xref: /linux/kernel/sched/core.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
515 
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519 
520 void resched_task(struct task_struct *p)
521 {
522 	int cpu;
523 
524 	assert_raw_spin_locked(&task_rq(p)->lock);
525 
526 	if (test_tsk_need_resched(p))
527 		return;
528 
529 	set_tsk_need_resched(p);
530 
531 	cpu = task_cpu(p);
532 	if (cpu == smp_processor_id())
533 		return;
534 
535 	/* NEED_RESCHED must be visible before we test polling */
536 	smp_mb();
537 	if (!tsk_is_polling(p))
538 		smp_send_reschedule(cpu);
539 }
540 
541 void resched_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 	unsigned long flags;
545 
546 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 		return;
548 	resched_task(cpu_curr(cpu));
549 	raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551 
552 #ifdef CONFIG_NO_HZ
553 /*
554  * In the semi idle case, use the nearest busy cpu for migrating timers
555  * from an idle cpu.  This is good for power-savings.
556  *
557  * We don't do similar optimization for completely idle system, as
558  * selecting an idle cpu will add more delays to the timers than intended
559  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560  */
561 int get_nohz_timer_target(void)
562 {
563 	int cpu = smp_processor_id();
564 	int i;
565 	struct sched_domain *sd;
566 
567 	rcu_read_lock();
568 	for_each_domain(cpu, sd) {
569 		for_each_cpu(i, sched_domain_span(sd)) {
570 			if (!idle_cpu(i)) {
571 				cpu = i;
572 				goto unlock;
573 			}
574 		}
575 	}
576 unlock:
577 	rcu_read_unlock();
578 	return cpu;
579 }
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	/*
598 	 * This is safe, as this function is called with the timer
599 	 * wheel base lock of (cpu) held. When the CPU is on the way
600 	 * to idle and has not yet set rq->curr to idle then it will
601 	 * be serialized on the timer wheel base lock and take the new
602 	 * timer into account automatically.
603 	 */
604 	if (rq->curr != rq->idle)
605 		return;
606 
607 	/*
608 	 * We can set TIF_RESCHED on the idle task of the other CPU
609 	 * lockless. The worst case is that the other CPU runs the
610 	 * idle task through an additional NOOP schedule()
611 	 */
612 	set_tsk_need_resched(rq->idle);
613 
614 	/* NEED_RESCHED must be visible before we test polling */
615 	smp_mb();
616 	if (!tsk_is_polling(rq->idle))
617 		smp_send_reschedule(cpu);
618 }
619 
620 static inline bool got_nohz_idle_kick(void)
621 {
622 	int cpu = smp_processor_id();
623 	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625 
626 #else /* CONFIG_NO_HZ */
627 
628 static inline bool got_nohz_idle_kick(void)
629 {
630 	return false;
631 }
632 
633 #endif /* CONFIG_NO_HZ */
634 
635 void sched_avg_update(struct rq *rq)
636 {
637 	s64 period = sched_avg_period();
638 
639 	while ((s64)(rq->clock - rq->age_stamp) > period) {
640 		/*
641 		 * Inline assembly required to prevent the compiler
642 		 * optimising this loop into a divmod call.
643 		 * See __iter_div_u64_rem() for another example of this.
644 		 */
645 		asm("" : "+rm" (rq->age_stamp));
646 		rq->age_stamp += period;
647 		rq->rt_avg /= 2;
648 	}
649 }
650 
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 	assert_raw_spin_locked(&task_rq(p)->lock);
655 	set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658 
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662  * Iterate task_group tree rooted at *from, calling @down when first entering a
663  * node and @up when leaving it for the final time.
664  *
665  * Caller must hold rcu_lock or sufficient equivalent.
666  */
667 int walk_tg_tree_from(struct task_group *from,
668 			     tg_visitor down, tg_visitor up, void *data)
669 {
670 	struct task_group *parent, *child;
671 	int ret;
672 
673 	parent = from;
674 
675 down:
676 	ret = (*down)(parent, data);
677 	if (ret)
678 		goto out;
679 	list_for_each_entry_rcu(child, &parent->children, siblings) {
680 		parent = child;
681 		goto down;
682 
683 up:
684 		continue;
685 	}
686 	ret = (*up)(parent, data);
687 	if (ret || parent == from)
688 		goto out;
689 
690 	child = parent;
691 	parent = parent->parent;
692 	if (parent)
693 		goto up;
694 out:
695 	return ret;
696 }
697 
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 	return 0;
701 }
702 #endif
703 
704 static void set_load_weight(struct task_struct *p)
705 {
706 	int prio = p->static_prio - MAX_RT_PRIO;
707 	struct load_weight *load = &p->se.load;
708 
709 	/*
710 	 * SCHED_IDLE tasks get minimal weight:
711 	 */
712 	if (p->policy == SCHED_IDLE) {
713 		load->weight = scale_load(WEIGHT_IDLEPRIO);
714 		load->inv_weight = WMULT_IDLEPRIO;
715 		return;
716 	}
717 
718 	load->weight = scale_load(prio_to_weight[prio]);
719 	load->inv_weight = prio_to_wmult[prio];
720 }
721 
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 	update_rq_clock(rq);
725 	sched_info_queued(p);
726 	p->sched_class->enqueue_task(rq, p, flags);
727 }
728 
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 	update_rq_clock(rq);
732 	sched_info_dequeued(p);
733 	p->sched_class->dequeue_task(rq, p, flags);
734 }
735 
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 	if (task_contributes_to_load(p))
739 		rq->nr_uninterruptible--;
740 
741 	enqueue_task(rq, p, flags);
742 }
743 
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 	if (task_contributes_to_load(p))
747 		rq->nr_uninterruptible++;
748 
749 	dequeue_task(rq, p, flags);
750 }
751 
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755  * In theory, the compile should just see 0 here, and optimize out the call
756  * to sched_rt_avg_update. But I don't trust it...
757  */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 	s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763 
764 	/*
765 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 	 * this case when a previous update_rq_clock() happened inside a
767 	 * {soft,}irq region.
768 	 *
769 	 * When this happens, we stop ->clock_task and only update the
770 	 * prev_irq_time stamp to account for the part that fit, so that a next
771 	 * update will consume the rest. This ensures ->clock_task is
772 	 * monotonic.
773 	 *
774 	 * It does however cause some slight miss-attribution of {soft,}irq
775 	 * time, a more accurate solution would be to update the irq_time using
776 	 * the current rq->clock timestamp, except that would require using
777 	 * atomic ops.
778 	 */
779 	if (irq_delta > delta)
780 		irq_delta = delta;
781 
782 	rq->prev_irq_time += irq_delta;
783 	delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 	if (static_key_false((&paravirt_steal_rq_enabled))) {
787 		u64 st;
788 
789 		steal = paravirt_steal_clock(cpu_of(rq));
790 		steal -= rq->prev_steal_time_rq;
791 
792 		if (unlikely(steal > delta))
793 			steal = delta;
794 
795 		st = steal_ticks(steal);
796 		steal = st * TICK_NSEC;
797 
798 		rq->prev_steal_time_rq += steal;
799 
800 		delta -= steal;
801 	}
802 #endif
803 
804 	rq->clock_task += delta;
805 
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 		sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811 
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816 
817 	if (stop) {
818 		/*
819 		 * Make it appear like a SCHED_FIFO task, its something
820 		 * userspace knows about and won't get confused about.
821 		 *
822 		 * Also, it will make PI more or less work without too
823 		 * much confusion -- but then, stop work should not
824 		 * rely on PI working anyway.
825 		 */
826 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827 
828 		stop->sched_class = &stop_sched_class;
829 	}
830 
831 	cpu_rq(cpu)->stop = stop;
832 
833 	if (old_stop) {
834 		/*
835 		 * Reset it back to a normal scheduling class so that
836 		 * it can die in pieces.
837 		 */
838 		old_stop->sched_class = &rt_sched_class;
839 	}
840 }
841 
842 /*
843  * __normal_prio - return the priority that is based on the static prio
844  */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 	return p->static_prio;
848 }
849 
850 /*
851  * Calculate the expected normal priority: i.e. priority
852  * without taking RT-inheritance into account. Might be
853  * boosted by interactivity modifiers. Changes upon fork,
854  * setprio syscalls, and whenever the interactivity
855  * estimator recalculates.
856  */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 	int prio;
860 
861 	if (task_has_rt_policy(p))
862 		prio = MAX_RT_PRIO-1 - p->rt_priority;
863 	else
864 		prio = __normal_prio(p);
865 	return prio;
866 }
867 
868 /*
869  * Calculate the current priority, i.e. the priority
870  * taken into account by the scheduler. This value might
871  * be boosted by RT tasks, or might be boosted by
872  * interactivity modifiers. Will be RT if the task got
873  * RT-boosted. If not then it returns p->normal_prio.
874  */
875 static int effective_prio(struct task_struct *p)
876 {
877 	p->normal_prio = normal_prio(p);
878 	/*
879 	 * If we are RT tasks or we were boosted to RT priority,
880 	 * keep the priority unchanged. Otherwise, update priority
881 	 * to the normal priority:
882 	 */
883 	if (!rt_prio(p->prio))
884 		return p->normal_prio;
885 	return p->prio;
886 }
887 
888 /**
889  * task_curr - is this task currently executing on a CPU?
890  * @p: the task in question.
891  */
892 inline int task_curr(const struct task_struct *p)
893 {
894 	return cpu_curr(task_cpu(p)) == p;
895 }
896 
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 				       const struct sched_class *prev_class,
899 				       int oldprio)
900 {
901 	if (prev_class != p->sched_class) {
902 		if (prev_class->switched_from)
903 			prev_class->switched_from(rq, p);
904 		p->sched_class->switched_to(rq, p);
905 	} else if (oldprio != p->prio)
906 		p->sched_class->prio_changed(rq, p, oldprio);
907 }
908 
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 	const struct sched_class *class;
912 
913 	if (p->sched_class == rq->curr->sched_class) {
914 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 	} else {
916 		for_each_class(class) {
917 			if (class == rq->curr->sched_class)
918 				break;
919 			if (class == p->sched_class) {
920 				resched_task(rq->curr);
921 				break;
922 			}
923 		}
924 	}
925 
926 	/*
927 	 * A queue event has occurred, and we're going to schedule.  In
928 	 * this case, we can save a useless back to back clock update.
929 	 */
930 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 		rq->skip_clock_update = 1;
932 }
933 
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935 
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 	atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940 
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 	/*
946 	 * We should never call set_task_cpu() on a blocked task,
947 	 * ttwu() will sort out the placement.
948 	 */
949 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951 
952 #ifdef CONFIG_LOCKDEP
953 	/*
954 	 * The caller should hold either p->pi_lock or rq->lock, when changing
955 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 	 *
957 	 * sched_move_task() holds both and thus holding either pins the cgroup,
958 	 * see task_group().
959 	 *
960 	 * Furthermore, all task_rq users should acquire both locks, see
961 	 * task_rq_lock().
962 	 */
963 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 				      lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967 
968 	trace_sched_migrate_task(p, new_cpu);
969 
970 	if (task_cpu(p) != new_cpu) {
971 		struct task_migration_notifier tmn;
972 
973 		if (p->sched_class->migrate_task_rq)
974 			p->sched_class->migrate_task_rq(p, new_cpu);
975 		p->se.nr_migrations++;
976 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977 
978 		tmn.task = p;
979 		tmn.from_cpu = task_cpu(p);
980 		tmn.to_cpu = new_cpu;
981 
982 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 	}
984 
985 	__set_task_cpu(p, new_cpu);
986 }
987 
988 struct migration_arg {
989 	struct task_struct *task;
990 	int dest_cpu;
991 };
992 
993 static int migration_cpu_stop(void *data);
994 
995 /*
996  * wait_task_inactive - wait for a thread to unschedule.
997  *
998  * If @match_state is nonzero, it's the @p->state value just checked and
999  * not expected to change.  If it changes, i.e. @p might have woken up,
1000  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001  * we return a positive number (its total switch count).  If a second call
1002  * a short while later returns the same number, the caller can be sure that
1003  * @p has remained unscheduled the whole time.
1004  *
1005  * The caller must ensure that the task *will* unschedule sometime soon,
1006  * else this function might spin for a *long* time. This function can't
1007  * be called with interrupts off, or it may introduce deadlock with
1008  * smp_call_function() if an IPI is sent by the same process we are
1009  * waiting to become inactive.
1010  */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 	unsigned long flags;
1014 	int running, on_rq;
1015 	unsigned long ncsw;
1016 	struct rq *rq;
1017 
1018 	for (;;) {
1019 		/*
1020 		 * We do the initial early heuristics without holding
1021 		 * any task-queue locks at all. We'll only try to get
1022 		 * the runqueue lock when things look like they will
1023 		 * work out!
1024 		 */
1025 		rq = task_rq(p);
1026 
1027 		/*
1028 		 * If the task is actively running on another CPU
1029 		 * still, just relax and busy-wait without holding
1030 		 * any locks.
1031 		 *
1032 		 * NOTE! Since we don't hold any locks, it's not
1033 		 * even sure that "rq" stays as the right runqueue!
1034 		 * But we don't care, since "task_running()" will
1035 		 * return false if the runqueue has changed and p
1036 		 * is actually now running somewhere else!
1037 		 */
1038 		while (task_running(rq, p)) {
1039 			if (match_state && unlikely(p->state != match_state))
1040 				return 0;
1041 			cpu_relax();
1042 		}
1043 
1044 		/*
1045 		 * Ok, time to look more closely! We need the rq
1046 		 * lock now, to be *sure*. If we're wrong, we'll
1047 		 * just go back and repeat.
1048 		 */
1049 		rq = task_rq_lock(p, &flags);
1050 		trace_sched_wait_task(p);
1051 		running = task_running(rq, p);
1052 		on_rq = p->on_rq;
1053 		ncsw = 0;
1054 		if (!match_state || p->state == match_state)
1055 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 		task_rq_unlock(rq, p, &flags);
1057 
1058 		/*
1059 		 * If it changed from the expected state, bail out now.
1060 		 */
1061 		if (unlikely(!ncsw))
1062 			break;
1063 
1064 		/*
1065 		 * Was it really running after all now that we
1066 		 * checked with the proper locks actually held?
1067 		 *
1068 		 * Oops. Go back and try again..
1069 		 */
1070 		if (unlikely(running)) {
1071 			cpu_relax();
1072 			continue;
1073 		}
1074 
1075 		/*
1076 		 * It's not enough that it's not actively running,
1077 		 * it must be off the runqueue _entirely_, and not
1078 		 * preempted!
1079 		 *
1080 		 * So if it was still runnable (but just not actively
1081 		 * running right now), it's preempted, and we should
1082 		 * yield - it could be a while.
1083 		 */
1084 		if (unlikely(on_rq)) {
1085 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086 
1087 			set_current_state(TASK_UNINTERRUPTIBLE);
1088 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 			continue;
1090 		}
1091 
1092 		/*
1093 		 * Ahh, all good. It wasn't running, and it wasn't
1094 		 * runnable, which means that it will never become
1095 		 * running in the future either. We're all done!
1096 		 */
1097 		break;
1098 	}
1099 
1100 	return ncsw;
1101 }
1102 
1103 /***
1104  * kick_process - kick a running thread to enter/exit the kernel
1105  * @p: the to-be-kicked thread
1106  *
1107  * Cause a process which is running on another CPU to enter
1108  * kernel-mode, without any delay. (to get signals handled.)
1109  *
1110  * NOTE: this function doesn't have to take the runqueue lock,
1111  * because all it wants to ensure is that the remote task enters
1112  * the kernel. If the IPI races and the task has been migrated
1113  * to another CPU then no harm is done and the purpose has been
1114  * achieved as well.
1115  */
1116 void kick_process(struct task_struct *p)
1117 {
1118 	int cpu;
1119 
1120 	preempt_disable();
1121 	cpu = task_cpu(p);
1122 	if ((cpu != smp_processor_id()) && task_curr(p))
1123 		smp_send_reschedule(cpu);
1124 	preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128 
1129 #ifdef CONFIG_SMP
1130 /*
1131  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132  */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136 	enum { cpuset, possible, fail } state = cpuset;
1137 	int dest_cpu;
1138 
1139 	/* Look for allowed, online CPU in same node. */
1140 	for_each_cpu(dest_cpu, nodemask) {
1141 		if (!cpu_online(dest_cpu))
1142 			continue;
1143 		if (!cpu_active(dest_cpu))
1144 			continue;
1145 		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146 			return dest_cpu;
1147 	}
1148 
1149 	for (;;) {
1150 		/* Any allowed, online CPU? */
1151 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152 			if (!cpu_online(dest_cpu))
1153 				continue;
1154 			if (!cpu_active(dest_cpu))
1155 				continue;
1156 			goto out;
1157 		}
1158 
1159 		switch (state) {
1160 		case cpuset:
1161 			/* No more Mr. Nice Guy. */
1162 			cpuset_cpus_allowed_fallback(p);
1163 			state = possible;
1164 			break;
1165 
1166 		case possible:
1167 			do_set_cpus_allowed(p, cpu_possible_mask);
1168 			state = fail;
1169 			break;
1170 
1171 		case fail:
1172 			BUG();
1173 			break;
1174 		}
1175 	}
1176 
1177 out:
1178 	if (state != cpuset) {
1179 		/*
1180 		 * Don't tell them about moving exiting tasks or
1181 		 * kernel threads (both mm NULL), since they never
1182 		 * leave kernel.
1183 		 */
1184 		if (p->mm && printk_ratelimit()) {
1185 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 					task_pid_nr(p), p->comm, cpu);
1187 		}
1188 	}
1189 
1190 	return dest_cpu;
1191 }
1192 
1193 /*
1194  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195  */
1196 static inline
1197 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198 {
1199 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200 
1201 	/*
1202 	 * In order not to call set_task_cpu() on a blocking task we need
1203 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 	 * cpu.
1205 	 *
1206 	 * Since this is common to all placement strategies, this lives here.
1207 	 *
1208 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 	 *   not worry about this generic constraint ]
1210 	 */
1211 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212 		     !cpu_online(cpu)))
1213 		cpu = select_fallback_rq(task_cpu(p), p);
1214 
1215 	return cpu;
1216 }
1217 
1218 static void update_avg(u64 *avg, u64 sample)
1219 {
1220 	s64 diff = sample - *avg;
1221 	*avg += diff >> 3;
1222 }
1223 #endif
1224 
1225 static void
1226 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227 {
1228 #ifdef CONFIG_SCHEDSTATS
1229 	struct rq *rq = this_rq();
1230 
1231 #ifdef CONFIG_SMP
1232 	int this_cpu = smp_processor_id();
1233 
1234 	if (cpu == this_cpu) {
1235 		schedstat_inc(rq, ttwu_local);
1236 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 	} else {
1238 		struct sched_domain *sd;
1239 
1240 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241 		rcu_read_lock();
1242 		for_each_domain(this_cpu, sd) {
1243 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 				schedstat_inc(sd, ttwu_wake_remote);
1245 				break;
1246 			}
1247 		}
1248 		rcu_read_unlock();
1249 	}
1250 
1251 	if (wake_flags & WF_MIGRATED)
1252 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253 
1254 #endif /* CONFIG_SMP */
1255 
1256 	schedstat_inc(rq, ttwu_count);
1257 	schedstat_inc(p, se.statistics.nr_wakeups);
1258 
1259 	if (wake_flags & WF_SYNC)
1260 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261 
1262 #endif /* CONFIG_SCHEDSTATS */
1263 }
1264 
1265 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266 {
1267 	activate_task(rq, p, en_flags);
1268 	p->on_rq = 1;
1269 
1270 	/* if a worker is waking up, notify workqueue */
1271 	if (p->flags & PF_WQ_WORKER)
1272 		wq_worker_waking_up(p, cpu_of(rq));
1273 }
1274 
1275 /*
1276  * Mark the task runnable and perform wakeup-preemption.
1277  */
1278 static void
1279 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280 {
1281 	trace_sched_wakeup(p, true);
1282 	check_preempt_curr(rq, p, wake_flags);
1283 
1284 	p->state = TASK_RUNNING;
1285 #ifdef CONFIG_SMP
1286 	if (p->sched_class->task_woken)
1287 		p->sched_class->task_woken(rq, p);
1288 
1289 	if (rq->idle_stamp) {
1290 		u64 delta = rq->clock - rq->idle_stamp;
1291 		u64 max = 2*sysctl_sched_migration_cost;
1292 
1293 		if (delta > max)
1294 			rq->avg_idle = max;
1295 		else
1296 			update_avg(&rq->avg_idle, delta);
1297 		rq->idle_stamp = 0;
1298 	}
1299 #endif
1300 }
1301 
1302 static void
1303 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304 {
1305 #ifdef CONFIG_SMP
1306 	if (p->sched_contributes_to_load)
1307 		rq->nr_uninterruptible--;
1308 #endif
1309 
1310 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 	ttwu_do_wakeup(rq, p, wake_flags);
1312 }
1313 
1314 /*
1315  * Called in case the task @p isn't fully descheduled from its runqueue,
1316  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317  * since all we need to do is flip p->state to TASK_RUNNING, since
1318  * the task is still ->on_rq.
1319  */
1320 static int ttwu_remote(struct task_struct *p, int wake_flags)
1321 {
1322 	struct rq *rq;
1323 	int ret = 0;
1324 
1325 	rq = __task_rq_lock(p);
1326 	if (p->on_rq) {
1327 		ttwu_do_wakeup(rq, p, wake_flags);
1328 		ret = 1;
1329 	}
1330 	__task_rq_unlock(rq);
1331 
1332 	return ret;
1333 }
1334 
1335 #ifdef CONFIG_SMP
1336 static void sched_ttwu_pending(void)
1337 {
1338 	struct rq *rq = this_rq();
1339 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 	struct task_struct *p;
1341 
1342 	raw_spin_lock(&rq->lock);
1343 
1344 	while (llist) {
1345 		p = llist_entry(llist, struct task_struct, wake_entry);
1346 		llist = llist_next(llist);
1347 		ttwu_do_activate(rq, p, 0);
1348 	}
1349 
1350 	raw_spin_unlock(&rq->lock);
1351 }
1352 
1353 void scheduler_ipi(void)
1354 {
1355 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356 		return;
1357 
1358 	/*
1359 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 	 * traditionally all their work was done from the interrupt return
1361 	 * path. Now that we actually do some work, we need to make sure
1362 	 * we do call them.
1363 	 *
1364 	 * Some archs already do call them, luckily irq_enter/exit nest
1365 	 * properly.
1366 	 *
1367 	 * Arguably we should visit all archs and update all handlers,
1368 	 * however a fair share of IPIs are still resched only so this would
1369 	 * somewhat pessimize the simple resched case.
1370 	 */
1371 	irq_enter();
1372 	sched_ttwu_pending();
1373 
1374 	/*
1375 	 * Check if someone kicked us for doing the nohz idle load balance.
1376 	 */
1377 	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 		this_rq()->idle_balance = 1;
1379 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380 	}
1381 	irq_exit();
1382 }
1383 
1384 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385 {
1386 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387 		smp_send_reschedule(cpu);
1388 }
1389 
1390 bool cpus_share_cache(int this_cpu, int that_cpu)
1391 {
1392 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393 }
1394 #endif /* CONFIG_SMP */
1395 
1396 static void ttwu_queue(struct task_struct *p, int cpu)
1397 {
1398 	struct rq *rq = cpu_rq(cpu);
1399 
1400 #if defined(CONFIG_SMP)
1401 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403 		ttwu_queue_remote(p, cpu);
1404 		return;
1405 	}
1406 #endif
1407 
1408 	raw_spin_lock(&rq->lock);
1409 	ttwu_do_activate(rq, p, 0);
1410 	raw_spin_unlock(&rq->lock);
1411 }
1412 
1413 /**
1414  * try_to_wake_up - wake up a thread
1415  * @p: the thread to be awakened
1416  * @state: the mask of task states that can be woken
1417  * @wake_flags: wake modifier flags (WF_*)
1418  *
1419  * Put it on the run-queue if it's not already there. The "current"
1420  * thread is always on the run-queue (except when the actual
1421  * re-schedule is in progress), and as such you're allowed to do
1422  * the simpler "current->state = TASK_RUNNING" to mark yourself
1423  * runnable without the overhead of this.
1424  *
1425  * Returns %true if @p was woken up, %false if it was already running
1426  * or @state didn't match @p's state.
1427  */
1428 static int
1429 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430 {
1431 	unsigned long flags;
1432 	int cpu, success = 0;
1433 
1434 	smp_wmb();
1435 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1436 	if (!(p->state & state))
1437 		goto out;
1438 
1439 	success = 1; /* we're going to change ->state */
1440 	cpu = task_cpu(p);
1441 
1442 	if (p->on_rq && ttwu_remote(p, wake_flags))
1443 		goto stat;
1444 
1445 #ifdef CONFIG_SMP
1446 	/*
1447 	 * If the owning (remote) cpu is still in the middle of schedule() with
1448 	 * this task as prev, wait until its done referencing the task.
1449 	 */
1450 	while (p->on_cpu)
1451 		cpu_relax();
1452 	/*
1453 	 * Pairs with the smp_wmb() in finish_lock_switch().
1454 	 */
1455 	smp_rmb();
1456 
1457 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458 	p->state = TASK_WAKING;
1459 
1460 	if (p->sched_class->task_waking)
1461 		p->sched_class->task_waking(p);
1462 
1463 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464 	if (task_cpu(p) != cpu) {
1465 		wake_flags |= WF_MIGRATED;
1466 		set_task_cpu(p, cpu);
1467 	}
1468 #endif /* CONFIG_SMP */
1469 
1470 	ttwu_queue(p, cpu);
1471 stat:
1472 	ttwu_stat(p, cpu, wake_flags);
1473 out:
1474 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475 
1476 	return success;
1477 }
1478 
1479 /**
1480  * try_to_wake_up_local - try to wake up a local task with rq lock held
1481  * @p: the thread to be awakened
1482  *
1483  * Put @p on the run-queue if it's not already there. The caller must
1484  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485  * the current task.
1486  */
1487 static void try_to_wake_up_local(struct task_struct *p)
1488 {
1489 	struct rq *rq = task_rq(p);
1490 
1491 	BUG_ON(rq != this_rq());
1492 	BUG_ON(p == current);
1493 	lockdep_assert_held(&rq->lock);
1494 
1495 	if (!raw_spin_trylock(&p->pi_lock)) {
1496 		raw_spin_unlock(&rq->lock);
1497 		raw_spin_lock(&p->pi_lock);
1498 		raw_spin_lock(&rq->lock);
1499 	}
1500 
1501 	if (!(p->state & TASK_NORMAL))
1502 		goto out;
1503 
1504 	if (!p->on_rq)
1505 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506 
1507 	ttwu_do_wakeup(rq, p, 0);
1508 	ttwu_stat(p, smp_processor_id(), 0);
1509 out:
1510 	raw_spin_unlock(&p->pi_lock);
1511 }
1512 
1513 /**
1514  * wake_up_process - Wake up a specific process
1515  * @p: The process to be woken up.
1516  *
1517  * Attempt to wake up the nominated process and move it to the set of runnable
1518  * processes.  Returns 1 if the process was woken up, 0 if it was already
1519  * running.
1520  *
1521  * It may be assumed that this function implies a write memory barrier before
1522  * changing the task state if and only if any tasks are woken up.
1523  */
1524 int wake_up_process(struct task_struct *p)
1525 {
1526 	WARN_ON(task_is_stopped_or_traced(p));
1527 	return try_to_wake_up(p, TASK_NORMAL, 0);
1528 }
1529 EXPORT_SYMBOL(wake_up_process);
1530 
1531 int wake_up_state(struct task_struct *p, unsigned int state)
1532 {
1533 	return try_to_wake_up(p, state, 0);
1534 }
1535 
1536 /*
1537  * Perform scheduler related setup for a newly forked process p.
1538  * p is forked by current.
1539  *
1540  * __sched_fork() is basic setup used by init_idle() too:
1541  */
1542 static void __sched_fork(struct task_struct *p)
1543 {
1544 	p->on_rq			= 0;
1545 
1546 	p->se.on_rq			= 0;
1547 	p->se.exec_start		= 0;
1548 	p->se.sum_exec_runtime		= 0;
1549 	p->se.prev_sum_exec_runtime	= 0;
1550 	p->se.nr_migrations		= 0;
1551 	p->se.vruntime			= 0;
1552 	INIT_LIST_HEAD(&p->se.group_node);
1553 
1554 /*
1555  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1556  * removed when useful for applications beyond shares distribution (e.g.
1557  * load-balance).
1558  */
1559 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1560 	p->se.avg.runnable_avg_period = 0;
1561 	p->se.avg.runnable_avg_sum = 0;
1562 #endif
1563 #ifdef CONFIG_SCHEDSTATS
1564 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1565 #endif
1566 
1567 	INIT_LIST_HEAD(&p->rt.run_list);
1568 
1569 #ifdef CONFIG_PREEMPT_NOTIFIERS
1570 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1571 #endif
1572 
1573 #ifdef CONFIG_NUMA_BALANCING
1574 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1575 		p->mm->numa_next_scan = jiffies;
1576 		p->mm->numa_next_reset = jiffies;
1577 		p->mm->numa_scan_seq = 0;
1578 	}
1579 
1580 	p->node_stamp = 0ULL;
1581 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1582 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1583 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1584 	p->numa_work.next = &p->numa_work;
1585 #endif /* CONFIG_NUMA_BALANCING */
1586 }
1587 
1588 #ifdef CONFIG_NUMA_BALANCING
1589 #ifdef CONFIG_SCHED_DEBUG
1590 void set_numabalancing_state(bool enabled)
1591 {
1592 	if (enabled)
1593 		sched_feat_set("NUMA");
1594 	else
1595 		sched_feat_set("NO_NUMA");
1596 }
1597 #else
1598 __read_mostly bool numabalancing_enabled;
1599 
1600 void set_numabalancing_state(bool enabled)
1601 {
1602 	numabalancing_enabled = enabled;
1603 }
1604 #endif /* CONFIG_SCHED_DEBUG */
1605 #endif /* CONFIG_NUMA_BALANCING */
1606 
1607 /*
1608  * fork()/clone()-time setup:
1609  */
1610 void sched_fork(struct task_struct *p)
1611 {
1612 	unsigned long flags;
1613 	int cpu = get_cpu();
1614 
1615 	__sched_fork(p);
1616 	/*
1617 	 * We mark the process as running here. This guarantees that
1618 	 * nobody will actually run it, and a signal or other external
1619 	 * event cannot wake it up and insert it on the runqueue either.
1620 	 */
1621 	p->state = TASK_RUNNING;
1622 
1623 	/*
1624 	 * Make sure we do not leak PI boosting priority to the child.
1625 	 */
1626 	p->prio = current->normal_prio;
1627 
1628 	/*
1629 	 * Revert to default priority/policy on fork if requested.
1630 	 */
1631 	if (unlikely(p->sched_reset_on_fork)) {
1632 		if (task_has_rt_policy(p)) {
1633 			p->policy = SCHED_NORMAL;
1634 			p->static_prio = NICE_TO_PRIO(0);
1635 			p->rt_priority = 0;
1636 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1637 			p->static_prio = NICE_TO_PRIO(0);
1638 
1639 		p->prio = p->normal_prio = __normal_prio(p);
1640 		set_load_weight(p);
1641 
1642 		/*
1643 		 * We don't need the reset flag anymore after the fork. It has
1644 		 * fulfilled its duty:
1645 		 */
1646 		p->sched_reset_on_fork = 0;
1647 	}
1648 
1649 	if (!rt_prio(p->prio))
1650 		p->sched_class = &fair_sched_class;
1651 
1652 	if (p->sched_class->task_fork)
1653 		p->sched_class->task_fork(p);
1654 
1655 	/*
1656 	 * The child is not yet in the pid-hash so no cgroup attach races,
1657 	 * and the cgroup is pinned to this child due to cgroup_fork()
1658 	 * is ran before sched_fork().
1659 	 *
1660 	 * Silence PROVE_RCU.
1661 	 */
1662 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1663 	set_task_cpu(p, cpu);
1664 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1665 
1666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1667 	if (likely(sched_info_on()))
1668 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1669 #endif
1670 #if defined(CONFIG_SMP)
1671 	p->on_cpu = 0;
1672 #endif
1673 #ifdef CONFIG_PREEMPT_COUNT
1674 	/* Want to start with kernel preemption disabled. */
1675 	task_thread_info(p)->preempt_count = 1;
1676 #endif
1677 #ifdef CONFIG_SMP
1678 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1679 #endif
1680 
1681 	put_cpu();
1682 }
1683 
1684 /*
1685  * wake_up_new_task - wake up a newly created task for the first time.
1686  *
1687  * This function will do some initial scheduler statistics housekeeping
1688  * that must be done for every newly created context, then puts the task
1689  * on the runqueue and wakes it.
1690  */
1691 void wake_up_new_task(struct task_struct *p)
1692 {
1693 	unsigned long flags;
1694 	struct rq *rq;
1695 
1696 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1697 #ifdef CONFIG_SMP
1698 	/*
1699 	 * Fork balancing, do it here and not earlier because:
1700 	 *  - cpus_allowed can change in the fork path
1701 	 *  - any previously selected cpu might disappear through hotplug
1702 	 */
1703 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1704 #endif
1705 
1706 	rq = __task_rq_lock(p);
1707 	activate_task(rq, p, 0);
1708 	p->on_rq = 1;
1709 	trace_sched_wakeup_new(p, true);
1710 	check_preempt_curr(rq, p, WF_FORK);
1711 #ifdef CONFIG_SMP
1712 	if (p->sched_class->task_woken)
1713 		p->sched_class->task_woken(rq, p);
1714 #endif
1715 	task_rq_unlock(rq, p, &flags);
1716 }
1717 
1718 #ifdef CONFIG_PREEMPT_NOTIFIERS
1719 
1720 /**
1721  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1722  * @notifier: notifier struct to register
1723  */
1724 void preempt_notifier_register(struct preempt_notifier *notifier)
1725 {
1726 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1727 }
1728 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1729 
1730 /**
1731  * preempt_notifier_unregister - no longer interested in preemption notifications
1732  * @notifier: notifier struct to unregister
1733  *
1734  * This is safe to call from within a preemption notifier.
1735  */
1736 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1737 {
1738 	hlist_del(&notifier->link);
1739 }
1740 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1741 
1742 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743 {
1744 	struct preempt_notifier *notifier;
1745 	struct hlist_node *node;
1746 
1747 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1749 }
1750 
1751 static void
1752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 				 struct task_struct *next)
1754 {
1755 	struct preempt_notifier *notifier;
1756 	struct hlist_node *node;
1757 
1758 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 		notifier->ops->sched_out(notifier, next);
1760 }
1761 
1762 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1763 
1764 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1765 {
1766 }
1767 
1768 static void
1769 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 				 struct task_struct *next)
1771 {
1772 }
1773 
1774 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1775 
1776 /**
1777  * prepare_task_switch - prepare to switch tasks
1778  * @rq: the runqueue preparing to switch
1779  * @prev: the current task that is being switched out
1780  * @next: the task we are going to switch to.
1781  *
1782  * This is called with the rq lock held and interrupts off. It must
1783  * be paired with a subsequent finish_task_switch after the context
1784  * switch.
1785  *
1786  * prepare_task_switch sets up locking and calls architecture specific
1787  * hooks.
1788  */
1789 static inline void
1790 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791 		    struct task_struct *next)
1792 {
1793 	trace_sched_switch(prev, next);
1794 	sched_info_switch(prev, next);
1795 	perf_event_task_sched_out(prev, next);
1796 	fire_sched_out_preempt_notifiers(prev, next);
1797 	prepare_lock_switch(rq, next);
1798 	prepare_arch_switch(next);
1799 }
1800 
1801 /**
1802  * finish_task_switch - clean up after a task-switch
1803  * @rq: runqueue associated with task-switch
1804  * @prev: the thread we just switched away from.
1805  *
1806  * finish_task_switch must be called after the context switch, paired
1807  * with a prepare_task_switch call before the context switch.
1808  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809  * and do any other architecture-specific cleanup actions.
1810  *
1811  * Note that we may have delayed dropping an mm in context_switch(). If
1812  * so, we finish that here outside of the runqueue lock. (Doing it
1813  * with the lock held can cause deadlocks; see schedule() for
1814  * details.)
1815  */
1816 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1817 	__releases(rq->lock)
1818 {
1819 	struct mm_struct *mm = rq->prev_mm;
1820 	long prev_state;
1821 
1822 	rq->prev_mm = NULL;
1823 
1824 	/*
1825 	 * A task struct has one reference for the use as "current".
1826 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1827 	 * schedule one last time. The schedule call will never return, and
1828 	 * the scheduled task must drop that reference.
1829 	 * The test for TASK_DEAD must occur while the runqueue locks are
1830 	 * still held, otherwise prev could be scheduled on another cpu, die
1831 	 * there before we look at prev->state, and then the reference would
1832 	 * be dropped twice.
1833 	 *		Manfred Spraul <manfred@colorfullife.com>
1834 	 */
1835 	prev_state = prev->state;
1836 	vtime_task_switch(prev);
1837 	finish_arch_switch(prev);
1838 	perf_event_task_sched_in(prev, current);
1839 	finish_lock_switch(rq, prev);
1840 	finish_arch_post_lock_switch();
1841 
1842 	fire_sched_in_preempt_notifiers(current);
1843 	if (mm)
1844 		mmdrop(mm);
1845 	if (unlikely(prev_state == TASK_DEAD)) {
1846 		/*
1847 		 * Remove function-return probe instances associated with this
1848 		 * task and put them back on the free list.
1849 		 */
1850 		kprobe_flush_task(prev);
1851 		put_task_struct(prev);
1852 	}
1853 }
1854 
1855 #ifdef CONFIG_SMP
1856 
1857 /* assumes rq->lock is held */
1858 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1859 {
1860 	if (prev->sched_class->pre_schedule)
1861 		prev->sched_class->pre_schedule(rq, prev);
1862 }
1863 
1864 /* rq->lock is NOT held, but preemption is disabled */
1865 static inline void post_schedule(struct rq *rq)
1866 {
1867 	if (rq->post_schedule) {
1868 		unsigned long flags;
1869 
1870 		raw_spin_lock_irqsave(&rq->lock, flags);
1871 		if (rq->curr->sched_class->post_schedule)
1872 			rq->curr->sched_class->post_schedule(rq);
1873 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1874 
1875 		rq->post_schedule = 0;
1876 	}
1877 }
1878 
1879 #else
1880 
1881 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1882 {
1883 }
1884 
1885 static inline void post_schedule(struct rq *rq)
1886 {
1887 }
1888 
1889 #endif
1890 
1891 /**
1892  * schedule_tail - first thing a freshly forked thread must call.
1893  * @prev: the thread we just switched away from.
1894  */
1895 asmlinkage void schedule_tail(struct task_struct *prev)
1896 	__releases(rq->lock)
1897 {
1898 	struct rq *rq = this_rq();
1899 
1900 	finish_task_switch(rq, prev);
1901 
1902 	/*
1903 	 * FIXME: do we need to worry about rq being invalidated by the
1904 	 * task_switch?
1905 	 */
1906 	post_schedule(rq);
1907 
1908 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1909 	/* In this case, finish_task_switch does not reenable preemption */
1910 	preempt_enable();
1911 #endif
1912 	if (current->set_child_tid)
1913 		put_user(task_pid_vnr(current), current->set_child_tid);
1914 }
1915 
1916 /*
1917  * context_switch - switch to the new MM and the new
1918  * thread's register state.
1919  */
1920 static inline void
1921 context_switch(struct rq *rq, struct task_struct *prev,
1922 	       struct task_struct *next)
1923 {
1924 	struct mm_struct *mm, *oldmm;
1925 
1926 	prepare_task_switch(rq, prev, next);
1927 
1928 	mm = next->mm;
1929 	oldmm = prev->active_mm;
1930 	/*
1931 	 * For paravirt, this is coupled with an exit in switch_to to
1932 	 * combine the page table reload and the switch backend into
1933 	 * one hypercall.
1934 	 */
1935 	arch_start_context_switch(prev);
1936 
1937 	if (!mm) {
1938 		next->active_mm = oldmm;
1939 		atomic_inc(&oldmm->mm_count);
1940 		enter_lazy_tlb(oldmm, next);
1941 	} else
1942 		switch_mm(oldmm, mm, next);
1943 
1944 	if (!prev->mm) {
1945 		prev->active_mm = NULL;
1946 		rq->prev_mm = oldmm;
1947 	}
1948 	/*
1949 	 * Since the runqueue lock will be released by the next
1950 	 * task (which is an invalid locking op but in the case
1951 	 * of the scheduler it's an obvious special-case), so we
1952 	 * do an early lockdep release here:
1953 	 */
1954 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1955 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1956 #endif
1957 
1958 	context_tracking_task_switch(prev, next);
1959 	/* Here we just switch the register state and the stack. */
1960 	switch_to(prev, next, prev);
1961 
1962 	barrier();
1963 	/*
1964 	 * this_rq must be evaluated again because prev may have moved
1965 	 * CPUs since it called schedule(), thus the 'rq' on its stack
1966 	 * frame will be invalid.
1967 	 */
1968 	finish_task_switch(this_rq(), prev);
1969 }
1970 
1971 /*
1972  * nr_running, nr_uninterruptible and nr_context_switches:
1973  *
1974  * externally visible scheduler statistics: current number of runnable
1975  * threads, current number of uninterruptible-sleeping threads, total
1976  * number of context switches performed since bootup.
1977  */
1978 unsigned long nr_running(void)
1979 {
1980 	unsigned long i, sum = 0;
1981 
1982 	for_each_online_cpu(i)
1983 		sum += cpu_rq(i)->nr_running;
1984 
1985 	return sum;
1986 }
1987 
1988 unsigned long nr_uninterruptible(void)
1989 {
1990 	unsigned long i, sum = 0;
1991 
1992 	for_each_possible_cpu(i)
1993 		sum += cpu_rq(i)->nr_uninterruptible;
1994 
1995 	/*
1996 	 * Since we read the counters lockless, it might be slightly
1997 	 * inaccurate. Do not allow it to go below zero though:
1998 	 */
1999 	if (unlikely((long)sum < 0))
2000 		sum = 0;
2001 
2002 	return sum;
2003 }
2004 
2005 unsigned long long nr_context_switches(void)
2006 {
2007 	int i;
2008 	unsigned long long sum = 0;
2009 
2010 	for_each_possible_cpu(i)
2011 		sum += cpu_rq(i)->nr_switches;
2012 
2013 	return sum;
2014 }
2015 
2016 unsigned long nr_iowait(void)
2017 {
2018 	unsigned long i, sum = 0;
2019 
2020 	for_each_possible_cpu(i)
2021 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2022 
2023 	return sum;
2024 }
2025 
2026 unsigned long nr_iowait_cpu(int cpu)
2027 {
2028 	struct rq *this = cpu_rq(cpu);
2029 	return atomic_read(&this->nr_iowait);
2030 }
2031 
2032 unsigned long this_cpu_load(void)
2033 {
2034 	struct rq *this = this_rq();
2035 	return this->cpu_load[0];
2036 }
2037 
2038 
2039 /*
2040  * Global load-average calculations
2041  *
2042  * We take a distributed and async approach to calculating the global load-avg
2043  * in order to minimize overhead.
2044  *
2045  * The global load average is an exponentially decaying average of nr_running +
2046  * nr_uninterruptible.
2047  *
2048  * Once every LOAD_FREQ:
2049  *
2050  *   nr_active = 0;
2051  *   for_each_possible_cpu(cpu)
2052  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2053  *
2054  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2055  *
2056  * Due to a number of reasons the above turns in the mess below:
2057  *
2058  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2059  *    serious number of cpus, therefore we need to take a distributed approach
2060  *    to calculating nr_active.
2061  *
2062  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2063  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2064  *
2065  *    So assuming nr_active := 0 when we start out -- true per definition, we
2066  *    can simply take per-cpu deltas and fold those into a global accumulate
2067  *    to obtain the same result. See calc_load_fold_active().
2068  *
2069  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2070  *    across the machine, we assume 10 ticks is sufficient time for every
2071  *    cpu to have completed this task.
2072  *
2073  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2074  *    again, being late doesn't loose the delta, just wrecks the sample.
2075  *
2076  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2077  *    this would add another cross-cpu cacheline miss and atomic operation
2078  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2079  *    when it went into uninterruptible state and decrement on whatever cpu
2080  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2081  *    all cpus yields the correct result.
2082  *
2083  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2084  */
2085 
2086 /* Variables and functions for calc_load */
2087 static atomic_long_t calc_load_tasks;
2088 static unsigned long calc_load_update;
2089 unsigned long avenrun[3];
2090 EXPORT_SYMBOL(avenrun); /* should be removed */
2091 
2092 /**
2093  * get_avenrun - get the load average array
2094  * @loads:	pointer to dest load array
2095  * @offset:	offset to add
2096  * @shift:	shift count to shift the result left
2097  *
2098  * These values are estimates at best, so no need for locking.
2099  */
2100 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2101 {
2102 	loads[0] = (avenrun[0] + offset) << shift;
2103 	loads[1] = (avenrun[1] + offset) << shift;
2104 	loads[2] = (avenrun[2] + offset) << shift;
2105 }
2106 
2107 static long calc_load_fold_active(struct rq *this_rq)
2108 {
2109 	long nr_active, delta = 0;
2110 
2111 	nr_active = this_rq->nr_running;
2112 	nr_active += (long) this_rq->nr_uninterruptible;
2113 
2114 	if (nr_active != this_rq->calc_load_active) {
2115 		delta = nr_active - this_rq->calc_load_active;
2116 		this_rq->calc_load_active = nr_active;
2117 	}
2118 
2119 	return delta;
2120 }
2121 
2122 /*
2123  * a1 = a0 * e + a * (1 - e)
2124  */
2125 static unsigned long
2126 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2127 {
2128 	load *= exp;
2129 	load += active * (FIXED_1 - exp);
2130 	load += 1UL << (FSHIFT - 1);
2131 	return load >> FSHIFT;
2132 }
2133 
2134 #ifdef CONFIG_NO_HZ
2135 /*
2136  * Handle NO_HZ for the global load-average.
2137  *
2138  * Since the above described distributed algorithm to compute the global
2139  * load-average relies on per-cpu sampling from the tick, it is affected by
2140  * NO_HZ.
2141  *
2142  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2143  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2144  * when we read the global state.
2145  *
2146  * Obviously reality has to ruin such a delightfully simple scheme:
2147  *
2148  *  - When we go NO_HZ idle during the window, we can negate our sample
2149  *    contribution, causing under-accounting.
2150  *
2151  *    We avoid this by keeping two idle-delta counters and flipping them
2152  *    when the window starts, thus separating old and new NO_HZ load.
2153  *
2154  *    The only trick is the slight shift in index flip for read vs write.
2155  *
2156  *        0s            5s            10s           15s
2157  *          +10           +10           +10           +10
2158  *        |-|-----------|-|-----------|-|-----------|-|
2159  *    r:0 0 1           1 0           0 1           1 0
2160  *    w:0 1 1           0 0           1 1           0 0
2161  *
2162  *    This ensures we'll fold the old idle contribution in this window while
2163  *    accumlating the new one.
2164  *
2165  *  - When we wake up from NO_HZ idle during the window, we push up our
2166  *    contribution, since we effectively move our sample point to a known
2167  *    busy state.
2168  *
2169  *    This is solved by pushing the window forward, and thus skipping the
2170  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2171  *    was in effect at the time the window opened). This also solves the issue
2172  *    of having to deal with a cpu having been in NOHZ idle for multiple
2173  *    LOAD_FREQ intervals.
2174  *
2175  * When making the ILB scale, we should try to pull this in as well.
2176  */
2177 static atomic_long_t calc_load_idle[2];
2178 static int calc_load_idx;
2179 
2180 static inline int calc_load_write_idx(void)
2181 {
2182 	int idx = calc_load_idx;
2183 
2184 	/*
2185 	 * See calc_global_nohz(), if we observe the new index, we also
2186 	 * need to observe the new update time.
2187 	 */
2188 	smp_rmb();
2189 
2190 	/*
2191 	 * If the folding window started, make sure we start writing in the
2192 	 * next idle-delta.
2193 	 */
2194 	if (!time_before(jiffies, calc_load_update))
2195 		idx++;
2196 
2197 	return idx & 1;
2198 }
2199 
2200 static inline int calc_load_read_idx(void)
2201 {
2202 	return calc_load_idx & 1;
2203 }
2204 
2205 void calc_load_enter_idle(void)
2206 {
2207 	struct rq *this_rq = this_rq();
2208 	long delta;
2209 
2210 	/*
2211 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2212 	 * into the pending idle delta.
2213 	 */
2214 	delta = calc_load_fold_active(this_rq);
2215 	if (delta) {
2216 		int idx = calc_load_write_idx();
2217 		atomic_long_add(delta, &calc_load_idle[idx]);
2218 	}
2219 }
2220 
2221 void calc_load_exit_idle(void)
2222 {
2223 	struct rq *this_rq = this_rq();
2224 
2225 	/*
2226 	 * If we're still before the sample window, we're done.
2227 	 */
2228 	if (time_before(jiffies, this_rq->calc_load_update))
2229 		return;
2230 
2231 	/*
2232 	 * We woke inside or after the sample window, this means we're already
2233 	 * accounted through the nohz accounting, so skip the entire deal and
2234 	 * sync up for the next window.
2235 	 */
2236 	this_rq->calc_load_update = calc_load_update;
2237 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2238 		this_rq->calc_load_update += LOAD_FREQ;
2239 }
2240 
2241 static long calc_load_fold_idle(void)
2242 {
2243 	int idx = calc_load_read_idx();
2244 	long delta = 0;
2245 
2246 	if (atomic_long_read(&calc_load_idle[idx]))
2247 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2248 
2249 	return delta;
2250 }
2251 
2252 /**
2253  * fixed_power_int - compute: x^n, in O(log n) time
2254  *
2255  * @x:         base of the power
2256  * @frac_bits: fractional bits of @x
2257  * @n:         power to raise @x to.
2258  *
2259  * By exploiting the relation between the definition of the natural power
2260  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2261  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2262  * (where: n_i \elem {0, 1}, the binary vector representing n),
2263  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2264  * of course trivially computable in O(log_2 n), the length of our binary
2265  * vector.
2266  */
2267 static unsigned long
2268 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2269 {
2270 	unsigned long result = 1UL << frac_bits;
2271 
2272 	if (n) for (;;) {
2273 		if (n & 1) {
2274 			result *= x;
2275 			result += 1UL << (frac_bits - 1);
2276 			result >>= frac_bits;
2277 		}
2278 		n >>= 1;
2279 		if (!n)
2280 			break;
2281 		x *= x;
2282 		x += 1UL << (frac_bits - 1);
2283 		x >>= frac_bits;
2284 	}
2285 
2286 	return result;
2287 }
2288 
2289 /*
2290  * a1 = a0 * e + a * (1 - e)
2291  *
2292  * a2 = a1 * e + a * (1 - e)
2293  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2294  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2295  *
2296  * a3 = a2 * e + a * (1 - e)
2297  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2298  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2299  *
2300  *  ...
2301  *
2302  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2303  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2304  *    = a0 * e^n + a * (1 - e^n)
2305  *
2306  * [1] application of the geometric series:
2307  *
2308  *              n         1 - x^(n+1)
2309  *     S_n := \Sum x^i = -------------
2310  *             i=0          1 - x
2311  */
2312 static unsigned long
2313 calc_load_n(unsigned long load, unsigned long exp,
2314 	    unsigned long active, unsigned int n)
2315 {
2316 
2317 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2318 }
2319 
2320 /*
2321  * NO_HZ can leave us missing all per-cpu ticks calling
2322  * calc_load_account_active(), but since an idle CPU folds its delta into
2323  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2324  * in the pending idle delta if our idle period crossed a load cycle boundary.
2325  *
2326  * Once we've updated the global active value, we need to apply the exponential
2327  * weights adjusted to the number of cycles missed.
2328  */
2329 static void calc_global_nohz(void)
2330 {
2331 	long delta, active, n;
2332 
2333 	if (!time_before(jiffies, calc_load_update + 10)) {
2334 		/*
2335 		 * Catch-up, fold however many we are behind still
2336 		 */
2337 		delta = jiffies - calc_load_update - 10;
2338 		n = 1 + (delta / LOAD_FREQ);
2339 
2340 		active = atomic_long_read(&calc_load_tasks);
2341 		active = active > 0 ? active * FIXED_1 : 0;
2342 
2343 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2344 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2345 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2346 
2347 		calc_load_update += n * LOAD_FREQ;
2348 	}
2349 
2350 	/*
2351 	 * Flip the idle index...
2352 	 *
2353 	 * Make sure we first write the new time then flip the index, so that
2354 	 * calc_load_write_idx() will see the new time when it reads the new
2355 	 * index, this avoids a double flip messing things up.
2356 	 */
2357 	smp_wmb();
2358 	calc_load_idx++;
2359 }
2360 #else /* !CONFIG_NO_HZ */
2361 
2362 static inline long calc_load_fold_idle(void) { return 0; }
2363 static inline void calc_global_nohz(void) { }
2364 
2365 #endif /* CONFIG_NO_HZ */
2366 
2367 /*
2368  * calc_load - update the avenrun load estimates 10 ticks after the
2369  * CPUs have updated calc_load_tasks.
2370  */
2371 void calc_global_load(unsigned long ticks)
2372 {
2373 	long active, delta;
2374 
2375 	if (time_before(jiffies, calc_load_update + 10))
2376 		return;
2377 
2378 	/*
2379 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2380 	 */
2381 	delta = calc_load_fold_idle();
2382 	if (delta)
2383 		atomic_long_add(delta, &calc_load_tasks);
2384 
2385 	active = atomic_long_read(&calc_load_tasks);
2386 	active = active > 0 ? active * FIXED_1 : 0;
2387 
2388 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2389 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2390 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2391 
2392 	calc_load_update += LOAD_FREQ;
2393 
2394 	/*
2395 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2396 	 */
2397 	calc_global_nohz();
2398 }
2399 
2400 /*
2401  * Called from update_cpu_load() to periodically update this CPU's
2402  * active count.
2403  */
2404 static void calc_load_account_active(struct rq *this_rq)
2405 {
2406 	long delta;
2407 
2408 	if (time_before(jiffies, this_rq->calc_load_update))
2409 		return;
2410 
2411 	delta  = calc_load_fold_active(this_rq);
2412 	if (delta)
2413 		atomic_long_add(delta, &calc_load_tasks);
2414 
2415 	this_rq->calc_load_update += LOAD_FREQ;
2416 }
2417 
2418 /*
2419  * End of global load-average stuff
2420  */
2421 
2422 /*
2423  * The exact cpuload at various idx values, calculated at every tick would be
2424  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2425  *
2426  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2427  * on nth tick when cpu may be busy, then we have:
2428  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2429  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2430  *
2431  * decay_load_missed() below does efficient calculation of
2432  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2433  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2434  *
2435  * The calculation is approximated on a 128 point scale.
2436  * degrade_zero_ticks is the number of ticks after which load at any
2437  * particular idx is approximated to be zero.
2438  * degrade_factor is a precomputed table, a row for each load idx.
2439  * Each column corresponds to degradation factor for a power of two ticks,
2440  * based on 128 point scale.
2441  * Example:
2442  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2443  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2444  *
2445  * With this power of 2 load factors, we can degrade the load n times
2446  * by looking at 1 bits in n and doing as many mult/shift instead of
2447  * n mult/shifts needed by the exact degradation.
2448  */
2449 #define DEGRADE_SHIFT		7
2450 static const unsigned char
2451 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2452 static const unsigned char
2453 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2454 					{0, 0, 0, 0, 0, 0, 0, 0},
2455 					{64, 32, 8, 0, 0, 0, 0, 0},
2456 					{96, 72, 40, 12, 1, 0, 0},
2457 					{112, 98, 75, 43, 15, 1, 0},
2458 					{120, 112, 98, 76, 45, 16, 2} };
2459 
2460 /*
2461  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2462  * would be when CPU is idle and so we just decay the old load without
2463  * adding any new load.
2464  */
2465 static unsigned long
2466 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2467 {
2468 	int j = 0;
2469 
2470 	if (!missed_updates)
2471 		return load;
2472 
2473 	if (missed_updates >= degrade_zero_ticks[idx])
2474 		return 0;
2475 
2476 	if (idx == 1)
2477 		return load >> missed_updates;
2478 
2479 	while (missed_updates) {
2480 		if (missed_updates % 2)
2481 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2482 
2483 		missed_updates >>= 1;
2484 		j++;
2485 	}
2486 	return load;
2487 }
2488 
2489 /*
2490  * Update rq->cpu_load[] statistics. This function is usually called every
2491  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2492  * every tick. We fix it up based on jiffies.
2493  */
2494 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2495 			      unsigned long pending_updates)
2496 {
2497 	int i, scale;
2498 
2499 	this_rq->nr_load_updates++;
2500 
2501 	/* Update our load: */
2502 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2503 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2504 		unsigned long old_load, new_load;
2505 
2506 		/* scale is effectively 1 << i now, and >> i divides by scale */
2507 
2508 		old_load = this_rq->cpu_load[i];
2509 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2510 		new_load = this_load;
2511 		/*
2512 		 * Round up the averaging division if load is increasing. This
2513 		 * prevents us from getting stuck on 9 if the load is 10, for
2514 		 * example.
2515 		 */
2516 		if (new_load > old_load)
2517 			new_load += scale - 1;
2518 
2519 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2520 	}
2521 
2522 	sched_avg_update(this_rq);
2523 }
2524 
2525 #ifdef CONFIG_NO_HZ
2526 /*
2527  * There is no sane way to deal with nohz on smp when using jiffies because the
2528  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2529  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2530  *
2531  * Therefore we cannot use the delta approach from the regular tick since that
2532  * would seriously skew the load calculation. However we'll make do for those
2533  * updates happening while idle (nohz_idle_balance) or coming out of idle
2534  * (tick_nohz_idle_exit).
2535  *
2536  * This means we might still be one tick off for nohz periods.
2537  */
2538 
2539 /*
2540  * Called from nohz_idle_balance() to update the load ratings before doing the
2541  * idle balance.
2542  */
2543 void update_idle_cpu_load(struct rq *this_rq)
2544 {
2545 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2546 	unsigned long load = this_rq->load.weight;
2547 	unsigned long pending_updates;
2548 
2549 	/*
2550 	 * bail if there's load or we're actually up-to-date.
2551 	 */
2552 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2553 		return;
2554 
2555 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2556 	this_rq->last_load_update_tick = curr_jiffies;
2557 
2558 	__update_cpu_load(this_rq, load, pending_updates);
2559 }
2560 
2561 /*
2562  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2563  */
2564 void update_cpu_load_nohz(void)
2565 {
2566 	struct rq *this_rq = this_rq();
2567 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2568 	unsigned long pending_updates;
2569 
2570 	if (curr_jiffies == this_rq->last_load_update_tick)
2571 		return;
2572 
2573 	raw_spin_lock(&this_rq->lock);
2574 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2575 	if (pending_updates) {
2576 		this_rq->last_load_update_tick = curr_jiffies;
2577 		/*
2578 		 * We were idle, this means load 0, the current load might be
2579 		 * !0 due to remote wakeups and the sort.
2580 		 */
2581 		__update_cpu_load(this_rq, 0, pending_updates);
2582 	}
2583 	raw_spin_unlock(&this_rq->lock);
2584 }
2585 #endif /* CONFIG_NO_HZ */
2586 
2587 /*
2588  * Called from scheduler_tick()
2589  */
2590 static void update_cpu_load_active(struct rq *this_rq)
2591 {
2592 	/*
2593 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2594 	 */
2595 	this_rq->last_load_update_tick = jiffies;
2596 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2597 
2598 	calc_load_account_active(this_rq);
2599 }
2600 
2601 #ifdef CONFIG_SMP
2602 
2603 /*
2604  * sched_exec - execve() is a valuable balancing opportunity, because at
2605  * this point the task has the smallest effective memory and cache footprint.
2606  */
2607 void sched_exec(void)
2608 {
2609 	struct task_struct *p = current;
2610 	unsigned long flags;
2611 	int dest_cpu;
2612 
2613 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2614 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2615 	if (dest_cpu == smp_processor_id())
2616 		goto unlock;
2617 
2618 	if (likely(cpu_active(dest_cpu))) {
2619 		struct migration_arg arg = { p, dest_cpu };
2620 
2621 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2623 		return;
2624 	}
2625 unlock:
2626 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2627 }
2628 
2629 #endif
2630 
2631 DEFINE_PER_CPU(struct kernel_stat, kstat);
2632 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2633 
2634 EXPORT_PER_CPU_SYMBOL(kstat);
2635 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2636 
2637 /*
2638  * Return any ns on the sched_clock that have not yet been accounted in
2639  * @p in case that task is currently running.
2640  *
2641  * Called with task_rq_lock() held on @rq.
2642  */
2643 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2644 {
2645 	u64 ns = 0;
2646 
2647 	if (task_current(rq, p)) {
2648 		update_rq_clock(rq);
2649 		ns = rq->clock_task - p->se.exec_start;
2650 		if ((s64)ns < 0)
2651 			ns = 0;
2652 	}
2653 
2654 	return ns;
2655 }
2656 
2657 unsigned long long task_delta_exec(struct task_struct *p)
2658 {
2659 	unsigned long flags;
2660 	struct rq *rq;
2661 	u64 ns = 0;
2662 
2663 	rq = task_rq_lock(p, &flags);
2664 	ns = do_task_delta_exec(p, rq);
2665 	task_rq_unlock(rq, p, &flags);
2666 
2667 	return ns;
2668 }
2669 
2670 /*
2671  * Return accounted runtime for the task.
2672  * In case the task is currently running, return the runtime plus current's
2673  * pending runtime that have not been accounted yet.
2674  */
2675 unsigned long long task_sched_runtime(struct task_struct *p)
2676 {
2677 	unsigned long flags;
2678 	struct rq *rq;
2679 	u64 ns = 0;
2680 
2681 	rq = task_rq_lock(p, &flags);
2682 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2683 	task_rq_unlock(rq, p, &flags);
2684 
2685 	return ns;
2686 }
2687 
2688 /*
2689  * This function gets called by the timer code, with HZ frequency.
2690  * We call it with interrupts disabled.
2691  */
2692 void scheduler_tick(void)
2693 {
2694 	int cpu = smp_processor_id();
2695 	struct rq *rq = cpu_rq(cpu);
2696 	struct task_struct *curr = rq->curr;
2697 
2698 	sched_clock_tick();
2699 
2700 	raw_spin_lock(&rq->lock);
2701 	update_rq_clock(rq);
2702 	update_cpu_load_active(rq);
2703 	curr->sched_class->task_tick(rq, curr, 0);
2704 	raw_spin_unlock(&rq->lock);
2705 
2706 	perf_event_task_tick();
2707 
2708 #ifdef CONFIG_SMP
2709 	rq->idle_balance = idle_cpu(cpu);
2710 	trigger_load_balance(rq, cpu);
2711 #endif
2712 }
2713 
2714 notrace unsigned long get_parent_ip(unsigned long addr)
2715 {
2716 	if (in_lock_functions(addr)) {
2717 		addr = CALLER_ADDR2;
2718 		if (in_lock_functions(addr))
2719 			addr = CALLER_ADDR3;
2720 	}
2721 	return addr;
2722 }
2723 
2724 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2725 				defined(CONFIG_PREEMPT_TRACER))
2726 
2727 void __kprobes add_preempt_count(int val)
2728 {
2729 #ifdef CONFIG_DEBUG_PREEMPT
2730 	/*
2731 	 * Underflow?
2732 	 */
2733 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2734 		return;
2735 #endif
2736 	preempt_count() += val;
2737 #ifdef CONFIG_DEBUG_PREEMPT
2738 	/*
2739 	 * Spinlock count overflowing soon?
2740 	 */
2741 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2742 				PREEMPT_MASK - 10);
2743 #endif
2744 	if (preempt_count() == val)
2745 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2746 }
2747 EXPORT_SYMBOL(add_preempt_count);
2748 
2749 void __kprobes sub_preempt_count(int val)
2750 {
2751 #ifdef CONFIG_DEBUG_PREEMPT
2752 	/*
2753 	 * Underflow?
2754 	 */
2755 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2756 		return;
2757 	/*
2758 	 * Is the spinlock portion underflowing?
2759 	 */
2760 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2761 			!(preempt_count() & PREEMPT_MASK)))
2762 		return;
2763 #endif
2764 
2765 	if (preempt_count() == val)
2766 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2767 	preempt_count() -= val;
2768 }
2769 EXPORT_SYMBOL(sub_preempt_count);
2770 
2771 #endif
2772 
2773 /*
2774  * Print scheduling while atomic bug:
2775  */
2776 static noinline void __schedule_bug(struct task_struct *prev)
2777 {
2778 	if (oops_in_progress)
2779 		return;
2780 
2781 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2782 		prev->comm, prev->pid, preempt_count());
2783 
2784 	debug_show_held_locks(prev);
2785 	print_modules();
2786 	if (irqs_disabled())
2787 		print_irqtrace_events(prev);
2788 	dump_stack();
2789 	add_taint(TAINT_WARN);
2790 }
2791 
2792 /*
2793  * Various schedule()-time debugging checks and statistics:
2794  */
2795 static inline void schedule_debug(struct task_struct *prev)
2796 {
2797 	/*
2798 	 * Test if we are atomic. Since do_exit() needs to call into
2799 	 * schedule() atomically, we ignore that path for now.
2800 	 * Otherwise, whine if we are scheduling when we should not be.
2801 	 */
2802 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2803 		__schedule_bug(prev);
2804 	rcu_sleep_check();
2805 
2806 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2807 
2808 	schedstat_inc(this_rq(), sched_count);
2809 }
2810 
2811 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2812 {
2813 	if (prev->on_rq || rq->skip_clock_update < 0)
2814 		update_rq_clock(rq);
2815 	prev->sched_class->put_prev_task(rq, prev);
2816 }
2817 
2818 /*
2819  * Pick up the highest-prio task:
2820  */
2821 static inline struct task_struct *
2822 pick_next_task(struct rq *rq)
2823 {
2824 	const struct sched_class *class;
2825 	struct task_struct *p;
2826 
2827 	/*
2828 	 * Optimization: we know that if all tasks are in
2829 	 * the fair class we can call that function directly:
2830 	 */
2831 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2832 		p = fair_sched_class.pick_next_task(rq);
2833 		if (likely(p))
2834 			return p;
2835 	}
2836 
2837 	for_each_class(class) {
2838 		p = class->pick_next_task(rq);
2839 		if (p)
2840 			return p;
2841 	}
2842 
2843 	BUG(); /* the idle class will always have a runnable task */
2844 }
2845 
2846 /*
2847  * __schedule() is the main scheduler function.
2848  *
2849  * The main means of driving the scheduler and thus entering this function are:
2850  *
2851  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2852  *
2853  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2854  *      paths. For example, see arch/x86/entry_64.S.
2855  *
2856  *      To drive preemption between tasks, the scheduler sets the flag in timer
2857  *      interrupt handler scheduler_tick().
2858  *
2859  *   3. Wakeups don't really cause entry into schedule(). They add a
2860  *      task to the run-queue and that's it.
2861  *
2862  *      Now, if the new task added to the run-queue preempts the current
2863  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2864  *      called on the nearest possible occasion:
2865  *
2866  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2867  *
2868  *         - in syscall or exception context, at the next outmost
2869  *           preempt_enable(). (this might be as soon as the wake_up()'s
2870  *           spin_unlock()!)
2871  *
2872  *         - in IRQ context, return from interrupt-handler to
2873  *           preemptible context
2874  *
2875  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2876  *         then at the next:
2877  *
2878  *          - cond_resched() call
2879  *          - explicit schedule() call
2880  *          - return from syscall or exception to user-space
2881  *          - return from interrupt-handler to user-space
2882  */
2883 static void __sched __schedule(void)
2884 {
2885 	struct task_struct *prev, *next;
2886 	unsigned long *switch_count;
2887 	struct rq *rq;
2888 	int cpu;
2889 
2890 need_resched:
2891 	preempt_disable();
2892 	cpu = smp_processor_id();
2893 	rq = cpu_rq(cpu);
2894 	rcu_note_context_switch(cpu);
2895 	prev = rq->curr;
2896 
2897 	schedule_debug(prev);
2898 
2899 	if (sched_feat(HRTICK))
2900 		hrtick_clear(rq);
2901 
2902 	raw_spin_lock_irq(&rq->lock);
2903 
2904 	switch_count = &prev->nivcsw;
2905 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2906 		if (unlikely(signal_pending_state(prev->state, prev))) {
2907 			prev->state = TASK_RUNNING;
2908 		} else {
2909 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2910 			prev->on_rq = 0;
2911 
2912 			/*
2913 			 * If a worker went to sleep, notify and ask workqueue
2914 			 * whether it wants to wake up a task to maintain
2915 			 * concurrency.
2916 			 */
2917 			if (prev->flags & PF_WQ_WORKER) {
2918 				struct task_struct *to_wakeup;
2919 
2920 				to_wakeup = wq_worker_sleeping(prev, cpu);
2921 				if (to_wakeup)
2922 					try_to_wake_up_local(to_wakeup);
2923 			}
2924 		}
2925 		switch_count = &prev->nvcsw;
2926 	}
2927 
2928 	pre_schedule(rq, prev);
2929 
2930 	if (unlikely(!rq->nr_running))
2931 		idle_balance(cpu, rq);
2932 
2933 	put_prev_task(rq, prev);
2934 	next = pick_next_task(rq);
2935 	clear_tsk_need_resched(prev);
2936 	rq->skip_clock_update = 0;
2937 
2938 	if (likely(prev != next)) {
2939 		rq->nr_switches++;
2940 		rq->curr = next;
2941 		++*switch_count;
2942 
2943 		context_switch(rq, prev, next); /* unlocks the rq */
2944 		/*
2945 		 * The context switch have flipped the stack from under us
2946 		 * and restored the local variables which were saved when
2947 		 * this task called schedule() in the past. prev == current
2948 		 * is still correct, but it can be moved to another cpu/rq.
2949 		 */
2950 		cpu = smp_processor_id();
2951 		rq = cpu_rq(cpu);
2952 	} else
2953 		raw_spin_unlock_irq(&rq->lock);
2954 
2955 	post_schedule(rq);
2956 
2957 	sched_preempt_enable_no_resched();
2958 	if (need_resched())
2959 		goto need_resched;
2960 }
2961 
2962 static inline void sched_submit_work(struct task_struct *tsk)
2963 {
2964 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2965 		return;
2966 	/*
2967 	 * If we are going to sleep and we have plugged IO queued,
2968 	 * make sure to submit it to avoid deadlocks.
2969 	 */
2970 	if (blk_needs_flush_plug(tsk))
2971 		blk_schedule_flush_plug(tsk);
2972 }
2973 
2974 asmlinkage void __sched schedule(void)
2975 {
2976 	struct task_struct *tsk = current;
2977 
2978 	sched_submit_work(tsk);
2979 	__schedule();
2980 }
2981 EXPORT_SYMBOL(schedule);
2982 
2983 #ifdef CONFIG_CONTEXT_TRACKING
2984 asmlinkage void __sched schedule_user(void)
2985 {
2986 	/*
2987 	 * If we come here after a random call to set_need_resched(),
2988 	 * or we have been woken up remotely but the IPI has not yet arrived,
2989 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2990 	 * we find a better solution.
2991 	 */
2992 	user_exit();
2993 	schedule();
2994 	user_enter();
2995 }
2996 #endif
2997 
2998 /**
2999  * schedule_preempt_disabled - called with preemption disabled
3000  *
3001  * Returns with preemption disabled. Note: preempt_count must be 1
3002  */
3003 void __sched schedule_preempt_disabled(void)
3004 {
3005 	sched_preempt_enable_no_resched();
3006 	schedule();
3007 	preempt_disable();
3008 }
3009 
3010 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3011 
3012 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3013 {
3014 	if (lock->owner != owner)
3015 		return false;
3016 
3017 	/*
3018 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3019 	 * lock->owner still matches owner, if that fails, owner might
3020 	 * point to free()d memory, if it still matches, the rcu_read_lock()
3021 	 * ensures the memory stays valid.
3022 	 */
3023 	barrier();
3024 
3025 	return owner->on_cpu;
3026 }
3027 
3028 /*
3029  * Look out! "owner" is an entirely speculative pointer
3030  * access and not reliable.
3031  */
3032 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3033 {
3034 	if (!sched_feat(OWNER_SPIN))
3035 		return 0;
3036 
3037 	rcu_read_lock();
3038 	while (owner_running(lock, owner)) {
3039 		if (need_resched())
3040 			break;
3041 
3042 		arch_mutex_cpu_relax();
3043 	}
3044 	rcu_read_unlock();
3045 
3046 	/*
3047 	 * We break out the loop above on need_resched() and when the
3048 	 * owner changed, which is a sign for heavy contention. Return
3049 	 * success only when lock->owner is NULL.
3050 	 */
3051 	return lock->owner == NULL;
3052 }
3053 #endif
3054 
3055 #ifdef CONFIG_PREEMPT
3056 /*
3057  * this is the entry point to schedule() from in-kernel preemption
3058  * off of preempt_enable. Kernel preemptions off return from interrupt
3059  * occur there and call schedule directly.
3060  */
3061 asmlinkage void __sched notrace preempt_schedule(void)
3062 {
3063 	struct thread_info *ti = current_thread_info();
3064 
3065 	/*
3066 	 * If there is a non-zero preempt_count or interrupts are disabled,
3067 	 * we do not want to preempt the current task. Just return..
3068 	 */
3069 	if (likely(ti->preempt_count || irqs_disabled()))
3070 		return;
3071 
3072 	do {
3073 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3074 		__schedule();
3075 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3076 
3077 		/*
3078 		 * Check again in case we missed a preemption opportunity
3079 		 * between schedule and now.
3080 		 */
3081 		barrier();
3082 	} while (need_resched());
3083 }
3084 EXPORT_SYMBOL(preempt_schedule);
3085 
3086 /*
3087  * this is the entry point to schedule() from kernel preemption
3088  * off of irq context.
3089  * Note, that this is called and return with irqs disabled. This will
3090  * protect us against recursive calling from irq.
3091  */
3092 asmlinkage void __sched preempt_schedule_irq(void)
3093 {
3094 	struct thread_info *ti = current_thread_info();
3095 
3096 	/* Catch callers which need to be fixed */
3097 	BUG_ON(ti->preempt_count || !irqs_disabled());
3098 
3099 	user_exit();
3100 	do {
3101 		add_preempt_count(PREEMPT_ACTIVE);
3102 		local_irq_enable();
3103 		__schedule();
3104 		local_irq_disable();
3105 		sub_preempt_count(PREEMPT_ACTIVE);
3106 
3107 		/*
3108 		 * Check again in case we missed a preemption opportunity
3109 		 * between schedule and now.
3110 		 */
3111 		barrier();
3112 	} while (need_resched());
3113 }
3114 
3115 #endif /* CONFIG_PREEMPT */
3116 
3117 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3118 			  void *key)
3119 {
3120 	return try_to_wake_up(curr->private, mode, wake_flags);
3121 }
3122 EXPORT_SYMBOL(default_wake_function);
3123 
3124 /*
3125  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3126  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3127  * number) then we wake all the non-exclusive tasks and one exclusive task.
3128  *
3129  * There are circumstances in which we can try to wake a task which has already
3130  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3131  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3132  */
3133 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3134 			int nr_exclusive, int wake_flags, void *key)
3135 {
3136 	wait_queue_t *curr, *next;
3137 
3138 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3139 		unsigned flags = curr->flags;
3140 
3141 		if (curr->func(curr, mode, wake_flags, key) &&
3142 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3143 			break;
3144 	}
3145 }
3146 
3147 /**
3148  * __wake_up - wake up threads blocked on a waitqueue.
3149  * @q: the waitqueue
3150  * @mode: which threads
3151  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3152  * @key: is directly passed to the wakeup function
3153  *
3154  * It may be assumed that this function implies a write memory barrier before
3155  * changing the task state if and only if any tasks are woken up.
3156  */
3157 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3158 			int nr_exclusive, void *key)
3159 {
3160 	unsigned long flags;
3161 
3162 	spin_lock_irqsave(&q->lock, flags);
3163 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3164 	spin_unlock_irqrestore(&q->lock, flags);
3165 }
3166 EXPORT_SYMBOL(__wake_up);
3167 
3168 /*
3169  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3170  */
3171 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3172 {
3173 	__wake_up_common(q, mode, nr, 0, NULL);
3174 }
3175 EXPORT_SYMBOL_GPL(__wake_up_locked);
3176 
3177 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3178 {
3179 	__wake_up_common(q, mode, 1, 0, key);
3180 }
3181 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3182 
3183 /**
3184  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3185  * @q: the waitqueue
3186  * @mode: which threads
3187  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3188  * @key: opaque value to be passed to wakeup targets
3189  *
3190  * The sync wakeup differs that the waker knows that it will schedule
3191  * away soon, so while the target thread will be woken up, it will not
3192  * be migrated to another CPU - ie. the two threads are 'synchronized'
3193  * with each other. This can prevent needless bouncing between CPUs.
3194  *
3195  * On UP it can prevent extra preemption.
3196  *
3197  * It may be assumed that this function implies a write memory barrier before
3198  * changing the task state if and only if any tasks are woken up.
3199  */
3200 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3201 			int nr_exclusive, void *key)
3202 {
3203 	unsigned long flags;
3204 	int wake_flags = WF_SYNC;
3205 
3206 	if (unlikely(!q))
3207 		return;
3208 
3209 	if (unlikely(!nr_exclusive))
3210 		wake_flags = 0;
3211 
3212 	spin_lock_irqsave(&q->lock, flags);
3213 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3214 	spin_unlock_irqrestore(&q->lock, flags);
3215 }
3216 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3217 
3218 /*
3219  * __wake_up_sync - see __wake_up_sync_key()
3220  */
3221 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3222 {
3223 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3224 }
3225 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3226 
3227 /**
3228  * complete: - signals a single thread waiting on this completion
3229  * @x:  holds the state of this particular completion
3230  *
3231  * This will wake up a single thread waiting on this completion. Threads will be
3232  * awakened in the same order in which they were queued.
3233  *
3234  * See also complete_all(), wait_for_completion() and related routines.
3235  *
3236  * It may be assumed that this function implies a write memory barrier before
3237  * changing the task state if and only if any tasks are woken up.
3238  */
3239 void complete(struct completion *x)
3240 {
3241 	unsigned long flags;
3242 
3243 	spin_lock_irqsave(&x->wait.lock, flags);
3244 	x->done++;
3245 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3246 	spin_unlock_irqrestore(&x->wait.lock, flags);
3247 }
3248 EXPORT_SYMBOL(complete);
3249 
3250 /**
3251  * complete_all: - signals all threads waiting on this completion
3252  * @x:  holds the state of this particular completion
3253  *
3254  * This will wake up all threads waiting on this particular completion event.
3255  *
3256  * It may be assumed that this function implies a write memory barrier before
3257  * changing the task state if and only if any tasks are woken up.
3258  */
3259 void complete_all(struct completion *x)
3260 {
3261 	unsigned long flags;
3262 
3263 	spin_lock_irqsave(&x->wait.lock, flags);
3264 	x->done += UINT_MAX/2;
3265 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3266 	spin_unlock_irqrestore(&x->wait.lock, flags);
3267 }
3268 EXPORT_SYMBOL(complete_all);
3269 
3270 static inline long __sched
3271 do_wait_for_common(struct completion *x, long timeout, int state)
3272 {
3273 	if (!x->done) {
3274 		DECLARE_WAITQUEUE(wait, current);
3275 
3276 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3277 		do {
3278 			if (signal_pending_state(state, current)) {
3279 				timeout = -ERESTARTSYS;
3280 				break;
3281 			}
3282 			__set_current_state(state);
3283 			spin_unlock_irq(&x->wait.lock);
3284 			timeout = schedule_timeout(timeout);
3285 			spin_lock_irq(&x->wait.lock);
3286 		} while (!x->done && timeout);
3287 		__remove_wait_queue(&x->wait, &wait);
3288 		if (!x->done)
3289 			return timeout;
3290 	}
3291 	x->done--;
3292 	return timeout ?: 1;
3293 }
3294 
3295 static long __sched
3296 wait_for_common(struct completion *x, long timeout, int state)
3297 {
3298 	might_sleep();
3299 
3300 	spin_lock_irq(&x->wait.lock);
3301 	timeout = do_wait_for_common(x, timeout, state);
3302 	spin_unlock_irq(&x->wait.lock);
3303 	return timeout;
3304 }
3305 
3306 /**
3307  * wait_for_completion: - waits for completion of a task
3308  * @x:  holds the state of this particular completion
3309  *
3310  * This waits to be signaled for completion of a specific task. It is NOT
3311  * interruptible and there is no timeout.
3312  *
3313  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3314  * and interrupt capability. Also see complete().
3315  */
3316 void __sched wait_for_completion(struct completion *x)
3317 {
3318 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3319 }
3320 EXPORT_SYMBOL(wait_for_completion);
3321 
3322 /**
3323  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3324  * @x:  holds the state of this particular completion
3325  * @timeout:  timeout value in jiffies
3326  *
3327  * This waits for either a completion of a specific task to be signaled or for a
3328  * specified timeout to expire. The timeout is in jiffies. It is not
3329  * interruptible.
3330  *
3331  * The return value is 0 if timed out, and positive (at least 1, or number of
3332  * jiffies left till timeout) if completed.
3333  */
3334 unsigned long __sched
3335 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3336 {
3337 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3338 }
3339 EXPORT_SYMBOL(wait_for_completion_timeout);
3340 
3341 /**
3342  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3343  * @x:  holds the state of this particular completion
3344  *
3345  * This waits for completion of a specific task to be signaled. It is
3346  * interruptible.
3347  *
3348  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349  */
3350 int __sched wait_for_completion_interruptible(struct completion *x)
3351 {
3352 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3353 	if (t == -ERESTARTSYS)
3354 		return t;
3355 	return 0;
3356 }
3357 EXPORT_SYMBOL(wait_for_completion_interruptible);
3358 
3359 /**
3360  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3361  * @x:  holds the state of this particular completion
3362  * @timeout:  timeout value in jiffies
3363  *
3364  * This waits for either a completion of a specific task to be signaled or for a
3365  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3366  *
3367  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3368  * positive (at least 1, or number of jiffies left till timeout) if completed.
3369  */
3370 long __sched
3371 wait_for_completion_interruptible_timeout(struct completion *x,
3372 					  unsigned long timeout)
3373 {
3374 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3375 }
3376 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3377 
3378 /**
3379  * wait_for_completion_killable: - waits for completion of a task (killable)
3380  * @x:  holds the state of this particular completion
3381  *
3382  * This waits to be signaled for completion of a specific task. It can be
3383  * interrupted by a kill signal.
3384  *
3385  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386  */
3387 int __sched wait_for_completion_killable(struct completion *x)
3388 {
3389 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3390 	if (t == -ERESTARTSYS)
3391 		return t;
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL(wait_for_completion_killable);
3395 
3396 /**
3397  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3398  * @x:  holds the state of this particular completion
3399  * @timeout:  timeout value in jiffies
3400  *
3401  * This waits for either a completion of a specific task to be
3402  * signaled or for a specified timeout to expire. It can be
3403  * interrupted by a kill signal. The timeout is in jiffies.
3404  *
3405  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3406  * positive (at least 1, or number of jiffies left till timeout) if completed.
3407  */
3408 long __sched
3409 wait_for_completion_killable_timeout(struct completion *x,
3410 				     unsigned long timeout)
3411 {
3412 	return wait_for_common(x, timeout, TASK_KILLABLE);
3413 }
3414 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3415 
3416 /**
3417  *	try_wait_for_completion - try to decrement a completion without blocking
3418  *	@x:	completion structure
3419  *
3420  *	Returns: 0 if a decrement cannot be done without blocking
3421  *		 1 if a decrement succeeded.
3422  *
3423  *	If a completion is being used as a counting completion,
3424  *	attempt to decrement the counter without blocking. This
3425  *	enables us to avoid waiting if the resource the completion
3426  *	is protecting is not available.
3427  */
3428 bool try_wait_for_completion(struct completion *x)
3429 {
3430 	unsigned long flags;
3431 	int ret = 1;
3432 
3433 	spin_lock_irqsave(&x->wait.lock, flags);
3434 	if (!x->done)
3435 		ret = 0;
3436 	else
3437 		x->done--;
3438 	spin_unlock_irqrestore(&x->wait.lock, flags);
3439 	return ret;
3440 }
3441 EXPORT_SYMBOL(try_wait_for_completion);
3442 
3443 /**
3444  *	completion_done - Test to see if a completion has any waiters
3445  *	@x:	completion structure
3446  *
3447  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3448  *		 1 if there are no waiters.
3449  *
3450  */
3451 bool completion_done(struct completion *x)
3452 {
3453 	unsigned long flags;
3454 	int ret = 1;
3455 
3456 	spin_lock_irqsave(&x->wait.lock, flags);
3457 	if (!x->done)
3458 		ret = 0;
3459 	spin_unlock_irqrestore(&x->wait.lock, flags);
3460 	return ret;
3461 }
3462 EXPORT_SYMBOL(completion_done);
3463 
3464 static long __sched
3465 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3466 {
3467 	unsigned long flags;
3468 	wait_queue_t wait;
3469 
3470 	init_waitqueue_entry(&wait, current);
3471 
3472 	__set_current_state(state);
3473 
3474 	spin_lock_irqsave(&q->lock, flags);
3475 	__add_wait_queue(q, &wait);
3476 	spin_unlock(&q->lock);
3477 	timeout = schedule_timeout(timeout);
3478 	spin_lock_irq(&q->lock);
3479 	__remove_wait_queue(q, &wait);
3480 	spin_unlock_irqrestore(&q->lock, flags);
3481 
3482 	return timeout;
3483 }
3484 
3485 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3486 {
3487 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3488 }
3489 EXPORT_SYMBOL(interruptible_sleep_on);
3490 
3491 long __sched
3492 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3493 {
3494 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3495 }
3496 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3497 
3498 void __sched sleep_on(wait_queue_head_t *q)
3499 {
3500 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3501 }
3502 EXPORT_SYMBOL(sleep_on);
3503 
3504 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3505 {
3506 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3507 }
3508 EXPORT_SYMBOL(sleep_on_timeout);
3509 
3510 #ifdef CONFIG_RT_MUTEXES
3511 
3512 /*
3513  * rt_mutex_setprio - set the current priority of a task
3514  * @p: task
3515  * @prio: prio value (kernel-internal form)
3516  *
3517  * This function changes the 'effective' priority of a task. It does
3518  * not touch ->normal_prio like __setscheduler().
3519  *
3520  * Used by the rt_mutex code to implement priority inheritance logic.
3521  */
3522 void rt_mutex_setprio(struct task_struct *p, int prio)
3523 {
3524 	int oldprio, on_rq, running;
3525 	struct rq *rq;
3526 	const struct sched_class *prev_class;
3527 
3528 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3529 
3530 	rq = __task_rq_lock(p);
3531 
3532 	/*
3533 	 * Idle task boosting is a nono in general. There is one
3534 	 * exception, when PREEMPT_RT and NOHZ is active:
3535 	 *
3536 	 * The idle task calls get_next_timer_interrupt() and holds
3537 	 * the timer wheel base->lock on the CPU and another CPU wants
3538 	 * to access the timer (probably to cancel it). We can safely
3539 	 * ignore the boosting request, as the idle CPU runs this code
3540 	 * with interrupts disabled and will complete the lock
3541 	 * protected section without being interrupted. So there is no
3542 	 * real need to boost.
3543 	 */
3544 	if (unlikely(p == rq->idle)) {
3545 		WARN_ON(p != rq->curr);
3546 		WARN_ON(p->pi_blocked_on);
3547 		goto out_unlock;
3548 	}
3549 
3550 	trace_sched_pi_setprio(p, prio);
3551 	oldprio = p->prio;
3552 	prev_class = p->sched_class;
3553 	on_rq = p->on_rq;
3554 	running = task_current(rq, p);
3555 	if (on_rq)
3556 		dequeue_task(rq, p, 0);
3557 	if (running)
3558 		p->sched_class->put_prev_task(rq, p);
3559 
3560 	if (rt_prio(prio))
3561 		p->sched_class = &rt_sched_class;
3562 	else
3563 		p->sched_class = &fair_sched_class;
3564 
3565 	p->prio = prio;
3566 
3567 	if (running)
3568 		p->sched_class->set_curr_task(rq);
3569 	if (on_rq)
3570 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3571 
3572 	check_class_changed(rq, p, prev_class, oldprio);
3573 out_unlock:
3574 	__task_rq_unlock(rq);
3575 }
3576 #endif
3577 void set_user_nice(struct task_struct *p, long nice)
3578 {
3579 	int old_prio, delta, on_rq;
3580 	unsigned long flags;
3581 	struct rq *rq;
3582 
3583 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3584 		return;
3585 	/*
3586 	 * We have to be careful, if called from sys_setpriority(),
3587 	 * the task might be in the middle of scheduling on another CPU.
3588 	 */
3589 	rq = task_rq_lock(p, &flags);
3590 	/*
3591 	 * The RT priorities are set via sched_setscheduler(), but we still
3592 	 * allow the 'normal' nice value to be set - but as expected
3593 	 * it wont have any effect on scheduling until the task is
3594 	 * SCHED_FIFO/SCHED_RR:
3595 	 */
3596 	if (task_has_rt_policy(p)) {
3597 		p->static_prio = NICE_TO_PRIO(nice);
3598 		goto out_unlock;
3599 	}
3600 	on_rq = p->on_rq;
3601 	if (on_rq)
3602 		dequeue_task(rq, p, 0);
3603 
3604 	p->static_prio = NICE_TO_PRIO(nice);
3605 	set_load_weight(p);
3606 	old_prio = p->prio;
3607 	p->prio = effective_prio(p);
3608 	delta = p->prio - old_prio;
3609 
3610 	if (on_rq) {
3611 		enqueue_task(rq, p, 0);
3612 		/*
3613 		 * If the task increased its priority or is running and
3614 		 * lowered its priority, then reschedule its CPU:
3615 		 */
3616 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3617 			resched_task(rq->curr);
3618 	}
3619 out_unlock:
3620 	task_rq_unlock(rq, p, &flags);
3621 }
3622 EXPORT_SYMBOL(set_user_nice);
3623 
3624 /*
3625  * can_nice - check if a task can reduce its nice value
3626  * @p: task
3627  * @nice: nice value
3628  */
3629 int can_nice(const struct task_struct *p, const int nice)
3630 {
3631 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3632 	int nice_rlim = 20 - nice;
3633 
3634 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3635 		capable(CAP_SYS_NICE));
3636 }
3637 
3638 #ifdef __ARCH_WANT_SYS_NICE
3639 
3640 /*
3641  * sys_nice - change the priority of the current process.
3642  * @increment: priority increment
3643  *
3644  * sys_setpriority is a more generic, but much slower function that
3645  * does similar things.
3646  */
3647 SYSCALL_DEFINE1(nice, int, increment)
3648 {
3649 	long nice, retval;
3650 
3651 	/*
3652 	 * Setpriority might change our priority at the same moment.
3653 	 * We don't have to worry. Conceptually one call occurs first
3654 	 * and we have a single winner.
3655 	 */
3656 	if (increment < -40)
3657 		increment = -40;
3658 	if (increment > 40)
3659 		increment = 40;
3660 
3661 	nice = TASK_NICE(current) + increment;
3662 	if (nice < -20)
3663 		nice = -20;
3664 	if (nice > 19)
3665 		nice = 19;
3666 
3667 	if (increment < 0 && !can_nice(current, nice))
3668 		return -EPERM;
3669 
3670 	retval = security_task_setnice(current, nice);
3671 	if (retval)
3672 		return retval;
3673 
3674 	set_user_nice(current, nice);
3675 	return 0;
3676 }
3677 
3678 #endif
3679 
3680 /**
3681  * task_prio - return the priority value of a given task.
3682  * @p: the task in question.
3683  *
3684  * This is the priority value as seen by users in /proc.
3685  * RT tasks are offset by -200. Normal tasks are centered
3686  * around 0, value goes from -16 to +15.
3687  */
3688 int task_prio(const struct task_struct *p)
3689 {
3690 	return p->prio - MAX_RT_PRIO;
3691 }
3692 
3693 /**
3694  * task_nice - return the nice value of a given task.
3695  * @p: the task in question.
3696  */
3697 int task_nice(const struct task_struct *p)
3698 {
3699 	return TASK_NICE(p);
3700 }
3701 EXPORT_SYMBOL(task_nice);
3702 
3703 /**
3704  * idle_cpu - is a given cpu idle currently?
3705  * @cpu: the processor in question.
3706  */
3707 int idle_cpu(int cpu)
3708 {
3709 	struct rq *rq = cpu_rq(cpu);
3710 
3711 	if (rq->curr != rq->idle)
3712 		return 0;
3713 
3714 	if (rq->nr_running)
3715 		return 0;
3716 
3717 #ifdef CONFIG_SMP
3718 	if (!llist_empty(&rq->wake_list))
3719 		return 0;
3720 #endif
3721 
3722 	return 1;
3723 }
3724 
3725 /**
3726  * idle_task - return the idle task for a given cpu.
3727  * @cpu: the processor in question.
3728  */
3729 struct task_struct *idle_task(int cpu)
3730 {
3731 	return cpu_rq(cpu)->idle;
3732 }
3733 
3734 /**
3735  * find_process_by_pid - find a process with a matching PID value.
3736  * @pid: the pid in question.
3737  */
3738 static struct task_struct *find_process_by_pid(pid_t pid)
3739 {
3740 	return pid ? find_task_by_vpid(pid) : current;
3741 }
3742 
3743 /* Actually do priority change: must hold rq lock. */
3744 static void
3745 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3746 {
3747 	p->policy = policy;
3748 	p->rt_priority = prio;
3749 	p->normal_prio = normal_prio(p);
3750 	/* we are holding p->pi_lock already */
3751 	p->prio = rt_mutex_getprio(p);
3752 	if (rt_prio(p->prio))
3753 		p->sched_class = &rt_sched_class;
3754 	else
3755 		p->sched_class = &fair_sched_class;
3756 	set_load_weight(p);
3757 }
3758 
3759 /*
3760  * check the target process has a UID that matches the current process's
3761  */
3762 static bool check_same_owner(struct task_struct *p)
3763 {
3764 	const struct cred *cred = current_cred(), *pcred;
3765 	bool match;
3766 
3767 	rcu_read_lock();
3768 	pcred = __task_cred(p);
3769 	match = (uid_eq(cred->euid, pcred->euid) ||
3770 		 uid_eq(cred->euid, pcred->uid));
3771 	rcu_read_unlock();
3772 	return match;
3773 }
3774 
3775 static int __sched_setscheduler(struct task_struct *p, int policy,
3776 				const struct sched_param *param, bool user)
3777 {
3778 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3779 	unsigned long flags;
3780 	const struct sched_class *prev_class;
3781 	struct rq *rq;
3782 	int reset_on_fork;
3783 
3784 	/* may grab non-irq protected spin_locks */
3785 	BUG_ON(in_interrupt());
3786 recheck:
3787 	/* double check policy once rq lock held */
3788 	if (policy < 0) {
3789 		reset_on_fork = p->sched_reset_on_fork;
3790 		policy = oldpolicy = p->policy;
3791 	} else {
3792 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3793 		policy &= ~SCHED_RESET_ON_FORK;
3794 
3795 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3796 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3797 				policy != SCHED_IDLE)
3798 			return -EINVAL;
3799 	}
3800 
3801 	/*
3802 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3803 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3804 	 * SCHED_BATCH and SCHED_IDLE is 0.
3805 	 */
3806 	if (param->sched_priority < 0 ||
3807 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3808 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3809 		return -EINVAL;
3810 	if (rt_policy(policy) != (param->sched_priority != 0))
3811 		return -EINVAL;
3812 
3813 	/*
3814 	 * Allow unprivileged RT tasks to decrease priority:
3815 	 */
3816 	if (user && !capable(CAP_SYS_NICE)) {
3817 		if (rt_policy(policy)) {
3818 			unsigned long rlim_rtprio =
3819 					task_rlimit(p, RLIMIT_RTPRIO);
3820 
3821 			/* can't set/change the rt policy */
3822 			if (policy != p->policy && !rlim_rtprio)
3823 				return -EPERM;
3824 
3825 			/* can't increase priority */
3826 			if (param->sched_priority > p->rt_priority &&
3827 			    param->sched_priority > rlim_rtprio)
3828 				return -EPERM;
3829 		}
3830 
3831 		/*
3832 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3833 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3834 		 */
3835 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3836 			if (!can_nice(p, TASK_NICE(p)))
3837 				return -EPERM;
3838 		}
3839 
3840 		/* can't change other user's priorities */
3841 		if (!check_same_owner(p))
3842 			return -EPERM;
3843 
3844 		/* Normal users shall not reset the sched_reset_on_fork flag */
3845 		if (p->sched_reset_on_fork && !reset_on_fork)
3846 			return -EPERM;
3847 	}
3848 
3849 	if (user) {
3850 		retval = security_task_setscheduler(p);
3851 		if (retval)
3852 			return retval;
3853 	}
3854 
3855 	/*
3856 	 * make sure no PI-waiters arrive (or leave) while we are
3857 	 * changing the priority of the task:
3858 	 *
3859 	 * To be able to change p->policy safely, the appropriate
3860 	 * runqueue lock must be held.
3861 	 */
3862 	rq = task_rq_lock(p, &flags);
3863 
3864 	/*
3865 	 * Changing the policy of the stop threads its a very bad idea
3866 	 */
3867 	if (p == rq->stop) {
3868 		task_rq_unlock(rq, p, &flags);
3869 		return -EINVAL;
3870 	}
3871 
3872 	/*
3873 	 * If not changing anything there's no need to proceed further:
3874 	 */
3875 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3876 			param->sched_priority == p->rt_priority))) {
3877 		task_rq_unlock(rq, p, &flags);
3878 		return 0;
3879 	}
3880 
3881 #ifdef CONFIG_RT_GROUP_SCHED
3882 	if (user) {
3883 		/*
3884 		 * Do not allow realtime tasks into groups that have no runtime
3885 		 * assigned.
3886 		 */
3887 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3888 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3889 				!task_group_is_autogroup(task_group(p))) {
3890 			task_rq_unlock(rq, p, &flags);
3891 			return -EPERM;
3892 		}
3893 	}
3894 #endif
3895 
3896 	/* recheck policy now with rq lock held */
3897 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3898 		policy = oldpolicy = -1;
3899 		task_rq_unlock(rq, p, &flags);
3900 		goto recheck;
3901 	}
3902 	on_rq = p->on_rq;
3903 	running = task_current(rq, p);
3904 	if (on_rq)
3905 		dequeue_task(rq, p, 0);
3906 	if (running)
3907 		p->sched_class->put_prev_task(rq, p);
3908 
3909 	p->sched_reset_on_fork = reset_on_fork;
3910 
3911 	oldprio = p->prio;
3912 	prev_class = p->sched_class;
3913 	__setscheduler(rq, p, policy, param->sched_priority);
3914 
3915 	if (running)
3916 		p->sched_class->set_curr_task(rq);
3917 	if (on_rq)
3918 		enqueue_task(rq, p, 0);
3919 
3920 	check_class_changed(rq, p, prev_class, oldprio);
3921 	task_rq_unlock(rq, p, &flags);
3922 
3923 	rt_mutex_adjust_pi(p);
3924 
3925 	return 0;
3926 }
3927 
3928 /**
3929  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3930  * @p: the task in question.
3931  * @policy: new policy.
3932  * @param: structure containing the new RT priority.
3933  *
3934  * NOTE that the task may be already dead.
3935  */
3936 int sched_setscheduler(struct task_struct *p, int policy,
3937 		       const struct sched_param *param)
3938 {
3939 	return __sched_setscheduler(p, policy, param, true);
3940 }
3941 EXPORT_SYMBOL_GPL(sched_setscheduler);
3942 
3943 /**
3944  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3945  * @p: the task in question.
3946  * @policy: new policy.
3947  * @param: structure containing the new RT priority.
3948  *
3949  * Just like sched_setscheduler, only don't bother checking if the
3950  * current context has permission.  For example, this is needed in
3951  * stop_machine(): we create temporary high priority worker threads,
3952  * but our caller might not have that capability.
3953  */
3954 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3955 			       const struct sched_param *param)
3956 {
3957 	return __sched_setscheduler(p, policy, param, false);
3958 }
3959 
3960 static int
3961 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3962 {
3963 	struct sched_param lparam;
3964 	struct task_struct *p;
3965 	int retval;
3966 
3967 	if (!param || pid < 0)
3968 		return -EINVAL;
3969 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3970 		return -EFAULT;
3971 
3972 	rcu_read_lock();
3973 	retval = -ESRCH;
3974 	p = find_process_by_pid(pid);
3975 	if (p != NULL)
3976 		retval = sched_setscheduler(p, policy, &lparam);
3977 	rcu_read_unlock();
3978 
3979 	return retval;
3980 }
3981 
3982 /**
3983  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3984  * @pid: the pid in question.
3985  * @policy: new policy.
3986  * @param: structure containing the new RT priority.
3987  */
3988 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3989 		struct sched_param __user *, param)
3990 {
3991 	/* negative values for policy are not valid */
3992 	if (policy < 0)
3993 		return -EINVAL;
3994 
3995 	return do_sched_setscheduler(pid, policy, param);
3996 }
3997 
3998 /**
3999  * sys_sched_setparam - set/change the RT priority of a thread
4000  * @pid: the pid in question.
4001  * @param: structure containing the new RT priority.
4002  */
4003 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4004 {
4005 	return do_sched_setscheduler(pid, -1, param);
4006 }
4007 
4008 /**
4009  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4010  * @pid: the pid in question.
4011  */
4012 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4013 {
4014 	struct task_struct *p;
4015 	int retval;
4016 
4017 	if (pid < 0)
4018 		return -EINVAL;
4019 
4020 	retval = -ESRCH;
4021 	rcu_read_lock();
4022 	p = find_process_by_pid(pid);
4023 	if (p) {
4024 		retval = security_task_getscheduler(p);
4025 		if (!retval)
4026 			retval = p->policy
4027 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4028 	}
4029 	rcu_read_unlock();
4030 	return retval;
4031 }
4032 
4033 /**
4034  * sys_sched_getparam - get the RT priority of a thread
4035  * @pid: the pid in question.
4036  * @param: structure containing the RT priority.
4037  */
4038 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4039 {
4040 	struct sched_param lp;
4041 	struct task_struct *p;
4042 	int retval;
4043 
4044 	if (!param || pid < 0)
4045 		return -EINVAL;
4046 
4047 	rcu_read_lock();
4048 	p = find_process_by_pid(pid);
4049 	retval = -ESRCH;
4050 	if (!p)
4051 		goto out_unlock;
4052 
4053 	retval = security_task_getscheduler(p);
4054 	if (retval)
4055 		goto out_unlock;
4056 
4057 	lp.sched_priority = p->rt_priority;
4058 	rcu_read_unlock();
4059 
4060 	/*
4061 	 * This one might sleep, we cannot do it with a spinlock held ...
4062 	 */
4063 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4064 
4065 	return retval;
4066 
4067 out_unlock:
4068 	rcu_read_unlock();
4069 	return retval;
4070 }
4071 
4072 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4073 {
4074 	cpumask_var_t cpus_allowed, new_mask;
4075 	struct task_struct *p;
4076 	int retval;
4077 
4078 	get_online_cpus();
4079 	rcu_read_lock();
4080 
4081 	p = find_process_by_pid(pid);
4082 	if (!p) {
4083 		rcu_read_unlock();
4084 		put_online_cpus();
4085 		return -ESRCH;
4086 	}
4087 
4088 	/* Prevent p going away */
4089 	get_task_struct(p);
4090 	rcu_read_unlock();
4091 
4092 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4093 		retval = -ENOMEM;
4094 		goto out_put_task;
4095 	}
4096 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4097 		retval = -ENOMEM;
4098 		goto out_free_cpus_allowed;
4099 	}
4100 	retval = -EPERM;
4101 	if (!check_same_owner(p)) {
4102 		rcu_read_lock();
4103 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4104 			rcu_read_unlock();
4105 			goto out_unlock;
4106 		}
4107 		rcu_read_unlock();
4108 	}
4109 
4110 	retval = security_task_setscheduler(p);
4111 	if (retval)
4112 		goto out_unlock;
4113 
4114 	cpuset_cpus_allowed(p, cpus_allowed);
4115 	cpumask_and(new_mask, in_mask, cpus_allowed);
4116 again:
4117 	retval = set_cpus_allowed_ptr(p, new_mask);
4118 
4119 	if (!retval) {
4120 		cpuset_cpus_allowed(p, cpus_allowed);
4121 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4122 			/*
4123 			 * We must have raced with a concurrent cpuset
4124 			 * update. Just reset the cpus_allowed to the
4125 			 * cpuset's cpus_allowed
4126 			 */
4127 			cpumask_copy(new_mask, cpus_allowed);
4128 			goto again;
4129 		}
4130 	}
4131 out_unlock:
4132 	free_cpumask_var(new_mask);
4133 out_free_cpus_allowed:
4134 	free_cpumask_var(cpus_allowed);
4135 out_put_task:
4136 	put_task_struct(p);
4137 	put_online_cpus();
4138 	return retval;
4139 }
4140 
4141 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4142 			     struct cpumask *new_mask)
4143 {
4144 	if (len < cpumask_size())
4145 		cpumask_clear(new_mask);
4146 	else if (len > cpumask_size())
4147 		len = cpumask_size();
4148 
4149 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4150 }
4151 
4152 /**
4153  * sys_sched_setaffinity - set the cpu affinity of a process
4154  * @pid: pid of the process
4155  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4156  * @user_mask_ptr: user-space pointer to the new cpu mask
4157  */
4158 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4159 		unsigned long __user *, user_mask_ptr)
4160 {
4161 	cpumask_var_t new_mask;
4162 	int retval;
4163 
4164 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4165 		return -ENOMEM;
4166 
4167 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4168 	if (retval == 0)
4169 		retval = sched_setaffinity(pid, new_mask);
4170 	free_cpumask_var(new_mask);
4171 	return retval;
4172 }
4173 
4174 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4175 {
4176 	struct task_struct *p;
4177 	unsigned long flags;
4178 	int retval;
4179 
4180 	get_online_cpus();
4181 	rcu_read_lock();
4182 
4183 	retval = -ESRCH;
4184 	p = find_process_by_pid(pid);
4185 	if (!p)
4186 		goto out_unlock;
4187 
4188 	retval = security_task_getscheduler(p);
4189 	if (retval)
4190 		goto out_unlock;
4191 
4192 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4193 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4194 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4195 
4196 out_unlock:
4197 	rcu_read_unlock();
4198 	put_online_cpus();
4199 
4200 	return retval;
4201 }
4202 
4203 /**
4204  * sys_sched_getaffinity - get the cpu affinity of a process
4205  * @pid: pid of the process
4206  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4207  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4208  */
4209 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4210 		unsigned long __user *, user_mask_ptr)
4211 {
4212 	int ret;
4213 	cpumask_var_t mask;
4214 
4215 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4216 		return -EINVAL;
4217 	if (len & (sizeof(unsigned long)-1))
4218 		return -EINVAL;
4219 
4220 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4221 		return -ENOMEM;
4222 
4223 	ret = sched_getaffinity(pid, mask);
4224 	if (ret == 0) {
4225 		size_t retlen = min_t(size_t, len, cpumask_size());
4226 
4227 		if (copy_to_user(user_mask_ptr, mask, retlen))
4228 			ret = -EFAULT;
4229 		else
4230 			ret = retlen;
4231 	}
4232 	free_cpumask_var(mask);
4233 
4234 	return ret;
4235 }
4236 
4237 /**
4238  * sys_sched_yield - yield the current processor to other threads.
4239  *
4240  * This function yields the current CPU to other tasks. If there are no
4241  * other threads running on this CPU then this function will return.
4242  */
4243 SYSCALL_DEFINE0(sched_yield)
4244 {
4245 	struct rq *rq = this_rq_lock();
4246 
4247 	schedstat_inc(rq, yld_count);
4248 	current->sched_class->yield_task(rq);
4249 
4250 	/*
4251 	 * Since we are going to call schedule() anyway, there's
4252 	 * no need to preempt or enable interrupts:
4253 	 */
4254 	__release(rq->lock);
4255 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4256 	do_raw_spin_unlock(&rq->lock);
4257 	sched_preempt_enable_no_resched();
4258 
4259 	schedule();
4260 
4261 	return 0;
4262 }
4263 
4264 static inline int should_resched(void)
4265 {
4266 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4267 }
4268 
4269 static void __cond_resched(void)
4270 {
4271 	add_preempt_count(PREEMPT_ACTIVE);
4272 	__schedule();
4273 	sub_preempt_count(PREEMPT_ACTIVE);
4274 }
4275 
4276 int __sched _cond_resched(void)
4277 {
4278 	if (should_resched()) {
4279 		__cond_resched();
4280 		return 1;
4281 	}
4282 	return 0;
4283 }
4284 EXPORT_SYMBOL(_cond_resched);
4285 
4286 /*
4287  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4288  * call schedule, and on return reacquire the lock.
4289  *
4290  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4291  * operations here to prevent schedule() from being called twice (once via
4292  * spin_unlock(), once by hand).
4293  */
4294 int __cond_resched_lock(spinlock_t *lock)
4295 {
4296 	int resched = should_resched();
4297 	int ret = 0;
4298 
4299 	lockdep_assert_held(lock);
4300 
4301 	if (spin_needbreak(lock) || resched) {
4302 		spin_unlock(lock);
4303 		if (resched)
4304 			__cond_resched();
4305 		else
4306 			cpu_relax();
4307 		ret = 1;
4308 		spin_lock(lock);
4309 	}
4310 	return ret;
4311 }
4312 EXPORT_SYMBOL(__cond_resched_lock);
4313 
4314 int __sched __cond_resched_softirq(void)
4315 {
4316 	BUG_ON(!in_softirq());
4317 
4318 	if (should_resched()) {
4319 		local_bh_enable();
4320 		__cond_resched();
4321 		local_bh_disable();
4322 		return 1;
4323 	}
4324 	return 0;
4325 }
4326 EXPORT_SYMBOL(__cond_resched_softirq);
4327 
4328 /**
4329  * yield - yield the current processor to other threads.
4330  *
4331  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4332  *
4333  * The scheduler is at all times free to pick the calling task as the most
4334  * eligible task to run, if removing the yield() call from your code breaks
4335  * it, its already broken.
4336  *
4337  * Typical broken usage is:
4338  *
4339  * while (!event)
4340  * 	yield();
4341  *
4342  * where one assumes that yield() will let 'the other' process run that will
4343  * make event true. If the current task is a SCHED_FIFO task that will never
4344  * happen. Never use yield() as a progress guarantee!!
4345  *
4346  * If you want to use yield() to wait for something, use wait_event().
4347  * If you want to use yield() to be 'nice' for others, use cond_resched().
4348  * If you still want to use yield(), do not!
4349  */
4350 void __sched yield(void)
4351 {
4352 	set_current_state(TASK_RUNNING);
4353 	sys_sched_yield();
4354 }
4355 EXPORT_SYMBOL(yield);
4356 
4357 /**
4358  * yield_to - yield the current processor to another thread in
4359  * your thread group, or accelerate that thread toward the
4360  * processor it's on.
4361  * @p: target task
4362  * @preempt: whether task preemption is allowed or not
4363  *
4364  * It's the caller's job to ensure that the target task struct
4365  * can't go away on us before we can do any checks.
4366  *
4367  * Returns true if we indeed boosted the target task.
4368  */
4369 bool __sched yield_to(struct task_struct *p, bool preempt)
4370 {
4371 	struct task_struct *curr = current;
4372 	struct rq *rq, *p_rq;
4373 	unsigned long flags;
4374 	int yielded = 0;
4375 
4376 	local_irq_save(flags);
4377 	rq = this_rq();
4378 
4379 again:
4380 	p_rq = task_rq(p);
4381 	double_rq_lock(rq, p_rq);
4382 	while (task_rq(p) != p_rq) {
4383 		double_rq_unlock(rq, p_rq);
4384 		goto again;
4385 	}
4386 
4387 	if (!curr->sched_class->yield_to_task)
4388 		goto out;
4389 
4390 	if (curr->sched_class != p->sched_class)
4391 		goto out;
4392 
4393 	if (task_running(p_rq, p) || p->state)
4394 		goto out;
4395 
4396 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4397 	if (yielded) {
4398 		schedstat_inc(rq, yld_count);
4399 		/*
4400 		 * Make p's CPU reschedule; pick_next_entity takes care of
4401 		 * fairness.
4402 		 */
4403 		if (preempt && rq != p_rq)
4404 			resched_task(p_rq->curr);
4405 	}
4406 
4407 out:
4408 	double_rq_unlock(rq, p_rq);
4409 	local_irq_restore(flags);
4410 
4411 	if (yielded)
4412 		schedule();
4413 
4414 	return yielded;
4415 }
4416 EXPORT_SYMBOL_GPL(yield_to);
4417 
4418 /*
4419  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4420  * that process accounting knows that this is a task in IO wait state.
4421  */
4422 void __sched io_schedule(void)
4423 {
4424 	struct rq *rq = raw_rq();
4425 
4426 	delayacct_blkio_start();
4427 	atomic_inc(&rq->nr_iowait);
4428 	blk_flush_plug(current);
4429 	current->in_iowait = 1;
4430 	schedule();
4431 	current->in_iowait = 0;
4432 	atomic_dec(&rq->nr_iowait);
4433 	delayacct_blkio_end();
4434 }
4435 EXPORT_SYMBOL(io_schedule);
4436 
4437 long __sched io_schedule_timeout(long timeout)
4438 {
4439 	struct rq *rq = raw_rq();
4440 	long ret;
4441 
4442 	delayacct_blkio_start();
4443 	atomic_inc(&rq->nr_iowait);
4444 	blk_flush_plug(current);
4445 	current->in_iowait = 1;
4446 	ret = schedule_timeout(timeout);
4447 	current->in_iowait = 0;
4448 	atomic_dec(&rq->nr_iowait);
4449 	delayacct_blkio_end();
4450 	return ret;
4451 }
4452 
4453 /**
4454  * sys_sched_get_priority_max - return maximum RT priority.
4455  * @policy: scheduling class.
4456  *
4457  * this syscall returns the maximum rt_priority that can be used
4458  * by a given scheduling class.
4459  */
4460 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4461 {
4462 	int ret = -EINVAL;
4463 
4464 	switch (policy) {
4465 	case SCHED_FIFO:
4466 	case SCHED_RR:
4467 		ret = MAX_USER_RT_PRIO-1;
4468 		break;
4469 	case SCHED_NORMAL:
4470 	case SCHED_BATCH:
4471 	case SCHED_IDLE:
4472 		ret = 0;
4473 		break;
4474 	}
4475 	return ret;
4476 }
4477 
4478 /**
4479  * sys_sched_get_priority_min - return minimum RT priority.
4480  * @policy: scheduling class.
4481  *
4482  * this syscall returns the minimum rt_priority that can be used
4483  * by a given scheduling class.
4484  */
4485 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4486 {
4487 	int ret = -EINVAL;
4488 
4489 	switch (policy) {
4490 	case SCHED_FIFO:
4491 	case SCHED_RR:
4492 		ret = 1;
4493 		break;
4494 	case SCHED_NORMAL:
4495 	case SCHED_BATCH:
4496 	case SCHED_IDLE:
4497 		ret = 0;
4498 	}
4499 	return ret;
4500 }
4501 
4502 /**
4503  * sys_sched_rr_get_interval - return the default timeslice of a process.
4504  * @pid: pid of the process.
4505  * @interval: userspace pointer to the timeslice value.
4506  *
4507  * this syscall writes the default timeslice value of a given process
4508  * into the user-space timespec buffer. A value of '0' means infinity.
4509  */
4510 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4511 		struct timespec __user *, interval)
4512 {
4513 	struct task_struct *p;
4514 	unsigned int time_slice;
4515 	unsigned long flags;
4516 	struct rq *rq;
4517 	int retval;
4518 	struct timespec t;
4519 
4520 	if (pid < 0)
4521 		return -EINVAL;
4522 
4523 	retval = -ESRCH;
4524 	rcu_read_lock();
4525 	p = find_process_by_pid(pid);
4526 	if (!p)
4527 		goto out_unlock;
4528 
4529 	retval = security_task_getscheduler(p);
4530 	if (retval)
4531 		goto out_unlock;
4532 
4533 	rq = task_rq_lock(p, &flags);
4534 	time_slice = p->sched_class->get_rr_interval(rq, p);
4535 	task_rq_unlock(rq, p, &flags);
4536 
4537 	rcu_read_unlock();
4538 	jiffies_to_timespec(time_slice, &t);
4539 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4540 	return retval;
4541 
4542 out_unlock:
4543 	rcu_read_unlock();
4544 	return retval;
4545 }
4546 
4547 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4548 
4549 void sched_show_task(struct task_struct *p)
4550 {
4551 	unsigned long free = 0;
4552 	int ppid;
4553 	unsigned state;
4554 
4555 	state = p->state ? __ffs(p->state) + 1 : 0;
4556 	printk(KERN_INFO "%-15.15s %c", p->comm,
4557 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4558 #if BITS_PER_LONG == 32
4559 	if (state == TASK_RUNNING)
4560 		printk(KERN_CONT " running  ");
4561 	else
4562 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4563 #else
4564 	if (state == TASK_RUNNING)
4565 		printk(KERN_CONT "  running task    ");
4566 	else
4567 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4568 #endif
4569 #ifdef CONFIG_DEBUG_STACK_USAGE
4570 	free = stack_not_used(p);
4571 #endif
4572 	rcu_read_lock();
4573 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4574 	rcu_read_unlock();
4575 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4576 		task_pid_nr(p), ppid,
4577 		(unsigned long)task_thread_info(p)->flags);
4578 
4579 	show_stack(p, NULL);
4580 }
4581 
4582 void show_state_filter(unsigned long state_filter)
4583 {
4584 	struct task_struct *g, *p;
4585 
4586 #if BITS_PER_LONG == 32
4587 	printk(KERN_INFO
4588 		"  task                PC stack   pid father\n");
4589 #else
4590 	printk(KERN_INFO
4591 		"  task                        PC stack   pid father\n");
4592 #endif
4593 	rcu_read_lock();
4594 	do_each_thread(g, p) {
4595 		/*
4596 		 * reset the NMI-timeout, listing all files on a slow
4597 		 * console might take a lot of time:
4598 		 */
4599 		touch_nmi_watchdog();
4600 		if (!state_filter || (p->state & state_filter))
4601 			sched_show_task(p);
4602 	} while_each_thread(g, p);
4603 
4604 	touch_all_softlockup_watchdogs();
4605 
4606 #ifdef CONFIG_SCHED_DEBUG
4607 	sysrq_sched_debug_show();
4608 #endif
4609 	rcu_read_unlock();
4610 	/*
4611 	 * Only show locks if all tasks are dumped:
4612 	 */
4613 	if (!state_filter)
4614 		debug_show_all_locks();
4615 }
4616 
4617 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4618 {
4619 	idle->sched_class = &idle_sched_class;
4620 }
4621 
4622 /**
4623  * init_idle - set up an idle thread for a given CPU
4624  * @idle: task in question
4625  * @cpu: cpu the idle task belongs to
4626  *
4627  * NOTE: this function does not set the idle thread's NEED_RESCHED
4628  * flag, to make booting more robust.
4629  */
4630 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4631 {
4632 	struct rq *rq = cpu_rq(cpu);
4633 	unsigned long flags;
4634 
4635 	raw_spin_lock_irqsave(&rq->lock, flags);
4636 
4637 	__sched_fork(idle);
4638 	idle->state = TASK_RUNNING;
4639 	idle->se.exec_start = sched_clock();
4640 
4641 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4642 	/*
4643 	 * We're having a chicken and egg problem, even though we are
4644 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4645 	 * lockdep check in task_group() will fail.
4646 	 *
4647 	 * Similar case to sched_fork(). / Alternatively we could
4648 	 * use task_rq_lock() here and obtain the other rq->lock.
4649 	 *
4650 	 * Silence PROVE_RCU
4651 	 */
4652 	rcu_read_lock();
4653 	__set_task_cpu(idle, cpu);
4654 	rcu_read_unlock();
4655 
4656 	rq->curr = rq->idle = idle;
4657 #if defined(CONFIG_SMP)
4658 	idle->on_cpu = 1;
4659 #endif
4660 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4661 
4662 	/* Set the preempt count _outside_ the spinlocks! */
4663 	task_thread_info(idle)->preempt_count = 0;
4664 
4665 	/*
4666 	 * The idle tasks have their own, simple scheduling class:
4667 	 */
4668 	idle->sched_class = &idle_sched_class;
4669 	ftrace_graph_init_idle_task(idle, cpu);
4670 	vtime_init_idle(idle);
4671 #if defined(CONFIG_SMP)
4672 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4673 #endif
4674 }
4675 
4676 #ifdef CONFIG_SMP
4677 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4678 {
4679 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4680 		p->sched_class->set_cpus_allowed(p, new_mask);
4681 
4682 	cpumask_copy(&p->cpus_allowed, new_mask);
4683 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4684 }
4685 
4686 /*
4687  * This is how migration works:
4688  *
4689  * 1) we invoke migration_cpu_stop() on the target CPU using
4690  *    stop_one_cpu().
4691  * 2) stopper starts to run (implicitly forcing the migrated thread
4692  *    off the CPU)
4693  * 3) it checks whether the migrated task is still in the wrong runqueue.
4694  * 4) if it's in the wrong runqueue then the migration thread removes
4695  *    it and puts it into the right queue.
4696  * 5) stopper completes and stop_one_cpu() returns and the migration
4697  *    is done.
4698  */
4699 
4700 /*
4701  * Change a given task's CPU affinity. Migrate the thread to a
4702  * proper CPU and schedule it away if the CPU it's executing on
4703  * is removed from the allowed bitmask.
4704  *
4705  * NOTE: the caller must have a valid reference to the task, the
4706  * task must not exit() & deallocate itself prematurely. The
4707  * call is not atomic; no spinlocks may be held.
4708  */
4709 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4710 {
4711 	unsigned long flags;
4712 	struct rq *rq;
4713 	unsigned int dest_cpu;
4714 	int ret = 0;
4715 
4716 	rq = task_rq_lock(p, &flags);
4717 
4718 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4719 		goto out;
4720 
4721 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4722 		ret = -EINVAL;
4723 		goto out;
4724 	}
4725 
4726 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4727 		ret = -EINVAL;
4728 		goto out;
4729 	}
4730 
4731 	do_set_cpus_allowed(p, new_mask);
4732 
4733 	/* Can the task run on the task's current CPU? If so, we're done */
4734 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4735 		goto out;
4736 
4737 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4738 	if (p->on_rq) {
4739 		struct migration_arg arg = { p, dest_cpu };
4740 		/* Need help from migration thread: drop lock and wait. */
4741 		task_rq_unlock(rq, p, &flags);
4742 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4743 		tlb_migrate_finish(p->mm);
4744 		return 0;
4745 	}
4746 out:
4747 	task_rq_unlock(rq, p, &flags);
4748 
4749 	return ret;
4750 }
4751 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4752 
4753 /*
4754  * Move (not current) task off this cpu, onto dest cpu. We're doing
4755  * this because either it can't run here any more (set_cpus_allowed()
4756  * away from this CPU, or CPU going down), or because we're
4757  * attempting to rebalance this task on exec (sched_exec).
4758  *
4759  * So we race with normal scheduler movements, but that's OK, as long
4760  * as the task is no longer on this CPU.
4761  *
4762  * Returns non-zero if task was successfully migrated.
4763  */
4764 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4765 {
4766 	struct rq *rq_dest, *rq_src;
4767 	int ret = 0;
4768 
4769 	if (unlikely(!cpu_active(dest_cpu)))
4770 		return ret;
4771 
4772 	rq_src = cpu_rq(src_cpu);
4773 	rq_dest = cpu_rq(dest_cpu);
4774 
4775 	raw_spin_lock(&p->pi_lock);
4776 	double_rq_lock(rq_src, rq_dest);
4777 	/* Already moved. */
4778 	if (task_cpu(p) != src_cpu)
4779 		goto done;
4780 	/* Affinity changed (again). */
4781 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4782 		goto fail;
4783 
4784 	/*
4785 	 * If we're not on a rq, the next wake-up will ensure we're
4786 	 * placed properly.
4787 	 */
4788 	if (p->on_rq) {
4789 		dequeue_task(rq_src, p, 0);
4790 		set_task_cpu(p, dest_cpu);
4791 		enqueue_task(rq_dest, p, 0);
4792 		check_preempt_curr(rq_dest, p, 0);
4793 	}
4794 done:
4795 	ret = 1;
4796 fail:
4797 	double_rq_unlock(rq_src, rq_dest);
4798 	raw_spin_unlock(&p->pi_lock);
4799 	return ret;
4800 }
4801 
4802 /*
4803  * migration_cpu_stop - this will be executed by a highprio stopper thread
4804  * and performs thread migration by bumping thread off CPU then
4805  * 'pushing' onto another runqueue.
4806  */
4807 static int migration_cpu_stop(void *data)
4808 {
4809 	struct migration_arg *arg = data;
4810 
4811 	/*
4812 	 * The original target cpu might have gone down and we might
4813 	 * be on another cpu but it doesn't matter.
4814 	 */
4815 	local_irq_disable();
4816 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4817 	local_irq_enable();
4818 	return 0;
4819 }
4820 
4821 #ifdef CONFIG_HOTPLUG_CPU
4822 
4823 /*
4824  * Ensures that the idle task is using init_mm right before its cpu goes
4825  * offline.
4826  */
4827 void idle_task_exit(void)
4828 {
4829 	struct mm_struct *mm = current->active_mm;
4830 
4831 	BUG_ON(cpu_online(smp_processor_id()));
4832 
4833 	if (mm != &init_mm)
4834 		switch_mm(mm, &init_mm, current);
4835 	mmdrop(mm);
4836 }
4837 
4838 /*
4839  * Since this CPU is going 'away' for a while, fold any nr_active delta
4840  * we might have. Assumes we're called after migrate_tasks() so that the
4841  * nr_active count is stable.
4842  *
4843  * Also see the comment "Global load-average calculations".
4844  */
4845 static void calc_load_migrate(struct rq *rq)
4846 {
4847 	long delta = calc_load_fold_active(rq);
4848 	if (delta)
4849 		atomic_long_add(delta, &calc_load_tasks);
4850 }
4851 
4852 /*
4853  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4854  * try_to_wake_up()->select_task_rq().
4855  *
4856  * Called with rq->lock held even though we'er in stop_machine() and
4857  * there's no concurrency possible, we hold the required locks anyway
4858  * because of lock validation efforts.
4859  */
4860 static void migrate_tasks(unsigned int dead_cpu)
4861 {
4862 	struct rq *rq = cpu_rq(dead_cpu);
4863 	struct task_struct *next, *stop = rq->stop;
4864 	int dest_cpu;
4865 
4866 	/*
4867 	 * Fudge the rq selection such that the below task selection loop
4868 	 * doesn't get stuck on the currently eligible stop task.
4869 	 *
4870 	 * We're currently inside stop_machine() and the rq is either stuck
4871 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4872 	 * either way we should never end up calling schedule() until we're
4873 	 * done here.
4874 	 */
4875 	rq->stop = NULL;
4876 
4877 	for ( ; ; ) {
4878 		/*
4879 		 * There's this thread running, bail when that's the only
4880 		 * remaining thread.
4881 		 */
4882 		if (rq->nr_running == 1)
4883 			break;
4884 
4885 		next = pick_next_task(rq);
4886 		BUG_ON(!next);
4887 		next->sched_class->put_prev_task(rq, next);
4888 
4889 		/* Find suitable destination for @next, with force if needed. */
4890 		dest_cpu = select_fallback_rq(dead_cpu, next);
4891 		raw_spin_unlock(&rq->lock);
4892 
4893 		__migrate_task(next, dead_cpu, dest_cpu);
4894 
4895 		raw_spin_lock(&rq->lock);
4896 	}
4897 
4898 	rq->stop = stop;
4899 }
4900 
4901 #endif /* CONFIG_HOTPLUG_CPU */
4902 
4903 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4904 
4905 static struct ctl_table sd_ctl_dir[] = {
4906 	{
4907 		.procname	= "sched_domain",
4908 		.mode		= 0555,
4909 	},
4910 	{}
4911 };
4912 
4913 static struct ctl_table sd_ctl_root[] = {
4914 	{
4915 		.procname	= "kernel",
4916 		.mode		= 0555,
4917 		.child		= sd_ctl_dir,
4918 	},
4919 	{}
4920 };
4921 
4922 static struct ctl_table *sd_alloc_ctl_entry(int n)
4923 {
4924 	struct ctl_table *entry =
4925 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4926 
4927 	return entry;
4928 }
4929 
4930 static void sd_free_ctl_entry(struct ctl_table **tablep)
4931 {
4932 	struct ctl_table *entry;
4933 
4934 	/*
4935 	 * In the intermediate directories, both the child directory and
4936 	 * procname are dynamically allocated and could fail but the mode
4937 	 * will always be set. In the lowest directory the names are
4938 	 * static strings and all have proc handlers.
4939 	 */
4940 	for (entry = *tablep; entry->mode; entry++) {
4941 		if (entry->child)
4942 			sd_free_ctl_entry(&entry->child);
4943 		if (entry->proc_handler == NULL)
4944 			kfree(entry->procname);
4945 	}
4946 
4947 	kfree(*tablep);
4948 	*tablep = NULL;
4949 }
4950 
4951 static int min_load_idx = 0;
4952 static int max_load_idx = CPU_LOAD_IDX_MAX;
4953 
4954 static void
4955 set_table_entry(struct ctl_table *entry,
4956 		const char *procname, void *data, int maxlen,
4957 		umode_t mode, proc_handler *proc_handler,
4958 		bool load_idx)
4959 {
4960 	entry->procname = procname;
4961 	entry->data = data;
4962 	entry->maxlen = maxlen;
4963 	entry->mode = mode;
4964 	entry->proc_handler = proc_handler;
4965 
4966 	if (load_idx) {
4967 		entry->extra1 = &min_load_idx;
4968 		entry->extra2 = &max_load_idx;
4969 	}
4970 }
4971 
4972 static struct ctl_table *
4973 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4974 {
4975 	struct ctl_table *table = sd_alloc_ctl_entry(13);
4976 
4977 	if (table == NULL)
4978 		return NULL;
4979 
4980 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4981 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4982 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4983 		sizeof(long), 0644, proc_doulongvec_minmax, false);
4984 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4985 		sizeof(int), 0644, proc_dointvec_minmax, true);
4986 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4987 		sizeof(int), 0644, proc_dointvec_minmax, true);
4988 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4989 		sizeof(int), 0644, proc_dointvec_minmax, true);
4990 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4991 		sizeof(int), 0644, proc_dointvec_minmax, true);
4992 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4993 		sizeof(int), 0644, proc_dointvec_minmax, true);
4994 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4995 		sizeof(int), 0644, proc_dointvec_minmax, false);
4996 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4997 		sizeof(int), 0644, proc_dointvec_minmax, false);
4998 	set_table_entry(&table[9], "cache_nice_tries",
4999 		&sd->cache_nice_tries,
5000 		sizeof(int), 0644, proc_dointvec_minmax, false);
5001 	set_table_entry(&table[10], "flags", &sd->flags,
5002 		sizeof(int), 0644, proc_dointvec_minmax, false);
5003 	set_table_entry(&table[11], "name", sd->name,
5004 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5005 	/* &table[12] is terminator */
5006 
5007 	return table;
5008 }
5009 
5010 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5011 {
5012 	struct ctl_table *entry, *table;
5013 	struct sched_domain *sd;
5014 	int domain_num = 0, i;
5015 	char buf[32];
5016 
5017 	for_each_domain(cpu, sd)
5018 		domain_num++;
5019 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5020 	if (table == NULL)
5021 		return NULL;
5022 
5023 	i = 0;
5024 	for_each_domain(cpu, sd) {
5025 		snprintf(buf, 32, "domain%d", i);
5026 		entry->procname = kstrdup(buf, GFP_KERNEL);
5027 		entry->mode = 0555;
5028 		entry->child = sd_alloc_ctl_domain_table(sd);
5029 		entry++;
5030 		i++;
5031 	}
5032 	return table;
5033 }
5034 
5035 static struct ctl_table_header *sd_sysctl_header;
5036 static void register_sched_domain_sysctl(void)
5037 {
5038 	int i, cpu_num = num_possible_cpus();
5039 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5040 	char buf[32];
5041 
5042 	WARN_ON(sd_ctl_dir[0].child);
5043 	sd_ctl_dir[0].child = entry;
5044 
5045 	if (entry == NULL)
5046 		return;
5047 
5048 	for_each_possible_cpu(i) {
5049 		snprintf(buf, 32, "cpu%d", i);
5050 		entry->procname = kstrdup(buf, GFP_KERNEL);
5051 		entry->mode = 0555;
5052 		entry->child = sd_alloc_ctl_cpu_table(i);
5053 		entry++;
5054 	}
5055 
5056 	WARN_ON(sd_sysctl_header);
5057 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5058 }
5059 
5060 /* may be called multiple times per register */
5061 static void unregister_sched_domain_sysctl(void)
5062 {
5063 	if (sd_sysctl_header)
5064 		unregister_sysctl_table(sd_sysctl_header);
5065 	sd_sysctl_header = NULL;
5066 	if (sd_ctl_dir[0].child)
5067 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5068 }
5069 #else
5070 static void register_sched_domain_sysctl(void)
5071 {
5072 }
5073 static void unregister_sched_domain_sysctl(void)
5074 {
5075 }
5076 #endif
5077 
5078 static void set_rq_online(struct rq *rq)
5079 {
5080 	if (!rq->online) {
5081 		const struct sched_class *class;
5082 
5083 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5084 		rq->online = 1;
5085 
5086 		for_each_class(class) {
5087 			if (class->rq_online)
5088 				class->rq_online(rq);
5089 		}
5090 	}
5091 }
5092 
5093 static void set_rq_offline(struct rq *rq)
5094 {
5095 	if (rq->online) {
5096 		const struct sched_class *class;
5097 
5098 		for_each_class(class) {
5099 			if (class->rq_offline)
5100 				class->rq_offline(rq);
5101 		}
5102 
5103 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5104 		rq->online = 0;
5105 	}
5106 }
5107 
5108 /*
5109  * migration_call - callback that gets triggered when a CPU is added.
5110  * Here we can start up the necessary migration thread for the new CPU.
5111  */
5112 static int __cpuinit
5113 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5114 {
5115 	int cpu = (long)hcpu;
5116 	unsigned long flags;
5117 	struct rq *rq = cpu_rq(cpu);
5118 
5119 	switch (action & ~CPU_TASKS_FROZEN) {
5120 
5121 	case CPU_UP_PREPARE:
5122 		rq->calc_load_update = calc_load_update;
5123 		break;
5124 
5125 	case CPU_ONLINE:
5126 		/* Update our root-domain */
5127 		raw_spin_lock_irqsave(&rq->lock, flags);
5128 		if (rq->rd) {
5129 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5130 
5131 			set_rq_online(rq);
5132 		}
5133 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5134 		break;
5135 
5136 #ifdef CONFIG_HOTPLUG_CPU
5137 	case CPU_DYING:
5138 		sched_ttwu_pending();
5139 		/* Update our root-domain */
5140 		raw_spin_lock_irqsave(&rq->lock, flags);
5141 		if (rq->rd) {
5142 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5143 			set_rq_offline(rq);
5144 		}
5145 		migrate_tasks(cpu);
5146 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5147 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5148 		break;
5149 
5150 	case CPU_DEAD:
5151 		calc_load_migrate(rq);
5152 		break;
5153 #endif
5154 	}
5155 
5156 	update_max_interval();
5157 
5158 	return NOTIFY_OK;
5159 }
5160 
5161 /*
5162  * Register at high priority so that task migration (migrate_all_tasks)
5163  * happens before everything else.  This has to be lower priority than
5164  * the notifier in the perf_event subsystem, though.
5165  */
5166 static struct notifier_block __cpuinitdata migration_notifier = {
5167 	.notifier_call = migration_call,
5168 	.priority = CPU_PRI_MIGRATION,
5169 };
5170 
5171 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5172 				      unsigned long action, void *hcpu)
5173 {
5174 	switch (action & ~CPU_TASKS_FROZEN) {
5175 	case CPU_STARTING:
5176 	case CPU_DOWN_FAILED:
5177 		set_cpu_active((long)hcpu, true);
5178 		return NOTIFY_OK;
5179 	default:
5180 		return NOTIFY_DONE;
5181 	}
5182 }
5183 
5184 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5185 					unsigned long action, void *hcpu)
5186 {
5187 	switch (action & ~CPU_TASKS_FROZEN) {
5188 	case CPU_DOWN_PREPARE:
5189 		set_cpu_active((long)hcpu, false);
5190 		return NOTIFY_OK;
5191 	default:
5192 		return NOTIFY_DONE;
5193 	}
5194 }
5195 
5196 static int __init migration_init(void)
5197 {
5198 	void *cpu = (void *)(long)smp_processor_id();
5199 	int err;
5200 
5201 	/* Initialize migration for the boot CPU */
5202 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5203 	BUG_ON(err == NOTIFY_BAD);
5204 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5205 	register_cpu_notifier(&migration_notifier);
5206 
5207 	/* Register cpu active notifiers */
5208 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5209 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5210 
5211 	return 0;
5212 }
5213 early_initcall(migration_init);
5214 #endif
5215 
5216 #ifdef CONFIG_SMP
5217 
5218 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5219 
5220 #ifdef CONFIG_SCHED_DEBUG
5221 
5222 static __read_mostly int sched_debug_enabled;
5223 
5224 static int __init sched_debug_setup(char *str)
5225 {
5226 	sched_debug_enabled = 1;
5227 
5228 	return 0;
5229 }
5230 early_param("sched_debug", sched_debug_setup);
5231 
5232 static inline bool sched_debug(void)
5233 {
5234 	return sched_debug_enabled;
5235 }
5236 
5237 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5238 				  struct cpumask *groupmask)
5239 {
5240 	struct sched_group *group = sd->groups;
5241 	char str[256];
5242 
5243 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5244 	cpumask_clear(groupmask);
5245 
5246 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5247 
5248 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5249 		printk("does not load-balance\n");
5250 		if (sd->parent)
5251 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5252 					" has parent");
5253 		return -1;
5254 	}
5255 
5256 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5257 
5258 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5259 		printk(KERN_ERR "ERROR: domain->span does not contain "
5260 				"CPU%d\n", cpu);
5261 	}
5262 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5263 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5264 				" CPU%d\n", cpu);
5265 	}
5266 
5267 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5268 	do {
5269 		if (!group) {
5270 			printk("\n");
5271 			printk(KERN_ERR "ERROR: group is NULL\n");
5272 			break;
5273 		}
5274 
5275 		/*
5276 		 * Even though we initialize ->power to something semi-sane,
5277 		 * we leave power_orig unset. This allows us to detect if
5278 		 * domain iteration is still funny without causing /0 traps.
5279 		 */
5280 		if (!group->sgp->power_orig) {
5281 			printk(KERN_CONT "\n");
5282 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5283 					"set\n");
5284 			break;
5285 		}
5286 
5287 		if (!cpumask_weight(sched_group_cpus(group))) {
5288 			printk(KERN_CONT "\n");
5289 			printk(KERN_ERR "ERROR: empty group\n");
5290 			break;
5291 		}
5292 
5293 		if (!(sd->flags & SD_OVERLAP) &&
5294 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5295 			printk(KERN_CONT "\n");
5296 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5297 			break;
5298 		}
5299 
5300 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5301 
5302 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5303 
5304 		printk(KERN_CONT " %s", str);
5305 		if (group->sgp->power != SCHED_POWER_SCALE) {
5306 			printk(KERN_CONT " (cpu_power = %d)",
5307 				group->sgp->power);
5308 		}
5309 
5310 		group = group->next;
5311 	} while (group != sd->groups);
5312 	printk(KERN_CONT "\n");
5313 
5314 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5315 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5316 
5317 	if (sd->parent &&
5318 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5319 		printk(KERN_ERR "ERROR: parent span is not a superset "
5320 			"of domain->span\n");
5321 	return 0;
5322 }
5323 
5324 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5325 {
5326 	int level = 0;
5327 
5328 	if (!sched_debug_enabled)
5329 		return;
5330 
5331 	if (!sd) {
5332 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5333 		return;
5334 	}
5335 
5336 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5337 
5338 	for (;;) {
5339 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5340 			break;
5341 		level++;
5342 		sd = sd->parent;
5343 		if (!sd)
5344 			break;
5345 	}
5346 }
5347 #else /* !CONFIG_SCHED_DEBUG */
5348 # define sched_domain_debug(sd, cpu) do { } while (0)
5349 static inline bool sched_debug(void)
5350 {
5351 	return false;
5352 }
5353 #endif /* CONFIG_SCHED_DEBUG */
5354 
5355 static int sd_degenerate(struct sched_domain *sd)
5356 {
5357 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5358 		return 1;
5359 
5360 	/* Following flags need at least 2 groups */
5361 	if (sd->flags & (SD_LOAD_BALANCE |
5362 			 SD_BALANCE_NEWIDLE |
5363 			 SD_BALANCE_FORK |
5364 			 SD_BALANCE_EXEC |
5365 			 SD_SHARE_CPUPOWER |
5366 			 SD_SHARE_PKG_RESOURCES)) {
5367 		if (sd->groups != sd->groups->next)
5368 			return 0;
5369 	}
5370 
5371 	/* Following flags don't use groups */
5372 	if (sd->flags & (SD_WAKE_AFFINE))
5373 		return 0;
5374 
5375 	return 1;
5376 }
5377 
5378 static int
5379 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5380 {
5381 	unsigned long cflags = sd->flags, pflags = parent->flags;
5382 
5383 	if (sd_degenerate(parent))
5384 		return 1;
5385 
5386 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5387 		return 0;
5388 
5389 	/* Flags needing groups don't count if only 1 group in parent */
5390 	if (parent->groups == parent->groups->next) {
5391 		pflags &= ~(SD_LOAD_BALANCE |
5392 				SD_BALANCE_NEWIDLE |
5393 				SD_BALANCE_FORK |
5394 				SD_BALANCE_EXEC |
5395 				SD_SHARE_CPUPOWER |
5396 				SD_SHARE_PKG_RESOURCES);
5397 		if (nr_node_ids == 1)
5398 			pflags &= ~SD_SERIALIZE;
5399 	}
5400 	if (~cflags & pflags)
5401 		return 0;
5402 
5403 	return 1;
5404 }
5405 
5406 static void free_rootdomain(struct rcu_head *rcu)
5407 {
5408 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5409 
5410 	cpupri_cleanup(&rd->cpupri);
5411 	free_cpumask_var(rd->rto_mask);
5412 	free_cpumask_var(rd->online);
5413 	free_cpumask_var(rd->span);
5414 	kfree(rd);
5415 }
5416 
5417 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5418 {
5419 	struct root_domain *old_rd = NULL;
5420 	unsigned long flags;
5421 
5422 	raw_spin_lock_irqsave(&rq->lock, flags);
5423 
5424 	if (rq->rd) {
5425 		old_rd = rq->rd;
5426 
5427 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5428 			set_rq_offline(rq);
5429 
5430 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5431 
5432 		/*
5433 		 * If we dont want to free the old_rt yet then
5434 		 * set old_rd to NULL to skip the freeing later
5435 		 * in this function:
5436 		 */
5437 		if (!atomic_dec_and_test(&old_rd->refcount))
5438 			old_rd = NULL;
5439 	}
5440 
5441 	atomic_inc(&rd->refcount);
5442 	rq->rd = rd;
5443 
5444 	cpumask_set_cpu(rq->cpu, rd->span);
5445 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5446 		set_rq_online(rq);
5447 
5448 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5449 
5450 	if (old_rd)
5451 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5452 }
5453 
5454 static int init_rootdomain(struct root_domain *rd)
5455 {
5456 	memset(rd, 0, sizeof(*rd));
5457 
5458 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5459 		goto out;
5460 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5461 		goto free_span;
5462 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5463 		goto free_online;
5464 
5465 	if (cpupri_init(&rd->cpupri) != 0)
5466 		goto free_rto_mask;
5467 	return 0;
5468 
5469 free_rto_mask:
5470 	free_cpumask_var(rd->rto_mask);
5471 free_online:
5472 	free_cpumask_var(rd->online);
5473 free_span:
5474 	free_cpumask_var(rd->span);
5475 out:
5476 	return -ENOMEM;
5477 }
5478 
5479 /*
5480  * By default the system creates a single root-domain with all cpus as
5481  * members (mimicking the global state we have today).
5482  */
5483 struct root_domain def_root_domain;
5484 
5485 static void init_defrootdomain(void)
5486 {
5487 	init_rootdomain(&def_root_domain);
5488 
5489 	atomic_set(&def_root_domain.refcount, 1);
5490 }
5491 
5492 static struct root_domain *alloc_rootdomain(void)
5493 {
5494 	struct root_domain *rd;
5495 
5496 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5497 	if (!rd)
5498 		return NULL;
5499 
5500 	if (init_rootdomain(rd) != 0) {
5501 		kfree(rd);
5502 		return NULL;
5503 	}
5504 
5505 	return rd;
5506 }
5507 
5508 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5509 {
5510 	struct sched_group *tmp, *first;
5511 
5512 	if (!sg)
5513 		return;
5514 
5515 	first = sg;
5516 	do {
5517 		tmp = sg->next;
5518 
5519 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5520 			kfree(sg->sgp);
5521 
5522 		kfree(sg);
5523 		sg = tmp;
5524 	} while (sg != first);
5525 }
5526 
5527 static void free_sched_domain(struct rcu_head *rcu)
5528 {
5529 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5530 
5531 	/*
5532 	 * If its an overlapping domain it has private groups, iterate and
5533 	 * nuke them all.
5534 	 */
5535 	if (sd->flags & SD_OVERLAP) {
5536 		free_sched_groups(sd->groups, 1);
5537 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5538 		kfree(sd->groups->sgp);
5539 		kfree(sd->groups);
5540 	}
5541 	kfree(sd);
5542 }
5543 
5544 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5545 {
5546 	call_rcu(&sd->rcu, free_sched_domain);
5547 }
5548 
5549 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5550 {
5551 	for (; sd; sd = sd->parent)
5552 		destroy_sched_domain(sd, cpu);
5553 }
5554 
5555 /*
5556  * Keep a special pointer to the highest sched_domain that has
5557  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5558  * allows us to avoid some pointer chasing select_idle_sibling().
5559  *
5560  * Also keep a unique ID per domain (we use the first cpu number in
5561  * the cpumask of the domain), this allows us to quickly tell if
5562  * two cpus are in the same cache domain, see cpus_share_cache().
5563  */
5564 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5565 DEFINE_PER_CPU(int, sd_llc_id);
5566 
5567 static void update_top_cache_domain(int cpu)
5568 {
5569 	struct sched_domain *sd;
5570 	int id = cpu;
5571 
5572 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5573 	if (sd)
5574 		id = cpumask_first(sched_domain_span(sd));
5575 
5576 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5577 	per_cpu(sd_llc_id, cpu) = id;
5578 }
5579 
5580 /*
5581  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5582  * hold the hotplug lock.
5583  */
5584 static void
5585 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5586 {
5587 	struct rq *rq = cpu_rq(cpu);
5588 	struct sched_domain *tmp;
5589 
5590 	/* Remove the sched domains which do not contribute to scheduling. */
5591 	for (tmp = sd; tmp; ) {
5592 		struct sched_domain *parent = tmp->parent;
5593 		if (!parent)
5594 			break;
5595 
5596 		if (sd_parent_degenerate(tmp, parent)) {
5597 			tmp->parent = parent->parent;
5598 			if (parent->parent)
5599 				parent->parent->child = tmp;
5600 			destroy_sched_domain(parent, cpu);
5601 		} else
5602 			tmp = tmp->parent;
5603 	}
5604 
5605 	if (sd && sd_degenerate(sd)) {
5606 		tmp = sd;
5607 		sd = sd->parent;
5608 		destroy_sched_domain(tmp, cpu);
5609 		if (sd)
5610 			sd->child = NULL;
5611 	}
5612 
5613 	sched_domain_debug(sd, cpu);
5614 
5615 	rq_attach_root(rq, rd);
5616 	tmp = rq->sd;
5617 	rcu_assign_pointer(rq->sd, sd);
5618 	destroy_sched_domains(tmp, cpu);
5619 
5620 	update_top_cache_domain(cpu);
5621 }
5622 
5623 /* cpus with isolated domains */
5624 static cpumask_var_t cpu_isolated_map;
5625 
5626 /* Setup the mask of cpus configured for isolated domains */
5627 static int __init isolated_cpu_setup(char *str)
5628 {
5629 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5630 	cpulist_parse(str, cpu_isolated_map);
5631 	return 1;
5632 }
5633 
5634 __setup("isolcpus=", isolated_cpu_setup);
5635 
5636 static const struct cpumask *cpu_cpu_mask(int cpu)
5637 {
5638 	return cpumask_of_node(cpu_to_node(cpu));
5639 }
5640 
5641 struct sd_data {
5642 	struct sched_domain **__percpu sd;
5643 	struct sched_group **__percpu sg;
5644 	struct sched_group_power **__percpu sgp;
5645 };
5646 
5647 struct s_data {
5648 	struct sched_domain ** __percpu sd;
5649 	struct root_domain	*rd;
5650 };
5651 
5652 enum s_alloc {
5653 	sa_rootdomain,
5654 	sa_sd,
5655 	sa_sd_storage,
5656 	sa_none,
5657 };
5658 
5659 struct sched_domain_topology_level;
5660 
5661 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5662 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5663 
5664 #define SDTL_OVERLAP	0x01
5665 
5666 struct sched_domain_topology_level {
5667 	sched_domain_init_f init;
5668 	sched_domain_mask_f mask;
5669 	int		    flags;
5670 	int		    numa_level;
5671 	struct sd_data      data;
5672 };
5673 
5674 /*
5675  * Build an iteration mask that can exclude certain CPUs from the upwards
5676  * domain traversal.
5677  *
5678  * Asymmetric node setups can result in situations where the domain tree is of
5679  * unequal depth, make sure to skip domains that already cover the entire
5680  * range.
5681  *
5682  * In that case build_sched_domains() will have terminated the iteration early
5683  * and our sibling sd spans will be empty. Domains should always include the
5684  * cpu they're built on, so check that.
5685  *
5686  */
5687 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5688 {
5689 	const struct cpumask *span = sched_domain_span(sd);
5690 	struct sd_data *sdd = sd->private;
5691 	struct sched_domain *sibling;
5692 	int i;
5693 
5694 	for_each_cpu(i, span) {
5695 		sibling = *per_cpu_ptr(sdd->sd, i);
5696 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5697 			continue;
5698 
5699 		cpumask_set_cpu(i, sched_group_mask(sg));
5700 	}
5701 }
5702 
5703 /*
5704  * Return the canonical balance cpu for this group, this is the first cpu
5705  * of this group that's also in the iteration mask.
5706  */
5707 int group_balance_cpu(struct sched_group *sg)
5708 {
5709 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5710 }
5711 
5712 static int
5713 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5714 {
5715 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5716 	const struct cpumask *span = sched_domain_span(sd);
5717 	struct cpumask *covered = sched_domains_tmpmask;
5718 	struct sd_data *sdd = sd->private;
5719 	struct sched_domain *child;
5720 	int i;
5721 
5722 	cpumask_clear(covered);
5723 
5724 	for_each_cpu(i, span) {
5725 		struct cpumask *sg_span;
5726 
5727 		if (cpumask_test_cpu(i, covered))
5728 			continue;
5729 
5730 		child = *per_cpu_ptr(sdd->sd, i);
5731 
5732 		/* See the comment near build_group_mask(). */
5733 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5734 			continue;
5735 
5736 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5737 				GFP_KERNEL, cpu_to_node(cpu));
5738 
5739 		if (!sg)
5740 			goto fail;
5741 
5742 		sg_span = sched_group_cpus(sg);
5743 		if (child->child) {
5744 			child = child->child;
5745 			cpumask_copy(sg_span, sched_domain_span(child));
5746 		} else
5747 			cpumask_set_cpu(i, sg_span);
5748 
5749 		cpumask_or(covered, covered, sg_span);
5750 
5751 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5752 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5753 			build_group_mask(sd, sg);
5754 
5755 		/*
5756 		 * Initialize sgp->power such that even if we mess up the
5757 		 * domains and no possible iteration will get us here, we won't
5758 		 * die on a /0 trap.
5759 		 */
5760 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5761 
5762 		/*
5763 		 * Make sure the first group of this domain contains the
5764 		 * canonical balance cpu. Otherwise the sched_domain iteration
5765 		 * breaks. See update_sg_lb_stats().
5766 		 */
5767 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5768 		    group_balance_cpu(sg) == cpu)
5769 			groups = sg;
5770 
5771 		if (!first)
5772 			first = sg;
5773 		if (last)
5774 			last->next = sg;
5775 		last = sg;
5776 		last->next = first;
5777 	}
5778 	sd->groups = groups;
5779 
5780 	return 0;
5781 
5782 fail:
5783 	free_sched_groups(first, 0);
5784 
5785 	return -ENOMEM;
5786 }
5787 
5788 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5789 {
5790 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5791 	struct sched_domain *child = sd->child;
5792 
5793 	if (child)
5794 		cpu = cpumask_first(sched_domain_span(child));
5795 
5796 	if (sg) {
5797 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5798 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5799 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5800 	}
5801 
5802 	return cpu;
5803 }
5804 
5805 /*
5806  * build_sched_groups will build a circular linked list of the groups
5807  * covered by the given span, and will set each group's ->cpumask correctly,
5808  * and ->cpu_power to 0.
5809  *
5810  * Assumes the sched_domain tree is fully constructed
5811  */
5812 static int
5813 build_sched_groups(struct sched_domain *sd, int cpu)
5814 {
5815 	struct sched_group *first = NULL, *last = NULL;
5816 	struct sd_data *sdd = sd->private;
5817 	const struct cpumask *span = sched_domain_span(sd);
5818 	struct cpumask *covered;
5819 	int i;
5820 
5821 	get_group(cpu, sdd, &sd->groups);
5822 	atomic_inc(&sd->groups->ref);
5823 
5824 	if (cpu != cpumask_first(sched_domain_span(sd)))
5825 		return 0;
5826 
5827 	lockdep_assert_held(&sched_domains_mutex);
5828 	covered = sched_domains_tmpmask;
5829 
5830 	cpumask_clear(covered);
5831 
5832 	for_each_cpu(i, span) {
5833 		struct sched_group *sg;
5834 		int group = get_group(i, sdd, &sg);
5835 		int j;
5836 
5837 		if (cpumask_test_cpu(i, covered))
5838 			continue;
5839 
5840 		cpumask_clear(sched_group_cpus(sg));
5841 		sg->sgp->power = 0;
5842 		cpumask_setall(sched_group_mask(sg));
5843 
5844 		for_each_cpu(j, span) {
5845 			if (get_group(j, sdd, NULL) != group)
5846 				continue;
5847 
5848 			cpumask_set_cpu(j, covered);
5849 			cpumask_set_cpu(j, sched_group_cpus(sg));
5850 		}
5851 
5852 		if (!first)
5853 			first = sg;
5854 		if (last)
5855 			last->next = sg;
5856 		last = sg;
5857 	}
5858 	last->next = first;
5859 
5860 	return 0;
5861 }
5862 
5863 /*
5864  * Initialize sched groups cpu_power.
5865  *
5866  * cpu_power indicates the capacity of sched group, which is used while
5867  * distributing the load between different sched groups in a sched domain.
5868  * Typically cpu_power for all the groups in a sched domain will be same unless
5869  * there are asymmetries in the topology. If there are asymmetries, group
5870  * having more cpu_power will pickup more load compared to the group having
5871  * less cpu_power.
5872  */
5873 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5874 {
5875 	struct sched_group *sg = sd->groups;
5876 
5877 	WARN_ON(!sd || !sg);
5878 
5879 	do {
5880 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5881 		sg = sg->next;
5882 	} while (sg != sd->groups);
5883 
5884 	if (cpu != group_balance_cpu(sg))
5885 		return;
5886 
5887 	update_group_power(sd, cpu);
5888 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5889 }
5890 
5891 int __weak arch_sd_sibling_asym_packing(void)
5892 {
5893        return 0*SD_ASYM_PACKING;
5894 }
5895 
5896 /*
5897  * Initializers for schedule domains
5898  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5899  */
5900 
5901 #ifdef CONFIG_SCHED_DEBUG
5902 # define SD_INIT_NAME(sd, type)		sd->name = #type
5903 #else
5904 # define SD_INIT_NAME(sd, type)		do { } while (0)
5905 #endif
5906 
5907 #define SD_INIT_FUNC(type)						\
5908 static noinline struct sched_domain *					\
5909 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5910 {									\
5911 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5912 	*sd = SD_##type##_INIT;						\
5913 	SD_INIT_NAME(sd, type);						\
5914 	sd->private = &tl->data;					\
5915 	return sd;							\
5916 }
5917 
5918 SD_INIT_FUNC(CPU)
5919 #ifdef CONFIG_SCHED_SMT
5920  SD_INIT_FUNC(SIBLING)
5921 #endif
5922 #ifdef CONFIG_SCHED_MC
5923  SD_INIT_FUNC(MC)
5924 #endif
5925 #ifdef CONFIG_SCHED_BOOK
5926  SD_INIT_FUNC(BOOK)
5927 #endif
5928 
5929 static int default_relax_domain_level = -1;
5930 int sched_domain_level_max;
5931 
5932 static int __init setup_relax_domain_level(char *str)
5933 {
5934 	if (kstrtoint(str, 0, &default_relax_domain_level))
5935 		pr_warn("Unable to set relax_domain_level\n");
5936 
5937 	return 1;
5938 }
5939 __setup("relax_domain_level=", setup_relax_domain_level);
5940 
5941 static void set_domain_attribute(struct sched_domain *sd,
5942 				 struct sched_domain_attr *attr)
5943 {
5944 	int request;
5945 
5946 	if (!attr || attr->relax_domain_level < 0) {
5947 		if (default_relax_domain_level < 0)
5948 			return;
5949 		else
5950 			request = default_relax_domain_level;
5951 	} else
5952 		request = attr->relax_domain_level;
5953 	if (request < sd->level) {
5954 		/* turn off idle balance on this domain */
5955 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5956 	} else {
5957 		/* turn on idle balance on this domain */
5958 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5959 	}
5960 }
5961 
5962 static void __sdt_free(const struct cpumask *cpu_map);
5963 static int __sdt_alloc(const struct cpumask *cpu_map);
5964 
5965 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5966 				 const struct cpumask *cpu_map)
5967 {
5968 	switch (what) {
5969 	case sa_rootdomain:
5970 		if (!atomic_read(&d->rd->refcount))
5971 			free_rootdomain(&d->rd->rcu); /* fall through */
5972 	case sa_sd:
5973 		free_percpu(d->sd); /* fall through */
5974 	case sa_sd_storage:
5975 		__sdt_free(cpu_map); /* fall through */
5976 	case sa_none:
5977 		break;
5978 	}
5979 }
5980 
5981 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5982 						   const struct cpumask *cpu_map)
5983 {
5984 	memset(d, 0, sizeof(*d));
5985 
5986 	if (__sdt_alloc(cpu_map))
5987 		return sa_sd_storage;
5988 	d->sd = alloc_percpu(struct sched_domain *);
5989 	if (!d->sd)
5990 		return sa_sd_storage;
5991 	d->rd = alloc_rootdomain();
5992 	if (!d->rd)
5993 		return sa_sd;
5994 	return sa_rootdomain;
5995 }
5996 
5997 /*
5998  * NULL the sd_data elements we've used to build the sched_domain and
5999  * sched_group structure so that the subsequent __free_domain_allocs()
6000  * will not free the data we're using.
6001  */
6002 static void claim_allocations(int cpu, struct sched_domain *sd)
6003 {
6004 	struct sd_data *sdd = sd->private;
6005 
6006 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6007 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6008 
6009 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6010 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6011 
6012 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6013 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6014 }
6015 
6016 #ifdef CONFIG_SCHED_SMT
6017 static const struct cpumask *cpu_smt_mask(int cpu)
6018 {
6019 	return topology_thread_cpumask(cpu);
6020 }
6021 #endif
6022 
6023 /*
6024  * Topology list, bottom-up.
6025  */
6026 static struct sched_domain_topology_level default_topology[] = {
6027 #ifdef CONFIG_SCHED_SMT
6028 	{ sd_init_SIBLING, cpu_smt_mask, },
6029 #endif
6030 #ifdef CONFIG_SCHED_MC
6031 	{ sd_init_MC, cpu_coregroup_mask, },
6032 #endif
6033 #ifdef CONFIG_SCHED_BOOK
6034 	{ sd_init_BOOK, cpu_book_mask, },
6035 #endif
6036 	{ sd_init_CPU, cpu_cpu_mask, },
6037 	{ NULL, },
6038 };
6039 
6040 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6041 
6042 #ifdef CONFIG_NUMA
6043 
6044 static int sched_domains_numa_levels;
6045 static int *sched_domains_numa_distance;
6046 static struct cpumask ***sched_domains_numa_masks;
6047 static int sched_domains_curr_level;
6048 
6049 static inline int sd_local_flags(int level)
6050 {
6051 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6052 		return 0;
6053 
6054 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6055 }
6056 
6057 static struct sched_domain *
6058 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6059 {
6060 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6061 	int level = tl->numa_level;
6062 	int sd_weight = cpumask_weight(
6063 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6064 
6065 	*sd = (struct sched_domain){
6066 		.min_interval		= sd_weight,
6067 		.max_interval		= 2*sd_weight,
6068 		.busy_factor		= 32,
6069 		.imbalance_pct		= 125,
6070 		.cache_nice_tries	= 2,
6071 		.busy_idx		= 3,
6072 		.idle_idx		= 2,
6073 		.newidle_idx		= 0,
6074 		.wake_idx		= 0,
6075 		.forkexec_idx		= 0,
6076 
6077 		.flags			= 1*SD_LOAD_BALANCE
6078 					| 1*SD_BALANCE_NEWIDLE
6079 					| 0*SD_BALANCE_EXEC
6080 					| 0*SD_BALANCE_FORK
6081 					| 0*SD_BALANCE_WAKE
6082 					| 0*SD_WAKE_AFFINE
6083 					| 0*SD_SHARE_CPUPOWER
6084 					| 0*SD_SHARE_PKG_RESOURCES
6085 					| 1*SD_SERIALIZE
6086 					| 0*SD_PREFER_SIBLING
6087 					| sd_local_flags(level)
6088 					,
6089 		.last_balance		= jiffies,
6090 		.balance_interval	= sd_weight,
6091 	};
6092 	SD_INIT_NAME(sd, NUMA);
6093 	sd->private = &tl->data;
6094 
6095 	/*
6096 	 * Ugly hack to pass state to sd_numa_mask()...
6097 	 */
6098 	sched_domains_curr_level = tl->numa_level;
6099 
6100 	return sd;
6101 }
6102 
6103 static const struct cpumask *sd_numa_mask(int cpu)
6104 {
6105 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6106 }
6107 
6108 static void sched_numa_warn(const char *str)
6109 {
6110 	static int done = false;
6111 	int i,j;
6112 
6113 	if (done)
6114 		return;
6115 
6116 	done = true;
6117 
6118 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6119 
6120 	for (i = 0; i < nr_node_ids; i++) {
6121 		printk(KERN_WARNING "  ");
6122 		for (j = 0; j < nr_node_ids; j++)
6123 			printk(KERN_CONT "%02d ", node_distance(i,j));
6124 		printk(KERN_CONT "\n");
6125 	}
6126 	printk(KERN_WARNING "\n");
6127 }
6128 
6129 static bool find_numa_distance(int distance)
6130 {
6131 	int i;
6132 
6133 	if (distance == node_distance(0, 0))
6134 		return true;
6135 
6136 	for (i = 0; i < sched_domains_numa_levels; i++) {
6137 		if (sched_domains_numa_distance[i] == distance)
6138 			return true;
6139 	}
6140 
6141 	return false;
6142 }
6143 
6144 static void sched_init_numa(void)
6145 {
6146 	int next_distance, curr_distance = node_distance(0, 0);
6147 	struct sched_domain_topology_level *tl;
6148 	int level = 0;
6149 	int i, j, k;
6150 
6151 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6152 	if (!sched_domains_numa_distance)
6153 		return;
6154 
6155 	/*
6156 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6157 	 * unique distances in the node_distance() table.
6158 	 *
6159 	 * Assumes node_distance(0,j) includes all distances in
6160 	 * node_distance(i,j) in order to avoid cubic time.
6161 	 */
6162 	next_distance = curr_distance;
6163 	for (i = 0; i < nr_node_ids; i++) {
6164 		for (j = 0; j < nr_node_ids; j++) {
6165 			for (k = 0; k < nr_node_ids; k++) {
6166 				int distance = node_distance(i, k);
6167 
6168 				if (distance > curr_distance &&
6169 				    (distance < next_distance ||
6170 				     next_distance == curr_distance))
6171 					next_distance = distance;
6172 
6173 				/*
6174 				 * While not a strong assumption it would be nice to know
6175 				 * about cases where if node A is connected to B, B is not
6176 				 * equally connected to A.
6177 				 */
6178 				if (sched_debug() && node_distance(k, i) != distance)
6179 					sched_numa_warn("Node-distance not symmetric");
6180 
6181 				if (sched_debug() && i && !find_numa_distance(distance))
6182 					sched_numa_warn("Node-0 not representative");
6183 			}
6184 			if (next_distance != curr_distance) {
6185 				sched_domains_numa_distance[level++] = next_distance;
6186 				sched_domains_numa_levels = level;
6187 				curr_distance = next_distance;
6188 			} else break;
6189 		}
6190 
6191 		/*
6192 		 * In case of sched_debug() we verify the above assumption.
6193 		 */
6194 		if (!sched_debug())
6195 			break;
6196 	}
6197 	/*
6198 	 * 'level' contains the number of unique distances, excluding the
6199 	 * identity distance node_distance(i,i).
6200 	 *
6201 	 * The sched_domains_nume_distance[] array includes the actual distance
6202 	 * numbers.
6203 	 */
6204 
6205 	/*
6206 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6207 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6208 	 * the array will contain less then 'level' members. This could be
6209 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6210 	 * in other functions.
6211 	 *
6212 	 * We reset it to 'level' at the end of this function.
6213 	 */
6214 	sched_domains_numa_levels = 0;
6215 
6216 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6217 	if (!sched_domains_numa_masks)
6218 		return;
6219 
6220 	/*
6221 	 * Now for each level, construct a mask per node which contains all
6222 	 * cpus of nodes that are that many hops away from us.
6223 	 */
6224 	for (i = 0; i < level; i++) {
6225 		sched_domains_numa_masks[i] =
6226 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6227 		if (!sched_domains_numa_masks[i])
6228 			return;
6229 
6230 		for (j = 0; j < nr_node_ids; j++) {
6231 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6232 			if (!mask)
6233 				return;
6234 
6235 			sched_domains_numa_masks[i][j] = mask;
6236 
6237 			for (k = 0; k < nr_node_ids; k++) {
6238 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6239 					continue;
6240 
6241 				cpumask_or(mask, mask, cpumask_of_node(k));
6242 			}
6243 		}
6244 	}
6245 
6246 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6247 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6248 	if (!tl)
6249 		return;
6250 
6251 	/*
6252 	 * Copy the default topology bits..
6253 	 */
6254 	for (i = 0; default_topology[i].init; i++)
6255 		tl[i] = default_topology[i];
6256 
6257 	/*
6258 	 * .. and append 'j' levels of NUMA goodness.
6259 	 */
6260 	for (j = 0; j < level; i++, j++) {
6261 		tl[i] = (struct sched_domain_topology_level){
6262 			.init = sd_numa_init,
6263 			.mask = sd_numa_mask,
6264 			.flags = SDTL_OVERLAP,
6265 			.numa_level = j,
6266 		};
6267 	}
6268 
6269 	sched_domain_topology = tl;
6270 
6271 	sched_domains_numa_levels = level;
6272 }
6273 
6274 static void sched_domains_numa_masks_set(int cpu)
6275 {
6276 	int i, j;
6277 	int node = cpu_to_node(cpu);
6278 
6279 	for (i = 0; i < sched_domains_numa_levels; i++) {
6280 		for (j = 0; j < nr_node_ids; j++) {
6281 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6282 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6283 		}
6284 	}
6285 }
6286 
6287 static void sched_domains_numa_masks_clear(int cpu)
6288 {
6289 	int i, j;
6290 	for (i = 0; i < sched_domains_numa_levels; i++) {
6291 		for (j = 0; j < nr_node_ids; j++)
6292 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6293 	}
6294 }
6295 
6296 /*
6297  * Update sched_domains_numa_masks[level][node] array when new cpus
6298  * are onlined.
6299  */
6300 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6301 					   unsigned long action,
6302 					   void *hcpu)
6303 {
6304 	int cpu = (long)hcpu;
6305 
6306 	switch (action & ~CPU_TASKS_FROZEN) {
6307 	case CPU_ONLINE:
6308 		sched_domains_numa_masks_set(cpu);
6309 		break;
6310 
6311 	case CPU_DEAD:
6312 		sched_domains_numa_masks_clear(cpu);
6313 		break;
6314 
6315 	default:
6316 		return NOTIFY_DONE;
6317 	}
6318 
6319 	return NOTIFY_OK;
6320 }
6321 #else
6322 static inline void sched_init_numa(void)
6323 {
6324 }
6325 
6326 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6327 					   unsigned long action,
6328 					   void *hcpu)
6329 {
6330 	return 0;
6331 }
6332 #endif /* CONFIG_NUMA */
6333 
6334 static int __sdt_alloc(const struct cpumask *cpu_map)
6335 {
6336 	struct sched_domain_topology_level *tl;
6337 	int j;
6338 
6339 	for (tl = sched_domain_topology; tl->init; tl++) {
6340 		struct sd_data *sdd = &tl->data;
6341 
6342 		sdd->sd = alloc_percpu(struct sched_domain *);
6343 		if (!sdd->sd)
6344 			return -ENOMEM;
6345 
6346 		sdd->sg = alloc_percpu(struct sched_group *);
6347 		if (!sdd->sg)
6348 			return -ENOMEM;
6349 
6350 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6351 		if (!sdd->sgp)
6352 			return -ENOMEM;
6353 
6354 		for_each_cpu(j, cpu_map) {
6355 			struct sched_domain *sd;
6356 			struct sched_group *sg;
6357 			struct sched_group_power *sgp;
6358 
6359 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6360 					GFP_KERNEL, cpu_to_node(j));
6361 			if (!sd)
6362 				return -ENOMEM;
6363 
6364 			*per_cpu_ptr(sdd->sd, j) = sd;
6365 
6366 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6367 					GFP_KERNEL, cpu_to_node(j));
6368 			if (!sg)
6369 				return -ENOMEM;
6370 
6371 			sg->next = sg;
6372 
6373 			*per_cpu_ptr(sdd->sg, j) = sg;
6374 
6375 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6376 					GFP_KERNEL, cpu_to_node(j));
6377 			if (!sgp)
6378 				return -ENOMEM;
6379 
6380 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6381 		}
6382 	}
6383 
6384 	return 0;
6385 }
6386 
6387 static void __sdt_free(const struct cpumask *cpu_map)
6388 {
6389 	struct sched_domain_topology_level *tl;
6390 	int j;
6391 
6392 	for (tl = sched_domain_topology; tl->init; tl++) {
6393 		struct sd_data *sdd = &tl->data;
6394 
6395 		for_each_cpu(j, cpu_map) {
6396 			struct sched_domain *sd;
6397 
6398 			if (sdd->sd) {
6399 				sd = *per_cpu_ptr(sdd->sd, j);
6400 				if (sd && (sd->flags & SD_OVERLAP))
6401 					free_sched_groups(sd->groups, 0);
6402 				kfree(*per_cpu_ptr(sdd->sd, j));
6403 			}
6404 
6405 			if (sdd->sg)
6406 				kfree(*per_cpu_ptr(sdd->sg, j));
6407 			if (sdd->sgp)
6408 				kfree(*per_cpu_ptr(sdd->sgp, j));
6409 		}
6410 		free_percpu(sdd->sd);
6411 		sdd->sd = NULL;
6412 		free_percpu(sdd->sg);
6413 		sdd->sg = NULL;
6414 		free_percpu(sdd->sgp);
6415 		sdd->sgp = NULL;
6416 	}
6417 }
6418 
6419 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6420 		struct s_data *d, const struct cpumask *cpu_map,
6421 		struct sched_domain_attr *attr, struct sched_domain *child,
6422 		int cpu)
6423 {
6424 	struct sched_domain *sd = tl->init(tl, cpu);
6425 	if (!sd)
6426 		return child;
6427 
6428 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6429 	if (child) {
6430 		sd->level = child->level + 1;
6431 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6432 		child->parent = sd;
6433 	}
6434 	sd->child = child;
6435 	set_domain_attribute(sd, attr);
6436 
6437 	return sd;
6438 }
6439 
6440 /*
6441  * Build sched domains for a given set of cpus and attach the sched domains
6442  * to the individual cpus
6443  */
6444 static int build_sched_domains(const struct cpumask *cpu_map,
6445 			       struct sched_domain_attr *attr)
6446 {
6447 	enum s_alloc alloc_state = sa_none;
6448 	struct sched_domain *sd;
6449 	struct s_data d;
6450 	int i, ret = -ENOMEM;
6451 
6452 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6453 	if (alloc_state != sa_rootdomain)
6454 		goto error;
6455 
6456 	/* Set up domains for cpus specified by the cpu_map. */
6457 	for_each_cpu(i, cpu_map) {
6458 		struct sched_domain_topology_level *tl;
6459 
6460 		sd = NULL;
6461 		for (tl = sched_domain_topology; tl->init; tl++) {
6462 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6463 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6464 				sd->flags |= SD_OVERLAP;
6465 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6466 				break;
6467 		}
6468 
6469 		while (sd->child)
6470 			sd = sd->child;
6471 
6472 		*per_cpu_ptr(d.sd, i) = sd;
6473 	}
6474 
6475 	/* Build the groups for the domains */
6476 	for_each_cpu(i, cpu_map) {
6477 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6478 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6479 			if (sd->flags & SD_OVERLAP) {
6480 				if (build_overlap_sched_groups(sd, i))
6481 					goto error;
6482 			} else {
6483 				if (build_sched_groups(sd, i))
6484 					goto error;
6485 			}
6486 		}
6487 	}
6488 
6489 	/* Calculate CPU power for physical packages and nodes */
6490 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6491 		if (!cpumask_test_cpu(i, cpu_map))
6492 			continue;
6493 
6494 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6495 			claim_allocations(i, sd);
6496 			init_sched_groups_power(i, sd);
6497 		}
6498 	}
6499 
6500 	/* Attach the domains */
6501 	rcu_read_lock();
6502 	for_each_cpu(i, cpu_map) {
6503 		sd = *per_cpu_ptr(d.sd, i);
6504 		cpu_attach_domain(sd, d.rd, i);
6505 	}
6506 	rcu_read_unlock();
6507 
6508 	ret = 0;
6509 error:
6510 	__free_domain_allocs(&d, alloc_state, cpu_map);
6511 	return ret;
6512 }
6513 
6514 static cpumask_var_t *doms_cur;	/* current sched domains */
6515 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6516 static struct sched_domain_attr *dattr_cur;
6517 				/* attribues of custom domains in 'doms_cur' */
6518 
6519 /*
6520  * Special case: If a kmalloc of a doms_cur partition (array of
6521  * cpumask) fails, then fallback to a single sched domain,
6522  * as determined by the single cpumask fallback_doms.
6523  */
6524 static cpumask_var_t fallback_doms;
6525 
6526 /*
6527  * arch_update_cpu_topology lets virtualized architectures update the
6528  * cpu core maps. It is supposed to return 1 if the topology changed
6529  * or 0 if it stayed the same.
6530  */
6531 int __attribute__((weak)) arch_update_cpu_topology(void)
6532 {
6533 	return 0;
6534 }
6535 
6536 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6537 {
6538 	int i;
6539 	cpumask_var_t *doms;
6540 
6541 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6542 	if (!doms)
6543 		return NULL;
6544 	for (i = 0; i < ndoms; i++) {
6545 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6546 			free_sched_domains(doms, i);
6547 			return NULL;
6548 		}
6549 	}
6550 	return doms;
6551 }
6552 
6553 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6554 {
6555 	unsigned int i;
6556 	for (i = 0; i < ndoms; i++)
6557 		free_cpumask_var(doms[i]);
6558 	kfree(doms);
6559 }
6560 
6561 /*
6562  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6563  * For now this just excludes isolated cpus, but could be used to
6564  * exclude other special cases in the future.
6565  */
6566 static int init_sched_domains(const struct cpumask *cpu_map)
6567 {
6568 	int err;
6569 
6570 	arch_update_cpu_topology();
6571 	ndoms_cur = 1;
6572 	doms_cur = alloc_sched_domains(ndoms_cur);
6573 	if (!doms_cur)
6574 		doms_cur = &fallback_doms;
6575 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6576 	err = build_sched_domains(doms_cur[0], NULL);
6577 	register_sched_domain_sysctl();
6578 
6579 	return err;
6580 }
6581 
6582 /*
6583  * Detach sched domains from a group of cpus specified in cpu_map
6584  * These cpus will now be attached to the NULL domain
6585  */
6586 static void detach_destroy_domains(const struct cpumask *cpu_map)
6587 {
6588 	int i;
6589 
6590 	rcu_read_lock();
6591 	for_each_cpu(i, cpu_map)
6592 		cpu_attach_domain(NULL, &def_root_domain, i);
6593 	rcu_read_unlock();
6594 }
6595 
6596 /* handle null as "default" */
6597 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6598 			struct sched_domain_attr *new, int idx_new)
6599 {
6600 	struct sched_domain_attr tmp;
6601 
6602 	/* fast path */
6603 	if (!new && !cur)
6604 		return 1;
6605 
6606 	tmp = SD_ATTR_INIT;
6607 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6608 			new ? (new + idx_new) : &tmp,
6609 			sizeof(struct sched_domain_attr));
6610 }
6611 
6612 /*
6613  * Partition sched domains as specified by the 'ndoms_new'
6614  * cpumasks in the array doms_new[] of cpumasks. This compares
6615  * doms_new[] to the current sched domain partitioning, doms_cur[].
6616  * It destroys each deleted domain and builds each new domain.
6617  *
6618  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6619  * The masks don't intersect (don't overlap.) We should setup one
6620  * sched domain for each mask. CPUs not in any of the cpumasks will
6621  * not be load balanced. If the same cpumask appears both in the
6622  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6623  * it as it is.
6624  *
6625  * The passed in 'doms_new' should be allocated using
6626  * alloc_sched_domains.  This routine takes ownership of it and will
6627  * free_sched_domains it when done with it. If the caller failed the
6628  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6629  * and partition_sched_domains() will fallback to the single partition
6630  * 'fallback_doms', it also forces the domains to be rebuilt.
6631  *
6632  * If doms_new == NULL it will be replaced with cpu_online_mask.
6633  * ndoms_new == 0 is a special case for destroying existing domains,
6634  * and it will not create the default domain.
6635  *
6636  * Call with hotplug lock held
6637  */
6638 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6639 			     struct sched_domain_attr *dattr_new)
6640 {
6641 	int i, j, n;
6642 	int new_topology;
6643 
6644 	mutex_lock(&sched_domains_mutex);
6645 
6646 	/* always unregister in case we don't destroy any domains */
6647 	unregister_sched_domain_sysctl();
6648 
6649 	/* Let architecture update cpu core mappings. */
6650 	new_topology = arch_update_cpu_topology();
6651 
6652 	n = doms_new ? ndoms_new : 0;
6653 
6654 	/* Destroy deleted domains */
6655 	for (i = 0; i < ndoms_cur; i++) {
6656 		for (j = 0; j < n && !new_topology; j++) {
6657 			if (cpumask_equal(doms_cur[i], doms_new[j])
6658 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6659 				goto match1;
6660 		}
6661 		/* no match - a current sched domain not in new doms_new[] */
6662 		detach_destroy_domains(doms_cur[i]);
6663 match1:
6664 		;
6665 	}
6666 
6667 	if (doms_new == NULL) {
6668 		ndoms_cur = 0;
6669 		doms_new = &fallback_doms;
6670 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6671 		WARN_ON_ONCE(dattr_new);
6672 	}
6673 
6674 	/* Build new domains */
6675 	for (i = 0; i < ndoms_new; i++) {
6676 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6677 			if (cpumask_equal(doms_new[i], doms_cur[j])
6678 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6679 				goto match2;
6680 		}
6681 		/* no match - add a new doms_new */
6682 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6683 match2:
6684 		;
6685 	}
6686 
6687 	/* Remember the new sched domains */
6688 	if (doms_cur != &fallback_doms)
6689 		free_sched_domains(doms_cur, ndoms_cur);
6690 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6691 	doms_cur = doms_new;
6692 	dattr_cur = dattr_new;
6693 	ndoms_cur = ndoms_new;
6694 
6695 	register_sched_domain_sysctl();
6696 
6697 	mutex_unlock(&sched_domains_mutex);
6698 }
6699 
6700 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6701 
6702 /*
6703  * Update cpusets according to cpu_active mask.  If cpusets are
6704  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6705  * around partition_sched_domains().
6706  *
6707  * If we come here as part of a suspend/resume, don't touch cpusets because we
6708  * want to restore it back to its original state upon resume anyway.
6709  */
6710 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6711 			     void *hcpu)
6712 {
6713 	switch (action) {
6714 	case CPU_ONLINE_FROZEN:
6715 	case CPU_DOWN_FAILED_FROZEN:
6716 
6717 		/*
6718 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6719 		 * resume sequence. As long as this is not the last online
6720 		 * operation in the resume sequence, just build a single sched
6721 		 * domain, ignoring cpusets.
6722 		 */
6723 		num_cpus_frozen--;
6724 		if (likely(num_cpus_frozen)) {
6725 			partition_sched_domains(1, NULL, NULL);
6726 			break;
6727 		}
6728 
6729 		/*
6730 		 * This is the last CPU online operation. So fall through and
6731 		 * restore the original sched domains by considering the
6732 		 * cpuset configurations.
6733 		 */
6734 
6735 	case CPU_ONLINE:
6736 	case CPU_DOWN_FAILED:
6737 		cpuset_update_active_cpus(true);
6738 		break;
6739 	default:
6740 		return NOTIFY_DONE;
6741 	}
6742 	return NOTIFY_OK;
6743 }
6744 
6745 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6746 			       void *hcpu)
6747 {
6748 	switch (action) {
6749 	case CPU_DOWN_PREPARE:
6750 		cpuset_update_active_cpus(false);
6751 		break;
6752 	case CPU_DOWN_PREPARE_FROZEN:
6753 		num_cpus_frozen++;
6754 		partition_sched_domains(1, NULL, NULL);
6755 		break;
6756 	default:
6757 		return NOTIFY_DONE;
6758 	}
6759 	return NOTIFY_OK;
6760 }
6761 
6762 void __init sched_init_smp(void)
6763 {
6764 	cpumask_var_t non_isolated_cpus;
6765 
6766 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6767 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6768 
6769 	sched_init_numa();
6770 
6771 	get_online_cpus();
6772 	mutex_lock(&sched_domains_mutex);
6773 	init_sched_domains(cpu_active_mask);
6774 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6775 	if (cpumask_empty(non_isolated_cpus))
6776 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6777 	mutex_unlock(&sched_domains_mutex);
6778 	put_online_cpus();
6779 
6780 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6781 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6782 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6783 
6784 	/* RT runtime code needs to handle some hotplug events */
6785 	hotcpu_notifier(update_runtime, 0);
6786 
6787 	init_hrtick();
6788 
6789 	/* Move init over to a non-isolated CPU */
6790 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6791 		BUG();
6792 	sched_init_granularity();
6793 	free_cpumask_var(non_isolated_cpus);
6794 
6795 	init_sched_rt_class();
6796 }
6797 #else
6798 void __init sched_init_smp(void)
6799 {
6800 	sched_init_granularity();
6801 }
6802 #endif /* CONFIG_SMP */
6803 
6804 const_debug unsigned int sysctl_timer_migration = 1;
6805 
6806 int in_sched_functions(unsigned long addr)
6807 {
6808 	return in_lock_functions(addr) ||
6809 		(addr >= (unsigned long)__sched_text_start
6810 		&& addr < (unsigned long)__sched_text_end);
6811 }
6812 
6813 #ifdef CONFIG_CGROUP_SCHED
6814 struct task_group root_task_group;
6815 LIST_HEAD(task_groups);
6816 #endif
6817 
6818 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6819 
6820 void __init sched_init(void)
6821 {
6822 	int i, j;
6823 	unsigned long alloc_size = 0, ptr;
6824 
6825 #ifdef CONFIG_FAIR_GROUP_SCHED
6826 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6827 #endif
6828 #ifdef CONFIG_RT_GROUP_SCHED
6829 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6830 #endif
6831 #ifdef CONFIG_CPUMASK_OFFSTACK
6832 	alloc_size += num_possible_cpus() * cpumask_size();
6833 #endif
6834 	if (alloc_size) {
6835 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6836 
6837 #ifdef CONFIG_FAIR_GROUP_SCHED
6838 		root_task_group.se = (struct sched_entity **)ptr;
6839 		ptr += nr_cpu_ids * sizeof(void **);
6840 
6841 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6842 		ptr += nr_cpu_ids * sizeof(void **);
6843 
6844 #endif /* CONFIG_FAIR_GROUP_SCHED */
6845 #ifdef CONFIG_RT_GROUP_SCHED
6846 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6847 		ptr += nr_cpu_ids * sizeof(void **);
6848 
6849 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6850 		ptr += nr_cpu_ids * sizeof(void **);
6851 
6852 #endif /* CONFIG_RT_GROUP_SCHED */
6853 #ifdef CONFIG_CPUMASK_OFFSTACK
6854 		for_each_possible_cpu(i) {
6855 			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6856 			ptr += cpumask_size();
6857 		}
6858 #endif /* CONFIG_CPUMASK_OFFSTACK */
6859 	}
6860 
6861 #ifdef CONFIG_SMP
6862 	init_defrootdomain();
6863 #endif
6864 
6865 	init_rt_bandwidth(&def_rt_bandwidth,
6866 			global_rt_period(), global_rt_runtime());
6867 
6868 #ifdef CONFIG_RT_GROUP_SCHED
6869 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6870 			global_rt_period(), global_rt_runtime());
6871 #endif /* CONFIG_RT_GROUP_SCHED */
6872 
6873 #ifdef CONFIG_CGROUP_SCHED
6874 	list_add(&root_task_group.list, &task_groups);
6875 	INIT_LIST_HEAD(&root_task_group.children);
6876 	INIT_LIST_HEAD(&root_task_group.siblings);
6877 	autogroup_init(&init_task);
6878 
6879 #endif /* CONFIG_CGROUP_SCHED */
6880 
6881 #ifdef CONFIG_CGROUP_CPUACCT
6882 	root_cpuacct.cpustat = &kernel_cpustat;
6883 	root_cpuacct.cpuusage = alloc_percpu(u64);
6884 	/* Too early, not expected to fail */
6885 	BUG_ON(!root_cpuacct.cpuusage);
6886 #endif
6887 	for_each_possible_cpu(i) {
6888 		struct rq *rq;
6889 
6890 		rq = cpu_rq(i);
6891 		raw_spin_lock_init(&rq->lock);
6892 		rq->nr_running = 0;
6893 		rq->calc_load_active = 0;
6894 		rq->calc_load_update = jiffies + LOAD_FREQ;
6895 		init_cfs_rq(&rq->cfs);
6896 		init_rt_rq(&rq->rt, rq);
6897 #ifdef CONFIG_FAIR_GROUP_SCHED
6898 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6899 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6900 		/*
6901 		 * How much cpu bandwidth does root_task_group get?
6902 		 *
6903 		 * In case of task-groups formed thr' the cgroup filesystem, it
6904 		 * gets 100% of the cpu resources in the system. This overall
6905 		 * system cpu resource is divided among the tasks of
6906 		 * root_task_group and its child task-groups in a fair manner,
6907 		 * based on each entity's (task or task-group's) weight
6908 		 * (se->load.weight).
6909 		 *
6910 		 * In other words, if root_task_group has 10 tasks of weight
6911 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6912 		 * then A0's share of the cpu resource is:
6913 		 *
6914 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6915 		 *
6916 		 * We achieve this by letting root_task_group's tasks sit
6917 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6918 		 */
6919 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6920 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6921 #endif /* CONFIG_FAIR_GROUP_SCHED */
6922 
6923 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6924 #ifdef CONFIG_RT_GROUP_SCHED
6925 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6926 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6927 #endif
6928 
6929 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6930 			rq->cpu_load[j] = 0;
6931 
6932 		rq->last_load_update_tick = jiffies;
6933 
6934 #ifdef CONFIG_SMP
6935 		rq->sd = NULL;
6936 		rq->rd = NULL;
6937 		rq->cpu_power = SCHED_POWER_SCALE;
6938 		rq->post_schedule = 0;
6939 		rq->active_balance = 0;
6940 		rq->next_balance = jiffies;
6941 		rq->push_cpu = 0;
6942 		rq->cpu = i;
6943 		rq->online = 0;
6944 		rq->idle_stamp = 0;
6945 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6946 
6947 		INIT_LIST_HEAD(&rq->cfs_tasks);
6948 
6949 		rq_attach_root(rq, &def_root_domain);
6950 #ifdef CONFIG_NO_HZ
6951 		rq->nohz_flags = 0;
6952 #endif
6953 #endif
6954 		init_rq_hrtick(rq);
6955 		atomic_set(&rq->nr_iowait, 0);
6956 	}
6957 
6958 	set_load_weight(&init_task);
6959 
6960 #ifdef CONFIG_PREEMPT_NOTIFIERS
6961 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6962 #endif
6963 
6964 #ifdef CONFIG_RT_MUTEXES
6965 	plist_head_init(&init_task.pi_waiters);
6966 #endif
6967 
6968 	/*
6969 	 * The boot idle thread does lazy MMU switching as well:
6970 	 */
6971 	atomic_inc(&init_mm.mm_count);
6972 	enter_lazy_tlb(&init_mm, current);
6973 
6974 	/*
6975 	 * Make us the idle thread. Technically, schedule() should not be
6976 	 * called from this thread, however somewhere below it might be,
6977 	 * but because we are the idle thread, we just pick up running again
6978 	 * when this runqueue becomes "idle".
6979 	 */
6980 	init_idle(current, smp_processor_id());
6981 
6982 	calc_load_update = jiffies + LOAD_FREQ;
6983 
6984 	/*
6985 	 * During early bootup we pretend to be a normal task:
6986 	 */
6987 	current->sched_class = &fair_sched_class;
6988 
6989 #ifdef CONFIG_SMP
6990 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6991 	/* May be allocated at isolcpus cmdline parse time */
6992 	if (cpu_isolated_map == NULL)
6993 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6994 	idle_thread_set_boot_cpu();
6995 #endif
6996 	init_sched_fair_class();
6997 
6998 	scheduler_running = 1;
6999 }
7000 
7001 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7002 static inline int preempt_count_equals(int preempt_offset)
7003 {
7004 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7005 
7006 	return (nested == preempt_offset);
7007 }
7008 
7009 void __might_sleep(const char *file, int line, int preempt_offset)
7010 {
7011 	static unsigned long prev_jiffy;	/* ratelimiting */
7012 
7013 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7014 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7015 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7016 		return;
7017 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7018 		return;
7019 	prev_jiffy = jiffies;
7020 
7021 	printk(KERN_ERR
7022 		"BUG: sleeping function called from invalid context at %s:%d\n",
7023 			file, line);
7024 	printk(KERN_ERR
7025 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7026 			in_atomic(), irqs_disabled(),
7027 			current->pid, current->comm);
7028 
7029 	debug_show_held_locks(current);
7030 	if (irqs_disabled())
7031 		print_irqtrace_events(current);
7032 	dump_stack();
7033 }
7034 EXPORT_SYMBOL(__might_sleep);
7035 #endif
7036 
7037 #ifdef CONFIG_MAGIC_SYSRQ
7038 static void normalize_task(struct rq *rq, struct task_struct *p)
7039 {
7040 	const struct sched_class *prev_class = p->sched_class;
7041 	int old_prio = p->prio;
7042 	int on_rq;
7043 
7044 	on_rq = p->on_rq;
7045 	if (on_rq)
7046 		dequeue_task(rq, p, 0);
7047 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7048 	if (on_rq) {
7049 		enqueue_task(rq, p, 0);
7050 		resched_task(rq->curr);
7051 	}
7052 
7053 	check_class_changed(rq, p, prev_class, old_prio);
7054 }
7055 
7056 void normalize_rt_tasks(void)
7057 {
7058 	struct task_struct *g, *p;
7059 	unsigned long flags;
7060 	struct rq *rq;
7061 
7062 	read_lock_irqsave(&tasklist_lock, flags);
7063 	do_each_thread(g, p) {
7064 		/*
7065 		 * Only normalize user tasks:
7066 		 */
7067 		if (!p->mm)
7068 			continue;
7069 
7070 		p->se.exec_start		= 0;
7071 #ifdef CONFIG_SCHEDSTATS
7072 		p->se.statistics.wait_start	= 0;
7073 		p->se.statistics.sleep_start	= 0;
7074 		p->se.statistics.block_start	= 0;
7075 #endif
7076 
7077 		if (!rt_task(p)) {
7078 			/*
7079 			 * Renice negative nice level userspace
7080 			 * tasks back to 0:
7081 			 */
7082 			if (TASK_NICE(p) < 0 && p->mm)
7083 				set_user_nice(p, 0);
7084 			continue;
7085 		}
7086 
7087 		raw_spin_lock(&p->pi_lock);
7088 		rq = __task_rq_lock(p);
7089 
7090 		normalize_task(rq, p);
7091 
7092 		__task_rq_unlock(rq);
7093 		raw_spin_unlock(&p->pi_lock);
7094 	} while_each_thread(g, p);
7095 
7096 	read_unlock_irqrestore(&tasklist_lock, flags);
7097 }
7098 
7099 #endif /* CONFIG_MAGIC_SYSRQ */
7100 
7101 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7102 /*
7103  * These functions are only useful for the IA64 MCA handling, or kdb.
7104  *
7105  * They can only be called when the whole system has been
7106  * stopped - every CPU needs to be quiescent, and no scheduling
7107  * activity can take place. Using them for anything else would
7108  * be a serious bug, and as a result, they aren't even visible
7109  * under any other configuration.
7110  */
7111 
7112 /**
7113  * curr_task - return the current task for a given cpu.
7114  * @cpu: the processor in question.
7115  *
7116  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7117  */
7118 struct task_struct *curr_task(int cpu)
7119 {
7120 	return cpu_curr(cpu);
7121 }
7122 
7123 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7124 
7125 #ifdef CONFIG_IA64
7126 /**
7127  * set_curr_task - set the current task for a given cpu.
7128  * @cpu: the processor in question.
7129  * @p: the task pointer to set.
7130  *
7131  * Description: This function must only be used when non-maskable interrupts
7132  * are serviced on a separate stack. It allows the architecture to switch the
7133  * notion of the current task on a cpu in a non-blocking manner. This function
7134  * must be called with all CPU's synchronized, and interrupts disabled, the
7135  * and caller must save the original value of the current task (see
7136  * curr_task() above) and restore that value before reenabling interrupts and
7137  * re-starting the system.
7138  *
7139  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7140  */
7141 void set_curr_task(int cpu, struct task_struct *p)
7142 {
7143 	cpu_curr(cpu) = p;
7144 }
7145 
7146 #endif
7147 
7148 #ifdef CONFIG_CGROUP_SCHED
7149 /* task_group_lock serializes the addition/removal of task groups */
7150 static DEFINE_SPINLOCK(task_group_lock);
7151 
7152 static void free_sched_group(struct task_group *tg)
7153 {
7154 	free_fair_sched_group(tg);
7155 	free_rt_sched_group(tg);
7156 	autogroup_free(tg);
7157 	kfree(tg);
7158 }
7159 
7160 /* allocate runqueue etc for a new task group */
7161 struct task_group *sched_create_group(struct task_group *parent)
7162 {
7163 	struct task_group *tg;
7164 
7165 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7166 	if (!tg)
7167 		return ERR_PTR(-ENOMEM);
7168 
7169 	if (!alloc_fair_sched_group(tg, parent))
7170 		goto err;
7171 
7172 	if (!alloc_rt_sched_group(tg, parent))
7173 		goto err;
7174 
7175 	return tg;
7176 
7177 err:
7178 	free_sched_group(tg);
7179 	return ERR_PTR(-ENOMEM);
7180 }
7181 
7182 void sched_online_group(struct task_group *tg, struct task_group *parent)
7183 {
7184 	unsigned long flags;
7185 
7186 	spin_lock_irqsave(&task_group_lock, flags);
7187 	list_add_rcu(&tg->list, &task_groups);
7188 
7189 	WARN_ON(!parent); /* root should already exist */
7190 
7191 	tg->parent = parent;
7192 	INIT_LIST_HEAD(&tg->children);
7193 	list_add_rcu(&tg->siblings, &parent->children);
7194 	spin_unlock_irqrestore(&task_group_lock, flags);
7195 }
7196 
7197 /* rcu callback to free various structures associated with a task group */
7198 static void free_sched_group_rcu(struct rcu_head *rhp)
7199 {
7200 	/* now it should be safe to free those cfs_rqs */
7201 	free_sched_group(container_of(rhp, struct task_group, rcu));
7202 }
7203 
7204 /* Destroy runqueue etc associated with a task group */
7205 void sched_destroy_group(struct task_group *tg)
7206 {
7207 	/* wait for possible concurrent references to cfs_rqs complete */
7208 	call_rcu(&tg->rcu, free_sched_group_rcu);
7209 }
7210 
7211 void sched_offline_group(struct task_group *tg)
7212 {
7213 	unsigned long flags;
7214 	int i;
7215 
7216 	/* end participation in shares distribution */
7217 	for_each_possible_cpu(i)
7218 		unregister_fair_sched_group(tg, i);
7219 
7220 	spin_lock_irqsave(&task_group_lock, flags);
7221 	list_del_rcu(&tg->list);
7222 	list_del_rcu(&tg->siblings);
7223 	spin_unlock_irqrestore(&task_group_lock, flags);
7224 }
7225 
7226 /* change task's runqueue when it moves between groups.
7227  *	The caller of this function should have put the task in its new group
7228  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7229  *	reflect its new group.
7230  */
7231 void sched_move_task(struct task_struct *tsk)
7232 {
7233 	struct task_group *tg;
7234 	int on_rq, running;
7235 	unsigned long flags;
7236 	struct rq *rq;
7237 
7238 	rq = task_rq_lock(tsk, &flags);
7239 
7240 	running = task_current(rq, tsk);
7241 	on_rq = tsk->on_rq;
7242 
7243 	if (on_rq)
7244 		dequeue_task(rq, tsk, 0);
7245 	if (unlikely(running))
7246 		tsk->sched_class->put_prev_task(rq, tsk);
7247 
7248 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7249 				lockdep_is_held(&tsk->sighand->siglock)),
7250 			  struct task_group, css);
7251 	tg = autogroup_task_group(tsk, tg);
7252 	tsk->sched_task_group = tg;
7253 
7254 #ifdef CONFIG_FAIR_GROUP_SCHED
7255 	if (tsk->sched_class->task_move_group)
7256 		tsk->sched_class->task_move_group(tsk, on_rq);
7257 	else
7258 #endif
7259 		set_task_rq(tsk, task_cpu(tsk));
7260 
7261 	if (unlikely(running))
7262 		tsk->sched_class->set_curr_task(rq);
7263 	if (on_rq)
7264 		enqueue_task(rq, tsk, 0);
7265 
7266 	task_rq_unlock(rq, tsk, &flags);
7267 }
7268 #endif /* CONFIG_CGROUP_SCHED */
7269 
7270 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7271 static unsigned long to_ratio(u64 period, u64 runtime)
7272 {
7273 	if (runtime == RUNTIME_INF)
7274 		return 1ULL << 20;
7275 
7276 	return div64_u64(runtime << 20, period);
7277 }
7278 #endif
7279 
7280 #ifdef CONFIG_RT_GROUP_SCHED
7281 /*
7282  * Ensure that the real time constraints are schedulable.
7283  */
7284 static DEFINE_MUTEX(rt_constraints_mutex);
7285 
7286 /* Must be called with tasklist_lock held */
7287 static inline int tg_has_rt_tasks(struct task_group *tg)
7288 {
7289 	struct task_struct *g, *p;
7290 
7291 	do_each_thread(g, p) {
7292 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7293 			return 1;
7294 	} while_each_thread(g, p);
7295 
7296 	return 0;
7297 }
7298 
7299 struct rt_schedulable_data {
7300 	struct task_group *tg;
7301 	u64 rt_period;
7302 	u64 rt_runtime;
7303 };
7304 
7305 static int tg_rt_schedulable(struct task_group *tg, void *data)
7306 {
7307 	struct rt_schedulable_data *d = data;
7308 	struct task_group *child;
7309 	unsigned long total, sum = 0;
7310 	u64 period, runtime;
7311 
7312 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7313 	runtime = tg->rt_bandwidth.rt_runtime;
7314 
7315 	if (tg == d->tg) {
7316 		period = d->rt_period;
7317 		runtime = d->rt_runtime;
7318 	}
7319 
7320 	/*
7321 	 * Cannot have more runtime than the period.
7322 	 */
7323 	if (runtime > period && runtime != RUNTIME_INF)
7324 		return -EINVAL;
7325 
7326 	/*
7327 	 * Ensure we don't starve existing RT tasks.
7328 	 */
7329 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7330 		return -EBUSY;
7331 
7332 	total = to_ratio(period, runtime);
7333 
7334 	/*
7335 	 * Nobody can have more than the global setting allows.
7336 	 */
7337 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7338 		return -EINVAL;
7339 
7340 	/*
7341 	 * The sum of our children's runtime should not exceed our own.
7342 	 */
7343 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7344 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7345 		runtime = child->rt_bandwidth.rt_runtime;
7346 
7347 		if (child == d->tg) {
7348 			period = d->rt_period;
7349 			runtime = d->rt_runtime;
7350 		}
7351 
7352 		sum += to_ratio(period, runtime);
7353 	}
7354 
7355 	if (sum > total)
7356 		return -EINVAL;
7357 
7358 	return 0;
7359 }
7360 
7361 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7362 {
7363 	int ret;
7364 
7365 	struct rt_schedulable_data data = {
7366 		.tg = tg,
7367 		.rt_period = period,
7368 		.rt_runtime = runtime,
7369 	};
7370 
7371 	rcu_read_lock();
7372 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7373 	rcu_read_unlock();
7374 
7375 	return ret;
7376 }
7377 
7378 static int tg_set_rt_bandwidth(struct task_group *tg,
7379 		u64 rt_period, u64 rt_runtime)
7380 {
7381 	int i, err = 0;
7382 
7383 	mutex_lock(&rt_constraints_mutex);
7384 	read_lock(&tasklist_lock);
7385 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7386 	if (err)
7387 		goto unlock;
7388 
7389 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7390 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7391 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7392 
7393 	for_each_possible_cpu(i) {
7394 		struct rt_rq *rt_rq = tg->rt_rq[i];
7395 
7396 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7397 		rt_rq->rt_runtime = rt_runtime;
7398 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7399 	}
7400 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7401 unlock:
7402 	read_unlock(&tasklist_lock);
7403 	mutex_unlock(&rt_constraints_mutex);
7404 
7405 	return err;
7406 }
7407 
7408 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7409 {
7410 	u64 rt_runtime, rt_period;
7411 
7412 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7413 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7414 	if (rt_runtime_us < 0)
7415 		rt_runtime = RUNTIME_INF;
7416 
7417 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7418 }
7419 
7420 long sched_group_rt_runtime(struct task_group *tg)
7421 {
7422 	u64 rt_runtime_us;
7423 
7424 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7425 		return -1;
7426 
7427 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7428 	do_div(rt_runtime_us, NSEC_PER_USEC);
7429 	return rt_runtime_us;
7430 }
7431 
7432 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7433 {
7434 	u64 rt_runtime, rt_period;
7435 
7436 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7437 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7438 
7439 	if (rt_period == 0)
7440 		return -EINVAL;
7441 
7442 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7443 }
7444 
7445 long sched_group_rt_period(struct task_group *tg)
7446 {
7447 	u64 rt_period_us;
7448 
7449 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7450 	do_div(rt_period_us, NSEC_PER_USEC);
7451 	return rt_period_us;
7452 }
7453 
7454 static int sched_rt_global_constraints(void)
7455 {
7456 	u64 runtime, period;
7457 	int ret = 0;
7458 
7459 	if (sysctl_sched_rt_period <= 0)
7460 		return -EINVAL;
7461 
7462 	runtime = global_rt_runtime();
7463 	period = global_rt_period();
7464 
7465 	/*
7466 	 * Sanity check on the sysctl variables.
7467 	 */
7468 	if (runtime > period && runtime != RUNTIME_INF)
7469 		return -EINVAL;
7470 
7471 	mutex_lock(&rt_constraints_mutex);
7472 	read_lock(&tasklist_lock);
7473 	ret = __rt_schedulable(NULL, 0, 0);
7474 	read_unlock(&tasklist_lock);
7475 	mutex_unlock(&rt_constraints_mutex);
7476 
7477 	return ret;
7478 }
7479 
7480 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7481 {
7482 	/* Don't accept realtime tasks when there is no way for them to run */
7483 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7484 		return 0;
7485 
7486 	return 1;
7487 }
7488 
7489 #else /* !CONFIG_RT_GROUP_SCHED */
7490 static int sched_rt_global_constraints(void)
7491 {
7492 	unsigned long flags;
7493 	int i;
7494 
7495 	if (sysctl_sched_rt_period <= 0)
7496 		return -EINVAL;
7497 
7498 	/*
7499 	 * There's always some RT tasks in the root group
7500 	 * -- migration, kstopmachine etc..
7501 	 */
7502 	if (sysctl_sched_rt_runtime == 0)
7503 		return -EBUSY;
7504 
7505 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7506 	for_each_possible_cpu(i) {
7507 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7508 
7509 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7510 		rt_rq->rt_runtime = global_rt_runtime();
7511 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7512 	}
7513 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7514 
7515 	return 0;
7516 }
7517 #endif /* CONFIG_RT_GROUP_SCHED */
7518 
7519 int sched_rr_handler(struct ctl_table *table, int write,
7520 		void __user *buffer, size_t *lenp,
7521 		loff_t *ppos)
7522 {
7523 	int ret;
7524 	static DEFINE_MUTEX(mutex);
7525 
7526 	mutex_lock(&mutex);
7527 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7528 	/* make sure that internally we keep jiffies */
7529 	/* also, writing zero resets timeslice to default */
7530 	if (!ret && write) {
7531 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7532 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7533 	}
7534 	mutex_unlock(&mutex);
7535 	return ret;
7536 }
7537 
7538 int sched_rt_handler(struct ctl_table *table, int write,
7539 		void __user *buffer, size_t *lenp,
7540 		loff_t *ppos)
7541 {
7542 	int ret;
7543 	int old_period, old_runtime;
7544 	static DEFINE_MUTEX(mutex);
7545 
7546 	mutex_lock(&mutex);
7547 	old_period = sysctl_sched_rt_period;
7548 	old_runtime = sysctl_sched_rt_runtime;
7549 
7550 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7551 
7552 	if (!ret && write) {
7553 		ret = sched_rt_global_constraints();
7554 		if (ret) {
7555 			sysctl_sched_rt_period = old_period;
7556 			sysctl_sched_rt_runtime = old_runtime;
7557 		} else {
7558 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7559 			def_rt_bandwidth.rt_period =
7560 				ns_to_ktime(global_rt_period());
7561 		}
7562 	}
7563 	mutex_unlock(&mutex);
7564 
7565 	return ret;
7566 }
7567 
7568 #ifdef CONFIG_CGROUP_SCHED
7569 
7570 /* return corresponding task_group object of a cgroup */
7571 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7572 {
7573 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7574 			    struct task_group, css);
7575 }
7576 
7577 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7578 {
7579 	struct task_group *tg, *parent;
7580 
7581 	if (!cgrp->parent) {
7582 		/* This is early initialization for the top cgroup */
7583 		return &root_task_group.css;
7584 	}
7585 
7586 	parent = cgroup_tg(cgrp->parent);
7587 	tg = sched_create_group(parent);
7588 	if (IS_ERR(tg))
7589 		return ERR_PTR(-ENOMEM);
7590 
7591 	return &tg->css;
7592 }
7593 
7594 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7595 {
7596 	struct task_group *tg = cgroup_tg(cgrp);
7597 	struct task_group *parent;
7598 
7599 	if (!cgrp->parent)
7600 		return 0;
7601 
7602 	parent = cgroup_tg(cgrp->parent);
7603 	sched_online_group(tg, parent);
7604 	return 0;
7605 }
7606 
7607 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7608 {
7609 	struct task_group *tg = cgroup_tg(cgrp);
7610 
7611 	sched_destroy_group(tg);
7612 }
7613 
7614 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7615 {
7616 	struct task_group *tg = cgroup_tg(cgrp);
7617 
7618 	sched_offline_group(tg);
7619 }
7620 
7621 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7622 				 struct cgroup_taskset *tset)
7623 {
7624 	struct task_struct *task;
7625 
7626 	cgroup_taskset_for_each(task, cgrp, tset) {
7627 #ifdef CONFIG_RT_GROUP_SCHED
7628 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7629 			return -EINVAL;
7630 #else
7631 		/* We don't support RT-tasks being in separate groups */
7632 		if (task->sched_class != &fair_sched_class)
7633 			return -EINVAL;
7634 #endif
7635 	}
7636 	return 0;
7637 }
7638 
7639 static void cpu_cgroup_attach(struct cgroup *cgrp,
7640 			      struct cgroup_taskset *tset)
7641 {
7642 	struct task_struct *task;
7643 
7644 	cgroup_taskset_for_each(task, cgrp, tset)
7645 		sched_move_task(task);
7646 }
7647 
7648 static void
7649 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7650 		struct task_struct *task)
7651 {
7652 	/*
7653 	 * cgroup_exit() is called in the copy_process() failure path.
7654 	 * Ignore this case since the task hasn't ran yet, this avoids
7655 	 * trying to poke a half freed task state from generic code.
7656 	 */
7657 	if (!(task->flags & PF_EXITING))
7658 		return;
7659 
7660 	sched_move_task(task);
7661 }
7662 
7663 #ifdef CONFIG_FAIR_GROUP_SCHED
7664 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7665 				u64 shareval)
7666 {
7667 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7668 }
7669 
7670 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7671 {
7672 	struct task_group *tg = cgroup_tg(cgrp);
7673 
7674 	return (u64) scale_load_down(tg->shares);
7675 }
7676 
7677 #ifdef CONFIG_CFS_BANDWIDTH
7678 static DEFINE_MUTEX(cfs_constraints_mutex);
7679 
7680 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7681 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7682 
7683 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7684 
7685 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7686 {
7687 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7688 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7689 
7690 	if (tg == &root_task_group)
7691 		return -EINVAL;
7692 
7693 	/*
7694 	 * Ensure we have at some amount of bandwidth every period.  This is
7695 	 * to prevent reaching a state of large arrears when throttled via
7696 	 * entity_tick() resulting in prolonged exit starvation.
7697 	 */
7698 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7699 		return -EINVAL;
7700 
7701 	/*
7702 	 * Likewise, bound things on the otherside by preventing insane quota
7703 	 * periods.  This also allows us to normalize in computing quota
7704 	 * feasibility.
7705 	 */
7706 	if (period > max_cfs_quota_period)
7707 		return -EINVAL;
7708 
7709 	mutex_lock(&cfs_constraints_mutex);
7710 	ret = __cfs_schedulable(tg, period, quota);
7711 	if (ret)
7712 		goto out_unlock;
7713 
7714 	runtime_enabled = quota != RUNTIME_INF;
7715 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7716 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7717 	raw_spin_lock_irq(&cfs_b->lock);
7718 	cfs_b->period = ns_to_ktime(period);
7719 	cfs_b->quota = quota;
7720 
7721 	__refill_cfs_bandwidth_runtime(cfs_b);
7722 	/* restart the period timer (if active) to handle new period expiry */
7723 	if (runtime_enabled && cfs_b->timer_active) {
7724 		/* force a reprogram */
7725 		cfs_b->timer_active = 0;
7726 		__start_cfs_bandwidth(cfs_b);
7727 	}
7728 	raw_spin_unlock_irq(&cfs_b->lock);
7729 
7730 	for_each_possible_cpu(i) {
7731 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7732 		struct rq *rq = cfs_rq->rq;
7733 
7734 		raw_spin_lock_irq(&rq->lock);
7735 		cfs_rq->runtime_enabled = runtime_enabled;
7736 		cfs_rq->runtime_remaining = 0;
7737 
7738 		if (cfs_rq->throttled)
7739 			unthrottle_cfs_rq(cfs_rq);
7740 		raw_spin_unlock_irq(&rq->lock);
7741 	}
7742 out_unlock:
7743 	mutex_unlock(&cfs_constraints_mutex);
7744 
7745 	return ret;
7746 }
7747 
7748 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7749 {
7750 	u64 quota, period;
7751 
7752 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7753 	if (cfs_quota_us < 0)
7754 		quota = RUNTIME_INF;
7755 	else
7756 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7757 
7758 	return tg_set_cfs_bandwidth(tg, period, quota);
7759 }
7760 
7761 long tg_get_cfs_quota(struct task_group *tg)
7762 {
7763 	u64 quota_us;
7764 
7765 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7766 		return -1;
7767 
7768 	quota_us = tg->cfs_bandwidth.quota;
7769 	do_div(quota_us, NSEC_PER_USEC);
7770 
7771 	return quota_us;
7772 }
7773 
7774 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7775 {
7776 	u64 quota, period;
7777 
7778 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7779 	quota = tg->cfs_bandwidth.quota;
7780 
7781 	return tg_set_cfs_bandwidth(tg, period, quota);
7782 }
7783 
7784 long tg_get_cfs_period(struct task_group *tg)
7785 {
7786 	u64 cfs_period_us;
7787 
7788 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7789 	do_div(cfs_period_us, NSEC_PER_USEC);
7790 
7791 	return cfs_period_us;
7792 }
7793 
7794 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7795 {
7796 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7797 }
7798 
7799 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7800 				s64 cfs_quota_us)
7801 {
7802 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7803 }
7804 
7805 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7806 {
7807 	return tg_get_cfs_period(cgroup_tg(cgrp));
7808 }
7809 
7810 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7811 				u64 cfs_period_us)
7812 {
7813 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7814 }
7815 
7816 struct cfs_schedulable_data {
7817 	struct task_group *tg;
7818 	u64 period, quota;
7819 };
7820 
7821 /*
7822  * normalize group quota/period to be quota/max_period
7823  * note: units are usecs
7824  */
7825 static u64 normalize_cfs_quota(struct task_group *tg,
7826 			       struct cfs_schedulable_data *d)
7827 {
7828 	u64 quota, period;
7829 
7830 	if (tg == d->tg) {
7831 		period = d->period;
7832 		quota = d->quota;
7833 	} else {
7834 		period = tg_get_cfs_period(tg);
7835 		quota = tg_get_cfs_quota(tg);
7836 	}
7837 
7838 	/* note: these should typically be equivalent */
7839 	if (quota == RUNTIME_INF || quota == -1)
7840 		return RUNTIME_INF;
7841 
7842 	return to_ratio(period, quota);
7843 }
7844 
7845 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7846 {
7847 	struct cfs_schedulable_data *d = data;
7848 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7849 	s64 quota = 0, parent_quota = -1;
7850 
7851 	if (!tg->parent) {
7852 		quota = RUNTIME_INF;
7853 	} else {
7854 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7855 
7856 		quota = normalize_cfs_quota(tg, d);
7857 		parent_quota = parent_b->hierarchal_quota;
7858 
7859 		/*
7860 		 * ensure max(child_quota) <= parent_quota, inherit when no
7861 		 * limit is set
7862 		 */
7863 		if (quota == RUNTIME_INF)
7864 			quota = parent_quota;
7865 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7866 			return -EINVAL;
7867 	}
7868 	cfs_b->hierarchal_quota = quota;
7869 
7870 	return 0;
7871 }
7872 
7873 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7874 {
7875 	int ret;
7876 	struct cfs_schedulable_data data = {
7877 		.tg = tg,
7878 		.period = period,
7879 		.quota = quota,
7880 	};
7881 
7882 	if (quota != RUNTIME_INF) {
7883 		do_div(data.period, NSEC_PER_USEC);
7884 		do_div(data.quota, NSEC_PER_USEC);
7885 	}
7886 
7887 	rcu_read_lock();
7888 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7889 	rcu_read_unlock();
7890 
7891 	return ret;
7892 }
7893 
7894 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7895 		struct cgroup_map_cb *cb)
7896 {
7897 	struct task_group *tg = cgroup_tg(cgrp);
7898 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7899 
7900 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7901 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7902 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7903 
7904 	return 0;
7905 }
7906 #endif /* CONFIG_CFS_BANDWIDTH */
7907 #endif /* CONFIG_FAIR_GROUP_SCHED */
7908 
7909 #ifdef CONFIG_RT_GROUP_SCHED
7910 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7911 				s64 val)
7912 {
7913 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7914 }
7915 
7916 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7917 {
7918 	return sched_group_rt_runtime(cgroup_tg(cgrp));
7919 }
7920 
7921 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7922 		u64 rt_period_us)
7923 {
7924 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7925 }
7926 
7927 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7928 {
7929 	return sched_group_rt_period(cgroup_tg(cgrp));
7930 }
7931 #endif /* CONFIG_RT_GROUP_SCHED */
7932 
7933 static struct cftype cpu_files[] = {
7934 #ifdef CONFIG_FAIR_GROUP_SCHED
7935 	{
7936 		.name = "shares",
7937 		.read_u64 = cpu_shares_read_u64,
7938 		.write_u64 = cpu_shares_write_u64,
7939 	},
7940 #endif
7941 #ifdef CONFIG_CFS_BANDWIDTH
7942 	{
7943 		.name = "cfs_quota_us",
7944 		.read_s64 = cpu_cfs_quota_read_s64,
7945 		.write_s64 = cpu_cfs_quota_write_s64,
7946 	},
7947 	{
7948 		.name = "cfs_period_us",
7949 		.read_u64 = cpu_cfs_period_read_u64,
7950 		.write_u64 = cpu_cfs_period_write_u64,
7951 	},
7952 	{
7953 		.name = "stat",
7954 		.read_map = cpu_stats_show,
7955 	},
7956 #endif
7957 #ifdef CONFIG_RT_GROUP_SCHED
7958 	{
7959 		.name = "rt_runtime_us",
7960 		.read_s64 = cpu_rt_runtime_read,
7961 		.write_s64 = cpu_rt_runtime_write,
7962 	},
7963 	{
7964 		.name = "rt_period_us",
7965 		.read_u64 = cpu_rt_period_read_uint,
7966 		.write_u64 = cpu_rt_period_write_uint,
7967 	},
7968 #endif
7969 	{ }	/* terminate */
7970 };
7971 
7972 struct cgroup_subsys cpu_cgroup_subsys = {
7973 	.name		= "cpu",
7974 	.css_alloc	= cpu_cgroup_css_alloc,
7975 	.css_free	= cpu_cgroup_css_free,
7976 	.css_online	= cpu_cgroup_css_online,
7977 	.css_offline	= cpu_cgroup_css_offline,
7978 	.can_attach	= cpu_cgroup_can_attach,
7979 	.attach		= cpu_cgroup_attach,
7980 	.exit		= cpu_cgroup_exit,
7981 	.subsys_id	= cpu_cgroup_subsys_id,
7982 	.base_cftypes	= cpu_files,
7983 	.early_init	= 1,
7984 };
7985 
7986 #endif	/* CONFIG_CGROUP_SCHED */
7987 
7988 #ifdef CONFIG_CGROUP_CPUACCT
7989 
7990 /*
7991  * CPU accounting code for task groups.
7992  *
7993  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7994  * (balbir@in.ibm.com).
7995  */
7996 
7997 struct cpuacct root_cpuacct;
7998 
7999 /* create a new cpu accounting group */
8000 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8001 {
8002 	struct cpuacct *ca;
8003 
8004 	if (!cgrp->parent)
8005 		return &root_cpuacct.css;
8006 
8007 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8008 	if (!ca)
8009 		goto out;
8010 
8011 	ca->cpuusage = alloc_percpu(u64);
8012 	if (!ca->cpuusage)
8013 		goto out_free_ca;
8014 
8015 	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8016 	if (!ca->cpustat)
8017 		goto out_free_cpuusage;
8018 
8019 	return &ca->css;
8020 
8021 out_free_cpuusage:
8022 	free_percpu(ca->cpuusage);
8023 out_free_ca:
8024 	kfree(ca);
8025 out:
8026 	return ERR_PTR(-ENOMEM);
8027 }
8028 
8029 /* destroy an existing cpu accounting group */
8030 static void cpuacct_css_free(struct cgroup *cgrp)
8031 {
8032 	struct cpuacct *ca = cgroup_ca(cgrp);
8033 
8034 	free_percpu(ca->cpustat);
8035 	free_percpu(ca->cpuusage);
8036 	kfree(ca);
8037 }
8038 
8039 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8040 {
8041 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8042 	u64 data;
8043 
8044 #ifndef CONFIG_64BIT
8045 	/*
8046 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8047 	 */
8048 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8049 	data = *cpuusage;
8050 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8051 #else
8052 	data = *cpuusage;
8053 #endif
8054 
8055 	return data;
8056 }
8057 
8058 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8059 {
8060 	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8061 
8062 #ifndef CONFIG_64BIT
8063 	/*
8064 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8065 	 */
8066 	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8067 	*cpuusage = val;
8068 	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8069 #else
8070 	*cpuusage = val;
8071 #endif
8072 }
8073 
8074 /* return total cpu usage (in nanoseconds) of a group */
8075 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8076 {
8077 	struct cpuacct *ca = cgroup_ca(cgrp);
8078 	u64 totalcpuusage = 0;
8079 	int i;
8080 
8081 	for_each_present_cpu(i)
8082 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8083 
8084 	return totalcpuusage;
8085 }
8086 
8087 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8088 								u64 reset)
8089 {
8090 	struct cpuacct *ca = cgroup_ca(cgrp);
8091 	int err = 0;
8092 	int i;
8093 
8094 	if (reset) {
8095 		err = -EINVAL;
8096 		goto out;
8097 	}
8098 
8099 	for_each_present_cpu(i)
8100 		cpuacct_cpuusage_write(ca, i, 0);
8101 
8102 out:
8103 	return err;
8104 }
8105 
8106 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8107 				   struct seq_file *m)
8108 {
8109 	struct cpuacct *ca = cgroup_ca(cgroup);
8110 	u64 percpu;
8111 	int i;
8112 
8113 	for_each_present_cpu(i) {
8114 		percpu = cpuacct_cpuusage_read(ca, i);
8115 		seq_printf(m, "%llu ", (unsigned long long) percpu);
8116 	}
8117 	seq_printf(m, "\n");
8118 	return 0;
8119 }
8120 
8121 static const char *cpuacct_stat_desc[] = {
8122 	[CPUACCT_STAT_USER] = "user",
8123 	[CPUACCT_STAT_SYSTEM] = "system",
8124 };
8125 
8126 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8127 			      struct cgroup_map_cb *cb)
8128 {
8129 	struct cpuacct *ca = cgroup_ca(cgrp);
8130 	int cpu;
8131 	s64 val = 0;
8132 
8133 	for_each_online_cpu(cpu) {
8134 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8135 		val += kcpustat->cpustat[CPUTIME_USER];
8136 		val += kcpustat->cpustat[CPUTIME_NICE];
8137 	}
8138 	val = cputime64_to_clock_t(val);
8139 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8140 
8141 	val = 0;
8142 	for_each_online_cpu(cpu) {
8143 		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8144 		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8145 		val += kcpustat->cpustat[CPUTIME_IRQ];
8146 		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8147 	}
8148 
8149 	val = cputime64_to_clock_t(val);
8150 	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8151 
8152 	return 0;
8153 }
8154 
8155 static struct cftype files[] = {
8156 	{
8157 		.name = "usage",
8158 		.read_u64 = cpuusage_read,
8159 		.write_u64 = cpuusage_write,
8160 	},
8161 	{
8162 		.name = "usage_percpu",
8163 		.read_seq_string = cpuacct_percpu_seq_read,
8164 	},
8165 	{
8166 		.name = "stat",
8167 		.read_map = cpuacct_stats_show,
8168 	},
8169 	{ }	/* terminate */
8170 };
8171 
8172 /*
8173  * charge this task's execution time to its accounting group.
8174  *
8175  * called with rq->lock held.
8176  */
8177 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8178 {
8179 	struct cpuacct *ca;
8180 	int cpu;
8181 
8182 	if (unlikely(!cpuacct_subsys.active))
8183 		return;
8184 
8185 	cpu = task_cpu(tsk);
8186 
8187 	rcu_read_lock();
8188 
8189 	ca = task_ca(tsk);
8190 
8191 	for (; ca; ca = parent_ca(ca)) {
8192 		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8193 		*cpuusage += cputime;
8194 	}
8195 
8196 	rcu_read_unlock();
8197 }
8198 
8199 struct cgroup_subsys cpuacct_subsys = {
8200 	.name = "cpuacct",
8201 	.css_alloc = cpuacct_css_alloc,
8202 	.css_free = cpuacct_css_free,
8203 	.subsys_id = cpuacct_subsys_id,
8204 	.base_cftypes = files,
8205 };
8206 #endif	/* CONFIG_CGROUP_CPUACCT */
8207 
8208 void dump_cpu_task(int cpu)
8209 {
8210 	pr_info("Task dump for CPU %d:\n", cpu);
8211 	sched_show_task(cpu_curr(cpu));
8212 }
8213