1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 15 #include <asm/switch_to.h> 16 #include <asm/tlb.h> 17 18 #include "../workqueue_internal.h" 19 #include "../smpboot.h" 20 21 #include "pelt.h" 22 23 #define CREATE_TRACE_POINTS 24 #include <trace/events/sched.h> 25 26 /* 27 * Export tracepoints that act as a bare tracehook (ie: have no trace event 28 * associated with them) to allow external modules to probe them. 29 */ 30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 36 37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 38 39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 40 /* 41 * Debugging: various feature bits 42 * 43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 44 * sysctl_sched_features, defined in sched.h, to allow constants propagation 45 * at compile time and compiler optimization based on features default. 46 */ 47 #define SCHED_FEAT(name, enabled) \ 48 (1UL << __SCHED_FEAT_##name) * enabled | 49 const_debug unsigned int sysctl_sched_features = 50 #include "features.h" 51 0; 52 #undef SCHED_FEAT 53 #endif 54 55 /* 56 * Number of tasks to iterate in a single balance run. 57 * Limited because this is done with IRQs disabled. 58 */ 59 const_debug unsigned int sysctl_sched_nr_migrate = 32; 60 61 /* 62 * period over which we measure -rt task CPU usage in us. 63 * default: 1s 64 */ 65 unsigned int sysctl_sched_rt_period = 1000000; 66 67 __read_mostly int scheduler_running; 68 69 /* 70 * part of the period that we allow rt tasks to run in us. 71 * default: 0.95s 72 */ 73 int sysctl_sched_rt_runtime = 950000; 74 75 /* 76 * __task_rq_lock - lock the rq @p resides on. 77 */ 78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 79 __acquires(rq->lock) 80 { 81 struct rq *rq; 82 83 lockdep_assert_held(&p->pi_lock); 84 85 for (;;) { 86 rq = task_rq(p); 87 raw_spin_lock(&rq->lock); 88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 89 rq_pin_lock(rq, rf); 90 return rq; 91 } 92 raw_spin_unlock(&rq->lock); 93 94 while (unlikely(task_on_rq_migrating(p))) 95 cpu_relax(); 96 } 97 } 98 99 /* 100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 101 */ 102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 103 __acquires(p->pi_lock) 104 __acquires(rq->lock) 105 { 106 struct rq *rq; 107 108 for (;;) { 109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 110 rq = task_rq(p); 111 raw_spin_lock(&rq->lock); 112 /* 113 * move_queued_task() task_rq_lock() 114 * 115 * ACQUIRE (rq->lock) 116 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 118 * [S] ->cpu = new_cpu [L] task_rq() 119 * [L] ->on_rq 120 * RELEASE (rq->lock) 121 * 122 * If we observe the old CPU in task_rq_lock(), the acquire of 123 * the old rq->lock will fully serialize against the stores. 124 * 125 * If we observe the new CPU in task_rq_lock(), the address 126 * dependency headed by '[L] rq = task_rq()' and the acquire 127 * will pair with the WMB to ensure we then also see migrating. 128 */ 129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 130 rq_pin_lock(rq, rf); 131 return rq; 132 } 133 raw_spin_unlock(&rq->lock); 134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 135 136 while (unlikely(task_on_rq_migrating(p))) 137 cpu_relax(); 138 } 139 } 140 141 /* 142 * RQ-clock updating methods: 143 */ 144 145 static void update_rq_clock_task(struct rq *rq, s64 delta) 146 { 147 /* 148 * In theory, the compile should just see 0 here, and optimize out the call 149 * to sched_rt_avg_update. But I don't trust it... 150 */ 151 s64 __maybe_unused steal = 0, irq_delta = 0; 152 153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 155 156 /* 157 * Since irq_time is only updated on {soft,}irq_exit, we might run into 158 * this case when a previous update_rq_clock() happened inside a 159 * {soft,}irq region. 160 * 161 * When this happens, we stop ->clock_task and only update the 162 * prev_irq_time stamp to account for the part that fit, so that a next 163 * update will consume the rest. This ensures ->clock_task is 164 * monotonic. 165 * 166 * It does however cause some slight miss-attribution of {soft,}irq 167 * time, a more accurate solution would be to update the irq_time using 168 * the current rq->clock timestamp, except that would require using 169 * atomic ops. 170 */ 171 if (irq_delta > delta) 172 irq_delta = delta; 173 174 rq->prev_irq_time += irq_delta; 175 delta -= irq_delta; 176 #endif 177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 178 if (static_key_false((¶virt_steal_rq_enabled))) { 179 steal = paravirt_steal_clock(cpu_of(rq)); 180 steal -= rq->prev_steal_time_rq; 181 182 if (unlikely(steal > delta)) 183 steal = delta; 184 185 rq->prev_steal_time_rq += steal; 186 delta -= steal; 187 } 188 #endif 189 190 rq->clock_task += delta; 191 192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 194 update_irq_load_avg(rq, irq_delta + steal); 195 #endif 196 update_rq_clock_pelt(rq, delta); 197 } 198 199 void update_rq_clock(struct rq *rq) 200 { 201 s64 delta; 202 203 lockdep_assert_held(&rq->lock); 204 205 if (rq->clock_update_flags & RQCF_ACT_SKIP) 206 return; 207 208 #ifdef CONFIG_SCHED_DEBUG 209 if (sched_feat(WARN_DOUBLE_CLOCK)) 210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 211 rq->clock_update_flags |= RQCF_UPDATED; 212 #endif 213 214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 215 if (delta < 0) 216 return; 217 rq->clock += delta; 218 update_rq_clock_task(rq, delta); 219 } 220 221 222 #ifdef CONFIG_SCHED_HRTICK 223 /* 224 * Use HR-timers to deliver accurate preemption points. 225 */ 226 227 static void hrtick_clear(struct rq *rq) 228 { 229 if (hrtimer_active(&rq->hrtick_timer)) 230 hrtimer_cancel(&rq->hrtick_timer); 231 } 232 233 /* 234 * High-resolution timer tick. 235 * Runs from hardirq context with interrupts disabled. 236 */ 237 static enum hrtimer_restart hrtick(struct hrtimer *timer) 238 { 239 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 240 struct rq_flags rf; 241 242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 243 244 rq_lock(rq, &rf); 245 update_rq_clock(rq); 246 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 247 rq_unlock(rq, &rf); 248 249 return HRTIMER_NORESTART; 250 } 251 252 #ifdef CONFIG_SMP 253 254 static void __hrtick_restart(struct rq *rq) 255 { 256 struct hrtimer *timer = &rq->hrtick_timer; 257 258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 259 } 260 261 /* 262 * called from hardirq (IPI) context 263 */ 264 static void __hrtick_start(void *arg) 265 { 266 struct rq *rq = arg; 267 struct rq_flags rf; 268 269 rq_lock(rq, &rf); 270 __hrtick_restart(rq); 271 rq->hrtick_csd_pending = 0; 272 rq_unlock(rq, &rf); 273 } 274 275 /* 276 * Called to set the hrtick timer state. 277 * 278 * called with rq->lock held and irqs disabled 279 */ 280 void hrtick_start(struct rq *rq, u64 delay) 281 { 282 struct hrtimer *timer = &rq->hrtick_timer; 283 ktime_t time; 284 s64 delta; 285 286 /* 287 * Don't schedule slices shorter than 10000ns, that just 288 * doesn't make sense and can cause timer DoS. 289 */ 290 delta = max_t(s64, delay, 10000LL); 291 time = ktime_add_ns(timer->base->get_time(), delta); 292 293 hrtimer_set_expires(timer, time); 294 295 if (rq == this_rq()) { 296 __hrtick_restart(rq); 297 } else if (!rq->hrtick_csd_pending) { 298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 299 rq->hrtick_csd_pending = 1; 300 } 301 } 302 303 #else 304 /* 305 * Called to set the hrtick timer state. 306 * 307 * called with rq->lock held and irqs disabled 308 */ 309 void hrtick_start(struct rq *rq, u64 delay) 310 { 311 /* 312 * Don't schedule slices shorter than 10000ns, that just 313 * doesn't make sense. Rely on vruntime for fairness. 314 */ 315 delay = max_t(u64, delay, 10000LL); 316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 317 HRTIMER_MODE_REL_PINNED); 318 } 319 #endif /* CONFIG_SMP */ 320 321 static void hrtick_rq_init(struct rq *rq) 322 { 323 #ifdef CONFIG_SMP 324 rq->hrtick_csd_pending = 0; 325 326 rq->hrtick_csd.flags = 0; 327 rq->hrtick_csd.func = __hrtick_start; 328 rq->hrtick_csd.info = rq; 329 #endif 330 331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 332 rq->hrtick_timer.function = hrtick; 333 } 334 #else /* CONFIG_SCHED_HRTICK */ 335 static inline void hrtick_clear(struct rq *rq) 336 { 337 } 338 339 static inline void hrtick_rq_init(struct rq *rq) 340 { 341 } 342 #endif /* CONFIG_SCHED_HRTICK */ 343 344 /* 345 * cmpxchg based fetch_or, macro so it works for different integer types 346 */ 347 #define fetch_or(ptr, mask) \ 348 ({ \ 349 typeof(ptr) _ptr = (ptr); \ 350 typeof(mask) _mask = (mask); \ 351 typeof(*_ptr) _old, _val = *_ptr; \ 352 \ 353 for (;;) { \ 354 _old = cmpxchg(_ptr, _val, _val | _mask); \ 355 if (_old == _val) \ 356 break; \ 357 _val = _old; \ 358 } \ 359 _old; \ 360 }) 361 362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 363 /* 364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 365 * this avoids any races wrt polling state changes and thereby avoids 366 * spurious IPIs. 367 */ 368 static bool set_nr_and_not_polling(struct task_struct *p) 369 { 370 struct thread_info *ti = task_thread_info(p); 371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 372 } 373 374 /* 375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 376 * 377 * If this returns true, then the idle task promises to call 378 * sched_ttwu_pending() and reschedule soon. 379 */ 380 static bool set_nr_if_polling(struct task_struct *p) 381 { 382 struct thread_info *ti = task_thread_info(p); 383 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 384 385 for (;;) { 386 if (!(val & _TIF_POLLING_NRFLAG)) 387 return false; 388 if (val & _TIF_NEED_RESCHED) 389 return true; 390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 391 if (old == val) 392 break; 393 val = old; 394 } 395 return true; 396 } 397 398 #else 399 static bool set_nr_and_not_polling(struct task_struct *p) 400 { 401 set_tsk_need_resched(p); 402 return true; 403 } 404 405 #ifdef CONFIG_SMP 406 static bool set_nr_if_polling(struct task_struct *p) 407 { 408 return false; 409 } 410 #endif 411 #endif 412 413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 414 { 415 struct wake_q_node *node = &task->wake_q; 416 417 /* 418 * Atomically grab the task, if ->wake_q is !nil already it means 419 * its already queued (either by us or someone else) and will get the 420 * wakeup due to that. 421 * 422 * In order to ensure that a pending wakeup will observe our pending 423 * state, even in the failed case, an explicit smp_mb() must be used. 424 */ 425 smp_mb__before_atomic(); 426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 427 return false; 428 429 /* 430 * The head is context local, there can be no concurrency. 431 */ 432 *head->lastp = node; 433 head->lastp = &node->next; 434 return true; 435 } 436 437 /** 438 * wake_q_add() - queue a wakeup for 'later' waking. 439 * @head: the wake_q_head to add @task to 440 * @task: the task to queue for 'later' wakeup 441 * 442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 444 * instantly. 445 * 446 * This function must be used as-if it were wake_up_process(); IOW the task 447 * must be ready to be woken at this location. 448 */ 449 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 450 { 451 if (__wake_q_add(head, task)) 452 get_task_struct(task); 453 } 454 455 /** 456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 457 * @head: the wake_q_head to add @task to 458 * @task: the task to queue for 'later' wakeup 459 * 460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 462 * instantly. 463 * 464 * This function must be used as-if it were wake_up_process(); IOW the task 465 * must be ready to be woken at this location. 466 * 467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 468 * that already hold reference to @task can call the 'safe' version and trust 469 * wake_q to do the right thing depending whether or not the @task is already 470 * queued for wakeup. 471 */ 472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 473 { 474 if (!__wake_q_add(head, task)) 475 put_task_struct(task); 476 } 477 478 void wake_up_q(struct wake_q_head *head) 479 { 480 struct wake_q_node *node = head->first; 481 482 while (node != WAKE_Q_TAIL) { 483 struct task_struct *task; 484 485 task = container_of(node, struct task_struct, wake_q); 486 BUG_ON(!task); 487 /* Task can safely be re-inserted now: */ 488 node = node->next; 489 task->wake_q.next = NULL; 490 491 /* 492 * wake_up_process() executes a full barrier, which pairs with 493 * the queueing in wake_q_add() so as not to miss wakeups. 494 */ 495 wake_up_process(task); 496 put_task_struct(task); 497 } 498 } 499 500 /* 501 * resched_curr - mark rq's current task 'to be rescheduled now'. 502 * 503 * On UP this means the setting of the need_resched flag, on SMP it 504 * might also involve a cross-CPU call to trigger the scheduler on 505 * the target CPU. 506 */ 507 void resched_curr(struct rq *rq) 508 { 509 struct task_struct *curr = rq->curr; 510 int cpu; 511 512 lockdep_assert_held(&rq->lock); 513 514 if (test_tsk_need_resched(curr)) 515 return; 516 517 cpu = cpu_of(rq); 518 519 if (cpu == smp_processor_id()) { 520 set_tsk_need_resched(curr); 521 set_preempt_need_resched(); 522 return; 523 } 524 525 if (set_nr_and_not_polling(curr)) 526 smp_send_reschedule(cpu); 527 else 528 trace_sched_wake_idle_without_ipi(cpu); 529 } 530 531 void resched_cpu(int cpu) 532 { 533 struct rq *rq = cpu_rq(cpu); 534 unsigned long flags; 535 536 raw_spin_lock_irqsave(&rq->lock, flags); 537 if (cpu_online(cpu) || cpu == smp_processor_id()) 538 resched_curr(rq); 539 raw_spin_unlock_irqrestore(&rq->lock, flags); 540 } 541 542 #ifdef CONFIG_SMP 543 #ifdef CONFIG_NO_HZ_COMMON 544 /* 545 * In the semi idle case, use the nearest busy CPU for migrating timers 546 * from an idle CPU. This is good for power-savings. 547 * 548 * We don't do similar optimization for completely idle system, as 549 * selecting an idle CPU will add more delays to the timers than intended 550 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 551 */ 552 int get_nohz_timer_target(void) 553 { 554 int i, cpu = smp_processor_id(); 555 struct sched_domain *sd; 556 557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 558 return cpu; 559 560 rcu_read_lock(); 561 for_each_domain(cpu, sd) { 562 for_each_cpu(i, sched_domain_span(sd)) { 563 if (cpu == i) 564 continue; 565 566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 567 cpu = i; 568 goto unlock; 569 } 570 } 571 } 572 573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 575 unlock: 576 rcu_read_unlock(); 577 return cpu; 578 } 579 580 /* 581 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * idle CPU then this timer might expire before the next timer event 583 * which is scheduled to wake up that CPU. In case of a completely 584 * idle system the next event might even be infinite time into the 585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * leaves the inner idle loop so the newly added timer is taken into 587 * account when the CPU goes back to idle and evaluates the timer 588 * wheel for the next timer event. 589 */ 590 static void wake_up_idle_cpu(int cpu) 591 { 592 struct rq *rq = cpu_rq(cpu); 593 594 if (cpu == smp_processor_id()) 595 return; 596 597 if (set_nr_and_not_polling(rq->idle)) 598 smp_send_reschedule(cpu); 599 else 600 trace_sched_wake_idle_without_ipi(cpu); 601 } 602 603 static bool wake_up_full_nohz_cpu(int cpu) 604 { 605 /* 606 * We just need the target to call irq_exit() and re-evaluate 607 * the next tick. The nohz full kick at least implies that. 608 * If needed we can still optimize that later with an 609 * empty IRQ. 610 */ 611 if (cpu_is_offline(cpu)) 612 return true; /* Don't try to wake offline CPUs. */ 613 if (tick_nohz_full_cpu(cpu)) { 614 if (cpu != smp_processor_id() || 615 tick_nohz_tick_stopped()) 616 tick_nohz_full_kick_cpu(cpu); 617 return true; 618 } 619 620 return false; 621 } 622 623 /* 624 * Wake up the specified CPU. If the CPU is going offline, it is the 625 * caller's responsibility to deal with the lost wakeup, for example, 626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 627 */ 628 void wake_up_nohz_cpu(int cpu) 629 { 630 if (!wake_up_full_nohz_cpu(cpu)) 631 wake_up_idle_cpu(cpu); 632 } 633 634 static inline bool got_nohz_idle_kick(void) 635 { 636 int cpu = smp_processor_id(); 637 638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 639 return false; 640 641 if (idle_cpu(cpu) && !need_resched()) 642 return true; 643 644 /* 645 * We can't run Idle Load Balance on this CPU for this time so we 646 * cancel it and clear NOHZ_BALANCE_KICK 647 */ 648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 649 return false; 650 } 651 652 #else /* CONFIG_NO_HZ_COMMON */ 653 654 static inline bool got_nohz_idle_kick(void) 655 { 656 return false; 657 } 658 659 #endif /* CONFIG_NO_HZ_COMMON */ 660 661 #ifdef CONFIG_NO_HZ_FULL 662 bool sched_can_stop_tick(struct rq *rq) 663 { 664 int fifo_nr_running; 665 666 /* Deadline tasks, even if single, need the tick */ 667 if (rq->dl.dl_nr_running) 668 return false; 669 670 /* 671 * If there are more than one RR tasks, we need the tick to effect the 672 * actual RR behaviour. 673 */ 674 if (rq->rt.rr_nr_running) { 675 if (rq->rt.rr_nr_running == 1) 676 return true; 677 else 678 return false; 679 } 680 681 /* 682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 683 * forced preemption between FIFO tasks. 684 */ 685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 686 if (fifo_nr_running) 687 return true; 688 689 /* 690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 691 * if there's more than one we need the tick for involuntary 692 * preemption. 693 */ 694 if (rq->nr_running > 1) 695 return false; 696 697 return true; 698 } 699 #endif /* CONFIG_NO_HZ_FULL */ 700 #endif /* CONFIG_SMP */ 701 702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 704 /* 705 * Iterate task_group tree rooted at *from, calling @down when first entering a 706 * node and @up when leaving it for the final time. 707 * 708 * Caller must hold rcu_lock or sufficient equivalent. 709 */ 710 int walk_tg_tree_from(struct task_group *from, 711 tg_visitor down, tg_visitor up, void *data) 712 { 713 struct task_group *parent, *child; 714 int ret; 715 716 parent = from; 717 718 down: 719 ret = (*down)(parent, data); 720 if (ret) 721 goto out; 722 list_for_each_entry_rcu(child, &parent->children, siblings) { 723 parent = child; 724 goto down; 725 726 up: 727 continue; 728 } 729 ret = (*up)(parent, data); 730 if (ret || parent == from) 731 goto out; 732 733 child = parent; 734 parent = parent->parent; 735 if (parent) 736 goto up; 737 out: 738 return ret; 739 } 740 741 int tg_nop(struct task_group *tg, void *data) 742 { 743 return 0; 744 } 745 #endif 746 747 static void set_load_weight(struct task_struct *p, bool update_load) 748 { 749 int prio = p->static_prio - MAX_RT_PRIO; 750 struct load_weight *load = &p->se.load; 751 752 /* 753 * SCHED_IDLE tasks get minimal weight: 754 */ 755 if (task_has_idle_policy(p)) { 756 load->weight = scale_load(WEIGHT_IDLEPRIO); 757 load->inv_weight = WMULT_IDLEPRIO; 758 p->se.runnable_weight = load->weight; 759 return; 760 } 761 762 /* 763 * SCHED_OTHER tasks have to update their load when changing their 764 * weight 765 */ 766 if (update_load && p->sched_class == &fair_sched_class) { 767 reweight_task(p, prio); 768 } else { 769 load->weight = scale_load(sched_prio_to_weight[prio]); 770 load->inv_weight = sched_prio_to_wmult[prio]; 771 p->se.runnable_weight = load->weight; 772 } 773 } 774 775 #ifdef CONFIG_UCLAMP_TASK 776 /* Max allowed minimum utilization */ 777 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 778 779 /* Max allowed maximum utilization */ 780 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 781 782 /* All clamps are required to be less or equal than these values */ 783 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 784 785 /* Integer rounded range for each bucket */ 786 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 787 788 #define for_each_clamp_id(clamp_id) \ 789 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 790 791 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 792 { 793 return clamp_value / UCLAMP_BUCKET_DELTA; 794 } 795 796 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 797 { 798 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 799 } 800 801 static inline unsigned int uclamp_none(int clamp_id) 802 { 803 if (clamp_id == UCLAMP_MIN) 804 return 0; 805 return SCHED_CAPACITY_SCALE; 806 } 807 808 static inline void uclamp_se_set(struct uclamp_se *uc_se, 809 unsigned int value, bool user_defined) 810 { 811 uc_se->value = value; 812 uc_se->bucket_id = uclamp_bucket_id(value); 813 uc_se->user_defined = user_defined; 814 } 815 816 static inline unsigned int 817 uclamp_idle_value(struct rq *rq, unsigned int clamp_id, 818 unsigned int clamp_value) 819 { 820 /* 821 * Avoid blocked utilization pushing up the frequency when we go 822 * idle (which drops the max-clamp) by retaining the last known 823 * max-clamp. 824 */ 825 if (clamp_id == UCLAMP_MAX) { 826 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 827 return clamp_value; 828 } 829 830 return uclamp_none(UCLAMP_MIN); 831 } 832 833 static inline void uclamp_idle_reset(struct rq *rq, unsigned int clamp_id, 834 unsigned int clamp_value) 835 { 836 /* Reset max-clamp retention only on idle exit */ 837 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 838 return; 839 840 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 841 } 842 843 static inline 844 unsigned int uclamp_rq_max_value(struct rq *rq, unsigned int clamp_id, 845 unsigned int clamp_value) 846 { 847 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 848 int bucket_id = UCLAMP_BUCKETS - 1; 849 850 /* 851 * Since both min and max clamps are max aggregated, find the 852 * top most bucket with tasks in. 853 */ 854 for ( ; bucket_id >= 0; bucket_id--) { 855 if (!bucket[bucket_id].tasks) 856 continue; 857 return bucket[bucket_id].value; 858 } 859 860 /* No tasks -- default clamp values */ 861 return uclamp_idle_value(rq, clamp_id, clamp_value); 862 } 863 864 /* 865 * The effective clamp bucket index of a task depends on, by increasing 866 * priority: 867 * - the task specific clamp value, when explicitly requested from userspace 868 * - the system default clamp value, defined by the sysadmin 869 */ 870 static inline struct uclamp_se 871 uclamp_eff_get(struct task_struct *p, unsigned int clamp_id) 872 { 873 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 874 struct uclamp_se uc_max = uclamp_default[clamp_id]; 875 876 /* System default restrictions always apply */ 877 if (unlikely(uc_req.value > uc_max.value)) 878 return uc_max; 879 880 return uc_req; 881 } 882 883 unsigned int uclamp_eff_value(struct task_struct *p, unsigned int clamp_id) 884 { 885 struct uclamp_se uc_eff; 886 887 /* Task currently refcounted: use back-annotated (effective) value */ 888 if (p->uclamp[clamp_id].active) 889 return p->uclamp[clamp_id].value; 890 891 uc_eff = uclamp_eff_get(p, clamp_id); 892 893 return uc_eff.value; 894 } 895 896 /* 897 * When a task is enqueued on a rq, the clamp bucket currently defined by the 898 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 899 * updates the rq's clamp value if required. 900 * 901 * Tasks can have a task-specific value requested from user-space, track 902 * within each bucket the maximum value for tasks refcounted in it. 903 * This "local max aggregation" allows to track the exact "requested" value 904 * for each bucket when all its RUNNABLE tasks require the same clamp. 905 */ 906 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 907 unsigned int clamp_id) 908 { 909 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 910 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 911 struct uclamp_bucket *bucket; 912 913 lockdep_assert_held(&rq->lock); 914 915 /* Update task effective clamp */ 916 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 917 918 bucket = &uc_rq->bucket[uc_se->bucket_id]; 919 bucket->tasks++; 920 uc_se->active = true; 921 922 uclamp_idle_reset(rq, clamp_id, uc_se->value); 923 924 /* 925 * Local max aggregation: rq buckets always track the max 926 * "requested" clamp value of its RUNNABLE tasks. 927 */ 928 if (bucket->tasks == 1 || uc_se->value > bucket->value) 929 bucket->value = uc_se->value; 930 931 if (uc_se->value > READ_ONCE(uc_rq->value)) 932 WRITE_ONCE(uc_rq->value, uc_se->value); 933 } 934 935 /* 936 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 937 * is released. If this is the last task reference counting the rq's max 938 * active clamp value, then the rq's clamp value is updated. 939 * 940 * Both refcounted tasks and rq's cached clamp values are expected to be 941 * always valid. If it's detected they are not, as defensive programming, 942 * enforce the expected state and warn. 943 */ 944 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 945 unsigned int clamp_id) 946 { 947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 948 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 949 struct uclamp_bucket *bucket; 950 unsigned int bkt_clamp; 951 unsigned int rq_clamp; 952 953 lockdep_assert_held(&rq->lock); 954 955 bucket = &uc_rq->bucket[uc_se->bucket_id]; 956 SCHED_WARN_ON(!bucket->tasks); 957 if (likely(bucket->tasks)) 958 bucket->tasks--; 959 uc_se->active = false; 960 961 /* 962 * Keep "local max aggregation" simple and accept to (possibly) 963 * overboost some RUNNABLE tasks in the same bucket. 964 * The rq clamp bucket value is reset to its base value whenever 965 * there are no more RUNNABLE tasks refcounting it. 966 */ 967 if (likely(bucket->tasks)) 968 return; 969 970 rq_clamp = READ_ONCE(uc_rq->value); 971 /* 972 * Defensive programming: this should never happen. If it happens, 973 * e.g. due to future modification, warn and fixup the expected value. 974 */ 975 SCHED_WARN_ON(bucket->value > rq_clamp); 976 if (bucket->value >= rq_clamp) { 977 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 978 WRITE_ONCE(uc_rq->value, bkt_clamp); 979 } 980 } 981 982 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 983 { 984 unsigned int clamp_id; 985 986 if (unlikely(!p->sched_class->uclamp_enabled)) 987 return; 988 989 for_each_clamp_id(clamp_id) 990 uclamp_rq_inc_id(rq, p, clamp_id); 991 992 /* Reset clamp idle holding when there is one RUNNABLE task */ 993 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 994 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 995 } 996 997 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 998 { 999 unsigned int clamp_id; 1000 1001 if (unlikely(!p->sched_class->uclamp_enabled)) 1002 return; 1003 1004 for_each_clamp_id(clamp_id) 1005 uclamp_rq_dec_id(rq, p, clamp_id); 1006 } 1007 1008 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1009 void __user *buffer, size_t *lenp, 1010 loff_t *ppos) 1011 { 1012 int old_min, old_max; 1013 static DEFINE_MUTEX(mutex); 1014 int result; 1015 1016 mutex_lock(&mutex); 1017 old_min = sysctl_sched_uclamp_util_min; 1018 old_max = sysctl_sched_uclamp_util_max; 1019 1020 result = proc_dointvec(table, write, buffer, lenp, ppos); 1021 if (result) 1022 goto undo; 1023 if (!write) 1024 goto done; 1025 1026 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1027 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1028 result = -EINVAL; 1029 goto undo; 1030 } 1031 1032 if (old_min != sysctl_sched_uclamp_util_min) { 1033 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1034 sysctl_sched_uclamp_util_min, false); 1035 } 1036 if (old_max != sysctl_sched_uclamp_util_max) { 1037 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1038 sysctl_sched_uclamp_util_max, false); 1039 } 1040 1041 /* 1042 * Updating all the RUNNABLE task is expensive, keep it simple and do 1043 * just a lazy update at each next enqueue time. 1044 */ 1045 goto done; 1046 1047 undo: 1048 sysctl_sched_uclamp_util_min = old_min; 1049 sysctl_sched_uclamp_util_max = old_max; 1050 done: 1051 mutex_unlock(&mutex); 1052 1053 return result; 1054 } 1055 1056 static int uclamp_validate(struct task_struct *p, 1057 const struct sched_attr *attr) 1058 { 1059 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1060 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1061 1062 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1063 lower_bound = attr->sched_util_min; 1064 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1065 upper_bound = attr->sched_util_max; 1066 1067 if (lower_bound > upper_bound) 1068 return -EINVAL; 1069 if (upper_bound > SCHED_CAPACITY_SCALE) 1070 return -EINVAL; 1071 1072 return 0; 1073 } 1074 1075 static void __setscheduler_uclamp(struct task_struct *p, 1076 const struct sched_attr *attr) 1077 { 1078 unsigned int clamp_id; 1079 1080 /* 1081 * On scheduling class change, reset to default clamps for tasks 1082 * without a task-specific value. 1083 */ 1084 for_each_clamp_id(clamp_id) { 1085 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1086 unsigned int clamp_value = uclamp_none(clamp_id); 1087 1088 /* Keep using defined clamps across class changes */ 1089 if (uc_se->user_defined) 1090 continue; 1091 1092 /* By default, RT tasks always get 100% boost */ 1093 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1094 clamp_value = uclamp_none(UCLAMP_MAX); 1095 1096 uclamp_se_set(uc_se, clamp_value, false); 1097 } 1098 1099 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1100 return; 1101 1102 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1103 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1104 attr->sched_util_min, true); 1105 } 1106 1107 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1108 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1109 attr->sched_util_max, true); 1110 } 1111 } 1112 1113 static void uclamp_fork(struct task_struct *p) 1114 { 1115 unsigned int clamp_id; 1116 1117 for_each_clamp_id(clamp_id) 1118 p->uclamp[clamp_id].active = false; 1119 1120 if (likely(!p->sched_reset_on_fork)) 1121 return; 1122 1123 for_each_clamp_id(clamp_id) { 1124 unsigned int clamp_value = uclamp_none(clamp_id); 1125 1126 /* By default, RT tasks always get 100% boost */ 1127 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1128 clamp_value = uclamp_none(UCLAMP_MAX); 1129 1130 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false); 1131 } 1132 } 1133 1134 static void __init init_uclamp(void) 1135 { 1136 struct uclamp_se uc_max = {}; 1137 unsigned int clamp_id; 1138 int cpu; 1139 1140 for_each_possible_cpu(cpu) { 1141 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq)); 1142 cpu_rq(cpu)->uclamp_flags = 0; 1143 } 1144 1145 for_each_clamp_id(clamp_id) { 1146 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1147 uclamp_none(clamp_id), false); 1148 } 1149 1150 /* System defaults allow max clamp values for both indexes */ 1151 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1152 for_each_clamp_id(clamp_id) 1153 uclamp_default[clamp_id] = uc_max; 1154 } 1155 1156 #else /* CONFIG_UCLAMP_TASK */ 1157 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1158 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1159 static inline int uclamp_validate(struct task_struct *p, 1160 const struct sched_attr *attr) 1161 { 1162 return -EOPNOTSUPP; 1163 } 1164 static void __setscheduler_uclamp(struct task_struct *p, 1165 const struct sched_attr *attr) { } 1166 static inline void uclamp_fork(struct task_struct *p) { } 1167 static inline void init_uclamp(void) { } 1168 #endif /* CONFIG_UCLAMP_TASK */ 1169 1170 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1171 { 1172 if (!(flags & ENQUEUE_NOCLOCK)) 1173 update_rq_clock(rq); 1174 1175 if (!(flags & ENQUEUE_RESTORE)) { 1176 sched_info_queued(rq, p); 1177 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1178 } 1179 1180 uclamp_rq_inc(rq, p); 1181 p->sched_class->enqueue_task(rq, p, flags); 1182 } 1183 1184 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1185 { 1186 if (!(flags & DEQUEUE_NOCLOCK)) 1187 update_rq_clock(rq); 1188 1189 if (!(flags & DEQUEUE_SAVE)) { 1190 sched_info_dequeued(rq, p); 1191 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1192 } 1193 1194 uclamp_rq_dec(rq, p); 1195 p->sched_class->dequeue_task(rq, p, flags); 1196 } 1197 1198 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1199 { 1200 if (task_contributes_to_load(p)) 1201 rq->nr_uninterruptible--; 1202 1203 enqueue_task(rq, p, flags); 1204 1205 p->on_rq = TASK_ON_RQ_QUEUED; 1206 } 1207 1208 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1209 { 1210 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1211 1212 if (task_contributes_to_load(p)) 1213 rq->nr_uninterruptible++; 1214 1215 dequeue_task(rq, p, flags); 1216 } 1217 1218 /* 1219 * __normal_prio - return the priority that is based on the static prio 1220 */ 1221 static inline int __normal_prio(struct task_struct *p) 1222 { 1223 return p->static_prio; 1224 } 1225 1226 /* 1227 * Calculate the expected normal priority: i.e. priority 1228 * without taking RT-inheritance into account. Might be 1229 * boosted by interactivity modifiers. Changes upon fork, 1230 * setprio syscalls, and whenever the interactivity 1231 * estimator recalculates. 1232 */ 1233 static inline int normal_prio(struct task_struct *p) 1234 { 1235 int prio; 1236 1237 if (task_has_dl_policy(p)) 1238 prio = MAX_DL_PRIO-1; 1239 else if (task_has_rt_policy(p)) 1240 prio = MAX_RT_PRIO-1 - p->rt_priority; 1241 else 1242 prio = __normal_prio(p); 1243 return prio; 1244 } 1245 1246 /* 1247 * Calculate the current priority, i.e. the priority 1248 * taken into account by the scheduler. This value might 1249 * be boosted by RT tasks, or might be boosted by 1250 * interactivity modifiers. Will be RT if the task got 1251 * RT-boosted. If not then it returns p->normal_prio. 1252 */ 1253 static int effective_prio(struct task_struct *p) 1254 { 1255 p->normal_prio = normal_prio(p); 1256 /* 1257 * If we are RT tasks or we were boosted to RT priority, 1258 * keep the priority unchanged. Otherwise, update priority 1259 * to the normal priority: 1260 */ 1261 if (!rt_prio(p->prio)) 1262 return p->normal_prio; 1263 return p->prio; 1264 } 1265 1266 /** 1267 * task_curr - is this task currently executing on a CPU? 1268 * @p: the task in question. 1269 * 1270 * Return: 1 if the task is currently executing. 0 otherwise. 1271 */ 1272 inline int task_curr(const struct task_struct *p) 1273 { 1274 return cpu_curr(task_cpu(p)) == p; 1275 } 1276 1277 /* 1278 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1279 * use the balance_callback list if you want balancing. 1280 * 1281 * this means any call to check_class_changed() must be followed by a call to 1282 * balance_callback(). 1283 */ 1284 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1285 const struct sched_class *prev_class, 1286 int oldprio) 1287 { 1288 if (prev_class != p->sched_class) { 1289 if (prev_class->switched_from) 1290 prev_class->switched_from(rq, p); 1291 1292 p->sched_class->switched_to(rq, p); 1293 } else if (oldprio != p->prio || dl_task(p)) 1294 p->sched_class->prio_changed(rq, p, oldprio); 1295 } 1296 1297 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1298 { 1299 const struct sched_class *class; 1300 1301 if (p->sched_class == rq->curr->sched_class) { 1302 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1303 } else { 1304 for_each_class(class) { 1305 if (class == rq->curr->sched_class) 1306 break; 1307 if (class == p->sched_class) { 1308 resched_curr(rq); 1309 break; 1310 } 1311 } 1312 } 1313 1314 /* 1315 * A queue event has occurred, and we're going to schedule. In 1316 * this case, we can save a useless back to back clock update. 1317 */ 1318 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1319 rq_clock_skip_update(rq); 1320 } 1321 1322 #ifdef CONFIG_SMP 1323 1324 static inline bool is_per_cpu_kthread(struct task_struct *p) 1325 { 1326 if (!(p->flags & PF_KTHREAD)) 1327 return false; 1328 1329 if (p->nr_cpus_allowed != 1) 1330 return false; 1331 1332 return true; 1333 } 1334 1335 /* 1336 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1337 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1338 */ 1339 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1340 { 1341 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1342 return false; 1343 1344 if (is_per_cpu_kthread(p)) 1345 return cpu_online(cpu); 1346 1347 return cpu_active(cpu); 1348 } 1349 1350 /* 1351 * This is how migration works: 1352 * 1353 * 1) we invoke migration_cpu_stop() on the target CPU using 1354 * stop_one_cpu(). 1355 * 2) stopper starts to run (implicitly forcing the migrated thread 1356 * off the CPU) 1357 * 3) it checks whether the migrated task is still in the wrong runqueue. 1358 * 4) if it's in the wrong runqueue then the migration thread removes 1359 * it and puts it into the right queue. 1360 * 5) stopper completes and stop_one_cpu() returns and the migration 1361 * is done. 1362 */ 1363 1364 /* 1365 * move_queued_task - move a queued task to new rq. 1366 * 1367 * Returns (locked) new rq. Old rq's lock is released. 1368 */ 1369 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1370 struct task_struct *p, int new_cpu) 1371 { 1372 lockdep_assert_held(&rq->lock); 1373 1374 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1375 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1376 set_task_cpu(p, new_cpu); 1377 rq_unlock(rq, rf); 1378 1379 rq = cpu_rq(new_cpu); 1380 1381 rq_lock(rq, rf); 1382 BUG_ON(task_cpu(p) != new_cpu); 1383 enqueue_task(rq, p, 0); 1384 p->on_rq = TASK_ON_RQ_QUEUED; 1385 check_preempt_curr(rq, p, 0); 1386 1387 return rq; 1388 } 1389 1390 struct migration_arg { 1391 struct task_struct *task; 1392 int dest_cpu; 1393 }; 1394 1395 /* 1396 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1397 * this because either it can't run here any more (set_cpus_allowed() 1398 * away from this CPU, or CPU going down), or because we're 1399 * attempting to rebalance this task on exec (sched_exec). 1400 * 1401 * So we race with normal scheduler movements, but that's OK, as long 1402 * as the task is no longer on this CPU. 1403 */ 1404 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1405 struct task_struct *p, int dest_cpu) 1406 { 1407 /* Affinity changed (again). */ 1408 if (!is_cpu_allowed(p, dest_cpu)) 1409 return rq; 1410 1411 update_rq_clock(rq); 1412 rq = move_queued_task(rq, rf, p, dest_cpu); 1413 1414 return rq; 1415 } 1416 1417 /* 1418 * migration_cpu_stop - this will be executed by a highprio stopper thread 1419 * and performs thread migration by bumping thread off CPU then 1420 * 'pushing' onto another runqueue. 1421 */ 1422 static int migration_cpu_stop(void *data) 1423 { 1424 struct migration_arg *arg = data; 1425 struct task_struct *p = arg->task; 1426 struct rq *rq = this_rq(); 1427 struct rq_flags rf; 1428 1429 /* 1430 * The original target CPU might have gone down and we might 1431 * be on another CPU but it doesn't matter. 1432 */ 1433 local_irq_disable(); 1434 /* 1435 * We need to explicitly wake pending tasks before running 1436 * __migrate_task() such that we will not miss enforcing cpus_ptr 1437 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1438 */ 1439 sched_ttwu_pending(); 1440 1441 raw_spin_lock(&p->pi_lock); 1442 rq_lock(rq, &rf); 1443 /* 1444 * If task_rq(p) != rq, it cannot be migrated here, because we're 1445 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1446 * we're holding p->pi_lock. 1447 */ 1448 if (task_rq(p) == rq) { 1449 if (task_on_rq_queued(p)) 1450 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1451 else 1452 p->wake_cpu = arg->dest_cpu; 1453 } 1454 rq_unlock(rq, &rf); 1455 raw_spin_unlock(&p->pi_lock); 1456 1457 local_irq_enable(); 1458 return 0; 1459 } 1460 1461 /* 1462 * sched_class::set_cpus_allowed must do the below, but is not required to 1463 * actually call this function. 1464 */ 1465 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1466 { 1467 cpumask_copy(&p->cpus_mask, new_mask); 1468 p->nr_cpus_allowed = cpumask_weight(new_mask); 1469 } 1470 1471 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1472 { 1473 struct rq *rq = task_rq(p); 1474 bool queued, running; 1475 1476 lockdep_assert_held(&p->pi_lock); 1477 1478 queued = task_on_rq_queued(p); 1479 running = task_current(rq, p); 1480 1481 if (queued) { 1482 /* 1483 * Because __kthread_bind() calls this on blocked tasks without 1484 * holding rq->lock. 1485 */ 1486 lockdep_assert_held(&rq->lock); 1487 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1488 } 1489 if (running) 1490 put_prev_task(rq, p); 1491 1492 p->sched_class->set_cpus_allowed(p, new_mask); 1493 1494 if (queued) 1495 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1496 if (running) 1497 set_curr_task(rq, p); 1498 } 1499 1500 /* 1501 * Change a given task's CPU affinity. Migrate the thread to a 1502 * proper CPU and schedule it away if the CPU it's executing on 1503 * is removed from the allowed bitmask. 1504 * 1505 * NOTE: the caller must have a valid reference to the task, the 1506 * task must not exit() & deallocate itself prematurely. The 1507 * call is not atomic; no spinlocks may be held. 1508 */ 1509 static int __set_cpus_allowed_ptr(struct task_struct *p, 1510 const struct cpumask *new_mask, bool check) 1511 { 1512 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1513 unsigned int dest_cpu; 1514 struct rq_flags rf; 1515 struct rq *rq; 1516 int ret = 0; 1517 1518 rq = task_rq_lock(p, &rf); 1519 update_rq_clock(rq); 1520 1521 if (p->flags & PF_KTHREAD) { 1522 /* 1523 * Kernel threads are allowed on online && !active CPUs 1524 */ 1525 cpu_valid_mask = cpu_online_mask; 1526 } 1527 1528 /* 1529 * Must re-check here, to close a race against __kthread_bind(), 1530 * sched_setaffinity() is not guaranteed to observe the flag. 1531 */ 1532 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1533 ret = -EINVAL; 1534 goto out; 1535 } 1536 1537 if (cpumask_equal(p->cpus_ptr, new_mask)) 1538 goto out; 1539 1540 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1541 ret = -EINVAL; 1542 goto out; 1543 } 1544 1545 do_set_cpus_allowed(p, new_mask); 1546 1547 if (p->flags & PF_KTHREAD) { 1548 /* 1549 * For kernel threads that do indeed end up on online && 1550 * !active we want to ensure they are strict per-CPU threads. 1551 */ 1552 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1553 !cpumask_intersects(new_mask, cpu_active_mask) && 1554 p->nr_cpus_allowed != 1); 1555 } 1556 1557 /* Can the task run on the task's current CPU? If so, we're done */ 1558 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1559 goto out; 1560 1561 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1562 if (task_running(rq, p) || p->state == TASK_WAKING) { 1563 struct migration_arg arg = { p, dest_cpu }; 1564 /* Need help from migration thread: drop lock and wait. */ 1565 task_rq_unlock(rq, p, &rf); 1566 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1567 return 0; 1568 } else if (task_on_rq_queued(p)) { 1569 /* 1570 * OK, since we're going to drop the lock immediately 1571 * afterwards anyway. 1572 */ 1573 rq = move_queued_task(rq, &rf, p, dest_cpu); 1574 } 1575 out: 1576 task_rq_unlock(rq, p, &rf); 1577 1578 return ret; 1579 } 1580 1581 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1582 { 1583 return __set_cpus_allowed_ptr(p, new_mask, false); 1584 } 1585 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1586 1587 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1588 { 1589 #ifdef CONFIG_SCHED_DEBUG 1590 /* 1591 * We should never call set_task_cpu() on a blocked task, 1592 * ttwu() will sort out the placement. 1593 */ 1594 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1595 !p->on_rq); 1596 1597 /* 1598 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1599 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1600 * time relying on p->on_rq. 1601 */ 1602 WARN_ON_ONCE(p->state == TASK_RUNNING && 1603 p->sched_class == &fair_sched_class && 1604 (p->on_rq && !task_on_rq_migrating(p))); 1605 1606 #ifdef CONFIG_LOCKDEP 1607 /* 1608 * The caller should hold either p->pi_lock or rq->lock, when changing 1609 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1610 * 1611 * sched_move_task() holds both and thus holding either pins the cgroup, 1612 * see task_group(). 1613 * 1614 * Furthermore, all task_rq users should acquire both locks, see 1615 * task_rq_lock(). 1616 */ 1617 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1618 lockdep_is_held(&task_rq(p)->lock))); 1619 #endif 1620 /* 1621 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1622 */ 1623 WARN_ON_ONCE(!cpu_online(new_cpu)); 1624 #endif 1625 1626 trace_sched_migrate_task(p, new_cpu); 1627 1628 if (task_cpu(p) != new_cpu) { 1629 if (p->sched_class->migrate_task_rq) 1630 p->sched_class->migrate_task_rq(p, new_cpu); 1631 p->se.nr_migrations++; 1632 rseq_migrate(p); 1633 perf_event_task_migrate(p); 1634 } 1635 1636 __set_task_cpu(p, new_cpu); 1637 } 1638 1639 #ifdef CONFIG_NUMA_BALANCING 1640 static void __migrate_swap_task(struct task_struct *p, int cpu) 1641 { 1642 if (task_on_rq_queued(p)) { 1643 struct rq *src_rq, *dst_rq; 1644 struct rq_flags srf, drf; 1645 1646 src_rq = task_rq(p); 1647 dst_rq = cpu_rq(cpu); 1648 1649 rq_pin_lock(src_rq, &srf); 1650 rq_pin_lock(dst_rq, &drf); 1651 1652 deactivate_task(src_rq, p, 0); 1653 set_task_cpu(p, cpu); 1654 activate_task(dst_rq, p, 0); 1655 check_preempt_curr(dst_rq, p, 0); 1656 1657 rq_unpin_lock(dst_rq, &drf); 1658 rq_unpin_lock(src_rq, &srf); 1659 1660 } else { 1661 /* 1662 * Task isn't running anymore; make it appear like we migrated 1663 * it before it went to sleep. This means on wakeup we make the 1664 * previous CPU our target instead of where it really is. 1665 */ 1666 p->wake_cpu = cpu; 1667 } 1668 } 1669 1670 struct migration_swap_arg { 1671 struct task_struct *src_task, *dst_task; 1672 int src_cpu, dst_cpu; 1673 }; 1674 1675 static int migrate_swap_stop(void *data) 1676 { 1677 struct migration_swap_arg *arg = data; 1678 struct rq *src_rq, *dst_rq; 1679 int ret = -EAGAIN; 1680 1681 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1682 return -EAGAIN; 1683 1684 src_rq = cpu_rq(arg->src_cpu); 1685 dst_rq = cpu_rq(arg->dst_cpu); 1686 1687 double_raw_lock(&arg->src_task->pi_lock, 1688 &arg->dst_task->pi_lock); 1689 double_rq_lock(src_rq, dst_rq); 1690 1691 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1692 goto unlock; 1693 1694 if (task_cpu(arg->src_task) != arg->src_cpu) 1695 goto unlock; 1696 1697 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1698 goto unlock; 1699 1700 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1701 goto unlock; 1702 1703 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1704 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1705 1706 ret = 0; 1707 1708 unlock: 1709 double_rq_unlock(src_rq, dst_rq); 1710 raw_spin_unlock(&arg->dst_task->pi_lock); 1711 raw_spin_unlock(&arg->src_task->pi_lock); 1712 1713 return ret; 1714 } 1715 1716 /* 1717 * Cross migrate two tasks 1718 */ 1719 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1720 int target_cpu, int curr_cpu) 1721 { 1722 struct migration_swap_arg arg; 1723 int ret = -EINVAL; 1724 1725 arg = (struct migration_swap_arg){ 1726 .src_task = cur, 1727 .src_cpu = curr_cpu, 1728 .dst_task = p, 1729 .dst_cpu = target_cpu, 1730 }; 1731 1732 if (arg.src_cpu == arg.dst_cpu) 1733 goto out; 1734 1735 /* 1736 * These three tests are all lockless; this is OK since all of them 1737 * will be re-checked with proper locks held further down the line. 1738 */ 1739 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1740 goto out; 1741 1742 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1743 goto out; 1744 1745 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1746 goto out; 1747 1748 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1749 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1750 1751 out: 1752 return ret; 1753 } 1754 #endif /* CONFIG_NUMA_BALANCING */ 1755 1756 /* 1757 * wait_task_inactive - wait for a thread to unschedule. 1758 * 1759 * If @match_state is nonzero, it's the @p->state value just checked and 1760 * not expected to change. If it changes, i.e. @p might have woken up, 1761 * then return zero. When we succeed in waiting for @p to be off its CPU, 1762 * we return a positive number (its total switch count). If a second call 1763 * a short while later returns the same number, the caller can be sure that 1764 * @p has remained unscheduled the whole time. 1765 * 1766 * The caller must ensure that the task *will* unschedule sometime soon, 1767 * else this function might spin for a *long* time. This function can't 1768 * be called with interrupts off, or it may introduce deadlock with 1769 * smp_call_function() if an IPI is sent by the same process we are 1770 * waiting to become inactive. 1771 */ 1772 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1773 { 1774 int running, queued; 1775 struct rq_flags rf; 1776 unsigned long ncsw; 1777 struct rq *rq; 1778 1779 for (;;) { 1780 /* 1781 * We do the initial early heuristics without holding 1782 * any task-queue locks at all. We'll only try to get 1783 * the runqueue lock when things look like they will 1784 * work out! 1785 */ 1786 rq = task_rq(p); 1787 1788 /* 1789 * If the task is actively running on another CPU 1790 * still, just relax and busy-wait without holding 1791 * any locks. 1792 * 1793 * NOTE! Since we don't hold any locks, it's not 1794 * even sure that "rq" stays as the right runqueue! 1795 * But we don't care, since "task_running()" will 1796 * return false if the runqueue has changed and p 1797 * is actually now running somewhere else! 1798 */ 1799 while (task_running(rq, p)) { 1800 if (match_state && unlikely(p->state != match_state)) 1801 return 0; 1802 cpu_relax(); 1803 } 1804 1805 /* 1806 * Ok, time to look more closely! We need the rq 1807 * lock now, to be *sure*. If we're wrong, we'll 1808 * just go back and repeat. 1809 */ 1810 rq = task_rq_lock(p, &rf); 1811 trace_sched_wait_task(p); 1812 running = task_running(rq, p); 1813 queued = task_on_rq_queued(p); 1814 ncsw = 0; 1815 if (!match_state || p->state == match_state) 1816 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1817 task_rq_unlock(rq, p, &rf); 1818 1819 /* 1820 * If it changed from the expected state, bail out now. 1821 */ 1822 if (unlikely(!ncsw)) 1823 break; 1824 1825 /* 1826 * Was it really running after all now that we 1827 * checked with the proper locks actually held? 1828 * 1829 * Oops. Go back and try again.. 1830 */ 1831 if (unlikely(running)) { 1832 cpu_relax(); 1833 continue; 1834 } 1835 1836 /* 1837 * It's not enough that it's not actively running, 1838 * it must be off the runqueue _entirely_, and not 1839 * preempted! 1840 * 1841 * So if it was still runnable (but just not actively 1842 * running right now), it's preempted, and we should 1843 * yield - it could be a while. 1844 */ 1845 if (unlikely(queued)) { 1846 ktime_t to = NSEC_PER_SEC / HZ; 1847 1848 set_current_state(TASK_UNINTERRUPTIBLE); 1849 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1850 continue; 1851 } 1852 1853 /* 1854 * Ahh, all good. It wasn't running, and it wasn't 1855 * runnable, which means that it will never become 1856 * running in the future either. We're all done! 1857 */ 1858 break; 1859 } 1860 1861 return ncsw; 1862 } 1863 1864 /*** 1865 * kick_process - kick a running thread to enter/exit the kernel 1866 * @p: the to-be-kicked thread 1867 * 1868 * Cause a process which is running on another CPU to enter 1869 * kernel-mode, without any delay. (to get signals handled.) 1870 * 1871 * NOTE: this function doesn't have to take the runqueue lock, 1872 * because all it wants to ensure is that the remote task enters 1873 * the kernel. If the IPI races and the task has been migrated 1874 * to another CPU then no harm is done and the purpose has been 1875 * achieved as well. 1876 */ 1877 void kick_process(struct task_struct *p) 1878 { 1879 int cpu; 1880 1881 preempt_disable(); 1882 cpu = task_cpu(p); 1883 if ((cpu != smp_processor_id()) && task_curr(p)) 1884 smp_send_reschedule(cpu); 1885 preempt_enable(); 1886 } 1887 EXPORT_SYMBOL_GPL(kick_process); 1888 1889 /* 1890 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 1891 * 1892 * A few notes on cpu_active vs cpu_online: 1893 * 1894 * - cpu_active must be a subset of cpu_online 1895 * 1896 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1897 * see __set_cpus_allowed_ptr(). At this point the newly online 1898 * CPU isn't yet part of the sched domains, and balancing will not 1899 * see it. 1900 * 1901 * - on CPU-down we clear cpu_active() to mask the sched domains and 1902 * avoid the load balancer to place new tasks on the to be removed 1903 * CPU. Existing tasks will remain running there and will be taken 1904 * off. 1905 * 1906 * This means that fallback selection must not select !active CPUs. 1907 * And can assume that any active CPU must be online. Conversely 1908 * select_task_rq() below may allow selection of !active CPUs in order 1909 * to satisfy the above rules. 1910 */ 1911 static int select_fallback_rq(int cpu, struct task_struct *p) 1912 { 1913 int nid = cpu_to_node(cpu); 1914 const struct cpumask *nodemask = NULL; 1915 enum { cpuset, possible, fail } state = cpuset; 1916 int dest_cpu; 1917 1918 /* 1919 * If the node that the CPU is on has been offlined, cpu_to_node() 1920 * will return -1. There is no CPU on the node, and we should 1921 * select the CPU on the other node. 1922 */ 1923 if (nid != -1) { 1924 nodemask = cpumask_of_node(nid); 1925 1926 /* Look for allowed, online CPU in same node. */ 1927 for_each_cpu(dest_cpu, nodemask) { 1928 if (!cpu_active(dest_cpu)) 1929 continue; 1930 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 1931 return dest_cpu; 1932 } 1933 } 1934 1935 for (;;) { 1936 /* Any allowed, online CPU? */ 1937 for_each_cpu(dest_cpu, p->cpus_ptr) { 1938 if (!is_cpu_allowed(p, dest_cpu)) 1939 continue; 1940 1941 goto out; 1942 } 1943 1944 /* No more Mr. Nice Guy. */ 1945 switch (state) { 1946 case cpuset: 1947 if (IS_ENABLED(CONFIG_CPUSETS)) { 1948 cpuset_cpus_allowed_fallback(p); 1949 state = possible; 1950 break; 1951 } 1952 /* Fall-through */ 1953 case possible: 1954 do_set_cpus_allowed(p, cpu_possible_mask); 1955 state = fail; 1956 break; 1957 1958 case fail: 1959 BUG(); 1960 break; 1961 } 1962 } 1963 1964 out: 1965 if (state != cpuset) { 1966 /* 1967 * Don't tell them about moving exiting tasks or 1968 * kernel threads (both mm NULL), since they never 1969 * leave kernel. 1970 */ 1971 if (p->mm && printk_ratelimit()) { 1972 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1973 task_pid_nr(p), p->comm, cpu); 1974 } 1975 } 1976 1977 return dest_cpu; 1978 } 1979 1980 /* 1981 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 1982 */ 1983 static inline 1984 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1985 { 1986 lockdep_assert_held(&p->pi_lock); 1987 1988 if (p->nr_cpus_allowed > 1) 1989 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1990 else 1991 cpu = cpumask_any(p->cpus_ptr); 1992 1993 /* 1994 * In order not to call set_task_cpu() on a blocking task we need 1995 * to rely on ttwu() to place the task on a valid ->cpus_ptr 1996 * CPU. 1997 * 1998 * Since this is common to all placement strategies, this lives here. 1999 * 2000 * [ this allows ->select_task() to simply return task_cpu(p) and 2001 * not worry about this generic constraint ] 2002 */ 2003 if (unlikely(!is_cpu_allowed(p, cpu))) 2004 cpu = select_fallback_rq(task_cpu(p), p); 2005 2006 return cpu; 2007 } 2008 2009 static void update_avg(u64 *avg, u64 sample) 2010 { 2011 s64 diff = sample - *avg; 2012 *avg += diff >> 3; 2013 } 2014 2015 void sched_set_stop_task(int cpu, struct task_struct *stop) 2016 { 2017 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2018 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2019 2020 if (stop) { 2021 /* 2022 * Make it appear like a SCHED_FIFO task, its something 2023 * userspace knows about and won't get confused about. 2024 * 2025 * Also, it will make PI more or less work without too 2026 * much confusion -- but then, stop work should not 2027 * rely on PI working anyway. 2028 */ 2029 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2030 2031 stop->sched_class = &stop_sched_class; 2032 } 2033 2034 cpu_rq(cpu)->stop = stop; 2035 2036 if (old_stop) { 2037 /* 2038 * Reset it back to a normal scheduling class so that 2039 * it can die in pieces. 2040 */ 2041 old_stop->sched_class = &rt_sched_class; 2042 } 2043 } 2044 2045 #else 2046 2047 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2048 const struct cpumask *new_mask, bool check) 2049 { 2050 return set_cpus_allowed_ptr(p, new_mask); 2051 } 2052 2053 #endif /* CONFIG_SMP */ 2054 2055 static void 2056 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2057 { 2058 struct rq *rq; 2059 2060 if (!schedstat_enabled()) 2061 return; 2062 2063 rq = this_rq(); 2064 2065 #ifdef CONFIG_SMP 2066 if (cpu == rq->cpu) { 2067 __schedstat_inc(rq->ttwu_local); 2068 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2069 } else { 2070 struct sched_domain *sd; 2071 2072 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2073 rcu_read_lock(); 2074 for_each_domain(rq->cpu, sd) { 2075 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2076 __schedstat_inc(sd->ttwu_wake_remote); 2077 break; 2078 } 2079 } 2080 rcu_read_unlock(); 2081 } 2082 2083 if (wake_flags & WF_MIGRATED) 2084 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2085 #endif /* CONFIG_SMP */ 2086 2087 __schedstat_inc(rq->ttwu_count); 2088 __schedstat_inc(p->se.statistics.nr_wakeups); 2089 2090 if (wake_flags & WF_SYNC) 2091 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2092 } 2093 2094 /* 2095 * Mark the task runnable and perform wakeup-preemption. 2096 */ 2097 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2098 struct rq_flags *rf) 2099 { 2100 check_preempt_curr(rq, p, wake_flags); 2101 p->state = TASK_RUNNING; 2102 trace_sched_wakeup(p); 2103 2104 #ifdef CONFIG_SMP 2105 if (p->sched_class->task_woken) { 2106 /* 2107 * Our task @p is fully woken up and running; so its safe to 2108 * drop the rq->lock, hereafter rq is only used for statistics. 2109 */ 2110 rq_unpin_lock(rq, rf); 2111 p->sched_class->task_woken(rq, p); 2112 rq_repin_lock(rq, rf); 2113 } 2114 2115 if (rq->idle_stamp) { 2116 u64 delta = rq_clock(rq) - rq->idle_stamp; 2117 u64 max = 2*rq->max_idle_balance_cost; 2118 2119 update_avg(&rq->avg_idle, delta); 2120 2121 if (rq->avg_idle > max) 2122 rq->avg_idle = max; 2123 2124 rq->idle_stamp = 0; 2125 } 2126 #endif 2127 } 2128 2129 static void 2130 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2131 struct rq_flags *rf) 2132 { 2133 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2134 2135 lockdep_assert_held(&rq->lock); 2136 2137 #ifdef CONFIG_SMP 2138 if (p->sched_contributes_to_load) 2139 rq->nr_uninterruptible--; 2140 2141 if (wake_flags & WF_MIGRATED) 2142 en_flags |= ENQUEUE_MIGRATED; 2143 #endif 2144 2145 activate_task(rq, p, en_flags); 2146 ttwu_do_wakeup(rq, p, wake_flags, rf); 2147 } 2148 2149 /* 2150 * Called in case the task @p isn't fully descheduled from its runqueue, 2151 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2152 * since all we need to do is flip p->state to TASK_RUNNING, since 2153 * the task is still ->on_rq. 2154 */ 2155 static int ttwu_remote(struct task_struct *p, int wake_flags) 2156 { 2157 struct rq_flags rf; 2158 struct rq *rq; 2159 int ret = 0; 2160 2161 rq = __task_rq_lock(p, &rf); 2162 if (task_on_rq_queued(p)) { 2163 /* check_preempt_curr() may use rq clock */ 2164 update_rq_clock(rq); 2165 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2166 ret = 1; 2167 } 2168 __task_rq_unlock(rq, &rf); 2169 2170 return ret; 2171 } 2172 2173 #ifdef CONFIG_SMP 2174 void sched_ttwu_pending(void) 2175 { 2176 struct rq *rq = this_rq(); 2177 struct llist_node *llist = llist_del_all(&rq->wake_list); 2178 struct task_struct *p, *t; 2179 struct rq_flags rf; 2180 2181 if (!llist) 2182 return; 2183 2184 rq_lock_irqsave(rq, &rf); 2185 update_rq_clock(rq); 2186 2187 llist_for_each_entry_safe(p, t, llist, wake_entry) 2188 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2189 2190 rq_unlock_irqrestore(rq, &rf); 2191 } 2192 2193 void scheduler_ipi(void) 2194 { 2195 /* 2196 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2197 * TIF_NEED_RESCHED remotely (for the first time) will also send 2198 * this IPI. 2199 */ 2200 preempt_fold_need_resched(); 2201 2202 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2203 return; 2204 2205 /* 2206 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2207 * traditionally all their work was done from the interrupt return 2208 * path. Now that we actually do some work, we need to make sure 2209 * we do call them. 2210 * 2211 * Some archs already do call them, luckily irq_enter/exit nest 2212 * properly. 2213 * 2214 * Arguably we should visit all archs and update all handlers, 2215 * however a fair share of IPIs are still resched only so this would 2216 * somewhat pessimize the simple resched case. 2217 */ 2218 irq_enter(); 2219 sched_ttwu_pending(); 2220 2221 /* 2222 * Check if someone kicked us for doing the nohz idle load balance. 2223 */ 2224 if (unlikely(got_nohz_idle_kick())) { 2225 this_rq()->idle_balance = 1; 2226 raise_softirq_irqoff(SCHED_SOFTIRQ); 2227 } 2228 irq_exit(); 2229 } 2230 2231 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2232 { 2233 struct rq *rq = cpu_rq(cpu); 2234 2235 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2236 2237 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2238 if (!set_nr_if_polling(rq->idle)) 2239 smp_send_reschedule(cpu); 2240 else 2241 trace_sched_wake_idle_without_ipi(cpu); 2242 } 2243 } 2244 2245 void wake_up_if_idle(int cpu) 2246 { 2247 struct rq *rq = cpu_rq(cpu); 2248 struct rq_flags rf; 2249 2250 rcu_read_lock(); 2251 2252 if (!is_idle_task(rcu_dereference(rq->curr))) 2253 goto out; 2254 2255 if (set_nr_if_polling(rq->idle)) { 2256 trace_sched_wake_idle_without_ipi(cpu); 2257 } else { 2258 rq_lock_irqsave(rq, &rf); 2259 if (is_idle_task(rq->curr)) 2260 smp_send_reschedule(cpu); 2261 /* Else CPU is not idle, do nothing here: */ 2262 rq_unlock_irqrestore(rq, &rf); 2263 } 2264 2265 out: 2266 rcu_read_unlock(); 2267 } 2268 2269 bool cpus_share_cache(int this_cpu, int that_cpu) 2270 { 2271 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2272 } 2273 #endif /* CONFIG_SMP */ 2274 2275 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2276 { 2277 struct rq *rq = cpu_rq(cpu); 2278 struct rq_flags rf; 2279 2280 #if defined(CONFIG_SMP) 2281 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2282 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2283 ttwu_queue_remote(p, cpu, wake_flags); 2284 return; 2285 } 2286 #endif 2287 2288 rq_lock(rq, &rf); 2289 update_rq_clock(rq); 2290 ttwu_do_activate(rq, p, wake_flags, &rf); 2291 rq_unlock(rq, &rf); 2292 } 2293 2294 /* 2295 * Notes on Program-Order guarantees on SMP systems. 2296 * 2297 * MIGRATION 2298 * 2299 * The basic program-order guarantee on SMP systems is that when a task [t] 2300 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2301 * execution on its new CPU [c1]. 2302 * 2303 * For migration (of runnable tasks) this is provided by the following means: 2304 * 2305 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2306 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2307 * rq(c1)->lock (if not at the same time, then in that order). 2308 * C) LOCK of the rq(c1)->lock scheduling in task 2309 * 2310 * Release/acquire chaining guarantees that B happens after A and C after B. 2311 * Note: the CPU doing B need not be c0 or c1 2312 * 2313 * Example: 2314 * 2315 * CPU0 CPU1 CPU2 2316 * 2317 * LOCK rq(0)->lock 2318 * sched-out X 2319 * sched-in Y 2320 * UNLOCK rq(0)->lock 2321 * 2322 * LOCK rq(0)->lock // orders against CPU0 2323 * dequeue X 2324 * UNLOCK rq(0)->lock 2325 * 2326 * LOCK rq(1)->lock 2327 * enqueue X 2328 * UNLOCK rq(1)->lock 2329 * 2330 * LOCK rq(1)->lock // orders against CPU2 2331 * sched-out Z 2332 * sched-in X 2333 * UNLOCK rq(1)->lock 2334 * 2335 * 2336 * BLOCKING -- aka. SLEEP + WAKEUP 2337 * 2338 * For blocking we (obviously) need to provide the same guarantee as for 2339 * migration. However the means are completely different as there is no lock 2340 * chain to provide order. Instead we do: 2341 * 2342 * 1) smp_store_release(X->on_cpu, 0) 2343 * 2) smp_cond_load_acquire(!X->on_cpu) 2344 * 2345 * Example: 2346 * 2347 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2348 * 2349 * LOCK rq(0)->lock LOCK X->pi_lock 2350 * dequeue X 2351 * sched-out X 2352 * smp_store_release(X->on_cpu, 0); 2353 * 2354 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2355 * X->state = WAKING 2356 * set_task_cpu(X,2) 2357 * 2358 * LOCK rq(2)->lock 2359 * enqueue X 2360 * X->state = RUNNING 2361 * UNLOCK rq(2)->lock 2362 * 2363 * LOCK rq(2)->lock // orders against CPU1 2364 * sched-out Z 2365 * sched-in X 2366 * UNLOCK rq(2)->lock 2367 * 2368 * UNLOCK X->pi_lock 2369 * UNLOCK rq(0)->lock 2370 * 2371 * 2372 * However, for wakeups there is a second guarantee we must provide, namely we 2373 * must ensure that CONDITION=1 done by the caller can not be reordered with 2374 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2375 */ 2376 2377 /** 2378 * try_to_wake_up - wake up a thread 2379 * @p: the thread to be awakened 2380 * @state: the mask of task states that can be woken 2381 * @wake_flags: wake modifier flags (WF_*) 2382 * 2383 * If (@state & @p->state) @p->state = TASK_RUNNING. 2384 * 2385 * If the task was not queued/runnable, also place it back on a runqueue. 2386 * 2387 * Atomic against schedule() which would dequeue a task, also see 2388 * set_current_state(). 2389 * 2390 * This function executes a full memory barrier before accessing the task 2391 * state; see set_current_state(). 2392 * 2393 * Return: %true if @p->state changes (an actual wakeup was done), 2394 * %false otherwise. 2395 */ 2396 static int 2397 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2398 { 2399 unsigned long flags; 2400 int cpu, success = 0; 2401 2402 if (p == current) { 2403 /* 2404 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2405 * == smp_processor_id()'. Together this means we can special 2406 * case the whole 'p->on_rq && ttwu_remote()' case below 2407 * without taking any locks. 2408 * 2409 * In particular: 2410 * - we rely on Program-Order guarantees for all the ordering, 2411 * - we're serialized against set_special_state() by virtue of 2412 * it disabling IRQs (this allows not taking ->pi_lock). 2413 */ 2414 if (!(p->state & state)) 2415 return false; 2416 2417 success = 1; 2418 cpu = task_cpu(p); 2419 trace_sched_waking(p); 2420 p->state = TASK_RUNNING; 2421 trace_sched_wakeup(p); 2422 goto out; 2423 } 2424 2425 /* 2426 * If we are going to wake up a thread waiting for CONDITION we 2427 * need to ensure that CONDITION=1 done by the caller can not be 2428 * reordered with p->state check below. This pairs with mb() in 2429 * set_current_state() the waiting thread does. 2430 */ 2431 raw_spin_lock_irqsave(&p->pi_lock, flags); 2432 smp_mb__after_spinlock(); 2433 if (!(p->state & state)) 2434 goto unlock; 2435 2436 trace_sched_waking(p); 2437 2438 /* We're going to change ->state: */ 2439 success = 1; 2440 cpu = task_cpu(p); 2441 2442 /* 2443 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2444 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2445 * in smp_cond_load_acquire() below. 2446 * 2447 * sched_ttwu_pending() try_to_wake_up() 2448 * STORE p->on_rq = 1 LOAD p->state 2449 * UNLOCK rq->lock 2450 * 2451 * __schedule() (switch to task 'p') 2452 * LOCK rq->lock smp_rmb(); 2453 * smp_mb__after_spinlock(); 2454 * UNLOCK rq->lock 2455 * 2456 * [task p] 2457 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2458 * 2459 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2460 * __schedule(). See the comment for smp_mb__after_spinlock(). 2461 */ 2462 smp_rmb(); 2463 if (p->on_rq && ttwu_remote(p, wake_flags)) 2464 goto unlock; 2465 2466 #ifdef CONFIG_SMP 2467 /* 2468 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2469 * possible to, falsely, observe p->on_cpu == 0. 2470 * 2471 * One must be running (->on_cpu == 1) in order to remove oneself 2472 * from the runqueue. 2473 * 2474 * __schedule() (switch to task 'p') try_to_wake_up() 2475 * STORE p->on_cpu = 1 LOAD p->on_rq 2476 * UNLOCK rq->lock 2477 * 2478 * __schedule() (put 'p' to sleep) 2479 * LOCK rq->lock smp_rmb(); 2480 * smp_mb__after_spinlock(); 2481 * STORE p->on_rq = 0 LOAD p->on_cpu 2482 * 2483 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2484 * __schedule(). See the comment for smp_mb__after_spinlock(). 2485 */ 2486 smp_rmb(); 2487 2488 /* 2489 * If the owning (remote) CPU is still in the middle of schedule() with 2490 * this task as prev, wait until its done referencing the task. 2491 * 2492 * Pairs with the smp_store_release() in finish_task(). 2493 * 2494 * This ensures that tasks getting woken will be fully ordered against 2495 * their previous state and preserve Program Order. 2496 */ 2497 smp_cond_load_acquire(&p->on_cpu, !VAL); 2498 2499 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2500 p->state = TASK_WAKING; 2501 2502 if (p->in_iowait) { 2503 delayacct_blkio_end(p); 2504 atomic_dec(&task_rq(p)->nr_iowait); 2505 } 2506 2507 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2508 if (task_cpu(p) != cpu) { 2509 wake_flags |= WF_MIGRATED; 2510 psi_ttwu_dequeue(p); 2511 set_task_cpu(p, cpu); 2512 } 2513 2514 #else /* CONFIG_SMP */ 2515 2516 if (p->in_iowait) { 2517 delayacct_blkio_end(p); 2518 atomic_dec(&task_rq(p)->nr_iowait); 2519 } 2520 2521 #endif /* CONFIG_SMP */ 2522 2523 ttwu_queue(p, cpu, wake_flags); 2524 unlock: 2525 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2526 out: 2527 if (success) 2528 ttwu_stat(p, cpu, wake_flags); 2529 2530 return success; 2531 } 2532 2533 /** 2534 * wake_up_process - Wake up a specific process 2535 * @p: The process to be woken up. 2536 * 2537 * Attempt to wake up the nominated process and move it to the set of runnable 2538 * processes. 2539 * 2540 * Return: 1 if the process was woken up, 0 if it was already running. 2541 * 2542 * This function executes a full memory barrier before accessing the task state. 2543 */ 2544 int wake_up_process(struct task_struct *p) 2545 { 2546 return try_to_wake_up(p, TASK_NORMAL, 0); 2547 } 2548 EXPORT_SYMBOL(wake_up_process); 2549 2550 int wake_up_state(struct task_struct *p, unsigned int state) 2551 { 2552 return try_to_wake_up(p, state, 0); 2553 } 2554 2555 /* 2556 * Perform scheduler related setup for a newly forked process p. 2557 * p is forked by current. 2558 * 2559 * __sched_fork() is basic setup used by init_idle() too: 2560 */ 2561 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2562 { 2563 p->on_rq = 0; 2564 2565 p->se.on_rq = 0; 2566 p->se.exec_start = 0; 2567 p->se.sum_exec_runtime = 0; 2568 p->se.prev_sum_exec_runtime = 0; 2569 p->se.nr_migrations = 0; 2570 p->se.vruntime = 0; 2571 INIT_LIST_HEAD(&p->se.group_node); 2572 2573 #ifdef CONFIG_FAIR_GROUP_SCHED 2574 p->se.cfs_rq = NULL; 2575 #endif 2576 2577 #ifdef CONFIG_SCHEDSTATS 2578 /* Even if schedstat is disabled, there should not be garbage */ 2579 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2580 #endif 2581 2582 RB_CLEAR_NODE(&p->dl.rb_node); 2583 init_dl_task_timer(&p->dl); 2584 init_dl_inactive_task_timer(&p->dl); 2585 __dl_clear_params(p); 2586 2587 INIT_LIST_HEAD(&p->rt.run_list); 2588 p->rt.timeout = 0; 2589 p->rt.time_slice = sched_rr_timeslice; 2590 p->rt.on_rq = 0; 2591 p->rt.on_list = 0; 2592 2593 #ifdef CONFIG_PREEMPT_NOTIFIERS 2594 INIT_HLIST_HEAD(&p->preempt_notifiers); 2595 #endif 2596 2597 #ifdef CONFIG_COMPACTION 2598 p->capture_control = NULL; 2599 #endif 2600 init_numa_balancing(clone_flags, p); 2601 } 2602 2603 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2604 2605 #ifdef CONFIG_NUMA_BALANCING 2606 2607 void set_numabalancing_state(bool enabled) 2608 { 2609 if (enabled) 2610 static_branch_enable(&sched_numa_balancing); 2611 else 2612 static_branch_disable(&sched_numa_balancing); 2613 } 2614 2615 #ifdef CONFIG_PROC_SYSCTL 2616 int sysctl_numa_balancing(struct ctl_table *table, int write, 2617 void __user *buffer, size_t *lenp, loff_t *ppos) 2618 { 2619 struct ctl_table t; 2620 int err; 2621 int state = static_branch_likely(&sched_numa_balancing); 2622 2623 if (write && !capable(CAP_SYS_ADMIN)) 2624 return -EPERM; 2625 2626 t = *table; 2627 t.data = &state; 2628 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2629 if (err < 0) 2630 return err; 2631 if (write) 2632 set_numabalancing_state(state); 2633 return err; 2634 } 2635 #endif 2636 #endif 2637 2638 #ifdef CONFIG_SCHEDSTATS 2639 2640 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2641 static bool __initdata __sched_schedstats = false; 2642 2643 static void set_schedstats(bool enabled) 2644 { 2645 if (enabled) 2646 static_branch_enable(&sched_schedstats); 2647 else 2648 static_branch_disable(&sched_schedstats); 2649 } 2650 2651 void force_schedstat_enabled(void) 2652 { 2653 if (!schedstat_enabled()) { 2654 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2655 static_branch_enable(&sched_schedstats); 2656 } 2657 } 2658 2659 static int __init setup_schedstats(char *str) 2660 { 2661 int ret = 0; 2662 if (!str) 2663 goto out; 2664 2665 /* 2666 * This code is called before jump labels have been set up, so we can't 2667 * change the static branch directly just yet. Instead set a temporary 2668 * variable so init_schedstats() can do it later. 2669 */ 2670 if (!strcmp(str, "enable")) { 2671 __sched_schedstats = true; 2672 ret = 1; 2673 } else if (!strcmp(str, "disable")) { 2674 __sched_schedstats = false; 2675 ret = 1; 2676 } 2677 out: 2678 if (!ret) 2679 pr_warn("Unable to parse schedstats=\n"); 2680 2681 return ret; 2682 } 2683 __setup("schedstats=", setup_schedstats); 2684 2685 static void __init init_schedstats(void) 2686 { 2687 set_schedstats(__sched_schedstats); 2688 } 2689 2690 #ifdef CONFIG_PROC_SYSCTL 2691 int sysctl_schedstats(struct ctl_table *table, int write, 2692 void __user *buffer, size_t *lenp, loff_t *ppos) 2693 { 2694 struct ctl_table t; 2695 int err; 2696 int state = static_branch_likely(&sched_schedstats); 2697 2698 if (write && !capable(CAP_SYS_ADMIN)) 2699 return -EPERM; 2700 2701 t = *table; 2702 t.data = &state; 2703 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2704 if (err < 0) 2705 return err; 2706 if (write) 2707 set_schedstats(state); 2708 return err; 2709 } 2710 #endif /* CONFIG_PROC_SYSCTL */ 2711 #else /* !CONFIG_SCHEDSTATS */ 2712 static inline void init_schedstats(void) {} 2713 #endif /* CONFIG_SCHEDSTATS */ 2714 2715 /* 2716 * fork()/clone()-time setup: 2717 */ 2718 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2719 { 2720 unsigned long flags; 2721 2722 __sched_fork(clone_flags, p); 2723 /* 2724 * We mark the process as NEW here. This guarantees that 2725 * nobody will actually run it, and a signal or other external 2726 * event cannot wake it up and insert it on the runqueue either. 2727 */ 2728 p->state = TASK_NEW; 2729 2730 /* 2731 * Make sure we do not leak PI boosting priority to the child. 2732 */ 2733 p->prio = current->normal_prio; 2734 2735 uclamp_fork(p); 2736 2737 /* 2738 * Revert to default priority/policy on fork if requested. 2739 */ 2740 if (unlikely(p->sched_reset_on_fork)) { 2741 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2742 p->policy = SCHED_NORMAL; 2743 p->static_prio = NICE_TO_PRIO(0); 2744 p->rt_priority = 0; 2745 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2746 p->static_prio = NICE_TO_PRIO(0); 2747 2748 p->prio = p->normal_prio = __normal_prio(p); 2749 set_load_weight(p, false); 2750 2751 /* 2752 * We don't need the reset flag anymore after the fork. It has 2753 * fulfilled its duty: 2754 */ 2755 p->sched_reset_on_fork = 0; 2756 } 2757 2758 if (dl_prio(p->prio)) 2759 return -EAGAIN; 2760 else if (rt_prio(p->prio)) 2761 p->sched_class = &rt_sched_class; 2762 else 2763 p->sched_class = &fair_sched_class; 2764 2765 init_entity_runnable_average(&p->se); 2766 2767 /* 2768 * The child is not yet in the pid-hash so no cgroup attach races, 2769 * and the cgroup is pinned to this child due to cgroup_fork() 2770 * is ran before sched_fork(). 2771 * 2772 * Silence PROVE_RCU. 2773 */ 2774 raw_spin_lock_irqsave(&p->pi_lock, flags); 2775 /* 2776 * We're setting the CPU for the first time, we don't migrate, 2777 * so use __set_task_cpu(). 2778 */ 2779 __set_task_cpu(p, smp_processor_id()); 2780 if (p->sched_class->task_fork) 2781 p->sched_class->task_fork(p); 2782 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2783 2784 #ifdef CONFIG_SCHED_INFO 2785 if (likely(sched_info_on())) 2786 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2787 #endif 2788 #if defined(CONFIG_SMP) 2789 p->on_cpu = 0; 2790 #endif 2791 init_task_preempt_count(p); 2792 #ifdef CONFIG_SMP 2793 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2794 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2795 #endif 2796 return 0; 2797 } 2798 2799 unsigned long to_ratio(u64 period, u64 runtime) 2800 { 2801 if (runtime == RUNTIME_INF) 2802 return BW_UNIT; 2803 2804 /* 2805 * Doing this here saves a lot of checks in all 2806 * the calling paths, and returning zero seems 2807 * safe for them anyway. 2808 */ 2809 if (period == 0) 2810 return 0; 2811 2812 return div64_u64(runtime << BW_SHIFT, period); 2813 } 2814 2815 /* 2816 * wake_up_new_task - wake up a newly created task for the first time. 2817 * 2818 * This function will do some initial scheduler statistics housekeeping 2819 * that must be done for every newly created context, then puts the task 2820 * on the runqueue and wakes it. 2821 */ 2822 void wake_up_new_task(struct task_struct *p) 2823 { 2824 struct rq_flags rf; 2825 struct rq *rq; 2826 2827 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2828 p->state = TASK_RUNNING; 2829 #ifdef CONFIG_SMP 2830 /* 2831 * Fork balancing, do it here and not earlier because: 2832 * - cpus_ptr can change in the fork path 2833 * - any previously selected CPU might disappear through hotplug 2834 * 2835 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2836 * as we're not fully set-up yet. 2837 */ 2838 p->recent_used_cpu = task_cpu(p); 2839 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2840 #endif 2841 rq = __task_rq_lock(p, &rf); 2842 update_rq_clock(rq); 2843 post_init_entity_util_avg(p); 2844 2845 activate_task(rq, p, ENQUEUE_NOCLOCK); 2846 trace_sched_wakeup_new(p); 2847 check_preempt_curr(rq, p, WF_FORK); 2848 #ifdef CONFIG_SMP 2849 if (p->sched_class->task_woken) { 2850 /* 2851 * Nothing relies on rq->lock after this, so its fine to 2852 * drop it. 2853 */ 2854 rq_unpin_lock(rq, &rf); 2855 p->sched_class->task_woken(rq, p); 2856 rq_repin_lock(rq, &rf); 2857 } 2858 #endif 2859 task_rq_unlock(rq, p, &rf); 2860 } 2861 2862 #ifdef CONFIG_PREEMPT_NOTIFIERS 2863 2864 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2865 2866 void preempt_notifier_inc(void) 2867 { 2868 static_branch_inc(&preempt_notifier_key); 2869 } 2870 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2871 2872 void preempt_notifier_dec(void) 2873 { 2874 static_branch_dec(&preempt_notifier_key); 2875 } 2876 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2877 2878 /** 2879 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2880 * @notifier: notifier struct to register 2881 */ 2882 void preempt_notifier_register(struct preempt_notifier *notifier) 2883 { 2884 if (!static_branch_unlikely(&preempt_notifier_key)) 2885 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2886 2887 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2888 } 2889 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2890 2891 /** 2892 * preempt_notifier_unregister - no longer interested in preemption notifications 2893 * @notifier: notifier struct to unregister 2894 * 2895 * This is *not* safe to call from within a preemption notifier. 2896 */ 2897 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2898 { 2899 hlist_del(¬ifier->link); 2900 } 2901 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2902 2903 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2904 { 2905 struct preempt_notifier *notifier; 2906 2907 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2908 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2909 } 2910 2911 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2912 { 2913 if (static_branch_unlikely(&preempt_notifier_key)) 2914 __fire_sched_in_preempt_notifiers(curr); 2915 } 2916 2917 static void 2918 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2919 struct task_struct *next) 2920 { 2921 struct preempt_notifier *notifier; 2922 2923 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2924 notifier->ops->sched_out(notifier, next); 2925 } 2926 2927 static __always_inline void 2928 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2929 struct task_struct *next) 2930 { 2931 if (static_branch_unlikely(&preempt_notifier_key)) 2932 __fire_sched_out_preempt_notifiers(curr, next); 2933 } 2934 2935 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2936 2937 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2938 { 2939 } 2940 2941 static inline void 2942 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2943 struct task_struct *next) 2944 { 2945 } 2946 2947 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2948 2949 static inline void prepare_task(struct task_struct *next) 2950 { 2951 #ifdef CONFIG_SMP 2952 /* 2953 * Claim the task as running, we do this before switching to it 2954 * such that any running task will have this set. 2955 */ 2956 next->on_cpu = 1; 2957 #endif 2958 } 2959 2960 static inline void finish_task(struct task_struct *prev) 2961 { 2962 #ifdef CONFIG_SMP 2963 /* 2964 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2965 * We must ensure this doesn't happen until the switch is completely 2966 * finished. 2967 * 2968 * In particular, the load of prev->state in finish_task_switch() must 2969 * happen before this. 2970 * 2971 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2972 */ 2973 smp_store_release(&prev->on_cpu, 0); 2974 #endif 2975 } 2976 2977 static inline void 2978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2979 { 2980 /* 2981 * Since the runqueue lock will be released by the next 2982 * task (which is an invalid locking op but in the case 2983 * of the scheduler it's an obvious special-case), so we 2984 * do an early lockdep release here: 2985 */ 2986 rq_unpin_lock(rq, rf); 2987 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2988 #ifdef CONFIG_DEBUG_SPINLOCK 2989 /* this is a valid case when another task releases the spinlock */ 2990 rq->lock.owner = next; 2991 #endif 2992 } 2993 2994 static inline void finish_lock_switch(struct rq *rq) 2995 { 2996 /* 2997 * If we are tracking spinlock dependencies then we have to 2998 * fix up the runqueue lock - which gets 'carried over' from 2999 * prev into current: 3000 */ 3001 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3002 raw_spin_unlock_irq(&rq->lock); 3003 } 3004 3005 /* 3006 * NOP if the arch has not defined these: 3007 */ 3008 3009 #ifndef prepare_arch_switch 3010 # define prepare_arch_switch(next) do { } while (0) 3011 #endif 3012 3013 #ifndef finish_arch_post_lock_switch 3014 # define finish_arch_post_lock_switch() do { } while (0) 3015 #endif 3016 3017 /** 3018 * prepare_task_switch - prepare to switch tasks 3019 * @rq: the runqueue preparing to switch 3020 * @prev: the current task that is being switched out 3021 * @next: the task we are going to switch to. 3022 * 3023 * This is called with the rq lock held and interrupts off. It must 3024 * be paired with a subsequent finish_task_switch after the context 3025 * switch. 3026 * 3027 * prepare_task_switch sets up locking and calls architecture specific 3028 * hooks. 3029 */ 3030 static inline void 3031 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3032 struct task_struct *next) 3033 { 3034 kcov_prepare_switch(prev); 3035 sched_info_switch(rq, prev, next); 3036 perf_event_task_sched_out(prev, next); 3037 rseq_preempt(prev); 3038 fire_sched_out_preempt_notifiers(prev, next); 3039 prepare_task(next); 3040 prepare_arch_switch(next); 3041 } 3042 3043 /** 3044 * finish_task_switch - clean up after a task-switch 3045 * @prev: the thread we just switched away from. 3046 * 3047 * finish_task_switch must be called after the context switch, paired 3048 * with a prepare_task_switch call before the context switch. 3049 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3050 * and do any other architecture-specific cleanup actions. 3051 * 3052 * Note that we may have delayed dropping an mm in context_switch(). If 3053 * so, we finish that here outside of the runqueue lock. (Doing it 3054 * with the lock held can cause deadlocks; see schedule() for 3055 * details.) 3056 * 3057 * The context switch have flipped the stack from under us and restored the 3058 * local variables which were saved when this task called schedule() in the 3059 * past. prev == current is still correct but we need to recalculate this_rq 3060 * because prev may have moved to another CPU. 3061 */ 3062 static struct rq *finish_task_switch(struct task_struct *prev) 3063 __releases(rq->lock) 3064 { 3065 struct rq *rq = this_rq(); 3066 struct mm_struct *mm = rq->prev_mm; 3067 long prev_state; 3068 3069 /* 3070 * The previous task will have left us with a preempt_count of 2 3071 * because it left us after: 3072 * 3073 * schedule() 3074 * preempt_disable(); // 1 3075 * __schedule() 3076 * raw_spin_lock_irq(&rq->lock) // 2 3077 * 3078 * Also, see FORK_PREEMPT_COUNT. 3079 */ 3080 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3081 "corrupted preempt_count: %s/%d/0x%x\n", 3082 current->comm, current->pid, preempt_count())) 3083 preempt_count_set(FORK_PREEMPT_COUNT); 3084 3085 rq->prev_mm = NULL; 3086 3087 /* 3088 * A task struct has one reference for the use as "current". 3089 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3090 * schedule one last time. The schedule call will never return, and 3091 * the scheduled task must drop that reference. 3092 * 3093 * We must observe prev->state before clearing prev->on_cpu (in 3094 * finish_task), otherwise a concurrent wakeup can get prev 3095 * running on another CPU and we could rave with its RUNNING -> DEAD 3096 * transition, resulting in a double drop. 3097 */ 3098 prev_state = prev->state; 3099 vtime_task_switch(prev); 3100 perf_event_task_sched_in(prev, current); 3101 finish_task(prev); 3102 finish_lock_switch(rq); 3103 finish_arch_post_lock_switch(); 3104 kcov_finish_switch(current); 3105 3106 fire_sched_in_preempt_notifiers(current); 3107 /* 3108 * When switching through a kernel thread, the loop in 3109 * membarrier_{private,global}_expedited() may have observed that 3110 * kernel thread and not issued an IPI. It is therefore possible to 3111 * schedule between user->kernel->user threads without passing though 3112 * switch_mm(). Membarrier requires a barrier after storing to 3113 * rq->curr, before returning to userspace, so provide them here: 3114 * 3115 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3116 * provided by mmdrop(), 3117 * - a sync_core for SYNC_CORE. 3118 */ 3119 if (mm) { 3120 membarrier_mm_sync_core_before_usermode(mm); 3121 mmdrop(mm); 3122 } 3123 if (unlikely(prev_state == TASK_DEAD)) { 3124 if (prev->sched_class->task_dead) 3125 prev->sched_class->task_dead(prev); 3126 3127 /* 3128 * Remove function-return probe instances associated with this 3129 * task and put them back on the free list. 3130 */ 3131 kprobe_flush_task(prev); 3132 3133 /* Task is done with its stack. */ 3134 put_task_stack(prev); 3135 3136 put_task_struct(prev); 3137 } 3138 3139 tick_nohz_task_switch(); 3140 return rq; 3141 } 3142 3143 #ifdef CONFIG_SMP 3144 3145 /* rq->lock is NOT held, but preemption is disabled */ 3146 static void __balance_callback(struct rq *rq) 3147 { 3148 struct callback_head *head, *next; 3149 void (*func)(struct rq *rq); 3150 unsigned long flags; 3151 3152 raw_spin_lock_irqsave(&rq->lock, flags); 3153 head = rq->balance_callback; 3154 rq->balance_callback = NULL; 3155 while (head) { 3156 func = (void (*)(struct rq *))head->func; 3157 next = head->next; 3158 head->next = NULL; 3159 head = next; 3160 3161 func(rq); 3162 } 3163 raw_spin_unlock_irqrestore(&rq->lock, flags); 3164 } 3165 3166 static inline void balance_callback(struct rq *rq) 3167 { 3168 if (unlikely(rq->balance_callback)) 3169 __balance_callback(rq); 3170 } 3171 3172 #else 3173 3174 static inline void balance_callback(struct rq *rq) 3175 { 3176 } 3177 3178 #endif 3179 3180 /** 3181 * schedule_tail - first thing a freshly forked thread must call. 3182 * @prev: the thread we just switched away from. 3183 */ 3184 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3185 __releases(rq->lock) 3186 { 3187 struct rq *rq; 3188 3189 /* 3190 * New tasks start with FORK_PREEMPT_COUNT, see there and 3191 * finish_task_switch() for details. 3192 * 3193 * finish_task_switch() will drop rq->lock() and lower preempt_count 3194 * and the preempt_enable() will end up enabling preemption (on 3195 * PREEMPT_COUNT kernels). 3196 */ 3197 3198 rq = finish_task_switch(prev); 3199 balance_callback(rq); 3200 preempt_enable(); 3201 3202 if (current->set_child_tid) 3203 put_user(task_pid_vnr(current), current->set_child_tid); 3204 3205 calculate_sigpending(); 3206 } 3207 3208 /* 3209 * context_switch - switch to the new MM and the new thread's register state. 3210 */ 3211 static __always_inline struct rq * 3212 context_switch(struct rq *rq, struct task_struct *prev, 3213 struct task_struct *next, struct rq_flags *rf) 3214 { 3215 struct mm_struct *mm, *oldmm; 3216 3217 prepare_task_switch(rq, prev, next); 3218 3219 mm = next->mm; 3220 oldmm = prev->active_mm; 3221 /* 3222 * For paravirt, this is coupled with an exit in switch_to to 3223 * combine the page table reload and the switch backend into 3224 * one hypercall. 3225 */ 3226 arch_start_context_switch(prev); 3227 3228 /* 3229 * If mm is non-NULL, we pass through switch_mm(). If mm is 3230 * NULL, we will pass through mmdrop() in finish_task_switch(). 3231 * Both of these contain the full memory barrier required by 3232 * membarrier after storing to rq->curr, before returning to 3233 * user-space. 3234 */ 3235 if (!mm) { 3236 next->active_mm = oldmm; 3237 mmgrab(oldmm); 3238 enter_lazy_tlb(oldmm, next); 3239 } else 3240 switch_mm_irqs_off(oldmm, mm, next); 3241 3242 if (!prev->mm) { 3243 prev->active_mm = NULL; 3244 rq->prev_mm = oldmm; 3245 } 3246 3247 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3248 3249 prepare_lock_switch(rq, next, rf); 3250 3251 /* Here we just switch the register state and the stack. */ 3252 switch_to(prev, next, prev); 3253 barrier(); 3254 3255 return finish_task_switch(prev); 3256 } 3257 3258 /* 3259 * nr_running and nr_context_switches: 3260 * 3261 * externally visible scheduler statistics: current number of runnable 3262 * threads, total number of context switches performed since bootup. 3263 */ 3264 unsigned long nr_running(void) 3265 { 3266 unsigned long i, sum = 0; 3267 3268 for_each_online_cpu(i) 3269 sum += cpu_rq(i)->nr_running; 3270 3271 return sum; 3272 } 3273 3274 /* 3275 * Check if only the current task is running on the CPU. 3276 * 3277 * Caution: this function does not check that the caller has disabled 3278 * preemption, thus the result might have a time-of-check-to-time-of-use 3279 * race. The caller is responsible to use it correctly, for example: 3280 * 3281 * - from a non-preemptible section (of course) 3282 * 3283 * - from a thread that is bound to a single CPU 3284 * 3285 * - in a loop with very short iterations (e.g. a polling loop) 3286 */ 3287 bool single_task_running(void) 3288 { 3289 return raw_rq()->nr_running == 1; 3290 } 3291 EXPORT_SYMBOL(single_task_running); 3292 3293 unsigned long long nr_context_switches(void) 3294 { 3295 int i; 3296 unsigned long long sum = 0; 3297 3298 for_each_possible_cpu(i) 3299 sum += cpu_rq(i)->nr_switches; 3300 3301 return sum; 3302 } 3303 3304 /* 3305 * Consumers of these two interfaces, like for example the cpuidle menu 3306 * governor, are using nonsensical data. Preferring shallow idle state selection 3307 * for a CPU that has IO-wait which might not even end up running the task when 3308 * it does become runnable. 3309 */ 3310 3311 unsigned long nr_iowait_cpu(int cpu) 3312 { 3313 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3314 } 3315 3316 /* 3317 * IO-wait accounting, and how its mostly bollocks (on SMP). 3318 * 3319 * The idea behind IO-wait account is to account the idle time that we could 3320 * have spend running if it were not for IO. That is, if we were to improve the 3321 * storage performance, we'd have a proportional reduction in IO-wait time. 3322 * 3323 * This all works nicely on UP, where, when a task blocks on IO, we account 3324 * idle time as IO-wait, because if the storage were faster, it could've been 3325 * running and we'd not be idle. 3326 * 3327 * This has been extended to SMP, by doing the same for each CPU. This however 3328 * is broken. 3329 * 3330 * Imagine for instance the case where two tasks block on one CPU, only the one 3331 * CPU will have IO-wait accounted, while the other has regular idle. Even 3332 * though, if the storage were faster, both could've ran at the same time, 3333 * utilising both CPUs. 3334 * 3335 * This means, that when looking globally, the current IO-wait accounting on 3336 * SMP is a lower bound, by reason of under accounting. 3337 * 3338 * Worse, since the numbers are provided per CPU, they are sometimes 3339 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3340 * associated with any one particular CPU, it can wake to another CPU than it 3341 * blocked on. This means the per CPU IO-wait number is meaningless. 3342 * 3343 * Task CPU affinities can make all that even more 'interesting'. 3344 */ 3345 3346 unsigned long nr_iowait(void) 3347 { 3348 unsigned long i, sum = 0; 3349 3350 for_each_possible_cpu(i) 3351 sum += nr_iowait_cpu(i); 3352 3353 return sum; 3354 } 3355 3356 #ifdef CONFIG_SMP 3357 3358 /* 3359 * sched_exec - execve() is a valuable balancing opportunity, because at 3360 * this point the task has the smallest effective memory and cache footprint. 3361 */ 3362 void sched_exec(void) 3363 { 3364 struct task_struct *p = current; 3365 unsigned long flags; 3366 int dest_cpu; 3367 3368 raw_spin_lock_irqsave(&p->pi_lock, flags); 3369 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3370 if (dest_cpu == smp_processor_id()) 3371 goto unlock; 3372 3373 if (likely(cpu_active(dest_cpu))) { 3374 struct migration_arg arg = { p, dest_cpu }; 3375 3376 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3377 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3378 return; 3379 } 3380 unlock: 3381 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3382 } 3383 3384 #endif 3385 3386 DEFINE_PER_CPU(struct kernel_stat, kstat); 3387 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3388 3389 EXPORT_PER_CPU_SYMBOL(kstat); 3390 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3391 3392 /* 3393 * The function fair_sched_class.update_curr accesses the struct curr 3394 * and its field curr->exec_start; when called from task_sched_runtime(), 3395 * we observe a high rate of cache misses in practice. 3396 * Prefetching this data results in improved performance. 3397 */ 3398 static inline void prefetch_curr_exec_start(struct task_struct *p) 3399 { 3400 #ifdef CONFIG_FAIR_GROUP_SCHED 3401 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3402 #else 3403 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3404 #endif 3405 prefetch(curr); 3406 prefetch(&curr->exec_start); 3407 } 3408 3409 /* 3410 * Return accounted runtime for the task. 3411 * In case the task is currently running, return the runtime plus current's 3412 * pending runtime that have not been accounted yet. 3413 */ 3414 unsigned long long task_sched_runtime(struct task_struct *p) 3415 { 3416 struct rq_flags rf; 3417 struct rq *rq; 3418 u64 ns; 3419 3420 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3421 /* 3422 * 64-bit doesn't need locks to atomically read a 64-bit value. 3423 * So we have a optimization chance when the task's delta_exec is 0. 3424 * Reading ->on_cpu is racy, but this is ok. 3425 * 3426 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3427 * If we race with it entering CPU, unaccounted time is 0. This is 3428 * indistinguishable from the read occurring a few cycles earlier. 3429 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3430 * been accounted, so we're correct here as well. 3431 */ 3432 if (!p->on_cpu || !task_on_rq_queued(p)) 3433 return p->se.sum_exec_runtime; 3434 #endif 3435 3436 rq = task_rq_lock(p, &rf); 3437 /* 3438 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3439 * project cycles that may never be accounted to this 3440 * thread, breaking clock_gettime(). 3441 */ 3442 if (task_current(rq, p) && task_on_rq_queued(p)) { 3443 prefetch_curr_exec_start(p); 3444 update_rq_clock(rq); 3445 p->sched_class->update_curr(rq); 3446 } 3447 ns = p->se.sum_exec_runtime; 3448 task_rq_unlock(rq, p, &rf); 3449 3450 return ns; 3451 } 3452 3453 /* 3454 * This function gets called by the timer code, with HZ frequency. 3455 * We call it with interrupts disabled. 3456 */ 3457 void scheduler_tick(void) 3458 { 3459 int cpu = smp_processor_id(); 3460 struct rq *rq = cpu_rq(cpu); 3461 struct task_struct *curr = rq->curr; 3462 struct rq_flags rf; 3463 3464 sched_clock_tick(); 3465 3466 rq_lock(rq, &rf); 3467 3468 update_rq_clock(rq); 3469 curr->sched_class->task_tick(rq, curr, 0); 3470 calc_global_load_tick(rq); 3471 psi_task_tick(rq); 3472 3473 rq_unlock(rq, &rf); 3474 3475 perf_event_task_tick(); 3476 3477 #ifdef CONFIG_SMP 3478 rq->idle_balance = idle_cpu(cpu); 3479 trigger_load_balance(rq); 3480 #endif 3481 } 3482 3483 #ifdef CONFIG_NO_HZ_FULL 3484 3485 struct tick_work { 3486 int cpu; 3487 struct delayed_work work; 3488 }; 3489 3490 static struct tick_work __percpu *tick_work_cpu; 3491 3492 static void sched_tick_remote(struct work_struct *work) 3493 { 3494 struct delayed_work *dwork = to_delayed_work(work); 3495 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3496 int cpu = twork->cpu; 3497 struct rq *rq = cpu_rq(cpu); 3498 struct task_struct *curr; 3499 struct rq_flags rf; 3500 u64 delta; 3501 3502 /* 3503 * Handle the tick only if it appears the remote CPU is running in full 3504 * dynticks mode. The check is racy by nature, but missing a tick or 3505 * having one too much is no big deal because the scheduler tick updates 3506 * statistics and checks timeslices in a time-independent way, regardless 3507 * of when exactly it is running. 3508 */ 3509 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu)) 3510 goto out_requeue; 3511 3512 rq_lock_irq(rq, &rf); 3513 curr = rq->curr; 3514 if (is_idle_task(curr)) 3515 goto out_unlock; 3516 3517 update_rq_clock(rq); 3518 delta = rq_clock_task(rq) - curr->se.exec_start; 3519 3520 /* 3521 * Make sure the next tick runs within a reasonable 3522 * amount of time. 3523 */ 3524 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3525 curr->sched_class->task_tick(rq, curr, 0); 3526 3527 out_unlock: 3528 rq_unlock_irq(rq, &rf); 3529 3530 out_requeue: 3531 /* 3532 * Run the remote tick once per second (1Hz). This arbitrary 3533 * frequency is large enough to avoid overload but short enough 3534 * to keep scheduler internal stats reasonably up to date. 3535 */ 3536 queue_delayed_work(system_unbound_wq, dwork, HZ); 3537 } 3538 3539 static void sched_tick_start(int cpu) 3540 { 3541 struct tick_work *twork; 3542 3543 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3544 return; 3545 3546 WARN_ON_ONCE(!tick_work_cpu); 3547 3548 twork = per_cpu_ptr(tick_work_cpu, cpu); 3549 twork->cpu = cpu; 3550 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3551 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3552 } 3553 3554 #ifdef CONFIG_HOTPLUG_CPU 3555 static void sched_tick_stop(int cpu) 3556 { 3557 struct tick_work *twork; 3558 3559 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3560 return; 3561 3562 WARN_ON_ONCE(!tick_work_cpu); 3563 3564 twork = per_cpu_ptr(tick_work_cpu, cpu); 3565 cancel_delayed_work_sync(&twork->work); 3566 } 3567 #endif /* CONFIG_HOTPLUG_CPU */ 3568 3569 int __init sched_tick_offload_init(void) 3570 { 3571 tick_work_cpu = alloc_percpu(struct tick_work); 3572 BUG_ON(!tick_work_cpu); 3573 3574 return 0; 3575 } 3576 3577 #else /* !CONFIG_NO_HZ_FULL */ 3578 static inline void sched_tick_start(int cpu) { } 3579 static inline void sched_tick_stop(int cpu) { } 3580 #endif 3581 3582 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3583 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3584 /* 3585 * If the value passed in is equal to the current preempt count 3586 * then we just disabled preemption. Start timing the latency. 3587 */ 3588 static inline void preempt_latency_start(int val) 3589 { 3590 if (preempt_count() == val) { 3591 unsigned long ip = get_lock_parent_ip(); 3592 #ifdef CONFIG_DEBUG_PREEMPT 3593 current->preempt_disable_ip = ip; 3594 #endif 3595 trace_preempt_off(CALLER_ADDR0, ip); 3596 } 3597 } 3598 3599 void preempt_count_add(int val) 3600 { 3601 #ifdef CONFIG_DEBUG_PREEMPT 3602 /* 3603 * Underflow? 3604 */ 3605 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3606 return; 3607 #endif 3608 __preempt_count_add(val); 3609 #ifdef CONFIG_DEBUG_PREEMPT 3610 /* 3611 * Spinlock count overflowing soon? 3612 */ 3613 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3614 PREEMPT_MASK - 10); 3615 #endif 3616 preempt_latency_start(val); 3617 } 3618 EXPORT_SYMBOL(preempt_count_add); 3619 NOKPROBE_SYMBOL(preempt_count_add); 3620 3621 /* 3622 * If the value passed in equals to the current preempt count 3623 * then we just enabled preemption. Stop timing the latency. 3624 */ 3625 static inline void preempt_latency_stop(int val) 3626 { 3627 if (preempt_count() == val) 3628 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3629 } 3630 3631 void preempt_count_sub(int val) 3632 { 3633 #ifdef CONFIG_DEBUG_PREEMPT 3634 /* 3635 * Underflow? 3636 */ 3637 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3638 return; 3639 /* 3640 * Is the spinlock portion underflowing? 3641 */ 3642 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3643 !(preempt_count() & PREEMPT_MASK))) 3644 return; 3645 #endif 3646 3647 preempt_latency_stop(val); 3648 __preempt_count_sub(val); 3649 } 3650 EXPORT_SYMBOL(preempt_count_sub); 3651 NOKPROBE_SYMBOL(preempt_count_sub); 3652 3653 #else 3654 static inline void preempt_latency_start(int val) { } 3655 static inline void preempt_latency_stop(int val) { } 3656 #endif 3657 3658 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3659 { 3660 #ifdef CONFIG_DEBUG_PREEMPT 3661 return p->preempt_disable_ip; 3662 #else 3663 return 0; 3664 #endif 3665 } 3666 3667 /* 3668 * Print scheduling while atomic bug: 3669 */ 3670 static noinline void __schedule_bug(struct task_struct *prev) 3671 { 3672 /* Save this before calling printk(), since that will clobber it */ 3673 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3674 3675 if (oops_in_progress) 3676 return; 3677 3678 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3679 prev->comm, prev->pid, preempt_count()); 3680 3681 debug_show_held_locks(prev); 3682 print_modules(); 3683 if (irqs_disabled()) 3684 print_irqtrace_events(prev); 3685 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3686 && in_atomic_preempt_off()) { 3687 pr_err("Preemption disabled at:"); 3688 print_ip_sym(preempt_disable_ip); 3689 pr_cont("\n"); 3690 } 3691 if (panic_on_warn) 3692 panic("scheduling while atomic\n"); 3693 3694 dump_stack(); 3695 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3696 } 3697 3698 /* 3699 * Various schedule()-time debugging checks and statistics: 3700 */ 3701 static inline void schedule_debug(struct task_struct *prev) 3702 { 3703 #ifdef CONFIG_SCHED_STACK_END_CHECK 3704 if (task_stack_end_corrupted(prev)) 3705 panic("corrupted stack end detected inside scheduler\n"); 3706 #endif 3707 3708 if (unlikely(in_atomic_preempt_off())) { 3709 __schedule_bug(prev); 3710 preempt_count_set(PREEMPT_DISABLED); 3711 } 3712 rcu_sleep_check(); 3713 3714 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3715 3716 schedstat_inc(this_rq()->sched_count); 3717 } 3718 3719 /* 3720 * Pick up the highest-prio task: 3721 */ 3722 static inline struct task_struct * 3723 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3724 { 3725 const struct sched_class *class; 3726 struct task_struct *p; 3727 3728 /* 3729 * Optimization: we know that if all tasks are in the fair class we can 3730 * call that function directly, but only if the @prev task wasn't of a 3731 * higher scheduling class, because otherwise those loose the 3732 * opportunity to pull in more work from other CPUs. 3733 */ 3734 if (likely((prev->sched_class == &idle_sched_class || 3735 prev->sched_class == &fair_sched_class) && 3736 rq->nr_running == rq->cfs.h_nr_running)) { 3737 3738 p = fair_sched_class.pick_next_task(rq, prev, rf); 3739 if (unlikely(p == RETRY_TASK)) 3740 goto again; 3741 3742 /* Assumes fair_sched_class->next == idle_sched_class */ 3743 if (unlikely(!p)) 3744 p = idle_sched_class.pick_next_task(rq, prev, rf); 3745 3746 return p; 3747 } 3748 3749 again: 3750 for_each_class(class) { 3751 p = class->pick_next_task(rq, prev, rf); 3752 if (p) { 3753 if (unlikely(p == RETRY_TASK)) 3754 goto again; 3755 return p; 3756 } 3757 } 3758 3759 /* The idle class should always have a runnable task: */ 3760 BUG(); 3761 } 3762 3763 /* 3764 * __schedule() is the main scheduler function. 3765 * 3766 * The main means of driving the scheduler and thus entering this function are: 3767 * 3768 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3769 * 3770 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3771 * paths. For example, see arch/x86/entry_64.S. 3772 * 3773 * To drive preemption between tasks, the scheduler sets the flag in timer 3774 * interrupt handler scheduler_tick(). 3775 * 3776 * 3. Wakeups don't really cause entry into schedule(). They add a 3777 * task to the run-queue and that's it. 3778 * 3779 * Now, if the new task added to the run-queue preempts the current 3780 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3781 * called on the nearest possible occasion: 3782 * 3783 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3784 * 3785 * - in syscall or exception context, at the next outmost 3786 * preempt_enable(). (this might be as soon as the wake_up()'s 3787 * spin_unlock()!) 3788 * 3789 * - in IRQ context, return from interrupt-handler to 3790 * preemptible context 3791 * 3792 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3793 * then at the next: 3794 * 3795 * - cond_resched() call 3796 * - explicit schedule() call 3797 * - return from syscall or exception to user-space 3798 * - return from interrupt-handler to user-space 3799 * 3800 * WARNING: must be called with preemption disabled! 3801 */ 3802 static void __sched notrace __schedule(bool preempt) 3803 { 3804 struct task_struct *prev, *next; 3805 unsigned long *switch_count; 3806 struct rq_flags rf; 3807 struct rq *rq; 3808 int cpu; 3809 3810 cpu = smp_processor_id(); 3811 rq = cpu_rq(cpu); 3812 prev = rq->curr; 3813 3814 schedule_debug(prev); 3815 3816 if (sched_feat(HRTICK)) 3817 hrtick_clear(rq); 3818 3819 local_irq_disable(); 3820 rcu_note_context_switch(preempt); 3821 3822 /* 3823 * Make sure that signal_pending_state()->signal_pending() below 3824 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3825 * done by the caller to avoid the race with signal_wake_up(). 3826 * 3827 * The membarrier system call requires a full memory barrier 3828 * after coming from user-space, before storing to rq->curr. 3829 */ 3830 rq_lock(rq, &rf); 3831 smp_mb__after_spinlock(); 3832 3833 /* Promote REQ to ACT */ 3834 rq->clock_update_flags <<= 1; 3835 update_rq_clock(rq); 3836 3837 switch_count = &prev->nivcsw; 3838 if (!preempt && prev->state) { 3839 if (signal_pending_state(prev->state, prev)) { 3840 prev->state = TASK_RUNNING; 3841 } else { 3842 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3843 3844 if (prev->in_iowait) { 3845 atomic_inc(&rq->nr_iowait); 3846 delayacct_blkio_start(); 3847 } 3848 } 3849 switch_count = &prev->nvcsw; 3850 } 3851 3852 next = pick_next_task(rq, prev, &rf); 3853 clear_tsk_need_resched(prev); 3854 clear_preempt_need_resched(); 3855 3856 if (likely(prev != next)) { 3857 rq->nr_switches++; 3858 rq->curr = next; 3859 /* 3860 * The membarrier system call requires each architecture 3861 * to have a full memory barrier after updating 3862 * rq->curr, before returning to user-space. 3863 * 3864 * Here are the schemes providing that barrier on the 3865 * various architectures: 3866 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3867 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3868 * - finish_lock_switch() for weakly-ordered 3869 * architectures where spin_unlock is a full barrier, 3870 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3871 * is a RELEASE barrier), 3872 */ 3873 ++*switch_count; 3874 3875 trace_sched_switch(preempt, prev, next); 3876 3877 /* Also unlocks the rq: */ 3878 rq = context_switch(rq, prev, next, &rf); 3879 } else { 3880 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3881 rq_unlock_irq(rq, &rf); 3882 } 3883 3884 balance_callback(rq); 3885 } 3886 3887 void __noreturn do_task_dead(void) 3888 { 3889 /* Causes final put_task_struct in finish_task_switch(): */ 3890 set_special_state(TASK_DEAD); 3891 3892 /* Tell freezer to ignore us: */ 3893 current->flags |= PF_NOFREEZE; 3894 3895 __schedule(false); 3896 BUG(); 3897 3898 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3899 for (;;) 3900 cpu_relax(); 3901 } 3902 3903 static inline void sched_submit_work(struct task_struct *tsk) 3904 { 3905 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3906 return; 3907 3908 /* 3909 * If a worker went to sleep, notify and ask workqueue whether 3910 * it wants to wake up a task to maintain concurrency. 3911 * As this function is called inside the schedule() context, 3912 * we disable preemption to avoid it calling schedule() again 3913 * in the possible wakeup of a kworker. 3914 */ 3915 if (tsk->flags & PF_WQ_WORKER) { 3916 preempt_disable(); 3917 wq_worker_sleeping(tsk); 3918 preempt_enable_no_resched(); 3919 } 3920 3921 /* 3922 * If we are going to sleep and we have plugged IO queued, 3923 * make sure to submit it to avoid deadlocks. 3924 */ 3925 if (blk_needs_flush_plug(tsk)) 3926 blk_schedule_flush_plug(tsk); 3927 } 3928 3929 static void sched_update_worker(struct task_struct *tsk) 3930 { 3931 if (tsk->flags & PF_WQ_WORKER) 3932 wq_worker_running(tsk); 3933 } 3934 3935 asmlinkage __visible void __sched schedule(void) 3936 { 3937 struct task_struct *tsk = current; 3938 3939 sched_submit_work(tsk); 3940 do { 3941 preempt_disable(); 3942 __schedule(false); 3943 sched_preempt_enable_no_resched(); 3944 } while (need_resched()); 3945 sched_update_worker(tsk); 3946 } 3947 EXPORT_SYMBOL(schedule); 3948 3949 /* 3950 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3951 * state (have scheduled out non-voluntarily) by making sure that all 3952 * tasks have either left the run queue or have gone into user space. 3953 * As idle tasks do not do either, they must not ever be preempted 3954 * (schedule out non-voluntarily). 3955 * 3956 * schedule_idle() is similar to schedule_preempt_disable() except that it 3957 * never enables preemption because it does not call sched_submit_work(). 3958 */ 3959 void __sched schedule_idle(void) 3960 { 3961 /* 3962 * As this skips calling sched_submit_work(), which the idle task does 3963 * regardless because that function is a nop when the task is in a 3964 * TASK_RUNNING state, make sure this isn't used someplace that the 3965 * current task can be in any other state. Note, idle is always in the 3966 * TASK_RUNNING state. 3967 */ 3968 WARN_ON_ONCE(current->state); 3969 do { 3970 __schedule(false); 3971 } while (need_resched()); 3972 } 3973 3974 #ifdef CONFIG_CONTEXT_TRACKING 3975 asmlinkage __visible void __sched schedule_user(void) 3976 { 3977 /* 3978 * If we come here after a random call to set_need_resched(), 3979 * or we have been woken up remotely but the IPI has not yet arrived, 3980 * we haven't yet exited the RCU idle mode. Do it here manually until 3981 * we find a better solution. 3982 * 3983 * NB: There are buggy callers of this function. Ideally we 3984 * should warn if prev_state != CONTEXT_USER, but that will trigger 3985 * too frequently to make sense yet. 3986 */ 3987 enum ctx_state prev_state = exception_enter(); 3988 schedule(); 3989 exception_exit(prev_state); 3990 } 3991 #endif 3992 3993 /** 3994 * schedule_preempt_disabled - called with preemption disabled 3995 * 3996 * Returns with preemption disabled. Note: preempt_count must be 1 3997 */ 3998 void __sched schedule_preempt_disabled(void) 3999 { 4000 sched_preempt_enable_no_resched(); 4001 schedule(); 4002 preempt_disable(); 4003 } 4004 4005 static void __sched notrace preempt_schedule_common(void) 4006 { 4007 do { 4008 /* 4009 * Because the function tracer can trace preempt_count_sub() 4010 * and it also uses preempt_enable/disable_notrace(), if 4011 * NEED_RESCHED is set, the preempt_enable_notrace() called 4012 * by the function tracer will call this function again and 4013 * cause infinite recursion. 4014 * 4015 * Preemption must be disabled here before the function 4016 * tracer can trace. Break up preempt_disable() into two 4017 * calls. One to disable preemption without fear of being 4018 * traced. The other to still record the preemption latency, 4019 * which can also be traced by the function tracer. 4020 */ 4021 preempt_disable_notrace(); 4022 preempt_latency_start(1); 4023 __schedule(true); 4024 preempt_latency_stop(1); 4025 preempt_enable_no_resched_notrace(); 4026 4027 /* 4028 * Check again in case we missed a preemption opportunity 4029 * between schedule and now. 4030 */ 4031 } while (need_resched()); 4032 } 4033 4034 #ifdef CONFIG_PREEMPT 4035 /* 4036 * this is the entry point to schedule() from in-kernel preemption 4037 * off of preempt_enable. Kernel preemptions off return from interrupt 4038 * occur there and call schedule directly. 4039 */ 4040 asmlinkage __visible void __sched notrace preempt_schedule(void) 4041 { 4042 /* 4043 * If there is a non-zero preempt_count or interrupts are disabled, 4044 * we do not want to preempt the current task. Just return.. 4045 */ 4046 if (likely(!preemptible())) 4047 return; 4048 4049 preempt_schedule_common(); 4050 } 4051 NOKPROBE_SYMBOL(preempt_schedule); 4052 EXPORT_SYMBOL(preempt_schedule); 4053 4054 /** 4055 * preempt_schedule_notrace - preempt_schedule called by tracing 4056 * 4057 * The tracing infrastructure uses preempt_enable_notrace to prevent 4058 * recursion and tracing preempt enabling caused by the tracing 4059 * infrastructure itself. But as tracing can happen in areas coming 4060 * from userspace or just about to enter userspace, a preempt enable 4061 * can occur before user_exit() is called. This will cause the scheduler 4062 * to be called when the system is still in usermode. 4063 * 4064 * To prevent this, the preempt_enable_notrace will use this function 4065 * instead of preempt_schedule() to exit user context if needed before 4066 * calling the scheduler. 4067 */ 4068 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4069 { 4070 enum ctx_state prev_ctx; 4071 4072 if (likely(!preemptible())) 4073 return; 4074 4075 do { 4076 /* 4077 * Because the function tracer can trace preempt_count_sub() 4078 * and it also uses preempt_enable/disable_notrace(), if 4079 * NEED_RESCHED is set, the preempt_enable_notrace() called 4080 * by the function tracer will call this function again and 4081 * cause infinite recursion. 4082 * 4083 * Preemption must be disabled here before the function 4084 * tracer can trace. Break up preempt_disable() into two 4085 * calls. One to disable preemption without fear of being 4086 * traced. The other to still record the preemption latency, 4087 * which can also be traced by the function tracer. 4088 */ 4089 preempt_disable_notrace(); 4090 preempt_latency_start(1); 4091 /* 4092 * Needs preempt disabled in case user_exit() is traced 4093 * and the tracer calls preempt_enable_notrace() causing 4094 * an infinite recursion. 4095 */ 4096 prev_ctx = exception_enter(); 4097 __schedule(true); 4098 exception_exit(prev_ctx); 4099 4100 preempt_latency_stop(1); 4101 preempt_enable_no_resched_notrace(); 4102 } while (need_resched()); 4103 } 4104 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4105 4106 #endif /* CONFIG_PREEMPT */ 4107 4108 /* 4109 * this is the entry point to schedule() from kernel preemption 4110 * off of irq context. 4111 * Note, that this is called and return with irqs disabled. This will 4112 * protect us against recursive calling from irq. 4113 */ 4114 asmlinkage __visible void __sched preempt_schedule_irq(void) 4115 { 4116 enum ctx_state prev_state; 4117 4118 /* Catch callers which need to be fixed */ 4119 BUG_ON(preempt_count() || !irqs_disabled()); 4120 4121 prev_state = exception_enter(); 4122 4123 do { 4124 preempt_disable(); 4125 local_irq_enable(); 4126 __schedule(true); 4127 local_irq_disable(); 4128 sched_preempt_enable_no_resched(); 4129 } while (need_resched()); 4130 4131 exception_exit(prev_state); 4132 } 4133 4134 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4135 void *key) 4136 { 4137 return try_to_wake_up(curr->private, mode, wake_flags); 4138 } 4139 EXPORT_SYMBOL(default_wake_function); 4140 4141 #ifdef CONFIG_RT_MUTEXES 4142 4143 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4144 { 4145 if (pi_task) 4146 prio = min(prio, pi_task->prio); 4147 4148 return prio; 4149 } 4150 4151 static inline int rt_effective_prio(struct task_struct *p, int prio) 4152 { 4153 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4154 4155 return __rt_effective_prio(pi_task, prio); 4156 } 4157 4158 /* 4159 * rt_mutex_setprio - set the current priority of a task 4160 * @p: task to boost 4161 * @pi_task: donor task 4162 * 4163 * This function changes the 'effective' priority of a task. It does 4164 * not touch ->normal_prio like __setscheduler(). 4165 * 4166 * Used by the rt_mutex code to implement priority inheritance 4167 * logic. Call site only calls if the priority of the task changed. 4168 */ 4169 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4170 { 4171 int prio, oldprio, queued, running, queue_flag = 4172 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4173 const struct sched_class *prev_class; 4174 struct rq_flags rf; 4175 struct rq *rq; 4176 4177 /* XXX used to be waiter->prio, not waiter->task->prio */ 4178 prio = __rt_effective_prio(pi_task, p->normal_prio); 4179 4180 /* 4181 * If nothing changed; bail early. 4182 */ 4183 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4184 return; 4185 4186 rq = __task_rq_lock(p, &rf); 4187 update_rq_clock(rq); 4188 /* 4189 * Set under pi_lock && rq->lock, such that the value can be used under 4190 * either lock. 4191 * 4192 * Note that there is loads of tricky to make this pointer cache work 4193 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4194 * ensure a task is de-boosted (pi_task is set to NULL) before the 4195 * task is allowed to run again (and can exit). This ensures the pointer 4196 * points to a blocked task -- which guaratees the task is present. 4197 */ 4198 p->pi_top_task = pi_task; 4199 4200 /* 4201 * For FIFO/RR we only need to set prio, if that matches we're done. 4202 */ 4203 if (prio == p->prio && !dl_prio(prio)) 4204 goto out_unlock; 4205 4206 /* 4207 * Idle task boosting is a nono in general. There is one 4208 * exception, when PREEMPT_RT and NOHZ is active: 4209 * 4210 * The idle task calls get_next_timer_interrupt() and holds 4211 * the timer wheel base->lock on the CPU and another CPU wants 4212 * to access the timer (probably to cancel it). We can safely 4213 * ignore the boosting request, as the idle CPU runs this code 4214 * with interrupts disabled and will complete the lock 4215 * protected section without being interrupted. So there is no 4216 * real need to boost. 4217 */ 4218 if (unlikely(p == rq->idle)) { 4219 WARN_ON(p != rq->curr); 4220 WARN_ON(p->pi_blocked_on); 4221 goto out_unlock; 4222 } 4223 4224 trace_sched_pi_setprio(p, pi_task); 4225 oldprio = p->prio; 4226 4227 if (oldprio == prio) 4228 queue_flag &= ~DEQUEUE_MOVE; 4229 4230 prev_class = p->sched_class; 4231 queued = task_on_rq_queued(p); 4232 running = task_current(rq, p); 4233 if (queued) 4234 dequeue_task(rq, p, queue_flag); 4235 if (running) 4236 put_prev_task(rq, p); 4237 4238 /* 4239 * Boosting condition are: 4240 * 1. -rt task is running and holds mutex A 4241 * --> -dl task blocks on mutex A 4242 * 4243 * 2. -dl task is running and holds mutex A 4244 * --> -dl task blocks on mutex A and could preempt the 4245 * running task 4246 */ 4247 if (dl_prio(prio)) { 4248 if (!dl_prio(p->normal_prio) || 4249 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4250 p->dl.dl_boosted = 1; 4251 queue_flag |= ENQUEUE_REPLENISH; 4252 } else 4253 p->dl.dl_boosted = 0; 4254 p->sched_class = &dl_sched_class; 4255 } else if (rt_prio(prio)) { 4256 if (dl_prio(oldprio)) 4257 p->dl.dl_boosted = 0; 4258 if (oldprio < prio) 4259 queue_flag |= ENQUEUE_HEAD; 4260 p->sched_class = &rt_sched_class; 4261 } else { 4262 if (dl_prio(oldprio)) 4263 p->dl.dl_boosted = 0; 4264 if (rt_prio(oldprio)) 4265 p->rt.timeout = 0; 4266 p->sched_class = &fair_sched_class; 4267 } 4268 4269 p->prio = prio; 4270 4271 if (queued) 4272 enqueue_task(rq, p, queue_flag); 4273 if (running) 4274 set_curr_task(rq, p); 4275 4276 check_class_changed(rq, p, prev_class, oldprio); 4277 out_unlock: 4278 /* Avoid rq from going away on us: */ 4279 preempt_disable(); 4280 __task_rq_unlock(rq, &rf); 4281 4282 balance_callback(rq); 4283 preempt_enable(); 4284 } 4285 #else 4286 static inline int rt_effective_prio(struct task_struct *p, int prio) 4287 { 4288 return prio; 4289 } 4290 #endif 4291 4292 void set_user_nice(struct task_struct *p, long nice) 4293 { 4294 bool queued, running; 4295 int old_prio, delta; 4296 struct rq_flags rf; 4297 struct rq *rq; 4298 4299 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4300 return; 4301 /* 4302 * We have to be careful, if called from sys_setpriority(), 4303 * the task might be in the middle of scheduling on another CPU. 4304 */ 4305 rq = task_rq_lock(p, &rf); 4306 update_rq_clock(rq); 4307 4308 /* 4309 * The RT priorities are set via sched_setscheduler(), but we still 4310 * allow the 'normal' nice value to be set - but as expected 4311 * it wont have any effect on scheduling until the task is 4312 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4313 */ 4314 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4315 p->static_prio = NICE_TO_PRIO(nice); 4316 goto out_unlock; 4317 } 4318 queued = task_on_rq_queued(p); 4319 running = task_current(rq, p); 4320 if (queued) 4321 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4322 if (running) 4323 put_prev_task(rq, p); 4324 4325 p->static_prio = NICE_TO_PRIO(nice); 4326 set_load_weight(p, true); 4327 old_prio = p->prio; 4328 p->prio = effective_prio(p); 4329 delta = p->prio - old_prio; 4330 4331 if (queued) { 4332 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4333 /* 4334 * If the task increased its priority or is running and 4335 * lowered its priority, then reschedule its CPU: 4336 */ 4337 if (delta < 0 || (delta > 0 && task_running(rq, p))) 4338 resched_curr(rq); 4339 } 4340 if (running) 4341 set_curr_task(rq, p); 4342 out_unlock: 4343 task_rq_unlock(rq, p, &rf); 4344 } 4345 EXPORT_SYMBOL(set_user_nice); 4346 4347 /* 4348 * can_nice - check if a task can reduce its nice value 4349 * @p: task 4350 * @nice: nice value 4351 */ 4352 int can_nice(const struct task_struct *p, const int nice) 4353 { 4354 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4355 int nice_rlim = nice_to_rlimit(nice); 4356 4357 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4358 capable(CAP_SYS_NICE)); 4359 } 4360 4361 #ifdef __ARCH_WANT_SYS_NICE 4362 4363 /* 4364 * sys_nice - change the priority of the current process. 4365 * @increment: priority increment 4366 * 4367 * sys_setpriority is a more generic, but much slower function that 4368 * does similar things. 4369 */ 4370 SYSCALL_DEFINE1(nice, int, increment) 4371 { 4372 long nice, retval; 4373 4374 /* 4375 * Setpriority might change our priority at the same moment. 4376 * We don't have to worry. Conceptually one call occurs first 4377 * and we have a single winner. 4378 */ 4379 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4380 nice = task_nice(current) + increment; 4381 4382 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4383 if (increment < 0 && !can_nice(current, nice)) 4384 return -EPERM; 4385 4386 retval = security_task_setnice(current, nice); 4387 if (retval) 4388 return retval; 4389 4390 set_user_nice(current, nice); 4391 return 0; 4392 } 4393 4394 #endif 4395 4396 /** 4397 * task_prio - return the priority value of a given task. 4398 * @p: the task in question. 4399 * 4400 * Return: The priority value as seen by users in /proc. 4401 * RT tasks are offset by -200. Normal tasks are centered 4402 * around 0, value goes from -16 to +15. 4403 */ 4404 int task_prio(const struct task_struct *p) 4405 { 4406 return p->prio - MAX_RT_PRIO; 4407 } 4408 4409 /** 4410 * idle_cpu - is a given CPU idle currently? 4411 * @cpu: the processor in question. 4412 * 4413 * Return: 1 if the CPU is currently idle. 0 otherwise. 4414 */ 4415 int idle_cpu(int cpu) 4416 { 4417 struct rq *rq = cpu_rq(cpu); 4418 4419 if (rq->curr != rq->idle) 4420 return 0; 4421 4422 if (rq->nr_running) 4423 return 0; 4424 4425 #ifdef CONFIG_SMP 4426 if (!llist_empty(&rq->wake_list)) 4427 return 0; 4428 #endif 4429 4430 return 1; 4431 } 4432 4433 /** 4434 * available_idle_cpu - is a given CPU idle for enqueuing work. 4435 * @cpu: the CPU in question. 4436 * 4437 * Return: 1 if the CPU is currently idle. 0 otherwise. 4438 */ 4439 int available_idle_cpu(int cpu) 4440 { 4441 if (!idle_cpu(cpu)) 4442 return 0; 4443 4444 if (vcpu_is_preempted(cpu)) 4445 return 0; 4446 4447 return 1; 4448 } 4449 4450 /** 4451 * idle_task - return the idle task for a given CPU. 4452 * @cpu: the processor in question. 4453 * 4454 * Return: The idle task for the CPU @cpu. 4455 */ 4456 struct task_struct *idle_task(int cpu) 4457 { 4458 return cpu_rq(cpu)->idle; 4459 } 4460 4461 /** 4462 * find_process_by_pid - find a process with a matching PID value. 4463 * @pid: the pid in question. 4464 * 4465 * The task of @pid, if found. %NULL otherwise. 4466 */ 4467 static struct task_struct *find_process_by_pid(pid_t pid) 4468 { 4469 return pid ? find_task_by_vpid(pid) : current; 4470 } 4471 4472 /* 4473 * sched_setparam() passes in -1 for its policy, to let the functions 4474 * it calls know not to change it. 4475 */ 4476 #define SETPARAM_POLICY -1 4477 4478 static void __setscheduler_params(struct task_struct *p, 4479 const struct sched_attr *attr) 4480 { 4481 int policy = attr->sched_policy; 4482 4483 if (policy == SETPARAM_POLICY) 4484 policy = p->policy; 4485 4486 p->policy = policy; 4487 4488 if (dl_policy(policy)) 4489 __setparam_dl(p, attr); 4490 else if (fair_policy(policy)) 4491 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4492 4493 /* 4494 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4495 * !rt_policy. Always setting this ensures that things like 4496 * getparam()/getattr() don't report silly values for !rt tasks. 4497 */ 4498 p->rt_priority = attr->sched_priority; 4499 p->normal_prio = normal_prio(p); 4500 set_load_weight(p, true); 4501 } 4502 4503 /* Actually do priority change: must hold pi & rq lock. */ 4504 static void __setscheduler(struct rq *rq, struct task_struct *p, 4505 const struct sched_attr *attr, bool keep_boost) 4506 { 4507 /* 4508 * If params can't change scheduling class changes aren't allowed 4509 * either. 4510 */ 4511 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4512 return; 4513 4514 __setscheduler_params(p, attr); 4515 4516 /* 4517 * Keep a potential priority boosting if called from 4518 * sched_setscheduler(). 4519 */ 4520 p->prio = normal_prio(p); 4521 if (keep_boost) 4522 p->prio = rt_effective_prio(p, p->prio); 4523 4524 if (dl_prio(p->prio)) 4525 p->sched_class = &dl_sched_class; 4526 else if (rt_prio(p->prio)) 4527 p->sched_class = &rt_sched_class; 4528 else 4529 p->sched_class = &fair_sched_class; 4530 } 4531 4532 /* 4533 * Check the target process has a UID that matches the current process's: 4534 */ 4535 static bool check_same_owner(struct task_struct *p) 4536 { 4537 const struct cred *cred = current_cred(), *pcred; 4538 bool match; 4539 4540 rcu_read_lock(); 4541 pcred = __task_cred(p); 4542 match = (uid_eq(cred->euid, pcred->euid) || 4543 uid_eq(cred->euid, pcred->uid)); 4544 rcu_read_unlock(); 4545 return match; 4546 } 4547 4548 static int __sched_setscheduler(struct task_struct *p, 4549 const struct sched_attr *attr, 4550 bool user, bool pi) 4551 { 4552 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4553 MAX_RT_PRIO - 1 - attr->sched_priority; 4554 int retval, oldprio, oldpolicy = -1, queued, running; 4555 int new_effective_prio, policy = attr->sched_policy; 4556 const struct sched_class *prev_class; 4557 struct rq_flags rf; 4558 int reset_on_fork; 4559 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4560 struct rq *rq; 4561 4562 /* The pi code expects interrupts enabled */ 4563 BUG_ON(pi && in_interrupt()); 4564 recheck: 4565 /* Double check policy once rq lock held: */ 4566 if (policy < 0) { 4567 reset_on_fork = p->sched_reset_on_fork; 4568 policy = oldpolicy = p->policy; 4569 } else { 4570 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4571 4572 if (!valid_policy(policy)) 4573 return -EINVAL; 4574 } 4575 4576 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4577 return -EINVAL; 4578 4579 /* 4580 * Valid priorities for SCHED_FIFO and SCHED_RR are 4581 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4582 * SCHED_BATCH and SCHED_IDLE is 0. 4583 */ 4584 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4585 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4586 return -EINVAL; 4587 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4588 (rt_policy(policy) != (attr->sched_priority != 0))) 4589 return -EINVAL; 4590 4591 /* 4592 * Allow unprivileged RT tasks to decrease priority: 4593 */ 4594 if (user && !capable(CAP_SYS_NICE)) { 4595 if (fair_policy(policy)) { 4596 if (attr->sched_nice < task_nice(p) && 4597 !can_nice(p, attr->sched_nice)) 4598 return -EPERM; 4599 } 4600 4601 if (rt_policy(policy)) { 4602 unsigned long rlim_rtprio = 4603 task_rlimit(p, RLIMIT_RTPRIO); 4604 4605 /* Can't set/change the rt policy: */ 4606 if (policy != p->policy && !rlim_rtprio) 4607 return -EPERM; 4608 4609 /* Can't increase priority: */ 4610 if (attr->sched_priority > p->rt_priority && 4611 attr->sched_priority > rlim_rtprio) 4612 return -EPERM; 4613 } 4614 4615 /* 4616 * Can't set/change SCHED_DEADLINE policy at all for now 4617 * (safest behavior); in the future we would like to allow 4618 * unprivileged DL tasks to increase their relative deadline 4619 * or reduce their runtime (both ways reducing utilization) 4620 */ 4621 if (dl_policy(policy)) 4622 return -EPERM; 4623 4624 /* 4625 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4626 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4627 */ 4628 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4629 if (!can_nice(p, task_nice(p))) 4630 return -EPERM; 4631 } 4632 4633 /* Can't change other user's priorities: */ 4634 if (!check_same_owner(p)) 4635 return -EPERM; 4636 4637 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4638 if (p->sched_reset_on_fork && !reset_on_fork) 4639 return -EPERM; 4640 } 4641 4642 if (user) { 4643 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4644 return -EINVAL; 4645 4646 retval = security_task_setscheduler(p); 4647 if (retval) 4648 return retval; 4649 } 4650 4651 /* Update task specific "requested" clamps */ 4652 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4653 retval = uclamp_validate(p, attr); 4654 if (retval) 4655 return retval; 4656 } 4657 4658 /* 4659 * Make sure no PI-waiters arrive (or leave) while we are 4660 * changing the priority of the task: 4661 * 4662 * To be able to change p->policy safely, the appropriate 4663 * runqueue lock must be held. 4664 */ 4665 rq = task_rq_lock(p, &rf); 4666 update_rq_clock(rq); 4667 4668 /* 4669 * Changing the policy of the stop threads its a very bad idea: 4670 */ 4671 if (p == rq->stop) { 4672 task_rq_unlock(rq, p, &rf); 4673 return -EINVAL; 4674 } 4675 4676 /* 4677 * If not changing anything there's no need to proceed further, 4678 * but store a possible modification of reset_on_fork. 4679 */ 4680 if (unlikely(policy == p->policy)) { 4681 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4682 goto change; 4683 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4684 goto change; 4685 if (dl_policy(policy) && dl_param_changed(p, attr)) 4686 goto change; 4687 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4688 goto change; 4689 4690 p->sched_reset_on_fork = reset_on_fork; 4691 task_rq_unlock(rq, p, &rf); 4692 return 0; 4693 } 4694 change: 4695 4696 if (user) { 4697 #ifdef CONFIG_RT_GROUP_SCHED 4698 /* 4699 * Do not allow realtime tasks into groups that have no runtime 4700 * assigned. 4701 */ 4702 if (rt_bandwidth_enabled() && rt_policy(policy) && 4703 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4704 !task_group_is_autogroup(task_group(p))) { 4705 task_rq_unlock(rq, p, &rf); 4706 return -EPERM; 4707 } 4708 #endif 4709 #ifdef CONFIG_SMP 4710 if (dl_bandwidth_enabled() && dl_policy(policy) && 4711 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4712 cpumask_t *span = rq->rd->span; 4713 4714 /* 4715 * Don't allow tasks with an affinity mask smaller than 4716 * the entire root_domain to become SCHED_DEADLINE. We 4717 * will also fail if there's no bandwidth available. 4718 */ 4719 if (!cpumask_subset(span, p->cpus_ptr) || 4720 rq->rd->dl_bw.bw == 0) { 4721 task_rq_unlock(rq, p, &rf); 4722 return -EPERM; 4723 } 4724 } 4725 #endif 4726 } 4727 4728 /* Re-check policy now with rq lock held: */ 4729 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4730 policy = oldpolicy = -1; 4731 task_rq_unlock(rq, p, &rf); 4732 goto recheck; 4733 } 4734 4735 /* 4736 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4737 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4738 * is available. 4739 */ 4740 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4741 task_rq_unlock(rq, p, &rf); 4742 return -EBUSY; 4743 } 4744 4745 p->sched_reset_on_fork = reset_on_fork; 4746 oldprio = p->prio; 4747 4748 if (pi) { 4749 /* 4750 * Take priority boosted tasks into account. If the new 4751 * effective priority is unchanged, we just store the new 4752 * normal parameters and do not touch the scheduler class and 4753 * the runqueue. This will be done when the task deboost 4754 * itself. 4755 */ 4756 new_effective_prio = rt_effective_prio(p, newprio); 4757 if (new_effective_prio == oldprio) 4758 queue_flags &= ~DEQUEUE_MOVE; 4759 } 4760 4761 queued = task_on_rq_queued(p); 4762 running = task_current(rq, p); 4763 if (queued) 4764 dequeue_task(rq, p, queue_flags); 4765 if (running) 4766 put_prev_task(rq, p); 4767 4768 prev_class = p->sched_class; 4769 4770 __setscheduler(rq, p, attr, pi); 4771 __setscheduler_uclamp(p, attr); 4772 4773 if (queued) { 4774 /* 4775 * We enqueue to tail when the priority of a task is 4776 * increased (user space view). 4777 */ 4778 if (oldprio < p->prio) 4779 queue_flags |= ENQUEUE_HEAD; 4780 4781 enqueue_task(rq, p, queue_flags); 4782 } 4783 if (running) 4784 set_curr_task(rq, p); 4785 4786 check_class_changed(rq, p, prev_class, oldprio); 4787 4788 /* Avoid rq from going away on us: */ 4789 preempt_disable(); 4790 task_rq_unlock(rq, p, &rf); 4791 4792 if (pi) 4793 rt_mutex_adjust_pi(p); 4794 4795 /* Run balance callbacks after we've adjusted the PI chain: */ 4796 balance_callback(rq); 4797 preempt_enable(); 4798 4799 return 0; 4800 } 4801 4802 static int _sched_setscheduler(struct task_struct *p, int policy, 4803 const struct sched_param *param, bool check) 4804 { 4805 struct sched_attr attr = { 4806 .sched_policy = policy, 4807 .sched_priority = param->sched_priority, 4808 .sched_nice = PRIO_TO_NICE(p->static_prio), 4809 }; 4810 4811 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4812 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4813 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4814 policy &= ~SCHED_RESET_ON_FORK; 4815 attr.sched_policy = policy; 4816 } 4817 4818 return __sched_setscheduler(p, &attr, check, true); 4819 } 4820 /** 4821 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4822 * @p: the task in question. 4823 * @policy: new policy. 4824 * @param: structure containing the new RT priority. 4825 * 4826 * Return: 0 on success. An error code otherwise. 4827 * 4828 * NOTE that the task may be already dead. 4829 */ 4830 int sched_setscheduler(struct task_struct *p, int policy, 4831 const struct sched_param *param) 4832 { 4833 return _sched_setscheduler(p, policy, param, true); 4834 } 4835 EXPORT_SYMBOL_GPL(sched_setscheduler); 4836 4837 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4838 { 4839 return __sched_setscheduler(p, attr, true, true); 4840 } 4841 EXPORT_SYMBOL_GPL(sched_setattr); 4842 4843 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4844 { 4845 return __sched_setscheduler(p, attr, false, true); 4846 } 4847 4848 /** 4849 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4850 * @p: the task in question. 4851 * @policy: new policy. 4852 * @param: structure containing the new RT priority. 4853 * 4854 * Just like sched_setscheduler, only don't bother checking if the 4855 * current context has permission. For example, this is needed in 4856 * stop_machine(): we create temporary high priority worker threads, 4857 * but our caller might not have that capability. 4858 * 4859 * Return: 0 on success. An error code otherwise. 4860 */ 4861 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4862 const struct sched_param *param) 4863 { 4864 return _sched_setscheduler(p, policy, param, false); 4865 } 4866 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4867 4868 static int 4869 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4870 { 4871 struct sched_param lparam; 4872 struct task_struct *p; 4873 int retval; 4874 4875 if (!param || pid < 0) 4876 return -EINVAL; 4877 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4878 return -EFAULT; 4879 4880 rcu_read_lock(); 4881 retval = -ESRCH; 4882 p = find_process_by_pid(pid); 4883 if (p != NULL) 4884 retval = sched_setscheduler(p, policy, &lparam); 4885 rcu_read_unlock(); 4886 4887 return retval; 4888 } 4889 4890 /* 4891 * Mimics kernel/events/core.c perf_copy_attr(). 4892 */ 4893 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4894 { 4895 u32 size; 4896 int ret; 4897 4898 if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0)) 4899 return -EFAULT; 4900 4901 /* Zero the full structure, so that a short copy will be nice: */ 4902 memset(attr, 0, sizeof(*attr)); 4903 4904 ret = get_user(size, &uattr->size); 4905 if (ret) 4906 return ret; 4907 4908 /* Bail out on silly large: */ 4909 if (size > PAGE_SIZE) 4910 goto err_size; 4911 4912 /* ABI compatibility quirk: */ 4913 if (!size) 4914 size = SCHED_ATTR_SIZE_VER0; 4915 4916 if (size < SCHED_ATTR_SIZE_VER0) 4917 goto err_size; 4918 4919 /* 4920 * If we're handed a bigger struct than we know of, 4921 * ensure all the unknown bits are 0 - i.e. new 4922 * user-space does not rely on any kernel feature 4923 * extensions we dont know about yet. 4924 */ 4925 if (size > sizeof(*attr)) { 4926 unsigned char __user *addr; 4927 unsigned char __user *end; 4928 unsigned char val; 4929 4930 addr = (void __user *)uattr + sizeof(*attr); 4931 end = (void __user *)uattr + size; 4932 4933 for (; addr < end; addr++) { 4934 ret = get_user(val, addr); 4935 if (ret) 4936 return ret; 4937 if (val) 4938 goto err_size; 4939 } 4940 size = sizeof(*attr); 4941 } 4942 4943 ret = copy_from_user(attr, uattr, size); 4944 if (ret) 4945 return -EFAULT; 4946 4947 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 4948 size < SCHED_ATTR_SIZE_VER1) 4949 return -EINVAL; 4950 4951 /* 4952 * XXX: Do we want to be lenient like existing syscalls; or do we want 4953 * to be strict and return an error on out-of-bounds values? 4954 */ 4955 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4956 4957 return 0; 4958 4959 err_size: 4960 put_user(sizeof(*attr), &uattr->size); 4961 return -E2BIG; 4962 } 4963 4964 /** 4965 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4966 * @pid: the pid in question. 4967 * @policy: new policy. 4968 * @param: structure containing the new RT priority. 4969 * 4970 * Return: 0 on success. An error code otherwise. 4971 */ 4972 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4973 { 4974 if (policy < 0) 4975 return -EINVAL; 4976 4977 return do_sched_setscheduler(pid, policy, param); 4978 } 4979 4980 /** 4981 * sys_sched_setparam - set/change the RT priority of a thread 4982 * @pid: the pid in question. 4983 * @param: structure containing the new RT priority. 4984 * 4985 * Return: 0 on success. An error code otherwise. 4986 */ 4987 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4988 { 4989 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4990 } 4991 4992 /** 4993 * sys_sched_setattr - same as above, but with extended sched_attr 4994 * @pid: the pid in question. 4995 * @uattr: structure containing the extended parameters. 4996 * @flags: for future extension. 4997 */ 4998 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4999 unsigned int, flags) 5000 { 5001 struct sched_attr attr; 5002 struct task_struct *p; 5003 int retval; 5004 5005 if (!uattr || pid < 0 || flags) 5006 return -EINVAL; 5007 5008 retval = sched_copy_attr(uattr, &attr); 5009 if (retval) 5010 return retval; 5011 5012 if ((int)attr.sched_policy < 0) 5013 return -EINVAL; 5014 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5015 attr.sched_policy = SETPARAM_POLICY; 5016 5017 rcu_read_lock(); 5018 retval = -ESRCH; 5019 p = find_process_by_pid(pid); 5020 if (likely(p)) 5021 get_task_struct(p); 5022 rcu_read_unlock(); 5023 5024 if (likely(p)) { 5025 retval = sched_setattr(p, &attr); 5026 put_task_struct(p); 5027 } 5028 5029 return retval; 5030 } 5031 5032 /** 5033 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5034 * @pid: the pid in question. 5035 * 5036 * Return: On success, the policy of the thread. Otherwise, a negative error 5037 * code. 5038 */ 5039 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5040 { 5041 struct task_struct *p; 5042 int retval; 5043 5044 if (pid < 0) 5045 return -EINVAL; 5046 5047 retval = -ESRCH; 5048 rcu_read_lock(); 5049 p = find_process_by_pid(pid); 5050 if (p) { 5051 retval = security_task_getscheduler(p); 5052 if (!retval) 5053 retval = p->policy 5054 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5055 } 5056 rcu_read_unlock(); 5057 return retval; 5058 } 5059 5060 /** 5061 * sys_sched_getparam - get the RT priority of a thread 5062 * @pid: the pid in question. 5063 * @param: structure containing the RT priority. 5064 * 5065 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5066 * code. 5067 */ 5068 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5069 { 5070 struct sched_param lp = { .sched_priority = 0 }; 5071 struct task_struct *p; 5072 int retval; 5073 5074 if (!param || pid < 0) 5075 return -EINVAL; 5076 5077 rcu_read_lock(); 5078 p = find_process_by_pid(pid); 5079 retval = -ESRCH; 5080 if (!p) 5081 goto out_unlock; 5082 5083 retval = security_task_getscheduler(p); 5084 if (retval) 5085 goto out_unlock; 5086 5087 if (task_has_rt_policy(p)) 5088 lp.sched_priority = p->rt_priority; 5089 rcu_read_unlock(); 5090 5091 /* 5092 * This one might sleep, we cannot do it with a spinlock held ... 5093 */ 5094 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5095 5096 return retval; 5097 5098 out_unlock: 5099 rcu_read_unlock(); 5100 return retval; 5101 } 5102 5103 static int sched_read_attr(struct sched_attr __user *uattr, 5104 struct sched_attr *attr, 5105 unsigned int usize) 5106 { 5107 int ret; 5108 5109 if (!access_ok(uattr, usize)) 5110 return -EFAULT; 5111 5112 /* 5113 * If we're handed a smaller struct than we know of, 5114 * ensure all the unknown bits are 0 - i.e. old 5115 * user-space does not get uncomplete information. 5116 */ 5117 if (usize < sizeof(*attr)) { 5118 unsigned char *addr; 5119 unsigned char *end; 5120 5121 addr = (void *)attr + usize; 5122 end = (void *)attr + sizeof(*attr); 5123 5124 for (; addr < end; addr++) { 5125 if (*addr) 5126 return -EFBIG; 5127 } 5128 5129 attr->size = usize; 5130 } 5131 5132 ret = copy_to_user(uattr, attr, attr->size); 5133 if (ret) 5134 return -EFAULT; 5135 5136 return 0; 5137 } 5138 5139 /** 5140 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5141 * @pid: the pid in question. 5142 * @uattr: structure containing the extended parameters. 5143 * @size: sizeof(attr) for fwd/bwd comp. 5144 * @flags: for future extension. 5145 */ 5146 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5147 unsigned int, size, unsigned int, flags) 5148 { 5149 struct sched_attr attr = { 5150 .size = sizeof(struct sched_attr), 5151 }; 5152 struct task_struct *p; 5153 int retval; 5154 5155 if (!uattr || pid < 0 || size > PAGE_SIZE || 5156 size < SCHED_ATTR_SIZE_VER0 || flags) 5157 return -EINVAL; 5158 5159 rcu_read_lock(); 5160 p = find_process_by_pid(pid); 5161 retval = -ESRCH; 5162 if (!p) 5163 goto out_unlock; 5164 5165 retval = security_task_getscheduler(p); 5166 if (retval) 5167 goto out_unlock; 5168 5169 attr.sched_policy = p->policy; 5170 if (p->sched_reset_on_fork) 5171 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5172 if (task_has_dl_policy(p)) 5173 __getparam_dl(p, &attr); 5174 else if (task_has_rt_policy(p)) 5175 attr.sched_priority = p->rt_priority; 5176 else 5177 attr.sched_nice = task_nice(p); 5178 5179 #ifdef CONFIG_UCLAMP_TASK 5180 attr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5181 attr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5182 #endif 5183 5184 rcu_read_unlock(); 5185 5186 retval = sched_read_attr(uattr, &attr, size); 5187 return retval; 5188 5189 out_unlock: 5190 rcu_read_unlock(); 5191 return retval; 5192 } 5193 5194 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5195 { 5196 cpumask_var_t cpus_allowed, new_mask; 5197 struct task_struct *p; 5198 int retval; 5199 5200 rcu_read_lock(); 5201 5202 p = find_process_by_pid(pid); 5203 if (!p) { 5204 rcu_read_unlock(); 5205 return -ESRCH; 5206 } 5207 5208 /* Prevent p going away */ 5209 get_task_struct(p); 5210 rcu_read_unlock(); 5211 5212 if (p->flags & PF_NO_SETAFFINITY) { 5213 retval = -EINVAL; 5214 goto out_put_task; 5215 } 5216 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5217 retval = -ENOMEM; 5218 goto out_put_task; 5219 } 5220 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5221 retval = -ENOMEM; 5222 goto out_free_cpus_allowed; 5223 } 5224 retval = -EPERM; 5225 if (!check_same_owner(p)) { 5226 rcu_read_lock(); 5227 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5228 rcu_read_unlock(); 5229 goto out_free_new_mask; 5230 } 5231 rcu_read_unlock(); 5232 } 5233 5234 retval = security_task_setscheduler(p); 5235 if (retval) 5236 goto out_free_new_mask; 5237 5238 5239 cpuset_cpus_allowed(p, cpus_allowed); 5240 cpumask_and(new_mask, in_mask, cpus_allowed); 5241 5242 /* 5243 * Since bandwidth control happens on root_domain basis, 5244 * if admission test is enabled, we only admit -deadline 5245 * tasks allowed to run on all the CPUs in the task's 5246 * root_domain. 5247 */ 5248 #ifdef CONFIG_SMP 5249 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5250 rcu_read_lock(); 5251 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5252 retval = -EBUSY; 5253 rcu_read_unlock(); 5254 goto out_free_new_mask; 5255 } 5256 rcu_read_unlock(); 5257 } 5258 #endif 5259 again: 5260 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5261 5262 if (!retval) { 5263 cpuset_cpus_allowed(p, cpus_allowed); 5264 if (!cpumask_subset(new_mask, cpus_allowed)) { 5265 /* 5266 * We must have raced with a concurrent cpuset 5267 * update. Just reset the cpus_allowed to the 5268 * cpuset's cpus_allowed 5269 */ 5270 cpumask_copy(new_mask, cpus_allowed); 5271 goto again; 5272 } 5273 } 5274 out_free_new_mask: 5275 free_cpumask_var(new_mask); 5276 out_free_cpus_allowed: 5277 free_cpumask_var(cpus_allowed); 5278 out_put_task: 5279 put_task_struct(p); 5280 return retval; 5281 } 5282 5283 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5284 struct cpumask *new_mask) 5285 { 5286 if (len < cpumask_size()) 5287 cpumask_clear(new_mask); 5288 else if (len > cpumask_size()) 5289 len = cpumask_size(); 5290 5291 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5292 } 5293 5294 /** 5295 * sys_sched_setaffinity - set the CPU affinity of a process 5296 * @pid: pid of the process 5297 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5298 * @user_mask_ptr: user-space pointer to the new CPU mask 5299 * 5300 * Return: 0 on success. An error code otherwise. 5301 */ 5302 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5303 unsigned long __user *, user_mask_ptr) 5304 { 5305 cpumask_var_t new_mask; 5306 int retval; 5307 5308 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5309 return -ENOMEM; 5310 5311 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5312 if (retval == 0) 5313 retval = sched_setaffinity(pid, new_mask); 5314 free_cpumask_var(new_mask); 5315 return retval; 5316 } 5317 5318 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5319 { 5320 struct task_struct *p; 5321 unsigned long flags; 5322 int retval; 5323 5324 rcu_read_lock(); 5325 5326 retval = -ESRCH; 5327 p = find_process_by_pid(pid); 5328 if (!p) 5329 goto out_unlock; 5330 5331 retval = security_task_getscheduler(p); 5332 if (retval) 5333 goto out_unlock; 5334 5335 raw_spin_lock_irqsave(&p->pi_lock, flags); 5336 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5337 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5338 5339 out_unlock: 5340 rcu_read_unlock(); 5341 5342 return retval; 5343 } 5344 5345 /** 5346 * sys_sched_getaffinity - get the CPU affinity of a process 5347 * @pid: pid of the process 5348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5349 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5350 * 5351 * Return: size of CPU mask copied to user_mask_ptr on success. An 5352 * error code otherwise. 5353 */ 5354 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5355 unsigned long __user *, user_mask_ptr) 5356 { 5357 int ret; 5358 cpumask_var_t mask; 5359 5360 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5361 return -EINVAL; 5362 if (len & (sizeof(unsigned long)-1)) 5363 return -EINVAL; 5364 5365 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5366 return -ENOMEM; 5367 5368 ret = sched_getaffinity(pid, mask); 5369 if (ret == 0) { 5370 unsigned int retlen = min(len, cpumask_size()); 5371 5372 if (copy_to_user(user_mask_ptr, mask, retlen)) 5373 ret = -EFAULT; 5374 else 5375 ret = retlen; 5376 } 5377 free_cpumask_var(mask); 5378 5379 return ret; 5380 } 5381 5382 /** 5383 * sys_sched_yield - yield the current processor to other threads. 5384 * 5385 * This function yields the current CPU to other tasks. If there are no 5386 * other threads running on this CPU then this function will return. 5387 * 5388 * Return: 0. 5389 */ 5390 static void do_sched_yield(void) 5391 { 5392 struct rq_flags rf; 5393 struct rq *rq; 5394 5395 rq = this_rq_lock_irq(&rf); 5396 5397 schedstat_inc(rq->yld_count); 5398 current->sched_class->yield_task(rq); 5399 5400 /* 5401 * Since we are going to call schedule() anyway, there's 5402 * no need to preempt or enable interrupts: 5403 */ 5404 preempt_disable(); 5405 rq_unlock(rq, &rf); 5406 sched_preempt_enable_no_resched(); 5407 5408 schedule(); 5409 } 5410 5411 SYSCALL_DEFINE0(sched_yield) 5412 { 5413 do_sched_yield(); 5414 return 0; 5415 } 5416 5417 #ifndef CONFIG_PREEMPT 5418 int __sched _cond_resched(void) 5419 { 5420 if (should_resched(0)) { 5421 preempt_schedule_common(); 5422 return 1; 5423 } 5424 rcu_all_qs(); 5425 return 0; 5426 } 5427 EXPORT_SYMBOL(_cond_resched); 5428 #endif 5429 5430 /* 5431 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5432 * call schedule, and on return reacquire the lock. 5433 * 5434 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5435 * operations here to prevent schedule() from being called twice (once via 5436 * spin_unlock(), once by hand). 5437 */ 5438 int __cond_resched_lock(spinlock_t *lock) 5439 { 5440 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5441 int ret = 0; 5442 5443 lockdep_assert_held(lock); 5444 5445 if (spin_needbreak(lock) || resched) { 5446 spin_unlock(lock); 5447 if (resched) 5448 preempt_schedule_common(); 5449 else 5450 cpu_relax(); 5451 ret = 1; 5452 spin_lock(lock); 5453 } 5454 return ret; 5455 } 5456 EXPORT_SYMBOL(__cond_resched_lock); 5457 5458 /** 5459 * yield - yield the current processor to other threads. 5460 * 5461 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5462 * 5463 * The scheduler is at all times free to pick the calling task as the most 5464 * eligible task to run, if removing the yield() call from your code breaks 5465 * it, its already broken. 5466 * 5467 * Typical broken usage is: 5468 * 5469 * while (!event) 5470 * yield(); 5471 * 5472 * where one assumes that yield() will let 'the other' process run that will 5473 * make event true. If the current task is a SCHED_FIFO task that will never 5474 * happen. Never use yield() as a progress guarantee!! 5475 * 5476 * If you want to use yield() to wait for something, use wait_event(). 5477 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5478 * If you still want to use yield(), do not! 5479 */ 5480 void __sched yield(void) 5481 { 5482 set_current_state(TASK_RUNNING); 5483 do_sched_yield(); 5484 } 5485 EXPORT_SYMBOL(yield); 5486 5487 /** 5488 * yield_to - yield the current processor to another thread in 5489 * your thread group, or accelerate that thread toward the 5490 * processor it's on. 5491 * @p: target task 5492 * @preempt: whether task preemption is allowed or not 5493 * 5494 * It's the caller's job to ensure that the target task struct 5495 * can't go away on us before we can do any checks. 5496 * 5497 * Return: 5498 * true (>0) if we indeed boosted the target task. 5499 * false (0) if we failed to boost the target. 5500 * -ESRCH if there's no task to yield to. 5501 */ 5502 int __sched yield_to(struct task_struct *p, bool preempt) 5503 { 5504 struct task_struct *curr = current; 5505 struct rq *rq, *p_rq; 5506 unsigned long flags; 5507 int yielded = 0; 5508 5509 local_irq_save(flags); 5510 rq = this_rq(); 5511 5512 again: 5513 p_rq = task_rq(p); 5514 /* 5515 * If we're the only runnable task on the rq and target rq also 5516 * has only one task, there's absolutely no point in yielding. 5517 */ 5518 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5519 yielded = -ESRCH; 5520 goto out_irq; 5521 } 5522 5523 double_rq_lock(rq, p_rq); 5524 if (task_rq(p) != p_rq) { 5525 double_rq_unlock(rq, p_rq); 5526 goto again; 5527 } 5528 5529 if (!curr->sched_class->yield_to_task) 5530 goto out_unlock; 5531 5532 if (curr->sched_class != p->sched_class) 5533 goto out_unlock; 5534 5535 if (task_running(p_rq, p) || p->state) 5536 goto out_unlock; 5537 5538 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5539 if (yielded) { 5540 schedstat_inc(rq->yld_count); 5541 /* 5542 * Make p's CPU reschedule; pick_next_entity takes care of 5543 * fairness. 5544 */ 5545 if (preempt && rq != p_rq) 5546 resched_curr(p_rq); 5547 } 5548 5549 out_unlock: 5550 double_rq_unlock(rq, p_rq); 5551 out_irq: 5552 local_irq_restore(flags); 5553 5554 if (yielded > 0) 5555 schedule(); 5556 5557 return yielded; 5558 } 5559 EXPORT_SYMBOL_GPL(yield_to); 5560 5561 int io_schedule_prepare(void) 5562 { 5563 int old_iowait = current->in_iowait; 5564 5565 current->in_iowait = 1; 5566 blk_schedule_flush_plug(current); 5567 5568 return old_iowait; 5569 } 5570 5571 void io_schedule_finish(int token) 5572 { 5573 current->in_iowait = token; 5574 } 5575 5576 /* 5577 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5578 * that process accounting knows that this is a task in IO wait state. 5579 */ 5580 long __sched io_schedule_timeout(long timeout) 5581 { 5582 int token; 5583 long ret; 5584 5585 token = io_schedule_prepare(); 5586 ret = schedule_timeout(timeout); 5587 io_schedule_finish(token); 5588 5589 return ret; 5590 } 5591 EXPORT_SYMBOL(io_schedule_timeout); 5592 5593 void __sched io_schedule(void) 5594 { 5595 int token; 5596 5597 token = io_schedule_prepare(); 5598 schedule(); 5599 io_schedule_finish(token); 5600 } 5601 EXPORT_SYMBOL(io_schedule); 5602 5603 /** 5604 * sys_sched_get_priority_max - return maximum RT priority. 5605 * @policy: scheduling class. 5606 * 5607 * Return: On success, this syscall returns the maximum 5608 * rt_priority that can be used by a given scheduling class. 5609 * On failure, a negative error code is returned. 5610 */ 5611 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5612 { 5613 int ret = -EINVAL; 5614 5615 switch (policy) { 5616 case SCHED_FIFO: 5617 case SCHED_RR: 5618 ret = MAX_USER_RT_PRIO-1; 5619 break; 5620 case SCHED_DEADLINE: 5621 case SCHED_NORMAL: 5622 case SCHED_BATCH: 5623 case SCHED_IDLE: 5624 ret = 0; 5625 break; 5626 } 5627 return ret; 5628 } 5629 5630 /** 5631 * sys_sched_get_priority_min - return minimum RT priority. 5632 * @policy: scheduling class. 5633 * 5634 * Return: On success, this syscall returns the minimum 5635 * rt_priority that can be used by a given scheduling class. 5636 * On failure, a negative error code is returned. 5637 */ 5638 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5639 { 5640 int ret = -EINVAL; 5641 5642 switch (policy) { 5643 case SCHED_FIFO: 5644 case SCHED_RR: 5645 ret = 1; 5646 break; 5647 case SCHED_DEADLINE: 5648 case SCHED_NORMAL: 5649 case SCHED_BATCH: 5650 case SCHED_IDLE: 5651 ret = 0; 5652 } 5653 return ret; 5654 } 5655 5656 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5657 { 5658 struct task_struct *p; 5659 unsigned int time_slice; 5660 struct rq_flags rf; 5661 struct rq *rq; 5662 int retval; 5663 5664 if (pid < 0) 5665 return -EINVAL; 5666 5667 retval = -ESRCH; 5668 rcu_read_lock(); 5669 p = find_process_by_pid(pid); 5670 if (!p) 5671 goto out_unlock; 5672 5673 retval = security_task_getscheduler(p); 5674 if (retval) 5675 goto out_unlock; 5676 5677 rq = task_rq_lock(p, &rf); 5678 time_slice = 0; 5679 if (p->sched_class->get_rr_interval) 5680 time_slice = p->sched_class->get_rr_interval(rq, p); 5681 task_rq_unlock(rq, p, &rf); 5682 5683 rcu_read_unlock(); 5684 jiffies_to_timespec64(time_slice, t); 5685 return 0; 5686 5687 out_unlock: 5688 rcu_read_unlock(); 5689 return retval; 5690 } 5691 5692 /** 5693 * sys_sched_rr_get_interval - return the default timeslice of a process. 5694 * @pid: pid of the process. 5695 * @interval: userspace pointer to the timeslice value. 5696 * 5697 * this syscall writes the default timeslice value of a given process 5698 * into the user-space timespec buffer. A value of '0' means infinity. 5699 * 5700 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5701 * an error code. 5702 */ 5703 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5704 struct __kernel_timespec __user *, interval) 5705 { 5706 struct timespec64 t; 5707 int retval = sched_rr_get_interval(pid, &t); 5708 5709 if (retval == 0) 5710 retval = put_timespec64(&t, interval); 5711 5712 return retval; 5713 } 5714 5715 #ifdef CONFIG_COMPAT_32BIT_TIME 5716 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5717 struct old_timespec32 __user *, interval) 5718 { 5719 struct timespec64 t; 5720 int retval = sched_rr_get_interval(pid, &t); 5721 5722 if (retval == 0) 5723 retval = put_old_timespec32(&t, interval); 5724 return retval; 5725 } 5726 #endif 5727 5728 void sched_show_task(struct task_struct *p) 5729 { 5730 unsigned long free = 0; 5731 int ppid; 5732 5733 if (!try_get_task_stack(p)) 5734 return; 5735 5736 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5737 5738 if (p->state == TASK_RUNNING) 5739 printk(KERN_CONT " running task "); 5740 #ifdef CONFIG_DEBUG_STACK_USAGE 5741 free = stack_not_used(p); 5742 #endif 5743 ppid = 0; 5744 rcu_read_lock(); 5745 if (pid_alive(p)) 5746 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5747 rcu_read_unlock(); 5748 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5749 task_pid_nr(p), ppid, 5750 (unsigned long)task_thread_info(p)->flags); 5751 5752 print_worker_info(KERN_INFO, p); 5753 show_stack(p, NULL); 5754 put_task_stack(p); 5755 } 5756 EXPORT_SYMBOL_GPL(sched_show_task); 5757 5758 static inline bool 5759 state_filter_match(unsigned long state_filter, struct task_struct *p) 5760 { 5761 /* no filter, everything matches */ 5762 if (!state_filter) 5763 return true; 5764 5765 /* filter, but doesn't match */ 5766 if (!(p->state & state_filter)) 5767 return false; 5768 5769 /* 5770 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5771 * TASK_KILLABLE). 5772 */ 5773 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5774 return false; 5775 5776 return true; 5777 } 5778 5779 5780 void show_state_filter(unsigned long state_filter) 5781 { 5782 struct task_struct *g, *p; 5783 5784 #if BITS_PER_LONG == 32 5785 printk(KERN_INFO 5786 " task PC stack pid father\n"); 5787 #else 5788 printk(KERN_INFO 5789 " task PC stack pid father\n"); 5790 #endif 5791 rcu_read_lock(); 5792 for_each_process_thread(g, p) { 5793 /* 5794 * reset the NMI-timeout, listing all files on a slow 5795 * console might take a lot of time: 5796 * Also, reset softlockup watchdogs on all CPUs, because 5797 * another CPU might be blocked waiting for us to process 5798 * an IPI. 5799 */ 5800 touch_nmi_watchdog(); 5801 touch_all_softlockup_watchdogs(); 5802 if (state_filter_match(state_filter, p)) 5803 sched_show_task(p); 5804 } 5805 5806 #ifdef CONFIG_SCHED_DEBUG 5807 if (!state_filter) 5808 sysrq_sched_debug_show(); 5809 #endif 5810 rcu_read_unlock(); 5811 /* 5812 * Only show locks if all tasks are dumped: 5813 */ 5814 if (!state_filter) 5815 debug_show_all_locks(); 5816 } 5817 5818 /** 5819 * init_idle - set up an idle thread for a given CPU 5820 * @idle: task in question 5821 * @cpu: CPU the idle task belongs to 5822 * 5823 * NOTE: this function does not set the idle thread's NEED_RESCHED 5824 * flag, to make booting more robust. 5825 */ 5826 void init_idle(struct task_struct *idle, int cpu) 5827 { 5828 struct rq *rq = cpu_rq(cpu); 5829 unsigned long flags; 5830 5831 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5832 raw_spin_lock(&rq->lock); 5833 5834 __sched_fork(0, idle); 5835 idle->state = TASK_RUNNING; 5836 idle->se.exec_start = sched_clock(); 5837 idle->flags |= PF_IDLE; 5838 5839 kasan_unpoison_task_stack(idle); 5840 5841 #ifdef CONFIG_SMP 5842 /* 5843 * Its possible that init_idle() gets called multiple times on a task, 5844 * in that case do_set_cpus_allowed() will not do the right thing. 5845 * 5846 * And since this is boot we can forgo the serialization. 5847 */ 5848 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5849 #endif 5850 /* 5851 * We're having a chicken and egg problem, even though we are 5852 * holding rq->lock, the CPU isn't yet set to this CPU so the 5853 * lockdep check in task_group() will fail. 5854 * 5855 * Similar case to sched_fork(). / Alternatively we could 5856 * use task_rq_lock() here and obtain the other rq->lock. 5857 * 5858 * Silence PROVE_RCU 5859 */ 5860 rcu_read_lock(); 5861 __set_task_cpu(idle, cpu); 5862 rcu_read_unlock(); 5863 5864 rq->curr = rq->idle = idle; 5865 idle->on_rq = TASK_ON_RQ_QUEUED; 5866 #ifdef CONFIG_SMP 5867 idle->on_cpu = 1; 5868 #endif 5869 raw_spin_unlock(&rq->lock); 5870 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5871 5872 /* Set the preempt count _outside_ the spinlocks! */ 5873 init_idle_preempt_count(idle, cpu); 5874 5875 /* 5876 * The idle tasks have their own, simple scheduling class: 5877 */ 5878 idle->sched_class = &idle_sched_class; 5879 ftrace_graph_init_idle_task(idle, cpu); 5880 vtime_init_idle(idle, cpu); 5881 #ifdef CONFIG_SMP 5882 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5883 #endif 5884 } 5885 5886 #ifdef CONFIG_SMP 5887 5888 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5889 const struct cpumask *trial) 5890 { 5891 int ret = 1; 5892 5893 if (!cpumask_weight(cur)) 5894 return ret; 5895 5896 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5897 5898 return ret; 5899 } 5900 5901 int task_can_attach(struct task_struct *p, 5902 const struct cpumask *cs_cpus_allowed) 5903 { 5904 int ret = 0; 5905 5906 /* 5907 * Kthreads which disallow setaffinity shouldn't be moved 5908 * to a new cpuset; we don't want to change their CPU 5909 * affinity and isolating such threads by their set of 5910 * allowed nodes is unnecessary. Thus, cpusets are not 5911 * applicable for such threads. This prevents checking for 5912 * success of set_cpus_allowed_ptr() on all attached tasks 5913 * before cpus_mask may be changed. 5914 */ 5915 if (p->flags & PF_NO_SETAFFINITY) { 5916 ret = -EINVAL; 5917 goto out; 5918 } 5919 5920 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5921 cs_cpus_allowed)) 5922 ret = dl_task_can_attach(p, cs_cpus_allowed); 5923 5924 out: 5925 return ret; 5926 } 5927 5928 bool sched_smp_initialized __read_mostly; 5929 5930 #ifdef CONFIG_NUMA_BALANCING 5931 /* Migrate current task p to target_cpu */ 5932 int migrate_task_to(struct task_struct *p, int target_cpu) 5933 { 5934 struct migration_arg arg = { p, target_cpu }; 5935 int curr_cpu = task_cpu(p); 5936 5937 if (curr_cpu == target_cpu) 5938 return 0; 5939 5940 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 5941 return -EINVAL; 5942 5943 /* TODO: This is not properly updating schedstats */ 5944 5945 trace_sched_move_numa(p, curr_cpu, target_cpu); 5946 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5947 } 5948 5949 /* 5950 * Requeue a task on a given node and accurately track the number of NUMA 5951 * tasks on the runqueues 5952 */ 5953 void sched_setnuma(struct task_struct *p, int nid) 5954 { 5955 bool queued, running; 5956 struct rq_flags rf; 5957 struct rq *rq; 5958 5959 rq = task_rq_lock(p, &rf); 5960 queued = task_on_rq_queued(p); 5961 running = task_current(rq, p); 5962 5963 if (queued) 5964 dequeue_task(rq, p, DEQUEUE_SAVE); 5965 if (running) 5966 put_prev_task(rq, p); 5967 5968 p->numa_preferred_nid = nid; 5969 5970 if (queued) 5971 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5972 if (running) 5973 set_curr_task(rq, p); 5974 task_rq_unlock(rq, p, &rf); 5975 } 5976 #endif /* CONFIG_NUMA_BALANCING */ 5977 5978 #ifdef CONFIG_HOTPLUG_CPU 5979 /* 5980 * Ensure that the idle task is using init_mm right before its CPU goes 5981 * offline. 5982 */ 5983 void idle_task_exit(void) 5984 { 5985 struct mm_struct *mm = current->active_mm; 5986 5987 BUG_ON(cpu_online(smp_processor_id())); 5988 5989 if (mm != &init_mm) { 5990 switch_mm(mm, &init_mm, current); 5991 current->active_mm = &init_mm; 5992 finish_arch_post_lock_switch(); 5993 } 5994 mmdrop(mm); 5995 } 5996 5997 /* 5998 * Since this CPU is going 'away' for a while, fold any nr_active delta 5999 * we might have. Assumes we're called after migrate_tasks() so that the 6000 * nr_active count is stable. We need to take the teardown thread which 6001 * is calling this into account, so we hand in adjust = 1 to the load 6002 * calculation. 6003 * 6004 * Also see the comment "Global load-average calculations". 6005 */ 6006 static void calc_load_migrate(struct rq *rq) 6007 { 6008 long delta = calc_load_fold_active(rq, 1); 6009 if (delta) 6010 atomic_long_add(delta, &calc_load_tasks); 6011 } 6012 6013 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 6014 { 6015 } 6016 6017 static const struct sched_class fake_sched_class = { 6018 .put_prev_task = put_prev_task_fake, 6019 }; 6020 6021 static struct task_struct fake_task = { 6022 /* 6023 * Avoid pull_{rt,dl}_task() 6024 */ 6025 .prio = MAX_PRIO + 1, 6026 .sched_class = &fake_sched_class, 6027 }; 6028 6029 /* 6030 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6031 * try_to_wake_up()->select_task_rq(). 6032 * 6033 * Called with rq->lock held even though we'er in stop_machine() and 6034 * there's no concurrency possible, we hold the required locks anyway 6035 * because of lock validation efforts. 6036 */ 6037 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6038 { 6039 struct rq *rq = dead_rq; 6040 struct task_struct *next, *stop = rq->stop; 6041 struct rq_flags orf = *rf; 6042 int dest_cpu; 6043 6044 /* 6045 * Fudge the rq selection such that the below task selection loop 6046 * doesn't get stuck on the currently eligible stop task. 6047 * 6048 * We're currently inside stop_machine() and the rq is either stuck 6049 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6050 * either way we should never end up calling schedule() until we're 6051 * done here. 6052 */ 6053 rq->stop = NULL; 6054 6055 /* 6056 * put_prev_task() and pick_next_task() sched 6057 * class method both need to have an up-to-date 6058 * value of rq->clock[_task] 6059 */ 6060 update_rq_clock(rq); 6061 6062 for (;;) { 6063 /* 6064 * There's this thread running, bail when that's the only 6065 * remaining thread: 6066 */ 6067 if (rq->nr_running == 1) 6068 break; 6069 6070 /* 6071 * pick_next_task() assumes pinned rq->lock: 6072 */ 6073 next = pick_next_task(rq, &fake_task, rf); 6074 BUG_ON(!next); 6075 put_prev_task(rq, next); 6076 6077 /* 6078 * Rules for changing task_struct::cpus_mask are holding 6079 * both pi_lock and rq->lock, such that holding either 6080 * stabilizes the mask. 6081 * 6082 * Drop rq->lock is not quite as disastrous as it usually is 6083 * because !cpu_active at this point, which means load-balance 6084 * will not interfere. Also, stop-machine. 6085 */ 6086 rq_unlock(rq, rf); 6087 raw_spin_lock(&next->pi_lock); 6088 rq_relock(rq, rf); 6089 6090 /* 6091 * Since we're inside stop-machine, _nothing_ should have 6092 * changed the task, WARN if weird stuff happened, because in 6093 * that case the above rq->lock drop is a fail too. 6094 */ 6095 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6096 raw_spin_unlock(&next->pi_lock); 6097 continue; 6098 } 6099 6100 /* Find suitable destination for @next, with force if needed. */ 6101 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6102 rq = __migrate_task(rq, rf, next, dest_cpu); 6103 if (rq != dead_rq) { 6104 rq_unlock(rq, rf); 6105 rq = dead_rq; 6106 *rf = orf; 6107 rq_relock(rq, rf); 6108 } 6109 raw_spin_unlock(&next->pi_lock); 6110 } 6111 6112 rq->stop = stop; 6113 } 6114 #endif /* CONFIG_HOTPLUG_CPU */ 6115 6116 void set_rq_online(struct rq *rq) 6117 { 6118 if (!rq->online) { 6119 const struct sched_class *class; 6120 6121 cpumask_set_cpu(rq->cpu, rq->rd->online); 6122 rq->online = 1; 6123 6124 for_each_class(class) { 6125 if (class->rq_online) 6126 class->rq_online(rq); 6127 } 6128 } 6129 } 6130 6131 void set_rq_offline(struct rq *rq) 6132 { 6133 if (rq->online) { 6134 const struct sched_class *class; 6135 6136 for_each_class(class) { 6137 if (class->rq_offline) 6138 class->rq_offline(rq); 6139 } 6140 6141 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6142 rq->online = 0; 6143 } 6144 } 6145 6146 /* 6147 * used to mark begin/end of suspend/resume: 6148 */ 6149 static int num_cpus_frozen; 6150 6151 /* 6152 * Update cpusets according to cpu_active mask. If cpusets are 6153 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6154 * around partition_sched_domains(). 6155 * 6156 * If we come here as part of a suspend/resume, don't touch cpusets because we 6157 * want to restore it back to its original state upon resume anyway. 6158 */ 6159 static void cpuset_cpu_active(void) 6160 { 6161 if (cpuhp_tasks_frozen) { 6162 /* 6163 * num_cpus_frozen tracks how many CPUs are involved in suspend 6164 * resume sequence. As long as this is not the last online 6165 * operation in the resume sequence, just build a single sched 6166 * domain, ignoring cpusets. 6167 */ 6168 partition_sched_domains(1, NULL, NULL); 6169 if (--num_cpus_frozen) 6170 return; 6171 /* 6172 * This is the last CPU online operation. So fall through and 6173 * restore the original sched domains by considering the 6174 * cpuset configurations. 6175 */ 6176 cpuset_force_rebuild(); 6177 } 6178 cpuset_update_active_cpus(); 6179 } 6180 6181 static int cpuset_cpu_inactive(unsigned int cpu) 6182 { 6183 if (!cpuhp_tasks_frozen) { 6184 if (dl_cpu_busy(cpu)) 6185 return -EBUSY; 6186 cpuset_update_active_cpus(); 6187 } else { 6188 num_cpus_frozen++; 6189 partition_sched_domains(1, NULL, NULL); 6190 } 6191 return 0; 6192 } 6193 6194 int sched_cpu_activate(unsigned int cpu) 6195 { 6196 struct rq *rq = cpu_rq(cpu); 6197 struct rq_flags rf; 6198 6199 #ifdef CONFIG_SCHED_SMT 6200 /* 6201 * When going up, increment the number of cores with SMT present. 6202 */ 6203 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6204 static_branch_inc_cpuslocked(&sched_smt_present); 6205 #endif 6206 set_cpu_active(cpu, true); 6207 6208 if (sched_smp_initialized) { 6209 sched_domains_numa_masks_set(cpu); 6210 cpuset_cpu_active(); 6211 } 6212 6213 /* 6214 * Put the rq online, if not already. This happens: 6215 * 6216 * 1) In the early boot process, because we build the real domains 6217 * after all CPUs have been brought up. 6218 * 6219 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6220 * domains. 6221 */ 6222 rq_lock_irqsave(rq, &rf); 6223 if (rq->rd) { 6224 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6225 set_rq_online(rq); 6226 } 6227 rq_unlock_irqrestore(rq, &rf); 6228 6229 update_max_interval(); 6230 6231 return 0; 6232 } 6233 6234 int sched_cpu_deactivate(unsigned int cpu) 6235 { 6236 int ret; 6237 6238 set_cpu_active(cpu, false); 6239 /* 6240 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6241 * users of this state to go away such that all new such users will 6242 * observe it. 6243 * 6244 * Do sync before park smpboot threads to take care the rcu boost case. 6245 */ 6246 synchronize_rcu(); 6247 6248 #ifdef CONFIG_SCHED_SMT 6249 /* 6250 * When going down, decrement the number of cores with SMT present. 6251 */ 6252 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6253 static_branch_dec_cpuslocked(&sched_smt_present); 6254 #endif 6255 6256 if (!sched_smp_initialized) 6257 return 0; 6258 6259 ret = cpuset_cpu_inactive(cpu); 6260 if (ret) { 6261 set_cpu_active(cpu, true); 6262 return ret; 6263 } 6264 sched_domains_numa_masks_clear(cpu); 6265 return 0; 6266 } 6267 6268 static void sched_rq_cpu_starting(unsigned int cpu) 6269 { 6270 struct rq *rq = cpu_rq(cpu); 6271 6272 rq->calc_load_update = calc_load_update; 6273 update_max_interval(); 6274 } 6275 6276 int sched_cpu_starting(unsigned int cpu) 6277 { 6278 sched_rq_cpu_starting(cpu); 6279 sched_tick_start(cpu); 6280 return 0; 6281 } 6282 6283 #ifdef CONFIG_HOTPLUG_CPU 6284 int sched_cpu_dying(unsigned int cpu) 6285 { 6286 struct rq *rq = cpu_rq(cpu); 6287 struct rq_flags rf; 6288 6289 /* Handle pending wakeups and then migrate everything off */ 6290 sched_ttwu_pending(); 6291 sched_tick_stop(cpu); 6292 6293 rq_lock_irqsave(rq, &rf); 6294 if (rq->rd) { 6295 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6296 set_rq_offline(rq); 6297 } 6298 migrate_tasks(rq, &rf); 6299 BUG_ON(rq->nr_running != 1); 6300 rq_unlock_irqrestore(rq, &rf); 6301 6302 calc_load_migrate(rq); 6303 update_max_interval(); 6304 nohz_balance_exit_idle(rq); 6305 hrtick_clear(rq); 6306 return 0; 6307 } 6308 #endif 6309 6310 void __init sched_init_smp(void) 6311 { 6312 sched_init_numa(); 6313 6314 /* 6315 * There's no userspace yet to cause hotplug operations; hence all the 6316 * CPU masks are stable and all blatant races in the below code cannot 6317 * happen. 6318 */ 6319 mutex_lock(&sched_domains_mutex); 6320 sched_init_domains(cpu_active_mask); 6321 mutex_unlock(&sched_domains_mutex); 6322 6323 /* Move init over to a non-isolated CPU */ 6324 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6325 BUG(); 6326 sched_init_granularity(); 6327 6328 init_sched_rt_class(); 6329 init_sched_dl_class(); 6330 6331 sched_smp_initialized = true; 6332 } 6333 6334 static int __init migration_init(void) 6335 { 6336 sched_cpu_starting(smp_processor_id()); 6337 return 0; 6338 } 6339 early_initcall(migration_init); 6340 6341 #else 6342 void __init sched_init_smp(void) 6343 { 6344 sched_init_granularity(); 6345 } 6346 #endif /* CONFIG_SMP */ 6347 6348 int in_sched_functions(unsigned long addr) 6349 { 6350 return in_lock_functions(addr) || 6351 (addr >= (unsigned long)__sched_text_start 6352 && addr < (unsigned long)__sched_text_end); 6353 } 6354 6355 #ifdef CONFIG_CGROUP_SCHED 6356 /* 6357 * Default task group. 6358 * Every task in system belongs to this group at bootup. 6359 */ 6360 struct task_group root_task_group; 6361 LIST_HEAD(task_groups); 6362 6363 /* Cacheline aligned slab cache for task_group */ 6364 static struct kmem_cache *task_group_cache __read_mostly; 6365 #endif 6366 6367 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6368 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6369 6370 void __init sched_init(void) 6371 { 6372 unsigned long alloc_size = 0, ptr; 6373 int i; 6374 6375 wait_bit_init(); 6376 6377 #ifdef CONFIG_FAIR_GROUP_SCHED 6378 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6379 #endif 6380 #ifdef CONFIG_RT_GROUP_SCHED 6381 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6382 #endif 6383 if (alloc_size) { 6384 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6385 6386 #ifdef CONFIG_FAIR_GROUP_SCHED 6387 root_task_group.se = (struct sched_entity **)ptr; 6388 ptr += nr_cpu_ids * sizeof(void **); 6389 6390 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6391 ptr += nr_cpu_ids * sizeof(void **); 6392 6393 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6394 #ifdef CONFIG_RT_GROUP_SCHED 6395 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6396 ptr += nr_cpu_ids * sizeof(void **); 6397 6398 root_task_group.rt_rq = (struct rt_rq **)ptr; 6399 ptr += nr_cpu_ids * sizeof(void **); 6400 6401 #endif /* CONFIG_RT_GROUP_SCHED */ 6402 } 6403 #ifdef CONFIG_CPUMASK_OFFSTACK 6404 for_each_possible_cpu(i) { 6405 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6406 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6407 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6408 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6409 } 6410 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6411 6412 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6413 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6414 6415 #ifdef CONFIG_SMP 6416 init_defrootdomain(); 6417 #endif 6418 6419 #ifdef CONFIG_RT_GROUP_SCHED 6420 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6421 global_rt_period(), global_rt_runtime()); 6422 #endif /* CONFIG_RT_GROUP_SCHED */ 6423 6424 #ifdef CONFIG_CGROUP_SCHED 6425 task_group_cache = KMEM_CACHE(task_group, 0); 6426 6427 list_add(&root_task_group.list, &task_groups); 6428 INIT_LIST_HEAD(&root_task_group.children); 6429 INIT_LIST_HEAD(&root_task_group.siblings); 6430 autogroup_init(&init_task); 6431 #endif /* CONFIG_CGROUP_SCHED */ 6432 6433 for_each_possible_cpu(i) { 6434 struct rq *rq; 6435 6436 rq = cpu_rq(i); 6437 raw_spin_lock_init(&rq->lock); 6438 rq->nr_running = 0; 6439 rq->calc_load_active = 0; 6440 rq->calc_load_update = jiffies + LOAD_FREQ; 6441 init_cfs_rq(&rq->cfs); 6442 init_rt_rq(&rq->rt); 6443 init_dl_rq(&rq->dl); 6444 #ifdef CONFIG_FAIR_GROUP_SCHED 6445 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6446 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6447 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6448 /* 6449 * How much CPU bandwidth does root_task_group get? 6450 * 6451 * In case of task-groups formed thr' the cgroup filesystem, it 6452 * gets 100% of the CPU resources in the system. This overall 6453 * system CPU resource is divided among the tasks of 6454 * root_task_group and its child task-groups in a fair manner, 6455 * based on each entity's (task or task-group's) weight 6456 * (se->load.weight). 6457 * 6458 * In other words, if root_task_group has 10 tasks of weight 6459 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6460 * then A0's share of the CPU resource is: 6461 * 6462 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6463 * 6464 * We achieve this by letting root_task_group's tasks sit 6465 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6466 */ 6467 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6468 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6469 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6470 6471 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6472 #ifdef CONFIG_RT_GROUP_SCHED 6473 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6474 #endif 6475 #ifdef CONFIG_SMP 6476 rq->sd = NULL; 6477 rq->rd = NULL; 6478 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6479 rq->balance_callback = NULL; 6480 rq->active_balance = 0; 6481 rq->next_balance = jiffies; 6482 rq->push_cpu = 0; 6483 rq->cpu = i; 6484 rq->online = 0; 6485 rq->idle_stamp = 0; 6486 rq->avg_idle = 2*sysctl_sched_migration_cost; 6487 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6488 6489 INIT_LIST_HEAD(&rq->cfs_tasks); 6490 6491 rq_attach_root(rq, &def_root_domain); 6492 #ifdef CONFIG_NO_HZ_COMMON 6493 rq->last_load_update_tick = jiffies; 6494 rq->last_blocked_load_update_tick = jiffies; 6495 atomic_set(&rq->nohz_flags, 0); 6496 #endif 6497 #endif /* CONFIG_SMP */ 6498 hrtick_rq_init(rq); 6499 atomic_set(&rq->nr_iowait, 0); 6500 } 6501 6502 set_load_weight(&init_task, false); 6503 6504 /* 6505 * The boot idle thread does lazy MMU switching as well: 6506 */ 6507 mmgrab(&init_mm); 6508 enter_lazy_tlb(&init_mm, current); 6509 6510 /* 6511 * Make us the idle thread. Technically, schedule() should not be 6512 * called from this thread, however somewhere below it might be, 6513 * but because we are the idle thread, we just pick up running again 6514 * when this runqueue becomes "idle". 6515 */ 6516 init_idle(current, smp_processor_id()); 6517 6518 calc_load_update = jiffies + LOAD_FREQ; 6519 6520 #ifdef CONFIG_SMP 6521 idle_thread_set_boot_cpu(); 6522 #endif 6523 init_sched_fair_class(); 6524 6525 init_schedstats(); 6526 6527 psi_init(); 6528 6529 init_uclamp(); 6530 6531 scheduler_running = 1; 6532 } 6533 6534 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6535 static inline int preempt_count_equals(int preempt_offset) 6536 { 6537 int nested = preempt_count() + rcu_preempt_depth(); 6538 6539 return (nested == preempt_offset); 6540 } 6541 6542 void __might_sleep(const char *file, int line, int preempt_offset) 6543 { 6544 /* 6545 * Blocking primitives will set (and therefore destroy) current->state, 6546 * since we will exit with TASK_RUNNING make sure we enter with it, 6547 * otherwise we will destroy state. 6548 */ 6549 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6550 "do not call blocking ops when !TASK_RUNNING; " 6551 "state=%lx set at [<%p>] %pS\n", 6552 current->state, 6553 (void *)current->task_state_change, 6554 (void *)current->task_state_change); 6555 6556 ___might_sleep(file, line, preempt_offset); 6557 } 6558 EXPORT_SYMBOL(__might_sleep); 6559 6560 void ___might_sleep(const char *file, int line, int preempt_offset) 6561 { 6562 /* Ratelimiting timestamp: */ 6563 static unsigned long prev_jiffy; 6564 6565 unsigned long preempt_disable_ip; 6566 6567 /* WARN_ON_ONCE() by default, no rate limit required: */ 6568 rcu_sleep_check(); 6569 6570 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6571 !is_idle_task(current)) || 6572 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6573 oops_in_progress) 6574 return; 6575 6576 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6577 return; 6578 prev_jiffy = jiffies; 6579 6580 /* Save this before calling printk(), since that will clobber it: */ 6581 preempt_disable_ip = get_preempt_disable_ip(current); 6582 6583 printk(KERN_ERR 6584 "BUG: sleeping function called from invalid context at %s:%d\n", 6585 file, line); 6586 printk(KERN_ERR 6587 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6588 in_atomic(), irqs_disabled(), 6589 current->pid, current->comm); 6590 6591 if (task_stack_end_corrupted(current)) 6592 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6593 6594 debug_show_held_locks(current); 6595 if (irqs_disabled()) 6596 print_irqtrace_events(current); 6597 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6598 && !preempt_count_equals(preempt_offset)) { 6599 pr_err("Preemption disabled at:"); 6600 print_ip_sym(preempt_disable_ip); 6601 pr_cont("\n"); 6602 } 6603 dump_stack(); 6604 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6605 } 6606 EXPORT_SYMBOL(___might_sleep); 6607 6608 void __cant_sleep(const char *file, int line, int preempt_offset) 6609 { 6610 static unsigned long prev_jiffy; 6611 6612 if (irqs_disabled()) 6613 return; 6614 6615 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6616 return; 6617 6618 if (preempt_count() > preempt_offset) 6619 return; 6620 6621 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6622 return; 6623 prev_jiffy = jiffies; 6624 6625 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6626 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6627 in_atomic(), irqs_disabled(), 6628 current->pid, current->comm); 6629 6630 debug_show_held_locks(current); 6631 dump_stack(); 6632 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6633 } 6634 EXPORT_SYMBOL_GPL(__cant_sleep); 6635 #endif 6636 6637 #ifdef CONFIG_MAGIC_SYSRQ 6638 void normalize_rt_tasks(void) 6639 { 6640 struct task_struct *g, *p; 6641 struct sched_attr attr = { 6642 .sched_policy = SCHED_NORMAL, 6643 }; 6644 6645 read_lock(&tasklist_lock); 6646 for_each_process_thread(g, p) { 6647 /* 6648 * Only normalize user tasks: 6649 */ 6650 if (p->flags & PF_KTHREAD) 6651 continue; 6652 6653 p->se.exec_start = 0; 6654 schedstat_set(p->se.statistics.wait_start, 0); 6655 schedstat_set(p->se.statistics.sleep_start, 0); 6656 schedstat_set(p->se.statistics.block_start, 0); 6657 6658 if (!dl_task(p) && !rt_task(p)) { 6659 /* 6660 * Renice negative nice level userspace 6661 * tasks back to 0: 6662 */ 6663 if (task_nice(p) < 0) 6664 set_user_nice(p, 0); 6665 continue; 6666 } 6667 6668 __sched_setscheduler(p, &attr, false, false); 6669 } 6670 read_unlock(&tasklist_lock); 6671 } 6672 6673 #endif /* CONFIG_MAGIC_SYSRQ */ 6674 6675 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6676 /* 6677 * These functions are only useful for the IA64 MCA handling, or kdb. 6678 * 6679 * They can only be called when the whole system has been 6680 * stopped - every CPU needs to be quiescent, and no scheduling 6681 * activity can take place. Using them for anything else would 6682 * be a serious bug, and as a result, they aren't even visible 6683 * under any other configuration. 6684 */ 6685 6686 /** 6687 * curr_task - return the current task for a given CPU. 6688 * @cpu: the processor in question. 6689 * 6690 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6691 * 6692 * Return: The current task for @cpu. 6693 */ 6694 struct task_struct *curr_task(int cpu) 6695 { 6696 return cpu_curr(cpu); 6697 } 6698 6699 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6700 6701 #ifdef CONFIG_IA64 6702 /** 6703 * set_curr_task - set the current task for a given CPU. 6704 * @cpu: the processor in question. 6705 * @p: the task pointer to set. 6706 * 6707 * Description: This function must only be used when non-maskable interrupts 6708 * are serviced on a separate stack. It allows the architecture to switch the 6709 * notion of the current task on a CPU in a non-blocking manner. This function 6710 * must be called with all CPU's synchronized, and interrupts disabled, the 6711 * and caller must save the original value of the current task (see 6712 * curr_task() above) and restore that value before reenabling interrupts and 6713 * re-starting the system. 6714 * 6715 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6716 */ 6717 void ia64_set_curr_task(int cpu, struct task_struct *p) 6718 { 6719 cpu_curr(cpu) = p; 6720 } 6721 6722 #endif 6723 6724 #ifdef CONFIG_CGROUP_SCHED 6725 /* task_group_lock serializes the addition/removal of task groups */ 6726 static DEFINE_SPINLOCK(task_group_lock); 6727 6728 static void sched_free_group(struct task_group *tg) 6729 { 6730 free_fair_sched_group(tg); 6731 free_rt_sched_group(tg); 6732 autogroup_free(tg); 6733 kmem_cache_free(task_group_cache, tg); 6734 } 6735 6736 /* allocate runqueue etc for a new task group */ 6737 struct task_group *sched_create_group(struct task_group *parent) 6738 { 6739 struct task_group *tg; 6740 6741 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6742 if (!tg) 6743 return ERR_PTR(-ENOMEM); 6744 6745 if (!alloc_fair_sched_group(tg, parent)) 6746 goto err; 6747 6748 if (!alloc_rt_sched_group(tg, parent)) 6749 goto err; 6750 6751 return tg; 6752 6753 err: 6754 sched_free_group(tg); 6755 return ERR_PTR(-ENOMEM); 6756 } 6757 6758 void sched_online_group(struct task_group *tg, struct task_group *parent) 6759 { 6760 unsigned long flags; 6761 6762 spin_lock_irqsave(&task_group_lock, flags); 6763 list_add_rcu(&tg->list, &task_groups); 6764 6765 /* Root should already exist: */ 6766 WARN_ON(!parent); 6767 6768 tg->parent = parent; 6769 INIT_LIST_HEAD(&tg->children); 6770 list_add_rcu(&tg->siblings, &parent->children); 6771 spin_unlock_irqrestore(&task_group_lock, flags); 6772 6773 online_fair_sched_group(tg); 6774 } 6775 6776 /* rcu callback to free various structures associated with a task group */ 6777 static void sched_free_group_rcu(struct rcu_head *rhp) 6778 { 6779 /* Now it should be safe to free those cfs_rqs: */ 6780 sched_free_group(container_of(rhp, struct task_group, rcu)); 6781 } 6782 6783 void sched_destroy_group(struct task_group *tg) 6784 { 6785 /* Wait for possible concurrent references to cfs_rqs complete: */ 6786 call_rcu(&tg->rcu, sched_free_group_rcu); 6787 } 6788 6789 void sched_offline_group(struct task_group *tg) 6790 { 6791 unsigned long flags; 6792 6793 /* End participation in shares distribution: */ 6794 unregister_fair_sched_group(tg); 6795 6796 spin_lock_irqsave(&task_group_lock, flags); 6797 list_del_rcu(&tg->list); 6798 list_del_rcu(&tg->siblings); 6799 spin_unlock_irqrestore(&task_group_lock, flags); 6800 } 6801 6802 static void sched_change_group(struct task_struct *tsk, int type) 6803 { 6804 struct task_group *tg; 6805 6806 /* 6807 * All callers are synchronized by task_rq_lock(); we do not use RCU 6808 * which is pointless here. Thus, we pass "true" to task_css_check() 6809 * to prevent lockdep warnings. 6810 */ 6811 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6812 struct task_group, css); 6813 tg = autogroup_task_group(tsk, tg); 6814 tsk->sched_task_group = tg; 6815 6816 #ifdef CONFIG_FAIR_GROUP_SCHED 6817 if (tsk->sched_class->task_change_group) 6818 tsk->sched_class->task_change_group(tsk, type); 6819 else 6820 #endif 6821 set_task_rq(tsk, task_cpu(tsk)); 6822 } 6823 6824 /* 6825 * Change task's runqueue when it moves between groups. 6826 * 6827 * The caller of this function should have put the task in its new group by 6828 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6829 * its new group. 6830 */ 6831 void sched_move_task(struct task_struct *tsk) 6832 { 6833 int queued, running, queue_flags = 6834 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6835 struct rq_flags rf; 6836 struct rq *rq; 6837 6838 rq = task_rq_lock(tsk, &rf); 6839 update_rq_clock(rq); 6840 6841 running = task_current(rq, tsk); 6842 queued = task_on_rq_queued(tsk); 6843 6844 if (queued) 6845 dequeue_task(rq, tsk, queue_flags); 6846 if (running) 6847 put_prev_task(rq, tsk); 6848 6849 sched_change_group(tsk, TASK_MOVE_GROUP); 6850 6851 if (queued) 6852 enqueue_task(rq, tsk, queue_flags); 6853 if (running) 6854 set_curr_task(rq, tsk); 6855 6856 task_rq_unlock(rq, tsk, &rf); 6857 } 6858 6859 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6860 { 6861 return css ? container_of(css, struct task_group, css) : NULL; 6862 } 6863 6864 static struct cgroup_subsys_state * 6865 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6866 { 6867 struct task_group *parent = css_tg(parent_css); 6868 struct task_group *tg; 6869 6870 if (!parent) { 6871 /* This is early initialization for the top cgroup */ 6872 return &root_task_group.css; 6873 } 6874 6875 tg = sched_create_group(parent); 6876 if (IS_ERR(tg)) 6877 return ERR_PTR(-ENOMEM); 6878 6879 return &tg->css; 6880 } 6881 6882 /* Expose task group only after completing cgroup initialization */ 6883 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6884 { 6885 struct task_group *tg = css_tg(css); 6886 struct task_group *parent = css_tg(css->parent); 6887 6888 if (parent) 6889 sched_online_group(tg, parent); 6890 return 0; 6891 } 6892 6893 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6894 { 6895 struct task_group *tg = css_tg(css); 6896 6897 sched_offline_group(tg); 6898 } 6899 6900 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6901 { 6902 struct task_group *tg = css_tg(css); 6903 6904 /* 6905 * Relies on the RCU grace period between css_released() and this. 6906 */ 6907 sched_free_group(tg); 6908 } 6909 6910 /* 6911 * This is called before wake_up_new_task(), therefore we really only 6912 * have to set its group bits, all the other stuff does not apply. 6913 */ 6914 static void cpu_cgroup_fork(struct task_struct *task) 6915 { 6916 struct rq_flags rf; 6917 struct rq *rq; 6918 6919 rq = task_rq_lock(task, &rf); 6920 6921 update_rq_clock(rq); 6922 sched_change_group(task, TASK_SET_GROUP); 6923 6924 task_rq_unlock(rq, task, &rf); 6925 } 6926 6927 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6928 { 6929 struct task_struct *task; 6930 struct cgroup_subsys_state *css; 6931 int ret = 0; 6932 6933 cgroup_taskset_for_each(task, css, tset) { 6934 #ifdef CONFIG_RT_GROUP_SCHED 6935 if (!sched_rt_can_attach(css_tg(css), task)) 6936 return -EINVAL; 6937 #else 6938 /* We don't support RT-tasks being in separate groups */ 6939 if (task->sched_class != &fair_sched_class) 6940 return -EINVAL; 6941 #endif 6942 /* 6943 * Serialize against wake_up_new_task() such that if its 6944 * running, we're sure to observe its full state. 6945 */ 6946 raw_spin_lock_irq(&task->pi_lock); 6947 /* 6948 * Avoid calling sched_move_task() before wake_up_new_task() 6949 * has happened. This would lead to problems with PELT, due to 6950 * move wanting to detach+attach while we're not attached yet. 6951 */ 6952 if (task->state == TASK_NEW) 6953 ret = -EINVAL; 6954 raw_spin_unlock_irq(&task->pi_lock); 6955 6956 if (ret) 6957 break; 6958 } 6959 return ret; 6960 } 6961 6962 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6963 { 6964 struct task_struct *task; 6965 struct cgroup_subsys_state *css; 6966 6967 cgroup_taskset_for_each(task, css, tset) 6968 sched_move_task(task); 6969 } 6970 6971 #ifdef CONFIG_FAIR_GROUP_SCHED 6972 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6973 struct cftype *cftype, u64 shareval) 6974 { 6975 if (shareval > scale_load_down(ULONG_MAX)) 6976 shareval = MAX_SHARES; 6977 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6978 } 6979 6980 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6981 struct cftype *cft) 6982 { 6983 struct task_group *tg = css_tg(css); 6984 6985 return (u64) scale_load_down(tg->shares); 6986 } 6987 6988 #ifdef CONFIG_CFS_BANDWIDTH 6989 static DEFINE_MUTEX(cfs_constraints_mutex); 6990 6991 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6992 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6993 6994 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6995 6996 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6997 { 6998 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6999 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7000 7001 if (tg == &root_task_group) 7002 return -EINVAL; 7003 7004 /* 7005 * Ensure we have at some amount of bandwidth every period. This is 7006 * to prevent reaching a state of large arrears when throttled via 7007 * entity_tick() resulting in prolonged exit starvation. 7008 */ 7009 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7010 return -EINVAL; 7011 7012 /* 7013 * Likewise, bound things on the otherside by preventing insane quota 7014 * periods. This also allows us to normalize in computing quota 7015 * feasibility. 7016 */ 7017 if (period > max_cfs_quota_period) 7018 return -EINVAL; 7019 7020 /* 7021 * Prevent race between setting of cfs_rq->runtime_enabled and 7022 * unthrottle_offline_cfs_rqs(). 7023 */ 7024 get_online_cpus(); 7025 mutex_lock(&cfs_constraints_mutex); 7026 ret = __cfs_schedulable(tg, period, quota); 7027 if (ret) 7028 goto out_unlock; 7029 7030 runtime_enabled = quota != RUNTIME_INF; 7031 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7032 /* 7033 * If we need to toggle cfs_bandwidth_used, off->on must occur 7034 * before making related changes, and on->off must occur afterwards 7035 */ 7036 if (runtime_enabled && !runtime_was_enabled) 7037 cfs_bandwidth_usage_inc(); 7038 raw_spin_lock_irq(&cfs_b->lock); 7039 cfs_b->period = ns_to_ktime(period); 7040 cfs_b->quota = quota; 7041 7042 __refill_cfs_bandwidth_runtime(cfs_b); 7043 7044 /* Restart the period timer (if active) to handle new period expiry: */ 7045 if (runtime_enabled) 7046 start_cfs_bandwidth(cfs_b); 7047 7048 raw_spin_unlock_irq(&cfs_b->lock); 7049 7050 for_each_online_cpu(i) { 7051 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7052 struct rq *rq = cfs_rq->rq; 7053 struct rq_flags rf; 7054 7055 rq_lock_irq(rq, &rf); 7056 cfs_rq->runtime_enabled = runtime_enabled; 7057 cfs_rq->runtime_remaining = 0; 7058 7059 if (cfs_rq->throttled) 7060 unthrottle_cfs_rq(cfs_rq); 7061 rq_unlock_irq(rq, &rf); 7062 } 7063 if (runtime_was_enabled && !runtime_enabled) 7064 cfs_bandwidth_usage_dec(); 7065 out_unlock: 7066 mutex_unlock(&cfs_constraints_mutex); 7067 put_online_cpus(); 7068 7069 return ret; 7070 } 7071 7072 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7073 { 7074 u64 quota, period; 7075 7076 period = ktime_to_ns(tg->cfs_bandwidth.period); 7077 if (cfs_quota_us < 0) 7078 quota = RUNTIME_INF; 7079 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7080 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7081 else 7082 return -EINVAL; 7083 7084 return tg_set_cfs_bandwidth(tg, period, quota); 7085 } 7086 7087 static long tg_get_cfs_quota(struct task_group *tg) 7088 { 7089 u64 quota_us; 7090 7091 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7092 return -1; 7093 7094 quota_us = tg->cfs_bandwidth.quota; 7095 do_div(quota_us, NSEC_PER_USEC); 7096 7097 return quota_us; 7098 } 7099 7100 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7101 { 7102 u64 quota, period; 7103 7104 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7105 return -EINVAL; 7106 7107 period = (u64)cfs_period_us * NSEC_PER_USEC; 7108 quota = tg->cfs_bandwidth.quota; 7109 7110 return tg_set_cfs_bandwidth(tg, period, quota); 7111 } 7112 7113 static long tg_get_cfs_period(struct task_group *tg) 7114 { 7115 u64 cfs_period_us; 7116 7117 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7118 do_div(cfs_period_us, NSEC_PER_USEC); 7119 7120 return cfs_period_us; 7121 } 7122 7123 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7124 struct cftype *cft) 7125 { 7126 return tg_get_cfs_quota(css_tg(css)); 7127 } 7128 7129 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7130 struct cftype *cftype, s64 cfs_quota_us) 7131 { 7132 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7133 } 7134 7135 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7136 struct cftype *cft) 7137 { 7138 return tg_get_cfs_period(css_tg(css)); 7139 } 7140 7141 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7142 struct cftype *cftype, u64 cfs_period_us) 7143 { 7144 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7145 } 7146 7147 struct cfs_schedulable_data { 7148 struct task_group *tg; 7149 u64 period, quota; 7150 }; 7151 7152 /* 7153 * normalize group quota/period to be quota/max_period 7154 * note: units are usecs 7155 */ 7156 static u64 normalize_cfs_quota(struct task_group *tg, 7157 struct cfs_schedulable_data *d) 7158 { 7159 u64 quota, period; 7160 7161 if (tg == d->tg) { 7162 period = d->period; 7163 quota = d->quota; 7164 } else { 7165 period = tg_get_cfs_period(tg); 7166 quota = tg_get_cfs_quota(tg); 7167 } 7168 7169 /* note: these should typically be equivalent */ 7170 if (quota == RUNTIME_INF || quota == -1) 7171 return RUNTIME_INF; 7172 7173 return to_ratio(period, quota); 7174 } 7175 7176 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7177 { 7178 struct cfs_schedulable_data *d = data; 7179 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7180 s64 quota = 0, parent_quota = -1; 7181 7182 if (!tg->parent) { 7183 quota = RUNTIME_INF; 7184 } else { 7185 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7186 7187 quota = normalize_cfs_quota(tg, d); 7188 parent_quota = parent_b->hierarchical_quota; 7189 7190 /* 7191 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7192 * always take the min. On cgroup1, only inherit when no 7193 * limit is set: 7194 */ 7195 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7196 quota = min(quota, parent_quota); 7197 } else { 7198 if (quota == RUNTIME_INF) 7199 quota = parent_quota; 7200 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7201 return -EINVAL; 7202 } 7203 } 7204 cfs_b->hierarchical_quota = quota; 7205 7206 return 0; 7207 } 7208 7209 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7210 { 7211 int ret; 7212 struct cfs_schedulable_data data = { 7213 .tg = tg, 7214 .period = period, 7215 .quota = quota, 7216 }; 7217 7218 if (quota != RUNTIME_INF) { 7219 do_div(data.period, NSEC_PER_USEC); 7220 do_div(data.quota, NSEC_PER_USEC); 7221 } 7222 7223 rcu_read_lock(); 7224 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7225 rcu_read_unlock(); 7226 7227 return ret; 7228 } 7229 7230 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7231 { 7232 struct task_group *tg = css_tg(seq_css(sf)); 7233 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7234 7235 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7236 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7237 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7238 7239 if (schedstat_enabled() && tg != &root_task_group) { 7240 u64 ws = 0; 7241 int i; 7242 7243 for_each_possible_cpu(i) 7244 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7245 7246 seq_printf(sf, "wait_sum %llu\n", ws); 7247 } 7248 7249 return 0; 7250 } 7251 #endif /* CONFIG_CFS_BANDWIDTH */ 7252 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7253 7254 #ifdef CONFIG_RT_GROUP_SCHED 7255 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7256 struct cftype *cft, s64 val) 7257 { 7258 return sched_group_set_rt_runtime(css_tg(css), val); 7259 } 7260 7261 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7262 struct cftype *cft) 7263 { 7264 return sched_group_rt_runtime(css_tg(css)); 7265 } 7266 7267 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7268 struct cftype *cftype, u64 rt_period_us) 7269 { 7270 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7271 } 7272 7273 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7274 struct cftype *cft) 7275 { 7276 return sched_group_rt_period(css_tg(css)); 7277 } 7278 #endif /* CONFIG_RT_GROUP_SCHED */ 7279 7280 static struct cftype cpu_legacy_files[] = { 7281 #ifdef CONFIG_FAIR_GROUP_SCHED 7282 { 7283 .name = "shares", 7284 .read_u64 = cpu_shares_read_u64, 7285 .write_u64 = cpu_shares_write_u64, 7286 }, 7287 #endif 7288 #ifdef CONFIG_CFS_BANDWIDTH 7289 { 7290 .name = "cfs_quota_us", 7291 .read_s64 = cpu_cfs_quota_read_s64, 7292 .write_s64 = cpu_cfs_quota_write_s64, 7293 }, 7294 { 7295 .name = "cfs_period_us", 7296 .read_u64 = cpu_cfs_period_read_u64, 7297 .write_u64 = cpu_cfs_period_write_u64, 7298 }, 7299 { 7300 .name = "stat", 7301 .seq_show = cpu_cfs_stat_show, 7302 }, 7303 #endif 7304 #ifdef CONFIG_RT_GROUP_SCHED 7305 { 7306 .name = "rt_runtime_us", 7307 .read_s64 = cpu_rt_runtime_read, 7308 .write_s64 = cpu_rt_runtime_write, 7309 }, 7310 { 7311 .name = "rt_period_us", 7312 .read_u64 = cpu_rt_period_read_uint, 7313 .write_u64 = cpu_rt_period_write_uint, 7314 }, 7315 #endif 7316 { } /* Terminate */ 7317 }; 7318 7319 static int cpu_extra_stat_show(struct seq_file *sf, 7320 struct cgroup_subsys_state *css) 7321 { 7322 #ifdef CONFIG_CFS_BANDWIDTH 7323 { 7324 struct task_group *tg = css_tg(css); 7325 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7326 u64 throttled_usec; 7327 7328 throttled_usec = cfs_b->throttled_time; 7329 do_div(throttled_usec, NSEC_PER_USEC); 7330 7331 seq_printf(sf, "nr_periods %d\n" 7332 "nr_throttled %d\n" 7333 "throttled_usec %llu\n", 7334 cfs_b->nr_periods, cfs_b->nr_throttled, 7335 throttled_usec); 7336 } 7337 #endif 7338 return 0; 7339 } 7340 7341 #ifdef CONFIG_FAIR_GROUP_SCHED 7342 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7343 struct cftype *cft) 7344 { 7345 struct task_group *tg = css_tg(css); 7346 u64 weight = scale_load_down(tg->shares); 7347 7348 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7349 } 7350 7351 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7352 struct cftype *cft, u64 weight) 7353 { 7354 /* 7355 * cgroup weight knobs should use the common MIN, DFL and MAX 7356 * values which are 1, 100 and 10000 respectively. While it loses 7357 * a bit of range on both ends, it maps pretty well onto the shares 7358 * value used by scheduler and the round-trip conversions preserve 7359 * the original value over the entire range. 7360 */ 7361 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7362 return -ERANGE; 7363 7364 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7365 7366 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7367 } 7368 7369 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7370 struct cftype *cft) 7371 { 7372 unsigned long weight = scale_load_down(css_tg(css)->shares); 7373 int last_delta = INT_MAX; 7374 int prio, delta; 7375 7376 /* find the closest nice value to the current weight */ 7377 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7378 delta = abs(sched_prio_to_weight[prio] - weight); 7379 if (delta >= last_delta) 7380 break; 7381 last_delta = delta; 7382 } 7383 7384 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7385 } 7386 7387 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7388 struct cftype *cft, s64 nice) 7389 { 7390 unsigned long weight; 7391 int idx; 7392 7393 if (nice < MIN_NICE || nice > MAX_NICE) 7394 return -ERANGE; 7395 7396 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7397 idx = array_index_nospec(idx, 40); 7398 weight = sched_prio_to_weight[idx]; 7399 7400 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7401 } 7402 #endif 7403 7404 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7405 long period, long quota) 7406 { 7407 if (quota < 0) 7408 seq_puts(sf, "max"); 7409 else 7410 seq_printf(sf, "%ld", quota); 7411 7412 seq_printf(sf, " %ld\n", period); 7413 } 7414 7415 /* caller should put the current value in *@periodp before calling */ 7416 static int __maybe_unused cpu_period_quota_parse(char *buf, 7417 u64 *periodp, u64 *quotap) 7418 { 7419 char tok[21]; /* U64_MAX */ 7420 7421 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7422 return -EINVAL; 7423 7424 *periodp *= NSEC_PER_USEC; 7425 7426 if (sscanf(tok, "%llu", quotap)) 7427 *quotap *= NSEC_PER_USEC; 7428 else if (!strcmp(tok, "max")) 7429 *quotap = RUNTIME_INF; 7430 else 7431 return -EINVAL; 7432 7433 return 0; 7434 } 7435 7436 #ifdef CONFIG_CFS_BANDWIDTH 7437 static int cpu_max_show(struct seq_file *sf, void *v) 7438 { 7439 struct task_group *tg = css_tg(seq_css(sf)); 7440 7441 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7442 return 0; 7443 } 7444 7445 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7446 char *buf, size_t nbytes, loff_t off) 7447 { 7448 struct task_group *tg = css_tg(of_css(of)); 7449 u64 period = tg_get_cfs_period(tg); 7450 u64 quota; 7451 int ret; 7452 7453 ret = cpu_period_quota_parse(buf, &period, "a); 7454 if (!ret) 7455 ret = tg_set_cfs_bandwidth(tg, period, quota); 7456 return ret ?: nbytes; 7457 } 7458 #endif 7459 7460 static struct cftype cpu_files[] = { 7461 #ifdef CONFIG_FAIR_GROUP_SCHED 7462 { 7463 .name = "weight", 7464 .flags = CFTYPE_NOT_ON_ROOT, 7465 .read_u64 = cpu_weight_read_u64, 7466 .write_u64 = cpu_weight_write_u64, 7467 }, 7468 { 7469 .name = "weight.nice", 7470 .flags = CFTYPE_NOT_ON_ROOT, 7471 .read_s64 = cpu_weight_nice_read_s64, 7472 .write_s64 = cpu_weight_nice_write_s64, 7473 }, 7474 #endif 7475 #ifdef CONFIG_CFS_BANDWIDTH 7476 { 7477 .name = "max", 7478 .flags = CFTYPE_NOT_ON_ROOT, 7479 .seq_show = cpu_max_show, 7480 .write = cpu_max_write, 7481 }, 7482 #endif 7483 { } /* terminate */ 7484 }; 7485 7486 struct cgroup_subsys cpu_cgrp_subsys = { 7487 .css_alloc = cpu_cgroup_css_alloc, 7488 .css_online = cpu_cgroup_css_online, 7489 .css_released = cpu_cgroup_css_released, 7490 .css_free = cpu_cgroup_css_free, 7491 .css_extra_stat_show = cpu_extra_stat_show, 7492 .fork = cpu_cgroup_fork, 7493 .can_attach = cpu_cgroup_can_attach, 7494 .attach = cpu_cgroup_attach, 7495 .legacy_cftypes = cpu_legacy_files, 7496 .dfl_cftypes = cpu_files, 7497 .early_init = true, 7498 .threaded = true, 7499 }; 7500 7501 #endif /* CONFIG_CGROUP_SCHED */ 7502 7503 void dump_cpu_task(int cpu) 7504 { 7505 pr_info("Task dump for CPU %d:\n", cpu); 7506 sched_show_task(cpu_curr(cpu)); 7507 } 7508 7509 /* 7510 * Nice levels are multiplicative, with a gentle 10% change for every 7511 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7512 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7513 * that remained on nice 0. 7514 * 7515 * The "10% effect" is relative and cumulative: from _any_ nice level, 7516 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7517 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7518 * If a task goes up by ~10% and another task goes down by ~10% then 7519 * the relative distance between them is ~25%.) 7520 */ 7521 const int sched_prio_to_weight[40] = { 7522 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7523 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7524 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7525 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7526 /* 0 */ 1024, 820, 655, 526, 423, 7527 /* 5 */ 335, 272, 215, 172, 137, 7528 /* 10 */ 110, 87, 70, 56, 45, 7529 /* 15 */ 36, 29, 23, 18, 15, 7530 }; 7531 7532 /* 7533 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7534 * 7535 * In cases where the weight does not change often, we can use the 7536 * precalculated inverse to speed up arithmetics by turning divisions 7537 * into multiplications: 7538 */ 7539 const u32 sched_prio_to_wmult[40] = { 7540 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7541 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7542 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7543 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7544 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7545 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7546 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7547 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7548 }; 7549 7550 #undef CREATE_TRACE_POINTS 7551