xref: /linux/kernel/sched/core.c (revision ed63b9c873601ca113da5c7b1745e3946493e9f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17 
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20 
21 #include "pelt.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25 
26 /*
27  * Export tracepoints that act as a bare tracehook (ie: have no trace event
28  * associated with them) to allow external modules to probe them.
29  */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36 
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38 
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41  * Debugging: various feature bits
42  *
43  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44  * sysctl_sched_features, defined in sched.h, to allow constants propagation
45  * at compile time and compiler optimization based on features default.
46  */
47 #define SCHED_FEAT(name, enabled)	\
48 	(1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 	0;
52 #undef SCHED_FEAT
53 #endif
54 
55 /*
56  * Number of tasks to iterate in a single balance run.
57  * Limited because this is done with IRQs disabled.
58  */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60 
61 /*
62  * period over which we measure -rt task CPU usage in us.
63  * default: 1s
64  */
65 unsigned int sysctl_sched_rt_period = 1000000;
66 
67 __read_mostly int scheduler_running;
68 
69 /*
70  * part of the period that we allow rt tasks to run in us.
71  * default: 0.95s
72  */
73 int sysctl_sched_rt_runtime = 950000;
74 
75 /*
76  * __task_rq_lock - lock the rq @p resides on.
77  */
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 	__acquires(rq->lock)
80 {
81 	struct rq *rq;
82 
83 	lockdep_assert_held(&p->pi_lock);
84 
85 	for (;;) {
86 		rq = task_rq(p);
87 		raw_spin_lock(&rq->lock);
88 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 			rq_pin_lock(rq, rf);
90 			return rq;
91 		}
92 		raw_spin_unlock(&rq->lock);
93 
94 		while (unlikely(task_on_rq_migrating(p)))
95 			cpu_relax();
96 	}
97 }
98 
99 /*
100  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101  */
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 	__acquires(p->pi_lock)
104 	__acquires(rq->lock)
105 {
106 	struct rq *rq;
107 
108 	for (;;) {
109 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 		rq = task_rq(p);
111 		raw_spin_lock(&rq->lock);
112 		/*
113 		 *	move_queued_task()		task_rq_lock()
114 		 *
115 		 *	ACQUIRE (rq->lock)
116 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
117 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
118 		 *	[S] ->cpu = new_cpu		[L] task_rq()
119 		 *					[L] ->on_rq
120 		 *	RELEASE (rq->lock)
121 		 *
122 		 * If we observe the old CPU in task_rq_lock(), the acquire of
123 		 * the old rq->lock will fully serialize against the stores.
124 		 *
125 		 * If we observe the new CPU in task_rq_lock(), the address
126 		 * dependency headed by '[L] rq = task_rq()' and the acquire
127 		 * will pair with the WMB to ensure we then also see migrating.
128 		 */
129 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 			rq_pin_lock(rq, rf);
131 			return rq;
132 		}
133 		raw_spin_unlock(&rq->lock);
134 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135 
136 		while (unlikely(task_on_rq_migrating(p)))
137 			cpu_relax();
138 	}
139 }
140 
141 /*
142  * RQ-clock updating methods:
143  */
144 
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148  * In theory, the compile should just see 0 here, and optimize out the call
149  * to sched_rt_avg_update. But I don't trust it...
150  */
151 	s64 __maybe_unused steal = 0, irq_delta = 0;
152 
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155 
156 	/*
157 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 	 * this case when a previous update_rq_clock() happened inside a
159 	 * {soft,}irq region.
160 	 *
161 	 * When this happens, we stop ->clock_task and only update the
162 	 * prev_irq_time stamp to account for the part that fit, so that a next
163 	 * update will consume the rest. This ensures ->clock_task is
164 	 * monotonic.
165 	 *
166 	 * It does however cause some slight miss-attribution of {soft,}irq
167 	 * time, a more accurate solution would be to update the irq_time using
168 	 * the current rq->clock timestamp, except that would require using
169 	 * atomic ops.
170 	 */
171 	if (irq_delta > delta)
172 		irq_delta = delta;
173 
174 	rq->prev_irq_time += irq_delta;
175 	delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 	if (static_key_false((&paravirt_steal_rq_enabled))) {
179 		steal = paravirt_steal_clock(cpu_of(rq));
180 		steal -= rq->prev_steal_time_rq;
181 
182 		if (unlikely(steal > delta))
183 			steal = delta;
184 
185 		rq->prev_steal_time_rq += steal;
186 		delta -= steal;
187 	}
188 #endif
189 
190 	rq->clock_task += delta;
191 
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 		update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 	update_rq_clock_pelt(rq, delta);
197 }
198 
199 void update_rq_clock(struct rq *rq)
200 {
201 	s64 delta;
202 
203 	lockdep_assert_held(&rq->lock);
204 
205 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 		return;
207 
208 #ifdef CONFIG_SCHED_DEBUG
209 	if (sched_feat(WARN_DOUBLE_CLOCK))
210 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 	rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213 
214 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 	if (delta < 0)
216 		return;
217 	rq->clock += delta;
218 	update_rq_clock_task(rq, delta);
219 }
220 
221 
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224  * Use HR-timers to deliver accurate preemption points.
225  */
226 
227 static void hrtick_clear(struct rq *rq)
228 {
229 	if (hrtimer_active(&rq->hrtick_timer))
230 		hrtimer_cancel(&rq->hrtick_timer);
231 }
232 
233 /*
234  * High-resolution timer tick.
235  * Runs from hardirq context with interrupts disabled.
236  */
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 	struct rq_flags rf;
241 
242 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243 
244 	rq_lock(rq, &rf);
245 	update_rq_clock(rq);
246 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 	rq_unlock(rq, &rf);
248 
249 	return HRTIMER_NORESTART;
250 }
251 
252 #ifdef CONFIG_SMP
253 
254 static void __hrtick_restart(struct rq *rq)
255 {
256 	struct hrtimer *timer = &rq->hrtick_timer;
257 
258 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
259 }
260 
261 /*
262  * called from hardirq (IPI) context
263  */
264 static void __hrtick_start(void *arg)
265 {
266 	struct rq *rq = arg;
267 	struct rq_flags rf;
268 
269 	rq_lock(rq, &rf);
270 	__hrtick_restart(rq);
271 	rq->hrtick_csd_pending = 0;
272 	rq_unlock(rq, &rf);
273 }
274 
275 /*
276  * Called to set the hrtick timer state.
277  *
278  * called with rq->lock held and irqs disabled
279  */
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 	struct hrtimer *timer = &rq->hrtick_timer;
283 	ktime_t time;
284 	s64 delta;
285 
286 	/*
287 	 * Don't schedule slices shorter than 10000ns, that just
288 	 * doesn't make sense and can cause timer DoS.
289 	 */
290 	delta = max_t(s64, delay, 10000LL);
291 	time = ktime_add_ns(timer->base->get_time(), delta);
292 
293 	hrtimer_set_expires(timer, time);
294 
295 	if (rq == this_rq()) {
296 		__hrtick_restart(rq);
297 	} else if (!rq->hrtick_csd_pending) {
298 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 		rq->hrtick_csd_pending = 1;
300 	}
301 }
302 
303 #else
304 /*
305  * Called to set the hrtick timer state.
306  *
307  * called with rq->lock held and irqs disabled
308  */
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 	/*
312 	 * Don't schedule slices shorter than 10000ns, that just
313 	 * doesn't make sense. Rely on vruntime for fairness.
314 	 */
315 	delay = max_t(u64, delay, 10000LL);
316 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 		      HRTIMER_MODE_REL_PINNED);
318 }
319 #endif /* CONFIG_SMP */
320 
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 	rq->hrtick_csd_pending = 0;
325 
326 	rq->hrtick_csd.flags = 0;
327 	rq->hrtick_csd.func = __hrtick_start;
328 	rq->hrtick_csd.info = rq;
329 #endif
330 
331 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
332 	rq->hrtick_timer.function = hrtick;
333 }
334 #else	/* CONFIG_SCHED_HRTICK */
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338 
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif	/* CONFIG_SCHED_HRTICK */
343 
344 /*
345  * cmpxchg based fetch_or, macro so it works for different integer types
346  */
347 #define fetch_or(ptr, mask)						\
348 	({								\
349 		typeof(ptr) _ptr = (ptr);				\
350 		typeof(mask) _mask = (mask);				\
351 		typeof(*_ptr) _old, _val = *_ptr;			\
352 									\
353 		for (;;) {						\
354 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
355 			if (_old == _val)				\
356 				break;					\
357 			_val = _old;					\
358 		}							\
359 	_old;								\
360 })
361 
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365  * this avoids any races wrt polling state changes and thereby avoids
366  * spurious IPIs.
367  */
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 	struct thread_info *ti = task_thread_info(p);
371 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373 
374 /*
375  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376  *
377  * If this returns true, then the idle task promises to call
378  * sched_ttwu_pending() and reschedule soon.
379  */
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 	struct thread_info *ti = task_thread_info(p);
383 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384 
385 	for (;;) {
386 		if (!(val & _TIF_POLLING_NRFLAG))
387 			return false;
388 		if (val & _TIF_NEED_RESCHED)
389 			return true;
390 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 		if (old == val)
392 			break;
393 		val = old;
394 	}
395 	return true;
396 }
397 
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 	set_tsk_need_resched(p);
402 	return true;
403 }
404 
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 	return false;
409 }
410 #endif
411 #endif
412 
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 	struct wake_q_node *node = &task->wake_q;
416 
417 	/*
418 	 * Atomically grab the task, if ->wake_q is !nil already it means
419 	 * its already queued (either by us or someone else) and will get the
420 	 * wakeup due to that.
421 	 *
422 	 * In order to ensure that a pending wakeup will observe our pending
423 	 * state, even in the failed case, an explicit smp_mb() must be used.
424 	 */
425 	smp_mb__before_atomic();
426 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 		return false;
428 
429 	/*
430 	 * The head is context local, there can be no concurrency.
431 	 */
432 	*head->lastp = node;
433 	head->lastp = &node->next;
434 	return true;
435 }
436 
437 /**
438  * wake_q_add() - queue a wakeup for 'later' waking.
439  * @head: the wake_q_head to add @task to
440  * @task: the task to queue for 'later' wakeup
441  *
442  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444  * instantly.
445  *
446  * This function must be used as-if it were wake_up_process(); IOW the task
447  * must be ready to be woken at this location.
448  */
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 	if (__wake_q_add(head, task))
452 		get_task_struct(task);
453 }
454 
455 /**
456  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457  * @head: the wake_q_head to add @task to
458  * @task: the task to queue for 'later' wakeup
459  *
460  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462  * instantly.
463  *
464  * This function must be used as-if it were wake_up_process(); IOW the task
465  * must be ready to be woken at this location.
466  *
467  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468  * that already hold reference to @task can call the 'safe' version and trust
469  * wake_q to do the right thing depending whether or not the @task is already
470  * queued for wakeup.
471  */
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 	if (!__wake_q_add(head, task))
475 		put_task_struct(task);
476 }
477 
478 void wake_up_q(struct wake_q_head *head)
479 {
480 	struct wake_q_node *node = head->first;
481 
482 	while (node != WAKE_Q_TAIL) {
483 		struct task_struct *task;
484 
485 		task = container_of(node, struct task_struct, wake_q);
486 		BUG_ON(!task);
487 		/* Task can safely be re-inserted now: */
488 		node = node->next;
489 		task->wake_q.next = NULL;
490 
491 		/*
492 		 * wake_up_process() executes a full barrier, which pairs with
493 		 * the queueing in wake_q_add() so as not to miss wakeups.
494 		 */
495 		wake_up_process(task);
496 		put_task_struct(task);
497 	}
498 }
499 
500 /*
501  * resched_curr - mark rq's current task 'to be rescheduled now'.
502  *
503  * On UP this means the setting of the need_resched flag, on SMP it
504  * might also involve a cross-CPU call to trigger the scheduler on
505  * the target CPU.
506  */
507 void resched_curr(struct rq *rq)
508 {
509 	struct task_struct *curr = rq->curr;
510 	int cpu;
511 
512 	lockdep_assert_held(&rq->lock);
513 
514 	if (test_tsk_need_resched(curr))
515 		return;
516 
517 	cpu = cpu_of(rq);
518 
519 	if (cpu == smp_processor_id()) {
520 		set_tsk_need_resched(curr);
521 		set_preempt_need_resched();
522 		return;
523 	}
524 
525 	if (set_nr_and_not_polling(curr))
526 		smp_send_reschedule(cpu);
527 	else
528 		trace_sched_wake_idle_without_ipi(cpu);
529 }
530 
531 void resched_cpu(int cpu)
532 {
533 	struct rq *rq = cpu_rq(cpu);
534 	unsigned long flags;
535 
536 	raw_spin_lock_irqsave(&rq->lock, flags);
537 	if (cpu_online(cpu) || cpu == smp_processor_id())
538 		resched_curr(rq);
539 	raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541 
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545  * In the semi idle case, use the nearest busy CPU for migrating timers
546  * from an idle CPU.  This is good for power-savings.
547  *
548  * We don't do similar optimization for completely idle system, as
549  * selecting an idle CPU will add more delays to the timers than intended
550  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551  */
552 int get_nohz_timer_target(void)
553 {
554 	int i, cpu = smp_processor_id();
555 	struct sched_domain *sd;
556 
557 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 		return cpu;
559 
560 	rcu_read_lock();
561 	for_each_domain(cpu, sd) {
562 		for_each_cpu(i, sched_domain_span(sd)) {
563 			if (cpu == i)
564 				continue;
565 
566 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 				cpu = i;
568 				goto unlock;
569 			}
570 		}
571 	}
572 
573 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 	rcu_read_unlock();
577 	return cpu;
578 }
579 
580 /*
581  * When add_timer_on() enqueues a timer into the timer wheel of an
582  * idle CPU then this timer might expire before the next timer event
583  * which is scheduled to wake up that CPU. In case of a completely
584  * idle system the next event might even be infinite time into the
585  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586  * leaves the inner idle loop so the newly added timer is taken into
587  * account when the CPU goes back to idle and evaluates the timer
588  * wheel for the next timer event.
589  */
590 static void wake_up_idle_cpu(int cpu)
591 {
592 	struct rq *rq = cpu_rq(cpu);
593 
594 	if (cpu == smp_processor_id())
595 		return;
596 
597 	if (set_nr_and_not_polling(rq->idle))
598 		smp_send_reschedule(cpu);
599 	else
600 		trace_sched_wake_idle_without_ipi(cpu);
601 }
602 
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 	/*
606 	 * We just need the target to call irq_exit() and re-evaluate
607 	 * the next tick. The nohz full kick at least implies that.
608 	 * If needed we can still optimize that later with an
609 	 * empty IRQ.
610 	 */
611 	if (cpu_is_offline(cpu))
612 		return true;  /* Don't try to wake offline CPUs. */
613 	if (tick_nohz_full_cpu(cpu)) {
614 		if (cpu != smp_processor_id() ||
615 		    tick_nohz_tick_stopped())
616 			tick_nohz_full_kick_cpu(cpu);
617 		return true;
618 	}
619 
620 	return false;
621 }
622 
623 /*
624  * Wake up the specified CPU.  If the CPU is going offline, it is the
625  * caller's responsibility to deal with the lost wakeup, for example,
626  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627  */
628 void wake_up_nohz_cpu(int cpu)
629 {
630 	if (!wake_up_full_nohz_cpu(cpu))
631 		wake_up_idle_cpu(cpu);
632 }
633 
634 static inline bool got_nohz_idle_kick(void)
635 {
636 	int cpu = smp_processor_id();
637 
638 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 		return false;
640 
641 	if (idle_cpu(cpu) && !need_resched())
642 		return true;
643 
644 	/*
645 	 * We can't run Idle Load Balance on this CPU for this time so we
646 	 * cancel it and clear NOHZ_BALANCE_KICK
647 	 */
648 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 	return false;
650 }
651 
652 #else /* CONFIG_NO_HZ_COMMON */
653 
654 static inline bool got_nohz_idle_kick(void)
655 {
656 	return false;
657 }
658 
659 #endif /* CONFIG_NO_HZ_COMMON */
660 
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 	int fifo_nr_running;
665 
666 	/* Deadline tasks, even if single, need the tick */
667 	if (rq->dl.dl_nr_running)
668 		return false;
669 
670 	/*
671 	 * If there are more than one RR tasks, we need the tick to effect the
672 	 * actual RR behaviour.
673 	 */
674 	if (rq->rt.rr_nr_running) {
675 		if (rq->rt.rr_nr_running == 1)
676 			return true;
677 		else
678 			return false;
679 	}
680 
681 	/*
682 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 	 * forced preemption between FIFO tasks.
684 	 */
685 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 	if (fifo_nr_running)
687 		return true;
688 
689 	/*
690 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 	 * if there's more than one we need the tick for involuntary
692 	 * preemption.
693 	 */
694 	if (rq->nr_running > 1)
695 		return false;
696 
697 	return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (task_has_idle_policy(p)) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		p->se.runnable_weight = load->weight;
759 		return;
760 	}
761 
762 	/*
763 	 * SCHED_OTHER tasks have to update their load when changing their
764 	 * weight
765 	 */
766 	if (update_load && p->sched_class == &fair_sched_class) {
767 		reweight_task(p, prio);
768 	} else {
769 		load->weight = scale_load(sched_prio_to_weight[prio]);
770 		load->inv_weight = sched_prio_to_wmult[prio];
771 		p->se.runnable_weight = load->weight;
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /* Max allowed minimum utilization */
777 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
778 
779 /* Max allowed maximum utilization */
780 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
781 
782 /* All clamps are required to be less or equal than these values */
783 static struct uclamp_se uclamp_default[UCLAMP_CNT];
784 
785 /* Integer rounded range for each bucket */
786 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
787 
788 #define for_each_clamp_id(clamp_id) \
789 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
790 
791 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
792 {
793 	return clamp_value / UCLAMP_BUCKET_DELTA;
794 }
795 
796 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
797 {
798 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
799 }
800 
801 static inline unsigned int uclamp_none(int clamp_id)
802 {
803 	if (clamp_id == UCLAMP_MIN)
804 		return 0;
805 	return SCHED_CAPACITY_SCALE;
806 }
807 
808 static inline void uclamp_se_set(struct uclamp_se *uc_se,
809 				 unsigned int value, bool user_defined)
810 {
811 	uc_se->value = value;
812 	uc_se->bucket_id = uclamp_bucket_id(value);
813 	uc_se->user_defined = user_defined;
814 }
815 
816 static inline unsigned int
817 uclamp_idle_value(struct rq *rq, unsigned int clamp_id,
818 		  unsigned int clamp_value)
819 {
820 	/*
821 	 * Avoid blocked utilization pushing up the frequency when we go
822 	 * idle (which drops the max-clamp) by retaining the last known
823 	 * max-clamp.
824 	 */
825 	if (clamp_id == UCLAMP_MAX) {
826 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
827 		return clamp_value;
828 	}
829 
830 	return uclamp_none(UCLAMP_MIN);
831 }
832 
833 static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id,
834 				     unsigned int clamp_value)
835 {
836 	/* Reset max-clamp retention only on idle exit */
837 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
838 		return;
839 
840 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
841 }
842 
843 static inline
844 unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id,
845 				 unsigned int clamp_value)
846 {
847 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
848 	int bucket_id = UCLAMP_BUCKETS - 1;
849 
850 	/*
851 	 * Since both min and max clamps are max aggregated, find the
852 	 * top most bucket with tasks in.
853 	 */
854 	for ( ; bucket_id >= 0; bucket_id--) {
855 		if (!bucket[bucket_id].tasks)
856 			continue;
857 		return bucket[bucket_id].value;
858 	}
859 
860 	/* No tasks -- default clamp values */
861 	return uclamp_idle_value(rq, clamp_id, clamp_value);
862 }
863 
864 /*
865  * The effective clamp bucket index of a task depends on, by increasing
866  * priority:
867  * - the task specific clamp value, when explicitly requested from userspace
868  * - the system default clamp value, defined by the sysadmin
869  */
870 static inline struct uclamp_se
871 uclamp_eff_get(struct task_struct *p, unsigned int clamp_id)
872 {
873 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
874 	struct uclamp_se uc_max = uclamp_default[clamp_id];
875 
876 	/* System default restrictions always apply */
877 	if (unlikely(uc_req.value > uc_max.value))
878 		return uc_max;
879 
880 	return uc_req;
881 }
882 
883 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id)
884 {
885 	struct uclamp_se uc_eff;
886 
887 	/* Task currently refcounted: use back-annotated (effective) value */
888 	if (p->uclamp[clamp_id].active)
889 		return p->uclamp[clamp_id].value;
890 
891 	uc_eff = uclamp_eff_get(p, clamp_id);
892 
893 	return uc_eff.value;
894 }
895 
896 /*
897  * When a task is enqueued on a rq, the clamp bucket currently defined by the
898  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
899  * updates the rq's clamp value if required.
900  *
901  * Tasks can have a task-specific value requested from user-space, track
902  * within each bucket the maximum value for tasks refcounted in it.
903  * This "local max aggregation" allows to track the exact "requested" value
904  * for each bucket when all its RUNNABLE tasks require the same clamp.
905  */
906 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
907 				    unsigned int clamp_id)
908 {
909 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
910 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
911 	struct uclamp_bucket *bucket;
912 
913 	lockdep_assert_held(&rq->lock);
914 
915 	/* Update task effective clamp */
916 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
917 
918 	bucket = &uc_rq->bucket[uc_se->bucket_id];
919 	bucket->tasks++;
920 	uc_se->active = true;
921 
922 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
923 
924 	/*
925 	 * Local max aggregation: rq buckets always track the max
926 	 * "requested" clamp value of its RUNNABLE tasks.
927 	 */
928 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
929 		bucket->value = uc_se->value;
930 
931 	if (uc_se->value > READ_ONCE(uc_rq->value))
932 		WRITE_ONCE(uc_rq->value, uc_se->value);
933 }
934 
935 /*
936  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
937  * is released. If this is the last task reference counting the rq's max
938  * active clamp value, then the rq's clamp value is updated.
939  *
940  * Both refcounted tasks and rq's cached clamp values are expected to be
941  * always valid. If it's detected they are not, as defensive programming,
942  * enforce the expected state and warn.
943  */
944 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
945 				    unsigned int clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 	unsigned int bkt_clamp;
951 	unsigned int rq_clamp;
952 
953 	lockdep_assert_held(&rq->lock);
954 
955 	bucket = &uc_rq->bucket[uc_se->bucket_id];
956 	SCHED_WARN_ON(!bucket->tasks);
957 	if (likely(bucket->tasks))
958 		bucket->tasks--;
959 	uc_se->active = false;
960 
961 	/*
962 	 * Keep "local max aggregation" simple and accept to (possibly)
963 	 * overboost some RUNNABLE tasks in the same bucket.
964 	 * The rq clamp bucket value is reset to its base value whenever
965 	 * there are no more RUNNABLE tasks refcounting it.
966 	 */
967 	if (likely(bucket->tasks))
968 		return;
969 
970 	rq_clamp = READ_ONCE(uc_rq->value);
971 	/*
972 	 * Defensive programming: this should never happen. If it happens,
973 	 * e.g. due to future modification, warn and fixup the expected value.
974 	 */
975 	SCHED_WARN_ON(bucket->value > rq_clamp);
976 	if (bucket->value >= rq_clamp) {
977 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
978 		WRITE_ONCE(uc_rq->value, bkt_clamp);
979 	}
980 }
981 
982 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
983 {
984 	unsigned int clamp_id;
985 
986 	if (unlikely(!p->sched_class->uclamp_enabled))
987 		return;
988 
989 	for_each_clamp_id(clamp_id)
990 		uclamp_rq_inc_id(rq, p, clamp_id);
991 
992 	/* Reset clamp idle holding when there is one RUNNABLE task */
993 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
994 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
995 }
996 
997 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
998 {
999 	unsigned int clamp_id;
1000 
1001 	if (unlikely(!p->sched_class->uclamp_enabled))
1002 		return;
1003 
1004 	for_each_clamp_id(clamp_id)
1005 		uclamp_rq_dec_id(rq, p, clamp_id);
1006 }
1007 
1008 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1009 				void __user *buffer, size_t *lenp,
1010 				loff_t *ppos)
1011 {
1012 	int old_min, old_max;
1013 	static DEFINE_MUTEX(mutex);
1014 	int result;
1015 
1016 	mutex_lock(&mutex);
1017 	old_min = sysctl_sched_uclamp_util_min;
1018 	old_max = sysctl_sched_uclamp_util_max;
1019 
1020 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1021 	if (result)
1022 		goto undo;
1023 	if (!write)
1024 		goto done;
1025 
1026 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1027 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1028 		result = -EINVAL;
1029 		goto undo;
1030 	}
1031 
1032 	if (old_min != sysctl_sched_uclamp_util_min) {
1033 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1034 			      sysctl_sched_uclamp_util_min, false);
1035 	}
1036 	if (old_max != sysctl_sched_uclamp_util_max) {
1037 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1038 			      sysctl_sched_uclamp_util_max, false);
1039 	}
1040 
1041 	/*
1042 	 * Updating all the RUNNABLE task is expensive, keep it simple and do
1043 	 * just a lazy update at each next enqueue time.
1044 	 */
1045 	goto done;
1046 
1047 undo:
1048 	sysctl_sched_uclamp_util_min = old_min;
1049 	sysctl_sched_uclamp_util_max = old_max;
1050 done:
1051 	mutex_unlock(&mutex);
1052 
1053 	return result;
1054 }
1055 
1056 static int uclamp_validate(struct task_struct *p,
1057 			   const struct sched_attr *attr)
1058 {
1059 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1060 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1061 
1062 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1063 		lower_bound = attr->sched_util_min;
1064 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1065 		upper_bound = attr->sched_util_max;
1066 
1067 	if (lower_bound > upper_bound)
1068 		return -EINVAL;
1069 	if (upper_bound > SCHED_CAPACITY_SCALE)
1070 		return -EINVAL;
1071 
1072 	return 0;
1073 }
1074 
1075 static void __setscheduler_uclamp(struct task_struct *p,
1076 				  const struct sched_attr *attr)
1077 {
1078 	unsigned int clamp_id;
1079 
1080 	/*
1081 	 * On scheduling class change, reset to default clamps for tasks
1082 	 * without a task-specific value.
1083 	 */
1084 	for_each_clamp_id(clamp_id) {
1085 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1086 		unsigned int clamp_value = uclamp_none(clamp_id);
1087 
1088 		/* Keep using defined clamps across class changes */
1089 		if (uc_se->user_defined)
1090 			continue;
1091 
1092 		/* By default, RT tasks always get 100% boost */
1093 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1094 			clamp_value = uclamp_none(UCLAMP_MAX);
1095 
1096 		uclamp_se_set(uc_se, clamp_value, false);
1097 	}
1098 
1099 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1100 		return;
1101 
1102 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1103 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1104 			      attr->sched_util_min, true);
1105 	}
1106 
1107 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1108 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1109 			      attr->sched_util_max, true);
1110 	}
1111 }
1112 
1113 static void uclamp_fork(struct task_struct *p)
1114 {
1115 	unsigned int clamp_id;
1116 
1117 	for_each_clamp_id(clamp_id)
1118 		p->uclamp[clamp_id].active = false;
1119 
1120 	if (likely(!p->sched_reset_on_fork))
1121 		return;
1122 
1123 	for_each_clamp_id(clamp_id) {
1124 		unsigned int clamp_value = uclamp_none(clamp_id);
1125 
1126 		/* By default, RT tasks always get 100% boost */
1127 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1128 			clamp_value = uclamp_none(UCLAMP_MAX);
1129 
1130 		uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1131 	}
1132 }
1133 
1134 static void __init init_uclamp(void)
1135 {
1136 	struct uclamp_se uc_max = {};
1137 	unsigned int clamp_id;
1138 	int cpu;
1139 
1140 	for_each_possible_cpu(cpu) {
1141 		memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1142 		cpu_rq(cpu)->uclamp_flags = 0;
1143 	}
1144 
1145 	for_each_clamp_id(clamp_id) {
1146 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1147 			      uclamp_none(clamp_id), false);
1148 	}
1149 
1150 	/* System defaults allow max clamp values for both indexes */
1151 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1152 	for_each_clamp_id(clamp_id)
1153 		uclamp_default[clamp_id] = uc_max;
1154 }
1155 
1156 #else /* CONFIG_UCLAMP_TASK */
1157 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1158 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1159 static inline int uclamp_validate(struct task_struct *p,
1160 				  const struct sched_attr *attr)
1161 {
1162 	return -EOPNOTSUPP;
1163 }
1164 static void __setscheduler_uclamp(struct task_struct *p,
1165 				  const struct sched_attr *attr) { }
1166 static inline void uclamp_fork(struct task_struct *p) { }
1167 static inline void init_uclamp(void) { }
1168 #endif /* CONFIG_UCLAMP_TASK */
1169 
1170 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1171 {
1172 	if (!(flags & ENQUEUE_NOCLOCK))
1173 		update_rq_clock(rq);
1174 
1175 	if (!(flags & ENQUEUE_RESTORE)) {
1176 		sched_info_queued(rq, p);
1177 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1178 	}
1179 
1180 	uclamp_rq_inc(rq, p);
1181 	p->sched_class->enqueue_task(rq, p, flags);
1182 }
1183 
1184 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1185 {
1186 	if (!(flags & DEQUEUE_NOCLOCK))
1187 		update_rq_clock(rq);
1188 
1189 	if (!(flags & DEQUEUE_SAVE)) {
1190 		sched_info_dequeued(rq, p);
1191 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1192 	}
1193 
1194 	uclamp_rq_dec(rq, p);
1195 	p->sched_class->dequeue_task(rq, p, flags);
1196 }
1197 
1198 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1199 {
1200 	if (task_contributes_to_load(p))
1201 		rq->nr_uninterruptible--;
1202 
1203 	enqueue_task(rq, p, flags);
1204 
1205 	p->on_rq = TASK_ON_RQ_QUEUED;
1206 }
1207 
1208 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1209 {
1210 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1211 
1212 	if (task_contributes_to_load(p))
1213 		rq->nr_uninterruptible++;
1214 
1215 	dequeue_task(rq, p, flags);
1216 }
1217 
1218 /*
1219  * __normal_prio - return the priority that is based on the static prio
1220  */
1221 static inline int __normal_prio(struct task_struct *p)
1222 {
1223 	return p->static_prio;
1224 }
1225 
1226 /*
1227  * Calculate the expected normal priority: i.e. priority
1228  * without taking RT-inheritance into account. Might be
1229  * boosted by interactivity modifiers. Changes upon fork,
1230  * setprio syscalls, and whenever the interactivity
1231  * estimator recalculates.
1232  */
1233 static inline int normal_prio(struct task_struct *p)
1234 {
1235 	int prio;
1236 
1237 	if (task_has_dl_policy(p))
1238 		prio = MAX_DL_PRIO-1;
1239 	else if (task_has_rt_policy(p))
1240 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1241 	else
1242 		prio = __normal_prio(p);
1243 	return prio;
1244 }
1245 
1246 /*
1247  * Calculate the current priority, i.e. the priority
1248  * taken into account by the scheduler. This value might
1249  * be boosted by RT tasks, or might be boosted by
1250  * interactivity modifiers. Will be RT if the task got
1251  * RT-boosted. If not then it returns p->normal_prio.
1252  */
1253 static int effective_prio(struct task_struct *p)
1254 {
1255 	p->normal_prio = normal_prio(p);
1256 	/*
1257 	 * If we are RT tasks or we were boosted to RT priority,
1258 	 * keep the priority unchanged. Otherwise, update priority
1259 	 * to the normal priority:
1260 	 */
1261 	if (!rt_prio(p->prio))
1262 		return p->normal_prio;
1263 	return p->prio;
1264 }
1265 
1266 /**
1267  * task_curr - is this task currently executing on a CPU?
1268  * @p: the task in question.
1269  *
1270  * Return: 1 if the task is currently executing. 0 otherwise.
1271  */
1272 inline int task_curr(const struct task_struct *p)
1273 {
1274 	return cpu_curr(task_cpu(p)) == p;
1275 }
1276 
1277 /*
1278  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1279  * use the balance_callback list if you want balancing.
1280  *
1281  * this means any call to check_class_changed() must be followed by a call to
1282  * balance_callback().
1283  */
1284 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1285 				       const struct sched_class *prev_class,
1286 				       int oldprio)
1287 {
1288 	if (prev_class != p->sched_class) {
1289 		if (prev_class->switched_from)
1290 			prev_class->switched_from(rq, p);
1291 
1292 		p->sched_class->switched_to(rq, p);
1293 	} else if (oldprio != p->prio || dl_task(p))
1294 		p->sched_class->prio_changed(rq, p, oldprio);
1295 }
1296 
1297 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1298 {
1299 	const struct sched_class *class;
1300 
1301 	if (p->sched_class == rq->curr->sched_class) {
1302 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1303 	} else {
1304 		for_each_class(class) {
1305 			if (class == rq->curr->sched_class)
1306 				break;
1307 			if (class == p->sched_class) {
1308 				resched_curr(rq);
1309 				break;
1310 			}
1311 		}
1312 	}
1313 
1314 	/*
1315 	 * A queue event has occurred, and we're going to schedule.  In
1316 	 * this case, we can save a useless back to back clock update.
1317 	 */
1318 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1319 		rq_clock_skip_update(rq);
1320 }
1321 
1322 #ifdef CONFIG_SMP
1323 
1324 static inline bool is_per_cpu_kthread(struct task_struct *p)
1325 {
1326 	if (!(p->flags & PF_KTHREAD))
1327 		return false;
1328 
1329 	if (p->nr_cpus_allowed != 1)
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
1335 /*
1336  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1337  * __set_cpus_allowed_ptr() and select_fallback_rq().
1338  */
1339 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1340 {
1341 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1342 		return false;
1343 
1344 	if (is_per_cpu_kthread(p))
1345 		return cpu_online(cpu);
1346 
1347 	return cpu_active(cpu);
1348 }
1349 
1350 /*
1351  * This is how migration works:
1352  *
1353  * 1) we invoke migration_cpu_stop() on the target CPU using
1354  *    stop_one_cpu().
1355  * 2) stopper starts to run (implicitly forcing the migrated thread
1356  *    off the CPU)
1357  * 3) it checks whether the migrated task is still in the wrong runqueue.
1358  * 4) if it's in the wrong runqueue then the migration thread removes
1359  *    it and puts it into the right queue.
1360  * 5) stopper completes and stop_one_cpu() returns and the migration
1361  *    is done.
1362  */
1363 
1364 /*
1365  * move_queued_task - move a queued task to new rq.
1366  *
1367  * Returns (locked) new rq. Old rq's lock is released.
1368  */
1369 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1370 				   struct task_struct *p, int new_cpu)
1371 {
1372 	lockdep_assert_held(&rq->lock);
1373 
1374 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1375 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1376 	set_task_cpu(p, new_cpu);
1377 	rq_unlock(rq, rf);
1378 
1379 	rq = cpu_rq(new_cpu);
1380 
1381 	rq_lock(rq, rf);
1382 	BUG_ON(task_cpu(p) != new_cpu);
1383 	enqueue_task(rq, p, 0);
1384 	p->on_rq = TASK_ON_RQ_QUEUED;
1385 	check_preempt_curr(rq, p, 0);
1386 
1387 	return rq;
1388 }
1389 
1390 struct migration_arg {
1391 	struct task_struct *task;
1392 	int dest_cpu;
1393 };
1394 
1395 /*
1396  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1397  * this because either it can't run here any more (set_cpus_allowed()
1398  * away from this CPU, or CPU going down), or because we're
1399  * attempting to rebalance this task on exec (sched_exec).
1400  *
1401  * So we race with normal scheduler movements, but that's OK, as long
1402  * as the task is no longer on this CPU.
1403  */
1404 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1405 				 struct task_struct *p, int dest_cpu)
1406 {
1407 	/* Affinity changed (again). */
1408 	if (!is_cpu_allowed(p, dest_cpu))
1409 		return rq;
1410 
1411 	update_rq_clock(rq);
1412 	rq = move_queued_task(rq, rf, p, dest_cpu);
1413 
1414 	return rq;
1415 }
1416 
1417 /*
1418  * migration_cpu_stop - this will be executed by a highprio stopper thread
1419  * and performs thread migration by bumping thread off CPU then
1420  * 'pushing' onto another runqueue.
1421  */
1422 static int migration_cpu_stop(void *data)
1423 {
1424 	struct migration_arg *arg = data;
1425 	struct task_struct *p = arg->task;
1426 	struct rq *rq = this_rq();
1427 	struct rq_flags rf;
1428 
1429 	/*
1430 	 * The original target CPU might have gone down and we might
1431 	 * be on another CPU but it doesn't matter.
1432 	 */
1433 	local_irq_disable();
1434 	/*
1435 	 * We need to explicitly wake pending tasks before running
1436 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1437 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1438 	 */
1439 	sched_ttwu_pending();
1440 
1441 	raw_spin_lock(&p->pi_lock);
1442 	rq_lock(rq, &rf);
1443 	/*
1444 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1445 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1446 	 * we're holding p->pi_lock.
1447 	 */
1448 	if (task_rq(p) == rq) {
1449 		if (task_on_rq_queued(p))
1450 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1451 		else
1452 			p->wake_cpu = arg->dest_cpu;
1453 	}
1454 	rq_unlock(rq, &rf);
1455 	raw_spin_unlock(&p->pi_lock);
1456 
1457 	local_irq_enable();
1458 	return 0;
1459 }
1460 
1461 /*
1462  * sched_class::set_cpus_allowed must do the below, but is not required to
1463  * actually call this function.
1464  */
1465 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1466 {
1467 	cpumask_copy(&p->cpus_mask, new_mask);
1468 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1469 }
1470 
1471 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1472 {
1473 	struct rq *rq = task_rq(p);
1474 	bool queued, running;
1475 
1476 	lockdep_assert_held(&p->pi_lock);
1477 
1478 	queued = task_on_rq_queued(p);
1479 	running = task_current(rq, p);
1480 
1481 	if (queued) {
1482 		/*
1483 		 * Because __kthread_bind() calls this on blocked tasks without
1484 		 * holding rq->lock.
1485 		 */
1486 		lockdep_assert_held(&rq->lock);
1487 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1488 	}
1489 	if (running)
1490 		put_prev_task(rq, p);
1491 
1492 	p->sched_class->set_cpus_allowed(p, new_mask);
1493 
1494 	if (queued)
1495 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1496 	if (running)
1497 		set_curr_task(rq, p);
1498 }
1499 
1500 /*
1501  * Change a given task's CPU affinity. Migrate the thread to a
1502  * proper CPU and schedule it away if the CPU it's executing on
1503  * is removed from the allowed bitmask.
1504  *
1505  * NOTE: the caller must have a valid reference to the task, the
1506  * task must not exit() & deallocate itself prematurely. The
1507  * call is not atomic; no spinlocks may be held.
1508  */
1509 static int __set_cpus_allowed_ptr(struct task_struct *p,
1510 				  const struct cpumask *new_mask, bool check)
1511 {
1512 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1513 	unsigned int dest_cpu;
1514 	struct rq_flags rf;
1515 	struct rq *rq;
1516 	int ret = 0;
1517 
1518 	rq = task_rq_lock(p, &rf);
1519 	update_rq_clock(rq);
1520 
1521 	if (p->flags & PF_KTHREAD) {
1522 		/*
1523 		 * Kernel threads are allowed on online && !active CPUs
1524 		 */
1525 		cpu_valid_mask = cpu_online_mask;
1526 	}
1527 
1528 	/*
1529 	 * Must re-check here, to close a race against __kthread_bind(),
1530 	 * sched_setaffinity() is not guaranteed to observe the flag.
1531 	 */
1532 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1533 		ret = -EINVAL;
1534 		goto out;
1535 	}
1536 
1537 	if (cpumask_equal(p->cpus_ptr, new_mask))
1538 		goto out;
1539 
1540 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1541 		ret = -EINVAL;
1542 		goto out;
1543 	}
1544 
1545 	do_set_cpus_allowed(p, new_mask);
1546 
1547 	if (p->flags & PF_KTHREAD) {
1548 		/*
1549 		 * For kernel threads that do indeed end up on online &&
1550 		 * !active we want to ensure they are strict per-CPU threads.
1551 		 */
1552 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1553 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1554 			p->nr_cpus_allowed != 1);
1555 	}
1556 
1557 	/* Can the task run on the task's current CPU? If so, we're done */
1558 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1559 		goto out;
1560 
1561 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1562 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1563 		struct migration_arg arg = { p, dest_cpu };
1564 		/* Need help from migration thread: drop lock and wait. */
1565 		task_rq_unlock(rq, p, &rf);
1566 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1567 		return 0;
1568 	} else if (task_on_rq_queued(p)) {
1569 		/*
1570 		 * OK, since we're going to drop the lock immediately
1571 		 * afterwards anyway.
1572 		 */
1573 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1574 	}
1575 out:
1576 	task_rq_unlock(rq, p, &rf);
1577 
1578 	return ret;
1579 }
1580 
1581 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1582 {
1583 	return __set_cpus_allowed_ptr(p, new_mask, false);
1584 }
1585 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1586 
1587 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1588 {
1589 #ifdef CONFIG_SCHED_DEBUG
1590 	/*
1591 	 * We should never call set_task_cpu() on a blocked task,
1592 	 * ttwu() will sort out the placement.
1593 	 */
1594 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1595 			!p->on_rq);
1596 
1597 	/*
1598 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1599 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1600 	 * time relying on p->on_rq.
1601 	 */
1602 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1603 		     p->sched_class == &fair_sched_class &&
1604 		     (p->on_rq && !task_on_rq_migrating(p)));
1605 
1606 #ifdef CONFIG_LOCKDEP
1607 	/*
1608 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1609 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1610 	 *
1611 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1612 	 * see task_group().
1613 	 *
1614 	 * Furthermore, all task_rq users should acquire both locks, see
1615 	 * task_rq_lock().
1616 	 */
1617 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1618 				      lockdep_is_held(&task_rq(p)->lock)));
1619 #endif
1620 	/*
1621 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1622 	 */
1623 	WARN_ON_ONCE(!cpu_online(new_cpu));
1624 #endif
1625 
1626 	trace_sched_migrate_task(p, new_cpu);
1627 
1628 	if (task_cpu(p) != new_cpu) {
1629 		if (p->sched_class->migrate_task_rq)
1630 			p->sched_class->migrate_task_rq(p, new_cpu);
1631 		p->se.nr_migrations++;
1632 		rseq_migrate(p);
1633 		perf_event_task_migrate(p);
1634 	}
1635 
1636 	__set_task_cpu(p, new_cpu);
1637 }
1638 
1639 #ifdef CONFIG_NUMA_BALANCING
1640 static void __migrate_swap_task(struct task_struct *p, int cpu)
1641 {
1642 	if (task_on_rq_queued(p)) {
1643 		struct rq *src_rq, *dst_rq;
1644 		struct rq_flags srf, drf;
1645 
1646 		src_rq = task_rq(p);
1647 		dst_rq = cpu_rq(cpu);
1648 
1649 		rq_pin_lock(src_rq, &srf);
1650 		rq_pin_lock(dst_rq, &drf);
1651 
1652 		deactivate_task(src_rq, p, 0);
1653 		set_task_cpu(p, cpu);
1654 		activate_task(dst_rq, p, 0);
1655 		check_preempt_curr(dst_rq, p, 0);
1656 
1657 		rq_unpin_lock(dst_rq, &drf);
1658 		rq_unpin_lock(src_rq, &srf);
1659 
1660 	} else {
1661 		/*
1662 		 * Task isn't running anymore; make it appear like we migrated
1663 		 * it before it went to sleep. This means on wakeup we make the
1664 		 * previous CPU our target instead of where it really is.
1665 		 */
1666 		p->wake_cpu = cpu;
1667 	}
1668 }
1669 
1670 struct migration_swap_arg {
1671 	struct task_struct *src_task, *dst_task;
1672 	int src_cpu, dst_cpu;
1673 };
1674 
1675 static int migrate_swap_stop(void *data)
1676 {
1677 	struct migration_swap_arg *arg = data;
1678 	struct rq *src_rq, *dst_rq;
1679 	int ret = -EAGAIN;
1680 
1681 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1682 		return -EAGAIN;
1683 
1684 	src_rq = cpu_rq(arg->src_cpu);
1685 	dst_rq = cpu_rq(arg->dst_cpu);
1686 
1687 	double_raw_lock(&arg->src_task->pi_lock,
1688 			&arg->dst_task->pi_lock);
1689 	double_rq_lock(src_rq, dst_rq);
1690 
1691 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1692 		goto unlock;
1693 
1694 	if (task_cpu(arg->src_task) != arg->src_cpu)
1695 		goto unlock;
1696 
1697 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1698 		goto unlock;
1699 
1700 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1701 		goto unlock;
1702 
1703 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1704 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1705 
1706 	ret = 0;
1707 
1708 unlock:
1709 	double_rq_unlock(src_rq, dst_rq);
1710 	raw_spin_unlock(&arg->dst_task->pi_lock);
1711 	raw_spin_unlock(&arg->src_task->pi_lock);
1712 
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Cross migrate two tasks
1718  */
1719 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1720 		int target_cpu, int curr_cpu)
1721 {
1722 	struct migration_swap_arg arg;
1723 	int ret = -EINVAL;
1724 
1725 	arg = (struct migration_swap_arg){
1726 		.src_task = cur,
1727 		.src_cpu = curr_cpu,
1728 		.dst_task = p,
1729 		.dst_cpu = target_cpu,
1730 	};
1731 
1732 	if (arg.src_cpu == arg.dst_cpu)
1733 		goto out;
1734 
1735 	/*
1736 	 * These three tests are all lockless; this is OK since all of them
1737 	 * will be re-checked with proper locks held further down the line.
1738 	 */
1739 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1740 		goto out;
1741 
1742 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1743 		goto out;
1744 
1745 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1746 		goto out;
1747 
1748 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1749 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1750 
1751 out:
1752 	return ret;
1753 }
1754 #endif /* CONFIG_NUMA_BALANCING */
1755 
1756 /*
1757  * wait_task_inactive - wait for a thread to unschedule.
1758  *
1759  * If @match_state is nonzero, it's the @p->state value just checked and
1760  * not expected to change.  If it changes, i.e. @p might have woken up,
1761  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1762  * we return a positive number (its total switch count).  If a second call
1763  * a short while later returns the same number, the caller can be sure that
1764  * @p has remained unscheduled the whole time.
1765  *
1766  * The caller must ensure that the task *will* unschedule sometime soon,
1767  * else this function might spin for a *long* time. This function can't
1768  * be called with interrupts off, or it may introduce deadlock with
1769  * smp_call_function() if an IPI is sent by the same process we are
1770  * waiting to become inactive.
1771  */
1772 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1773 {
1774 	int running, queued;
1775 	struct rq_flags rf;
1776 	unsigned long ncsw;
1777 	struct rq *rq;
1778 
1779 	for (;;) {
1780 		/*
1781 		 * We do the initial early heuristics without holding
1782 		 * any task-queue locks at all. We'll only try to get
1783 		 * the runqueue lock when things look like they will
1784 		 * work out!
1785 		 */
1786 		rq = task_rq(p);
1787 
1788 		/*
1789 		 * If the task is actively running on another CPU
1790 		 * still, just relax and busy-wait without holding
1791 		 * any locks.
1792 		 *
1793 		 * NOTE! Since we don't hold any locks, it's not
1794 		 * even sure that "rq" stays as the right runqueue!
1795 		 * But we don't care, since "task_running()" will
1796 		 * return false if the runqueue has changed and p
1797 		 * is actually now running somewhere else!
1798 		 */
1799 		while (task_running(rq, p)) {
1800 			if (match_state && unlikely(p->state != match_state))
1801 				return 0;
1802 			cpu_relax();
1803 		}
1804 
1805 		/*
1806 		 * Ok, time to look more closely! We need the rq
1807 		 * lock now, to be *sure*. If we're wrong, we'll
1808 		 * just go back and repeat.
1809 		 */
1810 		rq = task_rq_lock(p, &rf);
1811 		trace_sched_wait_task(p);
1812 		running = task_running(rq, p);
1813 		queued = task_on_rq_queued(p);
1814 		ncsw = 0;
1815 		if (!match_state || p->state == match_state)
1816 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1817 		task_rq_unlock(rq, p, &rf);
1818 
1819 		/*
1820 		 * If it changed from the expected state, bail out now.
1821 		 */
1822 		if (unlikely(!ncsw))
1823 			break;
1824 
1825 		/*
1826 		 * Was it really running after all now that we
1827 		 * checked with the proper locks actually held?
1828 		 *
1829 		 * Oops. Go back and try again..
1830 		 */
1831 		if (unlikely(running)) {
1832 			cpu_relax();
1833 			continue;
1834 		}
1835 
1836 		/*
1837 		 * It's not enough that it's not actively running,
1838 		 * it must be off the runqueue _entirely_, and not
1839 		 * preempted!
1840 		 *
1841 		 * So if it was still runnable (but just not actively
1842 		 * running right now), it's preempted, and we should
1843 		 * yield - it could be a while.
1844 		 */
1845 		if (unlikely(queued)) {
1846 			ktime_t to = NSEC_PER_SEC / HZ;
1847 
1848 			set_current_state(TASK_UNINTERRUPTIBLE);
1849 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1850 			continue;
1851 		}
1852 
1853 		/*
1854 		 * Ahh, all good. It wasn't running, and it wasn't
1855 		 * runnable, which means that it will never become
1856 		 * running in the future either. We're all done!
1857 		 */
1858 		break;
1859 	}
1860 
1861 	return ncsw;
1862 }
1863 
1864 /***
1865  * kick_process - kick a running thread to enter/exit the kernel
1866  * @p: the to-be-kicked thread
1867  *
1868  * Cause a process which is running on another CPU to enter
1869  * kernel-mode, without any delay. (to get signals handled.)
1870  *
1871  * NOTE: this function doesn't have to take the runqueue lock,
1872  * because all it wants to ensure is that the remote task enters
1873  * the kernel. If the IPI races and the task has been migrated
1874  * to another CPU then no harm is done and the purpose has been
1875  * achieved as well.
1876  */
1877 void kick_process(struct task_struct *p)
1878 {
1879 	int cpu;
1880 
1881 	preempt_disable();
1882 	cpu = task_cpu(p);
1883 	if ((cpu != smp_processor_id()) && task_curr(p))
1884 		smp_send_reschedule(cpu);
1885 	preempt_enable();
1886 }
1887 EXPORT_SYMBOL_GPL(kick_process);
1888 
1889 /*
1890  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
1891  *
1892  * A few notes on cpu_active vs cpu_online:
1893  *
1894  *  - cpu_active must be a subset of cpu_online
1895  *
1896  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1897  *    see __set_cpus_allowed_ptr(). At this point the newly online
1898  *    CPU isn't yet part of the sched domains, and balancing will not
1899  *    see it.
1900  *
1901  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1902  *    avoid the load balancer to place new tasks on the to be removed
1903  *    CPU. Existing tasks will remain running there and will be taken
1904  *    off.
1905  *
1906  * This means that fallback selection must not select !active CPUs.
1907  * And can assume that any active CPU must be online. Conversely
1908  * select_task_rq() below may allow selection of !active CPUs in order
1909  * to satisfy the above rules.
1910  */
1911 static int select_fallback_rq(int cpu, struct task_struct *p)
1912 {
1913 	int nid = cpu_to_node(cpu);
1914 	const struct cpumask *nodemask = NULL;
1915 	enum { cpuset, possible, fail } state = cpuset;
1916 	int dest_cpu;
1917 
1918 	/*
1919 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1920 	 * will return -1. There is no CPU on the node, and we should
1921 	 * select the CPU on the other node.
1922 	 */
1923 	if (nid != -1) {
1924 		nodemask = cpumask_of_node(nid);
1925 
1926 		/* Look for allowed, online CPU in same node. */
1927 		for_each_cpu(dest_cpu, nodemask) {
1928 			if (!cpu_active(dest_cpu))
1929 				continue;
1930 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
1931 				return dest_cpu;
1932 		}
1933 	}
1934 
1935 	for (;;) {
1936 		/* Any allowed, online CPU? */
1937 		for_each_cpu(dest_cpu, p->cpus_ptr) {
1938 			if (!is_cpu_allowed(p, dest_cpu))
1939 				continue;
1940 
1941 			goto out;
1942 		}
1943 
1944 		/* No more Mr. Nice Guy. */
1945 		switch (state) {
1946 		case cpuset:
1947 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1948 				cpuset_cpus_allowed_fallback(p);
1949 				state = possible;
1950 				break;
1951 			}
1952 			/* Fall-through */
1953 		case possible:
1954 			do_set_cpus_allowed(p, cpu_possible_mask);
1955 			state = fail;
1956 			break;
1957 
1958 		case fail:
1959 			BUG();
1960 			break;
1961 		}
1962 	}
1963 
1964 out:
1965 	if (state != cpuset) {
1966 		/*
1967 		 * Don't tell them about moving exiting tasks or
1968 		 * kernel threads (both mm NULL), since they never
1969 		 * leave kernel.
1970 		 */
1971 		if (p->mm && printk_ratelimit()) {
1972 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1973 					task_pid_nr(p), p->comm, cpu);
1974 		}
1975 	}
1976 
1977 	return dest_cpu;
1978 }
1979 
1980 /*
1981  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
1982  */
1983 static inline
1984 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1985 {
1986 	lockdep_assert_held(&p->pi_lock);
1987 
1988 	if (p->nr_cpus_allowed > 1)
1989 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1990 	else
1991 		cpu = cpumask_any(p->cpus_ptr);
1992 
1993 	/*
1994 	 * In order not to call set_task_cpu() on a blocking task we need
1995 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
1996 	 * CPU.
1997 	 *
1998 	 * Since this is common to all placement strategies, this lives here.
1999 	 *
2000 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2001 	 *   not worry about this generic constraint ]
2002 	 */
2003 	if (unlikely(!is_cpu_allowed(p, cpu)))
2004 		cpu = select_fallback_rq(task_cpu(p), p);
2005 
2006 	return cpu;
2007 }
2008 
2009 static void update_avg(u64 *avg, u64 sample)
2010 {
2011 	s64 diff = sample - *avg;
2012 	*avg += diff >> 3;
2013 }
2014 
2015 void sched_set_stop_task(int cpu, struct task_struct *stop)
2016 {
2017 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2018 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2019 
2020 	if (stop) {
2021 		/*
2022 		 * Make it appear like a SCHED_FIFO task, its something
2023 		 * userspace knows about and won't get confused about.
2024 		 *
2025 		 * Also, it will make PI more or less work without too
2026 		 * much confusion -- but then, stop work should not
2027 		 * rely on PI working anyway.
2028 		 */
2029 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2030 
2031 		stop->sched_class = &stop_sched_class;
2032 	}
2033 
2034 	cpu_rq(cpu)->stop = stop;
2035 
2036 	if (old_stop) {
2037 		/*
2038 		 * Reset it back to a normal scheduling class so that
2039 		 * it can die in pieces.
2040 		 */
2041 		old_stop->sched_class = &rt_sched_class;
2042 	}
2043 }
2044 
2045 #else
2046 
2047 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2048 					 const struct cpumask *new_mask, bool check)
2049 {
2050 	return set_cpus_allowed_ptr(p, new_mask);
2051 }
2052 
2053 #endif /* CONFIG_SMP */
2054 
2055 static void
2056 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2057 {
2058 	struct rq *rq;
2059 
2060 	if (!schedstat_enabled())
2061 		return;
2062 
2063 	rq = this_rq();
2064 
2065 #ifdef CONFIG_SMP
2066 	if (cpu == rq->cpu) {
2067 		__schedstat_inc(rq->ttwu_local);
2068 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2069 	} else {
2070 		struct sched_domain *sd;
2071 
2072 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2073 		rcu_read_lock();
2074 		for_each_domain(rq->cpu, sd) {
2075 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2076 				__schedstat_inc(sd->ttwu_wake_remote);
2077 				break;
2078 			}
2079 		}
2080 		rcu_read_unlock();
2081 	}
2082 
2083 	if (wake_flags & WF_MIGRATED)
2084 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2085 #endif /* CONFIG_SMP */
2086 
2087 	__schedstat_inc(rq->ttwu_count);
2088 	__schedstat_inc(p->se.statistics.nr_wakeups);
2089 
2090 	if (wake_flags & WF_SYNC)
2091 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2092 }
2093 
2094 /*
2095  * Mark the task runnable and perform wakeup-preemption.
2096  */
2097 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2098 			   struct rq_flags *rf)
2099 {
2100 	check_preempt_curr(rq, p, wake_flags);
2101 	p->state = TASK_RUNNING;
2102 	trace_sched_wakeup(p);
2103 
2104 #ifdef CONFIG_SMP
2105 	if (p->sched_class->task_woken) {
2106 		/*
2107 		 * Our task @p is fully woken up and running; so its safe to
2108 		 * drop the rq->lock, hereafter rq is only used for statistics.
2109 		 */
2110 		rq_unpin_lock(rq, rf);
2111 		p->sched_class->task_woken(rq, p);
2112 		rq_repin_lock(rq, rf);
2113 	}
2114 
2115 	if (rq->idle_stamp) {
2116 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2117 		u64 max = 2*rq->max_idle_balance_cost;
2118 
2119 		update_avg(&rq->avg_idle, delta);
2120 
2121 		if (rq->avg_idle > max)
2122 			rq->avg_idle = max;
2123 
2124 		rq->idle_stamp = 0;
2125 	}
2126 #endif
2127 }
2128 
2129 static void
2130 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2131 		 struct rq_flags *rf)
2132 {
2133 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2134 
2135 	lockdep_assert_held(&rq->lock);
2136 
2137 #ifdef CONFIG_SMP
2138 	if (p->sched_contributes_to_load)
2139 		rq->nr_uninterruptible--;
2140 
2141 	if (wake_flags & WF_MIGRATED)
2142 		en_flags |= ENQUEUE_MIGRATED;
2143 #endif
2144 
2145 	activate_task(rq, p, en_flags);
2146 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2147 }
2148 
2149 /*
2150  * Called in case the task @p isn't fully descheduled from its runqueue,
2151  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2152  * since all we need to do is flip p->state to TASK_RUNNING, since
2153  * the task is still ->on_rq.
2154  */
2155 static int ttwu_remote(struct task_struct *p, int wake_flags)
2156 {
2157 	struct rq_flags rf;
2158 	struct rq *rq;
2159 	int ret = 0;
2160 
2161 	rq = __task_rq_lock(p, &rf);
2162 	if (task_on_rq_queued(p)) {
2163 		/* check_preempt_curr() may use rq clock */
2164 		update_rq_clock(rq);
2165 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2166 		ret = 1;
2167 	}
2168 	__task_rq_unlock(rq, &rf);
2169 
2170 	return ret;
2171 }
2172 
2173 #ifdef CONFIG_SMP
2174 void sched_ttwu_pending(void)
2175 {
2176 	struct rq *rq = this_rq();
2177 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2178 	struct task_struct *p, *t;
2179 	struct rq_flags rf;
2180 
2181 	if (!llist)
2182 		return;
2183 
2184 	rq_lock_irqsave(rq, &rf);
2185 	update_rq_clock(rq);
2186 
2187 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2188 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2189 
2190 	rq_unlock_irqrestore(rq, &rf);
2191 }
2192 
2193 void scheduler_ipi(void)
2194 {
2195 	/*
2196 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2197 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2198 	 * this IPI.
2199 	 */
2200 	preempt_fold_need_resched();
2201 
2202 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2203 		return;
2204 
2205 	/*
2206 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2207 	 * traditionally all their work was done from the interrupt return
2208 	 * path. Now that we actually do some work, we need to make sure
2209 	 * we do call them.
2210 	 *
2211 	 * Some archs already do call them, luckily irq_enter/exit nest
2212 	 * properly.
2213 	 *
2214 	 * Arguably we should visit all archs and update all handlers,
2215 	 * however a fair share of IPIs are still resched only so this would
2216 	 * somewhat pessimize the simple resched case.
2217 	 */
2218 	irq_enter();
2219 	sched_ttwu_pending();
2220 
2221 	/*
2222 	 * Check if someone kicked us for doing the nohz idle load balance.
2223 	 */
2224 	if (unlikely(got_nohz_idle_kick())) {
2225 		this_rq()->idle_balance = 1;
2226 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2227 	}
2228 	irq_exit();
2229 }
2230 
2231 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2232 {
2233 	struct rq *rq = cpu_rq(cpu);
2234 
2235 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2236 
2237 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2238 		if (!set_nr_if_polling(rq->idle))
2239 			smp_send_reschedule(cpu);
2240 		else
2241 			trace_sched_wake_idle_without_ipi(cpu);
2242 	}
2243 }
2244 
2245 void wake_up_if_idle(int cpu)
2246 {
2247 	struct rq *rq = cpu_rq(cpu);
2248 	struct rq_flags rf;
2249 
2250 	rcu_read_lock();
2251 
2252 	if (!is_idle_task(rcu_dereference(rq->curr)))
2253 		goto out;
2254 
2255 	if (set_nr_if_polling(rq->idle)) {
2256 		trace_sched_wake_idle_without_ipi(cpu);
2257 	} else {
2258 		rq_lock_irqsave(rq, &rf);
2259 		if (is_idle_task(rq->curr))
2260 			smp_send_reschedule(cpu);
2261 		/* Else CPU is not idle, do nothing here: */
2262 		rq_unlock_irqrestore(rq, &rf);
2263 	}
2264 
2265 out:
2266 	rcu_read_unlock();
2267 }
2268 
2269 bool cpus_share_cache(int this_cpu, int that_cpu)
2270 {
2271 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2272 }
2273 #endif /* CONFIG_SMP */
2274 
2275 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2276 {
2277 	struct rq *rq = cpu_rq(cpu);
2278 	struct rq_flags rf;
2279 
2280 #if defined(CONFIG_SMP)
2281 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2282 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2283 		ttwu_queue_remote(p, cpu, wake_flags);
2284 		return;
2285 	}
2286 #endif
2287 
2288 	rq_lock(rq, &rf);
2289 	update_rq_clock(rq);
2290 	ttwu_do_activate(rq, p, wake_flags, &rf);
2291 	rq_unlock(rq, &rf);
2292 }
2293 
2294 /*
2295  * Notes on Program-Order guarantees on SMP systems.
2296  *
2297  *  MIGRATION
2298  *
2299  * The basic program-order guarantee on SMP systems is that when a task [t]
2300  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2301  * execution on its new CPU [c1].
2302  *
2303  * For migration (of runnable tasks) this is provided by the following means:
2304  *
2305  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2306  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2307  *     rq(c1)->lock (if not at the same time, then in that order).
2308  *  C) LOCK of the rq(c1)->lock scheduling in task
2309  *
2310  * Release/acquire chaining guarantees that B happens after A and C after B.
2311  * Note: the CPU doing B need not be c0 or c1
2312  *
2313  * Example:
2314  *
2315  *   CPU0            CPU1            CPU2
2316  *
2317  *   LOCK rq(0)->lock
2318  *   sched-out X
2319  *   sched-in Y
2320  *   UNLOCK rq(0)->lock
2321  *
2322  *                                   LOCK rq(0)->lock // orders against CPU0
2323  *                                   dequeue X
2324  *                                   UNLOCK rq(0)->lock
2325  *
2326  *                                   LOCK rq(1)->lock
2327  *                                   enqueue X
2328  *                                   UNLOCK rq(1)->lock
2329  *
2330  *                   LOCK rq(1)->lock // orders against CPU2
2331  *                   sched-out Z
2332  *                   sched-in X
2333  *                   UNLOCK rq(1)->lock
2334  *
2335  *
2336  *  BLOCKING -- aka. SLEEP + WAKEUP
2337  *
2338  * For blocking we (obviously) need to provide the same guarantee as for
2339  * migration. However the means are completely different as there is no lock
2340  * chain to provide order. Instead we do:
2341  *
2342  *   1) smp_store_release(X->on_cpu, 0)
2343  *   2) smp_cond_load_acquire(!X->on_cpu)
2344  *
2345  * Example:
2346  *
2347  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2348  *
2349  *   LOCK rq(0)->lock LOCK X->pi_lock
2350  *   dequeue X
2351  *   sched-out X
2352  *   smp_store_release(X->on_cpu, 0);
2353  *
2354  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2355  *                    X->state = WAKING
2356  *                    set_task_cpu(X,2)
2357  *
2358  *                    LOCK rq(2)->lock
2359  *                    enqueue X
2360  *                    X->state = RUNNING
2361  *                    UNLOCK rq(2)->lock
2362  *
2363  *                                          LOCK rq(2)->lock // orders against CPU1
2364  *                                          sched-out Z
2365  *                                          sched-in X
2366  *                                          UNLOCK rq(2)->lock
2367  *
2368  *                    UNLOCK X->pi_lock
2369  *   UNLOCK rq(0)->lock
2370  *
2371  *
2372  * However, for wakeups there is a second guarantee we must provide, namely we
2373  * must ensure that CONDITION=1 done by the caller can not be reordered with
2374  * accesses to the task state; see try_to_wake_up() and set_current_state().
2375  */
2376 
2377 /**
2378  * try_to_wake_up - wake up a thread
2379  * @p: the thread to be awakened
2380  * @state: the mask of task states that can be woken
2381  * @wake_flags: wake modifier flags (WF_*)
2382  *
2383  * If (@state & @p->state) @p->state = TASK_RUNNING.
2384  *
2385  * If the task was not queued/runnable, also place it back on a runqueue.
2386  *
2387  * Atomic against schedule() which would dequeue a task, also see
2388  * set_current_state().
2389  *
2390  * This function executes a full memory barrier before accessing the task
2391  * state; see set_current_state().
2392  *
2393  * Return: %true if @p->state changes (an actual wakeup was done),
2394  *	   %false otherwise.
2395  */
2396 static int
2397 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2398 {
2399 	unsigned long flags;
2400 	int cpu, success = 0;
2401 
2402 	if (p == current) {
2403 		/*
2404 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2405 		 * == smp_processor_id()'. Together this means we can special
2406 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2407 		 * without taking any locks.
2408 		 *
2409 		 * In particular:
2410 		 *  - we rely on Program-Order guarantees for all the ordering,
2411 		 *  - we're serialized against set_special_state() by virtue of
2412 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2413 		 */
2414 		if (!(p->state & state))
2415 			return false;
2416 
2417 		success = 1;
2418 		cpu = task_cpu(p);
2419 		trace_sched_waking(p);
2420 		p->state = TASK_RUNNING;
2421 		trace_sched_wakeup(p);
2422 		goto out;
2423 	}
2424 
2425 	/*
2426 	 * If we are going to wake up a thread waiting for CONDITION we
2427 	 * need to ensure that CONDITION=1 done by the caller can not be
2428 	 * reordered with p->state check below. This pairs with mb() in
2429 	 * set_current_state() the waiting thread does.
2430 	 */
2431 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2432 	smp_mb__after_spinlock();
2433 	if (!(p->state & state))
2434 		goto unlock;
2435 
2436 	trace_sched_waking(p);
2437 
2438 	/* We're going to change ->state: */
2439 	success = 1;
2440 	cpu = task_cpu(p);
2441 
2442 	/*
2443 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2444 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2445 	 * in smp_cond_load_acquire() below.
2446 	 *
2447 	 * sched_ttwu_pending()			try_to_wake_up()
2448 	 *   STORE p->on_rq = 1			  LOAD p->state
2449 	 *   UNLOCK rq->lock
2450 	 *
2451 	 * __schedule() (switch to task 'p')
2452 	 *   LOCK rq->lock			  smp_rmb();
2453 	 *   smp_mb__after_spinlock();
2454 	 *   UNLOCK rq->lock
2455 	 *
2456 	 * [task p]
2457 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2458 	 *
2459 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2460 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2461 	 */
2462 	smp_rmb();
2463 	if (p->on_rq && ttwu_remote(p, wake_flags))
2464 		goto unlock;
2465 
2466 #ifdef CONFIG_SMP
2467 	/*
2468 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2469 	 * possible to, falsely, observe p->on_cpu == 0.
2470 	 *
2471 	 * One must be running (->on_cpu == 1) in order to remove oneself
2472 	 * from the runqueue.
2473 	 *
2474 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2475 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2476 	 *   UNLOCK rq->lock
2477 	 *
2478 	 * __schedule() (put 'p' to sleep)
2479 	 *   LOCK rq->lock			  smp_rmb();
2480 	 *   smp_mb__after_spinlock();
2481 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2482 	 *
2483 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2484 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2485 	 */
2486 	smp_rmb();
2487 
2488 	/*
2489 	 * If the owning (remote) CPU is still in the middle of schedule() with
2490 	 * this task as prev, wait until its done referencing the task.
2491 	 *
2492 	 * Pairs with the smp_store_release() in finish_task().
2493 	 *
2494 	 * This ensures that tasks getting woken will be fully ordered against
2495 	 * their previous state and preserve Program Order.
2496 	 */
2497 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2498 
2499 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2500 	p->state = TASK_WAKING;
2501 
2502 	if (p->in_iowait) {
2503 		delayacct_blkio_end(p);
2504 		atomic_dec(&task_rq(p)->nr_iowait);
2505 	}
2506 
2507 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2508 	if (task_cpu(p) != cpu) {
2509 		wake_flags |= WF_MIGRATED;
2510 		psi_ttwu_dequeue(p);
2511 		set_task_cpu(p, cpu);
2512 	}
2513 
2514 #else /* CONFIG_SMP */
2515 
2516 	if (p->in_iowait) {
2517 		delayacct_blkio_end(p);
2518 		atomic_dec(&task_rq(p)->nr_iowait);
2519 	}
2520 
2521 #endif /* CONFIG_SMP */
2522 
2523 	ttwu_queue(p, cpu, wake_flags);
2524 unlock:
2525 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2526 out:
2527 	if (success)
2528 		ttwu_stat(p, cpu, wake_flags);
2529 
2530 	return success;
2531 }
2532 
2533 /**
2534  * wake_up_process - Wake up a specific process
2535  * @p: The process to be woken up.
2536  *
2537  * Attempt to wake up the nominated process and move it to the set of runnable
2538  * processes.
2539  *
2540  * Return: 1 if the process was woken up, 0 if it was already running.
2541  *
2542  * This function executes a full memory barrier before accessing the task state.
2543  */
2544 int wake_up_process(struct task_struct *p)
2545 {
2546 	return try_to_wake_up(p, TASK_NORMAL, 0);
2547 }
2548 EXPORT_SYMBOL(wake_up_process);
2549 
2550 int wake_up_state(struct task_struct *p, unsigned int state)
2551 {
2552 	return try_to_wake_up(p, state, 0);
2553 }
2554 
2555 /*
2556  * Perform scheduler related setup for a newly forked process p.
2557  * p is forked by current.
2558  *
2559  * __sched_fork() is basic setup used by init_idle() too:
2560  */
2561 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2562 {
2563 	p->on_rq			= 0;
2564 
2565 	p->se.on_rq			= 0;
2566 	p->se.exec_start		= 0;
2567 	p->se.sum_exec_runtime		= 0;
2568 	p->se.prev_sum_exec_runtime	= 0;
2569 	p->se.nr_migrations		= 0;
2570 	p->se.vruntime			= 0;
2571 	INIT_LIST_HEAD(&p->se.group_node);
2572 
2573 #ifdef CONFIG_FAIR_GROUP_SCHED
2574 	p->se.cfs_rq			= NULL;
2575 #endif
2576 
2577 #ifdef CONFIG_SCHEDSTATS
2578 	/* Even if schedstat is disabled, there should not be garbage */
2579 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2580 #endif
2581 
2582 	RB_CLEAR_NODE(&p->dl.rb_node);
2583 	init_dl_task_timer(&p->dl);
2584 	init_dl_inactive_task_timer(&p->dl);
2585 	__dl_clear_params(p);
2586 
2587 	INIT_LIST_HEAD(&p->rt.run_list);
2588 	p->rt.timeout		= 0;
2589 	p->rt.time_slice	= sched_rr_timeslice;
2590 	p->rt.on_rq		= 0;
2591 	p->rt.on_list		= 0;
2592 
2593 #ifdef CONFIG_PREEMPT_NOTIFIERS
2594 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2595 #endif
2596 
2597 #ifdef CONFIG_COMPACTION
2598 	p->capture_control = NULL;
2599 #endif
2600 	init_numa_balancing(clone_flags, p);
2601 }
2602 
2603 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2604 
2605 #ifdef CONFIG_NUMA_BALANCING
2606 
2607 void set_numabalancing_state(bool enabled)
2608 {
2609 	if (enabled)
2610 		static_branch_enable(&sched_numa_balancing);
2611 	else
2612 		static_branch_disable(&sched_numa_balancing);
2613 }
2614 
2615 #ifdef CONFIG_PROC_SYSCTL
2616 int sysctl_numa_balancing(struct ctl_table *table, int write,
2617 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2618 {
2619 	struct ctl_table t;
2620 	int err;
2621 	int state = static_branch_likely(&sched_numa_balancing);
2622 
2623 	if (write && !capable(CAP_SYS_ADMIN))
2624 		return -EPERM;
2625 
2626 	t = *table;
2627 	t.data = &state;
2628 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2629 	if (err < 0)
2630 		return err;
2631 	if (write)
2632 		set_numabalancing_state(state);
2633 	return err;
2634 }
2635 #endif
2636 #endif
2637 
2638 #ifdef CONFIG_SCHEDSTATS
2639 
2640 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2641 static bool __initdata __sched_schedstats = false;
2642 
2643 static void set_schedstats(bool enabled)
2644 {
2645 	if (enabled)
2646 		static_branch_enable(&sched_schedstats);
2647 	else
2648 		static_branch_disable(&sched_schedstats);
2649 }
2650 
2651 void force_schedstat_enabled(void)
2652 {
2653 	if (!schedstat_enabled()) {
2654 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2655 		static_branch_enable(&sched_schedstats);
2656 	}
2657 }
2658 
2659 static int __init setup_schedstats(char *str)
2660 {
2661 	int ret = 0;
2662 	if (!str)
2663 		goto out;
2664 
2665 	/*
2666 	 * This code is called before jump labels have been set up, so we can't
2667 	 * change the static branch directly just yet.  Instead set a temporary
2668 	 * variable so init_schedstats() can do it later.
2669 	 */
2670 	if (!strcmp(str, "enable")) {
2671 		__sched_schedstats = true;
2672 		ret = 1;
2673 	} else if (!strcmp(str, "disable")) {
2674 		__sched_schedstats = false;
2675 		ret = 1;
2676 	}
2677 out:
2678 	if (!ret)
2679 		pr_warn("Unable to parse schedstats=\n");
2680 
2681 	return ret;
2682 }
2683 __setup("schedstats=", setup_schedstats);
2684 
2685 static void __init init_schedstats(void)
2686 {
2687 	set_schedstats(__sched_schedstats);
2688 }
2689 
2690 #ifdef CONFIG_PROC_SYSCTL
2691 int sysctl_schedstats(struct ctl_table *table, int write,
2692 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2693 {
2694 	struct ctl_table t;
2695 	int err;
2696 	int state = static_branch_likely(&sched_schedstats);
2697 
2698 	if (write && !capable(CAP_SYS_ADMIN))
2699 		return -EPERM;
2700 
2701 	t = *table;
2702 	t.data = &state;
2703 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2704 	if (err < 0)
2705 		return err;
2706 	if (write)
2707 		set_schedstats(state);
2708 	return err;
2709 }
2710 #endif /* CONFIG_PROC_SYSCTL */
2711 #else  /* !CONFIG_SCHEDSTATS */
2712 static inline void init_schedstats(void) {}
2713 #endif /* CONFIG_SCHEDSTATS */
2714 
2715 /*
2716  * fork()/clone()-time setup:
2717  */
2718 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2719 {
2720 	unsigned long flags;
2721 
2722 	__sched_fork(clone_flags, p);
2723 	/*
2724 	 * We mark the process as NEW here. This guarantees that
2725 	 * nobody will actually run it, and a signal or other external
2726 	 * event cannot wake it up and insert it on the runqueue either.
2727 	 */
2728 	p->state = TASK_NEW;
2729 
2730 	/*
2731 	 * Make sure we do not leak PI boosting priority to the child.
2732 	 */
2733 	p->prio = current->normal_prio;
2734 
2735 	uclamp_fork(p);
2736 
2737 	/*
2738 	 * Revert to default priority/policy on fork if requested.
2739 	 */
2740 	if (unlikely(p->sched_reset_on_fork)) {
2741 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2742 			p->policy = SCHED_NORMAL;
2743 			p->static_prio = NICE_TO_PRIO(0);
2744 			p->rt_priority = 0;
2745 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2746 			p->static_prio = NICE_TO_PRIO(0);
2747 
2748 		p->prio = p->normal_prio = __normal_prio(p);
2749 		set_load_weight(p, false);
2750 
2751 		/*
2752 		 * We don't need the reset flag anymore after the fork. It has
2753 		 * fulfilled its duty:
2754 		 */
2755 		p->sched_reset_on_fork = 0;
2756 	}
2757 
2758 	if (dl_prio(p->prio))
2759 		return -EAGAIN;
2760 	else if (rt_prio(p->prio))
2761 		p->sched_class = &rt_sched_class;
2762 	else
2763 		p->sched_class = &fair_sched_class;
2764 
2765 	init_entity_runnable_average(&p->se);
2766 
2767 	/*
2768 	 * The child is not yet in the pid-hash so no cgroup attach races,
2769 	 * and the cgroup is pinned to this child due to cgroup_fork()
2770 	 * is ran before sched_fork().
2771 	 *
2772 	 * Silence PROVE_RCU.
2773 	 */
2774 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2775 	/*
2776 	 * We're setting the CPU for the first time, we don't migrate,
2777 	 * so use __set_task_cpu().
2778 	 */
2779 	__set_task_cpu(p, smp_processor_id());
2780 	if (p->sched_class->task_fork)
2781 		p->sched_class->task_fork(p);
2782 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2783 
2784 #ifdef CONFIG_SCHED_INFO
2785 	if (likely(sched_info_on()))
2786 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2787 #endif
2788 #if defined(CONFIG_SMP)
2789 	p->on_cpu = 0;
2790 #endif
2791 	init_task_preempt_count(p);
2792 #ifdef CONFIG_SMP
2793 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2794 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2795 #endif
2796 	return 0;
2797 }
2798 
2799 unsigned long to_ratio(u64 period, u64 runtime)
2800 {
2801 	if (runtime == RUNTIME_INF)
2802 		return BW_UNIT;
2803 
2804 	/*
2805 	 * Doing this here saves a lot of checks in all
2806 	 * the calling paths, and returning zero seems
2807 	 * safe for them anyway.
2808 	 */
2809 	if (period == 0)
2810 		return 0;
2811 
2812 	return div64_u64(runtime << BW_SHIFT, period);
2813 }
2814 
2815 /*
2816  * wake_up_new_task - wake up a newly created task for the first time.
2817  *
2818  * This function will do some initial scheduler statistics housekeeping
2819  * that must be done for every newly created context, then puts the task
2820  * on the runqueue and wakes it.
2821  */
2822 void wake_up_new_task(struct task_struct *p)
2823 {
2824 	struct rq_flags rf;
2825 	struct rq *rq;
2826 
2827 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2828 	p->state = TASK_RUNNING;
2829 #ifdef CONFIG_SMP
2830 	/*
2831 	 * Fork balancing, do it here and not earlier because:
2832 	 *  - cpus_ptr can change in the fork path
2833 	 *  - any previously selected CPU might disappear through hotplug
2834 	 *
2835 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2836 	 * as we're not fully set-up yet.
2837 	 */
2838 	p->recent_used_cpu = task_cpu(p);
2839 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2840 #endif
2841 	rq = __task_rq_lock(p, &rf);
2842 	update_rq_clock(rq);
2843 	post_init_entity_util_avg(p);
2844 
2845 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2846 	trace_sched_wakeup_new(p);
2847 	check_preempt_curr(rq, p, WF_FORK);
2848 #ifdef CONFIG_SMP
2849 	if (p->sched_class->task_woken) {
2850 		/*
2851 		 * Nothing relies on rq->lock after this, so its fine to
2852 		 * drop it.
2853 		 */
2854 		rq_unpin_lock(rq, &rf);
2855 		p->sched_class->task_woken(rq, p);
2856 		rq_repin_lock(rq, &rf);
2857 	}
2858 #endif
2859 	task_rq_unlock(rq, p, &rf);
2860 }
2861 
2862 #ifdef CONFIG_PREEMPT_NOTIFIERS
2863 
2864 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2865 
2866 void preempt_notifier_inc(void)
2867 {
2868 	static_branch_inc(&preempt_notifier_key);
2869 }
2870 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2871 
2872 void preempt_notifier_dec(void)
2873 {
2874 	static_branch_dec(&preempt_notifier_key);
2875 }
2876 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2877 
2878 /**
2879  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2880  * @notifier: notifier struct to register
2881  */
2882 void preempt_notifier_register(struct preempt_notifier *notifier)
2883 {
2884 	if (!static_branch_unlikely(&preempt_notifier_key))
2885 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2886 
2887 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2888 }
2889 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2890 
2891 /**
2892  * preempt_notifier_unregister - no longer interested in preemption notifications
2893  * @notifier: notifier struct to unregister
2894  *
2895  * This is *not* safe to call from within a preemption notifier.
2896  */
2897 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2898 {
2899 	hlist_del(&notifier->link);
2900 }
2901 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2902 
2903 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2904 {
2905 	struct preempt_notifier *notifier;
2906 
2907 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2908 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2909 }
2910 
2911 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2912 {
2913 	if (static_branch_unlikely(&preempt_notifier_key))
2914 		__fire_sched_in_preempt_notifiers(curr);
2915 }
2916 
2917 static void
2918 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2919 				   struct task_struct *next)
2920 {
2921 	struct preempt_notifier *notifier;
2922 
2923 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2924 		notifier->ops->sched_out(notifier, next);
2925 }
2926 
2927 static __always_inline void
2928 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2929 				 struct task_struct *next)
2930 {
2931 	if (static_branch_unlikely(&preempt_notifier_key))
2932 		__fire_sched_out_preempt_notifiers(curr, next);
2933 }
2934 
2935 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2936 
2937 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2938 {
2939 }
2940 
2941 static inline void
2942 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2943 				 struct task_struct *next)
2944 {
2945 }
2946 
2947 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2948 
2949 static inline void prepare_task(struct task_struct *next)
2950 {
2951 #ifdef CONFIG_SMP
2952 	/*
2953 	 * Claim the task as running, we do this before switching to it
2954 	 * such that any running task will have this set.
2955 	 */
2956 	next->on_cpu = 1;
2957 #endif
2958 }
2959 
2960 static inline void finish_task(struct task_struct *prev)
2961 {
2962 #ifdef CONFIG_SMP
2963 	/*
2964 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2965 	 * We must ensure this doesn't happen until the switch is completely
2966 	 * finished.
2967 	 *
2968 	 * In particular, the load of prev->state in finish_task_switch() must
2969 	 * happen before this.
2970 	 *
2971 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2972 	 */
2973 	smp_store_release(&prev->on_cpu, 0);
2974 #endif
2975 }
2976 
2977 static inline void
2978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2979 {
2980 	/*
2981 	 * Since the runqueue lock will be released by the next
2982 	 * task (which is an invalid locking op but in the case
2983 	 * of the scheduler it's an obvious special-case), so we
2984 	 * do an early lockdep release here:
2985 	 */
2986 	rq_unpin_lock(rq, rf);
2987 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2988 #ifdef CONFIG_DEBUG_SPINLOCK
2989 	/* this is a valid case when another task releases the spinlock */
2990 	rq->lock.owner = next;
2991 #endif
2992 }
2993 
2994 static inline void finish_lock_switch(struct rq *rq)
2995 {
2996 	/*
2997 	 * If we are tracking spinlock dependencies then we have to
2998 	 * fix up the runqueue lock - which gets 'carried over' from
2999 	 * prev into current:
3000 	 */
3001 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3002 	raw_spin_unlock_irq(&rq->lock);
3003 }
3004 
3005 /*
3006  * NOP if the arch has not defined these:
3007  */
3008 
3009 #ifndef prepare_arch_switch
3010 # define prepare_arch_switch(next)	do { } while (0)
3011 #endif
3012 
3013 #ifndef finish_arch_post_lock_switch
3014 # define finish_arch_post_lock_switch()	do { } while (0)
3015 #endif
3016 
3017 /**
3018  * prepare_task_switch - prepare to switch tasks
3019  * @rq: the runqueue preparing to switch
3020  * @prev: the current task that is being switched out
3021  * @next: the task we are going to switch to.
3022  *
3023  * This is called with the rq lock held and interrupts off. It must
3024  * be paired with a subsequent finish_task_switch after the context
3025  * switch.
3026  *
3027  * prepare_task_switch sets up locking and calls architecture specific
3028  * hooks.
3029  */
3030 static inline void
3031 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3032 		    struct task_struct *next)
3033 {
3034 	kcov_prepare_switch(prev);
3035 	sched_info_switch(rq, prev, next);
3036 	perf_event_task_sched_out(prev, next);
3037 	rseq_preempt(prev);
3038 	fire_sched_out_preempt_notifiers(prev, next);
3039 	prepare_task(next);
3040 	prepare_arch_switch(next);
3041 }
3042 
3043 /**
3044  * finish_task_switch - clean up after a task-switch
3045  * @prev: the thread we just switched away from.
3046  *
3047  * finish_task_switch must be called after the context switch, paired
3048  * with a prepare_task_switch call before the context switch.
3049  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3050  * and do any other architecture-specific cleanup actions.
3051  *
3052  * Note that we may have delayed dropping an mm in context_switch(). If
3053  * so, we finish that here outside of the runqueue lock. (Doing it
3054  * with the lock held can cause deadlocks; see schedule() for
3055  * details.)
3056  *
3057  * The context switch have flipped the stack from under us and restored the
3058  * local variables which were saved when this task called schedule() in the
3059  * past. prev == current is still correct but we need to recalculate this_rq
3060  * because prev may have moved to another CPU.
3061  */
3062 static struct rq *finish_task_switch(struct task_struct *prev)
3063 	__releases(rq->lock)
3064 {
3065 	struct rq *rq = this_rq();
3066 	struct mm_struct *mm = rq->prev_mm;
3067 	long prev_state;
3068 
3069 	/*
3070 	 * The previous task will have left us with a preempt_count of 2
3071 	 * because it left us after:
3072 	 *
3073 	 *	schedule()
3074 	 *	  preempt_disable();			// 1
3075 	 *	  __schedule()
3076 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3077 	 *
3078 	 * Also, see FORK_PREEMPT_COUNT.
3079 	 */
3080 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3081 		      "corrupted preempt_count: %s/%d/0x%x\n",
3082 		      current->comm, current->pid, preempt_count()))
3083 		preempt_count_set(FORK_PREEMPT_COUNT);
3084 
3085 	rq->prev_mm = NULL;
3086 
3087 	/*
3088 	 * A task struct has one reference for the use as "current".
3089 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3090 	 * schedule one last time. The schedule call will never return, and
3091 	 * the scheduled task must drop that reference.
3092 	 *
3093 	 * We must observe prev->state before clearing prev->on_cpu (in
3094 	 * finish_task), otherwise a concurrent wakeup can get prev
3095 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3096 	 * transition, resulting in a double drop.
3097 	 */
3098 	prev_state = prev->state;
3099 	vtime_task_switch(prev);
3100 	perf_event_task_sched_in(prev, current);
3101 	finish_task(prev);
3102 	finish_lock_switch(rq);
3103 	finish_arch_post_lock_switch();
3104 	kcov_finish_switch(current);
3105 
3106 	fire_sched_in_preempt_notifiers(current);
3107 	/*
3108 	 * When switching through a kernel thread, the loop in
3109 	 * membarrier_{private,global}_expedited() may have observed that
3110 	 * kernel thread and not issued an IPI. It is therefore possible to
3111 	 * schedule between user->kernel->user threads without passing though
3112 	 * switch_mm(). Membarrier requires a barrier after storing to
3113 	 * rq->curr, before returning to userspace, so provide them here:
3114 	 *
3115 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3116 	 *   provided by mmdrop(),
3117 	 * - a sync_core for SYNC_CORE.
3118 	 */
3119 	if (mm) {
3120 		membarrier_mm_sync_core_before_usermode(mm);
3121 		mmdrop(mm);
3122 	}
3123 	if (unlikely(prev_state == TASK_DEAD)) {
3124 		if (prev->sched_class->task_dead)
3125 			prev->sched_class->task_dead(prev);
3126 
3127 		/*
3128 		 * Remove function-return probe instances associated with this
3129 		 * task and put them back on the free list.
3130 		 */
3131 		kprobe_flush_task(prev);
3132 
3133 		/* Task is done with its stack. */
3134 		put_task_stack(prev);
3135 
3136 		put_task_struct(prev);
3137 	}
3138 
3139 	tick_nohz_task_switch();
3140 	return rq;
3141 }
3142 
3143 #ifdef CONFIG_SMP
3144 
3145 /* rq->lock is NOT held, but preemption is disabled */
3146 static void __balance_callback(struct rq *rq)
3147 {
3148 	struct callback_head *head, *next;
3149 	void (*func)(struct rq *rq);
3150 	unsigned long flags;
3151 
3152 	raw_spin_lock_irqsave(&rq->lock, flags);
3153 	head = rq->balance_callback;
3154 	rq->balance_callback = NULL;
3155 	while (head) {
3156 		func = (void (*)(struct rq *))head->func;
3157 		next = head->next;
3158 		head->next = NULL;
3159 		head = next;
3160 
3161 		func(rq);
3162 	}
3163 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3164 }
3165 
3166 static inline void balance_callback(struct rq *rq)
3167 {
3168 	if (unlikely(rq->balance_callback))
3169 		__balance_callback(rq);
3170 }
3171 
3172 #else
3173 
3174 static inline void balance_callback(struct rq *rq)
3175 {
3176 }
3177 
3178 #endif
3179 
3180 /**
3181  * schedule_tail - first thing a freshly forked thread must call.
3182  * @prev: the thread we just switched away from.
3183  */
3184 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3185 	__releases(rq->lock)
3186 {
3187 	struct rq *rq;
3188 
3189 	/*
3190 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3191 	 * finish_task_switch() for details.
3192 	 *
3193 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3194 	 * and the preempt_enable() will end up enabling preemption (on
3195 	 * PREEMPT_COUNT kernels).
3196 	 */
3197 
3198 	rq = finish_task_switch(prev);
3199 	balance_callback(rq);
3200 	preempt_enable();
3201 
3202 	if (current->set_child_tid)
3203 		put_user(task_pid_vnr(current), current->set_child_tid);
3204 
3205 	calculate_sigpending();
3206 }
3207 
3208 /*
3209  * context_switch - switch to the new MM and the new thread's register state.
3210  */
3211 static __always_inline struct rq *
3212 context_switch(struct rq *rq, struct task_struct *prev,
3213 	       struct task_struct *next, struct rq_flags *rf)
3214 {
3215 	struct mm_struct *mm, *oldmm;
3216 
3217 	prepare_task_switch(rq, prev, next);
3218 
3219 	mm = next->mm;
3220 	oldmm = prev->active_mm;
3221 	/*
3222 	 * For paravirt, this is coupled with an exit in switch_to to
3223 	 * combine the page table reload and the switch backend into
3224 	 * one hypercall.
3225 	 */
3226 	arch_start_context_switch(prev);
3227 
3228 	/*
3229 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
3230 	 * NULL, we will pass through mmdrop() in finish_task_switch().
3231 	 * Both of these contain the full memory barrier required by
3232 	 * membarrier after storing to rq->curr, before returning to
3233 	 * user-space.
3234 	 */
3235 	if (!mm) {
3236 		next->active_mm = oldmm;
3237 		mmgrab(oldmm);
3238 		enter_lazy_tlb(oldmm, next);
3239 	} else
3240 		switch_mm_irqs_off(oldmm, mm, next);
3241 
3242 	if (!prev->mm) {
3243 		prev->active_mm = NULL;
3244 		rq->prev_mm = oldmm;
3245 	}
3246 
3247 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3248 
3249 	prepare_lock_switch(rq, next, rf);
3250 
3251 	/* Here we just switch the register state and the stack. */
3252 	switch_to(prev, next, prev);
3253 	barrier();
3254 
3255 	return finish_task_switch(prev);
3256 }
3257 
3258 /*
3259  * nr_running and nr_context_switches:
3260  *
3261  * externally visible scheduler statistics: current number of runnable
3262  * threads, total number of context switches performed since bootup.
3263  */
3264 unsigned long nr_running(void)
3265 {
3266 	unsigned long i, sum = 0;
3267 
3268 	for_each_online_cpu(i)
3269 		sum += cpu_rq(i)->nr_running;
3270 
3271 	return sum;
3272 }
3273 
3274 /*
3275  * Check if only the current task is running on the CPU.
3276  *
3277  * Caution: this function does not check that the caller has disabled
3278  * preemption, thus the result might have a time-of-check-to-time-of-use
3279  * race.  The caller is responsible to use it correctly, for example:
3280  *
3281  * - from a non-preemptible section (of course)
3282  *
3283  * - from a thread that is bound to a single CPU
3284  *
3285  * - in a loop with very short iterations (e.g. a polling loop)
3286  */
3287 bool single_task_running(void)
3288 {
3289 	return raw_rq()->nr_running == 1;
3290 }
3291 EXPORT_SYMBOL(single_task_running);
3292 
3293 unsigned long long nr_context_switches(void)
3294 {
3295 	int i;
3296 	unsigned long long sum = 0;
3297 
3298 	for_each_possible_cpu(i)
3299 		sum += cpu_rq(i)->nr_switches;
3300 
3301 	return sum;
3302 }
3303 
3304 /*
3305  * Consumers of these two interfaces, like for example the cpuidle menu
3306  * governor, are using nonsensical data. Preferring shallow idle state selection
3307  * for a CPU that has IO-wait which might not even end up running the task when
3308  * it does become runnable.
3309  */
3310 
3311 unsigned long nr_iowait_cpu(int cpu)
3312 {
3313 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3314 }
3315 
3316 /*
3317  * IO-wait accounting, and how its mostly bollocks (on SMP).
3318  *
3319  * The idea behind IO-wait account is to account the idle time that we could
3320  * have spend running if it were not for IO. That is, if we were to improve the
3321  * storage performance, we'd have a proportional reduction in IO-wait time.
3322  *
3323  * This all works nicely on UP, where, when a task blocks on IO, we account
3324  * idle time as IO-wait, because if the storage were faster, it could've been
3325  * running and we'd not be idle.
3326  *
3327  * This has been extended to SMP, by doing the same for each CPU. This however
3328  * is broken.
3329  *
3330  * Imagine for instance the case where two tasks block on one CPU, only the one
3331  * CPU will have IO-wait accounted, while the other has regular idle. Even
3332  * though, if the storage were faster, both could've ran at the same time,
3333  * utilising both CPUs.
3334  *
3335  * This means, that when looking globally, the current IO-wait accounting on
3336  * SMP is a lower bound, by reason of under accounting.
3337  *
3338  * Worse, since the numbers are provided per CPU, they are sometimes
3339  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3340  * associated with any one particular CPU, it can wake to another CPU than it
3341  * blocked on. This means the per CPU IO-wait number is meaningless.
3342  *
3343  * Task CPU affinities can make all that even more 'interesting'.
3344  */
3345 
3346 unsigned long nr_iowait(void)
3347 {
3348 	unsigned long i, sum = 0;
3349 
3350 	for_each_possible_cpu(i)
3351 		sum += nr_iowait_cpu(i);
3352 
3353 	return sum;
3354 }
3355 
3356 #ifdef CONFIG_SMP
3357 
3358 /*
3359  * sched_exec - execve() is a valuable balancing opportunity, because at
3360  * this point the task has the smallest effective memory and cache footprint.
3361  */
3362 void sched_exec(void)
3363 {
3364 	struct task_struct *p = current;
3365 	unsigned long flags;
3366 	int dest_cpu;
3367 
3368 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3369 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3370 	if (dest_cpu == smp_processor_id())
3371 		goto unlock;
3372 
3373 	if (likely(cpu_active(dest_cpu))) {
3374 		struct migration_arg arg = { p, dest_cpu };
3375 
3376 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3377 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3378 		return;
3379 	}
3380 unlock:
3381 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3382 }
3383 
3384 #endif
3385 
3386 DEFINE_PER_CPU(struct kernel_stat, kstat);
3387 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3388 
3389 EXPORT_PER_CPU_SYMBOL(kstat);
3390 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3391 
3392 /*
3393  * The function fair_sched_class.update_curr accesses the struct curr
3394  * and its field curr->exec_start; when called from task_sched_runtime(),
3395  * we observe a high rate of cache misses in practice.
3396  * Prefetching this data results in improved performance.
3397  */
3398 static inline void prefetch_curr_exec_start(struct task_struct *p)
3399 {
3400 #ifdef CONFIG_FAIR_GROUP_SCHED
3401 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3402 #else
3403 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3404 #endif
3405 	prefetch(curr);
3406 	prefetch(&curr->exec_start);
3407 }
3408 
3409 /*
3410  * Return accounted runtime for the task.
3411  * In case the task is currently running, return the runtime plus current's
3412  * pending runtime that have not been accounted yet.
3413  */
3414 unsigned long long task_sched_runtime(struct task_struct *p)
3415 {
3416 	struct rq_flags rf;
3417 	struct rq *rq;
3418 	u64 ns;
3419 
3420 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3421 	/*
3422 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3423 	 * So we have a optimization chance when the task's delta_exec is 0.
3424 	 * Reading ->on_cpu is racy, but this is ok.
3425 	 *
3426 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3427 	 * If we race with it entering CPU, unaccounted time is 0. This is
3428 	 * indistinguishable from the read occurring a few cycles earlier.
3429 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3430 	 * been accounted, so we're correct here as well.
3431 	 */
3432 	if (!p->on_cpu || !task_on_rq_queued(p))
3433 		return p->se.sum_exec_runtime;
3434 #endif
3435 
3436 	rq = task_rq_lock(p, &rf);
3437 	/*
3438 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3439 	 * project cycles that may never be accounted to this
3440 	 * thread, breaking clock_gettime().
3441 	 */
3442 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3443 		prefetch_curr_exec_start(p);
3444 		update_rq_clock(rq);
3445 		p->sched_class->update_curr(rq);
3446 	}
3447 	ns = p->se.sum_exec_runtime;
3448 	task_rq_unlock(rq, p, &rf);
3449 
3450 	return ns;
3451 }
3452 
3453 /*
3454  * This function gets called by the timer code, with HZ frequency.
3455  * We call it with interrupts disabled.
3456  */
3457 void scheduler_tick(void)
3458 {
3459 	int cpu = smp_processor_id();
3460 	struct rq *rq = cpu_rq(cpu);
3461 	struct task_struct *curr = rq->curr;
3462 	struct rq_flags rf;
3463 
3464 	sched_clock_tick();
3465 
3466 	rq_lock(rq, &rf);
3467 
3468 	update_rq_clock(rq);
3469 	curr->sched_class->task_tick(rq, curr, 0);
3470 	calc_global_load_tick(rq);
3471 	psi_task_tick(rq);
3472 
3473 	rq_unlock(rq, &rf);
3474 
3475 	perf_event_task_tick();
3476 
3477 #ifdef CONFIG_SMP
3478 	rq->idle_balance = idle_cpu(cpu);
3479 	trigger_load_balance(rq);
3480 #endif
3481 }
3482 
3483 #ifdef CONFIG_NO_HZ_FULL
3484 
3485 struct tick_work {
3486 	int			cpu;
3487 	struct delayed_work	work;
3488 };
3489 
3490 static struct tick_work __percpu *tick_work_cpu;
3491 
3492 static void sched_tick_remote(struct work_struct *work)
3493 {
3494 	struct delayed_work *dwork = to_delayed_work(work);
3495 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3496 	int cpu = twork->cpu;
3497 	struct rq *rq = cpu_rq(cpu);
3498 	struct task_struct *curr;
3499 	struct rq_flags rf;
3500 	u64 delta;
3501 
3502 	/*
3503 	 * Handle the tick only if it appears the remote CPU is running in full
3504 	 * dynticks mode. The check is racy by nature, but missing a tick or
3505 	 * having one too much is no big deal because the scheduler tick updates
3506 	 * statistics and checks timeslices in a time-independent way, regardless
3507 	 * of when exactly it is running.
3508 	 */
3509 	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3510 		goto out_requeue;
3511 
3512 	rq_lock_irq(rq, &rf);
3513 	curr = rq->curr;
3514 	if (is_idle_task(curr))
3515 		goto out_unlock;
3516 
3517 	update_rq_clock(rq);
3518 	delta = rq_clock_task(rq) - curr->se.exec_start;
3519 
3520 	/*
3521 	 * Make sure the next tick runs within a reasonable
3522 	 * amount of time.
3523 	 */
3524 	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3525 	curr->sched_class->task_tick(rq, curr, 0);
3526 
3527 out_unlock:
3528 	rq_unlock_irq(rq, &rf);
3529 
3530 out_requeue:
3531 	/*
3532 	 * Run the remote tick once per second (1Hz). This arbitrary
3533 	 * frequency is large enough to avoid overload but short enough
3534 	 * to keep scheduler internal stats reasonably up to date.
3535 	 */
3536 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3537 }
3538 
3539 static void sched_tick_start(int cpu)
3540 {
3541 	struct tick_work *twork;
3542 
3543 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3544 		return;
3545 
3546 	WARN_ON_ONCE(!tick_work_cpu);
3547 
3548 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3549 	twork->cpu = cpu;
3550 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3551 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3552 }
3553 
3554 #ifdef CONFIG_HOTPLUG_CPU
3555 static void sched_tick_stop(int cpu)
3556 {
3557 	struct tick_work *twork;
3558 
3559 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3560 		return;
3561 
3562 	WARN_ON_ONCE(!tick_work_cpu);
3563 
3564 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3565 	cancel_delayed_work_sync(&twork->work);
3566 }
3567 #endif /* CONFIG_HOTPLUG_CPU */
3568 
3569 int __init sched_tick_offload_init(void)
3570 {
3571 	tick_work_cpu = alloc_percpu(struct tick_work);
3572 	BUG_ON(!tick_work_cpu);
3573 
3574 	return 0;
3575 }
3576 
3577 #else /* !CONFIG_NO_HZ_FULL */
3578 static inline void sched_tick_start(int cpu) { }
3579 static inline void sched_tick_stop(int cpu) { }
3580 #endif
3581 
3582 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3583 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3584 /*
3585  * If the value passed in is equal to the current preempt count
3586  * then we just disabled preemption. Start timing the latency.
3587  */
3588 static inline void preempt_latency_start(int val)
3589 {
3590 	if (preempt_count() == val) {
3591 		unsigned long ip = get_lock_parent_ip();
3592 #ifdef CONFIG_DEBUG_PREEMPT
3593 		current->preempt_disable_ip = ip;
3594 #endif
3595 		trace_preempt_off(CALLER_ADDR0, ip);
3596 	}
3597 }
3598 
3599 void preempt_count_add(int val)
3600 {
3601 #ifdef CONFIG_DEBUG_PREEMPT
3602 	/*
3603 	 * Underflow?
3604 	 */
3605 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3606 		return;
3607 #endif
3608 	__preempt_count_add(val);
3609 #ifdef CONFIG_DEBUG_PREEMPT
3610 	/*
3611 	 * Spinlock count overflowing soon?
3612 	 */
3613 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3614 				PREEMPT_MASK - 10);
3615 #endif
3616 	preempt_latency_start(val);
3617 }
3618 EXPORT_SYMBOL(preempt_count_add);
3619 NOKPROBE_SYMBOL(preempt_count_add);
3620 
3621 /*
3622  * If the value passed in equals to the current preempt count
3623  * then we just enabled preemption. Stop timing the latency.
3624  */
3625 static inline void preempt_latency_stop(int val)
3626 {
3627 	if (preempt_count() == val)
3628 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3629 }
3630 
3631 void preempt_count_sub(int val)
3632 {
3633 #ifdef CONFIG_DEBUG_PREEMPT
3634 	/*
3635 	 * Underflow?
3636 	 */
3637 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3638 		return;
3639 	/*
3640 	 * Is the spinlock portion underflowing?
3641 	 */
3642 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3643 			!(preempt_count() & PREEMPT_MASK)))
3644 		return;
3645 #endif
3646 
3647 	preempt_latency_stop(val);
3648 	__preempt_count_sub(val);
3649 }
3650 EXPORT_SYMBOL(preempt_count_sub);
3651 NOKPROBE_SYMBOL(preempt_count_sub);
3652 
3653 #else
3654 static inline void preempt_latency_start(int val) { }
3655 static inline void preempt_latency_stop(int val) { }
3656 #endif
3657 
3658 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3659 {
3660 #ifdef CONFIG_DEBUG_PREEMPT
3661 	return p->preempt_disable_ip;
3662 #else
3663 	return 0;
3664 #endif
3665 }
3666 
3667 /*
3668  * Print scheduling while atomic bug:
3669  */
3670 static noinline void __schedule_bug(struct task_struct *prev)
3671 {
3672 	/* Save this before calling printk(), since that will clobber it */
3673 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3674 
3675 	if (oops_in_progress)
3676 		return;
3677 
3678 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3679 		prev->comm, prev->pid, preempt_count());
3680 
3681 	debug_show_held_locks(prev);
3682 	print_modules();
3683 	if (irqs_disabled())
3684 		print_irqtrace_events(prev);
3685 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3686 	    && in_atomic_preempt_off()) {
3687 		pr_err("Preemption disabled at:");
3688 		print_ip_sym(preempt_disable_ip);
3689 		pr_cont("\n");
3690 	}
3691 	if (panic_on_warn)
3692 		panic("scheduling while atomic\n");
3693 
3694 	dump_stack();
3695 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3696 }
3697 
3698 /*
3699  * Various schedule()-time debugging checks and statistics:
3700  */
3701 static inline void schedule_debug(struct task_struct *prev)
3702 {
3703 #ifdef CONFIG_SCHED_STACK_END_CHECK
3704 	if (task_stack_end_corrupted(prev))
3705 		panic("corrupted stack end detected inside scheduler\n");
3706 #endif
3707 
3708 	if (unlikely(in_atomic_preempt_off())) {
3709 		__schedule_bug(prev);
3710 		preempt_count_set(PREEMPT_DISABLED);
3711 	}
3712 	rcu_sleep_check();
3713 
3714 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3715 
3716 	schedstat_inc(this_rq()->sched_count);
3717 }
3718 
3719 /*
3720  * Pick up the highest-prio task:
3721  */
3722 static inline struct task_struct *
3723 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3724 {
3725 	const struct sched_class *class;
3726 	struct task_struct *p;
3727 
3728 	/*
3729 	 * Optimization: we know that if all tasks are in the fair class we can
3730 	 * call that function directly, but only if the @prev task wasn't of a
3731 	 * higher scheduling class, because otherwise those loose the
3732 	 * opportunity to pull in more work from other CPUs.
3733 	 */
3734 	if (likely((prev->sched_class == &idle_sched_class ||
3735 		    prev->sched_class == &fair_sched_class) &&
3736 		   rq->nr_running == rq->cfs.h_nr_running)) {
3737 
3738 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3739 		if (unlikely(p == RETRY_TASK))
3740 			goto again;
3741 
3742 		/* Assumes fair_sched_class->next == idle_sched_class */
3743 		if (unlikely(!p))
3744 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3745 
3746 		return p;
3747 	}
3748 
3749 again:
3750 	for_each_class(class) {
3751 		p = class->pick_next_task(rq, prev, rf);
3752 		if (p) {
3753 			if (unlikely(p == RETRY_TASK))
3754 				goto again;
3755 			return p;
3756 		}
3757 	}
3758 
3759 	/* The idle class should always have a runnable task: */
3760 	BUG();
3761 }
3762 
3763 /*
3764  * __schedule() is the main scheduler function.
3765  *
3766  * The main means of driving the scheduler and thus entering this function are:
3767  *
3768  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3769  *
3770  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3771  *      paths. For example, see arch/x86/entry_64.S.
3772  *
3773  *      To drive preemption between tasks, the scheduler sets the flag in timer
3774  *      interrupt handler scheduler_tick().
3775  *
3776  *   3. Wakeups don't really cause entry into schedule(). They add a
3777  *      task to the run-queue and that's it.
3778  *
3779  *      Now, if the new task added to the run-queue preempts the current
3780  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3781  *      called on the nearest possible occasion:
3782  *
3783  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3784  *
3785  *         - in syscall or exception context, at the next outmost
3786  *           preempt_enable(). (this might be as soon as the wake_up()'s
3787  *           spin_unlock()!)
3788  *
3789  *         - in IRQ context, return from interrupt-handler to
3790  *           preemptible context
3791  *
3792  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3793  *         then at the next:
3794  *
3795  *          - cond_resched() call
3796  *          - explicit schedule() call
3797  *          - return from syscall or exception to user-space
3798  *          - return from interrupt-handler to user-space
3799  *
3800  * WARNING: must be called with preemption disabled!
3801  */
3802 static void __sched notrace __schedule(bool preempt)
3803 {
3804 	struct task_struct *prev, *next;
3805 	unsigned long *switch_count;
3806 	struct rq_flags rf;
3807 	struct rq *rq;
3808 	int cpu;
3809 
3810 	cpu = smp_processor_id();
3811 	rq = cpu_rq(cpu);
3812 	prev = rq->curr;
3813 
3814 	schedule_debug(prev);
3815 
3816 	if (sched_feat(HRTICK))
3817 		hrtick_clear(rq);
3818 
3819 	local_irq_disable();
3820 	rcu_note_context_switch(preempt);
3821 
3822 	/*
3823 	 * Make sure that signal_pending_state()->signal_pending() below
3824 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3825 	 * done by the caller to avoid the race with signal_wake_up().
3826 	 *
3827 	 * The membarrier system call requires a full memory barrier
3828 	 * after coming from user-space, before storing to rq->curr.
3829 	 */
3830 	rq_lock(rq, &rf);
3831 	smp_mb__after_spinlock();
3832 
3833 	/* Promote REQ to ACT */
3834 	rq->clock_update_flags <<= 1;
3835 	update_rq_clock(rq);
3836 
3837 	switch_count = &prev->nivcsw;
3838 	if (!preempt && prev->state) {
3839 		if (signal_pending_state(prev->state, prev)) {
3840 			prev->state = TASK_RUNNING;
3841 		} else {
3842 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3843 
3844 			if (prev->in_iowait) {
3845 				atomic_inc(&rq->nr_iowait);
3846 				delayacct_blkio_start();
3847 			}
3848 		}
3849 		switch_count = &prev->nvcsw;
3850 	}
3851 
3852 	next = pick_next_task(rq, prev, &rf);
3853 	clear_tsk_need_resched(prev);
3854 	clear_preempt_need_resched();
3855 
3856 	if (likely(prev != next)) {
3857 		rq->nr_switches++;
3858 		rq->curr = next;
3859 		/*
3860 		 * The membarrier system call requires each architecture
3861 		 * to have a full memory barrier after updating
3862 		 * rq->curr, before returning to user-space.
3863 		 *
3864 		 * Here are the schemes providing that barrier on the
3865 		 * various architectures:
3866 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3867 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3868 		 * - finish_lock_switch() for weakly-ordered
3869 		 *   architectures where spin_unlock is a full barrier,
3870 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3871 		 *   is a RELEASE barrier),
3872 		 */
3873 		++*switch_count;
3874 
3875 		trace_sched_switch(preempt, prev, next);
3876 
3877 		/* Also unlocks the rq: */
3878 		rq = context_switch(rq, prev, next, &rf);
3879 	} else {
3880 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3881 		rq_unlock_irq(rq, &rf);
3882 	}
3883 
3884 	balance_callback(rq);
3885 }
3886 
3887 void __noreturn do_task_dead(void)
3888 {
3889 	/* Causes final put_task_struct in finish_task_switch(): */
3890 	set_special_state(TASK_DEAD);
3891 
3892 	/* Tell freezer to ignore us: */
3893 	current->flags |= PF_NOFREEZE;
3894 
3895 	__schedule(false);
3896 	BUG();
3897 
3898 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3899 	for (;;)
3900 		cpu_relax();
3901 }
3902 
3903 static inline void sched_submit_work(struct task_struct *tsk)
3904 {
3905 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3906 		return;
3907 
3908 	/*
3909 	 * If a worker went to sleep, notify and ask workqueue whether
3910 	 * it wants to wake up a task to maintain concurrency.
3911 	 * As this function is called inside the schedule() context,
3912 	 * we disable preemption to avoid it calling schedule() again
3913 	 * in the possible wakeup of a kworker.
3914 	 */
3915 	if (tsk->flags & PF_WQ_WORKER) {
3916 		preempt_disable();
3917 		wq_worker_sleeping(tsk);
3918 		preempt_enable_no_resched();
3919 	}
3920 
3921 	/*
3922 	 * If we are going to sleep and we have plugged IO queued,
3923 	 * make sure to submit it to avoid deadlocks.
3924 	 */
3925 	if (blk_needs_flush_plug(tsk))
3926 		blk_schedule_flush_plug(tsk);
3927 }
3928 
3929 static void sched_update_worker(struct task_struct *tsk)
3930 {
3931 	if (tsk->flags & PF_WQ_WORKER)
3932 		wq_worker_running(tsk);
3933 }
3934 
3935 asmlinkage __visible void __sched schedule(void)
3936 {
3937 	struct task_struct *tsk = current;
3938 
3939 	sched_submit_work(tsk);
3940 	do {
3941 		preempt_disable();
3942 		__schedule(false);
3943 		sched_preempt_enable_no_resched();
3944 	} while (need_resched());
3945 	sched_update_worker(tsk);
3946 }
3947 EXPORT_SYMBOL(schedule);
3948 
3949 /*
3950  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3951  * state (have scheduled out non-voluntarily) by making sure that all
3952  * tasks have either left the run queue or have gone into user space.
3953  * As idle tasks do not do either, they must not ever be preempted
3954  * (schedule out non-voluntarily).
3955  *
3956  * schedule_idle() is similar to schedule_preempt_disable() except that it
3957  * never enables preemption because it does not call sched_submit_work().
3958  */
3959 void __sched schedule_idle(void)
3960 {
3961 	/*
3962 	 * As this skips calling sched_submit_work(), which the idle task does
3963 	 * regardless because that function is a nop when the task is in a
3964 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3965 	 * current task can be in any other state. Note, idle is always in the
3966 	 * TASK_RUNNING state.
3967 	 */
3968 	WARN_ON_ONCE(current->state);
3969 	do {
3970 		__schedule(false);
3971 	} while (need_resched());
3972 }
3973 
3974 #ifdef CONFIG_CONTEXT_TRACKING
3975 asmlinkage __visible void __sched schedule_user(void)
3976 {
3977 	/*
3978 	 * If we come here after a random call to set_need_resched(),
3979 	 * or we have been woken up remotely but the IPI has not yet arrived,
3980 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3981 	 * we find a better solution.
3982 	 *
3983 	 * NB: There are buggy callers of this function.  Ideally we
3984 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3985 	 * too frequently to make sense yet.
3986 	 */
3987 	enum ctx_state prev_state = exception_enter();
3988 	schedule();
3989 	exception_exit(prev_state);
3990 }
3991 #endif
3992 
3993 /**
3994  * schedule_preempt_disabled - called with preemption disabled
3995  *
3996  * Returns with preemption disabled. Note: preempt_count must be 1
3997  */
3998 void __sched schedule_preempt_disabled(void)
3999 {
4000 	sched_preempt_enable_no_resched();
4001 	schedule();
4002 	preempt_disable();
4003 }
4004 
4005 static void __sched notrace preempt_schedule_common(void)
4006 {
4007 	do {
4008 		/*
4009 		 * Because the function tracer can trace preempt_count_sub()
4010 		 * and it also uses preempt_enable/disable_notrace(), if
4011 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4012 		 * by the function tracer will call this function again and
4013 		 * cause infinite recursion.
4014 		 *
4015 		 * Preemption must be disabled here before the function
4016 		 * tracer can trace. Break up preempt_disable() into two
4017 		 * calls. One to disable preemption without fear of being
4018 		 * traced. The other to still record the preemption latency,
4019 		 * which can also be traced by the function tracer.
4020 		 */
4021 		preempt_disable_notrace();
4022 		preempt_latency_start(1);
4023 		__schedule(true);
4024 		preempt_latency_stop(1);
4025 		preempt_enable_no_resched_notrace();
4026 
4027 		/*
4028 		 * Check again in case we missed a preemption opportunity
4029 		 * between schedule and now.
4030 		 */
4031 	} while (need_resched());
4032 }
4033 
4034 #ifdef CONFIG_PREEMPT
4035 /*
4036  * this is the entry point to schedule() from in-kernel preemption
4037  * off of preempt_enable. Kernel preemptions off return from interrupt
4038  * occur there and call schedule directly.
4039  */
4040 asmlinkage __visible void __sched notrace preempt_schedule(void)
4041 {
4042 	/*
4043 	 * If there is a non-zero preempt_count or interrupts are disabled,
4044 	 * we do not want to preempt the current task. Just return..
4045 	 */
4046 	if (likely(!preemptible()))
4047 		return;
4048 
4049 	preempt_schedule_common();
4050 }
4051 NOKPROBE_SYMBOL(preempt_schedule);
4052 EXPORT_SYMBOL(preempt_schedule);
4053 
4054 /**
4055  * preempt_schedule_notrace - preempt_schedule called by tracing
4056  *
4057  * The tracing infrastructure uses preempt_enable_notrace to prevent
4058  * recursion and tracing preempt enabling caused by the tracing
4059  * infrastructure itself. But as tracing can happen in areas coming
4060  * from userspace or just about to enter userspace, a preempt enable
4061  * can occur before user_exit() is called. This will cause the scheduler
4062  * to be called when the system is still in usermode.
4063  *
4064  * To prevent this, the preempt_enable_notrace will use this function
4065  * instead of preempt_schedule() to exit user context if needed before
4066  * calling the scheduler.
4067  */
4068 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4069 {
4070 	enum ctx_state prev_ctx;
4071 
4072 	if (likely(!preemptible()))
4073 		return;
4074 
4075 	do {
4076 		/*
4077 		 * Because the function tracer can trace preempt_count_sub()
4078 		 * and it also uses preempt_enable/disable_notrace(), if
4079 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4080 		 * by the function tracer will call this function again and
4081 		 * cause infinite recursion.
4082 		 *
4083 		 * Preemption must be disabled here before the function
4084 		 * tracer can trace. Break up preempt_disable() into two
4085 		 * calls. One to disable preemption without fear of being
4086 		 * traced. The other to still record the preemption latency,
4087 		 * which can also be traced by the function tracer.
4088 		 */
4089 		preempt_disable_notrace();
4090 		preempt_latency_start(1);
4091 		/*
4092 		 * Needs preempt disabled in case user_exit() is traced
4093 		 * and the tracer calls preempt_enable_notrace() causing
4094 		 * an infinite recursion.
4095 		 */
4096 		prev_ctx = exception_enter();
4097 		__schedule(true);
4098 		exception_exit(prev_ctx);
4099 
4100 		preempt_latency_stop(1);
4101 		preempt_enable_no_resched_notrace();
4102 	} while (need_resched());
4103 }
4104 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4105 
4106 #endif /* CONFIG_PREEMPT */
4107 
4108 /*
4109  * this is the entry point to schedule() from kernel preemption
4110  * off of irq context.
4111  * Note, that this is called and return with irqs disabled. This will
4112  * protect us against recursive calling from irq.
4113  */
4114 asmlinkage __visible void __sched preempt_schedule_irq(void)
4115 {
4116 	enum ctx_state prev_state;
4117 
4118 	/* Catch callers which need to be fixed */
4119 	BUG_ON(preempt_count() || !irqs_disabled());
4120 
4121 	prev_state = exception_enter();
4122 
4123 	do {
4124 		preempt_disable();
4125 		local_irq_enable();
4126 		__schedule(true);
4127 		local_irq_disable();
4128 		sched_preempt_enable_no_resched();
4129 	} while (need_resched());
4130 
4131 	exception_exit(prev_state);
4132 }
4133 
4134 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4135 			  void *key)
4136 {
4137 	return try_to_wake_up(curr->private, mode, wake_flags);
4138 }
4139 EXPORT_SYMBOL(default_wake_function);
4140 
4141 #ifdef CONFIG_RT_MUTEXES
4142 
4143 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4144 {
4145 	if (pi_task)
4146 		prio = min(prio, pi_task->prio);
4147 
4148 	return prio;
4149 }
4150 
4151 static inline int rt_effective_prio(struct task_struct *p, int prio)
4152 {
4153 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4154 
4155 	return __rt_effective_prio(pi_task, prio);
4156 }
4157 
4158 /*
4159  * rt_mutex_setprio - set the current priority of a task
4160  * @p: task to boost
4161  * @pi_task: donor task
4162  *
4163  * This function changes the 'effective' priority of a task. It does
4164  * not touch ->normal_prio like __setscheduler().
4165  *
4166  * Used by the rt_mutex code to implement priority inheritance
4167  * logic. Call site only calls if the priority of the task changed.
4168  */
4169 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4170 {
4171 	int prio, oldprio, queued, running, queue_flag =
4172 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4173 	const struct sched_class *prev_class;
4174 	struct rq_flags rf;
4175 	struct rq *rq;
4176 
4177 	/* XXX used to be waiter->prio, not waiter->task->prio */
4178 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4179 
4180 	/*
4181 	 * If nothing changed; bail early.
4182 	 */
4183 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4184 		return;
4185 
4186 	rq = __task_rq_lock(p, &rf);
4187 	update_rq_clock(rq);
4188 	/*
4189 	 * Set under pi_lock && rq->lock, such that the value can be used under
4190 	 * either lock.
4191 	 *
4192 	 * Note that there is loads of tricky to make this pointer cache work
4193 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4194 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4195 	 * task is allowed to run again (and can exit). This ensures the pointer
4196 	 * points to a blocked task -- which guaratees the task is present.
4197 	 */
4198 	p->pi_top_task = pi_task;
4199 
4200 	/*
4201 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4202 	 */
4203 	if (prio == p->prio && !dl_prio(prio))
4204 		goto out_unlock;
4205 
4206 	/*
4207 	 * Idle task boosting is a nono in general. There is one
4208 	 * exception, when PREEMPT_RT and NOHZ is active:
4209 	 *
4210 	 * The idle task calls get_next_timer_interrupt() and holds
4211 	 * the timer wheel base->lock on the CPU and another CPU wants
4212 	 * to access the timer (probably to cancel it). We can safely
4213 	 * ignore the boosting request, as the idle CPU runs this code
4214 	 * with interrupts disabled and will complete the lock
4215 	 * protected section without being interrupted. So there is no
4216 	 * real need to boost.
4217 	 */
4218 	if (unlikely(p == rq->idle)) {
4219 		WARN_ON(p != rq->curr);
4220 		WARN_ON(p->pi_blocked_on);
4221 		goto out_unlock;
4222 	}
4223 
4224 	trace_sched_pi_setprio(p, pi_task);
4225 	oldprio = p->prio;
4226 
4227 	if (oldprio == prio)
4228 		queue_flag &= ~DEQUEUE_MOVE;
4229 
4230 	prev_class = p->sched_class;
4231 	queued = task_on_rq_queued(p);
4232 	running = task_current(rq, p);
4233 	if (queued)
4234 		dequeue_task(rq, p, queue_flag);
4235 	if (running)
4236 		put_prev_task(rq, p);
4237 
4238 	/*
4239 	 * Boosting condition are:
4240 	 * 1. -rt task is running and holds mutex A
4241 	 *      --> -dl task blocks on mutex A
4242 	 *
4243 	 * 2. -dl task is running and holds mutex A
4244 	 *      --> -dl task blocks on mutex A and could preempt the
4245 	 *          running task
4246 	 */
4247 	if (dl_prio(prio)) {
4248 		if (!dl_prio(p->normal_prio) ||
4249 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4250 			p->dl.dl_boosted = 1;
4251 			queue_flag |= ENQUEUE_REPLENISH;
4252 		} else
4253 			p->dl.dl_boosted = 0;
4254 		p->sched_class = &dl_sched_class;
4255 	} else if (rt_prio(prio)) {
4256 		if (dl_prio(oldprio))
4257 			p->dl.dl_boosted = 0;
4258 		if (oldprio < prio)
4259 			queue_flag |= ENQUEUE_HEAD;
4260 		p->sched_class = &rt_sched_class;
4261 	} else {
4262 		if (dl_prio(oldprio))
4263 			p->dl.dl_boosted = 0;
4264 		if (rt_prio(oldprio))
4265 			p->rt.timeout = 0;
4266 		p->sched_class = &fair_sched_class;
4267 	}
4268 
4269 	p->prio = prio;
4270 
4271 	if (queued)
4272 		enqueue_task(rq, p, queue_flag);
4273 	if (running)
4274 		set_curr_task(rq, p);
4275 
4276 	check_class_changed(rq, p, prev_class, oldprio);
4277 out_unlock:
4278 	/* Avoid rq from going away on us: */
4279 	preempt_disable();
4280 	__task_rq_unlock(rq, &rf);
4281 
4282 	balance_callback(rq);
4283 	preempt_enable();
4284 }
4285 #else
4286 static inline int rt_effective_prio(struct task_struct *p, int prio)
4287 {
4288 	return prio;
4289 }
4290 #endif
4291 
4292 void set_user_nice(struct task_struct *p, long nice)
4293 {
4294 	bool queued, running;
4295 	int old_prio, delta;
4296 	struct rq_flags rf;
4297 	struct rq *rq;
4298 
4299 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4300 		return;
4301 	/*
4302 	 * We have to be careful, if called from sys_setpriority(),
4303 	 * the task might be in the middle of scheduling on another CPU.
4304 	 */
4305 	rq = task_rq_lock(p, &rf);
4306 	update_rq_clock(rq);
4307 
4308 	/*
4309 	 * The RT priorities are set via sched_setscheduler(), but we still
4310 	 * allow the 'normal' nice value to be set - but as expected
4311 	 * it wont have any effect on scheduling until the task is
4312 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4313 	 */
4314 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4315 		p->static_prio = NICE_TO_PRIO(nice);
4316 		goto out_unlock;
4317 	}
4318 	queued = task_on_rq_queued(p);
4319 	running = task_current(rq, p);
4320 	if (queued)
4321 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4322 	if (running)
4323 		put_prev_task(rq, p);
4324 
4325 	p->static_prio = NICE_TO_PRIO(nice);
4326 	set_load_weight(p, true);
4327 	old_prio = p->prio;
4328 	p->prio = effective_prio(p);
4329 	delta = p->prio - old_prio;
4330 
4331 	if (queued) {
4332 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4333 		/*
4334 		 * If the task increased its priority or is running and
4335 		 * lowered its priority, then reschedule its CPU:
4336 		 */
4337 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4338 			resched_curr(rq);
4339 	}
4340 	if (running)
4341 		set_curr_task(rq, p);
4342 out_unlock:
4343 	task_rq_unlock(rq, p, &rf);
4344 }
4345 EXPORT_SYMBOL(set_user_nice);
4346 
4347 /*
4348  * can_nice - check if a task can reduce its nice value
4349  * @p: task
4350  * @nice: nice value
4351  */
4352 int can_nice(const struct task_struct *p, const int nice)
4353 {
4354 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4355 	int nice_rlim = nice_to_rlimit(nice);
4356 
4357 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4358 		capable(CAP_SYS_NICE));
4359 }
4360 
4361 #ifdef __ARCH_WANT_SYS_NICE
4362 
4363 /*
4364  * sys_nice - change the priority of the current process.
4365  * @increment: priority increment
4366  *
4367  * sys_setpriority is a more generic, but much slower function that
4368  * does similar things.
4369  */
4370 SYSCALL_DEFINE1(nice, int, increment)
4371 {
4372 	long nice, retval;
4373 
4374 	/*
4375 	 * Setpriority might change our priority at the same moment.
4376 	 * We don't have to worry. Conceptually one call occurs first
4377 	 * and we have a single winner.
4378 	 */
4379 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4380 	nice = task_nice(current) + increment;
4381 
4382 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4383 	if (increment < 0 && !can_nice(current, nice))
4384 		return -EPERM;
4385 
4386 	retval = security_task_setnice(current, nice);
4387 	if (retval)
4388 		return retval;
4389 
4390 	set_user_nice(current, nice);
4391 	return 0;
4392 }
4393 
4394 #endif
4395 
4396 /**
4397  * task_prio - return the priority value of a given task.
4398  * @p: the task in question.
4399  *
4400  * Return: The priority value as seen by users in /proc.
4401  * RT tasks are offset by -200. Normal tasks are centered
4402  * around 0, value goes from -16 to +15.
4403  */
4404 int task_prio(const struct task_struct *p)
4405 {
4406 	return p->prio - MAX_RT_PRIO;
4407 }
4408 
4409 /**
4410  * idle_cpu - is a given CPU idle currently?
4411  * @cpu: the processor in question.
4412  *
4413  * Return: 1 if the CPU is currently idle. 0 otherwise.
4414  */
4415 int idle_cpu(int cpu)
4416 {
4417 	struct rq *rq = cpu_rq(cpu);
4418 
4419 	if (rq->curr != rq->idle)
4420 		return 0;
4421 
4422 	if (rq->nr_running)
4423 		return 0;
4424 
4425 #ifdef CONFIG_SMP
4426 	if (!llist_empty(&rq->wake_list))
4427 		return 0;
4428 #endif
4429 
4430 	return 1;
4431 }
4432 
4433 /**
4434  * available_idle_cpu - is a given CPU idle for enqueuing work.
4435  * @cpu: the CPU in question.
4436  *
4437  * Return: 1 if the CPU is currently idle. 0 otherwise.
4438  */
4439 int available_idle_cpu(int cpu)
4440 {
4441 	if (!idle_cpu(cpu))
4442 		return 0;
4443 
4444 	if (vcpu_is_preempted(cpu))
4445 		return 0;
4446 
4447 	return 1;
4448 }
4449 
4450 /**
4451  * idle_task - return the idle task for a given CPU.
4452  * @cpu: the processor in question.
4453  *
4454  * Return: The idle task for the CPU @cpu.
4455  */
4456 struct task_struct *idle_task(int cpu)
4457 {
4458 	return cpu_rq(cpu)->idle;
4459 }
4460 
4461 /**
4462  * find_process_by_pid - find a process with a matching PID value.
4463  * @pid: the pid in question.
4464  *
4465  * The task of @pid, if found. %NULL otherwise.
4466  */
4467 static struct task_struct *find_process_by_pid(pid_t pid)
4468 {
4469 	return pid ? find_task_by_vpid(pid) : current;
4470 }
4471 
4472 /*
4473  * sched_setparam() passes in -1 for its policy, to let the functions
4474  * it calls know not to change it.
4475  */
4476 #define SETPARAM_POLICY	-1
4477 
4478 static void __setscheduler_params(struct task_struct *p,
4479 		const struct sched_attr *attr)
4480 {
4481 	int policy = attr->sched_policy;
4482 
4483 	if (policy == SETPARAM_POLICY)
4484 		policy = p->policy;
4485 
4486 	p->policy = policy;
4487 
4488 	if (dl_policy(policy))
4489 		__setparam_dl(p, attr);
4490 	else if (fair_policy(policy))
4491 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4492 
4493 	/*
4494 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4495 	 * !rt_policy. Always setting this ensures that things like
4496 	 * getparam()/getattr() don't report silly values for !rt tasks.
4497 	 */
4498 	p->rt_priority = attr->sched_priority;
4499 	p->normal_prio = normal_prio(p);
4500 	set_load_weight(p, true);
4501 }
4502 
4503 /* Actually do priority change: must hold pi & rq lock. */
4504 static void __setscheduler(struct rq *rq, struct task_struct *p,
4505 			   const struct sched_attr *attr, bool keep_boost)
4506 {
4507 	/*
4508 	 * If params can't change scheduling class changes aren't allowed
4509 	 * either.
4510 	 */
4511 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4512 		return;
4513 
4514 	__setscheduler_params(p, attr);
4515 
4516 	/*
4517 	 * Keep a potential priority boosting if called from
4518 	 * sched_setscheduler().
4519 	 */
4520 	p->prio = normal_prio(p);
4521 	if (keep_boost)
4522 		p->prio = rt_effective_prio(p, p->prio);
4523 
4524 	if (dl_prio(p->prio))
4525 		p->sched_class = &dl_sched_class;
4526 	else if (rt_prio(p->prio))
4527 		p->sched_class = &rt_sched_class;
4528 	else
4529 		p->sched_class = &fair_sched_class;
4530 }
4531 
4532 /*
4533  * Check the target process has a UID that matches the current process's:
4534  */
4535 static bool check_same_owner(struct task_struct *p)
4536 {
4537 	const struct cred *cred = current_cred(), *pcred;
4538 	bool match;
4539 
4540 	rcu_read_lock();
4541 	pcred = __task_cred(p);
4542 	match = (uid_eq(cred->euid, pcred->euid) ||
4543 		 uid_eq(cred->euid, pcred->uid));
4544 	rcu_read_unlock();
4545 	return match;
4546 }
4547 
4548 static int __sched_setscheduler(struct task_struct *p,
4549 				const struct sched_attr *attr,
4550 				bool user, bool pi)
4551 {
4552 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4553 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4554 	int retval, oldprio, oldpolicy = -1, queued, running;
4555 	int new_effective_prio, policy = attr->sched_policy;
4556 	const struct sched_class *prev_class;
4557 	struct rq_flags rf;
4558 	int reset_on_fork;
4559 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4560 	struct rq *rq;
4561 
4562 	/* The pi code expects interrupts enabled */
4563 	BUG_ON(pi && in_interrupt());
4564 recheck:
4565 	/* Double check policy once rq lock held: */
4566 	if (policy < 0) {
4567 		reset_on_fork = p->sched_reset_on_fork;
4568 		policy = oldpolicy = p->policy;
4569 	} else {
4570 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4571 
4572 		if (!valid_policy(policy))
4573 			return -EINVAL;
4574 	}
4575 
4576 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4577 		return -EINVAL;
4578 
4579 	/*
4580 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4581 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4582 	 * SCHED_BATCH and SCHED_IDLE is 0.
4583 	 */
4584 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4585 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4586 		return -EINVAL;
4587 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4588 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4589 		return -EINVAL;
4590 
4591 	/*
4592 	 * Allow unprivileged RT tasks to decrease priority:
4593 	 */
4594 	if (user && !capable(CAP_SYS_NICE)) {
4595 		if (fair_policy(policy)) {
4596 			if (attr->sched_nice < task_nice(p) &&
4597 			    !can_nice(p, attr->sched_nice))
4598 				return -EPERM;
4599 		}
4600 
4601 		if (rt_policy(policy)) {
4602 			unsigned long rlim_rtprio =
4603 					task_rlimit(p, RLIMIT_RTPRIO);
4604 
4605 			/* Can't set/change the rt policy: */
4606 			if (policy != p->policy && !rlim_rtprio)
4607 				return -EPERM;
4608 
4609 			/* Can't increase priority: */
4610 			if (attr->sched_priority > p->rt_priority &&
4611 			    attr->sched_priority > rlim_rtprio)
4612 				return -EPERM;
4613 		}
4614 
4615 		 /*
4616 		  * Can't set/change SCHED_DEADLINE policy at all for now
4617 		  * (safest behavior); in the future we would like to allow
4618 		  * unprivileged DL tasks to increase their relative deadline
4619 		  * or reduce their runtime (both ways reducing utilization)
4620 		  */
4621 		if (dl_policy(policy))
4622 			return -EPERM;
4623 
4624 		/*
4625 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4626 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4627 		 */
4628 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4629 			if (!can_nice(p, task_nice(p)))
4630 				return -EPERM;
4631 		}
4632 
4633 		/* Can't change other user's priorities: */
4634 		if (!check_same_owner(p))
4635 			return -EPERM;
4636 
4637 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4638 		if (p->sched_reset_on_fork && !reset_on_fork)
4639 			return -EPERM;
4640 	}
4641 
4642 	if (user) {
4643 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4644 			return -EINVAL;
4645 
4646 		retval = security_task_setscheduler(p);
4647 		if (retval)
4648 			return retval;
4649 	}
4650 
4651 	/* Update task specific "requested" clamps */
4652 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4653 		retval = uclamp_validate(p, attr);
4654 		if (retval)
4655 			return retval;
4656 	}
4657 
4658 	/*
4659 	 * Make sure no PI-waiters arrive (or leave) while we are
4660 	 * changing the priority of the task:
4661 	 *
4662 	 * To be able to change p->policy safely, the appropriate
4663 	 * runqueue lock must be held.
4664 	 */
4665 	rq = task_rq_lock(p, &rf);
4666 	update_rq_clock(rq);
4667 
4668 	/*
4669 	 * Changing the policy of the stop threads its a very bad idea:
4670 	 */
4671 	if (p == rq->stop) {
4672 		task_rq_unlock(rq, p, &rf);
4673 		return -EINVAL;
4674 	}
4675 
4676 	/*
4677 	 * If not changing anything there's no need to proceed further,
4678 	 * but store a possible modification of reset_on_fork.
4679 	 */
4680 	if (unlikely(policy == p->policy)) {
4681 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4682 			goto change;
4683 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4684 			goto change;
4685 		if (dl_policy(policy) && dl_param_changed(p, attr))
4686 			goto change;
4687 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4688 			goto change;
4689 
4690 		p->sched_reset_on_fork = reset_on_fork;
4691 		task_rq_unlock(rq, p, &rf);
4692 		return 0;
4693 	}
4694 change:
4695 
4696 	if (user) {
4697 #ifdef CONFIG_RT_GROUP_SCHED
4698 		/*
4699 		 * Do not allow realtime tasks into groups that have no runtime
4700 		 * assigned.
4701 		 */
4702 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4703 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4704 				!task_group_is_autogroup(task_group(p))) {
4705 			task_rq_unlock(rq, p, &rf);
4706 			return -EPERM;
4707 		}
4708 #endif
4709 #ifdef CONFIG_SMP
4710 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4711 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4712 			cpumask_t *span = rq->rd->span;
4713 
4714 			/*
4715 			 * Don't allow tasks with an affinity mask smaller than
4716 			 * the entire root_domain to become SCHED_DEADLINE. We
4717 			 * will also fail if there's no bandwidth available.
4718 			 */
4719 			if (!cpumask_subset(span, p->cpus_ptr) ||
4720 			    rq->rd->dl_bw.bw == 0) {
4721 				task_rq_unlock(rq, p, &rf);
4722 				return -EPERM;
4723 			}
4724 		}
4725 #endif
4726 	}
4727 
4728 	/* Re-check policy now with rq lock held: */
4729 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4730 		policy = oldpolicy = -1;
4731 		task_rq_unlock(rq, p, &rf);
4732 		goto recheck;
4733 	}
4734 
4735 	/*
4736 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4737 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4738 	 * is available.
4739 	 */
4740 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4741 		task_rq_unlock(rq, p, &rf);
4742 		return -EBUSY;
4743 	}
4744 
4745 	p->sched_reset_on_fork = reset_on_fork;
4746 	oldprio = p->prio;
4747 
4748 	if (pi) {
4749 		/*
4750 		 * Take priority boosted tasks into account. If the new
4751 		 * effective priority is unchanged, we just store the new
4752 		 * normal parameters and do not touch the scheduler class and
4753 		 * the runqueue. This will be done when the task deboost
4754 		 * itself.
4755 		 */
4756 		new_effective_prio = rt_effective_prio(p, newprio);
4757 		if (new_effective_prio == oldprio)
4758 			queue_flags &= ~DEQUEUE_MOVE;
4759 	}
4760 
4761 	queued = task_on_rq_queued(p);
4762 	running = task_current(rq, p);
4763 	if (queued)
4764 		dequeue_task(rq, p, queue_flags);
4765 	if (running)
4766 		put_prev_task(rq, p);
4767 
4768 	prev_class = p->sched_class;
4769 
4770 	__setscheduler(rq, p, attr, pi);
4771 	__setscheduler_uclamp(p, attr);
4772 
4773 	if (queued) {
4774 		/*
4775 		 * We enqueue to tail when the priority of a task is
4776 		 * increased (user space view).
4777 		 */
4778 		if (oldprio < p->prio)
4779 			queue_flags |= ENQUEUE_HEAD;
4780 
4781 		enqueue_task(rq, p, queue_flags);
4782 	}
4783 	if (running)
4784 		set_curr_task(rq, p);
4785 
4786 	check_class_changed(rq, p, prev_class, oldprio);
4787 
4788 	/* Avoid rq from going away on us: */
4789 	preempt_disable();
4790 	task_rq_unlock(rq, p, &rf);
4791 
4792 	if (pi)
4793 		rt_mutex_adjust_pi(p);
4794 
4795 	/* Run balance callbacks after we've adjusted the PI chain: */
4796 	balance_callback(rq);
4797 	preempt_enable();
4798 
4799 	return 0;
4800 }
4801 
4802 static int _sched_setscheduler(struct task_struct *p, int policy,
4803 			       const struct sched_param *param, bool check)
4804 {
4805 	struct sched_attr attr = {
4806 		.sched_policy   = policy,
4807 		.sched_priority = param->sched_priority,
4808 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4809 	};
4810 
4811 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4812 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4813 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4814 		policy &= ~SCHED_RESET_ON_FORK;
4815 		attr.sched_policy = policy;
4816 	}
4817 
4818 	return __sched_setscheduler(p, &attr, check, true);
4819 }
4820 /**
4821  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4822  * @p: the task in question.
4823  * @policy: new policy.
4824  * @param: structure containing the new RT priority.
4825  *
4826  * Return: 0 on success. An error code otherwise.
4827  *
4828  * NOTE that the task may be already dead.
4829  */
4830 int sched_setscheduler(struct task_struct *p, int policy,
4831 		       const struct sched_param *param)
4832 {
4833 	return _sched_setscheduler(p, policy, param, true);
4834 }
4835 EXPORT_SYMBOL_GPL(sched_setscheduler);
4836 
4837 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4838 {
4839 	return __sched_setscheduler(p, attr, true, true);
4840 }
4841 EXPORT_SYMBOL_GPL(sched_setattr);
4842 
4843 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4844 {
4845 	return __sched_setscheduler(p, attr, false, true);
4846 }
4847 
4848 /**
4849  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4850  * @p: the task in question.
4851  * @policy: new policy.
4852  * @param: structure containing the new RT priority.
4853  *
4854  * Just like sched_setscheduler, only don't bother checking if the
4855  * current context has permission.  For example, this is needed in
4856  * stop_machine(): we create temporary high priority worker threads,
4857  * but our caller might not have that capability.
4858  *
4859  * Return: 0 on success. An error code otherwise.
4860  */
4861 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4862 			       const struct sched_param *param)
4863 {
4864 	return _sched_setscheduler(p, policy, param, false);
4865 }
4866 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4867 
4868 static int
4869 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4870 {
4871 	struct sched_param lparam;
4872 	struct task_struct *p;
4873 	int retval;
4874 
4875 	if (!param || pid < 0)
4876 		return -EINVAL;
4877 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4878 		return -EFAULT;
4879 
4880 	rcu_read_lock();
4881 	retval = -ESRCH;
4882 	p = find_process_by_pid(pid);
4883 	if (p != NULL)
4884 		retval = sched_setscheduler(p, policy, &lparam);
4885 	rcu_read_unlock();
4886 
4887 	return retval;
4888 }
4889 
4890 /*
4891  * Mimics kernel/events/core.c perf_copy_attr().
4892  */
4893 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4894 {
4895 	u32 size;
4896 	int ret;
4897 
4898 	if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
4899 		return -EFAULT;
4900 
4901 	/* Zero the full structure, so that a short copy will be nice: */
4902 	memset(attr, 0, sizeof(*attr));
4903 
4904 	ret = get_user(size, &uattr->size);
4905 	if (ret)
4906 		return ret;
4907 
4908 	/* Bail out on silly large: */
4909 	if (size > PAGE_SIZE)
4910 		goto err_size;
4911 
4912 	/* ABI compatibility quirk: */
4913 	if (!size)
4914 		size = SCHED_ATTR_SIZE_VER0;
4915 
4916 	if (size < SCHED_ATTR_SIZE_VER0)
4917 		goto err_size;
4918 
4919 	/*
4920 	 * If we're handed a bigger struct than we know of,
4921 	 * ensure all the unknown bits are 0 - i.e. new
4922 	 * user-space does not rely on any kernel feature
4923 	 * extensions we dont know about yet.
4924 	 */
4925 	if (size > sizeof(*attr)) {
4926 		unsigned char __user *addr;
4927 		unsigned char __user *end;
4928 		unsigned char val;
4929 
4930 		addr = (void __user *)uattr + sizeof(*attr);
4931 		end  = (void __user *)uattr + size;
4932 
4933 		for (; addr < end; addr++) {
4934 			ret = get_user(val, addr);
4935 			if (ret)
4936 				return ret;
4937 			if (val)
4938 				goto err_size;
4939 		}
4940 		size = sizeof(*attr);
4941 	}
4942 
4943 	ret = copy_from_user(attr, uattr, size);
4944 	if (ret)
4945 		return -EFAULT;
4946 
4947 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
4948 	    size < SCHED_ATTR_SIZE_VER1)
4949 		return -EINVAL;
4950 
4951 	/*
4952 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4953 	 * to be strict and return an error on out-of-bounds values?
4954 	 */
4955 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4956 
4957 	return 0;
4958 
4959 err_size:
4960 	put_user(sizeof(*attr), &uattr->size);
4961 	return -E2BIG;
4962 }
4963 
4964 /**
4965  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4966  * @pid: the pid in question.
4967  * @policy: new policy.
4968  * @param: structure containing the new RT priority.
4969  *
4970  * Return: 0 on success. An error code otherwise.
4971  */
4972 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4973 {
4974 	if (policy < 0)
4975 		return -EINVAL;
4976 
4977 	return do_sched_setscheduler(pid, policy, param);
4978 }
4979 
4980 /**
4981  * sys_sched_setparam - set/change the RT priority of a thread
4982  * @pid: the pid in question.
4983  * @param: structure containing the new RT priority.
4984  *
4985  * Return: 0 on success. An error code otherwise.
4986  */
4987 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4988 {
4989 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4990 }
4991 
4992 /**
4993  * sys_sched_setattr - same as above, but with extended sched_attr
4994  * @pid: the pid in question.
4995  * @uattr: structure containing the extended parameters.
4996  * @flags: for future extension.
4997  */
4998 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4999 			       unsigned int, flags)
5000 {
5001 	struct sched_attr attr;
5002 	struct task_struct *p;
5003 	int retval;
5004 
5005 	if (!uattr || pid < 0 || flags)
5006 		return -EINVAL;
5007 
5008 	retval = sched_copy_attr(uattr, &attr);
5009 	if (retval)
5010 		return retval;
5011 
5012 	if ((int)attr.sched_policy < 0)
5013 		return -EINVAL;
5014 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5015 		attr.sched_policy = SETPARAM_POLICY;
5016 
5017 	rcu_read_lock();
5018 	retval = -ESRCH;
5019 	p = find_process_by_pid(pid);
5020 	if (likely(p))
5021 		get_task_struct(p);
5022 	rcu_read_unlock();
5023 
5024 	if (likely(p)) {
5025 		retval = sched_setattr(p, &attr);
5026 		put_task_struct(p);
5027 	}
5028 
5029 	return retval;
5030 }
5031 
5032 /**
5033  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5034  * @pid: the pid in question.
5035  *
5036  * Return: On success, the policy of the thread. Otherwise, a negative error
5037  * code.
5038  */
5039 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5040 {
5041 	struct task_struct *p;
5042 	int retval;
5043 
5044 	if (pid < 0)
5045 		return -EINVAL;
5046 
5047 	retval = -ESRCH;
5048 	rcu_read_lock();
5049 	p = find_process_by_pid(pid);
5050 	if (p) {
5051 		retval = security_task_getscheduler(p);
5052 		if (!retval)
5053 			retval = p->policy
5054 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5055 	}
5056 	rcu_read_unlock();
5057 	return retval;
5058 }
5059 
5060 /**
5061  * sys_sched_getparam - get the RT priority of a thread
5062  * @pid: the pid in question.
5063  * @param: structure containing the RT priority.
5064  *
5065  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5066  * code.
5067  */
5068 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5069 {
5070 	struct sched_param lp = { .sched_priority = 0 };
5071 	struct task_struct *p;
5072 	int retval;
5073 
5074 	if (!param || pid < 0)
5075 		return -EINVAL;
5076 
5077 	rcu_read_lock();
5078 	p = find_process_by_pid(pid);
5079 	retval = -ESRCH;
5080 	if (!p)
5081 		goto out_unlock;
5082 
5083 	retval = security_task_getscheduler(p);
5084 	if (retval)
5085 		goto out_unlock;
5086 
5087 	if (task_has_rt_policy(p))
5088 		lp.sched_priority = p->rt_priority;
5089 	rcu_read_unlock();
5090 
5091 	/*
5092 	 * This one might sleep, we cannot do it with a spinlock held ...
5093 	 */
5094 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5095 
5096 	return retval;
5097 
5098 out_unlock:
5099 	rcu_read_unlock();
5100 	return retval;
5101 }
5102 
5103 static int sched_read_attr(struct sched_attr __user *uattr,
5104 			   struct sched_attr *attr,
5105 			   unsigned int usize)
5106 {
5107 	int ret;
5108 
5109 	if (!access_ok(uattr, usize))
5110 		return -EFAULT;
5111 
5112 	/*
5113 	 * If we're handed a smaller struct than we know of,
5114 	 * ensure all the unknown bits are 0 - i.e. old
5115 	 * user-space does not get uncomplete information.
5116 	 */
5117 	if (usize < sizeof(*attr)) {
5118 		unsigned char *addr;
5119 		unsigned char *end;
5120 
5121 		addr = (void *)attr + usize;
5122 		end  = (void *)attr + sizeof(*attr);
5123 
5124 		for (; addr < end; addr++) {
5125 			if (*addr)
5126 				return -EFBIG;
5127 		}
5128 
5129 		attr->size = usize;
5130 	}
5131 
5132 	ret = copy_to_user(uattr, attr, attr->size);
5133 	if (ret)
5134 		return -EFAULT;
5135 
5136 	return 0;
5137 }
5138 
5139 /**
5140  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5141  * @pid: the pid in question.
5142  * @uattr: structure containing the extended parameters.
5143  * @size: sizeof(attr) for fwd/bwd comp.
5144  * @flags: for future extension.
5145  */
5146 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5147 		unsigned int, size, unsigned int, flags)
5148 {
5149 	struct sched_attr attr = {
5150 		.size = sizeof(struct sched_attr),
5151 	};
5152 	struct task_struct *p;
5153 	int retval;
5154 
5155 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
5156 	    size < SCHED_ATTR_SIZE_VER0 || flags)
5157 		return -EINVAL;
5158 
5159 	rcu_read_lock();
5160 	p = find_process_by_pid(pid);
5161 	retval = -ESRCH;
5162 	if (!p)
5163 		goto out_unlock;
5164 
5165 	retval = security_task_getscheduler(p);
5166 	if (retval)
5167 		goto out_unlock;
5168 
5169 	attr.sched_policy = p->policy;
5170 	if (p->sched_reset_on_fork)
5171 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5172 	if (task_has_dl_policy(p))
5173 		__getparam_dl(p, &attr);
5174 	else if (task_has_rt_policy(p))
5175 		attr.sched_priority = p->rt_priority;
5176 	else
5177 		attr.sched_nice = task_nice(p);
5178 
5179 #ifdef CONFIG_UCLAMP_TASK
5180 	attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5181 	attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5182 #endif
5183 
5184 	rcu_read_unlock();
5185 
5186 	retval = sched_read_attr(uattr, &attr, size);
5187 	return retval;
5188 
5189 out_unlock:
5190 	rcu_read_unlock();
5191 	return retval;
5192 }
5193 
5194 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5195 {
5196 	cpumask_var_t cpus_allowed, new_mask;
5197 	struct task_struct *p;
5198 	int retval;
5199 
5200 	rcu_read_lock();
5201 
5202 	p = find_process_by_pid(pid);
5203 	if (!p) {
5204 		rcu_read_unlock();
5205 		return -ESRCH;
5206 	}
5207 
5208 	/* Prevent p going away */
5209 	get_task_struct(p);
5210 	rcu_read_unlock();
5211 
5212 	if (p->flags & PF_NO_SETAFFINITY) {
5213 		retval = -EINVAL;
5214 		goto out_put_task;
5215 	}
5216 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5217 		retval = -ENOMEM;
5218 		goto out_put_task;
5219 	}
5220 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5221 		retval = -ENOMEM;
5222 		goto out_free_cpus_allowed;
5223 	}
5224 	retval = -EPERM;
5225 	if (!check_same_owner(p)) {
5226 		rcu_read_lock();
5227 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5228 			rcu_read_unlock();
5229 			goto out_free_new_mask;
5230 		}
5231 		rcu_read_unlock();
5232 	}
5233 
5234 	retval = security_task_setscheduler(p);
5235 	if (retval)
5236 		goto out_free_new_mask;
5237 
5238 
5239 	cpuset_cpus_allowed(p, cpus_allowed);
5240 	cpumask_and(new_mask, in_mask, cpus_allowed);
5241 
5242 	/*
5243 	 * Since bandwidth control happens on root_domain basis,
5244 	 * if admission test is enabled, we only admit -deadline
5245 	 * tasks allowed to run on all the CPUs in the task's
5246 	 * root_domain.
5247 	 */
5248 #ifdef CONFIG_SMP
5249 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5250 		rcu_read_lock();
5251 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5252 			retval = -EBUSY;
5253 			rcu_read_unlock();
5254 			goto out_free_new_mask;
5255 		}
5256 		rcu_read_unlock();
5257 	}
5258 #endif
5259 again:
5260 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5261 
5262 	if (!retval) {
5263 		cpuset_cpus_allowed(p, cpus_allowed);
5264 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5265 			/*
5266 			 * We must have raced with a concurrent cpuset
5267 			 * update. Just reset the cpus_allowed to the
5268 			 * cpuset's cpus_allowed
5269 			 */
5270 			cpumask_copy(new_mask, cpus_allowed);
5271 			goto again;
5272 		}
5273 	}
5274 out_free_new_mask:
5275 	free_cpumask_var(new_mask);
5276 out_free_cpus_allowed:
5277 	free_cpumask_var(cpus_allowed);
5278 out_put_task:
5279 	put_task_struct(p);
5280 	return retval;
5281 }
5282 
5283 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5284 			     struct cpumask *new_mask)
5285 {
5286 	if (len < cpumask_size())
5287 		cpumask_clear(new_mask);
5288 	else if (len > cpumask_size())
5289 		len = cpumask_size();
5290 
5291 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5292 }
5293 
5294 /**
5295  * sys_sched_setaffinity - set the CPU affinity of a process
5296  * @pid: pid of the process
5297  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5298  * @user_mask_ptr: user-space pointer to the new CPU mask
5299  *
5300  * Return: 0 on success. An error code otherwise.
5301  */
5302 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5303 		unsigned long __user *, user_mask_ptr)
5304 {
5305 	cpumask_var_t new_mask;
5306 	int retval;
5307 
5308 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5309 		return -ENOMEM;
5310 
5311 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5312 	if (retval == 0)
5313 		retval = sched_setaffinity(pid, new_mask);
5314 	free_cpumask_var(new_mask);
5315 	return retval;
5316 }
5317 
5318 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5319 {
5320 	struct task_struct *p;
5321 	unsigned long flags;
5322 	int retval;
5323 
5324 	rcu_read_lock();
5325 
5326 	retval = -ESRCH;
5327 	p = find_process_by_pid(pid);
5328 	if (!p)
5329 		goto out_unlock;
5330 
5331 	retval = security_task_getscheduler(p);
5332 	if (retval)
5333 		goto out_unlock;
5334 
5335 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5336 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5337 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5338 
5339 out_unlock:
5340 	rcu_read_unlock();
5341 
5342 	return retval;
5343 }
5344 
5345 /**
5346  * sys_sched_getaffinity - get the CPU affinity of a process
5347  * @pid: pid of the process
5348  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5349  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5350  *
5351  * Return: size of CPU mask copied to user_mask_ptr on success. An
5352  * error code otherwise.
5353  */
5354 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5355 		unsigned long __user *, user_mask_ptr)
5356 {
5357 	int ret;
5358 	cpumask_var_t mask;
5359 
5360 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5361 		return -EINVAL;
5362 	if (len & (sizeof(unsigned long)-1))
5363 		return -EINVAL;
5364 
5365 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5366 		return -ENOMEM;
5367 
5368 	ret = sched_getaffinity(pid, mask);
5369 	if (ret == 0) {
5370 		unsigned int retlen = min(len, cpumask_size());
5371 
5372 		if (copy_to_user(user_mask_ptr, mask, retlen))
5373 			ret = -EFAULT;
5374 		else
5375 			ret = retlen;
5376 	}
5377 	free_cpumask_var(mask);
5378 
5379 	return ret;
5380 }
5381 
5382 /**
5383  * sys_sched_yield - yield the current processor to other threads.
5384  *
5385  * This function yields the current CPU to other tasks. If there are no
5386  * other threads running on this CPU then this function will return.
5387  *
5388  * Return: 0.
5389  */
5390 static void do_sched_yield(void)
5391 {
5392 	struct rq_flags rf;
5393 	struct rq *rq;
5394 
5395 	rq = this_rq_lock_irq(&rf);
5396 
5397 	schedstat_inc(rq->yld_count);
5398 	current->sched_class->yield_task(rq);
5399 
5400 	/*
5401 	 * Since we are going to call schedule() anyway, there's
5402 	 * no need to preempt or enable interrupts:
5403 	 */
5404 	preempt_disable();
5405 	rq_unlock(rq, &rf);
5406 	sched_preempt_enable_no_resched();
5407 
5408 	schedule();
5409 }
5410 
5411 SYSCALL_DEFINE0(sched_yield)
5412 {
5413 	do_sched_yield();
5414 	return 0;
5415 }
5416 
5417 #ifndef CONFIG_PREEMPT
5418 int __sched _cond_resched(void)
5419 {
5420 	if (should_resched(0)) {
5421 		preempt_schedule_common();
5422 		return 1;
5423 	}
5424 	rcu_all_qs();
5425 	return 0;
5426 }
5427 EXPORT_SYMBOL(_cond_resched);
5428 #endif
5429 
5430 /*
5431  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5432  * call schedule, and on return reacquire the lock.
5433  *
5434  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5435  * operations here to prevent schedule() from being called twice (once via
5436  * spin_unlock(), once by hand).
5437  */
5438 int __cond_resched_lock(spinlock_t *lock)
5439 {
5440 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5441 	int ret = 0;
5442 
5443 	lockdep_assert_held(lock);
5444 
5445 	if (spin_needbreak(lock) || resched) {
5446 		spin_unlock(lock);
5447 		if (resched)
5448 			preempt_schedule_common();
5449 		else
5450 			cpu_relax();
5451 		ret = 1;
5452 		spin_lock(lock);
5453 	}
5454 	return ret;
5455 }
5456 EXPORT_SYMBOL(__cond_resched_lock);
5457 
5458 /**
5459  * yield - yield the current processor to other threads.
5460  *
5461  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5462  *
5463  * The scheduler is at all times free to pick the calling task as the most
5464  * eligible task to run, if removing the yield() call from your code breaks
5465  * it, its already broken.
5466  *
5467  * Typical broken usage is:
5468  *
5469  * while (!event)
5470  *	yield();
5471  *
5472  * where one assumes that yield() will let 'the other' process run that will
5473  * make event true. If the current task is a SCHED_FIFO task that will never
5474  * happen. Never use yield() as a progress guarantee!!
5475  *
5476  * If you want to use yield() to wait for something, use wait_event().
5477  * If you want to use yield() to be 'nice' for others, use cond_resched().
5478  * If you still want to use yield(), do not!
5479  */
5480 void __sched yield(void)
5481 {
5482 	set_current_state(TASK_RUNNING);
5483 	do_sched_yield();
5484 }
5485 EXPORT_SYMBOL(yield);
5486 
5487 /**
5488  * yield_to - yield the current processor to another thread in
5489  * your thread group, or accelerate that thread toward the
5490  * processor it's on.
5491  * @p: target task
5492  * @preempt: whether task preemption is allowed or not
5493  *
5494  * It's the caller's job to ensure that the target task struct
5495  * can't go away on us before we can do any checks.
5496  *
5497  * Return:
5498  *	true (>0) if we indeed boosted the target task.
5499  *	false (0) if we failed to boost the target.
5500  *	-ESRCH if there's no task to yield to.
5501  */
5502 int __sched yield_to(struct task_struct *p, bool preempt)
5503 {
5504 	struct task_struct *curr = current;
5505 	struct rq *rq, *p_rq;
5506 	unsigned long flags;
5507 	int yielded = 0;
5508 
5509 	local_irq_save(flags);
5510 	rq = this_rq();
5511 
5512 again:
5513 	p_rq = task_rq(p);
5514 	/*
5515 	 * If we're the only runnable task on the rq and target rq also
5516 	 * has only one task, there's absolutely no point in yielding.
5517 	 */
5518 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5519 		yielded = -ESRCH;
5520 		goto out_irq;
5521 	}
5522 
5523 	double_rq_lock(rq, p_rq);
5524 	if (task_rq(p) != p_rq) {
5525 		double_rq_unlock(rq, p_rq);
5526 		goto again;
5527 	}
5528 
5529 	if (!curr->sched_class->yield_to_task)
5530 		goto out_unlock;
5531 
5532 	if (curr->sched_class != p->sched_class)
5533 		goto out_unlock;
5534 
5535 	if (task_running(p_rq, p) || p->state)
5536 		goto out_unlock;
5537 
5538 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5539 	if (yielded) {
5540 		schedstat_inc(rq->yld_count);
5541 		/*
5542 		 * Make p's CPU reschedule; pick_next_entity takes care of
5543 		 * fairness.
5544 		 */
5545 		if (preempt && rq != p_rq)
5546 			resched_curr(p_rq);
5547 	}
5548 
5549 out_unlock:
5550 	double_rq_unlock(rq, p_rq);
5551 out_irq:
5552 	local_irq_restore(flags);
5553 
5554 	if (yielded > 0)
5555 		schedule();
5556 
5557 	return yielded;
5558 }
5559 EXPORT_SYMBOL_GPL(yield_to);
5560 
5561 int io_schedule_prepare(void)
5562 {
5563 	int old_iowait = current->in_iowait;
5564 
5565 	current->in_iowait = 1;
5566 	blk_schedule_flush_plug(current);
5567 
5568 	return old_iowait;
5569 }
5570 
5571 void io_schedule_finish(int token)
5572 {
5573 	current->in_iowait = token;
5574 }
5575 
5576 /*
5577  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5578  * that process accounting knows that this is a task in IO wait state.
5579  */
5580 long __sched io_schedule_timeout(long timeout)
5581 {
5582 	int token;
5583 	long ret;
5584 
5585 	token = io_schedule_prepare();
5586 	ret = schedule_timeout(timeout);
5587 	io_schedule_finish(token);
5588 
5589 	return ret;
5590 }
5591 EXPORT_SYMBOL(io_schedule_timeout);
5592 
5593 void __sched io_schedule(void)
5594 {
5595 	int token;
5596 
5597 	token = io_schedule_prepare();
5598 	schedule();
5599 	io_schedule_finish(token);
5600 }
5601 EXPORT_SYMBOL(io_schedule);
5602 
5603 /**
5604  * sys_sched_get_priority_max - return maximum RT priority.
5605  * @policy: scheduling class.
5606  *
5607  * Return: On success, this syscall returns the maximum
5608  * rt_priority that can be used by a given scheduling class.
5609  * On failure, a negative error code is returned.
5610  */
5611 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5612 {
5613 	int ret = -EINVAL;
5614 
5615 	switch (policy) {
5616 	case SCHED_FIFO:
5617 	case SCHED_RR:
5618 		ret = MAX_USER_RT_PRIO-1;
5619 		break;
5620 	case SCHED_DEADLINE:
5621 	case SCHED_NORMAL:
5622 	case SCHED_BATCH:
5623 	case SCHED_IDLE:
5624 		ret = 0;
5625 		break;
5626 	}
5627 	return ret;
5628 }
5629 
5630 /**
5631  * sys_sched_get_priority_min - return minimum RT priority.
5632  * @policy: scheduling class.
5633  *
5634  * Return: On success, this syscall returns the minimum
5635  * rt_priority that can be used by a given scheduling class.
5636  * On failure, a negative error code is returned.
5637  */
5638 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5639 {
5640 	int ret = -EINVAL;
5641 
5642 	switch (policy) {
5643 	case SCHED_FIFO:
5644 	case SCHED_RR:
5645 		ret = 1;
5646 		break;
5647 	case SCHED_DEADLINE:
5648 	case SCHED_NORMAL:
5649 	case SCHED_BATCH:
5650 	case SCHED_IDLE:
5651 		ret = 0;
5652 	}
5653 	return ret;
5654 }
5655 
5656 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5657 {
5658 	struct task_struct *p;
5659 	unsigned int time_slice;
5660 	struct rq_flags rf;
5661 	struct rq *rq;
5662 	int retval;
5663 
5664 	if (pid < 0)
5665 		return -EINVAL;
5666 
5667 	retval = -ESRCH;
5668 	rcu_read_lock();
5669 	p = find_process_by_pid(pid);
5670 	if (!p)
5671 		goto out_unlock;
5672 
5673 	retval = security_task_getscheduler(p);
5674 	if (retval)
5675 		goto out_unlock;
5676 
5677 	rq = task_rq_lock(p, &rf);
5678 	time_slice = 0;
5679 	if (p->sched_class->get_rr_interval)
5680 		time_slice = p->sched_class->get_rr_interval(rq, p);
5681 	task_rq_unlock(rq, p, &rf);
5682 
5683 	rcu_read_unlock();
5684 	jiffies_to_timespec64(time_slice, t);
5685 	return 0;
5686 
5687 out_unlock:
5688 	rcu_read_unlock();
5689 	return retval;
5690 }
5691 
5692 /**
5693  * sys_sched_rr_get_interval - return the default timeslice of a process.
5694  * @pid: pid of the process.
5695  * @interval: userspace pointer to the timeslice value.
5696  *
5697  * this syscall writes the default timeslice value of a given process
5698  * into the user-space timespec buffer. A value of '0' means infinity.
5699  *
5700  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5701  * an error code.
5702  */
5703 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5704 		struct __kernel_timespec __user *, interval)
5705 {
5706 	struct timespec64 t;
5707 	int retval = sched_rr_get_interval(pid, &t);
5708 
5709 	if (retval == 0)
5710 		retval = put_timespec64(&t, interval);
5711 
5712 	return retval;
5713 }
5714 
5715 #ifdef CONFIG_COMPAT_32BIT_TIME
5716 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5717 		struct old_timespec32 __user *, interval)
5718 {
5719 	struct timespec64 t;
5720 	int retval = sched_rr_get_interval(pid, &t);
5721 
5722 	if (retval == 0)
5723 		retval = put_old_timespec32(&t, interval);
5724 	return retval;
5725 }
5726 #endif
5727 
5728 void sched_show_task(struct task_struct *p)
5729 {
5730 	unsigned long free = 0;
5731 	int ppid;
5732 
5733 	if (!try_get_task_stack(p))
5734 		return;
5735 
5736 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5737 
5738 	if (p->state == TASK_RUNNING)
5739 		printk(KERN_CONT "  running task    ");
5740 #ifdef CONFIG_DEBUG_STACK_USAGE
5741 	free = stack_not_used(p);
5742 #endif
5743 	ppid = 0;
5744 	rcu_read_lock();
5745 	if (pid_alive(p))
5746 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5747 	rcu_read_unlock();
5748 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5749 		task_pid_nr(p), ppid,
5750 		(unsigned long)task_thread_info(p)->flags);
5751 
5752 	print_worker_info(KERN_INFO, p);
5753 	show_stack(p, NULL);
5754 	put_task_stack(p);
5755 }
5756 EXPORT_SYMBOL_GPL(sched_show_task);
5757 
5758 static inline bool
5759 state_filter_match(unsigned long state_filter, struct task_struct *p)
5760 {
5761 	/* no filter, everything matches */
5762 	if (!state_filter)
5763 		return true;
5764 
5765 	/* filter, but doesn't match */
5766 	if (!(p->state & state_filter))
5767 		return false;
5768 
5769 	/*
5770 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5771 	 * TASK_KILLABLE).
5772 	 */
5773 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5774 		return false;
5775 
5776 	return true;
5777 }
5778 
5779 
5780 void show_state_filter(unsigned long state_filter)
5781 {
5782 	struct task_struct *g, *p;
5783 
5784 #if BITS_PER_LONG == 32
5785 	printk(KERN_INFO
5786 		"  task                PC stack   pid father\n");
5787 #else
5788 	printk(KERN_INFO
5789 		"  task                        PC stack   pid father\n");
5790 #endif
5791 	rcu_read_lock();
5792 	for_each_process_thread(g, p) {
5793 		/*
5794 		 * reset the NMI-timeout, listing all files on a slow
5795 		 * console might take a lot of time:
5796 		 * Also, reset softlockup watchdogs on all CPUs, because
5797 		 * another CPU might be blocked waiting for us to process
5798 		 * an IPI.
5799 		 */
5800 		touch_nmi_watchdog();
5801 		touch_all_softlockup_watchdogs();
5802 		if (state_filter_match(state_filter, p))
5803 			sched_show_task(p);
5804 	}
5805 
5806 #ifdef CONFIG_SCHED_DEBUG
5807 	if (!state_filter)
5808 		sysrq_sched_debug_show();
5809 #endif
5810 	rcu_read_unlock();
5811 	/*
5812 	 * Only show locks if all tasks are dumped:
5813 	 */
5814 	if (!state_filter)
5815 		debug_show_all_locks();
5816 }
5817 
5818 /**
5819  * init_idle - set up an idle thread for a given CPU
5820  * @idle: task in question
5821  * @cpu: CPU the idle task belongs to
5822  *
5823  * NOTE: this function does not set the idle thread's NEED_RESCHED
5824  * flag, to make booting more robust.
5825  */
5826 void init_idle(struct task_struct *idle, int cpu)
5827 {
5828 	struct rq *rq = cpu_rq(cpu);
5829 	unsigned long flags;
5830 
5831 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5832 	raw_spin_lock(&rq->lock);
5833 
5834 	__sched_fork(0, idle);
5835 	idle->state = TASK_RUNNING;
5836 	idle->se.exec_start = sched_clock();
5837 	idle->flags |= PF_IDLE;
5838 
5839 	kasan_unpoison_task_stack(idle);
5840 
5841 #ifdef CONFIG_SMP
5842 	/*
5843 	 * Its possible that init_idle() gets called multiple times on a task,
5844 	 * in that case do_set_cpus_allowed() will not do the right thing.
5845 	 *
5846 	 * And since this is boot we can forgo the serialization.
5847 	 */
5848 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5849 #endif
5850 	/*
5851 	 * We're having a chicken and egg problem, even though we are
5852 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5853 	 * lockdep check in task_group() will fail.
5854 	 *
5855 	 * Similar case to sched_fork(). / Alternatively we could
5856 	 * use task_rq_lock() here and obtain the other rq->lock.
5857 	 *
5858 	 * Silence PROVE_RCU
5859 	 */
5860 	rcu_read_lock();
5861 	__set_task_cpu(idle, cpu);
5862 	rcu_read_unlock();
5863 
5864 	rq->curr = rq->idle = idle;
5865 	idle->on_rq = TASK_ON_RQ_QUEUED;
5866 #ifdef CONFIG_SMP
5867 	idle->on_cpu = 1;
5868 #endif
5869 	raw_spin_unlock(&rq->lock);
5870 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5871 
5872 	/* Set the preempt count _outside_ the spinlocks! */
5873 	init_idle_preempt_count(idle, cpu);
5874 
5875 	/*
5876 	 * The idle tasks have their own, simple scheduling class:
5877 	 */
5878 	idle->sched_class = &idle_sched_class;
5879 	ftrace_graph_init_idle_task(idle, cpu);
5880 	vtime_init_idle(idle, cpu);
5881 #ifdef CONFIG_SMP
5882 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5883 #endif
5884 }
5885 
5886 #ifdef CONFIG_SMP
5887 
5888 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5889 			      const struct cpumask *trial)
5890 {
5891 	int ret = 1;
5892 
5893 	if (!cpumask_weight(cur))
5894 		return ret;
5895 
5896 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5897 
5898 	return ret;
5899 }
5900 
5901 int task_can_attach(struct task_struct *p,
5902 		    const struct cpumask *cs_cpus_allowed)
5903 {
5904 	int ret = 0;
5905 
5906 	/*
5907 	 * Kthreads which disallow setaffinity shouldn't be moved
5908 	 * to a new cpuset; we don't want to change their CPU
5909 	 * affinity and isolating such threads by their set of
5910 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5911 	 * applicable for such threads.  This prevents checking for
5912 	 * success of set_cpus_allowed_ptr() on all attached tasks
5913 	 * before cpus_mask may be changed.
5914 	 */
5915 	if (p->flags & PF_NO_SETAFFINITY) {
5916 		ret = -EINVAL;
5917 		goto out;
5918 	}
5919 
5920 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5921 					      cs_cpus_allowed))
5922 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5923 
5924 out:
5925 	return ret;
5926 }
5927 
5928 bool sched_smp_initialized __read_mostly;
5929 
5930 #ifdef CONFIG_NUMA_BALANCING
5931 /* Migrate current task p to target_cpu */
5932 int migrate_task_to(struct task_struct *p, int target_cpu)
5933 {
5934 	struct migration_arg arg = { p, target_cpu };
5935 	int curr_cpu = task_cpu(p);
5936 
5937 	if (curr_cpu == target_cpu)
5938 		return 0;
5939 
5940 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
5941 		return -EINVAL;
5942 
5943 	/* TODO: This is not properly updating schedstats */
5944 
5945 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5946 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5947 }
5948 
5949 /*
5950  * Requeue a task on a given node and accurately track the number of NUMA
5951  * tasks on the runqueues
5952  */
5953 void sched_setnuma(struct task_struct *p, int nid)
5954 {
5955 	bool queued, running;
5956 	struct rq_flags rf;
5957 	struct rq *rq;
5958 
5959 	rq = task_rq_lock(p, &rf);
5960 	queued = task_on_rq_queued(p);
5961 	running = task_current(rq, p);
5962 
5963 	if (queued)
5964 		dequeue_task(rq, p, DEQUEUE_SAVE);
5965 	if (running)
5966 		put_prev_task(rq, p);
5967 
5968 	p->numa_preferred_nid = nid;
5969 
5970 	if (queued)
5971 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5972 	if (running)
5973 		set_curr_task(rq, p);
5974 	task_rq_unlock(rq, p, &rf);
5975 }
5976 #endif /* CONFIG_NUMA_BALANCING */
5977 
5978 #ifdef CONFIG_HOTPLUG_CPU
5979 /*
5980  * Ensure that the idle task is using init_mm right before its CPU goes
5981  * offline.
5982  */
5983 void idle_task_exit(void)
5984 {
5985 	struct mm_struct *mm = current->active_mm;
5986 
5987 	BUG_ON(cpu_online(smp_processor_id()));
5988 
5989 	if (mm != &init_mm) {
5990 		switch_mm(mm, &init_mm, current);
5991 		current->active_mm = &init_mm;
5992 		finish_arch_post_lock_switch();
5993 	}
5994 	mmdrop(mm);
5995 }
5996 
5997 /*
5998  * Since this CPU is going 'away' for a while, fold any nr_active delta
5999  * we might have. Assumes we're called after migrate_tasks() so that the
6000  * nr_active count is stable. We need to take the teardown thread which
6001  * is calling this into account, so we hand in adjust = 1 to the load
6002  * calculation.
6003  *
6004  * Also see the comment "Global load-average calculations".
6005  */
6006 static void calc_load_migrate(struct rq *rq)
6007 {
6008 	long delta = calc_load_fold_active(rq, 1);
6009 	if (delta)
6010 		atomic_long_add(delta, &calc_load_tasks);
6011 }
6012 
6013 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
6014 {
6015 }
6016 
6017 static const struct sched_class fake_sched_class = {
6018 	.put_prev_task = put_prev_task_fake,
6019 };
6020 
6021 static struct task_struct fake_task = {
6022 	/*
6023 	 * Avoid pull_{rt,dl}_task()
6024 	 */
6025 	.prio = MAX_PRIO + 1,
6026 	.sched_class = &fake_sched_class,
6027 };
6028 
6029 /*
6030  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6031  * try_to_wake_up()->select_task_rq().
6032  *
6033  * Called with rq->lock held even though we'er in stop_machine() and
6034  * there's no concurrency possible, we hold the required locks anyway
6035  * because of lock validation efforts.
6036  */
6037 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6038 {
6039 	struct rq *rq = dead_rq;
6040 	struct task_struct *next, *stop = rq->stop;
6041 	struct rq_flags orf = *rf;
6042 	int dest_cpu;
6043 
6044 	/*
6045 	 * Fudge the rq selection such that the below task selection loop
6046 	 * doesn't get stuck on the currently eligible stop task.
6047 	 *
6048 	 * We're currently inside stop_machine() and the rq is either stuck
6049 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6050 	 * either way we should never end up calling schedule() until we're
6051 	 * done here.
6052 	 */
6053 	rq->stop = NULL;
6054 
6055 	/*
6056 	 * put_prev_task() and pick_next_task() sched
6057 	 * class method both need to have an up-to-date
6058 	 * value of rq->clock[_task]
6059 	 */
6060 	update_rq_clock(rq);
6061 
6062 	for (;;) {
6063 		/*
6064 		 * There's this thread running, bail when that's the only
6065 		 * remaining thread:
6066 		 */
6067 		if (rq->nr_running == 1)
6068 			break;
6069 
6070 		/*
6071 		 * pick_next_task() assumes pinned rq->lock:
6072 		 */
6073 		next = pick_next_task(rq, &fake_task, rf);
6074 		BUG_ON(!next);
6075 		put_prev_task(rq, next);
6076 
6077 		/*
6078 		 * Rules for changing task_struct::cpus_mask are holding
6079 		 * both pi_lock and rq->lock, such that holding either
6080 		 * stabilizes the mask.
6081 		 *
6082 		 * Drop rq->lock is not quite as disastrous as it usually is
6083 		 * because !cpu_active at this point, which means load-balance
6084 		 * will not interfere. Also, stop-machine.
6085 		 */
6086 		rq_unlock(rq, rf);
6087 		raw_spin_lock(&next->pi_lock);
6088 		rq_relock(rq, rf);
6089 
6090 		/*
6091 		 * Since we're inside stop-machine, _nothing_ should have
6092 		 * changed the task, WARN if weird stuff happened, because in
6093 		 * that case the above rq->lock drop is a fail too.
6094 		 */
6095 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6096 			raw_spin_unlock(&next->pi_lock);
6097 			continue;
6098 		}
6099 
6100 		/* Find suitable destination for @next, with force if needed. */
6101 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6102 		rq = __migrate_task(rq, rf, next, dest_cpu);
6103 		if (rq != dead_rq) {
6104 			rq_unlock(rq, rf);
6105 			rq = dead_rq;
6106 			*rf = orf;
6107 			rq_relock(rq, rf);
6108 		}
6109 		raw_spin_unlock(&next->pi_lock);
6110 	}
6111 
6112 	rq->stop = stop;
6113 }
6114 #endif /* CONFIG_HOTPLUG_CPU */
6115 
6116 void set_rq_online(struct rq *rq)
6117 {
6118 	if (!rq->online) {
6119 		const struct sched_class *class;
6120 
6121 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6122 		rq->online = 1;
6123 
6124 		for_each_class(class) {
6125 			if (class->rq_online)
6126 				class->rq_online(rq);
6127 		}
6128 	}
6129 }
6130 
6131 void set_rq_offline(struct rq *rq)
6132 {
6133 	if (rq->online) {
6134 		const struct sched_class *class;
6135 
6136 		for_each_class(class) {
6137 			if (class->rq_offline)
6138 				class->rq_offline(rq);
6139 		}
6140 
6141 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6142 		rq->online = 0;
6143 	}
6144 }
6145 
6146 /*
6147  * used to mark begin/end of suspend/resume:
6148  */
6149 static int num_cpus_frozen;
6150 
6151 /*
6152  * Update cpusets according to cpu_active mask.  If cpusets are
6153  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6154  * around partition_sched_domains().
6155  *
6156  * If we come here as part of a suspend/resume, don't touch cpusets because we
6157  * want to restore it back to its original state upon resume anyway.
6158  */
6159 static void cpuset_cpu_active(void)
6160 {
6161 	if (cpuhp_tasks_frozen) {
6162 		/*
6163 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6164 		 * resume sequence. As long as this is not the last online
6165 		 * operation in the resume sequence, just build a single sched
6166 		 * domain, ignoring cpusets.
6167 		 */
6168 		partition_sched_domains(1, NULL, NULL);
6169 		if (--num_cpus_frozen)
6170 			return;
6171 		/*
6172 		 * This is the last CPU online operation. So fall through and
6173 		 * restore the original sched domains by considering the
6174 		 * cpuset configurations.
6175 		 */
6176 		cpuset_force_rebuild();
6177 	}
6178 	cpuset_update_active_cpus();
6179 }
6180 
6181 static int cpuset_cpu_inactive(unsigned int cpu)
6182 {
6183 	if (!cpuhp_tasks_frozen) {
6184 		if (dl_cpu_busy(cpu))
6185 			return -EBUSY;
6186 		cpuset_update_active_cpus();
6187 	} else {
6188 		num_cpus_frozen++;
6189 		partition_sched_domains(1, NULL, NULL);
6190 	}
6191 	return 0;
6192 }
6193 
6194 int sched_cpu_activate(unsigned int cpu)
6195 {
6196 	struct rq *rq = cpu_rq(cpu);
6197 	struct rq_flags rf;
6198 
6199 #ifdef CONFIG_SCHED_SMT
6200 	/*
6201 	 * When going up, increment the number of cores with SMT present.
6202 	 */
6203 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6204 		static_branch_inc_cpuslocked(&sched_smt_present);
6205 #endif
6206 	set_cpu_active(cpu, true);
6207 
6208 	if (sched_smp_initialized) {
6209 		sched_domains_numa_masks_set(cpu);
6210 		cpuset_cpu_active();
6211 	}
6212 
6213 	/*
6214 	 * Put the rq online, if not already. This happens:
6215 	 *
6216 	 * 1) In the early boot process, because we build the real domains
6217 	 *    after all CPUs have been brought up.
6218 	 *
6219 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6220 	 *    domains.
6221 	 */
6222 	rq_lock_irqsave(rq, &rf);
6223 	if (rq->rd) {
6224 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6225 		set_rq_online(rq);
6226 	}
6227 	rq_unlock_irqrestore(rq, &rf);
6228 
6229 	update_max_interval();
6230 
6231 	return 0;
6232 }
6233 
6234 int sched_cpu_deactivate(unsigned int cpu)
6235 {
6236 	int ret;
6237 
6238 	set_cpu_active(cpu, false);
6239 	/*
6240 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6241 	 * users of this state to go away such that all new such users will
6242 	 * observe it.
6243 	 *
6244 	 * Do sync before park smpboot threads to take care the rcu boost case.
6245 	 */
6246 	synchronize_rcu();
6247 
6248 #ifdef CONFIG_SCHED_SMT
6249 	/*
6250 	 * When going down, decrement the number of cores with SMT present.
6251 	 */
6252 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6253 		static_branch_dec_cpuslocked(&sched_smt_present);
6254 #endif
6255 
6256 	if (!sched_smp_initialized)
6257 		return 0;
6258 
6259 	ret = cpuset_cpu_inactive(cpu);
6260 	if (ret) {
6261 		set_cpu_active(cpu, true);
6262 		return ret;
6263 	}
6264 	sched_domains_numa_masks_clear(cpu);
6265 	return 0;
6266 }
6267 
6268 static void sched_rq_cpu_starting(unsigned int cpu)
6269 {
6270 	struct rq *rq = cpu_rq(cpu);
6271 
6272 	rq->calc_load_update = calc_load_update;
6273 	update_max_interval();
6274 }
6275 
6276 int sched_cpu_starting(unsigned int cpu)
6277 {
6278 	sched_rq_cpu_starting(cpu);
6279 	sched_tick_start(cpu);
6280 	return 0;
6281 }
6282 
6283 #ifdef CONFIG_HOTPLUG_CPU
6284 int sched_cpu_dying(unsigned int cpu)
6285 {
6286 	struct rq *rq = cpu_rq(cpu);
6287 	struct rq_flags rf;
6288 
6289 	/* Handle pending wakeups and then migrate everything off */
6290 	sched_ttwu_pending();
6291 	sched_tick_stop(cpu);
6292 
6293 	rq_lock_irqsave(rq, &rf);
6294 	if (rq->rd) {
6295 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6296 		set_rq_offline(rq);
6297 	}
6298 	migrate_tasks(rq, &rf);
6299 	BUG_ON(rq->nr_running != 1);
6300 	rq_unlock_irqrestore(rq, &rf);
6301 
6302 	calc_load_migrate(rq);
6303 	update_max_interval();
6304 	nohz_balance_exit_idle(rq);
6305 	hrtick_clear(rq);
6306 	return 0;
6307 }
6308 #endif
6309 
6310 void __init sched_init_smp(void)
6311 {
6312 	sched_init_numa();
6313 
6314 	/*
6315 	 * There's no userspace yet to cause hotplug operations; hence all the
6316 	 * CPU masks are stable and all blatant races in the below code cannot
6317 	 * happen.
6318 	 */
6319 	mutex_lock(&sched_domains_mutex);
6320 	sched_init_domains(cpu_active_mask);
6321 	mutex_unlock(&sched_domains_mutex);
6322 
6323 	/* Move init over to a non-isolated CPU */
6324 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6325 		BUG();
6326 	sched_init_granularity();
6327 
6328 	init_sched_rt_class();
6329 	init_sched_dl_class();
6330 
6331 	sched_smp_initialized = true;
6332 }
6333 
6334 static int __init migration_init(void)
6335 {
6336 	sched_cpu_starting(smp_processor_id());
6337 	return 0;
6338 }
6339 early_initcall(migration_init);
6340 
6341 #else
6342 void __init sched_init_smp(void)
6343 {
6344 	sched_init_granularity();
6345 }
6346 #endif /* CONFIG_SMP */
6347 
6348 int in_sched_functions(unsigned long addr)
6349 {
6350 	return in_lock_functions(addr) ||
6351 		(addr >= (unsigned long)__sched_text_start
6352 		&& addr < (unsigned long)__sched_text_end);
6353 }
6354 
6355 #ifdef CONFIG_CGROUP_SCHED
6356 /*
6357  * Default task group.
6358  * Every task in system belongs to this group at bootup.
6359  */
6360 struct task_group root_task_group;
6361 LIST_HEAD(task_groups);
6362 
6363 /* Cacheline aligned slab cache for task_group */
6364 static struct kmem_cache *task_group_cache __read_mostly;
6365 #endif
6366 
6367 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6368 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6369 
6370 void __init sched_init(void)
6371 {
6372 	unsigned long alloc_size = 0, ptr;
6373 	int i;
6374 
6375 	wait_bit_init();
6376 
6377 #ifdef CONFIG_FAIR_GROUP_SCHED
6378 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6379 #endif
6380 #ifdef CONFIG_RT_GROUP_SCHED
6381 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6382 #endif
6383 	if (alloc_size) {
6384 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6385 
6386 #ifdef CONFIG_FAIR_GROUP_SCHED
6387 		root_task_group.se = (struct sched_entity **)ptr;
6388 		ptr += nr_cpu_ids * sizeof(void **);
6389 
6390 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6391 		ptr += nr_cpu_ids * sizeof(void **);
6392 
6393 #endif /* CONFIG_FAIR_GROUP_SCHED */
6394 #ifdef CONFIG_RT_GROUP_SCHED
6395 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6396 		ptr += nr_cpu_ids * sizeof(void **);
6397 
6398 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6399 		ptr += nr_cpu_ids * sizeof(void **);
6400 
6401 #endif /* CONFIG_RT_GROUP_SCHED */
6402 	}
6403 #ifdef CONFIG_CPUMASK_OFFSTACK
6404 	for_each_possible_cpu(i) {
6405 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6406 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6407 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6408 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6409 	}
6410 #endif /* CONFIG_CPUMASK_OFFSTACK */
6411 
6412 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6413 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6414 
6415 #ifdef CONFIG_SMP
6416 	init_defrootdomain();
6417 #endif
6418 
6419 #ifdef CONFIG_RT_GROUP_SCHED
6420 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6421 			global_rt_period(), global_rt_runtime());
6422 #endif /* CONFIG_RT_GROUP_SCHED */
6423 
6424 #ifdef CONFIG_CGROUP_SCHED
6425 	task_group_cache = KMEM_CACHE(task_group, 0);
6426 
6427 	list_add(&root_task_group.list, &task_groups);
6428 	INIT_LIST_HEAD(&root_task_group.children);
6429 	INIT_LIST_HEAD(&root_task_group.siblings);
6430 	autogroup_init(&init_task);
6431 #endif /* CONFIG_CGROUP_SCHED */
6432 
6433 	for_each_possible_cpu(i) {
6434 		struct rq *rq;
6435 
6436 		rq = cpu_rq(i);
6437 		raw_spin_lock_init(&rq->lock);
6438 		rq->nr_running = 0;
6439 		rq->calc_load_active = 0;
6440 		rq->calc_load_update = jiffies + LOAD_FREQ;
6441 		init_cfs_rq(&rq->cfs);
6442 		init_rt_rq(&rq->rt);
6443 		init_dl_rq(&rq->dl);
6444 #ifdef CONFIG_FAIR_GROUP_SCHED
6445 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6446 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6447 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6448 		/*
6449 		 * How much CPU bandwidth does root_task_group get?
6450 		 *
6451 		 * In case of task-groups formed thr' the cgroup filesystem, it
6452 		 * gets 100% of the CPU resources in the system. This overall
6453 		 * system CPU resource is divided among the tasks of
6454 		 * root_task_group and its child task-groups in a fair manner,
6455 		 * based on each entity's (task or task-group's) weight
6456 		 * (se->load.weight).
6457 		 *
6458 		 * In other words, if root_task_group has 10 tasks of weight
6459 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6460 		 * then A0's share of the CPU resource is:
6461 		 *
6462 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6463 		 *
6464 		 * We achieve this by letting root_task_group's tasks sit
6465 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6466 		 */
6467 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6468 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6469 #endif /* CONFIG_FAIR_GROUP_SCHED */
6470 
6471 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6472 #ifdef CONFIG_RT_GROUP_SCHED
6473 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6474 #endif
6475 #ifdef CONFIG_SMP
6476 		rq->sd = NULL;
6477 		rq->rd = NULL;
6478 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6479 		rq->balance_callback = NULL;
6480 		rq->active_balance = 0;
6481 		rq->next_balance = jiffies;
6482 		rq->push_cpu = 0;
6483 		rq->cpu = i;
6484 		rq->online = 0;
6485 		rq->idle_stamp = 0;
6486 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6487 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6488 
6489 		INIT_LIST_HEAD(&rq->cfs_tasks);
6490 
6491 		rq_attach_root(rq, &def_root_domain);
6492 #ifdef CONFIG_NO_HZ_COMMON
6493 		rq->last_load_update_tick = jiffies;
6494 		rq->last_blocked_load_update_tick = jiffies;
6495 		atomic_set(&rq->nohz_flags, 0);
6496 #endif
6497 #endif /* CONFIG_SMP */
6498 		hrtick_rq_init(rq);
6499 		atomic_set(&rq->nr_iowait, 0);
6500 	}
6501 
6502 	set_load_weight(&init_task, false);
6503 
6504 	/*
6505 	 * The boot idle thread does lazy MMU switching as well:
6506 	 */
6507 	mmgrab(&init_mm);
6508 	enter_lazy_tlb(&init_mm, current);
6509 
6510 	/*
6511 	 * Make us the idle thread. Technically, schedule() should not be
6512 	 * called from this thread, however somewhere below it might be,
6513 	 * but because we are the idle thread, we just pick up running again
6514 	 * when this runqueue becomes "idle".
6515 	 */
6516 	init_idle(current, smp_processor_id());
6517 
6518 	calc_load_update = jiffies + LOAD_FREQ;
6519 
6520 #ifdef CONFIG_SMP
6521 	idle_thread_set_boot_cpu();
6522 #endif
6523 	init_sched_fair_class();
6524 
6525 	init_schedstats();
6526 
6527 	psi_init();
6528 
6529 	init_uclamp();
6530 
6531 	scheduler_running = 1;
6532 }
6533 
6534 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6535 static inline int preempt_count_equals(int preempt_offset)
6536 {
6537 	int nested = preempt_count() + rcu_preempt_depth();
6538 
6539 	return (nested == preempt_offset);
6540 }
6541 
6542 void __might_sleep(const char *file, int line, int preempt_offset)
6543 {
6544 	/*
6545 	 * Blocking primitives will set (and therefore destroy) current->state,
6546 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6547 	 * otherwise we will destroy state.
6548 	 */
6549 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6550 			"do not call blocking ops when !TASK_RUNNING; "
6551 			"state=%lx set at [<%p>] %pS\n",
6552 			current->state,
6553 			(void *)current->task_state_change,
6554 			(void *)current->task_state_change);
6555 
6556 	___might_sleep(file, line, preempt_offset);
6557 }
6558 EXPORT_SYMBOL(__might_sleep);
6559 
6560 void ___might_sleep(const char *file, int line, int preempt_offset)
6561 {
6562 	/* Ratelimiting timestamp: */
6563 	static unsigned long prev_jiffy;
6564 
6565 	unsigned long preempt_disable_ip;
6566 
6567 	/* WARN_ON_ONCE() by default, no rate limit required: */
6568 	rcu_sleep_check();
6569 
6570 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6571 	     !is_idle_task(current)) ||
6572 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6573 	    oops_in_progress)
6574 		return;
6575 
6576 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6577 		return;
6578 	prev_jiffy = jiffies;
6579 
6580 	/* Save this before calling printk(), since that will clobber it: */
6581 	preempt_disable_ip = get_preempt_disable_ip(current);
6582 
6583 	printk(KERN_ERR
6584 		"BUG: sleeping function called from invalid context at %s:%d\n",
6585 			file, line);
6586 	printk(KERN_ERR
6587 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6588 			in_atomic(), irqs_disabled(),
6589 			current->pid, current->comm);
6590 
6591 	if (task_stack_end_corrupted(current))
6592 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6593 
6594 	debug_show_held_locks(current);
6595 	if (irqs_disabled())
6596 		print_irqtrace_events(current);
6597 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6598 	    && !preempt_count_equals(preempt_offset)) {
6599 		pr_err("Preemption disabled at:");
6600 		print_ip_sym(preempt_disable_ip);
6601 		pr_cont("\n");
6602 	}
6603 	dump_stack();
6604 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6605 }
6606 EXPORT_SYMBOL(___might_sleep);
6607 
6608 void __cant_sleep(const char *file, int line, int preempt_offset)
6609 {
6610 	static unsigned long prev_jiffy;
6611 
6612 	if (irqs_disabled())
6613 		return;
6614 
6615 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6616 		return;
6617 
6618 	if (preempt_count() > preempt_offset)
6619 		return;
6620 
6621 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6622 		return;
6623 	prev_jiffy = jiffies;
6624 
6625 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6626 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6627 			in_atomic(), irqs_disabled(),
6628 			current->pid, current->comm);
6629 
6630 	debug_show_held_locks(current);
6631 	dump_stack();
6632 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6633 }
6634 EXPORT_SYMBOL_GPL(__cant_sleep);
6635 #endif
6636 
6637 #ifdef CONFIG_MAGIC_SYSRQ
6638 void normalize_rt_tasks(void)
6639 {
6640 	struct task_struct *g, *p;
6641 	struct sched_attr attr = {
6642 		.sched_policy = SCHED_NORMAL,
6643 	};
6644 
6645 	read_lock(&tasklist_lock);
6646 	for_each_process_thread(g, p) {
6647 		/*
6648 		 * Only normalize user tasks:
6649 		 */
6650 		if (p->flags & PF_KTHREAD)
6651 			continue;
6652 
6653 		p->se.exec_start = 0;
6654 		schedstat_set(p->se.statistics.wait_start,  0);
6655 		schedstat_set(p->se.statistics.sleep_start, 0);
6656 		schedstat_set(p->se.statistics.block_start, 0);
6657 
6658 		if (!dl_task(p) && !rt_task(p)) {
6659 			/*
6660 			 * Renice negative nice level userspace
6661 			 * tasks back to 0:
6662 			 */
6663 			if (task_nice(p) < 0)
6664 				set_user_nice(p, 0);
6665 			continue;
6666 		}
6667 
6668 		__sched_setscheduler(p, &attr, false, false);
6669 	}
6670 	read_unlock(&tasklist_lock);
6671 }
6672 
6673 #endif /* CONFIG_MAGIC_SYSRQ */
6674 
6675 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6676 /*
6677  * These functions are only useful for the IA64 MCA handling, or kdb.
6678  *
6679  * They can only be called when the whole system has been
6680  * stopped - every CPU needs to be quiescent, and no scheduling
6681  * activity can take place. Using them for anything else would
6682  * be a serious bug, and as a result, they aren't even visible
6683  * under any other configuration.
6684  */
6685 
6686 /**
6687  * curr_task - return the current task for a given CPU.
6688  * @cpu: the processor in question.
6689  *
6690  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6691  *
6692  * Return: The current task for @cpu.
6693  */
6694 struct task_struct *curr_task(int cpu)
6695 {
6696 	return cpu_curr(cpu);
6697 }
6698 
6699 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6700 
6701 #ifdef CONFIG_IA64
6702 /**
6703  * set_curr_task - set the current task for a given CPU.
6704  * @cpu: the processor in question.
6705  * @p: the task pointer to set.
6706  *
6707  * Description: This function must only be used when non-maskable interrupts
6708  * are serviced on a separate stack. It allows the architecture to switch the
6709  * notion of the current task on a CPU in a non-blocking manner. This function
6710  * must be called with all CPU's synchronized, and interrupts disabled, the
6711  * and caller must save the original value of the current task (see
6712  * curr_task() above) and restore that value before reenabling interrupts and
6713  * re-starting the system.
6714  *
6715  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6716  */
6717 void ia64_set_curr_task(int cpu, struct task_struct *p)
6718 {
6719 	cpu_curr(cpu) = p;
6720 }
6721 
6722 #endif
6723 
6724 #ifdef CONFIG_CGROUP_SCHED
6725 /* task_group_lock serializes the addition/removal of task groups */
6726 static DEFINE_SPINLOCK(task_group_lock);
6727 
6728 static void sched_free_group(struct task_group *tg)
6729 {
6730 	free_fair_sched_group(tg);
6731 	free_rt_sched_group(tg);
6732 	autogroup_free(tg);
6733 	kmem_cache_free(task_group_cache, tg);
6734 }
6735 
6736 /* allocate runqueue etc for a new task group */
6737 struct task_group *sched_create_group(struct task_group *parent)
6738 {
6739 	struct task_group *tg;
6740 
6741 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6742 	if (!tg)
6743 		return ERR_PTR(-ENOMEM);
6744 
6745 	if (!alloc_fair_sched_group(tg, parent))
6746 		goto err;
6747 
6748 	if (!alloc_rt_sched_group(tg, parent))
6749 		goto err;
6750 
6751 	return tg;
6752 
6753 err:
6754 	sched_free_group(tg);
6755 	return ERR_PTR(-ENOMEM);
6756 }
6757 
6758 void sched_online_group(struct task_group *tg, struct task_group *parent)
6759 {
6760 	unsigned long flags;
6761 
6762 	spin_lock_irqsave(&task_group_lock, flags);
6763 	list_add_rcu(&tg->list, &task_groups);
6764 
6765 	/* Root should already exist: */
6766 	WARN_ON(!parent);
6767 
6768 	tg->parent = parent;
6769 	INIT_LIST_HEAD(&tg->children);
6770 	list_add_rcu(&tg->siblings, &parent->children);
6771 	spin_unlock_irqrestore(&task_group_lock, flags);
6772 
6773 	online_fair_sched_group(tg);
6774 }
6775 
6776 /* rcu callback to free various structures associated with a task group */
6777 static void sched_free_group_rcu(struct rcu_head *rhp)
6778 {
6779 	/* Now it should be safe to free those cfs_rqs: */
6780 	sched_free_group(container_of(rhp, struct task_group, rcu));
6781 }
6782 
6783 void sched_destroy_group(struct task_group *tg)
6784 {
6785 	/* Wait for possible concurrent references to cfs_rqs complete: */
6786 	call_rcu(&tg->rcu, sched_free_group_rcu);
6787 }
6788 
6789 void sched_offline_group(struct task_group *tg)
6790 {
6791 	unsigned long flags;
6792 
6793 	/* End participation in shares distribution: */
6794 	unregister_fair_sched_group(tg);
6795 
6796 	spin_lock_irqsave(&task_group_lock, flags);
6797 	list_del_rcu(&tg->list);
6798 	list_del_rcu(&tg->siblings);
6799 	spin_unlock_irqrestore(&task_group_lock, flags);
6800 }
6801 
6802 static void sched_change_group(struct task_struct *tsk, int type)
6803 {
6804 	struct task_group *tg;
6805 
6806 	/*
6807 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6808 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6809 	 * to prevent lockdep warnings.
6810 	 */
6811 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6812 			  struct task_group, css);
6813 	tg = autogroup_task_group(tsk, tg);
6814 	tsk->sched_task_group = tg;
6815 
6816 #ifdef CONFIG_FAIR_GROUP_SCHED
6817 	if (tsk->sched_class->task_change_group)
6818 		tsk->sched_class->task_change_group(tsk, type);
6819 	else
6820 #endif
6821 		set_task_rq(tsk, task_cpu(tsk));
6822 }
6823 
6824 /*
6825  * Change task's runqueue when it moves between groups.
6826  *
6827  * The caller of this function should have put the task in its new group by
6828  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6829  * its new group.
6830  */
6831 void sched_move_task(struct task_struct *tsk)
6832 {
6833 	int queued, running, queue_flags =
6834 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6835 	struct rq_flags rf;
6836 	struct rq *rq;
6837 
6838 	rq = task_rq_lock(tsk, &rf);
6839 	update_rq_clock(rq);
6840 
6841 	running = task_current(rq, tsk);
6842 	queued = task_on_rq_queued(tsk);
6843 
6844 	if (queued)
6845 		dequeue_task(rq, tsk, queue_flags);
6846 	if (running)
6847 		put_prev_task(rq, tsk);
6848 
6849 	sched_change_group(tsk, TASK_MOVE_GROUP);
6850 
6851 	if (queued)
6852 		enqueue_task(rq, tsk, queue_flags);
6853 	if (running)
6854 		set_curr_task(rq, tsk);
6855 
6856 	task_rq_unlock(rq, tsk, &rf);
6857 }
6858 
6859 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6860 {
6861 	return css ? container_of(css, struct task_group, css) : NULL;
6862 }
6863 
6864 static struct cgroup_subsys_state *
6865 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6866 {
6867 	struct task_group *parent = css_tg(parent_css);
6868 	struct task_group *tg;
6869 
6870 	if (!parent) {
6871 		/* This is early initialization for the top cgroup */
6872 		return &root_task_group.css;
6873 	}
6874 
6875 	tg = sched_create_group(parent);
6876 	if (IS_ERR(tg))
6877 		return ERR_PTR(-ENOMEM);
6878 
6879 	return &tg->css;
6880 }
6881 
6882 /* Expose task group only after completing cgroup initialization */
6883 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6884 {
6885 	struct task_group *tg = css_tg(css);
6886 	struct task_group *parent = css_tg(css->parent);
6887 
6888 	if (parent)
6889 		sched_online_group(tg, parent);
6890 	return 0;
6891 }
6892 
6893 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6894 {
6895 	struct task_group *tg = css_tg(css);
6896 
6897 	sched_offline_group(tg);
6898 }
6899 
6900 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6901 {
6902 	struct task_group *tg = css_tg(css);
6903 
6904 	/*
6905 	 * Relies on the RCU grace period between css_released() and this.
6906 	 */
6907 	sched_free_group(tg);
6908 }
6909 
6910 /*
6911  * This is called before wake_up_new_task(), therefore we really only
6912  * have to set its group bits, all the other stuff does not apply.
6913  */
6914 static void cpu_cgroup_fork(struct task_struct *task)
6915 {
6916 	struct rq_flags rf;
6917 	struct rq *rq;
6918 
6919 	rq = task_rq_lock(task, &rf);
6920 
6921 	update_rq_clock(rq);
6922 	sched_change_group(task, TASK_SET_GROUP);
6923 
6924 	task_rq_unlock(rq, task, &rf);
6925 }
6926 
6927 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6928 {
6929 	struct task_struct *task;
6930 	struct cgroup_subsys_state *css;
6931 	int ret = 0;
6932 
6933 	cgroup_taskset_for_each(task, css, tset) {
6934 #ifdef CONFIG_RT_GROUP_SCHED
6935 		if (!sched_rt_can_attach(css_tg(css), task))
6936 			return -EINVAL;
6937 #else
6938 		/* We don't support RT-tasks being in separate groups */
6939 		if (task->sched_class != &fair_sched_class)
6940 			return -EINVAL;
6941 #endif
6942 		/*
6943 		 * Serialize against wake_up_new_task() such that if its
6944 		 * running, we're sure to observe its full state.
6945 		 */
6946 		raw_spin_lock_irq(&task->pi_lock);
6947 		/*
6948 		 * Avoid calling sched_move_task() before wake_up_new_task()
6949 		 * has happened. This would lead to problems with PELT, due to
6950 		 * move wanting to detach+attach while we're not attached yet.
6951 		 */
6952 		if (task->state == TASK_NEW)
6953 			ret = -EINVAL;
6954 		raw_spin_unlock_irq(&task->pi_lock);
6955 
6956 		if (ret)
6957 			break;
6958 	}
6959 	return ret;
6960 }
6961 
6962 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6963 {
6964 	struct task_struct *task;
6965 	struct cgroup_subsys_state *css;
6966 
6967 	cgroup_taskset_for_each(task, css, tset)
6968 		sched_move_task(task);
6969 }
6970 
6971 #ifdef CONFIG_FAIR_GROUP_SCHED
6972 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6973 				struct cftype *cftype, u64 shareval)
6974 {
6975 	if (shareval > scale_load_down(ULONG_MAX))
6976 		shareval = MAX_SHARES;
6977 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6978 }
6979 
6980 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6981 			       struct cftype *cft)
6982 {
6983 	struct task_group *tg = css_tg(css);
6984 
6985 	return (u64) scale_load_down(tg->shares);
6986 }
6987 
6988 #ifdef CONFIG_CFS_BANDWIDTH
6989 static DEFINE_MUTEX(cfs_constraints_mutex);
6990 
6991 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6992 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6993 
6994 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6995 
6996 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6997 {
6998 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6999 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7000 
7001 	if (tg == &root_task_group)
7002 		return -EINVAL;
7003 
7004 	/*
7005 	 * Ensure we have at some amount of bandwidth every period.  This is
7006 	 * to prevent reaching a state of large arrears when throttled via
7007 	 * entity_tick() resulting in prolonged exit starvation.
7008 	 */
7009 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7010 		return -EINVAL;
7011 
7012 	/*
7013 	 * Likewise, bound things on the otherside by preventing insane quota
7014 	 * periods.  This also allows us to normalize in computing quota
7015 	 * feasibility.
7016 	 */
7017 	if (period > max_cfs_quota_period)
7018 		return -EINVAL;
7019 
7020 	/*
7021 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7022 	 * unthrottle_offline_cfs_rqs().
7023 	 */
7024 	get_online_cpus();
7025 	mutex_lock(&cfs_constraints_mutex);
7026 	ret = __cfs_schedulable(tg, period, quota);
7027 	if (ret)
7028 		goto out_unlock;
7029 
7030 	runtime_enabled = quota != RUNTIME_INF;
7031 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7032 	/*
7033 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7034 	 * before making related changes, and on->off must occur afterwards
7035 	 */
7036 	if (runtime_enabled && !runtime_was_enabled)
7037 		cfs_bandwidth_usage_inc();
7038 	raw_spin_lock_irq(&cfs_b->lock);
7039 	cfs_b->period = ns_to_ktime(period);
7040 	cfs_b->quota = quota;
7041 
7042 	__refill_cfs_bandwidth_runtime(cfs_b);
7043 
7044 	/* Restart the period timer (if active) to handle new period expiry: */
7045 	if (runtime_enabled)
7046 		start_cfs_bandwidth(cfs_b);
7047 
7048 	raw_spin_unlock_irq(&cfs_b->lock);
7049 
7050 	for_each_online_cpu(i) {
7051 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7052 		struct rq *rq = cfs_rq->rq;
7053 		struct rq_flags rf;
7054 
7055 		rq_lock_irq(rq, &rf);
7056 		cfs_rq->runtime_enabled = runtime_enabled;
7057 		cfs_rq->runtime_remaining = 0;
7058 
7059 		if (cfs_rq->throttled)
7060 			unthrottle_cfs_rq(cfs_rq);
7061 		rq_unlock_irq(rq, &rf);
7062 	}
7063 	if (runtime_was_enabled && !runtime_enabled)
7064 		cfs_bandwidth_usage_dec();
7065 out_unlock:
7066 	mutex_unlock(&cfs_constraints_mutex);
7067 	put_online_cpus();
7068 
7069 	return ret;
7070 }
7071 
7072 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7073 {
7074 	u64 quota, period;
7075 
7076 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7077 	if (cfs_quota_us < 0)
7078 		quota = RUNTIME_INF;
7079 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7080 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7081 	else
7082 		return -EINVAL;
7083 
7084 	return tg_set_cfs_bandwidth(tg, period, quota);
7085 }
7086 
7087 static long tg_get_cfs_quota(struct task_group *tg)
7088 {
7089 	u64 quota_us;
7090 
7091 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7092 		return -1;
7093 
7094 	quota_us = tg->cfs_bandwidth.quota;
7095 	do_div(quota_us, NSEC_PER_USEC);
7096 
7097 	return quota_us;
7098 }
7099 
7100 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7101 {
7102 	u64 quota, period;
7103 
7104 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7105 		return -EINVAL;
7106 
7107 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7108 	quota = tg->cfs_bandwidth.quota;
7109 
7110 	return tg_set_cfs_bandwidth(tg, period, quota);
7111 }
7112 
7113 static long tg_get_cfs_period(struct task_group *tg)
7114 {
7115 	u64 cfs_period_us;
7116 
7117 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7118 	do_div(cfs_period_us, NSEC_PER_USEC);
7119 
7120 	return cfs_period_us;
7121 }
7122 
7123 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7124 				  struct cftype *cft)
7125 {
7126 	return tg_get_cfs_quota(css_tg(css));
7127 }
7128 
7129 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7130 				   struct cftype *cftype, s64 cfs_quota_us)
7131 {
7132 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7133 }
7134 
7135 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7136 				   struct cftype *cft)
7137 {
7138 	return tg_get_cfs_period(css_tg(css));
7139 }
7140 
7141 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7142 				    struct cftype *cftype, u64 cfs_period_us)
7143 {
7144 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7145 }
7146 
7147 struct cfs_schedulable_data {
7148 	struct task_group *tg;
7149 	u64 period, quota;
7150 };
7151 
7152 /*
7153  * normalize group quota/period to be quota/max_period
7154  * note: units are usecs
7155  */
7156 static u64 normalize_cfs_quota(struct task_group *tg,
7157 			       struct cfs_schedulable_data *d)
7158 {
7159 	u64 quota, period;
7160 
7161 	if (tg == d->tg) {
7162 		period = d->period;
7163 		quota = d->quota;
7164 	} else {
7165 		period = tg_get_cfs_period(tg);
7166 		quota = tg_get_cfs_quota(tg);
7167 	}
7168 
7169 	/* note: these should typically be equivalent */
7170 	if (quota == RUNTIME_INF || quota == -1)
7171 		return RUNTIME_INF;
7172 
7173 	return to_ratio(period, quota);
7174 }
7175 
7176 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7177 {
7178 	struct cfs_schedulable_data *d = data;
7179 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7180 	s64 quota = 0, parent_quota = -1;
7181 
7182 	if (!tg->parent) {
7183 		quota = RUNTIME_INF;
7184 	} else {
7185 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7186 
7187 		quota = normalize_cfs_quota(tg, d);
7188 		parent_quota = parent_b->hierarchical_quota;
7189 
7190 		/*
7191 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7192 		 * always take the min.  On cgroup1, only inherit when no
7193 		 * limit is set:
7194 		 */
7195 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7196 			quota = min(quota, parent_quota);
7197 		} else {
7198 			if (quota == RUNTIME_INF)
7199 				quota = parent_quota;
7200 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7201 				return -EINVAL;
7202 		}
7203 	}
7204 	cfs_b->hierarchical_quota = quota;
7205 
7206 	return 0;
7207 }
7208 
7209 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7210 {
7211 	int ret;
7212 	struct cfs_schedulable_data data = {
7213 		.tg = tg,
7214 		.period = period,
7215 		.quota = quota,
7216 	};
7217 
7218 	if (quota != RUNTIME_INF) {
7219 		do_div(data.period, NSEC_PER_USEC);
7220 		do_div(data.quota, NSEC_PER_USEC);
7221 	}
7222 
7223 	rcu_read_lock();
7224 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7225 	rcu_read_unlock();
7226 
7227 	return ret;
7228 }
7229 
7230 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7231 {
7232 	struct task_group *tg = css_tg(seq_css(sf));
7233 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7234 
7235 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7236 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7237 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7238 
7239 	if (schedstat_enabled() && tg != &root_task_group) {
7240 		u64 ws = 0;
7241 		int i;
7242 
7243 		for_each_possible_cpu(i)
7244 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7245 
7246 		seq_printf(sf, "wait_sum %llu\n", ws);
7247 	}
7248 
7249 	return 0;
7250 }
7251 #endif /* CONFIG_CFS_BANDWIDTH */
7252 #endif /* CONFIG_FAIR_GROUP_SCHED */
7253 
7254 #ifdef CONFIG_RT_GROUP_SCHED
7255 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7256 				struct cftype *cft, s64 val)
7257 {
7258 	return sched_group_set_rt_runtime(css_tg(css), val);
7259 }
7260 
7261 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7262 			       struct cftype *cft)
7263 {
7264 	return sched_group_rt_runtime(css_tg(css));
7265 }
7266 
7267 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7268 				    struct cftype *cftype, u64 rt_period_us)
7269 {
7270 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7271 }
7272 
7273 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7274 				   struct cftype *cft)
7275 {
7276 	return sched_group_rt_period(css_tg(css));
7277 }
7278 #endif /* CONFIG_RT_GROUP_SCHED */
7279 
7280 static struct cftype cpu_legacy_files[] = {
7281 #ifdef CONFIG_FAIR_GROUP_SCHED
7282 	{
7283 		.name = "shares",
7284 		.read_u64 = cpu_shares_read_u64,
7285 		.write_u64 = cpu_shares_write_u64,
7286 	},
7287 #endif
7288 #ifdef CONFIG_CFS_BANDWIDTH
7289 	{
7290 		.name = "cfs_quota_us",
7291 		.read_s64 = cpu_cfs_quota_read_s64,
7292 		.write_s64 = cpu_cfs_quota_write_s64,
7293 	},
7294 	{
7295 		.name = "cfs_period_us",
7296 		.read_u64 = cpu_cfs_period_read_u64,
7297 		.write_u64 = cpu_cfs_period_write_u64,
7298 	},
7299 	{
7300 		.name = "stat",
7301 		.seq_show = cpu_cfs_stat_show,
7302 	},
7303 #endif
7304 #ifdef CONFIG_RT_GROUP_SCHED
7305 	{
7306 		.name = "rt_runtime_us",
7307 		.read_s64 = cpu_rt_runtime_read,
7308 		.write_s64 = cpu_rt_runtime_write,
7309 	},
7310 	{
7311 		.name = "rt_period_us",
7312 		.read_u64 = cpu_rt_period_read_uint,
7313 		.write_u64 = cpu_rt_period_write_uint,
7314 	},
7315 #endif
7316 	{ }	/* Terminate */
7317 };
7318 
7319 static int cpu_extra_stat_show(struct seq_file *sf,
7320 			       struct cgroup_subsys_state *css)
7321 {
7322 #ifdef CONFIG_CFS_BANDWIDTH
7323 	{
7324 		struct task_group *tg = css_tg(css);
7325 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7326 		u64 throttled_usec;
7327 
7328 		throttled_usec = cfs_b->throttled_time;
7329 		do_div(throttled_usec, NSEC_PER_USEC);
7330 
7331 		seq_printf(sf, "nr_periods %d\n"
7332 			   "nr_throttled %d\n"
7333 			   "throttled_usec %llu\n",
7334 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7335 			   throttled_usec);
7336 	}
7337 #endif
7338 	return 0;
7339 }
7340 
7341 #ifdef CONFIG_FAIR_GROUP_SCHED
7342 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7343 			       struct cftype *cft)
7344 {
7345 	struct task_group *tg = css_tg(css);
7346 	u64 weight = scale_load_down(tg->shares);
7347 
7348 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7349 }
7350 
7351 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7352 				struct cftype *cft, u64 weight)
7353 {
7354 	/*
7355 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7356 	 * values which are 1, 100 and 10000 respectively.  While it loses
7357 	 * a bit of range on both ends, it maps pretty well onto the shares
7358 	 * value used by scheduler and the round-trip conversions preserve
7359 	 * the original value over the entire range.
7360 	 */
7361 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7362 		return -ERANGE;
7363 
7364 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7365 
7366 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7367 }
7368 
7369 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7370 				    struct cftype *cft)
7371 {
7372 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7373 	int last_delta = INT_MAX;
7374 	int prio, delta;
7375 
7376 	/* find the closest nice value to the current weight */
7377 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7378 		delta = abs(sched_prio_to_weight[prio] - weight);
7379 		if (delta >= last_delta)
7380 			break;
7381 		last_delta = delta;
7382 	}
7383 
7384 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7385 }
7386 
7387 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7388 				     struct cftype *cft, s64 nice)
7389 {
7390 	unsigned long weight;
7391 	int idx;
7392 
7393 	if (nice < MIN_NICE || nice > MAX_NICE)
7394 		return -ERANGE;
7395 
7396 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7397 	idx = array_index_nospec(idx, 40);
7398 	weight = sched_prio_to_weight[idx];
7399 
7400 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7401 }
7402 #endif
7403 
7404 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7405 						  long period, long quota)
7406 {
7407 	if (quota < 0)
7408 		seq_puts(sf, "max");
7409 	else
7410 		seq_printf(sf, "%ld", quota);
7411 
7412 	seq_printf(sf, " %ld\n", period);
7413 }
7414 
7415 /* caller should put the current value in *@periodp before calling */
7416 static int __maybe_unused cpu_period_quota_parse(char *buf,
7417 						 u64 *periodp, u64 *quotap)
7418 {
7419 	char tok[21];	/* U64_MAX */
7420 
7421 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7422 		return -EINVAL;
7423 
7424 	*periodp *= NSEC_PER_USEC;
7425 
7426 	if (sscanf(tok, "%llu", quotap))
7427 		*quotap *= NSEC_PER_USEC;
7428 	else if (!strcmp(tok, "max"))
7429 		*quotap = RUNTIME_INF;
7430 	else
7431 		return -EINVAL;
7432 
7433 	return 0;
7434 }
7435 
7436 #ifdef CONFIG_CFS_BANDWIDTH
7437 static int cpu_max_show(struct seq_file *sf, void *v)
7438 {
7439 	struct task_group *tg = css_tg(seq_css(sf));
7440 
7441 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7442 	return 0;
7443 }
7444 
7445 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7446 			     char *buf, size_t nbytes, loff_t off)
7447 {
7448 	struct task_group *tg = css_tg(of_css(of));
7449 	u64 period = tg_get_cfs_period(tg);
7450 	u64 quota;
7451 	int ret;
7452 
7453 	ret = cpu_period_quota_parse(buf, &period, &quota);
7454 	if (!ret)
7455 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7456 	return ret ?: nbytes;
7457 }
7458 #endif
7459 
7460 static struct cftype cpu_files[] = {
7461 #ifdef CONFIG_FAIR_GROUP_SCHED
7462 	{
7463 		.name = "weight",
7464 		.flags = CFTYPE_NOT_ON_ROOT,
7465 		.read_u64 = cpu_weight_read_u64,
7466 		.write_u64 = cpu_weight_write_u64,
7467 	},
7468 	{
7469 		.name = "weight.nice",
7470 		.flags = CFTYPE_NOT_ON_ROOT,
7471 		.read_s64 = cpu_weight_nice_read_s64,
7472 		.write_s64 = cpu_weight_nice_write_s64,
7473 	},
7474 #endif
7475 #ifdef CONFIG_CFS_BANDWIDTH
7476 	{
7477 		.name = "max",
7478 		.flags = CFTYPE_NOT_ON_ROOT,
7479 		.seq_show = cpu_max_show,
7480 		.write = cpu_max_write,
7481 	},
7482 #endif
7483 	{ }	/* terminate */
7484 };
7485 
7486 struct cgroup_subsys cpu_cgrp_subsys = {
7487 	.css_alloc	= cpu_cgroup_css_alloc,
7488 	.css_online	= cpu_cgroup_css_online,
7489 	.css_released	= cpu_cgroup_css_released,
7490 	.css_free	= cpu_cgroup_css_free,
7491 	.css_extra_stat_show = cpu_extra_stat_show,
7492 	.fork		= cpu_cgroup_fork,
7493 	.can_attach	= cpu_cgroup_can_attach,
7494 	.attach		= cpu_cgroup_attach,
7495 	.legacy_cftypes	= cpu_legacy_files,
7496 	.dfl_cftypes	= cpu_files,
7497 	.early_init	= true,
7498 	.threaded	= true,
7499 };
7500 
7501 #endif	/* CONFIG_CGROUP_SCHED */
7502 
7503 void dump_cpu_task(int cpu)
7504 {
7505 	pr_info("Task dump for CPU %d:\n", cpu);
7506 	sched_show_task(cpu_curr(cpu));
7507 }
7508 
7509 /*
7510  * Nice levels are multiplicative, with a gentle 10% change for every
7511  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7512  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7513  * that remained on nice 0.
7514  *
7515  * The "10% effect" is relative and cumulative: from _any_ nice level,
7516  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7517  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7518  * If a task goes up by ~10% and another task goes down by ~10% then
7519  * the relative distance between them is ~25%.)
7520  */
7521 const int sched_prio_to_weight[40] = {
7522  /* -20 */     88761,     71755,     56483,     46273,     36291,
7523  /* -15 */     29154,     23254,     18705,     14949,     11916,
7524  /* -10 */      9548,      7620,      6100,      4904,      3906,
7525  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7526  /*   0 */      1024,       820,       655,       526,       423,
7527  /*   5 */       335,       272,       215,       172,       137,
7528  /*  10 */       110,        87,        70,        56,        45,
7529  /*  15 */        36,        29,        23,        18,        15,
7530 };
7531 
7532 /*
7533  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7534  *
7535  * In cases where the weight does not change often, we can use the
7536  * precalculated inverse to speed up arithmetics by turning divisions
7537  * into multiplications:
7538  */
7539 const u32 sched_prio_to_wmult[40] = {
7540  /* -20 */     48388,     59856,     76040,     92818,    118348,
7541  /* -15 */    147320,    184698,    229616,    287308,    360437,
7542  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7543  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7544  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7545  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7546  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7547  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7548 };
7549 
7550 #undef CREATE_TRACE_POINTS
7551