xref: /linux/kernel/sched/core.c (revision fd1557923b2e45a7ff4664bd88311d8239d69ca9)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	lockdep_assert_held(&rq->lock);
123 
124 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 		return;
126 
127 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 	if (delta < 0)
129 		return;
130 	rq->clock += delta;
131 	update_rq_clock_task(rq, delta);
132 }
133 
134 /*
135  * Debugging: various feature bits
136  */
137 
138 #define SCHED_FEAT(name, enabled)	\
139 	(1UL << __SCHED_FEAT_##name) * enabled |
140 
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 	0;
144 
145 #undef SCHED_FEAT
146 
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled)	\
149 	#name ,
150 
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154 
155 #undef SCHED_FEAT
156 
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 	int i;
160 
161 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 		if (!(sysctl_sched_features & (1UL << i)))
163 			seq_puts(m, "NO_");
164 		seq_printf(m, "%s ", sched_feat_names[i]);
165 	}
166 	seq_puts(m, "\n");
167 
168 	return 0;
169 }
170 
171 #ifdef HAVE_JUMP_LABEL
172 
173 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175 
176 #define SCHED_FEAT(name, enabled)	\
177 	jump_label_key__##enabled ,
178 
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182 
183 #undef SCHED_FEAT
184 
185 static void sched_feat_disable(int i)
186 {
187 	if (static_key_enabled(&sched_feat_keys[i]))
188 		static_key_slow_dec(&sched_feat_keys[i]);
189 }
190 
191 static void sched_feat_enable(int i)
192 {
193 	if (!static_key_enabled(&sched_feat_keys[i]))
194 		static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200 
201 static int sched_feat_set(char *cmp)
202 {
203 	int i;
204 	int neg = 0;
205 
206 	if (strncmp(cmp, "NO_", 3) == 0) {
207 		neg = 1;
208 		cmp += 3;
209 	}
210 
211 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 			if (neg) {
214 				sysctl_sched_features &= ~(1UL << i);
215 				sched_feat_disable(i);
216 			} else {
217 				sysctl_sched_features |= (1UL << i);
218 				sched_feat_enable(i);
219 			}
220 			break;
221 		}
222 	}
223 
224 	return i;
225 }
226 
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 		size_t cnt, loff_t *ppos)
230 {
231 	char buf[64];
232 	char *cmp;
233 	int i;
234 	struct inode *inode;
235 
236 	if (cnt > 63)
237 		cnt = 63;
238 
239 	if (copy_from_user(&buf, ubuf, cnt))
240 		return -EFAULT;
241 
242 	buf[cnt] = 0;
243 	cmp = strstrip(buf);
244 
245 	/* Ensure the static_key remains in a consistent state */
246 	inode = file_inode(filp);
247 	mutex_lock(&inode->i_mutex);
248 	i = sched_feat_set(cmp);
249 	mutex_unlock(&inode->i_mutex);
250 	if (i == __SCHED_FEAT_NR)
251 		return -EINVAL;
252 
253 	*ppos += cnt;
254 
255 	return cnt;
256 }
257 
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 	return single_open(filp, sched_feat_show, NULL);
261 }
262 
263 static const struct file_operations sched_feat_fops = {
264 	.open		= sched_feat_open,
265 	.write		= sched_feat_write,
266 	.read		= seq_read,
267 	.llseek		= seq_lseek,
268 	.release	= single_release,
269 };
270 
271 static __init int sched_init_debug(void)
272 {
273 	debugfs_create_file("sched_features", 0644, NULL, NULL,
274 			&sched_feat_fops);
275 
276 	return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280 
281 /*
282  * Number of tasks to iterate in a single balance run.
283  * Limited because this is done with IRQs disabled.
284  */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286 
287 /*
288  * period over which we average the RT time consumption, measured
289  * in ms.
290  *
291  * default: 1s
292  */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294 
295 /*
296  * period over which we measure -rt task cpu usage in us.
297  * default: 1s
298  */
299 unsigned int sysctl_sched_rt_period = 1000000;
300 
301 __read_mostly int scheduler_running;
302 
303 /*
304  * part of the period that we allow rt tasks to run in us.
305  * default: 0.95s
306  */
307 int sysctl_sched_rt_runtime = 950000;
308 
309 /* cpus with isolated domains */
310 cpumask_var_t cpu_isolated_map;
311 
312 /*
313  * this_rq_lock - lock this runqueue and disable interrupts.
314  */
315 static struct rq *this_rq_lock(void)
316 	__acquires(rq->lock)
317 {
318 	struct rq *rq;
319 
320 	local_irq_disable();
321 	rq = this_rq();
322 	raw_spin_lock(&rq->lock);
323 
324 	return rq;
325 }
326 
327 #ifdef CONFIG_SCHED_HRTICK
328 /*
329  * Use HR-timers to deliver accurate preemption points.
330  */
331 
332 static void hrtick_clear(struct rq *rq)
333 {
334 	if (hrtimer_active(&rq->hrtick_timer))
335 		hrtimer_cancel(&rq->hrtick_timer);
336 }
337 
338 /*
339  * High-resolution timer tick.
340  * Runs from hardirq context with interrupts disabled.
341  */
342 static enum hrtimer_restart hrtick(struct hrtimer *timer)
343 {
344 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345 
346 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347 
348 	raw_spin_lock(&rq->lock);
349 	update_rq_clock(rq);
350 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
351 	raw_spin_unlock(&rq->lock);
352 
353 	return HRTIMER_NORESTART;
354 }
355 
356 #ifdef CONFIG_SMP
357 
358 static int __hrtick_restart(struct rq *rq)
359 {
360 	struct hrtimer *timer = &rq->hrtick_timer;
361 	ktime_t time = hrtimer_get_softexpires(timer);
362 
363 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364 }
365 
366 /*
367  * called from hardirq (IPI) context
368  */
369 static void __hrtick_start(void *arg)
370 {
371 	struct rq *rq = arg;
372 
373 	raw_spin_lock(&rq->lock);
374 	__hrtick_restart(rq);
375 	rq->hrtick_csd_pending = 0;
376 	raw_spin_unlock(&rq->lock);
377 }
378 
379 /*
380  * Called to set the hrtick timer state.
381  *
382  * called with rq->lock held and irqs disabled
383  */
384 void hrtick_start(struct rq *rq, u64 delay)
385 {
386 	struct hrtimer *timer = &rq->hrtick_timer;
387 	ktime_t time;
388 	s64 delta;
389 
390 	/*
391 	 * Don't schedule slices shorter than 10000ns, that just
392 	 * doesn't make sense and can cause timer DoS.
393 	 */
394 	delta = max_t(s64, delay, 10000LL);
395 	time = ktime_add_ns(timer->base->get_time(), delta);
396 
397 	hrtimer_set_expires(timer, time);
398 
399 	if (rq == this_rq()) {
400 		__hrtick_restart(rq);
401 	} else if (!rq->hrtick_csd_pending) {
402 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
403 		rq->hrtick_csd_pending = 1;
404 	}
405 }
406 
407 static int
408 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409 {
410 	int cpu = (int)(long)hcpu;
411 
412 	switch (action) {
413 	case CPU_UP_CANCELED:
414 	case CPU_UP_CANCELED_FROZEN:
415 	case CPU_DOWN_PREPARE:
416 	case CPU_DOWN_PREPARE_FROZEN:
417 	case CPU_DEAD:
418 	case CPU_DEAD_FROZEN:
419 		hrtick_clear(cpu_rq(cpu));
420 		return NOTIFY_OK;
421 	}
422 
423 	return NOTIFY_DONE;
424 }
425 
426 static __init void init_hrtick(void)
427 {
428 	hotcpu_notifier(hotplug_hrtick, 0);
429 }
430 #else
431 /*
432  * Called to set the hrtick timer state.
433  *
434  * called with rq->lock held and irqs disabled
435  */
436 void hrtick_start(struct rq *rq, u64 delay)
437 {
438 	/*
439 	 * Don't schedule slices shorter than 10000ns, that just
440 	 * doesn't make sense. Rely on vruntime for fairness.
441 	 */
442 	delay = max_t(u64, delay, 10000LL);
443 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
444 			HRTIMER_MODE_REL_PINNED, 0);
445 }
446 
447 static inline void init_hrtick(void)
448 {
449 }
450 #endif /* CONFIG_SMP */
451 
452 static void init_rq_hrtick(struct rq *rq)
453 {
454 #ifdef CONFIG_SMP
455 	rq->hrtick_csd_pending = 0;
456 
457 	rq->hrtick_csd.flags = 0;
458 	rq->hrtick_csd.func = __hrtick_start;
459 	rq->hrtick_csd.info = rq;
460 #endif
461 
462 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 	rq->hrtick_timer.function = hrtick;
464 }
465 #else	/* CONFIG_SCHED_HRTICK */
466 static inline void hrtick_clear(struct rq *rq)
467 {
468 }
469 
470 static inline void init_rq_hrtick(struct rq *rq)
471 {
472 }
473 
474 static inline void init_hrtick(void)
475 {
476 }
477 #endif	/* CONFIG_SCHED_HRTICK */
478 
479 /*
480  * cmpxchg based fetch_or, macro so it works for different integer types
481  */
482 #define fetch_or(ptr, val)						\
483 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
484  	for (;;) {							\
485  		__old = cmpxchg((ptr), __val, __val | (val));		\
486  		if (__old == __val)					\
487  			break;						\
488  		__val = __old;						\
489  	}								\
490  	__old;								\
491 })
492 
493 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
494 /*
495  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496  * this avoids any races wrt polling state changes and thereby avoids
497  * spurious IPIs.
498  */
499 static bool set_nr_and_not_polling(struct task_struct *p)
500 {
501 	struct thread_info *ti = task_thread_info(p);
502 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503 }
504 
505 /*
506  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507  *
508  * If this returns true, then the idle task promises to call
509  * sched_ttwu_pending() and reschedule soon.
510  */
511 static bool set_nr_if_polling(struct task_struct *p)
512 {
513 	struct thread_info *ti = task_thread_info(p);
514 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515 
516 	for (;;) {
517 		if (!(val & _TIF_POLLING_NRFLAG))
518 			return false;
519 		if (val & _TIF_NEED_RESCHED)
520 			return true;
521 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 		if (old == val)
523 			break;
524 		val = old;
525 	}
526 	return true;
527 }
528 
529 #else
530 static bool set_nr_and_not_polling(struct task_struct *p)
531 {
532 	set_tsk_need_resched(p);
533 	return true;
534 }
535 
536 #ifdef CONFIG_SMP
537 static bool set_nr_if_polling(struct task_struct *p)
538 {
539 	return false;
540 }
541 #endif
542 #endif
543 
544 /*
545  * resched_curr - mark rq's current task 'to be rescheduled now'.
546  *
547  * On UP this means the setting of the need_resched flag, on SMP it
548  * might also involve a cross-CPU call to trigger the scheduler on
549  * the target CPU.
550  */
551 void resched_curr(struct rq *rq)
552 {
553 	struct task_struct *curr = rq->curr;
554 	int cpu;
555 
556 	lockdep_assert_held(&rq->lock);
557 
558 	if (test_tsk_need_resched(curr))
559 		return;
560 
561 	cpu = cpu_of(rq);
562 
563 	if (cpu == smp_processor_id()) {
564 		set_tsk_need_resched(curr);
565 		set_preempt_need_resched();
566 		return;
567 	}
568 
569 	if (set_nr_and_not_polling(curr))
570 		smp_send_reschedule(cpu);
571 	else
572 		trace_sched_wake_idle_without_ipi(cpu);
573 }
574 
575 void resched_cpu(int cpu)
576 {
577 	struct rq *rq = cpu_rq(cpu);
578 	unsigned long flags;
579 
580 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
581 		return;
582 	resched_curr(rq);
583 	raw_spin_unlock_irqrestore(&rq->lock, flags);
584 }
585 
586 #ifdef CONFIG_SMP
587 #ifdef CONFIG_NO_HZ_COMMON
588 /*
589  * In the semi idle case, use the nearest busy cpu for migrating timers
590  * from an idle cpu.  This is good for power-savings.
591  *
592  * We don't do similar optimization for completely idle system, as
593  * selecting an idle cpu will add more delays to the timers than intended
594  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595  */
596 int get_nohz_timer_target(int pinned)
597 {
598 	int cpu = smp_processor_id();
599 	int i;
600 	struct sched_domain *sd;
601 
602 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 		return cpu;
604 
605 	rcu_read_lock();
606 	for_each_domain(cpu, sd) {
607 		for_each_cpu(i, sched_domain_span(sd)) {
608 			if (!idle_cpu(i)) {
609 				cpu = i;
610 				goto unlock;
611 			}
612 		}
613 	}
614 unlock:
615 	rcu_read_unlock();
616 	return cpu;
617 }
618 /*
619  * When add_timer_on() enqueues a timer into the timer wheel of an
620  * idle CPU then this timer might expire before the next timer event
621  * which is scheduled to wake up that CPU. In case of a completely
622  * idle system the next event might even be infinite time into the
623  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624  * leaves the inner idle loop so the newly added timer is taken into
625  * account when the CPU goes back to idle and evaluates the timer
626  * wheel for the next timer event.
627  */
628 static void wake_up_idle_cpu(int cpu)
629 {
630 	struct rq *rq = cpu_rq(cpu);
631 
632 	if (cpu == smp_processor_id())
633 		return;
634 
635 	if (set_nr_and_not_polling(rq->idle))
636 		smp_send_reschedule(cpu);
637 	else
638 		trace_sched_wake_idle_without_ipi(cpu);
639 }
640 
641 static bool wake_up_full_nohz_cpu(int cpu)
642 {
643 	/*
644 	 * We just need the target to call irq_exit() and re-evaluate
645 	 * the next tick. The nohz full kick at least implies that.
646 	 * If needed we can still optimize that later with an
647 	 * empty IRQ.
648 	 */
649 	if (tick_nohz_full_cpu(cpu)) {
650 		if (cpu != smp_processor_id() ||
651 		    tick_nohz_tick_stopped())
652 			tick_nohz_full_kick_cpu(cpu);
653 		return true;
654 	}
655 
656 	return false;
657 }
658 
659 void wake_up_nohz_cpu(int cpu)
660 {
661 	if (!wake_up_full_nohz_cpu(cpu))
662 		wake_up_idle_cpu(cpu);
663 }
664 
665 static inline bool got_nohz_idle_kick(void)
666 {
667 	int cpu = smp_processor_id();
668 
669 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 		return false;
671 
672 	if (idle_cpu(cpu) && !need_resched())
673 		return true;
674 
675 	/*
676 	 * We can't run Idle Load Balance on this CPU for this time so we
677 	 * cancel it and clear NOHZ_BALANCE_KICK
678 	 */
679 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 	return false;
681 }
682 
683 #else /* CONFIG_NO_HZ_COMMON */
684 
685 static inline bool got_nohz_idle_kick(void)
686 {
687 	return false;
688 }
689 
690 #endif /* CONFIG_NO_HZ_COMMON */
691 
692 #ifdef CONFIG_NO_HZ_FULL
693 bool sched_can_stop_tick(void)
694 {
695 	/*
696 	 * FIFO realtime policy runs the highest priority task. Other runnable
697 	 * tasks are of a lower priority. The scheduler tick does nothing.
698 	 */
699 	if (current->policy == SCHED_FIFO)
700 		return true;
701 
702 	/*
703 	 * Round-robin realtime tasks time slice with other tasks at the same
704 	 * realtime priority. Is this task the only one at this priority?
705 	 */
706 	if (current->policy == SCHED_RR) {
707 		struct sched_rt_entity *rt_se = &current->rt;
708 
709 		return rt_se->run_list.prev == rt_se->run_list.next;
710 	}
711 
712 	/*
713 	 * More than one running task need preemption.
714 	 * nr_running update is assumed to be visible
715 	 * after IPI is sent from wakers.
716 	 */
717 	if (this_rq()->nr_running > 1)
718 		return false;
719 
720 	return true;
721 }
722 #endif /* CONFIG_NO_HZ_FULL */
723 
724 void sched_avg_update(struct rq *rq)
725 {
726 	s64 period = sched_avg_period();
727 
728 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
729 		/*
730 		 * Inline assembly required to prevent the compiler
731 		 * optimising this loop into a divmod call.
732 		 * See __iter_div_u64_rem() for another example of this.
733 		 */
734 		asm("" : "+rm" (rq->age_stamp));
735 		rq->age_stamp += period;
736 		rq->rt_avg /= 2;
737 	}
738 }
739 
740 #endif /* CONFIG_SMP */
741 
742 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
744 /*
745  * Iterate task_group tree rooted at *from, calling @down when first entering a
746  * node and @up when leaving it for the final time.
747  *
748  * Caller must hold rcu_lock or sufficient equivalent.
749  */
750 int walk_tg_tree_from(struct task_group *from,
751 			     tg_visitor down, tg_visitor up, void *data)
752 {
753 	struct task_group *parent, *child;
754 	int ret;
755 
756 	parent = from;
757 
758 down:
759 	ret = (*down)(parent, data);
760 	if (ret)
761 		goto out;
762 	list_for_each_entry_rcu(child, &parent->children, siblings) {
763 		parent = child;
764 		goto down;
765 
766 up:
767 		continue;
768 	}
769 	ret = (*up)(parent, data);
770 	if (ret || parent == from)
771 		goto out;
772 
773 	child = parent;
774 	parent = parent->parent;
775 	if (parent)
776 		goto up;
777 out:
778 	return ret;
779 }
780 
781 int tg_nop(struct task_group *tg, void *data)
782 {
783 	return 0;
784 }
785 #endif
786 
787 static void set_load_weight(struct task_struct *p)
788 {
789 	int prio = p->static_prio - MAX_RT_PRIO;
790 	struct load_weight *load = &p->se.load;
791 
792 	/*
793 	 * SCHED_IDLE tasks get minimal weight:
794 	 */
795 	if (p->policy == SCHED_IDLE) {
796 		load->weight = scale_load(WEIGHT_IDLEPRIO);
797 		load->inv_weight = WMULT_IDLEPRIO;
798 		return;
799 	}
800 
801 	load->weight = scale_load(prio_to_weight[prio]);
802 	load->inv_weight = prio_to_wmult[prio];
803 }
804 
805 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
806 {
807 	update_rq_clock(rq);
808 	sched_info_queued(rq, p);
809 	p->sched_class->enqueue_task(rq, p, flags);
810 }
811 
812 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
813 {
814 	update_rq_clock(rq);
815 	sched_info_dequeued(rq, p);
816 	p->sched_class->dequeue_task(rq, p, flags);
817 }
818 
819 void activate_task(struct rq *rq, struct task_struct *p, int flags)
820 {
821 	if (task_contributes_to_load(p))
822 		rq->nr_uninterruptible--;
823 
824 	enqueue_task(rq, p, flags);
825 }
826 
827 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
828 {
829 	if (task_contributes_to_load(p))
830 		rq->nr_uninterruptible++;
831 
832 	dequeue_task(rq, p, flags);
833 }
834 
835 static void update_rq_clock_task(struct rq *rq, s64 delta)
836 {
837 /*
838  * In theory, the compile should just see 0 here, and optimize out the call
839  * to sched_rt_avg_update. But I don't trust it...
840  */
841 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 	s64 steal = 0, irq_delta = 0;
843 #endif
844 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
845 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
846 
847 	/*
848 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 	 * this case when a previous update_rq_clock() happened inside a
850 	 * {soft,}irq region.
851 	 *
852 	 * When this happens, we stop ->clock_task and only update the
853 	 * prev_irq_time stamp to account for the part that fit, so that a next
854 	 * update will consume the rest. This ensures ->clock_task is
855 	 * monotonic.
856 	 *
857 	 * It does however cause some slight miss-attribution of {soft,}irq
858 	 * time, a more accurate solution would be to update the irq_time using
859 	 * the current rq->clock timestamp, except that would require using
860 	 * atomic ops.
861 	 */
862 	if (irq_delta > delta)
863 		irq_delta = delta;
864 
865 	rq->prev_irq_time += irq_delta;
866 	delta -= irq_delta;
867 #endif
868 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
869 	if (static_key_false((&paravirt_steal_rq_enabled))) {
870 		steal = paravirt_steal_clock(cpu_of(rq));
871 		steal -= rq->prev_steal_time_rq;
872 
873 		if (unlikely(steal > delta))
874 			steal = delta;
875 
876 		rq->prev_steal_time_rq += steal;
877 		delta -= steal;
878 	}
879 #endif
880 
881 	rq->clock_task += delta;
882 
883 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
884 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
885 		sched_rt_avg_update(rq, irq_delta + steal);
886 #endif
887 }
888 
889 void sched_set_stop_task(int cpu, struct task_struct *stop)
890 {
891 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
893 
894 	if (stop) {
895 		/*
896 		 * Make it appear like a SCHED_FIFO task, its something
897 		 * userspace knows about and won't get confused about.
898 		 *
899 		 * Also, it will make PI more or less work without too
900 		 * much confusion -- but then, stop work should not
901 		 * rely on PI working anyway.
902 		 */
903 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904 
905 		stop->sched_class = &stop_sched_class;
906 	}
907 
908 	cpu_rq(cpu)->stop = stop;
909 
910 	if (old_stop) {
911 		/*
912 		 * Reset it back to a normal scheduling class so that
913 		 * it can die in pieces.
914 		 */
915 		old_stop->sched_class = &rt_sched_class;
916 	}
917 }
918 
919 /*
920  * __normal_prio - return the priority that is based on the static prio
921  */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924 	return p->static_prio;
925 }
926 
927 /*
928  * Calculate the expected normal priority: i.e. priority
929  * without taking RT-inheritance into account. Might be
930  * boosted by interactivity modifiers. Changes upon fork,
931  * setprio syscalls, and whenever the interactivity
932  * estimator recalculates.
933  */
934 static inline int normal_prio(struct task_struct *p)
935 {
936 	int prio;
937 
938 	if (task_has_dl_policy(p))
939 		prio = MAX_DL_PRIO-1;
940 	else if (task_has_rt_policy(p))
941 		prio = MAX_RT_PRIO-1 - p->rt_priority;
942 	else
943 		prio = __normal_prio(p);
944 	return prio;
945 }
946 
947 /*
948  * Calculate the current priority, i.e. the priority
949  * taken into account by the scheduler. This value might
950  * be boosted by RT tasks, or might be boosted by
951  * interactivity modifiers. Will be RT if the task got
952  * RT-boosted. If not then it returns p->normal_prio.
953  */
954 static int effective_prio(struct task_struct *p)
955 {
956 	p->normal_prio = normal_prio(p);
957 	/*
958 	 * If we are RT tasks or we were boosted to RT priority,
959 	 * keep the priority unchanged. Otherwise, update priority
960 	 * to the normal priority:
961 	 */
962 	if (!rt_prio(p->prio))
963 		return p->normal_prio;
964 	return p->prio;
965 }
966 
967 /**
968  * task_curr - is this task currently executing on a CPU?
969  * @p: the task in question.
970  *
971  * Return: 1 if the task is currently executing. 0 otherwise.
972  */
973 inline int task_curr(const struct task_struct *p)
974 {
975 	return cpu_curr(task_cpu(p)) == p;
976 }
977 
978 /*
979  * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980  */
981 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 				       const struct sched_class *prev_class,
983 				       int oldprio)
984 {
985 	if (prev_class != p->sched_class) {
986 		if (prev_class->switched_from)
987 			prev_class->switched_from(rq, p);
988 		/* Possble rq->lock 'hole'.  */
989 		p->sched_class->switched_to(rq, p);
990 	} else if (oldprio != p->prio || dl_task(p))
991 		p->sched_class->prio_changed(rq, p, oldprio);
992 }
993 
994 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
995 {
996 	const struct sched_class *class;
997 
998 	if (p->sched_class == rq->curr->sched_class) {
999 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 	} else {
1001 		for_each_class(class) {
1002 			if (class == rq->curr->sched_class)
1003 				break;
1004 			if (class == p->sched_class) {
1005 				resched_curr(rq);
1006 				break;
1007 			}
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * A queue event has occurred, and we're going to schedule.  In
1013 	 * this case, we can save a useless back to back clock update.
1014 	 */
1015 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1016 		rq_clock_skip_update(rq, true);
1017 }
1018 
1019 #ifdef CONFIG_SMP
1020 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1021 {
1022 #ifdef CONFIG_SCHED_DEBUG
1023 	/*
1024 	 * We should never call set_task_cpu() on a blocked task,
1025 	 * ttwu() will sort out the placement.
1026 	 */
1027 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1028 			!p->on_rq);
1029 
1030 #ifdef CONFIG_LOCKDEP
1031 	/*
1032 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 	 *
1035 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1036 	 * see task_group().
1037 	 *
1038 	 * Furthermore, all task_rq users should acquire both locks, see
1039 	 * task_rq_lock().
1040 	 */
1041 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 				      lockdep_is_held(&task_rq(p)->lock)));
1043 #endif
1044 #endif
1045 
1046 	trace_sched_migrate_task(p, new_cpu);
1047 
1048 	if (task_cpu(p) != new_cpu) {
1049 		if (p->sched_class->migrate_task_rq)
1050 			p->sched_class->migrate_task_rq(p, new_cpu);
1051 		p->se.nr_migrations++;
1052 		perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1053 	}
1054 
1055 	__set_task_cpu(p, new_cpu);
1056 }
1057 
1058 static void __migrate_swap_task(struct task_struct *p, int cpu)
1059 {
1060 	if (task_on_rq_queued(p)) {
1061 		struct rq *src_rq, *dst_rq;
1062 
1063 		src_rq = task_rq(p);
1064 		dst_rq = cpu_rq(cpu);
1065 
1066 		deactivate_task(src_rq, p, 0);
1067 		set_task_cpu(p, cpu);
1068 		activate_task(dst_rq, p, 0);
1069 		check_preempt_curr(dst_rq, p, 0);
1070 	} else {
1071 		/*
1072 		 * Task isn't running anymore; make it appear like we migrated
1073 		 * it before it went to sleep. This means on wakeup we make the
1074 		 * previous cpu our targer instead of where it really is.
1075 		 */
1076 		p->wake_cpu = cpu;
1077 	}
1078 }
1079 
1080 struct migration_swap_arg {
1081 	struct task_struct *src_task, *dst_task;
1082 	int src_cpu, dst_cpu;
1083 };
1084 
1085 static int migrate_swap_stop(void *data)
1086 {
1087 	struct migration_swap_arg *arg = data;
1088 	struct rq *src_rq, *dst_rq;
1089 	int ret = -EAGAIN;
1090 
1091 	src_rq = cpu_rq(arg->src_cpu);
1092 	dst_rq = cpu_rq(arg->dst_cpu);
1093 
1094 	double_raw_lock(&arg->src_task->pi_lock,
1095 			&arg->dst_task->pi_lock);
1096 	double_rq_lock(src_rq, dst_rq);
1097 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 		goto unlock;
1099 
1100 	if (task_cpu(arg->src_task) != arg->src_cpu)
1101 		goto unlock;
1102 
1103 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 		goto unlock;
1105 
1106 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 		goto unlock;
1108 
1109 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1111 
1112 	ret = 0;
1113 
1114 unlock:
1115 	double_rq_unlock(src_rq, dst_rq);
1116 	raw_spin_unlock(&arg->dst_task->pi_lock);
1117 	raw_spin_unlock(&arg->src_task->pi_lock);
1118 
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Cross migrate two tasks
1124  */
1125 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126 {
1127 	struct migration_swap_arg arg;
1128 	int ret = -EINVAL;
1129 
1130 	arg = (struct migration_swap_arg){
1131 		.src_task = cur,
1132 		.src_cpu = task_cpu(cur),
1133 		.dst_task = p,
1134 		.dst_cpu = task_cpu(p),
1135 	};
1136 
1137 	if (arg.src_cpu == arg.dst_cpu)
1138 		goto out;
1139 
1140 	/*
1141 	 * These three tests are all lockless; this is OK since all of them
1142 	 * will be re-checked with proper locks held further down the line.
1143 	 */
1144 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 		goto out;
1146 
1147 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 		goto out;
1149 
1150 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 		goto out;
1152 
1153 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1154 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155 
1156 out:
1157 	return ret;
1158 }
1159 
1160 struct migration_arg {
1161 	struct task_struct *task;
1162 	int dest_cpu;
1163 };
1164 
1165 static int migration_cpu_stop(void *data);
1166 
1167 /*
1168  * wait_task_inactive - wait for a thread to unschedule.
1169  *
1170  * If @match_state is nonzero, it's the @p->state value just checked and
1171  * not expected to change.  If it changes, i.e. @p might have woken up,
1172  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1173  * we return a positive number (its total switch count).  If a second call
1174  * a short while later returns the same number, the caller can be sure that
1175  * @p has remained unscheduled the whole time.
1176  *
1177  * The caller must ensure that the task *will* unschedule sometime soon,
1178  * else this function might spin for a *long* time. This function can't
1179  * be called with interrupts off, or it may introduce deadlock with
1180  * smp_call_function() if an IPI is sent by the same process we are
1181  * waiting to become inactive.
1182  */
1183 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1184 {
1185 	unsigned long flags;
1186 	int running, queued;
1187 	unsigned long ncsw;
1188 	struct rq *rq;
1189 
1190 	for (;;) {
1191 		/*
1192 		 * We do the initial early heuristics without holding
1193 		 * any task-queue locks at all. We'll only try to get
1194 		 * the runqueue lock when things look like they will
1195 		 * work out!
1196 		 */
1197 		rq = task_rq(p);
1198 
1199 		/*
1200 		 * If the task is actively running on another CPU
1201 		 * still, just relax and busy-wait without holding
1202 		 * any locks.
1203 		 *
1204 		 * NOTE! Since we don't hold any locks, it's not
1205 		 * even sure that "rq" stays as the right runqueue!
1206 		 * But we don't care, since "task_running()" will
1207 		 * return false if the runqueue has changed and p
1208 		 * is actually now running somewhere else!
1209 		 */
1210 		while (task_running(rq, p)) {
1211 			if (match_state && unlikely(p->state != match_state))
1212 				return 0;
1213 			cpu_relax();
1214 		}
1215 
1216 		/*
1217 		 * Ok, time to look more closely! We need the rq
1218 		 * lock now, to be *sure*. If we're wrong, we'll
1219 		 * just go back and repeat.
1220 		 */
1221 		rq = task_rq_lock(p, &flags);
1222 		trace_sched_wait_task(p);
1223 		running = task_running(rq, p);
1224 		queued = task_on_rq_queued(p);
1225 		ncsw = 0;
1226 		if (!match_state || p->state == match_state)
1227 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1228 		task_rq_unlock(rq, p, &flags);
1229 
1230 		/*
1231 		 * If it changed from the expected state, bail out now.
1232 		 */
1233 		if (unlikely(!ncsw))
1234 			break;
1235 
1236 		/*
1237 		 * Was it really running after all now that we
1238 		 * checked with the proper locks actually held?
1239 		 *
1240 		 * Oops. Go back and try again..
1241 		 */
1242 		if (unlikely(running)) {
1243 			cpu_relax();
1244 			continue;
1245 		}
1246 
1247 		/*
1248 		 * It's not enough that it's not actively running,
1249 		 * it must be off the runqueue _entirely_, and not
1250 		 * preempted!
1251 		 *
1252 		 * So if it was still runnable (but just not actively
1253 		 * running right now), it's preempted, and we should
1254 		 * yield - it could be a while.
1255 		 */
1256 		if (unlikely(queued)) {
1257 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258 
1259 			set_current_state(TASK_UNINTERRUPTIBLE);
1260 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1261 			continue;
1262 		}
1263 
1264 		/*
1265 		 * Ahh, all good. It wasn't running, and it wasn't
1266 		 * runnable, which means that it will never become
1267 		 * running in the future either. We're all done!
1268 		 */
1269 		break;
1270 	}
1271 
1272 	return ncsw;
1273 }
1274 
1275 /***
1276  * kick_process - kick a running thread to enter/exit the kernel
1277  * @p: the to-be-kicked thread
1278  *
1279  * Cause a process which is running on another CPU to enter
1280  * kernel-mode, without any delay. (to get signals handled.)
1281  *
1282  * NOTE: this function doesn't have to take the runqueue lock,
1283  * because all it wants to ensure is that the remote task enters
1284  * the kernel. If the IPI races and the task has been migrated
1285  * to another CPU then no harm is done and the purpose has been
1286  * achieved as well.
1287  */
1288 void kick_process(struct task_struct *p)
1289 {
1290 	int cpu;
1291 
1292 	preempt_disable();
1293 	cpu = task_cpu(p);
1294 	if ((cpu != smp_processor_id()) && task_curr(p))
1295 		smp_send_reschedule(cpu);
1296 	preempt_enable();
1297 }
1298 EXPORT_SYMBOL_GPL(kick_process);
1299 #endif /* CONFIG_SMP */
1300 
1301 #ifdef CONFIG_SMP
1302 /*
1303  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1304  */
1305 static int select_fallback_rq(int cpu, struct task_struct *p)
1306 {
1307 	int nid = cpu_to_node(cpu);
1308 	const struct cpumask *nodemask = NULL;
1309 	enum { cpuset, possible, fail } state = cpuset;
1310 	int dest_cpu;
1311 
1312 	/*
1313 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 	 * will return -1. There is no cpu on the node, and we should
1315 	 * select the cpu on the other node.
1316 	 */
1317 	if (nid != -1) {
1318 		nodemask = cpumask_of_node(nid);
1319 
1320 		/* Look for allowed, online CPU in same node. */
1321 		for_each_cpu(dest_cpu, nodemask) {
1322 			if (!cpu_online(dest_cpu))
1323 				continue;
1324 			if (!cpu_active(dest_cpu))
1325 				continue;
1326 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 				return dest_cpu;
1328 		}
1329 	}
1330 
1331 	for (;;) {
1332 		/* Any allowed, online CPU? */
1333 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1334 			if (!cpu_online(dest_cpu))
1335 				continue;
1336 			if (!cpu_active(dest_cpu))
1337 				continue;
1338 			goto out;
1339 		}
1340 
1341 		switch (state) {
1342 		case cpuset:
1343 			/* No more Mr. Nice Guy. */
1344 			cpuset_cpus_allowed_fallback(p);
1345 			state = possible;
1346 			break;
1347 
1348 		case possible:
1349 			do_set_cpus_allowed(p, cpu_possible_mask);
1350 			state = fail;
1351 			break;
1352 
1353 		case fail:
1354 			BUG();
1355 			break;
1356 		}
1357 	}
1358 
1359 out:
1360 	if (state != cpuset) {
1361 		/*
1362 		 * Don't tell them about moving exiting tasks or
1363 		 * kernel threads (both mm NULL), since they never
1364 		 * leave kernel.
1365 		 */
1366 		if (p->mm && printk_ratelimit()) {
1367 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1368 					task_pid_nr(p), p->comm, cpu);
1369 		}
1370 	}
1371 
1372 	return dest_cpu;
1373 }
1374 
1375 /*
1376  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1377  */
1378 static inline
1379 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1380 {
1381 	if (p->nr_cpus_allowed > 1)
1382 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1383 
1384 	/*
1385 	 * In order not to call set_task_cpu() on a blocking task we need
1386 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 	 * cpu.
1388 	 *
1389 	 * Since this is common to all placement strategies, this lives here.
1390 	 *
1391 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 	 *   not worry about this generic constraint ]
1393 	 */
1394 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1395 		     !cpu_online(cpu)))
1396 		cpu = select_fallback_rq(task_cpu(p), p);
1397 
1398 	return cpu;
1399 }
1400 
1401 static void update_avg(u64 *avg, u64 sample)
1402 {
1403 	s64 diff = sample - *avg;
1404 	*avg += diff >> 3;
1405 }
1406 #endif
1407 
1408 static void
1409 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1410 {
1411 #ifdef CONFIG_SCHEDSTATS
1412 	struct rq *rq = this_rq();
1413 
1414 #ifdef CONFIG_SMP
1415 	int this_cpu = smp_processor_id();
1416 
1417 	if (cpu == this_cpu) {
1418 		schedstat_inc(rq, ttwu_local);
1419 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 	} else {
1421 		struct sched_domain *sd;
1422 
1423 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1424 		rcu_read_lock();
1425 		for_each_domain(this_cpu, sd) {
1426 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 				schedstat_inc(sd, ttwu_wake_remote);
1428 				break;
1429 			}
1430 		}
1431 		rcu_read_unlock();
1432 	}
1433 
1434 	if (wake_flags & WF_MIGRATED)
1435 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436 
1437 #endif /* CONFIG_SMP */
1438 
1439 	schedstat_inc(rq, ttwu_count);
1440 	schedstat_inc(p, se.statistics.nr_wakeups);
1441 
1442 	if (wake_flags & WF_SYNC)
1443 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1444 
1445 #endif /* CONFIG_SCHEDSTATS */
1446 }
1447 
1448 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449 {
1450 	activate_task(rq, p, en_flags);
1451 	p->on_rq = TASK_ON_RQ_QUEUED;
1452 
1453 	/* if a worker is waking up, notify workqueue */
1454 	if (p->flags & PF_WQ_WORKER)
1455 		wq_worker_waking_up(p, cpu_of(rq));
1456 }
1457 
1458 /*
1459  * Mark the task runnable and perform wakeup-preemption.
1460  */
1461 static void
1462 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1463 {
1464 	check_preempt_curr(rq, p, wake_flags);
1465 	trace_sched_wakeup(p, true);
1466 
1467 	p->state = TASK_RUNNING;
1468 #ifdef CONFIG_SMP
1469 	if (p->sched_class->task_woken)
1470 		p->sched_class->task_woken(rq, p);
1471 
1472 	if (rq->idle_stamp) {
1473 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1474 		u64 max = 2*rq->max_idle_balance_cost;
1475 
1476 		update_avg(&rq->avg_idle, delta);
1477 
1478 		if (rq->avg_idle > max)
1479 			rq->avg_idle = max;
1480 
1481 		rq->idle_stamp = 0;
1482 	}
1483 #endif
1484 }
1485 
1486 static void
1487 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488 {
1489 #ifdef CONFIG_SMP
1490 	if (p->sched_contributes_to_load)
1491 		rq->nr_uninterruptible--;
1492 #endif
1493 
1494 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 	ttwu_do_wakeup(rq, p, wake_flags);
1496 }
1497 
1498 /*
1499  * Called in case the task @p isn't fully descheduled from its runqueue,
1500  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501  * since all we need to do is flip p->state to TASK_RUNNING, since
1502  * the task is still ->on_rq.
1503  */
1504 static int ttwu_remote(struct task_struct *p, int wake_flags)
1505 {
1506 	struct rq *rq;
1507 	int ret = 0;
1508 
1509 	rq = __task_rq_lock(p);
1510 	if (task_on_rq_queued(p)) {
1511 		/* check_preempt_curr() may use rq clock */
1512 		update_rq_clock(rq);
1513 		ttwu_do_wakeup(rq, p, wake_flags);
1514 		ret = 1;
1515 	}
1516 	__task_rq_unlock(rq);
1517 
1518 	return ret;
1519 }
1520 
1521 #ifdef CONFIG_SMP
1522 void sched_ttwu_pending(void)
1523 {
1524 	struct rq *rq = this_rq();
1525 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 	struct task_struct *p;
1527 	unsigned long flags;
1528 
1529 	if (!llist)
1530 		return;
1531 
1532 	raw_spin_lock_irqsave(&rq->lock, flags);
1533 
1534 	while (llist) {
1535 		p = llist_entry(llist, struct task_struct, wake_entry);
1536 		llist = llist_next(llist);
1537 		ttwu_do_activate(rq, p, 0);
1538 	}
1539 
1540 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1541 }
1542 
1543 void scheduler_ipi(void)
1544 {
1545 	/*
1546 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 	 * this IPI.
1549 	 */
1550 	preempt_fold_need_resched();
1551 
1552 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1553 		return;
1554 
1555 	/*
1556 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 	 * traditionally all their work was done from the interrupt return
1558 	 * path. Now that we actually do some work, we need to make sure
1559 	 * we do call them.
1560 	 *
1561 	 * Some archs already do call them, luckily irq_enter/exit nest
1562 	 * properly.
1563 	 *
1564 	 * Arguably we should visit all archs and update all handlers,
1565 	 * however a fair share of IPIs are still resched only so this would
1566 	 * somewhat pessimize the simple resched case.
1567 	 */
1568 	irq_enter();
1569 	sched_ttwu_pending();
1570 
1571 	/*
1572 	 * Check if someone kicked us for doing the nohz idle load balance.
1573 	 */
1574 	if (unlikely(got_nohz_idle_kick())) {
1575 		this_rq()->idle_balance = 1;
1576 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1577 	}
1578 	irq_exit();
1579 }
1580 
1581 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582 {
1583 	struct rq *rq = cpu_rq(cpu);
1584 
1585 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 		if (!set_nr_if_polling(rq->idle))
1587 			smp_send_reschedule(cpu);
1588 		else
1589 			trace_sched_wake_idle_without_ipi(cpu);
1590 	}
1591 }
1592 
1593 void wake_up_if_idle(int cpu)
1594 {
1595 	struct rq *rq = cpu_rq(cpu);
1596 	unsigned long flags;
1597 
1598 	rcu_read_lock();
1599 
1600 	if (!is_idle_task(rcu_dereference(rq->curr)))
1601 		goto out;
1602 
1603 	if (set_nr_if_polling(rq->idle)) {
1604 		trace_sched_wake_idle_without_ipi(cpu);
1605 	} else {
1606 		raw_spin_lock_irqsave(&rq->lock, flags);
1607 		if (is_idle_task(rq->curr))
1608 			smp_send_reschedule(cpu);
1609 		/* Else cpu is not in idle, do nothing here */
1610 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 	}
1612 
1613 out:
1614 	rcu_read_unlock();
1615 }
1616 
1617 bool cpus_share_cache(int this_cpu, int that_cpu)
1618 {
1619 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620 }
1621 #endif /* CONFIG_SMP */
1622 
1623 static void ttwu_queue(struct task_struct *p, int cpu)
1624 {
1625 	struct rq *rq = cpu_rq(cpu);
1626 
1627 #if defined(CONFIG_SMP)
1628 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1629 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1630 		ttwu_queue_remote(p, cpu);
1631 		return;
1632 	}
1633 #endif
1634 
1635 	raw_spin_lock(&rq->lock);
1636 	ttwu_do_activate(rq, p, 0);
1637 	raw_spin_unlock(&rq->lock);
1638 }
1639 
1640 /**
1641  * try_to_wake_up - wake up a thread
1642  * @p: the thread to be awakened
1643  * @state: the mask of task states that can be woken
1644  * @wake_flags: wake modifier flags (WF_*)
1645  *
1646  * Put it on the run-queue if it's not already there. The "current"
1647  * thread is always on the run-queue (except when the actual
1648  * re-schedule is in progress), and as such you're allowed to do
1649  * the simpler "current->state = TASK_RUNNING" to mark yourself
1650  * runnable without the overhead of this.
1651  *
1652  * Return: %true if @p was woken up, %false if it was already running.
1653  * or @state didn't match @p's state.
1654  */
1655 static int
1656 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1657 {
1658 	unsigned long flags;
1659 	int cpu, success = 0;
1660 
1661 	/*
1662 	 * If we are going to wake up a thread waiting for CONDITION we
1663 	 * need to ensure that CONDITION=1 done by the caller can not be
1664 	 * reordered with p->state check below. This pairs with mb() in
1665 	 * set_current_state() the waiting thread does.
1666 	 */
1667 	smp_mb__before_spinlock();
1668 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1669 	if (!(p->state & state))
1670 		goto out;
1671 
1672 	success = 1; /* we're going to change ->state */
1673 	cpu = task_cpu(p);
1674 
1675 	if (p->on_rq && ttwu_remote(p, wake_flags))
1676 		goto stat;
1677 
1678 #ifdef CONFIG_SMP
1679 	/*
1680 	 * If the owning (remote) cpu is still in the middle of schedule() with
1681 	 * this task as prev, wait until its done referencing the task.
1682 	 */
1683 	while (p->on_cpu)
1684 		cpu_relax();
1685 	/*
1686 	 * Pairs with the smp_wmb() in finish_lock_switch().
1687 	 */
1688 	smp_rmb();
1689 
1690 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1691 	p->state = TASK_WAKING;
1692 
1693 	if (p->sched_class->task_waking)
1694 		p->sched_class->task_waking(p);
1695 
1696 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1697 	if (task_cpu(p) != cpu) {
1698 		wake_flags |= WF_MIGRATED;
1699 		set_task_cpu(p, cpu);
1700 	}
1701 #endif /* CONFIG_SMP */
1702 
1703 	ttwu_queue(p, cpu);
1704 stat:
1705 	ttwu_stat(p, cpu, wake_flags);
1706 out:
1707 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1708 
1709 	return success;
1710 }
1711 
1712 /**
1713  * try_to_wake_up_local - try to wake up a local task with rq lock held
1714  * @p: the thread to be awakened
1715  *
1716  * Put @p on the run-queue if it's not already there. The caller must
1717  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718  * the current task.
1719  */
1720 static void try_to_wake_up_local(struct task_struct *p)
1721 {
1722 	struct rq *rq = task_rq(p);
1723 
1724 	if (WARN_ON_ONCE(rq != this_rq()) ||
1725 	    WARN_ON_ONCE(p == current))
1726 		return;
1727 
1728 	lockdep_assert_held(&rq->lock);
1729 
1730 	if (!raw_spin_trylock(&p->pi_lock)) {
1731 		raw_spin_unlock(&rq->lock);
1732 		raw_spin_lock(&p->pi_lock);
1733 		raw_spin_lock(&rq->lock);
1734 	}
1735 
1736 	if (!(p->state & TASK_NORMAL))
1737 		goto out;
1738 
1739 	if (!task_on_rq_queued(p))
1740 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741 
1742 	ttwu_do_wakeup(rq, p, 0);
1743 	ttwu_stat(p, smp_processor_id(), 0);
1744 out:
1745 	raw_spin_unlock(&p->pi_lock);
1746 }
1747 
1748 /**
1749  * wake_up_process - Wake up a specific process
1750  * @p: The process to be woken up.
1751  *
1752  * Attempt to wake up the nominated process and move it to the set of runnable
1753  * processes.
1754  *
1755  * Return: 1 if the process was woken up, 0 if it was already running.
1756  *
1757  * It may be assumed that this function implies a write memory barrier before
1758  * changing the task state if and only if any tasks are woken up.
1759  */
1760 int wake_up_process(struct task_struct *p)
1761 {
1762 	WARN_ON(task_is_stopped_or_traced(p));
1763 	return try_to_wake_up(p, TASK_NORMAL, 0);
1764 }
1765 EXPORT_SYMBOL(wake_up_process);
1766 
1767 int wake_up_state(struct task_struct *p, unsigned int state)
1768 {
1769 	return try_to_wake_up(p, state, 0);
1770 }
1771 
1772 /*
1773  * This function clears the sched_dl_entity static params.
1774  */
1775 void __dl_clear_params(struct task_struct *p)
1776 {
1777 	struct sched_dl_entity *dl_se = &p->dl;
1778 
1779 	dl_se->dl_runtime = 0;
1780 	dl_se->dl_deadline = 0;
1781 	dl_se->dl_period = 0;
1782 	dl_se->flags = 0;
1783 	dl_se->dl_bw = 0;
1784 
1785 	dl_se->dl_throttled = 0;
1786 	dl_se->dl_new = 1;
1787 	dl_se->dl_yielded = 0;
1788 }
1789 
1790 /*
1791  * Perform scheduler related setup for a newly forked process p.
1792  * p is forked by current.
1793  *
1794  * __sched_fork() is basic setup used by init_idle() too:
1795  */
1796 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1797 {
1798 	p->on_rq			= 0;
1799 
1800 	p->se.on_rq			= 0;
1801 	p->se.exec_start		= 0;
1802 	p->se.sum_exec_runtime		= 0;
1803 	p->se.prev_sum_exec_runtime	= 0;
1804 	p->se.nr_migrations		= 0;
1805 	p->se.vruntime			= 0;
1806 #ifdef CONFIG_SMP
1807 	p->se.avg.decay_count		= 0;
1808 #endif
1809 	INIT_LIST_HEAD(&p->se.group_node);
1810 
1811 #ifdef CONFIG_SCHEDSTATS
1812 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1813 #endif
1814 
1815 	RB_CLEAR_NODE(&p->dl.rb_node);
1816 	init_dl_task_timer(&p->dl);
1817 	__dl_clear_params(p);
1818 
1819 	INIT_LIST_HEAD(&p->rt.run_list);
1820 
1821 #ifdef CONFIG_PREEMPT_NOTIFIERS
1822 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1823 #endif
1824 
1825 #ifdef CONFIG_NUMA_BALANCING
1826 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1827 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1828 		p->mm->numa_scan_seq = 0;
1829 	}
1830 
1831 	if (clone_flags & CLONE_VM)
1832 		p->numa_preferred_nid = current->numa_preferred_nid;
1833 	else
1834 		p->numa_preferred_nid = -1;
1835 
1836 	p->node_stamp = 0ULL;
1837 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1838 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1839 	p->numa_work.next = &p->numa_work;
1840 	p->numa_faults = NULL;
1841 	p->last_task_numa_placement = 0;
1842 	p->last_sum_exec_runtime = 0;
1843 
1844 	p->numa_group = NULL;
1845 #endif /* CONFIG_NUMA_BALANCING */
1846 }
1847 
1848 #ifdef CONFIG_NUMA_BALANCING
1849 #ifdef CONFIG_SCHED_DEBUG
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 	if (enabled)
1853 		sched_feat_set("NUMA");
1854 	else
1855 		sched_feat_set("NO_NUMA");
1856 }
1857 #else
1858 __read_mostly bool numabalancing_enabled;
1859 
1860 void set_numabalancing_state(bool enabled)
1861 {
1862 	numabalancing_enabled = enabled;
1863 }
1864 #endif /* CONFIG_SCHED_DEBUG */
1865 
1866 #ifdef CONFIG_PROC_SYSCTL
1867 int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1869 {
1870 	struct ctl_table t;
1871 	int err;
1872 	int state = numabalancing_enabled;
1873 
1874 	if (write && !capable(CAP_SYS_ADMIN))
1875 		return -EPERM;
1876 
1877 	t = *table;
1878 	t.data = &state;
1879 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 	if (err < 0)
1881 		return err;
1882 	if (write)
1883 		set_numabalancing_state(state);
1884 	return err;
1885 }
1886 #endif
1887 #endif
1888 
1889 /*
1890  * fork()/clone()-time setup:
1891  */
1892 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1893 {
1894 	unsigned long flags;
1895 	int cpu = get_cpu();
1896 
1897 	__sched_fork(clone_flags, p);
1898 	/*
1899 	 * We mark the process as running here. This guarantees that
1900 	 * nobody will actually run it, and a signal or other external
1901 	 * event cannot wake it up and insert it on the runqueue either.
1902 	 */
1903 	p->state = TASK_RUNNING;
1904 
1905 	/*
1906 	 * Make sure we do not leak PI boosting priority to the child.
1907 	 */
1908 	p->prio = current->normal_prio;
1909 
1910 	/*
1911 	 * Revert to default priority/policy on fork if requested.
1912 	 */
1913 	if (unlikely(p->sched_reset_on_fork)) {
1914 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1915 			p->policy = SCHED_NORMAL;
1916 			p->static_prio = NICE_TO_PRIO(0);
1917 			p->rt_priority = 0;
1918 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 			p->static_prio = NICE_TO_PRIO(0);
1920 
1921 		p->prio = p->normal_prio = __normal_prio(p);
1922 		set_load_weight(p);
1923 
1924 		/*
1925 		 * We don't need the reset flag anymore after the fork. It has
1926 		 * fulfilled its duty:
1927 		 */
1928 		p->sched_reset_on_fork = 0;
1929 	}
1930 
1931 	if (dl_prio(p->prio)) {
1932 		put_cpu();
1933 		return -EAGAIN;
1934 	} else if (rt_prio(p->prio)) {
1935 		p->sched_class = &rt_sched_class;
1936 	} else {
1937 		p->sched_class = &fair_sched_class;
1938 	}
1939 
1940 	if (p->sched_class->task_fork)
1941 		p->sched_class->task_fork(p);
1942 
1943 	/*
1944 	 * The child is not yet in the pid-hash so no cgroup attach races,
1945 	 * and the cgroup is pinned to this child due to cgroup_fork()
1946 	 * is ran before sched_fork().
1947 	 *
1948 	 * Silence PROVE_RCU.
1949 	 */
1950 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1951 	set_task_cpu(p, cpu);
1952 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1953 
1954 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1955 	if (likely(sched_info_on()))
1956 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1957 #endif
1958 #if defined(CONFIG_SMP)
1959 	p->on_cpu = 0;
1960 #endif
1961 	init_task_preempt_count(p);
1962 #ifdef CONFIG_SMP
1963 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1964 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1965 #endif
1966 
1967 	put_cpu();
1968 	return 0;
1969 }
1970 
1971 unsigned long to_ratio(u64 period, u64 runtime)
1972 {
1973 	if (runtime == RUNTIME_INF)
1974 		return 1ULL << 20;
1975 
1976 	/*
1977 	 * Doing this here saves a lot of checks in all
1978 	 * the calling paths, and returning zero seems
1979 	 * safe for them anyway.
1980 	 */
1981 	if (period == 0)
1982 		return 0;
1983 
1984 	return div64_u64(runtime << 20, period);
1985 }
1986 
1987 #ifdef CONFIG_SMP
1988 inline struct dl_bw *dl_bw_of(int i)
1989 {
1990 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 			   "sched RCU must be held");
1992 	return &cpu_rq(i)->rd->dl_bw;
1993 }
1994 
1995 static inline int dl_bw_cpus(int i)
1996 {
1997 	struct root_domain *rd = cpu_rq(i)->rd;
1998 	int cpus = 0;
1999 
2000 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 			   "sched RCU must be held");
2002 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 		cpus++;
2004 
2005 	return cpus;
2006 }
2007 #else
2008 inline struct dl_bw *dl_bw_of(int i)
2009 {
2010 	return &cpu_rq(i)->dl.dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	return 1;
2016 }
2017 #endif
2018 
2019 /*
2020  * We must be sure that accepting a new task (or allowing changing the
2021  * parameters of an existing one) is consistent with the bandwidth
2022  * constraints. If yes, this function also accordingly updates the currently
2023  * allocated bandwidth to reflect the new situation.
2024  *
2025  * This function is called while holding p's rq->lock.
2026  *
2027  * XXX we should delay bw change until the task's 0-lag point, see
2028  * __setparam_dl().
2029  */
2030 static int dl_overflow(struct task_struct *p, int policy,
2031 		       const struct sched_attr *attr)
2032 {
2033 
2034 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2035 	u64 period = attr->sched_period ?: attr->sched_deadline;
2036 	u64 runtime = attr->sched_runtime;
2037 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2038 	int cpus, err = -1;
2039 
2040 	if (new_bw == p->dl.dl_bw)
2041 		return 0;
2042 
2043 	/*
2044 	 * Either if a task, enters, leave, or stays -deadline but changes
2045 	 * its parameters, we may need to update accordingly the total
2046 	 * allocated bandwidth of the container.
2047 	 */
2048 	raw_spin_lock(&dl_b->lock);
2049 	cpus = dl_bw_cpus(task_cpu(p));
2050 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 		__dl_add(dl_b, new_bw);
2053 		err = 0;
2054 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 		__dl_clear(dl_b, p->dl.dl_bw);
2057 		__dl_add(dl_b, new_bw);
2058 		err = 0;
2059 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 		__dl_clear(dl_b, p->dl.dl_bw);
2061 		err = 0;
2062 	}
2063 	raw_spin_unlock(&dl_b->lock);
2064 
2065 	return err;
2066 }
2067 
2068 extern void init_dl_bw(struct dl_bw *dl_b);
2069 
2070 /*
2071  * wake_up_new_task - wake up a newly created task for the first time.
2072  *
2073  * This function will do some initial scheduler statistics housekeeping
2074  * that must be done for every newly created context, then puts the task
2075  * on the runqueue and wakes it.
2076  */
2077 void wake_up_new_task(struct task_struct *p)
2078 {
2079 	unsigned long flags;
2080 	struct rq *rq;
2081 
2082 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2083 #ifdef CONFIG_SMP
2084 	/*
2085 	 * Fork balancing, do it here and not earlier because:
2086 	 *  - cpus_allowed can change in the fork path
2087 	 *  - any previously selected cpu might disappear through hotplug
2088 	 */
2089 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2090 #endif
2091 
2092 	/* Initialize new task's runnable average */
2093 	init_task_runnable_average(p);
2094 	rq = __task_rq_lock(p);
2095 	activate_task(rq, p, 0);
2096 	p->on_rq = TASK_ON_RQ_QUEUED;
2097 	trace_sched_wakeup_new(p, true);
2098 	check_preempt_curr(rq, p, WF_FORK);
2099 #ifdef CONFIG_SMP
2100 	if (p->sched_class->task_woken)
2101 		p->sched_class->task_woken(rq, p);
2102 #endif
2103 	task_rq_unlock(rq, p, &flags);
2104 }
2105 
2106 #ifdef CONFIG_PREEMPT_NOTIFIERS
2107 
2108 /**
2109  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2110  * @notifier: notifier struct to register
2111  */
2112 void preempt_notifier_register(struct preempt_notifier *notifier)
2113 {
2114 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115 }
2116 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117 
2118 /**
2119  * preempt_notifier_unregister - no longer interested in preemption notifications
2120  * @notifier: notifier struct to unregister
2121  *
2122  * This is safe to call from within a preemption notifier.
2123  */
2124 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125 {
2126 	hlist_del(&notifier->link);
2127 }
2128 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129 
2130 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131 {
2132 	struct preempt_notifier *notifier;
2133 
2134 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2135 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136 }
2137 
2138 static void
2139 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 				 struct task_struct *next)
2141 {
2142 	struct preempt_notifier *notifier;
2143 
2144 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2145 		notifier->ops->sched_out(notifier, next);
2146 }
2147 
2148 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2149 
2150 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151 {
2152 }
2153 
2154 static void
2155 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 				 struct task_struct *next)
2157 {
2158 }
2159 
2160 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2161 
2162 /**
2163  * prepare_task_switch - prepare to switch tasks
2164  * @rq: the runqueue preparing to switch
2165  * @prev: the current task that is being switched out
2166  * @next: the task we are going to switch to.
2167  *
2168  * This is called with the rq lock held and interrupts off. It must
2169  * be paired with a subsequent finish_task_switch after the context
2170  * switch.
2171  *
2172  * prepare_task_switch sets up locking and calls architecture specific
2173  * hooks.
2174  */
2175 static inline void
2176 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 		    struct task_struct *next)
2178 {
2179 	trace_sched_switch(prev, next);
2180 	sched_info_switch(rq, prev, next);
2181 	perf_event_task_sched_out(prev, next);
2182 	fire_sched_out_preempt_notifiers(prev, next);
2183 	prepare_lock_switch(rq, next);
2184 	prepare_arch_switch(next);
2185 }
2186 
2187 /**
2188  * finish_task_switch - clean up after a task-switch
2189  * @prev: the thread we just switched away from.
2190  *
2191  * finish_task_switch must be called after the context switch, paired
2192  * with a prepare_task_switch call before the context switch.
2193  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194  * and do any other architecture-specific cleanup actions.
2195  *
2196  * Note that we may have delayed dropping an mm in context_switch(). If
2197  * so, we finish that here outside of the runqueue lock. (Doing it
2198  * with the lock held can cause deadlocks; see schedule() for
2199  * details.)
2200  *
2201  * The context switch have flipped the stack from under us and restored the
2202  * local variables which were saved when this task called schedule() in the
2203  * past. prev == current is still correct but we need to recalculate this_rq
2204  * because prev may have moved to another CPU.
2205  */
2206 static struct rq *finish_task_switch(struct task_struct *prev)
2207 	__releases(rq->lock)
2208 {
2209 	struct rq *rq = this_rq();
2210 	struct mm_struct *mm = rq->prev_mm;
2211 	long prev_state;
2212 
2213 	rq->prev_mm = NULL;
2214 
2215 	/*
2216 	 * A task struct has one reference for the use as "current".
2217 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2218 	 * schedule one last time. The schedule call will never return, and
2219 	 * the scheduled task must drop that reference.
2220 	 * The test for TASK_DEAD must occur while the runqueue locks are
2221 	 * still held, otherwise prev could be scheduled on another cpu, die
2222 	 * there before we look at prev->state, and then the reference would
2223 	 * be dropped twice.
2224 	 *		Manfred Spraul <manfred@colorfullife.com>
2225 	 */
2226 	prev_state = prev->state;
2227 	vtime_task_switch(prev);
2228 	finish_arch_switch(prev);
2229 	perf_event_task_sched_in(prev, current);
2230 	finish_lock_switch(rq, prev);
2231 	finish_arch_post_lock_switch();
2232 
2233 	fire_sched_in_preempt_notifiers(current);
2234 	if (mm)
2235 		mmdrop(mm);
2236 	if (unlikely(prev_state == TASK_DEAD)) {
2237 		if (prev->sched_class->task_dead)
2238 			prev->sched_class->task_dead(prev);
2239 
2240 		/*
2241 		 * Remove function-return probe instances associated with this
2242 		 * task and put them back on the free list.
2243 		 */
2244 		kprobe_flush_task(prev);
2245 		put_task_struct(prev);
2246 	}
2247 
2248 	tick_nohz_task_switch(current);
2249 	return rq;
2250 }
2251 
2252 #ifdef CONFIG_SMP
2253 
2254 /* rq->lock is NOT held, but preemption is disabled */
2255 static inline void post_schedule(struct rq *rq)
2256 {
2257 	if (rq->post_schedule) {
2258 		unsigned long flags;
2259 
2260 		raw_spin_lock_irqsave(&rq->lock, flags);
2261 		if (rq->curr->sched_class->post_schedule)
2262 			rq->curr->sched_class->post_schedule(rq);
2263 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2264 
2265 		rq->post_schedule = 0;
2266 	}
2267 }
2268 
2269 #else
2270 
2271 static inline void post_schedule(struct rq *rq)
2272 {
2273 }
2274 
2275 #endif
2276 
2277 /**
2278  * schedule_tail - first thing a freshly forked thread must call.
2279  * @prev: the thread we just switched away from.
2280  */
2281 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2282 	__releases(rq->lock)
2283 {
2284 	struct rq *rq;
2285 
2286 	/* finish_task_switch() drops rq->lock and enables preemtion */
2287 	preempt_disable();
2288 	rq = finish_task_switch(prev);
2289 	post_schedule(rq);
2290 	preempt_enable();
2291 
2292 	if (current->set_child_tid)
2293 		put_user(task_pid_vnr(current), current->set_child_tid);
2294 }
2295 
2296 /*
2297  * context_switch - switch to the new MM and the new thread's register state.
2298  */
2299 static inline struct rq *
2300 context_switch(struct rq *rq, struct task_struct *prev,
2301 	       struct task_struct *next)
2302 {
2303 	struct mm_struct *mm, *oldmm;
2304 
2305 	prepare_task_switch(rq, prev, next);
2306 
2307 	mm = next->mm;
2308 	oldmm = prev->active_mm;
2309 	/*
2310 	 * For paravirt, this is coupled with an exit in switch_to to
2311 	 * combine the page table reload and the switch backend into
2312 	 * one hypercall.
2313 	 */
2314 	arch_start_context_switch(prev);
2315 
2316 	if (!mm) {
2317 		next->active_mm = oldmm;
2318 		atomic_inc(&oldmm->mm_count);
2319 		enter_lazy_tlb(oldmm, next);
2320 	} else
2321 		switch_mm(oldmm, mm, next);
2322 
2323 	if (!prev->mm) {
2324 		prev->active_mm = NULL;
2325 		rq->prev_mm = oldmm;
2326 	}
2327 	/*
2328 	 * Since the runqueue lock will be released by the next
2329 	 * task (which is an invalid locking op but in the case
2330 	 * of the scheduler it's an obvious special-case), so we
2331 	 * do an early lockdep release here:
2332 	 */
2333 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334 
2335 	context_tracking_task_switch(prev, next);
2336 	/* Here we just switch the register state and the stack. */
2337 	switch_to(prev, next, prev);
2338 	barrier();
2339 
2340 	return finish_task_switch(prev);
2341 }
2342 
2343 /*
2344  * nr_running and nr_context_switches:
2345  *
2346  * externally visible scheduler statistics: current number of runnable
2347  * threads, total number of context switches performed since bootup.
2348  */
2349 unsigned long nr_running(void)
2350 {
2351 	unsigned long i, sum = 0;
2352 
2353 	for_each_online_cpu(i)
2354 		sum += cpu_rq(i)->nr_running;
2355 
2356 	return sum;
2357 }
2358 
2359 /*
2360  * Check if only the current task is running on the cpu.
2361  */
2362 bool single_task_running(void)
2363 {
2364 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2365 		return true;
2366 	else
2367 		return false;
2368 }
2369 EXPORT_SYMBOL(single_task_running);
2370 
2371 unsigned long long nr_context_switches(void)
2372 {
2373 	int i;
2374 	unsigned long long sum = 0;
2375 
2376 	for_each_possible_cpu(i)
2377 		sum += cpu_rq(i)->nr_switches;
2378 
2379 	return sum;
2380 }
2381 
2382 unsigned long nr_iowait(void)
2383 {
2384 	unsigned long i, sum = 0;
2385 
2386 	for_each_possible_cpu(i)
2387 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2388 
2389 	return sum;
2390 }
2391 
2392 unsigned long nr_iowait_cpu(int cpu)
2393 {
2394 	struct rq *this = cpu_rq(cpu);
2395 	return atomic_read(&this->nr_iowait);
2396 }
2397 
2398 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399 {
2400 	struct rq *this = this_rq();
2401 	*nr_waiters = atomic_read(&this->nr_iowait);
2402 	*load = this->cpu_load[0];
2403 }
2404 
2405 #ifdef CONFIG_SMP
2406 
2407 /*
2408  * sched_exec - execve() is a valuable balancing opportunity, because at
2409  * this point the task has the smallest effective memory and cache footprint.
2410  */
2411 void sched_exec(void)
2412 {
2413 	struct task_struct *p = current;
2414 	unsigned long flags;
2415 	int dest_cpu;
2416 
2417 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2418 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2419 	if (dest_cpu == smp_processor_id())
2420 		goto unlock;
2421 
2422 	if (likely(cpu_active(dest_cpu))) {
2423 		struct migration_arg arg = { p, dest_cpu };
2424 
2425 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2427 		return;
2428 	}
2429 unlock:
2430 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2431 }
2432 
2433 #endif
2434 
2435 DEFINE_PER_CPU(struct kernel_stat, kstat);
2436 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2437 
2438 EXPORT_PER_CPU_SYMBOL(kstat);
2439 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2440 
2441 /*
2442  * Return accounted runtime for the task.
2443  * In case the task is currently running, return the runtime plus current's
2444  * pending runtime that have not been accounted yet.
2445  */
2446 unsigned long long task_sched_runtime(struct task_struct *p)
2447 {
2448 	unsigned long flags;
2449 	struct rq *rq;
2450 	u64 ns;
2451 
2452 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453 	/*
2454 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2455 	 * So we have a optimization chance when the task's delta_exec is 0.
2456 	 * Reading ->on_cpu is racy, but this is ok.
2457 	 *
2458 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459 	 * If we race with it entering cpu, unaccounted time is 0. This is
2460 	 * indistinguishable from the read occurring a few cycles earlier.
2461 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462 	 * been accounted, so we're correct here as well.
2463 	 */
2464 	if (!p->on_cpu || !task_on_rq_queued(p))
2465 		return p->se.sum_exec_runtime;
2466 #endif
2467 
2468 	rq = task_rq_lock(p, &flags);
2469 	/*
2470 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2471 	 * project cycles that may never be accounted to this
2472 	 * thread, breaking clock_gettime().
2473 	 */
2474 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2475 		update_rq_clock(rq);
2476 		p->sched_class->update_curr(rq);
2477 	}
2478 	ns = p->se.sum_exec_runtime;
2479 	task_rq_unlock(rq, p, &flags);
2480 
2481 	return ns;
2482 }
2483 
2484 /*
2485  * This function gets called by the timer code, with HZ frequency.
2486  * We call it with interrupts disabled.
2487  */
2488 void scheduler_tick(void)
2489 {
2490 	int cpu = smp_processor_id();
2491 	struct rq *rq = cpu_rq(cpu);
2492 	struct task_struct *curr = rq->curr;
2493 
2494 	sched_clock_tick();
2495 
2496 	raw_spin_lock(&rq->lock);
2497 	update_rq_clock(rq);
2498 	curr->sched_class->task_tick(rq, curr, 0);
2499 	update_cpu_load_active(rq);
2500 	raw_spin_unlock(&rq->lock);
2501 
2502 	perf_event_task_tick();
2503 
2504 #ifdef CONFIG_SMP
2505 	rq->idle_balance = idle_cpu(cpu);
2506 	trigger_load_balance(rq);
2507 #endif
2508 	rq_last_tick_reset(rq);
2509 }
2510 
2511 #ifdef CONFIG_NO_HZ_FULL
2512 /**
2513  * scheduler_tick_max_deferment
2514  *
2515  * Keep at least one tick per second when a single
2516  * active task is running because the scheduler doesn't
2517  * yet completely support full dynticks environment.
2518  *
2519  * This makes sure that uptime, CFS vruntime, load
2520  * balancing, etc... continue to move forward, even
2521  * with a very low granularity.
2522  *
2523  * Return: Maximum deferment in nanoseconds.
2524  */
2525 u64 scheduler_tick_max_deferment(void)
2526 {
2527 	struct rq *rq = this_rq();
2528 	unsigned long next, now = ACCESS_ONCE(jiffies);
2529 
2530 	next = rq->last_sched_tick + HZ;
2531 
2532 	if (time_before_eq(next, now))
2533 		return 0;
2534 
2535 	return jiffies_to_nsecs(next - now);
2536 }
2537 #endif
2538 
2539 notrace unsigned long get_parent_ip(unsigned long addr)
2540 {
2541 	if (in_lock_functions(addr)) {
2542 		addr = CALLER_ADDR2;
2543 		if (in_lock_functions(addr))
2544 			addr = CALLER_ADDR3;
2545 	}
2546 	return addr;
2547 }
2548 
2549 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2550 				defined(CONFIG_PREEMPT_TRACER))
2551 
2552 void preempt_count_add(int val)
2553 {
2554 #ifdef CONFIG_DEBUG_PREEMPT
2555 	/*
2556 	 * Underflow?
2557 	 */
2558 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2559 		return;
2560 #endif
2561 	__preempt_count_add(val);
2562 #ifdef CONFIG_DEBUG_PREEMPT
2563 	/*
2564 	 * Spinlock count overflowing soon?
2565 	 */
2566 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2567 				PREEMPT_MASK - 10);
2568 #endif
2569 	if (preempt_count() == val) {
2570 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2571 #ifdef CONFIG_DEBUG_PREEMPT
2572 		current->preempt_disable_ip = ip;
2573 #endif
2574 		trace_preempt_off(CALLER_ADDR0, ip);
2575 	}
2576 }
2577 EXPORT_SYMBOL(preempt_count_add);
2578 NOKPROBE_SYMBOL(preempt_count_add);
2579 
2580 void preempt_count_sub(int val)
2581 {
2582 #ifdef CONFIG_DEBUG_PREEMPT
2583 	/*
2584 	 * Underflow?
2585 	 */
2586 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2587 		return;
2588 	/*
2589 	 * Is the spinlock portion underflowing?
2590 	 */
2591 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2592 			!(preempt_count() & PREEMPT_MASK)))
2593 		return;
2594 #endif
2595 
2596 	if (preempt_count() == val)
2597 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2598 	__preempt_count_sub(val);
2599 }
2600 EXPORT_SYMBOL(preempt_count_sub);
2601 NOKPROBE_SYMBOL(preempt_count_sub);
2602 
2603 #endif
2604 
2605 /*
2606  * Print scheduling while atomic bug:
2607  */
2608 static noinline void __schedule_bug(struct task_struct *prev)
2609 {
2610 	if (oops_in_progress)
2611 		return;
2612 
2613 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2614 		prev->comm, prev->pid, preempt_count());
2615 
2616 	debug_show_held_locks(prev);
2617 	print_modules();
2618 	if (irqs_disabled())
2619 		print_irqtrace_events(prev);
2620 #ifdef CONFIG_DEBUG_PREEMPT
2621 	if (in_atomic_preempt_off()) {
2622 		pr_err("Preemption disabled at:");
2623 		print_ip_sym(current->preempt_disable_ip);
2624 		pr_cont("\n");
2625 	}
2626 #endif
2627 	dump_stack();
2628 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2629 }
2630 
2631 /*
2632  * Various schedule()-time debugging checks and statistics:
2633  */
2634 static inline void schedule_debug(struct task_struct *prev)
2635 {
2636 #ifdef CONFIG_SCHED_STACK_END_CHECK
2637 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2638 #endif
2639 	/*
2640 	 * Test if we are atomic. Since do_exit() needs to call into
2641 	 * schedule() atomically, we ignore that path. Otherwise whine
2642 	 * if we are scheduling when we should not.
2643 	 */
2644 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2645 		__schedule_bug(prev);
2646 	rcu_sleep_check();
2647 
2648 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2649 
2650 	schedstat_inc(this_rq(), sched_count);
2651 }
2652 
2653 /*
2654  * Pick up the highest-prio task:
2655  */
2656 static inline struct task_struct *
2657 pick_next_task(struct rq *rq, struct task_struct *prev)
2658 {
2659 	const struct sched_class *class = &fair_sched_class;
2660 	struct task_struct *p;
2661 
2662 	/*
2663 	 * Optimization: we know that if all tasks are in
2664 	 * the fair class we can call that function directly:
2665 	 */
2666 	if (likely(prev->sched_class == class &&
2667 		   rq->nr_running == rq->cfs.h_nr_running)) {
2668 		p = fair_sched_class.pick_next_task(rq, prev);
2669 		if (unlikely(p == RETRY_TASK))
2670 			goto again;
2671 
2672 		/* assumes fair_sched_class->next == idle_sched_class */
2673 		if (unlikely(!p))
2674 			p = idle_sched_class.pick_next_task(rq, prev);
2675 
2676 		return p;
2677 	}
2678 
2679 again:
2680 	for_each_class(class) {
2681 		p = class->pick_next_task(rq, prev);
2682 		if (p) {
2683 			if (unlikely(p == RETRY_TASK))
2684 				goto again;
2685 			return p;
2686 		}
2687 	}
2688 
2689 	BUG(); /* the idle class will always have a runnable task */
2690 }
2691 
2692 /*
2693  * __schedule() is the main scheduler function.
2694  *
2695  * The main means of driving the scheduler and thus entering this function are:
2696  *
2697  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2698  *
2699  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2700  *      paths. For example, see arch/x86/entry_64.S.
2701  *
2702  *      To drive preemption between tasks, the scheduler sets the flag in timer
2703  *      interrupt handler scheduler_tick().
2704  *
2705  *   3. Wakeups don't really cause entry into schedule(). They add a
2706  *      task to the run-queue and that's it.
2707  *
2708  *      Now, if the new task added to the run-queue preempts the current
2709  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2710  *      called on the nearest possible occasion:
2711  *
2712  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2713  *
2714  *         - in syscall or exception context, at the next outmost
2715  *           preempt_enable(). (this might be as soon as the wake_up()'s
2716  *           spin_unlock()!)
2717  *
2718  *         - in IRQ context, return from interrupt-handler to
2719  *           preemptible context
2720  *
2721  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2722  *         then at the next:
2723  *
2724  *          - cond_resched() call
2725  *          - explicit schedule() call
2726  *          - return from syscall or exception to user-space
2727  *          - return from interrupt-handler to user-space
2728  *
2729  * WARNING: all callers must re-check need_resched() afterward and reschedule
2730  * accordingly in case an event triggered the need for rescheduling (such as
2731  * an interrupt waking up a task) while preemption was disabled in __schedule().
2732  */
2733 static void __sched __schedule(void)
2734 {
2735 	struct task_struct *prev, *next;
2736 	unsigned long *switch_count;
2737 	struct rq *rq;
2738 	int cpu;
2739 
2740 	preempt_disable();
2741 	cpu = smp_processor_id();
2742 	rq = cpu_rq(cpu);
2743 	rcu_note_context_switch();
2744 	prev = rq->curr;
2745 
2746 	schedule_debug(prev);
2747 
2748 	if (sched_feat(HRTICK))
2749 		hrtick_clear(rq);
2750 
2751 	/*
2752 	 * Make sure that signal_pending_state()->signal_pending() below
2753 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2754 	 * done by the caller to avoid the race with signal_wake_up().
2755 	 */
2756 	smp_mb__before_spinlock();
2757 	raw_spin_lock_irq(&rq->lock);
2758 
2759 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2760 
2761 	switch_count = &prev->nivcsw;
2762 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2763 		if (unlikely(signal_pending_state(prev->state, prev))) {
2764 			prev->state = TASK_RUNNING;
2765 		} else {
2766 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767 			prev->on_rq = 0;
2768 
2769 			/*
2770 			 * If a worker went to sleep, notify and ask workqueue
2771 			 * whether it wants to wake up a task to maintain
2772 			 * concurrency.
2773 			 */
2774 			if (prev->flags & PF_WQ_WORKER) {
2775 				struct task_struct *to_wakeup;
2776 
2777 				to_wakeup = wq_worker_sleeping(prev, cpu);
2778 				if (to_wakeup)
2779 					try_to_wake_up_local(to_wakeup);
2780 			}
2781 		}
2782 		switch_count = &prev->nvcsw;
2783 	}
2784 
2785 	if (task_on_rq_queued(prev))
2786 		update_rq_clock(rq);
2787 
2788 	next = pick_next_task(rq, prev);
2789 	clear_tsk_need_resched(prev);
2790 	clear_preempt_need_resched();
2791 	rq->clock_skip_update = 0;
2792 
2793 	if (likely(prev != next)) {
2794 		rq->nr_switches++;
2795 		rq->curr = next;
2796 		++*switch_count;
2797 
2798 		rq = context_switch(rq, prev, next); /* unlocks the rq */
2799 		cpu = cpu_of(rq);
2800 	} else
2801 		raw_spin_unlock_irq(&rq->lock);
2802 
2803 	post_schedule(rq);
2804 
2805 	sched_preempt_enable_no_resched();
2806 }
2807 
2808 static inline void sched_submit_work(struct task_struct *tsk)
2809 {
2810 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2811 		return;
2812 	/*
2813 	 * If we are going to sleep and we have plugged IO queued,
2814 	 * make sure to submit it to avoid deadlocks.
2815 	 */
2816 	if (blk_needs_flush_plug(tsk))
2817 		blk_schedule_flush_plug(tsk);
2818 }
2819 
2820 asmlinkage __visible void __sched schedule(void)
2821 {
2822 	struct task_struct *tsk = current;
2823 
2824 	sched_submit_work(tsk);
2825 	do {
2826 		__schedule();
2827 	} while (need_resched());
2828 }
2829 EXPORT_SYMBOL(schedule);
2830 
2831 #ifdef CONFIG_CONTEXT_TRACKING
2832 asmlinkage __visible void __sched schedule_user(void)
2833 {
2834 	/*
2835 	 * If we come here after a random call to set_need_resched(),
2836 	 * or we have been woken up remotely but the IPI has not yet arrived,
2837 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2838 	 * we find a better solution.
2839 	 *
2840 	 * NB: There are buggy callers of this function.  Ideally we
2841 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
2842 	 * too frequently to make sense yet.
2843 	 */
2844 	enum ctx_state prev_state = exception_enter();
2845 	schedule();
2846 	exception_exit(prev_state);
2847 }
2848 #endif
2849 
2850 /**
2851  * schedule_preempt_disabled - called with preemption disabled
2852  *
2853  * Returns with preemption disabled. Note: preempt_count must be 1
2854  */
2855 void __sched schedule_preempt_disabled(void)
2856 {
2857 	sched_preempt_enable_no_resched();
2858 	schedule();
2859 	preempt_disable();
2860 }
2861 
2862 static void __sched notrace preempt_schedule_common(void)
2863 {
2864 	do {
2865 		__preempt_count_add(PREEMPT_ACTIVE);
2866 		__schedule();
2867 		__preempt_count_sub(PREEMPT_ACTIVE);
2868 
2869 		/*
2870 		 * Check again in case we missed a preemption opportunity
2871 		 * between schedule and now.
2872 		 */
2873 		barrier();
2874 	} while (need_resched());
2875 }
2876 
2877 #ifdef CONFIG_PREEMPT
2878 /*
2879  * this is the entry point to schedule() from in-kernel preemption
2880  * off of preempt_enable. Kernel preemptions off return from interrupt
2881  * occur there and call schedule directly.
2882  */
2883 asmlinkage __visible void __sched notrace preempt_schedule(void)
2884 {
2885 	/*
2886 	 * If there is a non-zero preempt_count or interrupts are disabled,
2887 	 * we do not want to preempt the current task. Just return..
2888 	 */
2889 	if (likely(!preemptible()))
2890 		return;
2891 
2892 	preempt_schedule_common();
2893 }
2894 NOKPROBE_SYMBOL(preempt_schedule);
2895 EXPORT_SYMBOL(preempt_schedule);
2896 
2897 #ifdef CONFIG_CONTEXT_TRACKING
2898 /**
2899  * preempt_schedule_context - preempt_schedule called by tracing
2900  *
2901  * The tracing infrastructure uses preempt_enable_notrace to prevent
2902  * recursion and tracing preempt enabling caused by the tracing
2903  * infrastructure itself. But as tracing can happen in areas coming
2904  * from userspace or just about to enter userspace, a preempt enable
2905  * can occur before user_exit() is called. This will cause the scheduler
2906  * to be called when the system is still in usermode.
2907  *
2908  * To prevent this, the preempt_enable_notrace will use this function
2909  * instead of preempt_schedule() to exit user context if needed before
2910  * calling the scheduler.
2911  */
2912 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2913 {
2914 	enum ctx_state prev_ctx;
2915 
2916 	if (likely(!preemptible()))
2917 		return;
2918 
2919 	do {
2920 		__preempt_count_add(PREEMPT_ACTIVE);
2921 		/*
2922 		 * Needs preempt disabled in case user_exit() is traced
2923 		 * and the tracer calls preempt_enable_notrace() causing
2924 		 * an infinite recursion.
2925 		 */
2926 		prev_ctx = exception_enter();
2927 		__schedule();
2928 		exception_exit(prev_ctx);
2929 
2930 		__preempt_count_sub(PREEMPT_ACTIVE);
2931 		barrier();
2932 	} while (need_resched());
2933 }
2934 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2935 #endif /* CONFIG_CONTEXT_TRACKING */
2936 
2937 #endif /* CONFIG_PREEMPT */
2938 
2939 /*
2940  * this is the entry point to schedule() from kernel preemption
2941  * off of irq context.
2942  * Note, that this is called and return with irqs disabled. This will
2943  * protect us against recursive calling from irq.
2944  */
2945 asmlinkage __visible void __sched preempt_schedule_irq(void)
2946 {
2947 	enum ctx_state prev_state;
2948 
2949 	/* Catch callers which need to be fixed */
2950 	BUG_ON(preempt_count() || !irqs_disabled());
2951 
2952 	prev_state = exception_enter();
2953 
2954 	do {
2955 		__preempt_count_add(PREEMPT_ACTIVE);
2956 		local_irq_enable();
2957 		__schedule();
2958 		local_irq_disable();
2959 		__preempt_count_sub(PREEMPT_ACTIVE);
2960 
2961 		/*
2962 		 * Check again in case we missed a preemption opportunity
2963 		 * between schedule and now.
2964 		 */
2965 		barrier();
2966 	} while (need_resched());
2967 
2968 	exception_exit(prev_state);
2969 }
2970 
2971 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2972 			  void *key)
2973 {
2974 	return try_to_wake_up(curr->private, mode, wake_flags);
2975 }
2976 EXPORT_SYMBOL(default_wake_function);
2977 
2978 #ifdef CONFIG_RT_MUTEXES
2979 
2980 /*
2981  * rt_mutex_setprio - set the current priority of a task
2982  * @p: task
2983  * @prio: prio value (kernel-internal form)
2984  *
2985  * This function changes the 'effective' priority of a task. It does
2986  * not touch ->normal_prio like __setscheduler().
2987  *
2988  * Used by the rt_mutex code to implement priority inheritance
2989  * logic. Call site only calls if the priority of the task changed.
2990  */
2991 void rt_mutex_setprio(struct task_struct *p, int prio)
2992 {
2993 	int oldprio, queued, running, enqueue_flag = 0;
2994 	struct rq *rq;
2995 	const struct sched_class *prev_class;
2996 
2997 	BUG_ON(prio > MAX_PRIO);
2998 
2999 	rq = __task_rq_lock(p);
3000 
3001 	/*
3002 	 * Idle task boosting is a nono in general. There is one
3003 	 * exception, when PREEMPT_RT and NOHZ is active:
3004 	 *
3005 	 * The idle task calls get_next_timer_interrupt() and holds
3006 	 * the timer wheel base->lock on the CPU and another CPU wants
3007 	 * to access the timer (probably to cancel it). We can safely
3008 	 * ignore the boosting request, as the idle CPU runs this code
3009 	 * with interrupts disabled and will complete the lock
3010 	 * protected section without being interrupted. So there is no
3011 	 * real need to boost.
3012 	 */
3013 	if (unlikely(p == rq->idle)) {
3014 		WARN_ON(p != rq->curr);
3015 		WARN_ON(p->pi_blocked_on);
3016 		goto out_unlock;
3017 	}
3018 
3019 	trace_sched_pi_setprio(p, prio);
3020 	oldprio = p->prio;
3021 	prev_class = p->sched_class;
3022 	queued = task_on_rq_queued(p);
3023 	running = task_current(rq, p);
3024 	if (queued)
3025 		dequeue_task(rq, p, 0);
3026 	if (running)
3027 		put_prev_task(rq, p);
3028 
3029 	/*
3030 	 * Boosting condition are:
3031 	 * 1. -rt task is running and holds mutex A
3032 	 *      --> -dl task blocks on mutex A
3033 	 *
3034 	 * 2. -dl task is running and holds mutex A
3035 	 *      --> -dl task blocks on mutex A and could preempt the
3036 	 *          running task
3037 	 */
3038 	if (dl_prio(prio)) {
3039 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3040 		if (!dl_prio(p->normal_prio) ||
3041 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3042 			p->dl.dl_boosted = 1;
3043 			p->dl.dl_throttled = 0;
3044 			enqueue_flag = ENQUEUE_REPLENISH;
3045 		} else
3046 			p->dl.dl_boosted = 0;
3047 		p->sched_class = &dl_sched_class;
3048 	} else if (rt_prio(prio)) {
3049 		if (dl_prio(oldprio))
3050 			p->dl.dl_boosted = 0;
3051 		if (oldprio < prio)
3052 			enqueue_flag = ENQUEUE_HEAD;
3053 		p->sched_class = &rt_sched_class;
3054 	} else {
3055 		if (dl_prio(oldprio))
3056 			p->dl.dl_boosted = 0;
3057 		if (rt_prio(oldprio))
3058 			p->rt.timeout = 0;
3059 		p->sched_class = &fair_sched_class;
3060 	}
3061 
3062 	p->prio = prio;
3063 
3064 	if (running)
3065 		p->sched_class->set_curr_task(rq);
3066 	if (queued)
3067 		enqueue_task(rq, p, enqueue_flag);
3068 
3069 	check_class_changed(rq, p, prev_class, oldprio);
3070 out_unlock:
3071 	__task_rq_unlock(rq);
3072 }
3073 #endif
3074 
3075 void set_user_nice(struct task_struct *p, long nice)
3076 {
3077 	int old_prio, delta, queued;
3078 	unsigned long flags;
3079 	struct rq *rq;
3080 
3081 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3082 		return;
3083 	/*
3084 	 * We have to be careful, if called from sys_setpriority(),
3085 	 * the task might be in the middle of scheduling on another CPU.
3086 	 */
3087 	rq = task_rq_lock(p, &flags);
3088 	/*
3089 	 * The RT priorities are set via sched_setscheduler(), but we still
3090 	 * allow the 'normal' nice value to be set - but as expected
3091 	 * it wont have any effect on scheduling until the task is
3092 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3093 	 */
3094 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3095 		p->static_prio = NICE_TO_PRIO(nice);
3096 		goto out_unlock;
3097 	}
3098 	queued = task_on_rq_queued(p);
3099 	if (queued)
3100 		dequeue_task(rq, p, 0);
3101 
3102 	p->static_prio = NICE_TO_PRIO(nice);
3103 	set_load_weight(p);
3104 	old_prio = p->prio;
3105 	p->prio = effective_prio(p);
3106 	delta = p->prio - old_prio;
3107 
3108 	if (queued) {
3109 		enqueue_task(rq, p, 0);
3110 		/*
3111 		 * If the task increased its priority or is running and
3112 		 * lowered its priority, then reschedule its CPU:
3113 		 */
3114 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3115 			resched_curr(rq);
3116 	}
3117 out_unlock:
3118 	task_rq_unlock(rq, p, &flags);
3119 }
3120 EXPORT_SYMBOL(set_user_nice);
3121 
3122 /*
3123  * can_nice - check if a task can reduce its nice value
3124  * @p: task
3125  * @nice: nice value
3126  */
3127 int can_nice(const struct task_struct *p, const int nice)
3128 {
3129 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3130 	int nice_rlim = nice_to_rlimit(nice);
3131 
3132 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3133 		capable(CAP_SYS_NICE));
3134 }
3135 
3136 #ifdef __ARCH_WANT_SYS_NICE
3137 
3138 /*
3139  * sys_nice - change the priority of the current process.
3140  * @increment: priority increment
3141  *
3142  * sys_setpriority is a more generic, but much slower function that
3143  * does similar things.
3144  */
3145 SYSCALL_DEFINE1(nice, int, increment)
3146 {
3147 	long nice, retval;
3148 
3149 	/*
3150 	 * Setpriority might change our priority at the same moment.
3151 	 * We don't have to worry. Conceptually one call occurs first
3152 	 * and we have a single winner.
3153 	 */
3154 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3155 	nice = task_nice(current) + increment;
3156 
3157 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3158 	if (increment < 0 && !can_nice(current, nice))
3159 		return -EPERM;
3160 
3161 	retval = security_task_setnice(current, nice);
3162 	if (retval)
3163 		return retval;
3164 
3165 	set_user_nice(current, nice);
3166 	return 0;
3167 }
3168 
3169 #endif
3170 
3171 /**
3172  * task_prio - return the priority value of a given task.
3173  * @p: the task in question.
3174  *
3175  * Return: The priority value as seen by users in /proc.
3176  * RT tasks are offset by -200. Normal tasks are centered
3177  * around 0, value goes from -16 to +15.
3178  */
3179 int task_prio(const struct task_struct *p)
3180 {
3181 	return p->prio - MAX_RT_PRIO;
3182 }
3183 
3184 /**
3185  * idle_cpu - is a given cpu idle currently?
3186  * @cpu: the processor in question.
3187  *
3188  * Return: 1 if the CPU is currently idle. 0 otherwise.
3189  */
3190 int idle_cpu(int cpu)
3191 {
3192 	struct rq *rq = cpu_rq(cpu);
3193 
3194 	if (rq->curr != rq->idle)
3195 		return 0;
3196 
3197 	if (rq->nr_running)
3198 		return 0;
3199 
3200 #ifdef CONFIG_SMP
3201 	if (!llist_empty(&rq->wake_list))
3202 		return 0;
3203 #endif
3204 
3205 	return 1;
3206 }
3207 
3208 /**
3209  * idle_task - return the idle task for a given cpu.
3210  * @cpu: the processor in question.
3211  *
3212  * Return: The idle task for the cpu @cpu.
3213  */
3214 struct task_struct *idle_task(int cpu)
3215 {
3216 	return cpu_rq(cpu)->idle;
3217 }
3218 
3219 /**
3220  * find_process_by_pid - find a process with a matching PID value.
3221  * @pid: the pid in question.
3222  *
3223  * The task of @pid, if found. %NULL otherwise.
3224  */
3225 static struct task_struct *find_process_by_pid(pid_t pid)
3226 {
3227 	return pid ? find_task_by_vpid(pid) : current;
3228 }
3229 
3230 /*
3231  * This function initializes the sched_dl_entity of a newly becoming
3232  * SCHED_DEADLINE task.
3233  *
3234  * Only the static values are considered here, the actual runtime and the
3235  * absolute deadline will be properly calculated when the task is enqueued
3236  * for the first time with its new policy.
3237  */
3238 static void
3239 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3240 {
3241 	struct sched_dl_entity *dl_se = &p->dl;
3242 
3243 	dl_se->dl_runtime = attr->sched_runtime;
3244 	dl_se->dl_deadline = attr->sched_deadline;
3245 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3246 	dl_se->flags = attr->sched_flags;
3247 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3248 
3249 	/*
3250 	 * Changing the parameters of a task is 'tricky' and we're not doing
3251 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3252 	 *
3253 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3254 	 * point. This would include retaining the task_struct until that time
3255 	 * and change dl_overflow() to not immediately decrement the current
3256 	 * amount.
3257 	 *
3258 	 * Instead we retain the current runtime/deadline and let the new
3259 	 * parameters take effect after the current reservation period lapses.
3260 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3261 	 * before the current scheduling deadline.
3262 	 *
3263 	 * We can still have temporary overloads because we do not delay the
3264 	 * change in bandwidth until that time; so admission control is
3265 	 * not on the safe side. It does however guarantee tasks will never
3266 	 * consume more than promised.
3267 	 */
3268 }
3269 
3270 /*
3271  * sched_setparam() passes in -1 for its policy, to let the functions
3272  * it calls know not to change it.
3273  */
3274 #define SETPARAM_POLICY	-1
3275 
3276 static void __setscheduler_params(struct task_struct *p,
3277 		const struct sched_attr *attr)
3278 {
3279 	int policy = attr->sched_policy;
3280 
3281 	if (policy == SETPARAM_POLICY)
3282 		policy = p->policy;
3283 
3284 	p->policy = policy;
3285 
3286 	if (dl_policy(policy))
3287 		__setparam_dl(p, attr);
3288 	else if (fair_policy(policy))
3289 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3290 
3291 	/*
3292 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3293 	 * !rt_policy. Always setting this ensures that things like
3294 	 * getparam()/getattr() don't report silly values for !rt tasks.
3295 	 */
3296 	p->rt_priority = attr->sched_priority;
3297 	p->normal_prio = normal_prio(p);
3298 	set_load_weight(p);
3299 }
3300 
3301 /* Actually do priority change: must hold pi & rq lock. */
3302 static void __setscheduler(struct rq *rq, struct task_struct *p,
3303 			   const struct sched_attr *attr, bool keep_boost)
3304 {
3305 	__setscheduler_params(p, attr);
3306 
3307 	/*
3308 	 * Keep a potential priority boosting if called from
3309 	 * sched_setscheduler().
3310 	 */
3311 	if (keep_boost)
3312 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3313 	else
3314 		p->prio = normal_prio(p);
3315 
3316 	if (dl_prio(p->prio))
3317 		p->sched_class = &dl_sched_class;
3318 	else if (rt_prio(p->prio))
3319 		p->sched_class = &rt_sched_class;
3320 	else
3321 		p->sched_class = &fair_sched_class;
3322 }
3323 
3324 static void
3325 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3326 {
3327 	struct sched_dl_entity *dl_se = &p->dl;
3328 
3329 	attr->sched_priority = p->rt_priority;
3330 	attr->sched_runtime = dl_se->dl_runtime;
3331 	attr->sched_deadline = dl_se->dl_deadline;
3332 	attr->sched_period = dl_se->dl_period;
3333 	attr->sched_flags = dl_se->flags;
3334 }
3335 
3336 /*
3337  * This function validates the new parameters of a -deadline task.
3338  * We ask for the deadline not being zero, and greater or equal
3339  * than the runtime, as well as the period of being zero or
3340  * greater than deadline. Furthermore, we have to be sure that
3341  * user parameters are above the internal resolution of 1us (we
3342  * check sched_runtime only since it is always the smaller one) and
3343  * below 2^63 ns (we have to check both sched_deadline and
3344  * sched_period, as the latter can be zero).
3345  */
3346 static bool
3347 __checkparam_dl(const struct sched_attr *attr)
3348 {
3349 	/* deadline != 0 */
3350 	if (attr->sched_deadline == 0)
3351 		return false;
3352 
3353 	/*
3354 	 * Since we truncate DL_SCALE bits, make sure we're at least
3355 	 * that big.
3356 	 */
3357 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3358 		return false;
3359 
3360 	/*
3361 	 * Since we use the MSB for wrap-around and sign issues, make
3362 	 * sure it's not set (mind that period can be equal to zero).
3363 	 */
3364 	if (attr->sched_deadline & (1ULL << 63) ||
3365 	    attr->sched_period & (1ULL << 63))
3366 		return false;
3367 
3368 	/* runtime <= deadline <= period (if period != 0) */
3369 	if ((attr->sched_period != 0 &&
3370 	     attr->sched_period < attr->sched_deadline) ||
3371 	    attr->sched_deadline < attr->sched_runtime)
3372 		return false;
3373 
3374 	return true;
3375 }
3376 
3377 /*
3378  * check the target process has a UID that matches the current process's
3379  */
3380 static bool check_same_owner(struct task_struct *p)
3381 {
3382 	const struct cred *cred = current_cred(), *pcred;
3383 	bool match;
3384 
3385 	rcu_read_lock();
3386 	pcred = __task_cred(p);
3387 	match = (uid_eq(cred->euid, pcred->euid) ||
3388 		 uid_eq(cred->euid, pcred->uid));
3389 	rcu_read_unlock();
3390 	return match;
3391 }
3392 
3393 static bool dl_param_changed(struct task_struct *p,
3394 		const struct sched_attr *attr)
3395 {
3396 	struct sched_dl_entity *dl_se = &p->dl;
3397 
3398 	if (dl_se->dl_runtime != attr->sched_runtime ||
3399 		dl_se->dl_deadline != attr->sched_deadline ||
3400 		dl_se->dl_period != attr->sched_period ||
3401 		dl_se->flags != attr->sched_flags)
3402 		return true;
3403 
3404 	return false;
3405 }
3406 
3407 static int __sched_setscheduler(struct task_struct *p,
3408 				const struct sched_attr *attr,
3409 				bool user)
3410 {
3411 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3412 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3413 	int retval, oldprio, oldpolicy = -1, queued, running;
3414 	int new_effective_prio, policy = attr->sched_policy;
3415 	unsigned long flags;
3416 	const struct sched_class *prev_class;
3417 	struct rq *rq;
3418 	int reset_on_fork;
3419 
3420 	/* may grab non-irq protected spin_locks */
3421 	BUG_ON(in_interrupt());
3422 recheck:
3423 	/* double check policy once rq lock held */
3424 	if (policy < 0) {
3425 		reset_on_fork = p->sched_reset_on_fork;
3426 		policy = oldpolicy = p->policy;
3427 	} else {
3428 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3429 
3430 		if (policy != SCHED_DEADLINE &&
3431 				policy != SCHED_FIFO && policy != SCHED_RR &&
3432 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3433 				policy != SCHED_IDLE)
3434 			return -EINVAL;
3435 	}
3436 
3437 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3438 		return -EINVAL;
3439 
3440 	/*
3441 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3442 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3443 	 * SCHED_BATCH and SCHED_IDLE is 0.
3444 	 */
3445 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3446 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3447 		return -EINVAL;
3448 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3449 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3450 		return -EINVAL;
3451 
3452 	/*
3453 	 * Allow unprivileged RT tasks to decrease priority:
3454 	 */
3455 	if (user && !capable(CAP_SYS_NICE)) {
3456 		if (fair_policy(policy)) {
3457 			if (attr->sched_nice < task_nice(p) &&
3458 			    !can_nice(p, attr->sched_nice))
3459 				return -EPERM;
3460 		}
3461 
3462 		if (rt_policy(policy)) {
3463 			unsigned long rlim_rtprio =
3464 					task_rlimit(p, RLIMIT_RTPRIO);
3465 
3466 			/* can't set/change the rt policy */
3467 			if (policy != p->policy && !rlim_rtprio)
3468 				return -EPERM;
3469 
3470 			/* can't increase priority */
3471 			if (attr->sched_priority > p->rt_priority &&
3472 			    attr->sched_priority > rlim_rtprio)
3473 				return -EPERM;
3474 		}
3475 
3476 		 /*
3477 		  * Can't set/change SCHED_DEADLINE policy at all for now
3478 		  * (safest behavior); in the future we would like to allow
3479 		  * unprivileged DL tasks to increase their relative deadline
3480 		  * or reduce their runtime (both ways reducing utilization)
3481 		  */
3482 		if (dl_policy(policy))
3483 			return -EPERM;
3484 
3485 		/*
3486 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3487 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3488 		 */
3489 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3490 			if (!can_nice(p, task_nice(p)))
3491 				return -EPERM;
3492 		}
3493 
3494 		/* can't change other user's priorities */
3495 		if (!check_same_owner(p))
3496 			return -EPERM;
3497 
3498 		/* Normal users shall not reset the sched_reset_on_fork flag */
3499 		if (p->sched_reset_on_fork && !reset_on_fork)
3500 			return -EPERM;
3501 	}
3502 
3503 	if (user) {
3504 		retval = security_task_setscheduler(p);
3505 		if (retval)
3506 			return retval;
3507 	}
3508 
3509 	/*
3510 	 * make sure no PI-waiters arrive (or leave) while we are
3511 	 * changing the priority of the task:
3512 	 *
3513 	 * To be able to change p->policy safely, the appropriate
3514 	 * runqueue lock must be held.
3515 	 */
3516 	rq = task_rq_lock(p, &flags);
3517 
3518 	/*
3519 	 * Changing the policy of the stop threads its a very bad idea
3520 	 */
3521 	if (p == rq->stop) {
3522 		task_rq_unlock(rq, p, &flags);
3523 		return -EINVAL;
3524 	}
3525 
3526 	/*
3527 	 * If not changing anything there's no need to proceed further,
3528 	 * but store a possible modification of reset_on_fork.
3529 	 */
3530 	if (unlikely(policy == p->policy)) {
3531 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3532 			goto change;
3533 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3534 			goto change;
3535 		if (dl_policy(policy) && dl_param_changed(p, attr))
3536 			goto change;
3537 
3538 		p->sched_reset_on_fork = reset_on_fork;
3539 		task_rq_unlock(rq, p, &flags);
3540 		return 0;
3541 	}
3542 change:
3543 
3544 	if (user) {
3545 #ifdef CONFIG_RT_GROUP_SCHED
3546 		/*
3547 		 * Do not allow realtime tasks into groups that have no runtime
3548 		 * assigned.
3549 		 */
3550 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3551 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3552 				!task_group_is_autogroup(task_group(p))) {
3553 			task_rq_unlock(rq, p, &flags);
3554 			return -EPERM;
3555 		}
3556 #endif
3557 #ifdef CONFIG_SMP
3558 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3559 			cpumask_t *span = rq->rd->span;
3560 
3561 			/*
3562 			 * Don't allow tasks with an affinity mask smaller than
3563 			 * the entire root_domain to become SCHED_DEADLINE. We
3564 			 * will also fail if there's no bandwidth available.
3565 			 */
3566 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3567 			    rq->rd->dl_bw.bw == 0) {
3568 				task_rq_unlock(rq, p, &flags);
3569 				return -EPERM;
3570 			}
3571 		}
3572 #endif
3573 	}
3574 
3575 	/* recheck policy now with rq lock held */
3576 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3577 		policy = oldpolicy = -1;
3578 		task_rq_unlock(rq, p, &flags);
3579 		goto recheck;
3580 	}
3581 
3582 	/*
3583 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3584 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3585 	 * is available.
3586 	 */
3587 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3588 		task_rq_unlock(rq, p, &flags);
3589 		return -EBUSY;
3590 	}
3591 
3592 	p->sched_reset_on_fork = reset_on_fork;
3593 	oldprio = p->prio;
3594 
3595 	/*
3596 	 * Take priority boosted tasks into account. If the new
3597 	 * effective priority is unchanged, we just store the new
3598 	 * normal parameters and do not touch the scheduler class and
3599 	 * the runqueue. This will be done when the task deboost
3600 	 * itself.
3601 	 */
3602 	new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3603 	if (new_effective_prio == oldprio) {
3604 		__setscheduler_params(p, attr);
3605 		task_rq_unlock(rq, p, &flags);
3606 		return 0;
3607 	}
3608 
3609 	queued = task_on_rq_queued(p);
3610 	running = task_current(rq, p);
3611 	if (queued)
3612 		dequeue_task(rq, p, 0);
3613 	if (running)
3614 		put_prev_task(rq, p);
3615 
3616 	prev_class = p->sched_class;
3617 	__setscheduler(rq, p, attr, true);
3618 
3619 	if (running)
3620 		p->sched_class->set_curr_task(rq);
3621 	if (queued) {
3622 		/*
3623 		 * We enqueue to tail when the priority of a task is
3624 		 * increased (user space view).
3625 		 */
3626 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3627 	}
3628 
3629 	check_class_changed(rq, p, prev_class, oldprio);
3630 	task_rq_unlock(rq, p, &flags);
3631 
3632 	rt_mutex_adjust_pi(p);
3633 
3634 	return 0;
3635 }
3636 
3637 static int _sched_setscheduler(struct task_struct *p, int policy,
3638 			       const struct sched_param *param, bool check)
3639 {
3640 	struct sched_attr attr = {
3641 		.sched_policy   = policy,
3642 		.sched_priority = param->sched_priority,
3643 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3644 	};
3645 
3646 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3647 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3648 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3649 		policy &= ~SCHED_RESET_ON_FORK;
3650 		attr.sched_policy = policy;
3651 	}
3652 
3653 	return __sched_setscheduler(p, &attr, check);
3654 }
3655 /**
3656  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3657  * @p: the task in question.
3658  * @policy: new policy.
3659  * @param: structure containing the new RT priority.
3660  *
3661  * Return: 0 on success. An error code otherwise.
3662  *
3663  * NOTE that the task may be already dead.
3664  */
3665 int sched_setscheduler(struct task_struct *p, int policy,
3666 		       const struct sched_param *param)
3667 {
3668 	return _sched_setscheduler(p, policy, param, true);
3669 }
3670 EXPORT_SYMBOL_GPL(sched_setscheduler);
3671 
3672 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3673 {
3674 	return __sched_setscheduler(p, attr, true);
3675 }
3676 EXPORT_SYMBOL_GPL(sched_setattr);
3677 
3678 /**
3679  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3680  * @p: the task in question.
3681  * @policy: new policy.
3682  * @param: structure containing the new RT priority.
3683  *
3684  * Just like sched_setscheduler, only don't bother checking if the
3685  * current context has permission.  For example, this is needed in
3686  * stop_machine(): we create temporary high priority worker threads,
3687  * but our caller might not have that capability.
3688  *
3689  * Return: 0 on success. An error code otherwise.
3690  */
3691 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3692 			       const struct sched_param *param)
3693 {
3694 	return _sched_setscheduler(p, policy, param, false);
3695 }
3696 
3697 static int
3698 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3699 {
3700 	struct sched_param lparam;
3701 	struct task_struct *p;
3702 	int retval;
3703 
3704 	if (!param || pid < 0)
3705 		return -EINVAL;
3706 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3707 		return -EFAULT;
3708 
3709 	rcu_read_lock();
3710 	retval = -ESRCH;
3711 	p = find_process_by_pid(pid);
3712 	if (p != NULL)
3713 		retval = sched_setscheduler(p, policy, &lparam);
3714 	rcu_read_unlock();
3715 
3716 	return retval;
3717 }
3718 
3719 /*
3720  * Mimics kernel/events/core.c perf_copy_attr().
3721  */
3722 static int sched_copy_attr(struct sched_attr __user *uattr,
3723 			   struct sched_attr *attr)
3724 {
3725 	u32 size;
3726 	int ret;
3727 
3728 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3729 		return -EFAULT;
3730 
3731 	/*
3732 	 * zero the full structure, so that a short copy will be nice.
3733 	 */
3734 	memset(attr, 0, sizeof(*attr));
3735 
3736 	ret = get_user(size, &uattr->size);
3737 	if (ret)
3738 		return ret;
3739 
3740 	if (size > PAGE_SIZE)	/* silly large */
3741 		goto err_size;
3742 
3743 	if (!size)		/* abi compat */
3744 		size = SCHED_ATTR_SIZE_VER0;
3745 
3746 	if (size < SCHED_ATTR_SIZE_VER0)
3747 		goto err_size;
3748 
3749 	/*
3750 	 * If we're handed a bigger struct than we know of,
3751 	 * ensure all the unknown bits are 0 - i.e. new
3752 	 * user-space does not rely on any kernel feature
3753 	 * extensions we dont know about yet.
3754 	 */
3755 	if (size > sizeof(*attr)) {
3756 		unsigned char __user *addr;
3757 		unsigned char __user *end;
3758 		unsigned char val;
3759 
3760 		addr = (void __user *)uattr + sizeof(*attr);
3761 		end  = (void __user *)uattr + size;
3762 
3763 		for (; addr < end; addr++) {
3764 			ret = get_user(val, addr);
3765 			if (ret)
3766 				return ret;
3767 			if (val)
3768 				goto err_size;
3769 		}
3770 		size = sizeof(*attr);
3771 	}
3772 
3773 	ret = copy_from_user(attr, uattr, size);
3774 	if (ret)
3775 		return -EFAULT;
3776 
3777 	/*
3778 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3779 	 * to be strict and return an error on out-of-bounds values?
3780 	 */
3781 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3782 
3783 	return 0;
3784 
3785 err_size:
3786 	put_user(sizeof(*attr), &uattr->size);
3787 	return -E2BIG;
3788 }
3789 
3790 /**
3791  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3792  * @pid: the pid in question.
3793  * @policy: new policy.
3794  * @param: structure containing the new RT priority.
3795  *
3796  * Return: 0 on success. An error code otherwise.
3797  */
3798 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3799 		struct sched_param __user *, param)
3800 {
3801 	/* negative values for policy are not valid */
3802 	if (policy < 0)
3803 		return -EINVAL;
3804 
3805 	return do_sched_setscheduler(pid, policy, param);
3806 }
3807 
3808 /**
3809  * sys_sched_setparam - set/change the RT priority of a thread
3810  * @pid: the pid in question.
3811  * @param: structure containing the new RT priority.
3812  *
3813  * Return: 0 on success. An error code otherwise.
3814  */
3815 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3816 {
3817 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3818 }
3819 
3820 /**
3821  * sys_sched_setattr - same as above, but with extended sched_attr
3822  * @pid: the pid in question.
3823  * @uattr: structure containing the extended parameters.
3824  * @flags: for future extension.
3825  */
3826 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3827 			       unsigned int, flags)
3828 {
3829 	struct sched_attr attr;
3830 	struct task_struct *p;
3831 	int retval;
3832 
3833 	if (!uattr || pid < 0 || flags)
3834 		return -EINVAL;
3835 
3836 	retval = sched_copy_attr(uattr, &attr);
3837 	if (retval)
3838 		return retval;
3839 
3840 	if ((int)attr.sched_policy < 0)
3841 		return -EINVAL;
3842 
3843 	rcu_read_lock();
3844 	retval = -ESRCH;
3845 	p = find_process_by_pid(pid);
3846 	if (p != NULL)
3847 		retval = sched_setattr(p, &attr);
3848 	rcu_read_unlock();
3849 
3850 	return retval;
3851 }
3852 
3853 /**
3854  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3855  * @pid: the pid in question.
3856  *
3857  * Return: On success, the policy of the thread. Otherwise, a negative error
3858  * code.
3859  */
3860 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3861 {
3862 	struct task_struct *p;
3863 	int retval;
3864 
3865 	if (pid < 0)
3866 		return -EINVAL;
3867 
3868 	retval = -ESRCH;
3869 	rcu_read_lock();
3870 	p = find_process_by_pid(pid);
3871 	if (p) {
3872 		retval = security_task_getscheduler(p);
3873 		if (!retval)
3874 			retval = p->policy
3875 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3876 	}
3877 	rcu_read_unlock();
3878 	return retval;
3879 }
3880 
3881 /**
3882  * sys_sched_getparam - get the RT priority of a thread
3883  * @pid: the pid in question.
3884  * @param: structure containing the RT priority.
3885  *
3886  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3887  * code.
3888  */
3889 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3890 {
3891 	struct sched_param lp = { .sched_priority = 0 };
3892 	struct task_struct *p;
3893 	int retval;
3894 
3895 	if (!param || pid < 0)
3896 		return -EINVAL;
3897 
3898 	rcu_read_lock();
3899 	p = find_process_by_pid(pid);
3900 	retval = -ESRCH;
3901 	if (!p)
3902 		goto out_unlock;
3903 
3904 	retval = security_task_getscheduler(p);
3905 	if (retval)
3906 		goto out_unlock;
3907 
3908 	if (task_has_rt_policy(p))
3909 		lp.sched_priority = p->rt_priority;
3910 	rcu_read_unlock();
3911 
3912 	/*
3913 	 * This one might sleep, we cannot do it with a spinlock held ...
3914 	 */
3915 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3916 
3917 	return retval;
3918 
3919 out_unlock:
3920 	rcu_read_unlock();
3921 	return retval;
3922 }
3923 
3924 static int sched_read_attr(struct sched_attr __user *uattr,
3925 			   struct sched_attr *attr,
3926 			   unsigned int usize)
3927 {
3928 	int ret;
3929 
3930 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3931 		return -EFAULT;
3932 
3933 	/*
3934 	 * If we're handed a smaller struct than we know of,
3935 	 * ensure all the unknown bits are 0 - i.e. old
3936 	 * user-space does not get uncomplete information.
3937 	 */
3938 	if (usize < sizeof(*attr)) {
3939 		unsigned char *addr;
3940 		unsigned char *end;
3941 
3942 		addr = (void *)attr + usize;
3943 		end  = (void *)attr + sizeof(*attr);
3944 
3945 		for (; addr < end; addr++) {
3946 			if (*addr)
3947 				return -EFBIG;
3948 		}
3949 
3950 		attr->size = usize;
3951 	}
3952 
3953 	ret = copy_to_user(uattr, attr, attr->size);
3954 	if (ret)
3955 		return -EFAULT;
3956 
3957 	return 0;
3958 }
3959 
3960 /**
3961  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3962  * @pid: the pid in question.
3963  * @uattr: structure containing the extended parameters.
3964  * @size: sizeof(attr) for fwd/bwd comp.
3965  * @flags: for future extension.
3966  */
3967 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3968 		unsigned int, size, unsigned int, flags)
3969 {
3970 	struct sched_attr attr = {
3971 		.size = sizeof(struct sched_attr),
3972 	};
3973 	struct task_struct *p;
3974 	int retval;
3975 
3976 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3977 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3978 		return -EINVAL;
3979 
3980 	rcu_read_lock();
3981 	p = find_process_by_pid(pid);
3982 	retval = -ESRCH;
3983 	if (!p)
3984 		goto out_unlock;
3985 
3986 	retval = security_task_getscheduler(p);
3987 	if (retval)
3988 		goto out_unlock;
3989 
3990 	attr.sched_policy = p->policy;
3991 	if (p->sched_reset_on_fork)
3992 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3993 	if (task_has_dl_policy(p))
3994 		__getparam_dl(p, &attr);
3995 	else if (task_has_rt_policy(p))
3996 		attr.sched_priority = p->rt_priority;
3997 	else
3998 		attr.sched_nice = task_nice(p);
3999 
4000 	rcu_read_unlock();
4001 
4002 	retval = sched_read_attr(uattr, &attr, size);
4003 	return retval;
4004 
4005 out_unlock:
4006 	rcu_read_unlock();
4007 	return retval;
4008 }
4009 
4010 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4011 {
4012 	cpumask_var_t cpus_allowed, new_mask;
4013 	struct task_struct *p;
4014 	int retval;
4015 
4016 	rcu_read_lock();
4017 
4018 	p = find_process_by_pid(pid);
4019 	if (!p) {
4020 		rcu_read_unlock();
4021 		return -ESRCH;
4022 	}
4023 
4024 	/* Prevent p going away */
4025 	get_task_struct(p);
4026 	rcu_read_unlock();
4027 
4028 	if (p->flags & PF_NO_SETAFFINITY) {
4029 		retval = -EINVAL;
4030 		goto out_put_task;
4031 	}
4032 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4033 		retval = -ENOMEM;
4034 		goto out_put_task;
4035 	}
4036 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4037 		retval = -ENOMEM;
4038 		goto out_free_cpus_allowed;
4039 	}
4040 	retval = -EPERM;
4041 	if (!check_same_owner(p)) {
4042 		rcu_read_lock();
4043 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4044 			rcu_read_unlock();
4045 			goto out_free_new_mask;
4046 		}
4047 		rcu_read_unlock();
4048 	}
4049 
4050 	retval = security_task_setscheduler(p);
4051 	if (retval)
4052 		goto out_free_new_mask;
4053 
4054 
4055 	cpuset_cpus_allowed(p, cpus_allowed);
4056 	cpumask_and(new_mask, in_mask, cpus_allowed);
4057 
4058 	/*
4059 	 * Since bandwidth control happens on root_domain basis,
4060 	 * if admission test is enabled, we only admit -deadline
4061 	 * tasks allowed to run on all the CPUs in the task's
4062 	 * root_domain.
4063 	 */
4064 #ifdef CONFIG_SMP
4065 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4066 		rcu_read_lock();
4067 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4068 			retval = -EBUSY;
4069 			rcu_read_unlock();
4070 			goto out_free_new_mask;
4071 		}
4072 		rcu_read_unlock();
4073 	}
4074 #endif
4075 again:
4076 	retval = set_cpus_allowed_ptr(p, new_mask);
4077 
4078 	if (!retval) {
4079 		cpuset_cpus_allowed(p, cpus_allowed);
4080 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4081 			/*
4082 			 * We must have raced with a concurrent cpuset
4083 			 * update. Just reset the cpus_allowed to the
4084 			 * cpuset's cpus_allowed
4085 			 */
4086 			cpumask_copy(new_mask, cpus_allowed);
4087 			goto again;
4088 		}
4089 	}
4090 out_free_new_mask:
4091 	free_cpumask_var(new_mask);
4092 out_free_cpus_allowed:
4093 	free_cpumask_var(cpus_allowed);
4094 out_put_task:
4095 	put_task_struct(p);
4096 	return retval;
4097 }
4098 
4099 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4100 			     struct cpumask *new_mask)
4101 {
4102 	if (len < cpumask_size())
4103 		cpumask_clear(new_mask);
4104 	else if (len > cpumask_size())
4105 		len = cpumask_size();
4106 
4107 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4108 }
4109 
4110 /**
4111  * sys_sched_setaffinity - set the cpu affinity of a process
4112  * @pid: pid of the process
4113  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4114  * @user_mask_ptr: user-space pointer to the new cpu mask
4115  *
4116  * Return: 0 on success. An error code otherwise.
4117  */
4118 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4119 		unsigned long __user *, user_mask_ptr)
4120 {
4121 	cpumask_var_t new_mask;
4122 	int retval;
4123 
4124 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4125 		return -ENOMEM;
4126 
4127 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4128 	if (retval == 0)
4129 		retval = sched_setaffinity(pid, new_mask);
4130 	free_cpumask_var(new_mask);
4131 	return retval;
4132 }
4133 
4134 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4135 {
4136 	struct task_struct *p;
4137 	unsigned long flags;
4138 	int retval;
4139 
4140 	rcu_read_lock();
4141 
4142 	retval = -ESRCH;
4143 	p = find_process_by_pid(pid);
4144 	if (!p)
4145 		goto out_unlock;
4146 
4147 	retval = security_task_getscheduler(p);
4148 	if (retval)
4149 		goto out_unlock;
4150 
4151 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4152 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4153 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4154 
4155 out_unlock:
4156 	rcu_read_unlock();
4157 
4158 	return retval;
4159 }
4160 
4161 /**
4162  * sys_sched_getaffinity - get the cpu affinity of a process
4163  * @pid: pid of the process
4164  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4165  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4166  *
4167  * Return: 0 on success. An error code otherwise.
4168  */
4169 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4170 		unsigned long __user *, user_mask_ptr)
4171 {
4172 	int ret;
4173 	cpumask_var_t mask;
4174 
4175 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4176 		return -EINVAL;
4177 	if (len & (sizeof(unsigned long)-1))
4178 		return -EINVAL;
4179 
4180 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4181 		return -ENOMEM;
4182 
4183 	ret = sched_getaffinity(pid, mask);
4184 	if (ret == 0) {
4185 		size_t retlen = min_t(size_t, len, cpumask_size());
4186 
4187 		if (copy_to_user(user_mask_ptr, mask, retlen))
4188 			ret = -EFAULT;
4189 		else
4190 			ret = retlen;
4191 	}
4192 	free_cpumask_var(mask);
4193 
4194 	return ret;
4195 }
4196 
4197 /**
4198  * sys_sched_yield - yield the current processor to other threads.
4199  *
4200  * This function yields the current CPU to other tasks. If there are no
4201  * other threads running on this CPU then this function will return.
4202  *
4203  * Return: 0.
4204  */
4205 SYSCALL_DEFINE0(sched_yield)
4206 {
4207 	struct rq *rq = this_rq_lock();
4208 
4209 	schedstat_inc(rq, yld_count);
4210 	current->sched_class->yield_task(rq);
4211 
4212 	/*
4213 	 * Since we are going to call schedule() anyway, there's
4214 	 * no need to preempt or enable interrupts:
4215 	 */
4216 	__release(rq->lock);
4217 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4218 	do_raw_spin_unlock(&rq->lock);
4219 	sched_preempt_enable_no_resched();
4220 
4221 	schedule();
4222 
4223 	return 0;
4224 }
4225 
4226 int __sched _cond_resched(void)
4227 {
4228 	if (should_resched()) {
4229 		preempt_schedule_common();
4230 		return 1;
4231 	}
4232 	return 0;
4233 }
4234 EXPORT_SYMBOL(_cond_resched);
4235 
4236 /*
4237  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4238  * call schedule, and on return reacquire the lock.
4239  *
4240  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4241  * operations here to prevent schedule() from being called twice (once via
4242  * spin_unlock(), once by hand).
4243  */
4244 int __cond_resched_lock(spinlock_t *lock)
4245 {
4246 	int resched = should_resched();
4247 	int ret = 0;
4248 
4249 	lockdep_assert_held(lock);
4250 
4251 	if (spin_needbreak(lock) || resched) {
4252 		spin_unlock(lock);
4253 		if (resched)
4254 			preempt_schedule_common();
4255 		else
4256 			cpu_relax();
4257 		ret = 1;
4258 		spin_lock(lock);
4259 	}
4260 	return ret;
4261 }
4262 EXPORT_SYMBOL(__cond_resched_lock);
4263 
4264 int __sched __cond_resched_softirq(void)
4265 {
4266 	BUG_ON(!in_softirq());
4267 
4268 	if (should_resched()) {
4269 		local_bh_enable();
4270 		preempt_schedule_common();
4271 		local_bh_disable();
4272 		return 1;
4273 	}
4274 	return 0;
4275 }
4276 EXPORT_SYMBOL(__cond_resched_softirq);
4277 
4278 /**
4279  * yield - yield the current processor to other threads.
4280  *
4281  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4282  *
4283  * The scheduler is at all times free to pick the calling task as the most
4284  * eligible task to run, if removing the yield() call from your code breaks
4285  * it, its already broken.
4286  *
4287  * Typical broken usage is:
4288  *
4289  * while (!event)
4290  * 	yield();
4291  *
4292  * where one assumes that yield() will let 'the other' process run that will
4293  * make event true. If the current task is a SCHED_FIFO task that will never
4294  * happen. Never use yield() as a progress guarantee!!
4295  *
4296  * If you want to use yield() to wait for something, use wait_event().
4297  * If you want to use yield() to be 'nice' for others, use cond_resched().
4298  * If you still want to use yield(), do not!
4299  */
4300 void __sched yield(void)
4301 {
4302 	set_current_state(TASK_RUNNING);
4303 	sys_sched_yield();
4304 }
4305 EXPORT_SYMBOL(yield);
4306 
4307 /**
4308  * yield_to - yield the current processor to another thread in
4309  * your thread group, or accelerate that thread toward the
4310  * processor it's on.
4311  * @p: target task
4312  * @preempt: whether task preemption is allowed or not
4313  *
4314  * It's the caller's job to ensure that the target task struct
4315  * can't go away on us before we can do any checks.
4316  *
4317  * Return:
4318  *	true (>0) if we indeed boosted the target task.
4319  *	false (0) if we failed to boost the target.
4320  *	-ESRCH if there's no task to yield to.
4321  */
4322 int __sched yield_to(struct task_struct *p, bool preempt)
4323 {
4324 	struct task_struct *curr = current;
4325 	struct rq *rq, *p_rq;
4326 	unsigned long flags;
4327 	int yielded = 0;
4328 
4329 	local_irq_save(flags);
4330 	rq = this_rq();
4331 
4332 again:
4333 	p_rq = task_rq(p);
4334 	/*
4335 	 * If we're the only runnable task on the rq and target rq also
4336 	 * has only one task, there's absolutely no point in yielding.
4337 	 */
4338 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4339 		yielded = -ESRCH;
4340 		goto out_irq;
4341 	}
4342 
4343 	double_rq_lock(rq, p_rq);
4344 	if (task_rq(p) != p_rq) {
4345 		double_rq_unlock(rq, p_rq);
4346 		goto again;
4347 	}
4348 
4349 	if (!curr->sched_class->yield_to_task)
4350 		goto out_unlock;
4351 
4352 	if (curr->sched_class != p->sched_class)
4353 		goto out_unlock;
4354 
4355 	if (task_running(p_rq, p) || p->state)
4356 		goto out_unlock;
4357 
4358 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4359 	if (yielded) {
4360 		schedstat_inc(rq, yld_count);
4361 		/*
4362 		 * Make p's CPU reschedule; pick_next_entity takes care of
4363 		 * fairness.
4364 		 */
4365 		if (preempt && rq != p_rq)
4366 			resched_curr(p_rq);
4367 	}
4368 
4369 out_unlock:
4370 	double_rq_unlock(rq, p_rq);
4371 out_irq:
4372 	local_irq_restore(flags);
4373 
4374 	if (yielded > 0)
4375 		schedule();
4376 
4377 	return yielded;
4378 }
4379 EXPORT_SYMBOL_GPL(yield_to);
4380 
4381 /*
4382  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4383  * that process accounting knows that this is a task in IO wait state.
4384  */
4385 long __sched io_schedule_timeout(long timeout)
4386 {
4387 	int old_iowait = current->in_iowait;
4388 	struct rq *rq;
4389 	long ret;
4390 
4391 	current->in_iowait = 1;
4392 	if (old_iowait)
4393 		blk_schedule_flush_plug(current);
4394 	else
4395 		blk_flush_plug(current);
4396 
4397 	delayacct_blkio_start();
4398 	rq = raw_rq();
4399 	atomic_inc(&rq->nr_iowait);
4400 	ret = schedule_timeout(timeout);
4401 	current->in_iowait = old_iowait;
4402 	atomic_dec(&rq->nr_iowait);
4403 	delayacct_blkio_end();
4404 
4405 	return ret;
4406 }
4407 EXPORT_SYMBOL(io_schedule_timeout);
4408 
4409 /**
4410  * sys_sched_get_priority_max - return maximum RT priority.
4411  * @policy: scheduling class.
4412  *
4413  * Return: On success, this syscall returns the maximum
4414  * rt_priority that can be used by a given scheduling class.
4415  * On failure, a negative error code is returned.
4416  */
4417 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4418 {
4419 	int ret = -EINVAL;
4420 
4421 	switch (policy) {
4422 	case SCHED_FIFO:
4423 	case SCHED_RR:
4424 		ret = MAX_USER_RT_PRIO-1;
4425 		break;
4426 	case SCHED_DEADLINE:
4427 	case SCHED_NORMAL:
4428 	case SCHED_BATCH:
4429 	case SCHED_IDLE:
4430 		ret = 0;
4431 		break;
4432 	}
4433 	return ret;
4434 }
4435 
4436 /**
4437  * sys_sched_get_priority_min - return minimum RT priority.
4438  * @policy: scheduling class.
4439  *
4440  * Return: On success, this syscall returns the minimum
4441  * rt_priority that can be used by a given scheduling class.
4442  * On failure, a negative error code is returned.
4443  */
4444 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4445 {
4446 	int ret = -EINVAL;
4447 
4448 	switch (policy) {
4449 	case SCHED_FIFO:
4450 	case SCHED_RR:
4451 		ret = 1;
4452 		break;
4453 	case SCHED_DEADLINE:
4454 	case SCHED_NORMAL:
4455 	case SCHED_BATCH:
4456 	case SCHED_IDLE:
4457 		ret = 0;
4458 	}
4459 	return ret;
4460 }
4461 
4462 /**
4463  * sys_sched_rr_get_interval - return the default timeslice of a process.
4464  * @pid: pid of the process.
4465  * @interval: userspace pointer to the timeslice value.
4466  *
4467  * this syscall writes the default timeslice value of a given process
4468  * into the user-space timespec buffer. A value of '0' means infinity.
4469  *
4470  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4471  * an error code.
4472  */
4473 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4474 		struct timespec __user *, interval)
4475 {
4476 	struct task_struct *p;
4477 	unsigned int time_slice;
4478 	unsigned long flags;
4479 	struct rq *rq;
4480 	int retval;
4481 	struct timespec t;
4482 
4483 	if (pid < 0)
4484 		return -EINVAL;
4485 
4486 	retval = -ESRCH;
4487 	rcu_read_lock();
4488 	p = find_process_by_pid(pid);
4489 	if (!p)
4490 		goto out_unlock;
4491 
4492 	retval = security_task_getscheduler(p);
4493 	if (retval)
4494 		goto out_unlock;
4495 
4496 	rq = task_rq_lock(p, &flags);
4497 	time_slice = 0;
4498 	if (p->sched_class->get_rr_interval)
4499 		time_slice = p->sched_class->get_rr_interval(rq, p);
4500 	task_rq_unlock(rq, p, &flags);
4501 
4502 	rcu_read_unlock();
4503 	jiffies_to_timespec(time_slice, &t);
4504 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4505 	return retval;
4506 
4507 out_unlock:
4508 	rcu_read_unlock();
4509 	return retval;
4510 }
4511 
4512 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4513 
4514 void sched_show_task(struct task_struct *p)
4515 {
4516 	unsigned long free = 0;
4517 	int ppid;
4518 	unsigned long state = p->state;
4519 
4520 	if (state)
4521 		state = __ffs(state) + 1;
4522 	printk(KERN_INFO "%-15.15s %c", p->comm,
4523 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4524 #if BITS_PER_LONG == 32
4525 	if (state == TASK_RUNNING)
4526 		printk(KERN_CONT " running  ");
4527 	else
4528 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4529 #else
4530 	if (state == TASK_RUNNING)
4531 		printk(KERN_CONT "  running task    ");
4532 	else
4533 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4534 #endif
4535 #ifdef CONFIG_DEBUG_STACK_USAGE
4536 	free = stack_not_used(p);
4537 #endif
4538 	ppid = 0;
4539 	rcu_read_lock();
4540 	if (pid_alive(p))
4541 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4542 	rcu_read_unlock();
4543 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4544 		task_pid_nr(p), ppid,
4545 		(unsigned long)task_thread_info(p)->flags);
4546 
4547 	print_worker_info(KERN_INFO, p);
4548 	show_stack(p, NULL);
4549 }
4550 
4551 void show_state_filter(unsigned long state_filter)
4552 {
4553 	struct task_struct *g, *p;
4554 
4555 #if BITS_PER_LONG == 32
4556 	printk(KERN_INFO
4557 		"  task                PC stack   pid father\n");
4558 #else
4559 	printk(KERN_INFO
4560 		"  task                        PC stack   pid father\n");
4561 #endif
4562 	rcu_read_lock();
4563 	for_each_process_thread(g, p) {
4564 		/*
4565 		 * reset the NMI-timeout, listing all files on a slow
4566 		 * console might take a lot of time:
4567 		 */
4568 		touch_nmi_watchdog();
4569 		if (!state_filter || (p->state & state_filter))
4570 			sched_show_task(p);
4571 	}
4572 
4573 	touch_all_softlockup_watchdogs();
4574 
4575 #ifdef CONFIG_SCHED_DEBUG
4576 	sysrq_sched_debug_show();
4577 #endif
4578 	rcu_read_unlock();
4579 	/*
4580 	 * Only show locks if all tasks are dumped:
4581 	 */
4582 	if (!state_filter)
4583 		debug_show_all_locks();
4584 }
4585 
4586 void init_idle_bootup_task(struct task_struct *idle)
4587 {
4588 	idle->sched_class = &idle_sched_class;
4589 }
4590 
4591 /**
4592  * init_idle - set up an idle thread for a given CPU
4593  * @idle: task in question
4594  * @cpu: cpu the idle task belongs to
4595  *
4596  * NOTE: this function does not set the idle thread's NEED_RESCHED
4597  * flag, to make booting more robust.
4598  */
4599 void init_idle(struct task_struct *idle, int cpu)
4600 {
4601 	struct rq *rq = cpu_rq(cpu);
4602 	unsigned long flags;
4603 
4604 	raw_spin_lock_irqsave(&rq->lock, flags);
4605 
4606 	__sched_fork(0, idle);
4607 	idle->state = TASK_RUNNING;
4608 	idle->se.exec_start = sched_clock();
4609 
4610 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4611 	/*
4612 	 * We're having a chicken and egg problem, even though we are
4613 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4614 	 * lockdep check in task_group() will fail.
4615 	 *
4616 	 * Similar case to sched_fork(). / Alternatively we could
4617 	 * use task_rq_lock() here and obtain the other rq->lock.
4618 	 *
4619 	 * Silence PROVE_RCU
4620 	 */
4621 	rcu_read_lock();
4622 	__set_task_cpu(idle, cpu);
4623 	rcu_read_unlock();
4624 
4625 	rq->curr = rq->idle = idle;
4626 	idle->on_rq = TASK_ON_RQ_QUEUED;
4627 #if defined(CONFIG_SMP)
4628 	idle->on_cpu = 1;
4629 #endif
4630 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4631 
4632 	/* Set the preempt count _outside_ the spinlocks! */
4633 	init_idle_preempt_count(idle, cpu);
4634 
4635 	/*
4636 	 * The idle tasks have their own, simple scheduling class:
4637 	 */
4638 	idle->sched_class = &idle_sched_class;
4639 	ftrace_graph_init_idle_task(idle, cpu);
4640 	vtime_init_idle(idle, cpu);
4641 #if defined(CONFIG_SMP)
4642 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4643 #endif
4644 }
4645 
4646 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4647 			      const struct cpumask *trial)
4648 {
4649 	int ret = 1, trial_cpus;
4650 	struct dl_bw *cur_dl_b;
4651 	unsigned long flags;
4652 
4653 	if (!cpumask_weight(cur))
4654 		return ret;
4655 
4656 	rcu_read_lock_sched();
4657 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4658 	trial_cpus = cpumask_weight(trial);
4659 
4660 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4661 	if (cur_dl_b->bw != -1 &&
4662 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4663 		ret = 0;
4664 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4665 	rcu_read_unlock_sched();
4666 
4667 	return ret;
4668 }
4669 
4670 int task_can_attach(struct task_struct *p,
4671 		    const struct cpumask *cs_cpus_allowed)
4672 {
4673 	int ret = 0;
4674 
4675 	/*
4676 	 * Kthreads which disallow setaffinity shouldn't be moved
4677 	 * to a new cpuset; we don't want to change their cpu
4678 	 * affinity and isolating such threads by their set of
4679 	 * allowed nodes is unnecessary.  Thus, cpusets are not
4680 	 * applicable for such threads.  This prevents checking for
4681 	 * success of set_cpus_allowed_ptr() on all attached tasks
4682 	 * before cpus_allowed may be changed.
4683 	 */
4684 	if (p->flags & PF_NO_SETAFFINITY) {
4685 		ret = -EINVAL;
4686 		goto out;
4687 	}
4688 
4689 #ifdef CONFIG_SMP
4690 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4691 					      cs_cpus_allowed)) {
4692 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4693 							cs_cpus_allowed);
4694 		struct dl_bw *dl_b;
4695 		bool overflow;
4696 		int cpus;
4697 		unsigned long flags;
4698 
4699 		rcu_read_lock_sched();
4700 		dl_b = dl_bw_of(dest_cpu);
4701 		raw_spin_lock_irqsave(&dl_b->lock, flags);
4702 		cpus = dl_bw_cpus(dest_cpu);
4703 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4704 		if (overflow)
4705 			ret = -EBUSY;
4706 		else {
4707 			/*
4708 			 * We reserve space for this task in the destination
4709 			 * root_domain, as we can't fail after this point.
4710 			 * We will free resources in the source root_domain
4711 			 * later on (see set_cpus_allowed_dl()).
4712 			 */
4713 			__dl_add(dl_b, p->dl.dl_bw);
4714 		}
4715 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4716 		rcu_read_unlock_sched();
4717 
4718 	}
4719 #endif
4720 out:
4721 	return ret;
4722 }
4723 
4724 #ifdef CONFIG_SMP
4725 /*
4726  * move_queued_task - move a queued task to new rq.
4727  *
4728  * Returns (locked) new rq. Old rq's lock is released.
4729  */
4730 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4731 {
4732 	struct rq *rq = task_rq(p);
4733 
4734 	lockdep_assert_held(&rq->lock);
4735 
4736 	dequeue_task(rq, p, 0);
4737 	p->on_rq = TASK_ON_RQ_MIGRATING;
4738 	set_task_cpu(p, new_cpu);
4739 	raw_spin_unlock(&rq->lock);
4740 
4741 	rq = cpu_rq(new_cpu);
4742 
4743 	raw_spin_lock(&rq->lock);
4744 	BUG_ON(task_cpu(p) != new_cpu);
4745 	p->on_rq = TASK_ON_RQ_QUEUED;
4746 	enqueue_task(rq, p, 0);
4747 	check_preempt_curr(rq, p, 0);
4748 
4749 	return rq;
4750 }
4751 
4752 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4753 {
4754 	if (p->sched_class->set_cpus_allowed)
4755 		p->sched_class->set_cpus_allowed(p, new_mask);
4756 
4757 	cpumask_copy(&p->cpus_allowed, new_mask);
4758 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4759 }
4760 
4761 /*
4762  * This is how migration works:
4763  *
4764  * 1) we invoke migration_cpu_stop() on the target CPU using
4765  *    stop_one_cpu().
4766  * 2) stopper starts to run (implicitly forcing the migrated thread
4767  *    off the CPU)
4768  * 3) it checks whether the migrated task is still in the wrong runqueue.
4769  * 4) if it's in the wrong runqueue then the migration thread removes
4770  *    it and puts it into the right queue.
4771  * 5) stopper completes and stop_one_cpu() returns and the migration
4772  *    is done.
4773  */
4774 
4775 /*
4776  * Change a given task's CPU affinity. Migrate the thread to a
4777  * proper CPU and schedule it away if the CPU it's executing on
4778  * is removed from the allowed bitmask.
4779  *
4780  * NOTE: the caller must have a valid reference to the task, the
4781  * task must not exit() & deallocate itself prematurely. The
4782  * call is not atomic; no spinlocks may be held.
4783  */
4784 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4785 {
4786 	unsigned long flags;
4787 	struct rq *rq;
4788 	unsigned int dest_cpu;
4789 	int ret = 0;
4790 
4791 	rq = task_rq_lock(p, &flags);
4792 
4793 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4794 		goto out;
4795 
4796 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4797 		ret = -EINVAL;
4798 		goto out;
4799 	}
4800 
4801 	do_set_cpus_allowed(p, new_mask);
4802 
4803 	/* Can the task run on the task's current CPU? If so, we're done */
4804 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4805 		goto out;
4806 
4807 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4808 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4809 		struct migration_arg arg = { p, dest_cpu };
4810 		/* Need help from migration thread: drop lock and wait. */
4811 		task_rq_unlock(rq, p, &flags);
4812 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4813 		tlb_migrate_finish(p->mm);
4814 		return 0;
4815 	} else if (task_on_rq_queued(p))
4816 		rq = move_queued_task(p, dest_cpu);
4817 out:
4818 	task_rq_unlock(rq, p, &flags);
4819 
4820 	return ret;
4821 }
4822 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4823 
4824 /*
4825  * Move (not current) task off this cpu, onto dest cpu. We're doing
4826  * this because either it can't run here any more (set_cpus_allowed()
4827  * away from this CPU, or CPU going down), or because we're
4828  * attempting to rebalance this task on exec (sched_exec).
4829  *
4830  * So we race with normal scheduler movements, but that's OK, as long
4831  * as the task is no longer on this CPU.
4832  *
4833  * Returns non-zero if task was successfully migrated.
4834  */
4835 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4836 {
4837 	struct rq *rq;
4838 	int ret = 0;
4839 
4840 	if (unlikely(!cpu_active(dest_cpu)))
4841 		return ret;
4842 
4843 	rq = cpu_rq(src_cpu);
4844 
4845 	raw_spin_lock(&p->pi_lock);
4846 	raw_spin_lock(&rq->lock);
4847 	/* Already moved. */
4848 	if (task_cpu(p) != src_cpu)
4849 		goto done;
4850 
4851 	/* Affinity changed (again). */
4852 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4853 		goto fail;
4854 
4855 	/*
4856 	 * If we're not on a rq, the next wake-up will ensure we're
4857 	 * placed properly.
4858 	 */
4859 	if (task_on_rq_queued(p))
4860 		rq = move_queued_task(p, dest_cpu);
4861 done:
4862 	ret = 1;
4863 fail:
4864 	raw_spin_unlock(&rq->lock);
4865 	raw_spin_unlock(&p->pi_lock);
4866 	return ret;
4867 }
4868 
4869 #ifdef CONFIG_NUMA_BALANCING
4870 /* Migrate current task p to target_cpu */
4871 int migrate_task_to(struct task_struct *p, int target_cpu)
4872 {
4873 	struct migration_arg arg = { p, target_cpu };
4874 	int curr_cpu = task_cpu(p);
4875 
4876 	if (curr_cpu == target_cpu)
4877 		return 0;
4878 
4879 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4880 		return -EINVAL;
4881 
4882 	/* TODO: This is not properly updating schedstats */
4883 
4884 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4885 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4886 }
4887 
4888 /*
4889  * Requeue a task on a given node and accurately track the number of NUMA
4890  * tasks on the runqueues
4891  */
4892 void sched_setnuma(struct task_struct *p, int nid)
4893 {
4894 	struct rq *rq;
4895 	unsigned long flags;
4896 	bool queued, running;
4897 
4898 	rq = task_rq_lock(p, &flags);
4899 	queued = task_on_rq_queued(p);
4900 	running = task_current(rq, p);
4901 
4902 	if (queued)
4903 		dequeue_task(rq, p, 0);
4904 	if (running)
4905 		put_prev_task(rq, p);
4906 
4907 	p->numa_preferred_nid = nid;
4908 
4909 	if (running)
4910 		p->sched_class->set_curr_task(rq);
4911 	if (queued)
4912 		enqueue_task(rq, p, 0);
4913 	task_rq_unlock(rq, p, &flags);
4914 }
4915 #endif
4916 
4917 /*
4918  * migration_cpu_stop - this will be executed by a highprio stopper thread
4919  * and performs thread migration by bumping thread off CPU then
4920  * 'pushing' onto another runqueue.
4921  */
4922 static int migration_cpu_stop(void *data)
4923 {
4924 	struct migration_arg *arg = data;
4925 
4926 	/*
4927 	 * The original target cpu might have gone down and we might
4928 	 * be on another cpu but it doesn't matter.
4929 	 */
4930 	local_irq_disable();
4931 	/*
4932 	 * We need to explicitly wake pending tasks before running
4933 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4934 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4935 	 */
4936 	sched_ttwu_pending();
4937 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4938 	local_irq_enable();
4939 	return 0;
4940 }
4941 
4942 #ifdef CONFIG_HOTPLUG_CPU
4943 
4944 /*
4945  * Ensures that the idle task is using init_mm right before its cpu goes
4946  * offline.
4947  */
4948 void idle_task_exit(void)
4949 {
4950 	struct mm_struct *mm = current->active_mm;
4951 
4952 	BUG_ON(cpu_online(smp_processor_id()));
4953 
4954 	if (mm != &init_mm) {
4955 		switch_mm(mm, &init_mm, current);
4956 		finish_arch_post_lock_switch();
4957 	}
4958 	mmdrop(mm);
4959 }
4960 
4961 /*
4962  * Since this CPU is going 'away' for a while, fold any nr_active delta
4963  * we might have. Assumes we're called after migrate_tasks() so that the
4964  * nr_active count is stable.
4965  *
4966  * Also see the comment "Global load-average calculations".
4967  */
4968 static void calc_load_migrate(struct rq *rq)
4969 {
4970 	long delta = calc_load_fold_active(rq);
4971 	if (delta)
4972 		atomic_long_add(delta, &calc_load_tasks);
4973 }
4974 
4975 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4976 {
4977 }
4978 
4979 static const struct sched_class fake_sched_class = {
4980 	.put_prev_task = put_prev_task_fake,
4981 };
4982 
4983 static struct task_struct fake_task = {
4984 	/*
4985 	 * Avoid pull_{rt,dl}_task()
4986 	 */
4987 	.prio = MAX_PRIO + 1,
4988 	.sched_class = &fake_sched_class,
4989 };
4990 
4991 /*
4992  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4993  * try_to_wake_up()->select_task_rq().
4994  *
4995  * Called with rq->lock held even though we'er in stop_machine() and
4996  * there's no concurrency possible, we hold the required locks anyway
4997  * because of lock validation efforts.
4998  */
4999 static void migrate_tasks(unsigned int dead_cpu)
5000 {
5001 	struct rq *rq = cpu_rq(dead_cpu);
5002 	struct task_struct *next, *stop = rq->stop;
5003 	int dest_cpu;
5004 
5005 	/*
5006 	 * Fudge the rq selection such that the below task selection loop
5007 	 * doesn't get stuck on the currently eligible stop task.
5008 	 *
5009 	 * We're currently inside stop_machine() and the rq is either stuck
5010 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5011 	 * either way we should never end up calling schedule() until we're
5012 	 * done here.
5013 	 */
5014 	rq->stop = NULL;
5015 
5016 	/*
5017 	 * put_prev_task() and pick_next_task() sched
5018 	 * class method both need to have an up-to-date
5019 	 * value of rq->clock[_task]
5020 	 */
5021 	update_rq_clock(rq);
5022 
5023 	for ( ; ; ) {
5024 		/*
5025 		 * There's this thread running, bail when that's the only
5026 		 * remaining thread.
5027 		 */
5028 		if (rq->nr_running == 1)
5029 			break;
5030 
5031 		next = pick_next_task(rq, &fake_task);
5032 		BUG_ON(!next);
5033 		next->sched_class->put_prev_task(rq, next);
5034 
5035 		/* Find suitable destination for @next, with force if needed. */
5036 		dest_cpu = select_fallback_rq(dead_cpu, next);
5037 		raw_spin_unlock(&rq->lock);
5038 
5039 		__migrate_task(next, dead_cpu, dest_cpu);
5040 
5041 		raw_spin_lock(&rq->lock);
5042 	}
5043 
5044 	rq->stop = stop;
5045 }
5046 
5047 #endif /* CONFIG_HOTPLUG_CPU */
5048 
5049 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5050 
5051 static struct ctl_table sd_ctl_dir[] = {
5052 	{
5053 		.procname	= "sched_domain",
5054 		.mode		= 0555,
5055 	},
5056 	{}
5057 };
5058 
5059 static struct ctl_table sd_ctl_root[] = {
5060 	{
5061 		.procname	= "kernel",
5062 		.mode		= 0555,
5063 		.child		= sd_ctl_dir,
5064 	},
5065 	{}
5066 };
5067 
5068 static struct ctl_table *sd_alloc_ctl_entry(int n)
5069 {
5070 	struct ctl_table *entry =
5071 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5072 
5073 	return entry;
5074 }
5075 
5076 static void sd_free_ctl_entry(struct ctl_table **tablep)
5077 {
5078 	struct ctl_table *entry;
5079 
5080 	/*
5081 	 * In the intermediate directories, both the child directory and
5082 	 * procname are dynamically allocated and could fail but the mode
5083 	 * will always be set. In the lowest directory the names are
5084 	 * static strings and all have proc handlers.
5085 	 */
5086 	for (entry = *tablep; entry->mode; entry++) {
5087 		if (entry->child)
5088 			sd_free_ctl_entry(&entry->child);
5089 		if (entry->proc_handler == NULL)
5090 			kfree(entry->procname);
5091 	}
5092 
5093 	kfree(*tablep);
5094 	*tablep = NULL;
5095 }
5096 
5097 static int min_load_idx = 0;
5098 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5099 
5100 static void
5101 set_table_entry(struct ctl_table *entry,
5102 		const char *procname, void *data, int maxlen,
5103 		umode_t mode, proc_handler *proc_handler,
5104 		bool load_idx)
5105 {
5106 	entry->procname = procname;
5107 	entry->data = data;
5108 	entry->maxlen = maxlen;
5109 	entry->mode = mode;
5110 	entry->proc_handler = proc_handler;
5111 
5112 	if (load_idx) {
5113 		entry->extra1 = &min_load_idx;
5114 		entry->extra2 = &max_load_idx;
5115 	}
5116 }
5117 
5118 static struct ctl_table *
5119 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5120 {
5121 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5122 
5123 	if (table == NULL)
5124 		return NULL;
5125 
5126 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5127 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5128 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5129 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5130 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5131 		sizeof(int), 0644, proc_dointvec_minmax, true);
5132 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5133 		sizeof(int), 0644, proc_dointvec_minmax, true);
5134 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5135 		sizeof(int), 0644, proc_dointvec_minmax, true);
5136 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5137 		sizeof(int), 0644, proc_dointvec_minmax, true);
5138 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5139 		sizeof(int), 0644, proc_dointvec_minmax, true);
5140 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5141 		sizeof(int), 0644, proc_dointvec_minmax, false);
5142 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5143 		sizeof(int), 0644, proc_dointvec_minmax, false);
5144 	set_table_entry(&table[9], "cache_nice_tries",
5145 		&sd->cache_nice_tries,
5146 		sizeof(int), 0644, proc_dointvec_minmax, false);
5147 	set_table_entry(&table[10], "flags", &sd->flags,
5148 		sizeof(int), 0644, proc_dointvec_minmax, false);
5149 	set_table_entry(&table[11], "max_newidle_lb_cost",
5150 		&sd->max_newidle_lb_cost,
5151 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5152 	set_table_entry(&table[12], "name", sd->name,
5153 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5154 	/* &table[13] is terminator */
5155 
5156 	return table;
5157 }
5158 
5159 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5160 {
5161 	struct ctl_table *entry, *table;
5162 	struct sched_domain *sd;
5163 	int domain_num = 0, i;
5164 	char buf[32];
5165 
5166 	for_each_domain(cpu, sd)
5167 		domain_num++;
5168 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5169 	if (table == NULL)
5170 		return NULL;
5171 
5172 	i = 0;
5173 	for_each_domain(cpu, sd) {
5174 		snprintf(buf, 32, "domain%d", i);
5175 		entry->procname = kstrdup(buf, GFP_KERNEL);
5176 		entry->mode = 0555;
5177 		entry->child = sd_alloc_ctl_domain_table(sd);
5178 		entry++;
5179 		i++;
5180 	}
5181 	return table;
5182 }
5183 
5184 static struct ctl_table_header *sd_sysctl_header;
5185 static void register_sched_domain_sysctl(void)
5186 {
5187 	int i, cpu_num = num_possible_cpus();
5188 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5189 	char buf[32];
5190 
5191 	WARN_ON(sd_ctl_dir[0].child);
5192 	sd_ctl_dir[0].child = entry;
5193 
5194 	if (entry == NULL)
5195 		return;
5196 
5197 	for_each_possible_cpu(i) {
5198 		snprintf(buf, 32, "cpu%d", i);
5199 		entry->procname = kstrdup(buf, GFP_KERNEL);
5200 		entry->mode = 0555;
5201 		entry->child = sd_alloc_ctl_cpu_table(i);
5202 		entry++;
5203 	}
5204 
5205 	WARN_ON(sd_sysctl_header);
5206 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5207 }
5208 
5209 /* may be called multiple times per register */
5210 static void unregister_sched_domain_sysctl(void)
5211 {
5212 	if (sd_sysctl_header)
5213 		unregister_sysctl_table(sd_sysctl_header);
5214 	sd_sysctl_header = NULL;
5215 	if (sd_ctl_dir[0].child)
5216 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5217 }
5218 #else
5219 static void register_sched_domain_sysctl(void)
5220 {
5221 }
5222 static void unregister_sched_domain_sysctl(void)
5223 {
5224 }
5225 #endif
5226 
5227 static void set_rq_online(struct rq *rq)
5228 {
5229 	if (!rq->online) {
5230 		const struct sched_class *class;
5231 
5232 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5233 		rq->online = 1;
5234 
5235 		for_each_class(class) {
5236 			if (class->rq_online)
5237 				class->rq_online(rq);
5238 		}
5239 	}
5240 }
5241 
5242 static void set_rq_offline(struct rq *rq)
5243 {
5244 	if (rq->online) {
5245 		const struct sched_class *class;
5246 
5247 		for_each_class(class) {
5248 			if (class->rq_offline)
5249 				class->rq_offline(rq);
5250 		}
5251 
5252 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5253 		rq->online = 0;
5254 	}
5255 }
5256 
5257 /*
5258  * migration_call - callback that gets triggered when a CPU is added.
5259  * Here we can start up the necessary migration thread for the new CPU.
5260  */
5261 static int
5262 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5263 {
5264 	int cpu = (long)hcpu;
5265 	unsigned long flags;
5266 	struct rq *rq = cpu_rq(cpu);
5267 
5268 	switch (action & ~CPU_TASKS_FROZEN) {
5269 
5270 	case CPU_UP_PREPARE:
5271 		rq->calc_load_update = calc_load_update;
5272 		break;
5273 
5274 	case CPU_ONLINE:
5275 		/* Update our root-domain */
5276 		raw_spin_lock_irqsave(&rq->lock, flags);
5277 		if (rq->rd) {
5278 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5279 
5280 			set_rq_online(rq);
5281 		}
5282 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5283 		break;
5284 
5285 #ifdef CONFIG_HOTPLUG_CPU
5286 	case CPU_DYING:
5287 		sched_ttwu_pending();
5288 		/* Update our root-domain */
5289 		raw_spin_lock_irqsave(&rq->lock, flags);
5290 		if (rq->rd) {
5291 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5292 			set_rq_offline(rq);
5293 		}
5294 		migrate_tasks(cpu);
5295 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5296 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5297 		break;
5298 
5299 	case CPU_DEAD:
5300 		calc_load_migrate(rq);
5301 		break;
5302 #endif
5303 	}
5304 
5305 	update_max_interval();
5306 
5307 	return NOTIFY_OK;
5308 }
5309 
5310 /*
5311  * Register at high priority so that task migration (migrate_all_tasks)
5312  * happens before everything else.  This has to be lower priority than
5313  * the notifier in the perf_event subsystem, though.
5314  */
5315 static struct notifier_block migration_notifier = {
5316 	.notifier_call = migration_call,
5317 	.priority = CPU_PRI_MIGRATION,
5318 };
5319 
5320 static void __cpuinit set_cpu_rq_start_time(void)
5321 {
5322 	int cpu = smp_processor_id();
5323 	struct rq *rq = cpu_rq(cpu);
5324 	rq->age_stamp = sched_clock_cpu(cpu);
5325 }
5326 
5327 static int sched_cpu_active(struct notifier_block *nfb,
5328 				      unsigned long action, void *hcpu)
5329 {
5330 	switch (action & ~CPU_TASKS_FROZEN) {
5331 	case CPU_STARTING:
5332 		set_cpu_rq_start_time();
5333 		return NOTIFY_OK;
5334 	case CPU_DOWN_FAILED:
5335 		set_cpu_active((long)hcpu, true);
5336 		return NOTIFY_OK;
5337 	default:
5338 		return NOTIFY_DONE;
5339 	}
5340 }
5341 
5342 static int sched_cpu_inactive(struct notifier_block *nfb,
5343 					unsigned long action, void *hcpu)
5344 {
5345 	switch (action & ~CPU_TASKS_FROZEN) {
5346 	case CPU_DOWN_PREPARE:
5347 		set_cpu_active((long)hcpu, false);
5348 		return NOTIFY_OK;
5349 	default:
5350 		return NOTIFY_DONE;
5351 	}
5352 }
5353 
5354 static int __init migration_init(void)
5355 {
5356 	void *cpu = (void *)(long)smp_processor_id();
5357 	int err;
5358 
5359 	/* Initialize migration for the boot CPU */
5360 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5361 	BUG_ON(err == NOTIFY_BAD);
5362 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5363 	register_cpu_notifier(&migration_notifier);
5364 
5365 	/* Register cpu active notifiers */
5366 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5367 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5368 
5369 	return 0;
5370 }
5371 early_initcall(migration_init);
5372 #endif
5373 
5374 #ifdef CONFIG_SMP
5375 
5376 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5377 
5378 #ifdef CONFIG_SCHED_DEBUG
5379 
5380 static __read_mostly int sched_debug_enabled;
5381 
5382 static int __init sched_debug_setup(char *str)
5383 {
5384 	sched_debug_enabled = 1;
5385 
5386 	return 0;
5387 }
5388 early_param("sched_debug", sched_debug_setup);
5389 
5390 static inline bool sched_debug(void)
5391 {
5392 	return sched_debug_enabled;
5393 }
5394 
5395 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5396 				  struct cpumask *groupmask)
5397 {
5398 	struct sched_group *group = sd->groups;
5399 
5400 	cpumask_clear(groupmask);
5401 
5402 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5403 
5404 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5405 		printk("does not load-balance\n");
5406 		if (sd->parent)
5407 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5408 					" has parent");
5409 		return -1;
5410 	}
5411 
5412 	printk(KERN_CONT "span %*pbl level %s\n",
5413 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5414 
5415 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5416 		printk(KERN_ERR "ERROR: domain->span does not contain "
5417 				"CPU%d\n", cpu);
5418 	}
5419 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5420 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5421 				" CPU%d\n", cpu);
5422 	}
5423 
5424 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5425 	do {
5426 		if (!group) {
5427 			printk("\n");
5428 			printk(KERN_ERR "ERROR: group is NULL\n");
5429 			break;
5430 		}
5431 
5432 		if (!cpumask_weight(sched_group_cpus(group))) {
5433 			printk(KERN_CONT "\n");
5434 			printk(KERN_ERR "ERROR: empty group\n");
5435 			break;
5436 		}
5437 
5438 		if (!(sd->flags & SD_OVERLAP) &&
5439 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5440 			printk(KERN_CONT "\n");
5441 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5442 			break;
5443 		}
5444 
5445 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5446 
5447 		printk(KERN_CONT " %*pbl",
5448 		       cpumask_pr_args(sched_group_cpus(group)));
5449 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5450 			printk(KERN_CONT " (cpu_capacity = %d)",
5451 				group->sgc->capacity);
5452 		}
5453 
5454 		group = group->next;
5455 	} while (group != sd->groups);
5456 	printk(KERN_CONT "\n");
5457 
5458 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5459 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5460 
5461 	if (sd->parent &&
5462 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5463 		printk(KERN_ERR "ERROR: parent span is not a superset "
5464 			"of domain->span\n");
5465 	return 0;
5466 }
5467 
5468 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5469 {
5470 	int level = 0;
5471 
5472 	if (!sched_debug_enabled)
5473 		return;
5474 
5475 	if (!sd) {
5476 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5477 		return;
5478 	}
5479 
5480 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5481 
5482 	for (;;) {
5483 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5484 			break;
5485 		level++;
5486 		sd = sd->parent;
5487 		if (!sd)
5488 			break;
5489 	}
5490 }
5491 #else /* !CONFIG_SCHED_DEBUG */
5492 # define sched_domain_debug(sd, cpu) do { } while (0)
5493 static inline bool sched_debug(void)
5494 {
5495 	return false;
5496 }
5497 #endif /* CONFIG_SCHED_DEBUG */
5498 
5499 static int sd_degenerate(struct sched_domain *sd)
5500 {
5501 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5502 		return 1;
5503 
5504 	/* Following flags need at least 2 groups */
5505 	if (sd->flags & (SD_LOAD_BALANCE |
5506 			 SD_BALANCE_NEWIDLE |
5507 			 SD_BALANCE_FORK |
5508 			 SD_BALANCE_EXEC |
5509 			 SD_SHARE_CPUCAPACITY |
5510 			 SD_SHARE_PKG_RESOURCES |
5511 			 SD_SHARE_POWERDOMAIN)) {
5512 		if (sd->groups != sd->groups->next)
5513 			return 0;
5514 	}
5515 
5516 	/* Following flags don't use groups */
5517 	if (sd->flags & (SD_WAKE_AFFINE))
5518 		return 0;
5519 
5520 	return 1;
5521 }
5522 
5523 static int
5524 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5525 {
5526 	unsigned long cflags = sd->flags, pflags = parent->flags;
5527 
5528 	if (sd_degenerate(parent))
5529 		return 1;
5530 
5531 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5532 		return 0;
5533 
5534 	/* Flags needing groups don't count if only 1 group in parent */
5535 	if (parent->groups == parent->groups->next) {
5536 		pflags &= ~(SD_LOAD_BALANCE |
5537 				SD_BALANCE_NEWIDLE |
5538 				SD_BALANCE_FORK |
5539 				SD_BALANCE_EXEC |
5540 				SD_SHARE_CPUCAPACITY |
5541 				SD_SHARE_PKG_RESOURCES |
5542 				SD_PREFER_SIBLING |
5543 				SD_SHARE_POWERDOMAIN);
5544 		if (nr_node_ids == 1)
5545 			pflags &= ~SD_SERIALIZE;
5546 	}
5547 	if (~cflags & pflags)
5548 		return 0;
5549 
5550 	return 1;
5551 }
5552 
5553 static void free_rootdomain(struct rcu_head *rcu)
5554 {
5555 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5556 
5557 	cpupri_cleanup(&rd->cpupri);
5558 	cpudl_cleanup(&rd->cpudl);
5559 	free_cpumask_var(rd->dlo_mask);
5560 	free_cpumask_var(rd->rto_mask);
5561 	free_cpumask_var(rd->online);
5562 	free_cpumask_var(rd->span);
5563 	kfree(rd);
5564 }
5565 
5566 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5567 {
5568 	struct root_domain *old_rd = NULL;
5569 	unsigned long flags;
5570 
5571 	raw_spin_lock_irqsave(&rq->lock, flags);
5572 
5573 	if (rq->rd) {
5574 		old_rd = rq->rd;
5575 
5576 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5577 			set_rq_offline(rq);
5578 
5579 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5580 
5581 		/*
5582 		 * If we dont want to free the old_rd yet then
5583 		 * set old_rd to NULL to skip the freeing later
5584 		 * in this function:
5585 		 */
5586 		if (!atomic_dec_and_test(&old_rd->refcount))
5587 			old_rd = NULL;
5588 	}
5589 
5590 	atomic_inc(&rd->refcount);
5591 	rq->rd = rd;
5592 
5593 	cpumask_set_cpu(rq->cpu, rd->span);
5594 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5595 		set_rq_online(rq);
5596 
5597 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5598 
5599 	if (old_rd)
5600 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5601 }
5602 
5603 static int init_rootdomain(struct root_domain *rd)
5604 {
5605 	memset(rd, 0, sizeof(*rd));
5606 
5607 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5608 		goto out;
5609 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5610 		goto free_span;
5611 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5612 		goto free_online;
5613 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5614 		goto free_dlo_mask;
5615 
5616 	init_dl_bw(&rd->dl_bw);
5617 	if (cpudl_init(&rd->cpudl) != 0)
5618 		goto free_dlo_mask;
5619 
5620 	if (cpupri_init(&rd->cpupri) != 0)
5621 		goto free_rto_mask;
5622 	return 0;
5623 
5624 free_rto_mask:
5625 	free_cpumask_var(rd->rto_mask);
5626 free_dlo_mask:
5627 	free_cpumask_var(rd->dlo_mask);
5628 free_online:
5629 	free_cpumask_var(rd->online);
5630 free_span:
5631 	free_cpumask_var(rd->span);
5632 out:
5633 	return -ENOMEM;
5634 }
5635 
5636 /*
5637  * By default the system creates a single root-domain with all cpus as
5638  * members (mimicking the global state we have today).
5639  */
5640 struct root_domain def_root_domain;
5641 
5642 static void init_defrootdomain(void)
5643 {
5644 	init_rootdomain(&def_root_domain);
5645 
5646 	atomic_set(&def_root_domain.refcount, 1);
5647 }
5648 
5649 static struct root_domain *alloc_rootdomain(void)
5650 {
5651 	struct root_domain *rd;
5652 
5653 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5654 	if (!rd)
5655 		return NULL;
5656 
5657 	if (init_rootdomain(rd) != 0) {
5658 		kfree(rd);
5659 		return NULL;
5660 	}
5661 
5662 	return rd;
5663 }
5664 
5665 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5666 {
5667 	struct sched_group *tmp, *first;
5668 
5669 	if (!sg)
5670 		return;
5671 
5672 	first = sg;
5673 	do {
5674 		tmp = sg->next;
5675 
5676 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5677 			kfree(sg->sgc);
5678 
5679 		kfree(sg);
5680 		sg = tmp;
5681 	} while (sg != first);
5682 }
5683 
5684 static void free_sched_domain(struct rcu_head *rcu)
5685 {
5686 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5687 
5688 	/*
5689 	 * If its an overlapping domain it has private groups, iterate and
5690 	 * nuke them all.
5691 	 */
5692 	if (sd->flags & SD_OVERLAP) {
5693 		free_sched_groups(sd->groups, 1);
5694 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5695 		kfree(sd->groups->sgc);
5696 		kfree(sd->groups);
5697 	}
5698 	kfree(sd);
5699 }
5700 
5701 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5702 {
5703 	call_rcu(&sd->rcu, free_sched_domain);
5704 }
5705 
5706 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5707 {
5708 	for (; sd; sd = sd->parent)
5709 		destroy_sched_domain(sd, cpu);
5710 }
5711 
5712 /*
5713  * Keep a special pointer to the highest sched_domain that has
5714  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5715  * allows us to avoid some pointer chasing select_idle_sibling().
5716  *
5717  * Also keep a unique ID per domain (we use the first cpu number in
5718  * the cpumask of the domain), this allows us to quickly tell if
5719  * two cpus are in the same cache domain, see cpus_share_cache().
5720  */
5721 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5722 DEFINE_PER_CPU(int, sd_llc_size);
5723 DEFINE_PER_CPU(int, sd_llc_id);
5724 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5725 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5726 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5727 
5728 static void update_top_cache_domain(int cpu)
5729 {
5730 	struct sched_domain *sd;
5731 	struct sched_domain *busy_sd = NULL;
5732 	int id = cpu;
5733 	int size = 1;
5734 
5735 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5736 	if (sd) {
5737 		id = cpumask_first(sched_domain_span(sd));
5738 		size = cpumask_weight(sched_domain_span(sd));
5739 		busy_sd = sd->parent; /* sd_busy */
5740 	}
5741 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5742 
5743 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5744 	per_cpu(sd_llc_size, cpu) = size;
5745 	per_cpu(sd_llc_id, cpu) = id;
5746 
5747 	sd = lowest_flag_domain(cpu, SD_NUMA);
5748 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5749 
5750 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5751 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5752 }
5753 
5754 /*
5755  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5756  * hold the hotplug lock.
5757  */
5758 static void
5759 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5760 {
5761 	struct rq *rq = cpu_rq(cpu);
5762 	struct sched_domain *tmp;
5763 
5764 	/* Remove the sched domains which do not contribute to scheduling. */
5765 	for (tmp = sd; tmp; ) {
5766 		struct sched_domain *parent = tmp->parent;
5767 		if (!parent)
5768 			break;
5769 
5770 		if (sd_parent_degenerate(tmp, parent)) {
5771 			tmp->parent = parent->parent;
5772 			if (parent->parent)
5773 				parent->parent->child = tmp;
5774 			/*
5775 			 * Transfer SD_PREFER_SIBLING down in case of a
5776 			 * degenerate parent; the spans match for this
5777 			 * so the property transfers.
5778 			 */
5779 			if (parent->flags & SD_PREFER_SIBLING)
5780 				tmp->flags |= SD_PREFER_SIBLING;
5781 			destroy_sched_domain(parent, cpu);
5782 		} else
5783 			tmp = tmp->parent;
5784 	}
5785 
5786 	if (sd && sd_degenerate(sd)) {
5787 		tmp = sd;
5788 		sd = sd->parent;
5789 		destroy_sched_domain(tmp, cpu);
5790 		if (sd)
5791 			sd->child = NULL;
5792 	}
5793 
5794 	sched_domain_debug(sd, cpu);
5795 
5796 	rq_attach_root(rq, rd);
5797 	tmp = rq->sd;
5798 	rcu_assign_pointer(rq->sd, sd);
5799 	destroy_sched_domains(tmp, cpu);
5800 
5801 	update_top_cache_domain(cpu);
5802 }
5803 
5804 /* Setup the mask of cpus configured for isolated domains */
5805 static int __init isolated_cpu_setup(char *str)
5806 {
5807 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5808 	cpulist_parse(str, cpu_isolated_map);
5809 	return 1;
5810 }
5811 
5812 __setup("isolcpus=", isolated_cpu_setup);
5813 
5814 struct s_data {
5815 	struct sched_domain ** __percpu sd;
5816 	struct root_domain	*rd;
5817 };
5818 
5819 enum s_alloc {
5820 	sa_rootdomain,
5821 	sa_sd,
5822 	sa_sd_storage,
5823 	sa_none,
5824 };
5825 
5826 /*
5827  * Build an iteration mask that can exclude certain CPUs from the upwards
5828  * domain traversal.
5829  *
5830  * Asymmetric node setups can result in situations where the domain tree is of
5831  * unequal depth, make sure to skip domains that already cover the entire
5832  * range.
5833  *
5834  * In that case build_sched_domains() will have terminated the iteration early
5835  * and our sibling sd spans will be empty. Domains should always include the
5836  * cpu they're built on, so check that.
5837  *
5838  */
5839 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5840 {
5841 	const struct cpumask *span = sched_domain_span(sd);
5842 	struct sd_data *sdd = sd->private;
5843 	struct sched_domain *sibling;
5844 	int i;
5845 
5846 	for_each_cpu(i, span) {
5847 		sibling = *per_cpu_ptr(sdd->sd, i);
5848 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5849 			continue;
5850 
5851 		cpumask_set_cpu(i, sched_group_mask(sg));
5852 	}
5853 }
5854 
5855 /*
5856  * Return the canonical balance cpu for this group, this is the first cpu
5857  * of this group that's also in the iteration mask.
5858  */
5859 int group_balance_cpu(struct sched_group *sg)
5860 {
5861 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5862 }
5863 
5864 static int
5865 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5866 {
5867 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5868 	const struct cpumask *span = sched_domain_span(sd);
5869 	struct cpumask *covered = sched_domains_tmpmask;
5870 	struct sd_data *sdd = sd->private;
5871 	struct sched_domain *sibling;
5872 	int i;
5873 
5874 	cpumask_clear(covered);
5875 
5876 	for_each_cpu(i, span) {
5877 		struct cpumask *sg_span;
5878 
5879 		if (cpumask_test_cpu(i, covered))
5880 			continue;
5881 
5882 		sibling = *per_cpu_ptr(sdd->sd, i);
5883 
5884 		/* See the comment near build_group_mask(). */
5885 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5886 			continue;
5887 
5888 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889 				GFP_KERNEL, cpu_to_node(cpu));
5890 
5891 		if (!sg)
5892 			goto fail;
5893 
5894 		sg_span = sched_group_cpus(sg);
5895 		if (sibling->child)
5896 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5897 		else
5898 			cpumask_set_cpu(i, sg_span);
5899 
5900 		cpumask_or(covered, covered, sg_span);
5901 
5902 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5903 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5904 			build_group_mask(sd, sg);
5905 
5906 		/*
5907 		 * Initialize sgc->capacity such that even if we mess up the
5908 		 * domains and no possible iteration will get us here, we won't
5909 		 * die on a /0 trap.
5910 		 */
5911 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5912 
5913 		/*
5914 		 * Make sure the first group of this domain contains the
5915 		 * canonical balance cpu. Otherwise the sched_domain iteration
5916 		 * breaks. See update_sg_lb_stats().
5917 		 */
5918 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5919 		    group_balance_cpu(sg) == cpu)
5920 			groups = sg;
5921 
5922 		if (!first)
5923 			first = sg;
5924 		if (last)
5925 			last->next = sg;
5926 		last = sg;
5927 		last->next = first;
5928 	}
5929 	sd->groups = groups;
5930 
5931 	return 0;
5932 
5933 fail:
5934 	free_sched_groups(first, 0);
5935 
5936 	return -ENOMEM;
5937 }
5938 
5939 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5940 {
5941 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5942 	struct sched_domain *child = sd->child;
5943 
5944 	if (child)
5945 		cpu = cpumask_first(sched_domain_span(child));
5946 
5947 	if (sg) {
5948 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5949 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5950 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5951 	}
5952 
5953 	return cpu;
5954 }
5955 
5956 /*
5957  * build_sched_groups will build a circular linked list of the groups
5958  * covered by the given span, and will set each group's ->cpumask correctly,
5959  * and ->cpu_capacity to 0.
5960  *
5961  * Assumes the sched_domain tree is fully constructed
5962  */
5963 static int
5964 build_sched_groups(struct sched_domain *sd, int cpu)
5965 {
5966 	struct sched_group *first = NULL, *last = NULL;
5967 	struct sd_data *sdd = sd->private;
5968 	const struct cpumask *span = sched_domain_span(sd);
5969 	struct cpumask *covered;
5970 	int i;
5971 
5972 	get_group(cpu, sdd, &sd->groups);
5973 	atomic_inc(&sd->groups->ref);
5974 
5975 	if (cpu != cpumask_first(span))
5976 		return 0;
5977 
5978 	lockdep_assert_held(&sched_domains_mutex);
5979 	covered = sched_domains_tmpmask;
5980 
5981 	cpumask_clear(covered);
5982 
5983 	for_each_cpu(i, span) {
5984 		struct sched_group *sg;
5985 		int group, j;
5986 
5987 		if (cpumask_test_cpu(i, covered))
5988 			continue;
5989 
5990 		group = get_group(i, sdd, &sg);
5991 		cpumask_setall(sched_group_mask(sg));
5992 
5993 		for_each_cpu(j, span) {
5994 			if (get_group(j, sdd, NULL) != group)
5995 				continue;
5996 
5997 			cpumask_set_cpu(j, covered);
5998 			cpumask_set_cpu(j, sched_group_cpus(sg));
5999 		}
6000 
6001 		if (!first)
6002 			first = sg;
6003 		if (last)
6004 			last->next = sg;
6005 		last = sg;
6006 	}
6007 	last->next = first;
6008 
6009 	return 0;
6010 }
6011 
6012 /*
6013  * Initialize sched groups cpu_capacity.
6014  *
6015  * cpu_capacity indicates the capacity of sched group, which is used while
6016  * distributing the load between different sched groups in a sched domain.
6017  * Typically cpu_capacity for all the groups in a sched domain will be same
6018  * unless there are asymmetries in the topology. If there are asymmetries,
6019  * group having more cpu_capacity will pickup more load compared to the
6020  * group having less cpu_capacity.
6021  */
6022 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6023 {
6024 	struct sched_group *sg = sd->groups;
6025 
6026 	WARN_ON(!sg);
6027 
6028 	do {
6029 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6030 		sg = sg->next;
6031 	} while (sg != sd->groups);
6032 
6033 	if (cpu != group_balance_cpu(sg))
6034 		return;
6035 
6036 	update_group_capacity(sd, cpu);
6037 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6038 }
6039 
6040 /*
6041  * Initializers for schedule domains
6042  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6043  */
6044 
6045 static int default_relax_domain_level = -1;
6046 int sched_domain_level_max;
6047 
6048 static int __init setup_relax_domain_level(char *str)
6049 {
6050 	if (kstrtoint(str, 0, &default_relax_domain_level))
6051 		pr_warn("Unable to set relax_domain_level\n");
6052 
6053 	return 1;
6054 }
6055 __setup("relax_domain_level=", setup_relax_domain_level);
6056 
6057 static void set_domain_attribute(struct sched_domain *sd,
6058 				 struct sched_domain_attr *attr)
6059 {
6060 	int request;
6061 
6062 	if (!attr || attr->relax_domain_level < 0) {
6063 		if (default_relax_domain_level < 0)
6064 			return;
6065 		else
6066 			request = default_relax_domain_level;
6067 	} else
6068 		request = attr->relax_domain_level;
6069 	if (request < sd->level) {
6070 		/* turn off idle balance on this domain */
6071 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6072 	} else {
6073 		/* turn on idle balance on this domain */
6074 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6075 	}
6076 }
6077 
6078 static void __sdt_free(const struct cpumask *cpu_map);
6079 static int __sdt_alloc(const struct cpumask *cpu_map);
6080 
6081 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6082 				 const struct cpumask *cpu_map)
6083 {
6084 	switch (what) {
6085 	case sa_rootdomain:
6086 		if (!atomic_read(&d->rd->refcount))
6087 			free_rootdomain(&d->rd->rcu); /* fall through */
6088 	case sa_sd:
6089 		free_percpu(d->sd); /* fall through */
6090 	case sa_sd_storage:
6091 		__sdt_free(cpu_map); /* fall through */
6092 	case sa_none:
6093 		break;
6094 	}
6095 }
6096 
6097 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6098 						   const struct cpumask *cpu_map)
6099 {
6100 	memset(d, 0, sizeof(*d));
6101 
6102 	if (__sdt_alloc(cpu_map))
6103 		return sa_sd_storage;
6104 	d->sd = alloc_percpu(struct sched_domain *);
6105 	if (!d->sd)
6106 		return sa_sd_storage;
6107 	d->rd = alloc_rootdomain();
6108 	if (!d->rd)
6109 		return sa_sd;
6110 	return sa_rootdomain;
6111 }
6112 
6113 /*
6114  * NULL the sd_data elements we've used to build the sched_domain and
6115  * sched_group structure so that the subsequent __free_domain_allocs()
6116  * will not free the data we're using.
6117  */
6118 static void claim_allocations(int cpu, struct sched_domain *sd)
6119 {
6120 	struct sd_data *sdd = sd->private;
6121 
6122 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6123 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6124 
6125 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6126 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6127 
6128 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6129 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6130 }
6131 
6132 #ifdef CONFIG_NUMA
6133 static int sched_domains_numa_levels;
6134 enum numa_topology_type sched_numa_topology_type;
6135 static int *sched_domains_numa_distance;
6136 int sched_max_numa_distance;
6137 static struct cpumask ***sched_domains_numa_masks;
6138 static int sched_domains_curr_level;
6139 #endif
6140 
6141 /*
6142  * SD_flags allowed in topology descriptions.
6143  *
6144  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6145  * SD_SHARE_PKG_RESOURCES - describes shared caches
6146  * SD_NUMA                - describes NUMA topologies
6147  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6148  *
6149  * Odd one out:
6150  * SD_ASYM_PACKING        - describes SMT quirks
6151  */
6152 #define TOPOLOGY_SD_FLAGS		\
6153 	(SD_SHARE_CPUCAPACITY |		\
6154 	 SD_SHARE_PKG_RESOURCES |	\
6155 	 SD_NUMA |			\
6156 	 SD_ASYM_PACKING |		\
6157 	 SD_SHARE_POWERDOMAIN)
6158 
6159 static struct sched_domain *
6160 sd_init(struct sched_domain_topology_level *tl, int cpu)
6161 {
6162 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6163 	int sd_weight, sd_flags = 0;
6164 
6165 #ifdef CONFIG_NUMA
6166 	/*
6167 	 * Ugly hack to pass state to sd_numa_mask()...
6168 	 */
6169 	sched_domains_curr_level = tl->numa_level;
6170 #endif
6171 
6172 	sd_weight = cpumask_weight(tl->mask(cpu));
6173 
6174 	if (tl->sd_flags)
6175 		sd_flags = (*tl->sd_flags)();
6176 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6177 			"wrong sd_flags in topology description\n"))
6178 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6179 
6180 	*sd = (struct sched_domain){
6181 		.min_interval		= sd_weight,
6182 		.max_interval		= 2*sd_weight,
6183 		.busy_factor		= 32,
6184 		.imbalance_pct		= 125,
6185 
6186 		.cache_nice_tries	= 0,
6187 		.busy_idx		= 0,
6188 		.idle_idx		= 0,
6189 		.newidle_idx		= 0,
6190 		.wake_idx		= 0,
6191 		.forkexec_idx		= 0,
6192 
6193 		.flags			= 1*SD_LOAD_BALANCE
6194 					| 1*SD_BALANCE_NEWIDLE
6195 					| 1*SD_BALANCE_EXEC
6196 					| 1*SD_BALANCE_FORK
6197 					| 0*SD_BALANCE_WAKE
6198 					| 1*SD_WAKE_AFFINE
6199 					| 0*SD_SHARE_CPUCAPACITY
6200 					| 0*SD_SHARE_PKG_RESOURCES
6201 					| 0*SD_SERIALIZE
6202 					| 0*SD_PREFER_SIBLING
6203 					| 0*SD_NUMA
6204 					| sd_flags
6205 					,
6206 
6207 		.last_balance		= jiffies,
6208 		.balance_interval	= sd_weight,
6209 		.smt_gain		= 0,
6210 		.max_newidle_lb_cost	= 0,
6211 		.next_decay_max_lb_cost	= jiffies,
6212 #ifdef CONFIG_SCHED_DEBUG
6213 		.name			= tl->name,
6214 #endif
6215 	};
6216 
6217 	/*
6218 	 * Convert topological properties into behaviour.
6219 	 */
6220 
6221 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6222 		sd->flags |= SD_PREFER_SIBLING;
6223 		sd->imbalance_pct = 110;
6224 		sd->smt_gain = 1178; /* ~15% */
6225 
6226 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6227 		sd->imbalance_pct = 117;
6228 		sd->cache_nice_tries = 1;
6229 		sd->busy_idx = 2;
6230 
6231 #ifdef CONFIG_NUMA
6232 	} else if (sd->flags & SD_NUMA) {
6233 		sd->cache_nice_tries = 2;
6234 		sd->busy_idx = 3;
6235 		sd->idle_idx = 2;
6236 
6237 		sd->flags |= SD_SERIALIZE;
6238 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6239 			sd->flags &= ~(SD_BALANCE_EXEC |
6240 				       SD_BALANCE_FORK |
6241 				       SD_WAKE_AFFINE);
6242 		}
6243 
6244 #endif
6245 	} else {
6246 		sd->flags |= SD_PREFER_SIBLING;
6247 		sd->cache_nice_tries = 1;
6248 		sd->busy_idx = 2;
6249 		sd->idle_idx = 1;
6250 	}
6251 
6252 	sd->private = &tl->data;
6253 
6254 	return sd;
6255 }
6256 
6257 /*
6258  * Topology list, bottom-up.
6259  */
6260 static struct sched_domain_topology_level default_topology[] = {
6261 #ifdef CONFIG_SCHED_SMT
6262 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6263 #endif
6264 #ifdef CONFIG_SCHED_MC
6265 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6266 #endif
6267 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6268 	{ NULL, },
6269 };
6270 
6271 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6272 
6273 #define for_each_sd_topology(tl)			\
6274 	for (tl = sched_domain_topology; tl->mask; tl++)
6275 
6276 void set_sched_topology(struct sched_domain_topology_level *tl)
6277 {
6278 	sched_domain_topology = tl;
6279 }
6280 
6281 #ifdef CONFIG_NUMA
6282 
6283 static const struct cpumask *sd_numa_mask(int cpu)
6284 {
6285 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6286 }
6287 
6288 static void sched_numa_warn(const char *str)
6289 {
6290 	static int done = false;
6291 	int i,j;
6292 
6293 	if (done)
6294 		return;
6295 
6296 	done = true;
6297 
6298 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6299 
6300 	for (i = 0; i < nr_node_ids; i++) {
6301 		printk(KERN_WARNING "  ");
6302 		for (j = 0; j < nr_node_ids; j++)
6303 			printk(KERN_CONT "%02d ", node_distance(i,j));
6304 		printk(KERN_CONT "\n");
6305 	}
6306 	printk(KERN_WARNING "\n");
6307 }
6308 
6309 bool find_numa_distance(int distance)
6310 {
6311 	int i;
6312 
6313 	if (distance == node_distance(0, 0))
6314 		return true;
6315 
6316 	for (i = 0; i < sched_domains_numa_levels; i++) {
6317 		if (sched_domains_numa_distance[i] == distance)
6318 			return true;
6319 	}
6320 
6321 	return false;
6322 }
6323 
6324 /*
6325  * A system can have three types of NUMA topology:
6326  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6327  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6328  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6329  *
6330  * The difference between a glueless mesh topology and a backplane
6331  * topology lies in whether communication between not directly
6332  * connected nodes goes through intermediary nodes (where programs
6333  * could run), or through backplane controllers. This affects
6334  * placement of programs.
6335  *
6336  * The type of topology can be discerned with the following tests:
6337  * - If the maximum distance between any nodes is 1 hop, the system
6338  *   is directly connected.
6339  * - If for two nodes A and B, located N > 1 hops away from each other,
6340  *   there is an intermediary node C, which is < N hops away from both
6341  *   nodes A and B, the system is a glueless mesh.
6342  */
6343 static void init_numa_topology_type(void)
6344 {
6345 	int a, b, c, n;
6346 
6347 	n = sched_max_numa_distance;
6348 
6349 	if (n <= 1)
6350 		sched_numa_topology_type = NUMA_DIRECT;
6351 
6352 	for_each_online_node(a) {
6353 		for_each_online_node(b) {
6354 			/* Find two nodes furthest removed from each other. */
6355 			if (node_distance(a, b) < n)
6356 				continue;
6357 
6358 			/* Is there an intermediary node between a and b? */
6359 			for_each_online_node(c) {
6360 				if (node_distance(a, c) < n &&
6361 				    node_distance(b, c) < n) {
6362 					sched_numa_topology_type =
6363 							NUMA_GLUELESS_MESH;
6364 					return;
6365 				}
6366 			}
6367 
6368 			sched_numa_topology_type = NUMA_BACKPLANE;
6369 			return;
6370 		}
6371 	}
6372 }
6373 
6374 static void sched_init_numa(void)
6375 {
6376 	int next_distance, curr_distance = node_distance(0, 0);
6377 	struct sched_domain_topology_level *tl;
6378 	int level = 0;
6379 	int i, j, k;
6380 
6381 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6382 	if (!sched_domains_numa_distance)
6383 		return;
6384 
6385 	/*
6386 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6387 	 * unique distances in the node_distance() table.
6388 	 *
6389 	 * Assumes node_distance(0,j) includes all distances in
6390 	 * node_distance(i,j) in order to avoid cubic time.
6391 	 */
6392 	next_distance = curr_distance;
6393 	for (i = 0; i < nr_node_ids; i++) {
6394 		for (j = 0; j < nr_node_ids; j++) {
6395 			for (k = 0; k < nr_node_ids; k++) {
6396 				int distance = node_distance(i, k);
6397 
6398 				if (distance > curr_distance &&
6399 				    (distance < next_distance ||
6400 				     next_distance == curr_distance))
6401 					next_distance = distance;
6402 
6403 				/*
6404 				 * While not a strong assumption it would be nice to know
6405 				 * about cases where if node A is connected to B, B is not
6406 				 * equally connected to A.
6407 				 */
6408 				if (sched_debug() && node_distance(k, i) != distance)
6409 					sched_numa_warn("Node-distance not symmetric");
6410 
6411 				if (sched_debug() && i && !find_numa_distance(distance))
6412 					sched_numa_warn("Node-0 not representative");
6413 			}
6414 			if (next_distance != curr_distance) {
6415 				sched_domains_numa_distance[level++] = next_distance;
6416 				sched_domains_numa_levels = level;
6417 				curr_distance = next_distance;
6418 			} else break;
6419 		}
6420 
6421 		/*
6422 		 * In case of sched_debug() we verify the above assumption.
6423 		 */
6424 		if (!sched_debug())
6425 			break;
6426 	}
6427 
6428 	if (!level)
6429 		return;
6430 
6431 	/*
6432 	 * 'level' contains the number of unique distances, excluding the
6433 	 * identity distance node_distance(i,i).
6434 	 *
6435 	 * The sched_domains_numa_distance[] array includes the actual distance
6436 	 * numbers.
6437 	 */
6438 
6439 	/*
6440 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6441 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6442 	 * the array will contain less then 'level' members. This could be
6443 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6444 	 * in other functions.
6445 	 *
6446 	 * We reset it to 'level' at the end of this function.
6447 	 */
6448 	sched_domains_numa_levels = 0;
6449 
6450 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6451 	if (!sched_domains_numa_masks)
6452 		return;
6453 
6454 	/*
6455 	 * Now for each level, construct a mask per node which contains all
6456 	 * cpus of nodes that are that many hops away from us.
6457 	 */
6458 	for (i = 0; i < level; i++) {
6459 		sched_domains_numa_masks[i] =
6460 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6461 		if (!sched_domains_numa_masks[i])
6462 			return;
6463 
6464 		for (j = 0; j < nr_node_ids; j++) {
6465 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6466 			if (!mask)
6467 				return;
6468 
6469 			sched_domains_numa_masks[i][j] = mask;
6470 
6471 			for (k = 0; k < nr_node_ids; k++) {
6472 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6473 					continue;
6474 
6475 				cpumask_or(mask, mask, cpumask_of_node(k));
6476 			}
6477 		}
6478 	}
6479 
6480 	/* Compute default topology size */
6481 	for (i = 0; sched_domain_topology[i].mask; i++);
6482 
6483 	tl = kzalloc((i + level + 1) *
6484 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6485 	if (!tl)
6486 		return;
6487 
6488 	/*
6489 	 * Copy the default topology bits..
6490 	 */
6491 	for (i = 0; sched_domain_topology[i].mask; i++)
6492 		tl[i] = sched_domain_topology[i];
6493 
6494 	/*
6495 	 * .. and append 'j' levels of NUMA goodness.
6496 	 */
6497 	for (j = 0; j < level; i++, j++) {
6498 		tl[i] = (struct sched_domain_topology_level){
6499 			.mask = sd_numa_mask,
6500 			.sd_flags = cpu_numa_flags,
6501 			.flags = SDTL_OVERLAP,
6502 			.numa_level = j,
6503 			SD_INIT_NAME(NUMA)
6504 		};
6505 	}
6506 
6507 	sched_domain_topology = tl;
6508 
6509 	sched_domains_numa_levels = level;
6510 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6511 
6512 	init_numa_topology_type();
6513 }
6514 
6515 static void sched_domains_numa_masks_set(int cpu)
6516 {
6517 	int i, j;
6518 	int node = cpu_to_node(cpu);
6519 
6520 	for (i = 0; i < sched_domains_numa_levels; i++) {
6521 		for (j = 0; j < nr_node_ids; j++) {
6522 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6523 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6524 		}
6525 	}
6526 }
6527 
6528 static void sched_domains_numa_masks_clear(int cpu)
6529 {
6530 	int i, j;
6531 	for (i = 0; i < sched_domains_numa_levels; i++) {
6532 		for (j = 0; j < nr_node_ids; j++)
6533 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6534 	}
6535 }
6536 
6537 /*
6538  * Update sched_domains_numa_masks[level][node] array when new cpus
6539  * are onlined.
6540  */
6541 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6542 					   unsigned long action,
6543 					   void *hcpu)
6544 {
6545 	int cpu = (long)hcpu;
6546 
6547 	switch (action & ~CPU_TASKS_FROZEN) {
6548 	case CPU_ONLINE:
6549 		sched_domains_numa_masks_set(cpu);
6550 		break;
6551 
6552 	case CPU_DEAD:
6553 		sched_domains_numa_masks_clear(cpu);
6554 		break;
6555 
6556 	default:
6557 		return NOTIFY_DONE;
6558 	}
6559 
6560 	return NOTIFY_OK;
6561 }
6562 #else
6563 static inline void sched_init_numa(void)
6564 {
6565 }
6566 
6567 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6568 					   unsigned long action,
6569 					   void *hcpu)
6570 {
6571 	return 0;
6572 }
6573 #endif /* CONFIG_NUMA */
6574 
6575 static int __sdt_alloc(const struct cpumask *cpu_map)
6576 {
6577 	struct sched_domain_topology_level *tl;
6578 	int j;
6579 
6580 	for_each_sd_topology(tl) {
6581 		struct sd_data *sdd = &tl->data;
6582 
6583 		sdd->sd = alloc_percpu(struct sched_domain *);
6584 		if (!sdd->sd)
6585 			return -ENOMEM;
6586 
6587 		sdd->sg = alloc_percpu(struct sched_group *);
6588 		if (!sdd->sg)
6589 			return -ENOMEM;
6590 
6591 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6592 		if (!sdd->sgc)
6593 			return -ENOMEM;
6594 
6595 		for_each_cpu(j, cpu_map) {
6596 			struct sched_domain *sd;
6597 			struct sched_group *sg;
6598 			struct sched_group_capacity *sgc;
6599 
6600 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6601 					GFP_KERNEL, cpu_to_node(j));
6602 			if (!sd)
6603 				return -ENOMEM;
6604 
6605 			*per_cpu_ptr(sdd->sd, j) = sd;
6606 
6607 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6608 					GFP_KERNEL, cpu_to_node(j));
6609 			if (!sg)
6610 				return -ENOMEM;
6611 
6612 			sg->next = sg;
6613 
6614 			*per_cpu_ptr(sdd->sg, j) = sg;
6615 
6616 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6617 					GFP_KERNEL, cpu_to_node(j));
6618 			if (!sgc)
6619 				return -ENOMEM;
6620 
6621 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6622 		}
6623 	}
6624 
6625 	return 0;
6626 }
6627 
6628 static void __sdt_free(const struct cpumask *cpu_map)
6629 {
6630 	struct sched_domain_topology_level *tl;
6631 	int j;
6632 
6633 	for_each_sd_topology(tl) {
6634 		struct sd_data *sdd = &tl->data;
6635 
6636 		for_each_cpu(j, cpu_map) {
6637 			struct sched_domain *sd;
6638 
6639 			if (sdd->sd) {
6640 				sd = *per_cpu_ptr(sdd->sd, j);
6641 				if (sd && (sd->flags & SD_OVERLAP))
6642 					free_sched_groups(sd->groups, 0);
6643 				kfree(*per_cpu_ptr(sdd->sd, j));
6644 			}
6645 
6646 			if (sdd->sg)
6647 				kfree(*per_cpu_ptr(sdd->sg, j));
6648 			if (sdd->sgc)
6649 				kfree(*per_cpu_ptr(sdd->sgc, j));
6650 		}
6651 		free_percpu(sdd->sd);
6652 		sdd->sd = NULL;
6653 		free_percpu(sdd->sg);
6654 		sdd->sg = NULL;
6655 		free_percpu(sdd->sgc);
6656 		sdd->sgc = NULL;
6657 	}
6658 }
6659 
6660 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6661 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6662 		struct sched_domain *child, int cpu)
6663 {
6664 	struct sched_domain *sd = sd_init(tl, cpu);
6665 	if (!sd)
6666 		return child;
6667 
6668 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6669 	if (child) {
6670 		sd->level = child->level + 1;
6671 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6672 		child->parent = sd;
6673 		sd->child = child;
6674 
6675 		if (!cpumask_subset(sched_domain_span(child),
6676 				    sched_domain_span(sd))) {
6677 			pr_err("BUG: arch topology borken\n");
6678 #ifdef CONFIG_SCHED_DEBUG
6679 			pr_err("     the %s domain not a subset of the %s domain\n",
6680 					child->name, sd->name);
6681 #endif
6682 			/* Fixup, ensure @sd has at least @child cpus. */
6683 			cpumask_or(sched_domain_span(sd),
6684 				   sched_domain_span(sd),
6685 				   sched_domain_span(child));
6686 		}
6687 
6688 	}
6689 	set_domain_attribute(sd, attr);
6690 
6691 	return sd;
6692 }
6693 
6694 /*
6695  * Build sched domains for a given set of cpus and attach the sched domains
6696  * to the individual cpus
6697  */
6698 static int build_sched_domains(const struct cpumask *cpu_map,
6699 			       struct sched_domain_attr *attr)
6700 {
6701 	enum s_alloc alloc_state;
6702 	struct sched_domain *sd;
6703 	struct s_data d;
6704 	int i, ret = -ENOMEM;
6705 
6706 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6707 	if (alloc_state != sa_rootdomain)
6708 		goto error;
6709 
6710 	/* Set up domains for cpus specified by the cpu_map. */
6711 	for_each_cpu(i, cpu_map) {
6712 		struct sched_domain_topology_level *tl;
6713 
6714 		sd = NULL;
6715 		for_each_sd_topology(tl) {
6716 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6717 			if (tl == sched_domain_topology)
6718 				*per_cpu_ptr(d.sd, i) = sd;
6719 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6720 				sd->flags |= SD_OVERLAP;
6721 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6722 				break;
6723 		}
6724 	}
6725 
6726 	/* Build the groups for the domains */
6727 	for_each_cpu(i, cpu_map) {
6728 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6729 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6730 			if (sd->flags & SD_OVERLAP) {
6731 				if (build_overlap_sched_groups(sd, i))
6732 					goto error;
6733 			} else {
6734 				if (build_sched_groups(sd, i))
6735 					goto error;
6736 			}
6737 		}
6738 	}
6739 
6740 	/* Calculate CPU capacity for physical packages and nodes */
6741 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6742 		if (!cpumask_test_cpu(i, cpu_map))
6743 			continue;
6744 
6745 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6746 			claim_allocations(i, sd);
6747 			init_sched_groups_capacity(i, sd);
6748 		}
6749 	}
6750 
6751 	/* Attach the domains */
6752 	rcu_read_lock();
6753 	for_each_cpu(i, cpu_map) {
6754 		sd = *per_cpu_ptr(d.sd, i);
6755 		cpu_attach_domain(sd, d.rd, i);
6756 	}
6757 	rcu_read_unlock();
6758 
6759 	ret = 0;
6760 error:
6761 	__free_domain_allocs(&d, alloc_state, cpu_map);
6762 	return ret;
6763 }
6764 
6765 static cpumask_var_t *doms_cur;	/* current sched domains */
6766 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6767 static struct sched_domain_attr *dattr_cur;
6768 				/* attribues of custom domains in 'doms_cur' */
6769 
6770 /*
6771  * Special case: If a kmalloc of a doms_cur partition (array of
6772  * cpumask) fails, then fallback to a single sched domain,
6773  * as determined by the single cpumask fallback_doms.
6774  */
6775 static cpumask_var_t fallback_doms;
6776 
6777 /*
6778  * arch_update_cpu_topology lets virtualized architectures update the
6779  * cpu core maps. It is supposed to return 1 if the topology changed
6780  * or 0 if it stayed the same.
6781  */
6782 int __weak arch_update_cpu_topology(void)
6783 {
6784 	return 0;
6785 }
6786 
6787 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6788 {
6789 	int i;
6790 	cpumask_var_t *doms;
6791 
6792 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6793 	if (!doms)
6794 		return NULL;
6795 	for (i = 0; i < ndoms; i++) {
6796 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6797 			free_sched_domains(doms, i);
6798 			return NULL;
6799 		}
6800 	}
6801 	return doms;
6802 }
6803 
6804 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6805 {
6806 	unsigned int i;
6807 	for (i = 0; i < ndoms; i++)
6808 		free_cpumask_var(doms[i]);
6809 	kfree(doms);
6810 }
6811 
6812 /*
6813  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6814  * For now this just excludes isolated cpus, but could be used to
6815  * exclude other special cases in the future.
6816  */
6817 static int init_sched_domains(const struct cpumask *cpu_map)
6818 {
6819 	int err;
6820 
6821 	arch_update_cpu_topology();
6822 	ndoms_cur = 1;
6823 	doms_cur = alloc_sched_domains(ndoms_cur);
6824 	if (!doms_cur)
6825 		doms_cur = &fallback_doms;
6826 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6827 	err = build_sched_domains(doms_cur[0], NULL);
6828 	register_sched_domain_sysctl();
6829 
6830 	return err;
6831 }
6832 
6833 /*
6834  * Detach sched domains from a group of cpus specified in cpu_map
6835  * These cpus will now be attached to the NULL domain
6836  */
6837 static void detach_destroy_domains(const struct cpumask *cpu_map)
6838 {
6839 	int i;
6840 
6841 	rcu_read_lock();
6842 	for_each_cpu(i, cpu_map)
6843 		cpu_attach_domain(NULL, &def_root_domain, i);
6844 	rcu_read_unlock();
6845 }
6846 
6847 /* handle null as "default" */
6848 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6849 			struct sched_domain_attr *new, int idx_new)
6850 {
6851 	struct sched_domain_attr tmp;
6852 
6853 	/* fast path */
6854 	if (!new && !cur)
6855 		return 1;
6856 
6857 	tmp = SD_ATTR_INIT;
6858 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6859 			new ? (new + idx_new) : &tmp,
6860 			sizeof(struct sched_domain_attr));
6861 }
6862 
6863 /*
6864  * Partition sched domains as specified by the 'ndoms_new'
6865  * cpumasks in the array doms_new[] of cpumasks. This compares
6866  * doms_new[] to the current sched domain partitioning, doms_cur[].
6867  * It destroys each deleted domain and builds each new domain.
6868  *
6869  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6870  * The masks don't intersect (don't overlap.) We should setup one
6871  * sched domain for each mask. CPUs not in any of the cpumasks will
6872  * not be load balanced. If the same cpumask appears both in the
6873  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6874  * it as it is.
6875  *
6876  * The passed in 'doms_new' should be allocated using
6877  * alloc_sched_domains.  This routine takes ownership of it and will
6878  * free_sched_domains it when done with it. If the caller failed the
6879  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6880  * and partition_sched_domains() will fallback to the single partition
6881  * 'fallback_doms', it also forces the domains to be rebuilt.
6882  *
6883  * If doms_new == NULL it will be replaced with cpu_online_mask.
6884  * ndoms_new == 0 is a special case for destroying existing domains,
6885  * and it will not create the default domain.
6886  *
6887  * Call with hotplug lock held
6888  */
6889 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6890 			     struct sched_domain_attr *dattr_new)
6891 {
6892 	int i, j, n;
6893 	int new_topology;
6894 
6895 	mutex_lock(&sched_domains_mutex);
6896 
6897 	/* always unregister in case we don't destroy any domains */
6898 	unregister_sched_domain_sysctl();
6899 
6900 	/* Let architecture update cpu core mappings. */
6901 	new_topology = arch_update_cpu_topology();
6902 
6903 	n = doms_new ? ndoms_new : 0;
6904 
6905 	/* Destroy deleted domains */
6906 	for (i = 0; i < ndoms_cur; i++) {
6907 		for (j = 0; j < n && !new_topology; j++) {
6908 			if (cpumask_equal(doms_cur[i], doms_new[j])
6909 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6910 				goto match1;
6911 		}
6912 		/* no match - a current sched domain not in new doms_new[] */
6913 		detach_destroy_domains(doms_cur[i]);
6914 match1:
6915 		;
6916 	}
6917 
6918 	n = ndoms_cur;
6919 	if (doms_new == NULL) {
6920 		n = 0;
6921 		doms_new = &fallback_doms;
6922 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6923 		WARN_ON_ONCE(dattr_new);
6924 	}
6925 
6926 	/* Build new domains */
6927 	for (i = 0; i < ndoms_new; i++) {
6928 		for (j = 0; j < n && !new_topology; j++) {
6929 			if (cpumask_equal(doms_new[i], doms_cur[j])
6930 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6931 				goto match2;
6932 		}
6933 		/* no match - add a new doms_new */
6934 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6935 match2:
6936 		;
6937 	}
6938 
6939 	/* Remember the new sched domains */
6940 	if (doms_cur != &fallback_doms)
6941 		free_sched_domains(doms_cur, ndoms_cur);
6942 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6943 	doms_cur = doms_new;
6944 	dattr_cur = dattr_new;
6945 	ndoms_cur = ndoms_new;
6946 
6947 	register_sched_domain_sysctl();
6948 
6949 	mutex_unlock(&sched_domains_mutex);
6950 }
6951 
6952 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6953 
6954 /*
6955  * Update cpusets according to cpu_active mask.  If cpusets are
6956  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6957  * around partition_sched_domains().
6958  *
6959  * If we come here as part of a suspend/resume, don't touch cpusets because we
6960  * want to restore it back to its original state upon resume anyway.
6961  */
6962 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6963 			     void *hcpu)
6964 {
6965 	switch (action) {
6966 	case CPU_ONLINE_FROZEN:
6967 	case CPU_DOWN_FAILED_FROZEN:
6968 
6969 		/*
6970 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6971 		 * resume sequence. As long as this is not the last online
6972 		 * operation in the resume sequence, just build a single sched
6973 		 * domain, ignoring cpusets.
6974 		 */
6975 		num_cpus_frozen--;
6976 		if (likely(num_cpus_frozen)) {
6977 			partition_sched_domains(1, NULL, NULL);
6978 			break;
6979 		}
6980 
6981 		/*
6982 		 * This is the last CPU online operation. So fall through and
6983 		 * restore the original sched domains by considering the
6984 		 * cpuset configurations.
6985 		 */
6986 
6987 	case CPU_ONLINE:
6988 		cpuset_update_active_cpus(true);
6989 		break;
6990 	default:
6991 		return NOTIFY_DONE;
6992 	}
6993 	return NOTIFY_OK;
6994 }
6995 
6996 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6997 			       void *hcpu)
6998 {
6999 	unsigned long flags;
7000 	long cpu = (long)hcpu;
7001 	struct dl_bw *dl_b;
7002 	bool overflow;
7003 	int cpus;
7004 
7005 	switch (action) {
7006 	case CPU_DOWN_PREPARE:
7007 		rcu_read_lock_sched();
7008 		dl_b = dl_bw_of(cpu);
7009 
7010 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7011 		cpus = dl_bw_cpus(cpu);
7012 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7013 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7014 
7015 		rcu_read_unlock_sched();
7016 
7017 		if (overflow)
7018 			return notifier_from_errno(-EBUSY);
7019 		cpuset_update_active_cpus(false);
7020 		break;
7021 	case CPU_DOWN_PREPARE_FROZEN:
7022 		num_cpus_frozen++;
7023 		partition_sched_domains(1, NULL, NULL);
7024 		break;
7025 	default:
7026 		return NOTIFY_DONE;
7027 	}
7028 	return NOTIFY_OK;
7029 }
7030 
7031 void __init sched_init_smp(void)
7032 {
7033 	cpumask_var_t non_isolated_cpus;
7034 
7035 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7036 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7037 
7038 	sched_init_numa();
7039 
7040 	/*
7041 	 * There's no userspace yet to cause hotplug operations; hence all the
7042 	 * cpu masks are stable and all blatant races in the below code cannot
7043 	 * happen.
7044 	 */
7045 	mutex_lock(&sched_domains_mutex);
7046 	init_sched_domains(cpu_active_mask);
7047 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7048 	if (cpumask_empty(non_isolated_cpus))
7049 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7050 	mutex_unlock(&sched_domains_mutex);
7051 
7052 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7053 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7054 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7055 
7056 	init_hrtick();
7057 
7058 	/* Move init over to a non-isolated CPU */
7059 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7060 		BUG();
7061 	sched_init_granularity();
7062 	free_cpumask_var(non_isolated_cpus);
7063 
7064 	init_sched_rt_class();
7065 	init_sched_dl_class();
7066 }
7067 #else
7068 void __init sched_init_smp(void)
7069 {
7070 	sched_init_granularity();
7071 }
7072 #endif /* CONFIG_SMP */
7073 
7074 const_debug unsigned int sysctl_timer_migration = 1;
7075 
7076 int in_sched_functions(unsigned long addr)
7077 {
7078 	return in_lock_functions(addr) ||
7079 		(addr >= (unsigned long)__sched_text_start
7080 		&& addr < (unsigned long)__sched_text_end);
7081 }
7082 
7083 #ifdef CONFIG_CGROUP_SCHED
7084 /*
7085  * Default task group.
7086  * Every task in system belongs to this group at bootup.
7087  */
7088 struct task_group root_task_group;
7089 LIST_HEAD(task_groups);
7090 #endif
7091 
7092 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7093 
7094 void __init sched_init(void)
7095 {
7096 	int i, j;
7097 	unsigned long alloc_size = 0, ptr;
7098 
7099 #ifdef CONFIG_FAIR_GROUP_SCHED
7100 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7101 #endif
7102 #ifdef CONFIG_RT_GROUP_SCHED
7103 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7104 #endif
7105 	if (alloc_size) {
7106 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7107 
7108 #ifdef CONFIG_FAIR_GROUP_SCHED
7109 		root_task_group.se = (struct sched_entity **)ptr;
7110 		ptr += nr_cpu_ids * sizeof(void **);
7111 
7112 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7113 		ptr += nr_cpu_ids * sizeof(void **);
7114 
7115 #endif /* CONFIG_FAIR_GROUP_SCHED */
7116 #ifdef CONFIG_RT_GROUP_SCHED
7117 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7118 		ptr += nr_cpu_ids * sizeof(void **);
7119 
7120 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7121 		ptr += nr_cpu_ids * sizeof(void **);
7122 
7123 #endif /* CONFIG_RT_GROUP_SCHED */
7124 	}
7125 #ifdef CONFIG_CPUMASK_OFFSTACK
7126 	for_each_possible_cpu(i) {
7127 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7128 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7129 	}
7130 #endif /* CONFIG_CPUMASK_OFFSTACK */
7131 
7132 	init_rt_bandwidth(&def_rt_bandwidth,
7133 			global_rt_period(), global_rt_runtime());
7134 	init_dl_bandwidth(&def_dl_bandwidth,
7135 			global_rt_period(), global_rt_runtime());
7136 
7137 #ifdef CONFIG_SMP
7138 	init_defrootdomain();
7139 #endif
7140 
7141 #ifdef CONFIG_RT_GROUP_SCHED
7142 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7143 			global_rt_period(), global_rt_runtime());
7144 #endif /* CONFIG_RT_GROUP_SCHED */
7145 
7146 #ifdef CONFIG_CGROUP_SCHED
7147 	list_add(&root_task_group.list, &task_groups);
7148 	INIT_LIST_HEAD(&root_task_group.children);
7149 	INIT_LIST_HEAD(&root_task_group.siblings);
7150 	autogroup_init(&init_task);
7151 
7152 #endif /* CONFIG_CGROUP_SCHED */
7153 
7154 	for_each_possible_cpu(i) {
7155 		struct rq *rq;
7156 
7157 		rq = cpu_rq(i);
7158 		raw_spin_lock_init(&rq->lock);
7159 		rq->nr_running = 0;
7160 		rq->calc_load_active = 0;
7161 		rq->calc_load_update = jiffies + LOAD_FREQ;
7162 		init_cfs_rq(&rq->cfs);
7163 		init_rt_rq(&rq->rt);
7164 		init_dl_rq(&rq->dl);
7165 #ifdef CONFIG_FAIR_GROUP_SCHED
7166 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7167 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7168 		/*
7169 		 * How much cpu bandwidth does root_task_group get?
7170 		 *
7171 		 * In case of task-groups formed thr' the cgroup filesystem, it
7172 		 * gets 100% of the cpu resources in the system. This overall
7173 		 * system cpu resource is divided among the tasks of
7174 		 * root_task_group and its child task-groups in a fair manner,
7175 		 * based on each entity's (task or task-group's) weight
7176 		 * (se->load.weight).
7177 		 *
7178 		 * In other words, if root_task_group has 10 tasks of weight
7179 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7180 		 * then A0's share of the cpu resource is:
7181 		 *
7182 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7183 		 *
7184 		 * We achieve this by letting root_task_group's tasks sit
7185 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7186 		 */
7187 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7188 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7189 #endif /* CONFIG_FAIR_GROUP_SCHED */
7190 
7191 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7192 #ifdef CONFIG_RT_GROUP_SCHED
7193 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7194 #endif
7195 
7196 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7197 			rq->cpu_load[j] = 0;
7198 
7199 		rq->last_load_update_tick = jiffies;
7200 
7201 #ifdef CONFIG_SMP
7202 		rq->sd = NULL;
7203 		rq->rd = NULL;
7204 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7205 		rq->post_schedule = 0;
7206 		rq->active_balance = 0;
7207 		rq->next_balance = jiffies;
7208 		rq->push_cpu = 0;
7209 		rq->cpu = i;
7210 		rq->online = 0;
7211 		rq->idle_stamp = 0;
7212 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7213 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7214 
7215 		INIT_LIST_HEAD(&rq->cfs_tasks);
7216 
7217 		rq_attach_root(rq, &def_root_domain);
7218 #ifdef CONFIG_NO_HZ_COMMON
7219 		rq->nohz_flags = 0;
7220 #endif
7221 #ifdef CONFIG_NO_HZ_FULL
7222 		rq->last_sched_tick = 0;
7223 #endif
7224 #endif
7225 		init_rq_hrtick(rq);
7226 		atomic_set(&rq->nr_iowait, 0);
7227 	}
7228 
7229 	set_load_weight(&init_task);
7230 
7231 #ifdef CONFIG_PREEMPT_NOTIFIERS
7232 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7233 #endif
7234 
7235 	/*
7236 	 * The boot idle thread does lazy MMU switching as well:
7237 	 */
7238 	atomic_inc(&init_mm.mm_count);
7239 	enter_lazy_tlb(&init_mm, current);
7240 
7241 	/*
7242 	 * During early bootup we pretend to be a normal task:
7243 	 */
7244 	current->sched_class = &fair_sched_class;
7245 
7246 	/*
7247 	 * Make us the idle thread. Technically, schedule() should not be
7248 	 * called from this thread, however somewhere below it might be,
7249 	 * but because we are the idle thread, we just pick up running again
7250 	 * when this runqueue becomes "idle".
7251 	 */
7252 	init_idle(current, smp_processor_id());
7253 
7254 	calc_load_update = jiffies + LOAD_FREQ;
7255 
7256 #ifdef CONFIG_SMP
7257 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7258 	/* May be allocated at isolcpus cmdline parse time */
7259 	if (cpu_isolated_map == NULL)
7260 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7261 	idle_thread_set_boot_cpu();
7262 	set_cpu_rq_start_time();
7263 #endif
7264 	init_sched_fair_class();
7265 
7266 	scheduler_running = 1;
7267 }
7268 
7269 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7270 static inline int preempt_count_equals(int preempt_offset)
7271 {
7272 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7273 
7274 	return (nested == preempt_offset);
7275 }
7276 
7277 void __might_sleep(const char *file, int line, int preempt_offset)
7278 {
7279 	/*
7280 	 * Blocking primitives will set (and therefore destroy) current->state,
7281 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7282 	 * otherwise we will destroy state.
7283 	 */
7284 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7285 			"do not call blocking ops when !TASK_RUNNING; "
7286 			"state=%lx set at [<%p>] %pS\n",
7287 			current->state,
7288 			(void *)current->task_state_change,
7289 			(void *)current->task_state_change);
7290 
7291 	___might_sleep(file, line, preempt_offset);
7292 }
7293 EXPORT_SYMBOL(__might_sleep);
7294 
7295 void ___might_sleep(const char *file, int line, int preempt_offset)
7296 {
7297 	static unsigned long prev_jiffy;	/* ratelimiting */
7298 
7299 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7300 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7301 	     !is_idle_task(current)) ||
7302 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7303 		return;
7304 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7305 		return;
7306 	prev_jiffy = jiffies;
7307 
7308 	printk(KERN_ERR
7309 		"BUG: sleeping function called from invalid context at %s:%d\n",
7310 			file, line);
7311 	printk(KERN_ERR
7312 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7313 			in_atomic(), irqs_disabled(),
7314 			current->pid, current->comm);
7315 
7316 	if (task_stack_end_corrupted(current))
7317 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7318 
7319 	debug_show_held_locks(current);
7320 	if (irqs_disabled())
7321 		print_irqtrace_events(current);
7322 #ifdef CONFIG_DEBUG_PREEMPT
7323 	if (!preempt_count_equals(preempt_offset)) {
7324 		pr_err("Preemption disabled at:");
7325 		print_ip_sym(current->preempt_disable_ip);
7326 		pr_cont("\n");
7327 	}
7328 #endif
7329 	dump_stack();
7330 }
7331 EXPORT_SYMBOL(___might_sleep);
7332 #endif
7333 
7334 #ifdef CONFIG_MAGIC_SYSRQ
7335 static void normalize_task(struct rq *rq, struct task_struct *p)
7336 {
7337 	const struct sched_class *prev_class = p->sched_class;
7338 	struct sched_attr attr = {
7339 		.sched_policy = SCHED_NORMAL,
7340 	};
7341 	int old_prio = p->prio;
7342 	int queued;
7343 
7344 	queued = task_on_rq_queued(p);
7345 	if (queued)
7346 		dequeue_task(rq, p, 0);
7347 	__setscheduler(rq, p, &attr, false);
7348 	if (queued) {
7349 		enqueue_task(rq, p, 0);
7350 		resched_curr(rq);
7351 	}
7352 
7353 	check_class_changed(rq, p, prev_class, old_prio);
7354 }
7355 
7356 void normalize_rt_tasks(void)
7357 {
7358 	struct task_struct *g, *p;
7359 	unsigned long flags;
7360 	struct rq *rq;
7361 
7362 	read_lock(&tasklist_lock);
7363 	for_each_process_thread(g, p) {
7364 		/*
7365 		 * Only normalize user tasks:
7366 		 */
7367 		if (p->flags & PF_KTHREAD)
7368 			continue;
7369 
7370 		p->se.exec_start		= 0;
7371 #ifdef CONFIG_SCHEDSTATS
7372 		p->se.statistics.wait_start	= 0;
7373 		p->se.statistics.sleep_start	= 0;
7374 		p->se.statistics.block_start	= 0;
7375 #endif
7376 
7377 		if (!dl_task(p) && !rt_task(p)) {
7378 			/*
7379 			 * Renice negative nice level userspace
7380 			 * tasks back to 0:
7381 			 */
7382 			if (task_nice(p) < 0)
7383 				set_user_nice(p, 0);
7384 			continue;
7385 		}
7386 
7387 		rq = task_rq_lock(p, &flags);
7388 		normalize_task(rq, p);
7389 		task_rq_unlock(rq, p, &flags);
7390 	}
7391 	read_unlock(&tasklist_lock);
7392 }
7393 
7394 #endif /* CONFIG_MAGIC_SYSRQ */
7395 
7396 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7397 /*
7398  * These functions are only useful for the IA64 MCA handling, or kdb.
7399  *
7400  * They can only be called when the whole system has been
7401  * stopped - every CPU needs to be quiescent, and no scheduling
7402  * activity can take place. Using them for anything else would
7403  * be a serious bug, and as a result, they aren't even visible
7404  * under any other configuration.
7405  */
7406 
7407 /**
7408  * curr_task - return the current task for a given cpu.
7409  * @cpu: the processor in question.
7410  *
7411  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412  *
7413  * Return: The current task for @cpu.
7414  */
7415 struct task_struct *curr_task(int cpu)
7416 {
7417 	return cpu_curr(cpu);
7418 }
7419 
7420 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7421 
7422 #ifdef CONFIG_IA64
7423 /**
7424  * set_curr_task - set the current task for a given cpu.
7425  * @cpu: the processor in question.
7426  * @p: the task pointer to set.
7427  *
7428  * Description: This function must only be used when non-maskable interrupts
7429  * are serviced on a separate stack. It allows the architecture to switch the
7430  * notion of the current task on a cpu in a non-blocking manner. This function
7431  * must be called with all CPU's synchronized, and interrupts disabled, the
7432  * and caller must save the original value of the current task (see
7433  * curr_task() above) and restore that value before reenabling interrupts and
7434  * re-starting the system.
7435  *
7436  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7437  */
7438 void set_curr_task(int cpu, struct task_struct *p)
7439 {
7440 	cpu_curr(cpu) = p;
7441 }
7442 
7443 #endif
7444 
7445 #ifdef CONFIG_CGROUP_SCHED
7446 /* task_group_lock serializes the addition/removal of task groups */
7447 static DEFINE_SPINLOCK(task_group_lock);
7448 
7449 static void free_sched_group(struct task_group *tg)
7450 {
7451 	free_fair_sched_group(tg);
7452 	free_rt_sched_group(tg);
7453 	autogroup_free(tg);
7454 	kfree(tg);
7455 }
7456 
7457 /* allocate runqueue etc for a new task group */
7458 struct task_group *sched_create_group(struct task_group *parent)
7459 {
7460 	struct task_group *tg;
7461 
7462 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7463 	if (!tg)
7464 		return ERR_PTR(-ENOMEM);
7465 
7466 	if (!alloc_fair_sched_group(tg, parent))
7467 		goto err;
7468 
7469 	if (!alloc_rt_sched_group(tg, parent))
7470 		goto err;
7471 
7472 	return tg;
7473 
7474 err:
7475 	free_sched_group(tg);
7476 	return ERR_PTR(-ENOMEM);
7477 }
7478 
7479 void sched_online_group(struct task_group *tg, struct task_group *parent)
7480 {
7481 	unsigned long flags;
7482 
7483 	spin_lock_irqsave(&task_group_lock, flags);
7484 	list_add_rcu(&tg->list, &task_groups);
7485 
7486 	WARN_ON(!parent); /* root should already exist */
7487 
7488 	tg->parent = parent;
7489 	INIT_LIST_HEAD(&tg->children);
7490 	list_add_rcu(&tg->siblings, &parent->children);
7491 	spin_unlock_irqrestore(&task_group_lock, flags);
7492 }
7493 
7494 /* rcu callback to free various structures associated with a task group */
7495 static void free_sched_group_rcu(struct rcu_head *rhp)
7496 {
7497 	/* now it should be safe to free those cfs_rqs */
7498 	free_sched_group(container_of(rhp, struct task_group, rcu));
7499 }
7500 
7501 /* Destroy runqueue etc associated with a task group */
7502 void sched_destroy_group(struct task_group *tg)
7503 {
7504 	/* wait for possible concurrent references to cfs_rqs complete */
7505 	call_rcu(&tg->rcu, free_sched_group_rcu);
7506 }
7507 
7508 void sched_offline_group(struct task_group *tg)
7509 {
7510 	unsigned long flags;
7511 	int i;
7512 
7513 	/* end participation in shares distribution */
7514 	for_each_possible_cpu(i)
7515 		unregister_fair_sched_group(tg, i);
7516 
7517 	spin_lock_irqsave(&task_group_lock, flags);
7518 	list_del_rcu(&tg->list);
7519 	list_del_rcu(&tg->siblings);
7520 	spin_unlock_irqrestore(&task_group_lock, flags);
7521 }
7522 
7523 /* change task's runqueue when it moves between groups.
7524  *	The caller of this function should have put the task in its new group
7525  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7526  *	reflect its new group.
7527  */
7528 void sched_move_task(struct task_struct *tsk)
7529 {
7530 	struct task_group *tg;
7531 	int queued, running;
7532 	unsigned long flags;
7533 	struct rq *rq;
7534 
7535 	rq = task_rq_lock(tsk, &flags);
7536 
7537 	running = task_current(rq, tsk);
7538 	queued = task_on_rq_queued(tsk);
7539 
7540 	if (queued)
7541 		dequeue_task(rq, tsk, 0);
7542 	if (unlikely(running))
7543 		put_prev_task(rq, tsk);
7544 
7545 	/*
7546 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7547 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7548 	 * to prevent lockdep warnings.
7549 	 */
7550 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7551 			  struct task_group, css);
7552 	tg = autogroup_task_group(tsk, tg);
7553 	tsk->sched_task_group = tg;
7554 
7555 #ifdef CONFIG_FAIR_GROUP_SCHED
7556 	if (tsk->sched_class->task_move_group)
7557 		tsk->sched_class->task_move_group(tsk, queued);
7558 	else
7559 #endif
7560 		set_task_rq(tsk, task_cpu(tsk));
7561 
7562 	if (unlikely(running))
7563 		tsk->sched_class->set_curr_task(rq);
7564 	if (queued)
7565 		enqueue_task(rq, tsk, 0);
7566 
7567 	task_rq_unlock(rq, tsk, &flags);
7568 }
7569 #endif /* CONFIG_CGROUP_SCHED */
7570 
7571 #ifdef CONFIG_RT_GROUP_SCHED
7572 /*
7573  * Ensure that the real time constraints are schedulable.
7574  */
7575 static DEFINE_MUTEX(rt_constraints_mutex);
7576 
7577 /* Must be called with tasklist_lock held */
7578 static inline int tg_has_rt_tasks(struct task_group *tg)
7579 {
7580 	struct task_struct *g, *p;
7581 
7582 	/*
7583 	 * Autogroups do not have RT tasks; see autogroup_create().
7584 	 */
7585 	if (task_group_is_autogroup(tg))
7586 		return 0;
7587 
7588 	for_each_process_thread(g, p) {
7589 		if (rt_task(p) && task_group(p) == tg)
7590 			return 1;
7591 	}
7592 
7593 	return 0;
7594 }
7595 
7596 struct rt_schedulable_data {
7597 	struct task_group *tg;
7598 	u64 rt_period;
7599 	u64 rt_runtime;
7600 };
7601 
7602 static int tg_rt_schedulable(struct task_group *tg, void *data)
7603 {
7604 	struct rt_schedulable_data *d = data;
7605 	struct task_group *child;
7606 	unsigned long total, sum = 0;
7607 	u64 period, runtime;
7608 
7609 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7610 	runtime = tg->rt_bandwidth.rt_runtime;
7611 
7612 	if (tg == d->tg) {
7613 		period = d->rt_period;
7614 		runtime = d->rt_runtime;
7615 	}
7616 
7617 	/*
7618 	 * Cannot have more runtime than the period.
7619 	 */
7620 	if (runtime > period && runtime != RUNTIME_INF)
7621 		return -EINVAL;
7622 
7623 	/*
7624 	 * Ensure we don't starve existing RT tasks.
7625 	 */
7626 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7627 		return -EBUSY;
7628 
7629 	total = to_ratio(period, runtime);
7630 
7631 	/*
7632 	 * Nobody can have more than the global setting allows.
7633 	 */
7634 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7635 		return -EINVAL;
7636 
7637 	/*
7638 	 * The sum of our children's runtime should not exceed our own.
7639 	 */
7640 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7641 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7642 		runtime = child->rt_bandwidth.rt_runtime;
7643 
7644 		if (child == d->tg) {
7645 			period = d->rt_period;
7646 			runtime = d->rt_runtime;
7647 		}
7648 
7649 		sum += to_ratio(period, runtime);
7650 	}
7651 
7652 	if (sum > total)
7653 		return -EINVAL;
7654 
7655 	return 0;
7656 }
7657 
7658 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7659 {
7660 	int ret;
7661 
7662 	struct rt_schedulable_data data = {
7663 		.tg = tg,
7664 		.rt_period = period,
7665 		.rt_runtime = runtime,
7666 	};
7667 
7668 	rcu_read_lock();
7669 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7670 	rcu_read_unlock();
7671 
7672 	return ret;
7673 }
7674 
7675 static int tg_set_rt_bandwidth(struct task_group *tg,
7676 		u64 rt_period, u64 rt_runtime)
7677 {
7678 	int i, err = 0;
7679 
7680 	/*
7681 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7682 	 * kernel creating (and or operating) RT threads.
7683 	 */
7684 	if (tg == &root_task_group && rt_runtime == 0)
7685 		return -EINVAL;
7686 
7687 	/* No period doesn't make any sense. */
7688 	if (rt_period == 0)
7689 		return -EINVAL;
7690 
7691 	mutex_lock(&rt_constraints_mutex);
7692 	read_lock(&tasklist_lock);
7693 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7694 	if (err)
7695 		goto unlock;
7696 
7697 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7698 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7699 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7700 
7701 	for_each_possible_cpu(i) {
7702 		struct rt_rq *rt_rq = tg->rt_rq[i];
7703 
7704 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7705 		rt_rq->rt_runtime = rt_runtime;
7706 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7707 	}
7708 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7709 unlock:
7710 	read_unlock(&tasklist_lock);
7711 	mutex_unlock(&rt_constraints_mutex);
7712 
7713 	return err;
7714 }
7715 
7716 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7717 {
7718 	u64 rt_runtime, rt_period;
7719 
7720 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7721 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7722 	if (rt_runtime_us < 0)
7723 		rt_runtime = RUNTIME_INF;
7724 
7725 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7726 }
7727 
7728 static long sched_group_rt_runtime(struct task_group *tg)
7729 {
7730 	u64 rt_runtime_us;
7731 
7732 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7733 		return -1;
7734 
7735 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7736 	do_div(rt_runtime_us, NSEC_PER_USEC);
7737 	return rt_runtime_us;
7738 }
7739 
7740 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7741 {
7742 	u64 rt_runtime, rt_period;
7743 
7744 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7745 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7746 
7747 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7748 }
7749 
7750 static long sched_group_rt_period(struct task_group *tg)
7751 {
7752 	u64 rt_period_us;
7753 
7754 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7755 	do_div(rt_period_us, NSEC_PER_USEC);
7756 	return rt_period_us;
7757 }
7758 #endif /* CONFIG_RT_GROUP_SCHED */
7759 
7760 #ifdef CONFIG_RT_GROUP_SCHED
7761 static int sched_rt_global_constraints(void)
7762 {
7763 	int ret = 0;
7764 
7765 	mutex_lock(&rt_constraints_mutex);
7766 	read_lock(&tasklist_lock);
7767 	ret = __rt_schedulable(NULL, 0, 0);
7768 	read_unlock(&tasklist_lock);
7769 	mutex_unlock(&rt_constraints_mutex);
7770 
7771 	return ret;
7772 }
7773 
7774 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7775 {
7776 	/* Don't accept realtime tasks when there is no way for them to run */
7777 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7778 		return 0;
7779 
7780 	return 1;
7781 }
7782 
7783 #else /* !CONFIG_RT_GROUP_SCHED */
7784 static int sched_rt_global_constraints(void)
7785 {
7786 	unsigned long flags;
7787 	int i, ret = 0;
7788 
7789 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7790 	for_each_possible_cpu(i) {
7791 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7792 
7793 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7794 		rt_rq->rt_runtime = global_rt_runtime();
7795 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7796 	}
7797 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7798 
7799 	return ret;
7800 }
7801 #endif /* CONFIG_RT_GROUP_SCHED */
7802 
7803 static int sched_dl_global_validate(void)
7804 {
7805 	u64 runtime = global_rt_runtime();
7806 	u64 period = global_rt_period();
7807 	u64 new_bw = to_ratio(period, runtime);
7808 	struct dl_bw *dl_b;
7809 	int cpu, ret = 0;
7810 	unsigned long flags;
7811 
7812 	/*
7813 	 * Here we want to check the bandwidth not being set to some
7814 	 * value smaller than the currently allocated bandwidth in
7815 	 * any of the root_domains.
7816 	 *
7817 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7818 	 * cycling on root_domains... Discussion on different/better
7819 	 * solutions is welcome!
7820 	 */
7821 	for_each_possible_cpu(cpu) {
7822 		rcu_read_lock_sched();
7823 		dl_b = dl_bw_of(cpu);
7824 
7825 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7826 		if (new_bw < dl_b->total_bw)
7827 			ret = -EBUSY;
7828 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7829 
7830 		rcu_read_unlock_sched();
7831 
7832 		if (ret)
7833 			break;
7834 	}
7835 
7836 	return ret;
7837 }
7838 
7839 static void sched_dl_do_global(void)
7840 {
7841 	u64 new_bw = -1;
7842 	struct dl_bw *dl_b;
7843 	int cpu;
7844 	unsigned long flags;
7845 
7846 	def_dl_bandwidth.dl_period = global_rt_period();
7847 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7848 
7849 	if (global_rt_runtime() != RUNTIME_INF)
7850 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7851 
7852 	/*
7853 	 * FIXME: As above...
7854 	 */
7855 	for_each_possible_cpu(cpu) {
7856 		rcu_read_lock_sched();
7857 		dl_b = dl_bw_of(cpu);
7858 
7859 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7860 		dl_b->bw = new_bw;
7861 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7862 
7863 		rcu_read_unlock_sched();
7864 	}
7865 }
7866 
7867 static int sched_rt_global_validate(void)
7868 {
7869 	if (sysctl_sched_rt_period <= 0)
7870 		return -EINVAL;
7871 
7872 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7873 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7874 		return -EINVAL;
7875 
7876 	return 0;
7877 }
7878 
7879 static void sched_rt_do_global(void)
7880 {
7881 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7882 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7883 }
7884 
7885 int sched_rt_handler(struct ctl_table *table, int write,
7886 		void __user *buffer, size_t *lenp,
7887 		loff_t *ppos)
7888 {
7889 	int old_period, old_runtime;
7890 	static DEFINE_MUTEX(mutex);
7891 	int ret;
7892 
7893 	mutex_lock(&mutex);
7894 	old_period = sysctl_sched_rt_period;
7895 	old_runtime = sysctl_sched_rt_runtime;
7896 
7897 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7898 
7899 	if (!ret && write) {
7900 		ret = sched_rt_global_validate();
7901 		if (ret)
7902 			goto undo;
7903 
7904 		ret = sched_dl_global_validate();
7905 		if (ret)
7906 			goto undo;
7907 
7908 		ret = sched_rt_global_constraints();
7909 		if (ret)
7910 			goto undo;
7911 
7912 		sched_rt_do_global();
7913 		sched_dl_do_global();
7914 	}
7915 	if (0) {
7916 undo:
7917 		sysctl_sched_rt_period = old_period;
7918 		sysctl_sched_rt_runtime = old_runtime;
7919 	}
7920 	mutex_unlock(&mutex);
7921 
7922 	return ret;
7923 }
7924 
7925 int sched_rr_handler(struct ctl_table *table, int write,
7926 		void __user *buffer, size_t *lenp,
7927 		loff_t *ppos)
7928 {
7929 	int ret;
7930 	static DEFINE_MUTEX(mutex);
7931 
7932 	mutex_lock(&mutex);
7933 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7934 	/* make sure that internally we keep jiffies */
7935 	/* also, writing zero resets timeslice to default */
7936 	if (!ret && write) {
7937 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7938 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7939 	}
7940 	mutex_unlock(&mutex);
7941 	return ret;
7942 }
7943 
7944 #ifdef CONFIG_CGROUP_SCHED
7945 
7946 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7947 {
7948 	return css ? container_of(css, struct task_group, css) : NULL;
7949 }
7950 
7951 static struct cgroup_subsys_state *
7952 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7953 {
7954 	struct task_group *parent = css_tg(parent_css);
7955 	struct task_group *tg;
7956 
7957 	if (!parent) {
7958 		/* This is early initialization for the top cgroup */
7959 		return &root_task_group.css;
7960 	}
7961 
7962 	tg = sched_create_group(parent);
7963 	if (IS_ERR(tg))
7964 		return ERR_PTR(-ENOMEM);
7965 
7966 	return &tg->css;
7967 }
7968 
7969 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7970 {
7971 	struct task_group *tg = css_tg(css);
7972 	struct task_group *parent = css_tg(css->parent);
7973 
7974 	if (parent)
7975 		sched_online_group(tg, parent);
7976 	return 0;
7977 }
7978 
7979 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7980 {
7981 	struct task_group *tg = css_tg(css);
7982 
7983 	sched_destroy_group(tg);
7984 }
7985 
7986 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7987 {
7988 	struct task_group *tg = css_tg(css);
7989 
7990 	sched_offline_group(tg);
7991 }
7992 
7993 static void cpu_cgroup_fork(struct task_struct *task)
7994 {
7995 	sched_move_task(task);
7996 }
7997 
7998 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7999 				 struct cgroup_taskset *tset)
8000 {
8001 	struct task_struct *task;
8002 
8003 	cgroup_taskset_for_each(task, tset) {
8004 #ifdef CONFIG_RT_GROUP_SCHED
8005 		if (!sched_rt_can_attach(css_tg(css), task))
8006 			return -EINVAL;
8007 #else
8008 		/* We don't support RT-tasks being in separate groups */
8009 		if (task->sched_class != &fair_sched_class)
8010 			return -EINVAL;
8011 #endif
8012 	}
8013 	return 0;
8014 }
8015 
8016 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8017 			      struct cgroup_taskset *tset)
8018 {
8019 	struct task_struct *task;
8020 
8021 	cgroup_taskset_for_each(task, tset)
8022 		sched_move_task(task);
8023 }
8024 
8025 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8026 			    struct cgroup_subsys_state *old_css,
8027 			    struct task_struct *task)
8028 {
8029 	/*
8030 	 * cgroup_exit() is called in the copy_process() failure path.
8031 	 * Ignore this case since the task hasn't ran yet, this avoids
8032 	 * trying to poke a half freed task state from generic code.
8033 	 */
8034 	if (!(task->flags & PF_EXITING))
8035 		return;
8036 
8037 	sched_move_task(task);
8038 }
8039 
8040 #ifdef CONFIG_FAIR_GROUP_SCHED
8041 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8042 				struct cftype *cftype, u64 shareval)
8043 {
8044 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8045 }
8046 
8047 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8048 			       struct cftype *cft)
8049 {
8050 	struct task_group *tg = css_tg(css);
8051 
8052 	return (u64) scale_load_down(tg->shares);
8053 }
8054 
8055 #ifdef CONFIG_CFS_BANDWIDTH
8056 static DEFINE_MUTEX(cfs_constraints_mutex);
8057 
8058 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8059 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8060 
8061 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8062 
8063 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8064 {
8065 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8066 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8067 
8068 	if (tg == &root_task_group)
8069 		return -EINVAL;
8070 
8071 	/*
8072 	 * Ensure we have at some amount of bandwidth every period.  This is
8073 	 * to prevent reaching a state of large arrears when throttled via
8074 	 * entity_tick() resulting in prolonged exit starvation.
8075 	 */
8076 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8077 		return -EINVAL;
8078 
8079 	/*
8080 	 * Likewise, bound things on the otherside by preventing insane quota
8081 	 * periods.  This also allows us to normalize in computing quota
8082 	 * feasibility.
8083 	 */
8084 	if (period > max_cfs_quota_period)
8085 		return -EINVAL;
8086 
8087 	/*
8088 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8089 	 * unthrottle_offline_cfs_rqs().
8090 	 */
8091 	get_online_cpus();
8092 	mutex_lock(&cfs_constraints_mutex);
8093 	ret = __cfs_schedulable(tg, period, quota);
8094 	if (ret)
8095 		goto out_unlock;
8096 
8097 	runtime_enabled = quota != RUNTIME_INF;
8098 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8099 	/*
8100 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8101 	 * before making related changes, and on->off must occur afterwards
8102 	 */
8103 	if (runtime_enabled && !runtime_was_enabled)
8104 		cfs_bandwidth_usage_inc();
8105 	raw_spin_lock_irq(&cfs_b->lock);
8106 	cfs_b->period = ns_to_ktime(period);
8107 	cfs_b->quota = quota;
8108 
8109 	__refill_cfs_bandwidth_runtime(cfs_b);
8110 	/* restart the period timer (if active) to handle new period expiry */
8111 	if (runtime_enabled && cfs_b->timer_active) {
8112 		/* force a reprogram */
8113 		__start_cfs_bandwidth(cfs_b, true);
8114 	}
8115 	raw_spin_unlock_irq(&cfs_b->lock);
8116 
8117 	for_each_online_cpu(i) {
8118 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8119 		struct rq *rq = cfs_rq->rq;
8120 
8121 		raw_spin_lock_irq(&rq->lock);
8122 		cfs_rq->runtime_enabled = runtime_enabled;
8123 		cfs_rq->runtime_remaining = 0;
8124 
8125 		if (cfs_rq->throttled)
8126 			unthrottle_cfs_rq(cfs_rq);
8127 		raw_spin_unlock_irq(&rq->lock);
8128 	}
8129 	if (runtime_was_enabled && !runtime_enabled)
8130 		cfs_bandwidth_usage_dec();
8131 out_unlock:
8132 	mutex_unlock(&cfs_constraints_mutex);
8133 	put_online_cpus();
8134 
8135 	return ret;
8136 }
8137 
8138 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8139 {
8140 	u64 quota, period;
8141 
8142 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8143 	if (cfs_quota_us < 0)
8144 		quota = RUNTIME_INF;
8145 	else
8146 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8147 
8148 	return tg_set_cfs_bandwidth(tg, period, quota);
8149 }
8150 
8151 long tg_get_cfs_quota(struct task_group *tg)
8152 {
8153 	u64 quota_us;
8154 
8155 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8156 		return -1;
8157 
8158 	quota_us = tg->cfs_bandwidth.quota;
8159 	do_div(quota_us, NSEC_PER_USEC);
8160 
8161 	return quota_us;
8162 }
8163 
8164 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8165 {
8166 	u64 quota, period;
8167 
8168 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8169 	quota = tg->cfs_bandwidth.quota;
8170 
8171 	return tg_set_cfs_bandwidth(tg, period, quota);
8172 }
8173 
8174 long tg_get_cfs_period(struct task_group *tg)
8175 {
8176 	u64 cfs_period_us;
8177 
8178 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8179 	do_div(cfs_period_us, NSEC_PER_USEC);
8180 
8181 	return cfs_period_us;
8182 }
8183 
8184 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8185 				  struct cftype *cft)
8186 {
8187 	return tg_get_cfs_quota(css_tg(css));
8188 }
8189 
8190 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8191 				   struct cftype *cftype, s64 cfs_quota_us)
8192 {
8193 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8194 }
8195 
8196 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8197 				   struct cftype *cft)
8198 {
8199 	return tg_get_cfs_period(css_tg(css));
8200 }
8201 
8202 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8203 				    struct cftype *cftype, u64 cfs_period_us)
8204 {
8205 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8206 }
8207 
8208 struct cfs_schedulable_data {
8209 	struct task_group *tg;
8210 	u64 period, quota;
8211 };
8212 
8213 /*
8214  * normalize group quota/period to be quota/max_period
8215  * note: units are usecs
8216  */
8217 static u64 normalize_cfs_quota(struct task_group *tg,
8218 			       struct cfs_schedulable_data *d)
8219 {
8220 	u64 quota, period;
8221 
8222 	if (tg == d->tg) {
8223 		period = d->period;
8224 		quota = d->quota;
8225 	} else {
8226 		period = tg_get_cfs_period(tg);
8227 		quota = tg_get_cfs_quota(tg);
8228 	}
8229 
8230 	/* note: these should typically be equivalent */
8231 	if (quota == RUNTIME_INF || quota == -1)
8232 		return RUNTIME_INF;
8233 
8234 	return to_ratio(period, quota);
8235 }
8236 
8237 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8238 {
8239 	struct cfs_schedulable_data *d = data;
8240 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8241 	s64 quota = 0, parent_quota = -1;
8242 
8243 	if (!tg->parent) {
8244 		quota = RUNTIME_INF;
8245 	} else {
8246 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8247 
8248 		quota = normalize_cfs_quota(tg, d);
8249 		parent_quota = parent_b->hierarchical_quota;
8250 
8251 		/*
8252 		 * ensure max(child_quota) <= parent_quota, inherit when no
8253 		 * limit is set
8254 		 */
8255 		if (quota == RUNTIME_INF)
8256 			quota = parent_quota;
8257 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8258 			return -EINVAL;
8259 	}
8260 	cfs_b->hierarchical_quota = quota;
8261 
8262 	return 0;
8263 }
8264 
8265 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8266 {
8267 	int ret;
8268 	struct cfs_schedulable_data data = {
8269 		.tg = tg,
8270 		.period = period,
8271 		.quota = quota,
8272 	};
8273 
8274 	if (quota != RUNTIME_INF) {
8275 		do_div(data.period, NSEC_PER_USEC);
8276 		do_div(data.quota, NSEC_PER_USEC);
8277 	}
8278 
8279 	rcu_read_lock();
8280 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8281 	rcu_read_unlock();
8282 
8283 	return ret;
8284 }
8285 
8286 static int cpu_stats_show(struct seq_file *sf, void *v)
8287 {
8288 	struct task_group *tg = css_tg(seq_css(sf));
8289 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8290 
8291 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8292 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8293 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8294 
8295 	return 0;
8296 }
8297 #endif /* CONFIG_CFS_BANDWIDTH */
8298 #endif /* CONFIG_FAIR_GROUP_SCHED */
8299 
8300 #ifdef CONFIG_RT_GROUP_SCHED
8301 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8302 				struct cftype *cft, s64 val)
8303 {
8304 	return sched_group_set_rt_runtime(css_tg(css), val);
8305 }
8306 
8307 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8308 			       struct cftype *cft)
8309 {
8310 	return sched_group_rt_runtime(css_tg(css));
8311 }
8312 
8313 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8314 				    struct cftype *cftype, u64 rt_period_us)
8315 {
8316 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8317 }
8318 
8319 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8320 				   struct cftype *cft)
8321 {
8322 	return sched_group_rt_period(css_tg(css));
8323 }
8324 #endif /* CONFIG_RT_GROUP_SCHED */
8325 
8326 static struct cftype cpu_files[] = {
8327 #ifdef CONFIG_FAIR_GROUP_SCHED
8328 	{
8329 		.name = "shares",
8330 		.read_u64 = cpu_shares_read_u64,
8331 		.write_u64 = cpu_shares_write_u64,
8332 	},
8333 #endif
8334 #ifdef CONFIG_CFS_BANDWIDTH
8335 	{
8336 		.name = "cfs_quota_us",
8337 		.read_s64 = cpu_cfs_quota_read_s64,
8338 		.write_s64 = cpu_cfs_quota_write_s64,
8339 	},
8340 	{
8341 		.name = "cfs_period_us",
8342 		.read_u64 = cpu_cfs_period_read_u64,
8343 		.write_u64 = cpu_cfs_period_write_u64,
8344 	},
8345 	{
8346 		.name = "stat",
8347 		.seq_show = cpu_stats_show,
8348 	},
8349 #endif
8350 #ifdef CONFIG_RT_GROUP_SCHED
8351 	{
8352 		.name = "rt_runtime_us",
8353 		.read_s64 = cpu_rt_runtime_read,
8354 		.write_s64 = cpu_rt_runtime_write,
8355 	},
8356 	{
8357 		.name = "rt_period_us",
8358 		.read_u64 = cpu_rt_period_read_uint,
8359 		.write_u64 = cpu_rt_period_write_uint,
8360 	},
8361 #endif
8362 	{ }	/* terminate */
8363 };
8364 
8365 struct cgroup_subsys cpu_cgrp_subsys = {
8366 	.css_alloc	= cpu_cgroup_css_alloc,
8367 	.css_free	= cpu_cgroup_css_free,
8368 	.css_online	= cpu_cgroup_css_online,
8369 	.css_offline	= cpu_cgroup_css_offline,
8370 	.fork		= cpu_cgroup_fork,
8371 	.can_attach	= cpu_cgroup_can_attach,
8372 	.attach		= cpu_cgroup_attach,
8373 	.exit		= cpu_cgroup_exit,
8374 	.legacy_cftypes	= cpu_files,
8375 	.early_init	= 1,
8376 };
8377 
8378 #endif	/* CONFIG_CGROUP_SCHED */
8379 
8380 void dump_cpu_task(int cpu)
8381 {
8382 	pr_info("Task dump for CPU %d:\n", cpu);
8383 	sched_show_task(cpu_curr(cpu));
8384 }
8385