to (possibly) 1727 * overboost some RUNNABLE tasks in the same bucket. 1728 * The rq clamp bucket value is reset to its base value whenever 1729 * there are no more RUNNABLE tasks refcounting it. 1730 */ 1731 if (likely(bucket->tasks)) 1732 return; 1733 1734 rq_clamp = uclamp_rq_get(rq, clamp_id); 1735 /* 1736 * Defensive programming: this should never happen. If it happens, 1737 * e.g. due to future modification, warn and fix up the expected value. 1738 */ 1739 WARN_ON_ONCE(bucket->value > rq_clamp); 1740 if (bucket->value >= rq_clamp) { 1741 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1742 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1743 } 1744 } 1745 1746 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1747 { 1748 enum uclamp_id clamp_id; 1749 1750 /* 1751 * Avoid any overhead until uclamp is actually used by the userspace. 1752 * 1753 * The condition is constructed such that a NOP is generated when 1754 * sched_uclamp_used is disabled. 1755 */ 1756 if (!uclamp_is_used()) 1757 return; 1758 1759 if (unlikely(!p->sched_class->uclamp_enabled)) 1760 return; 1761 1762 if (p->se.sched_delayed) 1763 return; 1764 1765 for_each_clamp_id(clamp_id) 1766 uclamp_rq_inc_id(rq, p, clamp_id); 1767 1768 /* Reset clamp idle holding when there is one RUNNABLE task */ 1769 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1770 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1771 } 1772 1773 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1774 { 1775 enum uclamp_id clamp_id; 1776 1777 /* 1778 * Avoid any overhead until uclamp is actually used by the userspace. 1779 * 1780 * The condition is constructed such that a NOP is generated when 1781 * sched_uclamp_used is disabled. 1782 */ 1783 if (!uclamp_is_used()) 1784 return; 1785 1786 if (unlikely(!p->sched_class->uclamp_enabled)) 1787 return; 1788 1789 if (p->se.sched_delayed) 1790 return; 1791 1792 for_each_clamp_id(clamp_id) 1793 uclamp_rq_dec_id(rq, p, clamp_id); 1794 } 1795 1796 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1797 enum uclamp_id clamp_id) 1798 { 1799 if (!p->uclamp[clamp_id].active) 1800 return; 1801 1802 uclamp_rq_dec_id(rq, p, clamp_id); 1803 uclamp_rq_inc_id(rq, p, clamp_id); 1804 1805 /* 1806 * Make sure to clear the idle flag if we've transiently reached 0 1807 * active tasks on rq. 1808 */ 1809 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1810 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1811 } 1812 1813 static inline void 1814 uclamp_update_active(struct task_struct *p) 1815 { 1816 enum uclamp_id clamp_id; 1817 struct rq_flags rf; 1818 struct rq *rq; 1819 1820 /* 1821 * Lock the task and the rq where the task is (or was) queued. 1822 * 1823 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1824 * price to pay to safely serialize util_{min,max} updates with 1825 * enqueues, dequeues and migration operations. 1826 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1827 */ 1828 rq = task_rq_lock(p, &rf); 1829 1830 /* 1831 * Setting the clamp bucket is serialized by task_rq_lock(). 1832 * If the task is not yet RUNNABLE and its task_struct is not 1833 * affecting a valid clamp bucket, the next time it's enqueued, 1834 * it will already see the updated clamp bucket value. 1835 */ 1836 for_each_clamp_id(clamp_id) 1837 uclamp_rq_reinc_id(rq, p, clamp_id); 1838 1839 task_rq_unlock(rq, p, &rf); 1840 } 1841 1842 #ifdef CONFIG_UCLAMP_TASK_GROUP 1843 static inline void 1844 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1845 { 1846 struct css_task_iter it; 1847 struct task_struct *p; 1848 1849 css_task_iter_start(css, 0, &it); 1850 while ((p = css_task_iter_next(&it))) 1851 uclamp_update_active(p); 1852 css_task_iter_end(&it); 1853 } 1854 1855 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1856 #endif 1857 1858 #ifdef CONFIG_SYSCTL 1859 #ifdef CONFIG_UCLAMP_TASK_GROUP 1860 static void uclamp_update_root_tg(void) 1861 { 1862 struct task_group *tg = &root_task_group; 1863 1864 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1865 sysctl_sched_uclamp_util_min, false); 1866 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1867 sysctl_sched_uclamp_util_max, false); 1868 1869 guard(rcu)(); 1870 cpu_util_update_eff(&root_task_group.css); 1871 } 1872 #else 1873 static void uclamp_update_root_tg(void) { } 1874 #endif 1875 1876 static void uclamp_sync_util_min_rt_default(void) 1877 { 1878 struct task_struct *g, *p; 1879 1880 /* 1881 * copy_process() sysctl_uclamp 1882 * uclamp_min_rt = X; 1883 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1884 * // link thread smp_mb__after_spinlock() 1885 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1886 * sched_post_fork() for_each_process_thread() 1887 * __uclamp_sync_rt() __uclamp_sync_rt() 1888 * 1889 * Ensures that either sched_post_fork() will observe the new 1890 * uclamp_min_rt or for_each_process_thread() will observe the new 1891 * task. 1892 */ 1893 read_lock(&tasklist_lock); 1894 smp_mb__after_spinlock(); 1895 read_unlock(&tasklist_lock); 1896 1897 guard(rcu)(); 1898 for_each_process_thread(g, p) 1899 uclamp_update_util_min_rt_default(p); 1900 } 1901 1902 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1903 void *buffer, size_t *lenp, loff_t *ppos) 1904 { 1905 bool update_root_tg = false; 1906 int old_min, old_max, old_min_rt; 1907 int result; 1908 1909 guard(mutex)(&uclamp_mutex); 1910 1911 old_min = sysctl_sched_uclamp_util_min; 1912 old_max = sysctl_sched_uclamp_util_max; 1913 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1914 1915 result = proc_dointvec(table, write, buffer, lenp, ppos); 1916 if (result) 1917 goto undo; 1918 if (!write) 1919 return 0; 1920 1921 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1922 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1923 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1924 1925 result = -EINVAL; 1926 goto undo; 1927 } 1928 1929 if (old_min != sysctl_sched_uclamp_util_min) { 1930 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1931 sysctl_sched_uclamp_util_min, false); 1932 update_root_tg = true; 1933 } 1934 if (old_max != sysctl_sched_uclamp_util_max) { 1935 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1936 sysctl_sched_uclamp_util_max, false); 1937 update_root_tg = true; 1938 } 1939 1940 if (update_root_tg) { 1941 sched_uclamp_enable(); 1942 uclamp_update_root_tg(); 1943 } 1944 1945 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1946 sched_uclamp_enable(); 1947 uclamp_sync_util_min_rt_default(); 1948 } 1949 1950 /* 1951 * We update all RUNNABLE tasks only when task groups are in use. 1952 * Otherwise, keep it simple and do just a lazy update at each next 1953 * task enqueue time. 1954 */ 1955 return 0; 1956 1957 undo: 1958 sysctl_sched_uclamp_util_min = old_min; 1959 sysctl_sched_uclamp_util_max = old_max; 1960 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1961 return result; 1962 } 1963 #endif 1964 1965 static void uclamp_fork(struct task_struct *p) 1966 { 1967 enum uclamp_id clamp_id; 1968 1969 /* 1970 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1971 * as the task is still at its early fork stages. 1972 */ 1973 for_each_clamp_id(clamp_id) 1974 p->uclamp[clamp_id].active = false; 1975 1976 if (likely(!p->sched_reset_on_fork)) 1977 return; 1978 1979 for_each_clamp_id(clamp_id) { 1980 uclamp_se_set(&p->uclamp_req[clamp_id], 1981 uclamp_none(clamp_id), false); 1982 } 1983 } 1984 1985 static void uclamp_post_fork(struct task_struct *p) 1986 { 1987 uclamp_update_util_min_rt_default(p); 1988 } 1989 1990 static void __init init_uclamp_rq(struct rq *rq) 1991 { 1992 enum uclamp_id clamp_id; 1993 struct uclamp_rq *uc_rq = rq->uclamp; 1994 1995 for_each_clamp_id(clamp_id) { 1996 uc_rq[clamp_id] = (struct uclamp_rq) { 1997 .value = uclamp_none(clamp_id) 1998 }; 1999 } 2000 2001 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2002 } 2003 2004 static void __init init_uclamp(void) 2005 { 2006 struct uclamp_se uc_max = {}; 2007 enum uclamp_id clamp_id; 2008 int cpu; 2009 2010 for_each_possible_cpu(cpu) 2011 init_uclamp_rq(cpu_rq(cpu)); 2012 2013 for_each_clamp_id(clamp_id) { 2014 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2015 uclamp_none(clamp_id), false); 2016 } 2017 2018 /* System defaults allow max clamp values for both indexes */ 2019 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2020 for_each_clamp_id(clamp_id) { 2021 uclamp_default[clamp_id] = uc_max; 2022 #ifdef CONFIG_UCLAMP_TASK_GROUP 2023 root_task_group.uclamp_req[clamp_id] = uc_max; 2024 root_task_group.uclamp[clamp_id] = uc_max; 2025 #endif 2026 } 2027 } 2028 2029 #else /* !CONFIG_UCLAMP_TASK */ 2030 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2031 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2032 static inline void uclamp_fork(struct task_struct *p) { } 2033 static inline void uclamp_post_fork(struct task_struct *p) { } 2034 static inline void init_uclamp(void) { } 2035 #endif /* CONFIG_UCLAMP_TASK */ 2036 2037 bool sched_task_on_rq(struct task_struct *p) 2038 { 2039 return task_on_rq_queued(p); 2040 } 2041 2042 unsigned long get_wchan(struct task_struct *p) 2043 { 2044 unsigned long ip = 0; 2045 unsigned int state; 2046 2047 if (!p || p == current) 2048 return 0; 2049 2050 /* Only get wchan if task is blocked and we can keep it that way. */ 2051 raw_spin_lock_irq(&p->pi_lock); 2052 state = READ_ONCE(p->__state); 2053 smp_rmb(); /* see try_to_wake_up() */ 2054 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2055 ip = __get_wchan(p); 2056 raw_spin_unlock_irq(&p->pi_lock); 2057 2058 return ip; 2059 } 2060 2061 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2062 { 2063 if (!(flags & ENQUEUE_NOCLOCK)) 2064 update_rq_clock(rq); 2065 2066 p->sched_class->enqueue_task(rq, p, flags); 2067 /* 2068 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2069 * ->sched_delayed. 2070 */ 2071 uclamp_rq_inc(rq, p); 2072 2073 psi_enqueue(p, flags); 2074 2075 if (!(flags & ENQUEUE_RESTORE)) 2076 sched_info_enqueue(rq, p); 2077 2078 if (sched_core_enabled(rq)) 2079 sched_core_enqueue(rq, p); 2080 } 2081 2082 /* 2083 * Must only return false when DEQUEUE_SLEEP. 2084 */ 2085 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2086 { 2087 if (sched_core_enabled(rq)) 2088 sched_core_dequeue(rq, p, flags); 2089 2090 if (!(flags & DEQUEUE_NOCLOCK)) 2091 update_rq_clock(rq); 2092 2093 if (!(flags & DEQUEUE_SAVE)) 2094 sched_info_dequeue(rq, p); 2095 2096 psi_dequeue(p, flags); 2097 2098 /* 2099 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2100 * and mark the task ->sched_delayed. 2101 */ 2102 uclamp_rq_dec(rq, p); 2103 return p->sched_class->dequeue_task(rq, p, flags); 2104 } 2105 2106 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2107 { 2108 if (task_on_rq_migrating(p)) 2109 flags |= ENQUEUE_MIGRATED; 2110 if (flags & ENQUEUE_MIGRATED) 2111 sched_mm_cid_migrate_to(rq, p); 2112 2113 enqueue_task(rq, p, flags); 2114 2115 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2116 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2117 } 2118 2119 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2120 { 2121 WARN_ON_ONCE(flags & DEQUEUE_SLEEP); 2122 2123 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2124 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2125 2126 /* 2127 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2128 * dequeue_task() and cleared *after* enqueue_task(). 2129 */ 2130 2131 dequeue_task(rq, p, flags); 2132 } 2133 2134 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2135 { 2136 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2137 __block_task(rq, p); 2138 } 2139 2140 /** 2141 * task_curr - is this task currently executing on a CPU? 2142 * @p: the task in question. 2143 * 2144 * Return: 1 if the task is currently executing. 0 otherwise. 2145 */ 2146 inline int task_curr(const struct task_struct *p) 2147 { 2148 return cpu_curr(task_cpu(p)) == p; 2149 } 2150 2151 /* 2152 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2153 * mess with locking. 2154 */ 2155 void check_class_changing(struct rq *rq, struct task_struct *p, 2156 const struct sched_class *prev_class) 2157 { 2158 if (prev_class != p->sched_class && p->sched_class->switching_to) 2159 p->sched_class->switching_to(rq, p); 2160 } 2161 2162 /* 2163 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2164 * use the balance_callback list if you want balancing. 2165 * 2166 * this means any call to check_class_changed() must be followed by a call to 2167 * balance_callback(). 2168 */ 2169 void check_class_changed(struct rq *rq, struct task_struct *p, 2170 const struct sched_class *prev_class, 2171 int oldprio) 2172 { 2173 if (prev_class != p->sched_class) { 2174 if (prev_class->switched_from) 2175 prev_class->switched_from(rq, p); 2176 2177 p->sched_class->switched_to(rq, p); 2178 } else if (oldprio != p->prio || dl_task(p)) 2179 p->sched_class->prio_changed(rq, p, oldprio); 2180 } 2181 2182 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2183 { 2184 struct task_struct *donor = rq->donor; 2185 2186 if (p->sched_class == donor->sched_class) 2187 donor->sched_class->wakeup_preempt(rq, p, flags); 2188 else if (sched_class_above(p->sched_class, donor->sched_class)) 2189 resched_curr(rq); 2190 2191 /* 2192 * A queue event has occurred, and we're going to schedule. In 2193 * this case, we can save a useless back to back clock update. 2194 */ 2195 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2196 rq_clock_skip_update(rq); 2197 } 2198 2199 static __always_inline 2200 int __task_state_match(struct task_struct *p, unsigned int state) 2201 { 2202 if (READ_ONCE(p->__state) & state) 2203 return 1; 2204 2205 if (READ_ONCE(p->saved_state) & state) 2206 return -1; 2207 2208 return 0; 2209 } 2210 2211 static __always_inline 2212 int task_state_match(struct task_struct *p, unsigned int state) 2213 { 2214 /* 2215 * Serialize against current_save_and_set_rtlock_wait_state(), 2216 * current_restore_rtlock_saved_state(), and __refrigerator(). 2217 */ 2218 guard(raw_spinlock_irq)(&p->pi_lock); 2219 return __task_state_match(p, state); 2220 } 2221 2222 /* 2223 * wait_task_inactive - wait for a thread to unschedule. 2224 * 2225 * Wait for the thread to block in any of the states set in @match_state. 2226 * If it changes, i.e. @p might have woken up, then return zero. When we 2227 * succeed in waiting for @p to be off its CPU, we return a positive number 2228 * (its total switch count). If a second call a short while later returns the 2229 * same number, the caller can be sure that @p has remained unscheduled the 2230 * whole time. 2231 * 2232 * The caller must ensure that the task *will* unschedule sometime soon, 2233 * else this function might spin for a *long* time. This function can't 2234 * be called with interrupts off, or it may introduce deadlock with 2235 * smp_call_function() if an IPI is sent by the same process we are 2236 * waiting to become inactive. 2237 */ 2238 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2239 { 2240 int running, queued, match; 2241 struct rq_flags rf; 2242 unsigned long ncsw; 2243 struct rq *rq; 2244 2245 for (;;) { 2246 /* 2247 * We do the initial early heuristics without holding 2248 * any task-queue locks at all. We'll only try to get 2249 * the runqueue lock when things look like they will 2250 * work out! 2251 */ 2252 rq = task_rq(p); 2253 2254 /* 2255 * If the task is actively running on another CPU 2256 * still, just relax and busy-wait without holding 2257 * any locks. 2258 * 2259 * NOTE! Since we don't hold any locks, it's not 2260 * even sure that "rq" stays as the right runqueue! 2261 * But we don't care, since "task_on_cpu()" will 2262 * return false if the runqueue has changed and p 2263 * is actually now running somewhere else! 2264 */ 2265 while (task_on_cpu(rq, p)) { 2266 if (!task_state_match(p, match_state)) 2267 return 0; 2268 cpu_relax(); 2269 } 2270 2271 /* 2272 * Ok, time to look more closely! We need the rq 2273 * lock now, to be *sure*. If we're wrong, we'll 2274 * just go back and repeat. 2275 */ 2276 rq = task_rq_lock(p, &rf); 2277 trace_sched_wait_task(p); 2278 running = task_on_cpu(rq, p); 2279 queued = task_on_rq_queued(p); 2280 ncsw = 0; 2281 if ((match = __task_state_match(p, match_state))) { 2282 /* 2283 * When matching on p->saved_state, consider this task 2284 * still queued so it will wait. 2285 */ 2286 if (match < 0) 2287 queued = 1; 2288 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2289 } 2290 task_rq_unlock(rq, p, &rf); 2291 2292 /* 2293 * If it changed from the expected state, bail out now. 2294 */ 2295 if (unlikely(!ncsw)) 2296 break; 2297 2298 /* 2299 * Was it really running after all now that we 2300 * checked with the proper locks actually held? 2301 * 2302 * Oops. Go back and try again.. 2303 */ 2304 if (unlikely(running)) { 2305 cpu_relax(); 2306 continue; 2307 } 2308 2309 /* 2310 * It's not enough that it's not actively running, 2311 * it must be off the runqueue _entirely_, and not 2312 * preempted! 2313 * 2314 * So if it was still runnable (but just not actively 2315 * running right now), it's preempted, and we should 2316 * yield - it could be a while. 2317 */ 2318 if (unlikely(queued)) { 2319 ktime_t to = NSEC_PER_SEC / HZ; 2320 2321 set_current_state(TASK_UNINTERRUPTIBLE); 2322 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2323 continue; 2324 } 2325 2326 /* 2327 * Ahh, all good. It wasn't running, and it wasn't 2328 * runnable, which means that it will never become 2329 * running in the future either. We're all done! 2330 */ 2331 break; 2332 } 2333 2334 return ncsw; 2335 } 2336 2337 #ifdef CONFIG_SMP 2338 2339 static void 2340 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2341 2342 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2343 { 2344 struct affinity_context ac = { 2345 .new_mask = cpumask_of(rq->cpu), 2346 .flags = SCA_MIGRATE_DISABLE, 2347 }; 2348 2349 if (likely(!p->migration_disabled)) 2350 return; 2351 2352 if (p->cpus_ptr != &p->cpus_mask) 2353 return; 2354 2355 /* 2356 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2357 */ 2358 __do_set_cpus_allowed(p, &ac); 2359 } 2360 2361 void migrate_disable(void) 2362 { 2363 struct task_struct *p = current; 2364 2365 if (p->migration_disabled) { 2366 #ifdef CONFIG_DEBUG_PREEMPT 2367 /* 2368 *Warn about overflow half-way through the range. 2369 */ 2370 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2371 #endif 2372 p->migration_disabled++; 2373 return; 2374 } 2375 2376 guard(preempt)(); 2377 this_rq()->nr_pinned++; 2378 p->migration_disabled = 1; 2379 } 2380 EXPORT_SYMBOL_GPL(migrate_disable); 2381 2382 void migrate_enable(void) 2383 { 2384 struct task_struct *p = current; 2385 struct affinity_context ac = { 2386 .new_mask = &p->cpus_mask, 2387 .flags = SCA_MIGRATE_ENABLE, 2388 }; 2389 2390 #ifdef CONFIG_DEBUG_PREEMPT 2391 /* 2392 * Check both overflow from migrate_disable() and superfluous 2393 * migrate_enable(). 2394 */ 2395 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2396 return; 2397 #endif 2398 2399 if (p->migration_disabled > 1) { 2400 p->migration_disabled--; 2401 return; 2402 } 2403 2404 /* 2405 * Ensure stop_task runs either before or after this, and that 2406 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2407 */ 2408 guard(preempt)(); 2409 if (p->cpus_ptr != &p->cpus_mask) 2410 __set_cpus_allowed_ptr(p, &ac); 2411 /* 2412 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2413 * regular cpus_mask, otherwise things that race (eg. 2414 * select_fallback_rq) get confused. 2415 */ 2416 barrier(); 2417 p->migration_disabled = 0; 2418 this_rq()->nr_pinned--; 2419 } 2420 EXPORT_SYMBOL_GPL(migrate_enable); 2421 2422 static inline bool rq_has_pinned_tasks(struct rq *rq) 2423 { 2424 return rq->nr_pinned; 2425 } 2426 2427 /* 2428 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2429 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2430 */ 2431 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2432 { 2433 /* When not in the task's cpumask, no point in looking further. */ 2434 if (!task_allowed_on_cpu(p, cpu)) 2435 return false; 2436 2437 /* migrate_disabled() must be allowed to finish. */ 2438 if (is_migration_disabled(p)) 2439 return cpu_online(cpu); 2440 2441 /* Non kernel threads are not allowed during either online or offline. */ 2442 if (!(p->flags & PF_KTHREAD)) 2443 return cpu_active(cpu); 2444 2445 /* KTHREAD_IS_PER_CPU is always allowed. */ 2446 if (kthread_is_per_cpu(p)) 2447 return cpu_online(cpu); 2448 2449 /* Regular kernel threads don't get to stay during offline. */ 2450 if (cpu_dying(cpu)) 2451 return false; 2452 2453 /* But are allowed during online. */ 2454 return cpu_online(cpu); 2455 } 2456 2457 /* 2458 * This is how migration works: 2459 * 2460 * 1) we invoke migration_cpu_stop() on the target CPU using 2461 * stop_one_cpu(). 2462 * 2) stopper starts to run (implicitly forcing the migrated thread 2463 * off the CPU) 2464 * 3) it checks whether the migrated task is still in the wrong runqueue. 2465 * 4) if it's in the wrong runqueue then the migration thread removes 2466 * it and puts it into the right queue. 2467 * 5) stopper completes and stop_one_cpu() returns and the migration 2468 * is done. 2469 */ 2470 2471 /* 2472 * move_queued_task - move a queued task to new rq. 2473 * 2474 * Returns (locked) new rq. Old rq's lock is released. 2475 */ 2476 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2477 struct task_struct *p, int new_cpu) 2478 { 2479 lockdep_assert_rq_held(rq); 2480 2481 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2482 set_task_cpu(p, new_cpu); 2483 rq_unlock(rq, rf); 2484 2485 rq = cpu_rq(new_cpu); 2486 2487 rq_lock(rq, rf); 2488 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2489 activate_task(rq, p, 0); 2490 wakeup_preempt(rq, p, 0); 2491 2492 return rq; 2493 } 2494 2495 struct migration_arg { 2496 struct task_struct *task; 2497 int dest_cpu; 2498 struct set_affinity_pending *pending; 2499 }; 2500 2501 /* 2502 * @refs: number of wait_for_completion() 2503 * @stop_pending: is @stop_work in use 2504 */ 2505 struct set_affinity_pending { 2506 refcount_t refs; 2507 unsigned int stop_pending; 2508 struct completion done; 2509 struct cpu_stop_work stop_work; 2510 struct migration_arg arg; 2511 }; 2512 2513 /* 2514 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2515 * this because either it can't run here any more (set_cpus_allowed() 2516 * away from this CPU, or CPU going down), or because we're 2517 * attempting to rebalance this task on exec (sched_exec). 2518 * 2519 * So we race with normal scheduler movements, but that's OK, as long 2520 * as the task is no longer on this CPU. 2521 */ 2522 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2523 struct task_struct *p, int dest_cpu) 2524 { 2525 /* Affinity changed (again). */ 2526 if (!is_cpu_allowed(p, dest_cpu)) 2527 return rq; 2528 2529 rq = move_queued_task(rq, rf, p, dest_cpu); 2530 2531 return rq; 2532 } 2533 2534 /* 2535 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2536 * and performs thread migration by bumping thread off CPU then 2537 * 'pushing' onto another runqueue. 2538 */ 2539 static int migration_cpu_stop(void *data) 2540 { 2541 struct migration_arg *arg = data; 2542 struct set_affinity_pending *pending = arg->pending; 2543 struct task_struct *p = arg->task; 2544 struct rq *rq = this_rq(); 2545 bool complete = false; 2546 struct rq_flags rf; 2547 2548 /* 2549 * The original target CPU might have gone down and we might 2550 * be on another CPU but it doesn't matter. 2551 */ 2552 local_irq_save(rf.flags); 2553 /* 2554 * We need to explicitly wake pending tasks before running 2555 * __migrate_task() such that we will not miss enforcing cpus_ptr 2556 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2557 */ 2558 flush_smp_call_function_queue(); 2559 2560 raw_spin_lock(&p->pi_lock); 2561 rq_lock(rq, &rf); 2562 2563 /* 2564 * If we were passed a pending, then ->stop_pending was set, thus 2565 * p->migration_pending must have remained stable. 2566 */ 2567 WARN_ON_ONCE(pending && pending != p->migration_pending); 2568 2569 /* 2570 * If task_rq(p) != rq, it cannot be migrated here, because we're 2571 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2572 * we're holding p->pi_lock. 2573 */ 2574 if (task_rq(p) == rq) { 2575 if (is_migration_disabled(p)) 2576 goto out; 2577 2578 if (pending) { 2579 p->migration_pending = NULL; 2580 complete = true; 2581 2582 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2583 goto out; 2584 } 2585 2586 if (task_on_rq_queued(p)) { 2587 update_rq_clock(rq); 2588 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2589 } else { 2590 p->wake_cpu = arg->dest_cpu; 2591 } 2592 2593 /* 2594 * XXX __migrate_task() can fail, at which point we might end 2595 * up running on a dodgy CPU, AFAICT this can only happen 2596 * during CPU hotplug, at which point we'll get pushed out 2597 * anyway, so it's probably not a big deal. 2598 */ 2599 2600 } else if (pending) { 2601 /* 2602 * This happens when we get migrated between migrate_enable()'s 2603 * preempt_enable() and scheduling the stopper task. At that 2604 * point we're a regular task again and not current anymore. 2605 * 2606 * A !PREEMPT kernel has a giant hole here, which makes it far 2607 * more likely. 2608 */ 2609 2610 /* 2611 * The task moved before the stopper got to run. We're holding 2612 * ->pi_lock, so the allowed mask is stable - if it got 2613 * somewhere allowed, we're done. 2614 */ 2615 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2616 p->migration_pending = NULL; 2617 complete = true; 2618 goto out; 2619 } 2620 2621 /* 2622 * When migrate_enable() hits a rq mis-match we can't reliably 2623 * determine is_migration_disabled() and so have to chase after 2624 * it. 2625 */ 2626 WARN_ON_ONCE(!pending->stop_pending); 2627 preempt_disable(); 2628 task_rq_unlock(rq, p, &rf); 2629 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2630 &pending->arg, &pending->stop_work); 2631 preempt_enable(); 2632 return 0; 2633 } 2634 out: 2635 if (pending) 2636 pending->stop_pending = false; 2637 task_rq_unlock(rq, p, &rf); 2638 2639 if (complete) 2640 complete_all(&pending->done); 2641 2642 return 0; 2643 } 2644 2645 int push_cpu_stop(void *arg) 2646 { 2647 struct rq *lowest_rq = NULL, *rq = this_rq(); 2648 struct task_struct *p = arg; 2649 2650 raw_spin_lock_irq(&p->pi_lock); 2651 raw_spin_rq_lock(rq); 2652 2653 if (task_rq(p) != rq) 2654 goto out_unlock; 2655 2656 if (is_migration_disabled(p)) { 2657 p->migration_flags |= MDF_PUSH; 2658 goto out_unlock; 2659 } 2660 2661 p->migration_flags &= ~MDF_PUSH; 2662 2663 if (p->sched_class->find_lock_rq) 2664 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2665 2666 if (!lowest_rq) 2667 goto out_unlock; 2668 2669 // XXX validate p is still the highest prio task 2670 if (task_rq(p) == rq) { 2671 move_queued_task_locked(rq, lowest_rq, p); 2672 resched_curr(lowest_rq); 2673 } 2674 2675 double_unlock_balance(rq, lowest_rq); 2676 2677 out_unlock: 2678 rq->push_busy = false; 2679 raw_spin_rq_unlock(rq); 2680 raw_spin_unlock_irq(&p->pi_lock); 2681 2682 put_task_struct(p); 2683 return 0; 2684 } 2685 2686 /* 2687 * sched_class::set_cpus_allowed must do the below, but is not required to 2688 * actually call this function. 2689 */ 2690 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2691 { 2692 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2693 p->cpus_ptr = ctx->new_mask; 2694 return; 2695 } 2696 2697 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2698 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2699 2700 /* 2701 * Swap in a new user_cpus_ptr if SCA_USER flag set 2702 */ 2703 if (ctx->flags & SCA_USER) 2704 swap(p->user_cpus_ptr, ctx->user_mask); 2705 } 2706 2707 static void 2708 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2709 { 2710 struct rq *rq = task_rq(p); 2711 bool queued, running; 2712 2713 /* 2714 * This here violates the locking rules for affinity, since we're only 2715 * supposed to change these variables while holding both rq->lock and 2716 * p->pi_lock. 2717 * 2718 * HOWEVER, it magically works, because ttwu() is the only code that 2719 * accesses these variables under p->pi_lock and only does so after 2720 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2721 * before finish_task(). 2722 * 2723 * XXX do further audits, this smells like something putrid. 2724 */ 2725 if (ctx->flags & SCA_MIGRATE_DISABLE) 2726 WARN_ON_ONCE(!p->on_cpu); 2727 else 2728 lockdep_assert_held(&p->pi_lock); 2729 2730 queued = task_on_rq_queued(p); 2731 running = task_current_donor(rq, p); 2732 2733 if (queued) { 2734 /* 2735 * Because __kthread_bind() calls this on blocked tasks without 2736 * holding rq->lock. 2737 */ 2738 lockdep_assert_rq_held(rq); 2739 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2740 } 2741 if (running) 2742 put_prev_task(rq, p); 2743 2744 p->sched_class->set_cpus_allowed(p, ctx); 2745 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2746 2747 if (queued) 2748 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2749 if (running) 2750 set_next_task(rq, p); 2751 } 2752 2753 /* 2754 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2755 * affinity (if any) should be destroyed too. 2756 */ 2757 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2758 { 2759 struct affinity_context ac = { 2760 .new_mask = new_mask, 2761 .user_mask = NULL, 2762 .flags = SCA_USER, /* clear the user requested mask */ 2763 }; 2764 union cpumask_rcuhead { 2765 cpumask_t cpumask; 2766 struct rcu_head rcu; 2767 }; 2768 2769 __do_set_cpus_allowed(p, &ac); 2770 2771 /* 2772 * Because this is called with p->pi_lock held, it is not possible 2773 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2774 * kfree_rcu(). 2775 */ 2776 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2777 } 2778 2779 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2780 int node) 2781 { 2782 cpumask_t *user_mask; 2783 unsigned long flags; 2784 2785 /* 2786 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2787 * may differ by now due to racing. 2788 */ 2789 dst->user_cpus_ptr = NULL; 2790 2791 /* 2792 * This check is racy and losing the race is a valid situation. 2793 * It is not worth the extra overhead of taking the pi_lock on 2794 * every fork/clone. 2795 */ 2796 if (data_race(!src->user_cpus_ptr)) 2797 return 0; 2798 2799 user_mask = alloc_user_cpus_ptr(node); 2800 if (!user_mask) 2801 return -ENOMEM; 2802 2803 /* 2804 * Use pi_lock to protect content of user_cpus_ptr 2805 * 2806 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2807 * do_set_cpus_allowed(). 2808 */ 2809 raw_spin_lock_irqsave(&src->pi_lock, flags); 2810 if (src->user_cpus_ptr) { 2811 swap(dst->user_cpus_ptr, user_mask); 2812 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2813 } 2814 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2815 2816 if (unlikely(user_mask)) 2817 kfree(user_mask); 2818 2819 return 0; 2820 } 2821 2822 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2823 { 2824 struct cpumask *user_mask = NULL; 2825 2826 swap(p->user_cpus_ptr, user_mask); 2827 2828 return user_mask; 2829 } 2830 2831 void release_user_cpus_ptr(struct task_struct *p) 2832 { 2833 kfree(clear_user_cpus_ptr(p)); 2834 } 2835 2836 /* 2837 * This function is wildly self concurrent; here be dragons. 2838 * 2839 * 2840 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2841 * designated task is enqueued on an allowed CPU. If that task is currently 2842 * running, we have to kick it out using the CPU stopper. 2843 * 2844 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2845 * Consider: 2846 * 2847 * Initial conditions: P0->cpus_mask = [0, 1] 2848 * 2849 * P0@CPU0 P1 2850 * 2851 * migrate_disable(); 2852 * <preempted> 2853 * set_cpus_allowed_ptr(P0, [1]); 2854 * 2855 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2856 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2857 * This means we need the following scheme: 2858 * 2859 * P0@CPU0 P1 2860 * 2861 * migrate_disable(); 2862 * <preempted> 2863 * set_cpus_allowed_ptr(P0, [1]); 2864 * <blocks> 2865 * <resumes> 2866 * migrate_enable(); 2867 * __set_cpus_allowed_ptr(); 2868 * <wakes local stopper> 2869 * `--> <woken on migration completion> 2870 * 2871 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2872 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2873 * task p are serialized by p->pi_lock, which we can leverage: the one that 2874 * should come into effect at the end of the Migrate-Disable region is the last 2875 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2876 * but we still need to properly signal those waiting tasks at the appropriate 2877 * moment. 2878 * 2879 * This is implemented using struct set_affinity_pending. The first 2880 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2881 * setup an instance of that struct and install it on the targeted task_struct. 2882 * Any and all further callers will reuse that instance. Those then wait for 2883 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2884 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2885 * 2886 * 2887 * (1) In the cases covered above. There is one more where the completion is 2888 * signaled within affine_move_task() itself: when a subsequent affinity request 2889 * occurs after the stopper bailed out due to the targeted task still being 2890 * Migrate-Disable. Consider: 2891 * 2892 * Initial conditions: P0->cpus_mask = [0, 1] 2893 * 2894 * CPU0 P1 P2 2895 * <P0> 2896 * migrate_disable(); 2897 * <preempted> 2898 * set_cpus_allowed_ptr(P0, [1]); 2899 * <blocks> 2900 * <migration/0> 2901 * migration_cpu_stop() 2902 * is_migration_disabled() 2903 * <bails> 2904 * set_cpus_allowed_ptr(P0, [0, 1]); 2905 * <signal completion> 2906 * <awakes> 2907 * 2908 * Note that the above is safe vs a concurrent migrate_enable(), as any 2909 * pending affinity completion is preceded by an uninstallation of 2910 * p->migration_pending done with p->pi_lock held. 2911 */ 2912 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2913 int dest_cpu, unsigned int flags) 2914 __releases(rq->lock) 2915 __releases(p->pi_lock) 2916 { 2917 struct set_affinity_pending my_pending = { }, *pending = NULL; 2918 bool stop_pending, complete = false; 2919 2920 /* Can the task run on the task's current CPU? If so, we're done */ 2921 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2922 struct task_struct *push_task = NULL; 2923 2924 if ((flags & SCA_MIGRATE_ENABLE) && 2925 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2926 rq->push_busy = true; 2927 push_task = get_task_struct(p); 2928 } 2929 2930 /* 2931 * If there are pending waiters, but no pending stop_work, 2932 * then complete now. 2933 */ 2934 pending = p->migration_pending; 2935 if (pending && !pending->stop_pending) { 2936 p->migration_pending = NULL; 2937 complete = true; 2938 } 2939 2940 preempt_disable(); 2941 task_rq_unlock(rq, p, rf); 2942 if (push_task) { 2943 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2944 p, &rq->push_work); 2945 } 2946 preempt_enable(); 2947 2948 if (complete) 2949 complete_all(&pending->done); 2950 2951 return 0; 2952 } 2953 2954 if (!(flags & SCA_MIGRATE_ENABLE)) { 2955 /* serialized by p->pi_lock */ 2956 if (!p->migration_pending) { 2957 /* Install the request */ 2958 refcount_set(&my_pending.refs, 1); 2959 init_completion(&my_pending.done); 2960 my_pending.arg = (struct migration_arg) { 2961 .task = p, 2962 .dest_cpu = dest_cpu, 2963 .pending = &my_pending, 2964 }; 2965 2966 p->migration_pending = &my_pending; 2967 } else { 2968 pending = p->migration_pending; 2969 refcount_inc(&pending->refs); 2970 /* 2971 * Affinity has changed, but we've already installed a 2972 * pending. migration_cpu_stop() *must* see this, else 2973 * we risk a completion of the pending despite having a 2974 * task on a disallowed CPU. 2975 * 2976 * Serialized by p->pi_lock, so this is safe. 2977 */ 2978 pending->arg.dest_cpu = dest_cpu; 2979 } 2980 } 2981 pending = p->migration_pending; 2982 /* 2983 * - !MIGRATE_ENABLE: 2984 * we'll have installed a pending if there wasn't one already. 2985 * 2986 * - MIGRATE_ENABLE: 2987 * we're here because the current CPU isn't matching anymore, 2988 * the only way that can happen is because of a concurrent 2989 * set_cpus_allowed_ptr() call, which should then still be 2990 * pending completion. 2991 * 2992 * Either way, we really should have a @pending here. 2993 */ 2994 if (WARN_ON_ONCE(!pending)) { 2995 task_rq_unlock(rq, p, rf); 2996 return -EINVAL; 2997 } 2998 2999 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3000 /* 3001 * MIGRATE_ENABLE gets here because 'p == current', but for 3002 * anything else we cannot do is_migration_disabled(), punt 3003 * and have the stopper function handle it all race-free. 3004 */ 3005 stop_pending = pending->stop_pending; 3006 if (!stop_pending) 3007 pending->stop_pending = true; 3008 3009 if (flags & SCA_MIGRATE_ENABLE) 3010 p->migration_flags &= ~MDF_PUSH; 3011 3012 preempt_disable(); 3013 task_rq_unlock(rq, p, rf); 3014 if (!stop_pending) { 3015 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3016 &pending->arg, &pending->stop_work); 3017 } 3018 preempt_enable(); 3019 3020 if (flags & SCA_MIGRATE_ENABLE) 3021 return 0; 3022 } else { 3023 3024 if (!is_migration_disabled(p)) { 3025 if (task_on_rq_queued(p)) 3026 rq = move_queued_task(rq, rf, p, dest_cpu); 3027 3028 if (!pending->stop_pending) { 3029 p->migration_pending = NULL; 3030 complete = true; 3031 } 3032 } 3033 task_rq_unlock(rq, p, rf); 3034 3035 if (complete) 3036 complete_all(&pending->done); 3037 } 3038 3039 wait_for_completion(&pending->done); 3040 3041 if (refcount_dec_and_test(&pending->refs)) 3042 wake_up_var(&pending->refs); /* No UaF, just an address */ 3043 3044 /* 3045 * Block the original owner of &pending until all subsequent callers 3046 * have seen the completion and decremented the refcount 3047 */ 3048 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3049 3050 /* ARGH */ 3051 WARN_ON_ONCE(my_pending.stop_pending); 3052 3053 return 0; 3054 } 3055 3056 /* 3057 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3058 */ 3059 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3060 struct affinity_context *ctx, 3061 struct rq *rq, 3062 struct rq_flags *rf) 3063 __releases(rq->lock) 3064 __releases(p->pi_lock) 3065 { 3066 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3067 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3068 bool kthread = p->flags & PF_KTHREAD; 3069 unsigned int dest_cpu; 3070 int ret = 0; 3071 3072 update_rq_clock(rq); 3073 3074 if (kthread || is_migration_disabled(p)) { 3075 /* 3076 * Kernel threads are allowed on online && !active CPUs, 3077 * however, during cpu-hot-unplug, even these might get pushed 3078 * away if not KTHREAD_IS_PER_CPU. 3079 * 3080 * Specifically, migration_disabled() tasks must not fail the 3081 * cpumask_any_and_distribute() pick below, esp. so on 3082 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3083 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3084 */ 3085 cpu_valid_mask = cpu_online_mask; 3086 } 3087 3088 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3089 ret = -EINVAL; 3090 goto out; 3091 } 3092 3093 /* 3094 * Must re-check here, to close a race against __kthread_bind(), 3095 * sched_setaffinity() is not guaranteed to observe the flag. 3096 */ 3097 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3098 ret = -EINVAL; 3099 goto out; 3100 } 3101 3102 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3103 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3104 if (ctx->flags & SCA_USER) 3105 swap(p->user_cpus_ptr, ctx->user_mask); 3106 goto out; 3107 } 3108 3109 if (WARN_ON_ONCE(p == current && 3110 is_migration_disabled(p) && 3111 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3112 ret = -EBUSY; 3113 goto out; 3114 } 3115 } 3116 3117 /* 3118 * Picking a ~random cpu helps in cases where we are changing affinity 3119 * for groups of tasks (ie. cpuset), so that load balancing is not 3120 * immediately required to distribute the tasks within their new mask. 3121 */ 3122 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3123 if (dest_cpu >= nr_cpu_ids) { 3124 ret = -EINVAL; 3125 goto out; 3126 } 3127 3128 __do_set_cpus_allowed(p, ctx); 3129 3130 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3131 3132 out: 3133 task_rq_unlock(rq, p, rf); 3134 3135 return ret; 3136 } 3137 3138 /* 3139 * Change a given task's CPU affinity. Migrate the thread to a 3140 * proper CPU and schedule it away if the CPU it's executing on 3141 * is removed from the allowed bitmask. 3142 * 3143 * NOTE: the caller must have a valid reference to the task, the 3144 * task must not exit() & deallocate itself prematurely. The 3145 * call is not atomic; no spinlocks may be held. 3146 */ 3147 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3148 { 3149 struct rq_flags rf; 3150 struct rq *rq; 3151 3152 rq = task_rq_lock(p, &rf); 3153 /* 3154 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3155 * flags are set. 3156 */ 3157 if (p->user_cpus_ptr && 3158 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3159 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3160 ctx->new_mask = rq->scratch_mask; 3161 3162 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3163 } 3164 3165 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3166 { 3167 struct affinity_context ac = { 3168 .new_mask = new_mask, 3169 .flags = 0, 3170 }; 3171 3172 return __set_cpus_allowed_ptr(p, &ac); 3173 } 3174 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3175 3176 /* 3177 * Change a given task's CPU affinity to the intersection of its current 3178 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3179 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3180 * affinity or use cpu_online_mask instead. 3181 * 3182 * If the resulting mask is empty, leave the affinity unchanged and return 3183 * -EINVAL. 3184 */ 3185 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3186 struct cpumask *new_mask, 3187 const struct cpumask *subset_mask) 3188 { 3189 struct affinity_context ac = { 3190 .new_mask = new_mask, 3191 .flags = 0, 3192 }; 3193 struct rq_flags rf; 3194 struct rq *rq; 3195 int err; 3196 3197 rq = task_rq_lock(p, &rf); 3198 3199 /* 3200 * Forcefully restricting the affinity of a deadline task is 3201 * likely to cause problems, so fail and noisily override the 3202 * mask entirely. 3203 */ 3204 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3205 err = -EPERM; 3206 goto err_unlock; 3207 } 3208 3209 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3210 err = -EINVAL; 3211 goto err_unlock; 3212 } 3213 3214 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3215 3216 err_unlock: 3217 task_rq_unlock(rq, p, &rf); 3218 return err; 3219 } 3220 3221 /* 3222 * Restrict the CPU affinity of task @p so that it is a subset of 3223 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3224 * old affinity mask. If the resulting mask is empty, we warn and walk 3225 * up the cpuset hierarchy until we find a suitable mask. 3226 */ 3227 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3228 { 3229 cpumask_var_t new_mask; 3230 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3231 3232 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3233 3234 /* 3235 * __migrate_task() can fail silently in the face of concurrent 3236 * offlining of the chosen destination CPU, so take the hotplug 3237 * lock to ensure that the migration succeeds. 3238 */ 3239 cpus_read_lock(); 3240 if (!cpumask_available(new_mask)) 3241 goto out_set_mask; 3242 3243 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3244 goto out_free_mask; 3245 3246 /* 3247 * We failed to find a valid subset of the affinity mask for the 3248 * task, so override it based on its cpuset hierarchy. 3249 */ 3250 cpuset_cpus_allowed(p, new_mask); 3251 override_mask = new_mask; 3252 3253 out_set_mask: 3254 if (printk_ratelimit()) { 3255 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3256 task_pid_nr(p), p->comm, 3257 cpumask_pr_args(override_mask)); 3258 } 3259 3260 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3261 out_free_mask: 3262 cpus_read_unlock(); 3263 free_cpumask_var(new_mask); 3264 } 3265 3266 /* 3267 * Restore the affinity of a task @p which was previously restricted by a 3268 * call to force_compatible_cpus_allowed_ptr(). 3269 * 3270 * It is the caller's responsibility to serialise this with any calls to 3271 * force_compatible_cpus_allowed_ptr(@p). 3272 */ 3273 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3274 { 3275 struct affinity_context ac = { 3276 .new_mask = task_user_cpus(p), 3277 .flags = 0, 3278 }; 3279 int ret; 3280 3281 /* 3282 * Try to restore the old affinity mask with __sched_setaffinity(). 3283 * Cpuset masking will be done there too. 3284 */ 3285 ret = __sched_setaffinity(p, &ac); 3286 WARN_ON_ONCE(ret); 3287 } 3288 3289 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3290 { 3291 unsigned int state = READ_ONCE(p->__state); 3292 3293 /* 3294 * We should never call set_task_cpu() on a blocked task, 3295 * ttwu() will sort out the placement. 3296 */ 3297 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3298 3299 /* 3300 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3301 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3302 * time relying on p->on_rq. 3303 */ 3304 WARN_ON_ONCE(state == TASK_RUNNING && 3305 p->sched_class == &fair_sched_class && 3306 (p->on_rq && !task_on_rq_migrating(p))); 3307 3308 #ifdef CONFIG_LOCKDEP 3309 /* 3310 * The caller should hold either p->pi_lock or rq->lock, when changing 3311 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3312 * 3313 * sched_move_task() holds both and thus holding either pins the cgroup, 3314 * see task_group(). 3315 * 3316 * Furthermore, all task_rq users should acquire both locks, see 3317 * task_rq_lock(). 3318 */ 3319 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3320 lockdep_is_held(__rq_lockp(task_rq(p))))); 3321 #endif 3322 /* 3323 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3324 */ 3325 WARN_ON_ONCE(!cpu_online(new_cpu)); 3326 3327 WARN_ON_ONCE(is_migration_disabled(p)); 3328 3329 trace_sched_migrate_task(p, new_cpu); 3330 3331 if (task_cpu(p) != new_cpu) { 3332 if (p->sched_class->migrate_task_rq) 3333 p->sched_class->migrate_task_rq(p, new_cpu); 3334 p->se.nr_migrations++; 3335 rseq_migrate(p); 3336 sched_mm_cid_migrate_from(p); 3337 perf_event_task_migrate(p); 3338 } 3339 3340 __set_task_cpu(p, new_cpu); 3341 } 3342 3343 #ifdef CONFIG_NUMA_BALANCING 3344 static void __migrate_swap_task(struct task_struct *p, int cpu) 3345 { 3346 if (task_on_rq_queued(p)) { 3347 struct rq *src_rq, *dst_rq; 3348 struct rq_flags srf, drf; 3349 3350 src_rq = task_rq(p); 3351 dst_rq = cpu_rq(cpu); 3352 3353 rq_pin_lock(src_rq, &srf); 3354 rq_pin_lock(dst_rq, &drf); 3355 3356 move_queued_task_locked(src_rq, dst_rq, p); 3357 wakeup_preempt(dst_rq, p, 0); 3358 3359 rq_unpin_lock(dst_rq, &drf); 3360 rq_unpin_lock(src_rq, &srf); 3361 3362 } else { 3363 /* 3364 * Task isn't running anymore; make it appear like we migrated 3365 * it before it went to sleep. This means on wakeup we make the 3366 * previous CPU our target instead of where it really is. 3367 */ 3368 p->wake_cpu = cpu; 3369 } 3370 } 3371 3372 struct migration_swap_arg { 3373 struct task_struct *src_task, *dst_task; 3374 int src_cpu, dst_cpu; 3375 }; 3376 3377 static int migrate_swap_stop(void *data) 3378 { 3379 struct migration_swap_arg *arg = data; 3380 struct rq *src_rq, *dst_rq; 3381 3382 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3383 return -EAGAIN; 3384 3385 src_rq = cpu_rq(arg->src_cpu); 3386 dst_rq = cpu_rq(arg->dst_cpu); 3387 3388 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3389 guard(double_rq_lock)(src_rq, dst_rq); 3390 3391 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3392 return -EAGAIN; 3393 3394 if (task_cpu(arg->src_task) != arg->src_cpu) 3395 return -EAGAIN; 3396 3397 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3398 return -EAGAIN; 3399 3400 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3401 return -EAGAIN; 3402 3403 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3404 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3405 3406 return 0; 3407 } 3408 3409 /* 3410 * Cross migrate two tasks 3411 */ 3412 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3413 int target_cpu, int curr_cpu) 3414 { 3415 struct migration_swap_arg arg; 3416 int ret = -EINVAL; 3417 3418 arg = (struct migration_swap_arg){ 3419 .src_task = cur, 3420 .src_cpu = curr_cpu, 3421 .dst_task = p, 3422 .dst_cpu = target_cpu, 3423 }; 3424 3425 if (arg.src_cpu == arg.dst_cpu) 3426 goto out; 3427 3428 /* 3429 * These three tests are all lockless; this is OK since all of them 3430 * will be re-checked with proper locks held further down the line. 3431 */ 3432 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3433 goto out; 3434 3435 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3436 goto out; 3437 3438 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3439 goto out; 3440 3441 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3442 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3443 3444 out: 3445 return ret; 3446 } 3447 #endif /* CONFIG_NUMA_BALANCING */ 3448 3449 /*** 3450 * kick_process - kick a running thread to enter/exit the kernel 3451 * @p: the to-be-kicked thread 3452 * 3453 * Cause a process which is running on another CPU to enter 3454 * kernel-mode, without any delay. (to get signals handled.) 3455 * 3456 * NOTE: this function doesn't have to take the runqueue lock, 3457 * because all it wants to ensure is that the remote task enters 3458 * the kernel. If the IPI races and the task has been migrated 3459 * to another CPU then no harm is done and the purpose has been 3460 * achieved as well. 3461 */ 3462 void kick_process(struct task_struct *p) 3463 { 3464 guard(preempt)(); 3465 int cpu = task_cpu(p); 3466 3467 if ((cpu != smp_processor_id()) && task_curr(p)) 3468 smp_send_reschedule(cpu); 3469 } 3470 EXPORT_SYMBOL_GPL(kick_process); 3471 3472 /* 3473 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3474 * 3475 * A few notes on cpu_active vs cpu_online: 3476 * 3477 * - cpu_active must be a subset of cpu_online 3478 * 3479 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3480 * see __set_cpus_allowed_ptr(). At this point the newly online 3481 * CPU isn't yet part of the sched domains, and balancing will not 3482 * see it. 3483 * 3484 * - on CPU-down we clear cpu_active() to mask the sched domains and 3485 * avoid the load balancer to place new tasks on the to be removed 3486 * CPU. Existing tasks will remain running there and will be taken 3487 * off. 3488 * 3489 * This means that fallback selection must not select !active CPUs. 3490 * And can assume that any active CPU must be online. Conversely 3491 * select_task_rq() below may allow selection of !active CPUs in order 3492 * to satisfy the above rules. 3493 */ 3494 static int select_fallback_rq(int cpu, struct task_struct *p) 3495 { 3496 int nid = cpu_to_node(cpu); 3497 const struct cpumask *nodemask = NULL; 3498 enum { cpuset, possible, fail } state = cpuset; 3499 int dest_cpu; 3500 3501 /* 3502 * If the node that the CPU is on has been offlined, cpu_to_node() 3503 * will return -1. There is no CPU on the node, and we should 3504 * select the CPU on the other node. 3505 */ 3506 if (nid != -1) { 3507 nodemask = cpumask_of_node(nid); 3508 3509 /* Look for allowed, online CPU in same node. */ 3510 for_each_cpu(dest_cpu, nodemask) { 3511 if (is_cpu_allowed(p, dest_cpu)) 3512 return dest_cpu; 3513 } 3514 } 3515 3516 for (;;) { 3517 /* Any allowed, online CPU? */ 3518 for_each_cpu(dest_cpu, p->cpus_ptr) { 3519 if (!is_cpu_allowed(p, dest_cpu)) 3520 continue; 3521 3522 goto out; 3523 } 3524 3525 /* No more Mr. Nice Guy. */ 3526 switch (state) { 3527 case cpuset: 3528 if (cpuset_cpus_allowed_fallback(p)) { 3529 state = possible; 3530 break; 3531 } 3532 fallthrough; 3533 case possible: 3534 /* 3535 * XXX When called from select_task_rq() we only 3536 * hold p->pi_lock and again violate locking order. 3537 * 3538 * More yuck to audit. 3539 */ 3540 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3541 state = fail; 3542 break; 3543 case fail: 3544 BUG(); 3545 break; 3546 } 3547 } 3548 3549 out: 3550 if (state != cpuset) { 3551 /* 3552 * Don't tell them about moving exiting tasks or 3553 * kernel threads (both mm NULL), since they never 3554 * leave kernel. 3555 */ 3556 if (p->mm && printk_ratelimit()) { 3557 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3558 task_pid_nr(p), p->comm, cpu); 3559 } 3560 } 3561 3562 return dest_cpu; 3563 } 3564 3565 /* 3566 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3567 */ 3568 static inline 3569 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3570 { 3571 lockdep_assert_held(&p->pi_lock); 3572 3573 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3574 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3575 *wake_flags |= WF_RQ_SELECTED; 3576 } else { 3577 cpu = cpumask_any(p->cpus_ptr); 3578 } 3579 3580 /* 3581 * In order not to call set_task_cpu() on a blocking task we need 3582 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3583 * CPU. 3584 * 3585 * Since this is common to all placement strategies, this lives here. 3586 * 3587 * [ this allows ->select_task() to simply return task_cpu(p) and 3588 * not worry about this generic constraint ] 3589 */ 3590 if (unlikely(!is_cpu_allowed(p, cpu))) 3591 cpu = select_fallback_rq(task_cpu(p), p); 3592 3593 return cpu; 3594 } 3595 3596 void sched_set_stop_task(int cpu, struct task_struct *stop) 3597 { 3598 static struct lock_class_key stop_pi_lock; 3599 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3600 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3601 3602 if (stop) { 3603 /* 3604 * Make it appear like a SCHED_FIFO task, its something 3605 * userspace knows about and won't get confused about. 3606 * 3607 * Also, it will make PI more or less work without too 3608 * much confusion -- but then, stop work should not 3609 * rely on PI working anyway. 3610 */ 3611 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3612 3613 stop->sched_class = &stop_sched_class; 3614 3615 /* 3616 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3617 * adjust the effective priority of a task. As a result, 3618 * rt_mutex_setprio() can trigger (RT) balancing operations, 3619 * which can then trigger wakeups of the stop thread to push 3620 * around the current task. 3621 * 3622 * The stop task itself will never be part of the PI-chain, it 3623 * never blocks, therefore that ->pi_lock recursion is safe. 3624 * Tell lockdep about this by placing the stop->pi_lock in its 3625 * own class. 3626 */ 3627 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3628 } 3629 3630 cpu_rq(cpu)->stop = stop; 3631 3632 if (old_stop) { 3633 /* 3634 * Reset it back to a normal scheduling class so that 3635 * it can die in pieces. 3636 */ 3637 old_stop->sched_class = &rt_sched_class; 3638 } 3639 } 3640 3641 #else /* CONFIG_SMP */ 3642 3643 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3644 3645 static inline bool rq_has_pinned_tasks(struct rq *rq) 3646 { 3647 return false; 3648 } 3649 3650 #endif /* !CONFIG_SMP */ 3651 3652 static void 3653 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3654 { 3655 struct rq *rq; 3656 3657 if (!schedstat_enabled()) 3658 return; 3659 3660 rq = this_rq(); 3661 3662 #ifdef CONFIG_SMP 3663 if (cpu == rq->cpu) { 3664 __schedstat_inc(rq->ttwu_local); 3665 __schedstat_inc(p->stats.nr_wakeups_local); 3666 } else { 3667 struct sched_domain *sd; 3668 3669 __schedstat_inc(p->stats.nr_wakeups_remote); 3670 3671 guard(rcu)(); 3672 for_each_domain(rq->cpu, sd) { 3673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3674 __schedstat_inc(sd->ttwu_wake_remote); 3675 break; 3676 } 3677 } 3678 } 3679 3680 if (wake_flags & WF_MIGRATED) 3681 __schedstat_inc(p->stats.nr_wakeups_migrate); 3682 #endif /* CONFIG_SMP */ 3683 3684 __schedstat_inc(rq->ttwu_count); 3685 __schedstat_inc(p->stats.nr_wakeups); 3686 3687 if (wake_flags & WF_SYNC) 3688 __schedstat_inc(p->stats.nr_wakeups_sync); 3689 } 3690 3691 /* 3692 * Mark the task runnable. 3693 */ 3694 static inline void ttwu_do_wakeup(struct task_struct *p) 3695 { 3696 WRITE_ONCE(p->__state, TASK_RUNNING); 3697 trace_sched_wakeup(p); 3698 } 3699 3700 static void 3701 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3702 struct rq_flags *rf) 3703 { 3704 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3705 3706 lockdep_assert_rq_held(rq); 3707 3708 if (p->sched_contributes_to_load) 3709 rq->nr_uninterruptible--; 3710 3711 #ifdef CONFIG_SMP 3712 if (wake_flags & WF_RQ_SELECTED) 3713 en_flags |= ENQUEUE_RQ_SELECTED; 3714 if (wake_flags & WF_MIGRATED) 3715 en_flags |= ENQUEUE_MIGRATED; 3716 else 3717 #endif 3718 if (p->in_iowait) { 3719 delayacct_blkio_end(p); 3720 atomic_dec(&task_rq(p)->nr_iowait); 3721 } 3722 3723 activate_task(rq, p, en_flags); 3724 wakeup_preempt(rq, p, wake_flags); 3725 3726 ttwu_do_wakeup(p); 3727 3728 #ifdef CONFIG_SMP 3729 if (p->sched_class->task_woken) { 3730 /* 3731 * Our task @p is fully woken up and running; so it's safe to 3732 * drop the rq->lock, hereafter rq is only used for statistics. 3733 */ 3734 rq_unpin_lock(rq, rf); 3735 p->sched_class->task_woken(rq, p); 3736 rq_repin_lock(rq, rf); 3737 } 3738 3739 if (rq->idle_stamp) { 3740 u64 delta = rq_clock(rq) - rq->idle_stamp; 3741 u64 max = 2*rq->max_idle_balance_cost; 3742 3743 update_avg(&rq->avg_idle, delta); 3744 3745 if (rq->avg_idle > max) 3746 rq->avg_idle = max; 3747 3748 rq->idle_stamp = 0; 3749 } 3750 #endif 3751 } 3752 3753 /* 3754 * Consider @p being inside a wait loop: 3755 * 3756 * for (;;) { 3757 * set_current_state(TASK_UNINTERRUPTIBLE); 3758 * 3759 * if (CONDITION) 3760 * break; 3761 * 3762 * schedule(); 3763 * } 3764 * __set_current_state(TASK_RUNNING); 3765 * 3766 * between set_current_state() and schedule(). In this case @p is still 3767 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3768 * an atomic manner. 3769 * 3770 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3771 * then schedule() must still happen and p->state can be changed to 3772 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3773 * need to do a full wakeup with enqueue. 3774 * 3775 * Returns: %true when the wakeup is done, 3776 * %false otherwise. 3777 */ 3778 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3779 { 3780 struct rq_flags rf; 3781 struct rq *rq; 3782 int ret = 0; 3783 3784 rq = __task_rq_lock(p, &rf); 3785 if (task_on_rq_queued(p)) { 3786 update_rq_clock(rq); 3787 if (p->se.sched_delayed) 3788 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3789 if (!task_on_cpu(rq, p)) { 3790 /* 3791 * When on_rq && !on_cpu the task is preempted, see if 3792 * it should preempt the task that is current now. 3793 */ 3794 wakeup_preempt(rq, p, wake_flags); 3795 } 3796 ttwu_do_wakeup(p); 3797 ret = 1; 3798 } 3799 __task_rq_unlock(rq, &rf); 3800 3801 return ret; 3802 } 3803 3804 #ifdef CONFIG_SMP 3805 void sched_ttwu_pending(void *arg) 3806 { 3807 struct llist_node *llist = arg; 3808 struct rq *rq = this_rq(); 3809 struct task_struct *p, *t; 3810 struct rq_flags rf; 3811 3812 if (!llist) 3813 return; 3814 3815 rq_lock_irqsave(rq, &rf); 3816 update_rq_clock(rq); 3817 3818 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3819 if (WARN_ON_ONCE(p->on_cpu)) 3820 smp_cond_load_acquire(&p->on_cpu, !VAL); 3821 3822 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3823 set_task_cpu(p, cpu_of(rq)); 3824 3825 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3826 } 3827 3828 /* 3829 * Must be after enqueueing at least once task such that 3830 * idle_cpu() does not observe a false-negative -- if it does, 3831 * it is possible for select_idle_siblings() to stack a number 3832 * of tasks on this CPU during that window. 3833 * 3834 * It is OK to clear ttwu_pending when another task pending. 3835 * We will receive IPI after local IRQ enabled and then enqueue it. 3836 * Since now nr_running > 0, idle_cpu() will always get correct result. 3837 */ 3838 WRITE_ONCE(rq->ttwu_pending, 0); 3839 rq_unlock_irqrestore(rq, &rf); 3840 } 3841 3842 /* 3843 * Prepare the scene for sending an IPI for a remote smp_call 3844 * 3845 * Returns true if the caller can proceed with sending the IPI. 3846 * Returns false otherwise. 3847 */ 3848 bool call_function_single_prep_ipi(int cpu) 3849 { 3850 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3851 trace_sched_wake_idle_without_ipi(cpu); 3852 return false; 3853 } 3854 3855 return true; 3856 } 3857 3858 /* 3859 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3860 * necessary. The wakee CPU on receipt of the IPI will queue the task 3861 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3862 * of the wakeup instead of the waker. 3863 */ 3864 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3865 { 3866 struct rq *rq = cpu_rq(cpu); 3867 3868 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3869 3870 WRITE_ONCE(rq->ttwu_pending, 1); 3871 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3872 } 3873 3874 void wake_up_if_idle(int cpu) 3875 { 3876 struct rq *rq = cpu_rq(cpu); 3877 3878 guard(rcu)(); 3879 if (is_idle_task(rcu_dereference(rq->curr))) { 3880 guard(rq_lock_irqsave)(rq); 3881 if (is_idle_task(rq->curr)) 3882 resched_curr(rq); 3883 } 3884 } 3885 3886 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3887 { 3888 if (!sched_asym_cpucap_active()) 3889 return true; 3890 3891 if (this_cpu == that_cpu) 3892 return true; 3893 3894 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3895 } 3896 3897 bool cpus_share_cache(int this_cpu, int that_cpu) 3898 { 3899 if (this_cpu == that_cpu) 3900 return true; 3901 3902 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3903 } 3904 3905 /* 3906 * Whether CPUs are share cache resources, which means LLC on non-cluster 3907 * machines and LLC tag or L2 on machines with clusters. 3908 */ 3909 bool cpus_share_resources(int this_cpu, int that_cpu) 3910 { 3911 if (this_cpu == that_cpu) 3912 return true; 3913 3914 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3915 } 3916 3917 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3918 { 3919 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3920 if (!scx_allow_ttwu_queue(p)) 3921 return false; 3922 3923 /* 3924 * Do not complicate things with the async wake_list while the CPU is 3925 * in hotplug state. 3926 */ 3927 if (!cpu_active(cpu)) 3928 return false; 3929 3930 /* Ensure the task will still be allowed to run on the CPU. */ 3931 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3932 return false; 3933 3934 /* 3935 * If the CPU does not share cache, then queue the task on the 3936 * remote rqs wakelist to avoid accessing remote data. 3937 */ 3938 if (!cpus_share_cache(smp_processor_id(), cpu)) 3939 return true; 3940 3941 if (cpu == smp_processor_id()) 3942 return false; 3943 3944 /* 3945 * If the wakee cpu is idle, or the task is descheduling and the 3946 * only running task on the CPU, then use the wakelist to offload 3947 * the task activation to the idle (or soon-to-be-idle) CPU as 3948 * the current CPU is likely busy. nr_running is checked to 3949 * avoid unnecessary task stacking. 3950 * 3951 * Note that we can only get here with (wakee) p->on_rq=0, 3952 * p->on_cpu can be whatever, we've done the dequeue, so 3953 * the wakee has been accounted out of ->nr_running. 3954 */ 3955 if (!cpu_rq(cpu)->nr_running) 3956 return true; 3957 3958 return false; 3959 } 3960 3961 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3962 { 3963 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3964 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3965 __ttwu_queue_wakelist(p, cpu, wake_flags); 3966 return true; 3967 } 3968 3969 return false; 3970 } 3971 3972 #else /* !CONFIG_SMP */ 3973 3974 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3975 { 3976 return false; 3977 } 3978 3979 #endif /* CONFIG_SMP */ 3980 3981 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3982 { 3983 struct rq *rq = cpu_rq(cpu); 3984 struct rq_flags rf; 3985 3986 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3987 return; 3988 3989 rq_lock(rq, &rf); 3990 update_rq_clock(rq); 3991 ttwu_do_activate(rq, p, wake_flags, &rf); 3992 rq_unlock(rq, &rf); 3993 } 3994 3995 /* 3996 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3997 * 3998 * The caller holds p::pi_lock if p != current or has preemption 3999 * disabled when p == current. 4000 * 4001 * The rules of saved_state: 4002 * 4003 * The related locking code always holds p::pi_lock when updating 4004 * p::saved_state, which means the code is fully serialized in both cases. 4005 * 4006 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4007 * No other bits set. This allows to distinguish all wakeup scenarios. 4008 * 4009 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4010 * allows us to prevent early wakeup of tasks before they can be run on 4011 * asymmetric ISA architectures (eg ARMv9). 4012 */ 4013 static __always_inline 4014 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4015 { 4016 int match; 4017 4018 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4019 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4020 state != TASK_RTLOCK_WAIT); 4021 } 4022 4023 *success = !!(match = __task_state_match(p, state)); 4024 4025 /* 4026 * Saved state preserves the task state across blocking on 4027 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4028 * set p::saved_state to TASK_RUNNING, but do not wake the task 4029 * because it waits for a lock wakeup or __thaw_task(). Also 4030 * indicate success because from the regular waker's point of 4031 * view this has succeeded. 4032 * 4033 * After acquiring the lock the task will restore p::__state 4034 * from p::saved_state which ensures that the regular 4035 * wakeup is not lost. The restore will also set 4036 * p::saved_state to TASK_RUNNING so any further tests will 4037 * not result in false positives vs. @success 4038 */ 4039 if (match < 0) 4040 p->saved_state = TASK_RUNNING; 4041 4042 return match > 0; 4043 } 4044 4045 /* 4046 * Notes on Program-Order guarantees on SMP systems. 4047 * 4048 * MIGRATION 4049 * 4050 * The basic program-order guarantee on SMP systems is that when a task [t] 4051 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4052 * execution on its new CPU [c1]. 4053 * 4054 * For migration (of runnable tasks) this is provided by the following means: 4055 * 4056 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4057 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4058 * rq(c1)->lock (if not at the same time, then in that order). 4059 * C) LOCK of the rq(c1)->lock scheduling in task 4060 * 4061 * Release/acquire chaining guarantees that B happens after A and C after B. 4062 * Note: the CPU doing B need not be c0 or c1 4063 * 4064 * Example: 4065 * 4066 * CPU0 CPU1 CPU2 4067 * 4068 * LOCK rq(0)->lock 4069 * sched-out X 4070 * sched-in Y 4071 * UNLOCK rq(0)->lock 4072 * 4073 * LOCK rq(0)->lock // orders against CPU0 4074 * dequeue X 4075 * UNLOCK rq(0)->lock 4076 * 4077 * LOCK rq(1)->lock 4078 * enqueue X 4079 * UNLOCK rq(1)->lock 4080 * 4081 * LOCK rq(1)->lock // orders against CPU2 4082 * sched-out Z 4083 * sched-in X 4084 * UNLOCK rq(1)->lock 4085 * 4086 * 4087 * BLOCKING -- aka. SLEEP + WAKEUP 4088 * 4089 * For blocking we (obviously) need to provide the same guarantee as for 4090 * migration. However the means are completely different as there is no lock 4091 * chain to provide order. Instead we do: 4092 * 4093 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4094 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4095 * 4096 * Example: 4097 * 4098 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4099 * 4100 * LOCK rq(0)->lock LOCK X->pi_lock 4101 * dequeue X 4102 * sched-out X 4103 * smp_store_release(X->on_cpu, 0); 4104 * 4105 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4106 * X->state = WAKING 4107 * set_task_cpu(X,2) 4108 * 4109 * LOCK rq(2)->lock 4110 * enqueue X 4111 * X->state = RUNNING 4112 * UNLOCK rq(2)->lock 4113 * 4114 * LOCK rq(2)->lock // orders against CPU1 4115 * sched-out Z 4116 * sched-in X 4117 * UNLOCK rq(2)->lock 4118 * 4119 * UNLOCK X->pi_lock 4120 * UNLOCK rq(0)->lock 4121 * 4122 * 4123 * However, for wakeups there is a second guarantee we must provide, namely we 4124 * must ensure that CONDITION=1 done by the caller can not be reordered with 4125 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4126 */ 4127 4128 /** 4129 * try_to_wake_up - wake up a thread 4130 * @p: the thread to be awakened 4131 * @state: the mask of task states that can be woken 4132 * @wake_flags: wake modifier flags (WF_*) 4133 * 4134 * Conceptually does: 4135 * 4136 * If (@state & @p->state) @p->state = TASK_RUNNING. 4137 * 4138 * If the task was not queued/runnable, also place it back on a runqueue. 4139 * 4140 * This function is atomic against schedule() which would dequeue the task. 4141 * 4142 * It issues a full memory barrier before accessing @p->state, see the comment 4143 * with set_current_state(). 4144 * 4145 * Uses p->pi_lock to serialize against concurrent wake-ups. 4146 * 4147 * Relies on p->pi_lock stabilizing: 4148 * - p->sched_class 4149 * - p->cpus_ptr 4150 * - p->sched_task_group 4151 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4152 * 4153 * Tries really hard to only take one task_rq(p)->lock for performance. 4154 * Takes rq->lock in: 4155 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4156 * - ttwu_queue() -- new rq, for enqueue of the task; 4157 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4158 * 4159 * As a consequence we race really badly with just about everything. See the 4160 * many memory barriers and their comments for details. 4161 * 4162 * Return: %true if @p->state changes (an actual wakeup was done), 4163 * %false otherwise. 4164 */ 4165 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4166 { 4167 guard(preempt)(); 4168 int cpu, success = 0; 4169 4170 wake_flags |= WF_TTWU; 4171 4172 if (p == current) { 4173 /* 4174 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4175 * == smp_processor_id()'. Together this means we can special 4176 * case the whole 'p->on_rq && ttwu_runnable()' case below 4177 * without taking any locks. 4178 * 4179 * Specifically, given current runs ttwu() we must be before 4180 * schedule()'s block_task(), as such this must not observe 4181 * sched_delayed. 4182 * 4183 * In particular: 4184 * - we rely on Program-Order guarantees for all the ordering, 4185 * - we're serialized against set_special_state() by virtue of 4186 * it disabling IRQs (this allows not taking ->pi_lock). 4187 */ 4188 WARN_ON_ONCE(p->se.sched_delayed); 4189 if (!ttwu_state_match(p, state, &success)) 4190 goto out; 4191 4192 trace_sched_waking(p); 4193 ttwu_do_wakeup(p); 4194 goto out; 4195 } 4196 4197 /* 4198 * If we are going to wake up a thread waiting for CONDITION we 4199 * need to ensure that CONDITION=1 done by the caller can not be 4200 * reordered with p->state check below. This pairs with smp_store_mb() 4201 * in set_current_state() that the waiting thread does. 4202 */ 4203 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4204 smp_mb__after_spinlock(); 4205 if (!ttwu_state_match(p, state, &success)) 4206 break; 4207 4208 trace_sched_waking(p); 4209 4210 /* 4211 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4212 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4213 * in smp_cond_load_acquire() below. 4214 * 4215 * sched_ttwu_pending() try_to_wake_up() 4216 * STORE p->on_rq = 1 LOAD p->state 4217 * UNLOCK rq->lock 4218 * 4219 * __schedule() (switch to task 'p') 4220 * LOCK rq->lock smp_rmb(); 4221 * smp_mb__after_spinlock(); 4222 * UNLOCK rq->lock 4223 * 4224 * [task p] 4225 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4226 * 4227 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4228 * __schedule(). See the comment for smp_mb__after_spinlock(). 4229 * 4230 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4231 */ 4232 smp_rmb(); 4233 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4234 break; 4235 4236 #ifdef CONFIG_SMP 4237 /* 4238 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4239 * possible to, falsely, observe p->on_cpu == 0. 4240 * 4241 * One must be running (->on_cpu == 1) in order to remove oneself 4242 * from the runqueue. 4243 * 4244 * __schedule() (switch to task 'p') try_to_wake_up() 4245 * STORE p->on_cpu = 1 LOAD p->on_rq 4246 * UNLOCK rq->lock 4247 * 4248 * __schedule() (put 'p' to sleep) 4249 * LOCK rq->lock smp_rmb(); 4250 * smp_mb__after_spinlock(); 4251 * STORE p->on_rq = 0 LOAD p->on_cpu 4252 * 4253 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4254 * __schedule(). See the comment for smp_mb__after_spinlock(). 4255 * 4256 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4257 * schedule()'s deactivate_task() has 'happened' and p will no longer 4258 * care about it's own p->state. See the comment in __schedule(). 4259 */ 4260 smp_acquire__after_ctrl_dep(); 4261 4262 /* 4263 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4264 * == 0), which means we need to do an enqueue, change p->state to 4265 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4266 * enqueue, such as ttwu_queue_wakelist(). 4267 */ 4268 WRITE_ONCE(p->__state, TASK_WAKING); 4269 4270 /* 4271 * If the owning (remote) CPU is still in the middle of schedule() with 4272 * this task as prev, considering queueing p on the remote CPUs wake_list 4273 * which potentially sends an IPI instead of spinning on p->on_cpu to 4274 * let the waker make forward progress. This is safe because IRQs are 4275 * disabled and the IPI will deliver after on_cpu is cleared. 4276 * 4277 * Ensure we load task_cpu(p) after p->on_cpu: 4278 * 4279 * set_task_cpu(p, cpu); 4280 * STORE p->cpu = @cpu 4281 * __schedule() (switch to task 'p') 4282 * LOCK rq->lock 4283 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4284 * STORE p->on_cpu = 1 LOAD p->cpu 4285 * 4286 * to ensure we observe the correct CPU on which the task is currently 4287 * scheduling. 4288 */ 4289 if (smp_load_acquire(&p->on_cpu) && 4290 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4291 break; 4292 4293 /* 4294 * If the owning (remote) CPU is still in the middle of schedule() with 4295 * this task as prev, wait until it's done referencing the task. 4296 * 4297 * Pairs with the smp_store_release() in finish_task(). 4298 * 4299 * This ensures that tasks getting woken will be fully ordered against 4300 * their previous state and preserve Program Order. 4301 */ 4302 smp_cond_load_acquire(&p->on_cpu, !VAL); 4303 4304 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4305 if (task_cpu(p) != cpu) { 4306 if (p->in_iowait) { 4307 delayacct_blkio_end(p); 4308 atomic_dec(&task_rq(p)->nr_iowait); 4309 } 4310 4311 wake_flags |= WF_MIGRATED; 4312 psi_ttwu_dequeue(p); 4313 set_task_cpu(p, cpu); 4314 } 4315 #else 4316 cpu = task_cpu(p); 4317 #endif /* CONFIG_SMP */ 4318 4319 ttwu_queue(p, cpu, wake_flags); 4320 } 4321 out: 4322 if (success) 4323 ttwu_stat(p, task_cpu(p), wake_flags); 4324 4325 return success; 4326 } 4327 4328 static bool __task_needs_rq_lock(struct task_struct *p) 4329 { 4330 unsigned int state = READ_ONCE(p->__state); 4331 4332 /* 4333 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4334 * the task is blocked. Make sure to check @state since ttwu() can drop 4335 * locks at the end, see ttwu_queue_wakelist(). 4336 */ 4337 if (state == TASK_RUNNING || state == TASK_WAKING) 4338 return true; 4339 4340 /* 4341 * Ensure we load p->on_rq after p->__state, otherwise it would be 4342 * possible to, falsely, observe p->on_rq == 0. 4343 * 4344 * See try_to_wake_up() for a longer comment. 4345 */ 4346 smp_rmb(); 4347 if (p->on_rq) 4348 return true; 4349 4350 #ifdef CONFIG_SMP 4351 /* 4352 * Ensure the task has finished __schedule() and will not be referenced 4353 * anymore. Again, see try_to_wake_up() for a longer comment. 4354 */ 4355 smp_rmb(); 4356 smp_cond_load_acquire(&p->on_cpu, !VAL); 4357 #endif 4358 4359 return false; 4360 } 4361 4362 /** 4363 * task_call_func - Invoke a function on task in fixed state 4364 * @p: Process for which the function is to be invoked, can be @current. 4365 * @func: Function to invoke. 4366 * @arg: Argument to function. 4367 * 4368 * Fix the task in it's current state by avoiding wakeups and or rq operations 4369 * and call @func(@arg) on it. This function can use task_is_runnable() and 4370 * task_curr() to work out what the state is, if required. Given that @func 4371 * can be invoked with a runqueue lock held, it had better be quite 4372 * lightweight. 4373 * 4374 * Returns: 4375 * Whatever @func returns 4376 */ 4377 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4378 { 4379 struct rq *rq = NULL; 4380 struct rq_flags rf; 4381 int ret; 4382 4383 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4384 4385 if (__task_needs_rq_lock(p)) 4386 rq = __task_rq_lock(p, &rf); 4387 4388 /* 4389 * At this point the task is pinned; either: 4390 * - blocked and we're holding off wakeups (pi->lock) 4391 * - woken, and we're holding off enqueue (rq->lock) 4392 * - queued, and we're holding off schedule (rq->lock) 4393 * - running, and we're holding off de-schedule (rq->lock) 4394 * 4395 * The called function (@func) can use: task_curr(), p->on_rq and 4396 * p->__state to differentiate between these states. 4397 */ 4398 ret = func(p, arg); 4399 4400 if (rq) 4401 rq_unlock(rq, &rf); 4402 4403 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4404 return ret; 4405 } 4406 4407 /** 4408 * cpu_curr_snapshot - Return a snapshot of the currently running task 4409 * @cpu: The CPU on which to snapshot the task. 4410 * 4411 * Returns the task_struct pointer of the task "currently" running on 4412 * the specified CPU. 4413 * 4414 * If the specified CPU was offline, the return value is whatever it 4415 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4416 * task, but there is no guarantee. Callers wishing a useful return 4417 * value must take some action to ensure that the specified CPU remains 4418 * online throughout. 4419 * 4420 * This function executes full memory barriers before and after fetching 4421 * the pointer, which permits the caller to confine this function's fetch 4422 * with respect to the caller's accesses to other shared variables. 4423 */ 4424 struct task_struct *cpu_curr_snapshot(int cpu) 4425 { 4426 struct rq *rq = cpu_rq(cpu); 4427 struct task_struct *t; 4428 struct rq_flags rf; 4429 4430 rq_lock_irqsave(rq, &rf); 4431 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4432 t = rcu_dereference(cpu_curr(cpu)); 4433 rq_unlock_irqrestore(rq, &rf); 4434 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4435 4436 return t; 4437 } 4438 4439 /** 4440 * wake_up_process - Wake up a specific process 4441 * @p: The process to be woken up. 4442 * 4443 * Attempt to wake up the nominated process and move it to the set of runnable 4444 * processes. 4445 * 4446 * Return: 1 if the process was woken up, 0 if it was already running. 4447 * 4448 * This function executes a full memory barrier before accessing the task state. 4449 */ 4450 int wake_up_process(struct task_struct *p) 4451 { 4452 return try_to_wake_up(p, TASK_NORMAL, 0); 4453 } 4454 EXPORT_SYMBOL(wake_up_process); 4455 4456 int wake_up_state(struct task_struct *p, unsigned int state) 4457 { 4458 return try_to_wake_up(p, state, 0); 4459 } 4460 4461 /* 4462 * Perform scheduler related setup for a newly forked process p. 4463 * p is forked by current. 4464 * 4465 * __sched_fork() is basic setup which is also used by sched_init() to 4466 * initialize the boot CPU's idle task. 4467 */ 4468 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4469 { 4470 p->on_rq = 0; 4471 4472 p->se.on_rq = 0; 4473 p->se.exec_start = 0; 4474 p->se.sum_exec_runtime = 0; 4475 p->se.prev_sum_exec_runtime = 0; 4476 p->se.nr_migrations = 0; 4477 p->se.vruntime = 0; 4478 p->se.vlag = 0; 4479 INIT_LIST_HEAD(&p->se.group_node); 4480 4481 /* A delayed task cannot be in clone(). */ 4482 WARN_ON_ONCE(p->se.sched_delayed); 4483 4484 #ifdef CONFIG_FAIR_GROUP_SCHED 4485 p->se.cfs_rq = NULL; 4486 #endif 4487 4488 #ifdef CONFIG_SCHEDSTATS 4489 /* Even if schedstat is disabled, there should not be garbage */ 4490 memset(&p->stats, 0, sizeof(p->stats)); 4491 #endif 4492 4493 init_dl_entity(&p->dl); 4494 4495 INIT_LIST_HEAD(&p->rt.run_list); 4496 p->rt.timeout = 0; 4497 p->rt.time_slice = sched_rr_timeslice; 4498 p->rt.on_rq = 0; 4499 p->rt.on_list = 0; 4500 4501 #ifdef CONFIG_SCHED_CLASS_EXT 4502 init_scx_entity(&p->scx); 4503 #endif 4504 4505 #ifdef CONFIG_PREEMPT_NOTIFIERS 4506 INIT_HLIST_HEAD(&p->preempt_notifiers); 4507 #endif 4508 4509 #ifdef CONFIG_COMPACTION 4510 p->capture_control = NULL; 4511 #endif 4512 init_numa_balancing(clone_flags, p); 4513 #ifdef CONFIG_SMP 4514 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4515 p->migration_pending = NULL; 4516 #endif 4517 init_sched_mm_cid(p); 4518 } 4519 4520 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4521 4522 #ifdef CONFIG_NUMA_BALANCING 4523 4524 int sysctl_numa_balancing_mode; 4525 4526 static void __set_numabalancing_state(bool enabled) 4527 { 4528 if (enabled) 4529 static_branch_enable(&sched_numa_balancing); 4530 else 4531 static_branch_disable(&sched_numa_balancing); 4532 } 4533 4534 void set_numabalancing_state(bool enabled) 4535 { 4536 if (enabled) 4537 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4538 else 4539 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4540 __set_numabalancing_state(enabled); 4541 } 4542 4543 #ifdef CONFIG_PROC_SYSCTL 4544 static void reset_memory_tiering(void) 4545 { 4546 struct pglist_data *pgdat; 4547 4548 for_each_online_pgdat(pgdat) { 4549 pgdat->nbp_threshold = 0; 4550 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4551 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4552 } 4553 } 4554 4555 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4556 void *buffer, size_t *lenp, loff_t *ppos) 4557 { 4558 struct ctl_table t; 4559 int err; 4560 int state = sysctl_numa_balancing_mode; 4561 4562 if (write && !capable(CAP_SYS_ADMIN)) 4563 return -EPERM; 4564 4565 t = *table; 4566 t.data = &state; 4567 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4568 if (err < 0) 4569 return err; 4570 if (write) { 4571 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4572 (state & NUMA_BALANCING_MEMORY_TIERING)) 4573 reset_memory_tiering(); 4574 sysctl_numa_balancing_mode = state; 4575 __set_numabalancing_state(state); 4576 } 4577 return err; 4578 } 4579 #endif 4580 #endif 4581 4582 #ifdef CONFIG_SCHEDSTATS 4583 4584 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4585 4586 static void set_schedstats(bool enabled) 4587 { 4588 if (enabled) 4589 static_branch_enable(&sched_schedstats); 4590 else 4591 static_branch_disable(&sched_schedstats); 4592 } 4593 4594 void force_schedstat_enabled(void) 4595 { 4596 if (!schedstat_enabled()) { 4597 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4598 static_branch_enable(&sched_schedstats); 4599 } 4600 } 4601 4602 static int __init setup_schedstats(char *str) 4603 { 4604 int ret = 0; 4605 if (!str) 4606 goto out; 4607 4608 if (!strcmp(str, "enable")) { 4609 set_schedstats(true); 4610 ret = 1; 4611 } else if (!strcmp(str, "disable")) { 4612 set_schedstats(false); 4613 ret = 1; 4614 } 4615 out: 4616 if (!ret) 4617 pr_warn("Unable to parse schedstats=\n"); 4618 4619 return ret; 4620 } 4621 __setup("schedstats=", setup_schedstats); 4622 4623 #ifdef CONFIG_PROC_SYSCTL 4624 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4625 size_t *lenp, loff_t *ppos) 4626 { 4627 struct ctl_table t; 4628 int err; 4629 int state = static_branch_likely(&sched_schedstats); 4630 4631 if (write && !capable(CAP_SYS_ADMIN)) 4632 return -EPERM; 4633 4634 t = *table; 4635 t.data = &state; 4636 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4637 if (err < 0) 4638 return err; 4639 if (write) 4640 set_schedstats(state); 4641 return err; 4642 } 4643 #endif /* CONFIG_PROC_SYSCTL */ 4644 #endif /* CONFIG_SCHEDSTATS */ 4645 4646 #ifdef CONFIG_SYSCTL 4647 static const struct ctl_table sched_core_sysctls[] = { 4648 #ifdef CONFIG_SCHEDSTATS 4649 { 4650 .procname = "sched_schedstats", 4651 .data = NULL, 4652 .maxlen = sizeof(unsigned int), 4653 .mode = 0644, 4654 .proc_handler = sysctl_schedstats, 4655 .extra1 = SYSCTL_ZERO, 4656 .extra2 = SYSCTL_ONE, 4657 }, 4658 #endif /* CONFIG_SCHEDSTATS */ 4659 #ifdef CONFIG_UCLAMP_TASK 4660 { 4661 .procname = "sched_util_clamp_min", 4662 .data = &sysctl_sched_uclamp_util_min, 4663 .maxlen = sizeof(unsigned int), 4664 .mode = 0644, 4665 .proc_handler = sysctl_sched_uclamp_handler, 4666 }, 4667 { 4668 .procname = "sched_util_clamp_max", 4669 .data = &sysctl_sched_uclamp_util_max, 4670 .maxlen = sizeof(unsigned int), 4671 .mode = 0644, 4672 .proc_handler = sysctl_sched_uclamp_handler, 4673 }, 4674 { 4675 .procname = "sched_util_clamp_min_rt_default", 4676 .data = &sysctl_sched_uclamp_util_min_rt_default, 4677 .maxlen = sizeof(unsigned int), 4678 .mode = 0644, 4679 .proc_handler = sysctl_sched_uclamp_handler, 4680 }, 4681 #endif /* CONFIG_UCLAMP_TASK */ 4682 #ifdef CONFIG_NUMA_BALANCING 4683 { 4684 .procname = "numa_balancing", 4685 .data = NULL, /* filled in by handler */ 4686 .maxlen = sizeof(unsigned int), 4687 .mode = 0644, 4688 .proc_handler = sysctl_numa_balancing, 4689 .extra1 = SYSCTL_ZERO, 4690 .extra2 = SYSCTL_FOUR, 4691 }, 4692 #endif /* CONFIG_NUMA_BALANCING */ 4693 }; 4694 static int __init sched_core_sysctl_init(void) 4695 { 4696 register_sysctl_init("kernel", sched_core_sysctls); 4697 return 0; 4698 } 4699 late_initcall(sched_core_sysctl_init); 4700 #endif /* CONFIG_SYSCTL */ 4701 4702 /* 4703 * fork()/clone()-time setup: 4704 */ 4705 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4706 { 4707 __sched_fork(clone_flags, p); 4708 /* 4709 * We mark the process as NEW here. This guarantees that 4710 * nobody will actually run it, and a signal or other external 4711 * event cannot wake it up and insert it on the runqueue either. 4712 */ 4713 p->__state = TASK_NEW; 4714 4715 /* 4716 * Make sure we do not leak PI boosting priority to the child. 4717 */ 4718 p->prio = current->normal_prio; 4719 4720 uclamp_fork(p); 4721 4722 /* 4723 * Revert to default priority/policy on fork if requested. 4724 */ 4725 if (unlikely(p->sched_reset_on_fork)) { 4726 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4727 p->policy = SCHED_NORMAL; 4728 p->static_prio = NICE_TO_PRIO(0); 4729 p->rt_priority = 0; 4730 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4731 p->static_prio = NICE_TO_PRIO(0); 4732 4733 p->prio = p->normal_prio = p->static_prio; 4734 set_load_weight(p, false); 4735 p->se.custom_slice = 0; 4736 p->se.slice = sysctl_sched_base_slice; 4737 4738 /* 4739 * We don't need the reset flag anymore after the fork. It has 4740 * fulfilled its duty: 4741 */ 4742 p->sched_reset_on_fork = 0; 4743 } 4744 4745 if (dl_prio(p->prio)) 4746 return -EAGAIN; 4747 4748 scx_pre_fork(p); 4749 4750 if (rt_prio(p->prio)) { 4751 p->sched_class = &rt_sched_class; 4752 #ifdef CONFIG_SCHED_CLASS_EXT 4753 } else if (task_should_scx(p->policy)) { 4754 p->sched_class = &ext_sched_class; 4755 #endif 4756 } else { 4757 p->sched_class = &fair_sched_class; 4758 } 4759 4760 init_entity_runnable_average(&p->se); 4761 4762 4763 #ifdef CONFIG_SCHED_INFO 4764 if (likely(sched_info_on())) 4765 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4766 #endif 4767 #if defined(CONFIG_SMP) 4768 p->on_cpu = 0; 4769 #endif 4770 init_task_preempt_count(p); 4771 #ifdef CONFIG_SMP 4772 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4773 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4774 #endif 4775 return 0; 4776 } 4777 4778 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4779 { 4780 unsigned long flags; 4781 4782 /* 4783 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4784 * required yet, but lockdep gets upset if rules are violated. 4785 */ 4786 raw_spin_lock_irqsave(&p->pi_lock, flags); 4787 #ifdef CONFIG_CGROUP_SCHED 4788 if (1) { 4789 struct task_group *tg; 4790 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4791 struct task_group, css); 4792 tg = autogroup_task_group(p, tg); 4793 p->sched_task_group = tg; 4794 } 4795 #endif 4796 rseq_migrate(p); 4797 /* 4798 * We're setting the CPU for the first time, we don't migrate, 4799 * so use __set_task_cpu(). 4800 */ 4801 __set_task_cpu(p, smp_processor_id()); 4802 if (p->sched_class->task_fork) 4803 p->sched_class->task_fork(p); 4804 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4805 4806 return scx_fork(p); 4807 } 4808 4809 void sched_cancel_fork(struct task_struct *p) 4810 { 4811 scx_cancel_fork(p); 4812 } 4813 4814 void sched_post_fork(struct task_struct *p) 4815 { 4816 uclamp_post_fork(p); 4817 scx_post_fork(p); 4818 } 4819 4820 unsigned long to_ratio(u64 period, u64 runtime) 4821 { 4822 if (runtime == RUNTIME_INF) 4823 return BW_UNIT; 4824 4825 /* 4826 * Doing this here saves a lot of checks in all 4827 * the calling paths, and returning zero seems 4828 * safe for them anyway. 4829 */ 4830 if (period == 0) 4831 return 0; 4832 4833 return div64_u64(runtime << BW_SHIFT, period); 4834 } 4835 4836 /* 4837 * wake_up_new_task - wake up a newly created task for the first time. 4838 * 4839 * This function will do some initial scheduler statistics housekeeping 4840 * that must be done for every newly created context, then puts the task 4841 * on the runqueue and wakes it. 4842 */ 4843 void wake_up_new_task(struct task_struct *p) 4844 { 4845 struct rq_flags rf; 4846 struct rq *rq; 4847 int wake_flags = WF_FORK; 4848 4849 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4850 WRITE_ONCE(p->__state, TASK_RUNNING); 4851 #ifdef CONFIG_SMP 4852 /* 4853 * Fork balancing, do it here and not earlier because: 4854 * - cpus_ptr can change in the fork path 4855 * - any previously selected CPU might disappear through hotplug 4856 * 4857 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4858 * as we're not fully set-up yet. 4859 */ 4860 p->recent_used_cpu = task_cpu(p); 4861 rseq_migrate(p); 4862 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4863 #endif 4864 rq = __task_rq_lock(p, &rf); 4865 update_rq_clock(rq); 4866 post_init_entity_util_avg(p); 4867 4868 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4869 trace_sched_wakeup_new(p); 4870 wakeup_preempt(rq, p, wake_flags); 4871 #ifdef CONFIG_SMP 4872 if (p->sched_class->task_woken) { 4873 /* 4874 * Nothing relies on rq->lock after this, so it's fine to 4875 * drop it. 4876 */ 4877 rq_unpin_lock(rq, &rf); 4878 p->sched_class->task_woken(rq, p); 4879 rq_repin_lock(rq, &rf); 4880 } 4881 #endif 4882 task_rq_unlock(rq, p, &rf); 4883 } 4884 4885 #ifdef CONFIG_PREEMPT_NOTIFIERS 4886 4887 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4888 4889 void preempt_notifier_inc(void) 4890 { 4891 static_branch_inc(&preempt_notifier_key); 4892 } 4893 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4894 4895 void preempt_notifier_dec(void) 4896 { 4897 static_branch_dec(&preempt_notifier_key); 4898 } 4899 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4900 4901 /** 4902 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4903 * @notifier: notifier struct to register 4904 */ 4905 void preempt_notifier_register(struct preempt_notifier *notifier) 4906 { 4907 if (!static_branch_unlikely(&preempt_notifier_key)) 4908 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4909 4910 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4911 } 4912 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4913 4914 /** 4915 * preempt_notifier_unregister - no longer interested in preemption notifications 4916 * @notifier: notifier struct to unregister 4917 * 4918 * This is *not* safe to call from within a preemption notifier. 4919 */ 4920 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4921 { 4922 hlist_del(¬ifier->link); 4923 } 4924 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4925 4926 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4927 { 4928 struct preempt_notifier *notifier; 4929 4930 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4931 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4932 } 4933 4934 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4935 { 4936 if (static_branch_unlikely(&preempt_notifier_key)) 4937 __fire_sched_in_preempt_notifiers(curr); 4938 } 4939 4940 static void 4941 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4942 struct task_struct *next) 4943 { 4944 struct preempt_notifier *notifier; 4945 4946 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4947 notifier->ops->sched_out(notifier, next); 4948 } 4949 4950 static __always_inline void 4951 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4952 struct task_struct *next) 4953 { 4954 if (static_branch_unlikely(&preempt_notifier_key)) 4955 __fire_sched_out_preempt_notifiers(curr, next); 4956 } 4957 4958 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4959 4960 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4961 { 4962 } 4963 4964 static inline void 4965 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4966 struct task_struct *next) 4967 { 4968 } 4969 4970 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4971 4972 static inline void prepare_task(struct task_struct *next) 4973 { 4974 #ifdef CONFIG_SMP 4975 /* 4976 * Claim the task as running, we do this before switching to it 4977 * such that any running task will have this set. 4978 * 4979 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4980 * its ordering comment. 4981 */ 4982 WRITE_ONCE(next->on_cpu, 1); 4983 #endif 4984 } 4985 4986 static inline void finish_task(struct task_struct *prev) 4987 { 4988 #ifdef CONFIG_SMP 4989 /* 4990 * This must be the very last reference to @prev from this CPU. After 4991 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4992 * must ensure this doesn't happen until the switch is completely 4993 * finished. 4994 * 4995 * In particular, the load of prev->state in finish_task_switch() must 4996 * happen before this. 4997 * 4998 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4999 */ 5000 smp_store_release(&prev->on_cpu, 0); 5001 #endif 5002 } 5003 5004 #ifdef CONFIG_SMP 5005 5006 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5007 { 5008 void (*func)(struct rq *rq); 5009 struct balance_callback *next; 5010 5011 lockdep_assert_rq_held(rq); 5012 5013 while (head) { 5014 func = (void (*)(struct rq *))head->func; 5015 next = head->next; 5016 head->next = NULL; 5017 head = next; 5018 5019 func(rq); 5020 } 5021 } 5022 5023 static void balance_push(struct rq *rq); 5024 5025 /* 5026 * balance_push_callback is a right abuse of the callback interface and plays 5027 * by significantly different rules. 5028 * 5029 * Where the normal balance_callback's purpose is to be ran in the same context 5030 * that queued it (only later, when it's safe to drop rq->lock again), 5031 * balance_push_callback is specifically targeted at __schedule(). 5032 * 5033 * This abuse is tolerated because it places all the unlikely/odd cases behind 5034 * a single test, namely: rq->balance_callback == NULL. 5035 */ 5036 struct balance_callback balance_push_callback = { 5037 .next = NULL, 5038 .func = balance_push, 5039 }; 5040 5041 static inline struct balance_callback * 5042 __splice_balance_callbacks(struct rq *rq, bool split) 5043 { 5044 struct balance_callback *head = rq->balance_callback; 5045 5046 if (likely(!head)) 5047 return NULL; 5048 5049 lockdep_assert_rq_held(rq); 5050 /* 5051 * Must not take balance_push_callback off the list when 5052 * splice_balance_callbacks() and balance_callbacks() are not 5053 * in the same rq->lock section. 5054 * 5055 * In that case it would be possible for __schedule() to interleave 5056 * and observe the list empty. 5057 */ 5058 if (split && head == &balance_push_callback) 5059 head = NULL; 5060 else 5061 rq->balance_callback = NULL; 5062 5063 return head; 5064 } 5065 5066 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5067 { 5068 return __splice_balance_callbacks(rq, true); 5069 } 5070 5071 static void __balance_callbacks(struct rq *rq) 5072 { 5073 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5074 } 5075 5076 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5077 { 5078 unsigned long flags; 5079 5080 if (unlikely(head)) { 5081 raw_spin_rq_lock_irqsave(rq, flags); 5082 do_balance_callbacks(rq, head); 5083 raw_spin_rq_unlock_irqrestore(rq, flags); 5084 } 5085 } 5086 5087 #else 5088 5089 static inline void __balance_callbacks(struct rq *rq) 5090 { 5091 } 5092 5093 #endif 5094 5095 static inline void 5096 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5097 { 5098 /* 5099 * Since the runqueue lock will be released by the next 5100 * task (which is an invalid locking op but in the case 5101 * of the scheduler it's an obvious special-case), so we 5102 * do an early lockdep release here: 5103 */ 5104 rq_unpin_lock(rq, rf); 5105 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5106 #ifdef CONFIG_DEBUG_SPINLOCK 5107 /* this is a valid case when another task releases the spinlock */ 5108 rq_lockp(rq)->owner = next; 5109 #endif 5110 } 5111 5112 static inline void finish_lock_switch(struct rq *rq) 5113 { 5114 /* 5115 * If we are tracking spinlock dependencies then we have to 5116 * fix up the runqueue lock - which gets 'carried over' from 5117 * prev into current: 5118 */ 5119 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5120 __balance_callbacks(rq); 5121 raw_spin_rq_unlock_irq(rq); 5122 } 5123 5124 /* 5125 * NOP if the arch has not defined these: 5126 */ 5127 5128 #ifndef prepare_arch_switch 5129 # define prepare_arch_switch(next) do { } while (0) 5130 #endif 5131 5132 #ifndef finish_arch_post_lock_switch 5133 # define finish_arch_post_lock_switch() do { } while (0) 5134 #endif 5135 5136 static inline void kmap_local_sched_out(void) 5137 { 5138 #ifdef CONFIG_KMAP_LOCAL 5139 if (unlikely(current->kmap_ctrl.idx)) 5140 __kmap_local_sched_out(); 5141 #endif 5142 } 5143 5144 static inline void kmap_local_sched_in(void) 5145 { 5146 #ifdef CONFIG_KMAP_LOCAL 5147 if (unlikely(current->kmap_ctrl.idx)) 5148 __kmap_local_sched_in(); 5149 #endif 5150 } 5151 5152 /** 5153 * prepare_task_switch - prepare to switch tasks 5154 * @rq: the runqueue preparing to switch 5155 * @prev: the current task that is being switched out 5156 * @next: the task we are going to switch to. 5157 * 5158 * This is called with the rq lock held and interrupts off. It must 5159 * be paired with a subsequent finish_task_switch after the context 5160 * switch. 5161 * 5162 * prepare_task_switch sets up locking and calls architecture specific 5163 * hooks. 5164 */ 5165 static inline void 5166 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5167 struct task_struct *next) 5168 { 5169 kcov_prepare_switch(prev); 5170 sched_info_switch(rq, prev, next); 5171 perf_event_task_sched_out(prev, next); 5172 rseq_preempt(prev); 5173 fire_sched_out_preempt_notifiers(prev, next); 5174 kmap_local_sched_out(); 5175 prepare_task(next); 5176 prepare_arch_switch(next); 5177 } 5178 5179 /** 5180 * finish_task_switch - clean up after a task-switch 5181 * @prev: the thread we just switched away from. 5182 * 5183 * finish_task_switch must be called after the context switch, paired 5184 * with a prepare_task_switch call before the context switch. 5185 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5186 * and do any other architecture-specific cleanup actions. 5187 * 5188 * Note that we may have delayed dropping an mm in context_switch(). If 5189 * so, we finish that here outside of the runqueue lock. (Doing it 5190 * with the lock held can cause deadlocks; see schedule() for 5191 * details.) 5192 * 5193 * The context switch have flipped the stack from under us and restored the 5194 * local variables which were saved when this task called schedule() in the 5195 * past. 'prev == current' is still correct but we need to recalculate this_rq 5196 * because prev may have moved to another CPU. 5197 */ 5198 static struct rq *finish_task_switch(struct task_struct *prev) 5199 __releases(rq->lock) 5200 { 5201 struct rq *rq = this_rq(); 5202 struct mm_struct *mm = rq->prev_mm; 5203 unsigned int prev_state; 5204 5205 /* 5206 * The previous task will have left us with a preempt_count of 2 5207 * because it left us after: 5208 * 5209 * schedule() 5210 * preempt_disable(); // 1 5211 * __schedule() 5212 * raw_spin_lock_irq(&rq->lock) // 2 5213 * 5214 * Also, see FORK_PREEMPT_COUNT. 5215 */ 5216 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5217 "corrupted preempt_count: %s/%d/0x%x\n", 5218 current->comm, current->pid, preempt_count())) 5219 preempt_count_set(FORK_PREEMPT_COUNT); 5220 5221 rq->prev_mm = NULL; 5222 5223 /* 5224 * A task struct has one reference for the use as "current". 5225 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5226 * schedule one last time. The schedule call will never return, and 5227 * the scheduled task must drop that reference. 5228 * 5229 * We must observe prev->state before clearing prev->on_cpu (in 5230 * finish_task), otherwise a concurrent wakeup can get prev 5231 * running on another CPU and we could rave with its RUNNING -> DEAD 5232 * transition, resulting in a double drop. 5233 */ 5234 prev_state = READ_ONCE(prev->__state); 5235 vtime_task_switch(prev); 5236 perf_event_task_sched_in(prev, current); 5237 finish_task(prev); 5238 tick_nohz_task_switch(); 5239 finish_lock_switch(rq); 5240 finish_arch_post_lock_switch(); 5241 kcov_finish_switch(current); 5242 /* 5243 * kmap_local_sched_out() is invoked with rq::lock held and 5244 * interrupts disabled. There is no requirement for that, but the 5245 * sched out code does not have an interrupt enabled section. 5246 * Restoring the maps on sched in does not require interrupts being 5247 * disabled either. 5248 */ 5249 kmap_local_sched_in(); 5250 5251 fire_sched_in_preempt_notifiers(current); 5252 /* 5253 * When switching through a kernel thread, the loop in 5254 * membarrier_{private,global}_expedited() may have observed that 5255 * kernel thread and not issued an IPI. It is therefore possible to 5256 * schedule between user->kernel->user threads without passing though 5257 * switch_mm(). Membarrier requires a barrier after storing to 5258 * rq->curr, before returning to userspace, so provide them here: 5259 * 5260 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5261 * provided by mmdrop_lazy_tlb(), 5262 * - a sync_core for SYNC_CORE. 5263 */ 5264 if (mm) { 5265 membarrier_mm_sync_core_before_usermode(mm); 5266 mmdrop_lazy_tlb_sched(mm); 5267 } 5268 5269 if (unlikely(prev_state == TASK_DEAD)) { 5270 if (prev->sched_class->task_dead) 5271 prev->sched_class->task_dead(prev); 5272 5273 /* Task is done with its stack. */ 5274 put_task_stack(prev); 5275 5276 put_task_struct_rcu_user(prev); 5277 } 5278 5279 return rq; 5280 } 5281 5282 /** 5283 * schedule_tail - first thing a freshly forked thread must call. 5284 * @prev: the thread we just switched away from. 5285 */ 5286 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5287 __releases(rq->lock) 5288 { 5289 /* 5290 * New tasks start with FORK_PREEMPT_COUNT, see there and 5291 * finish_task_switch() for details. 5292 * 5293 * finish_task_switch() will drop rq->lock() and lower preempt_count 5294 * and the preempt_enable() will end up enabling preemption (on 5295 * PREEMPT_COUNT kernels). 5296 */ 5297 5298 finish_task_switch(prev); 5299 preempt_enable(); 5300 5301 if (current->set_child_tid) 5302 put_user(task_pid_vnr(current), current->set_child_tid); 5303 5304 calculate_sigpending(); 5305 } 5306 5307 /* 5308 * context_switch - switch to the new MM and the new thread's register state. 5309 */ 5310 static __always_inline struct rq * 5311 context_switch(struct rq *rq, struct task_struct *prev, 5312 struct task_struct *next, struct rq_flags *rf) 5313 { 5314 prepare_task_switch(rq, prev, next); 5315 5316 /* 5317 * For paravirt, this is coupled with an exit in switch_to to 5318 * combine the page table reload and the switch backend into 5319 * one hypercall. 5320 */ 5321 arch_start_context_switch(prev); 5322 5323 /* 5324 * kernel -> kernel lazy + transfer active 5325 * user -> kernel lazy + mmgrab_lazy_tlb() active 5326 * 5327 * kernel -> user switch + mmdrop_lazy_tlb() active 5328 * user -> user switch 5329 * 5330 * switch_mm_cid() needs to be updated if the barriers provided 5331 * by context_switch() are modified. 5332 */ 5333 if (!next->mm) { // to kernel 5334 enter_lazy_tlb(prev->active_mm, next); 5335 5336 next->active_mm = prev->active_mm; 5337 if (prev->mm) // from user 5338 mmgrab_lazy_tlb(prev->active_mm); 5339 else 5340 prev->active_mm = NULL; 5341 } else { // to user 5342 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5343 /* 5344 * sys_membarrier() requires an smp_mb() between setting 5345 * rq->curr / membarrier_switch_mm() and returning to userspace. 5346 * 5347 * The below provides this either through switch_mm(), or in 5348 * case 'prev->active_mm == next->mm' through 5349 * finish_task_switch()'s mmdrop(). 5350 */ 5351 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5352 lru_gen_use_mm(next->mm); 5353 5354 if (!prev->mm) { // from kernel 5355 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5356 rq->prev_mm = prev->active_mm; 5357 prev->active_mm = NULL; 5358 } 5359 } 5360 5361 /* switch_mm_cid() requires the memory barriers above. */ 5362 switch_mm_cid(rq, prev, next); 5363 5364 prepare_lock_switch(rq, next, rf); 5365 5366 /* Here we just switch the register state and the stack. */ 5367 switch_to(prev, next, prev); 5368 barrier(); 5369 5370 return finish_task_switch(prev); 5371 } 5372 5373 /* 5374 * nr_running and nr_context_switches: 5375 * 5376 * externally visible scheduler statistics: current number of runnable 5377 * threads, total number of context switches performed since bootup. 5378 */ 5379 unsigned int nr_running(void) 5380 { 5381 unsigned int i, sum = 0; 5382 5383 for_each_online_cpu(i) 5384 sum += cpu_rq(i)->nr_running; 5385 5386 return sum; 5387 } 5388 5389 /* 5390 * Check if only the current task is running on the CPU. 5391 * 5392 * Caution: this function does not check that the caller has disabled 5393 * preemption, thus the result might have a time-of-check-to-time-of-use 5394 * race. The caller is responsible to use it correctly, for example: 5395 * 5396 * - from a non-preemptible section (of course) 5397 * 5398 * - from a thread that is bound to a single CPU 5399 * 5400 * - in a loop with very short iterations (e.g. a polling loop) 5401 */ 5402 bool single_task_running(void) 5403 { 5404 return raw_rq()->nr_running == 1; 5405 } 5406 EXPORT_SYMBOL(single_task_running); 5407 5408 unsigned long long nr_context_switches_cpu(int cpu) 5409 { 5410 return cpu_rq(cpu)->nr_switches; 5411 } 5412 5413 unsigned long long nr_context_switches(void) 5414 { 5415 int i; 5416 unsigned long long sum = 0; 5417 5418 for_each_possible_cpu(i) 5419 sum += cpu_rq(i)->nr_switches; 5420 5421 return sum; 5422 } 5423 5424 /* 5425 * Consumers of these two interfaces, like for example the cpuidle menu 5426 * governor, are using nonsensical data. Preferring shallow idle state selection 5427 * for a CPU that has IO-wait which might not even end up running the task when 5428 * it does become runnable. 5429 */ 5430 5431 unsigned int nr_iowait_cpu(int cpu) 5432 { 5433 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5434 } 5435 5436 /* 5437 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5438 * 5439 * The idea behind IO-wait account is to account the idle time that we could 5440 * have spend running if it were not for IO. That is, if we were to improve the 5441 * storage performance, we'd have a proportional reduction in IO-wait time. 5442 * 5443 * This all works nicely on UP, where, when a task blocks on IO, we account 5444 * idle time as IO-wait, because if the storage were faster, it could've been 5445 * running and we'd not be idle. 5446 * 5447 * This has been extended to SMP, by doing the same for each CPU. This however 5448 * is broken. 5449 * 5450 * Imagine for instance the case where two tasks block on one CPU, only the one 5451 * CPU will have IO-wait accounted, while the other has regular idle. Even 5452 * though, if the storage were faster, both could've ran at the same time, 5453 * utilising both CPUs. 5454 * 5455 * This means, that when looking globally, the current IO-wait accounting on 5456 * SMP is a lower bound, by reason of under accounting. 5457 * 5458 * Worse, since the numbers are provided per CPU, they are sometimes 5459 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5460 * associated with any one particular CPU, it can wake to another CPU than it 5461 * blocked on. This means the per CPU IO-wait number is meaningless. 5462 * 5463 * Task CPU affinities can make all that even more 'interesting'. 5464 */ 5465 5466 unsigned int nr_iowait(void) 5467 { 5468 unsigned int i, sum = 0; 5469 5470 for_each_possible_cpu(i) 5471 sum += nr_iowait_cpu(i); 5472 5473 return sum; 5474 } 5475 5476 #ifdef CONFIG_SMP 5477 5478 /* 5479 * sched_exec - execve() is a valuable balancing opportunity, because at 5480 * this point the task has the smallest effective memory and cache footprint. 5481 */ 5482 void sched_exec(void) 5483 { 5484 struct task_struct *p = current; 5485 struct migration_arg arg; 5486 int dest_cpu; 5487 5488 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5489 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5490 if (dest_cpu == smp_processor_id()) 5491 return; 5492 5493 if (unlikely(!cpu_active(dest_cpu))) 5494 return; 5495 5496 arg = (struct migration_arg){ p, dest_cpu }; 5497 } 5498 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5499 } 5500 5501 #endif 5502 5503 DEFINE_PER_CPU(struct kernel_stat, kstat); 5504 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5505 5506 EXPORT_PER_CPU_SYMBOL(kstat); 5507 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5508 5509 /* 5510 * The function fair_sched_class.update_curr accesses the struct curr 5511 * and its field curr->exec_start; when called from task_sched_runtime(), 5512 * we observe a high rate of cache misses in practice. 5513 * Prefetching this data results in improved performance. 5514 */ 5515 static inline void prefetch_curr_exec_start(struct task_struct *p) 5516 { 5517 #ifdef CONFIG_FAIR_GROUP_SCHED 5518 struct sched_entity *curr = p->se.cfs_rq->curr; 5519 #else 5520 struct sched_entity *curr = task_rq(p)->cfs.curr; 5521 #endif 5522 prefetch(curr); 5523 prefetch(&curr->exec_start); 5524 } 5525 5526 /* 5527 * Return accounted runtime for the task. 5528 * In case the task is currently running, return the runtime plus current's 5529 * pending runtime that have not been accounted yet. 5530 */ 5531 unsigned long long task_sched_runtime(struct task_struct *p) 5532 { 5533 struct rq_flags rf; 5534 struct rq *rq; 5535 u64 ns; 5536 5537 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5538 /* 5539 * 64-bit doesn't need locks to atomically read a 64-bit value. 5540 * So we have a optimization chance when the task's delta_exec is 0. 5541 * Reading ->on_cpu is racy, but this is OK. 5542 * 5543 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5544 * If we race with it entering CPU, unaccounted time is 0. This is 5545 * indistinguishable from the read occurring a few cycles earlier. 5546 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5547 * been accounted, so we're correct here as well. 5548 */ 5549 if (!p->on_cpu || !task_on_rq_queued(p)) 5550 return p->se.sum_exec_runtime; 5551 #endif 5552 5553 rq = task_rq_lock(p, &rf); 5554 /* 5555 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5556 * project cycles that may never be accounted to this 5557 * thread, breaking clock_gettime(). 5558 */ 5559 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5560 prefetch_curr_exec_start(p); 5561 update_rq_clock(rq); 5562 p->sched_class->update_curr(rq); 5563 } 5564 ns = p->se.sum_exec_runtime; 5565 task_rq_unlock(rq, p, &rf); 5566 5567 return ns; 5568 } 5569 5570 static u64 cpu_resched_latency(struct rq *rq) 5571 { 5572 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5573 u64 resched_latency, now = rq_clock(rq); 5574 static bool warned_once; 5575 5576 if (sysctl_resched_latency_warn_once && warned_once) 5577 return 0; 5578 5579 if (!need_resched() || !latency_warn_ms) 5580 return 0; 5581 5582 if (system_state == SYSTEM_BOOTING) 5583 return 0; 5584 5585 if (!rq->last_seen_need_resched_ns) { 5586 rq->last_seen_need_resched_ns = now; 5587 rq->ticks_without_resched = 0; 5588 return 0; 5589 } 5590 5591 rq->ticks_without_resched++; 5592 resched_latency = now - rq->last_seen_need_resched_ns; 5593 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5594 return 0; 5595 5596 warned_once = true; 5597 5598 return resched_latency; 5599 } 5600 5601 static int __init setup_resched_latency_warn_ms(char *str) 5602 { 5603 long val; 5604 5605 if ((kstrtol(str, 0, &val))) { 5606 pr_warn("Unable to set resched_latency_warn_ms\n"); 5607 return 1; 5608 } 5609 5610 sysctl_resched_latency_warn_ms = val; 5611 return 1; 5612 } 5613 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5614 5615 /* 5616 * This function gets called by the timer code, with HZ frequency. 5617 * We call it with interrupts disabled. 5618 */ 5619 void sched_tick(void) 5620 { 5621 int cpu = smp_processor_id(); 5622 struct rq *rq = cpu_rq(cpu); 5623 /* accounting goes to the donor task */ 5624 struct task_struct *donor; 5625 struct rq_flags rf; 5626 unsigned long hw_pressure; 5627 u64 resched_latency; 5628 5629 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5630 arch_scale_freq_tick(); 5631 5632 sched_clock_tick(); 5633 5634 rq_lock(rq, &rf); 5635 donor = rq->donor; 5636 5637 psi_account_irqtime(rq, donor, NULL); 5638 5639 update_rq_clock(rq); 5640 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5641 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5642 5643 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5644 resched_curr(rq); 5645 5646 donor->sched_class->task_tick(rq, donor, 0); 5647 if (sched_feat(LATENCY_WARN)) 5648 resched_latency = cpu_resched_latency(rq); 5649 calc_global_load_tick(rq); 5650 sched_core_tick(rq); 5651 task_tick_mm_cid(rq, donor); 5652 scx_tick(rq); 5653 5654 rq_unlock(rq, &rf); 5655 5656 if (sched_feat(LATENCY_WARN) && resched_latency) 5657 resched_latency_warn(cpu, resched_latency); 5658 5659 perf_event_task_tick(); 5660 5661 if (donor->flags & PF_WQ_WORKER) 5662 wq_worker_tick(donor); 5663 5664 #ifdef CONFIG_SMP 5665 if (!scx_switched_all()) { 5666 rq->idle_balance = idle_cpu(cpu); 5667 sched_balance_trigger(rq); 5668 } 5669 #endif 5670 } 5671 5672 #ifdef CONFIG_NO_HZ_FULL 5673 5674 struct tick_work { 5675 int cpu; 5676 atomic_t state; 5677 struct delayed_work work; 5678 }; 5679 /* Values for ->state, see diagram below. */ 5680 #define TICK_SCHED_REMOTE_OFFLINE 0 5681 #define TICK_SCHED_REMOTE_OFFLINING 1 5682 #define TICK_SCHED_REMOTE_RUNNING 2 5683 5684 /* 5685 * State diagram for ->state: 5686 * 5687 * 5688 * TICK_SCHED_REMOTE_OFFLINE 5689 * | ^ 5690 * | | 5691 * | | sched_tick_remote() 5692 * | | 5693 * | | 5694 * +--TICK_SCHED_REMOTE_OFFLINING 5695 * | ^ 5696 * | | 5697 * sched_tick_start() | | sched_tick_stop() 5698 * | | 5699 * V | 5700 * TICK_SCHED_REMOTE_RUNNING 5701 * 5702 * 5703 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5704 * and sched_tick_start() are happy to leave the state in RUNNING. 5705 */ 5706 5707 static struct tick_work __percpu *tick_work_cpu; 5708 5709 static void sched_tick_remote(struct work_struct *work) 5710 { 5711 struct delayed_work *dwork = to_delayed_work(work); 5712 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5713 int cpu = twork->cpu; 5714 struct rq *rq = cpu_rq(cpu); 5715 int os; 5716 5717 /* 5718 * Handle the tick only if it appears the remote CPU is running in full 5719 * dynticks mode. The check is racy by nature, but missing a tick or 5720 * having one too much is no big deal because the scheduler tick updates 5721 * statistics and checks timeslices in a time-independent way, regardless 5722 * of when exactly it is running. 5723 */ 5724 if (tick_nohz_tick_stopped_cpu(cpu)) { 5725 guard(rq_lock_irq)(rq); 5726 struct task_struct *curr = rq->curr; 5727 5728 if (cpu_online(cpu)) { 5729 /* 5730 * Since this is a remote tick for full dynticks mode, 5731 * we are always sure that there is no proxy (only a 5732 * single task is running). 5733 */ 5734 WARN_ON_ONCE(rq->curr != rq->donor); 5735 update_rq_clock(rq); 5736 5737 if (!is_idle_task(curr)) { 5738 /* 5739 * Make sure the next tick runs within a 5740 * reasonable amount of time. 5741 */ 5742 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5743 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5744 } 5745 curr->sched_class->task_tick(rq, curr, 0); 5746 5747 calc_load_nohz_remote(rq); 5748 } 5749 } 5750 5751 /* 5752 * Run the remote tick once per second (1Hz). This arbitrary 5753 * frequency is large enough to avoid overload but short enough 5754 * to keep scheduler internal stats reasonably up to date. But 5755 * first update state to reflect hotplug activity if required. 5756 */ 5757 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5758 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5759 if (os == TICK_SCHED_REMOTE_RUNNING) 5760 queue_delayed_work(system_unbound_wq, dwork, HZ); 5761 } 5762 5763 static void sched_tick_start(int cpu) 5764 { 5765 int os; 5766 struct tick_work *twork; 5767 5768 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5769 return; 5770 5771 WARN_ON_ONCE(!tick_work_cpu); 5772 5773 twork = per_cpu_ptr(tick_work_cpu, cpu); 5774 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5775 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5776 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5777 twork->cpu = cpu; 5778 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5779 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5780 } 5781 } 5782 5783 #ifdef CONFIG_HOTPLUG_CPU 5784 static void sched_tick_stop(int cpu) 5785 { 5786 struct tick_work *twork; 5787 int os; 5788 5789 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5790 return; 5791 5792 WARN_ON_ONCE(!tick_work_cpu); 5793 5794 twork = per_cpu_ptr(tick_work_cpu, cpu); 5795 /* There cannot be competing actions, but don't rely on stop-machine. */ 5796 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5797 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5798 /* Don't cancel, as this would mess up the state machine. */ 5799 } 5800 #endif /* CONFIG_HOTPLUG_CPU */ 5801 5802 int __init sched_tick_offload_init(void) 5803 { 5804 tick_work_cpu = alloc_percpu(struct tick_work); 5805 BUG_ON(!tick_work_cpu); 5806 return 0; 5807 } 5808 5809 #else /* !CONFIG_NO_HZ_FULL */ 5810 static inline void sched_tick_start(int cpu) { } 5811 static inline void sched_tick_stop(int cpu) { } 5812 #endif 5813 5814 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5815 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5816 /* 5817 * If the value passed in is equal to the current preempt count 5818 * then we just disabled preemption. Start timing the latency. 5819 */ 5820 static inline void preempt_latency_start(int val) 5821 { 5822 if (preempt_count() == val) { 5823 unsigned long ip = get_lock_parent_ip(); 5824 #ifdef CONFIG_DEBUG_PREEMPT 5825 current->preempt_disable_ip = ip; 5826 #endif 5827 trace_preempt_off(CALLER_ADDR0, ip); 5828 } 5829 } 5830 5831 void preempt_count_add(int val) 5832 { 5833 #ifdef CONFIG_DEBUG_PREEMPT 5834 /* 5835 * Underflow? 5836 */ 5837 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5838 return; 5839 #endif 5840 __preempt_count_add(val); 5841 #ifdef CONFIG_DEBUG_PREEMPT 5842 /* 5843 * Spinlock count overflowing soon? 5844 */ 5845 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5846 PREEMPT_MASK - 10); 5847 #endif 5848 preempt_latency_start(val); 5849 } 5850 EXPORT_SYMBOL(preempt_count_add); 5851 NOKPROBE_SYMBOL(preempt_count_add); 5852 5853 /* 5854 * If the value passed in equals to the current preempt count 5855 * then we just enabled preemption. Stop timing the latency. 5856 */ 5857 static inline void preempt_latency_stop(int val) 5858 { 5859 if (preempt_count() == val) 5860 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5861 } 5862 5863 void preempt_count_sub(int val) 5864 { 5865 #ifdef CONFIG_DEBUG_PREEMPT 5866 /* 5867 * Underflow? 5868 */ 5869 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5870 return; 5871 /* 5872 * Is the spinlock portion underflowing? 5873 */ 5874 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5875 !(preempt_count() & PREEMPT_MASK))) 5876 return; 5877 #endif 5878 5879 preempt_latency_stop(val); 5880 __preempt_count_sub(val); 5881 } 5882 EXPORT_SYMBOL(preempt_count_sub); 5883 NOKPROBE_SYMBOL(preempt_count_sub); 5884 5885 #else 5886 static inline void preempt_latency_start(int val) { } 5887 static inline void preempt_latency_stop(int val) { } 5888 #endif 5889 5890 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5891 { 5892 #ifdef CONFIG_DEBUG_PREEMPT 5893 return p->preempt_disable_ip; 5894 #else 5895 return 0; 5896 #endif 5897 } 5898 5899 /* 5900 * Print scheduling while atomic bug: 5901 */ 5902 static noinline void __schedule_bug(struct task_struct *prev) 5903 { 5904 /* Save this before calling printk(), since that will clobber it */ 5905 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5906 5907 if (oops_in_progress) 5908 return; 5909 5910 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5911 prev->comm, prev->pid, preempt_count()); 5912 5913 debug_show_held_locks(prev); 5914 print_modules(); 5915 if (irqs_disabled()) 5916 print_irqtrace_events(prev); 5917 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5918 pr_err("Preemption disabled at:"); 5919 print_ip_sym(KERN_ERR, preempt_disable_ip); 5920 } 5921 check_panic_on_warn("scheduling while atomic"); 5922 5923 dump_stack(); 5924 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5925 } 5926 5927 /* 5928 * Various schedule()-time debugging checks and statistics: 5929 */ 5930 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5931 { 5932 #ifdef CONFIG_SCHED_STACK_END_CHECK 5933 if (task_stack_end_corrupted(prev)) 5934 panic("corrupted stack end detected inside scheduler\n"); 5935 5936 if (task_scs_end_corrupted(prev)) 5937 panic("corrupted shadow stack detected inside scheduler\n"); 5938 #endif 5939 5940 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5941 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5942 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5943 prev->comm, prev->pid, prev->non_block_count); 5944 dump_stack(); 5945 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5946 } 5947 #endif 5948 5949 if (unlikely(in_atomic_preempt_off())) { 5950 __schedule_bug(prev); 5951 preempt_count_set(PREEMPT_DISABLED); 5952 } 5953 rcu_sleep_check(); 5954 WARN_ON_ONCE(ct_state() == CT_STATE_USER); 5955 5956 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5957 5958 schedstat_inc(this_rq()->sched_count); 5959 } 5960 5961 static void prev_balance(struct rq *rq, struct task_struct *prev, 5962 struct rq_flags *rf) 5963 { 5964 const struct sched_class *start_class = prev->sched_class; 5965 const struct sched_class *class; 5966 5967 #ifdef CONFIG_SCHED_CLASS_EXT 5968 /* 5969 * SCX requires a balance() call before every pick_task() including when 5970 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5971 * SCX instead. Also, set a flag to detect missing balance() call. 5972 */ 5973 if (scx_enabled()) { 5974 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5975 if (sched_class_above(&ext_sched_class, start_class)) 5976 start_class = &ext_sched_class; 5977 } 5978 #endif 5979 5980 /* 5981 * We must do the balancing pass before put_prev_task(), such 5982 * that when we release the rq->lock the task is in the same 5983 * state as before we took rq->lock. 5984 * 5985 * We can terminate the balance pass as soon as we know there is 5986 * a runnable task of @class priority or higher. 5987 */ 5988 for_active_class_range(class, start_class, &idle_sched_class) { 5989 if (class->balance && class->balance(rq, prev, rf)) 5990 break; 5991 } 5992 } 5993 5994 /* 5995 * Pick up the highest-prio task: 5996 */ 5997 static inline struct task_struct * 5998 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5999 { 6000 const struct sched_class *class; 6001 struct task_struct *p; 6002 6003 rq->dl_server = NULL; 6004 6005 if (scx_enabled()) 6006 goto restart; 6007 6008 /* 6009 * Optimization: we know that if all tasks are in the fair class we can 6010 * call that function directly, but only if the @prev task wasn't of a 6011 * higher scheduling class, because otherwise those lose the 6012 * opportunity to pull in more work from other CPUs. 6013 */ 6014 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6015 rq->nr_running == rq->cfs.h_nr_queued)) { 6016 6017 p = pick_next_task_fair(rq, prev, rf); 6018 if (unlikely(p == RETRY_TASK)) 6019 goto restart; 6020 6021 /* Assume the next prioritized class is idle_sched_class */ 6022 if (!p) { 6023 p = pick_task_idle(rq); 6024 put_prev_set_next_task(rq, prev, p); 6025 } 6026 6027 return p; 6028 } 6029 6030 restart: 6031 prev_balance(rq, prev, rf); 6032 6033 for_each_active_class(class) { 6034 if (class->pick_next_task) { 6035 p = class->pick_next_task(rq, prev); 6036 if (p) 6037 return p; 6038 } else { 6039 p = class->pick_task(rq); 6040 if (p) { 6041 put_prev_set_next_task(rq, prev, p); 6042 return p; 6043 } 6044 } 6045 } 6046 6047 BUG(); /* The idle class should always have a runnable task. */ 6048 } 6049 6050 #ifdef CONFIG_SCHED_CORE 6051 static inline bool is_task_rq_idle(struct task_struct *t) 6052 { 6053 return (task_rq(t)->idle == t); 6054 } 6055 6056 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6057 { 6058 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6059 } 6060 6061 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6062 { 6063 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6064 return true; 6065 6066 return a->core_cookie == b->core_cookie; 6067 } 6068 6069 static inline struct task_struct *pick_task(struct rq *rq) 6070 { 6071 const struct sched_class *class; 6072 struct task_struct *p; 6073 6074 rq->dl_server = NULL; 6075 6076 for_each_active_class(class) { 6077 p = class->pick_task(rq); 6078 if (p) 6079 return p; 6080 } 6081 6082 BUG(); /* The idle class should always have a runnable task. */ 6083 } 6084 6085 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6086 6087 static void queue_core_balance(struct rq *rq); 6088 6089 static struct task_struct * 6090 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6091 { 6092 struct task_struct *next, *p, *max = NULL; 6093 const struct cpumask *smt_mask; 6094 bool fi_before = false; 6095 bool core_clock_updated = (rq == rq->core); 6096 unsigned long cookie; 6097 int i, cpu, occ = 0; 6098 struct rq *rq_i; 6099 bool need_sync; 6100 6101 if (!sched_core_enabled(rq)) 6102 return __pick_next_task(rq, prev, rf); 6103 6104 cpu = cpu_of(rq); 6105 6106 /* Stopper task is switching into idle, no need core-wide selection. */ 6107 if (cpu_is_offline(cpu)) { 6108 /* 6109 * Reset core_pick so that we don't enter the fastpath when 6110 * coming online. core_pick would already be migrated to 6111 * another cpu during offline. 6112 */ 6113 rq->core_pick = NULL; 6114 rq->core_dl_server = NULL; 6115 return __pick_next_task(rq, prev, rf); 6116 } 6117 6118 /* 6119 * If there were no {en,de}queues since we picked (IOW, the task 6120 * pointers are all still valid), and we haven't scheduled the last 6121 * pick yet, do so now. 6122 * 6123 * rq->core_pick can be NULL if no selection was made for a CPU because 6124 * it was either offline or went offline during a sibling's core-wide 6125 * selection. In this case, do a core-wide selection. 6126 */ 6127 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6128 rq->core->core_pick_seq != rq->core_sched_seq && 6129 rq->core_pick) { 6130 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6131 6132 next = rq->core_pick; 6133 rq->dl_server = rq->core_dl_server; 6134 rq->core_pick = NULL; 6135 rq->core_dl_server = NULL; 6136 goto out_set_next; 6137 } 6138 6139 prev_balance(rq, prev, rf); 6140 6141 smt_mask = cpu_smt_mask(cpu); 6142 need_sync = !!rq->core->core_cookie; 6143 6144 /* reset state */ 6145 rq->core->core_cookie = 0UL; 6146 if (rq->core->core_forceidle_count) { 6147 if (!core_clock_updated) { 6148 update_rq_clock(rq->core); 6149 core_clock_updated = true; 6150 } 6151 sched_core_account_forceidle(rq); 6152 /* reset after accounting force idle */ 6153 rq->core->core_forceidle_start = 0; 6154 rq->core->core_forceidle_count = 0; 6155 rq->core->core_forceidle_occupation = 0; 6156 need_sync = true; 6157 fi_before = true; 6158 } 6159 6160 /* 6161 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6162 * 6163 * @task_seq guards the task state ({en,de}queues) 6164 * @pick_seq is the @task_seq we did a selection on 6165 * @sched_seq is the @pick_seq we scheduled 6166 * 6167 * However, preemptions can cause multiple picks on the same task set. 6168 * 'Fix' this by also increasing @task_seq for every pick. 6169 */ 6170 rq->core->core_task_seq++; 6171 6172 /* 6173 * Optimize for common case where this CPU has no cookies 6174 * and there are no cookied tasks running on siblings. 6175 */ 6176 if (!need_sync) { 6177 next = pick_task(rq); 6178 if (!next->core_cookie) { 6179 rq->core_pick = NULL; 6180 rq->core_dl_server = NULL; 6181 /* 6182 * For robustness, update the min_vruntime_fi for 6183 * unconstrained picks as well. 6184 */ 6185 WARN_ON_ONCE(fi_before); 6186 task_vruntime_update(rq, next, false); 6187 goto out_set_next; 6188 } 6189 } 6190 6191 /* 6192 * For each thread: do the regular task pick and find the max prio task 6193 * amongst them. 6194 * 6195 * Tie-break prio towards the current CPU 6196 */ 6197 for_each_cpu_wrap(i, smt_mask, cpu) { 6198 rq_i = cpu_rq(i); 6199 6200 /* 6201 * Current cpu always has its clock updated on entrance to 6202 * pick_next_task(). If the current cpu is not the core, 6203 * the core may also have been updated above. 6204 */ 6205 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6206 update_rq_clock(rq_i); 6207 6208 rq_i->core_pick = p = pick_task(rq_i); 6209 rq_i->core_dl_server = rq_i->dl_server; 6210 6211 if (!max || prio_less(max, p, fi_before)) 6212 max = p; 6213 } 6214 6215 cookie = rq->core->core_cookie = max->core_cookie; 6216 6217 /* 6218 * For each thread: try and find a runnable task that matches @max or 6219 * force idle. 6220 */ 6221 for_each_cpu(i, smt_mask) { 6222 rq_i = cpu_rq(i); 6223 p = rq_i->core_pick; 6224 6225 if (!cookie_equals(p, cookie)) { 6226 p = NULL; 6227 if (cookie) 6228 p = sched_core_find(rq_i, cookie); 6229 if (!p) 6230 p = idle_sched_class.pick_task(rq_i); 6231 } 6232 6233 rq_i->core_pick = p; 6234 rq_i->core_dl_server = NULL; 6235 6236 if (p == rq_i->idle) { 6237 if (rq_i->nr_running) { 6238 rq->core->core_forceidle_count++; 6239 if (!fi_before) 6240 rq->core->core_forceidle_seq++; 6241 } 6242 } else { 6243 occ++; 6244 } 6245 } 6246 6247 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6248 rq->core->core_forceidle_start = rq_clock(rq->core); 6249 rq->core->core_forceidle_occupation = occ; 6250 } 6251 6252 rq->core->core_pick_seq = rq->core->core_task_seq; 6253 next = rq->core_pick; 6254 rq->core_sched_seq = rq->core->core_pick_seq; 6255 6256 /* Something should have been selected for current CPU */ 6257 WARN_ON_ONCE(!next); 6258 6259 /* 6260 * Reschedule siblings 6261 * 6262 * NOTE: L1TF -- at this point we're no longer running the old task and 6263 * sending an IPI (below) ensures the sibling will no longer be running 6264 * their task. This ensures there is no inter-sibling overlap between 6265 * non-matching user state. 6266 */ 6267 for_each_cpu(i, smt_mask) { 6268 rq_i = cpu_rq(i); 6269 6270 /* 6271 * An online sibling might have gone offline before a task 6272 * could be picked for it, or it might be offline but later 6273 * happen to come online, but its too late and nothing was 6274 * picked for it. That's Ok - it will pick tasks for itself, 6275 * so ignore it. 6276 */ 6277 if (!rq_i->core_pick) 6278 continue; 6279 6280 /* 6281 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6282 * fi_before fi update? 6283 * 0 0 1 6284 * 0 1 1 6285 * 1 0 1 6286 * 1 1 0 6287 */ 6288 if (!(fi_before && rq->core->core_forceidle_count)) 6289 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6290 6291 rq_i->core_pick->core_occupation = occ; 6292 6293 if (i == cpu) { 6294 rq_i->core_pick = NULL; 6295 rq_i->core_dl_server = NULL; 6296 continue; 6297 } 6298 6299 /* Did we break L1TF mitigation requirements? */ 6300 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6301 6302 if (rq_i->curr == rq_i->core_pick) { 6303 rq_i->core_pick = NULL; 6304 rq_i->core_dl_server = NULL; 6305 continue; 6306 } 6307 6308 resched_curr(rq_i); 6309 } 6310 6311 out_set_next: 6312 put_prev_set_next_task(rq, prev, next); 6313 if (rq->core->core_forceidle_count && next == rq->idle) 6314 queue_core_balance(rq); 6315 6316 return next; 6317 } 6318 6319 static bool try_steal_cookie(int this, int that) 6320 { 6321 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6322 struct task_struct *p; 6323 unsigned long cookie; 6324 bool success = false; 6325 6326 guard(irq)(); 6327 guard(double_rq_lock)(dst, src); 6328 6329 cookie = dst->core->core_cookie; 6330 if (!cookie) 6331 return false; 6332 6333 if (dst->curr != dst->idle) 6334 return false; 6335 6336 p = sched_core_find(src, cookie); 6337 if (!p) 6338 return false; 6339 6340 do { 6341 if (p == src->core_pick || p == src->curr) 6342 goto next; 6343 6344 if (!is_cpu_allowed(p, this)) 6345 goto next; 6346 6347 if (p->core_occupation > dst->idle->core_occupation) 6348 goto next; 6349 /* 6350 * sched_core_find() and sched_core_next() will ensure 6351 * that task @p is not throttled now, we also need to 6352 * check whether the runqueue of the destination CPU is 6353 * being throttled. 6354 */ 6355 if (sched_task_is_throttled(p, this)) 6356 goto next; 6357 6358 move_queued_task_locked(src, dst, p); 6359 resched_curr(dst); 6360 6361 success = true; 6362 break; 6363 6364 next: 6365 p = sched_core_next(p, cookie); 6366 } while (p); 6367 6368 return success; 6369 } 6370 6371 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6372 { 6373 int i; 6374 6375 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6376 if (i == cpu) 6377 continue; 6378 6379 if (need_resched()) 6380 break; 6381 6382 if (try_steal_cookie(cpu, i)) 6383 return true; 6384 } 6385 6386 return false; 6387 } 6388 6389 static void sched_core_balance(struct rq *rq) 6390 { 6391 struct sched_domain *sd; 6392 int cpu = cpu_of(rq); 6393 6394 guard(preempt)(); 6395 guard(rcu)(); 6396 6397 raw_spin_rq_unlock_irq(rq); 6398 for_each_domain(cpu, sd) { 6399 if (need_resched()) 6400 break; 6401 6402 if (steal_cookie_task(cpu, sd)) 6403 break; 6404 } 6405 raw_spin_rq_lock_irq(rq); 6406 } 6407 6408 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6409 6410 static void queue_core_balance(struct rq *rq) 6411 { 6412 if (!sched_core_enabled(rq)) 6413 return; 6414 6415 if (!rq->core->core_cookie) 6416 return; 6417 6418 if (!rq->nr_running) /* not forced idle */ 6419 return; 6420 6421 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6422 } 6423 6424 DEFINE_LOCK_GUARD_1(core_lock, int, 6425 sched_core_lock(*_T->lock, &_T->flags), 6426 sched_core_unlock(*_T->lock, &_T->flags), 6427 unsigned long flags) 6428 6429 static void sched_core_cpu_starting(unsigned int cpu) 6430 { 6431 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6432 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6433 int t; 6434 6435 guard(core_lock)(&cpu); 6436 6437 WARN_ON_ONCE(rq->core != rq); 6438 6439 /* if we're the first, we'll be our own leader */ 6440 if (cpumask_weight(smt_mask) == 1) 6441 return; 6442 6443 /* find the leader */ 6444 for_each_cpu(t, smt_mask) { 6445 if (t == cpu) 6446 continue; 6447 rq = cpu_rq(t); 6448 if (rq->core == rq) { 6449 core_rq = rq; 6450 break; 6451 } 6452 } 6453 6454 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6455 return; 6456 6457 /* install and validate core_rq */ 6458 for_each_cpu(t, smt_mask) { 6459 rq = cpu_rq(t); 6460 6461 if (t == cpu) 6462 rq->core = core_rq; 6463 6464 WARN_ON_ONCE(rq->core != core_rq); 6465 } 6466 } 6467 6468 static void sched_core_cpu_deactivate(unsigned int cpu) 6469 { 6470 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6471 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6472 int t; 6473 6474 guard(core_lock)(&cpu); 6475 6476 /* if we're the last man standing, nothing to do */ 6477 if (cpumask_weight(smt_mask) == 1) { 6478 WARN_ON_ONCE(rq->core != rq); 6479 return; 6480 } 6481 6482 /* if we're not the leader, nothing to do */ 6483 if (rq->core != rq) 6484 return; 6485 6486 /* find a new leader */ 6487 for_each_cpu(t, smt_mask) { 6488 if (t == cpu) 6489 continue; 6490 core_rq = cpu_rq(t); 6491 break; 6492 } 6493 6494 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6495 return; 6496 6497 /* copy the shared state to the new leader */ 6498 core_rq->core_task_seq = rq->core_task_seq; 6499 core_rq->core_pick_seq = rq->core_pick_seq; 6500 core_rq->core_cookie = rq->core_cookie; 6501 core_rq->core_forceidle_count = rq->core_forceidle_count; 6502 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6503 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6504 6505 /* 6506 * Accounting edge for forced idle is handled in pick_next_task(). 6507 * Don't need another one here, since the hotplug thread shouldn't 6508 * have a cookie. 6509 */ 6510 core_rq->core_forceidle_start = 0; 6511 6512 /* install new leader */ 6513 for_each_cpu(t, smt_mask) { 6514 rq = cpu_rq(t); 6515 rq->core = core_rq; 6516 } 6517 } 6518 6519 static inline void sched_core_cpu_dying(unsigned int cpu) 6520 { 6521 struct rq *rq = cpu_rq(cpu); 6522 6523 if (rq->core != rq) 6524 rq->core = rq; 6525 } 6526 6527 #else /* !CONFIG_SCHED_CORE */ 6528 6529 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6530 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6531 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6532 6533 static struct task_struct * 6534 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6535 { 6536 return __pick_next_task(rq, prev, rf); 6537 } 6538 6539 #endif /* CONFIG_SCHED_CORE */ 6540 6541 /* 6542 * Constants for the sched_mode argument of __schedule(). 6543 * 6544 * The mode argument allows RT enabled kernels to differentiate a 6545 * preemption from blocking on an 'sleeping' spin/rwlock. 6546 */ 6547 #define SM_IDLE (-1) 6548 #define SM_NONE 0 6549 #define SM_PREEMPT 1 6550 #define SM_RTLOCK_WAIT 2 6551 6552 /* 6553 * Helper function for __schedule() 6554 * 6555 * If a task does not have signals pending, deactivate it 6556 * Otherwise marks the task's __state as RUNNING 6557 */ 6558 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6559 unsigned long task_state) 6560 { 6561 int flags = DEQUEUE_NOCLOCK; 6562 6563 if (signal_pending_state(task_state, p)) { 6564 WRITE_ONCE(p->__state, TASK_RUNNING); 6565 return false; 6566 } 6567 6568 p->sched_contributes_to_load = 6569 (task_state & TASK_UNINTERRUPTIBLE) && 6570 !(task_state & TASK_NOLOAD) && 6571 !(task_state & TASK_FROZEN); 6572 6573 if (unlikely(is_special_task_state(task_state))) 6574 flags |= DEQUEUE_SPECIAL; 6575 6576 /* 6577 * __schedule() ttwu() 6578 * prev_state = prev->state; if (p->on_rq && ...) 6579 * if (prev_state) goto out; 6580 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6581 * p->state = TASK_WAKING 6582 * 6583 * Where __schedule() and ttwu() have matching control dependencies. 6584 * 6585 * After this, schedule() must not care about p->state any more. 6586 */ 6587 block_task(rq, p, flags); 6588 return true; 6589 } 6590 6591 /* 6592 * __schedule() is the main scheduler function. 6593 * 6594 * The main means of driving the scheduler and thus entering this function are: 6595 * 6596 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6597 * 6598 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6599 * paths. For example, see arch/x86/entry_64.S. 6600 * 6601 * To drive preemption between tasks, the scheduler sets the flag in timer 6602 * interrupt handler sched_tick(). 6603 * 6604 * 3. Wakeups don't really cause entry into schedule(). They add a 6605 * task to the run-queue and that's it. 6606 * 6607 * Now, if the new task added to the run-queue preempts the current 6608 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6609 * called on the nearest possible occasion: 6610 * 6611 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6612 * 6613 * - in syscall or exception context, at the next outmost 6614 * preempt_enable(). (this might be as soon as the wake_up()'s 6615 * spin_unlock()!) 6616 * 6617 * - in IRQ context, return from interrupt-handler to 6618 * preemptible context 6619 * 6620 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6621 * then at the next: 6622 * 6623 * - cond_resched() call 6624 * - explicit schedule() call 6625 * - return from syscall or exception to user-space 6626 * - return from interrupt-handler to user-space 6627 * 6628 * WARNING: must be called with preemption disabled! 6629 */ 6630 static void __sched notrace __schedule(int sched_mode) 6631 { 6632 struct task_struct *prev, *next; 6633 /* 6634 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6635 * as a preemption by schedule_debug() and RCU. 6636 */ 6637 bool preempt = sched_mode > SM_NONE; 6638 unsigned long *switch_count; 6639 unsigned long prev_state; 6640 struct rq_flags rf; 6641 struct rq *rq; 6642 int cpu; 6643 6644 cpu = smp_processor_id(); 6645 rq = cpu_rq(cpu); 6646 prev = rq->curr; 6647 6648 schedule_debug(prev, preempt); 6649 6650 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6651 hrtick_clear(rq); 6652 6653 local_irq_disable(); 6654 rcu_note_context_switch(preempt); 6655 6656 /* 6657 * Make sure that signal_pending_state()->signal_pending() below 6658 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6659 * done by the caller to avoid the race with signal_wake_up(): 6660 * 6661 * __set_current_state(@state) signal_wake_up() 6662 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6663 * wake_up_state(p, state) 6664 * LOCK rq->lock LOCK p->pi_state 6665 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6666 * if (signal_pending_state()) if (p->state & @state) 6667 * 6668 * Also, the membarrier system call requires a full memory barrier 6669 * after coming from user-space, before storing to rq->curr; this 6670 * barrier matches a full barrier in the proximity of the membarrier 6671 * system call exit. 6672 */ 6673 rq_lock(rq, &rf); 6674 smp_mb__after_spinlock(); 6675 6676 /* Promote REQ to ACT */ 6677 rq->clock_update_flags <<= 1; 6678 update_rq_clock(rq); 6679 rq->clock_update_flags = RQCF_UPDATED; 6680 6681 switch_count = &prev->nivcsw; 6682 6683 /* Task state changes only considers SM_PREEMPT as preemption */ 6684 preempt = sched_mode == SM_PREEMPT; 6685 6686 /* 6687 * We must load prev->state once (task_struct::state is volatile), such 6688 * that we form a control dependency vs deactivate_task() below. 6689 */ 6690 prev_state = READ_ONCE(prev->__state); 6691 if (sched_mode == SM_IDLE) { 6692 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6693 if (!rq->nr_running && !scx_enabled()) { 6694 next = prev; 6695 goto picked; 6696 } 6697 } else if (!preempt && prev_state) { 6698 try_to_block_task(rq, prev, prev_state); 6699 switch_count = &prev->nvcsw; 6700 } 6701 6702 next = pick_next_task(rq, prev, &rf); 6703 rq_set_donor(rq, next); 6704 picked: 6705 clear_tsk_need_resched(prev); 6706 clear_preempt_need_resched(); 6707 rq->last_seen_need_resched_ns = 0; 6708 6709 if (likely(prev != next)) { 6710 rq->nr_switches++; 6711 /* 6712 * RCU users of rcu_dereference(rq->curr) may not see 6713 * changes to task_struct made by pick_next_task(). 6714 */ 6715 RCU_INIT_POINTER(rq->curr, next); 6716 /* 6717 * The membarrier system call requires each architecture 6718 * to have a full memory barrier after updating 6719 * rq->curr, before returning to user-space. 6720 * 6721 * Here are the schemes providing that barrier on the 6722 * various architectures: 6723 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6724 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6725 * on PowerPC and on RISC-V. 6726 * - finish_lock_switch() for weakly-ordered 6727 * architectures where spin_unlock is a full barrier, 6728 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6729 * is a RELEASE barrier), 6730 * 6731 * The barrier matches a full barrier in the proximity of 6732 * the membarrier system call entry. 6733 * 6734 * On RISC-V, this barrier pairing is also needed for the 6735 * SYNC_CORE command when switching between processes, cf. 6736 * the inline comments in membarrier_arch_switch_mm(). 6737 */ 6738 ++*switch_count; 6739 6740 migrate_disable_switch(rq, prev); 6741 psi_account_irqtime(rq, prev, next); 6742 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6743 prev->se.sched_delayed); 6744 6745 trace_sched_switch(preempt, prev, next, prev_state); 6746 6747 /* Also unlocks the rq: */ 6748 rq = context_switch(rq, prev, next, &rf); 6749 } else { 6750 rq_unpin_lock(rq, &rf); 6751 __balance_callbacks(rq); 6752 raw_spin_rq_unlock_irq(rq); 6753 } 6754 } 6755 6756 void __noreturn do_task_dead(void) 6757 { 6758 /* Causes final put_task_struct in finish_task_switch(): */ 6759 set_special_state(TASK_DEAD); 6760 6761 /* Tell freezer to ignore us: */ 6762 current->flags |= PF_NOFREEZE; 6763 6764 __schedule(SM_NONE); 6765 BUG(); 6766 6767 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6768 for (;;) 6769 cpu_relax(); 6770 } 6771 6772 static inline void sched_submit_work(struct task_struct *tsk) 6773 { 6774 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6775 unsigned int task_flags; 6776 6777 /* 6778 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6779 * will use a blocking primitive -- which would lead to recursion. 6780 */ 6781 lock_map_acquire_try(&sched_map); 6782 6783 task_flags = tsk->flags; 6784 /* 6785 * If a worker goes to sleep, notify and ask workqueue whether it 6786 * wants to wake up a task to maintain concurrency. 6787 */ 6788 if (task_flags & PF_WQ_WORKER) 6789 wq_worker_sleeping(tsk); 6790 else if (task_flags & PF_IO_WORKER) 6791 io_wq_worker_sleeping(tsk); 6792 6793 /* 6794 * spinlock and rwlock must not flush block requests. This will 6795 * deadlock if the callback attempts to acquire a lock which is 6796 * already acquired. 6797 */ 6798 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); 6799 6800 /* 6801 * If we are going to sleep and we have plugged IO queued, 6802 * make sure to submit it to avoid deadlocks. 6803 */ 6804 blk_flush_plug(tsk->plug, true); 6805 6806 lock_map_release(&sched_map); 6807 } 6808 6809 static void sched_update_worker(struct task_struct *tsk) 6810 { 6811 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6812 if (tsk->flags & PF_BLOCK_TS) 6813 blk_plug_invalidate_ts(tsk); 6814 if (tsk->flags & PF_WQ_WORKER) 6815 wq_worker_running(tsk); 6816 else if (tsk->flags & PF_IO_WORKER) 6817 io_wq_worker_running(tsk); 6818 } 6819 } 6820 6821 static __always_inline void __schedule_loop(int sched_mode) 6822 { 6823 do { 6824 preempt_disable(); 6825 __schedule(sched_mode); 6826 sched_preempt_enable_no_resched(); 6827 } while (need_resched()); 6828 } 6829 6830 asmlinkage __visible void __sched schedule(void) 6831 { 6832 struct task_struct *tsk = current; 6833 6834 #ifdef CONFIG_RT_MUTEXES 6835 lockdep_assert(!tsk->sched_rt_mutex); 6836 #endif 6837 6838 if (!task_is_running(tsk)) 6839 sched_submit_work(tsk); 6840 __schedule_loop(SM_NONE); 6841 sched_update_worker(tsk); 6842 } 6843 EXPORT_SYMBOL(schedule); 6844 6845 /* 6846 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6847 * state (have scheduled out non-voluntarily) by making sure that all 6848 * tasks have either left the run queue or have gone into user space. 6849 * As idle tasks do not do either, they must not ever be preempted 6850 * (schedule out non-voluntarily). 6851 * 6852 * schedule_idle() is similar to schedule_preempt_disable() except that it 6853 * never enables preemption because it does not call sched_submit_work(). 6854 */ 6855 void __sched schedule_idle(void) 6856 { 6857 /* 6858 * As this skips calling sched_submit_work(), which the idle task does 6859 * regardless because that function is a NOP when the task is in a 6860 * TASK_RUNNING state, make sure this isn't used someplace that the 6861 * current task can be in any other state. Note, idle is always in the 6862 * TASK_RUNNING state. 6863 */ 6864 WARN_ON_ONCE(current->__state); 6865 do { 6866 __schedule(SM_IDLE); 6867 } while (need_resched()); 6868 } 6869 6870 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6871 asmlinkage __visible void __sched schedule_user(void) 6872 { 6873 /* 6874 * If we come here after a random call to set_need_resched(), 6875 * or we have been woken up remotely but the IPI has not yet arrived, 6876 * we haven't yet exited the RCU idle mode. Do it here manually until 6877 * we find a better solution. 6878 * 6879 * NB: There are buggy callers of this function. Ideally we 6880 * should warn if prev_state != CT_STATE_USER, but that will trigger 6881 * too frequently to make sense yet. 6882 */ 6883 enum ctx_state prev_state = exception_enter(); 6884 schedule(); 6885 exception_exit(prev_state); 6886 } 6887 #endif 6888 6889 /** 6890 * schedule_preempt_disabled - called with preemption disabled 6891 * 6892 * Returns with preemption disabled. Note: preempt_count must be 1 6893 */ 6894 void __sched schedule_preempt_disabled(void) 6895 { 6896 sched_preempt_enable_no_resched(); 6897 schedule(); 6898 preempt_disable(); 6899 } 6900 6901 #ifdef CONFIG_PREEMPT_RT 6902 void __sched notrace schedule_rtlock(void) 6903 { 6904 __schedule_loop(SM_RTLOCK_WAIT); 6905 } 6906 NOKPROBE_SYMBOL(schedule_rtlock); 6907 #endif 6908 6909 static void __sched notrace preempt_schedule_common(void) 6910 { 6911 do { 6912 /* 6913 * Because the function tracer can trace preempt_count_sub() 6914 * and it also uses preempt_enable/disable_notrace(), if 6915 * NEED_RESCHED is set, the preempt_enable_notrace() called 6916 * by the function tracer will call this function again and 6917 * cause infinite recursion. 6918 * 6919 * Preemption must be disabled here before the function 6920 * tracer can trace. Break up preempt_disable() into two 6921 * calls. One to disable preemption without fear of being 6922 * traced. The other to still record the preemption latency, 6923 * which can also be traced by the function tracer. 6924 */ 6925 preempt_disable_notrace(); 6926 preempt_latency_start(1); 6927 __schedule(SM_PREEMPT); 6928 preempt_latency_stop(1); 6929 preempt_enable_no_resched_notrace(); 6930 6931 /* 6932 * Check again in case we missed a preemption opportunity 6933 * between schedule and now. 6934 */ 6935 } while (need_resched()); 6936 } 6937 6938 #ifdef CONFIG_PREEMPTION 6939 /* 6940 * This is the entry point to schedule() from in-kernel preemption 6941 * off of preempt_enable. 6942 */ 6943 asmlinkage __visible void __sched notrace preempt_schedule(void) 6944 { 6945 /* 6946 * If there is a non-zero preempt_count or interrupts are disabled, 6947 * we do not want to preempt the current task. Just return.. 6948 */ 6949 if (likely(!preemptible())) 6950 return; 6951 preempt_schedule_common(); 6952 } 6953 NOKPROBE_SYMBOL(preempt_schedule); 6954 EXPORT_SYMBOL(preempt_schedule); 6955 6956 #ifdef CONFIG_PREEMPT_DYNAMIC 6957 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6958 #ifndef preempt_schedule_dynamic_enabled 6959 #define preempt_schedule_dynamic_enabled preempt_schedule 6960 #define preempt_schedule_dynamic_disabled NULL 6961 #endif 6962 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6963 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6964 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6965 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6966 void __sched notrace dynamic_preempt_schedule(void) 6967 { 6968 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6969 return; 6970 preempt_schedule(); 6971 } 6972 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6973 EXPORT_SYMBOL(dynamic_preempt_schedule); 6974 #endif 6975 #endif 6976 6977 /** 6978 * preempt_schedule_notrace - preempt_schedule called by tracing 6979 * 6980 * The tracing infrastructure uses preempt_enable_notrace to prevent 6981 * recursion and tracing preempt enabling caused by the tracing 6982 * infrastructure itself. But as tracing can happen in areas coming 6983 * from userspace or just about to enter userspace, a preempt enable 6984 * can occur before user_exit() is called. This will cause the scheduler 6985 * to be called when the system is still in usermode. 6986 * 6987 * To prevent this, the preempt_enable_notrace will use this function 6988 * instead of preempt_schedule() to exit user context if needed before 6989 * calling the scheduler. 6990 */ 6991 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6992 { 6993 enum ctx_state prev_ctx; 6994 6995 if (likely(!preemptible())) 6996 return; 6997 6998 do { 6999 /* 7000 * Because the function tracer can trace preempt_count_sub() 7001 * and it also uses preempt_enable/disable_notrace(), if 7002 * NEED_RESCHED is set, the preempt_enable_notrace() called 7003 * by the function tracer will call this function again and 7004 * cause infinite recursion. 7005 * 7006 * Preemption must be disabled here before the function 7007 * tracer can trace. Break up preempt_disable() into two 7008 * calls. One to disable preemption without fear of being 7009 * traced. The other to still record the preemption latency, 7010 * which can also be traced by the function tracer. 7011 */ 7012 preempt_disable_notrace(); 7013 preempt_latency_start(1); 7014 /* 7015 * Needs preempt disabled in case user_exit() is traced 7016 * and the tracer calls preempt_enable_notrace() causing 7017 * an infinite recursion. 7018 */ 7019 prev_ctx = exception_enter(); 7020 __schedule(SM_PREEMPT); 7021 exception_exit(prev_ctx); 7022 7023 preempt_latency_stop(1); 7024 preempt_enable_no_resched_notrace(); 7025 } while (need_resched()); 7026 } 7027 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7028 7029 #ifdef CONFIG_PREEMPT_DYNAMIC 7030 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7031 #ifndef preempt_schedule_notrace_dynamic_enabled 7032 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7033 #define preempt_schedule_notrace_dynamic_disabled NULL 7034 #endif 7035 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7036 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7037 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7038 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7039 void __sched notrace dynamic_preempt_schedule_notrace(void) 7040 { 7041 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7042 return; 7043 preempt_schedule_notrace(); 7044 } 7045 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7046 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7047 #endif 7048 #endif 7049 7050 #endif /* CONFIG_PREEMPTION */ 7051 7052 /* 7053 * This is the entry point to schedule() from kernel preemption 7054 * off of IRQ context. 7055 * Note, that this is called and return with IRQs disabled. This will 7056 * protect us against recursive calling from IRQ contexts. 7057 */ 7058 asmlinkage __visible void __sched preempt_schedule_irq(void) 7059 { 7060 enum ctx_state prev_state; 7061 7062 /* Catch callers which need to be fixed */ 7063 BUG_ON(preempt_count() || !irqs_disabled()); 7064 7065 prev_state = exception_enter(); 7066 7067 do { 7068 preempt_disable(); 7069 local_irq_enable(); 7070 __schedule(SM_PREEMPT); 7071 local_irq_disable(); 7072 sched_preempt_enable_no_resched(); 7073 } while (need_resched()); 7074 7075 exception_exit(prev_state); 7076 } 7077 7078 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7079 void *key) 7080 { 7081 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7082 return try_to_wake_up(curr->private, mode, wake_flags); 7083 } 7084 EXPORT_SYMBOL(default_wake_function); 7085 7086 const struct sched_class *__setscheduler_class(int policy, int prio) 7087 { 7088 if (dl_prio(prio)) 7089 return &dl_sched_class; 7090 7091 if (rt_prio(prio)) 7092 return &rt_sched_class; 7093 7094 #ifdef CONFIG_SCHED_CLASS_EXT 7095 if (task_should_scx(policy)) 7096 return &ext_sched_class; 7097 #endif 7098 7099 return &fair_sched_class; 7100 } 7101 7102 #ifdef CONFIG_RT_MUTEXES 7103 7104 /* 7105 * Would be more useful with typeof()/auto_type but they don't mix with 7106 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7107 * name such that if someone were to implement this function we get to compare 7108 * notes. 7109 */ 7110 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7111 7112 void rt_mutex_pre_schedule(void) 7113 { 7114 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7115 sched_submit_work(current); 7116 } 7117 7118 void rt_mutex_schedule(void) 7119 { 7120 lockdep_assert(current->sched_rt_mutex); 7121 __schedule_loop(SM_NONE); 7122 } 7123 7124 void rt_mutex_post_schedule(void) 7125 { 7126 sched_update_worker(current); 7127 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7128 } 7129 7130 /* 7131 * rt_mutex_setprio - set the current priority of a task 7132 * @p: task to boost 7133 * @pi_task: donor task 7134 * 7135 * This function changes the 'effective' priority of a task. It does 7136 * not touch ->normal_prio like __setscheduler(). 7137 * 7138 * Used by the rt_mutex code to implement priority inheritance 7139 * logic. Call site only calls if the priority of the task changed. 7140 */ 7141 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7142 { 7143 int prio, oldprio, queued, running, queue_flag = 7144 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7145 const struct sched_class *prev_class, *next_class; 7146 struct rq_flags rf; 7147 struct rq *rq; 7148 7149 /* XXX used to be waiter->prio, not waiter->task->prio */ 7150 prio = __rt_effective_prio(pi_task, p->normal_prio); 7151 7152 /* 7153 * If nothing changed; bail early. 7154 */ 7155 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7156 return; 7157 7158 rq = __task_rq_lock(p, &rf); 7159 update_rq_clock(rq); 7160 /* 7161 * Set under pi_lock && rq->lock, such that the value can be used under 7162 * either lock. 7163 * 7164 * Note that there is loads of tricky to make this pointer cache work 7165 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7166 * ensure a task is de-boosted (pi_task is set to NULL) before the 7167 * task is allowed to run again (and can exit). This ensures the pointer 7168 * points to a blocked task -- which guarantees the task is present. 7169 */ 7170 p->pi_top_task = pi_task; 7171 7172 /* 7173 * For FIFO/RR we only need to set prio, if that matches we're done. 7174 */ 7175 if (prio == p->prio && !dl_prio(prio)) 7176 goto out_unlock; 7177 7178 /* 7179 * Idle task boosting is a no-no in general. There is one 7180 * exception, when PREEMPT_RT and NOHZ is active: 7181 * 7182 * The idle task calls get_next_timer_interrupt() and holds 7183 * the timer wheel base->lock on the CPU and another CPU wants 7184 * to access the timer (probably to cancel it). We can safely 7185 * ignore the boosting request, as the idle CPU runs this code 7186 * with interrupts disabled and will complete the lock 7187 * protected section without being interrupted. So there is no 7188 * real need to boost. 7189 */ 7190 if (unlikely(p == rq->idle)) { 7191 WARN_ON(p != rq->curr); 7192 WARN_ON(p->pi_blocked_on); 7193 goto out_unlock; 7194 } 7195 7196 trace_sched_pi_setprio(p, pi_task); 7197 oldprio = p->prio; 7198 7199 if (oldprio == prio) 7200 queue_flag &= ~DEQUEUE_MOVE; 7201 7202 prev_class = p->sched_class; 7203 next_class = __setscheduler_class(p->policy, prio); 7204 7205 if (prev_class != next_class && p->se.sched_delayed) 7206 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7207 7208 queued = task_on_rq_queued(p); 7209 running = task_current_donor(rq, p); 7210 if (queued) 7211 dequeue_task(rq, p, queue_flag); 7212 if (running) 7213 put_prev_task(rq, p); 7214 7215 /* 7216 * Boosting condition are: 7217 * 1. -rt task is running and holds mutex A 7218 * --> -dl task blocks on mutex A 7219 * 7220 * 2. -dl task is running and holds mutex A 7221 * --> -dl task blocks on mutex A and could preempt the 7222 * running task 7223 */ 7224 if (dl_prio(prio)) { 7225 if (!dl_prio(p->normal_prio) || 7226 (pi_task && dl_prio(pi_task->prio) && 7227 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7228 p->dl.pi_se = pi_task->dl.pi_se; 7229 queue_flag |= ENQUEUE_REPLENISH; 7230 } else { 7231 p->dl.pi_se = &p->dl; 7232 } 7233 } else if (rt_prio(prio)) { 7234 if (dl_prio(oldprio)) 7235 p->dl.pi_se = &p->dl; 7236 if (oldprio < prio) 7237 queue_flag |= ENQUEUE_HEAD; 7238 } else { 7239 if (dl_prio(oldprio)) 7240 p->dl.pi_se = &p->dl; 7241 if (rt_prio(oldprio)) 7242 p->rt.timeout = 0; 7243 } 7244 7245 p->sched_class = next_class; 7246 p->prio = prio; 7247 7248 check_class_changing(rq, p, prev_class); 7249 7250 if (queued) 7251 enqueue_task(rq, p, queue_flag); 7252 if (running) 7253 set_next_task(rq, p); 7254 7255 check_class_changed(rq, p, prev_class, oldprio); 7256 out_unlock: 7257 /* Avoid rq from going away on us: */ 7258 preempt_disable(); 7259 7260 rq_unpin_lock(rq, &rf); 7261 __balance_callbacks(rq); 7262 raw_spin_rq_unlock(rq); 7263 7264 preempt_enable(); 7265 } 7266 #endif 7267 7268 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7269 int __sched __cond_resched(void) 7270 { 7271 if (should_resched(0) && !irqs_disabled()) { 7272 preempt_schedule_common(); 7273 return 1; 7274 } 7275 /* 7276 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick 7277 * whether the current CPU is in an RCU read-side critical section, 7278 * so the tick can report quiescent states even for CPUs looping 7279 * in kernel context. In contrast, in non-preemptible kernels, 7280 * RCU readers leave no in-memory hints, which means that CPU-bound 7281 * processes executing in kernel context might never report an 7282 * RCU quiescent state. Therefore, the following code causes 7283 * cond_resched() to report a quiescent state, but only when RCU 7284 * is in urgent need of one. 7285 * A third case, preemptible, but non-PREEMPT_RCU provides for 7286 * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). 7287 */ 7288 #ifndef CONFIG_PREEMPT_RCU 7289 rcu_all_qs(); 7290 #endif 7291 return 0; 7292 } 7293 EXPORT_SYMBOL(__cond_resched); 7294 #endif 7295 7296 #ifdef CONFIG_PREEMPT_DYNAMIC 7297 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7298 #define cond_resched_dynamic_enabled __cond_resched 7299 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7300 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7301 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7302 7303 #define might_resched_dynamic_enabled __cond_resched 7304 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7305 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7306 EXPORT_STATIC_CALL_TRAMP(might_resched); 7307 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7308 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7309 int __sched dynamic_cond_resched(void) 7310 { 7311 klp_sched_try_switch(); 7312 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7313 return 0; 7314 return __cond_resched(); 7315 } 7316 EXPORT_SYMBOL(dynamic_cond_resched); 7317 7318 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7319 int __sched dynamic_might_resched(void) 7320 { 7321 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7322 return 0; 7323 return __cond_resched(); 7324 } 7325 EXPORT_SYMBOL(dynamic_might_resched); 7326 #endif 7327 #endif 7328 7329 /* 7330 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7331 * call schedule, and on return reacquire the lock. 7332 * 7333 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7334 * operations here to prevent schedule() from being called twice (once via 7335 * spin_unlock(), once by hand). 7336 */ 7337 int __cond_resched_lock(spinlock_t *lock) 7338 { 7339 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7340 int ret = 0; 7341 7342 lockdep_assert_held(lock); 7343 7344 if (spin_needbreak(lock) || resched) { 7345 spin_unlock(lock); 7346 if (!_cond_resched()) 7347 cpu_relax(); 7348 ret = 1; 7349 spin_lock(lock); 7350 } 7351 return ret; 7352 } 7353 EXPORT_SYMBOL(__cond_resched_lock); 7354 7355 int __cond_resched_rwlock_read(rwlock_t *lock) 7356 { 7357 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7358 int ret = 0; 7359 7360 lockdep_assert_held_read(lock); 7361 7362 if (rwlock_needbreak(lock) || resched) { 7363 read_unlock(lock); 7364 if (!_cond_resched()) 7365 cpu_relax(); 7366 ret = 1; 7367 read_lock(lock); 7368 } 7369 return ret; 7370 } 7371 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7372 7373 int __cond_resched_rwlock_write(rwlock_t *lock) 7374 { 7375 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7376 int ret = 0; 7377 7378 lockdep_assert_held_write(lock); 7379 7380 if (rwlock_needbreak(lock) || resched) { 7381 write_unlock(lock); 7382 if (!_cond_resched()) 7383 cpu_relax(); 7384 ret = 1; 7385 write_lock(lock); 7386 } 7387 return ret; 7388 } 7389 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7390 7391 #ifdef CONFIG_PREEMPT_DYNAMIC 7392 7393 #ifdef CONFIG_GENERIC_ENTRY 7394 #include <linux/entry-common.h> 7395 #endif 7396 7397 /* 7398 * SC:cond_resched 7399 * SC:might_resched 7400 * SC:preempt_schedule 7401 * SC:preempt_schedule_notrace 7402 * SC:irqentry_exit_cond_resched 7403 * 7404 * 7405 * NONE: 7406 * cond_resched <- __cond_resched 7407 * might_resched <- RET0 7408 * preempt_schedule <- NOP 7409 * preempt_schedule_notrace <- NOP 7410 * irqentry_exit_cond_resched <- NOP 7411 * dynamic_preempt_lazy <- false 7412 * 7413 * VOLUNTARY: 7414 * cond_resched <- __cond_resched 7415 * might_resched <- __cond_resched 7416 * preempt_schedule <- NOP 7417 * preempt_schedule_notrace <- NOP 7418 * irqentry_exit_cond_resched <- NOP 7419 * dynamic_preempt_lazy <- false 7420 * 7421 * FULL: 7422 * cond_resched <- RET0 7423 * might_resched <- RET0 7424 * preempt_schedule <- preempt_schedule 7425 * preempt_schedule_notrace <- preempt_schedule_notrace 7426 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7427 * dynamic_preempt_lazy <- false 7428 * 7429 * LAZY: 7430 * cond_resched <- RET0 7431 * might_resched <- RET0 7432 * preempt_schedule <- preempt_schedule 7433 * preempt_schedule_notrace <- preempt_schedule_notrace 7434 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7435 * dynamic_preempt_lazy <- true 7436 */ 7437 7438 enum { 7439 preempt_dynamic_undefined = -1, 7440 preempt_dynamic_none, 7441 preempt_dynamic_voluntary, 7442 preempt_dynamic_full, 7443 preempt_dynamic_lazy, 7444 }; 7445 7446 int preempt_dynamic_mode = preempt_dynamic_undefined; 7447 7448 int sched_dynamic_mode(const char *str) 7449 { 7450 #ifndef CONFIG_PREEMPT_RT 7451 if (!strcmp(str, "none")) 7452 return preempt_dynamic_none; 7453 7454 if (!strcmp(str, "voluntary")) 7455 return preempt_dynamic_voluntary; 7456 #endif 7457 7458 if (!strcmp(str, "full")) 7459 return preempt_dynamic_full; 7460 7461 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7462 if (!strcmp(str, "lazy")) 7463 return preempt_dynamic_lazy; 7464 #endif 7465 7466 return -EINVAL; 7467 } 7468 7469 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7470 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7471 7472 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7473 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7474 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7475 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7476 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7477 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7478 #else 7479 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7480 #endif 7481 7482 static DEFINE_MUTEX(sched_dynamic_mutex); 7483 static bool klp_override; 7484 7485 static void __sched_dynamic_update(int mode) 7486 { 7487 /* 7488 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7489 * the ZERO state, which is invalid. 7490 */ 7491 if (!klp_override) 7492 preempt_dynamic_enable(cond_resched); 7493 preempt_dynamic_enable(might_resched); 7494 preempt_dynamic_enable(preempt_schedule); 7495 preempt_dynamic_enable(preempt_schedule_notrace); 7496 preempt_dynamic_enable(irqentry_exit_cond_resched); 7497 preempt_dynamic_key_disable(preempt_lazy); 7498 7499 switch (mode) { 7500 case preempt_dynamic_none: 7501 if (!klp_override) 7502 preempt_dynamic_enable(cond_resched); 7503 preempt_dynamic_disable(might_resched); 7504 preempt_dynamic_disable(preempt_schedule); 7505 preempt_dynamic_disable(preempt_schedule_notrace); 7506 preempt_dynamic_disable(irqentry_exit_cond_resched); 7507 preempt_dynamic_key_disable(preempt_lazy); 7508 if (mode != preempt_dynamic_mode) 7509 pr_info("Dynamic Preempt: none\n"); 7510 break; 7511 7512 case preempt_dynamic_voluntary: 7513 if (!klp_override) 7514 preempt_dynamic_enable(cond_resched); 7515 preempt_dynamic_enable(might_resched); 7516 preempt_dynamic_disable(preempt_schedule); 7517 preempt_dynamic_disable(preempt_schedule_notrace); 7518 preempt_dynamic_disable(irqentry_exit_cond_resched); 7519 preempt_dynamic_key_disable(preempt_lazy); 7520 if (mode != preempt_dynamic_mode) 7521 pr_info("Dynamic Preempt: voluntary\n"); 7522 break; 7523 7524 case preempt_dynamic_full: 7525 if (!klp_override) 7526 preempt_dynamic_disable(cond_resched); 7527 preempt_dynamic_disable(might_resched); 7528 preempt_dynamic_enable(preempt_schedule); 7529 preempt_dynamic_enable(preempt_schedule_notrace); 7530 preempt_dynamic_enable(irqentry_exit_cond_resched); 7531 preempt_dynamic_key_disable(preempt_lazy); 7532 if (mode != preempt_dynamic_mode) 7533 pr_info("Dynamic Preempt: full\n"); 7534 break; 7535 7536 case preempt_dynamic_lazy: 7537 if (!klp_override) 7538 preempt_dynamic_disable(cond_resched); 7539 preempt_dynamic_disable(might_resched); 7540 preempt_dynamic_enable(preempt_schedule); 7541 preempt_dynamic_enable(preempt_schedule_notrace); 7542 preempt_dynamic_enable(irqentry_exit_cond_resched); 7543 preempt_dynamic_key_enable(preempt_lazy); 7544 if (mode != preempt_dynamic_mode) 7545 pr_info("Dynamic Preempt: lazy\n"); 7546 break; 7547 } 7548 7549 preempt_dynamic_mode = mode; 7550 } 7551 7552 void sched_dynamic_update(int mode) 7553 { 7554 mutex_lock(&sched_dynamic_mutex); 7555 __sched_dynamic_update(mode); 7556 mutex_unlock(&sched_dynamic_mutex); 7557 } 7558 7559 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7560 7561 static int klp_cond_resched(void) 7562 { 7563 __klp_sched_try_switch(); 7564 return __cond_resched(); 7565 } 7566 7567 void sched_dynamic_klp_enable(void) 7568 { 7569 mutex_lock(&sched_dynamic_mutex); 7570 7571 klp_override = true; 7572 static_call_update(cond_resched, klp_cond_resched); 7573 7574 mutex_unlock(&sched_dynamic_mutex); 7575 } 7576 7577 void sched_dynamic_klp_disable(void) 7578 { 7579 mutex_lock(&sched_dynamic_mutex); 7580 7581 klp_override = false; 7582 __sched_dynamic_update(preempt_dynamic_mode); 7583 7584 mutex_unlock(&sched_dynamic_mutex); 7585 } 7586 7587 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7588 7589 static int __init setup_preempt_mode(char *str) 7590 { 7591 int mode = sched_dynamic_mode(str); 7592 if (mode < 0) { 7593 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7594 return 0; 7595 } 7596 7597 sched_dynamic_update(mode); 7598 return 1; 7599 } 7600 __setup("preempt=", setup_preempt_mode); 7601 7602 static void __init preempt_dynamic_init(void) 7603 { 7604 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7605 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7606 sched_dynamic_update(preempt_dynamic_none); 7607 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7608 sched_dynamic_update(preempt_dynamic_voluntary); 7609 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7610 sched_dynamic_update(preempt_dynamic_lazy); 7611 } else { 7612 /* Default static call setting, nothing to do */ 7613 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7614 preempt_dynamic_mode = preempt_dynamic_full; 7615 pr_info("Dynamic Preempt: full\n"); 7616 } 7617 } 7618 } 7619 7620 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7621 bool preempt_model_##mode(void) \ 7622 { \ 7623 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7624 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7625 } \ 7626 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7627 7628 PREEMPT_MODEL_ACCESSOR(none); 7629 PREEMPT_MODEL_ACCESSOR(voluntary); 7630 PREEMPT_MODEL_ACCESSOR(full); 7631 PREEMPT_MODEL_ACCESSOR(lazy); 7632 7633 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7634 7635 #define preempt_dynamic_mode -1 7636 7637 static inline void preempt_dynamic_init(void) { } 7638 7639 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7640 7641 const char *preempt_modes[] = { 7642 "none", "voluntary", "full", "lazy", NULL, 7643 }; 7644 7645 const char *preempt_model_str(void) 7646 { 7647 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && 7648 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || 7649 IS_ENABLED(CONFIG_PREEMPT_LAZY)); 7650 static char buf[128]; 7651 7652 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { 7653 struct seq_buf s; 7654 7655 seq_buf_init(&s, buf, sizeof(buf)); 7656 seq_buf_puts(&s, "PREEMPT"); 7657 7658 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 7659 seq_buf_printf(&s, "%sRT%s", 7660 brace ? "_{" : "_", 7661 brace ? "," : ""); 7662 7663 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { 7664 seq_buf_printf(&s, "(%s)%s", 7665 preempt_dynamic_mode > 0 ? 7666 preempt_modes[preempt_dynamic_mode] : "undef", 7667 brace ? "}" : ""); 7668 return seq_buf_str(&s); 7669 } 7670 7671 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7672 seq_buf_printf(&s, "LAZY%s", 7673 brace ? "}" : ""); 7674 return seq_buf_str(&s); 7675 } 7676 7677 return seq_buf_str(&s); 7678 } 7679 7680 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) 7681 return "VOLUNTARY"; 7682 7683 return "NONE"; 7684 } 7685 7686 int io_schedule_prepare(void) 7687 { 7688 int old_iowait = current->in_iowait; 7689 7690 current->in_iowait = 1; 7691 blk_flush_plug(current->plug, true); 7692 return old_iowait; 7693 } 7694 7695 void io_schedule_finish(int token) 7696 { 7697 current->in_iowait = token; 7698 } 7699 7700 /* 7701 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7702 * that process accounting knows that this is a task in IO wait state. 7703 */ 7704 long __sched io_schedule_timeout(long timeout) 7705 { 7706 int token; 7707 long ret; 7708 7709 token = io_schedule_prepare(); 7710 ret = schedule_timeout(timeout); 7711 io_schedule_finish(token); 7712 7713 return ret; 7714 } 7715 EXPORT_SYMBOL(io_schedule_timeout); 7716 7717 void __sched io_schedule(void) 7718 { 7719 int token; 7720 7721 token = io_schedule_prepare(); 7722 schedule(); 7723 io_schedule_finish(token); 7724 } 7725 EXPORT_SYMBOL(io_schedule); 7726 7727 void sched_show_task(struct task_struct *p) 7728 { 7729 unsigned long free; 7730 int ppid; 7731 7732 if (!try_get_task_stack(p)) 7733 return; 7734 7735 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7736 7737 if (task_is_running(p)) 7738 pr_cont(" running task "); 7739 free = stack_not_used(p); 7740 ppid = 0; 7741 rcu_read_lock(); 7742 if (pid_alive(p)) 7743 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7744 rcu_read_unlock(); 7745 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", 7746 free, task_pid_nr(p), task_tgid_nr(p), 7747 ppid, p->flags, read_task_thread_flags(p)); 7748 7749 print_worker_info(KERN_INFO, p); 7750 print_stop_info(KERN_INFO, p); 7751 print_scx_info(KERN_INFO, p); 7752 show_stack(p, NULL, KERN_INFO); 7753 put_task_stack(p); 7754 } 7755 EXPORT_SYMBOL_GPL(sched_show_task); 7756 7757 static inline bool 7758 state_filter_match(unsigned long state_filter, struct task_struct *p) 7759 { 7760 unsigned int state = READ_ONCE(p->__state); 7761 7762 /* no filter, everything matches */ 7763 if (!state_filter) 7764 return true; 7765 7766 /* filter, but doesn't match */ 7767 if (!(state & state_filter)) 7768 return false; 7769 7770 /* 7771 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7772 * TASK_KILLABLE). 7773 */ 7774 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7775 return false; 7776 7777 return true; 7778 } 7779 7780 7781 void show_state_filter(unsigned int state_filter) 7782 { 7783 struct task_struct *g, *p; 7784 7785 rcu_read_lock(); 7786 for_each_process_thread(g, p) { 7787 /* 7788 * reset the NMI-timeout, listing all files on a slow 7789 * console might take a lot of time: 7790 * Also, reset softlockup watchdogs on all CPUs, because 7791 * another CPU might be blocked waiting for us to process 7792 * an IPI. 7793 */ 7794 touch_nmi_watchdog(); 7795 touch_all_softlockup_watchdogs(); 7796 if (state_filter_match(state_filter, p)) 7797 sched_show_task(p); 7798 } 7799 7800 if (!state_filter) 7801 sysrq_sched_debug_show(); 7802 7803 rcu_read_unlock(); 7804 /* 7805 * Only show locks if all tasks are dumped: 7806 */ 7807 if (!state_filter) 7808 debug_show_all_locks(); 7809 } 7810 7811 /** 7812 * init_idle - set up an idle thread for a given CPU 7813 * @idle: task in question 7814 * @cpu: CPU the idle task belongs to 7815 * 7816 * NOTE: this function does not set the idle thread's NEED_RESCHED 7817 * flag, to make booting more robust. 7818 */ 7819 void __init init_idle(struct task_struct *idle, int cpu) 7820 { 7821 #ifdef CONFIG_SMP 7822 struct affinity_context ac = (struct affinity_context) { 7823 .new_mask = cpumask_of(cpu), 7824 .flags = 0, 7825 }; 7826 #endif 7827 struct rq *rq = cpu_rq(cpu); 7828 unsigned long flags; 7829 7830 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7831 raw_spin_rq_lock(rq); 7832 7833 idle->__state = TASK_RUNNING; 7834 idle->se.exec_start = sched_clock(); 7835 /* 7836 * PF_KTHREAD should already be set at this point; regardless, make it 7837 * look like a proper per-CPU kthread. 7838 */ 7839 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7840 kthread_set_per_cpu(idle, cpu); 7841 7842 #ifdef CONFIG_SMP 7843 /* 7844 * No validation and serialization required at boot time and for 7845 * setting up the idle tasks of not yet online CPUs. 7846 */ 7847 set_cpus_allowed_common(idle, &ac); 7848 #endif 7849 /* 7850 * We're having a chicken and egg problem, even though we are 7851 * holding rq->lock, the CPU isn't yet set to this CPU so the 7852 * lockdep check in task_group() will fail. 7853 * 7854 * Similar case to sched_fork(). / Alternatively we could 7855 * use task_rq_lock() here and obtain the other rq->lock. 7856 * 7857 * Silence PROVE_RCU 7858 */ 7859 rcu_read_lock(); 7860 __set_task_cpu(idle, cpu); 7861 rcu_read_unlock(); 7862 7863 rq->idle = idle; 7864 rq_set_donor(rq, idle); 7865 rcu_assign_pointer(rq->curr, idle); 7866 idle->on_rq = TASK_ON_RQ_QUEUED; 7867 #ifdef CONFIG_SMP 7868 idle->on_cpu = 1; 7869 #endif 7870 raw_spin_rq_unlock(rq); 7871 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7872 7873 /* Set the preempt count _outside_ the spinlocks! */ 7874 init_idle_preempt_count(idle, cpu); 7875 7876 /* 7877 * The idle tasks have their own, simple scheduling class: 7878 */ 7879 idle->sched_class = &idle_sched_class; 7880 ftrace_graph_init_idle_task(idle, cpu); 7881 vtime_init_idle(idle, cpu); 7882 #ifdef CONFIG_SMP 7883 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7884 #endif 7885 } 7886 7887 #ifdef CONFIG_SMP 7888 7889 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7890 const struct cpumask *trial) 7891 { 7892 int ret = 1; 7893 7894 if (cpumask_empty(cur)) 7895 return ret; 7896 7897 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7898 7899 return ret; 7900 } 7901 7902 int task_can_attach(struct task_struct *p) 7903 { 7904 int ret = 0; 7905 7906 /* 7907 * Kthreads which disallow setaffinity shouldn't be moved 7908 * to a new cpuset; we don't want to change their CPU 7909 * affinity and isolating such threads by their set of 7910 * allowed nodes is unnecessary. Thus, cpusets are not 7911 * applicable for such threads. This prevents checking for 7912 * success of set_cpus_allowed_ptr() on all attached tasks 7913 * before cpus_mask may be changed. 7914 */ 7915 if (p->flags & PF_NO_SETAFFINITY) 7916 ret = -EINVAL; 7917 7918 return ret; 7919 } 7920 7921 bool sched_smp_initialized __read_mostly; 7922 7923 #ifdef CONFIG_NUMA_BALANCING 7924 /* Migrate current task p to target_cpu */ 7925 int migrate_task_to(struct task_struct *p, int target_cpu) 7926 { 7927 struct migration_arg arg = { p, target_cpu }; 7928 int curr_cpu = task_cpu(p); 7929 7930 if (curr_cpu == target_cpu) 7931 return 0; 7932 7933 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7934 return -EINVAL; 7935 7936 /* TODO: This is not properly updating schedstats */ 7937 7938 trace_sched_move_numa(p, curr_cpu, target_cpu); 7939 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7940 } 7941 7942 /* 7943 * Requeue a task on a given node and accurately track the number of NUMA 7944 * tasks on the runqueues 7945 */ 7946 void sched_setnuma(struct task_struct *p, int nid) 7947 { 7948 bool queued, running; 7949 struct rq_flags rf; 7950 struct rq *rq; 7951 7952 rq = task_rq_lock(p, &rf); 7953 queued = task_on_rq_queued(p); 7954 running = task_current_donor(rq, p); 7955 7956 if (queued) 7957 dequeue_task(rq, p, DEQUEUE_SAVE); 7958 if (running) 7959 put_prev_task(rq, p); 7960 7961 p->numa_preferred_nid = nid; 7962 7963 if (queued) 7964 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7965 if (running) 7966 set_next_task(rq, p); 7967 task_rq_unlock(rq, p, &rf); 7968 } 7969 #endif /* CONFIG_NUMA_BALANCING */ 7970 7971 #ifdef CONFIG_HOTPLUG_CPU 7972 /* 7973 * Invoked on the outgoing CPU in context of the CPU hotplug thread 7974 * after ensuring that there are no user space tasks left on the CPU. 7975 * 7976 * If there is a lazy mm in use on the hotplug thread, drop it and 7977 * switch to init_mm. 7978 * 7979 * The reference count on init_mm is dropped in finish_cpu(). 7980 */ 7981 static void sched_force_init_mm(void) 7982 { 7983 struct mm_struct *mm = current->active_mm; 7984 7985 if (mm != &init_mm) { 7986 mmgrab_lazy_tlb(&init_mm); 7987 local_irq_disable(); 7988 current->active_mm = &init_mm; 7989 switch_mm_irqs_off(mm, &init_mm, current); 7990 local_irq_enable(); 7991 finish_arch_post_lock_switch(); 7992 mmdrop_lazy_tlb(mm); 7993 } 7994 7995 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7996 } 7997 7998 static int __balance_push_cpu_stop(void *arg) 7999 { 8000 struct task_struct *p = arg; 8001 struct rq *rq = this_rq(); 8002 struct rq_flags rf; 8003 int cpu; 8004 8005 raw_spin_lock_irq(&p->pi_lock); 8006 rq_lock(rq, &rf); 8007 8008 update_rq_clock(rq); 8009 8010 if (task_rq(p) == rq && task_on_rq_queued(p)) { 8011 cpu = select_fallback_rq(rq->cpu, p); 8012 rq = __migrate_task(rq, &rf, p, cpu); 8013 } 8014 8015 rq_unlock(rq, &rf); 8016 raw_spin_unlock_irq(&p->pi_lock); 8017 8018 put_task_struct(p); 8019 8020 return 0; 8021 } 8022 8023 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 8024 8025 /* 8026 * Ensure we only run per-cpu kthreads once the CPU goes !active. 8027 * 8028 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 8029 * effective when the hotplug motion is down. 8030 */ 8031 static void balance_push(struct rq *rq) 8032 { 8033 struct task_struct *push_task = rq->curr; 8034 8035 lockdep_assert_rq_held(rq); 8036 8037 /* 8038 * Ensure the thing is persistent until balance_push_set(.on = false); 8039 */ 8040 rq->balance_callback = &balance_push_callback; 8041 8042 /* 8043 * Only active while going offline and when invoked on the outgoing 8044 * CPU. 8045 */ 8046 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8047 return; 8048 8049 /* 8050 * Both the cpu-hotplug and stop task are in this case and are 8051 * required to complete the hotplug process. 8052 */ 8053 if (kthread_is_per_cpu(push_task) || 8054 is_migration_disabled(push_task)) { 8055 8056 /* 8057 * If this is the idle task on the outgoing CPU try to wake 8058 * up the hotplug control thread which might wait for the 8059 * last task to vanish. The rcuwait_active() check is 8060 * accurate here because the waiter is pinned on this CPU 8061 * and can't obviously be running in parallel. 8062 * 8063 * On RT kernels this also has to check whether there are 8064 * pinned and scheduled out tasks on the runqueue. They 8065 * need to leave the migrate disabled section first. 8066 */ 8067 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8068 rcuwait_active(&rq->hotplug_wait)) { 8069 raw_spin_rq_unlock(rq); 8070 rcuwait_wake_up(&rq->hotplug_wait); 8071 raw_spin_rq_lock(rq); 8072 } 8073 return; 8074 } 8075 8076 get_task_struct(push_task); 8077 /* 8078 * Temporarily drop rq->lock such that we can wake-up the stop task. 8079 * Both preemption and IRQs are still disabled. 8080 */ 8081 preempt_disable(); 8082 raw_spin_rq_unlock(rq); 8083 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8084 this_cpu_ptr(&push_work)); 8085 preempt_enable(); 8086 /* 8087 * At this point need_resched() is true and we'll take the loop in 8088 * schedule(). The next pick is obviously going to be the stop task 8089 * which kthread_is_per_cpu() and will push this task away. 8090 */ 8091 raw_spin_rq_lock(rq); 8092 } 8093 8094 static void balance_push_set(int cpu, bool on) 8095 { 8096 struct rq *rq = cpu_rq(cpu); 8097 struct rq_flags rf; 8098 8099 rq_lock_irqsave(rq, &rf); 8100 if (on) { 8101 WARN_ON_ONCE(rq->balance_callback); 8102 rq->balance_callback = &balance_push_callback; 8103 } else if (rq->balance_callback == &balance_push_callback) { 8104 rq->balance_callback = NULL; 8105 } 8106 rq_unlock_irqrestore(rq, &rf); 8107 } 8108 8109 /* 8110 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8111 * inactive. All tasks which are not per CPU kernel threads are either 8112 * pushed off this CPU now via balance_push() or placed on a different CPU 8113 * during wakeup. Wait until the CPU is quiescent. 8114 */ 8115 static void balance_hotplug_wait(void) 8116 { 8117 struct rq *rq = this_rq(); 8118 8119 rcuwait_wait_event(&rq->hotplug_wait, 8120 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8121 TASK_UNINTERRUPTIBLE); 8122 } 8123 8124 #else 8125 8126 static inline void balance_push(struct rq *rq) 8127 { 8128 } 8129 8130 static inline void balance_push_set(int cpu, bool on) 8131 { 8132 } 8133 8134 static inline void balance_hotplug_wait(void) 8135 { 8136 } 8137 8138 #endif /* CONFIG_HOTPLUG_CPU */ 8139 8140 void set_rq_online(struct rq *rq) 8141 { 8142 if (!rq->online) { 8143 const struct sched_class *class; 8144 8145 cpumask_set_cpu(rq->cpu, rq->rd->online); 8146 rq->online = 1; 8147 8148 for_each_class(class) { 8149 if (class->rq_online) 8150 class->rq_online(rq); 8151 } 8152 } 8153 } 8154 8155 void set_rq_offline(struct rq *rq) 8156 { 8157 if (rq->online) { 8158 const struct sched_class *class; 8159 8160 update_rq_clock(rq); 8161 for_each_class(class) { 8162 if (class->rq_offline) 8163 class->rq_offline(rq); 8164 } 8165 8166 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8167 rq->online = 0; 8168 } 8169 } 8170 8171 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8172 { 8173 struct rq_flags rf; 8174 8175 rq_lock_irqsave(rq, &rf); 8176 if (rq->rd) { 8177 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8178 set_rq_online(rq); 8179 } 8180 rq_unlock_irqrestore(rq, &rf); 8181 } 8182 8183 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8184 { 8185 struct rq_flags rf; 8186 8187 rq_lock_irqsave(rq, &rf); 8188 if (rq->rd) { 8189 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8190 set_rq_offline(rq); 8191 } 8192 rq_unlock_irqrestore(rq, &rf); 8193 } 8194 8195 /* 8196 * used to mark begin/end of suspend/resume: 8197 */ 8198 static int num_cpus_frozen; 8199 8200 /* 8201 * Update cpusets according to cpu_active mask. If cpusets are 8202 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8203 * around partition_sched_domains(). 8204 * 8205 * If we come here as part of a suspend/resume, don't touch cpusets because we 8206 * want to restore it back to its original state upon resume anyway. 8207 */ 8208 static void cpuset_cpu_active(void) 8209 { 8210 if (cpuhp_tasks_frozen) { 8211 /* 8212 * num_cpus_frozen tracks how many CPUs are involved in suspend 8213 * resume sequence. As long as this is not the last online 8214 * operation in the resume sequence, just build a single sched 8215 * domain, ignoring cpusets. 8216 */ 8217 cpuset_reset_sched_domains(); 8218 if (--num_cpus_frozen) 8219 return; 8220 /* 8221 * This is the last CPU online operation. So fall through and 8222 * restore the original sched domains by considering the 8223 * cpuset configurations. 8224 */ 8225 cpuset_force_rebuild(); 8226 } 8227 cpuset_update_active_cpus(); 8228 } 8229 8230 static void cpuset_cpu_inactive(unsigned int cpu) 8231 { 8232 if (!cpuhp_tasks_frozen) { 8233 cpuset_update_active_cpus(); 8234 } else { 8235 num_cpus_frozen++; 8236 cpuset_reset_sched_domains(); 8237 } 8238 } 8239 8240 static inline void sched_smt_present_inc(int cpu) 8241 { 8242 #ifdef CONFIG_SCHED_SMT 8243 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8244 static_branch_inc_cpuslocked(&sched_smt_present); 8245 #endif 8246 } 8247 8248 static inline void sched_smt_present_dec(int cpu) 8249 { 8250 #ifdef CONFIG_SCHED_SMT 8251 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8252 static_branch_dec_cpuslocked(&sched_smt_present); 8253 #endif 8254 } 8255 8256 int sched_cpu_activate(unsigned int cpu) 8257 { 8258 struct rq *rq = cpu_rq(cpu); 8259 8260 /* 8261 * Clear the balance_push callback and prepare to schedule 8262 * regular tasks. 8263 */ 8264 balance_push_set(cpu, false); 8265 8266 /* 8267 * When going up, increment the number of cores with SMT present. 8268 */ 8269 sched_smt_present_inc(cpu); 8270 set_cpu_active(cpu, true); 8271 8272 if (sched_smp_initialized) { 8273 sched_update_numa(cpu, true); 8274 sched_domains_numa_masks_set(cpu); 8275 cpuset_cpu_active(); 8276 } 8277 8278 scx_rq_activate(rq); 8279 8280 /* 8281 * Put the rq online, if not already. This happens: 8282 * 8283 * 1) In the early boot process, because we build the real domains 8284 * after all CPUs have been brought up. 8285 * 8286 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8287 * domains. 8288 */ 8289 sched_set_rq_online(rq, cpu); 8290 8291 return 0; 8292 } 8293 8294 int sched_cpu_deactivate(unsigned int cpu) 8295 { 8296 struct rq *rq = cpu_rq(cpu); 8297 int ret; 8298 8299 ret = dl_bw_deactivate(cpu); 8300 8301 if (ret) 8302 return ret; 8303 8304 /* 8305 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8306 * load balancing when not active 8307 */ 8308 nohz_balance_exit_idle(rq); 8309 8310 set_cpu_active(cpu, false); 8311 8312 /* 8313 * From this point forward, this CPU will refuse to run any task that 8314 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8315 * push those tasks away until this gets cleared, see 8316 * sched_cpu_dying(). 8317 */ 8318 balance_push_set(cpu, true); 8319 8320 /* 8321 * We've cleared cpu_active_mask / set balance_push, wait for all 8322 * preempt-disabled and RCU users of this state to go away such that 8323 * all new such users will observe it. 8324 * 8325 * Specifically, we rely on ttwu to no longer target this CPU, see 8326 * ttwu_queue_cond() and is_cpu_allowed(). 8327 * 8328 * Do sync before park smpboot threads to take care the RCU boost case. 8329 */ 8330 synchronize_rcu(); 8331 8332 sched_set_rq_offline(rq, cpu); 8333 8334 scx_rq_deactivate(rq); 8335 8336 /* 8337 * When going down, decrement the number of cores with SMT present. 8338 */ 8339 sched_smt_present_dec(cpu); 8340 8341 #ifdef CONFIG_SCHED_SMT 8342 sched_core_cpu_deactivate(cpu); 8343 #endif 8344 8345 if (!sched_smp_initialized) 8346 return 0; 8347 8348 sched_update_numa(cpu, false); 8349 cpuset_cpu_inactive(cpu); 8350 sched_domains_numa_masks_clear(cpu); 8351 return 0; 8352 } 8353 8354 static void sched_rq_cpu_starting(unsigned int cpu) 8355 { 8356 struct rq *rq = cpu_rq(cpu); 8357 8358 rq->calc_load_update = calc_load_update; 8359 update_max_interval(); 8360 } 8361 8362 int sched_cpu_starting(unsigned int cpu) 8363 { 8364 sched_core_cpu_starting(cpu); 8365 sched_rq_cpu_starting(cpu); 8366 sched_tick_start(cpu); 8367 return 0; 8368 } 8369 8370 #ifdef CONFIG_HOTPLUG_CPU 8371 8372 /* 8373 * Invoked immediately before the stopper thread is invoked to bring the 8374 * CPU down completely. At this point all per CPU kthreads except the 8375 * hotplug thread (current) and the stopper thread (inactive) have been 8376 * either parked or have been unbound from the outgoing CPU. Ensure that 8377 * any of those which might be on the way out are gone. 8378 * 8379 * If after this point a bound task is being woken on this CPU then the 8380 * responsible hotplug callback has failed to do it's job. 8381 * sched_cpu_dying() will catch it with the appropriate fireworks. 8382 */ 8383 int sched_cpu_wait_empty(unsigned int cpu) 8384 { 8385 balance_hotplug_wait(); 8386 sched_force_init_mm(); 8387 return 0; 8388 } 8389 8390 /* 8391 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8392 * might have. Called from the CPU stopper task after ensuring that the 8393 * stopper is the last running task on the CPU, so nr_active count is 8394 * stable. We need to take the tear-down thread which is calling this into 8395 * account, so we hand in adjust = 1 to the load calculation. 8396 * 8397 * Also see the comment "Global load-average calculations". 8398 */ 8399 static void calc_load_migrate(struct rq *rq) 8400 { 8401 long delta = calc_load_fold_active(rq, 1); 8402 8403 if (delta) 8404 atomic_long_add(delta, &calc_load_tasks); 8405 } 8406 8407 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8408 { 8409 struct task_struct *g, *p; 8410 int cpu = cpu_of(rq); 8411 8412 lockdep_assert_rq_held(rq); 8413 8414 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8415 for_each_process_thread(g, p) { 8416 if (task_cpu(p) != cpu) 8417 continue; 8418 8419 if (!task_on_rq_queued(p)) 8420 continue; 8421 8422 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8423 } 8424 } 8425 8426 int sched_cpu_dying(unsigned int cpu) 8427 { 8428 struct rq *rq = cpu_rq(cpu); 8429 struct rq_flags rf; 8430 8431 /* Handle pending wakeups and then migrate everything off */ 8432 sched_tick_stop(cpu); 8433 8434 rq_lock_irqsave(rq, &rf); 8435 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8436 WARN(true, "Dying CPU not properly vacated!"); 8437 dump_rq_tasks(rq, KERN_WARNING); 8438 } 8439 rq_unlock_irqrestore(rq, &rf); 8440 8441 calc_load_migrate(rq); 8442 update_max_interval(); 8443 hrtick_clear(rq); 8444 sched_core_cpu_dying(cpu); 8445 return 0; 8446 } 8447 #endif 8448 8449 void __init sched_init_smp(void) 8450 { 8451 sched_init_numa(NUMA_NO_NODE); 8452 8453 /* 8454 * There's no userspace yet to cause hotplug operations; hence all the 8455 * CPU masks are stable and all blatant races in the below code cannot 8456 * happen. 8457 */ 8458 sched_domains_mutex_lock(); 8459 sched_init_domains(cpu_active_mask); 8460 sched_domains_mutex_unlock(); 8461 8462 /* Move init over to a non-isolated CPU */ 8463 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8464 BUG(); 8465 current->flags &= ~PF_NO_SETAFFINITY; 8466 sched_init_granularity(); 8467 8468 init_sched_rt_class(); 8469 init_sched_dl_class(); 8470 8471 sched_smp_initialized = true; 8472 } 8473 8474 static int __init migration_init(void) 8475 { 8476 sched_cpu_starting(smp_processor_id()); 8477 return 0; 8478 } 8479 early_initcall(migration_init); 8480 8481 #else 8482 void __init sched_init_smp(void) 8483 { 8484 sched_init_granularity(); 8485 } 8486 #endif /* CONFIG_SMP */ 8487 8488 int in_sched_functions(unsigned long addr) 8489 { 8490 return in_lock_functions(addr) || 8491 (addr >= (unsigned long)__sched_text_start 8492 && addr < (unsigned long)__sched_text_end); 8493 } 8494 8495 #ifdef CONFIG_CGROUP_SCHED 8496 /* 8497 * Default task group. 8498 * Every task in system belongs to this group at bootup. 8499 */ 8500 struct task_group root_task_group; 8501 LIST_HEAD(task_groups); 8502 8503 /* Cacheline aligned slab cache for task_group */ 8504 static struct kmem_cache *task_group_cache __ro_after_init; 8505 #endif 8506 8507 void __init sched_init(void) 8508 { 8509 unsigned long ptr = 0; 8510 int i; 8511 8512 /* Make sure the linker didn't screw up */ 8513 #ifdef CONFIG_SMP 8514 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8515 #endif 8516 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8517 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8518 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8519 #ifdef CONFIG_SCHED_CLASS_EXT 8520 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8521 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8522 #endif 8523 8524 wait_bit_init(); 8525 8526 #ifdef CONFIG_FAIR_GROUP_SCHED 8527 ptr += 2 * nr_cpu_ids * sizeof(void **); 8528 #endif 8529 #ifdef CONFIG_RT_GROUP_SCHED 8530 ptr += 2 * nr_cpu_ids * sizeof(void **); 8531 #endif 8532 if (ptr) { 8533 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8534 8535 #ifdef CONFIG_FAIR_GROUP_SCHED 8536 root_task_group.se = (struct sched_entity **)ptr; 8537 ptr += nr_cpu_ids * sizeof(void **); 8538 8539 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8540 ptr += nr_cpu_ids * sizeof(void **); 8541 8542 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8543 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8544 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8545 #ifdef CONFIG_EXT_GROUP_SCHED 8546 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8547 #endif /* CONFIG_EXT_GROUP_SCHED */ 8548 #ifdef CONFIG_RT_GROUP_SCHED 8549 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8550 ptr += nr_cpu_ids * sizeof(void **); 8551 8552 root_task_group.rt_rq = (struct rt_rq **)ptr; 8553 ptr += nr_cpu_ids * sizeof(void **); 8554 8555 #endif /* CONFIG_RT_GROUP_SCHED */ 8556 } 8557 8558 #ifdef CONFIG_SMP 8559 init_defrootdomain(); 8560 #endif 8561 8562 #ifdef CONFIG_RT_GROUP_SCHED 8563 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8564 global_rt_period(), global_rt_runtime()); 8565 #endif /* CONFIG_RT_GROUP_SCHED */ 8566 8567 #ifdef CONFIG_CGROUP_SCHED 8568 task_group_cache = KMEM_CACHE(task_group, 0); 8569 8570 list_add(&root_task_group.list, &task_groups); 8571 INIT_LIST_HEAD(&root_task_group.children); 8572 INIT_LIST_HEAD(&root_task_group.siblings); 8573 autogroup_init(&init_task); 8574 #endif /* CONFIG_CGROUP_SCHED */ 8575 8576 for_each_possible_cpu(i) { 8577 struct rq *rq; 8578 8579 rq = cpu_rq(i); 8580 raw_spin_lock_init(&rq->__lock); 8581 rq->nr_running = 0; 8582 rq->calc_load_active = 0; 8583 rq->calc_load_update = jiffies + LOAD_FREQ; 8584 init_cfs_rq(&rq->cfs); 8585 init_rt_rq(&rq->rt); 8586 init_dl_rq(&rq->dl); 8587 #ifdef CONFIG_FAIR_GROUP_SCHED 8588 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8589 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8590 /* 8591 * How much CPU bandwidth does root_task_group get? 8592 * 8593 * In case of task-groups formed through the cgroup filesystem, it 8594 * gets 100% of the CPU resources in the system. This overall 8595 * system CPU resource is divided among the tasks of 8596 * root_task_group and its child task-groups in a fair manner, 8597 * based on each entity's (task or task-group's) weight 8598 * (se->load.weight). 8599 * 8600 * In other words, if root_task_group has 10 tasks of weight 8601 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8602 * then A0's share of the CPU resource is: 8603 * 8604 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8605 * 8606 * We achieve this by letting root_task_group's tasks sit 8607 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8608 */ 8609 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8610 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8611 8612 #ifdef CONFIG_RT_GROUP_SCHED 8613 /* 8614 * This is required for init cpu because rt.c:__enable_runtime() 8615 * starts working after scheduler_running, which is not the case 8616 * yet. 8617 */ 8618 rq->rt.rt_runtime = global_rt_runtime(); 8619 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8620 #endif 8621 #ifdef CONFIG_SMP 8622 rq->sd = NULL; 8623 rq->rd = NULL; 8624 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8625 rq->balance_callback = &balance_push_callback; 8626 rq->active_balance = 0; 8627 rq->next_balance = jiffies; 8628 rq->push_cpu = 0; 8629 rq->cpu = i; 8630 rq->online = 0; 8631 rq->idle_stamp = 0; 8632 rq->avg_idle = 2*sysctl_sched_migration_cost; 8633 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8634 8635 INIT_LIST_HEAD(&rq->cfs_tasks); 8636 8637 rq_attach_root(rq, &def_root_domain); 8638 #ifdef CONFIG_NO_HZ_COMMON 8639 rq->last_blocked_load_update_tick = jiffies; 8640 atomic_set(&rq->nohz_flags, 0); 8641 8642 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8643 #endif 8644 #ifdef CONFIG_HOTPLUG_CPU 8645 rcuwait_init(&rq->hotplug_wait); 8646 #endif 8647 #endif /* CONFIG_SMP */ 8648 hrtick_rq_init(rq); 8649 atomic_set(&rq->nr_iowait, 0); 8650 fair_server_init(rq); 8651 8652 #ifdef CONFIG_SCHED_CORE 8653 rq->core = rq; 8654 rq->core_pick = NULL; 8655 rq->core_dl_server = NULL; 8656 rq->core_enabled = 0; 8657 rq->core_tree = RB_ROOT; 8658 rq->core_forceidle_count = 0; 8659 rq->core_forceidle_occupation = 0; 8660 rq->core_forceidle_start = 0; 8661 8662 rq->core_cookie = 0UL; 8663 #endif 8664 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8665 } 8666 8667 set_load_weight(&init_task, false); 8668 init_task.se.slice = sysctl_sched_base_slice, 8669 8670 /* 8671 * The boot idle thread does lazy MMU switching as well: 8672 */ 8673 mmgrab_lazy_tlb(&init_mm); 8674 enter_lazy_tlb(&init_mm, current); 8675 8676 /* 8677 * The idle task doesn't need the kthread struct to function, but it 8678 * is dressed up as a per-CPU kthread and thus needs to play the part 8679 * if we want to avoid special-casing it in code that deals with per-CPU 8680 * kthreads. 8681 */ 8682 WARN_ON(!set_kthread_struct(current)); 8683 8684 /* 8685 * Make us the idle thread. Technically, schedule() should not be 8686 * called from this thread, however somewhere below it might be, 8687 * but because we are the idle thread, we just pick up running again 8688 * when this runqueue becomes "idle". 8689 */ 8690 __sched_fork(0, current); 8691 init_idle(current, smp_processor_id()); 8692 8693 calc_load_update = jiffies + LOAD_FREQ; 8694 8695 #ifdef CONFIG_SMP 8696 idle_thread_set_boot_cpu(); 8697 balance_push_set(smp_processor_id(), false); 8698 #endif 8699 init_sched_fair_class(); 8700 init_sched_ext_class(); 8701 8702 psi_init(); 8703 8704 init_uclamp(); 8705 8706 preempt_dynamic_init(); 8707 8708 scheduler_running = 1; 8709 } 8710 8711 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8712 8713 void __might_sleep(const char *file, int line) 8714 { 8715 unsigned int state = get_current_state(); 8716 /* 8717 * Blocking primitives will set (and therefore destroy) current->state, 8718 * since we will exit with TASK_RUNNING make sure we enter with it, 8719 * otherwise we will destroy state. 8720 */ 8721 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8722 "do not call blocking ops when !TASK_RUNNING; " 8723 "state=%x set at [<%p>] %pS\n", state, 8724 (void *)current->task_state_change, 8725 (void *)current->task_state_change); 8726 8727 __might_resched(file, line, 0); 8728 } 8729 EXPORT_SYMBOL(__might_sleep); 8730 8731 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8732 { 8733 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8734 return; 8735 8736 if (preempt_count() == preempt_offset) 8737 return; 8738 8739 pr_err("Preemption disabled at:"); 8740 print_ip_sym(KERN_ERR, ip); 8741 } 8742 8743 static inline bool resched_offsets_ok(unsigned int offsets) 8744 { 8745 unsigned int nested = preempt_count(); 8746 8747 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8748 8749 return nested == offsets; 8750 } 8751 8752 void __might_resched(const char *file, int line, unsigned int offsets) 8753 { 8754 /* Ratelimiting timestamp: */ 8755 static unsigned long prev_jiffy; 8756 8757 unsigned long preempt_disable_ip; 8758 8759 /* WARN_ON_ONCE() by default, no rate limit required: */ 8760 rcu_sleep_check(); 8761 8762 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8763 !is_idle_task(current) && !current->non_block_count) || 8764 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8765 oops_in_progress) 8766 return; 8767 8768 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8769 return; 8770 prev_jiffy = jiffies; 8771 8772 /* Save this before calling printk(), since that will clobber it: */ 8773 preempt_disable_ip = get_preempt_disable_ip(current); 8774 8775 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8776 file, line); 8777 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8778 in_atomic(), irqs_disabled(), current->non_block_count, 8779 current->pid, current->comm); 8780 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8781 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8782 8783 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8784 pr_err("RCU nest depth: %d, expected: %u\n", 8785 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8786 } 8787 8788 if (task_stack_end_corrupted(current)) 8789 pr_emerg("Thread overran stack, or stack corrupted\n"); 8790 8791 debug_show_held_locks(current); 8792 if (irqs_disabled()) 8793 print_irqtrace_events(current); 8794 8795 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8796 preempt_disable_ip); 8797 8798 dump_stack(); 8799 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8800 } 8801 EXPORT_SYMBOL(__might_resched); 8802 8803 void __cant_sleep(const char *file, int line, int preempt_offset) 8804 { 8805 static unsigned long prev_jiffy; 8806 8807 if (irqs_disabled()) 8808 return; 8809 8810 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8811 return; 8812 8813 if (preempt_count() > preempt_offset) 8814 return; 8815 8816 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8817 return; 8818 prev_jiffy = jiffies; 8819 8820 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8821 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8822 in_atomic(), irqs_disabled(), 8823 current->pid, current->comm); 8824 8825 debug_show_held_locks(current); 8826 dump_stack(); 8827 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8828 } 8829 EXPORT_SYMBOL_GPL(__cant_sleep); 8830 8831 #ifdef CONFIG_SMP 8832 void __cant_migrate(const char *file, int line) 8833 { 8834 static unsigned long prev_jiffy; 8835 8836 if (irqs_disabled()) 8837 return; 8838 8839 if (is_migration_disabled(current)) 8840 return; 8841 8842 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8843 return; 8844 8845 if (preempt_count() > 0) 8846 return; 8847 8848 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8849 return; 8850 prev_jiffy = jiffies; 8851 8852 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8853 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8854 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8855 current->pid, current->comm); 8856 8857 debug_show_held_locks(current); 8858 dump_stack(); 8859 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8860 } 8861 EXPORT_SYMBOL_GPL(__cant_migrate); 8862 #endif 8863 #endif 8864 8865 #ifdef CONFIG_MAGIC_SYSRQ 8866 void normalize_rt_tasks(void) 8867 { 8868 struct task_struct *g, *p; 8869 struct sched_attr attr = { 8870 .sched_policy = SCHED_NORMAL, 8871 }; 8872 8873 read_lock(&tasklist_lock); 8874 for_each_process_thread(g, p) { 8875 /* 8876 * Only normalize user tasks: 8877 */ 8878 if (p->flags & PF_KTHREAD) 8879 continue; 8880 8881 p->se.exec_start = 0; 8882 schedstat_set(p->stats.wait_start, 0); 8883 schedstat_set(p->stats.sleep_start, 0); 8884 schedstat_set(p->stats.block_start, 0); 8885 8886 if (!rt_or_dl_task(p)) { 8887 /* 8888 * Renice negative nice level userspace 8889 * tasks back to 0: 8890 */ 8891 if (task_nice(p) < 0) 8892 set_user_nice(p, 0); 8893 continue; 8894 } 8895 8896 __sched_setscheduler(p, &attr, false, false); 8897 } 8898 read_unlock(&tasklist_lock); 8899 } 8900 8901 #endif /* CONFIG_MAGIC_SYSRQ */ 8902 8903 #if defined(CONFIG_KGDB_KDB) 8904 /* 8905 * These functions are only useful for KDB. 8906 * 8907 * They can only be called when the whole system has been 8908 * stopped - every CPU needs to be quiescent, and no scheduling 8909 * activity can take place. Using them for anything else would 8910 * be a serious bug, and as a result, they aren't even visible 8911 * under any other configuration. 8912 */ 8913 8914 /** 8915 * curr_task - return the current task for a given CPU. 8916 * @cpu: the processor in question. 8917 * 8918 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8919 * 8920 * Return: The current task for @cpu. 8921 */ 8922 struct task_struct *curr_task(int cpu) 8923 { 8924 return cpu_curr(cpu); 8925 } 8926 8927 #endif /* defined(CONFIG_KGDB_KDB) */ 8928 8929 #ifdef CONFIG_CGROUP_SCHED 8930 /* task_group_lock serializes the addition/removal of task groups */ 8931 static DEFINE_SPINLOCK(task_group_lock); 8932 8933 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8934 struct task_group *parent) 8935 { 8936 #ifdef CONFIG_UCLAMP_TASK_GROUP 8937 enum uclamp_id clamp_id; 8938 8939 for_each_clamp_id(clamp_id) { 8940 uclamp_se_set(&tg->uclamp_req[clamp_id], 8941 uclamp_none(clamp_id), false); 8942 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8943 } 8944 #endif 8945 } 8946 8947 static void sched_free_group(struct task_group *tg) 8948 { 8949 free_fair_sched_group(tg); 8950 free_rt_sched_group(tg); 8951 autogroup_free(tg); 8952 kmem_cache_free(task_group_cache, tg); 8953 } 8954 8955 static void sched_free_group_rcu(struct rcu_head *rcu) 8956 { 8957 sched_free_group(container_of(rcu, struct task_group, rcu)); 8958 } 8959 8960 static void sched_unregister_group(struct task_group *tg) 8961 { 8962 unregister_fair_sched_group(tg); 8963 unregister_rt_sched_group(tg); 8964 /* 8965 * We have to wait for yet another RCU grace period to expire, as 8966 * print_cfs_stats() might run concurrently. 8967 */ 8968 call_rcu(&tg->rcu, sched_free_group_rcu); 8969 } 8970 8971 /* allocate runqueue etc for a new task group */ 8972 struct task_group *sched_create_group(struct task_group *parent) 8973 { 8974 struct task_group *tg; 8975 8976 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8977 if (!tg) 8978 return ERR_PTR(-ENOMEM); 8979 8980 if (!alloc_fair_sched_group(tg, parent)) 8981 goto err; 8982 8983 if (!alloc_rt_sched_group(tg, parent)) 8984 goto err; 8985 8986 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8987 alloc_uclamp_sched_group(tg, parent); 8988 8989 return tg; 8990 8991 err: 8992 sched_free_group(tg); 8993 return ERR_PTR(-ENOMEM); 8994 } 8995 8996 void sched_online_group(struct task_group *tg, struct task_group *parent) 8997 { 8998 unsigned long flags; 8999 9000 spin_lock_irqsave(&task_group_lock, flags); 9001 list_add_rcu(&tg->list, &task_groups); 9002 9003 /* Root should already exist: */ 9004 WARN_ON(!parent); 9005 9006 tg->parent = parent; 9007 INIT_LIST_HEAD(&tg->children); 9008 list_add_rcu(&tg->siblings, &parent->children); 9009 spin_unlock_irqrestore(&task_group_lock, flags); 9010 9011 online_fair_sched_group(tg); 9012 } 9013 9014 /* RCU callback to free various structures associated with a task group */ 9015 static void sched_unregister_group_rcu(struct rcu_head *rhp) 9016 { 9017 /* Now it should be safe to free those cfs_rqs: */ 9018 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 9019 } 9020 9021 void sched_destroy_group(struct task_group *tg) 9022 { 9023 /* Wait for possible concurrent references to cfs_rqs complete: */ 9024 call_rcu(&tg->rcu, sched_unregister_group_rcu); 9025 } 9026 9027 void sched_release_group(struct task_group *tg) 9028 { 9029 unsigned long flags; 9030 9031 /* 9032 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 9033 * sched_cfs_period_timer()). 9034 * 9035 * For this to be effective, we have to wait for all pending users of 9036 * this task group to leave their RCU critical section to ensure no new 9037 * user will see our dying task group any more. Specifically ensure 9038 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 9039 * 9040 * We therefore defer calling unregister_fair_sched_group() to 9041 * sched_unregister_group() which is guarantied to get called only after the 9042 * current RCU grace period has expired. 9043 */ 9044 spin_lock_irqsave(&task_group_lock, flags); 9045 list_del_rcu(&tg->list); 9046 list_del_rcu(&tg->siblings); 9047 spin_unlock_irqrestore(&task_group_lock, flags); 9048 } 9049 9050 static void sched_change_group(struct task_struct *tsk) 9051 { 9052 struct task_group *tg; 9053 9054 /* 9055 * All callers are synchronized by task_rq_lock(); we do not use RCU 9056 * which is pointless here. Thus, we pass "true" to task_css_check() 9057 * to prevent lockdep warnings. 9058 */ 9059 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9060 struct task_group, css); 9061 tg = autogroup_task_group(tsk, tg); 9062 tsk->sched_task_group = tg; 9063 9064 #ifdef CONFIG_FAIR_GROUP_SCHED 9065 if (tsk->sched_class->task_change_group) 9066 tsk->sched_class->task_change_group(tsk); 9067 else 9068 #endif 9069 set_task_rq(tsk, task_cpu(tsk)); 9070 } 9071 9072 /* 9073 * Change task's runqueue when it moves between groups. 9074 * 9075 * The caller of this function should have put the task in its new group by 9076 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9077 * its new group. 9078 */ 9079 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9080 { 9081 int queued, running, queue_flags = 9082 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9083 struct rq *rq; 9084 9085 CLASS(task_rq_lock, rq_guard)(tsk); 9086 rq = rq_guard.rq; 9087 9088 update_rq_clock(rq); 9089 9090 running = task_current_donor(rq, tsk); 9091 queued = task_on_rq_queued(tsk); 9092 9093 if (queued) 9094 dequeue_task(rq, tsk, queue_flags); 9095 if (running) 9096 put_prev_task(rq, tsk); 9097 9098 sched_change_group(tsk); 9099 if (!for_autogroup) 9100 scx_cgroup_move_task(tsk); 9101 9102 if (queued) 9103 enqueue_task(rq, tsk, queue_flags); 9104 if (running) { 9105 set_next_task(rq, tsk); 9106 /* 9107 * After changing group, the running task may have joined a 9108 * throttled one but it's still the running task. Trigger a 9109 * resched to make sure that task can still run. 9110 */ 9111 resched_curr(rq); 9112 } 9113 } 9114 9115 static struct cgroup_subsys_state * 9116 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9117 { 9118 struct task_group *parent = css_tg(parent_css); 9119 struct task_group *tg; 9120 9121 if (!parent) { 9122 /* This is early initialization for the top cgroup */ 9123 return &root_task_group.css; 9124 } 9125 9126 tg = sched_create_group(parent); 9127 if (IS_ERR(tg)) 9128 return ERR_PTR(-ENOMEM); 9129 9130 return &tg->css; 9131 } 9132 9133 /* Expose task group only after completing cgroup initialization */ 9134 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9135 { 9136 struct task_group *tg = css_tg(css); 9137 struct task_group *parent = css_tg(css->parent); 9138 int ret; 9139 9140 ret = scx_tg_online(tg); 9141 if (ret) 9142 return ret; 9143 9144 if (parent) 9145 sched_online_group(tg, parent); 9146 9147 #ifdef CONFIG_UCLAMP_TASK_GROUP 9148 /* Propagate the effective uclamp value for the new group */ 9149 guard(mutex)(&uclamp_mutex); 9150 guard(rcu)(); 9151 cpu_util_update_eff(css); 9152 #endif 9153 9154 return 0; 9155 } 9156 9157 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9158 { 9159 struct task_group *tg = css_tg(css); 9160 9161 scx_tg_offline(tg); 9162 } 9163 9164 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9165 { 9166 struct task_group *tg = css_tg(css); 9167 9168 sched_release_group(tg); 9169 } 9170 9171 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9172 { 9173 struct task_group *tg = css_tg(css); 9174 9175 /* 9176 * Relies on the RCU grace period between css_released() and this. 9177 */ 9178 sched_unregister_group(tg); 9179 } 9180 9181 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9182 { 9183 #ifdef CONFIG_RT_GROUP_SCHED 9184 struct task_struct *task; 9185 struct cgroup_subsys_state *css; 9186 9187 cgroup_taskset_for_each(task, css, tset) { 9188 if (!sched_rt_can_attach(css_tg(css), task)) 9189 return -EINVAL; 9190 } 9191 #endif 9192 return scx_cgroup_can_attach(tset); 9193 } 9194 9195 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9196 { 9197 struct task_struct *task; 9198 struct cgroup_subsys_state *css; 9199 9200 cgroup_taskset_for_each(task, css, tset) 9201 sched_move_task(task, false); 9202 9203 scx_cgroup_finish_attach(); 9204 } 9205 9206 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9207 { 9208 scx_cgroup_cancel_attach(tset); 9209 } 9210 9211 #ifdef CONFIG_UCLAMP_TASK_GROUP 9212 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9213 { 9214 struct cgroup_subsys_state *top_css = css; 9215 struct uclamp_se *uc_parent = NULL; 9216 struct uclamp_se *uc_se = NULL; 9217 unsigned int eff[UCLAMP_CNT]; 9218 enum uclamp_id clamp_id; 9219 unsigned int clamps; 9220 9221 lockdep_assert_held(&uclamp_mutex); 9222 WARN_ON_ONCE(!rcu_read_lock_held()); 9223 9224 css_for_each_descendant_pre(css, top_css) { 9225 uc_parent = css_tg(css)->parent 9226 ? css_tg(css)->parent->uclamp : NULL; 9227 9228 for_each_clamp_id(clamp_id) { 9229 /* Assume effective clamps matches requested clamps */ 9230 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9231 /* Cap effective clamps with parent's effective clamps */ 9232 if (uc_parent && 9233 eff[clamp_id] > uc_parent[clamp_id].value) { 9234 eff[clamp_id] = uc_parent[clamp_id].value; 9235 } 9236 } 9237 /* Ensure protection is always capped by limit */ 9238 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9239 9240 /* Propagate most restrictive effective clamps */ 9241 clamps = 0x0; 9242 uc_se = css_tg(css)->uclamp; 9243 for_each_clamp_id(clamp_id) { 9244 if (eff[clamp_id] == uc_se[clamp_id].value) 9245 continue; 9246 uc_se[clamp_id].value = eff[clamp_id]; 9247 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9248 clamps |= (0x1 << clamp_id); 9249 } 9250 if (!clamps) { 9251 css = css_rightmost_descendant(css); 9252 continue; 9253 } 9254 9255 /* Immediately update descendants RUNNABLE tasks */ 9256 uclamp_update_active_tasks(css); 9257 } 9258 } 9259 9260 /* 9261 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9262 * C expression. Since there is no way to convert a macro argument (N) into a 9263 * character constant, use two levels of macros. 9264 */ 9265 #define _POW10(exp) ((unsigned int)1e##exp) 9266 #define POW10(exp) _POW10(exp) 9267 9268 struct uclamp_request { 9269 #define UCLAMP_PERCENT_SHIFT 2 9270 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9271 s64 percent; 9272 u64 util; 9273 int ret; 9274 }; 9275 9276 static inline struct uclamp_request 9277 capacity_from_percent(char *buf) 9278 { 9279 struct uclamp_request req = { 9280 .percent = UCLAMP_PERCENT_SCALE, 9281 .util = SCHED_CAPACITY_SCALE, 9282 .ret = 0, 9283 }; 9284 9285 buf = strim(buf); 9286 if (strcmp(buf, "max")) { 9287 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9288 &req.percent); 9289 if (req.ret) 9290 return req; 9291 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9292 req.ret = -ERANGE; 9293 return req; 9294 } 9295 9296 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9297 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9298 } 9299 9300 return req; 9301 } 9302 9303 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9304 size_t nbytes, loff_t off, 9305 enum uclamp_id clamp_id) 9306 { 9307 struct uclamp_request req; 9308 struct task_group *tg; 9309 9310 req = capacity_from_percent(buf); 9311 if (req.ret) 9312 return req.ret; 9313 9314 sched_uclamp_enable(); 9315 9316 guard(mutex)(&uclamp_mutex); 9317 guard(rcu)(); 9318 9319 tg = css_tg(of_css(of)); 9320 if (tg->uclamp_req[clamp_id].value != req.util) 9321 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9322 9323 /* 9324 * Because of not recoverable conversion rounding we keep track of the 9325 * exact requested value 9326 */ 9327 tg->uclamp_pct[clamp_id] = req.percent; 9328 9329 /* Update effective clamps to track the most restrictive value */ 9330 cpu_util_update_eff(of_css(of)); 9331 9332 return nbytes; 9333 } 9334 9335 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9336 char *buf, size_t nbytes, 9337 loff_t off) 9338 { 9339 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9340 } 9341 9342 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9343 char *buf, size_t nbytes, 9344 loff_t off) 9345 { 9346 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9347 } 9348 9349 static inline void cpu_uclamp_print(struct seq_file *sf, 9350 enum uclamp_id clamp_id) 9351 { 9352 struct task_group *tg; 9353 u64 util_clamp; 9354 u64 percent; 9355 u32 rem; 9356 9357 scoped_guard (rcu) { 9358 tg = css_tg(seq_css(sf)); 9359 util_clamp = tg->uclamp_req[clamp_id].value; 9360 } 9361 9362 if (util_clamp == SCHED_CAPACITY_SCALE) { 9363 seq_puts(sf, "max\n"); 9364 return; 9365 } 9366 9367 percent = tg->uclamp_pct[clamp_id]; 9368 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9369 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9370 } 9371 9372 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9373 { 9374 cpu_uclamp_print(sf, UCLAMP_MIN); 9375 return 0; 9376 } 9377 9378 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9379 { 9380 cpu_uclamp_print(sf, UCLAMP_MAX); 9381 return 0; 9382 } 9383 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9384 9385 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9386 static unsigned long tg_weight(struct task_group *tg) 9387 { 9388 #ifdef CONFIG_FAIR_GROUP_SCHED 9389 return scale_load_down(tg->shares); 9390 #else 9391 return sched_weight_from_cgroup(tg->scx_weight); 9392 #endif 9393 } 9394 9395 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9396 struct cftype *cftype, u64 shareval) 9397 { 9398 int ret; 9399 9400 if (shareval > scale_load_down(ULONG_MAX)) 9401 shareval = MAX_SHARES; 9402 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9403 if (!ret) 9404 scx_group_set_weight(css_tg(css), 9405 sched_weight_to_cgroup(shareval)); 9406 return ret; 9407 } 9408 9409 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9410 struct cftype *cft) 9411 { 9412 return tg_weight(css_tg(css)); 9413 } 9414 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9415 9416 #ifdef CONFIG_CFS_BANDWIDTH 9417 static DEFINE_MUTEX(cfs_constraints_mutex); 9418 9419 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9420 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9421 /* More than 203 days if BW_SHIFT equals 20. */ 9422 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9423 9424 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9425 9426 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9427 u64 burst) 9428 { 9429 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9430 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9431 9432 if (tg == &root_task_group) 9433 return -EINVAL; 9434 9435 /* 9436 * Ensure we have at some amount of bandwidth every period. This is 9437 * to prevent reaching a state of large arrears when throttled via 9438 * entity_tick() resulting in prolonged exit starvation. 9439 */ 9440 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9441 return -EINVAL; 9442 9443 /* 9444 * Likewise, bound things on the other side by preventing insane quota 9445 * periods. This also allows us to normalize in computing quota 9446 * feasibility. 9447 */ 9448 if (period > max_cfs_quota_period) 9449 return -EINVAL; 9450 9451 /* 9452 * Bound quota to defend quota against overflow during bandwidth shift. 9453 */ 9454 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9455 return -EINVAL; 9456 9457 if (quota != RUNTIME_INF && (burst > quota || 9458 burst + quota > max_cfs_runtime)) 9459 return -EINVAL; 9460 9461 /* 9462 * Prevent race between setting of cfs_rq->runtime_enabled and 9463 * unthrottle_offline_cfs_rqs(). 9464 */ 9465 guard(cpus_read_lock)(); 9466 guard(mutex)(&cfs_constraints_mutex); 9467 9468 ret = __cfs_schedulable(tg, period, quota); 9469 if (ret) 9470 return ret; 9471 9472 runtime_enabled = quota != RUNTIME_INF; 9473 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9474 /* 9475 * If we need to toggle cfs_bandwidth_used, off->on must occur 9476 * before making related changes, and on->off must occur afterwards 9477 */ 9478 if (runtime_enabled && !runtime_was_enabled) 9479 cfs_bandwidth_usage_inc(); 9480 9481 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9482 cfs_b->period = ns_to_ktime(period); 9483 cfs_b->quota = quota; 9484 cfs_b->burst = burst; 9485 9486 __refill_cfs_bandwidth_runtime(cfs_b); 9487 9488 /* 9489 * Restart the period timer (if active) to handle new 9490 * period expiry: 9491 */ 9492 if (runtime_enabled) 9493 start_cfs_bandwidth(cfs_b); 9494 } 9495 9496 for_each_online_cpu(i) { 9497 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9498 struct rq *rq = cfs_rq->rq; 9499 9500 guard(rq_lock_irq)(rq); 9501 cfs_rq->runtime_enabled = runtime_enabled; 9502 cfs_rq->runtime_remaining = 0; 9503 9504 if (cfs_rq->throttled) 9505 unthrottle_cfs_rq(cfs_rq); 9506 } 9507 9508 if (runtime_was_enabled && !runtime_enabled) 9509 cfs_bandwidth_usage_dec(); 9510 9511 return 0; 9512 } 9513 9514 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9515 { 9516 u64 quota, period, burst; 9517 9518 period = ktime_to_ns(tg->cfs_bandwidth.period); 9519 burst = tg->cfs_bandwidth.burst; 9520 if (cfs_quota_us < 0) 9521 quota = RUNTIME_INF; 9522 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9523 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9524 else 9525 return -EINVAL; 9526 9527 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9528 } 9529 9530 static long tg_get_cfs_quota(struct task_group *tg) 9531 { 9532 u64 quota_us; 9533 9534 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9535 return -1; 9536 9537 quota_us = tg->cfs_bandwidth.quota; 9538 do_div(quota_us, NSEC_PER_USEC); 9539 9540 return quota_us; 9541 } 9542 9543 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9544 { 9545 u64 quota, period, burst; 9546 9547 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9548 return -EINVAL; 9549 9550 period = (u64)cfs_period_us * NSEC_PER_USEC; 9551 quota = tg->cfs_bandwidth.quota; 9552 burst = tg->cfs_bandwidth.burst; 9553 9554 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9555 } 9556 9557 static long tg_get_cfs_period(struct task_group *tg) 9558 { 9559 u64 cfs_period_us; 9560 9561 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9562 do_div(cfs_period_us, NSEC_PER_USEC); 9563 9564 return cfs_period_us; 9565 } 9566 9567 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9568 { 9569 u64 quota, period, burst; 9570 9571 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9572 return -EINVAL; 9573 9574 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9575 period = ktime_to_ns(tg->cfs_bandwidth.period); 9576 quota = tg->cfs_bandwidth.quota; 9577 9578 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9579 } 9580 9581 static long tg_get_cfs_burst(struct task_group *tg) 9582 { 9583 u64 burst_us; 9584 9585 burst_us = tg->cfs_bandwidth.burst; 9586 do_div(burst_us, NSEC_PER_USEC); 9587 9588 return burst_us; 9589 } 9590 9591 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9592 struct cftype *cft) 9593 { 9594 return tg_get_cfs_quota(css_tg(css)); 9595 } 9596 9597 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9598 struct cftype *cftype, s64 cfs_quota_us) 9599 { 9600 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9601 } 9602 9603 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9604 struct cftype *cft) 9605 { 9606 return tg_get_cfs_period(css_tg(css)); 9607 } 9608 9609 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9610 struct cftype *cftype, u64 cfs_period_us) 9611 { 9612 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9613 } 9614 9615 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9616 struct cftype *cft) 9617 { 9618 return tg_get_cfs_burst(css_tg(css)); 9619 } 9620 9621 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9622 struct cftype *cftype, u64 cfs_burst_us) 9623 { 9624 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9625 } 9626 9627 struct cfs_schedulable_data { 9628 struct task_group *tg; 9629 u64 period, quota; 9630 }; 9631 9632 /* 9633 * normalize group quota/period to be quota/max_period 9634 * note: units are usecs 9635 */ 9636 static u64 normalize_cfs_quota(struct task_group *tg, 9637 struct cfs_schedulable_data *d) 9638 { 9639 u64 quota, period; 9640 9641 if (tg == d->tg) { 9642 period = d->period; 9643 quota = d->quota; 9644 } else { 9645 period = tg_get_cfs_period(tg); 9646 quota = tg_get_cfs_quota(tg); 9647 } 9648 9649 /* note: these should typically be equivalent */ 9650 if (quota == RUNTIME_INF || quota == -1) 9651 return RUNTIME_INF; 9652 9653 return to_ratio(period, quota); 9654 } 9655 9656 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9657 { 9658 struct cfs_schedulable_data *d = data; 9659 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9660 s64 quota = 0, parent_quota = -1; 9661 9662 if (!tg->parent) { 9663 quota = RUNTIME_INF; 9664 } else { 9665 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9666 9667 quota = normalize_cfs_quota(tg, d); 9668 parent_quota = parent_b->hierarchical_quota; 9669 9670 /* 9671 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9672 * always take the non-RUNTIME_INF min. On cgroup1, only 9673 * inherit when no limit is set. In both cases this is used 9674 * by the scheduler to determine if a given CFS task has a 9675 * bandwidth constraint at some higher level. 9676 */ 9677 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9678 if (quota == RUNTIME_INF) 9679 quota = parent_quota; 9680 else if (parent_quota != RUNTIME_INF) 9681 quota = min(quota, parent_quota); 9682 } else { 9683 if (quota == RUNTIME_INF) 9684 quota = parent_quota; 9685 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9686 return -EINVAL; 9687 } 9688 } 9689 cfs_b->hierarchical_quota = quota; 9690 9691 return 0; 9692 } 9693 9694 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9695 { 9696 struct cfs_schedulable_data data = { 9697 .tg = tg, 9698 .period = period, 9699 .quota = quota, 9700 }; 9701 9702 if (quota != RUNTIME_INF) { 9703 do_div(data.period, NSEC_PER_USEC); 9704 do_div(data.quota, NSEC_PER_USEC); 9705 } 9706 9707 guard(rcu)(); 9708 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9709 } 9710 9711 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9712 { 9713 struct task_group *tg = css_tg(seq_css(sf)); 9714 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9715 9716 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9717 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9718 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9719 9720 if (schedstat_enabled() && tg != &root_task_group) { 9721 struct sched_statistics *stats; 9722 u64 ws = 0; 9723 int i; 9724 9725 for_each_possible_cpu(i) { 9726 stats = __schedstats_from_se(tg->se[i]); 9727 ws += schedstat_val(stats->wait_sum); 9728 } 9729 9730 seq_printf(sf, "wait_sum %llu\n", ws); 9731 } 9732 9733 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9734 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9735 9736 return 0; 9737 } 9738 9739 static u64 throttled_time_self(struct task_group *tg) 9740 { 9741 int i; 9742 u64 total = 0; 9743 9744 for_each_possible_cpu(i) { 9745 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9746 } 9747 9748 return total; 9749 } 9750 9751 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9752 { 9753 struct task_group *tg = css_tg(seq_css(sf)); 9754 9755 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9756 9757 return 0; 9758 } 9759 #endif /* CONFIG_CFS_BANDWIDTH */ 9760 9761 #ifdef CONFIG_RT_GROUP_SCHED 9762 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9763 struct cftype *cft, s64 val) 9764 { 9765 return sched_group_set_rt_runtime(css_tg(css), val); 9766 } 9767 9768 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9769 struct cftype *cft) 9770 { 9771 return sched_group_rt_runtime(css_tg(css)); 9772 } 9773 9774 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9775 struct cftype *cftype, u64 rt_period_us) 9776 { 9777 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9778 } 9779 9780 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9781 struct cftype *cft) 9782 { 9783 return sched_group_rt_period(css_tg(css)); 9784 } 9785 #endif /* CONFIG_RT_GROUP_SCHED */ 9786 9787 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9788 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9789 struct cftype *cft) 9790 { 9791 return css_tg(css)->idle; 9792 } 9793 9794 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9795 struct cftype *cft, s64 idle) 9796 { 9797 int ret; 9798 9799 ret = sched_group_set_idle(css_tg(css), idle); 9800 if (!ret) 9801 scx_group_set_idle(css_tg(css), idle); 9802 return ret; 9803 } 9804 #endif 9805 9806 static struct cftype cpu_legacy_files[] = { 9807 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9808 { 9809 .name = "shares", 9810 .read_u64 = cpu_shares_read_u64, 9811 .write_u64 = cpu_shares_write_u64, 9812 }, 9813 { 9814 .name = "idle", 9815 .read_s64 = cpu_idle_read_s64, 9816 .write_s64 = cpu_idle_write_s64, 9817 }, 9818 #endif 9819 #ifdef CONFIG_CFS_BANDWIDTH 9820 { 9821 .name = "cfs_quota_us", 9822 .read_s64 = cpu_cfs_quota_read_s64, 9823 .write_s64 = cpu_cfs_quota_write_s64, 9824 }, 9825 { 9826 .name = "cfs_period_us", 9827 .read_u64 = cpu_cfs_period_read_u64, 9828 .write_u64 = cpu_cfs_period_write_u64, 9829 }, 9830 { 9831 .name = "cfs_burst_us", 9832 .read_u64 = cpu_cfs_burst_read_u64, 9833 .write_u64 = cpu_cfs_burst_write_u64, 9834 }, 9835 { 9836 .name = "stat", 9837 .seq_show = cpu_cfs_stat_show, 9838 }, 9839 { 9840 .name = "stat.local", 9841 .seq_show = cpu_cfs_local_stat_show, 9842 }, 9843 #endif 9844 #ifdef CONFIG_RT_GROUP_SCHED 9845 { 9846 .name = "rt_runtime_us", 9847 .read_s64 = cpu_rt_runtime_read, 9848 .write_s64 = cpu_rt_runtime_write, 9849 }, 9850 { 9851 .name = "rt_period_us", 9852 .read_u64 = cpu_rt_period_read_uint, 9853 .write_u64 = cpu_rt_period_write_uint, 9854 }, 9855 #endif 9856 #ifdef CONFIG_UCLAMP_TASK_GROUP 9857 { 9858 .name = "uclamp.min", 9859 .flags = CFTYPE_NOT_ON_ROOT, 9860 .seq_show = cpu_uclamp_min_show, 9861 .write = cpu_uclamp_min_write, 9862 }, 9863 { 9864 .name = "uclamp.max", 9865 .flags = CFTYPE_NOT_ON_ROOT, 9866 .seq_show = cpu_uclamp_max_show, 9867 .write = cpu_uclamp_max_write, 9868 }, 9869 #endif 9870 { } /* Terminate */ 9871 }; 9872 9873 static int cpu_extra_stat_show(struct seq_file *sf, 9874 struct cgroup_subsys_state *css) 9875 { 9876 #ifdef CONFIG_CFS_BANDWIDTH 9877 { 9878 struct task_group *tg = css_tg(css); 9879 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9880 u64 throttled_usec, burst_usec; 9881 9882 throttled_usec = cfs_b->throttled_time; 9883 do_div(throttled_usec, NSEC_PER_USEC); 9884 burst_usec = cfs_b->burst_time; 9885 do_div(burst_usec, NSEC_PER_USEC); 9886 9887 seq_printf(sf, "nr_periods %d\n" 9888 "nr_throttled %d\n" 9889 "throttled_usec %llu\n" 9890 "nr_bursts %d\n" 9891 "burst_usec %llu\n", 9892 cfs_b->nr_periods, cfs_b->nr_throttled, 9893 throttled_usec, cfs_b->nr_burst, burst_usec); 9894 } 9895 #endif 9896 return 0; 9897 } 9898 9899 static int cpu_local_stat_show(struct seq_file *sf, 9900 struct cgroup_subsys_state *css) 9901 { 9902 #ifdef CONFIG_CFS_BANDWIDTH 9903 { 9904 struct task_group *tg = css_tg(css); 9905 u64 throttled_self_usec; 9906 9907 throttled_self_usec = throttled_time_self(tg); 9908 do_div(throttled_self_usec, NSEC_PER_USEC); 9909 9910 seq_printf(sf, "throttled_usec %llu\n", 9911 throttled_self_usec); 9912 } 9913 #endif 9914 return 0; 9915 } 9916 9917 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9918 9919 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9920 struct cftype *cft) 9921 { 9922 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9923 } 9924 9925 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9926 struct cftype *cft, u64 cgrp_weight) 9927 { 9928 unsigned long weight; 9929 int ret; 9930 9931 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9932 return -ERANGE; 9933 9934 weight = sched_weight_from_cgroup(cgrp_weight); 9935 9936 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9937 if (!ret) 9938 scx_group_set_weight(css_tg(css), cgrp_weight); 9939 return ret; 9940 } 9941 9942 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9943 struct cftype *cft) 9944 { 9945 unsigned long weight = tg_weight(css_tg(css)); 9946 int last_delta = INT_MAX; 9947 int prio, delta; 9948 9949 /* find the closest nice value to the current weight */ 9950 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9951 delta = abs(sched_prio_to_weight[prio] - weight); 9952 if (delta >= last_delta) 9953 break; 9954 last_delta = delta; 9955 } 9956 9957 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9958 } 9959 9960 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9961 struct cftype *cft, s64 nice) 9962 { 9963 unsigned long weight; 9964 int idx, ret; 9965 9966 if (nice < MIN_NICE || nice > MAX_NICE) 9967 return -ERANGE; 9968 9969 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9970 idx = array_index_nospec(idx, 40); 9971 weight = sched_prio_to_weight[idx]; 9972 9973 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9974 if (!ret) 9975 scx_group_set_weight(css_tg(css), 9976 sched_weight_to_cgroup(weight)); 9977 return ret; 9978 } 9979 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9980 9981 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9982 long period, long quota) 9983 { 9984 if (quota < 0) 9985 seq_puts(sf, "max"); 9986 else 9987 seq_printf(sf, "%ld", quota); 9988 9989 seq_printf(sf, " %ld\n", period); 9990 } 9991 9992 /* caller should put the current value in *@periodp before calling */ 9993 static int __maybe_unused cpu_period_quota_parse(char *buf, 9994 u64 *periodp, u64 *quotap) 9995 { 9996 char tok[21]; /* U64_MAX */ 9997 9998 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9999 return -EINVAL; 10000 10001 *periodp *= NSEC_PER_USEC; 10002 10003 if (sscanf(tok, "%llu", quotap)) 10004 *quotap *= NSEC_PER_USEC; 10005 else if (!strcmp(tok, "max")) 10006 *quotap = RUNTIME_INF; 10007 else 10008 return -EINVAL; 10009 10010 return 0; 10011 } 10012 10013 #ifdef CONFIG_CFS_BANDWIDTH 10014 static int cpu_max_show(struct seq_file *sf, void *v) 10015 { 10016 struct task_group *tg = css_tg(seq_css(sf)); 10017 10018 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10019 return 0; 10020 } 10021 10022 static ssize_t cpu_max_write(struct kernfs_open_file *of, 10023 char *buf, size_t nbytes, loff_t off) 10024 { 10025 struct task_group *tg = css_tg(of_css(of)); 10026 u64 period = tg_get_cfs_period(tg); 10027 u64 burst = tg->cfs_bandwidth.burst; 10028 u64 quota; 10029 int ret; 10030 10031 ret = cpu_period_quota_parse(buf, &period, "a); 10032 if (!ret) 10033 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10034 return ret ?: nbytes; 10035 } 10036 #endif 10037 10038 static struct cftype cpu_files[] = { 10039 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10040 { 10041 .name = "weight", 10042 .flags = CFTYPE_NOT_ON_ROOT, 10043 .read_u64 = cpu_weight_read_u64, 10044 .write_u64 = cpu_weight_write_u64, 10045 }, 10046 { 10047 .name = "weight.nice", 10048 .flags = CFTYPE_NOT_ON_ROOT, 10049 .read_s64 = cpu_weight_nice_read_s64, 10050 .write_s64 = cpu_weight_nice_write_s64, 10051 }, 10052 { 10053 .name = "idle", 10054 .flags = CFTYPE_NOT_ON_ROOT, 10055 .read_s64 = cpu_idle_read_s64, 10056 .write_s64 = cpu_idle_write_s64, 10057 }, 10058 #endif 10059 #ifdef CONFIG_CFS_BANDWIDTH 10060 { 10061 .name = "max", 10062 .flags = CFTYPE_NOT_ON_ROOT, 10063 .seq_show = cpu_max_show, 10064 .write = cpu_max_write, 10065 }, 10066 { 10067 .name = "max.burst", 10068 .flags = CFTYPE_NOT_ON_ROOT, 10069 .read_u64 = cpu_cfs_burst_read_u64, 10070 .write_u64 = cpu_cfs_burst_write_u64, 10071 }, 10072 #endif 10073 #ifdef CONFIG_UCLAMP_TASK_GROUP 10074 { 10075 .name = "uclamp.min", 10076 .flags = CFTYPE_NOT_ON_ROOT, 10077 .seq_show = cpu_uclamp_min_show, 10078 .write = cpu_uclamp_min_write, 10079 }, 10080 { 10081 .name = "uclamp.max", 10082 .flags = CFTYPE_NOT_ON_ROOT, 10083 .seq_show = cpu_uclamp_max_show, 10084 .write = cpu_uclamp_max_write, 10085 }, 10086 #endif 10087 { } /* terminate */ 10088 }; 10089 10090 struct cgroup_subsys cpu_cgrp_subsys = { 10091 .css_alloc = cpu_cgroup_css_alloc, 10092 .css_online = cpu_cgroup_css_online, 10093 .css_offline = cpu_cgroup_css_offline, 10094 .css_released = cpu_cgroup_css_released, 10095 .css_free = cpu_cgroup_css_free, 10096 .css_extra_stat_show = cpu_extra_stat_show, 10097 .css_local_stat_show = cpu_local_stat_show, 10098 .can_attach = cpu_cgroup_can_attach, 10099 .attach = cpu_cgroup_attach, 10100 .cancel_attach = cpu_cgroup_cancel_attach, 10101 .legacy_cftypes = cpu_legacy_files, 10102 .dfl_cftypes = cpu_files, 10103 .early_init = true, 10104 .threaded = true, 10105 }; 10106 10107 #endif /* CONFIG_CGROUP_SCHED */ 10108 10109 void dump_cpu_task(int cpu) 10110 { 10111 if (in_hardirq() && cpu == smp_processor_id()) { 10112 struct pt_regs *regs; 10113 10114 regs = get_irq_regs(); 10115 if (regs) { 10116 show_regs(regs); 10117 return; 10118 } 10119 } 10120 10121 if (trigger_single_cpu_backtrace(cpu)) 10122 return; 10123 10124 pr_info("Task dump for CPU %d:\n", cpu); 10125 sched_show_task(cpu_curr(cpu)); 10126 } 10127 10128 /* 10129 * Nice levels are multiplicative, with a gentle 10% change for every 10130 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10131 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10132 * that remained on nice 0. 10133 * 10134 * The "10% effect" is relative and cumulative: from _any_ nice level, 10135 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10136 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10137 * If a task goes up by ~10% and another task goes down by ~10% then 10138 * the relative distance between them is ~25%.) 10139 */ 10140 const int sched_prio_to_weight[40] = { 10141 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10142 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10143 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10144 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10145 /* 0 */ 1024, 820, 655, 526, 423, 10146 /* 5 */ 335, 272, 215, 172, 137, 10147 /* 10 */ 110, 87, 70, 56, 45, 10148 /* 15 */ 36, 29, 23, 18, 15, 10149 }; 10150 10151 /* 10152 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10153 * 10154 * In cases where the weight does not change often, we can use the 10155 * pre-calculated inverse to speed up arithmetics by turning divisions 10156 * into multiplications: 10157 */ 10158 const u32 sched_prio_to_wmult[40] = { 10159 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10160 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10161 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10162 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10163 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10164 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10165 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10166 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10167 }; 10168 10169 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10170 { 10171 trace_sched_update_nr_running_tp(rq, count); 10172 } 10173 10174 #ifdef CONFIG_SCHED_MM_CID 10175 10176 /* 10177 * @cid_lock: Guarantee forward-progress of cid allocation. 10178 * 10179 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10180 * is only used when contention is detected by the lock-free allocation so 10181 * forward progress can be guaranteed. 10182 */ 10183 DEFINE_RAW_SPINLOCK(cid_lock); 10184 10185 /* 10186 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10187 * 10188 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10189 * detected, it is set to 1 to ensure that all newly coming allocations are 10190 * serialized by @cid_lock until the allocation which detected contention 10191 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10192 * of a cid allocation. 10193 */ 10194 int use_cid_lock; 10195 10196 /* 10197 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10198 * concurrently with respect to the execution of the source runqueue context 10199 * switch. 10200 * 10201 * There is one basic properties we want to guarantee here: 10202 * 10203 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10204 * used by a task. That would lead to concurrent allocation of the cid and 10205 * userspace corruption. 10206 * 10207 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10208 * that a pair of loads observe at least one of a pair of stores, which can be 10209 * shown as: 10210 * 10211 * X = Y = 0 10212 * 10213 * w[X]=1 w[Y]=1 10214 * MB MB 10215 * r[Y]=y r[X]=x 10216 * 10217 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10218 * values 0 and 1, this algorithm cares about specific state transitions of the 10219 * runqueue current task (as updated by the scheduler context switch), and the 10220 * per-mm/cpu cid value. 10221 * 10222 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10223 * task->mm != mm for the rest of the discussion. There are two scheduler state 10224 * transitions on context switch we care about: 10225 * 10226 * (TSA) Store to rq->curr with transition from (N) to (Y) 10227 * 10228 * (TSB) Store to rq->curr with transition from (Y) to (N) 10229 * 10230 * On the remote-clear side, there is one transition we care about: 10231 * 10232 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10233 * 10234 * There is also a transition to UNSET state which can be performed from all 10235 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10236 * guarantees that only a single thread will succeed: 10237 * 10238 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10239 * 10240 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10241 * when a thread is actively using the cid (property (1)). 10242 * 10243 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10244 * 10245 * Scenario A) (TSA)+(TMA) (from next task perspective) 10246 * 10247 * CPU0 CPU1 10248 * 10249 * Context switch CS-1 Remote-clear 10250 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10251 * (implied barrier after cmpxchg) 10252 * - switch_mm_cid() 10253 * - memory barrier (see switch_mm_cid() 10254 * comment explaining how this barrier 10255 * is combined with other scheduler 10256 * barriers) 10257 * - mm_cid_get (next) 10258 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10259 * 10260 * This Dekker ensures that either task (Y) is observed by the 10261 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10262 * observed. 10263 * 10264 * If task (Y) store is observed by rcu_dereference(), it means that there is 10265 * still an active task on the cpu. Remote-clear will therefore not transition 10266 * to UNSET, which fulfills property (1). 10267 * 10268 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10269 * it will move its state to UNSET, which clears the percpu cid perhaps 10270 * uselessly (which is not an issue for correctness). Because task (Y) is not 10271 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10272 * state to UNSET is done with a cmpxchg expecting that the old state has the 10273 * LAZY flag set, only one thread will successfully UNSET. 10274 * 10275 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10276 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10277 * CPU1 will observe task (Y) and do nothing more, which is fine. 10278 * 10279 * What we are effectively preventing with this Dekker is a scenario where 10280 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10281 * because this would UNSET a cid which is actively used. 10282 */ 10283 10284 void sched_mm_cid_migrate_from(struct task_struct *t) 10285 { 10286 t->migrate_from_cpu = task_cpu(t); 10287 } 10288 10289 static 10290 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10291 struct task_struct *t, 10292 struct mm_cid *src_pcpu_cid) 10293 { 10294 struct mm_struct *mm = t->mm; 10295 struct task_struct *src_task; 10296 int src_cid, last_mm_cid; 10297 10298 if (!mm) 10299 return -1; 10300 10301 last_mm_cid = t->last_mm_cid; 10302 /* 10303 * If the migrated task has no last cid, or if the current 10304 * task on src rq uses the cid, it means the source cid does not need 10305 * to be moved to the destination cpu. 10306 */ 10307 if (last_mm_cid == -1) 10308 return -1; 10309 src_cid = READ_ONCE(src_pcpu_cid->cid); 10310 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10311 return -1; 10312 10313 /* 10314 * If we observe an active task using the mm on this rq, it means we 10315 * are not the last task to be migrated from this cpu for this mm, so 10316 * there is no need to move src_cid to the destination cpu. 10317 */ 10318 guard(rcu)(); 10319 src_task = rcu_dereference(src_rq->curr); 10320 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10321 t->last_mm_cid = -1; 10322 return -1; 10323 } 10324 10325 return src_cid; 10326 } 10327 10328 static 10329 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10330 struct task_struct *t, 10331 struct mm_cid *src_pcpu_cid, 10332 int src_cid) 10333 { 10334 struct task_struct *src_task; 10335 struct mm_struct *mm = t->mm; 10336 int lazy_cid; 10337 10338 if (src_cid == -1) 10339 return -1; 10340 10341 /* 10342 * Attempt to clear the source cpu cid to move it to the destination 10343 * cpu. 10344 */ 10345 lazy_cid = mm_cid_set_lazy_put(src_cid); 10346 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10347 return -1; 10348 10349 /* 10350 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10351 * rq->curr->mm matches the scheduler barrier in context_switch() 10352 * between store to rq->curr and load of prev and next task's 10353 * per-mm/cpu cid. 10354 * 10355 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10356 * rq->curr->mm_cid_active matches the barrier in 10357 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10358 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10359 * load of per-mm/cpu cid. 10360 */ 10361 10362 /* 10363 * If we observe an active task using the mm on this rq after setting 10364 * the lazy-put flag, this task will be responsible for transitioning 10365 * from lazy-put flag set to MM_CID_UNSET. 10366 */ 10367 scoped_guard (rcu) { 10368 src_task = rcu_dereference(src_rq->curr); 10369 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10370 /* 10371 * We observed an active task for this mm, there is therefore 10372 * no point in moving this cid to the destination cpu. 10373 */ 10374 t->last_mm_cid = -1; 10375 return -1; 10376 } 10377 } 10378 10379 /* 10380 * The src_cid is unused, so it can be unset. 10381 */ 10382 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10383 return -1; 10384 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10385 return src_cid; 10386 } 10387 10388 /* 10389 * Migration to dst cpu. Called with dst_rq lock held. 10390 * Interrupts are disabled, which keeps the window of cid ownership without the 10391 * source rq lock held small. 10392 */ 10393 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10394 { 10395 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10396 struct mm_struct *mm = t->mm; 10397 int src_cid, src_cpu; 10398 bool dst_cid_is_set; 10399 struct rq *src_rq; 10400 10401 lockdep_assert_rq_held(dst_rq); 10402 10403 if (!mm) 10404 return; 10405 src_cpu = t->migrate_from_cpu; 10406 if (src_cpu == -1) { 10407 t->last_mm_cid = -1; 10408 return; 10409 } 10410 /* 10411 * Move the src cid if the dst cid is unset. This keeps id 10412 * allocation closest to 0 in cases where few threads migrate around 10413 * many CPUs. 10414 * 10415 * If destination cid or recent cid is already set, we may have 10416 * to just clear the src cid to ensure compactness in frequent 10417 * migrations scenarios. 10418 * 10419 * It is not useful to clear the src cid when the number of threads is 10420 * greater or equal to the number of allowed CPUs, because user-space 10421 * can expect that the number of allowed cids can reach the number of 10422 * allowed CPUs. 10423 */ 10424 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10425 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10426 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10427 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10428 return; 10429 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10430 src_rq = cpu_rq(src_cpu); 10431 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10432 if (src_cid == -1) 10433 return; 10434 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10435 src_cid); 10436 if (src_cid == -1) 10437 return; 10438 if (dst_cid_is_set) { 10439 __mm_cid_put(mm, src_cid); 10440 return; 10441 } 10442 /* Move src_cid to dst cpu. */ 10443 mm_cid_snapshot_time(dst_rq, mm); 10444 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10445 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10446 } 10447 10448 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10449 int cpu) 10450 { 10451 struct rq *rq = cpu_rq(cpu); 10452 struct task_struct *t; 10453 int cid, lazy_cid; 10454 10455 cid = READ_ONCE(pcpu_cid->cid); 10456 if (!mm_cid_is_valid(cid)) 10457 return; 10458 10459 /* 10460 * Clear the cpu cid if it is set to keep cid allocation compact. If 10461 * there happens to be other tasks left on the source cpu using this 10462 * mm, the next task using this mm will reallocate its cid on context 10463 * switch. 10464 */ 10465 lazy_cid = mm_cid_set_lazy_put(cid); 10466 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10467 return; 10468 10469 /* 10470 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10471 * rq->curr->mm matches the scheduler barrier in context_switch() 10472 * between store to rq->curr and load of prev and next task's 10473 * per-mm/cpu cid. 10474 * 10475 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10476 * rq->curr->mm_cid_active matches the barrier in 10477 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10478 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10479 * load of per-mm/cpu cid. 10480 */ 10481 10482 /* 10483 * If we observe an active task using the mm on this rq after setting 10484 * the lazy-put flag, that task will be responsible for transitioning 10485 * from lazy-put flag set to MM_CID_UNSET. 10486 */ 10487 scoped_guard (rcu) { 10488 t = rcu_dereference(rq->curr); 10489 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10490 return; 10491 } 10492 10493 /* 10494 * The cid is unused, so it can be unset. 10495 * Disable interrupts to keep the window of cid ownership without rq 10496 * lock small. 10497 */ 10498 scoped_guard (irqsave) { 10499 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10500 __mm_cid_put(mm, cid); 10501 } 10502 } 10503 10504 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10505 { 10506 struct rq *rq = cpu_rq(cpu); 10507 struct mm_cid *pcpu_cid; 10508 struct task_struct *curr; 10509 u64 rq_clock; 10510 10511 /* 10512 * rq->clock load is racy on 32-bit but one spurious clear once in a 10513 * while is irrelevant. 10514 */ 10515 rq_clock = READ_ONCE(rq->clock); 10516 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10517 10518 /* 10519 * In order to take care of infrequently scheduled tasks, bump the time 10520 * snapshot associated with this cid if an active task using the mm is 10521 * observed on this rq. 10522 */ 10523 scoped_guard (rcu) { 10524 curr = rcu_dereference(rq->curr); 10525 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10526 WRITE_ONCE(pcpu_cid->time, rq_clock); 10527 return; 10528 } 10529 } 10530 10531 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10532 return; 10533 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10534 } 10535 10536 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10537 int weight) 10538 { 10539 struct mm_cid *pcpu_cid; 10540 int cid; 10541 10542 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10543 cid = READ_ONCE(pcpu_cid->cid); 10544 if (!mm_cid_is_valid(cid) || cid < weight) 10545 return; 10546 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10547 } 10548 10549 static void task_mm_cid_work(struct callback_head *work) 10550 { 10551 unsigned long now = jiffies, old_scan, next_scan; 10552 struct task_struct *t = current; 10553 struct cpumask *cidmask; 10554 struct mm_struct *mm; 10555 int weight, cpu; 10556 10557 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); 10558 10559 work->next = work; /* Prevent double-add */ 10560 if (t->flags & PF_EXITING) 10561 return; 10562 mm = t->mm; 10563 if (!mm) 10564 return; 10565 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10566 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10567 if (!old_scan) { 10568 unsigned long res; 10569 10570 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10571 if (res != old_scan) 10572 old_scan = res; 10573 else 10574 old_scan = next_scan; 10575 } 10576 if (time_before(now, old_scan)) 10577 return; 10578 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10579 return; 10580 cidmask = mm_cidmask(mm); 10581 /* Clear cids that were not recently used. */ 10582 for_each_possible_cpu(cpu) 10583 sched_mm_cid_remote_clear_old(mm, cpu); 10584 weight = cpumask_weight(cidmask); 10585 /* 10586 * Clear cids that are greater or equal to the cidmask weight to 10587 * recompact it. 10588 */ 10589 for_each_possible_cpu(cpu) 10590 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10591 } 10592 10593 void init_sched_mm_cid(struct task_struct *t) 10594 { 10595 struct mm_struct *mm = t->mm; 10596 int mm_users = 0; 10597 10598 if (mm) { 10599 mm_users = atomic_read(&mm->mm_users); 10600 if (mm_users == 1) 10601 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10602 } 10603 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10604 init_task_work(&t->cid_work, task_mm_cid_work); 10605 } 10606 10607 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10608 { 10609 struct callback_head *work = &curr->cid_work; 10610 unsigned long now = jiffies; 10611 10612 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10613 work->next != work) 10614 return; 10615 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10616 return; 10617 10618 /* No page allocation under rq lock */ 10619 task_work_add(curr, work, TWA_RESUME); 10620 } 10621 10622 void sched_mm_cid_exit_signals(struct task_struct *t) 10623 { 10624 struct mm_struct *mm = t->mm; 10625 struct rq *rq; 10626 10627 if (!mm) 10628 return; 10629 10630 preempt_disable(); 10631 rq = this_rq(); 10632 guard(rq_lock_irqsave)(rq); 10633 preempt_enable_no_resched(); /* holding spinlock */ 10634 WRITE_ONCE(t->mm_cid_active, 0); 10635 /* 10636 * Store t->mm_cid_active before loading per-mm/cpu cid. 10637 * Matches barrier in sched_mm_cid_remote_clear_old(). 10638 */ 10639 smp_mb(); 10640 mm_cid_put(mm); 10641 t->last_mm_cid = t->mm_cid = -1; 10642 } 10643 10644 void sched_mm_cid_before_execve(struct task_struct *t) 10645 { 10646 struct mm_struct *mm = t->mm; 10647 struct rq *rq; 10648 10649 if (!mm) 10650 return; 10651 10652 preempt_disable(); 10653 rq = this_rq(); 10654 guard(rq_lock_irqsave)(rq); 10655 preempt_enable_no_resched(); /* holding spinlock */ 10656 WRITE_ONCE(t->mm_cid_active, 0); 10657 /* 10658 * Store t->mm_cid_active before loading per-mm/cpu cid. 10659 * Matches barrier in sched_mm_cid_remote_clear_old(). 10660 */ 10661 smp_mb(); 10662 mm_cid_put(mm); 10663 t->last_mm_cid = t->mm_cid = -1; 10664 } 10665 10666 void sched_mm_cid_after_execve(struct task_struct *t) 10667 { 10668 struct mm_struct *mm = t->mm; 10669 struct rq *rq; 10670 10671 if (!mm) 10672 return; 10673 10674 preempt_disable(); 10675 rq = this_rq(); 10676 scoped_guard (rq_lock_irqsave, rq) { 10677 preempt_enable_no_resched(); /* holding spinlock */ 10678 WRITE_ONCE(t->mm_cid_active, 1); 10679 /* 10680 * Store t->mm_cid_active before loading per-mm/cpu cid. 10681 * Matches barrier in sched_mm_cid_remote_clear_old(). 10682 */ 10683 smp_mb(); 10684 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10685 } 10686 rseq_set_notify_resume(t); 10687 } 10688 10689 void sched_mm_cid_fork(struct task_struct *t) 10690 { 10691 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10692 t->mm_cid_active = 1; 10693 } 10694 #endif 10695 10696 #ifdef CONFIG_SCHED_CLASS_EXT 10697 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10698 struct sched_enq_and_set_ctx *ctx) 10699 { 10700 struct rq *rq = task_rq(p); 10701 10702 lockdep_assert_rq_held(rq); 10703 10704 *ctx = (struct sched_enq_and_set_ctx){ 10705 .p = p, 10706 .queue_flags = queue_flags, 10707 .queued = task_on_rq_queued(p), 10708 .running = task_current(rq, p), 10709 }; 10710 10711 update_rq_clock(rq); 10712 if (ctx->queued) 10713 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10714 if (ctx->running) 10715 put_prev_task(rq, p); 10716 } 10717 10718 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10719 { 10720 struct rq *rq = task_rq(ctx->p); 10721 10722 lockdep_assert_rq_held(rq); 10723 10724 if (ctx->queued) 10725 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10726 if (ctx->running) 10727 set_next_task(rq, ctx->p); 10728 } 10729 #endif /* CONFIG_SCHED_CLASS_EXT */ 10730