1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 lockdep_assert_held(&rq->lock); 123 124 if (rq->clock_skip_update & RQCF_ACT_SKIP) 125 return; 126 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 128 if (delta < 0) 129 return; 130 rq->clock += delta; 131 update_rq_clock_task(rq, delta); 132 } 133 134 /* 135 * Debugging: various feature bits 136 */ 137 138 #define SCHED_FEAT(name, enabled) \ 139 (1UL << __SCHED_FEAT_##name) * enabled | 140 141 const_debug unsigned int sysctl_sched_features = 142 #include "features.h" 143 0; 144 145 #undef SCHED_FEAT 146 147 #ifdef CONFIG_SCHED_DEBUG 148 #define SCHED_FEAT(name, enabled) \ 149 #name , 150 151 static const char * const sched_feat_names[] = { 152 #include "features.h" 153 }; 154 155 #undef SCHED_FEAT 156 157 static int sched_feat_show(struct seq_file *m, void *v) 158 { 159 int i; 160 161 for (i = 0; i < __SCHED_FEAT_NR; i++) { 162 if (!(sysctl_sched_features & (1UL << i))) 163 seq_puts(m, "NO_"); 164 seq_printf(m, "%s ", sched_feat_names[i]); 165 } 166 seq_puts(m, "\n"); 167 168 return 0; 169 } 170 171 #ifdef HAVE_JUMP_LABEL 172 173 #define jump_label_key__true STATIC_KEY_INIT_TRUE 174 #define jump_label_key__false STATIC_KEY_INIT_FALSE 175 176 #define SCHED_FEAT(name, enabled) \ 177 jump_label_key__##enabled , 178 179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 180 #include "features.h" 181 }; 182 183 #undef SCHED_FEAT 184 185 static void sched_feat_disable(int i) 186 { 187 if (static_key_enabled(&sched_feat_keys[i])) 188 static_key_slow_dec(&sched_feat_keys[i]); 189 } 190 191 static void sched_feat_enable(int i) 192 { 193 if (!static_key_enabled(&sched_feat_keys[i])) 194 static_key_slow_inc(&sched_feat_keys[i]); 195 } 196 #else 197 static void sched_feat_disable(int i) { }; 198 static void sched_feat_enable(int i) { }; 199 #endif /* HAVE_JUMP_LABEL */ 200 201 static int sched_feat_set(char *cmp) 202 { 203 int i; 204 int neg = 0; 205 206 if (strncmp(cmp, "NO_", 3) == 0) { 207 neg = 1; 208 cmp += 3; 209 } 210 211 for (i = 0; i < __SCHED_FEAT_NR; i++) { 212 if (strcmp(cmp, sched_feat_names[i]) == 0) { 213 if (neg) { 214 sysctl_sched_features &= ~(1UL << i); 215 sched_feat_disable(i); 216 } else { 217 sysctl_sched_features |= (1UL << i); 218 sched_feat_enable(i); 219 } 220 break; 221 } 222 } 223 224 return i; 225 } 226 227 static ssize_t 228 sched_feat_write(struct file *filp, const char __user *ubuf, 229 size_t cnt, loff_t *ppos) 230 { 231 char buf[64]; 232 char *cmp; 233 int i; 234 struct inode *inode; 235 236 if (cnt > 63) 237 cnt = 63; 238 239 if (copy_from_user(&buf, ubuf, cnt)) 240 return -EFAULT; 241 242 buf[cnt] = 0; 243 cmp = strstrip(buf); 244 245 /* Ensure the static_key remains in a consistent state */ 246 inode = file_inode(filp); 247 mutex_lock(&inode->i_mutex); 248 i = sched_feat_set(cmp); 249 mutex_unlock(&inode->i_mutex); 250 if (i == __SCHED_FEAT_NR) 251 return -EINVAL; 252 253 *ppos += cnt; 254 255 return cnt; 256 } 257 258 static int sched_feat_open(struct inode *inode, struct file *filp) 259 { 260 return single_open(filp, sched_feat_show, NULL); 261 } 262 263 static const struct file_operations sched_feat_fops = { 264 .open = sched_feat_open, 265 .write = sched_feat_write, 266 .read = seq_read, 267 .llseek = seq_lseek, 268 .release = single_release, 269 }; 270 271 static __init int sched_init_debug(void) 272 { 273 debugfs_create_file("sched_features", 0644, NULL, NULL, 274 &sched_feat_fops); 275 276 return 0; 277 } 278 late_initcall(sched_init_debug); 279 #endif /* CONFIG_SCHED_DEBUG */ 280 281 /* 282 * Number of tasks to iterate in a single balance run. 283 * Limited because this is done with IRQs disabled. 284 */ 285 const_debug unsigned int sysctl_sched_nr_migrate = 32; 286 287 /* 288 * period over which we average the RT time consumption, measured 289 * in ms. 290 * 291 * default: 1s 292 */ 293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 294 295 /* 296 * period over which we measure -rt task cpu usage in us. 297 * default: 1s 298 */ 299 unsigned int sysctl_sched_rt_period = 1000000; 300 301 __read_mostly int scheduler_running; 302 303 /* 304 * part of the period that we allow rt tasks to run in us. 305 * default: 0.95s 306 */ 307 int sysctl_sched_rt_runtime = 950000; 308 309 /* cpus with isolated domains */ 310 cpumask_var_t cpu_isolated_map; 311 312 /* 313 * this_rq_lock - lock this runqueue and disable interrupts. 314 */ 315 static struct rq *this_rq_lock(void) 316 __acquires(rq->lock) 317 { 318 struct rq *rq; 319 320 local_irq_disable(); 321 rq = this_rq(); 322 raw_spin_lock(&rq->lock); 323 324 return rq; 325 } 326 327 #ifdef CONFIG_SCHED_HRTICK 328 /* 329 * Use HR-timers to deliver accurate preemption points. 330 */ 331 332 static void hrtick_clear(struct rq *rq) 333 { 334 if (hrtimer_active(&rq->hrtick_timer)) 335 hrtimer_cancel(&rq->hrtick_timer); 336 } 337 338 /* 339 * High-resolution timer tick. 340 * Runs from hardirq context with interrupts disabled. 341 */ 342 static enum hrtimer_restart hrtick(struct hrtimer *timer) 343 { 344 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 345 346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 347 348 raw_spin_lock(&rq->lock); 349 update_rq_clock(rq); 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 351 raw_spin_unlock(&rq->lock); 352 353 return HRTIMER_NORESTART; 354 } 355 356 #ifdef CONFIG_SMP 357 358 static int __hrtick_restart(struct rq *rq) 359 { 360 struct hrtimer *timer = &rq->hrtick_timer; 361 ktime_t time = hrtimer_get_softexpires(timer); 362 363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 364 } 365 366 /* 367 * called from hardirq (IPI) context 368 */ 369 static void __hrtick_start(void *arg) 370 { 371 struct rq *rq = arg; 372 373 raw_spin_lock(&rq->lock); 374 __hrtick_restart(rq); 375 rq->hrtick_csd_pending = 0; 376 raw_spin_unlock(&rq->lock); 377 } 378 379 /* 380 * Called to set the hrtick timer state. 381 * 382 * called with rq->lock held and irqs disabled 383 */ 384 void hrtick_start(struct rq *rq, u64 delay) 385 { 386 struct hrtimer *timer = &rq->hrtick_timer; 387 ktime_t time; 388 s64 delta; 389 390 /* 391 * Don't schedule slices shorter than 10000ns, that just 392 * doesn't make sense and can cause timer DoS. 393 */ 394 delta = max_t(s64, delay, 10000LL); 395 time = ktime_add_ns(timer->base->get_time(), delta); 396 397 hrtimer_set_expires(timer, time); 398 399 if (rq == this_rq()) { 400 __hrtick_restart(rq); 401 } else if (!rq->hrtick_csd_pending) { 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 403 rq->hrtick_csd_pending = 1; 404 } 405 } 406 407 static int 408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 409 { 410 int cpu = (int)(long)hcpu; 411 412 switch (action) { 413 case CPU_UP_CANCELED: 414 case CPU_UP_CANCELED_FROZEN: 415 case CPU_DOWN_PREPARE: 416 case CPU_DOWN_PREPARE_FROZEN: 417 case CPU_DEAD: 418 case CPU_DEAD_FROZEN: 419 hrtick_clear(cpu_rq(cpu)); 420 return NOTIFY_OK; 421 } 422 423 return NOTIFY_DONE; 424 } 425 426 static __init void init_hrtick(void) 427 { 428 hotcpu_notifier(hotplug_hrtick, 0); 429 } 430 #else 431 /* 432 * Called to set the hrtick timer state. 433 * 434 * called with rq->lock held and irqs disabled 435 */ 436 void hrtick_start(struct rq *rq, u64 delay) 437 { 438 /* 439 * Don't schedule slices shorter than 10000ns, that just 440 * doesn't make sense. Rely on vruntime for fairness. 441 */ 442 delay = max_t(u64, delay, 10000LL); 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 444 HRTIMER_MODE_REL_PINNED, 0); 445 } 446 447 static inline void init_hrtick(void) 448 { 449 } 450 #endif /* CONFIG_SMP */ 451 452 static void init_rq_hrtick(struct rq *rq) 453 { 454 #ifdef CONFIG_SMP 455 rq->hrtick_csd_pending = 0; 456 457 rq->hrtick_csd.flags = 0; 458 rq->hrtick_csd.func = __hrtick_start; 459 rq->hrtick_csd.info = rq; 460 #endif 461 462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 463 rq->hrtick_timer.function = hrtick; 464 } 465 #else /* CONFIG_SCHED_HRTICK */ 466 static inline void hrtick_clear(struct rq *rq) 467 { 468 } 469 470 static inline void init_rq_hrtick(struct rq *rq) 471 { 472 } 473 474 static inline void init_hrtick(void) 475 { 476 } 477 #endif /* CONFIG_SCHED_HRTICK */ 478 479 /* 480 * cmpxchg based fetch_or, macro so it works for different integer types 481 */ 482 #define fetch_or(ptr, val) \ 483 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 484 for (;;) { \ 485 __old = cmpxchg((ptr), __val, __val | (val)); \ 486 if (__old == __val) \ 487 break; \ 488 __val = __old; \ 489 } \ 490 __old; \ 491 }) 492 493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 494 /* 495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 496 * this avoids any races wrt polling state changes and thereby avoids 497 * spurious IPIs. 498 */ 499 static bool set_nr_and_not_polling(struct task_struct *p) 500 { 501 struct thread_info *ti = task_thread_info(p); 502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 503 } 504 505 /* 506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 507 * 508 * If this returns true, then the idle task promises to call 509 * sched_ttwu_pending() and reschedule soon. 510 */ 511 static bool set_nr_if_polling(struct task_struct *p) 512 { 513 struct thread_info *ti = task_thread_info(p); 514 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 515 516 for (;;) { 517 if (!(val & _TIF_POLLING_NRFLAG)) 518 return false; 519 if (val & _TIF_NEED_RESCHED) 520 return true; 521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 522 if (old == val) 523 break; 524 val = old; 525 } 526 return true; 527 } 528 529 #else 530 static bool set_nr_and_not_polling(struct task_struct *p) 531 { 532 set_tsk_need_resched(p); 533 return true; 534 } 535 536 #ifdef CONFIG_SMP 537 static bool set_nr_if_polling(struct task_struct *p) 538 { 539 return false; 540 } 541 #endif 542 #endif 543 544 /* 545 * resched_curr - mark rq's current task 'to be rescheduled now'. 546 * 547 * On UP this means the setting of the need_resched flag, on SMP it 548 * might also involve a cross-CPU call to trigger the scheduler on 549 * the target CPU. 550 */ 551 void resched_curr(struct rq *rq) 552 { 553 struct task_struct *curr = rq->curr; 554 int cpu; 555 556 lockdep_assert_held(&rq->lock); 557 558 if (test_tsk_need_resched(curr)) 559 return; 560 561 cpu = cpu_of(rq); 562 563 if (cpu == smp_processor_id()) { 564 set_tsk_need_resched(curr); 565 set_preempt_need_resched(); 566 return; 567 } 568 569 if (set_nr_and_not_polling(curr)) 570 smp_send_reschedule(cpu); 571 else 572 trace_sched_wake_idle_without_ipi(cpu); 573 } 574 575 void resched_cpu(int cpu) 576 { 577 struct rq *rq = cpu_rq(cpu); 578 unsigned long flags; 579 580 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 581 return; 582 resched_curr(rq); 583 raw_spin_unlock_irqrestore(&rq->lock, flags); 584 } 585 586 #ifdef CONFIG_SMP 587 #ifdef CONFIG_NO_HZ_COMMON 588 /* 589 * In the semi idle case, use the nearest busy cpu for migrating timers 590 * from an idle cpu. This is good for power-savings. 591 * 592 * We don't do similar optimization for completely idle system, as 593 * selecting an idle cpu will add more delays to the timers than intended 594 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 595 */ 596 int get_nohz_timer_target(int pinned) 597 { 598 int cpu = smp_processor_id(); 599 int i; 600 struct sched_domain *sd; 601 602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 603 return cpu; 604 605 rcu_read_lock(); 606 for_each_domain(cpu, sd) { 607 for_each_cpu(i, sched_domain_span(sd)) { 608 if (!idle_cpu(i)) { 609 cpu = i; 610 goto unlock; 611 } 612 } 613 } 614 unlock: 615 rcu_read_unlock(); 616 return cpu; 617 } 618 /* 619 * When add_timer_on() enqueues a timer into the timer wheel of an 620 * idle CPU then this timer might expire before the next timer event 621 * which is scheduled to wake up that CPU. In case of a completely 622 * idle system the next event might even be infinite time into the 623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 624 * leaves the inner idle loop so the newly added timer is taken into 625 * account when the CPU goes back to idle and evaluates the timer 626 * wheel for the next timer event. 627 */ 628 static void wake_up_idle_cpu(int cpu) 629 { 630 struct rq *rq = cpu_rq(cpu); 631 632 if (cpu == smp_processor_id()) 633 return; 634 635 if (set_nr_and_not_polling(rq->idle)) 636 smp_send_reschedule(cpu); 637 else 638 trace_sched_wake_idle_without_ipi(cpu); 639 } 640 641 static bool wake_up_full_nohz_cpu(int cpu) 642 { 643 /* 644 * We just need the target to call irq_exit() and re-evaluate 645 * the next tick. The nohz full kick at least implies that. 646 * If needed we can still optimize that later with an 647 * empty IRQ. 648 */ 649 if (tick_nohz_full_cpu(cpu)) { 650 if (cpu != smp_processor_id() || 651 tick_nohz_tick_stopped()) 652 tick_nohz_full_kick_cpu(cpu); 653 return true; 654 } 655 656 return false; 657 } 658 659 void wake_up_nohz_cpu(int cpu) 660 { 661 if (!wake_up_full_nohz_cpu(cpu)) 662 wake_up_idle_cpu(cpu); 663 } 664 665 static inline bool got_nohz_idle_kick(void) 666 { 667 int cpu = smp_processor_id(); 668 669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 670 return false; 671 672 if (idle_cpu(cpu) && !need_resched()) 673 return true; 674 675 /* 676 * We can't run Idle Load Balance on this CPU for this time so we 677 * cancel it and clear NOHZ_BALANCE_KICK 678 */ 679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 680 return false; 681 } 682 683 #else /* CONFIG_NO_HZ_COMMON */ 684 685 static inline bool got_nohz_idle_kick(void) 686 { 687 return false; 688 } 689 690 #endif /* CONFIG_NO_HZ_COMMON */ 691 692 #ifdef CONFIG_NO_HZ_FULL 693 bool sched_can_stop_tick(void) 694 { 695 /* 696 * FIFO realtime policy runs the highest priority task. Other runnable 697 * tasks are of a lower priority. The scheduler tick does nothing. 698 */ 699 if (current->policy == SCHED_FIFO) 700 return true; 701 702 /* 703 * Round-robin realtime tasks time slice with other tasks at the same 704 * realtime priority. Is this task the only one at this priority? 705 */ 706 if (current->policy == SCHED_RR) { 707 struct sched_rt_entity *rt_se = ¤t->rt; 708 709 return rt_se->run_list.prev == rt_se->run_list.next; 710 } 711 712 /* 713 * More than one running task need preemption. 714 * nr_running update is assumed to be visible 715 * after IPI is sent from wakers. 716 */ 717 if (this_rq()->nr_running > 1) 718 return false; 719 720 return true; 721 } 722 #endif /* CONFIG_NO_HZ_FULL */ 723 724 void sched_avg_update(struct rq *rq) 725 { 726 s64 period = sched_avg_period(); 727 728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 729 /* 730 * Inline assembly required to prevent the compiler 731 * optimising this loop into a divmod call. 732 * See __iter_div_u64_rem() for another example of this. 733 */ 734 asm("" : "+rm" (rq->age_stamp)); 735 rq->age_stamp += period; 736 rq->rt_avg /= 2; 737 } 738 } 739 740 #endif /* CONFIG_SMP */ 741 742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 744 /* 745 * Iterate task_group tree rooted at *from, calling @down when first entering a 746 * node and @up when leaving it for the final time. 747 * 748 * Caller must hold rcu_lock or sufficient equivalent. 749 */ 750 int walk_tg_tree_from(struct task_group *from, 751 tg_visitor down, tg_visitor up, void *data) 752 { 753 struct task_group *parent, *child; 754 int ret; 755 756 parent = from; 757 758 down: 759 ret = (*down)(parent, data); 760 if (ret) 761 goto out; 762 list_for_each_entry_rcu(child, &parent->children, siblings) { 763 parent = child; 764 goto down; 765 766 up: 767 continue; 768 } 769 ret = (*up)(parent, data); 770 if (ret || parent == from) 771 goto out; 772 773 child = parent; 774 parent = parent->parent; 775 if (parent) 776 goto up; 777 out: 778 return ret; 779 } 780 781 int tg_nop(struct task_group *tg, void *data) 782 { 783 return 0; 784 } 785 #endif 786 787 static void set_load_weight(struct task_struct *p) 788 { 789 int prio = p->static_prio - MAX_RT_PRIO; 790 struct load_weight *load = &p->se.load; 791 792 /* 793 * SCHED_IDLE tasks get minimal weight: 794 */ 795 if (p->policy == SCHED_IDLE) { 796 load->weight = scale_load(WEIGHT_IDLEPRIO); 797 load->inv_weight = WMULT_IDLEPRIO; 798 return; 799 } 800 801 load->weight = scale_load(prio_to_weight[prio]); 802 load->inv_weight = prio_to_wmult[prio]; 803 } 804 805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 806 { 807 update_rq_clock(rq); 808 sched_info_queued(rq, p); 809 p->sched_class->enqueue_task(rq, p, flags); 810 } 811 812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 813 { 814 update_rq_clock(rq); 815 sched_info_dequeued(rq, p); 816 p->sched_class->dequeue_task(rq, p, flags); 817 } 818 819 void activate_task(struct rq *rq, struct task_struct *p, int flags) 820 { 821 if (task_contributes_to_load(p)) 822 rq->nr_uninterruptible--; 823 824 enqueue_task(rq, p, flags); 825 } 826 827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 828 { 829 if (task_contributes_to_load(p)) 830 rq->nr_uninterruptible++; 831 832 dequeue_task(rq, p, flags); 833 } 834 835 static void update_rq_clock_task(struct rq *rq, s64 delta) 836 { 837 /* 838 * In theory, the compile should just see 0 here, and optimize out the call 839 * to sched_rt_avg_update. But I don't trust it... 840 */ 841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 842 s64 steal = 0, irq_delta = 0; 843 #endif 844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 846 847 /* 848 * Since irq_time is only updated on {soft,}irq_exit, we might run into 849 * this case when a previous update_rq_clock() happened inside a 850 * {soft,}irq region. 851 * 852 * When this happens, we stop ->clock_task and only update the 853 * prev_irq_time stamp to account for the part that fit, so that a next 854 * update will consume the rest. This ensures ->clock_task is 855 * monotonic. 856 * 857 * It does however cause some slight miss-attribution of {soft,}irq 858 * time, a more accurate solution would be to update the irq_time using 859 * the current rq->clock timestamp, except that would require using 860 * atomic ops. 861 */ 862 if (irq_delta > delta) 863 irq_delta = delta; 864 865 rq->prev_irq_time += irq_delta; 866 delta -= irq_delta; 867 #endif 868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 869 if (static_key_false((¶virt_steal_rq_enabled))) { 870 steal = paravirt_steal_clock(cpu_of(rq)); 871 steal -= rq->prev_steal_time_rq; 872 873 if (unlikely(steal > delta)) 874 steal = delta; 875 876 rq->prev_steal_time_rq += steal; 877 delta -= steal; 878 } 879 #endif 880 881 rq->clock_task += delta; 882 883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 885 sched_rt_avg_update(rq, irq_delta + steal); 886 #endif 887 } 888 889 void sched_set_stop_task(int cpu, struct task_struct *stop) 890 { 891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 892 struct task_struct *old_stop = cpu_rq(cpu)->stop; 893 894 if (stop) { 895 /* 896 * Make it appear like a SCHED_FIFO task, its something 897 * userspace knows about and won't get confused about. 898 * 899 * Also, it will make PI more or less work without too 900 * much confusion -- but then, stop work should not 901 * rely on PI working anyway. 902 */ 903 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 904 905 stop->sched_class = &stop_sched_class; 906 } 907 908 cpu_rq(cpu)->stop = stop; 909 910 if (old_stop) { 911 /* 912 * Reset it back to a normal scheduling class so that 913 * it can die in pieces. 914 */ 915 old_stop->sched_class = &rt_sched_class; 916 } 917 } 918 919 /* 920 * __normal_prio - return the priority that is based on the static prio 921 */ 922 static inline int __normal_prio(struct task_struct *p) 923 { 924 return p->static_prio; 925 } 926 927 /* 928 * Calculate the expected normal priority: i.e. priority 929 * without taking RT-inheritance into account. Might be 930 * boosted by interactivity modifiers. Changes upon fork, 931 * setprio syscalls, and whenever the interactivity 932 * estimator recalculates. 933 */ 934 static inline int normal_prio(struct task_struct *p) 935 { 936 int prio; 937 938 if (task_has_dl_policy(p)) 939 prio = MAX_DL_PRIO-1; 940 else if (task_has_rt_policy(p)) 941 prio = MAX_RT_PRIO-1 - p->rt_priority; 942 else 943 prio = __normal_prio(p); 944 return prio; 945 } 946 947 /* 948 * Calculate the current priority, i.e. the priority 949 * taken into account by the scheduler. This value might 950 * be boosted by RT tasks, or might be boosted by 951 * interactivity modifiers. Will be RT if the task got 952 * RT-boosted. If not then it returns p->normal_prio. 953 */ 954 static int effective_prio(struct task_struct *p) 955 { 956 p->normal_prio = normal_prio(p); 957 /* 958 * If we are RT tasks or we were boosted to RT priority, 959 * keep the priority unchanged. Otherwise, update priority 960 * to the normal priority: 961 */ 962 if (!rt_prio(p->prio)) 963 return p->normal_prio; 964 return p->prio; 965 } 966 967 /** 968 * task_curr - is this task currently executing on a CPU? 969 * @p: the task in question. 970 * 971 * Return: 1 if the task is currently executing. 0 otherwise. 972 */ 973 inline int task_curr(const struct task_struct *p) 974 { 975 return cpu_curr(task_cpu(p)) == p; 976 } 977 978 /* 979 * Can drop rq->lock because from sched_class::switched_from() methods drop it. 980 */ 981 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 982 const struct sched_class *prev_class, 983 int oldprio) 984 { 985 if (prev_class != p->sched_class) { 986 if (prev_class->switched_from) 987 prev_class->switched_from(rq, p); 988 /* Possble rq->lock 'hole'. */ 989 p->sched_class->switched_to(rq, p); 990 } else if (oldprio != p->prio || dl_task(p)) 991 p->sched_class->prio_changed(rq, p, oldprio); 992 } 993 994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 995 { 996 const struct sched_class *class; 997 998 if (p->sched_class == rq->curr->sched_class) { 999 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1000 } else { 1001 for_each_class(class) { 1002 if (class == rq->curr->sched_class) 1003 break; 1004 if (class == p->sched_class) { 1005 resched_curr(rq); 1006 break; 1007 } 1008 } 1009 } 1010 1011 /* 1012 * A queue event has occurred, and we're going to schedule. In 1013 * this case, we can save a useless back to back clock update. 1014 */ 1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1016 rq_clock_skip_update(rq, true); 1017 } 1018 1019 #ifdef CONFIG_SMP 1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1021 { 1022 #ifdef CONFIG_SCHED_DEBUG 1023 /* 1024 * We should never call set_task_cpu() on a blocked task, 1025 * ttwu() will sort out the placement. 1026 */ 1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1028 !p->on_rq); 1029 1030 #ifdef CONFIG_LOCKDEP 1031 /* 1032 * The caller should hold either p->pi_lock or rq->lock, when changing 1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1034 * 1035 * sched_move_task() holds both and thus holding either pins the cgroup, 1036 * see task_group(). 1037 * 1038 * Furthermore, all task_rq users should acquire both locks, see 1039 * task_rq_lock(). 1040 */ 1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1042 lockdep_is_held(&task_rq(p)->lock))); 1043 #endif 1044 #endif 1045 1046 trace_sched_migrate_task(p, new_cpu); 1047 1048 if (task_cpu(p) != new_cpu) { 1049 if (p->sched_class->migrate_task_rq) 1050 p->sched_class->migrate_task_rq(p, new_cpu); 1051 p->se.nr_migrations++; 1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1053 } 1054 1055 __set_task_cpu(p, new_cpu); 1056 } 1057 1058 static void __migrate_swap_task(struct task_struct *p, int cpu) 1059 { 1060 if (task_on_rq_queued(p)) { 1061 struct rq *src_rq, *dst_rq; 1062 1063 src_rq = task_rq(p); 1064 dst_rq = cpu_rq(cpu); 1065 1066 deactivate_task(src_rq, p, 0); 1067 set_task_cpu(p, cpu); 1068 activate_task(dst_rq, p, 0); 1069 check_preempt_curr(dst_rq, p, 0); 1070 } else { 1071 /* 1072 * Task isn't running anymore; make it appear like we migrated 1073 * it before it went to sleep. This means on wakeup we make the 1074 * previous cpu our targer instead of where it really is. 1075 */ 1076 p->wake_cpu = cpu; 1077 } 1078 } 1079 1080 struct migration_swap_arg { 1081 struct task_struct *src_task, *dst_task; 1082 int src_cpu, dst_cpu; 1083 }; 1084 1085 static int migrate_swap_stop(void *data) 1086 { 1087 struct migration_swap_arg *arg = data; 1088 struct rq *src_rq, *dst_rq; 1089 int ret = -EAGAIN; 1090 1091 src_rq = cpu_rq(arg->src_cpu); 1092 dst_rq = cpu_rq(arg->dst_cpu); 1093 1094 double_raw_lock(&arg->src_task->pi_lock, 1095 &arg->dst_task->pi_lock); 1096 double_rq_lock(src_rq, dst_rq); 1097 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1098 goto unlock; 1099 1100 if (task_cpu(arg->src_task) != arg->src_cpu) 1101 goto unlock; 1102 1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1104 goto unlock; 1105 1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1107 goto unlock; 1108 1109 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1110 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1111 1112 ret = 0; 1113 1114 unlock: 1115 double_rq_unlock(src_rq, dst_rq); 1116 raw_spin_unlock(&arg->dst_task->pi_lock); 1117 raw_spin_unlock(&arg->src_task->pi_lock); 1118 1119 return ret; 1120 } 1121 1122 /* 1123 * Cross migrate two tasks 1124 */ 1125 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1126 { 1127 struct migration_swap_arg arg; 1128 int ret = -EINVAL; 1129 1130 arg = (struct migration_swap_arg){ 1131 .src_task = cur, 1132 .src_cpu = task_cpu(cur), 1133 .dst_task = p, 1134 .dst_cpu = task_cpu(p), 1135 }; 1136 1137 if (arg.src_cpu == arg.dst_cpu) 1138 goto out; 1139 1140 /* 1141 * These three tests are all lockless; this is OK since all of them 1142 * will be re-checked with proper locks held further down the line. 1143 */ 1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1145 goto out; 1146 1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1148 goto out; 1149 1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1151 goto out; 1152 1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1155 1156 out: 1157 return ret; 1158 } 1159 1160 struct migration_arg { 1161 struct task_struct *task; 1162 int dest_cpu; 1163 }; 1164 1165 static int migration_cpu_stop(void *data); 1166 1167 /* 1168 * wait_task_inactive - wait for a thread to unschedule. 1169 * 1170 * If @match_state is nonzero, it's the @p->state value just checked and 1171 * not expected to change. If it changes, i.e. @p might have woken up, 1172 * then return zero. When we succeed in waiting for @p to be off its CPU, 1173 * we return a positive number (its total switch count). If a second call 1174 * a short while later returns the same number, the caller can be sure that 1175 * @p has remained unscheduled the whole time. 1176 * 1177 * The caller must ensure that the task *will* unschedule sometime soon, 1178 * else this function might spin for a *long* time. This function can't 1179 * be called with interrupts off, or it may introduce deadlock with 1180 * smp_call_function() if an IPI is sent by the same process we are 1181 * waiting to become inactive. 1182 */ 1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1184 { 1185 unsigned long flags; 1186 int running, queued; 1187 unsigned long ncsw; 1188 struct rq *rq; 1189 1190 for (;;) { 1191 /* 1192 * We do the initial early heuristics without holding 1193 * any task-queue locks at all. We'll only try to get 1194 * the runqueue lock when things look like they will 1195 * work out! 1196 */ 1197 rq = task_rq(p); 1198 1199 /* 1200 * If the task is actively running on another CPU 1201 * still, just relax and busy-wait without holding 1202 * any locks. 1203 * 1204 * NOTE! Since we don't hold any locks, it's not 1205 * even sure that "rq" stays as the right runqueue! 1206 * But we don't care, since "task_running()" will 1207 * return false if the runqueue has changed and p 1208 * is actually now running somewhere else! 1209 */ 1210 while (task_running(rq, p)) { 1211 if (match_state && unlikely(p->state != match_state)) 1212 return 0; 1213 cpu_relax(); 1214 } 1215 1216 /* 1217 * Ok, time to look more closely! We need the rq 1218 * lock now, to be *sure*. If we're wrong, we'll 1219 * just go back and repeat. 1220 */ 1221 rq = task_rq_lock(p, &flags); 1222 trace_sched_wait_task(p); 1223 running = task_running(rq, p); 1224 queued = task_on_rq_queued(p); 1225 ncsw = 0; 1226 if (!match_state || p->state == match_state) 1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1228 task_rq_unlock(rq, p, &flags); 1229 1230 /* 1231 * If it changed from the expected state, bail out now. 1232 */ 1233 if (unlikely(!ncsw)) 1234 break; 1235 1236 /* 1237 * Was it really running after all now that we 1238 * checked with the proper locks actually held? 1239 * 1240 * Oops. Go back and try again.. 1241 */ 1242 if (unlikely(running)) { 1243 cpu_relax(); 1244 continue; 1245 } 1246 1247 /* 1248 * It's not enough that it's not actively running, 1249 * it must be off the runqueue _entirely_, and not 1250 * preempted! 1251 * 1252 * So if it was still runnable (but just not actively 1253 * running right now), it's preempted, and we should 1254 * yield - it could be a while. 1255 */ 1256 if (unlikely(queued)) { 1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1258 1259 set_current_state(TASK_UNINTERRUPTIBLE); 1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1261 continue; 1262 } 1263 1264 /* 1265 * Ahh, all good. It wasn't running, and it wasn't 1266 * runnable, which means that it will never become 1267 * running in the future either. We're all done! 1268 */ 1269 break; 1270 } 1271 1272 return ncsw; 1273 } 1274 1275 /*** 1276 * kick_process - kick a running thread to enter/exit the kernel 1277 * @p: the to-be-kicked thread 1278 * 1279 * Cause a process which is running on another CPU to enter 1280 * kernel-mode, without any delay. (to get signals handled.) 1281 * 1282 * NOTE: this function doesn't have to take the runqueue lock, 1283 * because all it wants to ensure is that the remote task enters 1284 * the kernel. If the IPI races and the task has been migrated 1285 * to another CPU then no harm is done and the purpose has been 1286 * achieved as well. 1287 */ 1288 void kick_process(struct task_struct *p) 1289 { 1290 int cpu; 1291 1292 preempt_disable(); 1293 cpu = task_cpu(p); 1294 if ((cpu != smp_processor_id()) && task_curr(p)) 1295 smp_send_reschedule(cpu); 1296 preempt_enable(); 1297 } 1298 EXPORT_SYMBOL_GPL(kick_process); 1299 #endif /* CONFIG_SMP */ 1300 1301 #ifdef CONFIG_SMP 1302 /* 1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1304 */ 1305 static int select_fallback_rq(int cpu, struct task_struct *p) 1306 { 1307 int nid = cpu_to_node(cpu); 1308 const struct cpumask *nodemask = NULL; 1309 enum { cpuset, possible, fail } state = cpuset; 1310 int dest_cpu; 1311 1312 /* 1313 * If the node that the cpu is on has been offlined, cpu_to_node() 1314 * will return -1. There is no cpu on the node, and we should 1315 * select the cpu on the other node. 1316 */ 1317 if (nid != -1) { 1318 nodemask = cpumask_of_node(nid); 1319 1320 /* Look for allowed, online CPU in same node. */ 1321 for_each_cpu(dest_cpu, nodemask) { 1322 if (!cpu_online(dest_cpu)) 1323 continue; 1324 if (!cpu_active(dest_cpu)) 1325 continue; 1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1327 return dest_cpu; 1328 } 1329 } 1330 1331 for (;;) { 1332 /* Any allowed, online CPU? */ 1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1334 if (!cpu_online(dest_cpu)) 1335 continue; 1336 if (!cpu_active(dest_cpu)) 1337 continue; 1338 goto out; 1339 } 1340 1341 switch (state) { 1342 case cpuset: 1343 /* No more Mr. Nice Guy. */ 1344 cpuset_cpus_allowed_fallback(p); 1345 state = possible; 1346 break; 1347 1348 case possible: 1349 do_set_cpus_allowed(p, cpu_possible_mask); 1350 state = fail; 1351 break; 1352 1353 case fail: 1354 BUG(); 1355 break; 1356 } 1357 } 1358 1359 out: 1360 if (state != cpuset) { 1361 /* 1362 * Don't tell them about moving exiting tasks or 1363 * kernel threads (both mm NULL), since they never 1364 * leave kernel. 1365 */ 1366 if (p->mm && printk_ratelimit()) { 1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1368 task_pid_nr(p), p->comm, cpu); 1369 } 1370 } 1371 1372 return dest_cpu; 1373 } 1374 1375 /* 1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1377 */ 1378 static inline 1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1380 { 1381 if (p->nr_cpus_allowed > 1) 1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1383 1384 /* 1385 * In order not to call set_task_cpu() on a blocking task we need 1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1387 * cpu. 1388 * 1389 * Since this is common to all placement strategies, this lives here. 1390 * 1391 * [ this allows ->select_task() to simply return task_cpu(p) and 1392 * not worry about this generic constraint ] 1393 */ 1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1395 !cpu_online(cpu))) 1396 cpu = select_fallback_rq(task_cpu(p), p); 1397 1398 return cpu; 1399 } 1400 1401 static void update_avg(u64 *avg, u64 sample) 1402 { 1403 s64 diff = sample - *avg; 1404 *avg += diff >> 3; 1405 } 1406 #endif 1407 1408 static void 1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1410 { 1411 #ifdef CONFIG_SCHEDSTATS 1412 struct rq *rq = this_rq(); 1413 1414 #ifdef CONFIG_SMP 1415 int this_cpu = smp_processor_id(); 1416 1417 if (cpu == this_cpu) { 1418 schedstat_inc(rq, ttwu_local); 1419 schedstat_inc(p, se.statistics.nr_wakeups_local); 1420 } else { 1421 struct sched_domain *sd; 1422 1423 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1424 rcu_read_lock(); 1425 for_each_domain(this_cpu, sd) { 1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1427 schedstat_inc(sd, ttwu_wake_remote); 1428 break; 1429 } 1430 } 1431 rcu_read_unlock(); 1432 } 1433 1434 if (wake_flags & WF_MIGRATED) 1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1436 1437 #endif /* CONFIG_SMP */ 1438 1439 schedstat_inc(rq, ttwu_count); 1440 schedstat_inc(p, se.statistics.nr_wakeups); 1441 1442 if (wake_flags & WF_SYNC) 1443 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1444 1445 #endif /* CONFIG_SCHEDSTATS */ 1446 } 1447 1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1449 { 1450 activate_task(rq, p, en_flags); 1451 p->on_rq = TASK_ON_RQ_QUEUED; 1452 1453 /* if a worker is waking up, notify workqueue */ 1454 if (p->flags & PF_WQ_WORKER) 1455 wq_worker_waking_up(p, cpu_of(rq)); 1456 } 1457 1458 /* 1459 * Mark the task runnable and perform wakeup-preemption. 1460 */ 1461 static void 1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1463 { 1464 check_preempt_curr(rq, p, wake_flags); 1465 trace_sched_wakeup(p, true); 1466 1467 p->state = TASK_RUNNING; 1468 #ifdef CONFIG_SMP 1469 if (p->sched_class->task_woken) 1470 p->sched_class->task_woken(rq, p); 1471 1472 if (rq->idle_stamp) { 1473 u64 delta = rq_clock(rq) - rq->idle_stamp; 1474 u64 max = 2*rq->max_idle_balance_cost; 1475 1476 update_avg(&rq->avg_idle, delta); 1477 1478 if (rq->avg_idle > max) 1479 rq->avg_idle = max; 1480 1481 rq->idle_stamp = 0; 1482 } 1483 #endif 1484 } 1485 1486 static void 1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1488 { 1489 #ifdef CONFIG_SMP 1490 if (p->sched_contributes_to_load) 1491 rq->nr_uninterruptible--; 1492 #endif 1493 1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1495 ttwu_do_wakeup(rq, p, wake_flags); 1496 } 1497 1498 /* 1499 * Called in case the task @p isn't fully descheduled from its runqueue, 1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1501 * since all we need to do is flip p->state to TASK_RUNNING, since 1502 * the task is still ->on_rq. 1503 */ 1504 static int ttwu_remote(struct task_struct *p, int wake_flags) 1505 { 1506 struct rq *rq; 1507 int ret = 0; 1508 1509 rq = __task_rq_lock(p); 1510 if (task_on_rq_queued(p)) { 1511 /* check_preempt_curr() may use rq clock */ 1512 update_rq_clock(rq); 1513 ttwu_do_wakeup(rq, p, wake_flags); 1514 ret = 1; 1515 } 1516 __task_rq_unlock(rq); 1517 1518 return ret; 1519 } 1520 1521 #ifdef CONFIG_SMP 1522 void sched_ttwu_pending(void) 1523 { 1524 struct rq *rq = this_rq(); 1525 struct llist_node *llist = llist_del_all(&rq->wake_list); 1526 struct task_struct *p; 1527 unsigned long flags; 1528 1529 if (!llist) 1530 return; 1531 1532 raw_spin_lock_irqsave(&rq->lock, flags); 1533 1534 while (llist) { 1535 p = llist_entry(llist, struct task_struct, wake_entry); 1536 llist = llist_next(llist); 1537 ttwu_do_activate(rq, p, 0); 1538 } 1539 1540 raw_spin_unlock_irqrestore(&rq->lock, flags); 1541 } 1542 1543 void scheduler_ipi(void) 1544 { 1545 /* 1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1547 * TIF_NEED_RESCHED remotely (for the first time) will also send 1548 * this IPI. 1549 */ 1550 preempt_fold_need_resched(); 1551 1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1553 return; 1554 1555 /* 1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1557 * traditionally all their work was done from the interrupt return 1558 * path. Now that we actually do some work, we need to make sure 1559 * we do call them. 1560 * 1561 * Some archs already do call them, luckily irq_enter/exit nest 1562 * properly. 1563 * 1564 * Arguably we should visit all archs and update all handlers, 1565 * however a fair share of IPIs are still resched only so this would 1566 * somewhat pessimize the simple resched case. 1567 */ 1568 irq_enter(); 1569 sched_ttwu_pending(); 1570 1571 /* 1572 * Check if someone kicked us for doing the nohz idle load balance. 1573 */ 1574 if (unlikely(got_nohz_idle_kick())) { 1575 this_rq()->idle_balance = 1; 1576 raise_softirq_irqoff(SCHED_SOFTIRQ); 1577 } 1578 irq_exit(); 1579 } 1580 1581 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1582 { 1583 struct rq *rq = cpu_rq(cpu); 1584 1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1586 if (!set_nr_if_polling(rq->idle)) 1587 smp_send_reschedule(cpu); 1588 else 1589 trace_sched_wake_idle_without_ipi(cpu); 1590 } 1591 } 1592 1593 void wake_up_if_idle(int cpu) 1594 { 1595 struct rq *rq = cpu_rq(cpu); 1596 unsigned long flags; 1597 1598 rcu_read_lock(); 1599 1600 if (!is_idle_task(rcu_dereference(rq->curr))) 1601 goto out; 1602 1603 if (set_nr_if_polling(rq->idle)) { 1604 trace_sched_wake_idle_without_ipi(cpu); 1605 } else { 1606 raw_spin_lock_irqsave(&rq->lock, flags); 1607 if (is_idle_task(rq->curr)) 1608 smp_send_reschedule(cpu); 1609 /* Else cpu is not in idle, do nothing here */ 1610 raw_spin_unlock_irqrestore(&rq->lock, flags); 1611 } 1612 1613 out: 1614 rcu_read_unlock(); 1615 } 1616 1617 bool cpus_share_cache(int this_cpu, int that_cpu) 1618 { 1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1620 } 1621 #endif /* CONFIG_SMP */ 1622 1623 static void ttwu_queue(struct task_struct *p, int cpu) 1624 { 1625 struct rq *rq = cpu_rq(cpu); 1626 1627 #if defined(CONFIG_SMP) 1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1630 ttwu_queue_remote(p, cpu); 1631 return; 1632 } 1633 #endif 1634 1635 raw_spin_lock(&rq->lock); 1636 ttwu_do_activate(rq, p, 0); 1637 raw_spin_unlock(&rq->lock); 1638 } 1639 1640 /** 1641 * try_to_wake_up - wake up a thread 1642 * @p: the thread to be awakened 1643 * @state: the mask of task states that can be woken 1644 * @wake_flags: wake modifier flags (WF_*) 1645 * 1646 * Put it on the run-queue if it's not already there. The "current" 1647 * thread is always on the run-queue (except when the actual 1648 * re-schedule is in progress), and as such you're allowed to do 1649 * the simpler "current->state = TASK_RUNNING" to mark yourself 1650 * runnable without the overhead of this. 1651 * 1652 * Return: %true if @p was woken up, %false if it was already running. 1653 * or @state didn't match @p's state. 1654 */ 1655 static int 1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1657 { 1658 unsigned long flags; 1659 int cpu, success = 0; 1660 1661 /* 1662 * If we are going to wake up a thread waiting for CONDITION we 1663 * need to ensure that CONDITION=1 done by the caller can not be 1664 * reordered with p->state check below. This pairs with mb() in 1665 * set_current_state() the waiting thread does. 1666 */ 1667 smp_mb__before_spinlock(); 1668 raw_spin_lock_irqsave(&p->pi_lock, flags); 1669 if (!(p->state & state)) 1670 goto out; 1671 1672 success = 1; /* we're going to change ->state */ 1673 cpu = task_cpu(p); 1674 1675 if (p->on_rq && ttwu_remote(p, wake_flags)) 1676 goto stat; 1677 1678 #ifdef CONFIG_SMP 1679 /* 1680 * If the owning (remote) cpu is still in the middle of schedule() with 1681 * this task as prev, wait until its done referencing the task. 1682 */ 1683 while (p->on_cpu) 1684 cpu_relax(); 1685 /* 1686 * Pairs with the smp_wmb() in finish_lock_switch(). 1687 */ 1688 smp_rmb(); 1689 1690 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1691 p->state = TASK_WAKING; 1692 1693 if (p->sched_class->task_waking) 1694 p->sched_class->task_waking(p); 1695 1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1697 if (task_cpu(p) != cpu) { 1698 wake_flags |= WF_MIGRATED; 1699 set_task_cpu(p, cpu); 1700 } 1701 #endif /* CONFIG_SMP */ 1702 1703 ttwu_queue(p, cpu); 1704 stat: 1705 ttwu_stat(p, cpu, wake_flags); 1706 out: 1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1708 1709 return success; 1710 } 1711 1712 /** 1713 * try_to_wake_up_local - try to wake up a local task with rq lock held 1714 * @p: the thread to be awakened 1715 * 1716 * Put @p on the run-queue if it's not already there. The caller must 1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1718 * the current task. 1719 */ 1720 static void try_to_wake_up_local(struct task_struct *p) 1721 { 1722 struct rq *rq = task_rq(p); 1723 1724 if (WARN_ON_ONCE(rq != this_rq()) || 1725 WARN_ON_ONCE(p == current)) 1726 return; 1727 1728 lockdep_assert_held(&rq->lock); 1729 1730 if (!raw_spin_trylock(&p->pi_lock)) { 1731 raw_spin_unlock(&rq->lock); 1732 raw_spin_lock(&p->pi_lock); 1733 raw_spin_lock(&rq->lock); 1734 } 1735 1736 if (!(p->state & TASK_NORMAL)) 1737 goto out; 1738 1739 if (!task_on_rq_queued(p)) 1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1741 1742 ttwu_do_wakeup(rq, p, 0); 1743 ttwu_stat(p, smp_processor_id(), 0); 1744 out: 1745 raw_spin_unlock(&p->pi_lock); 1746 } 1747 1748 /** 1749 * wake_up_process - Wake up a specific process 1750 * @p: The process to be woken up. 1751 * 1752 * Attempt to wake up the nominated process and move it to the set of runnable 1753 * processes. 1754 * 1755 * Return: 1 if the process was woken up, 0 if it was already running. 1756 * 1757 * It may be assumed that this function implies a write memory barrier before 1758 * changing the task state if and only if any tasks are woken up. 1759 */ 1760 int wake_up_process(struct task_struct *p) 1761 { 1762 WARN_ON(task_is_stopped_or_traced(p)); 1763 return try_to_wake_up(p, TASK_NORMAL, 0); 1764 } 1765 EXPORT_SYMBOL(wake_up_process); 1766 1767 int wake_up_state(struct task_struct *p, unsigned int state) 1768 { 1769 return try_to_wake_up(p, state, 0); 1770 } 1771 1772 /* 1773 * This function clears the sched_dl_entity static params. 1774 */ 1775 void __dl_clear_params(struct task_struct *p) 1776 { 1777 struct sched_dl_entity *dl_se = &p->dl; 1778 1779 dl_se->dl_runtime = 0; 1780 dl_se->dl_deadline = 0; 1781 dl_se->dl_period = 0; 1782 dl_se->flags = 0; 1783 dl_se->dl_bw = 0; 1784 1785 dl_se->dl_throttled = 0; 1786 dl_se->dl_new = 1; 1787 dl_se->dl_yielded = 0; 1788 } 1789 1790 /* 1791 * Perform scheduler related setup for a newly forked process p. 1792 * p is forked by current. 1793 * 1794 * __sched_fork() is basic setup used by init_idle() too: 1795 */ 1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1797 { 1798 p->on_rq = 0; 1799 1800 p->se.on_rq = 0; 1801 p->se.exec_start = 0; 1802 p->se.sum_exec_runtime = 0; 1803 p->se.prev_sum_exec_runtime = 0; 1804 p->se.nr_migrations = 0; 1805 p->se.vruntime = 0; 1806 #ifdef CONFIG_SMP 1807 p->se.avg.decay_count = 0; 1808 #endif 1809 INIT_LIST_HEAD(&p->se.group_node); 1810 1811 #ifdef CONFIG_SCHEDSTATS 1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1813 #endif 1814 1815 RB_CLEAR_NODE(&p->dl.rb_node); 1816 init_dl_task_timer(&p->dl); 1817 __dl_clear_params(p); 1818 1819 INIT_LIST_HEAD(&p->rt.run_list); 1820 1821 #ifdef CONFIG_PREEMPT_NOTIFIERS 1822 INIT_HLIST_HEAD(&p->preempt_notifiers); 1823 #endif 1824 1825 #ifdef CONFIG_NUMA_BALANCING 1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1828 p->mm->numa_scan_seq = 0; 1829 } 1830 1831 if (clone_flags & CLONE_VM) 1832 p->numa_preferred_nid = current->numa_preferred_nid; 1833 else 1834 p->numa_preferred_nid = -1; 1835 1836 p->node_stamp = 0ULL; 1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1839 p->numa_work.next = &p->numa_work; 1840 p->numa_faults = NULL; 1841 p->last_task_numa_placement = 0; 1842 p->last_sum_exec_runtime = 0; 1843 1844 p->numa_group = NULL; 1845 #endif /* CONFIG_NUMA_BALANCING */ 1846 } 1847 1848 #ifdef CONFIG_NUMA_BALANCING 1849 #ifdef CONFIG_SCHED_DEBUG 1850 void set_numabalancing_state(bool enabled) 1851 { 1852 if (enabled) 1853 sched_feat_set("NUMA"); 1854 else 1855 sched_feat_set("NO_NUMA"); 1856 } 1857 #else 1858 __read_mostly bool numabalancing_enabled; 1859 1860 void set_numabalancing_state(bool enabled) 1861 { 1862 numabalancing_enabled = enabled; 1863 } 1864 #endif /* CONFIG_SCHED_DEBUG */ 1865 1866 #ifdef CONFIG_PROC_SYSCTL 1867 int sysctl_numa_balancing(struct ctl_table *table, int write, 1868 void __user *buffer, size_t *lenp, loff_t *ppos) 1869 { 1870 struct ctl_table t; 1871 int err; 1872 int state = numabalancing_enabled; 1873 1874 if (write && !capable(CAP_SYS_ADMIN)) 1875 return -EPERM; 1876 1877 t = *table; 1878 t.data = &state; 1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1880 if (err < 0) 1881 return err; 1882 if (write) 1883 set_numabalancing_state(state); 1884 return err; 1885 } 1886 #endif 1887 #endif 1888 1889 /* 1890 * fork()/clone()-time setup: 1891 */ 1892 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1893 { 1894 unsigned long flags; 1895 int cpu = get_cpu(); 1896 1897 __sched_fork(clone_flags, p); 1898 /* 1899 * We mark the process as running here. This guarantees that 1900 * nobody will actually run it, and a signal or other external 1901 * event cannot wake it up and insert it on the runqueue either. 1902 */ 1903 p->state = TASK_RUNNING; 1904 1905 /* 1906 * Make sure we do not leak PI boosting priority to the child. 1907 */ 1908 p->prio = current->normal_prio; 1909 1910 /* 1911 * Revert to default priority/policy on fork if requested. 1912 */ 1913 if (unlikely(p->sched_reset_on_fork)) { 1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1915 p->policy = SCHED_NORMAL; 1916 p->static_prio = NICE_TO_PRIO(0); 1917 p->rt_priority = 0; 1918 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1919 p->static_prio = NICE_TO_PRIO(0); 1920 1921 p->prio = p->normal_prio = __normal_prio(p); 1922 set_load_weight(p); 1923 1924 /* 1925 * We don't need the reset flag anymore after the fork. It has 1926 * fulfilled its duty: 1927 */ 1928 p->sched_reset_on_fork = 0; 1929 } 1930 1931 if (dl_prio(p->prio)) { 1932 put_cpu(); 1933 return -EAGAIN; 1934 } else if (rt_prio(p->prio)) { 1935 p->sched_class = &rt_sched_class; 1936 } else { 1937 p->sched_class = &fair_sched_class; 1938 } 1939 1940 if (p->sched_class->task_fork) 1941 p->sched_class->task_fork(p); 1942 1943 /* 1944 * The child is not yet in the pid-hash so no cgroup attach races, 1945 * and the cgroup is pinned to this child due to cgroup_fork() 1946 * is ran before sched_fork(). 1947 * 1948 * Silence PROVE_RCU. 1949 */ 1950 raw_spin_lock_irqsave(&p->pi_lock, flags); 1951 set_task_cpu(p, cpu); 1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1953 1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1955 if (likely(sched_info_on())) 1956 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1957 #endif 1958 #if defined(CONFIG_SMP) 1959 p->on_cpu = 0; 1960 #endif 1961 init_task_preempt_count(p); 1962 #ifdef CONFIG_SMP 1963 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1964 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1965 #endif 1966 1967 put_cpu(); 1968 return 0; 1969 } 1970 1971 unsigned long to_ratio(u64 period, u64 runtime) 1972 { 1973 if (runtime == RUNTIME_INF) 1974 return 1ULL << 20; 1975 1976 /* 1977 * Doing this here saves a lot of checks in all 1978 * the calling paths, and returning zero seems 1979 * safe for them anyway. 1980 */ 1981 if (period == 0) 1982 return 0; 1983 1984 return div64_u64(runtime << 20, period); 1985 } 1986 1987 #ifdef CONFIG_SMP 1988 inline struct dl_bw *dl_bw_of(int i) 1989 { 1990 rcu_lockdep_assert(rcu_read_lock_sched_held(), 1991 "sched RCU must be held"); 1992 return &cpu_rq(i)->rd->dl_bw; 1993 } 1994 1995 static inline int dl_bw_cpus(int i) 1996 { 1997 struct root_domain *rd = cpu_rq(i)->rd; 1998 int cpus = 0; 1999 2000 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2001 "sched RCU must be held"); 2002 for_each_cpu_and(i, rd->span, cpu_active_mask) 2003 cpus++; 2004 2005 return cpus; 2006 } 2007 #else 2008 inline struct dl_bw *dl_bw_of(int i) 2009 { 2010 return &cpu_rq(i)->dl.dl_bw; 2011 } 2012 2013 static inline int dl_bw_cpus(int i) 2014 { 2015 return 1; 2016 } 2017 #endif 2018 2019 /* 2020 * We must be sure that accepting a new task (or allowing changing the 2021 * parameters of an existing one) is consistent with the bandwidth 2022 * constraints. If yes, this function also accordingly updates the currently 2023 * allocated bandwidth to reflect the new situation. 2024 * 2025 * This function is called while holding p's rq->lock. 2026 * 2027 * XXX we should delay bw change until the task's 0-lag point, see 2028 * __setparam_dl(). 2029 */ 2030 static int dl_overflow(struct task_struct *p, int policy, 2031 const struct sched_attr *attr) 2032 { 2033 2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2035 u64 period = attr->sched_period ?: attr->sched_deadline; 2036 u64 runtime = attr->sched_runtime; 2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2038 int cpus, err = -1; 2039 2040 if (new_bw == p->dl.dl_bw) 2041 return 0; 2042 2043 /* 2044 * Either if a task, enters, leave, or stays -deadline but changes 2045 * its parameters, we may need to update accordingly the total 2046 * allocated bandwidth of the container. 2047 */ 2048 raw_spin_lock(&dl_b->lock); 2049 cpus = dl_bw_cpus(task_cpu(p)); 2050 if (dl_policy(policy) && !task_has_dl_policy(p) && 2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2052 __dl_add(dl_b, new_bw); 2053 err = 0; 2054 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2056 __dl_clear(dl_b, p->dl.dl_bw); 2057 __dl_add(dl_b, new_bw); 2058 err = 0; 2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2060 __dl_clear(dl_b, p->dl.dl_bw); 2061 err = 0; 2062 } 2063 raw_spin_unlock(&dl_b->lock); 2064 2065 return err; 2066 } 2067 2068 extern void init_dl_bw(struct dl_bw *dl_b); 2069 2070 /* 2071 * wake_up_new_task - wake up a newly created task for the first time. 2072 * 2073 * This function will do some initial scheduler statistics housekeeping 2074 * that must be done for every newly created context, then puts the task 2075 * on the runqueue and wakes it. 2076 */ 2077 void wake_up_new_task(struct task_struct *p) 2078 { 2079 unsigned long flags; 2080 struct rq *rq; 2081 2082 raw_spin_lock_irqsave(&p->pi_lock, flags); 2083 #ifdef CONFIG_SMP 2084 /* 2085 * Fork balancing, do it here and not earlier because: 2086 * - cpus_allowed can change in the fork path 2087 * - any previously selected cpu might disappear through hotplug 2088 */ 2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2090 #endif 2091 2092 /* Initialize new task's runnable average */ 2093 init_task_runnable_average(p); 2094 rq = __task_rq_lock(p); 2095 activate_task(rq, p, 0); 2096 p->on_rq = TASK_ON_RQ_QUEUED; 2097 trace_sched_wakeup_new(p, true); 2098 check_preempt_curr(rq, p, WF_FORK); 2099 #ifdef CONFIG_SMP 2100 if (p->sched_class->task_woken) 2101 p->sched_class->task_woken(rq, p); 2102 #endif 2103 task_rq_unlock(rq, p, &flags); 2104 } 2105 2106 #ifdef CONFIG_PREEMPT_NOTIFIERS 2107 2108 /** 2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2110 * @notifier: notifier struct to register 2111 */ 2112 void preempt_notifier_register(struct preempt_notifier *notifier) 2113 { 2114 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2115 } 2116 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2117 2118 /** 2119 * preempt_notifier_unregister - no longer interested in preemption notifications 2120 * @notifier: notifier struct to unregister 2121 * 2122 * This is safe to call from within a preemption notifier. 2123 */ 2124 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2125 { 2126 hlist_del(¬ifier->link); 2127 } 2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2129 2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2131 { 2132 struct preempt_notifier *notifier; 2133 2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2135 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2136 } 2137 2138 static void 2139 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2140 struct task_struct *next) 2141 { 2142 struct preempt_notifier *notifier; 2143 2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2145 notifier->ops->sched_out(notifier, next); 2146 } 2147 2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2149 2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2151 { 2152 } 2153 2154 static void 2155 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2156 struct task_struct *next) 2157 { 2158 } 2159 2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2161 2162 /** 2163 * prepare_task_switch - prepare to switch tasks 2164 * @rq: the runqueue preparing to switch 2165 * @prev: the current task that is being switched out 2166 * @next: the task we are going to switch to. 2167 * 2168 * This is called with the rq lock held and interrupts off. It must 2169 * be paired with a subsequent finish_task_switch after the context 2170 * switch. 2171 * 2172 * prepare_task_switch sets up locking and calls architecture specific 2173 * hooks. 2174 */ 2175 static inline void 2176 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2177 struct task_struct *next) 2178 { 2179 trace_sched_switch(prev, next); 2180 sched_info_switch(rq, prev, next); 2181 perf_event_task_sched_out(prev, next); 2182 fire_sched_out_preempt_notifiers(prev, next); 2183 prepare_lock_switch(rq, next); 2184 prepare_arch_switch(next); 2185 } 2186 2187 /** 2188 * finish_task_switch - clean up after a task-switch 2189 * @prev: the thread we just switched away from. 2190 * 2191 * finish_task_switch must be called after the context switch, paired 2192 * with a prepare_task_switch call before the context switch. 2193 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2194 * and do any other architecture-specific cleanup actions. 2195 * 2196 * Note that we may have delayed dropping an mm in context_switch(). If 2197 * so, we finish that here outside of the runqueue lock. (Doing it 2198 * with the lock held can cause deadlocks; see schedule() for 2199 * details.) 2200 * 2201 * The context switch have flipped the stack from under us and restored the 2202 * local variables which were saved when this task called schedule() in the 2203 * past. prev == current is still correct but we need to recalculate this_rq 2204 * because prev may have moved to another CPU. 2205 */ 2206 static struct rq *finish_task_switch(struct task_struct *prev) 2207 __releases(rq->lock) 2208 { 2209 struct rq *rq = this_rq(); 2210 struct mm_struct *mm = rq->prev_mm; 2211 long prev_state; 2212 2213 rq->prev_mm = NULL; 2214 2215 /* 2216 * A task struct has one reference for the use as "current". 2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2218 * schedule one last time. The schedule call will never return, and 2219 * the scheduled task must drop that reference. 2220 * The test for TASK_DEAD must occur while the runqueue locks are 2221 * still held, otherwise prev could be scheduled on another cpu, die 2222 * there before we look at prev->state, and then the reference would 2223 * be dropped twice. 2224 * Manfred Spraul <manfred@colorfullife.com> 2225 */ 2226 prev_state = prev->state; 2227 vtime_task_switch(prev); 2228 finish_arch_switch(prev); 2229 perf_event_task_sched_in(prev, current); 2230 finish_lock_switch(rq, prev); 2231 finish_arch_post_lock_switch(); 2232 2233 fire_sched_in_preempt_notifiers(current); 2234 if (mm) 2235 mmdrop(mm); 2236 if (unlikely(prev_state == TASK_DEAD)) { 2237 if (prev->sched_class->task_dead) 2238 prev->sched_class->task_dead(prev); 2239 2240 /* 2241 * Remove function-return probe instances associated with this 2242 * task and put them back on the free list. 2243 */ 2244 kprobe_flush_task(prev); 2245 put_task_struct(prev); 2246 } 2247 2248 tick_nohz_task_switch(current); 2249 return rq; 2250 } 2251 2252 #ifdef CONFIG_SMP 2253 2254 /* rq->lock is NOT held, but preemption is disabled */ 2255 static inline void post_schedule(struct rq *rq) 2256 { 2257 if (rq->post_schedule) { 2258 unsigned long flags; 2259 2260 raw_spin_lock_irqsave(&rq->lock, flags); 2261 if (rq->curr->sched_class->post_schedule) 2262 rq->curr->sched_class->post_schedule(rq); 2263 raw_spin_unlock_irqrestore(&rq->lock, flags); 2264 2265 rq->post_schedule = 0; 2266 } 2267 } 2268 2269 #else 2270 2271 static inline void post_schedule(struct rq *rq) 2272 { 2273 } 2274 2275 #endif 2276 2277 /** 2278 * schedule_tail - first thing a freshly forked thread must call. 2279 * @prev: the thread we just switched away from. 2280 */ 2281 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2282 __releases(rq->lock) 2283 { 2284 struct rq *rq; 2285 2286 /* finish_task_switch() drops rq->lock and enables preemtion */ 2287 preempt_disable(); 2288 rq = finish_task_switch(prev); 2289 post_schedule(rq); 2290 preempt_enable(); 2291 2292 if (current->set_child_tid) 2293 put_user(task_pid_vnr(current), current->set_child_tid); 2294 } 2295 2296 /* 2297 * context_switch - switch to the new MM and the new thread's register state. 2298 */ 2299 static inline struct rq * 2300 context_switch(struct rq *rq, struct task_struct *prev, 2301 struct task_struct *next) 2302 { 2303 struct mm_struct *mm, *oldmm; 2304 2305 prepare_task_switch(rq, prev, next); 2306 2307 mm = next->mm; 2308 oldmm = prev->active_mm; 2309 /* 2310 * For paravirt, this is coupled with an exit in switch_to to 2311 * combine the page table reload and the switch backend into 2312 * one hypercall. 2313 */ 2314 arch_start_context_switch(prev); 2315 2316 if (!mm) { 2317 next->active_mm = oldmm; 2318 atomic_inc(&oldmm->mm_count); 2319 enter_lazy_tlb(oldmm, next); 2320 } else 2321 switch_mm(oldmm, mm, next); 2322 2323 if (!prev->mm) { 2324 prev->active_mm = NULL; 2325 rq->prev_mm = oldmm; 2326 } 2327 /* 2328 * Since the runqueue lock will be released by the next 2329 * task (which is an invalid locking op but in the case 2330 * of the scheduler it's an obvious special-case), so we 2331 * do an early lockdep release here: 2332 */ 2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2334 2335 context_tracking_task_switch(prev, next); 2336 /* Here we just switch the register state and the stack. */ 2337 switch_to(prev, next, prev); 2338 barrier(); 2339 2340 return finish_task_switch(prev); 2341 } 2342 2343 /* 2344 * nr_running and nr_context_switches: 2345 * 2346 * externally visible scheduler statistics: current number of runnable 2347 * threads, total number of context switches performed since bootup. 2348 */ 2349 unsigned long nr_running(void) 2350 { 2351 unsigned long i, sum = 0; 2352 2353 for_each_online_cpu(i) 2354 sum += cpu_rq(i)->nr_running; 2355 2356 return sum; 2357 } 2358 2359 /* 2360 * Check if only the current task is running on the cpu. 2361 */ 2362 bool single_task_running(void) 2363 { 2364 if (cpu_rq(smp_processor_id())->nr_running == 1) 2365 return true; 2366 else 2367 return false; 2368 } 2369 EXPORT_SYMBOL(single_task_running); 2370 2371 unsigned long long nr_context_switches(void) 2372 { 2373 int i; 2374 unsigned long long sum = 0; 2375 2376 for_each_possible_cpu(i) 2377 sum += cpu_rq(i)->nr_switches; 2378 2379 return sum; 2380 } 2381 2382 unsigned long nr_iowait(void) 2383 { 2384 unsigned long i, sum = 0; 2385 2386 for_each_possible_cpu(i) 2387 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2388 2389 return sum; 2390 } 2391 2392 unsigned long nr_iowait_cpu(int cpu) 2393 { 2394 struct rq *this = cpu_rq(cpu); 2395 return atomic_read(&this->nr_iowait); 2396 } 2397 2398 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2399 { 2400 struct rq *this = this_rq(); 2401 *nr_waiters = atomic_read(&this->nr_iowait); 2402 *load = this->cpu_load[0]; 2403 } 2404 2405 #ifdef CONFIG_SMP 2406 2407 /* 2408 * sched_exec - execve() is a valuable balancing opportunity, because at 2409 * this point the task has the smallest effective memory and cache footprint. 2410 */ 2411 void sched_exec(void) 2412 { 2413 struct task_struct *p = current; 2414 unsigned long flags; 2415 int dest_cpu; 2416 2417 raw_spin_lock_irqsave(&p->pi_lock, flags); 2418 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2419 if (dest_cpu == smp_processor_id()) 2420 goto unlock; 2421 2422 if (likely(cpu_active(dest_cpu))) { 2423 struct migration_arg arg = { p, dest_cpu }; 2424 2425 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2426 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2427 return; 2428 } 2429 unlock: 2430 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2431 } 2432 2433 #endif 2434 2435 DEFINE_PER_CPU(struct kernel_stat, kstat); 2436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2437 2438 EXPORT_PER_CPU_SYMBOL(kstat); 2439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2440 2441 /* 2442 * Return accounted runtime for the task. 2443 * In case the task is currently running, return the runtime plus current's 2444 * pending runtime that have not been accounted yet. 2445 */ 2446 unsigned long long task_sched_runtime(struct task_struct *p) 2447 { 2448 unsigned long flags; 2449 struct rq *rq; 2450 u64 ns; 2451 2452 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2453 /* 2454 * 64-bit doesn't need locks to atomically read a 64bit value. 2455 * So we have a optimization chance when the task's delta_exec is 0. 2456 * Reading ->on_cpu is racy, but this is ok. 2457 * 2458 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2459 * If we race with it entering cpu, unaccounted time is 0. This is 2460 * indistinguishable from the read occurring a few cycles earlier. 2461 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2462 * been accounted, so we're correct here as well. 2463 */ 2464 if (!p->on_cpu || !task_on_rq_queued(p)) 2465 return p->se.sum_exec_runtime; 2466 #endif 2467 2468 rq = task_rq_lock(p, &flags); 2469 /* 2470 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2471 * project cycles that may never be accounted to this 2472 * thread, breaking clock_gettime(). 2473 */ 2474 if (task_current(rq, p) && task_on_rq_queued(p)) { 2475 update_rq_clock(rq); 2476 p->sched_class->update_curr(rq); 2477 } 2478 ns = p->se.sum_exec_runtime; 2479 task_rq_unlock(rq, p, &flags); 2480 2481 return ns; 2482 } 2483 2484 /* 2485 * This function gets called by the timer code, with HZ frequency. 2486 * We call it with interrupts disabled. 2487 */ 2488 void scheduler_tick(void) 2489 { 2490 int cpu = smp_processor_id(); 2491 struct rq *rq = cpu_rq(cpu); 2492 struct task_struct *curr = rq->curr; 2493 2494 sched_clock_tick(); 2495 2496 raw_spin_lock(&rq->lock); 2497 update_rq_clock(rq); 2498 curr->sched_class->task_tick(rq, curr, 0); 2499 update_cpu_load_active(rq); 2500 raw_spin_unlock(&rq->lock); 2501 2502 perf_event_task_tick(); 2503 2504 #ifdef CONFIG_SMP 2505 rq->idle_balance = idle_cpu(cpu); 2506 trigger_load_balance(rq); 2507 #endif 2508 rq_last_tick_reset(rq); 2509 } 2510 2511 #ifdef CONFIG_NO_HZ_FULL 2512 /** 2513 * scheduler_tick_max_deferment 2514 * 2515 * Keep at least one tick per second when a single 2516 * active task is running because the scheduler doesn't 2517 * yet completely support full dynticks environment. 2518 * 2519 * This makes sure that uptime, CFS vruntime, load 2520 * balancing, etc... continue to move forward, even 2521 * with a very low granularity. 2522 * 2523 * Return: Maximum deferment in nanoseconds. 2524 */ 2525 u64 scheduler_tick_max_deferment(void) 2526 { 2527 struct rq *rq = this_rq(); 2528 unsigned long next, now = ACCESS_ONCE(jiffies); 2529 2530 next = rq->last_sched_tick + HZ; 2531 2532 if (time_before_eq(next, now)) 2533 return 0; 2534 2535 return jiffies_to_nsecs(next - now); 2536 } 2537 #endif 2538 2539 notrace unsigned long get_parent_ip(unsigned long addr) 2540 { 2541 if (in_lock_functions(addr)) { 2542 addr = CALLER_ADDR2; 2543 if (in_lock_functions(addr)) 2544 addr = CALLER_ADDR3; 2545 } 2546 return addr; 2547 } 2548 2549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2550 defined(CONFIG_PREEMPT_TRACER)) 2551 2552 void preempt_count_add(int val) 2553 { 2554 #ifdef CONFIG_DEBUG_PREEMPT 2555 /* 2556 * Underflow? 2557 */ 2558 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2559 return; 2560 #endif 2561 __preempt_count_add(val); 2562 #ifdef CONFIG_DEBUG_PREEMPT 2563 /* 2564 * Spinlock count overflowing soon? 2565 */ 2566 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2567 PREEMPT_MASK - 10); 2568 #endif 2569 if (preempt_count() == val) { 2570 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2571 #ifdef CONFIG_DEBUG_PREEMPT 2572 current->preempt_disable_ip = ip; 2573 #endif 2574 trace_preempt_off(CALLER_ADDR0, ip); 2575 } 2576 } 2577 EXPORT_SYMBOL(preempt_count_add); 2578 NOKPROBE_SYMBOL(preempt_count_add); 2579 2580 void preempt_count_sub(int val) 2581 { 2582 #ifdef CONFIG_DEBUG_PREEMPT 2583 /* 2584 * Underflow? 2585 */ 2586 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2587 return; 2588 /* 2589 * Is the spinlock portion underflowing? 2590 */ 2591 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2592 !(preempt_count() & PREEMPT_MASK))) 2593 return; 2594 #endif 2595 2596 if (preempt_count() == val) 2597 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2598 __preempt_count_sub(val); 2599 } 2600 EXPORT_SYMBOL(preempt_count_sub); 2601 NOKPROBE_SYMBOL(preempt_count_sub); 2602 2603 #endif 2604 2605 /* 2606 * Print scheduling while atomic bug: 2607 */ 2608 static noinline void __schedule_bug(struct task_struct *prev) 2609 { 2610 if (oops_in_progress) 2611 return; 2612 2613 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2614 prev->comm, prev->pid, preempt_count()); 2615 2616 debug_show_held_locks(prev); 2617 print_modules(); 2618 if (irqs_disabled()) 2619 print_irqtrace_events(prev); 2620 #ifdef CONFIG_DEBUG_PREEMPT 2621 if (in_atomic_preempt_off()) { 2622 pr_err("Preemption disabled at:"); 2623 print_ip_sym(current->preempt_disable_ip); 2624 pr_cont("\n"); 2625 } 2626 #endif 2627 dump_stack(); 2628 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2629 } 2630 2631 /* 2632 * Various schedule()-time debugging checks and statistics: 2633 */ 2634 static inline void schedule_debug(struct task_struct *prev) 2635 { 2636 #ifdef CONFIG_SCHED_STACK_END_CHECK 2637 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2638 #endif 2639 /* 2640 * Test if we are atomic. Since do_exit() needs to call into 2641 * schedule() atomically, we ignore that path. Otherwise whine 2642 * if we are scheduling when we should not. 2643 */ 2644 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2645 __schedule_bug(prev); 2646 rcu_sleep_check(); 2647 2648 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2649 2650 schedstat_inc(this_rq(), sched_count); 2651 } 2652 2653 /* 2654 * Pick up the highest-prio task: 2655 */ 2656 static inline struct task_struct * 2657 pick_next_task(struct rq *rq, struct task_struct *prev) 2658 { 2659 const struct sched_class *class = &fair_sched_class; 2660 struct task_struct *p; 2661 2662 /* 2663 * Optimization: we know that if all tasks are in 2664 * the fair class we can call that function directly: 2665 */ 2666 if (likely(prev->sched_class == class && 2667 rq->nr_running == rq->cfs.h_nr_running)) { 2668 p = fair_sched_class.pick_next_task(rq, prev); 2669 if (unlikely(p == RETRY_TASK)) 2670 goto again; 2671 2672 /* assumes fair_sched_class->next == idle_sched_class */ 2673 if (unlikely(!p)) 2674 p = idle_sched_class.pick_next_task(rq, prev); 2675 2676 return p; 2677 } 2678 2679 again: 2680 for_each_class(class) { 2681 p = class->pick_next_task(rq, prev); 2682 if (p) { 2683 if (unlikely(p == RETRY_TASK)) 2684 goto again; 2685 return p; 2686 } 2687 } 2688 2689 BUG(); /* the idle class will always have a runnable task */ 2690 } 2691 2692 /* 2693 * __schedule() is the main scheduler function. 2694 * 2695 * The main means of driving the scheduler and thus entering this function are: 2696 * 2697 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2698 * 2699 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2700 * paths. For example, see arch/x86/entry_64.S. 2701 * 2702 * To drive preemption between tasks, the scheduler sets the flag in timer 2703 * interrupt handler scheduler_tick(). 2704 * 2705 * 3. Wakeups don't really cause entry into schedule(). They add a 2706 * task to the run-queue and that's it. 2707 * 2708 * Now, if the new task added to the run-queue preempts the current 2709 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2710 * called on the nearest possible occasion: 2711 * 2712 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2713 * 2714 * - in syscall or exception context, at the next outmost 2715 * preempt_enable(). (this might be as soon as the wake_up()'s 2716 * spin_unlock()!) 2717 * 2718 * - in IRQ context, return from interrupt-handler to 2719 * preemptible context 2720 * 2721 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2722 * then at the next: 2723 * 2724 * - cond_resched() call 2725 * - explicit schedule() call 2726 * - return from syscall or exception to user-space 2727 * - return from interrupt-handler to user-space 2728 * 2729 * WARNING: all callers must re-check need_resched() afterward and reschedule 2730 * accordingly in case an event triggered the need for rescheduling (such as 2731 * an interrupt waking up a task) while preemption was disabled in __schedule(). 2732 */ 2733 static void __sched __schedule(void) 2734 { 2735 struct task_struct *prev, *next; 2736 unsigned long *switch_count; 2737 struct rq *rq; 2738 int cpu; 2739 2740 preempt_disable(); 2741 cpu = smp_processor_id(); 2742 rq = cpu_rq(cpu); 2743 rcu_note_context_switch(); 2744 prev = rq->curr; 2745 2746 schedule_debug(prev); 2747 2748 if (sched_feat(HRTICK)) 2749 hrtick_clear(rq); 2750 2751 /* 2752 * Make sure that signal_pending_state()->signal_pending() below 2753 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2754 * done by the caller to avoid the race with signal_wake_up(). 2755 */ 2756 smp_mb__before_spinlock(); 2757 raw_spin_lock_irq(&rq->lock); 2758 2759 rq->clock_skip_update <<= 1; /* promote REQ to ACT */ 2760 2761 switch_count = &prev->nivcsw; 2762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2763 if (unlikely(signal_pending_state(prev->state, prev))) { 2764 prev->state = TASK_RUNNING; 2765 } else { 2766 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2767 prev->on_rq = 0; 2768 2769 /* 2770 * If a worker went to sleep, notify and ask workqueue 2771 * whether it wants to wake up a task to maintain 2772 * concurrency. 2773 */ 2774 if (prev->flags & PF_WQ_WORKER) { 2775 struct task_struct *to_wakeup; 2776 2777 to_wakeup = wq_worker_sleeping(prev, cpu); 2778 if (to_wakeup) 2779 try_to_wake_up_local(to_wakeup); 2780 } 2781 } 2782 switch_count = &prev->nvcsw; 2783 } 2784 2785 if (task_on_rq_queued(prev)) 2786 update_rq_clock(rq); 2787 2788 next = pick_next_task(rq, prev); 2789 clear_tsk_need_resched(prev); 2790 clear_preempt_need_resched(); 2791 rq->clock_skip_update = 0; 2792 2793 if (likely(prev != next)) { 2794 rq->nr_switches++; 2795 rq->curr = next; 2796 ++*switch_count; 2797 2798 rq = context_switch(rq, prev, next); /* unlocks the rq */ 2799 cpu = cpu_of(rq); 2800 } else 2801 raw_spin_unlock_irq(&rq->lock); 2802 2803 post_schedule(rq); 2804 2805 sched_preempt_enable_no_resched(); 2806 } 2807 2808 static inline void sched_submit_work(struct task_struct *tsk) 2809 { 2810 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2811 return; 2812 /* 2813 * If we are going to sleep and we have plugged IO queued, 2814 * make sure to submit it to avoid deadlocks. 2815 */ 2816 if (blk_needs_flush_plug(tsk)) 2817 blk_schedule_flush_plug(tsk); 2818 } 2819 2820 asmlinkage __visible void __sched schedule(void) 2821 { 2822 struct task_struct *tsk = current; 2823 2824 sched_submit_work(tsk); 2825 do { 2826 __schedule(); 2827 } while (need_resched()); 2828 } 2829 EXPORT_SYMBOL(schedule); 2830 2831 #ifdef CONFIG_CONTEXT_TRACKING 2832 asmlinkage __visible void __sched schedule_user(void) 2833 { 2834 /* 2835 * If we come here after a random call to set_need_resched(), 2836 * or we have been woken up remotely but the IPI has not yet arrived, 2837 * we haven't yet exited the RCU idle mode. Do it here manually until 2838 * we find a better solution. 2839 * 2840 * NB: There are buggy callers of this function. Ideally we 2841 * should warn if prev_state != CONTEXT_USER, but that will trigger 2842 * too frequently to make sense yet. 2843 */ 2844 enum ctx_state prev_state = exception_enter(); 2845 schedule(); 2846 exception_exit(prev_state); 2847 } 2848 #endif 2849 2850 /** 2851 * schedule_preempt_disabled - called with preemption disabled 2852 * 2853 * Returns with preemption disabled. Note: preempt_count must be 1 2854 */ 2855 void __sched schedule_preempt_disabled(void) 2856 { 2857 sched_preempt_enable_no_resched(); 2858 schedule(); 2859 preempt_disable(); 2860 } 2861 2862 static void __sched notrace preempt_schedule_common(void) 2863 { 2864 do { 2865 __preempt_count_add(PREEMPT_ACTIVE); 2866 __schedule(); 2867 __preempt_count_sub(PREEMPT_ACTIVE); 2868 2869 /* 2870 * Check again in case we missed a preemption opportunity 2871 * between schedule and now. 2872 */ 2873 barrier(); 2874 } while (need_resched()); 2875 } 2876 2877 #ifdef CONFIG_PREEMPT 2878 /* 2879 * this is the entry point to schedule() from in-kernel preemption 2880 * off of preempt_enable. Kernel preemptions off return from interrupt 2881 * occur there and call schedule directly. 2882 */ 2883 asmlinkage __visible void __sched notrace preempt_schedule(void) 2884 { 2885 /* 2886 * If there is a non-zero preempt_count or interrupts are disabled, 2887 * we do not want to preempt the current task. Just return.. 2888 */ 2889 if (likely(!preemptible())) 2890 return; 2891 2892 preempt_schedule_common(); 2893 } 2894 NOKPROBE_SYMBOL(preempt_schedule); 2895 EXPORT_SYMBOL(preempt_schedule); 2896 2897 #ifdef CONFIG_CONTEXT_TRACKING 2898 /** 2899 * preempt_schedule_context - preempt_schedule called by tracing 2900 * 2901 * The tracing infrastructure uses preempt_enable_notrace to prevent 2902 * recursion and tracing preempt enabling caused by the tracing 2903 * infrastructure itself. But as tracing can happen in areas coming 2904 * from userspace or just about to enter userspace, a preempt enable 2905 * can occur before user_exit() is called. This will cause the scheduler 2906 * to be called when the system is still in usermode. 2907 * 2908 * To prevent this, the preempt_enable_notrace will use this function 2909 * instead of preempt_schedule() to exit user context if needed before 2910 * calling the scheduler. 2911 */ 2912 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2913 { 2914 enum ctx_state prev_ctx; 2915 2916 if (likely(!preemptible())) 2917 return; 2918 2919 do { 2920 __preempt_count_add(PREEMPT_ACTIVE); 2921 /* 2922 * Needs preempt disabled in case user_exit() is traced 2923 * and the tracer calls preempt_enable_notrace() causing 2924 * an infinite recursion. 2925 */ 2926 prev_ctx = exception_enter(); 2927 __schedule(); 2928 exception_exit(prev_ctx); 2929 2930 __preempt_count_sub(PREEMPT_ACTIVE); 2931 barrier(); 2932 } while (need_resched()); 2933 } 2934 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2935 #endif /* CONFIG_CONTEXT_TRACKING */ 2936 2937 #endif /* CONFIG_PREEMPT */ 2938 2939 /* 2940 * this is the entry point to schedule() from kernel preemption 2941 * off of irq context. 2942 * Note, that this is called and return with irqs disabled. This will 2943 * protect us against recursive calling from irq. 2944 */ 2945 asmlinkage __visible void __sched preempt_schedule_irq(void) 2946 { 2947 enum ctx_state prev_state; 2948 2949 /* Catch callers which need to be fixed */ 2950 BUG_ON(preempt_count() || !irqs_disabled()); 2951 2952 prev_state = exception_enter(); 2953 2954 do { 2955 __preempt_count_add(PREEMPT_ACTIVE); 2956 local_irq_enable(); 2957 __schedule(); 2958 local_irq_disable(); 2959 __preempt_count_sub(PREEMPT_ACTIVE); 2960 2961 /* 2962 * Check again in case we missed a preemption opportunity 2963 * between schedule and now. 2964 */ 2965 barrier(); 2966 } while (need_resched()); 2967 2968 exception_exit(prev_state); 2969 } 2970 2971 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2972 void *key) 2973 { 2974 return try_to_wake_up(curr->private, mode, wake_flags); 2975 } 2976 EXPORT_SYMBOL(default_wake_function); 2977 2978 #ifdef CONFIG_RT_MUTEXES 2979 2980 /* 2981 * rt_mutex_setprio - set the current priority of a task 2982 * @p: task 2983 * @prio: prio value (kernel-internal form) 2984 * 2985 * This function changes the 'effective' priority of a task. It does 2986 * not touch ->normal_prio like __setscheduler(). 2987 * 2988 * Used by the rt_mutex code to implement priority inheritance 2989 * logic. Call site only calls if the priority of the task changed. 2990 */ 2991 void rt_mutex_setprio(struct task_struct *p, int prio) 2992 { 2993 int oldprio, queued, running, enqueue_flag = 0; 2994 struct rq *rq; 2995 const struct sched_class *prev_class; 2996 2997 BUG_ON(prio > MAX_PRIO); 2998 2999 rq = __task_rq_lock(p); 3000 3001 /* 3002 * Idle task boosting is a nono in general. There is one 3003 * exception, when PREEMPT_RT and NOHZ is active: 3004 * 3005 * The idle task calls get_next_timer_interrupt() and holds 3006 * the timer wheel base->lock on the CPU and another CPU wants 3007 * to access the timer (probably to cancel it). We can safely 3008 * ignore the boosting request, as the idle CPU runs this code 3009 * with interrupts disabled and will complete the lock 3010 * protected section without being interrupted. So there is no 3011 * real need to boost. 3012 */ 3013 if (unlikely(p == rq->idle)) { 3014 WARN_ON(p != rq->curr); 3015 WARN_ON(p->pi_blocked_on); 3016 goto out_unlock; 3017 } 3018 3019 trace_sched_pi_setprio(p, prio); 3020 oldprio = p->prio; 3021 prev_class = p->sched_class; 3022 queued = task_on_rq_queued(p); 3023 running = task_current(rq, p); 3024 if (queued) 3025 dequeue_task(rq, p, 0); 3026 if (running) 3027 put_prev_task(rq, p); 3028 3029 /* 3030 * Boosting condition are: 3031 * 1. -rt task is running and holds mutex A 3032 * --> -dl task blocks on mutex A 3033 * 3034 * 2. -dl task is running and holds mutex A 3035 * --> -dl task blocks on mutex A and could preempt the 3036 * running task 3037 */ 3038 if (dl_prio(prio)) { 3039 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3040 if (!dl_prio(p->normal_prio) || 3041 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3042 p->dl.dl_boosted = 1; 3043 p->dl.dl_throttled = 0; 3044 enqueue_flag = ENQUEUE_REPLENISH; 3045 } else 3046 p->dl.dl_boosted = 0; 3047 p->sched_class = &dl_sched_class; 3048 } else if (rt_prio(prio)) { 3049 if (dl_prio(oldprio)) 3050 p->dl.dl_boosted = 0; 3051 if (oldprio < prio) 3052 enqueue_flag = ENQUEUE_HEAD; 3053 p->sched_class = &rt_sched_class; 3054 } else { 3055 if (dl_prio(oldprio)) 3056 p->dl.dl_boosted = 0; 3057 if (rt_prio(oldprio)) 3058 p->rt.timeout = 0; 3059 p->sched_class = &fair_sched_class; 3060 } 3061 3062 p->prio = prio; 3063 3064 if (running) 3065 p->sched_class->set_curr_task(rq); 3066 if (queued) 3067 enqueue_task(rq, p, enqueue_flag); 3068 3069 check_class_changed(rq, p, prev_class, oldprio); 3070 out_unlock: 3071 __task_rq_unlock(rq); 3072 } 3073 #endif 3074 3075 void set_user_nice(struct task_struct *p, long nice) 3076 { 3077 int old_prio, delta, queued; 3078 unsigned long flags; 3079 struct rq *rq; 3080 3081 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3082 return; 3083 /* 3084 * We have to be careful, if called from sys_setpriority(), 3085 * the task might be in the middle of scheduling on another CPU. 3086 */ 3087 rq = task_rq_lock(p, &flags); 3088 /* 3089 * The RT priorities are set via sched_setscheduler(), but we still 3090 * allow the 'normal' nice value to be set - but as expected 3091 * it wont have any effect on scheduling until the task is 3092 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3093 */ 3094 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3095 p->static_prio = NICE_TO_PRIO(nice); 3096 goto out_unlock; 3097 } 3098 queued = task_on_rq_queued(p); 3099 if (queued) 3100 dequeue_task(rq, p, 0); 3101 3102 p->static_prio = NICE_TO_PRIO(nice); 3103 set_load_weight(p); 3104 old_prio = p->prio; 3105 p->prio = effective_prio(p); 3106 delta = p->prio - old_prio; 3107 3108 if (queued) { 3109 enqueue_task(rq, p, 0); 3110 /* 3111 * If the task increased its priority or is running and 3112 * lowered its priority, then reschedule its CPU: 3113 */ 3114 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3115 resched_curr(rq); 3116 } 3117 out_unlock: 3118 task_rq_unlock(rq, p, &flags); 3119 } 3120 EXPORT_SYMBOL(set_user_nice); 3121 3122 /* 3123 * can_nice - check if a task can reduce its nice value 3124 * @p: task 3125 * @nice: nice value 3126 */ 3127 int can_nice(const struct task_struct *p, const int nice) 3128 { 3129 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3130 int nice_rlim = nice_to_rlimit(nice); 3131 3132 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3133 capable(CAP_SYS_NICE)); 3134 } 3135 3136 #ifdef __ARCH_WANT_SYS_NICE 3137 3138 /* 3139 * sys_nice - change the priority of the current process. 3140 * @increment: priority increment 3141 * 3142 * sys_setpriority is a more generic, but much slower function that 3143 * does similar things. 3144 */ 3145 SYSCALL_DEFINE1(nice, int, increment) 3146 { 3147 long nice, retval; 3148 3149 /* 3150 * Setpriority might change our priority at the same moment. 3151 * We don't have to worry. Conceptually one call occurs first 3152 * and we have a single winner. 3153 */ 3154 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3155 nice = task_nice(current) + increment; 3156 3157 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3158 if (increment < 0 && !can_nice(current, nice)) 3159 return -EPERM; 3160 3161 retval = security_task_setnice(current, nice); 3162 if (retval) 3163 return retval; 3164 3165 set_user_nice(current, nice); 3166 return 0; 3167 } 3168 3169 #endif 3170 3171 /** 3172 * task_prio - return the priority value of a given task. 3173 * @p: the task in question. 3174 * 3175 * Return: The priority value as seen by users in /proc. 3176 * RT tasks are offset by -200. Normal tasks are centered 3177 * around 0, value goes from -16 to +15. 3178 */ 3179 int task_prio(const struct task_struct *p) 3180 { 3181 return p->prio - MAX_RT_PRIO; 3182 } 3183 3184 /** 3185 * idle_cpu - is a given cpu idle currently? 3186 * @cpu: the processor in question. 3187 * 3188 * Return: 1 if the CPU is currently idle. 0 otherwise. 3189 */ 3190 int idle_cpu(int cpu) 3191 { 3192 struct rq *rq = cpu_rq(cpu); 3193 3194 if (rq->curr != rq->idle) 3195 return 0; 3196 3197 if (rq->nr_running) 3198 return 0; 3199 3200 #ifdef CONFIG_SMP 3201 if (!llist_empty(&rq->wake_list)) 3202 return 0; 3203 #endif 3204 3205 return 1; 3206 } 3207 3208 /** 3209 * idle_task - return the idle task for a given cpu. 3210 * @cpu: the processor in question. 3211 * 3212 * Return: The idle task for the cpu @cpu. 3213 */ 3214 struct task_struct *idle_task(int cpu) 3215 { 3216 return cpu_rq(cpu)->idle; 3217 } 3218 3219 /** 3220 * find_process_by_pid - find a process with a matching PID value. 3221 * @pid: the pid in question. 3222 * 3223 * The task of @pid, if found. %NULL otherwise. 3224 */ 3225 static struct task_struct *find_process_by_pid(pid_t pid) 3226 { 3227 return pid ? find_task_by_vpid(pid) : current; 3228 } 3229 3230 /* 3231 * This function initializes the sched_dl_entity of a newly becoming 3232 * SCHED_DEADLINE task. 3233 * 3234 * Only the static values are considered here, the actual runtime and the 3235 * absolute deadline will be properly calculated when the task is enqueued 3236 * for the first time with its new policy. 3237 */ 3238 static void 3239 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3240 { 3241 struct sched_dl_entity *dl_se = &p->dl; 3242 3243 dl_se->dl_runtime = attr->sched_runtime; 3244 dl_se->dl_deadline = attr->sched_deadline; 3245 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3246 dl_se->flags = attr->sched_flags; 3247 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3248 3249 /* 3250 * Changing the parameters of a task is 'tricky' and we're not doing 3251 * the correct thing -- also see task_dead_dl() and switched_from_dl(). 3252 * 3253 * What we SHOULD do is delay the bandwidth release until the 0-lag 3254 * point. This would include retaining the task_struct until that time 3255 * and change dl_overflow() to not immediately decrement the current 3256 * amount. 3257 * 3258 * Instead we retain the current runtime/deadline and let the new 3259 * parameters take effect after the current reservation period lapses. 3260 * This is safe (albeit pessimistic) because the 0-lag point is always 3261 * before the current scheduling deadline. 3262 * 3263 * We can still have temporary overloads because we do not delay the 3264 * change in bandwidth until that time; so admission control is 3265 * not on the safe side. It does however guarantee tasks will never 3266 * consume more than promised. 3267 */ 3268 } 3269 3270 /* 3271 * sched_setparam() passes in -1 for its policy, to let the functions 3272 * it calls know not to change it. 3273 */ 3274 #define SETPARAM_POLICY -1 3275 3276 static void __setscheduler_params(struct task_struct *p, 3277 const struct sched_attr *attr) 3278 { 3279 int policy = attr->sched_policy; 3280 3281 if (policy == SETPARAM_POLICY) 3282 policy = p->policy; 3283 3284 p->policy = policy; 3285 3286 if (dl_policy(policy)) 3287 __setparam_dl(p, attr); 3288 else if (fair_policy(policy)) 3289 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3290 3291 /* 3292 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3293 * !rt_policy. Always setting this ensures that things like 3294 * getparam()/getattr() don't report silly values for !rt tasks. 3295 */ 3296 p->rt_priority = attr->sched_priority; 3297 p->normal_prio = normal_prio(p); 3298 set_load_weight(p); 3299 } 3300 3301 /* Actually do priority change: must hold pi & rq lock. */ 3302 static void __setscheduler(struct rq *rq, struct task_struct *p, 3303 const struct sched_attr *attr, bool keep_boost) 3304 { 3305 __setscheduler_params(p, attr); 3306 3307 /* 3308 * Keep a potential priority boosting if called from 3309 * sched_setscheduler(). 3310 */ 3311 if (keep_boost) 3312 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p)); 3313 else 3314 p->prio = normal_prio(p); 3315 3316 if (dl_prio(p->prio)) 3317 p->sched_class = &dl_sched_class; 3318 else if (rt_prio(p->prio)) 3319 p->sched_class = &rt_sched_class; 3320 else 3321 p->sched_class = &fair_sched_class; 3322 } 3323 3324 static void 3325 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3326 { 3327 struct sched_dl_entity *dl_se = &p->dl; 3328 3329 attr->sched_priority = p->rt_priority; 3330 attr->sched_runtime = dl_se->dl_runtime; 3331 attr->sched_deadline = dl_se->dl_deadline; 3332 attr->sched_period = dl_se->dl_period; 3333 attr->sched_flags = dl_se->flags; 3334 } 3335 3336 /* 3337 * This function validates the new parameters of a -deadline task. 3338 * We ask for the deadline not being zero, and greater or equal 3339 * than the runtime, as well as the period of being zero or 3340 * greater than deadline. Furthermore, we have to be sure that 3341 * user parameters are above the internal resolution of 1us (we 3342 * check sched_runtime only since it is always the smaller one) and 3343 * below 2^63 ns (we have to check both sched_deadline and 3344 * sched_period, as the latter can be zero). 3345 */ 3346 static bool 3347 __checkparam_dl(const struct sched_attr *attr) 3348 { 3349 /* deadline != 0 */ 3350 if (attr->sched_deadline == 0) 3351 return false; 3352 3353 /* 3354 * Since we truncate DL_SCALE bits, make sure we're at least 3355 * that big. 3356 */ 3357 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3358 return false; 3359 3360 /* 3361 * Since we use the MSB for wrap-around and sign issues, make 3362 * sure it's not set (mind that period can be equal to zero). 3363 */ 3364 if (attr->sched_deadline & (1ULL << 63) || 3365 attr->sched_period & (1ULL << 63)) 3366 return false; 3367 3368 /* runtime <= deadline <= period (if period != 0) */ 3369 if ((attr->sched_period != 0 && 3370 attr->sched_period < attr->sched_deadline) || 3371 attr->sched_deadline < attr->sched_runtime) 3372 return false; 3373 3374 return true; 3375 } 3376 3377 /* 3378 * check the target process has a UID that matches the current process's 3379 */ 3380 static bool check_same_owner(struct task_struct *p) 3381 { 3382 const struct cred *cred = current_cred(), *pcred; 3383 bool match; 3384 3385 rcu_read_lock(); 3386 pcred = __task_cred(p); 3387 match = (uid_eq(cred->euid, pcred->euid) || 3388 uid_eq(cred->euid, pcred->uid)); 3389 rcu_read_unlock(); 3390 return match; 3391 } 3392 3393 static bool dl_param_changed(struct task_struct *p, 3394 const struct sched_attr *attr) 3395 { 3396 struct sched_dl_entity *dl_se = &p->dl; 3397 3398 if (dl_se->dl_runtime != attr->sched_runtime || 3399 dl_se->dl_deadline != attr->sched_deadline || 3400 dl_se->dl_period != attr->sched_period || 3401 dl_se->flags != attr->sched_flags) 3402 return true; 3403 3404 return false; 3405 } 3406 3407 static int __sched_setscheduler(struct task_struct *p, 3408 const struct sched_attr *attr, 3409 bool user) 3410 { 3411 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3412 MAX_RT_PRIO - 1 - attr->sched_priority; 3413 int retval, oldprio, oldpolicy = -1, queued, running; 3414 int new_effective_prio, policy = attr->sched_policy; 3415 unsigned long flags; 3416 const struct sched_class *prev_class; 3417 struct rq *rq; 3418 int reset_on_fork; 3419 3420 /* may grab non-irq protected spin_locks */ 3421 BUG_ON(in_interrupt()); 3422 recheck: 3423 /* double check policy once rq lock held */ 3424 if (policy < 0) { 3425 reset_on_fork = p->sched_reset_on_fork; 3426 policy = oldpolicy = p->policy; 3427 } else { 3428 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3429 3430 if (policy != SCHED_DEADLINE && 3431 policy != SCHED_FIFO && policy != SCHED_RR && 3432 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3433 policy != SCHED_IDLE) 3434 return -EINVAL; 3435 } 3436 3437 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3438 return -EINVAL; 3439 3440 /* 3441 * Valid priorities for SCHED_FIFO and SCHED_RR are 3442 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3443 * SCHED_BATCH and SCHED_IDLE is 0. 3444 */ 3445 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3446 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3447 return -EINVAL; 3448 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3449 (rt_policy(policy) != (attr->sched_priority != 0))) 3450 return -EINVAL; 3451 3452 /* 3453 * Allow unprivileged RT tasks to decrease priority: 3454 */ 3455 if (user && !capable(CAP_SYS_NICE)) { 3456 if (fair_policy(policy)) { 3457 if (attr->sched_nice < task_nice(p) && 3458 !can_nice(p, attr->sched_nice)) 3459 return -EPERM; 3460 } 3461 3462 if (rt_policy(policy)) { 3463 unsigned long rlim_rtprio = 3464 task_rlimit(p, RLIMIT_RTPRIO); 3465 3466 /* can't set/change the rt policy */ 3467 if (policy != p->policy && !rlim_rtprio) 3468 return -EPERM; 3469 3470 /* can't increase priority */ 3471 if (attr->sched_priority > p->rt_priority && 3472 attr->sched_priority > rlim_rtprio) 3473 return -EPERM; 3474 } 3475 3476 /* 3477 * Can't set/change SCHED_DEADLINE policy at all for now 3478 * (safest behavior); in the future we would like to allow 3479 * unprivileged DL tasks to increase their relative deadline 3480 * or reduce their runtime (both ways reducing utilization) 3481 */ 3482 if (dl_policy(policy)) 3483 return -EPERM; 3484 3485 /* 3486 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3487 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3488 */ 3489 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3490 if (!can_nice(p, task_nice(p))) 3491 return -EPERM; 3492 } 3493 3494 /* can't change other user's priorities */ 3495 if (!check_same_owner(p)) 3496 return -EPERM; 3497 3498 /* Normal users shall not reset the sched_reset_on_fork flag */ 3499 if (p->sched_reset_on_fork && !reset_on_fork) 3500 return -EPERM; 3501 } 3502 3503 if (user) { 3504 retval = security_task_setscheduler(p); 3505 if (retval) 3506 return retval; 3507 } 3508 3509 /* 3510 * make sure no PI-waiters arrive (or leave) while we are 3511 * changing the priority of the task: 3512 * 3513 * To be able to change p->policy safely, the appropriate 3514 * runqueue lock must be held. 3515 */ 3516 rq = task_rq_lock(p, &flags); 3517 3518 /* 3519 * Changing the policy of the stop threads its a very bad idea 3520 */ 3521 if (p == rq->stop) { 3522 task_rq_unlock(rq, p, &flags); 3523 return -EINVAL; 3524 } 3525 3526 /* 3527 * If not changing anything there's no need to proceed further, 3528 * but store a possible modification of reset_on_fork. 3529 */ 3530 if (unlikely(policy == p->policy)) { 3531 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3532 goto change; 3533 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3534 goto change; 3535 if (dl_policy(policy) && dl_param_changed(p, attr)) 3536 goto change; 3537 3538 p->sched_reset_on_fork = reset_on_fork; 3539 task_rq_unlock(rq, p, &flags); 3540 return 0; 3541 } 3542 change: 3543 3544 if (user) { 3545 #ifdef CONFIG_RT_GROUP_SCHED 3546 /* 3547 * Do not allow realtime tasks into groups that have no runtime 3548 * assigned. 3549 */ 3550 if (rt_bandwidth_enabled() && rt_policy(policy) && 3551 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3552 !task_group_is_autogroup(task_group(p))) { 3553 task_rq_unlock(rq, p, &flags); 3554 return -EPERM; 3555 } 3556 #endif 3557 #ifdef CONFIG_SMP 3558 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3559 cpumask_t *span = rq->rd->span; 3560 3561 /* 3562 * Don't allow tasks with an affinity mask smaller than 3563 * the entire root_domain to become SCHED_DEADLINE. We 3564 * will also fail if there's no bandwidth available. 3565 */ 3566 if (!cpumask_subset(span, &p->cpus_allowed) || 3567 rq->rd->dl_bw.bw == 0) { 3568 task_rq_unlock(rq, p, &flags); 3569 return -EPERM; 3570 } 3571 } 3572 #endif 3573 } 3574 3575 /* recheck policy now with rq lock held */ 3576 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3577 policy = oldpolicy = -1; 3578 task_rq_unlock(rq, p, &flags); 3579 goto recheck; 3580 } 3581 3582 /* 3583 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3584 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3585 * is available. 3586 */ 3587 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3588 task_rq_unlock(rq, p, &flags); 3589 return -EBUSY; 3590 } 3591 3592 p->sched_reset_on_fork = reset_on_fork; 3593 oldprio = p->prio; 3594 3595 /* 3596 * Take priority boosted tasks into account. If the new 3597 * effective priority is unchanged, we just store the new 3598 * normal parameters and do not touch the scheduler class and 3599 * the runqueue. This will be done when the task deboost 3600 * itself. 3601 */ 3602 new_effective_prio = rt_mutex_get_effective_prio(p, newprio); 3603 if (new_effective_prio == oldprio) { 3604 __setscheduler_params(p, attr); 3605 task_rq_unlock(rq, p, &flags); 3606 return 0; 3607 } 3608 3609 queued = task_on_rq_queued(p); 3610 running = task_current(rq, p); 3611 if (queued) 3612 dequeue_task(rq, p, 0); 3613 if (running) 3614 put_prev_task(rq, p); 3615 3616 prev_class = p->sched_class; 3617 __setscheduler(rq, p, attr, true); 3618 3619 if (running) 3620 p->sched_class->set_curr_task(rq); 3621 if (queued) { 3622 /* 3623 * We enqueue to tail when the priority of a task is 3624 * increased (user space view). 3625 */ 3626 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3627 } 3628 3629 check_class_changed(rq, p, prev_class, oldprio); 3630 task_rq_unlock(rq, p, &flags); 3631 3632 rt_mutex_adjust_pi(p); 3633 3634 return 0; 3635 } 3636 3637 static int _sched_setscheduler(struct task_struct *p, int policy, 3638 const struct sched_param *param, bool check) 3639 { 3640 struct sched_attr attr = { 3641 .sched_policy = policy, 3642 .sched_priority = param->sched_priority, 3643 .sched_nice = PRIO_TO_NICE(p->static_prio), 3644 }; 3645 3646 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3647 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3648 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3649 policy &= ~SCHED_RESET_ON_FORK; 3650 attr.sched_policy = policy; 3651 } 3652 3653 return __sched_setscheduler(p, &attr, check); 3654 } 3655 /** 3656 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3657 * @p: the task in question. 3658 * @policy: new policy. 3659 * @param: structure containing the new RT priority. 3660 * 3661 * Return: 0 on success. An error code otherwise. 3662 * 3663 * NOTE that the task may be already dead. 3664 */ 3665 int sched_setscheduler(struct task_struct *p, int policy, 3666 const struct sched_param *param) 3667 { 3668 return _sched_setscheduler(p, policy, param, true); 3669 } 3670 EXPORT_SYMBOL_GPL(sched_setscheduler); 3671 3672 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3673 { 3674 return __sched_setscheduler(p, attr, true); 3675 } 3676 EXPORT_SYMBOL_GPL(sched_setattr); 3677 3678 /** 3679 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3680 * @p: the task in question. 3681 * @policy: new policy. 3682 * @param: structure containing the new RT priority. 3683 * 3684 * Just like sched_setscheduler, only don't bother checking if the 3685 * current context has permission. For example, this is needed in 3686 * stop_machine(): we create temporary high priority worker threads, 3687 * but our caller might not have that capability. 3688 * 3689 * Return: 0 on success. An error code otherwise. 3690 */ 3691 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3692 const struct sched_param *param) 3693 { 3694 return _sched_setscheduler(p, policy, param, false); 3695 } 3696 3697 static int 3698 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3699 { 3700 struct sched_param lparam; 3701 struct task_struct *p; 3702 int retval; 3703 3704 if (!param || pid < 0) 3705 return -EINVAL; 3706 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3707 return -EFAULT; 3708 3709 rcu_read_lock(); 3710 retval = -ESRCH; 3711 p = find_process_by_pid(pid); 3712 if (p != NULL) 3713 retval = sched_setscheduler(p, policy, &lparam); 3714 rcu_read_unlock(); 3715 3716 return retval; 3717 } 3718 3719 /* 3720 * Mimics kernel/events/core.c perf_copy_attr(). 3721 */ 3722 static int sched_copy_attr(struct sched_attr __user *uattr, 3723 struct sched_attr *attr) 3724 { 3725 u32 size; 3726 int ret; 3727 3728 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3729 return -EFAULT; 3730 3731 /* 3732 * zero the full structure, so that a short copy will be nice. 3733 */ 3734 memset(attr, 0, sizeof(*attr)); 3735 3736 ret = get_user(size, &uattr->size); 3737 if (ret) 3738 return ret; 3739 3740 if (size > PAGE_SIZE) /* silly large */ 3741 goto err_size; 3742 3743 if (!size) /* abi compat */ 3744 size = SCHED_ATTR_SIZE_VER0; 3745 3746 if (size < SCHED_ATTR_SIZE_VER0) 3747 goto err_size; 3748 3749 /* 3750 * If we're handed a bigger struct than we know of, 3751 * ensure all the unknown bits are 0 - i.e. new 3752 * user-space does not rely on any kernel feature 3753 * extensions we dont know about yet. 3754 */ 3755 if (size > sizeof(*attr)) { 3756 unsigned char __user *addr; 3757 unsigned char __user *end; 3758 unsigned char val; 3759 3760 addr = (void __user *)uattr + sizeof(*attr); 3761 end = (void __user *)uattr + size; 3762 3763 for (; addr < end; addr++) { 3764 ret = get_user(val, addr); 3765 if (ret) 3766 return ret; 3767 if (val) 3768 goto err_size; 3769 } 3770 size = sizeof(*attr); 3771 } 3772 3773 ret = copy_from_user(attr, uattr, size); 3774 if (ret) 3775 return -EFAULT; 3776 3777 /* 3778 * XXX: do we want to be lenient like existing syscalls; or do we want 3779 * to be strict and return an error on out-of-bounds values? 3780 */ 3781 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3782 3783 return 0; 3784 3785 err_size: 3786 put_user(sizeof(*attr), &uattr->size); 3787 return -E2BIG; 3788 } 3789 3790 /** 3791 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3792 * @pid: the pid in question. 3793 * @policy: new policy. 3794 * @param: structure containing the new RT priority. 3795 * 3796 * Return: 0 on success. An error code otherwise. 3797 */ 3798 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3799 struct sched_param __user *, param) 3800 { 3801 /* negative values for policy are not valid */ 3802 if (policy < 0) 3803 return -EINVAL; 3804 3805 return do_sched_setscheduler(pid, policy, param); 3806 } 3807 3808 /** 3809 * sys_sched_setparam - set/change the RT priority of a thread 3810 * @pid: the pid in question. 3811 * @param: structure containing the new RT priority. 3812 * 3813 * Return: 0 on success. An error code otherwise. 3814 */ 3815 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3816 { 3817 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3818 } 3819 3820 /** 3821 * sys_sched_setattr - same as above, but with extended sched_attr 3822 * @pid: the pid in question. 3823 * @uattr: structure containing the extended parameters. 3824 * @flags: for future extension. 3825 */ 3826 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3827 unsigned int, flags) 3828 { 3829 struct sched_attr attr; 3830 struct task_struct *p; 3831 int retval; 3832 3833 if (!uattr || pid < 0 || flags) 3834 return -EINVAL; 3835 3836 retval = sched_copy_attr(uattr, &attr); 3837 if (retval) 3838 return retval; 3839 3840 if ((int)attr.sched_policy < 0) 3841 return -EINVAL; 3842 3843 rcu_read_lock(); 3844 retval = -ESRCH; 3845 p = find_process_by_pid(pid); 3846 if (p != NULL) 3847 retval = sched_setattr(p, &attr); 3848 rcu_read_unlock(); 3849 3850 return retval; 3851 } 3852 3853 /** 3854 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3855 * @pid: the pid in question. 3856 * 3857 * Return: On success, the policy of the thread. Otherwise, a negative error 3858 * code. 3859 */ 3860 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3861 { 3862 struct task_struct *p; 3863 int retval; 3864 3865 if (pid < 0) 3866 return -EINVAL; 3867 3868 retval = -ESRCH; 3869 rcu_read_lock(); 3870 p = find_process_by_pid(pid); 3871 if (p) { 3872 retval = security_task_getscheduler(p); 3873 if (!retval) 3874 retval = p->policy 3875 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3876 } 3877 rcu_read_unlock(); 3878 return retval; 3879 } 3880 3881 /** 3882 * sys_sched_getparam - get the RT priority of a thread 3883 * @pid: the pid in question. 3884 * @param: structure containing the RT priority. 3885 * 3886 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3887 * code. 3888 */ 3889 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3890 { 3891 struct sched_param lp = { .sched_priority = 0 }; 3892 struct task_struct *p; 3893 int retval; 3894 3895 if (!param || pid < 0) 3896 return -EINVAL; 3897 3898 rcu_read_lock(); 3899 p = find_process_by_pid(pid); 3900 retval = -ESRCH; 3901 if (!p) 3902 goto out_unlock; 3903 3904 retval = security_task_getscheduler(p); 3905 if (retval) 3906 goto out_unlock; 3907 3908 if (task_has_rt_policy(p)) 3909 lp.sched_priority = p->rt_priority; 3910 rcu_read_unlock(); 3911 3912 /* 3913 * This one might sleep, we cannot do it with a spinlock held ... 3914 */ 3915 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3916 3917 return retval; 3918 3919 out_unlock: 3920 rcu_read_unlock(); 3921 return retval; 3922 } 3923 3924 static int sched_read_attr(struct sched_attr __user *uattr, 3925 struct sched_attr *attr, 3926 unsigned int usize) 3927 { 3928 int ret; 3929 3930 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3931 return -EFAULT; 3932 3933 /* 3934 * If we're handed a smaller struct than we know of, 3935 * ensure all the unknown bits are 0 - i.e. old 3936 * user-space does not get uncomplete information. 3937 */ 3938 if (usize < sizeof(*attr)) { 3939 unsigned char *addr; 3940 unsigned char *end; 3941 3942 addr = (void *)attr + usize; 3943 end = (void *)attr + sizeof(*attr); 3944 3945 for (; addr < end; addr++) { 3946 if (*addr) 3947 return -EFBIG; 3948 } 3949 3950 attr->size = usize; 3951 } 3952 3953 ret = copy_to_user(uattr, attr, attr->size); 3954 if (ret) 3955 return -EFAULT; 3956 3957 return 0; 3958 } 3959 3960 /** 3961 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3962 * @pid: the pid in question. 3963 * @uattr: structure containing the extended parameters. 3964 * @size: sizeof(attr) for fwd/bwd comp. 3965 * @flags: for future extension. 3966 */ 3967 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3968 unsigned int, size, unsigned int, flags) 3969 { 3970 struct sched_attr attr = { 3971 .size = sizeof(struct sched_attr), 3972 }; 3973 struct task_struct *p; 3974 int retval; 3975 3976 if (!uattr || pid < 0 || size > PAGE_SIZE || 3977 size < SCHED_ATTR_SIZE_VER0 || flags) 3978 return -EINVAL; 3979 3980 rcu_read_lock(); 3981 p = find_process_by_pid(pid); 3982 retval = -ESRCH; 3983 if (!p) 3984 goto out_unlock; 3985 3986 retval = security_task_getscheduler(p); 3987 if (retval) 3988 goto out_unlock; 3989 3990 attr.sched_policy = p->policy; 3991 if (p->sched_reset_on_fork) 3992 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3993 if (task_has_dl_policy(p)) 3994 __getparam_dl(p, &attr); 3995 else if (task_has_rt_policy(p)) 3996 attr.sched_priority = p->rt_priority; 3997 else 3998 attr.sched_nice = task_nice(p); 3999 4000 rcu_read_unlock(); 4001 4002 retval = sched_read_attr(uattr, &attr, size); 4003 return retval; 4004 4005 out_unlock: 4006 rcu_read_unlock(); 4007 return retval; 4008 } 4009 4010 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4011 { 4012 cpumask_var_t cpus_allowed, new_mask; 4013 struct task_struct *p; 4014 int retval; 4015 4016 rcu_read_lock(); 4017 4018 p = find_process_by_pid(pid); 4019 if (!p) { 4020 rcu_read_unlock(); 4021 return -ESRCH; 4022 } 4023 4024 /* Prevent p going away */ 4025 get_task_struct(p); 4026 rcu_read_unlock(); 4027 4028 if (p->flags & PF_NO_SETAFFINITY) { 4029 retval = -EINVAL; 4030 goto out_put_task; 4031 } 4032 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4033 retval = -ENOMEM; 4034 goto out_put_task; 4035 } 4036 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4037 retval = -ENOMEM; 4038 goto out_free_cpus_allowed; 4039 } 4040 retval = -EPERM; 4041 if (!check_same_owner(p)) { 4042 rcu_read_lock(); 4043 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4044 rcu_read_unlock(); 4045 goto out_free_new_mask; 4046 } 4047 rcu_read_unlock(); 4048 } 4049 4050 retval = security_task_setscheduler(p); 4051 if (retval) 4052 goto out_free_new_mask; 4053 4054 4055 cpuset_cpus_allowed(p, cpus_allowed); 4056 cpumask_and(new_mask, in_mask, cpus_allowed); 4057 4058 /* 4059 * Since bandwidth control happens on root_domain basis, 4060 * if admission test is enabled, we only admit -deadline 4061 * tasks allowed to run on all the CPUs in the task's 4062 * root_domain. 4063 */ 4064 #ifdef CONFIG_SMP 4065 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4066 rcu_read_lock(); 4067 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4068 retval = -EBUSY; 4069 rcu_read_unlock(); 4070 goto out_free_new_mask; 4071 } 4072 rcu_read_unlock(); 4073 } 4074 #endif 4075 again: 4076 retval = set_cpus_allowed_ptr(p, new_mask); 4077 4078 if (!retval) { 4079 cpuset_cpus_allowed(p, cpus_allowed); 4080 if (!cpumask_subset(new_mask, cpus_allowed)) { 4081 /* 4082 * We must have raced with a concurrent cpuset 4083 * update. Just reset the cpus_allowed to the 4084 * cpuset's cpus_allowed 4085 */ 4086 cpumask_copy(new_mask, cpus_allowed); 4087 goto again; 4088 } 4089 } 4090 out_free_new_mask: 4091 free_cpumask_var(new_mask); 4092 out_free_cpus_allowed: 4093 free_cpumask_var(cpus_allowed); 4094 out_put_task: 4095 put_task_struct(p); 4096 return retval; 4097 } 4098 4099 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4100 struct cpumask *new_mask) 4101 { 4102 if (len < cpumask_size()) 4103 cpumask_clear(new_mask); 4104 else if (len > cpumask_size()) 4105 len = cpumask_size(); 4106 4107 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4108 } 4109 4110 /** 4111 * sys_sched_setaffinity - set the cpu affinity of a process 4112 * @pid: pid of the process 4113 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4114 * @user_mask_ptr: user-space pointer to the new cpu mask 4115 * 4116 * Return: 0 on success. An error code otherwise. 4117 */ 4118 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4119 unsigned long __user *, user_mask_ptr) 4120 { 4121 cpumask_var_t new_mask; 4122 int retval; 4123 4124 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4125 return -ENOMEM; 4126 4127 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4128 if (retval == 0) 4129 retval = sched_setaffinity(pid, new_mask); 4130 free_cpumask_var(new_mask); 4131 return retval; 4132 } 4133 4134 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4135 { 4136 struct task_struct *p; 4137 unsigned long flags; 4138 int retval; 4139 4140 rcu_read_lock(); 4141 4142 retval = -ESRCH; 4143 p = find_process_by_pid(pid); 4144 if (!p) 4145 goto out_unlock; 4146 4147 retval = security_task_getscheduler(p); 4148 if (retval) 4149 goto out_unlock; 4150 4151 raw_spin_lock_irqsave(&p->pi_lock, flags); 4152 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4153 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4154 4155 out_unlock: 4156 rcu_read_unlock(); 4157 4158 return retval; 4159 } 4160 4161 /** 4162 * sys_sched_getaffinity - get the cpu affinity of a process 4163 * @pid: pid of the process 4164 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4165 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4166 * 4167 * Return: 0 on success. An error code otherwise. 4168 */ 4169 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4170 unsigned long __user *, user_mask_ptr) 4171 { 4172 int ret; 4173 cpumask_var_t mask; 4174 4175 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4176 return -EINVAL; 4177 if (len & (sizeof(unsigned long)-1)) 4178 return -EINVAL; 4179 4180 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4181 return -ENOMEM; 4182 4183 ret = sched_getaffinity(pid, mask); 4184 if (ret == 0) { 4185 size_t retlen = min_t(size_t, len, cpumask_size()); 4186 4187 if (copy_to_user(user_mask_ptr, mask, retlen)) 4188 ret = -EFAULT; 4189 else 4190 ret = retlen; 4191 } 4192 free_cpumask_var(mask); 4193 4194 return ret; 4195 } 4196 4197 /** 4198 * sys_sched_yield - yield the current processor to other threads. 4199 * 4200 * This function yields the current CPU to other tasks. If there are no 4201 * other threads running on this CPU then this function will return. 4202 * 4203 * Return: 0. 4204 */ 4205 SYSCALL_DEFINE0(sched_yield) 4206 { 4207 struct rq *rq = this_rq_lock(); 4208 4209 schedstat_inc(rq, yld_count); 4210 current->sched_class->yield_task(rq); 4211 4212 /* 4213 * Since we are going to call schedule() anyway, there's 4214 * no need to preempt or enable interrupts: 4215 */ 4216 __release(rq->lock); 4217 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4218 do_raw_spin_unlock(&rq->lock); 4219 sched_preempt_enable_no_resched(); 4220 4221 schedule(); 4222 4223 return 0; 4224 } 4225 4226 int __sched _cond_resched(void) 4227 { 4228 if (should_resched()) { 4229 preempt_schedule_common(); 4230 return 1; 4231 } 4232 return 0; 4233 } 4234 EXPORT_SYMBOL(_cond_resched); 4235 4236 /* 4237 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4238 * call schedule, and on return reacquire the lock. 4239 * 4240 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4241 * operations here to prevent schedule() from being called twice (once via 4242 * spin_unlock(), once by hand). 4243 */ 4244 int __cond_resched_lock(spinlock_t *lock) 4245 { 4246 int resched = should_resched(); 4247 int ret = 0; 4248 4249 lockdep_assert_held(lock); 4250 4251 if (spin_needbreak(lock) || resched) { 4252 spin_unlock(lock); 4253 if (resched) 4254 preempt_schedule_common(); 4255 else 4256 cpu_relax(); 4257 ret = 1; 4258 spin_lock(lock); 4259 } 4260 return ret; 4261 } 4262 EXPORT_SYMBOL(__cond_resched_lock); 4263 4264 int __sched __cond_resched_softirq(void) 4265 { 4266 BUG_ON(!in_softirq()); 4267 4268 if (should_resched()) { 4269 local_bh_enable(); 4270 preempt_schedule_common(); 4271 local_bh_disable(); 4272 return 1; 4273 } 4274 return 0; 4275 } 4276 EXPORT_SYMBOL(__cond_resched_softirq); 4277 4278 /** 4279 * yield - yield the current processor to other threads. 4280 * 4281 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4282 * 4283 * The scheduler is at all times free to pick the calling task as the most 4284 * eligible task to run, if removing the yield() call from your code breaks 4285 * it, its already broken. 4286 * 4287 * Typical broken usage is: 4288 * 4289 * while (!event) 4290 * yield(); 4291 * 4292 * where one assumes that yield() will let 'the other' process run that will 4293 * make event true. If the current task is a SCHED_FIFO task that will never 4294 * happen. Never use yield() as a progress guarantee!! 4295 * 4296 * If you want to use yield() to wait for something, use wait_event(). 4297 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4298 * If you still want to use yield(), do not! 4299 */ 4300 void __sched yield(void) 4301 { 4302 set_current_state(TASK_RUNNING); 4303 sys_sched_yield(); 4304 } 4305 EXPORT_SYMBOL(yield); 4306 4307 /** 4308 * yield_to - yield the current processor to another thread in 4309 * your thread group, or accelerate that thread toward the 4310 * processor it's on. 4311 * @p: target task 4312 * @preempt: whether task preemption is allowed or not 4313 * 4314 * It's the caller's job to ensure that the target task struct 4315 * can't go away on us before we can do any checks. 4316 * 4317 * Return: 4318 * true (>0) if we indeed boosted the target task. 4319 * false (0) if we failed to boost the target. 4320 * -ESRCH if there's no task to yield to. 4321 */ 4322 int __sched yield_to(struct task_struct *p, bool preempt) 4323 { 4324 struct task_struct *curr = current; 4325 struct rq *rq, *p_rq; 4326 unsigned long flags; 4327 int yielded = 0; 4328 4329 local_irq_save(flags); 4330 rq = this_rq(); 4331 4332 again: 4333 p_rq = task_rq(p); 4334 /* 4335 * If we're the only runnable task on the rq and target rq also 4336 * has only one task, there's absolutely no point in yielding. 4337 */ 4338 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4339 yielded = -ESRCH; 4340 goto out_irq; 4341 } 4342 4343 double_rq_lock(rq, p_rq); 4344 if (task_rq(p) != p_rq) { 4345 double_rq_unlock(rq, p_rq); 4346 goto again; 4347 } 4348 4349 if (!curr->sched_class->yield_to_task) 4350 goto out_unlock; 4351 4352 if (curr->sched_class != p->sched_class) 4353 goto out_unlock; 4354 4355 if (task_running(p_rq, p) || p->state) 4356 goto out_unlock; 4357 4358 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4359 if (yielded) { 4360 schedstat_inc(rq, yld_count); 4361 /* 4362 * Make p's CPU reschedule; pick_next_entity takes care of 4363 * fairness. 4364 */ 4365 if (preempt && rq != p_rq) 4366 resched_curr(p_rq); 4367 } 4368 4369 out_unlock: 4370 double_rq_unlock(rq, p_rq); 4371 out_irq: 4372 local_irq_restore(flags); 4373 4374 if (yielded > 0) 4375 schedule(); 4376 4377 return yielded; 4378 } 4379 EXPORT_SYMBOL_GPL(yield_to); 4380 4381 /* 4382 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4383 * that process accounting knows that this is a task in IO wait state. 4384 */ 4385 long __sched io_schedule_timeout(long timeout) 4386 { 4387 int old_iowait = current->in_iowait; 4388 struct rq *rq; 4389 long ret; 4390 4391 current->in_iowait = 1; 4392 if (old_iowait) 4393 blk_schedule_flush_plug(current); 4394 else 4395 blk_flush_plug(current); 4396 4397 delayacct_blkio_start(); 4398 rq = raw_rq(); 4399 atomic_inc(&rq->nr_iowait); 4400 ret = schedule_timeout(timeout); 4401 current->in_iowait = old_iowait; 4402 atomic_dec(&rq->nr_iowait); 4403 delayacct_blkio_end(); 4404 4405 return ret; 4406 } 4407 EXPORT_SYMBOL(io_schedule_timeout); 4408 4409 /** 4410 * sys_sched_get_priority_max - return maximum RT priority. 4411 * @policy: scheduling class. 4412 * 4413 * Return: On success, this syscall returns the maximum 4414 * rt_priority that can be used by a given scheduling class. 4415 * On failure, a negative error code is returned. 4416 */ 4417 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4418 { 4419 int ret = -EINVAL; 4420 4421 switch (policy) { 4422 case SCHED_FIFO: 4423 case SCHED_RR: 4424 ret = MAX_USER_RT_PRIO-1; 4425 break; 4426 case SCHED_DEADLINE: 4427 case SCHED_NORMAL: 4428 case SCHED_BATCH: 4429 case SCHED_IDLE: 4430 ret = 0; 4431 break; 4432 } 4433 return ret; 4434 } 4435 4436 /** 4437 * sys_sched_get_priority_min - return minimum RT priority. 4438 * @policy: scheduling class. 4439 * 4440 * Return: On success, this syscall returns the minimum 4441 * rt_priority that can be used by a given scheduling class. 4442 * On failure, a negative error code is returned. 4443 */ 4444 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4445 { 4446 int ret = -EINVAL; 4447 4448 switch (policy) { 4449 case SCHED_FIFO: 4450 case SCHED_RR: 4451 ret = 1; 4452 break; 4453 case SCHED_DEADLINE: 4454 case SCHED_NORMAL: 4455 case SCHED_BATCH: 4456 case SCHED_IDLE: 4457 ret = 0; 4458 } 4459 return ret; 4460 } 4461 4462 /** 4463 * sys_sched_rr_get_interval - return the default timeslice of a process. 4464 * @pid: pid of the process. 4465 * @interval: userspace pointer to the timeslice value. 4466 * 4467 * this syscall writes the default timeslice value of a given process 4468 * into the user-space timespec buffer. A value of '0' means infinity. 4469 * 4470 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4471 * an error code. 4472 */ 4473 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4474 struct timespec __user *, interval) 4475 { 4476 struct task_struct *p; 4477 unsigned int time_slice; 4478 unsigned long flags; 4479 struct rq *rq; 4480 int retval; 4481 struct timespec t; 4482 4483 if (pid < 0) 4484 return -EINVAL; 4485 4486 retval = -ESRCH; 4487 rcu_read_lock(); 4488 p = find_process_by_pid(pid); 4489 if (!p) 4490 goto out_unlock; 4491 4492 retval = security_task_getscheduler(p); 4493 if (retval) 4494 goto out_unlock; 4495 4496 rq = task_rq_lock(p, &flags); 4497 time_slice = 0; 4498 if (p->sched_class->get_rr_interval) 4499 time_slice = p->sched_class->get_rr_interval(rq, p); 4500 task_rq_unlock(rq, p, &flags); 4501 4502 rcu_read_unlock(); 4503 jiffies_to_timespec(time_slice, &t); 4504 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4505 return retval; 4506 4507 out_unlock: 4508 rcu_read_unlock(); 4509 return retval; 4510 } 4511 4512 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4513 4514 void sched_show_task(struct task_struct *p) 4515 { 4516 unsigned long free = 0; 4517 int ppid; 4518 unsigned long state = p->state; 4519 4520 if (state) 4521 state = __ffs(state) + 1; 4522 printk(KERN_INFO "%-15.15s %c", p->comm, 4523 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4524 #if BITS_PER_LONG == 32 4525 if (state == TASK_RUNNING) 4526 printk(KERN_CONT " running "); 4527 else 4528 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4529 #else 4530 if (state == TASK_RUNNING) 4531 printk(KERN_CONT " running task "); 4532 else 4533 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4534 #endif 4535 #ifdef CONFIG_DEBUG_STACK_USAGE 4536 free = stack_not_used(p); 4537 #endif 4538 ppid = 0; 4539 rcu_read_lock(); 4540 if (pid_alive(p)) 4541 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4542 rcu_read_unlock(); 4543 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4544 task_pid_nr(p), ppid, 4545 (unsigned long)task_thread_info(p)->flags); 4546 4547 print_worker_info(KERN_INFO, p); 4548 show_stack(p, NULL); 4549 } 4550 4551 void show_state_filter(unsigned long state_filter) 4552 { 4553 struct task_struct *g, *p; 4554 4555 #if BITS_PER_LONG == 32 4556 printk(KERN_INFO 4557 " task PC stack pid father\n"); 4558 #else 4559 printk(KERN_INFO 4560 " task PC stack pid father\n"); 4561 #endif 4562 rcu_read_lock(); 4563 for_each_process_thread(g, p) { 4564 /* 4565 * reset the NMI-timeout, listing all files on a slow 4566 * console might take a lot of time: 4567 */ 4568 touch_nmi_watchdog(); 4569 if (!state_filter || (p->state & state_filter)) 4570 sched_show_task(p); 4571 } 4572 4573 touch_all_softlockup_watchdogs(); 4574 4575 #ifdef CONFIG_SCHED_DEBUG 4576 sysrq_sched_debug_show(); 4577 #endif 4578 rcu_read_unlock(); 4579 /* 4580 * Only show locks if all tasks are dumped: 4581 */ 4582 if (!state_filter) 4583 debug_show_all_locks(); 4584 } 4585 4586 void init_idle_bootup_task(struct task_struct *idle) 4587 { 4588 idle->sched_class = &idle_sched_class; 4589 } 4590 4591 /** 4592 * init_idle - set up an idle thread for a given CPU 4593 * @idle: task in question 4594 * @cpu: cpu the idle task belongs to 4595 * 4596 * NOTE: this function does not set the idle thread's NEED_RESCHED 4597 * flag, to make booting more robust. 4598 */ 4599 void init_idle(struct task_struct *idle, int cpu) 4600 { 4601 struct rq *rq = cpu_rq(cpu); 4602 unsigned long flags; 4603 4604 raw_spin_lock_irqsave(&rq->lock, flags); 4605 4606 __sched_fork(0, idle); 4607 idle->state = TASK_RUNNING; 4608 idle->se.exec_start = sched_clock(); 4609 4610 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4611 /* 4612 * We're having a chicken and egg problem, even though we are 4613 * holding rq->lock, the cpu isn't yet set to this cpu so the 4614 * lockdep check in task_group() will fail. 4615 * 4616 * Similar case to sched_fork(). / Alternatively we could 4617 * use task_rq_lock() here and obtain the other rq->lock. 4618 * 4619 * Silence PROVE_RCU 4620 */ 4621 rcu_read_lock(); 4622 __set_task_cpu(idle, cpu); 4623 rcu_read_unlock(); 4624 4625 rq->curr = rq->idle = idle; 4626 idle->on_rq = TASK_ON_RQ_QUEUED; 4627 #if defined(CONFIG_SMP) 4628 idle->on_cpu = 1; 4629 #endif 4630 raw_spin_unlock_irqrestore(&rq->lock, flags); 4631 4632 /* Set the preempt count _outside_ the spinlocks! */ 4633 init_idle_preempt_count(idle, cpu); 4634 4635 /* 4636 * The idle tasks have their own, simple scheduling class: 4637 */ 4638 idle->sched_class = &idle_sched_class; 4639 ftrace_graph_init_idle_task(idle, cpu); 4640 vtime_init_idle(idle, cpu); 4641 #if defined(CONFIG_SMP) 4642 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4643 #endif 4644 } 4645 4646 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 4647 const struct cpumask *trial) 4648 { 4649 int ret = 1, trial_cpus; 4650 struct dl_bw *cur_dl_b; 4651 unsigned long flags; 4652 4653 if (!cpumask_weight(cur)) 4654 return ret; 4655 4656 rcu_read_lock_sched(); 4657 cur_dl_b = dl_bw_of(cpumask_any(cur)); 4658 trial_cpus = cpumask_weight(trial); 4659 4660 raw_spin_lock_irqsave(&cur_dl_b->lock, flags); 4661 if (cur_dl_b->bw != -1 && 4662 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw) 4663 ret = 0; 4664 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags); 4665 rcu_read_unlock_sched(); 4666 4667 return ret; 4668 } 4669 4670 int task_can_attach(struct task_struct *p, 4671 const struct cpumask *cs_cpus_allowed) 4672 { 4673 int ret = 0; 4674 4675 /* 4676 * Kthreads which disallow setaffinity shouldn't be moved 4677 * to a new cpuset; we don't want to change their cpu 4678 * affinity and isolating such threads by their set of 4679 * allowed nodes is unnecessary. Thus, cpusets are not 4680 * applicable for such threads. This prevents checking for 4681 * success of set_cpus_allowed_ptr() on all attached tasks 4682 * before cpus_allowed may be changed. 4683 */ 4684 if (p->flags & PF_NO_SETAFFINITY) { 4685 ret = -EINVAL; 4686 goto out; 4687 } 4688 4689 #ifdef CONFIG_SMP 4690 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 4691 cs_cpus_allowed)) { 4692 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask, 4693 cs_cpus_allowed); 4694 struct dl_bw *dl_b; 4695 bool overflow; 4696 int cpus; 4697 unsigned long flags; 4698 4699 rcu_read_lock_sched(); 4700 dl_b = dl_bw_of(dest_cpu); 4701 raw_spin_lock_irqsave(&dl_b->lock, flags); 4702 cpus = dl_bw_cpus(dest_cpu); 4703 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw); 4704 if (overflow) 4705 ret = -EBUSY; 4706 else { 4707 /* 4708 * We reserve space for this task in the destination 4709 * root_domain, as we can't fail after this point. 4710 * We will free resources in the source root_domain 4711 * later on (see set_cpus_allowed_dl()). 4712 */ 4713 __dl_add(dl_b, p->dl.dl_bw); 4714 } 4715 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 4716 rcu_read_unlock_sched(); 4717 4718 } 4719 #endif 4720 out: 4721 return ret; 4722 } 4723 4724 #ifdef CONFIG_SMP 4725 /* 4726 * move_queued_task - move a queued task to new rq. 4727 * 4728 * Returns (locked) new rq. Old rq's lock is released. 4729 */ 4730 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4731 { 4732 struct rq *rq = task_rq(p); 4733 4734 lockdep_assert_held(&rq->lock); 4735 4736 dequeue_task(rq, p, 0); 4737 p->on_rq = TASK_ON_RQ_MIGRATING; 4738 set_task_cpu(p, new_cpu); 4739 raw_spin_unlock(&rq->lock); 4740 4741 rq = cpu_rq(new_cpu); 4742 4743 raw_spin_lock(&rq->lock); 4744 BUG_ON(task_cpu(p) != new_cpu); 4745 p->on_rq = TASK_ON_RQ_QUEUED; 4746 enqueue_task(rq, p, 0); 4747 check_preempt_curr(rq, p, 0); 4748 4749 return rq; 4750 } 4751 4752 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4753 { 4754 if (p->sched_class->set_cpus_allowed) 4755 p->sched_class->set_cpus_allowed(p, new_mask); 4756 4757 cpumask_copy(&p->cpus_allowed, new_mask); 4758 p->nr_cpus_allowed = cpumask_weight(new_mask); 4759 } 4760 4761 /* 4762 * This is how migration works: 4763 * 4764 * 1) we invoke migration_cpu_stop() on the target CPU using 4765 * stop_one_cpu(). 4766 * 2) stopper starts to run (implicitly forcing the migrated thread 4767 * off the CPU) 4768 * 3) it checks whether the migrated task is still in the wrong runqueue. 4769 * 4) if it's in the wrong runqueue then the migration thread removes 4770 * it and puts it into the right queue. 4771 * 5) stopper completes and stop_one_cpu() returns and the migration 4772 * is done. 4773 */ 4774 4775 /* 4776 * Change a given task's CPU affinity. Migrate the thread to a 4777 * proper CPU and schedule it away if the CPU it's executing on 4778 * is removed from the allowed bitmask. 4779 * 4780 * NOTE: the caller must have a valid reference to the task, the 4781 * task must not exit() & deallocate itself prematurely. The 4782 * call is not atomic; no spinlocks may be held. 4783 */ 4784 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4785 { 4786 unsigned long flags; 4787 struct rq *rq; 4788 unsigned int dest_cpu; 4789 int ret = 0; 4790 4791 rq = task_rq_lock(p, &flags); 4792 4793 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4794 goto out; 4795 4796 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4797 ret = -EINVAL; 4798 goto out; 4799 } 4800 4801 do_set_cpus_allowed(p, new_mask); 4802 4803 /* Can the task run on the task's current CPU? If so, we're done */ 4804 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4805 goto out; 4806 4807 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4808 if (task_running(rq, p) || p->state == TASK_WAKING) { 4809 struct migration_arg arg = { p, dest_cpu }; 4810 /* Need help from migration thread: drop lock and wait. */ 4811 task_rq_unlock(rq, p, &flags); 4812 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4813 tlb_migrate_finish(p->mm); 4814 return 0; 4815 } else if (task_on_rq_queued(p)) 4816 rq = move_queued_task(p, dest_cpu); 4817 out: 4818 task_rq_unlock(rq, p, &flags); 4819 4820 return ret; 4821 } 4822 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4823 4824 /* 4825 * Move (not current) task off this cpu, onto dest cpu. We're doing 4826 * this because either it can't run here any more (set_cpus_allowed() 4827 * away from this CPU, or CPU going down), or because we're 4828 * attempting to rebalance this task on exec (sched_exec). 4829 * 4830 * So we race with normal scheduler movements, but that's OK, as long 4831 * as the task is no longer on this CPU. 4832 * 4833 * Returns non-zero if task was successfully migrated. 4834 */ 4835 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4836 { 4837 struct rq *rq; 4838 int ret = 0; 4839 4840 if (unlikely(!cpu_active(dest_cpu))) 4841 return ret; 4842 4843 rq = cpu_rq(src_cpu); 4844 4845 raw_spin_lock(&p->pi_lock); 4846 raw_spin_lock(&rq->lock); 4847 /* Already moved. */ 4848 if (task_cpu(p) != src_cpu) 4849 goto done; 4850 4851 /* Affinity changed (again). */ 4852 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4853 goto fail; 4854 4855 /* 4856 * If we're not on a rq, the next wake-up will ensure we're 4857 * placed properly. 4858 */ 4859 if (task_on_rq_queued(p)) 4860 rq = move_queued_task(p, dest_cpu); 4861 done: 4862 ret = 1; 4863 fail: 4864 raw_spin_unlock(&rq->lock); 4865 raw_spin_unlock(&p->pi_lock); 4866 return ret; 4867 } 4868 4869 #ifdef CONFIG_NUMA_BALANCING 4870 /* Migrate current task p to target_cpu */ 4871 int migrate_task_to(struct task_struct *p, int target_cpu) 4872 { 4873 struct migration_arg arg = { p, target_cpu }; 4874 int curr_cpu = task_cpu(p); 4875 4876 if (curr_cpu == target_cpu) 4877 return 0; 4878 4879 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4880 return -EINVAL; 4881 4882 /* TODO: This is not properly updating schedstats */ 4883 4884 trace_sched_move_numa(p, curr_cpu, target_cpu); 4885 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4886 } 4887 4888 /* 4889 * Requeue a task on a given node and accurately track the number of NUMA 4890 * tasks on the runqueues 4891 */ 4892 void sched_setnuma(struct task_struct *p, int nid) 4893 { 4894 struct rq *rq; 4895 unsigned long flags; 4896 bool queued, running; 4897 4898 rq = task_rq_lock(p, &flags); 4899 queued = task_on_rq_queued(p); 4900 running = task_current(rq, p); 4901 4902 if (queued) 4903 dequeue_task(rq, p, 0); 4904 if (running) 4905 put_prev_task(rq, p); 4906 4907 p->numa_preferred_nid = nid; 4908 4909 if (running) 4910 p->sched_class->set_curr_task(rq); 4911 if (queued) 4912 enqueue_task(rq, p, 0); 4913 task_rq_unlock(rq, p, &flags); 4914 } 4915 #endif 4916 4917 /* 4918 * migration_cpu_stop - this will be executed by a highprio stopper thread 4919 * and performs thread migration by bumping thread off CPU then 4920 * 'pushing' onto another runqueue. 4921 */ 4922 static int migration_cpu_stop(void *data) 4923 { 4924 struct migration_arg *arg = data; 4925 4926 /* 4927 * The original target cpu might have gone down and we might 4928 * be on another cpu but it doesn't matter. 4929 */ 4930 local_irq_disable(); 4931 /* 4932 * We need to explicitly wake pending tasks before running 4933 * __migrate_task() such that we will not miss enforcing cpus_allowed 4934 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4935 */ 4936 sched_ttwu_pending(); 4937 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4938 local_irq_enable(); 4939 return 0; 4940 } 4941 4942 #ifdef CONFIG_HOTPLUG_CPU 4943 4944 /* 4945 * Ensures that the idle task is using init_mm right before its cpu goes 4946 * offline. 4947 */ 4948 void idle_task_exit(void) 4949 { 4950 struct mm_struct *mm = current->active_mm; 4951 4952 BUG_ON(cpu_online(smp_processor_id())); 4953 4954 if (mm != &init_mm) { 4955 switch_mm(mm, &init_mm, current); 4956 finish_arch_post_lock_switch(); 4957 } 4958 mmdrop(mm); 4959 } 4960 4961 /* 4962 * Since this CPU is going 'away' for a while, fold any nr_active delta 4963 * we might have. Assumes we're called after migrate_tasks() so that the 4964 * nr_active count is stable. 4965 * 4966 * Also see the comment "Global load-average calculations". 4967 */ 4968 static void calc_load_migrate(struct rq *rq) 4969 { 4970 long delta = calc_load_fold_active(rq); 4971 if (delta) 4972 atomic_long_add(delta, &calc_load_tasks); 4973 } 4974 4975 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4976 { 4977 } 4978 4979 static const struct sched_class fake_sched_class = { 4980 .put_prev_task = put_prev_task_fake, 4981 }; 4982 4983 static struct task_struct fake_task = { 4984 /* 4985 * Avoid pull_{rt,dl}_task() 4986 */ 4987 .prio = MAX_PRIO + 1, 4988 .sched_class = &fake_sched_class, 4989 }; 4990 4991 /* 4992 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4993 * try_to_wake_up()->select_task_rq(). 4994 * 4995 * Called with rq->lock held even though we'er in stop_machine() and 4996 * there's no concurrency possible, we hold the required locks anyway 4997 * because of lock validation efforts. 4998 */ 4999 static void migrate_tasks(unsigned int dead_cpu) 5000 { 5001 struct rq *rq = cpu_rq(dead_cpu); 5002 struct task_struct *next, *stop = rq->stop; 5003 int dest_cpu; 5004 5005 /* 5006 * Fudge the rq selection such that the below task selection loop 5007 * doesn't get stuck on the currently eligible stop task. 5008 * 5009 * We're currently inside stop_machine() and the rq is either stuck 5010 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5011 * either way we should never end up calling schedule() until we're 5012 * done here. 5013 */ 5014 rq->stop = NULL; 5015 5016 /* 5017 * put_prev_task() and pick_next_task() sched 5018 * class method both need to have an up-to-date 5019 * value of rq->clock[_task] 5020 */ 5021 update_rq_clock(rq); 5022 5023 for ( ; ; ) { 5024 /* 5025 * There's this thread running, bail when that's the only 5026 * remaining thread. 5027 */ 5028 if (rq->nr_running == 1) 5029 break; 5030 5031 next = pick_next_task(rq, &fake_task); 5032 BUG_ON(!next); 5033 next->sched_class->put_prev_task(rq, next); 5034 5035 /* Find suitable destination for @next, with force if needed. */ 5036 dest_cpu = select_fallback_rq(dead_cpu, next); 5037 raw_spin_unlock(&rq->lock); 5038 5039 __migrate_task(next, dead_cpu, dest_cpu); 5040 5041 raw_spin_lock(&rq->lock); 5042 } 5043 5044 rq->stop = stop; 5045 } 5046 5047 #endif /* CONFIG_HOTPLUG_CPU */ 5048 5049 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5050 5051 static struct ctl_table sd_ctl_dir[] = { 5052 { 5053 .procname = "sched_domain", 5054 .mode = 0555, 5055 }, 5056 {} 5057 }; 5058 5059 static struct ctl_table sd_ctl_root[] = { 5060 { 5061 .procname = "kernel", 5062 .mode = 0555, 5063 .child = sd_ctl_dir, 5064 }, 5065 {} 5066 }; 5067 5068 static struct ctl_table *sd_alloc_ctl_entry(int n) 5069 { 5070 struct ctl_table *entry = 5071 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5072 5073 return entry; 5074 } 5075 5076 static void sd_free_ctl_entry(struct ctl_table **tablep) 5077 { 5078 struct ctl_table *entry; 5079 5080 /* 5081 * In the intermediate directories, both the child directory and 5082 * procname are dynamically allocated and could fail but the mode 5083 * will always be set. In the lowest directory the names are 5084 * static strings and all have proc handlers. 5085 */ 5086 for (entry = *tablep; entry->mode; entry++) { 5087 if (entry->child) 5088 sd_free_ctl_entry(&entry->child); 5089 if (entry->proc_handler == NULL) 5090 kfree(entry->procname); 5091 } 5092 5093 kfree(*tablep); 5094 *tablep = NULL; 5095 } 5096 5097 static int min_load_idx = 0; 5098 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5099 5100 static void 5101 set_table_entry(struct ctl_table *entry, 5102 const char *procname, void *data, int maxlen, 5103 umode_t mode, proc_handler *proc_handler, 5104 bool load_idx) 5105 { 5106 entry->procname = procname; 5107 entry->data = data; 5108 entry->maxlen = maxlen; 5109 entry->mode = mode; 5110 entry->proc_handler = proc_handler; 5111 5112 if (load_idx) { 5113 entry->extra1 = &min_load_idx; 5114 entry->extra2 = &max_load_idx; 5115 } 5116 } 5117 5118 static struct ctl_table * 5119 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5120 { 5121 struct ctl_table *table = sd_alloc_ctl_entry(14); 5122 5123 if (table == NULL) 5124 return NULL; 5125 5126 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5127 sizeof(long), 0644, proc_doulongvec_minmax, false); 5128 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5129 sizeof(long), 0644, proc_doulongvec_minmax, false); 5130 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5131 sizeof(int), 0644, proc_dointvec_minmax, true); 5132 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5133 sizeof(int), 0644, proc_dointvec_minmax, true); 5134 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5135 sizeof(int), 0644, proc_dointvec_minmax, true); 5136 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5137 sizeof(int), 0644, proc_dointvec_minmax, true); 5138 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5139 sizeof(int), 0644, proc_dointvec_minmax, true); 5140 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5141 sizeof(int), 0644, proc_dointvec_minmax, false); 5142 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5143 sizeof(int), 0644, proc_dointvec_minmax, false); 5144 set_table_entry(&table[9], "cache_nice_tries", 5145 &sd->cache_nice_tries, 5146 sizeof(int), 0644, proc_dointvec_minmax, false); 5147 set_table_entry(&table[10], "flags", &sd->flags, 5148 sizeof(int), 0644, proc_dointvec_minmax, false); 5149 set_table_entry(&table[11], "max_newidle_lb_cost", 5150 &sd->max_newidle_lb_cost, 5151 sizeof(long), 0644, proc_doulongvec_minmax, false); 5152 set_table_entry(&table[12], "name", sd->name, 5153 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5154 /* &table[13] is terminator */ 5155 5156 return table; 5157 } 5158 5159 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5160 { 5161 struct ctl_table *entry, *table; 5162 struct sched_domain *sd; 5163 int domain_num = 0, i; 5164 char buf[32]; 5165 5166 for_each_domain(cpu, sd) 5167 domain_num++; 5168 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5169 if (table == NULL) 5170 return NULL; 5171 5172 i = 0; 5173 for_each_domain(cpu, sd) { 5174 snprintf(buf, 32, "domain%d", i); 5175 entry->procname = kstrdup(buf, GFP_KERNEL); 5176 entry->mode = 0555; 5177 entry->child = sd_alloc_ctl_domain_table(sd); 5178 entry++; 5179 i++; 5180 } 5181 return table; 5182 } 5183 5184 static struct ctl_table_header *sd_sysctl_header; 5185 static void register_sched_domain_sysctl(void) 5186 { 5187 int i, cpu_num = num_possible_cpus(); 5188 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5189 char buf[32]; 5190 5191 WARN_ON(sd_ctl_dir[0].child); 5192 sd_ctl_dir[0].child = entry; 5193 5194 if (entry == NULL) 5195 return; 5196 5197 for_each_possible_cpu(i) { 5198 snprintf(buf, 32, "cpu%d", i); 5199 entry->procname = kstrdup(buf, GFP_KERNEL); 5200 entry->mode = 0555; 5201 entry->child = sd_alloc_ctl_cpu_table(i); 5202 entry++; 5203 } 5204 5205 WARN_ON(sd_sysctl_header); 5206 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5207 } 5208 5209 /* may be called multiple times per register */ 5210 static void unregister_sched_domain_sysctl(void) 5211 { 5212 if (sd_sysctl_header) 5213 unregister_sysctl_table(sd_sysctl_header); 5214 sd_sysctl_header = NULL; 5215 if (sd_ctl_dir[0].child) 5216 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5217 } 5218 #else 5219 static void register_sched_domain_sysctl(void) 5220 { 5221 } 5222 static void unregister_sched_domain_sysctl(void) 5223 { 5224 } 5225 #endif 5226 5227 static void set_rq_online(struct rq *rq) 5228 { 5229 if (!rq->online) { 5230 const struct sched_class *class; 5231 5232 cpumask_set_cpu(rq->cpu, rq->rd->online); 5233 rq->online = 1; 5234 5235 for_each_class(class) { 5236 if (class->rq_online) 5237 class->rq_online(rq); 5238 } 5239 } 5240 } 5241 5242 static void set_rq_offline(struct rq *rq) 5243 { 5244 if (rq->online) { 5245 const struct sched_class *class; 5246 5247 for_each_class(class) { 5248 if (class->rq_offline) 5249 class->rq_offline(rq); 5250 } 5251 5252 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5253 rq->online = 0; 5254 } 5255 } 5256 5257 /* 5258 * migration_call - callback that gets triggered when a CPU is added. 5259 * Here we can start up the necessary migration thread for the new CPU. 5260 */ 5261 static int 5262 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5263 { 5264 int cpu = (long)hcpu; 5265 unsigned long flags; 5266 struct rq *rq = cpu_rq(cpu); 5267 5268 switch (action & ~CPU_TASKS_FROZEN) { 5269 5270 case CPU_UP_PREPARE: 5271 rq->calc_load_update = calc_load_update; 5272 break; 5273 5274 case CPU_ONLINE: 5275 /* Update our root-domain */ 5276 raw_spin_lock_irqsave(&rq->lock, flags); 5277 if (rq->rd) { 5278 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5279 5280 set_rq_online(rq); 5281 } 5282 raw_spin_unlock_irqrestore(&rq->lock, flags); 5283 break; 5284 5285 #ifdef CONFIG_HOTPLUG_CPU 5286 case CPU_DYING: 5287 sched_ttwu_pending(); 5288 /* Update our root-domain */ 5289 raw_spin_lock_irqsave(&rq->lock, flags); 5290 if (rq->rd) { 5291 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5292 set_rq_offline(rq); 5293 } 5294 migrate_tasks(cpu); 5295 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5296 raw_spin_unlock_irqrestore(&rq->lock, flags); 5297 break; 5298 5299 case CPU_DEAD: 5300 calc_load_migrate(rq); 5301 break; 5302 #endif 5303 } 5304 5305 update_max_interval(); 5306 5307 return NOTIFY_OK; 5308 } 5309 5310 /* 5311 * Register at high priority so that task migration (migrate_all_tasks) 5312 * happens before everything else. This has to be lower priority than 5313 * the notifier in the perf_event subsystem, though. 5314 */ 5315 static struct notifier_block migration_notifier = { 5316 .notifier_call = migration_call, 5317 .priority = CPU_PRI_MIGRATION, 5318 }; 5319 5320 static void __cpuinit set_cpu_rq_start_time(void) 5321 { 5322 int cpu = smp_processor_id(); 5323 struct rq *rq = cpu_rq(cpu); 5324 rq->age_stamp = sched_clock_cpu(cpu); 5325 } 5326 5327 static int sched_cpu_active(struct notifier_block *nfb, 5328 unsigned long action, void *hcpu) 5329 { 5330 switch (action & ~CPU_TASKS_FROZEN) { 5331 case CPU_STARTING: 5332 set_cpu_rq_start_time(); 5333 return NOTIFY_OK; 5334 case CPU_DOWN_FAILED: 5335 set_cpu_active((long)hcpu, true); 5336 return NOTIFY_OK; 5337 default: 5338 return NOTIFY_DONE; 5339 } 5340 } 5341 5342 static int sched_cpu_inactive(struct notifier_block *nfb, 5343 unsigned long action, void *hcpu) 5344 { 5345 switch (action & ~CPU_TASKS_FROZEN) { 5346 case CPU_DOWN_PREPARE: 5347 set_cpu_active((long)hcpu, false); 5348 return NOTIFY_OK; 5349 default: 5350 return NOTIFY_DONE; 5351 } 5352 } 5353 5354 static int __init migration_init(void) 5355 { 5356 void *cpu = (void *)(long)smp_processor_id(); 5357 int err; 5358 5359 /* Initialize migration for the boot CPU */ 5360 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5361 BUG_ON(err == NOTIFY_BAD); 5362 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5363 register_cpu_notifier(&migration_notifier); 5364 5365 /* Register cpu active notifiers */ 5366 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5367 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5368 5369 return 0; 5370 } 5371 early_initcall(migration_init); 5372 #endif 5373 5374 #ifdef CONFIG_SMP 5375 5376 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5377 5378 #ifdef CONFIG_SCHED_DEBUG 5379 5380 static __read_mostly int sched_debug_enabled; 5381 5382 static int __init sched_debug_setup(char *str) 5383 { 5384 sched_debug_enabled = 1; 5385 5386 return 0; 5387 } 5388 early_param("sched_debug", sched_debug_setup); 5389 5390 static inline bool sched_debug(void) 5391 { 5392 return sched_debug_enabled; 5393 } 5394 5395 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5396 struct cpumask *groupmask) 5397 { 5398 struct sched_group *group = sd->groups; 5399 5400 cpumask_clear(groupmask); 5401 5402 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5403 5404 if (!(sd->flags & SD_LOAD_BALANCE)) { 5405 printk("does not load-balance\n"); 5406 if (sd->parent) 5407 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5408 " has parent"); 5409 return -1; 5410 } 5411 5412 printk(KERN_CONT "span %*pbl level %s\n", 5413 cpumask_pr_args(sched_domain_span(sd)), sd->name); 5414 5415 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5416 printk(KERN_ERR "ERROR: domain->span does not contain " 5417 "CPU%d\n", cpu); 5418 } 5419 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5420 printk(KERN_ERR "ERROR: domain->groups does not contain" 5421 " CPU%d\n", cpu); 5422 } 5423 5424 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5425 do { 5426 if (!group) { 5427 printk("\n"); 5428 printk(KERN_ERR "ERROR: group is NULL\n"); 5429 break; 5430 } 5431 5432 if (!cpumask_weight(sched_group_cpus(group))) { 5433 printk(KERN_CONT "\n"); 5434 printk(KERN_ERR "ERROR: empty group\n"); 5435 break; 5436 } 5437 5438 if (!(sd->flags & SD_OVERLAP) && 5439 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5440 printk(KERN_CONT "\n"); 5441 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5442 break; 5443 } 5444 5445 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5446 5447 printk(KERN_CONT " %*pbl", 5448 cpumask_pr_args(sched_group_cpus(group))); 5449 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5450 printk(KERN_CONT " (cpu_capacity = %d)", 5451 group->sgc->capacity); 5452 } 5453 5454 group = group->next; 5455 } while (group != sd->groups); 5456 printk(KERN_CONT "\n"); 5457 5458 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5459 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5460 5461 if (sd->parent && 5462 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5463 printk(KERN_ERR "ERROR: parent span is not a superset " 5464 "of domain->span\n"); 5465 return 0; 5466 } 5467 5468 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5469 { 5470 int level = 0; 5471 5472 if (!sched_debug_enabled) 5473 return; 5474 5475 if (!sd) { 5476 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5477 return; 5478 } 5479 5480 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5481 5482 for (;;) { 5483 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5484 break; 5485 level++; 5486 sd = sd->parent; 5487 if (!sd) 5488 break; 5489 } 5490 } 5491 #else /* !CONFIG_SCHED_DEBUG */ 5492 # define sched_domain_debug(sd, cpu) do { } while (0) 5493 static inline bool sched_debug(void) 5494 { 5495 return false; 5496 } 5497 #endif /* CONFIG_SCHED_DEBUG */ 5498 5499 static int sd_degenerate(struct sched_domain *sd) 5500 { 5501 if (cpumask_weight(sched_domain_span(sd)) == 1) 5502 return 1; 5503 5504 /* Following flags need at least 2 groups */ 5505 if (sd->flags & (SD_LOAD_BALANCE | 5506 SD_BALANCE_NEWIDLE | 5507 SD_BALANCE_FORK | 5508 SD_BALANCE_EXEC | 5509 SD_SHARE_CPUCAPACITY | 5510 SD_SHARE_PKG_RESOURCES | 5511 SD_SHARE_POWERDOMAIN)) { 5512 if (sd->groups != sd->groups->next) 5513 return 0; 5514 } 5515 5516 /* Following flags don't use groups */ 5517 if (sd->flags & (SD_WAKE_AFFINE)) 5518 return 0; 5519 5520 return 1; 5521 } 5522 5523 static int 5524 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5525 { 5526 unsigned long cflags = sd->flags, pflags = parent->flags; 5527 5528 if (sd_degenerate(parent)) 5529 return 1; 5530 5531 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5532 return 0; 5533 5534 /* Flags needing groups don't count if only 1 group in parent */ 5535 if (parent->groups == parent->groups->next) { 5536 pflags &= ~(SD_LOAD_BALANCE | 5537 SD_BALANCE_NEWIDLE | 5538 SD_BALANCE_FORK | 5539 SD_BALANCE_EXEC | 5540 SD_SHARE_CPUCAPACITY | 5541 SD_SHARE_PKG_RESOURCES | 5542 SD_PREFER_SIBLING | 5543 SD_SHARE_POWERDOMAIN); 5544 if (nr_node_ids == 1) 5545 pflags &= ~SD_SERIALIZE; 5546 } 5547 if (~cflags & pflags) 5548 return 0; 5549 5550 return 1; 5551 } 5552 5553 static void free_rootdomain(struct rcu_head *rcu) 5554 { 5555 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5556 5557 cpupri_cleanup(&rd->cpupri); 5558 cpudl_cleanup(&rd->cpudl); 5559 free_cpumask_var(rd->dlo_mask); 5560 free_cpumask_var(rd->rto_mask); 5561 free_cpumask_var(rd->online); 5562 free_cpumask_var(rd->span); 5563 kfree(rd); 5564 } 5565 5566 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5567 { 5568 struct root_domain *old_rd = NULL; 5569 unsigned long flags; 5570 5571 raw_spin_lock_irqsave(&rq->lock, flags); 5572 5573 if (rq->rd) { 5574 old_rd = rq->rd; 5575 5576 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5577 set_rq_offline(rq); 5578 5579 cpumask_clear_cpu(rq->cpu, old_rd->span); 5580 5581 /* 5582 * If we dont want to free the old_rd yet then 5583 * set old_rd to NULL to skip the freeing later 5584 * in this function: 5585 */ 5586 if (!atomic_dec_and_test(&old_rd->refcount)) 5587 old_rd = NULL; 5588 } 5589 5590 atomic_inc(&rd->refcount); 5591 rq->rd = rd; 5592 5593 cpumask_set_cpu(rq->cpu, rd->span); 5594 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5595 set_rq_online(rq); 5596 5597 raw_spin_unlock_irqrestore(&rq->lock, flags); 5598 5599 if (old_rd) 5600 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5601 } 5602 5603 static int init_rootdomain(struct root_domain *rd) 5604 { 5605 memset(rd, 0, sizeof(*rd)); 5606 5607 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5608 goto out; 5609 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5610 goto free_span; 5611 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5612 goto free_online; 5613 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5614 goto free_dlo_mask; 5615 5616 init_dl_bw(&rd->dl_bw); 5617 if (cpudl_init(&rd->cpudl) != 0) 5618 goto free_dlo_mask; 5619 5620 if (cpupri_init(&rd->cpupri) != 0) 5621 goto free_rto_mask; 5622 return 0; 5623 5624 free_rto_mask: 5625 free_cpumask_var(rd->rto_mask); 5626 free_dlo_mask: 5627 free_cpumask_var(rd->dlo_mask); 5628 free_online: 5629 free_cpumask_var(rd->online); 5630 free_span: 5631 free_cpumask_var(rd->span); 5632 out: 5633 return -ENOMEM; 5634 } 5635 5636 /* 5637 * By default the system creates a single root-domain with all cpus as 5638 * members (mimicking the global state we have today). 5639 */ 5640 struct root_domain def_root_domain; 5641 5642 static void init_defrootdomain(void) 5643 { 5644 init_rootdomain(&def_root_domain); 5645 5646 atomic_set(&def_root_domain.refcount, 1); 5647 } 5648 5649 static struct root_domain *alloc_rootdomain(void) 5650 { 5651 struct root_domain *rd; 5652 5653 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5654 if (!rd) 5655 return NULL; 5656 5657 if (init_rootdomain(rd) != 0) { 5658 kfree(rd); 5659 return NULL; 5660 } 5661 5662 return rd; 5663 } 5664 5665 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5666 { 5667 struct sched_group *tmp, *first; 5668 5669 if (!sg) 5670 return; 5671 5672 first = sg; 5673 do { 5674 tmp = sg->next; 5675 5676 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5677 kfree(sg->sgc); 5678 5679 kfree(sg); 5680 sg = tmp; 5681 } while (sg != first); 5682 } 5683 5684 static void free_sched_domain(struct rcu_head *rcu) 5685 { 5686 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5687 5688 /* 5689 * If its an overlapping domain it has private groups, iterate and 5690 * nuke them all. 5691 */ 5692 if (sd->flags & SD_OVERLAP) { 5693 free_sched_groups(sd->groups, 1); 5694 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5695 kfree(sd->groups->sgc); 5696 kfree(sd->groups); 5697 } 5698 kfree(sd); 5699 } 5700 5701 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5702 { 5703 call_rcu(&sd->rcu, free_sched_domain); 5704 } 5705 5706 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5707 { 5708 for (; sd; sd = sd->parent) 5709 destroy_sched_domain(sd, cpu); 5710 } 5711 5712 /* 5713 * Keep a special pointer to the highest sched_domain that has 5714 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5715 * allows us to avoid some pointer chasing select_idle_sibling(). 5716 * 5717 * Also keep a unique ID per domain (we use the first cpu number in 5718 * the cpumask of the domain), this allows us to quickly tell if 5719 * two cpus are in the same cache domain, see cpus_share_cache(). 5720 */ 5721 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5722 DEFINE_PER_CPU(int, sd_llc_size); 5723 DEFINE_PER_CPU(int, sd_llc_id); 5724 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5725 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5726 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5727 5728 static void update_top_cache_domain(int cpu) 5729 { 5730 struct sched_domain *sd; 5731 struct sched_domain *busy_sd = NULL; 5732 int id = cpu; 5733 int size = 1; 5734 5735 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5736 if (sd) { 5737 id = cpumask_first(sched_domain_span(sd)); 5738 size = cpumask_weight(sched_domain_span(sd)); 5739 busy_sd = sd->parent; /* sd_busy */ 5740 } 5741 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5742 5743 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5744 per_cpu(sd_llc_size, cpu) = size; 5745 per_cpu(sd_llc_id, cpu) = id; 5746 5747 sd = lowest_flag_domain(cpu, SD_NUMA); 5748 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5749 5750 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5751 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5752 } 5753 5754 /* 5755 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5756 * hold the hotplug lock. 5757 */ 5758 static void 5759 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5760 { 5761 struct rq *rq = cpu_rq(cpu); 5762 struct sched_domain *tmp; 5763 5764 /* Remove the sched domains which do not contribute to scheduling. */ 5765 for (tmp = sd; tmp; ) { 5766 struct sched_domain *parent = tmp->parent; 5767 if (!parent) 5768 break; 5769 5770 if (sd_parent_degenerate(tmp, parent)) { 5771 tmp->parent = parent->parent; 5772 if (parent->parent) 5773 parent->parent->child = tmp; 5774 /* 5775 * Transfer SD_PREFER_SIBLING down in case of a 5776 * degenerate parent; the spans match for this 5777 * so the property transfers. 5778 */ 5779 if (parent->flags & SD_PREFER_SIBLING) 5780 tmp->flags |= SD_PREFER_SIBLING; 5781 destroy_sched_domain(parent, cpu); 5782 } else 5783 tmp = tmp->parent; 5784 } 5785 5786 if (sd && sd_degenerate(sd)) { 5787 tmp = sd; 5788 sd = sd->parent; 5789 destroy_sched_domain(tmp, cpu); 5790 if (sd) 5791 sd->child = NULL; 5792 } 5793 5794 sched_domain_debug(sd, cpu); 5795 5796 rq_attach_root(rq, rd); 5797 tmp = rq->sd; 5798 rcu_assign_pointer(rq->sd, sd); 5799 destroy_sched_domains(tmp, cpu); 5800 5801 update_top_cache_domain(cpu); 5802 } 5803 5804 /* Setup the mask of cpus configured for isolated domains */ 5805 static int __init isolated_cpu_setup(char *str) 5806 { 5807 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5808 cpulist_parse(str, cpu_isolated_map); 5809 return 1; 5810 } 5811 5812 __setup("isolcpus=", isolated_cpu_setup); 5813 5814 struct s_data { 5815 struct sched_domain ** __percpu sd; 5816 struct root_domain *rd; 5817 }; 5818 5819 enum s_alloc { 5820 sa_rootdomain, 5821 sa_sd, 5822 sa_sd_storage, 5823 sa_none, 5824 }; 5825 5826 /* 5827 * Build an iteration mask that can exclude certain CPUs from the upwards 5828 * domain traversal. 5829 * 5830 * Asymmetric node setups can result in situations where the domain tree is of 5831 * unequal depth, make sure to skip domains that already cover the entire 5832 * range. 5833 * 5834 * In that case build_sched_domains() will have terminated the iteration early 5835 * and our sibling sd spans will be empty. Domains should always include the 5836 * cpu they're built on, so check that. 5837 * 5838 */ 5839 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5840 { 5841 const struct cpumask *span = sched_domain_span(sd); 5842 struct sd_data *sdd = sd->private; 5843 struct sched_domain *sibling; 5844 int i; 5845 5846 for_each_cpu(i, span) { 5847 sibling = *per_cpu_ptr(sdd->sd, i); 5848 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5849 continue; 5850 5851 cpumask_set_cpu(i, sched_group_mask(sg)); 5852 } 5853 } 5854 5855 /* 5856 * Return the canonical balance cpu for this group, this is the first cpu 5857 * of this group that's also in the iteration mask. 5858 */ 5859 int group_balance_cpu(struct sched_group *sg) 5860 { 5861 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5862 } 5863 5864 static int 5865 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5866 { 5867 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5868 const struct cpumask *span = sched_domain_span(sd); 5869 struct cpumask *covered = sched_domains_tmpmask; 5870 struct sd_data *sdd = sd->private; 5871 struct sched_domain *sibling; 5872 int i; 5873 5874 cpumask_clear(covered); 5875 5876 for_each_cpu(i, span) { 5877 struct cpumask *sg_span; 5878 5879 if (cpumask_test_cpu(i, covered)) 5880 continue; 5881 5882 sibling = *per_cpu_ptr(sdd->sd, i); 5883 5884 /* See the comment near build_group_mask(). */ 5885 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5886 continue; 5887 5888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5889 GFP_KERNEL, cpu_to_node(cpu)); 5890 5891 if (!sg) 5892 goto fail; 5893 5894 sg_span = sched_group_cpus(sg); 5895 if (sibling->child) 5896 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5897 else 5898 cpumask_set_cpu(i, sg_span); 5899 5900 cpumask_or(covered, covered, sg_span); 5901 5902 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5903 if (atomic_inc_return(&sg->sgc->ref) == 1) 5904 build_group_mask(sd, sg); 5905 5906 /* 5907 * Initialize sgc->capacity such that even if we mess up the 5908 * domains and no possible iteration will get us here, we won't 5909 * die on a /0 trap. 5910 */ 5911 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5912 5913 /* 5914 * Make sure the first group of this domain contains the 5915 * canonical balance cpu. Otherwise the sched_domain iteration 5916 * breaks. See update_sg_lb_stats(). 5917 */ 5918 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5919 group_balance_cpu(sg) == cpu) 5920 groups = sg; 5921 5922 if (!first) 5923 first = sg; 5924 if (last) 5925 last->next = sg; 5926 last = sg; 5927 last->next = first; 5928 } 5929 sd->groups = groups; 5930 5931 return 0; 5932 5933 fail: 5934 free_sched_groups(first, 0); 5935 5936 return -ENOMEM; 5937 } 5938 5939 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5940 { 5941 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5942 struct sched_domain *child = sd->child; 5943 5944 if (child) 5945 cpu = cpumask_first(sched_domain_span(child)); 5946 5947 if (sg) { 5948 *sg = *per_cpu_ptr(sdd->sg, cpu); 5949 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5950 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5951 } 5952 5953 return cpu; 5954 } 5955 5956 /* 5957 * build_sched_groups will build a circular linked list of the groups 5958 * covered by the given span, and will set each group's ->cpumask correctly, 5959 * and ->cpu_capacity to 0. 5960 * 5961 * Assumes the sched_domain tree is fully constructed 5962 */ 5963 static int 5964 build_sched_groups(struct sched_domain *sd, int cpu) 5965 { 5966 struct sched_group *first = NULL, *last = NULL; 5967 struct sd_data *sdd = sd->private; 5968 const struct cpumask *span = sched_domain_span(sd); 5969 struct cpumask *covered; 5970 int i; 5971 5972 get_group(cpu, sdd, &sd->groups); 5973 atomic_inc(&sd->groups->ref); 5974 5975 if (cpu != cpumask_first(span)) 5976 return 0; 5977 5978 lockdep_assert_held(&sched_domains_mutex); 5979 covered = sched_domains_tmpmask; 5980 5981 cpumask_clear(covered); 5982 5983 for_each_cpu(i, span) { 5984 struct sched_group *sg; 5985 int group, j; 5986 5987 if (cpumask_test_cpu(i, covered)) 5988 continue; 5989 5990 group = get_group(i, sdd, &sg); 5991 cpumask_setall(sched_group_mask(sg)); 5992 5993 for_each_cpu(j, span) { 5994 if (get_group(j, sdd, NULL) != group) 5995 continue; 5996 5997 cpumask_set_cpu(j, covered); 5998 cpumask_set_cpu(j, sched_group_cpus(sg)); 5999 } 6000 6001 if (!first) 6002 first = sg; 6003 if (last) 6004 last->next = sg; 6005 last = sg; 6006 } 6007 last->next = first; 6008 6009 return 0; 6010 } 6011 6012 /* 6013 * Initialize sched groups cpu_capacity. 6014 * 6015 * cpu_capacity indicates the capacity of sched group, which is used while 6016 * distributing the load between different sched groups in a sched domain. 6017 * Typically cpu_capacity for all the groups in a sched domain will be same 6018 * unless there are asymmetries in the topology. If there are asymmetries, 6019 * group having more cpu_capacity will pickup more load compared to the 6020 * group having less cpu_capacity. 6021 */ 6022 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 6023 { 6024 struct sched_group *sg = sd->groups; 6025 6026 WARN_ON(!sg); 6027 6028 do { 6029 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6030 sg = sg->next; 6031 } while (sg != sd->groups); 6032 6033 if (cpu != group_balance_cpu(sg)) 6034 return; 6035 6036 update_group_capacity(sd, cpu); 6037 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6038 } 6039 6040 /* 6041 * Initializers for schedule domains 6042 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6043 */ 6044 6045 static int default_relax_domain_level = -1; 6046 int sched_domain_level_max; 6047 6048 static int __init setup_relax_domain_level(char *str) 6049 { 6050 if (kstrtoint(str, 0, &default_relax_domain_level)) 6051 pr_warn("Unable to set relax_domain_level\n"); 6052 6053 return 1; 6054 } 6055 __setup("relax_domain_level=", setup_relax_domain_level); 6056 6057 static void set_domain_attribute(struct sched_domain *sd, 6058 struct sched_domain_attr *attr) 6059 { 6060 int request; 6061 6062 if (!attr || attr->relax_domain_level < 0) { 6063 if (default_relax_domain_level < 0) 6064 return; 6065 else 6066 request = default_relax_domain_level; 6067 } else 6068 request = attr->relax_domain_level; 6069 if (request < sd->level) { 6070 /* turn off idle balance on this domain */ 6071 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6072 } else { 6073 /* turn on idle balance on this domain */ 6074 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6075 } 6076 } 6077 6078 static void __sdt_free(const struct cpumask *cpu_map); 6079 static int __sdt_alloc(const struct cpumask *cpu_map); 6080 6081 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6082 const struct cpumask *cpu_map) 6083 { 6084 switch (what) { 6085 case sa_rootdomain: 6086 if (!atomic_read(&d->rd->refcount)) 6087 free_rootdomain(&d->rd->rcu); /* fall through */ 6088 case sa_sd: 6089 free_percpu(d->sd); /* fall through */ 6090 case sa_sd_storage: 6091 __sdt_free(cpu_map); /* fall through */ 6092 case sa_none: 6093 break; 6094 } 6095 } 6096 6097 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6098 const struct cpumask *cpu_map) 6099 { 6100 memset(d, 0, sizeof(*d)); 6101 6102 if (__sdt_alloc(cpu_map)) 6103 return sa_sd_storage; 6104 d->sd = alloc_percpu(struct sched_domain *); 6105 if (!d->sd) 6106 return sa_sd_storage; 6107 d->rd = alloc_rootdomain(); 6108 if (!d->rd) 6109 return sa_sd; 6110 return sa_rootdomain; 6111 } 6112 6113 /* 6114 * NULL the sd_data elements we've used to build the sched_domain and 6115 * sched_group structure so that the subsequent __free_domain_allocs() 6116 * will not free the data we're using. 6117 */ 6118 static void claim_allocations(int cpu, struct sched_domain *sd) 6119 { 6120 struct sd_data *sdd = sd->private; 6121 6122 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6123 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6124 6125 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6126 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6127 6128 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6129 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6130 } 6131 6132 #ifdef CONFIG_NUMA 6133 static int sched_domains_numa_levels; 6134 enum numa_topology_type sched_numa_topology_type; 6135 static int *sched_domains_numa_distance; 6136 int sched_max_numa_distance; 6137 static struct cpumask ***sched_domains_numa_masks; 6138 static int sched_domains_curr_level; 6139 #endif 6140 6141 /* 6142 * SD_flags allowed in topology descriptions. 6143 * 6144 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6145 * SD_SHARE_PKG_RESOURCES - describes shared caches 6146 * SD_NUMA - describes NUMA topologies 6147 * SD_SHARE_POWERDOMAIN - describes shared power domain 6148 * 6149 * Odd one out: 6150 * SD_ASYM_PACKING - describes SMT quirks 6151 */ 6152 #define TOPOLOGY_SD_FLAGS \ 6153 (SD_SHARE_CPUCAPACITY | \ 6154 SD_SHARE_PKG_RESOURCES | \ 6155 SD_NUMA | \ 6156 SD_ASYM_PACKING | \ 6157 SD_SHARE_POWERDOMAIN) 6158 6159 static struct sched_domain * 6160 sd_init(struct sched_domain_topology_level *tl, int cpu) 6161 { 6162 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6163 int sd_weight, sd_flags = 0; 6164 6165 #ifdef CONFIG_NUMA 6166 /* 6167 * Ugly hack to pass state to sd_numa_mask()... 6168 */ 6169 sched_domains_curr_level = tl->numa_level; 6170 #endif 6171 6172 sd_weight = cpumask_weight(tl->mask(cpu)); 6173 6174 if (tl->sd_flags) 6175 sd_flags = (*tl->sd_flags)(); 6176 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6177 "wrong sd_flags in topology description\n")) 6178 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6179 6180 *sd = (struct sched_domain){ 6181 .min_interval = sd_weight, 6182 .max_interval = 2*sd_weight, 6183 .busy_factor = 32, 6184 .imbalance_pct = 125, 6185 6186 .cache_nice_tries = 0, 6187 .busy_idx = 0, 6188 .idle_idx = 0, 6189 .newidle_idx = 0, 6190 .wake_idx = 0, 6191 .forkexec_idx = 0, 6192 6193 .flags = 1*SD_LOAD_BALANCE 6194 | 1*SD_BALANCE_NEWIDLE 6195 | 1*SD_BALANCE_EXEC 6196 | 1*SD_BALANCE_FORK 6197 | 0*SD_BALANCE_WAKE 6198 | 1*SD_WAKE_AFFINE 6199 | 0*SD_SHARE_CPUCAPACITY 6200 | 0*SD_SHARE_PKG_RESOURCES 6201 | 0*SD_SERIALIZE 6202 | 0*SD_PREFER_SIBLING 6203 | 0*SD_NUMA 6204 | sd_flags 6205 , 6206 6207 .last_balance = jiffies, 6208 .balance_interval = sd_weight, 6209 .smt_gain = 0, 6210 .max_newidle_lb_cost = 0, 6211 .next_decay_max_lb_cost = jiffies, 6212 #ifdef CONFIG_SCHED_DEBUG 6213 .name = tl->name, 6214 #endif 6215 }; 6216 6217 /* 6218 * Convert topological properties into behaviour. 6219 */ 6220 6221 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6222 sd->flags |= SD_PREFER_SIBLING; 6223 sd->imbalance_pct = 110; 6224 sd->smt_gain = 1178; /* ~15% */ 6225 6226 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6227 sd->imbalance_pct = 117; 6228 sd->cache_nice_tries = 1; 6229 sd->busy_idx = 2; 6230 6231 #ifdef CONFIG_NUMA 6232 } else if (sd->flags & SD_NUMA) { 6233 sd->cache_nice_tries = 2; 6234 sd->busy_idx = 3; 6235 sd->idle_idx = 2; 6236 6237 sd->flags |= SD_SERIALIZE; 6238 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6239 sd->flags &= ~(SD_BALANCE_EXEC | 6240 SD_BALANCE_FORK | 6241 SD_WAKE_AFFINE); 6242 } 6243 6244 #endif 6245 } else { 6246 sd->flags |= SD_PREFER_SIBLING; 6247 sd->cache_nice_tries = 1; 6248 sd->busy_idx = 2; 6249 sd->idle_idx = 1; 6250 } 6251 6252 sd->private = &tl->data; 6253 6254 return sd; 6255 } 6256 6257 /* 6258 * Topology list, bottom-up. 6259 */ 6260 static struct sched_domain_topology_level default_topology[] = { 6261 #ifdef CONFIG_SCHED_SMT 6262 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6263 #endif 6264 #ifdef CONFIG_SCHED_MC 6265 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6266 #endif 6267 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6268 { NULL, }, 6269 }; 6270 6271 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6272 6273 #define for_each_sd_topology(tl) \ 6274 for (tl = sched_domain_topology; tl->mask; tl++) 6275 6276 void set_sched_topology(struct sched_domain_topology_level *tl) 6277 { 6278 sched_domain_topology = tl; 6279 } 6280 6281 #ifdef CONFIG_NUMA 6282 6283 static const struct cpumask *sd_numa_mask(int cpu) 6284 { 6285 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6286 } 6287 6288 static void sched_numa_warn(const char *str) 6289 { 6290 static int done = false; 6291 int i,j; 6292 6293 if (done) 6294 return; 6295 6296 done = true; 6297 6298 printk(KERN_WARNING "ERROR: %s\n\n", str); 6299 6300 for (i = 0; i < nr_node_ids; i++) { 6301 printk(KERN_WARNING " "); 6302 for (j = 0; j < nr_node_ids; j++) 6303 printk(KERN_CONT "%02d ", node_distance(i,j)); 6304 printk(KERN_CONT "\n"); 6305 } 6306 printk(KERN_WARNING "\n"); 6307 } 6308 6309 bool find_numa_distance(int distance) 6310 { 6311 int i; 6312 6313 if (distance == node_distance(0, 0)) 6314 return true; 6315 6316 for (i = 0; i < sched_domains_numa_levels; i++) { 6317 if (sched_domains_numa_distance[i] == distance) 6318 return true; 6319 } 6320 6321 return false; 6322 } 6323 6324 /* 6325 * A system can have three types of NUMA topology: 6326 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 6327 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 6328 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 6329 * 6330 * The difference between a glueless mesh topology and a backplane 6331 * topology lies in whether communication between not directly 6332 * connected nodes goes through intermediary nodes (where programs 6333 * could run), or through backplane controllers. This affects 6334 * placement of programs. 6335 * 6336 * The type of topology can be discerned with the following tests: 6337 * - If the maximum distance between any nodes is 1 hop, the system 6338 * is directly connected. 6339 * - If for two nodes A and B, located N > 1 hops away from each other, 6340 * there is an intermediary node C, which is < N hops away from both 6341 * nodes A and B, the system is a glueless mesh. 6342 */ 6343 static void init_numa_topology_type(void) 6344 { 6345 int a, b, c, n; 6346 6347 n = sched_max_numa_distance; 6348 6349 if (n <= 1) 6350 sched_numa_topology_type = NUMA_DIRECT; 6351 6352 for_each_online_node(a) { 6353 for_each_online_node(b) { 6354 /* Find two nodes furthest removed from each other. */ 6355 if (node_distance(a, b) < n) 6356 continue; 6357 6358 /* Is there an intermediary node between a and b? */ 6359 for_each_online_node(c) { 6360 if (node_distance(a, c) < n && 6361 node_distance(b, c) < n) { 6362 sched_numa_topology_type = 6363 NUMA_GLUELESS_MESH; 6364 return; 6365 } 6366 } 6367 6368 sched_numa_topology_type = NUMA_BACKPLANE; 6369 return; 6370 } 6371 } 6372 } 6373 6374 static void sched_init_numa(void) 6375 { 6376 int next_distance, curr_distance = node_distance(0, 0); 6377 struct sched_domain_topology_level *tl; 6378 int level = 0; 6379 int i, j, k; 6380 6381 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6382 if (!sched_domains_numa_distance) 6383 return; 6384 6385 /* 6386 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6387 * unique distances in the node_distance() table. 6388 * 6389 * Assumes node_distance(0,j) includes all distances in 6390 * node_distance(i,j) in order to avoid cubic time. 6391 */ 6392 next_distance = curr_distance; 6393 for (i = 0; i < nr_node_ids; i++) { 6394 for (j = 0; j < nr_node_ids; j++) { 6395 for (k = 0; k < nr_node_ids; k++) { 6396 int distance = node_distance(i, k); 6397 6398 if (distance > curr_distance && 6399 (distance < next_distance || 6400 next_distance == curr_distance)) 6401 next_distance = distance; 6402 6403 /* 6404 * While not a strong assumption it would be nice to know 6405 * about cases where if node A is connected to B, B is not 6406 * equally connected to A. 6407 */ 6408 if (sched_debug() && node_distance(k, i) != distance) 6409 sched_numa_warn("Node-distance not symmetric"); 6410 6411 if (sched_debug() && i && !find_numa_distance(distance)) 6412 sched_numa_warn("Node-0 not representative"); 6413 } 6414 if (next_distance != curr_distance) { 6415 sched_domains_numa_distance[level++] = next_distance; 6416 sched_domains_numa_levels = level; 6417 curr_distance = next_distance; 6418 } else break; 6419 } 6420 6421 /* 6422 * In case of sched_debug() we verify the above assumption. 6423 */ 6424 if (!sched_debug()) 6425 break; 6426 } 6427 6428 if (!level) 6429 return; 6430 6431 /* 6432 * 'level' contains the number of unique distances, excluding the 6433 * identity distance node_distance(i,i). 6434 * 6435 * The sched_domains_numa_distance[] array includes the actual distance 6436 * numbers. 6437 */ 6438 6439 /* 6440 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6441 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6442 * the array will contain less then 'level' members. This could be 6443 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6444 * in other functions. 6445 * 6446 * We reset it to 'level' at the end of this function. 6447 */ 6448 sched_domains_numa_levels = 0; 6449 6450 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6451 if (!sched_domains_numa_masks) 6452 return; 6453 6454 /* 6455 * Now for each level, construct a mask per node which contains all 6456 * cpus of nodes that are that many hops away from us. 6457 */ 6458 for (i = 0; i < level; i++) { 6459 sched_domains_numa_masks[i] = 6460 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6461 if (!sched_domains_numa_masks[i]) 6462 return; 6463 6464 for (j = 0; j < nr_node_ids; j++) { 6465 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6466 if (!mask) 6467 return; 6468 6469 sched_domains_numa_masks[i][j] = mask; 6470 6471 for (k = 0; k < nr_node_ids; k++) { 6472 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6473 continue; 6474 6475 cpumask_or(mask, mask, cpumask_of_node(k)); 6476 } 6477 } 6478 } 6479 6480 /* Compute default topology size */ 6481 for (i = 0; sched_domain_topology[i].mask; i++); 6482 6483 tl = kzalloc((i + level + 1) * 6484 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6485 if (!tl) 6486 return; 6487 6488 /* 6489 * Copy the default topology bits.. 6490 */ 6491 for (i = 0; sched_domain_topology[i].mask; i++) 6492 tl[i] = sched_domain_topology[i]; 6493 6494 /* 6495 * .. and append 'j' levels of NUMA goodness. 6496 */ 6497 for (j = 0; j < level; i++, j++) { 6498 tl[i] = (struct sched_domain_topology_level){ 6499 .mask = sd_numa_mask, 6500 .sd_flags = cpu_numa_flags, 6501 .flags = SDTL_OVERLAP, 6502 .numa_level = j, 6503 SD_INIT_NAME(NUMA) 6504 }; 6505 } 6506 6507 sched_domain_topology = tl; 6508 6509 sched_domains_numa_levels = level; 6510 sched_max_numa_distance = sched_domains_numa_distance[level - 1]; 6511 6512 init_numa_topology_type(); 6513 } 6514 6515 static void sched_domains_numa_masks_set(int cpu) 6516 { 6517 int i, j; 6518 int node = cpu_to_node(cpu); 6519 6520 for (i = 0; i < sched_domains_numa_levels; i++) { 6521 for (j = 0; j < nr_node_ids; j++) { 6522 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6523 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6524 } 6525 } 6526 } 6527 6528 static void sched_domains_numa_masks_clear(int cpu) 6529 { 6530 int i, j; 6531 for (i = 0; i < sched_domains_numa_levels; i++) { 6532 for (j = 0; j < nr_node_ids; j++) 6533 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6534 } 6535 } 6536 6537 /* 6538 * Update sched_domains_numa_masks[level][node] array when new cpus 6539 * are onlined. 6540 */ 6541 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6542 unsigned long action, 6543 void *hcpu) 6544 { 6545 int cpu = (long)hcpu; 6546 6547 switch (action & ~CPU_TASKS_FROZEN) { 6548 case CPU_ONLINE: 6549 sched_domains_numa_masks_set(cpu); 6550 break; 6551 6552 case CPU_DEAD: 6553 sched_domains_numa_masks_clear(cpu); 6554 break; 6555 6556 default: 6557 return NOTIFY_DONE; 6558 } 6559 6560 return NOTIFY_OK; 6561 } 6562 #else 6563 static inline void sched_init_numa(void) 6564 { 6565 } 6566 6567 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6568 unsigned long action, 6569 void *hcpu) 6570 { 6571 return 0; 6572 } 6573 #endif /* CONFIG_NUMA */ 6574 6575 static int __sdt_alloc(const struct cpumask *cpu_map) 6576 { 6577 struct sched_domain_topology_level *tl; 6578 int j; 6579 6580 for_each_sd_topology(tl) { 6581 struct sd_data *sdd = &tl->data; 6582 6583 sdd->sd = alloc_percpu(struct sched_domain *); 6584 if (!sdd->sd) 6585 return -ENOMEM; 6586 6587 sdd->sg = alloc_percpu(struct sched_group *); 6588 if (!sdd->sg) 6589 return -ENOMEM; 6590 6591 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6592 if (!sdd->sgc) 6593 return -ENOMEM; 6594 6595 for_each_cpu(j, cpu_map) { 6596 struct sched_domain *sd; 6597 struct sched_group *sg; 6598 struct sched_group_capacity *sgc; 6599 6600 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6601 GFP_KERNEL, cpu_to_node(j)); 6602 if (!sd) 6603 return -ENOMEM; 6604 6605 *per_cpu_ptr(sdd->sd, j) = sd; 6606 6607 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6608 GFP_KERNEL, cpu_to_node(j)); 6609 if (!sg) 6610 return -ENOMEM; 6611 6612 sg->next = sg; 6613 6614 *per_cpu_ptr(sdd->sg, j) = sg; 6615 6616 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6617 GFP_KERNEL, cpu_to_node(j)); 6618 if (!sgc) 6619 return -ENOMEM; 6620 6621 *per_cpu_ptr(sdd->sgc, j) = sgc; 6622 } 6623 } 6624 6625 return 0; 6626 } 6627 6628 static void __sdt_free(const struct cpumask *cpu_map) 6629 { 6630 struct sched_domain_topology_level *tl; 6631 int j; 6632 6633 for_each_sd_topology(tl) { 6634 struct sd_data *sdd = &tl->data; 6635 6636 for_each_cpu(j, cpu_map) { 6637 struct sched_domain *sd; 6638 6639 if (sdd->sd) { 6640 sd = *per_cpu_ptr(sdd->sd, j); 6641 if (sd && (sd->flags & SD_OVERLAP)) 6642 free_sched_groups(sd->groups, 0); 6643 kfree(*per_cpu_ptr(sdd->sd, j)); 6644 } 6645 6646 if (sdd->sg) 6647 kfree(*per_cpu_ptr(sdd->sg, j)); 6648 if (sdd->sgc) 6649 kfree(*per_cpu_ptr(sdd->sgc, j)); 6650 } 6651 free_percpu(sdd->sd); 6652 sdd->sd = NULL; 6653 free_percpu(sdd->sg); 6654 sdd->sg = NULL; 6655 free_percpu(sdd->sgc); 6656 sdd->sgc = NULL; 6657 } 6658 } 6659 6660 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6661 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6662 struct sched_domain *child, int cpu) 6663 { 6664 struct sched_domain *sd = sd_init(tl, cpu); 6665 if (!sd) 6666 return child; 6667 6668 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6669 if (child) { 6670 sd->level = child->level + 1; 6671 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6672 child->parent = sd; 6673 sd->child = child; 6674 6675 if (!cpumask_subset(sched_domain_span(child), 6676 sched_domain_span(sd))) { 6677 pr_err("BUG: arch topology borken\n"); 6678 #ifdef CONFIG_SCHED_DEBUG 6679 pr_err(" the %s domain not a subset of the %s domain\n", 6680 child->name, sd->name); 6681 #endif 6682 /* Fixup, ensure @sd has at least @child cpus. */ 6683 cpumask_or(sched_domain_span(sd), 6684 sched_domain_span(sd), 6685 sched_domain_span(child)); 6686 } 6687 6688 } 6689 set_domain_attribute(sd, attr); 6690 6691 return sd; 6692 } 6693 6694 /* 6695 * Build sched domains for a given set of cpus and attach the sched domains 6696 * to the individual cpus 6697 */ 6698 static int build_sched_domains(const struct cpumask *cpu_map, 6699 struct sched_domain_attr *attr) 6700 { 6701 enum s_alloc alloc_state; 6702 struct sched_domain *sd; 6703 struct s_data d; 6704 int i, ret = -ENOMEM; 6705 6706 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6707 if (alloc_state != sa_rootdomain) 6708 goto error; 6709 6710 /* Set up domains for cpus specified by the cpu_map. */ 6711 for_each_cpu(i, cpu_map) { 6712 struct sched_domain_topology_level *tl; 6713 6714 sd = NULL; 6715 for_each_sd_topology(tl) { 6716 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6717 if (tl == sched_domain_topology) 6718 *per_cpu_ptr(d.sd, i) = sd; 6719 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6720 sd->flags |= SD_OVERLAP; 6721 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6722 break; 6723 } 6724 } 6725 6726 /* Build the groups for the domains */ 6727 for_each_cpu(i, cpu_map) { 6728 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6729 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6730 if (sd->flags & SD_OVERLAP) { 6731 if (build_overlap_sched_groups(sd, i)) 6732 goto error; 6733 } else { 6734 if (build_sched_groups(sd, i)) 6735 goto error; 6736 } 6737 } 6738 } 6739 6740 /* Calculate CPU capacity for physical packages and nodes */ 6741 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6742 if (!cpumask_test_cpu(i, cpu_map)) 6743 continue; 6744 6745 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6746 claim_allocations(i, sd); 6747 init_sched_groups_capacity(i, sd); 6748 } 6749 } 6750 6751 /* Attach the domains */ 6752 rcu_read_lock(); 6753 for_each_cpu(i, cpu_map) { 6754 sd = *per_cpu_ptr(d.sd, i); 6755 cpu_attach_domain(sd, d.rd, i); 6756 } 6757 rcu_read_unlock(); 6758 6759 ret = 0; 6760 error: 6761 __free_domain_allocs(&d, alloc_state, cpu_map); 6762 return ret; 6763 } 6764 6765 static cpumask_var_t *doms_cur; /* current sched domains */ 6766 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6767 static struct sched_domain_attr *dattr_cur; 6768 /* attribues of custom domains in 'doms_cur' */ 6769 6770 /* 6771 * Special case: If a kmalloc of a doms_cur partition (array of 6772 * cpumask) fails, then fallback to a single sched domain, 6773 * as determined by the single cpumask fallback_doms. 6774 */ 6775 static cpumask_var_t fallback_doms; 6776 6777 /* 6778 * arch_update_cpu_topology lets virtualized architectures update the 6779 * cpu core maps. It is supposed to return 1 if the topology changed 6780 * or 0 if it stayed the same. 6781 */ 6782 int __weak arch_update_cpu_topology(void) 6783 { 6784 return 0; 6785 } 6786 6787 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6788 { 6789 int i; 6790 cpumask_var_t *doms; 6791 6792 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6793 if (!doms) 6794 return NULL; 6795 for (i = 0; i < ndoms; i++) { 6796 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6797 free_sched_domains(doms, i); 6798 return NULL; 6799 } 6800 } 6801 return doms; 6802 } 6803 6804 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6805 { 6806 unsigned int i; 6807 for (i = 0; i < ndoms; i++) 6808 free_cpumask_var(doms[i]); 6809 kfree(doms); 6810 } 6811 6812 /* 6813 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6814 * For now this just excludes isolated cpus, but could be used to 6815 * exclude other special cases in the future. 6816 */ 6817 static int init_sched_domains(const struct cpumask *cpu_map) 6818 { 6819 int err; 6820 6821 arch_update_cpu_topology(); 6822 ndoms_cur = 1; 6823 doms_cur = alloc_sched_domains(ndoms_cur); 6824 if (!doms_cur) 6825 doms_cur = &fallback_doms; 6826 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6827 err = build_sched_domains(doms_cur[0], NULL); 6828 register_sched_domain_sysctl(); 6829 6830 return err; 6831 } 6832 6833 /* 6834 * Detach sched domains from a group of cpus specified in cpu_map 6835 * These cpus will now be attached to the NULL domain 6836 */ 6837 static void detach_destroy_domains(const struct cpumask *cpu_map) 6838 { 6839 int i; 6840 6841 rcu_read_lock(); 6842 for_each_cpu(i, cpu_map) 6843 cpu_attach_domain(NULL, &def_root_domain, i); 6844 rcu_read_unlock(); 6845 } 6846 6847 /* handle null as "default" */ 6848 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6849 struct sched_domain_attr *new, int idx_new) 6850 { 6851 struct sched_domain_attr tmp; 6852 6853 /* fast path */ 6854 if (!new && !cur) 6855 return 1; 6856 6857 tmp = SD_ATTR_INIT; 6858 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6859 new ? (new + idx_new) : &tmp, 6860 sizeof(struct sched_domain_attr)); 6861 } 6862 6863 /* 6864 * Partition sched domains as specified by the 'ndoms_new' 6865 * cpumasks in the array doms_new[] of cpumasks. This compares 6866 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6867 * It destroys each deleted domain and builds each new domain. 6868 * 6869 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6870 * The masks don't intersect (don't overlap.) We should setup one 6871 * sched domain for each mask. CPUs not in any of the cpumasks will 6872 * not be load balanced. If the same cpumask appears both in the 6873 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6874 * it as it is. 6875 * 6876 * The passed in 'doms_new' should be allocated using 6877 * alloc_sched_domains. This routine takes ownership of it and will 6878 * free_sched_domains it when done with it. If the caller failed the 6879 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6880 * and partition_sched_domains() will fallback to the single partition 6881 * 'fallback_doms', it also forces the domains to be rebuilt. 6882 * 6883 * If doms_new == NULL it will be replaced with cpu_online_mask. 6884 * ndoms_new == 0 is a special case for destroying existing domains, 6885 * and it will not create the default domain. 6886 * 6887 * Call with hotplug lock held 6888 */ 6889 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6890 struct sched_domain_attr *dattr_new) 6891 { 6892 int i, j, n; 6893 int new_topology; 6894 6895 mutex_lock(&sched_domains_mutex); 6896 6897 /* always unregister in case we don't destroy any domains */ 6898 unregister_sched_domain_sysctl(); 6899 6900 /* Let architecture update cpu core mappings. */ 6901 new_topology = arch_update_cpu_topology(); 6902 6903 n = doms_new ? ndoms_new : 0; 6904 6905 /* Destroy deleted domains */ 6906 for (i = 0; i < ndoms_cur; i++) { 6907 for (j = 0; j < n && !new_topology; j++) { 6908 if (cpumask_equal(doms_cur[i], doms_new[j]) 6909 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6910 goto match1; 6911 } 6912 /* no match - a current sched domain not in new doms_new[] */ 6913 detach_destroy_domains(doms_cur[i]); 6914 match1: 6915 ; 6916 } 6917 6918 n = ndoms_cur; 6919 if (doms_new == NULL) { 6920 n = 0; 6921 doms_new = &fallback_doms; 6922 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6923 WARN_ON_ONCE(dattr_new); 6924 } 6925 6926 /* Build new domains */ 6927 for (i = 0; i < ndoms_new; i++) { 6928 for (j = 0; j < n && !new_topology; j++) { 6929 if (cpumask_equal(doms_new[i], doms_cur[j]) 6930 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6931 goto match2; 6932 } 6933 /* no match - add a new doms_new */ 6934 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6935 match2: 6936 ; 6937 } 6938 6939 /* Remember the new sched domains */ 6940 if (doms_cur != &fallback_doms) 6941 free_sched_domains(doms_cur, ndoms_cur); 6942 kfree(dattr_cur); /* kfree(NULL) is safe */ 6943 doms_cur = doms_new; 6944 dattr_cur = dattr_new; 6945 ndoms_cur = ndoms_new; 6946 6947 register_sched_domain_sysctl(); 6948 6949 mutex_unlock(&sched_domains_mutex); 6950 } 6951 6952 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6953 6954 /* 6955 * Update cpusets according to cpu_active mask. If cpusets are 6956 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6957 * around partition_sched_domains(). 6958 * 6959 * If we come here as part of a suspend/resume, don't touch cpusets because we 6960 * want to restore it back to its original state upon resume anyway. 6961 */ 6962 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6963 void *hcpu) 6964 { 6965 switch (action) { 6966 case CPU_ONLINE_FROZEN: 6967 case CPU_DOWN_FAILED_FROZEN: 6968 6969 /* 6970 * num_cpus_frozen tracks how many CPUs are involved in suspend 6971 * resume sequence. As long as this is not the last online 6972 * operation in the resume sequence, just build a single sched 6973 * domain, ignoring cpusets. 6974 */ 6975 num_cpus_frozen--; 6976 if (likely(num_cpus_frozen)) { 6977 partition_sched_domains(1, NULL, NULL); 6978 break; 6979 } 6980 6981 /* 6982 * This is the last CPU online operation. So fall through and 6983 * restore the original sched domains by considering the 6984 * cpuset configurations. 6985 */ 6986 6987 case CPU_ONLINE: 6988 cpuset_update_active_cpus(true); 6989 break; 6990 default: 6991 return NOTIFY_DONE; 6992 } 6993 return NOTIFY_OK; 6994 } 6995 6996 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6997 void *hcpu) 6998 { 6999 unsigned long flags; 7000 long cpu = (long)hcpu; 7001 struct dl_bw *dl_b; 7002 bool overflow; 7003 int cpus; 7004 7005 switch (action) { 7006 case CPU_DOWN_PREPARE: 7007 rcu_read_lock_sched(); 7008 dl_b = dl_bw_of(cpu); 7009 7010 raw_spin_lock_irqsave(&dl_b->lock, flags); 7011 cpus = dl_bw_cpus(cpu); 7012 overflow = __dl_overflow(dl_b, cpus, 0, 0); 7013 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7014 7015 rcu_read_unlock_sched(); 7016 7017 if (overflow) 7018 return notifier_from_errno(-EBUSY); 7019 cpuset_update_active_cpus(false); 7020 break; 7021 case CPU_DOWN_PREPARE_FROZEN: 7022 num_cpus_frozen++; 7023 partition_sched_domains(1, NULL, NULL); 7024 break; 7025 default: 7026 return NOTIFY_DONE; 7027 } 7028 return NOTIFY_OK; 7029 } 7030 7031 void __init sched_init_smp(void) 7032 { 7033 cpumask_var_t non_isolated_cpus; 7034 7035 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 7036 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 7037 7038 sched_init_numa(); 7039 7040 /* 7041 * There's no userspace yet to cause hotplug operations; hence all the 7042 * cpu masks are stable and all blatant races in the below code cannot 7043 * happen. 7044 */ 7045 mutex_lock(&sched_domains_mutex); 7046 init_sched_domains(cpu_active_mask); 7047 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 7048 if (cpumask_empty(non_isolated_cpus)) 7049 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 7050 mutex_unlock(&sched_domains_mutex); 7051 7052 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 7053 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 7054 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 7055 7056 init_hrtick(); 7057 7058 /* Move init over to a non-isolated CPU */ 7059 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 7060 BUG(); 7061 sched_init_granularity(); 7062 free_cpumask_var(non_isolated_cpus); 7063 7064 init_sched_rt_class(); 7065 init_sched_dl_class(); 7066 } 7067 #else 7068 void __init sched_init_smp(void) 7069 { 7070 sched_init_granularity(); 7071 } 7072 #endif /* CONFIG_SMP */ 7073 7074 const_debug unsigned int sysctl_timer_migration = 1; 7075 7076 int in_sched_functions(unsigned long addr) 7077 { 7078 return in_lock_functions(addr) || 7079 (addr >= (unsigned long)__sched_text_start 7080 && addr < (unsigned long)__sched_text_end); 7081 } 7082 7083 #ifdef CONFIG_CGROUP_SCHED 7084 /* 7085 * Default task group. 7086 * Every task in system belongs to this group at bootup. 7087 */ 7088 struct task_group root_task_group; 7089 LIST_HEAD(task_groups); 7090 #endif 7091 7092 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 7093 7094 void __init sched_init(void) 7095 { 7096 int i, j; 7097 unsigned long alloc_size = 0, ptr; 7098 7099 #ifdef CONFIG_FAIR_GROUP_SCHED 7100 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7101 #endif 7102 #ifdef CONFIG_RT_GROUP_SCHED 7103 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 7104 #endif 7105 if (alloc_size) { 7106 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7107 7108 #ifdef CONFIG_FAIR_GROUP_SCHED 7109 root_task_group.se = (struct sched_entity **)ptr; 7110 ptr += nr_cpu_ids * sizeof(void **); 7111 7112 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7113 ptr += nr_cpu_ids * sizeof(void **); 7114 7115 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7116 #ifdef CONFIG_RT_GROUP_SCHED 7117 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7118 ptr += nr_cpu_ids * sizeof(void **); 7119 7120 root_task_group.rt_rq = (struct rt_rq **)ptr; 7121 ptr += nr_cpu_ids * sizeof(void **); 7122 7123 #endif /* CONFIG_RT_GROUP_SCHED */ 7124 } 7125 #ifdef CONFIG_CPUMASK_OFFSTACK 7126 for_each_possible_cpu(i) { 7127 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 7128 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 7129 } 7130 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7131 7132 init_rt_bandwidth(&def_rt_bandwidth, 7133 global_rt_period(), global_rt_runtime()); 7134 init_dl_bandwidth(&def_dl_bandwidth, 7135 global_rt_period(), global_rt_runtime()); 7136 7137 #ifdef CONFIG_SMP 7138 init_defrootdomain(); 7139 #endif 7140 7141 #ifdef CONFIG_RT_GROUP_SCHED 7142 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7143 global_rt_period(), global_rt_runtime()); 7144 #endif /* CONFIG_RT_GROUP_SCHED */ 7145 7146 #ifdef CONFIG_CGROUP_SCHED 7147 list_add(&root_task_group.list, &task_groups); 7148 INIT_LIST_HEAD(&root_task_group.children); 7149 INIT_LIST_HEAD(&root_task_group.siblings); 7150 autogroup_init(&init_task); 7151 7152 #endif /* CONFIG_CGROUP_SCHED */ 7153 7154 for_each_possible_cpu(i) { 7155 struct rq *rq; 7156 7157 rq = cpu_rq(i); 7158 raw_spin_lock_init(&rq->lock); 7159 rq->nr_running = 0; 7160 rq->calc_load_active = 0; 7161 rq->calc_load_update = jiffies + LOAD_FREQ; 7162 init_cfs_rq(&rq->cfs); 7163 init_rt_rq(&rq->rt); 7164 init_dl_rq(&rq->dl); 7165 #ifdef CONFIG_FAIR_GROUP_SCHED 7166 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7167 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7168 /* 7169 * How much cpu bandwidth does root_task_group get? 7170 * 7171 * In case of task-groups formed thr' the cgroup filesystem, it 7172 * gets 100% of the cpu resources in the system. This overall 7173 * system cpu resource is divided among the tasks of 7174 * root_task_group and its child task-groups in a fair manner, 7175 * based on each entity's (task or task-group's) weight 7176 * (se->load.weight). 7177 * 7178 * In other words, if root_task_group has 10 tasks of weight 7179 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7180 * then A0's share of the cpu resource is: 7181 * 7182 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7183 * 7184 * We achieve this by letting root_task_group's tasks sit 7185 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7186 */ 7187 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7188 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7189 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7190 7191 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7192 #ifdef CONFIG_RT_GROUP_SCHED 7193 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7194 #endif 7195 7196 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7197 rq->cpu_load[j] = 0; 7198 7199 rq->last_load_update_tick = jiffies; 7200 7201 #ifdef CONFIG_SMP 7202 rq->sd = NULL; 7203 rq->rd = NULL; 7204 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 7205 rq->post_schedule = 0; 7206 rq->active_balance = 0; 7207 rq->next_balance = jiffies; 7208 rq->push_cpu = 0; 7209 rq->cpu = i; 7210 rq->online = 0; 7211 rq->idle_stamp = 0; 7212 rq->avg_idle = 2*sysctl_sched_migration_cost; 7213 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7214 7215 INIT_LIST_HEAD(&rq->cfs_tasks); 7216 7217 rq_attach_root(rq, &def_root_domain); 7218 #ifdef CONFIG_NO_HZ_COMMON 7219 rq->nohz_flags = 0; 7220 #endif 7221 #ifdef CONFIG_NO_HZ_FULL 7222 rq->last_sched_tick = 0; 7223 #endif 7224 #endif 7225 init_rq_hrtick(rq); 7226 atomic_set(&rq->nr_iowait, 0); 7227 } 7228 7229 set_load_weight(&init_task); 7230 7231 #ifdef CONFIG_PREEMPT_NOTIFIERS 7232 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7233 #endif 7234 7235 /* 7236 * The boot idle thread does lazy MMU switching as well: 7237 */ 7238 atomic_inc(&init_mm.mm_count); 7239 enter_lazy_tlb(&init_mm, current); 7240 7241 /* 7242 * During early bootup we pretend to be a normal task: 7243 */ 7244 current->sched_class = &fair_sched_class; 7245 7246 /* 7247 * Make us the idle thread. Technically, schedule() should not be 7248 * called from this thread, however somewhere below it might be, 7249 * but because we are the idle thread, we just pick up running again 7250 * when this runqueue becomes "idle". 7251 */ 7252 init_idle(current, smp_processor_id()); 7253 7254 calc_load_update = jiffies + LOAD_FREQ; 7255 7256 #ifdef CONFIG_SMP 7257 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7258 /* May be allocated at isolcpus cmdline parse time */ 7259 if (cpu_isolated_map == NULL) 7260 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7261 idle_thread_set_boot_cpu(); 7262 set_cpu_rq_start_time(); 7263 #endif 7264 init_sched_fair_class(); 7265 7266 scheduler_running = 1; 7267 } 7268 7269 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7270 static inline int preempt_count_equals(int preempt_offset) 7271 { 7272 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7273 7274 return (nested == preempt_offset); 7275 } 7276 7277 void __might_sleep(const char *file, int line, int preempt_offset) 7278 { 7279 /* 7280 * Blocking primitives will set (and therefore destroy) current->state, 7281 * since we will exit with TASK_RUNNING make sure we enter with it, 7282 * otherwise we will destroy state. 7283 */ 7284 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 7285 "do not call blocking ops when !TASK_RUNNING; " 7286 "state=%lx set at [<%p>] %pS\n", 7287 current->state, 7288 (void *)current->task_state_change, 7289 (void *)current->task_state_change); 7290 7291 ___might_sleep(file, line, preempt_offset); 7292 } 7293 EXPORT_SYMBOL(__might_sleep); 7294 7295 void ___might_sleep(const char *file, int line, int preempt_offset) 7296 { 7297 static unsigned long prev_jiffy; /* ratelimiting */ 7298 7299 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7300 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7301 !is_idle_task(current)) || 7302 system_state != SYSTEM_RUNNING || oops_in_progress) 7303 return; 7304 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7305 return; 7306 prev_jiffy = jiffies; 7307 7308 printk(KERN_ERR 7309 "BUG: sleeping function called from invalid context at %s:%d\n", 7310 file, line); 7311 printk(KERN_ERR 7312 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7313 in_atomic(), irqs_disabled(), 7314 current->pid, current->comm); 7315 7316 if (task_stack_end_corrupted(current)) 7317 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 7318 7319 debug_show_held_locks(current); 7320 if (irqs_disabled()) 7321 print_irqtrace_events(current); 7322 #ifdef CONFIG_DEBUG_PREEMPT 7323 if (!preempt_count_equals(preempt_offset)) { 7324 pr_err("Preemption disabled at:"); 7325 print_ip_sym(current->preempt_disable_ip); 7326 pr_cont("\n"); 7327 } 7328 #endif 7329 dump_stack(); 7330 } 7331 EXPORT_SYMBOL(___might_sleep); 7332 #endif 7333 7334 #ifdef CONFIG_MAGIC_SYSRQ 7335 static void normalize_task(struct rq *rq, struct task_struct *p) 7336 { 7337 const struct sched_class *prev_class = p->sched_class; 7338 struct sched_attr attr = { 7339 .sched_policy = SCHED_NORMAL, 7340 }; 7341 int old_prio = p->prio; 7342 int queued; 7343 7344 queued = task_on_rq_queued(p); 7345 if (queued) 7346 dequeue_task(rq, p, 0); 7347 __setscheduler(rq, p, &attr, false); 7348 if (queued) { 7349 enqueue_task(rq, p, 0); 7350 resched_curr(rq); 7351 } 7352 7353 check_class_changed(rq, p, prev_class, old_prio); 7354 } 7355 7356 void normalize_rt_tasks(void) 7357 { 7358 struct task_struct *g, *p; 7359 unsigned long flags; 7360 struct rq *rq; 7361 7362 read_lock(&tasklist_lock); 7363 for_each_process_thread(g, p) { 7364 /* 7365 * Only normalize user tasks: 7366 */ 7367 if (p->flags & PF_KTHREAD) 7368 continue; 7369 7370 p->se.exec_start = 0; 7371 #ifdef CONFIG_SCHEDSTATS 7372 p->se.statistics.wait_start = 0; 7373 p->se.statistics.sleep_start = 0; 7374 p->se.statistics.block_start = 0; 7375 #endif 7376 7377 if (!dl_task(p) && !rt_task(p)) { 7378 /* 7379 * Renice negative nice level userspace 7380 * tasks back to 0: 7381 */ 7382 if (task_nice(p) < 0) 7383 set_user_nice(p, 0); 7384 continue; 7385 } 7386 7387 rq = task_rq_lock(p, &flags); 7388 normalize_task(rq, p); 7389 task_rq_unlock(rq, p, &flags); 7390 } 7391 read_unlock(&tasklist_lock); 7392 } 7393 7394 #endif /* CONFIG_MAGIC_SYSRQ */ 7395 7396 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7397 /* 7398 * These functions are only useful for the IA64 MCA handling, or kdb. 7399 * 7400 * They can only be called when the whole system has been 7401 * stopped - every CPU needs to be quiescent, and no scheduling 7402 * activity can take place. Using them for anything else would 7403 * be a serious bug, and as a result, they aren't even visible 7404 * under any other configuration. 7405 */ 7406 7407 /** 7408 * curr_task - return the current task for a given cpu. 7409 * @cpu: the processor in question. 7410 * 7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7412 * 7413 * Return: The current task for @cpu. 7414 */ 7415 struct task_struct *curr_task(int cpu) 7416 { 7417 return cpu_curr(cpu); 7418 } 7419 7420 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7421 7422 #ifdef CONFIG_IA64 7423 /** 7424 * set_curr_task - set the current task for a given cpu. 7425 * @cpu: the processor in question. 7426 * @p: the task pointer to set. 7427 * 7428 * Description: This function must only be used when non-maskable interrupts 7429 * are serviced on a separate stack. It allows the architecture to switch the 7430 * notion of the current task on a cpu in a non-blocking manner. This function 7431 * must be called with all CPU's synchronized, and interrupts disabled, the 7432 * and caller must save the original value of the current task (see 7433 * curr_task() above) and restore that value before reenabling interrupts and 7434 * re-starting the system. 7435 * 7436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7437 */ 7438 void set_curr_task(int cpu, struct task_struct *p) 7439 { 7440 cpu_curr(cpu) = p; 7441 } 7442 7443 #endif 7444 7445 #ifdef CONFIG_CGROUP_SCHED 7446 /* task_group_lock serializes the addition/removal of task groups */ 7447 static DEFINE_SPINLOCK(task_group_lock); 7448 7449 static void free_sched_group(struct task_group *tg) 7450 { 7451 free_fair_sched_group(tg); 7452 free_rt_sched_group(tg); 7453 autogroup_free(tg); 7454 kfree(tg); 7455 } 7456 7457 /* allocate runqueue etc for a new task group */ 7458 struct task_group *sched_create_group(struct task_group *parent) 7459 { 7460 struct task_group *tg; 7461 7462 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7463 if (!tg) 7464 return ERR_PTR(-ENOMEM); 7465 7466 if (!alloc_fair_sched_group(tg, parent)) 7467 goto err; 7468 7469 if (!alloc_rt_sched_group(tg, parent)) 7470 goto err; 7471 7472 return tg; 7473 7474 err: 7475 free_sched_group(tg); 7476 return ERR_PTR(-ENOMEM); 7477 } 7478 7479 void sched_online_group(struct task_group *tg, struct task_group *parent) 7480 { 7481 unsigned long flags; 7482 7483 spin_lock_irqsave(&task_group_lock, flags); 7484 list_add_rcu(&tg->list, &task_groups); 7485 7486 WARN_ON(!parent); /* root should already exist */ 7487 7488 tg->parent = parent; 7489 INIT_LIST_HEAD(&tg->children); 7490 list_add_rcu(&tg->siblings, &parent->children); 7491 spin_unlock_irqrestore(&task_group_lock, flags); 7492 } 7493 7494 /* rcu callback to free various structures associated with a task group */ 7495 static void free_sched_group_rcu(struct rcu_head *rhp) 7496 { 7497 /* now it should be safe to free those cfs_rqs */ 7498 free_sched_group(container_of(rhp, struct task_group, rcu)); 7499 } 7500 7501 /* Destroy runqueue etc associated with a task group */ 7502 void sched_destroy_group(struct task_group *tg) 7503 { 7504 /* wait for possible concurrent references to cfs_rqs complete */ 7505 call_rcu(&tg->rcu, free_sched_group_rcu); 7506 } 7507 7508 void sched_offline_group(struct task_group *tg) 7509 { 7510 unsigned long flags; 7511 int i; 7512 7513 /* end participation in shares distribution */ 7514 for_each_possible_cpu(i) 7515 unregister_fair_sched_group(tg, i); 7516 7517 spin_lock_irqsave(&task_group_lock, flags); 7518 list_del_rcu(&tg->list); 7519 list_del_rcu(&tg->siblings); 7520 spin_unlock_irqrestore(&task_group_lock, flags); 7521 } 7522 7523 /* change task's runqueue when it moves between groups. 7524 * The caller of this function should have put the task in its new group 7525 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7526 * reflect its new group. 7527 */ 7528 void sched_move_task(struct task_struct *tsk) 7529 { 7530 struct task_group *tg; 7531 int queued, running; 7532 unsigned long flags; 7533 struct rq *rq; 7534 7535 rq = task_rq_lock(tsk, &flags); 7536 7537 running = task_current(rq, tsk); 7538 queued = task_on_rq_queued(tsk); 7539 7540 if (queued) 7541 dequeue_task(rq, tsk, 0); 7542 if (unlikely(running)) 7543 put_prev_task(rq, tsk); 7544 7545 /* 7546 * All callers are synchronized by task_rq_lock(); we do not use RCU 7547 * which is pointless here. Thus, we pass "true" to task_css_check() 7548 * to prevent lockdep warnings. 7549 */ 7550 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7551 struct task_group, css); 7552 tg = autogroup_task_group(tsk, tg); 7553 tsk->sched_task_group = tg; 7554 7555 #ifdef CONFIG_FAIR_GROUP_SCHED 7556 if (tsk->sched_class->task_move_group) 7557 tsk->sched_class->task_move_group(tsk, queued); 7558 else 7559 #endif 7560 set_task_rq(tsk, task_cpu(tsk)); 7561 7562 if (unlikely(running)) 7563 tsk->sched_class->set_curr_task(rq); 7564 if (queued) 7565 enqueue_task(rq, tsk, 0); 7566 7567 task_rq_unlock(rq, tsk, &flags); 7568 } 7569 #endif /* CONFIG_CGROUP_SCHED */ 7570 7571 #ifdef CONFIG_RT_GROUP_SCHED 7572 /* 7573 * Ensure that the real time constraints are schedulable. 7574 */ 7575 static DEFINE_MUTEX(rt_constraints_mutex); 7576 7577 /* Must be called with tasklist_lock held */ 7578 static inline int tg_has_rt_tasks(struct task_group *tg) 7579 { 7580 struct task_struct *g, *p; 7581 7582 /* 7583 * Autogroups do not have RT tasks; see autogroup_create(). 7584 */ 7585 if (task_group_is_autogroup(tg)) 7586 return 0; 7587 7588 for_each_process_thread(g, p) { 7589 if (rt_task(p) && task_group(p) == tg) 7590 return 1; 7591 } 7592 7593 return 0; 7594 } 7595 7596 struct rt_schedulable_data { 7597 struct task_group *tg; 7598 u64 rt_period; 7599 u64 rt_runtime; 7600 }; 7601 7602 static int tg_rt_schedulable(struct task_group *tg, void *data) 7603 { 7604 struct rt_schedulable_data *d = data; 7605 struct task_group *child; 7606 unsigned long total, sum = 0; 7607 u64 period, runtime; 7608 7609 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7610 runtime = tg->rt_bandwidth.rt_runtime; 7611 7612 if (tg == d->tg) { 7613 period = d->rt_period; 7614 runtime = d->rt_runtime; 7615 } 7616 7617 /* 7618 * Cannot have more runtime than the period. 7619 */ 7620 if (runtime > period && runtime != RUNTIME_INF) 7621 return -EINVAL; 7622 7623 /* 7624 * Ensure we don't starve existing RT tasks. 7625 */ 7626 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7627 return -EBUSY; 7628 7629 total = to_ratio(period, runtime); 7630 7631 /* 7632 * Nobody can have more than the global setting allows. 7633 */ 7634 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7635 return -EINVAL; 7636 7637 /* 7638 * The sum of our children's runtime should not exceed our own. 7639 */ 7640 list_for_each_entry_rcu(child, &tg->children, siblings) { 7641 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7642 runtime = child->rt_bandwidth.rt_runtime; 7643 7644 if (child == d->tg) { 7645 period = d->rt_period; 7646 runtime = d->rt_runtime; 7647 } 7648 7649 sum += to_ratio(period, runtime); 7650 } 7651 7652 if (sum > total) 7653 return -EINVAL; 7654 7655 return 0; 7656 } 7657 7658 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7659 { 7660 int ret; 7661 7662 struct rt_schedulable_data data = { 7663 .tg = tg, 7664 .rt_period = period, 7665 .rt_runtime = runtime, 7666 }; 7667 7668 rcu_read_lock(); 7669 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7670 rcu_read_unlock(); 7671 7672 return ret; 7673 } 7674 7675 static int tg_set_rt_bandwidth(struct task_group *tg, 7676 u64 rt_period, u64 rt_runtime) 7677 { 7678 int i, err = 0; 7679 7680 /* 7681 * Disallowing the root group RT runtime is BAD, it would disallow the 7682 * kernel creating (and or operating) RT threads. 7683 */ 7684 if (tg == &root_task_group && rt_runtime == 0) 7685 return -EINVAL; 7686 7687 /* No period doesn't make any sense. */ 7688 if (rt_period == 0) 7689 return -EINVAL; 7690 7691 mutex_lock(&rt_constraints_mutex); 7692 read_lock(&tasklist_lock); 7693 err = __rt_schedulable(tg, rt_period, rt_runtime); 7694 if (err) 7695 goto unlock; 7696 7697 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7698 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7699 tg->rt_bandwidth.rt_runtime = rt_runtime; 7700 7701 for_each_possible_cpu(i) { 7702 struct rt_rq *rt_rq = tg->rt_rq[i]; 7703 7704 raw_spin_lock(&rt_rq->rt_runtime_lock); 7705 rt_rq->rt_runtime = rt_runtime; 7706 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7707 } 7708 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7709 unlock: 7710 read_unlock(&tasklist_lock); 7711 mutex_unlock(&rt_constraints_mutex); 7712 7713 return err; 7714 } 7715 7716 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7717 { 7718 u64 rt_runtime, rt_period; 7719 7720 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7721 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7722 if (rt_runtime_us < 0) 7723 rt_runtime = RUNTIME_INF; 7724 7725 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7726 } 7727 7728 static long sched_group_rt_runtime(struct task_group *tg) 7729 { 7730 u64 rt_runtime_us; 7731 7732 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7733 return -1; 7734 7735 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7736 do_div(rt_runtime_us, NSEC_PER_USEC); 7737 return rt_runtime_us; 7738 } 7739 7740 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7741 { 7742 u64 rt_runtime, rt_period; 7743 7744 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7745 rt_runtime = tg->rt_bandwidth.rt_runtime; 7746 7747 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7748 } 7749 7750 static long sched_group_rt_period(struct task_group *tg) 7751 { 7752 u64 rt_period_us; 7753 7754 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7755 do_div(rt_period_us, NSEC_PER_USEC); 7756 return rt_period_us; 7757 } 7758 #endif /* CONFIG_RT_GROUP_SCHED */ 7759 7760 #ifdef CONFIG_RT_GROUP_SCHED 7761 static int sched_rt_global_constraints(void) 7762 { 7763 int ret = 0; 7764 7765 mutex_lock(&rt_constraints_mutex); 7766 read_lock(&tasklist_lock); 7767 ret = __rt_schedulable(NULL, 0, 0); 7768 read_unlock(&tasklist_lock); 7769 mutex_unlock(&rt_constraints_mutex); 7770 7771 return ret; 7772 } 7773 7774 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7775 { 7776 /* Don't accept realtime tasks when there is no way for them to run */ 7777 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7778 return 0; 7779 7780 return 1; 7781 } 7782 7783 #else /* !CONFIG_RT_GROUP_SCHED */ 7784 static int sched_rt_global_constraints(void) 7785 { 7786 unsigned long flags; 7787 int i, ret = 0; 7788 7789 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7790 for_each_possible_cpu(i) { 7791 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7792 7793 raw_spin_lock(&rt_rq->rt_runtime_lock); 7794 rt_rq->rt_runtime = global_rt_runtime(); 7795 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7796 } 7797 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7798 7799 return ret; 7800 } 7801 #endif /* CONFIG_RT_GROUP_SCHED */ 7802 7803 static int sched_dl_global_validate(void) 7804 { 7805 u64 runtime = global_rt_runtime(); 7806 u64 period = global_rt_period(); 7807 u64 new_bw = to_ratio(period, runtime); 7808 struct dl_bw *dl_b; 7809 int cpu, ret = 0; 7810 unsigned long flags; 7811 7812 /* 7813 * Here we want to check the bandwidth not being set to some 7814 * value smaller than the currently allocated bandwidth in 7815 * any of the root_domains. 7816 * 7817 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7818 * cycling on root_domains... Discussion on different/better 7819 * solutions is welcome! 7820 */ 7821 for_each_possible_cpu(cpu) { 7822 rcu_read_lock_sched(); 7823 dl_b = dl_bw_of(cpu); 7824 7825 raw_spin_lock_irqsave(&dl_b->lock, flags); 7826 if (new_bw < dl_b->total_bw) 7827 ret = -EBUSY; 7828 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7829 7830 rcu_read_unlock_sched(); 7831 7832 if (ret) 7833 break; 7834 } 7835 7836 return ret; 7837 } 7838 7839 static void sched_dl_do_global(void) 7840 { 7841 u64 new_bw = -1; 7842 struct dl_bw *dl_b; 7843 int cpu; 7844 unsigned long flags; 7845 7846 def_dl_bandwidth.dl_period = global_rt_period(); 7847 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7848 7849 if (global_rt_runtime() != RUNTIME_INF) 7850 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7851 7852 /* 7853 * FIXME: As above... 7854 */ 7855 for_each_possible_cpu(cpu) { 7856 rcu_read_lock_sched(); 7857 dl_b = dl_bw_of(cpu); 7858 7859 raw_spin_lock_irqsave(&dl_b->lock, flags); 7860 dl_b->bw = new_bw; 7861 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7862 7863 rcu_read_unlock_sched(); 7864 } 7865 } 7866 7867 static int sched_rt_global_validate(void) 7868 { 7869 if (sysctl_sched_rt_period <= 0) 7870 return -EINVAL; 7871 7872 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7873 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7874 return -EINVAL; 7875 7876 return 0; 7877 } 7878 7879 static void sched_rt_do_global(void) 7880 { 7881 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7882 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7883 } 7884 7885 int sched_rt_handler(struct ctl_table *table, int write, 7886 void __user *buffer, size_t *lenp, 7887 loff_t *ppos) 7888 { 7889 int old_period, old_runtime; 7890 static DEFINE_MUTEX(mutex); 7891 int ret; 7892 7893 mutex_lock(&mutex); 7894 old_period = sysctl_sched_rt_period; 7895 old_runtime = sysctl_sched_rt_runtime; 7896 7897 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7898 7899 if (!ret && write) { 7900 ret = sched_rt_global_validate(); 7901 if (ret) 7902 goto undo; 7903 7904 ret = sched_dl_global_validate(); 7905 if (ret) 7906 goto undo; 7907 7908 ret = sched_rt_global_constraints(); 7909 if (ret) 7910 goto undo; 7911 7912 sched_rt_do_global(); 7913 sched_dl_do_global(); 7914 } 7915 if (0) { 7916 undo: 7917 sysctl_sched_rt_period = old_period; 7918 sysctl_sched_rt_runtime = old_runtime; 7919 } 7920 mutex_unlock(&mutex); 7921 7922 return ret; 7923 } 7924 7925 int sched_rr_handler(struct ctl_table *table, int write, 7926 void __user *buffer, size_t *lenp, 7927 loff_t *ppos) 7928 { 7929 int ret; 7930 static DEFINE_MUTEX(mutex); 7931 7932 mutex_lock(&mutex); 7933 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7934 /* make sure that internally we keep jiffies */ 7935 /* also, writing zero resets timeslice to default */ 7936 if (!ret && write) { 7937 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7938 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7939 } 7940 mutex_unlock(&mutex); 7941 return ret; 7942 } 7943 7944 #ifdef CONFIG_CGROUP_SCHED 7945 7946 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7947 { 7948 return css ? container_of(css, struct task_group, css) : NULL; 7949 } 7950 7951 static struct cgroup_subsys_state * 7952 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7953 { 7954 struct task_group *parent = css_tg(parent_css); 7955 struct task_group *tg; 7956 7957 if (!parent) { 7958 /* This is early initialization for the top cgroup */ 7959 return &root_task_group.css; 7960 } 7961 7962 tg = sched_create_group(parent); 7963 if (IS_ERR(tg)) 7964 return ERR_PTR(-ENOMEM); 7965 7966 return &tg->css; 7967 } 7968 7969 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7970 { 7971 struct task_group *tg = css_tg(css); 7972 struct task_group *parent = css_tg(css->parent); 7973 7974 if (parent) 7975 sched_online_group(tg, parent); 7976 return 0; 7977 } 7978 7979 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7980 { 7981 struct task_group *tg = css_tg(css); 7982 7983 sched_destroy_group(tg); 7984 } 7985 7986 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7987 { 7988 struct task_group *tg = css_tg(css); 7989 7990 sched_offline_group(tg); 7991 } 7992 7993 static void cpu_cgroup_fork(struct task_struct *task) 7994 { 7995 sched_move_task(task); 7996 } 7997 7998 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7999 struct cgroup_taskset *tset) 8000 { 8001 struct task_struct *task; 8002 8003 cgroup_taskset_for_each(task, tset) { 8004 #ifdef CONFIG_RT_GROUP_SCHED 8005 if (!sched_rt_can_attach(css_tg(css), task)) 8006 return -EINVAL; 8007 #else 8008 /* We don't support RT-tasks being in separate groups */ 8009 if (task->sched_class != &fair_sched_class) 8010 return -EINVAL; 8011 #endif 8012 } 8013 return 0; 8014 } 8015 8016 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 8017 struct cgroup_taskset *tset) 8018 { 8019 struct task_struct *task; 8020 8021 cgroup_taskset_for_each(task, tset) 8022 sched_move_task(task); 8023 } 8024 8025 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 8026 struct cgroup_subsys_state *old_css, 8027 struct task_struct *task) 8028 { 8029 /* 8030 * cgroup_exit() is called in the copy_process() failure path. 8031 * Ignore this case since the task hasn't ran yet, this avoids 8032 * trying to poke a half freed task state from generic code. 8033 */ 8034 if (!(task->flags & PF_EXITING)) 8035 return; 8036 8037 sched_move_task(task); 8038 } 8039 8040 #ifdef CONFIG_FAIR_GROUP_SCHED 8041 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 8042 struct cftype *cftype, u64 shareval) 8043 { 8044 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 8045 } 8046 8047 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 8048 struct cftype *cft) 8049 { 8050 struct task_group *tg = css_tg(css); 8051 8052 return (u64) scale_load_down(tg->shares); 8053 } 8054 8055 #ifdef CONFIG_CFS_BANDWIDTH 8056 static DEFINE_MUTEX(cfs_constraints_mutex); 8057 8058 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 8059 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 8060 8061 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 8062 8063 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 8064 { 8065 int i, ret = 0, runtime_enabled, runtime_was_enabled; 8066 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8067 8068 if (tg == &root_task_group) 8069 return -EINVAL; 8070 8071 /* 8072 * Ensure we have at some amount of bandwidth every period. This is 8073 * to prevent reaching a state of large arrears when throttled via 8074 * entity_tick() resulting in prolonged exit starvation. 8075 */ 8076 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 8077 return -EINVAL; 8078 8079 /* 8080 * Likewise, bound things on the otherside by preventing insane quota 8081 * periods. This also allows us to normalize in computing quota 8082 * feasibility. 8083 */ 8084 if (period > max_cfs_quota_period) 8085 return -EINVAL; 8086 8087 /* 8088 * Prevent race between setting of cfs_rq->runtime_enabled and 8089 * unthrottle_offline_cfs_rqs(). 8090 */ 8091 get_online_cpus(); 8092 mutex_lock(&cfs_constraints_mutex); 8093 ret = __cfs_schedulable(tg, period, quota); 8094 if (ret) 8095 goto out_unlock; 8096 8097 runtime_enabled = quota != RUNTIME_INF; 8098 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 8099 /* 8100 * If we need to toggle cfs_bandwidth_used, off->on must occur 8101 * before making related changes, and on->off must occur afterwards 8102 */ 8103 if (runtime_enabled && !runtime_was_enabled) 8104 cfs_bandwidth_usage_inc(); 8105 raw_spin_lock_irq(&cfs_b->lock); 8106 cfs_b->period = ns_to_ktime(period); 8107 cfs_b->quota = quota; 8108 8109 __refill_cfs_bandwidth_runtime(cfs_b); 8110 /* restart the period timer (if active) to handle new period expiry */ 8111 if (runtime_enabled && cfs_b->timer_active) { 8112 /* force a reprogram */ 8113 __start_cfs_bandwidth(cfs_b, true); 8114 } 8115 raw_spin_unlock_irq(&cfs_b->lock); 8116 8117 for_each_online_cpu(i) { 8118 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 8119 struct rq *rq = cfs_rq->rq; 8120 8121 raw_spin_lock_irq(&rq->lock); 8122 cfs_rq->runtime_enabled = runtime_enabled; 8123 cfs_rq->runtime_remaining = 0; 8124 8125 if (cfs_rq->throttled) 8126 unthrottle_cfs_rq(cfs_rq); 8127 raw_spin_unlock_irq(&rq->lock); 8128 } 8129 if (runtime_was_enabled && !runtime_enabled) 8130 cfs_bandwidth_usage_dec(); 8131 out_unlock: 8132 mutex_unlock(&cfs_constraints_mutex); 8133 put_online_cpus(); 8134 8135 return ret; 8136 } 8137 8138 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8139 { 8140 u64 quota, period; 8141 8142 period = ktime_to_ns(tg->cfs_bandwidth.period); 8143 if (cfs_quota_us < 0) 8144 quota = RUNTIME_INF; 8145 else 8146 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8147 8148 return tg_set_cfs_bandwidth(tg, period, quota); 8149 } 8150 8151 long tg_get_cfs_quota(struct task_group *tg) 8152 { 8153 u64 quota_us; 8154 8155 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8156 return -1; 8157 8158 quota_us = tg->cfs_bandwidth.quota; 8159 do_div(quota_us, NSEC_PER_USEC); 8160 8161 return quota_us; 8162 } 8163 8164 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8165 { 8166 u64 quota, period; 8167 8168 period = (u64)cfs_period_us * NSEC_PER_USEC; 8169 quota = tg->cfs_bandwidth.quota; 8170 8171 return tg_set_cfs_bandwidth(tg, period, quota); 8172 } 8173 8174 long tg_get_cfs_period(struct task_group *tg) 8175 { 8176 u64 cfs_period_us; 8177 8178 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8179 do_div(cfs_period_us, NSEC_PER_USEC); 8180 8181 return cfs_period_us; 8182 } 8183 8184 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8185 struct cftype *cft) 8186 { 8187 return tg_get_cfs_quota(css_tg(css)); 8188 } 8189 8190 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8191 struct cftype *cftype, s64 cfs_quota_us) 8192 { 8193 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8194 } 8195 8196 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8197 struct cftype *cft) 8198 { 8199 return tg_get_cfs_period(css_tg(css)); 8200 } 8201 8202 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8203 struct cftype *cftype, u64 cfs_period_us) 8204 { 8205 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8206 } 8207 8208 struct cfs_schedulable_data { 8209 struct task_group *tg; 8210 u64 period, quota; 8211 }; 8212 8213 /* 8214 * normalize group quota/period to be quota/max_period 8215 * note: units are usecs 8216 */ 8217 static u64 normalize_cfs_quota(struct task_group *tg, 8218 struct cfs_schedulable_data *d) 8219 { 8220 u64 quota, period; 8221 8222 if (tg == d->tg) { 8223 period = d->period; 8224 quota = d->quota; 8225 } else { 8226 period = tg_get_cfs_period(tg); 8227 quota = tg_get_cfs_quota(tg); 8228 } 8229 8230 /* note: these should typically be equivalent */ 8231 if (quota == RUNTIME_INF || quota == -1) 8232 return RUNTIME_INF; 8233 8234 return to_ratio(period, quota); 8235 } 8236 8237 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8238 { 8239 struct cfs_schedulable_data *d = data; 8240 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8241 s64 quota = 0, parent_quota = -1; 8242 8243 if (!tg->parent) { 8244 quota = RUNTIME_INF; 8245 } else { 8246 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8247 8248 quota = normalize_cfs_quota(tg, d); 8249 parent_quota = parent_b->hierarchical_quota; 8250 8251 /* 8252 * ensure max(child_quota) <= parent_quota, inherit when no 8253 * limit is set 8254 */ 8255 if (quota == RUNTIME_INF) 8256 quota = parent_quota; 8257 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8258 return -EINVAL; 8259 } 8260 cfs_b->hierarchical_quota = quota; 8261 8262 return 0; 8263 } 8264 8265 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8266 { 8267 int ret; 8268 struct cfs_schedulable_data data = { 8269 .tg = tg, 8270 .period = period, 8271 .quota = quota, 8272 }; 8273 8274 if (quota != RUNTIME_INF) { 8275 do_div(data.period, NSEC_PER_USEC); 8276 do_div(data.quota, NSEC_PER_USEC); 8277 } 8278 8279 rcu_read_lock(); 8280 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8281 rcu_read_unlock(); 8282 8283 return ret; 8284 } 8285 8286 static int cpu_stats_show(struct seq_file *sf, void *v) 8287 { 8288 struct task_group *tg = css_tg(seq_css(sf)); 8289 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8290 8291 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8292 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8293 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8294 8295 return 0; 8296 } 8297 #endif /* CONFIG_CFS_BANDWIDTH */ 8298 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8299 8300 #ifdef CONFIG_RT_GROUP_SCHED 8301 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8302 struct cftype *cft, s64 val) 8303 { 8304 return sched_group_set_rt_runtime(css_tg(css), val); 8305 } 8306 8307 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8308 struct cftype *cft) 8309 { 8310 return sched_group_rt_runtime(css_tg(css)); 8311 } 8312 8313 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8314 struct cftype *cftype, u64 rt_period_us) 8315 { 8316 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8317 } 8318 8319 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8320 struct cftype *cft) 8321 { 8322 return sched_group_rt_period(css_tg(css)); 8323 } 8324 #endif /* CONFIG_RT_GROUP_SCHED */ 8325 8326 static struct cftype cpu_files[] = { 8327 #ifdef CONFIG_FAIR_GROUP_SCHED 8328 { 8329 .name = "shares", 8330 .read_u64 = cpu_shares_read_u64, 8331 .write_u64 = cpu_shares_write_u64, 8332 }, 8333 #endif 8334 #ifdef CONFIG_CFS_BANDWIDTH 8335 { 8336 .name = "cfs_quota_us", 8337 .read_s64 = cpu_cfs_quota_read_s64, 8338 .write_s64 = cpu_cfs_quota_write_s64, 8339 }, 8340 { 8341 .name = "cfs_period_us", 8342 .read_u64 = cpu_cfs_period_read_u64, 8343 .write_u64 = cpu_cfs_period_write_u64, 8344 }, 8345 { 8346 .name = "stat", 8347 .seq_show = cpu_stats_show, 8348 }, 8349 #endif 8350 #ifdef CONFIG_RT_GROUP_SCHED 8351 { 8352 .name = "rt_runtime_us", 8353 .read_s64 = cpu_rt_runtime_read, 8354 .write_s64 = cpu_rt_runtime_write, 8355 }, 8356 { 8357 .name = "rt_period_us", 8358 .read_u64 = cpu_rt_period_read_uint, 8359 .write_u64 = cpu_rt_period_write_uint, 8360 }, 8361 #endif 8362 { } /* terminate */ 8363 }; 8364 8365 struct cgroup_subsys cpu_cgrp_subsys = { 8366 .css_alloc = cpu_cgroup_css_alloc, 8367 .css_free = cpu_cgroup_css_free, 8368 .css_online = cpu_cgroup_css_online, 8369 .css_offline = cpu_cgroup_css_offline, 8370 .fork = cpu_cgroup_fork, 8371 .can_attach = cpu_cgroup_can_attach, 8372 .attach = cpu_cgroup_attach, 8373 .exit = cpu_cgroup_exit, 8374 .legacy_cftypes = cpu_files, 8375 .early_init = 1, 8376 }; 8377 8378 #endif /* CONFIG_CGROUP_SCHED */ 8379 8380 void dump_cpu_task(int cpu) 8381 { 8382 pr_info("Task dump for CPU %d:\n", cpu); 8383 sched_show_task(cpu_curr(cpu)); 8384 } 8385