1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 #include <asm/irq_regs.h> 80 #include <asm/mutex.h> 81 #ifdef CONFIG_PARAVIRT 82 #include <asm/paravirt.h> 83 #endif 84 85 #include "sched.h" 86 #include "../workqueue_internal.h" 87 #include "../smpboot.h" 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/sched.h> 91 92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 { 94 unsigned long delta; 95 ktime_t soft, hard, now; 96 97 for (;;) { 98 if (hrtimer_active(period_timer)) 99 break; 100 101 now = hrtimer_cb_get_time(period_timer); 102 hrtimer_forward(period_timer, now, period); 103 104 soft = hrtimer_get_softexpires(period_timer); 105 hard = hrtimer_get_expires(period_timer); 106 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 __hrtimer_start_range_ns(period_timer, soft, delta, 108 HRTIMER_MODE_ABS_PINNED, 0); 109 } 110 } 111 112 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 117 void update_rq_clock(struct rq *rq) 118 { 119 s64 delta; 120 121 if (rq->skip_clock_update > 0) 122 return; 123 124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 rq->clock += delta; 126 update_rq_clock_task(rq, delta); 127 } 128 129 /* 130 * Debugging: various feature bits 131 */ 132 133 #define SCHED_FEAT(name, enabled) \ 134 (1UL << __SCHED_FEAT_##name) * enabled | 135 136 const_debug unsigned int sysctl_sched_features = 137 #include "features.h" 138 0; 139 140 #undef SCHED_FEAT 141 142 #ifdef CONFIG_SCHED_DEBUG 143 #define SCHED_FEAT(name, enabled) \ 144 #name , 145 146 static const char * const sched_feat_names[] = { 147 #include "features.h" 148 }; 149 150 #undef SCHED_FEAT 151 152 static int sched_feat_show(struct seq_file *m, void *v) 153 { 154 int i; 155 156 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 if (!(sysctl_sched_features & (1UL << i))) 158 seq_puts(m, "NO_"); 159 seq_printf(m, "%s ", sched_feat_names[i]); 160 } 161 seq_puts(m, "\n"); 162 163 return 0; 164 } 165 166 #ifdef HAVE_JUMP_LABEL 167 168 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 171 #define SCHED_FEAT(name, enabled) \ 172 jump_label_key__##enabled , 173 174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 #include "features.h" 176 }; 177 178 #undef SCHED_FEAT 179 180 static void sched_feat_disable(int i) 181 { 182 if (static_key_enabled(&sched_feat_keys[i])) 183 static_key_slow_dec(&sched_feat_keys[i]); 184 } 185 186 static void sched_feat_enable(int i) 187 { 188 if (!static_key_enabled(&sched_feat_keys[i])) 189 static_key_slow_inc(&sched_feat_keys[i]); 190 } 191 #else 192 static void sched_feat_disable(int i) { }; 193 static void sched_feat_enable(int i) { }; 194 #endif /* HAVE_JUMP_LABEL */ 195 196 static int sched_feat_set(char *cmp) 197 { 198 int i; 199 int neg = 0; 200 201 if (strncmp(cmp, "NO_", 3) == 0) { 202 neg = 1; 203 cmp += 3; 204 } 205 206 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (neg) { 209 sysctl_sched_features &= ~(1UL << i); 210 sched_feat_disable(i); 211 } else { 212 sysctl_sched_features |= (1UL << i); 213 sched_feat_enable(i); 214 } 215 break; 216 } 217 } 218 219 return i; 220 } 221 222 static ssize_t 223 sched_feat_write(struct file *filp, const char __user *ubuf, 224 size_t cnt, loff_t *ppos) 225 { 226 char buf[64]; 227 char *cmp; 228 int i; 229 230 if (cnt > 63) 231 cnt = 63; 232 233 if (copy_from_user(&buf, ubuf, cnt)) 234 return -EFAULT; 235 236 buf[cnt] = 0; 237 cmp = strstrip(buf); 238 239 i = sched_feat_set(cmp); 240 if (i == __SCHED_FEAT_NR) 241 return -EINVAL; 242 243 *ppos += cnt; 244 245 return cnt; 246 } 247 248 static int sched_feat_open(struct inode *inode, struct file *filp) 249 { 250 return single_open(filp, sched_feat_show, NULL); 251 } 252 253 static const struct file_operations sched_feat_fops = { 254 .open = sched_feat_open, 255 .write = sched_feat_write, 256 .read = seq_read, 257 .llseek = seq_lseek, 258 .release = single_release, 259 }; 260 261 static __init int sched_init_debug(void) 262 { 263 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 &sched_feat_fops); 265 266 return 0; 267 } 268 late_initcall(sched_init_debug); 269 #endif /* CONFIG_SCHED_DEBUG */ 270 271 /* 272 * Number of tasks to iterate in a single balance run. 273 * Limited because this is done with IRQs disabled. 274 */ 275 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 277 /* 278 * period over which we average the RT time consumption, measured 279 * in ms. 280 * 281 * default: 1s 282 */ 283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 285 /* 286 * period over which we measure -rt task cpu usage in us. 287 * default: 1s 288 */ 289 unsigned int sysctl_sched_rt_period = 1000000; 290 291 __read_mostly int scheduler_running; 292 293 /* 294 * part of the period that we allow rt tasks to run in us. 295 * default: 0.95s 296 */ 297 int sysctl_sched_rt_runtime = 950000; 298 299 300 301 /* 302 * __task_rq_lock - lock the rq @p resides on. 303 */ 304 static inline struct rq *__task_rq_lock(struct task_struct *p) 305 __acquires(rq->lock) 306 { 307 struct rq *rq; 308 309 lockdep_assert_held(&p->pi_lock); 310 311 for (;;) { 312 rq = task_rq(p); 313 raw_spin_lock(&rq->lock); 314 if (likely(rq == task_rq(p))) 315 return rq; 316 raw_spin_unlock(&rq->lock); 317 } 318 } 319 320 /* 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 322 */ 323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 324 __acquires(p->pi_lock) 325 __acquires(rq->lock) 326 { 327 struct rq *rq; 328 329 for (;;) { 330 raw_spin_lock_irqsave(&p->pi_lock, *flags); 331 rq = task_rq(p); 332 raw_spin_lock(&rq->lock); 333 if (likely(rq == task_rq(p))) 334 return rq; 335 raw_spin_unlock(&rq->lock); 336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 337 } 338 } 339 340 static void __task_rq_unlock(struct rq *rq) 341 __releases(rq->lock) 342 { 343 raw_spin_unlock(&rq->lock); 344 } 345 346 static inline void 347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 348 __releases(rq->lock) 349 __releases(p->pi_lock) 350 { 351 raw_spin_unlock(&rq->lock); 352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 353 } 354 355 /* 356 * this_rq_lock - lock this runqueue and disable interrupts. 357 */ 358 static struct rq *this_rq_lock(void) 359 __acquires(rq->lock) 360 { 361 struct rq *rq; 362 363 local_irq_disable(); 364 rq = this_rq(); 365 raw_spin_lock(&rq->lock); 366 367 return rq; 368 } 369 370 #ifdef CONFIG_SCHED_HRTICK 371 /* 372 * Use HR-timers to deliver accurate preemption points. 373 * 374 * Its all a bit involved since we cannot program an hrt while holding the 375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 376 * reschedule event. 377 * 378 * When we get rescheduled we reprogram the hrtick_timer outside of the 379 * rq->lock. 380 */ 381 382 static void hrtick_clear(struct rq *rq) 383 { 384 if (hrtimer_active(&rq->hrtick_timer)) 385 hrtimer_cancel(&rq->hrtick_timer); 386 } 387 388 /* 389 * High-resolution timer tick. 390 * Runs from hardirq context with interrupts disabled. 391 */ 392 static enum hrtimer_restart hrtick(struct hrtimer *timer) 393 { 394 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 395 396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 397 398 raw_spin_lock(&rq->lock); 399 update_rq_clock(rq); 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 401 raw_spin_unlock(&rq->lock); 402 403 return HRTIMER_NORESTART; 404 } 405 406 #ifdef CONFIG_SMP 407 /* 408 * called from hardirq (IPI) context 409 */ 410 static void __hrtick_start(void *arg) 411 { 412 struct rq *rq = arg; 413 414 raw_spin_lock(&rq->lock); 415 hrtimer_restart(&rq->hrtick_timer); 416 rq->hrtick_csd_pending = 0; 417 raw_spin_unlock(&rq->lock); 418 } 419 420 /* 421 * Called to set the hrtick timer state. 422 * 423 * called with rq->lock held and irqs disabled 424 */ 425 void hrtick_start(struct rq *rq, u64 delay) 426 { 427 struct hrtimer *timer = &rq->hrtick_timer; 428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 430 hrtimer_set_expires(timer, time); 431 432 if (rq == this_rq()) { 433 hrtimer_restart(timer); 434 } else if (!rq->hrtick_csd_pending) { 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 436 rq->hrtick_csd_pending = 1; 437 } 438 } 439 440 static int 441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 { 443 int cpu = (int)(long)hcpu; 444 445 switch (action) { 446 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED_FROZEN: 448 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DEAD: 451 case CPU_DEAD_FROZEN: 452 hrtick_clear(cpu_rq(cpu)); 453 return NOTIFY_OK; 454 } 455 456 return NOTIFY_DONE; 457 } 458 459 static __init void init_hrtick(void) 460 { 461 hotcpu_notifier(hotplug_hrtick, 0); 462 } 463 #else 464 /* 465 * Called to set the hrtick timer state. 466 * 467 * called with rq->lock held and irqs disabled 468 */ 469 void hrtick_start(struct rq *rq, u64 delay) 470 { 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 HRTIMER_MODE_REL_PINNED, 0); 473 } 474 475 static inline void init_hrtick(void) 476 { 477 } 478 #endif /* CONFIG_SMP */ 479 480 static void init_rq_hrtick(struct rq *rq) 481 { 482 #ifdef CONFIG_SMP 483 rq->hrtick_csd_pending = 0; 484 485 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.info = rq; 488 #endif 489 490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 rq->hrtick_timer.function = hrtick; 492 } 493 #else /* CONFIG_SCHED_HRTICK */ 494 static inline void hrtick_clear(struct rq *rq) 495 { 496 } 497 498 static inline void init_rq_hrtick(struct rq *rq) 499 { 500 } 501 502 static inline void init_hrtick(void) 503 { 504 } 505 #endif /* CONFIG_SCHED_HRTICK */ 506 507 /* 508 * resched_task - mark a task 'to be rescheduled now'. 509 * 510 * On UP this means the setting of the need_resched flag, on SMP it 511 * might also involve a cross-CPU call to trigger the scheduler on 512 * the target CPU. 513 */ 514 #ifdef CONFIG_SMP 515 516 #ifndef tsk_is_polling 517 #define tsk_is_polling(t) 0 518 #endif 519 520 void resched_task(struct task_struct *p) 521 { 522 int cpu; 523 524 assert_raw_spin_locked(&task_rq(p)->lock); 525 526 if (test_tsk_need_resched(p)) 527 return; 528 529 set_tsk_need_resched(p); 530 531 cpu = task_cpu(p); 532 if (cpu == smp_processor_id()) 533 return; 534 535 /* NEED_RESCHED must be visible before we test polling */ 536 smp_mb(); 537 if (!tsk_is_polling(p)) 538 smp_send_reschedule(cpu); 539 } 540 541 void resched_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 unsigned long flags; 545 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 547 return; 548 resched_task(cpu_curr(cpu)); 549 raw_spin_unlock_irqrestore(&rq->lock, flags); 550 } 551 552 #ifdef CONFIG_NO_HZ 553 /* 554 * In the semi idle case, use the nearest busy cpu for migrating timers 555 * from an idle cpu. This is good for power-savings. 556 * 557 * We don't do similar optimization for completely idle system, as 558 * selecting an idle cpu will add more delays to the timers than intended 559 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 560 */ 561 int get_nohz_timer_target(void) 562 { 563 int cpu = smp_processor_id(); 564 int i; 565 struct sched_domain *sd; 566 567 rcu_read_lock(); 568 for_each_domain(cpu, sd) { 569 for_each_cpu(i, sched_domain_span(sd)) { 570 if (!idle_cpu(i)) { 571 cpu = i; 572 goto unlock; 573 } 574 } 575 } 576 unlock: 577 rcu_read_unlock(); 578 return cpu; 579 } 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 /* 598 * This is safe, as this function is called with the timer 599 * wheel base lock of (cpu) held. When the CPU is on the way 600 * to idle and has not yet set rq->curr to idle then it will 601 * be serialized on the timer wheel base lock and take the new 602 * timer into account automatically. 603 */ 604 if (rq->curr != rq->idle) 605 return; 606 607 /* 608 * We can set TIF_RESCHED on the idle task of the other CPU 609 * lockless. The worst case is that the other CPU runs the 610 * idle task through an additional NOOP schedule() 611 */ 612 set_tsk_need_resched(rq->idle); 613 614 /* NEED_RESCHED must be visible before we test polling */ 615 smp_mb(); 616 if (!tsk_is_polling(rq->idle)) 617 smp_send_reschedule(cpu); 618 } 619 620 static inline bool got_nohz_idle_kick(void) 621 { 622 int cpu = smp_processor_id(); 623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 624 } 625 626 #else /* CONFIG_NO_HZ */ 627 628 static inline bool got_nohz_idle_kick(void) 629 { 630 return false; 631 } 632 633 #endif /* CONFIG_NO_HZ */ 634 635 void sched_avg_update(struct rq *rq) 636 { 637 s64 period = sched_avg_period(); 638 639 while ((s64)(rq->clock - rq->age_stamp) > period) { 640 /* 641 * Inline assembly required to prevent the compiler 642 * optimising this loop into a divmod call. 643 * See __iter_div_u64_rem() for another example of this. 644 */ 645 asm("" : "+rm" (rq->age_stamp)); 646 rq->age_stamp += period; 647 rq->rt_avg /= 2; 648 } 649 } 650 651 #else /* !CONFIG_SMP */ 652 void resched_task(struct task_struct *p) 653 { 654 assert_raw_spin_locked(&task_rq(p)->lock); 655 set_tsk_need_resched(p); 656 } 657 #endif /* CONFIG_SMP */ 658 659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 661 /* 662 * Iterate task_group tree rooted at *from, calling @down when first entering a 663 * node and @up when leaving it for the final time. 664 * 665 * Caller must hold rcu_lock or sufficient equivalent. 666 */ 667 int walk_tg_tree_from(struct task_group *from, 668 tg_visitor down, tg_visitor up, void *data) 669 { 670 struct task_group *parent, *child; 671 int ret; 672 673 parent = from; 674 675 down: 676 ret = (*down)(parent, data); 677 if (ret) 678 goto out; 679 list_for_each_entry_rcu(child, &parent->children, siblings) { 680 parent = child; 681 goto down; 682 683 up: 684 continue; 685 } 686 ret = (*up)(parent, data); 687 if (ret || parent == from) 688 goto out; 689 690 child = parent; 691 parent = parent->parent; 692 if (parent) 693 goto up; 694 out: 695 return ret; 696 } 697 698 int tg_nop(struct task_group *tg, void *data) 699 { 700 return 0; 701 } 702 #endif 703 704 static void set_load_weight(struct task_struct *p) 705 { 706 int prio = p->static_prio - MAX_RT_PRIO; 707 struct load_weight *load = &p->se.load; 708 709 /* 710 * SCHED_IDLE tasks get minimal weight: 711 */ 712 if (p->policy == SCHED_IDLE) { 713 load->weight = scale_load(WEIGHT_IDLEPRIO); 714 load->inv_weight = WMULT_IDLEPRIO; 715 return; 716 } 717 718 load->weight = scale_load(prio_to_weight[prio]); 719 load->inv_weight = prio_to_wmult[prio]; 720 } 721 722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 723 { 724 update_rq_clock(rq); 725 sched_info_queued(p); 726 p->sched_class->enqueue_task(rq, p, flags); 727 } 728 729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 730 { 731 update_rq_clock(rq); 732 sched_info_dequeued(p); 733 p->sched_class->dequeue_task(rq, p, flags); 734 } 735 736 void activate_task(struct rq *rq, struct task_struct *p, int flags) 737 { 738 if (task_contributes_to_load(p)) 739 rq->nr_uninterruptible--; 740 741 enqueue_task(rq, p, flags); 742 } 743 744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 745 { 746 if (task_contributes_to_load(p)) 747 rq->nr_uninterruptible++; 748 749 dequeue_task(rq, p, flags); 750 } 751 752 static void update_rq_clock_task(struct rq *rq, s64 delta) 753 { 754 /* 755 * In theory, the compile should just see 0 here, and optimize out the call 756 * to sched_rt_avg_update. But I don't trust it... 757 */ 758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 759 s64 steal = 0, irq_delta = 0; 760 #endif 761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 763 764 /* 765 * Since irq_time is only updated on {soft,}irq_exit, we might run into 766 * this case when a previous update_rq_clock() happened inside a 767 * {soft,}irq region. 768 * 769 * When this happens, we stop ->clock_task and only update the 770 * prev_irq_time stamp to account for the part that fit, so that a next 771 * update will consume the rest. This ensures ->clock_task is 772 * monotonic. 773 * 774 * It does however cause some slight miss-attribution of {soft,}irq 775 * time, a more accurate solution would be to update the irq_time using 776 * the current rq->clock timestamp, except that would require using 777 * atomic ops. 778 */ 779 if (irq_delta > delta) 780 irq_delta = delta; 781 782 rq->prev_irq_time += irq_delta; 783 delta -= irq_delta; 784 #endif 785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 786 if (static_key_false((¶virt_steal_rq_enabled))) { 787 u64 st; 788 789 steal = paravirt_steal_clock(cpu_of(rq)); 790 steal -= rq->prev_steal_time_rq; 791 792 if (unlikely(steal > delta)) 793 steal = delta; 794 795 st = steal_ticks(steal); 796 steal = st * TICK_NSEC; 797 798 rq->prev_steal_time_rq += steal; 799 800 delta -= steal; 801 } 802 #endif 803 804 rq->clock_task += delta; 805 806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 808 sched_rt_avg_update(rq, irq_delta + steal); 809 #endif 810 } 811 812 void sched_set_stop_task(int cpu, struct task_struct *stop) 813 { 814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 815 struct task_struct *old_stop = cpu_rq(cpu)->stop; 816 817 if (stop) { 818 /* 819 * Make it appear like a SCHED_FIFO task, its something 820 * userspace knows about and won't get confused about. 821 * 822 * Also, it will make PI more or less work without too 823 * much confusion -- but then, stop work should not 824 * rely on PI working anyway. 825 */ 826 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 827 828 stop->sched_class = &stop_sched_class; 829 } 830 831 cpu_rq(cpu)->stop = stop; 832 833 if (old_stop) { 834 /* 835 * Reset it back to a normal scheduling class so that 836 * it can die in pieces. 837 */ 838 old_stop->sched_class = &rt_sched_class; 839 } 840 } 841 842 /* 843 * __normal_prio - return the priority that is based on the static prio 844 */ 845 static inline int __normal_prio(struct task_struct *p) 846 { 847 return p->static_prio; 848 } 849 850 /* 851 * Calculate the expected normal priority: i.e. priority 852 * without taking RT-inheritance into account. Might be 853 * boosted by interactivity modifiers. Changes upon fork, 854 * setprio syscalls, and whenever the interactivity 855 * estimator recalculates. 856 */ 857 static inline int normal_prio(struct task_struct *p) 858 { 859 int prio; 860 861 if (task_has_rt_policy(p)) 862 prio = MAX_RT_PRIO-1 - p->rt_priority; 863 else 864 prio = __normal_prio(p); 865 return prio; 866 } 867 868 /* 869 * Calculate the current priority, i.e. the priority 870 * taken into account by the scheduler. This value might 871 * be boosted by RT tasks, or might be boosted by 872 * interactivity modifiers. Will be RT if the task got 873 * RT-boosted. If not then it returns p->normal_prio. 874 */ 875 static int effective_prio(struct task_struct *p) 876 { 877 p->normal_prio = normal_prio(p); 878 /* 879 * If we are RT tasks or we were boosted to RT priority, 880 * keep the priority unchanged. Otherwise, update priority 881 * to the normal priority: 882 */ 883 if (!rt_prio(p->prio)) 884 return p->normal_prio; 885 return p->prio; 886 } 887 888 /** 889 * task_curr - is this task currently executing on a CPU? 890 * @p: the task in question. 891 */ 892 inline int task_curr(const struct task_struct *p) 893 { 894 return cpu_curr(task_cpu(p)) == p; 895 } 896 897 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 898 const struct sched_class *prev_class, 899 int oldprio) 900 { 901 if (prev_class != p->sched_class) { 902 if (prev_class->switched_from) 903 prev_class->switched_from(rq, p); 904 p->sched_class->switched_to(rq, p); 905 } else if (oldprio != p->prio) 906 p->sched_class->prio_changed(rq, p, oldprio); 907 } 908 909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 910 { 911 const struct sched_class *class; 912 913 if (p->sched_class == rq->curr->sched_class) { 914 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 915 } else { 916 for_each_class(class) { 917 if (class == rq->curr->sched_class) 918 break; 919 if (class == p->sched_class) { 920 resched_task(rq->curr); 921 break; 922 } 923 } 924 } 925 926 /* 927 * A queue event has occurred, and we're going to schedule. In 928 * this case, we can save a useless back to back clock update. 929 */ 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 931 rq->skip_clock_update = 1; 932 } 933 934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier); 935 936 void register_task_migration_notifier(struct notifier_block *n) 937 { 938 atomic_notifier_chain_register(&task_migration_notifier, n); 939 } 940 941 #ifdef CONFIG_SMP 942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 943 { 944 #ifdef CONFIG_SCHED_DEBUG 945 /* 946 * We should never call set_task_cpu() on a blocked task, 947 * ttwu() will sort out the placement. 948 */ 949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 951 952 #ifdef CONFIG_LOCKDEP 953 /* 954 * The caller should hold either p->pi_lock or rq->lock, when changing 955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 956 * 957 * sched_move_task() holds both and thus holding either pins the cgroup, 958 * see task_group(). 959 * 960 * Furthermore, all task_rq users should acquire both locks, see 961 * task_rq_lock(). 962 */ 963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 964 lockdep_is_held(&task_rq(p)->lock))); 965 #endif 966 #endif 967 968 trace_sched_migrate_task(p, new_cpu); 969 970 if (task_cpu(p) != new_cpu) { 971 struct task_migration_notifier tmn; 972 973 if (p->sched_class->migrate_task_rq) 974 p->sched_class->migrate_task_rq(p, new_cpu); 975 p->se.nr_migrations++; 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 977 978 tmn.task = p; 979 tmn.from_cpu = task_cpu(p); 980 tmn.to_cpu = new_cpu; 981 982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn); 983 } 984 985 __set_task_cpu(p, new_cpu); 986 } 987 988 struct migration_arg { 989 struct task_struct *task; 990 int dest_cpu; 991 }; 992 993 static int migration_cpu_stop(void *data); 994 995 /* 996 * wait_task_inactive - wait for a thread to unschedule. 997 * 998 * If @match_state is nonzero, it's the @p->state value just checked and 999 * not expected to change. If it changes, i.e. @p might have woken up, 1000 * then return zero. When we succeed in waiting for @p to be off its CPU, 1001 * we return a positive number (its total switch count). If a second call 1002 * a short while later returns the same number, the caller can be sure that 1003 * @p has remained unscheduled the whole time. 1004 * 1005 * The caller must ensure that the task *will* unschedule sometime soon, 1006 * else this function might spin for a *long* time. This function can't 1007 * be called with interrupts off, or it may introduce deadlock with 1008 * smp_call_function() if an IPI is sent by the same process we are 1009 * waiting to become inactive. 1010 */ 1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1012 { 1013 unsigned long flags; 1014 int running, on_rq; 1015 unsigned long ncsw; 1016 struct rq *rq; 1017 1018 for (;;) { 1019 /* 1020 * We do the initial early heuristics without holding 1021 * any task-queue locks at all. We'll only try to get 1022 * the runqueue lock when things look like they will 1023 * work out! 1024 */ 1025 rq = task_rq(p); 1026 1027 /* 1028 * If the task is actively running on another CPU 1029 * still, just relax and busy-wait without holding 1030 * any locks. 1031 * 1032 * NOTE! Since we don't hold any locks, it's not 1033 * even sure that "rq" stays as the right runqueue! 1034 * But we don't care, since "task_running()" will 1035 * return false if the runqueue has changed and p 1036 * is actually now running somewhere else! 1037 */ 1038 while (task_running(rq, p)) { 1039 if (match_state && unlikely(p->state != match_state)) 1040 return 0; 1041 cpu_relax(); 1042 } 1043 1044 /* 1045 * Ok, time to look more closely! We need the rq 1046 * lock now, to be *sure*. If we're wrong, we'll 1047 * just go back and repeat. 1048 */ 1049 rq = task_rq_lock(p, &flags); 1050 trace_sched_wait_task(p); 1051 running = task_running(rq, p); 1052 on_rq = p->on_rq; 1053 ncsw = 0; 1054 if (!match_state || p->state == match_state) 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1056 task_rq_unlock(rq, p, &flags); 1057 1058 /* 1059 * If it changed from the expected state, bail out now. 1060 */ 1061 if (unlikely(!ncsw)) 1062 break; 1063 1064 /* 1065 * Was it really running after all now that we 1066 * checked with the proper locks actually held? 1067 * 1068 * Oops. Go back and try again.. 1069 */ 1070 if (unlikely(running)) { 1071 cpu_relax(); 1072 continue; 1073 } 1074 1075 /* 1076 * It's not enough that it's not actively running, 1077 * it must be off the runqueue _entirely_, and not 1078 * preempted! 1079 * 1080 * So if it was still runnable (but just not actively 1081 * running right now), it's preempted, and we should 1082 * yield - it could be a while. 1083 */ 1084 if (unlikely(on_rq)) { 1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1086 1087 set_current_state(TASK_UNINTERRUPTIBLE); 1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1089 continue; 1090 } 1091 1092 /* 1093 * Ahh, all good. It wasn't running, and it wasn't 1094 * runnable, which means that it will never become 1095 * running in the future either. We're all done! 1096 */ 1097 break; 1098 } 1099 1100 return ncsw; 1101 } 1102 1103 /*** 1104 * kick_process - kick a running thread to enter/exit the kernel 1105 * @p: the to-be-kicked thread 1106 * 1107 * Cause a process which is running on another CPU to enter 1108 * kernel-mode, without any delay. (to get signals handled.) 1109 * 1110 * NOTE: this function doesn't have to take the runqueue lock, 1111 * because all it wants to ensure is that the remote task enters 1112 * the kernel. If the IPI races and the task has been migrated 1113 * to another CPU then no harm is done and the purpose has been 1114 * achieved as well. 1115 */ 1116 void kick_process(struct task_struct *p) 1117 { 1118 int cpu; 1119 1120 preempt_disable(); 1121 cpu = task_cpu(p); 1122 if ((cpu != smp_processor_id()) && task_curr(p)) 1123 smp_send_reschedule(cpu); 1124 preempt_enable(); 1125 } 1126 EXPORT_SYMBOL_GPL(kick_process); 1127 #endif /* CONFIG_SMP */ 1128 1129 #ifdef CONFIG_SMP 1130 /* 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1132 */ 1133 static int select_fallback_rq(int cpu, struct task_struct *p) 1134 { 1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1136 enum { cpuset, possible, fail } state = cpuset; 1137 int dest_cpu; 1138 1139 /* Look for allowed, online CPU in same node. */ 1140 for_each_cpu(dest_cpu, nodemask) { 1141 if (!cpu_online(dest_cpu)) 1142 continue; 1143 if (!cpu_active(dest_cpu)) 1144 continue; 1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1146 return dest_cpu; 1147 } 1148 1149 for (;;) { 1150 /* Any allowed, online CPU? */ 1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1152 if (!cpu_online(dest_cpu)) 1153 continue; 1154 if (!cpu_active(dest_cpu)) 1155 continue; 1156 goto out; 1157 } 1158 1159 switch (state) { 1160 case cpuset: 1161 /* No more Mr. Nice Guy. */ 1162 cpuset_cpus_allowed_fallback(p); 1163 state = possible; 1164 break; 1165 1166 case possible: 1167 do_set_cpus_allowed(p, cpu_possible_mask); 1168 state = fail; 1169 break; 1170 1171 case fail: 1172 BUG(); 1173 break; 1174 } 1175 } 1176 1177 out: 1178 if (state != cpuset) { 1179 /* 1180 * Don't tell them about moving exiting tasks or 1181 * kernel threads (both mm NULL), since they never 1182 * leave kernel. 1183 */ 1184 if (p->mm && printk_ratelimit()) { 1185 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1186 task_pid_nr(p), p->comm, cpu); 1187 } 1188 } 1189 1190 return dest_cpu; 1191 } 1192 1193 /* 1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1195 */ 1196 static inline 1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1198 { 1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1200 1201 /* 1202 * In order not to call set_task_cpu() on a blocking task we need 1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1204 * cpu. 1205 * 1206 * Since this is common to all placement strategies, this lives here. 1207 * 1208 * [ this allows ->select_task() to simply return task_cpu(p) and 1209 * not worry about this generic constraint ] 1210 */ 1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1212 !cpu_online(cpu))) 1213 cpu = select_fallback_rq(task_cpu(p), p); 1214 1215 return cpu; 1216 } 1217 1218 static void update_avg(u64 *avg, u64 sample) 1219 { 1220 s64 diff = sample - *avg; 1221 *avg += diff >> 3; 1222 } 1223 #endif 1224 1225 static void 1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1227 { 1228 #ifdef CONFIG_SCHEDSTATS 1229 struct rq *rq = this_rq(); 1230 1231 #ifdef CONFIG_SMP 1232 int this_cpu = smp_processor_id(); 1233 1234 if (cpu == this_cpu) { 1235 schedstat_inc(rq, ttwu_local); 1236 schedstat_inc(p, se.statistics.nr_wakeups_local); 1237 } else { 1238 struct sched_domain *sd; 1239 1240 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1241 rcu_read_lock(); 1242 for_each_domain(this_cpu, sd) { 1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1244 schedstat_inc(sd, ttwu_wake_remote); 1245 break; 1246 } 1247 } 1248 rcu_read_unlock(); 1249 } 1250 1251 if (wake_flags & WF_MIGRATED) 1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1253 1254 #endif /* CONFIG_SMP */ 1255 1256 schedstat_inc(rq, ttwu_count); 1257 schedstat_inc(p, se.statistics.nr_wakeups); 1258 1259 if (wake_flags & WF_SYNC) 1260 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1261 1262 #endif /* CONFIG_SCHEDSTATS */ 1263 } 1264 1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1266 { 1267 activate_task(rq, p, en_flags); 1268 p->on_rq = 1; 1269 1270 /* if a worker is waking up, notify workqueue */ 1271 if (p->flags & PF_WQ_WORKER) 1272 wq_worker_waking_up(p, cpu_of(rq)); 1273 } 1274 1275 /* 1276 * Mark the task runnable and perform wakeup-preemption. 1277 */ 1278 static void 1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1280 { 1281 trace_sched_wakeup(p, true); 1282 check_preempt_curr(rq, p, wake_flags); 1283 1284 p->state = TASK_RUNNING; 1285 #ifdef CONFIG_SMP 1286 if (p->sched_class->task_woken) 1287 p->sched_class->task_woken(rq, p); 1288 1289 if (rq->idle_stamp) { 1290 u64 delta = rq->clock - rq->idle_stamp; 1291 u64 max = 2*sysctl_sched_migration_cost; 1292 1293 if (delta > max) 1294 rq->avg_idle = max; 1295 else 1296 update_avg(&rq->avg_idle, delta); 1297 rq->idle_stamp = 0; 1298 } 1299 #endif 1300 } 1301 1302 static void 1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1304 { 1305 #ifdef CONFIG_SMP 1306 if (p->sched_contributes_to_load) 1307 rq->nr_uninterruptible--; 1308 #endif 1309 1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1311 ttwu_do_wakeup(rq, p, wake_flags); 1312 } 1313 1314 /* 1315 * Called in case the task @p isn't fully descheduled from its runqueue, 1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1317 * since all we need to do is flip p->state to TASK_RUNNING, since 1318 * the task is still ->on_rq. 1319 */ 1320 static int ttwu_remote(struct task_struct *p, int wake_flags) 1321 { 1322 struct rq *rq; 1323 int ret = 0; 1324 1325 rq = __task_rq_lock(p); 1326 if (p->on_rq) { 1327 ttwu_do_wakeup(rq, p, wake_flags); 1328 ret = 1; 1329 } 1330 __task_rq_unlock(rq); 1331 1332 return ret; 1333 } 1334 1335 #ifdef CONFIG_SMP 1336 static void sched_ttwu_pending(void) 1337 { 1338 struct rq *rq = this_rq(); 1339 struct llist_node *llist = llist_del_all(&rq->wake_list); 1340 struct task_struct *p; 1341 1342 raw_spin_lock(&rq->lock); 1343 1344 while (llist) { 1345 p = llist_entry(llist, struct task_struct, wake_entry); 1346 llist = llist_next(llist); 1347 ttwu_do_activate(rq, p, 0); 1348 } 1349 1350 raw_spin_unlock(&rq->lock); 1351 } 1352 1353 void scheduler_ipi(void) 1354 { 1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1356 return; 1357 1358 /* 1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1360 * traditionally all their work was done from the interrupt return 1361 * path. Now that we actually do some work, we need to make sure 1362 * we do call them. 1363 * 1364 * Some archs already do call them, luckily irq_enter/exit nest 1365 * properly. 1366 * 1367 * Arguably we should visit all archs and update all handlers, 1368 * however a fair share of IPIs are still resched only so this would 1369 * somewhat pessimize the simple resched case. 1370 */ 1371 irq_enter(); 1372 sched_ttwu_pending(); 1373 1374 /* 1375 * Check if someone kicked us for doing the nohz idle load balance. 1376 */ 1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1378 this_rq()->idle_balance = 1; 1379 raise_softirq_irqoff(SCHED_SOFTIRQ); 1380 } 1381 irq_exit(); 1382 } 1383 1384 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1385 { 1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1387 smp_send_reschedule(cpu); 1388 } 1389 1390 bool cpus_share_cache(int this_cpu, int that_cpu) 1391 { 1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1393 } 1394 #endif /* CONFIG_SMP */ 1395 1396 static void ttwu_queue(struct task_struct *p, int cpu) 1397 { 1398 struct rq *rq = cpu_rq(cpu); 1399 1400 #if defined(CONFIG_SMP) 1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1403 ttwu_queue_remote(p, cpu); 1404 return; 1405 } 1406 #endif 1407 1408 raw_spin_lock(&rq->lock); 1409 ttwu_do_activate(rq, p, 0); 1410 raw_spin_unlock(&rq->lock); 1411 } 1412 1413 /** 1414 * try_to_wake_up - wake up a thread 1415 * @p: the thread to be awakened 1416 * @state: the mask of task states that can be woken 1417 * @wake_flags: wake modifier flags (WF_*) 1418 * 1419 * Put it on the run-queue if it's not already there. The "current" 1420 * thread is always on the run-queue (except when the actual 1421 * re-schedule is in progress), and as such you're allowed to do 1422 * the simpler "current->state = TASK_RUNNING" to mark yourself 1423 * runnable without the overhead of this. 1424 * 1425 * Returns %true if @p was woken up, %false if it was already running 1426 * or @state didn't match @p's state. 1427 */ 1428 static int 1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1430 { 1431 unsigned long flags; 1432 int cpu, success = 0; 1433 1434 smp_wmb(); 1435 raw_spin_lock_irqsave(&p->pi_lock, flags); 1436 if (!(p->state & state)) 1437 goto out; 1438 1439 success = 1; /* we're going to change ->state */ 1440 cpu = task_cpu(p); 1441 1442 if (p->on_rq && ttwu_remote(p, wake_flags)) 1443 goto stat; 1444 1445 #ifdef CONFIG_SMP 1446 /* 1447 * If the owning (remote) cpu is still in the middle of schedule() with 1448 * this task as prev, wait until its done referencing the task. 1449 */ 1450 while (p->on_cpu) 1451 cpu_relax(); 1452 /* 1453 * Pairs with the smp_wmb() in finish_lock_switch(). 1454 */ 1455 smp_rmb(); 1456 1457 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1458 p->state = TASK_WAKING; 1459 1460 if (p->sched_class->task_waking) 1461 p->sched_class->task_waking(p); 1462 1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1464 if (task_cpu(p) != cpu) { 1465 wake_flags |= WF_MIGRATED; 1466 set_task_cpu(p, cpu); 1467 } 1468 #endif /* CONFIG_SMP */ 1469 1470 ttwu_queue(p, cpu); 1471 stat: 1472 ttwu_stat(p, cpu, wake_flags); 1473 out: 1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1475 1476 return success; 1477 } 1478 1479 /** 1480 * try_to_wake_up_local - try to wake up a local task with rq lock held 1481 * @p: the thread to be awakened 1482 * 1483 * Put @p on the run-queue if it's not already there. The caller must 1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1485 * the current task. 1486 */ 1487 static void try_to_wake_up_local(struct task_struct *p) 1488 { 1489 struct rq *rq = task_rq(p); 1490 1491 BUG_ON(rq != this_rq()); 1492 BUG_ON(p == current); 1493 lockdep_assert_held(&rq->lock); 1494 1495 if (!raw_spin_trylock(&p->pi_lock)) { 1496 raw_spin_unlock(&rq->lock); 1497 raw_spin_lock(&p->pi_lock); 1498 raw_spin_lock(&rq->lock); 1499 } 1500 1501 if (!(p->state & TASK_NORMAL)) 1502 goto out; 1503 1504 if (!p->on_rq) 1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1506 1507 ttwu_do_wakeup(rq, p, 0); 1508 ttwu_stat(p, smp_processor_id(), 0); 1509 out: 1510 raw_spin_unlock(&p->pi_lock); 1511 } 1512 1513 /** 1514 * wake_up_process - Wake up a specific process 1515 * @p: The process to be woken up. 1516 * 1517 * Attempt to wake up the nominated process and move it to the set of runnable 1518 * processes. Returns 1 if the process was woken up, 0 if it was already 1519 * running. 1520 * 1521 * It may be assumed that this function implies a write memory barrier before 1522 * changing the task state if and only if any tasks are woken up. 1523 */ 1524 int wake_up_process(struct task_struct *p) 1525 { 1526 WARN_ON(task_is_stopped_or_traced(p)); 1527 return try_to_wake_up(p, TASK_NORMAL, 0); 1528 } 1529 EXPORT_SYMBOL(wake_up_process); 1530 1531 int wake_up_state(struct task_struct *p, unsigned int state) 1532 { 1533 return try_to_wake_up(p, state, 0); 1534 } 1535 1536 /* 1537 * Perform scheduler related setup for a newly forked process p. 1538 * p is forked by current. 1539 * 1540 * __sched_fork() is basic setup used by init_idle() too: 1541 */ 1542 static void __sched_fork(struct task_struct *p) 1543 { 1544 p->on_rq = 0; 1545 1546 p->se.on_rq = 0; 1547 p->se.exec_start = 0; 1548 p->se.sum_exec_runtime = 0; 1549 p->se.prev_sum_exec_runtime = 0; 1550 p->se.nr_migrations = 0; 1551 p->se.vruntime = 0; 1552 INIT_LIST_HEAD(&p->se.group_node); 1553 1554 /* 1555 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1556 * removed when useful for applications beyond shares distribution (e.g. 1557 * load-balance). 1558 */ 1559 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1560 p->se.avg.runnable_avg_period = 0; 1561 p->se.avg.runnable_avg_sum = 0; 1562 #endif 1563 #ifdef CONFIG_SCHEDSTATS 1564 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1565 #endif 1566 1567 INIT_LIST_HEAD(&p->rt.run_list); 1568 1569 #ifdef CONFIG_PREEMPT_NOTIFIERS 1570 INIT_HLIST_HEAD(&p->preempt_notifiers); 1571 #endif 1572 1573 #ifdef CONFIG_NUMA_BALANCING 1574 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1575 p->mm->numa_next_scan = jiffies; 1576 p->mm->numa_next_reset = jiffies; 1577 p->mm->numa_scan_seq = 0; 1578 } 1579 1580 p->node_stamp = 0ULL; 1581 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1582 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; 1583 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1584 p->numa_work.next = &p->numa_work; 1585 #endif /* CONFIG_NUMA_BALANCING */ 1586 } 1587 1588 #ifdef CONFIG_NUMA_BALANCING 1589 #ifdef CONFIG_SCHED_DEBUG 1590 void set_numabalancing_state(bool enabled) 1591 { 1592 if (enabled) 1593 sched_feat_set("NUMA"); 1594 else 1595 sched_feat_set("NO_NUMA"); 1596 } 1597 #else 1598 __read_mostly bool numabalancing_enabled; 1599 1600 void set_numabalancing_state(bool enabled) 1601 { 1602 numabalancing_enabled = enabled; 1603 } 1604 #endif /* CONFIG_SCHED_DEBUG */ 1605 #endif /* CONFIG_NUMA_BALANCING */ 1606 1607 /* 1608 * fork()/clone()-time setup: 1609 */ 1610 void sched_fork(struct task_struct *p) 1611 { 1612 unsigned long flags; 1613 int cpu = get_cpu(); 1614 1615 __sched_fork(p); 1616 /* 1617 * We mark the process as running here. This guarantees that 1618 * nobody will actually run it, and a signal or other external 1619 * event cannot wake it up and insert it on the runqueue either. 1620 */ 1621 p->state = TASK_RUNNING; 1622 1623 /* 1624 * Make sure we do not leak PI boosting priority to the child. 1625 */ 1626 p->prio = current->normal_prio; 1627 1628 /* 1629 * Revert to default priority/policy on fork if requested. 1630 */ 1631 if (unlikely(p->sched_reset_on_fork)) { 1632 if (task_has_rt_policy(p)) { 1633 p->policy = SCHED_NORMAL; 1634 p->static_prio = NICE_TO_PRIO(0); 1635 p->rt_priority = 0; 1636 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1637 p->static_prio = NICE_TO_PRIO(0); 1638 1639 p->prio = p->normal_prio = __normal_prio(p); 1640 set_load_weight(p); 1641 1642 /* 1643 * We don't need the reset flag anymore after the fork. It has 1644 * fulfilled its duty: 1645 */ 1646 p->sched_reset_on_fork = 0; 1647 } 1648 1649 if (!rt_prio(p->prio)) 1650 p->sched_class = &fair_sched_class; 1651 1652 if (p->sched_class->task_fork) 1653 p->sched_class->task_fork(p); 1654 1655 /* 1656 * The child is not yet in the pid-hash so no cgroup attach races, 1657 * and the cgroup is pinned to this child due to cgroup_fork() 1658 * is ran before sched_fork(). 1659 * 1660 * Silence PROVE_RCU. 1661 */ 1662 raw_spin_lock_irqsave(&p->pi_lock, flags); 1663 set_task_cpu(p, cpu); 1664 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1665 1666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1667 if (likely(sched_info_on())) 1668 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1669 #endif 1670 #if defined(CONFIG_SMP) 1671 p->on_cpu = 0; 1672 #endif 1673 #ifdef CONFIG_PREEMPT_COUNT 1674 /* Want to start with kernel preemption disabled. */ 1675 task_thread_info(p)->preempt_count = 1; 1676 #endif 1677 #ifdef CONFIG_SMP 1678 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1679 #endif 1680 1681 put_cpu(); 1682 } 1683 1684 /* 1685 * wake_up_new_task - wake up a newly created task for the first time. 1686 * 1687 * This function will do some initial scheduler statistics housekeeping 1688 * that must be done for every newly created context, then puts the task 1689 * on the runqueue and wakes it. 1690 */ 1691 void wake_up_new_task(struct task_struct *p) 1692 { 1693 unsigned long flags; 1694 struct rq *rq; 1695 1696 raw_spin_lock_irqsave(&p->pi_lock, flags); 1697 #ifdef CONFIG_SMP 1698 /* 1699 * Fork balancing, do it here and not earlier because: 1700 * - cpus_allowed can change in the fork path 1701 * - any previously selected cpu might disappear through hotplug 1702 */ 1703 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1704 #endif 1705 1706 rq = __task_rq_lock(p); 1707 activate_task(rq, p, 0); 1708 p->on_rq = 1; 1709 trace_sched_wakeup_new(p, true); 1710 check_preempt_curr(rq, p, WF_FORK); 1711 #ifdef CONFIG_SMP 1712 if (p->sched_class->task_woken) 1713 p->sched_class->task_woken(rq, p); 1714 #endif 1715 task_rq_unlock(rq, p, &flags); 1716 } 1717 1718 #ifdef CONFIG_PREEMPT_NOTIFIERS 1719 1720 /** 1721 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1722 * @notifier: notifier struct to register 1723 */ 1724 void preempt_notifier_register(struct preempt_notifier *notifier) 1725 { 1726 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1727 } 1728 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1729 1730 /** 1731 * preempt_notifier_unregister - no longer interested in preemption notifications 1732 * @notifier: notifier struct to unregister 1733 * 1734 * This is safe to call from within a preemption notifier. 1735 */ 1736 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1737 { 1738 hlist_del(¬ifier->link); 1739 } 1740 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1741 1742 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1743 { 1744 struct preempt_notifier *notifier; 1745 struct hlist_node *node; 1746 1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1748 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1749 } 1750 1751 static void 1752 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1753 struct task_struct *next) 1754 { 1755 struct preempt_notifier *notifier; 1756 struct hlist_node *node; 1757 1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1759 notifier->ops->sched_out(notifier, next); 1760 } 1761 1762 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1763 1764 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1765 { 1766 } 1767 1768 static void 1769 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1770 struct task_struct *next) 1771 { 1772 } 1773 1774 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1775 1776 /** 1777 * prepare_task_switch - prepare to switch tasks 1778 * @rq: the runqueue preparing to switch 1779 * @prev: the current task that is being switched out 1780 * @next: the task we are going to switch to. 1781 * 1782 * This is called with the rq lock held and interrupts off. It must 1783 * be paired with a subsequent finish_task_switch after the context 1784 * switch. 1785 * 1786 * prepare_task_switch sets up locking and calls architecture specific 1787 * hooks. 1788 */ 1789 static inline void 1790 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1791 struct task_struct *next) 1792 { 1793 trace_sched_switch(prev, next); 1794 sched_info_switch(prev, next); 1795 perf_event_task_sched_out(prev, next); 1796 fire_sched_out_preempt_notifiers(prev, next); 1797 prepare_lock_switch(rq, next); 1798 prepare_arch_switch(next); 1799 } 1800 1801 /** 1802 * finish_task_switch - clean up after a task-switch 1803 * @rq: runqueue associated with task-switch 1804 * @prev: the thread we just switched away from. 1805 * 1806 * finish_task_switch must be called after the context switch, paired 1807 * with a prepare_task_switch call before the context switch. 1808 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1809 * and do any other architecture-specific cleanup actions. 1810 * 1811 * Note that we may have delayed dropping an mm in context_switch(). If 1812 * so, we finish that here outside of the runqueue lock. (Doing it 1813 * with the lock held can cause deadlocks; see schedule() for 1814 * details.) 1815 */ 1816 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1817 __releases(rq->lock) 1818 { 1819 struct mm_struct *mm = rq->prev_mm; 1820 long prev_state; 1821 1822 rq->prev_mm = NULL; 1823 1824 /* 1825 * A task struct has one reference for the use as "current". 1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1827 * schedule one last time. The schedule call will never return, and 1828 * the scheduled task must drop that reference. 1829 * The test for TASK_DEAD must occur while the runqueue locks are 1830 * still held, otherwise prev could be scheduled on another cpu, die 1831 * there before we look at prev->state, and then the reference would 1832 * be dropped twice. 1833 * Manfred Spraul <manfred@colorfullife.com> 1834 */ 1835 prev_state = prev->state; 1836 vtime_task_switch(prev); 1837 finish_arch_switch(prev); 1838 perf_event_task_sched_in(prev, current); 1839 finish_lock_switch(rq, prev); 1840 finish_arch_post_lock_switch(); 1841 1842 fire_sched_in_preempt_notifiers(current); 1843 if (mm) 1844 mmdrop(mm); 1845 if (unlikely(prev_state == TASK_DEAD)) { 1846 /* 1847 * Remove function-return probe instances associated with this 1848 * task and put them back on the free list. 1849 */ 1850 kprobe_flush_task(prev); 1851 put_task_struct(prev); 1852 } 1853 } 1854 1855 #ifdef CONFIG_SMP 1856 1857 /* assumes rq->lock is held */ 1858 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1859 { 1860 if (prev->sched_class->pre_schedule) 1861 prev->sched_class->pre_schedule(rq, prev); 1862 } 1863 1864 /* rq->lock is NOT held, but preemption is disabled */ 1865 static inline void post_schedule(struct rq *rq) 1866 { 1867 if (rq->post_schedule) { 1868 unsigned long flags; 1869 1870 raw_spin_lock_irqsave(&rq->lock, flags); 1871 if (rq->curr->sched_class->post_schedule) 1872 rq->curr->sched_class->post_schedule(rq); 1873 raw_spin_unlock_irqrestore(&rq->lock, flags); 1874 1875 rq->post_schedule = 0; 1876 } 1877 } 1878 1879 #else 1880 1881 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1882 { 1883 } 1884 1885 static inline void post_schedule(struct rq *rq) 1886 { 1887 } 1888 1889 #endif 1890 1891 /** 1892 * schedule_tail - first thing a freshly forked thread must call. 1893 * @prev: the thread we just switched away from. 1894 */ 1895 asmlinkage void schedule_tail(struct task_struct *prev) 1896 __releases(rq->lock) 1897 { 1898 struct rq *rq = this_rq(); 1899 1900 finish_task_switch(rq, prev); 1901 1902 /* 1903 * FIXME: do we need to worry about rq being invalidated by the 1904 * task_switch? 1905 */ 1906 post_schedule(rq); 1907 1908 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1909 /* In this case, finish_task_switch does not reenable preemption */ 1910 preempt_enable(); 1911 #endif 1912 if (current->set_child_tid) 1913 put_user(task_pid_vnr(current), current->set_child_tid); 1914 } 1915 1916 /* 1917 * context_switch - switch to the new MM and the new 1918 * thread's register state. 1919 */ 1920 static inline void 1921 context_switch(struct rq *rq, struct task_struct *prev, 1922 struct task_struct *next) 1923 { 1924 struct mm_struct *mm, *oldmm; 1925 1926 prepare_task_switch(rq, prev, next); 1927 1928 mm = next->mm; 1929 oldmm = prev->active_mm; 1930 /* 1931 * For paravirt, this is coupled with an exit in switch_to to 1932 * combine the page table reload and the switch backend into 1933 * one hypercall. 1934 */ 1935 arch_start_context_switch(prev); 1936 1937 if (!mm) { 1938 next->active_mm = oldmm; 1939 atomic_inc(&oldmm->mm_count); 1940 enter_lazy_tlb(oldmm, next); 1941 } else 1942 switch_mm(oldmm, mm, next); 1943 1944 if (!prev->mm) { 1945 prev->active_mm = NULL; 1946 rq->prev_mm = oldmm; 1947 } 1948 /* 1949 * Since the runqueue lock will be released by the next 1950 * task (which is an invalid locking op but in the case 1951 * of the scheduler it's an obvious special-case), so we 1952 * do an early lockdep release here: 1953 */ 1954 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 1955 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 1956 #endif 1957 1958 context_tracking_task_switch(prev, next); 1959 /* Here we just switch the register state and the stack. */ 1960 switch_to(prev, next, prev); 1961 1962 barrier(); 1963 /* 1964 * this_rq must be evaluated again because prev may have moved 1965 * CPUs since it called schedule(), thus the 'rq' on its stack 1966 * frame will be invalid. 1967 */ 1968 finish_task_switch(this_rq(), prev); 1969 } 1970 1971 /* 1972 * nr_running, nr_uninterruptible and nr_context_switches: 1973 * 1974 * externally visible scheduler statistics: current number of runnable 1975 * threads, current number of uninterruptible-sleeping threads, total 1976 * number of context switches performed since bootup. 1977 */ 1978 unsigned long nr_running(void) 1979 { 1980 unsigned long i, sum = 0; 1981 1982 for_each_online_cpu(i) 1983 sum += cpu_rq(i)->nr_running; 1984 1985 return sum; 1986 } 1987 1988 unsigned long nr_uninterruptible(void) 1989 { 1990 unsigned long i, sum = 0; 1991 1992 for_each_possible_cpu(i) 1993 sum += cpu_rq(i)->nr_uninterruptible; 1994 1995 /* 1996 * Since we read the counters lockless, it might be slightly 1997 * inaccurate. Do not allow it to go below zero though: 1998 */ 1999 if (unlikely((long)sum < 0)) 2000 sum = 0; 2001 2002 return sum; 2003 } 2004 2005 unsigned long long nr_context_switches(void) 2006 { 2007 int i; 2008 unsigned long long sum = 0; 2009 2010 for_each_possible_cpu(i) 2011 sum += cpu_rq(i)->nr_switches; 2012 2013 return sum; 2014 } 2015 2016 unsigned long nr_iowait(void) 2017 { 2018 unsigned long i, sum = 0; 2019 2020 for_each_possible_cpu(i) 2021 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2022 2023 return sum; 2024 } 2025 2026 unsigned long nr_iowait_cpu(int cpu) 2027 { 2028 struct rq *this = cpu_rq(cpu); 2029 return atomic_read(&this->nr_iowait); 2030 } 2031 2032 unsigned long this_cpu_load(void) 2033 { 2034 struct rq *this = this_rq(); 2035 return this->cpu_load[0]; 2036 } 2037 2038 2039 /* 2040 * Global load-average calculations 2041 * 2042 * We take a distributed and async approach to calculating the global load-avg 2043 * in order to minimize overhead. 2044 * 2045 * The global load average is an exponentially decaying average of nr_running + 2046 * nr_uninterruptible. 2047 * 2048 * Once every LOAD_FREQ: 2049 * 2050 * nr_active = 0; 2051 * for_each_possible_cpu(cpu) 2052 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible; 2053 * 2054 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n) 2055 * 2056 * Due to a number of reasons the above turns in the mess below: 2057 * 2058 * - for_each_possible_cpu() is prohibitively expensive on machines with 2059 * serious number of cpus, therefore we need to take a distributed approach 2060 * to calculating nr_active. 2061 * 2062 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0 2063 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) } 2064 * 2065 * So assuming nr_active := 0 when we start out -- true per definition, we 2066 * can simply take per-cpu deltas and fold those into a global accumulate 2067 * to obtain the same result. See calc_load_fold_active(). 2068 * 2069 * Furthermore, in order to avoid synchronizing all per-cpu delta folding 2070 * across the machine, we assume 10 ticks is sufficient time for every 2071 * cpu to have completed this task. 2072 * 2073 * This places an upper-bound on the IRQ-off latency of the machine. Then 2074 * again, being late doesn't loose the delta, just wrecks the sample. 2075 * 2076 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because 2077 * this would add another cross-cpu cacheline miss and atomic operation 2078 * to the wakeup path. Instead we increment on whatever cpu the task ran 2079 * when it went into uninterruptible state and decrement on whatever cpu 2080 * did the wakeup. This means that only the sum of nr_uninterruptible over 2081 * all cpus yields the correct result. 2082 * 2083 * This covers the NO_HZ=n code, for extra head-aches, see the comment below. 2084 */ 2085 2086 /* Variables and functions for calc_load */ 2087 static atomic_long_t calc_load_tasks; 2088 static unsigned long calc_load_update; 2089 unsigned long avenrun[3]; 2090 EXPORT_SYMBOL(avenrun); /* should be removed */ 2091 2092 /** 2093 * get_avenrun - get the load average array 2094 * @loads: pointer to dest load array 2095 * @offset: offset to add 2096 * @shift: shift count to shift the result left 2097 * 2098 * These values are estimates at best, so no need for locking. 2099 */ 2100 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2101 { 2102 loads[0] = (avenrun[0] + offset) << shift; 2103 loads[1] = (avenrun[1] + offset) << shift; 2104 loads[2] = (avenrun[2] + offset) << shift; 2105 } 2106 2107 static long calc_load_fold_active(struct rq *this_rq) 2108 { 2109 long nr_active, delta = 0; 2110 2111 nr_active = this_rq->nr_running; 2112 nr_active += (long) this_rq->nr_uninterruptible; 2113 2114 if (nr_active != this_rq->calc_load_active) { 2115 delta = nr_active - this_rq->calc_load_active; 2116 this_rq->calc_load_active = nr_active; 2117 } 2118 2119 return delta; 2120 } 2121 2122 /* 2123 * a1 = a0 * e + a * (1 - e) 2124 */ 2125 static unsigned long 2126 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2127 { 2128 load *= exp; 2129 load += active * (FIXED_1 - exp); 2130 load += 1UL << (FSHIFT - 1); 2131 return load >> FSHIFT; 2132 } 2133 2134 #ifdef CONFIG_NO_HZ 2135 /* 2136 * Handle NO_HZ for the global load-average. 2137 * 2138 * Since the above described distributed algorithm to compute the global 2139 * load-average relies on per-cpu sampling from the tick, it is affected by 2140 * NO_HZ. 2141 * 2142 * The basic idea is to fold the nr_active delta into a global idle-delta upon 2143 * entering NO_HZ state such that we can include this as an 'extra' cpu delta 2144 * when we read the global state. 2145 * 2146 * Obviously reality has to ruin such a delightfully simple scheme: 2147 * 2148 * - When we go NO_HZ idle during the window, we can negate our sample 2149 * contribution, causing under-accounting. 2150 * 2151 * We avoid this by keeping two idle-delta counters and flipping them 2152 * when the window starts, thus separating old and new NO_HZ load. 2153 * 2154 * The only trick is the slight shift in index flip for read vs write. 2155 * 2156 * 0s 5s 10s 15s 2157 * +10 +10 +10 +10 2158 * |-|-----------|-|-----------|-|-----------|-| 2159 * r:0 0 1 1 0 0 1 1 0 2160 * w:0 1 1 0 0 1 1 0 0 2161 * 2162 * This ensures we'll fold the old idle contribution in this window while 2163 * accumlating the new one. 2164 * 2165 * - When we wake up from NO_HZ idle during the window, we push up our 2166 * contribution, since we effectively move our sample point to a known 2167 * busy state. 2168 * 2169 * This is solved by pushing the window forward, and thus skipping the 2170 * sample, for this cpu (effectively using the idle-delta for this cpu which 2171 * was in effect at the time the window opened). This also solves the issue 2172 * of having to deal with a cpu having been in NOHZ idle for multiple 2173 * LOAD_FREQ intervals. 2174 * 2175 * When making the ILB scale, we should try to pull this in as well. 2176 */ 2177 static atomic_long_t calc_load_idle[2]; 2178 static int calc_load_idx; 2179 2180 static inline int calc_load_write_idx(void) 2181 { 2182 int idx = calc_load_idx; 2183 2184 /* 2185 * See calc_global_nohz(), if we observe the new index, we also 2186 * need to observe the new update time. 2187 */ 2188 smp_rmb(); 2189 2190 /* 2191 * If the folding window started, make sure we start writing in the 2192 * next idle-delta. 2193 */ 2194 if (!time_before(jiffies, calc_load_update)) 2195 idx++; 2196 2197 return idx & 1; 2198 } 2199 2200 static inline int calc_load_read_idx(void) 2201 { 2202 return calc_load_idx & 1; 2203 } 2204 2205 void calc_load_enter_idle(void) 2206 { 2207 struct rq *this_rq = this_rq(); 2208 long delta; 2209 2210 /* 2211 * We're going into NOHZ mode, if there's any pending delta, fold it 2212 * into the pending idle delta. 2213 */ 2214 delta = calc_load_fold_active(this_rq); 2215 if (delta) { 2216 int idx = calc_load_write_idx(); 2217 atomic_long_add(delta, &calc_load_idle[idx]); 2218 } 2219 } 2220 2221 void calc_load_exit_idle(void) 2222 { 2223 struct rq *this_rq = this_rq(); 2224 2225 /* 2226 * If we're still before the sample window, we're done. 2227 */ 2228 if (time_before(jiffies, this_rq->calc_load_update)) 2229 return; 2230 2231 /* 2232 * We woke inside or after the sample window, this means we're already 2233 * accounted through the nohz accounting, so skip the entire deal and 2234 * sync up for the next window. 2235 */ 2236 this_rq->calc_load_update = calc_load_update; 2237 if (time_before(jiffies, this_rq->calc_load_update + 10)) 2238 this_rq->calc_load_update += LOAD_FREQ; 2239 } 2240 2241 static long calc_load_fold_idle(void) 2242 { 2243 int idx = calc_load_read_idx(); 2244 long delta = 0; 2245 2246 if (atomic_long_read(&calc_load_idle[idx])) 2247 delta = atomic_long_xchg(&calc_load_idle[idx], 0); 2248 2249 return delta; 2250 } 2251 2252 /** 2253 * fixed_power_int - compute: x^n, in O(log n) time 2254 * 2255 * @x: base of the power 2256 * @frac_bits: fractional bits of @x 2257 * @n: power to raise @x to. 2258 * 2259 * By exploiting the relation between the definition of the natural power 2260 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2261 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2262 * (where: n_i \elem {0, 1}, the binary vector representing n), 2263 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2264 * of course trivially computable in O(log_2 n), the length of our binary 2265 * vector. 2266 */ 2267 static unsigned long 2268 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2269 { 2270 unsigned long result = 1UL << frac_bits; 2271 2272 if (n) for (;;) { 2273 if (n & 1) { 2274 result *= x; 2275 result += 1UL << (frac_bits - 1); 2276 result >>= frac_bits; 2277 } 2278 n >>= 1; 2279 if (!n) 2280 break; 2281 x *= x; 2282 x += 1UL << (frac_bits - 1); 2283 x >>= frac_bits; 2284 } 2285 2286 return result; 2287 } 2288 2289 /* 2290 * a1 = a0 * e + a * (1 - e) 2291 * 2292 * a2 = a1 * e + a * (1 - e) 2293 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2294 * = a0 * e^2 + a * (1 - e) * (1 + e) 2295 * 2296 * a3 = a2 * e + a * (1 - e) 2297 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2298 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2299 * 2300 * ... 2301 * 2302 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2303 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2304 * = a0 * e^n + a * (1 - e^n) 2305 * 2306 * [1] application of the geometric series: 2307 * 2308 * n 1 - x^(n+1) 2309 * S_n := \Sum x^i = ------------- 2310 * i=0 1 - x 2311 */ 2312 static unsigned long 2313 calc_load_n(unsigned long load, unsigned long exp, 2314 unsigned long active, unsigned int n) 2315 { 2316 2317 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2318 } 2319 2320 /* 2321 * NO_HZ can leave us missing all per-cpu ticks calling 2322 * calc_load_account_active(), but since an idle CPU folds its delta into 2323 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2324 * in the pending idle delta if our idle period crossed a load cycle boundary. 2325 * 2326 * Once we've updated the global active value, we need to apply the exponential 2327 * weights adjusted to the number of cycles missed. 2328 */ 2329 static void calc_global_nohz(void) 2330 { 2331 long delta, active, n; 2332 2333 if (!time_before(jiffies, calc_load_update + 10)) { 2334 /* 2335 * Catch-up, fold however many we are behind still 2336 */ 2337 delta = jiffies - calc_load_update - 10; 2338 n = 1 + (delta / LOAD_FREQ); 2339 2340 active = atomic_long_read(&calc_load_tasks); 2341 active = active > 0 ? active * FIXED_1 : 0; 2342 2343 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2344 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2345 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2346 2347 calc_load_update += n * LOAD_FREQ; 2348 } 2349 2350 /* 2351 * Flip the idle index... 2352 * 2353 * Make sure we first write the new time then flip the index, so that 2354 * calc_load_write_idx() will see the new time when it reads the new 2355 * index, this avoids a double flip messing things up. 2356 */ 2357 smp_wmb(); 2358 calc_load_idx++; 2359 } 2360 #else /* !CONFIG_NO_HZ */ 2361 2362 static inline long calc_load_fold_idle(void) { return 0; } 2363 static inline void calc_global_nohz(void) { } 2364 2365 #endif /* CONFIG_NO_HZ */ 2366 2367 /* 2368 * calc_load - update the avenrun load estimates 10 ticks after the 2369 * CPUs have updated calc_load_tasks. 2370 */ 2371 void calc_global_load(unsigned long ticks) 2372 { 2373 long active, delta; 2374 2375 if (time_before(jiffies, calc_load_update + 10)) 2376 return; 2377 2378 /* 2379 * Fold the 'old' idle-delta to include all NO_HZ cpus. 2380 */ 2381 delta = calc_load_fold_idle(); 2382 if (delta) 2383 atomic_long_add(delta, &calc_load_tasks); 2384 2385 active = atomic_long_read(&calc_load_tasks); 2386 active = active > 0 ? active * FIXED_1 : 0; 2387 2388 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2389 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2390 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2391 2392 calc_load_update += LOAD_FREQ; 2393 2394 /* 2395 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. 2396 */ 2397 calc_global_nohz(); 2398 } 2399 2400 /* 2401 * Called from update_cpu_load() to periodically update this CPU's 2402 * active count. 2403 */ 2404 static void calc_load_account_active(struct rq *this_rq) 2405 { 2406 long delta; 2407 2408 if (time_before(jiffies, this_rq->calc_load_update)) 2409 return; 2410 2411 delta = calc_load_fold_active(this_rq); 2412 if (delta) 2413 atomic_long_add(delta, &calc_load_tasks); 2414 2415 this_rq->calc_load_update += LOAD_FREQ; 2416 } 2417 2418 /* 2419 * End of global load-average stuff 2420 */ 2421 2422 /* 2423 * The exact cpuload at various idx values, calculated at every tick would be 2424 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2425 * 2426 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2427 * on nth tick when cpu may be busy, then we have: 2428 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2429 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2430 * 2431 * decay_load_missed() below does efficient calculation of 2432 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2433 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2434 * 2435 * The calculation is approximated on a 128 point scale. 2436 * degrade_zero_ticks is the number of ticks after which load at any 2437 * particular idx is approximated to be zero. 2438 * degrade_factor is a precomputed table, a row for each load idx. 2439 * Each column corresponds to degradation factor for a power of two ticks, 2440 * based on 128 point scale. 2441 * Example: 2442 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2443 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2444 * 2445 * With this power of 2 load factors, we can degrade the load n times 2446 * by looking at 1 bits in n and doing as many mult/shift instead of 2447 * n mult/shifts needed by the exact degradation. 2448 */ 2449 #define DEGRADE_SHIFT 7 2450 static const unsigned char 2451 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2452 static const unsigned char 2453 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2454 {0, 0, 0, 0, 0, 0, 0, 0}, 2455 {64, 32, 8, 0, 0, 0, 0, 0}, 2456 {96, 72, 40, 12, 1, 0, 0}, 2457 {112, 98, 75, 43, 15, 1, 0}, 2458 {120, 112, 98, 76, 45, 16, 2} }; 2459 2460 /* 2461 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2462 * would be when CPU is idle and so we just decay the old load without 2463 * adding any new load. 2464 */ 2465 static unsigned long 2466 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2467 { 2468 int j = 0; 2469 2470 if (!missed_updates) 2471 return load; 2472 2473 if (missed_updates >= degrade_zero_ticks[idx]) 2474 return 0; 2475 2476 if (idx == 1) 2477 return load >> missed_updates; 2478 2479 while (missed_updates) { 2480 if (missed_updates % 2) 2481 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2482 2483 missed_updates >>= 1; 2484 j++; 2485 } 2486 return load; 2487 } 2488 2489 /* 2490 * Update rq->cpu_load[] statistics. This function is usually called every 2491 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2492 * every tick. We fix it up based on jiffies. 2493 */ 2494 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load, 2495 unsigned long pending_updates) 2496 { 2497 int i, scale; 2498 2499 this_rq->nr_load_updates++; 2500 2501 /* Update our load: */ 2502 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2503 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2504 unsigned long old_load, new_load; 2505 2506 /* scale is effectively 1 << i now, and >> i divides by scale */ 2507 2508 old_load = this_rq->cpu_load[i]; 2509 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2510 new_load = this_load; 2511 /* 2512 * Round up the averaging division if load is increasing. This 2513 * prevents us from getting stuck on 9 if the load is 10, for 2514 * example. 2515 */ 2516 if (new_load > old_load) 2517 new_load += scale - 1; 2518 2519 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2520 } 2521 2522 sched_avg_update(this_rq); 2523 } 2524 2525 #ifdef CONFIG_NO_HZ 2526 /* 2527 * There is no sane way to deal with nohz on smp when using jiffies because the 2528 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 2529 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 2530 * 2531 * Therefore we cannot use the delta approach from the regular tick since that 2532 * would seriously skew the load calculation. However we'll make do for those 2533 * updates happening while idle (nohz_idle_balance) or coming out of idle 2534 * (tick_nohz_idle_exit). 2535 * 2536 * This means we might still be one tick off for nohz periods. 2537 */ 2538 2539 /* 2540 * Called from nohz_idle_balance() to update the load ratings before doing the 2541 * idle balance. 2542 */ 2543 void update_idle_cpu_load(struct rq *this_rq) 2544 { 2545 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2546 unsigned long load = this_rq->load.weight; 2547 unsigned long pending_updates; 2548 2549 /* 2550 * bail if there's load or we're actually up-to-date. 2551 */ 2552 if (load || curr_jiffies == this_rq->last_load_update_tick) 2553 return; 2554 2555 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2556 this_rq->last_load_update_tick = curr_jiffies; 2557 2558 __update_cpu_load(this_rq, load, pending_updates); 2559 } 2560 2561 /* 2562 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed. 2563 */ 2564 void update_cpu_load_nohz(void) 2565 { 2566 struct rq *this_rq = this_rq(); 2567 unsigned long curr_jiffies = ACCESS_ONCE(jiffies); 2568 unsigned long pending_updates; 2569 2570 if (curr_jiffies == this_rq->last_load_update_tick) 2571 return; 2572 2573 raw_spin_lock(&this_rq->lock); 2574 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2575 if (pending_updates) { 2576 this_rq->last_load_update_tick = curr_jiffies; 2577 /* 2578 * We were idle, this means load 0, the current load might be 2579 * !0 due to remote wakeups and the sort. 2580 */ 2581 __update_cpu_load(this_rq, 0, pending_updates); 2582 } 2583 raw_spin_unlock(&this_rq->lock); 2584 } 2585 #endif /* CONFIG_NO_HZ */ 2586 2587 /* 2588 * Called from scheduler_tick() 2589 */ 2590 static void update_cpu_load_active(struct rq *this_rq) 2591 { 2592 /* 2593 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 2594 */ 2595 this_rq->last_load_update_tick = jiffies; 2596 __update_cpu_load(this_rq, this_rq->load.weight, 1); 2597 2598 calc_load_account_active(this_rq); 2599 } 2600 2601 #ifdef CONFIG_SMP 2602 2603 /* 2604 * sched_exec - execve() is a valuable balancing opportunity, because at 2605 * this point the task has the smallest effective memory and cache footprint. 2606 */ 2607 void sched_exec(void) 2608 { 2609 struct task_struct *p = current; 2610 unsigned long flags; 2611 int dest_cpu; 2612 2613 raw_spin_lock_irqsave(&p->pi_lock, flags); 2614 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2615 if (dest_cpu == smp_processor_id()) 2616 goto unlock; 2617 2618 if (likely(cpu_active(dest_cpu))) { 2619 struct migration_arg arg = { p, dest_cpu }; 2620 2621 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2622 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2623 return; 2624 } 2625 unlock: 2626 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2627 } 2628 2629 #endif 2630 2631 DEFINE_PER_CPU(struct kernel_stat, kstat); 2632 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2633 2634 EXPORT_PER_CPU_SYMBOL(kstat); 2635 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2636 2637 /* 2638 * Return any ns on the sched_clock that have not yet been accounted in 2639 * @p in case that task is currently running. 2640 * 2641 * Called with task_rq_lock() held on @rq. 2642 */ 2643 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2644 { 2645 u64 ns = 0; 2646 2647 if (task_current(rq, p)) { 2648 update_rq_clock(rq); 2649 ns = rq->clock_task - p->se.exec_start; 2650 if ((s64)ns < 0) 2651 ns = 0; 2652 } 2653 2654 return ns; 2655 } 2656 2657 unsigned long long task_delta_exec(struct task_struct *p) 2658 { 2659 unsigned long flags; 2660 struct rq *rq; 2661 u64 ns = 0; 2662 2663 rq = task_rq_lock(p, &flags); 2664 ns = do_task_delta_exec(p, rq); 2665 task_rq_unlock(rq, p, &flags); 2666 2667 return ns; 2668 } 2669 2670 /* 2671 * Return accounted runtime for the task. 2672 * In case the task is currently running, return the runtime plus current's 2673 * pending runtime that have not been accounted yet. 2674 */ 2675 unsigned long long task_sched_runtime(struct task_struct *p) 2676 { 2677 unsigned long flags; 2678 struct rq *rq; 2679 u64 ns = 0; 2680 2681 rq = task_rq_lock(p, &flags); 2682 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2683 task_rq_unlock(rq, p, &flags); 2684 2685 return ns; 2686 } 2687 2688 /* 2689 * This function gets called by the timer code, with HZ frequency. 2690 * We call it with interrupts disabled. 2691 */ 2692 void scheduler_tick(void) 2693 { 2694 int cpu = smp_processor_id(); 2695 struct rq *rq = cpu_rq(cpu); 2696 struct task_struct *curr = rq->curr; 2697 2698 sched_clock_tick(); 2699 2700 raw_spin_lock(&rq->lock); 2701 update_rq_clock(rq); 2702 update_cpu_load_active(rq); 2703 curr->sched_class->task_tick(rq, curr, 0); 2704 raw_spin_unlock(&rq->lock); 2705 2706 perf_event_task_tick(); 2707 2708 #ifdef CONFIG_SMP 2709 rq->idle_balance = idle_cpu(cpu); 2710 trigger_load_balance(rq, cpu); 2711 #endif 2712 } 2713 2714 notrace unsigned long get_parent_ip(unsigned long addr) 2715 { 2716 if (in_lock_functions(addr)) { 2717 addr = CALLER_ADDR2; 2718 if (in_lock_functions(addr)) 2719 addr = CALLER_ADDR3; 2720 } 2721 return addr; 2722 } 2723 2724 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2725 defined(CONFIG_PREEMPT_TRACER)) 2726 2727 void __kprobes add_preempt_count(int val) 2728 { 2729 #ifdef CONFIG_DEBUG_PREEMPT 2730 /* 2731 * Underflow? 2732 */ 2733 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2734 return; 2735 #endif 2736 preempt_count() += val; 2737 #ifdef CONFIG_DEBUG_PREEMPT 2738 /* 2739 * Spinlock count overflowing soon? 2740 */ 2741 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2742 PREEMPT_MASK - 10); 2743 #endif 2744 if (preempt_count() == val) 2745 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2746 } 2747 EXPORT_SYMBOL(add_preempt_count); 2748 2749 void __kprobes sub_preempt_count(int val) 2750 { 2751 #ifdef CONFIG_DEBUG_PREEMPT 2752 /* 2753 * Underflow? 2754 */ 2755 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2756 return; 2757 /* 2758 * Is the spinlock portion underflowing? 2759 */ 2760 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2761 !(preempt_count() & PREEMPT_MASK))) 2762 return; 2763 #endif 2764 2765 if (preempt_count() == val) 2766 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2767 preempt_count() -= val; 2768 } 2769 EXPORT_SYMBOL(sub_preempt_count); 2770 2771 #endif 2772 2773 /* 2774 * Print scheduling while atomic bug: 2775 */ 2776 static noinline void __schedule_bug(struct task_struct *prev) 2777 { 2778 if (oops_in_progress) 2779 return; 2780 2781 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2782 prev->comm, prev->pid, preempt_count()); 2783 2784 debug_show_held_locks(prev); 2785 print_modules(); 2786 if (irqs_disabled()) 2787 print_irqtrace_events(prev); 2788 dump_stack(); 2789 add_taint(TAINT_WARN); 2790 } 2791 2792 /* 2793 * Various schedule()-time debugging checks and statistics: 2794 */ 2795 static inline void schedule_debug(struct task_struct *prev) 2796 { 2797 /* 2798 * Test if we are atomic. Since do_exit() needs to call into 2799 * schedule() atomically, we ignore that path for now. 2800 * Otherwise, whine if we are scheduling when we should not be. 2801 */ 2802 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 2803 __schedule_bug(prev); 2804 rcu_sleep_check(); 2805 2806 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2807 2808 schedstat_inc(this_rq(), sched_count); 2809 } 2810 2811 static void put_prev_task(struct rq *rq, struct task_struct *prev) 2812 { 2813 if (prev->on_rq || rq->skip_clock_update < 0) 2814 update_rq_clock(rq); 2815 prev->sched_class->put_prev_task(rq, prev); 2816 } 2817 2818 /* 2819 * Pick up the highest-prio task: 2820 */ 2821 static inline struct task_struct * 2822 pick_next_task(struct rq *rq) 2823 { 2824 const struct sched_class *class; 2825 struct task_struct *p; 2826 2827 /* 2828 * Optimization: we know that if all tasks are in 2829 * the fair class we can call that function directly: 2830 */ 2831 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 2832 p = fair_sched_class.pick_next_task(rq); 2833 if (likely(p)) 2834 return p; 2835 } 2836 2837 for_each_class(class) { 2838 p = class->pick_next_task(rq); 2839 if (p) 2840 return p; 2841 } 2842 2843 BUG(); /* the idle class will always have a runnable task */ 2844 } 2845 2846 /* 2847 * __schedule() is the main scheduler function. 2848 * 2849 * The main means of driving the scheduler and thus entering this function are: 2850 * 2851 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2852 * 2853 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2854 * paths. For example, see arch/x86/entry_64.S. 2855 * 2856 * To drive preemption between tasks, the scheduler sets the flag in timer 2857 * interrupt handler scheduler_tick(). 2858 * 2859 * 3. Wakeups don't really cause entry into schedule(). They add a 2860 * task to the run-queue and that's it. 2861 * 2862 * Now, if the new task added to the run-queue preempts the current 2863 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2864 * called on the nearest possible occasion: 2865 * 2866 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2867 * 2868 * - in syscall or exception context, at the next outmost 2869 * preempt_enable(). (this might be as soon as the wake_up()'s 2870 * spin_unlock()!) 2871 * 2872 * - in IRQ context, return from interrupt-handler to 2873 * preemptible context 2874 * 2875 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2876 * then at the next: 2877 * 2878 * - cond_resched() call 2879 * - explicit schedule() call 2880 * - return from syscall or exception to user-space 2881 * - return from interrupt-handler to user-space 2882 */ 2883 static void __sched __schedule(void) 2884 { 2885 struct task_struct *prev, *next; 2886 unsigned long *switch_count; 2887 struct rq *rq; 2888 int cpu; 2889 2890 need_resched: 2891 preempt_disable(); 2892 cpu = smp_processor_id(); 2893 rq = cpu_rq(cpu); 2894 rcu_note_context_switch(cpu); 2895 prev = rq->curr; 2896 2897 schedule_debug(prev); 2898 2899 if (sched_feat(HRTICK)) 2900 hrtick_clear(rq); 2901 2902 raw_spin_lock_irq(&rq->lock); 2903 2904 switch_count = &prev->nivcsw; 2905 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2906 if (unlikely(signal_pending_state(prev->state, prev))) { 2907 prev->state = TASK_RUNNING; 2908 } else { 2909 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2910 prev->on_rq = 0; 2911 2912 /* 2913 * If a worker went to sleep, notify and ask workqueue 2914 * whether it wants to wake up a task to maintain 2915 * concurrency. 2916 */ 2917 if (prev->flags & PF_WQ_WORKER) { 2918 struct task_struct *to_wakeup; 2919 2920 to_wakeup = wq_worker_sleeping(prev, cpu); 2921 if (to_wakeup) 2922 try_to_wake_up_local(to_wakeup); 2923 } 2924 } 2925 switch_count = &prev->nvcsw; 2926 } 2927 2928 pre_schedule(rq, prev); 2929 2930 if (unlikely(!rq->nr_running)) 2931 idle_balance(cpu, rq); 2932 2933 put_prev_task(rq, prev); 2934 next = pick_next_task(rq); 2935 clear_tsk_need_resched(prev); 2936 rq->skip_clock_update = 0; 2937 2938 if (likely(prev != next)) { 2939 rq->nr_switches++; 2940 rq->curr = next; 2941 ++*switch_count; 2942 2943 context_switch(rq, prev, next); /* unlocks the rq */ 2944 /* 2945 * The context switch have flipped the stack from under us 2946 * and restored the local variables which were saved when 2947 * this task called schedule() in the past. prev == current 2948 * is still correct, but it can be moved to another cpu/rq. 2949 */ 2950 cpu = smp_processor_id(); 2951 rq = cpu_rq(cpu); 2952 } else 2953 raw_spin_unlock_irq(&rq->lock); 2954 2955 post_schedule(rq); 2956 2957 sched_preempt_enable_no_resched(); 2958 if (need_resched()) 2959 goto need_resched; 2960 } 2961 2962 static inline void sched_submit_work(struct task_struct *tsk) 2963 { 2964 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2965 return; 2966 /* 2967 * If we are going to sleep and we have plugged IO queued, 2968 * make sure to submit it to avoid deadlocks. 2969 */ 2970 if (blk_needs_flush_plug(tsk)) 2971 blk_schedule_flush_plug(tsk); 2972 } 2973 2974 asmlinkage void __sched schedule(void) 2975 { 2976 struct task_struct *tsk = current; 2977 2978 sched_submit_work(tsk); 2979 __schedule(); 2980 } 2981 EXPORT_SYMBOL(schedule); 2982 2983 #ifdef CONFIG_CONTEXT_TRACKING 2984 asmlinkage void __sched schedule_user(void) 2985 { 2986 /* 2987 * If we come here after a random call to set_need_resched(), 2988 * or we have been woken up remotely but the IPI has not yet arrived, 2989 * we haven't yet exited the RCU idle mode. Do it here manually until 2990 * we find a better solution. 2991 */ 2992 user_exit(); 2993 schedule(); 2994 user_enter(); 2995 } 2996 #endif 2997 2998 /** 2999 * schedule_preempt_disabled - called with preemption disabled 3000 * 3001 * Returns with preemption disabled. Note: preempt_count must be 1 3002 */ 3003 void __sched schedule_preempt_disabled(void) 3004 { 3005 sched_preempt_enable_no_resched(); 3006 schedule(); 3007 preempt_disable(); 3008 } 3009 3010 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3011 3012 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3013 { 3014 if (lock->owner != owner) 3015 return false; 3016 3017 /* 3018 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3019 * lock->owner still matches owner, if that fails, owner might 3020 * point to free()d memory, if it still matches, the rcu_read_lock() 3021 * ensures the memory stays valid. 3022 */ 3023 barrier(); 3024 3025 return owner->on_cpu; 3026 } 3027 3028 /* 3029 * Look out! "owner" is an entirely speculative pointer 3030 * access and not reliable. 3031 */ 3032 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3033 { 3034 if (!sched_feat(OWNER_SPIN)) 3035 return 0; 3036 3037 rcu_read_lock(); 3038 while (owner_running(lock, owner)) { 3039 if (need_resched()) 3040 break; 3041 3042 arch_mutex_cpu_relax(); 3043 } 3044 rcu_read_unlock(); 3045 3046 /* 3047 * We break out the loop above on need_resched() and when the 3048 * owner changed, which is a sign for heavy contention. Return 3049 * success only when lock->owner is NULL. 3050 */ 3051 return lock->owner == NULL; 3052 } 3053 #endif 3054 3055 #ifdef CONFIG_PREEMPT 3056 /* 3057 * this is the entry point to schedule() from in-kernel preemption 3058 * off of preempt_enable. Kernel preemptions off return from interrupt 3059 * occur there and call schedule directly. 3060 */ 3061 asmlinkage void __sched notrace preempt_schedule(void) 3062 { 3063 struct thread_info *ti = current_thread_info(); 3064 3065 /* 3066 * If there is a non-zero preempt_count or interrupts are disabled, 3067 * we do not want to preempt the current task. Just return.. 3068 */ 3069 if (likely(ti->preempt_count || irqs_disabled())) 3070 return; 3071 3072 do { 3073 add_preempt_count_notrace(PREEMPT_ACTIVE); 3074 __schedule(); 3075 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3076 3077 /* 3078 * Check again in case we missed a preemption opportunity 3079 * between schedule and now. 3080 */ 3081 barrier(); 3082 } while (need_resched()); 3083 } 3084 EXPORT_SYMBOL(preempt_schedule); 3085 3086 /* 3087 * this is the entry point to schedule() from kernel preemption 3088 * off of irq context. 3089 * Note, that this is called and return with irqs disabled. This will 3090 * protect us against recursive calling from irq. 3091 */ 3092 asmlinkage void __sched preempt_schedule_irq(void) 3093 { 3094 struct thread_info *ti = current_thread_info(); 3095 3096 /* Catch callers which need to be fixed */ 3097 BUG_ON(ti->preempt_count || !irqs_disabled()); 3098 3099 user_exit(); 3100 do { 3101 add_preempt_count(PREEMPT_ACTIVE); 3102 local_irq_enable(); 3103 __schedule(); 3104 local_irq_disable(); 3105 sub_preempt_count(PREEMPT_ACTIVE); 3106 3107 /* 3108 * Check again in case we missed a preemption opportunity 3109 * between schedule and now. 3110 */ 3111 barrier(); 3112 } while (need_resched()); 3113 } 3114 3115 #endif /* CONFIG_PREEMPT */ 3116 3117 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3118 void *key) 3119 { 3120 return try_to_wake_up(curr->private, mode, wake_flags); 3121 } 3122 EXPORT_SYMBOL(default_wake_function); 3123 3124 /* 3125 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3126 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3127 * number) then we wake all the non-exclusive tasks and one exclusive task. 3128 * 3129 * There are circumstances in which we can try to wake a task which has already 3130 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3131 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3132 */ 3133 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3134 int nr_exclusive, int wake_flags, void *key) 3135 { 3136 wait_queue_t *curr, *next; 3137 3138 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3139 unsigned flags = curr->flags; 3140 3141 if (curr->func(curr, mode, wake_flags, key) && 3142 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3143 break; 3144 } 3145 } 3146 3147 /** 3148 * __wake_up - wake up threads blocked on a waitqueue. 3149 * @q: the waitqueue 3150 * @mode: which threads 3151 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3152 * @key: is directly passed to the wakeup function 3153 * 3154 * It may be assumed that this function implies a write memory barrier before 3155 * changing the task state if and only if any tasks are woken up. 3156 */ 3157 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3158 int nr_exclusive, void *key) 3159 { 3160 unsigned long flags; 3161 3162 spin_lock_irqsave(&q->lock, flags); 3163 __wake_up_common(q, mode, nr_exclusive, 0, key); 3164 spin_unlock_irqrestore(&q->lock, flags); 3165 } 3166 EXPORT_SYMBOL(__wake_up); 3167 3168 /* 3169 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3170 */ 3171 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3172 { 3173 __wake_up_common(q, mode, nr, 0, NULL); 3174 } 3175 EXPORT_SYMBOL_GPL(__wake_up_locked); 3176 3177 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3178 { 3179 __wake_up_common(q, mode, 1, 0, key); 3180 } 3181 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3182 3183 /** 3184 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3185 * @q: the waitqueue 3186 * @mode: which threads 3187 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3188 * @key: opaque value to be passed to wakeup targets 3189 * 3190 * The sync wakeup differs that the waker knows that it will schedule 3191 * away soon, so while the target thread will be woken up, it will not 3192 * be migrated to another CPU - ie. the two threads are 'synchronized' 3193 * with each other. This can prevent needless bouncing between CPUs. 3194 * 3195 * On UP it can prevent extra preemption. 3196 * 3197 * It may be assumed that this function implies a write memory barrier before 3198 * changing the task state if and only if any tasks are woken up. 3199 */ 3200 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3201 int nr_exclusive, void *key) 3202 { 3203 unsigned long flags; 3204 int wake_flags = WF_SYNC; 3205 3206 if (unlikely(!q)) 3207 return; 3208 3209 if (unlikely(!nr_exclusive)) 3210 wake_flags = 0; 3211 3212 spin_lock_irqsave(&q->lock, flags); 3213 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3214 spin_unlock_irqrestore(&q->lock, flags); 3215 } 3216 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3217 3218 /* 3219 * __wake_up_sync - see __wake_up_sync_key() 3220 */ 3221 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3222 { 3223 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3224 } 3225 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3226 3227 /** 3228 * complete: - signals a single thread waiting on this completion 3229 * @x: holds the state of this particular completion 3230 * 3231 * This will wake up a single thread waiting on this completion. Threads will be 3232 * awakened in the same order in which they were queued. 3233 * 3234 * See also complete_all(), wait_for_completion() and related routines. 3235 * 3236 * It may be assumed that this function implies a write memory barrier before 3237 * changing the task state if and only if any tasks are woken up. 3238 */ 3239 void complete(struct completion *x) 3240 { 3241 unsigned long flags; 3242 3243 spin_lock_irqsave(&x->wait.lock, flags); 3244 x->done++; 3245 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3246 spin_unlock_irqrestore(&x->wait.lock, flags); 3247 } 3248 EXPORT_SYMBOL(complete); 3249 3250 /** 3251 * complete_all: - signals all threads waiting on this completion 3252 * @x: holds the state of this particular completion 3253 * 3254 * This will wake up all threads waiting on this particular completion event. 3255 * 3256 * It may be assumed that this function implies a write memory barrier before 3257 * changing the task state if and only if any tasks are woken up. 3258 */ 3259 void complete_all(struct completion *x) 3260 { 3261 unsigned long flags; 3262 3263 spin_lock_irqsave(&x->wait.lock, flags); 3264 x->done += UINT_MAX/2; 3265 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3266 spin_unlock_irqrestore(&x->wait.lock, flags); 3267 } 3268 EXPORT_SYMBOL(complete_all); 3269 3270 static inline long __sched 3271 do_wait_for_common(struct completion *x, long timeout, int state) 3272 { 3273 if (!x->done) { 3274 DECLARE_WAITQUEUE(wait, current); 3275 3276 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3277 do { 3278 if (signal_pending_state(state, current)) { 3279 timeout = -ERESTARTSYS; 3280 break; 3281 } 3282 __set_current_state(state); 3283 spin_unlock_irq(&x->wait.lock); 3284 timeout = schedule_timeout(timeout); 3285 spin_lock_irq(&x->wait.lock); 3286 } while (!x->done && timeout); 3287 __remove_wait_queue(&x->wait, &wait); 3288 if (!x->done) 3289 return timeout; 3290 } 3291 x->done--; 3292 return timeout ?: 1; 3293 } 3294 3295 static long __sched 3296 wait_for_common(struct completion *x, long timeout, int state) 3297 { 3298 might_sleep(); 3299 3300 spin_lock_irq(&x->wait.lock); 3301 timeout = do_wait_for_common(x, timeout, state); 3302 spin_unlock_irq(&x->wait.lock); 3303 return timeout; 3304 } 3305 3306 /** 3307 * wait_for_completion: - waits for completion of a task 3308 * @x: holds the state of this particular completion 3309 * 3310 * This waits to be signaled for completion of a specific task. It is NOT 3311 * interruptible and there is no timeout. 3312 * 3313 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3314 * and interrupt capability. Also see complete(). 3315 */ 3316 void __sched wait_for_completion(struct completion *x) 3317 { 3318 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3319 } 3320 EXPORT_SYMBOL(wait_for_completion); 3321 3322 /** 3323 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3324 * @x: holds the state of this particular completion 3325 * @timeout: timeout value in jiffies 3326 * 3327 * This waits for either a completion of a specific task to be signaled or for a 3328 * specified timeout to expire. The timeout is in jiffies. It is not 3329 * interruptible. 3330 * 3331 * The return value is 0 if timed out, and positive (at least 1, or number of 3332 * jiffies left till timeout) if completed. 3333 */ 3334 unsigned long __sched 3335 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3336 { 3337 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3338 } 3339 EXPORT_SYMBOL(wait_for_completion_timeout); 3340 3341 /** 3342 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3343 * @x: holds the state of this particular completion 3344 * 3345 * This waits for completion of a specific task to be signaled. It is 3346 * interruptible. 3347 * 3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3349 */ 3350 int __sched wait_for_completion_interruptible(struct completion *x) 3351 { 3352 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3353 if (t == -ERESTARTSYS) 3354 return t; 3355 return 0; 3356 } 3357 EXPORT_SYMBOL(wait_for_completion_interruptible); 3358 3359 /** 3360 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3361 * @x: holds the state of this particular completion 3362 * @timeout: timeout value in jiffies 3363 * 3364 * This waits for either a completion of a specific task to be signaled or for a 3365 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3366 * 3367 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3368 * positive (at least 1, or number of jiffies left till timeout) if completed. 3369 */ 3370 long __sched 3371 wait_for_completion_interruptible_timeout(struct completion *x, 3372 unsigned long timeout) 3373 { 3374 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3375 } 3376 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3377 3378 /** 3379 * wait_for_completion_killable: - waits for completion of a task (killable) 3380 * @x: holds the state of this particular completion 3381 * 3382 * This waits to be signaled for completion of a specific task. It can be 3383 * interrupted by a kill signal. 3384 * 3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3386 */ 3387 int __sched wait_for_completion_killable(struct completion *x) 3388 { 3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3390 if (t == -ERESTARTSYS) 3391 return t; 3392 return 0; 3393 } 3394 EXPORT_SYMBOL(wait_for_completion_killable); 3395 3396 /** 3397 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3398 * @x: holds the state of this particular completion 3399 * @timeout: timeout value in jiffies 3400 * 3401 * This waits for either a completion of a specific task to be 3402 * signaled or for a specified timeout to expire. It can be 3403 * interrupted by a kill signal. The timeout is in jiffies. 3404 * 3405 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3406 * positive (at least 1, or number of jiffies left till timeout) if completed. 3407 */ 3408 long __sched 3409 wait_for_completion_killable_timeout(struct completion *x, 3410 unsigned long timeout) 3411 { 3412 return wait_for_common(x, timeout, TASK_KILLABLE); 3413 } 3414 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3415 3416 /** 3417 * try_wait_for_completion - try to decrement a completion without blocking 3418 * @x: completion structure 3419 * 3420 * Returns: 0 if a decrement cannot be done without blocking 3421 * 1 if a decrement succeeded. 3422 * 3423 * If a completion is being used as a counting completion, 3424 * attempt to decrement the counter without blocking. This 3425 * enables us to avoid waiting if the resource the completion 3426 * is protecting is not available. 3427 */ 3428 bool try_wait_for_completion(struct completion *x) 3429 { 3430 unsigned long flags; 3431 int ret = 1; 3432 3433 spin_lock_irqsave(&x->wait.lock, flags); 3434 if (!x->done) 3435 ret = 0; 3436 else 3437 x->done--; 3438 spin_unlock_irqrestore(&x->wait.lock, flags); 3439 return ret; 3440 } 3441 EXPORT_SYMBOL(try_wait_for_completion); 3442 3443 /** 3444 * completion_done - Test to see if a completion has any waiters 3445 * @x: completion structure 3446 * 3447 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3448 * 1 if there are no waiters. 3449 * 3450 */ 3451 bool completion_done(struct completion *x) 3452 { 3453 unsigned long flags; 3454 int ret = 1; 3455 3456 spin_lock_irqsave(&x->wait.lock, flags); 3457 if (!x->done) 3458 ret = 0; 3459 spin_unlock_irqrestore(&x->wait.lock, flags); 3460 return ret; 3461 } 3462 EXPORT_SYMBOL(completion_done); 3463 3464 static long __sched 3465 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3466 { 3467 unsigned long flags; 3468 wait_queue_t wait; 3469 3470 init_waitqueue_entry(&wait, current); 3471 3472 __set_current_state(state); 3473 3474 spin_lock_irqsave(&q->lock, flags); 3475 __add_wait_queue(q, &wait); 3476 spin_unlock(&q->lock); 3477 timeout = schedule_timeout(timeout); 3478 spin_lock_irq(&q->lock); 3479 __remove_wait_queue(q, &wait); 3480 spin_unlock_irqrestore(&q->lock, flags); 3481 3482 return timeout; 3483 } 3484 3485 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3486 { 3487 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3488 } 3489 EXPORT_SYMBOL(interruptible_sleep_on); 3490 3491 long __sched 3492 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3493 { 3494 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3495 } 3496 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3497 3498 void __sched sleep_on(wait_queue_head_t *q) 3499 { 3500 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3501 } 3502 EXPORT_SYMBOL(sleep_on); 3503 3504 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3505 { 3506 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3507 } 3508 EXPORT_SYMBOL(sleep_on_timeout); 3509 3510 #ifdef CONFIG_RT_MUTEXES 3511 3512 /* 3513 * rt_mutex_setprio - set the current priority of a task 3514 * @p: task 3515 * @prio: prio value (kernel-internal form) 3516 * 3517 * This function changes the 'effective' priority of a task. It does 3518 * not touch ->normal_prio like __setscheduler(). 3519 * 3520 * Used by the rt_mutex code to implement priority inheritance logic. 3521 */ 3522 void rt_mutex_setprio(struct task_struct *p, int prio) 3523 { 3524 int oldprio, on_rq, running; 3525 struct rq *rq; 3526 const struct sched_class *prev_class; 3527 3528 BUG_ON(prio < 0 || prio > MAX_PRIO); 3529 3530 rq = __task_rq_lock(p); 3531 3532 /* 3533 * Idle task boosting is a nono in general. There is one 3534 * exception, when PREEMPT_RT and NOHZ is active: 3535 * 3536 * The idle task calls get_next_timer_interrupt() and holds 3537 * the timer wheel base->lock on the CPU and another CPU wants 3538 * to access the timer (probably to cancel it). We can safely 3539 * ignore the boosting request, as the idle CPU runs this code 3540 * with interrupts disabled and will complete the lock 3541 * protected section without being interrupted. So there is no 3542 * real need to boost. 3543 */ 3544 if (unlikely(p == rq->idle)) { 3545 WARN_ON(p != rq->curr); 3546 WARN_ON(p->pi_blocked_on); 3547 goto out_unlock; 3548 } 3549 3550 trace_sched_pi_setprio(p, prio); 3551 oldprio = p->prio; 3552 prev_class = p->sched_class; 3553 on_rq = p->on_rq; 3554 running = task_current(rq, p); 3555 if (on_rq) 3556 dequeue_task(rq, p, 0); 3557 if (running) 3558 p->sched_class->put_prev_task(rq, p); 3559 3560 if (rt_prio(prio)) 3561 p->sched_class = &rt_sched_class; 3562 else 3563 p->sched_class = &fair_sched_class; 3564 3565 p->prio = prio; 3566 3567 if (running) 3568 p->sched_class->set_curr_task(rq); 3569 if (on_rq) 3570 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3571 3572 check_class_changed(rq, p, prev_class, oldprio); 3573 out_unlock: 3574 __task_rq_unlock(rq); 3575 } 3576 #endif 3577 void set_user_nice(struct task_struct *p, long nice) 3578 { 3579 int old_prio, delta, on_rq; 3580 unsigned long flags; 3581 struct rq *rq; 3582 3583 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3584 return; 3585 /* 3586 * We have to be careful, if called from sys_setpriority(), 3587 * the task might be in the middle of scheduling on another CPU. 3588 */ 3589 rq = task_rq_lock(p, &flags); 3590 /* 3591 * The RT priorities are set via sched_setscheduler(), but we still 3592 * allow the 'normal' nice value to be set - but as expected 3593 * it wont have any effect on scheduling until the task is 3594 * SCHED_FIFO/SCHED_RR: 3595 */ 3596 if (task_has_rt_policy(p)) { 3597 p->static_prio = NICE_TO_PRIO(nice); 3598 goto out_unlock; 3599 } 3600 on_rq = p->on_rq; 3601 if (on_rq) 3602 dequeue_task(rq, p, 0); 3603 3604 p->static_prio = NICE_TO_PRIO(nice); 3605 set_load_weight(p); 3606 old_prio = p->prio; 3607 p->prio = effective_prio(p); 3608 delta = p->prio - old_prio; 3609 3610 if (on_rq) { 3611 enqueue_task(rq, p, 0); 3612 /* 3613 * If the task increased its priority or is running and 3614 * lowered its priority, then reschedule its CPU: 3615 */ 3616 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3617 resched_task(rq->curr); 3618 } 3619 out_unlock: 3620 task_rq_unlock(rq, p, &flags); 3621 } 3622 EXPORT_SYMBOL(set_user_nice); 3623 3624 /* 3625 * can_nice - check if a task can reduce its nice value 3626 * @p: task 3627 * @nice: nice value 3628 */ 3629 int can_nice(const struct task_struct *p, const int nice) 3630 { 3631 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3632 int nice_rlim = 20 - nice; 3633 3634 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3635 capable(CAP_SYS_NICE)); 3636 } 3637 3638 #ifdef __ARCH_WANT_SYS_NICE 3639 3640 /* 3641 * sys_nice - change the priority of the current process. 3642 * @increment: priority increment 3643 * 3644 * sys_setpriority is a more generic, but much slower function that 3645 * does similar things. 3646 */ 3647 SYSCALL_DEFINE1(nice, int, increment) 3648 { 3649 long nice, retval; 3650 3651 /* 3652 * Setpriority might change our priority at the same moment. 3653 * We don't have to worry. Conceptually one call occurs first 3654 * and we have a single winner. 3655 */ 3656 if (increment < -40) 3657 increment = -40; 3658 if (increment > 40) 3659 increment = 40; 3660 3661 nice = TASK_NICE(current) + increment; 3662 if (nice < -20) 3663 nice = -20; 3664 if (nice > 19) 3665 nice = 19; 3666 3667 if (increment < 0 && !can_nice(current, nice)) 3668 return -EPERM; 3669 3670 retval = security_task_setnice(current, nice); 3671 if (retval) 3672 return retval; 3673 3674 set_user_nice(current, nice); 3675 return 0; 3676 } 3677 3678 #endif 3679 3680 /** 3681 * task_prio - return the priority value of a given task. 3682 * @p: the task in question. 3683 * 3684 * This is the priority value as seen by users in /proc. 3685 * RT tasks are offset by -200. Normal tasks are centered 3686 * around 0, value goes from -16 to +15. 3687 */ 3688 int task_prio(const struct task_struct *p) 3689 { 3690 return p->prio - MAX_RT_PRIO; 3691 } 3692 3693 /** 3694 * task_nice - return the nice value of a given task. 3695 * @p: the task in question. 3696 */ 3697 int task_nice(const struct task_struct *p) 3698 { 3699 return TASK_NICE(p); 3700 } 3701 EXPORT_SYMBOL(task_nice); 3702 3703 /** 3704 * idle_cpu - is a given cpu idle currently? 3705 * @cpu: the processor in question. 3706 */ 3707 int idle_cpu(int cpu) 3708 { 3709 struct rq *rq = cpu_rq(cpu); 3710 3711 if (rq->curr != rq->idle) 3712 return 0; 3713 3714 if (rq->nr_running) 3715 return 0; 3716 3717 #ifdef CONFIG_SMP 3718 if (!llist_empty(&rq->wake_list)) 3719 return 0; 3720 #endif 3721 3722 return 1; 3723 } 3724 3725 /** 3726 * idle_task - return the idle task for a given cpu. 3727 * @cpu: the processor in question. 3728 */ 3729 struct task_struct *idle_task(int cpu) 3730 { 3731 return cpu_rq(cpu)->idle; 3732 } 3733 3734 /** 3735 * find_process_by_pid - find a process with a matching PID value. 3736 * @pid: the pid in question. 3737 */ 3738 static struct task_struct *find_process_by_pid(pid_t pid) 3739 { 3740 return pid ? find_task_by_vpid(pid) : current; 3741 } 3742 3743 /* Actually do priority change: must hold rq lock. */ 3744 static void 3745 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3746 { 3747 p->policy = policy; 3748 p->rt_priority = prio; 3749 p->normal_prio = normal_prio(p); 3750 /* we are holding p->pi_lock already */ 3751 p->prio = rt_mutex_getprio(p); 3752 if (rt_prio(p->prio)) 3753 p->sched_class = &rt_sched_class; 3754 else 3755 p->sched_class = &fair_sched_class; 3756 set_load_weight(p); 3757 } 3758 3759 /* 3760 * check the target process has a UID that matches the current process's 3761 */ 3762 static bool check_same_owner(struct task_struct *p) 3763 { 3764 const struct cred *cred = current_cred(), *pcred; 3765 bool match; 3766 3767 rcu_read_lock(); 3768 pcred = __task_cred(p); 3769 match = (uid_eq(cred->euid, pcred->euid) || 3770 uid_eq(cred->euid, pcred->uid)); 3771 rcu_read_unlock(); 3772 return match; 3773 } 3774 3775 static int __sched_setscheduler(struct task_struct *p, int policy, 3776 const struct sched_param *param, bool user) 3777 { 3778 int retval, oldprio, oldpolicy = -1, on_rq, running; 3779 unsigned long flags; 3780 const struct sched_class *prev_class; 3781 struct rq *rq; 3782 int reset_on_fork; 3783 3784 /* may grab non-irq protected spin_locks */ 3785 BUG_ON(in_interrupt()); 3786 recheck: 3787 /* double check policy once rq lock held */ 3788 if (policy < 0) { 3789 reset_on_fork = p->sched_reset_on_fork; 3790 policy = oldpolicy = p->policy; 3791 } else { 3792 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 3793 policy &= ~SCHED_RESET_ON_FORK; 3794 3795 if (policy != SCHED_FIFO && policy != SCHED_RR && 3796 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3797 policy != SCHED_IDLE) 3798 return -EINVAL; 3799 } 3800 3801 /* 3802 * Valid priorities for SCHED_FIFO and SCHED_RR are 3803 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3804 * SCHED_BATCH and SCHED_IDLE is 0. 3805 */ 3806 if (param->sched_priority < 0 || 3807 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 3808 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 3809 return -EINVAL; 3810 if (rt_policy(policy) != (param->sched_priority != 0)) 3811 return -EINVAL; 3812 3813 /* 3814 * Allow unprivileged RT tasks to decrease priority: 3815 */ 3816 if (user && !capable(CAP_SYS_NICE)) { 3817 if (rt_policy(policy)) { 3818 unsigned long rlim_rtprio = 3819 task_rlimit(p, RLIMIT_RTPRIO); 3820 3821 /* can't set/change the rt policy */ 3822 if (policy != p->policy && !rlim_rtprio) 3823 return -EPERM; 3824 3825 /* can't increase priority */ 3826 if (param->sched_priority > p->rt_priority && 3827 param->sched_priority > rlim_rtprio) 3828 return -EPERM; 3829 } 3830 3831 /* 3832 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3833 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3834 */ 3835 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3836 if (!can_nice(p, TASK_NICE(p))) 3837 return -EPERM; 3838 } 3839 3840 /* can't change other user's priorities */ 3841 if (!check_same_owner(p)) 3842 return -EPERM; 3843 3844 /* Normal users shall not reset the sched_reset_on_fork flag */ 3845 if (p->sched_reset_on_fork && !reset_on_fork) 3846 return -EPERM; 3847 } 3848 3849 if (user) { 3850 retval = security_task_setscheduler(p); 3851 if (retval) 3852 return retval; 3853 } 3854 3855 /* 3856 * make sure no PI-waiters arrive (or leave) while we are 3857 * changing the priority of the task: 3858 * 3859 * To be able to change p->policy safely, the appropriate 3860 * runqueue lock must be held. 3861 */ 3862 rq = task_rq_lock(p, &flags); 3863 3864 /* 3865 * Changing the policy of the stop threads its a very bad idea 3866 */ 3867 if (p == rq->stop) { 3868 task_rq_unlock(rq, p, &flags); 3869 return -EINVAL; 3870 } 3871 3872 /* 3873 * If not changing anything there's no need to proceed further: 3874 */ 3875 if (unlikely(policy == p->policy && (!rt_policy(policy) || 3876 param->sched_priority == p->rt_priority))) { 3877 task_rq_unlock(rq, p, &flags); 3878 return 0; 3879 } 3880 3881 #ifdef CONFIG_RT_GROUP_SCHED 3882 if (user) { 3883 /* 3884 * Do not allow realtime tasks into groups that have no runtime 3885 * assigned. 3886 */ 3887 if (rt_bandwidth_enabled() && rt_policy(policy) && 3888 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3889 !task_group_is_autogroup(task_group(p))) { 3890 task_rq_unlock(rq, p, &flags); 3891 return -EPERM; 3892 } 3893 } 3894 #endif 3895 3896 /* recheck policy now with rq lock held */ 3897 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3898 policy = oldpolicy = -1; 3899 task_rq_unlock(rq, p, &flags); 3900 goto recheck; 3901 } 3902 on_rq = p->on_rq; 3903 running = task_current(rq, p); 3904 if (on_rq) 3905 dequeue_task(rq, p, 0); 3906 if (running) 3907 p->sched_class->put_prev_task(rq, p); 3908 3909 p->sched_reset_on_fork = reset_on_fork; 3910 3911 oldprio = p->prio; 3912 prev_class = p->sched_class; 3913 __setscheduler(rq, p, policy, param->sched_priority); 3914 3915 if (running) 3916 p->sched_class->set_curr_task(rq); 3917 if (on_rq) 3918 enqueue_task(rq, p, 0); 3919 3920 check_class_changed(rq, p, prev_class, oldprio); 3921 task_rq_unlock(rq, p, &flags); 3922 3923 rt_mutex_adjust_pi(p); 3924 3925 return 0; 3926 } 3927 3928 /** 3929 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3930 * @p: the task in question. 3931 * @policy: new policy. 3932 * @param: structure containing the new RT priority. 3933 * 3934 * NOTE that the task may be already dead. 3935 */ 3936 int sched_setscheduler(struct task_struct *p, int policy, 3937 const struct sched_param *param) 3938 { 3939 return __sched_setscheduler(p, policy, param, true); 3940 } 3941 EXPORT_SYMBOL_GPL(sched_setscheduler); 3942 3943 /** 3944 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3945 * @p: the task in question. 3946 * @policy: new policy. 3947 * @param: structure containing the new RT priority. 3948 * 3949 * Just like sched_setscheduler, only don't bother checking if the 3950 * current context has permission. For example, this is needed in 3951 * stop_machine(): we create temporary high priority worker threads, 3952 * but our caller might not have that capability. 3953 */ 3954 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3955 const struct sched_param *param) 3956 { 3957 return __sched_setscheduler(p, policy, param, false); 3958 } 3959 3960 static int 3961 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3962 { 3963 struct sched_param lparam; 3964 struct task_struct *p; 3965 int retval; 3966 3967 if (!param || pid < 0) 3968 return -EINVAL; 3969 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3970 return -EFAULT; 3971 3972 rcu_read_lock(); 3973 retval = -ESRCH; 3974 p = find_process_by_pid(pid); 3975 if (p != NULL) 3976 retval = sched_setscheduler(p, policy, &lparam); 3977 rcu_read_unlock(); 3978 3979 return retval; 3980 } 3981 3982 /** 3983 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3984 * @pid: the pid in question. 3985 * @policy: new policy. 3986 * @param: structure containing the new RT priority. 3987 */ 3988 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3989 struct sched_param __user *, param) 3990 { 3991 /* negative values for policy are not valid */ 3992 if (policy < 0) 3993 return -EINVAL; 3994 3995 return do_sched_setscheduler(pid, policy, param); 3996 } 3997 3998 /** 3999 * sys_sched_setparam - set/change the RT priority of a thread 4000 * @pid: the pid in question. 4001 * @param: structure containing the new RT priority. 4002 */ 4003 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4004 { 4005 return do_sched_setscheduler(pid, -1, param); 4006 } 4007 4008 /** 4009 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4010 * @pid: the pid in question. 4011 */ 4012 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4013 { 4014 struct task_struct *p; 4015 int retval; 4016 4017 if (pid < 0) 4018 return -EINVAL; 4019 4020 retval = -ESRCH; 4021 rcu_read_lock(); 4022 p = find_process_by_pid(pid); 4023 if (p) { 4024 retval = security_task_getscheduler(p); 4025 if (!retval) 4026 retval = p->policy 4027 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4028 } 4029 rcu_read_unlock(); 4030 return retval; 4031 } 4032 4033 /** 4034 * sys_sched_getparam - get the RT priority of a thread 4035 * @pid: the pid in question. 4036 * @param: structure containing the RT priority. 4037 */ 4038 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4039 { 4040 struct sched_param lp; 4041 struct task_struct *p; 4042 int retval; 4043 4044 if (!param || pid < 0) 4045 return -EINVAL; 4046 4047 rcu_read_lock(); 4048 p = find_process_by_pid(pid); 4049 retval = -ESRCH; 4050 if (!p) 4051 goto out_unlock; 4052 4053 retval = security_task_getscheduler(p); 4054 if (retval) 4055 goto out_unlock; 4056 4057 lp.sched_priority = p->rt_priority; 4058 rcu_read_unlock(); 4059 4060 /* 4061 * This one might sleep, we cannot do it with a spinlock held ... 4062 */ 4063 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4064 4065 return retval; 4066 4067 out_unlock: 4068 rcu_read_unlock(); 4069 return retval; 4070 } 4071 4072 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4073 { 4074 cpumask_var_t cpus_allowed, new_mask; 4075 struct task_struct *p; 4076 int retval; 4077 4078 get_online_cpus(); 4079 rcu_read_lock(); 4080 4081 p = find_process_by_pid(pid); 4082 if (!p) { 4083 rcu_read_unlock(); 4084 put_online_cpus(); 4085 return -ESRCH; 4086 } 4087 4088 /* Prevent p going away */ 4089 get_task_struct(p); 4090 rcu_read_unlock(); 4091 4092 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4093 retval = -ENOMEM; 4094 goto out_put_task; 4095 } 4096 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4097 retval = -ENOMEM; 4098 goto out_free_cpus_allowed; 4099 } 4100 retval = -EPERM; 4101 if (!check_same_owner(p)) { 4102 rcu_read_lock(); 4103 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4104 rcu_read_unlock(); 4105 goto out_unlock; 4106 } 4107 rcu_read_unlock(); 4108 } 4109 4110 retval = security_task_setscheduler(p); 4111 if (retval) 4112 goto out_unlock; 4113 4114 cpuset_cpus_allowed(p, cpus_allowed); 4115 cpumask_and(new_mask, in_mask, cpus_allowed); 4116 again: 4117 retval = set_cpus_allowed_ptr(p, new_mask); 4118 4119 if (!retval) { 4120 cpuset_cpus_allowed(p, cpus_allowed); 4121 if (!cpumask_subset(new_mask, cpus_allowed)) { 4122 /* 4123 * We must have raced with a concurrent cpuset 4124 * update. Just reset the cpus_allowed to the 4125 * cpuset's cpus_allowed 4126 */ 4127 cpumask_copy(new_mask, cpus_allowed); 4128 goto again; 4129 } 4130 } 4131 out_unlock: 4132 free_cpumask_var(new_mask); 4133 out_free_cpus_allowed: 4134 free_cpumask_var(cpus_allowed); 4135 out_put_task: 4136 put_task_struct(p); 4137 put_online_cpus(); 4138 return retval; 4139 } 4140 4141 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4142 struct cpumask *new_mask) 4143 { 4144 if (len < cpumask_size()) 4145 cpumask_clear(new_mask); 4146 else if (len > cpumask_size()) 4147 len = cpumask_size(); 4148 4149 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4150 } 4151 4152 /** 4153 * sys_sched_setaffinity - set the cpu affinity of a process 4154 * @pid: pid of the process 4155 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4156 * @user_mask_ptr: user-space pointer to the new cpu mask 4157 */ 4158 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4159 unsigned long __user *, user_mask_ptr) 4160 { 4161 cpumask_var_t new_mask; 4162 int retval; 4163 4164 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4165 return -ENOMEM; 4166 4167 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4168 if (retval == 0) 4169 retval = sched_setaffinity(pid, new_mask); 4170 free_cpumask_var(new_mask); 4171 return retval; 4172 } 4173 4174 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4175 { 4176 struct task_struct *p; 4177 unsigned long flags; 4178 int retval; 4179 4180 get_online_cpus(); 4181 rcu_read_lock(); 4182 4183 retval = -ESRCH; 4184 p = find_process_by_pid(pid); 4185 if (!p) 4186 goto out_unlock; 4187 4188 retval = security_task_getscheduler(p); 4189 if (retval) 4190 goto out_unlock; 4191 4192 raw_spin_lock_irqsave(&p->pi_lock, flags); 4193 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4194 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4195 4196 out_unlock: 4197 rcu_read_unlock(); 4198 put_online_cpus(); 4199 4200 return retval; 4201 } 4202 4203 /** 4204 * sys_sched_getaffinity - get the cpu affinity of a process 4205 * @pid: pid of the process 4206 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4207 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4208 */ 4209 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4210 unsigned long __user *, user_mask_ptr) 4211 { 4212 int ret; 4213 cpumask_var_t mask; 4214 4215 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4216 return -EINVAL; 4217 if (len & (sizeof(unsigned long)-1)) 4218 return -EINVAL; 4219 4220 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4221 return -ENOMEM; 4222 4223 ret = sched_getaffinity(pid, mask); 4224 if (ret == 0) { 4225 size_t retlen = min_t(size_t, len, cpumask_size()); 4226 4227 if (copy_to_user(user_mask_ptr, mask, retlen)) 4228 ret = -EFAULT; 4229 else 4230 ret = retlen; 4231 } 4232 free_cpumask_var(mask); 4233 4234 return ret; 4235 } 4236 4237 /** 4238 * sys_sched_yield - yield the current processor to other threads. 4239 * 4240 * This function yields the current CPU to other tasks. If there are no 4241 * other threads running on this CPU then this function will return. 4242 */ 4243 SYSCALL_DEFINE0(sched_yield) 4244 { 4245 struct rq *rq = this_rq_lock(); 4246 4247 schedstat_inc(rq, yld_count); 4248 current->sched_class->yield_task(rq); 4249 4250 /* 4251 * Since we are going to call schedule() anyway, there's 4252 * no need to preempt or enable interrupts: 4253 */ 4254 __release(rq->lock); 4255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4256 do_raw_spin_unlock(&rq->lock); 4257 sched_preempt_enable_no_resched(); 4258 4259 schedule(); 4260 4261 return 0; 4262 } 4263 4264 static inline int should_resched(void) 4265 { 4266 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4267 } 4268 4269 static void __cond_resched(void) 4270 { 4271 add_preempt_count(PREEMPT_ACTIVE); 4272 __schedule(); 4273 sub_preempt_count(PREEMPT_ACTIVE); 4274 } 4275 4276 int __sched _cond_resched(void) 4277 { 4278 if (should_resched()) { 4279 __cond_resched(); 4280 return 1; 4281 } 4282 return 0; 4283 } 4284 EXPORT_SYMBOL(_cond_resched); 4285 4286 /* 4287 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4288 * call schedule, and on return reacquire the lock. 4289 * 4290 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4291 * operations here to prevent schedule() from being called twice (once via 4292 * spin_unlock(), once by hand). 4293 */ 4294 int __cond_resched_lock(spinlock_t *lock) 4295 { 4296 int resched = should_resched(); 4297 int ret = 0; 4298 4299 lockdep_assert_held(lock); 4300 4301 if (spin_needbreak(lock) || resched) { 4302 spin_unlock(lock); 4303 if (resched) 4304 __cond_resched(); 4305 else 4306 cpu_relax(); 4307 ret = 1; 4308 spin_lock(lock); 4309 } 4310 return ret; 4311 } 4312 EXPORT_SYMBOL(__cond_resched_lock); 4313 4314 int __sched __cond_resched_softirq(void) 4315 { 4316 BUG_ON(!in_softirq()); 4317 4318 if (should_resched()) { 4319 local_bh_enable(); 4320 __cond_resched(); 4321 local_bh_disable(); 4322 return 1; 4323 } 4324 return 0; 4325 } 4326 EXPORT_SYMBOL(__cond_resched_softirq); 4327 4328 /** 4329 * yield - yield the current processor to other threads. 4330 * 4331 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4332 * 4333 * The scheduler is at all times free to pick the calling task as the most 4334 * eligible task to run, if removing the yield() call from your code breaks 4335 * it, its already broken. 4336 * 4337 * Typical broken usage is: 4338 * 4339 * while (!event) 4340 * yield(); 4341 * 4342 * where one assumes that yield() will let 'the other' process run that will 4343 * make event true. If the current task is a SCHED_FIFO task that will never 4344 * happen. Never use yield() as a progress guarantee!! 4345 * 4346 * If you want to use yield() to wait for something, use wait_event(). 4347 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4348 * If you still want to use yield(), do not! 4349 */ 4350 void __sched yield(void) 4351 { 4352 set_current_state(TASK_RUNNING); 4353 sys_sched_yield(); 4354 } 4355 EXPORT_SYMBOL(yield); 4356 4357 /** 4358 * yield_to - yield the current processor to another thread in 4359 * your thread group, or accelerate that thread toward the 4360 * processor it's on. 4361 * @p: target task 4362 * @preempt: whether task preemption is allowed or not 4363 * 4364 * It's the caller's job to ensure that the target task struct 4365 * can't go away on us before we can do any checks. 4366 * 4367 * Returns true if we indeed boosted the target task. 4368 */ 4369 bool __sched yield_to(struct task_struct *p, bool preempt) 4370 { 4371 struct task_struct *curr = current; 4372 struct rq *rq, *p_rq; 4373 unsigned long flags; 4374 int yielded = 0; 4375 4376 local_irq_save(flags); 4377 rq = this_rq(); 4378 4379 again: 4380 p_rq = task_rq(p); 4381 double_rq_lock(rq, p_rq); 4382 while (task_rq(p) != p_rq) { 4383 double_rq_unlock(rq, p_rq); 4384 goto again; 4385 } 4386 4387 if (!curr->sched_class->yield_to_task) 4388 goto out; 4389 4390 if (curr->sched_class != p->sched_class) 4391 goto out; 4392 4393 if (task_running(p_rq, p) || p->state) 4394 goto out; 4395 4396 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4397 if (yielded) { 4398 schedstat_inc(rq, yld_count); 4399 /* 4400 * Make p's CPU reschedule; pick_next_entity takes care of 4401 * fairness. 4402 */ 4403 if (preempt && rq != p_rq) 4404 resched_task(p_rq->curr); 4405 } 4406 4407 out: 4408 double_rq_unlock(rq, p_rq); 4409 local_irq_restore(flags); 4410 4411 if (yielded) 4412 schedule(); 4413 4414 return yielded; 4415 } 4416 EXPORT_SYMBOL_GPL(yield_to); 4417 4418 /* 4419 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4420 * that process accounting knows that this is a task in IO wait state. 4421 */ 4422 void __sched io_schedule(void) 4423 { 4424 struct rq *rq = raw_rq(); 4425 4426 delayacct_blkio_start(); 4427 atomic_inc(&rq->nr_iowait); 4428 blk_flush_plug(current); 4429 current->in_iowait = 1; 4430 schedule(); 4431 current->in_iowait = 0; 4432 atomic_dec(&rq->nr_iowait); 4433 delayacct_blkio_end(); 4434 } 4435 EXPORT_SYMBOL(io_schedule); 4436 4437 long __sched io_schedule_timeout(long timeout) 4438 { 4439 struct rq *rq = raw_rq(); 4440 long ret; 4441 4442 delayacct_blkio_start(); 4443 atomic_inc(&rq->nr_iowait); 4444 blk_flush_plug(current); 4445 current->in_iowait = 1; 4446 ret = schedule_timeout(timeout); 4447 current->in_iowait = 0; 4448 atomic_dec(&rq->nr_iowait); 4449 delayacct_blkio_end(); 4450 return ret; 4451 } 4452 4453 /** 4454 * sys_sched_get_priority_max - return maximum RT priority. 4455 * @policy: scheduling class. 4456 * 4457 * this syscall returns the maximum rt_priority that can be used 4458 * by a given scheduling class. 4459 */ 4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4461 { 4462 int ret = -EINVAL; 4463 4464 switch (policy) { 4465 case SCHED_FIFO: 4466 case SCHED_RR: 4467 ret = MAX_USER_RT_PRIO-1; 4468 break; 4469 case SCHED_NORMAL: 4470 case SCHED_BATCH: 4471 case SCHED_IDLE: 4472 ret = 0; 4473 break; 4474 } 4475 return ret; 4476 } 4477 4478 /** 4479 * sys_sched_get_priority_min - return minimum RT priority. 4480 * @policy: scheduling class. 4481 * 4482 * this syscall returns the minimum rt_priority that can be used 4483 * by a given scheduling class. 4484 */ 4485 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4486 { 4487 int ret = -EINVAL; 4488 4489 switch (policy) { 4490 case SCHED_FIFO: 4491 case SCHED_RR: 4492 ret = 1; 4493 break; 4494 case SCHED_NORMAL: 4495 case SCHED_BATCH: 4496 case SCHED_IDLE: 4497 ret = 0; 4498 } 4499 return ret; 4500 } 4501 4502 /** 4503 * sys_sched_rr_get_interval - return the default timeslice of a process. 4504 * @pid: pid of the process. 4505 * @interval: userspace pointer to the timeslice value. 4506 * 4507 * this syscall writes the default timeslice value of a given process 4508 * into the user-space timespec buffer. A value of '0' means infinity. 4509 */ 4510 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4511 struct timespec __user *, interval) 4512 { 4513 struct task_struct *p; 4514 unsigned int time_slice; 4515 unsigned long flags; 4516 struct rq *rq; 4517 int retval; 4518 struct timespec t; 4519 4520 if (pid < 0) 4521 return -EINVAL; 4522 4523 retval = -ESRCH; 4524 rcu_read_lock(); 4525 p = find_process_by_pid(pid); 4526 if (!p) 4527 goto out_unlock; 4528 4529 retval = security_task_getscheduler(p); 4530 if (retval) 4531 goto out_unlock; 4532 4533 rq = task_rq_lock(p, &flags); 4534 time_slice = p->sched_class->get_rr_interval(rq, p); 4535 task_rq_unlock(rq, p, &flags); 4536 4537 rcu_read_unlock(); 4538 jiffies_to_timespec(time_slice, &t); 4539 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4540 return retval; 4541 4542 out_unlock: 4543 rcu_read_unlock(); 4544 return retval; 4545 } 4546 4547 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4548 4549 void sched_show_task(struct task_struct *p) 4550 { 4551 unsigned long free = 0; 4552 int ppid; 4553 unsigned state; 4554 4555 state = p->state ? __ffs(p->state) + 1 : 0; 4556 printk(KERN_INFO "%-15.15s %c", p->comm, 4557 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4558 #if BITS_PER_LONG == 32 4559 if (state == TASK_RUNNING) 4560 printk(KERN_CONT " running "); 4561 else 4562 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4563 #else 4564 if (state == TASK_RUNNING) 4565 printk(KERN_CONT " running task "); 4566 else 4567 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4568 #endif 4569 #ifdef CONFIG_DEBUG_STACK_USAGE 4570 free = stack_not_used(p); 4571 #endif 4572 rcu_read_lock(); 4573 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4574 rcu_read_unlock(); 4575 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4576 task_pid_nr(p), ppid, 4577 (unsigned long)task_thread_info(p)->flags); 4578 4579 show_stack(p, NULL); 4580 } 4581 4582 void show_state_filter(unsigned long state_filter) 4583 { 4584 struct task_struct *g, *p; 4585 4586 #if BITS_PER_LONG == 32 4587 printk(KERN_INFO 4588 " task PC stack pid father\n"); 4589 #else 4590 printk(KERN_INFO 4591 " task PC stack pid father\n"); 4592 #endif 4593 rcu_read_lock(); 4594 do_each_thread(g, p) { 4595 /* 4596 * reset the NMI-timeout, listing all files on a slow 4597 * console might take a lot of time: 4598 */ 4599 touch_nmi_watchdog(); 4600 if (!state_filter || (p->state & state_filter)) 4601 sched_show_task(p); 4602 } while_each_thread(g, p); 4603 4604 touch_all_softlockup_watchdogs(); 4605 4606 #ifdef CONFIG_SCHED_DEBUG 4607 sysrq_sched_debug_show(); 4608 #endif 4609 rcu_read_unlock(); 4610 /* 4611 * Only show locks if all tasks are dumped: 4612 */ 4613 if (!state_filter) 4614 debug_show_all_locks(); 4615 } 4616 4617 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4618 { 4619 idle->sched_class = &idle_sched_class; 4620 } 4621 4622 /** 4623 * init_idle - set up an idle thread for a given CPU 4624 * @idle: task in question 4625 * @cpu: cpu the idle task belongs to 4626 * 4627 * NOTE: this function does not set the idle thread's NEED_RESCHED 4628 * flag, to make booting more robust. 4629 */ 4630 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4631 { 4632 struct rq *rq = cpu_rq(cpu); 4633 unsigned long flags; 4634 4635 raw_spin_lock_irqsave(&rq->lock, flags); 4636 4637 __sched_fork(idle); 4638 idle->state = TASK_RUNNING; 4639 idle->se.exec_start = sched_clock(); 4640 4641 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4642 /* 4643 * We're having a chicken and egg problem, even though we are 4644 * holding rq->lock, the cpu isn't yet set to this cpu so the 4645 * lockdep check in task_group() will fail. 4646 * 4647 * Similar case to sched_fork(). / Alternatively we could 4648 * use task_rq_lock() here and obtain the other rq->lock. 4649 * 4650 * Silence PROVE_RCU 4651 */ 4652 rcu_read_lock(); 4653 __set_task_cpu(idle, cpu); 4654 rcu_read_unlock(); 4655 4656 rq->curr = rq->idle = idle; 4657 #if defined(CONFIG_SMP) 4658 idle->on_cpu = 1; 4659 #endif 4660 raw_spin_unlock_irqrestore(&rq->lock, flags); 4661 4662 /* Set the preempt count _outside_ the spinlocks! */ 4663 task_thread_info(idle)->preempt_count = 0; 4664 4665 /* 4666 * The idle tasks have their own, simple scheduling class: 4667 */ 4668 idle->sched_class = &idle_sched_class; 4669 ftrace_graph_init_idle_task(idle, cpu); 4670 vtime_init_idle(idle); 4671 #if defined(CONFIG_SMP) 4672 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4673 #endif 4674 } 4675 4676 #ifdef CONFIG_SMP 4677 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4678 { 4679 if (p->sched_class && p->sched_class->set_cpus_allowed) 4680 p->sched_class->set_cpus_allowed(p, new_mask); 4681 4682 cpumask_copy(&p->cpus_allowed, new_mask); 4683 p->nr_cpus_allowed = cpumask_weight(new_mask); 4684 } 4685 4686 /* 4687 * This is how migration works: 4688 * 4689 * 1) we invoke migration_cpu_stop() on the target CPU using 4690 * stop_one_cpu(). 4691 * 2) stopper starts to run (implicitly forcing the migrated thread 4692 * off the CPU) 4693 * 3) it checks whether the migrated task is still in the wrong runqueue. 4694 * 4) if it's in the wrong runqueue then the migration thread removes 4695 * it and puts it into the right queue. 4696 * 5) stopper completes and stop_one_cpu() returns and the migration 4697 * is done. 4698 */ 4699 4700 /* 4701 * Change a given task's CPU affinity. Migrate the thread to a 4702 * proper CPU and schedule it away if the CPU it's executing on 4703 * is removed from the allowed bitmask. 4704 * 4705 * NOTE: the caller must have a valid reference to the task, the 4706 * task must not exit() & deallocate itself prematurely. The 4707 * call is not atomic; no spinlocks may be held. 4708 */ 4709 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4710 { 4711 unsigned long flags; 4712 struct rq *rq; 4713 unsigned int dest_cpu; 4714 int ret = 0; 4715 4716 rq = task_rq_lock(p, &flags); 4717 4718 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4719 goto out; 4720 4721 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4722 ret = -EINVAL; 4723 goto out; 4724 } 4725 4726 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4727 ret = -EINVAL; 4728 goto out; 4729 } 4730 4731 do_set_cpus_allowed(p, new_mask); 4732 4733 /* Can the task run on the task's current CPU? If so, we're done */ 4734 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4735 goto out; 4736 4737 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4738 if (p->on_rq) { 4739 struct migration_arg arg = { p, dest_cpu }; 4740 /* Need help from migration thread: drop lock and wait. */ 4741 task_rq_unlock(rq, p, &flags); 4742 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4743 tlb_migrate_finish(p->mm); 4744 return 0; 4745 } 4746 out: 4747 task_rq_unlock(rq, p, &flags); 4748 4749 return ret; 4750 } 4751 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4752 4753 /* 4754 * Move (not current) task off this cpu, onto dest cpu. We're doing 4755 * this because either it can't run here any more (set_cpus_allowed() 4756 * away from this CPU, or CPU going down), or because we're 4757 * attempting to rebalance this task on exec (sched_exec). 4758 * 4759 * So we race with normal scheduler movements, but that's OK, as long 4760 * as the task is no longer on this CPU. 4761 * 4762 * Returns non-zero if task was successfully migrated. 4763 */ 4764 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4765 { 4766 struct rq *rq_dest, *rq_src; 4767 int ret = 0; 4768 4769 if (unlikely(!cpu_active(dest_cpu))) 4770 return ret; 4771 4772 rq_src = cpu_rq(src_cpu); 4773 rq_dest = cpu_rq(dest_cpu); 4774 4775 raw_spin_lock(&p->pi_lock); 4776 double_rq_lock(rq_src, rq_dest); 4777 /* Already moved. */ 4778 if (task_cpu(p) != src_cpu) 4779 goto done; 4780 /* Affinity changed (again). */ 4781 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4782 goto fail; 4783 4784 /* 4785 * If we're not on a rq, the next wake-up will ensure we're 4786 * placed properly. 4787 */ 4788 if (p->on_rq) { 4789 dequeue_task(rq_src, p, 0); 4790 set_task_cpu(p, dest_cpu); 4791 enqueue_task(rq_dest, p, 0); 4792 check_preempt_curr(rq_dest, p, 0); 4793 } 4794 done: 4795 ret = 1; 4796 fail: 4797 double_rq_unlock(rq_src, rq_dest); 4798 raw_spin_unlock(&p->pi_lock); 4799 return ret; 4800 } 4801 4802 /* 4803 * migration_cpu_stop - this will be executed by a highprio stopper thread 4804 * and performs thread migration by bumping thread off CPU then 4805 * 'pushing' onto another runqueue. 4806 */ 4807 static int migration_cpu_stop(void *data) 4808 { 4809 struct migration_arg *arg = data; 4810 4811 /* 4812 * The original target cpu might have gone down and we might 4813 * be on another cpu but it doesn't matter. 4814 */ 4815 local_irq_disable(); 4816 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4817 local_irq_enable(); 4818 return 0; 4819 } 4820 4821 #ifdef CONFIG_HOTPLUG_CPU 4822 4823 /* 4824 * Ensures that the idle task is using init_mm right before its cpu goes 4825 * offline. 4826 */ 4827 void idle_task_exit(void) 4828 { 4829 struct mm_struct *mm = current->active_mm; 4830 4831 BUG_ON(cpu_online(smp_processor_id())); 4832 4833 if (mm != &init_mm) 4834 switch_mm(mm, &init_mm, current); 4835 mmdrop(mm); 4836 } 4837 4838 /* 4839 * Since this CPU is going 'away' for a while, fold any nr_active delta 4840 * we might have. Assumes we're called after migrate_tasks() so that the 4841 * nr_active count is stable. 4842 * 4843 * Also see the comment "Global load-average calculations". 4844 */ 4845 static void calc_load_migrate(struct rq *rq) 4846 { 4847 long delta = calc_load_fold_active(rq); 4848 if (delta) 4849 atomic_long_add(delta, &calc_load_tasks); 4850 } 4851 4852 /* 4853 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4854 * try_to_wake_up()->select_task_rq(). 4855 * 4856 * Called with rq->lock held even though we'er in stop_machine() and 4857 * there's no concurrency possible, we hold the required locks anyway 4858 * because of lock validation efforts. 4859 */ 4860 static void migrate_tasks(unsigned int dead_cpu) 4861 { 4862 struct rq *rq = cpu_rq(dead_cpu); 4863 struct task_struct *next, *stop = rq->stop; 4864 int dest_cpu; 4865 4866 /* 4867 * Fudge the rq selection such that the below task selection loop 4868 * doesn't get stuck on the currently eligible stop task. 4869 * 4870 * We're currently inside stop_machine() and the rq is either stuck 4871 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4872 * either way we should never end up calling schedule() until we're 4873 * done here. 4874 */ 4875 rq->stop = NULL; 4876 4877 for ( ; ; ) { 4878 /* 4879 * There's this thread running, bail when that's the only 4880 * remaining thread. 4881 */ 4882 if (rq->nr_running == 1) 4883 break; 4884 4885 next = pick_next_task(rq); 4886 BUG_ON(!next); 4887 next->sched_class->put_prev_task(rq, next); 4888 4889 /* Find suitable destination for @next, with force if needed. */ 4890 dest_cpu = select_fallback_rq(dead_cpu, next); 4891 raw_spin_unlock(&rq->lock); 4892 4893 __migrate_task(next, dead_cpu, dest_cpu); 4894 4895 raw_spin_lock(&rq->lock); 4896 } 4897 4898 rq->stop = stop; 4899 } 4900 4901 #endif /* CONFIG_HOTPLUG_CPU */ 4902 4903 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4904 4905 static struct ctl_table sd_ctl_dir[] = { 4906 { 4907 .procname = "sched_domain", 4908 .mode = 0555, 4909 }, 4910 {} 4911 }; 4912 4913 static struct ctl_table sd_ctl_root[] = { 4914 { 4915 .procname = "kernel", 4916 .mode = 0555, 4917 .child = sd_ctl_dir, 4918 }, 4919 {} 4920 }; 4921 4922 static struct ctl_table *sd_alloc_ctl_entry(int n) 4923 { 4924 struct ctl_table *entry = 4925 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4926 4927 return entry; 4928 } 4929 4930 static void sd_free_ctl_entry(struct ctl_table **tablep) 4931 { 4932 struct ctl_table *entry; 4933 4934 /* 4935 * In the intermediate directories, both the child directory and 4936 * procname are dynamically allocated and could fail but the mode 4937 * will always be set. In the lowest directory the names are 4938 * static strings and all have proc handlers. 4939 */ 4940 for (entry = *tablep; entry->mode; entry++) { 4941 if (entry->child) 4942 sd_free_ctl_entry(&entry->child); 4943 if (entry->proc_handler == NULL) 4944 kfree(entry->procname); 4945 } 4946 4947 kfree(*tablep); 4948 *tablep = NULL; 4949 } 4950 4951 static int min_load_idx = 0; 4952 static int max_load_idx = CPU_LOAD_IDX_MAX; 4953 4954 static void 4955 set_table_entry(struct ctl_table *entry, 4956 const char *procname, void *data, int maxlen, 4957 umode_t mode, proc_handler *proc_handler, 4958 bool load_idx) 4959 { 4960 entry->procname = procname; 4961 entry->data = data; 4962 entry->maxlen = maxlen; 4963 entry->mode = mode; 4964 entry->proc_handler = proc_handler; 4965 4966 if (load_idx) { 4967 entry->extra1 = &min_load_idx; 4968 entry->extra2 = &max_load_idx; 4969 } 4970 } 4971 4972 static struct ctl_table * 4973 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4974 { 4975 struct ctl_table *table = sd_alloc_ctl_entry(13); 4976 4977 if (table == NULL) 4978 return NULL; 4979 4980 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4981 sizeof(long), 0644, proc_doulongvec_minmax, false); 4982 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4983 sizeof(long), 0644, proc_doulongvec_minmax, false); 4984 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4985 sizeof(int), 0644, proc_dointvec_minmax, true); 4986 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4987 sizeof(int), 0644, proc_dointvec_minmax, true); 4988 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4989 sizeof(int), 0644, proc_dointvec_minmax, true); 4990 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4991 sizeof(int), 0644, proc_dointvec_minmax, true); 4992 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4993 sizeof(int), 0644, proc_dointvec_minmax, true); 4994 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4995 sizeof(int), 0644, proc_dointvec_minmax, false); 4996 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4997 sizeof(int), 0644, proc_dointvec_minmax, false); 4998 set_table_entry(&table[9], "cache_nice_tries", 4999 &sd->cache_nice_tries, 5000 sizeof(int), 0644, proc_dointvec_minmax, false); 5001 set_table_entry(&table[10], "flags", &sd->flags, 5002 sizeof(int), 0644, proc_dointvec_minmax, false); 5003 set_table_entry(&table[11], "name", sd->name, 5004 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5005 /* &table[12] is terminator */ 5006 5007 return table; 5008 } 5009 5010 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5011 { 5012 struct ctl_table *entry, *table; 5013 struct sched_domain *sd; 5014 int domain_num = 0, i; 5015 char buf[32]; 5016 5017 for_each_domain(cpu, sd) 5018 domain_num++; 5019 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5020 if (table == NULL) 5021 return NULL; 5022 5023 i = 0; 5024 for_each_domain(cpu, sd) { 5025 snprintf(buf, 32, "domain%d", i); 5026 entry->procname = kstrdup(buf, GFP_KERNEL); 5027 entry->mode = 0555; 5028 entry->child = sd_alloc_ctl_domain_table(sd); 5029 entry++; 5030 i++; 5031 } 5032 return table; 5033 } 5034 5035 static struct ctl_table_header *sd_sysctl_header; 5036 static void register_sched_domain_sysctl(void) 5037 { 5038 int i, cpu_num = num_possible_cpus(); 5039 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5040 char buf[32]; 5041 5042 WARN_ON(sd_ctl_dir[0].child); 5043 sd_ctl_dir[0].child = entry; 5044 5045 if (entry == NULL) 5046 return; 5047 5048 for_each_possible_cpu(i) { 5049 snprintf(buf, 32, "cpu%d", i); 5050 entry->procname = kstrdup(buf, GFP_KERNEL); 5051 entry->mode = 0555; 5052 entry->child = sd_alloc_ctl_cpu_table(i); 5053 entry++; 5054 } 5055 5056 WARN_ON(sd_sysctl_header); 5057 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5058 } 5059 5060 /* may be called multiple times per register */ 5061 static void unregister_sched_domain_sysctl(void) 5062 { 5063 if (sd_sysctl_header) 5064 unregister_sysctl_table(sd_sysctl_header); 5065 sd_sysctl_header = NULL; 5066 if (sd_ctl_dir[0].child) 5067 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5068 } 5069 #else 5070 static void register_sched_domain_sysctl(void) 5071 { 5072 } 5073 static void unregister_sched_domain_sysctl(void) 5074 { 5075 } 5076 #endif 5077 5078 static void set_rq_online(struct rq *rq) 5079 { 5080 if (!rq->online) { 5081 const struct sched_class *class; 5082 5083 cpumask_set_cpu(rq->cpu, rq->rd->online); 5084 rq->online = 1; 5085 5086 for_each_class(class) { 5087 if (class->rq_online) 5088 class->rq_online(rq); 5089 } 5090 } 5091 } 5092 5093 static void set_rq_offline(struct rq *rq) 5094 { 5095 if (rq->online) { 5096 const struct sched_class *class; 5097 5098 for_each_class(class) { 5099 if (class->rq_offline) 5100 class->rq_offline(rq); 5101 } 5102 5103 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5104 rq->online = 0; 5105 } 5106 } 5107 5108 /* 5109 * migration_call - callback that gets triggered when a CPU is added. 5110 * Here we can start up the necessary migration thread for the new CPU. 5111 */ 5112 static int __cpuinit 5113 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5114 { 5115 int cpu = (long)hcpu; 5116 unsigned long flags; 5117 struct rq *rq = cpu_rq(cpu); 5118 5119 switch (action & ~CPU_TASKS_FROZEN) { 5120 5121 case CPU_UP_PREPARE: 5122 rq->calc_load_update = calc_load_update; 5123 break; 5124 5125 case CPU_ONLINE: 5126 /* Update our root-domain */ 5127 raw_spin_lock_irqsave(&rq->lock, flags); 5128 if (rq->rd) { 5129 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5130 5131 set_rq_online(rq); 5132 } 5133 raw_spin_unlock_irqrestore(&rq->lock, flags); 5134 break; 5135 5136 #ifdef CONFIG_HOTPLUG_CPU 5137 case CPU_DYING: 5138 sched_ttwu_pending(); 5139 /* Update our root-domain */ 5140 raw_spin_lock_irqsave(&rq->lock, flags); 5141 if (rq->rd) { 5142 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5143 set_rq_offline(rq); 5144 } 5145 migrate_tasks(cpu); 5146 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5147 raw_spin_unlock_irqrestore(&rq->lock, flags); 5148 break; 5149 5150 case CPU_DEAD: 5151 calc_load_migrate(rq); 5152 break; 5153 #endif 5154 } 5155 5156 update_max_interval(); 5157 5158 return NOTIFY_OK; 5159 } 5160 5161 /* 5162 * Register at high priority so that task migration (migrate_all_tasks) 5163 * happens before everything else. This has to be lower priority than 5164 * the notifier in the perf_event subsystem, though. 5165 */ 5166 static struct notifier_block __cpuinitdata migration_notifier = { 5167 .notifier_call = migration_call, 5168 .priority = CPU_PRI_MIGRATION, 5169 }; 5170 5171 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5172 unsigned long action, void *hcpu) 5173 { 5174 switch (action & ~CPU_TASKS_FROZEN) { 5175 case CPU_STARTING: 5176 case CPU_DOWN_FAILED: 5177 set_cpu_active((long)hcpu, true); 5178 return NOTIFY_OK; 5179 default: 5180 return NOTIFY_DONE; 5181 } 5182 } 5183 5184 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5185 unsigned long action, void *hcpu) 5186 { 5187 switch (action & ~CPU_TASKS_FROZEN) { 5188 case CPU_DOWN_PREPARE: 5189 set_cpu_active((long)hcpu, false); 5190 return NOTIFY_OK; 5191 default: 5192 return NOTIFY_DONE; 5193 } 5194 } 5195 5196 static int __init migration_init(void) 5197 { 5198 void *cpu = (void *)(long)smp_processor_id(); 5199 int err; 5200 5201 /* Initialize migration for the boot CPU */ 5202 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5203 BUG_ON(err == NOTIFY_BAD); 5204 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5205 register_cpu_notifier(&migration_notifier); 5206 5207 /* Register cpu active notifiers */ 5208 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5209 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5210 5211 return 0; 5212 } 5213 early_initcall(migration_init); 5214 #endif 5215 5216 #ifdef CONFIG_SMP 5217 5218 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5219 5220 #ifdef CONFIG_SCHED_DEBUG 5221 5222 static __read_mostly int sched_debug_enabled; 5223 5224 static int __init sched_debug_setup(char *str) 5225 { 5226 sched_debug_enabled = 1; 5227 5228 return 0; 5229 } 5230 early_param("sched_debug", sched_debug_setup); 5231 5232 static inline bool sched_debug(void) 5233 { 5234 return sched_debug_enabled; 5235 } 5236 5237 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5238 struct cpumask *groupmask) 5239 { 5240 struct sched_group *group = sd->groups; 5241 char str[256]; 5242 5243 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5244 cpumask_clear(groupmask); 5245 5246 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5247 5248 if (!(sd->flags & SD_LOAD_BALANCE)) { 5249 printk("does not load-balance\n"); 5250 if (sd->parent) 5251 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5252 " has parent"); 5253 return -1; 5254 } 5255 5256 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5257 5258 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5259 printk(KERN_ERR "ERROR: domain->span does not contain " 5260 "CPU%d\n", cpu); 5261 } 5262 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5263 printk(KERN_ERR "ERROR: domain->groups does not contain" 5264 " CPU%d\n", cpu); 5265 } 5266 5267 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5268 do { 5269 if (!group) { 5270 printk("\n"); 5271 printk(KERN_ERR "ERROR: group is NULL\n"); 5272 break; 5273 } 5274 5275 /* 5276 * Even though we initialize ->power to something semi-sane, 5277 * we leave power_orig unset. This allows us to detect if 5278 * domain iteration is still funny without causing /0 traps. 5279 */ 5280 if (!group->sgp->power_orig) { 5281 printk(KERN_CONT "\n"); 5282 printk(KERN_ERR "ERROR: domain->cpu_power not " 5283 "set\n"); 5284 break; 5285 } 5286 5287 if (!cpumask_weight(sched_group_cpus(group))) { 5288 printk(KERN_CONT "\n"); 5289 printk(KERN_ERR "ERROR: empty group\n"); 5290 break; 5291 } 5292 5293 if (!(sd->flags & SD_OVERLAP) && 5294 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5295 printk(KERN_CONT "\n"); 5296 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5297 break; 5298 } 5299 5300 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5301 5302 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5303 5304 printk(KERN_CONT " %s", str); 5305 if (group->sgp->power != SCHED_POWER_SCALE) { 5306 printk(KERN_CONT " (cpu_power = %d)", 5307 group->sgp->power); 5308 } 5309 5310 group = group->next; 5311 } while (group != sd->groups); 5312 printk(KERN_CONT "\n"); 5313 5314 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5315 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5316 5317 if (sd->parent && 5318 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5319 printk(KERN_ERR "ERROR: parent span is not a superset " 5320 "of domain->span\n"); 5321 return 0; 5322 } 5323 5324 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5325 { 5326 int level = 0; 5327 5328 if (!sched_debug_enabled) 5329 return; 5330 5331 if (!sd) { 5332 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5333 return; 5334 } 5335 5336 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5337 5338 for (;;) { 5339 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5340 break; 5341 level++; 5342 sd = sd->parent; 5343 if (!sd) 5344 break; 5345 } 5346 } 5347 #else /* !CONFIG_SCHED_DEBUG */ 5348 # define sched_domain_debug(sd, cpu) do { } while (0) 5349 static inline bool sched_debug(void) 5350 { 5351 return false; 5352 } 5353 #endif /* CONFIG_SCHED_DEBUG */ 5354 5355 static int sd_degenerate(struct sched_domain *sd) 5356 { 5357 if (cpumask_weight(sched_domain_span(sd)) == 1) 5358 return 1; 5359 5360 /* Following flags need at least 2 groups */ 5361 if (sd->flags & (SD_LOAD_BALANCE | 5362 SD_BALANCE_NEWIDLE | 5363 SD_BALANCE_FORK | 5364 SD_BALANCE_EXEC | 5365 SD_SHARE_CPUPOWER | 5366 SD_SHARE_PKG_RESOURCES)) { 5367 if (sd->groups != sd->groups->next) 5368 return 0; 5369 } 5370 5371 /* Following flags don't use groups */ 5372 if (sd->flags & (SD_WAKE_AFFINE)) 5373 return 0; 5374 5375 return 1; 5376 } 5377 5378 static int 5379 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5380 { 5381 unsigned long cflags = sd->flags, pflags = parent->flags; 5382 5383 if (sd_degenerate(parent)) 5384 return 1; 5385 5386 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5387 return 0; 5388 5389 /* Flags needing groups don't count if only 1 group in parent */ 5390 if (parent->groups == parent->groups->next) { 5391 pflags &= ~(SD_LOAD_BALANCE | 5392 SD_BALANCE_NEWIDLE | 5393 SD_BALANCE_FORK | 5394 SD_BALANCE_EXEC | 5395 SD_SHARE_CPUPOWER | 5396 SD_SHARE_PKG_RESOURCES); 5397 if (nr_node_ids == 1) 5398 pflags &= ~SD_SERIALIZE; 5399 } 5400 if (~cflags & pflags) 5401 return 0; 5402 5403 return 1; 5404 } 5405 5406 static void free_rootdomain(struct rcu_head *rcu) 5407 { 5408 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5409 5410 cpupri_cleanup(&rd->cpupri); 5411 free_cpumask_var(rd->rto_mask); 5412 free_cpumask_var(rd->online); 5413 free_cpumask_var(rd->span); 5414 kfree(rd); 5415 } 5416 5417 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5418 { 5419 struct root_domain *old_rd = NULL; 5420 unsigned long flags; 5421 5422 raw_spin_lock_irqsave(&rq->lock, flags); 5423 5424 if (rq->rd) { 5425 old_rd = rq->rd; 5426 5427 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5428 set_rq_offline(rq); 5429 5430 cpumask_clear_cpu(rq->cpu, old_rd->span); 5431 5432 /* 5433 * If we dont want to free the old_rt yet then 5434 * set old_rd to NULL to skip the freeing later 5435 * in this function: 5436 */ 5437 if (!atomic_dec_and_test(&old_rd->refcount)) 5438 old_rd = NULL; 5439 } 5440 5441 atomic_inc(&rd->refcount); 5442 rq->rd = rd; 5443 5444 cpumask_set_cpu(rq->cpu, rd->span); 5445 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5446 set_rq_online(rq); 5447 5448 raw_spin_unlock_irqrestore(&rq->lock, flags); 5449 5450 if (old_rd) 5451 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5452 } 5453 5454 static int init_rootdomain(struct root_domain *rd) 5455 { 5456 memset(rd, 0, sizeof(*rd)); 5457 5458 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5459 goto out; 5460 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5461 goto free_span; 5462 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5463 goto free_online; 5464 5465 if (cpupri_init(&rd->cpupri) != 0) 5466 goto free_rto_mask; 5467 return 0; 5468 5469 free_rto_mask: 5470 free_cpumask_var(rd->rto_mask); 5471 free_online: 5472 free_cpumask_var(rd->online); 5473 free_span: 5474 free_cpumask_var(rd->span); 5475 out: 5476 return -ENOMEM; 5477 } 5478 5479 /* 5480 * By default the system creates a single root-domain with all cpus as 5481 * members (mimicking the global state we have today). 5482 */ 5483 struct root_domain def_root_domain; 5484 5485 static void init_defrootdomain(void) 5486 { 5487 init_rootdomain(&def_root_domain); 5488 5489 atomic_set(&def_root_domain.refcount, 1); 5490 } 5491 5492 static struct root_domain *alloc_rootdomain(void) 5493 { 5494 struct root_domain *rd; 5495 5496 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5497 if (!rd) 5498 return NULL; 5499 5500 if (init_rootdomain(rd) != 0) { 5501 kfree(rd); 5502 return NULL; 5503 } 5504 5505 return rd; 5506 } 5507 5508 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5509 { 5510 struct sched_group *tmp, *first; 5511 5512 if (!sg) 5513 return; 5514 5515 first = sg; 5516 do { 5517 tmp = sg->next; 5518 5519 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5520 kfree(sg->sgp); 5521 5522 kfree(sg); 5523 sg = tmp; 5524 } while (sg != first); 5525 } 5526 5527 static void free_sched_domain(struct rcu_head *rcu) 5528 { 5529 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5530 5531 /* 5532 * If its an overlapping domain it has private groups, iterate and 5533 * nuke them all. 5534 */ 5535 if (sd->flags & SD_OVERLAP) { 5536 free_sched_groups(sd->groups, 1); 5537 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5538 kfree(sd->groups->sgp); 5539 kfree(sd->groups); 5540 } 5541 kfree(sd); 5542 } 5543 5544 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5545 { 5546 call_rcu(&sd->rcu, free_sched_domain); 5547 } 5548 5549 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5550 { 5551 for (; sd; sd = sd->parent) 5552 destroy_sched_domain(sd, cpu); 5553 } 5554 5555 /* 5556 * Keep a special pointer to the highest sched_domain that has 5557 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5558 * allows us to avoid some pointer chasing select_idle_sibling(). 5559 * 5560 * Also keep a unique ID per domain (we use the first cpu number in 5561 * the cpumask of the domain), this allows us to quickly tell if 5562 * two cpus are in the same cache domain, see cpus_share_cache(). 5563 */ 5564 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5565 DEFINE_PER_CPU(int, sd_llc_id); 5566 5567 static void update_top_cache_domain(int cpu) 5568 { 5569 struct sched_domain *sd; 5570 int id = cpu; 5571 5572 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5573 if (sd) 5574 id = cpumask_first(sched_domain_span(sd)); 5575 5576 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5577 per_cpu(sd_llc_id, cpu) = id; 5578 } 5579 5580 /* 5581 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5582 * hold the hotplug lock. 5583 */ 5584 static void 5585 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5586 { 5587 struct rq *rq = cpu_rq(cpu); 5588 struct sched_domain *tmp; 5589 5590 /* Remove the sched domains which do not contribute to scheduling. */ 5591 for (tmp = sd; tmp; ) { 5592 struct sched_domain *parent = tmp->parent; 5593 if (!parent) 5594 break; 5595 5596 if (sd_parent_degenerate(tmp, parent)) { 5597 tmp->parent = parent->parent; 5598 if (parent->parent) 5599 parent->parent->child = tmp; 5600 destroy_sched_domain(parent, cpu); 5601 } else 5602 tmp = tmp->parent; 5603 } 5604 5605 if (sd && sd_degenerate(sd)) { 5606 tmp = sd; 5607 sd = sd->parent; 5608 destroy_sched_domain(tmp, cpu); 5609 if (sd) 5610 sd->child = NULL; 5611 } 5612 5613 sched_domain_debug(sd, cpu); 5614 5615 rq_attach_root(rq, rd); 5616 tmp = rq->sd; 5617 rcu_assign_pointer(rq->sd, sd); 5618 destroy_sched_domains(tmp, cpu); 5619 5620 update_top_cache_domain(cpu); 5621 } 5622 5623 /* cpus with isolated domains */ 5624 static cpumask_var_t cpu_isolated_map; 5625 5626 /* Setup the mask of cpus configured for isolated domains */ 5627 static int __init isolated_cpu_setup(char *str) 5628 { 5629 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5630 cpulist_parse(str, cpu_isolated_map); 5631 return 1; 5632 } 5633 5634 __setup("isolcpus=", isolated_cpu_setup); 5635 5636 static const struct cpumask *cpu_cpu_mask(int cpu) 5637 { 5638 return cpumask_of_node(cpu_to_node(cpu)); 5639 } 5640 5641 struct sd_data { 5642 struct sched_domain **__percpu sd; 5643 struct sched_group **__percpu sg; 5644 struct sched_group_power **__percpu sgp; 5645 }; 5646 5647 struct s_data { 5648 struct sched_domain ** __percpu sd; 5649 struct root_domain *rd; 5650 }; 5651 5652 enum s_alloc { 5653 sa_rootdomain, 5654 sa_sd, 5655 sa_sd_storage, 5656 sa_none, 5657 }; 5658 5659 struct sched_domain_topology_level; 5660 5661 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5662 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5663 5664 #define SDTL_OVERLAP 0x01 5665 5666 struct sched_domain_topology_level { 5667 sched_domain_init_f init; 5668 sched_domain_mask_f mask; 5669 int flags; 5670 int numa_level; 5671 struct sd_data data; 5672 }; 5673 5674 /* 5675 * Build an iteration mask that can exclude certain CPUs from the upwards 5676 * domain traversal. 5677 * 5678 * Asymmetric node setups can result in situations where the domain tree is of 5679 * unequal depth, make sure to skip domains that already cover the entire 5680 * range. 5681 * 5682 * In that case build_sched_domains() will have terminated the iteration early 5683 * and our sibling sd spans will be empty. Domains should always include the 5684 * cpu they're built on, so check that. 5685 * 5686 */ 5687 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5688 { 5689 const struct cpumask *span = sched_domain_span(sd); 5690 struct sd_data *sdd = sd->private; 5691 struct sched_domain *sibling; 5692 int i; 5693 5694 for_each_cpu(i, span) { 5695 sibling = *per_cpu_ptr(sdd->sd, i); 5696 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5697 continue; 5698 5699 cpumask_set_cpu(i, sched_group_mask(sg)); 5700 } 5701 } 5702 5703 /* 5704 * Return the canonical balance cpu for this group, this is the first cpu 5705 * of this group that's also in the iteration mask. 5706 */ 5707 int group_balance_cpu(struct sched_group *sg) 5708 { 5709 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5710 } 5711 5712 static int 5713 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5714 { 5715 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5716 const struct cpumask *span = sched_domain_span(sd); 5717 struct cpumask *covered = sched_domains_tmpmask; 5718 struct sd_data *sdd = sd->private; 5719 struct sched_domain *child; 5720 int i; 5721 5722 cpumask_clear(covered); 5723 5724 for_each_cpu(i, span) { 5725 struct cpumask *sg_span; 5726 5727 if (cpumask_test_cpu(i, covered)) 5728 continue; 5729 5730 child = *per_cpu_ptr(sdd->sd, i); 5731 5732 /* See the comment near build_group_mask(). */ 5733 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5734 continue; 5735 5736 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5737 GFP_KERNEL, cpu_to_node(cpu)); 5738 5739 if (!sg) 5740 goto fail; 5741 5742 sg_span = sched_group_cpus(sg); 5743 if (child->child) { 5744 child = child->child; 5745 cpumask_copy(sg_span, sched_domain_span(child)); 5746 } else 5747 cpumask_set_cpu(i, sg_span); 5748 5749 cpumask_or(covered, covered, sg_span); 5750 5751 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5752 if (atomic_inc_return(&sg->sgp->ref) == 1) 5753 build_group_mask(sd, sg); 5754 5755 /* 5756 * Initialize sgp->power such that even if we mess up the 5757 * domains and no possible iteration will get us here, we won't 5758 * die on a /0 trap. 5759 */ 5760 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5761 5762 /* 5763 * Make sure the first group of this domain contains the 5764 * canonical balance cpu. Otherwise the sched_domain iteration 5765 * breaks. See update_sg_lb_stats(). 5766 */ 5767 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5768 group_balance_cpu(sg) == cpu) 5769 groups = sg; 5770 5771 if (!first) 5772 first = sg; 5773 if (last) 5774 last->next = sg; 5775 last = sg; 5776 last->next = first; 5777 } 5778 sd->groups = groups; 5779 5780 return 0; 5781 5782 fail: 5783 free_sched_groups(first, 0); 5784 5785 return -ENOMEM; 5786 } 5787 5788 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5789 { 5790 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5791 struct sched_domain *child = sd->child; 5792 5793 if (child) 5794 cpu = cpumask_first(sched_domain_span(child)); 5795 5796 if (sg) { 5797 *sg = *per_cpu_ptr(sdd->sg, cpu); 5798 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5799 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5800 } 5801 5802 return cpu; 5803 } 5804 5805 /* 5806 * build_sched_groups will build a circular linked list of the groups 5807 * covered by the given span, and will set each group's ->cpumask correctly, 5808 * and ->cpu_power to 0. 5809 * 5810 * Assumes the sched_domain tree is fully constructed 5811 */ 5812 static int 5813 build_sched_groups(struct sched_domain *sd, int cpu) 5814 { 5815 struct sched_group *first = NULL, *last = NULL; 5816 struct sd_data *sdd = sd->private; 5817 const struct cpumask *span = sched_domain_span(sd); 5818 struct cpumask *covered; 5819 int i; 5820 5821 get_group(cpu, sdd, &sd->groups); 5822 atomic_inc(&sd->groups->ref); 5823 5824 if (cpu != cpumask_first(sched_domain_span(sd))) 5825 return 0; 5826 5827 lockdep_assert_held(&sched_domains_mutex); 5828 covered = sched_domains_tmpmask; 5829 5830 cpumask_clear(covered); 5831 5832 for_each_cpu(i, span) { 5833 struct sched_group *sg; 5834 int group = get_group(i, sdd, &sg); 5835 int j; 5836 5837 if (cpumask_test_cpu(i, covered)) 5838 continue; 5839 5840 cpumask_clear(sched_group_cpus(sg)); 5841 sg->sgp->power = 0; 5842 cpumask_setall(sched_group_mask(sg)); 5843 5844 for_each_cpu(j, span) { 5845 if (get_group(j, sdd, NULL) != group) 5846 continue; 5847 5848 cpumask_set_cpu(j, covered); 5849 cpumask_set_cpu(j, sched_group_cpus(sg)); 5850 } 5851 5852 if (!first) 5853 first = sg; 5854 if (last) 5855 last->next = sg; 5856 last = sg; 5857 } 5858 last->next = first; 5859 5860 return 0; 5861 } 5862 5863 /* 5864 * Initialize sched groups cpu_power. 5865 * 5866 * cpu_power indicates the capacity of sched group, which is used while 5867 * distributing the load between different sched groups in a sched domain. 5868 * Typically cpu_power for all the groups in a sched domain will be same unless 5869 * there are asymmetries in the topology. If there are asymmetries, group 5870 * having more cpu_power will pickup more load compared to the group having 5871 * less cpu_power. 5872 */ 5873 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5874 { 5875 struct sched_group *sg = sd->groups; 5876 5877 WARN_ON(!sd || !sg); 5878 5879 do { 5880 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5881 sg = sg->next; 5882 } while (sg != sd->groups); 5883 5884 if (cpu != group_balance_cpu(sg)) 5885 return; 5886 5887 update_group_power(sd, cpu); 5888 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5889 } 5890 5891 int __weak arch_sd_sibling_asym_packing(void) 5892 { 5893 return 0*SD_ASYM_PACKING; 5894 } 5895 5896 /* 5897 * Initializers for schedule domains 5898 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5899 */ 5900 5901 #ifdef CONFIG_SCHED_DEBUG 5902 # define SD_INIT_NAME(sd, type) sd->name = #type 5903 #else 5904 # define SD_INIT_NAME(sd, type) do { } while (0) 5905 #endif 5906 5907 #define SD_INIT_FUNC(type) \ 5908 static noinline struct sched_domain * \ 5909 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5910 { \ 5911 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5912 *sd = SD_##type##_INIT; \ 5913 SD_INIT_NAME(sd, type); \ 5914 sd->private = &tl->data; \ 5915 return sd; \ 5916 } 5917 5918 SD_INIT_FUNC(CPU) 5919 #ifdef CONFIG_SCHED_SMT 5920 SD_INIT_FUNC(SIBLING) 5921 #endif 5922 #ifdef CONFIG_SCHED_MC 5923 SD_INIT_FUNC(MC) 5924 #endif 5925 #ifdef CONFIG_SCHED_BOOK 5926 SD_INIT_FUNC(BOOK) 5927 #endif 5928 5929 static int default_relax_domain_level = -1; 5930 int sched_domain_level_max; 5931 5932 static int __init setup_relax_domain_level(char *str) 5933 { 5934 if (kstrtoint(str, 0, &default_relax_domain_level)) 5935 pr_warn("Unable to set relax_domain_level\n"); 5936 5937 return 1; 5938 } 5939 __setup("relax_domain_level=", setup_relax_domain_level); 5940 5941 static void set_domain_attribute(struct sched_domain *sd, 5942 struct sched_domain_attr *attr) 5943 { 5944 int request; 5945 5946 if (!attr || attr->relax_domain_level < 0) { 5947 if (default_relax_domain_level < 0) 5948 return; 5949 else 5950 request = default_relax_domain_level; 5951 } else 5952 request = attr->relax_domain_level; 5953 if (request < sd->level) { 5954 /* turn off idle balance on this domain */ 5955 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5956 } else { 5957 /* turn on idle balance on this domain */ 5958 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5959 } 5960 } 5961 5962 static void __sdt_free(const struct cpumask *cpu_map); 5963 static int __sdt_alloc(const struct cpumask *cpu_map); 5964 5965 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5966 const struct cpumask *cpu_map) 5967 { 5968 switch (what) { 5969 case sa_rootdomain: 5970 if (!atomic_read(&d->rd->refcount)) 5971 free_rootdomain(&d->rd->rcu); /* fall through */ 5972 case sa_sd: 5973 free_percpu(d->sd); /* fall through */ 5974 case sa_sd_storage: 5975 __sdt_free(cpu_map); /* fall through */ 5976 case sa_none: 5977 break; 5978 } 5979 } 5980 5981 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5982 const struct cpumask *cpu_map) 5983 { 5984 memset(d, 0, sizeof(*d)); 5985 5986 if (__sdt_alloc(cpu_map)) 5987 return sa_sd_storage; 5988 d->sd = alloc_percpu(struct sched_domain *); 5989 if (!d->sd) 5990 return sa_sd_storage; 5991 d->rd = alloc_rootdomain(); 5992 if (!d->rd) 5993 return sa_sd; 5994 return sa_rootdomain; 5995 } 5996 5997 /* 5998 * NULL the sd_data elements we've used to build the sched_domain and 5999 * sched_group structure so that the subsequent __free_domain_allocs() 6000 * will not free the data we're using. 6001 */ 6002 static void claim_allocations(int cpu, struct sched_domain *sd) 6003 { 6004 struct sd_data *sdd = sd->private; 6005 6006 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6007 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6008 6009 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6010 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6011 6012 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6013 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6014 } 6015 6016 #ifdef CONFIG_SCHED_SMT 6017 static const struct cpumask *cpu_smt_mask(int cpu) 6018 { 6019 return topology_thread_cpumask(cpu); 6020 } 6021 #endif 6022 6023 /* 6024 * Topology list, bottom-up. 6025 */ 6026 static struct sched_domain_topology_level default_topology[] = { 6027 #ifdef CONFIG_SCHED_SMT 6028 { sd_init_SIBLING, cpu_smt_mask, }, 6029 #endif 6030 #ifdef CONFIG_SCHED_MC 6031 { sd_init_MC, cpu_coregroup_mask, }, 6032 #endif 6033 #ifdef CONFIG_SCHED_BOOK 6034 { sd_init_BOOK, cpu_book_mask, }, 6035 #endif 6036 { sd_init_CPU, cpu_cpu_mask, }, 6037 { NULL, }, 6038 }; 6039 6040 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6041 6042 #ifdef CONFIG_NUMA 6043 6044 static int sched_domains_numa_levels; 6045 static int *sched_domains_numa_distance; 6046 static struct cpumask ***sched_domains_numa_masks; 6047 static int sched_domains_curr_level; 6048 6049 static inline int sd_local_flags(int level) 6050 { 6051 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6052 return 0; 6053 6054 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6055 } 6056 6057 static struct sched_domain * 6058 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6059 { 6060 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6061 int level = tl->numa_level; 6062 int sd_weight = cpumask_weight( 6063 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6064 6065 *sd = (struct sched_domain){ 6066 .min_interval = sd_weight, 6067 .max_interval = 2*sd_weight, 6068 .busy_factor = 32, 6069 .imbalance_pct = 125, 6070 .cache_nice_tries = 2, 6071 .busy_idx = 3, 6072 .idle_idx = 2, 6073 .newidle_idx = 0, 6074 .wake_idx = 0, 6075 .forkexec_idx = 0, 6076 6077 .flags = 1*SD_LOAD_BALANCE 6078 | 1*SD_BALANCE_NEWIDLE 6079 | 0*SD_BALANCE_EXEC 6080 | 0*SD_BALANCE_FORK 6081 | 0*SD_BALANCE_WAKE 6082 | 0*SD_WAKE_AFFINE 6083 | 0*SD_SHARE_CPUPOWER 6084 | 0*SD_SHARE_PKG_RESOURCES 6085 | 1*SD_SERIALIZE 6086 | 0*SD_PREFER_SIBLING 6087 | sd_local_flags(level) 6088 , 6089 .last_balance = jiffies, 6090 .balance_interval = sd_weight, 6091 }; 6092 SD_INIT_NAME(sd, NUMA); 6093 sd->private = &tl->data; 6094 6095 /* 6096 * Ugly hack to pass state to sd_numa_mask()... 6097 */ 6098 sched_domains_curr_level = tl->numa_level; 6099 6100 return sd; 6101 } 6102 6103 static const struct cpumask *sd_numa_mask(int cpu) 6104 { 6105 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6106 } 6107 6108 static void sched_numa_warn(const char *str) 6109 { 6110 static int done = false; 6111 int i,j; 6112 6113 if (done) 6114 return; 6115 6116 done = true; 6117 6118 printk(KERN_WARNING "ERROR: %s\n\n", str); 6119 6120 for (i = 0; i < nr_node_ids; i++) { 6121 printk(KERN_WARNING " "); 6122 for (j = 0; j < nr_node_ids; j++) 6123 printk(KERN_CONT "%02d ", node_distance(i,j)); 6124 printk(KERN_CONT "\n"); 6125 } 6126 printk(KERN_WARNING "\n"); 6127 } 6128 6129 static bool find_numa_distance(int distance) 6130 { 6131 int i; 6132 6133 if (distance == node_distance(0, 0)) 6134 return true; 6135 6136 for (i = 0; i < sched_domains_numa_levels; i++) { 6137 if (sched_domains_numa_distance[i] == distance) 6138 return true; 6139 } 6140 6141 return false; 6142 } 6143 6144 static void sched_init_numa(void) 6145 { 6146 int next_distance, curr_distance = node_distance(0, 0); 6147 struct sched_domain_topology_level *tl; 6148 int level = 0; 6149 int i, j, k; 6150 6151 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6152 if (!sched_domains_numa_distance) 6153 return; 6154 6155 /* 6156 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6157 * unique distances in the node_distance() table. 6158 * 6159 * Assumes node_distance(0,j) includes all distances in 6160 * node_distance(i,j) in order to avoid cubic time. 6161 */ 6162 next_distance = curr_distance; 6163 for (i = 0; i < nr_node_ids; i++) { 6164 for (j = 0; j < nr_node_ids; j++) { 6165 for (k = 0; k < nr_node_ids; k++) { 6166 int distance = node_distance(i, k); 6167 6168 if (distance > curr_distance && 6169 (distance < next_distance || 6170 next_distance == curr_distance)) 6171 next_distance = distance; 6172 6173 /* 6174 * While not a strong assumption it would be nice to know 6175 * about cases where if node A is connected to B, B is not 6176 * equally connected to A. 6177 */ 6178 if (sched_debug() && node_distance(k, i) != distance) 6179 sched_numa_warn("Node-distance not symmetric"); 6180 6181 if (sched_debug() && i && !find_numa_distance(distance)) 6182 sched_numa_warn("Node-0 not representative"); 6183 } 6184 if (next_distance != curr_distance) { 6185 sched_domains_numa_distance[level++] = next_distance; 6186 sched_domains_numa_levels = level; 6187 curr_distance = next_distance; 6188 } else break; 6189 } 6190 6191 /* 6192 * In case of sched_debug() we verify the above assumption. 6193 */ 6194 if (!sched_debug()) 6195 break; 6196 } 6197 /* 6198 * 'level' contains the number of unique distances, excluding the 6199 * identity distance node_distance(i,i). 6200 * 6201 * The sched_domains_nume_distance[] array includes the actual distance 6202 * numbers. 6203 */ 6204 6205 /* 6206 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6207 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6208 * the array will contain less then 'level' members. This could be 6209 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6210 * in other functions. 6211 * 6212 * We reset it to 'level' at the end of this function. 6213 */ 6214 sched_domains_numa_levels = 0; 6215 6216 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6217 if (!sched_domains_numa_masks) 6218 return; 6219 6220 /* 6221 * Now for each level, construct a mask per node which contains all 6222 * cpus of nodes that are that many hops away from us. 6223 */ 6224 for (i = 0; i < level; i++) { 6225 sched_domains_numa_masks[i] = 6226 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6227 if (!sched_domains_numa_masks[i]) 6228 return; 6229 6230 for (j = 0; j < nr_node_ids; j++) { 6231 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6232 if (!mask) 6233 return; 6234 6235 sched_domains_numa_masks[i][j] = mask; 6236 6237 for (k = 0; k < nr_node_ids; k++) { 6238 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6239 continue; 6240 6241 cpumask_or(mask, mask, cpumask_of_node(k)); 6242 } 6243 } 6244 } 6245 6246 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6247 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6248 if (!tl) 6249 return; 6250 6251 /* 6252 * Copy the default topology bits.. 6253 */ 6254 for (i = 0; default_topology[i].init; i++) 6255 tl[i] = default_topology[i]; 6256 6257 /* 6258 * .. and append 'j' levels of NUMA goodness. 6259 */ 6260 for (j = 0; j < level; i++, j++) { 6261 tl[i] = (struct sched_domain_topology_level){ 6262 .init = sd_numa_init, 6263 .mask = sd_numa_mask, 6264 .flags = SDTL_OVERLAP, 6265 .numa_level = j, 6266 }; 6267 } 6268 6269 sched_domain_topology = tl; 6270 6271 sched_domains_numa_levels = level; 6272 } 6273 6274 static void sched_domains_numa_masks_set(int cpu) 6275 { 6276 int i, j; 6277 int node = cpu_to_node(cpu); 6278 6279 for (i = 0; i < sched_domains_numa_levels; i++) { 6280 for (j = 0; j < nr_node_ids; j++) { 6281 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6282 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6283 } 6284 } 6285 } 6286 6287 static void sched_domains_numa_masks_clear(int cpu) 6288 { 6289 int i, j; 6290 for (i = 0; i < sched_domains_numa_levels; i++) { 6291 for (j = 0; j < nr_node_ids; j++) 6292 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6293 } 6294 } 6295 6296 /* 6297 * Update sched_domains_numa_masks[level][node] array when new cpus 6298 * are onlined. 6299 */ 6300 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6301 unsigned long action, 6302 void *hcpu) 6303 { 6304 int cpu = (long)hcpu; 6305 6306 switch (action & ~CPU_TASKS_FROZEN) { 6307 case CPU_ONLINE: 6308 sched_domains_numa_masks_set(cpu); 6309 break; 6310 6311 case CPU_DEAD: 6312 sched_domains_numa_masks_clear(cpu); 6313 break; 6314 6315 default: 6316 return NOTIFY_DONE; 6317 } 6318 6319 return NOTIFY_OK; 6320 } 6321 #else 6322 static inline void sched_init_numa(void) 6323 { 6324 } 6325 6326 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6327 unsigned long action, 6328 void *hcpu) 6329 { 6330 return 0; 6331 } 6332 #endif /* CONFIG_NUMA */ 6333 6334 static int __sdt_alloc(const struct cpumask *cpu_map) 6335 { 6336 struct sched_domain_topology_level *tl; 6337 int j; 6338 6339 for (tl = sched_domain_topology; tl->init; tl++) { 6340 struct sd_data *sdd = &tl->data; 6341 6342 sdd->sd = alloc_percpu(struct sched_domain *); 6343 if (!sdd->sd) 6344 return -ENOMEM; 6345 6346 sdd->sg = alloc_percpu(struct sched_group *); 6347 if (!sdd->sg) 6348 return -ENOMEM; 6349 6350 sdd->sgp = alloc_percpu(struct sched_group_power *); 6351 if (!sdd->sgp) 6352 return -ENOMEM; 6353 6354 for_each_cpu(j, cpu_map) { 6355 struct sched_domain *sd; 6356 struct sched_group *sg; 6357 struct sched_group_power *sgp; 6358 6359 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6360 GFP_KERNEL, cpu_to_node(j)); 6361 if (!sd) 6362 return -ENOMEM; 6363 6364 *per_cpu_ptr(sdd->sd, j) = sd; 6365 6366 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6367 GFP_KERNEL, cpu_to_node(j)); 6368 if (!sg) 6369 return -ENOMEM; 6370 6371 sg->next = sg; 6372 6373 *per_cpu_ptr(sdd->sg, j) = sg; 6374 6375 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6376 GFP_KERNEL, cpu_to_node(j)); 6377 if (!sgp) 6378 return -ENOMEM; 6379 6380 *per_cpu_ptr(sdd->sgp, j) = sgp; 6381 } 6382 } 6383 6384 return 0; 6385 } 6386 6387 static void __sdt_free(const struct cpumask *cpu_map) 6388 { 6389 struct sched_domain_topology_level *tl; 6390 int j; 6391 6392 for (tl = sched_domain_topology; tl->init; tl++) { 6393 struct sd_data *sdd = &tl->data; 6394 6395 for_each_cpu(j, cpu_map) { 6396 struct sched_domain *sd; 6397 6398 if (sdd->sd) { 6399 sd = *per_cpu_ptr(sdd->sd, j); 6400 if (sd && (sd->flags & SD_OVERLAP)) 6401 free_sched_groups(sd->groups, 0); 6402 kfree(*per_cpu_ptr(sdd->sd, j)); 6403 } 6404 6405 if (sdd->sg) 6406 kfree(*per_cpu_ptr(sdd->sg, j)); 6407 if (sdd->sgp) 6408 kfree(*per_cpu_ptr(sdd->sgp, j)); 6409 } 6410 free_percpu(sdd->sd); 6411 sdd->sd = NULL; 6412 free_percpu(sdd->sg); 6413 sdd->sg = NULL; 6414 free_percpu(sdd->sgp); 6415 sdd->sgp = NULL; 6416 } 6417 } 6418 6419 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6420 struct s_data *d, const struct cpumask *cpu_map, 6421 struct sched_domain_attr *attr, struct sched_domain *child, 6422 int cpu) 6423 { 6424 struct sched_domain *sd = tl->init(tl, cpu); 6425 if (!sd) 6426 return child; 6427 6428 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6429 if (child) { 6430 sd->level = child->level + 1; 6431 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6432 child->parent = sd; 6433 } 6434 sd->child = child; 6435 set_domain_attribute(sd, attr); 6436 6437 return sd; 6438 } 6439 6440 /* 6441 * Build sched domains for a given set of cpus and attach the sched domains 6442 * to the individual cpus 6443 */ 6444 static int build_sched_domains(const struct cpumask *cpu_map, 6445 struct sched_domain_attr *attr) 6446 { 6447 enum s_alloc alloc_state = sa_none; 6448 struct sched_domain *sd; 6449 struct s_data d; 6450 int i, ret = -ENOMEM; 6451 6452 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6453 if (alloc_state != sa_rootdomain) 6454 goto error; 6455 6456 /* Set up domains for cpus specified by the cpu_map. */ 6457 for_each_cpu(i, cpu_map) { 6458 struct sched_domain_topology_level *tl; 6459 6460 sd = NULL; 6461 for (tl = sched_domain_topology; tl->init; tl++) { 6462 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6463 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6464 sd->flags |= SD_OVERLAP; 6465 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6466 break; 6467 } 6468 6469 while (sd->child) 6470 sd = sd->child; 6471 6472 *per_cpu_ptr(d.sd, i) = sd; 6473 } 6474 6475 /* Build the groups for the domains */ 6476 for_each_cpu(i, cpu_map) { 6477 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6478 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6479 if (sd->flags & SD_OVERLAP) { 6480 if (build_overlap_sched_groups(sd, i)) 6481 goto error; 6482 } else { 6483 if (build_sched_groups(sd, i)) 6484 goto error; 6485 } 6486 } 6487 } 6488 6489 /* Calculate CPU power for physical packages and nodes */ 6490 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6491 if (!cpumask_test_cpu(i, cpu_map)) 6492 continue; 6493 6494 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6495 claim_allocations(i, sd); 6496 init_sched_groups_power(i, sd); 6497 } 6498 } 6499 6500 /* Attach the domains */ 6501 rcu_read_lock(); 6502 for_each_cpu(i, cpu_map) { 6503 sd = *per_cpu_ptr(d.sd, i); 6504 cpu_attach_domain(sd, d.rd, i); 6505 } 6506 rcu_read_unlock(); 6507 6508 ret = 0; 6509 error: 6510 __free_domain_allocs(&d, alloc_state, cpu_map); 6511 return ret; 6512 } 6513 6514 static cpumask_var_t *doms_cur; /* current sched domains */ 6515 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6516 static struct sched_domain_attr *dattr_cur; 6517 /* attribues of custom domains in 'doms_cur' */ 6518 6519 /* 6520 * Special case: If a kmalloc of a doms_cur partition (array of 6521 * cpumask) fails, then fallback to a single sched domain, 6522 * as determined by the single cpumask fallback_doms. 6523 */ 6524 static cpumask_var_t fallback_doms; 6525 6526 /* 6527 * arch_update_cpu_topology lets virtualized architectures update the 6528 * cpu core maps. It is supposed to return 1 if the topology changed 6529 * or 0 if it stayed the same. 6530 */ 6531 int __attribute__((weak)) arch_update_cpu_topology(void) 6532 { 6533 return 0; 6534 } 6535 6536 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6537 { 6538 int i; 6539 cpumask_var_t *doms; 6540 6541 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6542 if (!doms) 6543 return NULL; 6544 for (i = 0; i < ndoms; i++) { 6545 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6546 free_sched_domains(doms, i); 6547 return NULL; 6548 } 6549 } 6550 return doms; 6551 } 6552 6553 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6554 { 6555 unsigned int i; 6556 for (i = 0; i < ndoms; i++) 6557 free_cpumask_var(doms[i]); 6558 kfree(doms); 6559 } 6560 6561 /* 6562 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6563 * For now this just excludes isolated cpus, but could be used to 6564 * exclude other special cases in the future. 6565 */ 6566 static int init_sched_domains(const struct cpumask *cpu_map) 6567 { 6568 int err; 6569 6570 arch_update_cpu_topology(); 6571 ndoms_cur = 1; 6572 doms_cur = alloc_sched_domains(ndoms_cur); 6573 if (!doms_cur) 6574 doms_cur = &fallback_doms; 6575 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6576 err = build_sched_domains(doms_cur[0], NULL); 6577 register_sched_domain_sysctl(); 6578 6579 return err; 6580 } 6581 6582 /* 6583 * Detach sched domains from a group of cpus specified in cpu_map 6584 * These cpus will now be attached to the NULL domain 6585 */ 6586 static void detach_destroy_domains(const struct cpumask *cpu_map) 6587 { 6588 int i; 6589 6590 rcu_read_lock(); 6591 for_each_cpu(i, cpu_map) 6592 cpu_attach_domain(NULL, &def_root_domain, i); 6593 rcu_read_unlock(); 6594 } 6595 6596 /* handle null as "default" */ 6597 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6598 struct sched_domain_attr *new, int idx_new) 6599 { 6600 struct sched_domain_attr tmp; 6601 6602 /* fast path */ 6603 if (!new && !cur) 6604 return 1; 6605 6606 tmp = SD_ATTR_INIT; 6607 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6608 new ? (new + idx_new) : &tmp, 6609 sizeof(struct sched_domain_attr)); 6610 } 6611 6612 /* 6613 * Partition sched domains as specified by the 'ndoms_new' 6614 * cpumasks in the array doms_new[] of cpumasks. This compares 6615 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6616 * It destroys each deleted domain and builds each new domain. 6617 * 6618 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6619 * The masks don't intersect (don't overlap.) We should setup one 6620 * sched domain for each mask. CPUs not in any of the cpumasks will 6621 * not be load balanced. If the same cpumask appears both in the 6622 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6623 * it as it is. 6624 * 6625 * The passed in 'doms_new' should be allocated using 6626 * alloc_sched_domains. This routine takes ownership of it and will 6627 * free_sched_domains it when done with it. If the caller failed the 6628 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6629 * and partition_sched_domains() will fallback to the single partition 6630 * 'fallback_doms', it also forces the domains to be rebuilt. 6631 * 6632 * If doms_new == NULL it will be replaced with cpu_online_mask. 6633 * ndoms_new == 0 is a special case for destroying existing domains, 6634 * and it will not create the default domain. 6635 * 6636 * Call with hotplug lock held 6637 */ 6638 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6639 struct sched_domain_attr *dattr_new) 6640 { 6641 int i, j, n; 6642 int new_topology; 6643 6644 mutex_lock(&sched_domains_mutex); 6645 6646 /* always unregister in case we don't destroy any domains */ 6647 unregister_sched_domain_sysctl(); 6648 6649 /* Let architecture update cpu core mappings. */ 6650 new_topology = arch_update_cpu_topology(); 6651 6652 n = doms_new ? ndoms_new : 0; 6653 6654 /* Destroy deleted domains */ 6655 for (i = 0; i < ndoms_cur; i++) { 6656 for (j = 0; j < n && !new_topology; j++) { 6657 if (cpumask_equal(doms_cur[i], doms_new[j]) 6658 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6659 goto match1; 6660 } 6661 /* no match - a current sched domain not in new doms_new[] */ 6662 detach_destroy_domains(doms_cur[i]); 6663 match1: 6664 ; 6665 } 6666 6667 if (doms_new == NULL) { 6668 ndoms_cur = 0; 6669 doms_new = &fallback_doms; 6670 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6671 WARN_ON_ONCE(dattr_new); 6672 } 6673 6674 /* Build new domains */ 6675 for (i = 0; i < ndoms_new; i++) { 6676 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6677 if (cpumask_equal(doms_new[i], doms_cur[j]) 6678 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6679 goto match2; 6680 } 6681 /* no match - add a new doms_new */ 6682 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6683 match2: 6684 ; 6685 } 6686 6687 /* Remember the new sched domains */ 6688 if (doms_cur != &fallback_doms) 6689 free_sched_domains(doms_cur, ndoms_cur); 6690 kfree(dattr_cur); /* kfree(NULL) is safe */ 6691 doms_cur = doms_new; 6692 dattr_cur = dattr_new; 6693 ndoms_cur = ndoms_new; 6694 6695 register_sched_domain_sysctl(); 6696 6697 mutex_unlock(&sched_domains_mutex); 6698 } 6699 6700 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6701 6702 /* 6703 * Update cpusets according to cpu_active mask. If cpusets are 6704 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6705 * around partition_sched_domains(). 6706 * 6707 * If we come here as part of a suspend/resume, don't touch cpusets because we 6708 * want to restore it back to its original state upon resume anyway. 6709 */ 6710 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6711 void *hcpu) 6712 { 6713 switch (action) { 6714 case CPU_ONLINE_FROZEN: 6715 case CPU_DOWN_FAILED_FROZEN: 6716 6717 /* 6718 * num_cpus_frozen tracks how many CPUs are involved in suspend 6719 * resume sequence. As long as this is not the last online 6720 * operation in the resume sequence, just build a single sched 6721 * domain, ignoring cpusets. 6722 */ 6723 num_cpus_frozen--; 6724 if (likely(num_cpus_frozen)) { 6725 partition_sched_domains(1, NULL, NULL); 6726 break; 6727 } 6728 6729 /* 6730 * This is the last CPU online operation. So fall through and 6731 * restore the original sched domains by considering the 6732 * cpuset configurations. 6733 */ 6734 6735 case CPU_ONLINE: 6736 case CPU_DOWN_FAILED: 6737 cpuset_update_active_cpus(true); 6738 break; 6739 default: 6740 return NOTIFY_DONE; 6741 } 6742 return NOTIFY_OK; 6743 } 6744 6745 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6746 void *hcpu) 6747 { 6748 switch (action) { 6749 case CPU_DOWN_PREPARE: 6750 cpuset_update_active_cpus(false); 6751 break; 6752 case CPU_DOWN_PREPARE_FROZEN: 6753 num_cpus_frozen++; 6754 partition_sched_domains(1, NULL, NULL); 6755 break; 6756 default: 6757 return NOTIFY_DONE; 6758 } 6759 return NOTIFY_OK; 6760 } 6761 6762 void __init sched_init_smp(void) 6763 { 6764 cpumask_var_t non_isolated_cpus; 6765 6766 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6767 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6768 6769 sched_init_numa(); 6770 6771 get_online_cpus(); 6772 mutex_lock(&sched_domains_mutex); 6773 init_sched_domains(cpu_active_mask); 6774 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6775 if (cpumask_empty(non_isolated_cpus)) 6776 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6777 mutex_unlock(&sched_domains_mutex); 6778 put_online_cpus(); 6779 6780 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6781 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6782 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6783 6784 /* RT runtime code needs to handle some hotplug events */ 6785 hotcpu_notifier(update_runtime, 0); 6786 6787 init_hrtick(); 6788 6789 /* Move init over to a non-isolated CPU */ 6790 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6791 BUG(); 6792 sched_init_granularity(); 6793 free_cpumask_var(non_isolated_cpus); 6794 6795 init_sched_rt_class(); 6796 } 6797 #else 6798 void __init sched_init_smp(void) 6799 { 6800 sched_init_granularity(); 6801 } 6802 #endif /* CONFIG_SMP */ 6803 6804 const_debug unsigned int sysctl_timer_migration = 1; 6805 6806 int in_sched_functions(unsigned long addr) 6807 { 6808 return in_lock_functions(addr) || 6809 (addr >= (unsigned long)__sched_text_start 6810 && addr < (unsigned long)__sched_text_end); 6811 } 6812 6813 #ifdef CONFIG_CGROUP_SCHED 6814 struct task_group root_task_group; 6815 LIST_HEAD(task_groups); 6816 #endif 6817 6818 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6819 6820 void __init sched_init(void) 6821 { 6822 int i, j; 6823 unsigned long alloc_size = 0, ptr; 6824 6825 #ifdef CONFIG_FAIR_GROUP_SCHED 6826 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6827 #endif 6828 #ifdef CONFIG_RT_GROUP_SCHED 6829 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6830 #endif 6831 #ifdef CONFIG_CPUMASK_OFFSTACK 6832 alloc_size += num_possible_cpus() * cpumask_size(); 6833 #endif 6834 if (alloc_size) { 6835 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6836 6837 #ifdef CONFIG_FAIR_GROUP_SCHED 6838 root_task_group.se = (struct sched_entity **)ptr; 6839 ptr += nr_cpu_ids * sizeof(void **); 6840 6841 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6842 ptr += nr_cpu_ids * sizeof(void **); 6843 6844 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6845 #ifdef CONFIG_RT_GROUP_SCHED 6846 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6847 ptr += nr_cpu_ids * sizeof(void **); 6848 6849 root_task_group.rt_rq = (struct rt_rq **)ptr; 6850 ptr += nr_cpu_ids * sizeof(void **); 6851 6852 #endif /* CONFIG_RT_GROUP_SCHED */ 6853 #ifdef CONFIG_CPUMASK_OFFSTACK 6854 for_each_possible_cpu(i) { 6855 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6856 ptr += cpumask_size(); 6857 } 6858 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6859 } 6860 6861 #ifdef CONFIG_SMP 6862 init_defrootdomain(); 6863 #endif 6864 6865 init_rt_bandwidth(&def_rt_bandwidth, 6866 global_rt_period(), global_rt_runtime()); 6867 6868 #ifdef CONFIG_RT_GROUP_SCHED 6869 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6870 global_rt_period(), global_rt_runtime()); 6871 #endif /* CONFIG_RT_GROUP_SCHED */ 6872 6873 #ifdef CONFIG_CGROUP_SCHED 6874 list_add(&root_task_group.list, &task_groups); 6875 INIT_LIST_HEAD(&root_task_group.children); 6876 INIT_LIST_HEAD(&root_task_group.siblings); 6877 autogroup_init(&init_task); 6878 6879 #endif /* CONFIG_CGROUP_SCHED */ 6880 6881 #ifdef CONFIG_CGROUP_CPUACCT 6882 root_cpuacct.cpustat = &kernel_cpustat; 6883 root_cpuacct.cpuusage = alloc_percpu(u64); 6884 /* Too early, not expected to fail */ 6885 BUG_ON(!root_cpuacct.cpuusage); 6886 #endif 6887 for_each_possible_cpu(i) { 6888 struct rq *rq; 6889 6890 rq = cpu_rq(i); 6891 raw_spin_lock_init(&rq->lock); 6892 rq->nr_running = 0; 6893 rq->calc_load_active = 0; 6894 rq->calc_load_update = jiffies + LOAD_FREQ; 6895 init_cfs_rq(&rq->cfs); 6896 init_rt_rq(&rq->rt, rq); 6897 #ifdef CONFIG_FAIR_GROUP_SCHED 6898 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6899 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6900 /* 6901 * How much cpu bandwidth does root_task_group get? 6902 * 6903 * In case of task-groups formed thr' the cgroup filesystem, it 6904 * gets 100% of the cpu resources in the system. This overall 6905 * system cpu resource is divided among the tasks of 6906 * root_task_group and its child task-groups in a fair manner, 6907 * based on each entity's (task or task-group's) weight 6908 * (se->load.weight). 6909 * 6910 * In other words, if root_task_group has 10 tasks of weight 6911 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6912 * then A0's share of the cpu resource is: 6913 * 6914 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6915 * 6916 * We achieve this by letting root_task_group's tasks sit 6917 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6918 */ 6919 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6920 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6921 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6922 6923 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6924 #ifdef CONFIG_RT_GROUP_SCHED 6925 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6926 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6927 #endif 6928 6929 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6930 rq->cpu_load[j] = 0; 6931 6932 rq->last_load_update_tick = jiffies; 6933 6934 #ifdef CONFIG_SMP 6935 rq->sd = NULL; 6936 rq->rd = NULL; 6937 rq->cpu_power = SCHED_POWER_SCALE; 6938 rq->post_schedule = 0; 6939 rq->active_balance = 0; 6940 rq->next_balance = jiffies; 6941 rq->push_cpu = 0; 6942 rq->cpu = i; 6943 rq->online = 0; 6944 rq->idle_stamp = 0; 6945 rq->avg_idle = 2*sysctl_sched_migration_cost; 6946 6947 INIT_LIST_HEAD(&rq->cfs_tasks); 6948 6949 rq_attach_root(rq, &def_root_domain); 6950 #ifdef CONFIG_NO_HZ 6951 rq->nohz_flags = 0; 6952 #endif 6953 #endif 6954 init_rq_hrtick(rq); 6955 atomic_set(&rq->nr_iowait, 0); 6956 } 6957 6958 set_load_weight(&init_task); 6959 6960 #ifdef CONFIG_PREEMPT_NOTIFIERS 6961 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6962 #endif 6963 6964 #ifdef CONFIG_RT_MUTEXES 6965 plist_head_init(&init_task.pi_waiters); 6966 #endif 6967 6968 /* 6969 * The boot idle thread does lazy MMU switching as well: 6970 */ 6971 atomic_inc(&init_mm.mm_count); 6972 enter_lazy_tlb(&init_mm, current); 6973 6974 /* 6975 * Make us the idle thread. Technically, schedule() should not be 6976 * called from this thread, however somewhere below it might be, 6977 * but because we are the idle thread, we just pick up running again 6978 * when this runqueue becomes "idle". 6979 */ 6980 init_idle(current, smp_processor_id()); 6981 6982 calc_load_update = jiffies + LOAD_FREQ; 6983 6984 /* 6985 * During early bootup we pretend to be a normal task: 6986 */ 6987 current->sched_class = &fair_sched_class; 6988 6989 #ifdef CONFIG_SMP 6990 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6991 /* May be allocated at isolcpus cmdline parse time */ 6992 if (cpu_isolated_map == NULL) 6993 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6994 idle_thread_set_boot_cpu(); 6995 #endif 6996 init_sched_fair_class(); 6997 6998 scheduler_running = 1; 6999 } 7000 7001 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7002 static inline int preempt_count_equals(int preempt_offset) 7003 { 7004 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7005 7006 return (nested == preempt_offset); 7007 } 7008 7009 void __might_sleep(const char *file, int line, int preempt_offset) 7010 { 7011 static unsigned long prev_jiffy; /* ratelimiting */ 7012 7013 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7014 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7015 system_state != SYSTEM_RUNNING || oops_in_progress) 7016 return; 7017 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7018 return; 7019 prev_jiffy = jiffies; 7020 7021 printk(KERN_ERR 7022 "BUG: sleeping function called from invalid context at %s:%d\n", 7023 file, line); 7024 printk(KERN_ERR 7025 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7026 in_atomic(), irqs_disabled(), 7027 current->pid, current->comm); 7028 7029 debug_show_held_locks(current); 7030 if (irqs_disabled()) 7031 print_irqtrace_events(current); 7032 dump_stack(); 7033 } 7034 EXPORT_SYMBOL(__might_sleep); 7035 #endif 7036 7037 #ifdef CONFIG_MAGIC_SYSRQ 7038 static void normalize_task(struct rq *rq, struct task_struct *p) 7039 { 7040 const struct sched_class *prev_class = p->sched_class; 7041 int old_prio = p->prio; 7042 int on_rq; 7043 7044 on_rq = p->on_rq; 7045 if (on_rq) 7046 dequeue_task(rq, p, 0); 7047 __setscheduler(rq, p, SCHED_NORMAL, 0); 7048 if (on_rq) { 7049 enqueue_task(rq, p, 0); 7050 resched_task(rq->curr); 7051 } 7052 7053 check_class_changed(rq, p, prev_class, old_prio); 7054 } 7055 7056 void normalize_rt_tasks(void) 7057 { 7058 struct task_struct *g, *p; 7059 unsigned long flags; 7060 struct rq *rq; 7061 7062 read_lock_irqsave(&tasklist_lock, flags); 7063 do_each_thread(g, p) { 7064 /* 7065 * Only normalize user tasks: 7066 */ 7067 if (!p->mm) 7068 continue; 7069 7070 p->se.exec_start = 0; 7071 #ifdef CONFIG_SCHEDSTATS 7072 p->se.statistics.wait_start = 0; 7073 p->se.statistics.sleep_start = 0; 7074 p->se.statistics.block_start = 0; 7075 #endif 7076 7077 if (!rt_task(p)) { 7078 /* 7079 * Renice negative nice level userspace 7080 * tasks back to 0: 7081 */ 7082 if (TASK_NICE(p) < 0 && p->mm) 7083 set_user_nice(p, 0); 7084 continue; 7085 } 7086 7087 raw_spin_lock(&p->pi_lock); 7088 rq = __task_rq_lock(p); 7089 7090 normalize_task(rq, p); 7091 7092 __task_rq_unlock(rq); 7093 raw_spin_unlock(&p->pi_lock); 7094 } while_each_thread(g, p); 7095 7096 read_unlock_irqrestore(&tasklist_lock, flags); 7097 } 7098 7099 #endif /* CONFIG_MAGIC_SYSRQ */ 7100 7101 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7102 /* 7103 * These functions are only useful for the IA64 MCA handling, or kdb. 7104 * 7105 * They can only be called when the whole system has been 7106 * stopped - every CPU needs to be quiescent, and no scheduling 7107 * activity can take place. Using them for anything else would 7108 * be a serious bug, and as a result, they aren't even visible 7109 * under any other configuration. 7110 */ 7111 7112 /** 7113 * curr_task - return the current task for a given cpu. 7114 * @cpu: the processor in question. 7115 * 7116 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7117 */ 7118 struct task_struct *curr_task(int cpu) 7119 { 7120 return cpu_curr(cpu); 7121 } 7122 7123 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7124 7125 #ifdef CONFIG_IA64 7126 /** 7127 * set_curr_task - set the current task for a given cpu. 7128 * @cpu: the processor in question. 7129 * @p: the task pointer to set. 7130 * 7131 * Description: This function must only be used when non-maskable interrupts 7132 * are serviced on a separate stack. It allows the architecture to switch the 7133 * notion of the current task on a cpu in a non-blocking manner. This function 7134 * must be called with all CPU's synchronized, and interrupts disabled, the 7135 * and caller must save the original value of the current task (see 7136 * curr_task() above) and restore that value before reenabling interrupts and 7137 * re-starting the system. 7138 * 7139 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7140 */ 7141 void set_curr_task(int cpu, struct task_struct *p) 7142 { 7143 cpu_curr(cpu) = p; 7144 } 7145 7146 #endif 7147 7148 #ifdef CONFIG_CGROUP_SCHED 7149 /* task_group_lock serializes the addition/removal of task groups */ 7150 static DEFINE_SPINLOCK(task_group_lock); 7151 7152 static void free_sched_group(struct task_group *tg) 7153 { 7154 free_fair_sched_group(tg); 7155 free_rt_sched_group(tg); 7156 autogroup_free(tg); 7157 kfree(tg); 7158 } 7159 7160 /* allocate runqueue etc for a new task group */ 7161 struct task_group *sched_create_group(struct task_group *parent) 7162 { 7163 struct task_group *tg; 7164 7165 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7166 if (!tg) 7167 return ERR_PTR(-ENOMEM); 7168 7169 if (!alloc_fair_sched_group(tg, parent)) 7170 goto err; 7171 7172 if (!alloc_rt_sched_group(tg, parent)) 7173 goto err; 7174 7175 return tg; 7176 7177 err: 7178 free_sched_group(tg); 7179 return ERR_PTR(-ENOMEM); 7180 } 7181 7182 void sched_online_group(struct task_group *tg, struct task_group *parent) 7183 { 7184 unsigned long flags; 7185 7186 spin_lock_irqsave(&task_group_lock, flags); 7187 list_add_rcu(&tg->list, &task_groups); 7188 7189 WARN_ON(!parent); /* root should already exist */ 7190 7191 tg->parent = parent; 7192 INIT_LIST_HEAD(&tg->children); 7193 list_add_rcu(&tg->siblings, &parent->children); 7194 spin_unlock_irqrestore(&task_group_lock, flags); 7195 } 7196 7197 /* rcu callback to free various structures associated with a task group */ 7198 static void free_sched_group_rcu(struct rcu_head *rhp) 7199 { 7200 /* now it should be safe to free those cfs_rqs */ 7201 free_sched_group(container_of(rhp, struct task_group, rcu)); 7202 } 7203 7204 /* Destroy runqueue etc associated with a task group */ 7205 void sched_destroy_group(struct task_group *tg) 7206 { 7207 /* wait for possible concurrent references to cfs_rqs complete */ 7208 call_rcu(&tg->rcu, free_sched_group_rcu); 7209 } 7210 7211 void sched_offline_group(struct task_group *tg) 7212 { 7213 unsigned long flags; 7214 int i; 7215 7216 /* end participation in shares distribution */ 7217 for_each_possible_cpu(i) 7218 unregister_fair_sched_group(tg, i); 7219 7220 spin_lock_irqsave(&task_group_lock, flags); 7221 list_del_rcu(&tg->list); 7222 list_del_rcu(&tg->siblings); 7223 spin_unlock_irqrestore(&task_group_lock, flags); 7224 } 7225 7226 /* change task's runqueue when it moves between groups. 7227 * The caller of this function should have put the task in its new group 7228 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7229 * reflect its new group. 7230 */ 7231 void sched_move_task(struct task_struct *tsk) 7232 { 7233 struct task_group *tg; 7234 int on_rq, running; 7235 unsigned long flags; 7236 struct rq *rq; 7237 7238 rq = task_rq_lock(tsk, &flags); 7239 7240 running = task_current(rq, tsk); 7241 on_rq = tsk->on_rq; 7242 7243 if (on_rq) 7244 dequeue_task(rq, tsk, 0); 7245 if (unlikely(running)) 7246 tsk->sched_class->put_prev_task(rq, tsk); 7247 7248 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id, 7249 lockdep_is_held(&tsk->sighand->siglock)), 7250 struct task_group, css); 7251 tg = autogroup_task_group(tsk, tg); 7252 tsk->sched_task_group = tg; 7253 7254 #ifdef CONFIG_FAIR_GROUP_SCHED 7255 if (tsk->sched_class->task_move_group) 7256 tsk->sched_class->task_move_group(tsk, on_rq); 7257 else 7258 #endif 7259 set_task_rq(tsk, task_cpu(tsk)); 7260 7261 if (unlikely(running)) 7262 tsk->sched_class->set_curr_task(rq); 7263 if (on_rq) 7264 enqueue_task(rq, tsk, 0); 7265 7266 task_rq_unlock(rq, tsk, &flags); 7267 } 7268 #endif /* CONFIG_CGROUP_SCHED */ 7269 7270 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7271 static unsigned long to_ratio(u64 period, u64 runtime) 7272 { 7273 if (runtime == RUNTIME_INF) 7274 return 1ULL << 20; 7275 7276 return div64_u64(runtime << 20, period); 7277 } 7278 #endif 7279 7280 #ifdef CONFIG_RT_GROUP_SCHED 7281 /* 7282 * Ensure that the real time constraints are schedulable. 7283 */ 7284 static DEFINE_MUTEX(rt_constraints_mutex); 7285 7286 /* Must be called with tasklist_lock held */ 7287 static inline int tg_has_rt_tasks(struct task_group *tg) 7288 { 7289 struct task_struct *g, *p; 7290 7291 do_each_thread(g, p) { 7292 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7293 return 1; 7294 } while_each_thread(g, p); 7295 7296 return 0; 7297 } 7298 7299 struct rt_schedulable_data { 7300 struct task_group *tg; 7301 u64 rt_period; 7302 u64 rt_runtime; 7303 }; 7304 7305 static int tg_rt_schedulable(struct task_group *tg, void *data) 7306 { 7307 struct rt_schedulable_data *d = data; 7308 struct task_group *child; 7309 unsigned long total, sum = 0; 7310 u64 period, runtime; 7311 7312 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7313 runtime = tg->rt_bandwidth.rt_runtime; 7314 7315 if (tg == d->tg) { 7316 period = d->rt_period; 7317 runtime = d->rt_runtime; 7318 } 7319 7320 /* 7321 * Cannot have more runtime than the period. 7322 */ 7323 if (runtime > period && runtime != RUNTIME_INF) 7324 return -EINVAL; 7325 7326 /* 7327 * Ensure we don't starve existing RT tasks. 7328 */ 7329 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7330 return -EBUSY; 7331 7332 total = to_ratio(period, runtime); 7333 7334 /* 7335 * Nobody can have more than the global setting allows. 7336 */ 7337 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7338 return -EINVAL; 7339 7340 /* 7341 * The sum of our children's runtime should not exceed our own. 7342 */ 7343 list_for_each_entry_rcu(child, &tg->children, siblings) { 7344 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7345 runtime = child->rt_bandwidth.rt_runtime; 7346 7347 if (child == d->tg) { 7348 period = d->rt_period; 7349 runtime = d->rt_runtime; 7350 } 7351 7352 sum += to_ratio(period, runtime); 7353 } 7354 7355 if (sum > total) 7356 return -EINVAL; 7357 7358 return 0; 7359 } 7360 7361 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7362 { 7363 int ret; 7364 7365 struct rt_schedulable_data data = { 7366 .tg = tg, 7367 .rt_period = period, 7368 .rt_runtime = runtime, 7369 }; 7370 7371 rcu_read_lock(); 7372 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7373 rcu_read_unlock(); 7374 7375 return ret; 7376 } 7377 7378 static int tg_set_rt_bandwidth(struct task_group *tg, 7379 u64 rt_period, u64 rt_runtime) 7380 { 7381 int i, err = 0; 7382 7383 mutex_lock(&rt_constraints_mutex); 7384 read_lock(&tasklist_lock); 7385 err = __rt_schedulable(tg, rt_period, rt_runtime); 7386 if (err) 7387 goto unlock; 7388 7389 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7390 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7391 tg->rt_bandwidth.rt_runtime = rt_runtime; 7392 7393 for_each_possible_cpu(i) { 7394 struct rt_rq *rt_rq = tg->rt_rq[i]; 7395 7396 raw_spin_lock(&rt_rq->rt_runtime_lock); 7397 rt_rq->rt_runtime = rt_runtime; 7398 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7399 } 7400 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7401 unlock: 7402 read_unlock(&tasklist_lock); 7403 mutex_unlock(&rt_constraints_mutex); 7404 7405 return err; 7406 } 7407 7408 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7409 { 7410 u64 rt_runtime, rt_period; 7411 7412 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7413 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7414 if (rt_runtime_us < 0) 7415 rt_runtime = RUNTIME_INF; 7416 7417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7418 } 7419 7420 long sched_group_rt_runtime(struct task_group *tg) 7421 { 7422 u64 rt_runtime_us; 7423 7424 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7425 return -1; 7426 7427 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7428 do_div(rt_runtime_us, NSEC_PER_USEC); 7429 return rt_runtime_us; 7430 } 7431 7432 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7433 { 7434 u64 rt_runtime, rt_period; 7435 7436 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7437 rt_runtime = tg->rt_bandwidth.rt_runtime; 7438 7439 if (rt_period == 0) 7440 return -EINVAL; 7441 7442 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7443 } 7444 7445 long sched_group_rt_period(struct task_group *tg) 7446 { 7447 u64 rt_period_us; 7448 7449 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7450 do_div(rt_period_us, NSEC_PER_USEC); 7451 return rt_period_us; 7452 } 7453 7454 static int sched_rt_global_constraints(void) 7455 { 7456 u64 runtime, period; 7457 int ret = 0; 7458 7459 if (sysctl_sched_rt_period <= 0) 7460 return -EINVAL; 7461 7462 runtime = global_rt_runtime(); 7463 period = global_rt_period(); 7464 7465 /* 7466 * Sanity check on the sysctl variables. 7467 */ 7468 if (runtime > period && runtime != RUNTIME_INF) 7469 return -EINVAL; 7470 7471 mutex_lock(&rt_constraints_mutex); 7472 read_lock(&tasklist_lock); 7473 ret = __rt_schedulable(NULL, 0, 0); 7474 read_unlock(&tasklist_lock); 7475 mutex_unlock(&rt_constraints_mutex); 7476 7477 return ret; 7478 } 7479 7480 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7481 { 7482 /* Don't accept realtime tasks when there is no way for them to run */ 7483 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7484 return 0; 7485 7486 return 1; 7487 } 7488 7489 #else /* !CONFIG_RT_GROUP_SCHED */ 7490 static int sched_rt_global_constraints(void) 7491 { 7492 unsigned long flags; 7493 int i; 7494 7495 if (sysctl_sched_rt_period <= 0) 7496 return -EINVAL; 7497 7498 /* 7499 * There's always some RT tasks in the root group 7500 * -- migration, kstopmachine etc.. 7501 */ 7502 if (sysctl_sched_rt_runtime == 0) 7503 return -EBUSY; 7504 7505 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7506 for_each_possible_cpu(i) { 7507 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7508 7509 raw_spin_lock(&rt_rq->rt_runtime_lock); 7510 rt_rq->rt_runtime = global_rt_runtime(); 7511 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7512 } 7513 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7514 7515 return 0; 7516 } 7517 #endif /* CONFIG_RT_GROUP_SCHED */ 7518 7519 int sched_rr_handler(struct ctl_table *table, int write, 7520 void __user *buffer, size_t *lenp, 7521 loff_t *ppos) 7522 { 7523 int ret; 7524 static DEFINE_MUTEX(mutex); 7525 7526 mutex_lock(&mutex); 7527 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7528 /* make sure that internally we keep jiffies */ 7529 /* also, writing zero resets timeslice to default */ 7530 if (!ret && write) { 7531 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7532 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7533 } 7534 mutex_unlock(&mutex); 7535 return ret; 7536 } 7537 7538 int sched_rt_handler(struct ctl_table *table, int write, 7539 void __user *buffer, size_t *lenp, 7540 loff_t *ppos) 7541 { 7542 int ret; 7543 int old_period, old_runtime; 7544 static DEFINE_MUTEX(mutex); 7545 7546 mutex_lock(&mutex); 7547 old_period = sysctl_sched_rt_period; 7548 old_runtime = sysctl_sched_rt_runtime; 7549 7550 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7551 7552 if (!ret && write) { 7553 ret = sched_rt_global_constraints(); 7554 if (ret) { 7555 sysctl_sched_rt_period = old_period; 7556 sysctl_sched_rt_runtime = old_runtime; 7557 } else { 7558 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7559 def_rt_bandwidth.rt_period = 7560 ns_to_ktime(global_rt_period()); 7561 } 7562 } 7563 mutex_unlock(&mutex); 7564 7565 return ret; 7566 } 7567 7568 #ifdef CONFIG_CGROUP_SCHED 7569 7570 /* return corresponding task_group object of a cgroup */ 7571 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7572 { 7573 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7574 struct task_group, css); 7575 } 7576 7577 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp) 7578 { 7579 struct task_group *tg, *parent; 7580 7581 if (!cgrp->parent) { 7582 /* This is early initialization for the top cgroup */ 7583 return &root_task_group.css; 7584 } 7585 7586 parent = cgroup_tg(cgrp->parent); 7587 tg = sched_create_group(parent); 7588 if (IS_ERR(tg)) 7589 return ERR_PTR(-ENOMEM); 7590 7591 return &tg->css; 7592 } 7593 7594 static int cpu_cgroup_css_online(struct cgroup *cgrp) 7595 { 7596 struct task_group *tg = cgroup_tg(cgrp); 7597 struct task_group *parent; 7598 7599 if (!cgrp->parent) 7600 return 0; 7601 7602 parent = cgroup_tg(cgrp->parent); 7603 sched_online_group(tg, parent); 7604 return 0; 7605 } 7606 7607 static void cpu_cgroup_css_free(struct cgroup *cgrp) 7608 { 7609 struct task_group *tg = cgroup_tg(cgrp); 7610 7611 sched_destroy_group(tg); 7612 } 7613 7614 static void cpu_cgroup_css_offline(struct cgroup *cgrp) 7615 { 7616 struct task_group *tg = cgroup_tg(cgrp); 7617 7618 sched_offline_group(tg); 7619 } 7620 7621 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7622 struct cgroup_taskset *tset) 7623 { 7624 struct task_struct *task; 7625 7626 cgroup_taskset_for_each(task, cgrp, tset) { 7627 #ifdef CONFIG_RT_GROUP_SCHED 7628 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7629 return -EINVAL; 7630 #else 7631 /* We don't support RT-tasks being in separate groups */ 7632 if (task->sched_class != &fair_sched_class) 7633 return -EINVAL; 7634 #endif 7635 } 7636 return 0; 7637 } 7638 7639 static void cpu_cgroup_attach(struct cgroup *cgrp, 7640 struct cgroup_taskset *tset) 7641 { 7642 struct task_struct *task; 7643 7644 cgroup_taskset_for_each(task, cgrp, tset) 7645 sched_move_task(task); 7646 } 7647 7648 static void 7649 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7650 struct task_struct *task) 7651 { 7652 /* 7653 * cgroup_exit() is called in the copy_process() failure path. 7654 * Ignore this case since the task hasn't ran yet, this avoids 7655 * trying to poke a half freed task state from generic code. 7656 */ 7657 if (!(task->flags & PF_EXITING)) 7658 return; 7659 7660 sched_move_task(task); 7661 } 7662 7663 #ifdef CONFIG_FAIR_GROUP_SCHED 7664 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7665 u64 shareval) 7666 { 7667 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7668 } 7669 7670 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7671 { 7672 struct task_group *tg = cgroup_tg(cgrp); 7673 7674 return (u64) scale_load_down(tg->shares); 7675 } 7676 7677 #ifdef CONFIG_CFS_BANDWIDTH 7678 static DEFINE_MUTEX(cfs_constraints_mutex); 7679 7680 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7681 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7682 7683 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7684 7685 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7686 { 7687 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7688 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7689 7690 if (tg == &root_task_group) 7691 return -EINVAL; 7692 7693 /* 7694 * Ensure we have at some amount of bandwidth every period. This is 7695 * to prevent reaching a state of large arrears when throttled via 7696 * entity_tick() resulting in prolonged exit starvation. 7697 */ 7698 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7699 return -EINVAL; 7700 7701 /* 7702 * Likewise, bound things on the otherside by preventing insane quota 7703 * periods. This also allows us to normalize in computing quota 7704 * feasibility. 7705 */ 7706 if (period > max_cfs_quota_period) 7707 return -EINVAL; 7708 7709 mutex_lock(&cfs_constraints_mutex); 7710 ret = __cfs_schedulable(tg, period, quota); 7711 if (ret) 7712 goto out_unlock; 7713 7714 runtime_enabled = quota != RUNTIME_INF; 7715 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7716 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7717 raw_spin_lock_irq(&cfs_b->lock); 7718 cfs_b->period = ns_to_ktime(period); 7719 cfs_b->quota = quota; 7720 7721 __refill_cfs_bandwidth_runtime(cfs_b); 7722 /* restart the period timer (if active) to handle new period expiry */ 7723 if (runtime_enabled && cfs_b->timer_active) { 7724 /* force a reprogram */ 7725 cfs_b->timer_active = 0; 7726 __start_cfs_bandwidth(cfs_b); 7727 } 7728 raw_spin_unlock_irq(&cfs_b->lock); 7729 7730 for_each_possible_cpu(i) { 7731 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7732 struct rq *rq = cfs_rq->rq; 7733 7734 raw_spin_lock_irq(&rq->lock); 7735 cfs_rq->runtime_enabled = runtime_enabled; 7736 cfs_rq->runtime_remaining = 0; 7737 7738 if (cfs_rq->throttled) 7739 unthrottle_cfs_rq(cfs_rq); 7740 raw_spin_unlock_irq(&rq->lock); 7741 } 7742 out_unlock: 7743 mutex_unlock(&cfs_constraints_mutex); 7744 7745 return ret; 7746 } 7747 7748 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7749 { 7750 u64 quota, period; 7751 7752 period = ktime_to_ns(tg->cfs_bandwidth.period); 7753 if (cfs_quota_us < 0) 7754 quota = RUNTIME_INF; 7755 else 7756 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7757 7758 return tg_set_cfs_bandwidth(tg, period, quota); 7759 } 7760 7761 long tg_get_cfs_quota(struct task_group *tg) 7762 { 7763 u64 quota_us; 7764 7765 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7766 return -1; 7767 7768 quota_us = tg->cfs_bandwidth.quota; 7769 do_div(quota_us, NSEC_PER_USEC); 7770 7771 return quota_us; 7772 } 7773 7774 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7775 { 7776 u64 quota, period; 7777 7778 period = (u64)cfs_period_us * NSEC_PER_USEC; 7779 quota = tg->cfs_bandwidth.quota; 7780 7781 return tg_set_cfs_bandwidth(tg, period, quota); 7782 } 7783 7784 long tg_get_cfs_period(struct task_group *tg) 7785 { 7786 u64 cfs_period_us; 7787 7788 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7789 do_div(cfs_period_us, NSEC_PER_USEC); 7790 7791 return cfs_period_us; 7792 } 7793 7794 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7795 { 7796 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7797 } 7798 7799 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7800 s64 cfs_quota_us) 7801 { 7802 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7803 } 7804 7805 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7806 { 7807 return tg_get_cfs_period(cgroup_tg(cgrp)); 7808 } 7809 7810 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7811 u64 cfs_period_us) 7812 { 7813 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7814 } 7815 7816 struct cfs_schedulable_data { 7817 struct task_group *tg; 7818 u64 period, quota; 7819 }; 7820 7821 /* 7822 * normalize group quota/period to be quota/max_period 7823 * note: units are usecs 7824 */ 7825 static u64 normalize_cfs_quota(struct task_group *tg, 7826 struct cfs_schedulable_data *d) 7827 { 7828 u64 quota, period; 7829 7830 if (tg == d->tg) { 7831 period = d->period; 7832 quota = d->quota; 7833 } else { 7834 period = tg_get_cfs_period(tg); 7835 quota = tg_get_cfs_quota(tg); 7836 } 7837 7838 /* note: these should typically be equivalent */ 7839 if (quota == RUNTIME_INF || quota == -1) 7840 return RUNTIME_INF; 7841 7842 return to_ratio(period, quota); 7843 } 7844 7845 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7846 { 7847 struct cfs_schedulable_data *d = data; 7848 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7849 s64 quota = 0, parent_quota = -1; 7850 7851 if (!tg->parent) { 7852 quota = RUNTIME_INF; 7853 } else { 7854 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7855 7856 quota = normalize_cfs_quota(tg, d); 7857 parent_quota = parent_b->hierarchal_quota; 7858 7859 /* 7860 * ensure max(child_quota) <= parent_quota, inherit when no 7861 * limit is set 7862 */ 7863 if (quota == RUNTIME_INF) 7864 quota = parent_quota; 7865 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7866 return -EINVAL; 7867 } 7868 cfs_b->hierarchal_quota = quota; 7869 7870 return 0; 7871 } 7872 7873 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7874 { 7875 int ret; 7876 struct cfs_schedulable_data data = { 7877 .tg = tg, 7878 .period = period, 7879 .quota = quota, 7880 }; 7881 7882 if (quota != RUNTIME_INF) { 7883 do_div(data.period, NSEC_PER_USEC); 7884 do_div(data.quota, NSEC_PER_USEC); 7885 } 7886 7887 rcu_read_lock(); 7888 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7889 rcu_read_unlock(); 7890 7891 return ret; 7892 } 7893 7894 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7895 struct cgroup_map_cb *cb) 7896 { 7897 struct task_group *tg = cgroup_tg(cgrp); 7898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7899 7900 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7901 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7902 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7903 7904 return 0; 7905 } 7906 #endif /* CONFIG_CFS_BANDWIDTH */ 7907 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7908 7909 #ifdef CONFIG_RT_GROUP_SCHED 7910 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7911 s64 val) 7912 { 7913 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7914 } 7915 7916 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7917 { 7918 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7919 } 7920 7921 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7922 u64 rt_period_us) 7923 { 7924 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7925 } 7926 7927 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7928 { 7929 return sched_group_rt_period(cgroup_tg(cgrp)); 7930 } 7931 #endif /* CONFIG_RT_GROUP_SCHED */ 7932 7933 static struct cftype cpu_files[] = { 7934 #ifdef CONFIG_FAIR_GROUP_SCHED 7935 { 7936 .name = "shares", 7937 .read_u64 = cpu_shares_read_u64, 7938 .write_u64 = cpu_shares_write_u64, 7939 }, 7940 #endif 7941 #ifdef CONFIG_CFS_BANDWIDTH 7942 { 7943 .name = "cfs_quota_us", 7944 .read_s64 = cpu_cfs_quota_read_s64, 7945 .write_s64 = cpu_cfs_quota_write_s64, 7946 }, 7947 { 7948 .name = "cfs_period_us", 7949 .read_u64 = cpu_cfs_period_read_u64, 7950 .write_u64 = cpu_cfs_period_write_u64, 7951 }, 7952 { 7953 .name = "stat", 7954 .read_map = cpu_stats_show, 7955 }, 7956 #endif 7957 #ifdef CONFIG_RT_GROUP_SCHED 7958 { 7959 .name = "rt_runtime_us", 7960 .read_s64 = cpu_rt_runtime_read, 7961 .write_s64 = cpu_rt_runtime_write, 7962 }, 7963 { 7964 .name = "rt_period_us", 7965 .read_u64 = cpu_rt_period_read_uint, 7966 .write_u64 = cpu_rt_period_write_uint, 7967 }, 7968 #endif 7969 { } /* terminate */ 7970 }; 7971 7972 struct cgroup_subsys cpu_cgroup_subsys = { 7973 .name = "cpu", 7974 .css_alloc = cpu_cgroup_css_alloc, 7975 .css_free = cpu_cgroup_css_free, 7976 .css_online = cpu_cgroup_css_online, 7977 .css_offline = cpu_cgroup_css_offline, 7978 .can_attach = cpu_cgroup_can_attach, 7979 .attach = cpu_cgroup_attach, 7980 .exit = cpu_cgroup_exit, 7981 .subsys_id = cpu_cgroup_subsys_id, 7982 .base_cftypes = cpu_files, 7983 .early_init = 1, 7984 }; 7985 7986 #endif /* CONFIG_CGROUP_SCHED */ 7987 7988 #ifdef CONFIG_CGROUP_CPUACCT 7989 7990 /* 7991 * CPU accounting code for task groups. 7992 * 7993 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7994 * (balbir@in.ibm.com). 7995 */ 7996 7997 struct cpuacct root_cpuacct; 7998 7999 /* create a new cpu accounting group */ 8000 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp) 8001 { 8002 struct cpuacct *ca; 8003 8004 if (!cgrp->parent) 8005 return &root_cpuacct.css; 8006 8007 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 8008 if (!ca) 8009 goto out; 8010 8011 ca->cpuusage = alloc_percpu(u64); 8012 if (!ca->cpuusage) 8013 goto out_free_ca; 8014 8015 ca->cpustat = alloc_percpu(struct kernel_cpustat); 8016 if (!ca->cpustat) 8017 goto out_free_cpuusage; 8018 8019 return &ca->css; 8020 8021 out_free_cpuusage: 8022 free_percpu(ca->cpuusage); 8023 out_free_ca: 8024 kfree(ca); 8025 out: 8026 return ERR_PTR(-ENOMEM); 8027 } 8028 8029 /* destroy an existing cpu accounting group */ 8030 static void cpuacct_css_free(struct cgroup *cgrp) 8031 { 8032 struct cpuacct *ca = cgroup_ca(cgrp); 8033 8034 free_percpu(ca->cpustat); 8035 free_percpu(ca->cpuusage); 8036 kfree(ca); 8037 } 8038 8039 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8040 { 8041 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8042 u64 data; 8043 8044 #ifndef CONFIG_64BIT 8045 /* 8046 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8047 */ 8048 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8049 data = *cpuusage; 8050 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8051 #else 8052 data = *cpuusage; 8053 #endif 8054 8055 return data; 8056 } 8057 8058 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8059 { 8060 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8061 8062 #ifndef CONFIG_64BIT 8063 /* 8064 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8065 */ 8066 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8067 *cpuusage = val; 8068 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8069 #else 8070 *cpuusage = val; 8071 #endif 8072 } 8073 8074 /* return total cpu usage (in nanoseconds) of a group */ 8075 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8076 { 8077 struct cpuacct *ca = cgroup_ca(cgrp); 8078 u64 totalcpuusage = 0; 8079 int i; 8080 8081 for_each_present_cpu(i) 8082 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8083 8084 return totalcpuusage; 8085 } 8086 8087 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8088 u64 reset) 8089 { 8090 struct cpuacct *ca = cgroup_ca(cgrp); 8091 int err = 0; 8092 int i; 8093 8094 if (reset) { 8095 err = -EINVAL; 8096 goto out; 8097 } 8098 8099 for_each_present_cpu(i) 8100 cpuacct_cpuusage_write(ca, i, 0); 8101 8102 out: 8103 return err; 8104 } 8105 8106 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8107 struct seq_file *m) 8108 { 8109 struct cpuacct *ca = cgroup_ca(cgroup); 8110 u64 percpu; 8111 int i; 8112 8113 for_each_present_cpu(i) { 8114 percpu = cpuacct_cpuusage_read(ca, i); 8115 seq_printf(m, "%llu ", (unsigned long long) percpu); 8116 } 8117 seq_printf(m, "\n"); 8118 return 0; 8119 } 8120 8121 static const char *cpuacct_stat_desc[] = { 8122 [CPUACCT_STAT_USER] = "user", 8123 [CPUACCT_STAT_SYSTEM] = "system", 8124 }; 8125 8126 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8127 struct cgroup_map_cb *cb) 8128 { 8129 struct cpuacct *ca = cgroup_ca(cgrp); 8130 int cpu; 8131 s64 val = 0; 8132 8133 for_each_online_cpu(cpu) { 8134 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8135 val += kcpustat->cpustat[CPUTIME_USER]; 8136 val += kcpustat->cpustat[CPUTIME_NICE]; 8137 } 8138 val = cputime64_to_clock_t(val); 8139 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8140 8141 val = 0; 8142 for_each_online_cpu(cpu) { 8143 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8144 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8145 val += kcpustat->cpustat[CPUTIME_IRQ]; 8146 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8147 } 8148 8149 val = cputime64_to_clock_t(val); 8150 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8151 8152 return 0; 8153 } 8154 8155 static struct cftype files[] = { 8156 { 8157 .name = "usage", 8158 .read_u64 = cpuusage_read, 8159 .write_u64 = cpuusage_write, 8160 }, 8161 { 8162 .name = "usage_percpu", 8163 .read_seq_string = cpuacct_percpu_seq_read, 8164 }, 8165 { 8166 .name = "stat", 8167 .read_map = cpuacct_stats_show, 8168 }, 8169 { } /* terminate */ 8170 }; 8171 8172 /* 8173 * charge this task's execution time to its accounting group. 8174 * 8175 * called with rq->lock held. 8176 */ 8177 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8178 { 8179 struct cpuacct *ca; 8180 int cpu; 8181 8182 if (unlikely(!cpuacct_subsys.active)) 8183 return; 8184 8185 cpu = task_cpu(tsk); 8186 8187 rcu_read_lock(); 8188 8189 ca = task_ca(tsk); 8190 8191 for (; ca; ca = parent_ca(ca)) { 8192 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8193 *cpuusage += cputime; 8194 } 8195 8196 rcu_read_unlock(); 8197 } 8198 8199 struct cgroup_subsys cpuacct_subsys = { 8200 .name = "cpuacct", 8201 .css_alloc = cpuacct_css_alloc, 8202 .css_free = cpuacct_css_free, 8203 .subsys_id = cpuacct_subsys_id, 8204 .base_cftypes = files, 8205 }; 8206 #endif /* CONFIG_CGROUP_CPUACCT */ 8207 8208 void dump_cpu_task(int cpu) 8209 { 8210 pr_info("Task dump for CPU %d:\n", cpu); 8211 sched_show_task(cpu_curr(cpu)); 8212 } 8213