xref: /linux/kernel/sched/core.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 void resched_task(struct task_struct *p)
516 {
517 	int cpu;
518 
519 	assert_raw_spin_locked(&task_rq(p)->lock);
520 
521 	if (test_tsk_need_resched(p))
522 		return;
523 
524 	set_tsk_need_resched(p);
525 
526 	cpu = task_cpu(p);
527 	if (cpu == smp_processor_id())
528 		return;
529 
530 	/* NEED_RESCHED must be visible before we test polling */
531 	smp_mb();
532 	if (!tsk_is_polling(p))
533 		smp_send_reschedule(cpu);
534 }
535 
536 void resched_cpu(int cpu)
537 {
538 	struct rq *rq = cpu_rq(cpu);
539 	unsigned long flags;
540 
541 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542 		return;
543 	resched_task(cpu_curr(cpu));
544 	raw_spin_unlock_irqrestore(&rq->lock, flags);
545 }
546 
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549  * In the semi idle case, use the nearest busy cpu for migrating timers
550  * from an idle cpu.  This is good for power-savings.
551  *
552  * We don't do similar optimization for completely idle system, as
553  * selecting an idle cpu will add more delays to the timers than intended
554  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555  */
556 int get_nohz_timer_target(void)
557 {
558 	int cpu = smp_processor_id();
559 	int i;
560 	struct sched_domain *sd;
561 
562 	rcu_read_lock();
563 	for_each_domain(cpu, sd) {
564 		for_each_cpu(i, sched_domain_span(sd)) {
565 			if (!idle_cpu(i)) {
566 				cpu = i;
567 				goto unlock;
568 			}
569 		}
570 	}
571 unlock:
572 	rcu_read_unlock();
573 	return cpu;
574 }
575 /*
576  * When add_timer_on() enqueues a timer into the timer wheel of an
577  * idle CPU then this timer might expire before the next timer event
578  * which is scheduled to wake up that CPU. In case of a completely
579  * idle system the next event might even be infinite time into the
580  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581  * leaves the inner idle loop so the newly added timer is taken into
582  * account when the CPU goes back to idle and evaluates the timer
583  * wheel for the next timer event.
584  */
585 static void wake_up_idle_cpu(int cpu)
586 {
587 	struct rq *rq = cpu_rq(cpu);
588 
589 	if (cpu == smp_processor_id())
590 		return;
591 
592 	/*
593 	 * This is safe, as this function is called with the timer
594 	 * wheel base lock of (cpu) held. When the CPU is on the way
595 	 * to idle and has not yet set rq->curr to idle then it will
596 	 * be serialized on the timer wheel base lock and take the new
597 	 * timer into account automatically.
598 	 */
599 	if (rq->curr != rq->idle)
600 		return;
601 
602 	/*
603 	 * We can set TIF_RESCHED on the idle task of the other CPU
604 	 * lockless. The worst case is that the other CPU runs the
605 	 * idle task through an additional NOOP schedule()
606 	 */
607 	set_tsk_need_resched(rq->idle);
608 
609 	/* NEED_RESCHED must be visible before we test polling */
610 	smp_mb();
611 	if (!tsk_is_polling(rq->idle))
612 		smp_send_reschedule(cpu);
613 }
614 
615 static bool wake_up_full_nohz_cpu(int cpu)
616 {
617 	if (tick_nohz_full_cpu(cpu)) {
618 		if (cpu != smp_processor_id() ||
619 		    tick_nohz_tick_stopped())
620 			smp_send_reschedule(cpu);
621 		return true;
622 	}
623 
624 	return false;
625 }
626 
627 void wake_up_nohz_cpu(int cpu)
628 {
629 	if (!wake_up_full_nohz_cpu(cpu))
630 		wake_up_idle_cpu(cpu);
631 }
632 
633 static inline bool got_nohz_idle_kick(void)
634 {
635 	int cpu = smp_processor_id();
636 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637 }
638 
639 #else /* CONFIG_NO_HZ_COMMON */
640 
641 static inline bool got_nohz_idle_kick(void)
642 {
643 	return false;
644 }
645 
646 #endif /* CONFIG_NO_HZ_COMMON */
647 
648 #ifdef CONFIG_NO_HZ_FULL
649 bool sched_can_stop_tick(void)
650 {
651        struct rq *rq;
652 
653        rq = this_rq();
654 
655        /* Make sure rq->nr_running update is visible after the IPI */
656        smp_rmb();
657 
658        /* More than one running task need preemption */
659        if (rq->nr_running > 1)
660                return false;
661 
662        return true;
663 }
664 #endif /* CONFIG_NO_HZ_FULL */
665 
666 void sched_avg_update(struct rq *rq)
667 {
668 	s64 period = sched_avg_period();
669 
670 	while ((s64)(rq->clock - rq->age_stamp) > period) {
671 		/*
672 		 * Inline assembly required to prevent the compiler
673 		 * optimising this loop into a divmod call.
674 		 * See __iter_div_u64_rem() for another example of this.
675 		 */
676 		asm("" : "+rm" (rq->age_stamp));
677 		rq->age_stamp += period;
678 		rq->rt_avg /= 2;
679 	}
680 }
681 
682 #else /* !CONFIG_SMP */
683 void resched_task(struct task_struct *p)
684 {
685 	assert_raw_spin_locked(&task_rq(p)->lock);
686 	set_tsk_need_resched(p);
687 }
688 #endif /* CONFIG_SMP */
689 
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692 /*
693  * Iterate task_group tree rooted at *from, calling @down when first entering a
694  * node and @up when leaving it for the final time.
695  *
696  * Caller must hold rcu_lock or sufficient equivalent.
697  */
698 int walk_tg_tree_from(struct task_group *from,
699 			     tg_visitor down, tg_visitor up, void *data)
700 {
701 	struct task_group *parent, *child;
702 	int ret;
703 
704 	parent = from;
705 
706 down:
707 	ret = (*down)(parent, data);
708 	if (ret)
709 		goto out;
710 	list_for_each_entry_rcu(child, &parent->children, siblings) {
711 		parent = child;
712 		goto down;
713 
714 up:
715 		continue;
716 	}
717 	ret = (*up)(parent, data);
718 	if (ret || parent == from)
719 		goto out;
720 
721 	child = parent;
722 	parent = parent->parent;
723 	if (parent)
724 		goto up;
725 out:
726 	return ret;
727 }
728 
729 int tg_nop(struct task_group *tg, void *data)
730 {
731 	return 0;
732 }
733 #endif
734 
735 static void set_load_weight(struct task_struct *p)
736 {
737 	int prio = p->static_prio - MAX_RT_PRIO;
738 	struct load_weight *load = &p->se.load;
739 
740 	/*
741 	 * SCHED_IDLE tasks get minimal weight:
742 	 */
743 	if (p->policy == SCHED_IDLE) {
744 		load->weight = scale_load(WEIGHT_IDLEPRIO);
745 		load->inv_weight = WMULT_IDLEPRIO;
746 		return;
747 	}
748 
749 	load->weight = scale_load(prio_to_weight[prio]);
750 	load->inv_weight = prio_to_wmult[prio];
751 }
752 
753 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754 {
755 	update_rq_clock(rq);
756 	sched_info_queued(p);
757 	p->sched_class->enqueue_task(rq, p, flags);
758 }
759 
760 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761 {
762 	update_rq_clock(rq);
763 	sched_info_dequeued(p);
764 	p->sched_class->dequeue_task(rq, p, flags);
765 }
766 
767 void activate_task(struct rq *rq, struct task_struct *p, int flags)
768 {
769 	if (task_contributes_to_load(p))
770 		rq->nr_uninterruptible--;
771 
772 	enqueue_task(rq, p, flags);
773 }
774 
775 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 	if (task_contributes_to_load(p))
778 		rq->nr_uninterruptible++;
779 
780 	dequeue_task(rq, p, flags);
781 }
782 
783 static void update_rq_clock_task(struct rq *rq, s64 delta)
784 {
785 /*
786  * In theory, the compile should just see 0 here, and optimize out the call
787  * to sched_rt_avg_update. But I don't trust it...
788  */
789 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
790 	s64 steal = 0, irq_delta = 0;
791 #endif
792 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
793 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794 
795 	/*
796 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797 	 * this case when a previous update_rq_clock() happened inside a
798 	 * {soft,}irq region.
799 	 *
800 	 * When this happens, we stop ->clock_task and only update the
801 	 * prev_irq_time stamp to account for the part that fit, so that a next
802 	 * update will consume the rest. This ensures ->clock_task is
803 	 * monotonic.
804 	 *
805 	 * It does however cause some slight miss-attribution of {soft,}irq
806 	 * time, a more accurate solution would be to update the irq_time using
807 	 * the current rq->clock timestamp, except that would require using
808 	 * atomic ops.
809 	 */
810 	if (irq_delta > delta)
811 		irq_delta = delta;
812 
813 	rq->prev_irq_time += irq_delta;
814 	delta -= irq_delta;
815 #endif
816 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817 	if (static_key_false((&paravirt_steal_rq_enabled))) {
818 		u64 st;
819 
820 		steal = paravirt_steal_clock(cpu_of(rq));
821 		steal -= rq->prev_steal_time_rq;
822 
823 		if (unlikely(steal > delta))
824 			steal = delta;
825 
826 		st = steal_ticks(steal);
827 		steal = st * TICK_NSEC;
828 
829 		rq->prev_steal_time_rq += steal;
830 
831 		delta -= steal;
832 	}
833 #endif
834 
835 	rq->clock_task += delta;
836 
837 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
838 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
839 		sched_rt_avg_update(rq, irq_delta + steal);
840 #endif
841 }
842 
843 void sched_set_stop_task(int cpu, struct task_struct *stop)
844 {
845 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
846 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
847 
848 	if (stop) {
849 		/*
850 		 * Make it appear like a SCHED_FIFO task, its something
851 		 * userspace knows about and won't get confused about.
852 		 *
853 		 * Also, it will make PI more or less work without too
854 		 * much confusion -- but then, stop work should not
855 		 * rely on PI working anyway.
856 		 */
857 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
858 
859 		stop->sched_class = &stop_sched_class;
860 	}
861 
862 	cpu_rq(cpu)->stop = stop;
863 
864 	if (old_stop) {
865 		/*
866 		 * Reset it back to a normal scheduling class so that
867 		 * it can die in pieces.
868 		 */
869 		old_stop->sched_class = &rt_sched_class;
870 	}
871 }
872 
873 /*
874  * __normal_prio - return the priority that is based on the static prio
875  */
876 static inline int __normal_prio(struct task_struct *p)
877 {
878 	return p->static_prio;
879 }
880 
881 /*
882  * Calculate the expected normal priority: i.e. priority
883  * without taking RT-inheritance into account. Might be
884  * boosted by interactivity modifiers. Changes upon fork,
885  * setprio syscalls, and whenever the interactivity
886  * estimator recalculates.
887  */
888 static inline int normal_prio(struct task_struct *p)
889 {
890 	int prio;
891 
892 	if (task_has_rt_policy(p))
893 		prio = MAX_RT_PRIO-1 - p->rt_priority;
894 	else
895 		prio = __normal_prio(p);
896 	return prio;
897 }
898 
899 /*
900  * Calculate the current priority, i.e. the priority
901  * taken into account by the scheduler. This value might
902  * be boosted by RT tasks, or might be boosted by
903  * interactivity modifiers. Will be RT if the task got
904  * RT-boosted. If not then it returns p->normal_prio.
905  */
906 static int effective_prio(struct task_struct *p)
907 {
908 	p->normal_prio = normal_prio(p);
909 	/*
910 	 * If we are RT tasks or we were boosted to RT priority,
911 	 * keep the priority unchanged. Otherwise, update priority
912 	 * to the normal priority:
913 	 */
914 	if (!rt_prio(p->prio))
915 		return p->normal_prio;
916 	return p->prio;
917 }
918 
919 /**
920  * task_curr - is this task currently executing on a CPU?
921  * @p: the task in question.
922  */
923 inline int task_curr(const struct task_struct *p)
924 {
925 	return cpu_curr(task_cpu(p)) == p;
926 }
927 
928 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
929 				       const struct sched_class *prev_class,
930 				       int oldprio)
931 {
932 	if (prev_class != p->sched_class) {
933 		if (prev_class->switched_from)
934 			prev_class->switched_from(rq, p);
935 		p->sched_class->switched_to(rq, p);
936 	} else if (oldprio != p->prio)
937 		p->sched_class->prio_changed(rq, p, oldprio);
938 }
939 
940 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941 {
942 	const struct sched_class *class;
943 
944 	if (p->sched_class == rq->curr->sched_class) {
945 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
946 	} else {
947 		for_each_class(class) {
948 			if (class == rq->curr->sched_class)
949 				break;
950 			if (class == p->sched_class) {
951 				resched_task(rq->curr);
952 				break;
953 			}
954 		}
955 	}
956 
957 	/*
958 	 * A queue event has occurred, and we're going to schedule.  In
959 	 * this case, we can save a useless back to back clock update.
960 	 */
961 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962 		rq->skip_clock_update = 1;
963 }
964 
965 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
966 
967 void register_task_migration_notifier(struct notifier_block *n)
968 {
969 	atomic_notifier_chain_register(&task_migration_notifier, n);
970 }
971 
972 #ifdef CONFIG_SMP
973 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
974 {
975 #ifdef CONFIG_SCHED_DEBUG
976 	/*
977 	 * We should never call set_task_cpu() on a blocked task,
978 	 * ttwu() will sort out the placement.
979 	 */
980 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
981 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982 
983 #ifdef CONFIG_LOCKDEP
984 	/*
985 	 * The caller should hold either p->pi_lock or rq->lock, when changing
986 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
987 	 *
988 	 * sched_move_task() holds both and thus holding either pins the cgroup,
989 	 * see task_group().
990 	 *
991 	 * Furthermore, all task_rq users should acquire both locks, see
992 	 * task_rq_lock().
993 	 */
994 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
995 				      lockdep_is_held(&task_rq(p)->lock)));
996 #endif
997 #endif
998 
999 	trace_sched_migrate_task(p, new_cpu);
1000 
1001 	if (task_cpu(p) != new_cpu) {
1002 		struct task_migration_notifier tmn;
1003 
1004 		if (p->sched_class->migrate_task_rq)
1005 			p->sched_class->migrate_task_rq(p, new_cpu);
1006 		p->se.nr_migrations++;
1007 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008 
1009 		tmn.task = p;
1010 		tmn.from_cpu = task_cpu(p);
1011 		tmn.to_cpu = new_cpu;
1012 
1013 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014 	}
1015 
1016 	__set_task_cpu(p, new_cpu);
1017 }
1018 
1019 struct migration_arg {
1020 	struct task_struct *task;
1021 	int dest_cpu;
1022 };
1023 
1024 static int migration_cpu_stop(void *data);
1025 
1026 /*
1027  * wait_task_inactive - wait for a thread to unschedule.
1028  *
1029  * If @match_state is nonzero, it's the @p->state value just checked and
1030  * not expected to change.  If it changes, i.e. @p might have woken up,
1031  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1032  * we return a positive number (its total switch count).  If a second call
1033  * a short while later returns the same number, the caller can be sure that
1034  * @p has remained unscheduled the whole time.
1035  *
1036  * The caller must ensure that the task *will* unschedule sometime soon,
1037  * else this function might spin for a *long* time. This function can't
1038  * be called with interrupts off, or it may introduce deadlock with
1039  * smp_call_function() if an IPI is sent by the same process we are
1040  * waiting to become inactive.
1041  */
1042 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1043 {
1044 	unsigned long flags;
1045 	int running, on_rq;
1046 	unsigned long ncsw;
1047 	struct rq *rq;
1048 
1049 	for (;;) {
1050 		/*
1051 		 * We do the initial early heuristics without holding
1052 		 * any task-queue locks at all. We'll only try to get
1053 		 * the runqueue lock when things look like they will
1054 		 * work out!
1055 		 */
1056 		rq = task_rq(p);
1057 
1058 		/*
1059 		 * If the task is actively running on another CPU
1060 		 * still, just relax and busy-wait without holding
1061 		 * any locks.
1062 		 *
1063 		 * NOTE! Since we don't hold any locks, it's not
1064 		 * even sure that "rq" stays as the right runqueue!
1065 		 * But we don't care, since "task_running()" will
1066 		 * return false if the runqueue has changed and p
1067 		 * is actually now running somewhere else!
1068 		 */
1069 		while (task_running(rq, p)) {
1070 			if (match_state && unlikely(p->state != match_state))
1071 				return 0;
1072 			cpu_relax();
1073 		}
1074 
1075 		/*
1076 		 * Ok, time to look more closely! We need the rq
1077 		 * lock now, to be *sure*. If we're wrong, we'll
1078 		 * just go back and repeat.
1079 		 */
1080 		rq = task_rq_lock(p, &flags);
1081 		trace_sched_wait_task(p);
1082 		running = task_running(rq, p);
1083 		on_rq = p->on_rq;
1084 		ncsw = 0;
1085 		if (!match_state || p->state == match_state)
1086 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087 		task_rq_unlock(rq, p, &flags);
1088 
1089 		/*
1090 		 * If it changed from the expected state, bail out now.
1091 		 */
1092 		if (unlikely(!ncsw))
1093 			break;
1094 
1095 		/*
1096 		 * Was it really running after all now that we
1097 		 * checked with the proper locks actually held?
1098 		 *
1099 		 * Oops. Go back and try again..
1100 		 */
1101 		if (unlikely(running)) {
1102 			cpu_relax();
1103 			continue;
1104 		}
1105 
1106 		/*
1107 		 * It's not enough that it's not actively running,
1108 		 * it must be off the runqueue _entirely_, and not
1109 		 * preempted!
1110 		 *
1111 		 * So if it was still runnable (but just not actively
1112 		 * running right now), it's preempted, and we should
1113 		 * yield - it could be a while.
1114 		 */
1115 		if (unlikely(on_rq)) {
1116 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1117 
1118 			set_current_state(TASK_UNINTERRUPTIBLE);
1119 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120 			continue;
1121 		}
1122 
1123 		/*
1124 		 * Ahh, all good. It wasn't running, and it wasn't
1125 		 * runnable, which means that it will never become
1126 		 * running in the future either. We're all done!
1127 		 */
1128 		break;
1129 	}
1130 
1131 	return ncsw;
1132 }
1133 
1134 /***
1135  * kick_process - kick a running thread to enter/exit the kernel
1136  * @p: the to-be-kicked thread
1137  *
1138  * Cause a process which is running on another CPU to enter
1139  * kernel-mode, without any delay. (to get signals handled.)
1140  *
1141  * NOTE: this function doesn't have to take the runqueue lock,
1142  * because all it wants to ensure is that the remote task enters
1143  * the kernel. If the IPI races and the task has been migrated
1144  * to another CPU then no harm is done and the purpose has been
1145  * achieved as well.
1146  */
1147 void kick_process(struct task_struct *p)
1148 {
1149 	int cpu;
1150 
1151 	preempt_disable();
1152 	cpu = task_cpu(p);
1153 	if ((cpu != smp_processor_id()) && task_curr(p))
1154 		smp_send_reschedule(cpu);
1155 	preempt_enable();
1156 }
1157 EXPORT_SYMBOL_GPL(kick_process);
1158 #endif /* CONFIG_SMP */
1159 
1160 #ifdef CONFIG_SMP
1161 /*
1162  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163  */
1164 static int select_fallback_rq(int cpu, struct task_struct *p)
1165 {
1166 	int nid = cpu_to_node(cpu);
1167 	const struct cpumask *nodemask = NULL;
1168 	enum { cpuset, possible, fail } state = cpuset;
1169 	int dest_cpu;
1170 
1171 	/*
1172 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1173 	 * will return -1. There is no cpu on the node, and we should
1174 	 * select the cpu on the other node.
1175 	 */
1176 	if (nid != -1) {
1177 		nodemask = cpumask_of_node(nid);
1178 
1179 		/* Look for allowed, online CPU in same node. */
1180 		for_each_cpu(dest_cpu, nodemask) {
1181 			if (!cpu_online(dest_cpu))
1182 				continue;
1183 			if (!cpu_active(dest_cpu))
1184 				continue;
1185 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1186 				return dest_cpu;
1187 		}
1188 	}
1189 
1190 	for (;;) {
1191 		/* Any allowed, online CPU? */
1192 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193 			if (!cpu_online(dest_cpu))
1194 				continue;
1195 			if (!cpu_active(dest_cpu))
1196 				continue;
1197 			goto out;
1198 		}
1199 
1200 		switch (state) {
1201 		case cpuset:
1202 			/* No more Mr. Nice Guy. */
1203 			cpuset_cpus_allowed_fallback(p);
1204 			state = possible;
1205 			break;
1206 
1207 		case possible:
1208 			do_set_cpus_allowed(p, cpu_possible_mask);
1209 			state = fail;
1210 			break;
1211 
1212 		case fail:
1213 			BUG();
1214 			break;
1215 		}
1216 	}
1217 
1218 out:
1219 	if (state != cpuset) {
1220 		/*
1221 		 * Don't tell them about moving exiting tasks or
1222 		 * kernel threads (both mm NULL), since they never
1223 		 * leave kernel.
1224 		 */
1225 		if (p->mm && printk_ratelimit()) {
1226 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1227 					task_pid_nr(p), p->comm, cpu);
1228 		}
1229 	}
1230 
1231 	return dest_cpu;
1232 }
1233 
1234 /*
1235  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236  */
1237 static inline
1238 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239 {
1240 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241 
1242 	/*
1243 	 * In order not to call set_task_cpu() on a blocking task we need
1244 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1245 	 * cpu.
1246 	 *
1247 	 * Since this is common to all placement strategies, this lives here.
1248 	 *
1249 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1250 	 *   not worry about this generic constraint ]
1251 	 */
1252 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1253 		     !cpu_online(cpu)))
1254 		cpu = select_fallback_rq(task_cpu(p), p);
1255 
1256 	return cpu;
1257 }
1258 
1259 static void update_avg(u64 *avg, u64 sample)
1260 {
1261 	s64 diff = sample - *avg;
1262 	*avg += diff >> 3;
1263 }
1264 #endif
1265 
1266 static void
1267 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1268 {
1269 #ifdef CONFIG_SCHEDSTATS
1270 	struct rq *rq = this_rq();
1271 
1272 #ifdef CONFIG_SMP
1273 	int this_cpu = smp_processor_id();
1274 
1275 	if (cpu == this_cpu) {
1276 		schedstat_inc(rq, ttwu_local);
1277 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1278 	} else {
1279 		struct sched_domain *sd;
1280 
1281 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282 		rcu_read_lock();
1283 		for_each_domain(this_cpu, sd) {
1284 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1285 				schedstat_inc(sd, ttwu_wake_remote);
1286 				break;
1287 			}
1288 		}
1289 		rcu_read_unlock();
1290 	}
1291 
1292 	if (wake_flags & WF_MIGRATED)
1293 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1294 
1295 #endif /* CONFIG_SMP */
1296 
1297 	schedstat_inc(rq, ttwu_count);
1298 	schedstat_inc(p, se.statistics.nr_wakeups);
1299 
1300 	if (wake_flags & WF_SYNC)
1301 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1302 
1303 #endif /* CONFIG_SCHEDSTATS */
1304 }
1305 
1306 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1307 {
1308 	activate_task(rq, p, en_flags);
1309 	p->on_rq = 1;
1310 
1311 	/* if a worker is waking up, notify workqueue */
1312 	if (p->flags & PF_WQ_WORKER)
1313 		wq_worker_waking_up(p, cpu_of(rq));
1314 }
1315 
1316 /*
1317  * Mark the task runnable and perform wakeup-preemption.
1318  */
1319 static void
1320 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1321 {
1322 	check_preempt_curr(rq, p, wake_flags);
1323 	trace_sched_wakeup(p, true);
1324 
1325 	p->state = TASK_RUNNING;
1326 #ifdef CONFIG_SMP
1327 	if (p->sched_class->task_woken)
1328 		p->sched_class->task_woken(rq, p);
1329 
1330 	if (rq->idle_stamp) {
1331 		u64 delta = rq->clock - rq->idle_stamp;
1332 		u64 max = 2*sysctl_sched_migration_cost;
1333 
1334 		if (delta > max)
1335 			rq->avg_idle = max;
1336 		else
1337 			update_avg(&rq->avg_idle, delta);
1338 		rq->idle_stamp = 0;
1339 	}
1340 #endif
1341 }
1342 
1343 static void
1344 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1345 {
1346 #ifdef CONFIG_SMP
1347 	if (p->sched_contributes_to_load)
1348 		rq->nr_uninterruptible--;
1349 #endif
1350 
1351 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1352 	ttwu_do_wakeup(rq, p, wake_flags);
1353 }
1354 
1355 /*
1356  * Called in case the task @p isn't fully descheduled from its runqueue,
1357  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1358  * since all we need to do is flip p->state to TASK_RUNNING, since
1359  * the task is still ->on_rq.
1360  */
1361 static int ttwu_remote(struct task_struct *p, int wake_flags)
1362 {
1363 	struct rq *rq;
1364 	int ret = 0;
1365 
1366 	rq = __task_rq_lock(p);
1367 	if (p->on_rq) {
1368 		ttwu_do_wakeup(rq, p, wake_flags);
1369 		ret = 1;
1370 	}
1371 	__task_rq_unlock(rq);
1372 
1373 	return ret;
1374 }
1375 
1376 #ifdef CONFIG_SMP
1377 static void sched_ttwu_pending(void)
1378 {
1379 	struct rq *rq = this_rq();
1380 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 	struct task_struct *p;
1382 
1383 	raw_spin_lock(&rq->lock);
1384 
1385 	while (llist) {
1386 		p = llist_entry(llist, struct task_struct, wake_entry);
1387 		llist = llist_next(llist);
1388 		ttwu_do_activate(rq, p, 0);
1389 	}
1390 
1391 	raw_spin_unlock(&rq->lock);
1392 }
1393 
1394 void scheduler_ipi(void)
1395 {
1396 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
1397 	    && !tick_nohz_full_cpu(smp_processor_id()))
1398 		return;
1399 
1400 	/*
1401 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1402 	 * traditionally all their work was done from the interrupt return
1403 	 * path. Now that we actually do some work, we need to make sure
1404 	 * we do call them.
1405 	 *
1406 	 * Some archs already do call them, luckily irq_enter/exit nest
1407 	 * properly.
1408 	 *
1409 	 * Arguably we should visit all archs and update all handlers,
1410 	 * however a fair share of IPIs are still resched only so this would
1411 	 * somewhat pessimize the simple resched case.
1412 	 */
1413 	irq_enter();
1414 	tick_nohz_full_check();
1415 	sched_ttwu_pending();
1416 
1417 	/*
1418 	 * Check if someone kicked us for doing the nohz idle load balance.
1419 	 */
1420 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1421 		this_rq()->idle_balance = 1;
1422 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423 	}
1424 	irq_exit();
1425 }
1426 
1427 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1428 {
1429 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430 		smp_send_reschedule(cpu);
1431 }
1432 
1433 bool cpus_share_cache(int this_cpu, int that_cpu)
1434 {
1435 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1436 }
1437 #endif /* CONFIG_SMP */
1438 
1439 static void ttwu_queue(struct task_struct *p, int cpu)
1440 {
1441 	struct rq *rq = cpu_rq(cpu);
1442 
1443 #if defined(CONFIG_SMP)
1444 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446 		ttwu_queue_remote(p, cpu);
1447 		return;
1448 	}
1449 #endif
1450 
1451 	raw_spin_lock(&rq->lock);
1452 	ttwu_do_activate(rq, p, 0);
1453 	raw_spin_unlock(&rq->lock);
1454 }
1455 
1456 /**
1457  * try_to_wake_up - wake up a thread
1458  * @p: the thread to be awakened
1459  * @state: the mask of task states that can be woken
1460  * @wake_flags: wake modifier flags (WF_*)
1461  *
1462  * Put it on the run-queue if it's not already there. The "current"
1463  * thread is always on the run-queue (except when the actual
1464  * re-schedule is in progress), and as such you're allowed to do
1465  * the simpler "current->state = TASK_RUNNING" to mark yourself
1466  * runnable without the overhead of this.
1467  *
1468  * Returns %true if @p was woken up, %false if it was already running
1469  * or @state didn't match @p's state.
1470  */
1471 static int
1472 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1473 {
1474 	unsigned long flags;
1475 	int cpu, success = 0;
1476 
1477 	smp_wmb();
1478 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1479 	if (!(p->state & state))
1480 		goto out;
1481 
1482 	success = 1; /* we're going to change ->state */
1483 	cpu = task_cpu(p);
1484 
1485 	if (p->on_rq && ttwu_remote(p, wake_flags))
1486 		goto stat;
1487 
1488 #ifdef CONFIG_SMP
1489 	/*
1490 	 * If the owning (remote) cpu is still in the middle of schedule() with
1491 	 * this task as prev, wait until its done referencing the task.
1492 	 */
1493 	while (p->on_cpu)
1494 		cpu_relax();
1495 	/*
1496 	 * Pairs with the smp_wmb() in finish_lock_switch().
1497 	 */
1498 	smp_rmb();
1499 
1500 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1501 	p->state = TASK_WAKING;
1502 
1503 	if (p->sched_class->task_waking)
1504 		p->sched_class->task_waking(p);
1505 
1506 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507 	if (task_cpu(p) != cpu) {
1508 		wake_flags |= WF_MIGRATED;
1509 		set_task_cpu(p, cpu);
1510 	}
1511 #endif /* CONFIG_SMP */
1512 
1513 	ttwu_queue(p, cpu);
1514 stat:
1515 	ttwu_stat(p, cpu, wake_flags);
1516 out:
1517 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1518 
1519 	return success;
1520 }
1521 
1522 /**
1523  * try_to_wake_up_local - try to wake up a local task with rq lock held
1524  * @p: the thread to be awakened
1525  *
1526  * Put @p on the run-queue if it's not already there. The caller must
1527  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528  * the current task.
1529  */
1530 static void try_to_wake_up_local(struct task_struct *p)
1531 {
1532 	struct rq *rq = task_rq(p);
1533 
1534 	if (WARN_ON_ONCE(rq != this_rq()) ||
1535 	    WARN_ON_ONCE(p == current))
1536 		return;
1537 
1538 	lockdep_assert_held(&rq->lock);
1539 
1540 	if (!raw_spin_trylock(&p->pi_lock)) {
1541 		raw_spin_unlock(&rq->lock);
1542 		raw_spin_lock(&p->pi_lock);
1543 		raw_spin_lock(&rq->lock);
1544 	}
1545 
1546 	if (!(p->state & TASK_NORMAL))
1547 		goto out;
1548 
1549 	if (!p->on_rq)
1550 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1551 
1552 	ttwu_do_wakeup(rq, p, 0);
1553 	ttwu_stat(p, smp_processor_id(), 0);
1554 out:
1555 	raw_spin_unlock(&p->pi_lock);
1556 }
1557 
1558 /**
1559  * wake_up_process - Wake up a specific process
1560  * @p: The process to be woken up.
1561  *
1562  * Attempt to wake up the nominated process and move it to the set of runnable
1563  * processes.  Returns 1 if the process was woken up, 0 if it was already
1564  * running.
1565  *
1566  * It may be assumed that this function implies a write memory barrier before
1567  * changing the task state if and only if any tasks are woken up.
1568  */
1569 int wake_up_process(struct task_struct *p)
1570 {
1571 	WARN_ON(task_is_stopped_or_traced(p));
1572 	return try_to_wake_up(p, TASK_NORMAL, 0);
1573 }
1574 EXPORT_SYMBOL(wake_up_process);
1575 
1576 int wake_up_state(struct task_struct *p, unsigned int state)
1577 {
1578 	return try_to_wake_up(p, state, 0);
1579 }
1580 
1581 /*
1582  * Perform scheduler related setup for a newly forked process p.
1583  * p is forked by current.
1584  *
1585  * __sched_fork() is basic setup used by init_idle() too:
1586  */
1587 static void __sched_fork(struct task_struct *p)
1588 {
1589 	p->on_rq			= 0;
1590 
1591 	p->se.on_rq			= 0;
1592 	p->se.exec_start		= 0;
1593 	p->se.sum_exec_runtime		= 0;
1594 	p->se.prev_sum_exec_runtime	= 0;
1595 	p->se.nr_migrations		= 0;
1596 	p->se.vruntime			= 0;
1597 	INIT_LIST_HEAD(&p->se.group_node);
1598 
1599 /*
1600  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1601  * removed when useful for applications beyond shares distribution (e.g.
1602  * load-balance).
1603  */
1604 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605 	p->se.avg.runnable_avg_period = 0;
1606 	p->se.avg.runnable_avg_sum = 0;
1607 #endif
1608 #ifdef CONFIG_SCHEDSTATS
1609 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1610 #endif
1611 
1612 	INIT_LIST_HEAD(&p->rt.run_list);
1613 
1614 #ifdef CONFIG_PREEMPT_NOTIFIERS
1615 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1616 #endif
1617 
1618 #ifdef CONFIG_NUMA_BALANCING
1619 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1620 		p->mm->numa_next_scan = jiffies;
1621 		p->mm->numa_next_reset = jiffies;
1622 		p->mm->numa_scan_seq = 0;
1623 	}
1624 
1625 	p->node_stamp = 0ULL;
1626 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1627 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629 	p->numa_work.next = &p->numa_work;
1630 #endif /* CONFIG_NUMA_BALANCING */
1631 }
1632 
1633 #ifdef CONFIG_NUMA_BALANCING
1634 #ifdef CONFIG_SCHED_DEBUG
1635 void set_numabalancing_state(bool enabled)
1636 {
1637 	if (enabled)
1638 		sched_feat_set("NUMA");
1639 	else
1640 		sched_feat_set("NO_NUMA");
1641 }
1642 #else
1643 __read_mostly bool numabalancing_enabled;
1644 
1645 void set_numabalancing_state(bool enabled)
1646 {
1647 	numabalancing_enabled = enabled;
1648 }
1649 #endif /* CONFIG_SCHED_DEBUG */
1650 #endif /* CONFIG_NUMA_BALANCING */
1651 
1652 /*
1653  * fork()/clone()-time setup:
1654  */
1655 void sched_fork(struct task_struct *p)
1656 {
1657 	unsigned long flags;
1658 	int cpu = get_cpu();
1659 
1660 	__sched_fork(p);
1661 	/*
1662 	 * We mark the process as running here. This guarantees that
1663 	 * nobody will actually run it, and a signal or other external
1664 	 * event cannot wake it up and insert it on the runqueue either.
1665 	 */
1666 	p->state = TASK_RUNNING;
1667 
1668 	/*
1669 	 * Make sure we do not leak PI boosting priority to the child.
1670 	 */
1671 	p->prio = current->normal_prio;
1672 
1673 	/*
1674 	 * Revert to default priority/policy on fork if requested.
1675 	 */
1676 	if (unlikely(p->sched_reset_on_fork)) {
1677 		if (task_has_rt_policy(p)) {
1678 			p->policy = SCHED_NORMAL;
1679 			p->static_prio = NICE_TO_PRIO(0);
1680 			p->rt_priority = 0;
1681 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1682 			p->static_prio = NICE_TO_PRIO(0);
1683 
1684 		p->prio = p->normal_prio = __normal_prio(p);
1685 		set_load_weight(p);
1686 
1687 		/*
1688 		 * We don't need the reset flag anymore after the fork. It has
1689 		 * fulfilled its duty:
1690 		 */
1691 		p->sched_reset_on_fork = 0;
1692 	}
1693 
1694 	if (!rt_prio(p->prio))
1695 		p->sched_class = &fair_sched_class;
1696 
1697 	if (p->sched_class->task_fork)
1698 		p->sched_class->task_fork(p);
1699 
1700 	/*
1701 	 * The child is not yet in the pid-hash so no cgroup attach races,
1702 	 * and the cgroup is pinned to this child due to cgroup_fork()
1703 	 * is ran before sched_fork().
1704 	 *
1705 	 * Silence PROVE_RCU.
1706 	 */
1707 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708 	set_task_cpu(p, cpu);
1709 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710 
1711 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1712 	if (likely(sched_info_on()))
1713 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1714 #endif
1715 #if defined(CONFIG_SMP)
1716 	p->on_cpu = 0;
1717 #endif
1718 #ifdef CONFIG_PREEMPT_COUNT
1719 	/* Want to start with kernel preemption disabled. */
1720 	task_thread_info(p)->preempt_count = 1;
1721 #endif
1722 #ifdef CONFIG_SMP
1723 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724 #endif
1725 
1726 	put_cpu();
1727 }
1728 
1729 /*
1730  * wake_up_new_task - wake up a newly created task for the first time.
1731  *
1732  * This function will do some initial scheduler statistics housekeeping
1733  * that must be done for every newly created context, then puts the task
1734  * on the runqueue and wakes it.
1735  */
1736 void wake_up_new_task(struct task_struct *p)
1737 {
1738 	unsigned long flags;
1739 	struct rq *rq;
1740 
1741 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742 #ifdef CONFIG_SMP
1743 	/*
1744 	 * Fork balancing, do it here and not earlier because:
1745 	 *  - cpus_allowed can change in the fork path
1746 	 *  - any previously selected cpu might disappear through hotplug
1747 	 */
1748 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749 #endif
1750 
1751 	rq = __task_rq_lock(p);
1752 	activate_task(rq, p, 0);
1753 	p->on_rq = 1;
1754 	trace_sched_wakeup_new(p, true);
1755 	check_preempt_curr(rq, p, WF_FORK);
1756 #ifdef CONFIG_SMP
1757 	if (p->sched_class->task_woken)
1758 		p->sched_class->task_woken(rq, p);
1759 #endif
1760 	task_rq_unlock(rq, p, &flags);
1761 }
1762 
1763 #ifdef CONFIG_PREEMPT_NOTIFIERS
1764 
1765 /**
1766  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1767  * @notifier: notifier struct to register
1768  */
1769 void preempt_notifier_register(struct preempt_notifier *notifier)
1770 {
1771 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1772 }
1773 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1774 
1775 /**
1776  * preempt_notifier_unregister - no longer interested in preemption notifications
1777  * @notifier: notifier struct to unregister
1778  *
1779  * This is safe to call from within a preemption notifier.
1780  */
1781 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1782 {
1783 	hlist_del(&notifier->link);
1784 }
1785 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1786 
1787 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1788 {
1789 	struct preempt_notifier *notifier;
1790 
1791 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1793 }
1794 
1795 static void
1796 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1797 				 struct task_struct *next)
1798 {
1799 	struct preempt_notifier *notifier;
1800 
1801 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802 		notifier->ops->sched_out(notifier, next);
1803 }
1804 
1805 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1806 
1807 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1808 {
1809 }
1810 
1811 static void
1812 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1813 				 struct task_struct *next)
1814 {
1815 }
1816 
1817 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1818 
1819 /**
1820  * prepare_task_switch - prepare to switch tasks
1821  * @rq: the runqueue preparing to switch
1822  * @prev: the current task that is being switched out
1823  * @next: the task we are going to switch to.
1824  *
1825  * This is called with the rq lock held and interrupts off. It must
1826  * be paired with a subsequent finish_task_switch after the context
1827  * switch.
1828  *
1829  * prepare_task_switch sets up locking and calls architecture specific
1830  * hooks.
1831  */
1832 static inline void
1833 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1834 		    struct task_struct *next)
1835 {
1836 	trace_sched_switch(prev, next);
1837 	sched_info_switch(prev, next);
1838 	perf_event_task_sched_out(prev, next);
1839 	fire_sched_out_preempt_notifiers(prev, next);
1840 	prepare_lock_switch(rq, next);
1841 	prepare_arch_switch(next);
1842 }
1843 
1844 /**
1845  * finish_task_switch - clean up after a task-switch
1846  * @rq: runqueue associated with task-switch
1847  * @prev: the thread we just switched away from.
1848  *
1849  * finish_task_switch must be called after the context switch, paired
1850  * with a prepare_task_switch call before the context switch.
1851  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1852  * and do any other architecture-specific cleanup actions.
1853  *
1854  * Note that we may have delayed dropping an mm in context_switch(). If
1855  * so, we finish that here outside of the runqueue lock. (Doing it
1856  * with the lock held can cause deadlocks; see schedule() for
1857  * details.)
1858  */
1859 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1860 	__releases(rq->lock)
1861 {
1862 	struct mm_struct *mm = rq->prev_mm;
1863 	long prev_state;
1864 
1865 	rq->prev_mm = NULL;
1866 
1867 	/*
1868 	 * A task struct has one reference for the use as "current".
1869 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1870 	 * schedule one last time. The schedule call will never return, and
1871 	 * the scheduled task must drop that reference.
1872 	 * The test for TASK_DEAD must occur while the runqueue locks are
1873 	 * still held, otherwise prev could be scheduled on another cpu, die
1874 	 * there before we look at prev->state, and then the reference would
1875 	 * be dropped twice.
1876 	 *		Manfred Spraul <manfred@colorfullife.com>
1877 	 */
1878 	prev_state = prev->state;
1879 	vtime_task_switch(prev);
1880 	finish_arch_switch(prev);
1881 	perf_event_task_sched_in(prev, current);
1882 	finish_lock_switch(rq, prev);
1883 	finish_arch_post_lock_switch();
1884 
1885 	fire_sched_in_preempt_notifiers(current);
1886 	if (mm)
1887 		mmdrop(mm);
1888 	if (unlikely(prev_state == TASK_DEAD)) {
1889 		/*
1890 		 * Remove function-return probe instances associated with this
1891 		 * task and put them back on the free list.
1892 		 */
1893 		kprobe_flush_task(prev);
1894 		put_task_struct(prev);
1895 	}
1896 
1897 	tick_nohz_task_switch(current);
1898 }
1899 
1900 #ifdef CONFIG_SMP
1901 
1902 /* assumes rq->lock is held */
1903 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1904 {
1905 	if (prev->sched_class->pre_schedule)
1906 		prev->sched_class->pre_schedule(rq, prev);
1907 }
1908 
1909 /* rq->lock is NOT held, but preemption is disabled */
1910 static inline void post_schedule(struct rq *rq)
1911 {
1912 	if (rq->post_schedule) {
1913 		unsigned long flags;
1914 
1915 		raw_spin_lock_irqsave(&rq->lock, flags);
1916 		if (rq->curr->sched_class->post_schedule)
1917 			rq->curr->sched_class->post_schedule(rq);
1918 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919 
1920 		rq->post_schedule = 0;
1921 	}
1922 }
1923 
1924 #else
1925 
1926 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1927 {
1928 }
1929 
1930 static inline void post_schedule(struct rq *rq)
1931 {
1932 }
1933 
1934 #endif
1935 
1936 /**
1937  * schedule_tail - first thing a freshly forked thread must call.
1938  * @prev: the thread we just switched away from.
1939  */
1940 asmlinkage void schedule_tail(struct task_struct *prev)
1941 	__releases(rq->lock)
1942 {
1943 	struct rq *rq = this_rq();
1944 
1945 	finish_task_switch(rq, prev);
1946 
1947 	/*
1948 	 * FIXME: do we need to worry about rq being invalidated by the
1949 	 * task_switch?
1950 	 */
1951 	post_schedule(rq);
1952 
1953 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1954 	/* In this case, finish_task_switch does not reenable preemption */
1955 	preempt_enable();
1956 #endif
1957 	if (current->set_child_tid)
1958 		put_user(task_pid_vnr(current), current->set_child_tid);
1959 }
1960 
1961 /*
1962  * context_switch - switch to the new MM and the new
1963  * thread's register state.
1964  */
1965 static inline void
1966 context_switch(struct rq *rq, struct task_struct *prev,
1967 	       struct task_struct *next)
1968 {
1969 	struct mm_struct *mm, *oldmm;
1970 
1971 	prepare_task_switch(rq, prev, next);
1972 
1973 	mm = next->mm;
1974 	oldmm = prev->active_mm;
1975 	/*
1976 	 * For paravirt, this is coupled with an exit in switch_to to
1977 	 * combine the page table reload and the switch backend into
1978 	 * one hypercall.
1979 	 */
1980 	arch_start_context_switch(prev);
1981 
1982 	if (!mm) {
1983 		next->active_mm = oldmm;
1984 		atomic_inc(&oldmm->mm_count);
1985 		enter_lazy_tlb(oldmm, next);
1986 	} else
1987 		switch_mm(oldmm, mm, next);
1988 
1989 	if (!prev->mm) {
1990 		prev->active_mm = NULL;
1991 		rq->prev_mm = oldmm;
1992 	}
1993 	/*
1994 	 * Since the runqueue lock will be released by the next
1995 	 * task (which is an invalid locking op but in the case
1996 	 * of the scheduler it's an obvious special-case), so we
1997 	 * do an early lockdep release here:
1998 	 */
1999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001 #endif
2002 
2003 	context_tracking_task_switch(prev, next);
2004 	/* Here we just switch the register state and the stack. */
2005 	switch_to(prev, next, prev);
2006 
2007 	barrier();
2008 	/*
2009 	 * this_rq must be evaluated again because prev may have moved
2010 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2011 	 * frame will be invalid.
2012 	 */
2013 	finish_task_switch(this_rq(), prev);
2014 }
2015 
2016 /*
2017  * nr_running and nr_context_switches:
2018  *
2019  * externally visible scheduler statistics: current number of runnable
2020  * threads, total number of context switches performed since bootup.
2021  */
2022 unsigned long nr_running(void)
2023 {
2024 	unsigned long i, sum = 0;
2025 
2026 	for_each_online_cpu(i)
2027 		sum += cpu_rq(i)->nr_running;
2028 
2029 	return sum;
2030 }
2031 
2032 unsigned long long nr_context_switches(void)
2033 {
2034 	int i;
2035 	unsigned long long sum = 0;
2036 
2037 	for_each_possible_cpu(i)
2038 		sum += cpu_rq(i)->nr_switches;
2039 
2040 	return sum;
2041 }
2042 
2043 unsigned long nr_iowait(void)
2044 {
2045 	unsigned long i, sum = 0;
2046 
2047 	for_each_possible_cpu(i)
2048 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049 
2050 	return sum;
2051 }
2052 
2053 unsigned long nr_iowait_cpu(int cpu)
2054 {
2055 	struct rq *this = cpu_rq(cpu);
2056 	return atomic_read(&this->nr_iowait);
2057 }
2058 
2059 unsigned long this_cpu_load(void)
2060 {
2061 	struct rq *this = this_rq();
2062 	return this->cpu_load[0];
2063 }
2064 
2065 
2066 /*
2067  * Global load-average calculations
2068  *
2069  * We take a distributed and async approach to calculating the global load-avg
2070  * in order to minimize overhead.
2071  *
2072  * The global load average is an exponentially decaying average of nr_running +
2073  * nr_uninterruptible.
2074  *
2075  * Once every LOAD_FREQ:
2076  *
2077  *   nr_active = 0;
2078  *   for_each_possible_cpu(cpu)
2079  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2080  *
2081  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2082  *
2083  * Due to a number of reasons the above turns in the mess below:
2084  *
2085  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2086  *    serious number of cpus, therefore we need to take a distributed approach
2087  *    to calculating nr_active.
2088  *
2089  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2090  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2091  *
2092  *    So assuming nr_active := 0 when we start out -- true per definition, we
2093  *    can simply take per-cpu deltas and fold those into a global accumulate
2094  *    to obtain the same result. See calc_load_fold_active().
2095  *
2096  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2097  *    across the machine, we assume 10 ticks is sufficient time for every
2098  *    cpu to have completed this task.
2099  *
2100  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2101  *    again, being late doesn't loose the delta, just wrecks the sample.
2102  *
2103  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2104  *    this would add another cross-cpu cacheline miss and atomic operation
2105  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2106  *    when it went into uninterruptible state and decrement on whatever cpu
2107  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2108  *    all cpus yields the correct result.
2109  *
2110  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2111  */
2112 
2113 /* Variables and functions for calc_load */
2114 static atomic_long_t calc_load_tasks;
2115 static unsigned long calc_load_update;
2116 unsigned long avenrun[3];
2117 EXPORT_SYMBOL(avenrun); /* should be removed */
2118 
2119 /**
2120  * get_avenrun - get the load average array
2121  * @loads:	pointer to dest load array
2122  * @offset:	offset to add
2123  * @shift:	shift count to shift the result left
2124  *
2125  * These values are estimates at best, so no need for locking.
2126  */
2127 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2128 {
2129 	loads[0] = (avenrun[0] + offset) << shift;
2130 	loads[1] = (avenrun[1] + offset) << shift;
2131 	loads[2] = (avenrun[2] + offset) << shift;
2132 }
2133 
2134 static long calc_load_fold_active(struct rq *this_rq)
2135 {
2136 	long nr_active, delta = 0;
2137 
2138 	nr_active = this_rq->nr_running;
2139 	nr_active += (long) this_rq->nr_uninterruptible;
2140 
2141 	if (nr_active != this_rq->calc_load_active) {
2142 		delta = nr_active - this_rq->calc_load_active;
2143 		this_rq->calc_load_active = nr_active;
2144 	}
2145 
2146 	return delta;
2147 }
2148 
2149 /*
2150  * a1 = a0 * e + a * (1 - e)
2151  */
2152 static unsigned long
2153 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2154 {
2155 	load *= exp;
2156 	load += active * (FIXED_1 - exp);
2157 	load += 1UL << (FSHIFT - 1);
2158 	return load >> FSHIFT;
2159 }
2160 
2161 #ifdef CONFIG_NO_HZ_COMMON
2162 /*
2163  * Handle NO_HZ for the global load-average.
2164  *
2165  * Since the above described distributed algorithm to compute the global
2166  * load-average relies on per-cpu sampling from the tick, it is affected by
2167  * NO_HZ.
2168  *
2169  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2170  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2171  * when we read the global state.
2172  *
2173  * Obviously reality has to ruin such a delightfully simple scheme:
2174  *
2175  *  - When we go NO_HZ idle during the window, we can negate our sample
2176  *    contribution, causing under-accounting.
2177  *
2178  *    We avoid this by keeping two idle-delta counters and flipping them
2179  *    when the window starts, thus separating old and new NO_HZ load.
2180  *
2181  *    The only trick is the slight shift in index flip for read vs write.
2182  *
2183  *        0s            5s            10s           15s
2184  *          +10           +10           +10           +10
2185  *        |-|-----------|-|-----------|-|-----------|-|
2186  *    r:0 0 1           1 0           0 1           1 0
2187  *    w:0 1 1           0 0           1 1           0 0
2188  *
2189  *    This ensures we'll fold the old idle contribution in this window while
2190  *    accumlating the new one.
2191  *
2192  *  - When we wake up from NO_HZ idle during the window, we push up our
2193  *    contribution, since we effectively move our sample point to a known
2194  *    busy state.
2195  *
2196  *    This is solved by pushing the window forward, and thus skipping the
2197  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2198  *    was in effect at the time the window opened). This also solves the issue
2199  *    of having to deal with a cpu having been in NOHZ idle for multiple
2200  *    LOAD_FREQ intervals.
2201  *
2202  * When making the ILB scale, we should try to pull this in as well.
2203  */
2204 static atomic_long_t calc_load_idle[2];
2205 static int calc_load_idx;
2206 
2207 static inline int calc_load_write_idx(void)
2208 {
2209 	int idx = calc_load_idx;
2210 
2211 	/*
2212 	 * See calc_global_nohz(), if we observe the new index, we also
2213 	 * need to observe the new update time.
2214 	 */
2215 	smp_rmb();
2216 
2217 	/*
2218 	 * If the folding window started, make sure we start writing in the
2219 	 * next idle-delta.
2220 	 */
2221 	if (!time_before(jiffies, calc_load_update))
2222 		idx++;
2223 
2224 	return idx & 1;
2225 }
2226 
2227 static inline int calc_load_read_idx(void)
2228 {
2229 	return calc_load_idx & 1;
2230 }
2231 
2232 void calc_load_enter_idle(void)
2233 {
2234 	struct rq *this_rq = this_rq();
2235 	long delta;
2236 
2237 	/*
2238 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2239 	 * into the pending idle delta.
2240 	 */
2241 	delta = calc_load_fold_active(this_rq);
2242 	if (delta) {
2243 		int idx = calc_load_write_idx();
2244 		atomic_long_add(delta, &calc_load_idle[idx]);
2245 	}
2246 }
2247 
2248 void calc_load_exit_idle(void)
2249 {
2250 	struct rq *this_rq = this_rq();
2251 
2252 	/*
2253 	 * If we're still before the sample window, we're done.
2254 	 */
2255 	if (time_before(jiffies, this_rq->calc_load_update))
2256 		return;
2257 
2258 	/*
2259 	 * We woke inside or after the sample window, this means we're already
2260 	 * accounted through the nohz accounting, so skip the entire deal and
2261 	 * sync up for the next window.
2262 	 */
2263 	this_rq->calc_load_update = calc_load_update;
2264 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2265 		this_rq->calc_load_update += LOAD_FREQ;
2266 }
2267 
2268 static long calc_load_fold_idle(void)
2269 {
2270 	int idx = calc_load_read_idx();
2271 	long delta = 0;
2272 
2273 	if (atomic_long_read(&calc_load_idle[idx]))
2274 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2275 
2276 	return delta;
2277 }
2278 
2279 /**
2280  * fixed_power_int - compute: x^n, in O(log n) time
2281  *
2282  * @x:         base of the power
2283  * @frac_bits: fractional bits of @x
2284  * @n:         power to raise @x to.
2285  *
2286  * By exploiting the relation between the definition of the natural power
2287  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2288  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2289  * (where: n_i \elem {0, 1}, the binary vector representing n),
2290  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2291  * of course trivially computable in O(log_2 n), the length of our binary
2292  * vector.
2293  */
2294 static unsigned long
2295 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2296 {
2297 	unsigned long result = 1UL << frac_bits;
2298 
2299 	if (n) for (;;) {
2300 		if (n & 1) {
2301 			result *= x;
2302 			result += 1UL << (frac_bits - 1);
2303 			result >>= frac_bits;
2304 		}
2305 		n >>= 1;
2306 		if (!n)
2307 			break;
2308 		x *= x;
2309 		x += 1UL << (frac_bits - 1);
2310 		x >>= frac_bits;
2311 	}
2312 
2313 	return result;
2314 }
2315 
2316 /*
2317  * a1 = a0 * e + a * (1 - e)
2318  *
2319  * a2 = a1 * e + a * (1 - e)
2320  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2321  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2322  *
2323  * a3 = a2 * e + a * (1 - e)
2324  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2325  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2326  *
2327  *  ...
2328  *
2329  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2330  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2331  *    = a0 * e^n + a * (1 - e^n)
2332  *
2333  * [1] application of the geometric series:
2334  *
2335  *              n         1 - x^(n+1)
2336  *     S_n := \Sum x^i = -------------
2337  *             i=0          1 - x
2338  */
2339 static unsigned long
2340 calc_load_n(unsigned long load, unsigned long exp,
2341 	    unsigned long active, unsigned int n)
2342 {
2343 
2344 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2345 }
2346 
2347 /*
2348  * NO_HZ can leave us missing all per-cpu ticks calling
2349  * calc_load_account_active(), but since an idle CPU folds its delta into
2350  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2351  * in the pending idle delta if our idle period crossed a load cycle boundary.
2352  *
2353  * Once we've updated the global active value, we need to apply the exponential
2354  * weights adjusted to the number of cycles missed.
2355  */
2356 static void calc_global_nohz(void)
2357 {
2358 	long delta, active, n;
2359 
2360 	if (!time_before(jiffies, calc_load_update + 10)) {
2361 		/*
2362 		 * Catch-up, fold however many we are behind still
2363 		 */
2364 		delta = jiffies - calc_load_update - 10;
2365 		n = 1 + (delta / LOAD_FREQ);
2366 
2367 		active = atomic_long_read(&calc_load_tasks);
2368 		active = active > 0 ? active * FIXED_1 : 0;
2369 
2370 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2371 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2372 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2373 
2374 		calc_load_update += n * LOAD_FREQ;
2375 	}
2376 
2377 	/*
2378 	 * Flip the idle index...
2379 	 *
2380 	 * Make sure we first write the new time then flip the index, so that
2381 	 * calc_load_write_idx() will see the new time when it reads the new
2382 	 * index, this avoids a double flip messing things up.
2383 	 */
2384 	smp_wmb();
2385 	calc_load_idx++;
2386 }
2387 #else /* !CONFIG_NO_HZ_COMMON */
2388 
2389 static inline long calc_load_fold_idle(void) { return 0; }
2390 static inline void calc_global_nohz(void) { }
2391 
2392 #endif /* CONFIG_NO_HZ_COMMON */
2393 
2394 /*
2395  * calc_load - update the avenrun load estimates 10 ticks after the
2396  * CPUs have updated calc_load_tasks.
2397  */
2398 void calc_global_load(unsigned long ticks)
2399 {
2400 	long active, delta;
2401 
2402 	if (time_before(jiffies, calc_load_update + 10))
2403 		return;
2404 
2405 	/*
2406 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2407 	 */
2408 	delta = calc_load_fold_idle();
2409 	if (delta)
2410 		atomic_long_add(delta, &calc_load_tasks);
2411 
2412 	active = atomic_long_read(&calc_load_tasks);
2413 	active = active > 0 ? active * FIXED_1 : 0;
2414 
2415 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2416 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2417 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2418 
2419 	calc_load_update += LOAD_FREQ;
2420 
2421 	/*
2422 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2423 	 */
2424 	calc_global_nohz();
2425 }
2426 
2427 /*
2428  * Called from update_cpu_load() to periodically update this CPU's
2429  * active count.
2430  */
2431 static void calc_load_account_active(struct rq *this_rq)
2432 {
2433 	long delta;
2434 
2435 	if (time_before(jiffies, this_rq->calc_load_update))
2436 		return;
2437 
2438 	delta  = calc_load_fold_active(this_rq);
2439 	if (delta)
2440 		atomic_long_add(delta, &calc_load_tasks);
2441 
2442 	this_rq->calc_load_update += LOAD_FREQ;
2443 }
2444 
2445 /*
2446  * End of global load-average stuff
2447  */
2448 
2449 /*
2450  * The exact cpuload at various idx values, calculated at every tick would be
2451  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2452  *
2453  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2454  * on nth tick when cpu may be busy, then we have:
2455  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2456  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2457  *
2458  * decay_load_missed() below does efficient calculation of
2459  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2460  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2461  *
2462  * The calculation is approximated on a 128 point scale.
2463  * degrade_zero_ticks is the number of ticks after which load at any
2464  * particular idx is approximated to be zero.
2465  * degrade_factor is a precomputed table, a row for each load idx.
2466  * Each column corresponds to degradation factor for a power of two ticks,
2467  * based on 128 point scale.
2468  * Example:
2469  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2470  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2471  *
2472  * With this power of 2 load factors, we can degrade the load n times
2473  * by looking at 1 bits in n and doing as many mult/shift instead of
2474  * n mult/shifts needed by the exact degradation.
2475  */
2476 #define DEGRADE_SHIFT		7
2477 static const unsigned char
2478 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2479 static const unsigned char
2480 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2481 					{0, 0, 0, 0, 0, 0, 0, 0},
2482 					{64, 32, 8, 0, 0, 0, 0, 0},
2483 					{96, 72, 40, 12, 1, 0, 0},
2484 					{112, 98, 75, 43, 15, 1, 0},
2485 					{120, 112, 98, 76, 45, 16, 2} };
2486 
2487 /*
2488  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2489  * would be when CPU is idle and so we just decay the old load without
2490  * adding any new load.
2491  */
2492 static unsigned long
2493 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2494 {
2495 	int j = 0;
2496 
2497 	if (!missed_updates)
2498 		return load;
2499 
2500 	if (missed_updates >= degrade_zero_ticks[idx])
2501 		return 0;
2502 
2503 	if (idx == 1)
2504 		return load >> missed_updates;
2505 
2506 	while (missed_updates) {
2507 		if (missed_updates % 2)
2508 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2509 
2510 		missed_updates >>= 1;
2511 		j++;
2512 	}
2513 	return load;
2514 }
2515 
2516 /*
2517  * Update rq->cpu_load[] statistics. This function is usually called every
2518  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2519  * every tick. We fix it up based on jiffies.
2520  */
2521 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2522 			      unsigned long pending_updates)
2523 {
2524 	int i, scale;
2525 
2526 	this_rq->nr_load_updates++;
2527 
2528 	/* Update our load: */
2529 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2530 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2531 		unsigned long old_load, new_load;
2532 
2533 		/* scale is effectively 1 << i now, and >> i divides by scale */
2534 
2535 		old_load = this_rq->cpu_load[i];
2536 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2537 		new_load = this_load;
2538 		/*
2539 		 * Round up the averaging division if load is increasing. This
2540 		 * prevents us from getting stuck on 9 if the load is 10, for
2541 		 * example.
2542 		 */
2543 		if (new_load > old_load)
2544 			new_load += scale - 1;
2545 
2546 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2547 	}
2548 
2549 	sched_avg_update(this_rq);
2550 }
2551 
2552 #ifdef CONFIG_NO_HZ_COMMON
2553 /*
2554  * There is no sane way to deal with nohz on smp when using jiffies because the
2555  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2556  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2557  *
2558  * Therefore we cannot use the delta approach from the regular tick since that
2559  * would seriously skew the load calculation. However we'll make do for those
2560  * updates happening while idle (nohz_idle_balance) or coming out of idle
2561  * (tick_nohz_idle_exit).
2562  *
2563  * This means we might still be one tick off for nohz periods.
2564  */
2565 
2566 /*
2567  * Called from nohz_idle_balance() to update the load ratings before doing the
2568  * idle balance.
2569  */
2570 void update_idle_cpu_load(struct rq *this_rq)
2571 {
2572 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2573 	unsigned long load = this_rq->load.weight;
2574 	unsigned long pending_updates;
2575 
2576 	/*
2577 	 * bail if there's load or we're actually up-to-date.
2578 	 */
2579 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2580 		return;
2581 
2582 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2583 	this_rq->last_load_update_tick = curr_jiffies;
2584 
2585 	__update_cpu_load(this_rq, load, pending_updates);
2586 }
2587 
2588 /*
2589  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2590  */
2591 void update_cpu_load_nohz(void)
2592 {
2593 	struct rq *this_rq = this_rq();
2594 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2595 	unsigned long pending_updates;
2596 
2597 	if (curr_jiffies == this_rq->last_load_update_tick)
2598 		return;
2599 
2600 	raw_spin_lock(&this_rq->lock);
2601 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2602 	if (pending_updates) {
2603 		this_rq->last_load_update_tick = curr_jiffies;
2604 		/*
2605 		 * We were idle, this means load 0, the current load might be
2606 		 * !0 due to remote wakeups and the sort.
2607 		 */
2608 		__update_cpu_load(this_rq, 0, pending_updates);
2609 	}
2610 	raw_spin_unlock(&this_rq->lock);
2611 }
2612 #endif /* CONFIG_NO_HZ_COMMON */
2613 
2614 /*
2615  * Called from scheduler_tick()
2616  */
2617 static void update_cpu_load_active(struct rq *this_rq)
2618 {
2619 	/*
2620 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2621 	 */
2622 	this_rq->last_load_update_tick = jiffies;
2623 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2624 
2625 	calc_load_account_active(this_rq);
2626 }
2627 
2628 #ifdef CONFIG_SMP
2629 
2630 /*
2631  * sched_exec - execve() is a valuable balancing opportunity, because at
2632  * this point the task has the smallest effective memory and cache footprint.
2633  */
2634 void sched_exec(void)
2635 {
2636 	struct task_struct *p = current;
2637 	unsigned long flags;
2638 	int dest_cpu;
2639 
2640 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2641 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2642 	if (dest_cpu == smp_processor_id())
2643 		goto unlock;
2644 
2645 	if (likely(cpu_active(dest_cpu))) {
2646 		struct migration_arg arg = { p, dest_cpu };
2647 
2648 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2649 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2650 		return;
2651 	}
2652 unlock:
2653 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2654 }
2655 
2656 #endif
2657 
2658 DEFINE_PER_CPU(struct kernel_stat, kstat);
2659 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2660 
2661 EXPORT_PER_CPU_SYMBOL(kstat);
2662 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2663 
2664 /*
2665  * Return any ns on the sched_clock that have not yet been accounted in
2666  * @p in case that task is currently running.
2667  *
2668  * Called with task_rq_lock() held on @rq.
2669  */
2670 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2671 {
2672 	u64 ns = 0;
2673 
2674 	if (task_current(rq, p)) {
2675 		update_rq_clock(rq);
2676 		ns = rq->clock_task - p->se.exec_start;
2677 		if ((s64)ns < 0)
2678 			ns = 0;
2679 	}
2680 
2681 	return ns;
2682 }
2683 
2684 unsigned long long task_delta_exec(struct task_struct *p)
2685 {
2686 	unsigned long flags;
2687 	struct rq *rq;
2688 	u64 ns = 0;
2689 
2690 	rq = task_rq_lock(p, &flags);
2691 	ns = do_task_delta_exec(p, rq);
2692 	task_rq_unlock(rq, p, &flags);
2693 
2694 	return ns;
2695 }
2696 
2697 /*
2698  * Return accounted runtime for the task.
2699  * In case the task is currently running, return the runtime plus current's
2700  * pending runtime that have not been accounted yet.
2701  */
2702 unsigned long long task_sched_runtime(struct task_struct *p)
2703 {
2704 	unsigned long flags;
2705 	struct rq *rq;
2706 	u64 ns = 0;
2707 
2708 	rq = task_rq_lock(p, &flags);
2709 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2710 	task_rq_unlock(rq, p, &flags);
2711 
2712 	return ns;
2713 }
2714 
2715 /*
2716  * This function gets called by the timer code, with HZ frequency.
2717  * We call it with interrupts disabled.
2718  */
2719 void scheduler_tick(void)
2720 {
2721 	int cpu = smp_processor_id();
2722 	struct rq *rq = cpu_rq(cpu);
2723 	struct task_struct *curr = rq->curr;
2724 
2725 	sched_clock_tick();
2726 
2727 	raw_spin_lock(&rq->lock);
2728 	update_rq_clock(rq);
2729 	update_cpu_load_active(rq);
2730 	curr->sched_class->task_tick(rq, curr, 0);
2731 	raw_spin_unlock(&rq->lock);
2732 
2733 	perf_event_task_tick();
2734 
2735 #ifdef CONFIG_SMP
2736 	rq->idle_balance = idle_cpu(cpu);
2737 	trigger_load_balance(rq, cpu);
2738 #endif
2739 	rq_last_tick_reset(rq);
2740 }
2741 
2742 #ifdef CONFIG_NO_HZ_FULL
2743 /**
2744  * scheduler_tick_max_deferment
2745  *
2746  * Keep at least one tick per second when a single
2747  * active task is running because the scheduler doesn't
2748  * yet completely support full dynticks environment.
2749  *
2750  * This makes sure that uptime, CFS vruntime, load
2751  * balancing, etc... continue to move forward, even
2752  * with a very low granularity.
2753  */
2754 u64 scheduler_tick_max_deferment(void)
2755 {
2756 	struct rq *rq = this_rq();
2757 	unsigned long next, now = ACCESS_ONCE(jiffies);
2758 
2759 	next = rq->last_sched_tick + HZ;
2760 
2761 	if (time_before_eq(next, now))
2762 		return 0;
2763 
2764 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2765 }
2766 #endif
2767 
2768 notrace unsigned long get_parent_ip(unsigned long addr)
2769 {
2770 	if (in_lock_functions(addr)) {
2771 		addr = CALLER_ADDR2;
2772 		if (in_lock_functions(addr))
2773 			addr = CALLER_ADDR3;
2774 	}
2775 	return addr;
2776 }
2777 
2778 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2779 				defined(CONFIG_PREEMPT_TRACER))
2780 
2781 void __kprobes add_preempt_count(int val)
2782 {
2783 #ifdef CONFIG_DEBUG_PREEMPT
2784 	/*
2785 	 * Underflow?
2786 	 */
2787 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2788 		return;
2789 #endif
2790 	preempt_count() += val;
2791 #ifdef CONFIG_DEBUG_PREEMPT
2792 	/*
2793 	 * Spinlock count overflowing soon?
2794 	 */
2795 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2796 				PREEMPT_MASK - 10);
2797 #endif
2798 	if (preempt_count() == val)
2799 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2800 }
2801 EXPORT_SYMBOL(add_preempt_count);
2802 
2803 void __kprobes sub_preempt_count(int val)
2804 {
2805 #ifdef CONFIG_DEBUG_PREEMPT
2806 	/*
2807 	 * Underflow?
2808 	 */
2809 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2810 		return;
2811 	/*
2812 	 * Is the spinlock portion underflowing?
2813 	 */
2814 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2815 			!(preempt_count() & PREEMPT_MASK)))
2816 		return;
2817 #endif
2818 
2819 	if (preempt_count() == val)
2820 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2821 	preempt_count() -= val;
2822 }
2823 EXPORT_SYMBOL(sub_preempt_count);
2824 
2825 #endif
2826 
2827 /*
2828  * Print scheduling while atomic bug:
2829  */
2830 static noinline void __schedule_bug(struct task_struct *prev)
2831 {
2832 	if (oops_in_progress)
2833 		return;
2834 
2835 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2836 		prev->comm, prev->pid, preempt_count());
2837 
2838 	debug_show_held_locks(prev);
2839 	print_modules();
2840 	if (irqs_disabled())
2841 		print_irqtrace_events(prev);
2842 	dump_stack();
2843 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2844 }
2845 
2846 /*
2847  * Various schedule()-time debugging checks and statistics:
2848  */
2849 static inline void schedule_debug(struct task_struct *prev)
2850 {
2851 	/*
2852 	 * Test if we are atomic. Since do_exit() needs to call into
2853 	 * schedule() atomically, we ignore that path for now.
2854 	 * Otherwise, whine if we are scheduling when we should not be.
2855 	 */
2856 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2857 		__schedule_bug(prev);
2858 	rcu_sleep_check();
2859 
2860 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2861 
2862 	schedstat_inc(this_rq(), sched_count);
2863 }
2864 
2865 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2866 {
2867 	if (prev->on_rq || rq->skip_clock_update < 0)
2868 		update_rq_clock(rq);
2869 	prev->sched_class->put_prev_task(rq, prev);
2870 }
2871 
2872 /*
2873  * Pick up the highest-prio task:
2874  */
2875 static inline struct task_struct *
2876 pick_next_task(struct rq *rq)
2877 {
2878 	const struct sched_class *class;
2879 	struct task_struct *p;
2880 
2881 	/*
2882 	 * Optimization: we know that if all tasks are in
2883 	 * the fair class we can call that function directly:
2884 	 */
2885 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2886 		p = fair_sched_class.pick_next_task(rq);
2887 		if (likely(p))
2888 			return p;
2889 	}
2890 
2891 	for_each_class(class) {
2892 		p = class->pick_next_task(rq);
2893 		if (p)
2894 			return p;
2895 	}
2896 
2897 	BUG(); /* the idle class will always have a runnable task */
2898 }
2899 
2900 /*
2901  * __schedule() is the main scheduler function.
2902  *
2903  * The main means of driving the scheduler and thus entering this function are:
2904  *
2905  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2906  *
2907  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2908  *      paths. For example, see arch/x86/entry_64.S.
2909  *
2910  *      To drive preemption between tasks, the scheduler sets the flag in timer
2911  *      interrupt handler scheduler_tick().
2912  *
2913  *   3. Wakeups don't really cause entry into schedule(). They add a
2914  *      task to the run-queue and that's it.
2915  *
2916  *      Now, if the new task added to the run-queue preempts the current
2917  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2918  *      called on the nearest possible occasion:
2919  *
2920  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2921  *
2922  *         - in syscall or exception context, at the next outmost
2923  *           preempt_enable(). (this might be as soon as the wake_up()'s
2924  *           spin_unlock()!)
2925  *
2926  *         - in IRQ context, return from interrupt-handler to
2927  *           preemptible context
2928  *
2929  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2930  *         then at the next:
2931  *
2932  *          - cond_resched() call
2933  *          - explicit schedule() call
2934  *          - return from syscall or exception to user-space
2935  *          - return from interrupt-handler to user-space
2936  */
2937 static void __sched __schedule(void)
2938 {
2939 	struct task_struct *prev, *next;
2940 	unsigned long *switch_count;
2941 	struct rq *rq;
2942 	int cpu;
2943 
2944 need_resched:
2945 	preempt_disable();
2946 	cpu = smp_processor_id();
2947 	rq = cpu_rq(cpu);
2948 	rcu_note_context_switch(cpu);
2949 	prev = rq->curr;
2950 
2951 	schedule_debug(prev);
2952 
2953 	if (sched_feat(HRTICK))
2954 		hrtick_clear(rq);
2955 
2956 	raw_spin_lock_irq(&rq->lock);
2957 
2958 	switch_count = &prev->nivcsw;
2959 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2960 		if (unlikely(signal_pending_state(prev->state, prev))) {
2961 			prev->state = TASK_RUNNING;
2962 		} else {
2963 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2964 			prev->on_rq = 0;
2965 
2966 			/*
2967 			 * If a worker went to sleep, notify and ask workqueue
2968 			 * whether it wants to wake up a task to maintain
2969 			 * concurrency.
2970 			 */
2971 			if (prev->flags & PF_WQ_WORKER) {
2972 				struct task_struct *to_wakeup;
2973 
2974 				to_wakeup = wq_worker_sleeping(prev, cpu);
2975 				if (to_wakeup)
2976 					try_to_wake_up_local(to_wakeup);
2977 			}
2978 		}
2979 		switch_count = &prev->nvcsw;
2980 	}
2981 
2982 	pre_schedule(rq, prev);
2983 
2984 	if (unlikely(!rq->nr_running))
2985 		idle_balance(cpu, rq);
2986 
2987 	put_prev_task(rq, prev);
2988 	next = pick_next_task(rq);
2989 	clear_tsk_need_resched(prev);
2990 	rq->skip_clock_update = 0;
2991 
2992 	if (likely(prev != next)) {
2993 		rq->nr_switches++;
2994 		rq->curr = next;
2995 		++*switch_count;
2996 
2997 		context_switch(rq, prev, next); /* unlocks the rq */
2998 		/*
2999 		 * The context switch have flipped the stack from under us
3000 		 * and restored the local variables which were saved when
3001 		 * this task called schedule() in the past. prev == current
3002 		 * is still correct, but it can be moved to another cpu/rq.
3003 		 */
3004 		cpu = smp_processor_id();
3005 		rq = cpu_rq(cpu);
3006 	} else
3007 		raw_spin_unlock_irq(&rq->lock);
3008 
3009 	post_schedule(rq);
3010 
3011 	sched_preempt_enable_no_resched();
3012 	if (need_resched())
3013 		goto need_resched;
3014 }
3015 
3016 static inline void sched_submit_work(struct task_struct *tsk)
3017 {
3018 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3019 		return;
3020 	/*
3021 	 * If we are going to sleep and we have plugged IO queued,
3022 	 * make sure to submit it to avoid deadlocks.
3023 	 */
3024 	if (blk_needs_flush_plug(tsk))
3025 		blk_schedule_flush_plug(tsk);
3026 }
3027 
3028 asmlinkage void __sched schedule(void)
3029 {
3030 	struct task_struct *tsk = current;
3031 
3032 	sched_submit_work(tsk);
3033 	__schedule();
3034 }
3035 EXPORT_SYMBOL(schedule);
3036 
3037 #ifdef CONFIG_CONTEXT_TRACKING
3038 asmlinkage void __sched schedule_user(void)
3039 {
3040 	/*
3041 	 * If we come here after a random call to set_need_resched(),
3042 	 * or we have been woken up remotely but the IPI has not yet arrived,
3043 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3044 	 * we find a better solution.
3045 	 */
3046 	user_exit();
3047 	schedule();
3048 	user_enter();
3049 }
3050 #endif
3051 
3052 /**
3053  * schedule_preempt_disabled - called with preemption disabled
3054  *
3055  * Returns with preemption disabled. Note: preempt_count must be 1
3056  */
3057 void __sched schedule_preempt_disabled(void)
3058 {
3059 	sched_preempt_enable_no_resched();
3060 	schedule();
3061 	preempt_disable();
3062 }
3063 
3064 #ifdef CONFIG_PREEMPT
3065 /*
3066  * this is the entry point to schedule() from in-kernel preemption
3067  * off of preempt_enable. Kernel preemptions off return from interrupt
3068  * occur there and call schedule directly.
3069  */
3070 asmlinkage void __sched notrace preempt_schedule(void)
3071 {
3072 	struct thread_info *ti = current_thread_info();
3073 
3074 	/*
3075 	 * If there is a non-zero preempt_count or interrupts are disabled,
3076 	 * we do not want to preempt the current task. Just return..
3077 	 */
3078 	if (likely(ti->preempt_count || irqs_disabled()))
3079 		return;
3080 
3081 	do {
3082 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3083 		__schedule();
3084 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3085 
3086 		/*
3087 		 * Check again in case we missed a preemption opportunity
3088 		 * between schedule and now.
3089 		 */
3090 		barrier();
3091 	} while (need_resched());
3092 }
3093 EXPORT_SYMBOL(preempt_schedule);
3094 
3095 /*
3096  * this is the entry point to schedule() from kernel preemption
3097  * off of irq context.
3098  * Note, that this is called and return with irqs disabled. This will
3099  * protect us against recursive calling from irq.
3100  */
3101 asmlinkage void __sched preempt_schedule_irq(void)
3102 {
3103 	struct thread_info *ti = current_thread_info();
3104 	enum ctx_state prev_state;
3105 
3106 	/* Catch callers which need to be fixed */
3107 	BUG_ON(ti->preempt_count || !irqs_disabled());
3108 
3109 	prev_state = exception_enter();
3110 
3111 	do {
3112 		add_preempt_count(PREEMPT_ACTIVE);
3113 		local_irq_enable();
3114 		__schedule();
3115 		local_irq_disable();
3116 		sub_preempt_count(PREEMPT_ACTIVE);
3117 
3118 		/*
3119 		 * Check again in case we missed a preemption opportunity
3120 		 * between schedule and now.
3121 		 */
3122 		barrier();
3123 	} while (need_resched());
3124 
3125 	exception_exit(prev_state);
3126 }
3127 
3128 #endif /* CONFIG_PREEMPT */
3129 
3130 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3131 			  void *key)
3132 {
3133 	return try_to_wake_up(curr->private, mode, wake_flags);
3134 }
3135 EXPORT_SYMBOL(default_wake_function);
3136 
3137 /*
3138  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3139  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3140  * number) then we wake all the non-exclusive tasks and one exclusive task.
3141  *
3142  * There are circumstances in which we can try to wake a task which has already
3143  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3144  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3145  */
3146 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3147 			int nr_exclusive, int wake_flags, void *key)
3148 {
3149 	wait_queue_t *curr, *next;
3150 
3151 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3152 		unsigned flags = curr->flags;
3153 
3154 		if (curr->func(curr, mode, wake_flags, key) &&
3155 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3156 			break;
3157 	}
3158 }
3159 
3160 /**
3161  * __wake_up - wake up threads blocked on a waitqueue.
3162  * @q: the waitqueue
3163  * @mode: which threads
3164  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3165  * @key: is directly passed to the wakeup function
3166  *
3167  * It may be assumed that this function implies a write memory barrier before
3168  * changing the task state if and only if any tasks are woken up.
3169  */
3170 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3171 			int nr_exclusive, void *key)
3172 {
3173 	unsigned long flags;
3174 
3175 	spin_lock_irqsave(&q->lock, flags);
3176 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3177 	spin_unlock_irqrestore(&q->lock, flags);
3178 }
3179 EXPORT_SYMBOL(__wake_up);
3180 
3181 /*
3182  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3183  */
3184 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3185 {
3186 	__wake_up_common(q, mode, nr, 0, NULL);
3187 }
3188 EXPORT_SYMBOL_GPL(__wake_up_locked);
3189 
3190 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3191 {
3192 	__wake_up_common(q, mode, 1, 0, key);
3193 }
3194 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3195 
3196 /**
3197  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3198  * @q: the waitqueue
3199  * @mode: which threads
3200  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3201  * @key: opaque value to be passed to wakeup targets
3202  *
3203  * The sync wakeup differs that the waker knows that it will schedule
3204  * away soon, so while the target thread will be woken up, it will not
3205  * be migrated to another CPU - ie. the two threads are 'synchronized'
3206  * with each other. This can prevent needless bouncing between CPUs.
3207  *
3208  * On UP it can prevent extra preemption.
3209  *
3210  * It may be assumed that this function implies a write memory barrier before
3211  * changing the task state if and only if any tasks are woken up.
3212  */
3213 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3214 			int nr_exclusive, void *key)
3215 {
3216 	unsigned long flags;
3217 	int wake_flags = WF_SYNC;
3218 
3219 	if (unlikely(!q))
3220 		return;
3221 
3222 	if (unlikely(!nr_exclusive))
3223 		wake_flags = 0;
3224 
3225 	spin_lock_irqsave(&q->lock, flags);
3226 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3227 	spin_unlock_irqrestore(&q->lock, flags);
3228 }
3229 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3230 
3231 /*
3232  * __wake_up_sync - see __wake_up_sync_key()
3233  */
3234 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3235 {
3236 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3237 }
3238 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3239 
3240 /**
3241  * complete: - signals a single thread waiting on this completion
3242  * @x:  holds the state of this particular completion
3243  *
3244  * This will wake up a single thread waiting on this completion. Threads will be
3245  * awakened in the same order in which they were queued.
3246  *
3247  * See also complete_all(), wait_for_completion() and related routines.
3248  *
3249  * It may be assumed that this function implies a write memory barrier before
3250  * changing the task state if and only if any tasks are woken up.
3251  */
3252 void complete(struct completion *x)
3253 {
3254 	unsigned long flags;
3255 
3256 	spin_lock_irqsave(&x->wait.lock, flags);
3257 	x->done++;
3258 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3259 	spin_unlock_irqrestore(&x->wait.lock, flags);
3260 }
3261 EXPORT_SYMBOL(complete);
3262 
3263 /**
3264  * complete_all: - signals all threads waiting on this completion
3265  * @x:  holds the state of this particular completion
3266  *
3267  * This will wake up all threads waiting on this particular completion event.
3268  *
3269  * It may be assumed that this function implies a write memory barrier before
3270  * changing the task state if and only if any tasks are woken up.
3271  */
3272 void complete_all(struct completion *x)
3273 {
3274 	unsigned long flags;
3275 
3276 	spin_lock_irqsave(&x->wait.lock, flags);
3277 	x->done += UINT_MAX/2;
3278 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3279 	spin_unlock_irqrestore(&x->wait.lock, flags);
3280 }
3281 EXPORT_SYMBOL(complete_all);
3282 
3283 static inline long __sched
3284 do_wait_for_common(struct completion *x,
3285 		   long (*action)(long), long timeout, int state)
3286 {
3287 	if (!x->done) {
3288 		DECLARE_WAITQUEUE(wait, current);
3289 
3290 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3291 		do {
3292 			if (signal_pending_state(state, current)) {
3293 				timeout = -ERESTARTSYS;
3294 				break;
3295 			}
3296 			__set_current_state(state);
3297 			spin_unlock_irq(&x->wait.lock);
3298 			timeout = action(timeout);
3299 			spin_lock_irq(&x->wait.lock);
3300 		} while (!x->done && timeout);
3301 		__remove_wait_queue(&x->wait, &wait);
3302 		if (!x->done)
3303 			return timeout;
3304 	}
3305 	x->done--;
3306 	return timeout ?: 1;
3307 }
3308 
3309 static inline long __sched
3310 __wait_for_common(struct completion *x,
3311 		  long (*action)(long), long timeout, int state)
3312 {
3313 	might_sleep();
3314 
3315 	spin_lock_irq(&x->wait.lock);
3316 	timeout = do_wait_for_common(x, action, timeout, state);
3317 	spin_unlock_irq(&x->wait.lock);
3318 	return timeout;
3319 }
3320 
3321 static long __sched
3322 wait_for_common(struct completion *x, long timeout, int state)
3323 {
3324 	return __wait_for_common(x, schedule_timeout, timeout, state);
3325 }
3326 
3327 static long __sched
3328 wait_for_common_io(struct completion *x, long timeout, int state)
3329 {
3330 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3331 }
3332 
3333 /**
3334  * wait_for_completion: - waits for completion of a task
3335  * @x:  holds the state of this particular completion
3336  *
3337  * This waits to be signaled for completion of a specific task. It is NOT
3338  * interruptible and there is no timeout.
3339  *
3340  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3341  * and interrupt capability. Also see complete().
3342  */
3343 void __sched wait_for_completion(struct completion *x)
3344 {
3345 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3346 }
3347 EXPORT_SYMBOL(wait_for_completion);
3348 
3349 /**
3350  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3351  * @x:  holds the state of this particular completion
3352  * @timeout:  timeout value in jiffies
3353  *
3354  * This waits for either a completion of a specific task to be signaled or for a
3355  * specified timeout to expire. The timeout is in jiffies. It is not
3356  * interruptible.
3357  *
3358  * The return value is 0 if timed out, and positive (at least 1, or number of
3359  * jiffies left till timeout) if completed.
3360  */
3361 unsigned long __sched
3362 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3363 {
3364 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3365 }
3366 EXPORT_SYMBOL(wait_for_completion_timeout);
3367 
3368 /**
3369  * wait_for_completion_io: - waits for completion of a task
3370  * @x:  holds the state of this particular completion
3371  *
3372  * This waits to be signaled for completion of a specific task. It is NOT
3373  * interruptible and there is no timeout. The caller is accounted as waiting
3374  * for IO.
3375  */
3376 void __sched wait_for_completion_io(struct completion *x)
3377 {
3378 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3379 }
3380 EXPORT_SYMBOL(wait_for_completion_io);
3381 
3382 /**
3383  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3384  * @x:  holds the state of this particular completion
3385  * @timeout:  timeout value in jiffies
3386  *
3387  * This waits for either a completion of a specific task to be signaled or for a
3388  * specified timeout to expire. The timeout is in jiffies. It is not
3389  * interruptible. The caller is accounted as waiting for IO.
3390  *
3391  * The return value is 0 if timed out, and positive (at least 1, or number of
3392  * jiffies left till timeout) if completed.
3393  */
3394 unsigned long __sched
3395 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3396 {
3397 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3398 }
3399 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3400 
3401 /**
3402  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3403  * @x:  holds the state of this particular completion
3404  *
3405  * This waits for completion of a specific task to be signaled. It is
3406  * interruptible.
3407  *
3408  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3409  */
3410 int __sched wait_for_completion_interruptible(struct completion *x)
3411 {
3412 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3413 	if (t == -ERESTARTSYS)
3414 		return t;
3415 	return 0;
3416 }
3417 EXPORT_SYMBOL(wait_for_completion_interruptible);
3418 
3419 /**
3420  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3421  * @x:  holds the state of this particular completion
3422  * @timeout:  timeout value in jiffies
3423  *
3424  * This waits for either a completion of a specific task to be signaled or for a
3425  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3426  *
3427  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3428  * positive (at least 1, or number of jiffies left till timeout) if completed.
3429  */
3430 long __sched
3431 wait_for_completion_interruptible_timeout(struct completion *x,
3432 					  unsigned long timeout)
3433 {
3434 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3435 }
3436 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3437 
3438 /**
3439  * wait_for_completion_killable: - waits for completion of a task (killable)
3440  * @x:  holds the state of this particular completion
3441  *
3442  * This waits to be signaled for completion of a specific task. It can be
3443  * interrupted by a kill signal.
3444  *
3445  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3446  */
3447 int __sched wait_for_completion_killable(struct completion *x)
3448 {
3449 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3450 	if (t == -ERESTARTSYS)
3451 		return t;
3452 	return 0;
3453 }
3454 EXPORT_SYMBOL(wait_for_completion_killable);
3455 
3456 /**
3457  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3458  * @x:  holds the state of this particular completion
3459  * @timeout:  timeout value in jiffies
3460  *
3461  * This waits for either a completion of a specific task to be
3462  * signaled or for a specified timeout to expire. It can be
3463  * interrupted by a kill signal. The timeout is in jiffies.
3464  *
3465  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3466  * positive (at least 1, or number of jiffies left till timeout) if completed.
3467  */
3468 long __sched
3469 wait_for_completion_killable_timeout(struct completion *x,
3470 				     unsigned long timeout)
3471 {
3472 	return wait_for_common(x, timeout, TASK_KILLABLE);
3473 }
3474 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3475 
3476 /**
3477  *	try_wait_for_completion - try to decrement a completion without blocking
3478  *	@x:	completion structure
3479  *
3480  *	Returns: 0 if a decrement cannot be done without blocking
3481  *		 1 if a decrement succeeded.
3482  *
3483  *	If a completion is being used as a counting completion,
3484  *	attempt to decrement the counter without blocking. This
3485  *	enables us to avoid waiting if the resource the completion
3486  *	is protecting is not available.
3487  */
3488 bool try_wait_for_completion(struct completion *x)
3489 {
3490 	unsigned long flags;
3491 	int ret = 1;
3492 
3493 	spin_lock_irqsave(&x->wait.lock, flags);
3494 	if (!x->done)
3495 		ret = 0;
3496 	else
3497 		x->done--;
3498 	spin_unlock_irqrestore(&x->wait.lock, flags);
3499 	return ret;
3500 }
3501 EXPORT_SYMBOL(try_wait_for_completion);
3502 
3503 /**
3504  *	completion_done - Test to see if a completion has any waiters
3505  *	@x:	completion structure
3506  *
3507  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3508  *		 1 if there are no waiters.
3509  *
3510  */
3511 bool completion_done(struct completion *x)
3512 {
3513 	unsigned long flags;
3514 	int ret = 1;
3515 
3516 	spin_lock_irqsave(&x->wait.lock, flags);
3517 	if (!x->done)
3518 		ret = 0;
3519 	spin_unlock_irqrestore(&x->wait.lock, flags);
3520 	return ret;
3521 }
3522 EXPORT_SYMBOL(completion_done);
3523 
3524 static long __sched
3525 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3526 {
3527 	unsigned long flags;
3528 	wait_queue_t wait;
3529 
3530 	init_waitqueue_entry(&wait, current);
3531 
3532 	__set_current_state(state);
3533 
3534 	spin_lock_irqsave(&q->lock, flags);
3535 	__add_wait_queue(q, &wait);
3536 	spin_unlock(&q->lock);
3537 	timeout = schedule_timeout(timeout);
3538 	spin_lock_irq(&q->lock);
3539 	__remove_wait_queue(q, &wait);
3540 	spin_unlock_irqrestore(&q->lock, flags);
3541 
3542 	return timeout;
3543 }
3544 
3545 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3546 {
3547 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3548 }
3549 EXPORT_SYMBOL(interruptible_sleep_on);
3550 
3551 long __sched
3552 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3553 {
3554 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3555 }
3556 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3557 
3558 void __sched sleep_on(wait_queue_head_t *q)
3559 {
3560 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3561 }
3562 EXPORT_SYMBOL(sleep_on);
3563 
3564 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3565 {
3566 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3567 }
3568 EXPORT_SYMBOL(sleep_on_timeout);
3569 
3570 #ifdef CONFIG_RT_MUTEXES
3571 
3572 /*
3573  * rt_mutex_setprio - set the current priority of a task
3574  * @p: task
3575  * @prio: prio value (kernel-internal form)
3576  *
3577  * This function changes the 'effective' priority of a task. It does
3578  * not touch ->normal_prio like __setscheduler().
3579  *
3580  * Used by the rt_mutex code to implement priority inheritance logic.
3581  */
3582 void rt_mutex_setprio(struct task_struct *p, int prio)
3583 {
3584 	int oldprio, on_rq, running;
3585 	struct rq *rq;
3586 	const struct sched_class *prev_class;
3587 
3588 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3589 
3590 	rq = __task_rq_lock(p);
3591 
3592 	/*
3593 	 * Idle task boosting is a nono in general. There is one
3594 	 * exception, when PREEMPT_RT and NOHZ is active:
3595 	 *
3596 	 * The idle task calls get_next_timer_interrupt() and holds
3597 	 * the timer wheel base->lock on the CPU and another CPU wants
3598 	 * to access the timer (probably to cancel it). We can safely
3599 	 * ignore the boosting request, as the idle CPU runs this code
3600 	 * with interrupts disabled and will complete the lock
3601 	 * protected section without being interrupted. So there is no
3602 	 * real need to boost.
3603 	 */
3604 	if (unlikely(p == rq->idle)) {
3605 		WARN_ON(p != rq->curr);
3606 		WARN_ON(p->pi_blocked_on);
3607 		goto out_unlock;
3608 	}
3609 
3610 	trace_sched_pi_setprio(p, prio);
3611 	oldprio = p->prio;
3612 	prev_class = p->sched_class;
3613 	on_rq = p->on_rq;
3614 	running = task_current(rq, p);
3615 	if (on_rq)
3616 		dequeue_task(rq, p, 0);
3617 	if (running)
3618 		p->sched_class->put_prev_task(rq, p);
3619 
3620 	if (rt_prio(prio))
3621 		p->sched_class = &rt_sched_class;
3622 	else
3623 		p->sched_class = &fair_sched_class;
3624 
3625 	p->prio = prio;
3626 
3627 	if (running)
3628 		p->sched_class->set_curr_task(rq);
3629 	if (on_rq)
3630 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3631 
3632 	check_class_changed(rq, p, prev_class, oldprio);
3633 out_unlock:
3634 	__task_rq_unlock(rq);
3635 }
3636 #endif
3637 void set_user_nice(struct task_struct *p, long nice)
3638 {
3639 	int old_prio, delta, on_rq;
3640 	unsigned long flags;
3641 	struct rq *rq;
3642 
3643 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3644 		return;
3645 	/*
3646 	 * We have to be careful, if called from sys_setpriority(),
3647 	 * the task might be in the middle of scheduling on another CPU.
3648 	 */
3649 	rq = task_rq_lock(p, &flags);
3650 	/*
3651 	 * The RT priorities are set via sched_setscheduler(), but we still
3652 	 * allow the 'normal' nice value to be set - but as expected
3653 	 * it wont have any effect on scheduling until the task is
3654 	 * SCHED_FIFO/SCHED_RR:
3655 	 */
3656 	if (task_has_rt_policy(p)) {
3657 		p->static_prio = NICE_TO_PRIO(nice);
3658 		goto out_unlock;
3659 	}
3660 	on_rq = p->on_rq;
3661 	if (on_rq)
3662 		dequeue_task(rq, p, 0);
3663 
3664 	p->static_prio = NICE_TO_PRIO(nice);
3665 	set_load_weight(p);
3666 	old_prio = p->prio;
3667 	p->prio = effective_prio(p);
3668 	delta = p->prio - old_prio;
3669 
3670 	if (on_rq) {
3671 		enqueue_task(rq, p, 0);
3672 		/*
3673 		 * If the task increased its priority or is running and
3674 		 * lowered its priority, then reschedule its CPU:
3675 		 */
3676 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3677 			resched_task(rq->curr);
3678 	}
3679 out_unlock:
3680 	task_rq_unlock(rq, p, &flags);
3681 }
3682 EXPORT_SYMBOL(set_user_nice);
3683 
3684 /*
3685  * can_nice - check if a task can reduce its nice value
3686  * @p: task
3687  * @nice: nice value
3688  */
3689 int can_nice(const struct task_struct *p, const int nice)
3690 {
3691 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3692 	int nice_rlim = 20 - nice;
3693 
3694 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3695 		capable(CAP_SYS_NICE));
3696 }
3697 
3698 #ifdef __ARCH_WANT_SYS_NICE
3699 
3700 /*
3701  * sys_nice - change the priority of the current process.
3702  * @increment: priority increment
3703  *
3704  * sys_setpriority is a more generic, but much slower function that
3705  * does similar things.
3706  */
3707 SYSCALL_DEFINE1(nice, int, increment)
3708 {
3709 	long nice, retval;
3710 
3711 	/*
3712 	 * Setpriority might change our priority at the same moment.
3713 	 * We don't have to worry. Conceptually one call occurs first
3714 	 * and we have a single winner.
3715 	 */
3716 	if (increment < -40)
3717 		increment = -40;
3718 	if (increment > 40)
3719 		increment = 40;
3720 
3721 	nice = TASK_NICE(current) + increment;
3722 	if (nice < -20)
3723 		nice = -20;
3724 	if (nice > 19)
3725 		nice = 19;
3726 
3727 	if (increment < 0 && !can_nice(current, nice))
3728 		return -EPERM;
3729 
3730 	retval = security_task_setnice(current, nice);
3731 	if (retval)
3732 		return retval;
3733 
3734 	set_user_nice(current, nice);
3735 	return 0;
3736 }
3737 
3738 #endif
3739 
3740 /**
3741  * task_prio - return the priority value of a given task.
3742  * @p: the task in question.
3743  *
3744  * This is the priority value as seen by users in /proc.
3745  * RT tasks are offset by -200. Normal tasks are centered
3746  * around 0, value goes from -16 to +15.
3747  */
3748 int task_prio(const struct task_struct *p)
3749 {
3750 	return p->prio - MAX_RT_PRIO;
3751 }
3752 
3753 /**
3754  * task_nice - return the nice value of a given task.
3755  * @p: the task in question.
3756  */
3757 int task_nice(const struct task_struct *p)
3758 {
3759 	return TASK_NICE(p);
3760 }
3761 EXPORT_SYMBOL(task_nice);
3762 
3763 /**
3764  * idle_cpu - is a given cpu idle currently?
3765  * @cpu: the processor in question.
3766  */
3767 int idle_cpu(int cpu)
3768 {
3769 	struct rq *rq = cpu_rq(cpu);
3770 
3771 	if (rq->curr != rq->idle)
3772 		return 0;
3773 
3774 	if (rq->nr_running)
3775 		return 0;
3776 
3777 #ifdef CONFIG_SMP
3778 	if (!llist_empty(&rq->wake_list))
3779 		return 0;
3780 #endif
3781 
3782 	return 1;
3783 }
3784 
3785 /**
3786  * idle_task - return the idle task for a given cpu.
3787  * @cpu: the processor in question.
3788  */
3789 struct task_struct *idle_task(int cpu)
3790 {
3791 	return cpu_rq(cpu)->idle;
3792 }
3793 
3794 /**
3795  * find_process_by_pid - find a process with a matching PID value.
3796  * @pid: the pid in question.
3797  */
3798 static struct task_struct *find_process_by_pid(pid_t pid)
3799 {
3800 	return pid ? find_task_by_vpid(pid) : current;
3801 }
3802 
3803 /* Actually do priority change: must hold rq lock. */
3804 static void
3805 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3806 {
3807 	p->policy = policy;
3808 	p->rt_priority = prio;
3809 	p->normal_prio = normal_prio(p);
3810 	/* we are holding p->pi_lock already */
3811 	p->prio = rt_mutex_getprio(p);
3812 	if (rt_prio(p->prio))
3813 		p->sched_class = &rt_sched_class;
3814 	else
3815 		p->sched_class = &fair_sched_class;
3816 	set_load_weight(p);
3817 }
3818 
3819 /*
3820  * check the target process has a UID that matches the current process's
3821  */
3822 static bool check_same_owner(struct task_struct *p)
3823 {
3824 	const struct cred *cred = current_cred(), *pcred;
3825 	bool match;
3826 
3827 	rcu_read_lock();
3828 	pcred = __task_cred(p);
3829 	match = (uid_eq(cred->euid, pcred->euid) ||
3830 		 uid_eq(cred->euid, pcred->uid));
3831 	rcu_read_unlock();
3832 	return match;
3833 }
3834 
3835 static int __sched_setscheduler(struct task_struct *p, int policy,
3836 				const struct sched_param *param, bool user)
3837 {
3838 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3839 	unsigned long flags;
3840 	const struct sched_class *prev_class;
3841 	struct rq *rq;
3842 	int reset_on_fork;
3843 
3844 	/* may grab non-irq protected spin_locks */
3845 	BUG_ON(in_interrupt());
3846 recheck:
3847 	/* double check policy once rq lock held */
3848 	if (policy < 0) {
3849 		reset_on_fork = p->sched_reset_on_fork;
3850 		policy = oldpolicy = p->policy;
3851 	} else {
3852 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3853 		policy &= ~SCHED_RESET_ON_FORK;
3854 
3855 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3856 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3857 				policy != SCHED_IDLE)
3858 			return -EINVAL;
3859 	}
3860 
3861 	/*
3862 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3863 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3864 	 * SCHED_BATCH and SCHED_IDLE is 0.
3865 	 */
3866 	if (param->sched_priority < 0 ||
3867 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3868 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3869 		return -EINVAL;
3870 	if (rt_policy(policy) != (param->sched_priority != 0))
3871 		return -EINVAL;
3872 
3873 	/*
3874 	 * Allow unprivileged RT tasks to decrease priority:
3875 	 */
3876 	if (user && !capable(CAP_SYS_NICE)) {
3877 		if (rt_policy(policy)) {
3878 			unsigned long rlim_rtprio =
3879 					task_rlimit(p, RLIMIT_RTPRIO);
3880 
3881 			/* can't set/change the rt policy */
3882 			if (policy != p->policy && !rlim_rtprio)
3883 				return -EPERM;
3884 
3885 			/* can't increase priority */
3886 			if (param->sched_priority > p->rt_priority &&
3887 			    param->sched_priority > rlim_rtprio)
3888 				return -EPERM;
3889 		}
3890 
3891 		/*
3892 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3893 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3894 		 */
3895 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3896 			if (!can_nice(p, TASK_NICE(p)))
3897 				return -EPERM;
3898 		}
3899 
3900 		/* can't change other user's priorities */
3901 		if (!check_same_owner(p))
3902 			return -EPERM;
3903 
3904 		/* Normal users shall not reset the sched_reset_on_fork flag */
3905 		if (p->sched_reset_on_fork && !reset_on_fork)
3906 			return -EPERM;
3907 	}
3908 
3909 	if (user) {
3910 		retval = security_task_setscheduler(p);
3911 		if (retval)
3912 			return retval;
3913 	}
3914 
3915 	/*
3916 	 * make sure no PI-waiters arrive (or leave) while we are
3917 	 * changing the priority of the task:
3918 	 *
3919 	 * To be able to change p->policy safely, the appropriate
3920 	 * runqueue lock must be held.
3921 	 */
3922 	rq = task_rq_lock(p, &flags);
3923 
3924 	/*
3925 	 * Changing the policy of the stop threads its a very bad idea
3926 	 */
3927 	if (p == rq->stop) {
3928 		task_rq_unlock(rq, p, &flags);
3929 		return -EINVAL;
3930 	}
3931 
3932 	/*
3933 	 * If not changing anything there's no need to proceed further:
3934 	 */
3935 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3936 			param->sched_priority == p->rt_priority))) {
3937 		task_rq_unlock(rq, p, &flags);
3938 		return 0;
3939 	}
3940 
3941 #ifdef CONFIG_RT_GROUP_SCHED
3942 	if (user) {
3943 		/*
3944 		 * Do not allow realtime tasks into groups that have no runtime
3945 		 * assigned.
3946 		 */
3947 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3949 				!task_group_is_autogroup(task_group(p))) {
3950 			task_rq_unlock(rq, p, &flags);
3951 			return -EPERM;
3952 		}
3953 	}
3954 #endif
3955 
3956 	/* recheck policy now with rq lock held */
3957 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3958 		policy = oldpolicy = -1;
3959 		task_rq_unlock(rq, p, &flags);
3960 		goto recheck;
3961 	}
3962 	on_rq = p->on_rq;
3963 	running = task_current(rq, p);
3964 	if (on_rq)
3965 		dequeue_task(rq, p, 0);
3966 	if (running)
3967 		p->sched_class->put_prev_task(rq, p);
3968 
3969 	p->sched_reset_on_fork = reset_on_fork;
3970 
3971 	oldprio = p->prio;
3972 	prev_class = p->sched_class;
3973 	__setscheduler(rq, p, policy, param->sched_priority);
3974 
3975 	if (running)
3976 		p->sched_class->set_curr_task(rq);
3977 	if (on_rq)
3978 		enqueue_task(rq, p, 0);
3979 
3980 	check_class_changed(rq, p, prev_class, oldprio);
3981 	task_rq_unlock(rq, p, &flags);
3982 
3983 	rt_mutex_adjust_pi(p);
3984 
3985 	return 0;
3986 }
3987 
3988 /**
3989  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3990  * @p: the task in question.
3991  * @policy: new policy.
3992  * @param: structure containing the new RT priority.
3993  *
3994  * NOTE that the task may be already dead.
3995  */
3996 int sched_setscheduler(struct task_struct *p, int policy,
3997 		       const struct sched_param *param)
3998 {
3999 	return __sched_setscheduler(p, policy, param, true);
4000 }
4001 EXPORT_SYMBOL_GPL(sched_setscheduler);
4002 
4003 /**
4004  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4005  * @p: the task in question.
4006  * @policy: new policy.
4007  * @param: structure containing the new RT priority.
4008  *
4009  * Just like sched_setscheduler, only don't bother checking if the
4010  * current context has permission.  For example, this is needed in
4011  * stop_machine(): we create temporary high priority worker threads,
4012  * but our caller might not have that capability.
4013  */
4014 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4015 			       const struct sched_param *param)
4016 {
4017 	return __sched_setscheduler(p, policy, param, false);
4018 }
4019 
4020 static int
4021 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4022 {
4023 	struct sched_param lparam;
4024 	struct task_struct *p;
4025 	int retval;
4026 
4027 	if (!param || pid < 0)
4028 		return -EINVAL;
4029 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4030 		return -EFAULT;
4031 
4032 	rcu_read_lock();
4033 	retval = -ESRCH;
4034 	p = find_process_by_pid(pid);
4035 	if (p != NULL)
4036 		retval = sched_setscheduler(p, policy, &lparam);
4037 	rcu_read_unlock();
4038 
4039 	return retval;
4040 }
4041 
4042 /**
4043  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4044  * @pid: the pid in question.
4045  * @policy: new policy.
4046  * @param: structure containing the new RT priority.
4047  */
4048 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4049 		struct sched_param __user *, param)
4050 {
4051 	/* negative values for policy are not valid */
4052 	if (policy < 0)
4053 		return -EINVAL;
4054 
4055 	return do_sched_setscheduler(pid, policy, param);
4056 }
4057 
4058 /**
4059  * sys_sched_setparam - set/change the RT priority of a thread
4060  * @pid: the pid in question.
4061  * @param: structure containing the new RT priority.
4062  */
4063 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4064 {
4065 	return do_sched_setscheduler(pid, -1, param);
4066 }
4067 
4068 /**
4069  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4070  * @pid: the pid in question.
4071  */
4072 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4073 {
4074 	struct task_struct *p;
4075 	int retval;
4076 
4077 	if (pid < 0)
4078 		return -EINVAL;
4079 
4080 	retval = -ESRCH;
4081 	rcu_read_lock();
4082 	p = find_process_by_pid(pid);
4083 	if (p) {
4084 		retval = security_task_getscheduler(p);
4085 		if (!retval)
4086 			retval = p->policy
4087 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4088 	}
4089 	rcu_read_unlock();
4090 	return retval;
4091 }
4092 
4093 /**
4094  * sys_sched_getparam - get the RT priority of a thread
4095  * @pid: the pid in question.
4096  * @param: structure containing the RT priority.
4097  */
4098 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4099 {
4100 	struct sched_param lp;
4101 	struct task_struct *p;
4102 	int retval;
4103 
4104 	if (!param || pid < 0)
4105 		return -EINVAL;
4106 
4107 	rcu_read_lock();
4108 	p = find_process_by_pid(pid);
4109 	retval = -ESRCH;
4110 	if (!p)
4111 		goto out_unlock;
4112 
4113 	retval = security_task_getscheduler(p);
4114 	if (retval)
4115 		goto out_unlock;
4116 
4117 	lp.sched_priority = p->rt_priority;
4118 	rcu_read_unlock();
4119 
4120 	/*
4121 	 * This one might sleep, we cannot do it with a spinlock held ...
4122 	 */
4123 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4124 
4125 	return retval;
4126 
4127 out_unlock:
4128 	rcu_read_unlock();
4129 	return retval;
4130 }
4131 
4132 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4133 {
4134 	cpumask_var_t cpus_allowed, new_mask;
4135 	struct task_struct *p;
4136 	int retval;
4137 
4138 	get_online_cpus();
4139 	rcu_read_lock();
4140 
4141 	p = find_process_by_pid(pid);
4142 	if (!p) {
4143 		rcu_read_unlock();
4144 		put_online_cpus();
4145 		return -ESRCH;
4146 	}
4147 
4148 	/* Prevent p going away */
4149 	get_task_struct(p);
4150 	rcu_read_unlock();
4151 
4152 	if (p->flags & PF_NO_SETAFFINITY) {
4153 		retval = -EINVAL;
4154 		goto out_put_task;
4155 	}
4156 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4157 		retval = -ENOMEM;
4158 		goto out_put_task;
4159 	}
4160 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4161 		retval = -ENOMEM;
4162 		goto out_free_cpus_allowed;
4163 	}
4164 	retval = -EPERM;
4165 	if (!check_same_owner(p)) {
4166 		rcu_read_lock();
4167 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4168 			rcu_read_unlock();
4169 			goto out_unlock;
4170 		}
4171 		rcu_read_unlock();
4172 	}
4173 
4174 	retval = security_task_setscheduler(p);
4175 	if (retval)
4176 		goto out_unlock;
4177 
4178 	cpuset_cpus_allowed(p, cpus_allowed);
4179 	cpumask_and(new_mask, in_mask, cpus_allowed);
4180 again:
4181 	retval = set_cpus_allowed_ptr(p, new_mask);
4182 
4183 	if (!retval) {
4184 		cpuset_cpus_allowed(p, cpus_allowed);
4185 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4186 			/*
4187 			 * We must have raced with a concurrent cpuset
4188 			 * update. Just reset the cpus_allowed to the
4189 			 * cpuset's cpus_allowed
4190 			 */
4191 			cpumask_copy(new_mask, cpus_allowed);
4192 			goto again;
4193 		}
4194 	}
4195 out_unlock:
4196 	free_cpumask_var(new_mask);
4197 out_free_cpus_allowed:
4198 	free_cpumask_var(cpus_allowed);
4199 out_put_task:
4200 	put_task_struct(p);
4201 	put_online_cpus();
4202 	return retval;
4203 }
4204 
4205 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4206 			     struct cpumask *new_mask)
4207 {
4208 	if (len < cpumask_size())
4209 		cpumask_clear(new_mask);
4210 	else if (len > cpumask_size())
4211 		len = cpumask_size();
4212 
4213 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4214 }
4215 
4216 /**
4217  * sys_sched_setaffinity - set the cpu affinity of a process
4218  * @pid: pid of the process
4219  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4220  * @user_mask_ptr: user-space pointer to the new cpu mask
4221  */
4222 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4223 		unsigned long __user *, user_mask_ptr)
4224 {
4225 	cpumask_var_t new_mask;
4226 	int retval;
4227 
4228 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4229 		return -ENOMEM;
4230 
4231 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4232 	if (retval == 0)
4233 		retval = sched_setaffinity(pid, new_mask);
4234 	free_cpumask_var(new_mask);
4235 	return retval;
4236 }
4237 
4238 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4239 {
4240 	struct task_struct *p;
4241 	unsigned long flags;
4242 	int retval;
4243 
4244 	get_online_cpus();
4245 	rcu_read_lock();
4246 
4247 	retval = -ESRCH;
4248 	p = find_process_by_pid(pid);
4249 	if (!p)
4250 		goto out_unlock;
4251 
4252 	retval = security_task_getscheduler(p);
4253 	if (retval)
4254 		goto out_unlock;
4255 
4256 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4257 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4258 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4259 
4260 out_unlock:
4261 	rcu_read_unlock();
4262 	put_online_cpus();
4263 
4264 	return retval;
4265 }
4266 
4267 /**
4268  * sys_sched_getaffinity - get the cpu affinity of a process
4269  * @pid: pid of the process
4270  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4271  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4272  */
4273 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4274 		unsigned long __user *, user_mask_ptr)
4275 {
4276 	int ret;
4277 	cpumask_var_t mask;
4278 
4279 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4280 		return -EINVAL;
4281 	if (len & (sizeof(unsigned long)-1))
4282 		return -EINVAL;
4283 
4284 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4285 		return -ENOMEM;
4286 
4287 	ret = sched_getaffinity(pid, mask);
4288 	if (ret == 0) {
4289 		size_t retlen = min_t(size_t, len, cpumask_size());
4290 
4291 		if (copy_to_user(user_mask_ptr, mask, retlen))
4292 			ret = -EFAULT;
4293 		else
4294 			ret = retlen;
4295 	}
4296 	free_cpumask_var(mask);
4297 
4298 	return ret;
4299 }
4300 
4301 /**
4302  * sys_sched_yield - yield the current processor to other threads.
4303  *
4304  * This function yields the current CPU to other tasks. If there are no
4305  * other threads running on this CPU then this function will return.
4306  */
4307 SYSCALL_DEFINE0(sched_yield)
4308 {
4309 	struct rq *rq = this_rq_lock();
4310 
4311 	schedstat_inc(rq, yld_count);
4312 	current->sched_class->yield_task(rq);
4313 
4314 	/*
4315 	 * Since we are going to call schedule() anyway, there's
4316 	 * no need to preempt or enable interrupts:
4317 	 */
4318 	__release(rq->lock);
4319 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4320 	do_raw_spin_unlock(&rq->lock);
4321 	sched_preempt_enable_no_resched();
4322 
4323 	schedule();
4324 
4325 	return 0;
4326 }
4327 
4328 static inline int should_resched(void)
4329 {
4330 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4331 }
4332 
4333 static void __cond_resched(void)
4334 {
4335 	add_preempt_count(PREEMPT_ACTIVE);
4336 	__schedule();
4337 	sub_preempt_count(PREEMPT_ACTIVE);
4338 }
4339 
4340 int __sched _cond_resched(void)
4341 {
4342 	if (should_resched()) {
4343 		__cond_resched();
4344 		return 1;
4345 	}
4346 	return 0;
4347 }
4348 EXPORT_SYMBOL(_cond_resched);
4349 
4350 /*
4351  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4352  * call schedule, and on return reacquire the lock.
4353  *
4354  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4355  * operations here to prevent schedule() from being called twice (once via
4356  * spin_unlock(), once by hand).
4357  */
4358 int __cond_resched_lock(spinlock_t *lock)
4359 {
4360 	int resched = should_resched();
4361 	int ret = 0;
4362 
4363 	lockdep_assert_held(lock);
4364 
4365 	if (spin_needbreak(lock) || resched) {
4366 		spin_unlock(lock);
4367 		if (resched)
4368 			__cond_resched();
4369 		else
4370 			cpu_relax();
4371 		ret = 1;
4372 		spin_lock(lock);
4373 	}
4374 	return ret;
4375 }
4376 EXPORT_SYMBOL(__cond_resched_lock);
4377 
4378 int __sched __cond_resched_softirq(void)
4379 {
4380 	BUG_ON(!in_softirq());
4381 
4382 	if (should_resched()) {
4383 		local_bh_enable();
4384 		__cond_resched();
4385 		local_bh_disable();
4386 		return 1;
4387 	}
4388 	return 0;
4389 }
4390 EXPORT_SYMBOL(__cond_resched_softirq);
4391 
4392 /**
4393  * yield - yield the current processor to other threads.
4394  *
4395  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4396  *
4397  * The scheduler is at all times free to pick the calling task as the most
4398  * eligible task to run, if removing the yield() call from your code breaks
4399  * it, its already broken.
4400  *
4401  * Typical broken usage is:
4402  *
4403  * while (!event)
4404  * 	yield();
4405  *
4406  * where one assumes that yield() will let 'the other' process run that will
4407  * make event true. If the current task is a SCHED_FIFO task that will never
4408  * happen. Never use yield() as a progress guarantee!!
4409  *
4410  * If you want to use yield() to wait for something, use wait_event().
4411  * If you want to use yield() to be 'nice' for others, use cond_resched().
4412  * If you still want to use yield(), do not!
4413  */
4414 void __sched yield(void)
4415 {
4416 	set_current_state(TASK_RUNNING);
4417 	sys_sched_yield();
4418 }
4419 EXPORT_SYMBOL(yield);
4420 
4421 /**
4422  * yield_to - yield the current processor to another thread in
4423  * your thread group, or accelerate that thread toward the
4424  * processor it's on.
4425  * @p: target task
4426  * @preempt: whether task preemption is allowed or not
4427  *
4428  * It's the caller's job to ensure that the target task struct
4429  * can't go away on us before we can do any checks.
4430  *
4431  * Returns:
4432  *	true (>0) if we indeed boosted the target task.
4433  *	false (0) if we failed to boost the target.
4434  *	-ESRCH if there's no task to yield to.
4435  */
4436 bool __sched yield_to(struct task_struct *p, bool preempt)
4437 {
4438 	struct task_struct *curr = current;
4439 	struct rq *rq, *p_rq;
4440 	unsigned long flags;
4441 	int yielded = 0;
4442 
4443 	local_irq_save(flags);
4444 	rq = this_rq();
4445 
4446 again:
4447 	p_rq = task_rq(p);
4448 	/*
4449 	 * If we're the only runnable task on the rq and target rq also
4450 	 * has only one task, there's absolutely no point in yielding.
4451 	 */
4452 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4453 		yielded = -ESRCH;
4454 		goto out_irq;
4455 	}
4456 
4457 	double_rq_lock(rq, p_rq);
4458 	while (task_rq(p) != p_rq) {
4459 		double_rq_unlock(rq, p_rq);
4460 		goto again;
4461 	}
4462 
4463 	if (!curr->sched_class->yield_to_task)
4464 		goto out_unlock;
4465 
4466 	if (curr->sched_class != p->sched_class)
4467 		goto out_unlock;
4468 
4469 	if (task_running(p_rq, p) || p->state)
4470 		goto out_unlock;
4471 
4472 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4473 	if (yielded) {
4474 		schedstat_inc(rq, yld_count);
4475 		/*
4476 		 * Make p's CPU reschedule; pick_next_entity takes care of
4477 		 * fairness.
4478 		 */
4479 		if (preempt && rq != p_rq)
4480 			resched_task(p_rq->curr);
4481 	}
4482 
4483 out_unlock:
4484 	double_rq_unlock(rq, p_rq);
4485 out_irq:
4486 	local_irq_restore(flags);
4487 
4488 	if (yielded > 0)
4489 		schedule();
4490 
4491 	return yielded;
4492 }
4493 EXPORT_SYMBOL_GPL(yield_to);
4494 
4495 /*
4496  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4497  * that process accounting knows that this is a task in IO wait state.
4498  */
4499 void __sched io_schedule(void)
4500 {
4501 	struct rq *rq = raw_rq();
4502 
4503 	delayacct_blkio_start();
4504 	atomic_inc(&rq->nr_iowait);
4505 	blk_flush_plug(current);
4506 	current->in_iowait = 1;
4507 	schedule();
4508 	current->in_iowait = 0;
4509 	atomic_dec(&rq->nr_iowait);
4510 	delayacct_blkio_end();
4511 }
4512 EXPORT_SYMBOL(io_schedule);
4513 
4514 long __sched io_schedule_timeout(long timeout)
4515 {
4516 	struct rq *rq = raw_rq();
4517 	long ret;
4518 
4519 	delayacct_blkio_start();
4520 	atomic_inc(&rq->nr_iowait);
4521 	blk_flush_plug(current);
4522 	current->in_iowait = 1;
4523 	ret = schedule_timeout(timeout);
4524 	current->in_iowait = 0;
4525 	atomic_dec(&rq->nr_iowait);
4526 	delayacct_blkio_end();
4527 	return ret;
4528 }
4529 
4530 /**
4531  * sys_sched_get_priority_max - return maximum RT priority.
4532  * @policy: scheduling class.
4533  *
4534  * this syscall returns the maximum rt_priority that can be used
4535  * by a given scheduling class.
4536  */
4537 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4538 {
4539 	int ret = -EINVAL;
4540 
4541 	switch (policy) {
4542 	case SCHED_FIFO:
4543 	case SCHED_RR:
4544 		ret = MAX_USER_RT_PRIO-1;
4545 		break;
4546 	case SCHED_NORMAL:
4547 	case SCHED_BATCH:
4548 	case SCHED_IDLE:
4549 		ret = 0;
4550 		break;
4551 	}
4552 	return ret;
4553 }
4554 
4555 /**
4556  * sys_sched_get_priority_min - return minimum RT priority.
4557  * @policy: scheduling class.
4558  *
4559  * this syscall returns the minimum rt_priority that can be used
4560  * by a given scheduling class.
4561  */
4562 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4563 {
4564 	int ret = -EINVAL;
4565 
4566 	switch (policy) {
4567 	case SCHED_FIFO:
4568 	case SCHED_RR:
4569 		ret = 1;
4570 		break;
4571 	case SCHED_NORMAL:
4572 	case SCHED_BATCH:
4573 	case SCHED_IDLE:
4574 		ret = 0;
4575 	}
4576 	return ret;
4577 }
4578 
4579 /**
4580  * sys_sched_rr_get_interval - return the default timeslice of a process.
4581  * @pid: pid of the process.
4582  * @interval: userspace pointer to the timeslice value.
4583  *
4584  * this syscall writes the default timeslice value of a given process
4585  * into the user-space timespec buffer. A value of '0' means infinity.
4586  */
4587 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4588 		struct timespec __user *, interval)
4589 {
4590 	struct task_struct *p;
4591 	unsigned int time_slice;
4592 	unsigned long flags;
4593 	struct rq *rq;
4594 	int retval;
4595 	struct timespec t;
4596 
4597 	if (pid < 0)
4598 		return -EINVAL;
4599 
4600 	retval = -ESRCH;
4601 	rcu_read_lock();
4602 	p = find_process_by_pid(pid);
4603 	if (!p)
4604 		goto out_unlock;
4605 
4606 	retval = security_task_getscheduler(p);
4607 	if (retval)
4608 		goto out_unlock;
4609 
4610 	rq = task_rq_lock(p, &flags);
4611 	time_slice = p->sched_class->get_rr_interval(rq, p);
4612 	task_rq_unlock(rq, p, &flags);
4613 
4614 	rcu_read_unlock();
4615 	jiffies_to_timespec(time_slice, &t);
4616 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4617 	return retval;
4618 
4619 out_unlock:
4620 	rcu_read_unlock();
4621 	return retval;
4622 }
4623 
4624 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4625 
4626 void sched_show_task(struct task_struct *p)
4627 {
4628 	unsigned long free = 0;
4629 	int ppid;
4630 	unsigned state;
4631 
4632 	state = p->state ? __ffs(p->state) + 1 : 0;
4633 	printk(KERN_INFO "%-15.15s %c", p->comm,
4634 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4635 #if BITS_PER_LONG == 32
4636 	if (state == TASK_RUNNING)
4637 		printk(KERN_CONT " running  ");
4638 	else
4639 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4640 #else
4641 	if (state == TASK_RUNNING)
4642 		printk(KERN_CONT "  running task    ");
4643 	else
4644 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4645 #endif
4646 #ifdef CONFIG_DEBUG_STACK_USAGE
4647 	free = stack_not_used(p);
4648 #endif
4649 	rcu_read_lock();
4650 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4651 	rcu_read_unlock();
4652 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4653 		task_pid_nr(p), ppid,
4654 		(unsigned long)task_thread_info(p)->flags);
4655 
4656 	print_worker_info(KERN_INFO, p);
4657 	show_stack(p, NULL);
4658 }
4659 
4660 void show_state_filter(unsigned long state_filter)
4661 {
4662 	struct task_struct *g, *p;
4663 
4664 #if BITS_PER_LONG == 32
4665 	printk(KERN_INFO
4666 		"  task                PC stack   pid father\n");
4667 #else
4668 	printk(KERN_INFO
4669 		"  task                        PC stack   pid father\n");
4670 #endif
4671 	rcu_read_lock();
4672 	do_each_thread(g, p) {
4673 		/*
4674 		 * reset the NMI-timeout, listing all files on a slow
4675 		 * console might take a lot of time:
4676 		 */
4677 		touch_nmi_watchdog();
4678 		if (!state_filter || (p->state & state_filter))
4679 			sched_show_task(p);
4680 	} while_each_thread(g, p);
4681 
4682 	touch_all_softlockup_watchdogs();
4683 
4684 #ifdef CONFIG_SCHED_DEBUG
4685 	sysrq_sched_debug_show();
4686 #endif
4687 	rcu_read_unlock();
4688 	/*
4689 	 * Only show locks if all tasks are dumped:
4690 	 */
4691 	if (!state_filter)
4692 		debug_show_all_locks();
4693 }
4694 
4695 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4696 {
4697 	idle->sched_class = &idle_sched_class;
4698 }
4699 
4700 /**
4701  * init_idle - set up an idle thread for a given CPU
4702  * @idle: task in question
4703  * @cpu: cpu the idle task belongs to
4704  *
4705  * NOTE: this function does not set the idle thread's NEED_RESCHED
4706  * flag, to make booting more robust.
4707  */
4708 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4709 {
4710 	struct rq *rq = cpu_rq(cpu);
4711 	unsigned long flags;
4712 
4713 	raw_spin_lock_irqsave(&rq->lock, flags);
4714 
4715 	__sched_fork(idle);
4716 	idle->state = TASK_RUNNING;
4717 	idle->se.exec_start = sched_clock();
4718 
4719 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4720 	/*
4721 	 * We're having a chicken and egg problem, even though we are
4722 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4723 	 * lockdep check in task_group() will fail.
4724 	 *
4725 	 * Similar case to sched_fork(). / Alternatively we could
4726 	 * use task_rq_lock() here and obtain the other rq->lock.
4727 	 *
4728 	 * Silence PROVE_RCU
4729 	 */
4730 	rcu_read_lock();
4731 	__set_task_cpu(idle, cpu);
4732 	rcu_read_unlock();
4733 
4734 	rq->curr = rq->idle = idle;
4735 #if defined(CONFIG_SMP)
4736 	idle->on_cpu = 1;
4737 #endif
4738 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4739 
4740 	/* Set the preempt count _outside_ the spinlocks! */
4741 	task_thread_info(idle)->preempt_count = 0;
4742 
4743 	/*
4744 	 * The idle tasks have their own, simple scheduling class:
4745 	 */
4746 	idle->sched_class = &idle_sched_class;
4747 	ftrace_graph_init_idle_task(idle, cpu);
4748 	vtime_init_idle(idle);
4749 #if defined(CONFIG_SMP)
4750 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4751 #endif
4752 }
4753 
4754 #ifdef CONFIG_SMP
4755 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4756 {
4757 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4758 		p->sched_class->set_cpus_allowed(p, new_mask);
4759 
4760 	cpumask_copy(&p->cpus_allowed, new_mask);
4761 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4762 }
4763 
4764 /*
4765  * This is how migration works:
4766  *
4767  * 1) we invoke migration_cpu_stop() on the target CPU using
4768  *    stop_one_cpu().
4769  * 2) stopper starts to run (implicitly forcing the migrated thread
4770  *    off the CPU)
4771  * 3) it checks whether the migrated task is still in the wrong runqueue.
4772  * 4) if it's in the wrong runqueue then the migration thread removes
4773  *    it and puts it into the right queue.
4774  * 5) stopper completes and stop_one_cpu() returns and the migration
4775  *    is done.
4776  */
4777 
4778 /*
4779  * Change a given task's CPU affinity. Migrate the thread to a
4780  * proper CPU and schedule it away if the CPU it's executing on
4781  * is removed from the allowed bitmask.
4782  *
4783  * NOTE: the caller must have a valid reference to the task, the
4784  * task must not exit() & deallocate itself prematurely. The
4785  * call is not atomic; no spinlocks may be held.
4786  */
4787 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4788 {
4789 	unsigned long flags;
4790 	struct rq *rq;
4791 	unsigned int dest_cpu;
4792 	int ret = 0;
4793 
4794 	rq = task_rq_lock(p, &flags);
4795 
4796 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4797 		goto out;
4798 
4799 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4800 		ret = -EINVAL;
4801 		goto out;
4802 	}
4803 
4804 	do_set_cpus_allowed(p, new_mask);
4805 
4806 	/* Can the task run on the task's current CPU? If so, we're done */
4807 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4808 		goto out;
4809 
4810 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4811 	if (p->on_rq) {
4812 		struct migration_arg arg = { p, dest_cpu };
4813 		/* Need help from migration thread: drop lock and wait. */
4814 		task_rq_unlock(rq, p, &flags);
4815 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4816 		tlb_migrate_finish(p->mm);
4817 		return 0;
4818 	}
4819 out:
4820 	task_rq_unlock(rq, p, &flags);
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4825 
4826 /*
4827  * Move (not current) task off this cpu, onto dest cpu. We're doing
4828  * this because either it can't run here any more (set_cpus_allowed()
4829  * away from this CPU, or CPU going down), or because we're
4830  * attempting to rebalance this task on exec (sched_exec).
4831  *
4832  * So we race with normal scheduler movements, but that's OK, as long
4833  * as the task is no longer on this CPU.
4834  *
4835  * Returns non-zero if task was successfully migrated.
4836  */
4837 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4838 {
4839 	struct rq *rq_dest, *rq_src;
4840 	int ret = 0;
4841 
4842 	if (unlikely(!cpu_active(dest_cpu)))
4843 		return ret;
4844 
4845 	rq_src = cpu_rq(src_cpu);
4846 	rq_dest = cpu_rq(dest_cpu);
4847 
4848 	raw_spin_lock(&p->pi_lock);
4849 	double_rq_lock(rq_src, rq_dest);
4850 	/* Already moved. */
4851 	if (task_cpu(p) != src_cpu)
4852 		goto done;
4853 	/* Affinity changed (again). */
4854 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4855 		goto fail;
4856 
4857 	/*
4858 	 * If we're not on a rq, the next wake-up will ensure we're
4859 	 * placed properly.
4860 	 */
4861 	if (p->on_rq) {
4862 		dequeue_task(rq_src, p, 0);
4863 		set_task_cpu(p, dest_cpu);
4864 		enqueue_task(rq_dest, p, 0);
4865 		check_preempt_curr(rq_dest, p, 0);
4866 	}
4867 done:
4868 	ret = 1;
4869 fail:
4870 	double_rq_unlock(rq_src, rq_dest);
4871 	raw_spin_unlock(&p->pi_lock);
4872 	return ret;
4873 }
4874 
4875 /*
4876  * migration_cpu_stop - this will be executed by a highprio stopper thread
4877  * and performs thread migration by bumping thread off CPU then
4878  * 'pushing' onto another runqueue.
4879  */
4880 static int migration_cpu_stop(void *data)
4881 {
4882 	struct migration_arg *arg = data;
4883 
4884 	/*
4885 	 * The original target cpu might have gone down and we might
4886 	 * be on another cpu but it doesn't matter.
4887 	 */
4888 	local_irq_disable();
4889 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4890 	local_irq_enable();
4891 	return 0;
4892 }
4893 
4894 #ifdef CONFIG_HOTPLUG_CPU
4895 
4896 /*
4897  * Ensures that the idle task is using init_mm right before its cpu goes
4898  * offline.
4899  */
4900 void idle_task_exit(void)
4901 {
4902 	struct mm_struct *mm = current->active_mm;
4903 
4904 	BUG_ON(cpu_online(smp_processor_id()));
4905 
4906 	if (mm != &init_mm)
4907 		switch_mm(mm, &init_mm, current);
4908 	mmdrop(mm);
4909 }
4910 
4911 /*
4912  * Since this CPU is going 'away' for a while, fold any nr_active delta
4913  * we might have. Assumes we're called after migrate_tasks() so that the
4914  * nr_active count is stable.
4915  *
4916  * Also see the comment "Global load-average calculations".
4917  */
4918 static void calc_load_migrate(struct rq *rq)
4919 {
4920 	long delta = calc_load_fold_active(rq);
4921 	if (delta)
4922 		atomic_long_add(delta, &calc_load_tasks);
4923 }
4924 
4925 /*
4926  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4927  * try_to_wake_up()->select_task_rq().
4928  *
4929  * Called with rq->lock held even though we'er in stop_machine() and
4930  * there's no concurrency possible, we hold the required locks anyway
4931  * because of lock validation efforts.
4932  */
4933 static void migrate_tasks(unsigned int dead_cpu)
4934 {
4935 	struct rq *rq = cpu_rq(dead_cpu);
4936 	struct task_struct *next, *stop = rq->stop;
4937 	int dest_cpu;
4938 
4939 	/*
4940 	 * Fudge the rq selection such that the below task selection loop
4941 	 * doesn't get stuck on the currently eligible stop task.
4942 	 *
4943 	 * We're currently inside stop_machine() and the rq is either stuck
4944 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4945 	 * either way we should never end up calling schedule() until we're
4946 	 * done here.
4947 	 */
4948 	rq->stop = NULL;
4949 
4950 	for ( ; ; ) {
4951 		/*
4952 		 * There's this thread running, bail when that's the only
4953 		 * remaining thread.
4954 		 */
4955 		if (rq->nr_running == 1)
4956 			break;
4957 
4958 		next = pick_next_task(rq);
4959 		BUG_ON(!next);
4960 		next->sched_class->put_prev_task(rq, next);
4961 
4962 		/* Find suitable destination for @next, with force if needed. */
4963 		dest_cpu = select_fallback_rq(dead_cpu, next);
4964 		raw_spin_unlock(&rq->lock);
4965 
4966 		__migrate_task(next, dead_cpu, dest_cpu);
4967 
4968 		raw_spin_lock(&rq->lock);
4969 	}
4970 
4971 	rq->stop = stop;
4972 }
4973 
4974 #endif /* CONFIG_HOTPLUG_CPU */
4975 
4976 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4977 
4978 static struct ctl_table sd_ctl_dir[] = {
4979 	{
4980 		.procname	= "sched_domain",
4981 		.mode		= 0555,
4982 	},
4983 	{}
4984 };
4985 
4986 static struct ctl_table sd_ctl_root[] = {
4987 	{
4988 		.procname	= "kernel",
4989 		.mode		= 0555,
4990 		.child		= sd_ctl_dir,
4991 	},
4992 	{}
4993 };
4994 
4995 static struct ctl_table *sd_alloc_ctl_entry(int n)
4996 {
4997 	struct ctl_table *entry =
4998 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4999 
5000 	return entry;
5001 }
5002 
5003 static void sd_free_ctl_entry(struct ctl_table **tablep)
5004 {
5005 	struct ctl_table *entry;
5006 
5007 	/*
5008 	 * In the intermediate directories, both the child directory and
5009 	 * procname are dynamically allocated and could fail but the mode
5010 	 * will always be set. In the lowest directory the names are
5011 	 * static strings and all have proc handlers.
5012 	 */
5013 	for (entry = *tablep; entry->mode; entry++) {
5014 		if (entry->child)
5015 			sd_free_ctl_entry(&entry->child);
5016 		if (entry->proc_handler == NULL)
5017 			kfree(entry->procname);
5018 	}
5019 
5020 	kfree(*tablep);
5021 	*tablep = NULL;
5022 }
5023 
5024 static int min_load_idx = 0;
5025 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5026 
5027 static void
5028 set_table_entry(struct ctl_table *entry,
5029 		const char *procname, void *data, int maxlen,
5030 		umode_t mode, proc_handler *proc_handler,
5031 		bool load_idx)
5032 {
5033 	entry->procname = procname;
5034 	entry->data = data;
5035 	entry->maxlen = maxlen;
5036 	entry->mode = mode;
5037 	entry->proc_handler = proc_handler;
5038 
5039 	if (load_idx) {
5040 		entry->extra1 = &min_load_idx;
5041 		entry->extra2 = &max_load_idx;
5042 	}
5043 }
5044 
5045 static struct ctl_table *
5046 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5047 {
5048 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5049 
5050 	if (table == NULL)
5051 		return NULL;
5052 
5053 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5054 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5055 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5056 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5057 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5058 		sizeof(int), 0644, proc_dointvec_minmax, true);
5059 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5060 		sizeof(int), 0644, proc_dointvec_minmax, true);
5061 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5062 		sizeof(int), 0644, proc_dointvec_minmax, true);
5063 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5064 		sizeof(int), 0644, proc_dointvec_minmax, true);
5065 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5066 		sizeof(int), 0644, proc_dointvec_minmax, true);
5067 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5068 		sizeof(int), 0644, proc_dointvec_minmax, false);
5069 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5070 		sizeof(int), 0644, proc_dointvec_minmax, false);
5071 	set_table_entry(&table[9], "cache_nice_tries",
5072 		&sd->cache_nice_tries,
5073 		sizeof(int), 0644, proc_dointvec_minmax, false);
5074 	set_table_entry(&table[10], "flags", &sd->flags,
5075 		sizeof(int), 0644, proc_dointvec_minmax, false);
5076 	set_table_entry(&table[11], "name", sd->name,
5077 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5078 	/* &table[12] is terminator */
5079 
5080 	return table;
5081 }
5082 
5083 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5084 {
5085 	struct ctl_table *entry, *table;
5086 	struct sched_domain *sd;
5087 	int domain_num = 0, i;
5088 	char buf[32];
5089 
5090 	for_each_domain(cpu, sd)
5091 		domain_num++;
5092 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5093 	if (table == NULL)
5094 		return NULL;
5095 
5096 	i = 0;
5097 	for_each_domain(cpu, sd) {
5098 		snprintf(buf, 32, "domain%d", i);
5099 		entry->procname = kstrdup(buf, GFP_KERNEL);
5100 		entry->mode = 0555;
5101 		entry->child = sd_alloc_ctl_domain_table(sd);
5102 		entry++;
5103 		i++;
5104 	}
5105 	return table;
5106 }
5107 
5108 static struct ctl_table_header *sd_sysctl_header;
5109 static void register_sched_domain_sysctl(void)
5110 {
5111 	int i, cpu_num = num_possible_cpus();
5112 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5113 	char buf[32];
5114 
5115 	WARN_ON(sd_ctl_dir[0].child);
5116 	sd_ctl_dir[0].child = entry;
5117 
5118 	if (entry == NULL)
5119 		return;
5120 
5121 	for_each_possible_cpu(i) {
5122 		snprintf(buf, 32, "cpu%d", i);
5123 		entry->procname = kstrdup(buf, GFP_KERNEL);
5124 		entry->mode = 0555;
5125 		entry->child = sd_alloc_ctl_cpu_table(i);
5126 		entry++;
5127 	}
5128 
5129 	WARN_ON(sd_sysctl_header);
5130 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5131 }
5132 
5133 /* may be called multiple times per register */
5134 static void unregister_sched_domain_sysctl(void)
5135 {
5136 	if (sd_sysctl_header)
5137 		unregister_sysctl_table(sd_sysctl_header);
5138 	sd_sysctl_header = NULL;
5139 	if (sd_ctl_dir[0].child)
5140 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5141 }
5142 #else
5143 static void register_sched_domain_sysctl(void)
5144 {
5145 }
5146 static void unregister_sched_domain_sysctl(void)
5147 {
5148 }
5149 #endif
5150 
5151 static void set_rq_online(struct rq *rq)
5152 {
5153 	if (!rq->online) {
5154 		const struct sched_class *class;
5155 
5156 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5157 		rq->online = 1;
5158 
5159 		for_each_class(class) {
5160 			if (class->rq_online)
5161 				class->rq_online(rq);
5162 		}
5163 	}
5164 }
5165 
5166 static void set_rq_offline(struct rq *rq)
5167 {
5168 	if (rq->online) {
5169 		const struct sched_class *class;
5170 
5171 		for_each_class(class) {
5172 			if (class->rq_offline)
5173 				class->rq_offline(rq);
5174 		}
5175 
5176 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5177 		rq->online = 0;
5178 	}
5179 }
5180 
5181 /*
5182  * migration_call - callback that gets triggered when a CPU is added.
5183  * Here we can start up the necessary migration thread for the new CPU.
5184  */
5185 static int __cpuinit
5186 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5187 {
5188 	int cpu = (long)hcpu;
5189 	unsigned long flags;
5190 	struct rq *rq = cpu_rq(cpu);
5191 
5192 	switch (action & ~CPU_TASKS_FROZEN) {
5193 
5194 	case CPU_UP_PREPARE:
5195 		rq->calc_load_update = calc_load_update;
5196 		break;
5197 
5198 	case CPU_ONLINE:
5199 		/* Update our root-domain */
5200 		raw_spin_lock_irqsave(&rq->lock, flags);
5201 		if (rq->rd) {
5202 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5203 
5204 			set_rq_online(rq);
5205 		}
5206 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5207 		break;
5208 
5209 #ifdef CONFIG_HOTPLUG_CPU
5210 	case CPU_DYING:
5211 		sched_ttwu_pending();
5212 		/* Update our root-domain */
5213 		raw_spin_lock_irqsave(&rq->lock, flags);
5214 		if (rq->rd) {
5215 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5216 			set_rq_offline(rq);
5217 		}
5218 		migrate_tasks(cpu);
5219 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5220 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5221 		break;
5222 
5223 	case CPU_DEAD:
5224 		calc_load_migrate(rq);
5225 		break;
5226 #endif
5227 	}
5228 
5229 	update_max_interval();
5230 
5231 	return NOTIFY_OK;
5232 }
5233 
5234 /*
5235  * Register at high priority so that task migration (migrate_all_tasks)
5236  * happens before everything else.  This has to be lower priority than
5237  * the notifier in the perf_event subsystem, though.
5238  */
5239 static struct notifier_block __cpuinitdata migration_notifier = {
5240 	.notifier_call = migration_call,
5241 	.priority = CPU_PRI_MIGRATION,
5242 };
5243 
5244 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5245 				      unsigned long action, void *hcpu)
5246 {
5247 	switch (action & ~CPU_TASKS_FROZEN) {
5248 	case CPU_STARTING:
5249 	case CPU_DOWN_FAILED:
5250 		set_cpu_active((long)hcpu, true);
5251 		return NOTIFY_OK;
5252 	default:
5253 		return NOTIFY_DONE;
5254 	}
5255 }
5256 
5257 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5258 					unsigned long action, void *hcpu)
5259 {
5260 	switch (action & ~CPU_TASKS_FROZEN) {
5261 	case CPU_DOWN_PREPARE:
5262 		set_cpu_active((long)hcpu, false);
5263 		return NOTIFY_OK;
5264 	default:
5265 		return NOTIFY_DONE;
5266 	}
5267 }
5268 
5269 static int __init migration_init(void)
5270 {
5271 	void *cpu = (void *)(long)smp_processor_id();
5272 	int err;
5273 
5274 	/* Initialize migration for the boot CPU */
5275 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5276 	BUG_ON(err == NOTIFY_BAD);
5277 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5278 	register_cpu_notifier(&migration_notifier);
5279 
5280 	/* Register cpu active notifiers */
5281 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5282 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5283 
5284 	return 0;
5285 }
5286 early_initcall(migration_init);
5287 #endif
5288 
5289 #ifdef CONFIG_SMP
5290 
5291 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5292 
5293 #ifdef CONFIG_SCHED_DEBUG
5294 
5295 static __read_mostly int sched_debug_enabled;
5296 
5297 static int __init sched_debug_setup(char *str)
5298 {
5299 	sched_debug_enabled = 1;
5300 
5301 	return 0;
5302 }
5303 early_param("sched_debug", sched_debug_setup);
5304 
5305 static inline bool sched_debug(void)
5306 {
5307 	return sched_debug_enabled;
5308 }
5309 
5310 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5311 				  struct cpumask *groupmask)
5312 {
5313 	struct sched_group *group = sd->groups;
5314 	char str[256];
5315 
5316 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5317 	cpumask_clear(groupmask);
5318 
5319 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5320 
5321 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5322 		printk("does not load-balance\n");
5323 		if (sd->parent)
5324 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5325 					" has parent");
5326 		return -1;
5327 	}
5328 
5329 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5330 
5331 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5332 		printk(KERN_ERR "ERROR: domain->span does not contain "
5333 				"CPU%d\n", cpu);
5334 	}
5335 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5336 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5337 				" CPU%d\n", cpu);
5338 	}
5339 
5340 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5341 	do {
5342 		if (!group) {
5343 			printk("\n");
5344 			printk(KERN_ERR "ERROR: group is NULL\n");
5345 			break;
5346 		}
5347 
5348 		/*
5349 		 * Even though we initialize ->power to something semi-sane,
5350 		 * we leave power_orig unset. This allows us to detect if
5351 		 * domain iteration is still funny without causing /0 traps.
5352 		 */
5353 		if (!group->sgp->power_orig) {
5354 			printk(KERN_CONT "\n");
5355 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5356 					"set\n");
5357 			break;
5358 		}
5359 
5360 		if (!cpumask_weight(sched_group_cpus(group))) {
5361 			printk(KERN_CONT "\n");
5362 			printk(KERN_ERR "ERROR: empty group\n");
5363 			break;
5364 		}
5365 
5366 		if (!(sd->flags & SD_OVERLAP) &&
5367 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5368 			printk(KERN_CONT "\n");
5369 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5370 			break;
5371 		}
5372 
5373 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5374 
5375 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5376 
5377 		printk(KERN_CONT " %s", str);
5378 		if (group->sgp->power != SCHED_POWER_SCALE) {
5379 			printk(KERN_CONT " (cpu_power = %d)",
5380 				group->sgp->power);
5381 		}
5382 
5383 		group = group->next;
5384 	} while (group != sd->groups);
5385 	printk(KERN_CONT "\n");
5386 
5387 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5388 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5389 
5390 	if (sd->parent &&
5391 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5392 		printk(KERN_ERR "ERROR: parent span is not a superset "
5393 			"of domain->span\n");
5394 	return 0;
5395 }
5396 
5397 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5398 {
5399 	int level = 0;
5400 
5401 	if (!sched_debug_enabled)
5402 		return;
5403 
5404 	if (!sd) {
5405 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5406 		return;
5407 	}
5408 
5409 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5410 
5411 	for (;;) {
5412 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5413 			break;
5414 		level++;
5415 		sd = sd->parent;
5416 		if (!sd)
5417 			break;
5418 	}
5419 }
5420 #else /* !CONFIG_SCHED_DEBUG */
5421 # define sched_domain_debug(sd, cpu) do { } while (0)
5422 static inline bool sched_debug(void)
5423 {
5424 	return false;
5425 }
5426 #endif /* CONFIG_SCHED_DEBUG */
5427 
5428 static int sd_degenerate(struct sched_domain *sd)
5429 {
5430 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5431 		return 1;
5432 
5433 	/* Following flags need at least 2 groups */
5434 	if (sd->flags & (SD_LOAD_BALANCE |
5435 			 SD_BALANCE_NEWIDLE |
5436 			 SD_BALANCE_FORK |
5437 			 SD_BALANCE_EXEC |
5438 			 SD_SHARE_CPUPOWER |
5439 			 SD_SHARE_PKG_RESOURCES)) {
5440 		if (sd->groups != sd->groups->next)
5441 			return 0;
5442 	}
5443 
5444 	/* Following flags don't use groups */
5445 	if (sd->flags & (SD_WAKE_AFFINE))
5446 		return 0;
5447 
5448 	return 1;
5449 }
5450 
5451 static int
5452 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5453 {
5454 	unsigned long cflags = sd->flags, pflags = parent->flags;
5455 
5456 	if (sd_degenerate(parent))
5457 		return 1;
5458 
5459 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5460 		return 0;
5461 
5462 	/* Flags needing groups don't count if only 1 group in parent */
5463 	if (parent->groups == parent->groups->next) {
5464 		pflags &= ~(SD_LOAD_BALANCE |
5465 				SD_BALANCE_NEWIDLE |
5466 				SD_BALANCE_FORK |
5467 				SD_BALANCE_EXEC |
5468 				SD_SHARE_CPUPOWER |
5469 				SD_SHARE_PKG_RESOURCES);
5470 		if (nr_node_ids == 1)
5471 			pflags &= ~SD_SERIALIZE;
5472 	}
5473 	if (~cflags & pflags)
5474 		return 0;
5475 
5476 	return 1;
5477 }
5478 
5479 static void free_rootdomain(struct rcu_head *rcu)
5480 {
5481 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5482 
5483 	cpupri_cleanup(&rd->cpupri);
5484 	free_cpumask_var(rd->rto_mask);
5485 	free_cpumask_var(rd->online);
5486 	free_cpumask_var(rd->span);
5487 	kfree(rd);
5488 }
5489 
5490 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5491 {
5492 	struct root_domain *old_rd = NULL;
5493 	unsigned long flags;
5494 
5495 	raw_spin_lock_irqsave(&rq->lock, flags);
5496 
5497 	if (rq->rd) {
5498 		old_rd = rq->rd;
5499 
5500 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5501 			set_rq_offline(rq);
5502 
5503 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5504 
5505 		/*
5506 		 * If we dont want to free the old_rt yet then
5507 		 * set old_rd to NULL to skip the freeing later
5508 		 * in this function:
5509 		 */
5510 		if (!atomic_dec_and_test(&old_rd->refcount))
5511 			old_rd = NULL;
5512 	}
5513 
5514 	atomic_inc(&rd->refcount);
5515 	rq->rd = rd;
5516 
5517 	cpumask_set_cpu(rq->cpu, rd->span);
5518 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5519 		set_rq_online(rq);
5520 
5521 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5522 
5523 	if (old_rd)
5524 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5525 }
5526 
5527 static int init_rootdomain(struct root_domain *rd)
5528 {
5529 	memset(rd, 0, sizeof(*rd));
5530 
5531 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5532 		goto out;
5533 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5534 		goto free_span;
5535 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5536 		goto free_online;
5537 
5538 	if (cpupri_init(&rd->cpupri) != 0)
5539 		goto free_rto_mask;
5540 	return 0;
5541 
5542 free_rto_mask:
5543 	free_cpumask_var(rd->rto_mask);
5544 free_online:
5545 	free_cpumask_var(rd->online);
5546 free_span:
5547 	free_cpumask_var(rd->span);
5548 out:
5549 	return -ENOMEM;
5550 }
5551 
5552 /*
5553  * By default the system creates a single root-domain with all cpus as
5554  * members (mimicking the global state we have today).
5555  */
5556 struct root_domain def_root_domain;
5557 
5558 static void init_defrootdomain(void)
5559 {
5560 	init_rootdomain(&def_root_domain);
5561 
5562 	atomic_set(&def_root_domain.refcount, 1);
5563 }
5564 
5565 static struct root_domain *alloc_rootdomain(void)
5566 {
5567 	struct root_domain *rd;
5568 
5569 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5570 	if (!rd)
5571 		return NULL;
5572 
5573 	if (init_rootdomain(rd) != 0) {
5574 		kfree(rd);
5575 		return NULL;
5576 	}
5577 
5578 	return rd;
5579 }
5580 
5581 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5582 {
5583 	struct sched_group *tmp, *first;
5584 
5585 	if (!sg)
5586 		return;
5587 
5588 	first = sg;
5589 	do {
5590 		tmp = sg->next;
5591 
5592 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5593 			kfree(sg->sgp);
5594 
5595 		kfree(sg);
5596 		sg = tmp;
5597 	} while (sg != first);
5598 }
5599 
5600 static void free_sched_domain(struct rcu_head *rcu)
5601 {
5602 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5603 
5604 	/*
5605 	 * If its an overlapping domain it has private groups, iterate and
5606 	 * nuke them all.
5607 	 */
5608 	if (sd->flags & SD_OVERLAP) {
5609 		free_sched_groups(sd->groups, 1);
5610 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5611 		kfree(sd->groups->sgp);
5612 		kfree(sd->groups);
5613 	}
5614 	kfree(sd);
5615 }
5616 
5617 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5618 {
5619 	call_rcu(&sd->rcu, free_sched_domain);
5620 }
5621 
5622 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5623 {
5624 	for (; sd; sd = sd->parent)
5625 		destroy_sched_domain(sd, cpu);
5626 }
5627 
5628 /*
5629  * Keep a special pointer to the highest sched_domain that has
5630  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5631  * allows us to avoid some pointer chasing select_idle_sibling().
5632  *
5633  * Also keep a unique ID per domain (we use the first cpu number in
5634  * the cpumask of the domain), this allows us to quickly tell if
5635  * two cpus are in the same cache domain, see cpus_share_cache().
5636  */
5637 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5638 DEFINE_PER_CPU(int, sd_llc_id);
5639 
5640 static void update_top_cache_domain(int cpu)
5641 {
5642 	struct sched_domain *sd;
5643 	int id = cpu;
5644 
5645 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5646 	if (sd)
5647 		id = cpumask_first(sched_domain_span(sd));
5648 
5649 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5650 	per_cpu(sd_llc_id, cpu) = id;
5651 }
5652 
5653 /*
5654  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5655  * hold the hotplug lock.
5656  */
5657 static void
5658 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5659 {
5660 	struct rq *rq = cpu_rq(cpu);
5661 	struct sched_domain *tmp;
5662 
5663 	/* Remove the sched domains which do not contribute to scheduling. */
5664 	for (tmp = sd; tmp; ) {
5665 		struct sched_domain *parent = tmp->parent;
5666 		if (!parent)
5667 			break;
5668 
5669 		if (sd_parent_degenerate(tmp, parent)) {
5670 			tmp->parent = parent->parent;
5671 			if (parent->parent)
5672 				parent->parent->child = tmp;
5673 			destroy_sched_domain(parent, cpu);
5674 		} else
5675 			tmp = tmp->parent;
5676 	}
5677 
5678 	if (sd && sd_degenerate(sd)) {
5679 		tmp = sd;
5680 		sd = sd->parent;
5681 		destroy_sched_domain(tmp, cpu);
5682 		if (sd)
5683 			sd->child = NULL;
5684 	}
5685 
5686 	sched_domain_debug(sd, cpu);
5687 
5688 	rq_attach_root(rq, rd);
5689 	tmp = rq->sd;
5690 	rcu_assign_pointer(rq->sd, sd);
5691 	destroy_sched_domains(tmp, cpu);
5692 
5693 	update_top_cache_domain(cpu);
5694 }
5695 
5696 /* cpus with isolated domains */
5697 static cpumask_var_t cpu_isolated_map;
5698 
5699 /* Setup the mask of cpus configured for isolated domains */
5700 static int __init isolated_cpu_setup(char *str)
5701 {
5702 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5703 	cpulist_parse(str, cpu_isolated_map);
5704 	return 1;
5705 }
5706 
5707 __setup("isolcpus=", isolated_cpu_setup);
5708 
5709 static const struct cpumask *cpu_cpu_mask(int cpu)
5710 {
5711 	return cpumask_of_node(cpu_to_node(cpu));
5712 }
5713 
5714 struct sd_data {
5715 	struct sched_domain **__percpu sd;
5716 	struct sched_group **__percpu sg;
5717 	struct sched_group_power **__percpu sgp;
5718 };
5719 
5720 struct s_data {
5721 	struct sched_domain ** __percpu sd;
5722 	struct root_domain	*rd;
5723 };
5724 
5725 enum s_alloc {
5726 	sa_rootdomain,
5727 	sa_sd,
5728 	sa_sd_storage,
5729 	sa_none,
5730 };
5731 
5732 struct sched_domain_topology_level;
5733 
5734 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5735 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5736 
5737 #define SDTL_OVERLAP	0x01
5738 
5739 struct sched_domain_topology_level {
5740 	sched_domain_init_f init;
5741 	sched_domain_mask_f mask;
5742 	int		    flags;
5743 	int		    numa_level;
5744 	struct sd_data      data;
5745 };
5746 
5747 /*
5748  * Build an iteration mask that can exclude certain CPUs from the upwards
5749  * domain traversal.
5750  *
5751  * Asymmetric node setups can result in situations where the domain tree is of
5752  * unequal depth, make sure to skip domains that already cover the entire
5753  * range.
5754  *
5755  * In that case build_sched_domains() will have terminated the iteration early
5756  * and our sibling sd spans will be empty. Domains should always include the
5757  * cpu they're built on, so check that.
5758  *
5759  */
5760 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5761 {
5762 	const struct cpumask *span = sched_domain_span(sd);
5763 	struct sd_data *sdd = sd->private;
5764 	struct sched_domain *sibling;
5765 	int i;
5766 
5767 	for_each_cpu(i, span) {
5768 		sibling = *per_cpu_ptr(sdd->sd, i);
5769 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5770 			continue;
5771 
5772 		cpumask_set_cpu(i, sched_group_mask(sg));
5773 	}
5774 }
5775 
5776 /*
5777  * Return the canonical balance cpu for this group, this is the first cpu
5778  * of this group that's also in the iteration mask.
5779  */
5780 int group_balance_cpu(struct sched_group *sg)
5781 {
5782 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5783 }
5784 
5785 static int
5786 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5787 {
5788 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5789 	const struct cpumask *span = sched_domain_span(sd);
5790 	struct cpumask *covered = sched_domains_tmpmask;
5791 	struct sd_data *sdd = sd->private;
5792 	struct sched_domain *child;
5793 	int i;
5794 
5795 	cpumask_clear(covered);
5796 
5797 	for_each_cpu(i, span) {
5798 		struct cpumask *sg_span;
5799 
5800 		if (cpumask_test_cpu(i, covered))
5801 			continue;
5802 
5803 		child = *per_cpu_ptr(sdd->sd, i);
5804 
5805 		/* See the comment near build_group_mask(). */
5806 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5807 			continue;
5808 
5809 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5810 				GFP_KERNEL, cpu_to_node(cpu));
5811 
5812 		if (!sg)
5813 			goto fail;
5814 
5815 		sg_span = sched_group_cpus(sg);
5816 		if (child->child) {
5817 			child = child->child;
5818 			cpumask_copy(sg_span, sched_domain_span(child));
5819 		} else
5820 			cpumask_set_cpu(i, sg_span);
5821 
5822 		cpumask_or(covered, covered, sg_span);
5823 
5824 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5825 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5826 			build_group_mask(sd, sg);
5827 
5828 		/*
5829 		 * Initialize sgp->power such that even if we mess up the
5830 		 * domains and no possible iteration will get us here, we won't
5831 		 * die on a /0 trap.
5832 		 */
5833 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5834 
5835 		/*
5836 		 * Make sure the first group of this domain contains the
5837 		 * canonical balance cpu. Otherwise the sched_domain iteration
5838 		 * breaks. See update_sg_lb_stats().
5839 		 */
5840 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5841 		    group_balance_cpu(sg) == cpu)
5842 			groups = sg;
5843 
5844 		if (!first)
5845 			first = sg;
5846 		if (last)
5847 			last->next = sg;
5848 		last = sg;
5849 		last->next = first;
5850 	}
5851 	sd->groups = groups;
5852 
5853 	return 0;
5854 
5855 fail:
5856 	free_sched_groups(first, 0);
5857 
5858 	return -ENOMEM;
5859 }
5860 
5861 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5862 {
5863 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5864 	struct sched_domain *child = sd->child;
5865 
5866 	if (child)
5867 		cpu = cpumask_first(sched_domain_span(child));
5868 
5869 	if (sg) {
5870 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5871 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5872 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5873 	}
5874 
5875 	return cpu;
5876 }
5877 
5878 /*
5879  * build_sched_groups will build a circular linked list of the groups
5880  * covered by the given span, and will set each group's ->cpumask correctly,
5881  * and ->cpu_power to 0.
5882  *
5883  * Assumes the sched_domain tree is fully constructed
5884  */
5885 static int
5886 build_sched_groups(struct sched_domain *sd, int cpu)
5887 {
5888 	struct sched_group *first = NULL, *last = NULL;
5889 	struct sd_data *sdd = sd->private;
5890 	const struct cpumask *span = sched_domain_span(sd);
5891 	struct cpumask *covered;
5892 	int i;
5893 
5894 	get_group(cpu, sdd, &sd->groups);
5895 	atomic_inc(&sd->groups->ref);
5896 
5897 	if (cpu != cpumask_first(sched_domain_span(sd)))
5898 		return 0;
5899 
5900 	lockdep_assert_held(&sched_domains_mutex);
5901 	covered = sched_domains_tmpmask;
5902 
5903 	cpumask_clear(covered);
5904 
5905 	for_each_cpu(i, span) {
5906 		struct sched_group *sg;
5907 		int group = get_group(i, sdd, &sg);
5908 		int j;
5909 
5910 		if (cpumask_test_cpu(i, covered))
5911 			continue;
5912 
5913 		cpumask_clear(sched_group_cpus(sg));
5914 		sg->sgp->power = 0;
5915 		cpumask_setall(sched_group_mask(sg));
5916 
5917 		for_each_cpu(j, span) {
5918 			if (get_group(j, sdd, NULL) != group)
5919 				continue;
5920 
5921 			cpumask_set_cpu(j, covered);
5922 			cpumask_set_cpu(j, sched_group_cpus(sg));
5923 		}
5924 
5925 		if (!first)
5926 			first = sg;
5927 		if (last)
5928 			last->next = sg;
5929 		last = sg;
5930 	}
5931 	last->next = first;
5932 
5933 	return 0;
5934 }
5935 
5936 /*
5937  * Initialize sched groups cpu_power.
5938  *
5939  * cpu_power indicates the capacity of sched group, which is used while
5940  * distributing the load between different sched groups in a sched domain.
5941  * Typically cpu_power for all the groups in a sched domain will be same unless
5942  * there are asymmetries in the topology. If there are asymmetries, group
5943  * having more cpu_power will pickup more load compared to the group having
5944  * less cpu_power.
5945  */
5946 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5947 {
5948 	struct sched_group *sg = sd->groups;
5949 
5950 	WARN_ON(!sd || !sg);
5951 
5952 	do {
5953 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5954 		sg = sg->next;
5955 	} while (sg != sd->groups);
5956 
5957 	if (cpu != group_balance_cpu(sg))
5958 		return;
5959 
5960 	update_group_power(sd, cpu);
5961 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5962 }
5963 
5964 int __weak arch_sd_sibling_asym_packing(void)
5965 {
5966        return 0*SD_ASYM_PACKING;
5967 }
5968 
5969 /*
5970  * Initializers for schedule domains
5971  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5972  */
5973 
5974 #ifdef CONFIG_SCHED_DEBUG
5975 # define SD_INIT_NAME(sd, type)		sd->name = #type
5976 #else
5977 # define SD_INIT_NAME(sd, type)		do { } while (0)
5978 #endif
5979 
5980 #define SD_INIT_FUNC(type)						\
5981 static noinline struct sched_domain *					\
5982 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5983 {									\
5984 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5985 	*sd = SD_##type##_INIT;						\
5986 	SD_INIT_NAME(sd, type);						\
5987 	sd->private = &tl->data;					\
5988 	return sd;							\
5989 }
5990 
5991 SD_INIT_FUNC(CPU)
5992 #ifdef CONFIG_SCHED_SMT
5993  SD_INIT_FUNC(SIBLING)
5994 #endif
5995 #ifdef CONFIG_SCHED_MC
5996  SD_INIT_FUNC(MC)
5997 #endif
5998 #ifdef CONFIG_SCHED_BOOK
5999  SD_INIT_FUNC(BOOK)
6000 #endif
6001 
6002 static int default_relax_domain_level = -1;
6003 int sched_domain_level_max;
6004 
6005 static int __init setup_relax_domain_level(char *str)
6006 {
6007 	if (kstrtoint(str, 0, &default_relax_domain_level))
6008 		pr_warn("Unable to set relax_domain_level\n");
6009 
6010 	return 1;
6011 }
6012 __setup("relax_domain_level=", setup_relax_domain_level);
6013 
6014 static void set_domain_attribute(struct sched_domain *sd,
6015 				 struct sched_domain_attr *attr)
6016 {
6017 	int request;
6018 
6019 	if (!attr || attr->relax_domain_level < 0) {
6020 		if (default_relax_domain_level < 0)
6021 			return;
6022 		else
6023 			request = default_relax_domain_level;
6024 	} else
6025 		request = attr->relax_domain_level;
6026 	if (request < sd->level) {
6027 		/* turn off idle balance on this domain */
6028 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6029 	} else {
6030 		/* turn on idle balance on this domain */
6031 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6032 	}
6033 }
6034 
6035 static void __sdt_free(const struct cpumask *cpu_map);
6036 static int __sdt_alloc(const struct cpumask *cpu_map);
6037 
6038 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6039 				 const struct cpumask *cpu_map)
6040 {
6041 	switch (what) {
6042 	case sa_rootdomain:
6043 		if (!atomic_read(&d->rd->refcount))
6044 			free_rootdomain(&d->rd->rcu); /* fall through */
6045 	case sa_sd:
6046 		free_percpu(d->sd); /* fall through */
6047 	case sa_sd_storage:
6048 		__sdt_free(cpu_map); /* fall through */
6049 	case sa_none:
6050 		break;
6051 	}
6052 }
6053 
6054 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6055 						   const struct cpumask *cpu_map)
6056 {
6057 	memset(d, 0, sizeof(*d));
6058 
6059 	if (__sdt_alloc(cpu_map))
6060 		return sa_sd_storage;
6061 	d->sd = alloc_percpu(struct sched_domain *);
6062 	if (!d->sd)
6063 		return sa_sd_storage;
6064 	d->rd = alloc_rootdomain();
6065 	if (!d->rd)
6066 		return sa_sd;
6067 	return sa_rootdomain;
6068 }
6069 
6070 /*
6071  * NULL the sd_data elements we've used to build the sched_domain and
6072  * sched_group structure so that the subsequent __free_domain_allocs()
6073  * will not free the data we're using.
6074  */
6075 static void claim_allocations(int cpu, struct sched_domain *sd)
6076 {
6077 	struct sd_data *sdd = sd->private;
6078 
6079 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6080 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6081 
6082 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6083 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6084 
6085 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6086 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6087 }
6088 
6089 #ifdef CONFIG_SCHED_SMT
6090 static const struct cpumask *cpu_smt_mask(int cpu)
6091 {
6092 	return topology_thread_cpumask(cpu);
6093 }
6094 #endif
6095 
6096 /*
6097  * Topology list, bottom-up.
6098  */
6099 static struct sched_domain_topology_level default_topology[] = {
6100 #ifdef CONFIG_SCHED_SMT
6101 	{ sd_init_SIBLING, cpu_smt_mask, },
6102 #endif
6103 #ifdef CONFIG_SCHED_MC
6104 	{ sd_init_MC, cpu_coregroup_mask, },
6105 #endif
6106 #ifdef CONFIG_SCHED_BOOK
6107 	{ sd_init_BOOK, cpu_book_mask, },
6108 #endif
6109 	{ sd_init_CPU, cpu_cpu_mask, },
6110 	{ NULL, },
6111 };
6112 
6113 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6114 
6115 #ifdef CONFIG_NUMA
6116 
6117 static int sched_domains_numa_levels;
6118 static int *sched_domains_numa_distance;
6119 static struct cpumask ***sched_domains_numa_masks;
6120 static int sched_domains_curr_level;
6121 
6122 static inline int sd_local_flags(int level)
6123 {
6124 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6125 		return 0;
6126 
6127 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6128 }
6129 
6130 static struct sched_domain *
6131 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6132 {
6133 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6134 	int level = tl->numa_level;
6135 	int sd_weight = cpumask_weight(
6136 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6137 
6138 	*sd = (struct sched_domain){
6139 		.min_interval		= sd_weight,
6140 		.max_interval		= 2*sd_weight,
6141 		.busy_factor		= 32,
6142 		.imbalance_pct		= 125,
6143 		.cache_nice_tries	= 2,
6144 		.busy_idx		= 3,
6145 		.idle_idx		= 2,
6146 		.newidle_idx		= 0,
6147 		.wake_idx		= 0,
6148 		.forkexec_idx		= 0,
6149 
6150 		.flags			= 1*SD_LOAD_BALANCE
6151 					| 1*SD_BALANCE_NEWIDLE
6152 					| 0*SD_BALANCE_EXEC
6153 					| 0*SD_BALANCE_FORK
6154 					| 0*SD_BALANCE_WAKE
6155 					| 0*SD_WAKE_AFFINE
6156 					| 0*SD_SHARE_CPUPOWER
6157 					| 0*SD_SHARE_PKG_RESOURCES
6158 					| 1*SD_SERIALIZE
6159 					| 0*SD_PREFER_SIBLING
6160 					| sd_local_flags(level)
6161 					,
6162 		.last_balance		= jiffies,
6163 		.balance_interval	= sd_weight,
6164 	};
6165 	SD_INIT_NAME(sd, NUMA);
6166 	sd->private = &tl->data;
6167 
6168 	/*
6169 	 * Ugly hack to pass state to sd_numa_mask()...
6170 	 */
6171 	sched_domains_curr_level = tl->numa_level;
6172 
6173 	return sd;
6174 }
6175 
6176 static const struct cpumask *sd_numa_mask(int cpu)
6177 {
6178 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6179 }
6180 
6181 static void sched_numa_warn(const char *str)
6182 {
6183 	static int done = false;
6184 	int i,j;
6185 
6186 	if (done)
6187 		return;
6188 
6189 	done = true;
6190 
6191 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6192 
6193 	for (i = 0; i < nr_node_ids; i++) {
6194 		printk(KERN_WARNING "  ");
6195 		for (j = 0; j < nr_node_ids; j++)
6196 			printk(KERN_CONT "%02d ", node_distance(i,j));
6197 		printk(KERN_CONT "\n");
6198 	}
6199 	printk(KERN_WARNING "\n");
6200 }
6201 
6202 static bool find_numa_distance(int distance)
6203 {
6204 	int i;
6205 
6206 	if (distance == node_distance(0, 0))
6207 		return true;
6208 
6209 	for (i = 0; i < sched_domains_numa_levels; i++) {
6210 		if (sched_domains_numa_distance[i] == distance)
6211 			return true;
6212 	}
6213 
6214 	return false;
6215 }
6216 
6217 static void sched_init_numa(void)
6218 {
6219 	int next_distance, curr_distance = node_distance(0, 0);
6220 	struct sched_domain_topology_level *tl;
6221 	int level = 0;
6222 	int i, j, k;
6223 
6224 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6225 	if (!sched_domains_numa_distance)
6226 		return;
6227 
6228 	/*
6229 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6230 	 * unique distances in the node_distance() table.
6231 	 *
6232 	 * Assumes node_distance(0,j) includes all distances in
6233 	 * node_distance(i,j) in order to avoid cubic time.
6234 	 */
6235 	next_distance = curr_distance;
6236 	for (i = 0; i < nr_node_ids; i++) {
6237 		for (j = 0; j < nr_node_ids; j++) {
6238 			for (k = 0; k < nr_node_ids; k++) {
6239 				int distance = node_distance(i, k);
6240 
6241 				if (distance > curr_distance &&
6242 				    (distance < next_distance ||
6243 				     next_distance == curr_distance))
6244 					next_distance = distance;
6245 
6246 				/*
6247 				 * While not a strong assumption it would be nice to know
6248 				 * about cases where if node A is connected to B, B is not
6249 				 * equally connected to A.
6250 				 */
6251 				if (sched_debug() && node_distance(k, i) != distance)
6252 					sched_numa_warn("Node-distance not symmetric");
6253 
6254 				if (sched_debug() && i && !find_numa_distance(distance))
6255 					sched_numa_warn("Node-0 not representative");
6256 			}
6257 			if (next_distance != curr_distance) {
6258 				sched_domains_numa_distance[level++] = next_distance;
6259 				sched_domains_numa_levels = level;
6260 				curr_distance = next_distance;
6261 			} else break;
6262 		}
6263 
6264 		/*
6265 		 * In case of sched_debug() we verify the above assumption.
6266 		 */
6267 		if (!sched_debug())
6268 			break;
6269 	}
6270 	/*
6271 	 * 'level' contains the number of unique distances, excluding the
6272 	 * identity distance node_distance(i,i).
6273 	 *
6274 	 * The sched_domains_numa_distance[] array includes the actual distance
6275 	 * numbers.
6276 	 */
6277 
6278 	/*
6279 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6280 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6281 	 * the array will contain less then 'level' members. This could be
6282 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6283 	 * in other functions.
6284 	 *
6285 	 * We reset it to 'level' at the end of this function.
6286 	 */
6287 	sched_domains_numa_levels = 0;
6288 
6289 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6290 	if (!sched_domains_numa_masks)
6291 		return;
6292 
6293 	/*
6294 	 * Now for each level, construct a mask per node which contains all
6295 	 * cpus of nodes that are that many hops away from us.
6296 	 */
6297 	for (i = 0; i < level; i++) {
6298 		sched_domains_numa_masks[i] =
6299 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6300 		if (!sched_domains_numa_masks[i])
6301 			return;
6302 
6303 		for (j = 0; j < nr_node_ids; j++) {
6304 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6305 			if (!mask)
6306 				return;
6307 
6308 			sched_domains_numa_masks[i][j] = mask;
6309 
6310 			for (k = 0; k < nr_node_ids; k++) {
6311 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6312 					continue;
6313 
6314 				cpumask_or(mask, mask, cpumask_of_node(k));
6315 			}
6316 		}
6317 	}
6318 
6319 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6320 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6321 	if (!tl)
6322 		return;
6323 
6324 	/*
6325 	 * Copy the default topology bits..
6326 	 */
6327 	for (i = 0; default_topology[i].init; i++)
6328 		tl[i] = default_topology[i];
6329 
6330 	/*
6331 	 * .. and append 'j' levels of NUMA goodness.
6332 	 */
6333 	for (j = 0; j < level; i++, j++) {
6334 		tl[i] = (struct sched_domain_topology_level){
6335 			.init = sd_numa_init,
6336 			.mask = sd_numa_mask,
6337 			.flags = SDTL_OVERLAP,
6338 			.numa_level = j,
6339 		};
6340 	}
6341 
6342 	sched_domain_topology = tl;
6343 
6344 	sched_domains_numa_levels = level;
6345 }
6346 
6347 static void sched_domains_numa_masks_set(int cpu)
6348 {
6349 	int i, j;
6350 	int node = cpu_to_node(cpu);
6351 
6352 	for (i = 0; i < sched_domains_numa_levels; i++) {
6353 		for (j = 0; j < nr_node_ids; j++) {
6354 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6355 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6356 		}
6357 	}
6358 }
6359 
6360 static void sched_domains_numa_masks_clear(int cpu)
6361 {
6362 	int i, j;
6363 	for (i = 0; i < sched_domains_numa_levels; i++) {
6364 		for (j = 0; j < nr_node_ids; j++)
6365 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6366 	}
6367 }
6368 
6369 /*
6370  * Update sched_domains_numa_masks[level][node] array when new cpus
6371  * are onlined.
6372  */
6373 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6374 					   unsigned long action,
6375 					   void *hcpu)
6376 {
6377 	int cpu = (long)hcpu;
6378 
6379 	switch (action & ~CPU_TASKS_FROZEN) {
6380 	case CPU_ONLINE:
6381 		sched_domains_numa_masks_set(cpu);
6382 		break;
6383 
6384 	case CPU_DEAD:
6385 		sched_domains_numa_masks_clear(cpu);
6386 		break;
6387 
6388 	default:
6389 		return NOTIFY_DONE;
6390 	}
6391 
6392 	return NOTIFY_OK;
6393 }
6394 #else
6395 static inline void sched_init_numa(void)
6396 {
6397 }
6398 
6399 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6400 					   unsigned long action,
6401 					   void *hcpu)
6402 {
6403 	return 0;
6404 }
6405 #endif /* CONFIG_NUMA */
6406 
6407 static int __sdt_alloc(const struct cpumask *cpu_map)
6408 {
6409 	struct sched_domain_topology_level *tl;
6410 	int j;
6411 
6412 	for (tl = sched_domain_topology; tl->init; tl++) {
6413 		struct sd_data *sdd = &tl->data;
6414 
6415 		sdd->sd = alloc_percpu(struct sched_domain *);
6416 		if (!sdd->sd)
6417 			return -ENOMEM;
6418 
6419 		sdd->sg = alloc_percpu(struct sched_group *);
6420 		if (!sdd->sg)
6421 			return -ENOMEM;
6422 
6423 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6424 		if (!sdd->sgp)
6425 			return -ENOMEM;
6426 
6427 		for_each_cpu(j, cpu_map) {
6428 			struct sched_domain *sd;
6429 			struct sched_group *sg;
6430 			struct sched_group_power *sgp;
6431 
6432 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6433 					GFP_KERNEL, cpu_to_node(j));
6434 			if (!sd)
6435 				return -ENOMEM;
6436 
6437 			*per_cpu_ptr(sdd->sd, j) = sd;
6438 
6439 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6440 					GFP_KERNEL, cpu_to_node(j));
6441 			if (!sg)
6442 				return -ENOMEM;
6443 
6444 			sg->next = sg;
6445 
6446 			*per_cpu_ptr(sdd->sg, j) = sg;
6447 
6448 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6449 					GFP_KERNEL, cpu_to_node(j));
6450 			if (!sgp)
6451 				return -ENOMEM;
6452 
6453 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6454 		}
6455 	}
6456 
6457 	return 0;
6458 }
6459 
6460 static void __sdt_free(const struct cpumask *cpu_map)
6461 {
6462 	struct sched_domain_topology_level *tl;
6463 	int j;
6464 
6465 	for (tl = sched_domain_topology; tl->init; tl++) {
6466 		struct sd_data *sdd = &tl->data;
6467 
6468 		for_each_cpu(j, cpu_map) {
6469 			struct sched_domain *sd;
6470 
6471 			if (sdd->sd) {
6472 				sd = *per_cpu_ptr(sdd->sd, j);
6473 				if (sd && (sd->flags & SD_OVERLAP))
6474 					free_sched_groups(sd->groups, 0);
6475 				kfree(*per_cpu_ptr(sdd->sd, j));
6476 			}
6477 
6478 			if (sdd->sg)
6479 				kfree(*per_cpu_ptr(sdd->sg, j));
6480 			if (sdd->sgp)
6481 				kfree(*per_cpu_ptr(sdd->sgp, j));
6482 		}
6483 		free_percpu(sdd->sd);
6484 		sdd->sd = NULL;
6485 		free_percpu(sdd->sg);
6486 		sdd->sg = NULL;
6487 		free_percpu(sdd->sgp);
6488 		sdd->sgp = NULL;
6489 	}
6490 }
6491 
6492 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6493 		struct s_data *d, const struct cpumask *cpu_map,
6494 		struct sched_domain_attr *attr, struct sched_domain *child,
6495 		int cpu)
6496 {
6497 	struct sched_domain *sd = tl->init(tl, cpu);
6498 	if (!sd)
6499 		return child;
6500 
6501 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6502 	if (child) {
6503 		sd->level = child->level + 1;
6504 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6505 		child->parent = sd;
6506 	}
6507 	sd->child = child;
6508 	set_domain_attribute(sd, attr);
6509 
6510 	return sd;
6511 }
6512 
6513 /*
6514  * Build sched domains for a given set of cpus and attach the sched domains
6515  * to the individual cpus
6516  */
6517 static int build_sched_domains(const struct cpumask *cpu_map,
6518 			       struct sched_domain_attr *attr)
6519 {
6520 	enum s_alloc alloc_state = sa_none;
6521 	struct sched_domain *sd;
6522 	struct s_data d;
6523 	int i, ret = -ENOMEM;
6524 
6525 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6526 	if (alloc_state != sa_rootdomain)
6527 		goto error;
6528 
6529 	/* Set up domains for cpus specified by the cpu_map. */
6530 	for_each_cpu(i, cpu_map) {
6531 		struct sched_domain_topology_level *tl;
6532 
6533 		sd = NULL;
6534 		for (tl = sched_domain_topology; tl->init; tl++) {
6535 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6536 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6537 				sd->flags |= SD_OVERLAP;
6538 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6539 				break;
6540 		}
6541 
6542 		while (sd->child)
6543 			sd = sd->child;
6544 
6545 		*per_cpu_ptr(d.sd, i) = sd;
6546 	}
6547 
6548 	/* Build the groups for the domains */
6549 	for_each_cpu(i, cpu_map) {
6550 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6551 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6552 			if (sd->flags & SD_OVERLAP) {
6553 				if (build_overlap_sched_groups(sd, i))
6554 					goto error;
6555 			} else {
6556 				if (build_sched_groups(sd, i))
6557 					goto error;
6558 			}
6559 		}
6560 	}
6561 
6562 	/* Calculate CPU power for physical packages and nodes */
6563 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6564 		if (!cpumask_test_cpu(i, cpu_map))
6565 			continue;
6566 
6567 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6568 			claim_allocations(i, sd);
6569 			init_sched_groups_power(i, sd);
6570 		}
6571 	}
6572 
6573 	/* Attach the domains */
6574 	rcu_read_lock();
6575 	for_each_cpu(i, cpu_map) {
6576 		sd = *per_cpu_ptr(d.sd, i);
6577 		cpu_attach_domain(sd, d.rd, i);
6578 	}
6579 	rcu_read_unlock();
6580 
6581 	ret = 0;
6582 error:
6583 	__free_domain_allocs(&d, alloc_state, cpu_map);
6584 	return ret;
6585 }
6586 
6587 static cpumask_var_t *doms_cur;	/* current sched domains */
6588 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6589 static struct sched_domain_attr *dattr_cur;
6590 				/* attribues of custom domains in 'doms_cur' */
6591 
6592 /*
6593  * Special case: If a kmalloc of a doms_cur partition (array of
6594  * cpumask) fails, then fallback to a single sched domain,
6595  * as determined by the single cpumask fallback_doms.
6596  */
6597 static cpumask_var_t fallback_doms;
6598 
6599 /*
6600  * arch_update_cpu_topology lets virtualized architectures update the
6601  * cpu core maps. It is supposed to return 1 if the topology changed
6602  * or 0 if it stayed the same.
6603  */
6604 int __attribute__((weak)) arch_update_cpu_topology(void)
6605 {
6606 	return 0;
6607 }
6608 
6609 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6610 {
6611 	int i;
6612 	cpumask_var_t *doms;
6613 
6614 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6615 	if (!doms)
6616 		return NULL;
6617 	for (i = 0; i < ndoms; i++) {
6618 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6619 			free_sched_domains(doms, i);
6620 			return NULL;
6621 		}
6622 	}
6623 	return doms;
6624 }
6625 
6626 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6627 {
6628 	unsigned int i;
6629 	for (i = 0; i < ndoms; i++)
6630 		free_cpumask_var(doms[i]);
6631 	kfree(doms);
6632 }
6633 
6634 /*
6635  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6636  * For now this just excludes isolated cpus, but could be used to
6637  * exclude other special cases in the future.
6638  */
6639 static int init_sched_domains(const struct cpumask *cpu_map)
6640 {
6641 	int err;
6642 
6643 	arch_update_cpu_topology();
6644 	ndoms_cur = 1;
6645 	doms_cur = alloc_sched_domains(ndoms_cur);
6646 	if (!doms_cur)
6647 		doms_cur = &fallback_doms;
6648 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6649 	err = build_sched_domains(doms_cur[0], NULL);
6650 	register_sched_domain_sysctl();
6651 
6652 	return err;
6653 }
6654 
6655 /*
6656  * Detach sched domains from a group of cpus specified in cpu_map
6657  * These cpus will now be attached to the NULL domain
6658  */
6659 static void detach_destroy_domains(const struct cpumask *cpu_map)
6660 {
6661 	int i;
6662 
6663 	rcu_read_lock();
6664 	for_each_cpu(i, cpu_map)
6665 		cpu_attach_domain(NULL, &def_root_domain, i);
6666 	rcu_read_unlock();
6667 }
6668 
6669 /* handle null as "default" */
6670 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6671 			struct sched_domain_attr *new, int idx_new)
6672 {
6673 	struct sched_domain_attr tmp;
6674 
6675 	/* fast path */
6676 	if (!new && !cur)
6677 		return 1;
6678 
6679 	tmp = SD_ATTR_INIT;
6680 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6681 			new ? (new + idx_new) : &tmp,
6682 			sizeof(struct sched_domain_attr));
6683 }
6684 
6685 /*
6686  * Partition sched domains as specified by the 'ndoms_new'
6687  * cpumasks in the array doms_new[] of cpumasks. This compares
6688  * doms_new[] to the current sched domain partitioning, doms_cur[].
6689  * It destroys each deleted domain and builds each new domain.
6690  *
6691  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6692  * The masks don't intersect (don't overlap.) We should setup one
6693  * sched domain for each mask. CPUs not in any of the cpumasks will
6694  * not be load balanced. If the same cpumask appears both in the
6695  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6696  * it as it is.
6697  *
6698  * The passed in 'doms_new' should be allocated using
6699  * alloc_sched_domains.  This routine takes ownership of it and will
6700  * free_sched_domains it when done with it. If the caller failed the
6701  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6702  * and partition_sched_domains() will fallback to the single partition
6703  * 'fallback_doms', it also forces the domains to be rebuilt.
6704  *
6705  * If doms_new == NULL it will be replaced with cpu_online_mask.
6706  * ndoms_new == 0 is a special case for destroying existing domains,
6707  * and it will not create the default domain.
6708  *
6709  * Call with hotplug lock held
6710  */
6711 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6712 			     struct sched_domain_attr *dattr_new)
6713 {
6714 	int i, j, n;
6715 	int new_topology;
6716 
6717 	mutex_lock(&sched_domains_mutex);
6718 
6719 	/* always unregister in case we don't destroy any domains */
6720 	unregister_sched_domain_sysctl();
6721 
6722 	/* Let architecture update cpu core mappings. */
6723 	new_topology = arch_update_cpu_topology();
6724 
6725 	n = doms_new ? ndoms_new : 0;
6726 
6727 	/* Destroy deleted domains */
6728 	for (i = 0; i < ndoms_cur; i++) {
6729 		for (j = 0; j < n && !new_topology; j++) {
6730 			if (cpumask_equal(doms_cur[i], doms_new[j])
6731 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6732 				goto match1;
6733 		}
6734 		/* no match - a current sched domain not in new doms_new[] */
6735 		detach_destroy_domains(doms_cur[i]);
6736 match1:
6737 		;
6738 	}
6739 
6740 	if (doms_new == NULL) {
6741 		ndoms_cur = 0;
6742 		doms_new = &fallback_doms;
6743 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6744 		WARN_ON_ONCE(dattr_new);
6745 	}
6746 
6747 	/* Build new domains */
6748 	for (i = 0; i < ndoms_new; i++) {
6749 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6750 			if (cpumask_equal(doms_new[i], doms_cur[j])
6751 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6752 				goto match2;
6753 		}
6754 		/* no match - add a new doms_new */
6755 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6756 match2:
6757 		;
6758 	}
6759 
6760 	/* Remember the new sched domains */
6761 	if (doms_cur != &fallback_doms)
6762 		free_sched_domains(doms_cur, ndoms_cur);
6763 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6764 	doms_cur = doms_new;
6765 	dattr_cur = dattr_new;
6766 	ndoms_cur = ndoms_new;
6767 
6768 	register_sched_domain_sysctl();
6769 
6770 	mutex_unlock(&sched_domains_mutex);
6771 }
6772 
6773 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6774 
6775 /*
6776  * Update cpusets according to cpu_active mask.  If cpusets are
6777  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6778  * around partition_sched_domains().
6779  *
6780  * If we come here as part of a suspend/resume, don't touch cpusets because we
6781  * want to restore it back to its original state upon resume anyway.
6782  */
6783 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6784 			     void *hcpu)
6785 {
6786 	switch (action) {
6787 	case CPU_ONLINE_FROZEN:
6788 	case CPU_DOWN_FAILED_FROZEN:
6789 
6790 		/*
6791 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6792 		 * resume sequence. As long as this is not the last online
6793 		 * operation in the resume sequence, just build a single sched
6794 		 * domain, ignoring cpusets.
6795 		 */
6796 		num_cpus_frozen--;
6797 		if (likely(num_cpus_frozen)) {
6798 			partition_sched_domains(1, NULL, NULL);
6799 			break;
6800 		}
6801 
6802 		/*
6803 		 * This is the last CPU online operation. So fall through and
6804 		 * restore the original sched domains by considering the
6805 		 * cpuset configurations.
6806 		 */
6807 
6808 	case CPU_ONLINE:
6809 	case CPU_DOWN_FAILED:
6810 		cpuset_update_active_cpus(true);
6811 		break;
6812 	default:
6813 		return NOTIFY_DONE;
6814 	}
6815 	return NOTIFY_OK;
6816 }
6817 
6818 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6819 			       void *hcpu)
6820 {
6821 	switch (action) {
6822 	case CPU_DOWN_PREPARE:
6823 		cpuset_update_active_cpus(false);
6824 		break;
6825 	case CPU_DOWN_PREPARE_FROZEN:
6826 		num_cpus_frozen++;
6827 		partition_sched_domains(1, NULL, NULL);
6828 		break;
6829 	default:
6830 		return NOTIFY_DONE;
6831 	}
6832 	return NOTIFY_OK;
6833 }
6834 
6835 void __init sched_init_smp(void)
6836 {
6837 	cpumask_var_t non_isolated_cpus;
6838 
6839 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6840 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6841 
6842 	sched_init_numa();
6843 
6844 	get_online_cpus();
6845 	mutex_lock(&sched_domains_mutex);
6846 	init_sched_domains(cpu_active_mask);
6847 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6848 	if (cpumask_empty(non_isolated_cpus))
6849 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6850 	mutex_unlock(&sched_domains_mutex);
6851 	put_online_cpus();
6852 
6853 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6854 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6855 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6856 
6857 	/* RT runtime code needs to handle some hotplug events */
6858 	hotcpu_notifier(update_runtime, 0);
6859 
6860 	init_hrtick();
6861 
6862 	/* Move init over to a non-isolated CPU */
6863 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6864 		BUG();
6865 	sched_init_granularity();
6866 	free_cpumask_var(non_isolated_cpus);
6867 
6868 	init_sched_rt_class();
6869 }
6870 #else
6871 void __init sched_init_smp(void)
6872 {
6873 	sched_init_granularity();
6874 }
6875 #endif /* CONFIG_SMP */
6876 
6877 const_debug unsigned int sysctl_timer_migration = 1;
6878 
6879 int in_sched_functions(unsigned long addr)
6880 {
6881 	return in_lock_functions(addr) ||
6882 		(addr >= (unsigned long)__sched_text_start
6883 		&& addr < (unsigned long)__sched_text_end);
6884 }
6885 
6886 #ifdef CONFIG_CGROUP_SCHED
6887 /*
6888  * Default task group.
6889  * Every task in system belongs to this group at bootup.
6890  */
6891 struct task_group root_task_group;
6892 LIST_HEAD(task_groups);
6893 #endif
6894 
6895 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6896 
6897 void __init sched_init(void)
6898 {
6899 	int i, j;
6900 	unsigned long alloc_size = 0, ptr;
6901 
6902 #ifdef CONFIG_FAIR_GROUP_SCHED
6903 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6904 #endif
6905 #ifdef CONFIG_RT_GROUP_SCHED
6906 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6907 #endif
6908 #ifdef CONFIG_CPUMASK_OFFSTACK
6909 	alloc_size += num_possible_cpus() * cpumask_size();
6910 #endif
6911 	if (alloc_size) {
6912 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6913 
6914 #ifdef CONFIG_FAIR_GROUP_SCHED
6915 		root_task_group.se = (struct sched_entity **)ptr;
6916 		ptr += nr_cpu_ids * sizeof(void **);
6917 
6918 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6919 		ptr += nr_cpu_ids * sizeof(void **);
6920 
6921 #endif /* CONFIG_FAIR_GROUP_SCHED */
6922 #ifdef CONFIG_RT_GROUP_SCHED
6923 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6924 		ptr += nr_cpu_ids * sizeof(void **);
6925 
6926 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6927 		ptr += nr_cpu_ids * sizeof(void **);
6928 
6929 #endif /* CONFIG_RT_GROUP_SCHED */
6930 #ifdef CONFIG_CPUMASK_OFFSTACK
6931 		for_each_possible_cpu(i) {
6932 			per_cpu(load_balance_mask, i) = (void *)ptr;
6933 			ptr += cpumask_size();
6934 		}
6935 #endif /* CONFIG_CPUMASK_OFFSTACK */
6936 	}
6937 
6938 #ifdef CONFIG_SMP
6939 	init_defrootdomain();
6940 #endif
6941 
6942 	init_rt_bandwidth(&def_rt_bandwidth,
6943 			global_rt_period(), global_rt_runtime());
6944 
6945 #ifdef CONFIG_RT_GROUP_SCHED
6946 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6947 			global_rt_period(), global_rt_runtime());
6948 #endif /* CONFIG_RT_GROUP_SCHED */
6949 
6950 #ifdef CONFIG_CGROUP_SCHED
6951 	list_add(&root_task_group.list, &task_groups);
6952 	INIT_LIST_HEAD(&root_task_group.children);
6953 	INIT_LIST_HEAD(&root_task_group.siblings);
6954 	autogroup_init(&init_task);
6955 
6956 #endif /* CONFIG_CGROUP_SCHED */
6957 
6958 	for_each_possible_cpu(i) {
6959 		struct rq *rq;
6960 
6961 		rq = cpu_rq(i);
6962 		raw_spin_lock_init(&rq->lock);
6963 		rq->nr_running = 0;
6964 		rq->calc_load_active = 0;
6965 		rq->calc_load_update = jiffies + LOAD_FREQ;
6966 		init_cfs_rq(&rq->cfs);
6967 		init_rt_rq(&rq->rt, rq);
6968 #ifdef CONFIG_FAIR_GROUP_SCHED
6969 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6970 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6971 		/*
6972 		 * How much cpu bandwidth does root_task_group get?
6973 		 *
6974 		 * In case of task-groups formed thr' the cgroup filesystem, it
6975 		 * gets 100% of the cpu resources in the system. This overall
6976 		 * system cpu resource is divided among the tasks of
6977 		 * root_task_group and its child task-groups in a fair manner,
6978 		 * based on each entity's (task or task-group's) weight
6979 		 * (se->load.weight).
6980 		 *
6981 		 * In other words, if root_task_group has 10 tasks of weight
6982 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6983 		 * then A0's share of the cpu resource is:
6984 		 *
6985 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6986 		 *
6987 		 * We achieve this by letting root_task_group's tasks sit
6988 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6989 		 */
6990 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6991 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6992 #endif /* CONFIG_FAIR_GROUP_SCHED */
6993 
6994 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6995 #ifdef CONFIG_RT_GROUP_SCHED
6996 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6997 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6998 #endif
6999 
7000 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7001 			rq->cpu_load[j] = 0;
7002 
7003 		rq->last_load_update_tick = jiffies;
7004 
7005 #ifdef CONFIG_SMP
7006 		rq->sd = NULL;
7007 		rq->rd = NULL;
7008 		rq->cpu_power = SCHED_POWER_SCALE;
7009 		rq->post_schedule = 0;
7010 		rq->active_balance = 0;
7011 		rq->next_balance = jiffies;
7012 		rq->push_cpu = 0;
7013 		rq->cpu = i;
7014 		rq->online = 0;
7015 		rq->idle_stamp = 0;
7016 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7017 
7018 		INIT_LIST_HEAD(&rq->cfs_tasks);
7019 
7020 		rq_attach_root(rq, &def_root_domain);
7021 #ifdef CONFIG_NO_HZ_COMMON
7022 		rq->nohz_flags = 0;
7023 #endif
7024 #ifdef CONFIG_NO_HZ_FULL
7025 		rq->last_sched_tick = 0;
7026 #endif
7027 #endif
7028 		init_rq_hrtick(rq);
7029 		atomic_set(&rq->nr_iowait, 0);
7030 	}
7031 
7032 	set_load_weight(&init_task);
7033 
7034 #ifdef CONFIG_PREEMPT_NOTIFIERS
7035 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7036 #endif
7037 
7038 #ifdef CONFIG_RT_MUTEXES
7039 	plist_head_init(&init_task.pi_waiters);
7040 #endif
7041 
7042 	/*
7043 	 * The boot idle thread does lazy MMU switching as well:
7044 	 */
7045 	atomic_inc(&init_mm.mm_count);
7046 	enter_lazy_tlb(&init_mm, current);
7047 
7048 	/*
7049 	 * Make us the idle thread. Technically, schedule() should not be
7050 	 * called from this thread, however somewhere below it might be,
7051 	 * but because we are the idle thread, we just pick up running again
7052 	 * when this runqueue becomes "idle".
7053 	 */
7054 	init_idle(current, smp_processor_id());
7055 
7056 	calc_load_update = jiffies + LOAD_FREQ;
7057 
7058 	/*
7059 	 * During early bootup we pretend to be a normal task:
7060 	 */
7061 	current->sched_class = &fair_sched_class;
7062 
7063 #ifdef CONFIG_SMP
7064 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7065 	/* May be allocated at isolcpus cmdline parse time */
7066 	if (cpu_isolated_map == NULL)
7067 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7068 	idle_thread_set_boot_cpu();
7069 #endif
7070 	init_sched_fair_class();
7071 
7072 	scheduler_running = 1;
7073 }
7074 
7075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7076 static inline int preempt_count_equals(int preempt_offset)
7077 {
7078 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7079 
7080 	return (nested == preempt_offset);
7081 }
7082 
7083 void __might_sleep(const char *file, int line, int preempt_offset)
7084 {
7085 	static unsigned long prev_jiffy;	/* ratelimiting */
7086 
7087 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7088 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7089 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7090 		return;
7091 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7092 		return;
7093 	prev_jiffy = jiffies;
7094 
7095 	printk(KERN_ERR
7096 		"BUG: sleeping function called from invalid context at %s:%d\n",
7097 			file, line);
7098 	printk(KERN_ERR
7099 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7100 			in_atomic(), irqs_disabled(),
7101 			current->pid, current->comm);
7102 
7103 	debug_show_held_locks(current);
7104 	if (irqs_disabled())
7105 		print_irqtrace_events(current);
7106 	dump_stack();
7107 }
7108 EXPORT_SYMBOL(__might_sleep);
7109 #endif
7110 
7111 #ifdef CONFIG_MAGIC_SYSRQ
7112 static void normalize_task(struct rq *rq, struct task_struct *p)
7113 {
7114 	const struct sched_class *prev_class = p->sched_class;
7115 	int old_prio = p->prio;
7116 	int on_rq;
7117 
7118 	on_rq = p->on_rq;
7119 	if (on_rq)
7120 		dequeue_task(rq, p, 0);
7121 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7122 	if (on_rq) {
7123 		enqueue_task(rq, p, 0);
7124 		resched_task(rq->curr);
7125 	}
7126 
7127 	check_class_changed(rq, p, prev_class, old_prio);
7128 }
7129 
7130 void normalize_rt_tasks(void)
7131 {
7132 	struct task_struct *g, *p;
7133 	unsigned long flags;
7134 	struct rq *rq;
7135 
7136 	read_lock_irqsave(&tasklist_lock, flags);
7137 	do_each_thread(g, p) {
7138 		/*
7139 		 * Only normalize user tasks:
7140 		 */
7141 		if (!p->mm)
7142 			continue;
7143 
7144 		p->se.exec_start		= 0;
7145 #ifdef CONFIG_SCHEDSTATS
7146 		p->se.statistics.wait_start	= 0;
7147 		p->se.statistics.sleep_start	= 0;
7148 		p->se.statistics.block_start	= 0;
7149 #endif
7150 
7151 		if (!rt_task(p)) {
7152 			/*
7153 			 * Renice negative nice level userspace
7154 			 * tasks back to 0:
7155 			 */
7156 			if (TASK_NICE(p) < 0 && p->mm)
7157 				set_user_nice(p, 0);
7158 			continue;
7159 		}
7160 
7161 		raw_spin_lock(&p->pi_lock);
7162 		rq = __task_rq_lock(p);
7163 
7164 		normalize_task(rq, p);
7165 
7166 		__task_rq_unlock(rq);
7167 		raw_spin_unlock(&p->pi_lock);
7168 	} while_each_thread(g, p);
7169 
7170 	read_unlock_irqrestore(&tasklist_lock, flags);
7171 }
7172 
7173 #endif /* CONFIG_MAGIC_SYSRQ */
7174 
7175 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7176 /*
7177  * These functions are only useful for the IA64 MCA handling, or kdb.
7178  *
7179  * They can only be called when the whole system has been
7180  * stopped - every CPU needs to be quiescent, and no scheduling
7181  * activity can take place. Using them for anything else would
7182  * be a serious bug, and as a result, they aren't even visible
7183  * under any other configuration.
7184  */
7185 
7186 /**
7187  * curr_task - return the current task for a given cpu.
7188  * @cpu: the processor in question.
7189  *
7190  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7191  */
7192 struct task_struct *curr_task(int cpu)
7193 {
7194 	return cpu_curr(cpu);
7195 }
7196 
7197 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7198 
7199 #ifdef CONFIG_IA64
7200 /**
7201  * set_curr_task - set the current task for a given cpu.
7202  * @cpu: the processor in question.
7203  * @p: the task pointer to set.
7204  *
7205  * Description: This function must only be used when non-maskable interrupts
7206  * are serviced on a separate stack. It allows the architecture to switch the
7207  * notion of the current task on a cpu in a non-blocking manner. This function
7208  * must be called with all CPU's synchronized, and interrupts disabled, the
7209  * and caller must save the original value of the current task (see
7210  * curr_task() above) and restore that value before reenabling interrupts and
7211  * re-starting the system.
7212  *
7213  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7214  */
7215 void set_curr_task(int cpu, struct task_struct *p)
7216 {
7217 	cpu_curr(cpu) = p;
7218 }
7219 
7220 #endif
7221 
7222 #ifdef CONFIG_CGROUP_SCHED
7223 /* task_group_lock serializes the addition/removal of task groups */
7224 static DEFINE_SPINLOCK(task_group_lock);
7225 
7226 static void free_sched_group(struct task_group *tg)
7227 {
7228 	free_fair_sched_group(tg);
7229 	free_rt_sched_group(tg);
7230 	autogroup_free(tg);
7231 	kfree(tg);
7232 }
7233 
7234 /* allocate runqueue etc for a new task group */
7235 struct task_group *sched_create_group(struct task_group *parent)
7236 {
7237 	struct task_group *tg;
7238 
7239 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7240 	if (!tg)
7241 		return ERR_PTR(-ENOMEM);
7242 
7243 	if (!alloc_fair_sched_group(tg, parent))
7244 		goto err;
7245 
7246 	if (!alloc_rt_sched_group(tg, parent))
7247 		goto err;
7248 
7249 	return tg;
7250 
7251 err:
7252 	free_sched_group(tg);
7253 	return ERR_PTR(-ENOMEM);
7254 }
7255 
7256 void sched_online_group(struct task_group *tg, struct task_group *parent)
7257 {
7258 	unsigned long flags;
7259 
7260 	spin_lock_irqsave(&task_group_lock, flags);
7261 	list_add_rcu(&tg->list, &task_groups);
7262 
7263 	WARN_ON(!parent); /* root should already exist */
7264 
7265 	tg->parent = parent;
7266 	INIT_LIST_HEAD(&tg->children);
7267 	list_add_rcu(&tg->siblings, &parent->children);
7268 	spin_unlock_irqrestore(&task_group_lock, flags);
7269 }
7270 
7271 /* rcu callback to free various structures associated with a task group */
7272 static void free_sched_group_rcu(struct rcu_head *rhp)
7273 {
7274 	/* now it should be safe to free those cfs_rqs */
7275 	free_sched_group(container_of(rhp, struct task_group, rcu));
7276 }
7277 
7278 /* Destroy runqueue etc associated with a task group */
7279 void sched_destroy_group(struct task_group *tg)
7280 {
7281 	/* wait for possible concurrent references to cfs_rqs complete */
7282 	call_rcu(&tg->rcu, free_sched_group_rcu);
7283 }
7284 
7285 void sched_offline_group(struct task_group *tg)
7286 {
7287 	unsigned long flags;
7288 	int i;
7289 
7290 	/* end participation in shares distribution */
7291 	for_each_possible_cpu(i)
7292 		unregister_fair_sched_group(tg, i);
7293 
7294 	spin_lock_irqsave(&task_group_lock, flags);
7295 	list_del_rcu(&tg->list);
7296 	list_del_rcu(&tg->siblings);
7297 	spin_unlock_irqrestore(&task_group_lock, flags);
7298 }
7299 
7300 /* change task's runqueue when it moves between groups.
7301  *	The caller of this function should have put the task in its new group
7302  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7303  *	reflect its new group.
7304  */
7305 void sched_move_task(struct task_struct *tsk)
7306 {
7307 	struct task_group *tg;
7308 	int on_rq, running;
7309 	unsigned long flags;
7310 	struct rq *rq;
7311 
7312 	rq = task_rq_lock(tsk, &flags);
7313 
7314 	running = task_current(rq, tsk);
7315 	on_rq = tsk->on_rq;
7316 
7317 	if (on_rq)
7318 		dequeue_task(rq, tsk, 0);
7319 	if (unlikely(running))
7320 		tsk->sched_class->put_prev_task(rq, tsk);
7321 
7322 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7323 				lockdep_is_held(&tsk->sighand->siglock)),
7324 			  struct task_group, css);
7325 	tg = autogroup_task_group(tsk, tg);
7326 	tsk->sched_task_group = tg;
7327 
7328 #ifdef CONFIG_FAIR_GROUP_SCHED
7329 	if (tsk->sched_class->task_move_group)
7330 		tsk->sched_class->task_move_group(tsk, on_rq);
7331 	else
7332 #endif
7333 		set_task_rq(tsk, task_cpu(tsk));
7334 
7335 	if (unlikely(running))
7336 		tsk->sched_class->set_curr_task(rq);
7337 	if (on_rq)
7338 		enqueue_task(rq, tsk, 0);
7339 
7340 	task_rq_unlock(rq, tsk, &flags);
7341 }
7342 #endif /* CONFIG_CGROUP_SCHED */
7343 
7344 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7345 static unsigned long to_ratio(u64 period, u64 runtime)
7346 {
7347 	if (runtime == RUNTIME_INF)
7348 		return 1ULL << 20;
7349 
7350 	return div64_u64(runtime << 20, period);
7351 }
7352 #endif
7353 
7354 #ifdef CONFIG_RT_GROUP_SCHED
7355 /*
7356  * Ensure that the real time constraints are schedulable.
7357  */
7358 static DEFINE_MUTEX(rt_constraints_mutex);
7359 
7360 /* Must be called with tasklist_lock held */
7361 static inline int tg_has_rt_tasks(struct task_group *tg)
7362 {
7363 	struct task_struct *g, *p;
7364 
7365 	do_each_thread(g, p) {
7366 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7367 			return 1;
7368 	} while_each_thread(g, p);
7369 
7370 	return 0;
7371 }
7372 
7373 struct rt_schedulable_data {
7374 	struct task_group *tg;
7375 	u64 rt_period;
7376 	u64 rt_runtime;
7377 };
7378 
7379 static int tg_rt_schedulable(struct task_group *tg, void *data)
7380 {
7381 	struct rt_schedulable_data *d = data;
7382 	struct task_group *child;
7383 	unsigned long total, sum = 0;
7384 	u64 period, runtime;
7385 
7386 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7387 	runtime = tg->rt_bandwidth.rt_runtime;
7388 
7389 	if (tg == d->tg) {
7390 		period = d->rt_period;
7391 		runtime = d->rt_runtime;
7392 	}
7393 
7394 	/*
7395 	 * Cannot have more runtime than the period.
7396 	 */
7397 	if (runtime > period && runtime != RUNTIME_INF)
7398 		return -EINVAL;
7399 
7400 	/*
7401 	 * Ensure we don't starve existing RT tasks.
7402 	 */
7403 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7404 		return -EBUSY;
7405 
7406 	total = to_ratio(period, runtime);
7407 
7408 	/*
7409 	 * Nobody can have more than the global setting allows.
7410 	 */
7411 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7412 		return -EINVAL;
7413 
7414 	/*
7415 	 * The sum of our children's runtime should not exceed our own.
7416 	 */
7417 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7418 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7419 		runtime = child->rt_bandwidth.rt_runtime;
7420 
7421 		if (child == d->tg) {
7422 			period = d->rt_period;
7423 			runtime = d->rt_runtime;
7424 		}
7425 
7426 		sum += to_ratio(period, runtime);
7427 	}
7428 
7429 	if (sum > total)
7430 		return -EINVAL;
7431 
7432 	return 0;
7433 }
7434 
7435 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7436 {
7437 	int ret;
7438 
7439 	struct rt_schedulable_data data = {
7440 		.tg = tg,
7441 		.rt_period = period,
7442 		.rt_runtime = runtime,
7443 	};
7444 
7445 	rcu_read_lock();
7446 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7447 	rcu_read_unlock();
7448 
7449 	return ret;
7450 }
7451 
7452 static int tg_set_rt_bandwidth(struct task_group *tg,
7453 		u64 rt_period, u64 rt_runtime)
7454 {
7455 	int i, err = 0;
7456 
7457 	mutex_lock(&rt_constraints_mutex);
7458 	read_lock(&tasklist_lock);
7459 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7460 	if (err)
7461 		goto unlock;
7462 
7463 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7464 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7465 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7466 
7467 	for_each_possible_cpu(i) {
7468 		struct rt_rq *rt_rq = tg->rt_rq[i];
7469 
7470 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7471 		rt_rq->rt_runtime = rt_runtime;
7472 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7473 	}
7474 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7475 unlock:
7476 	read_unlock(&tasklist_lock);
7477 	mutex_unlock(&rt_constraints_mutex);
7478 
7479 	return err;
7480 }
7481 
7482 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7483 {
7484 	u64 rt_runtime, rt_period;
7485 
7486 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7487 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7488 	if (rt_runtime_us < 0)
7489 		rt_runtime = RUNTIME_INF;
7490 
7491 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7492 }
7493 
7494 static long sched_group_rt_runtime(struct task_group *tg)
7495 {
7496 	u64 rt_runtime_us;
7497 
7498 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7499 		return -1;
7500 
7501 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7502 	do_div(rt_runtime_us, NSEC_PER_USEC);
7503 	return rt_runtime_us;
7504 }
7505 
7506 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7507 {
7508 	u64 rt_runtime, rt_period;
7509 
7510 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7511 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7512 
7513 	if (rt_period == 0)
7514 		return -EINVAL;
7515 
7516 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7517 }
7518 
7519 static long sched_group_rt_period(struct task_group *tg)
7520 {
7521 	u64 rt_period_us;
7522 
7523 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7524 	do_div(rt_period_us, NSEC_PER_USEC);
7525 	return rt_period_us;
7526 }
7527 
7528 static int sched_rt_global_constraints(void)
7529 {
7530 	u64 runtime, period;
7531 	int ret = 0;
7532 
7533 	if (sysctl_sched_rt_period <= 0)
7534 		return -EINVAL;
7535 
7536 	runtime = global_rt_runtime();
7537 	period = global_rt_period();
7538 
7539 	/*
7540 	 * Sanity check on the sysctl variables.
7541 	 */
7542 	if (runtime > period && runtime != RUNTIME_INF)
7543 		return -EINVAL;
7544 
7545 	mutex_lock(&rt_constraints_mutex);
7546 	read_lock(&tasklist_lock);
7547 	ret = __rt_schedulable(NULL, 0, 0);
7548 	read_unlock(&tasklist_lock);
7549 	mutex_unlock(&rt_constraints_mutex);
7550 
7551 	return ret;
7552 }
7553 
7554 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7555 {
7556 	/* Don't accept realtime tasks when there is no way for them to run */
7557 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7558 		return 0;
7559 
7560 	return 1;
7561 }
7562 
7563 #else /* !CONFIG_RT_GROUP_SCHED */
7564 static int sched_rt_global_constraints(void)
7565 {
7566 	unsigned long flags;
7567 	int i;
7568 
7569 	if (sysctl_sched_rt_period <= 0)
7570 		return -EINVAL;
7571 
7572 	/*
7573 	 * There's always some RT tasks in the root group
7574 	 * -- migration, kstopmachine etc..
7575 	 */
7576 	if (sysctl_sched_rt_runtime == 0)
7577 		return -EBUSY;
7578 
7579 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7580 	for_each_possible_cpu(i) {
7581 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7582 
7583 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7584 		rt_rq->rt_runtime = global_rt_runtime();
7585 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7586 	}
7587 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7588 
7589 	return 0;
7590 }
7591 #endif /* CONFIG_RT_GROUP_SCHED */
7592 
7593 int sched_rr_handler(struct ctl_table *table, int write,
7594 		void __user *buffer, size_t *lenp,
7595 		loff_t *ppos)
7596 {
7597 	int ret;
7598 	static DEFINE_MUTEX(mutex);
7599 
7600 	mutex_lock(&mutex);
7601 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7602 	/* make sure that internally we keep jiffies */
7603 	/* also, writing zero resets timeslice to default */
7604 	if (!ret && write) {
7605 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7606 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7607 	}
7608 	mutex_unlock(&mutex);
7609 	return ret;
7610 }
7611 
7612 int sched_rt_handler(struct ctl_table *table, int write,
7613 		void __user *buffer, size_t *lenp,
7614 		loff_t *ppos)
7615 {
7616 	int ret;
7617 	int old_period, old_runtime;
7618 	static DEFINE_MUTEX(mutex);
7619 
7620 	mutex_lock(&mutex);
7621 	old_period = sysctl_sched_rt_period;
7622 	old_runtime = sysctl_sched_rt_runtime;
7623 
7624 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7625 
7626 	if (!ret && write) {
7627 		ret = sched_rt_global_constraints();
7628 		if (ret) {
7629 			sysctl_sched_rt_period = old_period;
7630 			sysctl_sched_rt_runtime = old_runtime;
7631 		} else {
7632 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7633 			def_rt_bandwidth.rt_period =
7634 				ns_to_ktime(global_rt_period());
7635 		}
7636 	}
7637 	mutex_unlock(&mutex);
7638 
7639 	return ret;
7640 }
7641 
7642 #ifdef CONFIG_CGROUP_SCHED
7643 
7644 /* return corresponding task_group object of a cgroup */
7645 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7646 {
7647 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7648 			    struct task_group, css);
7649 }
7650 
7651 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7652 {
7653 	struct task_group *tg, *parent;
7654 
7655 	if (!cgrp->parent) {
7656 		/* This is early initialization for the top cgroup */
7657 		return &root_task_group.css;
7658 	}
7659 
7660 	parent = cgroup_tg(cgrp->parent);
7661 	tg = sched_create_group(parent);
7662 	if (IS_ERR(tg))
7663 		return ERR_PTR(-ENOMEM);
7664 
7665 	return &tg->css;
7666 }
7667 
7668 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7669 {
7670 	struct task_group *tg = cgroup_tg(cgrp);
7671 	struct task_group *parent;
7672 
7673 	if (!cgrp->parent)
7674 		return 0;
7675 
7676 	parent = cgroup_tg(cgrp->parent);
7677 	sched_online_group(tg, parent);
7678 	return 0;
7679 }
7680 
7681 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7682 {
7683 	struct task_group *tg = cgroup_tg(cgrp);
7684 
7685 	sched_destroy_group(tg);
7686 }
7687 
7688 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7689 {
7690 	struct task_group *tg = cgroup_tg(cgrp);
7691 
7692 	sched_offline_group(tg);
7693 }
7694 
7695 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7696 				 struct cgroup_taskset *tset)
7697 {
7698 	struct task_struct *task;
7699 
7700 	cgroup_taskset_for_each(task, cgrp, tset) {
7701 #ifdef CONFIG_RT_GROUP_SCHED
7702 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7703 			return -EINVAL;
7704 #else
7705 		/* We don't support RT-tasks being in separate groups */
7706 		if (task->sched_class != &fair_sched_class)
7707 			return -EINVAL;
7708 #endif
7709 	}
7710 	return 0;
7711 }
7712 
7713 static void cpu_cgroup_attach(struct cgroup *cgrp,
7714 			      struct cgroup_taskset *tset)
7715 {
7716 	struct task_struct *task;
7717 
7718 	cgroup_taskset_for_each(task, cgrp, tset)
7719 		sched_move_task(task);
7720 }
7721 
7722 static void
7723 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7724 		struct task_struct *task)
7725 {
7726 	/*
7727 	 * cgroup_exit() is called in the copy_process() failure path.
7728 	 * Ignore this case since the task hasn't ran yet, this avoids
7729 	 * trying to poke a half freed task state from generic code.
7730 	 */
7731 	if (!(task->flags & PF_EXITING))
7732 		return;
7733 
7734 	sched_move_task(task);
7735 }
7736 
7737 #ifdef CONFIG_FAIR_GROUP_SCHED
7738 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7739 				u64 shareval)
7740 {
7741 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7742 }
7743 
7744 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7745 {
7746 	struct task_group *tg = cgroup_tg(cgrp);
7747 
7748 	return (u64) scale_load_down(tg->shares);
7749 }
7750 
7751 #ifdef CONFIG_CFS_BANDWIDTH
7752 static DEFINE_MUTEX(cfs_constraints_mutex);
7753 
7754 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7755 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7756 
7757 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7758 
7759 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7760 {
7761 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7762 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7763 
7764 	if (tg == &root_task_group)
7765 		return -EINVAL;
7766 
7767 	/*
7768 	 * Ensure we have at some amount of bandwidth every period.  This is
7769 	 * to prevent reaching a state of large arrears when throttled via
7770 	 * entity_tick() resulting in prolonged exit starvation.
7771 	 */
7772 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7773 		return -EINVAL;
7774 
7775 	/*
7776 	 * Likewise, bound things on the otherside by preventing insane quota
7777 	 * periods.  This also allows us to normalize in computing quota
7778 	 * feasibility.
7779 	 */
7780 	if (period > max_cfs_quota_period)
7781 		return -EINVAL;
7782 
7783 	mutex_lock(&cfs_constraints_mutex);
7784 	ret = __cfs_schedulable(tg, period, quota);
7785 	if (ret)
7786 		goto out_unlock;
7787 
7788 	runtime_enabled = quota != RUNTIME_INF;
7789 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7790 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7791 	raw_spin_lock_irq(&cfs_b->lock);
7792 	cfs_b->period = ns_to_ktime(period);
7793 	cfs_b->quota = quota;
7794 
7795 	__refill_cfs_bandwidth_runtime(cfs_b);
7796 	/* restart the period timer (if active) to handle new period expiry */
7797 	if (runtime_enabled && cfs_b->timer_active) {
7798 		/* force a reprogram */
7799 		cfs_b->timer_active = 0;
7800 		__start_cfs_bandwidth(cfs_b);
7801 	}
7802 	raw_spin_unlock_irq(&cfs_b->lock);
7803 
7804 	for_each_possible_cpu(i) {
7805 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7806 		struct rq *rq = cfs_rq->rq;
7807 
7808 		raw_spin_lock_irq(&rq->lock);
7809 		cfs_rq->runtime_enabled = runtime_enabled;
7810 		cfs_rq->runtime_remaining = 0;
7811 
7812 		if (cfs_rq->throttled)
7813 			unthrottle_cfs_rq(cfs_rq);
7814 		raw_spin_unlock_irq(&rq->lock);
7815 	}
7816 out_unlock:
7817 	mutex_unlock(&cfs_constraints_mutex);
7818 
7819 	return ret;
7820 }
7821 
7822 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7823 {
7824 	u64 quota, period;
7825 
7826 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7827 	if (cfs_quota_us < 0)
7828 		quota = RUNTIME_INF;
7829 	else
7830 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7831 
7832 	return tg_set_cfs_bandwidth(tg, period, quota);
7833 }
7834 
7835 long tg_get_cfs_quota(struct task_group *tg)
7836 {
7837 	u64 quota_us;
7838 
7839 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7840 		return -1;
7841 
7842 	quota_us = tg->cfs_bandwidth.quota;
7843 	do_div(quota_us, NSEC_PER_USEC);
7844 
7845 	return quota_us;
7846 }
7847 
7848 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7849 {
7850 	u64 quota, period;
7851 
7852 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7853 	quota = tg->cfs_bandwidth.quota;
7854 
7855 	return tg_set_cfs_bandwidth(tg, period, quota);
7856 }
7857 
7858 long tg_get_cfs_period(struct task_group *tg)
7859 {
7860 	u64 cfs_period_us;
7861 
7862 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7863 	do_div(cfs_period_us, NSEC_PER_USEC);
7864 
7865 	return cfs_period_us;
7866 }
7867 
7868 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7869 {
7870 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7871 }
7872 
7873 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7874 				s64 cfs_quota_us)
7875 {
7876 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7877 }
7878 
7879 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7880 {
7881 	return tg_get_cfs_period(cgroup_tg(cgrp));
7882 }
7883 
7884 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7885 				u64 cfs_period_us)
7886 {
7887 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7888 }
7889 
7890 struct cfs_schedulable_data {
7891 	struct task_group *tg;
7892 	u64 period, quota;
7893 };
7894 
7895 /*
7896  * normalize group quota/period to be quota/max_period
7897  * note: units are usecs
7898  */
7899 static u64 normalize_cfs_quota(struct task_group *tg,
7900 			       struct cfs_schedulable_data *d)
7901 {
7902 	u64 quota, period;
7903 
7904 	if (tg == d->tg) {
7905 		period = d->period;
7906 		quota = d->quota;
7907 	} else {
7908 		period = tg_get_cfs_period(tg);
7909 		quota = tg_get_cfs_quota(tg);
7910 	}
7911 
7912 	/* note: these should typically be equivalent */
7913 	if (quota == RUNTIME_INF || quota == -1)
7914 		return RUNTIME_INF;
7915 
7916 	return to_ratio(period, quota);
7917 }
7918 
7919 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7920 {
7921 	struct cfs_schedulable_data *d = data;
7922 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7923 	s64 quota = 0, parent_quota = -1;
7924 
7925 	if (!tg->parent) {
7926 		quota = RUNTIME_INF;
7927 	} else {
7928 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7929 
7930 		quota = normalize_cfs_quota(tg, d);
7931 		parent_quota = parent_b->hierarchal_quota;
7932 
7933 		/*
7934 		 * ensure max(child_quota) <= parent_quota, inherit when no
7935 		 * limit is set
7936 		 */
7937 		if (quota == RUNTIME_INF)
7938 			quota = parent_quota;
7939 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7940 			return -EINVAL;
7941 	}
7942 	cfs_b->hierarchal_quota = quota;
7943 
7944 	return 0;
7945 }
7946 
7947 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7948 {
7949 	int ret;
7950 	struct cfs_schedulable_data data = {
7951 		.tg = tg,
7952 		.period = period,
7953 		.quota = quota,
7954 	};
7955 
7956 	if (quota != RUNTIME_INF) {
7957 		do_div(data.period, NSEC_PER_USEC);
7958 		do_div(data.quota, NSEC_PER_USEC);
7959 	}
7960 
7961 	rcu_read_lock();
7962 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7963 	rcu_read_unlock();
7964 
7965 	return ret;
7966 }
7967 
7968 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7969 		struct cgroup_map_cb *cb)
7970 {
7971 	struct task_group *tg = cgroup_tg(cgrp);
7972 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7973 
7974 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7975 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7976 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7977 
7978 	return 0;
7979 }
7980 #endif /* CONFIG_CFS_BANDWIDTH */
7981 #endif /* CONFIG_FAIR_GROUP_SCHED */
7982 
7983 #ifdef CONFIG_RT_GROUP_SCHED
7984 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7985 				s64 val)
7986 {
7987 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7988 }
7989 
7990 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7991 {
7992 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7993 }
7994 
7995 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7996 		u64 rt_period_us)
7997 {
7998 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7999 }
8000 
8001 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8002 {
8003 	return sched_group_rt_period(cgroup_tg(cgrp));
8004 }
8005 #endif /* CONFIG_RT_GROUP_SCHED */
8006 
8007 static struct cftype cpu_files[] = {
8008 #ifdef CONFIG_FAIR_GROUP_SCHED
8009 	{
8010 		.name = "shares",
8011 		.read_u64 = cpu_shares_read_u64,
8012 		.write_u64 = cpu_shares_write_u64,
8013 	},
8014 #endif
8015 #ifdef CONFIG_CFS_BANDWIDTH
8016 	{
8017 		.name = "cfs_quota_us",
8018 		.read_s64 = cpu_cfs_quota_read_s64,
8019 		.write_s64 = cpu_cfs_quota_write_s64,
8020 	},
8021 	{
8022 		.name = "cfs_period_us",
8023 		.read_u64 = cpu_cfs_period_read_u64,
8024 		.write_u64 = cpu_cfs_period_write_u64,
8025 	},
8026 	{
8027 		.name = "stat",
8028 		.read_map = cpu_stats_show,
8029 	},
8030 #endif
8031 #ifdef CONFIG_RT_GROUP_SCHED
8032 	{
8033 		.name = "rt_runtime_us",
8034 		.read_s64 = cpu_rt_runtime_read,
8035 		.write_s64 = cpu_rt_runtime_write,
8036 	},
8037 	{
8038 		.name = "rt_period_us",
8039 		.read_u64 = cpu_rt_period_read_uint,
8040 		.write_u64 = cpu_rt_period_write_uint,
8041 	},
8042 #endif
8043 	{ }	/* terminate */
8044 };
8045 
8046 struct cgroup_subsys cpu_cgroup_subsys = {
8047 	.name		= "cpu",
8048 	.css_alloc	= cpu_cgroup_css_alloc,
8049 	.css_free	= cpu_cgroup_css_free,
8050 	.css_online	= cpu_cgroup_css_online,
8051 	.css_offline	= cpu_cgroup_css_offline,
8052 	.can_attach	= cpu_cgroup_can_attach,
8053 	.attach		= cpu_cgroup_attach,
8054 	.exit		= cpu_cgroup_exit,
8055 	.subsys_id	= cpu_cgroup_subsys_id,
8056 	.base_cftypes	= cpu_files,
8057 	.early_init	= 1,
8058 };
8059 
8060 #endif	/* CONFIG_CGROUP_SCHED */
8061 
8062 void dump_cpu_task(int cpu)
8063 {
8064 	pr_info("Task dump for CPU %d:\n", cpu);
8065 	sched_show_task(cpu_curr(cpu));
8066 }
8067