xref: /linux/kernel/sched/core.c (revision f217d94fc632fece2a41030c2eebc4ed34a48b2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	for (;;) {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 			break;
929 	}
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	rcu_read_lock();
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i)) {
1107 				cpu = i;
1108 				goto unlock;
1109 			}
1110 		}
1111 	}
1112 
1113 	if (default_cpu == -1)
1114 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1115 	cpu = default_cpu;
1116 unlock:
1117 	rcu_read_unlock();
1118 	return cpu;
1119 }
1120 
1121 /*
1122  * When add_timer_on() enqueues a timer into the timer wheel of an
1123  * idle CPU then this timer might expire before the next timer event
1124  * which is scheduled to wake up that CPU. In case of a completely
1125  * idle system the next event might even be infinite time into the
1126  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1127  * leaves the inner idle loop so the newly added timer is taken into
1128  * account when the CPU goes back to idle and evaluates the timer
1129  * wheel for the next timer event.
1130  */
1131 static void wake_up_idle_cpu(int cpu)
1132 {
1133 	struct rq *rq = cpu_rq(cpu);
1134 
1135 	if (cpu == smp_processor_id())
1136 		return;
1137 
1138 	if (set_nr_and_not_polling(rq->idle))
1139 		smp_send_reschedule(cpu);
1140 	else
1141 		trace_sched_wake_idle_without_ipi(cpu);
1142 }
1143 
1144 static bool wake_up_full_nohz_cpu(int cpu)
1145 {
1146 	/*
1147 	 * We just need the target to call irq_exit() and re-evaluate
1148 	 * the next tick. The nohz full kick at least implies that.
1149 	 * If needed we can still optimize that later with an
1150 	 * empty IRQ.
1151 	 */
1152 	if (cpu_is_offline(cpu))
1153 		return true;  /* Don't try to wake offline CPUs. */
1154 	if (tick_nohz_full_cpu(cpu)) {
1155 		if (cpu != smp_processor_id() ||
1156 		    tick_nohz_tick_stopped())
1157 			tick_nohz_full_kick_cpu(cpu);
1158 		return true;
1159 	}
1160 
1161 	return false;
1162 }
1163 
1164 /*
1165  * Wake up the specified CPU.  If the CPU is going offline, it is the
1166  * caller's responsibility to deal with the lost wakeup, for example,
1167  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1168  */
1169 void wake_up_nohz_cpu(int cpu)
1170 {
1171 	if (!wake_up_full_nohz_cpu(cpu))
1172 		wake_up_idle_cpu(cpu);
1173 }
1174 
1175 static void nohz_csd_func(void *info)
1176 {
1177 	struct rq *rq = info;
1178 	int cpu = cpu_of(rq);
1179 	unsigned int flags;
1180 
1181 	/*
1182 	 * Release the rq::nohz_csd.
1183 	 */
1184 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1185 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1186 
1187 	rq->idle_balance = idle_cpu(cpu);
1188 	if (rq->idle_balance && !need_resched()) {
1189 		rq->nohz_idle_balance = flags;
1190 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1191 	}
1192 }
1193 
1194 #endif /* CONFIG_NO_HZ_COMMON */
1195 
1196 #ifdef CONFIG_NO_HZ_FULL
1197 bool sched_can_stop_tick(struct rq *rq)
1198 {
1199 	int fifo_nr_running;
1200 
1201 	/* Deadline tasks, even if single, need the tick */
1202 	if (rq->dl.dl_nr_running)
1203 		return false;
1204 
1205 	/*
1206 	 * If there are more than one RR tasks, we need the tick to affect the
1207 	 * actual RR behaviour.
1208 	 */
1209 	if (rq->rt.rr_nr_running) {
1210 		if (rq->rt.rr_nr_running == 1)
1211 			return true;
1212 		else
1213 			return false;
1214 	}
1215 
1216 	/*
1217 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1218 	 * forced preemption between FIFO tasks.
1219 	 */
1220 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1221 	if (fifo_nr_running)
1222 		return true;
1223 
1224 	/*
1225 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1226 	 * if there's more than one we need the tick for involuntary
1227 	 * preemption.
1228 	 */
1229 	if (rq->nr_running > 1)
1230 		return false;
1231 
1232 	return true;
1233 }
1234 #endif /* CONFIG_NO_HZ_FULL */
1235 #endif /* CONFIG_SMP */
1236 
1237 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1238 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1239 /*
1240  * Iterate task_group tree rooted at *from, calling @down when first entering a
1241  * node and @up when leaving it for the final time.
1242  *
1243  * Caller must hold rcu_lock or sufficient equivalent.
1244  */
1245 int walk_tg_tree_from(struct task_group *from,
1246 			     tg_visitor down, tg_visitor up, void *data)
1247 {
1248 	struct task_group *parent, *child;
1249 	int ret;
1250 
1251 	parent = from;
1252 
1253 down:
1254 	ret = (*down)(parent, data);
1255 	if (ret)
1256 		goto out;
1257 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1258 		parent = child;
1259 		goto down;
1260 
1261 up:
1262 		continue;
1263 	}
1264 	ret = (*up)(parent, data);
1265 	if (ret || parent == from)
1266 		goto out;
1267 
1268 	child = parent;
1269 	parent = parent->parent;
1270 	if (parent)
1271 		goto up;
1272 out:
1273 	return ret;
1274 }
1275 
1276 int tg_nop(struct task_group *tg, void *data)
1277 {
1278 	return 0;
1279 }
1280 #endif
1281 
1282 static void set_load_weight(struct task_struct *p, bool update_load)
1283 {
1284 	int prio = p->static_prio - MAX_RT_PRIO;
1285 	struct load_weight *load = &p->se.load;
1286 
1287 	/*
1288 	 * SCHED_IDLE tasks get minimal weight:
1289 	 */
1290 	if (task_has_idle_policy(p)) {
1291 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1292 		load->inv_weight = WMULT_IDLEPRIO;
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * SCHED_OTHER tasks have to update their load when changing their
1298 	 * weight
1299 	 */
1300 	if (update_load && p->sched_class == &fair_sched_class) {
1301 		reweight_task(p, prio);
1302 	} else {
1303 		load->weight = scale_load(sched_prio_to_weight[prio]);
1304 		load->inv_weight = sched_prio_to_wmult[prio];
1305 	}
1306 }
1307 
1308 #ifdef CONFIG_UCLAMP_TASK
1309 /*
1310  * Serializes updates of utilization clamp values
1311  *
1312  * The (slow-path) user-space triggers utilization clamp value updates which
1313  * can require updates on (fast-path) scheduler's data structures used to
1314  * support enqueue/dequeue operations.
1315  * While the per-CPU rq lock protects fast-path update operations, user-space
1316  * requests are serialized using a mutex to reduce the risk of conflicting
1317  * updates or API abuses.
1318  */
1319 static DEFINE_MUTEX(uclamp_mutex);
1320 
1321 /* Max allowed minimum utilization */
1322 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1323 
1324 /* Max allowed maximum utilization */
1325 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1326 
1327 /*
1328  * By default RT tasks run at the maximum performance point/capacity of the
1329  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1330  * SCHED_CAPACITY_SCALE.
1331  *
1332  * This knob allows admins to change the default behavior when uclamp is being
1333  * used. In battery powered devices, particularly, running at the maximum
1334  * capacity and frequency will increase energy consumption and shorten the
1335  * battery life.
1336  *
1337  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1338  *
1339  * This knob will not override the system default sched_util_clamp_min defined
1340  * above.
1341  */
1342 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1343 
1344 /* All clamps are required to be less or equal than these values */
1345 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1346 
1347 /*
1348  * This static key is used to reduce the uclamp overhead in the fast path. It
1349  * primarily disables the call to uclamp_rq_{inc, dec}() in
1350  * enqueue/dequeue_task().
1351  *
1352  * This allows users to continue to enable uclamp in their kernel config with
1353  * minimum uclamp overhead in the fast path.
1354  *
1355  * As soon as userspace modifies any of the uclamp knobs, the static key is
1356  * enabled, since we have an actual users that make use of uclamp
1357  * functionality.
1358  *
1359  * The knobs that would enable this static key are:
1360  *
1361  *   * A task modifying its uclamp value with sched_setattr().
1362  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1363  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1364  */
1365 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1366 
1367 /* Integer rounded range for each bucket */
1368 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1369 
1370 #define for_each_clamp_id(clamp_id) \
1371 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1372 
1373 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1374 {
1375 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1376 }
1377 
1378 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1379 {
1380 	if (clamp_id == UCLAMP_MIN)
1381 		return 0;
1382 	return SCHED_CAPACITY_SCALE;
1383 }
1384 
1385 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1386 				 unsigned int value, bool user_defined)
1387 {
1388 	uc_se->value = value;
1389 	uc_se->bucket_id = uclamp_bucket_id(value);
1390 	uc_se->user_defined = user_defined;
1391 }
1392 
1393 static inline unsigned int
1394 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1395 		  unsigned int clamp_value)
1396 {
1397 	/*
1398 	 * Avoid blocked utilization pushing up the frequency when we go
1399 	 * idle (which drops the max-clamp) by retaining the last known
1400 	 * max-clamp.
1401 	 */
1402 	if (clamp_id == UCLAMP_MAX) {
1403 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1404 		return clamp_value;
1405 	}
1406 
1407 	return uclamp_none(UCLAMP_MIN);
1408 }
1409 
1410 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1411 				     unsigned int clamp_value)
1412 {
1413 	/* Reset max-clamp retention only on idle exit */
1414 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1415 		return;
1416 
1417 	uclamp_rq_set(rq, clamp_id, clamp_value);
1418 }
1419 
1420 static inline
1421 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1422 				   unsigned int clamp_value)
1423 {
1424 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1425 	int bucket_id = UCLAMP_BUCKETS - 1;
1426 
1427 	/*
1428 	 * Since both min and max clamps are max aggregated, find the
1429 	 * top most bucket with tasks in.
1430 	 */
1431 	for ( ; bucket_id >= 0; bucket_id--) {
1432 		if (!bucket[bucket_id].tasks)
1433 			continue;
1434 		return bucket[bucket_id].value;
1435 	}
1436 
1437 	/* No tasks -- default clamp values */
1438 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1439 }
1440 
1441 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1442 {
1443 	unsigned int default_util_min;
1444 	struct uclamp_se *uc_se;
1445 
1446 	lockdep_assert_held(&p->pi_lock);
1447 
1448 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1449 
1450 	/* Only sync if user didn't override the default */
1451 	if (uc_se->user_defined)
1452 		return;
1453 
1454 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1455 	uclamp_se_set(uc_se, default_util_min, false);
1456 }
1457 
1458 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1459 {
1460 	struct rq_flags rf;
1461 	struct rq *rq;
1462 
1463 	if (!rt_task(p))
1464 		return;
1465 
1466 	/* Protect updates to p->uclamp_* */
1467 	rq = task_rq_lock(p, &rf);
1468 	__uclamp_update_util_min_rt_default(p);
1469 	task_rq_unlock(rq, p, &rf);
1470 }
1471 
1472 static inline struct uclamp_se
1473 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1474 {
1475 	/* Copy by value as we could modify it */
1476 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1477 #ifdef CONFIG_UCLAMP_TASK_GROUP
1478 	unsigned int tg_min, tg_max, value;
1479 
1480 	/*
1481 	 * Tasks in autogroups or root task group will be
1482 	 * restricted by system defaults.
1483 	 */
1484 	if (task_group_is_autogroup(task_group(p)))
1485 		return uc_req;
1486 	if (task_group(p) == &root_task_group)
1487 		return uc_req;
1488 
1489 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1490 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1491 	value = uc_req.value;
1492 	value = clamp(value, tg_min, tg_max);
1493 	uclamp_se_set(&uc_req, value, false);
1494 #endif
1495 
1496 	return uc_req;
1497 }
1498 
1499 /*
1500  * The effective clamp bucket index of a task depends on, by increasing
1501  * priority:
1502  * - the task specific clamp value, when explicitly requested from userspace
1503  * - the task group effective clamp value, for tasks not either in the root
1504  *   group or in an autogroup
1505  * - the system default clamp value, defined by the sysadmin
1506  */
1507 static inline struct uclamp_se
1508 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1509 {
1510 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1511 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1512 
1513 	/* System default restrictions always apply */
1514 	if (unlikely(uc_req.value > uc_max.value))
1515 		return uc_max;
1516 
1517 	return uc_req;
1518 }
1519 
1520 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1521 {
1522 	struct uclamp_se uc_eff;
1523 
1524 	/* Task currently refcounted: use back-annotated (effective) value */
1525 	if (p->uclamp[clamp_id].active)
1526 		return (unsigned long)p->uclamp[clamp_id].value;
1527 
1528 	uc_eff = uclamp_eff_get(p, clamp_id);
1529 
1530 	return (unsigned long)uc_eff.value;
1531 }
1532 
1533 /*
1534  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1535  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1536  * updates the rq's clamp value if required.
1537  *
1538  * Tasks can have a task-specific value requested from user-space, track
1539  * within each bucket the maximum value for tasks refcounted in it.
1540  * This "local max aggregation" allows to track the exact "requested" value
1541  * for each bucket when all its RUNNABLE tasks require the same clamp.
1542  */
1543 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1544 				    enum uclamp_id clamp_id)
1545 {
1546 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1547 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1548 	struct uclamp_bucket *bucket;
1549 
1550 	lockdep_assert_rq_held(rq);
1551 
1552 	/* Update task effective clamp */
1553 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1554 
1555 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1556 	bucket->tasks++;
1557 	uc_se->active = true;
1558 
1559 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1560 
1561 	/*
1562 	 * Local max aggregation: rq buckets always track the max
1563 	 * "requested" clamp value of its RUNNABLE tasks.
1564 	 */
1565 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1566 		bucket->value = uc_se->value;
1567 
1568 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1569 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1570 }
1571 
1572 /*
1573  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1574  * is released. If this is the last task reference counting the rq's max
1575  * active clamp value, then the rq's clamp value is updated.
1576  *
1577  * Both refcounted tasks and rq's cached clamp values are expected to be
1578  * always valid. If it's detected they are not, as defensive programming,
1579  * enforce the expected state and warn.
1580  */
1581 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1582 				    enum uclamp_id clamp_id)
1583 {
1584 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1585 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1586 	struct uclamp_bucket *bucket;
1587 	unsigned int bkt_clamp;
1588 	unsigned int rq_clamp;
1589 
1590 	lockdep_assert_rq_held(rq);
1591 
1592 	/*
1593 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1594 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1595 	 *
1596 	 * In this case the uc_se->active flag should be false since no uclamp
1597 	 * accounting was performed at enqueue time and we can just return
1598 	 * here.
1599 	 *
1600 	 * Need to be careful of the following enqueue/dequeue ordering
1601 	 * problem too
1602 	 *
1603 	 *	enqueue(taskA)
1604 	 *	// sched_uclamp_used gets enabled
1605 	 *	enqueue(taskB)
1606 	 *	dequeue(taskA)
1607 	 *	// Must not decrement bucket->tasks here
1608 	 *	dequeue(taskB)
1609 	 *
1610 	 * where we could end up with stale data in uc_se and
1611 	 * bucket[uc_se->bucket_id].
1612 	 *
1613 	 * The following check here eliminates the possibility of such race.
1614 	 */
1615 	if (unlikely(!uc_se->active))
1616 		return;
1617 
1618 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1619 
1620 	SCHED_WARN_ON(!bucket->tasks);
1621 	if (likely(bucket->tasks))
1622 		bucket->tasks--;
1623 
1624 	uc_se->active = false;
1625 
1626 	/*
1627 	 * Keep "local max aggregation" simple and accept to (possibly)
1628 	 * overboost some RUNNABLE tasks in the same bucket.
1629 	 * The rq clamp bucket value is reset to its base value whenever
1630 	 * there are no more RUNNABLE tasks refcounting it.
1631 	 */
1632 	if (likely(bucket->tasks))
1633 		return;
1634 
1635 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1636 	/*
1637 	 * Defensive programming: this should never happen. If it happens,
1638 	 * e.g. due to future modification, warn and fixup the expected value.
1639 	 */
1640 	SCHED_WARN_ON(bucket->value > rq_clamp);
1641 	if (bucket->value >= rq_clamp) {
1642 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1643 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1644 	}
1645 }
1646 
1647 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1648 {
1649 	enum uclamp_id clamp_id;
1650 
1651 	/*
1652 	 * Avoid any overhead until uclamp is actually used by the userspace.
1653 	 *
1654 	 * The condition is constructed such that a NOP is generated when
1655 	 * sched_uclamp_used is disabled.
1656 	 */
1657 	if (!static_branch_unlikely(&sched_uclamp_used))
1658 		return;
1659 
1660 	if (unlikely(!p->sched_class->uclamp_enabled))
1661 		return;
1662 
1663 	for_each_clamp_id(clamp_id)
1664 		uclamp_rq_inc_id(rq, p, clamp_id);
1665 
1666 	/* Reset clamp idle holding when there is one RUNNABLE task */
1667 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1668 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1669 }
1670 
1671 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1672 {
1673 	enum uclamp_id clamp_id;
1674 
1675 	/*
1676 	 * Avoid any overhead until uclamp is actually used by the userspace.
1677 	 *
1678 	 * The condition is constructed such that a NOP is generated when
1679 	 * sched_uclamp_used is disabled.
1680 	 */
1681 	if (!static_branch_unlikely(&sched_uclamp_used))
1682 		return;
1683 
1684 	if (unlikely(!p->sched_class->uclamp_enabled))
1685 		return;
1686 
1687 	for_each_clamp_id(clamp_id)
1688 		uclamp_rq_dec_id(rq, p, clamp_id);
1689 }
1690 
1691 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1692 				      enum uclamp_id clamp_id)
1693 {
1694 	if (!p->uclamp[clamp_id].active)
1695 		return;
1696 
1697 	uclamp_rq_dec_id(rq, p, clamp_id);
1698 	uclamp_rq_inc_id(rq, p, clamp_id);
1699 
1700 	/*
1701 	 * Make sure to clear the idle flag if we've transiently reached 0
1702 	 * active tasks on rq.
1703 	 */
1704 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1705 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1706 }
1707 
1708 static inline void
1709 uclamp_update_active(struct task_struct *p)
1710 {
1711 	enum uclamp_id clamp_id;
1712 	struct rq_flags rf;
1713 	struct rq *rq;
1714 
1715 	/*
1716 	 * Lock the task and the rq where the task is (or was) queued.
1717 	 *
1718 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1719 	 * price to pay to safely serialize util_{min,max} updates with
1720 	 * enqueues, dequeues and migration operations.
1721 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1722 	 */
1723 	rq = task_rq_lock(p, &rf);
1724 
1725 	/*
1726 	 * Setting the clamp bucket is serialized by task_rq_lock().
1727 	 * If the task is not yet RUNNABLE and its task_struct is not
1728 	 * affecting a valid clamp bucket, the next time it's enqueued,
1729 	 * it will already see the updated clamp bucket value.
1730 	 */
1731 	for_each_clamp_id(clamp_id)
1732 		uclamp_rq_reinc_id(rq, p, clamp_id);
1733 
1734 	task_rq_unlock(rq, p, &rf);
1735 }
1736 
1737 #ifdef CONFIG_UCLAMP_TASK_GROUP
1738 static inline void
1739 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1740 {
1741 	struct css_task_iter it;
1742 	struct task_struct *p;
1743 
1744 	css_task_iter_start(css, 0, &it);
1745 	while ((p = css_task_iter_next(&it)))
1746 		uclamp_update_active(p);
1747 	css_task_iter_end(&it);
1748 }
1749 
1750 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1751 #endif
1752 
1753 #ifdef CONFIG_SYSCTL
1754 #ifdef CONFIG_UCLAMP_TASK
1755 #ifdef CONFIG_UCLAMP_TASK_GROUP
1756 static void uclamp_update_root_tg(void)
1757 {
1758 	struct task_group *tg = &root_task_group;
1759 
1760 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1761 		      sysctl_sched_uclamp_util_min, false);
1762 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1763 		      sysctl_sched_uclamp_util_max, false);
1764 
1765 	rcu_read_lock();
1766 	cpu_util_update_eff(&root_task_group.css);
1767 	rcu_read_unlock();
1768 }
1769 #else
1770 static void uclamp_update_root_tg(void) { }
1771 #endif
1772 
1773 static void uclamp_sync_util_min_rt_default(void)
1774 {
1775 	struct task_struct *g, *p;
1776 
1777 	/*
1778 	 * copy_process()			sysctl_uclamp
1779 	 *					  uclamp_min_rt = X;
1780 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1781 	 *   // link thread			  smp_mb__after_spinlock()
1782 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1783 	 *   sched_post_fork()			  for_each_process_thread()
1784 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1785 	 *
1786 	 * Ensures that either sched_post_fork() will observe the new
1787 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1788 	 * task.
1789 	 */
1790 	read_lock(&tasklist_lock);
1791 	smp_mb__after_spinlock();
1792 	read_unlock(&tasklist_lock);
1793 
1794 	rcu_read_lock();
1795 	for_each_process_thread(g, p)
1796 		uclamp_update_util_min_rt_default(p);
1797 	rcu_read_unlock();
1798 }
1799 
1800 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1801 				void *buffer, size_t *lenp, loff_t *ppos)
1802 {
1803 	bool update_root_tg = false;
1804 	int old_min, old_max, old_min_rt;
1805 	int result;
1806 
1807 	mutex_lock(&uclamp_mutex);
1808 	old_min = sysctl_sched_uclamp_util_min;
1809 	old_max = sysctl_sched_uclamp_util_max;
1810 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1811 
1812 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1813 	if (result)
1814 		goto undo;
1815 	if (!write)
1816 		goto done;
1817 
1818 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1819 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1820 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1821 
1822 		result = -EINVAL;
1823 		goto undo;
1824 	}
1825 
1826 	if (old_min != sysctl_sched_uclamp_util_min) {
1827 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1828 			      sysctl_sched_uclamp_util_min, false);
1829 		update_root_tg = true;
1830 	}
1831 	if (old_max != sysctl_sched_uclamp_util_max) {
1832 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1833 			      sysctl_sched_uclamp_util_max, false);
1834 		update_root_tg = true;
1835 	}
1836 
1837 	if (update_root_tg) {
1838 		static_branch_enable(&sched_uclamp_used);
1839 		uclamp_update_root_tg();
1840 	}
1841 
1842 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1843 		static_branch_enable(&sched_uclamp_used);
1844 		uclamp_sync_util_min_rt_default();
1845 	}
1846 
1847 	/*
1848 	 * We update all RUNNABLE tasks only when task groups are in use.
1849 	 * Otherwise, keep it simple and do just a lazy update at each next
1850 	 * task enqueue time.
1851 	 */
1852 
1853 	goto done;
1854 
1855 undo:
1856 	sysctl_sched_uclamp_util_min = old_min;
1857 	sysctl_sched_uclamp_util_max = old_max;
1858 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1859 done:
1860 	mutex_unlock(&uclamp_mutex);
1861 
1862 	return result;
1863 }
1864 #endif
1865 #endif
1866 
1867 static int uclamp_validate(struct task_struct *p,
1868 			   const struct sched_attr *attr)
1869 {
1870 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1871 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1872 
1873 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1874 		util_min = attr->sched_util_min;
1875 
1876 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1877 			return -EINVAL;
1878 	}
1879 
1880 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1881 		util_max = attr->sched_util_max;
1882 
1883 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1884 			return -EINVAL;
1885 	}
1886 
1887 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1888 		return -EINVAL;
1889 
1890 	/*
1891 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1892 	 *
1893 	 * We need to do that here, because enabling static branches is a
1894 	 * blocking operation which obviously cannot be done while holding
1895 	 * scheduler locks.
1896 	 */
1897 	static_branch_enable(&sched_uclamp_used);
1898 
1899 	return 0;
1900 }
1901 
1902 static bool uclamp_reset(const struct sched_attr *attr,
1903 			 enum uclamp_id clamp_id,
1904 			 struct uclamp_se *uc_se)
1905 {
1906 	/* Reset on sched class change for a non user-defined clamp value. */
1907 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1908 	    !uc_se->user_defined)
1909 		return true;
1910 
1911 	/* Reset on sched_util_{min,max} == -1. */
1912 	if (clamp_id == UCLAMP_MIN &&
1913 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1914 	    attr->sched_util_min == -1) {
1915 		return true;
1916 	}
1917 
1918 	if (clamp_id == UCLAMP_MAX &&
1919 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1920 	    attr->sched_util_max == -1) {
1921 		return true;
1922 	}
1923 
1924 	return false;
1925 }
1926 
1927 static void __setscheduler_uclamp(struct task_struct *p,
1928 				  const struct sched_attr *attr)
1929 {
1930 	enum uclamp_id clamp_id;
1931 
1932 	for_each_clamp_id(clamp_id) {
1933 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1934 		unsigned int value;
1935 
1936 		if (!uclamp_reset(attr, clamp_id, uc_se))
1937 			continue;
1938 
1939 		/*
1940 		 * RT by default have a 100% boost value that could be modified
1941 		 * at runtime.
1942 		 */
1943 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1944 			value = sysctl_sched_uclamp_util_min_rt_default;
1945 		else
1946 			value = uclamp_none(clamp_id);
1947 
1948 		uclamp_se_set(uc_se, value, false);
1949 
1950 	}
1951 
1952 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1953 		return;
1954 
1955 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1956 	    attr->sched_util_min != -1) {
1957 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1958 			      attr->sched_util_min, true);
1959 	}
1960 
1961 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1962 	    attr->sched_util_max != -1) {
1963 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1964 			      attr->sched_util_max, true);
1965 	}
1966 }
1967 
1968 static void uclamp_fork(struct task_struct *p)
1969 {
1970 	enum uclamp_id clamp_id;
1971 
1972 	/*
1973 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1974 	 * as the task is still at its early fork stages.
1975 	 */
1976 	for_each_clamp_id(clamp_id)
1977 		p->uclamp[clamp_id].active = false;
1978 
1979 	if (likely(!p->sched_reset_on_fork))
1980 		return;
1981 
1982 	for_each_clamp_id(clamp_id) {
1983 		uclamp_se_set(&p->uclamp_req[clamp_id],
1984 			      uclamp_none(clamp_id), false);
1985 	}
1986 }
1987 
1988 static void uclamp_post_fork(struct task_struct *p)
1989 {
1990 	uclamp_update_util_min_rt_default(p);
1991 }
1992 
1993 static void __init init_uclamp_rq(struct rq *rq)
1994 {
1995 	enum uclamp_id clamp_id;
1996 	struct uclamp_rq *uc_rq = rq->uclamp;
1997 
1998 	for_each_clamp_id(clamp_id) {
1999 		uc_rq[clamp_id] = (struct uclamp_rq) {
2000 			.value = uclamp_none(clamp_id)
2001 		};
2002 	}
2003 
2004 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2005 }
2006 
2007 static void __init init_uclamp(void)
2008 {
2009 	struct uclamp_se uc_max = {};
2010 	enum uclamp_id clamp_id;
2011 	int cpu;
2012 
2013 	for_each_possible_cpu(cpu)
2014 		init_uclamp_rq(cpu_rq(cpu));
2015 
2016 	for_each_clamp_id(clamp_id) {
2017 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2018 			      uclamp_none(clamp_id), false);
2019 	}
2020 
2021 	/* System defaults allow max clamp values for both indexes */
2022 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2023 	for_each_clamp_id(clamp_id) {
2024 		uclamp_default[clamp_id] = uc_max;
2025 #ifdef CONFIG_UCLAMP_TASK_GROUP
2026 		root_task_group.uclamp_req[clamp_id] = uc_max;
2027 		root_task_group.uclamp[clamp_id] = uc_max;
2028 #endif
2029 	}
2030 }
2031 
2032 #else /* CONFIG_UCLAMP_TASK */
2033 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2035 static inline int uclamp_validate(struct task_struct *p,
2036 				  const struct sched_attr *attr)
2037 {
2038 	return -EOPNOTSUPP;
2039 }
2040 static void __setscheduler_uclamp(struct task_struct *p,
2041 				  const struct sched_attr *attr) { }
2042 static inline void uclamp_fork(struct task_struct *p) { }
2043 static inline void uclamp_post_fork(struct task_struct *p) { }
2044 static inline void init_uclamp(void) { }
2045 #endif /* CONFIG_UCLAMP_TASK */
2046 
2047 bool sched_task_on_rq(struct task_struct *p)
2048 {
2049 	return task_on_rq_queued(p);
2050 }
2051 
2052 unsigned long get_wchan(struct task_struct *p)
2053 {
2054 	unsigned long ip = 0;
2055 	unsigned int state;
2056 
2057 	if (!p || p == current)
2058 		return 0;
2059 
2060 	/* Only get wchan if task is blocked and we can keep it that way. */
2061 	raw_spin_lock_irq(&p->pi_lock);
2062 	state = READ_ONCE(p->__state);
2063 	smp_rmb(); /* see try_to_wake_up() */
2064 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2065 		ip = __get_wchan(p);
2066 	raw_spin_unlock_irq(&p->pi_lock);
2067 
2068 	return ip;
2069 }
2070 
2071 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2072 {
2073 	if (!(flags & ENQUEUE_NOCLOCK))
2074 		update_rq_clock(rq);
2075 
2076 	if (!(flags & ENQUEUE_RESTORE)) {
2077 		sched_info_enqueue(rq, p);
2078 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2079 	}
2080 
2081 	uclamp_rq_inc(rq, p);
2082 	p->sched_class->enqueue_task(rq, p, flags);
2083 
2084 	if (sched_core_enabled(rq))
2085 		sched_core_enqueue(rq, p);
2086 }
2087 
2088 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2089 {
2090 	if (sched_core_enabled(rq))
2091 		sched_core_dequeue(rq, p, flags);
2092 
2093 	if (!(flags & DEQUEUE_NOCLOCK))
2094 		update_rq_clock(rq);
2095 
2096 	if (!(flags & DEQUEUE_SAVE)) {
2097 		sched_info_dequeue(rq, p);
2098 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2099 	}
2100 
2101 	uclamp_rq_dec(rq, p);
2102 	p->sched_class->dequeue_task(rq, p, flags);
2103 }
2104 
2105 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 	if (task_on_rq_migrating(p))
2108 		flags |= ENQUEUE_MIGRATED;
2109 	if (flags & ENQUEUE_MIGRATED)
2110 		sched_mm_cid_migrate_to(rq, p);
2111 
2112 	enqueue_task(rq, p, flags);
2113 
2114 	p->on_rq = TASK_ON_RQ_QUEUED;
2115 }
2116 
2117 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2118 {
2119 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2120 
2121 	dequeue_task(rq, p, flags);
2122 }
2123 
2124 static inline int __normal_prio(int policy, int rt_prio, int nice)
2125 {
2126 	int prio;
2127 
2128 	if (dl_policy(policy))
2129 		prio = MAX_DL_PRIO - 1;
2130 	else if (rt_policy(policy))
2131 		prio = MAX_RT_PRIO - 1 - rt_prio;
2132 	else
2133 		prio = NICE_TO_PRIO(nice);
2134 
2135 	return prio;
2136 }
2137 
2138 /*
2139  * Calculate the expected normal priority: i.e. priority
2140  * without taking RT-inheritance into account. Might be
2141  * boosted by interactivity modifiers. Changes upon fork,
2142  * setprio syscalls, and whenever the interactivity
2143  * estimator recalculates.
2144  */
2145 static inline int normal_prio(struct task_struct *p)
2146 {
2147 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2148 }
2149 
2150 /*
2151  * Calculate the current priority, i.e. the priority
2152  * taken into account by the scheduler. This value might
2153  * be boosted by RT tasks, or might be boosted by
2154  * interactivity modifiers. Will be RT if the task got
2155  * RT-boosted. If not then it returns p->normal_prio.
2156  */
2157 static int effective_prio(struct task_struct *p)
2158 {
2159 	p->normal_prio = normal_prio(p);
2160 	/*
2161 	 * If we are RT tasks or we were boosted to RT priority,
2162 	 * keep the priority unchanged. Otherwise, update priority
2163 	 * to the normal priority:
2164 	 */
2165 	if (!rt_prio(p->prio))
2166 		return p->normal_prio;
2167 	return p->prio;
2168 }
2169 
2170 /**
2171  * task_curr - is this task currently executing on a CPU?
2172  * @p: the task in question.
2173  *
2174  * Return: 1 if the task is currently executing. 0 otherwise.
2175  */
2176 inline int task_curr(const struct task_struct *p)
2177 {
2178 	return cpu_curr(task_cpu(p)) == p;
2179 }
2180 
2181 /*
2182  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183  * use the balance_callback list if you want balancing.
2184  *
2185  * this means any call to check_class_changed() must be followed by a call to
2186  * balance_callback().
2187  */
2188 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2189 				       const struct sched_class *prev_class,
2190 				       int oldprio)
2191 {
2192 	if (prev_class != p->sched_class) {
2193 		if (prev_class->switched_from)
2194 			prev_class->switched_from(rq, p);
2195 
2196 		p->sched_class->switched_to(rq, p);
2197 	} else if (oldprio != p->prio || dl_task(p))
2198 		p->sched_class->prio_changed(rq, p, oldprio);
2199 }
2200 
2201 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2202 {
2203 	if (p->sched_class == rq->curr->sched_class)
2204 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2205 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2206 		resched_curr(rq);
2207 
2208 	/*
2209 	 * A queue event has occurred, and we're going to schedule.  In
2210 	 * this case, we can save a useless back to back clock update.
2211 	 */
2212 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2213 		rq_clock_skip_update(rq);
2214 }
2215 
2216 #ifdef CONFIG_SMP
2217 
2218 static void
2219 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2220 
2221 static int __set_cpus_allowed_ptr(struct task_struct *p,
2222 				  struct affinity_context *ctx);
2223 
2224 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2225 {
2226 	struct affinity_context ac = {
2227 		.new_mask  = cpumask_of(rq->cpu),
2228 		.flags     = SCA_MIGRATE_DISABLE,
2229 	};
2230 
2231 	if (likely(!p->migration_disabled))
2232 		return;
2233 
2234 	if (p->cpus_ptr != &p->cpus_mask)
2235 		return;
2236 
2237 	/*
2238 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2239 	 */
2240 	__do_set_cpus_allowed(p, &ac);
2241 }
2242 
2243 void migrate_disable(void)
2244 {
2245 	struct task_struct *p = current;
2246 
2247 	if (p->migration_disabled) {
2248 		p->migration_disabled++;
2249 		return;
2250 	}
2251 
2252 	preempt_disable();
2253 	this_rq()->nr_pinned++;
2254 	p->migration_disabled = 1;
2255 	preempt_enable();
2256 }
2257 EXPORT_SYMBOL_GPL(migrate_disable);
2258 
2259 void migrate_enable(void)
2260 {
2261 	struct task_struct *p = current;
2262 	struct affinity_context ac = {
2263 		.new_mask  = &p->cpus_mask,
2264 		.flags     = SCA_MIGRATE_ENABLE,
2265 	};
2266 
2267 	if (p->migration_disabled > 1) {
2268 		p->migration_disabled--;
2269 		return;
2270 	}
2271 
2272 	if (WARN_ON_ONCE(!p->migration_disabled))
2273 		return;
2274 
2275 	/*
2276 	 * Ensure stop_task runs either before or after this, and that
2277 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2278 	 */
2279 	preempt_disable();
2280 	if (p->cpus_ptr != &p->cpus_mask)
2281 		__set_cpus_allowed_ptr(p, &ac);
2282 	/*
2283 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2284 	 * regular cpus_mask, otherwise things that race (eg.
2285 	 * select_fallback_rq) get confused.
2286 	 */
2287 	barrier();
2288 	p->migration_disabled = 0;
2289 	this_rq()->nr_pinned--;
2290 	preempt_enable();
2291 }
2292 EXPORT_SYMBOL_GPL(migrate_enable);
2293 
2294 static inline bool rq_has_pinned_tasks(struct rq *rq)
2295 {
2296 	return rq->nr_pinned;
2297 }
2298 
2299 /*
2300  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2301  * __set_cpus_allowed_ptr() and select_fallback_rq().
2302  */
2303 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2304 {
2305 	/* When not in the task's cpumask, no point in looking further. */
2306 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2307 		return false;
2308 
2309 	/* migrate_disabled() must be allowed to finish. */
2310 	if (is_migration_disabled(p))
2311 		return cpu_online(cpu);
2312 
2313 	/* Non kernel threads are not allowed during either online or offline. */
2314 	if (!(p->flags & PF_KTHREAD))
2315 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2316 
2317 	/* KTHREAD_IS_PER_CPU is always allowed. */
2318 	if (kthread_is_per_cpu(p))
2319 		return cpu_online(cpu);
2320 
2321 	/* Regular kernel threads don't get to stay during offline. */
2322 	if (cpu_dying(cpu))
2323 		return false;
2324 
2325 	/* But are allowed during online. */
2326 	return cpu_online(cpu);
2327 }
2328 
2329 /*
2330  * This is how migration works:
2331  *
2332  * 1) we invoke migration_cpu_stop() on the target CPU using
2333  *    stop_one_cpu().
2334  * 2) stopper starts to run (implicitly forcing the migrated thread
2335  *    off the CPU)
2336  * 3) it checks whether the migrated task is still in the wrong runqueue.
2337  * 4) if it's in the wrong runqueue then the migration thread removes
2338  *    it and puts it into the right queue.
2339  * 5) stopper completes and stop_one_cpu() returns and the migration
2340  *    is done.
2341  */
2342 
2343 /*
2344  * move_queued_task - move a queued task to new rq.
2345  *
2346  * Returns (locked) new rq. Old rq's lock is released.
2347  */
2348 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2349 				   struct task_struct *p, int new_cpu)
2350 {
2351 	lockdep_assert_rq_held(rq);
2352 
2353 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2354 	set_task_cpu(p, new_cpu);
2355 	rq_unlock(rq, rf);
2356 
2357 	rq = cpu_rq(new_cpu);
2358 
2359 	rq_lock(rq, rf);
2360 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2361 	activate_task(rq, p, 0);
2362 	check_preempt_curr(rq, p, 0);
2363 
2364 	return rq;
2365 }
2366 
2367 struct migration_arg {
2368 	struct task_struct		*task;
2369 	int				dest_cpu;
2370 	struct set_affinity_pending	*pending;
2371 };
2372 
2373 /*
2374  * @refs: number of wait_for_completion()
2375  * @stop_pending: is @stop_work in use
2376  */
2377 struct set_affinity_pending {
2378 	refcount_t		refs;
2379 	unsigned int		stop_pending;
2380 	struct completion	done;
2381 	struct cpu_stop_work	stop_work;
2382 	struct migration_arg	arg;
2383 };
2384 
2385 /*
2386  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2387  * this because either it can't run here any more (set_cpus_allowed()
2388  * away from this CPU, or CPU going down), or because we're
2389  * attempting to rebalance this task on exec (sched_exec).
2390  *
2391  * So we race with normal scheduler movements, but that's OK, as long
2392  * as the task is no longer on this CPU.
2393  */
2394 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2395 				 struct task_struct *p, int dest_cpu)
2396 {
2397 	/* Affinity changed (again). */
2398 	if (!is_cpu_allowed(p, dest_cpu))
2399 		return rq;
2400 
2401 	update_rq_clock(rq);
2402 	rq = move_queued_task(rq, rf, p, dest_cpu);
2403 
2404 	return rq;
2405 }
2406 
2407 /*
2408  * migration_cpu_stop - this will be executed by a highprio stopper thread
2409  * and performs thread migration by bumping thread off CPU then
2410  * 'pushing' onto another runqueue.
2411  */
2412 static int migration_cpu_stop(void *data)
2413 {
2414 	struct migration_arg *arg = data;
2415 	struct set_affinity_pending *pending = arg->pending;
2416 	struct task_struct *p = arg->task;
2417 	struct rq *rq = this_rq();
2418 	bool complete = false;
2419 	struct rq_flags rf;
2420 
2421 	/*
2422 	 * The original target CPU might have gone down and we might
2423 	 * be on another CPU but it doesn't matter.
2424 	 */
2425 	local_irq_save(rf.flags);
2426 	/*
2427 	 * We need to explicitly wake pending tasks before running
2428 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2429 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2430 	 */
2431 	flush_smp_call_function_queue();
2432 
2433 	raw_spin_lock(&p->pi_lock);
2434 	rq_lock(rq, &rf);
2435 
2436 	/*
2437 	 * If we were passed a pending, then ->stop_pending was set, thus
2438 	 * p->migration_pending must have remained stable.
2439 	 */
2440 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2441 
2442 	/*
2443 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2444 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2445 	 * we're holding p->pi_lock.
2446 	 */
2447 	if (task_rq(p) == rq) {
2448 		if (is_migration_disabled(p))
2449 			goto out;
2450 
2451 		if (pending) {
2452 			p->migration_pending = NULL;
2453 			complete = true;
2454 
2455 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2456 				goto out;
2457 		}
2458 
2459 		if (task_on_rq_queued(p))
2460 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2461 		else
2462 			p->wake_cpu = arg->dest_cpu;
2463 
2464 		/*
2465 		 * XXX __migrate_task() can fail, at which point we might end
2466 		 * up running on a dodgy CPU, AFAICT this can only happen
2467 		 * during CPU hotplug, at which point we'll get pushed out
2468 		 * anyway, so it's probably not a big deal.
2469 		 */
2470 
2471 	} else if (pending) {
2472 		/*
2473 		 * This happens when we get migrated between migrate_enable()'s
2474 		 * preempt_enable() and scheduling the stopper task. At that
2475 		 * point we're a regular task again and not current anymore.
2476 		 *
2477 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2478 		 * more likely.
2479 		 */
2480 
2481 		/*
2482 		 * The task moved before the stopper got to run. We're holding
2483 		 * ->pi_lock, so the allowed mask is stable - if it got
2484 		 * somewhere allowed, we're done.
2485 		 */
2486 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2487 			p->migration_pending = NULL;
2488 			complete = true;
2489 			goto out;
2490 		}
2491 
2492 		/*
2493 		 * When migrate_enable() hits a rq mis-match we can't reliably
2494 		 * determine is_migration_disabled() and so have to chase after
2495 		 * it.
2496 		 */
2497 		WARN_ON_ONCE(!pending->stop_pending);
2498 		task_rq_unlock(rq, p, &rf);
2499 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2500 				    &pending->arg, &pending->stop_work);
2501 		return 0;
2502 	}
2503 out:
2504 	if (pending)
2505 		pending->stop_pending = false;
2506 	task_rq_unlock(rq, p, &rf);
2507 
2508 	if (complete)
2509 		complete_all(&pending->done);
2510 
2511 	return 0;
2512 }
2513 
2514 int push_cpu_stop(void *arg)
2515 {
2516 	struct rq *lowest_rq = NULL, *rq = this_rq();
2517 	struct task_struct *p = arg;
2518 
2519 	raw_spin_lock_irq(&p->pi_lock);
2520 	raw_spin_rq_lock(rq);
2521 
2522 	if (task_rq(p) != rq)
2523 		goto out_unlock;
2524 
2525 	if (is_migration_disabled(p)) {
2526 		p->migration_flags |= MDF_PUSH;
2527 		goto out_unlock;
2528 	}
2529 
2530 	p->migration_flags &= ~MDF_PUSH;
2531 
2532 	if (p->sched_class->find_lock_rq)
2533 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2534 
2535 	if (!lowest_rq)
2536 		goto out_unlock;
2537 
2538 	// XXX validate p is still the highest prio task
2539 	if (task_rq(p) == rq) {
2540 		deactivate_task(rq, p, 0);
2541 		set_task_cpu(p, lowest_rq->cpu);
2542 		activate_task(lowest_rq, p, 0);
2543 		resched_curr(lowest_rq);
2544 	}
2545 
2546 	double_unlock_balance(rq, lowest_rq);
2547 
2548 out_unlock:
2549 	rq->push_busy = false;
2550 	raw_spin_rq_unlock(rq);
2551 	raw_spin_unlock_irq(&p->pi_lock);
2552 
2553 	put_task_struct(p);
2554 	return 0;
2555 }
2556 
2557 /*
2558  * sched_class::set_cpus_allowed must do the below, but is not required to
2559  * actually call this function.
2560  */
2561 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2562 {
2563 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2564 		p->cpus_ptr = ctx->new_mask;
2565 		return;
2566 	}
2567 
2568 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2569 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2570 
2571 	/*
2572 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2573 	 */
2574 	if (ctx->flags & SCA_USER)
2575 		swap(p->user_cpus_ptr, ctx->user_mask);
2576 }
2577 
2578 static void
2579 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2580 {
2581 	struct rq *rq = task_rq(p);
2582 	bool queued, running;
2583 
2584 	/*
2585 	 * This here violates the locking rules for affinity, since we're only
2586 	 * supposed to change these variables while holding both rq->lock and
2587 	 * p->pi_lock.
2588 	 *
2589 	 * HOWEVER, it magically works, because ttwu() is the only code that
2590 	 * accesses these variables under p->pi_lock and only does so after
2591 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2592 	 * before finish_task().
2593 	 *
2594 	 * XXX do further audits, this smells like something putrid.
2595 	 */
2596 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2597 		SCHED_WARN_ON(!p->on_cpu);
2598 	else
2599 		lockdep_assert_held(&p->pi_lock);
2600 
2601 	queued = task_on_rq_queued(p);
2602 	running = task_current(rq, p);
2603 
2604 	if (queued) {
2605 		/*
2606 		 * Because __kthread_bind() calls this on blocked tasks without
2607 		 * holding rq->lock.
2608 		 */
2609 		lockdep_assert_rq_held(rq);
2610 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2611 	}
2612 	if (running)
2613 		put_prev_task(rq, p);
2614 
2615 	p->sched_class->set_cpus_allowed(p, ctx);
2616 
2617 	if (queued)
2618 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2619 	if (running)
2620 		set_next_task(rq, p);
2621 }
2622 
2623 /*
2624  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2625  * affinity (if any) should be destroyed too.
2626  */
2627 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2628 {
2629 	struct affinity_context ac = {
2630 		.new_mask  = new_mask,
2631 		.user_mask = NULL,
2632 		.flags     = SCA_USER,	/* clear the user requested mask */
2633 	};
2634 	union cpumask_rcuhead {
2635 		cpumask_t cpumask;
2636 		struct rcu_head rcu;
2637 	};
2638 
2639 	__do_set_cpus_allowed(p, &ac);
2640 
2641 	/*
2642 	 * Because this is called with p->pi_lock held, it is not possible
2643 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2644 	 * kfree_rcu().
2645 	 */
2646 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2647 }
2648 
2649 static cpumask_t *alloc_user_cpus_ptr(int node)
2650 {
2651 	/*
2652 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2653 	 */
2654 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2655 
2656 	return kmalloc_node(size, GFP_KERNEL, node);
2657 }
2658 
2659 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2660 		      int node)
2661 {
2662 	cpumask_t *user_mask;
2663 	unsigned long flags;
2664 
2665 	/*
2666 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2667 	 * may differ by now due to racing.
2668 	 */
2669 	dst->user_cpus_ptr = NULL;
2670 
2671 	/*
2672 	 * This check is racy and losing the race is a valid situation.
2673 	 * It is not worth the extra overhead of taking the pi_lock on
2674 	 * every fork/clone.
2675 	 */
2676 	if (data_race(!src->user_cpus_ptr))
2677 		return 0;
2678 
2679 	user_mask = alloc_user_cpus_ptr(node);
2680 	if (!user_mask)
2681 		return -ENOMEM;
2682 
2683 	/*
2684 	 * Use pi_lock to protect content of user_cpus_ptr
2685 	 *
2686 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2687 	 * do_set_cpus_allowed().
2688 	 */
2689 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2690 	if (src->user_cpus_ptr) {
2691 		swap(dst->user_cpus_ptr, user_mask);
2692 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2693 	}
2694 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2695 
2696 	if (unlikely(user_mask))
2697 		kfree(user_mask);
2698 
2699 	return 0;
2700 }
2701 
2702 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2703 {
2704 	struct cpumask *user_mask = NULL;
2705 
2706 	swap(p->user_cpus_ptr, user_mask);
2707 
2708 	return user_mask;
2709 }
2710 
2711 void release_user_cpus_ptr(struct task_struct *p)
2712 {
2713 	kfree(clear_user_cpus_ptr(p));
2714 }
2715 
2716 /*
2717  * This function is wildly self concurrent; here be dragons.
2718  *
2719  *
2720  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2721  * designated task is enqueued on an allowed CPU. If that task is currently
2722  * running, we have to kick it out using the CPU stopper.
2723  *
2724  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2725  * Consider:
2726  *
2727  *     Initial conditions: P0->cpus_mask = [0, 1]
2728  *
2729  *     P0@CPU0                  P1
2730  *
2731  *     migrate_disable();
2732  *     <preempted>
2733  *                              set_cpus_allowed_ptr(P0, [1]);
2734  *
2735  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2736  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2737  * This means we need the following scheme:
2738  *
2739  *     P0@CPU0                  P1
2740  *
2741  *     migrate_disable();
2742  *     <preempted>
2743  *                              set_cpus_allowed_ptr(P0, [1]);
2744  *                                <blocks>
2745  *     <resumes>
2746  *     migrate_enable();
2747  *       __set_cpus_allowed_ptr();
2748  *       <wakes local stopper>
2749  *                         `--> <woken on migration completion>
2750  *
2751  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2752  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2753  * task p are serialized by p->pi_lock, which we can leverage: the one that
2754  * should come into effect at the end of the Migrate-Disable region is the last
2755  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2756  * but we still need to properly signal those waiting tasks at the appropriate
2757  * moment.
2758  *
2759  * This is implemented using struct set_affinity_pending. The first
2760  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2761  * setup an instance of that struct and install it on the targeted task_struct.
2762  * Any and all further callers will reuse that instance. Those then wait for
2763  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2764  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2765  *
2766  *
2767  * (1) In the cases covered above. There is one more where the completion is
2768  * signaled within affine_move_task() itself: when a subsequent affinity request
2769  * occurs after the stopper bailed out due to the targeted task still being
2770  * Migrate-Disable. Consider:
2771  *
2772  *     Initial conditions: P0->cpus_mask = [0, 1]
2773  *
2774  *     CPU0		  P1				P2
2775  *     <P0>
2776  *       migrate_disable();
2777  *       <preempted>
2778  *                        set_cpus_allowed_ptr(P0, [1]);
2779  *                          <blocks>
2780  *     <migration/0>
2781  *       migration_cpu_stop()
2782  *         is_migration_disabled()
2783  *           <bails>
2784  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2785  *                                                         <signal completion>
2786  *                          <awakes>
2787  *
2788  * Note that the above is safe vs a concurrent migrate_enable(), as any
2789  * pending affinity completion is preceded by an uninstallation of
2790  * p->migration_pending done with p->pi_lock held.
2791  */
2792 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2793 			    int dest_cpu, unsigned int flags)
2794 	__releases(rq->lock)
2795 	__releases(p->pi_lock)
2796 {
2797 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2798 	bool stop_pending, complete = false;
2799 
2800 	/* Can the task run on the task's current CPU? If so, we're done */
2801 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2802 		struct task_struct *push_task = NULL;
2803 
2804 		if ((flags & SCA_MIGRATE_ENABLE) &&
2805 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2806 			rq->push_busy = true;
2807 			push_task = get_task_struct(p);
2808 		}
2809 
2810 		/*
2811 		 * If there are pending waiters, but no pending stop_work,
2812 		 * then complete now.
2813 		 */
2814 		pending = p->migration_pending;
2815 		if (pending && !pending->stop_pending) {
2816 			p->migration_pending = NULL;
2817 			complete = true;
2818 		}
2819 
2820 		task_rq_unlock(rq, p, rf);
2821 
2822 		if (push_task) {
2823 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2824 					    p, &rq->push_work);
2825 		}
2826 
2827 		if (complete)
2828 			complete_all(&pending->done);
2829 
2830 		return 0;
2831 	}
2832 
2833 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2834 		/* serialized by p->pi_lock */
2835 		if (!p->migration_pending) {
2836 			/* Install the request */
2837 			refcount_set(&my_pending.refs, 1);
2838 			init_completion(&my_pending.done);
2839 			my_pending.arg = (struct migration_arg) {
2840 				.task = p,
2841 				.dest_cpu = dest_cpu,
2842 				.pending = &my_pending,
2843 			};
2844 
2845 			p->migration_pending = &my_pending;
2846 		} else {
2847 			pending = p->migration_pending;
2848 			refcount_inc(&pending->refs);
2849 			/*
2850 			 * Affinity has changed, but we've already installed a
2851 			 * pending. migration_cpu_stop() *must* see this, else
2852 			 * we risk a completion of the pending despite having a
2853 			 * task on a disallowed CPU.
2854 			 *
2855 			 * Serialized by p->pi_lock, so this is safe.
2856 			 */
2857 			pending->arg.dest_cpu = dest_cpu;
2858 		}
2859 	}
2860 	pending = p->migration_pending;
2861 	/*
2862 	 * - !MIGRATE_ENABLE:
2863 	 *   we'll have installed a pending if there wasn't one already.
2864 	 *
2865 	 * - MIGRATE_ENABLE:
2866 	 *   we're here because the current CPU isn't matching anymore,
2867 	 *   the only way that can happen is because of a concurrent
2868 	 *   set_cpus_allowed_ptr() call, which should then still be
2869 	 *   pending completion.
2870 	 *
2871 	 * Either way, we really should have a @pending here.
2872 	 */
2873 	if (WARN_ON_ONCE(!pending)) {
2874 		task_rq_unlock(rq, p, rf);
2875 		return -EINVAL;
2876 	}
2877 
2878 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2879 		/*
2880 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2881 		 * anything else we cannot do is_migration_disabled(), punt
2882 		 * and have the stopper function handle it all race-free.
2883 		 */
2884 		stop_pending = pending->stop_pending;
2885 		if (!stop_pending)
2886 			pending->stop_pending = true;
2887 
2888 		if (flags & SCA_MIGRATE_ENABLE)
2889 			p->migration_flags &= ~MDF_PUSH;
2890 
2891 		task_rq_unlock(rq, p, rf);
2892 
2893 		if (!stop_pending) {
2894 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2895 					    &pending->arg, &pending->stop_work);
2896 		}
2897 
2898 		if (flags & SCA_MIGRATE_ENABLE)
2899 			return 0;
2900 	} else {
2901 
2902 		if (!is_migration_disabled(p)) {
2903 			if (task_on_rq_queued(p))
2904 				rq = move_queued_task(rq, rf, p, dest_cpu);
2905 
2906 			if (!pending->stop_pending) {
2907 				p->migration_pending = NULL;
2908 				complete = true;
2909 			}
2910 		}
2911 		task_rq_unlock(rq, p, rf);
2912 
2913 		if (complete)
2914 			complete_all(&pending->done);
2915 	}
2916 
2917 	wait_for_completion(&pending->done);
2918 
2919 	if (refcount_dec_and_test(&pending->refs))
2920 		wake_up_var(&pending->refs); /* No UaF, just an address */
2921 
2922 	/*
2923 	 * Block the original owner of &pending until all subsequent callers
2924 	 * have seen the completion and decremented the refcount
2925 	 */
2926 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2927 
2928 	/* ARGH */
2929 	WARN_ON_ONCE(my_pending.stop_pending);
2930 
2931 	return 0;
2932 }
2933 
2934 /*
2935  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2936  */
2937 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2938 					 struct affinity_context *ctx,
2939 					 struct rq *rq,
2940 					 struct rq_flags *rf)
2941 	__releases(rq->lock)
2942 	__releases(p->pi_lock)
2943 {
2944 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2945 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2946 	bool kthread = p->flags & PF_KTHREAD;
2947 	unsigned int dest_cpu;
2948 	int ret = 0;
2949 
2950 	update_rq_clock(rq);
2951 
2952 	if (kthread || is_migration_disabled(p)) {
2953 		/*
2954 		 * Kernel threads are allowed on online && !active CPUs,
2955 		 * however, during cpu-hot-unplug, even these might get pushed
2956 		 * away if not KTHREAD_IS_PER_CPU.
2957 		 *
2958 		 * Specifically, migration_disabled() tasks must not fail the
2959 		 * cpumask_any_and_distribute() pick below, esp. so on
2960 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2961 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2962 		 */
2963 		cpu_valid_mask = cpu_online_mask;
2964 	}
2965 
2966 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2967 		ret = -EINVAL;
2968 		goto out;
2969 	}
2970 
2971 	/*
2972 	 * Must re-check here, to close a race against __kthread_bind(),
2973 	 * sched_setaffinity() is not guaranteed to observe the flag.
2974 	 */
2975 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2976 		ret = -EINVAL;
2977 		goto out;
2978 	}
2979 
2980 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2981 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2982 			if (ctx->flags & SCA_USER)
2983 				swap(p->user_cpus_ptr, ctx->user_mask);
2984 			goto out;
2985 		}
2986 
2987 		if (WARN_ON_ONCE(p == current &&
2988 				 is_migration_disabled(p) &&
2989 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2990 			ret = -EBUSY;
2991 			goto out;
2992 		}
2993 	}
2994 
2995 	/*
2996 	 * Picking a ~random cpu helps in cases where we are changing affinity
2997 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2998 	 * immediately required to distribute the tasks within their new mask.
2999 	 */
3000 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3001 	if (dest_cpu >= nr_cpu_ids) {
3002 		ret = -EINVAL;
3003 		goto out;
3004 	}
3005 
3006 	__do_set_cpus_allowed(p, ctx);
3007 
3008 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3009 
3010 out:
3011 	task_rq_unlock(rq, p, rf);
3012 
3013 	return ret;
3014 }
3015 
3016 /*
3017  * Change a given task's CPU affinity. Migrate the thread to a
3018  * proper CPU and schedule it away if the CPU it's executing on
3019  * is removed from the allowed bitmask.
3020  *
3021  * NOTE: the caller must have a valid reference to the task, the
3022  * task must not exit() & deallocate itself prematurely. The
3023  * call is not atomic; no spinlocks may be held.
3024  */
3025 static int __set_cpus_allowed_ptr(struct task_struct *p,
3026 				  struct affinity_context *ctx)
3027 {
3028 	struct rq_flags rf;
3029 	struct rq *rq;
3030 
3031 	rq = task_rq_lock(p, &rf);
3032 	/*
3033 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3034 	 * flags are set.
3035 	 */
3036 	if (p->user_cpus_ptr &&
3037 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3038 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3039 		ctx->new_mask = rq->scratch_mask;
3040 
3041 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3042 }
3043 
3044 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3045 {
3046 	struct affinity_context ac = {
3047 		.new_mask  = new_mask,
3048 		.flags     = 0,
3049 	};
3050 
3051 	return __set_cpus_allowed_ptr(p, &ac);
3052 }
3053 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3054 
3055 /*
3056  * Change a given task's CPU affinity to the intersection of its current
3057  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3058  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3059  * affinity or use cpu_online_mask instead.
3060  *
3061  * If the resulting mask is empty, leave the affinity unchanged and return
3062  * -EINVAL.
3063  */
3064 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3065 				     struct cpumask *new_mask,
3066 				     const struct cpumask *subset_mask)
3067 {
3068 	struct affinity_context ac = {
3069 		.new_mask  = new_mask,
3070 		.flags     = 0,
3071 	};
3072 	struct rq_flags rf;
3073 	struct rq *rq;
3074 	int err;
3075 
3076 	rq = task_rq_lock(p, &rf);
3077 
3078 	/*
3079 	 * Forcefully restricting the affinity of a deadline task is
3080 	 * likely to cause problems, so fail and noisily override the
3081 	 * mask entirely.
3082 	 */
3083 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3084 		err = -EPERM;
3085 		goto err_unlock;
3086 	}
3087 
3088 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3089 		err = -EINVAL;
3090 		goto err_unlock;
3091 	}
3092 
3093 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3094 
3095 err_unlock:
3096 	task_rq_unlock(rq, p, &rf);
3097 	return err;
3098 }
3099 
3100 /*
3101  * Restrict the CPU affinity of task @p so that it is a subset of
3102  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3103  * old affinity mask. If the resulting mask is empty, we warn and walk
3104  * up the cpuset hierarchy until we find a suitable mask.
3105  */
3106 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3107 {
3108 	cpumask_var_t new_mask;
3109 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3110 
3111 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3112 
3113 	/*
3114 	 * __migrate_task() can fail silently in the face of concurrent
3115 	 * offlining of the chosen destination CPU, so take the hotplug
3116 	 * lock to ensure that the migration succeeds.
3117 	 */
3118 	cpus_read_lock();
3119 	if (!cpumask_available(new_mask))
3120 		goto out_set_mask;
3121 
3122 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3123 		goto out_free_mask;
3124 
3125 	/*
3126 	 * We failed to find a valid subset of the affinity mask for the
3127 	 * task, so override it based on its cpuset hierarchy.
3128 	 */
3129 	cpuset_cpus_allowed(p, new_mask);
3130 	override_mask = new_mask;
3131 
3132 out_set_mask:
3133 	if (printk_ratelimit()) {
3134 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3135 				task_pid_nr(p), p->comm,
3136 				cpumask_pr_args(override_mask));
3137 	}
3138 
3139 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3140 out_free_mask:
3141 	cpus_read_unlock();
3142 	free_cpumask_var(new_mask);
3143 }
3144 
3145 static int
3146 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3147 
3148 /*
3149  * Restore the affinity of a task @p which was previously restricted by a
3150  * call to force_compatible_cpus_allowed_ptr().
3151  *
3152  * It is the caller's responsibility to serialise this with any calls to
3153  * force_compatible_cpus_allowed_ptr(@p).
3154  */
3155 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3156 {
3157 	struct affinity_context ac = {
3158 		.new_mask  = task_user_cpus(p),
3159 		.flags     = 0,
3160 	};
3161 	int ret;
3162 
3163 	/*
3164 	 * Try to restore the old affinity mask with __sched_setaffinity().
3165 	 * Cpuset masking will be done there too.
3166 	 */
3167 	ret = __sched_setaffinity(p, &ac);
3168 	WARN_ON_ONCE(ret);
3169 }
3170 
3171 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3172 {
3173 #ifdef CONFIG_SCHED_DEBUG
3174 	unsigned int state = READ_ONCE(p->__state);
3175 
3176 	/*
3177 	 * We should never call set_task_cpu() on a blocked task,
3178 	 * ttwu() will sort out the placement.
3179 	 */
3180 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3181 
3182 	/*
3183 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3184 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3185 	 * time relying on p->on_rq.
3186 	 */
3187 	WARN_ON_ONCE(state == TASK_RUNNING &&
3188 		     p->sched_class == &fair_sched_class &&
3189 		     (p->on_rq && !task_on_rq_migrating(p)));
3190 
3191 #ifdef CONFIG_LOCKDEP
3192 	/*
3193 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3194 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3195 	 *
3196 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3197 	 * see task_group().
3198 	 *
3199 	 * Furthermore, all task_rq users should acquire both locks, see
3200 	 * task_rq_lock().
3201 	 */
3202 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3203 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3204 #endif
3205 	/*
3206 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3207 	 */
3208 	WARN_ON_ONCE(!cpu_online(new_cpu));
3209 
3210 	WARN_ON_ONCE(is_migration_disabled(p));
3211 #endif
3212 
3213 	trace_sched_migrate_task(p, new_cpu);
3214 
3215 	if (task_cpu(p) != new_cpu) {
3216 		if (p->sched_class->migrate_task_rq)
3217 			p->sched_class->migrate_task_rq(p, new_cpu);
3218 		p->se.nr_migrations++;
3219 		rseq_migrate(p);
3220 		sched_mm_cid_migrate_from(p);
3221 		perf_event_task_migrate(p);
3222 	}
3223 
3224 	__set_task_cpu(p, new_cpu);
3225 }
3226 
3227 #ifdef CONFIG_NUMA_BALANCING
3228 static void __migrate_swap_task(struct task_struct *p, int cpu)
3229 {
3230 	if (task_on_rq_queued(p)) {
3231 		struct rq *src_rq, *dst_rq;
3232 		struct rq_flags srf, drf;
3233 
3234 		src_rq = task_rq(p);
3235 		dst_rq = cpu_rq(cpu);
3236 
3237 		rq_pin_lock(src_rq, &srf);
3238 		rq_pin_lock(dst_rq, &drf);
3239 
3240 		deactivate_task(src_rq, p, 0);
3241 		set_task_cpu(p, cpu);
3242 		activate_task(dst_rq, p, 0);
3243 		check_preempt_curr(dst_rq, p, 0);
3244 
3245 		rq_unpin_lock(dst_rq, &drf);
3246 		rq_unpin_lock(src_rq, &srf);
3247 
3248 	} else {
3249 		/*
3250 		 * Task isn't running anymore; make it appear like we migrated
3251 		 * it before it went to sleep. This means on wakeup we make the
3252 		 * previous CPU our target instead of where it really is.
3253 		 */
3254 		p->wake_cpu = cpu;
3255 	}
3256 }
3257 
3258 struct migration_swap_arg {
3259 	struct task_struct *src_task, *dst_task;
3260 	int src_cpu, dst_cpu;
3261 };
3262 
3263 static int migrate_swap_stop(void *data)
3264 {
3265 	struct migration_swap_arg *arg = data;
3266 	struct rq *src_rq, *dst_rq;
3267 	int ret = -EAGAIN;
3268 
3269 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3270 		return -EAGAIN;
3271 
3272 	src_rq = cpu_rq(arg->src_cpu);
3273 	dst_rq = cpu_rq(arg->dst_cpu);
3274 
3275 	double_raw_lock(&arg->src_task->pi_lock,
3276 			&arg->dst_task->pi_lock);
3277 	double_rq_lock(src_rq, dst_rq);
3278 
3279 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3280 		goto unlock;
3281 
3282 	if (task_cpu(arg->src_task) != arg->src_cpu)
3283 		goto unlock;
3284 
3285 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3286 		goto unlock;
3287 
3288 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3289 		goto unlock;
3290 
3291 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3292 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3293 
3294 	ret = 0;
3295 
3296 unlock:
3297 	double_rq_unlock(src_rq, dst_rq);
3298 	raw_spin_unlock(&arg->dst_task->pi_lock);
3299 	raw_spin_unlock(&arg->src_task->pi_lock);
3300 
3301 	return ret;
3302 }
3303 
3304 /*
3305  * Cross migrate two tasks
3306  */
3307 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3308 		int target_cpu, int curr_cpu)
3309 {
3310 	struct migration_swap_arg arg;
3311 	int ret = -EINVAL;
3312 
3313 	arg = (struct migration_swap_arg){
3314 		.src_task = cur,
3315 		.src_cpu = curr_cpu,
3316 		.dst_task = p,
3317 		.dst_cpu = target_cpu,
3318 	};
3319 
3320 	if (arg.src_cpu == arg.dst_cpu)
3321 		goto out;
3322 
3323 	/*
3324 	 * These three tests are all lockless; this is OK since all of them
3325 	 * will be re-checked with proper locks held further down the line.
3326 	 */
3327 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3328 		goto out;
3329 
3330 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3331 		goto out;
3332 
3333 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3334 		goto out;
3335 
3336 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3337 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3338 
3339 out:
3340 	return ret;
3341 }
3342 #endif /* CONFIG_NUMA_BALANCING */
3343 
3344 /*
3345  * wait_task_inactive - wait for a thread to unschedule.
3346  *
3347  * Wait for the thread to block in any of the states set in @match_state.
3348  * If it changes, i.e. @p might have woken up, then return zero.  When we
3349  * succeed in waiting for @p to be off its CPU, we return a positive number
3350  * (its total switch count).  If a second call a short while later returns the
3351  * same number, the caller can be sure that @p has remained unscheduled the
3352  * whole time.
3353  *
3354  * The caller must ensure that the task *will* unschedule sometime soon,
3355  * else this function might spin for a *long* time. This function can't
3356  * be called with interrupts off, or it may introduce deadlock with
3357  * smp_call_function() if an IPI is sent by the same process we are
3358  * waiting to become inactive.
3359  */
3360 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3361 {
3362 	int running, queued;
3363 	struct rq_flags rf;
3364 	unsigned long ncsw;
3365 	struct rq *rq;
3366 
3367 	for (;;) {
3368 		/*
3369 		 * We do the initial early heuristics without holding
3370 		 * any task-queue locks at all. We'll only try to get
3371 		 * the runqueue lock when things look like they will
3372 		 * work out!
3373 		 */
3374 		rq = task_rq(p);
3375 
3376 		/*
3377 		 * If the task is actively running on another CPU
3378 		 * still, just relax and busy-wait without holding
3379 		 * any locks.
3380 		 *
3381 		 * NOTE! Since we don't hold any locks, it's not
3382 		 * even sure that "rq" stays as the right runqueue!
3383 		 * But we don't care, since "task_on_cpu()" will
3384 		 * return false if the runqueue has changed and p
3385 		 * is actually now running somewhere else!
3386 		 */
3387 		while (task_on_cpu(rq, p)) {
3388 			if (!(READ_ONCE(p->__state) & match_state))
3389 				return 0;
3390 			cpu_relax();
3391 		}
3392 
3393 		/*
3394 		 * Ok, time to look more closely! We need the rq
3395 		 * lock now, to be *sure*. If we're wrong, we'll
3396 		 * just go back and repeat.
3397 		 */
3398 		rq = task_rq_lock(p, &rf);
3399 		trace_sched_wait_task(p);
3400 		running = task_on_cpu(rq, p);
3401 		queued = task_on_rq_queued(p);
3402 		ncsw = 0;
3403 		if (READ_ONCE(p->__state) & match_state)
3404 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3405 		task_rq_unlock(rq, p, &rf);
3406 
3407 		/*
3408 		 * If it changed from the expected state, bail out now.
3409 		 */
3410 		if (unlikely(!ncsw))
3411 			break;
3412 
3413 		/*
3414 		 * Was it really running after all now that we
3415 		 * checked with the proper locks actually held?
3416 		 *
3417 		 * Oops. Go back and try again..
3418 		 */
3419 		if (unlikely(running)) {
3420 			cpu_relax();
3421 			continue;
3422 		}
3423 
3424 		/*
3425 		 * It's not enough that it's not actively running,
3426 		 * it must be off the runqueue _entirely_, and not
3427 		 * preempted!
3428 		 *
3429 		 * So if it was still runnable (but just not actively
3430 		 * running right now), it's preempted, and we should
3431 		 * yield - it could be a while.
3432 		 */
3433 		if (unlikely(queued)) {
3434 			ktime_t to = NSEC_PER_SEC / HZ;
3435 
3436 			set_current_state(TASK_UNINTERRUPTIBLE);
3437 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3438 			continue;
3439 		}
3440 
3441 		/*
3442 		 * Ahh, all good. It wasn't running, and it wasn't
3443 		 * runnable, which means that it will never become
3444 		 * running in the future either. We're all done!
3445 		 */
3446 		break;
3447 	}
3448 
3449 	return ncsw;
3450 }
3451 
3452 /***
3453  * kick_process - kick a running thread to enter/exit the kernel
3454  * @p: the to-be-kicked thread
3455  *
3456  * Cause a process which is running on another CPU to enter
3457  * kernel-mode, without any delay. (to get signals handled.)
3458  *
3459  * NOTE: this function doesn't have to take the runqueue lock,
3460  * because all it wants to ensure is that the remote task enters
3461  * the kernel. If the IPI races and the task has been migrated
3462  * to another CPU then no harm is done and the purpose has been
3463  * achieved as well.
3464  */
3465 void kick_process(struct task_struct *p)
3466 {
3467 	int cpu;
3468 
3469 	preempt_disable();
3470 	cpu = task_cpu(p);
3471 	if ((cpu != smp_processor_id()) && task_curr(p))
3472 		smp_send_reschedule(cpu);
3473 	preempt_enable();
3474 }
3475 EXPORT_SYMBOL_GPL(kick_process);
3476 
3477 /*
3478  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3479  *
3480  * A few notes on cpu_active vs cpu_online:
3481  *
3482  *  - cpu_active must be a subset of cpu_online
3483  *
3484  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3485  *    see __set_cpus_allowed_ptr(). At this point the newly online
3486  *    CPU isn't yet part of the sched domains, and balancing will not
3487  *    see it.
3488  *
3489  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3490  *    avoid the load balancer to place new tasks on the to be removed
3491  *    CPU. Existing tasks will remain running there and will be taken
3492  *    off.
3493  *
3494  * This means that fallback selection must not select !active CPUs.
3495  * And can assume that any active CPU must be online. Conversely
3496  * select_task_rq() below may allow selection of !active CPUs in order
3497  * to satisfy the above rules.
3498  */
3499 static int select_fallback_rq(int cpu, struct task_struct *p)
3500 {
3501 	int nid = cpu_to_node(cpu);
3502 	const struct cpumask *nodemask = NULL;
3503 	enum { cpuset, possible, fail } state = cpuset;
3504 	int dest_cpu;
3505 
3506 	/*
3507 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3508 	 * will return -1. There is no CPU on the node, and we should
3509 	 * select the CPU on the other node.
3510 	 */
3511 	if (nid != -1) {
3512 		nodemask = cpumask_of_node(nid);
3513 
3514 		/* Look for allowed, online CPU in same node. */
3515 		for_each_cpu(dest_cpu, nodemask) {
3516 			if (is_cpu_allowed(p, dest_cpu))
3517 				return dest_cpu;
3518 		}
3519 	}
3520 
3521 	for (;;) {
3522 		/* Any allowed, online CPU? */
3523 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3524 			if (!is_cpu_allowed(p, dest_cpu))
3525 				continue;
3526 
3527 			goto out;
3528 		}
3529 
3530 		/* No more Mr. Nice Guy. */
3531 		switch (state) {
3532 		case cpuset:
3533 			if (cpuset_cpus_allowed_fallback(p)) {
3534 				state = possible;
3535 				break;
3536 			}
3537 			fallthrough;
3538 		case possible:
3539 			/*
3540 			 * XXX When called from select_task_rq() we only
3541 			 * hold p->pi_lock and again violate locking order.
3542 			 *
3543 			 * More yuck to audit.
3544 			 */
3545 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3546 			state = fail;
3547 			break;
3548 		case fail:
3549 			BUG();
3550 			break;
3551 		}
3552 	}
3553 
3554 out:
3555 	if (state != cpuset) {
3556 		/*
3557 		 * Don't tell them about moving exiting tasks or
3558 		 * kernel threads (both mm NULL), since they never
3559 		 * leave kernel.
3560 		 */
3561 		if (p->mm && printk_ratelimit()) {
3562 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3563 					task_pid_nr(p), p->comm, cpu);
3564 		}
3565 	}
3566 
3567 	return dest_cpu;
3568 }
3569 
3570 /*
3571  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3572  */
3573 static inline
3574 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3575 {
3576 	lockdep_assert_held(&p->pi_lock);
3577 
3578 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3579 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3580 	else
3581 		cpu = cpumask_any(p->cpus_ptr);
3582 
3583 	/*
3584 	 * In order not to call set_task_cpu() on a blocking task we need
3585 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3586 	 * CPU.
3587 	 *
3588 	 * Since this is common to all placement strategies, this lives here.
3589 	 *
3590 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3591 	 *   not worry about this generic constraint ]
3592 	 */
3593 	if (unlikely(!is_cpu_allowed(p, cpu)))
3594 		cpu = select_fallback_rq(task_cpu(p), p);
3595 
3596 	return cpu;
3597 }
3598 
3599 void sched_set_stop_task(int cpu, struct task_struct *stop)
3600 {
3601 	static struct lock_class_key stop_pi_lock;
3602 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3603 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3604 
3605 	if (stop) {
3606 		/*
3607 		 * Make it appear like a SCHED_FIFO task, its something
3608 		 * userspace knows about and won't get confused about.
3609 		 *
3610 		 * Also, it will make PI more or less work without too
3611 		 * much confusion -- but then, stop work should not
3612 		 * rely on PI working anyway.
3613 		 */
3614 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3615 
3616 		stop->sched_class = &stop_sched_class;
3617 
3618 		/*
3619 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3620 		 * adjust the effective priority of a task. As a result,
3621 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3622 		 * which can then trigger wakeups of the stop thread to push
3623 		 * around the current task.
3624 		 *
3625 		 * The stop task itself will never be part of the PI-chain, it
3626 		 * never blocks, therefore that ->pi_lock recursion is safe.
3627 		 * Tell lockdep about this by placing the stop->pi_lock in its
3628 		 * own class.
3629 		 */
3630 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3631 	}
3632 
3633 	cpu_rq(cpu)->stop = stop;
3634 
3635 	if (old_stop) {
3636 		/*
3637 		 * Reset it back to a normal scheduling class so that
3638 		 * it can die in pieces.
3639 		 */
3640 		old_stop->sched_class = &rt_sched_class;
3641 	}
3642 }
3643 
3644 #else /* CONFIG_SMP */
3645 
3646 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3647 					 struct affinity_context *ctx)
3648 {
3649 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3650 }
3651 
3652 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3653 
3654 static inline bool rq_has_pinned_tasks(struct rq *rq)
3655 {
3656 	return false;
3657 }
3658 
3659 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3660 {
3661 	return NULL;
3662 }
3663 
3664 #endif /* !CONFIG_SMP */
3665 
3666 static void
3667 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3668 {
3669 	struct rq *rq;
3670 
3671 	if (!schedstat_enabled())
3672 		return;
3673 
3674 	rq = this_rq();
3675 
3676 #ifdef CONFIG_SMP
3677 	if (cpu == rq->cpu) {
3678 		__schedstat_inc(rq->ttwu_local);
3679 		__schedstat_inc(p->stats.nr_wakeups_local);
3680 	} else {
3681 		struct sched_domain *sd;
3682 
3683 		__schedstat_inc(p->stats.nr_wakeups_remote);
3684 		rcu_read_lock();
3685 		for_each_domain(rq->cpu, sd) {
3686 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3687 				__schedstat_inc(sd->ttwu_wake_remote);
3688 				break;
3689 			}
3690 		}
3691 		rcu_read_unlock();
3692 	}
3693 
3694 	if (wake_flags & WF_MIGRATED)
3695 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3696 #endif /* CONFIG_SMP */
3697 
3698 	__schedstat_inc(rq->ttwu_count);
3699 	__schedstat_inc(p->stats.nr_wakeups);
3700 
3701 	if (wake_flags & WF_SYNC)
3702 		__schedstat_inc(p->stats.nr_wakeups_sync);
3703 }
3704 
3705 /*
3706  * Mark the task runnable.
3707  */
3708 static inline void ttwu_do_wakeup(struct task_struct *p)
3709 {
3710 	WRITE_ONCE(p->__state, TASK_RUNNING);
3711 	trace_sched_wakeup(p);
3712 }
3713 
3714 static void
3715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3716 		 struct rq_flags *rf)
3717 {
3718 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3719 
3720 	lockdep_assert_rq_held(rq);
3721 
3722 	if (p->sched_contributes_to_load)
3723 		rq->nr_uninterruptible--;
3724 
3725 #ifdef CONFIG_SMP
3726 	if (wake_flags & WF_MIGRATED)
3727 		en_flags |= ENQUEUE_MIGRATED;
3728 	else
3729 #endif
3730 	if (p->in_iowait) {
3731 		delayacct_blkio_end(p);
3732 		atomic_dec(&task_rq(p)->nr_iowait);
3733 	}
3734 
3735 	activate_task(rq, p, en_flags);
3736 	check_preempt_curr(rq, p, wake_flags);
3737 
3738 	ttwu_do_wakeup(p);
3739 
3740 #ifdef CONFIG_SMP
3741 	if (p->sched_class->task_woken) {
3742 		/*
3743 		 * Our task @p is fully woken up and running; so it's safe to
3744 		 * drop the rq->lock, hereafter rq is only used for statistics.
3745 		 */
3746 		rq_unpin_lock(rq, rf);
3747 		p->sched_class->task_woken(rq, p);
3748 		rq_repin_lock(rq, rf);
3749 	}
3750 
3751 	if (rq->idle_stamp) {
3752 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3753 		u64 max = 2*rq->max_idle_balance_cost;
3754 
3755 		update_avg(&rq->avg_idle, delta);
3756 
3757 		if (rq->avg_idle > max)
3758 			rq->avg_idle = max;
3759 
3760 		rq->wake_stamp = jiffies;
3761 		rq->wake_avg_idle = rq->avg_idle / 2;
3762 
3763 		rq->idle_stamp = 0;
3764 	}
3765 #endif
3766 }
3767 
3768 /*
3769  * Consider @p being inside a wait loop:
3770  *
3771  *   for (;;) {
3772  *      set_current_state(TASK_UNINTERRUPTIBLE);
3773  *
3774  *      if (CONDITION)
3775  *         break;
3776  *
3777  *      schedule();
3778  *   }
3779  *   __set_current_state(TASK_RUNNING);
3780  *
3781  * between set_current_state() and schedule(). In this case @p is still
3782  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3783  * an atomic manner.
3784  *
3785  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3786  * then schedule() must still happen and p->state can be changed to
3787  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3788  * need to do a full wakeup with enqueue.
3789  *
3790  * Returns: %true when the wakeup is done,
3791  *          %false otherwise.
3792  */
3793 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3794 {
3795 	struct rq_flags rf;
3796 	struct rq *rq;
3797 	int ret = 0;
3798 
3799 	rq = __task_rq_lock(p, &rf);
3800 	if (task_on_rq_queued(p)) {
3801 		if (!task_on_cpu(rq, p)) {
3802 			/*
3803 			 * When on_rq && !on_cpu the task is preempted, see if
3804 			 * it should preempt the task that is current now.
3805 			 */
3806 			update_rq_clock(rq);
3807 			check_preempt_curr(rq, p, wake_flags);
3808 		}
3809 		ttwu_do_wakeup(p);
3810 		ret = 1;
3811 	}
3812 	__task_rq_unlock(rq, &rf);
3813 
3814 	return ret;
3815 }
3816 
3817 #ifdef CONFIG_SMP
3818 void sched_ttwu_pending(void *arg)
3819 {
3820 	struct llist_node *llist = arg;
3821 	struct rq *rq = this_rq();
3822 	struct task_struct *p, *t;
3823 	struct rq_flags rf;
3824 
3825 	if (!llist)
3826 		return;
3827 
3828 	rq_lock_irqsave(rq, &rf);
3829 	update_rq_clock(rq);
3830 
3831 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3832 		if (WARN_ON_ONCE(p->on_cpu))
3833 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3834 
3835 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3836 			set_task_cpu(p, cpu_of(rq));
3837 
3838 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3839 	}
3840 
3841 	/*
3842 	 * Must be after enqueueing at least once task such that
3843 	 * idle_cpu() does not observe a false-negative -- if it does,
3844 	 * it is possible for select_idle_siblings() to stack a number
3845 	 * of tasks on this CPU during that window.
3846 	 *
3847 	 * It is ok to clear ttwu_pending when another task pending.
3848 	 * We will receive IPI after local irq enabled and then enqueue it.
3849 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3850 	 */
3851 	WRITE_ONCE(rq->ttwu_pending, 0);
3852 	rq_unlock_irqrestore(rq, &rf);
3853 }
3854 
3855 /*
3856  * Prepare the scene for sending an IPI for a remote smp_call
3857  *
3858  * Returns true if the caller can proceed with sending the IPI.
3859  * Returns false otherwise.
3860  */
3861 bool call_function_single_prep_ipi(int cpu)
3862 {
3863 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3864 		trace_sched_wake_idle_without_ipi(cpu);
3865 		return false;
3866 	}
3867 
3868 	return true;
3869 }
3870 
3871 /*
3872  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3873  * necessary. The wakee CPU on receipt of the IPI will queue the task
3874  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3875  * of the wakeup instead of the waker.
3876  */
3877 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3878 {
3879 	struct rq *rq = cpu_rq(cpu);
3880 
3881 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3882 
3883 	WRITE_ONCE(rq->ttwu_pending, 1);
3884 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3885 }
3886 
3887 void wake_up_if_idle(int cpu)
3888 {
3889 	struct rq *rq = cpu_rq(cpu);
3890 	struct rq_flags rf;
3891 
3892 	rcu_read_lock();
3893 
3894 	if (!is_idle_task(rcu_dereference(rq->curr)))
3895 		goto out;
3896 
3897 	rq_lock_irqsave(rq, &rf);
3898 	if (is_idle_task(rq->curr))
3899 		resched_curr(rq);
3900 	/* Else CPU is not idle, do nothing here: */
3901 	rq_unlock_irqrestore(rq, &rf);
3902 
3903 out:
3904 	rcu_read_unlock();
3905 }
3906 
3907 bool cpus_share_cache(int this_cpu, int that_cpu)
3908 {
3909 	if (this_cpu == that_cpu)
3910 		return true;
3911 
3912 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3913 }
3914 
3915 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3916 {
3917 	/*
3918 	 * Do not complicate things with the async wake_list while the CPU is
3919 	 * in hotplug state.
3920 	 */
3921 	if (!cpu_active(cpu))
3922 		return false;
3923 
3924 	/* Ensure the task will still be allowed to run on the CPU. */
3925 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3926 		return false;
3927 
3928 	/*
3929 	 * If the CPU does not share cache, then queue the task on the
3930 	 * remote rqs wakelist to avoid accessing remote data.
3931 	 */
3932 	if (!cpus_share_cache(smp_processor_id(), cpu))
3933 		return true;
3934 
3935 	if (cpu == smp_processor_id())
3936 		return false;
3937 
3938 	/*
3939 	 * If the wakee cpu is idle, or the task is descheduling and the
3940 	 * only running task on the CPU, then use the wakelist to offload
3941 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3942 	 * the current CPU is likely busy. nr_running is checked to
3943 	 * avoid unnecessary task stacking.
3944 	 *
3945 	 * Note that we can only get here with (wakee) p->on_rq=0,
3946 	 * p->on_cpu can be whatever, we've done the dequeue, so
3947 	 * the wakee has been accounted out of ->nr_running.
3948 	 */
3949 	if (!cpu_rq(cpu)->nr_running)
3950 		return true;
3951 
3952 	return false;
3953 }
3954 
3955 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3956 {
3957 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3958 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3959 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3960 		return true;
3961 	}
3962 
3963 	return false;
3964 }
3965 
3966 #else /* !CONFIG_SMP */
3967 
3968 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3969 {
3970 	return false;
3971 }
3972 
3973 #endif /* CONFIG_SMP */
3974 
3975 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3976 {
3977 	struct rq *rq = cpu_rq(cpu);
3978 	struct rq_flags rf;
3979 
3980 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3981 		return;
3982 
3983 	rq_lock(rq, &rf);
3984 	update_rq_clock(rq);
3985 	ttwu_do_activate(rq, p, wake_flags, &rf);
3986 	rq_unlock(rq, &rf);
3987 }
3988 
3989 /*
3990  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3991  *
3992  * The caller holds p::pi_lock if p != current or has preemption
3993  * disabled when p == current.
3994  *
3995  * The rules of PREEMPT_RT saved_state:
3996  *
3997  *   The related locking code always holds p::pi_lock when updating
3998  *   p::saved_state, which means the code is fully serialized in both cases.
3999  *
4000  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4001  *   bits set. This allows to distinguish all wakeup scenarios.
4002  */
4003 static __always_inline
4004 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4005 {
4006 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4007 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4008 			     state != TASK_RTLOCK_WAIT);
4009 	}
4010 
4011 	if (READ_ONCE(p->__state) & state) {
4012 		*success = 1;
4013 		return true;
4014 	}
4015 
4016 #ifdef CONFIG_PREEMPT_RT
4017 	/*
4018 	 * Saved state preserves the task state across blocking on
4019 	 * an RT lock.  If the state matches, set p::saved_state to
4020 	 * TASK_RUNNING, but do not wake the task because it waits
4021 	 * for a lock wakeup. Also indicate success because from
4022 	 * the regular waker's point of view this has succeeded.
4023 	 *
4024 	 * After acquiring the lock the task will restore p::__state
4025 	 * from p::saved_state which ensures that the regular
4026 	 * wakeup is not lost. The restore will also set
4027 	 * p::saved_state to TASK_RUNNING so any further tests will
4028 	 * not result in false positives vs. @success
4029 	 */
4030 	if (p->saved_state & state) {
4031 		p->saved_state = TASK_RUNNING;
4032 		*success = 1;
4033 	}
4034 #endif
4035 	return false;
4036 }
4037 
4038 /*
4039  * Notes on Program-Order guarantees on SMP systems.
4040  *
4041  *  MIGRATION
4042  *
4043  * The basic program-order guarantee on SMP systems is that when a task [t]
4044  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4045  * execution on its new CPU [c1].
4046  *
4047  * For migration (of runnable tasks) this is provided by the following means:
4048  *
4049  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4050  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4051  *     rq(c1)->lock (if not at the same time, then in that order).
4052  *  C) LOCK of the rq(c1)->lock scheduling in task
4053  *
4054  * Release/acquire chaining guarantees that B happens after A and C after B.
4055  * Note: the CPU doing B need not be c0 or c1
4056  *
4057  * Example:
4058  *
4059  *   CPU0            CPU1            CPU2
4060  *
4061  *   LOCK rq(0)->lock
4062  *   sched-out X
4063  *   sched-in Y
4064  *   UNLOCK rq(0)->lock
4065  *
4066  *                                   LOCK rq(0)->lock // orders against CPU0
4067  *                                   dequeue X
4068  *                                   UNLOCK rq(0)->lock
4069  *
4070  *                                   LOCK rq(1)->lock
4071  *                                   enqueue X
4072  *                                   UNLOCK rq(1)->lock
4073  *
4074  *                   LOCK rq(1)->lock // orders against CPU2
4075  *                   sched-out Z
4076  *                   sched-in X
4077  *                   UNLOCK rq(1)->lock
4078  *
4079  *
4080  *  BLOCKING -- aka. SLEEP + WAKEUP
4081  *
4082  * For blocking we (obviously) need to provide the same guarantee as for
4083  * migration. However the means are completely different as there is no lock
4084  * chain to provide order. Instead we do:
4085  *
4086  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4087  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4088  *
4089  * Example:
4090  *
4091  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4092  *
4093  *   LOCK rq(0)->lock LOCK X->pi_lock
4094  *   dequeue X
4095  *   sched-out X
4096  *   smp_store_release(X->on_cpu, 0);
4097  *
4098  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4099  *                    X->state = WAKING
4100  *                    set_task_cpu(X,2)
4101  *
4102  *                    LOCK rq(2)->lock
4103  *                    enqueue X
4104  *                    X->state = RUNNING
4105  *                    UNLOCK rq(2)->lock
4106  *
4107  *                                          LOCK rq(2)->lock // orders against CPU1
4108  *                                          sched-out Z
4109  *                                          sched-in X
4110  *                                          UNLOCK rq(2)->lock
4111  *
4112  *                    UNLOCK X->pi_lock
4113  *   UNLOCK rq(0)->lock
4114  *
4115  *
4116  * However, for wakeups there is a second guarantee we must provide, namely we
4117  * must ensure that CONDITION=1 done by the caller can not be reordered with
4118  * accesses to the task state; see try_to_wake_up() and set_current_state().
4119  */
4120 
4121 /**
4122  * try_to_wake_up - wake up a thread
4123  * @p: the thread to be awakened
4124  * @state: the mask of task states that can be woken
4125  * @wake_flags: wake modifier flags (WF_*)
4126  *
4127  * Conceptually does:
4128  *
4129  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4130  *
4131  * If the task was not queued/runnable, also place it back on a runqueue.
4132  *
4133  * This function is atomic against schedule() which would dequeue the task.
4134  *
4135  * It issues a full memory barrier before accessing @p->state, see the comment
4136  * with set_current_state().
4137  *
4138  * Uses p->pi_lock to serialize against concurrent wake-ups.
4139  *
4140  * Relies on p->pi_lock stabilizing:
4141  *  - p->sched_class
4142  *  - p->cpus_ptr
4143  *  - p->sched_task_group
4144  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4145  *
4146  * Tries really hard to only take one task_rq(p)->lock for performance.
4147  * Takes rq->lock in:
4148  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4149  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4150  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4151  *
4152  * As a consequence we race really badly with just about everything. See the
4153  * many memory barriers and their comments for details.
4154  *
4155  * Return: %true if @p->state changes (an actual wakeup was done),
4156  *	   %false otherwise.
4157  */
4158 static int
4159 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4160 {
4161 	unsigned long flags;
4162 	int cpu, success = 0;
4163 
4164 	preempt_disable();
4165 	if (p == current) {
4166 		/*
4167 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4168 		 * == smp_processor_id()'. Together this means we can special
4169 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4170 		 * without taking any locks.
4171 		 *
4172 		 * In particular:
4173 		 *  - we rely on Program-Order guarantees for all the ordering,
4174 		 *  - we're serialized against set_special_state() by virtue of
4175 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4176 		 */
4177 		if (!ttwu_state_match(p, state, &success))
4178 			goto out;
4179 
4180 		trace_sched_waking(p);
4181 		ttwu_do_wakeup(p);
4182 		goto out;
4183 	}
4184 
4185 	/*
4186 	 * If we are going to wake up a thread waiting for CONDITION we
4187 	 * need to ensure that CONDITION=1 done by the caller can not be
4188 	 * reordered with p->state check below. This pairs with smp_store_mb()
4189 	 * in set_current_state() that the waiting thread does.
4190 	 */
4191 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4192 	smp_mb__after_spinlock();
4193 	if (!ttwu_state_match(p, state, &success))
4194 		goto unlock;
4195 
4196 	trace_sched_waking(p);
4197 
4198 	/*
4199 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4200 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4201 	 * in smp_cond_load_acquire() below.
4202 	 *
4203 	 * sched_ttwu_pending()			try_to_wake_up()
4204 	 *   STORE p->on_rq = 1			  LOAD p->state
4205 	 *   UNLOCK rq->lock
4206 	 *
4207 	 * __schedule() (switch to task 'p')
4208 	 *   LOCK rq->lock			  smp_rmb();
4209 	 *   smp_mb__after_spinlock();
4210 	 *   UNLOCK rq->lock
4211 	 *
4212 	 * [task p]
4213 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4214 	 *
4215 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4216 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4217 	 *
4218 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4219 	 */
4220 	smp_rmb();
4221 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4222 		goto unlock;
4223 
4224 #ifdef CONFIG_SMP
4225 	/*
4226 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4227 	 * possible to, falsely, observe p->on_cpu == 0.
4228 	 *
4229 	 * One must be running (->on_cpu == 1) in order to remove oneself
4230 	 * from the runqueue.
4231 	 *
4232 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4233 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4234 	 *   UNLOCK rq->lock
4235 	 *
4236 	 * __schedule() (put 'p' to sleep)
4237 	 *   LOCK rq->lock			  smp_rmb();
4238 	 *   smp_mb__after_spinlock();
4239 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4240 	 *
4241 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4242 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4243 	 *
4244 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4245 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4246 	 * care about it's own p->state. See the comment in __schedule().
4247 	 */
4248 	smp_acquire__after_ctrl_dep();
4249 
4250 	/*
4251 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4252 	 * == 0), which means we need to do an enqueue, change p->state to
4253 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4254 	 * enqueue, such as ttwu_queue_wakelist().
4255 	 */
4256 	WRITE_ONCE(p->__state, TASK_WAKING);
4257 
4258 	/*
4259 	 * If the owning (remote) CPU is still in the middle of schedule() with
4260 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4261 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4262 	 * let the waker make forward progress. This is safe because IRQs are
4263 	 * disabled and the IPI will deliver after on_cpu is cleared.
4264 	 *
4265 	 * Ensure we load task_cpu(p) after p->on_cpu:
4266 	 *
4267 	 * set_task_cpu(p, cpu);
4268 	 *   STORE p->cpu = @cpu
4269 	 * __schedule() (switch to task 'p')
4270 	 *   LOCK rq->lock
4271 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4272 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4273 	 *
4274 	 * to ensure we observe the correct CPU on which the task is currently
4275 	 * scheduling.
4276 	 */
4277 	if (smp_load_acquire(&p->on_cpu) &&
4278 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4279 		goto unlock;
4280 
4281 	/*
4282 	 * If the owning (remote) CPU is still in the middle of schedule() with
4283 	 * this task as prev, wait until it's done referencing the task.
4284 	 *
4285 	 * Pairs with the smp_store_release() in finish_task().
4286 	 *
4287 	 * This ensures that tasks getting woken will be fully ordered against
4288 	 * their previous state and preserve Program Order.
4289 	 */
4290 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4291 
4292 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4293 	if (task_cpu(p) != cpu) {
4294 		if (p->in_iowait) {
4295 			delayacct_blkio_end(p);
4296 			atomic_dec(&task_rq(p)->nr_iowait);
4297 		}
4298 
4299 		wake_flags |= WF_MIGRATED;
4300 		psi_ttwu_dequeue(p);
4301 		set_task_cpu(p, cpu);
4302 	}
4303 #else
4304 	cpu = task_cpu(p);
4305 #endif /* CONFIG_SMP */
4306 
4307 	ttwu_queue(p, cpu, wake_flags);
4308 unlock:
4309 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4310 out:
4311 	if (success)
4312 		ttwu_stat(p, task_cpu(p), wake_flags);
4313 	preempt_enable();
4314 
4315 	return success;
4316 }
4317 
4318 static bool __task_needs_rq_lock(struct task_struct *p)
4319 {
4320 	unsigned int state = READ_ONCE(p->__state);
4321 
4322 	/*
4323 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4324 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4325 	 * locks at the end, see ttwu_queue_wakelist().
4326 	 */
4327 	if (state == TASK_RUNNING || state == TASK_WAKING)
4328 		return true;
4329 
4330 	/*
4331 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4332 	 * possible to, falsely, observe p->on_rq == 0.
4333 	 *
4334 	 * See try_to_wake_up() for a longer comment.
4335 	 */
4336 	smp_rmb();
4337 	if (p->on_rq)
4338 		return true;
4339 
4340 #ifdef CONFIG_SMP
4341 	/*
4342 	 * Ensure the task has finished __schedule() and will not be referenced
4343 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4344 	 */
4345 	smp_rmb();
4346 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4347 #endif
4348 
4349 	return false;
4350 }
4351 
4352 /**
4353  * task_call_func - Invoke a function on task in fixed state
4354  * @p: Process for which the function is to be invoked, can be @current.
4355  * @func: Function to invoke.
4356  * @arg: Argument to function.
4357  *
4358  * Fix the task in it's current state by avoiding wakeups and or rq operations
4359  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4360  * to work out what the state is, if required.  Given that @func can be invoked
4361  * with a runqueue lock held, it had better be quite lightweight.
4362  *
4363  * Returns:
4364  *   Whatever @func returns
4365  */
4366 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4367 {
4368 	struct rq *rq = NULL;
4369 	struct rq_flags rf;
4370 	int ret;
4371 
4372 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4373 
4374 	if (__task_needs_rq_lock(p))
4375 		rq = __task_rq_lock(p, &rf);
4376 
4377 	/*
4378 	 * At this point the task is pinned; either:
4379 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4380 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4381 	 *  - queued, and we're holding off schedule	 (rq->lock)
4382 	 *  - running, and we're holding off de-schedule (rq->lock)
4383 	 *
4384 	 * The called function (@func) can use: task_curr(), p->on_rq and
4385 	 * p->__state to differentiate between these states.
4386 	 */
4387 	ret = func(p, arg);
4388 
4389 	if (rq)
4390 		rq_unlock(rq, &rf);
4391 
4392 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4393 	return ret;
4394 }
4395 
4396 /**
4397  * cpu_curr_snapshot - Return a snapshot of the currently running task
4398  * @cpu: The CPU on which to snapshot the task.
4399  *
4400  * Returns the task_struct pointer of the task "currently" running on
4401  * the specified CPU.  If the same task is running on that CPU throughout,
4402  * the return value will be a pointer to that task's task_struct structure.
4403  * If the CPU did any context switches even vaguely concurrently with the
4404  * execution of this function, the return value will be a pointer to the
4405  * task_struct structure of a randomly chosen task that was running on
4406  * that CPU somewhere around the time that this function was executing.
4407  *
4408  * If the specified CPU was offline, the return value is whatever it
4409  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4410  * task, but there is no guarantee.  Callers wishing a useful return
4411  * value must take some action to ensure that the specified CPU remains
4412  * online throughout.
4413  *
4414  * This function executes full memory barriers before and after fetching
4415  * the pointer, which permits the caller to confine this function's fetch
4416  * with respect to the caller's accesses to other shared variables.
4417  */
4418 struct task_struct *cpu_curr_snapshot(int cpu)
4419 {
4420 	struct task_struct *t;
4421 
4422 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4423 	t = rcu_dereference(cpu_curr(cpu));
4424 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4425 	return t;
4426 }
4427 
4428 /**
4429  * wake_up_process - Wake up a specific process
4430  * @p: The process to be woken up.
4431  *
4432  * Attempt to wake up the nominated process and move it to the set of runnable
4433  * processes.
4434  *
4435  * Return: 1 if the process was woken up, 0 if it was already running.
4436  *
4437  * This function executes a full memory barrier before accessing the task state.
4438  */
4439 int wake_up_process(struct task_struct *p)
4440 {
4441 	return try_to_wake_up(p, TASK_NORMAL, 0);
4442 }
4443 EXPORT_SYMBOL(wake_up_process);
4444 
4445 int wake_up_state(struct task_struct *p, unsigned int state)
4446 {
4447 	return try_to_wake_up(p, state, 0);
4448 }
4449 
4450 /*
4451  * Perform scheduler related setup for a newly forked process p.
4452  * p is forked by current.
4453  *
4454  * __sched_fork() is basic setup used by init_idle() too:
4455  */
4456 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4457 {
4458 	p->on_rq			= 0;
4459 
4460 	p->se.on_rq			= 0;
4461 	p->se.exec_start		= 0;
4462 	p->se.sum_exec_runtime		= 0;
4463 	p->se.prev_sum_exec_runtime	= 0;
4464 	p->se.nr_migrations		= 0;
4465 	p->se.vruntime			= 0;
4466 	INIT_LIST_HEAD(&p->se.group_node);
4467 
4468 #ifdef CONFIG_FAIR_GROUP_SCHED
4469 	p->se.cfs_rq			= NULL;
4470 #endif
4471 
4472 #ifdef CONFIG_SCHEDSTATS
4473 	/* Even if schedstat is disabled, there should not be garbage */
4474 	memset(&p->stats, 0, sizeof(p->stats));
4475 #endif
4476 
4477 	RB_CLEAR_NODE(&p->dl.rb_node);
4478 	init_dl_task_timer(&p->dl);
4479 	init_dl_inactive_task_timer(&p->dl);
4480 	__dl_clear_params(p);
4481 
4482 	INIT_LIST_HEAD(&p->rt.run_list);
4483 	p->rt.timeout		= 0;
4484 	p->rt.time_slice	= sched_rr_timeslice;
4485 	p->rt.on_rq		= 0;
4486 	p->rt.on_list		= 0;
4487 
4488 #ifdef CONFIG_PREEMPT_NOTIFIERS
4489 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4490 #endif
4491 
4492 #ifdef CONFIG_COMPACTION
4493 	p->capture_control = NULL;
4494 #endif
4495 	init_numa_balancing(clone_flags, p);
4496 #ifdef CONFIG_SMP
4497 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4498 	p->migration_pending = NULL;
4499 #endif
4500 	init_sched_mm_cid(p);
4501 }
4502 
4503 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4504 
4505 #ifdef CONFIG_NUMA_BALANCING
4506 
4507 int sysctl_numa_balancing_mode;
4508 
4509 static void __set_numabalancing_state(bool enabled)
4510 {
4511 	if (enabled)
4512 		static_branch_enable(&sched_numa_balancing);
4513 	else
4514 		static_branch_disable(&sched_numa_balancing);
4515 }
4516 
4517 void set_numabalancing_state(bool enabled)
4518 {
4519 	if (enabled)
4520 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4521 	else
4522 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4523 	__set_numabalancing_state(enabled);
4524 }
4525 
4526 #ifdef CONFIG_PROC_SYSCTL
4527 static void reset_memory_tiering(void)
4528 {
4529 	struct pglist_data *pgdat;
4530 
4531 	for_each_online_pgdat(pgdat) {
4532 		pgdat->nbp_threshold = 0;
4533 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4534 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4535 	}
4536 }
4537 
4538 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4539 			  void *buffer, size_t *lenp, loff_t *ppos)
4540 {
4541 	struct ctl_table t;
4542 	int err;
4543 	int state = sysctl_numa_balancing_mode;
4544 
4545 	if (write && !capable(CAP_SYS_ADMIN))
4546 		return -EPERM;
4547 
4548 	t = *table;
4549 	t.data = &state;
4550 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4551 	if (err < 0)
4552 		return err;
4553 	if (write) {
4554 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4555 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4556 			reset_memory_tiering();
4557 		sysctl_numa_balancing_mode = state;
4558 		__set_numabalancing_state(state);
4559 	}
4560 	return err;
4561 }
4562 #endif
4563 #endif
4564 
4565 #ifdef CONFIG_SCHEDSTATS
4566 
4567 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4568 
4569 static void set_schedstats(bool enabled)
4570 {
4571 	if (enabled)
4572 		static_branch_enable(&sched_schedstats);
4573 	else
4574 		static_branch_disable(&sched_schedstats);
4575 }
4576 
4577 void force_schedstat_enabled(void)
4578 {
4579 	if (!schedstat_enabled()) {
4580 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4581 		static_branch_enable(&sched_schedstats);
4582 	}
4583 }
4584 
4585 static int __init setup_schedstats(char *str)
4586 {
4587 	int ret = 0;
4588 	if (!str)
4589 		goto out;
4590 
4591 	if (!strcmp(str, "enable")) {
4592 		set_schedstats(true);
4593 		ret = 1;
4594 	} else if (!strcmp(str, "disable")) {
4595 		set_schedstats(false);
4596 		ret = 1;
4597 	}
4598 out:
4599 	if (!ret)
4600 		pr_warn("Unable to parse schedstats=\n");
4601 
4602 	return ret;
4603 }
4604 __setup("schedstats=", setup_schedstats);
4605 
4606 #ifdef CONFIG_PROC_SYSCTL
4607 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4608 		size_t *lenp, loff_t *ppos)
4609 {
4610 	struct ctl_table t;
4611 	int err;
4612 	int state = static_branch_likely(&sched_schedstats);
4613 
4614 	if (write && !capable(CAP_SYS_ADMIN))
4615 		return -EPERM;
4616 
4617 	t = *table;
4618 	t.data = &state;
4619 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4620 	if (err < 0)
4621 		return err;
4622 	if (write)
4623 		set_schedstats(state);
4624 	return err;
4625 }
4626 #endif /* CONFIG_PROC_SYSCTL */
4627 #endif /* CONFIG_SCHEDSTATS */
4628 
4629 #ifdef CONFIG_SYSCTL
4630 static struct ctl_table sched_core_sysctls[] = {
4631 #ifdef CONFIG_SCHEDSTATS
4632 	{
4633 		.procname       = "sched_schedstats",
4634 		.data           = NULL,
4635 		.maxlen         = sizeof(unsigned int),
4636 		.mode           = 0644,
4637 		.proc_handler   = sysctl_schedstats,
4638 		.extra1         = SYSCTL_ZERO,
4639 		.extra2         = SYSCTL_ONE,
4640 	},
4641 #endif /* CONFIG_SCHEDSTATS */
4642 #ifdef CONFIG_UCLAMP_TASK
4643 	{
4644 		.procname       = "sched_util_clamp_min",
4645 		.data           = &sysctl_sched_uclamp_util_min,
4646 		.maxlen         = sizeof(unsigned int),
4647 		.mode           = 0644,
4648 		.proc_handler   = sysctl_sched_uclamp_handler,
4649 	},
4650 	{
4651 		.procname       = "sched_util_clamp_max",
4652 		.data           = &sysctl_sched_uclamp_util_max,
4653 		.maxlen         = sizeof(unsigned int),
4654 		.mode           = 0644,
4655 		.proc_handler   = sysctl_sched_uclamp_handler,
4656 	},
4657 	{
4658 		.procname       = "sched_util_clamp_min_rt_default",
4659 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4660 		.maxlen         = sizeof(unsigned int),
4661 		.mode           = 0644,
4662 		.proc_handler   = sysctl_sched_uclamp_handler,
4663 	},
4664 #endif /* CONFIG_UCLAMP_TASK */
4665 #ifdef CONFIG_NUMA_BALANCING
4666 	{
4667 		.procname	= "numa_balancing",
4668 		.data		= NULL, /* filled in by handler */
4669 		.maxlen		= sizeof(unsigned int),
4670 		.mode		= 0644,
4671 		.proc_handler	= sysctl_numa_balancing,
4672 		.extra1		= SYSCTL_ZERO,
4673 		.extra2		= SYSCTL_FOUR,
4674 	},
4675 #endif /* CONFIG_NUMA_BALANCING */
4676 	{}
4677 };
4678 static int __init sched_core_sysctl_init(void)
4679 {
4680 	register_sysctl_init("kernel", sched_core_sysctls);
4681 	return 0;
4682 }
4683 late_initcall(sched_core_sysctl_init);
4684 #endif /* CONFIG_SYSCTL */
4685 
4686 /*
4687  * fork()/clone()-time setup:
4688  */
4689 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4690 {
4691 	__sched_fork(clone_flags, p);
4692 	/*
4693 	 * We mark the process as NEW here. This guarantees that
4694 	 * nobody will actually run it, and a signal or other external
4695 	 * event cannot wake it up and insert it on the runqueue either.
4696 	 */
4697 	p->__state = TASK_NEW;
4698 
4699 	/*
4700 	 * Make sure we do not leak PI boosting priority to the child.
4701 	 */
4702 	p->prio = current->normal_prio;
4703 
4704 	uclamp_fork(p);
4705 
4706 	/*
4707 	 * Revert to default priority/policy on fork if requested.
4708 	 */
4709 	if (unlikely(p->sched_reset_on_fork)) {
4710 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4711 			p->policy = SCHED_NORMAL;
4712 			p->static_prio = NICE_TO_PRIO(0);
4713 			p->rt_priority = 0;
4714 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4715 			p->static_prio = NICE_TO_PRIO(0);
4716 
4717 		p->prio = p->normal_prio = p->static_prio;
4718 		set_load_weight(p, false);
4719 
4720 		/*
4721 		 * We don't need the reset flag anymore after the fork. It has
4722 		 * fulfilled its duty:
4723 		 */
4724 		p->sched_reset_on_fork = 0;
4725 	}
4726 
4727 	if (dl_prio(p->prio))
4728 		return -EAGAIN;
4729 	else if (rt_prio(p->prio))
4730 		p->sched_class = &rt_sched_class;
4731 	else
4732 		p->sched_class = &fair_sched_class;
4733 
4734 	init_entity_runnable_average(&p->se);
4735 
4736 
4737 #ifdef CONFIG_SCHED_INFO
4738 	if (likely(sched_info_on()))
4739 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4740 #endif
4741 #if defined(CONFIG_SMP)
4742 	p->on_cpu = 0;
4743 #endif
4744 	init_task_preempt_count(p);
4745 #ifdef CONFIG_SMP
4746 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4747 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4748 #endif
4749 	return 0;
4750 }
4751 
4752 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4753 {
4754 	unsigned long flags;
4755 
4756 	/*
4757 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4758 	 * required yet, but lockdep gets upset if rules are violated.
4759 	 */
4760 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4761 #ifdef CONFIG_CGROUP_SCHED
4762 	if (1) {
4763 		struct task_group *tg;
4764 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4765 				  struct task_group, css);
4766 		tg = autogroup_task_group(p, tg);
4767 		p->sched_task_group = tg;
4768 	}
4769 #endif
4770 	rseq_migrate(p);
4771 	/*
4772 	 * We're setting the CPU for the first time, we don't migrate,
4773 	 * so use __set_task_cpu().
4774 	 */
4775 	__set_task_cpu(p, smp_processor_id());
4776 	if (p->sched_class->task_fork)
4777 		p->sched_class->task_fork(p);
4778 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4779 }
4780 
4781 void sched_post_fork(struct task_struct *p)
4782 {
4783 	uclamp_post_fork(p);
4784 }
4785 
4786 unsigned long to_ratio(u64 period, u64 runtime)
4787 {
4788 	if (runtime == RUNTIME_INF)
4789 		return BW_UNIT;
4790 
4791 	/*
4792 	 * Doing this here saves a lot of checks in all
4793 	 * the calling paths, and returning zero seems
4794 	 * safe for them anyway.
4795 	 */
4796 	if (period == 0)
4797 		return 0;
4798 
4799 	return div64_u64(runtime << BW_SHIFT, period);
4800 }
4801 
4802 /*
4803  * wake_up_new_task - wake up a newly created task for the first time.
4804  *
4805  * This function will do some initial scheduler statistics housekeeping
4806  * that must be done for every newly created context, then puts the task
4807  * on the runqueue and wakes it.
4808  */
4809 void wake_up_new_task(struct task_struct *p)
4810 {
4811 	struct rq_flags rf;
4812 	struct rq *rq;
4813 
4814 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4815 	WRITE_ONCE(p->__state, TASK_RUNNING);
4816 #ifdef CONFIG_SMP
4817 	/*
4818 	 * Fork balancing, do it here and not earlier because:
4819 	 *  - cpus_ptr can change in the fork path
4820 	 *  - any previously selected CPU might disappear through hotplug
4821 	 *
4822 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4823 	 * as we're not fully set-up yet.
4824 	 */
4825 	p->recent_used_cpu = task_cpu(p);
4826 	rseq_migrate(p);
4827 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4828 #endif
4829 	rq = __task_rq_lock(p, &rf);
4830 	update_rq_clock(rq);
4831 	post_init_entity_util_avg(p);
4832 
4833 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4834 	trace_sched_wakeup_new(p);
4835 	check_preempt_curr(rq, p, WF_FORK);
4836 #ifdef CONFIG_SMP
4837 	if (p->sched_class->task_woken) {
4838 		/*
4839 		 * Nothing relies on rq->lock after this, so it's fine to
4840 		 * drop it.
4841 		 */
4842 		rq_unpin_lock(rq, &rf);
4843 		p->sched_class->task_woken(rq, p);
4844 		rq_repin_lock(rq, &rf);
4845 	}
4846 #endif
4847 	task_rq_unlock(rq, p, &rf);
4848 }
4849 
4850 #ifdef CONFIG_PREEMPT_NOTIFIERS
4851 
4852 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4853 
4854 void preempt_notifier_inc(void)
4855 {
4856 	static_branch_inc(&preempt_notifier_key);
4857 }
4858 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4859 
4860 void preempt_notifier_dec(void)
4861 {
4862 	static_branch_dec(&preempt_notifier_key);
4863 }
4864 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4865 
4866 /**
4867  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4868  * @notifier: notifier struct to register
4869  */
4870 void preempt_notifier_register(struct preempt_notifier *notifier)
4871 {
4872 	if (!static_branch_unlikely(&preempt_notifier_key))
4873 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4874 
4875 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4876 }
4877 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4878 
4879 /**
4880  * preempt_notifier_unregister - no longer interested in preemption notifications
4881  * @notifier: notifier struct to unregister
4882  *
4883  * This is *not* safe to call from within a preemption notifier.
4884  */
4885 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4886 {
4887 	hlist_del(&notifier->link);
4888 }
4889 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4890 
4891 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4892 {
4893 	struct preempt_notifier *notifier;
4894 
4895 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4896 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4897 }
4898 
4899 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4900 {
4901 	if (static_branch_unlikely(&preempt_notifier_key))
4902 		__fire_sched_in_preempt_notifiers(curr);
4903 }
4904 
4905 static void
4906 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4907 				   struct task_struct *next)
4908 {
4909 	struct preempt_notifier *notifier;
4910 
4911 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4912 		notifier->ops->sched_out(notifier, next);
4913 }
4914 
4915 static __always_inline void
4916 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4917 				 struct task_struct *next)
4918 {
4919 	if (static_branch_unlikely(&preempt_notifier_key))
4920 		__fire_sched_out_preempt_notifiers(curr, next);
4921 }
4922 
4923 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4924 
4925 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4926 {
4927 }
4928 
4929 static inline void
4930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4931 				 struct task_struct *next)
4932 {
4933 }
4934 
4935 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4936 
4937 static inline void prepare_task(struct task_struct *next)
4938 {
4939 #ifdef CONFIG_SMP
4940 	/*
4941 	 * Claim the task as running, we do this before switching to it
4942 	 * such that any running task will have this set.
4943 	 *
4944 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4945 	 * its ordering comment.
4946 	 */
4947 	WRITE_ONCE(next->on_cpu, 1);
4948 #endif
4949 }
4950 
4951 static inline void finish_task(struct task_struct *prev)
4952 {
4953 #ifdef CONFIG_SMP
4954 	/*
4955 	 * This must be the very last reference to @prev from this CPU. After
4956 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4957 	 * must ensure this doesn't happen until the switch is completely
4958 	 * finished.
4959 	 *
4960 	 * In particular, the load of prev->state in finish_task_switch() must
4961 	 * happen before this.
4962 	 *
4963 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4964 	 */
4965 	smp_store_release(&prev->on_cpu, 0);
4966 #endif
4967 }
4968 
4969 #ifdef CONFIG_SMP
4970 
4971 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4972 {
4973 	void (*func)(struct rq *rq);
4974 	struct balance_callback *next;
4975 
4976 	lockdep_assert_rq_held(rq);
4977 
4978 	while (head) {
4979 		func = (void (*)(struct rq *))head->func;
4980 		next = head->next;
4981 		head->next = NULL;
4982 		head = next;
4983 
4984 		func(rq);
4985 	}
4986 }
4987 
4988 static void balance_push(struct rq *rq);
4989 
4990 /*
4991  * balance_push_callback is a right abuse of the callback interface and plays
4992  * by significantly different rules.
4993  *
4994  * Where the normal balance_callback's purpose is to be ran in the same context
4995  * that queued it (only later, when it's safe to drop rq->lock again),
4996  * balance_push_callback is specifically targeted at __schedule().
4997  *
4998  * This abuse is tolerated because it places all the unlikely/odd cases behind
4999  * a single test, namely: rq->balance_callback == NULL.
5000  */
5001 struct balance_callback balance_push_callback = {
5002 	.next = NULL,
5003 	.func = balance_push,
5004 };
5005 
5006 static inline struct balance_callback *
5007 __splice_balance_callbacks(struct rq *rq, bool split)
5008 {
5009 	struct balance_callback *head = rq->balance_callback;
5010 
5011 	if (likely(!head))
5012 		return NULL;
5013 
5014 	lockdep_assert_rq_held(rq);
5015 	/*
5016 	 * Must not take balance_push_callback off the list when
5017 	 * splice_balance_callbacks() and balance_callbacks() are not
5018 	 * in the same rq->lock section.
5019 	 *
5020 	 * In that case it would be possible for __schedule() to interleave
5021 	 * and observe the list empty.
5022 	 */
5023 	if (split && head == &balance_push_callback)
5024 		head = NULL;
5025 	else
5026 		rq->balance_callback = NULL;
5027 
5028 	return head;
5029 }
5030 
5031 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5032 {
5033 	return __splice_balance_callbacks(rq, true);
5034 }
5035 
5036 static void __balance_callbacks(struct rq *rq)
5037 {
5038 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5039 }
5040 
5041 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5042 {
5043 	unsigned long flags;
5044 
5045 	if (unlikely(head)) {
5046 		raw_spin_rq_lock_irqsave(rq, flags);
5047 		do_balance_callbacks(rq, head);
5048 		raw_spin_rq_unlock_irqrestore(rq, flags);
5049 	}
5050 }
5051 
5052 #else
5053 
5054 static inline void __balance_callbacks(struct rq *rq)
5055 {
5056 }
5057 
5058 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5059 {
5060 	return NULL;
5061 }
5062 
5063 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5064 {
5065 }
5066 
5067 #endif
5068 
5069 static inline void
5070 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5071 {
5072 	/*
5073 	 * Since the runqueue lock will be released by the next
5074 	 * task (which is an invalid locking op but in the case
5075 	 * of the scheduler it's an obvious special-case), so we
5076 	 * do an early lockdep release here:
5077 	 */
5078 	rq_unpin_lock(rq, rf);
5079 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5080 #ifdef CONFIG_DEBUG_SPINLOCK
5081 	/* this is a valid case when another task releases the spinlock */
5082 	rq_lockp(rq)->owner = next;
5083 #endif
5084 }
5085 
5086 static inline void finish_lock_switch(struct rq *rq)
5087 {
5088 	/*
5089 	 * If we are tracking spinlock dependencies then we have to
5090 	 * fix up the runqueue lock - which gets 'carried over' from
5091 	 * prev into current:
5092 	 */
5093 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5094 	__balance_callbacks(rq);
5095 	raw_spin_rq_unlock_irq(rq);
5096 }
5097 
5098 /*
5099  * NOP if the arch has not defined these:
5100  */
5101 
5102 #ifndef prepare_arch_switch
5103 # define prepare_arch_switch(next)	do { } while (0)
5104 #endif
5105 
5106 #ifndef finish_arch_post_lock_switch
5107 # define finish_arch_post_lock_switch()	do { } while (0)
5108 #endif
5109 
5110 static inline void kmap_local_sched_out(void)
5111 {
5112 #ifdef CONFIG_KMAP_LOCAL
5113 	if (unlikely(current->kmap_ctrl.idx))
5114 		__kmap_local_sched_out();
5115 #endif
5116 }
5117 
5118 static inline void kmap_local_sched_in(void)
5119 {
5120 #ifdef CONFIG_KMAP_LOCAL
5121 	if (unlikely(current->kmap_ctrl.idx))
5122 		__kmap_local_sched_in();
5123 #endif
5124 }
5125 
5126 /**
5127  * prepare_task_switch - prepare to switch tasks
5128  * @rq: the runqueue preparing to switch
5129  * @prev: the current task that is being switched out
5130  * @next: the task we are going to switch to.
5131  *
5132  * This is called with the rq lock held and interrupts off. It must
5133  * be paired with a subsequent finish_task_switch after the context
5134  * switch.
5135  *
5136  * prepare_task_switch sets up locking and calls architecture specific
5137  * hooks.
5138  */
5139 static inline void
5140 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5141 		    struct task_struct *next)
5142 {
5143 	kcov_prepare_switch(prev);
5144 	sched_info_switch(rq, prev, next);
5145 	perf_event_task_sched_out(prev, next);
5146 	rseq_preempt(prev);
5147 	fire_sched_out_preempt_notifiers(prev, next);
5148 	kmap_local_sched_out();
5149 	prepare_task(next);
5150 	prepare_arch_switch(next);
5151 }
5152 
5153 /**
5154  * finish_task_switch - clean up after a task-switch
5155  * @prev: the thread we just switched away from.
5156  *
5157  * finish_task_switch must be called after the context switch, paired
5158  * with a prepare_task_switch call before the context switch.
5159  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5160  * and do any other architecture-specific cleanup actions.
5161  *
5162  * Note that we may have delayed dropping an mm in context_switch(). If
5163  * so, we finish that here outside of the runqueue lock. (Doing it
5164  * with the lock held can cause deadlocks; see schedule() for
5165  * details.)
5166  *
5167  * The context switch have flipped the stack from under us and restored the
5168  * local variables which were saved when this task called schedule() in the
5169  * past. prev == current is still correct but we need to recalculate this_rq
5170  * because prev may have moved to another CPU.
5171  */
5172 static struct rq *finish_task_switch(struct task_struct *prev)
5173 	__releases(rq->lock)
5174 {
5175 	struct rq *rq = this_rq();
5176 	struct mm_struct *mm = rq->prev_mm;
5177 	unsigned int prev_state;
5178 
5179 	/*
5180 	 * The previous task will have left us with a preempt_count of 2
5181 	 * because it left us after:
5182 	 *
5183 	 *	schedule()
5184 	 *	  preempt_disable();			// 1
5185 	 *	  __schedule()
5186 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5187 	 *
5188 	 * Also, see FORK_PREEMPT_COUNT.
5189 	 */
5190 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5191 		      "corrupted preempt_count: %s/%d/0x%x\n",
5192 		      current->comm, current->pid, preempt_count()))
5193 		preempt_count_set(FORK_PREEMPT_COUNT);
5194 
5195 	rq->prev_mm = NULL;
5196 
5197 	/*
5198 	 * A task struct has one reference for the use as "current".
5199 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5200 	 * schedule one last time. The schedule call will never return, and
5201 	 * the scheduled task must drop that reference.
5202 	 *
5203 	 * We must observe prev->state before clearing prev->on_cpu (in
5204 	 * finish_task), otherwise a concurrent wakeup can get prev
5205 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5206 	 * transition, resulting in a double drop.
5207 	 */
5208 	prev_state = READ_ONCE(prev->__state);
5209 	vtime_task_switch(prev);
5210 	perf_event_task_sched_in(prev, current);
5211 	finish_task(prev);
5212 	tick_nohz_task_switch();
5213 	finish_lock_switch(rq);
5214 	finish_arch_post_lock_switch();
5215 	kcov_finish_switch(current);
5216 	/*
5217 	 * kmap_local_sched_out() is invoked with rq::lock held and
5218 	 * interrupts disabled. There is no requirement for that, but the
5219 	 * sched out code does not have an interrupt enabled section.
5220 	 * Restoring the maps on sched in does not require interrupts being
5221 	 * disabled either.
5222 	 */
5223 	kmap_local_sched_in();
5224 
5225 	fire_sched_in_preempt_notifiers(current);
5226 	/*
5227 	 * When switching through a kernel thread, the loop in
5228 	 * membarrier_{private,global}_expedited() may have observed that
5229 	 * kernel thread and not issued an IPI. It is therefore possible to
5230 	 * schedule between user->kernel->user threads without passing though
5231 	 * switch_mm(). Membarrier requires a barrier after storing to
5232 	 * rq->curr, before returning to userspace, so provide them here:
5233 	 *
5234 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5235 	 *   provided by mmdrop_lazy_tlb(),
5236 	 * - a sync_core for SYNC_CORE.
5237 	 */
5238 	if (mm) {
5239 		membarrier_mm_sync_core_before_usermode(mm);
5240 		mmdrop_lazy_tlb_sched(mm);
5241 	}
5242 
5243 	if (unlikely(prev_state == TASK_DEAD)) {
5244 		if (prev->sched_class->task_dead)
5245 			prev->sched_class->task_dead(prev);
5246 
5247 		/* Task is done with its stack. */
5248 		put_task_stack(prev);
5249 
5250 		put_task_struct_rcu_user(prev);
5251 	}
5252 
5253 	return rq;
5254 }
5255 
5256 /**
5257  * schedule_tail - first thing a freshly forked thread must call.
5258  * @prev: the thread we just switched away from.
5259  */
5260 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5261 	__releases(rq->lock)
5262 {
5263 	/*
5264 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5265 	 * finish_task_switch() for details.
5266 	 *
5267 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5268 	 * and the preempt_enable() will end up enabling preemption (on
5269 	 * PREEMPT_COUNT kernels).
5270 	 */
5271 
5272 	finish_task_switch(prev);
5273 	preempt_enable();
5274 
5275 	if (current->set_child_tid)
5276 		put_user(task_pid_vnr(current), current->set_child_tid);
5277 
5278 	calculate_sigpending();
5279 }
5280 
5281 /*
5282  * context_switch - switch to the new MM and the new thread's register state.
5283  */
5284 static __always_inline struct rq *
5285 context_switch(struct rq *rq, struct task_struct *prev,
5286 	       struct task_struct *next, struct rq_flags *rf)
5287 {
5288 	prepare_task_switch(rq, prev, next);
5289 
5290 	/*
5291 	 * For paravirt, this is coupled with an exit in switch_to to
5292 	 * combine the page table reload and the switch backend into
5293 	 * one hypercall.
5294 	 */
5295 	arch_start_context_switch(prev);
5296 
5297 	/*
5298 	 * kernel -> kernel   lazy + transfer active
5299 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5300 	 *
5301 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5302 	 *   user ->   user   switch
5303 	 *
5304 	 * switch_mm_cid() needs to be updated if the barriers provided
5305 	 * by context_switch() are modified.
5306 	 */
5307 	if (!next->mm) {                                // to kernel
5308 		enter_lazy_tlb(prev->active_mm, next);
5309 
5310 		next->active_mm = prev->active_mm;
5311 		if (prev->mm)                           // from user
5312 			mmgrab_lazy_tlb(prev->active_mm);
5313 		else
5314 			prev->active_mm = NULL;
5315 	} else {                                        // to user
5316 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5317 		/*
5318 		 * sys_membarrier() requires an smp_mb() between setting
5319 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5320 		 *
5321 		 * The below provides this either through switch_mm(), or in
5322 		 * case 'prev->active_mm == next->mm' through
5323 		 * finish_task_switch()'s mmdrop().
5324 		 */
5325 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5326 		lru_gen_use_mm(next->mm);
5327 
5328 		if (!prev->mm) {                        // from kernel
5329 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5330 			rq->prev_mm = prev->active_mm;
5331 			prev->active_mm = NULL;
5332 		}
5333 	}
5334 
5335 	/* switch_mm_cid() requires the memory barriers above. */
5336 	switch_mm_cid(rq, prev, next);
5337 
5338 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5339 
5340 	prepare_lock_switch(rq, next, rf);
5341 
5342 	/* Here we just switch the register state and the stack. */
5343 	switch_to(prev, next, prev);
5344 	barrier();
5345 
5346 	return finish_task_switch(prev);
5347 }
5348 
5349 /*
5350  * nr_running and nr_context_switches:
5351  *
5352  * externally visible scheduler statistics: current number of runnable
5353  * threads, total number of context switches performed since bootup.
5354  */
5355 unsigned int nr_running(void)
5356 {
5357 	unsigned int i, sum = 0;
5358 
5359 	for_each_online_cpu(i)
5360 		sum += cpu_rq(i)->nr_running;
5361 
5362 	return sum;
5363 }
5364 
5365 /*
5366  * Check if only the current task is running on the CPU.
5367  *
5368  * Caution: this function does not check that the caller has disabled
5369  * preemption, thus the result might have a time-of-check-to-time-of-use
5370  * race.  The caller is responsible to use it correctly, for example:
5371  *
5372  * - from a non-preemptible section (of course)
5373  *
5374  * - from a thread that is bound to a single CPU
5375  *
5376  * - in a loop with very short iterations (e.g. a polling loop)
5377  */
5378 bool single_task_running(void)
5379 {
5380 	return raw_rq()->nr_running == 1;
5381 }
5382 EXPORT_SYMBOL(single_task_running);
5383 
5384 unsigned long long nr_context_switches_cpu(int cpu)
5385 {
5386 	return cpu_rq(cpu)->nr_switches;
5387 }
5388 
5389 unsigned long long nr_context_switches(void)
5390 {
5391 	int i;
5392 	unsigned long long sum = 0;
5393 
5394 	for_each_possible_cpu(i)
5395 		sum += cpu_rq(i)->nr_switches;
5396 
5397 	return sum;
5398 }
5399 
5400 /*
5401  * Consumers of these two interfaces, like for example the cpuidle menu
5402  * governor, are using nonsensical data. Preferring shallow idle state selection
5403  * for a CPU that has IO-wait which might not even end up running the task when
5404  * it does become runnable.
5405  */
5406 
5407 unsigned int nr_iowait_cpu(int cpu)
5408 {
5409 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5410 }
5411 
5412 /*
5413  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5414  *
5415  * The idea behind IO-wait account is to account the idle time that we could
5416  * have spend running if it were not for IO. That is, if we were to improve the
5417  * storage performance, we'd have a proportional reduction in IO-wait time.
5418  *
5419  * This all works nicely on UP, where, when a task blocks on IO, we account
5420  * idle time as IO-wait, because if the storage were faster, it could've been
5421  * running and we'd not be idle.
5422  *
5423  * This has been extended to SMP, by doing the same for each CPU. This however
5424  * is broken.
5425  *
5426  * Imagine for instance the case where two tasks block on one CPU, only the one
5427  * CPU will have IO-wait accounted, while the other has regular idle. Even
5428  * though, if the storage were faster, both could've ran at the same time,
5429  * utilising both CPUs.
5430  *
5431  * This means, that when looking globally, the current IO-wait accounting on
5432  * SMP is a lower bound, by reason of under accounting.
5433  *
5434  * Worse, since the numbers are provided per CPU, they are sometimes
5435  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5436  * associated with any one particular CPU, it can wake to another CPU than it
5437  * blocked on. This means the per CPU IO-wait number is meaningless.
5438  *
5439  * Task CPU affinities can make all that even more 'interesting'.
5440  */
5441 
5442 unsigned int nr_iowait(void)
5443 {
5444 	unsigned int i, sum = 0;
5445 
5446 	for_each_possible_cpu(i)
5447 		sum += nr_iowait_cpu(i);
5448 
5449 	return sum;
5450 }
5451 
5452 #ifdef CONFIG_SMP
5453 
5454 /*
5455  * sched_exec - execve() is a valuable balancing opportunity, because at
5456  * this point the task has the smallest effective memory and cache footprint.
5457  */
5458 void sched_exec(void)
5459 {
5460 	struct task_struct *p = current;
5461 	unsigned long flags;
5462 	int dest_cpu;
5463 
5464 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5465 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5466 	if (dest_cpu == smp_processor_id())
5467 		goto unlock;
5468 
5469 	if (likely(cpu_active(dest_cpu))) {
5470 		struct migration_arg arg = { p, dest_cpu };
5471 
5472 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5473 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5474 		return;
5475 	}
5476 unlock:
5477 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5478 }
5479 
5480 #endif
5481 
5482 DEFINE_PER_CPU(struct kernel_stat, kstat);
5483 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5484 
5485 EXPORT_PER_CPU_SYMBOL(kstat);
5486 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5487 
5488 /*
5489  * The function fair_sched_class.update_curr accesses the struct curr
5490  * and its field curr->exec_start; when called from task_sched_runtime(),
5491  * we observe a high rate of cache misses in practice.
5492  * Prefetching this data results in improved performance.
5493  */
5494 static inline void prefetch_curr_exec_start(struct task_struct *p)
5495 {
5496 #ifdef CONFIG_FAIR_GROUP_SCHED
5497 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5498 #else
5499 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5500 #endif
5501 	prefetch(curr);
5502 	prefetch(&curr->exec_start);
5503 }
5504 
5505 /*
5506  * Return accounted runtime for the task.
5507  * In case the task is currently running, return the runtime plus current's
5508  * pending runtime that have not been accounted yet.
5509  */
5510 unsigned long long task_sched_runtime(struct task_struct *p)
5511 {
5512 	struct rq_flags rf;
5513 	struct rq *rq;
5514 	u64 ns;
5515 
5516 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5517 	/*
5518 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5519 	 * So we have a optimization chance when the task's delta_exec is 0.
5520 	 * Reading ->on_cpu is racy, but this is ok.
5521 	 *
5522 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5523 	 * If we race with it entering CPU, unaccounted time is 0. This is
5524 	 * indistinguishable from the read occurring a few cycles earlier.
5525 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5526 	 * been accounted, so we're correct here as well.
5527 	 */
5528 	if (!p->on_cpu || !task_on_rq_queued(p))
5529 		return p->se.sum_exec_runtime;
5530 #endif
5531 
5532 	rq = task_rq_lock(p, &rf);
5533 	/*
5534 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5535 	 * project cycles that may never be accounted to this
5536 	 * thread, breaking clock_gettime().
5537 	 */
5538 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5539 		prefetch_curr_exec_start(p);
5540 		update_rq_clock(rq);
5541 		p->sched_class->update_curr(rq);
5542 	}
5543 	ns = p->se.sum_exec_runtime;
5544 	task_rq_unlock(rq, p, &rf);
5545 
5546 	return ns;
5547 }
5548 
5549 #ifdef CONFIG_SCHED_DEBUG
5550 static u64 cpu_resched_latency(struct rq *rq)
5551 {
5552 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5553 	u64 resched_latency, now = rq_clock(rq);
5554 	static bool warned_once;
5555 
5556 	if (sysctl_resched_latency_warn_once && warned_once)
5557 		return 0;
5558 
5559 	if (!need_resched() || !latency_warn_ms)
5560 		return 0;
5561 
5562 	if (system_state == SYSTEM_BOOTING)
5563 		return 0;
5564 
5565 	if (!rq->last_seen_need_resched_ns) {
5566 		rq->last_seen_need_resched_ns = now;
5567 		rq->ticks_without_resched = 0;
5568 		return 0;
5569 	}
5570 
5571 	rq->ticks_without_resched++;
5572 	resched_latency = now - rq->last_seen_need_resched_ns;
5573 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5574 		return 0;
5575 
5576 	warned_once = true;
5577 
5578 	return resched_latency;
5579 }
5580 
5581 static int __init setup_resched_latency_warn_ms(char *str)
5582 {
5583 	long val;
5584 
5585 	if ((kstrtol(str, 0, &val))) {
5586 		pr_warn("Unable to set resched_latency_warn_ms\n");
5587 		return 1;
5588 	}
5589 
5590 	sysctl_resched_latency_warn_ms = val;
5591 	return 1;
5592 }
5593 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5594 #else
5595 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5596 #endif /* CONFIG_SCHED_DEBUG */
5597 
5598 /*
5599  * This function gets called by the timer code, with HZ frequency.
5600  * We call it with interrupts disabled.
5601  */
5602 void scheduler_tick(void)
5603 {
5604 	int cpu = smp_processor_id();
5605 	struct rq *rq = cpu_rq(cpu);
5606 	struct task_struct *curr = rq->curr;
5607 	struct rq_flags rf;
5608 	unsigned long thermal_pressure;
5609 	u64 resched_latency;
5610 
5611 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5612 		arch_scale_freq_tick();
5613 
5614 	sched_clock_tick();
5615 
5616 	rq_lock(rq, &rf);
5617 
5618 	update_rq_clock(rq);
5619 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5620 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5621 	curr->sched_class->task_tick(rq, curr, 0);
5622 	if (sched_feat(LATENCY_WARN))
5623 		resched_latency = cpu_resched_latency(rq);
5624 	calc_global_load_tick(rq);
5625 	sched_core_tick(rq);
5626 	task_tick_mm_cid(rq, curr);
5627 
5628 	rq_unlock(rq, &rf);
5629 
5630 	if (sched_feat(LATENCY_WARN) && resched_latency)
5631 		resched_latency_warn(cpu, resched_latency);
5632 
5633 	perf_event_task_tick();
5634 
5635 #ifdef CONFIG_SMP
5636 	rq->idle_balance = idle_cpu(cpu);
5637 	trigger_load_balance(rq);
5638 #endif
5639 }
5640 
5641 #ifdef CONFIG_NO_HZ_FULL
5642 
5643 struct tick_work {
5644 	int			cpu;
5645 	atomic_t		state;
5646 	struct delayed_work	work;
5647 };
5648 /* Values for ->state, see diagram below. */
5649 #define TICK_SCHED_REMOTE_OFFLINE	0
5650 #define TICK_SCHED_REMOTE_OFFLINING	1
5651 #define TICK_SCHED_REMOTE_RUNNING	2
5652 
5653 /*
5654  * State diagram for ->state:
5655  *
5656  *
5657  *          TICK_SCHED_REMOTE_OFFLINE
5658  *                    |   ^
5659  *                    |   |
5660  *                    |   | sched_tick_remote()
5661  *                    |   |
5662  *                    |   |
5663  *                    +--TICK_SCHED_REMOTE_OFFLINING
5664  *                    |   ^
5665  *                    |   |
5666  * sched_tick_start() |   | sched_tick_stop()
5667  *                    |   |
5668  *                    V   |
5669  *          TICK_SCHED_REMOTE_RUNNING
5670  *
5671  *
5672  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5673  * and sched_tick_start() are happy to leave the state in RUNNING.
5674  */
5675 
5676 static struct tick_work __percpu *tick_work_cpu;
5677 
5678 static void sched_tick_remote(struct work_struct *work)
5679 {
5680 	struct delayed_work *dwork = to_delayed_work(work);
5681 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5682 	int cpu = twork->cpu;
5683 	struct rq *rq = cpu_rq(cpu);
5684 	struct task_struct *curr;
5685 	struct rq_flags rf;
5686 	u64 delta;
5687 	int os;
5688 
5689 	/*
5690 	 * Handle the tick only if it appears the remote CPU is running in full
5691 	 * dynticks mode. The check is racy by nature, but missing a tick or
5692 	 * having one too much is no big deal because the scheduler tick updates
5693 	 * statistics and checks timeslices in a time-independent way, regardless
5694 	 * of when exactly it is running.
5695 	 */
5696 	if (!tick_nohz_tick_stopped_cpu(cpu))
5697 		goto out_requeue;
5698 
5699 	rq_lock_irq(rq, &rf);
5700 	curr = rq->curr;
5701 	if (cpu_is_offline(cpu))
5702 		goto out_unlock;
5703 
5704 	update_rq_clock(rq);
5705 
5706 	if (!is_idle_task(curr)) {
5707 		/*
5708 		 * Make sure the next tick runs within a reasonable
5709 		 * amount of time.
5710 		 */
5711 		delta = rq_clock_task(rq) - curr->se.exec_start;
5712 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5713 	}
5714 	curr->sched_class->task_tick(rq, curr, 0);
5715 
5716 	calc_load_nohz_remote(rq);
5717 out_unlock:
5718 	rq_unlock_irq(rq, &rf);
5719 out_requeue:
5720 
5721 	/*
5722 	 * Run the remote tick once per second (1Hz). This arbitrary
5723 	 * frequency is large enough to avoid overload but short enough
5724 	 * to keep scheduler internal stats reasonably up to date.  But
5725 	 * first update state to reflect hotplug activity if required.
5726 	 */
5727 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5728 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5729 	if (os == TICK_SCHED_REMOTE_RUNNING)
5730 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5731 }
5732 
5733 static void sched_tick_start(int cpu)
5734 {
5735 	int os;
5736 	struct tick_work *twork;
5737 
5738 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5739 		return;
5740 
5741 	WARN_ON_ONCE(!tick_work_cpu);
5742 
5743 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5744 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5745 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5746 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5747 		twork->cpu = cpu;
5748 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5749 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5750 	}
5751 }
5752 
5753 #ifdef CONFIG_HOTPLUG_CPU
5754 static void sched_tick_stop(int cpu)
5755 {
5756 	struct tick_work *twork;
5757 	int os;
5758 
5759 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5760 		return;
5761 
5762 	WARN_ON_ONCE(!tick_work_cpu);
5763 
5764 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5765 	/* There cannot be competing actions, but don't rely on stop-machine. */
5766 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5767 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5768 	/* Don't cancel, as this would mess up the state machine. */
5769 }
5770 #endif /* CONFIG_HOTPLUG_CPU */
5771 
5772 int __init sched_tick_offload_init(void)
5773 {
5774 	tick_work_cpu = alloc_percpu(struct tick_work);
5775 	BUG_ON(!tick_work_cpu);
5776 	return 0;
5777 }
5778 
5779 #else /* !CONFIG_NO_HZ_FULL */
5780 static inline void sched_tick_start(int cpu) { }
5781 static inline void sched_tick_stop(int cpu) { }
5782 #endif
5783 
5784 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5785 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5786 /*
5787  * If the value passed in is equal to the current preempt count
5788  * then we just disabled preemption. Start timing the latency.
5789  */
5790 static inline void preempt_latency_start(int val)
5791 {
5792 	if (preempt_count() == val) {
5793 		unsigned long ip = get_lock_parent_ip();
5794 #ifdef CONFIG_DEBUG_PREEMPT
5795 		current->preempt_disable_ip = ip;
5796 #endif
5797 		trace_preempt_off(CALLER_ADDR0, ip);
5798 	}
5799 }
5800 
5801 void preempt_count_add(int val)
5802 {
5803 #ifdef CONFIG_DEBUG_PREEMPT
5804 	/*
5805 	 * Underflow?
5806 	 */
5807 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5808 		return;
5809 #endif
5810 	__preempt_count_add(val);
5811 #ifdef CONFIG_DEBUG_PREEMPT
5812 	/*
5813 	 * Spinlock count overflowing soon?
5814 	 */
5815 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5816 				PREEMPT_MASK - 10);
5817 #endif
5818 	preempt_latency_start(val);
5819 }
5820 EXPORT_SYMBOL(preempt_count_add);
5821 NOKPROBE_SYMBOL(preempt_count_add);
5822 
5823 /*
5824  * If the value passed in equals to the current preempt count
5825  * then we just enabled preemption. Stop timing the latency.
5826  */
5827 static inline void preempt_latency_stop(int val)
5828 {
5829 	if (preempt_count() == val)
5830 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5831 }
5832 
5833 void preempt_count_sub(int val)
5834 {
5835 #ifdef CONFIG_DEBUG_PREEMPT
5836 	/*
5837 	 * Underflow?
5838 	 */
5839 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5840 		return;
5841 	/*
5842 	 * Is the spinlock portion underflowing?
5843 	 */
5844 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5845 			!(preempt_count() & PREEMPT_MASK)))
5846 		return;
5847 #endif
5848 
5849 	preempt_latency_stop(val);
5850 	__preempt_count_sub(val);
5851 }
5852 EXPORT_SYMBOL(preempt_count_sub);
5853 NOKPROBE_SYMBOL(preempt_count_sub);
5854 
5855 #else
5856 static inline void preempt_latency_start(int val) { }
5857 static inline void preempt_latency_stop(int val) { }
5858 #endif
5859 
5860 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5861 {
5862 #ifdef CONFIG_DEBUG_PREEMPT
5863 	return p->preempt_disable_ip;
5864 #else
5865 	return 0;
5866 #endif
5867 }
5868 
5869 /*
5870  * Print scheduling while atomic bug:
5871  */
5872 static noinline void __schedule_bug(struct task_struct *prev)
5873 {
5874 	/* Save this before calling printk(), since that will clobber it */
5875 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5876 
5877 	if (oops_in_progress)
5878 		return;
5879 
5880 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5881 		prev->comm, prev->pid, preempt_count());
5882 
5883 	debug_show_held_locks(prev);
5884 	print_modules();
5885 	if (irqs_disabled())
5886 		print_irqtrace_events(prev);
5887 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5888 	    && in_atomic_preempt_off()) {
5889 		pr_err("Preemption disabled at:");
5890 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5891 	}
5892 	check_panic_on_warn("scheduling while atomic");
5893 
5894 	dump_stack();
5895 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5896 }
5897 
5898 /*
5899  * Various schedule()-time debugging checks and statistics:
5900  */
5901 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5902 {
5903 #ifdef CONFIG_SCHED_STACK_END_CHECK
5904 	if (task_stack_end_corrupted(prev))
5905 		panic("corrupted stack end detected inside scheduler\n");
5906 
5907 	if (task_scs_end_corrupted(prev))
5908 		panic("corrupted shadow stack detected inside scheduler\n");
5909 #endif
5910 
5911 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5912 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5913 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5914 			prev->comm, prev->pid, prev->non_block_count);
5915 		dump_stack();
5916 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5917 	}
5918 #endif
5919 
5920 	if (unlikely(in_atomic_preempt_off())) {
5921 		__schedule_bug(prev);
5922 		preempt_count_set(PREEMPT_DISABLED);
5923 	}
5924 	rcu_sleep_check();
5925 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5926 
5927 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5928 
5929 	schedstat_inc(this_rq()->sched_count);
5930 }
5931 
5932 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5933 				  struct rq_flags *rf)
5934 {
5935 #ifdef CONFIG_SMP
5936 	const struct sched_class *class;
5937 	/*
5938 	 * We must do the balancing pass before put_prev_task(), such
5939 	 * that when we release the rq->lock the task is in the same
5940 	 * state as before we took rq->lock.
5941 	 *
5942 	 * We can terminate the balance pass as soon as we know there is
5943 	 * a runnable task of @class priority or higher.
5944 	 */
5945 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5946 		if (class->balance(rq, prev, rf))
5947 			break;
5948 	}
5949 #endif
5950 
5951 	put_prev_task(rq, prev);
5952 }
5953 
5954 /*
5955  * Pick up the highest-prio task:
5956  */
5957 static inline struct task_struct *
5958 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5959 {
5960 	const struct sched_class *class;
5961 	struct task_struct *p;
5962 
5963 	/*
5964 	 * Optimization: we know that if all tasks are in the fair class we can
5965 	 * call that function directly, but only if the @prev task wasn't of a
5966 	 * higher scheduling class, because otherwise those lose the
5967 	 * opportunity to pull in more work from other CPUs.
5968 	 */
5969 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5970 		   rq->nr_running == rq->cfs.h_nr_running)) {
5971 
5972 		p = pick_next_task_fair(rq, prev, rf);
5973 		if (unlikely(p == RETRY_TASK))
5974 			goto restart;
5975 
5976 		/* Assume the next prioritized class is idle_sched_class */
5977 		if (!p) {
5978 			put_prev_task(rq, prev);
5979 			p = pick_next_task_idle(rq);
5980 		}
5981 
5982 		return p;
5983 	}
5984 
5985 restart:
5986 	put_prev_task_balance(rq, prev, rf);
5987 
5988 	for_each_class(class) {
5989 		p = class->pick_next_task(rq);
5990 		if (p)
5991 			return p;
5992 	}
5993 
5994 	BUG(); /* The idle class should always have a runnable task. */
5995 }
5996 
5997 #ifdef CONFIG_SCHED_CORE
5998 static inline bool is_task_rq_idle(struct task_struct *t)
5999 {
6000 	return (task_rq(t)->idle == t);
6001 }
6002 
6003 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6004 {
6005 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6006 }
6007 
6008 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6009 {
6010 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6011 		return true;
6012 
6013 	return a->core_cookie == b->core_cookie;
6014 }
6015 
6016 static inline struct task_struct *pick_task(struct rq *rq)
6017 {
6018 	const struct sched_class *class;
6019 	struct task_struct *p;
6020 
6021 	for_each_class(class) {
6022 		p = class->pick_task(rq);
6023 		if (p)
6024 			return p;
6025 	}
6026 
6027 	BUG(); /* The idle class should always have a runnable task. */
6028 }
6029 
6030 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6031 
6032 static void queue_core_balance(struct rq *rq);
6033 
6034 static struct task_struct *
6035 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6036 {
6037 	struct task_struct *next, *p, *max = NULL;
6038 	const struct cpumask *smt_mask;
6039 	bool fi_before = false;
6040 	bool core_clock_updated = (rq == rq->core);
6041 	unsigned long cookie;
6042 	int i, cpu, occ = 0;
6043 	struct rq *rq_i;
6044 	bool need_sync;
6045 
6046 	if (!sched_core_enabled(rq))
6047 		return __pick_next_task(rq, prev, rf);
6048 
6049 	cpu = cpu_of(rq);
6050 
6051 	/* Stopper task is switching into idle, no need core-wide selection. */
6052 	if (cpu_is_offline(cpu)) {
6053 		/*
6054 		 * Reset core_pick so that we don't enter the fastpath when
6055 		 * coming online. core_pick would already be migrated to
6056 		 * another cpu during offline.
6057 		 */
6058 		rq->core_pick = NULL;
6059 		return __pick_next_task(rq, prev, rf);
6060 	}
6061 
6062 	/*
6063 	 * If there were no {en,de}queues since we picked (IOW, the task
6064 	 * pointers are all still valid), and we haven't scheduled the last
6065 	 * pick yet, do so now.
6066 	 *
6067 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6068 	 * it was either offline or went offline during a sibling's core-wide
6069 	 * selection. In this case, do a core-wide selection.
6070 	 */
6071 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6072 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6073 	    rq->core_pick) {
6074 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6075 
6076 		next = rq->core_pick;
6077 		if (next != prev) {
6078 			put_prev_task(rq, prev);
6079 			set_next_task(rq, next);
6080 		}
6081 
6082 		rq->core_pick = NULL;
6083 		goto out;
6084 	}
6085 
6086 	put_prev_task_balance(rq, prev, rf);
6087 
6088 	smt_mask = cpu_smt_mask(cpu);
6089 	need_sync = !!rq->core->core_cookie;
6090 
6091 	/* reset state */
6092 	rq->core->core_cookie = 0UL;
6093 	if (rq->core->core_forceidle_count) {
6094 		if (!core_clock_updated) {
6095 			update_rq_clock(rq->core);
6096 			core_clock_updated = true;
6097 		}
6098 		sched_core_account_forceidle(rq);
6099 		/* reset after accounting force idle */
6100 		rq->core->core_forceidle_start = 0;
6101 		rq->core->core_forceidle_count = 0;
6102 		rq->core->core_forceidle_occupation = 0;
6103 		need_sync = true;
6104 		fi_before = true;
6105 	}
6106 
6107 	/*
6108 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6109 	 *
6110 	 * @task_seq guards the task state ({en,de}queues)
6111 	 * @pick_seq is the @task_seq we did a selection on
6112 	 * @sched_seq is the @pick_seq we scheduled
6113 	 *
6114 	 * However, preemptions can cause multiple picks on the same task set.
6115 	 * 'Fix' this by also increasing @task_seq for every pick.
6116 	 */
6117 	rq->core->core_task_seq++;
6118 
6119 	/*
6120 	 * Optimize for common case where this CPU has no cookies
6121 	 * and there are no cookied tasks running on siblings.
6122 	 */
6123 	if (!need_sync) {
6124 		next = pick_task(rq);
6125 		if (!next->core_cookie) {
6126 			rq->core_pick = NULL;
6127 			/*
6128 			 * For robustness, update the min_vruntime_fi for
6129 			 * unconstrained picks as well.
6130 			 */
6131 			WARN_ON_ONCE(fi_before);
6132 			task_vruntime_update(rq, next, false);
6133 			goto out_set_next;
6134 		}
6135 	}
6136 
6137 	/*
6138 	 * For each thread: do the regular task pick and find the max prio task
6139 	 * amongst them.
6140 	 *
6141 	 * Tie-break prio towards the current CPU
6142 	 */
6143 	for_each_cpu_wrap(i, smt_mask, cpu) {
6144 		rq_i = cpu_rq(i);
6145 
6146 		/*
6147 		 * Current cpu always has its clock updated on entrance to
6148 		 * pick_next_task(). If the current cpu is not the core,
6149 		 * the core may also have been updated above.
6150 		 */
6151 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6152 			update_rq_clock(rq_i);
6153 
6154 		p = rq_i->core_pick = pick_task(rq_i);
6155 		if (!max || prio_less(max, p, fi_before))
6156 			max = p;
6157 	}
6158 
6159 	cookie = rq->core->core_cookie = max->core_cookie;
6160 
6161 	/*
6162 	 * For each thread: try and find a runnable task that matches @max or
6163 	 * force idle.
6164 	 */
6165 	for_each_cpu(i, smt_mask) {
6166 		rq_i = cpu_rq(i);
6167 		p = rq_i->core_pick;
6168 
6169 		if (!cookie_equals(p, cookie)) {
6170 			p = NULL;
6171 			if (cookie)
6172 				p = sched_core_find(rq_i, cookie);
6173 			if (!p)
6174 				p = idle_sched_class.pick_task(rq_i);
6175 		}
6176 
6177 		rq_i->core_pick = p;
6178 
6179 		if (p == rq_i->idle) {
6180 			if (rq_i->nr_running) {
6181 				rq->core->core_forceidle_count++;
6182 				if (!fi_before)
6183 					rq->core->core_forceidle_seq++;
6184 			}
6185 		} else {
6186 			occ++;
6187 		}
6188 	}
6189 
6190 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6191 		rq->core->core_forceidle_start = rq_clock(rq->core);
6192 		rq->core->core_forceidle_occupation = occ;
6193 	}
6194 
6195 	rq->core->core_pick_seq = rq->core->core_task_seq;
6196 	next = rq->core_pick;
6197 	rq->core_sched_seq = rq->core->core_pick_seq;
6198 
6199 	/* Something should have been selected for current CPU */
6200 	WARN_ON_ONCE(!next);
6201 
6202 	/*
6203 	 * Reschedule siblings
6204 	 *
6205 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6206 	 * sending an IPI (below) ensures the sibling will no longer be running
6207 	 * their task. This ensures there is no inter-sibling overlap between
6208 	 * non-matching user state.
6209 	 */
6210 	for_each_cpu(i, smt_mask) {
6211 		rq_i = cpu_rq(i);
6212 
6213 		/*
6214 		 * An online sibling might have gone offline before a task
6215 		 * could be picked for it, or it might be offline but later
6216 		 * happen to come online, but its too late and nothing was
6217 		 * picked for it.  That's Ok - it will pick tasks for itself,
6218 		 * so ignore it.
6219 		 */
6220 		if (!rq_i->core_pick)
6221 			continue;
6222 
6223 		/*
6224 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6225 		 * fi_before     fi      update?
6226 		 *  0            0       1
6227 		 *  0            1       1
6228 		 *  1            0       1
6229 		 *  1            1       0
6230 		 */
6231 		if (!(fi_before && rq->core->core_forceidle_count))
6232 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6233 
6234 		rq_i->core_pick->core_occupation = occ;
6235 
6236 		if (i == cpu) {
6237 			rq_i->core_pick = NULL;
6238 			continue;
6239 		}
6240 
6241 		/* Did we break L1TF mitigation requirements? */
6242 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6243 
6244 		if (rq_i->curr == rq_i->core_pick) {
6245 			rq_i->core_pick = NULL;
6246 			continue;
6247 		}
6248 
6249 		resched_curr(rq_i);
6250 	}
6251 
6252 out_set_next:
6253 	set_next_task(rq, next);
6254 out:
6255 	if (rq->core->core_forceidle_count && next == rq->idle)
6256 		queue_core_balance(rq);
6257 
6258 	return next;
6259 }
6260 
6261 static bool try_steal_cookie(int this, int that)
6262 {
6263 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6264 	struct task_struct *p;
6265 	unsigned long cookie;
6266 	bool success = false;
6267 
6268 	local_irq_disable();
6269 	double_rq_lock(dst, src);
6270 
6271 	cookie = dst->core->core_cookie;
6272 	if (!cookie)
6273 		goto unlock;
6274 
6275 	if (dst->curr != dst->idle)
6276 		goto unlock;
6277 
6278 	p = sched_core_find(src, cookie);
6279 	if (!p)
6280 		goto unlock;
6281 
6282 	do {
6283 		if (p == src->core_pick || p == src->curr)
6284 			goto next;
6285 
6286 		if (!is_cpu_allowed(p, this))
6287 			goto next;
6288 
6289 		if (p->core_occupation > dst->idle->core_occupation)
6290 			goto next;
6291 		/*
6292 		 * sched_core_find() and sched_core_next() will ensure that task @p
6293 		 * is not throttled now, we also need to check whether the runqueue
6294 		 * of the destination CPU is being throttled.
6295 		 */
6296 		if (sched_task_is_throttled(p, this))
6297 			goto next;
6298 
6299 		deactivate_task(src, p, 0);
6300 		set_task_cpu(p, this);
6301 		activate_task(dst, p, 0);
6302 
6303 		resched_curr(dst);
6304 
6305 		success = true;
6306 		break;
6307 
6308 next:
6309 		p = sched_core_next(p, cookie);
6310 	} while (p);
6311 
6312 unlock:
6313 	double_rq_unlock(dst, src);
6314 	local_irq_enable();
6315 
6316 	return success;
6317 }
6318 
6319 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6320 {
6321 	int i;
6322 
6323 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6324 		if (i == cpu)
6325 			continue;
6326 
6327 		if (need_resched())
6328 			break;
6329 
6330 		if (try_steal_cookie(cpu, i))
6331 			return true;
6332 	}
6333 
6334 	return false;
6335 }
6336 
6337 static void sched_core_balance(struct rq *rq)
6338 {
6339 	struct sched_domain *sd;
6340 	int cpu = cpu_of(rq);
6341 
6342 	preempt_disable();
6343 	rcu_read_lock();
6344 	raw_spin_rq_unlock_irq(rq);
6345 	for_each_domain(cpu, sd) {
6346 		if (need_resched())
6347 			break;
6348 
6349 		if (steal_cookie_task(cpu, sd))
6350 			break;
6351 	}
6352 	raw_spin_rq_lock_irq(rq);
6353 	rcu_read_unlock();
6354 	preempt_enable();
6355 }
6356 
6357 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6358 
6359 static void queue_core_balance(struct rq *rq)
6360 {
6361 	if (!sched_core_enabled(rq))
6362 		return;
6363 
6364 	if (!rq->core->core_cookie)
6365 		return;
6366 
6367 	if (!rq->nr_running) /* not forced idle */
6368 		return;
6369 
6370 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6371 }
6372 
6373 static void sched_core_cpu_starting(unsigned int cpu)
6374 {
6375 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6376 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6377 	unsigned long flags;
6378 	int t;
6379 
6380 	sched_core_lock(cpu, &flags);
6381 
6382 	WARN_ON_ONCE(rq->core != rq);
6383 
6384 	/* if we're the first, we'll be our own leader */
6385 	if (cpumask_weight(smt_mask) == 1)
6386 		goto unlock;
6387 
6388 	/* find the leader */
6389 	for_each_cpu(t, smt_mask) {
6390 		if (t == cpu)
6391 			continue;
6392 		rq = cpu_rq(t);
6393 		if (rq->core == rq) {
6394 			core_rq = rq;
6395 			break;
6396 		}
6397 	}
6398 
6399 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6400 		goto unlock;
6401 
6402 	/* install and validate core_rq */
6403 	for_each_cpu(t, smt_mask) {
6404 		rq = cpu_rq(t);
6405 
6406 		if (t == cpu)
6407 			rq->core = core_rq;
6408 
6409 		WARN_ON_ONCE(rq->core != core_rq);
6410 	}
6411 
6412 unlock:
6413 	sched_core_unlock(cpu, &flags);
6414 }
6415 
6416 static void sched_core_cpu_deactivate(unsigned int cpu)
6417 {
6418 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6419 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6420 	unsigned long flags;
6421 	int t;
6422 
6423 	sched_core_lock(cpu, &flags);
6424 
6425 	/* if we're the last man standing, nothing to do */
6426 	if (cpumask_weight(smt_mask) == 1) {
6427 		WARN_ON_ONCE(rq->core != rq);
6428 		goto unlock;
6429 	}
6430 
6431 	/* if we're not the leader, nothing to do */
6432 	if (rq->core != rq)
6433 		goto unlock;
6434 
6435 	/* find a new leader */
6436 	for_each_cpu(t, smt_mask) {
6437 		if (t == cpu)
6438 			continue;
6439 		core_rq = cpu_rq(t);
6440 		break;
6441 	}
6442 
6443 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6444 		goto unlock;
6445 
6446 	/* copy the shared state to the new leader */
6447 	core_rq->core_task_seq             = rq->core_task_seq;
6448 	core_rq->core_pick_seq             = rq->core_pick_seq;
6449 	core_rq->core_cookie               = rq->core_cookie;
6450 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6451 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6452 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6453 
6454 	/*
6455 	 * Accounting edge for forced idle is handled in pick_next_task().
6456 	 * Don't need another one here, since the hotplug thread shouldn't
6457 	 * have a cookie.
6458 	 */
6459 	core_rq->core_forceidle_start = 0;
6460 
6461 	/* install new leader */
6462 	for_each_cpu(t, smt_mask) {
6463 		rq = cpu_rq(t);
6464 		rq->core = core_rq;
6465 	}
6466 
6467 unlock:
6468 	sched_core_unlock(cpu, &flags);
6469 }
6470 
6471 static inline void sched_core_cpu_dying(unsigned int cpu)
6472 {
6473 	struct rq *rq = cpu_rq(cpu);
6474 
6475 	if (rq->core != rq)
6476 		rq->core = rq;
6477 }
6478 
6479 #else /* !CONFIG_SCHED_CORE */
6480 
6481 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6482 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6483 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6484 
6485 static struct task_struct *
6486 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6487 {
6488 	return __pick_next_task(rq, prev, rf);
6489 }
6490 
6491 #endif /* CONFIG_SCHED_CORE */
6492 
6493 /*
6494  * Constants for the sched_mode argument of __schedule().
6495  *
6496  * The mode argument allows RT enabled kernels to differentiate a
6497  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6498  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6499  * optimize the AND operation out and just check for zero.
6500  */
6501 #define SM_NONE			0x0
6502 #define SM_PREEMPT		0x1
6503 #define SM_RTLOCK_WAIT		0x2
6504 
6505 #ifndef CONFIG_PREEMPT_RT
6506 # define SM_MASK_PREEMPT	(~0U)
6507 #else
6508 # define SM_MASK_PREEMPT	SM_PREEMPT
6509 #endif
6510 
6511 /*
6512  * __schedule() is the main scheduler function.
6513  *
6514  * The main means of driving the scheduler and thus entering this function are:
6515  *
6516  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6517  *
6518  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6519  *      paths. For example, see arch/x86/entry_64.S.
6520  *
6521  *      To drive preemption between tasks, the scheduler sets the flag in timer
6522  *      interrupt handler scheduler_tick().
6523  *
6524  *   3. Wakeups don't really cause entry into schedule(). They add a
6525  *      task to the run-queue and that's it.
6526  *
6527  *      Now, if the new task added to the run-queue preempts the current
6528  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6529  *      called on the nearest possible occasion:
6530  *
6531  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6532  *
6533  *         - in syscall or exception context, at the next outmost
6534  *           preempt_enable(). (this might be as soon as the wake_up()'s
6535  *           spin_unlock()!)
6536  *
6537  *         - in IRQ context, return from interrupt-handler to
6538  *           preemptible context
6539  *
6540  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6541  *         then at the next:
6542  *
6543  *          - cond_resched() call
6544  *          - explicit schedule() call
6545  *          - return from syscall or exception to user-space
6546  *          - return from interrupt-handler to user-space
6547  *
6548  * WARNING: must be called with preemption disabled!
6549  */
6550 static void __sched notrace __schedule(unsigned int sched_mode)
6551 {
6552 	struct task_struct *prev, *next;
6553 	unsigned long *switch_count;
6554 	unsigned long prev_state;
6555 	struct rq_flags rf;
6556 	struct rq *rq;
6557 	int cpu;
6558 
6559 	cpu = smp_processor_id();
6560 	rq = cpu_rq(cpu);
6561 	prev = rq->curr;
6562 
6563 	schedule_debug(prev, !!sched_mode);
6564 
6565 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6566 		hrtick_clear(rq);
6567 
6568 	local_irq_disable();
6569 	rcu_note_context_switch(!!sched_mode);
6570 
6571 	/*
6572 	 * Make sure that signal_pending_state()->signal_pending() below
6573 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6574 	 * done by the caller to avoid the race with signal_wake_up():
6575 	 *
6576 	 * __set_current_state(@state)		signal_wake_up()
6577 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6578 	 *					  wake_up_state(p, state)
6579 	 *   LOCK rq->lock			    LOCK p->pi_state
6580 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6581 	 *     if (signal_pending_state())	    if (p->state & @state)
6582 	 *
6583 	 * Also, the membarrier system call requires a full memory barrier
6584 	 * after coming from user-space, before storing to rq->curr.
6585 	 */
6586 	rq_lock(rq, &rf);
6587 	smp_mb__after_spinlock();
6588 
6589 	/* Promote REQ to ACT */
6590 	rq->clock_update_flags <<= 1;
6591 	update_rq_clock(rq);
6592 
6593 	switch_count = &prev->nivcsw;
6594 
6595 	/*
6596 	 * We must load prev->state once (task_struct::state is volatile), such
6597 	 * that we form a control dependency vs deactivate_task() below.
6598 	 */
6599 	prev_state = READ_ONCE(prev->__state);
6600 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6601 		if (signal_pending_state(prev_state, prev)) {
6602 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6603 		} else {
6604 			prev->sched_contributes_to_load =
6605 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6606 				!(prev_state & TASK_NOLOAD) &&
6607 				!(prev_state & TASK_FROZEN);
6608 
6609 			if (prev->sched_contributes_to_load)
6610 				rq->nr_uninterruptible++;
6611 
6612 			/*
6613 			 * __schedule()			ttwu()
6614 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6615 			 *   if (prev_state)		    goto out;
6616 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6617 			 *				  p->state = TASK_WAKING
6618 			 *
6619 			 * Where __schedule() and ttwu() have matching control dependencies.
6620 			 *
6621 			 * After this, schedule() must not care about p->state any more.
6622 			 */
6623 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6624 
6625 			if (prev->in_iowait) {
6626 				atomic_inc(&rq->nr_iowait);
6627 				delayacct_blkio_start();
6628 			}
6629 		}
6630 		switch_count = &prev->nvcsw;
6631 	}
6632 
6633 	next = pick_next_task(rq, prev, &rf);
6634 	clear_tsk_need_resched(prev);
6635 	clear_preempt_need_resched();
6636 #ifdef CONFIG_SCHED_DEBUG
6637 	rq->last_seen_need_resched_ns = 0;
6638 #endif
6639 
6640 	if (likely(prev != next)) {
6641 		rq->nr_switches++;
6642 		/*
6643 		 * RCU users of rcu_dereference(rq->curr) may not see
6644 		 * changes to task_struct made by pick_next_task().
6645 		 */
6646 		RCU_INIT_POINTER(rq->curr, next);
6647 		/*
6648 		 * The membarrier system call requires each architecture
6649 		 * to have a full memory barrier after updating
6650 		 * rq->curr, before returning to user-space.
6651 		 *
6652 		 * Here are the schemes providing that barrier on the
6653 		 * various architectures:
6654 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6655 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6656 		 * - finish_lock_switch() for weakly-ordered
6657 		 *   architectures where spin_unlock is a full barrier,
6658 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6659 		 *   is a RELEASE barrier),
6660 		 */
6661 		++*switch_count;
6662 
6663 		migrate_disable_switch(rq, prev);
6664 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6665 
6666 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6667 
6668 		/* Also unlocks the rq: */
6669 		rq = context_switch(rq, prev, next, &rf);
6670 	} else {
6671 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6672 
6673 		rq_unpin_lock(rq, &rf);
6674 		__balance_callbacks(rq);
6675 		raw_spin_rq_unlock_irq(rq);
6676 	}
6677 }
6678 
6679 void __noreturn do_task_dead(void)
6680 {
6681 	/* Causes final put_task_struct in finish_task_switch(): */
6682 	set_special_state(TASK_DEAD);
6683 
6684 	/* Tell freezer to ignore us: */
6685 	current->flags |= PF_NOFREEZE;
6686 
6687 	__schedule(SM_NONE);
6688 	BUG();
6689 
6690 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6691 	for (;;)
6692 		cpu_relax();
6693 }
6694 
6695 static inline void sched_submit_work(struct task_struct *tsk)
6696 {
6697 	unsigned int task_flags;
6698 
6699 	if (task_is_running(tsk))
6700 		return;
6701 
6702 	task_flags = tsk->flags;
6703 	/*
6704 	 * If a worker goes to sleep, notify and ask workqueue whether it
6705 	 * wants to wake up a task to maintain concurrency.
6706 	 */
6707 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6708 		if (task_flags & PF_WQ_WORKER)
6709 			wq_worker_sleeping(tsk);
6710 		else
6711 			io_wq_worker_sleeping(tsk);
6712 	}
6713 
6714 	/*
6715 	 * spinlock and rwlock must not flush block requests.  This will
6716 	 * deadlock if the callback attempts to acquire a lock which is
6717 	 * already acquired.
6718 	 */
6719 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6720 
6721 	/*
6722 	 * If we are going to sleep and we have plugged IO queued,
6723 	 * make sure to submit it to avoid deadlocks.
6724 	 */
6725 	blk_flush_plug(tsk->plug, true);
6726 }
6727 
6728 static void sched_update_worker(struct task_struct *tsk)
6729 {
6730 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6731 		if (tsk->flags & PF_WQ_WORKER)
6732 			wq_worker_running(tsk);
6733 		else
6734 			io_wq_worker_running(tsk);
6735 	}
6736 }
6737 
6738 asmlinkage __visible void __sched schedule(void)
6739 {
6740 	struct task_struct *tsk = current;
6741 
6742 	sched_submit_work(tsk);
6743 	do {
6744 		preempt_disable();
6745 		__schedule(SM_NONE);
6746 		sched_preempt_enable_no_resched();
6747 	} while (need_resched());
6748 	sched_update_worker(tsk);
6749 }
6750 EXPORT_SYMBOL(schedule);
6751 
6752 /*
6753  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6754  * state (have scheduled out non-voluntarily) by making sure that all
6755  * tasks have either left the run queue or have gone into user space.
6756  * As idle tasks do not do either, they must not ever be preempted
6757  * (schedule out non-voluntarily).
6758  *
6759  * schedule_idle() is similar to schedule_preempt_disable() except that it
6760  * never enables preemption because it does not call sched_submit_work().
6761  */
6762 void __sched schedule_idle(void)
6763 {
6764 	/*
6765 	 * As this skips calling sched_submit_work(), which the idle task does
6766 	 * regardless because that function is a nop when the task is in a
6767 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6768 	 * current task can be in any other state. Note, idle is always in the
6769 	 * TASK_RUNNING state.
6770 	 */
6771 	WARN_ON_ONCE(current->__state);
6772 	do {
6773 		__schedule(SM_NONE);
6774 	} while (need_resched());
6775 }
6776 
6777 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6778 asmlinkage __visible void __sched schedule_user(void)
6779 {
6780 	/*
6781 	 * If we come here after a random call to set_need_resched(),
6782 	 * or we have been woken up remotely but the IPI has not yet arrived,
6783 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6784 	 * we find a better solution.
6785 	 *
6786 	 * NB: There are buggy callers of this function.  Ideally we
6787 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6788 	 * too frequently to make sense yet.
6789 	 */
6790 	enum ctx_state prev_state = exception_enter();
6791 	schedule();
6792 	exception_exit(prev_state);
6793 }
6794 #endif
6795 
6796 /**
6797  * schedule_preempt_disabled - called with preemption disabled
6798  *
6799  * Returns with preemption disabled. Note: preempt_count must be 1
6800  */
6801 void __sched schedule_preempt_disabled(void)
6802 {
6803 	sched_preempt_enable_no_resched();
6804 	schedule();
6805 	preempt_disable();
6806 }
6807 
6808 #ifdef CONFIG_PREEMPT_RT
6809 void __sched notrace schedule_rtlock(void)
6810 {
6811 	do {
6812 		preempt_disable();
6813 		__schedule(SM_RTLOCK_WAIT);
6814 		sched_preempt_enable_no_resched();
6815 	} while (need_resched());
6816 }
6817 NOKPROBE_SYMBOL(schedule_rtlock);
6818 #endif
6819 
6820 static void __sched notrace preempt_schedule_common(void)
6821 {
6822 	do {
6823 		/*
6824 		 * Because the function tracer can trace preempt_count_sub()
6825 		 * and it also uses preempt_enable/disable_notrace(), if
6826 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6827 		 * by the function tracer will call this function again and
6828 		 * cause infinite recursion.
6829 		 *
6830 		 * Preemption must be disabled here before the function
6831 		 * tracer can trace. Break up preempt_disable() into two
6832 		 * calls. One to disable preemption without fear of being
6833 		 * traced. The other to still record the preemption latency,
6834 		 * which can also be traced by the function tracer.
6835 		 */
6836 		preempt_disable_notrace();
6837 		preempt_latency_start(1);
6838 		__schedule(SM_PREEMPT);
6839 		preempt_latency_stop(1);
6840 		preempt_enable_no_resched_notrace();
6841 
6842 		/*
6843 		 * Check again in case we missed a preemption opportunity
6844 		 * between schedule and now.
6845 		 */
6846 	} while (need_resched());
6847 }
6848 
6849 #ifdef CONFIG_PREEMPTION
6850 /*
6851  * This is the entry point to schedule() from in-kernel preemption
6852  * off of preempt_enable.
6853  */
6854 asmlinkage __visible void __sched notrace preempt_schedule(void)
6855 {
6856 	/*
6857 	 * If there is a non-zero preempt_count or interrupts are disabled,
6858 	 * we do not want to preempt the current task. Just return..
6859 	 */
6860 	if (likely(!preemptible()))
6861 		return;
6862 	preempt_schedule_common();
6863 }
6864 NOKPROBE_SYMBOL(preempt_schedule);
6865 EXPORT_SYMBOL(preempt_schedule);
6866 
6867 #ifdef CONFIG_PREEMPT_DYNAMIC
6868 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6869 #ifndef preempt_schedule_dynamic_enabled
6870 #define preempt_schedule_dynamic_enabled	preempt_schedule
6871 #define preempt_schedule_dynamic_disabled	NULL
6872 #endif
6873 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6874 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6875 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6876 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6877 void __sched notrace dynamic_preempt_schedule(void)
6878 {
6879 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6880 		return;
6881 	preempt_schedule();
6882 }
6883 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6884 EXPORT_SYMBOL(dynamic_preempt_schedule);
6885 #endif
6886 #endif
6887 
6888 /**
6889  * preempt_schedule_notrace - preempt_schedule called by tracing
6890  *
6891  * The tracing infrastructure uses preempt_enable_notrace to prevent
6892  * recursion and tracing preempt enabling caused by the tracing
6893  * infrastructure itself. But as tracing can happen in areas coming
6894  * from userspace or just about to enter userspace, a preempt enable
6895  * can occur before user_exit() is called. This will cause the scheduler
6896  * to be called when the system is still in usermode.
6897  *
6898  * To prevent this, the preempt_enable_notrace will use this function
6899  * instead of preempt_schedule() to exit user context if needed before
6900  * calling the scheduler.
6901  */
6902 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6903 {
6904 	enum ctx_state prev_ctx;
6905 
6906 	if (likely(!preemptible()))
6907 		return;
6908 
6909 	do {
6910 		/*
6911 		 * Because the function tracer can trace preempt_count_sub()
6912 		 * and it also uses preempt_enable/disable_notrace(), if
6913 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6914 		 * by the function tracer will call this function again and
6915 		 * cause infinite recursion.
6916 		 *
6917 		 * Preemption must be disabled here before the function
6918 		 * tracer can trace. Break up preempt_disable() into two
6919 		 * calls. One to disable preemption without fear of being
6920 		 * traced. The other to still record the preemption latency,
6921 		 * which can also be traced by the function tracer.
6922 		 */
6923 		preempt_disable_notrace();
6924 		preempt_latency_start(1);
6925 		/*
6926 		 * Needs preempt disabled in case user_exit() is traced
6927 		 * and the tracer calls preempt_enable_notrace() causing
6928 		 * an infinite recursion.
6929 		 */
6930 		prev_ctx = exception_enter();
6931 		__schedule(SM_PREEMPT);
6932 		exception_exit(prev_ctx);
6933 
6934 		preempt_latency_stop(1);
6935 		preempt_enable_no_resched_notrace();
6936 	} while (need_resched());
6937 }
6938 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6939 
6940 #ifdef CONFIG_PREEMPT_DYNAMIC
6941 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6942 #ifndef preempt_schedule_notrace_dynamic_enabled
6943 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6944 #define preempt_schedule_notrace_dynamic_disabled	NULL
6945 #endif
6946 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6947 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6948 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6949 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6950 void __sched notrace dynamic_preempt_schedule_notrace(void)
6951 {
6952 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6953 		return;
6954 	preempt_schedule_notrace();
6955 }
6956 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6957 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6958 #endif
6959 #endif
6960 
6961 #endif /* CONFIG_PREEMPTION */
6962 
6963 /*
6964  * This is the entry point to schedule() from kernel preemption
6965  * off of irq context.
6966  * Note, that this is called and return with irqs disabled. This will
6967  * protect us against recursive calling from irq.
6968  */
6969 asmlinkage __visible void __sched preempt_schedule_irq(void)
6970 {
6971 	enum ctx_state prev_state;
6972 
6973 	/* Catch callers which need to be fixed */
6974 	BUG_ON(preempt_count() || !irqs_disabled());
6975 
6976 	prev_state = exception_enter();
6977 
6978 	do {
6979 		preempt_disable();
6980 		local_irq_enable();
6981 		__schedule(SM_PREEMPT);
6982 		local_irq_disable();
6983 		sched_preempt_enable_no_resched();
6984 	} while (need_resched());
6985 
6986 	exception_exit(prev_state);
6987 }
6988 
6989 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6990 			  void *key)
6991 {
6992 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6993 	return try_to_wake_up(curr->private, mode, wake_flags);
6994 }
6995 EXPORT_SYMBOL(default_wake_function);
6996 
6997 static void __setscheduler_prio(struct task_struct *p, int prio)
6998 {
6999 	if (dl_prio(prio))
7000 		p->sched_class = &dl_sched_class;
7001 	else if (rt_prio(prio))
7002 		p->sched_class = &rt_sched_class;
7003 	else
7004 		p->sched_class = &fair_sched_class;
7005 
7006 	p->prio = prio;
7007 }
7008 
7009 #ifdef CONFIG_RT_MUTEXES
7010 
7011 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7012 {
7013 	if (pi_task)
7014 		prio = min(prio, pi_task->prio);
7015 
7016 	return prio;
7017 }
7018 
7019 static inline int rt_effective_prio(struct task_struct *p, int prio)
7020 {
7021 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7022 
7023 	return __rt_effective_prio(pi_task, prio);
7024 }
7025 
7026 /*
7027  * rt_mutex_setprio - set the current priority of a task
7028  * @p: task to boost
7029  * @pi_task: donor task
7030  *
7031  * This function changes the 'effective' priority of a task. It does
7032  * not touch ->normal_prio like __setscheduler().
7033  *
7034  * Used by the rt_mutex code to implement priority inheritance
7035  * logic. Call site only calls if the priority of the task changed.
7036  */
7037 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7038 {
7039 	int prio, oldprio, queued, running, queue_flag =
7040 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7041 	const struct sched_class *prev_class;
7042 	struct rq_flags rf;
7043 	struct rq *rq;
7044 
7045 	/* XXX used to be waiter->prio, not waiter->task->prio */
7046 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7047 
7048 	/*
7049 	 * If nothing changed; bail early.
7050 	 */
7051 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7052 		return;
7053 
7054 	rq = __task_rq_lock(p, &rf);
7055 	update_rq_clock(rq);
7056 	/*
7057 	 * Set under pi_lock && rq->lock, such that the value can be used under
7058 	 * either lock.
7059 	 *
7060 	 * Note that there is loads of tricky to make this pointer cache work
7061 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7062 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7063 	 * task is allowed to run again (and can exit). This ensures the pointer
7064 	 * points to a blocked task -- which guarantees the task is present.
7065 	 */
7066 	p->pi_top_task = pi_task;
7067 
7068 	/*
7069 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7070 	 */
7071 	if (prio == p->prio && !dl_prio(prio))
7072 		goto out_unlock;
7073 
7074 	/*
7075 	 * Idle task boosting is a nono in general. There is one
7076 	 * exception, when PREEMPT_RT and NOHZ is active:
7077 	 *
7078 	 * The idle task calls get_next_timer_interrupt() and holds
7079 	 * the timer wheel base->lock on the CPU and another CPU wants
7080 	 * to access the timer (probably to cancel it). We can safely
7081 	 * ignore the boosting request, as the idle CPU runs this code
7082 	 * with interrupts disabled and will complete the lock
7083 	 * protected section without being interrupted. So there is no
7084 	 * real need to boost.
7085 	 */
7086 	if (unlikely(p == rq->idle)) {
7087 		WARN_ON(p != rq->curr);
7088 		WARN_ON(p->pi_blocked_on);
7089 		goto out_unlock;
7090 	}
7091 
7092 	trace_sched_pi_setprio(p, pi_task);
7093 	oldprio = p->prio;
7094 
7095 	if (oldprio == prio)
7096 		queue_flag &= ~DEQUEUE_MOVE;
7097 
7098 	prev_class = p->sched_class;
7099 	queued = task_on_rq_queued(p);
7100 	running = task_current(rq, p);
7101 	if (queued)
7102 		dequeue_task(rq, p, queue_flag);
7103 	if (running)
7104 		put_prev_task(rq, p);
7105 
7106 	/*
7107 	 * Boosting condition are:
7108 	 * 1. -rt task is running and holds mutex A
7109 	 *      --> -dl task blocks on mutex A
7110 	 *
7111 	 * 2. -dl task is running and holds mutex A
7112 	 *      --> -dl task blocks on mutex A and could preempt the
7113 	 *          running task
7114 	 */
7115 	if (dl_prio(prio)) {
7116 		if (!dl_prio(p->normal_prio) ||
7117 		    (pi_task && dl_prio(pi_task->prio) &&
7118 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7119 			p->dl.pi_se = pi_task->dl.pi_se;
7120 			queue_flag |= ENQUEUE_REPLENISH;
7121 		} else {
7122 			p->dl.pi_se = &p->dl;
7123 		}
7124 	} else if (rt_prio(prio)) {
7125 		if (dl_prio(oldprio))
7126 			p->dl.pi_se = &p->dl;
7127 		if (oldprio < prio)
7128 			queue_flag |= ENQUEUE_HEAD;
7129 	} else {
7130 		if (dl_prio(oldprio))
7131 			p->dl.pi_se = &p->dl;
7132 		if (rt_prio(oldprio))
7133 			p->rt.timeout = 0;
7134 	}
7135 
7136 	__setscheduler_prio(p, prio);
7137 
7138 	if (queued)
7139 		enqueue_task(rq, p, queue_flag);
7140 	if (running)
7141 		set_next_task(rq, p);
7142 
7143 	check_class_changed(rq, p, prev_class, oldprio);
7144 out_unlock:
7145 	/* Avoid rq from going away on us: */
7146 	preempt_disable();
7147 
7148 	rq_unpin_lock(rq, &rf);
7149 	__balance_callbacks(rq);
7150 	raw_spin_rq_unlock(rq);
7151 
7152 	preempt_enable();
7153 }
7154 #else
7155 static inline int rt_effective_prio(struct task_struct *p, int prio)
7156 {
7157 	return prio;
7158 }
7159 #endif
7160 
7161 void set_user_nice(struct task_struct *p, long nice)
7162 {
7163 	bool queued, running;
7164 	int old_prio;
7165 	struct rq_flags rf;
7166 	struct rq *rq;
7167 
7168 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7169 		return;
7170 	/*
7171 	 * We have to be careful, if called from sys_setpriority(),
7172 	 * the task might be in the middle of scheduling on another CPU.
7173 	 */
7174 	rq = task_rq_lock(p, &rf);
7175 	update_rq_clock(rq);
7176 
7177 	/*
7178 	 * The RT priorities are set via sched_setscheduler(), but we still
7179 	 * allow the 'normal' nice value to be set - but as expected
7180 	 * it won't have any effect on scheduling until the task is
7181 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7182 	 */
7183 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7184 		p->static_prio = NICE_TO_PRIO(nice);
7185 		goto out_unlock;
7186 	}
7187 	queued = task_on_rq_queued(p);
7188 	running = task_current(rq, p);
7189 	if (queued)
7190 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7191 	if (running)
7192 		put_prev_task(rq, p);
7193 
7194 	p->static_prio = NICE_TO_PRIO(nice);
7195 	set_load_weight(p, true);
7196 	old_prio = p->prio;
7197 	p->prio = effective_prio(p);
7198 
7199 	if (queued)
7200 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7201 	if (running)
7202 		set_next_task(rq, p);
7203 
7204 	/*
7205 	 * If the task increased its priority or is running and
7206 	 * lowered its priority, then reschedule its CPU:
7207 	 */
7208 	p->sched_class->prio_changed(rq, p, old_prio);
7209 
7210 out_unlock:
7211 	task_rq_unlock(rq, p, &rf);
7212 }
7213 EXPORT_SYMBOL(set_user_nice);
7214 
7215 /*
7216  * is_nice_reduction - check if nice value is an actual reduction
7217  *
7218  * Similar to can_nice() but does not perform a capability check.
7219  *
7220  * @p: task
7221  * @nice: nice value
7222  */
7223 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7224 {
7225 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7226 	int nice_rlim = nice_to_rlimit(nice);
7227 
7228 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7229 }
7230 
7231 /*
7232  * can_nice - check if a task can reduce its nice value
7233  * @p: task
7234  * @nice: nice value
7235  */
7236 int can_nice(const struct task_struct *p, const int nice)
7237 {
7238 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7239 }
7240 
7241 #ifdef __ARCH_WANT_SYS_NICE
7242 
7243 /*
7244  * sys_nice - change the priority of the current process.
7245  * @increment: priority increment
7246  *
7247  * sys_setpriority is a more generic, but much slower function that
7248  * does similar things.
7249  */
7250 SYSCALL_DEFINE1(nice, int, increment)
7251 {
7252 	long nice, retval;
7253 
7254 	/*
7255 	 * Setpriority might change our priority at the same moment.
7256 	 * We don't have to worry. Conceptually one call occurs first
7257 	 * and we have a single winner.
7258 	 */
7259 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7260 	nice = task_nice(current) + increment;
7261 
7262 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7263 	if (increment < 0 && !can_nice(current, nice))
7264 		return -EPERM;
7265 
7266 	retval = security_task_setnice(current, nice);
7267 	if (retval)
7268 		return retval;
7269 
7270 	set_user_nice(current, nice);
7271 	return 0;
7272 }
7273 
7274 #endif
7275 
7276 /**
7277  * task_prio - return the priority value of a given task.
7278  * @p: the task in question.
7279  *
7280  * Return: The priority value as seen by users in /proc.
7281  *
7282  * sched policy         return value   kernel prio    user prio/nice
7283  *
7284  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7285  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7286  * deadline                     -101             -1           0
7287  */
7288 int task_prio(const struct task_struct *p)
7289 {
7290 	return p->prio - MAX_RT_PRIO;
7291 }
7292 
7293 /**
7294  * idle_cpu - is a given CPU idle currently?
7295  * @cpu: the processor in question.
7296  *
7297  * Return: 1 if the CPU is currently idle. 0 otherwise.
7298  */
7299 int idle_cpu(int cpu)
7300 {
7301 	struct rq *rq = cpu_rq(cpu);
7302 
7303 	if (rq->curr != rq->idle)
7304 		return 0;
7305 
7306 	if (rq->nr_running)
7307 		return 0;
7308 
7309 #ifdef CONFIG_SMP
7310 	if (rq->ttwu_pending)
7311 		return 0;
7312 #endif
7313 
7314 	return 1;
7315 }
7316 
7317 /**
7318  * available_idle_cpu - is a given CPU idle for enqueuing work.
7319  * @cpu: the CPU in question.
7320  *
7321  * Return: 1 if the CPU is currently idle. 0 otherwise.
7322  */
7323 int available_idle_cpu(int cpu)
7324 {
7325 	if (!idle_cpu(cpu))
7326 		return 0;
7327 
7328 	if (vcpu_is_preempted(cpu))
7329 		return 0;
7330 
7331 	return 1;
7332 }
7333 
7334 /**
7335  * idle_task - return the idle task for a given CPU.
7336  * @cpu: the processor in question.
7337  *
7338  * Return: The idle task for the CPU @cpu.
7339  */
7340 struct task_struct *idle_task(int cpu)
7341 {
7342 	return cpu_rq(cpu)->idle;
7343 }
7344 
7345 #ifdef CONFIG_SMP
7346 /*
7347  * This function computes an effective utilization for the given CPU, to be
7348  * used for frequency selection given the linear relation: f = u * f_max.
7349  *
7350  * The scheduler tracks the following metrics:
7351  *
7352  *   cpu_util_{cfs,rt,dl,irq}()
7353  *   cpu_bw_dl()
7354  *
7355  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7356  * synchronized windows and are thus directly comparable.
7357  *
7358  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7359  * which excludes things like IRQ and steal-time. These latter are then accrued
7360  * in the irq utilization.
7361  *
7362  * The DL bandwidth number otoh is not a measured metric but a value computed
7363  * based on the task model parameters and gives the minimal utilization
7364  * required to meet deadlines.
7365  */
7366 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7367 				 enum cpu_util_type type,
7368 				 struct task_struct *p)
7369 {
7370 	unsigned long dl_util, util, irq, max;
7371 	struct rq *rq = cpu_rq(cpu);
7372 
7373 	max = arch_scale_cpu_capacity(cpu);
7374 
7375 	if (!uclamp_is_used() &&
7376 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7377 		return max;
7378 	}
7379 
7380 	/*
7381 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7382 	 * because of inaccuracies in how we track these -- see
7383 	 * update_irq_load_avg().
7384 	 */
7385 	irq = cpu_util_irq(rq);
7386 	if (unlikely(irq >= max))
7387 		return max;
7388 
7389 	/*
7390 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7391 	 * CFS tasks and we use the same metric to track the effective
7392 	 * utilization (PELT windows are synchronized) we can directly add them
7393 	 * to obtain the CPU's actual utilization.
7394 	 *
7395 	 * CFS and RT utilization can be boosted or capped, depending on
7396 	 * utilization clamp constraints requested by currently RUNNABLE
7397 	 * tasks.
7398 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7399 	 * frequency will be gracefully reduced with the utilization decay.
7400 	 */
7401 	util = util_cfs + cpu_util_rt(rq);
7402 	if (type == FREQUENCY_UTIL)
7403 		util = uclamp_rq_util_with(rq, util, p);
7404 
7405 	dl_util = cpu_util_dl(rq);
7406 
7407 	/*
7408 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7409 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7410 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7411 	 * that we select f_max when there is no idle time.
7412 	 *
7413 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7414 	 * saturation when we should -- something for later.
7415 	 */
7416 	if (util + dl_util >= max)
7417 		return max;
7418 
7419 	/*
7420 	 * OTOH, for energy computation we need the estimated running time, so
7421 	 * include util_dl and ignore dl_bw.
7422 	 */
7423 	if (type == ENERGY_UTIL)
7424 		util += dl_util;
7425 
7426 	/*
7427 	 * There is still idle time; further improve the number by using the
7428 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7429 	 * need to scale the task numbers:
7430 	 *
7431 	 *              max - irq
7432 	 *   U' = irq + --------- * U
7433 	 *                 max
7434 	 */
7435 	util = scale_irq_capacity(util, irq, max);
7436 	util += irq;
7437 
7438 	/*
7439 	 * Bandwidth required by DEADLINE must always be granted while, for
7440 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7441 	 * to gracefully reduce the frequency when no tasks show up for longer
7442 	 * periods of time.
7443 	 *
7444 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7445 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7446 	 * an interface. So, we only do the latter for now.
7447 	 */
7448 	if (type == FREQUENCY_UTIL)
7449 		util += cpu_bw_dl(rq);
7450 
7451 	return min(max, util);
7452 }
7453 
7454 unsigned long sched_cpu_util(int cpu)
7455 {
7456 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7457 }
7458 #endif /* CONFIG_SMP */
7459 
7460 /**
7461  * find_process_by_pid - find a process with a matching PID value.
7462  * @pid: the pid in question.
7463  *
7464  * The task of @pid, if found. %NULL otherwise.
7465  */
7466 static struct task_struct *find_process_by_pid(pid_t pid)
7467 {
7468 	return pid ? find_task_by_vpid(pid) : current;
7469 }
7470 
7471 /*
7472  * sched_setparam() passes in -1 for its policy, to let the functions
7473  * it calls know not to change it.
7474  */
7475 #define SETPARAM_POLICY	-1
7476 
7477 static void __setscheduler_params(struct task_struct *p,
7478 		const struct sched_attr *attr)
7479 {
7480 	int policy = attr->sched_policy;
7481 
7482 	if (policy == SETPARAM_POLICY)
7483 		policy = p->policy;
7484 
7485 	p->policy = policy;
7486 
7487 	if (dl_policy(policy))
7488 		__setparam_dl(p, attr);
7489 	else if (fair_policy(policy))
7490 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7491 
7492 	/*
7493 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7494 	 * !rt_policy. Always setting this ensures that things like
7495 	 * getparam()/getattr() don't report silly values for !rt tasks.
7496 	 */
7497 	p->rt_priority = attr->sched_priority;
7498 	p->normal_prio = normal_prio(p);
7499 	set_load_weight(p, true);
7500 }
7501 
7502 /*
7503  * Check the target process has a UID that matches the current process's:
7504  */
7505 static bool check_same_owner(struct task_struct *p)
7506 {
7507 	const struct cred *cred = current_cred(), *pcred;
7508 	bool match;
7509 
7510 	rcu_read_lock();
7511 	pcred = __task_cred(p);
7512 	match = (uid_eq(cred->euid, pcred->euid) ||
7513 		 uid_eq(cred->euid, pcred->uid));
7514 	rcu_read_unlock();
7515 	return match;
7516 }
7517 
7518 /*
7519  * Allow unprivileged RT tasks to decrease priority.
7520  * Only issue a capable test if needed and only once to avoid an audit
7521  * event on permitted non-privileged operations:
7522  */
7523 static int user_check_sched_setscheduler(struct task_struct *p,
7524 					 const struct sched_attr *attr,
7525 					 int policy, int reset_on_fork)
7526 {
7527 	if (fair_policy(policy)) {
7528 		if (attr->sched_nice < task_nice(p) &&
7529 		    !is_nice_reduction(p, attr->sched_nice))
7530 			goto req_priv;
7531 	}
7532 
7533 	if (rt_policy(policy)) {
7534 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7535 
7536 		/* Can't set/change the rt policy: */
7537 		if (policy != p->policy && !rlim_rtprio)
7538 			goto req_priv;
7539 
7540 		/* Can't increase priority: */
7541 		if (attr->sched_priority > p->rt_priority &&
7542 		    attr->sched_priority > rlim_rtprio)
7543 			goto req_priv;
7544 	}
7545 
7546 	/*
7547 	 * Can't set/change SCHED_DEADLINE policy at all for now
7548 	 * (safest behavior); in the future we would like to allow
7549 	 * unprivileged DL tasks to increase their relative deadline
7550 	 * or reduce their runtime (both ways reducing utilization)
7551 	 */
7552 	if (dl_policy(policy))
7553 		goto req_priv;
7554 
7555 	/*
7556 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7557 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7558 	 */
7559 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7560 		if (!is_nice_reduction(p, task_nice(p)))
7561 			goto req_priv;
7562 	}
7563 
7564 	/* Can't change other user's priorities: */
7565 	if (!check_same_owner(p))
7566 		goto req_priv;
7567 
7568 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7569 	if (p->sched_reset_on_fork && !reset_on_fork)
7570 		goto req_priv;
7571 
7572 	return 0;
7573 
7574 req_priv:
7575 	if (!capable(CAP_SYS_NICE))
7576 		return -EPERM;
7577 
7578 	return 0;
7579 }
7580 
7581 static int __sched_setscheduler(struct task_struct *p,
7582 				const struct sched_attr *attr,
7583 				bool user, bool pi)
7584 {
7585 	int oldpolicy = -1, policy = attr->sched_policy;
7586 	int retval, oldprio, newprio, queued, running;
7587 	const struct sched_class *prev_class;
7588 	struct balance_callback *head;
7589 	struct rq_flags rf;
7590 	int reset_on_fork;
7591 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7592 	struct rq *rq;
7593 
7594 	/* The pi code expects interrupts enabled */
7595 	BUG_ON(pi && in_interrupt());
7596 recheck:
7597 	/* Double check policy once rq lock held: */
7598 	if (policy < 0) {
7599 		reset_on_fork = p->sched_reset_on_fork;
7600 		policy = oldpolicy = p->policy;
7601 	} else {
7602 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7603 
7604 		if (!valid_policy(policy))
7605 			return -EINVAL;
7606 	}
7607 
7608 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7609 		return -EINVAL;
7610 
7611 	/*
7612 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7613 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7614 	 * SCHED_BATCH and SCHED_IDLE is 0.
7615 	 */
7616 	if (attr->sched_priority > MAX_RT_PRIO-1)
7617 		return -EINVAL;
7618 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7619 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7620 		return -EINVAL;
7621 
7622 	if (user) {
7623 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7624 		if (retval)
7625 			return retval;
7626 
7627 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7628 			return -EINVAL;
7629 
7630 		retval = security_task_setscheduler(p);
7631 		if (retval)
7632 			return retval;
7633 	}
7634 
7635 	/* Update task specific "requested" clamps */
7636 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7637 		retval = uclamp_validate(p, attr);
7638 		if (retval)
7639 			return retval;
7640 	}
7641 
7642 	if (pi)
7643 		cpuset_read_lock();
7644 
7645 	/*
7646 	 * Make sure no PI-waiters arrive (or leave) while we are
7647 	 * changing the priority of the task:
7648 	 *
7649 	 * To be able to change p->policy safely, the appropriate
7650 	 * runqueue lock must be held.
7651 	 */
7652 	rq = task_rq_lock(p, &rf);
7653 	update_rq_clock(rq);
7654 
7655 	/*
7656 	 * Changing the policy of the stop threads its a very bad idea:
7657 	 */
7658 	if (p == rq->stop) {
7659 		retval = -EINVAL;
7660 		goto unlock;
7661 	}
7662 
7663 	/*
7664 	 * If not changing anything there's no need to proceed further,
7665 	 * but store a possible modification of reset_on_fork.
7666 	 */
7667 	if (unlikely(policy == p->policy)) {
7668 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7669 			goto change;
7670 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7671 			goto change;
7672 		if (dl_policy(policy) && dl_param_changed(p, attr))
7673 			goto change;
7674 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7675 			goto change;
7676 
7677 		p->sched_reset_on_fork = reset_on_fork;
7678 		retval = 0;
7679 		goto unlock;
7680 	}
7681 change:
7682 
7683 	if (user) {
7684 #ifdef CONFIG_RT_GROUP_SCHED
7685 		/*
7686 		 * Do not allow realtime tasks into groups that have no runtime
7687 		 * assigned.
7688 		 */
7689 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7690 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7691 				!task_group_is_autogroup(task_group(p))) {
7692 			retval = -EPERM;
7693 			goto unlock;
7694 		}
7695 #endif
7696 #ifdef CONFIG_SMP
7697 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7698 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7699 			cpumask_t *span = rq->rd->span;
7700 
7701 			/*
7702 			 * Don't allow tasks with an affinity mask smaller than
7703 			 * the entire root_domain to become SCHED_DEADLINE. We
7704 			 * will also fail if there's no bandwidth available.
7705 			 */
7706 			if (!cpumask_subset(span, p->cpus_ptr) ||
7707 			    rq->rd->dl_bw.bw == 0) {
7708 				retval = -EPERM;
7709 				goto unlock;
7710 			}
7711 		}
7712 #endif
7713 	}
7714 
7715 	/* Re-check policy now with rq lock held: */
7716 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7717 		policy = oldpolicy = -1;
7718 		task_rq_unlock(rq, p, &rf);
7719 		if (pi)
7720 			cpuset_read_unlock();
7721 		goto recheck;
7722 	}
7723 
7724 	/*
7725 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7726 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7727 	 * is available.
7728 	 */
7729 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7730 		retval = -EBUSY;
7731 		goto unlock;
7732 	}
7733 
7734 	p->sched_reset_on_fork = reset_on_fork;
7735 	oldprio = p->prio;
7736 
7737 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7738 	if (pi) {
7739 		/*
7740 		 * Take priority boosted tasks into account. If the new
7741 		 * effective priority is unchanged, we just store the new
7742 		 * normal parameters and do not touch the scheduler class and
7743 		 * the runqueue. This will be done when the task deboost
7744 		 * itself.
7745 		 */
7746 		newprio = rt_effective_prio(p, newprio);
7747 		if (newprio == oldprio)
7748 			queue_flags &= ~DEQUEUE_MOVE;
7749 	}
7750 
7751 	queued = task_on_rq_queued(p);
7752 	running = task_current(rq, p);
7753 	if (queued)
7754 		dequeue_task(rq, p, queue_flags);
7755 	if (running)
7756 		put_prev_task(rq, p);
7757 
7758 	prev_class = p->sched_class;
7759 
7760 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7761 		__setscheduler_params(p, attr);
7762 		__setscheduler_prio(p, newprio);
7763 	}
7764 	__setscheduler_uclamp(p, attr);
7765 
7766 	if (queued) {
7767 		/*
7768 		 * We enqueue to tail when the priority of a task is
7769 		 * increased (user space view).
7770 		 */
7771 		if (oldprio < p->prio)
7772 			queue_flags |= ENQUEUE_HEAD;
7773 
7774 		enqueue_task(rq, p, queue_flags);
7775 	}
7776 	if (running)
7777 		set_next_task(rq, p);
7778 
7779 	check_class_changed(rq, p, prev_class, oldprio);
7780 
7781 	/* Avoid rq from going away on us: */
7782 	preempt_disable();
7783 	head = splice_balance_callbacks(rq);
7784 	task_rq_unlock(rq, p, &rf);
7785 
7786 	if (pi) {
7787 		cpuset_read_unlock();
7788 		rt_mutex_adjust_pi(p);
7789 	}
7790 
7791 	/* Run balance callbacks after we've adjusted the PI chain: */
7792 	balance_callbacks(rq, head);
7793 	preempt_enable();
7794 
7795 	return 0;
7796 
7797 unlock:
7798 	task_rq_unlock(rq, p, &rf);
7799 	if (pi)
7800 		cpuset_read_unlock();
7801 	return retval;
7802 }
7803 
7804 static int _sched_setscheduler(struct task_struct *p, int policy,
7805 			       const struct sched_param *param, bool check)
7806 {
7807 	struct sched_attr attr = {
7808 		.sched_policy   = policy,
7809 		.sched_priority = param->sched_priority,
7810 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7811 	};
7812 
7813 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7814 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7815 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7816 		policy &= ~SCHED_RESET_ON_FORK;
7817 		attr.sched_policy = policy;
7818 	}
7819 
7820 	return __sched_setscheduler(p, &attr, check, true);
7821 }
7822 /**
7823  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7824  * @p: the task in question.
7825  * @policy: new policy.
7826  * @param: structure containing the new RT priority.
7827  *
7828  * Use sched_set_fifo(), read its comment.
7829  *
7830  * Return: 0 on success. An error code otherwise.
7831  *
7832  * NOTE that the task may be already dead.
7833  */
7834 int sched_setscheduler(struct task_struct *p, int policy,
7835 		       const struct sched_param *param)
7836 {
7837 	return _sched_setscheduler(p, policy, param, true);
7838 }
7839 
7840 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7841 {
7842 	return __sched_setscheduler(p, attr, true, true);
7843 }
7844 
7845 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7846 {
7847 	return __sched_setscheduler(p, attr, false, true);
7848 }
7849 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7850 
7851 /**
7852  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7853  * @p: the task in question.
7854  * @policy: new policy.
7855  * @param: structure containing the new RT priority.
7856  *
7857  * Just like sched_setscheduler, only don't bother checking if the
7858  * current context has permission.  For example, this is needed in
7859  * stop_machine(): we create temporary high priority worker threads,
7860  * but our caller might not have that capability.
7861  *
7862  * Return: 0 on success. An error code otherwise.
7863  */
7864 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7865 			       const struct sched_param *param)
7866 {
7867 	return _sched_setscheduler(p, policy, param, false);
7868 }
7869 
7870 /*
7871  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7872  * incapable of resource management, which is the one thing an OS really should
7873  * be doing.
7874  *
7875  * This is of course the reason it is limited to privileged users only.
7876  *
7877  * Worse still; it is fundamentally impossible to compose static priority
7878  * workloads. You cannot take two correctly working static prio workloads
7879  * and smash them together and still expect them to work.
7880  *
7881  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7882  *
7883  *   MAX_RT_PRIO / 2
7884  *
7885  * The administrator _MUST_ configure the system, the kernel simply doesn't
7886  * know enough information to make a sensible choice.
7887  */
7888 void sched_set_fifo(struct task_struct *p)
7889 {
7890 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7891 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7892 }
7893 EXPORT_SYMBOL_GPL(sched_set_fifo);
7894 
7895 /*
7896  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7897  */
7898 void sched_set_fifo_low(struct task_struct *p)
7899 {
7900 	struct sched_param sp = { .sched_priority = 1 };
7901 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7902 }
7903 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7904 
7905 void sched_set_normal(struct task_struct *p, int nice)
7906 {
7907 	struct sched_attr attr = {
7908 		.sched_policy = SCHED_NORMAL,
7909 		.sched_nice = nice,
7910 	};
7911 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7912 }
7913 EXPORT_SYMBOL_GPL(sched_set_normal);
7914 
7915 static int
7916 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7917 {
7918 	struct sched_param lparam;
7919 	struct task_struct *p;
7920 	int retval;
7921 
7922 	if (!param || pid < 0)
7923 		return -EINVAL;
7924 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7925 		return -EFAULT;
7926 
7927 	rcu_read_lock();
7928 	retval = -ESRCH;
7929 	p = find_process_by_pid(pid);
7930 	if (likely(p))
7931 		get_task_struct(p);
7932 	rcu_read_unlock();
7933 
7934 	if (likely(p)) {
7935 		retval = sched_setscheduler(p, policy, &lparam);
7936 		put_task_struct(p);
7937 	}
7938 
7939 	return retval;
7940 }
7941 
7942 /*
7943  * Mimics kernel/events/core.c perf_copy_attr().
7944  */
7945 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7946 {
7947 	u32 size;
7948 	int ret;
7949 
7950 	/* Zero the full structure, so that a short copy will be nice: */
7951 	memset(attr, 0, sizeof(*attr));
7952 
7953 	ret = get_user(size, &uattr->size);
7954 	if (ret)
7955 		return ret;
7956 
7957 	/* ABI compatibility quirk: */
7958 	if (!size)
7959 		size = SCHED_ATTR_SIZE_VER0;
7960 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7961 		goto err_size;
7962 
7963 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7964 	if (ret) {
7965 		if (ret == -E2BIG)
7966 			goto err_size;
7967 		return ret;
7968 	}
7969 
7970 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7971 	    size < SCHED_ATTR_SIZE_VER1)
7972 		return -EINVAL;
7973 
7974 	/*
7975 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7976 	 * to be strict and return an error on out-of-bounds values?
7977 	 */
7978 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7979 
7980 	return 0;
7981 
7982 err_size:
7983 	put_user(sizeof(*attr), &uattr->size);
7984 	return -E2BIG;
7985 }
7986 
7987 static void get_params(struct task_struct *p, struct sched_attr *attr)
7988 {
7989 	if (task_has_dl_policy(p))
7990 		__getparam_dl(p, attr);
7991 	else if (task_has_rt_policy(p))
7992 		attr->sched_priority = p->rt_priority;
7993 	else
7994 		attr->sched_nice = task_nice(p);
7995 }
7996 
7997 /**
7998  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7999  * @pid: the pid in question.
8000  * @policy: new policy.
8001  * @param: structure containing the new RT priority.
8002  *
8003  * Return: 0 on success. An error code otherwise.
8004  */
8005 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8006 {
8007 	if (policy < 0)
8008 		return -EINVAL;
8009 
8010 	return do_sched_setscheduler(pid, policy, param);
8011 }
8012 
8013 /**
8014  * sys_sched_setparam - set/change the RT priority of a thread
8015  * @pid: the pid in question.
8016  * @param: structure containing the new RT priority.
8017  *
8018  * Return: 0 on success. An error code otherwise.
8019  */
8020 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8021 {
8022 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8023 }
8024 
8025 /**
8026  * sys_sched_setattr - same as above, but with extended sched_attr
8027  * @pid: the pid in question.
8028  * @uattr: structure containing the extended parameters.
8029  * @flags: for future extension.
8030  */
8031 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8032 			       unsigned int, flags)
8033 {
8034 	struct sched_attr attr;
8035 	struct task_struct *p;
8036 	int retval;
8037 
8038 	if (!uattr || pid < 0 || flags)
8039 		return -EINVAL;
8040 
8041 	retval = sched_copy_attr(uattr, &attr);
8042 	if (retval)
8043 		return retval;
8044 
8045 	if ((int)attr.sched_policy < 0)
8046 		return -EINVAL;
8047 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8048 		attr.sched_policy = SETPARAM_POLICY;
8049 
8050 	rcu_read_lock();
8051 	retval = -ESRCH;
8052 	p = find_process_by_pid(pid);
8053 	if (likely(p))
8054 		get_task_struct(p);
8055 	rcu_read_unlock();
8056 
8057 	if (likely(p)) {
8058 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8059 			get_params(p, &attr);
8060 		retval = sched_setattr(p, &attr);
8061 		put_task_struct(p);
8062 	}
8063 
8064 	return retval;
8065 }
8066 
8067 /**
8068  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8069  * @pid: the pid in question.
8070  *
8071  * Return: On success, the policy of the thread. Otherwise, a negative error
8072  * code.
8073  */
8074 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8075 {
8076 	struct task_struct *p;
8077 	int retval;
8078 
8079 	if (pid < 0)
8080 		return -EINVAL;
8081 
8082 	retval = -ESRCH;
8083 	rcu_read_lock();
8084 	p = find_process_by_pid(pid);
8085 	if (p) {
8086 		retval = security_task_getscheduler(p);
8087 		if (!retval)
8088 			retval = p->policy
8089 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8090 	}
8091 	rcu_read_unlock();
8092 	return retval;
8093 }
8094 
8095 /**
8096  * sys_sched_getparam - get the RT priority of a thread
8097  * @pid: the pid in question.
8098  * @param: structure containing the RT priority.
8099  *
8100  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8101  * code.
8102  */
8103 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8104 {
8105 	struct sched_param lp = { .sched_priority = 0 };
8106 	struct task_struct *p;
8107 	int retval;
8108 
8109 	if (!param || pid < 0)
8110 		return -EINVAL;
8111 
8112 	rcu_read_lock();
8113 	p = find_process_by_pid(pid);
8114 	retval = -ESRCH;
8115 	if (!p)
8116 		goto out_unlock;
8117 
8118 	retval = security_task_getscheduler(p);
8119 	if (retval)
8120 		goto out_unlock;
8121 
8122 	if (task_has_rt_policy(p))
8123 		lp.sched_priority = p->rt_priority;
8124 	rcu_read_unlock();
8125 
8126 	/*
8127 	 * This one might sleep, we cannot do it with a spinlock held ...
8128 	 */
8129 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8130 
8131 	return retval;
8132 
8133 out_unlock:
8134 	rcu_read_unlock();
8135 	return retval;
8136 }
8137 
8138 /*
8139  * Copy the kernel size attribute structure (which might be larger
8140  * than what user-space knows about) to user-space.
8141  *
8142  * Note that all cases are valid: user-space buffer can be larger or
8143  * smaller than the kernel-space buffer. The usual case is that both
8144  * have the same size.
8145  */
8146 static int
8147 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8148 			struct sched_attr *kattr,
8149 			unsigned int usize)
8150 {
8151 	unsigned int ksize = sizeof(*kattr);
8152 
8153 	if (!access_ok(uattr, usize))
8154 		return -EFAULT;
8155 
8156 	/*
8157 	 * sched_getattr() ABI forwards and backwards compatibility:
8158 	 *
8159 	 * If usize == ksize then we just copy everything to user-space and all is good.
8160 	 *
8161 	 * If usize < ksize then we only copy as much as user-space has space for,
8162 	 * this keeps ABI compatibility as well. We skip the rest.
8163 	 *
8164 	 * If usize > ksize then user-space is using a newer version of the ABI,
8165 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8166 	 * detect the kernel's knowledge of attributes from the attr->size value
8167 	 * which is set to ksize in this case.
8168 	 */
8169 	kattr->size = min(usize, ksize);
8170 
8171 	if (copy_to_user(uattr, kattr, kattr->size))
8172 		return -EFAULT;
8173 
8174 	return 0;
8175 }
8176 
8177 /**
8178  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8179  * @pid: the pid in question.
8180  * @uattr: structure containing the extended parameters.
8181  * @usize: sizeof(attr) for fwd/bwd comp.
8182  * @flags: for future extension.
8183  */
8184 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8185 		unsigned int, usize, unsigned int, flags)
8186 {
8187 	struct sched_attr kattr = { };
8188 	struct task_struct *p;
8189 	int retval;
8190 
8191 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8192 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8193 		return -EINVAL;
8194 
8195 	rcu_read_lock();
8196 	p = find_process_by_pid(pid);
8197 	retval = -ESRCH;
8198 	if (!p)
8199 		goto out_unlock;
8200 
8201 	retval = security_task_getscheduler(p);
8202 	if (retval)
8203 		goto out_unlock;
8204 
8205 	kattr.sched_policy = p->policy;
8206 	if (p->sched_reset_on_fork)
8207 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8208 	get_params(p, &kattr);
8209 	kattr.sched_flags &= SCHED_FLAG_ALL;
8210 
8211 #ifdef CONFIG_UCLAMP_TASK
8212 	/*
8213 	 * This could race with another potential updater, but this is fine
8214 	 * because it'll correctly read the old or the new value. We don't need
8215 	 * to guarantee who wins the race as long as it doesn't return garbage.
8216 	 */
8217 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8218 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8219 #endif
8220 
8221 	rcu_read_unlock();
8222 
8223 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8224 
8225 out_unlock:
8226 	rcu_read_unlock();
8227 	return retval;
8228 }
8229 
8230 #ifdef CONFIG_SMP
8231 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8232 {
8233 	int ret = 0;
8234 
8235 	/*
8236 	 * If the task isn't a deadline task or admission control is
8237 	 * disabled then we don't care about affinity changes.
8238 	 */
8239 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8240 		return 0;
8241 
8242 	/*
8243 	 * Since bandwidth control happens on root_domain basis,
8244 	 * if admission test is enabled, we only admit -deadline
8245 	 * tasks allowed to run on all the CPUs in the task's
8246 	 * root_domain.
8247 	 */
8248 	rcu_read_lock();
8249 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8250 		ret = -EBUSY;
8251 	rcu_read_unlock();
8252 	return ret;
8253 }
8254 #endif
8255 
8256 static int
8257 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8258 {
8259 	int retval;
8260 	cpumask_var_t cpus_allowed, new_mask;
8261 
8262 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8263 		return -ENOMEM;
8264 
8265 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8266 		retval = -ENOMEM;
8267 		goto out_free_cpus_allowed;
8268 	}
8269 
8270 	cpuset_cpus_allowed(p, cpus_allowed);
8271 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8272 
8273 	ctx->new_mask = new_mask;
8274 	ctx->flags |= SCA_CHECK;
8275 
8276 	retval = dl_task_check_affinity(p, new_mask);
8277 	if (retval)
8278 		goto out_free_new_mask;
8279 
8280 	retval = __set_cpus_allowed_ptr(p, ctx);
8281 	if (retval)
8282 		goto out_free_new_mask;
8283 
8284 	cpuset_cpus_allowed(p, cpus_allowed);
8285 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8286 		/*
8287 		 * We must have raced with a concurrent cpuset update.
8288 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8289 		 */
8290 		cpumask_copy(new_mask, cpus_allowed);
8291 
8292 		/*
8293 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8294 		 * will restore the previous user_cpus_ptr value.
8295 		 *
8296 		 * In the unlikely event a previous user_cpus_ptr exists,
8297 		 * we need to further restrict the mask to what is allowed
8298 		 * by that old user_cpus_ptr.
8299 		 */
8300 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8301 			bool empty = !cpumask_and(new_mask, new_mask,
8302 						  ctx->user_mask);
8303 
8304 			if (WARN_ON_ONCE(empty))
8305 				cpumask_copy(new_mask, cpus_allowed);
8306 		}
8307 		__set_cpus_allowed_ptr(p, ctx);
8308 		retval = -EINVAL;
8309 	}
8310 
8311 out_free_new_mask:
8312 	free_cpumask_var(new_mask);
8313 out_free_cpus_allowed:
8314 	free_cpumask_var(cpus_allowed);
8315 	return retval;
8316 }
8317 
8318 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8319 {
8320 	struct affinity_context ac;
8321 	struct cpumask *user_mask;
8322 	struct task_struct *p;
8323 	int retval;
8324 
8325 	rcu_read_lock();
8326 
8327 	p = find_process_by_pid(pid);
8328 	if (!p) {
8329 		rcu_read_unlock();
8330 		return -ESRCH;
8331 	}
8332 
8333 	/* Prevent p going away */
8334 	get_task_struct(p);
8335 	rcu_read_unlock();
8336 
8337 	if (p->flags & PF_NO_SETAFFINITY) {
8338 		retval = -EINVAL;
8339 		goto out_put_task;
8340 	}
8341 
8342 	if (!check_same_owner(p)) {
8343 		rcu_read_lock();
8344 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8345 			rcu_read_unlock();
8346 			retval = -EPERM;
8347 			goto out_put_task;
8348 		}
8349 		rcu_read_unlock();
8350 	}
8351 
8352 	retval = security_task_setscheduler(p);
8353 	if (retval)
8354 		goto out_put_task;
8355 
8356 	/*
8357 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8358 	 * alloc_user_cpus_ptr() returns NULL.
8359 	 */
8360 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8361 	if (user_mask) {
8362 		cpumask_copy(user_mask, in_mask);
8363 	} else if (IS_ENABLED(CONFIG_SMP)) {
8364 		retval = -ENOMEM;
8365 		goto out_put_task;
8366 	}
8367 
8368 	ac = (struct affinity_context){
8369 		.new_mask  = in_mask,
8370 		.user_mask = user_mask,
8371 		.flags     = SCA_USER,
8372 	};
8373 
8374 	retval = __sched_setaffinity(p, &ac);
8375 	kfree(ac.user_mask);
8376 
8377 out_put_task:
8378 	put_task_struct(p);
8379 	return retval;
8380 }
8381 
8382 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8383 			     struct cpumask *new_mask)
8384 {
8385 	if (len < cpumask_size())
8386 		cpumask_clear(new_mask);
8387 	else if (len > cpumask_size())
8388 		len = cpumask_size();
8389 
8390 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8391 }
8392 
8393 /**
8394  * sys_sched_setaffinity - set the CPU affinity of a process
8395  * @pid: pid of the process
8396  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8397  * @user_mask_ptr: user-space pointer to the new CPU mask
8398  *
8399  * Return: 0 on success. An error code otherwise.
8400  */
8401 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8402 		unsigned long __user *, user_mask_ptr)
8403 {
8404 	cpumask_var_t new_mask;
8405 	int retval;
8406 
8407 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8408 		return -ENOMEM;
8409 
8410 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8411 	if (retval == 0)
8412 		retval = sched_setaffinity(pid, new_mask);
8413 	free_cpumask_var(new_mask);
8414 	return retval;
8415 }
8416 
8417 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8418 {
8419 	struct task_struct *p;
8420 	unsigned long flags;
8421 	int retval;
8422 
8423 	rcu_read_lock();
8424 
8425 	retval = -ESRCH;
8426 	p = find_process_by_pid(pid);
8427 	if (!p)
8428 		goto out_unlock;
8429 
8430 	retval = security_task_getscheduler(p);
8431 	if (retval)
8432 		goto out_unlock;
8433 
8434 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8435 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8436 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8437 
8438 out_unlock:
8439 	rcu_read_unlock();
8440 
8441 	return retval;
8442 }
8443 
8444 /**
8445  * sys_sched_getaffinity - get the CPU affinity of a process
8446  * @pid: pid of the process
8447  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8448  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8449  *
8450  * Return: size of CPU mask copied to user_mask_ptr on success. An
8451  * error code otherwise.
8452  */
8453 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8454 		unsigned long __user *, user_mask_ptr)
8455 {
8456 	int ret;
8457 	cpumask_var_t mask;
8458 
8459 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8460 		return -EINVAL;
8461 	if (len & (sizeof(unsigned long)-1))
8462 		return -EINVAL;
8463 
8464 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8465 		return -ENOMEM;
8466 
8467 	ret = sched_getaffinity(pid, mask);
8468 	if (ret == 0) {
8469 		unsigned int retlen = min(len, cpumask_size());
8470 
8471 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8472 			ret = -EFAULT;
8473 		else
8474 			ret = retlen;
8475 	}
8476 	free_cpumask_var(mask);
8477 
8478 	return ret;
8479 }
8480 
8481 static void do_sched_yield(void)
8482 {
8483 	struct rq_flags rf;
8484 	struct rq *rq;
8485 
8486 	rq = this_rq_lock_irq(&rf);
8487 
8488 	schedstat_inc(rq->yld_count);
8489 	current->sched_class->yield_task(rq);
8490 
8491 	preempt_disable();
8492 	rq_unlock_irq(rq, &rf);
8493 	sched_preempt_enable_no_resched();
8494 
8495 	schedule();
8496 }
8497 
8498 /**
8499  * sys_sched_yield - yield the current processor to other threads.
8500  *
8501  * This function yields the current CPU to other tasks. If there are no
8502  * other threads running on this CPU then this function will return.
8503  *
8504  * Return: 0.
8505  */
8506 SYSCALL_DEFINE0(sched_yield)
8507 {
8508 	do_sched_yield();
8509 	return 0;
8510 }
8511 
8512 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8513 int __sched __cond_resched(void)
8514 {
8515 	if (should_resched(0)) {
8516 		preempt_schedule_common();
8517 		return 1;
8518 	}
8519 	/*
8520 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8521 	 * whether the current CPU is in an RCU read-side critical section,
8522 	 * so the tick can report quiescent states even for CPUs looping
8523 	 * in kernel context.  In contrast, in non-preemptible kernels,
8524 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8525 	 * processes executing in kernel context might never report an
8526 	 * RCU quiescent state.  Therefore, the following code causes
8527 	 * cond_resched() to report a quiescent state, but only when RCU
8528 	 * is in urgent need of one.
8529 	 */
8530 #ifndef CONFIG_PREEMPT_RCU
8531 	rcu_all_qs();
8532 #endif
8533 	return 0;
8534 }
8535 EXPORT_SYMBOL(__cond_resched);
8536 #endif
8537 
8538 #ifdef CONFIG_PREEMPT_DYNAMIC
8539 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8540 #define cond_resched_dynamic_enabled	__cond_resched
8541 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8542 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8543 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8544 
8545 #define might_resched_dynamic_enabled	__cond_resched
8546 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8547 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8548 EXPORT_STATIC_CALL_TRAMP(might_resched);
8549 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8550 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8551 int __sched dynamic_cond_resched(void)
8552 {
8553 	klp_sched_try_switch();
8554 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8555 		return 0;
8556 	return __cond_resched();
8557 }
8558 EXPORT_SYMBOL(dynamic_cond_resched);
8559 
8560 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8561 int __sched dynamic_might_resched(void)
8562 {
8563 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8564 		return 0;
8565 	return __cond_resched();
8566 }
8567 EXPORT_SYMBOL(dynamic_might_resched);
8568 #endif
8569 #endif
8570 
8571 /*
8572  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8573  * call schedule, and on return reacquire the lock.
8574  *
8575  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8576  * operations here to prevent schedule() from being called twice (once via
8577  * spin_unlock(), once by hand).
8578  */
8579 int __cond_resched_lock(spinlock_t *lock)
8580 {
8581 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8582 	int ret = 0;
8583 
8584 	lockdep_assert_held(lock);
8585 
8586 	if (spin_needbreak(lock) || resched) {
8587 		spin_unlock(lock);
8588 		if (!_cond_resched())
8589 			cpu_relax();
8590 		ret = 1;
8591 		spin_lock(lock);
8592 	}
8593 	return ret;
8594 }
8595 EXPORT_SYMBOL(__cond_resched_lock);
8596 
8597 int __cond_resched_rwlock_read(rwlock_t *lock)
8598 {
8599 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8600 	int ret = 0;
8601 
8602 	lockdep_assert_held_read(lock);
8603 
8604 	if (rwlock_needbreak(lock) || resched) {
8605 		read_unlock(lock);
8606 		if (!_cond_resched())
8607 			cpu_relax();
8608 		ret = 1;
8609 		read_lock(lock);
8610 	}
8611 	return ret;
8612 }
8613 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8614 
8615 int __cond_resched_rwlock_write(rwlock_t *lock)
8616 {
8617 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8618 	int ret = 0;
8619 
8620 	lockdep_assert_held_write(lock);
8621 
8622 	if (rwlock_needbreak(lock) || resched) {
8623 		write_unlock(lock);
8624 		if (!_cond_resched())
8625 			cpu_relax();
8626 		ret = 1;
8627 		write_lock(lock);
8628 	}
8629 	return ret;
8630 }
8631 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8632 
8633 #ifdef CONFIG_PREEMPT_DYNAMIC
8634 
8635 #ifdef CONFIG_GENERIC_ENTRY
8636 #include <linux/entry-common.h>
8637 #endif
8638 
8639 /*
8640  * SC:cond_resched
8641  * SC:might_resched
8642  * SC:preempt_schedule
8643  * SC:preempt_schedule_notrace
8644  * SC:irqentry_exit_cond_resched
8645  *
8646  *
8647  * NONE:
8648  *   cond_resched               <- __cond_resched
8649  *   might_resched              <- RET0
8650  *   preempt_schedule           <- NOP
8651  *   preempt_schedule_notrace   <- NOP
8652  *   irqentry_exit_cond_resched <- NOP
8653  *
8654  * VOLUNTARY:
8655  *   cond_resched               <- __cond_resched
8656  *   might_resched              <- __cond_resched
8657  *   preempt_schedule           <- NOP
8658  *   preempt_schedule_notrace   <- NOP
8659  *   irqentry_exit_cond_resched <- NOP
8660  *
8661  * FULL:
8662  *   cond_resched               <- RET0
8663  *   might_resched              <- RET0
8664  *   preempt_schedule           <- preempt_schedule
8665  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8666  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8667  */
8668 
8669 enum {
8670 	preempt_dynamic_undefined = -1,
8671 	preempt_dynamic_none,
8672 	preempt_dynamic_voluntary,
8673 	preempt_dynamic_full,
8674 };
8675 
8676 int preempt_dynamic_mode = preempt_dynamic_undefined;
8677 
8678 int sched_dynamic_mode(const char *str)
8679 {
8680 	if (!strcmp(str, "none"))
8681 		return preempt_dynamic_none;
8682 
8683 	if (!strcmp(str, "voluntary"))
8684 		return preempt_dynamic_voluntary;
8685 
8686 	if (!strcmp(str, "full"))
8687 		return preempt_dynamic_full;
8688 
8689 	return -EINVAL;
8690 }
8691 
8692 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8693 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8694 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8695 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8696 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8697 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8698 #else
8699 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8700 #endif
8701 
8702 static DEFINE_MUTEX(sched_dynamic_mutex);
8703 static bool klp_override;
8704 
8705 static void __sched_dynamic_update(int mode)
8706 {
8707 	/*
8708 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8709 	 * the ZERO state, which is invalid.
8710 	 */
8711 	if (!klp_override)
8712 		preempt_dynamic_enable(cond_resched);
8713 	preempt_dynamic_enable(might_resched);
8714 	preempt_dynamic_enable(preempt_schedule);
8715 	preempt_dynamic_enable(preempt_schedule_notrace);
8716 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8717 
8718 	switch (mode) {
8719 	case preempt_dynamic_none:
8720 		if (!klp_override)
8721 			preempt_dynamic_enable(cond_resched);
8722 		preempt_dynamic_disable(might_resched);
8723 		preempt_dynamic_disable(preempt_schedule);
8724 		preempt_dynamic_disable(preempt_schedule_notrace);
8725 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8726 		if (mode != preempt_dynamic_mode)
8727 			pr_info("Dynamic Preempt: none\n");
8728 		break;
8729 
8730 	case preempt_dynamic_voluntary:
8731 		if (!klp_override)
8732 			preempt_dynamic_enable(cond_resched);
8733 		preempt_dynamic_enable(might_resched);
8734 		preempt_dynamic_disable(preempt_schedule);
8735 		preempt_dynamic_disable(preempt_schedule_notrace);
8736 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8737 		if (mode != preempt_dynamic_mode)
8738 			pr_info("Dynamic Preempt: voluntary\n");
8739 		break;
8740 
8741 	case preempt_dynamic_full:
8742 		if (!klp_override)
8743 			preempt_dynamic_disable(cond_resched);
8744 		preempt_dynamic_disable(might_resched);
8745 		preempt_dynamic_enable(preempt_schedule);
8746 		preempt_dynamic_enable(preempt_schedule_notrace);
8747 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8748 		if (mode != preempt_dynamic_mode)
8749 			pr_info("Dynamic Preempt: full\n");
8750 		break;
8751 	}
8752 
8753 	preempt_dynamic_mode = mode;
8754 }
8755 
8756 void sched_dynamic_update(int mode)
8757 {
8758 	mutex_lock(&sched_dynamic_mutex);
8759 	__sched_dynamic_update(mode);
8760 	mutex_unlock(&sched_dynamic_mutex);
8761 }
8762 
8763 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8764 
8765 static int klp_cond_resched(void)
8766 {
8767 	__klp_sched_try_switch();
8768 	return __cond_resched();
8769 }
8770 
8771 void sched_dynamic_klp_enable(void)
8772 {
8773 	mutex_lock(&sched_dynamic_mutex);
8774 
8775 	klp_override = true;
8776 	static_call_update(cond_resched, klp_cond_resched);
8777 
8778 	mutex_unlock(&sched_dynamic_mutex);
8779 }
8780 
8781 void sched_dynamic_klp_disable(void)
8782 {
8783 	mutex_lock(&sched_dynamic_mutex);
8784 
8785 	klp_override = false;
8786 	__sched_dynamic_update(preempt_dynamic_mode);
8787 
8788 	mutex_unlock(&sched_dynamic_mutex);
8789 }
8790 
8791 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8792 
8793 static int __init setup_preempt_mode(char *str)
8794 {
8795 	int mode = sched_dynamic_mode(str);
8796 	if (mode < 0) {
8797 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8798 		return 0;
8799 	}
8800 
8801 	sched_dynamic_update(mode);
8802 	return 1;
8803 }
8804 __setup("preempt=", setup_preempt_mode);
8805 
8806 static void __init preempt_dynamic_init(void)
8807 {
8808 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8809 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8810 			sched_dynamic_update(preempt_dynamic_none);
8811 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8812 			sched_dynamic_update(preempt_dynamic_voluntary);
8813 		} else {
8814 			/* Default static call setting, nothing to do */
8815 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8816 			preempt_dynamic_mode = preempt_dynamic_full;
8817 			pr_info("Dynamic Preempt: full\n");
8818 		}
8819 	}
8820 }
8821 
8822 #define PREEMPT_MODEL_ACCESSOR(mode) \
8823 	bool preempt_model_##mode(void)						 \
8824 	{									 \
8825 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8826 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8827 	}									 \
8828 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8829 
8830 PREEMPT_MODEL_ACCESSOR(none);
8831 PREEMPT_MODEL_ACCESSOR(voluntary);
8832 PREEMPT_MODEL_ACCESSOR(full);
8833 
8834 #else /* !CONFIG_PREEMPT_DYNAMIC */
8835 
8836 static inline void preempt_dynamic_init(void) { }
8837 
8838 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8839 
8840 /**
8841  * yield - yield the current processor to other threads.
8842  *
8843  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8844  *
8845  * The scheduler is at all times free to pick the calling task as the most
8846  * eligible task to run, if removing the yield() call from your code breaks
8847  * it, it's already broken.
8848  *
8849  * Typical broken usage is:
8850  *
8851  * while (!event)
8852  *	yield();
8853  *
8854  * where one assumes that yield() will let 'the other' process run that will
8855  * make event true. If the current task is a SCHED_FIFO task that will never
8856  * happen. Never use yield() as a progress guarantee!!
8857  *
8858  * If you want to use yield() to wait for something, use wait_event().
8859  * If you want to use yield() to be 'nice' for others, use cond_resched().
8860  * If you still want to use yield(), do not!
8861  */
8862 void __sched yield(void)
8863 {
8864 	set_current_state(TASK_RUNNING);
8865 	do_sched_yield();
8866 }
8867 EXPORT_SYMBOL(yield);
8868 
8869 /**
8870  * yield_to - yield the current processor to another thread in
8871  * your thread group, or accelerate that thread toward the
8872  * processor it's on.
8873  * @p: target task
8874  * @preempt: whether task preemption is allowed or not
8875  *
8876  * It's the caller's job to ensure that the target task struct
8877  * can't go away on us before we can do any checks.
8878  *
8879  * Return:
8880  *	true (>0) if we indeed boosted the target task.
8881  *	false (0) if we failed to boost the target.
8882  *	-ESRCH if there's no task to yield to.
8883  */
8884 int __sched yield_to(struct task_struct *p, bool preempt)
8885 {
8886 	struct task_struct *curr = current;
8887 	struct rq *rq, *p_rq;
8888 	unsigned long flags;
8889 	int yielded = 0;
8890 
8891 	local_irq_save(flags);
8892 	rq = this_rq();
8893 
8894 again:
8895 	p_rq = task_rq(p);
8896 	/*
8897 	 * If we're the only runnable task on the rq and target rq also
8898 	 * has only one task, there's absolutely no point in yielding.
8899 	 */
8900 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8901 		yielded = -ESRCH;
8902 		goto out_irq;
8903 	}
8904 
8905 	double_rq_lock(rq, p_rq);
8906 	if (task_rq(p) != p_rq) {
8907 		double_rq_unlock(rq, p_rq);
8908 		goto again;
8909 	}
8910 
8911 	if (!curr->sched_class->yield_to_task)
8912 		goto out_unlock;
8913 
8914 	if (curr->sched_class != p->sched_class)
8915 		goto out_unlock;
8916 
8917 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8918 		goto out_unlock;
8919 
8920 	yielded = curr->sched_class->yield_to_task(rq, p);
8921 	if (yielded) {
8922 		schedstat_inc(rq->yld_count);
8923 		/*
8924 		 * Make p's CPU reschedule; pick_next_entity takes care of
8925 		 * fairness.
8926 		 */
8927 		if (preempt && rq != p_rq)
8928 			resched_curr(p_rq);
8929 	}
8930 
8931 out_unlock:
8932 	double_rq_unlock(rq, p_rq);
8933 out_irq:
8934 	local_irq_restore(flags);
8935 
8936 	if (yielded > 0)
8937 		schedule();
8938 
8939 	return yielded;
8940 }
8941 EXPORT_SYMBOL_GPL(yield_to);
8942 
8943 int io_schedule_prepare(void)
8944 {
8945 	int old_iowait = current->in_iowait;
8946 
8947 	current->in_iowait = 1;
8948 	blk_flush_plug(current->plug, true);
8949 	return old_iowait;
8950 }
8951 
8952 void io_schedule_finish(int token)
8953 {
8954 	current->in_iowait = token;
8955 }
8956 
8957 /*
8958  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8959  * that process accounting knows that this is a task in IO wait state.
8960  */
8961 long __sched io_schedule_timeout(long timeout)
8962 {
8963 	int token;
8964 	long ret;
8965 
8966 	token = io_schedule_prepare();
8967 	ret = schedule_timeout(timeout);
8968 	io_schedule_finish(token);
8969 
8970 	return ret;
8971 }
8972 EXPORT_SYMBOL(io_schedule_timeout);
8973 
8974 void __sched io_schedule(void)
8975 {
8976 	int token;
8977 
8978 	token = io_schedule_prepare();
8979 	schedule();
8980 	io_schedule_finish(token);
8981 }
8982 EXPORT_SYMBOL(io_schedule);
8983 
8984 /**
8985  * sys_sched_get_priority_max - return maximum RT priority.
8986  * @policy: scheduling class.
8987  *
8988  * Return: On success, this syscall returns the maximum
8989  * rt_priority that can be used by a given scheduling class.
8990  * On failure, a negative error code is returned.
8991  */
8992 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8993 {
8994 	int ret = -EINVAL;
8995 
8996 	switch (policy) {
8997 	case SCHED_FIFO:
8998 	case SCHED_RR:
8999 		ret = MAX_RT_PRIO-1;
9000 		break;
9001 	case SCHED_DEADLINE:
9002 	case SCHED_NORMAL:
9003 	case SCHED_BATCH:
9004 	case SCHED_IDLE:
9005 		ret = 0;
9006 		break;
9007 	}
9008 	return ret;
9009 }
9010 
9011 /**
9012  * sys_sched_get_priority_min - return minimum RT priority.
9013  * @policy: scheduling class.
9014  *
9015  * Return: On success, this syscall returns the minimum
9016  * rt_priority that can be used by a given scheduling class.
9017  * On failure, a negative error code is returned.
9018  */
9019 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9020 {
9021 	int ret = -EINVAL;
9022 
9023 	switch (policy) {
9024 	case SCHED_FIFO:
9025 	case SCHED_RR:
9026 		ret = 1;
9027 		break;
9028 	case SCHED_DEADLINE:
9029 	case SCHED_NORMAL:
9030 	case SCHED_BATCH:
9031 	case SCHED_IDLE:
9032 		ret = 0;
9033 	}
9034 	return ret;
9035 }
9036 
9037 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9038 {
9039 	struct task_struct *p;
9040 	unsigned int time_slice;
9041 	struct rq_flags rf;
9042 	struct rq *rq;
9043 	int retval;
9044 
9045 	if (pid < 0)
9046 		return -EINVAL;
9047 
9048 	retval = -ESRCH;
9049 	rcu_read_lock();
9050 	p = find_process_by_pid(pid);
9051 	if (!p)
9052 		goto out_unlock;
9053 
9054 	retval = security_task_getscheduler(p);
9055 	if (retval)
9056 		goto out_unlock;
9057 
9058 	rq = task_rq_lock(p, &rf);
9059 	time_slice = 0;
9060 	if (p->sched_class->get_rr_interval)
9061 		time_slice = p->sched_class->get_rr_interval(rq, p);
9062 	task_rq_unlock(rq, p, &rf);
9063 
9064 	rcu_read_unlock();
9065 	jiffies_to_timespec64(time_slice, t);
9066 	return 0;
9067 
9068 out_unlock:
9069 	rcu_read_unlock();
9070 	return retval;
9071 }
9072 
9073 /**
9074  * sys_sched_rr_get_interval - return the default timeslice of a process.
9075  * @pid: pid of the process.
9076  * @interval: userspace pointer to the timeslice value.
9077  *
9078  * this syscall writes the default timeslice value of a given process
9079  * into the user-space timespec buffer. A value of '0' means infinity.
9080  *
9081  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9082  * an error code.
9083  */
9084 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9085 		struct __kernel_timespec __user *, interval)
9086 {
9087 	struct timespec64 t;
9088 	int retval = sched_rr_get_interval(pid, &t);
9089 
9090 	if (retval == 0)
9091 		retval = put_timespec64(&t, interval);
9092 
9093 	return retval;
9094 }
9095 
9096 #ifdef CONFIG_COMPAT_32BIT_TIME
9097 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9098 		struct old_timespec32 __user *, interval)
9099 {
9100 	struct timespec64 t;
9101 	int retval = sched_rr_get_interval(pid, &t);
9102 
9103 	if (retval == 0)
9104 		retval = put_old_timespec32(&t, interval);
9105 	return retval;
9106 }
9107 #endif
9108 
9109 void sched_show_task(struct task_struct *p)
9110 {
9111 	unsigned long free = 0;
9112 	int ppid;
9113 
9114 	if (!try_get_task_stack(p))
9115 		return;
9116 
9117 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9118 
9119 	if (task_is_running(p))
9120 		pr_cont("  running task    ");
9121 #ifdef CONFIG_DEBUG_STACK_USAGE
9122 	free = stack_not_used(p);
9123 #endif
9124 	ppid = 0;
9125 	rcu_read_lock();
9126 	if (pid_alive(p))
9127 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9128 	rcu_read_unlock();
9129 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9130 		free, task_pid_nr(p), ppid,
9131 		read_task_thread_flags(p));
9132 
9133 	print_worker_info(KERN_INFO, p);
9134 	print_stop_info(KERN_INFO, p);
9135 	show_stack(p, NULL, KERN_INFO);
9136 	put_task_stack(p);
9137 }
9138 EXPORT_SYMBOL_GPL(sched_show_task);
9139 
9140 static inline bool
9141 state_filter_match(unsigned long state_filter, struct task_struct *p)
9142 {
9143 	unsigned int state = READ_ONCE(p->__state);
9144 
9145 	/* no filter, everything matches */
9146 	if (!state_filter)
9147 		return true;
9148 
9149 	/* filter, but doesn't match */
9150 	if (!(state & state_filter))
9151 		return false;
9152 
9153 	/*
9154 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9155 	 * TASK_KILLABLE).
9156 	 */
9157 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9158 		return false;
9159 
9160 	return true;
9161 }
9162 
9163 
9164 void show_state_filter(unsigned int state_filter)
9165 {
9166 	struct task_struct *g, *p;
9167 
9168 	rcu_read_lock();
9169 	for_each_process_thread(g, p) {
9170 		/*
9171 		 * reset the NMI-timeout, listing all files on a slow
9172 		 * console might take a lot of time:
9173 		 * Also, reset softlockup watchdogs on all CPUs, because
9174 		 * another CPU might be blocked waiting for us to process
9175 		 * an IPI.
9176 		 */
9177 		touch_nmi_watchdog();
9178 		touch_all_softlockup_watchdogs();
9179 		if (state_filter_match(state_filter, p))
9180 			sched_show_task(p);
9181 	}
9182 
9183 #ifdef CONFIG_SCHED_DEBUG
9184 	if (!state_filter)
9185 		sysrq_sched_debug_show();
9186 #endif
9187 	rcu_read_unlock();
9188 	/*
9189 	 * Only show locks if all tasks are dumped:
9190 	 */
9191 	if (!state_filter)
9192 		debug_show_all_locks();
9193 }
9194 
9195 /**
9196  * init_idle - set up an idle thread for a given CPU
9197  * @idle: task in question
9198  * @cpu: CPU the idle task belongs to
9199  *
9200  * NOTE: this function does not set the idle thread's NEED_RESCHED
9201  * flag, to make booting more robust.
9202  */
9203 void __init init_idle(struct task_struct *idle, int cpu)
9204 {
9205 #ifdef CONFIG_SMP
9206 	struct affinity_context ac = (struct affinity_context) {
9207 		.new_mask  = cpumask_of(cpu),
9208 		.flags     = 0,
9209 	};
9210 #endif
9211 	struct rq *rq = cpu_rq(cpu);
9212 	unsigned long flags;
9213 
9214 	__sched_fork(0, idle);
9215 
9216 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9217 	raw_spin_rq_lock(rq);
9218 
9219 	idle->__state = TASK_RUNNING;
9220 	idle->se.exec_start = sched_clock();
9221 	/*
9222 	 * PF_KTHREAD should already be set at this point; regardless, make it
9223 	 * look like a proper per-CPU kthread.
9224 	 */
9225 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9226 	kthread_set_per_cpu(idle, cpu);
9227 
9228 #ifdef CONFIG_SMP
9229 	/*
9230 	 * It's possible that init_idle() gets called multiple times on a task,
9231 	 * in that case do_set_cpus_allowed() will not do the right thing.
9232 	 *
9233 	 * And since this is boot we can forgo the serialization.
9234 	 */
9235 	set_cpus_allowed_common(idle, &ac);
9236 #endif
9237 	/*
9238 	 * We're having a chicken and egg problem, even though we are
9239 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9240 	 * lockdep check in task_group() will fail.
9241 	 *
9242 	 * Similar case to sched_fork(). / Alternatively we could
9243 	 * use task_rq_lock() here and obtain the other rq->lock.
9244 	 *
9245 	 * Silence PROVE_RCU
9246 	 */
9247 	rcu_read_lock();
9248 	__set_task_cpu(idle, cpu);
9249 	rcu_read_unlock();
9250 
9251 	rq->idle = idle;
9252 	rcu_assign_pointer(rq->curr, idle);
9253 	idle->on_rq = TASK_ON_RQ_QUEUED;
9254 #ifdef CONFIG_SMP
9255 	idle->on_cpu = 1;
9256 #endif
9257 	raw_spin_rq_unlock(rq);
9258 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9259 
9260 	/* Set the preempt count _outside_ the spinlocks! */
9261 	init_idle_preempt_count(idle, cpu);
9262 
9263 	/*
9264 	 * The idle tasks have their own, simple scheduling class:
9265 	 */
9266 	idle->sched_class = &idle_sched_class;
9267 	ftrace_graph_init_idle_task(idle, cpu);
9268 	vtime_init_idle(idle, cpu);
9269 #ifdef CONFIG_SMP
9270 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9271 #endif
9272 }
9273 
9274 #ifdef CONFIG_SMP
9275 
9276 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9277 			      const struct cpumask *trial)
9278 {
9279 	int ret = 1;
9280 
9281 	if (cpumask_empty(cur))
9282 		return ret;
9283 
9284 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9285 
9286 	return ret;
9287 }
9288 
9289 int task_can_attach(struct task_struct *p,
9290 		    const struct cpumask *cs_effective_cpus)
9291 {
9292 	int ret = 0;
9293 
9294 	/*
9295 	 * Kthreads which disallow setaffinity shouldn't be moved
9296 	 * to a new cpuset; we don't want to change their CPU
9297 	 * affinity and isolating such threads by their set of
9298 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9299 	 * applicable for such threads.  This prevents checking for
9300 	 * success of set_cpus_allowed_ptr() on all attached tasks
9301 	 * before cpus_mask may be changed.
9302 	 */
9303 	if (p->flags & PF_NO_SETAFFINITY) {
9304 		ret = -EINVAL;
9305 		goto out;
9306 	}
9307 
9308 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9309 					      cs_effective_cpus)) {
9310 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9311 
9312 		if (unlikely(cpu >= nr_cpu_ids))
9313 			return -EINVAL;
9314 		ret = dl_cpu_busy(cpu, p);
9315 	}
9316 
9317 out:
9318 	return ret;
9319 }
9320 
9321 bool sched_smp_initialized __read_mostly;
9322 
9323 #ifdef CONFIG_NUMA_BALANCING
9324 /* Migrate current task p to target_cpu */
9325 int migrate_task_to(struct task_struct *p, int target_cpu)
9326 {
9327 	struct migration_arg arg = { p, target_cpu };
9328 	int curr_cpu = task_cpu(p);
9329 
9330 	if (curr_cpu == target_cpu)
9331 		return 0;
9332 
9333 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9334 		return -EINVAL;
9335 
9336 	/* TODO: This is not properly updating schedstats */
9337 
9338 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9339 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9340 }
9341 
9342 /*
9343  * Requeue a task on a given node and accurately track the number of NUMA
9344  * tasks on the runqueues
9345  */
9346 void sched_setnuma(struct task_struct *p, int nid)
9347 {
9348 	bool queued, running;
9349 	struct rq_flags rf;
9350 	struct rq *rq;
9351 
9352 	rq = task_rq_lock(p, &rf);
9353 	queued = task_on_rq_queued(p);
9354 	running = task_current(rq, p);
9355 
9356 	if (queued)
9357 		dequeue_task(rq, p, DEQUEUE_SAVE);
9358 	if (running)
9359 		put_prev_task(rq, p);
9360 
9361 	p->numa_preferred_nid = nid;
9362 
9363 	if (queued)
9364 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9365 	if (running)
9366 		set_next_task(rq, p);
9367 	task_rq_unlock(rq, p, &rf);
9368 }
9369 #endif /* CONFIG_NUMA_BALANCING */
9370 
9371 #ifdef CONFIG_HOTPLUG_CPU
9372 /*
9373  * Ensure that the idle task is using init_mm right before its CPU goes
9374  * offline.
9375  */
9376 void idle_task_exit(void)
9377 {
9378 	struct mm_struct *mm = current->active_mm;
9379 
9380 	BUG_ON(cpu_online(smp_processor_id()));
9381 	BUG_ON(current != this_rq()->idle);
9382 
9383 	if (mm != &init_mm) {
9384 		switch_mm(mm, &init_mm, current);
9385 		finish_arch_post_lock_switch();
9386 	}
9387 
9388 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9389 }
9390 
9391 static int __balance_push_cpu_stop(void *arg)
9392 {
9393 	struct task_struct *p = arg;
9394 	struct rq *rq = this_rq();
9395 	struct rq_flags rf;
9396 	int cpu;
9397 
9398 	raw_spin_lock_irq(&p->pi_lock);
9399 	rq_lock(rq, &rf);
9400 
9401 	update_rq_clock(rq);
9402 
9403 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9404 		cpu = select_fallback_rq(rq->cpu, p);
9405 		rq = __migrate_task(rq, &rf, p, cpu);
9406 	}
9407 
9408 	rq_unlock(rq, &rf);
9409 	raw_spin_unlock_irq(&p->pi_lock);
9410 
9411 	put_task_struct(p);
9412 
9413 	return 0;
9414 }
9415 
9416 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9417 
9418 /*
9419  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9420  *
9421  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9422  * effective when the hotplug motion is down.
9423  */
9424 static void balance_push(struct rq *rq)
9425 {
9426 	struct task_struct *push_task = rq->curr;
9427 
9428 	lockdep_assert_rq_held(rq);
9429 
9430 	/*
9431 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9432 	 */
9433 	rq->balance_callback = &balance_push_callback;
9434 
9435 	/*
9436 	 * Only active while going offline and when invoked on the outgoing
9437 	 * CPU.
9438 	 */
9439 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9440 		return;
9441 
9442 	/*
9443 	 * Both the cpu-hotplug and stop task are in this case and are
9444 	 * required to complete the hotplug process.
9445 	 */
9446 	if (kthread_is_per_cpu(push_task) ||
9447 	    is_migration_disabled(push_task)) {
9448 
9449 		/*
9450 		 * If this is the idle task on the outgoing CPU try to wake
9451 		 * up the hotplug control thread which might wait for the
9452 		 * last task to vanish. The rcuwait_active() check is
9453 		 * accurate here because the waiter is pinned on this CPU
9454 		 * and can't obviously be running in parallel.
9455 		 *
9456 		 * On RT kernels this also has to check whether there are
9457 		 * pinned and scheduled out tasks on the runqueue. They
9458 		 * need to leave the migrate disabled section first.
9459 		 */
9460 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9461 		    rcuwait_active(&rq->hotplug_wait)) {
9462 			raw_spin_rq_unlock(rq);
9463 			rcuwait_wake_up(&rq->hotplug_wait);
9464 			raw_spin_rq_lock(rq);
9465 		}
9466 		return;
9467 	}
9468 
9469 	get_task_struct(push_task);
9470 	/*
9471 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9472 	 * Both preemption and IRQs are still disabled.
9473 	 */
9474 	raw_spin_rq_unlock(rq);
9475 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9476 			    this_cpu_ptr(&push_work));
9477 	/*
9478 	 * At this point need_resched() is true and we'll take the loop in
9479 	 * schedule(). The next pick is obviously going to be the stop task
9480 	 * which kthread_is_per_cpu() and will push this task away.
9481 	 */
9482 	raw_spin_rq_lock(rq);
9483 }
9484 
9485 static void balance_push_set(int cpu, bool on)
9486 {
9487 	struct rq *rq = cpu_rq(cpu);
9488 	struct rq_flags rf;
9489 
9490 	rq_lock_irqsave(rq, &rf);
9491 	if (on) {
9492 		WARN_ON_ONCE(rq->balance_callback);
9493 		rq->balance_callback = &balance_push_callback;
9494 	} else if (rq->balance_callback == &balance_push_callback) {
9495 		rq->balance_callback = NULL;
9496 	}
9497 	rq_unlock_irqrestore(rq, &rf);
9498 }
9499 
9500 /*
9501  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9502  * inactive. All tasks which are not per CPU kernel threads are either
9503  * pushed off this CPU now via balance_push() or placed on a different CPU
9504  * during wakeup. Wait until the CPU is quiescent.
9505  */
9506 static void balance_hotplug_wait(void)
9507 {
9508 	struct rq *rq = this_rq();
9509 
9510 	rcuwait_wait_event(&rq->hotplug_wait,
9511 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9512 			   TASK_UNINTERRUPTIBLE);
9513 }
9514 
9515 #else
9516 
9517 static inline void balance_push(struct rq *rq)
9518 {
9519 }
9520 
9521 static inline void balance_push_set(int cpu, bool on)
9522 {
9523 }
9524 
9525 static inline void balance_hotplug_wait(void)
9526 {
9527 }
9528 
9529 #endif /* CONFIG_HOTPLUG_CPU */
9530 
9531 void set_rq_online(struct rq *rq)
9532 {
9533 	if (!rq->online) {
9534 		const struct sched_class *class;
9535 
9536 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9537 		rq->online = 1;
9538 
9539 		for_each_class(class) {
9540 			if (class->rq_online)
9541 				class->rq_online(rq);
9542 		}
9543 	}
9544 }
9545 
9546 void set_rq_offline(struct rq *rq)
9547 {
9548 	if (rq->online) {
9549 		const struct sched_class *class;
9550 
9551 		for_each_class(class) {
9552 			if (class->rq_offline)
9553 				class->rq_offline(rq);
9554 		}
9555 
9556 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9557 		rq->online = 0;
9558 	}
9559 }
9560 
9561 /*
9562  * used to mark begin/end of suspend/resume:
9563  */
9564 static int num_cpus_frozen;
9565 
9566 /*
9567  * Update cpusets according to cpu_active mask.  If cpusets are
9568  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9569  * around partition_sched_domains().
9570  *
9571  * If we come here as part of a suspend/resume, don't touch cpusets because we
9572  * want to restore it back to its original state upon resume anyway.
9573  */
9574 static void cpuset_cpu_active(void)
9575 {
9576 	if (cpuhp_tasks_frozen) {
9577 		/*
9578 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9579 		 * resume sequence. As long as this is not the last online
9580 		 * operation in the resume sequence, just build a single sched
9581 		 * domain, ignoring cpusets.
9582 		 */
9583 		partition_sched_domains(1, NULL, NULL);
9584 		if (--num_cpus_frozen)
9585 			return;
9586 		/*
9587 		 * This is the last CPU online operation. So fall through and
9588 		 * restore the original sched domains by considering the
9589 		 * cpuset configurations.
9590 		 */
9591 		cpuset_force_rebuild();
9592 	}
9593 	cpuset_update_active_cpus();
9594 }
9595 
9596 static int cpuset_cpu_inactive(unsigned int cpu)
9597 {
9598 	if (!cpuhp_tasks_frozen) {
9599 		int ret = dl_cpu_busy(cpu, NULL);
9600 
9601 		if (ret)
9602 			return ret;
9603 		cpuset_update_active_cpus();
9604 	} else {
9605 		num_cpus_frozen++;
9606 		partition_sched_domains(1, NULL, NULL);
9607 	}
9608 	return 0;
9609 }
9610 
9611 int sched_cpu_activate(unsigned int cpu)
9612 {
9613 	struct rq *rq = cpu_rq(cpu);
9614 	struct rq_flags rf;
9615 
9616 	/*
9617 	 * Clear the balance_push callback and prepare to schedule
9618 	 * regular tasks.
9619 	 */
9620 	balance_push_set(cpu, false);
9621 
9622 #ifdef CONFIG_SCHED_SMT
9623 	/*
9624 	 * When going up, increment the number of cores with SMT present.
9625 	 */
9626 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9627 		static_branch_inc_cpuslocked(&sched_smt_present);
9628 #endif
9629 	set_cpu_active(cpu, true);
9630 
9631 	if (sched_smp_initialized) {
9632 		sched_update_numa(cpu, true);
9633 		sched_domains_numa_masks_set(cpu);
9634 		cpuset_cpu_active();
9635 	}
9636 
9637 	/*
9638 	 * Put the rq online, if not already. This happens:
9639 	 *
9640 	 * 1) In the early boot process, because we build the real domains
9641 	 *    after all CPUs have been brought up.
9642 	 *
9643 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9644 	 *    domains.
9645 	 */
9646 	rq_lock_irqsave(rq, &rf);
9647 	if (rq->rd) {
9648 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9649 		set_rq_online(rq);
9650 	}
9651 	rq_unlock_irqrestore(rq, &rf);
9652 
9653 	return 0;
9654 }
9655 
9656 int sched_cpu_deactivate(unsigned int cpu)
9657 {
9658 	struct rq *rq = cpu_rq(cpu);
9659 	struct rq_flags rf;
9660 	int ret;
9661 
9662 	/*
9663 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9664 	 * load balancing when not active
9665 	 */
9666 	nohz_balance_exit_idle(rq);
9667 
9668 	set_cpu_active(cpu, false);
9669 
9670 	/*
9671 	 * From this point forward, this CPU will refuse to run any task that
9672 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9673 	 * push those tasks away until this gets cleared, see
9674 	 * sched_cpu_dying().
9675 	 */
9676 	balance_push_set(cpu, true);
9677 
9678 	/*
9679 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9680 	 * preempt-disabled and RCU users of this state to go away such that
9681 	 * all new such users will observe it.
9682 	 *
9683 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9684 	 * ttwu_queue_cond() and is_cpu_allowed().
9685 	 *
9686 	 * Do sync before park smpboot threads to take care the rcu boost case.
9687 	 */
9688 	synchronize_rcu();
9689 
9690 	rq_lock_irqsave(rq, &rf);
9691 	if (rq->rd) {
9692 		update_rq_clock(rq);
9693 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9694 		set_rq_offline(rq);
9695 	}
9696 	rq_unlock_irqrestore(rq, &rf);
9697 
9698 #ifdef CONFIG_SCHED_SMT
9699 	/*
9700 	 * When going down, decrement the number of cores with SMT present.
9701 	 */
9702 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9703 		static_branch_dec_cpuslocked(&sched_smt_present);
9704 
9705 	sched_core_cpu_deactivate(cpu);
9706 #endif
9707 
9708 	if (!sched_smp_initialized)
9709 		return 0;
9710 
9711 	sched_update_numa(cpu, false);
9712 	ret = cpuset_cpu_inactive(cpu);
9713 	if (ret) {
9714 		balance_push_set(cpu, false);
9715 		set_cpu_active(cpu, true);
9716 		sched_update_numa(cpu, true);
9717 		return ret;
9718 	}
9719 	sched_domains_numa_masks_clear(cpu);
9720 	return 0;
9721 }
9722 
9723 static void sched_rq_cpu_starting(unsigned int cpu)
9724 {
9725 	struct rq *rq = cpu_rq(cpu);
9726 
9727 	rq->calc_load_update = calc_load_update;
9728 	update_max_interval();
9729 }
9730 
9731 int sched_cpu_starting(unsigned int cpu)
9732 {
9733 	sched_core_cpu_starting(cpu);
9734 	sched_rq_cpu_starting(cpu);
9735 	sched_tick_start(cpu);
9736 	return 0;
9737 }
9738 
9739 #ifdef CONFIG_HOTPLUG_CPU
9740 
9741 /*
9742  * Invoked immediately before the stopper thread is invoked to bring the
9743  * CPU down completely. At this point all per CPU kthreads except the
9744  * hotplug thread (current) and the stopper thread (inactive) have been
9745  * either parked or have been unbound from the outgoing CPU. Ensure that
9746  * any of those which might be on the way out are gone.
9747  *
9748  * If after this point a bound task is being woken on this CPU then the
9749  * responsible hotplug callback has failed to do it's job.
9750  * sched_cpu_dying() will catch it with the appropriate fireworks.
9751  */
9752 int sched_cpu_wait_empty(unsigned int cpu)
9753 {
9754 	balance_hotplug_wait();
9755 	return 0;
9756 }
9757 
9758 /*
9759  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9760  * might have. Called from the CPU stopper task after ensuring that the
9761  * stopper is the last running task on the CPU, so nr_active count is
9762  * stable. We need to take the teardown thread which is calling this into
9763  * account, so we hand in adjust = 1 to the load calculation.
9764  *
9765  * Also see the comment "Global load-average calculations".
9766  */
9767 static void calc_load_migrate(struct rq *rq)
9768 {
9769 	long delta = calc_load_fold_active(rq, 1);
9770 
9771 	if (delta)
9772 		atomic_long_add(delta, &calc_load_tasks);
9773 }
9774 
9775 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9776 {
9777 	struct task_struct *g, *p;
9778 	int cpu = cpu_of(rq);
9779 
9780 	lockdep_assert_rq_held(rq);
9781 
9782 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9783 	for_each_process_thread(g, p) {
9784 		if (task_cpu(p) != cpu)
9785 			continue;
9786 
9787 		if (!task_on_rq_queued(p))
9788 			continue;
9789 
9790 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9791 	}
9792 }
9793 
9794 int sched_cpu_dying(unsigned int cpu)
9795 {
9796 	struct rq *rq = cpu_rq(cpu);
9797 	struct rq_flags rf;
9798 
9799 	/* Handle pending wakeups and then migrate everything off */
9800 	sched_tick_stop(cpu);
9801 
9802 	rq_lock_irqsave(rq, &rf);
9803 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9804 		WARN(true, "Dying CPU not properly vacated!");
9805 		dump_rq_tasks(rq, KERN_WARNING);
9806 	}
9807 	rq_unlock_irqrestore(rq, &rf);
9808 
9809 	calc_load_migrate(rq);
9810 	update_max_interval();
9811 	hrtick_clear(rq);
9812 	sched_core_cpu_dying(cpu);
9813 	return 0;
9814 }
9815 #endif
9816 
9817 void __init sched_init_smp(void)
9818 {
9819 	sched_init_numa(NUMA_NO_NODE);
9820 
9821 	/*
9822 	 * There's no userspace yet to cause hotplug operations; hence all the
9823 	 * CPU masks are stable and all blatant races in the below code cannot
9824 	 * happen.
9825 	 */
9826 	mutex_lock(&sched_domains_mutex);
9827 	sched_init_domains(cpu_active_mask);
9828 	mutex_unlock(&sched_domains_mutex);
9829 
9830 	/* Move init over to a non-isolated CPU */
9831 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9832 		BUG();
9833 	current->flags &= ~PF_NO_SETAFFINITY;
9834 	sched_init_granularity();
9835 
9836 	init_sched_rt_class();
9837 	init_sched_dl_class();
9838 
9839 	sched_smp_initialized = true;
9840 }
9841 
9842 static int __init migration_init(void)
9843 {
9844 	sched_cpu_starting(smp_processor_id());
9845 	return 0;
9846 }
9847 early_initcall(migration_init);
9848 
9849 #else
9850 void __init sched_init_smp(void)
9851 {
9852 	sched_init_granularity();
9853 }
9854 #endif /* CONFIG_SMP */
9855 
9856 int in_sched_functions(unsigned long addr)
9857 {
9858 	return in_lock_functions(addr) ||
9859 		(addr >= (unsigned long)__sched_text_start
9860 		&& addr < (unsigned long)__sched_text_end);
9861 }
9862 
9863 #ifdef CONFIG_CGROUP_SCHED
9864 /*
9865  * Default task group.
9866  * Every task in system belongs to this group at bootup.
9867  */
9868 struct task_group root_task_group;
9869 LIST_HEAD(task_groups);
9870 
9871 /* Cacheline aligned slab cache for task_group */
9872 static struct kmem_cache *task_group_cache __read_mostly;
9873 #endif
9874 
9875 void __init sched_init(void)
9876 {
9877 	unsigned long ptr = 0;
9878 	int i;
9879 
9880 	/* Make sure the linker didn't screw up */
9881 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9882 	       &fair_sched_class != &rt_sched_class + 1 ||
9883 	       &rt_sched_class   != &dl_sched_class + 1);
9884 #ifdef CONFIG_SMP
9885 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9886 #endif
9887 
9888 	wait_bit_init();
9889 
9890 #ifdef CONFIG_FAIR_GROUP_SCHED
9891 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9892 #endif
9893 #ifdef CONFIG_RT_GROUP_SCHED
9894 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9895 #endif
9896 	if (ptr) {
9897 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9898 
9899 #ifdef CONFIG_FAIR_GROUP_SCHED
9900 		root_task_group.se = (struct sched_entity **)ptr;
9901 		ptr += nr_cpu_ids * sizeof(void **);
9902 
9903 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9904 		ptr += nr_cpu_ids * sizeof(void **);
9905 
9906 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9907 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9908 #endif /* CONFIG_FAIR_GROUP_SCHED */
9909 #ifdef CONFIG_RT_GROUP_SCHED
9910 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9911 		ptr += nr_cpu_ids * sizeof(void **);
9912 
9913 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9914 		ptr += nr_cpu_ids * sizeof(void **);
9915 
9916 #endif /* CONFIG_RT_GROUP_SCHED */
9917 	}
9918 
9919 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9920 
9921 #ifdef CONFIG_SMP
9922 	init_defrootdomain();
9923 #endif
9924 
9925 #ifdef CONFIG_RT_GROUP_SCHED
9926 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9927 			global_rt_period(), global_rt_runtime());
9928 #endif /* CONFIG_RT_GROUP_SCHED */
9929 
9930 #ifdef CONFIG_CGROUP_SCHED
9931 	task_group_cache = KMEM_CACHE(task_group, 0);
9932 
9933 	list_add(&root_task_group.list, &task_groups);
9934 	INIT_LIST_HEAD(&root_task_group.children);
9935 	INIT_LIST_HEAD(&root_task_group.siblings);
9936 	autogroup_init(&init_task);
9937 #endif /* CONFIG_CGROUP_SCHED */
9938 
9939 	for_each_possible_cpu(i) {
9940 		struct rq *rq;
9941 
9942 		rq = cpu_rq(i);
9943 		raw_spin_lock_init(&rq->__lock);
9944 		rq->nr_running = 0;
9945 		rq->calc_load_active = 0;
9946 		rq->calc_load_update = jiffies + LOAD_FREQ;
9947 		init_cfs_rq(&rq->cfs);
9948 		init_rt_rq(&rq->rt);
9949 		init_dl_rq(&rq->dl);
9950 #ifdef CONFIG_FAIR_GROUP_SCHED
9951 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9952 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9953 		/*
9954 		 * How much CPU bandwidth does root_task_group get?
9955 		 *
9956 		 * In case of task-groups formed thr' the cgroup filesystem, it
9957 		 * gets 100% of the CPU resources in the system. This overall
9958 		 * system CPU resource is divided among the tasks of
9959 		 * root_task_group and its child task-groups in a fair manner,
9960 		 * based on each entity's (task or task-group's) weight
9961 		 * (se->load.weight).
9962 		 *
9963 		 * In other words, if root_task_group has 10 tasks of weight
9964 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9965 		 * then A0's share of the CPU resource is:
9966 		 *
9967 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9968 		 *
9969 		 * We achieve this by letting root_task_group's tasks sit
9970 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9971 		 */
9972 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9973 #endif /* CONFIG_FAIR_GROUP_SCHED */
9974 
9975 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9976 #ifdef CONFIG_RT_GROUP_SCHED
9977 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9978 #endif
9979 #ifdef CONFIG_SMP
9980 		rq->sd = NULL;
9981 		rq->rd = NULL;
9982 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9983 		rq->balance_callback = &balance_push_callback;
9984 		rq->active_balance = 0;
9985 		rq->next_balance = jiffies;
9986 		rq->push_cpu = 0;
9987 		rq->cpu = i;
9988 		rq->online = 0;
9989 		rq->idle_stamp = 0;
9990 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9991 		rq->wake_stamp = jiffies;
9992 		rq->wake_avg_idle = rq->avg_idle;
9993 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9994 
9995 		INIT_LIST_HEAD(&rq->cfs_tasks);
9996 
9997 		rq_attach_root(rq, &def_root_domain);
9998 #ifdef CONFIG_NO_HZ_COMMON
9999 		rq->last_blocked_load_update_tick = jiffies;
10000 		atomic_set(&rq->nohz_flags, 0);
10001 
10002 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10003 #endif
10004 #ifdef CONFIG_HOTPLUG_CPU
10005 		rcuwait_init(&rq->hotplug_wait);
10006 #endif
10007 #endif /* CONFIG_SMP */
10008 		hrtick_rq_init(rq);
10009 		atomic_set(&rq->nr_iowait, 0);
10010 
10011 #ifdef CONFIG_SCHED_CORE
10012 		rq->core = rq;
10013 		rq->core_pick = NULL;
10014 		rq->core_enabled = 0;
10015 		rq->core_tree = RB_ROOT;
10016 		rq->core_forceidle_count = 0;
10017 		rq->core_forceidle_occupation = 0;
10018 		rq->core_forceidle_start = 0;
10019 
10020 		rq->core_cookie = 0UL;
10021 #endif
10022 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10023 	}
10024 
10025 	set_load_weight(&init_task, false);
10026 
10027 	/*
10028 	 * The boot idle thread does lazy MMU switching as well:
10029 	 */
10030 	mmgrab_lazy_tlb(&init_mm);
10031 	enter_lazy_tlb(&init_mm, current);
10032 
10033 	/*
10034 	 * The idle task doesn't need the kthread struct to function, but it
10035 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10036 	 * if we want to avoid special-casing it in code that deals with per-CPU
10037 	 * kthreads.
10038 	 */
10039 	WARN_ON(!set_kthread_struct(current));
10040 
10041 	/*
10042 	 * Make us the idle thread. Technically, schedule() should not be
10043 	 * called from this thread, however somewhere below it might be,
10044 	 * but because we are the idle thread, we just pick up running again
10045 	 * when this runqueue becomes "idle".
10046 	 */
10047 	init_idle(current, smp_processor_id());
10048 
10049 	calc_load_update = jiffies + LOAD_FREQ;
10050 
10051 #ifdef CONFIG_SMP
10052 	idle_thread_set_boot_cpu();
10053 	balance_push_set(smp_processor_id(), false);
10054 #endif
10055 	init_sched_fair_class();
10056 
10057 	psi_init();
10058 
10059 	init_uclamp();
10060 
10061 	preempt_dynamic_init();
10062 
10063 	scheduler_running = 1;
10064 }
10065 
10066 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10067 
10068 void __might_sleep(const char *file, int line)
10069 {
10070 	unsigned int state = get_current_state();
10071 	/*
10072 	 * Blocking primitives will set (and therefore destroy) current->state,
10073 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10074 	 * otherwise we will destroy state.
10075 	 */
10076 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10077 			"do not call blocking ops when !TASK_RUNNING; "
10078 			"state=%x set at [<%p>] %pS\n", state,
10079 			(void *)current->task_state_change,
10080 			(void *)current->task_state_change);
10081 
10082 	__might_resched(file, line, 0);
10083 }
10084 EXPORT_SYMBOL(__might_sleep);
10085 
10086 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10087 {
10088 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10089 		return;
10090 
10091 	if (preempt_count() == preempt_offset)
10092 		return;
10093 
10094 	pr_err("Preemption disabled at:");
10095 	print_ip_sym(KERN_ERR, ip);
10096 }
10097 
10098 static inline bool resched_offsets_ok(unsigned int offsets)
10099 {
10100 	unsigned int nested = preempt_count();
10101 
10102 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10103 
10104 	return nested == offsets;
10105 }
10106 
10107 void __might_resched(const char *file, int line, unsigned int offsets)
10108 {
10109 	/* Ratelimiting timestamp: */
10110 	static unsigned long prev_jiffy;
10111 
10112 	unsigned long preempt_disable_ip;
10113 
10114 	/* WARN_ON_ONCE() by default, no rate limit required: */
10115 	rcu_sleep_check();
10116 
10117 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10118 	     !is_idle_task(current) && !current->non_block_count) ||
10119 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10120 	    oops_in_progress)
10121 		return;
10122 
10123 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10124 		return;
10125 	prev_jiffy = jiffies;
10126 
10127 	/* Save this before calling printk(), since that will clobber it: */
10128 	preempt_disable_ip = get_preempt_disable_ip(current);
10129 
10130 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10131 	       file, line);
10132 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10133 	       in_atomic(), irqs_disabled(), current->non_block_count,
10134 	       current->pid, current->comm);
10135 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10136 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10137 
10138 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10139 		pr_err("RCU nest depth: %d, expected: %u\n",
10140 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10141 	}
10142 
10143 	if (task_stack_end_corrupted(current))
10144 		pr_emerg("Thread overran stack, or stack corrupted\n");
10145 
10146 	debug_show_held_locks(current);
10147 	if (irqs_disabled())
10148 		print_irqtrace_events(current);
10149 
10150 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10151 				 preempt_disable_ip);
10152 
10153 	dump_stack();
10154 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10155 }
10156 EXPORT_SYMBOL(__might_resched);
10157 
10158 void __cant_sleep(const char *file, int line, int preempt_offset)
10159 {
10160 	static unsigned long prev_jiffy;
10161 
10162 	if (irqs_disabled())
10163 		return;
10164 
10165 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10166 		return;
10167 
10168 	if (preempt_count() > preempt_offset)
10169 		return;
10170 
10171 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10172 		return;
10173 	prev_jiffy = jiffies;
10174 
10175 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10176 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10177 			in_atomic(), irqs_disabled(),
10178 			current->pid, current->comm);
10179 
10180 	debug_show_held_locks(current);
10181 	dump_stack();
10182 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10183 }
10184 EXPORT_SYMBOL_GPL(__cant_sleep);
10185 
10186 #ifdef CONFIG_SMP
10187 void __cant_migrate(const char *file, int line)
10188 {
10189 	static unsigned long prev_jiffy;
10190 
10191 	if (irqs_disabled())
10192 		return;
10193 
10194 	if (is_migration_disabled(current))
10195 		return;
10196 
10197 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10198 		return;
10199 
10200 	if (preempt_count() > 0)
10201 		return;
10202 
10203 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10204 		return;
10205 	prev_jiffy = jiffies;
10206 
10207 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10208 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10209 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10210 	       current->pid, current->comm);
10211 
10212 	debug_show_held_locks(current);
10213 	dump_stack();
10214 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10215 }
10216 EXPORT_SYMBOL_GPL(__cant_migrate);
10217 #endif
10218 #endif
10219 
10220 #ifdef CONFIG_MAGIC_SYSRQ
10221 void normalize_rt_tasks(void)
10222 {
10223 	struct task_struct *g, *p;
10224 	struct sched_attr attr = {
10225 		.sched_policy = SCHED_NORMAL,
10226 	};
10227 
10228 	read_lock(&tasklist_lock);
10229 	for_each_process_thread(g, p) {
10230 		/*
10231 		 * Only normalize user tasks:
10232 		 */
10233 		if (p->flags & PF_KTHREAD)
10234 			continue;
10235 
10236 		p->se.exec_start = 0;
10237 		schedstat_set(p->stats.wait_start,  0);
10238 		schedstat_set(p->stats.sleep_start, 0);
10239 		schedstat_set(p->stats.block_start, 0);
10240 
10241 		if (!dl_task(p) && !rt_task(p)) {
10242 			/*
10243 			 * Renice negative nice level userspace
10244 			 * tasks back to 0:
10245 			 */
10246 			if (task_nice(p) < 0)
10247 				set_user_nice(p, 0);
10248 			continue;
10249 		}
10250 
10251 		__sched_setscheduler(p, &attr, false, false);
10252 	}
10253 	read_unlock(&tasklist_lock);
10254 }
10255 
10256 #endif /* CONFIG_MAGIC_SYSRQ */
10257 
10258 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10259 /*
10260  * These functions are only useful for the IA64 MCA handling, or kdb.
10261  *
10262  * They can only be called when the whole system has been
10263  * stopped - every CPU needs to be quiescent, and no scheduling
10264  * activity can take place. Using them for anything else would
10265  * be a serious bug, and as a result, they aren't even visible
10266  * under any other configuration.
10267  */
10268 
10269 /**
10270  * curr_task - return the current task for a given CPU.
10271  * @cpu: the processor in question.
10272  *
10273  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10274  *
10275  * Return: The current task for @cpu.
10276  */
10277 struct task_struct *curr_task(int cpu)
10278 {
10279 	return cpu_curr(cpu);
10280 }
10281 
10282 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10283 
10284 #ifdef CONFIG_IA64
10285 /**
10286  * ia64_set_curr_task - set the current task for a given CPU.
10287  * @cpu: the processor in question.
10288  * @p: the task pointer to set.
10289  *
10290  * Description: This function must only be used when non-maskable interrupts
10291  * are serviced on a separate stack. It allows the architecture to switch the
10292  * notion of the current task on a CPU in a non-blocking manner. This function
10293  * must be called with all CPU's synchronized, and interrupts disabled, the
10294  * and caller must save the original value of the current task (see
10295  * curr_task() above) and restore that value before reenabling interrupts and
10296  * re-starting the system.
10297  *
10298  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10299  */
10300 void ia64_set_curr_task(int cpu, struct task_struct *p)
10301 {
10302 	cpu_curr(cpu) = p;
10303 }
10304 
10305 #endif
10306 
10307 #ifdef CONFIG_CGROUP_SCHED
10308 /* task_group_lock serializes the addition/removal of task groups */
10309 static DEFINE_SPINLOCK(task_group_lock);
10310 
10311 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10312 					    struct task_group *parent)
10313 {
10314 #ifdef CONFIG_UCLAMP_TASK_GROUP
10315 	enum uclamp_id clamp_id;
10316 
10317 	for_each_clamp_id(clamp_id) {
10318 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10319 			      uclamp_none(clamp_id), false);
10320 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10321 	}
10322 #endif
10323 }
10324 
10325 static void sched_free_group(struct task_group *tg)
10326 {
10327 	free_fair_sched_group(tg);
10328 	free_rt_sched_group(tg);
10329 	autogroup_free(tg);
10330 	kmem_cache_free(task_group_cache, tg);
10331 }
10332 
10333 static void sched_free_group_rcu(struct rcu_head *rcu)
10334 {
10335 	sched_free_group(container_of(rcu, struct task_group, rcu));
10336 }
10337 
10338 static void sched_unregister_group(struct task_group *tg)
10339 {
10340 	unregister_fair_sched_group(tg);
10341 	unregister_rt_sched_group(tg);
10342 	/*
10343 	 * We have to wait for yet another RCU grace period to expire, as
10344 	 * print_cfs_stats() might run concurrently.
10345 	 */
10346 	call_rcu(&tg->rcu, sched_free_group_rcu);
10347 }
10348 
10349 /* allocate runqueue etc for a new task group */
10350 struct task_group *sched_create_group(struct task_group *parent)
10351 {
10352 	struct task_group *tg;
10353 
10354 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10355 	if (!tg)
10356 		return ERR_PTR(-ENOMEM);
10357 
10358 	if (!alloc_fair_sched_group(tg, parent))
10359 		goto err;
10360 
10361 	if (!alloc_rt_sched_group(tg, parent))
10362 		goto err;
10363 
10364 	alloc_uclamp_sched_group(tg, parent);
10365 
10366 	return tg;
10367 
10368 err:
10369 	sched_free_group(tg);
10370 	return ERR_PTR(-ENOMEM);
10371 }
10372 
10373 void sched_online_group(struct task_group *tg, struct task_group *parent)
10374 {
10375 	unsigned long flags;
10376 
10377 	spin_lock_irqsave(&task_group_lock, flags);
10378 	list_add_rcu(&tg->list, &task_groups);
10379 
10380 	/* Root should already exist: */
10381 	WARN_ON(!parent);
10382 
10383 	tg->parent = parent;
10384 	INIT_LIST_HEAD(&tg->children);
10385 	list_add_rcu(&tg->siblings, &parent->children);
10386 	spin_unlock_irqrestore(&task_group_lock, flags);
10387 
10388 	online_fair_sched_group(tg);
10389 }
10390 
10391 /* rcu callback to free various structures associated with a task group */
10392 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10393 {
10394 	/* Now it should be safe to free those cfs_rqs: */
10395 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10396 }
10397 
10398 void sched_destroy_group(struct task_group *tg)
10399 {
10400 	/* Wait for possible concurrent references to cfs_rqs complete: */
10401 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10402 }
10403 
10404 void sched_release_group(struct task_group *tg)
10405 {
10406 	unsigned long flags;
10407 
10408 	/*
10409 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10410 	 * sched_cfs_period_timer()).
10411 	 *
10412 	 * For this to be effective, we have to wait for all pending users of
10413 	 * this task group to leave their RCU critical section to ensure no new
10414 	 * user will see our dying task group any more. Specifically ensure
10415 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10416 	 *
10417 	 * We therefore defer calling unregister_fair_sched_group() to
10418 	 * sched_unregister_group() which is guarantied to get called only after the
10419 	 * current RCU grace period has expired.
10420 	 */
10421 	spin_lock_irqsave(&task_group_lock, flags);
10422 	list_del_rcu(&tg->list);
10423 	list_del_rcu(&tg->siblings);
10424 	spin_unlock_irqrestore(&task_group_lock, flags);
10425 }
10426 
10427 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10428 {
10429 	struct task_group *tg;
10430 
10431 	/*
10432 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10433 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10434 	 * to prevent lockdep warnings.
10435 	 */
10436 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10437 			  struct task_group, css);
10438 	tg = autogroup_task_group(tsk, tg);
10439 
10440 	return tg;
10441 }
10442 
10443 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10444 {
10445 	tsk->sched_task_group = group;
10446 
10447 #ifdef CONFIG_FAIR_GROUP_SCHED
10448 	if (tsk->sched_class->task_change_group)
10449 		tsk->sched_class->task_change_group(tsk);
10450 	else
10451 #endif
10452 		set_task_rq(tsk, task_cpu(tsk));
10453 }
10454 
10455 /*
10456  * Change task's runqueue when it moves between groups.
10457  *
10458  * The caller of this function should have put the task in its new group by
10459  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10460  * its new group.
10461  */
10462 void sched_move_task(struct task_struct *tsk)
10463 {
10464 	int queued, running, queue_flags =
10465 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10466 	struct task_group *group;
10467 	struct rq_flags rf;
10468 	struct rq *rq;
10469 
10470 	rq = task_rq_lock(tsk, &rf);
10471 	/*
10472 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10473 	 * group changes.
10474 	 */
10475 	group = sched_get_task_group(tsk);
10476 	if (group == tsk->sched_task_group)
10477 		goto unlock;
10478 
10479 	update_rq_clock(rq);
10480 
10481 	running = task_current(rq, tsk);
10482 	queued = task_on_rq_queued(tsk);
10483 
10484 	if (queued)
10485 		dequeue_task(rq, tsk, queue_flags);
10486 	if (running)
10487 		put_prev_task(rq, tsk);
10488 
10489 	sched_change_group(tsk, group);
10490 
10491 	if (queued)
10492 		enqueue_task(rq, tsk, queue_flags);
10493 	if (running) {
10494 		set_next_task(rq, tsk);
10495 		/*
10496 		 * After changing group, the running task may have joined a
10497 		 * throttled one but it's still the running task. Trigger a
10498 		 * resched to make sure that task can still run.
10499 		 */
10500 		resched_curr(rq);
10501 	}
10502 
10503 unlock:
10504 	task_rq_unlock(rq, tsk, &rf);
10505 }
10506 
10507 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10508 {
10509 	return css ? container_of(css, struct task_group, css) : NULL;
10510 }
10511 
10512 static struct cgroup_subsys_state *
10513 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10514 {
10515 	struct task_group *parent = css_tg(parent_css);
10516 	struct task_group *tg;
10517 
10518 	if (!parent) {
10519 		/* This is early initialization for the top cgroup */
10520 		return &root_task_group.css;
10521 	}
10522 
10523 	tg = sched_create_group(parent);
10524 	if (IS_ERR(tg))
10525 		return ERR_PTR(-ENOMEM);
10526 
10527 	return &tg->css;
10528 }
10529 
10530 /* Expose task group only after completing cgroup initialization */
10531 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10532 {
10533 	struct task_group *tg = css_tg(css);
10534 	struct task_group *parent = css_tg(css->parent);
10535 
10536 	if (parent)
10537 		sched_online_group(tg, parent);
10538 
10539 #ifdef CONFIG_UCLAMP_TASK_GROUP
10540 	/* Propagate the effective uclamp value for the new group */
10541 	mutex_lock(&uclamp_mutex);
10542 	rcu_read_lock();
10543 	cpu_util_update_eff(css);
10544 	rcu_read_unlock();
10545 	mutex_unlock(&uclamp_mutex);
10546 #endif
10547 
10548 	return 0;
10549 }
10550 
10551 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10552 {
10553 	struct task_group *tg = css_tg(css);
10554 
10555 	sched_release_group(tg);
10556 }
10557 
10558 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10559 {
10560 	struct task_group *tg = css_tg(css);
10561 
10562 	/*
10563 	 * Relies on the RCU grace period between css_released() and this.
10564 	 */
10565 	sched_unregister_group(tg);
10566 }
10567 
10568 #ifdef CONFIG_RT_GROUP_SCHED
10569 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10570 {
10571 	struct task_struct *task;
10572 	struct cgroup_subsys_state *css;
10573 
10574 	cgroup_taskset_for_each(task, css, tset) {
10575 		if (!sched_rt_can_attach(css_tg(css), task))
10576 			return -EINVAL;
10577 	}
10578 	return 0;
10579 }
10580 #endif
10581 
10582 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10583 {
10584 	struct task_struct *task;
10585 	struct cgroup_subsys_state *css;
10586 
10587 	cgroup_taskset_for_each(task, css, tset)
10588 		sched_move_task(task);
10589 }
10590 
10591 #ifdef CONFIG_UCLAMP_TASK_GROUP
10592 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10593 {
10594 	struct cgroup_subsys_state *top_css = css;
10595 	struct uclamp_se *uc_parent = NULL;
10596 	struct uclamp_se *uc_se = NULL;
10597 	unsigned int eff[UCLAMP_CNT];
10598 	enum uclamp_id clamp_id;
10599 	unsigned int clamps;
10600 
10601 	lockdep_assert_held(&uclamp_mutex);
10602 	SCHED_WARN_ON(!rcu_read_lock_held());
10603 
10604 	css_for_each_descendant_pre(css, top_css) {
10605 		uc_parent = css_tg(css)->parent
10606 			? css_tg(css)->parent->uclamp : NULL;
10607 
10608 		for_each_clamp_id(clamp_id) {
10609 			/* Assume effective clamps matches requested clamps */
10610 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10611 			/* Cap effective clamps with parent's effective clamps */
10612 			if (uc_parent &&
10613 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10614 				eff[clamp_id] = uc_parent[clamp_id].value;
10615 			}
10616 		}
10617 		/* Ensure protection is always capped by limit */
10618 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10619 
10620 		/* Propagate most restrictive effective clamps */
10621 		clamps = 0x0;
10622 		uc_se = css_tg(css)->uclamp;
10623 		for_each_clamp_id(clamp_id) {
10624 			if (eff[clamp_id] == uc_se[clamp_id].value)
10625 				continue;
10626 			uc_se[clamp_id].value = eff[clamp_id];
10627 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10628 			clamps |= (0x1 << clamp_id);
10629 		}
10630 		if (!clamps) {
10631 			css = css_rightmost_descendant(css);
10632 			continue;
10633 		}
10634 
10635 		/* Immediately update descendants RUNNABLE tasks */
10636 		uclamp_update_active_tasks(css);
10637 	}
10638 }
10639 
10640 /*
10641  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10642  * C expression. Since there is no way to convert a macro argument (N) into a
10643  * character constant, use two levels of macros.
10644  */
10645 #define _POW10(exp) ((unsigned int)1e##exp)
10646 #define POW10(exp) _POW10(exp)
10647 
10648 struct uclamp_request {
10649 #define UCLAMP_PERCENT_SHIFT	2
10650 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10651 	s64 percent;
10652 	u64 util;
10653 	int ret;
10654 };
10655 
10656 static inline struct uclamp_request
10657 capacity_from_percent(char *buf)
10658 {
10659 	struct uclamp_request req = {
10660 		.percent = UCLAMP_PERCENT_SCALE,
10661 		.util = SCHED_CAPACITY_SCALE,
10662 		.ret = 0,
10663 	};
10664 
10665 	buf = strim(buf);
10666 	if (strcmp(buf, "max")) {
10667 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10668 					     &req.percent);
10669 		if (req.ret)
10670 			return req;
10671 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10672 			req.ret = -ERANGE;
10673 			return req;
10674 		}
10675 
10676 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10677 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10678 	}
10679 
10680 	return req;
10681 }
10682 
10683 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10684 				size_t nbytes, loff_t off,
10685 				enum uclamp_id clamp_id)
10686 {
10687 	struct uclamp_request req;
10688 	struct task_group *tg;
10689 
10690 	req = capacity_from_percent(buf);
10691 	if (req.ret)
10692 		return req.ret;
10693 
10694 	static_branch_enable(&sched_uclamp_used);
10695 
10696 	mutex_lock(&uclamp_mutex);
10697 	rcu_read_lock();
10698 
10699 	tg = css_tg(of_css(of));
10700 	if (tg->uclamp_req[clamp_id].value != req.util)
10701 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10702 
10703 	/*
10704 	 * Because of not recoverable conversion rounding we keep track of the
10705 	 * exact requested value
10706 	 */
10707 	tg->uclamp_pct[clamp_id] = req.percent;
10708 
10709 	/* Update effective clamps to track the most restrictive value */
10710 	cpu_util_update_eff(of_css(of));
10711 
10712 	rcu_read_unlock();
10713 	mutex_unlock(&uclamp_mutex);
10714 
10715 	return nbytes;
10716 }
10717 
10718 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10719 				    char *buf, size_t nbytes,
10720 				    loff_t off)
10721 {
10722 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10723 }
10724 
10725 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10726 				    char *buf, size_t nbytes,
10727 				    loff_t off)
10728 {
10729 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10730 }
10731 
10732 static inline void cpu_uclamp_print(struct seq_file *sf,
10733 				    enum uclamp_id clamp_id)
10734 {
10735 	struct task_group *tg;
10736 	u64 util_clamp;
10737 	u64 percent;
10738 	u32 rem;
10739 
10740 	rcu_read_lock();
10741 	tg = css_tg(seq_css(sf));
10742 	util_clamp = tg->uclamp_req[clamp_id].value;
10743 	rcu_read_unlock();
10744 
10745 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10746 		seq_puts(sf, "max\n");
10747 		return;
10748 	}
10749 
10750 	percent = tg->uclamp_pct[clamp_id];
10751 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10752 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10753 }
10754 
10755 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10756 {
10757 	cpu_uclamp_print(sf, UCLAMP_MIN);
10758 	return 0;
10759 }
10760 
10761 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10762 {
10763 	cpu_uclamp_print(sf, UCLAMP_MAX);
10764 	return 0;
10765 }
10766 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10767 
10768 #ifdef CONFIG_FAIR_GROUP_SCHED
10769 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10770 				struct cftype *cftype, u64 shareval)
10771 {
10772 	if (shareval > scale_load_down(ULONG_MAX))
10773 		shareval = MAX_SHARES;
10774 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10775 }
10776 
10777 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10778 			       struct cftype *cft)
10779 {
10780 	struct task_group *tg = css_tg(css);
10781 
10782 	return (u64) scale_load_down(tg->shares);
10783 }
10784 
10785 #ifdef CONFIG_CFS_BANDWIDTH
10786 static DEFINE_MUTEX(cfs_constraints_mutex);
10787 
10788 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10789 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10790 /* More than 203 days if BW_SHIFT equals 20. */
10791 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10792 
10793 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10794 
10795 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10796 				u64 burst)
10797 {
10798 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10799 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10800 
10801 	if (tg == &root_task_group)
10802 		return -EINVAL;
10803 
10804 	/*
10805 	 * Ensure we have at some amount of bandwidth every period.  This is
10806 	 * to prevent reaching a state of large arrears when throttled via
10807 	 * entity_tick() resulting in prolonged exit starvation.
10808 	 */
10809 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10810 		return -EINVAL;
10811 
10812 	/*
10813 	 * Likewise, bound things on the other side by preventing insane quota
10814 	 * periods.  This also allows us to normalize in computing quota
10815 	 * feasibility.
10816 	 */
10817 	if (period > max_cfs_quota_period)
10818 		return -EINVAL;
10819 
10820 	/*
10821 	 * Bound quota to defend quota against overflow during bandwidth shift.
10822 	 */
10823 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10824 		return -EINVAL;
10825 
10826 	if (quota != RUNTIME_INF && (burst > quota ||
10827 				     burst + quota > max_cfs_runtime))
10828 		return -EINVAL;
10829 
10830 	/*
10831 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10832 	 * unthrottle_offline_cfs_rqs().
10833 	 */
10834 	cpus_read_lock();
10835 	mutex_lock(&cfs_constraints_mutex);
10836 	ret = __cfs_schedulable(tg, period, quota);
10837 	if (ret)
10838 		goto out_unlock;
10839 
10840 	runtime_enabled = quota != RUNTIME_INF;
10841 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10842 	/*
10843 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10844 	 * before making related changes, and on->off must occur afterwards
10845 	 */
10846 	if (runtime_enabled && !runtime_was_enabled)
10847 		cfs_bandwidth_usage_inc();
10848 	raw_spin_lock_irq(&cfs_b->lock);
10849 	cfs_b->period = ns_to_ktime(period);
10850 	cfs_b->quota = quota;
10851 	cfs_b->burst = burst;
10852 
10853 	__refill_cfs_bandwidth_runtime(cfs_b);
10854 
10855 	/* Restart the period timer (if active) to handle new period expiry: */
10856 	if (runtime_enabled)
10857 		start_cfs_bandwidth(cfs_b);
10858 
10859 	raw_spin_unlock_irq(&cfs_b->lock);
10860 
10861 	for_each_online_cpu(i) {
10862 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10863 		struct rq *rq = cfs_rq->rq;
10864 		struct rq_flags rf;
10865 
10866 		rq_lock_irq(rq, &rf);
10867 		cfs_rq->runtime_enabled = runtime_enabled;
10868 		cfs_rq->runtime_remaining = 0;
10869 
10870 		if (cfs_rq->throttled)
10871 			unthrottle_cfs_rq(cfs_rq);
10872 		rq_unlock_irq(rq, &rf);
10873 	}
10874 	if (runtime_was_enabled && !runtime_enabled)
10875 		cfs_bandwidth_usage_dec();
10876 out_unlock:
10877 	mutex_unlock(&cfs_constraints_mutex);
10878 	cpus_read_unlock();
10879 
10880 	return ret;
10881 }
10882 
10883 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10884 {
10885 	u64 quota, period, burst;
10886 
10887 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10888 	burst = tg->cfs_bandwidth.burst;
10889 	if (cfs_quota_us < 0)
10890 		quota = RUNTIME_INF;
10891 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10892 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10893 	else
10894 		return -EINVAL;
10895 
10896 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10897 }
10898 
10899 static long tg_get_cfs_quota(struct task_group *tg)
10900 {
10901 	u64 quota_us;
10902 
10903 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10904 		return -1;
10905 
10906 	quota_us = tg->cfs_bandwidth.quota;
10907 	do_div(quota_us, NSEC_PER_USEC);
10908 
10909 	return quota_us;
10910 }
10911 
10912 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10913 {
10914 	u64 quota, period, burst;
10915 
10916 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10917 		return -EINVAL;
10918 
10919 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10920 	quota = tg->cfs_bandwidth.quota;
10921 	burst = tg->cfs_bandwidth.burst;
10922 
10923 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10924 }
10925 
10926 static long tg_get_cfs_period(struct task_group *tg)
10927 {
10928 	u64 cfs_period_us;
10929 
10930 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10931 	do_div(cfs_period_us, NSEC_PER_USEC);
10932 
10933 	return cfs_period_us;
10934 }
10935 
10936 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10937 {
10938 	u64 quota, period, burst;
10939 
10940 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10941 		return -EINVAL;
10942 
10943 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10944 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10945 	quota = tg->cfs_bandwidth.quota;
10946 
10947 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10948 }
10949 
10950 static long tg_get_cfs_burst(struct task_group *tg)
10951 {
10952 	u64 burst_us;
10953 
10954 	burst_us = tg->cfs_bandwidth.burst;
10955 	do_div(burst_us, NSEC_PER_USEC);
10956 
10957 	return burst_us;
10958 }
10959 
10960 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10961 				  struct cftype *cft)
10962 {
10963 	return tg_get_cfs_quota(css_tg(css));
10964 }
10965 
10966 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10967 				   struct cftype *cftype, s64 cfs_quota_us)
10968 {
10969 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10970 }
10971 
10972 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10973 				   struct cftype *cft)
10974 {
10975 	return tg_get_cfs_period(css_tg(css));
10976 }
10977 
10978 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10979 				    struct cftype *cftype, u64 cfs_period_us)
10980 {
10981 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10982 }
10983 
10984 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10985 				  struct cftype *cft)
10986 {
10987 	return tg_get_cfs_burst(css_tg(css));
10988 }
10989 
10990 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10991 				   struct cftype *cftype, u64 cfs_burst_us)
10992 {
10993 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10994 }
10995 
10996 struct cfs_schedulable_data {
10997 	struct task_group *tg;
10998 	u64 period, quota;
10999 };
11000 
11001 /*
11002  * normalize group quota/period to be quota/max_period
11003  * note: units are usecs
11004  */
11005 static u64 normalize_cfs_quota(struct task_group *tg,
11006 			       struct cfs_schedulable_data *d)
11007 {
11008 	u64 quota, period;
11009 
11010 	if (tg == d->tg) {
11011 		period = d->period;
11012 		quota = d->quota;
11013 	} else {
11014 		period = tg_get_cfs_period(tg);
11015 		quota = tg_get_cfs_quota(tg);
11016 	}
11017 
11018 	/* note: these should typically be equivalent */
11019 	if (quota == RUNTIME_INF || quota == -1)
11020 		return RUNTIME_INF;
11021 
11022 	return to_ratio(period, quota);
11023 }
11024 
11025 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11026 {
11027 	struct cfs_schedulable_data *d = data;
11028 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11029 	s64 quota = 0, parent_quota = -1;
11030 
11031 	if (!tg->parent) {
11032 		quota = RUNTIME_INF;
11033 	} else {
11034 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11035 
11036 		quota = normalize_cfs_quota(tg, d);
11037 		parent_quota = parent_b->hierarchical_quota;
11038 
11039 		/*
11040 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11041 		 * always take the min.  On cgroup1, only inherit when no
11042 		 * limit is set:
11043 		 */
11044 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11045 			quota = min(quota, parent_quota);
11046 		} else {
11047 			if (quota == RUNTIME_INF)
11048 				quota = parent_quota;
11049 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11050 				return -EINVAL;
11051 		}
11052 	}
11053 	cfs_b->hierarchical_quota = quota;
11054 
11055 	return 0;
11056 }
11057 
11058 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11059 {
11060 	int ret;
11061 	struct cfs_schedulable_data data = {
11062 		.tg = tg,
11063 		.period = period,
11064 		.quota = quota,
11065 	};
11066 
11067 	if (quota != RUNTIME_INF) {
11068 		do_div(data.period, NSEC_PER_USEC);
11069 		do_div(data.quota, NSEC_PER_USEC);
11070 	}
11071 
11072 	rcu_read_lock();
11073 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11074 	rcu_read_unlock();
11075 
11076 	return ret;
11077 }
11078 
11079 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11080 {
11081 	struct task_group *tg = css_tg(seq_css(sf));
11082 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11083 
11084 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11085 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11086 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11087 
11088 	if (schedstat_enabled() && tg != &root_task_group) {
11089 		struct sched_statistics *stats;
11090 		u64 ws = 0;
11091 		int i;
11092 
11093 		for_each_possible_cpu(i) {
11094 			stats = __schedstats_from_se(tg->se[i]);
11095 			ws += schedstat_val(stats->wait_sum);
11096 		}
11097 
11098 		seq_printf(sf, "wait_sum %llu\n", ws);
11099 	}
11100 
11101 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11102 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11103 
11104 	return 0;
11105 }
11106 #endif /* CONFIG_CFS_BANDWIDTH */
11107 #endif /* CONFIG_FAIR_GROUP_SCHED */
11108 
11109 #ifdef CONFIG_RT_GROUP_SCHED
11110 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11111 				struct cftype *cft, s64 val)
11112 {
11113 	return sched_group_set_rt_runtime(css_tg(css), val);
11114 }
11115 
11116 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11117 			       struct cftype *cft)
11118 {
11119 	return sched_group_rt_runtime(css_tg(css));
11120 }
11121 
11122 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11123 				    struct cftype *cftype, u64 rt_period_us)
11124 {
11125 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11126 }
11127 
11128 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11129 				   struct cftype *cft)
11130 {
11131 	return sched_group_rt_period(css_tg(css));
11132 }
11133 #endif /* CONFIG_RT_GROUP_SCHED */
11134 
11135 #ifdef CONFIG_FAIR_GROUP_SCHED
11136 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11137 			       struct cftype *cft)
11138 {
11139 	return css_tg(css)->idle;
11140 }
11141 
11142 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11143 				struct cftype *cft, s64 idle)
11144 {
11145 	return sched_group_set_idle(css_tg(css), idle);
11146 }
11147 #endif
11148 
11149 static struct cftype cpu_legacy_files[] = {
11150 #ifdef CONFIG_FAIR_GROUP_SCHED
11151 	{
11152 		.name = "shares",
11153 		.read_u64 = cpu_shares_read_u64,
11154 		.write_u64 = cpu_shares_write_u64,
11155 	},
11156 	{
11157 		.name = "idle",
11158 		.read_s64 = cpu_idle_read_s64,
11159 		.write_s64 = cpu_idle_write_s64,
11160 	},
11161 #endif
11162 #ifdef CONFIG_CFS_BANDWIDTH
11163 	{
11164 		.name = "cfs_quota_us",
11165 		.read_s64 = cpu_cfs_quota_read_s64,
11166 		.write_s64 = cpu_cfs_quota_write_s64,
11167 	},
11168 	{
11169 		.name = "cfs_period_us",
11170 		.read_u64 = cpu_cfs_period_read_u64,
11171 		.write_u64 = cpu_cfs_period_write_u64,
11172 	},
11173 	{
11174 		.name = "cfs_burst_us",
11175 		.read_u64 = cpu_cfs_burst_read_u64,
11176 		.write_u64 = cpu_cfs_burst_write_u64,
11177 	},
11178 	{
11179 		.name = "stat",
11180 		.seq_show = cpu_cfs_stat_show,
11181 	},
11182 #endif
11183 #ifdef CONFIG_RT_GROUP_SCHED
11184 	{
11185 		.name = "rt_runtime_us",
11186 		.read_s64 = cpu_rt_runtime_read,
11187 		.write_s64 = cpu_rt_runtime_write,
11188 	},
11189 	{
11190 		.name = "rt_period_us",
11191 		.read_u64 = cpu_rt_period_read_uint,
11192 		.write_u64 = cpu_rt_period_write_uint,
11193 	},
11194 #endif
11195 #ifdef CONFIG_UCLAMP_TASK_GROUP
11196 	{
11197 		.name = "uclamp.min",
11198 		.flags = CFTYPE_NOT_ON_ROOT,
11199 		.seq_show = cpu_uclamp_min_show,
11200 		.write = cpu_uclamp_min_write,
11201 	},
11202 	{
11203 		.name = "uclamp.max",
11204 		.flags = CFTYPE_NOT_ON_ROOT,
11205 		.seq_show = cpu_uclamp_max_show,
11206 		.write = cpu_uclamp_max_write,
11207 	},
11208 #endif
11209 	{ }	/* Terminate */
11210 };
11211 
11212 static int cpu_extra_stat_show(struct seq_file *sf,
11213 			       struct cgroup_subsys_state *css)
11214 {
11215 #ifdef CONFIG_CFS_BANDWIDTH
11216 	{
11217 		struct task_group *tg = css_tg(css);
11218 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11219 		u64 throttled_usec, burst_usec;
11220 
11221 		throttled_usec = cfs_b->throttled_time;
11222 		do_div(throttled_usec, NSEC_PER_USEC);
11223 		burst_usec = cfs_b->burst_time;
11224 		do_div(burst_usec, NSEC_PER_USEC);
11225 
11226 		seq_printf(sf, "nr_periods %d\n"
11227 			   "nr_throttled %d\n"
11228 			   "throttled_usec %llu\n"
11229 			   "nr_bursts %d\n"
11230 			   "burst_usec %llu\n",
11231 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11232 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11233 	}
11234 #endif
11235 	return 0;
11236 }
11237 
11238 #ifdef CONFIG_FAIR_GROUP_SCHED
11239 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11240 			       struct cftype *cft)
11241 {
11242 	struct task_group *tg = css_tg(css);
11243 	u64 weight = scale_load_down(tg->shares);
11244 
11245 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11246 }
11247 
11248 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11249 				struct cftype *cft, u64 weight)
11250 {
11251 	/*
11252 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11253 	 * values which are 1, 100 and 10000 respectively.  While it loses
11254 	 * a bit of range on both ends, it maps pretty well onto the shares
11255 	 * value used by scheduler and the round-trip conversions preserve
11256 	 * the original value over the entire range.
11257 	 */
11258 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11259 		return -ERANGE;
11260 
11261 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11262 
11263 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11264 }
11265 
11266 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11267 				    struct cftype *cft)
11268 {
11269 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11270 	int last_delta = INT_MAX;
11271 	int prio, delta;
11272 
11273 	/* find the closest nice value to the current weight */
11274 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11275 		delta = abs(sched_prio_to_weight[prio] - weight);
11276 		if (delta >= last_delta)
11277 			break;
11278 		last_delta = delta;
11279 	}
11280 
11281 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11282 }
11283 
11284 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11285 				     struct cftype *cft, s64 nice)
11286 {
11287 	unsigned long weight;
11288 	int idx;
11289 
11290 	if (nice < MIN_NICE || nice > MAX_NICE)
11291 		return -ERANGE;
11292 
11293 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11294 	idx = array_index_nospec(idx, 40);
11295 	weight = sched_prio_to_weight[idx];
11296 
11297 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11298 }
11299 #endif
11300 
11301 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11302 						  long period, long quota)
11303 {
11304 	if (quota < 0)
11305 		seq_puts(sf, "max");
11306 	else
11307 		seq_printf(sf, "%ld", quota);
11308 
11309 	seq_printf(sf, " %ld\n", period);
11310 }
11311 
11312 /* caller should put the current value in *@periodp before calling */
11313 static int __maybe_unused cpu_period_quota_parse(char *buf,
11314 						 u64 *periodp, u64 *quotap)
11315 {
11316 	char tok[21];	/* U64_MAX */
11317 
11318 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11319 		return -EINVAL;
11320 
11321 	*periodp *= NSEC_PER_USEC;
11322 
11323 	if (sscanf(tok, "%llu", quotap))
11324 		*quotap *= NSEC_PER_USEC;
11325 	else if (!strcmp(tok, "max"))
11326 		*quotap = RUNTIME_INF;
11327 	else
11328 		return -EINVAL;
11329 
11330 	return 0;
11331 }
11332 
11333 #ifdef CONFIG_CFS_BANDWIDTH
11334 static int cpu_max_show(struct seq_file *sf, void *v)
11335 {
11336 	struct task_group *tg = css_tg(seq_css(sf));
11337 
11338 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11339 	return 0;
11340 }
11341 
11342 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11343 			     char *buf, size_t nbytes, loff_t off)
11344 {
11345 	struct task_group *tg = css_tg(of_css(of));
11346 	u64 period = tg_get_cfs_period(tg);
11347 	u64 burst = tg_get_cfs_burst(tg);
11348 	u64 quota;
11349 	int ret;
11350 
11351 	ret = cpu_period_quota_parse(buf, &period, &quota);
11352 	if (!ret)
11353 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11354 	return ret ?: nbytes;
11355 }
11356 #endif
11357 
11358 static struct cftype cpu_files[] = {
11359 #ifdef CONFIG_FAIR_GROUP_SCHED
11360 	{
11361 		.name = "weight",
11362 		.flags = CFTYPE_NOT_ON_ROOT,
11363 		.read_u64 = cpu_weight_read_u64,
11364 		.write_u64 = cpu_weight_write_u64,
11365 	},
11366 	{
11367 		.name = "weight.nice",
11368 		.flags = CFTYPE_NOT_ON_ROOT,
11369 		.read_s64 = cpu_weight_nice_read_s64,
11370 		.write_s64 = cpu_weight_nice_write_s64,
11371 	},
11372 	{
11373 		.name = "idle",
11374 		.flags = CFTYPE_NOT_ON_ROOT,
11375 		.read_s64 = cpu_idle_read_s64,
11376 		.write_s64 = cpu_idle_write_s64,
11377 	},
11378 #endif
11379 #ifdef CONFIG_CFS_BANDWIDTH
11380 	{
11381 		.name = "max",
11382 		.flags = CFTYPE_NOT_ON_ROOT,
11383 		.seq_show = cpu_max_show,
11384 		.write = cpu_max_write,
11385 	},
11386 	{
11387 		.name = "max.burst",
11388 		.flags = CFTYPE_NOT_ON_ROOT,
11389 		.read_u64 = cpu_cfs_burst_read_u64,
11390 		.write_u64 = cpu_cfs_burst_write_u64,
11391 	},
11392 #endif
11393 #ifdef CONFIG_UCLAMP_TASK_GROUP
11394 	{
11395 		.name = "uclamp.min",
11396 		.flags = CFTYPE_NOT_ON_ROOT,
11397 		.seq_show = cpu_uclamp_min_show,
11398 		.write = cpu_uclamp_min_write,
11399 	},
11400 	{
11401 		.name = "uclamp.max",
11402 		.flags = CFTYPE_NOT_ON_ROOT,
11403 		.seq_show = cpu_uclamp_max_show,
11404 		.write = cpu_uclamp_max_write,
11405 	},
11406 #endif
11407 	{ }	/* terminate */
11408 };
11409 
11410 struct cgroup_subsys cpu_cgrp_subsys = {
11411 	.css_alloc	= cpu_cgroup_css_alloc,
11412 	.css_online	= cpu_cgroup_css_online,
11413 	.css_released	= cpu_cgroup_css_released,
11414 	.css_free	= cpu_cgroup_css_free,
11415 	.css_extra_stat_show = cpu_extra_stat_show,
11416 #ifdef CONFIG_RT_GROUP_SCHED
11417 	.can_attach	= cpu_cgroup_can_attach,
11418 #endif
11419 	.attach		= cpu_cgroup_attach,
11420 	.legacy_cftypes	= cpu_legacy_files,
11421 	.dfl_cftypes	= cpu_files,
11422 	.early_init	= true,
11423 	.threaded	= true,
11424 };
11425 
11426 #endif	/* CONFIG_CGROUP_SCHED */
11427 
11428 void dump_cpu_task(int cpu)
11429 {
11430 	if (cpu == smp_processor_id() && in_hardirq()) {
11431 		struct pt_regs *regs;
11432 
11433 		regs = get_irq_regs();
11434 		if (regs) {
11435 			show_regs(regs);
11436 			return;
11437 		}
11438 	}
11439 
11440 	if (trigger_single_cpu_backtrace(cpu))
11441 		return;
11442 
11443 	pr_info("Task dump for CPU %d:\n", cpu);
11444 	sched_show_task(cpu_curr(cpu));
11445 }
11446 
11447 /*
11448  * Nice levels are multiplicative, with a gentle 10% change for every
11449  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11450  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11451  * that remained on nice 0.
11452  *
11453  * The "10% effect" is relative and cumulative: from _any_ nice level,
11454  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11455  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11456  * If a task goes up by ~10% and another task goes down by ~10% then
11457  * the relative distance between them is ~25%.)
11458  */
11459 const int sched_prio_to_weight[40] = {
11460  /* -20 */     88761,     71755,     56483,     46273,     36291,
11461  /* -15 */     29154,     23254,     18705,     14949,     11916,
11462  /* -10 */      9548,      7620,      6100,      4904,      3906,
11463  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11464  /*   0 */      1024,       820,       655,       526,       423,
11465  /*   5 */       335,       272,       215,       172,       137,
11466  /*  10 */       110,        87,        70,        56,        45,
11467  /*  15 */        36,        29,        23,        18,        15,
11468 };
11469 
11470 /*
11471  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11472  *
11473  * In cases where the weight does not change often, we can use the
11474  * precalculated inverse to speed up arithmetics by turning divisions
11475  * into multiplications:
11476  */
11477 const u32 sched_prio_to_wmult[40] = {
11478  /* -20 */     48388,     59856,     76040,     92818,    118348,
11479  /* -15 */    147320,    184698,    229616,    287308,    360437,
11480  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11481  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11482  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11483  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11484  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11485  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11486 };
11487 
11488 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11489 {
11490         trace_sched_update_nr_running_tp(rq, count);
11491 }
11492 
11493 #ifdef CONFIG_SCHED_MM_CID
11494 
11495 /**
11496  * @cid_lock: Guarantee forward-progress of cid allocation.
11497  *
11498  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11499  * is only used when contention is detected by the lock-free allocation so
11500  * forward progress can be guaranteed.
11501  */
11502 DEFINE_RAW_SPINLOCK(cid_lock);
11503 
11504 /**
11505  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11506  *
11507  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11508  * detected, it is set to 1 to ensure that all newly coming allocations are
11509  * serialized by @cid_lock until the allocation which detected contention
11510  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11511  * of a cid allocation.
11512  */
11513 int use_cid_lock;
11514 
11515 /*
11516  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11517  * concurrently with respect to the execution of the source runqueue context
11518  * switch.
11519  *
11520  * There is one basic properties we want to guarantee here:
11521  *
11522  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11523  * used by a task. That would lead to concurrent allocation of the cid and
11524  * userspace corruption.
11525  *
11526  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11527  * that a pair of loads observe at least one of a pair of stores, which can be
11528  * shown as:
11529  *
11530  *      X = Y = 0
11531  *
11532  *      w[X]=1          w[Y]=1
11533  *      MB              MB
11534  *      r[Y]=y          r[X]=x
11535  *
11536  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11537  * values 0 and 1, this algorithm cares about specific state transitions of the
11538  * runqueue current task (as updated by the scheduler context switch), and the
11539  * per-mm/cpu cid value.
11540  *
11541  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11542  * task->mm != mm for the rest of the discussion. There are two scheduler state
11543  * transitions on context switch we care about:
11544  *
11545  * (TSA) Store to rq->curr with transition from (N) to (Y)
11546  *
11547  * (TSB) Store to rq->curr with transition from (Y) to (N)
11548  *
11549  * On the remote-clear side, there is one transition we care about:
11550  *
11551  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11552  *
11553  * There is also a transition to UNSET state which can be performed from all
11554  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11555  * guarantees that only a single thread will succeed:
11556  *
11557  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11558  *
11559  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11560  * when a thread is actively using the cid (property (1)).
11561  *
11562  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11563  *
11564  * Scenario A) (TSA)+(TMA) (from next task perspective)
11565  *
11566  * CPU0                                      CPU1
11567  *
11568  * Context switch CS-1                       Remote-clear
11569  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11570  *                                             (implied barrier after cmpxchg)
11571  *   - switch_mm_cid()
11572  *     - memory barrier (see switch_mm_cid()
11573  *       comment explaining how this barrier
11574  *       is combined with other scheduler
11575  *       barriers)
11576  *     - mm_cid_get (next)
11577  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11578  *
11579  * This Dekker ensures that either task (Y) is observed by the
11580  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11581  * observed.
11582  *
11583  * If task (Y) store is observed by rcu_dereference(), it means that there is
11584  * still an active task on the cpu. Remote-clear will therefore not transition
11585  * to UNSET, which fulfills property (1).
11586  *
11587  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11588  * it will move its state to UNSET, which clears the percpu cid perhaps
11589  * uselessly (which is not an issue for correctness). Because task (Y) is not
11590  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11591  * state to UNSET is done with a cmpxchg expecting that the old state has the
11592  * LAZY flag set, only one thread will successfully UNSET.
11593  *
11594  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11595  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11596  * CPU1 will observe task (Y) and do nothing more, which is fine.
11597  *
11598  * What we are effectively preventing with this Dekker is a scenario where
11599  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11600  * because this would UNSET a cid which is actively used.
11601  */
11602 
11603 void sched_mm_cid_migrate_from(struct task_struct *t)
11604 {
11605 	t->migrate_from_cpu = task_cpu(t);
11606 }
11607 
11608 static
11609 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11610 					  struct task_struct *t,
11611 					  struct mm_cid *src_pcpu_cid)
11612 {
11613 	struct mm_struct *mm = t->mm;
11614 	struct task_struct *src_task;
11615 	int src_cid, last_mm_cid;
11616 
11617 	if (!mm)
11618 		return -1;
11619 
11620 	last_mm_cid = t->last_mm_cid;
11621 	/*
11622 	 * If the migrated task has no last cid, or if the current
11623 	 * task on src rq uses the cid, it means the source cid does not need
11624 	 * to be moved to the destination cpu.
11625 	 */
11626 	if (last_mm_cid == -1)
11627 		return -1;
11628 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11629 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11630 		return -1;
11631 
11632 	/*
11633 	 * If we observe an active task using the mm on this rq, it means we
11634 	 * are not the last task to be migrated from this cpu for this mm, so
11635 	 * there is no need to move src_cid to the destination cpu.
11636 	 */
11637 	rcu_read_lock();
11638 	src_task = rcu_dereference(src_rq->curr);
11639 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11640 		rcu_read_unlock();
11641 		t->last_mm_cid = -1;
11642 		return -1;
11643 	}
11644 	rcu_read_unlock();
11645 
11646 	return src_cid;
11647 }
11648 
11649 static
11650 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11651 					      struct task_struct *t,
11652 					      struct mm_cid *src_pcpu_cid,
11653 					      int src_cid)
11654 {
11655 	struct task_struct *src_task;
11656 	struct mm_struct *mm = t->mm;
11657 	int lazy_cid;
11658 
11659 	if (src_cid == -1)
11660 		return -1;
11661 
11662 	/*
11663 	 * Attempt to clear the source cpu cid to move it to the destination
11664 	 * cpu.
11665 	 */
11666 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11667 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11668 		return -1;
11669 
11670 	/*
11671 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11672 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11673 	 * between store to rq->curr and load of prev and next task's
11674 	 * per-mm/cpu cid.
11675 	 *
11676 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11677 	 * rq->curr->mm_cid_active matches the barrier in
11678 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11679 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11680 	 * load of per-mm/cpu cid.
11681 	 */
11682 
11683 	/*
11684 	 * If we observe an active task using the mm on this rq after setting
11685 	 * the lazy-put flag, this task will be responsible for transitioning
11686 	 * from lazy-put flag set to MM_CID_UNSET.
11687 	 */
11688 	rcu_read_lock();
11689 	src_task = rcu_dereference(src_rq->curr);
11690 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11691 		rcu_read_unlock();
11692 		/*
11693 		 * We observed an active task for this mm, there is therefore
11694 		 * no point in moving this cid to the destination cpu.
11695 		 */
11696 		t->last_mm_cid = -1;
11697 		return -1;
11698 	}
11699 	rcu_read_unlock();
11700 
11701 	/*
11702 	 * The src_cid is unused, so it can be unset.
11703 	 */
11704 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11705 		return -1;
11706 	return src_cid;
11707 }
11708 
11709 /*
11710  * Migration to dst cpu. Called with dst_rq lock held.
11711  * Interrupts are disabled, which keeps the window of cid ownership without the
11712  * source rq lock held small.
11713  */
11714 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11715 {
11716 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11717 	struct mm_struct *mm = t->mm;
11718 	int src_cid, dst_cid, src_cpu;
11719 	struct rq *src_rq;
11720 
11721 	lockdep_assert_rq_held(dst_rq);
11722 
11723 	if (!mm)
11724 		return;
11725 	src_cpu = t->migrate_from_cpu;
11726 	if (src_cpu == -1) {
11727 		t->last_mm_cid = -1;
11728 		return;
11729 	}
11730 	/*
11731 	 * Move the src cid if the dst cid is unset. This keeps id
11732 	 * allocation closest to 0 in cases where few threads migrate around
11733 	 * many cpus.
11734 	 *
11735 	 * If destination cid is already set, we may have to just clear
11736 	 * the src cid to ensure compactness in frequent migrations
11737 	 * scenarios.
11738 	 *
11739 	 * It is not useful to clear the src cid when the number of threads is
11740 	 * greater or equal to the number of allowed cpus, because user-space
11741 	 * can expect that the number of allowed cids can reach the number of
11742 	 * allowed cpus.
11743 	 */
11744 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11745 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11746 	if (!mm_cid_is_unset(dst_cid) &&
11747 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11748 		return;
11749 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11750 	src_rq = cpu_rq(src_cpu);
11751 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11752 	if (src_cid == -1)
11753 		return;
11754 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11755 							    src_cid);
11756 	if (src_cid == -1)
11757 		return;
11758 	if (!mm_cid_is_unset(dst_cid)) {
11759 		__mm_cid_put(mm, src_cid);
11760 		return;
11761 	}
11762 	/* Move src_cid to dst cpu. */
11763 	mm_cid_snapshot_time(dst_rq, mm);
11764 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11765 }
11766 
11767 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11768 				      int cpu)
11769 {
11770 	struct rq *rq = cpu_rq(cpu);
11771 	struct task_struct *t;
11772 	unsigned long flags;
11773 	int cid, lazy_cid;
11774 
11775 	cid = READ_ONCE(pcpu_cid->cid);
11776 	if (!mm_cid_is_valid(cid))
11777 		return;
11778 
11779 	/*
11780 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11781 	 * there happens to be other tasks left on the source cpu using this
11782 	 * mm, the next task using this mm will reallocate its cid on context
11783 	 * switch.
11784 	 */
11785 	lazy_cid = mm_cid_set_lazy_put(cid);
11786 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11787 		return;
11788 
11789 	/*
11790 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11791 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11792 	 * between store to rq->curr and load of prev and next task's
11793 	 * per-mm/cpu cid.
11794 	 *
11795 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11796 	 * rq->curr->mm_cid_active matches the barrier in
11797 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11798 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11799 	 * load of per-mm/cpu cid.
11800 	 */
11801 
11802 	/*
11803 	 * If we observe an active task using the mm on this rq after setting
11804 	 * the lazy-put flag, that task will be responsible for transitioning
11805 	 * from lazy-put flag set to MM_CID_UNSET.
11806 	 */
11807 	rcu_read_lock();
11808 	t = rcu_dereference(rq->curr);
11809 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11810 		rcu_read_unlock();
11811 		return;
11812 	}
11813 	rcu_read_unlock();
11814 
11815 	/*
11816 	 * The cid is unused, so it can be unset.
11817 	 * Disable interrupts to keep the window of cid ownership without rq
11818 	 * lock small.
11819 	 */
11820 	local_irq_save(flags);
11821 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11822 		__mm_cid_put(mm, cid);
11823 	local_irq_restore(flags);
11824 }
11825 
11826 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11827 {
11828 	struct rq *rq = cpu_rq(cpu);
11829 	struct mm_cid *pcpu_cid;
11830 	struct task_struct *curr;
11831 	u64 rq_clock;
11832 
11833 	/*
11834 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11835 	 * while is irrelevant.
11836 	 */
11837 	rq_clock = READ_ONCE(rq->clock);
11838 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11839 
11840 	/*
11841 	 * In order to take care of infrequently scheduled tasks, bump the time
11842 	 * snapshot associated with this cid if an active task using the mm is
11843 	 * observed on this rq.
11844 	 */
11845 	rcu_read_lock();
11846 	curr = rcu_dereference(rq->curr);
11847 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11848 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11849 		rcu_read_unlock();
11850 		return;
11851 	}
11852 	rcu_read_unlock();
11853 
11854 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11855 		return;
11856 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11857 }
11858 
11859 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11860 					     int weight)
11861 {
11862 	struct mm_cid *pcpu_cid;
11863 	int cid;
11864 
11865 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11866 	cid = READ_ONCE(pcpu_cid->cid);
11867 	if (!mm_cid_is_valid(cid) || cid < weight)
11868 		return;
11869 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11870 }
11871 
11872 static void task_mm_cid_work(struct callback_head *work)
11873 {
11874 	unsigned long now = jiffies, old_scan, next_scan;
11875 	struct task_struct *t = current;
11876 	struct cpumask *cidmask;
11877 	struct mm_struct *mm;
11878 	int weight, cpu;
11879 
11880 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11881 
11882 	work->next = work;	/* Prevent double-add */
11883 	if (t->flags & PF_EXITING)
11884 		return;
11885 	mm = t->mm;
11886 	if (!mm)
11887 		return;
11888 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11889 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11890 	if (!old_scan) {
11891 		unsigned long res;
11892 
11893 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11894 		if (res != old_scan)
11895 			old_scan = res;
11896 		else
11897 			old_scan = next_scan;
11898 	}
11899 	if (time_before(now, old_scan))
11900 		return;
11901 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11902 		return;
11903 	cidmask = mm_cidmask(mm);
11904 	/* Clear cids that were not recently used. */
11905 	for_each_possible_cpu(cpu)
11906 		sched_mm_cid_remote_clear_old(mm, cpu);
11907 	weight = cpumask_weight(cidmask);
11908 	/*
11909 	 * Clear cids that are greater or equal to the cidmask weight to
11910 	 * recompact it.
11911 	 */
11912 	for_each_possible_cpu(cpu)
11913 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11914 }
11915 
11916 void init_sched_mm_cid(struct task_struct *t)
11917 {
11918 	struct mm_struct *mm = t->mm;
11919 	int mm_users = 0;
11920 
11921 	if (mm) {
11922 		mm_users = atomic_read(&mm->mm_users);
11923 		if (mm_users == 1)
11924 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11925 	}
11926 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11927 	init_task_work(&t->cid_work, task_mm_cid_work);
11928 }
11929 
11930 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11931 {
11932 	struct callback_head *work = &curr->cid_work;
11933 	unsigned long now = jiffies;
11934 
11935 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11936 	    work->next != work)
11937 		return;
11938 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11939 		return;
11940 	task_work_add(curr, work, TWA_RESUME);
11941 }
11942 
11943 void sched_mm_cid_exit_signals(struct task_struct *t)
11944 {
11945 	struct mm_struct *mm = t->mm;
11946 	struct rq_flags rf;
11947 	struct rq *rq;
11948 
11949 	if (!mm)
11950 		return;
11951 
11952 	preempt_disable();
11953 	rq = this_rq();
11954 	rq_lock_irqsave(rq, &rf);
11955 	preempt_enable_no_resched();	/* holding spinlock */
11956 	WRITE_ONCE(t->mm_cid_active, 0);
11957 	/*
11958 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11959 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11960 	 */
11961 	smp_mb();
11962 	mm_cid_put(mm);
11963 	t->last_mm_cid = t->mm_cid = -1;
11964 	rq_unlock_irqrestore(rq, &rf);
11965 }
11966 
11967 void sched_mm_cid_before_execve(struct task_struct *t)
11968 {
11969 	struct mm_struct *mm = t->mm;
11970 	struct rq_flags rf;
11971 	struct rq *rq;
11972 
11973 	if (!mm)
11974 		return;
11975 
11976 	preempt_disable();
11977 	rq = this_rq();
11978 	rq_lock_irqsave(rq, &rf);
11979 	preempt_enable_no_resched();	/* holding spinlock */
11980 	WRITE_ONCE(t->mm_cid_active, 0);
11981 	/*
11982 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11983 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11984 	 */
11985 	smp_mb();
11986 	mm_cid_put(mm);
11987 	t->last_mm_cid = t->mm_cid = -1;
11988 	rq_unlock_irqrestore(rq, &rf);
11989 }
11990 
11991 void sched_mm_cid_after_execve(struct task_struct *t)
11992 {
11993 	struct mm_struct *mm = t->mm;
11994 	struct rq_flags rf;
11995 	struct rq *rq;
11996 
11997 	if (!mm)
11998 		return;
11999 
12000 	preempt_disable();
12001 	rq = this_rq();
12002 	rq_lock_irqsave(rq, &rf);
12003 	preempt_enable_no_resched();	/* holding spinlock */
12004 	WRITE_ONCE(t->mm_cid_active, 1);
12005 	/*
12006 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12007 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12008 	 */
12009 	smp_mb();
12010 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12011 	rq_unlock_irqrestore(rq, &rf);
12012 	rseq_set_notify_resume(t);
12013 }
12014 
12015 void sched_mm_cid_fork(struct task_struct *t)
12016 {
12017 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12018 	t->mm_cid_active = 1;
12019 }
12020 #endif
12021