1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 void resched_task(struct task_struct *p) 516 { 517 int cpu; 518 519 assert_raw_spin_locked(&task_rq(p)->lock); 520 521 if (test_tsk_need_resched(p)) 522 return; 523 524 set_tsk_need_resched(p); 525 526 cpu = task_cpu(p); 527 if (cpu == smp_processor_id()) 528 return; 529 530 /* NEED_RESCHED must be visible before we test polling */ 531 smp_mb(); 532 if (!tsk_is_polling(p)) 533 smp_send_reschedule(cpu); 534 } 535 536 void resched_cpu(int cpu) 537 { 538 struct rq *rq = cpu_rq(cpu); 539 unsigned long flags; 540 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 542 return; 543 resched_task(cpu_curr(cpu)); 544 raw_spin_unlock_irqrestore(&rq->lock, flags); 545 } 546 547 #ifdef CONFIG_NO_HZ_COMMON 548 /* 549 * In the semi idle case, use the nearest busy cpu for migrating timers 550 * from an idle cpu. This is good for power-savings. 551 * 552 * We don't do similar optimization for completely idle system, as 553 * selecting an idle cpu will add more delays to the timers than intended 554 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 555 */ 556 int get_nohz_timer_target(void) 557 { 558 int cpu = smp_processor_id(); 559 int i; 560 struct sched_domain *sd; 561 562 rcu_read_lock(); 563 for_each_domain(cpu, sd) { 564 for_each_cpu(i, sched_domain_span(sd)) { 565 if (!idle_cpu(i)) { 566 cpu = i; 567 goto unlock; 568 } 569 } 570 } 571 unlock: 572 rcu_read_unlock(); 573 return cpu; 574 } 575 /* 576 * When add_timer_on() enqueues a timer into the timer wheel of an 577 * idle CPU then this timer might expire before the next timer event 578 * which is scheduled to wake up that CPU. In case of a completely 579 * idle system the next event might even be infinite time into the 580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 581 * leaves the inner idle loop so the newly added timer is taken into 582 * account when the CPU goes back to idle and evaluates the timer 583 * wheel for the next timer event. 584 */ 585 static void wake_up_idle_cpu(int cpu) 586 { 587 struct rq *rq = cpu_rq(cpu); 588 589 if (cpu == smp_processor_id()) 590 return; 591 592 /* 593 * This is safe, as this function is called with the timer 594 * wheel base lock of (cpu) held. When the CPU is on the way 595 * to idle and has not yet set rq->curr to idle then it will 596 * be serialized on the timer wheel base lock and take the new 597 * timer into account automatically. 598 */ 599 if (rq->curr != rq->idle) 600 return; 601 602 /* 603 * We can set TIF_RESCHED on the idle task of the other CPU 604 * lockless. The worst case is that the other CPU runs the 605 * idle task through an additional NOOP schedule() 606 */ 607 set_tsk_need_resched(rq->idle); 608 609 /* NEED_RESCHED must be visible before we test polling */ 610 smp_mb(); 611 if (!tsk_is_polling(rq->idle)) 612 smp_send_reschedule(cpu); 613 } 614 615 static bool wake_up_full_nohz_cpu(int cpu) 616 { 617 if (tick_nohz_full_cpu(cpu)) { 618 if (cpu != smp_processor_id() || 619 tick_nohz_tick_stopped()) 620 smp_send_reschedule(cpu); 621 return true; 622 } 623 624 return false; 625 } 626 627 void wake_up_nohz_cpu(int cpu) 628 { 629 if (!wake_up_full_nohz_cpu(cpu)) 630 wake_up_idle_cpu(cpu); 631 } 632 633 static inline bool got_nohz_idle_kick(void) 634 { 635 int cpu = smp_processor_id(); 636 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 637 } 638 639 #else /* CONFIG_NO_HZ_COMMON */ 640 641 static inline bool got_nohz_idle_kick(void) 642 { 643 return false; 644 } 645 646 #endif /* CONFIG_NO_HZ_COMMON */ 647 648 #ifdef CONFIG_NO_HZ_FULL 649 bool sched_can_stop_tick(void) 650 { 651 struct rq *rq; 652 653 rq = this_rq(); 654 655 /* Make sure rq->nr_running update is visible after the IPI */ 656 smp_rmb(); 657 658 /* More than one running task need preemption */ 659 if (rq->nr_running > 1) 660 return false; 661 662 return true; 663 } 664 #endif /* CONFIG_NO_HZ_FULL */ 665 666 void sched_avg_update(struct rq *rq) 667 { 668 s64 period = sched_avg_period(); 669 670 while ((s64)(rq->clock - rq->age_stamp) > period) { 671 /* 672 * Inline assembly required to prevent the compiler 673 * optimising this loop into a divmod call. 674 * See __iter_div_u64_rem() for another example of this. 675 */ 676 asm("" : "+rm" (rq->age_stamp)); 677 rq->age_stamp += period; 678 rq->rt_avg /= 2; 679 } 680 } 681 682 #else /* !CONFIG_SMP */ 683 void resched_task(struct task_struct *p) 684 { 685 assert_raw_spin_locked(&task_rq(p)->lock); 686 set_tsk_need_resched(p); 687 } 688 #endif /* CONFIG_SMP */ 689 690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 692 /* 693 * Iterate task_group tree rooted at *from, calling @down when first entering a 694 * node and @up when leaving it for the final time. 695 * 696 * Caller must hold rcu_lock or sufficient equivalent. 697 */ 698 int walk_tg_tree_from(struct task_group *from, 699 tg_visitor down, tg_visitor up, void *data) 700 { 701 struct task_group *parent, *child; 702 int ret; 703 704 parent = from; 705 706 down: 707 ret = (*down)(parent, data); 708 if (ret) 709 goto out; 710 list_for_each_entry_rcu(child, &parent->children, siblings) { 711 parent = child; 712 goto down; 713 714 up: 715 continue; 716 } 717 ret = (*up)(parent, data); 718 if (ret || parent == from) 719 goto out; 720 721 child = parent; 722 parent = parent->parent; 723 if (parent) 724 goto up; 725 out: 726 return ret; 727 } 728 729 int tg_nop(struct task_group *tg, void *data) 730 { 731 return 0; 732 } 733 #endif 734 735 static void set_load_weight(struct task_struct *p) 736 { 737 int prio = p->static_prio - MAX_RT_PRIO; 738 struct load_weight *load = &p->se.load; 739 740 /* 741 * SCHED_IDLE tasks get minimal weight: 742 */ 743 if (p->policy == SCHED_IDLE) { 744 load->weight = scale_load(WEIGHT_IDLEPRIO); 745 load->inv_weight = WMULT_IDLEPRIO; 746 return; 747 } 748 749 load->weight = scale_load(prio_to_weight[prio]); 750 load->inv_weight = prio_to_wmult[prio]; 751 } 752 753 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 754 { 755 update_rq_clock(rq); 756 sched_info_queued(p); 757 p->sched_class->enqueue_task(rq, p, flags); 758 } 759 760 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 761 { 762 update_rq_clock(rq); 763 sched_info_dequeued(p); 764 p->sched_class->dequeue_task(rq, p, flags); 765 } 766 767 void activate_task(struct rq *rq, struct task_struct *p, int flags) 768 { 769 if (task_contributes_to_load(p)) 770 rq->nr_uninterruptible--; 771 772 enqueue_task(rq, p, flags); 773 } 774 775 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 776 { 777 if (task_contributes_to_load(p)) 778 rq->nr_uninterruptible++; 779 780 dequeue_task(rq, p, flags); 781 } 782 783 static void update_rq_clock_task(struct rq *rq, s64 delta) 784 { 785 /* 786 * In theory, the compile should just see 0 here, and optimize out the call 787 * to sched_rt_avg_update. But I don't trust it... 788 */ 789 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 790 s64 steal = 0, irq_delta = 0; 791 #endif 792 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 793 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 794 795 /* 796 * Since irq_time is only updated on {soft,}irq_exit, we might run into 797 * this case when a previous update_rq_clock() happened inside a 798 * {soft,}irq region. 799 * 800 * When this happens, we stop ->clock_task and only update the 801 * prev_irq_time stamp to account for the part that fit, so that a next 802 * update will consume the rest. This ensures ->clock_task is 803 * monotonic. 804 * 805 * It does however cause some slight miss-attribution of {soft,}irq 806 * time, a more accurate solution would be to update the irq_time using 807 * the current rq->clock timestamp, except that would require using 808 * atomic ops. 809 */ 810 if (irq_delta > delta) 811 irq_delta = delta; 812 813 rq->prev_irq_time += irq_delta; 814 delta -= irq_delta; 815 #endif 816 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 817 if (static_key_false((¶virt_steal_rq_enabled))) { 818 u64 st; 819 820 steal = paravirt_steal_clock(cpu_of(rq)); 821 steal -= rq->prev_steal_time_rq; 822 823 if (unlikely(steal > delta)) 824 steal = delta; 825 826 st = steal_ticks(steal); 827 steal = st * TICK_NSEC; 828 829 rq->prev_steal_time_rq += steal; 830 831 delta -= steal; 832 } 833 #endif 834 835 rq->clock_task += delta; 836 837 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 838 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 839 sched_rt_avg_update(rq, irq_delta + steal); 840 #endif 841 } 842 843 void sched_set_stop_task(int cpu, struct task_struct *stop) 844 { 845 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 846 struct task_struct *old_stop = cpu_rq(cpu)->stop; 847 848 if (stop) { 849 /* 850 * Make it appear like a SCHED_FIFO task, its something 851 * userspace knows about and won't get confused about. 852 * 853 * Also, it will make PI more or less work without too 854 * much confusion -- but then, stop work should not 855 * rely on PI working anyway. 856 */ 857 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 858 859 stop->sched_class = &stop_sched_class; 860 } 861 862 cpu_rq(cpu)->stop = stop; 863 864 if (old_stop) { 865 /* 866 * Reset it back to a normal scheduling class so that 867 * it can die in pieces. 868 */ 869 old_stop->sched_class = &rt_sched_class; 870 } 871 } 872 873 /* 874 * __normal_prio - return the priority that is based on the static prio 875 */ 876 static inline int __normal_prio(struct task_struct *p) 877 { 878 return p->static_prio; 879 } 880 881 /* 882 * Calculate the expected normal priority: i.e. priority 883 * without taking RT-inheritance into account. Might be 884 * boosted by interactivity modifiers. Changes upon fork, 885 * setprio syscalls, and whenever the interactivity 886 * estimator recalculates. 887 */ 888 static inline int normal_prio(struct task_struct *p) 889 { 890 int prio; 891 892 if (task_has_rt_policy(p)) 893 prio = MAX_RT_PRIO-1 - p->rt_priority; 894 else 895 prio = __normal_prio(p); 896 return prio; 897 } 898 899 /* 900 * Calculate the current priority, i.e. the priority 901 * taken into account by the scheduler. This value might 902 * be boosted by RT tasks, or might be boosted by 903 * interactivity modifiers. Will be RT if the task got 904 * RT-boosted. If not then it returns p->normal_prio. 905 */ 906 static int effective_prio(struct task_struct *p) 907 { 908 p->normal_prio = normal_prio(p); 909 /* 910 * If we are RT tasks or we were boosted to RT priority, 911 * keep the priority unchanged. Otherwise, update priority 912 * to the normal priority: 913 */ 914 if (!rt_prio(p->prio)) 915 return p->normal_prio; 916 return p->prio; 917 } 918 919 /** 920 * task_curr - is this task currently executing on a CPU? 921 * @p: the task in question. 922 */ 923 inline int task_curr(const struct task_struct *p) 924 { 925 return cpu_curr(task_cpu(p)) == p; 926 } 927 928 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 929 const struct sched_class *prev_class, 930 int oldprio) 931 { 932 if (prev_class != p->sched_class) { 933 if (prev_class->switched_from) 934 prev_class->switched_from(rq, p); 935 p->sched_class->switched_to(rq, p); 936 } else if (oldprio != p->prio) 937 p->sched_class->prio_changed(rq, p, oldprio); 938 } 939 940 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 941 { 942 const struct sched_class *class; 943 944 if (p->sched_class == rq->curr->sched_class) { 945 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 946 } else { 947 for_each_class(class) { 948 if (class == rq->curr->sched_class) 949 break; 950 if (class == p->sched_class) { 951 resched_task(rq->curr); 952 break; 953 } 954 } 955 } 956 957 /* 958 * A queue event has occurred, and we're going to schedule. In 959 * this case, we can save a useless back to back clock update. 960 */ 961 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 962 rq->skip_clock_update = 1; 963 } 964 965 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 966 967 void register_task_migration_notifier(struct notifier_block *n) 968 { 969 atomic_notifier_chain_register(&task_migration_notifier, n); 970 } 971 972 #ifdef CONFIG_SMP 973 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 974 { 975 #ifdef CONFIG_SCHED_DEBUG 976 /* 977 * We should never call set_task_cpu() on a blocked task, 978 * ttwu() will sort out the placement. 979 */ 980 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 981 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 982 983 #ifdef CONFIG_LOCKDEP 984 /* 985 * The caller should hold either p->pi_lock or rq->lock, when changing 986 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 987 * 988 * sched_move_task() holds both and thus holding either pins the cgroup, 989 * see task_group(). 990 * 991 * Furthermore, all task_rq users should acquire both locks, see 992 * task_rq_lock(). 993 */ 994 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 995 lockdep_is_held(&task_rq(p)->lock))); 996 #endif 997 #endif 998 999 trace_sched_migrate_task(p, new_cpu); 1000 1001 if (task_cpu(p) != new_cpu) { 1002 struct task_migration_notifier tmn; 1003 1004 if (p->sched_class->migrate_task_rq) 1005 p->sched_class->migrate_task_rq(p, new_cpu); 1006 p->se.nr_migrations++; 1007 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1008 1009 tmn.task = p; 1010 tmn.from_cpu = task_cpu(p); 1011 tmn.to_cpu = new_cpu; 1012 1013 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 1014 } 1015 1016 __set_task_cpu(p, new_cpu); 1017 } 1018 1019 struct migration_arg { 1020 struct task_struct *task; 1021 int dest_cpu; 1022 }; 1023 1024 static int migration_cpu_stop(void *data); 1025 1026 /* 1027 * wait_task_inactive - wait for a thread to unschedule. 1028 * 1029 * If @match_state is nonzero, it's the @p->state value just checked and 1030 * not expected to change. If it changes, i.e. @p might have woken up, 1031 * then return zero. When we succeed in waiting for @p to be off its CPU, 1032 * we return a positive number (its total switch count). If a second call 1033 * a short while later returns the same number, the caller can be sure that 1034 * @p has remained unscheduled the whole time. 1035 * 1036 * The caller must ensure that the task *will* unschedule sometime soon, 1037 * else this function might spin for a *long* time. This function can't 1038 * be called with interrupts off, or it may introduce deadlock with 1039 * smp_call_function() if an IPI is sent by the same process we are 1040 * waiting to become inactive. 1041 */ 1042 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1043 { 1044 unsigned long flags; 1045 int running, on_rq; 1046 unsigned long ncsw; 1047 struct rq *rq; 1048 1049 for (;;) { 1050 /* 1051 * We do the initial early heuristics without holding 1052 * any task-queue locks at all. We'll only try to get 1053 * the runqueue lock when things look like they will 1054 * work out! 1055 */ 1056 rq = task_rq(p); 1057 1058 /* 1059 * If the task is actively running on another CPU 1060 * still, just relax and busy-wait without holding 1061 * any locks. 1062 * 1063 * NOTE! Since we don't hold any locks, it's not 1064 * even sure that "rq" stays as the right runqueue! 1065 * But we don't care, since "task_running()" will 1066 * return false if the runqueue has changed and p 1067 * is actually now running somewhere else! 1068 */ 1069 while (task_running(rq, p)) { 1070 if (match_state && unlikely(p->state != match_state)) 1071 return 0; 1072 cpu_relax(); 1073 } 1074 1075 /* 1076 * Ok, time to look more closely! We need the rq 1077 * lock now, to be *sure*. If we're wrong, we'll 1078 * just go back and repeat. 1079 */ 1080 rq = task_rq_lock(p, &flags); 1081 trace_sched_wait_task(p); 1082 running = task_running(rq, p); 1083 on_rq = p->on_rq; 1084 ncsw = 0; 1085 if (!match_state || p->state == match_state) 1086 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1087 task_rq_unlock(rq, p, &flags); 1088 1089 /* 1090 * If it changed from the expected state, bail out now. 1091 */ 1092 if (unlikely(!ncsw)) 1093 break; 1094 1095 /* 1096 * Was it really running after all now that we 1097 * checked with the proper locks actually held? 1098 * 1099 * Oops. Go back and try again.. 1100 */ 1101 if (unlikely(running)) { 1102 cpu_relax(); 1103 continue; 1104 } 1105 1106 /* 1107 * It's not enough that it's not actively running, 1108 * it must be off the runqueue _entirely_, and not 1109 * preempted! 1110 * 1111 * So if it was still runnable (but just not actively 1112 * running right now), it's preempted, and we should 1113 * yield - it could be a while. 1114 */ 1115 if (unlikely(on_rq)) { 1116 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1117 1118 set_current_state(TASK_UNINTERRUPTIBLE); 1119 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1120 continue; 1121 } 1122 1123 /* 1124 * Ahh, all good. It wasn't running, and it wasn't 1125 * runnable, which means that it will never become 1126 * running in the future either. We're all done! 1127 */ 1128 break; 1129 } 1130 1131 return ncsw; 1132 } 1133 1134 /*** 1135 * kick_process - kick a running thread to enter/exit the kernel 1136 * @p: the to-be-kicked thread 1137 * 1138 * Cause a process which is running on another CPU to enter 1139 * kernel-mode, without any delay. (to get signals handled.) 1140 * 1141 * NOTE: this function doesn't have to take the runqueue lock, 1142 * because all it wants to ensure is that the remote task enters 1143 * the kernel. If the IPI races and the task has been migrated 1144 * to another CPU then no harm is done and the purpose has been 1145 * achieved as well. 1146 */ 1147 void kick_process(struct task_struct *p) 1148 { 1149 int cpu; 1150 1151 preempt_disable(); 1152 cpu = task_cpu(p); 1153 if ((cpu != smp_processor_id()) && task_curr(p)) 1154 smp_send_reschedule(cpu); 1155 preempt_enable(); 1156 } 1157 EXPORT_SYMBOL_GPL(kick_process); 1158 #endif /* CONFIG_SMP */ 1159 1160 #ifdef CONFIG_SMP 1161 /* 1162 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1163 */ 1164 static int select_fallback_rq(int cpu, struct task_struct *p) 1165 { 1166 int nid = cpu_to_node(cpu); 1167 const struct cpumask *nodemask = NULL; 1168 enum { cpuset, possible, fail } state = cpuset; 1169 int dest_cpu; 1170 1171 /* 1172 * If the node that the cpu is on has been offlined, cpu_to_node() 1173 * will return -1. There is no cpu on the node, and we should 1174 * select the cpu on the other node. 1175 */ 1176 if (nid != -1) { 1177 nodemask = cpumask_of_node(nid); 1178 1179 /* Look for allowed, online CPU in same node. */ 1180 for_each_cpu(dest_cpu, nodemask) { 1181 if (!cpu_online(dest_cpu)) 1182 continue; 1183 if (!cpu_active(dest_cpu)) 1184 continue; 1185 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1186 return dest_cpu; 1187 } 1188 } 1189 1190 for (;;) { 1191 /* Any allowed, online CPU? */ 1192 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1193 if (!cpu_online(dest_cpu)) 1194 continue; 1195 if (!cpu_active(dest_cpu)) 1196 continue; 1197 goto out; 1198 } 1199 1200 switch (state) { 1201 case cpuset: 1202 /* No more Mr. Nice Guy. */ 1203 cpuset_cpus_allowed_fallback(p); 1204 state = possible; 1205 break; 1206 1207 case possible: 1208 do_set_cpus_allowed(p, cpu_possible_mask); 1209 state = fail; 1210 break; 1211 1212 case fail: 1213 BUG(); 1214 break; 1215 } 1216 } 1217 1218 out: 1219 if (state != cpuset) { 1220 /* 1221 * Don't tell them about moving exiting tasks or 1222 * kernel threads (both mm NULL), since they never 1223 * leave kernel. 1224 */ 1225 if (p->mm && printk_ratelimit()) { 1226 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1227 task_pid_nr(p), p->comm, cpu); 1228 } 1229 } 1230 1231 return dest_cpu; 1232 } 1233 1234 /* 1235 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1236 */ 1237 static inline 1238 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1239 { 1240 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1241 1242 /* 1243 * In order not to call set_task_cpu() on a blocking task we need 1244 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1245 * cpu. 1246 * 1247 * Since this is common to all placement strategies, this lives here. 1248 * 1249 * [ this allows ->select_task() to simply return task_cpu(p) and 1250 * not worry about this generic constraint ] 1251 */ 1252 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1253 !cpu_online(cpu))) 1254 cpu = select_fallback_rq(task_cpu(p), p); 1255 1256 return cpu; 1257 } 1258 1259 static void update_avg(u64 *avg, u64 sample) 1260 { 1261 s64 diff = sample - *avg; 1262 *avg += diff >> 3; 1263 } 1264 #endif 1265 1266 static void 1267 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1268 { 1269 #ifdef CONFIG_SCHEDSTATS 1270 struct rq *rq = this_rq(); 1271 1272 #ifdef CONFIG_SMP 1273 int this_cpu = smp_processor_id(); 1274 1275 if (cpu == this_cpu) { 1276 schedstat_inc(rq, ttwu_local); 1277 schedstat_inc(p, se.statistics.nr_wakeups_local); 1278 } else { 1279 struct sched_domain *sd; 1280 1281 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1282 rcu_read_lock(); 1283 for_each_domain(this_cpu, sd) { 1284 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1285 schedstat_inc(sd, ttwu_wake_remote); 1286 break; 1287 } 1288 } 1289 rcu_read_unlock(); 1290 } 1291 1292 if (wake_flags & WF_MIGRATED) 1293 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1294 1295 #endif /* CONFIG_SMP */ 1296 1297 schedstat_inc(rq, ttwu_count); 1298 schedstat_inc(p, se.statistics.nr_wakeups); 1299 1300 if (wake_flags & WF_SYNC) 1301 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1302 1303 #endif /* CONFIG_SCHEDSTATS */ 1304 } 1305 1306 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1307 { 1308 activate_task(rq, p, en_flags); 1309 p->on_rq = 1; 1310 1311 /* if a worker is waking up, notify workqueue */ 1312 if (p->flags & PF_WQ_WORKER) 1313 wq_worker_waking_up(p, cpu_of(rq)); 1314 } 1315 1316 /* 1317 * Mark the task runnable and perform wakeup-preemption. 1318 */ 1319 static void 1320 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1321 { 1322 check_preempt_curr(rq, p, wake_flags); 1323 trace_sched_wakeup(p, true); 1324 1325 p->state = TASK_RUNNING; 1326 #ifdef CONFIG_SMP 1327 if (p->sched_class->task_woken) 1328 p->sched_class->task_woken(rq, p); 1329 1330 if (rq->idle_stamp) { 1331 u64 delta = rq->clock - rq->idle_stamp; 1332 u64 max = 2*sysctl_sched_migration_cost; 1333 1334 if (delta > max) 1335 rq->avg_idle = max; 1336 else 1337 update_avg(&rq->avg_idle, delta); 1338 rq->idle_stamp = 0; 1339 } 1340 #endif 1341 } 1342 1343 static void 1344 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1345 { 1346 #ifdef CONFIG_SMP 1347 if (p->sched_contributes_to_load) 1348 rq->nr_uninterruptible--; 1349 #endif 1350 1351 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1352 ttwu_do_wakeup(rq, p, wake_flags); 1353 } 1354 1355 /* 1356 * Called in case the task @p isn't fully descheduled from its runqueue, 1357 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1358 * since all we need to do is flip p->state to TASK_RUNNING, since 1359 * the task is still ->on_rq. 1360 */ 1361 static int ttwu_remote(struct task_struct *p, int wake_flags) 1362 { 1363 struct rq *rq; 1364 int ret = 0; 1365 1366 rq = __task_rq_lock(p); 1367 if (p->on_rq) { 1368 ttwu_do_wakeup(rq, p, wake_flags); 1369 ret = 1; 1370 } 1371 __task_rq_unlock(rq); 1372 1373 return ret; 1374 } 1375 1376 #ifdef CONFIG_SMP 1377 static void sched_ttwu_pending(void) 1378 { 1379 struct rq *rq = this_rq(); 1380 struct llist_node *llist = llist_del_all(&rq->wake_list); 1381 struct task_struct *p; 1382 1383 raw_spin_lock(&rq->lock); 1384 1385 while (llist) { 1386 p = llist_entry(llist, struct task_struct, wake_entry); 1387 llist = llist_next(llist); 1388 ttwu_do_activate(rq, p, 0); 1389 } 1390 1391 raw_spin_unlock(&rq->lock); 1392 } 1393 1394 void scheduler_ipi(void) 1395 { 1396 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick() 1397 && !tick_nohz_full_cpu(smp_processor_id())) 1398 return; 1399 1400 /* 1401 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1402 * traditionally all their work was done from the interrupt return 1403 * path. Now that we actually do some work, we need to make sure 1404 * we do call them. 1405 * 1406 * Some archs already do call them, luckily irq_enter/exit nest 1407 * properly. 1408 * 1409 * Arguably we should visit all archs and update all handlers, 1410 * however a fair share of IPIs are still resched only so this would 1411 * somewhat pessimize the simple resched case. 1412 */ 1413 irq_enter(); 1414 tick_nohz_full_check(); 1415 sched_ttwu_pending(); 1416 1417 /* 1418 * Check if someone kicked us for doing the nohz idle load balance. 1419 */ 1420 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1421 this_rq()->idle_balance = 1; 1422 raise_softirq_irqoff(SCHED_SOFTIRQ); 1423 } 1424 irq_exit(); 1425 } 1426 1427 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1428 { 1429 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1430 smp_send_reschedule(cpu); 1431 } 1432 1433 bool cpus_share_cache(int this_cpu, int that_cpu) 1434 { 1435 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1436 } 1437 #endif /* CONFIG_SMP */ 1438 1439 static void ttwu_queue(struct task_struct *p, int cpu) 1440 { 1441 struct rq *rq = cpu_rq(cpu); 1442 1443 #if defined(CONFIG_SMP) 1444 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1445 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1446 ttwu_queue_remote(p, cpu); 1447 return; 1448 } 1449 #endif 1450 1451 raw_spin_lock(&rq->lock); 1452 ttwu_do_activate(rq, p, 0); 1453 raw_spin_unlock(&rq->lock); 1454 } 1455 1456 /** 1457 * try_to_wake_up - wake up a thread 1458 * @p: the thread to be awakened 1459 * @state: the mask of task states that can be woken 1460 * @wake_flags: wake modifier flags (WF_*) 1461 * 1462 * Put it on the run-queue if it's not already there. The "current" 1463 * thread is always on the run-queue (except when the actual 1464 * re-schedule is in progress), and as such you're allowed to do 1465 * the simpler "current->state = TASK_RUNNING" to mark yourself 1466 * runnable without the overhead of this. 1467 * 1468 * Returns %true if @p was woken up, %false if it was already running 1469 * or @state didn't match @p's state. 1470 */ 1471 static int 1472 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1473 { 1474 unsigned long flags; 1475 int cpu, success = 0; 1476 1477 smp_wmb(); 1478 raw_spin_lock_irqsave(&p->pi_lock, flags); 1479 if (!(p->state & state)) 1480 goto out; 1481 1482 success = 1; /* we're going to change ->state */ 1483 cpu = task_cpu(p); 1484 1485 if (p->on_rq && ttwu_remote(p, wake_flags)) 1486 goto stat; 1487 1488 #ifdef CONFIG_SMP 1489 /* 1490 * If the owning (remote) cpu is still in the middle of schedule() with 1491 * this task as prev, wait until its done referencing the task. 1492 */ 1493 while (p->on_cpu) 1494 cpu_relax(); 1495 /* 1496 * Pairs with the smp_wmb() in finish_lock_switch(). 1497 */ 1498 smp_rmb(); 1499 1500 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1501 p->state = TASK_WAKING; 1502 1503 if (p->sched_class->task_waking) 1504 p->sched_class->task_waking(p); 1505 1506 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1507 if (task_cpu(p) != cpu) { 1508 wake_flags |= WF_MIGRATED; 1509 set_task_cpu(p, cpu); 1510 } 1511 #endif /* CONFIG_SMP */ 1512 1513 ttwu_queue(p, cpu); 1514 stat: 1515 ttwu_stat(p, cpu, wake_flags); 1516 out: 1517 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1518 1519 return success; 1520 } 1521 1522 /** 1523 * try_to_wake_up_local - try to wake up a local task with rq lock held 1524 * @p: the thread to be awakened 1525 * 1526 * Put @p on the run-queue if it's not already there. The caller must 1527 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1528 * the current task. 1529 */ 1530 static void try_to_wake_up_local(struct task_struct *p) 1531 { 1532 struct rq *rq = task_rq(p); 1533 1534 if (WARN_ON_ONCE(rq != this_rq()) || 1535 WARN_ON_ONCE(p == current)) 1536 return; 1537 1538 lockdep_assert_held(&rq->lock); 1539 1540 if (!raw_spin_trylock(&p->pi_lock)) { 1541 raw_spin_unlock(&rq->lock); 1542 raw_spin_lock(&p->pi_lock); 1543 raw_spin_lock(&rq->lock); 1544 } 1545 1546 if (!(p->state & TASK_NORMAL)) 1547 goto out; 1548 1549 if (!p->on_rq) 1550 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1551 1552 ttwu_do_wakeup(rq, p, 0); 1553 ttwu_stat(p, smp_processor_id(), 0); 1554 out: 1555 raw_spin_unlock(&p->pi_lock); 1556 } 1557 1558 /** 1559 * wake_up_process - Wake up a specific process 1560 * @p: The process to be woken up. 1561 * 1562 * Attempt to wake up the nominated process and move it to the set of runnable 1563 * processes. Returns 1 if the process was woken up, 0 if it was already 1564 * running. 1565 * 1566 * It may be assumed that this function implies a write memory barrier before 1567 * changing the task state if and only if any tasks are woken up. 1568 */ 1569 int wake_up_process(struct task_struct *p) 1570 { 1571 WARN_ON(task_is_stopped_or_traced(p)); 1572 return try_to_wake_up(p, TASK_NORMAL, 0); 1573 } 1574 EXPORT_SYMBOL(wake_up_process); 1575 1576 int wake_up_state(struct task_struct *p, unsigned int state) 1577 { 1578 return try_to_wake_up(p, state, 0); 1579 } 1580 1581 /* 1582 * Perform scheduler related setup for a newly forked process p. 1583 * p is forked by current. 1584 * 1585 * __sched_fork() is basic setup used by init_idle() too: 1586 */ 1587 static void __sched_fork(struct task_struct *p) 1588 { 1589 p->on_rq = 0; 1590 1591 p->se.on_rq = 0; 1592 p->se.exec_start = 0; 1593 p->se.sum_exec_runtime = 0; 1594 p->se.prev_sum_exec_runtime = 0; 1595 p->se.nr_migrations = 0; 1596 p->se.vruntime = 0; 1597 INIT_LIST_HEAD(&p->se.group_node); 1598 1599 /* 1600 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1601 * removed when useful for applications beyond shares distribution (e.g. 1602 * load-balance). 1603 */ 1604 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1605 p->se.avg.runnable_avg_period = 0; 1606 p->se.avg.runnable_avg_sum = 0; 1607 #endif 1608 #ifdef CONFIG_SCHEDSTATS 1609 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1610 #endif 1611 1612 INIT_LIST_HEAD(&p->rt.run_list); 1613 1614 #ifdef CONFIG_PREEMPT_NOTIFIERS 1615 INIT_HLIST_HEAD(&p->preempt_notifiers); 1616 #endif 1617 1618 #ifdef CONFIG_NUMA_BALANCING 1619 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1620 p->mm->numa_next_scan = jiffies; 1621 p->mm->numa_next_reset = jiffies; 1622 p->mm->numa_scan_seq = 0; 1623 } 1624 1625 p->node_stamp = 0ULL; 1626 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1627 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1628 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1629 p->numa_work.next = &p->numa_work; 1630 #endif /* CONFIG_NUMA_BALANCING */ 1631 } 1632 1633 #ifdef CONFIG_NUMA_BALANCING 1634 #ifdef CONFIG_SCHED_DEBUG 1635 void set_numabalancing_state(bool enabled) 1636 { 1637 if (enabled) 1638 sched_feat_set("NUMA"); 1639 else 1640 sched_feat_set("NO_NUMA"); 1641 } 1642 #else 1643 __read_mostly bool numabalancing_enabled; 1644 1645 void set_numabalancing_state(bool enabled) 1646 { 1647 numabalancing_enabled = enabled; 1648 } 1649 #endif /* CONFIG_SCHED_DEBUG */ 1650 #endif /* CONFIG_NUMA_BALANCING */ 1651 1652 /* 1653 * fork()/clone()-time setup: 1654 */ 1655 void sched_fork(struct task_struct *p) 1656 { 1657 unsigned long flags; 1658 int cpu = get_cpu(); 1659 1660 __sched_fork(p); 1661 /* 1662 * We mark the process as running here. This guarantees that 1663 * nobody will actually run it, and a signal or other external 1664 * event cannot wake it up and insert it on the runqueue either. 1665 */ 1666 p->state = TASK_RUNNING; 1667 1668 /* 1669 * Make sure we do not leak PI boosting priority to the child. 1670 */ 1671 p->prio = current->normal_prio; 1672 1673 /* 1674 * Revert to default priority/policy on fork if requested. 1675 */ 1676 if (unlikely(p->sched_reset_on_fork)) { 1677 if (task_has_rt_policy(p)) { 1678 p->policy = SCHED_NORMAL; 1679 p->static_prio = NICE_TO_PRIO(0); 1680 p->rt_priority = 0; 1681 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1682 p->static_prio = NICE_TO_PRIO(0); 1683 1684 p->prio = p->normal_prio = __normal_prio(p); 1685 set_load_weight(p); 1686 1687 /* 1688 * We don't need the reset flag anymore after the fork. It has 1689 * fulfilled its duty: 1690 */ 1691 p->sched_reset_on_fork = 0; 1692 } 1693 1694 if (!rt_prio(p->prio)) 1695 p->sched_class = &fair_sched_class; 1696 1697 if (p->sched_class->task_fork) 1698 p->sched_class->task_fork(p); 1699 1700 /* 1701 * The child is not yet in the pid-hash so no cgroup attach races, 1702 * and the cgroup is pinned to this child due to cgroup_fork() 1703 * is ran before sched_fork(). 1704 * 1705 * Silence PROVE_RCU. 1706 */ 1707 raw_spin_lock_irqsave(&p->pi_lock, flags); 1708 set_task_cpu(p, cpu); 1709 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1710 1711 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1712 if (likely(sched_info_on())) 1713 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1714 #endif 1715 #if defined(CONFIG_SMP) 1716 p->on_cpu = 0; 1717 #endif 1718 #ifdef CONFIG_PREEMPT_COUNT 1719 /* Want to start with kernel preemption disabled. */ 1720 task_thread_info(p)->preempt_count = 1; 1721 #endif 1722 #ifdef CONFIG_SMP 1723 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1724 #endif 1725 1726 put_cpu(); 1727 } 1728 1729 /* 1730 * wake_up_new_task - wake up a newly created task for the first time. 1731 * 1732 * This function will do some initial scheduler statistics housekeeping 1733 * that must be done for every newly created context, then puts the task 1734 * on the runqueue and wakes it. 1735 */ 1736 void wake_up_new_task(struct task_struct *p) 1737 { 1738 unsigned long flags; 1739 struct rq *rq; 1740 1741 raw_spin_lock_irqsave(&p->pi_lock, flags); 1742 #ifdef CONFIG_SMP 1743 /* 1744 * Fork balancing, do it here and not earlier because: 1745 * - cpus_allowed can change in the fork path 1746 * - any previously selected cpu might disappear through hotplug 1747 */ 1748 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1749 #endif 1750 1751 rq = __task_rq_lock(p); 1752 activate_task(rq, p, 0); 1753 p->on_rq = 1; 1754 trace_sched_wakeup_new(p, true); 1755 check_preempt_curr(rq, p, WF_FORK); 1756 #ifdef CONFIG_SMP 1757 if (p->sched_class->task_woken) 1758 p->sched_class->task_woken(rq, p); 1759 #endif 1760 task_rq_unlock(rq, p, &flags); 1761 } 1762 1763 #ifdef CONFIG_PREEMPT_NOTIFIERS 1764 1765 /** 1766 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1767 * @notifier: notifier struct to register 1768 */ 1769 void preempt_notifier_register(struct preempt_notifier *notifier) 1770 { 1771 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1772 } 1773 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1774 1775 /** 1776 * preempt_notifier_unregister - no longer interested in preemption notifications 1777 * @notifier: notifier struct to unregister 1778 * 1779 * This is safe to call from within a preemption notifier. 1780 */ 1781 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1782 { 1783 hlist_del(¬ifier->link); 1784 } 1785 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1786 1787 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1788 { 1789 struct preempt_notifier *notifier; 1790 1791 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1792 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1793 } 1794 1795 static void 1796 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1797 struct task_struct *next) 1798 { 1799 struct preempt_notifier *notifier; 1800 1801 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 1802 notifier->ops->sched_out(notifier, next); 1803 } 1804 1805 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1806 1807 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1808 { 1809 } 1810 1811 static void 1812 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1813 struct task_struct *next) 1814 { 1815 } 1816 1817 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1818 1819 /** 1820 * prepare_task_switch - prepare to switch tasks 1821 * @rq: the runqueue preparing to switch 1822 * @prev: the current task that is being switched out 1823 * @next: the task we are going to switch to. 1824 * 1825 * This is called with the rq lock held and interrupts off. It must 1826 * be paired with a subsequent finish_task_switch after the context 1827 * switch. 1828 * 1829 * prepare_task_switch sets up locking and calls architecture specific 1830 * hooks. 1831 */ 1832 static inline void 1833 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1834 struct task_struct *next) 1835 { 1836 trace_sched_switch(prev, next); 1837 sched_info_switch(prev, next); 1838 perf_event_task_sched_out(prev, next); 1839 fire_sched_out_preempt_notifiers(prev, next); 1840 prepare_lock_switch(rq, next); 1841 prepare_arch_switch(next); 1842 } 1843 1844 /** 1845 * finish_task_switch - clean up after a task-switch 1846 * @rq: runqueue associated with task-switch 1847 * @prev: the thread we just switched away from. 1848 * 1849 * finish_task_switch must be called after the context switch, paired 1850 * with a prepare_task_switch call before the context switch. 1851 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1852 * and do any other architecture-specific cleanup actions. 1853 * 1854 * Note that we may have delayed dropping an mm in context_switch(). If 1855 * so, we finish that here outside of the runqueue lock. (Doing it 1856 * with the lock held can cause deadlocks; see schedule() for 1857 * details.) 1858 */ 1859 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1860 __releases(rq->lock) 1861 { 1862 struct mm_struct *mm = rq->prev_mm; 1863 long prev_state; 1864 1865 rq->prev_mm = NULL; 1866 1867 /* 1868 * A task struct has one reference for the use as "current". 1869 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1870 * schedule one last time. The schedule call will never return, and 1871 * the scheduled task must drop that reference. 1872 * The test for TASK_DEAD must occur while the runqueue locks are 1873 * still held, otherwise prev could be scheduled on another cpu, die 1874 * there before we look at prev->state, and then the reference would 1875 * be dropped twice. 1876 * Manfred Spraul <manfred@colorfullife.com> 1877 */ 1878 prev_state = prev->state; 1879 vtime_task_switch(prev); 1880 finish_arch_switch(prev); 1881 perf_event_task_sched_in(prev, current); 1882 finish_lock_switch(rq, prev); 1883 finish_arch_post_lock_switch(); 1884 1885 fire_sched_in_preempt_notifiers(current); 1886 if (mm) 1887 mmdrop(mm); 1888 if (unlikely(prev_state == TASK_DEAD)) { 1889 /* 1890 * Remove function-return probe instances associated with this 1891 * task and put them back on the free list. 1892 */ 1893 kprobe_flush_task(prev); 1894 put_task_struct(prev); 1895 } 1896 1897 tick_nohz_task_switch(current); 1898 } 1899 1900 #ifdef CONFIG_SMP 1901 1902 /* assumes rq->lock is held */ 1903 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1904 { 1905 if (prev->sched_class->pre_schedule) 1906 prev->sched_class->pre_schedule(rq, prev); 1907 } 1908 1909 /* rq->lock is NOT held, but preemption is disabled */ 1910 static inline void post_schedule(struct rq *rq) 1911 { 1912 if (rq->post_schedule) { 1913 unsigned long flags; 1914 1915 raw_spin_lock_irqsave(&rq->lock, flags); 1916 if (rq->curr->sched_class->post_schedule) 1917 rq->curr->sched_class->post_schedule(rq); 1918 raw_spin_unlock_irqrestore(&rq->lock, flags); 1919 1920 rq->post_schedule = 0; 1921 } 1922 } 1923 1924 #else 1925 1926 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1927 { 1928 } 1929 1930 static inline void post_schedule(struct rq *rq) 1931 { 1932 } 1933 1934 #endif 1935 1936 /** 1937 * schedule_tail - first thing a freshly forked thread must call. 1938 * @prev: the thread we just switched away from. 1939 */ 1940 asmlinkage void schedule_tail(struct task_struct *prev) 1941 __releases(rq->lock) 1942 { 1943 struct rq *rq = this_rq(); 1944 1945 finish_task_switch(rq, prev); 1946 1947 /* 1948 * FIXME: do we need to worry about rq being invalidated by the 1949 * task_switch? 1950 */ 1951 post_schedule(rq); 1952 1953 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1954 /* In this case, finish_task_switch does not reenable preemption */ 1955 preempt_enable(); 1956 #endif 1957 if (current->set_child_tid) 1958 put_user(task_pid_vnr(current), current->set_child_tid); 1959 } 1960 1961 /* 1962 * context_switch - switch to the new MM and the new 1963 * thread's register state. 1964 */ 1965 static inline void 1966 context_switch(struct rq *rq, struct task_struct *prev, 1967 struct task_struct *next) 1968 { 1969 struct mm_struct *mm, *oldmm; 1970 1971 prepare_task_switch(rq, prev, next); 1972 1973 mm = next->mm; 1974 oldmm = prev->active_mm; 1975 /* 1976 * For paravirt, this is coupled with an exit in switch_to to 1977 * combine the page table reload and the switch backend into 1978 * one hypercall. 1979 */ 1980 arch_start_context_switch(prev); 1981 1982 if (!mm) { 1983 next->active_mm = oldmm; 1984 atomic_inc(&oldmm->mm_count); 1985 enter_lazy_tlb(oldmm, next); 1986 } else 1987 switch_mm(oldmm, mm, next); 1988 1989 if (!prev->mm) { 1990 prev->active_mm = NULL; 1991 rq->prev_mm = oldmm; 1992 } 1993 /* 1994 * Since the runqueue lock will be released by the next 1995 * task (which is an invalid locking op but in the case 1996 * of the scheduler it's an obvious special-case), so we 1997 * do an early lockdep release here: 1998 */ 1999 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2000 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2001 #endif 2002 2003 context_tracking_task_switch(prev, next); 2004 /* Here we just switch the register state and the stack. */ 2005 switch_to(prev, next, prev); 2006 2007 barrier(); 2008 /* 2009 * this_rq must be evaluated again because prev may have moved 2010 * CPUs since it called schedule(), thus the 'rq' on its stack 2011 * frame will be invalid. 2012 */ 2013 finish_task_switch(this_rq(), prev); 2014 } 2015 2016 /* 2017 * nr_running and nr_context_switches: 2018 * 2019 * externally visible scheduler statistics: current number of runnable 2020 * threads, total number of context switches performed since bootup. 2021 */ 2022 unsigned long nr_running(void) 2023 { 2024 unsigned long i, sum = 0; 2025 2026 for_each_online_cpu(i) 2027 sum += cpu_rq(i)->nr_running; 2028 2029 return sum; 2030 } 2031 2032 unsigned long long nr_context_switches(void) 2033 { 2034 int i; 2035 unsigned long long sum = 0; 2036 2037 for_each_possible_cpu(i) 2038 sum += cpu_rq(i)->nr_switches; 2039 2040 return sum; 2041 } 2042 2043 unsigned long nr_iowait(void) 2044 { 2045 unsigned long i, sum = 0; 2046 2047 for_each_possible_cpu(i) 2048 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2049 2050 return sum; 2051 } 2052 2053 unsigned long nr_iowait_cpu(int cpu) 2054 { 2055 struct rq *this = cpu_rq(cpu); 2056 return atomic_read(&this->nr_iowait); 2057 } 2058 2059 unsigned long this_cpu_load(void) 2060 { 2061 struct rq *this = this_rq(); 2062 return this->cpu_load[0]; 2063 } 2064 2065 2066 /* 2067 * Global load-average calculations 2068 * 2069 * We take a distributed and async approach to calculating the global load-avg 2070 * in order to minimize overhead. 2071 * 2072 * The global load average is an exponentially decaying average of nr_running + 2073 * nr_uninterruptible. 2074 * 2075 * Once every LOAD_FREQ: 2076 * 2077 * nr_active = 0; 2078 * for_each_possible_cpu(cpu) 2079 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2080 * 2081 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2082 * 2083 * Due to a number of reasons the above turns in the mess below: 2084 * 2085 * - for_each_possible_cpu() is prohibitively expensive on machines with 2086 * serious number of cpus, therefore we need to take a distributed approach 2087 * to calculating nr_active. 2088 * 2089 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2090 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2091 * 2092 * So assuming nr_active := 0 when we start out -- true per definition, we 2093 * can simply take per-cpu deltas and fold those into a global accumulate 2094 * to obtain the same result. See calc_load_fold_active(). 2095 * 2096 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2097 * across the machine, we assume 10 ticks is sufficient time for every 2098 * cpu to have completed this task. 2099 * 2100 * This places an upper-bound on the IRQ-off latency of the machine. Then 2101 * again, being late doesn't loose the delta, just wrecks the sample. 2102 * 2103 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2104 * this would add another cross-cpu cacheline miss and atomic operation 2105 * to the wakeup path. Instead we increment on whatever cpu the task ran 2106 * when it went into uninterruptible state and decrement on whatever cpu 2107 * did the wakeup. This means that only the sum of nr_uninterruptible over 2108 * all cpus yields the correct result. 2109 * 2110 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2111 */ 2112 2113 /* Variables and functions for calc_load */ 2114 static atomic_long_t calc_load_tasks; 2115 static unsigned long calc_load_update; 2116 unsigned long avenrun[3]; 2117 EXPORT_SYMBOL(avenrun); /* should be removed */ 2118 2119 /** 2120 * get_avenrun - get the load average array 2121 * @loads: pointer to dest load array 2122 * @offset: offset to add 2123 * @shift: shift count to shift the result left 2124 * 2125 * These values are estimates at best, so no need for locking. 2126 */ 2127 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2128 { 2129 loads[0] = (avenrun[0] + offset) << shift; 2130 loads[1] = (avenrun[1] + offset) << shift; 2131 loads[2] = (avenrun[2] + offset) << shift; 2132 } 2133 2134 static long calc_load_fold_active(struct rq *this_rq) 2135 { 2136 long nr_active, delta = 0; 2137 2138 nr_active = this_rq->nr_running; 2139 nr_active += (long) this_rq->nr_uninterruptible; 2140 2141 if (nr_active != this_rq->calc_load_active) { 2142 delta = nr_active - this_rq->calc_load_active; 2143 this_rq->calc_load_active = nr_active; 2144 } 2145 2146 return delta; 2147 } 2148 2149 /* 2150 * a1 = a0 * e + a * (1 - e) 2151 */ 2152 static unsigned long 2153 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2154 { 2155 load *= exp; 2156 load += active * (FIXED_1 - exp); 2157 load += 1UL << (FSHIFT - 1); 2158 return load >> FSHIFT; 2159 } 2160 2161 #ifdef CONFIG_NO_HZ_COMMON 2162 /* 2163 * Handle NO_HZ for the global load-average. 2164 * 2165 * Since the above described distributed algorithm to compute the global 2166 * load-average relies on per-cpu sampling from the tick, it is affected by 2167 * NO_HZ. 2168 * 2169 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2170 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2171 * when we read the global state. 2172 * 2173 * Obviously reality has to ruin such a delightfully simple scheme: 2174 * 2175 * - When we go NO_HZ idle during the window, we can negate our sample 2176 * contribution, causing under-accounting. 2177 * 2178 * We avoid this by keeping two idle-delta counters and flipping them 2179 * when the window starts, thus separating old and new NO_HZ load. 2180 * 2181 * The only trick is the slight shift in index flip for read vs write. 2182 * 2183 * 0s 5s 10s 15s 2184 * +10 +10 +10 +10 2185 * |-|-----------|-|-----------|-|-----------|-| 2186 * r:0 0 1 1 0 0 1 1 0 2187 * w:0 1 1 0 0 1 1 0 0 2188 * 2189 * This ensures we'll fold the old idle contribution in this window while 2190 * accumlating the new one. 2191 * 2192 * - When we wake up from NO_HZ idle during the window, we push up our 2193 * contribution, since we effectively move our sample point to a known 2194 * busy state. 2195 * 2196 * This is solved by pushing the window forward, and thus skipping the 2197 * sample, for this cpu (effectively using the idle-delta for this cpu which 2198 * was in effect at the time the window opened). This also solves the issue 2199 * of having to deal with a cpu having been in NOHZ idle for multiple 2200 * LOAD_FREQ intervals. 2201 * 2202 * When making the ILB scale, we should try to pull this in as well. 2203 */ 2204 static atomic_long_t calc_load_idle[2]; 2205 static int calc_load_idx; 2206 2207 static inline int calc_load_write_idx(void) 2208 { 2209 int idx = calc_load_idx; 2210 2211 /* 2212 * See calc_global_nohz(), if we observe the new index, we also 2213 * need to observe the new update time. 2214 */ 2215 smp_rmb(); 2216 2217 /* 2218 * If the folding window started, make sure we start writing in the 2219 * next idle-delta. 2220 */ 2221 if (!time_before(jiffies, calc_load_update)) 2222 idx++; 2223 2224 return idx & 1; 2225 } 2226 2227 static inline int calc_load_read_idx(void) 2228 { 2229 return calc_load_idx & 1; 2230 } 2231 2232 void calc_load_enter_idle(void) 2233 { 2234 struct rq *this_rq = this_rq(); 2235 long delta; 2236 2237 /* 2238 * We're going into NOHZ mode, if there's any pending delta, fold it 2239 * into the pending idle delta. 2240 */ 2241 delta = calc_load_fold_active(this_rq); 2242 if (delta) { 2243 int idx = calc_load_write_idx(); 2244 atomic_long_add(delta, &calc_load_idle[idx]); 2245 } 2246 } 2247 2248 void calc_load_exit_idle(void) 2249 { 2250 struct rq *this_rq = this_rq(); 2251 2252 /* 2253 * If we're still before the sample window, we're done. 2254 */ 2255 if (time_before(jiffies, this_rq->calc_load_update)) 2256 return; 2257 2258 /* 2259 * We woke inside or after the sample window, this means we're already 2260 * accounted through the nohz accounting, so skip the entire deal and 2261 * sync up for the next window. 2262 */ 2263 this_rq->calc_load_update = calc_load_update; 2264 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2265 this_rq->calc_load_update += LOAD_FREQ; 2266 } 2267 2268 static long calc_load_fold_idle(void) 2269 { 2270 int idx = calc_load_read_idx(); 2271 long delta = 0; 2272 2273 if (atomic_long_read(&calc_load_idle[idx])) 2274 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2275 2276 return delta; 2277 } 2278 2279 /** 2280 * fixed_power_int - compute: x^n, in O(log n) time 2281 * 2282 * @x: base of the power 2283 * @frac_bits: fractional bits of @x 2284 * @n: power to raise @x to. 2285 * 2286 * By exploiting the relation between the definition of the natural power 2287 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2288 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2289 * (where: n_i \elem {0, 1}, the binary vector representing n), 2290 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2291 * of course trivially computable in O(log_2 n), the length of our binary 2292 * vector. 2293 */ 2294 static unsigned long 2295 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2296 { 2297 unsigned long result = 1UL << frac_bits; 2298 2299 if (n) for (;;) { 2300 if (n & 1) { 2301 result *= x; 2302 result += 1UL << (frac_bits - 1); 2303 result >>= frac_bits; 2304 } 2305 n >>= 1; 2306 if (!n) 2307 break; 2308 x *= x; 2309 x += 1UL << (frac_bits - 1); 2310 x >>= frac_bits; 2311 } 2312 2313 return result; 2314 } 2315 2316 /* 2317 * a1 = a0 * e + a * (1 - e) 2318 * 2319 * a2 = a1 * e + a * (1 - e) 2320 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2321 * = a0 * e^2 + a * (1 - e) * (1 + e) 2322 * 2323 * a3 = a2 * e + a * (1 - e) 2324 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2325 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2326 * 2327 * ... 2328 * 2329 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2330 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2331 * = a0 * e^n + a * (1 - e^n) 2332 * 2333 * [1] application of the geometric series: 2334 * 2335 * n 1 - x^(n+1) 2336 * S_n := \Sum x^i = ------------- 2337 * i=0 1 - x 2338 */ 2339 static unsigned long 2340 calc_load_n(unsigned long load, unsigned long exp, 2341 unsigned long active, unsigned int n) 2342 { 2343 2344 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2345 } 2346 2347 /* 2348 * NO_HZ can leave us missing all per-cpu ticks calling 2349 * calc_load_account_active(), but since an idle CPU folds its delta into 2350 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2351 * in the pending idle delta if our idle period crossed a load cycle boundary. 2352 * 2353 * Once we've updated the global active value, we need to apply the exponential 2354 * weights adjusted to the number of cycles missed. 2355 */ 2356 static void calc_global_nohz(void) 2357 { 2358 long delta, active, n; 2359 2360 if (!time_before(jiffies, calc_load_update + 10)) { 2361 /* 2362 * Catch-up, fold however many we are behind still 2363 */ 2364 delta = jiffies - calc_load_update - 10; 2365 n = 1 + (delta / LOAD_FREQ); 2366 2367 active = atomic_long_read(&calc_load_tasks); 2368 active = active > 0 ? active * FIXED_1 : 0; 2369 2370 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2371 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2372 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2373 2374 calc_load_update += n * LOAD_FREQ; 2375 } 2376 2377 /* 2378 * Flip the idle index... 2379 * 2380 * Make sure we first write the new time then flip the index, so that 2381 * calc_load_write_idx() will see the new time when it reads the new 2382 * index, this avoids a double flip messing things up. 2383 */ 2384 smp_wmb(); 2385 calc_load_idx++; 2386 } 2387 #else /* !CONFIG_NO_HZ_COMMON */ 2388 2389 static inline long calc_load_fold_idle(void) { return 0; } 2390 static inline void calc_global_nohz(void) { } 2391 2392 #endif /* CONFIG_NO_HZ_COMMON */ 2393 2394 /* 2395 * calc_load - update the avenrun load estimates 10 ticks after the 2396 * CPUs have updated calc_load_tasks. 2397 */ 2398 void calc_global_load(unsigned long ticks) 2399 { 2400 long active, delta; 2401 2402 if (time_before(jiffies, calc_load_update + 10)) 2403 return; 2404 2405 /* 2406 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2407 */ 2408 delta = calc_load_fold_idle(); 2409 if (delta) 2410 atomic_long_add(delta, &calc_load_tasks); 2411 2412 active = atomic_long_read(&calc_load_tasks); 2413 active = active > 0 ? active * FIXED_1 : 0; 2414 2415 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2416 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2417 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2418 2419 calc_load_update += LOAD_FREQ; 2420 2421 /* 2422 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2423 */ 2424 calc_global_nohz(); 2425 } 2426 2427 /* 2428 * Called from update_cpu_load() to periodically update this CPU's 2429 * active count. 2430 */ 2431 static void calc_load_account_active(struct rq *this_rq) 2432 { 2433 long delta; 2434 2435 if (time_before(jiffies, this_rq->calc_load_update)) 2436 return; 2437 2438 delta = calc_load_fold_active(this_rq); 2439 if (delta) 2440 atomic_long_add(delta, &calc_load_tasks); 2441 2442 this_rq->calc_load_update += LOAD_FREQ; 2443 } 2444 2445 /* 2446 * End of global load-average stuff 2447 */ 2448 2449 /* 2450 * The exact cpuload at various idx values, calculated at every tick would be 2451 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2452 * 2453 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2454 * on nth tick when cpu may be busy, then we have: 2455 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2456 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2457 * 2458 * decay_load_missed() below does efficient calculation of 2459 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2460 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2461 * 2462 * The calculation is approximated on a 128 point scale. 2463 * degrade_zero_ticks is the number of ticks after which load at any 2464 * particular idx is approximated to be zero. 2465 * degrade_factor is a precomputed table, a row for each load idx. 2466 * Each column corresponds to degradation factor for a power of two ticks, 2467 * based on 128 point scale. 2468 * Example: 2469 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2470 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2471 * 2472 * With this power of 2 load factors, we can degrade the load n times 2473 * by looking at 1 bits in n and doing as many mult/shift instead of 2474 * n mult/shifts needed by the exact degradation. 2475 */ 2476 #define DEGRADE_SHIFT 7 2477 static const unsigned char 2478 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2479 static const unsigned char 2480 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2481 {0, 0, 0, 0, 0, 0, 0, 0}, 2482 {64, 32, 8, 0, 0, 0, 0, 0}, 2483 {96, 72, 40, 12, 1, 0, 0}, 2484 {112, 98, 75, 43, 15, 1, 0}, 2485 {120, 112, 98, 76, 45, 16, 2} }; 2486 2487 /* 2488 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2489 * would be when CPU is idle and so we just decay the old load without 2490 * adding any new load. 2491 */ 2492 static unsigned long 2493 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2494 { 2495 int j = 0; 2496 2497 if (!missed_updates) 2498 return load; 2499 2500 if (missed_updates >= degrade_zero_ticks[idx]) 2501 return 0; 2502 2503 if (idx == 1) 2504 return load >> missed_updates; 2505 2506 while (missed_updates) { 2507 if (missed_updates % 2) 2508 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2509 2510 missed_updates >>= 1; 2511 j++; 2512 } 2513 return load; 2514 } 2515 2516 /* 2517 * Update rq->cpu_load[] statistics. This function is usually called every 2518 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2519 * every tick. We fix it up based on jiffies. 2520 */ 2521 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2522 unsigned long pending_updates) 2523 { 2524 int i, scale; 2525 2526 this_rq->nr_load_updates++; 2527 2528 /* Update our load: */ 2529 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2530 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2531 unsigned long old_load, new_load; 2532 2533 /* scale is effectively 1 << i now, and >> i divides by scale */ 2534 2535 old_load = this_rq->cpu_load[i]; 2536 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2537 new_load = this_load; 2538 /* 2539 * Round up the averaging division if load is increasing. This 2540 * prevents us from getting stuck on 9 if the load is 10, for 2541 * example. 2542 */ 2543 if (new_load > old_load) 2544 new_load += scale - 1; 2545 2546 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2547 } 2548 2549 sched_avg_update(this_rq); 2550 } 2551 2552 #ifdef CONFIG_NO_HZ_COMMON 2553 /* 2554 * There is no sane way to deal with nohz on smp when using jiffies because the 2555 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2556 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2557 * 2558 * Therefore we cannot use the delta approach from the regular tick since that 2559 * would seriously skew the load calculation. However we'll make do for those 2560 * updates happening while idle (nohz_idle_balance) or coming out of idle 2561 * (tick_nohz_idle_exit). 2562 * 2563 * This means we might still be one tick off for nohz periods. 2564 */ 2565 2566 /* 2567 * Called from nohz_idle_balance() to update the load ratings before doing the 2568 * idle balance. 2569 */ 2570 void update_idle_cpu_load(struct rq *this_rq) 2571 { 2572 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2573 unsigned long load = this_rq->load.weight; 2574 unsigned long pending_updates; 2575 2576 /* 2577 * bail if there's load or we're actually up-to-date. 2578 */ 2579 if (load || curr_jiffies == this_rq->last_load_update_tick) 2580 return; 2581 2582 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2583 this_rq->last_load_update_tick = curr_jiffies; 2584 2585 __update_cpu_load(this_rq, load, pending_updates); 2586 } 2587 2588 /* 2589 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2590 */ 2591 void update_cpu_load_nohz(void) 2592 { 2593 struct rq *this_rq = this_rq(); 2594 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2595 unsigned long pending_updates; 2596 2597 if (curr_jiffies == this_rq->last_load_update_tick) 2598 return; 2599 2600 raw_spin_lock(&this_rq->lock); 2601 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2602 if (pending_updates) { 2603 this_rq->last_load_update_tick = curr_jiffies; 2604 /* 2605 * We were idle, this means load 0, the current load might be 2606 * !0 due to remote wakeups and the sort. 2607 */ 2608 __update_cpu_load(this_rq, 0, pending_updates); 2609 } 2610 raw_spin_unlock(&this_rq->lock); 2611 } 2612 #endif /* CONFIG_NO_HZ_COMMON */ 2613 2614 /* 2615 * Called from scheduler_tick() 2616 */ 2617 static void update_cpu_load_active(struct rq *this_rq) 2618 { 2619 /* 2620 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2621 */ 2622 this_rq->last_load_update_tick = jiffies; 2623 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2624 2625 calc_load_account_active(this_rq); 2626 } 2627 2628 #ifdef CONFIG_SMP 2629 2630 /* 2631 * sched_exec - execve() is a valuable balancing opportunity, because at 2632 * this point the task has the smallest effective memory and cache footprint. 2633 */ 2634 void sched_exec(void) 2635 { 2636 struct task_struct *p = current; 2637 unsigned long flags; 2638 int dest_cpu; 2639 2640 raw_spin_lock_irqsave(&p->pi_lock, flags); 2641 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2642 if (dest_cpu == smp_processor_id()) 2643 goto unlock; 2644 2645 if (likely(cpu_active(dest_cpu))) { 2646 struct migration_arg arg = { p, dest_cpu }; 2647 2648 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2649 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2650 return; 2651 } 2652 unlock: 2653 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2654 } 2655 2656 #endif 2657 2658 DEFINE_PER_CPU(struct kernel_stat, kstat); 2659 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2660 2661 EXPORT_PER_CPU_SYMBOL(kstat); 2662 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2663 2664 /* 2665 * Return any ns on the sched_clock that have not yet been accounted in 2666 * @p in case that task is currently running. 2667 * 2668 * Called with task_rq_lock() held on @rq. 2669 */ 2670 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2671 { 2672 u64 ns = 0; 2673 2674 if (task_current(rq, p)) { 2675 update_rq_clock(rq); 2676 ns = rq->clock_task - p->se.exec_start; 2677 if ((s64)ns < 0) 2678 ns = 0; 2679 } 2680 2681 return ns; 2682 } 2683 2684 unsigned long long task_delta_exec(struct task_struct *p) 2685 { 2686 unsigned long flags; 2687 struct rq *rq; 2688 u64 ns = 0; 2689 2690 rq = task_rq_lock(p, &flags); 2691 ns = do_task_delta_exec(p, rq); 2692 task_rq_unlock(rq, p, &flags); 2693 2694 return ns; 2695 } 2696 2697 /* 2698 * Return accounted runtime for the task. 2699 * In case the task is currently running, return the runtime plus current's 2700 * pending runtime that have not been accounted yet. 2701 */ 2702 unsigned long long task_sched_runtime(struct task_struct *p) 2703 { 2704 unsigned long flags; 2705 struct rq *rq; 2706 u64 ns = 0; 2707 2708 rq = task_rq_lock(p, &flags); 2709 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2710 task_rq_unlock(rq, p, &flags); 2711 2712 return ns; 2713 } 2714 2715 /* 2716 * This function gets called by the timer code, with HZ frequency. 2717 * We call it with interrupts disabled. 2718 */ 2719 void scheduler_tick(void) 2720 { 2721 int cpu = smp_processor_id(); 2722 struct rq *rq = cpu_rq(cpu); 2723 struct task_struct *curr = rq->curr; 2724 2725 sched_clock_tick(); 2726 2727 raw_spin_lock(&rq->lock); 2728 update_rq_clock(rq); 2729 update_cpu_load_active(rq); 2730 curr->sched_class->task_tick(rq, curr, 0); 2731 raw_spin_unlock(&rq->lock); 2732 2733 perf_event_task_tick(); 2734 2735 #ifdef CONFIG_SMP 2736 rq->idle_balance = idle_cpu(cpu); 2737 trigger_load_balance(rq, cpu); 2738 #endif 2739 rq_last_tick_reset(rq); 2740 } 2741 2742 #ifdef CONFIG_NO_HZ_FULL 2743 /** 2744 * scheduler_tick_max_deferment 2745 * 2746 * Keep at least one tick per second when a single 2747 * active task is running because the scheduler doesn't 2748 * yet completely support full dynticks environment. 2749 * 2750 * This makes sure that uptime, CFS vruntime, load 2751 * balancing, etc... continue to move forward, even 2752 * with a very low granularity. 2753 */ 2754 u64 scheduler_tick_max_deferment(void) 2755 { 2756 struct rq *rq = this_rq(); 2757 unsigned long next, now = ACCESS_ONCE(jiffies); 2758 2759 next = rq->last_sched_tick + HZ; 2760 2761 if (time_before_eq(next, now)) 2762 return 0; 2763 2764 return jiffies_to_usecs(next - now) * NSEC_PER_USEC; 2765 } 2766 #endif 2767 2768 notrace unsigned long get_parent_ip(unsigned long addr) 2769 { 2770 if (in_lock_functions(addr)) { 2771 addr = CALLER_ADDR2; 2772 if (in_lock_functions(addr)) 2773 addr = CALLER_ADDR3; 2774 } 2775 return addr; 2776 } 2777 2778 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2779 defined(CONFIG_PREEMPT_TRACER)) 2780 2781 void __kprobes add_preempt_count(int val) 2782 { 2783 #ifdef CONFIG_DEBUG_PREEMPT 2784 /* 2785 * Underflow? 2786 */ 2787 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2788 return; 2789 #endif 2790 preempt_count() += val; 2791 #ifdef CONFIG_DEBUG_PREEMPT 2792 /* 2793 * Spinlock count overflowing soon? 2794 */ 2795 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2796 PREEMPT_MASK - 10); 2797 #endif 2798 if (preempt_count() == val) 2799 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2800 } 2801 EXPORT_SYMBOL(add_preempt_count); 2802 2803 void __kprobes sub_preempt_count(int val) 2804 { 2805 #ifdef CONFIG_DEBUG_PREEMPT 2806 /* 2807 * Underflow? 2808 */ 2809 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2810 return; 2811 /* 2812 * Is the spinlock portion underflowing? 2813 */ 2814 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2815 !(preempt_count() & PREEMPT_MASK))) 2816 return; 2817 #endif 2818 2819 if (preempt_count() == val) 2820 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2821 preempt_count() -= val; 2822 } 2823 EXPORT_SYMBOL(sub_preempt_count); 2824 2825 #endif 2826 2827 /* 2828 * Print scheduling while atomic bug: 2829 */ 2830 static noinline void __schedule_bug(struct task_struct *prev) 2831 { 2832 if (oops_in_progress) 2833 return; 2834 2835 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2836 prev->comm, prev->pid, preempt_count()); 2837 2838 debug_show_held_locks(prev); 2839 print_modules(); 2840 if (irqs_disabled()) 2841 print_irqtrace_events(prev); 2842 dump_stack(); 2843 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2844 } 2845 2846 /* 2847 * Various schedule()-time debugging checks and statistics: 2848 */ 2849 static inline void schedule_debug(struct task_struct *prev) 2850 { 2851 /* 2852 * Test if we are atomic. Since do_exit() needs to call into 2853 * schedule() atomically, we ignore that path for now. 2854 * Otherwise, whine if we are scheduling when we should not be. 2855 */ 2856 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2857 __schedule_bug(prev); 2858 rcu_sleep_check(); 2859 2860 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2861 2862 schedstat_inc(this_rq(), sched_count); 2863 } 2864 2865 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2866 { 2867 if (prev->on_rq || rq->skip_clock_update < 0) 2868 update_rq_clock(rq); 2869 prev->sched_class->put_prev_task(rq, prev); 2870 } 2871 2872 /* 2873 * Pick up the highest-prio task: 2874 */ 2875 static inline struct task_struct * 2876 pick_next_task(struct rq *rq) 2877 { 2878 const struct sched_class *class; 2879 struct task_struct *p; 2880 2881 /* 2882 * Optimization: we know that if all tasks are in 2883 * the fair class we can call that function directly: 2884 */ 2885 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2886 p = fair_sched_class.pick_next_task(rq); 2887 if (likely(p)) 2888 return p; 2889 } 2890 2891 for_each_class(class) { 2892 p = class->pick_next_task(rq); 2893 if (p) 2894 return p; 2895 } 2896 2897 BUG(); /* the idle class will always have a runnable task */ 2898 } 2899 2900 /* 2901 * __schedule() is the main scheduler function. 2902 * 2903 * The main means of driving the scheduler and thus entering this function are: 2904 * 2905 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2906 * 2907 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2908 * paths. For example, see arch/x86/entry_64.S. 2909 * 2910 * To drive preemption between tasks, the scheduler sets the flag in timer 2911 * interrupt handler scheduler_tick(). 2912 * 2913 * 3. Wakeups don't really cause entry into schedule(). They add a 2914 * task to the run-queue and that's it. 2915 * 2916 * Now, if the new task added to the run-queue preempts the current 2917 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2918 * called on the nearest possible occasion: 2919 * 2920 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2921 * 2922 * - in syscall or exception context, at the next outmost 2923 * preempt_enable(). (this might be as soon as the wake_up()'s 2924 * spin_unlock()!) 2925 * 2926 * - in IRQ context, return from interrupt-handler to 2927 * preemptible context 2928 * 2929 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2930 * then at the next: 2931 * 2932 * - cond_resched() call 2933 * - explicit schedule() call 2934 * - return from syscall or exception to user-space 2935 * - return from interrupt-handler to user-space 2936 */ 2937 static void __sched __schedule(void) 2938 { 2939 struct task_struct *prev, *next; 2940 unsigned long *switch_count; 2941 struct rq *rq; 2942 int cpu; 2943 2944 need_resched: 2945 preempt_disable(); 2946 cpu = smp_processor_id(); 2947 rq = cpu_rq(cpu); 2948 rcu_note_context_switch(cpu); 2949 prev = rq->curr; 2950 2951 schedule_debug(prev); 2952 2953 if (sched_feat(HRTICK)) 2954 hrtick_clear(rq); 2955 2956 raw_spin_lock_irq(&rq->lock); 2957 2958 switch_count = &prev->nivcsw; 2959 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2960 if (unlikely(signal_pending_state(prev->state, prev))) { 2961 prev->state = TASK_RUNNING; 2962 } else { 2963 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2964 prev->on_rq = 0; 2965 2966 /* 2967 * If a worker went to sleep, notify and ask workqueue 2968 * whether it wants to wake up a task to maintain 2969 * concurrency. 2970 */ 2971 if (prev->flags & PF_WQ_WORKER) { 2972 struct task_struct *to_wakeup; 2973 2974 to_wakeup = wq_worker_sleeping(prev, cpu); 2975 if (to_wakeup) 2976 try_to_wake_up_local(to_wakeup); 2977 } 2978 } 2979 switch_count = &prev->nvcsw; 2980 } 2981 2982 pre_schedule(rq, prev); 2983 2984 if (unlikely(!rq->nr_running)) 2985 idle_balance(cpu, rq); 2986 2987 put_prev_task(rq, prev); 2988 next = pick_next_task(rq); 2989 clear_tsk_need_resched(prev); 2990 rq->skip_clock_update = 0; 2991 2992 if (likely(prev != next)) { 2993 rq->nr_switches++; 2994 rq->curr = next; 2995 ++*switch_count; 2996 2997 context_switch(rq, prev, next); /* unlocks the rq */ 2998 /* 2999 * The context switch have flipped the stack from under us 3000 * and restored the local variables which were saved when 3001 * this task called schedule() in the past. prev == current 3002 * is still correct, but it can be moved to another cpu/rq. 3003 */ 3004 cpu = smp_processor_id(); 3005 rq = cpu_rq(cpu); 3006 } else 3007 raw_spin_unlock_irq(&rq->lock); 3008 3009 post_schedule(rq); 3010 3011 sched_preempt_enable_no_resched(); 3012 if (need_resched()) 3013 goto need_resched; 3014 } 3015 3016 static inline void sched_submit_work(struct task_struct *tsk) 3017 { 3018 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3019 return; 3020 /* 3021 * If we are going to sleep and we have plugged IO queued, 3022 * make sure to submit it to avoid deadlocks. 3023 */ 3024 if (blk_needs_flush_plug(tsk)) 3025 blk_schedule_flush_plug(tsk); 3026 } 3027 3028 asmlinkage void __sched schedule(void) 3029 { 3030 struct task_struct *tsk = current; 3031 3032 sched_submit_work(tsk); 3033 __schedule(); 3034 } 3035 EXPORT_SYMBOL(schedule); 3036 3037 #ifdef CONFIG_CONTEXT_TRACKING 3038 asmlinkage void __sched schedule_user(void) 3039 { 3040 /* 3041 * If we come here after a random call to set_need_resched(), 3042 * or we have been woken up remotely but the IPI has not yet arrived, 3043 * we haven't yet exited the RCU idle mode. Do it here manually until 3044 * we find a better solution. 3045 */ 3046 user_exit(); 3047 schedule(); 3048 user_enter(); 3049 } 3050 #endif 3051 3052 /** 3053 * schedule_preempt_disabled - called with preemption disabled 3054 * 3055 * Returns with preemption disabled. Note: preempt_count must be 1 3056 */ 3057 void __sched schedule_preempt_disabled(void) 3058 { 3059 sched_preempt_enable_no_resched(); 3060 schedule(); 3061 preempt_disable(); 3062 } 3063 3064 #ifdef CONFIG_PREEMPT 3065 /* 3066 * this is the entry point to schedule() from in-kernel preemption 3067 * off of preempt_enable. Kernel preemptions off return from interrupt 3068 * occur there and call schedule directly. 3069 */ 3070 asmlinkage void __sched notrace preempt_schedule(void) 3071 { 3072 struct thread_info *ti = current_thread_info(); 3073 3074 /* 3075 * If there is a non-zero preempt_count or interrupts are disabled, 3076 * we do not want to preempt the current task. Just return.. 3077 */ 3078 if (likely(ti->preempt_count || irqs_disabled())) 3079 return; 3080 3081 do { 3082 add_preempt_count_notrace(PREEMPT_ACTIVE); 3083 __schedule(); 3084 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3085 3086 /* 3087 * Check again in case we missed a preemption opportunity 3088 * between schedule and now. 3089 */ 3090 barrier(); 3091 } while (need_resched()); 3092 } 3093 EXPORT_SYMBOL(preempt_schedule); 3094 3095 /* 3096 * this is the entry point to schedule() from kernel preemption 3097 * off of irq context. 3098 * Note, that this is called and return with irqs disabled. This will 3099 * protect us against recursive calling from irq. 3100 */ 3101 asmlinkage void __sched preempt_schedule_irq(void) 3102 { 3103 struct thread_info *ti = current_thread_info(); 3104 enum ctx_state prev_state; 3105 3106 /* Catch callers which need to be fixed */ 3107 BUG_ON(ti->preempt_count || !irqs_disabled()); 3108 3109 prev_state = exception_enter(); 3110 3111 do { 3112 add_preempt_count(PREEMPT_ACTIVE); 3113 local_irq_enable(); 3114 __schedule(); 3115 local_irq_disable(); 3116 sub_preempt_count(PREEMPT_ACTIVE); 3117 3118 /* 3119 * Check again in case we missed a preemption opportunity 3120 * between schedule and now. 3121 */ 3122 barrier(); 3123 } while (need_resched()); 3124 3125 exception_exit(prev_state); 3126 } 3127 3128 #endif /* CONFIG_PREEMPT */ 3129 3130 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3131 void *key) 3132 { 3133 return try_to_wake_up(curr->private, mode, wake_flags); 3134 } 3135 EXPORT_SYMBOL(default_wake_function); 3136 3137 /* 3138 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3139 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3140 * number) then we wake all the non-exclusive tasks and one exclusive task. 3141 * 3142 * There are circumstances in which we can try to wake a task which has already 3143 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3144 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3145 */ 3146 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3147 int nr_exclusive, int wake_flags, void *key) 3148 { 3149 wait_queue_t *curr, *next; 3150 3151 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3152 unsigned flags = curr->flags; 3153 3154 if (curr->func(curr, mode, wake_flags, key) && 3155 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3156 break; 3157 } 3158 } 3159 3160 /** 3161 * __wake_up - wake up threads blocked on a waitqueue. 3162 * @q: the waitqueue 3163 * @mode: which threads 3164 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3165 * @key: is directly passed to the wakeup function 3166 * 3167 * It may be assumed that this function implies a write memory barrier before 3168 * changing the task state if and only if any tasks are woken up. 3169 */ 3170 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3171 int nr_exclusive, void *key) 3172 { 3173 unsigned long flags; 3174 3175 spin_lock_irqsave(&q->lock, flags); 3176 __wake_up_common(q, mode, nr_exclusive, 0, key); 3177 spin_unlock_irqrestore(&q->lock, flags); 3178 } 3179 EXPORT_SYMBOL(__wake_up); 3180 3181 /* 3182 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3183 */ 3184 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3185 { 3186 __wake_up_common(q, mode, nr, 0, NULL); 3187 } 3188 EXPORT_SYMBOL_GPL(__wake_up_locked); 3189 3190 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3191 { 3192 __wake_up_common(q, mode, 1, 0, key); 3193 } 3194 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3195 3196 /** 3197 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3198 * @q: the waitqueue 3199 * @mode: which threads 3200 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3201 * @key: opaque value to be passed to wakeup targets 3202 * 3203 * The sync wakeup differs that the waker knows that it will schedule 3204 * away soon, so while the target thread will be woken up, it will not 3205 * be migrated to another CPU - ie. the two threads are 'synchronized' 3206 * with each other. This can prevent needless bouncing between CPUs. 3207 * 3208 * On UP it can prevent extra preemption. 3209 * 3210 * It may be assumed that this function implies a write memory barrier before 3211 * changing the task state if and only if any tasks are woken up. 3212 */ 3213 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3214 int nr_exclusive, void *key) 3215 { 3216 unsigned long flags; 3217 int wake_flags = WF_SYNC; 3218 3219 if (unlikely(!q)) 3220 return; 3221 3222 if (unlikely(!nr_exclusive)) 3223 wake_flags = 0; 3224 3225 spin_lock_irqsave(&q->lock, flags); 3226 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3227 spin_unlock_irqrestore(&q->lock, flags); 3228 } 3229 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3230 3231 /* 3232 * __wake_up_sync - see __wake_up_sync_key() 3233 */ 3234 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3235 { 3236 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3237 } 3238 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3239 3240 /** 3241 * complete: - signals a single thread waiting on this completion 3242 * @x: holds the state of this particular completion 3243 * 3244 * This will wake up a single thread waiting on this completion. Threads will be 3245 * awakened in the same order in which they were queued. 3246 * 3247 * See also complete_all(), wait_for_completion() and related routines. 3248 * 3249 * It may be assumed that this function implies a write memory barrier before 3250 * changing the task state if and only if any tasks are woken up. 3251 */ 3252 void complete(struct completion *x) 3253 { 3254 unsigned long flags; 3255 3256 spin_lock_irqsave(&x->wait.lock, flags); 3257 x->done++; 3258 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3259 spin_unlock_irqrestore(&x->wait.lock, flags); 3260 } 3261 EXPORT_SYMBOL(complete); 3262 3263 /** 3264 * complete_all: - signals all threads waiting on this completion 3265 * @x: holds the state of this particular completion 3266 * 3267 * This will wake up all threads waiting on this particular completion event. 3268 * 3269 * It may be assumed that this function implies a write memory barrier before 3270 * changing the task state if and only if any tasks are woken up. 3271 */ 3272 void complete_all(struct completion *x) 3273 { 3274 unsigned long flags; 3275 3276 spin_lock_irqsave(&x->wait.lock, flags); 3277 x->done += UINT_MAX/2; 3278 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3279 spin_unlock_irqrestore(&x->wait.lock, flags); 3280 } 3281 EXPORT_SYMBOL(complete_all); 3282 3283 static inline long __sched 3284 do_wait_for_common(struct completion *x, 3285 long (*action)(long), long timeout, int state) 3286 { 3287 if (!x->done) { 3288 DECLARE_WAITQUEUE(wait, current); 3289 3290 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3291 do { 3292 if (signal_pending_state(state, current)) { 3293 timeout = -ERESTARTSYS; 3294 break; 3295 } 3296 __set_current_state(state); 3297 spin_unlock_irq(&x->wait.lock); 3298 timeout = action(timeout); 3299 spin_lock_irq(&x->wait.lock); 3300 } while (!x->done && timeout); 3301 __remove_wait_queue(&x->wait, &wait); 3302 if (!x->done) 3303 return timeout; 3304 } 3305 x->done--; 3306 return timeout ?: 1; 3307 } 3308 3309 static inline long __sched 3310 __wait_for_common(struct completion *x, 3311 long (*action)(long), long timeout, int state) 3312 { 3313 might_sleep(); 3314 3315 spin_lock_irq(&x->wait.lock); 3316 timeout = do_wait_for_common(x, action, timeout, state); 3317 spin_unlock_irq(&x->wait.lock); 3318 return timeout; 3319 } 3320 3321 static long __sched 3322 wait_for_common(struct completion *x, long timeout, int state) 3323 { 3324 return __wait_for_common(x, schedule_timeout, timeout, state); 3325 } 3326 3327 static long __sched 3328 wait_for_common_io(struct completion *x, long timeout, int state) 3329 { 3330 return __wait_for_common(x, io_schedule_timeout, timeout, state); 3331 } 3332 3333 /** 3334 * wait_for_completion: - waits for completion of a task 3335 * @x: holds the state of this particular completion 3336 * 3337 * This waits to be signaled for completion of a specific task. It is NOT 3338 * interruptible and there is no timeout. 3339 * 3340 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3341 * and interrupt capability. Also see complete(). 3342 */ 3343 void __sched wait_for_completion(struct completion *x) 3344 { 3345 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3346 } 3347 EXPORT_SYMBOL(wait_for_completion); 3348 3349 /** 3350 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3351 * @x: holds the state of this particular completion 3352 * @timeout: timeout value in jiffies 3353 * 3354 * This waits for either a completion of a specific task to be signaled or for a 3355 * specified timeout to expire. The timeout is in jiffies. It is not 3356 * interruptible. 3357 * 3358 * The return value is 0 if timed out, and positive (at least 1, or number of 3359 * jiffies left till timeout) if completed. 3360 */ 3361 unsigned long __sched 3362 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3363 { 3364 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3365 } 3366 EXPORT_SYMBOL(wait_for_completion_timeout); 3367 3368 /** 3369 * wait_for_completion_io: - waits for completion of a task 3370 * @x: holds the state of this particular completion 3371 * 3372 * This waits to be signaled for completion of a specific task. It is NOT 3373 * interruptible and there is no timeout. The caller is accounted as waiting 3374 * for IO. 3375 */ 3376 void __sched wait_for_completion_io(struct completion *x) 3377 { 3378 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3379 } 3380 EXPORT_SYMBOL(wait_for_completion_io); 3381 3382 /** 3383 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) 3384 * @x: holds the state of this particular completion 3385 * @timeout: timeout value in jiffies 3386 * 3387 * This waits for either a completion of a specific task to be signaled or for a 3388 * specified timeout to expire. The timeout is in jiffies. It is not 3389 * interruptible. The caller is accounted as waiting for IO. 3390 * 3391 * The return value is 0 if timed out, and positive (at least 1, or number of 3392 * jiffies left till timeout) if completed. 3393 */ 3394 unsigned long __sched 3395 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) 3396 { 3397 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); 3398 } 3399 EXPORT_SYMBOL(wait_for_completion_io_timeout); 3400 3401 /** 3402 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3403 * @x: holds the state of this particular completion 3404 * 3405 * This waits for completion of a specific task to be signaled. It is 3406 * interruptible. 3407 * 3408 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3409 */ 3410 int __sched wait_for_completion_interruptible(struct completion *x) 3411 { 3412 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3413 if (t == -ERESTARTSYS) 3414 return t; 3415 return 0; 3416 } 3417 EXPORT_SYMBOL(wait_for_completion_interruptible); 3418 3419 /** 3420 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3421 * @x: holds the state of this particular completion 3422 * @timeout: timeout value in jiffies 3423 * 3424 * This waits for either a completion of a specific task to be signaled or for a 3425 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3426 * 3427 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3428 * positive (at least 1, or number of jiffies left till timeout) if completed. 3429 */ 3430 long __sched 3431 wait_for_completion_interruptible_timeout(struct completion *x, 3432 unsigned long timeout) 3433 { 3434 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3435 } 3436 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3437 3438 /** 3439 * wait_for_completion_killable: - waits for completion of a task (killable) 3440 * @x: holds the state of this particular completion 3441 * 3442 * This waits to be signaled for completion of a specific task. It can be 3443 * interrupted by a kill signal. 3444 * 3445 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3446 */ 3447 int __sched wait_for_completion_killable(struct completion *x) 3448 { 3449 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3450 if (t == -ERESTARTSYS) 3451 return t; 3452 return 0; 3453 } 3454 EXPORT_SYMBOL(wait_for_completion_killable); 3455 3456 /** 3457 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3458 * @x: holds the state of this particular completion 3459 * @timeout: timeout value in jiffies 3460 * 3461 * This waits for either a completion of a specific task to be 3462 * signaled or for a specified timeout to expire. It can be 3463 * interrupted by a kill signal. The timeout is in jiffies. 3464 * 3465 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3466 * positive (at least 1, or number of jiffies left till timeout) if completed. 3467 */ 3468 long __sched 3469 wait_for_completion_killable_timeout(struct completion *x, 3470 unsigned long timeout) 3471 { 3472 return wait_for_common(x, timeout, TASK_KILLABLE); 3473 } 3474 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3475 3476 /** 3477 * try_wait_for_completion - try to decrement a completion without blocking 3478 * @x: completion structure 3479 * 3480 * Returns: 0 if a decrement cannot be done without blocking 3481 * 1 if a decrement succeeded. 3482 * 3483 * If a completion is being used as a counting completion, 3484 * attempt to decrement the counter without blocking. This 3485 * enables us to avoid waiting if the resource the completion 3486 * is protecting is not available. 3487 */ 3488 bool try_wait_for_completion(struct completion *x) 3489 { 3490 unsigned long flags; 3491 int ret = 1; 3492 3493 spin_lock_irqsave(&x->wait.lock, flags); 3494 if (!x->done) 3495 ret = 0; 3496 else 3497 x->done--; 3498 spin_unlock_irqrestore(&x->wait.lock, flags); 3499 return ret; 3500 } 3501 EXPORT_SYMBOL(try_wait_for_completion); 3502 3503 /** 3504 * completion_done - Test to see if a completion has any waiters 3505 * @x: completion structure 3506 * 3507 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3508 * 1 if there are no waiters. 3509 * 3510 */ 3511 bool completion_done(struct completion *x) 3512 { 3513 unsigned long flags; 3514 int ret = 1; 3515 3516 spin_lock_irqsave(&x->wait.lock, flags); 3517 if (!x->done) 3518 ret = 0; 3519 spin_unlock_irqrestore(&x->wait.lock, flags); 3520 return ret; 3521 } 3522 EXPORT_SYMBOL(completion_done); 3523 3524 static long __sched 3525 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3526 { 3527 unsigned long flags; 3528 wait_queue_t wait; 3529 3530 init_waitqueue_entry(&wait, current); 3531 3532 __set_current_state(state); 3533 3534 spin_lock_irqsave(&q->lock, flags); 3535 __add_wait_queue(q, &wait); 3536 spin_unlock(&q->lock); 3537 timeout = schedule_timeout(timeout); 3538 spin_lock_irq(&q->lock); 3539 __remove_wait_queue(q, &wait); 3540 spin_unlock_irqrestore(&q->lock, flags); 3541 3542 return timeout; 3543 } 3544 3545 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3546 { 3547 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3548 } 3549 EXPORT_SYMBOL(interruptible_sleep_on); 3550 3551 long __sched 3552 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3553 { 3554 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3555 } 3556 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3557 3558 void __sched sleep_on(wait_queue_head_t *q) 3559 { 3560 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3561 } 3562 EXPORT_SYMBOL(sleep_on); 3563 3564 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3565 { 3566 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3567 } 3568 EXPORT_SYMBOL(sleep_on_timeout); 3569 3570 #ifdef CONFIG_RT_MUTEXES 3571 3572 /* 3573 * rt_mutex_setprio - set the current priority of a task 3574 * @p: task 3575 * @prio: prio value (kernel-internal form) 3576 * 3577 * This function changes the 'effective' priority of a task. It does 3578 * not touch ->normal_prio like __setscheduler(). 3579 * 3580 * Used by the rt_mutex code to implement priority inheritance logic. 3581 */ 3582 void rt_mutex_setprio(struct task_struct *p, int prio) 3583 { 3584 int oldprio, on_rq, running; 3585 struct rq *rq; 3586 const struct sched_class *prev_class; 3587 3588 BUG_ON(prio < 0 || prio > MAX_PRIO); 3589 3590 rq = __task_rq_lock(p); 3591 3592 /* 3593 * Idle task boosting is a nono in general. There is one 3594 * exception, when PREEMPT_RT and NOHZ is active: 3595 * 3596 * The idle task calls get_next_timer_interrupt() and holds 3597 * the timer wheel base->lock on the CPU and another CPU wants 3598 * to access the timer (probably to cancel it). We can safely 3599 * ignore the boosting request, as the idle CPU runs this code 3600 * with interrupts disabled and will complete the lock 3601 * protected section without being interrupted. So there is no 3602 * real need to boost. 3603 */ 3604 if (unlikely(p == rq->idle)) { 3605 WARN_ON(p != rq->curr); 3606 WARN_ON(p->pi_blocked_on); 3607 goto out_unlock; 3608 } 3609 3610 trace_sched_pi_setprio(p, prio); 3611 oldprio = p->prio; 3612 prev_class = p->sched_class; 3613 on_rq = p->on_rq; 3614 running = task_current(rq, p); 3615 if (on_rq) 3616 dequeue_task(rq, p, 0); 3617 if (running) 3618 p->sched_class->put_prev_task(rq, p); 3619 3620 if (rt_prio(prio)) 3621 p->sched_class = &rt_sched_class; 3622 else 3623 p->sched_class = &fair_sched_class; 3624 3625 p->prio = prio; 3626 3627 if (running) 3628 p->sched_class->set_curr_task(rq); 3629 if (on_rq) 3630 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3631 3632 check_class_changed(rq, p, prev_class, oldprio); 3633 out_unlock: 3634 __task_rq_unlock(rq); 3635 } 3636 #endif 3637 void set_user_nice(struct task_struct *p, long nice) 3638 { 3639 int old_prio, delta, on_rq; 3640 unsigned long flags; 3641 struct rq *rq; 3642 3643 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3644 return; 3645 /* 3646 * We have to be careful, if called from sys_setpriority(), 3647 * the task might be in the middle of scheduling on another CPU. 3648 */ 3649 rq = task_rq_lock(p, &flags); 3650 /* 3651 * The RT priorities are set via sched_setscheduler(), but we still 3652 * allow the 'normal' nice value to be set - but as expected 3653 * it wont have any effect on scheduling until the task is 3654 * SCHED_FIFO/SCHED_RR: 3655 */ 3656 if (task_has_rt_policy(p)) { 3657 p->static_prio = NICE_TO_PRIO(nice); 3658 goto out_unlock; 3659 } 3660 on_rq = p->on_rq; 3661 if (on_rq) 3662 dequeue_task(rq, p, 0); 3663 3664 p->static_prio = NICE_TO_PRIO(nice); 3665 set_load_weight(p); 3666 old_prio = p->prio; 3667 p->prio = effective_prio(p); 3668 delta = p->prio - old_prio; 3669 3670 if (on_rq) { 3671 enqueue_task(rq, p, 0); 3672 /* 3673 * If the task increased its priority or is running and 3674 * lowered its priority, then reschedule its CPU: 3675 */ 3676 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3677 resched_task(rq->curr); 3678 } 3679 out_unlock: 3680 task_rq_unlock(rq, p, &flags); 3681 } 3682 EXPORT_SYMBOL(set_user_nice); 3683 3684 /* 3685 * can_nice - check if a task can reduce its nice value 3686 * @p: task 3687 * @nice: nice value 3688 */ 3689 int can_nice(const struct task_struct *p, const int nice) 3690 { 3691 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3692 int nice_rlim = 20 - nice; 3693 3694 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3695 capable(CAP_SYS_NICE)); 3696 } 3697 3698 #ifdef __ARCH_WANT_SYS_NICE 3699 3700 /* 3701 * sys_nice - change the priority of the current process. 3702 * @increment: priority increment 3703 * 3704 * sys_setpriority is a more generic, but much slower function that 3705 * does similar things. 3706 */ 3707 SYSCALL_DEFINE1(nice, int, increment) 3708 { 3709 long nice, retval; 3710 3711 /* 3712 * Setpriority might change our priority at the same moment. 3713 * We don't have to worry. Conceptually one call occurs first 3714 * and we have a single winner. 3715 */ 3716 if (increment < -40) 3717 increment = -40; 3718 if (increment > 40) 3719 increment = 40; 3720 3721 nice = TASK_NICE(current) + increment; 3722 if (nice < -20) 3723 nice = -20; 3724 if (nice > 19) 3725 nice = 19; 3726 3727 if (increment < 0 && !can_nice(current, nice)) 3728 return -EPERM; 3729 3730 retval = security_task_setnice(current, nice); 3731 if (retval) 3732 return retval; 3733 3734 set_user_nice(current, nice); 3735 return 0; 3736 } 3737 3738 #endif 3739 3740 /** 3741 * task_prio - return the priority value of a given task. 3742 * @p: the task in question. 3743 * 3744 * This is the priority value as seen by users in /proc. 3745 * RT tasks are offset by -200. Normal tasks are centered 3746 * around 0, value goes from -16 to +15. 3747 */ 3748 int task_prio(const struct task_struct *p) 3749 { 3750 return p->prio - MAX_RT_PRIO; 3751 } 3752 3753 /** 3754 * task_nice - return the nice value of a given task. 3755 * @p: the task in question. 3756 */ 3757 int task_nice(const struct task_struct *p) 3758 { 3759 return TASK_NICE(p); 3760 } 3761 EXPORT_SYMBOL(task_nice); 3762 3763 /** 3764 * idle_cpu - is a given cpu idle currently? 3765 * @cpu: the processor in question. 3766 */ 3767 int idle_cpu(int cpu) 3768 { 3769 struct rq *rq = cpu_rq(cpu); 3770 3771 if (rq->curr != rq->idle) 3772 return 0; 3773 3774 if (rq->nr_running) 3775 return 0; 3776 3777 #ifdef CONFIG_SMP 3778 if (!llist_empty(&rq->wake_list)) 3779 return 0; 3780 #endif 3781 3782 return 1; 3783 } 3784 3785 /** 3786 * idle_task - return the idle task for a given cpu. 3787 * @cpu: the processor in question. 3788 */ 3789 struct task_struct *idle_task(int cpu) 3790 { 3791 return cpu_rq(cpu)->idle; 3792 } 3793 3794 /** 3795 * find_process_by_pid - find a process with a matching PID value. 3796 * @pid: the pid in question. 3797 */ 3798 static struct task_struct *find_process_by_pid(pid_t pid) 3799 { 3800 return pid ? find_task_by_vpid(pid) : current; 3801 } 3802 3803 /* Actually do priority change: must hold rq lock. */ 3804 static void 3805 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3806 { 3807 p->policy = policy; 3808 p->rt_priority = prio; 3809 p->normal_prio = normal_prio(p); 3810 /* we are holding p->pi_lock already */ 3811 p->prio = rt_mutex_getprio(p); 3812 if (rt_prio(p->prio)) 3813 p->sched_class = &rt_sched_class; 3814 else 3815 p->sched_class = &fair_sched_class; 3816 set_load_weight(p); 3817 } 3818 3819 /* 3820 * check the target process has a UID that matches the current process's 3821 */ 3822 static bool check_same_owner(struct task_struct *p) 3823 { 3824 const struct cred *cred = current_cred(), *pcred; 3825 bool match; 3826 3827 rcu_read_lock(); 3828 pcred = __task_cred(p); 3829 match = (uid_eq(cred->euid, pcred->euid) || 3830 uid_eq(cred->euid, pcred->uid)); 3831 rcu_read_unlock(); 3832 return match; 3833 } 3834 3835 static int __sched_setscheduler(struct task_struct *p, int policy, 3836 const struct sched_param *param, bool user) 3837 { 3838 int retval, oldprio, oldpolicy = -1, on_rq, running; 3839 unsigned long flags; 3840 const struct sched_class *prev_class; 3841 struct rq *rq; 3842 int reset_on_fork; 3843 3844 /* may grab non-irq protected spin_locks */ 3845 BUG_ON(in_interrupt()); 3846 recheck: 3847 /* double check policy once rq lock held */ 3848 if (policy < 0) { 3849 reset_on_fork = p->sched_reset_on_fork; 3850 policy = oldpolicy = p->policy; 3851 } else { 3852 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3853 policy &= ~SCHED_RESET_ON_FORK; 3854 3855 if (policy != SCHED_FIFO && policy != SCHED_RR && 3856 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3857 policy != SCHED_IDLE) 3858 return -EINVAL; 3859 } 3860 3861 /* 3862 * Valid priorities for SCHED_FIFO and SCHED_RR are 3863 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3864 * SCHED_BATCH and SCHED_IDLE is 0. 3865 */ 3866 if (param->sched_priority < 0 || 3867 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3868 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3869 return -EINVAL; 3870 if (rt_policy(policy) != (param->sched_priority != 0)) 3871 return -EINVAL; 3872 3873 /* 3874 * Allow unprivileged RT tasks to decrease priority: 3875 */ 3876 if (user && !capable(CAP_SYS_NICE)) { 3877 if (rt_policy(policy)) { 3878 unsigned long rlim_rtprio = 3879 task_rlimit(p, RLIMIT_RTPRIO); 3880 3881 /* can't set/change the rt policy */ 3882 if (policy != p->policy && !rlim_rtprio) 3883 return -EPERM; 3884 3885 /* can't increase priority */ 3886 if (param->sched_priority > p->rt_priority && 3887 param->sched_priority > rlim_rtprio) 3888 return -EPERM; 3889 } 3890 3891 /* 3892 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3893 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3894 */ 3895 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3896 if (!can_nice(p, TASK_NICE(p))) 3897 return -EPERM; 3898 } 3899 3900 /* can't change other user's priorities */ 3901 if (!check_same_owner(p)) 3902 return -EPERM; 3903 3904 /* Normal users shall not reset the sched_reset_on_fork flag */ 3905 if (p->sched_reset_on_fork && !reset_on_fork) 3906 return -EPERM; 3907 } 3908 3909 if (user) { 3910 retval = security_task_setscheduler(p); 3911 if (retval) 3912 return retval; 3913 } 3914 3915 /* 3916 * make sure no PI-waiters arrive (or leave) while we are 3917 * changing the priority of the task: 3918 * 3919 * To be able to change p->policy safely, the appropriate 3920 * runqueue lock must be held. 3921 */ 3922 rq = task_rq_lock(p, &flags); 3923 3924 /* 3925 * Changing the policy of the stop threads its a very bad idea 3926 */ 3927 if (p == rq->stop) { 3928 task_rq_unlock(rq, p, &flags); 3929 return -EINVAL; 3930 } 3931 3932 /* 3933 * If not changing anything there's no need to proceed further: 3934 */ 3935 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3936 param->sched_priority == p->rt_priority))) { 3937 task_rq_unlock(rq, p, &flags); 3938 return 0; 3939 } 3940 3941 #ifdef CONFIG_RT_GROUP_SCHED 3942 if (user) { 3943 /* 3944 * Do not allow realtime tasks into groups that have no runtime 3945 * assigned. 3946 */ 3947 if (rt_bandwidth_enabled() && rt_policy(policy) && 3948 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3949 !task_group_is_autogroup(task_group(p))) { 3950 task_rq_unlock(rq, p, &flags); 3951 return -EPERM; 3952 } 3953 } 3954 #endif 3955 3956 /* recheck policy now with rq lock held */ 3957 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3958 policy = oldpolicy = -1; 3959 task_rq_unlock(rq, p, &flags); 3960 goto recheck; 3961 } 3962 on_rq = p->on_rq; 3963 running = task_current(rq, p); 3964 if (on_rq) 3965 dequeue_task(rq, p, 0); 3966 if (running) 3967 p->sched_class->put_prev_task(rq, p); 3968 3969 p->sched_reset_on_fork = reset_on_fork; 3970 3971 oldprio = p->prio; 3972 prev_class = p->sched_class; 3973 __setscheduler(rq, p, policy, param->sched_priority); 3974 3975 if (running) 3976 p->sched_class->set_curr_task(rq); 3977 if (on_rq) 3978 enqueue_task(rq, p, 0); 3979 3980 check_class_changed(rq, p, prev_class, oldprio); 3981 task_rq_unlock(rq, p, &flags); 3982 3983 rt_mutex_adjust_pi(p); 3984 3985 return 0; 3986 } 3987 3988 /** 3989 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3990 * @p: the task in question. 3991 * @policy: new policy. 3992 * @param: structure containing the new RT priority. 3993 * 3994 * NOTE that the task may be already dead. 3995 */ 3996 int sched_setscheduler(struct task_struct *p, int policy, 3997 const struct sched_param *param) 3998 { 3999 return __sched_setscheduler(p, policy, param, true); 4000 } 4001 EXPORT_SYMBOL_GPL(sched_setscheduler); 4002 4003 /** 4004 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4005 * @p: the task in question. 4006 * @policy: new policy. 4007 * @param: structure containing the new RT priority. 4008 * 4009 * Just like sched_setscheduler, only don't bother checking if the 4010 * current context has permission. For example, this is needed in 4011 * stop_machine(): we create temporary high priority worker threads, 4012 * but our caller might not have that capability. 4013 */ 4014 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4015 const struct sched_param *param) 4016 { 4017 return __sched_setscheduler(p, policy, param, false); 4018 } 4019 4020 static int 4021 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4022 { 4023 struct sched_param lparam; 4024 struct task_struct *p; 4025 int retval; 4026 4027 if (!param || pid < 0) 4028 return -EINVAL; 4029 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4030 return -EFAULT; 4031 4032 rcu_read_lock(); 4033 retval = -ESRCH; 4034 p = find_process_by_pid(pid); 4035 if (p != NULL) 4036 retval = sched_setscheduler(p, policy, &lparam); 4037 rcu_read_unlock(); 4038 4039 return retval; 4040 } 4041 4042 /** 4043 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4044 * @pid: the pid in question. 4045 * @policy: new policy. 4046 * @param: structure containing the new RT priority. 4047 */ 4048 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4049 struct sched_param __user *, param) 4050 { 4051 /* negative values for policy are not valid */ 4052 if (policy < 0) 4053 return -EINVAL; 4054 4055 return do_sched_setscheduler(pid, policy, param); 4056 } 4057 4058 /** 4059 * sys_sched_setparam - set/change the RT priority of a thread 4060 * @pid: the pid in question. 4061 * @param: structure containing the new RT priority. 4062 */ 4063 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4064 { 4065 return do_sched_setscheduler(pid, -1, param); 4066 } 4067 4068 /** 4069 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4070 * @pid: the pid in question. 4071 */ 4072 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4073 { 4074 struct task_struct *p; 4075 int retval; 4076 4077 if (pid < 0) 4078 return -EINVAL; 4079 4080 retval = -ESRCH; 4081 rcu_read_lock(); 4082 p = find_process_by_pid(pid); 4083 if (p) { 4084 retval = security_task_getscheduler(p); 4085 if (!retval) 4086 retval = p->policy 4087 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4088 } 4089 rcu_read_unlock(); 4090 return retval; 4091 } 4092 4093 /** 4094 * sys_sched_getparam - get the RT priority of a thread 4095 * @pid: the pid in question. 4096 * @param: structure containing the RT priority. 4097 */ 4098 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4099 { 4100 struct sched_param lp; 4101 struct task_struct *p; 4102 int retval; 4103 4104 if (!param || pid < 0) 4105 return -EINVAL; 4106 4107 rcu_read_lock(); 4108 p = find_process_by_pid(pid); 4109 retval = -ESRCH; 4110 if (!p) 4111 goto out_unlock; 4112 4113 retval = security_task_getscheduler(p); 4114 if (retval) 4115 goto out_unlock; 4116 4117 lp.sched_priority = p->rt_priority; 4118 rcu_read_unlock(); 4119 4120 /* 4121 * This one might sleep, we cannot do it with a spinlock held ... 4122 */ 4123 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4124 4125 return retval; 4126 4127 out_unlock: 4128 rcu_read_unlock(); 4129 return retval; 4130 } 4131 4132 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4133 { 4134 cpumask_var_t cpus_allowed, new_mask; 4135 struct task_struct *p; 4136 int retval; 4137 4138 get_online_cpus(); 4139 rcu_read_lock(); 4140 4141 p = find_process_by_pid(pid); 4142 if (!p) { 4143 rcu_read_unlock(); 4144 put_online_cpus(); 4145 return -ESRCH; 4146 } 4147 4148 /* Prevent p going away */ 4149 get_task_struct(p); 4150 rcu_read_unlock(); 4151 4152 if (p->flags & PF_NO_SETAFFINITY) { 4153 retval = -EINVAL; 4154 goto out_put_task; 4155 } 4156 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4157 retval = -ENOMEM; 4158 goto out_put_task; 4159 } 4160 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4161 retval = -ENOMEM; 4162 goto out_free_cpus_allowed; 4163 } 4164 retval = -EPERM; 4165 if (!check_same_owner(p)) { 4166 rcu_read_lock(); 4167 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4168 rcu_read_unlock(); 4169 goto out_unlock; 4170 } 4171 rcu_read_unlock(); 4172 } 4173 4174 retval = security_task_setscheduler(p); 4175 if (retval) 4176 goto out_unlock; 4177 4178 cpuset_cpus_allowed(p, cpus_allowed); 4179 cpumask_and(new_mask, in_mask, cpus_allowed); 4180 again: 4181 retval = set_cpus_allowed_ptr(p, new_mask); 4182 4183 if (!retval) { 4184 cpuset_cpus_allowed(p, cpus_allowed); 4185 if (!cpumask_subset(new_mask, cpus_allowed)) { 4186 /* 4187 * We must have raced with a concurrent cpuset 4188 * update. Just reset the cpus_allowed to the 4189 * cpuset's cpus_allowed 4190 */ 4191 cpumask_copy(new_mask, cpus_allowed); 4192 goto again; 4193 } 4194 } 4195 out_unlock: 4196 free_cpumask_var(new_mask); 4197 out_free_cpus_allowed: 4198 free_cpumask_var(cpus_allowed); 4199 out_put_task: 4200 put_task_struct(p); 4201 put_online_cpus(); 4202 return retval; 4203 } 4204 4205 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4206 struct cpumask *new_mask) 4207 { 4208 if (len < cpumask_size()) 4209 cpumask_clear(new_mask); 4210 else if (len > cpumask_size()) 4211 len = cpumask_size(); 4212 4213 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4214 } 4215 4216 /** 4217 * sys_sched_setaffinity - set the cpu affinity of a process 4218 * @pid: pid of the process 4219 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4220 * @user_mask_ptr: user-space pointer to the new cpu mask 4221 */ 4222 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4223 unsigned long __user *, user_mask_ptr) 4224 { 4225 cpumask_var_t new_mask; 4226 int retval; 4227 4228 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4229 return -ENOMEM; 4230 4231 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4232 if (retval == 0) 4233 retval = sched_setaffinity(pid, new_mask); 4234 free_cpumask_var(new_mask); 4235 return retval; 4236 } 4237 4238 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4239 { 4240 struct task_struct *p; 4241 unsigned long flags; 4242 int retval; 4243 4244 get_online_cpus(); 4245 rcu_read_lock(); 4246 4247 retval = -ESRCH; 4248 p = find_process_by_pid(pid); 4249 if (!p) 4250 goto out_unlock; 4251 4252 retval = security_task_getscheduler(p); 4253 if (retval) 4254 goto out_unlock; 4255 4256 raw_spin_lock_irqsave(&p->pi_lock, flags); 4257 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4258 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4259 4260 out_unlock: 4261 rcu_read_unlock(); 4262 put_online_cpus(); 4263 4264 return retval; 4265 } 4266 4267 /** 4268 * sys_sched_getaffinity - get the cpu affinity of a process 4269 * @pid: pid of the process 4270 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4271 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4272 */ 4273 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4274 unsigned long __user *, user_mask_ptr) 4275 { 4276 int ret; 4277 cpumask_var_t mask; 4278 4279 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4280 return -EINVAL; 4281 if (len & (sizeof(unsigned long)-1)) 4282 return -EINVAL; 4283 4284 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4285 return -ENOMEM; 4286 4287 ret = sched_getaffinity(pid, mask); 4288 if (ret == 0) { 4289 size_t retlen = min_t(size_t, len, cpumask_size()); 4290 4291 if (copy_to_user(user_mask_ptr, mask, retlen)) 4292 ret = -EFAULT; 4293 else 4294 ret = retlen; 4295 } 4296 free_cpumask_var(mask); 4297 4298 return ret; 4299 } 4300 4301 /** 4302 * sys_sched_yield - yield the current processor to other threads. 4303 * 4304 * This function yields the current CPU to other tasks. If there are no 4305 * other threads running on this CPU then this function will return. 4306 */ 4307 SYSCALL_DEFINE0(sched_yield) 4308 { 4309 struct rq *rq = this_rq_lock(); 4310 4311 schedstat_inc(rq, yld_count); 4312 current->sched_class->yield_task(rq); 4313 4314 /* 4315 * Since we are going to call schedule() anyway, there's 4316 * no need to preempt or enable interrupts: 4317 */ 4318 __release(rq->lock); 4319 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4320 do_raw_spin_unlock(&rq->lock); 4321 sched_preempt_enable_no_resched(); 4322 4323 schedule(); 4324 4325 return 0; 4326 } 4327 4328 static inline int should_resched(void) 4329 { 4330 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4331 } 4332 4333 static void __cond_resched(void) 4334 { 4335 add_preempt_count(PREEMPT_ACTIVE); 4336 __schedule(); 4337 sub_preempt_count(PREEMPT_ACTIVE); 4338 } 4339 4340 int __sched _cond_resched(void) 4341 { 4342 if (should_resched()) { 4343 __cond_resched(); 4344 return 1; 4345 } 4346 return 0; 4347 } 4348 EXPORT_SYMBOL(_cond_resched); 4349 4350 /* 4351 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4352 * call schedule, and on return reacquire the lock. 4353 * 4354 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4355 * operations here to prevent schedule() from being called twice (once via 4356 * spin_unlock(), once by hand). 4357 */ 4358 int __cond_resched_lock(spinlock_t *lock) 4359 { 4360 int resched = should_resched(); 4361 int ret = 0; 4362 4363 lockdep_assert_held(lock); 4364 4365 if (spin_needbreak(lock) || resched) { 4366 spin_unlock(lock); 4367 if (resched) 4368 __cond_resched(); 4369 else 4370 cpu_relax(); 4371 ret = 1; 4372 spin_lock(lock); 4373 } 4374 return ret; 4375 } 4376 EXPORT_SYMBOL(__cond_resched_lock); 4377 4378 int __sched __cond_resched_softirq(void) 4379 { 4380 BUG_ON(!in_softirq()); 4381 4382 if (should_resched()) { 4383 local_bh_enable(); 4384 __cond_resched(); 4385 local_bh_disable(); 4386 return 1; 4387 } 4388 return 0; 4389 } 4390 EXPORT_SYMBOL(__cond_resched_softirq); 4391 4392 /** 4393 * yield - yield the current processor to other threads. 4394 * 4395 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4396 * 4397 * The scheduler is at all times free to pick the calling task as the most 4398 * eligible task to run, if removing the yield() call from your code breaks 4399 * it, its already broken. 4400 * 4401 * Typical broken usage is: 4402 * 4403 * while (!event) 4404 * yield(); 4405 * 4406 * where one assumes that yield() will let 'the other' process run that will 4407 * make event true. If the current task is a SCHED_FIFO task that will never 4408 * happen. Never use yield() as a progress guarantee!! 4409 * 4410 * If you want to use yield() to wait for something, use wait_event(). 4411 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4412 * If you still want to use yield(), do not! 4413 */ 4414 void __sched yield(void) 4415 { 4416 set_current_state(TASK_RUNNING); 4417 sys_sched_yield(); 4418 } 4419 EXPORT_SYMBOL(yield); 4420 4421 /** 4422 * yield_to - yield the current processor to another thread in 4423 * your thread group, or accelerate that thread toward the 4424 * processor it's on. 4425 * @p: target task 4426 * @preempt: whether task preemption is allowed or not 4427 * 4428 * It's the caller's job to ensure that the target task struct 4429 * can't go away on us before we can do any checks. 4430 * 4431 * Returns: 4432 * true (>0) if we indeed boosted the target task. 4433 * false (0) if we failed to boost the target. 4434 * -ESRCH if there's no task to yield to. 4435 */ 4436 bool __sched yield_to(struct task_struct *p, bool preempt) 4437 { 4438 struct task_struct *curr = current; 4439 struct rq *rq, *p_rq; 4440 unsigned long flags; 4441 int yielded = 0; 4442 4443 local_irq_save(flags); 4444 rq = this_rq(); 4445 4446 again: 4447 p_rq = task_rq(p); 4448 /* 4449 * If we're the only runnable task on the rq and target rq also 4450 * has only one task, there's absolutely no point in yielding. 4451 */ 4452 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4453 yielded = -ESRCH; 4454 goto out_irq; 4455 } 4456 4457 double_rq_lock(rq, p_rq); 4458 while (task_rq(p) != p_rq) { 4459 double_rq_unlock(rq, p_rq); 4460 goto again; 4461 } 4462 4463 if (!curr->sched_class->yield_to_task) 4464 goto out_unlock; 4465 4466 if (curr->sched_class != p->sched_class) 4467 goto out_unlock; 4468 4469 if (task_running(p_rq, p) || p->state) 4470 goto out_unlock; 4471 4472 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4473 if (yielded) { 4474 schedstat_inc(rq, yld_count); 4475 /* 4476 * Make p's CPU reschedule; pick_next_entity takes care of 4477 * fairness. 4478 */ 4479 if (preempt && rq != p_rq) 4480 resched_task(p_rq->curr); 4481 } 4482 4483 out_unlock: 4484 double_rq_unlock(rq, p_rq); 4485 out_irq: 4486 local_irq_restore(flags); 4487 4488 if (yielded > 0) 4489 schedule(); 4490 4491 return yielded; 4492 } 4493 EXPORT_SYMBOL_GPL(yield_to); 4494 4495 /* 4496 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4497 * that process accounting knows that this is a task in IO wait state. 4498 */ 4499 void __sched io_schedule(void) 4500 { 4501 struct rq *rq = raw_rq(); 4502 4503 delayacct_blkio_start(); 4504 atomic_inc(&rq->nr_iowait); 4505 blk_flush_plug(current); 4506 current->in_iowait = 1; 4507 schedule(); 4508 current->in_iowait = 0; 4509 atomic_dec(&rq->nr_iowait); 4510 delayacct_blkio_end(); 4511 } 4512 EXPORT_SYMBOL(io_schedule); 4513 4514 long __sched io_schedule_timeout(long timeout) 4515 { 4516 struct rq *rq = raw_rq(); 4517 long ret; 4518 4519 delayacct_blkio_start(); 4520 atomic_inc(&rq->nr_iowait); 4521 blk_flush_plug(current); 4522 current->in_iowait = 1; 4523 ret = schedule_timeout(timeout); 4524 current->in_iowait = 0; 4525 atomic_dec(&rq->nr_iowait); 4526 delayacct_blkio_end(); 4527 return ret; 4528 } 4529 4530 /** 4531 * sys_sched_get_priority_max - return maximum RT priority. 4532 * @policy: scheduling class. 4533 * 4534 * this syscall returns the maximum rt_priority that can be used 4535 * by a given scheduling class. 4536 */ 4537 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4538 { 4539 int ret = -EINVAL; 4540 4541 switch (policy) { 4542 case SCHED_FIFO: 4543 case SCHED_RR: 4544 ret = MAX_USER_RT_PRIO-1; 4545 break; 4546 case SCHED_NORMAL: 4547 case SCHED_BATCH: 4548 case SCHED_IDLE: 4549 ret = 0; 4550 break; 4551 } 4552 return ret; 4553 } 4554 4555 /** 4556 * sys_sched_get_priority_min - return minimum RT priority. 4557 * @policy: scheduling class. 4558 * 4559 * this syscall returns the minimum rt_priority that can be used 4560 * by a given scheduling class. 4561 */ 4562 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4563 { 4564 int ret = -EINVAL; 4565 4566 switch (policy) { 4567 case SCHED_FIFO: 4568 case SCHED_RR: 4569 ret = 1; 4570 break; 4571 case SCHED_NORMAL: 4572 case SCHED_BATCH: 4573 case SCHED_IDLE: 4574 ret = 0; 4575 } 4576 return ret; 4577 } 4578 4579 /** 4580 * sys_sched_rr_get_interval - return the default timeslice of a process. 4581 * @pid: pid of the process. 4582 * @interval: userspace pointer to the timeslice value. 4583 * 4584 * this syscall writes the default timeslice value of a given process 4585 * into the user-space timespec buffer. A value of '0' means infinity. 4586 */ 4587 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4588 struct timespec __user *, interval) 4589 { 4590 struct task_struct *p; 4591 unsigned int time_slice; 4592 unsigned long flags; 4593 struct rq *rq; 4594 int retval; 4595 struct timespec t; 4596 4597 if (pid < 0) 4598 return -EINVAL; 4599 4600 retval = -ESRCH; 4601 rcu_read_lock(); 4602 p = find_process_by_pid(pid); 4603 if (!p) 4604 goto out_unlock; 4605 4606 retval = security_task_getscheduler(p); 4607 if (retval) 4608 goto out_unlock; 4609 4610 rq = task_rq_lock(p, &flags); 4611 time_slice = p->sched_class->get_rr_interval(rq, p); 4612 task_rq_unlock(rq, p, &flags); 4613 4614 rcu_read_unlock(); 4615 jiffies_to_timespec(time_slice, &t); 4616 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4617 return retval; 4618 4619 out_unlock: 4620 rcu_read_unlock(); 4621 return retval; 4622 } 4623 4624 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4625 4626 void sched_show_task(struct task_struct *p) 4627 { 4628 unsigned long free = 0; 4629 int ppid; 4630 unsigned state; 4631 4632 state = p->state ? __ffs(p->state) + 1 : 0; 4633 printk(KERN_INFO "%-15.15s %c", p->comm, 4634 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4635 #if BITS_PER_LONG == 32 4636 if (state == TASK_RUNNING) 4637 printk(KERN_CONT " running "); 4638 else 4639 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4640 #else 4641 if (state == TASK_RUNNING) 4642 printk(KERN_CONT " running task "); 4643 else 4644 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4645 #endif 4646 #ifdef CONFIG_DEBUG_STACK_USAGE 4647 free = stack_not_used(p); 4648 #endif 4649 rcu_read_lock(); 4650 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4651 rcu_read_unlock(); 4652 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4653 task_pid_nr(p), ppid, 4654 (unsigned long)task_thread_info(p)->flags); 4655 4656 print_worker_info(KERN_INFO, p); 4657 show_stack(p, NULL); 4658 } 4659 4660 void show_state_filter(unsigned long state_filter) 4661 { 4662 struct task_struct *g, *p; 4663 4664 #if BITS_PER_LONG == 32 4665 printk(KERN_INFO 4666 " task PC stack pid father\n"); 4667 #else 4668 printk(KERN_INFO 4669 " task PC stack pid father\n"); 4670 #endif 4671 rcu_read_lock(); 4672 do_each_thread(g, p) { 4673 /* 4674 * reset the NMI-timeout, listing all files on a slow 4675 * console might take a lot of time: 4676 */ 4677 touch_nmi_watchdog(); 4678 if (!state_filter || (p->state & state_filter)) 4679 sched_show_task(p); 4680 } while_each_thread(g, p); 4681 4682 touch_all_softlockup_watchdogs(); 4683 4684 #ifdef CONFIG_SCHED_DEBUG 4685 sysrq_sched_debug_show(); 4686 #endif 4687 rcu_read_unlock(); 4688 /* 4689 * Only show locks if all tasks are dumped: 4690 */ 4691 if (!state_filter) 4692 debug_show_all_locks(); 4693 } 4694 4695 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4696 { 4697 idle->sched_class = &idle_sched_class; 4698 } 4699 4700 /** 4701 * init_idle - set up an idle thread for a given CPU 4702 * @idle: task in question 4703 * @cpu: cpu the idle task belongs to 4704 * 4705 * NOTE: this function does not set the idle thread's NEED_RESCHED 4706 * flag, to make booting more robust. 4707 */ 4708 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4709 { 4710 struct rq *rq = cpu_rq(cpu); 4711 unsigned long flags; 4712 4713 raw_spin_lock_irqsave(&rq->lock, flags); 4714 4715 __sched_fork(idle); 4716 idle->state = TASK_RUNNING; 4717 idle->se.exec_start = sched_clock(); 4718 4719 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4720 /* 4721 * We're having a chicken and egg problem, even though we are 4722 * holding rq->lock, the cpu isn't yet set to this cpu so the 4723 * lockdep check in task_group() will fail. 4724 * 4725 * Similar case to sched_fork(). / Alternatively we could 4726 * use task_rq_lock() here and obtain the other rq->lock. 4727 * 4728 * Silence PROVE_RCU 4729 */ 4730 rcu_read_lock(); 4731 __set_task_cpu(idle, cpu); 4732 rcu_read_unlock(); 4733 4734 rq->curr = rq->idle = idle; 4735 #if defined(CONFIG_SMP) 4736 idle->on_cpu = 1; 4737 #endif 4738 raw_spin_unlock_irqrestore(&rq->lock, flags); 4739 4740 /* Set the preempt count _outside_ the spinlocks! */ 4741 task_thread_info(idle)->preempt_count = 0; 4742 4743 /* 4744 * The idle tasks have their own, simple scheduling class: 4745 */ 4746 idle->sched_class = &idle_sched_class; 4747 ftrace_graph_init_idle_task(idle, cpu); 4748 vtime_init_idle(idle); 4749 #if defined(CONFIG_SMP) 4750 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4751 #endif 4752 } 4753 4754 #ifdef CONFIG_SMP 4755 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4756 { 4757 if (p->sched_class && p->sched_class->set_cpus_allowed) 4758 p->sched_class->set_cpus_allowed(p, new_mask); 4759 4760 cpumask_copy(&p->cpus_allowed, new_mask); 4761 p->nr_cpus_allowed = cpumask_weight(new_mask); 4762 } 4763 4764 /* 4765 * This is how migration works: 4766 * 4767 * 1) we invoke migration_cpu_stop() on the target CPU using 4768 * stop_one_cpu(). 4769 * 2) stopper starts to run (implicitly forcing the migrated thread 4770 * off the CPU) 4771 * 3) it checks whether the migrated task is still in the wrong runqueue. 4772 * 4) if it's in the wrong runqueue then the migration thread removes 4773 * it and puts it into the right queue. 4774 * 5) stopper completes and stop_one_cpu() returns and the migration 4775 * is done. 4776 */ 4777 4778 /* 4779 * Change a given task's CPU affinity. Migrate the thread to a 4780 * proper CPU and schedule it away if the CPU it's executing on 4781 * is removed from the allowed bitmask. 4782 * 4783 * NOTE: the caller must have a valid reference to the task, the 4784 * task must not exit() & deallocate itself prematurely. The 4785 * call is not atomic; no spinlocks may be held. 4786 */ 4787 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4788 { 4789 unsigned long flags; 4790 struct rq *rq; 4791 unsigned int dest_cpu; 4792 int ret = 0; 4793 4794 rq = task_rq_lock(p, &flags); 4795 4796 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4797 goto out; 4798 4799 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4800 ret = -EINVAL; 4801 goto out; 4802 } 4803 4804 do_set_cpus_allowed(p, new_mask); 4805 4806 /* Can the task run on the task's current CPU? If so, we're done */ 4807 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4808 goto out; 4809 4810 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4811 if (p->on_rq) { 4812 struct migration_arg arg = { p, dest_cpu }; 4813 /* Need help from migration thread: drop lock and wait. */ 4814 task_rq_unlock(rq, p, &flags); 4815 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4816 tlb_migrate_finish(p->mm); 4817 return 0; 4818 } 4819 out: 4820 task_rq_unlock(rq, p, &flags); 4821 4822 return ret; 4823 } 4824 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4825 4826 /* 4827 * Move (not current) task off this cpu, onto dest cpu. We're doing 4828 * this because either it can't run here any more (set_cpus_allowed() 4829 * away from this CPU, or CPU going down), or because we're 4830 * attempting to rebalance this task on exec (sched_exec). 4831 * 4832 * So we race with normal scheduler movements, but that's OK, as long 4833 * as the task is no longer on this CPU. 4834 * 4835 * Returns non-zero if task was successfully migrated. 4836 */ 4837 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4838 { 4839 struct rq *rq_dest, *rq_src; 4840 int ret = 0; 4841 4842 if (unlikely(!cpu_active(dest_cpu))) 4843 return ret; 4844 4845 rq_src = cpu_rq(src_cpu); 4846 rq_dest = cpu_rq(dest_cpu); 4847 4848 raw_spin_lock(&p->pi_lock); 4849 double_rq_lock(rq_src, rq_dest); 4850 /* Already moved. */ 4851 if (task_cpu(p) != src_cpu) 4852 goto done; 4853 /* Affinity changed (again). */ 4854 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4855 goto fail; 4856 4857 /* 4858 * If we're not on a rq, the next wake-up will ensure we're 4859 * placed properly. 4860 */ 4861 if (p->on_rq) { 4862 dequeue_task(rq_src, p, 0); 4863 set_task_cpu(p, dest_cpu); 4864 enqueue_task(rq_dest, p, 0); 4865 check_preempt_curr(rq_dest, p, 0); 4866 } 4867 done: 4868 ret = 1; 4869 fail: 4870 double_rq_unlock(rq_src, rq_dest); 4871 raw_spin_unlock(&p->pi_lock); 4872 return ret; 4873 } 4874 4875 /* 4876 * migration_cpu_stop - this will be executed by a highprio stopper thread 4877 * and performs thread migration by bumping thread off CPU then 4878 * 'pushing' onto another runqueue. 4879 */ 4880 static int migration_cpu_stop(void *data) 4881 { 4882 struct migration_arg *arg = data; 4883 4884 /* 4885 * The original target cpu might have gone down and we might 4886 * be on another cpu but it doesn't matter. 4887 */ 4888 local_irq_disable(); 4889 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4890 local_irq_enable(); 4891 return 0; 4892 } 4893 4894 #ifdef CONFIG_HOTPLUG_CPU 4895 4896 /* 4897 * Ensures that the idle task is using init_mm right before its cpu goes 4898 * offline. 4899 */ 4900 void idle_task_exit(void) 4901 { 4902 struct mm_struct *mm = current->active_mm; 4903 4904 BUG_ON(cpu_online(smp_processor_id())); 4905 4906 if (mm != &init_mm) 4907 switch_mm(mm, &init_mm, current); 4908 mmdrop(mm); 4909 } 4910 4911 /* 4912 * Since this CPU is going 'away' for a while, fold any nr_active delta 4913 * we might have. Assumes we're called after migrate_tasks() so that the 4914 * nr_active count is stable. 4915 * 4916 * Also see the comment "Global load-average calculations". 4917 */ 4918 static void calc_load_migrate(struct rq *rq) 4919 { 4920 long delta = calc_load_fold_active(rq); 4921 if (delta) 4922 atomic_long_add(delta, &calc_load_tasks); 4923 } 4924 4925 /* 4926 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4927 * try_to_wake_up()->select_task_rq(). 4928 * 4929 * Called with rq->lock held even though we'er in stop_machine() and 4930 * there's no concurrency possible, we hold the required locks anyway 4931 * because of lock validation efforts. 4932 */ 4933 static void migrate_tasks(unsigned int dead_cpu) 4934 { 4935 struct rq *rq = cpu_rq(dead_cpu); 4936 struct task_struct *next, *stop = rq->stop; 4937 int dest_cpu; 4938 4939 /* 4940 * Fudge the rq selection such that the below task selection loop 4941 * doesn't get stuck on the currently eligible stop task. 4942 * 4943 * We're currently inside stop_machine() and the rq is either stuck 4944 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4945 * either way we should never end up calling schedule() until we're 4946 * done here. 4947 */ 4948 rq->stop = NULL; 4949 4950 for ( ; ; ) { 4951 /* 4952 * There's this thread running, bail when that's the only 4953 * remaining thread. 4954 */ 4955 if (rq->nr_running == 1) 4956 break; 4957 4958 next = pick_next_task(rq); 4959 BUG_ON(!next); 4960 next->sched_class->put_prev_task(rq, next); 4961 4962 /* Find suitable destination for @next, with force if needed. */ 4963 dest_cpu = select_fallback_rq(dead_cpu, next); 4964 raw_spin_unlock(&rq->lock); 4965 4966 __migrate_task(next, dead_cpu, dest_cpu); 4967 4968 raw_spin_lock(&rq->lock); 4969 } 4970 4971 rq->stop = stop; 4972 } 4973 4974 #endif /* CONFIG_HOTPLUG_CPU */ 4975 4976 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4977 4978 static struct ctl_table sd_ctl_dir[] = { 4979 { 4980 .procname = "sched_domain", 4981 .mode = 0555, 4982 }, 4983 {} 4984 }; 4985 4986 static struct ctl_table sd_ctl_root[] = { 4987 { 4988 .procname = "kernel", 4989 .mode = 0555, 4990 .child = sd_ctl_dir, 4991 }, 4992 {} 4993 }; 4994 4995 static struct ctl_table *sd_alloc_ctl_entry(int n) 4996 { 4997 struct ctl_table *entry = 4998 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4999 5000 return entry; 5001 } 5002 5003 static void sd_free_ctl_entry(struct ctl_table **tablep) 5004 { 5005 struct ctl_table *entry; 5006 5007 /* 5008 * In the intermediate directories, both the child directory and 5009 * procname are dynamically allocated and could fail but the mode 5010 * will always be set. In the lowest directory the names are 5011 * static strings and all have proc handlers. 5012 */ 5013 for (entry = *tablep; entry->mode; entry++) { 5014 if (entry->child) 5015 sd_free_ctl_entry(&entry->child); 5016 if (entry->proc_handler == NULL) 5017 kfree(entry->procname); 5018 } 5019 5020 kfree(*tablep); 5021 *tablep = NULL; 5022 } 5023 5024 static int min_load_idx = 0; 5025 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5026 5027 static void 5028 set_table_entry(struct ctl_table *entry, 5029 const char *procname, void *data, int maxlen, 5030 umode_t mode, proc_handler *proc_handler, 5031 bool load_idx) 5032 { 5033 entry->procname = procname; 5034 entry->data = data; 5035 entry->maxlen = maxlen; 5036 entry->mode = mode; 5037 entry->proc_handler = proc_handler; 5038 5039 if (load_idx) { 5040 entry->extra1 = &min_load_idx; 5041 entry->extra2 = &max_load_idx; 5042 } 5043 } 5044 5045 static struct ctl_table * 5046 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5047 { 5048 struct ctl_table *table = sd_alloc_ctl_entry(13); 5049 5050 if (table == NULL) 5051 return NULL; 5052 5053 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5054 sizeof(long), 0644, proc_doulongvec_minmax, false); 5055 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5056 sizeof(long), 0644, proc_doulongvec_minmax, false); 5057 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5058 sizeof(int), 0644, proc_dointvec_minmax, true); 5059 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5060 sizeof(int), 0644, proc_dointvec_minmax, true); 5061 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5062 sizeof(int), 0644, proc_dointvec_minmax, true); 5063 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5064 sizeof(int), 0644, proc_dointvec_minmax, true); 5065 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5066 sizeof(int), 0644, proc_dointvec_minmax, true); 5067 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5068 sizeof(int), 0644, proc_dointvec_minmax, false); 5069 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5070 sizeof(int), 0644, proc_dointvec_minmax, false); 5071 set_table_entry(&table[9], "cache_nice_tries", 5072 &sd->cache_nice_tries, 5073 sizeof(int), 0644, proc_dointvec_minmax, false); 5074 set_table_entry(&table[10], "flags", &sd->flags, 5075 sizeof(int), 0644, proc_dointvec_minmax, false); 5076 set_table_entry(&table[11], "name", sd->name, 5077 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5078 /* &table[12] is terminator */ 5079 5080 return table; 5081 } 5082 5083 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5084 { 5085 struct ctl_table *entry, *table; 5086 struct sched_domain *sd; 5087 int domain_num = 0, i; 5088 char buf[32]; 5089 5090 for_each_domain(cpu, sd) 5091 domain_num++; 5092 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5093 if (table == NULL) 5094 return NULL; 5095 5096 i = 0; 5097 for_each_domain(cpu, sd) { 5098 snprintf(buf, 32, "domain%d", i); 5099 entry->procname = kstrdup(buf, GFP_KERNEL); 5100 entry->mode = 0555; 5101 entry->child = sd_alloc_ctl_domain_table(sd); 5102 entry++; 5103 i++; 5104 } 5105 return table; 5106 } 5107 5108 static struct ctl_table_header *sd_sysctl_header; 5109 static void register_sched_domain_sysctl(void) 5110 { 5111 int i, cpu_num = num_possible_cpus(); 5112 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5113 char buf[32]; 5114 5115 WARN_ON(sd_ctl_dir[0].child); 5116 sd_ctl_dir[0].child = entry; 5117 5118 if (entry == NULL) 5119 return; 5120 5121 for_each_possible_cpu(i) { 5122 snprintf(buf, 32, "cpu%d", i); 5123 entry->procname = kstrdup(buf, GFP_KERNEL); 5124 entry->mode = 0555; 5125 entry->child = sd_alloc_ctl_cpu_table(i); 5126 entry++; 5127 } 5128 5129 WARN_ON(sd_sysctl_header); 5130 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5131 } 5132 5133 /* may be called multiple times per register */ 5134 static void unregister_sched_domain_sysctl(void) 5135 { 5136 if (sd_sysctl_header) 5137 unregister_sysctl_table(sd_sysctl_header); 5138 sd_sysctl_header = NULL; 5139 if (sd_ctl_dir[0].child) 5140 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5141 } 5142 #else 5143 static void register_sched_domain_sysctl(void) 5144 { 5145 } 5146 static void unregister_sched_domain_sysctl(void) 5147 { 5148 } 5149 #endif 5150 5151 static void set_rq_online(struct rq *rq) 5152 { 5153 if (!rq->online) { 5154 const struct sched_class *class; 5155 5156 cpumask_set_cpu(rq->cpu, rq->rd->online); 5157 rq->online = 1; 5158 5159 for_each_class(class) { 5160 if (class->rq_online) 5161 class->rq_online(rq); 5162 } 5163 } 5164 } 5165 5166 static void set_rq_offline(struct rq *rq) 5167 { 5168 if (rq->online) { 5169 const struct sched_class *class; 5170 5171 for_each_class(class) { 5172 if (class->rq_offline) 5173 class->rq_offline(rq); 5174 } 5175 5176 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5177 rq->online = 0; 5178 } 5179 } 5180 5181 /* 5182 * migration_call - callback that gets triggered when a CPU is added. 5183 * Here we can start up the necessary migration thread for the new CPU. 5184 */ 5185 static int __cpuinit 5186 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5187 { 5188 int cpu = (long)hcpu; 5189 unsigned long flags; 5190 struct rq *rq = cpu_rq(cpu); 5191 5192 switch (action & ~CPU_TASKS_FROZEN) { 5193 5194 case CPU_UP_PREPARE: 5195 rq->calc_load_update = calc_load_update; 5196 break; 5197 5198 case CPU_ONLINE: 5199 /* Update our root-domain */ 5200 raw_spin_lock_irqsave(&rq->lock, flags); 5201 if (rq->rd) { 5202 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5203 5204 set_rq_online(rq); 5205 } 5206 raw_spin_unlock_irqrestore(&rq->lock, flags); 5207 break; 5208 5209 #ifdef CONFIG_HOTPLUG_CPU 5210 case CPU_DYING: 5211 sched_ttwu_pending(); 5212 /* Update our root-domain */ 5213 raw_spin_lock_irqsave(&rq->lock, flags); 5214 if (rq->rd) { 5215 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5216 set_rq_offline(rq); 5217 } 5218 migrate_tasks(cpu); 5219 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5220 raw_spin_unlock_irqrestore(&rq->lock, flags); 5221 break; 5222 5223 case CPU_DEAD: 5224 calc_load_migrate(rq); 5225 break; 5226 #endif 5227 } 5228 5229 update_max_interval(); 5230 5231 return NOTIFY_OK; 5232 } 5233 5234 /* 5235 * Register at high priority so that task migration (migrate_all_tasks) 5236 * happens before everything else. This has to be lower priority than 5237 * the notifier in the perf_event subsystem, though. 5238 */ 5239 static struct notifier_block __cpuinitdata migration_notifier = { 5240 .notifier_call = migration_call, 5241 .priority = CPU_PRI_MIGRATION, 5242 }; 5243 5244 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5245 unsigned long action, void *hcpu) 5246 { 5247 switch (action & ~CPU_TASKS_FROZEN) { 5248 case CPU_STARTING: 5249 case CPU_DOWN_FAILED: 5250 set_cpu_active((long)hcpu, true); 5251 return NOTIFY_OK; 5252 default: 5253 return NOTIFY_DONE; 5254 } 5255 } 5256 5257 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5258 unsigned long action, void *hcpu) 5259 { 5260 switch (action & ~CPU_TASKS_FROZEN) { 5261 case CPU_DOWN_PREPARE: 5262 set_cpu_active((long)hcpu, false); 5263 return NOTIFY_OK; 5264 default: 5265 return NOTIFY_DONE; 5266 } 5267 } 5268 5269 static int __init migration_init(void) 5270 { 5271 void *cpu = (void *)(long)smp_processor_id(); 5272 int err; 5273 5274 /* Initialize migration for the boot CPU */ 5275 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5276 BUG_ON(err == NOTIFY_BAD); 5277 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5278 register_cpu_notifier(&migration_notifier); 5279 5280 /* Register cpu active notifiers */ 5281 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5282 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5283 5284 return 0; 5285 } 5286 early_initcall(migration_init); 5287 #endif 5288 5289 #ifdef CONFIG_SMP 5290 5291 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5292 5293 #ifdef CONFIG_SCHED_DEBUG 5294 5295 static __read_mostly int sched_debug_enabled; 5296 5297 static int __init sched_debug_setup(char *str) 5298 { 5299 sched_debug_enabled = 1; 5300 5301 return 0; 5302 } 5303 early_param("sched_debug", sched_debug_setup); 5304 5305 static inline bool sched_debug(void) 5306 { 5307 return sched_debug_enabled; 5308 } 5309 5310 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5311 struct cpumask *groupmask) 5312 { 5313 struct sched_group *group = sd->groups; 5314 char str[256]; 5315 5316 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5317 cpumask_clear(groupmask); 5318 5319 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5320 5321 if (!(sd->flags & SD_LOAD_BALANCE)) { 5322 printk("does not load-balance\n"); 5323 if (sd->parent) 5324 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5325 " has parent"); 5326 return -1; 5327 } 5328 5329 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5330 5331 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5332 printk(KERN_ERR "ERROR: domain->span does not contain " 5333 "CPU%d\n", cpu); 5334 } 5335 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5336 printk(KERN_ERR "ERROR: domain->groups does not contain" 5337 " CPU%d\n", cpu); 5338 } 5339 5340 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5341 do { 5342 if (!group) { 5343 printk("\n"); 5344 printk(KERN_ERR "ERROR: group is NULL\n"); 5345 break; 5346 } 5347 5348 /* 5349 * Even though we initialize ->power to something semi-sane, 5350 * we leave power_orig unset. This allows us to detect if 5351 * domain iteration is still funny without causing /0 traps. 5352 */ 5353 if (!group->sgp->power_orig) { 5354 printk(KERN_CONT "\n"); 5355 printk(KERN_ERR "ERROR: domain->cpu_power not " 5356 "set\n"); 5357 break; 5358 } 5359 5360 if (!cpumask_weight(sched_group_cpus(group))) { 5361 printk(KERN_CONT "\n"); 5362 printk(KERN_ERR "ERROR: empty group\n"); 5363 break; 5364 } 5365 5366 if (!(sd->flags & SD_OVERLAP) && 5367 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5368 printk(KERN_CONT "\n"); 5369 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5370 break; 5371 } 5372 5373 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5374 5375 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5376 5377 printk(KERN_CONT " %s", str); 5378 if (group->sgp->power != SCHED_POWER_SCALE) { 5379 printk(KERN_CONT " (cpu_power = %d)", 5380 group->sgp->power); 5381 } 5382 5383 group = group->next; 5384 } while (group != sd->groups); 5385 printk(KERN_CONT "\n"); 5386 5387 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5388 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5389 5390 if (sd->parent && 5391 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5392 printk(KERN_ERR "ERROR: parent span is not a superset " 5393 "of domain->span\n"); 5394 return 0; 5395 } 5396 5397 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5398 { 5399 int level = 0; 5400 5401 if (!sched_debug_enabled) 5402 return; 5403 5404 if (!sd) { 5405 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5406 return; 5407 } 5408 5409 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5410 5411 for (;;) { 5412 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5413 break; 5414 level++; 5415 sd = sd->parent; 5416 if (!sd) 5417 break; 5418 } 5419 } 5420 #else /* !CONFIG_SCHED_DEBUG */ 5421 # define sched_domain_debug(sd, cpu) do { } while (0) 5422 static inline bool sched_debug(void) 5423 { 5424 return false; 5425 } 5426 #endif /* CONFIG_SCHED_DEBUG */ 5427 5428 static int sd_degenerate(struct sched_domain *sd) 5429 { 5430 if (cpumask_weight(sched_domain_span(sd)) == 1) 5431 return 1; 5432 5433 /* Following flags need at least 2 groups */ 5434 if (sd->flags & (SD_LOAD_BALANCE | 5435 SD_BALANCE_NEWIDLE | 5436 SD_BALANCE_FORK | 5437 SD_BALANCE_EXEC | 5438 SD_SHARE_CPUPOWER | 5439 SD_SHARE_PKG_RESOURCES)) { 5440 if (sd->groups != sd->groups->next) 5441 return 0; 5442 } 5443 5444 /* Following flags don't use groups */ 5445 if (sd->flags & (SD_WAKE_AFFINE)) 5446 return 0; 5447 5448 return 1; 5449 } 5450 5451 static int 5452 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5453 { 5454 unsigned long cflags = sd->flags, pflags = parent->flags; 5455 5456 if (sd_degenerate(parent)) 5457 return 1; 5458 5459 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5460 return 0; 5461 5462 /* Flags needing groups don't count if only 1 group in parent */ 5463 if (parent->groups == parent->groups->next) { 5464 pflags &= ~(SD_LOAD_BALANCE | 5465 SD_BALANCE_NEWIDLE | 5466 SD_BALANCE_FORK | 5467 SD_BALANCE_EXEC | 5468 SD_SHARE_CPUPOWER | 5469 SD_SHARE_PKG_RESOURCES); 5470 if (nr_node_ids == 1) 5471 pflags &= ~SD_SERIALIZE; 5472 } 5473 if (~cflags & pflags) 5474 return 0; 5475 5476 return 1; 5477 } 5478 5479 static void free_rootdomain(struct rcu_head *rcu) 5480 { 5481 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5482 5483 cpupri_cleanup(&rd->cpupri); 5484 free_cpumask_var(rd->rto_mask); 5485 free_cpumask_var(rd->online); 5486 free_cpumask_var(rd->span); 5487 kfree(rd); 5488 } 5489 5490 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5491 { 5492 struct root_domain *old_rd = NULL; 5493 unsigned long flags; 5494 5495 raw_spin_lock_irqsave(&rq->lock, flags); 5496 5497 if (rq->rd) { 5498 old_rd = rq->rd; 5499 5500 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5501 set_rq_offline(rq); 5502 5503 cpumask_clear_cpu(rq->cpu, old_rd->span); 5504 5505 /* 5506 * If we dont want to free the old_rt yet then 5507 * set old_rd to NULL to skip the freeing later 5508 * in this function: 5509 */ 5510 if (!atomic_dec_and_test(&old_rd->refcount)) 5511 old_rd = NULL; 5512 } 5513 5514 atomic_inc(&rd->refcount); 5515 rq->rd = rd; 5516 5517 cpumask_set_cpu(rq->cpu, rd->span); 5518 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5519 set_rq_online(rq); 5520 5521 raw_spin_unlock_irqrestore(&rq->lock, flags); 5522 5523 if (old_rd) 5524 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5525 } 5526 5527 static int init_rootdomain(struct root_domain *rd) 5528 { 5529 memset(rd, 0, sizeof(*rd)); 5530 5531 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5532 goto out; 5533 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5534 goto free_span; 5535 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5536 goto free_online; 5537 5538 if (cpupri_init(&rd->cpupri) != 0) 5539 goto free_rto_mask; 5540 return 0; 5541 5542 free_rto_mask: 5543 free_cpumask_var(rd->rto_mask); 5544 free_online: 5545 free_cpumask_var(rd->online); 5546 free_span: 5547 free_cpumask_var(rd->span); 5548 out: 5549 return -ENOMEM; 5550 } 5551 5552 /* 5553 * By default the system creates a single root-domain with all cpus as 5554 * members (mimicking the global state we have today). 5555 */ 5556 struct root_domain def_root_domain; 5557 5558 static void init_defrootdomain(void) 5559 { 5560 init_rootdomain(&def_root_domain); 5561 5562 atomic_set(&def_root_domain.refcount, 1); 5563 } 5564 5565 static struct root_domain *alloc_rootdomain(void) 5566 { 5567 struct root_domain *rd; 5568 5569 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5570 if (!rd) 5571 return NULL; 5572 5573 if (init_rootdomain(rd) != 0) { 5574 kfree(rd); 5575 return NULL; 5576 } 5577 5578 return rd; 5579 } 5580 5581 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5582 { 5583 struct sched_group *tmp, *first; 5584 5585 if (!sg) 5586 return; 5587 5588 first = sg; 5589 do { 5590 tmp = sg->next; 5591 5592 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5593 kfree(sg->sgp); 5594 5595 kfree(sg); 5596 sg = tmp; 5597 } while (sg != first); 5598 } 5599 5600 static void free_sched_domain(struct rcu_head *rcu) 5601 { 5602 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5603 5604 /* 5605 * If its an overlapping domain it has private groups, iterate and 5606 * nuke them all. 5607 */ 5608 if (sd->flags & SD_OVERLAP) { 5609 free_sched_groups(sd->groups, 1); 5610 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5611 kfree(sd->groups->sgp); 5612 kfree(sd->groups); 5613 } 5614 kfree(sd); 5615 } 5616 5617 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5618 { 5619 call_rcu(&sd->rcu, free_sched_domain); 5620 } 5621 5622 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5623 { 5624 for (; sd; sd = sd->parent) 5625 destroy_sched_domain(sd, cpu); 5626 } 5627 5628 /* 5629 * Keep a special pointer to the highest sched_domain that has 5630 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5631 * allows us to avoid some pointer chasing select_idle_sibling(). 5632 * 5633 * Also keep a unique ID per domain (we use the first cpu number in 5634 * the cpumask of the domain), this allows us to quickly tell if 5635 * two cpus are in the same cache domain, see cpus_share_cache(). 5636 */ 5637 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5638 DEFINE_PER_CPU(int, sd_llc_id); 5639 5640 static void update_top_cache_domain(int cpu) 5641 { 5642 struct sched_domain *sd; 5643 int id = cpu; 5644 5645 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5646 if (sd) 5647 id = cpumask_first(sched_domain_span(sd)); 5648 5649 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5650 per_cpu(sd_llc_id, cpu) = id; 5651 } 5652 5653 /* 5654 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5655 * hold the hotplug lock. 5656 */ 5657 static void 5658 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5659 { 5660 struct rq *rq = cpu_rq(cpu); 5661 struct sched_domain *tmp; 5662 5663 /* Remove the sched domains which do not contribute to scheduling. */ 5664 for (tmp = sd; tmp; ) { 5665 struct sched_domain *parent = tmp->parent; 5666 if (!parent) 5667 break; 5668 5669 if (sd_parent_degenerate(tmp, parent)) { 5670 tmp->parent = parent->parent; 5671 if (parent->parent) 5672 parent->parent->child = tmp; 5673 destroy_sched_domain(parent, cpu); 5674 } else 5675 tmp = tmp->parent; 5676 } 5677 5678 if (sd && sd_degenerate(sd)) { 5679 tmp = sd; 5680 sd = sd->parent; 5681 destroy_sched_domain(tmp, cpu); 5682 if (sd) 5683 sd->child = NULL; 5684 } 5685 5686 sched_domain_debug(sd, cpu); 5687 5688 rq_attach_root(rq, rd); 5689 tmp = rq->sd; 5690 rcu_assign_pointer(rq->sd, sd); 5691 destroy_sched_domains(tmp, cpu); 5692 5693 update_top_cache_domain(cpu); 5694 } 5695 5696 /* cpus with isolated domains */ 5697 static cpumask_var_t cpu_isolated_map; 5698 5699 /* Setup the mask of cpus configured for isolated domains */ 5700 static int __init isolated_cpu_setup(char *str) 5701 { 5702 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5703 cpulist_parse(str, cpu_isolated_map); 5704 return 1; 5705 } 5706 5707 __setup("isolcpus=", isolated_cpu_setup); 5708 5709 static const struct cpumask *cpu_cpu_mask(int cpu) 5710 { 5711 return cpumask_of_node(cpu_to_node(cpu)); 5712 } 5713 5714 struct sd_data { 5715 struct sched_domain **__percpu sd; 5716 struct sched_group **__percpu sg; 5717 struct sched_group_power **__percpu sgp; 5718 }; 5719 5720 struct s_data { 5721 struct sched_domain ** __percpu sd; 5722 struct root_domain *rd; 5723 }; 5724 5725 enum s_alloc { 5726 sa_rootdomain, 5727 sa_sd, 5728 sa_sd_storage, 5729 sa_none, 5730 }; 5731 5732 struct sched_domain_topology_level; 5733 5734 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5735 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5736 5737 #define SDTL_OVERLAP 0x01 5738 5739 struct sched_domain_topology_level { 5740 sched_domain_init_f init; 5741 sched_domain_mask_f mask; 5742 int flags; 5743 int numa_level; 5744 struct sd_data data; 5745 }; 5746 5747 /* 5748 * Build an iteration mask that can exclude certain CPUs from the upwards 5749 * domain traversal. 5750 * 5751 * Asymmetric node setups can result in situations where the domain tree is of 5752 * unequal depth, make sure to skip domains that already cover the entire 5753 * range. 5754 * 5755 * In that case build_sched_domains() will have terminated the iteration early 5756 * and our sibling sd spans will be empty. Domains should always include the 5757 * cpu they're built on, so check that. 5758 * 5759 */ 5760 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5761 { 5762 const struct cpumask *span = sched_domain_span(sd); 5763 struct sd_data *sdd = sd->private; 5764 struct sched_domain *sibling; 5765 int i; 5766 5767 for_each_cpu(i, span) { 5768 sibling = *per_cpu_ptr(sdd->sd, i); 5769 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5770 continue; 5771 5772 cpumask_set_cpu(i, sched_group_mask(sg)); 5773 } 5774 } 5775 5776 /* 5777 * Return the canonical balance cpu for this group, this is the first cpu 5778 * of this group that's also in the iteration mask. 5779 */ 5780 int group_balance_cpu(struct sched_group *sg) 5781 { 5782 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5783 } 5784 5785 static int 5786 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5787 { 5788 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5789 const struct cpumask *span = sched_domain_span(sd); 5790 struct cpumask *covered = sched_domains_tmpmask; 5791 struct sd_data *sdd = sd->private; 5792 struct sched_domain *child; 5793 int i; 5794 5795 cpumask_clear(covered); 5796 5797 for_each_cpu(i, span) { 5798 struct cpumask *sg_span; 5799 5800 if (cpumask_test_cpu(i, covered)) 5801 continue; 5802 5803 child = *per_cpu_ptr(sdd->sd, i); 5804 5805 /* See the comment near build_group_mask(). */ 5806 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5807 continue; 5808 5809 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5810 GFP_KERNEL, cpu_to_node(cpu)); 5811 5812 if (!sg) 5813 goto fail; 5814 5815 sg_span = sched_group_cpus(sg); 5816 if (child->child) { 5817 child = child->child; 5818 cpumask_copy(sg_span, sched_domain_span(child)); 5819 } else 5820 cpumask_set_cpu(i, sg_span); 5821 5822 cpumask_or(covered, covered, sg_span); 5823 5824 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5825 if (atomic_inc_return(&sg->sgp->ref) == 1) 5826 build_group_mask(sd, sg); 5827 5828 /* 5829 * Initialize sgp->power such that even if we mess up the 5830 * domains and no possible iteration will get us here, we won't 5831 * die on a /0 trap. 5832 */ 5833 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5834 5835 /* 5836 * Make sure the first group of this domain contains the 5837 * canonical balance cpu. Otherwise the sched_domain iteration 5838 * breaks. See update_sg_lb_stats(). 5839 */ 5840 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5841 group_balance_cpu(sg) == cpu) 5842 groups = sg; 5843 5844 if (!first) 5845 first = sg; 5846 if (last) 5847 last->next = sg; 5848 last = sg; 5849 last->next = first; 5850 } 5851 sd->groups = groups; 5852 5853 return 0; 5854 5855 fail: 5856 free_sched_groups(first, 0); 5857 5858 return -ENOMEM; 5859 } 5860 5861 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5862 { 5863 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5864 struct sched_domain *child = sd->child; 5865 5866 if (child) 5867 cpu = cpumask_first(sched_domain_span(child)); 5868 5869 if (sg) { 5870 *sg = *per_cpu_ptr(sdd->sg, cpu); 5871 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5872 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5873 } 5874 5875 return cpu; 5876 } 5877 5878 /* 5879 * build_sched_groups will build a circular linked list of the groups 5880 * covered by the given span, and will set each group's ->cpumask correctly, 5881 * and ->cpu_power to 0. 5882 * 5883 * Assumes the sched_domain tree is fully constructed 5884 */ 5885 static int 5886 build_sched_groups(struct sched_domain *sd, int cpu) 5887 { 5888 struct sched_group *first = NULL, *last = NULL; 5889 struct sd_data *sdd = sd->private; 5890 const struct cpumask *span = sched_domain_span(sd); 5891 struct cpumask *covered; 5892 int i; 5893 5894 get_group(cpu, sdd, &sd->groups); 5895 atomic_inc(&sd->groups->ref); 5896 5897 if (cpu != cpumask_first(sched_domain_span(sd))) 5898 return 0; 5899 5900 lockdep_assert_held(&sched_domains_mutex); 5901 covered = sched_domains_tmpmask; 5902 5903 cpumask_clear(covered); 5904 5905 for_each_cpu(i, span) { 5906 struct sched_group *sg; 5907 int group = get_group(i, sdd, &sg); 5908 int j; 5909 5910 if (cpumask_test_cpu(i, covered)) 5911 continue; 5912 5913 cpumask_clear(sched_group_cpus(sg)); 5914 sg->sgp->power = 0; 5915 cpumask_setall(sched_group_mask(sg)); 5916 5917 for_each_cpu(j, span) { 5918 if (get_group(j, sdd, NULL) != group) 5919 continue; 5920 5921 cpumask_set_cpu(j, covered); 5922 cpumask_set_cpu(j, sched_group_cpus(sg)); 5923 } 5924 5925 if (!first) 5926 first = sg; 5927 if (last) 5928 last->next = sg; 5929 last = sg; 5930 } 5931 last->next = first; 5932 5933 return 0; 5934 } 5935 5936 /* 5937 * Initialize sched groups cpu_power. 5938 * 5939 * cpu_power indicates the capacity of sched group, which is used while 5940 * distributing the load between different sched groups in a sched domain. 5941 * Typically cpu_power for all the groups in a sched domain will be same unless 5942 * there are asymmetries in the topology. If there are asymmetries, group 5943 * having more cpu_power will pickup more load compared to the group having 5944 * less cpu_power. 5945 */ 5946 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5947 { 5948 struct sched_group *sg = sd->groups; 5949 5950 WARN_ON(!sd || !sg); 5951 5952 do { 5953 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5954 sg = sg->next; 5955 } while (sg != sd->groups); 5956 5957 if (cpu != group_balance_cpu(sg)) 5958 return; 5959 5960 update_group_power(sd, cpu); 5961 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5962 } 5963 5964 int __weak arch_sd_sibling_asym_packing(void) 5965 { 5966 return 0*SD_ASYM_PACKING; 5967 } 5968 5969 /* 5970 * Initializers for schedule domains 5971 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5972 */ 5973 5974 #ifdef CONFIG_SCHED_DEBUG 5975 # define SD_INIT_NAME(sd, type) sd->name = #type 5976 #else 5977 # define SD_INIT_NAME(sd, type) do { } while (0) 5978 #endif 5979 5980 #define SD_INIT_FUNC(type) \ 5981 static noinline struct sched_domain * \ 5982 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5983 { \ 5984 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5985 *sd = SD_##type##_INIT; \ 5986 SD_INIT_NAME(sd, type); \ 5987 sd->private = &tl->data; \ 5988 return sd; \ 5989 } 5990 5991 SD_INIT_FUNC(CPU) 5992 #ifdef CONFIG_SCHED_SMT 5993 SD_INIT_FUNC(SIBLING) 5994 #endif 5995 #ifdef CONFIG_SCHED_MC 5996 SD_INIT_FUNC(MC) 5997 #endif 5998 #ifdef CONFIG_SCHED_BOOK 5999 SD_INIT_FUNC(BOOK) 6000 #endif 6001 6002 static int default_relax_domain_level = -1; 6003 int sched_domain_level_max; 6004 6005 static int __init setup_relax_domain_level(char *str) 6006 { 6007 if (kstrtoint(str, 0, &default_relax_domain_level)) 6008 pr_warn("Unable to set relax_domain_level\n"); 6009 6010 return 1; 6011 } 6012 __setup("relax_domain_level=", setup_relax_domain_level); 6013 6014 static void set_domain_attribute(struct sched_domain *sd, 6015 struct sched_domain_attr *attr) 6016 { 6017 int request; 6018 6019 if (!attr || attr->relax_domain_level < 0) { 6020 if (default_relax_domain_level < 0) 6021 return; 6022 else 6023 request = default_relax_domain_level; 6024 } else 6025 request = attr->relax_domain_level; 6026 if (request < sd->level) { 6027 /* turn off idle balance on this domain */ 6028 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6029 } else { 6030 /* turn on idle balance on this domain */ 6031 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6032 } 6033 } 6034 6035 static void __sdt_free(const struct cpumask *cpu_map); 6036 static int __sdt_alloc(const struct cpumask *cpu_map); 6037 6038 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6039 const struct cpumask *cpu_map) 6040 { 6041 switch (what) { 6042 case sa_rootdomain: 6043 if (!atomic_read(&d->rd->refcount)) 6044 free_rootdomain(&d->rd->rcu); /* fall through */ 6045 case sa_sd: 6046 free_percpu(d->sd); /* fall through */ 6047 case sa_sd_storage: 6048 __sdt_free(cpu_map); /* fall through */ 6049 case sa_none: 6050 break; 6051 } 6052 } 6053 6054 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6055 const struct cpumask *cpu_map) 6056 { 6057 memset(d, 0, sizeof(*d)); 6058 6059 if (__sdt_alloc(cpu_map)) 6060 return sa_sd_storage; 6061 d->sd = alloc_percpu(struct sched_domain *); 6062 if (!d->sd) 6063 return sa_sd_storage; 6064 d->rd = alloc_rootdomain(); 6065 if (!d->rd) 6066 return sa_sd; 6067 return sa_rootdomain; 6068 } 6069 6070 /* 6071 * NULL the sd_data elements we've used to build the sched_domain and 6072 * sched_group structure so that the subsequent __free_domain_allocs() 6073 * will not free the data we're using. 6074 */ 6075 static void claim_allocations(int cpu, struct sched_domain *sd) 6076 { 6077 struct sd_data *sdd = sd->private; 6078 6079 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6080 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6081 6082 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6083 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6084 6085 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6086 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6087 } 6088 6089 #ifdef CONFIG_SCHED_SMT 6090 static const struct cpumask *cpu_smt_mask(int cpu) 6091 { 6092 return topology_thread_cpumask(cpu); 6093 } 6094 #endif 6095 6096 /* 6097 * Topology list, bottom-up. 6098 */ 6099 static struct sched_domain_topology_level default_topology[] = { 6100 #ifdef CONFIG_SCHED_SMT 6101 { sd_init_SIBLING, cpu_smt_mask, }, 6102 #endif 6103 #ifdef CONFIG_SCHED_MC 6104 { sd_init_MC, cpu_coregroup_mask, }, 6105 #endif 6106 #ifdef CONFIG_SCHED_BOOK 6107 { sd_init_BOOK, cpu_book_mask, }, 6108 #endif 6109 { sd_init_CPU, cpu_cpu_mask, }, 6110 { NULL, }, 6111 }; 6112 6113 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6114 6115 #ifdef CONFIG_NUMA 6116 6117 static int sched_domains_numa_levels; 6118 static int *sched_domains_numa_distance; 6119 static struct cpumask ***sched_domains_numa_masks; 6120 static int sched_domains_curr_level; 6121 6122 static inline int sd_local_flags(int level) 6123 { 6124 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6125 return 0; 6126 6127 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6128 } 6129 6130 static struct sched_domain * 6131 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6132 { 6133 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6134 int level = tl->numa_level; 6135 int sd_weight = cpumask_weight( 6136 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6137 6138 *sd = (struct sched_domain){ 6139 .min_interval = sd_weight, 6140 .max_interval = 2*sd_weight, 6141 .busy_factor = 32, 6142 .imbalance_pct = 125, 6143 .cache_nice_tries = 2, 6144 .busy_idx = 3, 6145 .idle_idx = 2, 6146 .newidle_idx = 0, 6147 .wake_idx = 0, 6148 .forkexec_idx = 0, 6149 6150 .flags = 1*SD_LOAD_BALANCE 6151 | 1*SD_BALANCE_NEWIDLE 6152 | 0*SD_BALANCE_EXEC 6153 | 0*SD_BALANCE_FORK 6154 | 0*SD_BALANCE_WAKE 6155 | 0*SD_WAKE_AFFINE 6156 | 0*SD_SHARE_CPUPOWER 6157 | 0*SD_SHARE_PKG_RESOURCES 6158 | 1*SD_SERIALIZE 6159 | 0*SD_PREFER_SIBLING 6160 | sd_local_flags(level) 6161 , 6162 .last_balance = jiffies, 6163 .balance_interval = sd_weight, 6164 }; 6165 SD_INIT_NAME(sd, NUMA); 6166 sd->private = &tl->data; 6167 6168 /* 6169 * Ugly hack to pass state to sd_numa_mask()... 6170 */ 6171 sched_domains_curr_level = tl->numa_level; 6172 6173 return sd; 6174 } 6175 6176 static const struct cpumask *sd_numa_mask(int cpu) 6177 { 6178 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6179 } 6180 6181 static void sched_numa_warn(const char *str) 6182 { 6183 static int done = false; 6184 int i,j; 6185 6186 if (done) 6187 return; 6188 6189 done = true; 6190 6191 printk(KERN_WARNING "ERROR: %s\n\n", str); 6192 6193 for (i = 0; i < nr_node_ids; i++) { 6194 printk(KERN_WARNING " "); 6195 for (j = 0; j < nr_node_ids; j++) 6196 printk(KERN_CONT "%02d ", node_distance(i,j)); 6197 printk(KERN_CONT "\n"); 6198 } 6199 printk(KERN_WARNING "\n"); 6200 } 6201 6202 static bool find_numa_distance(int distance) 6203 { 6204 int i; 6205 6206 if (distance == node_distance(0, 0)) 6207 return true; 6208 6209 for (i = 0; i < sched_domains_numa_levels; i++) { 6210 if (sched_domains_numa_distance[i] == distance) 6211 return true; 6212 } 6213 6214 return false; 6215 } 6216 6217 static void sched_init_numa(void) 6218 { 6219 int next_distance, curr_distance = node_distance(0, 0); 6220 struct sched_domain_topology_level *tl; 6221 int level = 0; 6222 int i, j, k; 6223 6224 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6225 if (!sched_domains_numa_distance) 6226 return; 6227 6228 /* 6229 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6230 * unique distances in the node_distance() table. 6231 * 6232 * Assumes node_distance(0,j) includes all distances in 6233 * node_distance(i,j) in order to avoid cubic time. 6234 */ 6235 next_distance = curr_distance; 6236 for (i = 0; i < nr_node_ids; i++) { 6237 for (j = 0; j < nr_node_ids; j++) { 6238 for (k = 0; k < nr_node_ids; k++) { 6239 int distance = node_distance(i, k); 6240 6241 if (distance > curr_distance && 6242 (distance < next_distance || 6243 next_distance == curr_distance)) 6244 next_distance = distance; 6245 6246 /* 6247 * While not a strong assumption it would be nice to know 6248 * about cases where if node A is connected to B, B is not 6249 * equally connected to A. 6250 */ 6251 if (sched_debug() && node_distance(k, i) != distance) 6252 sched_numa_warn("Node-distance not symmetric"); 6253 6254 if (sched_debug() && i && !find_numa_distance(distance)) 6255 sched_numa_warn("Node-0 not representative"); 6256 } 6257 if (next_distance != curr_distance) { 6258 sched_domains_numa_distance[level++] = next_distance; 6259 sched_domains_numa_levels = level; 6260 curr_distance = next_distance; 6261 } else break; 6262 } 6263 6264 /* 6265 * In case of sched_debug() we verify the above assumption. 6266 */ 6267 if (!sched_debug()) 6268 break; 6269 } 6270 /* 6271 * 'level' contains the number of unique distances, excluding the 6272 * identity distance node_distance(i,i). 6273 * 6274 * The sched_domains_numa_distance[] array includes the actual distance 6275 * numbers. 6276 */ 6277 6278 /* 6279 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6280 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6281 * the array will contain less then 'level' members. This could be 6282 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6283 * in other functions. 6284 * 6285 * We reset it to 'level' at the end of this function. 6286 */ 6287 sched_domains_numa_levels = 0; 6288 6289 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6290 if (!sched_domains_numa_masks) 6291 return; 6292 6293 /* 6294 * Now for each level, construct a mask per node which contains all 6295 * cpus of nodes that are that many hops away from us. 6296 */ 6297 for (i = 0; i < level; i++) { 6298 sched_domains_numa_masks[i] = 6299 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6300 if (!sched_domains_numa_masks[i]) 6301 return; 6302 6303 for (j = 0; j < nr_node_ids; j++) { 6304 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6305 if (!mask) 6306 return; 6307 6308 sched_domains_numa_masks[i][j] = mask; 6309 6310 for (k = 0; k < nr_node_ids; k++) { 6311 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6312 continue; 6313 6314 cpumask_or(mask, mask, cpumask_of_node(k)); 6315 } 6316 } 6317 } 6318 6319 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6320 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6321 if (!tl) 6322 return; 6323 6324 /* 6325 * Copy the default topology bits.. 6326 */ 6327 for (i = 0; default_topology[i].init; i++) 6328 tl[i] = default_topology[i]; 6329 6330 /* 6331 * .. and append 'j' levels of NUMA goodness. 6332 */ 6333 for (j = 0; j < level; i++, j++) { 6334 tl[i] = (struct sched_domain_topology_level){ 6335 .init = sd_numa_init, 6336 .mask = sd_numa_mask, 6337 .flags = SDTL_OVERLAP, 6338 .numa_level = j, 6339 }; 6340 } 6341 6342 sched_domain_topology = tl; 6343 6344 sched_domains_numa_levels = level; 6345 } 6346 6347 static void sched_domains_numa_masks_set(int cpu) 6348 { 6349 int i, j; 6350 int node = cpu_to_node(cpu); 6351 6352 for (i = 0; i < sched_domains_numa_levels; i++) { 6353 for (j = 0; j < nr_node_ids; j++) { 6354 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6355 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6356 } 6357 } 6358 } 6359 6360 static void sched_domains_numa_masks_clear(int cpu) 6361 { 6362 int i, j; 6363 for (i = 0; i < sched_domains_numa_levels; i++) { 6364 for (j = 0; j < nr_node_ids; j++) 6365 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6366 } 6367 } 6368 6369 /* 6370 * Update sched_domains_numa_masks[level][node] array when new cpus 6371 * are onlined. 6372 */ 6373 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6374 unsigned long action, 6375 void *hcpu) 6376 { 6377 int cpu = (long)hcpu; 6378 6379 switch (action & ~CPU_TASKS_FROZEN) { 6380 case CPU_ONLINE: 6381 sched_domains_numa_masks_set(cpu); 6382 break; 6383 6384 case CPU_DEAD: 6385 sched_domains_numa_masks_clear(cpu); 6386 break; 6387 6388 default: 6389 return NOTIFY_DONE; 6390 } 6391 6392 return NOTIFY_OK; 6393 } 6394 #else 6395 static inline void sched_init_numa(void) 6396 { 6397 } 6398 6399 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6400 unsigned long action, 6401 void *hcpu) 6402 { 6403 return 0; 6404 } 6405 #endif /* CONFIG_NUMA */ 6406 6407 static int __sdt_alloc(const struct cpumask *cpu_map) 6408 { 6409 struct sched_domain_topology_level *tl; 6410 int j; 6411 6412 for (tl = sched_domain_topology; tl->init; tl++) { 6413 struct sd_data *sdd = &tl->data; 6414 6415 sdd->sd = alloc_percpu(struct sched_domain *); 6416 if (!sdd->sd) 6417 return -ENOMEM; 6418 6419 sdd->sg = alloc_percpu(struct sched_group *); 6420 if (!sdd->sg) 6421 return -ENOMEM; 6422 6423 sdd->sgp = alloc_percpu(struct sched_group_power *); 6424 if (!sdd->sgp) 6425 return -ENOMEM; 6426 6427 for_each_cpu(j, cpu_map) { 6428 struct sched_domain *sd; 6429 struct sched_group *sg; 6430 struct sched_group_power *sgp; 6431 6432 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6433 GFP_KERNEL, cpu_to_node(j)); 6434 if (!sd) 6435 return -ENOMEM; 6436 6437 *per_cpu_ptr(sdd->sd, j) = sd; 6438 6439 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6440 GFP_KERNEL, cpu_to_node(j)); 6441 if (!sg) 6442 return -ENOMEM; 6443 6444 sg->next = sg; 6445 6446 *per_cpu_ptr(sdd->sg, j) = sg; 6447 6448 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6449 GFP_KERNEL, cpu_to_node(j)); 6450 if (!sgp) 6451 return -ENOMEM; 6452 6453 *per_cpu_ptr(sdd->sgp, j) = sgp; 6454 } 6455 } 6456 6457 return 0; 6458 } 6459 6460 static void __sdt_free(const struct cpumask *cpu_map) 6461 { 6462 struct sched_domain_topology_level *tl; 6463 int j; 6464 6465 for (tl = sched_domain_topology; tl->init; tl++) { 6466 struct sd_data *sdd = &tl->data; 6467 6468 for_each_cpu(j, cpu_map) { 6469 struct sched_domain *sd; 6470 6471 if (sdd->sd) { 6472 sd = *per_cpu_ptr(sdd->sd, j); 6473 if (sd && (sd->flags & SD_OVERLAP)) 6474 free_sched_groups(sd->groups, 0); 6475 kfree(*per_cpu_ptr(sdd->sd, j)); 6476 } 6477 6478 if (sdd->sg) 6479 kfree(*per_cpu_ptr(sdd->sg, j)); 6480 if (sdd->sgp) 6481 kfree(*per_cpu_ptr(sdd->sgp, j)); 6482 } 6483 free_percpu(sdd->sd); 6484 sdd->sd = NULL; 6485 free_percpu(sdd->sg); 6486 sdd->sg = NULL; 6487 free_percpu(sdd->sgp); 6488 sdd->sgp = NULL; 6489 } 6490 } 6491 6492 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6493 struct s_data *d, const struct cpumask *cpu_map, 6494 struct sched_domain_attr *attr, struct sched_domain *child, 6495 int cpu) 6496 { 6497 struct sched_domain *sd = tl->init(tl, cpu); 6498 if (!sd) 6499 return child; 6500 6501 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6502 if (child) { 6503 sd->level = child->level + 1; 6504 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6505 child->parent = sd; 6506 } 6507 sd->child = child; 6508 set_domain_attribute(sd, attr); 6509 6510 return sd; 6511 } 6512 6513 /* 6514 * Build sched domains for a given set of cpus and attach the sched domains 6515 * to the individual cpus 6516 */ 6517 static int build_sched_domains(const struct cpumask *cpu_map, 6518 struct sched_domain_attr *attr) 6519 { 6520 enum s_alloc alloc_state = sa_none; 6521 struct sched_domain *sd; 6522 struct s_data d; 6523 int i, ret = -ENOMEM; 6524 6525 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6526 if (alloc_state != sa_rootdomain) 6527 goto error; 6528 6529 /* Set up domains for cpus specified by the cpu_map. */ 6530 for_each_cpu(i, cpu_map) { 6531 struct sched_domain_topology_level *tl; 6532 6533 sd = NULL; 6534 for (tl = sched_domain_topology; tl->init; tl++) { 6535 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6536 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6537 sd->flags |= SD_OVERLAP; 6538 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6539 break; 6540 } 6541 6542 while (sd->child) 6543 sd = sd->child; 6544 6545 *per_cpu_ptr(d.sd, i) = sd; 6546 } 6547 6548 /* Build the groups for the domains */ 6549 for_each_cpu(i, cpu_map) { 6550 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6551 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6552 if (sd->flags & SD_OVERLAP) { 6553 if (build_overlap_sched_groups(sd, i)) 6554 goto error; 6555 } else { 6556 if (build_sched_groups(sd, i)) 6557 goto error; 6558 } 6559 } 6560 } 6561 6562 /* Calculate CPU power for physical packages and nodes */ 6563 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6564 if (!cpumask_test_cpu(i, cpu_map)) 6565 continue; 6566 6567 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6568 claim_allocations(i, sd); 6569 init_sched_groups_power(i, sd); 6570 } 6571 } 6572 6573 /* Attach the domains */ 6574 rcu_read_lock(); 6575 for_each_cpu(i, cpu_map) { 6576 sd = *per_cpu_ptr(d.sd, i); 6577 cpu_attach_domain(sd, d.rd, i); 6578 } 6579 rcu_read_unlock(); 6580 6581 ret = 0; 6582 error: 6583 __free_domain_allocs(&d, alloc_state, cpu_map); 6584 return ret; 6585 } 6586 6587 static cpumask_var_t *doms_cur; /* current sched domains */ 6588 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6589 static struct sched_domain_attr *dattr_cur; 6590 /* attribues of custom domains in 'doms_cur' */ 6591 6592 /* 6593 * Special case: If a kmalloc of a doms_cur partition (array of 6594 * cpumask) fails, then fallback to a single sched domain, 6595 * as determined by the single cpumask fallback_doms. 6596 */ 6597 static cpumask_var_t fallback_doms; 6598 6599 /* 6600 * arch_update_cpu_topology lets virtualized architectures update the 6601 * cpu core maps. It is supposed to return 1 if the topology changed 6602 * or 0 if it stayed the same. 6603 */ 6604 int __attribute__((weak)) arch_update_cpu_topology(void) 6605 { 6606 return 0; 6607 } 6608 6609 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6610 { 6611 int i; 6612 cpumask_var_t *doms; 6613 6614 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6615 if (!doms) 6616 return NULL; 6617 for (i = 0; i < ndoms; i++) { 6618 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6619 free_sched_domains(doms, i); 6620 return NULL; 6621 } 6622 } 6623 return doms; 6624 } 6625 6626 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6627 { 6628 unsigned int i; 6629 for (i = 0; i < ndoms; i++) 6630 free_cpumask_var(doms[i]); 6631 kfree(doms); 6632 } 6633 6634 /* 6635 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6636 * For now this just excludes isolated cpus, but could be used to 6637 * exclude other special cases in the future. 6638 */ 6639 static int init_sched_domains(const struct cpumask *cpu_map) 6640 { 6641 int err; 6642 6643 arch_update_cpu_topology(); 6644 ndoms_cur = 1; 6645 doms_cur = alloc_sched_domains(ndoms_cur); 6646 if (!doms_cur) 6647 doms_cur = &fallback_doms; 6648 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6649 err = build_sched_domains(doms_cur[0], NULL); 6650 register_sched_domain_sysctl(); 6651 6652 return err; 6653 } 6654 6655 /* 6656 * Detach sched domains from a group of cpus specified in cpu_map 6657 * These cpus will now be attached to the NULL domain 6658 */ 6659 static void detach_destroy_domains(const struct cpumask *cpu_map) 6660 { 6661 int i; 6662 6663 rcu_read_lock(); 6664 for_each_cpu(i, cpu_map) 6665 cpu_attach_domain(NULL, &def_root_domain, i); 6666 rcu_read_unlock(); 6667 } 6668 6669 /* handle null as "default" */ 6670 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6671 struct sched_domain_attr *new, int idx_new) 6672 { 6673 struct sched_domain_attr tmp; 6674 6675 /* fast path */ 6676 if (!new && !cur) 6677 return 1; 6678 6679 tmp = SD_ATTR_INIT; 6680 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6681 new ? (new + idx_new) : &tmp, 6682 sizeof(struct sched_domain_attr)); 6683 } 6684 6685 /* 6686 * Partition sched domains as specified by the 'ndoms_new' 6687 * cpumasks in the array doms_new[] of cpumasks. This compares 6688 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6689 * It destroys each deleted domain and builds each new domain. 6690 * 6691 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6692 * The masks don't intersect (don't overlap.) We should setup one 6693 * sched domain for each mask. CPUs not in any of the cpumasks will 6694 * not be load balanced. If the same cpumask appears both in the 6695 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6696 * it as it is. 6697 * 6698 * The passed in 'doms_new' should be allocated using 6699 * alloc_sched_domains. This routine takes ownership of it and will 6700 * free_sched_domains it when done with it. If the caller failed the 6701 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6702 * and partition_sched_domains() will fallback to the single partition 6703 * 'fallback_doms', it also forces the domains to be rebuilt. 6704 * 6705 * If doms_new == NULL it will be replaced with cpu_online_mask. 6706 * ndoms_new == 0 is a special case for destroying existing domains, 6707 * and it will not create the default domain. 6708 * 6709 * Call with hotplug lock held 6710 */ 6711 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6712 struct sched_domain_attr *dattr_new) 6713 { 6714 int i, j, n; 6715 int new_topology; 6716 6717 mutex_lock(&sched_domains_mutex); 6718 6719 /* always unregister in case we don't destroy any domains */ 6720 unregister_sched_domain_sysctl(); 6721 6722 /* Let architecture update cpu core mappings. */ 6723 new_topology = arch_update_cpu_topology(); 6724 6725 n = doms_new ? ndoms_new : 0; 6726 6727 /* Destroy deleted domains */ 6728 for (i = 0; i < ndoms_cur; i++) { 6729 for (j = 0; j < n && !new_topology; j++) { 6730 if (cpumask_equal(doms_cur[i], doms_new[j]) 6731 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6732 goto match1; 6733 } 6734 /* no match - a current sched domain not in new doms_new[] */ 6735 detach_destroy_domains(doms_cur[i]); 6736 match1: 6737 ; 6738 } 6739 6740 if (doms_new == NULL) { 6741 ndoms_cur = 0; 6742 doms_new = &fallback_doms; 6743 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6744 WARN_ON_ONCE(dattr_new); 6745 } 6746 6747 /* Build new domains */ 6748 for (i = 0; i < ndoms_new; i++) { 6749 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6750 if (cpumask_equal(doms_new[i], doms_cur[j]) 6751 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6752 goto match2; 6753 } 6754 /* no match - add a new doms_new */ 6755 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6756 match2: 6757 ; 6758 } 6759 6760 /* Remember the new sched domains */ 6761 if (doms_cur != &fallback_doms) 6762 free_sched_domains(doms_cur, ndoms_cur); 6763 kfree(dattr_cur); /* kfree(NULL) is safe */ 6764 doms_cur = doms_new; 6765 dattr_cur = dattr_new; 6766 ndoms_cur = ndoms_new; 6767 6768 register_sched_domain_sysctl(); 6769 6770 mutex_unlock(&sched_domains_mutex); 6771 } 6772 6773 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6774 6775 /* 6776 * Update cpusets according to cpu_active mask. If cpusets are 6777 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6778 * around partition_sched_domains(). 6779 * 6780 * If we come here as part of a suspend/resume, don't touch cpusets because we 6781 * want to restore it back to its original state upon resume anyway. 6782 */ 6783 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6784 void *hcpu) 6785 { 6786 switch (action) { 6787 case CPU_ONLINE_FROZEN: 6788 case CPU_DOWN_FAILED_FROZEN: 6789 6790 /* 6791 * num_cpus_frozen tracks how many CPUs are involved in suspend 6792 * resume sequence. As long as this is not the last online 6793 * operation in the resume sequence, just build a single sched 6794 * domain, ignoring cpusets. 6795 */ 6796 num_cpus_frozen--; 6797 if (likely(num_cpus_frozen)) { 6798 partition_sched_domains(1, NULL, NULL); 6799 break; 6800 } 6801 6802 /* 6803 * This is the last CPU online operation. So fall through and 6804 * restore the original sched domains by considering the 6805 * cpuset configurations. 6806 */ 6807 6808 case CPU_ONLINE: 6809 case CPU_DOWN_FAILED: 6810 cpuset_update_active_cpus(true); 6811 break; 6812 default: 6813 return NOTIFY_DONE; 6814 } 6815 return NOTIFY_OK; 6816 } 6817 6818 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6819 void *hcpu) 6820 { 6821 switch (action) { 6822 case CPU_DOWN_PREPARE: 6823 cpuset_update_active_cpus(false); 6824 break; 6825 case CPU_DOWN_PREPARE_FROZEN: 6826 num_cpus_frozen++; 6827 partition_sched_domains(1, NULL, NULL); 6828 break; 6829 default: 6830 return NOTIFY_DONE; 6831 } 6832 return NOTIFY_OK; 6833 } 6834 6835 void __init sched_init_smp(void) 6836 { 6837 cpumask_var_t non_isolated_cpus; 6838 6839 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6840 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6841 6842 sched_init_numa(); 6843 6844 get_online_cpus(); 6845 mutex_lock(&sched_domains_mutex); 6846 init_sched_domains(cpu_active_mask); 6847 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6848 if (cpumask_empty(non_isolated_cpus)) 6849 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6850 mutex_unlock(&sched_domains_mutex); 6851 put_online_cpus(); 6852 6853 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6854 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6855 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6856 6857 /* RT runtime code needs to handle some hotplug events */ 6858 hotcpu_notifier(update_runtime, 0); 6859 6860 init_hrtick(); 6861 6862 /* Move init over to a non-isolated CPU */ 6863 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6864 BUG(); 6865 sched_init_granularity(); 6866 free_cpumask_var(non_isolated_cpus); 6867 6868 init_sched_rt_class(); 6869 } 6870 #else 6871 void __init sched_init_smp(void) 6872 { 6873 sched_init_granularity(); 6874 } 6875 #endif /* CONFIG_SMP */ 6876 6877 const_debug unsigned int sysctl_timer_migration = 1; 6878 6879 int in_sched_functions(unsigned long addr) 6880 { 6881 return in_lock_functions(addr) || 6882 (addr >= (unsigned long)__sched_text_start 6883 && addr < (unsigned long)__sched_text_end); 6884 } 6885 6886 #ifdef CONFIG_CGROUP_SCHED 6887 /* 6888 * Default task group. 6889 * Every task in system belongs to this group at bootup. 6890 */ 6891 struct task_group root_task_group; 6892 LIST_HEAD(task_groups); 6893 #endif 6894 6895 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6896 6897 void __init sched_init(void) 6898 { 6899 int i, j; 6900 unsigned long alloc_size = 0, ptr; 6901 6902 #ifdef CONFIG_FAIR_GROUP_SCHED 6903 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6904 #endif 6905 #ifdef CONFIG_RT_GROUP_SCHED 6906 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6907 #endif 6908 #ifdef CONFIG_CPUMASK_OFFSTACK 6909 alloc_size += num_possible_cpus() * cpumask_size(); 6910 #endif 6911 if (alloc_size) { 6912 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6913 6914 #ifdef CONFIG_FAIR_GROUP_SCHED 6915 root_task_group.se = (struct sched_entity **)ptr; 6916 ptr += nr_cpu_ids * sizeof(void **); 6917 6918 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6919 ptr += nr_cpu_ids * sizeof(void **); 6920 6921 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6922 #ifdef CONFIG_RT_GROUP_SCHED 6923 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6924 ptr += nr_cpu_ids * sizeof(void **); 6925 6926 root_task_group.rt_rq = (struct rt_rq **)ptr; 6927 ptr += nr_cpu_ids * sizeof(void **); 6928 6929 #endif /* CONFIG_RT_GROUP_SCHED */ 6930 #ifdef CONFIG_CPUMASK_OFFSTACK 6931 for_each_possible_cpu(i) { 6932 per_cpu(load_balance_mask, i) = (void *)ptr; 6933 ptr += cpumask_size(); 6934 } 6935 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6936 } 6937 6938 #ifdef CONFIG_SMP 6939 init_defrootdomain(); 6940 #endif 6941 6942 init_rt_bandwidth(&def_rt_bandwidth, 6943 global_rt_period(), global_rt_runtime()); 6944 6945 #ifdef CONFIG_RT_GROUP_SCHED 6946 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6947 global_rt_period(), global_rt_runtime()); 6948 #endif /* CONFIG_RT_GROUP_SCHED */ 6949 6950 #ifdef CONFIG_CGROUP_SCHED 6951 list_add(&root_task_group.list, &task_groups); 6952 INIT_LIST_HEAD(&root_task_group.children); 6953 INIT_LIST_HEAD(&root_task_group.siblings); 6954 autogroup_init(&init_task); 6955 6956 #endif /* CONFIG_CGROUP_SCHED */ 6957 6958 for_each_possible_cpu(i) { 6959 struct rq *rq; 6960 6961 rq = cpu_rq(i); 6962 raw_spin_lock_init(&rq->lock); 6963 rq->nr_running = 0; 6964 rq->calc_load_active = 0; 6965 rq->calc_load_update = jiffies + LOAD_FREQ; 6966 init_cfs_rq(&rq->cfs); 6967 init_rt_rq(&rq->rt, rq); 6968 #ifdef CONFIG_FAIR_GROUP_SCHED 6969 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6970 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6971 /* 6972 * How much cpu bandwidth does root_task_group get? 6973 * 6974 * In case of task-groups formed thr' the cgroup filesystem, it 6975 * gets 100% of the cpu resources in the system. This overall 6976 * system cpu resource is divided among the tasks of 6977 * root_task_group and its child task-groups in a fair manner, 6978 * based on each entity's (task or task-group's) weight 6979 * (se->load.weight). 6980 * 6981 * In other words, if root_task_group has 10 tasks of weight 6982 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6983 * then A0's share of the cpu resource is: 6984 * 6985 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6986 * 6987 * We achieve this by letting root_task_group's tasks sit 6988 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6989 */ 6990 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6991 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6992 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6993 6994 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6995 #ifdef CONFIG_RT_GROUP_SCHED 6996 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6997 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6998 #endif 6999 7000 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7001 rq->cpu_load[j] = 0; 7002 7003 rq->last_load_update_tick = jiffies; 7004 7005 #ifdef CONFIG_SMP 7006 rq->sd = NULL; 7007 rq->rd = NULL; 7008 rq->cpu_power = SCHED_POWER_SCALE; 7009 rq->post_schedule = 0; 7010 rq->active_balance = 0; 7011 rq->next_balance = jiffies; 7012 rq->push_cpu = 0; 7013 rq->cpu = i; 7014 rq->online = 0; 7015 rq->idle_stamp = 0; 7016 rq->avg_idle = 2*sysctl_sched_migration_cost; 7017 7018 INIT_LIST_HEAD(&rq->cfs_tasks); 7019 7020 rq_attach_root(rq, &def_root_domain); 7021 #ifdef CONFIG_NO_HZ_COMMON 7022 rq->nohz_flags = 0; 7023 #endif 7024 #ifdef CONFIG_NO_HZ_FULL 7025 rq->last_sched_tick = 0; 7026 #endif 7027 #endif 7028 init_rq_hrtick(rq); 7029 atomic_set(&rq->nr_iowait, 0); 7030 } 7031 7032 set_load_weight(&init_task); 7033 7034 #ifdef CONFIG_PREEMPT_NOTIFIERS 7035 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7036 #endif 7037 7038 #ifdef CONFIG_RT_MUTEXES 7039 plist_head_init(&init_task.pi_waiters); 7040 #endif 7041 7042 /* 7043 * The boot idle thread does lazy MMU switching as well: 7044 */ 7045 atomic_inc(&init_mm.mm_count); 7046 enter_lazy_tlb(&init_mm, current); 7047 7048 /* 7049 * Make us the idle thread. Technically, schedule() should not be 7050 * called from this thread, however somewhere below it might be, 7051 * but because we are the idle thread, we just pick up running again 7052 * when this runqueue becomes "idle". 7053 */ 7054 init_idle(current, smp_processor_id()); 7055 7056 calc_load_update = jiffies + LOAD_FREQ; 7057 7058 /* 7059 * During early bootup we pretend to be a normal task: 7060 */ 7061 current->sched_class = &fair_sched_class; 7062 7063 #ifdef CONFIG_SMP 7064 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7065 /* May be allocated at isolcpus cmdline parse time */ 7066 if (cpu_isolated_map == NULL) 7067 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7068 idle_thread_set_boot_cpu(); 7069 #endif 7070 init_sched_fair_class(); 7071 7072 scheduler_running = 1; 7073 } 7074 7075 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7076 static inline int preempt_count_equals(int preempt_offset) 7077 { 7078 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7079 7080 return (nested == preempt_offset); 7081 } 7082 7083 void __might_sleep(const char *file, int line, int preempt_offset) 7084 { 7085 static unsigned long prev_jiffy; /* ratelimiting */ 7086 7087 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7088 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7089 system_state != SYSTEM_RUNNING || oops_in_progress) 7090 return; 7091 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7092 return; 7093 prev_jiffy = jiffies; 7094 7095 printk(KERN_ERR 7096 "BUG: sleeping function called from invalid context at %s:%d\n", 7097 file, line); 7098 printk(KERN_ERR 7099 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7100 in_atomic(), irqs_disabled(), 7101 current->pid, current->comm); 7102 7103 debug_show_held_locks(current); 7104 if (irqs_disabled()) 7105 print_irqtrace_events(current); 7106 dump_stack(); 7107 } 7108 EXPORT_SYMBOL(__might_sleep); 7109 #endif 7110 7111 #ifdef CONFIG_MAGIC_SYSRQ 7112 static void normalize_task(struct rq *rq, struct task_struct *p) 7113 { 7114 const struct sched_class *prev_class = p->sched_class; 7115 int old_prio = p->prio; 7116 int on_rq; 7117 7118 on_rq = p->on_rq; 7119 if (on_rq) 7120 dequeue_task(rq, p, 0); 7121 __setscheduler(rq, p, SCHED_NORMAL, 0); 7122 if (on_rq) { 7123 enqueue_task(rq, p, 0); 7124 resched_task(rq->curr); 7125 } 7126 7127 check_class_changed(rq, p, prev_class, old_prio); 7128 } 7129 7130 void normalize_rt_tasks(void) 7131 { 7132 struct task_struct *g, *p; 7133 unsigned long flags; 7134 struct rq *rq; 7135 7136 read_lock_irqsave(&tasklist_lock, flags); 7137 do_each_thread(g, p) { 7138 /* 7139 * Only normalize user tasks: 7140 */ 7141 if (!p->mm) 7142 continue; 7143 7144 p->se.exec_start = 0; 7145 #ifdef CONFIG_SCHEDSTATS 7146 p->se.statistics.wait_start = 0; 7147 p->se.statistics.sleep_start = 0; 7148 p->se.statistics.block_start = 0; 7149 #endif 7150 7151 if (!rt_task(p)) { 7152 /* 7153 * Renice negative nice level userspace 7154 * tasks back to 0: 7155 */ 7156 if (TASK_NICE(p) < 0 && p->mm) 7157 set_user_nice(p, 0); 7158 continue; 7159 } 7160 7161 raw_spin_lock(&p->pi_lock); 7162 rq = __task_rq_lock(p); 7163 7164 normalize_task(rq, p); 7165 7166 __task_rq_unlock(rq); 7167 raw_spin_unlock(&p->pi_lock); 7168 } while_each_thread(g, p); 7169 7170 read_unlock_irqrestore(&tasklist_lock, flags); 7171 } 7172 7173 #endif /* CONFIG_MAGIC_SYSRQ */ 7174 7175 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7176 /* 7177 * These functions are only useful for the IA64 MCA handling, or kdb. 7178 * 7179 * They can only be called when the whole system has been 7180 * stopped - every CPU needs to be quiescent, and no scheduling 7181 * activity can take place. Using them for anything else would 7182 * be a serious bug, and as a result, they aren't even visible 7183 * under any other configuration. 7184 */ 7185 7186 /** 7187 * curr_task - return the current task for a given cpu. 7188 * @cpu: the processor in question. 7189 * 7190 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7191 */ 7192 struct task_struct *curr_task(int cpu) 7193 { 7194 return cpu_curr(cpu); 7195 } 7196 7197 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7198 7199 #ifdef CONFIG_IA64 7200 /** 7201 * set_curr_task - set the current task for a given cpu. 7202 * @cpu: the processor in question. 7203 * @p: the task pointer to set. 7204 * 7205 * Description: This function must only be used when non-maskable interrupts 7206 * are serviced on a separate stack. It allows the architecture to switch the 7207 * notion of the current task on a cpu in a non-blocking manner. This function 7208 * must be called with all CPU's synchronized, and interrupts disabled, the 7209 * and caller must save the original value of the current task (see 7210 * curr_task() above) and restore that value before reenabling interrupts and 7211 * re-starting the system. 7212 * 7213 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7214 */ 7215 void set_curr_task(int cpu, struct task_struct *p) 7216 { 7217 cpu_curr(cpu) = p; 7218 } 7219 7220 #endif 7221 7222 #ifdef CONFIG_CGROUP_SCHED 7223 /* task_group_lock serializes the addition/removal of task groups */ 7224 static DEFINE_SPINLOCK(task_group_lock); 7225 7226 static void free_sched_group(struct task_group *tg) 7227 { 7228 free_fair_sched_group(tg); 7229 free_rt_sched_group(tg); 7230 autogroup_free(tg); 7231 kfree(tg); 7232 } 7233 7234 /* allocate runqueue etc for a new task group */ 7235 struct task_group *sched_create_group(struct task_group *parent) 7236 { 7237 struct task_group *tg; 7238 7239 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7240 if (!tg) 7241 return ERR_PTR(-ENOMEM); 7242 7243 if (!alloc_fair_sched_group(tg, parent)) 7244 goto err; 7245 7246 if (!alloc_rt_sched_group(tg, parent)) 7247 goto err; 7248 7249 return tg; 7250 7251 err: 7252 free_sched_group(tg); 7253 return ERR_PTR(-ENOMEM); 7254 } 7255 7256 void sched_online_group(struct task_group *tg, struct task_group *parent) 7257 { 7258 unsigned long flags; 7259 7260 spin_lock_irqsave(&task_group_lock, flags); 7261 list_add_rcu(&tg->list, &task_groups); 7262 7263 WARN_ON(!parent); /* root should already exist */ 7264 7265 tg->parent = parent; 7266 INIT_LIST_HEAD(&tg->children); 7267 list_add_rcu(&tg->siblings, &parent->children); 7268 spin_unlock_irqrestore(&task_group_lock, flags); 7269 } 7270 7271 /* rcu callback to free various structures associated with a task group */ 7272 static void free_sched_group_rcu(struct rcu_head *rhp) 7273 { 7274 /* now it should be safe to free those cfs_rqs */ 7275 free_sched_group(container_of(rhp, struct task_group, rcu)); 7276 } 7277 7278 /* Destroy runqueue etc associated with a task group */ 7279 void sched_destroy_group(struct task_group *tg) 7280 { 7281 /* wait for possible concurrent references to cfs_rqs complete */ 7282 call_rcu(&tg->rcu, free_sched_group_rcu); 7283 } 7284 7285 void sched_offline_group(struct task_group *tg) 7286 { 7287 unsigned long flags; 7288 int i; 7289 7290 /* end participation in shares distribution */ 7291 for_each_possible_cpu(i) 7292 unregister_fair_sched_group(tg, i); 7293 7294 spin_lock_irqsave(&task_group_lock, flags); 7295 list_del_rcu(&tg->list); 7296 list_del_rcu(&tg->siblings); 7297 spin_unlock_irqrestore(&task_group_lock, flags); 7298 } 7299 7300 /* change task's runqueue when it moves between groups. 7301 * The caller of this function should have put the task in its new group 7302 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7303 * reflect its new group. 7304 */ 7305 void sched_move_task(struct task_struct *tsk) 7306 { 7307 struct task_group *tg; 7308 int on_rq, running; 7309 unsigned long flags; 7310 struct rq *rq; 7311 7312 rq = task_rq_lock(tsk, &flags); 7313 7314 running = task_current(rq, tsk); 7315 on_rq = tsk->on_rq; 7316 7317 if (on_rq) 7318 dequeue_task(rq, tsk, 0); 7319 if (unlikely(running)) 7320 tsk->sched_class->put_prev_task(rq, tsk); 7321 7322 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7323 lockdep_is_held(&tsk->sighand->siglock)), 7324 struct task_group, css); 7325 tg = autogroup_task_group(tsk, tg); 7326 tsk->sched_task_group = tg; 7327 7328 #ifdef CONFIG_FAIR_GROUP_SCHED 7329 if (tsk->sched_class->task_move_group) 7330 tsk->sched_class->task_move_group(tsk, on_rq); 7331 else 7332 #endif 7333 set_task_rq(tsk, task_cpu(tsk)); 7334 7335 if (unlikely(running)) 7336 tsk->sched_class->set_curr_task(rq); 7337 if (on_rq) 7338 enqueue_task(rq, tsk, 0); 7339 7340 task_rq_unlock(rq, tsk, &flags); 7341 } 7342 #endif /* CONFIG_CGROUP_SCHED */ 7343 7344 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7345 static unsigned long to_ratio(u64 period, u64 runtime) 7346 { 7347 if (runtime == RUNTIME_INF) 7348 return 1ULL << 20; 7349 7350 return div64_u64(runtime << 20, period); 7351 } 7352 #endif 7353 7354 #ifdef CONFIG_RT_GROUP_SCHED 7355 /* 7356 * Ensure that the real time constraints are schedulable. 7357 */ 7358 static DEFINE_MUTEX(rt_constraints_mutex); 7359 7360 /* Must be called with tasklist_lock held */ 7361 static inline int tg_has_rt_tasks(struct task_group *tg) 7362 { 7363 struct task_struct *g, *p; 7364 7365 do_each_thread(g, p) { 7366 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7367 return 1; 7368 } while_each_thread(g, p); 7369 7370 return 0; 7371 } 7372 7373 struct rt_schedulable_data { 7374 struct task_group *tg; 7375 u64 rt_period; 7376 u64 rt_runtime; 7377 }; 7378 7379 static int tg_rt_schedulable(struct task_group *tg, void *data) 7380 { 7381 struct rt_schedulable_data *d = data; 7382 struct task_group *child; 7383 unsigned long total, sum = 0; 7384 u64 period, runtime; 7385 7386 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7387 runtime = tg->rt_bandwidth.rt_runtime; 7388 7389 if (tg == d->tg) { 7390 period = d->rt_period; 7391 runtime = d->rt_runtime; 7392 } 7393 7394 /* 7395 * Cannot have more runtime than the period. 7396 */ 7397 if (runtime > period && runtime != RUNTIME_INF) 7398 return -EINVAL; 7399 7400 /* 7401 * Ensure we don't starve existing RT tasks. 7402 */ 7403 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7404 return -EBUSY; 7405 7406 total = to_ratio(period, runtime); 7407 7408 /* 7409 * Nobody can have more than the global setting allows. 7410 */ 7411 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7412 return -EINVAL; 7413 7414 /* 7415 * The sum of our children's runtime should not exceed our own. 7416 */ 7417 list_for_each_entry_rcu(child, &tg->children, siblings) { 7418 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7419 runtime = child->rt_bandwidth.rt_runtime; 7420 7421 if (child == d->tg) { 7422 period = d->rt_period; 7423 runtime = d->rt_runtime; 7424 } 7425 7426 sum += to_ratio(period, runtime); 7427 } 7428 7429 if (sum > total) 7430 return -EINVAL; 7431 7432 return 0; 7433 } 7434 7435 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7436 { 7437 int ret; 7438 7439 struct rt_schedulable_data data = { 7440 .tg = tg, 7441 .rt_period = period, 7442 .rt_runtime = runtime, 7443 }; 7444 7445 rcu_read_lock(); 7446 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7447 rcu_read_unlock(); 7448 7449 return ret; 7450 } 7451 7452 static int tg_set_rt_bandwidth(struct task_group *tg, 7453 u64 rt_period, u64 rt_runtime) 7454 { 7455 int i, err = 0; 7456 7457 mutex_lock(&rt_constraints_mutex); 7458 read_lock(&tasklist_lock); 7459 err = __rt_schedulable(tg, rt_period, rt_runtime); 7460 if (err) 7461 goto unlock; 7462 7463 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7464 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7465 tg->rt_bandwidth.rt_runtime = rt_runtime; 7466 7467 for_each_possible_cpu(i) { 7468 struct rt_rq *rt_rq = tg->rt_rq[i]; 7469 7470 raw_spin_lock(&rt_rq->rt_runtime_lock); 7471 rt_rq->rt_runtime = rt_runtime; 7472 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7473 } 7474 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7475 unlock: 7476 read_unlock(&tasklist_lock); 7477 mutex_unlock(&rt_constraints_mutex); 7478 7479 return err; 7480 } 7481 7482 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7483 { 7484 u64 rt_runtime, rt_period; 7485 7486 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7487 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7488 if (rt_runtime_us < 0) 7489 rt_runtime = RUNTIME_INF; 7490 7491 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7492 } 7493 7494 static long sched_group_rt_runtime(struct task_group *tg) 7495 { 7496 u64 rt_runtime_us; 7497 7498 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7499 return -1; 7500 7501 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7502 do_div(rt_runtime_us, NSEC_PER_USEC); 7503 return rt_runtime_us; 7504 } 7505 7506 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7507 { 7508 u64 rt_runtime, rt_period; 7509 7510 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7511 rt_runtime = tg->rt_bandwidth.rt_runtime; 7512 7513 if (rt_period == 0) 7514 return -EINVAL; 7515 7516 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7517 } 7518 7519 static long sched_group_rt_period(struct task_group *tg) 7520 { 7521 u64 rt_period_us; 7522 7523 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7524 do_div(rt_period_us, NSEC_PER_USEC); 7525 return rt_period_us; 7526 } 7527 7528 static int sched_rt_global_constraints(void) 7529 { 7530 u64 runtime, period; 7531 int ret = 0; 7532 7533 if (sysctl_sched_rt_period <= 0) 7534 return -EINVAL; 7535 7536 runtime = global_rt_runtime(); 7537 period = global_rt_period(); 7538 7539 /* 7540 * Sanity check on the sysctl variables. 7541 */ 7542 if (runtime > period && runtime != RUNTIME_INF) 7543 return -EINVAL; 7544 7545 mutex_lock(&rt_constraints_mutex); 7546 read_lock(&tasklist_lock); 7547 ret = __rt_schedulable(NULL, 0, 0); 7548 read_unlock(&tasklist_lock); 7549 mutex_unlock(&rt_constraints_mutex); 7550 7551 return ret; 7552 } 7553 7554 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7555 { 7556 /* Don't accept realtime tasks when there is no way for them to run */ 7557 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7558 return 0; 7559 7560 return 1; 7561 } 7562 7563 #else /* !CONFIG_RT_GROUP_SCHED */ 7564 static int sched_rt_global_constraints(void) 7565 { 7566 unsigned long flags; 7567 int i; 7568 7569 if (sysctl_sched_rt_period <= 0) 7570 return -EINVAL; 7571 7572 /* 7573 * There's always some RT tasks in the root group 7574 * -- migration, kstopmachine etc.. 7575 */ 7576 if (sysctl_sched_rt_runtime == 0) 7577 return -EBUSY; 7578 7579 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7580 for_each_possible_cpu(i) { 7581 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7582 7583 raw_spin_lock(&rt_rq->rt_runtime_lock); 7584 rt_rq->rt_runtime = global_rt_runtime(); 7585 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7586 } 7587 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7588 7589 return 0; 7590 } 7591 #endif /* CONFIG_RT_GROUP_SCHED */ 7592 7593 int sched_rr_handler(struct ctl_table *table, int write, 7594 void __user *buffer, size_t *lenp, 7595 loff_t *ppos) 7596 { 7597 int ret; 7598 static DEFINE_MUTEX(mutex); 7599 7600 mutex_lock(&mutex); 7601 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7602 /* make sure that internally we keep jiffies */ 7603 /* also, writing zero resets timeslice to default */ 7604 if (!ret && write) { 7605 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7606 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7607 } 7608 mutex_unlock(&mutex); 7609 return ret; 7610 } 7611 7612 int sched_rt_handler(struct ctl_table *table, int write, 7613 void __user *buffer, size_t *lenp, 7614 loff_t *ppos) 7615 { 7616 int ret; 7617 int old_period, old_runtime; 7618 static DEFINE_MUTEX(mutex); 7619 7620 mutex_lock(&mutex); 7621 old_period = sysctl_sched_rt_period; 7622 old_runtime = sysctl_sched_rt_runtime; 7623 7624 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7625 7626 if (!ret && write) { 7627 ret = sched_rt_global_constraints(); 7628 if (ret) { 7629 sysctl_sched_rt_period = old_period; 7630 sysctl_sched_rt_runtime = old_runtime; 7631 } else { 7632 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7633 def_rt_bandwidth.rt_period = 7634 ns_to_ktime(global_rt_period()); 7635 } 7636 } 7637 mutex_unlock(&mutex); 7638 7639 return ret; 7640 } 7641 7642 #ifdef CONFIG_CGROUP_SCHED 7643 7644 /* return corresponding task_group object of a cgroup */ 7645 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7646 { 7647 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7648 struct task_group, css); 7649 } 7650 7651 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7652 { 7653 struct task_group *tg, *parent; 7654 7655 if (!cgrp->parent) { 7656 /* This is early initialization for the top cgroup */ 7657 return &root_task_group.css; 7658 } 7659 7660 parent = cgroup_tg(cgrp->parent); 7661 tg = sched_create_group(parent); 7662 if (IS_ERR(tg)) 7663 return ERR_PTR(-ENOMEM); 7664 7665 return &tg->css; 7666 } 7667 7668 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7669 { 7670 struct task_group *tg = cgroup_tg(cgrp); 7671 struct task_group *parent; 7672 7673 if (!cgrp->parent) 7674 return 0; 7675 7676 parent = cgroup_tg(cgrp->parent); 7677 sched_online_group(tg, parent); 7678 return 0; 7679 } 7680 7681 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7682 { 7683 struct task_group *tg = cgroup_tg(cgrp); 7684 7685 sched_destroy_group(tg); 7686 } 7687 7688 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7689 { 7690 struct task_group *tg = cgroup_tg(cgrp); 7691 7692 sched_offline_group(tg); 7693 } 7694 7695 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7696 struct cgroup_taskset *tset) 7697 { 7698 struct task_struct *task; 7699 7700 cgroup_taskset_for_each(task, cgrp, tset) { 7701 #ifdef CONFIG_RT_GROUP_SCHED 7702 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7703 return -EINVAL; 7704 #else 7705 /* We don't support RT-tasks being in separate groups */ 7706 if (task->sched_class != &fair_sched_class) 7707 return -EINVAL; 7708 #endif 7709 } 7710 return 0; 7711 } 7712 7713 static void cpu_cgroup_attach(struct cgroup *cgrp, 7714 struct cgroup_taskset *tset) 7715 { 7716 struct task_struct *task; 7717 7718 cgroup_taskset_for_each(task, cgrp, tset) 7719 sched_move_task(task); 7720 } 7721 7722 static void 7723 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7724 struct task_struct *task) 7725 { 7726 /* 7727 * cgroup_exit() is called in the copy_process() failure path. 7728 * Ignore this case since the task hasn't ran yet, this avoids 7729 * trying to poke a half freed task state from generic code. 7730 */ 7731 if (!(task->flags & PF_EXITING)) 7732 return; 7733 7734 sched_move_task(task); 7735 } 7736 7737 #ifdef CONFIG_FAIR_GROUP_SCHED 7738 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7739 u64 shareval) 7740 { 7741 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7742 } 7743 7744 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7745 { 7746 struct task_group *tg = cgroup_tg(cgrp); 7747 7748 return (u64) scale_load_down(tg->shares); 7749 } 7750 7751 #ifdef CONFIG_CFS_BANDWIDTH 7752 static DEFINE_MUTEX(cfs_constraints_mutex); 7753 7754 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7755 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7756 7757 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7758 7759 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7760 { 7761 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7762 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7763 7764 if (tg == &root_task_group) 7765 return -EINVAL; 7766 7767 /* 7768 * Ensure we have at some amount of bandwidth every period. This is 7769 * to prevent reaching a state of large arrears when throttled via 7770 * entity_tick() resulting in prolonged exit starvation. 7771 */ 7772 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7773 return -EINVAL; 7774 7775 /* 7776 * Likewise, bound things on the otherside by preventing insane quota 7777 * periods. This also allows us to normalize in computing quota 7778 * feasibility. 7779 */ 7780 if (period > max_cfs_quota_period) 7781 return -EINVAL; 7782 7783 mutex_lock(&cfs_constraints_mutex); 7784 ret = __cfs_schedulable(tg, period, quota); 7785 if (ret) 7786 goto out_unlock; 7787 7788 runtime_enabled = quota != RUNTIME_INF; 7789 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7790 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7791 raw_spin_lock_irq(&cfs_b->lock); 7792 cfs_b->period = ns_to_ktime(period); 7793 cfs_b->quota = quota; 7794 7795 __refill_cfs_bandwidth_runtime(cfs_b); 7796 /* restart the period timer (if active) to handle new period expiry */ 7797 if (runtime_enabled && cfs_b->timer_active) { 7798 /* force a reprogram */ 7799 cfs_b->timer_active = 0; 7800 __start_cfs_bandwidth(cfs_b); 7801 } 7802 raw_spin_unlock_irq(&cfs_b->lock); 7803 7804 for_each_possible_cpu(i) { 7805 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7806 struct rq *rq = cfs_rq->rq; 7807 7808 raw_spin_lock_irq(&rq->lock); 7809 cfs_rq->runtime_enabled = runtime_enabled; 7810 cfs_rq->runtime_remaining = 0; 7811 7812 if (cfs_rq->throttled) 7813 unthrottle_cfs_rq(cfs_rq); 7814 raw_spin_unlock_irq(&rq->lock); 7815 } 7816 out_unlock: 7817 mutex_unlock(&cfs_constraints_mutex); 7818 7819 return ret; 7820 } 7821 7822 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7823 { 7824 u64 quota, period; 7825 7826 period = ktime_to_ns(tg->cfs_bandwidth.period); 7827 if (cfs_quota_us < 0) 7828 quota = RUNTIME_INF; 7829 else 7830 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7831 7832 return tg_set_cfs_bandwidth(tg, period, quota); 7833 } 7834 7835 long tg_get_cfs_quota(struct task_group *tg) 7836 { 7837 u64 quota_us; 7838 7839 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7840 return -1; 7841 7842 quota_us = tg->cfs_bandwidth.quota; 7843 do_div(quota_us, NSEC_PER_USEC); 7844 7845 return quota_us; 7846 } 7847 7848 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7849 { 7850 u64 quota, period; 7851 7852 period = (u64)cfs_period_us * NSEC_PER_USEC; 7853 quota = tg->cfs_bandwidth.quota; 7854 7855 return tg_set_cfs_bandwidth(tg, period, quota); 7856 } 7857 7858 long tg_get_cfs_period(struct task_group *tg) 7859 { 7860 u64 cfs_period_us; 7861 7862 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7863 do_div(cfs_period_us, NSEC_PER_USEC); 7864 7865 return cfs_period_us; 7866 } 7867 7868 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7869 { 7870 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7871 } 7872 7873 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7874 s64 cfs_quota_us) 7875 { 7876 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7877 } 7878 7879 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7880 { 7881 return tg_get_cfs_period(cgroup_tg(cgrp)); 7882 } 7883 7884 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7885 u64 cfs_period_us) 7886 { 7887 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7888 } 7889 7890 struct cfs_schedulable_data { 7891 struct task_group *tg; 7892 u64 period, quota; 7893 }; 7894 7895 /* 7896 * normalize group quota/period to be quota/max_period 7897 * note: units are usecs 7898 */ 7899 static u64 normalize_cfs_quota(struct task_group *tg, 7900 struct cfs_schedulable_data *d) 7901 { 7902 u64 quota, period; 7903 7904 if (tg == d->tg) { 7905 period = d->period; 7906 quota = d->quota; 7907 } else { 7908 period = tg_get_cfs_period(tg); 7909 quota = tg_get_cfs_quota(tg); 7910 } 7911 7912 /* note: these should typically be equivalent */ 7913 if (quota == RUNTIME_INF || quota == -1) 7914 return RUNTIME_INF; 7915 7916 return to_ratio(period, quota); 7917 } 7918 7919 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7920 { 7921 struct cfs_schedulable_data *d = data; 7922 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7923 s64 quota = 0, parent_quota = -1; 7924 7925 if (!tg->parent) { 7926 quota = RUNTIME_INF; 7927 } else { 7928 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7929 7930 quota = normalize_cfs_quota(tg, d); 7931 parent_quota = parent_b->hierarchal_quota; 7932 7933 /* 7934 * ensure max(child_quota) <= parent_quota, inherit when no 7935 * limit is set 7936 */ 7937 if (quota == RUNTIME_INF) 7938 quota = parent_quota; 7939 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7940 return -EINVAL; 7941 } 7942 cfs_b->hierarchal_quota = quota; 7943 7944 return 0; 7945 } 7946 7947 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7948 { 7949 int ret; 7950 struct cfs_schedulable_data data = { 7951 .tg = tg, 7952 .period = period, 7953 .quota = quota, 7954 }; 7955 7956 if (quota != RUNTIME_INF) { 7957 do_div(data.period, NSEC_PER_USEC); 7958 do_div(data.quota, NSEC_PER_USEC); 7959 } 7960 7961 rcu_read_lock(); 7962 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7963 rcu_read_unlock(); 7964 7965 return ret; 7966 } 7967 7968 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7969 struct cgroup_map_cb *cb) 7970 { 7971 struct task_group *tg = cgroup_tg(cgrp); 7972 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7973 7974 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7975 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7976 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7977 7978 return 0; 7979 } 7980 #endif /* CONFIG_CFS_BANDWIDTH */ 7981 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7982 7983 #ifdef CONFIG_RT_GROUP_SCHED 7984 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7985 s64 val) 7986 { 7987 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7988 } 7989 7990 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7991 { 7992 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7993 } 7994 7995 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7996 u64 rt_period_us) 7997 { 7998 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7999 } 8000 8001 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 8002 { 8003 return sched_group_rt_period(cgroup_tg(cgrp)); 8004 } 8005 #endif /* CONFIG_RT_GROUP_SCHED */ 8006 8007 static struct cftype cpu_files[] = { 8008 #ifdef CONFIG_FAIR_GROUP_SCHED 8009 { 8010 .name = "shares", 8011 .read_u64 = cpu_shares_read_u64, 8012 .write_u64 = cpu_shares_write_u64, 8013 }, 8014 #endif 8015 #ifdef CONFIG_CFS_BANDWIDTH 8016 { 8017 .name = "cfs_quota_us", 8018 .read_s64 = cpu_cfs_quota_read_s64, 8019 .write_s64 = cpu_cfs_quota_write_s64, 8020 }, 8021 { 8022 .name = "cfs_period_us", 8023 .read_u64 = cpu_cfs_period_read_u64, 8024 .write_u64 = cpu_cfs_period_write_u64, 8025 }, 8026 { 8027 .name = "stat", 8028 .read_map = cpu_stats_show, 8029 }, 8030 #endif 8031 #ifdef CONFIG_RT_GROUP_SCHED 8032 { 8033 .name = "rt_runtime_us", 8034 .read_s64 = cpu_rt_runtime_read, 8035 .write_s64 = cpu_rt_runtime_write, 8036 }, 8037 { 8038 .name = "rt_period_us", 8039 .read_u64 = cpu_rt_period_read_uint, 8040 .write_u64 = cpu_rt_period_write_uint, 8041 }, 8042 #endif 8043 { } /* terminate */ 8044 }; 8045 8046 struct cgroup_subsys cpu_cgroup_subsys = { 8047 .name = "cpu", 8048 .css_alloc = cpu_cgroup_css_alloc, 8049 .css_free = cpu_cgroup_css_free, 8050 .css_online = cpu_cgroup_css_online, 8051 .css_offline = cpu_cgroup_css_offline, 8052 .can_attach = cpu_cgroup_can_attach, 8053 .attach = cpu_cgroup_attach, 8054 .exit = cpu_cgroup_exit, 8055 .subsys_id = cpu_cgroup_subsys_id, 8056 .base_cftypes = cpu_files, 8057 .early_init = 1, 8058 }; 8059 8060 #endif /* CONFIG_CGROUP_SCHED */ 8061 8062 void dump_cpu_task(int cpu) 8063 { 8064 pr_info("Task dump for CPU %d:\n", cpu); 8065 sched_show_task(cpu_curr(cpu)); 8066 } 8067