xref: /linux/kernel/sched/core.c (revision eed4edda910fe34dfae8c6bfbcf57f4593a54295)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/rseq.h>
61 #include <linux/sched/wake_q.h>
62 #include <linux/scs.h>
63 #include <linux/slab.h>
64 #include <linux/syscalls.h>
65 #include <linux/vtime.h>
66 #include <linux/wait_api.h>
67 #include <linux/workqueue_api.h>
68 
69 #ifdef CONFIG_PREEMPT_DYNAMIC
70 # ifdef CONFIG_GENERIC_ENTRY
71 #  include <linux/entry-common.h>
72 # endif
73 #endif
74 
75 #include <uapi/linux/sched/types.h>
76 
77 #include <asm/irq_regs.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <linux/sched/rseq_api.h>
83 #include <trace/events/sched.h>
84 #include <trace/events/ipi.h>
85 #undef CREATE_TRACE_POINTS
86 
87 #include "sched.h"
88 #include "stats.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 
119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 
121 #ifdef CONFIG_SCHED_DEBUG
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 const_debug unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 #endif /* CONFIG_SCHED_DEBUG */
146 
147 /*
148  * Number of tasks to iterate in a single balance run.
149  * Limited because this is done with IRQs disabled.
150  */
151 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152 
153 __read_mostly int scheduler_running;
154 
155 #ifdef CONFIG_SCHED_CORE
156 
157 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158 
159 /* kernel prio, less is more */
160 static inline int __task_prio(const struct task_struct *p)
161 {
162 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
163 		return -2;
164 
165 	if (rt_prio(p->prio)) /* includes deadline */
166 		return p->prio; /* [-1, 99] */
167 
168 	if (p->sched_class == &idle_sched_class)
169 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
170 
171 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
172 }
173 
174 /*
175  * l(a,b)
176  * le(a,b) := !l(b,a)
177  * g(a,b)  := l(b,a)
178  * ge(a,b) := !l(a,b)
179  */
180 
181 /* real prio, less is less */
182 static inline bool prio_less(const struct task_struct *a,
183 			     const struct task_struct *b, bool in_fi)
184 {
185 
186 	int pa = __task_prio(a), pb = __task_prio(b);
187 
188 	if (-pa < -pb)
189 		return true;
190 
191 	if (-pb < -pa)
192 		return false;
193 
194 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
195 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
196 
197 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
198 		return cfs_prio_less(a, b, in_fi);
199 
200 	return false;
201 }
202 
203 static inline bool __sched_core_less(const struct task_struct *a,
204 				     const struct task_struct *b)
205 {
206 	if (a->core_cookie < b->core_cookie)
207 		return true;
208 
209 	if (a->core_cookie > b->core_cookie)
210 		return false;
211 
212 	/* flip prio, so high prio is leftmost */
213 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
214 		return true;
215 
216 	return false;
217 }
218 
219 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
220 
221 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
222 {
223 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
224 }
225 
226 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
227 {
228 	const struct task_struct *p = __node_2_sc(node);
229 	unsigned long cookie = (unsigned long)key;
230 
231 	if (cookie < p->core_cookie)
232 		return -1;
233 
234 	if (cookie > p->core_cookie)
235 		return 1;
236 
237 	return 0;
238 }
239 
240 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
241 {
242 	rq->core->core_task_seq++;
243 
244 	if (!p->core_cookie)
245 		return;
246 
247 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
248 }
249 
250 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
251 {
252 	rq->core->core_task_seq++;
253 
254 	if (sched_core_enqueued(p)) {
255 		rb_erase(&p->core_node, &rq->core_tree);
256 		RB_CLEAR_NODE(&p->core_node);
257 	}
258 
259 	/*
260 	 * Migrating the last task off the cpu, with the cpu in forced idle
261 	 * state. Reschedule to create an accounting edge for forced idle,
262 	 * and re-examine whether the core is still in forced idle state.
263 	 */
264 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
265 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
266 		resched_curr(rq);
267 }
268 
269 static int sched_task_is_throttled(struct task_struct *p, int cpu)
270 {
271 	if (p->sched_class->task_is_throttled)
272 		return p->sched_class->task_is_throttled(p, cpu);
273 
274 	return 0;
275 }
276 
277 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
278 {
279 	struct rb_node *node = &p->core_node;
280 	int cpu = task_cpu(p);
281 
282 	do {
283 		node = rb_next(node);
284 		if (!node)
285 			return NULL;
286 
287 		p = __node_2_sc(node);
288 		if (p->core_cookie != cookie)
289 			return NULL;
290 
291 	} while (sched_task_is_throttled(p, cpu));
292 
293 	return p;
294 }
295 
296 /*
297  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
298  * If no suitable task is found, NULL will be returned.
299  */
300 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
301 {
302 	struct task_struct *p;
303 	struct rb_node *node;
304 
305 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
306 	if (!node)
307 		return NULL;
308 
309 	p = __node_2_sc(node);
310 	if (!sched_task_is_throttled(p, rq->cpu))
311 		return p;
312 
313 	return sched_core_next(p, cookie);
314 }
315 
316 /*
317  * Magic required such that:
318  *
319  *	raw_spin_rq_lock(rq);
320  *	...
321  *	raw_spin_rq_unlock(rq);
322  *
323  * ends up locking and unlocking the _same_ lock, and all CPUs
324  * always agree on what rq has what lock.
325  *
326  * XXX entirely possible to selectively enable cores, don't bother for now.
327  */
328 
329 static DEFINE_MUTEX(sched_core_mutex);
330 static atomic_t sched_core_count;
331 static struct cpumask sched_core_mask;
332 
333 static void sched_core_lock(int cpu, unsigned long *flags)
334 {
335 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
336 	int t, i = 0;
337 
338 	local_irq_save(*flags);
339 	for_each_cpu(t, smt_mask)
340 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
341 }
342 
343 static void sched_core_unlock(int cpu, unsigned long *flags)
344 {
345 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
346 	int t;
347 
348 	for_each_cpu(t, smt_mask)
349 		raw_spin_unlock(&cpu_rq(t)->__lock);
350 	local_irq_restore(*flags);
351 }
352 
353 static void __sched_core_flip(bool enabled)
354 {
355 	unsigned long flags;
356 	int cpu, t;
357 
358 	cpus_read_lock();
359 
360 	/*
361 	 * Toggle the online cores, one by one.
362 	 */
363 	cpumask_copy(&sched_core_mask, cpu_online_mask);
364 	for_each_cpu(cpu, &sched_core_mask) {
365 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366 
367 		sched_core_lock(cpu, &flags);
368 
369 		for_each_cpu(t, smt_mask)
370 			cpu_rq(t)->core_enabled = enabled;
371 
372 		cpu_rq(cpu)->core->core_forceidle_start = 0;
373 
374 		sched_core_unlock(cpu, &flags);
375 
376 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
377 	}
378 
379 	/*
380 	 * Toggle the offline CPUs.
381 	 */
382 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
383 		cpu_rq(cpu)->core_enabled = enabled;
384 
385 	cpus_read_unlock();
386 }
387 
388 static void sched_core_assert_empty(void)
389 {
390 	int cpu;
391 
392 	for_each_possible_cpu(cpu)
393 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
394 }
395 
396 static void __sched_core_enable(void)
397 {
398 	static_branch_enable(&__sched_core_enabled);
399 	/*
400 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
401 	 * and future ones will observe !sched_core_disabled().
402 	 */
403 	synchronize_rcu();
404 	__sched_core_flip(true);
405 	sched_core_assert_empty();
406 }
407 
408 static void __sched_core_disable(void)
409 {
410 	sched_core_assert_empty();
411 	__sched_core_flip(false);
412 	static_branch_disable(&__sched_core_enabled);
413 }
414 
415 void sched_core_get(void)
416 {
417 	if (atomic_inc_not_zero(&sched_core_count))
418 		return;
419 
420 	mutex_lock(&sched_core_mutex);
421 	if (!atomic_read(&sched_core_count))
422 		__sched_core_enable();
423 
424 	smp_mb__before_atomic();
425 	atomic_inc(&sched_core_count);
426 	mutex_unlock(&sched_core_mutex);
427 }
428 
429 static void __sched_core_put(struct work_struct *work)
430 {
431 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
432 		__sched_core_disable();
433 		mutex_unlock(&sched_core_mutex);
434 	}
435 }
436 
437 void sched_core_put(void)
438 {
439 	static DECLARE_WORK(_work, __sched_core_put);
440 
441 	/*
442 	 * "There can be only one"
443 	 *
444 	 * Either this is the last one, or we don't actually need to do any
445 	 * 'work'. If it is the last *again*, we rely on
446 	 * WORK_STRUCT_PENDING_BIT.
447 	 */
448 	if (!atomic_add_unless(&sched_core_count, -1, 1))
449 		schedule_work(&_work);
450 }
451 
452 #else /* !CONFIG_SCHED_CORE */
453 
454 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
455 static inline void
456 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
457 
458 #endif /* CONFIG_SCHED_CORE */
459 
460 /*
461  * Serialization rules:
462  *
463  * Lock order:
464  *
465  *   p->pi_lock
466  *     rq->lock
467  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
468  *
469  *  rq1->lock
470  *    rq2->lock  where: rq1 < rq2
471  *
472  * Regular state:
473  *
474  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
475  * local CPU's rq->lock, it optionally removes the task from the runqueue and
476  * always looks at the local rq data structures to find the most eligible task
477  * to run next.
478  *
479  * Task enqueue is also under rq->lock, possibly taken from another CPU.
480  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
481  * the local CPU to avoid bouncing the runqueue state around [ see
482  * ttwu_queue_wakelist() ]
483  *
484  * Task wakeup, specifically wakeups that involve migration, are horribly
485  * complicated to avoid having to take two rq->locks.
486  *
487  * Special state:
488  *
489  * System-calls and anything external will use task_rq_lock() which acquires
490  * both p->pi_lock and rq->lock. As a consequence the state they change is
491  * stable while holding either lock:
492  *
493  *  - sched_setaffinity()/
494  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
495  *  - set_user_nice():		p->se.load, p->*prio
496  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
497  *				p->se.load, p->rt_priority,
498  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
499  *  - sched_setnuma():		p->numa_preferred_nid
500  *  - sched_move_task():	p->sched_task_group
501  *  - uclamp_update_active()	p->uclamp*
502  *
503  * p->state <- TASK_*:
504  *
505  *   is changed locklessly using set_current_state(), __set_current_state() or
506  *   set_special_state(), see their respective comments, or by
507  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
508  *   concurrent self.
509  *
510  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
511  *
512  *   is set by activate_task() and cleared by deactivate_task(), under
513  *   rq->lock. Non-zero indicates the task is runnable, the special
514  *   ON_RQ_MIGRATING state is used for migration without holding both
515  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
516  *
517  * p->on_cpu <- { 0, 1 }:
518  *
519  *   is set by prepare_task() and cleared by finish_task() such that it will be
520  *   set before p is scheduled-in and cleared after p is scheduled-out, both
521  *   under rq->lock. Non-zero indicates the task is running on its CPU.
522  *
523  *   [ The astute reader will observe that it is possible for two tasks on one
524  *     CPU to have ->on_cpu = 1 at the same time. ]
525  *
526  * task_cpu(p): is changed by set_task_cpu(), the rules are:
527  *
528  *  - Don't call set_task_cpu() on a blocked task:
529  *
530  *    We don't care what CPU we're not running on, this simplifies hotplug,
531  *    the CPU assignment of blocked tasks isn't required to be valid.
532  *
533  *  - for try_to_wake_up(), called under p->pi_lock:
534  *
535  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
536  *
537  *  - for migration called under rq->lock:
538  *    [ see task_on_rq_migrating() in task_rq_lock() ]
539  *
540  *    o move_queued_task()
541  *    o detach_task()
542  *
543  *  - for migration called under double_rq_lock():
544  *
545  *    o __migrate_swap_task()
546  *    o push_rt_task() / pull_rt_task()
547  *    o push_dl_task() / pull_dl_task()
548  *    o dl_task_offline_migration()
549  *
550  */
551 
552 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
553 {
554 	raw_spinlock_t *lock;
555 
556 	/* Matches synchronize_rcu() in __sched_core_enable() */
557 	preempt_disable();
558 	if (sched_core_disabled()) {
559 		raw_spin_lock_nested(&rq->__lock, subclass);
560 		/* preempt_count *MUST* be > 1 */
561 		preempt_enable_no_resched();
562 		return;
563 	}
564 
565 	for (;;) {
566 		lock = __rq_lockp(rq);
567 		raw_spin_lock_nested(lock, subclass);
568 		if (likely(lock == __rq_lockp(rq))) {
569 			/* preempt_count *MUST* be > 1 */
570 			preempt_enable_no_resched();
571 			return;
572 		}
573 		raw_spin_unlock(lock);
574 	}
575 }
576 
577 bool raw_spin_rq_trylock(struct rq *rq)
578 {
579 	raw_spinlock_t *lock;
580 	bool ret;
581 
582 	/* Matches synchronize_rcu() in __sched_core_enable() */
583 	preempt_disable();
584 	if (sched_core_disabled()) {
585 		ret = raw_spin_trylock(&rq->__lock);
586 		preempt_enable();
587 		return ret;
588 	}
589 
590 	for (;;) {
591 		lock = __rq_lockp(rq);
592 		ret = raw_spin_trylock(lock);
593 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
594 			preempt_enable();
595 			return ret;
596 		}
597 		raw_spin_unlock(lock);
598 	}
599 }
600 
601 void raw_spin_rq_unlock(struct rq *rq)
602 {
603 	raw_spin_unlock(rq_lockp(rq));
604 }
605 
606 #ifdef CONFIG_SMP
607 /*
608  * double_rq_lock - safely lock two runqueues
609  */
610 void double_rq_lock(struct rq *rq1, struct rq *rq2)
611 {
612 	lockdep_assert_irqs_disabled();
613 
614 	if (rq_order_less(rq2, rq1))
615 		swap(rq1, rq2);
616 
617 	raw_spin_rq_lock(rq1);
618 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
619 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
620 
621 	double_rq_clock_clear_update(rq1, rq2);
622 }
623 #endif
624 
625 /*
626  * __task_rq_lock - lock the rq @p resides on.
627  */
628 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
629 	__acquires(rq->lock)
630 {
631 	struct rq *rq;
632 
633 	lockdep_assert_held(&p->pi_lock);
634 
635 	for (;;) {
636 		rq = task_rq(p);
637 		raw_spin_rq_lock(rq);
638 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
639 			rq_pin_lock(rq, rf);
640 			return rq;
641 		}
642 		raw_spin_rq_unlock(rq);
643 
644 		while (unlikely(task_on_rq_migrating(p)))
645 			cpu_relax();
646 	}
647 }
648 
649 /*
650  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
651  */
652 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
653 	__acquires(p->pi_lock)
654 	__acquires(rq->lock)
655 {
656 	struct rq *rq;
657 
658 	for (;;) {
659 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
660 		rq = task_rq(p);
661 		raw_spin_rq_lock(rq);
662 		/*
663 		 *	move_queued_task()		task_rq_lock()
664 		 *
665 		 *	ACQUIRE (rq->lock)
666 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
667 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
668 		 *	[S] ->cpu = new_cpu		[L] task_rq()
669 		 *					[L] ->on_rq
670 		 *	RELEASE (rq->lock)
671 		 *
672 		 * If we observe the old CPU in task_rq_lock(), the acquire of
673 		 * the old rq->lock will fully serialize against the stores.
674 		 *
675 		 * If we observe the new CPU in task_rq_lock(), the address
676 		 * dependency headed by '[L] rq = task_rq()' and the acquire
677 		 * will pair with the WMB to ensure we then also see migrating.
678 		 */
679 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
680 			rq_pin_lock(rq, rf);
681 			return rq;
682 		}
683 		raw_spin_rq_unlock(rq);
684 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
685 
686 		while (unlikely(task_on_rq_migrating(p)))
687 			cpu_relax();
688 	}
689 }
690 
691 /*
692  * RQ-clock updating methods:
693  */
694 
695 static void update_rq_clock_task(struct rq *rq, s64 delta)
696 {
697 /*
698  * In theory, the compile should just see 0 here, and optimize out the call
699  * to sched_rt_avg_update. But I don't trust it...
700  */
701 	s64 __maybe_unused steal = 0, irq_delta = 0;
702 
703 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
704 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
705 
706 	/*
707 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
708 	 * this case when a previous update_rq_clock() happened inside a
709 	 * {soft,}irq region.
710 	 *
711 	 * When this happens, we stop ->clock_task and only update the
712 	 * prev_irq_time stamp to account for the part that fit, so that a next
713 	 * update will consume the rest. This ensures ->clock_task is
714 	 * monotonic.
715 	 *
716 	 * It does however cause some slight miss-attribution of {soft,}irq
717 	 * time, a more accurate solution would be to update the irq_time using
718 	 * the current rq->clock timestamp, except that would require using
719 	 * atomic ops.
720 	 */
721 	if (irq_delta > delta)
722 		irq_delta = delta;
723 
724 	rq->prev_irq_time += irq_delta;
725 	delta -= irq_delta;
726 	psi_account_irqtime(rq->curr, irq_delta);
727 	delayacct_irq(rq->curr, irq_delta);
728 #endif
729 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
730 	if (static_key_false((&paravirt_steal_rq_enabled))) {
731 		steal = paravirt_steal_clock(cpu_of(rq));
732 		steal -= rq->prev_steal_time_rq;
733 
734 		if (unlikely(steal > delta))
735 			steal = delta;
736 
737 		rq->prev_steal_time_rq += steal;
738 		delta -= steal;
739 	}
740 #endif
741 
742 	rq->clock_task += delta;
743 
744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 		update_irq_load_avg(rq, irq_delta + steal);
747 #endif
748 	update_rq_clock_pelt(rq, delta);
749 }
750 
751 void update_rq_clock(struct rq *rq)
752 {
753 	s64 delta;
754 
755 	lockdep_assert_rq_held(rq);
756 
757 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 		return;
759 
760 #ifdef CONFIG_SCHED_DEBUG
761 	if (sched_feat(WARN_DOUBLE_CLOCK))
762 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 	rq->clock_update_flags |= RQCF_UPDATED;
764 #endif
765 
766 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 	if (delta < 0)
768 		return;
769 	rq->clock += delta;
770 	update_rq_clock_task(rq, delta);
771 }
772 
773 #ifdef CONFIG_SCHED_HRTICK
774 /*
775  * Use HR-timers to deliver accurate preemption points.
776  */
777 
778 static void hrtick_clear(struct rq *rq)
779 {
780 	if (hrtimer_active(&rq->hrtick_timer))
781 		hrtimer_cancel(&rq->hrtick_timer);
782 }
783 
784 /*
785  * High-resolution timer tick.
786  * Runs from hardirq context with interrupts disabled.
787  */
788 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 {
790 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 	struct rq_flags rf;
792 
793 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794 
795 	rq_lock(rq, &rf);
796 	update_rq_clock(rq);
797 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 	rq_unlock(rq, &rf);
799 
800 	return HRTIMER_NORESTART;
801 }
802 
803 #ifdef CONFIG_SMP
804 
805 static void __hrtick_restart(struct rq *rq)
806 {
807 	struct hrtimer *timer = &rq->hrtick_timer;
808 	ktime_t time = rq->hrtick_time;
809 
810 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811 }
812 
813 /*
814  * called from hardirq (IPI) context
815  */
816 static void __hrtick_start(void *arg)
817 {
818 	struct rq *rq = arg;
819 	struct rq_flags rf;
820 
821 	rq_lock(rq, &rf);
822 	__hrtick_restart(rq);
823 	rq_unlock(rq, &rf);
824 }
825 
826 /*
827  * Called to set the hrtick timer state.
828  *
829  * called with rq->lock held and irqs disabled
830  */
831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 	struct hrtimer *timer = &rq->hrtick_timer;
834 	s64 delta;
835 
836 	/*
837 	 * Don't schedule slices shorter than 10000ns, that just
838 	 * doesn't make sense and can cause timer DoS.
839 	 */
840 	delta = max_t(s64, delay, 10000LL);
841 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842 
843 	if (rq == this_rq())
844 		__hrtick_restart(rq);
845 	else
846 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847 }
848 
849 #else
850 /*
851  * Called to set the hrtick timer state.
852  *
853  * called with rq->lock held and irqs disabled
854  */
855 void hrtick_start(struct rq *rq, u64 delay)
856 {
857 	/*
858 	 * Don't schedule slices shorter than 10000ns, that just
859 	 * doesn't make sense. Rely on vruntime for fairness.
860 	 */
861 	delay = max_t(u64, delay, 10000LL);
862 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 		      HRTIMER_MODE_REL_PINNED_HARD);
864 }
865 
866 #endif /* CONFIG_SMP */
867 
868 static void hrtick_rq_init(struct rq *rq)
869 {
870 #ifdef CONFIG_SMP
871 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 #endif
873 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 	rq->hrtick_timer.function = hrtick;
875 }
876 #else	/* CONFIG_SCHED_HRTICK */
877 static inline void hrtick_clear(struct rq *rq)
878 {
879 }
880 
881 static inline void hrtick_rq_init(struct rq *rq)
882 {
883 }
884 #endif	/* CONFIG_SCHED_HRTICK */
885 
886 /*
887  * cmpxchg based fetch_or, macro so it works for different integer types
888  */
889 #define fetch_or(ptr, mask)						\
890 	({								\
891 		typeof(ptr) _ptr = (ptr);				\
892 		typeof(mask) _mask = (mask);				\
893 		typeof(*_ptr) _val = *_ptr;				\
894 									\
895 		do {							\
896 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
897 	_val;								\
898 })
899 
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903  * this avoids any races wrt polling state changes and thereby avoids
904  * spurious IPIs.
905  */
906 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 	struct thread_info *ti = task_thread_info(p);
909 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911 
912 /*
913  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914  *
915  * If this returns true, then the idle task promises to call
916  * sched_ttwu_pending() and reschedule soon.
917  */
918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 	struct thread_info *ti = task_thread_info(p);
921 	typeof(ti->flags) val = READ_ONCE(ti->flags);
922 
923 	do {
924 		if (!(val & _TIF_POLLING_NRFLAG))
925 			return false;
926 		if (val & _TIF_NEED_RESCHED)
927 			return true;
928 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
929 
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	/*
1136 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1137 	 * part of the idle loop. This forces an exit from the idle loop
1138 	 * and a round trip to schedule(). Now this could be optimized
1139 	 * because a simple new idle loop iteration is enough to
1140 	 * re-evaluate the next tick. Provided some re-ordering of tick
1141 	 * nohz functions that would need to follow TIF_NR_POLLING
1142 	 * clearing:
1143 	 *
1144 	 * - On most archs, a simple fetch_or on ti::flags with a
1145 	 *   "0" value would be enough to know if an IPI needs to be sent.
1146 	 *
1147 	 * - x86 needs to perform a last need_resched() check between
1148 	 *   monitor and mwait which doesn't take timers into account.
1149 	 *   There a dedicated TIF_TIMER flag would be required to
1150 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1151 	 *   before mwait().
1152 	 *
1153 	 * However, remote timer enqueue is not such a frequent event
1154 	 * and testing of the above solutions didn't appear to report
1155 	 * much benefits.
1156 	 */
1157 	if (set_nr_and_not_polling(rq->idle))
1158 		smp_send_reschedule(cpu);
1159 	else
1160 		trace_sched_wake_idle_without_ipi(cpu);
1161 }
1162 
1163 static bool wake_up_full_nohz_cpu(int cpu)
1164 {
1165 	/*
1166 	 * We just need the target to call irq_exit() and re-evaluate
1167 	 * the next tick. The nohz full kick at least implies that.
1168 	 * If needed we can still optimize that later with an
1169 	 * empty IRQ.
1170 	 */
1171 	if (cpu_is_offline(cpu))
1172 		return true;  /* Don't try to wake offline CPUs. */
1173 	if (tick_nohz_full_cpu(cpu)) {
1174 		if (cpu != smp_processor_id() ||
1175 		    tick_nohz_tick_stopped())
1176 			tick_nohz_full_kick_cpu(cpu);
1177 		return true;
1178 	}
1179 
1180 	return false;
1181 }
1182 
1183 /*
1184  * Wake up the specified CPU.  If the CPU is going offline, it is the
1185  * caller's responsibility to deal with the lost wakeup, for example,
1186  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1187  */
1188 void wake_up_nohz_cpu(int cpu)
1189 {
1190 	if (!wake_up_full_nohz_cpu(cpu))
1191 		wake_up_idle_cpu(cpu);
1192 }
1193 
1194 static void nohz_csd_func(void *info)
1195 {
1196 	struct rq *rq = info;
1197 	int cpu = cpu_of(rq);
1198 	unsigned int flags;
1199 
1200 	/*
1201 	 * Release the rq::nohz_csd.
1202 	 */
1203 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1204 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1205 
1206 	rq->idle_balance = idle_cpu(cpu);
1207 	if (rq->idle_balance && !need_resched()) {
1208 		rq->nohz_idle_balance = flags;
1209 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1210 	}
1211 }
1212 
1213 #endif /* CONFIG_NO_HZ_COMMON */
1214 
1215 #ifdef CONFIG_NO_HZ_FULL
1216 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1217 {
1218 	if (rq->nr_running != 1)
1219 		return false;
1220 
1221 	if (p->sched_class != &fair_sched_class)
1222 		return false;
1223 
1224 	if (!task_on_rq_queued(p))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 bool sched_can_stop_tick(struct rq *rq)
1231 {
1232 	int fifo_nr_running;
1233 
1234 	/* Deadline tasks, even if single, need the tick */
1235 	if (rq->dl.dl_nr_running)
1236 		return false;
1237 
1238 	/*
1239 	 * If there are more than one RR tasks, we need the tick to affect the
1240 	 * actual RR behaviour.
1241 	 */
1242 	if (rq->rt.rr_nr_running) {
1243 		if (rq->rt.rr_nr_running == 1)
1244 			return true;
1245 		else
1246 			return false;
1247 	}
1248 
1249 	/*
1250 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1251 	 * forced preemption between FIFO tasks.
1252 	 */
1253 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1254 	if (fifo_nr_running)
1255 		return true;
1256 
1257 	/*
1258 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1259 	 * if there's more than one we need the tick for involuntary
1260 	 * preemption.
1261 	 */
1262 	if (rq->nr_running > 1)
1263 		return false;
1264 
1265 	/*
1266 	 * If there is one task and it has CFS runtime bandwidth constraints
1267 	 * and it's on the cpu now we don't want to stop the tick.
1268 	 * This check prevents clearing the bit if a newly enqueued task here is
1269 	 * dequeued by migrating while the constrained task continues to run.
1270 	 * E.g. going from 2->1 without going through pick_next_task().
1271 	 */
1272 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1273 		if (cfs_task_bw_constrained(rq->curr))
1274 			return false;
1275 	}
1276 
1277 	return true;
1278 }
1279 #endif /* CONFIG_NO_HZ_FULL */
1280 #endif /* CONFIG_SMP */
1281 
1282 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1283 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1284 /*
1285  * Iterate task_group tree rooted at *from, calling @down when first entering a
1286  * node and @up when leaving it for the final time.
1287  *
1288  * Caller must hold rcu_lock or sufficient equivalent.
1289  */
1290 int walk_tg_tree_from(struct task_group *from,
1291 			     tg_visitor down, tg_visitor up, void *data)
1292 {
1293 	struct task_group *parent, *child;
1294 	int ret;
1295 
1296 	parent = from;
1297 
1298 down:
1299 	ret = (*down)(parent, data);
1300 	if (ret)
1301 		goto out;
1302 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1303 		parent = child;
1304 		goto down;
1305 
1306 up:
1307 		continue;
1308 	}
1309 	ret = (*up)(parent, data);
1310 	if (ret || parent == from)
1311 		goto out;
1312 
1313 	child = parent;
1314 	parent = parent->parent;
1315 	if (parent)
1316 		goto up;
1317 out:
1318 	return ret;
1319 }
1320 
1321 int tg_nop(struct task_group *tg, void *data)
1322 {
1323 	return 0;
1324 }
1325 #endif
1326 
1327 static void set_load_weight(struct task_struct *p, bool update_load)
1328 {
1329 	int prio = p->static_prio - MAX_RT_PRIO;
1330 	struct load_weight *load = &p->se.load;
1331 
1332 	/*
1333 	 * SCHED_IDLE tasks get minimal weight:
1334 	 */
1335 	if (task_has_idle_policy(p)) {
1336 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1337 		load->inv_weight = WMULT_IDLEPRIO;
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * SCHED_OTHER tasks have to update their load when changing their
1343 	 * weight
1344 	 */
1345 	if (update_load && p->sched_class == &fair_sched_class) {
1346 		reweight_task(p, prio);
1347 	} else {
1348 		load->weight = scale_load(sched_prio_to_weight[prio]);
1349 		load->inv_weight = sched_prio_to_wmult[prio];
1350 	}
1351 }
1352 
1353 #ifdef CONFIG_UCLAMP_TASK
1354 /*
1355  * Serializes updates of utilization clamp values
1356  *
1357  * The (slow-path) user-space triggers utilization clamp value updates which
1358  * can require updates on (fast-path) scheduler's data structures used to
1359  * support enqueue/dequeue operations.
1360  * While the per-CPU rq lock protects fast-path update operations, user-space
1361  * requests are serialized using a mutex to reduce the risk of conflicting
1362  * updates or API abuses.
1363  */
1364 static DEFINE_MUTEX(uclamp_mutex);
1365 
1366 /* Max allowed minimum utilization */
1367 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1368 
1369 /* Max allowed maximum utilization */
1370 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1371 
1372 /*
1373  * By default RT tasks run at the maximum performance point/capacity of the
1374  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1375  * SCHED_CAPACITY_SCALE.
1376  *
1377  * This knob allows admins to change the default behavior when uclamp is being
1378  * used. In battery powered devices, particularly, running at the maximum
1379  * capacity and frequency will increase energy consumption and shorten the
1380  * battery life.
1381  *
1382  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1383  *
1384  * This knob will not override the system default sched_util_clamp_min defined
1385  * above.
1386  */
1387 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1388 
1389 /* All clamps are required to be less or equal than these values */
1390 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1391 
1392 /*
1393  * This static key is used to reduce the uclamp overhead in the fast path. It
1394  * primarily disables the call to uclamp_rq_{inc, dec}() in
1395  * enqueue/dequeue_task().
1396  *
1397  * This allows users to continue to enable uclamp in their kernel config with
1398  * minimum uclamp overhead in the fast path.
1399  *
1400  * As soon as userspace modifies any of the uclamp knobs, the static key is
1401  * enabled, since we have an actual users that make use of uclamp
1402  * functionality.
1403  *
1404  * The knobs that would enable this static key are:
1405  *
1406  *   * A task modifying its uclamp value with sched_setattr().
1407  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1408  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1409  */
1410 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1411 
1412 /* Integer rounded range for each bucket */
1413 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1414 
1415 #define for_each_clamp_id(clamp_id) \
1416 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1417 
1418 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1419 {
1420 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1421 }
1422 
1423 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1424 {
1425 	if (clamp_id == UCLAMP_MIN)
1426 		return 0;
1427 	return SCHED_CAPACITY_SCALE;
1428 }
1429 
1430 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1431 				 unsigned int value, bool user_defined)
1432 {
1433 	uc_se->value = value;
1434 	uc_se->bucket_id = uclamp_bucket_id(value);
1435 	uc_se->user_defined = user_defined;
1436 }
1437 
1438 static inline unsigned int
1439 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1440 		  unsigned int clamp_value)
1441 {
1442 	/*
1443 	 * Avoid blocked utilization pushing up the frequency when we go
1444 	 * idle (which drops the max-clamp) by retaining the last known
1445 	 * max-clamp.
1446 	 */
1447 	if (clamp_id == UCLAMP_MAX) {
1448 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1449 		return clamp_value;
1450 	}
1451 
1452 	return uclamp_none(UCLAMP_MIN);
1453 }
1454 
1455 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1456 				     unsigned int clamp_value)
1457 {
1458 	/* Reset max-clamp retention only on idle exit */
1459 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1460 		return;
1461 
1462 	uclamp_rq_set(rq, clamp_id, clamp_value);
1463 }
1464 
1465 static inline
1466 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1467 				   unsigned int clamp_value)
1468 {
1469 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1470 	int bucket_id = UCLAMP_BUCKETS - 1;
1471 
1472 	/*
1473 	 * Since both min and max clamps are max aggregated, find the
1474 	 * top most bucket with tasks in.
1475 	 */
1476 	for ( ; bucket_id >= 0; bucket_id--) {
1477 		if (!bucket[bucket_id].tasks)
1478 			continue;
1479 		return bucket[bucket_id].value;
1480 	}
1481 
1482 	/* No tasks -- default clamp values */
1483 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1484 }
1485 
1486 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1487 {
1488 	unsigned int default_util_min;
1489 	struct uclamp_se *uc_se;
1490 
1491 	lockdep_assert_held(&p->pi_lock);
1492 
1493 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1494 
1495 	/* Only sync if user didn't override the default */
1496 	if (uc_se->user_defined)
1497 		return;
1498 
1499 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1500 	uclamp_se_set(uc_se, default_util_min, false);
1501 }
1502 
1503 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1504 {
1505 	if (!rt_task(p))
1506 		return;
1507 
1508 	/* Protect updates to p->uclamp_* */
1509 	guard(task_rq_lock)(p);
1510 	__uclamp_update_util_min_rt_default(p);
1511 }
1512 
1513 static inline struct uclamp_se
1514 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1515 {
1516 	/* Copy by value as we could modify it */
1517 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1518 #ifdef CONFIG_UCLAMP_TASK_GROUP
1519 	unsigned int tg_min, tg_max, value;
1520 
1521 	/*
1522 	 * Tasks in autogroups or root task group will be
1523 	 * restricted by system defaults.
1524 	 */
1525 	if (task_group_is_autogroup(task_group(p)))
1526 		return uc_req;
1527 	if (task_group(p) == &root_task_group)
1528 		return uc_req;
1529 
1530 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1531 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1532 	value = uc_req.value;
1533 	value = clamp(value, tg_min, tg_max);
1534 	uclamp_se_set(&uc_req, value, false);
1535 #endif
1536 
1537 	return uc_req;
1538 }
1539 
1540 /*
1541  * The effective clamp bucket index of a task depends on, by increasing
1542  * priority:
1543  * - the task specific clamp value, when explicitly requested from userspace
1544  * - the task group effective clamp value, for tasks not either in the root
1545  *   group or in an autogroup
1546  * - the system default clamp value, defined by the sysadmin
1547  */
1548 static inline struct uclamp_se
1549 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1550 {
1551 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1552 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1553 
1554 	/* System default restrictions always apply */
1555 	if (unlikely(uc_req.value > uc_max.value))
1556 		return uc_max;
1557 
1558 	return uc_req;
1559 }
1560 
1561 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1562 {
1563 	struct uclamp_se uc_eff;
1564 
1565 	/* Task currently refcounted: use back-annotated (effective) value */
1566 	if (p->uclamp[clamp_id].active)
1567 		return (unsigned long)p->uclamp[clamp_id].value;
1568 
1569 	uc_eff = uclamp_eff_get(p, clamp_id);
1570 
1571 	return (unsigned long)uc_eff.value;
1572 }
1573 
1574 /*
1575  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1576  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1577  * updates the rq's clamp value if required.
1578  *
1579  * Tasks can have a task-specific value requested from user-space, track
1580  * within each bucket the maximum value for tasks refcounted in it.
1581  * This "local max aggregation" allows to track the exact "requested" value
1582  * for each bucket when all its RUNNABLE tasks require the same clamp.
1583  */
1584 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1585 				    enum uclamp_id clamp_id)
1586 {
1587 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1588 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1589 	struct uclamp_bucket *bucket;
1590 
1591 	lockdep_assert_rq_held(rq);
1592 
1593 	/* Update task effective clamp */
1594 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 	bucket->tasks++;
1598 	uc_se->active = true;
1599 
1600 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1601 
1602 	/*
1603 	 * Local max aggregation: rq buckets always track the max
1604 	 * "requested" clamp value of its RUNNABLE tasks.
1605 	 */
1606 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1607 		bucket->value = uc_se->value;
1608 
1609 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1610 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1611 }
1612 
1613 /*
1614  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1615  * is released. If this is the last task reference counting the rq's max
1616  * active clamp value, then the rq's clamp value is updated.
1617  *
1618  * Both refcounted tasks and rq's cached clamp values are expected to be
1619  * always valid. If it's detected they are not, as defensive programming,
1620  * enforce the expected state and warn.
1621  */
1622 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1623 				    enum uclamp_id clamp_id)
1624 {
1625 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1626 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1627 	struct uclamp_bucket *bucket;
1628 	unsigned int bkt_clamp;
1629 	unsigned int rq_clamp;
1630 
1631 	lockdep_assert_rq_held(rq);
1632 
1633 	/*
1634 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1635 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1636 	 *
1637 	 * In this case the uc_se->active flag should be false since no uclamp
1638 	 * accounting was performed at enqueue time and we can just return
1639 	 * here.
1640 	 *
1641 	 * Need to be careful of the following enqueue/dequeue ordering
1642 	 * problem too
1643 	 *
1644 	 *	enqueue(taskA)
1645 	 *	// sched_uclamp_used gets enabled
1646 	 *	enqueue(taskB)
1647 	 *	dequeue(taskA)
1648 	 *	// Must not decrement bucket->tasks here
1649 	 *	dequeue(taskB)
1650 	 *
1651 	 * where we could end up with stale data in uc_se and
1652 	 * bucket[uc_se->bucket_id].
1653 	 *
1654 	 * The following check here eliminates the possibility of such race.
1655 	 */
1656 	if (unlikely(!uc_se->active))
1657 		return;
1658 
1659 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1660 
1661 	SCHED_WARN_ON(!bucket->tasks);
1662 	if (likely(bucket->tasks))
1663 		bucket->tasks--;
1664 
1665 	uc_se->active = false;
1666 
1667 	/*
1668 	 * Keep "local max aggregation" simple and accept to (possibly)
1669 	 * overboost some RUNNABLE tasks in the same bucket.
1670 	 * The rq clamp bucket value is reset to its base value whenever
1671 	 * there are no more RUNNABLE tasks refcounting it.
1672 	 */
1673 	if (likely(bucket->tasks))
1674 		return;
1675 
1676 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1677 	/*
1678 	 * Defensive programming: this should never happen. If it happens,
1679 	 * e.g. due to future modification, warn and fixup the expected value.
1680 	 */
1681 	SCHED_WARN_ON(bucket->value > rq_clamp);
1682 	if (bucket->value >= rq_clamp) {
1683 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1684 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1685 	}
1686 }
1687 
1688 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1689 {
1690 	enum uclamp_id clamp_id;
1691 
1692 	/*
1693 	 * Avoid any overhead until uclamp is actually used by the userspace.
1694 	 *
1695 	 * The condition is constructed such that a NOP is generated when
1696 	 * sched_uclamp_used is disabled.
1697 	 */
1698 	if (!static_branch_unlikely(&sched_uclamp_used))
1699 		return;
1700 
1701 	if (unlikely(!p->sched_class->uclamp_enabled))
1702 		return;
1703 
1704 	for_each_clamp_id(clamp_id)
1705 		uclamp_rq_inc_id(rq, p, clamp_id);
1706 
1707 	/* Reset clamp idle holding when there is one RUNNABLE task */
1708 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1709 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1710 }
1711 
1712 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1713 {
1714 	enum uclamp_id clamp_id;
1715 
1716 	/*
1717 	 * Avoid any overhead until uclamp is actually used by the userspace.
1718 	 *
1719 	 * The condition is constructed such that a NOP is generated when
1720 	 * sched_uclamp_used is disabled.
1721 	 */
1722 	if (!static_branch_unlikely(&sched_uclamp_used))
1723 		return;
1724 
1725 	if (unlikely(!p->sched_class->uclamp_enabled))
1726 		return;
1727 
1728 	for_each_clamp_id(clamp_id)
1729 		uclamp_rq_dec_id(rq, p, clamp_id);
1730 }
1731 
1732 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1733 				      enum uclamp_id clamp_id)
1734 {
1735 	if (!p->uclamp[clamp_id].active)
1736 		return;
1737 
1738 	uclamp_rq_dec_id(rq, p, clamp_id);
1739 	uclamp_rq_inc_id(rq, p, clamp_id);
1740 
1741 	/*
1742 	 * Make sure to clear the idle flag if we've transiently reached 0
1743 	 * active tasks on rq.
1744 	 */
1745 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1746 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1747 }
1748 
1749 static inline void
1750 uclamp_update_active(struct task_struct *p)
1751 {
1752 	enum uclamp_id clamp_id;
1753 	struct rq_flags rf;
1754 	struct rq *rq;
1755 
1756 	/*
1757 	 * Lock the task and the rq where the task is (or was) queued.
1758 	 *
1759 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1760 	 * price to pay to safely serialize util_{min,max} updates with
1761 	 * enqueues, dequeues and migration operations.
1762 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1763 	 */
1764 	rq = task_rq_lock(p, &rf);
1765 
1766 	/*
1767 	 * Setting the clamp bucket is serialized by task_rq_lock().
1768 	 * If the task is not yet RUNNABLE and its task_struct is not
1769 	 * affecting a valid clamp bucket, the next time it's enqueued,
1770 	 * it will already see the updated clamp bucket value.
1771 	 */
1772 	for_each_clamp_id(clamp_id)
1773 		uclamp_rq_reinc_id(rq, p, clamp_id);
1774 
1775 	task_rq_unlock(rq, p, &rf);
1776 }
1777 
1778 #ifdef CONFIG_UCLAMP_TASK_GROUP
1779 static inline void
1780 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1781 {
1782 	struct css_task_iter it;
1783 	struct task_struct *p;
1784 
1785 	css_task_iter_start(css, 0, &it);
1786 	while ((p = css_task_iter_next(&it)))
1787 		uclamp_update_active(p);
1788 	css_task_iter_end(&it);
1789 }
1790 
1791 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1792 #endif
1793 
1794 #ifdef CONFIG_SYSCTL
1795 #ifdef CONFIG_UCLAMP_TASK
1796 #ifdef CONFIG_UCLAMP_TASK_GROUP
1797 static void uclamp_update_root_tg(void)
1798 {
1799 	struct task_group *tg = &root_task_group;
1800 
1801 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1802 		      sysctl_sched_uclamp_util_min, false);
1803 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1804 		      sysctl_sched_uclamp_util_max, false);
1805 
1806 	guard(rcu)();
1807 	cpu_util_update_eff(&root_task_group.css);
1808 }
1809 #else
1810 static void uclamp_update_root_tg(void) { }
1811 #endif
1812 
1813 static void uclamp_sync_util_min_rt_default(void)
1814 {
1815 	struct task_struct *g, *p;
1816 
1817 	/*
1818 	 * copy_process()			sysctl_uclamp
1819 	 *					  uclamp_min_rt = X;
1820 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1821 	 *   // link thread			  smp_mb__after_spinlock()
1822 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1823 	 *   sched_post_fork()			  for_each_process_thread()
1824 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1825 	 *
1826 	 * Ensures that either sched_post_fork() will observe the new
1827 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1828 	 * task.
1829 	 */
1830 	read_lock(&tasklist_lock);
1831 	smp_mb__after_spinlock();
1832 	read_unlock(&tasklist_lock);
1833 
1834 	guard(rcu)();
1835 	for_each_process_thread(g, p)
1836 		uclamp_update_util_min_rt_default(p);
1837 }
1838 
1839 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1840 				void *buffer, size_t *lenp, loff_t *ppos)
1841 {
1842 	bool update_root_tg = false;
1843 	int old_min, old_max, old_min_rt;
1844 	int result;
1845 
1846 	guard(mutex)(&uclamp_mutex);
1847 
1848 	old_min = sysctl_sched_uclamp_util_min;
1849 	old_max = sysctl_sched_uclamp_util_max;
1850 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1851 
1852 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1853 	if (result)
1854 		goto undo;
1855 	if (!write)
1856 		return 0;
1857 
1858 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1859 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1860 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1861 
1862 		result = -EINVAL;
1863 		goto undo;
1864 	}
1865 
1866 	if (old_min != sysctl_sched_uclamp_util_min) {
1867 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1868 			      sysctl_sched_uclamp_util_min, false);
1869 		update_root_tg = true;
1870 	}
1871 	if (old_max != sysctl_sched_uclamp_util_max) {
1872 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1873 			      sysctl_sched_uclamp_util_max, false);
1874 		update_root_tg = true;
1875 	}
1876 
1877 	if (update_root_tg) {
1878 		static_branch_enable(&sched_uclamp_used);
1879 		uclamp_update_root_tg();
1880 	}
1881 
1882 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1883 		static_branch_enable(&sched_uclamp_used);
1884 		uclamp_sync_util_min_rt_default();
1885 	}
1886 
1887 	/*
1888 	 * We update all RUNNABLE tasks only when task groups are in use.
1889 	 * Otherwise, keep it simple and do just a lazy update at each next
1890 	 * task enqueue time.
1891 	 */
1892 	return 0;
1893 
1894 undo:
1895 	sysctl_sched_uclamp_util_min = old_min;
1896 	sysctl_sched_uclamp_util_max = old_max;
1897 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1898 	return result;
1899 }
1900 #endif
1901 #endif
1902 
1903 static int uclamp_validate(struct task_struct *p,
1904 			   const struct sched_attr *attr)
1905 {
1906 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1907 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1908 
1909 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1910 		util_min = attr->sched_util_min;
1911 
1912 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1913 			return -EINVAL;
1914 	}
1915 
1916 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1917 		util_max = attr->sched_util_max;
1918 
1919 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1920 			return -EINVAL;
1921 	}
1922 
1923 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1924 		return -EINVAL;
1925 
1926 	/*
1927 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1928 	 *
1929 	 * We need to do that here, because enabling static branches is a
1930 	 * blocking operation which obviously cannot be done while holding
1931 	 * scheduler locks.
1932 	 */
1933 	static_branch_enable(&sched_uclamp_used);
1934 
1935 	return 0;
1936 }
1937 
1938 static bool uclamp_reset(const struct sched_attr *attr,
1939 			 enum uclamp_id clamp_id,
1940 			 struct uclamp_se *uc_se)
1941 {
1942 	/* Reset on sched class change for a non user-defined clamp value. */
1943 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1944 	    !uc_se->user_defined)
1945 		return true;
1946 
1947 	/* Reset on sched_util_{min,max} == -1. */
1948 	if (clamp_id == UCLAMP_MIN &&
1949 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1950 	    attr->sched_util_min == -1) {
1951 		return true;
1952 	}
1953 
1954 	if (clamp_id == UCLAMP_MAX &&
1955 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1956 	    attr->sched_util_max == -1) {
1957 		return true;
1958 	}
1959 
1960 	return false;
1961 }
1962 
1963 static void __setscheduler_uclamp(struct task_struct *p,
1964 				  const struct sched_attr *attr)
1965 {
1966 	enum uclamp_id clamp_id;
1967 
1968 	for_each_clamp_id(clamp_id) {
1969 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1970 		unsigned int value;
1971 
1972 		if (!uclamp_reset(attr, clamp_id, uc_se))
1973 			continue;
1974 
1975 		/*
1976 		 * RT by default have a 100% boost value that could be modified
1977 		 * at runtime.
1978 		 */
1979 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1980 			value = sysctl_sched_uclamp_util_min_rt_default;
1981 		else
1982 			value = uclamp_none(clamp_id);
1983 
1984 		uclamp_se_set(uc_se, value, false);
1985 
1986 	}
1987 
1988 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1989 		return;
1990 
1991 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1992 	    attr->sched_util_min != -1) {
1993 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1994 			      attr->sched_util_min, true);
1995 	}
1996 
1997 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1998 	    attr->sched_util_max != -1) {
1999 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2000 			      attr->sched_util_max, true);
2001 	}
2002 }
2003 
2004 static void uclamp_fork(struct task_struct *p)
2005 {
2006 	enum uclamp_id clamp_id;
2007 
2008 	/*
2009 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2010 	 * as the task is still at its early fork stages.
2011 	 */
2012 	for_each_clamp_id(clamp_id)
2013 		p->uclamp[clamp_id].active = false;
2014 
2015 	if (likely(!p->sched_reset_on_fork))
2016 		return;
2017 
2018 	for_each_clamp_id(clamp_id) {
2019 		uclamp_se_set(&p->uclamp_req[clamp_id],
2020 			      uclamp_none(clamp_id), false);
2021 	}
2022 }
2023 
2024 static void uclamp_post_fork(struct task_struct *p)
2025 {
2026 	uclamp_update_util_min_rt_default(p);
2027 }
2028 
2029 static void __init init_uclamp_rq(struct rq *rq)
2030 {
2031 	enum uclamp_id clamp_id;
2032 	struct uclamp_rq *uc_rq = rq->uclamp;
2033 
2034 	for_each_clamp_id(clamp_id) {
2035 		uc_rq[clamp_id] = (struct uclamp_rq) {
2036 			.value = uclamp_none(clamp_id)
2037 		};
2038 	}
2039 
2040 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2041 }
2042 
2043 static void __init init_uclamp(void)
2044 {
2045 	struct uclamp_se uc_max = {};
2046 	enum uclamp_id clamp_id;
2047 	int cpu;
2048 
2049 	for_each_possible_cpu(cpu)
2050 		init_uclamp_rq(cpu_rq(cpu));
2051 
2052 	for_each_clamp_id(clamp_id) {
2053 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2054 			      uclamp_none(clamp_id), false);
2055 	}
2056 
2057 	/* System defaults allow max clamp values for both indexes */
2058 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2059 	for_each_clamp_id(clamp_id) {
2060 		uclamp_default[clamp_id] = uc_max;
2061 #ifdef CONFIG_UCLAMP_TASK_GROUP
2062 		root_task_group.uclamp_req[clamp_id] = uc_max;
2063 		root_task_group.uclamp[clamp_id] = uc_max;
2064 #endif
2065 	}
2066 }
2067 
2068 #else /* CONFIG_UCLAMP_TASK */
2069 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2070 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2071 static inline int uclamp_validate(struct task_struct *p,
2072 				  const struct sched_attr *attr)
2073 {
2074 	return -EOPNOTSUPP;
2075 }
2076 static void __setscheduler_uclamp(struct task_struct *p,
2077 				  const struct sched_attr *attr) { }
2078 static inline void uclamp_fork(struct task_struct *p) { }
2079 static inline void uclamp_post_fork(struct task_struct *p) { }
2080 static inline void init_uclamp(void) { }
2081 #endif /* CONFIG_UCLAMP_TASK */
2082 
2083 bool sched_task_on_rq(struct task_struct *p)
2084 {
2085 	return task_on_rq_queued(p);
2086 }
2087 
2088 unsigned long get_wchan(struct task_struct *p)
2089 {
2090 	unsigned long ip = 0;
2091 	unsigned int state;
2092 
2093 	if (!p || p == current)
2094 		return 0;
2095 
2096 	/* Only get wchan if task is blocked and we can keep it that way. */
2097 	raw_spin_lock_irq(&p->pi_lock);
2098 	state = READ_ONCE(p->__state);
2099 	smp_rmb(); /* see try_to_wake_up() */
2100 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2101 		ip = __get_wchan(p);
2102 	raw_spin_unlock_irq(&p->pi_lock);
2103 
2104 	return ip;
2105 }
2106 
2107 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2108 {
2109 	if (!(flags & ENQUEUE_NOCLOCK))
2110 		update_rq_clock(rq);
2111 
2112 	if (!(flags & ENQUEUE_RESTORE)) {
2113 		sched_info_enqueue(rq, p);
2114 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2115 	}
2116 
2117 	uclamp_rq_inc(rq, p);
2118 	p->sched_class->enqueue_task(rq, p, flags);
2119 
2120 	if (sched_core_enabled(rq))
2121 		sched_core_enqueue(rq, p);
2122 }
2123 
2124 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2125 {
2126 	if (sched_core_enabled(rq))
2127 		sched_core_dequeue(rq, p, flags);
2128 
2129 	if (!(flags & DEQUEUE_NOCLOCK))
2130 		update_rq_clock(rq);
2131 
2132 	if (!(flags & DEQUEUE_SAVE)) {
2133 		sched_info_dequeue(rq, p);
2134 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2135 	}
2136 
2137 	uclamp_rq_dec(rq, p);
2138 	p->sched_class->dequeue_task(rq, p, flags);
2139 }
2140 
2141 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2142 {
2143 	if (task_on_rq_migrating(p))
2144 		flags |= ENQUEUE_MIGRATED;
2145 	if (flags & ENQUEUE_MIGRATED)
2146 		sched_mm_cid_migrate_to(rq, p);
2147 
2148 	enqueue_task(rq, p, flags);
2149 
2150 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2151 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2152 }
2153 
2154 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2155 {
2156 	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2157 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2158 
2159 	dequeue_task(rq, p, flags);
2160 }
2161 
2162 static inline int __normal_prio(int policy, int rt_prio, int nice)
2163 {
2164 	int prio;
2165 
2166 	if (dl_policy(policy))
2167 		prio = MAX_DL_PRIO - 1;
2168 	else if (rt_policy(policy))
2169 		prio = MAX_RT_PRIO - 1 - rt_prio;
2170 	else
2171 		prio = NICE_TO_PRIO(nice);
2172 
2173 	return prio;
2174 }
2175 
2176 /*
2177  * Calculate the expected normal priority: i.e. priority
2178  * without taking RT-inheritance into account. Might be
2179  * boosted by interactivity modifiers. Changes upon fork,
2180  * setprio syscalls, and whenever the interactivity
2181  * estimator recalculates.
2182  */
2183 static inline int normal_prio(struct task_struct *p)
2184 {
2185 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2186 }
2187 
2188 /*
2189  * Calculate the current priority, i.e. the priority
2190  * taken into account by the scheduler. This value might
2191  * be boosted by RT tasks, or might be boosted by
2192  * interactivity modifiers. Will be RT if the task got
2193  * RT-boosted. If not then it returns p->normal_prio.
2194  */
2195 static int effective_prio(struct task_struct *p)
2196 {
2197 	p->normal_prio = normal_prio(p);
2198 	/*
2199 	 * If we are RT tasks or we were boosted to RT priority,
2200 	 * keep the priority unchanged. Otherwise, update priority
2201 	 * to the normal priority:
2202 	 */
2203 	if (!rt_prio(p->prio))
2204 		return p->normal_prio;
2205 	return p->prio;
2206 }
2207 
2208 /**
2209  * task_curr - is this task currently executing on a CPU?
2210  * @p: the task in question.
2211  *
2212  * Return: 1 if the task is currently executing. 0 otherwise.
2213  */
2214 inline int task_curr(const struct task_struct *p)
2215 {
2216 	return cpu_curr(task_cpu(p)) == p;
2217 }
2218 
2219 /*
2220  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2221  * use the balance_callback list if you want balancing.
2222  *
2223  * this means any call to check_class_changed() must be followed by a call to
2224  * balance_callback().
2225  */
2226 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2227 				       const struct sched_class *prev_class,
2228 				       int oldprio)
2229 {
2230 	if (prev_class != p->sched_class) {
2231 		if (prev_class->switched_from)
2232 			prev_class->switched_from(rq, p);
2233 
2234 		p->sched_class->switched_to(rq, p);
2235 	} else if (oldprio != p->prio || dl_task(p))
2236 		p->sched_class->prio_changed(rq, p, oldprio);
2237 }
2238 
2239 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2240 {
2241 	if (p->sched_class == rq->curr->sched_class)
2242 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2243 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2244 		resched_curr(rq);
2245 
2246 	/*
2247 	 * A queue event has occurred, and we're going to schedule.  In
2248 	 * this case, we can save a useless back to back clock update.
2249 	 */
2250 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2251 		rq_clock_skip_update(rq);
2252 }
2253 
2254 static __always_inline
2255 int __task_state_match(struct task_struct *p, unsigned int state)
2256 {
2257 	if (READ_ONCE(p->__state) & state)
2258 		return 1;
2259 
2260 	if (READ_ONCE(p->saved_state) & state)
2261 		return -1;
2262 
2263 	return 0;
2264 }
2265 
2266 static __always_inline
2267 int task_state_match(struct task_struct *p, unsigned int state)
2268 {
2269 	/*
2270 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2271 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2272 	 */
2273 	guard(raw_spinlock_irq)(&p->pi_lock);
2274 	return __task_state_match(p, state);
2275 }
2276 
2277 /*
2278  * wait_task_inactive - wait for a thread to unschedule.
2279  *
2280  * Wait for the thread to block in any of the states set in @match_state.
2281  * If it changes, i.e. @p might have woken up, then return zero.  When we
2282  * succeed in waiting for @p to be off its CPU, we return a positive number
2283  * (its total switch count).  If a second call a short while later returns the
2284  * same number, the caller can be sure that @p has remained unscheduled the
2285  * whole time.
2286  *
2287  * The caller must ensure that the task *will* unschedule sometime soon,
2288  * else this function might spin for a *long* time. This function can't
2289  * be called with interrupts off, or it may introduce deadlock with
2290  * smp_call_function() if an IPI is sent by the same process we are
2291  * waiting to become inactive.
2292  */
2293 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2294 {
2295 	int running, queued, match;
2296 	struct rq_flags rf;
2297 	unsigned long ncsw;
2298 	struct rq *rq;
2299 
2300 	for (;;) {
2301 		/*
2302 		 * We do the initial early heuristics without holding
2303 		 * any task-queue locks at all. We'll only try to get
2304 		 * the runqueue lock when things look like they will
2305 		 * work out!
2306 		 */
2307 		rq = task_rq(p);
2308 
2309 		/*
2310 		 * If the task is actively running on another CPU
2311 		 * still, just relax and busy-wait without holding
2312 		 * any locks.
2313 		 *
2314 		 * NOTE! Since we don't hold any locks, it's not
2315 		 * even sure that "rq" stays as the right runqueue!
2316 		 * But we don't care, since "task_on_cpu()" will
2317 		 * return false if the runqueue has changed and p
2318 		 * is actually now running somewhere else!
2319 		 */
2320 		while (task_on_cpu(rq, p)) {
2321 			if (!task_state_match(p, match_state))
2322 				return 0;
2323 			cpu_relax();
2324 		}
2325 
2326 		/*
2327 		 * Ok, time to look more closely! We need the rq
2328 		 * lock now, to be *sure*. If we're wrong, we'll
2329 		 * just go back and repeat.
2330 		 */
2331 		rq = task_rq_lock(p, &rf);
2332 		trace_sched_wait_task(p);
2333 		running = task_on_cpu(rq, p);
2334 		queued = task_on_rq_queued(p);
2335 		ncsw = 0;
2336 		if ((match = __task_state_match(p, match_state))) {
2337 			/*
2338 			 * When matching on p->saved_state, consider this task
2339 			 * still queued so it will wait.
2340 			 */
2341 			if (match < 0)
2342 				queued = 1;
2343 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2344 		}
2345 		task_rq_unlock(rq, p, &rf);
2346 
2347 		/*
2348 		 * If it changed from the expected state, bail out now.
2349 		 */
2350 		if (unlikely(!ncsw))
2351 			break;
2352 
2353 		/*
2354 		 * Was it really running after all now that we
2355 		 * checked with the proper locks actually held?
2356 		 *
2357 		 * Oops. Go back and try again..
2358 		 */
2359 		if (unlikely(running)) {
2360 			cpu_relax();
2361 			continue;
2362 		}
2363 
2364 		/*
2365 		 * It's not enough that it's not actively running,
2366 		 * it must be off the runqueue _entirely_, and not
2367 		 * preempted!
2368 		 *
2369 		 * So if it was still runnable (but just not actively
2370 		 * running right now), it's preempted, and we should
2371 		 * yield - it could be a while.
2372 		 */
2373 		if (unlikely(queued)) {
2374 			ktime_t to = NSEC_PER_SEC / HZ;
2375 
2376 			set_current_state(TASK_UNINTERRUPTIBLE);
2377 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2378 			continue;
2379 		}
2380 
2381 		/*
2382 		 * Ahh, all good. It wasn't running, and it wasn't
2383 		 * runnable, which means that it will never become
2384 		 * running in the future either. We're all done!
2385 		 */
2386 		break;
2387 	}
2388 
2389 	return ncsw;
2390 }
2391 
2392 #ifdef CONFIG_SMP
2393 
2394 static void
2395 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2396 
2397 static int __set_cpus_allowed_ptr(struct task_struct *p,
2398 				  struct affinity_context *ctx);
2399 
2400 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2401 {
2402 	struct affinity_context ac = {
2403 		.new_mask  = cpumask_of(rq->cpu),
2404 		.flags     = SCA_MIGRATE_DISABLE,
2405 	};
2406 
2407 	if (likely(!p->migration_disabled))
2408 		return;
2409 
2410 	if (p->cpus_ptr != &p->cpus_mask)
2411 		return;
2412 
2413 	/*
2414 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2415 	 */
2416 	__do_set_cpus_allowed(p, &ac);
2417 }
2418 
2419 void migrate_disable(void)
2420 {
2421 	struct task_struct *p = current;
2422 
2423 	if (p->migration_disabled) {
2424 		p->migration_disabled++;
2425 		return;
2426 	}
2427 
2428 	guard(preempt)();
2429 	this_rq()->nr_pinned++;
2430 	p->migration_disabled = 1;
2431 }
2432 EXPORT_SYMBOL_GPL(migrate_disable);
2433 
2434 void migrate_enable(void)
2435 {
2436 	struct task_struct *p = current;
2437 	struct affinity_context ac = {
2438 		.new_mask  = &p->cpus_mask,
2439 		.flags     = SCA_MIGRATE_ENABLE,
2440 	};
2441 
2442 	if (p->migration_disabled > 1) {
2443 		p->migration_disabled--;
2444 		return;
2445 	}
2446 
2447 	if (WARN_ON_ONCE(!p->migration_disabled))
2448 		return;
2449 
2450 	/*
2451 	 * Ensure stop_task runs either before or after this, and that
2452 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2453 	 */
2454 	guard(preempt)();
2455 	if (p->cpus_ptr != &p->cpus_mask)
2456 		__set_cpus_allowed_ptr(p, &ac);
2457 	/*
2458 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2459 	 * regular cpus_mask, otherwise things that race (eg.
2460 	 * select_fallback_rq) get confused.
2461 	 */
2462 	barrier();
2463 	p->migration_disabled = 0;
2464 	this_rq()->nr_pinned--;
2465 }
2466 EXPORT_SYMBOL_GPL(migrate_enable);
2467 
2468 static inline bool rq_has_pinned_tasks(struct rq *rq)
2469 {
2470 	return rq->nr_pinned;
2471 }
2472 
2473 /*
2474  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2475  * __set_cpus_allowed_ptr() and select_fallback_rq().
2476  */
2477 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2478 {
2479 	/* When not in the task's cpumask, no point in looking further. */
2480 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2481 		return false;
2482 
2483 	/* migrate_disabled() must be allowed to finish. */
2484 	if (is_migration_disabled(p))
2485 		return cpu_online(cpu);
2486 
2487 	/* Non kernel threads are not allowed during either online or offline. */
2488 	if (!(p->flags & PF_KTHREAD))
2489 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2490 
2491 	/* KTHREAD_IS_PER_CPU is always allowed. */
2492 	if (kthread_is_per_cpu(p))
2493 		return cpu_online(cpu);
2494 
2495 	/* Regular kernel threads don't get to stay during offline. */
2496 	if (cpu_dying(cpu))
2497 		return false;
2498 
2499 	/* But are allowed during online. */
2500 	return cpu_online(cpu);
2501 }
2502 
2503 /*
2504  * This is how migration works:
2505  *
2506  * 1) we invoke migration_cpu_stop() on the target CPU using
2507  *    stop_one_cpu().
2508  * 2) stopper starts to run (implicitly forcing the migrated thread
2509  *    off the CPU)
2510  * 3) it checks whether the migrated task is still in the wrong runqueue.
2511  * 4) if it's in the wrong runqueue then the migration thread removes
2512  *    it and puts it into the right queue.
2513  * 5) stopper completes and stop_one_cpu() returns and the migration
2514  *    is done.
2515  */
2516 
2517 /*
2518  * move_queued_task - move a queued task to new rq.
2519  *
2520  * Returns (locked) new rq. Old rq's lock is released.
2521  */
2522 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2523 				   struct task_struct *p, int new_cpu)
2524 {
2525 	lockdep_assert_rq_held(rq);
2526 
2527 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2528 	set_task_cpu(p, new_cpu);
2529 	rq_unlock(rq, rf);
2530 
2531 	rq = cpu_rq(new_cpu);
2532 
2533 	rq_lock(rq, rf);
2534 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2535 	activate_task(rq, p, 0);
2536 	wakeup_preempt(rq, p, 0);
2537 
2538 	return rq;
2539 }
2540 
2541 struct migration_arg {
2542 	struct task_struct		*task;
2543 	int				dest_cpu;
2544 	struct set_affinity_pending	*pending;
2545 };
2546 
2547 /*
2548  * @refs: number of wait_for_completion()
2549  * @stop_pending: is @stop_work in use
2550  */
2551 struct set_affinity_pending {
2552 	refcount_t		refs;
2553 	unsigned int		stop_pending;
2554 	struct completion	done;
2555 	struct cpu_stop_work	stop_work;
2556 	struct migration_arg	arg;
2557 };
2558 
2559 /*
2560  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2561  * this because either it can't run here any more (set_cpus_allowed()
2562  * away from this CPU, or CPU going down), or because we're
2563  * attempting to rebalance this task on exec (sched_exec).
2564  *
2565  * So we race with normal scheduler movements, but that's OK, as long
2566  * as the task is no longer on this CPU.
2567  */
2568 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2569 				 struct task_struct *p, int dest_cpu)
2570 {
2571 	/* Affinity changed (again). */
2572 	if (!is_cpu_allowed(p, dest_cpu))
2573 		return rq;
2574 
2575 	rq = move_queued_task(rq, rf, p, dest_cpu);
2576 
2577 	return rq;
2578 }
2579 
2580 /*
2581  * migration_cpu_stop - this will be executed by a highprio stopper thread
2582  * and performs thread migration by bumping thread off CPU then
2583  * 'pushing' onto another runqueue.
2584  */
2585 static int migration_cpu_stop(void *data)
2586 {
2587 	struct migration_arg *arg = data;
2588 	struct set_affinity_pending *pending = arg->pending;
2589 	struct task_struct *p = arg->task;
2590 	struct rq *rq = this_rq();
2591 	bool complete = false;
2592 	struct rq_flags rf;
2593 
2594 	/*
2595 	 * The original target CPU might have gone down and we might
2596 	 * be on another CPU but it doesn't matter.
2597 	 */
2598 	local_irq_save(rf.flags);
2599 	/*
2600 	 * We need to explicitly wake pending tasks before running
2601 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2602 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2603 	 */
2604 	flush_smp_call_function_queue();
2605 
2606 	raw_spin_lock(&p->pi_lock);
2607 	rq_lock(rq, &rf);
2608 
2609 	/*
2610 	 * If we were passed a pending, then ->stop_pending was set, thus
2611 	 * p->migration_pending must have remained stable.
2612 	 */
2613 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2614 
2615 	/*
2616 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2617 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2618 	 * we're holding p->pi_lock.
2619 	 */
2620 	if (task_rq(p) == rq) {
2621 		if (is_migration_disabled(p))
2622 			goto out;
2623 
2624 		if (pending) {
2625 			p->migration_pending = NULL;
2626 			complete = true;
2627 
2628 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2629 				goto out;
2630 		}
2631 
2632 		if (task_on_rq_queued(p)) {
2633 			update_rq_clock(rq);
2634 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2635 		} else {
2636 			p->wake_cpu = arg->dest_cpu;
2637 		}
2638 
2639 		/*
2640 		 * XXX __migrate_task() can fail, at which point we might end
2641 		 * up running on a dodgy CPU, AFAICT this can only happen
2642 		 * during CPU hotplug, at which point we'll get pushed out
2643 		 * anyway, so it's probably not a big deal.
2644 		 */
2645 
2646 	} else if (pending) {
2647 		/*
2648 		 * This happens when we get migrated between migrate_enable()'s
2649 		 * preempt_enable() and scheduling the stopper task. At that
2650 		 * point we're a regular task again and not current anymore.
2651 		 *
2652 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2653 		 * more likely.
2654 		 */
2655 
2656 		/*
2657 		 * The task moved before the stopper got to run. We're holding
2658 		 * ->pi_lock, so the allowed mask is stable - if it got
2659 		 * somewhere allowed, we're done.
2660 		 */
2661 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2662 			p->migration_pending = NULL;
2663 			complete = true;
2664 			goto out;
2665 		}
2666 
2667 		/*
2668 		 * When migrate_enable() hits a rq mis-match we can't reliably
2669 		 * determine is_migration_disabled() and so have to chase after
2670 		 * it.
2671 		 */
2672 		WARN_ON_ONCE(!pending->stop_pending);
2673 		preempt_disable();
2674 		task_rq_unlock(rq, p, &rf);
2675 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2676 				    &pending->arg, &pending->stop_work);
2677 		preempt_enable();
2678 		return 0;
2679 	}
2680 out:
2681 	if (pending)
2682 		pending->stop_pending = false;
2683 	task_rq_unlock(rq, p, &rf);
2684 
2685 	if (complete)
2686 		complete_all(&pending->done);
2687 
2688 	return 0;
2689 }
2690 
2691 int push_cpu_stop(void *arg)
2692 {
2693 	struct rq *lowest_rq = NULL, *rq = this_rq();
2694 	struct task_struct *p = arg;
2695 
2696 	raw_spin_lock_irq(&p->pi_lock);
2697 	raw_spin_rq_lock(rq);
2698 
2699 	if (task_rq(p) != rq)
2700 		goto out_unlock;
2701 
2702 	if (is_migration_disabled(p)) {
2703 		p->migration_flags |= MDF_PUSH;
2704 		goto out_unlock;
2705 	}
2706 
2707 	p->migration_flags &= ~MDF_PUSH;
2708 
2709 	if (p->sched_class->find_lock_rq)
2710 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2711 
2712 	if (!lowest_rq)
2713 		goto out_unlock;
2714 
2715 	// XXX validate p is still the highest prio task
2716 	if (task_rq(p) == rq) {
2717 		deactivate_task(rq, p, 0);
2718 		set_task_cpu(p, lowest_rq->cpu);
2719 		activate_task(lowest_rq, p, 0);
2720 		resched_curr(lowest_rq);
2721 	}
2722 
2723 	double_unlock_balance(rq, lowest_rq);
2724 
2725 out_unlock:
2726 	rq->push_busy = false;
2727 	raw_spin_rq_unlock(rq);
2728 	raw_spin_unlock_irq(&p->pi_lock);
2729 
2730 	put_task_struct(p);
2731 	return 0;
2732 }
2733 
2734 /*
2735  * sched_class::set_cpus_allowed must do the below, but is not required to
2736  * actually call this function.
2737  */
2738 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2739 {
2740 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2741 		p->cpus_ptr = ctx->new_mask;
2742 		return;
2743 	}
2744 
2745 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2746 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2747 
2748 	/*
2749 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2750 	 */
2751 	if (ctx->flags & SCA_USER)
2752 		swap(p->user_cpus_ptr, ctx->user_mask);
2753 }
2754 
2755 static void
2756 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2757 {
2758 	struct rq *rq = task_rq(p);
2759 	bool queued, running;
2760 
2761 	/*
2762 	 * This here violates the locking rules for affinity, since we're only
2763 	 * supposed to change these variables while holding both rq->lock and
2764 	 * p->pi_lock.
2765 	 *
2766 	 * HOWEVER, it magically works, because ttwu() is the only code that
2767 	 * accesses these variables under p->pi_lock and only does so after
2768 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2769 	 * before finish_task().
2770 	 *
2771 	 * XXX do further audits, this smells like something putrid.
2772 	 */
2773 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2774 		SCHED_WARN_ON(!p->on_cpu);
2775 	else
2776 		lockdep_assert_held(&p->pi_lock);
2777 
2778 	queued = task_on_rq_queued(p);
2779 	running = task_current(rq, p);
2780 
2781 	if (queued) {
2782 		/*
2783 		 * Because __kthread_bind() calls this on blocked tasks without
2784 		 * holding rq->lock.
2785 		 */
2786 		lockdep_assert_rq_held(rq);
2787 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2788 	}
2789 	if (running)
2790 		put_prev_task(rq, p);
2791 
2792 	p->sched_class->set_cpus_allowed(p, ctx);
2793 
2794 	if (queued)
2795 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2796 	if (running)
2797 		set_next_task(rq, p);
2798 }
2799 
2800 /*
2801  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2802  * affinity (if any) should be destroyed too.
2803  */
2804 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2805 {
2806 	struct affinity_context ac = {
2807 		.new_mask  = new_mask,
2808 		.user_mask = NULL,
2809 		.flags     = SCA_USER,	/* clear the user requested mask */
2810 	};
2811 	union cpumask_rcuhead {
2812 		cpumask_t cpumask;
2813 		struct rcu_head rcu;
2814 	};
2815 
2816 	__do_set_cpus_allowed(p, &ac);
2817 
2818 	/*
2819 	 * Because this is called with p->pi_lock held, it is not possible
2820 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2821 	 * kfree_rcu().
2822 	 */
2823 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2824 }
2825 
2826 static cpumask_t *alloc_user_cpus_ptr(int node)
2827 {
2828 	/*
2829 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2830 	 */
2831 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2832 
2833 	return kmalloc_node(size, GFP_KERNEL, node);
2834 }
2835 
2836 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2837 		      int node)
2838 {
2839 	cpumask_t *user_mask;
2840 	unsigned long flags;
2841 
2842 	/*
2843 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2844 	 * may differ by now due to racing.
2845 	 */
2846 	dst->user_cpus_ptr = NULL;
2847 
2848 	/*
2849 	 * This check is racy and losing the race is a valid situation.
2850 	 * It is not worth the extra overhead of taking the pi_lock on
2851 	 * every fork/clone.
2852 	 */
2853 	if (data_race(!src->user_cpus_ptr))
2854 		return 0;
2855 
2856 	user_mask = alloc_user_cpus_ptr(node);
2857 	if (!user_mask)
2858 		return -ENOMEM;
2859 
2860 	/*
2861 	 * Use pi_lock to protect content of user_cpus_ptr
2862 	 *
2863 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2864 	 * do_set_cpus_allowed().
2865 	 */
2866 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2867 	if (src->user_cpus_ptr) {
2868 		swap(dst->user_cpus_ptr, user_mask);
2869 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2870 	}
2871 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2872 
2873 	if (unlikely(user_mask))
2874 		kfree(user_mask);
2875 
2876 	return 0;
2877 }
2878 
2879 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2880 {
2881 	struct cpumask *user_mask = NULL;
2882 
2883 	swap(p->user_cpus_ptr, user_mask);
2884 
2885 	return user_mask;
2886 }
2887 
2888 void release_user_cpus_ptr(struct task_struct *p)
2889 {
2890 	kfree(clear_user_cpus_ptr(p));
2891 }
2892 
2893 /*
2894  * This function is wildly self concurrent; here be dragons.
2895  *
2896  *
2897  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2898  * designated task is enqueued on an allowed CPU. If that task is currently
2899  * running, we have to kick it out using the CPU stopper.
2900  *
2901  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2902  * Consider:
2903  *
2904  *     Initial conditions: P0->cpus_mask = [0, 1]
2905  *
2906  *     P0@CPU0                  P1
2907  *
2908  *     migrate_disable();
2909  *     <preempted>
2910  *                              set_cpus_allowed_ptr(P0, [1]);
2911  *
2912  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2913  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2914  * This means we need the following scheme:
2915  *
2916  *     P0@CPU0                  P1
2917  *
2918  *     migrate_disable();
2919  *     <preempted>
2920  *                              set_cpus_allowed_ptr(P0, [1]);
2921  *                                <blocks>
2922  *     <resumes>
2923  *     migrate_enable();
2924  *       __set_cpus_allowed_ptr();
2925  *       <wakes local stopper>
2926  *                         `--> <woken on migration completion>
2927  *
2928  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2929  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2930  * task p are serialized by p->pi_lock, which we can leverage: the one that
2931  * should come into effect at the end of the Migrate-Disable region is the last
2932  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2933  * but we still need to properly signal those waiting tasks at the appropriate
2934  * moment.
2935  *
2936  * This is implemented using struct set_affinity_pending. The first
2937  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2938  * setup an instance of that struct and install it on the targeted task_struct.
2939  * Any and all further callers will reuse that instance. Those then wait for
2940  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2941  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2942  *
2943  *
2944  * (1) In the cases covered above. There is one more where the completion is
2945  * signaled within affine_move_task() itself: when a subsequent affinity request
2946  * occurs after the stopper bailed out due to the targeted task still being
2947  * Migrate-Disable. Consider:
2948  *
2949  *     Initial conditions: P0->cpus_mask = [0, 1]
2950  *
2951  *     CPU0		  P1				P2
2952  *     <P0>
2953  *       migrate_disable();
2954  *       <preempted>
2955  *                        set_cpus_allowed_ptr(P0, [1]);
2956  *                          <blocks>
2957  *     <migration/0>
2958  *       migration_cpu_stop()
2959  *         is_migration_disabled()
2960  *           <bails>
2961  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2962  *                                                         <signal completion>
2963  *                          <awakes>
2964  *
2965  * Note that the above is safe vs a concurrent migrate_enable(), as any
2966  * pending affinity completion is preceded by an uninstallation of
2967  * p->migration_pending done with p->pi_lock held.
2968  */
2969 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2970 			    int dest_cpu, unsigned int flags)
2971 	__releases(rq->lock)
2972 	__releases(p->pi_lock)
2973 {
2974 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2975 	bool stop_pending, complete = false;
2976 
2977 	/* Can the task run on the task's current CPU? If so, we're done */
2978 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2979 		struct task_struct *push_task = NULL;
2980 
2981 		if ((flags & SCA_MIGRATE_ENABLE) &&
2982 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2983 			rq->push_busy = true;
2984 			push_task = get_task_struct(p);
2985 		}
2986 
2987 		/*
2988 		 * If there are pending waiters, but no pending stop_work,
2989 		 * then complete now.
2990 		 */
2991 		pending = p->migration_pending;
2992 		if (pending && !pending->stop_pending) {
2993 			p->migration_pending = NULL;
2994 			complete = true;
2995 		}
2996 
2997 		preempt_disable();
2998 		task_rq_unlock(rq, p, rf);
2999 		if (push_task) {
3000 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3001 					    p, &rq->push_work);
3002 		}
3003 		preempt_enable();
3004 
3005 		if (complete)
3006 			complete_all(&pending->done);
3007 
3008 		return 0;
3009 	}
3010 
3011 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3012 		/* serialized by p->pi_lock */
3013 		if (!p->migration_pending) {
3014 			/* Install the request */
3015 			refcount_set(&my_pending.refs, 1);
3016 			init_completion(&my_pending.done);
3017 			my_pending.arg = (struct migration_arg) {
3018 				.task = p,
3019 				.dest_cpu = dest_cpu,
3020 				.pending = &my_pending,
3021 			};
3022 
3023 			p->migration_pending = &my_pending;
3024 		} else {
3025 			pending = p->migration_pending;
3026 			refcount_inc(&pending->refs);
3027 			/*
3028 			 * Affinity has changed, but we've already installed a
3029 			 * pending. migration_cpu_stop() *must* see this, else
3030 			 * we risk a completion of the pending despite having a
3031 			 * task on a disallowed CPU.
3032 			 *
3033 			 * Serialized by p->pi_lock, so this is safe.
3034 			 */
3035 			pending->arg.dest_cpu = dest_cpu;
3036 		}
3037 	}
3038 	pending = p->migration_pending;
3039 	/*
3040 	 * - !MIGRATE_ENABLE:
3041 	 *   we'll have installed a pending if there wasn't one already.
3042 	 *
3043 	 * - MIGRATE_ENABLE:
3044 	 *   we're here because the current CPU isn't matching anymore,
3045 	 *   the only way that can happen is because of a concurrent
3046 	 *   set_cpus_allowed_ptr() call, which should then still be
3047 	 *   pending completion.
3048 	 *
3049 	 * Either way, we really should have a @pending here.
3050 	 */
3051 	if (WARN_ON_ONCE(!pending)) {
3052 		task_rq_unlock(rq, p, rf);
3053 		return -EINVAL;
3054 	}
3055 
3056 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3057 		/*
3058 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3059 		 * anything else we cannot do is_migration_disabled(), punt
3060 		 * and have the stopper function handle it all race-free.
3061 		 */
3062 		stop_pending = pending->stop_pending;
3063 		if (!stop_pending)
3064 			pending->stop_pending = true;
3065 
3066 		if (flags & SCA_MIGRATE_ENABLE)
3067 			p->migration_flags &= ~MDF_PUSH;
3068 
3069 		preempt_disable();
3070 		task_rq_unlock(rq, p, rf);
3071 		if (!stop_pending) {
3072 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3073 					    &pending->arg, &pending->stop_work);
3074 		}
3075 		preempt_enable();
3076 
3077 		if (flags & SCA_MIGRATE_ENABLE)
3078 			return 0;
3079 	} else {
3080 
3081 		if (!is_migration_disabled(p)) {
3082 			if (task_on_rq_queued(p))
3083 				rq = move_queued_task(rq, rf, p, dest_cpu);
3084 
3085 			if (!pending->stop_pending) {
3086 				p->migration_pending = NULL;
3087 				complete = true;
3088 			}
3089 		}
3090 		task_rq_unlock(rq, p, rf);
3091 
3092 		if (complete)
3093 			complete_all(&pending->done);
3094 	}
3095 
3096 	wait_for_completion(&pending->done);
3097 
3098 	if (refcount_dec_and_test(&pending->refs))
3099 		wake_up_var(&pending->refs); /* No UaF, just an address */
3100 
3101 	/*
3102 	 * Block the original owner of &pending until all subsequent callers
3103 	 * have seen the completion and decremented the refcount
3104 	 */
3105 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3106 
3107 	/* ARGH */
3108 	WARN_ON_ONCE(my_pending.stop_pending);
3109 
3110 	return 0;
3111 }
3112 
3113 /*
3114  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3115  */
3116 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3117 					 struct affinity_context *ctx,
3118 					 struct rq *rq,
3119 					 struct rq_flags *rf)
3120 	__releases(rq->lock)
3121 	__releases(p->pi_lock)
3122 {
3123 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3124 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3125 	bool kthread = p->flags & PF_KTHREAD;
3126 	unsigned int dest_cpu;
3127 	int ret = 0;
3128 
3129 	update_rq_clock(rq);
3130 
3131 	if (kthread || is_migration_disabled(p)) {
3132 		/*
3133 		 * Kernel threads are allowed on online && !active CPUs,
3134 		 * however, during cpu-hot-unplug, even these might get pushed
3135 		 * away if not KTHREAD_IS_PER_CPU.
3136 		 *
3137 		 * Specifically, migration_disabled() tasks must not fail the
3138 		 * cpumask_any_and_distribute() pick below, esp. so on
3139 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3140 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3141 		 */
3142 		cpu_valid_mask = cpu_online_mask;
3143 	}
3144 
3145 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3146 		ret = -EINVAL;
3147 		goto out;
3148 	}
3149 
3150 	/*
3151 	 * Must re-check here, to close a race against __kthread_bind(),
3152 	 * sched_setaffinity() is not guaranteed to observe the flag.
3153 	 */
3154 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3155 		ret = -EINVAL;
3156 		goto out;
3157 	}
3158 
3159 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3160 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3161 			if (ctx->flags & SCA_USER)
3162 				swap(p->user_cpus_ptr, ctx->user_mask);
3163 			goto out;
3164 		}
3165 
3166 		if (WARN_ON_ONCE(p == current &&
3167 				 is_migration_disabled(p) &&
3168 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3169 			ret = -EBUSY;
3170 			goto out;
3171 		}
3172 	}
3173 
3174 	/*
3175 	 * Picking a ~random cpu helps in cases where we are changing affinity
3176 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3177 	 * immediately required to distribute the tasks within their new mask.
3178 	 */
3179 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3180 	if (dest_cpu >= nr_cpu_ids) {
3181 		ret = -EINVAL;
3182 		goto out;
3183 	}
3184 
3185 	__do_set_cpus_allowed(p, ctx);
3186 
3187 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3188 
3189 out:
3190 	task_rq_unlock(rq, p, rf);
3191 
3192 	return ret;
3193 }
3194 
3195 /*
3196  * Change a given task's CPU affinity. Migrate the thread to a
3197  * proper CPU and schedule it away if the CPU it's executing on
3198  * is removed from the allowed bitmask.
3199  *
3200  * NOTE: the caller must have a valid reference to the task, the
3201  * task must not exit() & deallocate itself prematurely. The
3202  * call is not atomic; no spinlocks may be held.
3203  */
3204 static int __set_cpus_allowed_ptr(struct task_struct *p,
3205 				  struct affinity_context *ctx)
3206 {
3207 	struct rq_flags rf;
3208 	struct rq *rq;
3209 
3210 	rq = task_rq_lock(p, &rf);
3211 	/*
3212 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3213 	 * flags are set.
3214 	 */
3215 	if (p->user_cpus_ptr &&
3216 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3217 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3218 		ctx->new_mask = rq->scratch_mask;
3219 
3220 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3221 }
3222 
3223 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3224 {
3225 	struct affinity_context ac = {
3226 		.new_mask  = new_mask,
3227 		.flags     = 0,
3228 	};
3229 
3230 	return __set_cpus_allowed_ptr(p, &ac);
3231 }
3232 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3233 
3234 /*
3235  * Change a given task's CPU affinity to the intersection of its current
3236  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3237  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3238  * affinity or use cpu_online_mask instead.
3239  *
3240  * If the resulting mask is empty, leave the affinity unchanged and return
3241  * -EINVAL.
3242  */
3243 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3244 				     struct cpumask *new_mask,
3245 				     const struct cpumask *subset_mask)
3246 {
3247 	struct affinity_context ac = {
3248 		.new_mask  = new_mask,
3249 		.flags     = 0,
3250 	};
3251 	struct rq_flags rf;
3252 	struct rq *rq;
3253 	int err;
3254 
3255 	rq = task_rq_lock(p, &rf);
3256 
3257 	/*
3258 	 * Forcefully restricting the affinity of a deadline task is
3259 	 * likely to cause problems, so fail and noisily override the
3260 	 * mask entirely.
3261 	 */
3262 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3263 		err = -EPERM;
3264 		goto err_unlock;
3265 	}
3266 
3267 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3268 		err = -EINVAL;
3269 		goto err_unlock;
3270 	}
3271 
3272 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3273 
3274 err_unlock:
3275 	task_rq_unlock(rq, p, &rf);
3276 	return err;
3277 }
3278 
3279 /*
3280  * Restrict the CPU affinity of task @p so that it is a subset of
3281  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3282  * old affinity mask. If the resulting mask is empty, we warn and walk
3283  * up the cpuset hierarchy until we find a suitable mask.
3284  */
3285 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3286 {
3287 	cpumask_var_t new_mask;
3288 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3289 
3290 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3291 
3292 	/*
3293 	 * __migrate_task() can fail silently in the face of concurrent
3294 	 * offlining of the chosen destination CPU, so take the hotplug
3295 	 * lock to ensure that the migration succeeds.
3296 	 */
3297 	cpus_read_lock();
3298 	if (!cpumask_available(new_mask))
3299 		goto out_set_mask;
3300 
3301 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3302 		goto out_free_mask;
3303 
3304 	/*
3305 	 * We failed to find a valid subset of the affinity mask for the
3306 	 * task, so override it based on its cpuset hierarchy.
3307 	 */
3308 	cpuset_cpus_allowed(p, new_mask);
3309 	override_mask = new_mask;
3310 
3311 out_set_mask:
3312 	if (printk_ratelimit()) {
3313 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3314 				task_pid_nr(p), p->comm,
3315 				cpumask_pr_args(override_mask));
3316 	}
3317 
3318 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3319 out_free_mask:
3320 	cpus_read_unlock();
3321 	free_cpumask_var(new_mask);
3322 }
3323 
3324 static int
3325 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3326 
3327 /*
3328  * Restore the affinity of a task @p which was previously restricted by a
3329  * call to force_compatible_cpus_allowed_ptr().
3330  *
3331  * It is the caller's responsibility to serialise this with any calls to
3332  * force_compatible_cpus_allowed_ptr(@p).
3333  */
3334 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3335 {
3336 	struct affinity_context ac = {
3337 		.new_mask  = task_user_cpus(p),
3338 		.flags     = 0,
3339 	};
3340 	int ret;
3341 
3342 	/*
3343 	 * Try to restore the old affinity mask with __sched_setaffinity().
3344 	 * Cpuset masking will be done there too.
3345 	 */
3346 	ret = __sched_setaffinity(p, &ac);
3347 	WARN_ON_ONCE(ret);
3348 }
3349 
3350 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3351 {
3352 #ifdef CONFIG_SCHED_DEBUG
3353 	unsigned int state = READ_ONCE(p->__state);
3354 
3355 	/*
3356 	 * We should never call set_task_cpu() on a blocked task,
3357 	 * ttwu() will sort out the placement.
3358 	 */
3359 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3360 
3361 	/*
3362 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3363 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3364 	 * time relying on p->on_rq.
3365 	 */
3366 	WARN_ON_ONCE(state == TASK_RUNNING &&
3367 		     p->sched_class == &fair_sched_class &&
3368 		     (p->on_rq && !task_on_rq_migrating(p)));
3369 
3370 #ifdef CONFIG_LOCKDEP
3371 	/*
3372 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3373 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3374 	 *
3375 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3376 	 * see task_group().
3377 	 *
3378 	 * Furthermore, all task_rq users should acquire both locks, see
3379 	 * task_rq_lock().
3380 	 */
3381 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3382 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3383 #endif
3384 	/*
3385 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3386 	 */
3387 	WARN_ON_ONCE(!cpu_online(new_cpu));
3388 
3389 	WARN_ON_ONCE(is_migration_disabled(p));
3390 #endif
3391 
3392 	trace_sched_migrate_task(p, new_cpu);
3393 
3394 	if (task_cpu(p) != new_cpu) {
3395 		if (p->sched_class->migrate_task_rq)
3396 			p->sched_class->migrate_task_rq(p, new_cpu);
3397 		p->se.nr_migrations++;
3398 		rseq_migrate(p);
3399 		sched_mm_cid_migrate_from(p);
3400 		perf_event_task_migrate(p);
3401 	}
3402 
3403 	__set_task_cpu(p, new_cpu);
3404 }
3405 
3406 #ifdef CONFIG_NUMA_BALANCING
3407 static void __migrate_swap_task(struct task_struct *p, int cpu)
3408 {
3409 	if (task_on_rq_queued(p)) {
3410 		struct rq *src_rq, *dst_rq;
3411 		struct rq_flags srf, drf;
3412 
3413 		src_rq = task_rq(p);
3414 		dst_rq = cpu_rq(cpu);
3415 
3416 		rq_pin_lock(src_rq, &srf);
3417 		rq_pin_lock(dst_rq, &drf);
3418 
3419 		deactivate_task(src_rq, p, 0);
3420 		set_task_cpu(p, cpu);
3421 		activate_task(dst_rq, p, 0);
3422 		wakeup_preempt(dst_rq, p, 0);
3423 
3424 		rq_unpin_lock(dst_rq, &drf);
3425 		rq_unpin_lock(src_rq, &srf);
3426 
3427 	} else {
3428 		/*
3429 		 * Task isn't running anymore; make it appear like we migrated
3430 		 * it before it went to sleep. This means on wakeup we make the
3431 		 * previous CPU our target instead of where it really is.
3432 		 */
3433 		p->wake_cpu = cpu;
3434 	}
3435 }
3436 
3437 struct migration_swap_arg {
3438 	struct task_struct *src_task, *dst_task;
3439 	int src_cpu, dst_cpu;
3440 };
3441 
3442 static int migrate_swap_stop(void *data)
3443 {
3444 	struct migration_swap_arg *arg = data;
3445 	struct rq *src_rq, *dst_rq;
3446 
3447 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3448 		return -EAGAIN;
3449 
3450 	src_rq = cpu_rq(arg->src_cpu);
3451 	dst_rq = cpu_rq(arg->dst_cpu);
3452 
3453 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3454 	guard(double_rq_lock)(src_rq, dst_rq);
3455 
3456 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3457 		return -EAGAIN;
3458 
3459 	if (task_cpu(arg->src_task) != arg->src_cpu)
3460 		return -EAGAIN;
3461 
3462 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3463 		return -EAGAIN;
3464 
3465 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3466 		return -EAGAIN;
3467 
3468 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3469 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3470 
3471 	return 0;
3472 }
3473 
3474 /*
3475  * Cross migrate two tasks
3476  */
3477 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3478 		int target_cpu, int curr_cpu)
3479 {
3480 	struct migration_swap_arg arg;
3481 	int ret = -EINVAL;
3482 
3483 	arg = (struct migration_swap_arg){
3484 		.src_task = cur,
3485 		.src_cpu = curr_cpu,
3486 		.dst_task = p,
3487 		.dst_cpu = target_cpu,
3488 	};
3489 
3490 	if (arg.src_cpu == arg.dst_cpu)
3491 		goto out;
3492 
3493 	/*
3494 	 * These three tests are all lockless; this is OK since all of them
3495 	 * will be re-checked with proper locks held further down the line.
3496 	 */
3497 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3498 		goto out;
3499 
3500 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3501 		goto out;
3502 
3503 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3504 		goto out;
3505 
3506 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3507 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3508 
3509 out:
3510 	return ret;
3511 }
3512 #endif /* CONFIG_NUMA_BALANCING */
3513 
3514 /***
3515  * kick_process - kick a running thread to enter/exit the kernel
3516  * @p: the to-be-kicked thread
3517  *
3518  * Cause a process which is running on another CPU to enter
3519  * kernel-mode, without any delay. (to get signals handled.)
3520  *
3521  * NOTE: this function doesn't have to take the runqueue lock,
3522  * because all it wants to ensure is that the remote task enters
3523  * the kernel. If the IPI races and the task has been migrated
3524  * to another CPU then no harm is done and the purpose has been
3525  * achieved as well.
3526  */
3527 void kick_process(struct task_struct *p)
3528 {
3529 	guard(preempt)();
3530 	int cpu = task_cpu(p);
3531 
3532 	if ((cpu != smp_processor_id()) && task_curr(p))
3533 		smp_send_reschedule(cpu);
3534 }
3535 EXPORT_SYMBOL_GPL(kick_process);
3536 
3537 /*
3538  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3539  *
3540  * A few notes on cpu_active vs cpu_online:
3541  *
3542  *  - cpu_active must be a subset of cpu_online
3543  *
3544  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3545  *    see __set_cpus_allowed_ptr(). At this point the newly online
3546  *    CPU isn't yet part of the sched domains, and balancing will not
3547  *    see it.
3548  *
3549  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3550  *    avoid the load balancer to place new tasks on the to be removed
3551  *    CPU. Existing tasks will remain running there and will be taken
3552  *    off.
3553  *
3554  * This means that fallback selection must not select !active CPUs.
3555  * And can assume that any active CPU must be online. Conversely
3556  * select_task_rq() below may allow selection of !active CPUs in order
3557  * to satisfy the above rules.
3558  */
3559 static int select_fallback_rq(int cpu, struct task_struct *p)
3560 {
3561 	int nid = cpu_to_node(cpu);
3562 	const struct cpumask *nodemask = NULL;
3563 	enum { cpuset, possible, fail } state = cpuset;
3564 	int dest_cpu;
3565 
3566 	/*
3567 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3568 	 * will return -1. There is no CPU on the node, and we should
3569 	 * select the CPU on the other node.
3570 	 */
3571 	if (nid != -1) {
3572 		nodemask = cpumask_of_node(nid);
3573 
3574 		/* Look for allowed, online CPU in same node. */
3575 		for_each_cpu(dest_cpu, nodemask) {
3576 			if (is_cpu_allowed(p, dest_cpu))
3577 				return dest_cpu;
3578 		}
3579 	}
3580 
3581 	for (;;) {
3582 		/* Any allowed, online CPU? */
3583 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3584 			if (!is_cpu_allowed(p, dest_cpu))
3585 				continue;
3586 
3587 			goto out;
3588 		}
3589 
3590 		/* No more Mr. Nice Guy. */
3591 		switch (state) {
3592 		case cpuset:
3593 			if (cpuset_cpus_allowed_fallback(p)) {
3594 				state = possible;
3595 				break;
3596 			}
3597 			fallthrough;
3598 		case possible:
3599 			/*
3600 			 * XXX When called from select_task_rq() we only
3601 			 * hold p->pi_lock and again violate locking order.
3602 			 *
3603 			 * More yuck to audit.
3604 			 */
3605 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3606 			state = fail;
3607 			break;
3608 		case fail:
3609 			BUG();
3610 			break;
3611 		}
3612 	}
3613 
3614 out:
3615 	if (state != cpuset) {
3616 		/*
3617 		 * Don't tell them about moving exiting tasks or
3618 		 * kernel threads (both mm NULL), since they never
3619 		 * leave kernel.
3620 		 */
3621 		if (p->mm && printk_ratelimit()) {
3622 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3623 					task_pid_nr(p), p->comm, cpu);
3624 		}
3625 	}
3626 
3627 	return dest_cpu;
3628 }
3629 
3630 /*
3631  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3632  */
3633 static inline
3634 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3635 {
3636 	lockdep_assert_held(&p->pi_lock);
3637 
3638 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3639 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3640 	else
3641 		cpu = cpumask_any(p->cpus_ptr);
3642 
3643 	/*
3644 	 * In order not to call set_task_cpu() on a blocking task we need
3645 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3646 	 * CPU.
3647 	 *
3648 	 * Since this is common to all placement strategies, this lives here.
3649 	 *
3650 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3651 	 *   not worry about this generic constraint ]
3652 	 */
3653 	if (unlikely(!is_cpu_allowed(p, cpu)))
3654 		cpu = select_fallback_rq(task_cpu(p), p);
3655 
3656 	return cpu;
3657 }
3658 
3659 void sched_set_stop_task(int cpu, struct task_struct *stop)
3660 {
3661 	static struct lock_class_key stop_pi_lock;
3662 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3663 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3664 
3665 	if (stop) {
3666 		/*
3667 		 * Make it appear like a SCHED_FIFO task, its something
3668 		 * userspace knows about and won't get confused about.
3669 		 *
3670 		 * Also, it will make PI more or less work without too
3671 		 * much confusion -- but then, stop work should not
3672 		 * rely on PI working anyway.
3673 		 */
3674 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3675 
3676 		stop->sched_class = &stop_sched_class;
3677 
3678 		/*
3679 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3680 		 * adjust the effective priority of a task. As a result,
3681 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3682 		 * which can then trigger wakeups of the stop thread to push
3683 		 * around the current task.
3684 		 *
3685 		 * The stop task itself will never be part of the PI-chain, it
3686 		 * never blocks, therefore that ->pi_lock recursion is safe.
3687 		 * Tell lockdep about this by placing the stop->pi_lock in its
3688 		 * own class.
3689 		 */
3690 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3691 	}
3692 
3693 	cpu_rq(cpu)->stop = stop;
3694 
3695 	if (old_stop) {
3696 		/*
3697 		 * Reset it back to a normal scheduling class so that
3698 		 * it can die in pieces.
3699 		 */
3700 		old_stop->sched_class = &rt_sched_class;
3701 	}
3702 }
3703 
3704 #else /* CONFIG_SMP */
3705 
3706 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3707 					 struct affinity_context *ctx)
3708 {
3709 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3710 }
3711 
3712 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3713 
3714 static inline bool rq_has_pinned_tasks(struct rq *rq)
3715 {
3716 	return false;
3717 }
3718 
3719 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3720 {
3721 	return NULL;
3722 }
3723 
3724 #endif /* !CONFIG_SMP */
3725 
3726 static void
3727 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3728 {
3729 	struct rq *rq;
3730 
3731 	if (!schedstat_enabled())
3732 		return;
3733 
3734 	rq = this_rq();
3735 
3736 #ifdef CONFIG_SMP
3737 	if (cpu == rq->cpu) {
3738 		__schedstat_inc(rq->ttwu_local);
3739 		__schedstat_inc(p->stats.nr_wakeups_local);
3740 	} else {
3741 		struct sched_domain *sd;
3742 
3743 		__schedstat_inc(p->stats.nr_wakeups_remote);
3744 
3745 		guard(rcu)();
3746 		for_each_domain(rq->cpu, sd) {
3747 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3748 				__schedstat_inc(sd->ttwu_wake_remote);
3749 				break;
3750 			}
3751 		}
3752 	}
3753 
3754 	if (wake_flags & WF_MIGRATED)
3755 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3756 #endif /* CONFIG_SMP */
3757 
3758 	__schedstat_inc(rq->ttwu_count);
3759 	__schedstat_inc(p->stats.nr_wakeups);
3760 
3761 	if (wake_flags & WF_SYNC)
3762 		__schedstat_inc(p->stats.nr_wakeups_sync);
3763 }
3764 
3765 /*
3766  * Mark the task runnable.
3767  */
3768 static inline void ttwu_do_wakeup(struct task_struct *p)
3769 {
3770 	WRITE_ONCE(p->__state, TASK_RUNNING);
3771 	trace_sched_wakeup(p);
3772 }
3773 
3774 static void
3775 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3776 		 struct rq_flags *rf)
3777 {
3778 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3779 
3780 	lockdep_assert_rq_held(rq);
3781 
3782 	if (p->sched_contributes_to_load)
3783 		rq->nr_uninterruptible--;
3784 
3785 #ifdef CONFIG_SMP
3786 	if (wake_flags & WF_MIGRATED)
3787 		en_flags |= ENQUEUE_MIGRATED;
3788 	else
3789 #endif
3790 	if (p->in_iowait) {
3791 		delayacct_blkio_end(p);
3792 		atomic_dec(&task_rq(p)->nr_iowait);
3793 	}
3794 
3795 	activate_task(rq, p, en_flags);
3796 	wakeup_preempt(rq, p, wake_flags);
3797 
3798 	ttwu_do_wakeup(p);
3799 
3800 #ifdef CONFIG_SMP
3801 	if (p->sched_class->task_woken) {
3802 		/*
3803 		 * Our task @p is fully woken up and running; so it's safe to
3804 		 * drop the rq->lock, hereafter rq is only used for statistics.
3805 		 */
3806 		rq_unpin_lock(rq, rf);
3807 		p->sched_class->task_woken(rq, p);
3808 		rq_repin_lock(rq, rf);
3809 	}
3810 
3811 	if (rq->idle_stamp) {
3812 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3813 		u64 max = 2*rq->max_idle_balance_cost;
3814 
3815 		update_avg(&rq->avg_idle, delta);
3816 
3817 		if (rq->avg_idle > max)
3818 			rq->avg_idle = max;
3819 
3820 		rq->idle_stamp = 0;
3821 	}
3822 #endif
3823 
3824 	p->dl_server = NULL;
3825 }
3826 
3827 /*
3828  * Consider @p being inside a wait loop:
3829  *
3830  *   for (;;) {
3831  *      set_current_state(TASK_UNINTERRUPTIBLE);
3832  *
3833  *      if (CONDITION)
3834  *         break;
3835  *
3836  *      schedule();
3837  *   }
3838  *   __set_current_state(TASK_RUNNING);
3839  *
3840  * between set_current_state() and schedule(). In this case @p is still
3841  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3842  * an atomic manner.
3843  *
3844  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3845  * then schedule() must still happen and p->state can be changed to
3846  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3847  * need to do a full wakeup with enqueue.
3848  *
3849  * Returns: %true when the wakeup is done,
3850  *          %false otherwise.
3851  */
3852 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3853 {
3854 	struct rq_flags rf;
3855 	struct rq *rq;
3856 	int ret = 0;
3857 
3858 	rq = __task_rq_lock(p, &rf);
3859 	if (task_on_rq_queued(p)) {
3860 		if (!task_on_cpu(rq, p)) {
3861 			/*
3862 			 * When on_rq && !on_cpu the task is preempted, see if
3863 			 * it should preempt the task that is current now.
3864 			 */
3865 			update_rq_clock(rq);
3866 			wakeup_preempt(rq, p, wake_flags);
3867 		}
3868 		ttwu_do_wakeup(p);
3869 		ret = 1;
3870 	}
3871 	__task_rq_unlock(rq, &rf);
3872 
3873 	return ret;
3874 }
3875 
3876 #ifdef CONFIG_SMP
3877 void sched_ttwu_pending(void *arg)
3878 {
3879 	struct llist_node *llist = arg;
3880 	struct rq *rq = this_rq();
3881 	struct task_struct *p, *t;
3882 	struct rq_flags rf;
3883 
3884 	if (!llist)
3885 		return;
3886 
3887 	rq_lock_irqsave(rq, &rf);
3888 	update_rq_clock(rq);
3889 
3890 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3891 		if (WARN_ON_ONCE(p->on_cpu))
3892 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3893 
3894 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3895 			set_task_cpu(p, cpu_of(rq));
3896 
3897 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3898 	}
3899 
3900 	/*
3901 	 * Must be after enqueueing at least once task such that
3902 	 * idle_cpu() does not observe a false-negative -- if it does,
3903 	 * it is possible for select_idle_siblings() to stack a number
3904 	 * of tasks on this CPU during that window.
3905 	 *
3906 	 * It is ok to clear ttwu_pending when another task pending.
3907 	 * We will receive IPI after local irq enabled and then enqueue it.
3908 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3909 	 */
3910 	WRITE_ONCE(rq->ttwu_pending, 0);
3911 	rq_unlock_irqrestore(rq, &rf);
3912 }
3913 
3914 /*
3915  * Prepare the scene for sending an IPI for a remote smp_call
3916  *
3917  * Returns true if the caller can proceed with sending the IPI.
3918  * Returns false otherwise.
3919  */
3920 bool call_function_single_prep_ipi(int cpu)
3921 {
3922 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3923 		trace_sched_wake_idle_without_ipi(cpu);
3924 		return false;
3925 	}
3926 
3927 	return true;
3928 }
3929 
3930 /*
3931  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3932  * necessary. The wakee CPU on receipt of the IPI will queue the task
3933  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3934  * of the wakeup instead of the waker.
3935  */
3936 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3937 {
3938 	struct rq *rq = cpu_rq(cpu);
3939 
3940 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3941 
3942 	WRITE_ONCE(rq->ttwu_pending, 1);
3943 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3944 }
3945 
3946 void wake_up_if_idle(int cpu)
3947 {
3948 	struct rq *rq = cpu_rq(cpu);
3949 
3950 	guard(rcu)();
3951 	if (is_idle_task(rcu_dereference(rq->curr))) {
3952 		guard(rq_lock_irqsave)(rq);
3953 		if (is_idle_task(rq->curr))
3954 			resched_curr(rq);
3955 	}
3956 }
3957 
3958 bool cpus_share_cache(int this_cpu, int that_cpu)
3959 {
3960 	if (this_cpu == that_cpu)
3961 		return true;
3962 
3963 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3964 }
3965 
3966 /*
3967  * Whether CPUs are share cache resources, which means LLC on non-cluster
3968  * machines and LLC tag or L2 on machines with clusters.
3969  */
3970 bool cpus_share_resources(int this_cpu, int that_cpu)
3971 {
3972 	if (this_cpu == that_cpu)
3973 		return true;
3974 
3975 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3976 }
3977 
3978 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3979 {
3980 	/*
3981 	 * Do not complicate things with the async wake_list while the CPU is
3982 	 * in hotplug state.
3983 	 */
3984 	if (!cpu_active(cpu))
3985 		return false;
3986 
3987 	/* Ensure the task will still be allowed to run on the CPU. */
3988 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3989 		return false;
3990 
3991 	/*
3992 	 * If the CPU does not share cache, then queue the task on the
3993 	 * remote rqs wakelist to avoid accessing remote data.
3994 	 */
3995 	if (!cpus_share_cache(smp_processor_id(), cpu))
3996 		return true;
3997 
3998 	if (cpu == smp_processor_id())
3999 		return false;
4000 
4001 	/*
4002 	 * If the wakee cpu is idle, or the task is descheduling and the
4003 	 * only running task on the CPU, then use the wakelist to offload
4004 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4005 	 * the current CPU is likely busy. nr_running is checked to
4006 	 * avoid unnecessary task stacking.
4007 	 *
4008 	 * Note that we can only get here with (wakee) p->on_rq=0,
4009 	 * p->on_cpu can be whatever, we've done the dequeue, so
4010 	 * the wakee has been accounted out of ->nr_running.
4011 	 */
4012 	if (!cpu_rq(cpu)->nr_running)
4013 		return true;
4014 
4015 	return false;
4016 }
4017 
4018 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4019 {
4020 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4021 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4022 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4023 		return true;
4024 	}
4025 
4026 	return false;
4027 }
4028 
4029 #else /* !CONFIG_SMP */
4030 
4031 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4032 {
4033 	return false;
4034 }
4035 
4036 #endif /* CONFIG_SMP */
4037 
4038 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4039 {
4040 	struct rq *rq = cpu_rq(cpu);
4041 	struct rq_flags rf;
4042 
4043 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4044 		return;
4045 
4046 	rq_lock(rq, &rf);
4047 	update_rq_clock(rq);
4048 	ttwu_do_activate(rq, p, wake_flags, &rf);
4049 	rq_unlock(rq, &rf);
4050 }
4051 
4052 /*
4053  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4054  *
4055  * The caller holds p::pi_lock if p != current or has preemption
4056  * disabled when p == current.
4057  *
4058  * The rules of saved_state:
4059  *
4060  *   The related locking code always holds p::pi_lock when updating
4061  *   p::saved_state, which means the code is fully serialized in both cases.
4062  *
4063  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4064  *   No other bits set. This allows to distinguish all wakeup scenarios.
4065  *
4066  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4067  *   allows us to prevent early wakeup of tasks before they can be run on
4068  *   asymmetric ISA architectures (eg ARMv9).
4069  */
4070 static __always_inline
4071 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4072 {
4073 	int match;
4074 
4075 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4076 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4077 			     state != TASK_RTLOCK_WAIT);
4078 	}
4079 
4080 	*success = !!(match = __task_state_match(p, state));
4081 
4082 	/*
4083 	 * Saved state preserves the task state across blocking on
4084 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4085 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4086 	 * because it waits for a lock wakeup or __thaw_task(). Also
4087 	 * indicate success because from the regular waker's point of
4088 	 * view this has succeeded.
4089 	 *
4090 	 * After acquiring the lock the task will restore p::__state
4091 	 * from p::saved_state which ensures that the regular
4092 	 * wakeup is not lost. The restore will also set
4093 	 * p::saved_state to TASK_RUNNING so any further tests will
4094 	 * not result in false positives vs. @success
4095 	 */
4096 	if (match < 0)
4097 		p->saved_state = TASK_RUNNING;
4098 
4099 	return match > 0;
4100 }
4101 
4102 /*
4103  * Notes on Program-Order guarantees on SMP systems.
4104  *
4105  *  MIGRATION
4106  *
4107  * The basic program-order guarantee on SMP systems is that when a task [t]
4108  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4109  * execution on its new CPU [c1].
4110  *
4111  * For migration (of runnable tasks) this is provided by the following means:
4112  *
4113  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4114  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4115  *     rq(c1)->lock (if not at the same time, then in that order).
4116  *  C) LOCK of the rq(c1)->lock scheduling in task
4117  *
4118  * Release/acquire chaining guarantees that B happens after A and C after B.
4119  * Note: the CPU doing B need not be c0 or c1
4120  *
4121  * Example:
4122  *
4123  *   CPU0            CPU1            CPU2
4124  *
4125  *   LOCK rq(0)->lock
4126  *   sched-out X
4127  *   sched-in Y
4128  *   UNLOCK rq(0)->lock
4129  *
4130  *                                   LOCK rq(0)->lock // orders against CPU0
4131  *                                   dequeue X
4132  *                                   UNLOCK rq(0)->lock
4133  *
4134  *                                   LOCK rq(1)->lock
4135  *                                   enqueue X
4136  *                                   UNLOCK rq(1)->lock
4137  *
4138  *                   LOCK rq(1)->lock // orders against CPU2
4139  *                   sched-out Z
4140  *                   sched-in X
4141  *                   UNLOCK rq(1)->lock
4142  *
4143  *
4144  *  BLOCKING -- aka. SLEEP + WAKEUP
4145  *
4146  * For blocking we (obviously) need to provide the same guarantee as for
4147  * migration. However the means are completely different as there is no lock
4148  * chain to provide order. Instead we do:
4149  *
4150  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4151  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4152  *
4153  * Example:
4154  *
4155  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4156  *
4157  *   LOCK rq(0)->lock LOCK X->pi_lock
4158  *   dequeue X
4159  *   sched-out X
4160  *   smp_store_release(X->on_cpu, 0);
4161  *
4162  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4163  *                    X->state = WAKING
4164  *                    set_task_cpu(X,2)
4165  *
4166  *                    LOCK rq(2)->lock
4167  *                    enqueue X
4168  *                    X->state = RUNNING
4169  *                    UNLOCK rq(2)->lock
4170  *
4171  *                                          LOCK rq(2)->lock // orders against CPU1
4172  *                                          sched-out Z
4173  *                                          sched-in X
4174  *                                          UNLOCK rq(2)->lock
4175  *
4176  *                    UNLOCK X->pi_lock
4177  *   UNLOCK rq(0)->lock
4178  *
4179  *
4180  * However, for wakeups there is a second guarantee we must provide, namely we
4181  * must ensure that CONDITION=1 done by the caller can not be reordered with
4182  * accesses to the task state; see try_to_wake_up() and set_current_state().
4183  */
4184 
4185 /**
4186  * try_to_wake_up - wake up a thread
4187  * @p: the thread to be awakened
4188  * @state: the mask of task states that can be woken
4189  * @wake_flags: wake modifier flags (WF_*)
4190  *
4191  * Conceptually does:
4192  *
4193  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4194  *
4195  * If the task was not queued/runnable, also place it back on a runqueue.
4196  *
4197  * This function is atomic against schedule() which would dequeue the task.
4198  *
4199  * It issues a full memory barrier before accessing @p->state, see the comment
4200  * with set_current_state().
4201  *
4202  * Uses p->pi_lock to serialize against concurrent wake-ups.
4203  *
4204  * Relies on p->pi_lock stabilizing:
4205  *  - p->sched_class
4206  *  - p->cpus_ptr
4207  *  - p->sched_task_group
4208  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4209  *
4210  * Tries really hard to only take one task_rq(p)->lock for performance.
4211  * Takes rq->lock in:
4212  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4213  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4214  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4215  *
4216  * As a consequence we race really badly with just about everything. See the
4217  * many memory barriers and their comments for details.
4218  *
4219  * Return: %true if @p->state changes (an actual wakeup was done),
4220  *	   %false otherwise.
4221  */
4222 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4223 {
4224 	guard(preempt)();
4225 	int cpu, success = 0;
4226 
4227 	if (p == current) {
4228 		/*
4229 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4230 		 * == smp_processor_id()'. Together this means we can special
4231 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4232 		 * without taking any locks.
4233 		 *
4234 		 * In particular:
4235 		 *  - we rely on Program-Order guarantees for all the ordering,
4236 		 *  - we're serialized against set_special_state() by virtue of
4237 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4238 		 */
4239 		if (!ttwu_state_match(p, state, &success))
4240 			goto out;
4241 
4242 		trace_sched_waking(p);
4243 		ttwu_do_wakeup(p);
4244 		goto out;
4245 	}
4246 
4247 	/*
4248 	 * If we are going to wake up a thread waiting for CONDITION we
4249 	 * need to ensure that CONDITION=1 done by the caller can not be
4250 	 * reordered with p->state check below. This pairs with smp_store_mb()
4251 	 * in set_current_state() that the waiting thread does.
4252 	 */
4253 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4254 		smp_mb__after_spinlock();
4255 		if (!ttwu_state_match(p, state, &success))
4256 			break;
4257 
4258 		trace_sched_waking(p);
4259 
4260 		/*
4261 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4262 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4263 		 * in smp_cond_load_acquire() below.
4264 		 *
4265 		 * sched_ttwu_pending()			try_to_wake_up()
4266 		 *   STORE p->on_rq = 1			  LOAD p->state
4267 		 *   UNLOCK rq->lock
4268 		 *
4269 		 * __schedule() (switch to task 'p')
4270 		 *   LOCK rq->lock			  smp_rmb();
4271 		 *   smp_mb__after_spinlock();
4272 		 *   UNLOCK rq->lock
4273 		 *
4274 		 * [task p]
4275 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4276 		 *
4277 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4278 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4279 		 *
4280 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4281 		 */
4282 		smp_rmb();
4283 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4284 			break;
4285 
4286 #ifdef CONFIG_SMP
4287 		/*
4288 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4289 		 * possible to, falsely, observe p->on_cpu == 0.
4290 		 *
4291 		 * One must be running (->on_cpu == 1) in order to remove oneself
4292 		 * from the runqueue.
4293 		 *
4294 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4295 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4296 		 *   UNLOCK rq->lock
4297 		 *
4298 		 * __schedule() (put 'p' to sleep)
4299 		 *   LOCK rq->lock			  smp_rmb();
4300 		 *   smp_mb__after_spinlock();
4301 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4302 		 *
4303 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4304 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4305 		 *
4306 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4307 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4308 		 * care about it's own p->state. See the comment in __schedule().
4309 		 */
4310 		smp_acquire__after_ctrl_dep();
4311 
4312 		/*
4313 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4314 		 * == 0), which means we need to do an enqueue, change p->state to
4315 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4316 		 * enqueue, such as ttwu_queue_wakelist().
4317 		 */
4318 		WRITE_ONCE(p->__state, TASK_WAKING);
4319 
4320 		/*
4321 		 * If the owning (remote) CPU is still in the middle of schedule() with
4322 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4323 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4324 		 * let the waker make forward progress. This is safe because IRQs are
4325 		 * disabled and the IPI will deliver after on_cpu is cleared.
4326 		 *
4327 		 * Ensure we load task_cpu(p) after p->on_cpu:
4328 		 *
4329 		 * set_task_cpu(p, cpu);
4330 		 *   STORE p->cpu = @cpu
4331 		 * __schedule() (switch to task 'p')
4332 		 *   LOCK rq->lock
4333 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4334 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4335 		 *
4336 		 * to ensure we observe the correct CPU on which the task is currently
4337 		 * scheduling.
4338 		 */
4339 		if (smp_load_acquire(&p->on_cpu) &&
4340 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4341 			break;
4342 
4343 		/*
4344 		 * If the owning (remote) CPU is still in the middle of schedule() with
4345 		 * this task as prev, wait until it's done referencing the task.
4346 		 *
4347 		 * Pairs with the smp_store_release() in finish_task().
4348 		 *
4349 		 * This ensures that tasks getting woken will be fully ordered against
4350 		 * their previous state and preserve Program Order.
4351 		 */
4352 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4353 
4354 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4355 		if (task_cpu(p) != cpu) {
4356 			if (p->in_iowait) {
4357 				delayacct_blkio_end(p);
4358 				atomic_dec(&task_rq(p)->nr_iowait);
4359 			}
4360 
4361 			wake_flags |= WF_MIGRATED;
4362 			psi_ttwu_dequeue(p);
4363 			set_task_cpu(p, cpu);
4364 		}
4365 #else
4366 		cpu = task_cpu(p);
4367 #endif /* CONFIG_SMP */
4368 
4369 		ttwu_queue(p, cpu, wake_flags);
4370 	}
4371 out:
4372 	if (success)
4373 		ttwu_stat(p, task_cpu(p), wake_flags);
4374 
4375 	return success;
4376 }
4377 
4378 static bool __task_needs_rq_lock(struct task_struct *p)
4379 {
4380 	unsigned int state = READ_ONCE(p->__state);
4381 
4382 	/*
4383 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4384 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4385 	 * locks at the end, see ttwu_queue_wakelist().
4386 	 */
4387 	if (state == TASK_RUNNING || state == TASK_WAKING)
4388 		return true;
4389 
4390 	/*
4391 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4392 	 * possible to, falsely, observe p->on_rq == 0.
4393 	 *
4394 	 * See try_to_wake_up() for a longer comment.
4395 	 */
4396 	smp_rmb();
4397 	if (p->on_rq)
4398 		return true;
4399 
4400 #ifdef CONFIG_SMP
4401 	/*
4402 	 * Ensure the task has finished __schedule() and will not be referenced
4403 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4404 	 */
4405 	smp_rmb();
4406 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4407 #endif
4408 
4409 	return false;
4410 }
4411 
4412 /**
4413  * task_call_func - Invoke a function on task in fixed state
4414  * @p: Process for which the function is to be invoked, can be @current.
4415  * @func: Function to invoke.
4416  * @arg: Argument to function.
4417  *
4418  * Fix the task in it's current state by avoiding wakeups and or rq operations
4419  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4420  * to work out what the state is, if required.  Given that @func can be invoked
4421  * with a runqueue lock held, it had better be quite lightweight.
4422  *
4423  * Returns:
4424  *   Whatever @func returns
4425  */
4426 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4427 {
4428 	struct rq *rq = NULL;
4429 	struct rq_flags rf;
4430 	int ret;
4431 
4432 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4433 
4434 	if (__task_needs_rq_lock(p))
4435 		rq = __task_rq_lock(p, &rf);
4436 
4437 	/*
4438 	 * At this point the task is pinned; either:
4439 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4440 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4441 	 *  - queued, and we're holding off schedule	 (rq->lock)
4442 	 *  - running, and we're holding off de-schedule (rq->lock)
4443 	 *
4444 	 * The called function (@func) can use: task_curr(), p->on_rq and
4445 	 * p->__state to differentiate between these states.
4446 	 */
4447 	ret = func(p, arg);
4448 
4449 	if (rq)
4450 		rq_unlock(rq, &rf);
4451 
4452 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4453 	return ret;
4454 }
4455 
4456 /**
4457  * cpu_curr_snapshot - Return a snapshot of the currently running task
4458  * @cpu: The CPU on which to snapshot the task.
4459  *
4460  * Returns the task_struct pointer of the task "currently" running on
4461  * the specified CPU.  If the same task is running on that CPU throughout,
4462  * the return value will be a pointer to that task's task_struct structure.
4463  * If the CPU did any context switches even vaguely concurrently with the
4464  * execution of this function, the return value will be a pointer to the
4465  * task_struct structure of a randomly chosen task that was running on
4466  * that CPU somewhere around the time that this function was executing.
4467  *
4468  * If the specified CPU was offline, the return value is whatever it
4469  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4470  * task, but there is no guarantee.  Callers wishing a useful return
4471  * value must take some action to ensure that the specified CPU remains
4472  * online throughout.
4473  *
4474  * This function executes full memory barriers before and after fetching
4475  * the pointer, which permits the caller to confine this function's fetch
4476  * with respect to the caller's accesses to other shared variables.
4477  */
4478 struct task_struct *cpu_curr_snapshot(int cpu)
4479 {
4480 	struct task_struct *t;
4481 
4482 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4483 	t = rcu_dereference(cpu_curr(cpu));
4484 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4485 	return t;
4486 }
4487 
4488 /**
4489  * wake_up_process - Wake up a specific process
4490  * @p: The process to be woken up.
4491  *
4492  * Attempt to wake up the nominated process and move it to the set of runnable
4493  * processes.
4494  *
4495  * Return: 1 if the process was woken up, 0 if it was already running.
4496  *
4497  * This function executes a full memory barrier before accessing the task state.
4498  */
4499 int wake_up_process(struct task_struct *p)
4500 {
4501 	return try_to_wake_up(p, TASK_NORMAL, 0);
4502 }
4503 EXPORT_SYMBOL(wake_up_process);
4504 
4505 int wake_up_state(struct task_struct *p, unsigned int state)
4506 {
4507 	return try_to_wake_up(p, state, 0);
4508 }
4509 
4510 /*
4511  * Perform scheduler related setup for a newly forked process p.
4512  * p is forked by current.
4513  *
4514  * __sched_fork() is basic setup used by init_idle() too:
4515  */
4516 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4517 {
4518 	p->on_rq			= 0;
4519 
4520 	p->se.on_rq			= 0;
4521 	p->se.exec_start		= 0;
4522 	p->se.sum_exec_runtime		= 0;
4523 	p->se.prev_sum_exec_runtime	= 0;
4524 	p->se.nr_migrations		= 0;
4525 	p->se.vruntime			= 0;
4526 	p->se.vlag			= 0;
4527 	p->se.slice			= sysctl_sched_base_slice;
4528 	INIT_LIST_HEAD(&p->se.group_node);
4529 
4530 #ifdef CONFIG_FAIR_GROUP_SCHED
4531 	p->se.cfs_rq			= NULL;
4532 #endif
4533 
4534 #ifdef CONFIG_SCHEDSTATS
4535 	/* Even if schedstat is disabled, there should not be garbage */
4536 	memset(&p->stats, 0, sizeof(p->stats));
4537 #endif
4538 
4539 	init_dl_entity(&p->dl);
4540 
4541 	INIT_LIST_HEAD(&p->rt.run_list);
4542 	p->rt.timeout		= 0;
4543 	p->rt.time_slice	= sched_rr_timeslice;
4544 	p->rt.on_rq		= 0;
4545 	p->rt.on_list		= 0;
4546 
4547 #ifdef CONFIG_PREEMPT_NOTIFIERS
4548 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4549 #endif
4550 
4551 #ifdef CONFIG_COMPACTION
4552 	p->capture_control = NULL;
4553 #endif
4554 	init_numa_balancing(clone_flags, p);
4555 #ifdef CONFIG_SMP
4556 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4557 	p->migration_pending = NULL;
4558 #endif
4559 	init_sched_mm_cid(p);
4560 }
4561 
4562 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4563 
4564 #ifdef CONFIG_NUMA_BALANCING
4565 
4566 int sysctl_numa_balancing_mode;
4567 
4568 static void __set_numabalancing_state(bool enabled)
4569 {
4570 	if (enabled)
4571 		static_branch_enable(&sched_numa_balancing);
4572 	else
4573 		static_branch_disable(&sched_numa_balancing);
4574 }
4575 
4576 void set_numabalancing_state(bool enabled)
4577 {
4578 	if (enabled)
4579 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4580 	else
4581 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4582 	__set_numabalancing_state(enabled);
4583 }
4584 
4585 #ifdef CONFIG_PROC_SYSCTL
4586 static void reset_memory_tiering(void)
4587 {
4588 	struct pglist_data *pgdat;
4589 
4590 	for_each_online_pgdat(pgdat) {
4591 		pgdat->nbp_threshold = 0;
4592 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4593 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4594 	}
4595 }
4596 
4597 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4598 			  void *buffer, size_t *lenp, loff_t *ppos)
4599 {
4600 	struct ctl_table t;
4601 	int err;
4602 	int state = sysctl_numa_balancing_mode;
4603 
4604 	if (write && !capable(CAP_SYS_ADMIN))
4605 		return -EPERM;
4606 
4607 	t = *table;
4608 	t.data = &state;
4609 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4610 	if (err < 0)
4611 		return err;
4612 	if (write) {
4613 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4614 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4615 			reset_memory_tiering();
4616 		sysctl_numa_balancing_mode = state;
4617 		__set_numabalancing_state(state);
4618 	}
4619 	return err;
4620 }
4621 #endif
4622 #endif
4623 
4624 #ifdef CONFIG_SCHEDSTATS
4625 
4626 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4627 
4628 static void set_schedstats(bool enabled)
4629 {
4630 	if (enabled)
4631 		static_branch_enable(&sched_schedstats);
4632 	else
4633 		static_branch_disable(&sched_schedstats);
4634 }
4635 
4636 void force_schedstat_enabled(void)
4637 {
4638 	if (!schedstat_enabled()) {
4639 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4640 		static_branch_enable(&sched_schedstats);
4641 	}
4642 }
4643 
4644 static int __init setup_schedstats(char *str)
4645 {
4646 	int ret = 0;
4647 	if (!str)
4648 		goto out;
4649 
4650 	if (!strcmp(str, "enable")) {
4651 		set_schedstats(true);
4652 		ret = 1;
4653 	} else if (!strcmp(str, "disable")) {
4654 		set_schedstats(false);
4655 		ret = 1;
4656 	}
4657 out:
4658 	if (!ret)
4659 		pr_warn("Unable to parse schedstats=\n");
4660 
4661 	return ret;
4662 }
4663 __setup("schedstats=", setup_schedstats);
4664 
4665 #ifdef CONFIG_PROC_SYSCTL
4666 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4667 		size_t *lenp, loff_t *ppos)
4668 {
4669 	struct ctl_table t;
4670 	int err;
4671 	int state = static_branch_likely(&sched_schedstats);
4672 
4673 	if (write && !capable(CAP_SYS_ADMIN))
4674 		return -EPERM;
4675 
4676 	t = *table;
4677 	t.data = &state;
4678 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4679 	if (err < 0)
4680 		return err;
4681 	if (write)
4682 		set_schedstats(state);
4683 	return err;
4684 }
4685 #endif /* CONFIG_PROC_SYSCTL */
4686 #endif /* CONFIG_SCHEDSTATS */
4687 
4688 #ifdef CONFIG_SYSCTL
4689 static struct ctl_table sched_core_sysctls[] = {
4690 #ifdef CONFIG_SCHEDSTATS
4691 	{
4692 		.procname       = "sched_schedstats",
4693 		.data           = NULL,
4694 		.maxlen         = sizeof(unsigned int),
4695 		.mode           = 0644,
4696 		.proc_handler   = sysctl_schedstats,
4697 		.extra1         = SYSCTL_ZERO,
4698 		.extra2         = SYSCTL_ONE,
4699 	},
4700 #endif /* CONFIG_SCHEDSTATS */
4701 #ifdef CONFIG_UCLAMP_TASK
4702 	{
4703 		.procname       = "sched_util_clamp_min",
4704 		.data           = &sysctl_sched_uclamp_util_min,
4705 		.maxlen         = sizeof(unsigned int),
4706 		.mode           = 0644,
4707 		.proc_handler   = sysctl_sched_uclamp_handler,
4708 	},
4709 	{
4710 		.procname       = "sched_util_clamp_max",
4711 		.data           = &sysctl_sched_uclamp_util_max,
4712 		.maxlen         = sizeof(unsigned int),
4713 		.mode           = 0644,
4714 		.proc_handler   = sysctl_sched_uclamp_handler,
4715 	},
4716 	{
4717 		.procname       = "sched_util_clamp_min_rt_default",
4718 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4719 		.maxlen         = sizeof(unsigned int),
4720 		.mode           = 0644,
4721 		.proc_handler   = sysctl_sched_uclamp_handler,
4722 	},
4723 #endif /* CONFIG_UCLAMP_TASK */
4724 #ifdef CONFIG_NUMA_BALANCING
4725 	{
4726 		.procname	= "numa_balancing",
4727 		.data		= NULL, /* filled in by handler */
4728 		.maxlen		= sizeof(unsigned int),
4729 		.mode		= 0644,
4730 		.proc_handler	= sysctl_numa_balancing,
4731 		.extra1		= SYSCTL_ZERO,
4732 		.extra2		= SYSCTL_FOUR,
4733 	},
4734 #endif /* CONFIG_NUMA_BALANCING */
4735 	{}
4736 };
4737 static int __init sched_core_sysctl_init(void)
4738 {
4739 	register_sysctl_init("kernel", sched_core_sysctls);
4740 	return 0;
4741 }
4742 late_initcall(sched_core_sysctl_init);
4743 #endif /* CONFIG_SYSCTL */
4744 
4745 /*
4746  * fork()/clone()-time setup:
4747  */
4748 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4749 {
4750 	__sched_fork(clone_flags, p);
4751 	/*
4752 	 * We mark the process as NEW here. This guarantees that
4753 	 * nobody will actually run it, and a signal or other external
4754 	 * event cannot wake it up and insert it on the runqueue either.
4755 	 */
4756 	p->__state = TASK_NEW;
4757 
4758 	/*
4759 	 * Make sure we do not leak PI boosting priority to the child.
4760 	 */
4761 	p->prio = current->normal_prio;
4762 
4763 	uclamp_fork(p);
4764 
4765 	/*
4766 	 * Revert to default priority/policy on fork if requested.
4767 	 */
4768 	if (unlikely(p->sched_reset_on_fork)) {
4769 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4770 			p->policy = SCHED_NORMAL;
4771 			p->static_prio = NICE_TO_PRIO(0);
4772 			p->rt_priority = 0;
4773 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4774 			p->static_prio = NICE_TO_PRIO(0);
4775 
4776 		p->prio = p->normal_prio = p->static_prio;
4777 		set_load_weight(p, false);
4778 
4779 		/*
4780 		 * We don't need the reset flag anymore after the fork. It has
4781 		 * fulfilled its duty:
4782 		 */
4783 		p->sched_reset_on_fork = 0;
4784 	}
4785 
4786 	if (dl_prio(p->prio))
4787 		return -EAGAIN;
4788 	else if (rt_prio(p->prio))
4789 		p->sched_class = &rt_sched_class;
4790 	else
4791 		p->sched_class = &fair_sched_class;
4792 
4793 	init_entity_runnable_average(&p->se);
4794 
4795 
4796 #ifdef CONFIG_SCHED_INFO
4797 	if (likely(sched_info_on()))
4798 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4799 #endif
4800 #if defined(CONFIG_SMP)
4801 	p->on_cpu = 0;
4802 #endif
4803 	init_task_preempt_count(p);
4804 #ifdef CONFIG_SMP
4805 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4806 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4807 #endif
4808 	return 0;
4809 }
4810 
4811 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4812 {
4813 	unsigned long flags;
4814 
4815 	/*
4816 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4817 	 * required yet, but lockdep gets upset if rules are violated.
4818 	 */
4819 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4820 #ifdef CONFIG_CGROUP_SCHED
4821 	if (1) {
4822 		struct task_group *tg;
4823 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4824 				  struct task_group, css);
4825 		tg = autogroup_task_group(p, tg);
4826 		p->sched_task_group = tg;
4827 	}
4828 #endif
4829 	rseq_migrate(p);
4830 	/*
4831 	 * We're setting the CPU for the first time, we don't migrate,
4832 	 * so use __set_task_cpu().
4833 	 */
4834 	__set_task_cpu(p, smp_processor_id());
4835 	if (p->sched_class->task_fork)
4836 		p->sched_class->task_fork(p);
4837 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838 }
4839 
4840 void sched_post_fork(struct task_struct *p)
4841 {
4842 	uclamp_post_fork(p);
4843 }
4844 
4845 unsigned long to_ratio(u64 period, u64 runtime)
4846 {
4847 	if (runtime == RUNTIME_INF)
4848 		return BW_UNIT;
4849 
4850 	/*
4851 	 * Doing this here saves a lot of checks in all
4852 	 * the calling paths, and returning zero seems
4853 	 * safe for them anyway.
4854 	 */
4855 	if (period == 0)
4856 		return 0;
4857 
4858 	return div64_u64(runtime << BW_SHIFT, period);
4859 }
4860 
4861 /*
4862  * wake_up_new_task - wake up a newly created task for the first time.
4863  *
4864  * This function will do some initial scheduler statistics housekeeping
4865  * that must be done for every newly created context, then puts the task
4866  * on the runqueue and wakes it.
4867  */
4868 void wake_up_new_task(struct task_struct *p)
4869 {
4870 	struct rq_flags rf;
4871 	struct rq *rq;
4872 
4873 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4874 	WRITE_ONCE(p->__state, TASK_RUNNING);
4875 #ifdef CONFIG_SMP
4876 	/*
4877 	 * Fork balancing, do it here and not earlier because:
4878 	 *  - cpus_ptr can change in the fork path
4879 	 *  - any previously selected CPU might disappear through hotplug
4880 	 *
4881 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4882 	 * as we're not fully set-up yet.
4883 	 */
4884 	p->recent_used_cpu = task_cpu(p);
4885 	rseq_migrate(p);
4886 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4887 #endif
4888 	rq = __task_rq_lock(p, &rf);
4889 	update_rq_clock(rq);
4890 	post_init_entity_util_avg(p);
4891 
4892 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4893 	trace_sched_wakeup_new(p);
4894 	wakeup_preempt(rq, p, WF_FORK);
4895 #ifdef CONFIG_SMP
4896 	if (p->sched_class->task_woken) {
4897 		/*
4898 		 * Nothing relies on rq->lock after this, so it's fine to
4899 		 * drop it.
4900 		 */
4901 		rq_unpin_lock(rq, &rf);
4902 		p->sched_class->task_woken(rq, p);
4903 		rq_repin_lock(rq, &rf);
4904 	}
4905 #endif
4906 	task_rq_unlock(rq, p, &rf);
4907 }
4908 
4909 #ifdef CONFIG_PREEMPT_NOTIFIERS
4910 
4911 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4912 
4913 void preempt_notifier_inc(void)
4914 {
4915 	static_branch_inc(&preempt_notifier_key);
4916 }
4917 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4918 
4919 void preempt_notifier_dec(void)
4920 {
4921 	static_branch_dec(&preempt_notifier_key);
4922 }
4923 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4924 
4925 /**
4926  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4927  * @notifier: notifier struct to register
4928  */
4929 void preempt_notifier_register(struct preempt_notifier *notifier)
4930 {
4931 	if (!static_branch_unlikely(&preempt_notifier_key))
4932 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4933 
4934 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4935 }
4936 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4937 
4938 /**
4939  * preempt_notifier_unregister - no longer interested in preemption notifications
4940  * @notifier: notifier struct to unregister
4941  *
4942  * This is *not* safe to call from within a preemption notifier.
4943  */
4944 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4945 {
4946 	hlist_del(&notifier->link);
4947 }
4948 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4949 
4950 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4951 {
4952 	struct preempt_notifier *notifier;
4953 
4954 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4955 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4956 }
4957 
4958 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4959 {
4960 	if (static_branch_unlikely(&preempt_notifier_key))
4961 		__fire_sched_in_preempt_notifiers(curr);
4962 }
4963 
4964 static void
4965 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4966 				   struct task_struct *next)
4967 {
4968 	struct preempt_notifier *notifier;
4969 
4970 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4971 		notifier->ops->sched_out(notifier, next);
4972 }
4973 
4974 static __always_inline void
4975 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4976 				 struct task_struct *next)
4977 {
4978 	if (static_branch_unlikely(&preempt_notifier_key))
4979 		__fire_sched_out_preempt_notifiers(curr, next);
4980 }
4981 
4982 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4983 
4984 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4985 {
4986 }
4987 
4988 static inline void
4989 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4990 				 struct task_struct *next)
4991 {
4992 }
4993 
4994 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4995 
4996 static inline void prepare_task(struct task_struct *next)
4997 {
4998 #ifdef CONFIG_SMP
4999 	/*
5000 	 * Claim the task as running, we do this before switching to it
5001 	 * such that any running task will have this set.
5002 	 *
5003 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5004 	 * its ordering comment.
5005 	 */
5006 	WRITE_ONCE(next->on_cpu, 1);
5007 #endif
5008 }
5009 
5010 static inline void finish_task(struct task_struct *prev)
5011 {
5012 #ifdef CONFIG_SMP
5013 	/*
5014 	 * This must be the very last reference to @prev from this CPU. After
5015 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5016 	 * must ensure this doesn't happen until the switch is completely
5017 	 * finished.
5018 	 *
5019 	 * In particular, the load of prev->state in finish_task_switch() must
5020 	 * happen before this.
5021 	 *
5022 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5023 	 */
5024 	smp_store_release(&prev->on_cpu, 0);
5025 #endif
5026 }
5027 
5028 #ifdef CONFIG_SMP
5029 
5030 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5031 {
5032 	void (*func)(struct rq *rq);
5033 	struct balance_callback *next;
5034 
5035 	lockdep_assert_rq_held(rq);
5036 
5037 	while (head) {
5038 		func = (void (*)(struct rq *))head->func;
5039 		next = head->next;
5040 		head->next = NULL;
5041 		head = next;
5042 
5043 		func(rq);
5044 	}
5045 }
5046 
5047 static void balance_push(struct rq *rq);
5048 
5049 /*
5050  * balance_push_callback is a right abuse of the callback interface and plays
5051  * by significantly different rules.
5052  *
5053  * Where the normal balance_callback's purpose is to be ran in the same context
5054  * that queued it (only later, when it's safe to drop rq->lock again),
5055  * balance_push_callback is specifically targeted at __schedule().
5056  *
5057  * This abuse is tolerated because it places all the unlikely/odd cases behind
5058  * a single test, namely: rq->balance_callback == NULL.
5059  */
5060 struct balance_callback balance_push_callback = {
5061 	.next = NULL,
5062 	.func = balance_push,
5063 };
5064 
5065 static inline struct balance_callback *
5066 __splice_balance_callbacks(struct rq *rq, bool split)
5067 {
5068 	struct balance_callback *head = rq->balance_callback;
5069 
5070 	if (likely(!head))
5071 		return NULL;
5072 
5073 	lockdep_assert_rq_held(rq);
5074 	/*
5075 	 * Must not take balance_push_callback off the list when
5076 	 * splice_balance_callbacks() and balance_callbacks() are not
5077 	 * in the same rq->lock section.
5078 	 *
5079 	 * In that case it would be possible for __schedule() to interleave
5080 	 * and observe the list empty.
5081 	 */
5082 	if (split && head == &balance_push_callback)
5083 		head = NULL;
5084 	else
5085 		rq->balance_callback = NULL;
5086 
5087 	return head;
5088 }
5089 
5090 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5091 {
5092 	return __splice_balance_callbacks(rq, true);
5093 }
5094 
5095 static void __balance_callbacks(struct rq *rq)
5096 {
5097 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5098 }
5099 
5100 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5101 {
5102 	unsigned long flags;
5103 
5104 	if (unlikely(head)) {
5105 		raw_spin_rq_lock_irqsave(rq, flags);
5106 		do_balance_callbacks(rq, head);
5107 		raw_spin_rq_unlock_irqrestore(rq, flags);
5108 	}
5109 }
5110 
5111 #else
5112 
5113 static inline void __balance_callbacks(struct rq *rq)
5114 {
5115 }
5116 
5117 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5118 {
5119 	return NULL;
5120 }
5121 
5122 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5123 {
5124 }
5125 
5126 #endif
5127 
5128 static inline void
5129 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5130 {
5131 	/*
5132 	 * Since the runqueue lock will be released by the next
5133 	 * task (which is an invalid locking op but in the case
5134 	 * of the scheduler it's an obvious special-case), so we
5135 	 * do an early lockdep release here:
5136 	 */
5137 	rq_unpin_lock(rq, rf);
5138 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5139 #ifdef CONFIG_DEBUG_SPINLOCK
5140 	/* this is a valid case when another task releases the spinlock */
5141 	rq_lockp(rq)->owner = next;
5142 #endif
5143 }
5144 
5145 static inline void finish_lock_switch(struct rq *rq)
5146 {
5147 	/*
5148 	 * If we are tracking spinlock dependencies then we have to
5149 	 * fix up the runqueue lock - which gets 'carried over' from
5150 	 * prev into current:
5151 	 */
5152 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5153 	__balance_callbacks(rq);
5154 	raw_spin_rq_unlock_irq(rq);
5155 }
5156 
5157 /*
5158  * NOP if the arch has not defined these:
5159  */
5160 
5161 #ifndef prepare_arch_switch
5162 # define prepare_arch_switch(next)	do { } while (0)
5163 #endif
5164 
5165 #ifndef finish_arch_post_lock_switch
5166 # define finish_arch_post_lock_switch()	do { } while (0)
5167 #endif
5168 
5169 static inline void kmap_local_sched_out(void)
5170 {
5171 #ifdef CONFIG_KMAP_LOCAL
5172 	if (unlikely(current->kmap_ctrl.idx))
5173 		__kmap_local_sched_out();
5174 #endif
5175 }
5176 
5177 static inline void kmap_local_sched_in(void)
5178 {
5179 #ifdef CONFIG_KMAP_LOCAL
5180 	if (unlikely(current->kmap_ctrl.idx))
5181 		__kmap_local_sched_in();
5182 #endif
5183 }
5184 
5185 /**
5186  * prepare_task_switch - prepare to switch tasks
5187  * @rq: the runqueue preparing to switch
5188  * @prev: the current task that is being switched out
5189  * @next: the task we are going to switch to.
5190  *
5191  * This is called with the rq lock held and interrupts off. It must
5192  * be paired with a subsequent finish_task_switch after the context
5193  * switch.
5194  *
5195  * prepare_task_switch sets up locking and calls architecture specific
5196  * hooks.
5197  */
5198 static inline void
5199 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5200 		    struct task_struct *next)
5201 {
5202 	kcov_prepare_switch(prev);
5203 	sched_info_switch(rq, prev, next);
5204 	perf_event_task_sched_out(prev, next);
5205 	rseq_preempt(prev);
5206 	fire_sched_out_preempt_notifiers(prev, next);
5207 	kmap_local_sched_out();
5208 	prepare_task(next);
5209 	prepare_arch_switch(next);
5210 }
5211 
5212 /**
5213  * finish_task_switch - clean up after a task-switch
5214  * @prev: the thread we just switched away from.
5215  *
5216  * finish_task_switch must be called after the context switch, paired
5217  * with a prepare_task_switch call before the context switch.
5218  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5219  * and do any other architecture-specific cleanup actions.
5220  *
5221  * Note that we may have delayed dropping an mm in context_switch(). If
5222  * so, we finish that here outside of the runqueue lock. (Doing it
5223  * with the lock held can cause deadlocks; see schedule() for
5224  * details.)
5225  *
5226  * The context switch have flipped the stack from under us and restored the
5227  * local variables which were saved when this task called schedule() in the
5228  * past. prev == current is still correct but we need to recalculate this_rq
5229  * because prev may have moved to another CPU.
5230  */
5231 static struct rq *finish_task_switch(struct task_struct *prev)
5232 	__releases(rq->lock)
5233 {
5234 	struct rq *rq = this_rq();
5235 	struct mm_struct *mm = rq->prev_mm;
5236 	unsigned int prev_state;
5237 
5238 	/*
5239 	 * The previous task will have left us with a preempt_count of 2
5240 	 * because it left us after:
5241 	 *
5242 	 *	schedule()
5243 	 *	  preempt_disable();			// 1
5244 	 *	  __schedule()
5245 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5246 	 *
5247 	 * Also, see FORK_PREEMPT_COUNT.
5248 	 */
5249 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5250 		      "corrupted preempt_count: %s/%d/0x%x\n",
5251 		      current->comm, current->pid, preempt_count()))
5252 		preempt_count_set(FORK_PREEMPT_COUNT);
5253 
5254 	rq->prev_mm = NULL;
5255 
5256 	/*
5257 	 * A task struct has one reference for the use as "current".
5258 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5259 	 * schedule one last time. The schedule call will never return, and
5260 	 * the scheduled task must drop that reference.
5261 	 *
5262 	 * We must observe prev->state before clearing prev->on_cpu (in
5263 	 * finish_task), otherwise a concurrent wakeup can get prev
5264 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5265 	 * transition, resulting in a double drop.
5266 	 */
5267 	prev_state = READ_ONCE(prev->__state);
5268 	vtime_task_switch(prev);
5269 	perf_event_task_sched_in(prev, current);
5270 	finish_task(prev);
5271 	tick_nohz_task_switch();
5272 	finish_lock_switch(rq);
5273 	finish_arch_post_lock_switch();
5274 	kcov_finish_switch(current);
5275 	/*
5276 	 * kmap_local_sched_out() is invoked with rq::lock held and
5277 	 * interrupts disabled. There is no requirement for that, but the
5278 	 * sched out code does not have an interrupt enabled section.
5279 	 * Restoring the maps on sched in does not require interrupts being
5280 	 * disabled either.
5281 	 */
5282 	kmap_local_sched_in();
5283 
5284 	fire_sched_in_preempt_notifiers(current);
5285 	/*
5286 	 * When switching through a kernel thread, the loop in
5287 	 * membarrier_{private,global}_expedited() may have observed that
5288 	 * kernel thread and not issued an IPI. It is therefore possible to
5289 	 * schedule between user->kernel->user threads without passing though
5290 	 * switch_mm(). Membarrier requires a barrier after storing to
5291 	 * rq->curr, before returning to userspace, so provide them here:
5292 	 *
5293 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5294 	 *   provided by mmdrop_lazy_tlb(),
5295 	 * - a sync_core for SYNC_CORE.
5296 	 */
5297 	if (mm) {
5298 		membarrier_mm_sync_core_before_usermode(mm);
5299 		mmdrop_lazy_tlb_sched(mm);
5300 	}
5301 
5302 	if (unlikely(prev_state == TASK_DEAD)) {
5303 		if (prev->sched_class->task_dead)
5304 			prev->sched_class->task_dead(prev);
5305 
5306 		/* Task is done with its stack. */
5307 		put_task_stack(prev);
5308 
5309 		put_task_struct_rcu_user(prev);
5310 	}
5311 
5312 	return rq;
5313 }
5314 
5315 /**
5316  * schedule_tail - first thing a freshly forked thread must call.
5317  * @prev: the thread we just switched away from.
5318  */
5319 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5320 	__releases(rq->lock)
5321 {
5322 	/*
5323 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5324 	 * finish_task_switch() for details.
5325 	 *
5326 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5327 	 * and the preempt_enable() will end up enabling preemption (on
5328 	 * PREEMPT_COUNT kernels).
5329 	 */
5330 
5331 	finish_task_switch(prev);
5332 	preempt_enable();
5333 
5334 	if (current->set_child_tid)
5335 		put_user(task_pid_vnr(current), current->set_child_tid);
5336 
5337 	calculate_sigpending();
5338 }
5339 
5340 /*
5341  * context_switch - switch to the new MM and the new thread's register state.
5342  */
5343 static __always_inline struct rq *
5344 context_switch(struct rq *rq, struct task_struct *prev,
5345 	       struct task_struct *next, struct rq_flags *rf)
5346 {
5347 	prepare_task_switch(rq, prev, next);
5348 
5349 	/*
5350 	 * For paravirt, this is coupled with an exit in switch_to to
5351 	 * combine the page table reload and the switch backend into
5352 	 * one hypercall.
5353 	 */
5354 	arch_start_context_switch(prev);
5355 
5356 	/*
5357 	 * kernel -> kernel   lazy + transfer active
5358 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5359 	 *
5360 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5361 	 *   user ->   user   switch
5362 	 *
5363 	 * switch_mm_cid() needs to be updated if the barriers provided
5364 	 * by context_switch() are modified.
5365 	 */
5366 	if (!next->mm) {                                // to kernel
5367 		enter_lazy_tlb(prev->active_mm, next);
5368 
5369 		next->active_mm = prev->active_mm;
5370 		if (prev->mm)                           // from user
5371 			mmgrab_lazy_tlb(prev->active_mm);
5372 		else
5373 			prev->active_mm = NULL;
5374 	} else {                                        // to user
5375 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5376 		/*
5377 		 * sys_membarrier() requires an smp_mb() between setting
5378 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5379 		 *
5380 		 * The below provides this either through switch_mm(), or in
5381 		 * case 'prev->active_mm == next->mm' through
5382 		 * finish_task_switch()'s mmdrop().
5383 		 */
5384 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5385 		lru_gen_use_mm(next->mm);
5386 
5387 		if (!prev->mm) {                        // from kernel
5388 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5389 			rq->prev_mm = prev->active_mm;
5390 			prev->active_mm = NULL;
5391 		}
5392 	}
5393 
5394 	/* switch_mm_cid() requires the memory barriers above. */
5395 	switch_mm_cid(rq, prev, next);
5396 
5397 	prepare_lock_switch(rq, next, rf);
5398 
5399 	/* Here we just switch the register state and the stack. */
5400 	switch_to(prev, next, prev);
5401 	barrier();
5402 
5403 	return finish_task_switch(prev);
5404 }
5405 
5406 /*
5407  * nr_running and nr_context_switches:
5408  *
5409  * externally visible scheduler statistics: current number of runnable
5410  * threads, total number of context switches performed since bootup.
5411  */
5412 unsigned int nr_running(void)
5413 {
5414 	unsigned int i, sum = 0;
5415 
5416 	for_each_online_cpu(i)
5417 		sum += cpu_rq(i)->nr_running;
5418 
5419 	return sum;
5420 }
5421 
5422 /*
5423  * Check if only the current task is running on the CPU.
5424  *
5425  * Caution: this function does not check that the caller has disabled
5426  * preemption, thus the result might have a time-of-check-to-time-of-use
5427  * race.  The caller is responsible to use it correctly, for example:
5428  *
5429  * - from a non-preemptible section (of course)
5430  *
5431  * - from a thread that is bound to a single CPU
5432  *
5433  * - in a loop with very short iterations (e.g. a polling loop)
5434  */
5435 bool single_task_running(void)
5436 {
5437 	return raw_rq()->nr_running == 1;
5438 }
5439 EXPORT_SYMBOL(single_task_running);
5440 
5441 unsigned long long nr_context_switches_cpu(int cpu)
5442 {
5443 	return cpu_rq(cpu)->nr_switches;
5444 }
5445 
5446 unsigned long long nr_context_switches(void)
5447 {
5448 	int i;
5449 	unsigned long long sum = 0;
5450 
5451 	for_each_possible_cpu(i)
5452 		sum += cpu_rq(i)->nr_switches;
5453 
5454 	return sum;
5455 }
5456 
5457 /*
5458  * Consumers of these two interfaces, like for example the cpuidle menu
5459  * governor, are using nonsensical data. Preferring shallow idle state selection
5460  * for a CPU that has IO-wait which might not even end up running the task when
5461  * it does become runnable.
5462  */
5463 
5464 unsigned int nr_iowait_cpu(int cpu)
5465 {
5466 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5467 }
5468 
5469 /*
5470  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5471  *
5472  * The idea behind IO-wait account is to account the idle time that we could
5473  * have spend running if it were not for IO. That is, if we were to improve the
5474  * storage performance, we'd have a proportional reduction in IO-wait time.
5475  *
5476  * This all works nicely on UP, where, when a task blocks on IO, we account
5477  * idle time as IO-wait, because if the storage were faster, it could've been
5478  * running and we'd not be idle.
5479  *
5480  * This has been extended to SMP, by doing the same for each CPU. This however
5481  * is broken.
5482  *
5483  * Imagine for instance the case where two tasks block on one CPU, only the one
5484  * CPU will have IO-wait accounted, while the other has regular idle. Even
5485  * though, if the storage were faster, both could've ran at the same time,
5486  * utilising both CPUs.
5487  *
5488  * This means, that when looking globally, the current IO-wait accounting on
5489  * SMP is a lower bound, by reason of under accounting.
5490  *
5491  * Worse, since the numbers are provided per CPU, they are sometimes
5492  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5493  * associated with any one particular CPU, it can wake to another CPU than it
5494  * blocked on. This means the per CPU IO-wait number is meaningless.
5495  *
5496  * Task CPU affinities can make all that even more 'interesting'.
5497  */
5498 
5499 unsigned int nr_iowait(void)
5500 {
5501 	unsigned int i, sum = 0;
5502 
5503 	for_each_possible_cpu(i)
5504 		sum += nr_iowait_cpu(i);
5505 
5506 	return sum;
5507 }
5508 
5509 #ifdef CONFIG_SMP
5510 
5511 /*
5512  * sched_exec - execve() is a valuable balancing opportunity, because at
5513  * this point the task has the smallest effective memory and cache footprint.
5514  */
5515 void sched_exec(void)
5516 {
5517 	struct task_struct *p = current;
5518 	struct migration_arg arg;
5519 	int dest_cpu;
5520 
5521 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5522 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5523 		if (dest_cpu == smp_processor_id())
5524 			return;
5525 
5526 		if (unlikely(!cpu_active(dest_cpu)))
5527 			return;
5528 
5529 		arg = (struct migration_arg){ p, dest_cpu };
5530 	}
5531 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5532 }
5533 
5534 #endif
5535 
5536 DEFINE_PER_CPU(struct kernel_stat, kstat);
5537 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5538 
5539 EXPORT_PER_CPU_SYMBOL(kstat);
5540 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5541 
5542 /*
5543  * The function fair_sched_class.update_curr accesses the struct curr
5544  * and its field curr->exec_start; when called from task_sched_runtime(),
5545  * we observe a high rate of cache misses in practice.
5546  * Prefetching this data results in improved performance.
5547  */
5548 static inline void prefetch_curr_exec_start(struct task_struct *p)
5549 {
5550 #ifdef CONFIG_FAIR_GROUP_SCHED
5551 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5552 #else
5553 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5554 #endif
5555 	prefetch(curr);
5556 	prefetch(&curr->exec_start);
5557 }
5558 
5559 /*
5560  * Return accounted runtime for the task.
5561  * In case the task is currently running, return the runtime plus current's
5562  * pending runtime that have not been accounted yet.
5563  */
5564 unsigned long long task_sched_runtime(struct task_struct *p)
5565 {
5566 	struct rq_flags rf;
5567 	struct rq *rq;
5568 	u64 ns;
5569 
5570 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5571 	/*
5572 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5573 	 * So we have a optimization chance when the task's delta_exec is 0.
5574 	 * Reading ->on_cpu is racy, but this is ok.
5575 	 *
5576 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5577 	 * If we race with it entering CPU, unaccounted time is 0. This is
5578 	 * indistinguishable from the read occurring a few cycles earlier.
5579 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5580 	 * been accounted, so we're correct here as well.
5581 	 */
5582 	if (!p->on_cpu || !task_on_rq_queued(p))
5583 		return p->se.sum_exec_runtime;
5584 #endif
5585 
5586 	rq = task_rq_lock(p, &rf);
5587 	/*
5588 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5589 	 * project cycles that may never be accounted to this
5590 	 * thread, breaking clock_gettime().
5591 	 */
5592 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5593 		prefetch_curr_exec_start(p);
5594 		update_rq_clock(rq);
5595 		p->sched_class->update_curr(rq);
5596 	}
5597 	ns = p->se.sum_exec_runtime;
5598 	task_rq_unlock(rq, p, &rf);
5599 
5600 	return ns;
5601 }
5602 
5603 #ifdef CONFIG_SCHED_DEBUG
5604 static u64 cpu_resched_latency(struct rq *rq)
5605 {
5606 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5607 	u64 resched_latency, now = rq_clock(rq);
5608 	static bool warned_once;
5609 
5610 	if (sysctl_resched_latency_warn_once && warned_once)
5611 		return 0;
5612 
5613 	if (!need_resched() || !latency_warn_ms)
5614 		return 0;
5615 
5616 	if (system_state == SYSTEM_BOOTING)
5617 		return 0;
5618 
5619 	if (!rq->last_seen_need_resched_ns) {
5620 		rq->last_seen_need_resched_ns = now;
5621 		rq->ticks_without_resched = 0;
5622 		return 0;
5623 	}
5624 
5625 	rq->ticks_without_resched++;
5626 	resched_latency = now - rq->last_seen_need_resched_ns;
5627 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5628 		return 0;
5629 
5630 	warned_once = true;
5631 
5632 	return resched_latency;
5633 }
5634 
5635 static int __init setup_resched_latency_warn_ms(char *str)
5636 {
5637 	long val;
5638 
5639 	if ((kstrtol(str, 0, &val))) {
5640 		pr_warn("Unable to set resched_latency_warn_ms\n");
5641 		return 1;
5642 	}
5643 
5644 	sysctl_resched_latency_warn_ms = val;
5645 	return 1;
5646 }
5647 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5648 #else
5649 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5650 #endif /* CONFIG_SCHED_DEBUG */
5651 
5652 /*
5653  * This function gets called by the timer code, with HZ frequency.
5654  * We call it with interrupts disabled.
5655  */
5656 void scheduler_tick(void)
5657 {
5658 	int cpu = smp_processor_id();
5659 	struct rq *rq = cpu_rq(cpu);
5660 	struct task_struct *curr = rq->curr;
5661 	struct rq_flags rf;
5662 	unsigned long thermal_pressure;
5663 	u64 resched_latency;
5664 
5665 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5666 		arch_scale_freq_tick();
5667 
5668 	sched_clock_tick();
5669 
5670 	rq_lock(rq, &rf);
5671 
5672 	update_rq_clock(rq);
5673 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5674 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5675 	curr->sched_class->task_tick(rq, curr, 0);
5676 	if (sched_feat(LATENCY_WARN))
5677 		resched_latency = cpu_resched_latency(rq);
5678 	calc_global_load_tick(rq);
5679 	sched_core_tick(rq);
5680 	task_tick_mm_cid(rq, curr);
5681 
5682 	rq_unlock(rq, &rf);
5683 
5684 	if (sched_feat(LATENCY_WARN) && resched_latency)
5685 		resched_latency_warn(cpu, resched_latency);
5686 
5687 	perf_event_task_tick();
5688 
5689 	if (curr->flags & PF_WQ_WORKER)
5690 		wq_worker_tick(curr);
5691 
5692 #ifdef CONFIG_SMP
5693 	rq->idle_balance = idle_cpu(cpu);
5694 	trigger_load_balance(rq);
5695 #endif
5696 }
5697 
5698 #ifdef CONFIG_NO_HZ_FULL
5699 
5700 struct tick_work {
5701 	int			cpu;
5702 	atomic_t		state;
5703 	struct delayed_work	work;
5704 };
5705 /* Values for ->state, see diagram below. */
5706 #define TICK_SCHED_REMOTE_OFFLINE	0
5707 #define TICK_SCHED_REMOTE_OFFLINING	1
5708 #define TICK_SCHED_REMOTE_RUNNING	2
5709 
5710 /*
5711  * State diagram for ->state:
5712  *
5713  *
5714  *          TICK_SCHED_REMOTE_OFFLINE
5715  *                    |   ^
5716  *                    |   |
5717  *                    |   | sched_tick_remote()
5718  *                    |   |
5719  *                    |   |
5720  *                    +--TICK_SCHED_REMOTE_OFFLINING
5721  *                    |   ^
5722  *                    |   |
5723  * sched_tick_start() |   | sched_tick_stop()
5724  *                    |   |
5725  *                    V   |
5726  *          TICK_SCHED_REMOTE_RUNNING
5727  *
5728  *
5729  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5730  * and sched_tick_start() are happy to leave the state in RUNNING.
5731  */
5732 
5733 static struct tick_work __percpu *tick_work_cpu;
5734 
5735 static void sched_tick_remote(struct work_struct *work)
5736 {
5737 	struct delayed_work *dwork = to_delayed_work(work);
5738 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5739 	int cpu = twork->cpu;
5740 	struct rq *rq = cpu_rq(cpu);
5741 	int os;
5742 
5743 	/*
5744 	 * Handle the tick only if it appears the remote CPU is running in full
5745 	 * dynticks mode. The check is racy by nature, but missing a tick or
5746 	 * having one too much is no big deal because the scheduler tick updates
5747 	 * statistics and checks timeslices in a time-independent way, regardless
5748 	 * of when exactly it is running.
5749 	 */
5750 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5751 		guard(rq_lock_irq)(rq);
5752 		struct task_struct *curr = rq->curr;
5753 
5754 		if (cpu_online(cpu)) {
5755 			update_rq_clock(rq);
5756 
5757 			if (!is_idle_task(curr)) {
5758 				/*
5759 				 * Make sure the next tick runs within a
5760 				 * reasonable amount of time.
5761 				 */
5762 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5763 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5764 			}
5765 			curr->sched_class->task_tick(rq, curr, 0);
5766 
5767 			calc_load_nohz_remote(rq);
5768 		}
5769 	}
5770 
5771 	/*
5772 	 * Run the remote tick once per second (1Hz). This arbitrary
5773 	 * frequency is large enough to avoid overload but short enough
5774 	 * to keep scheduler internal stats reasonably up to date.  But
5775 	 * first update state to reflect hotplug activity if required.
5776 	 */
5777 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5778 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5779 	if (os == TICK_SCHED_REMOTE_RUNNING)
5780 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5781 }
5782 
5783 static void sched_tick_start(int cpu)
5784 {
5785 	int os;
5786 	struct tick_work *twork;
5787 
5788 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5789 		return;
5790 
5791 	WARN_ON_ONCE(!tick_work_cpu);
5792 
5793 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5794 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5795 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5796 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5797 		twork->cpu = cpu;
5798 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5799 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5800 	}
5801 }
5802 
5803 #ifdef CONFIG_HOTPLUG_CPU
5804 static void sched_tick_stop(int cpu)
5805 {
5806 	struct tick_work *twork;
5807 	int os;
5808 
5809 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5810 		return;
5811 
5812 	WARN_ON_ONCE(!tick_work_cpu);
5813 
5814 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5815 	/* There cannot be competing actions, but don't rely on stop-machine. */
5816 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5817 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5818 	/* Don't cancel, as this would mess up the state machine. */
5819 }
5820 #endif /* CONFIG_HOTPLUG_CPU */
5821 
5822 int __init sched_tick_offload_init(void)
5823 {
5824 	tick_work_cpu = alloc_percpu(struct tick_work);
5825 	BUG_ON(!tick_work_cpu);
5826 	return 0;
5827 }
5828 
5829 #else /* !CONFIG_NO_HZ_FULL */
5830 static inline void sched_tick_start(int cpu) { }
5831 static inline void sched_tick_stop(int cpu) { }
5832 #endif
5833 
5834 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5835 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5836 /*
5837  * If the value passed in is equal to the current preempt count
5838  * then we just disabled preemption. Start timing the latency.
5839  */
5840 static inline void preempt_latency_start(int val)
5841 {
5842 	if (preempt_count() == val) {
5843 		unsigned long ip = get_lock_parent_ip();
5844 #ifdef CONFIG_DEBUG_PREEMPT
5845 		current->preempt_disable_ip = ip;
5846 #endif
5847 		trace_preempt_off(CALLER_ADDR0, ip);
5848 	}
5849 }
5850 
5851 void preempt_count_add(int val)
5852 {
5853 #ifdef CONFIG_DEBUG_PREEMPT
5854 	/*
5855 	 * Underflow?
5856 	 */
5857 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5858 		return;
5859 #endif
5860 	__preempt_count_add(val);
5861 #ifdef CONFIG_DEBUG_PREEMPT
5862 	/*
5863 	 * Spinlock count overflowing soon?
5864 	 */
5865 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5866 				PREEMPT_MASK - 10);
5867 #endif
5868 	preempt_latency_start(val);
5869 }
5870 EXPORT_SYMBOL(preempt_count_add);
5871 NOKPROBE_SYMBOL(preempt_count_add);
5872 
5873 /*
5874  * If the value passed in equals to the current preempt count
5875  * then we just enabled preemption. Stop timing the latency.
5876  */
5877 static inline void preempt_latency_stop(int val)
5878 {
5879 	if (preempt_count() == val)
5880 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5881 }
5882 
5883 void preempt_count_sub(int val)
5884 {
5885 #ifdef CONFIG_DEBUG_PREEMPT
5886 	/*
5887 	 * Underflow?
5888 	 */
5889 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5890 		return;
5891 	/*
5892 	 * Is the spinlock portion underflowing?
5893 	 */
5894 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5895 			!(preempt_count() & PREEMPT_MASK)))
5896 		return;
5897 #endif
5898 
5899 	preempt_latency_stop(val);
5900 	__preempt_count_sub(val);
5901 }
5902 EXPORT_SYMBOL(preempt_count_sub);
5903 NOKPROBE_SYMBOL(preempt_count_sub);
5904 
5905 #else
5906 static inline void preempt_latency_start(int val) { }
5907 static inline void preempt_latency_stop(int val) { }
5908 #endif
5909 
5910 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5911 {
5912 #ifdef CONFIG_DEBUG_PREEMPT
5913 	return p->preempt_disable_ip;
5914 #else
5915 	return 0;
5916 #endif
5917 }
5918 
5919 /*
5920  * Print scheduling while atomic bug:
5921  */
5922 static noinline void __schedule_bug(struct task_struct *prev)
5923 {
5924 	/* Save this before calling printk(), since that will clobber it */
5925 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5926 
5927 	if (oops_in_progress)
5928 		return;
5929 
5930 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5931 		prev->comm, prev->pid, preempt_count());
5932 
5933 	debug_show_held_locks(prev);
5934 	print_modules();
5935 	if (irqs_disabled())
5936 		print_irqtrace_events(prev);
5937 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5938 		pr_err("Preemption disabled at:");
5939 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5940 	}
5941 	check_panic_on_warn("scheduling while atomic");
5942 
5943 	dump_stack();
5944 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5945 }
5946 
5947 /*
5948  * Various schedule()-time debugging checks and statistics:
5949  */
5950 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5951 {
5952 #ifdef CONFIG_SCHED_STACK_END_CHECK
5953 	if (task_stack_end_corrupted(prev))
5954 		panic("corrupted stack end detected inside scheduler\n");
5955 
5956 	if (task_scs_end_corrupted(prev))
5957 		panic("corrupted shadow stack detected inside scheduler\n");
5958 #endif
5959 
5960 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5961 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5962 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5963 			prev->comm, prev->pid, prev->non_block_count);
5964 		dump_stack();
5965 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5966 	}
5967 #endif
5968 
5969 	if (unlikely(in_atomic_preempt_off())) {
5970 		__schedule_bug(prev);
5971 		preempt_count_set(PREEMPT_DISABLED);
5972 	}
5973 	rcu_sleep_check();
5974 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5975 
5976 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5977 
5978 	schedstat_inc(this_rq()->sched_count);
5979 }
5980 
5981 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5982 				  struct rq_flags *rf)
5983 {
5984 #ifdef CONFIG_SMP
5985 	const struct sched_class *class;
5986 	/*
5987 	 * We must do the balancing pass before put_prev_task(), such
5988 	 * that when we release the rq->lock the task is in the same
5989 	 * state as before we took rq->lock.
5990 	 *
5991 	 * We can terminate the balance pass as soon as we know there is
5992 	 * a runnable task of @class priority or higher.
5993 	 */
5994 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5995 		if (class->balance(rq, prev, rf))
5996 			break;
5997 	}
5998 #endif
5999 
6000 	put_prev_task(rq, prev);
6001 }
6002 
6003 /*
6004  * Pick up the highest-prio task:
6005  */
6006 static inline struct task_struct *
6007 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6008 {
6009 	const struct sched_class *class;
6010 	struct task_struct *p;
6011 
6012 	/*
6013 	 * Optimization: we know that if all tasks are in the fair class we can
6014 	 * call that function directly, but only if the @prev task wasn't of a
6015 	 * higher scheduling class, because otherwise those lose the
6016 	 * opportunity to pull in more work from other CPUs.
6017 	 */
6018 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6019 		   rq->nr_running == rq->cfs.h_nr_running)) {
6020 
6021 		p = pick_next_task_fair(rq, prev, rf);
6022 		if (unlikely(p == RETRY_TASK))
6023 			goto restart;
6024 
6025 		/* Assume the next prioritized class is idle_sched_class */
6026 		if (!p) {
6027 			put_prev_task(rq, prev);
6028 			p = pick_next_task_idle(rq);
6029 		}
6030 
6031 		/*
6032 		 * This is the fast path; it cannot be a DL server pick;
6033 		 * therefore even if @p == @prev, ->dl_server must be NULL.
6034 		 */
6035 		if (p->dl_server)
6036 			p->dl_server = NULL;
6037 
6038 		return p;
6039 	}
6040 
6041 restart:
6042 	put_prev_task_balance(rq, prev, rf);
6043 
6044 	/*
6045 	 * We've updated @prev and no longer need the server link, clear it.
6046 	 * Must be done before ->pick_next_task() because that can (re)set
6047 	 * ->dl_server.
6048 	 */
6049 	if (prev->dl_server)
6050 		prev->dl_server = NULL;
6051 
6052 	for_each_class(class) {
6053 		p = class->pick_next_task(rq);
6054 		if (p)
6055 			return p;
6056 	}
6057 
6058 	BUG(); /* The idle class should always have a runnable task. */
6059 }
6060 
6061 #ifdef CONFIG_SCHED_CORE
6062 static inline bool is_task_rq_idle(struct task_struct *t)
6063 {
6064 	return (task_rq(t)->idle == t);
6065 }
6066 
6067 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6068 {
6069 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6070 }
6071 
6072 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6073 {
6074 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6075 		return true;
6076 
6077 	return a->core_cookie == b->core_cookie;
6078 }
6079 
6080 static inline struct task_struct *pick_task(struct rq *rq)
6081 {
6082 	const struct sched_class *class;
6083 	struct task_struct *p;
6084 
6085 	for_each_class(class) {
6086 		p = class->pick_task(rq);
6087 		if (p)
6088 			return p;
6089 	}
6090 
6091 	BUG(); /* The idle class should always have a runnable task. */
6092 }
6093 
6094 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6095 
6096 static void queue_core_balance(struct rq *rq);
6097 
6098 static struct task_struct *
6099 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6100 {
6101 	struct task_struct *next, *p, *max = NULL;
6102 	const struct cpumask *smt_mask;
6103 	bool fi_before = false;
6104 	bool core_clock_updated = (rq == rq->core);
6105 	unsigned long cookie;
6106 	int i, cpu, occ = 0;
6107 	struct rq *rq_i;
6108 	bool need_sync;
6109 
6110 	if (!sched_core_enabled(rq))
6111 		return __pick_next_task(rq, prev, rf);
6112 
6113 	cpu = cpu_of(rq);
6114 
6115 	/* Stopper task is switching into idle, no need core-wide selection. */
6116 	if (cpu_is_offline(cpu)) {
6117 		/*
6118 		 * Reset core_pick so that we don't enter the fastpath when
6119 		 * coming online. core_pick would already be migrated to
6120 		 * another cpu during offline.
6121 		 */
6122 		rq->core_pick = NULL;
6123 		return __pick_next_task(rq, prev, rf);
6124 	}
6125 
6126 	/*
6127 	 * If there were no {en,de}queues since we picked (IOW, the task
6128 	 * pointers are all still valid), and we haven't scheduled the last
6129 	 * pick yet, do so now.
6130 	 *
6131 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6132 	 * it was either offline or went offline during a sibling's core-wide
6133 	 * selection. In this case, do a core-wide selection.
6134 	 */
6135 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6136 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6137 	    rq->core_pick) {
6138 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6139 
6140 		next = rq->core_pick;
6141 		if (next != prev) {
6142 			put_prev_task(rq, prev);
6143 			set_next_task(rq, next);
6144 		}
6145 
6146 		rq->core_pick = NULL;
6147 		goto out;
6148 	}
6149 
6150 	put_prev_task_balance(rq, prev, rf);
6151 
6152 	smt_mask = cpu_smt_mask(cpu);
6153 	need_sync = !!rq->core->core_cookie;
6154 
6155 	/* reset state */
6156 	rq->core->core_cookie = 0UL;
6157 	if (rq->core->core_forceidle_count) {
6158 		if (!core_clock_updated) {
6159 			update_rq_clock(rq->core);
6160 			core_clock_updated = true;
6161 		}
6162 		sched_core_account_forceidle(rq);
6163 		/* reset after accounting force idle */
6164 		rq->core->core_forceidle_start = 0;
6165 		rq->core->core_forceidle_count = 0;
6166 		rq->core->core_forceidle_occupation = 0;
6167 		need_sync = true;
6168 		fi_before = true;
6169 	}
6170 
6171 	/*
6172 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6173 	 *
6174 	 * @task_seq guards the task state ({en,de}queues)
6175 	 * @pick_seq is the @task_seq we did a selection on
6176 	 * @sched_seq is the @pick_seq we scheduled
6177 	 *
6178 	 * However, preemptions can cause multiple picks on the same task set.
6179 	 * 'Fix' this by also increasing @task_seq for every pick.
6180 	 */
6181 	rq->core->core_task_seq++;
6182 
6183 	/*
6184 	 * Optimize for common case where this CPU has no cookies
6185 	 * and there are no cookied tasks running on siblings.
6186 	 */
6187 	if (!need_sync) {
6188 		next = pick_task(rq);
6189 		if (!next->core_cookie) {
6190 			rq->core_pick = NULL;
6191 			/*
6192 			 * For robustness, update the min_vruntime_fi for
6193 			 * unconstrained picks as well.
6194 			 */
6195 			WARN_ON_ONCE(fi_before);
6196 			task_vruntime_update(rq, next, false);
6197 			goto out_set_next;
6198 		}
6199 	}
6200 
6201 	/*
6202 	 * For each thread: do the regular task pick and find the max prio task
6203 	 * amongst them.
6204 	 *
6205 	 * Tie-break prio towards the current CPU
6206 	 */
6207 	for_each_cpu_wrap(i, smt_mask, cpu) {
6208 		rq_i = cpu_rq(i);
6209 
6210 		/*
6211 		 * Current cpu always has its clock updated on entrance to
6212 		 * pick_next_task(). If the current cpu is not the core,
6213 		 * the core may also have been updated above.
6214 		 */
6215 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6216 			update_rq_clock(rq_i);
6217 
6218 		p = rq_i->core_pick = pick_task(rq_i);
6219 		if (!max || prio_less(max, p, fi_before))
6220 			max = p;
6221 	}
6222 
6223 	cookie = rq->core->core_cookie = max->core_cookie;
6224 
6225 	/*
6226 	 * For each thread: try and find a runnable task that matches @max or
6227 	 * force idle.
6228 	 */
6229 	for_each_cpu(i, smt_mask) {
6230 		rq_i = cpu_rq(i);
6231 		p = rq_i->core_pick;
6232 
6233 		if (!cookie_equals(p, cookie)) {
6234 			p = NULL;
6235 			if (cookie)
6236 				p = sched_core_find(rq_i, cookie);
6237 			if (!p)
6238 				p = idle_sched_class.pick_task(rq_i);
6239 		}
6240 
6241 		rq_i->core_pick = p;
6242 
6243 		if (p == rq_i->idle) {
6244 			if (rq_i->nr_running) {
6245 				rq->core->core_forceidle_count++;
6246 				if (!fi_before)
6247 					rq->core->core_forceidle_seq++;
6248 			}
6249 		} else {
6250 			occ++;
6251 		}
6252 	}
6253 
6254 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6255 		rq->core->core_forceidle_start = rq_clock(rq->core);
6256 		rq->core->core_forceidle_occupation = occ;
6257 	}
6258 
6259 	rq->core->core_pick_seq = rq->core->core_task_seq;
6260 	next = rq->core_pick;
6261 	rq->core_sched_seq = rq->core->core_pick_seq;
6262 
6263 	/* Something should have been selected for current CPU */
6264 	WARN_ON_ONCE(!next);
6265 
6266 	/*
6267 	 * Reschedule siblings
6268 	 *
6269 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6270 	 * sending an IPI (below) ensures the sibling will no longer be running
6271 	 * their task. This ensures there is no inter-sibling overlap between
6272 	 * non-matching user state.
6273 	 */
6274 	for_each_cpu(i, smt_mask) {
6275 		rq_i = cpu_rq(i);
6276 
6277 		/*
6278 		 * An online sibling might have gone offline before a task
6279 		 * could be picked for it, or it might be offline but later
6280 		 * happen to come online, but its too late and nothing was
6281 		 * picked for it.  That's Ok - it will pick tasks for itself,
6282 		 * so ignore it.
6283 		 */
6284 		if (!rq_i->core_pick)
6285 			continue;
6286 
6287 		/*
6288 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6289 		 * fi_before     fi      update?
6290 		 *  0            0       1
6291 		 *  0            1       1
6292 		 *  1            0       1
6293 		 *  1            1       0
6294 		 */
6295 		if (!(fi_before && rq->core->core_forceidle_count))
6296 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6297 
6298 		rq_i->core_pick->core_occupation = occ;
6299 
6300 		if (i == cpu) {
6301 			rq_i->core_pick = NULL;
6302 			continue;
6303 		}
6304 
6305 		/* Did we break L1TF mitigation requirements? */
6306 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6307 
6308 		if (rq_i->curr == rq_i->core_pick) {
6309 			rq_i->core_pick = NULL;
6310 			continue;
6311 		}
6312 
6313 		resched_curr(rq_i);
6314 	}
6315 
6316 out_set_next:
6317 	set_next_task(rq, next);
6318 out:
6319 	if (rq->core->core_forceidle_count && next == rq->idle)
6320 		queue_core_balance(rq);
6321 
6322 	return next;
6323 }
6324 
6325 static bool try_steal_cookie(int this, int that)
6326 {
6327 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6328 	struct task_struct *p;
6329 	unsigned long cookie;
6330 	bool success = false;
6331 
6332 	guard(irq)();
6333 	guard(double_rq_lock)(dst, src);
6334 
6335 	cookie = dst->core->core_cookie;
6336 	if (!cookie)
6337 		return false;
6338 
6339 	if (dst->curr != dst->idle)
6340 		return false;
6341 
6342 	p = sched_core_find(src, cookie);
6343 	if (!p)
6344 		return false;
6345 
6346 	do {
6347 		if (p == src->core_pick || p == src->curr)
6348 			goto next;
6349 
6350 		if (!is_cpu_allowed(p, this))
6351 			goto next;
6352 
6353 		if (p->core_occupation > dst->idle->core_occupation)
6354 			goto next;
6355 		/*
6356 		 * sched_core_find() and sched_core_next() will ensure
6357 		 * that task @p is not throttled now, we also need to
6358 		 * check whether the runqueue of the destination CPU is
6359 		 * being throttled.
6360 		 */
6361 		if (sched_task_is_throttled(p, this))
6362 			goto next;
6363 
6364 		deactivate_task(src, p, 0);
6365 		set_task_cpu(p, this);
6366 		activate_task(dst, p, 0);
6367 
6368 		resched_curr(dst);
6369 
6370 		success = true;
6371 		break;
6372 
6373 next:
6374 		p = sched_core_next(p, cookie);
6375 	} while (p);
6376 
6377 	return success;
6378 }
6379 
6380 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6381 {
6382 	int i;
6383 
6384 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6385 		if (i == cpu)
6386 			continue;
6387 
6388 		if (need_resched())
6389 			break;
6390 
6391 		if (try_steal_cookie(cpu, i))
6392 			return true;
6393 	}
6394 
6395 	return false;
6396 }
6397 
6398 static void sched_core_balance(struct rq *rq)
6399 {
6400 	struct sched_domain *sd;
6401 	int cpu = cpu_of(rq);
6402 
6403 	guard(preempt)();
6404 	guard(rcu)();
6405 
6406 	raw_spin_rq_unlock_irq(rq);
6407 	for_each_domain(cpu, sd) {
6408 		if (need_resched())
6409 			break;
6410 
6411 		if (steal_cookie_task(cpu, sd))
6412 			break;
6413 	}
6414 	raw_spin_rq_lock_irq(rq);
6415 }
6416 
6417 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6418 
6419 static void queue_core_balance(struct rq *rq)
6420 {
6421 	if (!sched_core_enabled(rq))
6422 		return;
6423 
6424 	if (!rq->core->core_cookie)
6425 		return;
6426 
6427 	if (!rq->nr_running) /* not forced idle */
6428 		return;
6429 
6430 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6431 }
6432 
6433 DEFINE_LOCK_GUARD_1(core_lock, int,
6434 		    sched_core_lock(*_T->lock, &_T->flags),
6435 		    sched_core_unlock(*_T->lock, &_T->flags),
6436 		    unsigned long flags)
6437 
6438 static void sched_core_cpu_starting(unsigned int cpu)
6439 {
6440 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6441 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6442 	int t;
6443 
6444 	guard(core_lock)(&cpu);
6445 
6446 	WARN_ON_ONCE(rq->core != rq);
6447 
6448 	/* if we're the first, we'll be our own leader */
6449 	if (cpumask_weight(smt_mask) == 1)
6450 		return;
6451 
6452 	/* find the leader */
6453 	for_each_cpu(t, smt_mask) {
6454 		if (t == cpu)
6455 			continue;
6456 		rq = cpu_rq(t);
6457 		if (rq->core == rq) {
6458 			core_rq = rq;
6459 			break;
6460 		}
6461 	}
6462 
6463 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6464 		return;
6465 
6466 	/* install and validate core_rq */
6467 	for_each_cpu(t, smt_mask) {
6468 		rq = cpu_rq(t);
6469 
6470 		if (t == cpu)
6471 			rq->core = core_rq;
6472 
6473 		WARN_ON_ONCE(rq->core != core_rq);
6474 	}
6475 }
6476 
6477 static void sched_core_cpu_deactivate(unsigned int cpu)
6478 {
6479 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6480 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6481 	int t;
6482 
6483 	guard(core_lock)(&cpu);
6484 
6485 	/* if we're the last man standing, nothing to do */
6486 	if (cpumask_weight(smt_mask) == 1) {
6487 		WARN_ON_ONCE(rq->core != rq);
6488 		return;
6489 	}
6490 
6491 	/* if we're not the leader, nothing to do */
6492 	if (rq->core != rq)
6493 		return;
6494 
6495 	/* find a new leader */
6496 	for_each_cpu(t, smt_mask) {
6497 		if (t == cpu)
6498 			continue;
6499 		core_rq = cpu_rq(t);
6500 		break;
6501 	}
6502 
6503 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6504 		return;
6505 
6506 	/* copy the shared state to the new leader */
6507 	core_rq->core_task_seq             = rq->core_task_seq;
6508 	core_rq->core_pick_seq             = rq->core_pick_seq;
6509 	core_rq->core_cookie               = rq->core_cookie;
6510 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6511 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6512 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6513 
6514 	/*
6515 	 * Accounting edge for forced idle is handled in pick_next_task().
6516 	 * Don't need another one here, since the hotplug thread shouldn't
6517 	 * have a cookie.
6518 	 */
6519 	core_rq->core_forceidle_start = 0;
6520 
6521 	/* install new leader */
6522 	for_each_cpu(t, smt_mask) {
6523 		rq = cpu_rq(t);
6524 		rq->core = core_rq;
6525 	}
6526 }
6527 
6528 static inline void sched_core_cpu_dying(unsigned int cpu)
6529 {
6530 	struct rq *rq = cpu_rq(cpu);
6531 
6532 	if (rq->core != rq)
6533 		rq->core = rq;
6534 }
6535 
6536 #else /* !CONFIG_SCHED_CORE */
6537 
6538 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6539 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6540 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6541 
6542 static struct task_struct *
6543 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6544 {
6545 	return __pick_next_task(rq, prev, rf);
6546 }
6547 
6548 #endif /* CONFIG_SCHED_CORE */
6549 
6550 /*
6551  * Constants for the sched_mode argument of __schedule().
6552  *
6553  * The mode argument allows RT enabled kernels to differentiate a
6554  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6555  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6556  * optimize the AND operation out and just check for zero.
6557  */
6558 #define SM_NONE			0x0
6559 #define SM_PREEMPT		0x1
6560 #define SM_RTLOCK_WAIT		0x2
6561 
6562 #ifndef CONFIG_PREEMPT_RT
6563 # define SM_MASK_PREEMPT	(~0U)
6564 #else
6565 # define SM_MASK_PREEMPT	SM_PREEMPT
6566 #endif
6567 
6568 /*
6569  * __schedule() is the main scheduler function.
6570  *
6571  * The main means of driving the scheduler and thus entering this function are:
6572  *
6573  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6574  *
6575  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6576  *      paths. For example, see arch/x86/entry_64.S.
6577  *
6578  *      To drive preemption between tasks, the scheduler sets the flag in timer
6579  *      interrupt handler scheduler_tick().
6580  *
6581  *   3. Wakeups don't really cause entry into schedule(). They add a
6582  *      task to the run-queue and that's it.
6583  *
6584  *      Now, if the new task added to the run-queue preempts the current
6585  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6586  *      called on the nearest possible occasion:
6587  *
6588  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6589  *
6590  *         - in syscall or exception context, at the next outmost
6591  *           preempt_enable(). (this might be as soon as the wake_up()'s
6592  *           spin_unlock()!)
6593  *
6594  *         - in IRQ context, return from interrupt-handler to
6595  *           preemptible context
6596  *
6597  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6598  *         then at the next:
6599  *
6600  *          - cond_resched() call
6601  *          - explicit schedule() call
6602  *          - return from syscall or exception to user-space
6603  *          - return from interrupt-handler to user-space
6604  *
6605  * WARNING: must be called with preemption disabled!
6606  */
6607 static void __sched notrace __schedule(unsigned int sched_mode)
6608 {
6609 	struct task_struct *prev, *next;
6610 	unsigned long *switch_count;
6611 	unsigned long prev_state;
6612 	struct rq_flags rf;
6613 	struct rq *rq;
6614 	int cpu;
6615 
6616 	cpu = smp_processor_id();
6617 	rq = cpu_rq(cpu);
6618 	prev = rq->curr;
6619 
6620 	schedule_debug(prev, !!sched_mode);
6621 
6622 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6623 		hrtick_clear(rq);
6624 
6625 	local_irq_disable();
6626 	rcu_note_context_switch(!!sched_mode);
6627 
6628 	/*
6629 	 * Make sure that signal_pending_state()->signal_pending() below
6630 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6631 	 * done by the caller to avoid the race with signal_wake_up():
6632 	 *
6633 	 * __set_current_state(@state)		signal_wake_up()
6634 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6635 	 *					  wake_up_state(p, state)
6636 	 *   LOCK rq->lock			    LOCK p->pi_state
6637 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6638 	 *     if (signal_pending_state())	    if (p->state & @state)
6639 	 *
6640 	 * Also, the membarrier system call requires a full memory barrier
6641 	 * after coming from user-space, before storing to rq->curr.
6642 	 */
6643 	rq_lock(rq, &rf);
6644 	smp_mb__after_spinlock();
6645 
6646 	/* Promote REQ to ACT */
6647 	rq->clock_update_flags <<= 1;
6648 	update_rq_clock(rq);
6649 	rq->clock_update_flags = RQCF_UPDATED;
6650 
6651 	switch_count = &prev->nivcsw;
6652 
6653 	/*
6654 	 * We must load prev->state once (task_struct::state is volatile), such
6655 	 * that we form a control dependency vs deactivate_task() below.
6656 	 */
6657 	prev_state = READ_ONCE(prev->__state);
6658 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6659 		if (signal_pending_state(prev_state, prev)) {
6660 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6661 		} else {
6662 			prev->sched_contributes_to_load =
6663 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6664 				!(prev_state & TASK_NOLOAD) &&
6665 				!(prev_state & TASK_FROZEN);
6666 
6667 			if (prev->sched_contributes_to_load)
6668 				rq->nr_uninterruptible++;
6669 
6670 			/*
6671 			 * __schedule()			ttwu()
6672 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6673 			 *   if (prev_state)		    goto out;
6674 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6675 			 *				  p->state = TASK_WAKING
6676 			 *
6677 			 * Where __schedule() and ttwu() have matching control dependencies.
6678 			 *
6679 			 * After this, schedule() must not care about p->state any more.
6680 			 */
6681 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6682 
6683 			if (prev->in_iowait) {
6684 				atomic_inc(&rq->nr_iowait);
6685 				delayacct_blkio_start();
6686 			}
6687 		}
6688 		switch_count = &prev->nvcsw;
6689 	}
6690 
6691 	next = pick_next_task(rq, prev, &rf);
6692 	clear_tsk_need_resched(prev);
6693 	clear_preempt_need_resched();
6694 #ifdef CONFIG_SCHED_DEBUG
6695 	rq->last_seen_need_resched_ns = 0;
6696 #endif
6697 
6698 	if (likely(prev != next)) {
6699 		rq->nr_switches++;
6700 		/*
6701 		 * RCU users of rcu_dereference(rq->curr) may not see
6702 		 * changes to task_struct made by pick_next_task().
6703 		 */
6704 		RCU_INIT_POINTER(rq->curr, next);
6705 		/*
6706 		 * The membarrier system call requires each architecture
6707 		 * to have a full memory barrier after updating
6708 		 * rq->curr, before returning to user-space.
6709 		 *
6710 		 * Here are the schemes providing that barrier on the
6711 		 * various architectures:
6712 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6713 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6714 		 * - finish_lock_switch() for weakly-ordered
6715 		 *   architectures where spin_unlock is a full barrier,
6716 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6717 		 *   is a RELEASE barrier),
6718 		 */
6719 		++*switch_count;
6720 
6721 		migrate_disable_switch(rq, prev);
6722 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6723 
6724 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6725 
6726 		/* Also unlocks the rq: */
6727 		rq = context_switch(rq, prev, next, &rf);
6728 	} else {
6729 		rq_unpin_lock(rq, &rf);
6730 		__balance_callbacks(rq);
6731 		raw_spin_rq_unlock_irq(rq);
6732 	}
6733 }
6734 
6735 void __noreturn do_task_dead(void)
6736 {
6737 	/* Causes final put_task_struct in finish_task_switch(): */
6738 	set_special_state(TASK_DEAD);
6739 
6740 	/* Tell freezer to ignore us: */
6741 	current->flags |= PF_NOFREEZE;
6742 
6743 	__schedule(SM_NONE);
6744 	BUG();
6745 
6746 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6747 	for (;;)
6748 		cpu_relax();
6749 }
6750 
6751 static inline void sched_submit_work(struct task_struct *tsk)
6752 {
6753 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6754 	unsigned int task_flags;
6755 
6756 	/*
6757 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6758 	 * will use a blocking primitive -- which would lead to recursion.
6759 	 */
6760 	lock_map_acquire_try(&sched_map);
6761 
6762 	task_flags = tsk->flags;
6763 	/*
6764 	 * If a worker goes to sleep, notify and ask workqueue whether it
6765 	 * wants to wake up a task to maintain concurrency.
6766 	 */
6767 	if (task_flags & PF_WQ_WORKER)
6768 		wq_worker_sleeping(tsk);
6769 	else if (task_flags & PF_IO_WORKER)
6770 		io_wq_worker_sleeping(tsk);
6771 
6772 	/*
6773 	 * spinlock and rwlock must not flush block requests.  This will
6774 	 * deadlock if the callback attempts to acquire a lock which is
6775 	 * already acquired.
6776 	 */
6777 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6778 
6779 	/*
6780 	 * If we are going to sleep and we have plugged IO queued,
6781 	 * make sure to submit it to avoid deadlocks.
6782 	 */
6783 	blk_flush_plug(tsk->plug, true);
6784 
6785 	lock_map_release(&sched_map);
6786 }
6787 
6788 static void sched_update_worker(struct task_struct *tsk)
6789 {
6790 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6791 		if (tsk->flags & PF_WQ_WORKER)
6792 			wq_worker_running(tsk);
6793 		else
6794 			io_wq_worker_running(tsk);
6795 	}
6796 }
6797 
6798 static __always_inline void __schedule_loop(unsigned int sched_mode)
6799 {
6800 	do {
6801 		preempt_disable();
6802 		__schedule(sched_mode);
6803 		sched_preempt_enable_no_resched();
6804 	} while (need_resched());
6805 }
6806 
6807 asmlinkage __visible void __sched schedule(void)
6808 {
6809 	struct task_struct *tsk = current;
6810 
6811 #ifdef CONFIG_RT_MUTEXES
6812 	lockdep_assert(!tsk->sched_rt_mutex);
6813 #endif
6814 
6815 	if (!task_is_running(tsk))
6816 		sched_submit_work(tsk);
6817 	__schedule_loop(SM_NONE);
6818 	sched_update_worker(tsk);
6819 }
6820 EXPORT_SYMBOL(schedule);
6821 
6822 /*
6823  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6824  * state (have scheduled out non-voluntarily) by making sure that all
6825  * tasks have either left the run queue or have gone into user space.
6826  * As idle tasks do not do either, they must not ever be preempted
6827  * (schedule out non-voluntarily).
6828  *
6829  * schedule_idle() is similar to schedule_preempt_disable() except that it
6830  * never enables preemption because it does not call sched_submit_work().
6831  */
6832 void __sched schedule_idle(void)
6833 {
6834 	/*
6835 	 * As this skips calling sched_submit_work(), which the idle task does
6836 	 * regardless because that function is a nop when the task is in a
6837 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6838 	 * current task can be in any other state. Note, idle is always in the
6839 	 * TASK_RUNNING state.
6840 	 */
6841 	WARN_ON_ONCE(current->__state);
6842 	do {
6843 		__schedule(SM_NONE);
6844 	} while (need_resched());
6845 }
6846 
6847 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6848 asmlinkage __visible void __sched schedule_user(void)
6849 {
6850 	/*
6851 	 * If we come here after a random call to set_need_resched(),
6852 	 * or we have been woken up remotely but the IPI has not yet arrived,
6853 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6854 	 * we find a better solution.
6855 	 *
6856 	 * NB: There are buggy callers of this function.  Ideally we
6857 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6858 	 * too frequently to make sense yet.
6859 	 */
6860 	enum ctx_state prev_state = exception_enter();
6861 	schedule();
6862 	exception_exit(prev_state);
6863 }
6864 #endif
6865 
6866 /**
6867  * schedule_preempt_disabled - called with preemption disabled
6868  *
6869  * Returns with preemption disabled. Note: preempt_count must be 1
6870  */
6871 void __sched schedule_preempt_disabled(void)
6872 {
6873 	sched_preempt_enable_no_resched();
6874 	schedule();
6875 	preempt_disable();
6876 }
6877 
6878 #ifdef CONFIG_PREEMPT_RT
6879 void __sched notrace schedule_rtlock(void)
6880 {
6881 	__schedule_loop(SM_RTLOCK_WAIT);
6882 }
6883 NOKPROBE_SYMBOL(schedule_rtlock);
6884 #endif
6885 
6886 static void __sched notrace preempt_schedule_common(void)
6887 {
6888 	do {
6889 		/*
6890 		 * Because the function tracer can trace preempt_count_sub()
6891 		 * and it also uses preempt_enable/disable_notrace(), if
6892 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6893 		 * by the function tracer will call this function again and
6894 		 * cause infinite recursion.
6895 		 *
6896 		 * Preemption must be disabled here before the function
6897 		 * tracer can trace. Break up preempt_disable() into two
6898 		 * calls. One to disable preemption without fear of being
6899 		 * traced. The other to still record the preemption latency,
6900 		 * which can also be traced by the function tracer.
6901 		 */
6902 		preempt_disable_notrace();
6903 		preempt_latency_start(1);
6904 		__schedule(SM_PREEMPT);
6905 		preempt_latency_stop(1);
6906 		preempt_enable_no_resched_notrace();
6907 
6908 		/*
6909 		 * Check again in case we missed a preemption opportunity
6910 		 * between schedule and now.
6911 		 */
6912 	} while (need_resched());
6913 }
6914 
6915 #ifdef CONFIG_PREEMPTION
6916 /*
6917  * This is the entry point to schedule() from in-kernel preemption
6918  * off of preempt_enable.
6919  */
6920 asmlinkage __visible void __sched notrace preempt_schedule(void)
6921 {
6922 	/*
6923 	 * If there is a non-zero preempt_count or interrupts are disabled,
6924 	 * we do not want to preempt the current task. Just return..
6925 	 */
6926 	if (likely(!preemptible()))
6927 		return;
6928 	preempt_schedule_common();
6929 }
6930 NOKPROBE_SYMBOL(preempt_schedule);
6931 EXPORT_SYMBOL(preempt_schedule);
6932 
6933 #ifdef CONFIG_PREEMPT_DYNAMIC
6934 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6935 #ifndef preempt_schedule_dynamic_enabled
6936 #define preempt_schedule_dynamic_enabled	preempt_schedule
6937 #define preempt_schedule_dynamic_disabled	NULL
6938 #endif
6939 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6940 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6941 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6942 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6943 void __sched notrace dynamic_preempt_schedule(void)
6944 {
6945 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6946 		return;
6947 	preempt_schedule();
6948 }
6949 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6950 EXPORT_SYMBOL(dynamic_preempt_schedule);
6951 #endif
6952 #endif
6953 
6954 /**
6955  * preempt_schedule_notrace - preempt_schedule called by tracing
6956  *
6957  * The tracing infrastructure uses preempt_enable_notrace to prevent
6958  * recursion and tracing preempt enabling caused by the tracing
6959  * infrastructure itself. But as tracing can happen in areas coming
6960  * from userspace or just about to enter userspace, a preempt enable
6961  * can occur before user_exit() is called. This will cause the scheduler
6962  * to be called when the system is still in usermode.
6963  *
6964  * To prevent this, the preempt_enable_notrace will use this function
6965  * instead of preempt_schedule() to exit user context if needed before
6966  * calling the scheduler.
6967  */
6968 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6969 {
6970 	enum ctx_state prev_ctx;
6971 
6972 	if (likely(!preemptible()))
6973 		return;
6974 
6975 	do {
6976 		/*
6977 		 * Because the function tracer can trace preempt_count_sub()
6978 		 * and it also uses preempt_enable/disable_notrace(), if
6979 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6980 		 * by the function tracer will call this function again and
6981 		 * cause infinite recursion.
6982 		 *
6983 		 * Preemption must be disabled here before the function
6984 		 * tracer can trace. Break up preempt_disable() into two
6985 		 * calls. One to disable preemption without fear of being
6986 		 * traced. The other to still record the preemption latency,
6987 		 * which can also be traced by the function tracer.
6988 		 */
6989 		preempt_disable_notrace();
6990 		preempt_latency_start(1);
6991 		/*
6992 		 * Needs preempt disabled in case user_exit() is traced
6993 		 * and the tracer calls preempt_enable_notrace() causing
6994 		 * an infinite recursion.
6995 		 */
6996 		prev_ctx = exception_enter();
6997 		__schedule(SM_PREEMPT);
6998 		exception_exit(prev_ctx);
6999 
7000 		preempt_latency_stop(1);
7001 		preempt_enable_no_resched_notrace();
7002 	} while (need_resched());
7003 }
7004 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7005 
7006 #ifdef CONFIG_PREEMPT_DYNAMIC
7007 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7008 #ifndef preempt_schedule_notrace_dynamic_enabled
7009 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7010 #define preempt_schedule_notrace_dynamic_disabled	NULL
7011 #endif
7012 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7013 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7014 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7015 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7016 void __sched notrace dynamic_preempt_schedule_notrace(void)
7017 {
7018 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7019 		return;
7020 	preempt_schedule_notrace();
7021 }
7022 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7023 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7024 #endif
7025 #endif
7026 
7027 #endif /* CONFIG_PREEMPTION */
7028 
7029 /*
7030  * This is the entry point to schedule() from kernel preemption
7031  * off of irq context.
7032  * Note, that this is called and return with irqs disabled. This will
7033  * protect us against recursive calling from irq.
7034  */
7035 asmlinkage __visible void __sched preempt_schedule_irq(void)
7036 {
7037 	enum ctx_state prev_state;
7038 
7039 	/* Catch callers which need to be fixed */
7040 	BUG_ON(preempt_count() || !irqs_disabled());
7041 
7042 	prev_state = exception_enter();
7043 
7044 	do {
7045 		preempt_disable();
7046 		local_irq_enable();
7047 		__schedule(SM_PREEMPT);
7048 		local_irq_disable();
7049 		sched_preempt_enable_no_resched();
7050 	} while (need_resched());
7051 
7052 	exception_exit(prev_state);
7053 }
7054 
7055 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7056 			  void *key)
7057 {
7058 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7059 	return try_to_wake_up(curr->private, mode, wake_flags);
7060 }
7061 EXPORT_SYMBOL(default_wake_function);
7062 
7063 static void __setscheduler_prio(struct task_struct *p, int prio)
7064 {
7065 	if (dl_prio(prio))
7066 		p->sched_class = &dl_sched_class;
7067 	else if (rt_prio(prio))
7068 		p->sched_class = &rt_sched_class;
7069 	else
7070 		p->sched_class = &fair_sched_class;
7071 
7072 	p->prio = prio;
7073 }
7074 
7075 #ifdef CONFIG_RT_MUTEXES
7076 
7077 /*
7078  * Would be more useful with typeof()/auto_type but they don't mix with
7079  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7080  * name such that if someone were to implement this function we get to compare
7081  * notes.
7082  */
7083 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7084 
7085 void rt_mutex_pre_schedule(void)
7086 {
7087 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7088 	sched_submit_work(current);
7089 }
7090 
7091 void rt_mutex_schedule(void)
7092 {
7093 	lockdep_assert(current->sched_rt_mutex);
7094 	__schedule_loop(SM_NONE);
7095 }
7096 
7097 void rt_mutex_post_schedule(void)
7098 {
7099 	sched_update_worker(current);
7100 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7101 }
7102 
7103 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7104 {
7105 	if (pi_task)
7106 		prio = min(prio, pi_task->prio);
7107 
7108 	return prio;
7109 }
7110 
7111 static inline int rt_effective_prio(struct task_struct *p, int prio)
7112 {
7113 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7114 
7115 	return __rt_effective_prio(pi_task, prio);
7116 }
7117 
7118 /*
7119  * rt_mutex_setprio - set the current priority of a task
7120  * @p: task to boost
7121  * @pi_task: donor task
7122  *
7123  * This function changes the 'effective' priority of a task. It does
7124  * not touch ->normal_prio like __setscheduler().
7125  *
7126  * Used by the rt_mutex code to implement priority inheritance
7127  * logic. Call site only calls if the priority of the task changed.
7128  */
7129 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7130 {
7131 	int prio, oldprio, queued, running, queue_flag =
7132 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7133 	const struct sched_class *prev_class;
7134 	struct rq_flags rf;
7135 	struct rq *rq;
7136 
7137 	/* XXX used to be waiter->prio, not waiter->task->prio */
7138 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7139 
7140 	/*
7141 	 * If nothing changed; bail early.
7142 	 */
7143 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7144 		return;
7145 
7146 	rq = __task_rq_lock(p, &rf);
7147 	update_rq_clock(rq);
7148 	/*
7149 	 * Set under pi_lock && rq->lock, such that the value can be used under
7150 	 * either lock.
7151 	 *
7152 	 * Note that there is loads of tricky to make this pointer cache work
7153 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7154 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7155 	 * task is allowed to run again (and can exit). This ensures the pointer
7156 	 * points to a blocked task -- which guarantees the task is present.
7157 	 */
7158 	p->pi_top_task = pi_task;
7159 
7160 	/*
7161 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7162 	 */
7163 	if (prio == p->prio && !dl_prio(prio))
7164 		goto out_unlock;
7165 
7166 	/*
7167 	 * Idle task boosting is a nono in general. There is one
7168 	 * exception, when PREEMPT_RT and NOHZ is active:
7169 	 *
7170 	 * The idle task calls get_next_timer_interrupt() and holds
7171 	 * the timer wheel base->lock on the CPU and another CPU wants
7172 	 * to access the timer (probably to cancel it). We can safely
7173 	 * ignore the boosting request, as the idle CPU runs this code
7174 	 * with interrupts disabled and will complete the lock
7175 	 * protected section without being interrupted. So there is no
7176 	 * real need to boost.
7177 	 */
7178 	if (unlikely(p == rq->idle)) {
7179 		WARN_ON(p != rq->curr);
7180 		WARN_ON(p->pi_blocked_on);
7181 		goto out_unlock;
7182 	}
7183 
7184 	trace_sched_pi_setprio(p, pi_task);
7185 	oldprio = p->prio;
7186 
7187 	if (oldprio == prio)
7188 		queue_flag &= ~DEQUEUE_MOVE;
7189 
7190 	prev_class = p->sched_class;
7191 	queued = task_on_rq_queued(p);
7192 	running = task_current(rq, p);
7193 	if (queued)
7194 		dequeue_task(rq, p, queue_flag);
7195 	if (running)
7196 		put_prev_task(rq, p);
7197 
7198 	/*
7199 	 * Boosting condition are:
7200 	 * 1. -rt task is running and holds mutex A
7201 	 *      --> -dl task blocks on mutex A
7202 	 *
7203 	 * 2. -dl task is running and holds mutex A
7204 	 *      --> -dl task blocks on mutex A and could preempt the
7205 	 *          running task
7206 	 */
7207 	if (dl_prio(prio)) {
7208 		if (!dl_prio(p->normal_prio) ||
7209 		    (pi_task && dl_prio(pi_task->prio) &&
7210 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7211 			p->dl.pi_se = pi_task->dl.pi_se;
7212 			queue_flag |= ENQUEUE_REPLENISH;
7213 		} else {
7214 			p->dl.pi_se = &p->dl;
7215 		}
7216 	} else if (rt_prio(prio)) {
7217 		if (dl_prio(oldprio))
7218 			p->dl.pi_se = &p->dl;
7219 		if (oldprio < prio)
7220 			queue_flag |= ENQUEUE_HEAD;
7221 	} else {
7222 		if (dl_prio(oldprio))
7223 			p->dl.pi_se = &p->dl;
7224 		if (rt_prio(oldprio))
7225 			p->rt.timeout = 0;
7226 	}
7227 
7228 	__setscheduler_prio(p, prio);
7229 
7230 	if (queued)
7231 		enqueue_task(rq, p, queue_flag);
7232 	if (running)
7233 		set_next_task(rq, p);
7234 
7235 	check_class_changed(rq, p, prev_class, oldprio);
7236 out_unlock:
7237 	/* Avoid rq from going away on us: */
7238 	preempt_disable();
7239 
7240 	rq_unpin_lock(rq, &rf);
7241 	__balance_callbacks(rq);
7242 	raw_spin_rq_unlock(rq);
7243 
7244 	preempt_enable();
7245 }
7246 #else
7247 static inline int rt_effective_prio(struct task_struct *p, int prio)
7248 {
7249 	return prio;
7250 }
7251 #endif
7252 
7253 void set_user_nice(struct task_struct *p, long nice)
7254 {
7255 	bool queued, running;
7256 	struct rq *rq;
7257 	int old_prio;
7258 
7259 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7260 		return;
7261 	/*
7262 	 * We have to be careful, if called from sys_setpriority(),
7263 	 * the task might be in the middle of scheduling on another CPU.
7264 	 */
7265 	CLASS(task_rq_lock, rq_guard)(p);
7266 	rq = rq_guard.rq;
7267 
7268 	update_rq_clock(rq);
7269 
7270 	/*
7271 	 * The RT priorities are set via sched_setscheduler(), but we still
7272 	 * allow the 'normal' nice value to be set - but as expected
7273 	 * it won't have any effect on scheduling until the task is
7274 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7275 	 */
7276 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7277 		p->static_prio = NICE_TO_PRIO(nice);
7278 		return;
7279 	}
7280 
7281 	queued = task_on_rq_queued(p);
7282 	running = task_current(rq, p);
7283 	if (queued)
7284 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7285 	if (running)
7286 		put_prev_task(rq, p);
7287 
7288 	p->static_prio = NICE_TO_PRIO(nice);
7289 	set_load_weight(p, true);
7290 	old_prio = p->prio;
7291 	p->prio = effective_prio(p);
7292 
7293 	if (queued)
7294 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7295 	if (running)
7296 		set_next_task(rq, p);
7297 
7298 	/*
7299 	 * If the task increased its priority or is running and
7300 	 * lowered its priority, then reschedule its CPU:
7301 	 */
7302 	p->sched_class->prio_changed(rq, p, old_prio);
7303 }
7304 EXPORT_SYMBOL(set_user_nice);
7305 
7306 /*
7307  * is_nice_reduction - check if nice value is an actual reduction
7308  *
7309  * Similar to can_nice() but does not perform a capability check.
7310  *
7311  * @p: task
7312  * @nice: nice value
7313  */
7314 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7315 {
7316 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7317 	int nice_rlim = nice_to_rlimit(nice);
7318 
7319 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7320 }
7321 
7322 /*
7323  * can_nice - check if a task can reduce its nice value
7324  * @p: task
7325  * @nice: nice value
7326  */
7327 int can_nice(const struct task_struct *p, const int nice)
7328 {
7329 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7330 }
7331 
7332 #ifdef __ARCH_WANT_SYS_NICE
7333 
7334 /*
7335  * sys_nice - change the priority of the current process.
7336  * @increment: priority increment
7337  *
7338  * sys_setpriority is a more generic, but much slower function that
7339  * does similar things.
7340  */
7341 SYSCALL_DEFINE1(nice, int, increment)
7342 {
7343 	long nice, retval;
7344 
7345 	/*
7346 	 * Setpriority might change our priority at the same moment.
7347 	 * We don't have to worry. Conceptually one call occurs first
7348 	 * and we have a single winner.
7349 	 */
7350 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7351 	nice = task_nice(current) + increment;
7352 
7353 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7354 	if (increment < 0 && !can_nice(current, nice))
7355 		return -EPERM;
7356 
7357 	retval = security_task_setnice(current, nice);
7358 	if (retval)
7359 		return retval;
7360 
7361 	set_user_nice(current, nice);
7362 	return 0;
7363 }
7364 
7365 #endif
7366 
7367 /**
7368  * task_prio - return the priority value of a given task.
7369  * @p: the task in question.
7370  *
7371  * Return: The priority value as seen by users in /proc.
7372  *
7373  * sched policy         return value   kernel prio    user prio/nice
7374  *
7375  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7376  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7377  * deadline                     -101             -1           0
7378  */
7379 int task_prio(const struct task_struct *p)
7380 {
7381 	return p->prio - MAX_RT_PRIO;
7382 }
7383 
7384 /**
7385  * idle_cpu - is a given CPU idle currently?
7386  * @cpu: the processor in question.
7387  *
7388  * Return: 1 if the CPU is currently idle. 0 otherwise.
7389  */
7390 int idle_cpu(int cpu)
7391 {
7392 	struct rq *rq = cpu_rq(cpu);
7393 
7394 	if (rq->curr != rq->idle)
7395 		return 0;
7396 
7397 	if (rq->nr_running)
7398 		return 0;
7399 
7400 #ifdef CONFIG_SMP
7401 	if (rq->ttwu_pending)
7402 		return 0;
7403 #endif
7404 
7405 	return 1;
7406 }
7407 
7408 /**
7409  * available_idle_cpu - is a given CPU idle for enqueuing work.
7410  * @cpu: the CPU in question.
7411  *
7412  * Return: 1 if the CPU is currently idle. 0 otherwise.
7413  */
7414 int available_idle_cpu(int cpu)
7415 {
7416 	if (!idle_cpu(cpu))
7417 		return 0;
7418 
7419 	if (vcpu_is_preempted(cpu))
7420 		return 0;
7421 
7422 	return 1;
7423 }
7424 
7425 /**
7426  * idle_task - return the idle task for a given CPU.
7427  * @cpu: the processor in question.
7428  *
7429  * Return: The idle task for the CPU @cpu.
7430  */
7431 struct task_struct *idle_task(int cpu)
7432 {
7433 	return cpu_rq(cpu)->idle;
7434 }
7435 
7436 #ifdef CONFIG_SCHED_CORE
7437 int sched_core_idle_cpu(int cpu)
7438 {
7439 	struct rq *rq = cpu_rq(cpu);
7440 
7441 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7442 		return 1;
7443 
7444 	return idle_cpu(cpu);
7445 }
7446 
7447 #endif
7448 
7449 #ifdef CONFIG_SMP
7450 /*
7451  * This function computes an effective utilization for the given CPU, to be
7452  * used for frequency selection given the linear relation: f = u * f_max.
7453  *
7454  * The scheduler tracks the following metrics:
7455  *
7456  *   cpu_util_{cfs,rt,dl,irq}()
7457  *   cpu_bw_dl()
7458  *
7459  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7460  * synchronized windows and are thus directly comparable.
7461  *
7462  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7463  * which excludes things like IRQ and steal-time. These latter are then accrued
7464  * in the irq utilization.
7465  *
7466  * The DL bandwidth number otoh is not a measured metric but a value computed
7467  * based on the task model parameters and gives the minimal utilization
7468  * required to meet deadlines.
7469  */
7470 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7471 				 unsigned long *min,
7472 				 unsigned long *max)
7473 {
7474 	unsigned long util, irq, scale;
7475 	struct rq *rq = cpu_rq(cpu);
7476 
7477 	scale = arch_scale_cpu_capacity(cpu);
7478 
7479 	/*
7480 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7481 	 * because of inaccuracies in how we track these -- see
7482 	 * update_irq_load_avg().
7483 	 */
7484 	irq = cpu_util_irq(rq);
7485 	if (unlikely(irq >= scale)) {
7486 		if (min)
7487 			*min = scale;
7488 		if (max)
7489 			*max = scale;
7490 		return scale;
7491 	}
7492 
7493 	if (min) {
7494 		/*
7495 		 * The minimum utilization returns the highest level between:
7496 		 * - the computed DL bandwidth needed with the IRQ pressure which
7497 		 *   steals time to the deadline task.
7498 		 * - The minimum performance requirement for CFS and/or RT.
7499 		 */
7500 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
7501 
7502 		/*
7503 		 * When an RT task is runnable and uclamp is not used, we must
7504 		 * ensure that the task will run at maximum compute capacity.
7505 		 */
7506 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
7507 			*min = max(*min, scale);
7508 	}
7509 
7510 	/*
7511 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7512 	 * CFS tasks and we use the same metric to track the effective
7513 	 * utilization (PELT windows are synchronized) we can directly add them
7514 	 * to obtain the CPU's actual utilization.
7515 	 */
7516 	util = util_cfs + cpu_util_rt(rq);
7517 	util += cpu_util_dl(rq);
7518 
7519 	/*
7520 	 * The maximum hint is a soft bandwidth requirement, which can be lower
7521 	 * than the actual utilization because of uclamp_max requirements.
7522 	 */
7523 	if (max)
7524 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
7525 
7526 	if (util >= scale)
7527 		return scale;
7528 
7529 	/*
7530 	 * There is still idle time; further improve the number by using the
7531 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7532 	 * need to scale the task numbers:
7533 	 *
7534 	 *              max - irq
7535 	 *   U' = irq + --------- * U
7536 	 *                 max
7537 	 */
7538 	util = scale_irq_capacity(util, irq, scale);
7539 	util += irq;
7540 
7541 	return min(scale, util);
7542 }
7543 
7544 unsigned long sched_cpu_util(int cpu)
7545 {
7546 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
7547 }
7548 #endif /* CONFIG_SMP */
7549 
7550 /**
7551  * find_process_by_pid - find a process with a matching PID value.
7552  * @pid: the pid in question.
7553  *
7554  * The task of @pid, if found. %NULL otherwise.
7555  */
7556 static struct task_struct *find_process_by_pid(pid_t pid)
7557 {
7558 	return pid ? find_task_by_vpid(pid) : current;
7559 }
7560 
7561 static struct task_struct *find_get_task(pid_t pid)
7562 {
7563 	struct task_struct *p;
7564 	guard(rcu)();
7565 
7566 	p = find_process_by_pid(pid);
7567 	if (likely(p))
7568 		get_task_struct(p);
7569 
7570 	return p;
7571 }
7572 
7573 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7574 	     find_get_task(pid), pid_t pid)
7575 
7576 /*
7577  * sched_setparam() passes in -1 for its policy, to let the functions
7578  * it calls know not to change it.
7579  */
7580 #define SETPARAM_POLICY	-1
7581 
7582 static void __setscheduler_params(struct task_struct *p,
7583 		const struct sched_attr *attr)
7584 {
7585 	int policy = attr->sched_policy;
7586 
7587 	if (policy == SETPARAM_POLICY)
7588 		policy = p->policy;
7589 
7590 	p->policy = policy;
7591 
7592 	if (dl_policy(policy))
7593 		__setparam_dl(p, attr);
7594 	else if (fair_policy(policy))
7595 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7596 
7597 	/*
7598 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7599 	 * !rt_policy. Always setting this ensures that things like
7600 	 * getparam()/getattr() don't report silly values for !rt tasks.
7601 	 */
7602 	p->rt_priority = attr->sched_priority;
7603 	p->normal_prio = normal_prio(p);
7604 	set_load_weight(p, true);
7605 }
7606 
7607 /*
7608  * Check the target process has a UID that matches the current process's:
7609  */
7610 static bool check_same_owner(struct task_struct *p)
7611 {
7612 	const struct cred *cred = current_cred(), *pcred;
7613 	guard(rcu)();
7614 
7615 	pcred = __task_cred(p);
7616 	return (uid_eq(cred->euid, pcred->euid) ||
7617 		uid_eq(cred->euid, pcred->uid));
7618 }
7619 
7620 /*
7621  * Allow unprivileged RT tasks to decrease priority.
7622  * Only issue a capable test if needed and only once to avoid an audit
7623  * event on permitted non-privileged operations:
7624  */
7625 static int user_check_sched_setscheduler(struct task_struct *p,
7626 					 const struct sched_attr *attr,
7627 					 int policy, int reset_on_fork)
7628 {
7629 	if (fair_policy(policy)) {
7630 		if (attr->sched_nice < task_nice(p) &&
7631 		    !is_nice_reduction(p, attr->sched_nice))
7632 			goto req_priv;
7633 	}
7634 
7635 	if (rt_policy(policy)) {
7636 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7637 
7638 		/* Can't set/change the rt policy: */
7639 		if (policy != p->policy && !rlim_rtprio)
7640 			goto req_priv;
7641 
7642 		/* Can't increase priority: */
7643 		if (attr->sched_priority > p->rt_priority &&
7644 		    attr->sched_priority > rlim_rtprio)
7645 			goto req_priv;
7646 	}
7647 
7648 	/*
7649 	 * Can't set/change SCHED_DEADLINE policy at all for now
7650 	 * (safest behavior); in the future we would like to allow
7651 	 * unprivileged DL tasks to increase their relative deadline
7652 	 * or reduce their runtime (both ways reducing utilization)
7653 	 */
7654 	if (dl_policy(policy))
7655 		goto req_priv;
7656 
7657 	/*
7658 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7659 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7660 	 */
7661 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7662 		if (!is_nice_reduction(p, task_nice(p)))
7663 			goto req_priv;
7664 	}
7665 
7666 	/* Can't change other user's priorities: */
7667 	if (!check_same_owner(p))
7668 		goto req_priv;
7669 
7670 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7671 	if (p->sched_reset_on_fork && !reset_on_fork)
7672 		goto req_priv;
7673 
7674 	return 0;
7675 
7676 req_priv:
7677 	if (!capable(CAP_SYS_NICE))
7678 		return -EPERM;
7679 
7680 	return 0;
7681 }
7682 
7683 static int __sched_setscheduler(struct task_struct *p,
7684 				const struct sched_attr *attr,
7685 				bool user, bool pi)
7686 {
7687 	int oldpolicy = -1, policy = attr->sched_policy;
7688 	int retval, oldprio, newprio, queued, running;
7689 	const struct sched_class *prev_class;
7690 	struct balance_callback *head;
7691 	struct rq_flags rf;
7692 	int reset_on_fork;
7693 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7694 	struct rq *rq;
7695 	bool cpuset_locked = false;
7696 
7697 	/* The pi code expects interrupts enabled */
7698 	BUG_ON(pi && in_interrupt());
7699 recheck:
7700 	/* Double check policy once rq lock held: */
7701 	if (policy < 0) {
7702 		reset_on_fork = p->sched_reset_on_fork;
7703 		policy = oldpolicy = p->policy;
7704 	} else {
7705 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7706 
7707 		if (!valid_policy(policy))
7708 			return -EINVAL;
7709 	}
7710 
7711 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7712 		return -EINVAL;
7713 
7714 	/*
7715 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7716 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7717 	 * SCHED_BATCH and SCHED_IDLE is 0.
7718 	 */
7719 	if (attr->sched_priority > MAX_RT_PRIO-1)
7720 		return -EINVAL;
7721 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7722 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7723 		return -EINVAL;
7724 
7725 	if (user) {
7726 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7727 		if (retval)
7728 			return retval;
7729 
7730 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7731 			return -EINVAL;
7732 
7733 		retval = security_task_setscheduler(p);
7734 		if (retval)
7735 			return retval;
7736 	}
7737 
7738 	/* Update task specific "requested" clamps */
7739 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7740 		retval = uclamp_validate(p, attr);
7741 		if (retval)
7742 			return retval;
7743 	}
7744 
7745 	/*
7746 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7747 	 * information.
7748 	 */
7749 	if (dl_policy(policy) || dl_policy(p->policy)) {
7750 		cpuset_locked = true;
7751 		cpuset_lock();
7752 	}
7753 
7754 	/*
7755 	 * Make sure no PI-waiters arrive (or leave) while we are
7756 	 * changing the priority of the task:
7757 	 *
7758 	 * To be able to change p->policy safely, the appropriate
7759 	 * runqueue lock must be held.
7760 	 */
7761 	rq = task_rq_lock(p, &rf);
7762 	update_rq_clock(rq);
7763 
7764 	/*
7765 	 * Changing the policy of the stop threads its a very bad idea:
7766 	 */
7767 	if (p == rq->stop) {
7768 		retval = -EINVAL;
7769 		goto unlock;
7770 	}
7771 
7772 	/*
7773 	 * If not changing anything there's no need to proceed further,
7774 	 * but store a possible modification of reset_on_fork.
7775 	 */
7776 	if (unlikely(policy == p->policy)) {
7777 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7778 			goto change;
7779 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7780 			goto change;
7781 		if (dl_policy(policy) && dl_param_changed(p, attr))
7782 			goto change;
7783 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7784 			goto change;
7785 
7786 		p->sched_reset_on_fork = reset_on_fork;
7787 		retval = 0;
7788 		goto unlock;
7789 	}
7790 change:
7791 
7792 	if (user) {
7793 #ifdef CONFIG_RT_GROUP_SCHED
7794 		/*
7795 		 * Do not allow realtime tasks into groups that have no runtime
7796 		 * assigned.
7797 		 */
7798 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7799 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7800 				!task_group_is_autogroup(task_group(p))) {
7801 			retval = -EPERM;
7802 			goto unlock;
7803 		}
7804 #endif
7805 #ifdef CONFIG_SMP
7806 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7807 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7808 			cpumask_t *span = rq->rd->span;
7809 
7810 			/*
7811 			 * Don't allow tasks with an affinity mask smaller than
7812 			 * the entire root_domain to become SCHED_DEADLINE. We
7813 			 * will also fail if there's no bandwidth available.
7814 			 */
7815 			if (!cpumask_subset(span, p->cpus_ptr) ||
7816 			    rq->rd->dl_bw.bw == 0) {
7817 				retval = -EPERM;
7818 				goto unlock;
7819 			}
7820 		}
7821 #endif
7822 	}
7823 
7824 	/* Re-check policy now with rq lock held: */
7825 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7826 		policy = oldpolicy = -1;
7827 		task_rq_unlock(rq, p, &rf);
7828 		if (cpuset_locked)
7829 			cpuset_unlock();
7830 		goto recheck;
7831 	}
7832 
7833 	/*
7834 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7835 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7836 	 * is available.
7837 	 */
7838 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7839 		retval = -EBUSY;
7840 		goto unlock;
7841 	}
7842 
7843 	p->sched_reset_on_fork = reset_on_fork;
7844 	oldprio = p->prio;
7845 
7846 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7847 	if (pi) {
7848 		/*
7849 		 * Take priority boosted tasks into account. If the new
7850 		 * effective priority is unchanged, we just store the new
7851 		 * normal parameters and do not touch the scheduler class and
7852 		 * the runqueue. This will be done when the task deboost
7853 		 * itself.
7854 		 */
7855 		newprio = rt_effective_prio(p, newprio);
7856 		if (newprio == oldprio)
7857 			queue_flags &= ~DEQUEUE_MOVE;
7858 	}
7859 
7860 	queued = task_on_rq_queued(p);
7861 	running = task_current(rq, p);
7862 	if (queued)
7863 		dequeue_task(rq, p, queue_flags);
7864 	if (running)
7865 		put_prev_task(rq, p);
7866 
7867 	prev_class = p->sched_class;
7868 
7869 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7870 		__setscheduler_params(p, attr);
7871 		__setscheduler_prio(p, newprio);
7872 	}
7873 	__setscheduler_uclamp(p, attr);
7874 
7875 	if (queued) {
7876 		/*
7877 		 * We enqueue to tail when the priority of a task is
7878 		 * increased (user space view).
7879 		 */
7880 		if (oldprio < p->prio)
7881 			queue_flags |= ENQUEUE_HEAD;
7882 
7883 		enqueue_task(rq, p, queue_flags);
7884 	}
7885 	if (running)
7886 		set_next_task(rq, p);
7887 
7888 	check_class_changed(rq, p, prev_class, oldprio);
7889 
7890 	/* Avoid rq from going away on us: */
7891 	preempt_disable();
7892 	head = splice_balance_callbacks(rq);
7893 	task_rq_unlock(rq, p, &rf);
7894 
7895 	if (pi) {
7896 		if (cpuset_locked)
7897 			cpuset_unlock();
7898 		rt_mutex_adjust_pi(p);
7899 	}
7900 
7901 	/* Run balance callbacks after we've adjusted the PI chain: */
7902 	balance_callbacks(rq, head);
7903 	preempt_enable();
7904 
7905 	return 0;
7906 
7907 unlock:
7908 	task_rq_unlock(rq, p, &rf);
7909 	if (cpuset_locked)
7910 		cpuset_unlock();
7911 	return retval;
7912 }
7913 
7914 static int _sched_setscheduler(struct task_struct *p, int policy,
7915 			       const struct sched_param *param, bool check)
7916 {
7917 	struct sched_attr attr = {
7918 		.sched_policy   = policy,
7919 		.sched_priority = param->sched_priority,
7920 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7921 	};
7922 
7923 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7924 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7925 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7926 		policy &= ~SCHED_RESET_ON_FORK;
7927 		attr.sched_policy = policy;
7928 	}
7929 
7930 	return __sched_setscheduler(p, &attr, check, true);
7931 }
7932 /**
7933  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7934  * @p: the task in question.
7935  * @policy: new policy.
7936  * @param: structure containing the new RT priority.
7937  *
7938  * Use sched_set_fifo(), read its comment.
7939  *
7940  * Return: 0 on success. An error code otherwise.
7941  *
7942  * NOTE that the task may be already dead.
7943  */
7944 int sched_setscheduler(struct task_struct *p, int policy,
7945 		       const struct sched_param *param)
7946 {
7947 	return _sched_setscheduler(p, policy, param, true);
7948 }
7949 
7950 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7951 {
7952 	return __sched_setscheduler(p, attr, true, true);
7953 }
7954 
7955 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7956 {
7957 	return __sched_setscheduler(p, attr, false, true);
7958 }
7959 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7960 
7961 /**
7962  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7963  * @p: the task in question.
7964  * @policy: new policy.
7965  * @param: structure containing the new RT priority.
7966  *
7967  * Just like sched_setscheduler, only don't bother checking if the
7968  * current context has permission.  For example, this is needed in
7969  * stop_machine(): we create temporary high priority worker threads,
7970  * but our caller might not have that capability.
7971  *
7972  * Return: 0 on success. An error code otherwise.
7973  */
7974 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7975 			       const struct sched_param *param)
7976 {
7977 	return _sched_setscheduler(p, policy, param, false);
7978 }
7979 
7980 /*
7981  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7982  * incapable of resource management, which is the one thing an OS really should
7983  * be doing.
7984  *
7985  * This is of course the reason it is limited to privileged users only.
7986  *
7987  * Worse still; it is fundamentally impossible to compose static priority
7988  * workloads. You cannot take two correctly working static prio workloads
7989  * and smash them together and still expect them to work.
7990  *
7991  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7992  *
7993  *   MAX_RT_PRIO / 2
7994  *
7995  * The administrator _MUST_ configure the system, the kernel simply doesn't
7996  * know enough information to make a sensible choice.
7997  */
7998 void sched_set_fifo(struct task_struct *p)
7999 {
8000 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8001 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8002 }
8003 EXPORT_SYMBOL_GPL(sched_set_fifo);
8004 
8005 /*
8006  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8007  */
8008 void sched_set_fifo_low(struct task_struct *p)
8009 {
8010 	struct sched_param sp = { .sched_priority = 1 };
8011 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8012 }
8013 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8014 
8015 void sched_set_normal(struct task_struct *p, int nice)
8016 {
8017 	struct sched_attr attr = {
8018 		.sched_policy = SCHED_NORMAL,
8019 		.sched_nice = nice,
8020 	};
8021 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8022 }
8023 EXPORT_SYMBOL_GPL(sched_set_normal);
8024 
8025 static int
8026 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8027 {
8028 	struct sched_param lparam;
8029 
8030 	if (!param || pid < 0)
8031 		return -EINVAL;
8032 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8033 		return -EFAULT;
8034 
8035 	CLASS(find_get_task, p)(pid);
8036 	if (!p)
8037 		return -ESRCH;
8038 
8039 	return sched_setscheduler(p, policy, &lparam);
8040 }
8041 
8042 /*
8043  * Mimics kernel/events/core.c perf_copy_attr().
8044  */
8045 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8046 {
8047 	u32 size;
8048 	int ret;
8049 
8050 	/* Zero the full structure, so that a short copy will be nice: */
8051 	memset(attr, 0, sizeof(*attr));
8052 
8053 	ret = get_user(size, &uattr->size);
8054 	if (ret)
8055 		return ret;
8056 
8057 	/* ABI compatibility quirk: */
8058 	if (!size)
8059 		size = SCHED_ATTR_SIZE_VER0;
8060 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8061 		goto err_size;
8062 
8063 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8064 	if (ret) {
8065 		if (ret == -E2BIG)
8066 			goto err_size;
8067 		return ret;
8068 	}
8069 
8070 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8071 	    size < SCHED_ATTR_SIZE_VER1)
8072 		return -EINVAL;
8073 
8074 	/*
8075 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8076 	 * to be strict and return an error on out-of-bounds values?
8077 	 */
8078 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8079 
8080 	return 0;
8081 
8082 err_size:
8083 	put_user(sizeof(*attr), &uattr->size);
8084 	return -E2BIG;
8085 }
8086 
8087 static void get_params(struct task_struct *p, struct sched_attr *attr)
8088 {
8089 	if (task_has_dl_policy(p))
8090 		__getparam_dl(p, attr);
8091 	else if (task_has_rt_policy(p))
8092 		attr->sched_priority = p->rt_priority;
8093 	else
8094 		attr->sched_nice = task_nice(p);
8095 }
8096 
8097 /**
8098  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8099  * @pid: the pid in question.
8100  * @policy: new policy.
8101  * @param: structure containing the new RT priority.
8102  *
8103  * Return: 0 on success. An error code otherwise.
8104  */
8105 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8106 {
8107 	if (policy < 0)
8108 		return -EINVAL;
8109 
8110 	return do_sched_setscheduler(pid, policy, param);
8111 }
8112 
8113 /**
8114  * sys_sched_setparam - set/change the RT priority of a thread
8115  * @pid: the pid in question.
8116  * @param: structure containing the new RT priority.
8117  *
8118  * Return: 0 on success. An error code otherwise.
8119  */
8120 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8121 {
8122 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8123 }
8124 
8125 /**
8126  * sys_sched_setattr - same as above, but with extended sched_attr
8127  * @pid: the pid in question.
8128  * @uattr: structure containing the extended parameters.
8129  * @flags: for future extension.
8130  */
8131 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8132 			       unsigned int, flags)
8133 {
8134 	struct sched_attr attr;
8135 	int retval;
8136 
8137 	if (!uattr || pid < 0 || flags)
8138 		return -EINVAL;
8139 
8140 	retval = sched_copy_attr(uattr, &attr);
8141 	if (retval)
8142 		return retval;
8143 
8144 	if ((int)attr.sched_policy < 0)
8145 		return -EINVAL;
8146 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8147 		attr.sched_policy = SETPARAM_POLICY;
8148 
8149 	CLASS(find_get_task, p)(pid);
8150 	if (!p)
8151 		return -ESRCH;
8152 
8153 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8154 		get_params(p, &attr);
8155 
8156 	return sched_setattr(p, &attr);
8157 }
8158 
8159 /**
8160  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8161  * @pid: the pid in question.
8162  *
8163  * Return: On success, the policy of the thread. Otherwise, a negative error
8164  * code.
8165  */
8166 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8167 {
8168 	struct task_struct *p;
8169 	int retval;
8170 
8171 	if (pid < 0)
8172 		return -EINVAL;
8173 
8174 	guard(rcu)();
8175 	p = find_process_by_pid(pid);
8176 	if (!p)
8177 		return -ESRCH;
8178 
8179 	retval = security_task_getscheduler(p);
8180 	if (!retval) {
8181 		retval = p->policy;
8182 		if (p->sched_reset_on_fork)
8183 			retval |= SCHED_RESET_ON_FORK;
8184 	}
8185 	return retval;
8186 }
8187 
8188 /**
8189  * sys_sched_getparam - get the RT priority of a thread
8190  * @pid: the pid in question.
8191  * @param: structure containing the RT priority.
8192  *
8193  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8194  * code.
8195  */
8196 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8197 {
8198 	struct sched_param lp = { .sched_priority = 0 };
8199 	struct task_struct *p;
8200 	int retval;
8201 
8202 	if (!param || pid < 0)
8203 		return -EINVAL;
8204 
8205 	scoped_guard (rcu) {
8206 		p = find_process_by_pid(pid);
8207 		if (!p)
8208 			return -ESRCH;
8209 
8210 		retval = security_task_getscheduler(p);
8211 		if (retval)
8212 			return retval;
8213 
8214 		if (task_has_rt_policy(p))
8215 			lp.sched_priority = p->rt_priority;
8216 	}
8217 
8218 	/*
8219 	 * This one might sleep, we cannot do it with a spinlock held ...
8220 	 */
8221 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8222 }
8223 
8224 /*
8225  * Copy the kernel size attribute structure (which might be larger
8226  * than what user-space knows about) to user-space.
8227  *
8228  * Note that all cases are valid: user-space buffer can be larger or
8229  * smaller than the kernel-space buffer. The usual case is that both
8230  * have the same size.
8231  */
8232 static int
8233 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8234 			struct sched_attr *kattr,
8235 			unsigned int usize)
8236 {
8237 	unsigned int ksize = sizeof(*kattr);
8238 
8239 	if (!access_ok(uattr, usize))
8240 		return -EFAULT;
8241 
8242 	/*
8243 	 * sched_getattr() ABI forwards and backwards compatibility:
8244 	 *
8245 	 * If usize == ksize then we just copy everything to user-space and all is good.
8246 	 *
8247 	 * If usize < ksize then we only copy as much as user-space has space for,
8248 	 * this keeps ABI compatibility as well. We skip the rest.
8249 	 *
8250 	 * If usize > ksize then user-space is using a newer version of the ABI,
8251 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8252 	 * detect the kernel's knowledge of attributes from the attr->size value
8253 	 * which is set to ksize in this case.
8254 	 */
8255 	kattr->size = min(usize, ksize);
8256 
8257 	if (copy_to_user(uattr, kattr, kattr->size))
8258 		return -EFAULT;
8259 
8260 	return 0;
8261 }
8262 
8263 /**
8264  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8265  * @pid: the pid in question.
8266  * @uattr: structure containing the extended parameters.
8267  * @usize: sizeof(attr) for fwd/bwd comp.
8268  * @flags: for future extension.
8269  */
8270 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8271 		unsigned int, usize, unsigned int, flags)
8272 {
8273 	struct sched_attr kattr = { };
8274 	struct task_struct *p;
8275 	int retval;
8276 
8277 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8278 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8279 		return -EINVAL;
8280 
8281 	scoped_guard (rcu) {
8282 		p = find_process_by_pid(pid);
8283 		if (!p)
8284 			return -ESRCH;
8285 
8286 		retval = security_task_getscheduler(p);
8287 		if (retval)
8288 			return retval;
8289 
8290 		kattr.sched_policy = p->policy;
8291 		if (p->sched_reset_on_fork)
8292 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8293 		get_params(p, &kattr);
8294 		kattr.sched_flags &= SCHED_FLAG_ALL;
8295 
8296 #ifdef CONFIG_UCLAMP_TASK
8297 		/*
8298 		 * This could race with another potential updater, but this is fine
8299 		 * because it'll correctly read the old or the new value. We don't need
8300 		 * to guarantee who wins the race as long as it doesn't return garbage.
8301 		 */
8302 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8303 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8304 #endif
8305 	}
8306 
8307 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8308 }
8309 
8310 #ifdef CONFIG_SMP
8311 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8312 {
8313 	/*
8314 	 * If the task isn't a deadline task or admission control is
8315 	 * disabled then we don't care about affinity changes.
8316 	 */
8317 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8318 		return 0;
8319 
8320 	/*
8321 	 * Since bandwidth control happens on root_domain basis,
8322 	 * if admission test is enabled, we only admit -deadline
8323 	 * tasks allowed to run on all the CPUs in the task's
8324 	 * root_domain.
8325 	 */
8326 	guard(rcu)();
8327 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8328 		return -EBUSY;
8329 
8330 	return 0;
8331 }
8332 #endif
8333 
8334 static int
8335 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8336 {
8337 	int retval;
8338 	cpumask_var_t cpus_allowed, new_mask;
8339 
8340 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8341 		return -ENOMEM;
8342 
8343 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8344 		retval = -ENOMEM;
8345 		goto out_free_cpus_allowed;
8346 	}
8347 
8348 	cpuset_cpus_allowed(p, cpus_allowed);
8349 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8350 
8351 	ctx->new_mask = new_mask;
8352 	ctx->flags |= SCA_CHECK;
8353 
8354 	retval = dl_task_check_affinity(p, new_mask);
8355 	if (retval)
8356 		goto out_free_new_mask;
8357 
8358 	retval = __set_cpus_allowed_ptr(p, ctx);
8359 	if (retval)
8360 		goto out_free_new_mask;
8361 
8362 	cpuset_cpus_allowed(p, cpus_allowed);
8363 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8364 		/*
8365 		 * We must have raced with a concurrent cpuset update.
8366 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8367 		 */
8368 		cpumask_copy(new_mask, cpus_allowed);
8369 
8370 		/*
8371 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8372 		 * will restore the previous user_cpus_ptr value.
8373 		 *
8374 		 * In the unlikely event a previous user_cpus_ptr exists,
8375 		 * we need to further restrict the mask to what is allowed
8376 		 * by that old user_cpus_ptr.
8377 		 */
8378 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8379 			bool empty = !cpumask_and(new_mask, new_mask,
8380 						  ctx->user_mask);
8381 
8382 			if (WARN_ON_ONCE(empty))
8383 				cpumask_copy(new_mask, cpus_allowed);
8384 		}
8385 		__set_cpus_allowed_ptr(p, ctx);
8386 		retval = -EINVAL;
8387 	}
8388 
8389 out_free_new_mask:
8390 	free_cpumask_var(new_mask);
8391 out_free_cpus_allowed:
8392 	free_cpumask_var(cpus_allowed);
8393 	return retval;
8394 }
8395 
8396 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8397 {
8398 	struct affinity_context ac;
8399 	struct cpumask *user_mask;
8400 	int retval;
8401 
8402 	CLASS(find_get_task, p)(pid);
8403 	if (!p)
8404 		return -ESRCH;
8405 
8406 	if (p->flags & PF_NO_SETAFFINITY)
8407 		return -EINVAL;
8408 
8409 	if (!check_same_owner(p)) {
8410 		guard(rcu)();
8411 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8412 			return -EPERM;
8413 	}
8414 
8415 	retval = security_task_setscheduler(p);
8416 	if (retval)
8417 		return retval;
8418 
8419 	/*
8420 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8421 	 * alloc_user_cpus_ptr() returns NULL.
8422 	 */
8423 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8424 	if (user_mask) {
8425 		cpumask_copy(user_mask, in_mask);
8426 	} else if (IS_ENABLED(CONFIG_SMP)) {
8427 		return -ENOMEM;
8428 	}
8429 
8430 	ac = (struct affinity_context){
8431 		.new_mask  = in_mask,
8432 		.user_mask = user_mask,
8433 		.flags     = SCA_USER,
8434 	};
8435 
8436 	retval = __sched_setaffinity(p, &ac);
8437 	kfree(ac.user_mask);
8438 
8439 	return retval;
8440 }
8441 
8442 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8443 			     struct cpumask *new_mask)
8444 {
8445 	if (len < cpumask_size())
8446 		cpumask_clear(new_mask);
8447 	else if (len > cpumask_size())
8448 		len = cpumask_size();
8449 
8450 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8451 }
8452 
8453 /**
8454  * sys_sched_setaffinity - set the CPU affinity of a process
8455  * @pid: pid of the process
8456  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8457  * @user_mask_ptr: user-space pointer to the new CPU mask
8458  *
8459  * Return: 0 on success. An error code otherwise.
8460  */
8461 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8462 		unsigned long __user *, user_mask_ptr)
8463 {
8464 	cpumask_var_t new_mask;
8465 	int retval;
8466 
8467 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8468 		return -ENOMEM;
8469 
8470 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8471 	if (retval == 0)
8472 		retval = sched_setaffinity(pid, new_mask);
8473 	free_cpumask_var(new_mask);
8474 	return retval;
8475 }
8476 
8477 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8478 {
8479 	struct task_struct *p;
8480 	int retval;
8481 
8482 	guard(rcu)();
8483 	p = find_process_by_pid(pid);
8484 	if (!p)
8485 		return -ESRCH;
8486 
8487 	retval = security_task_getscheduler(p);
8488 	if (retval)
8489 		return retval;
8490 
8491 	guard(raw_spinlock_irqsave)(&p->pi_lock);
8492 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8493 
8494 	return 0;
8495 }
8496 
8497 /**
8498  * sys_sched_getaffinity - get the CPU affinity of a process
8499  * @pid: pid of the process
8500  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8501  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8502  *
8503  * Return: size of CPU mask copied to user_mask_ptr on success. An
8504  * error code otherwise.
8505  */
8506 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8507 		unsigned long __user *, user_mask_ptr)
8508 {
8509 	int ret;
8510 	cpumask_var_t mask;
8511 
8512 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8513 		return -EINVAL;
8514 	if (len & (sizeof(unsigned long)-1))
8515 		return -EINVAL;
8516 
8517 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8518 		return -ENOMEM;
8519 
8520 	ret = sched_getaffinity(pid, mask);
8521 	if (ret == 0) {
8522 		unsigned int retlen = min(len, cpumask_size());
8523 
8524 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8525 			ret = -EFAULT;
8526 		else
8527 			ret = retlen;
8528 	}
8529 	free_cpumask_var(mask);
8530 
8531 	return ret;
8532 }
8533 
8534 static void do_sched_yield(void)
8535 {
8536 	struct rq_flags rf;
8537 	struct rq *rq;
8538 
8539 	rq = this_rq_lock_irq(&rf);
8540 
8541 	schedstat_inc(rq->yld_count);
8542 	current->sched_class->yield_task(rq);
8543 
8544 	preempt_disable();
8545 	rq_unlock_irq(rq, &rf);
8546 	sched_preempt_enable_no_resched();
8547 
8548 	schedule();
8549 }
8550 
8551 /**
8552  * sys_sched_yield - yield the current processor to other threads.
8553  *
8554  * This function yields the current CPU to other tasks. If there are no
8555  * other threads running on this CPU then this function will return.
8556  *
8557  * Return: 0.
8558  */
8559 SYSCALL_DEFINE0(sched_yield)
8560 {
8561 	do_sched_yield();
8562 	return 0;
8563 }
8564 
8565 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8566 int __sched __cond_resched(void)
8567 {
8568 	if (should_resched(0)) {
8569 		preempt_schedule_common();
8570 		return 1;
8571 	}
8572 	/*
8573 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8574 	 * whether the current CPU is in an RCU read-side critical section,
8575 	 * so the tick can report quiescent states even for CPUs looping
8576 	 * in kernel context.  In contrast, in non-preemptible kernels,
8577 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8578 	 * processes executing in kernel context might never report an
8579 	 * RCU quiescent state.  Therefore, the following code causes
8580 	 * cond_resched() to report a quiescent state, but only when RCU
8581 	 * is in urgent need of one.
8582 	 */
8583 #ifndef CONFIG_PREEMPT_RCU
8584 	rcu_all_qs();
8585 #endif
8586 	return 0;
8587 }
8588 EXPORT_SYMBOL(__cond_resched);
8589 #endif
8590 
8591 #ifdef CONFIG_PREEMPT_DYNAMIC
8592 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8593 #define cond_resched_dynamic_enabled	__cond_resched
8594 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8595 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8596 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8597 
8598 #define might_resched_dynamic_enabled	__cond_resched
8599 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8600 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8601 EXPORT_STATIC_CALL_TRAMP(might_resched);
8602 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8603 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8604 int __sched dynamic_cond_resched(void)
8605 {
8606 	klp_sched_try_switch();
8607 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8608 		return 0;
8609 	return __cond_resched();
8610 }
8611 EXPORT_SYMBOL(dynamic_cond_resched);
8612 
8613 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8614 int __sched dynamic_might_resched(void)
8615 {
8616 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8617 		return 0;
8618 	return __cond_resched();
8619 }
8620 EXPORT_SYMBOL(dynamic_might_resched);
8621 #endif
8622 #endif
8623 
8624 /*
8625  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8626  * call schedule, and on return reacquire the lock.
8627  *
8628  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8629  * operations here to prevent schedule() from being called twice (once via
8630  * spin_unlock(), once by hand).
8631  */
8632 int __cond_resched_lock(spinlock_t *lock)
8633 {
8634 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8635 	int ret = 0;
8636 
8637 	lockdep_assert_held(lock);
8638 
8639 	if (spin_needbreak(lock) || resched) {
8640 		spin_unlock(lock);
8641 		if (!_cond_resched())
8642 			cpu_relax();
8643 		ret = 1;
8644 		spin_lock(lock);
8645 	}
8646 	return ret;
8647 }
8648 EXPORT_SYMBOL(__cond_resched_lock);
8649 
8650 int __cond_resched_rwlock_read(rwlock_t *lock)
8651 {
8652 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8653 	int ret = 0;
8654 
8655 	lockdep_assert_held_read(lock);
8656 
8657 	if (rwlock_needbreak(lock) || resched) {
8658 		read_unlock(lock);
8659 		if (!_cond_resched())
8660 			cpu_relax();
8661 		ret = 1;
8662 		read_lock(lock);
8663 	}
8664 	return ret;
8665 }
8666 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8667 
8668 int __cond_resched_rwlock_write(rwlock_t *lock)
8669 {
8670 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8671 	int ret = 0;
8672 
8673 	lockdep_assert_held_write(lock);
8674 
8675 	if (rwlock_needbreak(lock) || resched) {
8676 		write_unlock(lock);
8677 		if (!_cond_resched())
8678 			cpu_relax();
8679 		ret = 1;
8680 		write_lock(lock);
8681 	}
8682 	return ret;
8683 }
8684 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8685 
8686 #ifdef CONFIG_PREEMPT_DYNAMIC
8687 
8688 #ifdef CONFIG_GENERIC_ENTRY
8689 #include <linux/entry-common.h>
8690 #endif
8691 
8692 /*
8693  * SC:cond_resched
8694  * SC:might_resched
8695  * SC:preempt_schedule
8696  * SC:preempt_schedule_notrace
8697  * SC:irqentry_exit_cond_resched
8698  *
8699  *
8700  * NONE:
8701  *   cond_resched               <- __cond_resched
8702  *   might_resched              <- RET0
8703  *   preempt_schedule           <- NOP
8704  *   preempt_schedule_notrace   <- NOP
8705  *   irqentry_exit_cond_resched <- NOP
8706  *
8707  * VOLUNTARY:
8708  *   cond_resched               <- __cond_resched
8709  *   might_resched              <- __cond_resched
8710  *   preempt_schedule           <- NOP
8711  *   preempt_schedule_notrace   <- NOP
8712  *   irqentry_exit_cond_resched <- NOP
8713  *
8714  * FULL:
8715  *   cond_resched               <- RET0
8716  *   might_resched              <- RET0
8717  *   preempt_schedule           <- preempt_schedule
8718  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8719  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8720  */
8721 
8722 enum {
8723 	preempt_dynamic_undefined = -1,
8724 	preempt_dynamic_none,
8725 	preempt_dynamic_voluntary,
8726 	preempt_dynamic_full,
8727 };
8728 
8729 int preempt_dynamic_mode = preempt_dynamic_undefined;
8730 
8731 int sched_dynamic_mode(const char *str)
8732 {
8733 	if (!strcmp(str, "none"))
8734 		return preempt_dynamic_none;
8735 
8736 	if (!strcmp(str, "voluntary"))
8737 		return preempt_dynamic_voluntary;
8738 
8739 	if (!strcmp(str, "full"))
8740 		return preempt_dynamic_full;
8741 
8742 	return -EINVAL;
8743 }
8744 
8745 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8746 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8747 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8748 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8749 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8750 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8751 #else
8752 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8753 #endif
8754 
8755 static DEFINE_MUTEX(sched_dynamic_mutex);
8756 static bool klp_override;
8757 
8758 static void __sched_dynamic_update(int mode)
8759 {
8760 	/*
8761 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8762 	 * the ZERO state, which is invalid.
8763 	 */
8764 	if (!klp_override)
8765 		preempt_dynamic_enable(cond_resched);
8766 	preempt_dynamic_enable(might_resched);
8767 	preempt_dynamic_enable(preempt_schedule);
8768 	preempt_dynamic_enable(preempt_schedule_notrace);
8769 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8770 
8771 	switch (mode) {
8772 	case preempt_dynamic_none:
8773 		if (!klp_override)
8774 			preempt_dynamic_enable(cond_resched);
8775 		preempt_dynamic_disable(might_resched);
8776 		preempt_dynamic_disable(preempt_schedule);
8777 		preempt_dynamic_disable(preempt_schedule_notrace);
8778 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8779 		if (mode != preempt_dynamic_mode)
8780 			pr_info("Dynamic Preempt: none\n");
8781 		break;
8782 
8783 	case preempt_dynamic_voluntary:
8784 		if (!klp_override)
8785 			preempt_dynamic_enable(cond_resched);
8786 		preempt_dynamic_enable(might_resched);
8787 		preempt_dynamic_disable(preempt_schedule);
8788 		preempt_dynamic_disable(preempt_schedule_notrace);
8789 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8790 		if (mode != preempt_dynamic_mode)
8791 			pr_info("Dynamic Preempt: voluntary\n");
8792 		break;
8793 
8794 	case preempt_dynamic_full:
8795 		if (!klp_override)
8796 			preempt_dynamic_disable(cond_resched);
8797 		preempt_dynamic_disable(might_resched);
8798 		preempt_dynamic_enable(preempt_schedule);
8799 		preempt_dynamic_enable(preempt_schedule_notrace);
8800 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8801 		if (mode != preempt_dynamic_mode)
8802 			pr_info("Dynamic Preempt: full\n");
8803 		break;
8804 	}
8805 
8806 	preempt_dynamic_mode = mode;
8807 }
8808 
8809 void sched_dynamic_update(int mode)
8810 {
8811 	mutex_lock(&sched_dynamic_mutex);
8812 	__sched_dynamic_update(mode);
8813 	mutex_unlock(&sched_dynamic_mutex);
8814 }
8815 
8816 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8817 
8818 static int klp_cond_resched(void)
8819 {
8820 	__klp_sched_try_switch();
8821 	return __cond_resched();
8822 }
8823 
8824 void sched_dynamic_klp_enable(void)
8825 {
8826 	mutex_lock(&sched_dynamic_mutex);
8827 
8828 	klp_override = true;
8829 	static_call_update(cond_resched, klp_cond_resched);
8830 
8831 	mutex_unlock(&sched_dynamic_mutex);
8832 }
8833 
8834 void sched_dynamic_klp_disable(void)
8835 {
8836 	mutex_lock(&sched_dynamic_mutex);
8837 
8838 	klp_override = false;
8839 	__sched_dynamic_update(preempt_dynamic_mode);
8840 
8841 	mutex_unlock(&sched_dynamic_mutex);
8842 }
8843 
8844 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8845 
8846 static int __init setup_preempt_mode(char *str)
8847 {
8848 	int mode = sched_dynamic_mode(str);
8849 	if (mode < 0) {
8850 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8851 		return 0;
8852 	}
8853 
8854 	sched_dynamic_update(mode);
8855 	return 1;
8856 }
8857 __setup("preempt=", setup_preempt_mode);
8858 
8859 static void __init preempt_dynamic_init(void)
8860 {
8861 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8862 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8863 			sched_dynamic_update(preempt_dynamic_none);
8864 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8865 			sched_dynamic_update(preempt_dynamic_voluntary);
8866 		} else {
8867 			/* Default static call setting, nothing to do */
8868 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8869 			preempt_dynamic_mode = preempt_dynamic_full;
8870 			pr_info("Dynamic Preempt: full\n");
8871 		}
8872 	}
8873 }
8874 
8875 #define PREEMPT_MODEL_ACCESSOR(mode) \
8876 	bool preempt_model_##mode(void)						 \
8877 	{									 \
8878 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8879 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8880 	}									 \
8881 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8882 
8883 PREEMPT_MODEL_ACCESSOR(none);
8884 PREEMPT_MODEL_ACCESSOR(voluntary);
8885 PREEMPT_MODEL_ACCESSOR(full);
8886 
8887 #else /* !CONFIG_PREEMPT_DYNAMIC */
8888 
8889 static inline void preempt_dynamic_init(void) { }
8890 
8891 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8892 
8893 /**
8894  * yield - yield the current processor to other threads.
8895  *
8896  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8897  *
8898  * The scheduler is at all times free to pick the calling task as the most
8899  * eligible task to run, if removing the yield() call from your code breaks
8900  * it, it's already broken.
8901  *
8902  * Typical broken usage is:
8903  *
8904  * while (!event)
8905  *	yield();
8906  *
8907  * where one assumes that yield() will let 'the other' process run that will
8908  * make event true. If the current task is a SCHED_FIFO task that will never
8909  * happen. Never use yield() as a progress guarantee!!
8910  *
8911  * If you want to use yield() to wait for something, use wait_event().
8912  * If you want to use yield() to be 'nice' for others, use cond_resched().
8913  * If you still want to use yield(), do not!
8914  */
8915 void __sched yield(void)
8916 {
8917 	set_current_state(TASK_RUNNING);
8918 	do_sched_yield();
8919 }
8920 EXPORT_SYMBOL(yield);
8921 
8922 /**
8923  * yield_to - yield the current processor to another thread in
8924  * your thread group, or accelerate that thread toward the
8925  * processor it's on.
8926  * @p: target task
8927  * @preempt: whether task preemption is allowed or not
8928  *
8929  * It's the caller's job to ensure that the target task struct
8930  * can't go away on us before we can do any checks.
8931  *
8932  * Return:
8933  *	true (>0) if we indeed boosted the target task.
8934  *	false (0) if we failed to boost the target.
8935  *	-ESRCH if there's no task to yield to.
8936  */
8937 int __sched yield_to(struct task_struct *p, bool preempt)
8938 {
8939 	struct task_struct *curr = current;
8940 	struct rq *rq, *p_rq;
8941 	int yielded = 0;
8942 
8943 	scoped_guard (irqsave) {
8944 		rq = this_rq();
8945 
8946 again:
8947 		p_rq = task_rq(p);
8948 		/*
8949 		 * If we're the only runnable task on the rq and target rq also
8950 		 * has only one task, there's absolutely no point in yielding.
8951 		 */
8952 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
8953 			return -ESRCH;
8954 
8955 		guard(double_rq_lock)(rq, p_rq);
8956 		if (task_rq(p) != p_rq)
8957 			goto again;
8958 
8959 		if (!curr->sched_class->yield_to_task)
8960 			return 0;
8961 
8962 		if (curr->sched_class != p->sched_class)
8963 			return 0;
8964 
8965 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
8966 			return 0;
8967 
8968 		yielded = curr->sched_class->yield_to_task(rq, p);
8969 		if (yielded) {
8970 			schedstat_inc(rq->yld_count);
8971 			/*
8972 			 * Make p's CPU reschedule; pick_next_entity
8973 			 * takes care of fairness.
8974 			 */
8975 			if (preempt && rq != p_rq)
8976 				resched_curr(p_rq);
8977 		}
8978 	}
8979 
8980 	if (yielded)
8981 		schedule();
8982 
8983 	return yielded;
8984 }
8985 EXPORT_SYMBOL_GPL(yield_to);
8986 
8987 int io_schedule_prepare(void)
8988 {
8989 	int old_iowait = current->in_iowait;
8990 
8991 	current->in_iowait = 1;
8992 	blk_flush_plug(current->plug, true);
8993 	return old_iowait;
8994 }
8995 
8996 void io_schedule_finish(int token)
8997 {
8998 	current->in_iowait = token;
8999 }
9000 
9001 /*
9002  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9003  * that process accounting knows that this is a task in IO wait state.
9004  */
9005 long __sched io_schedule_timeout(long timeout)
9006 {
9007 	int token;
9008 	long ret;
9009 
9010 	token = io_schedule_prepare();
9011 	ret = schedule_timeout(timeout);
9012 	io_schedule_finish(token);
9013 
9014 	return ret;
9015 }
9016 EXPORT_SYMBOL(io_schedule_timeout);
9017 
9018 void __sched io_schedule(void)
9019 {
9020 	int token;
9021 
9022 	token = io_schedule_prepare();
9023 	schedule();
9024 	io_schedule_finish(token);
9025 }
9026 EXPORT_SYMBOL(io_schedule);
9027 
9028 /**
9029  * sys_sched_get_priority_max - return maximum RT priority.
9030  * @policy: scheduling class.
9031  *
9032  * Return: On success, this syscall returns the maximum
9033  * rt_priority that can be used by a given scheduling class.
9034  * On failure, a negative error code is returned.
9035  */
9036 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9037 {
9038 	int ret = -EINVAL;
9039 
9040 	switch (policy) {
9041 	case SCHED_FIFO:
9042 	case SCHED_RR:
9043 		ret = MAX_RT_PRIO-1;
9044 		break;
9045 	case SCHED_DEADLINE:
9046 	case SCHED_NORMAL:
9047 	case SCHED_BATCH:
9048 	case SCHED_IDLE:
9049 		ret = 0;
9050 		break;
9051 	}
9052 	return ret;
9053 }
9054 
9055 /**
9056  * sys_sched_get_priority_min - return minimum RT priority.
9057  * @policy: scheduling class.
9058  *
9059  * Return: On success, this syscall returns the minimum
9060  * rt_priority that can be used by a given scheduling class.
9061  * On failure, a negative error code is returned.
9062  */
9063 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9064 {
9065 	int ret = -EINVAL;
9066 
9067 	switch (policy) {
9068 	case SCHED_FIFO:
9069 	case SCHED_RR:
9070 		ret = 1;
9071 		break;
9072 	case SCHED_DEADLINE:
9073 	case SCHED_NORMAL:
9074 	case SCHED_BATCH:
9075 	case SCHED_IDLE:
9076 		ret = 0;
9077 	}
9078 	return ret;
9079 }
9080 
9081 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9082 {
9083 	unsigned int time_slice = 0;
9084 	int retval;
9085 
9086 	if (pid < 0)
9087 		return -EINVAL;
9088 
9089 	scoped_guard (rcu) {
9090 		struct task_struct *p = find_process_by_pid(pid);
9091 		if (!p)
9092 			return -ESRCH;
9093 
9094 		retval = security_task_getscheduler(p);
9095 		if (retval)
9096 			return retval;
9097 
9098 		scoped_guard (task_rq_lock, p) {
9099 			struct rq *rq = scope.rq;
9100 			if (p->sched_class->get_rr_interval)
9101 				time_slice = p->sched_class->get_rr_interval(rq, p);
9102 		}
9103 	}
9104 
9105 	jiffies_to_timespec64(time_slice, t);
9106 	return 0;
9107 }
9108 
9109 /**
9110  * sys_sched_rr_get_interval - return the default timeslice of a process.
9111  * @pid: pid of the process.
9112  * @interval: userspace pointer to the timeslice value.
9113  *
9114  * this syscall writes the default timeslice value of a given process
9115  * into the user-space timespec buffer. A value of '0' means infinity.
9116  *
9117  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9118  * an error code.
9119  */
9120 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9121 		struct __kernel_timespec __user *, interval)
9122 {
9123 	struct timespec64 t;
9124 	int retval = sched_rr_get_interval(pid, &t);
9125 
9126 	if (retval == 0)
9127 		retval = put_timespec64(&t, interval);
9128 
9129 	return retval;
9130 }
9131 
9132 #ifdef CONFIG_COMPAT_32BIT_TIME
9133 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9134 		struct old_timespec32 __user *, interval)
9135 {
9136 	struct timespec64 t;
9137 	int retval = sched_rr_get_interval(pid, &t);
9138 
9139 	if (retval == 0)
9140 		retval = put_old_timespec32(&t, interval);
9141 	return retval;
9142 }
9143 #endif
9144 
9145 void sched_show_task(struct task_struct *p)
9146 {
9147 	unsigned long free = 0;
9148 	int ppid;
9149 
9150 	if (!try_get_task_stack(p))
9151 		return;
9152 
9153 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9154 
9155 	if (task_is_running(p))
9156 		pr_cont("  running task    ");
9157 #ifdef CONFIG_DEBUG_STACK_USAGE
9158 	free = stack_not_used(p);
9159 #endif
9160 	ppid = 0;
9161 	rcu_read_lock();
9162 	if (pid_alive(p))
9163 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9164 	rcu_read_unlock();
9165 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9166 		free, task_pid_nr(p), task_tgid_nr(p),
9167 		ppid, read_task_thread_flags(p));
9168 
9169 	print_worker_info(KERN_INFO, p);
9170 	print_stop_info(KERN_INFO, p);
9171 	show_stack(p, NULL, KERN_INFO);
9172 	put_task_stack(p);
9173 }
9174 EXPORT_SYMBOL_GPL(sched_show_task);
9175 
9176 static inline bool
9177 state_filter_match(unsigned long state_filter, struct task_struct *p)
9178 {
9179 	unsigned int state = READ_ONCE(p->__state);
9180 
9181 	/* no filter, everything matches */
9182 	if (!state_filter)
9183 		return true;
9184 
9185 	/* filter, but doesn't match */
9186 	if (!(state & state_filter))
9187 		return false;
9188 
9189 	/*
9190 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9191 	 * TASK_KILLABLE).
9192 	 */
9193 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9194 		return false;
9195 
9196 	return true;
9197 }
9198 
9199 
9200 void show_state_filter(unsigned int state_filter)
9201 {
9202 	struct task_struct *g, *p;
9203 
9204 	rcu_read_lock();
9205 	for_each_process_thread(g, p) {
9206 		/*
9207 		 * reset the NMI-timeout, listing all files on a slow
9208 		 * console might take a lot of time:
9209 		 * Also, reset softlockup watchdogs on all CPUs, because
9210 		 * another CPU might be blocked waiting for us to process
9211 		 * an IPI.
9212 		 */
9213 		touch_nmi_watchdog();
9214 		touch_all_softlockup_watchdogs();
9215 		if (state_filter_match(state_filter, p))
9216 			sched_show_task(p);
9217 	}
9218 
9219 #ifdef CONFIG_SCHED_DEBUG
9220 	if (!state_filter)
9221 		sysrq_sched_debug_show();
9222 #endif
9223 	rcu_read_unlock();
9224 	/*
9225 	 * Only show locks if all tasks are dumped:
9226 	 */
9227 	if (!state_filter)
9228 		debug_show_all_locks();
9229 }
9230 
9231 /**
9232  * init_idle - set up an idle thread for a given CPU
9233  * @idle: task in question
9234  * @cpu: CPU the idle task belongs to
9235  *
9236  * NOTE: this function does not set the idle thread's NEED_RESCHED
9237  * flag, to make booting more robust.
9238  */
9239 void __init init_idle(struct task_struct *idle, int cpu)
9240 {
9241 #ifdef CONFIG_SMP
9242 	struct affinity_context ac = (struct affinity_context) {
9243 		.new_mask  = cpumask_of(cpu),
9244 		.flags     = 0,
9245 	};
9246 #endif
9247 	struct rq *rq = cpu_rq(cpu);
9248 	unsigned long flags;
9249 
9250 	__sched_fork(0, idle);
9251 
9252 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9253 	raw_spin_rq_lock(rq);
9254 
9255 	idle->__state = TASK_RUNNING;
9256 	idle->se.exec_start = sched_clock();
9257 	/*
9258 	 * PF_KTHREAD should already be set at this point; regardless, make it
9259 	 * look like a proper per-CPU kthread.
9260 	 */
9261 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9262 	kthread_set_per_cpu(idle, cpu);
9263 
9264 #ifdef CONFIG_SMP
9265 	/*
9266 	 * It's possible that init_idle() gets called multiple times on a task,
9267 	 * in that case do_set_cpus_allowed() will not do the right thing.
9268 	 *
9269 	 * And since this is boot we can forgo the serialization.
9270 	 */
9271 	set_cpus_allowed_common(idle, &ac);
9272 #endif
9273 	/*
9274 	 * We're having a chicken and egg problem, even though we are
9275 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9276 	 * lockdep check in task_group() will fail.
9277 	 *
9278 	 * Similar case to sched_fork(). / Alternatively we could
9279 	 * use task_rq_lock() here and obtain the other rq->lock.
9280 	 *
9281 	 * Silence PROVE_RCU
9282 	 */
9283 	rcu_read_lock();
9284 	__set_task_cpu(idle, cpu);
9285 	rcu_read_unlock();
9286 
9287 	rq->idle = idle;
9288 	rcu_assign_pointer(rq->curr, idle);
9289 	idle->on_rq = TASK_ON_RQ_QUEUED;
9290 #ifdef CONFIG_SMP
9291 	idle->on_cpu = 1;
9292 #endif
9293 	raw_spin_rq_unlock(rq);
9294 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9295 
9296 	/* Set the preempt count _outside_ the spinlocks! */
9297 	init_idle_preempt_count(idle, cpu);
9298 
9299 	/*
9300 	 * The idle tasks have their own, simple scheduling class:
9301 	 */
9302 	idle->sched_class = &idle_sched_class;
9303 	ftrace_graph_init_idle_task(idle, cpu);
9304 	vtime_init_idle(idle, cpu);
9305 #ifdef CONFIG_SMP
9306 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9307 #endif
9308 }
9309 
9310 #ifdef CONFIG_SMP
9311 
9312 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9313 			      const struct cpumask *trial)
9314 {
9315 	int ret = 1;
9316 
9317 	if (cpumask_empty(cur))
9318 		return ret;
9319 
9320 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9321 
9322 	return ret;
9323 }
9324 
9325 int task_can_attach(struct task_struct *p)
9326 {
9327 	int ret = 0;
9328 
9329 	/*
9330 	 * Kthreads which disallow setaffinity shouldn't be moved
9331 	 * to a new cpuset; we don't want to change their CPU
9332 	 * affinity and isolating such threads by their set of
9333 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9334 	 * applicable for such threads.  This prevents checking for
9335 	 * success of set_cpus_allowed_ptr() on all attached tasks
9336 	 * before cpus_mask may be changed.
9337 	 */
9338 	if (p->flags & PF_NO_SETAFFINITY)
9339 		ret = -EINVAL;
9340 
9341 	return ret;
9342 }
9343 
9344 bool sched_smp_initialized __read_mostly;
9345 
9346 #ifdef CONFIG_NUMA_BALANCING
9347 /* Migrate current task p to target_cpu */
9348 int migrate_task_to(struct task_struct *p, int target_cpu)
9349 {
9350 	struct migration_arg arg = { p, target_cpu };
9351 	int curr_cpu = task_cpu(p);
9352 
9353 	if (curr_cpu == target_cpu)
9354 		return 0;
9355 
9356 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9357 		return -EINVAL;
9358 
9359 	/* TODO: This is not properly updating schedstats */
9360 
9361 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9362 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9363 }
9364 
9365 /*
9366  * Requeue a task on a given node and accurately track the number of NUMA
9367  * tasks on the runqueues
9368  */
9369 void sched_setnuma(struct task_struct *p, int nid)
9370 {
9371 	bool queued, running;
9372 	struct rq_flags rf;
9373 	struct rq *rq;
9374 
9375 	rq = task_rq_lock(p, &rf);
9376 	queued = task_on_rq_queued(p);
9377 	running = task_current(rq, p);
9378 
9379 	if (queued)
9380 		dequeue_task(rq, p, DEQUEUE_SAVE);
9381 	if (running)
9382 		put_prev_task(rq, p);
9383 
9384 	p->numa_preferred_nid = nid;
9385 
9386 	if (queued)
9387 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9388 	if (running)
9389 		set_next_task(rq, p);
9390 	task_rq_unlock(rq, p, &rf);
9391 }
9392 #endif /* CONFIG_NUMA_BALANCING */
9393 
9394 #ifdef CONFIG_HOTPLUG_CPU
9395 /*
9396  * Ensure that the idle task is using init_mm right before its CPU goes
9397  * offline.
9398  */
9399 void idle_task_exit(void)
9400 {
9401 	struct mm_struct *mm = current->active_mm;
9402 
9403 	BUG_ON(cpu_online(smp_processor_id()));
9404 	BUG_ON(current != this_rq()->idle);
9405 
9406 	if (mm != &init_mm) {
9407 		switch_mm(mm, &init_mm, current);
9408 		finish_arch_post_lock_switch();
9409 	}
9410 
9411 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9412 }
9413 
9414 static int __balance_push_cpu_stop(void *arg)
9415 {
9416 	struct task_struct *p = arg;
9417 	struct rq *rq = this_rq();
9418 	struct rq_flags rf;
9419 	int cpu;
9420 
9421 	raw_spin_lock_irq(&p->pi_lock);
9422 	rq_lock(rq, &rf);
9423 
9424 	update_rq_clock(rq);
9425 
9426 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9427 		cpu = select_fallback_rq(rq->cpu, p);
9428 		rq = __migrate_task(rq, &rf, p, cpu);
9429 	}
9430 
9431 	rq_unlock(rq, &rf);
9432 	raw_spin_unlock_irq(&p->pi_lock);
9433 
9434 	put_task_struct(p);
9435 
9436 	return 0;
9437 }
9438 
9439 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9440 
9441 /*
9442  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9443  *
9444  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9445  * effective when the hotplug motion is down.
9446  */
9447 static void balance_push(struct rq *rq)
9448 {
9449 	struct task_struct *push_task = rq->curr;
9450 
9451 	lockdep_assert_rq_held(rq);
9452 
9453 	/*
9454 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9455 	 */
9456 	rq->balance_callback = &balance_push_callback;
9457 
9458 	/*
9459 	 * Only active while going offline and when invoked on the outgoing
9460 	 * CPU.
9461 	 */
9462 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9463 		return;
9464 
9465 	/*
9466 	 * Both the cpu-hotplug and stop task are in this case and are
9467 	 * required to complete the hotplug process.
9468 	 */
9469 	if (kthread_is_per_cpu(push_task) ||
9470 	    is_migration_disabled(push_task)) {
9471 
9472 		/*
9473 		 * If this is the idle task on the outgoing CPU try to wake
9474 		 * up the hotplug control thread which might wait for the
9475 		 * last task to vanish. The rcuwait_active() check is
9476 		 * accurate here because the waiter is pinned on this CPU
9477 		 * and can't obviously be running in parallel.
9478 		 *
9479 		 * On RT kernels this also has to check whether there are
9480 		 * pinned and scheduled out tasks on the runqueue. They
9481 		 * need to leave the migrate disabled section first.
9482 		 */
9483 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9484 		    rcuwait_active(&rq->hotplug_wait)) {
9485 			raw_spin_rq_unlock(rq);
9486 			rcuwait_wake_up(&rq->hotplug_wait);
9487 			raw_spin_rq_lock(rq);
9488 		}
9489 		return;
9490 	}
9491 
9492 	get_task_struct(push_task);
9493 	/*
9494 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9495 	 * Both preemption and IRQs are still disabled.
9496 	 */
9497 	preempt_disable();
9498 	raw_spin_rq_unlock(rq);
9499 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9500 			    this_cpu_ptr(&push_work));
9501 	preempt_enable();
9502 	/*
9503 	 * At this point need_resched() is true and we'll take the loop in
9504 	 * schedule(). The next pick is obviously going to be the stop task
9505 	 * which kthread_is_per_cpu() and will push this task away.
9506 	 */
9507 	raw_spin_rq_lock(rq);
9508 }
9509 
9510 static void balance_push_set(int cpu, bool on)
9511 {
9512 	struct rq *rq = cpu_rq(cpu);
9513 	struct rq_flags rf;
9514 
9515 	rq_lock_irqsave(rq, &rf);
9516 	if (on) {
9517 		WARN_ON_ONCE(rq->balance_callback);
9518 		rq->balance_callback = &balance_push_callback;
9519 	} else if (rq->balance_callback == &balance_push_callback) {
9520 		rq->balance_callback = NULL;
9521 	}
9522 	rq_unlock_irqrestore(rq, &rf);
9523 }
9524 
9525 /*
9526  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9527  * inactive. All tasks which are not per CPU kernel threads are either
9528  * pushed off this CPU now via balance_push() or placed on a different CPU
9529  * during wakeup. Wait until the CPU is quiescent.
9530  */
9531 static void balance_hotplug_wait(void)
9532 {
9533 	struct rq *rq = this_rq();
9534 
9535 	rcuwait_wait_event(&rq->hotplug_wait,
9536 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9537 			   TASK_UNINTERRUPTIBLE);
9538 }
9539 
9540 #else
9541 
9542 static inline void balance_push(struct rq *rq)
9543 {
9544 }
9545 
9546 static inline void balance_push_set(int cpu, bool on)
9547 {
9548 }
9549 
9550 static inline void balance_hotplug_wait(void)
9551 {
9552 }
9553 
9554 #endif /* CONFIG_HOTPLUG_CPU */
9555 
9556 void set_rq_online(struct rq *rq)
9557 {
9558 	if (!rq->online) {
9559 		const struct sched_class *class;
9560 
9561 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9562 		rq->online = 1;
9563 
9564 		for_each_class(class) {
9565 			if (class->rq_online)
9566 				class->rq_online(rq);
9567 		}
9568 	}
9569 }
9570 
9571 void set_rq_offline(struct rq *rq)
9572 {
9573 	if (rq->online) {
9574 		const struct sched_class *class;
9575 
9576 		update_rq_clock(rq);
9577 		for_each_class(class) {
9578 			if (class->rq_offline)
9579 				class->rq_offline(rq);
9580 		}
9581 
9582 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9583 		rq->online = 0;
9584 	}
9585 }
9586 
9587 /*
9588  * used to mark begin/end of suspend/resume:
9589  */
9590 static int num_cpus_frozen;
9591 
9592 /*
9593  * Update cpusets according to cpu_active mask.  If cpusets are
9594  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9595  * around partition_sched_domains().
9596  *
9597  * If we come here as part of a suspend/resume, don't touch cpusets because we
9598  * want to restore it back to its original state upon resume anyway.
9599  */
9600 static void cpuset_cpu_active(void)
9601 {
9602 	if (cpuhp_tasks_frozen) {
9603 		/*
9604 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9605 		 * resume sequence. As long as this is not the last online
9606 		 * operation in the resume sequence, just build a single sched
9607 		 * domain, ignoring cpusets.
9608 		 */
9609 		partition_sched_domains(1, NULL, NULL);
9610 		if (--num_cpus_frozen)
9611 			return;
9612 		/*
9613 		 * This is the last CPU online operation. So fall through and
9614 		 * restore the original sched domains by considering the
9615 		 * cpuset configurations.
9616 		 */
9617 		cpuset_force_rebuild();
9618 	}
9619 	cpuset_update_active_cpus();
9620 }
9621 
9622 static int cpuset_cpu_inactive(unsigned int cpu)
9623 {
9624 	if (!cpuhp_tasks_frozen) {
9625 		int ret = dl_bw_check_overflow(cpu);
9626 
9627 		if (ret)
9628 			return ret;
9629 		cpuset_update_active_cpus();
9630 	} else {
9631 		num_cpus_frozen++;
9632 		partition_sched_domains(1, NULL, NULL);
9633 	}
9634 	return 0;
9635 }
9636 
9637 int sched_cpu_activate(unsigned int cpu)
9638 {
9639 	struct rq *rq = cpu_rq(cpu);
9640 	struct rq_flags rf;
9641 
9642 	/*
9643 	 * Clear the balance_push callback and prepare to schedule
9644 	 * regular tasks.
9645 	 */
9646 	balance_push_set(cpu, false);
9647 
9648 #ifdef CONFIG_SCHED_SMT
9649 	/*
9650 	 * When going up, increment the number of cores with SMT present.
9651 	 */
9652 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9653 		static_branch_inc_cpuslocked(&sched_smt_present);
9654 #endif
9655 	set_cpu_active(cpu, true);
9656 
9657 	if (sched_smp_initialized) {
9658 		sched_update_numa(cpu, true);
9659 		sched_domains_numa_masks_set(cpu);
9660 		cpuset_cpu_active();
9661 	}
9662 
9663 	/*
9664 	 * Put the rq online, if not already. This happens:
9665 	 *
9666 	 * 1) In the early boot process, because we build the real domains
9667 	 *    after all CPUs have been brought up.
9668 	 *
9669 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9670 	 *    domains.
9671 	 */
9672 	rq_lock_irqsave(rq, &rf);
9673 	if (rq->rd) {
9674 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9675 		set_rq_online(rq);
9676 	}
9677 	rq_unlock_irqrestore(rq, &rf);
9678 
9679 	return 0;
9680 }
9681 
9682 int sched_cpu_deactivate(unsigned int cpu)
9683 {
9684 	struct rq *rq = cpu_rq(cpu);
9685 	struct rq_flags rf;
9686 	int ret;
9687 
9688 	/*
9689 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9690 	 * load balancing when not active
9691 	 */
9692 	nohz_balance_exit_idle(rq);
9693 
9694 	set_cpu_active(cpu, false);
9695 
9696 	/*
9697 	 * From this point forward, this CPU will refuse to run any task that
9698 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9699 	 * push those tasks away until this gets cleared, see
9700 	 * sched_cpu_dying().
9701 	 */
9702 	balance_push_set(cpu, true);
9703 
9704 	/*
9705 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9706 	 * preempt-disabled and RCU users of this state to go away such that
9707 	 * all new such users will observe it.
9708 	 *
9709 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9710 	 * ttwu_queue_cond() and is_cpu_allowed().
9711 	 *
9712 	 * Do sync before park smpboot threads to take care the rcu boost case.
9713 	 */
9714 	synchronize_rcu();
9715 
9716 	rq_lock_irqsave(rq, &rf);
9717 	if (rq->rd) {
9718 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9719 		set_rq_offline(rq);
9720 	}
9721 	rq_unlock_irqrestore(rq, &rf);
9722 
9723 #ifdef CONFIG_SCHED_SMT
9724 	/*
9725 	 * When going down, decrement the number of cores with SMT present.
9726 	 */
9727 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9728 		static_branch_dec_cpuslocked(&sched_smt_present);
9729 
9730 	sched_core_cpu_deactivate(cpu);
9731 #endif
9732 
9733 	if (!sched_smp_initialized)
9734 		return 0;
9735 
9736 	sched_update_numa(cpu, false);
9737 	ret = cpuset_cpu_inactive(cpu);
9738 	if (ret) {
9739 		balance_push_set(cpu, false);
9740 		set_cpu_active(cpu, true);
9741 		sched_update_numa(cpu, true);
9742 		return ret;
9743 	}
9744 	sched_domains_numa_masks_clear(cpu);
9745 	return 0;
9746 }
9747 
9748 static void sched_rq_cpu_starting(unsigned int cpu)
9749 {
9750 	struct rq *rq = cpu_rq(cpu);
9751 
9752 	rq->calc_load_update = calc_load_update;
9753 	update_max_interval();
9754 }
9755 
9756 int sched_cpu_starting(unsigned int cpu)
9757 {
9758 	sched_core_cpu_starting(cpu);
9759 	sched_rq_cpu_starting(cpu);
9760 	sched_tick_start(cpu);
9761 	return 0;
9762 }
9763 
9764 #ifdef CONFIG_HOTPLUG_CPU
9765 
9766 /*
9767  * Invoked immediately before the stopper thread is invoked to bring the
9768  * CPU down completely. At this point all per CPU kthreads except the
9769  * hotplug thread (current) and the stopper thread (inactive) have been
9770  * either parked or have been unbound from the outgoing CPU. Ensure that
9771  * any of those which might be on the way out are gone.
9772  *
9773  * If after this point a bound task is being woken on this CPU then the
9774  * responsible hotplug callback has failed to do it's job.
9775  * sched_cpu_dying() will catch it with the appropriate fireworks.
9776  */
9777 int sched_cpu_wait_empty(unsigned int cpu)
9778 {
9779 	balance_hotplug_wait();
9780 	return 0;
9781 }
9782 
9783 /*
9784  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9785  * might have. Called from the CPU stopper task after ensuring that the
9786  * stopper is the last running task on the CPU, so nr_active count is
9787  * stable. We need to take the teardown thread which is calling this into
9788  * account, so we hand in adjust = 1 to the load calculation.
9789  *
9790  * Also see the comment "Global load-average calculations".
9791  */
9792 static void calc_load_migrate(struct rq *rq)
9793 {
9794 	long delta = calc_load_fold_active(rq, 1);
9795 
9796 	if (delta)
9797 		atomic_long_add(delta, &calc_load_tasks);
9798 }
9799 
9800 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9801 {
9802 	struct task_struct *g, *p;
9803 	int cpu = cpu_of(rq);
9804 
9805 	lockdep_assert_rq_held(rq);
9806 
9807 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9808 	for_each_process_thread(g, p) {
9809 		if (task_cpu(p) != cpu)
9810 			continue;
9811 
9812 		if (!task_on_rq_queued(p))
9813 			continue;
9814 
9815 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9816 	}
9817 }
9818 
9819 int sched_cpu_dying(unsigned int cpu)
9820 {
9821 	struct rq *rq = cpu_rq(cpu);
9822 	struct rq_flags rf;
9823 
9824 	/* Handle pending wakeups and then migrate everything off */
9825 	sched_tick_stop(cpu);
9826 
9827 	rq_lock_irqsave(rq, &rf);
9828 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9829 		WARN(true, "Dying CPU not properly vacated!");
9830 		dump_rq_tasks(rq, KERN_WARNING);
9831 	}
9832 	rq_unlock_irqrestore(rq, &rf);
9833 
9834 	calc_load_migrate(rq);
9835 	update_max_interval();
9836 	hrtick_clear(rq);
9837 	sched_core_cpu_dying(cpu);
9838 	return 0;
9839 }
9840 #endif
9841 
9842 void __init sched_init_smp(void)
9843 {
9844 	sched_init_numa(NUMA_NO_NODE);
9845 
9846 	/*
9847 	 * There's no userspace yet to cause hotplug operations; hence all the
9848 	 * CPU masks are stable and all blatant races in the below code cannot
9849 	 * happen.
9850 	 */
9851 	mutex_lock(&sched_domains_mutex);
9852 	sched_init_domains(cpu_active_mask);
9853 	mutex_unlock(&sched_domains_mutex);
9854 
9855 	/* Move init over to a non-isolated CPU */
9856 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9857 		BUG();
9858 	current->flags &= ~PF_NO_SETAFFINITY;
9859 	sched_init_granularity();
9860 
9861 	init_sched_rt_class();
9862 	init_sched_dl_class();
9863 
9864 	sched_smp_initialized = true;
9865 }
9866 
9867 static int __init migration_init(void)
9868 {
9869 	sched_cpu_starting(smp_processor_id());
9870 	return 0;
9871 }
9872 early_initcall(migration_init);
9873 
9874 #else
9875 void __init sched_init_smp(void)
9876 {
9877 	sched_init_granularity();
9878 }
9879 #endif /* CONFIG_SMP */
9880 
9881 int in_sched_functions(unsigned long addr)
9882 {
9883 	return in_lock_functions(addr) ||
9884 		(addr >= (unsigned long)__sched_text_start
9885 		&& addr < (unsigned long)__sched_text_end);
9886 }
9887 
9888 #ifdef CONFIG_CGROUP_SCHED
9889 /*
9890  * Default task group.
9891  * Every task in system belongs to this group at bootup.
9892  */
9893 struct task_group root_task_group;
9894 LIST_HEAD(task_groups);
9895 
9896 /* Cacheline aligned slab cache for task_group */
9897 static struct kmem_cache *task_group_cache __ro_after_init;
9898 #endif
9899 
9900 void __init sched_init(void)
9901 {
9902 	unsigned long ptr = 0;
9903 	int i;
9904 
9905 	/* Make sure the linker didn't screw up */
9906 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9907 	       &fair_sched_class != &rt_sched_class + 1 ||
9908 	       &rt_sched_class   != &dl_sched_class + 1);
9909 #ifdef CONFIG_SMP
9910 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9911 #endif
9912 
9913 	wait_bit_init();
9914 
9915 #ifdef CONFIG_FAIR_GROUP_SCHED
9916 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9917 #endif
9918 #ifdef CONFIG_RT_GROUP_SCHED
9919 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9920 #endif
9921 	if (ptr) {
9922 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9923 
9924 #ifdef CONFIG_FAIR_GROUP_SCHED
9925 		root_task_group.se = (struct sched_entity **)ptr;
9926 		ptr += nr_cpu_ids * sizeof(void **);
9927 
9928 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9929 		ptr += nr_cpu_ids * sizeof(void **);
9930 
9931 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9932 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9933 #endif /* CONFIG_FAIR_GROUP_SCHED */
9934 #ifdef CONFIG_RT_GROUP_SCHED
9935 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9936 		ptr += nr_cpu_ids * sizeof(void **);
9937 
9938 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9939 		ptr += nr_cpu_ids * sizeof(void **);
9940 
9941 #endif /* CONFIG_RT_GROUP_SCHED */
9942 	}
9943 
9944 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9945 
9946 #ifdef CONFIG_SMP
9947 	init_defrootdomain();
9948 #endif
9949 
9950 #ifdef CONFIG_RT_GROUP_SCHED
9951 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9952 			global_rt_period(), global_rt_runtime());
9953 #endif /* CONFIG_RT_GROUP_SCHED */
9954 
9955 #ifdef CONFIG_CGROUP_SCHED
9956 	task_group_cache = KMEM_CACHE(task_group, 0);
9957 
9958 	list_add(&root_task_group.list, &task_groups);
9959 	INIT_LIST_HEAD(&root_task_group.children);
9960 	INIT_LIST_HEAD(&root_task_group.siblings);
9961 	autogroup_init(&init_task);
9962 #endif /* CONFIG_CGROUP_SCHED */
9963 
9964 	for_each_possible_cpu(i) {
9965 		struct rq *rq;
9966 
9967 		rq = cpu_rq(i);
9968 		raw_spin_lock_init(&rq->__lock);
9969 		rq->nr_running = 0;
9970 		rq->calc_load_active = 0;
9971 		rq->calc_load_update = jiffies + LOAD_FREQ;
9972 		init_cfs_rq(&rq->cfs);
9973 		init_rt_rq(&rq->rt);
9974 		init_dl_rq(&rq->dl);
9975 #ifdef CONFIG_FAIR_GROUP_SCHED
9976 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9977 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9978 		/*
9979 		 * How much CPU bandwidth does root_task_group get?
9980 		 *
9981 		 * In case of task-groups formed thr' the cgroup filesystem, it
9982 		 * gets 100% of the CPU resources in the system. This overall
9983 		 * system CPU resource is divided among the tasks of
9984 		 * root_task_group and its child task-groups in a fair manner,
9985 		 * based on each entity's (task or task-group's) weight
9986 		 * (se->load.weight).
9987 		 *
9988 		 * In other words, if root_task_group has 10 tasks of weight
9989 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9990 		 * then A0's share of the CPU resource is:
9991 		 *
9992 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9993 		 *
9994 		 * We achieve this by letting root_task_group's tasks sit
9995 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9996 		 */
9997 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9998 #endif /* CONFIG_FAIR_GROUP_SCHED */
9999 
10000 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10001 #ifdef CONFIG_RT_GROUP_SCHED
10002 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10003 #endif
10004 #ifdef CONFIG_SMP
10005 		rq->sd = NULL;
10006 		rq->rd = NULL;
10007 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10008 		rq->balance_callback = &balance_push_callback;
10009 		rq->active_balance = 0;
10010 		rq->next_balance = jiffies;
10011 		rq->push_cpu = 0;
10012 		rq->cpu = i;
10013 		rq->online = 0;
10014 		rq->idle_stamp = 0;
10015 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10016 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10017 
10018 		INIT_LIST_HEAD(&rq->cfs_tasks);
10019 
10020 		rq_attach_root(rq, &def_root_domain);
10021 #ifdef CONFIG_NO_HZ_COMMON
10022 		rq->last_blocked_load_update_tick = jiffies;
10023 		atomic_set(&rq->nohz_flags, 0);
10024 
10025 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10026 #endif
10027 #ifdef CONFIG_HOTPLUG_CPU
10028 		rcuwait_init(&rq->hotplug_wait);
10029 #endif
10030 #endif /* CONFIG_SMP */
10031 		hrtick_rq_init(rq);
10032 		atomic_set(&rq->nr_iowait, 0);
10033 
10034 #ifdef CONFIG_SCHED_CORE
10035 		rq->core = rq;
10036 		rq->core_pick = NULL;
10037 		rq->core_enabled = 0;
10038 		rq->core_tree = RB_ROOT;
10039 		rq->core_forceidle_count = 0;
10040 		rq->core_forceidle_occupation = 0;
10041 		rq->core_forceidle_start = 0;
10042 
10043 		rq->core_cookie = 0UL;
10044 #endif
10045 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10046 	}
10047 
10048 	set_load_weight(&init_task, false);
10049 
10050 	/*
10051 	 * The boot idle thread does lazy MMU switching as well:
10052 	 */
10053 	mmgrab_lazy_tlb(&init_mm);
10054 	enter_lazy_tlb(&init_mm, current);
10055 
10056 	/*
10057 	 * The idle task doesn't need the kthread struct to function, but it
10058 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10059 	 * if we want to avoid special-casing it in code that deals with per-CPU
10060 	 * kthreads.
10061 	 */
10062 	WARN_ON(!set_kthread_struct(current));
10063 
10064 	/*
10065 	 * Make us the idle thread. Technically, schedule() should not be
10066 	 * called from this thread, however somewhere below it might be,
10067 	 * but because we are the idle thread, we just pick up running again
10068 	 * when this runqueue becomes "idle".
10069 	 */
10070 	init_idle(current, smp_processor_id());
10071 
10072 	calc_load_update = jiffies + LOAD_FREQ;
10073 
10074 #ifdef CONFIG_SMP
10075 	idle_thread_set_boot_cpu();
10076 	balance_push_set(smp_processor_id(), false);
10077 #endif
10078 	init_sched_fair_class();
10079 
10080 	psi_init();
10081 
10082 	init_uclamp();
10083 
10084 	preempt_dynamic_init();
10085 
10086 	scheduler_running = 1;
10087 }
10088 
10089 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10090 
10091 void __might_sleep(const char *file, int line)
10092 {
10093 	unsigned int state = get_current_state();
10094 	/*
10095 	 * Blocking primitives will set (and therefore destroy) current->state,
10096 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10097 	 * otherwise we will destroy state.
10098 	 */
10099 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10100 			"do not call blocking ops when !TASK_RUNNING; "
10101 			"state=%x set at [<%p>] %pS\n", state,
10102 			(void *)current->task_state_change,
10103 			(void *)current->task_state_change);
10104 
10105 	__might_resched(file, line, 0);
10106 }
10107 EXPORT_SYMBOL(__might_sleep);
10108 
10109 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10110 {
10111 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10112 		return;
10113 
10114 	if (preempt_count() == preempt_offset)
10115 		return;
10116 
10117 	pr_err("Preemption disabled at:");
10118 	print_ip_sym(KERN_ERR, ip);
10119 }
10120 
10121 static inline bool resched_offsets_ok(unsigned int offsets)
10122 {
10123 	unsigned int nested = preempt_count();
10124 
10125 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10126 
10127 	return nested == offsets;
10128 }
10129 
10130 void __might_resched(const char *file, int line, unsigned int offsets)
10131 {
10132 	/* Ratelimiting timestamp: */
10133 	static unsigned long prev_jiffy;
10134 
10135 	unsigned long preempt_disable_ip;
10136 
10137 	/* WARN_ON_ONCE() by default, no rate limit required: */
10138 	rcu_sleep_check();
10139 
10140 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10141 	     !is_idle_task(current) && !current->non_block_count) ||
10142 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10143 	    oops_in_progress)
10144 		return;
10145 
10146 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10147 		return;
10148 	prev_jiffy = jiffies;
10149 
10150 	/* Save this before calling printk(), since that will clobber it: */
10151 	preempt_disable_ip = get_preempt_disable_ip(current);
10152 
10153 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10154 	       file, line);
10155 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10156 	       in_atomic(), irqs_disabled(), current->non_block_count,
10157 	       current->pid, current->comm);
10158 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10159 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10160 
10161 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10162 		pr_err("RCU nest depth: %d, expected: %u\n",
10163 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10164 	}
10165 
10166 	if (task_stack_end_corrupted(current))
10167 		pr_emerg("Thread overran stack, or stack corrupted\n");
10168 
10169 	debug_show_held_locks(current);
10170 	if (irqs_disabled())
10171 		print_irqtrace_events(current);
10172 
10173 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10174 				 preempt_disable_ip);
10175 
10176 	dump_stack();
10177 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10178 }
10179 EXPORT_SYMBOL(__might_resched);
10180 
10181 void __cant_sleep(const char *file, int line, int preempt_offset)
10182 {
10183 	static unsigned long prev_jiffy;
10184 
10185 	if (irqs_disabled())
10186 		return;
10187 
10188 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10189 		return;
10190 
10191 	if (preempt_count() > preempt_offset)
10192 		return;
10193 
10194 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10195 		return;
10196 	prev_jiffy = jiffies;
10197 
10198 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10199 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10200 			in_atomic(), irqs_disabled(),
10201 			current->pid, current->comm);
10202 
10203 	debug_show_held_locks(current);
10204 	dump_stack();
10205 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10206 }
10207 EXPORT_SYMBOL_GPL(__cant_sleep);
10208 
10209 #ifdef CONFIG_SMP
10210 void __cant_migrate(const char *file, int line)
10211 {
10212 	static unsigned long prev_jiffy;
10213 
10214 	if (irqs_disabled())
10215 		return;
10216 
10217 	if (is_migration_disabled(current))
10218 		return;
10219 
10220 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10221 		return;
10222 
10223 	if (preempt_count() > 0)
10224 		return;
10225 
10226 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10227 		return;
10228 	prev_jiffy = jiffies;
10229 
10230 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10231 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10232 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10233 	       current->pid, current->comm);
10234 
10235 	debug_show_held_locks(current);
10236 	dump_stack();
10237 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10238 }
10239 EXPORT_SYMBOL_GPL(__cant_migrate);
10240 #endif
10241 #endif
10242 
10243 #ifdef CONFIG_MAGIC_SYSRQ
10244 void normalize_rt_tasks(void)
10245 {
10246 	struct task_struct *g, *p;
10247 	struct sched_attr attr = {
10248 		.sched_policy = SCHED_NORMAL,
10249 	};
10250 
10251 	read_lock(&tasklist_lock);
10252 	for_each_process_thread(g, p) {
10253 		/*
10254 		 * Only normalize user tasks:
10255 		 */
10256 		if (p->flags & PF_KTHREAD)
10257 			continue;
10258 
10259 		p->se.exec_start = 0;
10260 		schedstat_set(p->stats.wait_start,  0);
10261 		schedstat_set(p->stats.sleep_start, 0);
10262 		schedstat_set(p->stats.block_start, 0);
10263 
10264 		if (!dl_task(p) && !rt_task(p)) {
10265 			/*
10266 			 * Renice negative nice level userspace
10267 			 * tasks back to 0:
10268 			 */
10269 			if (task_nice(p) < 0)
10270 				set_user_nice(p, 0);
10271 			continue;
10272 		}
10273 
10274 		__sched_setscheduler(p, &attr, false, false);
10275 	}
10276 	read_unlock(&tasklist_lock);
10277 }
10278 
10279 #endif /* CONFIG_MAGIC_SYSRQ */
10280 
10281 #if defined(CONFIG_KGDB_KDB)
10282 /*
10283  * These functions are only useful for kdb.
10284  *
10285  * They can only be called when the whole system has been
10286  * stopped - every CPU needs to be quiescent, and no scheduling
10287  * activity can take place. Using them for anything else would
10288  * be a serious bug, and as a result, they aren't even visible
10289  * under any other configuration.
10290  */
10291 
10292 /**
10293  * curr_task - return the current task for a given CPU.
10294  * @cpu: the processor in question.
10295  *
10296  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10297  *
10298  * Return: The current task for @cpu.
10299  */
10300 struct task_struct *curr_task(int cpu)
10301 {
10302 	return cpu_curr(cpu);
10303 }
10304 
10305 #endif /* defined(CONFIG_KGDB_KDB) */
10306 
10307 #ifdef CONFIG_CGROUP_SCHED
10308 /* task_group_lock serializes the addition/removal of task groups */
10309 static DEFINE_SPINLOCK(task_group_lock);
10310 
10311 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10312 					    struct task_group *parent)
10313 {
10314 #ifdef CONFIG_UCLAMP_TASK_GROUP
10315 	enum uclamp_id clamp_id;
10316 
10317 	for_each_clamp_id(clamp_id) {
10318 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10319 			      uclamp_none(clamp_id), false);
10320 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10321 	}
10322 #endif
10323 }
10324 
10325 static void sched_free_group(struct task_group *tg)
10326 {
10327 	free_fair_sched_group(tg);
10328 	free_rt_sched_group(tg);
10329 	autogroup_free(tg);
10330 	kmem_cache_free(task_group_cache, tg);
10331 }
10332 
10333 static void sched_free_group_rcu(struct rcu_head *rcu)
10334 {
10335 	sched_free_group(container_of(rcu, struct task_group, rcu));
10336 }
10337 
10338 static void sched_unregister_group(struct task_group *tg)
10339 {
10340 	unregister_fair_sched_group(tg);
10341 	unregister_rt_sched_group(tg);
10342 	/*
10343 	 * We have to wait for yet another RCU grace period to expire, as
10344 	 * print_cfs_stats() might run concurrently.
10345 	 */
10346 	call_rcu(&tg->rcu, sched_free_group_rcu);
10347 }
10348 
10349 /* allocate runqueue etc for a new task group */
10350 struct task_group *sched_create_group(struct task_group *parent)
10351 {
10352 	struct task_group *tg;
10353 
10354 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10355 	if (!tg)
10356 		return ERR_PTR(-ENOMEM);
10357 
10358 	if (!alloc_fair_sched_group(tg, parent))
10359 		goto err;
10360 
10361 	if (!alloc_rt_sched_group(tg, parent))
10362 		goto err;
10363 
10364 	alloc_uclamp_sched_group(tg, parent);
10365 
10366 	return tg;
10367 
10368 err:
10369 	sched_free_group(tg);
10370 	return ERR_PTR(-ENOMEM);
10371 }
10372 
10373 void sched_online_group(struct task_group *tg, struct task_group *parent)
10374 {
10375 	unsigned long flags;
10376 
10377 	spin_lock_irqsave(&task_group_lock, flags);
10378 	list_add_rcu(&tg->list, &task_groups);
10379 
10380 	/* Root should already exist: */
10381 	WARN_ON(!parent);
10382 
10383 	tg->parent = parent;
10384 	INIT_LIST_HEAD(&tg->children);
10385 	list_add_rcu(&tg->siblings, &parent->children);
10386 	spin_unlock_irqrestore(&task_group_lock, flags);
10387 
10388 	online_fair_sched_group(tg);
10389 }
10390 
10391 /* rcu callback to free various structures associated with a task group */
10392 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10393 {
10394 	/* Now it should be safe to free those cfs_rqs: */
10395 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10396 }
10397 
10398 void sched_destroy_group(struct task_group *tg)
10399 {
10400 	/* Wait for possible concurrent references to cfs_rqs complete: */
10401 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10402 }
10403 
10404 void sched_release_group(struct task_group *tg)
10405 {
10406 	unsigned long flags;
10407 
10408 	/*
10409 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10410 	 * sched_cfs_period_timer()).
10411 	 *
10412 	 * For this to be effective, we have to wait for all pending users of
10413 	 * this task group to leave their RCU critical section to ensure no new
10414 	 * user will see our dying task group any more. Specifically ensure
10415 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10416 	 *
10417 	 * We therefore defer calling unregister_fair_sched_group() to
10418 	 * sched_unregister_group() which is guarantied to get called only after the
10419 	 * current RCU grace period has expired.
10420 	 */
10421 	spin_lock_irqsave(&task_group_lock, flags);
10422 	list_del_rcu(&tg->list);
10423 	list_del_rcu(&tg->siblings);
10424 	spin_unlock_irqrestore(&task_group_lock, flags);
10425 }
10426 
10427 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10428 {
10429 	struct task_group *tg;
10430 
10431 	/*
10432 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10433 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10434 	 * to prevent lockdep warnings.
10435 	 */
10436 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10437 			  struct task_group, css);
10438 	tg = autogroup_task_group(tsk, tg);
10439 
10440 	return tg;
10441 }
10442 
10443 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10444 {
10445 	tsk->sched_task_group = group;
10446 
10447 #ifdef CONFIG_FAIR_GROUP_SCHED
10448 	if (tsk->sched_class->task_change_group)
10449 		tsk->sched_class->task_change_group(tsk);
10450 	else
10451 #endif
10452 		set_task_rq(tsk, task_cpu(tsk));
10453 }
10454 
10455 /*
10456  * Change task's runqueue when it moves between groups.
10457  *
10458  * The caller of this function should have put the task in its new group by
10459  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10460  * its new group.
10461  */
10462 void sched_move_task(struct task_struct *tsk)
10463 {
10464 	int queued, running, queue_flags =
10465 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10466 	struct task_group *group;
10467 	struct rq *rq;
10468 
10469 	CLASS(task_rq_lock, rq_guard)(tsk);
10470 	rq = rq_guard.rq;
10471 
10472 	/*
10473 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10474 	 * group changes.
10475 	 */
10476 	group = sched_get_task_group(tsk);
10477 	if (group == tsk->sched_task_group)
10478 		return;
10479 
10480 	update_rq_clock(rq);
10481 
10482 	running = task_current(rq, tsk);
10483 	queued = task_on_rq_queued(tsk);
10484 
10485 	if (queued)
10486 		dequeue_task(rq, tsk, queue_flags);
10487 	if (running)
10488 		put_prev_task(rq, tsk);
10489 
10490 	sched_change_group(tsk, group);
10491 
10492 	if (queued)
10493 		enqueue_task(rq, tsk, queue_flags);
10494 	if (running) {
10495 		set_next_task(rq, tsk);
10496 		/*
10497 		 * After changing group, the running task may have joined a
10498 		 * throttled one but it's still the running task. Trigger a
10499 		 * resched to make sure that task can still run.
10500 		 */
10501 		resched_curr(rq);
10502 	}
10503 }
10504 
10505 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10506 {
10507 	return css ? container_of(css, struct task_group, css) : NULL;
10508 }
10509 
10510 static struct cgroup_subsys_state *
10511 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10512 {
10513 	struct task_group *parent = css_tg(parent_css);
10514 	struct task_group *tg;
10515 
10516 	if (!parent) {
10517 		/* This is early initialization for the top cgroup */
10518 		return &root_task_group.css;
10519 	}
10520 
10521 	tg = sched_create_group(parent);
10522 	if (IS_ERR(tg))
10523 		return ERR_PTR(-ENOMEM);
10524 
10525 	return &tg->css;
10526 }
10527 
10528 /* Expose task group only after completing cgroup initialization */
10529 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10530 {
10531 	struct task_group *tg = css_tg(css);
10532 	struct task_group *parent = css_tg(css->parent);
10533 
10534 	if (parent)
10535 		sched_online_group(tg, parent);
10536 
10537 #ifdef CONFIG_UCLAMP_TASK_GROUP
10538 	/* Propagate the effective uclamp value for the new group */
10539 	guard(mutex)(&uclamp_mutex);
10540 	guard(rcu)();
10541 	cpu_util_update_eff(css);
10542 #endif
10543 
10544 	return 0;
10545 }
10546 
10547 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10548 {
10549 	struct task_group *tg = css_tg(css);
10550 
10551 	sched_release_group(tg);
10552 }
10553 
10554 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10555 {
10556 	struct task_group *tg = css_tg(css);
10557 
10558 	/*
10559 	 * Relies on the RCU grace period between css_released() and this.
10560 	 */
10561 	sched_unregister_group(tg);
10562 }
10563 
10564 #ifdef CONFIG_RT_GROUP_SCHED
10565 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10566 {
10567 	struct task_struct *task;
10568 	struct cgroup_subsys_state *css;
10569 
10570 	cgroup_taskset_for_each(task, css, tset) {
10571 		if (!sched_rt_can_attach(css_tg(css), task))
10572 			return -EINVAL;
10573 	}
10574 	return 0;
10575 }
10576 #endif
10577 
10578 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10579 {
10580 	struct task_struct *task;
10581 	struct cgroup_subsys_state *css;
10582 
10583 	cgroup_taskset_for_each(task, css, tset)
10584 		sched_move_task(task);
10585 }
10586 
10587 #ifdef CONFIG_UCLAMP_TASK_GROUP
10588 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10589 {
10590 	struct cgroup_subsys_state *top_css = css;
10591 	struct uclamp_se *uc_parent = NULL;
10592 	struct uclamp_se *uc_se = NULL;
10593 	unsigned int eff[UCLAMP_CNT];
10594 	enum uclamp_id clamp_id;
10595 	unsigned int clamps;
10596 
10597 	lockdep_assert_held(&uclamp_mutex);
10598 	SCHED_WARN_ON(!rcu_read_lock_held());
10599 
10600 	css_for_each_descendant_pre(css, top_css) {
10601 		uc_parent = css_tg(css)->parent
10602 			? css_tg(css)->parent->uclamp : NULL;
10603 
10604 		for_each_clamp_id(clamp_id) {
10605 			/* Assume effective clamps matches requested clamps */
10606 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10607 			/* Cap effective clamps with parent's effective clamps */
10608 			if (uc_parent &&
10609 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10610 				eff[clamp_id] = uc_parent[clamp_id].value;
10611 			}
10612 		}
10613 		/* Ensure protection is always capped by limit */
10614 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10615 
10616 		/* Propagate most restrictive effective clamps */
10617 		clamps = 0x0;
10618 		uc_se = css_tg(css)->uclamp;
10619 		for_each_clamp_id(clamp_id) {
10620 			if (eff[clamp_id] == uc_se[clamp_id].value)
10621 				continue;
10622 			uc_se[clamp_id].value = eff[clamp_id];
10623 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10624 			clamps |= (0x1 << clamp_id);
10625 		}
10626 		if (!clamps) {
10627 			css = css_rightmost_descendant(css);
10628 			continue;
10629 		}
10630 
10631 		/* Immediately update descendants RUNNABLE tasks */
10632 		uclamp_update_active_tasks(css);
10633 	}
10634 }
10635 
10636 /*
10637  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10638  * C expression. Since there is no way to convert a macro argument (N) into a
10639  * character constant, use two levels of macros.
10640  */
10641 #define _POW10(exp) ((unsigned int)1e##exp)
10642 #define POW10(exp) _POW10(exp)
10643 
10644 struct uclamp_request {
10645 #define UCLAMP_PERCENT_SHIFT	2
10646 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10647 	s64 percent;
10648 	u64 util;
10649 	int ret;
10650 };
10651 
10652 static inline struct uclamp_request
10653 capacity_from_percent(char *buf)
10654 {
10655 	struct uclamp_request req = {
10656 		.percent = UCLAMP_PERCENT_SCALE,
10657 		.util = SCHED_CAPACITY_SCALE,
10658 		.ret = 0,
10659 	};
10660 
10661 	buf = strim(buf);
10662 	if (strcmp(buf, "max")) {
10663 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10664 					     &req.percent);
10665 		if (req.ret)
10666 			return req;
10667 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10668 			req.ret = -ERANGE;
10669 			return req;
10670 		}
10671 
10672 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10673 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10674 	}
10675 
10676 	return req;
10677 }
10678 
10679 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10680 				size_t nbytes, loff_t off,
10681 				enum uclamp_id clamp_id)
10682 {
10683 	struct uclamp_request req;
10684 	struct task_group *tg;
10685 
10686 	req = capacity_from_percent(buf);
10687 	if (req.ret)
10688 		return req.ret;
10689 
10690 	static_branch_enable(&sched_uclamp_used);
10691 
10692 	guard(mutex)(&uclamp_mutex);
10693 	guard(rcu)();
10694 
10695 	tg = css_tg(of_css(of));
10696 	if (tg->uclamp_req[clamp_id].value != req.util)
10697 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10698 
10699 	/*
10700 	 * Because of not recoverable conversion rounding we keep track of the
10701 	 * exact requested value
10702 	 */
10703 	tg->uclamp_pct[clamp_id] = req.percent;
10704 
10705 	/* Update effective clamps to track the most restrictive value */
10706 	cpu_util_update_eff(of_css(of));
10707 
10708 	return nbytes;
10709 }
10710 
10711 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10712 				    char *buf, size_t nbytes,
10713 				    loff_t off)
10714 {
10715 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10716 }
10717 
10718 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10719 				    char *buf, size_t nbytes,
10720 				    loff_t off)
10721 {
10722 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10723 }
10724 
10725 static inline void cpu_uclamp_print(struct seq_file *sf,
10726 				    enum uclamp_id clamp_id)
10727 {
10728 	struct task_group *tg;
10729 	u64 util_clamp;
10730 	u64 percent;
10731 	u32 rem;
10732 
10733 	scoped_guard (rcu) {
10734 		tg = css_tg(seq_css(sf));
10735 		util_clamp = tg->uclamp_req[clamp_id].value;
10736 	}
10737 
10738 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10739 		seq_puts(sf, "max\n");
10740 		return;
10741 	}
10742 
10743 	percent = tg->uclamp_pct[clamp_id];
10744 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10745 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10746 }
10747 
10748 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10749 {
10750 	cpu_uclamp_print(sf, UCLAMP_MIN);
10751 	return 0;
10752 }
10753 
10754 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10755 {
10756 	cpu_uclamp_print(sf, UCLAMP_MAX);
10757 	return 0;
10758 }
10759 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10760 
10761 #ifdef CONFIG_FAIR_GROUP_SCHED
10762 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10763 				struct cftype *cftype, u64 shareval)
10764 {
10765 	if (shareval > scale_load_down(ULONG_MAX))
10766 		shareval = MAX_SHARES;
10767 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10768 }
10769 
10770 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10771 			       struct cftype *cft)
10772 {
10773 	struct task_group *tg = css_tg(css);
10774 
10775 	return (u64) scale_load_down(tg->shares);
10776 }
10777 
10778 #ifdef CONFIG_CFS_BANDWIDTH
10779 static DEFINE_MUTEX(cfs_constraints_mutex);
10780 
10781 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10782 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10783 /* More than 203 days if BW_SHIFT equals 20. */
10784 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10785 
10786 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10787 
10788 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10789 				u64 burst)
10790 {
10791 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10792 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10793 
10794 	if (tg == &root_task_group)
10795 		return -EINVAL;
10796 
10797 	/*
10798 	 * Ensure we have at some amount of bandwidth every period.  This is
10799 	 * to prevent reaching a state of large arrears when throttled via
10800 	 * entity_tick() resulting in prolonged exit starvation.
10801 	 */
10802 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10803 		return -EINVAL;
10804 
10805 	/*
10806 	 * Likewise, bound things on the other side by preventing insane quota
10807 	 * periods.  This also allows us to normalize in computing quota
10808 	 * feasibility.
10809 	 */
10810 	if (period > max_cfs_quota_period)
10811 		return -EINVAL;
10812 
10813 	/*
10814 	 * Bound quota to defend quota against overflow during bandwidth shift.
10815 	 */
10816 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10817 		return -EINVAL;
10818 
10819 	if (quota != RUNTIME_INF && (burst > quota ||
10820 				     burst + quota > max_cfs_runtime))
10821 		return -EINVAL;
10822 
10823 	/*
10824 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10825 	 * unthrottle_offline_cfs_rqs().
10826 	 */
10827 	guard(cpus_read_lock)();
10828 	guard(mutex)(&cfs_constraints_mutex);
10829 
10830 	ret = __cfs_schedulable(tg, period, quota);
10831 	if (ret)
10832 		return ret;
10833 
10834 	runtime_enabled = quota != RUNTIME_INF;
10835 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10836 	/*
10837 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10838 	 * before making related changes, and on->off must occur afterwards
10839 	 */
10840 	if (runtime_enabled && !runtime_was_enabled)
10841 		cfs_bandwidth_usage_inc();
10842 
10843 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10844 		cfs_b->period = ns_to_ktime(period);
10845 		cfs_b->quota = quota;
10846 		cfs_b->burst = burst;
10847 
10848 		__refill_cfs_bandwidth_runtime(cfs_b);
10849 
10850 		/*
10851 		 * Restart the period timer (if active) to handle new
10852 		 * period expiry:
10853 		 */
10854 		if (runtime_enabled)
10855 			start_cfs_bandwidth(cfs_b);
10856 	}
10857 
10858 	for_each_online_cpu(i) {
10859 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10860 		struct rq *rq = cfs_rq->rq;
10861 
10862 		guard(rq_lock_irq)(rq);
10863 		cfs_rq->runtime_enabled = runtime_enabled;
10864 		cfs_rq->runtime_remaining = 0;
10865 
10866 		if (cfs_rq->throttled)
10867 			unthrottle_cfs_rq(cfs_rq);
10868 	}
10869 
10870 	if (runtime_was_enabled && !runtime_enabled)
10871 		cfs_bandwidth_usage_dec();
10872 
10873 	return 0;
10874 }
10875 
10876 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10877 {
10878 	u64 quota, period, burst;
10879 
10880 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10881 	burst = tg->cfs_bandwidth.burst;
10882 	if (cfs_quota_us < 0)
10883 		quota = RUNTIME_INF;
10884 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10885 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10886 	else
10887 		return -EINVAL;
10888 
10889 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10890 }
10891 
10892 static long tg_get_cfs_quota(struct task_group *tg)
10893 {
10894 	u64 quota_us;
10895 
10896 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10897 		return -1;
10898 
10899 	quota_us = tg->cfs_bandwidth.quota;
10900 	do_div(quota_us, NSEC_PER_USEC);
10901 
10902 	return quota_us;
10903 }
10904 
10905 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10906 {
10907 	u64 quota, period, burst;
10908 
10909 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10910 		return -EINVAL;
10911 
10912 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10913 	quota = tg->cfs_bandwidth.quota;
10914 	burst = tg->cfs_bandwidth.burst;
10915 
10916 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10917 }
10918 
10919 static long tg_get_cfs_period(struct task_group *tg)
10920 {
10921 	u64 cfs_period_us;
10922 
10923 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10924 	do_div(cfs_period_us, NSEC_PER_USEC);
10925 
10926 	return cfs_period_us;
10927 }
10928 
10929 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10930 {
10931 	u64 quota, period, burst;
10932 
10933 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10934 		return -EINVAL;
10935 
10936 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10937 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10938 	quota = tg->cfs_bandwidth.quota;
10939 
10940 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10941 }
10942 
10943 static long tg_get_cfs_burst(struct task_group *tg)
10944 {
10945 	u64 burst_us;
10946 
10947 	burst_us = tg->cfs_bandwidth.burst;
10948 	do_div(burst_us, NSEC_PER_USEC);
10949 
10950 	return burst_us;
10951 }
10952 
10953 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10954 				  struct cftype *cft)
10955 {
10956 	return tg_get_cfs_quota(css_tg(css));
10957 }
10958 
10959 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10960 				   struct cftype *cftype, s64 cfs_quota_us)
10961 {
10962 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10963 }
10964 
10965 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10966 				   struct cftype *cft)
10967 {
10968 	return tg_get_cfs_period(css_tg(css));
10969 }
10970 
10971 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10972 				    struct cftype *cftype, u64 cfs_period_us)
10973 {
10974 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10975 }
10976 
10977 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10978 				  struct cftype *cft)
10979 {
10980 	return tg_get_cfs_burst(css_tg(css));
10981 }
10982 
10983 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10984 				   struct cftype *cftype, u64 cfs_burst_us)
10985 {
10986 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10987 }
10988 
10989 struct cfs_schedulable_data {
10990 	struct task_group *tg;
10991 	u64 period, quota;
10992 };
10993 
10994 /*
10995  * normalize group quota/period to be quota/max_period
10996  * note: units are usecs
10997  */
10998 static u64 normalize_cfs_quota(struct task_group *tg,
10999 			       struct cfs_schedulable_data *d)
11000 {
11001 	u64 quota, period;
11002 
11003 	if (tg == d->tg) {
11004 		period = d->period;
11005 		quota = d->quota;
11006 	} else {
11007 		period = tg_get_cfs_period(tg);
11008 		quota = tg_get_cfs_quota(tg);
11009 	}
11010 
11011 	/* note: these should typically be equivalent */
11012 	if (quota == RUNTIME_INF || quota == -1)
11013 		return RUNTIME_INF;
11014 
11015 	return to_ratio(period, quota);
11016 }
11017 
11018 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11019 {
11020 	struct cfs_schedulable_data *d = data;
11021 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11022 	s64 quota = 0, parent_quota = -1;
11023 
11024 	if (!tg->parent) {
11025 		quota = RUNTIME_INF;
11026 	} else {
11027 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11028 
11029 		quota = normalize_cfs_quota(tg, d);
11030 		parent_quota = parent_b->hierarchical_quota;
11031 
11032 		/*
11033 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11034 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11035 		 * inherit when no limit is set. In both cases this is used
11036 		 * by the scheduler to determine if a given CFS task has a
11037 		 * bandwidth constraint at some higher level.
11038 		 */
11039 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11040 			if (quota == RUNTIME_INF)
11041 				quota = parent_quota;
11042 			else if (parent_quota != RUNTIME_INF)
11043 				quota = min(quota, parent_quota);
11044 		} else {
11045 			if (quota == RUNTIME_INF)
11046 				quota = parent_quota;
11047 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11048 				return -EINVAL;
11049 		}
11050 	}
11051 	cfs_b->hierarchical_quota = quota;
11052 
11053 	return 0;
11054 }
11055 
11056 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11057 {
11058 	struct cfs_schedulable_data data = {
11059 		.tg = tg,
11060 		.period = period,
11061 		.quota = quota,
11062 	};
11063 
11064 	if (quota != RUNTIME_INF) {
11065 		do_div(data.period, NSEC_PER_USEC);
11066 		do_div(data.quota, NSEC_PER_USEC);
11067 	}
11068 
11069 	guard(rcu)();
11070 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11071 }
11072 
11073 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11074 {
11075 	struct task_group *tg = css_tg(seq_css(sf));
11076 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11077 
11078 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11079 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11080 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11081 
11082 	if (schedstat_enabled() && tg != &root_task_group) {
11083 		struct sched_statistics *stats;
11084 		u64 ws = 0;
11085 		int i;
11086 
11087 		for_each_possible_cpu(i) {
11088 			stats = __schedstats_from_se(tg->se[i]);
11089 			ws += schedstat_val(stats->wait_sum);
11090 		}
11091 
11092 		seq_printf(sf, "wait_sum %llu\n", ws);
11093 	}
11094 
11095 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11096 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11097 
11098 	return 0;
11099 }
11100 
11101 static u64 throttled_time_self(struct task_group *tg)
11102 {
11103 	int i;
11104 	u64 total = 0;
11105 
11106 	for_each_possible_cpu(i) {
11107 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11108 	}
11109 
11110 	return total;
11111 }
11112 
11113 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11114 {
11115 	struct task_group *tg = css_tg(seq_css(sf));
11116 
11117 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11118 
11119 	return 0;
11120 }
11121 #endif /* CONFIG_CFS_BANDWIDTH */
11122 #endif /* CONFIG_FAIR_GROUP_SCHED */
11123 
11124 #ifdef CONFIG_RT_GROUP_SCHED
11125 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11126 				struct cftype *cft, s64 val)
11127 {
11128 	return sched_group_set_rt_runtime(css_tg(css), val);
11129 }
11130 
11131 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11132 			       struct cftype *cft)
11133 {
11134 	return sched_group_rt_runtime(css_tg(css));
11135 }
11136 
11137 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11138 				    struct cftype *cftype, u64 rt_period_us)
11139 {
11140 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11141 }
11142 
11143 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11144 				   struct cftype *cft)
11145 {
11146 	return sched_group_rt_period(css_tg(css));
11147 }
11148 #endif /* CONFIG_RT_GROUP_SCHED */
11149 
11150 #ifdef CONFIG_FAIR_GROUP_SCHED
11151 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11152 			       struct cftype *cft)
11153 {
11154 	return css_tg(css)->idle;
11155 }
11156 
11157 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11158 				struct cftype *cft, s64 idle)
11159 {
11160 	return sched_group_set_idle(css_tg(css), idle);
11161 }
11162 #endif
11163 
11164 static struct cftype cpu_legacy_files[] = {
11165 #ifdef CONFIG_FAIR_GROUP_SCHED
11166 	{
11167 		.name = "shares",
11168 		.read_u64 = cpu_shares_read_u64,
11169 		.write_u64 = cpu_shares_write_u64,
11170 	},
11171 	{
11172 		.name = "idle",
11173 		.read_s64 = cpu_idle_read_s64,
11174 		.write_s64 = cpu_idle_write_s64,
11175 	},
11176 #endif
11177 #ifdef CONFIG_CFS_BANDWIDTH
11178 	{
11179 		.name = "cfs_quota_us",
11180 		.read_s64 = cpu_cfs_quota_read_s64,
11181 		.write_s64 = cpu_cfs_quota_write_s64,
11182 	},
11183 	{
11184 		.name = "cfs_period_us",
11185 		.read_u64 = cpu_cfs_period_read_u64,
11186 		.write_u64 = cpu_cfs_period_write_u64,
11187 	},
11188 	{
11189 		.name = "cfs_burst_us",
11190 		.read_u64 = cpu_cfs_burst_read_u64,
11191 		.write_u64 = cpu_cfs_burst_write_u64,
11192 	},
11193 	{
11194 		.name = "stat",
11195 		.seq_show = cpu_cfs_stat_show,
11196 	},
11197 	{
11198 		.name = "stat.local",
11199 		.seq_show = cpu_cfs_local_stat_show,
11200 	},
11201 #endif
11202 #ifdef CONFIG_RT_GROUP_SCHED
11203 	{
11204 		.name = "rt_runtime_us",
11205 		.read_s64 = cpu_rt_runtime_read,
11206 		.write_s64 = cpu_rt_runtime_write,
11207 	},
11208 	{
11209 		.name = "rt_period_us",
11210 		.read_u64 = cpu_rt_period_read_uint,
11211 		.write_u64 = cpu_rt_period_write_uint,
11212 	},
11213 #endif
11214 #ifdef CONFIG_UCLAMP_TASK_GROUP
11215 	{
11216 		.name = "uclamp.min",
11217 		.flags = CFTYPE_NOT_ON_ROOT,
11218 		.seq_show = cpu_uclamp_min_show,
11219 		.write = cpu_uclamp_min_write,
11220 	},
11221 	{
11222 		.name = "uclamp.max",
11223 		.flags = CFTYPE_NOT_ON_ROOT,
11224 		.seq_show = cpu_uclamp_max_show,
11225 		.write = cpu_uclamp_max_write,
11226 	},
11227 #endif
11228 	{ }	/* Terminate */
11229 };
11230 
11231 static int cpu_extra_stat_show(struct seq_file *sf,
11232 			       struct cgroup_subsys_state *css)
11233 {
11234 #ifdef CONFIG_CFS_BANDWIDTH
11235 	{
11236 		struct task_group *tg = css_tg(css);
11237 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11238 		u64 throttled_usec, burst_usec;
11239 
11240 		throttled_usec = cfs_b->throttled_time;
11241 		do_div(throttled_usec, NSEC_PER_USEC);
11242 		burst_usec = cfs_b->burst_time;
11243 		do_div(burst_usec, NSEC_PER_USEC);
11244 
11245 		seq_printf(sf, "nr_periods %d\n"
11246 			   "nr_throttled %d\n"
11247 			   "throttled_usec %llu\n"
11248 			   "nr_bursts %d\n"
11249 			   "burst_usec %llu\n",
11250 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11251 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11252 	}
11253 #endif
11254 	return 0;
11255 }
11256 
11257 static int cpu_local_stat_show(struct seq_file *sf,
11258 			       struct cgroup_subsys_state *css)
11259 {
11260 #ifdef CONFIG_CFS_BANDWIDTH
11261 	{
11262 		struct task_group *tg = css_tg(css);
11263 		u64 throttled_self_usec;
11264 
11265 		throttled_self_usec = throttled_time_self(tg);
11266 		do_div(throttled_self_usec, NSEC_PER_USEC);
11267 
11268 		seq_printf(sf, "throttled_usec %llu\n",
11269 			   throttled_self_usec);
11270 	}
11271 #endif
11272 	return 0;
11273 }
11274 
11275 #ifdef CONFIG_FAIR_GROUP_SCHED
11276 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11277 			       struct cftype *cft)
11278 {
11279 	struct task_group *tg = css_tg(css);
11280 	u64 weight = scale_load_down(tg->shares);
11281 
11282 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11283 }
11284 
11285 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11286 				struct cftype *cft, u64 weight)
11287 {
11288 	/*
11289 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11290 	 * values which are 1, 100 and 10000 respectively.  While it loses
11291 	 * a bit of range on both ends, it maps pretty well onto the shares
11292 	 * value used by scheduler and the round-trip conversions preserve
11293 	 * the original value over the entire range.
11294 	 */
11295 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11296 		return -ERANGE;
11297 
11298 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11299 
11300 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11301 }
11302 
11303 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11304 				    struct cftype *cft)
11305 {
11306 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11307 	int last_delta = INT_MAX;
11308 	int prio, delta;
11309 
11310 	/* find the closest nice value to the current weight */
11311 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11312 		delta = abs(sched_prio_to_weight[prio] - weight);
11313 		if (delta >= last_delta)
11314 			break;
11315 		last_delta = delta;
11316 	}
11317 
11318 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11319 }
11320 
11321 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11322 				     struct cftype *cft, s64 nice)
11323 {
11324 	unsigned long weight;
11325 	int idx;
11326 
11327 	if (nice < MIN_NICE || nice > MAX_NICE)
11328 		return -ERANGE;
11329 
11330 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11331 	idx = array_index_nospec(idx, 40);
11332 	weight = sched_prio_to_weight[idx];
11333 
11334 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11335 }
11336 #endif
11337 
11338 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11339 						  long period, long quota)
11340 {
11341 	if (quota < 0)
11342 		seq_puts(sf, "max");
11343 	else
11344 		seq_printf(sf, "%ld", quota);
11345 
11346 	seq_printf(sf, " %ld\n", period);
11347 }
11348 
11349 /* caller should put the current value in *@periodp before calling */
11350 static int __maybe_unused cpu_period_quota_parse(char *buf,
11351 						 u64 *periodp, u64 *quotap)
11352 {
11353 	char tok[21];	/* U64_MAX */
11354 
11355 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11356 		return -EINVAL;
11357 
11358 	*periodp *= NSEC_PER_USEC;
11359 
11360 	if (sscanf(tok, "%llu", quotap))
11361 		*quotap *= NSEC_PER_USEC;
11362 	else if (!strcmp(tok, "max"))
11363 		*quotap = RUNTIME_INF;
11364 	else
11365 		return -EINVAL;
11366 
11367 	return 0;
11368 }
11369 
11370 #ifdef CONFIG_CFS_BANDWIDTH
11371 static int cpu_max_show(struct seq_file *sf, void *v)
11372 {
11373 	struct task_group *tg = css_tg(seq_css(sf));
11374 
11375 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11376 	return 0;
11377 }
11378 
11379 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11380 			     char *buf, size_t nbytes, loff_t off)
11381 {
11382 	struct task_group *tg = css_tg(of_css(of));
11383 	u64 period = tg_get_cfs_period(tg);
11384 	u64 burst = tg_get_cfs_burst(tg);
11385 	u64 quota;
11386 	int ret;
11387 
11388 	ret = cpu_period_quota_parse(buf, &period, &quota);
11389 	if (!ret)
11390 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11391 	return ret ?: nbytes;
11392 }
11393 #endif
11394 
11395 static struct cftype cpu_files[] = {
11396 #ifdef CONFIG_FAIR_GROUP_SCHED
11397 	{
11398 		.name = "weight",
11399 		.flags = CFTYPE_NOT_ON_ROOT,
11400 		.read_u64 = cpu_weight_read_u64,
11401 		.write_u64 = cpu_weight_write_u64,
11402 	},
11403 	{
11404 		.name = "weight.nice",
11405 		.flags = CFTYPE_NOT_ON_ROOT,
11406 		.read_s64 = cpu_weight_nice_read_s64,
11407 		.write_s64 = cpu_weight_nice_write_s64,
11408 	},
11409 	{
11410 		.name = "idle",
11411 		.flags = CFTYPE_NOT_ON_ROOT,
11412 		.read_s64 = cpu_idle_read_s64,
11413 		.write_s64 = cpu_idle_write_s64,
11414 	},
11415 #endif
11416 #ifdef CONFIG_CFS_BANDWIDTH
11417 	{
11418 		.name = "max",
11419 		.flags = CFTYPE_NOT_ON_ROOT,
11420 		.seq_show = cpu_max_show,
11421 		.write = cpu_max_write,
11422 	},
11423 	{
11424 		.name = "max.burst",
11425 		.flags = CFTYPE_NOT_ON_ROOT,
11426 		.read_u64 = cpu_cfs_burst_read_u64,
11427 		.write_u64 = cpu_cfs_burst_write_u64,
11428 	},
11429 #endif
11430 #ifdef CONFIG_UCLAMP_TASK_GROUP
11431 	{
11432 		.name = "uclamp.min",
11433 		.flags = CFTYPE_NOT_ON_ROOT,
11434 		.seq_show = cpu_uclamp_min_show,
11435 		.write = cpu_uclamp_min_write,
11436 	},
11437 	{
11438 		.name = "uclamp.max",
11439 		.flags = CFTYPE_NOT_ON_ROOT,
11440 		.seq_show = cpu_uclamp_max_show,
11441 		.write = cpu_uclamp_max_write,
11442 	},
11443 #endif
11444 	{ }	/* terminate */
11445 };
11446 
11447 struct cgroup_subsys cpu_cgrp_subsys = {
11448 	.css_alloc	= cpu_cgroup_css_alloc,
11449 	.css_online	= cpu_cgroup_css_online,
11450 	.css_released	= cpu_cgroup_css_released,
11451 	.css_free	= cpu_cgroup_css_free,
11452 	.css_extra_stat_show = cpu_extra_stat_show,
11453 	.css_local_stat_show = cpu_local_stat_show,
11454 #ifdef CONFIG_RT_GROUP_SCHED
11455 	.can_attach	= cpu_cgroup_can_attach,
11456 #endif
11457 	.attach		= cpu_cgroup_attach,
11458 	.legacy_cftypes	= cpu_legacy_files,
11459 	.dfl_cftypes	= cpu_files,
11460 	.early_init	= true,
11461 	.threaded	= true,
11462 };
11463 
11464 #endif	/* CONFIG_CGROUP_SCHED */
11465 
11466 void dump_cpu_task(int cpu)
11467 {
11468 	if (cpu == smp_processor_id() && in_hardirq()) {
11469 		struct pt_regs *regs;
11470 
11471 		regs = get_irq_regs();
11472 		if (regs) {
11473 			show_regs(regs);
11474 			return;
11475 		}
11476 	}
11477 
11478 	if (trigger_single_cpu_backtrace(cpu))
11479 		return;
11480 
11481 	pr_info("Task dump for CPU %d:\n", cpu);
11482 	sched_show_task(cpu_curr(cpu));
11483 }
11484 
11485 /*
11486  * Nice levels are multiplicative, with a gentle 10% change for every
11487  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11488  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11489  * that remained on nice 0.
11490  *
11491  * The "10% effect" is relative and cumulative: from _any_ nice level,
11492  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11493  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11494  * If a task goes up by ~10% and another task goes down by ~10% then
11495  * the relative distance between them is ~25%.)
11496  */
11497 const int sched_prio_to_weight[40] = {
11498  /* -20 */     88761,     71755,     56483,     46273,     36291,
11499  /* -15 */     29154,     23254,     18705,     14949,     11916,
11500  /* -10 */      9548,      7620,      6100,      4904,      3906,
11501  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11502  /*   0 */      1024,       820,       655,       526,       423,
11503  /*   5 */       335,       272,       215,       172,       137,
11504  /*  10 */       110,        87,        70,        56,        45,
11505  /*  15 */        36,        29,        23,        18,        15,
11506 };
11507 
11508 /*
11509  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11510  *
11511  * In cases where the weight does not change often, we can use the
11512  * precalculated inverse to speed up arithmetics by turning divisions
11513  * into multiplications:
11514  */
11515 const u32 sched_prio_to_wmult[40] = {
11516  /* -20 */     48388,     59856,     76040,     92818,    118348,
11517  /* -15 */    147320,    184698,    229616,    287308,    360437,
11518  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11519  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11520  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11521  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11522  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11523  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11524 };
11525 
11526 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11527 {
11528         trace_sched_update_nr_running_tp(rq, count);
11529 }
11530 
11531 #ifdef CONFIG_SCHED_MM_CID
11532 
11533 /*
11534  * @cid_lock: Guarantee forward-progress of cid allocation.
11535  *
11536  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11537  * is only used when contention is detected by the lock-free allocation so
11538  * forward progress can be guaranteed.
11539  */
11540 DEFINE_RAW_SPINLOCK(cid_lock);
11541 
11542 /*
11543  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11544  *
11545  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11546  * detected, it is set to 1 to ensure that all newly coming allocations are
11547  * serialized by @cid_lock until the allocation which detected contention
11548  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11549  * of a cid allocation.
11550  */
11551 int use_cid_lock;
11552 
11553 /*
11554  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11555  * concurrently with respect to the execution of the source runqueue context
11556  * switch.
11557  *
11558  * There is one basic properties we want to guarantee here:
11559  *
11560  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11561  * used by a task. That would lead to concurrent allocation of the cid and
11562  * userspace corruption.
11563  *
11564  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11565  * that a pair of loads observe at least one of a pair of stores, which can be
11566  * shown as:
11567  *
11568  *      X = Y = 0
11569  *
11570  *      w[X]=1          w[Y]=1
11571  *      MB              MB
11572  *      r[Y]=y          r[X]=x
11573  *
11574  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11575  * values 0 and 1, this algorithm cares about specific state transitions of the
11576  * runqueue current task (as updated by the scheduler context switch), and the
11577  * per-mm/cpu cid value.
11578  *
11579  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11580  * task->mm != mm for the rest of the discussion. There are two scheduler state
11581  * transitions on context switch we care about:
11582  *
11583  * (TSA) Store to rq->curr with transition from (N) to (Y)
11584  *
11585  * (TSB) Store to rq->curr with transition from (Y) to (N)
11586  *
11587  * On the remote-clear side, there is one transition we care about:
11588  *
11589  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11590  *
11591  * There is also a transition to UNSET state which can be performed from all
11592  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11593  * guarantees that only a single thread will succeed:
11594  *
11595  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11596  *
11597  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11598  * when a thread is actively using the cid (property (1)).
11599  *
11600  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11601  *
11602  * Scenario A) (TSA)+(TMA) (from next task perspective)
11603  *
11604  * CPU0                                      CPU1
11605  *
11606  * Context switch CS-1                       Remote-clear
11607  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11608  *                                             (implied barrier after cmpxchg)
11609  *   - switch_mm_cid()
11610  *     - memory barrier (see switch_mm_cid()
11611  *       comment explaining how this barrier
11612  *       is combined with other scheduler
11613  *       barriers)
11614  *     - mm_cid_get (next)
11615  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11616  *
11617  * This Dekker ensures that either task (Y) is observed by the
11618  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11619  * observed.
11620  *
11621  * If task (Y) store is observed by rcu_dereference(), it means that there is
11622  * still an active task on the cpu. Remote-clear will therefore not transition
11623  * to UNSET, which fulfills property (1).
11624  *
11625  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11626  * it will move its state to UNSET, which clears the percpu cid perhaps
11627  * uselessly (which is not an issue for correctness). Because task (Y) is not
11628  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11629  * state to UNSET is done with a cmpxchg expecting that the old state has the
11630  * LAZY flag set, only one thread will successfully UNSET.
11631  *
11632  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11633  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11634  * CPU1 will observe task (Y) and do nothing more, which is fine.
11635  *
11636  * What we are effectively preventing with this Dekker is a scenario where
11637  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11638  * because this would UNSET a cid which is actively used.
11639  */
11640 
11641 void sched_mm_cid_migrate_from(struct task_struct *t)
11642 {
11643 	t->migrate_from_cpu = task_cpu(t);
11644 }
11645 
11646 static
11647 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11648 					  struct task_struct *t,
11649 					  struct mm_cid *src_pcpu_cid)
11650 {
11651 	struct mm_struct *mm = t->mm;
11652 	struct task_struct *src_task;
11653 	int src_cid, last_mm_cid;
11654 
11655 	if (!mm)
11656 		return -1;
11657 
11658 	last_mm_cid = t->last_mm_cid;
11659 	/*
11660 	 * If the migrated task has no last cid, or if the current
11661 	 * task on src rq uses the cid, it means the source cid does not need
11662 	 * to be moved to the destination cpu.
11663 	 */
11664 	if (last_mm_cid == -1)
11665 		return -1;
11666 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11667 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11668 		return -1;
11669 
11670 	/*
11671 	 * If we observe an active task using the mm on this rq, it means we
11672 	 * are not the last task to be migrated from this cpu for this mm, so
11673 	 * there is no need to move src_cid to the destination cpu.
11674 	 */
11675 	guard(rcu)();
11676 	src_task = rcu_dereference(src_rq->curr);
11677 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11678 		t->last_mm_cid = -1;
11679 		return -1;
11680 	}
11681 
11682 	return src_cid;
11683 }
11684 
11685 static
11686 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11687 					      struct task_struct *t,
11688 					      struct mm_cid *src_pcpu_cid,
11689 					      int src_cid)
11690 {
11691 	struct task_struct *src_task;
11692 	struct mm_struct *mm = t->mm;
11693 	int lazy_cid;
11694 
11695 	if (src_cid == -1)
11696 		return -1;
11697 
11698 	/*
11699 	 * Attempt to clear the source cpu cid to move it to the destination
11700 	 * cpu.
11701 	 */
11702 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11703 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11704 		return -1;
11705 
11706 	/*
11707 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11708 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11709 	 * between store to rq->curr and load of prev and next task's
11710 	 * per-mm/cpu cid.
11711 	 *
11712 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11713 	 * rq->curr->mm_cid_active matches the barrier in
11714 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11715 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11716 	 * load of per-mm/cpu cid.
11717 	 */
11718 
11719 	/*
11720 	 * If we observe an active task using the mm on this rq after setting
11721 	 * the lazy-put flag, this task will be responsible for transitioning
11722 	 * from lazy-put flag set to MM_CID_UNSET.
11723 	 */
11724 	scoped_guard (rcu) {
11725 		src_task = rcu_dereference(src_rq->curr);
11726 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11727 			/*
11728 			 * We observed an active task for this mm, there is therefore
11729 			 * no point in moving this cid to the destination cpu.
11730 			 */
11731 			t->last_mm_cid = -1;
11732 			return -1;
11733 		}
11734 	}
11735 
11736 	/*
11737 	 * The src_cid is unused, so it can be unset.
11738 	 */
11739 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11740 		return -1;
11741 	return src_cid;
11742 }
11743 
11744 /*
11745  * Migration to dst cpu. Called with dst_rq lock held.
11746  * Interrupts are disabled, which keeps the window of cid ownership without the
11747  * source rq lock held small.
11748  */
11749 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11750 {
11751 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11752 	struct mm_struct *mm = t->mm;
11753 	int src_cid, dst_cid, src_cpu;
11754 	struct rq *src_rq;
11755 
11756 	lockdep_assert_rq_held(dst_rq);
11757 
11758 	if (!mm)
11759 		return;
11760 	src_cpu = t->migrate_from_cpu;
11761 	if (src_cpu == -1) {
11762 		t->last_mm_cid = -1;
11763 		return;
11764 	}
11765 	/*
11766 	 * Move the src cid if the dst cid is unset. This keeps id
11767 	 * allocation closest to 0 in cases where few threads migrate around
11768 	 * many cpus.
11769 	 *
11770 	 * If destination cid is already set, we may have to just clear
11771 	 * the src cid to ensure compactness in frequent migrations
11772 	 * scenarios.
11773 	 *
11774 	 * It is not useful to clear the src cid when the number of threads is
11775 	 * greater or equal to the number of allowed cpus, because user-space
11776 	 * can expect that the number of allowed cids can reach the number of
11777 	 * allowed cpus.
11778 	 */
11779 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11780 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11781 	if (!mm_cid_is_unset(dst_cid) &&
11782 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11783 		return;
11784 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11785 	src_rq = cpu_rq(src_cpu);
11786 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11787 	if (src_cid == -1)
11788 		return;
11789 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11790 							    src_cid);
11791 	if (src_cid == -1)
11792 		return;
11793 	if (!mm_cid_is_unset(dst_cid)) {
11794 		__mm_cid_put(mm, src_cid);
11795 		return;
11796 	}
11797 	/* Move src_cid to dst cpu. */
11798 	mm_cid_snapshot_time(dst_rq, mm);
11799 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11800 }
11801 
11802 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11803 				      int cpu)
11804 {
11805 	struct rq *rq = cpu_rq(cpu);
11806 	struct task_struct *t;
11807 	int cid, lazy_cid;
11808 
11809 	cid = READ_ONCE(pcpu_cid->cid);
11810 	if (!mm_cid_is_valid(cid))
11811 		return;
11812 
11813 	/*
11814 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11815 	 * there happens to be other tasks left on the source cpu using this
11816 	 * mm, the next task using this mm will reallocate its cid on context
11817 	 * switch.
11818 	 */
11819 	lazy_cid = mm_cid_set_lazy_put(cid);
11820 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11821 		return;
11822 
11823 	/*
11824 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11825 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11826 	 * between store to rq->curr and load of prev and next task's
11827 	 * per-mm/cpu cid.
11828 	 *
11829 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11830 	 * rq->curr->mm_cid_active matches the barrier in
11831 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11832 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11833 	 * load of per-mm/cpu cid.
11834 	 */
11835 
11836 	/*
11837 	 * If we observe an active task using the mm on this rq after setting
11838 	 * the lazy-put flag, that task will be responsible for transitioning
11839 	 * from lazy-put flag set to MM_CID_UNSET.
11840 	 */
11841 	scoped_guard (rcu) {
11842 		t = rcu_dereference(rq->curr);
11843 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11844 			return;
11845 	}
11846 
11847 	/*
11848 	 * The cid is unused, so it can be unset.
11849 	 * Disable interrupts to keep the window of cid ownership without rq
11850 	 * lock small.
11851 	 */
11852 	scoped_guard (irqsave) {
11853 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11854 			__mm_cid_put(mm, cid);
11855 	}
11856 }
11857 
11858 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11859 {
11860 	struct rq *rq = cpu_rq(cpu);
11861 	struct mm_cid *pcpu_cid;
11862 	struct task_struct *curr;
11863 	u64 rq_clock;
11864 
11865 	/*
11866 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11867 	 * while is irrelevant.
11868 	 */
11869 	rq_clock = READ_ONCE(rq->clock);
11870 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11871 
11872 	/*
11873 	 * In order to take care of infrequently scheduled tasks, bump the time
11874 	 * snapshot associated with this cid if an active task using the mm is
11875 	 * observed on this rq.
11876 	 */
11877 	scoped_guard (rcu) {
11878 		curr = rcu_dereference(rq->curr);
11879 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11880 			WRITE_ONCE(pcpu_cid->time, rq_clock);
11881 			return;
11882 		}
11883 	}
11884 
11885 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11886 		return;
11887 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11888 }
11889 
11890 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11891 					     int weight)
11892 {
11893 	struct mm_cid *pcpu_cid;
11894 	int cid;
11895 
11896 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11897 	cid = READ_ONCE(pcpu_cid->cid);
11898 	if (!mm_cid_is_valid(cid) || cid < weight)
11899 		return;
11900 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11901 }
11902 
11903 static void task_mm_cid_work(struct callback_head *work)
11904 {
11905 	unsigned long now = jiffies, old_scan, next_scan;
11906 	struct task_struct *t = current;
11907 	struct cpumask *cidmask;
11908 	struct mm_struct *mm;
11909 	int weight, cpu;
11910 
11911 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11912 
11913 	work->next = work;	/* Prevent double-add */
11914 	if (t->flags & PF_EXITING)
11915 		return;
11916 	mm = t->mm;
11917 	if (!mm)
11918 		return;
11919 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11920 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11921 	if (!old_scan) {
11922 		unsigned long res;
11923 
11924 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11925 		if (res != old_scan)
11926 			old_scan = res;
11927 		else
11928 			old_scan = next_scan;
11929 	}
11930 	if (time_before(now, old_scan))
11931 		return;
11932 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11933 		return;
11934 	cidmask = mm_cidmask(mm);
11935 	/* Clear cids that were not recently used. */
11936 	for_each_possible_cpu(cpu)
11937 		sched_mm_cid_remote_clear_old(mm, cpu);
11938 	weight = cpumask_weight(cidmask);
11939 	/*
11940 	 * Clear cids that are greater or equal to the cidmask weight to
11941 	 * recompact it.
11942 	 */
11943 	for_each_possible_cpu(cpu)
11944 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11945 }
11946 
11947 void init_sched_mm_cid(struct task_struct *t)
11948 {
11949 	struct mm_struct *mm = t->mm;
11950 	int mm_users = 0;
11951 
11952 	if (mm) {
11953 		mm_users = atomic_read(&mm->mm_users);
11954 		if (mm_users == 1)
11955 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11956 	}
11957 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11958 	init_task_work(&t->cid_work, task_mm_cid_work);
11959 }
11960 
11961 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11962 {
11963 	struct callback_head *work = &curr->cid_work;
11964 	unsigned long now = jiffies;
11965 
11966 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11967 	    work->next != work)
11968 		return;
11969 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11970 		return;
11971 	task_work_add(curr, work, TWA_RESUME);
11972 }
11973 
11974 void sched_mm_cid_exit_signals(struct task_struct *t)
11975 {
11976 	struct mm_struct *mm = t->mm;
11977 	struct rq *rq;
11978 
11979 	if (!mm)
11980 		return;
11981 
11982 	preempt_disable();
11983 	rq = this_rq();
11984 	guard(rq_lock_irqsave)(rq);
11985 	preempt_enable_no_resched();	/* holding spinlock */
11986 	WRITE_ONCE(t->mm_cid_active, 0);
11987 	/*
11988 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11989 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11990 	 */
11991 	smp_mb();
11992 	mm_cid_put(mm);
11993 	t->last_mm_cid = t->mm_cid = -1;
11994 }
11995 
11996 void sched_mm_cid_before_execve(struct task_struct *t)
11997 {
11998 	struct mm_struct *mm = t->mm;
11999 	struct rq *rq;
12000 
12001 	if (!mm)
12002 		return;
12003 
12004 	preempt_disable();
12005 	rq = this_rq();
12006 	guard(rq_lock_irqsave)(rq);
12007 	preempt_enable_no_resched();	/* holding spinlock */
12008 	WRITE_ONCE(t->mm_cid_active, 0);
12009 	/*
12010 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12011 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12012 	 */
12013 	smp_mb();
12014 	mm_cid_put(mm);
12015 	t->last_mm_cid = t->mm_cid = -1;
12016 }
12017 
12018 void sched_mm_cid_after_execve(struct task_struct *t)
12019 {
12020 	struct mm_struct *mm = t->mm;
12021 	struct rq *rq;
12022 
12023 	if (!mm)
12024 		return;
12025 
12026 	preempt_disable();
12027 	rq = this_rq();
12028 	scoped_guard (rq_lock_irqsave, rq) {
12029 		preempt_enable_no_resched();	/* holding spinlock */
12030 		WRITE_ONCE(t->mm_cid_active, 1);
12031 		/*
12032 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12033 		 * Matches barrier in sched_mm_cid_remote_clear_old().
12034 		 */
12035 		smp_mb();
12036 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12037 	}
12038 	rseq_set_notify_resume(t);
12039 }
12040 
12041 void sched_mm_cid_fork(struct task_struct *t)
12042 {
12043 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12044 	t->mm_cid_active = 1;
12045 }
12046 #endif
12047