xref: /linux/kernel/sched/core.c (revision fdaf9a5840acaab18694a19e0eb0aa51162eeeed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include <linux/sched/rseq_api.h>
81 #include <trace/events/sched.h>
82 #undef CREATE_TRACE_POINTS
83 
84 #include "sched.h"
85 #include "stats.h"
86 #include "autogroup.h"
87 
88 #include "autogroup.h"
89 #include "pelt.h"
90 #include "smp.h"
91 #include "stats.h"
92 
93 #include "../workqueue_internal.h"
94 #include "../../fs/io-wq.h"
95 #include "../smpboot.h"
96 
97 /*
98  * Export tracepoints that act as a bare tracehook (ie: have no trace event
99  * associated with them) to allow external modules to probe them.
100  */
101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
112 
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 #ifdef CONFIG_SCHED_DEBUG
116 /*
117  * Debugging: various feature bits
118  *
119  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
120  * sysctl_sched_features, defined in sched.h, to allow constants propagation
121  * at compile time and compiler optimization based on features default.
122  */
123 #define SCHED_FEAT(name, enabled)	\
124 	(1UL << __SCHED_FEAT_##name) * enabled |
125 const_debug unsigned int sysctl_sched_features =
126 #include "features.h"
127 	0;
128 #undef SCHED_FEAT
129 
130 /*
131  * Print a warning if need_resched is set for the given duration (if
132  * LATENCY_WARN is enabled).
133  *
134  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
135  * per boot.
136  */
137 __read_mostly int sysctl_resched_latency_warn_ms = 100;
138 __read_mostly int sysctl_resched_latency_warn_once = 1;
139 #endif /* CONFIG_SCHED_DEBUG */
140 
141 /*
142  * Number of tasks to iterate in a single balance run.
143  * Limited because this is done with IRQs disabled.
144  */
145 #ifdef CONFIG_PREEMPT_RT
146 const_debug unsigned int sysctl_sched_nr_migrate = 8;
147 #else
148 const_debug unsigned int sysctl_sched_nr_migrate = 32;
149 #endif
150 
151 /*
152  * period over which we measure -rt task CPU usage in us.
153  * default: 1s
154  */
155 unsigned int sysctl_sched_rt_period = 1000000;
156 
157 __read_mostly int scheduler_running;
158 
159 #ifdef CONFIG_SCHED_CORE
160 
161 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
162 
163 /* kernel prio, less is more */
164 static inline int __task_prio(struct task_struct *p)
165 {
166 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
167 		return -2;
168 
169 	if (rt_prio(p->prio)) /* includes deadline */
170 		return p->prio; /* [-1, 99] */
171 
172 	if (p->sched_class == &idle_sched_class)
173 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
174 
175 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
176 }
177 
178 /*
179  * l(a,b)
180  * le(a,b) := !l(b,a)
181  * g(a,b)  := l(b,a)
182  * ge(a,b) := !l(a,b)
183  */
184 
185 /* real prio, less is less */
186 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
187 {
188 
189 	int pa = __task_prio(a), pb = __task_prio(b);
190 
191 	if (-pa < -pb)
192 		return true;
193 
194 	if (-pb < -pa)
195 		return false;
196 
197 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
198 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
199 
200 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
201 		return cfs_prio_less(a, b, in_fi);
202 
203 	return false;
204 }
205 
206 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
207 {
208 	if (a->core_cookie < b->core_cookie)
209 		return true;
210 
211 	if (a->core_cookie > b->core_cookie)
212 		return false;
213 
214 	/* flip prio, so high prio is leftmost */
215 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
216 		return true;
217 
218 	return false;
219 }
220 
221 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
222 
223 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
224 {
225 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
226 }
227 
228 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
229 {
230 	const struct task_struct *p = __node_2_sc(node);
231 	unsigned long cookie = (unsigned long)key;
232 
233 	if (cookie < p->core_cookie)
234 		return -1;
235 
236 	if (cookie > p->core_cookie)
237 		return 1;
238 
239 	return 0;
240 }
241 
242 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
243 {
244 	rq->core->core_task_seq++;
245 
246 	if (!p->core_cookie)
247 		return;
248 
249 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
250 }
251 
252 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
253 {
254 	rq->core->core_task_seq++;
255 
256 	if (sched_core_enqueued(p)) {
257 		rb_erase(&p->core_node, &rq->core_tree);
258 		RB_CLEAR_NODE(&p->core_node);
259 	}
260 
261 	/*
262 	 * Migrating the last task off the cpu, with the cpu in forced idle
263 	 * state. Reschedule to create an accounting edge for forced idle,
264 	 * and re-examine whether the core is still in forced idle state.
265 	 */
266 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
267 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
268 		resched_curr(rq);
269 }
270 
271 /*
272  * Find left-most (aka, highest priority) task matching @cookie.
273  */
274 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
275 {
276 	struct rb_node *node;
277 
278 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
279 	/*
280 	 * The idle task always matches any cookie!
281 	 */
282 	if (!node)
283 		return idle_sched_class.pick_task(rq);
284 
285 	return __node_2_sc(node);
286 }
287 
288 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
289 {
290 	struct rb_node *node = &p->core_node;
291 
292 	node = rb_next(node);
293 	if (!node)
294 		return NULL;
295 
296 	p = container_of(node, struct task_struct, core_node);
297 	if (p->core_cookie != cookie)
298 		return NULL;
299 
300 	return p;
301 }
302 
303 /*
304  * Magic required such that:
305  *
306  *	raw_spin_rq_lock(rq);
307  *	...
308  *	raw_spin_rq_unlock(rq);
309  *
310  * ends up locking and unlocking the _same_ lock, and all CPUs
311  * always agree on what rq has what lock.
312  *
313  * XXX entirely possible to selectively enable cores, don't bother for now.
314  */
315 
316 static DEFINE_MUTEX(sched_core_mutex);
317 static atomic_t sched_core_count;
318 static struct cpumask sched_core_mask;
319 
320 static void sched_core_lock(int cpu, unsigned long *flags)
321 {
322 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
323 	int t, i = 0;
324 
325 	local_irq_save(*flags);
326 	for_each_cpu(t, smt_mask)
327 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
328 }
329 
330 static void sched_core_unlock(int cpu, unsigned long *flags)
331 {
332 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
333 	int t;
334 
335 	for_each_cpu(t, smt_mask)
336 		raw_spin_unlock(&cpu_rq(t)->__lock);
337 	local_irq_restore(*flags);
338 }
339 
340 static void __sched_core_flip(bool enabled)
341 {
342 	unsigned long flags;
343 	int cpu, t;
344 
345 	cpus_read_lock();
346 
347 	/*
348 	 * Toggle the online cores, one by one.
349 	 */
350 	cpumask_copy(&sched_core_mask, cpu_online_mask);
351 	for_each_cpu(cpu, &sched_core_mask) {
352 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
353 
354 		sched_core_lock(cpu, &flags);
355 
356 		for_each_cpu(t, smt_mask)
357 			cpu_rq(t)->core_enabled = enabled;
358 
359 		cpu_rq(cpu)->core->core_forceidle_start = 0;
360 
361 		sched_core_unlock(cpu, &flags);
362 
363 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
364 	}
365 
366 	/*
367 	 * Toggle the offline CPUs.
368 	 */
369 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
370 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
371 
372 	for_each_cpu(cpu, &sched_core_mask)
373 		cpu_rq(cpu)->core_enabled = enabled;
374 
375 	cpus_read_unlock();
376 }
377 
378 static void sched_core_assert_empty(void)
379 {
380 	int cpu;
381 
382 	for_each_possible_cpu(cpu)
383 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
384 }
385 
386 static void __sched_core_enable(void)
387 {
388 	static_branch_enable(&__sched_core_enabled);
389 	/*
390 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
391 	 * and future ones will observe !sched_core_disabled().
392 	 */
393 	synchronize_rcu();
394 	__sched_core_flip(true);
395 	sched_core_assert_empty();
396 }
397 
398 static void __sched_core_disable(void)
399 {
400 	sched_core_assert_empty();
401 	__sched_core_flip(false);
402 	static_branch_disable(&__sched_core_enabled);
403 }
404 
405 void sched_core_get(void)
406 {
407 	if (atomic_inc_not_zero(&sched_core_count))
408 		return;
409 
410 	mutex_lock(&sched_core_mutex);
411 	if (!atomic_read(&sched_core_count))
412 		__sched_core_enable();
413 
414 	smp_mb__before_atomic();
415 	atomic_inc(&sched_core_count);
416 	mutex_unlock(&sched_core_mutex);
417 }
418 
419 static void __sched_core_put(struct work_struct *work)
420 {
421 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
422 		__sched_core_disable();
423 		mutex_unlock(&sched_core_mutex);
424 	}
425 }
426 
427 void sched_core_put(void)
428 {
429 	static DECLARE_WORK(_work, __sched_core_put);
430 
431 	/*
432 	 * "There can be only one"
433 	 *
434 	 * Either this is the last one, or we don't actually need to do any
435 	 * 'work'. If it is the last *again*, we rely on
436 	 * WORK_STRUCT_PENDING_BIT.
437 	 */
438 	if (!atomic_add_unless(&sched_core_count, -1, 1))
439 		schedule_work(&_work);
440 }
441 
442 #else /* !CONFIG_SCHED_CORE */
443 
444 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
445 static inline void
446 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
447 
448 #endif /* CONFIG_SCHED_CORE */
449 
450 /*
451  * part of the period that we allow rt tasks to run in us.
452  * default: 0.95s
453  */
454 int sysctl_sched_rt_runtime = 950000;
455 
456 
457 /*
458  * Serialization rules:
459  *
460  * Lock order:
461  *
462  *   p->pi_lock
463  *     rq->lock
464  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
465  *
466  *  rq1->lock
467  *    rq2->lock  where: rq1 < rq2
468  *
469  * Regular state:
470  *
471  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
472  * local CPU's rq->lock, it optionally removes the task from the runqueue and
473  * always looks at the local rq data structures to find the most eligible task
474  * to run next.
475  *
476  * Task enqueue is also under rq->lock, possibly taken from another CPU.
477  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
478  * the local CPU to avoid bouncing the runqueue state around [ see
479  * ttwu_queue_wakelist() ]
480  *
481  * Task wakeup, specifically wakeups that involve migration, are horribly
482  * complicated to avoid having to take two rq->locks.
483  *
484  * Special state:
485  *
486  * System-calls and anything external will use task_rq_lock() which acquires
487  * both p->pi_lock and rq->lock. As a consequence the state they change is
488  * stable while holding either lock:
489  *
490  *  - sched_setaffinity()/
491  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
492  *  - set_user_nice():		p->se.load, p->*prio
493  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
494  *				p->se.load, p->rt_priority,
495  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
496  *  - sched_setnuma():		p->numa_preferred_nid
497  *  - sched_move_task()/
498  *    cpu_cgroup_fork():	p->sched_task_group
499  *  - uclamp_update_active()	p->uclamp*
500  *
501  * p->state <- TASK_*:
502  *
503  *   is changed locklessly using set_current_state(), __set_current_state() or
504  *   set_special_state(), see their respective comments, or by
505  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
506  *   concurrent self.
507  *
508  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
509  *
510  *   is set by activate_task() and cleared by deactivate_task(), under
511  *   rq->lock. Non-zero indicates the task is runnable, the special
512  *   ON_RQ_MIGRATING state is used for migration without holding both
513  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
514  *
515  * p->on_cpu <- { 0, 1 }:
516  *
517  *   is set by prepare_task() and cleared by finish_task() such that it will be
518  *   set before p is scheduled-in and cleared after p is scheduled-out, both
519  *   under rq->lock. Non-zero indicates the task is running on its CPU.
520  *
521  *   [ The astute reader will observe that it is possible for two tasks on one
522  *     CPU to have ->on_cpu = 1 at the same time. ]
523  *
524  * task_cpu(p): is changed by set_task_cpu(), the rules are:
525  *
526  *  - Don't call set_task_cpu() on a blocked task:
527  *
528  *    We don't care what CPU we're not running on, this simplifies hotplug,
529  *    the CPU assignment of blocked tasks isn't required to be valid.
530  *
531  *  - for try_to_wake_up(), called under p->pi_lock:
532  *
533  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
534  *
535  *  - for migration called under rq->lock:
536  *    [ see task_on_rq_migrating() in task_rq_lock() ]
537  *
538  *    o move_queued_task()
539  *    o detach_task()
540  *
541  *  - for migration called under double_rq_lock():
542  *
543  *    o __migrate_swap_task()
544  *    o push_rt_task() / pull_rt_task()
545  *    o push_dl_task() / pull_dl_task()
546  *    o dl_task_offline_migration()
547  *
548  */
549 
550 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
551 {
552 	raw_spinlock_t *lock;
553 
554 	/* Matches synchronize_rcu() in __sched_core_enable() */
555 	preempt_disable();
556 	if (sched_core_disabled()) {
557 		raw_spin_lock_nested(&rq->__lock, subclass);
558 		/* preempt_count *MUST* be > 1 */
559 		preempt_enable_no_resched();
560 		return;
561 	}
562 
563 	for (;;) {
564 		lock = __rq_lockp(rq);
565 		raw_spin_lock_nested(lock, subclass);
566 		if (likely(lock == __rq_lockp(rq))) {
567 			/* preempt_count *MUST* be > 1 */
568 			preempt_enable_no_resched();
569 			return;
570 		}
571 		raw_spin_unlock(lock);
572 	}
573 }
574 
575 bool raw_spin_rq_trylock(struct rq *rq)
576 {
577 	raw_spinlock_t *lock;
578 	bool ret;
579 
580 	/* Matches synchronize_rcu() in __sched_core_enable() */
581 	preempt_disable();
582 	if (sched_core_disabled()) {
583 		ret = raw_spin_trylock(&rq->__lock);
584 		preempt_enable();
585 		return ret;
586 	}
587 
588 	for (;;) {
589 		lock = __rq_lockp(rq);
590 		ret = raw_spin_trylock(lock);
591 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
592 			preempt_enable();
593 			return ret;
594 		}
595 		raw_spin_unlock(lock);
596 	}
597 }
598 
599 void raw_spin_rq_unlock(struct rq *rq)
600 {
601 	raw_spin_unlock(rq_lockp(rq));
602 }
603 
604 #ifdef CONFIG_SMP
605 /*
606  * double_rq_lock - safely lock two runqueues
607  */
608 void double_rq_lock(struct rq *rq1, struct rq *rq2)
609 {
610 	lockdep_assert_irqs_disabled();
611 
612 	if (rq_order_less(rq2, rq1))
613 		swap(rq1, rq2);
614 
615 	raw_spin_rq_lock(rq1);
616 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
617 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
618 
619 	double_rq_clock_clear_update(rq1, rq2);
620 }
621 #endif
622 
623 /*
624  * __task_rq_lock - lock the rq @p resides on.
625  */
626 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
627 	__acquires(rq->lock)
628 {
629 	struct rq *rq;
630 
631 	lockdep_assert_held(&p->pi_lock);
632 
633 	for (;;) {
634 		rq = task_rq(p);
635 		raw_spin_rq_lock(rq);
636 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
637 			rq_pin_lock(rq, rf);
638 			return rq;
639 		}
640 		raw_spin_rq_unlock(rq);
641 
642 		while (unlikely(task_on_rq_migrating(p)))
643 			cpu_relax();
644 	}
645 }
646 
647 /*
648  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
649  */
650 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
651 	__acquires(p->pi_lock)
652 	__acquires(rq->lock)
653 {
654 	struct rq *rq;
655 
656 	for (;;) {
657 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
658 		rq = task_rq(p);
659 		raw_spin_rq_lock(rq);
660 		/*
661 		 *	move_queued_task()		task_rq_lock()
662 		 *
663 		 *	ACQUIRE (rq->lock)
664 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
665 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
666 		 *	[S] ->cpu = new_cpu		[L] task_rq()
667 		 *					[L] ->on_rq
668 		 *	RELEASE (rq->lock)
669 		 *
670 		 * If we observe the old CPU in task_rq_lock(), the acquire of
671 		 * the old rq->lock will fully serialize against the stores.
672 		 *
673 		 * If we observe the new CPU in task_rq_lock(), the address
674 		 * dependency headed by '[L] rq = task_rq()' and the acquire
675 		 * will pair with the WMB to ensure we then also see migrating.
676 		 */
677 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
678 			rq_pin_lock(rq, rf);
679 			return rq;
680 		}
681 		raw_spin_rq_unlock(rq);
682 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
683 
684 		while (unlikely(task_on_rq_migrating(p)))
685 			cpu_relax();
686 	}
687 }
688 
689 /*
690  * RQ-clock updating methods:
691  */
692 
693 static void update_rq_clock_task(struct rq *rq, s64 delta)
694 {
695 /*
696  * In theory, the compile should just see 0 here, and optimize out the call
697  * to sched_rt_avg_update. But I don't trust it...
698  */
699 	s64 __maybe_unused steal = 0, irq_delta = 0;
700 
701 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
702 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
703 
704 	/*
705 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
706 	 * this case when a previous update_rq_clock() happened inside a
707 	 * {soft,}irq region.
708 	 *
709 	 * When this happens, we stop ->clock_task and only update the
710 	 * prev_irq_time stamp to account for the part that fit, so that a next
711 	 * update will consume the rest. This ensures ->clock_task is
712 	 * monotonic.
713 	 *
714 	 * It does however cause some slight miss-attribution of {soft,}irq
715 	 * time, a more accurate solution would be to update the irq_time using
716 	 * the current rq->clock timestamp, except that would require using
717 	 * atomic ops.
718 	 */
719 	if (irq_delta > delta)
720 		irq_delta = delta;
721 
722 	rq->prev_irq_time += irq_delta;
723 	delta -= irq_delta;
724 #endif
725 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
726 	if (static_key_false((&paravirt_steal_rq_enabled))) {
727 		steal = paravirt_steal_clock(cpu_of(rq));
728 		steal -= rq->prev_steal_time_rq;
729 
730 		if (unlikely(steal > delta))
731 			steal = delta;
732 
733 		rq->prev_steal_time_rq += steal;
734 		delta -= steal;
735 	}
736 #endif
737 
738 	rq->clock_task += delta;
739 
740 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
741 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
742 		update_irq_load_avg(rq, irq_delta + steal);
743 #endif
744 	update_rq_clock_pelt(rq, delta);
745 }
746 
747 void update_rq_clock(struct rq *rq)
748 {
749 	s64 delta;
750 
751 	lockdep_assert_rq_held(rq);
752 
753 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
754 		return;
755 
756 #ifdef CONFIG_SCHED_DEBUG
757 	if (sched_feat(WARN_DOUBLE_CLOCK))
758 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
759 	rq->clock_update_flags |= RQCF_UPDATED;
760 #endif
761 
762 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
763 	if (delta < 0)
764 		return;
765 	rq->clock += delta;
766 	update_rq_clock_task(rq, delta);
767 }
768 
769 #ifdef CONFIG_SCHED_HRTICK
770 /*
771  * Use HR-timers to deliver accurate preemption points.
772  */
773 
774 static void hrtick_clear(struct rq *rq)
775 {
776 	if (hrtimer_active(&rq->hrtick_timer))
777 		hrtimer_cancel(&rq->hrtick_timer);
778 }
779 
780 /*
781  * High-resolution timer tick.
782  * Runs from hardirq context with interrupts disabled.
783  */
784 static enum hrtimer_restart hrtick(struct hrtimer *timer)
785 {
786 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
787 	struct rq_flags rf;
788 
789 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
790 
791 	rq_lock(rq, &rf);
792 	update_rq_clock(rq);
793 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
794 	rq_unlock(rq, &rf);
795 
796 	return HRTIMER_NORESTART;
797 }
798 
799 #ifdef CONFIG_SMP
800 
801 static void __hrtick_restart(struct rq *rq)
802 {
803 	struct hrtimer *timer = &rq->hrtick_timer;
804 	ktime_t time = rq->hrtick_time;
805 
806 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
807 }
808 
809 /*
810  * called from hardirq (IPI) context
811  */
812 static void __hrtick_start(void *arg)
813 {
814 	struct rq *rq = arg;
815 	struct rq_flags rf;
816 
817 	rq_lock(rq, &rf);
818 	__hrtick_restart(rq);
819 	rq_unlock(rq, &rf);
820 }
821 
822 /*
823  * Called to set the hrtick timer state.
824  *
825  * called with rq->lock held and irqs disabled
826  */
827 void hrtick_start(struct rq *rq, u64 delay)
828 {
829 	struct hrtimer *timer = &rq->hrtick_timer;
830 	s64 delta;
831 
832 	/*
833 	 * Don't schedule slices shorter than 10000ns, that just
834 	 * doesn't make sense and can cause timer DoS.
835 	 */
836 	delta = max_t(s64, delay, 10000LL);
837 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
838 
839 	if (rq == this_rq())
840 		__hrtick_restart(rq);
841 	else
842 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
843 }
844 
845 #else
846 /*
847  * Called to set the hrtick timer state.
848  *
849  * called with rq->lock held and irqs disabled
850  */
851 void hrtick_start(struct rq *rq, u64 delay)
852 {
853 	/*
854 	 * Don't schedule slices shorter than 10000ns, that just
855 	 * doesn't make sense. Rely on vruntime for fairness.
856 	 */
857 	delay = max_t(u64, delay, 10000LL);
858 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
859 		      HRTIMER_MODE_REL_PINNED_HARD);
860 }
861 
862 #endif /* CONFIG_SMP */
863 
864 static void hrtick_rq_init(struct rq *rq)
865 {
866 #ifdef CONFIG_SMP
867 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
868 #endif
869 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
870 	rq->hrtick_timer.function = hrtick;
871 }
872 #else	/* CONFIG_SCHED_HRTICK */
873 static inline void hrtick_clear(struct rq *rq)
874 {
875 }
876 
877 static inline void hrtick_rq_init(struct rq *rq)
878 {
879 }
880 #endif	/* CONFIG_SCHED_HRTICK */
881 
882 /*
883  * cmpxchg based fetch_or, macro so it works for different integer types
884  */
885 #define fetch_or(ptr, mask)						\
886 	({								\
887 		typeof(ptr) _ptr = (ptr);				\
888 		typeof(mask) _mask = (mask);				\
889 		typeof(*_ptr) _old, _val = *_ptr;			\
890 									\
891 		for (;;) {						\
892 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
893 			if (_old == _val)				\
894 				break;					\
895 			_val = _old;					\
896 		}							\
897 	_old;								\
898 })
899 
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903  * this avoids any races wrt polling state changes and thereby avoids
904  * spurious IPIs.
905  */
906 static bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 	struct thread_info *ti = task_thread_info(p);
909 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911 
912 /*
913  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914  *
915  * If this returns true, then the idle task promises to call
916  * sched_ttwu_pending() and reschedule soon.
917  */
918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 	struct thread_info *ti = task_thread_info(p);
921 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
922 
923 	for (;;) {
924 		if (!(val & _TIF_POLLING_NRFLAG))
925 			return false;
926 		if (val & _TIF_NEED_RESCHED)
927 			return true;
928 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
929 		if (old == val)
930 			break;
931 		val = old;
932 	}
933 	return true;
934 }
935 
936 #else
937 static bool set_nr_and_not_polling(struct task_struct *p)
938 {
939 	set_tsk_need_resched(p);
940 	return true;
941 }
942 
943 #ifdef CONFIG_SMP
944 static bool set_nr_if_polling(struct task_struct *p)
945 {
946 	return false;
947 }
948 #endif
949 #endif
950 
951 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
952 {
953 	struct wake_q_node *node = &task->wake_q;
954 
955 	/*
956 	 * Atomically grab the task, if ->wake_q is !nil already it means
957 	 * it's already queued (either by us or someone else) and will get the
958 	 * wakeup due to that.
959 	 *
960 	 * In order to ensure that a pending wakeup will observe our pending
961 	 * state, even in the failed case, an explicit smp_mb() must be used.
962 	 */
963 	smp_mb__before_atomic();
964 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
965 		return false;
966 
967 	/*
968 	 * The head is context local, there can be no concurrency.
969 	 */
970 	*head->lastp = node;
971 	head->lastp = &node->next;
972 	return true;
973 }
974 
975 /**
976  * wake_q_add() - queue a wakeup for 'later' waking.
977  * @head: the wake_q_head to add @task to
978  * @task: the task to queue for 'later' wakeup
979  *
980  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
981  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
982  * instantly.
983  *
984  * This function must be used as-if it were wake_up_process(); IOW the task
985  * must be ready to be woken at this location.
986  */
987 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
988 {
989 	if (__wake_q_add(head, task))
990 		get_task_struct(task);
991 }
992 
993 /**
994  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
995  * @head: the wake_q_head to add @task to
996  * @task: the task to queue for 'later' wakeup
997  *
998  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
999  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1000  * instantly.
1001  *
1002  * This function must be used as-if it were wake_up_process(); IOW the task
1003  * must be ready to be woken at this location.
1004  *
1005  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1006  * that already hold reference to @task can call the 'safe' version and trust
1007  * wake_q to do the right thing depending whether or not the @task is already
1008  * queued for wakeup.
1009  */
1010 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1011 {
1012 	if (!__wake_q_add(head, task))
1013 		put_task_struct(task);
1014 }
1015 
1016 void wake_up_q(struct wake_q_head *head)
1017 {
1018 	struct wake_q_node *node = head->first;
1019 
1020 	while (node != WAKE_Q_TAIL) {
1021 		struct task_struct *task;
1022 
1023 		task = container_of(node, struct task_struct, wake_q);
1024 		/* Task can safely be re-inserted now: */
1025 		node = node->next;
1026 		task->wake_q.next = NULL;
1027 
1028 		/*
1029 		 * wake_up_process() executes a full barrier, which pairs with
1030 		 * the queueing in wake_q_add() so as not to miss wakeups.
1031 		 */
1032 		wake_up_process(task);
1033 		put_task_struct(task);
1034 	}
1035 }
1036 
1037 /*
1038  * resched_curr - mark rq's current task 'to be rescheduled now'.
1039  *
1040  * On UP this means the setting of the need_resched flag, on SMP it
1041  * might also involve a cross-CPU call to trigger the scheduler on
1042  * the target CPU.
1043  */
1044 void resched_curr(struct rq *rq)
1045 {
1046 	struct task_struct *curr = rq->curr;
1047 	int cpu;
1048 
1049 	lockdep_assert_rq_held(rq);
1050 
1051 	if (test_tsk_need_resched(curr))
1052 		return;
1053 
1054 	cpu = cpu_of(rq);
1055 
1056 	if (cpu == smp_processor_id()) {
1057 		set_tsk_need_resched(curr);
1058 		set_preempt_need_resched();
1059 		return;
1060 	}
1061 
1062 	if (set_nr_and_not_polling(curr))
1063 		smp_send_reschedule(cpu);
1064 	else
1065 		trace_sched_wake_idle_without_ipi(cpu);
1066 }
1067 
1068 void resched_cpu(int cpu)
1069 {
1070 	struct rq *rq = cpu_rq(cpu);
1071 	unsigned long flags;
1072 
1073 	raw_spin_rq_lock_irqsave(rq, flags);
1074 	if (cpu_online(cpu) || cpu == smp_processor_id())
1075 		resched_curr(rq);
1076 	raw_spin_rq_unlock_irqrestore(rq, flags);
1077 }
1078 
1079 #ifdef CONFIG_SMP
1080 #ifdef CONFIG_NO_HZ_COMMON
1081 /*
1082  * In the semi idle case, use the nearest busy CPU for migrating timers
1083  * from an idle CPU.  This is good for power-savings.
1084  *
1085  * We don't do similar optimization for completely idle system, as
1086  * selecting an idle CPU will add more delays to the timers than intended
1087  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1088  */
1089 int get_nohz_timer_target(void)
1090 {
1091 	int i, cpu = smp_processor_id(), default_cpu = -1;
1092 	struct sched_domain *sd;
1093 	const struct cpumask *hk_mask;
1094 
1095 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1096 		if (!idle_cpu(cpu))
1097 			return cpu;
1098 		default_cpu = cpu;
1099 	}
1100 
1101 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1102 
1103 	rcu_read_lock();
1104 	for_each_domain(cpu, sd) {
1105 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1106 			if (cpu == i)
1107 				continue;
1108 
1109 			if (!idle_cpu(i)) {
1110 				cpu = i;
1111 				goto unlock;
1112 			}
1113 		}
1114 	}
1115 
1116 	if (default_cpu == -1)
1117 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1118 	cpu = default_cpu;
1119 unlock:
1120 	rcu_read_unlock();
1121 	return cpu;
1122 }
1123 
1124 /*
1125  * When add_timer_on() enqueues a timer into the timer wheel of an
1126  * idle CPU then this timer might expire before the next timer event
1127  * which is scheduled to wake up that CPU. In case of a completely
1128  * idle system the next event might even be infinite time into the
1129  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1130  * leaves the inner idle loop so the newly added timer is taken into
1131  * account when the CPU goes back to idle and evaluates the timer
1132  * wheel for the next timer event.
1133  */
1134 static void wake_up_idle_cpu(int cpu)
1135 {
1136 	struct rq *rq = cpu_rq(cpu);
1137 
1138 	if (cpu == smp_processor_id())
1139 		return;
1140 
1141 	if (set_nr_and_not_polling(rq->idle))
1142 		smp_send_reschedule(cpu);
1143 	else
1144 		trace_sched_wake_idle_without_ipi(cpu);
1145 }
1146 
1147 static bool wake_up_full_nohz_cpu(int cpu)
1148 {
1149 	/*
1150 	 * We just need the target to call irq_exit() and re-evaluate
1151 	 * the next tick. The nohz full kick at least implies that.
1152 	 * If needed we can still optimize that later with an
1153 	 * empty IRQ.
1154 	 */
1155 	if (cpu_is_offline(cpu))
1156 		return true;  /* Don't try to wake offline CPUs. */
1157 	if (tick_nohz_full_cpu(cpu)) {
1158 		if (cpu != smp_processor_id() ||
1159 		    tick_nohz_tick_stopped())
1160 			tick_nohz_full_kick_cpu(cpu);
1161 		return true;
1162 	}
1163 
1164 	return false;
1165 }
1166 
1167 /*
1168  * Wake up the specified CPU.  If the CPU is going offline, it is the
1169  * caller's responsibility to deal with the lost wakeup, for example,
1170  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1171  */
1172 void wake_up_nohz_cpu(int cpu)
1173 {
1174 	if (!wake_up_full_nohz_cpu(cpu))
1175 		wake_up_idle_cpu(cpu);
1176 }
1177 
1178 static void nohz_csd_func(void *info)
1179 {
1180 	struct rq *rq = info;
1181 	int cpu = cpu_of(rq);
1182 	unsigned int flags;
1183 
1184 	/*
1185 	 * Release the rq::nohz_csd.
1186 	 */
1187 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1188 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1189 
1190 	rq->idle_balance = idle_cpu(cpu);
1191 	if (rq->idle_balance && !need_resched()) {
1192 		rq->nohz_idle_balance = flags;
1193 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1194 	}
1195 }
1196 
1197 #endif /* CONFIG_NO_HZ_COMMON */
1198 
1199 #ifdef CONFIG_NO_HZ_FULL
1200 bool sched_can_stop_tick(struct rq *rq)
1201 {
1202 	int fifo_nr_running;
1203 
1204 	/* Deadline tasks, even if single, need the tick */
1205 	if (rq->dl.dl_nr_running)
1206 		return false;
1207 
1208 	/*
1209 	 * If there are more than one RR tasks, we need the tick to affect the
1210 	 * actual RR behaviour.
1211 	 */
1212 	if (rq->rt.rr_nr_running) {
1213 		if (rq->rt.rr_nr_running == 1)
1214 			return true;
1215 		else
1216 			return false;
1217 	}
1218 
1219 	/*
1220 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1221 	 * forced preemption between FIFO tasks.
1222 	 */
1223 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1224 	if (fifo_nr_running)
1225 		return true;
1226 
1227 	/*
1228 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1229 	 * if there's more than one we need the tick for involuntary
1230 	 * preemption.
1231 	 */
1232 	if (rq->nr_running > 1)
1233 		return false;
1234 
1235 	return true;
1236 }
1237 #endif /* CONFIG_NO_HZ_FULL */
1238 #endif /* CONFIG_SMP */
1239 
1240 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1241 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1242 /*
1243  * Iterate task_group tree rooted at *from, calling @down when first entering a
1244  * node and @up when leaving it for the final time.
1245  *
1246  * Caller must hold rcu_lock or sufficient equivalent.
1247  */
1248 int walk_tg_tree_from(struct task_group *from,
1249 			     tg_visitor down, tg_visitor up, void *data)
1250 {
1251 	struct task_group *parent, *child;
1252 	int ret;
1253 
1254 	parent = from;
1255 
1256 down:
1257 	ret = (*down)(parent, data);
1258 	if (ret)
1259 		goto out;
1260 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1261 		parent = child;
1262 		goto down;
1263 
1264 up:
1265 		continue;
1266 	}
1267 	ret = (*up)(parent, data);
1268 	if (ret || parent == from)
1269 		goto out;
1270 
1271 	child = parent;
1272 	parent = parent->parent;
1273 	if (parent)
1274 		goto up;
1275 out:
1276 	return ret;
1277 }
1278 
1279 int tg_nop(struct task_group *tg, void *data)
1280 {
1281 	return 0;
1282 }
1283 #endif
1284 
1285 static void set_load_weight(struct task_struct *p, bool update_load)
1286 {
1287 	int prio = p->static_prio - MAX_RT_PRIO;
1288 	struct load_weight *load = &p->se.load;
1289 
1290 	/*
1291 	 * SCHED_IDLE tasks get minimal weight:
1292 	 */
1293 	if (task_has_idle_policy(p)) {
1294 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1295 		load->inv_weight = WMULT_IDLEPRIO;
1296 		return;
1297 	}
1298 
1299 	/*
1300 	 * SCHED_OTHER tasks have to update their load when changing their
1301 	 * weight
1302 	 */
1303 	if (update_load && p->sched_class == &fair_sched_class) {
1304 		reweight_task(p, prio);
1305 	} else {
1306 		load->weight = scale_load(sched_prio_to_weight[prio]);
1307 		load->inv_weight = sched_prio_to_wmult[prio];
1308 	}
1309 }
1310 
1311 #ifdef CONFIG_UCLAMP_TASK
1312 /*
1313  * Serializes updates of utilization clamp values
1314  *
1315  * The (slow-path) user-space triggers utilization clamp value updates which
1316  * can require updates on (fast-path) scheduler's data structures used to
1317  * support enqueue/dequeue operations.
1318  * While the per-CPU rq lock protects fast-path update operations, user-space
1319  * requests are serialized using a mutex to reduce the risk of conflicting
1320  * updates or API abuses.
1321  */
1322 static DEFINE_MUTEX(uclamp_mutex);
1323 
1324 /* Max allowed minimum utilization */
1325 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1326 
1327 /* Max allowed maximum utilization */
1328 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1329 
1330 /*
1331  * By default RT tasks run at the maximum performance point/capacity of the
1332  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1333  * SCHED_CAPACITY_SCALE.
1334  *
1335  * This knob allows admins to change the default behavior when uclamp is being
1336  * used. In battery powered devices, particularly, running at the maximum
1337  * capacity and frequency will increase energy consumption and shorten the
1338  * battery life.
1339  *
1340  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1341  *
1342  * This knob will not override the system default sched_util_clamp_min defined
1343  * above.
1344  */
1345 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1346 
1347 /* All clamps are required to be less or equal than these values */
1348 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1349 
1350 /*
1351  * This static key is used to reduce the uclamp overhead in the fast path. It
1352  * primarily disables the call to uclamp_rq_{inc, dec}() in
1353  * enqueue/dequeue_task().
1354  *
1355  * This allows users to continue to enable uclamp in their kernel config with
1356  * minimum uclamp overhead in the fast path.
1357  *
1358  * As soon as userspace modifies any of the uclamp knobs, the static key is
1359  * enabled, since we have an actual users that make use of uclamp
1360  * functionality.
1361  *
1362  * The knobs that would enable this static key are:
1363  *
1364  *   * A task modifying its uclamp value with sched_setattr().
1365  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1366  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1367  */
1368 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1369 
1370 /* Integer rounded range for each bucket */
1371 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1372 
1373 #define for_each_clamp_id(clamp_id) \
1374 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1375 
1376 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1377 {
1378 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1379 }
1380 
1381 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1382 {
1383 	if (clamp_id == UCLAMP_MIN)
1384 		return 0;
1385 	return SCHED_CAPACITY_SCALE;
1386 }
1387 
1388 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1389 				 unsigned int value, bool user_defined)
1390 {
1391 	uc_se->value = value;
1392 	uc_se->bucket_id = uclamp_bucket_id(value);
1393 	uc_se->user_defined = user_defined;
1394 }
1395 
1396 static inline unsigned int
1397 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1398 		  unsigned int clamp_value)
1399 {
1400 	/*
1401 	 * Avoid blocked utilization pushing up the frequency when we go
1402 	 * idle (which drops the max-clamp) by retaining the last known
1403 	 * max-clamp.
1404 	 */
1405 	if (clamp_id == UCLAMP_MAX) {
1406 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1407 		return clamp_value;
1408 	}
1409 
1410 	return uclamp_none(UCLAMP_MIN);
1411 }
1412 
1413 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1414 				     unsigned int clamp_value)
1415 {
1416 	/* Reset max-clamp retention only on idle exit */
1417 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1418 		return;
1419 
1420 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1421 }
1422 
1423 static inline
1424 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1425 				   unsigned int clamp_value)
1426 {
1427 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1428 	int bucket_id = UCLAMP_BUCKETS - 1;
1429 
1430 	/*
1431 	 * Since both min and max clamps are max aggregated, find the
1432 	 * top most bucket with tasks in.
1433 	 */
1434 	for ( ; bucket_id >= 0; bucket_id--) {
1435 		if (!bucket[bucket_id].tasks)
1436 			continue;
1437 		return bucket[bucket_id].value;
1438 	}
1439 
1440 	/* No tasks -- default clamp values */
1441 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1442 }
1443 
1444 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1445 {
1446 	unsigned int default_util_min;
1447 	struct uclamp_se *uc_se;
1448 
1449 	lockdep_assert_held(&p->pi_lock);
1450 
1451 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1452 
1453 	/* Only sync if user didn't override the default */
1454 	if (uc_se->user_defined)
1455 		return;
1456 
1457 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1458 	uclamp_se_set(uc_se, default_util_min, false);
1459 }
1460 
1461 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1462 {
1463 	struct rq_flags rf;
1464 	struct rq *rq;
1465 
1466 	if (!rt_task(p))
1467 		return;
1468 
1469 	/* Protect updates to p->uclamp_* */
1470 	rq = task_rq_lock(p, &rf);
1471 	__uclamp_update_util_min_rt_default(p);
1472 	task_rq_unlock(rq, p, &rf);
1473 }
1474 
1475 static void uclamp_sync_util_min_rt_default(void)
1476 {
1477 	struct task_struct *g, *p;
1478 
1479 	/*
1480 	 * copy_process()			sysctl_uclamp
1481 	 *					  uclamp_min_rt = X;
1482 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1483 	 *   // link thread			  smp_mb__after_spinlock()
1484 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1485 	 *   sched_post_fork()			  for_each_process_thread()
1486 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1487 	 *
1488 	 * Ensures that either sched_post_fork() will observe the new
1489 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1490 	 * task.
1491 	 */
1492 	read_lock(&tasklist_lock);
1493 	smp_mb__after_spinlock();
1494 	read_unlock(&tasklist_lock);
1495 
1496 	rcu_read_lock();
1497 	for_each_process_thread(g, p)
1498 		uclamp_update_util_min_rt_default(p);
1499 	rcu_read_unlock();
1500 }
1501 
1502 static inline struct uclamp_se
1503 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1504 {
1505 	/* Copy by value as we could modify it */
1506 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1507 #ifdef CONFIG_UCLAMP_TASK_GROUP
1508 	unsigned int tg_min, tg_max, value;
1509 
1510 	/*
1511 	 * Tasks in autogroups or root task group will be
1512 	 * restricted by system defaults.
1513 	 */
1514 	if (task_group_is_autogroup(task_group(p)))
1515 		return uc_req;
1516 	if (task_group(p) == &root_task_group)
1517 		return uc_req;
1518 
1519 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1520 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1521 	value = uc_req.value;
1522 	value = clamp(value, tg_min, tg_max);
1523 	uclamp_se_set(&uc_req, value, false);
1524 #endif
1525 
1526 	return uc_req;
1527 }
1528 
1529 /*
1530  * The effective clamp bucket index of a task depends on, by increasing
1531  * priority:
1532  * - the task specific clamp value, when explicitly requested from userspace
1533  * - the task group effective clamp value, for tasks not either in the root
1534  *   group or in an autogroup
1535  * - the system default clamp value, defined by the sysadmin
1536  */
1537 static inline struct uclamp_se
1538 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1539 {
1540 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1541 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1542 
1543 	/* System default restrictions always apply */
1544 	if (unlikely(uc_req.value > uc_max.value))
1545 		return uc_max;
1546 
1547 	return uc_req;
1548 }
1549 
1550 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1551 {
1552 	struct uclamp_se uc_eff;
1553 
1554 	/* Task currently refcounted: use back-annotated (effective) value */
1555 	if (p->uclamp[clamp_id].active)
1556 		return (unsigned long)p->uclamp[clamp_id].value;
1557 
1558 	uc_eff = uclamp_eff_get(p, clamp_id);
1559 
1560 	return (unsigned long)uc_eff.value;
1561 }
1562 
1563 /*
1564  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1565  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1566  * updates the rq's clamp value if required.
1567  *
1568  * Tasks can have a task-specific value requested from user-space, track
1569  * within each bucket the maximum value for tasks refcounted in it.
1570  * This "local max aggregation" allows to track the exact "requested" value
1571  * for each bucket when all its RUNNABLE tasks require the same clamp.
1572  */
1573 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1574 				    enum uclamp_id clamp_id)
1575 {
1576 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1577 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1578 	struct uclamp_bucket *bucket;
1579 
1580 	lockdep_assert_rq_held(rq);
1581 
1582 	/* Update task effective clamp */
1583 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1584 
1585 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1586 	bucket->tasks++;
1587 	uc_se->active = true;
1588 
1589 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1590 
1591 	/*
1592 	 * Local max aggregation: rq buckets always track the max
1593 	 * "requested" clamp value of its RUNNABLE tasks.
1594 	 */
1595 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1596 		bucket->value = uc_se->value;
1597 
1598 	if (uc_se->value > READ_ONCE(uc_rq->value))
1599 		WRITE_ONCE(uc_rq->value, uc_se->value);
1600 }
1601 
1602 /*
1603  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1604  * is released. If this is the last task reference counting the rq's max
1605  * active clamp value, then the rq's clamp value is updated.
1606  *
1607  * Both refcounted tasks and rq's cached clamp values are expected to be
1608  * always valid. If it's detected they are not, as defensive programming,
1609  * enforce the expected state and warn.
1610  */
1611 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1612 				    enum uclamp_id clamp_id)
1613 {
1614 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1615 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1616 	struct uclamp_bucket *bucket;
1617 	unsigned int bkt_clamp;
1618 	unsigned int rq_clamp;
1619 
1620 	lockdep_assert_rq_held(rq);
1621 
1622 	/*
1623 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1624 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1625 	 *
1626 	 * In this case the uc_se->active flag should be false since no uclamp
1627 	 * accounting was performed at enqueue time and we can just return
1628 	 * here.
1629 	 *
1630 	 * Need to be careful of the following enqueue/dequeue ordering
1631 	 * problem too
1632 	 *
1633 	 *	enqueue(taskA)
1634 	 *	// sched_uclamp_used gets enabled
1635 	 *	enqueue(taskB)
1636 	 *	dequeue(taskA)
1637 	 *	// Must not decrement bucket->tasks here
1638 	 *	dequeue(taskB)
1639 	 *
1640 	 * where we could end up with stale data in uc_se and
1641 	 * bucket[uc_se->bucket_id].
1642 	 *
1643 	 * The following check here eliminates the possibility of such race.
1644 	 */
1645 	if (unlikely(!uc_se->active))
1646 		return;
1647 
1648 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1649 
1650 	SCHED_WARN_ON(!bucket->tasks);
1651 	if (likely(bucket->tasks))
1652 		bucket->tasks--;
1653 
1654 	uc_se->active = false;
1655 
1656 	/*
1657 	 * Keep "local max aggregation" simple and accept to (possibly)
1658 	 * overboost some RUNNABLE tasks in the same bucket.
1659 	 * The rq clamp bucket value is reset to its base value whenever
1660 	 * there are no more RUNNABLE tasks refcounting it.
1661 	 */
1662 	if (likely(bucket->tasks))
1663 		return;
1664 
1665 	rq_clamp = READ_ONCE(uc_rq->value);
1666 	/*
1667 	 * Defensive programming: this should never happen. If it happens,
1668 	 * e.g. due to future modification, warn and fixup the expected value.
1669 	 */
1670 	SCHED_WARN_ON(bucket->value > rq_clamp);
1671 	if (bucket->value >= rq_clamp) {
1672 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1673 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1674 	}
1675 }
1676 
1677 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1678 {
1679 	enum uclamp_id clamp_id;
1680 
1681 	/*
1682 	 * Avoid any overhead until uclamp is actually used by the userspace.
1683 	 *
1684 	 * The condition is constructed such that a NOP is generated when
1685 	 * sched_uclamp_used is disabled.
1686 	 */
1687 	if (!static_branch_unlikely(&sched_uclamp_used))
1688 		return;
1689 
1690 	if (unlikely(!p->sched_class->uclamp_enabled))
1691 		return;
1692 
1693 	for_each_clamp_id(clamp_id)
1694 		uclamp_rq_inc_id(rq, p, clamp_id);
1695 
1696 	/* Reset clamp idle holding when there is one RUNNABLE task */
1697 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1698 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1699 }
1700 
1701 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1702 {
1703 	enum uclamp_id clamp_id;
1704 
1705 	/*
1706 	 * Avoid any overhead until uclamp is actually used by the userspace.
1707 	 *
1708 	 * The condition is constructed such that a NOP is generated when
1709 	 * sched_uclamp_used is disabled.
1710 	 */
1711 	if (!static_branch_unlikely(&sched_uclamp_used))
1712 		return;
1713 
1714 	if (unlikely(!p->sched_class->uclamp_enabled))
1715 		return;
1716 
1717 	for_each_clamp_id(clamp_id)
1718 		uclamp_rq_dec_id(rq, p, clamp_id);
1719 }
1720 
1721 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1722 				      enum uclamp_id clamp_id)
1723 {
1724 	if (!p->uclamp[clamp_id].active)
1725 		return;
1726 
1727 	uclamp_rq_dec_id(rq, p, clamp_id);
1728 	uclamp_rq_inc_id(rq, p, clamp_id);
1729 
1730 	/*
1731 	 * Make sure to clear the idle flag if we've transiently reached 0
1732 	 * active tasks on rq.
1733 	 */
1734 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1735 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1736 }
1737 
1738 static inline void
1739 uclamp_update_active(struct task_struct *p)
1740 {
1741 	enum uclamp_id clamp_id;
1742 	struct rq_flags rf;
1743 	struct rq *rq;
1744 
1745 	/*
1746 	 * Lock the task and the rq where the task is (or was) queued.
1747 	 *
1748 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1749 	 * price to pay to safely serialize util_{min,max} updates with
1750 	 * enqueues, dequeues and migration operations.
1751 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1752 	 */
1753 	rq = task_rq_lock(p, &rf);
1754 
1755 	/*
1756 	 * Setting the clamp bucket is serialized by task_rq_lock().
1757 	 * If the task is not yet RUNNABLE and its task_struct is not
1758 	 * affecting a valid clamp bucket, the next time it's enqueued,
1759 	 * it will already see the updated clamp bucket value.
1760 	 */
1761 	for_each_clamp_id(clamp_id)
1762 		uclamp_rq_reinc_id(rq, p, clamp_id);
1763 
1764 	task_rq_unlock(rq, p, &rf);
1765 }
1766 
1767 #ifdef CONFIG_UCLAMP_TASK_GROUP
1768 static inline void
1769 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1770 {
1771 	struct css_task_iter it;
1772 	struct task_struct *p;
1773 
1774 	css_task_iter_start(css, 0, &it);
1775 	while ((p = css_task_iter_next(&it)))
1776 		uclamp_update_active(p);
1777 	css_task_iter_end(&it);
1778 }
1779 
1780 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1781 static void uclamp_update_root_tg(void)
1782 {
1783 	struct task_group *tg = &root_task_group;
1784 
1785 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1786 		      sysctl_sched_uclamp_util_min, false);
1787 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1788 		      sysctl_sched_uclamp_util_max, false);
1789 
1790 	rcu_read_lock();
1791 	cpu_util_update_eff(&root_task_group.css);
1792 	rcu_read_unlock();
1793 }
1794 #else
1795 static void uclamp_update_root_tg(void) { }
1796 #endif
1797 
1798 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1799 				void *buffer, size_t *lenp, loff_t *ppos)
1800 {
1801 	bool update_root_tg = false;
1802 	int old_min, old_max, old_min_rt;
1803 	int result;
1804 
1805 	mutex_lock(&uclamp_mutex);
1806 	old_min = sysctl_sched_uclamp_util_min;
1807 	old_max = sysctl_sched_uclamp_util_max;
1808 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1809 
1810 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1811 	if (result)
1812 		goto undo;
1813 	if (!write)
1814 		goto done;
1815 
1816 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1817 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1818 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1819 
1820 		result = -EINVAL;
1821 		goto undo;
1822 	}
1823 
1824 	if (old_min != sysctl_sched_uclamp_util_min) {
1825 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1826 			      sysctl_sched_uclamp_util_min, false);
1827 		update_root_tg = true;
1828 	}
1829 	if (old_max != sysctl_sched_uclamp_util_max) {
1830 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1831 			      sysctl_sched_uclamp_util_max, false);
1832 		update_root_tg = true;
1833 	}
1834 
1835 	if (update_root_tg) {
1836 		static_branch_enable(&sched_uclamp_used);
1837 		uclamp_update_root_tg();
1838 	}
1839 
1840 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1841 		static_branch_enable(&sched_uclamp_used);
1842 		uclamp_sync_util_min_rt_default();
1843 	}
1844 
1845 	/*
1846 	 * We update all RUNNABLE tasks only when task groups are in use.
1847 	 * Otherwise, keep it simple and do just a lazy update at each next
1848 	 * task enqueue time.
1849 	 */
1850 
1851 	goto done;
1852 
1853 undo:
1854 	sysctl_sched_uclamp_util_min = old_min;
1855 	sysctl_sched_uclamp_util_max = old_max;
1856 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1857 done:
1858 	mutex_unlock(&uclamp_mutex);
1859 
1860 	return result;
1861 }
1862 
1863 static int uclamp_validate(struct task_struct *p,
1864 			   const struct sched_attr *attr)
1865 {
1866 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1867 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1868 
1869 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1870 		util_min = attr->sched_util_min;
1871 
1872 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1873 			return -EINVAL;
1874 	}
1875 
1876 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1877 		util_max = attr->sched_util_max;
1878 
1879 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1880 			return -EINVAL;
1881 	}
1882 
1883 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1884 		return -EINVAL;
1885 
1886 	/*
1887 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1888 	 *
1889 	 * We need to do that here, because enabling static branches is a
1890 	 * blocking operation which obviously cannot be done while holding
1891 	 * scheduler locks.
1892 	 */
1893 	static_branch_enable(&sched_uclamp_used);
1894 
1895 	return 0;
1896 }
1897 
1898 static bool uclamp_reset(const struct sched_attr *attr,
1899 			 enum uclamp_id clamp_id,
1900 			 struct uclamp_se *uc_se)
1901 {
1902 	/* Reset on sched class change for a non user-defined clamp value. */
1903 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1904 	    !uc_se->user_defined)
1905 		return true;
1906 
1907 	/* Reset on sched_util_{min,max} == -1. */
1908 	if (clamp_id == UCLAMP_MIN &&
1909 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1910 	    attr->sched_util_min == -1) {
1911 		return true;
1912 	}
1913 
1914 	if (clamp_id == UCLAMP_MAX &&
1915 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1916 	    attr->sched_util_max == -1) {
1917 		return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 static void __setscheduler_uclamp(struct task_struct *p,
1924 				  const struct sched_attr *attr)
1925 {
1926 	enum uclamp_id clamp_id;
1927 
1928 	for_each_clamp_id(clamp_id) {
1929 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1930 		unsigned int value;
1931 
1932 		if (!uclamp_reset(attr, clamp_id, uc_se))
1933 			continue;
1934 
1935 		/*
1936 		 * RT by default have a 100% boost value that could be modified
1937 		 * at runtime.
1938 		 */
1939 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1940 			value = sysctl_sched_uclamp_util_min_rt_default;
1941 		else
1942 			value = uclamp_none(clamp_id);
1943 
1944 		uclamp_se_set(uc_se, value, false);
1945 
1946 	}
1947 
1948 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1949 		return;
1950 
1951 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1952 	    attr->sched_util_min != -1) {
1953 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1954 			      attr->sched_util_min, true);
1955 	}
1956 
1957 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1958 	    attr->sched_util_max != -1) {
1959 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1960 			      attr->sched_util_max, true);
1961 	}
1962 }
1963 
1964 static void uclamp_fork(struct task_struct *p)
1965 {
1966 	enum uclamp_id clamp_id;
1967 
1968 	/*
1969 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1970 	 * as the task is still at its early fork stages.
1971 	 */
1972 	for_each_clamp_id(clamp_id)
1973 		p->uclamp[clamp_id].active = false;
1974 
1975 	if (likely(!p->sched_reset_on_fork))
1976 		return;
1977 
1978 	for_each_clamp_id(clamp_id) {
1979 		uclamp_se_set(&p->uclamp_req[clamp_id],
1980 			      uclamp_none(clamp_id), false);
1981 	}
1982 }
1983 
1984 static void uclamp_post_fork(struct task_struct *p)
1985 {
1986 	uclamp_update_util_min_rt_default(p);
1987 }
1988 
1989 static void __init init_uclamp_rq(struct rq *rq)
1990 {
1991 	enum uclamp_id clamp_id;
1992 	struct uclamp_rq *uc_rq = rq->uclamp;
1993 
1994 	for_each_clamp_id(clamp_id) {
1995 		uc_rq[clamp_id] = (struct uclamp_rq) {
1996 			.value = uclamp_none(clamp_id)
1997 		};
1998 	}
1999 
2000 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2001 }
2002 
2003 static void __init init_uclamp(void)
2004 {
2005 	struct uclamp_se uc_max = {};
2006 	enum uclamp_id clamp_id;
2007 	int cpu;
2008 
2009 	for_each_possible_cpu(cpu)
2010 		init_uclamp_rq(cpu_rq(cpu));
2011 
2012 	for_each_clamp_id(clamp_id) {
2013 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2014 			      uclamp_none(clamp_id), false);
2015 	}
2016 
2017 	/* System defaults allow max clamp values for both indexes */
2018 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2019 	for_each_clamp_id(clamp_id) {
2020 		uclamp_default[clamp_id] = uc_max;
2021 #ifdef CONFIG_UCLAMP_TASK_GROUP
2022 		root_task_group.uclamp_req[clamp_id] = uc_max;
2023 		root_task_group.uclamp[clamp_id] = uc_max;
2024 #endif
2025 	}
2026 }
2027 
2028 #else /* CONFIG_UCLAMP_TASK */
2029 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2030 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2031 static inline int uclamp_validate(struct task_struct *p,
2032 				  const struct sched_attr *attr)
2033 {
2034 	return -EOPNOTSUPP;
2035 }
2036 static void __setscheduler_uclamp(struct task_struct *p,
2037 				  const struct sched_attr *attr) { }
2038 static inline void uclamp_fork(struct task_struct *p) { }
2039 static inline void uclamp_post_fork(struct task_struct *p) { }
2040 static inline void init_uclamp(void) { }
2041 #endif /* CONFIG_UCLAMP_TASK */
2042 
2043 bool sched_task_on_rq(struct task_struct *p)
2044 {
2045 	return task_on_rq_queued(p);
2046 }
2047 
2048 unsigned long get_wchan(struct task_struct *p)
2049 {
2050 	unsigned long ip = 0;
2051 	unsigned int state;
2052 
2053 	if (!p || p == current)
2054 		return 0;
2055 
2056 	/* Only get wchan if task is blocked and we can keep it that way. */
2057 	raw_spin_lock_irq(&p->pi_lock);
2058 	state = READ_ONCE(p->__state);
2059 	smp_rmb(); /* see try_to_wake_up() */
2060 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2061 		ip = __get_wchan(p);
2062 	raw_spin_unlock_irq(&p->pi_lock);
2063 
2064 	return ip;
2065 }
2066 
2067 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2068 {
2069 	if (!(flags & ENQUEUE_NOCLOCK))
2070 		update_rq_clock(rq);
2071 
2072 	if (!(flags & ENQUEUE_RESTORE)) {
2073 		sched_info_enqueue(rq, p);
2074 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2075 	}
2076 
2077 	uclamp_rq_inc(rq, p);
2078 	p->sched_class->enqueue_task(rq, p, flags);
2079 
2080 	if (sched_core_enabled(rq))
2081 		sched_core_enqueue(rq, p);
2082 }
2083 
2084 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2085 {
2086 	if (sched_core_enabled(rq))
2087 		sched_core_dequeue(rq, p, flags);
2088 
2089 	if (!(flags & DEQUEUE_NOCLOCK))
2090 		update_rq_clock(rq);
2091 
2092 	if (!(flags & DEQUEUE_SAVE)) {
2093 		sched_info_dequeue(rq, p);
2094 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2095 	}
2096 
2097 	uclamp_rq_dec(rq, p);
2098 	p->sched_class->dequeue_task(rq, p, flags);
2099 }
2100 
2101 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2102 {
2103 	enqueue_task(rq, p, flags);
2104 
2105 	p->on_rq = TASK_ON_RQ_QUEUED;
2106 }
2107 
2108 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2111 
2112 	dequeue_task(rq, p, flags);
2113 }
2114 
2115 static inline int __normal_prio(int policy, int rt_prio, int nice)
2116 {
2117 	int prio;
2118 
2119 	if (dl_policy(policy))
2120 		prio = MAX_DL_PRIO - 1;
2121 	else if (rt_policy(policy))
2122 		prio = MAX_RT_PRIO - 1 - rt_prio;
2123 	else
2124 		prio = NICE_TO_PRIO(nice);
2125 
2126 	return prio;
2127 }
2128 
2129 /*
2130  * Calculate the expected normal priority: i.e. priority
2131  * without taking RT-inheritance into account. Might be
2132  * boosted by interactivity modifiers. Changes upon fork,
2133  * setprio syscalls, and whenever the interactivity
2134  * estimator recalculates.
2135  */
2136 static inline int normal_prio(struct task_struct *p)
2137 {
2138 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2139 }
2140 
2141 /*
2142  * Calculate the current priority, i.e. the priority
2143  * taken into account by the scheduler. This value might
2144  * be boosted by RT tasks, or might be boosted by
2145  * interactivity modifiers. Will be RT if the task got
2146  * RT-boosted. If not then it returns p->normal_prio.
2147  */
2148 static int effective_prio(struct task_struct *p)
2149 {
2150 	p->normal_prio = normal_prio(p);
2151 	/*
2152 	 * If we are RT tasks or we were boosted to RT priority,
2153 	 * keep the priority unchanged. Otherwise, update priority
2154 	 * to the normal priority:
2155 	 */
2156 	if (!rt_prio(p->prio))
2157 		return p->normal_prio;
2158 	return p->prio;
2159 }
2160 
2161 /**
2162  * task_curr - is this task currently executing on a CPU?
2163  * @p: the task in question.
2164  *
2165  * Return: 1 if the task is currently executing. 0 otherwise.
2166  */
2167 inline int task_curr(const struct task_struct *p)
2168 {
2169 	return cpu_curr(task_cpu(p)) == p;
2170 }
2171 
2172 /*
2173  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2174  * use the balance_callback list if you want balancing.
2175  *
2176  * this means any call to check_class_changed() must be followed by a call to
2177  * balance_callback().
2178  */
2179 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2180 				       const struct sched_class *prev_class,
2181 				       int oldprio)
2182 {
2183 	if (prev_class != p->sched_class) {
2184 		if (prev_class->switched_from)
2185 			prev_class->switched_from(rq, p);
2186 
2187 		p->sched_class->switched_to(rq, p);
2188 	} else if (oldprio != p->prio || dl_task(p))
2189 		p->sched_class->prio_changed(rq, p, oldprio);
2190 }
2191 
2192 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2193 {
2194 	if (p->sched_class == rq->curr->sched_class)
2195 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2196 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2197 		resched_curr(rq);
2198 
2199 	/*
2200 	 * A queue event has occurred, and we're going to schedule.  In
2201 	 * this case, we can save a useless back to back clock update.
2202 	 */
2203 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2204 		rq_clock_skip_update(rq);
2205 }
2206 
2207 #ifdef CONFIG_SMP
2208 
2209 static void
2210 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2211 
2212 static int __set_cpus_allowed_ptr(struct task_struct *p,
2213 				  const struct cpumask *new_mask,
2214 				  u32 flags);
2215 
2216 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2217 {
2218 	if (likely(!p->migration_disabled))
2219 		return;
2220 
2221 	if (p->cpus_ptr != &p->cpus_mask)
2222 		return;
2223 
2224 	/*
2225 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2226 	 */
2227 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2228 }
2229 
2230 void migrate_disable(void)
2231 {
2232 	struct task_struct *p = current;
2233 
2234 	if (p->migration_disabled) {
2235 		p->migration_disabled++;
2236 		return;
2237 	}
2238 
2239 	preempt_disable();
2240 	this_rq()->nr_pinned++;
2241 	p->migration_disabled = 1;
2242 	preempt_enable();
2243 }
2244 EXPORT_SYMBOL_GPL(migrate_disable);
2245 
2246 void migrate_enable(void)
2247 {
2248 	struct task_struct *p = current;
2249 
2250 	if (p->migration_disabled > 1) {
2251 		p->migration_disabled--;
2252 		return;
2253 	}
2254 
2255 	if (WARN_ON_ONCE(!p->migration_disabled))
2256 		return;
2257 
2258 	/*
2259 	 * Ensure stop_task runs either before or after this, and that
2260 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2261 	 */
2262 	preempt_disable();
2263 	if (p->cpus_ptr != &p->cpus_mask)
2264 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2265 	/*
2266 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2267 	 * regular cpus_mask, otherwise things that race (eg.
2268 	 * select_fallback_rq) get confused.
2269 	 */
2270 	barrier();
2271 	p->migration_disabled = 0;
2272 	this_rq()->nr_pinned--;
2273 	preempt_enable();
2274 }
2275 EXPORT_SYMBOL_GPL(migrate_enable);
2276 
2277 static inline bool rq_has_pinned_tasks(struct rq *rq)
2278 {
2279 	return rq->nr_pinned;
2280 }
2281 
2282 /*
2283  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2284  * __set_cpus_allowed_ptr() and select_fallback_rq().
2285  */
2286 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2287 {
2288 	/* When not in the task's cpumask, no point in looking further. */
2289 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2290 		return false;
2291 
2292 	/* migrate_disabled() must be allowed to finish. */
2293 	if (is_migration_disabled(p))
2294 		return cpu_online(cpu);
2295 
2296 	/* Non kernel threads are not allowed during either online or offline. */
2297 	if (!(p->flags & PF_KTHREAD))
2298 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2299 
2300 	/* KTHREAD_IS_PER_CPU is always allowed. */
2301 	if (kthread_is_per_cpu(p))
2302 		return cpu_online(cpu);
2303 
2304 	/* Regular kernel threads don't get to stay during offline. */
2305 	if (cpu_dying(cpu))
2306 		return false;
2307 
2308 	/* But are allowed during online. */
2309 	return cpu_online(cpu);
2310 }
2311 
2312 /*
2313  * This is how migration works:
2314  *
2315  * 1) we invoke migration_cpu_stop() on the target CPU using
2316  *    stop_one_cpu().
2317  * 2) stopper starts to run (implicitly forcing the migrated thread
2318  *    off the CPU)
2319  * 3) it checks whether the migrated task is still in the wrong runqueue.
2320  * 4) if it's in the wrong runqueue then the migration thread removes
2321  *    it and puts it into the right queue.
2322  * 5) stopper completes and stop_one_cpu() returns and the migration
2323  *    is done.
2324  */
2325 
2326 /*
2327  * move_queued_task - move a queued task to new rq.
2328  *
2329  * Returns (locked) new rq. Old rq's lock is released.
2330  */
2331 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2332 				   struct task_struct *p, int new_cpu)
2333 {
2334 	lockdep_assert_rq_held(rq);
2335 
2336 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2337 	set_task_cpu(p, new_cpu);
2338 	rq_unlock(rq, rf);
2339 
2340 	rq = cpu_rq(new_cpu);
2341 
2342 	rq_lock(rq, rf);
2343 	BUG_ON(task_cpu(p) != new_cpu);
2344 	activate_task(rq, p, 0);
2345 	check_preempt_curr(rq, p, 0);
2346 
2347 	return rq;
2348 }
2349 
2350 struct migration_arg {
2351 	struct task_struct		*task;
2352 	int				dest_cpu;
2353 	struct set_affinity_pending	*pending;
2354 };
2355 
2356 /*
2357  * @refs: number of wait_for_completion()
2358  * @stop_pending: is @stop_work in use
2359  */
2360 struct set_affinity_pending {
2361 	refcount_t		refs;
2362 	unsigned int		stop_pending;
2363 	struct completion	done;
2364 	struct cpu_stop_work	stop_work;
2365 	struct migration_arg	arg;
2366 };
2367 
2368 /*
2369  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2370  * this because either it can't run here any more (set_cpus_allowed()
2371  * away from this CPU, or CPU going down), or because we're
2372  * attempting to rebalance this task on exec (sched_exec).
2373  *
2374  * So we race with normal scheduler movements, but that's OK, as long
2375  * as the task is no longer on this CPU.
2376  */
2377 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2378 				 struct task_struct *p, int dest_cpu)
2379 {
2380 	/* Affinity changed (again). */
2381 	if (!is_cpu_allowed(p, dest_cpu))
2382 		return rq;
2383 
2384 	update_rq_clock(rq);
2385 	rq = move_queued_task(rq, rf, p, dest_cpu);
2386 
2387 	return rq;
2388 }
2389 
2390 /*
2391  * migration_cpu_stop - this will be executed by a highprio stopper thread
2392  * and performs thread migration by bumping thread off CPU then
2393  * 'pushing' onto another runqueue.
2394  */
2395 static int migration_cpu_stop(void *data)
2396 {
2397 	struct migration_arg *arg = data;
2398 	struct set_affinity_pending *pending = arg->pending;
2399 	struct task_struct *p = arg->task;
2400 	struct rq *rq = this_rq();
2401 	bool complete = false;
2402 	struct rq_flags rf;
2403 
2404 	/*
2405 	 * The original target CPU might have gone down and we might
2406 	 * be on another CPU but it doesn't matter.
2407 	 */
2408 	local_irq_save(rf.flags);
2409 	/*
2410 	 * We need to explicitly wake pending tasks before running
2411 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2412 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2413 	 */
2414 	flush_smp_call_function_queue();
2415 
2416 	raw_spin_lock(&p->pi_lock);
2417 	rq_lock(rq, &rf);
2418 
2419 	/*
2420 	 * If we were passed a pending, then ->stop_pending was set, thus
2421 	 * p->migration_pending must have remained stable.
2422 	 */
2423 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2424 
2425 	/*
2426 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2427 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2428 	 * we're holding p->pi_lock.
2429 	 */
2430 	if (task_rq(p) == rq) {
2431 		if (is_migration_disabled(p))
2432 			goto out;
2433 
2434 		if (pending) {
2435 			p->migration_pending = NULL;
2436 			complete = true;
2437 
2438 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2439 				goto out;
2440 		}
2441 
2442 		if (task_on_rq_queued(p))
2443 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2444 		else
2445 			p->wake_cpu = arg->dest_cpu;
2446 
2447 		/*
2448 		 * XXX __migrate_task() can fail, at which point we might end
2449 		 * up running on a dodgy CPU, AFAICT this can only happen
2450 		 * during CPU hotplug, at which point we'll get pushed out
2451 		 * anyway, so it's probably not a big deal.
2452 		 */
2453 
2454 	} else if (pending) {
2455 		/*
2456 		 * This happens when we get migrated between migrate_enable()'s
2457 		 * preempt_enable() and scheduling the stopper task. At that
2458 		 * point we're a regular task again and not current anymore.
2459 		 *
2460 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2461 		 * more likely.
2462 		 */
2463 
2464 		/*
2465 		 * The task moved before the stopper got to run. We're holding
2466 		 * ->pi_lock, so the allowed mask is stable - if it got
2467 		 * somewhere allowed, we're done.
2468 		 */
2469 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2470 			p->migration_pending = NULL;
2471 			complete = true;
2472 			goto out;
2473 		}
2474 
2475 		/*
2476 		 * When migrate_enable() hits a rq mis-match we can't reliably
2477 		 * determine is_migration_disabled() and so have to chase after
2478 		 * it.
2479 		 */
2480 		WARN_ON_ONCE(!pending->stop_pending);
2481 		task_rq_unlock(rq, p, &rf);
2482 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2483 				    &pending->arg, &pending->stop_work);
2484 		return 0;
2485 	}
2486 out:
2487 	if (pending)
2488 		pending->stop_pending = false;
2489 	task_rq_unlock(rq, p, &rf);
2490 
2491 	if (complete)
2492 		complete_all(&pending->done);
2493 
2494 	return 0;
2495 }
2496 
2497 int push_cpu_stop(void *arg)
2498 {
2499 	struct rq *lowest_rq = NULL, *rq = this_rq();
2500 	struct task_struct *p = arg;
2501 
2502 	raw_spin_lock_irq(&p->pi_lock);
2503 	raw_spin_rq_lock(rq);
2504 
2505 	if (task_rq(p) != rq)
2506 		goto out_unlock;
2507 
2508 	if (is_migration_disabled(p)) {
2509 		p->migration_flags |= MDF_PUSH;
2510 		goto out_unlock;
2511 	}
2512 
2513 	p->migration_flags &= ~MDF_PUSH;
2514 
2515 	if (p->sched_class->find_lock_rq)
2516 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2517 
2518 	if (!lowest_rq)
2519 		goto out_unlock;
2520 
2521 	// XXX validate p is still the highest prio task
2522 	if (task_rq(p) == rq) {
2523 		deactivate_task(rq, p, 0);
2524 		set_task_cpu(p, lowest_rq->cpu);
2525 		activate_task(lowest_rq, p, 0);
2526 		resched_curr(lowest_rq);
2527 	}
2528 
2529 	double_unlock_balance(rq, lowest_rq);
2530 
2531 out_unlock:
2532 	rq->push_busy = false;
2533 	raw_spin_rq_unlock(rq);
2534 	raw_spin_unlock_irq(&p->pi_lock);
2535 
2536 	put_task_struct(p);
2537 	return 0;
2538 }
2539 
2540 /*
2541  * sched_class::set_cpus_allowed must do the below, but is not required to
2542  * actually call this function.
2543  */
2544 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2545 {
2546 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2547 		p->cpus_ptr = new_mask;
2548 		return;
2549 	}
2550 
2551 	cpumask_copy(&p->cpus_mask, new_mask);
2552 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2553 }
2554 
2555 static void
2556 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2557 {
2558 	struct rq *rq = task_rq(p);
2559 	bool queued, running;
2560 
2561 	/*
2562 	 * This here violates the locking rules for affinity, since we're only
2563 	 * supposed to change these variables while holding both rq->lock and
2564 	 * p->pi_lock.
2565 	 *
2566 	 * HOWEVER, it magically works, because ttwu() is the only code that
2567 	 * accesses these variables under p->pi_lock and only does so after
2568 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2569 	 * before finish_task().
2570 	 *
2571 	 * XXX do further audits, this smells like something putrid.
2572 	 */
2573 	if (flags & SCA_MIGRATE_DISABLE)
2574 		SCHED_WARN_ON(!p->on_cpu);
2575 	else
2576 		lockdep_assert_held(&p->pi_lock);
2577 
2578 	queued = task_on_rq_queued(p);
2579 	running = task_current(rq, p);
2580 
2581 	if (queued) {
2582 		/*
2583 		 * Because __kthread_bind() calls this on blocked tasks without
2584 		 * holding rq->lock.
2585 		 */
2586 		lockdep_assert_rq_held(rq);
2587 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2588 	}
2589 	if (running)
2590 		put_prev_task(rq, p);
2591 
2592 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2593 
2594 	if (queued)
2595 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2596 	if (running)
2597 		set_next_task(rq, p);
2598 }
2599 
2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601 {
2602 	__do_set_cpus_allowed(p, new_mask, 0);
2603 }
2604 
2605 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2606 		      int node)
2607 {
2608 	if (!src->user_cpus_ptr)
2609 		return 0;
2610 
2611 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2612 	if (!dst->user_cpus_ptr)
2613 		return -ENOMEM;
2614 
2615 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2616 	return 0;
2617 }
2618 
2619 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2620 {
2621 	struct cpumask *user_mask = NULL;
2622 
2623 	swap(p->user_cpus_ptr, user_mask);
2624 
2625 	return user_mask;
2626 }
2627 
2628 void release_user_cpus_ptr(struct task_struct *p)
2629 {
2630 	kfree(clear_user_cpus_ptr(p));
2631 }
2632 
2633 /*
2634  * This function is wildly self concurrent; here be dragons.
2635  *
2636  *
2637  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2638  * designated task is enqueued on an allowed CPU. If that task is currently
2639  * running, we have to kick it out using the CPU stopper.
2640  *
2641  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2642  * Consider:
2643  *
2644  *     Initial conditions: P0->cpus_mask = [0, 1]
2645  *
2646  *     P0@CPU0                  P1
2647  *
2648  *     migrate_disable();
2649  *     <preempted>
2650  *                              set_cpus_allowed_ptr(P0, [1]);
2651  *
2652  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2653  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2654  * This means we need the following scheme:
2655  *
2656  *     P0@CPU0                  P1
2657  *
2658  *     migrate_disable();
2659  *     <preempted>
2660  *                              set_cpus_allowed_ptr(P0, [1]);
2661  *                                <blocks>
2662  *     <resumes>
2663  *     migrate_enable();
2664  *       __set_cpus_allowed_ptr();
2665  *       <wakes local stopper>
2666  *                         `--> <woken on migration completion>
2667  *
2668  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2669  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2670  * task p are serialized by p->pi_lock, which we can leverage: the one that
2671  * should come into effect at the end of the Migrate-Disable region is the last
2672  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2673  * but we still need to properly signal those waiting tasks at the appropriate
2674  * moment.
2675  *
2676  * This is implemented using struct set_affinity_pending. The first
2677  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2678  * setup an instance of that struct and install it on the targeted task_struct.
2679  * Any and all further callers will reuse that instance. Those then wait for
2680  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2681  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2682  *
2683  *
2684  * (1) In the cases covered above. There is one more where the completion is
2685  * signaled within affine_move_task() itself: when a subsequent affinity request
2686  * occurs after the stopper bailed out due to the targeted task still being
2687  * Migrate-Disable. Consider:
2688  *
2689  *     Initial conditions: P0->cpus_mask = [0, 1]
2690  *
2691  *     CPU0		  P1				P2
2692  *     <P0>
2693  *       migrate_disable();
2694  *       <preempted>
2695  *                        set_cpus_allowed_ptr(P0, [1]);
2696  *                          <blocks>
2697  *     <migration/0>
2698  *       migration_cpu_stop()
2699  *         is_migration_disabled()
2700  *           <bails>
2701  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2702  *                                                         <signal completion>
2703  *                          <awakes>
2704  *
2705  * Note that the above is safe vs a concurrent migrate_enable(), as any
2706  * pending affinity completion is preceded by an uninstallation of
2707  * p->migration_pending done with p->pi_lock held.
2708  */
2709 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2710 			    int dest_cpu, unsigned int flags)
2711 {
2712 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2713 	bool stop_pending, complete = false;
2714 
2715 	/* Can the task run on the task's current CPU? If so, we're done */
2716 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2717 		struct task_struct *push_task = NULL;
2718 
2719 		if ((flags & SCA_MIGRATE_ENABLE) &&
2720 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2721 			rq->push_busy = true;
2722 			push_task = get_task_struct(p);
2723 		}
2724 
2725 		/*
2726 		 * If there are pending waiters, but no pending stop_work,
2727 		 * then complete now.
2728 		 */
2729 		pending = p->migration_pending;
2730 		if (pending && !pending->stop_pending) {
2731 			p->migration_pending = NULL;
2732 			complete = true;
2733 		}
2734 
2735 		task_rq_unlock(rq, p, rf);
2736 
2737 		if (push_task) {
2738 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2739 					    p, &rq->push_work);
2740 		}
2741 
2742 		if (complete)
2743 			complete_all(&pending->done);
2744 
2745 		return 0;
2746 	}
2747 
2748 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2749 		/* serialized by p->pi_lock */
2750 		if (!p->migration_pending) {
2751 			/* Install the request */
2752 			refcount_set(&my_pending.refs, 1);
2753 			init_completion(&my_pending.done);
2754 			my_pending.arg = (struct migration_arg) {
2755 				.task = p,
2756 				.dest_cpu = dest_cpu,
2757 				.pending = &my_pending,
2758 			};
2759 
2760 			p->migration_pending = &my_pending;
2761 		} else {
2762 			pending = p->migration_pending;
2763 			refcount_inc(&pending->refs);
2764 			/*
2765 			 * Affinity has changed, but we've already installed a
2766 			 * pending. migration_cpu_stop() *must* see this, else
2767 			 * we risk a completion of the pending despite having a
2768 			 * task on a disallowed CPU.
2769 			 *
2770 			 * Serialized by p->pi_lock, so this is safe.
2771 			 */
2772 			pending->arg.dest_cpu = dest_cpu;
2773 		}
2774 	}
2775 	pending = p->migration_pending;
2776 	/*
2777 	 * - !MIGRATE_ENABLE:
2778 	 *   we'll have installed a pending if there wasn't one already.
2779 	 *
2780 	 * - MIGRATE_ENABLE:
2781 	 *   we're here because the current CPU isn't matching anymore,
2782 	 *   the only way that can happen is because of a concurrent
2783 	 *   set_cpus_allowed_ptr() call, which should then still be
2784 	 *   pending completion.
2785 	 *
2786 	 * Either way, we really should have a @pending here.
2787 	 */
2788 	if (WARN_ON_ONCE(!pending)) {
2789 		task_rq_unlock(rq, p, rf);
2790 		return -EINVAL;
2791 	}
2792 
2793 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2794 		/*
2795 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2796 		 * anything else we cannot do is_migration_disabled(), punt
2797 		 * and have the stopper function handle it all race-free.
2798 		 */
2799 		stop_pending = pending->stop_pending;
2800 		if (!stop_pending)
2801 			pending->stop_pending = true;
2802 
2803 		if (flags & SCA_MIGRATE_ENABLE)
2804 			p->migration_flags &= ~MDF_PUSH;
2805 
2806 		task_rq_unlock(rq, p, rf);
2807 
2808 		if (!stop_pending) {
2809 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2810 					    &pending->arg, &pending->stop_work);
2811 		}
2812 
2813 		if (flags & SCA_MIGRATE_ENABLE)
2814 			return 0;
2815 	} else {
2816 
2817 		if (!is_migration_disabled(p)) {
2818 			if (task_on_rq_queued(p))
2819 				rq = move_queued_task(rq, rf, p, dest_cpu);
2820 
2821 			if (!pending->stop_pending) {
2822 				p->migration_pending = NULL;
2823 				complete = true;
2824 			}
2825 		}
2826 		task_rq_unlock(rq, p, rf);
2827 
2828 		if (complete)
2829 			complete_all(&pending->done);
2830 	}
2831 
2832 	wait_for_completion(&pending->done);
2833 
2834 	if (refcount_dec_and_test(&pending->refs))
2835 		wake_up_var(&pending->refs); /* No UaF, just an address */
2836 
2837 	/*
2838 	 * Block the original owner of &pending until all subsequent callers
2839 	 * have seen the completion and decremented the refcount
2840 	 */
2841 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2842 
2843 	/* ARGH */
2844 	WARN_ON_ONCE(my_pending.stop_pending);
2845 
2846 	return 0;
2847 }
2848 
2849 /*
2850  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2851  */
2852 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2853 					 const struct cpumask *new_mask,
2854 					 u32 flags,
2855 					 struct rq *rq,
2856 					 struct rq_flags *rf)
2857 	__releases(rq->lock)
2858 	__releases(p->pi_lock)
2859 {
2860 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2861 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2862 	bool kthread = p->flags & PF_KTHREAD;
2863 	struct cpumask *user_mask = NULL;
2864 	unsigned int dest_cpu;
2865 	int ret = 0;
2866 
2867 	update_rq_clock(rq);
2868 
2869 	if (kthread || is_migration_disabled(p)) {
2870 		/*
2871 		 * Kernel threads are allowed on online && !active CPUs,
2872 		 * however, during cpu-hot-unplug, even these might get pushed
2873 		 * away if not KTHREAD_IS_PER_CPU.
2874 		 *
2875 		 * Specifically, migration_disabled() tasks must not fail the
2876 		 * cpumask_any_and_distribute() pick below, esp. so on
2877 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2878 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2879 		 */
2880 		cpu_valid_mask = cpu_online_mask;
2881 	}
2882 
2883 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2884 		ret = -EINVAL;
2885 		goto out;
2886 	}
2887 
2888 	/*
2889 	 * Must re-check here, to close a race against __kthread_bind(),
2890 	 * sched_setaffinity() is not guaranteed to observe the flag.
2891 	 */
2892 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2893 		ret = -EINVAL;
2894 		goto out;
2895 	}
2896 
2897 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2898 		if (cpumask_equal(&p->cpus_mask, new_mask))
2899 			goto out;
2900 
2901 		if (WARN_ON_ONCE(p == current &&
2902 				 is_migration_disabled(p) &&
2903 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2904 			ret = -EBUSY;
2905 			goto out;
2906 		}
2907 	}
2908 
2909 	/*
2910 	 * Picking a ~random cpu helps in cases where we are changing affinity
2911 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2912 	 * immediately required to distribute the tasks within their new mask.
2913 	 */
2914 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2915 	if (dest_cpu >= nr_cpu_ids) {
2916 		ret = -EINVAL;
2917 		goto out;
2918 	}
2919 
2920 	__do_set_cpus_allowed(p, new_mask, flags);
2921 
2922 	if (flags & SCA_USER)
2923 		user_mask = clear_user_cpus_ptr(p);
2924 
2925 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2926 
2927 	kfree(user_mask);
2928 
2929 	return ret;
2930 
2931 out:
2932 	task_rq_unlock(rq, p, rf);
2933 
2934 	return ret;
2935 }
2936 
2937 /*
2938  * Change a given task's CPU affinity. Migrate the thread to a
2939  * proper CPU and schedule it away if the CPU it's executing on
2940  * is removed from the allowed bitmask.
2941  *
2942  * NOTE: the caller must have a valid reference to the task, the
2943  * task must not exit() & deallocate itself prematurely. The
2944  * call is not atomic; no spinlocks may be held.
2945  */
2946 static int __set_cpus_allowed_ptr(struct task_struct *p,
2947 				  const struct cpumask *new_mask, u32 flags)
2948 {
2949 	struct rq_flags rf;
2950 	struct rq *rq;
2951 
2952 	rq = task_rq_lock(p, &rf);
2953 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2954 }
2955 
2956 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2957 {
2958 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2959 }
2960 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2961 
2962 /*
2963  * Change a given task's CPU affinity to the intersection of its current
2964  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2965  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2966  * If the resulting mask is empty, leave the affinity unchanged and return
2967  * -EINVAL.
2968  */
2969 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2970 				     struct cpumask *new_mask,
2971 				     const struct cpumask *subset_mask)
2972 {
2973 	struct cpumask *user_mask = NULL;
2974 	struct rq_flags rf;
2975 	struct rq *rq;
2976 	int err;
2977 
2978 	if (!p->user_cpus_ptr) {
2979 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2980 		if (!user_mask)
2981 			return -ENOMEM;
2982 	}
2983 
2984 	rq = task_rq_lock(p, &rf);
2985 
2986 	/*
2987 	 * Forcefully restricting the affinity of a deadline task is
2988 	 * likely to cause problems, so fail and noisily override the
2989 	 * mask entirely.
2990 	 */
2991 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2992 		err = -EPERM;
2993 		goto err_unlock;
2994 	}
2995 
2996 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2997 		err = -EINVAL;
2998 		goto err_unlock;
2999 	}
3000 
3001 	/*
3002 	 * We're about to butcher the task affinity, so keep track of what
3003 	 * the user asked for in case we're able to restore it later on.
3004 	 */
3005 	if (user_mask) {
3006 		cpumask_copy(user_mask, p->cpus_ptr);
3007 		p->user_cpus_ptr = user_mask;
3008 	}
3009 
3010 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3011 
3012 err_unlock:
3013 	task_rq_unlock(rq, p, &rf);
3014 	kfree(user_mask);
3015 	return err;
3016 }
3017 
3018 /*
3019  * Restrict the CPU affinity of task @p so that it is a subset of
3020  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3021  * old affinity mask. If the resulting mask is empty, we warn and walk
3022  * up the cpuset hierarchy until we find a suitable mask.
3023  */
3024 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3025 {
3026 	cpumask_var_t new_mask;
3027 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3028 
3029 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3030 
3031 	/*
3032 	 * __migrate_task() can fail silently in the face of concurrent
3033 	 * offlining of the chosen destination CPU, so take the hotplug
3034 	 * lock to ensure that the migration succeeds.
3035 	 */
3036 	cpus_read_lock();
3037 	if (!cpumask_available(new_mask))
3038 		goto out_set_mask;
3039 
3040 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3041 		goto out_free_mask;
3042 
3043 	/*
3044 	 * We failed to find a valid subset of the affinity mask for the
3045 	 * task, so override it based on its cpuset hierarchy.
3046 	 */
3047 	cpuset_cpus_allowed(p, new_mask);
3048 	override_mask = new_mask;
3049 
3050 out_set_mask:
3051 	if (printk_ratelimit()) {
3052 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3053 				task_pid_nr(p), p->comm,
3054 				cpumask_pr_args(override_mask));
3055 	}
3056 
3057 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3058 out_free_mask:
3059 	cpus_read_unlock();
3060 	free_cpumask_var(new_mask);
3061 }
3062 
3063 static int
3064 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3065 
3066 /*
3067  * Restore the affinity of a task @p which was previously restricted by a
3068  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3069  * @p->user_cpus_ptr.
3070  *
3071  * It is the caller's responsibility to serialise this with any calls to
3072  * force_compatible_cpus_allowed_ptr(@p).
3073  */
3074 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3075 {
3076 	struct cpumask *user_mask = p->user_cpus_ptr;
3077 	unsigned long flags;
3078 
3079 	/*
3080 	 * Try to restore the old affinity mask. If this fails, then
3081 	 * we free the mask explicitly to avoid it being inherited across
3082 	 * a subsequent fork().
3083 	 */
3084 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3085 		return;
3086 
3087 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3088 	user_mask = clear_user_cpus_ptr(p);
3089 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3090 
3091 	kfree(user_mask);
3092 }
3093 
3094 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3095 {
3096 #ifdef CONFIG_SCHED_DEBUG
3097 	unsigned int state = READ_ONCE(p->__state);
3098 
3099 	/*
3100 	 * We should never call set_task_cpu() on a blocked task,
3101 	 * ttwu() will sort out the placement.
3102 	 */
3103 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3104 
3105 	/*
3106 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3107 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3108 	 * time relying on p->on_rq.
3109 	 */
3110 	WARN_ON_ONCE(state == TASK_RUNNING &&
3111 		     p->sched_class == &fair_sched_class &&
3112 		     (p->on_rq && !task_on_rq_migrating(p)));
3113 
3114 #ifdef CONFIG_LOCKDEP
3115 	/*
3116 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3117 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3118 	 *
3119 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3120 	 * see task_group().
3121 	 *
3122 	 * Furthermore, all task_rq users should acquire both locks, see
3123 	 * task_rq_lock().
3124 	 */
3125 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3126 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3127 #endif
3128 	/*
3129 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3130 	 */
3131 	WARN_ON_ONCE(!cpu_online(new_cpu));
3132 
3133 	WARN_ON_ONCE(is_migration_disabled(p));
3134 #endif
3135 
3136 	trace_sched_migrate_task(p, new_cpu);
3137 
3138 	if (task_cpu(p) != new_cpu) {
3139 		if (p->sched_class->migrate_task_rq)
3140 			p->sched_class->migrate_task_rq(p, new_cpu);
3141 		p->se.nr_migrations++;
3142 		rseq_migrate(p);
3143 		perf_event_task_migrate(p);
3144 	}
3145 
3146 	__set_task_cpu(p, new_cpu);
3147 }
3148 
3149 #ifdef CONFIG_NUMA_BALANCING
3150 static void __migrate_swap_task(struct task_struct *p, int cpu)
3151 {
3152 	if (task_on_rq_queued(p)) {
3153 		struct rq *src_rq, *dst_rq;
3154 		struct rq_flags srf, drf;
3155 
3156 		src_rq = task_rq(p);
3157 		dst_rq = cpu_rq(cpu);
3158 
3159 		rq_pin_lock(src_rq, &srf);
3160 		rq_pin_lock(dst_rq, &drf);
3161 
3162 		deactivate_task(src_rq, p, 0);
3163 		set_task_cpu(p, cpu);
3164 		activate_task(dst_rq, p, 0);
3165 		check_preempt_curr(dst_rq, p, 0);
3166 
3167 		rq_unpin_lock(dst_rq, &drf);
3168 		rq_unpin_lock(src_rq, &srf);
3169 
3170 	} else {
3171 		/*
3172 		 * Task isn't running anymore; make it appear like we migrated
3173 		 * it before it went to sleep. This means on wakeup we make the
3174 		 * previous CPU our target instead of where it really is.
3175 		 */
3176 		p->wake_cpu = cpu;
3177 	}
3178 }
3179 
3180 struct migration_swap_arg {
3181 	struct task_struct *src_task, *dst_task;
3182 	int src_cpu, dst_cpu;
3183 };
3184 
3185 static int migrate_swap_stop(void *data)
3186 {
3187 	struct migration_swap_arg *arg = data;
3188 	struct rq *src_rq, *dst_rq;
3189 	int ret = -EAGAIN;
3190 
3191 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3192 		return -EAGAIN;
3193 
3194 	src_rq = cpu_rq(arg->src_cpu);
3195 	dst_rq = cpu_rq(arg->dst_cpu);
3196 
3197 	double_raw_lock(&arg->src_task->pi_lock,
3198 			&arg->dst_task->pi_lock);
3199 	double_rq_lock(src_rq, dst_rq);
3200 
3201 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3202 		goto unlock;
3203 
3204 	if (task_cpu(arg->src_task) != arg->src_cpu)
3205 		goto unlock;
3206 
3207 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3208 		goto unlock;
3209 
3210 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3211 		goto unlock;
3212 
3213 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3214 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3215 
3216 	ret = 0;
3217 
3218 unlock:
3219 	double_rq_unlock(src_rq, dst_rq);
3220 	raw_spin_unlock(&arg->dst_task->pi_lock);
3221 	raw_spin_unlock(&arg->src_task->pi_lock);
3222 
3223 	return ret;
3224 }
3225 
3226 /*
3227  * Cross migrate two tasks
3228  */
3229 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3230 		int target_cpu, int curr_cpu)
3231 {
3232 	struct migration_swap_arg arg;
3233 	int ret = -EINVAL;
3234 
3235 	arg = (struct migration_swap_arg){
3236 		.src_task = cur,
3237 		.src_cpu = curr_cpu,
3238 		.dst_task = p,
3239 		.dst_cpu = target_cpu,
3240 	};
3241 
3242 	if (arg.src_cpu == arg.dst_cpu)
3243 		goto out;
3244 
3245 	/*
3246 	 * These three tests are all lockless; this is OK since all of them
3247 	 * will be re-checked with proper locks held further down the line.
3248 	 */
3249 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3250 		goto out;
3251 
3252 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3253 		goto out;
3254 
3255 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3256 		goto out;
3257 
3258 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3259 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3260 
3261 out:
3262 	return ret;
3263 }
3264 #endif /* CONFIG_NUMA_BALANCING */
3265 
3266 /*
3267  * wait_task_inactive - wait for a thread to unschedule.
3268  *
3269  * If @match_state is nonzero, it's the @p->state value just checked and
3270  * not expected to change.  If it changes, i.e. @p might have woken up,
3271  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3272  * we return a positive number (its total switch count).  If a second call
3273  * a short while later returns the same number, the caller can be sure that
3274  * @p has remained unscheduled the whole time.
3275  *
3276  * The caller must ensure that the task *will* unschedule sometime soon,
3277  * else this function might spin for a *long* time. This function can't
3278  * be called with interrupts off, or it may introduce deadlock with
3279  * smp_call_function() if an IPI is sent by the same process we are
3280  * waiting to become inactive.
3281  */
3282 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3283 {
3284 	int running, queued;
3285 	struct rq_flags rf;
3286 	unsigned long ncsw;
3287 	struct rq *rq;
3288 
3289 	for (;;) {
3290 		/*
3291 		 * We do the initial early heuristics without holding
3292 		 * any task-queue locks at all. We'll only try to get
3293 		 * the runqueue lock when things look like they will
3294 		 * work out!
3295 		 */
3296 		rq = task_rq(p);
3297 
3298 		/*
3299 		 * If the task is actively running on another CPU
3300 		 * still, just relax and busy-wait without holding
3301 		 * any locks.
3302 		 *
3303 		 * NOTE! Since we don't hold any locks, it's not
3304 		 * even sure that "rq" stays as the right runqueue!
3305 		 * But we don't care, since "task_running()" will
3306 		 * return false if the runqueue has changed and p
3307 		 * is actually now running somewhere else!
3308 		 */
3309 		while (task_running(rq, p)) {
3310 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3311 				return 0;
3312 			cpu_relax();
3313 		}
3314 
3315 		/*
3316 		 * Ok, time to look more closely! We need the rq
3317 		 * lock now, to be *sure*. If we're wrong, we'll
3318 		 * just go back and repeat.
3319 		 */
3320 		rq = task_rq_lock(p, &rf);
3321 		trace_sched_wait_task(p);
3322 		running = task_running(rq, p);
3323 		queued = task_on_rq_queued(p);
3324 		ncsw = 0;
3325 		if (!match_state || READ_ONCE(p->__state) == match_state)
3326 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3327 		task_rq_unlock(rq, p, &rf);
3328 
3329 		/*
3330 		 * If it changed from the expected state, bail out now.
3331 		 */
3332 		if (unlikely(!ncsw))
3333 			break;
3334 
3335 		/*
3336 		 * Was it really running after all now that we
3337 		 * checked with the proper locks actually held?
3338 		 *
3339 		 * Oops. Go back and try again..
3340 		 */
3341 		if (unlikely(running)) {
3342 			cpu_relax();
3343 			continue;
3344 		}
3345 
3346 		/*
3347 		 * It's not enough that it's not actively running,
3348 		 * it must be off the runqueue _entirely_, and not
3349 		 * preempted!
3350 		 *
3351 		 * So if it was still runnable (but just not actively
3352 		 * running right now), it's preempted, and we should
3353 		 * yield - it could be a while.
3354 		 */
3355 		if (unlikely(queued)) {
3356 			ktime_t to = NSEC_PER_SEC / HZ;
3357 
3358 			set_current_state(TASK_UNINTERRUPTIBLE);
3359 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3360 			continue;
3361 		}
3362 
3363 		/*
3364 		 * Ahh, all good. It wasn't running, and it wasn't
3365 		 * runnable, which means that it will never become
3366 		 * running in the future either. We're all done!
3367 		 */
3368 		break;
3369 	}
3370 
3371 	return ncsw;
3372 }
3373 
3374 /***
3375  * kick_process - kick a running thread to enter/exit the kernel
3376  * @p: the to-be-kicked thread
3377  *
3378  * Cause a process which is running on another CPU to enter
3379  * kernel-mode, without any delay. (to get signals handled.)
3380  *
3381  * NOTE: this function doesn't have to take the runqueue lock,
3382  * because all it wants to ensure is that the remote task enters
3383  * the kernel. If the IPI races and the task has been migrated
3384  * to another CPU then no harm is done and the purpose has been
3385  * achieved as well.
3386  */
3387 void kick_process(struct task_struct *p)
3388 {
3389 	int cpu;
3390 
3391 	preempt_disable();
3392 	cpu = task_cpu(p);
3393 	if ((cpu != smp_processor_id()) && task_curr(p))
3394 		smp_send_reschedule(cpu);
3395 	preempt_enable();
3396 }
3397 EXPORT_SYMBOL_GPL(kick_process);
3398 
3399 /*
3400  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3401  *
3402  * A few notes on cpu_active vs cpu_online:
3403  *
3404  *  - cpu_active must be a subset of cpu_online
3405  *
3406  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3407  *    see __set_cpus_allowed_ptr(). At this point the newly online
3408  *    CPU isn't yet part of the sched domains, and balancing will not
3409  *    see it.
3410  *
3411  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3412  *    avoid the load balancer to place new tasks on the to be removed
3413  *    CPU. Existing tasks will remain running there and will be taken
3414  *    off.
3415  *
3416  * This means that fallback selection must not select !active CPUs.
3417  * And can assume that any active CPU must be online. Conversely
3418  * select_task_rq() below may allow selection of !active CPUs in order
3419  * to satisfy the above rules.
3420  */
3421 static int select_fallback_rq(int cpu, struct task_struct *p)
3422 {
3423 	int nid = cpu_to_node(cpu);
3424 	const struct cpumask *nodemask = NULL;
3425 	enum { cpuset, possible, fail } state = cpuset;
3426 	int dest_cpu;
3427 
3428 	/*
3429 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3430 	 * will return -1. There is no CPU on the node, and we should
3431 	 * select the CPU on the other node.
3432 	 */
3433 	if (nid != -1) {
3434 		nodemask = cpumask_of_node(nid);
3435 
3436 		/* Look for allowed, online CPU in same node. */
3437 		for_each_cpu(dest_cpu, nodemask) {
3438 			if (is_cpu_allowed(p, dest_cpu))
3439 				return dest_cpu;
3440 		}
3441 	}
3442 
3443 	for (;;) {
3444 		/* Any allowed, online CPU? */
3445 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3446 			if (!is_cpu_allowed(p, dest_cpu))
3447 				continue;
3448 
3449 			goto out;
3450 		}
3451 
3452 		/* No more Mr. Nice Guy. */
3453 		switch (state) {
3454 		case cpuset:
3455 			if (cpuset_cpus_allowed_fallback(p)) {
3456 				state = possible;
3457 				break;
3458 			}
3459 			fallthrough;
3460 		case possible:
3461 			/*
3462 			 * XXX When called from select_task_rq() we only
3463 			 * hold p->pi_lock and again violate locking order.
3464 			 *
3465 			 * More yuck to audit.
3466 			 */
3467 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3468 			state = fail;
3469 			break;
3470 		case fail:
3471 			BUG();
3472 			break;
3473 		}
3474 	}
3475 
3476 out:
3477 	if (state != cpuset) {
3478 		/*
3479 		 * Don't tell them about moving exiting tasks or
3480 		 * kernel threads (both mm NULL), since they never
3481 		 * leave kernel.
3482 		 */
3483 		if (p->mm && printk_ratelimit()) {
3484 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3485 					task_pid_nr(p), p->comm, cpu);
3486 		}
3487 	}
3488 
3489 	return dest_cpu;
3490 }
3491 
3492 /*
3493  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3494  */
3495 static inline
3496 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3497 {
3498 	lockdep_assert_held(&p->pi_lock);
3499 
3500 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3501 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3502 	else
3503 		cpu = cpumask_any(p->cpus_ptr);
3504 
3505 	/*
3506 	 * In order not to call set_task_cpu() on a blocking task we need
3507 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3508 	 * CPU.
3509 	 *
3510 	 * Since this is common to all placement strategies, this lives here.
3511 	 *
3512 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3513 	 *   not worry about this generic constraint ]
3514 	 */
3515 	if (unlikely(!is_cpu_allowed(p, cpu)))
3516 		cpu = select_fallback_rq(task_cpu(p), p);
3517 
3518 	return cpu;
3519 }
3520 
3521 void sched_set_stop_task(int cpu, struct task_struct *stop)
3522 {
3523 	static struct lock_class_key stop_pi_lock;
3524 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3525 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3526 
3527 	if (stop) {
3528 		/*
3529 		 * Make it appear like a SCHED_FIFO task, its something
3530 		 * userspace knows about and won't get confused about.
3531 		 *
3532 		 * Also, it will make PI more or less work without too
3533 		 * much confusion -- but then, stop work should not
3534 		 * rely on PI working anyway.
3535 		 */
3536 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3537 
3538 		stop->sched_class = &stop_sched_class;
3539 
3540 		/*
3541 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3542 		 * adjust the effective priority of a task. As a result,
3543 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3544 		 * which can then trigger wakeups of the stop thread to push
3545 		 * around the current task.
3546 		 *
3547 		 * The stop task itself will never be part of the PI-chain, it
3548 		 * never blocks, therefore that ->pi_lock recursion is safe.
3549 		 * Tell lockdep about this by placing the stop->pi_lock in its
3550 		 * own class.
3551 		 */
3552 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3553 	}
3554 
3555 	cpu_rq(cpu)->stop = stop;
3556 
3557 	if (old_stop) {
3558 		/*
3559 		 * Reset it back to a normal scheduling class so that
3560 		 * it can die in pieces.
3561 		 */
3562 		old_stop->sched_class = &rt_sched_class;
3563 	}
3564 }
3565 
3566 #else /* CONFIG_SMP */
3567 
3568 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3569 					 const struct cpumask *new_mask,
3570 					 u32 flags)
3571 {
3572 	return set_cpus_allowed_ptr(p, new_mask);
3573 }
3574 
3575 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3576 
3577 static inline bool rq_has_pinned_tasks(struct rq *rq)
3578 {
3579 	return false;
3580 }
3581 
3582 #endif /* !CONFIG_SMP */
3583 
3584 static void
3585 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3586 {
3587 	struct rq *rq;
3588 
3589 	if (!schedstat_enabled())
3590 		return;
3591 
3592 	rq = this_rq();
3593 
3594 #ifdef CONFIG_SMP
3595 	if (cpu == rq->cpu) {
3596 		__schedstat_inc(rq->ttwu_local);
3597 		__schedstat_inc(p->stats.nr_wakeups_local);
3598 	} else {
3599 		struct sched_domain *sd;
3600 
3601 		__schedstat_inc(p->stats.nr_wakeups_remote);
3602 		rcu_read_lock();
3603 		for_each_domain(rq->cpu, sd) {
3604 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3605 				__schedstat_inc(sd->ttwu_wake_remote);
3606 				break;
3607 			}
3608 		}
3609 		rcu_read_unlock();
3610 	}
3611 
3612 	if (wake_flags & WF_MIGRATED)
3613 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3614 #endif /* CONFIG_SMP */
3615 
3616 	__schedstat_inc(rq->ttwu_count);
3617 	__schedstat_inc(p->stats.nr_wakeups);
3618 
3619 	if (wake_flags & WF_SYNC)
3620 		__schedstat_inc(p->stats.nr_wakeups_sync);
3621 }
3622 
3623 /*
3624  * Mark the task runnable and perform wakeup-preemption.
3625  */
3626 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3627 			   struct rq_flags *rf)
3628 {
3629 	check_preempt_curr(rq, p, wake_flags);
3630 	WRITE_ONCE(p->__state, TASK_RUNNING);
3631 	trace_sched_wakeup(p);
3632 
3633 #ifdef CONFIG_SMP
3634 	if (p->sched_class->task_woken) {
3635 		/*
3636 		 * Our task @p is fully woken up and running; so it's safe to
3637 		 * drop the rq->lock, hereafter rq is only used for statistics.
3638 		 */
3639 		rq_unpin_lock(rq, rf);
3640 		p->sched_class->task_woken(rq, p);
3641 		rq_repin_lock(rq, rf);
3642 	}
3643 
3644 	if (rq->idle_stamp) {
3645 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3646 		u64 max = 2*rq->max_idle_balance_cost;
3647 
3648 		update_avg(&rq->avg_idle, delta);
3649 
3650 		if (rq->avg_idle > max)
3651 			rq->avg_idle = max;
3652 
3653 		rq->wake_stamp = jiffies;
3654 		rq->wake_avg_idle = rq->avg_idle / 2;
3655 
3656 		rq->idle_stamp = 0;
3657 	}
3658 #endif
3659 }
3660 
3661 static void
3662 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3663 		 struct rq_flags *rf)
3664 {
3665 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3666 
3667 	lockdep_assert_rq_held(rq);
3668 
3669 	if (p->sched_contributes_to_load)
3670 		rq->nr_uninterruptible--;
3671 
3672 #ifdef CONFIG_SMP
3673 	if (wake_flags & WF_MIGRATED)
3674 		en_flags |= ENQUEUE_MIGRATED;
3675 	else
3676 #endif
3677 	if (p->in_iowait) {
3678 		delayacct_blkio_end(p);
3679 		atomic_dec(&task_rq(p)->nr_iowait);
3680 	}
3681 
3682 	activate_task(rq, p, en_flags);
3683 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3684 }
3685 
3686 /*
3687  * Consider @p being inside a wait loop:
3688  *
3689  *   for (;;) {
3690  *      set_current_state(TASK_UNINTERRUPTIBLE);
3691  *
3692  *      if (CONDITION)
3693  *         break;
3694  *
3695  *      schedule();
3696  *   }
3697  *   __set_current_state(TASK_RUNNING);
3698  *
3699  * between set_current_state() and schedule(). In this case @p is still
3700  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3701  * an atomic manner.
3702  *
3703  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3704  * then schedule() must still happen and p->state can be changed to
3705  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3706  * need to do a full wakeup with enqueue.
3707  *
3708  * Returns: %true when the wakeup is done,
3709  *          %false otherwise.
3710  */
3711 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3712 {
3713 	struct rq_flags rf;
3714 	struct rq *rq;
3715 	int ret = 0;
3716 
3717 	rq = __task_rq_lock(p, &rf);
3718 	if (task_on_rq_queued(p)) {
3719 		/* check_preempt_curr() may use rq clock */
3720 		update_rq_clock(rq);
3721 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3722 		ret = 1;
3723 	}
3724 	__task_rq_unlock(rq, &rf);
3725 
3726 	return ret;
3727 }
3728 
3729 #ifdef CONFIG_SMP
3730 void sched_ttwu_pending(void *arg)
3731 {
3732 	struct llist_node *llist = arg;
3733 	struct rq *rq = this_rq();
3734 	struct task_struct *p, *t;
3735 	struct rq_flags rf;
3736 
3737 	if (!llist)
3738 		return;
3739 
3740 	/*
3741 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3742 	 * Races such that false-negatives are possible, since they
3743 	 * are shorter lived that false-positives would be.
3744 	 */
3745 	WRITE_ONCE(rq->ttwu_pending, 0);
3746 
3747 	rq_lock_irqsave(rq, &rf);
3748 	update_rq_clock(rq);
3749 
3750 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3751 		if (WARN_ON_ONCE(p->on_cpu))
3752 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3753 
3754 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3755 			set_task_cpu(p, cpu_of(rq));
3756 
3757 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3758 	}
3759 
3760 	rq_unlock_irqrestore(rq, &rf);
3761 }
3762 
3763 void send_call_function_single_ipi(int cpu)
3764 {
3765 	struct rq *rq = cpu_rq(cpu);
3766 
3767 	if (!set_nr_if_polling(rq->idle))
3768 		arch_send_call_function_single_ipi(cpu);
3769 	else
3770 		trace_sched_wake_idle_without_ipi(cpu);
3771 }
3772 
3773 /*
3774  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3775  * necessary. The wakee CPU on receipt of the IPI will queue the task
3776  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3777  * of the wakeup instead of the waker.
3778  */
3779 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3780 {
3781 	struct rq *rq = cpu_rq(cpu);
3782 
3783 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3784 
3785 	WRITE_ONCE(rq->ttwu_pending, 1);
3786 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3787 }
3788 
3789 void wake_up_if_idle(int cpu)
3790 {
3791 	struct rq *rq = cpu_rq(cpu);
3792 	struct rq_flags rf;
3793 
3794 	rcu_read_lock();
3795 
3796 	if (!is_idle_task(rcu_dereference(rq->curr)))
3797 		goto out;
3798 
3799 	rq_lock_irqsave(rq, &rf);
3800 	if (is_idle_task(rq->curr))
3801 		resched_curr(rq);
3802 	/* Else CPU is not idle, do nothing here: */
3803 	rq_unlock_irqrestore(rq, &rf);
3804 
3805 out:
3806 	rcu_read_unlock();
3807 }
3808 
3809 bool cpus_share_cache(int this_cpu, int that_cpu)
3810 {
3811 	if (this_cpu == that_cpu)
3812 		return true;
3813 
3814 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3815 }
3816 
3817 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3818 {
3819 	/*
3820 	 * Do not complicate things with the async wake_list while the CPU is
3821 	 * in hotplug state.
3822 	 */
3823 	if (!cpu_active(cpu))
3824 		return false;
3825 
3826 	/*
3827 	 * If the CPU does not share cache, then queue the task on the
3828 	 * remote rqs wakelist to avoid accessing remote data.
3829 	 */
3830 	if (!cpus_share_cache(smp_processor_id(), cpu))
3831 		return true;
3832 
3833 	/*
3834 	 * If the task is descheduling and the only running task on the
3835 	 * CPU then use the wakelist to offload the task activation to
3836 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3837 	 * nr_running is checked to avoid unnecessary task stacking.
3838 	 */
3839 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3840 		return true;
3841 
3842 	return false;
3843 }
3844 
3845 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3846 {
3847 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3848 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3849 			return false;
3850 
3851 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3852 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3853 		return true;
3854 	}
3855 
3856 	return false;
3857 }
3858 
3859 #else /* !CONFIG_SMP */
3860 
3861 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3862 {
3863 	return false;
3864 }
3865 
3866 #endif /* CONFIG_SMP */
3867 
3868 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3869 {
3870 	struct rq *rq = cpu_rq(cpu);
3871 	struct rq_flags rf;
3872 
3873 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3874 		return;
3875 
3876 	rq_lock(rq, &rf);
3877 	update_rq_clock(rq);
3878 	ttwu_do_activate(rq, p, wake_flags, &rf);
3879 	rq_unlock(rq, &rf);
3880 }
3881 
3882 /*
3883  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3884  *
3885  * The caller holds p::pi_lock if p != current or has preemption
3886  * disabled when p == current.
3887  *
3888  * The rules of PREEMPT_RT saved_state:
3889  *
3890  *   The related locking code always holds p::pi_lock when updating
3891  *   p::saved_state, which means the code is fully serialized in both cases.
3892  *
3893  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3894  *   bits set. This allows to distinguish all wakeup scenarios.
3895  */
3896 static __always_inline
3897 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3898 {
3899 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3900 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3901 			     state != TASK_RTLOCK_WAIT);
3902 	}
3903 
3904 	if (READ_ONCE(p->__state) & state) {
3905 		*success = 1;
3906 		return true;
3907 	}
3908 
3909 #ifdef CONFIG_PREEMPT_RT
3910 	/*
3911 	 * Saved state preserves the task state across blocking on
3912 	 * an RT lock.  If the state matches, set p::saved_state to
3913 	 * TASK_RUNNING, but do not wake the task because it waits
3914 	 * for a lock wakeup. Also indicate success because from
3915 	 * the regular waker's point of view this has succeeded.
3916 	 *
3917 	 * After acquiring the lock the task will restore p::__state
3918 	 * from p::saved_state which ensures that the regular
3919 	 * wakeup is not lost. The restore will also set
3920 	 * p::saved_state to TASK_RUNNING so any further tests will
3921 	 * not result in false positives vs. @success
3922 	 */
3923 	if (p->saved_state & state) {
3924 		p->saved_state = TASK_RUNNING;
3925 		*success = 1;
3926 	}
3927 #endif
3928 	return false;
3929 }
3930 
3931 /*
3932  * Notes on Program-Order guarantees on SMP systems.
3933  *
3934  *  MIGRATION
3935  *
3936  * The basic program-order guarantee on SMP systems is that when a task [t]
3937  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3938  * execution on its new CPU [c1].
3939  *
3940  * For migration (of runnable tasks) this is provided by the following means:
3941  *
3942  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3943  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3944  *     rq(c1)->lock (if not at the same time, then in that order).
3945  *  C) LOCK of the rq(c1)->lock scheduling in task
3946  *
3947  * Release/acquire chaining guarantees that B happens after A and C after B.
3948  * Note: the CPU doing B need not be c0 or c1
3949  *
3950  * Example:
3951  *
3952  *   CPU0            CPU1            CPU2
3953  *
3954  *   LOCK rq(0)->lock
3955  *   sched-out X
3956  *   sched-in Y
3957  *   UNLOCK rq(0)->lock
3958  *
3959  *                                   LOCK rq(0)->lock // orders against CPU0
3960  *                                   dequeue X
3961  *                                   UNLOCK rq(0)->lock
3962  *
3963  *                                   LOCK rq(1)->lock
3964  *                                   enqueue X
3965  *                                   UNLOCK rq(1)->lock
3966  *
3967  *                   LOCK rq(1)->lock // orders against CPU2
3968  *                   sched-out Z
3969  *                   sched-in X
3970  *                   UNLOCK rq(1)->lock
3971  *
3972  *
3973  *  BLOCKING -- aka. SLEEP + WAKEUP
3974  *
3975  * For blocking we (obviously) need to provide the same guarantee as for
3976  * migration. However the means are completely different as there is no lock
3977  * chain to provide order. Instead we do:
3978  *
3979  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3980  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3981  *
3982  * Example:
3983  *
3984  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3985  *
3986  *   LOCK rq(0)->lock LOCK X->pi_lock
3987  *   dequeue X
3988  *   sched-out X
3989  *   smp_store_release(X->on_cpu, 0);
3990  *
3991  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3992  *                    X->state = WAKING
3993  *                    set_task_cpu(X,2)
3994  *
3995  *                    LOCK rq(2)->lock
3996  *                    enqueue X
3997  *                    X->state = RUNNING
3998  *                    UNLOCK rq(2)->lock
3999  *
4000  *                                          LOCK rq(2)->lock // orders against CPU1
4001  *                                          sched-out Z
4002  *                                          sched-in X
4003  *                                          UNLOCK rq(2)->lock
4004  *
4005  *                    UNLOCK X->pi_lock
4006  *   UNLOCK rq(0)->lock
4007  *
4008  *
4009  * However, for wakeups there is a second guarantee we must provide, namely we
4010  * must ensure that CONDITION=1 done by the caller can not be reordered with
4011  * accesses to the task state; see try_to_wake_up() and set_current_state().
4012  */
4013 
4014 /**
4015  * try_to_wake_up - wake up a thread
4016  * @p: the thread to be awakened
4017  * @state: the mask of task states that can be woken
4018  * @wake_flags: wake modifier flags (WF_*)
4019  *
4020  * Conceptually does:
4021  *
4022  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4023  *
4024  * If the task was not queued/runnable, also place it back on a runqueue.
4025  *
4026  * This function is atomic against schedule() which would dequeue the task.
4027  *
4028  * It issues a full memory barrier before accessing @p->state, see the comment
4029  * with set_current_state().
4030  *
4031  * Uses p->pi_lock to serialize against concurrent wake-ups.
4032  *
4033  * Relies on p->pi_lock stabilizing:
4034  *  - p->sched_class
4035  *  - p->cpus_ptr
4036  *  - p->sched_task_group
4037  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4038  *
4039  * Tries really hard to only take one task_rq(p)->lock for performance.
4040  * Takes rq->lock in:
4041  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4042  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4043  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4044  *
4045  * As a consequence we race really badly with just about everything. See the
4046  * many memory barriers and their comments for details.
4047  *
4048  * Return: %true if @p->state changes (an actual wakeup was done),
4049  *	   %false otherwise.
4050  */
4051 static int
4052 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4053 {
4054 	unsigned long flags;
4055 	int cpu, success = 0;
4056 
4057 	preempt_disable();
4058 	if (p == current) {
4059 		/*
4060 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4061 		 * == smp_processor_id()'. Together this means we can special
4062 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4063 		 * without taking any locks.
4064 		 *
4065 		 * In particular:
4066 		 *  - we rely on Program-Order guarantees for all the ordering,
4067 		 *  - we're serialized against set_special_state() by virtue of
4068 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4069 		 */
4070 		if (!ttwu_state_match(p, state, &success))
4071 			goto out;
4072 
4073 		trace_sched_waking(p);
4074 		WRITE_ONCE(p->__state, TASK_RUNNING);
4075 		trace_sched_wakeup(p);
4076 		goto out;
4077 	}
4078 
4079 	/*
4080 	 * If we are going to wake up a thread waiting for CONDITION we
4081 	 * need to ensure that CONDITION=1 done by the caller can not be
4082 	 * reordered with p->state check below. This pairs with smp_store_mb()
4083 	 * in set_current_state() that the waiting thread does.
4084 	 */
4085 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4086 	smp_mb__after_spinlock();
4087 	if (!ttwu_state_match(p, state, &success))
4088 		goto unlock;
4089 
4090 	trace_sched_waking(p);
4091 
4092 	/*
4093 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4094 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4095 	 * in smp_cond_load_acquire() below.
4096 	 *
4097 	 * sched_ttwu_pending()			try_to_wake_up()
4098 	 *   STORE p->on_rq = 1			  LOAD p->state
4099 	 *   UNLOCK rq->lock
4100 	 *
4101 	 * __schedule() (switch to task 'p')
4102 	 *   LOCK rq->lock			  smp_rmb();
4103 	 *   smp_mb__after_spinlock();
4104 	 *   UNLOCK rq->lock
4105 	 *
4106 	 * [task p]
4107 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4108 	 *
4109 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4110 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4111 	 *
4112 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4113 	 */
4114 	smp_rmb();
4115 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4116 		goto unlock;
4117 
4118 #ifdef CONFIG_SMP
4119 	/*
4120 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4121 	 * possible to, falsely, observe p->on_cpu == 0.
4122 	 *
4123 	 * One must be running (->on_cpu == 1) in order to remove oneself
4124 	 * from the runqueue.
4125 	 *
4126 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4127 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4128 	 *   UNLOCK rq->lock
4129 	 *
4130 	 * __schedule() (put 'p' to sleep)
4131 	 *   LOCK rq->lock			  smp_rmb();
4132 	 *   smp_mb__after_spinlock();
4133 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4134 	 *
4135 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4136 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4137 	 *
4138 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4139 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4140 	 * care about it's own p->state. See the comment in __schedule().
4141 	 */
4142 	smp_acquire__after_ctrl_dep();
4143 
4144 	/*
4145 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4146 	 * == 0), which means we need to do an enqueue, change p->state to
4147 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4148 	 * enqueue, such as ttwu_queue_wakelist().
4149 	 */
4150 	WRITE_ONCE(p->__state, TASK_WAKING);
4151 
4152 	/*
4153 	 * If the owning (remote) CPU is still in the middle of schedule() with
4154 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4155 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4156 	 * let the waker make forward progress. This is safe because IRQs are
4157 	 * disabled and the IPI will deliver after on_cpu is cleared.
4158 	 *
4159 	 * Ensure we load task_cpu(p) after p->on_cpu:
4160 	 *
4161 	 * set_task_cpu(p, cpu);
4162 	 *   STORE p->cpu = @cpu
4163 	 * __schedule() (switch to task 'p')
4164 	 *   LOCK rq->lock
4165 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4166 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4167 	 *
4168 	 * to ensure we observe the correct CPU on which the task is currently
4169 	 * scheduling.
4170 	 */
4171 	if (smp_load_acquire(&p->on_cpu) &&
4172 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4173 		goto unlock;
4174 
4175 	/*
4176 	 * If the owning (remote) CPU is still in the middle of schedule() with
4177 	 * this task as prev, wait until it's done referencing the task.
4178 	 *
4179 	 * Pairs with the smp_store_release() in finish_task().
4180 	 *
4181 	 * This ensures that tasks getting woken will be fully ordered against
4182 	 * their previous state and preserve Program Order.
4183 	 */
4184 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4185 
4186 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4187 	if (task_cpu(p) != cpu) {
4188 		if (p->in_iowait) {
4189 			delayacct_blkio_end(p);
4190 			atomic_dec(&task_rq(p)->nr_iowait);
4191 		}
4192 
4193 		wake_flags |= WF_MIGRATED;
4194 		psi_ttwu_dequeue(p);
4195 		set_task_cpu(p, cpu);
4196 	}
4197 #else
4198 	cpu = task_cpu(p);
4199 #endif /* CONFIG_SMP */
4200 
4201 	ttwu_queue(p, cpu, wake_flags);
4202 unlock:
4203 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4204 out:
4205 	if (success)
4206 		ttwu_stat(p, task_cpu(p), wake_flags);
4207 	preempt_enable();
4208 
4209 	return success;
4210 }
4211 
4212 /**
4213  * task_call_func - Invoke a function on task in fixed state
4214  * @p: Process for which the function is to be invoked, can be @current.
4215  * @func: Function to invoke.
4216  * @arg: Argument to function.
4217  *
4218  * Fix the task in it's current state by avoiding wakeups and or rq operations
4219  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4220  * to work out what the state is, if required.  Given that @func can be invoked
4221  * with a runqueue lock held, it had better be quite lightweight.
4222  *
4223  * Returns:
4224  *   Whatever @func returns
4225  */
4226 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4227 {
4228 	struct rq *rq = NULL;
4229 	unsigned int state;
4230 	struct rq_flags rf;
4231 	int ret;
4232 
4233 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4234 
4235 	state = READ_ONCE(p->__state);
4236 
4237 	/*
4238 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4239 	 * possible to, falsely, observe p->on_rq == 0.
4240 	 *
4241 	 * See try_to_wake_up() for a longer comment.
4242 	 */
4243 	smp_rmb();
4244 
4245 	/*
4246 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4247 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4248 	 * locks at the end, see ttwu_queue_wakelist().
4249 	 */
4250 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4251 		rq = __task_rq_lock(p, &rf);
4252 
4253 	/*
4254 	 * At this point the task is pinned; either:
4255 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4256 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4257 	 *  - queued, and we're holding off schedule	 (rq->lock)
4258 	 *  - running, and we're holding off de-schedule (rq->lock)
4259 	 *
4260 	 * The called function (@func) can use: task_curr(), p->on_rq and
4261 	 * p->__state to differentiate between these states.
4262 	 */
4263 	ret = func(p, arg);
4264 
4265 	if (rq)
4266 		rq_unlock(rq, &rf);
4267 
4268 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4269 	return ret;
4270 }
4271 
4272 /**
4273  * wake_up_process - Wake up a specific process
4274  * @p: The process to be woken up.
4275  *
4276  * Attempt to wake up the nominated process and move it to the set of runnable
4277  * processes.
4278  *
4279  * Return: 1 if the process was woken up, 0 if it was already running.
4280  *
4281  * This function executes a full memory barrier before accessing the task state.
4282  */
4283 int wake_up_process(struct task_struct *p)
4284 {
4285 	return try_to_wake_up(p, TASK_NORMAL, 0);
4286 }
4287 EXPORT_SYMBOL(wake_up_process);
4288 
4289 int wake_up_state(struct task_struct *p, unsigned int state)
4290 {
4291 	return try_to_wake_up(p, state, 0);
4292 }
4293 
4294 /*
4295  * Perform scheduler related setup for a newly forked process p.
4296  * p is forked by current.
4297  *
4298  * __sched_fork() is basic setup used by init_idle() too:
4299  */
4300 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4301 {
4302 	p->on_rq			= 0;
4303 
4304 	p->se.on_rq			= 0;
4305 	p->se.exec_start		= 0;
4306 	p->se.sum_exec_runtime		= 0;
4307 	p->se.prev_sum_exec_runtime	= 0;
4308 	p->se.nr_migrations		= 0;
4309 	p->se.vruntime			= 0;
4310 	INIT_LIST_HEAD(&p->se.group_node);
4311 
4312 #ifdef CONFIG_FAIR_GROUP_SCHED
4313 	p->se.cfs_rq			= NULL;
4314 #endif
4315 
4316 #ifdef CONFIG_SCHEDSTATS
4317 	/* Even if schedstat is disabled, there should not be garbage */
4318 	memset(&p->stats, 0, sizeof(p->stats));
4319 #endif
4320 
4321 	RB_CLEAR_NODE(&p->dl.rb_node);
4322 	init_dl_task_timer(&p->dl);
4323 	init_dl_inactive_task_timer(&p->dl);
4324 	__dl_clear_params(p);
4325 
4326 	INIT_LIST_HEAD(&p->rt.run_list);
4327 	p->rt.timeout		= 0;
4328 	p->rt.time_slice	= sched_rr_timeslice;
4329 	p->rt.on_rq		= 0;
4330 	p->rt.on_list		= 0;
4331 
4332 #ifdef CONFIG_PREEMPT_NOTIFIERS
4333 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4334 #endif
4335 
4336 #ifdef CONFIG_COMPACTION
4337 	p->capture_control = NULL;
4338 #endif
4339 	init_numa_balancing(clone_flags, p);
4340 #ifdef CONFIG_SMP
4341 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4342 	p->migration_pending = NULL;
4343 #endif
4344 }
4345 
4346 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4347 
4348 #ifdef CONFIG_NUMA_BALANCING
4349 
4350 int sysctl_numa_balancing_mode;
4351 
4352 static void __set_numabalancing_state(bool enabled)
4353 {
4354 	if (enabled)
4355 		static_branch_enable(&sched_numa_balancing);
4356 	else
4357 		static_branch_disable(&sched_numa_balancing);
4358 }
4359 
4360 void set_numabalancing_state(bool enabled)
4361 {
4362 	if (enabled)
4363 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4364 	else
4365 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4366 	__set_numabalancing_state(enabled);
4367 }
4368 
4369 #ifdef CONFIG_PROC_SYSCTL
4370 int sysctl_numa_balancing(struct ctl_table *table, int write,
4371 			  void *buffer, size_t *lenp, loff_t *ppos)
4372 {
4373 	struct ctl_table t;
4374 	int err;
4375 	int state = sysctl_numa_balancing_mode;
4376 
4377 	if (write && !capable(CAP_SYS_ADMIN))
4378 		return -EPERM;
4379 
4380 	t = *table;
4381 	t.data = &state;
4382 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4383 	if (err < 0)
4384 		return err;
4385 	if (write) {
4386 		sysctl_numa_balancing_mode = state;
4387 		__set_numabalancing_state(state);
4388 	}
4389 	return err;
4390 }
4391 #endif
4392 #endif
4393 
4394 #ifdef CONFIG_SCHEDSTATS
4395 
4396 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4397 
4398 static void set_schedstats(bool enabled)
4399 {
4400 	if (enabled)
4401 		static_branch_enable(&sched_schedstats);
4402 	else
4403 		static_branch_disable(&sched_schedstats);
4404 }
4405 
4406 void force_schedstat_enabled(void)
4407 {
4408 	if (!schedstat_enabled()) {
4409 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4410 		static_branch_enable(&sched_schedstats);
4411 	}
4412 }
4413 
4414 static int __init setup_schedstats(char *str)
4415 {
4416 	int ret = 0;
4417 	if (!str)
4418 		goto out;
4419 
4420 	if (!strcmp(str, "enable")) {
4421 		set_schedstats(true);
4422 		ret = 1;
4423 	} else if (!strcmp(str, "disable")) {
4424 		set_schedstats(false);
4425 		ret = 1;
4426 	}
4427 out:
4428 	if (!ret)
4429 		pr_warn("Unable to parse schedstats=\n");
4430 
4431 	return ret;
4432 }
4433 __setup("schedstats=", setup_schedstats);
4434 
4435 #ifdef CONFIG_PROC_SYSCTL
4436 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4437 		size_t *lenp, loff_t *ppos)
4438 {
4439 	struct ctl_table t;
4440 	int err;
4441 	int state = static_branch_likely(&sched_schedstats);
4442 
4443 	if (write && !capable(CAP_SYS_ADMIN))
4444 		return -EPERM;
4445 
4446 	t = *table;
4447 	t.data = &state;
4448 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4449 	if (err < 0)
4450 		return err;
4451 	if (write)
4452 		set_schedstats(state);
4453 	return err;
4454 }
4455 #endif /* CONFIG_PROC_SYSCTL */
4456 #endif /* CONFIG_SCHEDSTATS */
4457 
4458 /*
4459  * fork()/clone()-time setup:
4460  */
4461 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4462 {
4463 	__sched_fork(clone_flags, p);
4464 	/*
4465 	 * We mark the process as NEW here. This guarantees that
4466 	 * nobody will actually run it, and a signal or other external
4467 	 * event cannot wake it up and insert it on the runqueue either.
4468 	 */
4469 	p->__state = TASK_NEW;
4470 
4471 	/*
4472 	 * Make sure we do not leak PI boosting priority to the child.
4473 	 */
4474 	p->prio = current->normal_prio;
4475 
4476 	uclamp_fork(p);
4477 
4478 	/*
4479 	 * Revert to default priority/policy on fork if requested.
4480 	 */
4481 	if (unlikely(p->sched_reset_on_fork)) {
4482 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4483 			p->policy = SCHED_NORMAL;
4484 			p->static_prio = NICE_TO_PRIO(0);
4485 			p->rt_priority = 0;
4486 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4487 			p->static_prio = NICE_TO_PRIO(0);
4488 
4489 		p->prio = p->normal_prio = p->static_prio;
4490 		set_load_weight(p, false);
4491 
4492 		/*
4493 		 * We don't need the reset flag anymore after the fork. It has
4494 		 * fulfilled its duty:
4495 		 */
4496 		p->sched_reset_on_fork = 0;
4497 	}
4498 
4499 	if (dl_prio(p->prio))
4500 		return -EAGAIN;
4501 	else if (rt_prio(p->prio))
4502 		p->sched_class = &rt_sched_class;
4503 	else
4504 		p->sched_class = &fair_sched_class;
4505 
4506 	init_entity_runnable_average(&p->se);
4507 
4508 
4509 #ifdef CONFIG_SCHED_INFO
4510 	if (likely(sched_info_on()))
4511 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4512 #endif
4513 #if defined(CONFIG_SMP)
4514 	p->on_cpu = 0;
4515 #endif
4516 	init_task_preempt_count(p);
4517 #ifdef CONFIG_SMP
4518 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4519 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4520 #endif
4521 	return 0;
4522 }
4523 
4524 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4525 {
4526 	unsigned long flags;
4527 
4528 	/*
4529 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4530 	 * required yet, but lockdep gets upset if rules are violated.
4531 	 */
4532 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4533 #ifdef CONFIG_CGROUP_SCHED
4534 	if (1) {
4535 		struct task_group *tg;
4536 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4537 				  struct task_group, css);
4538 		tg = autogroup_task_group(p, tg);
4539 		p->sched_task_group = tg;
4540 	}
4541 #endif
4542 	rseq_migrate(p);
4543 	/*
4544 	 * We're setting the CPU for the first time, we don't migrate,
4545 	 * so use __set_task_cpu().
4546 	 */
4547 	__set_task_cpu(p, smp_processor_id());
4548 	if (p->sched_class->task_fork)
4549 		p->sched_class->task_fork(p);
4550 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4551 }
4552 
4553 void sched_post_fork(struct task_struct *p)
4554 {
4555 	uclamp_post_fork(p);
4556 }
4557 
4558 unsigned long to_ratio(u64 period, u64 runtime)
4559 {
4560 	if (runtime == RUNTIME_INF)
4561 		return BW_UNIT;
4562 
4563 	/*
4564 	 * Doing this here saves a lot of checks in all
4565 	 * the calling paths, and returning zero seems
4566 	 * safe for them anyway.
4567 	 */
4568 	if (period == 0)
4569 		return 0;
4570 
4571 	return div64_u64(runtime << BW_SHIFT, period);
4572 }
4573 
4574 /*
4575  * wake_up_new_task - wake up a newly created task for the first time.
4576  *
4577  * This function will do some initial scheduler statistics housekeeping
4578  * that must be done for every newly created context, then puts the task
4579  * on the runqueue and wakes it.
4580  */
4581 void wake_up_new_task(struct task_struct *p)
4582 {
4583 	struct rq_flags rf;
4584 	struct rq *rq;
4585 
4586 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4587 	WRITE_ONCE(p->__state, TASK_RUNNING);
4588 #ifdef CONFIG_SMP
4589 	/*
4590 	 * Fork balancing, do it here and not earlier because:
4591 	 *  - cpus_ptr can change in the fork path
4592 	 *  - any previously selected CPU might disappear through hotplug
4593 	 *
4594 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4595 	 * as we're not fully set-up yet.
4596 	 */
4597 	p->recent_used_cpu = task_cpu(p);
4598 	rseq_migrate(p);
4599 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4600 #endif
4601 	rq = __task_rq_lock(p, &rf);
4602 	update_rq_clock(rq);
4603 	post_init_entity_util_avg(p);
4604 
4605 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4606 	trace_sched_wakeup_new(p);
4607 	check_preempt_curr(rq, p, WF_FORK);
4608 #ifdef CONFIG_SMP
4609 	if (p->sched_class->task_woken) {
4610 		/*
4611 		 * Nothing relies on rq->lock after this, so it's fine to
4612 		 * drop it.
4613 		 */
4614 		rq_unpin_lock(rq, &rf);
4615 		p->sched_class->task_woken(rq, p);
4616 		rq_repin_lock(rq, &rf);
4617 	}
4618 #endif
4619 	task_rq_unlock(rq, p, &rf);
4620 }
4621 
4622 #ifdef CONFIG_PREEMPT_NOTIFIERS
4623 
4624 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4625 
4626 void preempt_notifier_inc(void)
4627 {
4628 	static_branch_inc(&preempt_notifier_key);
4629 }
4630 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4631 
4632 void preempt_notifier_dec(void)
4633 {
4634 	static_branch_dec(&preempt_notifier_key);
4635 }
4636 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4637 
4638 /**
4639  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4640  * @notifier: notifier struct to register
4641  */
4642 void preempt_notifier_register(struct preempt_notifier *notifier)
4643 {
4644 	if (!static_branch_unlikely(&preempt_notifier_key))
4645 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4646 
4647 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4648 }
4649 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4650 
4651 /**
4652  * preempt_notifier_unregister - no longer interested in preemption notifications
4653  * @notifier: notifier struct to unregister
4654  *
4655  * This is *not* safe to call from within a preemption notifier.
4656  */
4657 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4658 {
4659 	hlist_del(&notifier->link);
4660 }
4661 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4662 
4663 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4664 {
4665 	struct preempt_notifier *notifier;
4666 
4667 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4668 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4669 }
4670 
4671 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4672 {
4673 	if (static_branch_unlikely(&preempt_notifier_key))
4674 		__fire_sched_in_preempt_notifiers(curr);
4675 }
4676 
4677 static void
4678 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4679 				   struct task_struct *next)
4680 {
4681 	struct preempt_notifier *notifier;
4682 
4683 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4684 		notifier->ops->sched_out(notifier, next);
4685 }
4686 
4687 static __always_inline void
4688 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4689 				 struct task_struct *next)
4690 {
4691 	if (static_branch_unlikely(&preempt_notifier_key))
4692 		__fire_sched_out_preempt_notifiers(curr, next);
4693 }
4694 
4695 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4696 
4697 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4698 {
4699 }
4700 
4701 static inline void
4702 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4703 				 struct task_struct *next)
4704 {
4705 }
4706 
4707 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4708 
4709 static inline void prepare_task(struct task_struct *next)
4710 {
4711 #ifdef CONFIG_SMP
4712 	/*
4713 	 * Claim the task as running, we do this before switching to it
4714 	 * such that any running task will have this set.
4715 	 *
4716 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4717 	 */
4718 	WRITE_ONCE(next->on_cpu, 1);
4719 #endif
4720 }
4721 
4722 static inline void finish_task(struct task_struct *prev)
4723 {
4724 #ifdef CONFIG_SMP
4725 	/*
4726 	 * This must be the very last reference to @prev from this CPU. After
4727 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4728 	 * must ensure this doesn't happen until the switch is completely
4729 	 * finished.
4730 	 *
4731 	 * In particular, the load of prev->state in finish_task_switch() must
4732 	 * happen before this.
4733 	 *
4734 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4735 	 */
4736 	smp_store_release(&prev->on_cpu, 0);
4737 #endif
4738 }
4739 
4740 #ifdef CONFIG_SMP
4741 
4742 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4743 {
4744 	void (*func)(struct rq *rq);
4745 	struct callback_head *next;
4746 
4747 	lockdep_assert_rq_held(rq);
4748 
4749 	while (head) {
4750 		func = (void (*)(struct rq *))head->func;
4751 		next = head->next;
4752 		head->next = NULL;
4753 		head = next;
4754 
4755 		func(rq);
4756 	}
4757 }
4758 
4759 static void balance_push(struct rq *rq);
4760 
4761 struct callback_head balance_push_callback = {
4762 	.next = NULL,
4763 	.func = (void (*)(struct callback_head *))balance_push,
4764 };
4765 
4766 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4767 {
4768 	struct callback_head *head = rq->balance_callback;
4769 
4770 	lockdep_assert_rq_held(rq);
4771 	if (head)
4772 		rq->balance_callback = NULL;
4773 
4774 	return head;
4775 }
4776 
4777 static void __balance_callbacks(struct rq *rq)
4778 {
4779 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4780 }
4781 
4782 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4783 {
4784 	unsigned long flags;
4785 
4786 	if (unlikely(head)) {
4787 		raw_spin_rq_lock_irqsave(rq, flags);
4788 		do_balance_callbacks(rq, head);
4789 		raw_spin_rq_unlock_irqrestore(rq, flags);
4790 	}
4791 }
4792 
4793 #else
4794 
4795 static inline void __balance_callbacks(struct rq *rq)
4796 {
4797 }
4798 
4799 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4800 {
4801 	return NULL;
4802 }
4803 
4804 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4805 {
4806 }
4807 
4808 #endif
4809 
4810 static inline void
4811 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4812 {
4813 	/*
4814 	 * Since the runqueue lock will be released by the next
4815 	 * task (which is an invalid locking op but in the case
4816 	 * of the scheduler it's an obvious special-case), so we
4817 	 * do an early lockdep release here:
4818 	 */
4819 	rq_unpin_lock(rq, rf);
4820 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4821 #ifdef CONFIG_DEBUG_SPINLOCK
4822 	/* this is a valid case when another task releases the spinlock */
4823 	rq_lockp(rq)->owner = next;
4824 #endif
4825 }
4826 
4827 static inline void finish_lock_switch(struct rq *rq)
4828 {
4829 	/*
4830 	 * If we are tracking spinlock dependencies then we have to
4831 	 * fix up the runqueue lock - which gets 'carried over' from
4832 	 * prev into current:
4833 	 */
4834 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4835 	__balance_callbacks(rq);
4836 	raw_spin_rq_unlock_irq(rq);
4837 }
4838 
4839 /*
4840  * NOP if the arch has not defined these:
4841  */
4842 
4843 #ifndef prepare_arch_switch
4844 # define prepare_arch_switch(next)	do { } while (0)
4845 #endif
4846 
4847 #ifndef finish_arch_post_lock_switch
4848 # define finish_arch_post_lock_switch()	do { } while (0)
4849 #endif
4850 
4851 static inline void kmap_local_sched_out(void)
4852 {
4853 #ifdef CONFIG_KMAP_LOCAL
4854 	if (unlikely(current->kmap_ctrl.idx))
4855 		__kmap_local_sched_out();
4856 #endif
4857 }
4858 
4859 static inline void kmap_local_sched_in(void)
4860 {
4861 #ifdef CONFIG_KMAP_LOCAL
4862 	if (unlikely(current->kmap_ctrl.idx))
4863 		__kmap_local_sched_in();
4864 #endif
4865 }
4866 
4867 /**
4868  * prepare_task_switch - prepare to switch tasks
4869  * @rq: the runqueue preparing to switch
4870  * @prev: the current task that is being switched out
4871  * @next: the task we are going to switch to.
4872  *
4873  * This is called with the rq lock held and interrupts off. It must
4874  * be paired with a subsequent finish_task_switch after the context
4875  * switch.
4876  *
4877  * prepare_task_switch sets up locking and calls architecture specific
4878  * hooks.
4879  */
4880 static inline void
4881 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4882 		    struct task_struct *next)
4883 {
4884 	kcov_prepare_switch(prev);
4885 	sched_info_switch(rq, prev, next);
4886 	perf_event_task_sched_out(prev, next);
4887 	rseq_preempt(prev);
4888 	fire_sched_out_preempt_notifiers(prev, next);
4889 	kmap_local_sched_out();
4890 	prepare_task(next);
4891 	prepare_arch_switch(next);
4892 }
4893 
4894 /**
4895  * finish_task_switch - clean up after a task-switch
4896  * @prev: the thread we just switched away from.
4897  *
4898  * finish_task_switch must be called after the context switch, paired
4899  * with a prepare_task_switch call before the context switch.
4900  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4901  * and do any other architecture-specific cleanup actions.
4902  *
4903  * Note that we may have delayed dropping an mm in context_switch(). If
4904  * so, we finish that here outside of the runqueue lock. (Doing it
4905  * with the lock held can cause deadlocks; see schedule() for
4906  * details.)
4907  *
4908  * The context switch have flipped the stack from under us and restored the
4909  * local variables which were saved when this task called schedule() in the
4910  * past. prev == current is still correct but we need to recalculate this_rq
4911  * because prev may have moved to another CPU.
4912  */
4913 static struct rq *finish_task_switch(struct task_struct *prev)
4914 	__releases(rq->lock)
4915 {
4916 	struct rq *rq = this_rq();
4917 	struct mm_struct *mm = rq->prev_mm;
4918 	unsigned int prev_state;
4919 
4920 	/*
4921 	 * The previous task will have left us with a preempt_count of 2
4922 	 * because it left us after:
4923 	 *
4924 	 *	schedule()
4925 	 *	  preempt_disable();			// 1
4926 	 *	  __schedule()
4927 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4928 	 *
4929 	 * Also, see FORK_PREEMPT_COUNT.
4930 	 */
4931 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4932 		      "corrupted preempt_count: %s/%d/0x%x\n",
4933 		      current->comm, current->pid, preempt_count()))
4934 		preempt_count_set(FORK_PREEMPT_COUNT);
4935 
4936 	rq->prev_mm = NULL;
4937 
4938 	/*
4939 	 * A task struct has one reference for the use as "current".
4940 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4941 	 * schedule one last time. The schedule call will never return, and
4942 	 * the scheduled task must drop that reference.
4943 	 *
4944 	 * We must observe prev->state before clearing prev->on_cpu (in
4945 	 * finish_task), otherwise a concurrent wakeup can get prev
4946 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4947 	 * transition, resulting in a double drop.
4948 	 */
4949 	prev_state = READ_ONCE(prev->__state);
4950 	vtime_task_switch(prev);
4951 	perf_event_task_sched_in(prev, current);
4952 	finish_task(prev);
4953 	tick_nohz_task_switch();
4954 	finish_lock_switch(rq);
4955 	finish_arch_post_lock_switch();
4956 	kcov_finish_switch(current);
4957 	/*
4958 	 * kmap_local_sched_out() is invoked with rq::lock held and
4959 	 * interrupts disabled. There is no requirement for that, but the
4960 	 * sched out code does not have an interrupt enabled section.
4961 	 * Restoring the maps on sched in does not require interrupts being
4962 	 * disabled either.
4963 	 */
4964 	kmap_local_sched_in();
4965 
4966 	fire_sched_in_preempt_notifiers(current);
4967 	/*
4968 	 * When switching through a kernel thread, the loop in
4969 	 * membarrier_{private,global}_expedited() may have observed that
4970 	 * kernel thread and not issued an IPI. It is therefore possible to
4971 	 * schedule between user->kernel->user threads without passing though
4972 	 * switch_mm(). Membarrier requires a barrier after storing to
4973 	 * rq->curr, before returning to userspace, so provide them here:
4974 	 *
4975 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4976 	 *   provided by mmdrop(),
4977 	 * - a sync_core for SYNC_CORE.
4978 	 */
4979 	if (mm) {
4980 		membarrier_mm_sync_core_before_usermode(mm);
4981 		mmdrop_sched(mm);
4982 	}
4983 	if (unlikely(prev_state == TASK_DEAD)) {
4984 		if (prev->sched_class->task_dead)
4985 			prev->sched_class->task_dead(prev);
4986 
4987 		/* Task is done with its stack. */
4988 		put_task_stack(prev);
4989 
4990 		put_task_struct_rcu_user(prev);
4991 	}
4992 
4993 	return rq;
4994 }
4995 
4996 /**
4997  * schedule_tail - first thing a freshly forked thread must call.
4998  * @prev: the thread we just switched away from.
4999  */
5000 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5001 	__releases(rq->lock)
5002 {
5003 	/*
5004 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5005 	 * finish_task_switch() for details.
5006 	 *
5007 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5008 	 * and the preempt_enable() will end up enabling preemption (on
5009 	 * PREEMPT_COUNT kernels).
5010 	 */
5011 
5012 	finish_task_switch(prev);
5013 	preempt_enable();
5014 
5015 	if (current->set_child_tid)
5016 		put_user(task_pid_vnr(current), current->set_child_tid);
5017 
5018 	calculate_sigpending();
5019 }
5020 
5021 /*
5022  * context_switch - switch to the new MM and the new thread's register state.
5023  */
5024 static __always_inline struct rq *
5025 context_switch(struct rq *rq, struct task_struct *prev,
5026 	       struct task_struct *next, struct rq_flags *rf)
5027 {
5028 	prepare_task_switch(rq, prev, next);
5029 
5030 	/*
5031 	 * For paravirt, this is coupled with an exit in switch_to to
5032 	 * combine the page table reload and the switch backend into
5033 	 * one hypercall.
5034 	 */
5035 	arch_start_context_switch(prev);
5036 
5037 	/*
5038 	 * kernel -> kernel   lazy + transfer active
5039 	 *   user -> kernel   lazy + mmgrab() active
5040 	 *
5041 	 * kernel ->   user   switch + mmdrop() active
5042 	 *   user ->   user   switch
5043 	 */
5044 	if (!next->mm) {                                // to kernel
5045 		enter_lazy_tlb(prev->active_mm, next);
5046 
5047 		next->active_mm = prev->active_mm;
5048 		if (prev->mm)                           // from user
5049 			mmgrab(prev->active_mm);
5050 		else
5051 			prev->active_mm = NULL;
5052 	} else {                                        // to user
5053 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5054 		/*
5055 		 * sys_membarrier() requires an smp_mb() between setting
5056 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5057 		 *
5058 		 * The below provides this either through switch_mm(), or in
5059 		 * case 'prev->active_mm == next->mm' through
5060 		 * finish_task_switch()'s mmdrop().
5061 		 */
5062 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5063 
5064 		if (!prev->mm) {                        // from kernel
5065 			/* will mmdrop() in finish_task_switch(). */
5066 			rq->prev_mm = prev->active_mm;
5067 			prev->active_mm = NULL;
5068 		}
5069 	}
5070 
5071 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5072 
5073 	prepare_lock_switch(rq, next, rf);
5074 
5075 	/* Here we just switch the register state and the stack. */
5076 	switch_to(prev, next, prev);
5077 	barrier();
5078 
5079 	return finish_task_switch(prev);
5080 }
5081 
5082 /*
5083  * nr_running and nr_context_switches:
5084  *
5085  * externally visible scheduler statistics: current number of runnable
5086  * threads, total number of context switches performed since bootup.
5087  */
5088 unsigned int nr_running(void)
5089 {
5090 	unsigned int i, sum = 0;
5091 
5092 	for_each_online_cpu(i)
5093 		sum += cpu_rq(i)->nr_running;
5094 
5095 	return sum;
5096 }
5097 
5098 /*
5099  * Check if only the current task is running on the CPU.
5100  *
5101  * Caution: this function does not check that the caller has disabled
5102  * preemption, thus the result might have a time-of-check-to-time-of-use
5103  * race.  The caller is responsible to use it correctly, for example:
5104  *
5105  * - from a non-preemptible section (of course)
5106  *
5107  * - from a thread that is bound to a single CPU
5108  *
5109  * - in a loop with very short iterations (e.g. a polling loop)
5110  */
5111 bool single_task_running(void)
5112 {
5113 	return raw_rq()->nr_running == 1;
5114 }
5115 EXPORT_SYMBOL(single_task_running);
5116 
5117 unsigned long long nr_context_switches(void)
5118 {
5119 	int i;
5120 	unsigned long long sum = 0;
5121 
5122 	for_each_possible_cpu(i)
5123 		sum += cpu_rq(i)->nr_switches;
5124 
5125 	return sum;
5126 }
5127 
5128 /*
5129  * Consumers of these two interfaces, like for example the cpuidle menu
5130  * governor, are using nonsensical data. Preferring shallow idle state selection
5131  * for a CPU that has IO-wait which might not even end up running the task when
5132  * it does become runnable.
5133  */
5134 
5135 unsigned int nr_iowait_cpu(int cpu)
5136 {
5137 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5138 }
5139 
5140 /*
5141  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5142  *
5143  * The idea behind IO-wait account is to account the idle time that we could
5144  * have spend running if it were not for IO. That is, if we were to improve the
5145  * storage performance, we'd have a proportional reduction in IO-wait time.
5146  *
5147  * This all works nicely on UP, where, when a task blocks on IO, we account
5148  * idle time as IO-wait, because if the storage were faster, it could've been
5149  * running and we'd not be idle.
5150  *
5151  * This has been extended to SMP, by doing the same for each CPU. This however
5152  * is broken.
5153  *
5154  * Imagine for instance the case where two tasks block on one CPU, only the one
5155  * CPU will have IO-wait accounted, while the other has regular idle. Even
5156  * though, if the storage were faster, both could've ran at the same time,
5157  * utilising both CPUs.
5158  *
5159  * This means, that when looking globally, the current IO-wait accounting on
5160  * SMP is a lower bound, by reason of under accounting.
5161  *
5162  * Worse, since the numbers are provided per CPU, they are sometimes
5163  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5164  * associated with any one particular CPU, it can wake to another CPU than it
5165  * blocked on. This means the per CPU IO-wait number is meaningless.
5166  *
5167  * Task CPU affinities can make all that even more 'interesting'.
5168  */
5169 
5170 unsigned int nr_iowait(void)
5171 {
5172 	unsigned int i, sum = 0;
5173 
5174 	for_each_possible_cpu(i)
5175 		sum += nr_iowait_cpu(i);
5176 
5177 	return sum;
5178 }
5179 
5180 #ifdef CONFIG_SMP
5181 
5182 /*
5183  * sched_exec - execve() is a valuable balancing opportunity, because at
5184  * this point the task has the smallest effective memory and cache footprint.
5185  */
5186 void sched_exec(void)
5187 {
5188 	struct task_struct *p = current;
5189 	unsigned long flags;
5190 	int dest_cpu;
5191 
5192 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5193 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5194 	if (dest_cpu == smp_processor_id())
5195 		goto unlock;
5196 
5197 	if (likely(cpu_active(dest_cpu))) {
5198 		struct migration_arg arg = { p, dest_cpu };
5199 
5200 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5201 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5202 		return;
5203 	}
5204 unlock:
5205 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5206 }
5207 
5208 #endif
5209 
5210 DEFINE_PER_CPU(struct kernel_stat, kstat);
5211 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5212 
5213 EXPORT_PER_CPU_SYMBOL(kstat);
5214 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5215 
5216 /*
5217  * The function fair_sched_class.update_curr accesses the struct curr
5218  * and its field curr->exec_start; when called from task_sched_runtime(),
5219  * we observe a high rate of cache misses in practice.
5220  * Prefetching this data results in improved performance.
5221  */
5222 static inline void prefetch_curr_exec_start(struct task_struct *p)
5223 {
5224 #ifdef CONFIG_FAIR_GROUP_SCHED
5225 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5226 #else
5227 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5228 #endif
5229 	prefetch(curr);
5230 	prefetch(&curr->exec_start);
5231 }
5232 
5233 /*
5234  * Return accounted runtime for the task.
5235  * In case the task is currently running, return the runtime plus current's
5236  * pending runtime that have not been accounted yet.
5237  */
5238 unsigned long long task_sched_runtime(struct task_struct *p)
5239 {
5240 	struct rq_flags rf;
5241 	struct rq *rq;
5242 	u64 ns;
5243 
5244 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5245 	/*
5246 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5247 	 * So we have a optimization chance when the task's delta_exec is 0.
5248 	 * Reading ->on_cpu is racy, but this is ok.
5249 	 *
5250 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5251 	 * If we race with it entering CPU, unaccounted time is 0. This is
5252 	 * indistinguishable from the read occurring a few cycles earlier.
5253 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5254 	 * been accounted, so we're correct here as well.
5255 	 */
5256 	if (!p->on_cpu || !task_on_rq_queued(p))
5257 		return p->se.sum_exec_runtime;
5258 #endif
5259 
5260 	rq = task_rq_lock(p, &rf);
5261 	/*
5262 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5263 	 * project cycles that may never be accounted to this
5264 	 * thread, breaking clock_gettime().
5265 	 */
5266 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5267 		prefetch_curr_exec_start(p);
5268 		update_rq_clock(rq);
5269 		p->sched_class->update_curr(rq);
5270 	}
5271 	ns = p->se.sum_exec_runtime;
5272 	task_rq_unlock(rq, p, &rf);
5273 
5274 	return ns;
5275 }
5276 
5277 #ifdef CONFIG_SCHED_DEBUG
5278 static u64 cpu_resched_latency(struct rq *rq)
5279 {
5280 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5281 	u64 resched_latency, now = rq_clock(rq);
5282 	static bool warned_once;
5283 
5284 	if (sysctl_resched_latency_warn_once && warned_once)
5285 		return 0;
5286 
5287 	if (!need_resched() || !latency_warn_ms)
5288 		return 0;
5289 
5290 	if (system_state == SYSTEM_BOOTING)
5291 		return 0;
5292 
5293 	if (!rq->last_seen_need_resched_ns) {
5294 		rq->last_seen_need_resched_ns = now;
5295 		rq->ticks_without_resched = 0;
5296 		return 0;
5297 	}
5298 
5299 	rq->ticks_without_resched++;
5300 	resched_latency = now - rq->last_seen_need_resched_ns;
5301 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5302 		return 0;
5303 
5304 	warned_once = true;
5305 
5306 	return resched_latency;
5307 }
5308 
5309 static int __init setup_resched_latency_warn_ms(char *str)
5310 {
5311 	long val;
5312 
5313 	if ((kstrtol(str, 0, &val))) {
5314 		pr_warn("Unable to set resched_latency_warn_ms\n");
5315 		return 1;
5316 	}
5317 
5318 	sysctl_resched_latency_warn_ms = val;
5319 	return 1;
5320 }
5321 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5322 #else
5323 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5324 #endif /* CONFIG_SCHED_DEBUG */
5325 
5326 /*
5327  * This function gets called by the timer code, with HZ frequency.
5328  * We call it with interrupts disabled.
5329  */
5330 void scheduler_tick(void)
5331 {
5332 	int cpu = smp_processor_id();
5333 	struct rq *rq = cpu_rq(cpu);
5334 	struct task_struct *curr = rq->curr;
5335 	struct rq_flags rf;
5336 	unsigned long thermal_pressure;
5337 	u64 resched_latency;
5338 
5339 	arch_scale_freq_tick();
5340 	sched_clock_tick();
5341 
5342 	rq_lock(rq, &rf);
5343 
5344 	update_rq_clock(rq);
5345 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5346 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5347 	curr->sched_class->task_tick(rq, curr, 0);
5348 	if (sched_feat(LATENCY_WARN))
5349 		resched_latency = cpu_resched_latency(rq);
5350 	calc_global_load_tick(rq);
5351 	sched_core_tick(rq);
5352 
5353 	rq_unlock(rq, &rf);
5354 
5355 	if (sched_feat(LATENCY_WARN) && resched_latency)
5356 		resched_latency_warn(cpu, resched_latency);
5357 
5358 	perf_event_task_tick();
5359 
5360 #ifdef CONFIG_SMP
5361 	rq->idle_balance = idle_cpu(cpu);
5362 	trigger_load_balance(rq);
5363 #endif
5364 }
5365 
5366 #ifdef CONFIG_NO_HZ_FULL
5367 
5368 struct tick_work {
5369 	int			cpu;
5370 	atomic_t		state;
5371 	struct delayed_work	work;
5372 };
5373 /* Values for ->state, see diagram below. */
5374 #define TICK_SCHED_REMOTE_OFFLINE	0
5375 #define TICK_SCHED_REMOTE_OFFLINING	1
5376 #define TICK_SCHED_REMOTE_RUNNING	2
5377 
5378 /*
5379  * State diagram for ->state:
5380  *
5381  *
5382  *          TICK_SCHED_REMOTE_OFFLINE
5383  *                    |   ^
5384  *                    |   |
5385  *                    |   | sched_tick_remote()
5386  *                    |   |
5387  *                    |   |
5388  *                    +--TICK_SCHED_REMOTE_OFFLINING
5389  *                    |   ^
5390  *                    |   |
5391  * sched_tick_start() |   | sched_tick_stop()
5392  *                    |   |
5393  *                    V   |
5394  *          TICK_SCHED_REMOTE_RUNNING
5395  *
5396  *
5397  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5398  * and sched_tick_start() are happy to leave the state in RUNNING.
5399  */
5400 
5401 static struct tick_work __percpu *tick_work_cpu;
5402 
5403 static void sched_tick_remote(struct work_struct *work)
5404 {
5405 	struct delayed_work *dwork = to_delayed_work(work);
5406 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5407 	int cpu = twork->cpu;
5408 	struct rq *rq = cpu_rq(cpu);
5409 	struct task_struct *curr;
5410 	struct rq_flags rf;
5411 	u64 delta;
5412 	int os;
5413 
5414 	/*
5415 	 * Handle the tick only if it appears the remote CPU is running in full
5416 	 * dynticks mode. The check is racy by nature, but missing a tick or
5417 	 * having one too much is no big deal because the scheduler tick updates
5418 	 * statistics and checks timeslices in a time-independent way, regardless
5419 	 * of when exactly it is running.
5420 	 */
5421 	if (!tick_nohz_tick_stopped_cpu(cpu))
5422 		goto out_requeue;
5423 
5424 	rq_lock_irq(rq, &rf);
5425 	curr = rq->curr;
5426 	if (cpu_is_offline(cpu))
5427 		goto out_unlock;
5428 
5429 	update_rq_clock(rq);
5430 
5431 	if (!is_idle_task(curr)) {
5432 		/*
5433 		 * Make sure the next tick runs within a reasonable
5434 		 * amount of time.
5435 		 */
5436 		delta = rq_clock_task(rq) - curr->se.exec_start;
5437 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5438 	}
5439 	curr->sched_class->task_tick(rq, curr, 0);
5440 
5441 	calc_load_nohz_remote(rq);
5442 out_unlock:
5443 	rq_unlock_irq(rq, &rf);
5444 out_requeue:
5445 
5446 	/*
5447 	 * Run the remote tick once per second (1Hz). This arbitrary
5448 	 * frequency is large enough to avoid overload but short enough
5449 	 * to keep scheduler internal stats reasonably up to date.  But
5450 	 * first update state to reflect hotplug activity if required.
5451 	 */
5452 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5453 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5454 	if (os == TICK_SCHED_REMOTE_RUNNING)
5455 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5456 }
5457 
5458 static void sched_tick_start(int cpu)
5459 {
5460 	int os;
5461 	struct tick_work *twork;
5462 
5463 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5464 		return;
5465 
5466 	WARN_ON_ONCE(!tick_work_cpu);
5467 
5468 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5469 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5470 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5471 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5472 		twork->cpu = cpu;
5473 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5474 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5475 	}
5476 }
5477 
5478 #ifdef CONFIG_HOTPLUG_CPU
5479 static void sched_tick_stop(int cpu)
5480 {
5481 	struct tick_work *twork;
5482 	int os;
5483 
5484 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5485 		return;
5486 
5487 	WARN_ON_ONCE(!tick_work_cpu);
5488 
5489 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5490 	/* There cannot be competing actions, but don't rely on stop-machine. */
5491 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5492 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5493 	/* Don't cancel, as this would mess up the state machine. */
5494 }
5495 #endif /* CONFIG_HOTPLUG_CPU */
5496 
5497 int __init sched_tick_offload_init(void)
5498 {
5499 	tick_work_cpu = alloc_percpu(struct tick_work);
5500 	BUG_ON(!tick_work_cpu);
5501 	return 0;
5502 }
5503 
5504 #else /* !CONFIG_NO_HZ_FULL */
5505 static inline void sched_tick_start(int cpu) { }
5506 static inline void sched_tick_stop(int cpu) { }
5507 #endif
5508 
5509 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5510 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5511 /*
5512  * If the value passed in is equal to the current preempt count
5513  * then we just disabled preemption. Start timing the latency.
5514  */
5515 static inline void preempt_latency_start(int val)
5516 {
5517 	if (preempt_count() == val) {
5518 		unsigned long ip = get_lock_parent_ip();
5519 #ifdef CONFIG_DEBUG_PREEMPT
5520 		current->preempt_disable_ip = ip;
5521 #endif
5522 		trace_preempt_off(CALLER_ADDR0, ip);
5523 	}
5524 }
5525 
5526 void preempt_count_add(int val)
5527 {
5528 #ifdef CONFIG_DEBUG_PREEMPT
5529 	/*
5530 	 * Underflow?
5531 	 */
5532 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5533 		return;
5534 #endif
5535 	__preempt_count_add(val);
5536 #ifdef CONFIG_DEBUG_PREEMPT
5537 	/*
5538 	 * Spinlock count overflowing soon?
5539 	 */
5540 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5541 				PREEMPT_MASK - 10);
5542 #endif
5543 	preempt_latency_start(val);
5544 }
5545 EXPORT_SYMBOL(preempt_count_add);
5546 NOKPROBE_SYMBOL(preempt_count_add);
5547 
5548 /*
5549  * If the value passed in equals to the current preempt count
5550  * then we just enabled preemption. Stop timing the latency.
5551  */
5552 static inline void preempt_latency_stop(int val)
5553 {
5554 	if (preempt_count() == val)
5555 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5556 }
5557 
5558 void preempt_count_sub(int val)
5559 {
5560 #ifdef CONFIG_DEBUG_PREEMPT
5561 	/*
5562 	 * Underflow?
5563 	 */
5564 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5565 		return;
5566 	/*
5567 	 * Is the spinlock portion underflowing?
5568 	 */
5569 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5570 			!(preempt_count() & PREEMPT_MASK)))
5571 		return;
5572 #endif
5573 
5574 	preempt_latency_stop(val);
5575 	__preempt_count_sub(val);
5576 }
5577 EXPORT_SYMBOL(preempt_count_sub);
5578 NOKPROBE_SYMBOL(preempt_count_sub);
5579 
5580 #else
5581 static inline void preempt_latency_start(int val) { }
5582 static inline void preempt_latency_stop(int val) { }
5583 #endif
5584 
5585 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5586 {
5587 #ifdef CONFIG_DEBUG_PREEMPT
5588 	return p->preempt_disable_ip;
5589 #else
5590 	return 0;
5591 #endif
5592 }
5593 
5594 /*
5595  * Print scheduling while atomic bug:
5596  */
5597 static noinline void __schedule_bug(struct task_struct *prev)
5598 {
5599 	/* Save this before calling printk(), since that will clobber it */
5600 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5601 
5602 	if (oops_in_progress)
5603 		return;
5604 
5605 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5606 		prev->comm, prev->pid, preempt_count());
5607 
5608 	debug_show_held_locks(prev);
5609 	print_modules();
5610 	if (irqs_disabled())
5611 		print_irqtrace_events(prev);
5612 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5613 	    && in_atomic_preempt_off()) {
5614 		pr_err("Preemption disabled at:");
5615 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5616 	}
5617 	if (panic_on_warn)
5618 		panic("scheduling while atomic\n");
5619 
5620 	dump_stack();
5621 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5622 }
5623 
5624 /*
5625  * Various schedule()-time debugging checks and statistics:
5626  */
5627 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5628 {
5629 #ifdef CONFIG_SCHED_STACK_END_CHECK
5630 	if (task_stack_end_corrupted(prev))
5631 		panic("corrupted stack end detected inside scheduler\n");
5632 
5633 	if (task_scs_end_corrupted(prev))
5634 		panic("corrupted shadow stack detected inside scheduler\n");
5635 #endif
5636 
5637 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5638 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5639 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5640 			prev->comm, prev->pid, prev->non_block_count);
5641 		dump_stack();
5642 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5643 	}
5644 #endif
5645 
5646 	if (unlikely(in_atomic_preempt_off())) {
5647 		__schedule_bug(prev);
5648 		preempt_count_set(PREEMPT_DISABLED);
5649 	}
5650 	rcu_sleep_check();
5651 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5652 
5653 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5654 
5655 	schedstat_inc(this_rq()->sched_count);
5656 }
5657 
5658 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5659 				  struct rq_flags *rf)
5660 {
5661 #ifdef CONFIG_SMP
5662 	const struct sched_class *class;
5663 	/*
5664 	 * We must do the balancing pass before put_prev_task(), such
5665 	 * that when we release the rq->lock the task is in the same
5666 	 * state as before we took rq->lock.
5667 	 *
5668 	 * We can terminate the balance pass as soon as we know there is
5669 	 * a runnable task of @class priority or higher.
5670 	 */
5671 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5672 		if (class->balance(rq, prev, rf))
5673 			break;
5674 	}
5675 #endif
5676 
5677 	put_prev_task(rq, prev);
5678 }
5679 
5680 /*
5681  * Pick up the highest-prio task:
5682  */
5683 static inline struct task_struct *
5684 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5685 {
5686 	const struct sched_class *class;
5687 	struct task_struct *p;
5688 
5689 	/*
5690 	 * Optimization: we know that if all tasks are in the fair class we can
5691 	 * call that function directly, but only if the @prev task wasn't of a
5692 	 * higher scheduling class, because otherwise those lose the
5693 	 * opportunity to pull in more work from other CPUs.
5694 	 */
5695 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5696 		   rq->nr_running == rq->cfs.h_nr_running)) {
5697 
5698 		p = pick_next_task_fair(rq, prev, rf);
5699 		if (unlikely(p == RETRY_TASK))
5700 			goto restart;
5701 
5702 		/* Assume the next prioritized class is idle_sched_class */
5703 		if (!p) {
5704 			put_prev_task(rq, prev);
5705 			p = pick_next_task_idle(rq);
5706 		}
5707 
5708 		return p;
5709 	}
5710 
5711 restart:
5712 	put_prev_task_balance(rq, prev, rf);
5713 
5714 	for_each_class(class) {
5715 		p = class->pick_next_task(rq);
5716 		if (p)
5717 			return p;
5718 	}
5719 
5720 	BUG(); /* The idle class should always have a runnable task. */
5721 }
5722 
5723 #ifdef CONFIG_SCHED_CORE
5724 static inline bool is_task_rq_idle(struct task_struct *t)
5725 {
5726 	return (task_rq(t)->idle == t);
5727 }
5728 
5729 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5730 {
5731 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5732 }
5733 
5734 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5735 {
5736 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5737 		return true;
5738 
5739 	return a->core_cookie == b->core_cookie;
5740 }
5741 
5742 static inline struct task_struct *pick_task(struct rq *rq)
5743 {
5744 	const struct sched_class *class;
5745 	struct task_struct *p;
5746 
5747 	for_each_class(class) {
5748 		p = class->pick_task(rq);
5749 		if (p)
5750 			return p;
5751 	}
5752 
5753 	BUG(); /* The idle class should always have a runnable task. */
5754 }
5755 
5756 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5757 
5758 static void queue_core_balance(struct rq *rq);
5759 
5760 static struct task_struct *
5761 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5762 {
5763 	struct task_struct *next, *p, *max = NULL;
5764 	const struct cpumask *smt_mask;
5765 	bool fi_before = false;
5766 	bool core_clock_updated = (rq == rq->core);
5767 	unsigned long cookie;
5768 	int i, cpu, occ = 0;
5769 	struct rq *rq_i;
5770 	bool need_sync;
5771 
5772 	if (!sched_core_enabled(rq))
5773 		return __pick_next_task(rq, prev, rf);
5774 
5775 	cpu = cpu_of(rq);
5776 
5777 	/* Stopper task is switching into idle, no need core-wide selection. */
5778 	if (cpu_is_offline(cpu)) {
5779 		/*
5780 		 * Reset core_pick so that we don't enter the fastpath when
5781 		 * coming online. core_pick would already be migrated to
5782 		 * another cpu during offline.
5783 		 */
5784 		rq->core_pick = NULL;
5785 		return __pick_next_task(rq, prev, rf);
5786 	}
5787 
5788 	/*
5789 	 * If there were no {en,de}queues since we picked (IOW, the task
5790 	 * pointers are all still valid), and we haven't scheduled the last
5791 	 * pick yet, do so now.
5792 	 *
5793 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5794 	 * it was either offline or went offline during a sibling's core-wide
5795 	 * selection. In this case, do a core-wide selection.
5796 	 */
5797 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5798 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5799 	    rq->core_pick) {
5800 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5801 
5802 		next = rq->core_pick;
5803 		if (next != prev) {
5804 			put_prev_task(rq, prev);
5805 			set_next_task(rq, next);
5806 		}
5807 
5808 		rq->core_pick = NULL;
5809 		goto out;
5810 	}
5811 
5812 	put_prev_task_balance(rq, prev, rf);
5813 
5814 	smt_mask = cpu_smt_mask(cpu);
5815 	need_sync = !!rq->core->core_cookie;
5816 
5817 	/* reset state */
5818 	rq->core->core_cookie = 0UL;
5819 	if (rq->core->core_forceidle_count) {
5820 		if (!core_clock_updated) {
5821 			update_rq_clock(rq->core);
5822 			core_clock_updated = true;
5823 		}
5824 		sched_core_account_forceidle(rq);
5825 		/* reset after accounting force idle */
5826 		rq->core->core_forceidle_start = 0;
5827 		rq->core->core_forceidle_count = 0;
5828 		rq->core->core_forceidle_occupation = 0;
5829 		need_sync = true;
5830 		fi_before = true;
5831 	}
5832 
5833 	/*
5834 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5835 	 *
5836 	 * @task_seq guards the task state ({en,de}queues)
5837 	 * @pick_seq is the @task_seq we did a selection on
5838 	 * @sched_seq is the @pick_seq we scheduled
5839 	 *
5840 	 * However, preemptions can cause multiple picks on the same task set.
5841 	 * 'Fix' this by also increasing @task_seq for every pick.
5842 	 */
5843 	rq->core->core_task_seq++;
5844 
5845 	/*
5846 	 * Optimize for common case where this CPU has no cookies
5847 	 * and there are no cookied tasks running on siblings.
5848 	 */
5849 	if (!need_sync) {
5850 		next = pick_task(rq);
5851 		if (!next->core_cookie) {
5852 			rq->core_pick = NULL;
5853 			/*
5854 			 * For robustness, update the min_vruntime_fi for
5855 			 * unconstrained picks as well.
5856 			 */
5857 			WARN_ON_ONCE(fi_before);
5858 			task_vruntime_update(rq, next, false);
5859 			goto out_set_next;
5860 		}
5861 	}
5862 
5863 	/*
5864 	 * For each thread: do the regular task pick and find the max prio task
5865 	 * amongst them.
5866 	 *
5867 	 * Tie-break prio towards the current CPU
5868 	 */
5869 	for_each_cpu_wrap(i, smt_mask, cpu) {
5870 		rq_i = cpu_rq(i);
5871 
5872 		/*
5873 		 * Current cpu always has its clock updated on entrance to
5874 		 * pick_next_task(). If the current cpu is not the core,
5875 		 * the core may also have been updated above.
5876 		 */
5877 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5878 			update_rq_clock(rq_i);
5879 
5880 		p = rq_i->core_pick = pick_task(rq_i);
5881 		if (!max || prio_less(max, p, fi_before))
5882 			max = p;
5883 	}
5884 
5885 	cookie = rq->core->core_cookie = max->core_cookie;
5886 
5887 	/*
5888 	 * For each thread: try and find a runnable task that matches @max or
5889 	 * force idle.
5890 	 */
5891 	for_each_cpu(i, smt_mask) {
5892 		rq_i = cpu_rq(i);
5893 		p = rq_i->core_pick;
5894 
5895 		if (!cookie_equals(p, cookie)) {
5896 			p = NULL;
5897 			if (cookie)
5898 				p = sched_core_find(rq_i, cookie);
5899 			if (!p)
5900 				p = idle_sched_class.pick_task(rq_i);
5901 		}
5902 
5903 		rq_i->core_pick = p;
5904 
5905 		if (p == rq_i->idle) {
5906 			if (rq_i->nr_running) {
5907 				rq->core->core_forceidle_count++;
5908 				if (!fi_before)
5909 					rq->core->core_forceidle_seq++;
5910 			}
5911 		} else {
5912 			occ++;
5913 		}
5914 	}
5915 
5916 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
5917 		rq->core->core_forceidle_start = rq_clock(rq->core);
5918 		rq->core->core_forceidle_occupation = occ;
5919 	}
5920 
5921 	rq->core->core_pick_seq = rq->core->core_task_seq;
5922 	next = rq->core_pick;
5923 	rq->core_sched_seq = rq->core->core_pick_seq;
5924 
5925 	/* Something should have been selected for current CPU */
5926 	WARN_ON_ONCE(!next);
5927 
5928 	/*
5929 	 * Reschedule siblings
5930 	 *
5931 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5932 	 * sending an IPI (below) ensures the sibling will no longer be running
5933 	 * their task. This ensures there is no inter-sibling overlap between
5934 	 * non-matching user state.
5935 	 */
5936 	for_each_cpu(i, smt_mask) {
5937 		rq_i = cpu_rq(i);
5938 
5939 		/*
5940 		 * An online sibling might have gone offline before a task
5941 		 * could be picked for it, or it might be offline but later
5942 		 * happen to come online, but its too late and nothing was
5943 		 * picked for it.  That's Ok - it will pick tasks for itself,
5944 		 * so ignore it.
5945 		 */
5946 		if (!rq_i->core_pick)
5947 			continue;
5948 
5949 		/*
5950 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5951 		 * fi_before     fi      update?
5952 		 *  0            0       1
5953 		 *  0            1       1
5954 		 *  1            0       1
5955 		 *  1            1       0
5956 		 */
5957 		if (!(fi_before && rq->core->core_forceidle_count))
5958 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
5959 
5960 		rq_i->core_pick->core_occupation = occ;
5961 
5962 		if (i == cpu) {
5963 			rq_i->core_pick = NULL;
5964 			continue;
5965 		}
5966 
5967 		/* Did we break L1TF mitigation requirements? */
5968 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5969 
5970 		if (rq_i->curr == rq_i->core_pick) {
5971 			rq_i->core_pick = NULL;
5972 			continue;
5973 		}
5974 
5975 		resched_curr(rq_i);
5976 	}
5977 
5978 out_set_next:
5979 	set_next_task(rq, next);
5980 out:
5981 	if (rq->core->core_forceidle_count && next == rq->idle)
5982 		queue_core_balance(rq);
5983 
5984 	return next;
5985 }
5986 
5987 static bool try_steal_cookie(int this, int that)
5988 {
5989 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5990 	struct task_struct *p;
5991 	unsigned long cookie;
5992 	bool success = false;
5993 
5994 	local_irq_disable();
5995 	double_rq_lock(dst, src);
5996 
5997 	cookie = dst->core->core_cookie;
5998 	if (!cookie)
5999 		goto unlock;
6000 
6001 	if (dst->curr != dst->idle)
6002 		goto unlock;
6003 
6004 	p = sched_core_find(src, cookie);
6005 	if (p == src->idle)
6006 		goto unlock;
6007 
6008 	do {
6009 		if (p == src->core_pick || p == src->curr)
6010 			goto next;
6011 
6012 		if (!is_cpu_allowed(p, this))
6013 			goto next;
6014 
6015 		if (p->core_occupation > dst->idle->core_occupation)
6016 			goto next;
6017 
6018 		deactivate_task(src, p, 0);
6019 		set_task_cpu(p, this);
6020 		activate_task(dst, p, 0);
6021 
6022 		resched_curr(dst);
6023 
6024 		success = true;
6025 		break;
6026 
6027 next:
6028 		p = sched_core_next(p, cookie);
6029 	} while (p);
6030 
6031 unlock:
6032 	double_rq_unlock(dst, src);
6033 	local_irq_enable();
6034 
6035 	return success;
6036 }
6037 
6038 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6039 {
6040 	int i;
6041 
6042 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6043 		if (i == cpu)
6044 			continue;
6045 
6046 		if (need_resched())
6047 			break;
6048 
6049 		if (try_steal_cookie(cpu, i))
6050 			return true;
6051 	}
6052 
6053 	return false;
6054 }
6055 
6056 static void sched_core_balance(struct rq *rq)
6057 {
6058 	struct sched_domain *sd;
6059 	int cpu = cpu_of(rq);
6060 
6061 	preempt_disable();
6062 	rcu_read_lock();
6063 	raw_spin_rq_unlock_irq(rq);
6064 	for_each_domain(cpu, sd) {
6065 		if (need_resched())
6066 			break;
6067 
6068 		if (steal_cookie_task(cpu, sd))
6069 			break;
6070 	}
6071 	raw_spin_rq_lock_irq(rq);
6072 	rcu_read_unlock();
6073 	preempt_enable();
6074 }
6075 
6076 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6077 
6078 static void queue_core_balance(struct rq *rq)
6079 {
6080 	if (!sched_core_enabled(rq))
6081 		return;
6082 
6083 	if (!rq->core->core_cookie)
6084 		return;
6085 
6086 	if (!rq->nr_running) /* not forced idle */
6087 		return;
6088 
6089 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6090 }
6091 
6092 static void sched_core_cpu_starting(unsigned int cpu)
6093 {
6094 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6095 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6096 	unsigned long flags;
6097 	int t;
6098 
6099 	sched_core_lock(cpu, &flags);
6100 
6101 	WARN_ON_ONCE(rq->core != rq);
6102 
6103 	/* if we're the first, we'll be our own leader */
6104 	if (cpumask_weight(smt_mask) == 1)
6105 		goto unlock;
6106 
6107 	/* find the leader */
6108 	for_each_cpu(t, smt_mask) {
6109 		if (t == cpu)
6110 			continue;
6111 		rq = cpu_rq(t);
6112 		if (rq->core == rq) {
6113 			core_rq = rq;
6114 			break;
6115 		}
6116 	}
6117 
6118 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6119 		goto unlock;
6120 
6121 	/* install and validate core_rq */
6122 	for_each_cpu(t, smt_mask) {
6123 		rq = cpu_rq(t);
6124 
6125 		if (t == cpu)
6126 			rq->core = core_rq;
6127 
6128 		WARN_ON_ONCE(rq->core != core_rq);
6129 	}
6130 
6131 unlock:
6132 	sched_core_unlock(cpu, &flags);
6133 }
6134 
6135 static void sched_core_cpu_deactivate(unsigned int cpu)
6136 {
6137 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6138 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6139 	unsigned long flags;
6140 	int t;
6141 
6142 	sched_core_lock(cpu, &flags);
6143 
6144 	/* if we're the last man standing, nothing to do */
6145 	if (cpumask_weight(smt_mask) == 1) {
6146 		WARN_ON_ONCE(rq->core != rq);
6147 		goto unlock;
6148 	}
6149 
6150 	/* if we're not the leader, nothing to do */
6151 	if (rq->core != rq)
6152 		goto unlock;
6153 
6154 	/* find a new leader */
6155 	for_each_cpu(t, smt_mask) {
6156 		if (t == cpu)
6157 			continue;
6158 		core_rq = cpu_rq(t);
6159 		break;
6160 	}
6161 
6162 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6163 		goto unlock;
6164 
6165 	/* copy the shared state to the new leader */
6166 	core_rq->core_task_seq             = rq->core_task_seq;
6167 	core_rq->core_pick_seq             = rq->core_pick_seq;
6168 	core_rq->core_cookie               = rq->core_cookie;
6169 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6170 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6171 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6172 
6173 	/*
6174 	 * Accounting edge for forced idle is handled in pick_next_task().
6175 	 * Don't need another one here, since the hotplug thread shouldn't
6176 	 * have a cookie.
6177 	 */
6178 	core_rq->core_forceidle_start = 0;
6179 
6180 	/* install new leader */
6181 	for_each_cpu(t, smt_mask) {
6182 		rq = cpu_rq(t);
6183 		rq->core = core_rq;
6184 	}
6185 
6186 unlock:
6187 	sched_core_unlock(cpu, &flags);
6188 }
6189 
6190 static inline void sched_core_cpu_dying(unsigned int cpu)
6191 {
6192 	struct rq *rq = cpu_rq(cpu);
6193 
6194 	if (rq->core != rq)
6195 		rq->core = rq;
6196 }
6197 
6198 #else /* !CONFIG_SCHED_CORE */
6199 
6200 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6201 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6202 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6203 
6204 static struct task_struct *
6205 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6206 {
6207 	return __pick_next_task(rq, prev, rf);
6208 }
6209 
6210 #endif /* CONFIG_SCHED_CORE */
6211 
6212 /*
6213  * Constants for the sched_mode argument of __schedule().
6214  *
6215  * The mode argument allows RT enabled kernels to differentiate a
6216  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6217  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6218  * optimize the AND operation out and just check for zero.
6219  */
6220 #define SM_NONE			0x0
6221 #define SM_PREEMPT		0x1
6222 #define SM_RTLOCK_WAIT		0x2
6223 
6224 #ifndef CONFIG_PREEMPT_RT
6225 # define SM_MASK_PREEMPT	(~0U)
6226 #else
6227 # define SM_MASK_PREEMPT	SM_PREEMPT
6228 #endif
6229 
6230 /*
6231  * __schedule() is the main scheduler function.
6232  *
6233  * The main means of driving the scheduler and thus entering this function are:
6234  *
6235  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6236  *
6237  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6238  *      paths. For example, see arch/x86/entry_64.S.
6239  *
6240  *      To drive preemption between tasks, the scheduler sets the flag in timer
6241  *      interrupt handler scheduler_tick().
6242  *
6243  *   3. Wakeups don't really cause entry into schedule(). They add a
6244  *      task to the run-queue and that's it.
6245  *
6246  *      Now, if the new task added to the run-queue preempts the current
6247  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6248  *      called on the nearest possible occasion:
6249  *
6250  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6251  *
6252  *         - in syscall or exception context, at the next outmost
6253  *           preempt_enable(). (this might be as soon as the wake_up()'s
6254  *           spin_unlock()!)
6255  *
6256  *         - in IRQ context, return from interrupt-handler to
6257  *           preemptible context
6258  *
6259  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6260  *         then at the next:
6261  *
6262  *          - cond_resched() call
6263  *          - explicit schedule() call
6264  *          - return from syscall or exception to user-space
6265  *          - return from interrupt-handler to user-space
6266  *
6267  * WARNING: must be called with preemption disabled!
6268  */
6269 static void __sched notrace __schedule(unsigned int sched_mode)
6270 {
6271 	struct task_struct *prev, *next;
6272 	unsigned long *switch_count;
6273 	unsigned long prev_state;
6274 	struct rq_flags rf;
6275 	struct rq *rq;
6276 	int cpu;
6277 
6278 	cpu = smp_processor_id();
6279 	rq = cpu_rq(cpu);
6280 	prev = rq->curr;
6281 
6282 	schedule_debug(prev, !!sched_mode);
6283 
6284 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6285 		hrtick_clear(rq);
6286 
6287 	local_irq_disable();
6288 	rcu_note_context_switch(!!sched_mode);
6289 
6290 	/*
6291 	 * Make sure that signal_pending_state()->signal_pending() below
6292 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6293 	 * done by the caller to avoid the race with signal_wake_up():
6294 	 *
6295 	 * __set_current_state(@state)		signal_wake_up()
6296 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6297 	 *					  wake_up_state(p, state)
6298 	 *   LOCK rq->lock			    LOCK p->pi_state
6299 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6300 	 *     if (signal_pending_state())	    if (p->state & @state)
6301 	 *
6302 	 * Also, the membarrier system call requires a full memory barrier
6303 	 * after coming from user-space, before storing to rq->curr.
6304 	 */
6305 	rq_lock(rq, &rf);
6306 	smp_mb__after_spinlock();
6307 
6308 	/* Promote REQ to ACT */
6309 	rq->clock_update_flags <<= 1;
6310 	update_rq_clock(rq);
6311 
6312 	switch_count = &prev->nivcsw;
6313 
6314 	/*
6315 	 * We must load prev->state once (task_struct::state is volatile), such
6316 	 * that:
6317 	 *
6318 	 *  - we form a control dependency vs deactivate_task() below.
6319 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6320 	 */
6321 	prev_state = READ_ONCE(prev->__state);
6322 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6323 		if (signal_pending_state(prev_state, prev)) {
6324 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6325 		} else {
6326 			prev->sched_contributes_to_load =
6327 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6328 				!(prev_state & TASK_NOLOAD) &&
6329 				!(prev->flags & PF_FROZEN);
6330 
6331 			if (prev->sched_contributes_to_load)
6332 				rq->nr_uninterruptible++;
6333 
6334 			/*
6335 			 * __schedule()			ttwu()
6336 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6337 			 *   if (prev_state)		    goto out;
6338 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6339 			 *				  p->state = TASK_WAKING
6340 			 *
6341 			 * Where __schedule() and ttwu() have matching control dependencies.
6342 			 *
6343 			 * After this, schedule() must not care about p->state any more.
6344 			 */
6345 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6346 
6347 			if (prev->in_iowait) {
6348 				atomic_inc(&rq->nr_iowait);
6349 				delayacct_blkio_start();
6350 			}
6351 		}
6352 		switch_count = &prev->nvcsw;
6353 	}
6354 
6355 	next = pick_next_task(rq, prev, &rf);
6356 	clear_tsk_need_resched(prev);
6357 	clear_preempt_need_resched();
6358 #ifdef CONFIG_SCHED_DEBUG
6359 	rq->last_seen_need_resched_ns = 0;
6360 #endif
6361 
6362 	if (likely(prev != next)) {
6363 		rq->nr_switches++;
6364 		/*
6365 		 * RCU users of rcu_dereference(rq->curr) may not see
6366 		 * changes to task_struct made by pick_next_task().
6367 		 */
6368 		RCU_INIT_POINTER(rq->curr, next);
6369 		/*
6370 		 * The membarrier system call requires each architecture
6371 		 * to have a full memory barrier after updating
6372 		 * rq->curr, before returning to user-space.
6373 		 *
6374 		 * Here are the schemes providing that barrier on the
6375 		 * various architectures:
6376 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6377 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6378 		 * - finish_lock_switch() for weakly-ordered
6379 		 *   architectures where spin_unlock is a full barrier,
6380 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6381 		 *   is a RELEASE barrier),
6382 		 */
6383 		++*switch_count;
6384 
6385 		migrate_disable_switch(rq, prev);
6386 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6387 
6388 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6389 
6390 		/* Also unlocks the rq: */
6391 		rq = context_switch(rq, prev, next, &rf);
6392 	} else {
6393 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6394 
6395 		rq_unpin_lock(rq, &rf);
6396 		__balance_callbacks(rq);
6397 		raw_spin_rq_unlock_irq(rq);
6398 	}
6399 }
6400 
6401 void __noreturn do_task_dead(void)
6402 {
6403 	/* Causes final put_task_struct in finish_task_switch(): */
6404 	set_special_state(TASK_DEAD);
6405 
6406 	/* Tell freezer to ignore us: */
6407 	current->flags |= PF_NOFREEZE;
6408 
6409 	__schedule(SM_NONE);
6410 	BUG();
6411 
6412 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6413 	for (;;)
6414 		cpu_relax();
6415 }
6416 
6417 static inline void sched_submit_work(struct task_struct *tsk)
6418 {
6419 	unsigned int task_flags;
6420 
6421 	if (task_is_running(tsk))
6422 		return;
6423 
6424 	task_flags = tsk->flags;
6425 	/*
6426 	 * If a worker goes to sleep, notify and ask workqueue whether it
6427 	 * wants to wake up a task to maintain concurrency.
6428 	 */
6429 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6430 		if (task_flags & PF_WQ_WORKER)
6431 			wq_worker_sleeping(tsk);
6432 		else
6433 			io_wq_worker_sleeping(tsk);
6434 	}
6435 
6436 	if (tsk_is_pi_blocked(tsk))
6437 		return;
6438 
6439 	/*
6440 	 * If we are going to sleep and we have plugged IO queued,
6441 	 * make sure to submit it to avoid deadlocks.
6442 	 */
6443 	blk_flush_plug(tsk->plug, true);
6444 }
6445 
6446 static void sched_update_worker(struct task_struct *tsk)
6447 {
6448 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6449 		if (tsk->flags & PF_WQ_WORKER)
6450 			wq_worker_running(tsk);
6451 		else
6452 			io_wq_worker_running(tsk);
6453 	}
6454 }
6455 
6456 asmlinkage __visible void __sched schedule(void)
6457 {
6458 	struct task_struct *tsk = current;
6459 
6460 	sched_submit_work(tsk);
6461 	do {
6462 		preempt_disable();
6463 		__schedule(SM_NONE);
6464 		sched_preempt_enable_no_resched();
6465 	} while (need_resched());
6466 	sched_update_worker(tsk);
6467 }
6468 EXPORT_SYMBOL(schedule);
6469 
6470 /*
6471  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6472  * state (have scheduled out non-voluntarily) by making sure that all
6473  * tasks have either left the run queue or have gone into user space.
6474  * As idle tasks do not do either, they must not ever be preempted
6475  * (schedule out non-voluntarily).
6476  *
6477  * schedule_idle() is similar to schedule_preempt_disable() except that it
6478  * never enables preemption because it does not call sched_submit_work().
6479  */
6480 void __sched schedule_idle(void)
6481 {
6482 	/*
6483 	 * As this skips calling sched_submit_work(), which the idle task does
6484 	 * regardless because that function is a nop when the task is in a
6485 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6486 	 * current task can be in any other state. Note, idle is always in the
6487 	 * TASK_RUNNING state.
6488 	 */
6489 	WARN_ON_ONCE(current->__state);
6490 	do {
6491 		__schedule(SM_NONE);
6492 	} while (need_resched());
6493 }
6494 
6495 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6496 asmlinkage __visible void __sched schedule_user(void)
6497 {
6498 	/*
6499 	 * If we come here after a random call to set_need_resched(),
6500 	 * or we have been woken up remotely but the IPI has not yet arrived,
6501 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6502 	 * we find a better solution.
6503 	 *
6504 	 * NB: There are buggy callers of this function.  Ideally we
6505 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6506 	 * too frequently to make sense yet.
6507 	 */
6508 	enum ctx_state prev_state = exception_enter();
6509 	schedule();
6510 	exception_exit(prev_state);
6511 }
6512 #endif
6513 
6514 /**
6515  * schedule_preempt_disabled - called with preemption disabled
6516  *
6517  * Returns with preemption disabled. Note: preempt_count must be 1
6518  */
6519 void __sched schedule_preempt_disabled(void)
6520 {
6521 	sched_preempt_enable_no_resched();
6522 	schedule();
6523 	preempt_disable();
6524 }
6525 
6526 #ifdef CONFIG_PREEMPT_RT
6527 void __sched notrace schedule_rtlock(void)
6528 {
6529 	do {
6530 		preempt_disable();
6531 		__schedule(SM_RTLOCK_WAIT);
6532 		sched_preempt_enable_no_resched();
6533 	} while (need_resched());
6534 }
6535 NOKPROBE_SYMBOL(schedule_rtlock);
6536 #endif
6537 
6538 static void __sched notrace preempt_schedule_common(void)
6539 {
6540 	do {
6541 		/*
6542 		 * Because the function tracer can trace preempt_count_sub()
6543 		 * and it also uses preempt_enable/disable_notrace(), if
6544 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6545 		 * by the function tracer will call this function again and
6546 		 * cause infinite recursion.
6547 		 *
6548 		 * Preemption must be disabled here before the function
6549 		 * tracer can trace. Break up preempt_disable() into two
6550 		 * calls. One to disable preemption without fear of being
6551 		 * traced. The other to still record the preemption latency,
6552 		 * which can also be traced by the function tracer.
6553 		 */
6554 		preempt_disable_notrace();
6555 		preempt_latency_start(1);
6556 		__schedule(SM_PREEMPT);
6557 		preempt_latency_stop(1);
6558 		preempt_enable_no_resched_notrace();
6559 
6560 		/*
6561 		 * Check again in case we missed a preemption opportunity
6562 		 * between schedule and now.
6563 		 */
6564 	} while (need_resched());
6565 }
6566 
6567 #ifdef CONFIG_PREEMPTION
6568 /*
6569  * This is the entry point to schedule() from in-kernel preemption
6570  * off of preempt_enable.
6571  */
6572 asmlinkage __visible void __sched notrace preempt_schedule(void)
6573 {
6574 	/*
6575 	 * If there is a non-zero preempt_count or interrupts are disabled,
6576 	 * we do not want to preempt the current task. Just return..
6577 	 */
6578 	if (likely(!preemptible()))
6579 		return;
6580 	preempt_schedule_common();
6581 }
6582 NOKPROBE_SYMBOL(preempt_schedule);
6583 EXPORT_SYMBOL(preempt_schedule);
6584 
6585 #ifdef CONFIG_PREEMPT_DYNAMIC
6586 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6587 #ifndef preempt_schedule_dynamic_enabled
6588 #define preempt_schedule_dynamic_enabled	preempt_schedule
6589 #define preempt_schedule_dynamic_disabled	NULL
6590 #endif
6591 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6592 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6593 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6594 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6595 void __sched notrace dynamic_preempt_schedule(void)
6596 {
6597 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6598 		return;
6599 	preempt_schedule();
6600 }
6601 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6602 EXPORT_SYMBOL(dynamic_preempt_schedule);
6603 #endif
6604 #endif
6605 
6606 /**
6607  * preempt_schedule_notrace - preempt_schedule called by tracing
6608  *
6609  * The tracing infrastructure uses preempt_enable_notrace to prevent
6610  * recursion and tracing preempt enabling caused by the tracing
6611  * infrastructure itself. But as tracing can happen in areas coming
6612  * from userspace or just about to enter userspace, a preempt enable
6613  * can occur before user_exit() is called. This will cause the scheduler
6614  * to be called when the system is still in usermode.
6615  *
6616  * To prevent this, the preempt_enable_notrace will use this function
6617  * instead of preempt_schedule() to exit user context if needed before
6618  * calling the scheduler.
6619  */
6620 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6621 {
6622 	enum ctx_state prev_ctx;
6623 
6624 	if (likely(!preemptible()))
6625 		return;
6626 
6627 	do {
6628 		/*
6629 		 * Because the function tracer can trace preempt_count_sub()
6630 		 * and it also uses preempt_enable/disable_notrace(), if
6631 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6632 		 * by the function tracer will call this function again and
6633 		 * cause infinite recursion.
6634 		 *
6635 		 * Preemption must be disabled here before the function
6636 		 * tracer can trace. Break up preempt_disable() into two
6637 		 * calls. One to disable preemption without fear of being
6638 		 * traced. The other to still record the preemption latency,
6639 		 * which can also be traced by the function tracer.
6640 		 */
6641 		preempt_disable_notrace();
6642 		preempt_latency_start(1);
6643 		/*
6644 		 * Needs preempt disabled in case user_exit() is traced
6645 		 * and the tracer calls preempt_enable_notrace() causing
6646 		 * an infinite recursion.
6647 		 */
6648 		prev_ctx = exception_enter();
6649 		__schedule(SM_PREEMPT);
6650 		exception_exit(prev_ctx);
6651 
6652 		preempt_latency_stop(1);
6653 		preempt_enable_no_resched_notrace();
6654 	} while (need_resched());
6655 }
6656 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6657 
6658 #ifdef CONFIG_PREEMPT_DYNAMIC
6659 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6660 #ifndef preempt_schedule_notrace_dynamic_enabled
6661 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6662 #define preempt_schedule_notrace_dynamic_disabled	NULL
6663 #endif
6664 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6665 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6666 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6667 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6668 void __sched notrace dynamic_preempt_schedule_notrace(void)
6669 {
6670 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6671 		return;
6672 	preempt_schedule_notrace();
6673 }
6674 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6675 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6676 #endif
6677 #endif
6678 
6679 #endif /* CONFIG_PREEMPTION */
6680 
6681 /*
6682  * This is the entry point to schedule() from kernel preemption
6683  * off of irq context.
6684  * Note, that this is called and return with irqs disabled. This will
6685  * protect us against recursive calling from irq.
6686  */
6687 asmlinkage __visible void __sched preempt_schedule_irq(void)
6688 {
6689 	enum ctx_state prev_state;
6690 
6691 	/* Catch callers which need to be fixed */
6692 	BUG_ON(preempt_count() || !irqs_disabled());
6693 
6694 	prev_state = exception_enter();
6695 
6696 	do {
6697 		preempt_disable();
6698 		local_irq_enable();
6699 		__schedule(SM_PREEMPT);
6700 		local_irq_disable();
6701 		sched_preempt_enable_no_resched();
6702 	} while (need_resched());
6703 
6704 	exception_exit(prev_state);
6705 }
6706 
6707 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6708 			  void *key)
6709 {
6710 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6711 	return try_to_wake_up(curr->private, mode, wake_flags);
6712 }
6713 EXPORT_SYMBOL(default_wake_function);
6714 
6715 static void __setscheduler_prio(struct task_struct *p, int prio)
6716 {
6717 	if (dl_prio(prio))
6718 		p->sched_class = &dl_sched_class;
6719 	else if (rt_prio(prio))
6720 		p->sched_class = &rt_sched_class;
6721 	else
6722 		p->sched_class = &fair_sched_class;
6723 
6724 	p->prio = prio;
6725 }
6726 
6727 #ifdef CONFIG_RT_MUTEXES
6728 
6729 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6730 {
6731 	if (pi_task)
6732 		prio = min(prio, pi_task->prio);
6733 
6734 	return prio;
6735 }
6736 
6737 static inline int rt_effective_prio(struct task_struct *p, int prio)
6738 {
6739 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6740 
6741 	return __rt_effective_prio(pi_task, prio);
6742 }
6743 
6744 /*
6745  * rt_mutex_setprio - set the current priority of a task
6746  * @p: task to boost
6747  * @pi_task: donor task
6748  *
6749  * This function changes the 'effective' priority of a task. It does
6750  * not touch ->normal_prio like __setscheduler().
6751  *
6752  * Used by the rt_mutex code to implement priority inheritance
6753  * logic. Call site only calls if the priority of the task changed.
6754  */
6755 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6756 {
6757 	int prio, oldprio, queued, running, queue_flag =
6758 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6759 	const struct sched_class *prev_class;
6760 	struct rq_flags rf;
6761 	struct rq *rq;
6762 
6763 	/* XXX used to be waiter->prio, not waiter->task->prio */
6764 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6765 
6766 	/*
6767 	 * If nothing changed; bail early.
6768 	 */
6769 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6770 		return;
6771 
6772 	rq = __task_rq_lock(p, &rf);
6773 	update_rq_clock(rq);
6774 	/*
6775 	 * Set under pi_lock && rq->lock, such that the value can be used under
6776 	 * either lock.
6777 	 *
6778 	 * Note that there is loads of tricky to make this pointer cache work
6779 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6780 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6781 	 * task is allowed to run again (and can exit). This ensures the pointer
6782 	 * points to a blocked task -- which guarantees the task is present.
6783 	 */
6784 	p->pi_top_task = pi_task;
6785 
6786 	/*
6787 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6788 	 */
6789 	if (prio == p->prio && !dl_prio(prio))
6790 		goto out_unlock;
6791 
6792 	/*
6793 	 * Idle task boosting is a nono in general. There is one
6794 	 * exception, when PREEMPT_RT and NOHZ is active:
6795 	 *
6796 	 * The idle task calls get_next_timer_interrupt() and holds
6797 	 * the timer wheel base->lock on the CPU and another CPU wants
6798 	 * to access the timer (probably to cancel it). We can safely
6799 	 * ignore the boosting request, as the idle CPU runs this code
6800 	 * with interrupts disabled and will complete the lock
6801 	 * protected section without being interrupted. So there is no
6802 	 * real need to boost.
6803 	 */
6804 	if (unlikely(p == rq->idle)) {
6805 		WARN_ON(p != rq->curr);
6806 		WARN_ON(p->pi_blocked_on);
6807 		goto out_unlock;
6808 	}
6809 
6810 	trace_sched_pi_setprio(p, pi_task);
6811 	oldprio = p->prio;
6812 
6813 	if (oldprio == prio)
6814 		queue_flag &= ~DEQUEUE_MOVE;
6815 
6816 	prev_class = p->sched_class;
6817 	queued = task_on_rq_queued(p);
6818 	running = task_current(rq, p);
6819 	if (queued)
6820 		dequeue_task(rq, p, queue_flag);
6821 	if (running)
6822 		put_prev_task(rq, p);
6823 
6824 	/*
6825 	 * Boosting condition are:
6826 	 * 1. -rt task is running and holds mutex A
6827 	 *      --> -dl task blocks on mutex A
6828 	 *
6829 	 * 2. -dl task is running and holds mutex A
6830 	 *      --> -dl task blocks on mutex A and could preempt the
6831 	 *          running task
6832 	 */
6833 	if (dl_prio(prio)) {
6834 		if (!dl_prio(p->normal_prio) ||
6835 		    (pi_task && dl_prio(pi_task->prio) &&
6836 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6837 			p->dl.pi_se = pi_task->dl.pi_se;
6838 			queue_flag |= ENQUEUE_REPLENISH;
6839 		} else {
6840 			p->dl.pi_se = &p->dl;
6841 		}
6842 	} else if (rt_prio(prio)) {
6843 		if (dl_prio(oldprio))
6844 			p->dl.pi_se = &p->dl;
6845 		if (oldprio < prio)
6846 			queue_flag |= ENQUEUE_HEAD;
6847 	} else {
6848 		if (dl_prio(oldprio))
6849 			p->dl.pi_se = &p->dl;
6850 		if (rt_prio(oldprio))
6851 			p->rt.timeout = 0;
6852 	}
6853 
6854 	__setscheduler_prio(p, prio);
6855 
6856 	if (queued)
6857 		enqueue_task(rq, p, queue_flag);
6858 	if (running)
6859 		set_next_task(rq, p);
6860 
6861 	check_class_changed(rq, p, prev_class, oldprio);
6862 out_unlock:
6863 	/* Avoid rq from going away on us: */
6864 	preempt_disable();
6865 
6866 	rq_unpin_lock(rq, &rf);
6867 	__balance_callbacks(rq);
6868 	raw_spin_rq_unlock(rq);
6869 
6870 	preempt_enable();
6871 }
6872 #else
6873 static inline int rt_effective_prio(struct task_struct *p, int prio)
6874 {
6875 	return prio;
6876 }
6877 #endif
6878 
6879 void set_user_nice(struct task_struct *p, long nice)
6880 {
6881 	bool queued, running;
6882 	int old_prio;
6883 	struct rq_flags rf;
6884 	struct rq *rq;
6885 
6886 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6887 		return;
6888 	/*
6889 	 * We have to be careful, if called from sys_setpriority(),
6890 	 * the task might be in the middle of scheduling on another CPU.
6891 	 */
6892 	rq = task_rq_lock(p, &rf);
6893 	update_rq_clock(rq);
6894 
6895 	/*
6896 	 * The RT priorities are set via sched_setscheduler(), but we still
6897 	 * allow the 'normal' nice value to be set - but as expected
6898 	 * it won't have any effect on scheduling until the task is
6899 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6900 	 */
6901 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6902 		p->static_prio = NICE_TO_PRIO(nice);
6903 		goto out_unlock;
6904 	}
6905 	queued = task_on_rq_queued(p);
6906 	running = task_current(rq, p);
6907 	if (queued)
6908 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6909 	if (running)
6910 		put_prev_task(rq, p);
6911 
6912 	p->static_prio = NICE_TO_PRIO(nice);
6913 	set_load_weight(p, true);
6914 	old_prio = p->prio;
6915 	p->prio = effective_prio(p);
6916 
6917 	if (queued)
6918 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6919 	if (running)
6920 		set_next_task(rq, p);
6921 
6922 	/*
6923 	 * If the task increased its priority or is running and
6924 	 * lowered its priority, then reschedule its CPU:
6925 	 */
6926 	p->sched_class->prio_changed(rq, p, old_prio);
6927 
6928 out_unlock:
6929 	task_rq_unlock(rq, p, &rf);
6930 }
6931 EXPORT_SYMBOL(set_user_nice);
6932 
6933 /*
6934  * can_nice - check if a task can reduce its nice value
6935  * @p: task
6936  * @nice: nice value
6937  */
6938 int can_nice(const struct task_struct *p, const int nice)
6939 {
6940 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6941 	int nice_rlim = nice_to_rlimit(nice);
6942 
6943 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6944 		capable(CAP_SYS_NICE));
6945 }
6946 
6947 #ifdef __ARCH_WANT_SYS_NICE
6948 
6949 /*
6950  * sys_nice - change the priority of the current process.
6951  * @increment: priority increment
6952  *
6953  * sys_setpriority is a more generic, but much slower function that
6954  * does similar things.
6955  */
6956 SYSCALL_DEFINE1(nice, int, increment)
6957 {
6958 	long nice, retval;
6959 
6960 	/*
6961 	 * Setpriority might change our priority at the same moment.
6962 	 * We don't have to worry. Conceptually one call occurs first
6963 	 * and we have a single winner.
6964 	 */
6965 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6966 	nice = task_nice(current) + increment;
6967 
6968 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6969 	if (increment < 0 && !can_nice(current, nice))
6970 		return -EPERM;
6971 
6972 	retval = security_task_setnice(current, nice);
6973 	if (retval)
6974 		return retval;
6975 
6976 	set_user_nice(current, nice);
6977 	return 0;
6978 }
6979 
6980 #endif
6981 
6982 /**
6983  * task_prio - return the priority value of a given task.
6984  * @p: the task in question.
6985  *
6986  * Return: The priority value as seen by users in /proc.
6987  *
6988  * sched policy         return value   kernel prio    user prio/nice
6989  *
6990  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
6991  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
6992  * deadline                     -101             -1           0
6993  */
6994 int task_prio(const struct task_struct *p)
6995 {
6996 	return p->prio - MAX_RT_PRIO;
6997 }
6998 
6999 /**
7000  * idle_cpu - is a given CPU idle currently?
7001  * @cpu: the processor in question.
7002  *
7003  * Return: 1 if the CPU is currently idle. 0 otherwise.
7004  */
7005 int idle_cpu(int cpu)
7006 {
7007 	struct rq *rq = cpu_rq(cpu);
7008 
7009 	if (rq->curr != rq->idle)
7010 		return 0;
7011 
7012 	if (rq->nr_running)
7013 		return 0;
7014 
7015 #ifdef CONFIG_SMP
7016 	if (rq->ttwu_pending)
7017 		return 0;
7018 #endif
7019 
7020 	return 1;
7021 }
7022 
7023 /**
7024  * available_idle_cpu - is a given CPU idle for enqueuing work.
7025  * @cpu: the CPU in question.
7026  *
7027  * Return: 1 if the CPU is currently idle. 0 otherwise.
7028  */
7029 int available_idle_cpu(int cpu)
7030 {
7031 	if (!idle_cpu(cpu))
7032 		return 0;
7033 
7034 	if (vcpu_is_preempted(cpu))
7035 		return 0;
7036 
7037 	return 1;
7038 }
7039 
7040 /**
7041  * idle_task - return the idle task for a given CPU.
7042  * @cpu: the processor in question.
7043  *
7044  * Return: The idle task for the CPU @cpu.
7045  */
7046 struct task_struct *idle_task(int cpu)
7047 {
7048 	return cpu_rq(cpu)->idle;
7049 }
7050 
7051 #ifdef CONFIG_SMP
7052 /*
7053  * This function computes an effective utilization for the given CPU, to be
7054  * used for frequency selection given the linear relation: f = u * f_max.
7055  *
7056  * The scheduler tracks the following metrics:
7057  *
7058  *   cpu_util_{cfs,rt,dl,irq}()
7059  *   cpu_bw_dl()
7060  *
7061  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7062  * synchronized windows and are thus directly comparable.
7063  *
7064  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7065  * which excludes things like IRQ and steal-time. These latter are then accrued
7066  * in the irq utilization.
7067  *
7068  * The DL bandwidth number otoh is not a measured metric but a value computed
7069  * based on the task model parameters and gives the minimal utilization
7070  * required to meet deadlines.
7071  */
7072 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7073 				 unsigned long max, enum cpu_util_type type,
7074 				 struct task_struct *p)
7075 {
7076 	unsigned long dl_util, util, irq;
7077 	struct rq *rq = cpu_rq(cpu);
7078 
7079 	if (!uclamp_is_used() &&
7080 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7081 		return max;
7082 	}
7083 
7084 	/*
7085 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7086 	 * because of inaccuracies in how we track these -- see
7087 	 * update_irq_load_avg().
7088 	 */
7089 	irq = cpu_util_irq(rq);
7090 	if (unlikely(irq >= max))
7091 		return max;
7092 
7093 	/*
7094 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7095 	 * CFS tasks and we use the same metric to track the effective
7096 	 * utilization (PELT windows are synchronized) we can directly add them
7097 	 * to obtain the CPU's actual utilization.
7098 	 *
7099 	 * CFS and RT utilization can be boosted or capped, depending on
7100 	 * utilization clamp constraints requested by currently RUNNABLE
7101 	 * tasks.
7102 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7103 	 * frequency will be gracefully reduced with the utilization decay.
7104 	 */
7105 	util = util_cfs + cpu_util_rt(rq);
7106 	if (type == FREQUENCY_UTIL)
7107 		util = uclamp_rq_util_with(rq, util, p);
7108 
7109 	dl_util = cpu_util_dl(rq);
7110 
7111 	/*
7112 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7113 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7114 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7115 	 * that we select f_max when there is no idle time.
7116 	 *
7117 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7118 	 * saturation when we should -- something for later.
7119 	 */
7120 	if (util + dl_util >= max)
7121 		return max;
7122 
7123 	/*
7124 	 * OTOH, for energy computation we need the estimated running time, so
7125 	 * include util_dl and ignore dl_bw.
7126 	 */
7127 	if (type == ENERGY_UTIL)
7128 		util += dl_util;
7129 
7130 	/*
7131 	 * There is still idle time; further improve the number by using the
7132 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7133 	 * need to scale the task numbers:
7134 	 *
7135 	 *              max - irq
7136 	 *   U' = irq + --------- * U
7137 	 *                 max
7138 	 */
7139 	util = scale_irq_capacity(util, irq, max);
7140 	util += irq;
7141 
7142 	/*
7143 	 * Bandwidth required by DEADLINE must always be granted while, for
7144 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7145 	 * to gracefully reduce the frequency when no tasks show up for longer
7146 	 * periods of time.
7147 	 *
7148 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7149 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7150 	 * an interface. So, we only do the latter for now.
7151 	 */
7152 	if (type == FREQUENCY_UTIL)
7153 		util += cpu_bw_dl(rq);
7154 
7155 	return min(max, util);
7156 }
7157 
7158 unsigned long sched_cpu_util(int cpu, unsigned long max)
7159 {
7160 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
7161 				  ENERGY_UTIL, NULL);
7162 }
7163 #endif /* CONFIG_SMP */
7164 
7165 /**
7166  * find_process_by_pid - find a process with a matching PID value.
7167  * @pid: the pid in question.
7168  *
7169  * The task of @pid, if found. %NULL otherwise.
7170  */
7171 static struct task_struct *find_process_by_pid(pid_t pid)
7172 {
7173 	return pid ? find_task_by_vpid(pid) : current;
7174 }
7175 
7176 /*
7177  * sched_setparam() passes in -1 for its policy, to let the functions
7178  * it calls know not to change it.
7179  */
7180 #define SETPARAM_POLICY	-1
7181 
7182 static void __setscheduler_params(struct task_struct *p,
7183 		const struct sched_attr *attr)
7184 {
7185 	int policy = attr->sched_policy;
7186 
7187 	if (policy == SETPARAM_POLICY)
7188 		policy = p->policy;
7189 
7190 	p->policy = policy;
7191 
7192 	if (dl_policy(policy))
7193 		__setparam_dl(p, attr);
7194 	else if (fair_policy(policy))
7195 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7196 
7197 	/*
7198 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7199 	 * !rt_policy. Always setting this ensures that things like
7200 	 * getparam()/getattr() don't report silly values for !rt tasks.
7201 	 */
7202 	p->rt_priority = attr->sched_priority;
7203 	p->normal_prio = normal_prio(p);
7204 	set_load_weight(p, true);
7205 }
7206 
7207 /*
7208  * Check the target process has a UID that matches the current process's:
7209  */
7210 static bool check_same_owner(struct task_struct *p)
7211 {
7212 	const struct cred *cred = current_cred(), *pcred;
7213 	bool match;
7214 
7215 	rcu_read_lock();
7216 	pcred = __task_cred(p);
7217 	match = (uid_eq(cred->euid, pcred->euid) ||
7218 		 uid_eq(cred->euid, pcred->uid));
7219 	rcu_read_unlock();
7220 	return match;
7221 }
7222 
7223 static int __sched_setscheduler(struct task_struct *p,
7224 				const struct sched_attr *attr,
7225 				bool user, bool pi)
7226 {
7227 	int oldpolicy = -1, policy = attr->sched_policy;
7228 	int retval, oldprio, newprio, queued, running;
7229 	const struct sched_class *prev_class;
7230 	struct callback_head *head;
7231 	struct rq_flags rf;
7232 	int reset_on_fork;
7233 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7234 	struct rq *rq;
7235 
7236 	/* The pi code expects interrupts enabled */
7237 	BUG_ON(pi && in_interrupt());
7238 recheck:
7239 	/* Double check policy once rq lock held: */
7240 	if (policy < 0) {
7241 		reset_on_fork = p->sched_reset_on_fork;
7242 		policy = oldpolicy = p->policy;
7243 	} else {
7244 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7245 
7246 		if (!valid_policy(policy))
7247 			return -EINVAL;
7248 	}
7249 
7250 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7251 		return -EINVAL;
7252 
7253 	/*
7254 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7255 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7256 	 * SCHED_BATCH and SCHED_IDLE is 0.
7257 	 */
7258 	if (attr->sched_priority > MAX_RT_PRIO-1)
7259 		return -EINVAL;
7260 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7261 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7262 		return -EINVAL;
7263 
7264 	/*
7265 	 * Allow unprivileged RT tasks to decrease priority:
7266 	 */
7267 	if (user && !capable(CAP_SYS_NICE)) {
7268 		if (fair_policy(policy)) {
7269 			if (attr->sched_nice < task_nice(p) &&
7270 			    !can_nice(p, attr->sched_nice))
7271 				return -EPERM;
7272 		}
7273 
7274 		if (rt_policy(policy)) {
7275 			unsigned long rlim_rtprio =
7276 					task_rlimit(p, RLIMIT_RTPRIO);
7277 
7278 			/* Can't set/change the rt policy: */
7279 			if (policy != p->policy && !rlim_rtprio)
7280 				return -EPERM;
7281 
7282 			/* Can't increase priority: */
7283 			if (attr->sched_priority > p->rt_priority &&
7284 			    attr->sched_priority > rlim_rtprio)
7285 				return -EPERM;
7286 		}
7287 
7288 		 /*
7289 		  * Can't set/change SCHED_DEADLINE policy at all for now
7290 		  * (safest behavior); in the future we would like to allow
7291 		  * unprivileged DL tasks to increase their relative deadline
7292 		  * or reduce their runtime (both ways reducing utilization)
7293 		  */
7294 		if (dl_policy(policy))
7295 			return -EPERM;
7296 
7297 		/*
7298 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7299 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7300 		 */
7301 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7302 			if (!can_nice(p, task_nice(p)))
7303 				return -EPERM;
7304 		}
7305 
7306 		/* Can't change other user's priorities: */
7307 		if (!check_same_owner(p))
7308 			return -EPERM;
7309 
7310 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7311 		if (p->sched_reset_on_fork && !reset_on_fork)
7312 			return -EPERM;
7313 	}
7314 
7315 	if (user) {
7316 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7317 			return -EINVAL;
7318 
7319 		retval = security_task_setscheduler(p);
7320 		if (retval)
7321 			return retval;
7322 	}
7323 
7324 	/* Update task specific "requested" clamps */
7325 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7326 		retval = uclamp_validate(p, attr);
7327 		if (retval)
7328 			return retval;
7329 	}
7330 
7331 	if (pi)
7332 		cpuset_read_lock();
7333 
7334 	/*
7335 	 * Make sure no PI-waiters arrive (or leave) while we are
7336 	 * changing the priority of the task:
7337 	 *
7338 	 * To be able to change p->policy safely, the appropriate
7339 	 * runqueue lock must be held.
7340 	 */
7341 	rq = task_rq_lock(p, &rf);
7342 	update_rq_clock(rq);
7343 
7344 	/*
7345 	 * Changing the policy of the stop threads its a very bad idea:
7346 	 */
7347 	if (p == rq->stop) {
7348 		retval = -EINVAL;
7349 		goto unlock;
7350 	}
7351 
7352 	/*
7353 	 * If not changing anything there's no need to proceed further,
7354 	 * but store a possible modification of reset_on_fork.
7355 	 */
7356 	if (unlikely(policy == p->policy)) {
7357 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7358 			goto change;
7359 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7360 			goto change;
7361 		if (dl_policy(policy) && dl_param_changed(p, attr))
7362 			goto change;
7363 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7364 			goto change;
7365 
7366 		p->sched_reset_on_fork = reset_on_fork;
7367 		retval = 0;
7368 		goto unlock;
7369 	}
7370 change:
7371 
7372 	if (user) {
7373 #ifdef CONFIG_RT_GROUP_SCHED
7374 		/*
7375 		 * Do not allow realtime tasks into groups that have no runtime
7376 		 * assigned.
7377 		 */
7378 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7379 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7380 				!task_group_is_autogroup(task_group(p))) {
7381 			retval = -EPERM;
7382 			goto unlock;
7383 		}
7384 #endif
7385 #ifdef CONFIG_SMP
7386 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7387 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7388 			cpumask_t *span = rq->rd->span;
7389 
7390 			/*
7391 			 * Don't allow tasks with an affinity mask smaller than
7392 			 * the entire root_domain to become SCHED_DEADLINE. We
7393 			 * will also fail if there's no bandwidth available.
7394 			 */
7395 			if (!cpumask_subset(span, p->cpus_ptr) ||
7396 			    rq->rd->dl_bw.bw == 0) {
7397 				retval = -EPERM;
7398 				goto unlock;
7399 			}
7400 		}
7401 #endif
7402 	}
7403 
7404 	/* Re-check policy now with rq lock held: */
7405 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7406 		policy = oldpolicy = -1;
7407 		task_rq_unlock(rq, p, &rf);
7408 		if (pi)
7409 			cpuset_read_unlock();
7410 		goto recheck;
7411 	}
7412 
7413 	/*
7414 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7415 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7416 	 * is available.
7417 	 */
7418 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7419 		retval = -EBUSY;
7420 		goto unlock;
7421 	}
7422 
7423 	p->sched_reset_on_fork = reset_on_fork;
7424 	oldprio = p->prio;
7425 
7426 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7427 	if (pi) {
7428 		/*
7429 		 * Take priority boosted tasks into account. If the new
7430 		 * effective priority is unchanged, we just store the new
7431 		 * normal parameters and do not touch the scheduler class and
7432 		 * the runqueue. This will be done when the task deboost
7433 		 * itself.
7434 		 */
7435 		newprio = rt_effective_prio(p, newprio);
7436 		if (newprio == oldprio)
7437 			queue_flags &= ~DEQUEUE_MOVE;
7438 	}
7439 
7440 	queued = task_on_rq_queued(p);
7441 	running = task_current(rq, p);
7442 	if (queued)
7443 		dequeue_task(rq, p, queue_flags);
7444 	if (running)
7445 		put_prev_task(rq, p);
7446 
7447 	prev_class = p->sched_class;
7448 
7449 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7450 		__setscheduler_params(p, attr);
7451 		__setscheduler_prio(p, newprio);
7452 	}
7453 	__setscheduler_uclamp(p, attr);
7454 
7455 	if (queued) {
7456 		/*
7457 		 * We enqueue to tail when the priority of a task is
7458 		 * increased (user space view).
7459 		 */
7460 		if (oldprio < p->prio)
7461 			queue_flags |= ENQUEUE_HEAD;
7462 
7463 		enqueue_task(rq, p, queue_flags);
7464 	}
7465 	if (running)
7466 		set_next_task(rq, p);
7467 
7468 	check_class_changed(rq, p, prev_class, oldprio);
7469 
7470 	/* Avoid rq from going away on us: */
7471 	preempt_disable();
7472 	head = splice_balance_callbacks(rq);
7473 	task_rq_unlock(rq, p, &rf);
7474 
7475 	if (pi) {
7476 		cpuset_read_unlock();
7477 		rt_mutex_adjust_pi(p);
7478 	}
7479 
7480 	/* Run balance callbacks after we've adjusted the PI chain: */
7481 	balance_callbacks(rq, head);
7482 	preempt_enable();
7483 
7484 	return 0;
7485 
7486 unlock:
7487 	task_rq_unlock(rq, p, &rf);
7488 	if (pi)
7489 		cpuset_read_unlock();
7490 	return retval;
7491 }
7492 
7493 static int _sched_setscheduler(struct task_struct *p, int policy,
7494 			       const struct sched_param *param, bool check)
7495 {
7496 	struct sched_attr attr = {
7497 		.sched_policy   = policy,
7498 		.sched_priority = param->sched_priority,
7499 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7500 	};
7501 
7502 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7503 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7504 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7505 		policy &= ~SCHED_RESET_ON_FORK;
7506 		attr.sched_policy = policy;
7507 	}
7508 
7509 	return __sched_setscheduler(p, &attr, check, true);
7510 }
7511 /**
7512  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7513  * @p: the task in question.
7514  * @policy: new policy.
7515  * @param: structure containing the new RT priority.
7516  *
7517  * Use sched_set_fifo(), read its comment.
7518  *
7519  * Return: 0 on success. An error code otherwise.
7520  *
7521  * NOTE that the task may be already dead.
7522  */
7523 int sched_setscheduler(struct task_struct *p, int policy,
7524 		       const struct sched_param *param)
7525 {
7526 	return _sched_setscheduler(p, policy, param, true);
7527 }
7528 
7529 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7530 {
7531 	return __sched_setscheduler(p, attr, true, true);
7532 }
7533 
7534 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7535 {
7536 	return __sched_setscheduler(p, attr, false, true);
7537 }
7538 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7539 
7540 /**
7541  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7542  * @p: the task in question.
7543  * @policy: new policy.
7544  * @param: structure containing the new RT priority.
7545  *
7546  * Just like sched_setscheduler, only don't bother checking if the
7547  * current context has permission.  For example, this is needed in
7548  * stop_machine(): we create temporary high priority worker threads,
7549  * but our caller might not have that capability.
7550  *
7551  * Return: 0 on success. An error code otherwise.
7552  */
7553 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7554 			       const struct sched_param *param)
7555 {
7556 	return _sched_setscheduler(p, policy, param, false);
7557 }
7558 
7559 /*
7560  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7561  * incapable of resource management, which is the one thing an OS really should
7562  * be doing.
7563  *
7564  * This is of course the reason it is limited to privileged users only.
7565  *
7566  * Worse still; it is fundamentally impossible to compose static priority
7567  * workloads. You cannot take two correctly working static prio workloads
7568  * and smash them together and still expect them to work.
7569  *
7570  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7571  *
7572  *   MAX_RT_PRIO / 2
7573  *
7574  * The administrator _MUST_ configure the system, the kernel simply doesn't
7575  * know enough information to make a sensible choice.
7576  */
7577 void sched_set_fifo(struct task_struct *p)
7578 {
7579 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7580 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7581 }
7582 EXPORT_SYMBOL_GPL(sched_set_fifo);
7583 
7584 /*
7585  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7586  */
7587 void sched_set_fifo_low(struct task_struct *p)
7588 {
7589 	struct sched_param sp = { .sched_priority = 1 };
7590 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7591 }
7592 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7593 
7594 void sched_set_normal(struct task_struct *p, int nice)
7595 {
7596 	struct sched_attr attr = {
7597 		.sched_policy = SCHED_NORMAL,
7598 		.sched_nice = nice,
7599 	};
7600 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7601 }
7602 EXPORT_SYMBOL_GPL(sched_set_normal);
7603 
7604 static int
7605 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7606 {
7607 	struct sched_param lparam;
7608 	struct task_struct *p;
7609 	int retval;
7610 
7611 	if (!param || pid < 0)
7612 		return -EINVAL;
7613 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7614 		return -EFAULT;
7615 
7616 	rcu_read_lock();
7617 	retval = -ESRCH;
7618 	p = find_process_by_pid(pid);
7619 	if (likely(p))
7620 		get_task_struct(p);
7621 	rcu_read_unlock();
7622 
7623 	if (likely(p)) {
7624 		retval = sched_setscheduler(p, policy, &lparam);
7625 		put_task_struct(p);
7626 	}
7627 
7628 	return retval;
7629 }
7630 
7631 /*
7632  * Mimics kernel/events/core.c perf_copy_attr().
7633  */
7634 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7635 {
7636 	u32 size;
7637 	int ret;
7638 
7639 	/* Zero the full structure, so that a short copy will be nice: */
7640 	memset(attr, 0, sizeof(*attr));
7641 
7642 	ret = get_user(size, &uattr->size);
7643 	if (ret)
7644 		return ret;
7645 
7646 	/* ABI compatibility quirk: */
7647 	if (!size)
7648 		size = SCHED_ATTR_SIZE_VER0;
7649 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7650 		goto err_size;
7651 
7652 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7653 	if (ret) {
7654 		if (ret == -E2BIG)
7655 			goto err_size;
7656 		return ret;
7657 	}
7658 
7659 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7660 	    size < SCHED_ATTR_SIZE_VER1)
7661 		return -EINVAL;
7662 
7663 	/*
7664 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7665 	 * to be strict and return an error on out-of-bounds values?
7666 	 */
7667 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7668 
7669 	return 0;
7670 
7671 err_size:
7672 	put_user(sizeof(*attr), &uattr->size);
7673 	return -E2BIG;
7674 }
7675 
7676 static void get_params(struct task_struct *p, struct sched_attr *attr)
7677 {
7678 	if (task_has_dl_policy(p))
7679 		__getparam_dl(p, attr);
7680 	else if (task_has_rt_policy(p))
7681 		attr->sched_priority = p->rt_priority;
7682 	else
7683 		attr->sched_nice = task_nice(p);
7684 }
7685 
7686 /**
7687  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7688  * @pid: the pid in question.
7689  * @policy: new policy.
7690  * @param: structure containing the new RT priority.
7691  *
7692  * Return: 0 on success. An error code otherwise.
7693  */
7694 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7695 {
7696 	if (policy < 0)
7697 		return -EINVAL;
7698 
7699 	return do_sched_setscheduler(pid, policy, param);
7700 }
7701 
7702 /**
7703  * sys_sched_setparam - set/change the RT priority of a thread
7704  * @pid: the pid in question.
7705  * @param: structure containing the new RT priority.
7706  *
7707  * Return: 0 on success. An error code otherwise.
7708  */
7709 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7710 {
7711 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7712 }
7713 
7714 /**
7715  * sys_sched_setattr - same as above, but with extended sched_attr
7716  * @pid: the pid in question.
7717  * @uattr: structure containing the extended parameters.
7718  * @flags: for future extension.
7719  */
7720 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7721 			       unsigned int, flags)
7722 {
7723 	struct sched_attr attr;
7724 	struct task_struct *p;
7725 	int retval;
7726 
7727 	if (!uattr || pid < 0 || flags)
7728 		return -EINVAL;
7729 
7730 	retval = sched_copy_attr(uattr, &attr);
7731 	if (retval)
7732 		return retval;
7733 
7734 	if ((int)attr.sched_policy < 0)
7735 		return -EINVAL;
7736 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7737 		attr.sched_policy = SETPARAM_POLICY;
7738 
7739 	rcu_read_lock();
7740 	retval = -ESRCH;
7741 	p = find_process_by_pid(pid);
7742 	if (likely(p))
7743 		get_task_struct(p);
7744 	rcu_read_unlock();
7745 
7746 	if (likely(p)) {
7747 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7748 			get_params(p, &attr);
7749 		retval = sched_setattr(p, &attr);
7750 		put_task_struct(p);
7751 	}
7752 
7753 	return retval;
7754 }
7755 
7756 /**
7757  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7758  * @pid: the pid in question.
7759  *
7760  * Return: On success, the policy of the thread. Otherwise, a negative error
7761  * code.
7762  */
7763 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7764 {
7765 	struct task_struct *p;
7766 	int retval;
7767 
7768 	if (pid < 0)
7769 		return -EINVAL;
7770 
7771 	retval = -ESRCH;
7772 	rcu_read_lock();
7773 	p = find_process_by_pid(pid);
7774 	if (p) {
7775 		retval = security_task_getscheduler(p);
7776 		if (!retval)
7777 			retval = p->policy
7778 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7779 	}
7780 	rcu_read_unlock();
7781 	return retval;
7782 }
7783 
7784 /**
7785  * sys_sched_getparam - get the RT priority of a thread
7786  * @pid: the pid in question.
7787  * @param: structure containing the RT priority.
7788  *
7789  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7790  * code.
7791  */
7792 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7793 {
7794 	struct sched_param lp = { .sched_priority = 0 };
7795 	struct task_struct *p;
7796 	int retval;
7797 
7798 	if (!param || pid < 0)
7799 		return -EINVAL;
7800 
7801 	rcu_read_lock();
7802 	p = find_process_by_pid(pid);
7803 	retval = -ESRCH;
7804 	if (!p)
7805 		goto out_unlock;
7806 
7807 	retval = security_task_getscheduler(p);
7808 	if (retval)
7809 		goto out_unlock;
7810 
7811 	if (task_has_rt_policy(p))
7812 		lp.sched_priority = p->rt_priority;
7813 	rcu_read_unlock();
7814 
7815 	/*
7816 	 * This one might sleep, we cannot do it with a spinlock held ...
7817 	 */
7818 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7819 
7820 	return retval;
7821 
7822 out_unlock:
7823 	rcu_read_unlock();
7824 	return retval;
7825 }
7826 
7827 /*
7828  * Copy the kernel size attribute structure (which might be larger
7829  * than what user-space knows about) to user-space.
7830  *
7831  * Note that all cases are valid: user-space buffer can be larger or
7832  * smaller than the kernel-space buffer. The usual case is that both
7833  * have the same size.
7834  */
7835 static int
7836 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7837 			struct sched_attr *kattr,
7838 			unsigned int usize)
7839 {
7840 	unsigned int ksize = sizeof(*kattr);
7841 
7842 	if (!access_ok(uattr, usize))
7843 		return -EFAULT;
7844 
7845 	/*
7846 	 * sched_getattr() ABI forwards and backwards compatibility:
7847 	 *
7848 	 * If usize == ksize then we just copy everything to user-space and all is good.
7849 	 *
7850 	 * If usize < ksize then we only copy as much as user-space has space for,
7851 	 * this keeps ABI compatibility as well. We skip the rest.
7852 	 *
7853 	 * If usize > ksize then user-space is using a newer version of the ABI,
7854 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7855 	 * detect the kernel's knowledge of attributes from the attr->size value
7856 	 * which is set to ksize in this case.
7857 	 */
7858 	kattr->size = min(usize, ksize);
7859 
7860 	if (copy_to_user(uattr, kattr, kattr->size))
7861 		return -EFAULT;
7862 
7863 	return 0;
7864 }
7865 
7866 /**
7867  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7868  * @pid: the pid in question.
7869  * @uattr: structure containing the extended parameters.
7870  * @usize: sizeof(attr) for fwd/bwd comp.
7871  * @flags: for future extension.
7872  */
7873 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7874 		unsigned int, usize, unsigned int, flags)
7875 {
7876 	struct sched_attr kattr = { };
7877 	struct task_struct *p;
7878 	int retval;
7879 
7880 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7881 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7882 		return -EINVAL;
7883 
7884 	rcu_read_lock();
7885 	p = find_process_by_pid(pid);
7886 	retval = -ESRCH;
7887 	if (!p)
7888 		goto out_unlock;
7889 
7890 	retval = security_task_getscheduler(p);
7891 	if (retval)
7892 		goto out_unlock;
7893 
7894 	kattr.sched_policy = p->policy;
7895 	if (p->sched_reset_on_fork)
7896 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7897 	get_params(p, &kattr);
7898 	kattr.sched_flags &= SCHED_FLAG_ALL;
7899 
7900 #ifdef CONFIG_UCLAMP_TASK
7901 	/*
7902 	 * This could race with another potential updater, but this is fine
7903 	 * because it'll correctly read the old or the new value. We don't need
7904 	 * to guarantee who wins the race as long as it doesn't return garbage.
7905 	 */
7906 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7907 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7908 #endif
7909 
7910 	rcu_read_unlock();
7911 
7912 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7913 
7914 out_unlock:
7915 	rcu_read_unlock();
7916 	return retval;
7917 }
7918 
7919 #ifdef CONFIG_SMP
7920 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7921 {
7922 	int ret = 0;
7923 
7924 	/*
7925 	 * If the task isn't a deadline task or admission control is
7926 	 * disabled then we don't care about affinity changes.
7927 	 */
7928 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7929 		return 0;
7930 
7931 	/*
7932 	 * Since bandwidth control happens on root_domain basis,
7933 	 * if admission test is enabled, we only admit -deadline
7934 	 * tasks allowed to run on all the CPUs in the task's
7935 	 * root_domain.
7936 	 */
7937 	rcu_read_lock();
7938 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7939 		ret = -EBUSY;
7940 	rcu_read_unlock();
7941 	return ret;
7942 }
7943 #endif
7944 
7945 static int
7946 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7947 {
7948 	int retval;
7949 	cpumask_var_t cpus_allowed, new_mask;
7950 
7951 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7952 		return -ENOMEM;
7953 
7954 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7955 		retval = -ENOMEM;
7956 		goto out_free_cpus_allowed;
7957 	}
7958 
7959 	cpuset_cpus_allowed(p, cpus_allowed);
7960 	cpumask_and(new_mask, mask, cpus_allowed);
7961 
7962 	retval = dl_task_check_affinity(p, new_mask);
7963 	if (retval)
7964 		goto out_free_new_mask;
7965 again:
7966 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7967 	if (retval)
7968 		goto out_free_new_mask;
7969 
7970 	cpuset_cpus_allowed(p, cpus_allowed);
7971 	if (!cpumask_subset(new_mask, cpus_allowed)) {
7972 		/*
7973 		 * We must have raced with a concurrent cpuset update.
7974 		 * Just reset the cpumask to the cpuset's cpus_allowed.
7975 		 */
7976 		cpumask_copy(new_mask, cpus_allowed);
7977 		goto again;
7978 	}
7979 
7980 out_free_new_mask:
7981 	free_cpumask_var(new_mask);
7982 out_free_cpus_allowed:
7983 	free_cpumask_var(cpus_allowed);
7984 	return retval;
7985 }
7986 
7987 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7988 {
7989 	struct task_struct *p;
7990 	int retval;
7991 
7992 	rcu_read_lock();
7993 
7994 	p = find_process_by_pid(pid);
7995 	if (!p) {
7996 		rcu_read_unlock();
7997 		return -ESRCH;
7998 	}
7999 
8000 	/* Prevent p going away */
8001 	get_task_struct(p);
8002 	rcu_read_unlock();
8003 
8004 	if (p->flags & PF_NO_SETAFFINITY) {
8005 		retval = -EINVAL;
8006 		goto out_put_task;
8007 	}
8008 
8009 	if (!check_same_owner(p)) {
8010 		rcu_read_lock();
8011 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8012 			rcu_read_unlock();
8013 			retval = -EPERM;
8014 			goto out_put_task;
8015 		}
8016 		rcu_read_unlock();
8017 	}
8018 
8019 	retval = security_task_setscheduler(p);
8020 	if (retval)
8021 		goto out_put_task;
8022 
8023 	retval = __sched_setaffinity(p, in_mask);
8024 out_put_task:
8025 	put_task_struct(p);
8026 	return retval;
8027 }
8028 
8029 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8030 			     struct cpumask *new_mask)
8031 {
8032 	if (len < cpumask_size())
8033 		cpumask_clear(new_mask);
8034 	else if (len > cpumask_size())
8035 		len = cpumask_size();
8036 
8037 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8038 }
8039 
8040 /**
8041  * sys_sched_setaffinity - set the CPU affinity of a process
8042  * @pid: pid of the process
8043  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8044  * @user_mask_ptr: user-space pointer to the new CPU mask
8045  *
8046  * Return: 0 on success. An error code otherwise.
8047  */
8048 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8049 		unsigned long __user *, user_mask_ptr)
8050 {
8051 	cpumask_var_t new_mask;
8052 	int retval;
8053 
8054 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8055 		return -ENOMEM;
8056 
8057 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8058 	if (retval == 0)
8059 		retval = sched_setaffinity(pid, new_mask);
8060 	free_cpumask_var(new_mask);
8061 	return retval;
8062 }
8063 
8064 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8065 {
8066 	struct task_struct *p;
8067 	unsigned long flags;
8068 	int retval;
8069 
8070 	rcu_read_lock();
8071 
8072 	retval = -ESRCH;
8073 	p = find_process_by_pid(pid);
8074 	if (!p)
8075 		goto out_unlock;
8076 
8077 	retval = security_task_getscheduler(p);
8078 	if (retval)
8079 		goto out_unlock;
8080 
8081 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8082 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8083 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8084 
8085 out_unlock:
8086 	rcu_read_unlock();
8087 
8088 	return retval;
8089 }
8090 
8091 /**
8092  * sys_sched_getaffinity - get the CPU affinity of a process
8093  * @pid: pid of the process
8094  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8095  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8096  *
8097  * Return: size of CPU mask copied to user_mask_ptr on success. An
8098  * error code otherwise.
8099  */
8100 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8101 		unsigned long __user *, user_mask_ptr)
8102 {
8103 	int ret;
8104 	cpumask_var_t mask;
8105 
8106 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8107 		return -EINVAL;
8108 	if (len & (sizeof(unsigned long)-1))
8109 		return -EINVAL;
8110 
8111 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8112 		return -ENOMEM;
8113 
8114 	ret = sched_getaffinity(pid, mask);
8115 	if (ret == 0) {
8116 		unsigned int retlen = min(len, cpumask_size());
8117 
8118 		if (copy_to_user(user_mask_ptr, mask, retlen))
8119 			ret = -EFAULT;
8120 		else
8121 			ret = retlen;
8122 	}
8123 	free_cpumask_var(mask);
8124 
8125 	return ret;
8126 }
8127 
8128 static void do_sched_yield(void)
8129 {
8130 	struct rq_flags rf;
8131 	struct rq *rq;
8132 
8133 	rq = this_rq_lock_irq(&rf);
8134 
8135 	schedstat_inc(rq->yld_count);
8136 	current->sched_class->yield_task(rq);
8137 
8138 	preempt_disable();
8139 	rq_unlock_irq(rq, &rf);
8140 	sched_preempt_enable_no_resched();
8141 
8142 	schedule();
8143 }
8144 
8145 /**
8146  * sys_sched_yield - yield the current processor to other threads.
8147  *
8148  * This function yields the current CPU to other tasks. If there are no
8149  * other threads running on this CPU then this function will return.
8150  *
8151  * Return: 0.
8152  */
8153 SYSCALL_DEFINE0(sched_yield)
8154 {
8155 	do_sched_yield();
8156 	return 0;
8157 }
8158 
8159 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8160 int __sched __cond_resched(void)
8161 {
8162 	if (should_resched(0)) {
8163 		preempt_schedule_common();
8164 		return 1;
8165 	}
8166 	/*
8167 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8168 	 * whether the current CPU is in an RCU read-side critical section,
8169 	 * so the tick can report quiescent states even for CPUs looping
8170 	 * in kernel context.  In contrast, in non-preemptible kernels,
8171 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8172 	 * processes executing in kernel context might never report an
8173 	 * RCU quiescent state.  Therefore, the following code causes
8174 	 * cond_resched() to report a quiescent state, but only when RCU
8175 	 * is in urgent need of one.
8176 	 */
8177 #ifndef CONFIG_PREEMPT_RCU
8178 	rcu_all_qs();
8179 #endif
8180 	return 0;
8181 }
8182 EXPORT_SYMBOL(__cond_resched);
8183 #endif
8184 
8185 #ifdef CONFIG_PREEMPT_DYNAMIC
8186 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8187 #define cond_resched_dynamic_enabled	__cond_resched
8188 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8189 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8190 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8191 
8192 #define might_resched_dynamic_enabled	__cond_resched
8193 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8194 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8195 EXPORT_STATIC_CALL_TRAMP(might_resched);
8196 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8197 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8198 int __sched dynamic_cond_resched(void)
8199 {
8200 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8201 		return 0;
8202 	return __cond_resched();
8203 }
8204 EXPORT_SYMBOL(dynamic_cond_resched);
8205 
8206 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8207 int __sched dynamic_might_resched(void)
8208 {
8209 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8210 		return 0;
8211 	return __cond_resched();
8212 }
8213 EXPORT_SYMBOL(dynamic_might_resched);
8214 #endif
8215 #endif
8216 
8217 /*
8218  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8219  * call schedule, and on return reacquire the lock.
8220  *
8221  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8222  * operations here to prevent schedule() from being called twice (once via
8223  * spin_unlock(), once by hand).
8224  */
8225 int __cond_resched_lock(spinlock_t *lock)
8226 {
8227 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8228 	int ret = 0;
8229 
8230 	lockdep_assert_held(lock);
8231 
8232 	if (spin_needbreak(lock) || resched) {
8233 		spin_unlock(lock);
8234 		if (!_cond_resched())
8235 			cpu_relax();
8236 		ret = 1;
8237 		spin_lock(lock);
8238 	}
8239 	return ret;
8240 }
8241 EXPORT_SYMBOL(__cond_resched_lock);
8242 
8243 int __cond_resched_rwlock_read(rwlock_t *lock)
8244 {
8245 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8246 	int ret = 0;
8247 
8248 	lockdep_assert_held_read(lock);
8249 
8250 	if (rwlock_needbreak(lock) || resched) {
8251 		read_unlock(lock);
8252 		if (!_cond_resched())
8253 			cpu_relax();
8254 		ret = 1;
8255 		read_lock(lock);
8256 	}
8257 	return ret;
8258 }
8259 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8260 
8261 int __cond_resched_rwlock_write(rwlock_t *lock)
8262 {
8263 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8264 	int ret = 0;
8265 
8266 	lockdep_assert_held_write(lock);
8267 
8268 	if (rwlock_needbreak(lock) || resched) {
8269 		write_unlock(lock);
8270 		if (!_cond_resched())
8271 			cpu_relax();
8272 		ret = 1;
8273 		write_lock(lock);
8274 	}
8275 	return ret;
8276 }
8277 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8278 
8279 #ifdef CONFIG_PREEMPT_DYNAMIC
8280 
8281 #ifdef CONFIG_GENERIC_ENTRY
8282 #include <linux/entry-common.h>
8283 #endif
8284 
8285 /*
8286  * SC:cond_resched
8287  * SC:might_resched
8288  * SC:preempt_schedule
8289  * SC:preempt_schedule_notrace
8290  * SC:irqentry_exit_cond_resched
8291  *
8292  *
8293  * NONE:
8294  *   cond_resched               <- __cond_resched
8295  *   might_resched              <- RET0
8296  *   preempt_schedule           <- NOP
8297  *   preempt_schedule_notrace   <- NOP
8298  *   irqentry_exit_cond_resched <- NOP
8299  *
8300  * VOLUNTARY:
8301  *   cond_resched               <- __cond_resched
8302  *   might_resched              <- __cond_resched
8303  *   preempt_schedule           <- NOP
8304  *   preempt_schedule_notrace   <- NOP
8305  *   irqentry_exit_cond_resched <- NOP
8306  *
8307  * FULL:
8308  *   cond_resched               <- RET0
8309  *   might_resched              <- RET0
8310  *   preempt_schedule           <- preempt_schedule
8311  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8312  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8313  */
8314 
8315 enum {
8316 	preempt_dynamic_undefined = -1,
8317 	preempt_dynamic_none,
8318 	preempt_dynamic_voluntary,
8319 	preempt_dynamic_full,
8320 };
8321 
8322 int preempt_dynamic_mode = preempt_dynamic_undefined;
8323 
8324 int sched_dynamic_mode(const char *str)
8325 {
8326 	if (!strcmp(str, "none"))
8327 		return preempt_dynamic_none;
8328 
8329 	if (!strcmp(str, "voluntary"))
8330 		return preempt_dynamic_voluntary;
8331 
8332 	if (!strcmp(str, "full"))
8333 		return preempt_dynamic_full;
8334 
8335 	return -EINVAL;
8336 }
8337 
8338 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8339 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8340 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8341 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8342 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8343 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8344 #else
8345 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8346 #endif
8347 
8348 void sched_dynamic_update(int mode)
8349 {
8350 	/*
8351 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8352 	 * the ZERO state, which is invalid.
8353 	 */
8354 	preempt_dynamic_enable(cond_resched);
8355 	preempt_dynamic_enable(might_resched);
8356 	preempt_dynamic_enable(preempt_schedule);
8357 	preempt_dynamic_enable(preempt_schedule_notrace);
8358 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8359 
8360 	switch (mode) {
8361 	case preempt_dynamic_none:
8362 		preempt_dynamic_enable(cond_resched);
8363 		preempt_dynamic_disable(might_resched);
8364 		preempt_dynamic_disable(preempt_schedule);
8365 		preempt_dynamic_disable(preempt_schedule_notrace);
8366 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8367 		pr_info("Dynamic Preempt: none\n");
8368 		break;
8369 
8370 	case preempt_dynamic_voluntary:
8371 		preempt_dynamic_enable(cond_resched);
8372 		preempt_dynamic_enable(might_resched);
8373 		preempt_dynamic_disable(preempt_schedule);
8374 		preempt_dynamic_disable(preempt_schedule_notrace);
8375 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8376 		pr_info("Dynamic Preempt: voluntary\n");
8377 		break;
8378 
8379 	case preempt_dynamic_full:
8380 		preempt_dynamic_disable(cond_resched);
8381 		preempt_dynamic_disable(might_resched);
8382 		preempt_dynamic_enable(preempt_schedule);
8383 		preempt_dynamic_enable(preempt_schedule_notrace);
8384 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8385 		pr_info("Dynamic Preempt: full\n");
8386 		break;
8387 	}
8388 
8389 	preempt_dynamic_mode = mode;
8390 }
8391 
8392 static int __init setup_preempt_mode(char *str)
8393 {
8394 	int mode = sched_dynamic_mode(str);
8395 	if (mode < 0) {
8396 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8397 		return 0;
8398 	}
8399 
8400 	sched_dynamic_update(mode);
8401 	return 1;
8402 }
8403 __setup("preempt=", setup_preempt_mode);
8404 
8405 static void __init preempt_dynamic_init(void)
8406 {
8407 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8408 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8409 			sched_dynamic_update(preempt_dynamic_none);
8410 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8411 			sched_dynamic_update(preempt_dynamic_voluntary);
8412 		} else {
8413 			/* Default static call setting, nothing to do */
8414 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8415 			preempt_dynamic_mode = preempt_dynamic_full;
8416 			pr_info("Dynamic Preempt: full\n");
8417 		}
8418 	}
8419 }
8420 
8421 #define PREEMPT_MODEL_ACCESSOR(mode) \
8422 	bool preempt_model_##mode(void)						 \
8423 	{									 \
8424 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8425 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8426 	}									 \
8427 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8428 
8429 PREEMPT_MODEL_ACCESSOR(none);
8430 PREEMPT_MODEL_ACCESSOR(voluntary);
8431 PREEMPT_MODEL_ACCESSOR(full);
8432 
8433 #else /* !CONFIG_PREEMPT_DYNAMIC */
8434 
8435 static inline void preempt_dynamic_init(void) { }
8436 
8437 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8438 
8439 /**
8440  * yield - yield the current processor to other threads.
8441  *
8442  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8443  *
8444  * The scheduler is at all times free to pick the calling task as the most
8445  * eligible task to run, if removing the yield() call from your code breaks
8446  * it, it's already broken.
8447  *
8448  * Typical broken usage is:
8449  *
8450  * while (!event)
8451  *	yield();
8452  *
8453  * where one assumes that yield() will let 'the other' process run that will
8454  * make event true. If the current task is a SCHED_FIFO task that will never
8455  * happen. Never use yield() as a progress guarantee!!
8456  *
8457  * If you want to use yield() to wait for something, use wait_event().
8458  * If you want to use yield() to be 'nice' for others, use cond_resched().
8459  * If you still want to use yield(), do not!
8460  */
8461 void __sched yield(void)
8462 {
8463 	set_current_state(TASK_RUNNING);
8464 	do_sched_yield();
8465 }
8466 EXPORT_SYMBOL(yield);
8467 
8468 /**
8469  * yield_to - yield the current processor to another thread in
8470  * your thread group, or accelerate that thread toward the
8471  * processor it's on.
8472  * @p: target task
8473  * @preempt: whether task preemption is allowed or not
8474  *
8475  * It's the caller's job to ensure that the target task struct
8476  * can't go away on us before we can do any checks.
8477  *
8478  * Return:
8479  *	true (>0) if we indeed boosted the target task.
8480  *	false (0) if we failed to boost the target.
8481  *	-ESRCH if there's no task to yield to.
8482  */
8483 int __sched yield_to(struct task_struct *p, bool preempt)
8484 {
8485 	struct task_struct *curr = current;
8486 	struct rq *rq, *p_rq;
8487 	unsigned long flags;
8488 	int yielded = 0;
8489 
8490 	local_irq_save(flags);
8491 	rq = this_rq();
8492 
8493 again:
8494 	p_rq = task_rq(p);
8495 	/*
8496 	 * If we're the only runnable task on the rq and target rq also
8497 	 * has only one task, there's absolutely no point in yielding.
8498 	 */
8499 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8500 		yielded = -ESRCH;
8501 		goto out_irq;
8502 	}
8503 
8504 	double_rq_lock(rq, p_rq);
8505 	if (task_rq(p) != p_rq) {
8506 		double_rq_unlock(rq, p_rq);
8507 		goto again;
8508 	}
8509 
8510 	if (!curr->sched_class->yield_to_task)
8511 		goto out_unlock;
8512 
8513 	if (curr->sched_class != p->sched_class)
8514 		goto out_unlock;
8515 
8516 	if (task_running(p_rq, p) || !task_is_running(p))
8517 		goto out_unlock;
8518 
8519 	yielded = curr->sched_class->yield_to_task(rq, p);
8520 	if (yielded) {
8521 		schedstat_inc(rq->yld_count);
8522 		/*
8523 		 * Make p's CPU reschedule; pick_next_entity takes care of
8524 		 * fairness.
8525 		 */
8526 		if (preempt && rq != p_rq)
8527 			resched_curr(p_rq);
8528 	}
8529 
8530 out_unlock:
8531 	double_rq_unlock(rq, p_rq);
8532 out_irq:
8533 	local_irq_restore(flags);
8534 
8535 	if (yielded > 0)
8536 		schedule();
8537 
8538 	return yielded;
8539 }
8540 EXPORT_SYMBOL_GPL(yield_to);
8541 
8542 int io_schedule_prepare(void)
8543 {
8544 	int old_iowait = current->in_iowait;
8545 
8546 	current->in_iowait = 1;
8547 	blk_flush_plug(current->plug, true);
8548 	return old_iowait;
8549 }
8550 
8551 void io_schedule_finish(int token)
8552 {
8553 	current->in_iowait = token;
8554 }
8555 
8556 /*
8557  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8558  * that process accounting knows that this is a task in IO wait state.
8559  */
8560 long __sched io_schedule_timeout(long timeout)
8561 {
8562 	int token;
8563 	long ret;
8564 
8565 	token = io_schedule_prepare();
8566 	ret = schedule_timeout(timeout);
8567 	io_schedule_finish(token);
8568 
8569 	return ret;
8570 }
8571 EXPORT_SYMBOL(io_schedule_timeout);
8572 
8573 void __sched io_schedule(void)
8574 {
8575 	int token;
8576 
8577 	token = io_schedule_prepare();
8578 	schedule();
8579 	io_schedule_finish(token);
8580 }
8581 EXPORT_SYMBOL(io_schedule);
8582 
8583 /**
8584  * sys_sched_get_priority_max - return maximum RT priority.
8585  * @policy: scheduling class.
8586  *
8587  * Return: On success, this syscall returns the maximum
8588  * rt_priority that can be used by a given scheduling class.
8589  * On failure, a negative error code is returned.
8590  */
8591 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8592 {
8593 	int ret = -EINVAL;
8594 
8595 	switch (policy) {
8596 	case SCHED_FIFO:
8597 	case SCHED_RR:
8598 		ret = MAX_RT_PRIO-1;
8599 		break;
8600 	case SCHED_DEADLINE:
8601 	case SCHED_NORMAL:
8602 	case SCHED_BATCH:
8603 	case SCHED_IDLE:
8604 		ret = 0;
8605 		break;
8606 	}
8607 	return ret;
8608 }
8609 
8610 /**
8611  * sys_sched_get_priority_min - return minimum RT priority.
8612  * @policy: scheduling class.
8613  *
8614  * Return: On success, this syscall returns the minimum
8615  * rt_priority that can be used by a given scheduling class.
8616  * On failure, a negative error code is returned.
8617  */
8618 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8619 {
8620 	int ret = -EINVAL;
8621 
8622 	switch (policy) {
8623 	case SCHED_FIFO:
8624 	case SCHED_RR:
8625 		ret = 1;
8626 		break;
8627 	case SCHED_DEADLINE:
8628 	case SCHED_NORMAL:
8629 	case SCHED_BATCH:
8630 	case SCHED_IDLE:
8631 		ret = 0;
8632 	}
8633 	return ret;
8634 }
8635 
8636 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8637 {
8638 	struct task_struct *p;
8639 	unsigned int time_slice;
8640 	struct rq_flags rf;
8641 	struct rq *rq;
8642 	int retval;
8643 
8644 	if (pid < 0)
8645 		return -EINVAL;
8646 
8647 	retval = -ESRCH;
8648 	rcu_read_lock();
8649 	p = find_process_by_pid(pid);
8650 	if (!p)
8651 		goto out_unlock;
8652 
8653 	retval = security_task_getscheduler(p);
8654 	if (retval)
8655 		goto out_unlock;
8656 
8657 	rq = task_rq_lock(p, &rf);
8658 	time_slice = 0;
8659 	if (p->sched_class->get_rr_interval)
8660 		time_slice = p->sched_class->get_rr_interval(rq, p);
8661 	task_rq_unlock(rq, p, &rf);
8662 
8663 	rcu_read_unlock();
8664 	jiffies_to_timespec64(time_slice, t);
8665 	return 0;
8666 
8667 out_unlock:
8668 	rcu_read_unlock();
8669 	return retval;
8670 }
8671 
8672 /**
8673  * sys_sched_rr_get_interval - return the default timeslice of a process.
8674  * @pid: pid of the process.
8675  * @interval: userspace pointer to the timeslice value.
8676  *
8677  * this syscall writes the default timeslice value of a given process
8678  * into the user-space timespec buffer. A value of '0' means infinity.
8679  *
8680  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8681  * an error code.
8682  */
8683 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8684 		struct __kernel_timespec __user *, interval)
8685 {
8686 	struct timespec64 t;
8687 	int retval = sched_rr_get_interval(pid, &t);
8688 
8689 	if (retval == 0)
8690 		retval = put_timespec64(&t, interval);
8691 
8692 	return retval;
8693 }
8694 
8695 #ifdef CONFIG_COMPAT_32BIT_TIME
8696 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8697 		struct old_timespec32 __user *, interval)
8698 {
8699 	struct timespec64 t;
8700 	int retval = sched_rr_get_interval(pid, &t);
8701 
8702 	if (retval == 0)
8703 		retval = put_old_timespec32(&t, interval);
8704 	return retval;
8705 }
8706 #endif
8707 
8708 void sched_show_task(struct task_struct *p)
8709 {
8710 	unsigned long free = 0;
8711 	int ppid;
8712 
8713 	if (!try_get_task_stack(p))
8714 		return;
8715 
8716 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8717 
8718 	if (task_is_running(p))
8719 		pr_cont("  running task    ");
8720 #ifdef CONFIG_DEBUG_STACK_USAGE
8721 	free = stack_not_used(p);
8722 #endif
8723 	ppid = 0;
8724 	rcu_read_lock();
8725 	if (pid_alive(p))
8726 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8727 	rcu_read_unlock();
8728 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8729 		free, task_pid_nr(p), ppid,
8730 		read_task_thread_flags(p));
8731 
8732 	print_worker_info(KERN_INFO, p);
8733 	print_stop_info(KERN_INFO, p);
8734 	show_stack(p, NULL, KERN_INFO);
8735 	put_task_stack(p);
8736 }
8737 EXPORT_SYMBOL_GPL(sched_show_task);
8738 
8739 static inline bool
8740 state_filter_match(unsigned long state_filter, struct task_struct *p)
8741 {
8742 	unsigned int state = READ_ONCE(p->__state);
8743 
8744 	/* no filter, everything matches */
8745 	if (!state_filter)
8746 		return true;
8747 
8748 	/* filter, but doesn't match */
8749 	if (!(state & state_filter))
8750 		return false;
8751 
8752 	/*
8753 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8754 	 * TASK_KILLABLE).
8755 	 */
8756 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8757 		return false;
8758 
8759 	return true;
8760 }
8761 
8762 
8763 void show_state_filter(unsigned int state_filter)
8764 {
8765 	struct task_struct *g, *p;
8766 
8767 	rcu_read_lock();
8768 	for_each_process_thread(g, p) {
8769 		/*
8770 		 * reset the NMI-timeout, listing all files on a slow
8771 		 * console might take a lot of time:
8772 		 * Also, reset softlockup watchdogs on all CPUs, because
8773 		 * another CPU might be blocked waiting for us to process
8774 		 * an IPI.
8775 		 */
8776 		touch_nmi_watchdog();
8777 		touch_all_softlockup_watchdogs();
8778 		if (state_filter_match(state_filter, p))
8779 			sched_show_task(p);
8780 	}
8781 
8782 #ifdef CONFIG_SCHED_DEBUG
8783 	if (!state_filter)
8784 		sysrq_sched_debug_show();
8785 #endif
8786 	rcu_read_unlock();
8787 	/*
8788 	 * Only show locks if all tasks are dumped:
8789 	 */
8790 	if (!state_filter)
8791 		debug_show_all_locks();
8792 }
8793 
8794 /**
8795  * init_idle - set up an idle thread for a given CPU
8796  * @idle: task in question
8797  * @cpu: CPU the idle task belongs to
8798  *
8799  * NOTE: this function does not set the idle thread's NEED_RESCHED
8800  * flag, to make booting more robust.
8801  */
8802 void __init init_idle(struct task_struct *idle, int cpu)
8803 {
8804 	struct rq *rq = cpu_rq(cpu);
8805 	unsigned long flags;
8806 
8807 	__sched_fork(0, idle);
8808 
8809 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8810 	raw_spin_rq_lock(rq);
8811 
8812 	idle->__state = TASK_RUNNING;
8813 	idle->se.exec_start = sched_clock();
8814 	/*
8815 	 * PF_KTHREAD should already be set at this point; regardless, make it
8816 	 * look like a proper per-CPU kthread.
8817 	 */
8818 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8819 	kthread_set_per_cpu(idle, cpu);
8820 
8821 #ifdef CONFIG_SMP
8822 	/*
8823 	 * It's possible that init_idle() gets called multiple times on a task,
8824 	 * in that case do_set_cpus_allowed() will not do the right thing.
8825 	 *
8826 	 * And since this is boot we can forgo the serialization.
8827 	 */
8828 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8829 #endif
8830 	/*
8831 	 * We're having a chicken and egg problem, even though we are
8832 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8833 	 * lockdep check in task_group() will fail.
8834 	 *
8835 	 * Similar case to sched_fork(). / Alternatively we could
8836 	 * use task_rq_lock() here and obtain the other rq->lock.
8837 	 *
8838 	 * Silence PROVE_RCU
8839 	 */
8840 	rcu_read_lock();
8841 	__set_task_cpu(idle, cpu);
8842 	rcu_read_unlock();
8843 
8844 	rq->idle = idle;
8845 	rcu_assign_pointer(rq->curr, idle);
8846 	idle->on_rq = TASK_ON_RQ_QUEUED;
8847 #ifdef CONFIG_SMP
8848 	idle->on_cpu = 1;
8849 #endif
8850 	raw_spin_rq_unlock(rq);
8851 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8852 
8853 	/* Set the preempt count _outside_ the spinlocks! */
8854 	init_idle_preempt_count(idle, cpu);
8855 
8856 	/*
8857 	 * The idle tasks have their own, simple scheduling class:
8858 	 */
8859 	idle->sched_class = &idle_sched_class;
8860 	ftrace_graph_init_idle_task(idle, cpu);
8861 	vtime_init_idle(idle, cpu);
8862 #ifdef CONFIG_SMP
8863 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8864 #endif
8865 }
8866 
8867 #ifdef CONFIG_SMP
8868 
8869 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8870 			      const struct cpumask *trial)
8871 {
8872 	int ret = 1;
8873 
8874 	if (cpumask_empty(cur))
8875 		return ret;
8876 
8877 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8878 
8879 	return ret;
8880 }
8881 
8882 int task_can_attach(struct task_struct *p,
8883 		    const struct cpumask *cs_cpus_allowed)
8884 {
8885 	int ret = 0;
8886 
8887 	/*
8888 	 * Kthreads which disallow setaffinity shouldn't be moved
8889 	 * to a new cpuset; we don't want to change their CPU
8890 	 * affinity and isolating such threads by their set of
8891 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8892 	 * applicable for such threads.  This prevents checking for
8893 	 * success of set_cpus_allowed_ptr() on all attached tasks
8894 	 * before cpus_mask may be changed.
8895 	 */
8896 	if (p->flags & PF_NO_SETAFFINITY) {
8897 		ret = -EINVAL;
8898 		goto out;
8899 	}
8900 
8901 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8902 					      cs_cpus_allowed)) {
8903 		int cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
8904 
8905 		ret = dl_cpu_busy(cpu, p);
8906 	}
8907 
8908 out:
8909 	return ret;
8910 }
8911 
8912 bool sched_smp_initialized __read_mostly;
8913 
8914 #ifdef CONFIG_NUMA_BALANCING
8915 /* Migrate current task p to target_cpu */
8916 int migrate_task_to(struct task_struct *p, int target_cpu)
8917 {
8918 	struct migration_arg arg = { p, target_cpu };
8919 	int curr_cpu = task_cpu(p);
8920 
8921 	if (curr_cpu == target_cpu)
8922 		return 0;
8923 
8924 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8925 		return -EINVAL;
8926 
8927 	/* TODO: This is not properly updating schedstats */
8928 
8929 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8930 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8931 }
8932 
8933 /*
8934  * Requeue a task on a given node and accurately track the number of NUMA
8935  * tasks on the runqueues
8936  */
8937 void sched_setnuma(struct task_struct *p, int nid)
8938 {
8939 	bool queued, running;
8940 	struct rq_flags rf;
8941 	struct rq *rq;
8942 
8943 	rq = task_rq_lock(p, &rf);
8944 	queued = task_on_rq_queued(p);
8945 	running = task_current(rq, p);
8946 
8947 	if (queued)
8948 		dequeue_task(rq, p, DEQUEUE_SAVE);
8949 	if (running)
8950 		put_prev_task(rq, p);
8951 
8952 	p->numa_preferred_nid = nid;
8953 
8954 	if (queued)
8955 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8956 	if (running)
8957 		set_next_task(rq, p);
8958 	task_rq_unlock(rq, p, &rf);
8959 }
8960 #endif /* CONFIG_NUMA_BALANCING */
8961 
8962 #ifdef CONFIG_HOTPLUG_CPU
8963 /*
8964  * Ensure that the idle task is using init_mm right before its CPU goes
8965  * offline.
8966  */
8967 void idle_task_exit(void)
8968 {
8969 	struct mm_struct *mm = current->active_mm;
8970 
8971 	BUG_ON(cpu_online(smp_processor_id()));
8972 	BUG_ON(current != this_rq()->idle);
8973 
8974 	if (mm != &init_mm) {
8975 		switch_mm(mm, &init_mm, current);
8976 		finish_arch_post_lock_switch();
8977 	}
8978 
8979 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8980 }
8981 
8982 static int __balance_push_cpu_stop(void *arg)
8983 {
8984 	struct task_struct *p = arg;
8985 	struct rq *rq = this_rq();
8986 	struct rq_flags rf;
8987 	int cpu;
8988 
8989 	raw_spin_lock_irq(&p->pi_lock);
8990 	rq_lock(rq, &rf);
8991 
8992 	update_rq_clock(rq);
8993 
8994 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8995 		cpu = select_fallback_rq(rq->cpu, p);
8996 		rq = __migrate_task(rq, &rf, p, cpu);
8997 	}
8998 
8999 	rq_unlock(rq, &rf);
9000 	raw_spin_unlock_irq(&p->pi_lock);
9001 
9002 	put_task_struct(p);
9003 
9004 	return 0;
9005 }
9006 
9007 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9008 
9009 /*
9010  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9011  *
9012  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9013  * effective when the hotplug motion is down.
9014  */
9015 static void balance_push(struct rq *rq)
9016 {
9017 	struct task_struct *push_task = rq->curr;
9018 
9019 	lockdep_assert_rq_held(rq);
9020 
9021 	/*
9022 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9023 	 */
9024 	rq->balance_callback = &balance_push_callback;
9025 
9026 	/*
9027 	 * Only active while going offline and when invoked on the outgoing
9028 	 * CPU.
9029 	 */
9030 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9031 		return;
9032 
9033 	/*
9034 	 * Both the cpu-hotplug and stop task are in this case and are
9035 	 * required to complete the hotplug process.
9036 	 */
9037 	if (kthread_is_per_cpu(push_task) ||
9038 	    is_migration_disabled(push_task)) {
9039 
9040 		/*
9041 		 * If this is the idle task on the outgoing CPU try to wake
9042 		 * up the hotplug control thread which might wait for the
9043 		 * last task to vanish. The rcuwait_active() check is
9044 		 * accurate here because the waiter is pinned on this CPU
9045 		 * and can't obviously be running in parallel.
9046 		 *
9047 		 * On RT kernels this also has to check whether there are
9048 		 * pinned and scheduled out tasks on the runqueue. They
9049 		 * need to leave the migrate disabled section first.
9050 		 */
9051 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9052 		    rcuwait_active(&rq->hotplug_wait)) {
9053 			raw_spin_rq_unlock(rq);
9054 			rcuwait_wake_up(&rq->hotplug_wait);
9055 			raw_spin_rq_lock(rq);
9056 		}
9057 		return;
9058 	}
9059 
9060 	get_task_struct(push_task);
9061 	/*
9062 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9063 	 * Both preemption and IRQs are still disabled.
9064 	 */
9065 	raw_spin_rq_unlock(rq);
9066 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9067 			    this_cpu_ptr(&push_work));
9068 	/*
9069 	 * At this point need_resched() is true and we'll take the loop in
9070 	 * schedule(). The next pick is obviously going to be the stop task
9071 	 * which kthread_is_per_cpu() and will push this task away.
9072 	 */
9073 	raw_spin_rq_lock(rq);
9074 }
9075 
9076 static void balance_push_set(int cpu, bool on)
9077 {
9078 	struct rq *rq = cpu_rq(cpu);
9079 	struct rq_flags rf;
9080 
9081 	rq_lock_irqsave(rq, &rf);
9082 	if (on) {
9083 		WARN_ON_ONCE(rq->balance_callback);
9084 		rq->balance_callback = &balance_push_callback;
9085 	} else if (rq->balance_callback == &balance_push_callback) {
9086 		rq->balance_callback = NULL;
9087 	}
9088 	rq_unlock_irqrestore(rq, &rf);
9089 }
9090 
9091 /*
9092  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9093  * inactive. All tasks which are not per CPU kernel threads are either
9094  * pushed off this CPU now via balance_push() or placed on a different CPU
9095  * during wakeup. Wait until the CPU is quiescent.
9096  */
9097 static void balance_hotplug_wait(void)
9098 {
9099 	struct rq *rq = this_rq();
9100 
9101 	rcuwait_wait_event(&rq->hotplug_wait,
9102 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9103 			   TASK_UNINTERRUPTIBLE);
9104 }
9105 
9106 #else
9107 
9108 static inline void balance_push(struct rq *rq)
9109 {
9110 }
9111 
9112 static inline void balance_push_set(int cpu, bool on)
9113 {
9114 }
9115 
9116 static inline void balance_hotplug_wait(void)
9117 {
9118 }
9119 
9120 #endif /* CONFIG_HOTPLUG_CPU */
9121 
9122 void set_rq_online(struct rq *rq)
9123 {
9124 	if (!rq->online) {
9125 		const struct sched_class *class;
9126 
9127 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9128 		rq->online = 1;
9129 
9130 		for_each_class(class) {
9131 			if (class->rq_online)
9132 				class->rq_online(rq);
9133 		}
9134 	}
9135 }
9136 
9137 void set_rq_offline(struct rq *rq)
9138 {
9139 	if (rq->online) {
9140 		const struct sched_class *class;
9141 
9142 		for_each_class(class) {
9143 			if (class->rq_offline)
9144 				class->rq_offline(rq);
9145 		}
9146 
9147 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9148 		rq->online = 0;
9149 	}
9150 }
9151 
9152 /*
9153  * used to mark begin/end of suspend/resume:
9154  */
9155 static int num_cpus_frozen;
9156 
9157 /*
9158  * Update cpusets according to cpu_active mask.  If cpusets are
9159  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9160  * around partition_sched_domains().
9161  *
9162  * If we come here as part of a suspend/resume, don't touch cpusets because we
9163  * want to restore it back to its original state upon resume anyway.
9164  */
9165 static void cpuset_cpu_active(void)
9166 {
9167 	if (cpuhp_tasks_frozen) {
9168 		/*
9169 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9170 		 * resume sequence. As long as this is not the last online
9171 		 * operation in the resume sequence, just build a single sched
9172 		 * domain, ignoring cpusets.
9173 		 */
9174 		partition_sched_domains(1, NULL, NULL);
9175 		if (--num_cpus_frozen)
9176 			return;
9177 		/*
9178 		 * This is the last CPU online operation. So fall through and
9179 		 * restore the original sched domains by considering the
9180 		 * cpuset configurations.
9181 		 */
9182 		cpuset_force_rebuild();
9183 	}
9184 	cpuset_update_active_cpus();
9185 }
9186 
9187 static int cpuset_cpu_inactive(unsigned int cpu)
9188 {
9189 	if (!cpuhp_tasks_frozen) {
9190 		int ret = dl_cpu_busy(cpu, NULL);
9191 
9192 		if (ret)
9193 			return ret;
9194 		cpuset_update_active_cpus();
9195 	} else {
9196 		num_cpus_frozen++;
9197 		partition_sched_domains(1, NULL, NULL);
9198 	}
9199 	return 0;
9200 }
9201 
9202 int sched_cpu_activate(unsigned int cpu)
9203 {
9204 	struct rq *rq = cpu_rq(cpu);
9205 	struct rq_flags rf;
9206 
9207 	/*
9208 	 * Clear the balance_push callback and prepare to schedule
9209 	 * regular tasks.
9210 	 */
9211 	balance_push_set(cpu, false);
9212 
9213 #ifdef CONFIG_SCHED_SMT
9214 	/*
9215 	 * When going up, increment the number of cores with SMT present.
9216 	 */
9217 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9218 		static_branch_inc_cpuslocked(&sched_smt_present);
9219 #endif
9220 	set_cpu_active(cpu, true);
9221 
9222 	if (sched_smp_initialized) {
9223 		sched_update_numa(cpu, true);
9224 		sched_domains_numa_masks_set(cpu);
9225 		cpuset_cpu_active();
9226 	}
9227 
9228 	/*
9229 	 * Put the rq online, if not already. This happens:
9230 	 *
9231 	 * 1) In the early boot process, because we build the real domains
9232 	 *    after all CPUs have been brought up.
9233 	 *
9234 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9235 	 *    domains.
9236 	 */
9237 	rq_lock_irqsave(rq, &rf);
9238 	if (rq->rd) {
9239 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9240 		set_rq_online(rq);
9241 	}
9242 	rq_unlock_irqrestore(rq, &rf);
9243 
9244 	return 0;
9245 }
9246 
9247 int sched_cpu_deactivate(unsigned int cpu)
9248 {
9249 	struct rq *rq = cpu_rq(cpu);
9250 	struct rq_flags rf;
9251 	int ret;
9252 
9253 	/*
9254 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9255 	 * load balancing when not active
9256 	 */
9257 	nohz_balance_exit_idle(rq);
9258 
9259 	set_cpu_active(cpu, false);
9260 
9261 	/*
9262 	 * From this point forward, this CPU will refuse to run any task that
9263 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9264 	 * push those tasks away until this gets cleared, see
9265 	 * sched_cpu_dying().
9266 	 */
9267 	balance_push_set(cpu, true);
9268 
9269 	/*
9270 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9271 	 * preempt-disabled and RCU users of this state to go away such that
9272 	 * all new such users will observe it.
9273 	 *
9274 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9275 	 * ttwu_queue_cond() and is_cpu_allowed().
9276 	 *
9277 	 * Do sync before park smpboot threads to take care the rcu boost case.
9278 	 */
9279 	synchronize_rcu();
9280 
9281 	rq_lock_irqsave(rq, &rf);
9282 	if (rq->rd) {
9283 		update_rq_clock(rq);
9284 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9285 		set_rq_offline(rq);
9286 	}
9287 	rq_unlock_irqrestore(rq, &rf);
9288 
9289 #ifdef CONFIG_SCHED_SMT
9290 	/*
9291 	 * When going down, decrement the number of cores with SMT present.
9292 	 */
9293 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9294 		static_branch_dec_cpuslocked(&sched_smt_present);
9295 
9296 	sched_core_cpu_deactivate(cpu);
9297 #endif
9298 
9299 	if (!sched_smp_initialized)
9300 		return 0;
9301 
9302 	sched_update_numa(cpu, false);
9303 	ret = cpuset_cpu_inactive(cpu);
9304 	if (ret) {
9305 		balance_push_set(cpu, false);
9306 		set_cpu_active(cpu, true);
9307 		sched_update_numa(cpu, true);
9308 		return ret;
9309 	}
9310 	sched_domains_numa_masks_clear(cpu);
9311 	return 0;
9312 }
9313 
9314 static void sched_rq_cpu_starting(unsigned int cpu)
9315 {
9316 	struct rq *rq = cpu_rq(cpu);
9317 
9318 	rq->calc_load_update = calc_load_update;
9319 	update_max_interval();
9320 }
9321 
9322 int sched_cpu_starting(unsigned int cpu)
9323 {
9324 	sched_core_cpu_starting(cpu);
9325 	sched_rq_cpu_starting(cpu);
9326 	sched_tick_start(cpu);
9327 	return 0;
9328 }
9329 
9330 #ifdef CONFIG_HOTPLUG_CPU
9331 
9332 /*
9333  * Invoked immediately before the stopper thread is invoked to bring the
9334  * CPU down completely. At this point all per CPU kthreads except the
9335  * hotplug thread (current) and the stopper thread (inactive) have been
9336  * either parked or have been unbound from the outgoing CPU. Ensure that
9337  * any of those which might be on the way out are gone.
9338  *
9339  * If after this point a bound task is being woken on this CPU then the
9340  * responsible hotplug callback has failed to do it's job.
9341  * sched_cpu_dying() will catch it with the appropriate fireworks.
9342  */
9343 int sched_cpu_wait_empty(unsigned int cpu)
9344 {
9345 	balance_hotplug_wait();
9346 	return 0;
9347 }
9348 
9349 /*
9350  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9351  * might have. Called from the CPU stopper task after ensuring that the
9352  * stopper is the last running task on the CPU, so nr_active count is
9353  * stable. We need to take the teardown thread which is calling this into
9354  * account, so we hand in adjust = 1 to the load calculation.
9355  *
9356  * Also see the comment "Global load-average calculations".
9357  */
9358 static void calc_load_migrate(struct rq *rq)
9359 {
9360 	long delta = calc_load_fold_active(rq, 1);
9361 
9362 	if (delta)
9363 		atomic_long_add(delta, &calc_load_tasks);
9364 }
9365 
9366 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9367 {
9368 	struct task_struct *g, *p;
9369 	int cpu = cpu_of(rq);
9370 
9371 	lockdep_assert_rq_held(rq);
9372 
9373 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9374 	for_each_process_thread(g, p) {
9375 		if (task_cpu(p) != cpu)
9376 			continue;
9377 
9378 		if (!task_on_rq_queued(p))
9379 			continue;
9380 
9381 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9382 	}
9383 }
9384 
9385 int sched_cpu_dying(unsigned int cpu)
9386 {
9387 	struct rq *rq = cpu_rq(cpu);
9388 	struct rq_flags rf;
9389 
9390 	/* Handle pending wakeups and then migrate everything off */
9391 	sched_tick_stop(cpu);
9392 
9393 	rq_lock_irqsave(rq, &rf);
9394 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9395 		WARN(true, "Dying CPU not properly vacated!");
9396 		dump_rq_tasks(rq, KERN_WARNING);
9397 	}
9398 	rq_unlock_irqrestore(rq, &rf);
9399 
9400 	calc_load_migrate(rq);
9401 	update_max_interval();
9402 	hrtick_clear(rq);
9403 	sched_core_cpu_dying(cpu);
9404 	return 0;
9405 }
9406 #endif
9407 
9408 void __init sched_init_smp(void)
9409 {
9410 	sched_init_numa(NUMA_NO_NODE);
9411 
9412 	/*
9413 	 * There's no userspace yet to cause hotplug operations; hence all the
9414 	 * CPU masks are stable and all blatant races in the below code cannot
9415 	 * happen.
9416 	 */
9417 	mutex_lock(&sched_domains_mutex);
9418 	sched_init_domains(cpu_active_mask);
9419 	mutex_unlock(&sched_domains_mutex);
9420 
9421 	/* Move init over to a non-isolated CPU */
9422 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9423 		BUG();
9424 	current->flags &= ~PF_NO_SETAFFINITY;
9425 	sched_init_granularity();
9426 
9427 	init_sched_rt_class();
9428 	init_sched_dl_class();
9429 
9430 	sched_smp_initialized = true;
9431 }
9432 
9433 static int __init migration_init(void)
9434 {
9435 	sched_cpu_starting(smp_processor_id());
9436 	return 0;
9437 }
9438 early_initcall(migration_init);
9439 
9440 #else
9441 void __init sched_init_smp(void)
9442 {
9443 	sched_init_granularity();
9444 }
9445 #endif /* CONFIG_SMP */
9446 
9447 int in_sched_functions(unsigned long addr)
9448 {
9449 	return in_lock_functions(addr) ||
9450 		(addr >= (unsigned long)__sched_text_start
9451 		&& addr < (unsigned long)__sched_text_end);
9452 }
9453 
9454 #ifdef CONFIG_CGROUP_SCHED
9455 /*
9456  * Default task group.
9457  * Every task in system belongs to this group at bootup.
9458  */
9459 struct task_group root_task_group;
9460 LIST_HEAD(task_groups);
9461 
9462 /* Cacheline aligned slab cache for task_group */
9463 static struct kmem_cache *task_group_cache __read_mostly;
9464 #endif
9465 
9466 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9467 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9468 
9469 void __init sched_init(void)
9470 {
9471 	unsigned long ptr = 0;
9472 	int i;
9473 
9474 	/* Make sure the linker didn't screw up */
9475 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9476 	       &fair_sched_class != &rt_sched_class + 1 ||
9477 	       &rt_sched_class   != &dl_sched_class + 1);
9478 #ifdef CONFIG_SMP
9479 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9480 #endif
9481 
9482 	wait_bit_init();
9483 
9484 #ifdef CONFIG_FAIR_GROUP_SCHED
9485 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9486 #endif
9487 #ifdef CONFIG_RT_GROUP_SCHED
9488 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9489 #endif
9490 	if (ptr) {
9491 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9492 
9493 #ifdef CONFIG_FAIR_GROUP_SCHED
9494 		root_task_group.se = (struct sched_entity **)ptr;
9495 		ptr += nr_cpu_ids * sizeof(void **);
9496 
9497 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9498 		ptr += nr_cpu_ids * sizeof(void **);
9499 
9500 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9501 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9502 #endif /* CONFIG_FAIR_GROUP_SCHED */
9503 #ifdef CONFIG_RT_GROUP_SCHED
9504 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9505 		ptr += nr_cpu_ids * sizeof(void **);
9506 
9507 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9508 		ptr += nr_cpu_ids * sizeof(void **);
9509 
9510 #endif /* CONFIG_RT_GROUP_SCHED */
9511 	}
9512 #ifdef CONFIG_CPUMASK_OFFSTACK
9513 	for_each_possible_cpu(i) {
9514 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9515 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9516 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9517 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9518 	}
9519 #endif /* CONFIG_CPUMASK_OFFSTACK */
9520 
9521 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9522 
9523 #ifdef CONFIG_SMP
9524 	init_defrootdomain();
9525 #endif
9526 
9527 #ifdef CONFIG_RT_GROUP_SCHED
9528 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9529 			global_rt_period(), global_rt_runtime());
9530 #endif /* CONFIG_RT_GROUP_SCHED */
9531 
9532 #ifdef CONFIG_CGROUP_SCHED
9533 	task_group_cache = KMEM_CACHE(task_group, 0);
9534 
9535 	list_add(&root_task_group.list, &task_groups);
9536 	INIT_LIST_HEAD(&root_task_group.children);
9537 	INIT_LIST_HEAD(&root_task_group.siblings);
9538 	autogroup_init(&init_task);
9539 #endif /* CONFIG_CGROUP_SCHED */
9540 
9541 	for_each_possible_cpu(i) {
9542 		struct rq *rq;
9543 
9544 		rq = cpu_rq(i);
9545 		raw_spin_lock_init(&rq->__lock);
9546 		rq->nr_running = 0;
9547 		rq->calc_load_active = 0;
9548 		rq->calc_load_update = jiffies + LOAD_FREQ;
9549 		init_cfs_rq(&rq->cfs);
9550 		init_rt_rq(&rq->rt);
9551 		init_dl_rq(&rq->dl);
9552 #ifdef CONFIG_FAIR_GROUP_SCHED
9553 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9554 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9555 		/*
9556 		 * How much CPU bandwidth does root_task_group get?
9557 		 *
9558 		 * In case of task-groups formed thr' the cgroup filesystem, it
9559 		 * gets 100% of the CPU resources in the system. This overall
9560 		 * system CPU resource is divided among the tasks of
9561 		 * root_task_group and its child task-groups in a fair manner,
9562 		 * based on each entity's (task or task-group's) weight
9563 		 * (se->load.weight).
9564 		 *
9565 		 * In other words, if root_task_group has 10 tasks of weight
9566 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9567 		 * then A0's share of the CPU resource is:
9568 		 *
9569 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9570 		 *
9571 		 * We achieve this by letting root_task_group's tasks sit
9572 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9573 		 */
9574 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9575 #endif /* CONFIG_FAIR_GROUP_SCHED */
9576 
9577 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9578 #ifdef CONFIG_RT_GROUP_SCHED
9579 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9580 #endif
9581 #ifdef CONFIG_SMP
9582 		rq->sd = NULL;
9583 		rq->rd = NULL;
9584 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9585 		rq->balance_callback = &balance_push_callback;
9586 		rq->active_balance = 0;
9587 		rq->next_balance = jiffies;
9588 		rq->push_cpu = 0;
9589 		rq->cpu = i;
9590 		rq->online = 0;
9591 		rq->idle_stamp = 0;
9592 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9593 		rq->wake_stamp = jiffies;
9594 		rq->wake_avg_idle = rq->avg_idle;
9595 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9596 
9597 		INIT_LIST_HEAD(&rq->cfs_tasks);
9598 
9599 		rq_attach_root(rq, &def_root_domain);
9600 #ifdef CONFIG_NO_HZ_COMMON
9601 		rq->last_blocked_load_update_tick = jiffies;
9602 		atomic_set(&rq->nohz_flags, 0);
9603 
9604 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9605 #endif
9606 #ifdef CONFIG_HOTPLUG_CPU
9607 		rcuwait_init(&rq->hotplug_wait);
9608 #endif
9609 #endif /* CONFIG_SMP */
9610 		hrtick_rq_init(rq);
9611 		atomic_set(&rq->nr_iowait, 0);
9612 
9613 #ifdef CONFIG_SCHED_CORE
9614 		rq->core = rq;
9615 		rq->core_pick = NULL;
9616 		rq->core_enabled = 0;
9617 		rq->core_tree = RB_ROOT;
9618 		rq->core_forceidle_count = 0;
9619 		rq->core_forceidle_occupation = 0;
9620 		rq->core_forceidle_start = 0;
9621 
9622 		rq->core_cookie = 0UL;
9623 #endif
9624 	}
9625 
9626 	set_load_weight(&init_task, false);
9627 
9628 	/*
9629 	 * The boot idle thread does lazy MMU switching as well:
9630 	 */
9631 	mmgrab(&init_mm);
9632 	enter_lazy_tlb(&init_mm, current);
9633 
9634 	/*
9635 	 * The idle task doesn't need the kthread struct to function, but it
9636 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9637 	 * if we want to avoid special-casing it in code that deals with per-CPU
9638 	 * kthreads.
9639 	 */
9640 	WARN_ON(!set_kthread_struct(current));
9641 
9642 	/*
9643 	 * Make us the idle thread. Technically, schedule() should not be
9644 	 * called from this thread, however somewhere below it might be,
9645 	 * but because we are the idle thread, we just pick up running again
9646 	 * when this runqueue becomes "idle".
9647 	 */
9648 	init_idle(current, smp_processor_id());
9649 
9650 	calc_load_update = jiffies + LOAD_FREQ;
9651 
9652 #ifdef CONFIG_SMP
9653 	idle_thread_set_boot_cpu();
9654 	balance_push_set(smp_processor_id(), false);
9655 #endif
9656 	init_sched_fair_class();
9657 
9658 	psi_init();
9659 
9660 	init_uclamp();
9661 
9662 	preempt_dynamic_init();
9663 
9664 	scheduler_running = 1;
9665 }
9666 
9667 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9668 
9669 void __might_sleep(const char *file, int line)
9670 {
9671 	unsigned int state = get_current_state();
9672 	/*
9673 	 * Blocking primitives will set (and therefore destroy) current->state,
9674 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9675 	 * otherwise we will destroy state.
9676 	 */
9677 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9678 			"do not call blocking ops when !TASK_RUNNING; "
9679 			"state=%x set at [<%p>] %pS\n", state,
9680 			(void *)current->task_state_change,
9681 			(void *)current->task_state_change);
9682 
9683 	__might_resched(file, line, 0);
9684 }
9685 EXPORT_SYMBOL(__might_sleep);
9686 
9687 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9688 {
9689 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9690 		return;
9691 
9692 	if (preempt_count() == preempt_offset)
9693 		return;
9694 
9695 	pr_err("Preemption disabled at:");
9696 	print_ip_sym(KERN_ERR, ip);
9697 }
9698 
9699 static inline bool resched_offsets_ok(unsigned int offsets)
9700 {
9701 	unsigned int nested = preempt_count();
9702 
9703 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9704 
9705 	return nested == offsets;
9706 }
9707 
9708 void __might_resched(const char *file, int line, unsigned int offsets)
9709 {
9710 	/* Ratelimiting timestamp: */
9711 	static unsigned long prev_jiffy;
9712 
9713 	unsigned long preempt_disable_ip;
9714 
9715 	/* WARN_ON_ONCE() by default, no rate limit required: */
9716 	rcu_sleep_check();
9717 
9718 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9719 	     !is_idle_task(current) && !current->non_block_count) ||
9720 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9721 	    oops_in_progress)
9722 		return;
9723 
9724 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9725 		return;
9726 	prev_jiffy = jiffies;
9727 
9728 	/* Save this before calling printk(), since that will clobber it: */
9729 	preempt_disable_ip = get_preempt_disable_ip(current);
9730 
9731 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9732 	       file, line);
9733 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9734 	       in_atomic(), irqs_disabled(), current->non_block_count,
9735 	       current->pid, current->comm);
9736 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9737 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9738 
9739 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9740 		pr_err("RCU nest depth: %d, expected: %u\n",
9741 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9742 	}
9743 
9744 	if (task_stack_end_corrupted(current))
9745 		pr_emerg("Thread overran stack, or stack corrupted\n");
9746 
9747 	debug_show_held_locks(current);
9748 	if (irqs_disabled())
9749 		print_irqtrace_events(current);
9750 
9751 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9752 				 preempt_disable_ip);
9753 
9754 	dump_stack();
9755 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9756 }
9757 EXPORT_SYMBOL(__might_resched);
9758 
9759 void __cant_sleep(const char *file, int line, int preempt_offset)
9760 {
9761 	static unsigned long prev_jiffy;
9762 
9763 	if (irqs_disabled())
9764 		return;
9765 
9766 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9767 		return;
9768 
9769 	if (preempt_count() > preempt_offset)
9770 		return;
9771 
9772 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9773 		return;
9774 	prev_jiffy = jiffies;
9775 
9776 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9777 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9778 			in_atomic(), irqs_disabled(),
9779 			current->pid, current->comm);
9780 
9781 	debug_show_held_locks(current);
9782 	dump_stack();
9783 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9784 }
9785 EXPORT_SYMBOL_GPL(__cant_sleep);
9786 
9787 #ifdef CONFIG_SMP
9788 void __cant_migrate(const char *file, int line)
9789 {
9790 	static unsigned long prev_jiffy;
9791 
9792 	if (irqs_disabled())
9793 		return;
9794 
9795 	if (is_migration_disabled(current))
9796 		return;
9797 
9798 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9799 		return;
9800 
9801 	if (preempt_count() > 0)
9802 		return;
9803 
9804 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9805 		return;
9806 	prev_jiffy = jiffies;
9807 
9808 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9809 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9810 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9811 	       current->pid, current->comm);
9812 
9813 	debug_show_held_locks(current);
9814 	dump_stack();
9815 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9816 }
9817 EXPORT_SYMBOL_GPL(__cant_migrate);
9818 #endif
9819 #endif
9820 
9821 #ifdef CONFIG_MAGIC_SYSRQ
9822 void normalize_rt_tasks(void)
9823 {
9824 	struct task_struct *g, *p;
9825 	struct sched_attr attr = {
9826 		.sched_policy = SCHED_NORMAL,
9827 	};
9828 
9829 	read_lock(&tasklist_lock);
9830 	for_each_process_thread(g, p) {
9831 		/*
9832 		 * Only normalize user tasks:
9833 		 */
9834 		if (p->flags & PF_KTHREAD)
9835 			continue;
9836 
9837 		p->se.exec_start = 0;
9838 		schedstat_set(p->stats.wait_start,  0);
9839 		schedstat_set(p->stats.sleep_start, 0);
9840 		schedstat_set(p->stats.block_start, 0);
9841 
9842 		if (!dl_task(p) && !rt_task(p)) {
9843 			/*
9844 			 * Renice negative nice level userspace
9845 			 * tasks back to 0:
9846 			 */
9847 			if (task_nice(p) < 0)
9848 				set_user_nice(p, 0);
9849 			continue;
9850 		}
9851 
9852 		__sched_setscheduler(p, &attr, false, false);
9853 	}
9854 	read_unlock(&tasklist_lock);
9855 }
9856 
9857 #endif /* CONFIG_MAGIC_SYSRQ */
9858 
9859 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9860 /*
9861  * These functions are only useful for the IA64 MCA handling, or kdb.
9862  *
9863  * They can only be called when the whole system has been
9864  * stopped - every CPU needs to be quiescent, and no scheduling
9865  * activity can take place. Using them for anything else would
9866  * be a serious bug, and as a result, they aren't even visible
9867  * under any other configuration.
9868  */
9869 
9870 /**
9871  * curr_task - return the current task for a given CPU.
9872  * @cpu: the processor in question.
9873  *
9874  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9875  *
9876  * Return: The current task for @cpu.
9877  */
9878 struct task_struct *curr_task(int cpu)
9879 {
9880 	return cpu_curr(cpu);
9881 }
9882 
9883 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9884 
9885 #ifdef CONFIG_IA64
9886 /**
9887  * ia64_set_curr_task - set the current task for a given CPU.
9888  * @cpu: the processor in question.
9889  * @p: the task pointer to set.
9890  *
9891  * Description: This function must only be used when non-maskable interrupts
9892  * are serviced on a separate stack. It allows the architecture to switch the
9893  * notion of the current task on a CPU in a non-blocking manner. This function
9894  * must be called with all CPU's synchronized, and interrupts disabled, the
9895  * and caller must save the original value of the current task (see
9896  * curr_task() above) and restore that value before reenabling interrupts and
9897  * re-starting the system.
9898  *
9899  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9900  */
9901 void ia64_set_curr_task(int cpu, struct task_struct *p)
9902 {
9903 	cpu_curr(cpu) = p;
9904 }
9905 
9906 #endif
9907 
9908 #ifdef CONFIG_CGROUP_SCHED
9909 /* task_group_lock serializes the addition/removal of task groups */
9910 static DEFINE_SPINLOCK(task_group_lock);
9911 
9912 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9913 					    struct task_group *parent)
9914 {
9915 #ifdef CONFIG_UCLAMP_TASK_GROUP
9916 	enum uclamp_id clamp_id;
9917 
9918 	for_each_clamp_id(clamp_id) {
9919 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9920 			      uclamp_none(clamp_id), false);
9921 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9922 	}
9923 #endif
9924 }
9925 
9926 static void sched_free_group(struct task_group *tg)
9927 {
9928 	free_fair_sched_group(tg);
9929 	free_rt_sched_group(tg);
9930 	autogroup_free(tg);
9931 	kmem_cache_free(task_group_cache, tg);
9932 }
9933 
9934 static void sched_free_group_rcu(struct rcu_head *rcu)
9935 {
9936 	sched_free_group(container_of(rcu, struct task_group, rcu));
9937 }
9938 
9939 static void sched_unregister_group(struct task_group *tg)
9940 {
9941 	unregister_fair_sched_group(tg);
9942 	unregister_rt_sched_group(tg);
9943 	/*
9944 	 * We have to wait for yet another RCU grace period to expire, as
9945 	 * print_cfs_stats() might run concurrently.
9946 	 */
9947 	call_rcu(&tg->rcu, sched_free_group_rcu);
9948 }
9949 
9950 /* allocate runqueue etc for a new task group */
9951 struct task_group *sched_create_group(struct task_group *parent)
9952 {
9953 	struct task_group *tg;
9954 
9955 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9956 	if (!tg)
9957 		return ERR_PTR(-ENOMEM);
9958 
9959 	if (!alloc_fair_sched_group(tg, parent))
9960 		goto err;
9961 
9962 	if (!alloc_rt_sched_group(tg, parent))
9963 		goto err;
9964 
9965 	alloc_uclamp_sched_group(tg, parent);
9966 
9967 	return tg;
9968 
9969 err:
9970 	sched_free_group(tg);
9971 	return ERR_PTR(-ENOMEM);
9972 }
9973 
9974 void sched_online_group(struct task_group *tg, struct task_group *parent)
9975 {
9976 	unsigned long flags;
9977 
9978 	spin_lock_irqsave(&task_group_lock, flags);
9979 	list_add_rcu(&tg->list, &task_groups);
9980 
9981 	/* Root should already exist: */
9982 	WARN_ON(!parent);
9983 
9984 	tg->parent = parent;
9985 	INIT_LIST_HEAD(&tg->children);
9986 	list_add_rcu(&tg->siblings, &parent->children);
9987 	spin_unlock_irqrestore(&task_group_lock, flags);
9988 
9989 	online_fair_sched_group(tg);
9990 }
9991 
9992 /* rcu callback to free various structures associated with a task group */
9993 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9994 {
9995 	/* Now it should be safe to free those cfs_rqs: */
9996 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9997 }
9998 
9999 void sched_destroy_group(struct task_group *tg)
10000 {
10001 	/* Wait for possible concurrent references to cfs_rqs complete: */
10002 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10003 }
10004 
10005 void sched_release_group(struct task_group *tg)
10006 {
10007 	unsigned long flags;
10008 
10009 	/*
10010 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10011 	 * sched_cfs_period_timer()).
10012 	 *
10013 	 * For this to be effective, we have to wait for all pending users of
10014 	 * this task group to leave their RCU critical section to ensure no new
10015 	 * user will see our dying task group any more. Specifically ensure
10016 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10017 	 *
10018 	 * We therefore defer calling unregister_fair_sched_group() to
10019 	 * sched_unregister_group() which is guarantied to get called only after the
10020 	 * current RCU grace period has expired.
10021 	 */
10022 	spin_lock_irqsave(&task_group_lock, flags);
10023 	list_del_rcu(&tg->list);
10024 	list_del_rcu(&tg->siblings);
10025 	spin_unlock_irqrestore(&task_group_lock, flags);
10026 }
10027 
10028 static void sched_change_group(struct task_struct *tsk, int type)
10029 {
10030 	struct task_group *tg;
10031 
10032 	/*
10033 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10034 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10035 	 * to prevent lockdep warnings.
10036 	 */
10037 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10038 			  struct task_group, css);
10039 	tg = autogroup_task_group(tsk, tg);
10040 	tsk->sched_task_group = tg;
10041 
10042 #ifdef CONFIG_FAIR_GROUP_SCHED
10043 	if (tsk->sched_class->task_change_group)
10044 		tsk->sched_class->task_change_group(tsk, type);
10045 	else
10046 #endif
10047 		set_task_rq(tsk, task_cpu(tsk));
10048 }
10049 
10050 /*
10051  * Change task's runqueue when it moves between groups.
10052  *
10053  * The caller of this function should have put the task in its new group by
10054  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10055  * its new group.
10056  */
10057 void sched_move_task(struct task_struct *tsk)
10058 {
10059 	int queued, running, queue_flags =
10060 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10061 	struct rq_flags rf;
10062 	struct rq *rq;
10063 
10064 	rq = task_rq_lock(tsk, &rf);
10065 	update_rq_clock(rq);
10066 
10067 	running = task_current(rq, tsk);
10068 	queued = task_on_rq_queued(tsk);
10069 
10070 	if (queued)
10071 		dequeue_task(rq, tsk, queue_flags);
10072 	if (running)
10073 		put_prev_task(rq, tsk);
10074 
10075 	sched_change_group(tsk, TASK_MOVE_GROUP);
10076 
10077 	if (queued)
10078 		enqueue_task(rq, tsk, queue_flags);
10079 	if (running) {
10080 		set_next_task(rq, tsk);
10081 		/*
10082 		 * After changing group, the running task may have joined a
10083 		 * throttled one but it's still the running task. Trigger a
10084 		 * resched to make sure that task can still run.
10085 		 */
10086 		resched_curr(rq);
10087 	}
10088 
10089 	task_rq_unlock(rq, tsk, &rf);
10090 }
10091 
10092 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10093 {
10094 	return css ? container_of(css, struct task_group, css) : NULL;
10095 }
10096 
10097 static struct cgroup_subsys_state *
10098 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10099 {
10100 	struct task_group *parent = css_tg(parent_css);
10101 	struct task_group *tg;
10102 
10103 	if (!parent) {
10104 		/* This is early initialization for the top cgroup */
10105 		return &root_task_group.css;
10106 	}
10107 
10108 	tg = sched_create_group(parent);
10109 	if (IS_ERR(tg))
10110 		return ERR_PTR(-ENOMEM);
10111 
10112 	return &tg->css;
10113 }
10114 
10115 /* Expose task group only after completing cgroup initialization */
10116 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10117 {
10118 	struct task_group *tg = css_tg(css);
10119 	struct task_group *parent = css_tg(css->parent);
10120 
10121 	if (parent)
10122 		sched_online_group(tg, parent);
10123 
10124 #ifdef CONFIG_UCLAMP_TASK_GROUP
10125 	/* Propagate the effective uclamp value for the new group */
10126 	mutex_lock(&uclamp_mutex);
10127 	rcu_read_lock();
10128 	cpu_util_update_eff(css);
10129 	rcu_read_unlock();
10130 	mutex_unlock(&uclamp_mutex);
10131 #endif
10132 
10133 	return 0;
10134 }
10135 
10136 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10137 {
10138 	struct task_group *tg = css_tg(css);
10139 
10140 	sched_release_group(tg);
10141 }
10142 
10143 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10144 {
10145 	struct task_group *tg = css_tg(css);
10146 
10147 	/*
10148 	 * Relies on the RCU grace period between css_released() and this.
10149 	 */
10150 	sched_unregister_group(tg);
10151 }
10152 
10153 /*
10154  * This is called before wake_up_new_task(), therefore we really only
10155  * have to set its group bits, all the other stuff does not apply.
10156  */
10157 static void cpu_cgroup_fork(struct task_struct *task)
10158 {
10159 	struct rq_flags rf;
10160 	struct rq *rq;
10161 
10162 	rq = task_rq_lock(task, &rf);
10163 
10164 	update_rq_clock(rq);
10165 	sched_change_group(task, TASK_SET_GROUP);
10166 
10167 	task_rq_unlock(rq, task, &rf);
10168 }
10169 
10170 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10171 {
10172 	struct task_struct *task;
10173 	struct cgroup_subsys_state *css;
10174 	int ret = 0;
10175 
10176 	cgroup_taskset_for_each(task, css, tset) {
10177 #ifdef CONFIG_RT_GROUP_SCHED
10178 		if (!sched_rt_can_attach(css_tg(css), task))
10179 			return -EINVAL;
10180 #endif
10181 		/*
10182 		 * Serialize against wake_up_new_task() such that if it's
10183 		 * running, we're sure to observe its full state.
10184 		 */
10185 		raw_spin_lock_irq(&task->pi_lock);
10186 		/*
10187 		 * Avoid calling sched_move_task() before wake_up_new_task()
10188 		 * has happened. This would lead to problems with PELT, due to
10189 		 * move wanting to detach+attach while we're not attached yet.
10190 		 */
10191 		if (READ_ONCE(task->__state) == TASK_NEW)
10192 			ret = -EINVAL;
10193 		raw_spin_unlock_irq(&task->pi_lock);
10194 
10195 		if (ret)
10196 			break;
10197 	}
10198 	return ret;
10199 }
10200 
10201 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10202 {
10203 	struct task_struct *task;
10204 	struct cgroup_subsys_state *css;
10205 
10206 	cgroup_taskset_for_each(task, css, tset)
10207 		sched_move_task(task);
10208 }
10209 
10210 #ifdef CONFIG_UCLAMP_TASK_GROUP
10211 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10212 {
10213 	struct cgroup_subsys_state *top_css = css;
10214 	struct uclamp_se *uc_parent = NULL;
10215 	struct uclamp_se *uc_se = NULL;
10216 	unsigned int eff[UCLAMP_CNT];
10217 	enum uclamp_id clamp_id;
10218 	unsigned int clamps;
10219 
10220 	lockdep_assert_held(&uclamp_mutex);
10221 	SCHED_WARN_ON(!rcu_read_lock_held());
10222 
10223 	css_for_each_descendant_pre(css, top_css) {
10224 		uc_parent = css_tg(css)->parent
10225 			? css_tg(css)->parent->uclamp : NULL;
10226 
10227 		for_each_clamp_id(clamp_id) {
10228 			/* Assume effective clamps matches requested clamps */
10229 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10230 			/* Cap effective clamps with parent's effective clamps */
10231 			if (uc_parent &&
10232 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10233 				eff[clamp_id] = uc_parent[clamp_id].value;
10234 			}
10235 		}
10236 		/* Ensure protection is always capped by limit */
10237 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10238 
10239 		/* Propagate most restrictive effective clamps */
10240 		clamps = 0x0;
10241 		uc_se = css_tg(css)->uclamp;
10242 		for_each_clamp_id(clamp_id) {
10243 			if (eff[clamp_id] == uc_se[clamp_id].value)
10244 				continue;
10245 			uc_se[clamp_id].value = eff[clamp_id];
10246 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10247 			clamps |= (0x1 << clamp_id);
10248 		}
10249 		if (!clamps) {
10250 			css = css_rightmost_descendant(css);
10251 			continue;
10252 		}
10253 
10254 		/* Immediately update descendants RUNNABLE tasks */
10255 		uclamp_update_active_tasks(css);
10256 	}
10257 }
10258 
10259 /*
10260  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10261  * C expression. Since there is no way to convert a macro argument (N) into a
10262  * character constant, use two levels of macros.
10263  */
10264 #define _POW10(exp) ((unsigned int)1e##exp)
10265 #define POW10(exp) _POW10(exp)
10266 
10267 struct uclamp_request {
10268 #define UCLAMP_PERCENT_SHIFT	2
10269 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10270 	s64 percent;
10271 	u64 util;
10272 	int ret;
10273 };
10274 
10275 static inline struct uclamp_request
10276 capacity_from_percent(char *buf)
10277 {
10278 	struct uclamp_request req = {
10279 		.percent = UCLAMP_PERCENT_SCALE,
10280 		.util = SCHED_CAPACITY_SCALE,
10281 		.ret = 0,
10282 	};
10283 
10284 	buf = strim(buf);
10285 	if (strcmp(buf, "max")) {
10286 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10287 					     &req.percent);
10288 		if (req.ret)
10289 			return req;
10290 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10291 			req.ret = -ERANGE;
10292 			return req;
10293 		}
10294 
10295 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10296 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10297 	}
10298 
10299 	return req;
10300 }
10301 
10302 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10303 				size_t nbytes, loff_t off,
10304 				enum uclamp_id clamp_id)
10305 {
10306 	struct uclamp_request req;
10307 	struct task_group *tg;
10308 
10309 	req = capacity_from_percent(buf);
10310 	if (req.ret)
10311 		return req.ret;
10312 
10313 	static_branch_enable(&sched_uclamp_used);
10314 
10315 	mutex_lock(&uclamp_mutex);
10316 	rcu_read_lock();
10317 
10318 	tg = css_tg(of_css(of));
10319 	if (tg->uclamp_req[clamp_id].value != req.util)
10320 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10321 
10322 	/*
10323 	 * Because of not recoverable conversion rounding we keep track of the
10324 	 * exact requested value
10325 	 */
10326 	tg->uclamp_pct[clamp_id] = req.percent;
10327 
10328 	/* Update effective clamps to track the most restrictive value */
10329 	cpu_util_update_eff(of_css(of));
10330 
10331 	rcu_read_unlock();
10332 	mutex_unlock(&uclamp_mutex);
10333 
10334 	return nbytes;
10335 }
10336 
10337 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10338 				    char *buf, size_t nbytes,
10339 				    loff_t off)
10340 {
10341 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10342 }
10343 
10344 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10345 				    char *buf, size_t nbytes,
10346 				    loff_t off)
10347 {
10348 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10349 }
10350 
10351 static inline void cpu_uclamp_print(struct seq_file *sf,
10352 				    enum uclamp_id clamp_id)
10353 {
10354 	struct task_group *tg;
10355 	u64 util_clamp;
10356 	u64 percent;
10357 	u32 rem;
10358 
10359 	rcu_read_lock();
10360 	tg = css_tg(seq_css(sf));
10361 	util_clamp = tg->uclamp_req[clamp_id].value;
10362 	rcu_read_unlock();
10363 
10364 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10365 		seq_puts(sf, "max\n");
10366 		return;
10367 	}
10368 
10369 	percent = tg->uclamp_pct[clamp_id];
10370 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10371 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10372 }
10373 
10374 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10375 {
10376 	cpu_uclamp_print(sf, UCLAMP_MIN);
10377 	return 0;
10378 }
10379 
10380 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10381 {
10382 	cpu_uclamp_print(sf, UCLAMP_MAX);
10383 	return 0;
10384 }
10385 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10386 
10387 #ifdef CONFIG_FAIR_GROUP_SCHED
10388 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10389 				struct cftype *cftype, u64 shareval)
10390 {
10391 	if (shareval > scale_load_down(ULONG_MAX))
10392 		shareval = MAX_SHARES;
10393 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10394 }
10395 
10396 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10397 			       struct cftype *cft)
10398 {
10399 	struct task_group *tg = css_tg(css);
10400 
10401 	return (u64) scale_load_down(tg->shares);
10402 }
10403 
10404 #ifdef CONFIG_CFS_BANDWIDTH
10405 static DEFINE_MUTEX(cfs_constraints_mutex);
10406 
10407 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10408 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10409 /* More than 203 days if BW_SHIFT equals 20. */
10410 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10411 
10412 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10413 
10414 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10415 				u64 burst)
10416 {
10417 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10418 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10419 
10420 	if (tg == &root_task_group)
10421 		return -EINVAL;
10422 
10423 	/*
10424 	 * Ensure we have at some amount of bandwidth every period.  This is
10425 	 * to prevent reaching a state of large arrears when throttled via
10426 	 * entity_tick() resulting in prolonged exit starvation.
10427 	 */
10428 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10429 		return -EINVAL;
10430 
10431 	/*
10432 	 * Likewise, bound things on the other side by preventing insane quota
10433 	 * periods.  This also allows us to normalize in computing quota
10434 	 * feasibility.
10435 	 */
10436 	if (period > max_cfs_quota_period)
10437 		return -EINVAL;
10438 
10439 	/*
10440 	 * Bound quota to defend quota against overflow during bandwidth shift.
10441 	 */
10442 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10443 		return -EINVAL;
10444 
10445 	if (quota != RUNTIME_INF && (burst > quota ||
10446 				     burst + quota > max_cfs_runtime))
10447 		return -EINVAL;
10448 
10449 	/*
10450 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10451 	 * unthrottle_offline_cfs_rqs().
10452 	 */
10453 	cpus_read_lock();
10454 	mutex_lock(&cfs_constraints_mutex);
10455 	ret = __cfs_schedulable(tg, period, quota);
10456 	if (ret)
10457 		goto out_unlock;
10458 
10459 	runtime_enabled = quota != RUNTIME_INF;
10460 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10461 	/*
10462 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10463 	 * before making related changes, and on->off must occur afterwards
10464 	 */
10465 	if (runtime_enabled && !runtime_was_enabled)
10466 		cfs_bandwidth_usage_inc();
10467 	raw_spin_lock_irq(&cfs_b->lock);
10468 	cfs_b->period = ns_to_ktime(period);
10469 	cfs_b->quota = quota;
10470 	cfs_b->burst = burst;
10471 
10472 	__refill_cfs_bandwidth_runtime(cfs_b);
10473 
10474 	/* Restart the period timer (if active) to handle new period expiry: */
10475 	if (runtime_enabled)
10476 		start_cfs_bandwidth(cfs_b);
10477 
10478 	raw_spin_unlock_irq(&cfs_b->lock);
10479 
10480 	for_each_online_cpu(i) {
10481 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10482 		struct rq *rq = cfs_rq->rq;
10483 		struct rq_flags rf;
10484 
10485 		rq_lock_irq(rq, &rf);
10486 		cfs_rq->runtime_enabled = runtime_enabled;
10487 		cfs_rq->runtime_remaining = 0;
10488 
10489 		if (cfs_rq->throttled)
10490 			unthrottle_cfs_rq(cfs_rq);
10491 		rq_unlock_irq(rq, &rf);
10492 	}
10493 	if (runtime_was_enabled && !runtime_enabled)
10494 		cfs_bandwidth_usage_dec();
10495 out_unlock:
10496 	mutex_unlock(&cfs_constraints_mutex);
10497 	cpus_read_unlock();
10498 
10499 	return ret;
10500 }
10501 
10502 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10503 {
10504 	u64 quota, period, burst;
10505 
10506 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10507 	burst = tg->cfs_bandwidth.burst;
10508 	if (cfs_quota_us < 0)
10509 		quota = RUNTIME_INF;
10510 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10511 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10512 	else
10513 		return -EINVAL;
10514 
10515 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10516 }
10517 
10518 static long tg_get_cfs_quota(struct task_group *tg)
10519 {
10520 	u64 quota_us;
10521 
10522 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10523 		return -1;
10524 
10525 	quota_us = tg->cfs_bandwidth.quota;
10526 	do_div(quota_us, NSEC_PER_USEC);
10527 
10528 	return quota_us;
10529 }
10530 
10531 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10532 {
10533 	u64 quota, period, burst;
10534 
10535 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10536 		return -EINVAL;
10537 
10538 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10539 	quota = tg->cfs_bandwidth.quota;
10540 	burst = tg->cfs_bandwidth.burst;
10541 
10542 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10543 }
10544 
10545 static long tg_get_cfs_period(struct task_group *tg)
10546 {
10547 	u64 cfs_period_us;
10548 
10549 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10550 	do_div(cfs_period_us, NSEC_PER_USEC);
10551 
10552 	return cfs_period_us;
10553 }
10554 
10555 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10556 {
10557 	u64 quota, period, burst;
10558 
10559 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10560 		return -EINVAL;
10561 
10562 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10563 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10564 	quota = tg->cfs_bandwidth.quota;
10565 
10566 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10567 }
10568 
10569 static long tg_get_cfs_burst(struct task_group *tg)
10570 {
10571 	u64 burst_us;
10572 
10573 	burst_us = tg->cfs_bandwidth.burst;
10574 	do_div(burst_us, NSEC_PER_USEC);
10575 
10576 	return burst_us;
10577 }
10578 
10579 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10580 				  struct cftype *cft)
10581 {
10582 	return tg_get_cfs_quota(css_tg(css));
10583 }
10584 
10585 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10586 				   struct cftype *cftype, s64 cfs_quota_us)
10587 {
10588 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10589 }
10590 
10591 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10592 				   struct cftype *cft)
10593 {
10594 	return tg_get_cfs_period(css_tg(css));
10595 }
10596 
10597 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10598 				    struct cftype *cftype, u64 cfs_period_us)
10599 {
10600 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10601 }
10602 
10603 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10604 				  struct cftype *cft)
10605 {
10606 	return tg_get_cfs_burst(css_tg(css));
10607 }
10608 
10609 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10610 				   struct cftype *cftype, u64 cfs_burst_us)
10611 {
10612 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10613 }
10614 
10615 struct cfs_schedulable_data {
10616 	struct task_group *tg;
10617 	u64 period, quota;
10618 };
10619 
10620 /*
10621  * normalize group quota/period to be quota/max_period
10622  * note: units are usecs
10623  */
10624 static u64 normalize_cfs_quota(struct task_group *tg,
10625 			       struct cfs_schedulable_data *d)
10626 {
10627 	u64 quota, period;
10628 
10629 	if (tg == d->tg) {
10630 		period = d->period;
10631 		quota = d->quota;
10632 	} else {
10633 		period = tg_get_cfs_period(tg);
10634 		quota = tg_get_cfs_quota(tg);
10635 	}
10636 
10637 	/* note: these should typically be equivalent */
10638 	if (quota == RUNTIME_INF || quota == -1)
10639 		return RUNTIME_INF;
10640 
10641 	return to_ratio(period, quota);
10642 }
10643 
10644 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10645 {
10646 	struct cfs_schedulable_data *d = data;
10647 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10648 	s64 quota = 0, parent_quota = -1;
10649 
10650 	if (!tg->parent) {
10651 		quota = RUNTIME_INF;
10652 	} else {
10653 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10654 
10655 		quota = normalize_cfs_quota(tg, d);
10656 		parent_quota = parent_b->hierarchical_quota;
10657 
10658 		/*
10659 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10660 		 * always take the min.  On cgroup1, only inherit when no
10661 		 * limit is set:
10662 		 */
10663 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10664 			quota = min(quota, parent_quota);
10665 		} else {
10666 			if (quota == RUNTIME_INF)
10667 				quota = parent_quota;
10668 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10669 				return -EINVAL;
10670 		}
10671 	}
10672 	cfs_b->hierarchical_quota = quota;
10673 
10674 	return 0;
10675 }
10676 
10677 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10678 {
10679 	int ret;
10680 	struct cfs_schedulable_data data = {
10681 		.tg = tg,
10682 		.period = period,
10683 		.quota = quota,
10684 	};
10685 
10686 	if (quota != RUNTIME_INF) {
10687 		do_div(data.period, NSEC_PER_USEC);
10688 		do_div(data.quota, NSEC_PER_USEC);
10689 	}
10690 
10691 	rcu_read_lock();
10692 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10693 	rcu_read_unlock();
10694 
10695 	return ret;
10696 }
10697 
10698 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10699 {
10700 	struct task_group *tg = css_tg(seq_css(sf));
10701 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10702 
10703 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10704 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10705 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10706 
10707 	if (schedstat_enabled() && tg != &root_task_group) {
10708 		struct sched_statistics *stats;
10709 		u64 ws = 0;
10710 		int i;
10711 
10712 		for_each_possible_cpu(i) {
10713 			stats = __schedstats_from_se(tg->se[i]);
10714 			ws += schedstat_val(stats->wait_sum);
10715 		}
10716 
10717 		seq_printf(sf, "wait_sum %llu\n", ws);
10718 	}
10719 
10720 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10721 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10722 
10723 	return 0;
10724 }
10725 #endif /* CONFIG_CFS_BANDWIDTH */
10726 #endif /* CONFIG_FAIR_GROUP_SCHED */
10727 
10728 #ifdef CONFIG_RT_GROUP_SCHED
10729 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10730 				struct cftype *cft, s64 val)
10731 {
10732 	return sched_group_set_rt_runtime(css_tg(css), val);
10733 }
10734 
10735 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10736 			       struct cftype *cft)
10737 {
10738 	return sched_group_rt_runtime(css_tg(css));
10739 }
10740 
10741 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10742 				    struct cftype *cftype, u64 rt_period_us)
10743 {
10744 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10745 }
10746 
10747 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10748 				   struct cftype *cft)
10749 {
10750 	return sched_group_rt_period(css_tg(css));
10751 }
10752 #endif /* CONFIG_RT_GROUP_SCHED */
10753 
10754 #ifdef CONFIG_FAIR_GROUP_SCHED
10755 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10756 			       struct cftype *cft)
10757 {
10758 	return css_tg(css)->idle;
10759 }
10760 
10761 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10762 				struct cftype *cft, s64 idle)
10763 {
10764 	return sched_group_set_idle(css_tg(css), idle);
10765 }
10766 #endif
10767 
10768 static struct cftype cpu_legacy_files[] = {
10769 #ifdef CONFIG_FAIR_GROUP_SCHED
10770 	{
10771 		.name = "shares",
10772 		.read_u64 = cpu_shares_read_u64,
10773 		.write_u64 = cpu_shares_write_u64,
10774 	},
10775 	{
10776 		.name = "idle",
10777 		.read_s64 = cpu_idle_read_s64,
10778 		.write_s64 = cpu_idle_write_s64,
10779 	},
10780 #endif
10781 #ifdef CONFIG_CFS_BANDWIDTH
10782 	{
10783 		.name = "cfs_quota_us",
10784 		.read_s64 = cpu_cfs_quota_read_s64,
10785 		.write_s64 = cpu_cfs_quota_write_s64,
10786 	},
10787 	{
10788 		.name = "cfs_period_us",
10789 		.read_u64 = cpu_cfs_period_read_u64,
10790 		.write_u64 = cpu_cfs_period_write_u64,
10791 	},
10792 	{
10793 		.name = "cfs_burst_us",
10794 		.read_u64 = cpu_cfs_burst_read_u64,
10795 		.write_u64 = cpu_cfs_burst_write_u64,
10796 	},
10797 	{
10798 		.name = "stat",
10799 		.seq_show = cpu_cfs_stat_show,
10800 	},
10801 #endif
10802 #ifdef CONFIG_RT_GROUP_SCHED
10803 	{
10804 		.name = "rt_runtime_us",
10805 		.read_s64 = cpu_rt_runtime_read,
10806 		.write_s64 = cpu_rt_runtime_write,
10807 	},
10808 	{
10809 		.name = "rt_period_us",
10810 		.read_u64 = cpu_rt_period_read_uint,
10811 		.write_u64 = cpu_rt_period_write_uint,
10812 	},
10813 #endif
10814 #ifdef CONFIG_UCLAMP_TASK_GROUP
10815 	{
10816 		.name = "uclamp.min",
10817 		.flags = CFTYPE_NOT_ON_ROOT,
10818 		.seq_show = cpu_uclamp_min_show,
10819 		.write = cpu_uclamp_min_write,
10820 	},
10821 	{
10822 		.name = "uclamp.max",
10823 		.flags = CFTYPE_NOT_ON_ROOT,
10824 		.seq_show = cpu_uclamp_max_show,
10825 		.write = cpu_uclamp_max_write,
10826 	},
10827 #endif
10828 	{ }	/* Terminate */
10829 };
10830 
10831 static int cpu_extra_stat_show(struct seq_file *sf,
10832 			       struct cgroup_subsys_state *css)
10833 {
10834 #ifdef CONFIG_CFS_BANDWIDTH
10835 	{
10836 		struct task_group *tg = css_tg(css);
10837 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10838 		u64 throttled_usec, burst_usec;
10839 
10840 		throttled_usec = cfs_b->throttled_time;
10841 		do_div(throttled_usec, NSEC_PER_USEC);
10842 		burst_usec = cfs_b->burst_time;
10843 		do_div(burst_usec, NSEC_PER_USEC);
10844 
10845 		seq_printf(sf, "nr_periods %d\n"
10846 			   "nr_throttled %d\n"
10847 			   "throttled_usec %llu\n"
10848 			   "nr_bursts %d\n"
10849 			   "burst_usec %llu\n",
10850 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10851 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10852 	}
10853 #endif
10854 	return 0;
10855 }
10856 
10857 #ifdef CONFIG_FAIR_GROUP_SCHED
10858 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10859 			       struct cftype *cft)
10860 {
10861 	struct task_group *tg = css_tg(css);
10862 	u64 weight = scale_load_down(tg->shares);
10863 
10864 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10865 }
10866 
10867 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10868 				struct cftype *cft, u64 weight)
10869 {
10870 	/*
10871 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10872 	 * values which are 1, 100 and 10000 respectively.  While it loses
10873 	 * a bit of range on both ends, it maps pretty well onto the shares
10874 	 * value used by scheduler and the round-trip conversions preserve
10875 	 * the original value over the entire range.
10876 	 */
10877 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10878 		return -ERANGE;
10879 
10880 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10881 
10882 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10883 }
10884 
10885 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10886 				    struct cftype *cft)
10887 {
10888 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10889 	int last_delta = INT_MAX;
10890 	int prio, delta;
10891 
10892 	/* find the closest nice value to the current weight */
10893 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10894 		delta = abs(sched_prio_to_weight[prio] - weight);
10895 		if (delta >= last_delta)
10896 			break;
10897 		last_delta = delta;
10898 	}
10899 
10900 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10901 }
10902 
10903 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10904 				     struct cftype *cft, s64 nice)
10905 {
10906 	unsigned long weight;
10907 	int idx;
10908 
10909 	if (nice < MIN_NICE || nice > MAX_NICE)
10910 		return -ERANGE;
10911 
10912 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10913 	idx = array_index_nospec(idx, 40);
10914 	weight = sched_prio_to_weight[idx];
10915 
10916 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10917 }
10918 #endif
10919 
10920 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10921 						  long period, long quota)
10922 {
10923 	if (quota < 0)
10924 		seq_puts(sf, "max");
10925 	else
10926 		seq_printf(sf, "%ld", quota);
10927 
10928 	seq_printf(sf, " %ld\n", period);
10929 }
10930 
10931 /* caller should put the current value in *@periodp before calling */
10932 static int __maybe_unused cpu_period_quota_parse(char *buf,
10933 						 u64 *periodp, u64 *quotap)
10934 {
10935 	char tok[21];	/* U64_MAX */
10936 
10937 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10938 		return -EINVAL;
10939 
10940 	*periodp *= NSEC_PER_USEC;
10941 
10942 	if (sscanf(tok, "%llu", quotap))
10943 		*quotap *= NSEC_PER_USEC;
10944 	else if (!strcmp(tok, "max"))
10945 		*quotap = RUNTIME_INF;
10946 	else
10947 		return -EINVAL;
10948 
10949 	return 0;
10950 }
10951 
10952 #ifdef CONFIG_CFS_BANDWIDTH
10953 static int cpu_max_show(struct seq_file *sf, void *v)
10954 {
10955 	struct task_group *tg = css_tg(seq_css(sf));
10956 
10957 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10958 	return 0;
10959 }
10960 
10961 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10962 			     char *buf, size_t nbytes, loff_t off)
10963 {
10964 	struct task_group *tg = css_tg(of_css(of));
10965 	u64 period = tg_get_cfs_period(tg);
10966 	u64 burst = tg_get_cfs_burst(tg);
10967 	u64 quota;
10968 	int ret;
10969 
10970 	ret = cpu_period_quota_parse(buf, &period, &quota);
10971 	if (!ret)
10972 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10973 	return ret ?: nbytes;
10974 }
10975 #endif
10976 
10977 static struct cftype cpu_files[] = {
10978 #ifdef CONFIG_FAIR_GROUP_SCHED
10979 	{
10980 		.name = "weight",
10981 		.flags = CFTYPE_NOT_ON_ROOT,
10982 		.read_u64 = cpu_weight_read_u64,
10983 		.write_u64 = cpu_weight_write_u64,
10984 	},
10985 	{
10986 		.name = "weight.nice",
10987 		.flags = CFTYPE_NOT_ON_ROOT,
10988 		.read_s64 = cpu_weight_nice_read_s64,
10989 		.write_s64 = cpu_weight_nice_write_s64,
10990 	},
10991 	{
10992 		.name = "idle",
10993 		.flags = CFTYPE_NOT_ON_ROOT,
10994 		.read_s64 = cpu_idle_read_s64,
10995 		.write_s64 = cpu_idle_write_s64,
10996 	},
10997 #endif
10998 #ifdef CONFIG_CFS_BANDWIDTH
10999 	{
11000 		.name = "max",
11001 		.flags = CFTYPE_NOT_ON_ROOT,
11002 		.seq_show = cpu_max_show,
11003 		.write = cpu_max_write,
11004 	},
11005 	{
11006 		.name = "max.burst",
11007 		.flags = CFTYPE_NOT_ON_ROOT,
11008 		.read_u64 = cpu_cfs_burst_read_u64,
11009 		.write_u64 = cpu_cfs_burst_write_u64,
11010 	},
11011 #endif
11012 #ifdef CONFIG_UCLAMP_TASK_GROUP
11013 	{
11014 		.name = "uclamp.min",
11015 		.flags = CFTYPE_NOT_ON_ROOT,
11016 		.seq_show = cpu_uclamp_min_show,
11017 		.write = cpu_uclamp_min_write,
11018 	},
11019 	{
11020 		.name = "uclamp.max",
11021 		.flags = CFTYPE_NOT_ON_ROOT,
11022 		.seq_show = cpu_uclamp_max_show,
11023 		.write = cpu_uclamp_max_write,
11024 	},
11025 #endif
11026 	{ }	/* terminate */
11027 };
11028 
11029 struct cgroup_subsys cpu_cgrp_subsys = {
11030 	.css_alloc	= cpu_cgroup_css_alloc,
11031 	.css_online	= cpu_cgroup_css_online,
11032 	.css_released	= cpu_cgroup_css_released,
11033 	.css_free	= cpu_cgroup_css_free,
11034 	.css_extra_stat_show = cpu_extra_stat_show,
11035 	.fork		= cpu_cgroup_fork,
11036 	.can_attach	= cpu_cgroup_can_attach,
11037 	.attach		= cpu_cgroup_attach,
11038 	.legacy_cftypes	= cpu_legacy_files,
11039 	.dfl_cftypes	= cpu_files,
11040 	.early_init	= true,
11041 	.threaded	= true,
11042 };
11043 
11044 #endif	/* CONFIG_CGROUP_SCHED */
11045 
11046 void dump_cpu_task(int cpu)
11047 {
11048 	pr_info("Task dump for CPU %d:\n", cpu);
11049 	sched_show_task(cpu_curr(cpu));
11050 }
11051 
11052 /*
11053  * Nice levels are multiplicative, with a gentle 10% change for every
11054  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11055  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11056  * that remained on nice 0.
11057  *
11058  * The "10% effect" is relative and cumulative: from _any_ nice level,
11059  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11060  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11061  * If a task goes up by ~10% and another task goes down by ~10% then
11062  * the relative distance between them is ~25%.)
11063  */
11064 const int sched_prio_to_weight[40] = {
11065  /* -20 */     88761,     71755,     56483,     46273,     36291,
11066  /* -15 */     29154,     23254,     18705,     14949,     11916,
11067  /* -10 */      9548,      7620,      6100,      4904,      3906,
11068  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11069  /*   0 */      1024,       820,       655,       526,       423,
11070  /*   5 */       335,       272,       215,       172,       137,
11071  /*  10 */       110,        87,        70,        56,        45,
11072  /*  15 */        36,        29,        23,        18,        15,
11073 };
11074 
11075 /*
11076  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11077  *
11078  * In cases where the weight does not change often, we can use the
11079  * precalculated inverse to speed up arithmetics by turning divisions
11080  * into multiplications:
11081  */
11082 const u32 sched_prio_to_wmult[40] = {
11083  /* -20 */     48388,     59856,     76040,     92818,    118348,
11084  /* -15 */    147320,    184698,    229616,    287308,    360437,
11085  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11086  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11087  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11088  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11089  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11090  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11091 };
11092 
11093 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11094 {
11095         trace_sched_update_nr_running_tp(rq, count);
11096 }
11097