1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 76 #include <asm/tlb.h> 77 #include <asm/irq_regs.h> 78 #include <asm/mutex.h> 79 #ifdef CONFIG_PARAVIRT 80 #include <asm/paravirt.h> 81 #endif 82 83 #include "sched.h" 84 #include "../workqueue_sched.h" 85 86 #define CREATE_TRACE_POINTS 87 #include <trace/events/sched.h> 88 89 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 90 { 91 unsigned long delta; 92 ktime_t soft, hard, now; 93 94 for (;;) { 95 if (hrtimer_active(period_timer)) 96 break; 97 98 now = hrtimer_cb_get_time(period_timer); 99 hrtimer_forward(period_timer, now, period); 100 101 soft = hrtimer_get_softexpires(period_timer); 102 hard = hrtimer_get_expires(period_timer); 103 delta = ktime_to_ns(ktime_sub(hard, soft)); 104 __hrtimer_start_range_ns(period_timer, soft, delta, 105 HRTIMER_MODE_ABS_PINNED, 0); 106 } 107 } 108 109 DEFINE_MUTEX(sched_domains_mutex); 110 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 111 112 static void update_rq_clock_task(struct rq *rq, s64 delta); 113 114 void update_rq_clock(struct rq *rq) 115 { 116 s64 delta; 117 118 if (rq->skip_clock_update > 0) 119 return; 120 121 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 122 rq->clock += delta; 123 update_rq_clock_task(rq, delta); 124 } 125 126 /* 127 * Debugging: various feature bits 128 */ 129 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 133 const_debug unsigned int sysctl_sched_features = 134 #include "features.h" 135 0; 136 137 #undef SCHED_FEAT 138 139 #ifdef CONFIG_SCHED_DEBUG 140 #define SCHED_FEAT(name, enabled) \ 141 #name , 142 143 static __read_mostly char *sched_feat_names[] = { 144 #include "features.h" 145 NULL 146 }; 147 148 #undef SCHED_FEAT 149 150 static int sched_feat_show(struct seq_file *m, void *v) 151 { 152 int i; 153 154 for (i = 0; i < __SCHED_FEAT_NR; i++) { 155 if (!(sysctl_sched_features & (1UL << i))) 156 seq_puts(m, "NO_"); 157 seq_printf(m, "%s ", sched_feat_names[i]); 158 } 159 seq_puts(m, "\n"); 160 161 return 0; 162 } 163 164 #ifdef HAVE_JUMP_LABEL 165 166 #define jump_label_key__true STATIC_KEY_INIT_TRUE 167 #define jump_label_key__false STATIC_KEY_INIT_FALSE 168 169 #define SCHED_FEAT(name, enabled) \ 170 jump_label_key__##enabled , 171 172 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 173 #include "features.h" 174 }; 175 176 #undef SCHED_FEAT 177 178 static void sched_feat_disable(int i) 179 { 180 if (static_key_enabled(&sched_feat_keys[i])) 181 static_key_slow_dec(&sched_feat_keys[i]); 182 } 183 184 static void sched_feat_enable(int i) 185 { 186 if (!static_key_enabled(&sched_feat_keys[i])) 187 static_key_slow_inc(&sched_feat_keys[i]); 188 } 189 #else 190 static void sched_feat_disable(int i) { }; 191 static void sched_feat_enable(int i) { }; 192 #endif /* HAVE_JUMP_LABEL */ 193 194 static ssize_t 195 sched_feat_write(struct file *filp, const char __user *ubuf, 196 size_t cnt, loff_t *ppos) 197 { 198 char buf[64]; 199 char *cmp; 200 int neg = 0; 201 int i; 202 203 if (cnt > 63) 204 cnt = 63; 205 206 if (copy_from_user(&buf, ubuf, cnt)) 207 return -EFAULT; 208 209 buf[cnt] = 0; 210 cmp = strstrip(buf); 211 212 if (strncmp(cmp, "NO_", 3) == 0) { 213 neg = 1; 214 cmp += 3; 215 } 216 217 for (i = 0; i < __SCHED_FEAT_NR; i++) { 218 if (strcmp(cmp, sched_feat_names[i]) == 0) { 219 if (neg) { 220 sysctl_sched_features &= ~(1UL << i); 221 sched_feat_disable(i); 222 } else { 223 sysctl_sched_features |= (1UL << i); 224 sched_feat_enable(i); 225 } 226 break; 227 } 228 } 229 230 if (i == __SCHED_FEAT_NR) 231 return -EINVAL; 232 233 *ppos += cnt; 234 235 return cnt; 236 } 237 238 static int sched_feat_open(struct inode *inode, struct file *filp) 239 { 240 return single_open(filp, sched_feat_show, NULL); 241 } 242 243 static const struct file_operations sched_feat_fops = { 244 .open = sched_feat_open, 245 .write = sched_feat_write, 246 .read = seq_read, 247 .llseek = seq_lseek, 248 .release = single_release, 249 }; 250 251 static __init int sched_init_debug(void) 252 { 253 debugfs_create_file("sched_features", 0644, NULL, NULL, 254 &sched_feat_fops); 255 256 return 0; 257 } 258 late_initcall(sched_init_debug); 259 #endif /* CONFIG_SCHED_DEBUG */ 260 261 /* 262 * Number of tasks to iterate in a single balance run. 263 * Limited because this is done with IRQs disabled. 264 */ 265 const_debug unsigned int sysctl_sched_nr_migrate = 32; 266 267 /* 268 * period over which we average the RT time consumption, measured 269 * in ms. 270 * 271 * default: 1s 272 */ 273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 274 275 /* 276 * period over which we measure -rt task cpu usage in us. 277 * default: 1s 278 */ 279 unsigned int sysctl_sched_rt_period = 1000000; 280 281 __read_mostly int scheduler_running; 282 283 /* 284 * part of the period that we allow rt tasks to run in us. 285 * default: 0.95s 286 */ 287 int sysctl_sched_rt_runtime = 950000; 288 289 290 291 /* 292 * __task_rq_lock - lock the rq @p resides on. 293 */ 294 static inline struct rq *__task_rq_lock(struct task_struct *p) 295 __acquires(rq->lock) 296 { 297 struct rq *rq; 298 299 lockdep_assert_held(&p->pi_lock); 300 301 for (;;) { 302 rq = task_rq(p); 303 raw_spin_lock(&rq->lock); 304 if (likely(rq == task_rq(p))) 305 return rq; 306 raw_spin_unlock(&rq->lock); 307 } 308 } 309 310 /* 311 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 312 */ 313 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 314 __acquires(p->pi_lock) 315 __acquires(rq->lock) 316 { 317 struct rq *rq; 318 319 for (;;) { 320 raw_spin_lock_irqsave(&p->pi_lock, *flags); 321 rq = task_rq(p); 322 raw_spin_lock(&rq->lock); 323 if (likely(rq == task_rq(p))) 324 return rq; 325 raw_spin_unlock(&rq->lock); 326 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 327 } 328 } 329 330 static void __task_rq_unlock(struct rq *rq) 331 __releases(rq->lock) 332 { 333 raw_spin_unlock(&rq->lock); 334 } 335 336 static inline void 337 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 338 __releases(rq->lock) 339 __releases(p->pi_lock) 340 { 341 raw_spin_unlock(&rq->lock); 342 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 343 } 344 345 /* 346 * this_rq_lock - lock this runqueue and disable interrupts. 347 */ 348 static struct rq *this_rq_lock(void) 349 __acquires(rq->lock) 350 { 351 struct rq *rq; 352 353 local_irq_disable(); 354 rq = this_rq(); 355 raw_spin_lock(&rq->lock); 356 357 return rq; 358 } 359 360 #ifdef CONFIG_SCHED_HRTICK 361 /* 362 * Use HR-timers to deliver accurate preemption points. 363 * 364 * Its all a bit involved since we cannot program an hrt while holding the 365 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 366 * reschedule event. 367 * 368 * When we get rescheduled we reprogram the hrtick_timer outside of the 369 * rq->lock. 370 */ 371 372 static void hrtick_clear(struct rq *rq) 373 { 374 if (hrtimer_active(&rq->hrtick_timer)) 375 hrtimer_cancel(&rq->hrtick_timer); 376 } 377 378 /* 379 * High-resolution timer tick. 380 * Runs from hardirq context with interrupts disabled. 381 */ 382 static enum hrtimer_restart hrtick(struct hrtimer *timer) 383 { 384 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 385 386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 387 388 raw_spin_lock(&rq->lock); 389 update_rq_clock(rq); 390 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 391 raw_spin_unlock(&rq->lock); 392 393 return HRTIMER_NORESTART; 394 } 395 396 #ifdef CONFIG_SMP 397 /* 398 * called from hardirq (IPI) context 399 */ 400 static void __hrtick_start(void *arg) 401 { 402 struct rq *rq = arg; 403 404 raw_spin_lock(&rq->lock); 405 hrtimer_restart(&rq->hrtick_timer); 406 rq->hrtick_csd_pending = 0; 407 raw_spin_unlock(&rq->lock); 408 } 409 410 /* 411 * Called to set the hrtick timer state. 412 * 413 * called with rq->lock held and irqs disabled 414 */ 415 void hrtick_start(struct rq *rq, u64 delay) 416 { 417 struct hrtimer *timer = &rq->hrtick_timer; 418 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 419 420 hrtimer_set_expires(timer, time); 421 422 if (rq == this_rq()) { 423 hrtimer_restart(timer); 424 } else if (!rq->hrtick_csd_pending) { 425 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 426 rq->hrtick_csd_pending = 1; 427 } 428 } 429 430 static int 431 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 432 { 433 int cpu = (int)(long)hcpu; 434 435 switch (action) { 436 case CPU_UP_CANCELED: 437 case CPU_UP_CANCELED_FROZEN: 438 case CPU_DOWN_PREPARE: 439 case CPU_DOWN_PREPARE_FROZEN: 440 case CPU_DEAD: 441 case CPU_DEAD_FROZEN: 442 hrtick_clear(cpu_rq(cpu)); 443 return NOTIFY_OK; 444 } 445 446 return NOTIFY_DONE; 447 } 448 449 static __init void init_hrtick(void) 450 { 451 hotcpu_notifier(hotplug_hrtick, 0); 452 } 453 #else 454 /* 455 * Called to set the hrtick timer state. 456 * 457 * called with rq->lock held and irqs disabled 458 */ 459 void hrtick_start(struct rq *rq, u64 delay) 460 { 461 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 462 HRTIMER_MODE_REL_PINNED, 0); 463 } 464 465 static inline void init_hrtick(void) 466 { 467 } 468 #endif /* CONFIG_SMP */ 469 470 static void init_rq_hrtick(struct rq *rq) 471 { 472 #ifdef CONFIG_SMP 473 rq->hrtick_csd_pending = 0; 474 475 rq->hrtick_csd.flags = 0; 476 rq->hrtick_csd.func = __hrtick_start; 477 rq->hrtick_csd.info = rq; 478 #endif 479 480 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 481 rq->hrtick_timer.function = hrtick; 482 } 483 #else /* CONFIG_SCHED_HRTICK */ 484 static inline void hrtick_clear(struct rq *rq) 485 { 486 } 487 488 static inline void init_rq_hrtick(struct rq *rq) 489 { 490 } 491 492 static inline void init_hrtick(void) 493 { 494 } 495 #endif /* CONFIG_SCHED_HRTICK */ 496 497 /* 498 * resched_task - mark a task 'to be rescheduled now'. 499 * 500 * On UP this means the setting of the need_resched flag, on SMP it 501 * might also involve a cross-CPU call to trigger the scheduler on 502 * the target CPU. 503 */ 504 #ifdef CONFIG_SMP 505 506 #ifndef tsk_is_polling 507 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 508 #endif 509 510 void resched_task(struct task_struct *p) 511 { 512 int cpu; 513 514 assert_raw_spin_locked(&task_rq(p)->lock); 515 516 if (test_tsk_need_resched(p)) 517 return; 518 519 set_tsk_need_resched(p); 520 521 cpu = task_cpu(p); 522 if (cpu == smp_processor_id()) 523 return; 524 525 /* NEED_RESCHED must be visible before we test polling */ 526 smp_mb(); 527 if (!tsk_is_polling(p)) 528 smp_send_reschedule(cpu); 529 } 530 531 void resched_cpu(int cpu) 532 { 533 struct rq *rq = cpu_rq(cpu); 534 unsigned long flags; 535 536 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 537 return; 538 resched_task(cpu_curr(cpu)); 539 raw_spin_unlock_irqrestore(&rq->lock, flags); 540 } 541 542 #ifdef CONFIG_NO_HZ 543 /* 544 * In the semi idle case, use the nearest busy cpu for migrating timers 545 * from an idle cpu. This is good for power-savings. 546 * 547 * We don't do similar optimization for completely idle system, as 548 * selecting an idle cpu will add more delays to the timers than intended 549 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 550 */ 551 int get_nohz_timer_target(void) 552 { 553 int cpu = smp_processor_id(); 554 int i; 555 struct sched_domain *sd; 556 557 rcu_read_lock(); 558 for_each_domain(cpu, sd) { 559 for_each_cpu(i, sched_domain_span(sd)) { 560 if (!idle_cpu(i)) { 561 cpu = i; 562 goto unlock; 563 } 564 } 565 } 566 unlock: 567 rcu_read_unlock(); 568 return cpu; 569 } 570 /* 571 * When add_timer_on() enqueues a timer into the timer wheel of an 572 * idle CPU then this timer might expire before the next timer event 573 * which is scheduled to wake up that CPU. In case of a completely 574 * idle system the next event might even be infinite time into the 575 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 576 * leaves the inner idle loop so the newly added timer is taken into 577 * account when the CPU goes back to idle and evaluates the timer 578 * wheel for the next timer event. 579 */ 580 void wake_up_idle_cpu(int cpu) 581 { 582 struct rq *rq = cpu_rq(cpu); 583 584 if (cpu == smp_processor_id()) 585 return; 586 587 /* 588 * This is safe, as this function is called with the timer 589 * wheel base lock of (cpu) held. When the CPU is on the way 590 * to idle and has not yet set rq->curr to idle then it will 591 * be serialized on the timer wheel base lock and take the new 592 * timer into account automatically. 593 */ 594 if (rq->curr != rq->idle) 595 return; 596 597 /* 598 * We can set TIF_RESCHED on the idle task of the other CPU 599 * lockless. The worst case is that the other CPU runs the 600 * idle task through an additional NOOP schedule() 601 */ 602 set_tsk_need_resched(rq->idle); 603 604 /* NEED_RESCHED must be visible before we test polling */ 605 smp_mb(); 606 if (!tsk_is_polling(rq->idle)) 607 smp_send_reschedule(cpu); 608 } 609 610 static inline bool got_nohz_idle_kick(void) 611 { 612 int cpu = smp_processor_id(); 613 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 614 } 615 616 #else /* CONFIG_NO_HZ */ 617 618 static inline bool got_nohz_idle_kick(void) 619 { 620 return false; 621 } 622 623 #endif /* CONFIG_NO_HZ */ 624 625 void sched_avg_update(struct rq *rq) 626 { 627 s64 period = sched_avg_period(); 628 629 while ((s64)(rq->clock - rq->age_stamp) > period) { 630 /* 631 * Inline assembly required to prevent the compiler 632 * optimising this loop into a divmod call. 633 * See __iter_div_u64_rem() for another example of this. 634 */ 635 asm("" : "+rm" (rq->age_stamp)); 636 rq->age_stamp += period; 637 rq->rt_avg /= 2; 638 } 639 } 640 641 #else /* !CONFIG_SMP */ 642 void resched_task(struct task_struct *p) 643 { 644 assert_raw_spin_locked(&task_rq(p)->lock); 645 set_tsk_need_resched(p); 646 } 647 #endif /* CONFIG_SMP */ 648 649 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 650 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 651 /* 652 * Iterate task_group tree rooted at *from, calling @down when first entering a 653 * node and @up when leaving it for the final time. 654 * 655 * Caller must hold rcu_lock or sufficient equivalent. 656 */ 657 int walk_tg_tree_from(struct task_group *from, 658 tg_visitor down, tg_visitor up, void *data) 659 { 660 struct task_group *parent, *child; 661 int ret; 662 663 parent = from; 664 665 down: 666 ret = (*down)(parent, data); 667 if (ret) 668 goto out; 669 list_for_each_entry_rcu(child, &parent->children, siblings) { 670 parent = child; 671 goto down; 672 673 up: 674 continue; 675 } 676 ret = (*up)(parent, data); 677 if (ret || parent == from) 678 goto out; 679 680 child = parent; 681 parent = parent->parent; 682 if (parent) 683 goto up; 684 out: 685 return ret; 686 } 687 688 int tg_nop(struct task_group *tg, void *data) 689 { 690 return 0; 691 } 692 #endif 693 694 void update_cpu_load(struct rq *this_rq); 695 696 static void set_load_weight(struct task_struct *p) 697 { 698 int prio = p->static_prio - MAX_RT_PRIO; 699 struct load_weight *load = &p->se.load; 700 701 /* 702 * SCHED_IDLE tasks get minimal weight: 703 */ 704 if (p->policy == SCHED_IDLE) { 705 load->weight = scale_load(WEIGHT_IDLEPRIO); 706 load->inv_weight = WMULT_IDLEPRIO; 707 return; 708 } 709 710 load->weight = scale_load(prio_to_weight[prio]); 711 load->inv_weight = prio_to_wmult[prio]; 712 } 713 714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 715 { 716 update_rq_clock(rq); 717 sched_info_queued(p); 718 p->sched_class->enqueue_task(rq, p, flags); 719 } 720 721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 722 { 723 update_rq_clock(rq); 724 sched_info_dequeued(p); 725 p->sched_class->dequeue_task(rq, p, flags); 726 } 727 728 void activate_task(struct rq *rq, struct task_struct *p, int flags) 729 { 730 if (task_contributes_to_load(p)) 731 rq->nr_uninterruptible--; 732 733 enqueue_task(rq, p, flags); 734 } 735 736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 737 { 738 if (task_contributes_to_load(p)) 739 rq->nr_uninterruptible++; 740 741 dequeue_task(rq, p, flags); 742 } 743 744 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 745 746 /* 747 * There are no locks covering percpu hardirq/softirq time. 748 * They are only modified in account_system_vtime, on corresponding CPU 749 * with interrupts disabled. So, writes are safe. 750 * They are read and saved off onto struct rq in update_rq_clock(). 751 * This may result in other CPU reading this CPU's irq time and can 752 * race with irq/account_system_vtime on this CPU. We would either get old 753 * or new value with a side effect of accounting a slice of irq time to wrong 754 * task when irq is in progress while we read rq->clock. That is a worthy 755 * compromise in place of having locks on each irq in account_system_time. 756 */ 757 static DEFINE_PER_CPU(u64, cpu_hardirq_time); 758 static DEFINE_PER_CPU(u64, cpu_softirq_time); 759 760 static DEFINE_PER_CPU(u64, irq_start_time); 761 static int sched_clock_irqtime; 762 763 void enable_sched_clock_irqtime(void) 764 { 765 sched_clock_irqtime = 1; 766 } 767 768 void disable_sched_clock_irqtime(void) 769 { 770 sched_clock_irqtime = 0; 771 } 772 773 #ifndef CONFIG_64BIT 774 static DEFINE_PER_CPU(seqcount_t, irq_time_seq); 775 776 static inline void irq_time_write_begin(void) 777 { 778 __this_cpu_inc(irq_time_seq.sequence); 779 smp_wmb(); 780 } 781 782 static inline void irq_time_write_end(void) 783 { 784 smp_wmb(); 785 __this_cpu_inc(irq_time_seq.sequence); 786 } 787 788 static inline u64 irq_time_read(int cpu) 789 { 790 u64 irq_time; 791 unsigned seq; 792 793 do { 794 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 795 irq_time = per_cpu(cpu_softirq_time, cpu) + 796 per_cpu(cpu_hardirq_time, cpu); 797 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 798 799 return irq_time; 800 } 801 #else /* CONFIG_64BIT */ 802 static inline void irq_time_write_begin(void) 803 { 804 } 805 806 static inline void irq_time_write_end(void) 807 { 808 } 809 810 static inline u64 irq_time_read(int cpu) 811 { 812 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 813 } 814 #endif /* CONFIG_64BIT */ 815 816 /* 817 * Called before incrementing preempt_count on {soft,}irq_enter 818 * and before decrementing preempt_count on {soft,}irq_exit. 819 */ 820 void account_system_vtime(struct task_struct *curr) 821 { 822 unsigned long flags; 823 s64 delta; 824 int cpu; 825 826 if (!sched_clock_irqtime) 827 return; 828 829 local_irq_save(flags); 830 831 cpu = smp_processor_id(); 832 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); 833 __this_cpu_add(irq_start_time, delta); 834 835 irq_time_write_begin(); 836 /* 837 * We do not account for softirq time from ksoftirqd here. 838 * We want to continue accounting softirq time to ksoftirqd thread 839 * in that case, so as not to confuse scheduler with a special task 840 * that do not consume any time, but still wants to run. 841 */ 842 if (hardirq_count()) 843 __this_cpu_add(cpu_hardirq_time, delta); 844 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) 845 __this_cpu_add(cpu_softirq_time, delta); 846 847 irq_time_write_end(); 848 local_irq_restore(flags); 849 } 850 EXPORT_SYMBOL_GPL(account_system_vtime); 851 852 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 853 854 #ifdef CONFIG_PARAVIRT 855 static inline u64 steal_ticks(u64 steal) 856 { 857 if (unlikely(steal > NSEC_PER_SEC)) 858 return div_u64(steal, TICK_NSEC); 859 860 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 861 } 862 #endif 863 864 static void update_rq_clock_task(struct rq *rq, s64 delta) 865 { 866 /* 867 * In theory, the compile should just see 0 here, and optimize out the call 868 * to sched_rt_avg_update. But I don't trust it... 869 */ 870 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 871 s64 steal = 0, irq_delta = 0; 872 #endif 873 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 874 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 875 876 /* 877 * Since irq_time is only updated on {soft,}irq_exit, we might run into 878 * this case when a previous update_rq_clock() happened inside a 879 * {soft,}irq region. 880 * 881 * When this happens, we stop ->clock_task and only update the 882 * prev_irq_time stamp to account for the part that fit, so that a next 883 * update will consume the rest. This ensures ->clock_task is 884 * monotonic. 885 * 886 * It does however cause some slight miss-attribution of {soft,}irq 887 * time, a more accurate solution would be to update the irq_time using 888 * the current rq->clock timestamp, except that would require using 889 * atomic ops. 890 */ 891 if (irq_delta > delta) 892 irq_delta = delta; 893 894 rq->prev_irq_time += irq_delta; 895 delta -= irq_delta; 896 #endif 897 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 898 if (static_key_false((¶virt_steal_rq_enabled))) { 899 u64 st; 900 901 steal = paravirt_steal_clock(cpu_of(rq)); 902 steal -= rq->prev_steal_time_rq; 903 904 if (unlikely(steal > delta)) 905 steal = delta; 906 907 st = steal_ticks(steal); 908 steal = st * TICK_NSEC; 909 910 rq->prev_steal_time_rq += steal; 911 912 delta -= steal; 913 } 914 #endif 915 916 rq->clock_task += delta; 917 918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 919 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 920 sched_rt_avg_update(rq, irq_delta + steal); 921 #endif 922 } 923 924 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 925 static int irqtime_account_hi_update(void) 926 { 927 u64 *cpustat = kcpustat_this_cpu->cpustat; 928 unsigned long flags; 929 u64 latest_ns; 930 int ret = 0; 931 932 local_irq_save(flags); 933 latest_ns = this_cpu_read(cpu_hardirq_time); 934 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) 935 ret = 1; 936 local_irq_restore(flags); 937 return ret; 938 } 939 940 static int irqtime_account_si_update(void) 941 { 942 u64 *cpustat = kcpustat_this_cpu->cpustat; 943 unsigned long flags; 944 u64 latest_ns; 945 int ret = 0; 946 947 local_irq_save(flags); 948 latest_ns = this_cpu_read(cpu_softirq_time); 949 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) 950 ret = 1; 951 local_irq_restore(flags); 952 return ret; 953 } 954 955 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 956 957 #define sched_clock_irqtime (0) 958 959 #endif 960 961 void sched_set_stop_task(int cpu, struct task_struct *stop) 962 { 963 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 964 struct task_struct *old_stop = cpu_rq(cpu)->stop; 965 966 if (stop) { 967 /* 968 * Make it appear like a SCHED_FIFO task, its something 969 * userspace knows about and won't get confused about. 970 * 971 * Also, it will make PI more or less work without too 972 * much confusion -- but then, stop work should not 973 * rely on PI working anyway. 974 */ 975 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 976 977 stop->sched_class = &stop_sched_class; 978 } 979 980 cpu_rq(cpu)->stop = stop; 981 982 if (old_stop) { 983 /* 984 * Reset it back to a normal scheduling class so that 985 * it can die in pieces. 986 */ 987 old_stop->sched_class = &rt_sched_class; 988 } 989 } 990 991 /* 992 * __normal_prio - return the priority that is based on the static prio 993 */ 994 static inline int __normal_prio(struct task_struct *p) 995 { 996 return p->static_prio; 997 } 998 999 /* 1000 * Calculate the expected normal priority: i.e. priority 1001 * without taking RT-inheritance into account. Might be 1002 * boosted by interactivity modifiers. Changes upon fork, 1003 * setprio syscalls, and whenever the interactivity 1004 * estimator recalculates. 1005 */ 1006 static inline int normal_prio(struct task_struct *p) 1007 { 1008 int prio; 1009 1010 if (task_has_rt_policy(p)) 1011 prio = MAX_RT_PRIO-1 - p->rt_priority; 1012 else 1013 prio = __normal_prio(p); 1014 return prio; 1015 } 1016 1017 /* 1018 * Calculate the current priority, i.e. the priority 1019 * taken into account by the scheduler. This value might 1020 * be boosted by RT tasks, or might be boosted by 1021 * interactivity modifiers. Will be RT if the task got 1022 * RT-boosted. If not then it returns p->normal_prio. 1023 */ 1024 static int effective_prio(struct task_struct *p) 1025 { 1026 p->normal_prio = normal_prio(p); 1027 /* 1028 * If we are RT tasks or we were boosted to RT priority, 1029 * keep the priority unchanged. Otherwise, update priority 1030 * to the normal priority: 1031 */ 1032 if (!rt_prio(p->prio)) 1033 return p->normal_prio; 1034 return p->prio; 1035 } 1036 1037 /** 1038 * task_curr - is this task currently executing on a CPU? 1039 * @p: the task in question. 1040 */ 1041 inline int task_curr(const struct task_struct *p) 1042 { 1043 return cpu_curr(task_cpu(p)) == p; 1044 } 1045 1046 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1047 const struct sched_class *prev_class, 1048 int oldprio) 1049 { 1050 if (prev_class != p->sched_class) { 1051 if (prev_class->switched_from) 1052 prev_class->switched_from(rq, p); 1053 p->sched_class->switched_to(rq, p); 1054 } else if (oldprio != p->prio) 1055 p->sched_class->prio_changed(rq, p, oldprio); 1056 } 1057 1058 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1059 { 1060 const struct sched_class *class; 1061 1062 if (p->sched_class == rq->curr->sched_class) { 1063 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1064 } else { 1065 for_each_class(class) { 1066 if (class == rq->curr->sched_class) 1067 break; 1068 if (class == p->sched_class) { 1069 resched_task(rq->curr); 1070 break; 1071 } 1072 } 1073 } 1074 1075 /* 1076 * A queue event has occurred, and we're going to schedule. In 1077 * this case, we can save a useless back to back clock update. 1078 */ 1079 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 1080 rq->skip_clock_update = 1; 1081 } 1082 1083 #ifdef CONFIG_SMP 1084 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1085 { 1086 #ifdef CONFIG_SCHED_DEBUG 1087 /* 1088 * We should never call set_task_cpu() on a blocked task, 1089 * ttwu() will sort out the placement. 1090 */ 1091 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1092 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); 1093 1094 #ifdef CONFIG_LOCKDEP 1095 /* 1096 * The caller should hold either p->pi_lock or rq->lock, when changing 1097 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1098 * 1099 * sched_move_task() holds both and thus holding either pins the cgroup, 1100 * see set_task_rq(). 1101 * 1102 * Furthermore, all task_rq users should acquire both locks, see 1103 * task_rq_lock(). 1104 */ 1105 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1106 lockdep_is_held(&task_rq(p)->lock))); 1107 #endif 1108 #endif 1109 1110 trace_sched_migrate_task(p, new_cpu); 1111 1112 if (task_cpu(p) != new_cpu) { 1113 p->se.nr_migrations++; 1114 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1115 } 1116 1117 __set_task_cpu(p, new_cpu); 1118 } 1119 1120 struct migration_arg { 1121 struct task_struct *task; 1122 int dest_cpu; 1123 }; 1124 1125 static int migration_cpu_stop(void *data); 1126 1127 /* 1128 * wait_task_inactive - wait for a thread to unschedule. 1129 * 1130 * If @match_state is nonzero, it's the @p->state value just checked and 1131 * not expected to change. If it changes, i.e. @p might have woken up, 1132 * then return zero. When we succeed in waiting for @p to be off its CPU, 1133 * we return a positive number (its total switch count). If a second call 1134 * a short while later returns the same number, the caller can be sure that 1135 * @p has remained unscheduled the whole time. 1136 * 1137 * The caller must ensure that the task *will* unschedule sometime soon, 1138 * else this function might spin for a *long* time. This function can't 1139 * be called with interrupts off, or it may introduce deadlock with 1140 * smp_call_function() if an IPI is sent by the same process we are 1141 * waiting to become inactive. 1142 */ 1143 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1144 { 1145 unsigned long flags; 1146 int running, on_rq; 1147 unsigned long ncsw; 1148 struct rq *rq; 1149 1150 for (;;) { 1151 /* 1152 * We do the initial early heuristics without holding 1153 * any task-queue locks at all. We'll only try to get 1154 * the runqueue lock when things look like they will 1155 * work out! 1156 */ 1157 rq = task_rq(p); 1158 1159 /* 1160 * If the task is actively running on another CPU 1161 * still, just relax and busy-wait without holding 1162 * any locks. 1163 * 1164 * NOTE! Since we don't hold any locks, it's not 1165 * even sure that "rq" stays as the right runqueue! 1166 * But we don't care, since "task_running()" will 1167 * return false if the runqueue has changed and p 1168 * is actually now running somewhere else! 1169 */ 1170 while (task_running(rq, p)) { 1171 if (match_state && unlikely(p->state != match_state)) 1172 return 0; 1173 cpu_relax(); 1174 } 1175 1176 /* 1177 * Ok, time to look more closely! We need the rq 1178 * lock now, to be *sure*. If we're wrong, we'll 1179 * just go back and repeat. 1180 */ 1181 rq = task_rq_lock(p, &flags); 1182 trace_sched_wait_task(p); 1183 running = task_running(rq, p); 1184 on_rq = p->on_rq; 1185 ncsw = 0; 1186 if (!match_state || p->state == match_state) 1187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1188 task_rq_unlock(rq, p, &flags); 1189 1190 /* 1191 * If it changed from the expected state, bail out now. 1192 */ 1193 if (unlikely(!ncsw)) 1194 break; 1195 1196 /* 1197 * Was it really running after all now that we 1198 * checked with the proper locks actually held? 1199 * 1200 * Oops. Go back and try again.. 1201 */ 1202 if (unlikely(running)) { 1203 cpu_relax(); 1204 continue; 1205 } 1206 1207 /* 1208 * It's not enough that it's not actively running, 1209 * it must be off the runqueue _entirely_, and not 1210 * preempted! 1211 * 1212 * So if it was still runnable (but just not actively 1213 * running right now), it's preempted, and we should 1214 * yield - it could be a while. 1215 */ 1216 if (unlikely(on_rq)) { 1217 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1218 1219 set_current_state(TASK_UNINTERRUPTIBLE); 1220 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1221 continue; 1222 } 1223 1224 /* 1225 * Ahh, all good. It wasn't running, and it wasn't 1226 * runnable, which means that it will never become 1227 * running in the future either. We're all done! 1228 */ 1229 break; 1230 } 1231 1232 return ncsw; 1233 } 1234 1235 /*** 1236 * kick_process - kick a running thread to enter/exit the kernel 1237 * @p: the to-be-kicked thread 1238 * 1239 * Cause a process which is running on another CPU to enter 1240 * kernel-mode, without any delay. (to get signals handled.) 1241 * 1242 * NOTE: this function doesn't have to take the runqueue lock, 1243 * because all it wants to ensure is that the remote task enters 1244 * the kernel. If the IPI races and the task has been migrated 1245 * to another CPU then no harm is done and the purpose has been 1246 * achieved as well. 1247 */ 1248 void kick_process(struct task_struct *p) 1249 { 1250 int cpu; 1251 1252 preempt_disable(); 1253 cpu = task_cpu(p); 1254 if ((cpu != smp_processor_id()) && task_curr(p)) 1255 smp_send_reschedule(cpu); 1256 preempt_enable(); 1257 } 1258 EXPORT_SYMBOL_GPL(kick_process); 1259 #endif /* CONFIG_SMP */ 1260 1261 #ifdef CONFIG_SMP 1262 /* 1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1264 */ 1265 static int select_fallback_rq(int cpu, struct task_struct *p) 1266 { 1267 int dest_cpu; 1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); 1269 1270 /* Look for allowed, online CPU in same node. */ 1271 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) 1272 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1273 return dest_cpu; 1274 1275 /* Any allowed, online CPU? */ 1276 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask); 1277 if (dest_cpu < nr_cpu_ids) 1278 return dest_cpu; 1279 1280 /* No more Mr. Nice Guy. */ 1281 dest_cpu = cpuset_cpus_allowed_fallback(p); 1282 /* 1283 * Don't tell them about moving exiting tasks or 1284 * kernel threads (both mm NULL), since they never 1285 * leave kernel. 1286 */ 1287 if (p->mm && printk_ratelimit()) { 1288 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1289 task_pid_nr(p), p->comm, cpu); 1290 } 1291 1292 return dest_cpu; 1293 } 1294 1295 /* 1296 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1297 */ 1298 static inline 1299 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) 1300 { 1301 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); 1302 1303 /* 1304 * In order not to call set_task_cpu() on a blocking task we need 1305 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1306 * cpu. 1307 * 1308 * Since this is common to all placement strategies, this lives here. 1309 * 1310 * [ this allows ->select_task() to simply return task_cpu(p) and 1311 * not worry about this generic constraint ] 1312 */ 1313 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1314 !cpu_online(cpu))) 1315 cpu = select_fallback_rq(task_cpu(p), p); 1316 1317 return cpu; 1318 } 1319 1320 static void update_avg(u64 *avg, u64 sample) 1321 { 1322 s64 diff = sample - *avg; 1323 *avg += diff >> 3; 1324 } 1325 #endif 1326 1327 static void 1328 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1329 { 1330 #ifdef CONFIG_SCHEDSTATS 1331 struct rq *rq = this_rq(); 1332 1333 #ifdef CONFIG_SMP 1334 int this_cpu = smp_processor_id(); 1335 1336 if (cpu == this_cpu) { 1337 schedstat_inc(rq, ttwu_local); 1338 schedstat_inc(p, se.statistics.nr_wakeups_local); 1339 } else { 1340 struct sched_domain *sd; 1341 1342 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1343 rcu_read_lock(); 1344 for_each_domain(this_cpu, sd) { 1345 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1346 schedstat_inc(sd, ttwu_wake_remote); 1347 break; 1348 } 1349 } 1350 rcu_read_unlock(); 1351 } 1352 1353 if (wake_flags & WF_MIGRATED) 1354 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1355 1356 #endif /* CONFIG_SMP */ 1357 1358 schedstat_inc(rq, ttwu_count); 1359 schedstat_inc(p, se.statistics.nr_wakeups); 1360 1361 if (wake_flags & WF_SYNC) 1362 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1363 1364 #endif /* CONFIG_SCHEDSTATS */ 1365 } 1366 1367 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1368 { 1369 activate_task(rq, p, en_flags); 1370 p->on_rq = 1; 1371 1372 /* if a worker is waking up, notify workqueue */ 1373 if (p->flags & PF_WQ_WORKER) 1374 wq_worker_waking_up(p, cpu_of(rq)); 1375 } 1376 1377 /* 1378 * Mark the task runnable and perform wakeup-preemption. 1379 */ 1380 static void 1381 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1382 { 1383 trace_sched_wakeup(p, true); 1384 check_preempt_curr(rq, p, wake_flags); 1385 1386 p->state = TASK_RUNNING; 1387 #ifdef CONFIG_SMP 1388 if (p->sched_class->task_woken) 1389 p->sched_class->task_woken(rq, p); 1390 1391 if (rq->idle_stamp) { 1392 u64 delta = rq->clock - rq->idle_stamp; 1393 u64 max = 2*sysctl_sched_migration_cost; 1394 1395 if (delta > max) 1396 rq->avg_idle = max; 1397 else 1398 update_avg(&rq->avg_idle, delta); 1399 rq->idle_stamp = 0; 1400 } 1401 #endif 1402 } 1403 1404 static void 1405 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1406 { 1407 #ifdef CONFIG_SMP 1408 if (p->sched_contributes_to_load) 1409 rq->nr_uninterruptible--; 1410 #endif 1411 1412 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1413 ttwu_do_wakeup(rq, p, wake_flags); 1414 } 1415 1416 /* 1417 * Called in case the task @p isn't fully descheduled from its runqueue, 1418 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1419 * since all we need to do is flip p->state to TASK_RUNNING, since 1420 * the task is still ->on_rq. 1421 */ 1422 static int ttwu_remote(struct task_struct *p, int wake_flags) 1423 { 1424 struct rq *rq; 1425 int ret = 0; 1426 1427 rq = __task_rq_lock(p); 1428 if (p->on_rq) { 1429 ttwu_do_wakeup(rq, p, wake_flags); 1430 ret = 1; 1431 } 1432 __task_rq_unlock(rq); 1433 1434 return ret; 1435 } 1436 1437 #ifdef CONFIG_SMP 1438 static void sched_ttwu_pending(void) 1439 { 1440 struct rq *rq = this_rq(); 1441 struct llist_node *llist = llist_del_all(&rq->wake_list); 1442 struct task_struct *p; 1443 1444 raw_spin_lock(&rq->lock); 1445 1446 while (llist) { 1447 p = llist_entry(llist, struct task_struct, wake_entry); 1448 llist = llist_next(llist); 1449 ttwu_do_activate(rq, p, 0); 1450 } 1451 1452 raw_spin_unlock(&rq->lock); 1453 } 1454 1455 void scheduler_ipi(void) 1456 { 1457 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1458 return; 1459 1460 /* 1461 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1462 * traditionally all their work was done from the interrupt return 1463 * path. Now that we actually do some work, we need to make sure 1464 * we do call them. 1465 * 1466 * Some archs already do call them, luckily irq_enter/exit nest 1467 * properly. 1468 * 1469 * Arguably we should visit all archs and update all handlers, 1470 * however a fair share of IPIs are still resched only so this would 1471 * somewhat pessimize the simple resched case. 1472 */ 1473 irq_enter(); 1474 sched_ttwu_pending(); 1475 1476 /* 1477 * Check if someone kicked us for doing the nohz idle load balance. 1478 */ 1479 if (unlikely(got_nohz_idle_kick() && !need_resched())) { 1480 this_rq()->idle_balance = 1; 1481 raise_softirq_irqoff(SCHED_SOFTIRQ); 1482 } 1483 irq_exit(); 1484 } 1485 1486 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1487 { 1488 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1489 smp_send_reschedule(cpu); 1490 } 1491 1492 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1493 static int ttwu_activate_remote(struct task_struct *p, int wake_flags) 1494 { 1495 struct rq *rq; 1496 int ret = 0; 1497 1498 rq = __task_rq_lock(p); 1499 if (p->on_cpu) { 1500 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1501 ttwu_do_wakeup(rq, p, wake_flags); 1502 ret = 1; 1503 } 1504 __task_rq_unlock(rq); 1505 1506 return ret; 1507 1508 } 1509 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1510 1511 bool cpus_share_cache(int this_cpu, int that_cpu) 1512 { 1513 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1514 } 1515 #endif /* CONFIG_SMP */ 1516 1517 static void ttwu_queue(struct task_struct *p, int cpu) 1518 { 1519 struct rq *rq = cpu_rq(cpu); 1520 1521 #if defined(CONFIG_SMP) 1522 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1523 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1524 ttwu_queue_remote(p, cpu); 1525 return; 1526 } 1527 #endif 1528 1529 raw_spin_lock(&rq->lock); 1530 ttwu_do_activate(rq, p, 0); 1531 raw_spin_unlock(&rq->lock); 1532 } 1533 1534 /** 1535 * try_to_wake_up - wake up a thread 1536 * @p: the thread to be awakened 1537 * @state: the mask of task states that can be woken 1538 * @wake_flags: wake modifier flags (WF_*) 1539 * 1540 * Put it on the run-queue if it's not already there. The "current" 1541 * thread is always on the run-queue (except when the actual 1542 * re-schedule is in progress), and as such you're allowed to do 1543 * the simpler "current->state = TASK_RUNNING" to mark yourself 1544 * runnable without the overhead of this. 1545 * 1546 * Returns %true if @p was woken up, %false if it was already running 1547 * or @state didn't match @p's state. 1548 */ 1549 static int 1550 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1551 { 1552 unsigned long flags; 1553 int cpu, success = 0; 1554 1555 smp_wmb(); 1556 raw_spin_lock_irqsave(&p->pi_lock, flags); 1557 if (!(p->state & state)) 1558 goto out; 1559 1560 success = 1; /* we're going to change ->state */ 1561 cpu = task_cpu(p); 1562 1563 if (p->on_rq && ttwu_remote(p, wake_flags)) 1564 goto stat; 1565 1566 #ifdef CONFIG_SMP 1567 /* 1568 * If the owning (remote) cpu is still in the middle of schedule() with 1569 * this task as prev, wait until its done referencing the task. 1570 */ 1571 while (p->on_cpu) { 1572 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1573 /* 1574 * In case the architecture enables interrupts in 1575 * context_switch(), we cannot busy wait, since that 1576 * would lead to deadlocks when an interrupt hits and 1577 * tries to wake up @prev. So bail and do a complete 1578 * remote wakeup. 1579 */ 1580 if (ttwu_activate_remote(p, wake_flags)) 1581 goto stat; 1582 #else 1583 cpu_relax(); 1584 #endif 1585 } 1586 /* 1587 * Pairs with the smp_wmb() in finish_lock_switch(). 1588 */ 1589 smp_rmb(); 1590 1591 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1592 p->state = TASK_WAKING; 1593 1594 if (p->sched_class->task_waking) 1595 p->sched_class->task_waking(p); 1596 1597 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); 1598 if (task_cpu(p) != cpu) { 1599 wake_flags |= WF_MIGRATED; 1600 set_task_cpu(p, cpu); 1601 } 1602 #endif /* CONFIG_SMP */ 1603 1604 ttwu_queue(p, cpu); 1605 stat: 1606 ttwu_stat(p, cpu, wake_flags); 1607 out: 1608 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1609 1610 return success; 1611 } 1612 1613 /** 1614 * try_to_wake_up_local - try to wake up a local task with rq lock held 1615 * @p: the thread to be awakened 1616 * 1617 * Put @p on the run-queue if it's not already there. The caller must 1618 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1619 * the current task. 1620 */ 1621 static void try_to_wake_up_local(struct task_struct *p) 1622 { 1623 struct rq *rq = task_rq(p); 1624 1625 BUG_ON(rq != this_rq()); 1626 BUG_ON(p == current); 1627 lockdep_assert_held(&rq->lock); 1628 1629 if (!raw_spin_trylock(&p->pi_lock)) { 1630 raw_spin_unlock(&rq->lock); 1631 raw_spin_lock(&p->pi_lock); 1632 raw_spin_lock(&rq->lock); 1633 } 1634 1635 if (!(p->state & TASK_NORMAL)) 1636 goto out; 1637 1638 if (!p->on_rq) 1639 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1640 1641 ttwu_do_wakeup(rq, p, 0); 1642 ttwu_stat(p, smp_processor_id(), 0); 1643 out: 1644 raw_spin_unlock(&p->pi_lock); 1645 } 1646 1647 /** 1648 * wake_up_process - Wake up a specific process 1649 * @p: The process to be woken up. 1650 * 1651 * Attempt to wake up the nominated process and move it to the set of runnable 1652 * processes. Returns 1 if the process was woken up, 0 if it was already 1653 * running. 1654 * 1655 * It may be assumed that this function implies a write memory barrier before 1656 * changing the task state if and only if any tasks are woken up. 1657 */ 1658 int wake_up_process(struct task_struct *p) 1659 { 1660 return try_to_wake_up(p, TASK_ALL, 0); 1661 } 1662 EXPORT_SYMBOL(wake_up_process); 1663 1664 int wake_up_state(struct task_struct *p, unsigned int state) 1665 { 1666 return try_to_wake_up(p, state, 0); 1667 } 1668 1669 /* 1670 * Perform scheduler related setup for a newly forked process p. 1671 * p is forked by current. 1672 * 1673 * __sched_fork() is basic setup used by init_idle() too: 1674 */ 1675 static void __sched_fork(struct task_struct *p) 1676 { 1677 p->on_rq = 0; 1678 1679 p->se.on_rq = 0; 1680 p->se.exec_start = 0; 1681 p->se.sum_exec_runtime = 0; 1682 p->se.prev_sum_exec_runtime = 0; 1683 p->se.nr_migrations = 0; 1684 p->se.vruntime = 0; 1685 INIT_LIST_HEAD(&p->se.group_node); 1686 1687 #ifdef CONFIG_SCHEDSTATS 1688 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1689 #endif 1690 1691 INIT_LIST_HEAD(&p->rt.run_list); 1692 1693 #ifdef CONFIG_PREEMPT_NOTIFIERS 1694 INIT_HLIST_HEAD(&p->preempt_notifiers); 1695 #endif 1696 } 1697 1698 /* 1699 * fork()/clone()-time setup: 1700 */ 1701 void sched_fork(struct task_struct *p) 1702 { 1703 unsigned long flags; 1704 int cpu = get_cpu(); 1705 1706 __sched_fork(p); 1707 /* 1708 * We mark the process as running here. This guarantees that 1709 * nobody will actually run it, and a signal or other external 1710 * event cannot wake it up and insert it on the runqueue either. 1711 */ 1712 p->state = TASK_RUNNING; 1713 1714 /* 1715 * Make sure we do not leak PI boosting priority to the child. 1716 */ 1717 p->prio = current->normal_prio; 1718 1719 /* 1720 * Revert to default priority/policy on fork if requested. 1721 */ 1722 if (unlikely(p->sched_reset_on_fork)) { 1723 if (task_has_rt_policy(p)) { 1724 p->policy = SCHED_NORMAL; 1725 p->static_prio = NICE_TO_PRIO(0); 1726 p->rt_priority = 0; 1727 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1728 p->static_prio = NICE_TO_PRIO(0); 1729 1730 p->prio = p->normal_prio = __normal_prio(p); 1731 set_load_weight(p); 1732 1733 /* 1734 * We don't need the reset flag anymore after the fork. It has 1735 * fulfilled its duty: 1736 */ 1737 p->sched_reset_on_fork = 0; 1738 } 1739 1740 if (!rt_prio(p->prio)) 1741 p->sched_class = &fair_sched_class; 1742 1743 if (p->sched_class->task_fork) 1744 p->sched_class->task_fork(p); 1745 1746 /* 1747 * The child is not yet in the pid-hash so no cgroup attach races, 1748 * and the cgroup is pinned to this child due to cgroup_fork() 1749 * is ran before sched_fork(). 1750 * 1751 * Silence PROVE_RCU. 1752 */ 1753 raw_spin_lock_irqsave(&p->pi_lock, flags); 1754 set_task_cpu(p, cpu); 1755 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1756 1757 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1758 if (likely(sched_info_on())) 1759 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1760 #endif 1761 #if defined(CONFIG_SMP) 1762 p->on_cpu = 0; 1763 #endif 1764 #ifdef CONFIG_PREEMPT_COUNT 1765 /* Want to start with kernel preemption disabled. */ 1766 task_thread_info(p)->preempt_count = 1; 1767 #endif 1768 #ifdef CONFIG_SMP 1769 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1770 #endif 1771 1772 put_cpu(); 1773 } 1774 1775 /* 1776 * wake_up_new_task - wake up a newly created task for the first time. 1777 * 1778 * This function will do some initial scheduler statistics housekeeping 1779 * that must be done for every newly created context, then puts the task 1780 * on the runqueue and wakes it. 1781 */ 1782 void wake_up_new_task(struct task_struct *p) 1783 { 1784 unsigned long flags; 1785 struct rq *rq; 1786 1787 raw_spin_lock_irqsave(&p->pi_lock, flags); 1788 #ifdef CONFIG_SMP 1789 /* 1790 * Fork balancing, do it here and not earlier because: 1791 * - cpus_allowed can change in the fork path 1792 * - any previously selected cpu might disappear through hotplug 1793 */ 1794 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); 1795 #endif 1796 1797 rq = __task_rq_lock(p); 1798 activate_task(rq, p, 0); 1799 p->on_rq = 1; 1800 trace_sched_wakeup_new(p, true); 1801 check_preempt_curr(rq, p, WF_FORK); 1802 #ifdef CONFIG_SMP 1803 if (p->sched_class->task_woken) 1804 p->sched_class->task_woken(rq, p); 1805 #endif 1806 task_rq_unlock(rq, p, &flags); 1807 } 1808 1809 #ifdef CONFIG_PREEMPT_NOTIFIERS 1810 1811 /** 1812 * preempt_notifier_register - tell me when current is being preempted & rescheduled 1813 * @notifier: notifier struct to register 1814 */ 1815 void preempt_notifier_register(struct preempt_notifier *notifier) 1816 { 1817 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 1818 } 1819 EXPORT_SYMBOL_GPL(preempt_notifier_register); 1820 1821 /** 1822 * preempt_notifier_unregister - no longer interested in preemption notifications 1823 * @notifier: notifier struct to unregister 1824 * 1825 * This is safe to call from within a preemption notifier. 1826 */ 1827 void preempt_notifier_unregister(struct preempt_notifier *notifier) 1828 { 1829 hlist_del(¬ifier->link); 1830 } 1831 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 1832 1833 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1834 { 1835 struct preempt_notifier *notifier; 1836 struct hlist_node *node; 1837 1838 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1839 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 1840 } 1841 1842 static void 1843 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1844 struct task_struct *next) 1845 { 1846 struct preempt_notifier *notifier; 1847 struct hlist_node *node; 1848 1849 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 1850 notifier->ops->sched_out(notifier, next); 1851 } 1852 1853 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 1854 1855 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 1856 { 1857 } 1858 1859 static void 1860 fire_sched_out_preempt_notifiers(struct task_struct *curr, 1861 struct task_struct *next) 1862 { 1863 } 1864 1865 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 1866 1867 /** 1868 * prepare_task_switch - prepare to switch tasks 1869 * @rq: the runqueue preparing to switch 1870 * @prev: the current task that is being switched out 1871 * @next: the task we are going to switch to. 1872 * 1873 * This is called with the rq lock held and interrupts off. It must 1874 * be paired with a subsequent finish_task_switch after the context 1875 * switch. 1876 * 1877 * prepare_task_switch sets up locking and calls architecture specific 1878 * hooks. 1879 */ 1880 static inline void 1881 prepare_task_switch(struct rq *rq, struct task_struct *prev, 1882 struct task_struct *next) 1883 { 1884 sched_info_switch(prev, next); 1885 perf_event_task_sched_out(prev, next); 1886 fire_sched_out_preempt_notifiers(prev, next); 1887 prepare_lock_switch(rq, next); 1888 prepare_arch_switch(next); 1889 trace_sched_switch(prev, next); 1890 } 1891 1892 /** 1893 * finish_task_switch - clean up after a task-switch 1894 * @rq: runqueue associated with task-switch 1895 * @prev: the thread we just switched away from. 1896 * 1897 * finish_task_switch must be called after the context switch, paired 1898 * with a prepare_task_switch call before the context switch. 1899 * finish_task_switch will reconcile locking set up by prepare_task_switch, 1900 * and do any other architecture-specific cleanup actions. 1901 * 1902 * Note that we may have delayed dropping an mm in context_switch(). If 1903 * so, we finish that here outside of the runqueue lock. (Doing it 1904 * with the lock held can cause deadlocks; see schedule() for 1905 * details.) 1906 */ 1907 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 1908 __releases(rq->lock) 1909 { 1910 struct mm_struct *mm = rq->prev_mm; 1911 long prev_state; 1912 1913 rq->prev_mm = NULL; 1914 1915 /* 1916 * A task struct has one reference for the use as "current". 1917 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 1918 * schedule one last time. The schedule call will never return, and 1919 * the scheduled task must drop that reference. 1920 * The test for TASK_DEAD must occur while the runqueue locks are 1921 * still held, otherwise prev could be scheduled on another cpu, die 1922 * there before we look at prev->state, and then the reference would 1923 * be dropped twice. 1924 * Manfred Spraul <manfred@colorfullife.com> 1925 */ 1926 prev_state = prev->state; 1927 finish_arch_switch(prev); 1928 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1929 local_irq_disable(); 1930 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1931 perf_event_task_sched_in(prev, current); 1932 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1933 local_irq_enable(); 1934 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ 1935 finish_lock_switch(rq, prev); 1936 1937 fire_sched_in_preempt_notifiers(current); 1938 if (mm) 1939 mmdrop(mm); 1940 if (unlikely(prev_state == TASK_DEAD)) { 1941 /* 1942 * Remove function-return probe instances associated with this 1943 * task and put them back on the free list. 1944 */ 1945 kprobe_flush_task(prev); 1946 put_task_struct(prev); 1947 } 1948 } 1949 1950 #ifdef CONFIG_SMP 1951 1952 /* assumes rq->lock is held */ 1953 static inline void pre_schedule(struct rq *rq, struct task_struct *prev) 1954 { 1955 if (prev->sched_class->pre_schedule) 1956 prev->sched_class->pre_schedule(rq, prev); 1957 } 1958 1959 /* rq->lock is NOT held, but preemption is disabled */ 1960 static inline void post_schedule(struct rq *rq) 1961 { 1962 if (rq->post_schedule) { 1963 unsigned long flags; 1964 1965 raw_spin_lock_irqsave(&rq->lock, flags); 1966 if (rq->curr->sched_class->post_schedule) 1967 rq->curr->sched_class->post_schedule(rq); 1968 raw_spin_unlock_irqrestore(&rq->lock, flags); 1969 1970 rq->post_schedule = 0; 1971 } 1972 } 1973 1974 #else 1975 1976 static inline void pre_schedule(struct rq *rq, struct task_struct *p) 1977 { 1978 } 1979 1980 static inline void post_schedule(struct rq *rq) 1981 { 1982 } 1983 1984 #endif 1985 1986 /** 1987 * schedule_tail - first thing a freshly forked thread must call. 1988 * @prev: the thread we just switched away from. 1989 */ 1990 asmlinkage void schedule_tail(struct task_struct *prev) 1991 __releases(rq->lock) 1992 { 1993 struct rq *rq = this_rq(); 1994 1995 finish_task_switch(rq, prev); 1996 1997 /* 1998 * FIXME: do we need to worry about rq being invalidated by the 1999 * task_switch? 2000 */ 2001 post_schedule(rq); 2002 2003 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2004 /* In this case, finish_task_switch does not reenable preemption */ 2005 preempt_enable(); 2006 #endif 2007 if (current->set_child_tid) 2008 put_user(task_pid_vnr(current), current->set_child_tid); 2009 } 2010 2011 /* 2012 * context_switch - switch to the new MM and the new 2013 * thread's register state. 2014 */ 2015 static inline void 2016 context_switch(struct rq *rq, struct task_struct *prev, 2017 struct task_struct *next) 2018 { 2019 struct mm_struct *mm, *oldmm; 2020 2021 prepare_task_switch(rq, prev, next); 2022 2023 mm = next->mm; 2024 oldmm = prev->active_mm; 2025 /* 2026 * For paravirt, this is coupled with an exit in switch_to to 2027 * combine the page table reload and the switch backend into 2028 * one hypercall. 2029 */ 2030 arch_start_context_switch(prev); 2031 2032 if (!mm) { 2033 next->active_mm = oldmm; 2034 atomic_inc(&oldmm->mm_count); 2035 enter_lazy_tlb(oldmm, next); 2036 } else 2037 switch_mm(oldmm, mm, next); 2038 2039 if (!prev->mm) { 2040 prev->active_mm = NULL; 2041 rq->prev_mm = oldmm; 2042 } 2043 /* 2044 * Since the runqueue lock will be released by the next 2045 * task (which is an invalid locking op but in the case 2046 * of the scheduler it's an obvious special-case), so we 2047 * do an early lockdep release here: 2048 */ 2049 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2050 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2051 #endif 2052 2053 /* Here we just switch the register state and the stack. */ 2054 switch_to(prev, next, prev); 2055 2056 barrier(); 2057 /* 2058 * this_rq must be evaluated again because prev may have moved 2059 * CPUs since it called schedule(), thus the 'rq' on its stack 2060 * frame will be invalid. 2061 */ 2062 finish_task_switch(this_rq(), prev); 2063 } 2064 2065 /* 2066 * nr_running, nr_uninterruptible and nr_context_switches: 2067 * 2068 * externally visible scheduler statistics: current number of runnable 2069 * threads, current number of uninterruptible-sleeping threads, total 2070 * number of context switches performed since bootup. 2071 */ 2072 unsigned long nr_running(void) 2073 { 2074 unsigned long i, sum = 0; 2075 2076 for_each_online_cpu(i) 2077 sum += cpu_rq(i)->nr_running; 2078 2079 return sum; 2080 } 2081 2082 unsigned long nr_uninterruptible(void) 2083 { 2084 unsigned long i, sum = 0; 2085 2086 for_each_possible_cpu(i) 2087 sum += cpu_rq(i)->nr_uninterruptible; 2088 2089 /* 2090 * Since we read the counters lockless, it might be slightly 2091 * inaccurate. Do not allow it to go below zero though: 2092 */ 2093 if (unlikely((long)sum < 0)) 2094 sum = 0; 2095 2096 return sum; 2097 } 2098 2099 unsigned long long nr_context_switches(void) 2100 { 2101 int i; 2102 unsigned long long sum = 0; 2103 2104 for_each_possible_cpu(i) 2105 sum += cpu_rq(i)->nr_switches; 2106 2107 return sum; 2108 } 2109 2110 unsigned long nr_iowait(void) 2111 { 2112 unsigned long i, sum = 0; 2113 2114 for_each_possible_cpu(i) 2115 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2116 2117 return sum; 2118 } 2119 2120 unsigned long nr_iowait_cpu(int cpu) 2121 { 2122 struct rq *this = cpu_rq(cpu); 2123 return atomic_read(&this->nr_iowait); 2124 } 2125 2126 unsigned long this_cpu_load(void) 2127 { 2128 struct rq *this = this_rq(); 2129 return this->cpu_load[0]; 2130 } 2131 2132 2133 /* Variables and functions for calc_load */ 2134 static atomic_long_t calc_load_tasks; 2135 static unsigned long calc_load_update; 2136 unsigned long avenrun[3]; 2137 EXPORT_SYMBOL(avenrun); 2138 2139 static long calc_load_fold_active(struct rq *this_rq) 2140 { 2141 long nr_active, delta = 0; 2142 2143 nr_active = this_rq->nr_running; 2144 nr_active += (long) this_rq->nr_uninterruptible; 2145 2146 if (nr_active != this_rq->calc_load_active) { 2147 delta = nr_active - this_rq->calc_load_active; 2148 this_rq->calc_load_active = nr_active; 2149 } 2150 2151 return delta; 2152 } 2153 2154 static unsigned long 2155 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2156 { 2157 load *= exp; 2158 load += active * (FIXED_1 - exp); 2159 load += 1UL << (FSHIFT - 1); 2160 return load >> FSHIFT; 2161 } 2162 2163 #ifdef CONFIG_NO_HZ 2164 /* 2165 * For NO_HZ we delay the active fold to the next LOAD_FREQ update. 2166 * 2167 * When making the ILB scale, we should try to pull this in as well. 2168 */ 2169 static atomic_long_t calc_load_tasks_idle; 2170 2171 void calc_load_account_idle(struct rq *this_rq) 2172 { 2173 long delta; 2174 2175 delta = calc_load_fold_active(this_rq); 2176 if (delta) 2177 atomic_long_add(delta, &calc_load_tasks_idle); 2178 } 2179 2180 static long calc_load_fold_idle(void) 2181 { 2182 long delta = 0; 2183 2184 /* 2185 * Its got a race, we don't care... 2186 */ 2187 if (atomic_long_read(&calc_load_tasks_idle)) 2188 delta = atomic_long_xchg(&calc_load_tasks_idle, 0); 2189 2190 return delta; 2191 } 2192 2193 /** 2194 * fixed_power_int - compute: x^n, in O(log n) time 2195 * 2196 * @x: base of the power 2197 * @frac_bits: fractional bits of @x 2198 * @n: power to raise @x to. 2199 * 2200 * By exploiting the relation between the definition of the natural power 2201 * function: x^n := x*x*...*x (x multiplied by itself for n times), and 2202 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, 2203 * (where: n_i \elem {0, 1}, the binary vector representing n), 2204 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is 2205 * of course trivially computable in O(log_2 n), the length of our binary 2206 * vector. 2207 */ 2208 static unsigned long 2209 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) 2210 { 2211 unsigned long result = 1UL << frac_bits; 2212 2213 if (n) for (;;) { 2214 if (n & 1) { 2215 result *= x; 2216 result += 1UL << (frac_bits - 1); 2217 result >>= frac_bits; 2218 } 2219 n >>= 1; 2220 if (!n) 2221 break; 2222 x *= x; 2223 x += 1UL << (frac_bits - 1); 2224 x >>= frac_bits; 2225 } 2226 2227 return result; 2228 } 2229 2230 /* 2231 * a1 = a0 * e + a * (1 - e) 2232 * 2233 * a2 = a1 * e + a * (1 - e) 2234 * = (a0 * e + a * (1 - e)) * e + a * (1 - e) 2235 * = a0 * e^2 + a * (1 - e) * (1 + e) 2236 * 2237 * a3 = a2 * e + a * (1 - e) 2238 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) 2239 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) 2240 * 2241 * ... 2242 * 2243 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] 2244 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) 2245 * = a0 * e^n + a * (1 - e^n) 2246 * 2247 * [1] application of the geometric series: 2248 * 2249 * n 1 - x^(n+1) 2250 * S_n := \Sum x^i = ------------- 2251 * i=0 1 - x 2252 */ 2253 static unsigned long 2254 calc_load_n(unsigned long load, unsigned long exp, 2255 unsigned long active, unsigned int n) 2256 { 2257 2258 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); 2259 } 2260 2261 /* 2262 * NO_HZ can leave us missing all per-cpu ticks calling 2263 * calc_load_account_active(), but since an idle CPU folds its delta into 2264 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold 2265 * in the pending idle delta if our idle period crossed a load cycle boundary. 2266 * 2267 * Once we've updated the global active value, we need to apply the exponential 2268 * weights adjusted to the number of cycles missed. 2269 */ 2270 static void calc_global_nohz(void) 2271 { 2272 long delta, active, n; 2273 2274 /* 2275 * If we crossed a calc_load_update boundary, make sure to fold 2276 * any pending idle changes, the respective CPUs might have 2277 * missed the tick driven calc_load_account_active() update 2278 * due to NO_HZ. 2279 */ 2280 delta = calc_load_fold_idle(); 2281 if (delta) 2282 atomic_long_add(delta, &calc_load_tasks); 2283 2284 /* 2285 * It could be the one fold was all it took, we done! 2286 */ 2287 if (time_before(jiffies, calc_load_update + 10)) 2288 return; 2289 2290 /* 2291 * Catch-up, fold however many we are behind still 2292 */ 2293 delta = jiffies - calc_load_update - 10; 2294 n = 1 + (delta / LOAD_FREQ); 2295 2296 active = atomic_long_read(&calc_load_tasks); 2297 active = active > 0 ? active * FIXED_1 : 0; 2298 2299 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); 2300 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); 2301 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); 2302 2303 calc_load_update += n * LOAD_FREQ; 2304 } 2305 #else 2306 void calc_load_account_idle(struct rq *this_rq) 2307 { 2308 } 2309 2310 static inline long calc_load_fold_idle(void) 2311 { 2312 return 0; 2313 } 2314 2315 static void calc_global_nohz(void) 2316 { 2317 } 2318 #endif 2319 2320 /** 2321 * get_avenrun - get the load average array 2322 * @loads: pointer to dest load array 2323 * @offset: offset to add 2324 * @shift: shift count to shift the result left 2325 * 2326 * These values are estimates at best, so no need for locking. 2327 */ 2328 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2329 { 2330 loads[0] = (avenrun[0] + offset) << shift; 2331 loads[1] = (avenrun[1] + offset) << shift; 2332 loads[2] = (avenrun[2] + offset) << shift; 2333 } 2334 2335 /* 2336 * calc_load - update the avenrun load estimates 10 ticks after the 2337 * CPUs have updated calc_load_tasks. 2338 */ 2339 void calc_global_load(unsigned long ticks) 2340 { 2341 long active; 2342 2343 if (time_before(jiffies, calc_load_update + 10)) 2344 return; 2345 2346 active = atomic_long_read(&calc_load_tasks); 2347 active = active > 0 ? active * FIXED_1 : 0; 2348 2349 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2350 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2351 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2352 2353 calc_load_update += LOAD_FREQ; 2354 2355 /* 2356 * Account one period with whatever state we found before 2357 * folding in the nohz state and ageing the entire idle period. 2358 * 2359 * This avoids loosing a sample when we go idle between 2360 * calc_load_account_active() (10 ticks ago) and now and thus 2361 * under-accounting. 2362 */ 2363 calc_global_nohz(); 2364 } 2365 2366 /* 2367 * Called from update_cpu_load() to periodically update this CPU's 2368 * active count. 2369 */ 2370 static void calc_load_account_active(struct rq *this_rq) 2371 { 2372 long delta; 2373 2374 if (time_before(jiffies, this_rq->calc_load_update)) 2375 return; 2376 2377 delta = calc_load_fold_active(this_rq); 2378 delta += calc_load_fold_idle(); 2379 if (delta) 2380 atomic_long_add(delta, &calc_load_tasks); 2381 2382 this_rq->calc_load_update += LOAD_FREQ; 2383 } 2384 2385 /* 2386 * The exact cpuload at various idx values, calculated at every tick would be 2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 2388 * 2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 2390 * on nth tick when cpu may be busy, then we have: 2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 2393 * 2394 * decay_load_missed() below does efficient calculation of 2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load 2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 2397 * 2398 * The calculation is approximated on a 128 point scale. 2399 * degrade_zero_ticks is the number of ticks after which load at any 2400 * particular idx is approximated to be zero. 2401 * degrade_factor is a precomputed table, a row for each load idx. 2402 * Each column corresponds to degradation factor for a power of two ticks, 2403 * based on 128 point scale. 2404 * Example: 2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after 2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 2407 * 2408 * With this power of 2 load factors, we can degrade the load n times 2409 * by looking at 1 bits in n and doing as many mult/shift instead of 2410 * n mult/shifts needed by the exact degradation. 2411 */ 2412 #define DEGRADE_SHIFT 7 2413 static const unsigned char 2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 2415 static const unsigned char 2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 2417 {0, 0, 0, 0, 0, 0, 0, 0}, 2418 {64, 32, 8, 0, 0, 0, 0, 0}, 2419 {96, 72, 40, 12, 1, 0, 0}, 2420 {112, 98, 75, 43, 15, 1, 0}, 2421 {120, 112, 98, 76, 45, 16, 2} }; 2422 2423 /* 2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 2425 * would be when CPU is idle and so we just decay the old load without 2426 * adding any new load. 2427 */ 2428 static unsigned long 2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 2430 { 2431 int j = 0; 2432 2433 if (!missed_updates) 2434 return load; 2435 2436 if (missed_updates >= degrade_zero_ticks[idx]) 2437 return 0; 2438 2439 if (idx == 1) 2440 return load >> missed_updates; 2441 2442 while (missed_updates) { 2443 if (missed_updates % 2) 2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 2445 2446 missed_updates >>= 1; 2447 j++; 2448 } 2449 return load; 2450 } 2451 2452 /* 2453 * Update rq->cpu_load[] statistics. This function is usually called every 2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called 2455 * every tick. We fix it up based on jiffies. 2456 */ 2457 void update_cpu_load(struct rq *this_rq) 2458 { 2459 unsigned long this_load = this_rq->load.weight; 2460 unsigned long curr_jiffies = jiffies; 2461 unsigned long pending_updates; 2462 int i, scale; 2463 2464 this_rq->nr_load_updates++; 2465 2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */ 2467 if (curr_jiffies == this_rq->last_load_update_tick) 2468 return; 2469 2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 2471 this_rq->last_load_update_tick = curr_jiffies; 2472 2473 /* Update our load: */ 2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 2476 unsigned long old_load, new_load; 2477 2478 /* scale is effectively 1 << i now, and >> i divides by scale */ 2479 2480 old_load = this_rq->cpu_load[i]; 2481 old_load = decay_load_missed(old_load, pending_updates - 1, i); 2482 new_load = this_load; 2483 /* 2484 * Round up the averaging division if load is increasing. This 2485 * prevents us from getting stuck on 9 if the load is 10, for 2486 * example. 2487 */ 2488 if (new_load > old_load) 2489 new_load += scale - 1; 2490 2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 2492 } 2493 2494 sched_avg_update(this_rq); 2495 } 2496 2497 static void update_cpu_load_active(struct rq *this_rq) 2498 { 2499 update_cpu_load(this_rq); 2500 2501 calc_load_account_active(this_rq); 2502 } 2503 2504 #ifdef CONFIG_SMP 2505 2506 /* 2507 * sched_exec - execve() is a valuable balancing opportunity, because at 2508 * this point the task has the smallest effective memory and cache footprint. 2509 */ 2510 void sched_exec(void) 2511 { 2512 struct task_struct *p = current; 2513 unsigned long flags; 2514 int dest_cpu; 2515 2516 raw_spin_lock_irqsave(&p->pi_lock, flags); 2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); 2518 if (dest_cpu == smp_processor_id()) 2519 goto unlock; 2520 2521 if (likely(cpu_active(dest_cpu))) { 2522 struct migration_arg arg = { p, dest_cpu }; 2523 2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2526 return; 2527 } 2528 unlock: 2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2530 } 2531 2532 #endif 2533 2534 DEFINE_PER_CPU(struct kernel_stat, kstat); 2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2536 2537 EXPORT_PER_CPU_SYMBOL(kstat); 2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2539 2540 /* 2541 * Return any ns on the sched_clock that have not yet been accounted in 2542 * @p in case that task is currently running. 2543 * 2544 * Called with task_rq_lock() held on @rq. 2545 */ 2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2547 { 2548 u64 ns = 0; 2549 2550 if (task_current(rq, p)) { 2551 update_rq_clock(rq); 2552 ns = rq->clock_task - p->se.exec_start; 2553 if ((s64)ns < 0) 2554 ns = 0; 2555 } 2556 2557 return ns; 2558 } 2559 2560 unsigned long long task_delta_exec(struct task_struct *p) 2561 { 2562 unsigned long flags; 2563 struct rq *rq; 2564 u64 ns = 0; 2565 2566 rq = task_rq_lock(p, &flags); 2567 ns = do_task_delta_exec(p, rq); 2568 task_rq_unlock(rq, p, &flags); 2569 2570 return ns; 2571 } 2572 2573 /* 2574 * Return accounted runtime for the task. 2575 * In case the task is currently running, return the runtime plus current's 2576 * pending runtime that have not been accounted yet. 2577 */ 2578 unsigned long long task_sched_runtime(struct task_struct *p) 2579 { 2580 unsigned long flags; 2581 struct rq *rq; 2582 u64 ns = 0; 2583 2584 rq = task_rq_lock(p, &flags); 2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2586 task_rq_unlock(rq, p, &flags); 2587 2588 return ns; 2589 } 2590 2591 #ifdef CONFIG_CGROUP_CPUACCT 2592 struct cgroup_subsys cpuacct_subsys; 2593 struct cpuacct root_cpuacct; 2594 #endif 2595 2596 static inline void task_group_account_field(struct task_struct *p, int index, 2597 u64 tmp) 2598 { 2599 #ifdef CONFIG_CGROUP_CPUACCT 2600 struct kernel_cpustat *kcpustat; 2601 struct cpuacct *ca; 2602 #endif 2603 /* 2604 * Since all updates are sure to touch the root cgroup, we 2605 * get ourselves ahead and touch it first. If the root cgroup 2606 * is the only cgroup, then nothing else should be necessary. 2607 * 2608 */ 2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; 2610 2611 #ifdef CONFIG_CGROUP_CPUACCT 2612 if (unlikely(!cpuacct_subsys.active)) 2613 return; 2614 2615 rcu_read_lock(); 2616 ca = task_ca(p); 2617 while (ca && (ca != &root_cpuacct)) { 2618 kcpustat = this_cpu_ptr(ca->cpustat); 2619 kcpustat->cpustat[index] += tmp; 2620 ca = parent_ca(ca); 2621 } 2622 rcu_read_unlock(); 2623 #endif 2624 } 2625 2626 2627 /* 2628 * Account user cpu time to a process. 2629 * @p: the process that the cpu time gets accounted to 2630 * @cputime: the cpu time spent in user space since the last update 2631 * @cputime_scaled: cputime scaled by cpu frequency 2632 */ 2633 void account_user_time(struct task_struct *p, cputime_t cputime, 2634 cputime_t cputime_scaled) 2635 { 2636 int index; 2637 2638 /* Add user time to process. */ 2639 p->utime += cputime; 2640 p->utimescaled += cputime_scaled; 2641 account_group_user_time(p, cputime); 2642 2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; 2644 2645 /* Add user time to cpustat. */ 2646 task_group_account_field(p, index, (__force u64) cputime); 2647 2648 /* Account for user time used */ 2649 acct_update_integrals(p); 2650 } 2651 2652 /* 2653 * Account guest cpu time to a process. 2654 * @p: the process that the cpu time gets accounted to 2655 * @cputime: the cpu time spent in virtual machine since the last update 2656 * @cputime_scaled: cputime scaled by cpu frequency 2657 */ 2658 static void account_guest_time(struct task_struct *p, cputime_t cputime, 2659 cputime_t cputime_scaled) 2660 { 2661 u64 *cpustat = kcpustat_this_cpu->cpustat; 2662 2663 /* Add guest time to process. */ 2664 p->utime += cputime; 2665 p->utimescaled += cputime_scaled; 2666 account_group_user_time(p, cputime); 2667 p->gtime += cputime; 2668 2669 /* Add guest time to cpustat. */ 2670 if (TASK_NICE(p) > 0) { 2671 cpustat[CPUTIME_NICE] += (__force u64) cputime; 2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; 2673 } else { 2674 cpustat[CPUTIME_USER] += (__force u64) cputime; 2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime; 2676 } 2677 } 2678 2679 /* 2680 * Account system cpu time to a process and desired cpustat field 2681 * @p: the process that the cpu time gets accounted to 2682 * @cputime: the cpu time spent in kernel space since the last update 2683 * @cputime_scaled: cputime scaled by cpu frequency 2684 * @target_cputime64: pointer to cpustat field that has to be updated 2685 */ 2686 static inline 2687 void __account_system_time(struct task_struct *p, cputime_t cputime, 2688 cputime_t cputime_scaled, int index) 2689 { 2690 /* Add system time to process. */ 2691 p->stime += cputime; 2692 p->stimescaled += cputime_scaled; 2693 account_group_system_time(p, cputime); 2694 2695 /* Add system time to cpustat. */ 2696 task_group_account_field(p, index, (__force u64) cputime); 2697 2698 /* Account for system time used */ 2699 acct_update_integrals(p); 2700 } 2701 2702 /* 2703 * Account system cpu time to a process. 2704 * @p: the process that the cpu time gets accounted to 2705 * @hardirq_offset: the offset to subtract from hardirq_count() 2706 * @cputime: the cpu time spent in kernel space since the last update 2707 * @cputime_scaled: cputime scaled by cpu frequency 2708 */ 2709 void account_system_time(struct task_struct *p, int hardirq_offset, 2710 cputime_t cputime, cputime_t cputime_scaled) 2711 { 2712 int index; 2713 2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 2715 account_guest_time(p, cputime, cputime_scaled); 2716 return; 2717 } 2718 2719 if (hardirq_count() - hardirq_offset) 2720 index = CPUTIME_IRQ; 2721 else if (in_serving_softirq()) 2722 index = CPUTIME_SOFTIRQ; 2723 else 2724 index = CPUTIME_SYSTEM; 2725 2726 __account_system_time(p, cputime, cputime_scaled, index); 2727 } 2728 2729 /* 2730 * Account for involuntary wait time. 2731 * @cputime: the cpu time spent in involuntary wait 2732 */ 2733 void account_steal_time(cputime_t cputime) 2734 { 2735 u64 *cpustat = kcpustat_this_cpu->cpustat; 2736 2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime; 2738 } 2739 2740 /* 2741 * Account for idle time. 2742 * @cputime: the cpu time spent in idle wait 2743 */ 2744 void account_idle_time(cputime_t cputime) 2745 { 2746 u64 *cpustat = kcpustat_this_cpu->cpustat; 2747 struct rq *rq = this_rq(); 2748 2749 if (atomic_read(&rq->nr_iowait) > 0) 2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; 2751 else 2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime; 2753 } 2754 2755 static __always_inline bool steal_account_process_tick(void) 2756 { 2757 #ifdef CONFIG_PARAVIRT 2758 if (static_key_false(¶virt_steal_enabled)) { 2759 u64 steal, st = 0; 2760 2761 steal = paravirt_steal_clock(smp_processor_id()); 2762 steal -= this_rq()->prev_steal_time; 2763 2764 st = steal_ticks(steal); 2765 this_rq()->prev_steal_time += st * TICK_NSEC; 2766 2767 account_steal_time(st); 2768 return st; 2769 } 2770 #endif 2771 return false; 2772 } 2773 2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 2775 2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2777 /* 2778 * Account a tick to a process and cpustat 2779 * @p: the process that the cpu time gets accounted to 2780 * @user_tick: is the tick from userspace 2781 * @rq: the pointer to rq 2782 * 2783 * Tick demultiplexing follows the order 2784 * - pending hardirq update 2785 * - pending softirq update 2786 * - user_time 2787 * - idle_time 2788 * - system time 2789 * - check for guest_time 2790 * - else account as system_time 2791 * 2792 * Check for hardirq is done both for system and user time as there is 2793 * no timer going off while we are on hardirq and hence we may never get an 2794 * opportunity to update it solely in system time. 2795 * p->stime and friends are only updated on system time and not on irq 2796 * softirq as those do not count in task exec_runtime any more. 2797 */ 2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2799 struct rq *rq) 2800 { 2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2802 u64 *cpustat = kcpustat_this_cpu->cpustat; 2803 2804 if (steal_account_process_tick()) 2805 return; 2806 2807 if (irqtime_account_hi_update()) { 2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; 2809 } else if (irqtime_account_si_update()) { 2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; 2811 } else if (this_cpu_ksoftirqd() == p) { 2812 /* 2813 * ksoftirqd time do not get accounted in cpu_softirq_time. 2814 * So, we have to handle it separately here. 2815 * Also, p->stime needs to be updated for ksoftirqd. 2816 */ 2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2818 CPUTIME_SOFTIRQ); 2819 } else if (user_tick) { 2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2821 } else if (p == rq->idle) { 2822 account_idle_time(cputime_one_jiffy); 2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */ 2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); 2825 } else { 2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, 2827 CPUTIME_SYSTEM); 2828 } 2829 } 2830 2831 static void irqtime_account_idle_ticks(int ticks) 2832 { 2833 int i; 2834 struct rq *rq = this_rq(); 2835 2836 for (i = 0; i < ticks; i++) 2837 irqtime_account_process_tick(current, 0, rq); 2838 } 2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */ 2840 static void irqtime_account_idle_ticks(int ticks) {} 2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick, 2842 struct rq *rq) {} 2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2844 2845 /* 2846 * Account a single tick of cpu time. 2847 * @p: the process that the cpu time gets accounted to 2848 * @user_tick: indicates if the tick is a user or a system tick 2849 */ 2850 void account_process_tick(struct task_struct *p, int user_tick) 2851 { 2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); 2853 struct rq *rq = this_rq(); 2854 2855 if (sched_clock_irqtime) { 2856 irqtime_account_process_tick(p, user_tick, rq); 2857 return; 2858 } 2859 2860 if (steal_account_process_tick()) 2861 return; 2862 2863 if (user_tick) 2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); 2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, 2867 one_jiffy_scaled); 2868 else 2869 account_idle_time(cputime_one_jiffy); 2870 } 2871 2872 /* 2873 * Account multiple ticks of steal time. 2874 * @p: the process from which the cpu time has been stolen 2875 * @ticks: number of stolen ticks 2876 */ 2877 void account_steal_ticks(unsigned long ticks) 2878 { 2879 account_steal_time(jiffies_to_cputime(ticks)); 2880 } 2881 2882 /* 2883 * Account multiple ticks of idle time. 2884 * @ticks: number of stolen ticks 2885 */ 2886 void account_idle_ticks(unsigned long ticks) 2887 { 2888 2889 if (sched_clock_irqtime) { 2890 irqtime_account_idle_ticks(ticks); 2891 return; 2892 } 2893 2894 account_idle_time(jiffies_to_cputime(ticks)); 2895 } 2896 2897 #endif 2898 2899 /* 2900 * Use precise platform statistics if available: 2901 */ 2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2904 { 2905 *ut = p->utime; 2906 *st = p->stime; 2907 } 2908 2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2910 { 2911 struct task_cputime cputime; 2912 2913 thread_group_cputime(p, &cputime); 2914 2915 *ut = cputime.utime; 2916 *st = cputime.stime; 2917 } 2918 #else 2919 2920 #ifndef nsecs_to_cputime 2921 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) 2922 #endif 2923 2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2925 { 2926 cputime_t rtime, utime = p->utime, total = utime + p->stime; 2927 2928 /* 2929 * Use CFS's precise accounting: 2930 */ 2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime); 2932 2933 if (total) { 2934 u64 temp = (__force u64) rtime; 2935 2936 temp *= (__force u64) utime; 2937 do_div(temp, (__force u32) total); 2938 utime = (__force cputime_t) temp; 2939 } else 2940 utime = rtime; 2941 2942 /* 2943 * Compare with previous values, to keep monotonicity: 2944 */ 2945 p->prev_utime = max(p->prev_utime, utime); 2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); 2947 2948 *ut = p->prev_utime; 2949 *st = p->prev_stime; 2950 } 2951 2952 /* 2953 * Must be called with siglock held. 2954 */ 2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) 2956 { 2957 struct signal_struct *sig = p->signal; 2958 struct task_cputime cputime; 2959 cputime_t rtime, utime, total; 2960 2961 thread_group_cputime(p, &cputime); 2962 2963 total = cputime.utime + cputime.stime; 2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime); 2965 2966 if (total) { 2967 u64 temp = (__force u64) rtime; 2968 2969 temp *= (__force u64) cputime.utime; 2970 do_div(temp, (__force u32) total); 2971 utime = (__force cputime_t) temp; 2972 } else 2973 utime = rtime; 2974 2975 sig->prev_utime = max(sig->prev_utime, utime); 2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); 2977 2978 *ut = sig->prev_utime; 2979 *st = sig->prev_stime; 2980 } 2981 #endif 2982 2983 /* 2984 * This function gets called by the timer code, with HZ frequency. 2985 * We call it with interrupts disabled. 2986 */ 2987 void scheduler_tick(void) 2988 { 2989 int cpu = smp_processor_id(); 2990 struct rq *rq = cpu_rq(cpu); 2991 struct task_struct *curr = rq->curr; 2992 2993 sched_clock_tick(); 2994 2995 raw_spin_lock(&rq->lock); 2996 update_rq_clock(rq); 2997 update_cpu_load_active(rq); 2998 curr->sched_class->task_tick(rq, curr, 0); 2999 raw_spin_unlock(&rq->lock); 3000 3001 perf_event_task_tick(); 3002 3003 #ifdef CONFIG_SMP 3004 rq->idle_balance = idle_cpu(cpu); 3005 trigger_load_balance(rq, cpu); 3006 #endif 3007 } 3008 3009 notrace unsigned long get_parent_ip(unsigned long addr) 3010 { 3011 if (in_lock_functions(addr)) { 3012 addr = CALLER_ADDR2; 3013 if (in_lock_functions(addr)) 3014 addr = CALLER_ADDR3; 3015 } 3016 return addr; 3017 } 3018 3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3020 defined(CONFIG_PREEMPT_TRACER)) 3021 3022 void __kprobes add_preempt_count(int val) 3023 { 3024 #ifdef CONFIG_DEBUG_PREEMPT 3025 /* 3026 * Underflow? 3027 */ 3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3029 return; 3030 #endif 3031 preempt_count() += val; 3032 #ifdef CONFIG_DEBUG_PREEMPT 3033 /* 3034 * Spinlock count overflowing soon? 3035 */ 3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3037 PREEMPT_MASK - 10); 3038 #endif 3039 if (preempt_count() == val) 3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3041 } 3042 EXPORT_SYMBOL(add_preempt_count); 3043 3044 void __kprobes sub_preempt_count(int val) 3045 { 3046 #ifdef CONFIG_DEBUG_PREEMPT 3047 /* 3048 * Underflow? 3049 */ 3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3051 return; 3052 /* 3053 * Is the spinlock portion underflowing? 3054 */ 3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3056 !(preempt_count() & PREEMPT_MASK))) 3057 return; 3058 #endif 3059 3060 if (preempt_count() == val) 3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 3062 preempt_count() -= val; 3063 } 3064 EXPORT_SYMBOL(sub_preempt_count); 3065 3066 #endif 3067 3068 /* 3069 * Print scheduling while atomic bug: 3070 */ 3071 static noinline void __schedule_bug(struct task_struct *prev) 3072 { 3073 struct pt_regs *regs = get_irq_regs(); 3074 3075 if (oops_in_progress) 3076 return; 3077 3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3079 prev->comm, prev->pid, preempt_count()); 3080 3081 debug_show_held_locks(prev); 3082 print_modules(); 3083 if (irqs_disabled()) 3084 print_irqtrace_events(prev); 3085 3086 if (regs) 3087 show_regs(regs); 3088 else 3089 dump_stack(); 3090 } 3091 3092 /* 3093 * Various schedule()-time debugging checks and statistics: 3094 */ 3095 static inline void schedule_debug(struct task_struct *prev) 3096 { 3097 /* 3098 * Test if we are atomic. Since do_exit() needs to call into 3099 * schedule() atomically, we ignore that path for now. 3100 * Otherwise, whine if we are scheduling when we should not be. 3101 */ 3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 3103 __schedule_bug(prev); 3104 rcu_sleep_check(); 3105 3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3107 3108 schedstat_inc(this_rq(), sched_count); 3109 } 3110 3111 static void put_prev_task(struct rq *rq, struct task_struct *prev) 3112 { 3113 if (prev->on_rq || rq->skip_clock_update < 0) 3114 update_rq_clock(rq); 3115 prev->sched_class->put_prev_task(rq, prev); 3116 } 3117 3118 /* 3119 * Pick up the highest-prio task: 3120 */ 3121 static inline struct task_struct * 3122 pick_next_task(struct rq *rq) 3123 { 3124 const struct sched_class *class; 3125 struct task_struct *p; 3126 3127 /* 3128 * Optimization: we know that if all tasks are in 3129 * the fair class we can call that function directly: 3130 */ 3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) { 3132 p = fair_sched_class.pick_next_task(rq); 3133 if (likely(p)) 3134 return p; 3135 } 3136 3137 for_each_class(class) { 3138 p = class->pick_next_task(rq); 3139 if (p) 3140 return p; 3141 } 3142 3143 BUG(); /* the idle class will always have a runnable task */ 3144 } 3145 3146 /* 3147 * __schedule() is the main scheduler function. 3148 */ 3149 static void __sched __schedule(void) 3150 { 3151 struct task_struct *prev, *next; 3152 unsigned long *switch_count; 3153 struct rq *rq; 3154 int cpu; 3155 3156 need_resched: 3157 preempt_disable(); 3158 cpu = smp_processor_id(); 3159 rq = cpu_rq(cpu); 3160 rcu_note_context_switch(cpu); 3161 prev = rq->curr; 3162 3163 schedule_debug(prev); 3164 3165 if (sched_feat(HRTICK)) 3166 hrtick_clear(rq); 3167 3168 raw_spin_lock_irq(&rq->lock); 3169 3170 switch_count = &prev->nivcsw; 3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 3172 if (unlikely(signal_pending_state(prev->state, prev))) { 3173 prev->state = TASK_RUNNING; 3174 } else { 3175 deactivate_task(rq, prev, DEQUEUE_SLEEP); 3176 prev->on_rq = 0; 3177 3178 /* 3179 * If a worker went to sleep, notify and ask workqueue 3180 * whether it wants to wake up a task to maintain 3181 * concurrency. 3182 */ 3183 if (prev->flags & PF_WQ_WORKER) { 3184 struct task_struct *to_wakeup; 3185 3186 to_wakeup = wq_worker_sleeping(prev, cpu); 3187 if (to_wakeup) 3188 try_to_wake_up_local(to_wakeup); 3189 } 3190 } 3191 switch_count = &prev->nvcsw; 3192 } 3193 3194 pre_schedule(rq, prev); 3195 3196 if (unlikely(!rq->nr_running)) 3197 idle_balance(cpu, rq); 3198 3199 put_prev_task(rq, prev); 3200 next = pick_next_task(rq); 3201 clear_tsk_need_resched(prev); 3202 rq->skip_clock_update = 0; 3203 3204 if (likely(prev != next)) { 3205 rq->nr_switches++; 3206 rq->curr = next; 3207 ++*switch_count; 3208 3209 context_switch(rq, prev, next); /* unlocks the rq */ 3210 /* 3211 * The context switch have flipped the stack from under us 3212 * and restored the local variables which were saved when 3213 * this task called schedule() in the past. prev == current 3214 * is still correct, but it can be moved to another cpu/rq. 3215 */ 3216 cpu = smp_processor_id(); 3217 rq = cpu_rq(cpu); 3218 } else 3219 raw_spin_unlock_irq(&rq->lock); 3220 3221 post_schedule(rq); 3222 3223 sched_preempt_enable_no_resched(); 3224 if (need_resched()) 3225 goto need_resched; 3226 } 3227 3228 static inline void sched_submit_work(struct task_struct *tsk) 3229 { 3230 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3231 return; 3232 /* 3233 * If we are going to sleep and we have plugged IO queued, 3234 * make sure to submit it to avoid deadlocks. 3235 */ 3236 if (blk_needs_flush_plug(tsk)) 3237 blk_schedule_flush_plug(tsk); 3238 } 3239 3240 asmlinkage void __sched schedule(void) 3241 { 3242 struct task_struct *tsk = current; 3243 3244 sched_submit_work(tsk); 3245 __schedule(); 3246 } 3247 EXPORT_SYMBOL(schedule); 3248 3249 /** 3250 * schedule_preempt_disabled - called with preemption disabled 3251 * 3252 * Returns with preemption disabled. Note: preempt_count must be 1 3253 */ 3254 void __sched schedule_preempt_disabled(void) 3255 { 3256 sched_preempt_enable_no_resched(); 3257 schedule(); 3258 preempt_disable(); 3259 } 3260 3261 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 3262 3263 static inline bool owner_running(struct mutex *lock, struct task_struct *owner) 3264 { 3265 if (lock->owner != owner) 3266 return false; 3267 3268 /* 3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking 3270 * lock->owner still matches owner, if that fails, owner might 3271 * point to free()d memory, if it still matches, the rcu_read_lock() 3272 * ensures the memory stays valid. 3273 */ 3274 barrier(); 3275 3276 return owner->on_cpu; 3277 } 3278 3279 /* 3280 * Look out! "owner" is an entirely speculative pointer 3281 * access and not reliable. 3282 */ 3283 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) 3284 { 3285 if (!sched_feat(OWNER_SPIN)) 3286 return 0; 3287 3288 rcu_read_lock(); 3289 while (owner_running(lock, owner)) { 3290 if (need_resched()) 3291 break; 3292 3293 arch_mutex_cpu_relax(); 3294 } 3295 rcu_read_unlock(); 3296 3297 /* 3298 * We break out the loop above on need_resched() and when the 3299 * owner changed, which is a sign for heavy contention. Return 3300 * success only when lock->owner is NULL. 3301 */ 3302 return lock->owner == NULL; 3303 } 3304 #endif 3305 3306 #ifdef CONFIG_PREEMPT 3307 /* 3308 * this is the entry point to schedule() from in-kernel preemption 3309 * off of preempt_enable. Kernel preemptions off return from interrupt 3310 * occur there and call schedule directly. 3311 */ 3312 asmlinkage void __sched notrace preempt_schedule(void) 3313 { 3314 struct thread_info *ti = current_thread_info(); 3315 3316 /* 3317 * If there is a non-zero preempt_count or interrupts are disabled, 3318 * we do not want to preempt the current task. Just return.. 3319 */ 3320 if (likely(ti->preempt_count || irqs_disabled())) 3321 return; 3322 3323 do { 3324 add_preempt_count_notrace(PREEMPT_ACTIVE); 3325 __schedule(); 3326 sub_preempt_count_notrace(PREEMPT_ACTIVE); 3327 3328 /* 3329 * Check again in case we missed a preemption opportunity 3330 * between schedule and now. 3331 */ 3332 barrier(); 3333 } while (need_resched()); 3334 } 3335 EXPORT_SYMBOL(preempt_schedule); 3336 3337 /* 3338 * this is the entry point to schedule() from kernel preemption 3339 * off of irq context. 3340 * Note, that this is called and return with irqs disabled. This will 3341 * protect us against recursive calling from irq. 3342 */ 3343 asmlinkage void __sched preempt_schedule_irq(void) 3344 { 3345 struct thread_info *ti = current_thread_info(); 3346 3347 /* Catch callers which need to be fixed */ 3348 BUG_ON(ti->preempt_count || !irqs_disabled()); 3349 3350 do { 3351 add_preempt_count(PREEMPT_ACTIVE); 3352 local_irq_enable(); 3353 __schedule(); 3354 local_irq_disable(); 3355 sub_preempt_count(PREEMPT_ACTIVE); 3356 3357 /* 3358 * Check again in case we missed a preemption opportunity 3359 * between schedule and now. 3360 */ 3361 barrier(); 3362 } while (need_resched()); 3363 } 3364 3365 #endif /* CONFIG_PREEMPT */ 3366 3367 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3368 void *key) 3369 { 3370 return try_to_wake_up(curr->private, mode, wake_flags); 3371 } 3372 EXPORT_SYMBOL(default_wake_function); 3373 3374 /* 3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 3377 * number) then we wake all the non-exclusive tasks and one exclusive task. 3378 * 3379 * There are circumstances in which we can try to wake a task which has already 3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 3381 * zero in this (rare) case, and we handle it by continuing to scan the queue. 3382 */ 3383 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 3384 int nr_exclusive, int wake_flags, void *key) 3385 { 3386 wait_queue_t *curr, *next; 3387 3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 3389 unsigned flags = curr->flags; 3390 3391 if (curr->func(curr, mode, wake_flags, key) && 3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 3393 break; 3394 } 3395 } 3396 3397 /** 3398 * __wake_up - wake up threads blocked on a waitqueue. 3399 * @q: the waitqueue 3400 * @mode: which threads 3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3402 * @key: is directly passed to the wakeup function 3403 * 3404 * It may be assumed that this function implies a write memory barrier before 3405 * changing the task state if and only if any tasks are woken up. 3406 */ 3407 void __wake_up(wait_queue_head_t *q, unsigned int mode, 3408 int nr_exclusive, void *key) 3409 { 3410 unsigned long flags; 3411 3412 spin_lock_irqsave(&q->lock, flags); 3413 __wake_up_common(q, mode, nr_exclusive, 0, key); 3414 spin_unlock_irqrestore(&q->lock, flags); 3415 } 3416 EXPORT_SYMBOL(__wake_up); 3417 3418 /* 3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 3420 */ 3421 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) 3422 { 3423 __wake_up_common(q, mode, nr, 0, NULL); 3424 } 3425 EXPORT_SYMBOL_GPL(__wake_up_locked); 3426 3427 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 3428 { 3429 __wake_up_common(q, mode, 1, 0, key); 3430 } 3431 EXPORT_SYMBOL_GPL(__wake_up_locked_key); 3432 3433 /** 3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 3435 * @q: the waitqueue 3436 * @mode: which threads 3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up 3438 * @key: opaque value to be passed to wakeup targets 3439 * 3440 * The sync wakeup differs that the waker knows that it will schedule 3441 * away soon, so while the target thread will be woken up, it will not 3442 * be migrated to another CPU - ie. the two threads are 'synchronized' 3443 * with each other. This can prevent needless bouncing between CPUs. 3444 * 3445 * On UP it can prevent extra preemption. 3446 * 3447 * It may be assumed that this function implies a write memory barrier before 3448 * changing the task state if and only if any tasks are woken up. 3449 */ 3450 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 3451 int nr_exclusive, void *key) 3452 { 3453 unsigned long flags; 3454 int wake_flags = WF_SYNC; 3455 3456 if (unlikely(!q)) 3457 return; 3458 3459 if (unlikely(!nr_exclusive)) 3460 wake_flags = 0; 3461 3462 spin_lock_irqsave(&q->lock, flags); 3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key); 3464 spin_unlock_irqrestore(&q->lock, flags); 3465 } 3466 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 3467 3468 /* 3469 * __wake_up_sync - see __wake_up_sync_key() 3470 */ 3471 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 3472 { 3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 3474 } 3475 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 3476 3477 /** 3478 * complete: - signals a single thread waiting on this completion 3479 * @x: holds the state of this particular completion 3480 * 3481 * This will wake up a single thread waiting on this completion. Threads will be 3482 * awakened in the same order in which they were queued. 3483 * 3484 * See also complete_all(), wait_for_completion() and related routines. 3485 * 3486 * It may be assumed that this function implies a write memory barrier before 3487 * changing the task state if and only if any tasks are woken up. 3488 */ 3489 void complete(struct completion *x) 3490 { 3491 unsigned long flags; 3492 3493 spin_lock_irqsave(&x->wait.lock, flags); 3494 x->done++; 3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 3496 spin_unlock_irqrestore(&x->wait.lock, flags); 3497 } 3498 EXPORT_SYMBOL(complete); 3499 3500 /** 3501 * complete_all: - signals all threads waiting on this completion 3502 * @x: holds the state of this particular completion 3503 * 3504 * This will wake up all threads waiting on this particular completion event. 3505 * 3506 * It may be assumed that this function implies a write memory barrier before 3507 * changing the task state if and only if any tasks are woken up. 3508 */ 3509 void complete_all(struct completion *x) 3510 { 3511 unsigned long flags; 3512 3513 spin_lock_irqsave(&x->wait.lock, flags); 3514 x->done += UINT_MAX/2; 3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 3516 spin_unlock_irqrestore(&x->wait.lock, flags); 3517 } 3518 EXPORT_SYMBOL(complete_all); 3519 3520 static inline long __sched 3521 do_wait_for_common(struct completion *x, long timeout, int state) 3522 { 3523 if (!x->done) { 3524 DECLARE_WAITQUEUE(wait, current); 3525 3526 __add_wait_queue_tail_exclusive(&x->wait, &wait); 3527 do { 3528 if (signal_pending_state(state, current)) { 3529 timeout = -ERESTARTSYS; 3530 break; 3531 } 3532 __set_current_state(state); 3533 spin_unlock_irq(&x->wait.lock); 3534 timeout = schedule_timeout(timeout); 3535 spin_lock_irq(&x->wait.lock); 3536 } while (!x->done && timeout); 3537 __remove_wait_queue(&x->wait, &wait); 3538 if (!x->done) 3539 return timeout; 3540 } 3541 x->done--; 3542 return timeout ?: 1; 3543 } 3544 3545 static long __sched 3546 wait_for_common(struct completion *x, long timeout, int state) 3547 { 3548 might_sleep(); 3549 3550 spin_lock_irq(&x->wait.lock); 3551 timeout = do_wait_for_common(x, timeout, state); 3552 spin_unlock_irq(&x->wait.lock); 3553 return timeout; 3554 } 3555 3556 /** 3557 * wait_for_completion: - waits for completion of a task 3558 * @x: holds the state of this particular completion 3559 * 3560 * This waits to be signaled for completion of a specific task. It is NOT 3561 * interruptible and there is no timeout. 3562 * 3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 3564 * and interrupt capability. Also see complete(). 3565 */ 3566 void __sched wait_for_completion(struct completion *x) 3567 { 3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 3569 } 3570 EXPORT_SYMBOL(wait_for_completion); 3571 3572 /** 3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 3574 * @x: holds the state of this particular completion 3575 * @timeout: timeout value in jiffies 3576 * 3577 * This waits for either a completion of a specific task to be signaled or for a 3578 * specified timeout to expire. The timeout is in jiffies. It is not 3579 * interruptible. 3580 * 3581 * The return value is 0 if timed out, and positive (at least 1, or number of 3582 * jiffies left till timeout) if completed. 3583 */ 3584 unsigned long __sched 3585 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 3586 { 3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 3588 } 3589 EXPORT_SYMBOL(wait_for_completion_timeout); 3590 3591 /** 3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 3593 * @x: holds the state of this particular completion 3594 * 3595 * This waits for completion of a specific task to be signaled. It is 3596 * interruptible. 3597 * 3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3599 */ 3600 int __sched wait_for_completion_interruptible(struct completion *x) 3601 { 3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 3603 if (t == -ERESTARTSYS) 3604 return t; 3605 return 0; 3606 } 3607 EXPORT_SYMBOL(wait_for_completion_interruptible); 3608 3609 /** 3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 3611 * @x: holds the state of this particular completion 3612 * @timeout: timeout value in jiffies 3613 * 3614 * This waits for either a completion of a specific task to be signaled or for a 3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 3616 * 3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3618 * positive (at least 1, or number of jiffies left till timeout) if completed. 3619 */ 3620 long __sched 3621 wait_for_completion_interruptible_timeout(struct completion *x, 3622 unsigned long timeout) 3623 { 3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 3625 } 3626 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 3627 3628 /** 3629 * wait_for_completion_killable: - waits for completion of a task (killable) 3630 * @x: holds the state of this particular completion 3631 * 3632 * This waits to be signaled for completion of a specific task. It can be 3633 * interrupted by a kill signal. 3634 * 3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed. 3636 */ 3637 int __sched wait_for_completion_killable(struct completion *x) 3638 { 3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 3640 if (t == -ERESTARTSYS) 3641 return t; 3642 return 0; 3643 } 3644 EXPORT_SYMBOL(wait_for_completion_killable); 3645 3646 /** 3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) 3648 * @x: holds the state of this particular completion 3649 * @timeout: timeout value in jiffies 3650 * 3651 * This waits for either a completion of a specific task to be 3652 * signaled or for a specified timeout to expire. It can be 3653 * interrupted by a kill signal. The timeout is in jiffies. 3654 * 3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out, 3656 * positive (at least 1, or number of jiffies left till timeout) if completed. 3657 */ 3658 long __sched 3659 wait_for_completion_killable_timeout(struct completion *x, 3660 unsigned long timeout) 3661 { 3662 return wait_for_common(x, timeout, TASK_KILLABLE); 3663 } 3664 EXPORT_SYMBOL(wait_for_completion_killable_timeout); 3665 3666 /** 3667 * try_wait_for_completion - try to decrement a completion without blocking 3668 * @x: completion structure 3669 * 3670 * Returns: 0 if a decrement cannot be done without blocking 3671 * 1 if a decrement succeeded. 3672 * 3673 * If a completion is being used as a counting completion, 3674 * attempt to decrement the counter without blocking. This 3675 * enables us to avoid waiting if the resource the completion 3676 * is protecting is not available. 3677 */ 3678 bool try_wait_for_completion(struct completion *x) 3679 { 3680 unsigned long flags; 3681 int ret = 1; 3682 3683 spin_lock_irqsave(&x->wait.lock, flags); 3684 if (!x->done) 3685 ret = 0; 3686 else 3687 x->done--; 3688 spin_unlock_irqrestore(&x->wait.lock, flags); 3689 return ret; 3690 } 3691 EXPORT_SYMBOL(try_wait_for_completion); 3692 3693 /** 3694 * completion_done - Test to see if a completion has any waiters 3695 * @x: completion structure 3696 * 3697 * Returns: 0 if there are waiters (wait_for_completion() in progress) 3698 * 1 if there are no waiters. 3699 * 3700 */ 3701 bool completion_done(struct completion *x) 3702 { 3703 unsigned long flags; 3704 int ret = 1; 3705 3706 spin_lock_irqsave(&x->wait.lock, flags); 3707 if (!x->done) 3708 ret = 0; 3709 spin_unlock_irqrestore(&x->wait.lock, flags); 3710 return ret; 3711 } 3712 EXPORT_SYMBOL(completion_done); 3713 3714 static long __sched 3715 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 3716 { 3717 unsigned long flags; 3718 wait_queue_t wait; 3719 3720 init_waitqueue_entry(&wait, current); 3721 3722 __set_current_state(state); 3723 3724 spin_lock_irqsave(&q->lock, flags); 3725 __add_wait_queue(q, &wait); 3726 spin_unlock(&q->lock); 3727 timeout = schedule_timeout(timeout); 3728 spin_lock_irq(&q->lock); 3729 __remove_wait_queue(q, &wait); 3730 spin_unlock_irqrestore(&q->lock, flags); 3731 3732 return timeout; 3733 } 3734 3735 void __sched interruptible_sleep_on(wait_queue_head_t *q) 3736 { 3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3738 } 3739 EXPORT_SYMBOL(interruptible_sleep_on); 3740 3741 long __sched 3742 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 3743 { 3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 3745 } 3746 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 3747 3748 void __sched sleep_on(wait_queue_head_t *q) 3749 { 3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 3751 } 3752 EXPORT_SYMBOL(sleep_on); 3753 3754 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 3755 { 3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 3757 } 3758 EXPORT_SYMBOL(sleep_on_timeout); 3759 3760 #ifdef CONFIG_RT_MUTEXES 3761 3762 /* 3763 * rt_mutex_setprio - set the current priority of a task 3764 * @p: task 3765 * @prio: prio value (kernel-internal form) 3766 * 3767 * This function changes the 'effective' priority of a task. It does 3768 * not touch ->normal_prio like __setscheduler(). 3769 * 3770 * Used by the rt_mutex code to implement priority inheritance logic. 3771 */ 3772 void rt_mutex_setprio(struct task_struct *p, int prio) 3773 { 3774 int oldprio, on_rq, running; 3775 struct rq *rq; 3776 const struct sched_class *prev_class; 3777 3778 BUG_ON(prio < 0 || prio > MAX_PRIO); 3779 3780 rq = __task_rq_lock(p); 3781 3782 /* 3783 * Idle task boosting is a nono in general. There is one 3784 * exception, when PREEMPT_RT and NOHZ is active: 3785 * 3786 * The idle task calls get_next_timer_interrupt() and holds 3787 * the timer wheel base->lock on the CPU and another CPU wants 3788 * to access the timer (probably to cancel it). We can safely 3789 * ignore the boosting request, as the idle CPU runs this code 3790 * with interrupts disabled and will complete the lock 3791 * protected section without being interrupted. So there is no 3792 * real need to boost. 3793 */ 3794 if (unlikely(p == rq->idle)) { 3795 WARN_ON(p != rq->curr); 3796 WARN_ON(p->pi_blocked_on); 3797 goto out_unlock; 3798 } 3799 3800 trace_sched_pi_setprio(p, prio); 3801 oldprio = p->prio; 3802 prev_class = p->sched_class; 3803 on_rq = p->on_rq; 3804 running = task_current(rq, p); 3805 if (on_rq) 3806 dequeue_task(rq, p, 0); 3807 if (running) 3808 p->sched_class->put_prev_task(rq, p); 3809 3810 if (rt_prio(prio)) 3811 p->sched_class = &rt_sched_class; 3812 else 3813 p->sched_class = &fair_sched_class; 3814 3815 p->prio = prio; 3816 3817 if (running) 3818 p->sched_class->set_curr_task(rq); 3819 if (on_rq) 3820 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); 3821 3822 check_class_changed(rq, p, prev_class, oldprio); 3823 out_unlock: 3824 __task_rq_unlock(rq); 3825 } 3826 #endif 3827 void set_user_nice(struct task_struct *p, long nice) 3828 { 3829 int old_prio, delta, on_rq; 3830 unsigned long flags; 3831 struct rq *rq; 3832 3833 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 3834 return; 3835 /* 3836 * We have to be careful, if called from sys_setpriority(), 3837 * the task might be in the middle of scheduling on another CPU. 3838 */ 3839 rq = task_rq_lock(p, &flags); 3840 /* 3841 * The RT priorities are set via sched_setscheduler(), but we still 3842 * allow the 'normal' nice value to be set - but as expected 3843 * it wont have any effect on scheduling until the task is 3844 * SCHED_FIFO/SCHED_RR: 3845 */ 3846 if (task_has_rt_policy(p)) { 3847 p->static_prio = NICE_TO_PRIO(nice); 3848 goto out_unlock; 3849 } 3850 on_rq = p->on_rq; 3851 if (on_rq) 3852 dequeue_task(rq, p, 0); 3853 3854 p->static_prio = NICE_TO_PRIO(nice); 3855 set_load_weight(p); 3856 old_prio = p->prio; 3857 p->prio = effective_prio(p); 3858 delta = p->prio - old_prio; 3859 3860 if (on_rq) { 3861 enqueue_task(rq, p, 0); 3862 /* 3863 * If the task increased its priority or is running and 3864 * lowered its priority, then reschedule its CPU: 3865 */ 3866 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3867 resched_task(rq->curr); 3868 } 3869 out_unlock: 3870 task_rq_unlock(rq, p, &flags); 3871 } 3872 EXPORT_SYMBOL(set_user_nice); 3873 3874 /* 3875 * can_nice - check if a task can reduce its nice value 3876 * @p: task 3877 * @nice: nice value 3878 */ 3879 int can_nice(const struct task_struct *p, const int nice) 3880 { 3881 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3882 int nice_rlim = 20 - nice; 3883 3884 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3885 capable(CAP_SYS_NICE)); 3886 } 3887 3888 #ifdef __ARCH_WANT_SYS_NICE 3889 3890 /* 3891 * sys_nice - change the priority of the current process. 3892 * @increment: priority increment 3893 * 3894 * sys_setpriority is a more generic, but much slower function that 3895 * does similar things. 3896 */ 3897 SYSCALL_DEFINE1(nice, int, increment) 3898 { 3899 long nice, retval; 3900 3901 /* 3902 * Setpriority might change our priority at the same moment. 3903 * We don't have to worry. Conceptually one call occurs first 3904 * and we have a single winner. 3905 */ 3906 if (increment < -40) 3907 increment = -40; 3908 if (increment > 40) 3909 increment = 40; 3910 3911 nice = TASK_NICE(current) + increment; 3912 if (nice < -20) 3913 nice = -20; 3914 if (nice > 19) 3915 nice = 19; 3916 3917 if (increment < 0 && !can_nice(current, nice)) 3918 return -EPERM; 3919 3920 retval = security_task_setnice(current, nice); 3921 if (retval) 3922 return retval; 3923 3924 set_user_nice(current, nice); 3925 return 0; 3926 } 3927 3928 #endif 3929 3930 /** 3931 * task_prio - return the priority value of a given task. 3932 * @p: the task in question. 3933 * 3934 * This is the priority value as seen by users in /proc. 3935 * RT tasks are offset by -200. Normal tasks are centered 3936 * around 0, value goes from -16 to +15. 3937 */ 3938 int task_prio(const struct task_struct *p) 3939 { 3940 return p->prio - MAX_RT_PRIO; 3941 } 3942 3943 /** 3944 * task_nice - return the nice value of a given task. 3945 * @p: the task in question. 3946 */ 3947 int task_nice(const struct task_struct *p) 3948 { 3949 return TASK_NICE(p); 3950 } 3951 EXPORT_SYMBOL(task_nice); 3952 3953 /** 3954 * idle_cpu - is a given cpu idle currently? 3955 * @cpu: the processor in question. 3956 */ 3957 int idle_cpu(int cpu) 3958 { 3959 struct rq *rq = cpu_rq(cpu); 3960 3961 if (rq->curr != rq->idle) 3962 return 0; 3963 3964 if (rq->nr_running) 3965 return 0; 3966 3967 #ifdef CONFIG_SMP 3968 if (!llist_empty(&rq->wake_list)) 3969 return 0; 3970 #endif 3971 3972 return 1; 3973 } 3974 3975 /** 3976 * idle_task - return the idle task for a given cpu. 3977 * @cpu: the processor in question. 3978 */ 3979 struct task_struct *idle_task(int cpu) 3980 { 3981 return cpu_rq(cpu)->idle; 3982 } 3983 3984 /** 3985 * find_process_by_pid - find a process with a matching PID value. 3986 * @pid: the pid in question. 3987 */ 3988 static struct task_struct *find_process_by_pid(pid_t pid) 3989 { 3990 return pid ? find_task_by_vpid(pid) : current; 3991 } 3992 3993 /* Actually do priority change: must hold rq lock. */ 3994 static void 3995 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 3996 { 3997 p->policy = policy; 3998 p->rt_priority = prio; 3999 p->normal_prio = normal_prio(p); 4000 /* we are holding p->pi_lock already */ 4001 p->prio = rt_mutex_getprio(p); 4002 if (rt_prio(p->prio)) 4003 p->sched_class = &rt_sched_class; 4004 else 4005 p->sched_class = &fair_sched_class; 4006 set_load_weight(p); 4007 } 4008 4009 /* 4010 * check the target process has a UID that matches the current process's 4011 */ 4012 static bool check_same_owner(struct task_struct *p) 4013 { 4014 const struct cred *cred = current_cred(), *pcred; 4015 bool match; 4016 4017 rcu_read_lock(); 4018 pcred = __task_cred(p); 4019 if (cred->user->user_ns == pcred->user->user_ns) 4020 match = (cred->euid == pcred->euid || 4021 cred->euid == pcred->uid); 4022 else 4023 match = false; 4024 rcu_read_unlock(); 4025 return match; 4026 } 4027 4028 static int __sched_setscheduler(struct task_struct *p, int policy, 4029 const struct sched_param *param, bool user) 4030 { 4031 int retval, oldprio, oldpolicy = -1, on_rq, running; 4032 unsigned long flags; 4033 const struct sched_class *prev_class; 4034 struct rq *rq; 4035 int reset_on_fork; 4036 4037 /* may grab non-irq protected spin_locks */ 4038 BUG_ON(in_interrupt()); 4039 recheck: 4040 /* double check policy once rq lock held */ 4041 if (policy < 0) { 4042 reset_on_fork = p->sched_reset_on_fork; 4043 policy = oldpolicy = p->policy; 4044 } else { 4045 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); 4046 policy &= ~SCHED_RESET_ON_FORK; 4047 4048 if (policy != SCHED_FIFO && policy != SCHED_RR && 4049 policy != SCHED_NORMAL && policy != SCHED_BATCH && 4050 policy != SCHED_IDLE) 4051 return -EINVAL; 4052 } 4053 4054 /* 4055 * Valid priorities for SCHED_FIFO and SCHED_RR are 4056 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4057 * SCHED_BATCH and SCHED_IDLE is 0. 4058 */ 4059 if (param->sched_priority < 0 || 4060 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 4061 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 4062 return -EINVAL; 4063 if (rt_policy(policy) != (param->sched_priority != 0)) 4064 return -EINVAL; 4065 4066 /* 4067 * Allow unprivileged RT tasks to decrease priority: 4068 */ 4069 if (user && !capable(CAP_SYS_NICE)) { 4070 if (rt_policy(policy)) { 4071 unsigned long rlim_rtprio = 4072 task_rlimit(p, RLIMIT_RTPRIO); 4073 4074 /* can't set/change the rt policy */ 4075 if (policy != p->policy && !rlim_rtprio) 4076 return -EPERM; 4077 4078 /* can't increase priority */ 4079 if (param->sched_priority > p->rt_priority && 4080 param->sched_priority > rlim_rtprio) 4081 return -EPERM; 4082 } 4083 4084 /* 4085 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4086 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4087 */ 4088 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 4089 if (!can_nice(p, TASK_NICE(p))) 4090 return -EPERM; 4091 } 4092 4093 /* can't change other user's priorities */ 4094 if (!check_same_owner(p)) 4095 return -EPERM; 4096 4097 /* Normal users shall not reset the sched_reset_on_fork flag */ 4098 if (p->sched_reset_on_fork && !reset_on_fork) 4099 return -EPERM; 4100 } 4101 4102 if (user) { 4103 retval = security_task_setscheduler(p); 4104 if (retval) 4105 return retval; 4106 } 4107 4108 /* 4109 * make sure no PI-waiters arrive (or leave) while we are 4110 * changing the priority of the task: 4111 * 4112 * To be able to change p->policy safely, the appropriate 4113 * runqueue lock must be held. 4114 */ 4115 rq = task_rq_lock(p, &flags); 4116 4117 /* 4118 * Changing the policy of the stop threads its a very bad idea 4119 */ 4120 if (p == rq->stop) { 4121 task_rq_unlock(rq, p, &flags); 4122 return -EINVAL; 4123 } 4124 4125 /* 4126 * If not changing anything there's no need to proceed further: 4127 */ 4128 if (unlikely(policy == p->policy && (!rt_policy(policy) || 4129 param->sched_priority == p->rt_priority))) { 4130 4131 __task_rq_unlock(rq); 4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4133 return 0; 4134 } 4135 4136 #ifdef CONFIG_RT_GROUP_SCHED 4137 if (user) { 4138 /* 4139 * Do not allow realtime tasks into groups that have no runtime 4140 * assigned. 4141 */ 4142 if (rt_bandwidth_enabled() && rt_policy(policy) && 4143 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4144 !task_group_is_autogroup(task_group(p))) { 4145 task_rq_unlock(rq, p, &flags); 4146 return -EPERM; 4147 } 4148 } 4149 #endif 4150 4151 /* recheck policy now with rq lock held */ 4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4153 policy = oldpolicy = -1; 4154 task_rq_unlock(rq, p, &flags); 4155 goto recheck; 4156 } 4157 on_rq = p->on_rq; 4158 running = task_current(rq, p); 4159 if (on_rq) 4160 dequeue_task(rq, p, 0); 4161 if (running) 4162 p->sched_class->put_prev_task(rq, p); 4163 4164 p->sched_reset_on_fork = reset_on_fork; 4165 4166 oldprio = p->prio; 4167 prev_class = p->sched_class; 4168 __setscheduler(rq, p, policy, param->sched_priority); 4169 4170 if (running) 4171 p->sched_class->set_curr_task(rq); 4172 if (on_rq) 4173 enqueue_task(rq, p, 0); 4174 4175 check_class_changed(rq, p, prev_class, oldprio); 4176 task_rq_unlock(rq, p, &flags); 4177 4178 rt_mutex_adjust_pi(p); 4179 4180 return 0; 4181 } 4182 4183 /** 4184 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4185 * @p: the task in question. 4186 * @policy: new policy. 4187 * @param: structure containing the new RT priority. 4188 * 4189 * NOTE that the task may be already dead. 4190 */ 4191 int sched_setscheduler(struct task_struct *p, int policy, 4192 const struct sched_param *param) 4193 { 4194 return __sched_setscheduler(p, policy, param, true); 4195 } 4196 EXPORT_SYMBOL_GPL(sched_setscheduler); 4197 4198 /** 4199 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4200 * @p: the task in question. 4201 * @policy: new policy. 4202 * @param: structure containing the new RT priority. 4203 * 4204 * Just like sched_setscheduler, only don't bother checking if the 4205 * current context has permission. For example, this is needed in 4206 * stop_machine(): we create temporary high priority worker threads, 4207 * but our caller might not have that capability. 4208 */ 4209 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4210 const struct sched_param *param) 4211 { 4212 return __sched_setscheduler(p, policy, param, false); 4213 } 4214 4215 static int 4216 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4217 { 4218 struct sched_param lparam; 4219 struct task_struct *p; 4220 int retval; 4221 4222 if (!param || pid < 0) 4223 return -EINVAL; 4224 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4225 return -EFAULT; 4226 4227 rcu_read_lock(); 4228 retval = -ESRCH; 4229 p = find_process_by_pid(pid); 4230 if (p != NULL) 4231 retval = sched_setscheduler(p, policy, &lparam); 4232 rcu_read_unlock(); 4233 4234 return retval; 4235 } 4236 4237 /** 4238 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4239 * @pid: the pid in question. 4240 * @policy: new policy. 4241 * @param: structure containing the new RT priority. 4242 */ 4243 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 4244 struct sched_param __user *, param) 4245 { 4246 /* negative values for policy are not valid */ 4247 if (policy < 0) 4248 return -EINVAL; 4249 4250 return do_sched_setscheduler(pid, policy, param); 4251 } 4252 4253 /** 4254 * sys_sched_setparam - set/change the RT priority of a thread 4255 * @pid: the pid in question. 4256 * @param: structure containing the new RT priority. 4257 */ 4258 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4259 { 4260 return do_sched_setscheduler(pid, -1, param); 4261 } 4262 4263 /** 4264 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4265 * @pid: the pid in question. 4266 */ 4267 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4268 { 4269 struct task_struct *p; 4270 int retval; 4271 4272 if (pid < 0) 4273 return -EINVAL; 4274 4275 retval = -ESRCH; 4276 rcu_read_lock(); 4277 p = find_process_by_pid(pid); 4278 if (p) { 4279 retval = security_task_getscheduler(p); 4280 if (!retval) 4281 retval = p->policy 4282 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4283 } 4284 rcu_read_unlock(); 4285 return retval; 4286 } 4287 4288 /** 4289 * sys_sched_getparam - get the RT priority of a thread 4290 * @pid: the pid in question. 4291 * @param: structure containing the RT priority. 4292 */ 4293 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4294 { 4295 struct sched_param lp; 4296 struct task_struct *p; 4297 int retval; 4298 4299 if (!param || pid < 0) 4300 return -EINVAL; 4301 4302 rcu_read_lock(); 4303 p = find_process_by_pid(pid); 4304 retval = -ESRCH; 4305 if (!p) 4306 goto out_unlock; 4307 4308 retval = security_task_getscheduler(p); 4309 if (retval) 4310 goto out_unlock; 4311 4312 lp.sched_priority = p->rt_priority; 4313 rcu_read_unlock(); 4314 4315 /* 4316 * This one might sleep, we cannot do it with a spinlock held ... 4317 */ 4318 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4319 4320 return retval; 4321 4322 out_unlock: 4323 rcu_read_unlock(); 4324 return retval; 4325 } 4326 4327 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4328 { 4329 cpumask_var_t cpus_allowed, new_mask; 4330 struct task_struct *p; 4331 int retval; 4332 4333 get_online_cpus(); 4334 rcu_read_lock(); 4335 4336 p = find_process_by_pid(pid); 4337 if (!p) { 4338 rcu_read_unlock(); 4339 put_online_cpus(); 4340 return -ESRCH; 4341 } 4342 4343 /* Prevent p going away */ 4344 get_task_struct(p); 4345 rcu_read_unlock(); 4346 4347 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4348 retval = -ENOMEM; 4349 goto out_put_task; 4350 } 4351 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4352 retval = -ENOMEM; 4353 goto out_free_cpus_allowed; 4354 } 4355 retval = -EPERM; 4356 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE)) 4357 goto out_unlock; 4358 4359 retval = security_task_setscheduler(p); 4360 if (retval) 4361 goto out_unlock; 4362 4363 cpuset_cpus_allowed(p, cpus_allowed); 4364 cpumask_and(new_mask, in_mask, cpus_allowed); 4365 again: 4366 retval = set_cpus_allowed_ptr(p, new_mask); 4367 4368 if (!retval) { 4369 cpuset_cpus_allowed(p, cpus_allowed); 4370 if (!cpumask_subset(new_mask, cpus_allowed)) { 4371 /* 4372 * We must have raced with a concurrent cpuset 4373 * update. Just reset the cpus_allowed to the 4374 * cpuset's cpus_allowed 4375 */ 4376 cpumask_copy(new_mask, cpus_allowed); 4377 goto again; 4378 } 4379 } 4380 out_unlock: 4381 free_cpumask_var(new_mask); 4382 out_free_cpus_allowed: 4383 free_cpumask_var(cpus_allowed); 4384 out_put_task: 4385 put_task_struct(p); 4386 put_online_cpus(); 4387 return retval; 4388 } 4389 4390 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4391 struct cpumask *new_mask) 4392 { 4393 if (len < cpumask_size()) 4394 cpumask_clear(new_mask); 4395 else if (len > cpumask_size()) 4396 len = cpumask_size(); 4397 4398 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4399 } 4400 4401 /** 4402 * sys_sched_setaffinity - set the cpu affinity of a process 4403 * @pid: pid of the process 4404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4405 * @user_mask_ptr: user-space pointer to the new cpu mask 4406 */ 4407 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4408 unsigned long __user *, user_mask_ptr) 4409 { 4410 cpumask_var_t new_mask; 4411 int retval; 4412 4413 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4414 return -ENOMEM; 4415 4416 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4417 if (retval == 0) 4418 retval = sched_setaffinity(pid, new_mask); 4419 free_cpumask_var(new_mask); 4420 return retval; 4421 } 4422 4423 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4424 { 4425 struct task_struct *p; 4426 unsigned long flags; 4427 int retval; 4428 4429 get_online_cpus(); 4430 rcu_read_lock(); 4431 4432 retval = -ESRCH; 4433 p = find_process_by_pid(pid); 4434 if (!p) 4435 goto out_unlock; 4436 4437 retval = security_task_getscheduler(p); 4438 if (retval) 4439 goto out_unlock; 4440 4441 raw_spin_lock_irqsave(&p->pi_lock, flags); 4442 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4444 4445 out_unlock: 4446 rcu_read_unlock(); 4447 put_online_cpus(); 4448 4449 return retval; 4450 } 4451 4452 /** 4453 * sys_sched_getaffinity - get the cpu affinity of a process 4454 * @pid: pid of the process 4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4456 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4457 */ 4458 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4459 unsigned long __user *, user_mask_ptr) 4460 { 4461 int ret; 4462 cpumask_var_t mask; 4463 4464 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4465 return -EINVAL; 4466 if (len & (sizeof(unsigned long)-1)) 4467 return -EINVAL; 4468 4469 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4470 return -ENOMEM; 4471 4472 ret = sched_getaffinity(pid, mask); 4473 if (ret == 0) { 4474 size_t retlen = min_t(size_t, len, cpumask_size()); 4475 4476 if (copy_to_user(user_mask_ptr, mask, retlen)) 4477 ret = -EFAULT; 4478 else 4479 ret = retlen; 4480 } 4481 free_cpumask_var(mask); 4482 4483 return ret; 4484 } 4485 4486 /** 4487 * sys_sched_yield - yield the current processor to other threads. 4488 * 4489 * This function yields the current CPU to other tasks. If there are no 4490 * other threads running on this CPU then this function will return. 4491 */ 4492 SYSCALL_DEFINE0(sched_yield) 4493 { 4494 struct rq *rq = this_rq_lock(); 4495 4496 schedstat_inc(rq, yld_count); 4497 current->sched_class->yield_task(rq); 4498 4499 /* 4500 * Since we are going to call schedule() anyway, there's 4501 * no need to preempt or enable interrupts: 4502 */ 4503 __release(rq->lock); 4504 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4505 do_raw_spin_unlock(&rq->lock); 4506 sched_preempt_enable_no_resched(); 4507 4508 schedule(); 4509 4510 return 0; 4511 } 4512 4513 static inline int should_resched(void) 4514 { 4515 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); 4516 } 4517 4518 static void __cond_resched(void) 4519 { 4520 add_preempt_count(PREEMPT_ACTIVE); 4521 __schedule(); 4522 sub_preempt_count(PREEMPT_ACTIVE); 4523 } 4524 4525 int __sched _cond_resched(void) 4526 { 4527 if (should_resched()) { 4528 __cond_resched(); 4529 return 1; 4530 } 4531 return 0; 4532 } 4533 EXPORT_SYMBOL(_cond_resched); 4534 4535 /* 4536 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4537 * call schedule, and on return reacquire the lock. 4538 * 4539 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4540 * operations here to prevent schedule() from being called twice (once via 4541 * spin_unlock(), once by hand). 4542 */ 4543 int __cond_resched_lock(spinlock_t *lock) 4544 { 4545 int resched = should_resched(); 4546 int ret = 0; 4547 4548 lockdep_assert_held(lock); 4549 4550 if (spin_needbreak(lock) || resched) { 4551 spin_unlock(lock); 4552 if (resched) 4553 __cond_resched(); 4554 else 4555 cpu_relax(); 4556 ret = 1; 4557 spin_lock(lock); 4558 } 4559 return ret; 4560 } 4561 EXPORT_SYMBOL(__cond_resched_lock); 4562 4563 int __sched __cond_resched_softirq(void) 4564 { 4565 BUG_ON(!in_softirq()); 4566 4567 if (should_resched()) { 4568 local_bh_enable(); 4569 __cond_resched(); 4570 local_bh_disable(); 4571 return 1; 4572 } 4573 return 0; 4574 } 4575 EXPORT_SYMBOL(__cond_resched_softirq); 4576 4577 /** 4578 * yield - yield the current processor to other threads. 4579 * 4580 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4581 * 4582 * The scheduler is at all times free to pick the calling task as the most 4583 * eligible task to run, if removing the yield() call from your code breaks 4584 * it, its already broken. 4585 * 4586 * Typical broken usage is: 4587 * 4588 * while (!event) 4589 * yield(); 4590 * 4591 * where one assumes that yield() will let 'the other' process run that will 4592 * make event true. If the current task is a SCHED_FIFO task that will never 4593 * happen. Never use yield() as a progress guarantee!! 4594 * 4595 * If you want to use yield() to wait for something, use wait_event(). 4596 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4597 * If you still want to use yield(), do not! 4598 */ 4599 void __sched yield(void) 4600 { 4601 set_current_state(TASK_RUNNING); 4602 sys_sched_yield(); 4603 } 4604 EXPORT_SYMBOL(yield); 4605 4606 /** 4607 * yield_to - yield the current processor to another thread in 4608 * your thread group, or accelerate that thread toward the 4609 * processor it's on. 4610 * @p: target task 4611 * @preempt: whether task preemption is allowed or not 4612 * 4613 * It's the caller's job to ensure that the target task struct 4614 * can't go away on us before we can do any checks. 4615 * 4616 * Returns true if we indeed boosted the target task. 4617 */ 4618 bool __sched yield_to(struct task_struct *p, bool preempt) 4619 { 4620 struct task_struct *curr = current; 4621 struct rq *rq, *p_rq; 4622 unsigned long flags; 4623 bool yielded = 0; 4624 4625 local_irq_save(flags); 4626 rq = this_rq(); 4627 4628 again: 4629 p_rq = task_rq(p); 4630 double_rq_lock(rq, p_rq); 4631 while (task_rq(p) != p_rq) { 4632 double_rq_unlock(rq, p_rq); 4633 goto again; 4634 } 4635 4636 if (!curr->sched_class->yield_to_task) 4637 goto out; 4638 4639 if (curr->sched_class != p->sched_class) 4640 goto out; 4641 4642 if (task_running(p_rq, p) || p->state) 4643 goto out; 4644 4645 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4646 if (yielded) { 4647 schedstat_inc(rq, yld_count); 4648 /* 4649 * Make p's CPU reschedule; pick_next_entity takes care of 4650 * fairness. 4651 */ 4652 if (preempt && rq != p_rq) 4653 resched_task(p_rq->curr); 4654 } else { 4655 /* 4656 * We might have set it in task_yield_fair(), but are 4657 * not going to schedule(), so don't want to skip 4658 * the next update. 4659 */ 4660 rq->skip_clock_update = 0; 4661 } 4662 4663 out: 4664 double_rq_unlock(rq, p_rq); 4665 local_irq_restore(flags); 4666 4667 if (yielded) 4668 schedule(); 4669 4670 return yielded; 4671 } 4672 EXPORT_SYMBOL_GPL(yield_to); 4673 4674 /* 4675 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4676 * that process accounting knows that this is a task in IO wait state. 4677 */ 4678 void __sched io_schedule(void) 4679 { 4680 struct rq *rq = raw_rq(); 4681 4682 delayacct_blkio_start(); 4683 atomic_inc(&rq->nr_iowait); 4684 blk_flush_plug(current); 4685 current->in_iowait = 1; 4686 schedule(); 4687 current->in_iowait = 0; 4688 atomic_dec(&rq->nr_iowait); 4689 delayacct_blkio_end(); 4690 } 4691 EXPORT_SYMBOL(io_schedule); 4692 4693 long __sched io_schedule_timeout(long timeout) 4694 { 4695 struct rq *rq = raw_rq(); 4696 long ret; 4697 4698 delayacct_blkio_start(); 4699 atomic_inc(&rq->nr_iowait); 4700 blk_flush_plug(current); 4701 current->in_iowait = 1; 4702 ret = schedule_timeout(timeout); 4703 current->in_iowait = 0; 4704 atomic_dec(&rq->nr_iowait); 4705 delayacct_blkio_end(); 4706 return ret; 4707 } 4708 4709 /** 4710 * sys_sched_get_priority_max - return maximum RT priority. 4711 * @policy: scheduling class. 4712 * 4713 * this syscall returns the maximum rt_priority that can be used 4714 * by a given scheduling class. 4715 */ 4716 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4717 { 4718 int ret = -EINVAL; 4719 4720 switch (policy) { 4721 case SCHED_FIFO: 4722 case SCHED_RR: 4723 ret = MAX_USER_RT_PRIO-1; 4724 break; 4725 case SCHED_NORMAL: 4726 case SCHED_BATCH: 4727 case SCHED_IDLE: 4728 ret = 0; 4729 break; 4730 } 4731 return ret; 4732 } 4733 4734 /** 4735 * sys_sched_get_priority_min - return minimum RT priority. 4736 * @policy: scheduling class. 4737 * 4738 * this syscall returns the minimum rt_priority that can be used 4739 * by a given scheduling class. 4740 */ 4741 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4742 { 4743 int ret = -EINVAL; 4744 4745 switch (policy) { 4746 case SCHED_FIFO: 4747 case SCHED_RR: 4748 ret = 1; 4749 break; 4750 case SCHED_NORMAL: 4751 case SCHED_BATCH: 4752 case SCHED_IDLE: 4753 ret = 0; 4754 } 4755 return ret; 4756 } 4757 4758 /** 4759 * sys_sched_rr_get_interval - return the default timeslice of a process. 4760 * @pid: pid of the process. 4761 * @interval: userspace pointer to the timeslice value. 4762 * 4763 * this syscall writes the default timeslice value of a given process 4764 * into the user-space timespec buffer. A value of '0' means infinity. 4765 */ 4766 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4767 struct timespec __user *, interval) 4768 { 4769 struct task_struct *p; 4770 unsigned int time_slice; 4771 unsigned long flags; 4772 struct rq *rq; 4773 int retval; 4774 struct timespec t; 4775 4776 if (pid < 0) 4777 return -EINVAL; 4778 4779 retval = -ESRCH; 4780 rcu_read_lock(); 4781 p = find_process_by_pid(pid); 4782 if (!p) 4783 goto out_unlock; 4784 4785 retval = security_task_getscheduler(p); 4786 if (retval) 4787 goto out_unlock; 4788 4789 rq = task_rq_lock(p, &flags); 4790 time_slice = p->sched_class->get_rr_interval(rq, p); 4791 task_rq_unlock(rq, p, &flags); 4792 4793 rcu_read_unlock(); 4794 jiffies_to_timespec(time_slice, &t); 4795 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4796 return retval; 4797 4798 out_unlock: 4799 rcu_read_unlock(); 4800 return retval; 4801 } 4802 4803 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4804 4805 void sched_show_task(struct task_struct *p) 4806 { 4807 unsigned long free = 0; 4808 unsigned state; 4809 4810 state = p->state ? __ffs(p->state) + 1 : 0; 4811 printk(KERN_INFO "%-15.15s %c", p->comm, 4812 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4813 #if BITS_PER_LONG == 32 4814 if (state == TASK_RUNNING) 4815 printk(KERN_CONT " running "); 4816 else 4817 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4818 #else 4819 if (state == TASK_RUNNING) 4820 printk(KERN_CONT " running task "); 4821 else 4822 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4823 #endif 4824 #ifdef CONFIG_DEBUG_STACK_USAGE 4825 free = stack_not_used(p); 4826 #endif 4827 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4828 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)), 4829 (unsigned long)task_thread_info(p)->flags); 4830 4831 show_stack(p, NULL); 4832 } 4833 4834 void show_state_filter(unsigned long state_filter) 4835 { 4836 struct task_struct *g, *p; 4837 4838 #if BITS_PER_LONG == 32 4839 printk(KERN_INFO 4840 " task PC stack pid father\n"); 4841 #else 4842 printk(KERN_INFO 4843 " task PC stack pid father\n"); 4844 #endif 4845 rcu_read_lock(); 4846 do_each_thread(g, p) { 4847 /* 4848 * reset the NMI-timeout, listing all files on a slow 4849 * console might take a lot of time: 4850 */ 4851 touch_nmi_watchdog(); 4852 if (!state_filter || (p->state & state_filter)) 4853 sched_show_task(p); 4854 } while_each_thread(g, p); 4855 4856 touch_all_softlockup_watchdogs(); 4857 4858 #ifdef CONFIG_SCHED_DEBUG 4859 sysrq_sched_debug_show(); 4860 #endif 4861 rcu_read_unlock(); 4862 /* 4863 * Only show locks if all tasks are dumped: 4864 */ 4865 if (!state_filter) 4866 debug_show_all_locks(); 4867 } 4868 4869 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 4870 { 4871 idle->sched_class = &idle_sched_class; 4872 } 4873 4874 /** 4875 * init_idle - set up an idle thread for a given CPU 4876 * @idle: task in question 4877 * @cpu: cpu the idle task belongs to 4878 * 4879 * NOTE: this function does not set the idle thread's NEED_RESCHED 4880 * flag, to make booting more robust. 4881 */ 4882 void __cpuinit init_idle(struct task_struct *idle, int cpu) 4883 { 4884 struct rq *rq = cpu_rq(cpu); 4885 unsigned long flags; 4886 4887 raw_spin_lock_irqsave(&rq->lock, flags); 4888 4889 __sched_fork(idle); 4890 idle->state = TASK_RUNNING; 4891 idle->se.exec_start = sched_clock(); 4892 4893 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4894 /* 4895 * We're having a chicken and egg problem, even though we are 4896 * holding rq->lock, the cpu isn't yet set to this cpu so the 4897 * lockdep check in task_group() will fail. 4898 * 4899 * Similar case to sched_fork(). / Alternatively we could 4900 * use task_rq_lock() here and obtain the other rq->lock. 4901 * 4902 * Silence PROVE_RCU 4903 */ 4904 rcu_read_lock(); 4905 __set_task_cpu(idle, cpu); 4906 rcu_read_unlock(); 4907 4908 rq->curr = rq->idle = idle; 4909 #if defined(CONFIG_SMP) 4910 idle->on_cpu = 1; 4911 #endif 4912 raw_spin_unlock_irqrestore(&rq->lock, flags); 4913 4914 /* Set the preempt count _outside_ the spinlocks! */ 4915 task_thread_info(idle)->preempt_count = 0; 4916 4917 /* 4918 * The idle tasks have their own, simple scheduling class: 4919 */ 4920 idle->sched_class = &idle_sched_class; 4921 ftrace_graph_init_idle_task(idle, cpu); 4922 #if defined(CONFIG_SMP) 4923 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4924 #endif 4925 } 4926 4927 #ifdef CONFIG_SMP 4928 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4929 { 4930 if (p->sched_class && p->sched_class->set_cpus_allowed) 4931 p->sched_class->set_cpus_allowed(p, new_mask); 4932 4933 cpumask_copy(&p->cpus_allowed, new_mask); 4934 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 4935 } 4936 4937 /* 4938 * This is how migration works: 4939 * 4940 * 1) we invoke migration_cpu_stop() on the target CPU using 4941 * stop_one_cpu(). 4942 * 2) stopper starts to run (implicitly forcing the migrated thread 4943 * off the CPU) 4944 * 3) it checks whether the migrated task is still in the wrong runqueue. 4945 * 4) if it's in the wrong runqueue then the migration thread removes 4946 * it and puts it into the right queue. 4947 * 5) stopper completes and stop_one_cpu() returns and the migration 4948 * is done. 4949 */ 4950 4951 /* 4952 * Change a given task's CPU affinity. Migrate the thread to a 4953 * proper CPU and schedule it away if the CPU it's executing on 4954 * is removed from the allowed bitmask. 4955 * 4956 * NOTE: the caller must have a valid reference to the task, the 4957 * task must not exit() & deallocate itself prematurely. The 4958 * call is not atomic; no spinlocks may be held. 4959 */ 4960 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4961 { 4962 unsigned long flags; 4963 struct rq *rq; 4964 unsigned int dest_cpu; 4965 int ret = 0; 4966 4967 rq = task_rq_lock(p, &flags); 4968 4969 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4970 goto out; 4971 4972 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4973 ret = -EINVAL; 4974 goto out; 4975 } 4976 4977 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) { 4978 ret = -EINVAL; 4979 goto out; 4980 } 4981 4982 do_set_cpus_allowed(p, new_mask); 4983 4984 /* Can the task run on the task's current CPU? If so, we're done */ 4985 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4986 goto out; 4987 4988 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4989 if (p->on_rq) { 4990 struct migration_arg arg = { p, dest_cpu }; 4991 /* Need help from migration thread: drop lock and wait. */ 4992 task_rq_unlock(rq, p, &flags); 4993 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4994 tlb_migrate_finish(p->mm); 4995 return 0; 4996 } 4997 out: 4998 task_rq_unlock(rq, p, &flags); 4999 5000 return ret; 5001 } 5002 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 5003 5004 /* 5005 * Move (not current) task off this cpu, onto dest cpu. We're doing 5006 * this because either it can't run here any more (set_cpus_allowed() 5007 * away from this CPU, or CPU going down), or because we're 5008 * attempting to rebalance this task on exec (sched_exec). 5009 * 5010 * So we race with normal scheduler movements, but that's OK, as long 5011 * as the task is no longer on this CPU. 5012 * 5013 * Returns non-zero if task was successfully migrated. 5014 */ 5015 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 5016 { 5017 struct rq *rq_dest, *rq_src; 5018 int ret = 0; 5019 5020 if (unlikely(!cpu_active(dest_cpu))) 5021 return ret; 5022 5023 rq_src = cpu_rq(src_cpu); 5024 rq_dest = cpu_rq(dest_cpu); 5025 5026 raw_spin_lock(&p->pi_lock); 5027 double_rq_lock(rq_src, rq_dest); 5028 /* Already moved. */ 5029 if (task_cpu(p) != src_cpu) 5030 goto done; 5031 /* Affinity changed (again). */ 5032 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 5033 goto fail; 5034 5035 /* 5036 * If we're not on a rq, the next wake-up will ensure we're 5037 * placed properly. 5038 */ 5039 if (p->on_rq) { 5040 dequeue_task(rq_src, p, 0); 5041 set_task_cpu(p, dest_cpu); 5042 enqueue_task(rq_dest, p, 0); 5043 check_preempt_curr(rq_dest, p, 0); 5044 } 5045 done: 5046 ret = 1; 5047 fail: 5048 double_rq_unlock(rq_src, rq_dest); 5049 raw_spin_unlock(&p->pi_lock); 5050 return ret; 5051 } 5052 5053 /* 5054 * migration_cpu_stop - this will be executed by a highprio stopper thread 5055 * and performs thread migration by bumping thread off CPU then 5056 * 'pushing' onto another runqueue. 5057 */ 5058 static int migration_cpu_stop(void *data) 5059 { 5060 struct migration_arg *arg = data; 5061 5062 /* 5063 * The original target cpu might have gone down and we might 5064 * be on another cpu but it doesn't matter. 5065 */ 5066 local_irq_disable(); 5067 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 5068 local_irq_enable(); 5069 return 0; 5070 } 5071 5072 #ifdef CONFIG_HOTPLUG_CPU 5073 5074 /* 5075 * Ensures that the idle task is using init_mm right before its cpu goes 5076 * offline. 5077 */ 5078 void idle_task_exit(void) 5079 { 5080 struct mm_struct *mm = current->active_mm; 5081 5082 BUG_ON(cpu_online(smp_processor_id())); 5083 5084 if (mm != &init_mm) 5085 switch_mm(mm, &init_mm, current); 5086 mmdrop(mm); 5087 } 5088 5089 /* 5090 * While a dead CPU has no uninterruptible tasks queued at this point, 5091 * it might still have a nonzero ->nr_uninterruptible counter, because 5092 * for performance reasons the counter is not stricly tracking tasks to 5093 * their home CPUs. So we just add the counter to another CPU's counter, 5094 * to keep the global sum constant after CPU-down: 5095 */ 5096 static void migrate_nr_uninterruptible(struct rq *rq_src) 5097 { 5098 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); 5099 5100 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 5101 rq_src->nr_uninterruptible = 0; 5102 } 5103 5104 /* 5105 * remove the tasks which were accounted by rq from calc_load_tasks. 5106 */ 5107 static void calc_global_load_remove(struct rq *rq) 5108 { 5109 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 5110 rq->calc_load_active = 0; 5111 } 5112 5113 /* 5114 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5115 * try_to_wake_up()->select_task_rq(). 5116 * 5117 * Called with rq->lock held even though we'er in stop_machine() and 5118 * there's no concurrency possible, we hold the required locks anyway 5119 * because of lock validation efforts. 5120 */ 5121 static void migrate_tasks(unsigned int dead_cpu) 5122 { 5123 struct rq *rq = cpu_rq(dead_cpu); 5124 struct task_struct *next, *stop = rq->stop; 5125 int dest_cpu; 5126 5127 /* 5128 * Fudge the rq selection such that the below task selection loop 5129 * doesn't get stuck on the currently eligible stop task. 5130 * 5131 * We're currently inside stop_machine() and the rq is either stuck 5132 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5133 * either way we should never end up calling schedule() until we're 5134 * done here. 5135 */ 5136 rq->stop = NULL; 5137 5138 /* Ensure any throttled groups are reachable by pick_next_task */ 5139 unthrottle_offline_cfs_rqs(rq); 5140 5141 for ( ; ; ) { 5142 /* 5143 * There's this thread running, bail when that's the only 5144 * remaining thread. 5145 */ 5146 if (rq->nr_running == 1) 5147 break; 5148 5149 next = pick_next_task(rq); 5150 BUG_ON(!next); 5151 next->sched_class->put_prev_task(rq, next); 5152 5153 /* Find suitable destination for @next, with force if needed. */ 5154 dest_cpu = select_fallback_rq(dead_cpu, next); 5155 raw_spin_unlock(&rq->lock); 5156 5157 __migrate_task(next, dead_cpu, dest_cpu); 5158 5159 raw_spin_lock(&rq->lock); 5160 } 5161 5162 rq->stop = stop; 5163 } 5164 5165 #endif /* CONFIG_HOTPLUG_CPU */ 5166 5167 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 5168 5169 static struct ctl_table sd_ctl_dir[] = { 5170 { 5171 .procname = "sched_domain", 5172 .mode = 0555, 5173 }, 5174 {} 5175 }; 5176 5177 static struct ctl_table sd_ctl_root[] = { 5178 { 5179 .procname = "kernel", 5180 .mode = 0555, 5181 .child = sd_ctl_dir, 5182 }, 5183 {} 5184 }; 5185 5186 static struct ctl_table *sd_alloc_ctl_entry(int n) 5187 { 5188 struct ctl_table *entry = 5189 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5190 5191 return entry; 5192 } 5193 5194 static void sd_free_ctl_entry(struct ctl_table **tablep) 5195 { 5196 struct ctl_table *entry; 5197 5198 /* 5199 * In the intermediate directories, both the child directory and 5200 * procname are dynamically allocated and could fail but the mode 5201 * will always be set. In the lowest directory the names are 5202 * static strings and all have proc handlers. 5203 */ 5204 for (entry = *tablep; entry->mode; entry++) { 5205 if (entry->child) 5206 sd_free_ctl_entry(&entry->child); 5207 if (entry->proc_handler == NULL) 5208 kfree(entry->procname); 5209 } 5210 5211 kfree(*tablep); 5212 *tablep = NULL; 5213 } 5214 5215 static void 5216 set_table_entry(struct ctl_table *entry, 5217 const char *procname, void *data, int maxlen, 5218 umode_t mode, proc_handler *proc_handler) 5219 { 5220 entry->procname = procname; 5221 entry->data = data; 5222 entry->maxlen = maxlen; 5223 entry->mode = mode; 5224 entry->proc_handler = proc_handler; 5225 } 5226 5227 static struct ctl_table * 5228 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5229 { 5230 struct ctl_table *table = sd_alloc_ctl_entry(13); 5231 5232 if (table == NULL) 5233 return NULL; 5234 5235 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5236 sizeof(long), 0644, proc_doulongvec_minmax); 5237 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5238 sizeof(long), 0644, proc_doulongvec_minmax); 5239 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5240 sizeof(int), 0644, proc_dointvec_minmax); 5241 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5242 sizeof(int), 0644, proc_dointvec_minmax); 5243 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5244 sizeof(int), 0644, proc_dointvec_minmax); 5245 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5246 sizeof(int), 0644, proc_dointvec_minmax); 5247 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5248 sizeof(int), 0644, proc_dointvec_minmax); 5249 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5250 sizeof(int), 0644, proc_dointvec_minmax); 5251 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5252 sizeof(int), 0644, proc_dointvec_minmax); 5253 set_table_entry(&table[9], "cache_nice_tries", 5254 &sd->cache_nice_tries, 5255 sizeof(int), 0644, proc_dointvec_minmax); 5256 set_table_entry(&table[10], "flags", &sd->flags, 5257 sizeof(int), 0644, proc_dointvec_minmax); 5258 set_table_entry(&table[11], "name", sd->name, 5259 CORENAME_MAX_SIZE, 0444, proc_dostring); 5260 /* &table[12] is terminator */ 5261 5262 return table; 5263 } 5264 5265 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5266 { 5267 struct ctl_table *entry, *table; 5268 struct sched_domain *sd; 5269 int domain_num = 0, i; 5270 char buf[32]; 5271 5272 for_each_domain(cpu, sd) 5273 domain_num++; 5274 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5275 if (table == NULL) 5276 return NULL; 5277 5278 i = 0; 5279 for_each_domain(cpu, sd) { 5280 snprintf(buf, 32, "domain%d", i); 5281 entry->procname = kstrdup(buf, GFP_KERNEL); 5282 entry->mode = 0555; 5283 entry->child = sd_alloc_ctl_domain_table(sd); 5284 entry++; 5285 i++; 5286 } 5287 return table; 5288 } 5289 5290 static struct ctl_table_header *sd_sysctl_header; 5291 static void register_sched_domain_sysctl(void) 5292 { 5293 int i, cpu_num = num_possible_cpus(); 5294 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5295 char buf[32]; 5296 5297 WARN_ON(sd_ctl_dir[0].child); 5298 sd_ctl_dir[0].child = entry; 5299 5300 if (entry == NULL) 5301 return; 5302 5303 for_each_possible_cpu(i) { 5304 snprintf(buf, 32, "cpu%d", i); 5305 entry->procname = kstrdup(buf, GFP_KERNEL); 5306 entry->mode = 0555; 5307 entry->child = sd_alloc_ctl_cpu_table(i); 5308 entry++; 5309 } 5310 5311 WARN_ON(sd_sysctl_header); 5312 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5313 } 5314 5315 /* may be called multiple times per register */ 5316 static void unregister_sched_domain_sysctl(void) 5317 { 5318 if (sd_sysctl_header) 5319 unregister_sysctl_table(sd_sysctl_header); 5320 sd_sysctl_header = NULL; 5321 if (sd_ctl_dir[0].child) 5322 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5323 } 5324 #else 5325 static void register_sched_domain_sysctl(void) 5326 { 5327 } 5328 static void unregister_sched_domain_sysctl(void) 5329 { 5330 } 5331 #endif 5332 5333 static void set_rq_online(struct rq *rq) 5334 { 5335 if (!rq->online) { 5336 const struct sched_class *class; 5337 5338 cpumask_set_cpu(rq->cpu, rq->rd->online); 5339 rq->online = 1; 5340 5341 for_each_class(class) { 5342 if (class->rq_online) 5343 class->rq_online(rq); 5344 } 5345 } 5346 } 5347 5348 static void set_rq_offline(struct rq *rq) 5349 { 5350 if (rq->online) { 5351 const struct sched_class *class; 5352 5353 for_each_class(class) { 5354 if (class->rq_offline) 5355 class->rq_offline(rq); 5356 } 5357 5358 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5359 rq->online = 0; 5360 } 5361 } 5362 5363 /* 5364 * migration_call - callback that gets triggered when a CPU is added. 5365 * Here we can start up the necessary migration thread for the new CPU. 5366 */ 5367 static int __cpuinit 5368 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5369 { 5370 int cpu = (long)hcpu; 5371 unsigned long flags; 5372 struct rq *rq = cpu_rq(cpu); 5373 5374 switch (action & ~CPU_TASKS_FROZEN) { 5375 5376 case CPU_UP_PREPARE: 5377 rq->calc_load_update = calc_load_update; 5378 break; 5379 5380 case CPU_ONLINE: 5381 /* Update our root-domain */ 5382 raw_spin_lock_irqsave(&rq->lock, flags); 5383 if (rq->rd) { 5384 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5385 5386 set_rq_online(rq); 5387 } 5388 raw_spin_unlock_irqrestore(&rq->lock, flags); 5389 break; 5390 5391 #ifdef CONFIG_HOTPLUG_CPU 5392 case CPU_DYING: 5393 sched_ttwu_pending(); 5394 /* Update our root-domain */ 5395 raw_spin_lock_irqsave(&rq->lock, flags); 5396 if (rq->rd) { 5397 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5398 set_rq_offline(rq); 5399 } 5400 migrate_tasks(cpu); 5401 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5402 raw_spin_unlock_irqrestore(&rq->lock, flags); 5403 5404 migrate_nr_uninterruptible(rq); 5405 calc_global_load_remove(rq); 5406 break; 5407 #endif 5408 } 5409 5410 update_max_interval(); 5411 5412 return NOTIFY_OK; 5413 } 5414 5415 /* 5416 * Register at high priority so that task migration (migrate_all_tasks) 5417 * happens before everything else. This has to be lower priority than 5418 * the notifier in the perf_event subsystem, though. 5419 */ 5420 static struct notifier_block __cpuinitdata migration_notifier = { 5421 .notifier_call = migration_call, 5422 .priority = CPU_PRI_MIGRATION, 5423 }; 5424 5425 static int __cpuinit sched_cpu_active(struct notifier_block *nfb, 5426 unsigned long action, void *hcpu) 5427 { 5428 switch (action & ~CPU_TASKS_FROZEN) { 5429 case CPU_STARTING: 5430 case CPU_DOWN_FAILED: 5431 set_cpu_active((long)hcpu, true); 5432 return NOTIFY_OK; 5433 default: 5434 return NOTIFY_DONE; 5435 } 5436 } 5437 5438 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, 5439 unsigned long action, void *hcpu) 5440 { 5441 switch (action & ~CPU_TASKS_FROZEN) { 5442 case CPU_DOWN_PREPARE: 5443 set_cpu_active((long)hcpu, false); 5444 return NOTIFY_OK; 5445 default: 5446 return NOTIFY_DONE; 5447 } 5448 } 5449 5450 static int __init migration_init(void) 5451 { 5452 void *cpu = (void *)(long)smp_processor_id(); 5453 int err; 5454 5455 /* Initialize migration for the boot CPU */ 5456 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5457 BUG_ON(err == NOTIFY_BAD); 5458 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5459 register_cpu_notifier(&migration_notifier); 5460 5461 /* Register cpu active notifiers */ 5462 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5463 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5464 5465 return 0; 5466 } 5467 early_initcall(migration_init); 5468 #endif 5469 5470 #ifdef CONFIG_SMP 5471 5472 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5473 5474 #ifdef CONFIG_SCHED_DEBUG 5475 5476 static __read_mostly int sched_domain_debug_enabled; 5477 5478 static int __init sched_domain_debug_setup(char *str) 5479 { 5480 sched_domain_debug_enabled = 1; 5481 5482 return 0; 5483 } 5484 early_param("sched_debug", sched_domain_debug_setup); 5485 5486 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5487 struct cpumask *groupmask) 5488 { 5489 struct sched_group *group = sd->groups; 5490 char str[256]; 5491 5492 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5493 cpumask_clear(groupmask); 5494 5495 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5496 5497 if (!(sd->flags & SD_LOAD_BALANCE)) { 5498 printk("does not load-balance\n"); 5499 if (sd->parent) 5500 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5501 " has parent"); 5502 return -1; 5503 } 5504 5505 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5506 5507 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5508 printk(KERN_ERR "ERROR: domain->span does not contain " 5509 "CPU%d\n", cpu); 5510 } 5511 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5512 printk(KERN_ERR "ERROR: domain->groups does not contain" 5513 " CPU%d\n", cpu); 5514 } 5515 5516 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5517 do { 5518 if (!group) { 5519 printk("\n"); 5520 printk(KERN_ERR "ERROR: group is NULL\n"); 5521 break; 5522 } 5523 5524 if (!group->sgp->power) { 5525 printk(KERN_CONT "\n"); 5526 printk(KERN_ERR "ERROR: domain->cpu_power not " 5527 "set\n"); 5528 break; 5529 } 5530 5531 if (!cpumask_weight(sched_group_cpus(group))) { 5532 printk(KERN_CONT "\n"); 5533 printk(KERN_ERR "ERROR: empty group\n"); 5534 break; 5535 } 5536 5537 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 5538 printk(KERN_CONT "\n"); 5539 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5540 break; 5541 } 5542 5543 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5544 5545 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5546 5547 printk(KERN_CONT " %s", str); 5548 if (group->sgp->power != SCHED_POWER_SCALE) { 5549 printk(KERN_CONT " (cpu_power = %d)", 5550 group->sgp->power); 5551 } 5552 5553 group = group->next; 5554 } while (group != sd->groups); 5555 printk(KERN_CONT "\n"); 5556 5557 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5558 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5559 5560 if (sd->parent && 5561 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5562 printk(KERN_ERR "ERROR: parent span is not a superset " 5563 "of domain->span\n"); 5564 return 0; 5565 } 5566 5567 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5568 { 5569 int level = 0; 5570 5571 if (!sched_domain_debug_enabled) 5572 return; 5573 5574 if (!sd) { 5575 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5576 return; 5577 } 5578 5579 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5580 5581 for (;;) { 5582 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5583 break; 5584 level++; 5585 sd = sd->parent; 5586 if (!sd) 5587 break; 5588 } 5589 } 5590 #else /* !CONFIG_SCHED_DEBUG */ 5591 # define sched_domain_debug(sd, cpu) do { } while (0) 5592 #endif /* CONFIG_SCHED_DEBUG */ 5593 5594 static int sd_degenerate(struct sched_domain *sd) 5595 { 5596 if (cpumask_weight(sched_domain_span(sd)) == 1) 5597 return 1; 5598 5599 /* Following flags need at least 2 groups */ 5600 if (sd->flags & (SD_LOAD_BALANCE | 5601 SD_BALANCE_NEWIDLE | 5602 SD_BALANCE_FORK | 5603 SD_BALANCE_EXEC | 5604 SD_SHARE_CPUPOWER | 5605 SD_SHARE_PKG_RESOURCES)) { 5606 if (sd->groups != sd->groups->next) 5607 return 0; 5608 } 5609 5610 /* Following flags don't use groups */ 5611 if (sd->flags & (SD_WAKE_AFFINE)) 5612 return 0; 5613 5614 return 1; 5615 } 5616 5617 static int 5618 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5619 { 5620 unsigned long cflags = sd->flags, pflags = parent->flags; 5621 5622 if (sd_degenerate(parent)) 5623 return 1; 5624 5625 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5626 return 0; 5627 5628 /* Flags needing groups don't count if only 1 group in parent */ 5629 if (parent->groups == parent->groups->next) { 5630 pflags &= ~(SD_LOAD_BALANCE | 5631 SD_BALANCE_NEWIDLE | 5632 SD_BALANCE_FORK | 5633 SD_BALANCE_EXEC | 5634 SD_SHARE_CPUPOWER | 5635 SD_SHARE_PKG_RESOURCES); 5636 if (nr_node_ids == 1) 5637 pflags &= ~SD_SERIALIZE; 5638 } 5639 if (~cflags & pflags) 5640 return 0; 5641 5642 return 1; 5643 } 5644 5645 static void free_rootdomain(struct rcu_head *rcu) 5646 { 5647 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5648 5649 cpupri_cleanup(&rd->cpupri); 5650 free_cpumask_var(rd->rto_mask); 5651 free_cpumask_var(rd->online); 5652 free_cpumask_var(rd->span); 5653 kfree(rd); 5654 } 5655 5656 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5657 { 5658 struct root_domain *old_rd = NULL; 5659 unsigned long flags; 5660 5661 raw_spin_lock_irqsave(&rq->lock, flags); 5662 5663 if (rq->rd) { 5664 old_rd = rq->rd; 5665 5666 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5667 set_rq_offline(rq); 5668 5669 cpumask_clear_cpu(rq->cpu, old_rd->span); 5670 5671 /* 5672 * If we dont want to free the old_rt yet then 5673 * set old_rd to NULL to skip the freeing later 5674 * in this function: 5675 */ 5676 if (!atomic_dec_and_test(&old_rd->refcount)) 5677 old_rd = NULL; 5678 } 5679 5680 atomic_inc(&rd->refcount); 5681 rq->rd = rd; 5682 5683 cpumask_set_cpu(rq->cpu, rd->span); 5684 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5685 set_rq_online(rq); 5686 5687 raw_spin_unlock_irqrestore(&rq->lock, flags); 5688 5689 if (old_rd) 5690 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5691 } 5692 5693 static int init_rootdomain(struct root_domain *rd) 5694 { 5695 memset(rd, 0, sizeof(*rd)); 5696 5697 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5698 goto out; 5699 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5700 goto free_span; 5701 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5702 goto free_online; 5703 5704 if (cpupri_init(&rd->cpupri) != 0) 5705 goto free_rto_mask; 5706 return 0; 5707 5708 free_rto_mask: 5709 free_cpumask_var(rd->rto_mask); 5710 free_online: 5711 free_cpumask_var(rd->online); 5712 free_span: 5713 free_cpumask_var(rd->span); 5714 out: 5715 return -ENOMEM; 5716 } 5717 5718 /* 5719 * By default the system creates a single root-domain with all cpus as 5720 * members (mimicking the global state we have today). 5721 */ 5722 struct root_domain def_root_domain; 5723 5724 static void init_defrootdomain(void) 5725 { 5726 init_rootdomain(&def_root_domain); 5727 5728 atomic_set(&def_root_domain.refcount, 1); 5729 } 5730 5731 static struct root_domain *alloc_rootdomain(void) 5732 { 5733 struct root_domain *rd; 5734 5735 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5736 if (!rd) 5737 return NULL; 5738 5739 if (init_rootdomain(rd) != 0) { 5740 kfree(rd); 5741 return NULL; 5742 } 5743 5744 return rd; 5745 } 5746 5747 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5748 { 5749 struct sched_group *tmp, *first; 5750 5751 if (!sg) 5752 return; 5753 5754 first = sg; 5755 do { 5756 tmp = sg->next; 5757 5758 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5759 kfree(sg->sgp); 5760 5761 kfree(sg); 5762 sg = tmp; 5763 } while (sg != first); 5764 } 5765 5766 static void free_sched_domain(struct rcu_head *rcu) 5767 { 5768 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5769 5770 /* 5771 * If its an overlapping domain it has private groups, iterate and 5772 * nuke them all. 5773 */ 5774 if (sd->flags & SD_OVERLAP) { 5775 free_sched_groups(sd->groups, 1); 5776 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5777 kfree(sd->groups->sgp); 5778 kfree(sd->groups); 5779 } 5780 kfree(sd); 5781 } 5782 5783 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5784 { 5785 call_rcu(&sd->rcu, free_sched_domain); 5786 } 5787 5788 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5789 { 5790 for (; sd; sd = sd->parent) 5791 destroy_sched_domain(sd, cpu); 5792 } 5793 5794 /* 5795 * Keep a special pointer to the highest sched_domain that has 5796 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5797 * allows us to avoid some pointer chasing select_idle_sibling(). 5798 * 5799 * Also keep a unique ID per domain (we use the first cpu number in 5800 * the cpumask of the domain), this allows us to quickly tell if 5801 * two cpus are in the same cache domain, see cpus_share_cache(). 5802 */ 5803 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5804 DEFINE_PER_CPU(int, sd_llc_id); 5805 5806 static void update_top_cache_domain(int cpu) 5807 { 5808 struct sched_domain *sd; 5809 int id = cpu; 5810 5811 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5812 if (sd) 5813 id = cpumask_first(sched_domain_span(sd)); 5814 5815 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5816 per_cpu(sd_llc_id, cpu) = id; 5817 } 5818 5819 /* 5820 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5821 * hold the hotplug lock. 5822 */ 5823 static void 5824 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5825 { 5826 struct rq *rq = cpu_rq(cpu); 5827 struct sched_domain *tmp; 5828 5829 /* Remove the sched domains which do not contribute to scheduling. */ 5830 for (tmp = sd; tmp; ) { 5831 struct sched_domain *parent = tmp->parent; 5832 if (!parent) 5833 break; 5834 5835 if (sd_parent_degenerate(tmp, parent)) { 5836 tmp->parent = parent->parent; 5837 if (parent->parent) 5838 parent->parent->child = tmp; 5839 destroy_sched_domain(parent, cpu); 5840 } else 5841 tmp = tmp->parent; 5842 } 5843 5844 if (sd && sd_degenerate(sd)) { 5845 tmp = sd; 5846 sd = sd->parent; 5847 destroy_sched_domain(tmp, cpu); 5848 if (sd) 5849 sd->child = NULL; 5850 } 5851 5852 sched_domain_debug(sd, cpu); 5853 5854 rq_attach_root(rq, rd); 5855 tmp = rq->sd; 5856 rcu_assign_pointer(rq->sd, sd); 5857 destroy_sched_domains(tmp, cpu); 5858 5859 update_top_cache_domain(cpu); 5860 } 5861 5862 /* cpus with isolated domains */ 5863 static cpumask_var_t cpu_isolated_map; 5864 5865 /* Setup the mask of cpus configured for isolated domains */ 5866 static int __init isolated_cpu_setup(char *str) 5867 { 5868 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5869 cpulist_parse(str, cpu_isolated_map); 5870 return 1; 5871 } 5872 5873 __setup("isolcpus=", isolated_cpu_setup); 5874 5875 #ifdef CONFIG_NUMA 5876 5877 /** 5878 * find_next_best_node - find the next node to include in a sched_domain 5879 * @node: node whose sched_domain we're building 5880 * @used_nodes: nodes already in the sched_domain 5881 * 5882 * Find the next node to include in a given scheduling domain. Simply 5883 * finds the closest node not already in the @used_nodes map. 5884 * 5885 * Should use nodemask_t. 5886 */ 5887 static int find_next_best_node(int node, nodemask_t *used_nodes) 5888 { 5889 int i, n, val, min_val, best_node = -1; 5890 5891 min_val = INT_MAX; 5892 5893 for (i = 0; i < nr_node_ids; i++) { 5894 /* Start at @node */ 5895 n = (node + i) % nr_node_ids; 5896 5897 if (!nr_cpus_node(n)) 5898 continue; 5899 5900 /* Skip already used nodes */ 5901 if (node_isset(n, *used_nodes)) 5902 continue; 5903 5904 /* Simple min distance search */ 5905 val = node_distance(node, n); 5906 5907 if (val < min_val) { 5908 min_val = val; 5909 best_node = n; 5910 } 5911 } 5912 5913 if (best_node != -1) 5914 node_set(best_node, *used_nodes); 5915 return best_node; 5916 } 5917 5918 /** 5919 * sched_domain_node_span - get a cpumask for a node's sched_domain 5920 * @node: node whose cpumask we're constructing 5921 * @span: resulting cpumask 5922 * 5923 * Given a node, construct a good cpumask for its sched_domain to span. It 5924 * should be one that prevents unnecessary balancing, but also spreads tasks 5925 * out optimally. 5926 */ 5927 static void sched_domain_node_span(int node, struct cpumask *span) 5928 { 5929 nodemask_t used_nodes; 5930 int i; 5931 5932 cpumask_clear(span); 5933 nodes_clear(used_nodes); 5934 5935 cpumask_or(span, span, cpumask_of_node(node)); 5936 node_set(node, used_nodes); 5937 5938 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 5939 int next_node = find_next_best_node(node, &used_nodes); 5940 if (next_node < 0) 5941 break; 5942 cpumask_or(span, span, cpumask_of_node(next_node)); 5943 } 5944 } 5945 5946 static const struct cpumask *cpu_node_mask(int cpu) 5947 { 5948 lockdep_assert_held(&sched_domains_mutex); 5949 5950 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask); 5951 5952 return sched_domains_tmpmask; 5953 } 5954 5955 static const struct cpumask *cpu_allnodes_mask(int cpu) 5956 { 5957 return cpu_possible_mask; 5958 } 5959 #endif /* CONFIG_NUMA */ 5960 5961 static const struct cpumask *cpu_cpu_mask(int cpu) 5962 { 5963 return cpumask_of_node(cpu_to_node(cpu)); 5964 } 5965 5966 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 5967 5968 struct sd_data { 5969 struct sched_domain **__percpu sd; 5970 struct sched_group **__percpu sg; 5971 struct sched_group_power **__percpu sgp; 5972 }; 5973 5974 struct s_data { 5975 struct sched_domain ** __percpu sd; 5976 struct root_domain *rd; 5977 }; 5978 5979 enum s_alloc { 5980 sa_rootdomain, 5981 sa_sd, 5982 sa_sd_storage, 5983 sa_none, 5984 }; 5985 5986 struct sched_domain_topology_level; 5987 5988 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5989 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5990 5991 #define SDTL_OVERLAP 0x01 5992 5993 struct sched_domain_topology_level { 5994 sched_domain_init_f init; 5995 sched_domain_mask_f mask; 5996 int flags; 5997 struct sd_data data; 5998 }; 5999 6000 static int 6001 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 6002 { 6003 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 6004 const struct cpumask *span = sched_domain_span(sd); 6005 struct cpumask *covered = sched_domains_tmpmask; 6006 struct sd_data *sdd = sd->private; 6007 struct sched_domain *child; 6008 int i; 6009 6010 cpumask_clear(covered); 6011 6012 for_each_cpu(i, span) { 6013 struct cpumask *sg_span; 6014 6015 if (cpumask_test_cpu(i, covered)) 6016 continue; 6017 6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6019 GFP_KERNEL, cpu_to_node(cpu)); 6020 6021 if (!sg) 6022 goto fail; 6023 6024 sg_span = sched_group_cpus(sg); 6025 6026 child = *per_cpu_ptr(sdd->sd, i); 6027 if (child->child) { 6028 child = child->child; 6029 cpumask_copy(sg_span, sched_domain_span(child)); 6030 } else 6031 cpumask_set_cpu(i, sg_span); 6032 6033 cpumask_or(covered, covered, sg_span); 6034 6035 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span)); 6036 atomic_inc(&sg->sgp->ref); 6037 6038 if (cpumask_test_cpu(cpu, sg_span)) 6039 groups = sg; 6040 6041 if (!first) 6042 first = sg; 6043 if (last) 6044 last->next = sg; 6045 last = sg; 6046 last->next = first; 6047 } 6048 sd->groups = groups; 6049 6050 return 0; 6051 6052 fail: 6053 free_sched_groups(first, 0); 6054 6055 return -ENOMEM; 6056 } 6057 6058 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 6059 { 6060 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 6061 struct sched_domain *child = sd->child; 6062 6063 if (child) 6064 cpu = cpumask_first(sched_domain_span(child)); 6065 6066 if (sg) { 6067 *sg = *per_cpu_ptr(sdd->sg, cpu); 6068 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 6069 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 6070 } 6071 6072 return cpu; 6073 } 6074 6075 /* 6076 * build_sched_groups will build a circular linked list of the groups 6077 * covered by the given span, and will set each group's ->cpumask correctly, 6078 * and ->cpu_power to 0. 6079 * 6080 * Assumes the sched_domain tree is fully constructed 6081 */ 6082 static int 6083 build_sched_groups(struct sched_domain *sd, int cpu) 6084 { 6085 struct sched_group *first = NULL, *last = NULL; 6086 struct sd_data *sdd = sd->private; 6087 const struct cpumask *span = sched_domain_span(sd); 6088 struct cpumask *covered; 6089 int i; 6090 6091 get_group(cpu, sdd, &sd->groups); 6092 atomic_inc(&sd->groups->ref); 6093 6094 if (cpu != cpumask_first(sched_domain_span(sd))) 6095 return 0; 6096 6097 lockdep_assert_held(&sched_domains_mutex); 6098 covered = sched_domains_tmpmask; 6099 6100 cpumask_clear(covered); 6101 6102 for_each_cpu(i, span) { 6103 struct sched_group *sg; 6104 int group = get_group(i, sdd, &sg); 6105 int j; 6106 6107 if (cpumask_test_cpu(i, covered)) 6108 continue; 6109 6110 cpumask_clear(sched_group_cpus(sg)); 6111 sg->sgp->power = 0; 6112 6113 for_each_cpu(j, span) { 6114 if (get_group(j, sdd, NULL) != group) 6115 continue; 6116 6117 cpumask_set_cpu(j, covered); 6118 cpumask_set_cpu(j, sched_group_cpus(sg)); 6119 } 6120 6121 if (!first) 6122 first = sg; 6123 if (last) 6124 last->next = sg; 6125 last = sg; 6126 } 6127 last->next = first; 6128 6129 return 0; 6130 } 6131 6132 /* 6133 * Initialize sched groups cpu_power. 6134 * 6135 * cpu_power indicates the capacity of sched group, which is used while 6136 * distributing the load between different sched groups in a sched domain. 6137 * Typically cpu_power for all the groups in a sched domain will be same unless 6138 * there are asymmetries in the topology. If there are asymmetries, group 6139 * having more cpu_power will pickup more load compared to the group having 6140 * less cpu_power. 6141 */ 6142 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 6143 { 6144 struct sched_group *sg = sd->groups; 6145 6146 WARN_ON(!sd || !sg); 6147 6148 do { 6149 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 6150 sg = sg->next; 6151 } while (sg != sd->groups); 6152 6153 if (cpu != group_first_cpu(sg)) 6154 return; 6155 6156 update_group_power(sd, cpu); 6157 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 6158 } 6159 6160 int __weak arch_sd_sibling_asym_packing(void) 6161 { 6162 return 0*SD_ASYM_PACKING; 6163 } 6164 6165 /* 6166 * Initializers for schedule domains 6167 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6168 */ 6169 6170 #ifdef CONFIG_SCHED_DEBUG 6171 # define SD_INIT_NAME(sd, type) sd->name = #type 6172 #else 6173 # define SD_INIT_NAME(sd, type) do { } while (0) 6174 #endif 6175 6176 #define SD_INIT_FUNC(type) \ 6177 static noinline struct sched_domain * \ 6178 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 6179 { \ 6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 6181 *sd = SD_##type##_INIT; \ 6182 SD_INIT_NAME(sd, type); \ 6183 sd->private = &tl->data; \ 6184 return sd; \ 6185 } 6186 6187 SD_INIT_FUNC(CPU) 6188 #ifdef CONFIG_NUMA 6189 SD_INIT_FUNC(ALLNODES) 6190 SD_INIT_FUNC(NODE) 6191 #endif 6192 #ifdef CONFIG_SCHED_SMT 6193 SD_INIT_FUNC(SIBLING) 6194 #endif 6195 #ifdef CONFIG_SCHED_MC 6196 SD_INIT_FUNC(MC) 6197 #endif 6198 #ifdef CONFIG_SCHED_BOOK 6199 SD_INIT_FUNC(BOOK) 6200 #endif 6201 6202 static int default_relax_domain_level = -1; 6203 int sched_domain_level_max; 6204 6205 static int __init setup_relax_domain_level(char *str) 6206 { 6207 unsigned long val; 6208 6209 val = simple_strtoul(str, NULL, 0); 6210 if (val < sched_domain_level_max) 6211 default_relax_domain_level = val; 6212 6213 return 1; 6214 } 6215 __setup("relax_domain_level=", setup_relax_domain_level); 6216 6217 static void set_domain_attribute(struct sched_domain *sd, 6218 struct sched_domain_attr *attr) 6219 { 6220 int request; 6221 6222 if (!attr || attr->relax_domain_level < 0) { 6223 if (default_relax_domain_level < 0) 6224 return; 6225 else 6226 request = default_relax_domain_level; 6227 } else 6228 request = attr->relax_domain_level; 6229 if (request < sd->level) { 6230 /* turn off idle balance on this domain */ 6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6232 } else { 6233 /* turn on idle balance on this domain */ 6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6235 } 6236 } 6237 6238 static void __sdt_free(const struct cpumask *cpu_map); 6239 static int __sdt_alloc(const struct cpumask *cpu_map); 6240 6241 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6242 const struct cpumask *cpu_map) 6243 { 6244 switch (what) { 6245 case sa_rootdomain: 6246 if (!atomic_read(&d->rd->refcount)) 6247 free_rootdomain(&d->rd->rcu); /* fall through */ 6248 case sa_sd: 6249 free_percpu(d->sd); /* fall through */ 6250 case sa_sd_storage: 6251 __sdt_free(cpu_map); /* fall through */ 6252 case sa_none: 6253 break; 6254 } 6255 } 6256 6257 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6258 const struct cpumask *cpu_map) 6259 { 6260 memset(d, 0, sizeof(*d)); 6261 6262 if (__sdt_alloc(cpu_map)) 6263 return sa_sd_storage; 6264 d->sd = alloc_percpu(struct sched_domain *); 6265 if (!d->sd) 6266 return sa_sd_storage; 6267 d->rd = alloc_rootdomain(); 6268 if (!d->rd) 6269 return sa_sd; 6270 return sa_rootdomain; 6271 } 6272 6273 /* 6274 * NULL the sd_data elements we've used to build the sched_domain and 6275 * sched_group structure so that the subsequent __free_domain_allocs() 6276 * will not free the data we're using. 6277 */ 6278 static void claim_allocations(int cpu, struct sched_domain *sd) 6279 { 6280 struct sd_data *sdd = sd->private; 6281 6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6283 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6284 6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6286 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6287 6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 6289 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 6290 } 6291 6292 #ifdef CONFIG_SCHED_SMT 6293 static const struct cpumask *cpu_smt_mask(int cpu) 6294 { 6295 return topology_thread_cpumask(cpu); 6296 } 6297 #endif 6298 6299 /* 6300 * Topology list, bottom-up. 6301 */ 6302 static struct sched_domain_topology_level default_topology[] = { 6303 #ifdef CONFIG_SCHED_SMT 6304 { sd_init_SIBLING, cpu_smt_mask, }, 6305 #endif 6306 #ifdef CONFIG_SCHED_MC 6307 { sd_init_MC, cpu_coregroup_mask, }, 6308 #endif 6309 #ifdef CONFIG_SCHED_BOOK 6310 { sd_init_BOOK, cpu_book_mask, }, 6311 #endif 6312 { sd_init_CPU, cpu_cpu_mask, }, 6313 #ifdef CONFIG_NUMA 6314 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, }, 6315 { sd_init_ALLNODES, cpu_allnodes_mask, }, 6316 #endif 6317 { NULL, }, 6318 }; 6319 6320 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 6321 6322 static int __sdt_alloc(const struct cpumask *cpu_map) 6323 { 6324 struct sched_domain_topology_level *tl; 6325 int j; 6326 6327 for (tl = sched_domain_topology; tl->init; tl++) { 6328 struct sd_data *sdd = &tl->data; 6329 6330 sdd->sd = alloc_percpu(struct sched_domain *); 6331 if (!sdd->sd) 6332 return -ENOMEM; 6333 6334 sdd->sg = alloc_percpu(struct sched_group *); 6335 if (!sdd->sg) 6336 return -ENOMEM; 6337 6338 sdd->sgp = alloc_percpu(struct sched_group_power *); 6339 if (!sdd->sgp) 6340 return -ENOMEM; 6341 6342 for_each_cpu(j, cpu_map) { 6343 struct sched_domain *sd; 6344 struct sched_group *sg; 6345 struct sched_group_power *sgp; 6346 6347 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6348 GFP_KERNEL, cpu_to_node(j)); 6349 if (!sd) 6350 return -ENOMEM; 6351 6352 *per_cpu_ptr(sdd->sd, j) = sd; 6353 6354 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6355 GFP_KERNEL, cpu_to_node(j)); 6356 if (!sg) 6357 return -ENOMEM; 6358 6359 *per_cpu_ptr(sdd->sg, j) = sg; 6360 6361 sgp = kzalloc_node(sizeof(struct sched_group_power), 6362 GFP_KERNEL, cpu_to_node(j)); 6363 if (!sgp) 6364 return -ENOMEM; 6365 6366 *per_cpu_ptr(sdd->sgp, j) = sgp; 6367 } 6368 } 6369 6370 return 0; 6371 } 6372 6373 static void __sdt_free(const struct cpumask *cpu_map) 6374 { 6375 struct sched_domain_topology_level *tl; 6376 int j; 6377 6378 for (tl = sched_domain_topology; tl->init; tl++) { 6379 struct sd_data *sdd = &tl->data; 6380 6381 for_each_cpu(j, cpu_map) { 6382 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j); 6383 if (sd && (sd->flags & SD_OVERLAP)) 6384 free_sched_groups(sd->groups, 0); 6385 kfree(*per_cpu_ptr(sdd->sd, j)); 6386 kfree(*per_cpu_ptr(sdd->sg, j)); 6387 kfree(*per_cpu_ptr(sdd->sgp, j)); 6388 } 6389 free_percpu(sdd->sd); 6390 free_percpu(sdd->sg); 6391 free_percpu(sdd->sgp); 6392 } 6393 } 6394 6395 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6396 struct s_data *d, const struct cpumask *cpu_map, 6397 struct sched_domain_attr *attr, struct sched_domain *child, 6398 int cpu) 6399 { 6400 struct sched_domain *sd = tl->init(tl, cpu); 6401 if (!sd) 6402 return child; 6403 6404 set_domain_attribute(sd, attr); 6405 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6406 if (child) { 6407 sd->level = child->level + 1; 6408 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6409 child->parent = sd; 6410 } 6411 sd->child = child; 6412 6413 return sd; 6414 } 6415 6416 /* 6417 * Build sched domains for a given set of cpus and attach the sched domains 6418 * to the individual cpus 6419 */ 6420 static int build_sched_domains(const struct cpumask *cpu_map, 6421 struct sched_domain_attr *attr) 6422 { 6423 enum s_alloc alloc_state = sa_none; 6424 struct sched_domain *sd; 6425 struct s_data d; 6426 int i, ret = -ENOMEM; 6427 6428 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6429 if (alloc_state != sa_rootdomain) 6430 goto error; 6431 6432 /* Set up domains for cpus specified by the cpu_map. */ 6433 for_each_cpu(i, cpu_map) { 6434 struct sched_domain_topology_level *tl; 6435 6436 sd = NULL; 6437 for (tl = sched_domain_topology; tl->init; tl++) { 6438 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i); 6439 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6440 sd->flags |= SD_OVERLAP; 6441 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6442 break; 6443 } 6444 6445 while (sd->child) 6446 sd = sd->child; 6447 6448 *per_cpu_ptr(d.sd, i) = sd; 6449 } 6450 6451 /* Build the groups for the domains */ 6452 for_each_cpu(i, cpu_map) { 6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6454 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6455 if (sd->flags & SD_OVERLAP) { 6456 if (build_overlap_sched_groups(sd, i)) 6457 goto error; 6458 } else { 6459 if (build_sched_groups(sd, i)) 6460 goto error; 6461 } 6462 } 6463 } 6464 6465 /* Calculate CPU power for physical packages and nodes */ 6466 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6467 if (!cpumask_test_cpu(i, cpu_map)) 6468 continue; 6469 6470 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6471 claim_allocations(i, sd); 6472 init_sched_groups_power(i, sd); 6473 } 6474 } 6475 6476 /* Attach the domains */ 6477 rcu_read_lock(); 6478 for_each_cpu(i, cpu_map) { 6479 sd = *per_cpu_ptr(d.sd, i); 6480 cpu_attach_domain(sd, d.rd, i); 6481 } 6482 rcu_read_unlock(); 6483 6484 ret = 0; 6485 error: 6486 __free_domain_allocs(&d, alloc_state, cpu_map); 6487 return ret; 6488 } 6489 6490 static cpumask_var_t *doms_cur; /* current sched domains */ 6491 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6492 static struct sched_domain_attr *dattr_cur; 6493 /* attribues of custom domains in 'doms_cur' */ 6494 6495 /* 6496 * Special case: If a kmalloc of a doms_cur partition (array of 6497 * cpumask) fails, then fallback to a single sched domain, 6498 * as determined by the single cpumask fallback_doms. 6499 */ 6500 static cpumask_var_t fallback_doms; 6501 6502 /* 6503 * arch_update_cpu_topology lets virtualized architectures update the 6504 * cpu core maps. It is supposed to return 1 if the topology changed 6505 * or 0 if it stayed the same. 6506 */ 6507 int __attribute__((weak)) arch_update_cpu_topology(void) 6508 { 6509 return 0; 6510 } 6511 6512 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6513 { 6514 int i; 6515 cpumask_var_t *doms; 6516 6517 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6518 if (!doms) 6519 return NULL; 6520 for (i = 0; i < ndoms; i++) { 6521 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6522 free_sched_domains(doms, i); 6523 return NULL; 6524 } 6525 } 6526 return doms; 6527 } 6528 6529 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6530 { 6531 unsigned int i; 6532 for (i = 0; i < ndoms; i++) 6533 free_cpumask_var(doms[i]); 6534 kfree(doms); 6535 } 6536 6537 /* 6538 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6539 * For now this just excludes isolated cpus, but could be used to 6540 * exclude other special cases in the future. 6541 */ 6542 static int init_sched_domains(const struct cpumask *cpu_map) 6543 { 6544 int err; 6545 6546 arch_update_cpu_topology(); 6547 ndoms_cur = 1; 6548 doms_cur = alloc_sched_domains(ndoms_cur); 6549 if (!doms_cur) 6550 doms_cur = &fallback_doms; 6551 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6552 dattr_cur = NULL; 6553 err = build_sched_domains(doms_cur[0], NULL); 6554 register_sched_domain_sysctl(); 6555 6556 return err; 6557 } 6558 6559 /* 6560 * Detach sched domains from a group of cpus specified in cpu_map 6561 * These cpus will now be attached to the NULL domain 6562 */ 6563 static void detach_destroy_domains(const struct cpumask *cpu_map) 6564 { 6565 int i; 6566 6567 rcu_read_lock(); 6568 for_each_cpu(i, cpu_map) 6569 cpu_attach_domain(NULL, &def_root_domain, i); 6570 rcu_read_unlock(); 6571 } 6572 6573 /* handle null as "default" */ 6574 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6575 struct sched_domain_attr *new, int idx_new) 6576 { 6577 struct sched_domain_attr tmp; 6578 6579 /* fast path */ 6580 if (!new && !cur) 6581 return 1; 6582 6583 tmp = SD_ATTR_INIT; 6584 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6585 new ? (new + idx_new) : &tmp, 6586 sizeof(struct sched_domain_attr)); 6587 } 6588 6589 /* 6590 * Partition sched domains as specified by the 'ndoms_new' 6591 * cpumasks in the array doms_new[] of cpumasks. This compares 6592 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6593 * It destroys each deleted domain and builds each new domain. 6594 * 6595 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6596 * The masks don't intersect (don't overlap.) We should setup one 6597 * sched domain for each mask. CPUs not in any of the cpumasks will 6598 * not be load balanced. If the same cpumask appears both in the 6599 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6600 * it as it is. 6601 * 6602 * The passed in 'doms_new' should be allocated using 6603 * alloc_sched_domains. This routine takes ownership of it and will 6604 * free_sched_domains it when done with it. If the caller failed the 6605 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6606 * and partition_sched_domains() will fallback to the single partition 6607 * 'fallback_doms', it also forces the domains to be rebuilt. 6608 * 6609 * If doms_new == NULL it will be replaced with cpu_online_mask. 6610 * ndoms_new == 0 is a special case for destroying existing domains, 6611 * and it will not create the default domain. 6612 * 6613 * Call with hotplug lock held 6614 */ 6615 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6616 struct sched_domain_attr *dattr_new) 6617 { 6618 int i, j, n; 6619 int new_topology; 6620 6621 mutex_lock(&sched_domains_mutex); 6622 6623 /* always unregister in case we don't destroy any domains */ 6624 unregister_sched_domain_sysctl(); 6625 6626 /* Let architecture update cpu core mappings. */ 6627 new_topology = arch_update_cpu_topology(); 6628 6629 n = doms_new ? ndoms_new : 0; 6630 6631 /* Destroy deleted domains */ 6632 for (i = 0; i < ndoms_cur; i++) { 6633 for (j = 0; j < n && !new_topology; j++) { 6634 if (cpumask_equal(doms_cur[i], doms_new[j]) 6635 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6636 goto match1; 6637 } 6638 /* no match - a current sched domain not in new doms_new[] */ 6639 detach_destroy_domains(doms_cur[i]); 6640 match1: 6641 ; 6642 } 6643 6644 if (doms_new == NULL) { 6645 ndoms_cur = 0; 6646 doms_new = &fallback_doms; 6647 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6648 WARN_ON_ONCE(dattr_new); 6649 } 6650 6651 /* Build new domains */ 6652 for (i = 0; i < ndoms_new; i++) { 6653 for (j = 0; j < ndoms_cur && !new_topology; j++) { 6654 if (cpumask_equal(doms_new[i], doms_cur[j]) 6655 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6656 goto match2; 6657 } 6658 /* no match - add a new doms_new */ 6659 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6660 match2: 6661 ; 6662 } 6663 6664 /* Remember the new sched domains */ 6665 if (doms_cur != &fallback_doms) 6666 free_sched_domains(doms_cur, ndoms_cur); 6667 kfree(dattr_cur); /* kfree(NULL) is safe */ 6668 doms_cur = doms_new; 6669 dattr_cur = dattr_new; 6670 ndoms_cur = ndoms_new; 6671 6672 register_sched_domain_sysctl(); 6673 6674 mutex_unlock(&sched_domains_mutex); 6675 } 6676 6677 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 6678 static void reinit_sched_domains(void) 6679 { 6680 get_online_cpus(); 6681 6682 /* Destroy domains first to force the rebuild */ 6683 partition_sched_domains(0, NULL, NULL); 6684 6685 rebuild_sched_domains(); 6686 put_online_cpus(); 6687 } 6688 6689 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 6690 { 6691 unsigned int level = 0; 6692 6693 if (sscanf(buf, "%u", &level) != 1) 6694 return -EINVAL; 6695 6696 /* 6697 * level is always be positive so don't check for 6698 * level < POWERSAVINGS_BALANCE_NONE which is 0 6699 * What happens on 0 or 1 byte write, 6700 * need to check for count as well? 6701 */ 6702 6703 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 6704 return -EINVAL; 6705 6706 if (smt) 6707 sched_smt_power_savings = level; 6708 else 6709 sched_mc_power_savings = level; 6710 6711 reinit_sched_domains(); 6712 6713 return count; 6714 } 6715 6716 #ifdef CONFIG_SCHED_MC 6717 static ssize_t sched_mc_power_savings_show(struct device *dev, 6718 struct device_attribute *attr, 6719 char *buf) 6720 { 6721 return sprintf(buf, "%u\n", sched_mc_power_savings); 6722 } 6723 static ssize_t sched_mc_power_savings_store(struct device *dev, 6724 struct device_attribute *attr, 6725 const char *buf, size_t count) 6726 { 6727 return sched_power_savings_store(buf, count, 0); 6728 } 6729 static DEVICE_ATTR(sched_mc_power_savings, 0644, 6730 sched_mc_power_savings_show, 6731 sched_mc_power_savings_store); 6732 #endif 6733 6734 #ifdef CONFIG_SCHED_SMT 6735 static ssize_t sched_smt_power_savings_show(struct device *dev, 6736 struct device_attribute *attr, 6737 char *buf) 6738 { 6739 return sprintf(buf, "%u\n", sched_smt_power_savings); 6740 } 6741 static ssize_t sched_smt_power_savings_store(struct device *dev, 6742 struct device_attribute *attr, 6743 const char *buf, size_t count) 6744 { 6745 return sched_power_savings_store(buf, count, 1); 6746 } 6747 static DEVICE_ATTR(sched_smt_power_savings, 0644, 6748 sched_smt_power_savings_show, 6749 sched_smt_power_savings_store); 6750 #endif 6751 6752 int __init sched_create_sysfs_power_savings_entries(struct device *dev) 6753 { 6754 int err = 0; 6755 6756 #ifdef CONFIG_SCHED_SMT 6757 if (smt_capable()) 6758 err = device_create_file(dev, &dev_attr_sched_smt_power_savings); 6759 #endif 6760 #ifdef CONFIG_SCHED_MC 6761 if (!err && mc_capable()) 6762 err = device_create_file(dev, &dev_attr_sched_mc_power_savings); 6763 #endif 6764 return err; 6765 } 6766 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 6767 6768 /* 6769 * Update cpusets according to cpu_active mask. If cpusets are 6770 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6771 * around partition_sched_domains(). 6772 */ 6773 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6774 void *hcpu) 6775 { 6776 switch (action & ~CPU_TASKS_FROZEN) { 6777 case CPU_ONLINE: 6778 case CPU_DOWN_FAILED: 6779 cpuset_update_active_cpus(); 6780 return NOTIFY_OK; 6781 default: 6782 return NOTIFY_DONE; 6783 } 6784 } 6785 6786 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6787 void *hcpu) 6788 { 6789 switch (action & ~CPU_TASKS_FROZEN) { 6790 case CPU_DOWN_PREPARE: 6791 cpuset_update_active_cpus(); 6792 return NOTIFY_OK; 6793 default: 6794 return NOTIFY_DONE; 6795 } 6796 } 6797 6798 void __init sched_init_smp(void) 6799 { 6800 cpumask_var_t non_isolated_cpus; 6801 6802 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6803 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6804 6805 get_online_cpus(); 6806 mutex_lock(&sched_domains_mutex); 6807 init_sched_domains(cpu_active_mask); 6808 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6809 if (cpumask_empty(non_isolated_cpus)) 6810 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6811 mutex_unlock(&sched_domains_mutex); 6812 put_online_cpus(); 6813 6814 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6815 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6816 6817 /* RT runtime code needs to handle some hotplug events */ 6818 hotcpu_notifier(update_runtime, 0); 6819 6820 init_hrtick(); 6821 6822 /* Move init over to a non-isolated CPU */ 6823 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6824 BUG(); 6825 sched_init_granularity(); 6826 free_cpumask_var(non_isolated_cpus); 6827 6828 init_sched_rt_class(); 6829 } 6830 #else 6831 void __init sched_init_smp(void) 6832 { 6833 sched_init_granularity(); 6834 } 6835 #endif /* CONFIG_SMP */ 6836 6837 const_debug unsigned int sysctl_timer_migration = 1; 6838 6839 int in_sched_functions(unsigned long addr) 6840 { 6841 return in_lock_functions(addr) || 6842 (addr >= (unsigned long)__sched_text_start 6843 && addr < (unsigned long)__sched_text_end); 6844 } 6845 6846 #ifdef CONFIG_CGROUP_SCHED 6847 struct task_group root_task_group; 6848 #endif 6849 6850 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 6851 6852 void __init sched_init(void) 6853 { 6854 int i, j; 6855 unsigned long alloc_size = 0, ptr; 6856 6857 #ifdef CONFIG_FAIR_GROUP_SCHED 6858 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6859 #endif 6860 #ifdef CONFIG_RT_GROUP_SCHED 6861 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6862 #endif 6863 #ifdef CONFIG_CPUMASK_OFFSTACK 6864 alloc_size += num_possible_cpus() * cpumask_size(); 6865 #endif 6866 if (alloc_size) { 6867 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6868 6869 #ifdef CONFIG_FAIR_GROUP_SCHED 6870 root_task_group.se = (struct sched_entity **)ptr; 6871 ptr += nr_cpu_ids * sizeof(void **); 6872 6873 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6874 ptr += nr_cpu_ids * sizeof(void **); 6875 6876 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6877 #ifdef CONFIG_RT_GROUP_SCHED 6878 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6879 ptr += nr_cpu_ids * sizeof(void **); 6880 6881 root_task_group.rt_rq = (struct rt_rq **)ptr; 6882 ptr += nr_cpu_ids * sizeof(void **); 6883 6884 #endif /* CONFIG_RT_GROUP_SCHED */ 6885 #ifdef CONFIG_CPUMASK_OFFSTACK 6886 for_each_possible_cpu(i) { 6887 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 6888 ptr += cpumask_size(); 6889 } 6890 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6891 } 6892 6893 #ifdef CONFIG_SMP 6894 init_defrootdomain(); 6895 #endif 6896 6897 init_rt_bandwidth(&def_rt_bandwidth, 6898 global_rt_period(), global_rt_runtime()); 6899 6900 #ifdef CONFIG_RT_GROUP_SCHED 6901 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6902 global_rt_period(), global_rt_runtime()); 6903 #endif /* CONFIG_RT_GROUP_SCHED */ 6904 6905 #ifdef CONFIG_CGROUP_SCHED 6906 list_add(&root_task_group.list, &task_groups); 6907 INIT_LIST_HEAD(&root_task_group.children); 6908 INIT_LIST_HEAD(&root_task_group.siblings); 6909 autogroup_init(&init_task); 6910 6911 #endif /* CONFIG_CGROUP_SCHED */ 6912 6913 #ifdef CONFIG_CGROUP_CPUACCT 6914 root_cpuacct.cpustat = &kernel_cpustat; 6915 root_cpuacct.cpuusage = alloc_percpu(u64); 6916 /* Too early, not expected to fail */ 6917 BUG_ON(!root_cpuacct.cpuusage); 6918 #endif 6919 for_each_possible_cpu(i) { 6920 struct rq *rq; 6921 6922 rq = cpu_rq(i); 6923 raw_spin_lock_init(&rq->lock); 6924 rq->nr_running = 0; 6925 rq->calc_load_active = 0; 6926 rq->calc_load_update = jiffies + LOAD_FREQ; 6927 init_cfs_rq(&rq->cfs); 6928 init_rt_rq(&rq->rt, rq); 6929 #ifdef CONFIG_FAIR_GROUP_SCHED 6930 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6931 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6932 /* 6933 * How much cpu bandwidth does root_task_group get? 6934 * 6935 * In case of task-groups formed thr' the cgroup filesystem, it 6936 * gets 100% of the cpu resources in the system. This overall 6937 * system cpu resource is divided among the tasks of 6938 * root_task_group and its child task-groups in a fair manner, 6939 * based on each entity's (task or task-group's) weight 6940 * (se->load.weight). 6941 * 6942 * In other words, if root_task_group has 10 tasks of weight 6943 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6944 * then A0's share of the cpu resource is: 6945 * 6946 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6947 * 6948 * We achieve this by letting root_task_group's tasks sit 6949 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6950 */ 6951 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6952 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6953 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6954 6955 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6956 #ifdef CONFIG_RT_GROUP_SCHED 6957 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 6958 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6959 #endif 6960 6961 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6962 rq->cpu_load[j] = 0; 6963 6964 rq->last_load_update_tick = jiffies; 6965 6966 #ifdef CONFIG_SMP 6967 rq->sd = NULL; 6968 rq->rd = NULL; 6969 rq->cpu_power = SCHED_POWER_SCALE; 6970 rq->post_schedule = 0; 6971 rq->active_balance = 0; 6972 rq->next_balance = jiffies; 6973 rq->push_cpu = 0; 6974 rq->cpu = i; 6975 rq->online = 0; 6976 rq->idle_stamp = 0; 6977 rq->avg_idle = 2*sysctl_sched_migration_cost; 6978 6979 INIT_LIST_HEAD(&rq->cfs_tasks); 6980 6981 rq_attach_root(rq, &def_root_domain); 6982 #ifdef CONFIG_NO_HZ 6983 rq->nohz_flags = 0; 6984 #endif 6985 #endif 6986 init_rq_hrtick(rq); 6987 atomic_set(&rq->nr_iowait, 0); 6988 } 6989 6990 set_load_weight(&init_task); 6991 6992 #ifdef CONFIG_PREEMPT_NOTIFIERS 6993 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6994 #endif 6995 6996 #ifdef CONFIG_RT_MUTEXES 6997 plist_head_init(&init_task.pi_waiters); 6998 #endif 6999 7000 /* 7001 * The boot idle thread does lazy MMU switching as well: 7002 */ 7003 atomic_inc(&init_mm.mm_count); 7004 enter_lazy_tlb(&init_mm, current); 7005 7006 /* 7007 * Make us the idle thread. Technically, schedule() should not be 7008 * called from this thread, however somewhere below it might be, 7009 * but because we are the idle thread, we just pick up running again 7010 * when this runqueue becomes "idle". 7011 */ 7012 init_idle(current, smp_processor_id()); 7013 7014 calc_load_update = jiffies + LOAD_FREQ; 7015 7016 /* 7017 * During early bootup we pretend to be a normal task: 7018 */ 7019 current->sched_class = &fair_sched_class; 7020 7021 #ifdef CONFIG_SMP 7022 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7023 /* May be allocated at isolcpus cmdline parse time */ 7024 if (cpu_isolated_map == NULL) 7025 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7026 #endif 7027 init_sched_fair_class(); 7028 7029 scheduler_running = 1; 7030 } 7031 7032 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7033 static inline int preempt_count_equals(int preempt_offset) 7034 { 7035 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7036 7037 return (nested == preempt_offset); 7038 } 7039 7040 void __might_sleep(const char *file, int line, int preempt_offset) 7041 { 7042 static unsigned long prev_jiffy; /* ratelimiting */ 7043 7044 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7045 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || 7046 system_state != SYSTEM_RUNNING || oops_in_progress) 7047 return; 7048 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7049 return; 7050 prev_jiffy = jiffies; 7051 7052 printk(KERN_ERR 7053 "BUG: sleeping function called from invalid context at %s:%d\n", 7054 file, line); 7055 printk(KERN_ERR 7056 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7057 in_atomic(), irqs_disabled(), 7058 current->pid, current->comm); 7059 7060 debug_show_held_locks(current); 7061 if (irqs_disabled()) 7062 print_irqtrace_events(current); 7063 dump_stack(); 7064 } 7065 EXPORT_SYMBOL(__might_sleep); 7066 #endif 7067 7068 #ifdef CONFIG_MAGIC_SYSRQ 7069 static void normalize_task(struct rq *rq, struct task_struct *p) 7070 { 7071 const struct sched_class *prev_class = p->sched_class; 7072 int old_prio = p->prio; 7073 int on_rq; 7074 7075 on_rq = p->on_rq; 7076 if (on_rq) 7077 dequeue_task(rq, p, 0); 7078 __setscheduler(rq, p, SCHED_NORMAL, 0); 7079 if (on_rq) { 7080 enqueue_task(rq, p, 0); 7081 resched_task(rq->curr); 7082 } 7083 7084 check_class_changed(rq, p, prev_class, old_prio); 7085 } 7086 7087 void normalize_rt_tasks(void) 7088 { 7089 struct task_struct *g, *p; 7090 unsigned long flags; 7091 struct rq *rq; 7092 7093 read_lock_irqsave(&tasklist_lock, flags); 7094 do_each_thread(g, p) { 7095 /* 7096 * Only normalize user tasks: 7097 */ 7098 if (!p->mm) 7099 continue; 7100 7101 p->se.exec_start = 0; 7102 #ifdef CONFIG_SCHEDSTATS 7103 p->se.statistics.wait_start = 0; 7104 p->se.statistics.sleep_start = 0; 7105 p->se.statistics.block_start = 0; 7106 #endif 7107 7108 if (!rt_task(p)) { 7109 /* 7110 * Renice negative nice level userspace 7111 * tasks back to 0: 7112 */ 7113 if (TASK_NICE(p) < 0 && p->mm) 7114 set_user_nice(p, 0); 7115 continue; 7116 } 7117 7118 raw_spin_lock(&p->pi_lock); 7119 rq = __task_rq_lock(p); 7120 7121 normalize_task(rq, p); 7122 7123 __task_rq_unlock(rq); 7124 raw_spin_unlock(&p->pi_lock); 7125 } while_each_thread(g, p); 7126 7127 read_unlock_irqrestore(&tasklist_lock, flags); 7128 } 7129 7130 #endif /* CONFIG_MAGIC_SYSRQ */ 7131 7132 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7133 /* 7134 * These functions are only useful for the IA64 MCA handling, or kdb. 7135 * 7136 * They can only be called when the whole system has been 7137 * stopped - every CPU needs to be quiescent, and no scheduling 7138 * activity can take place. Using them for anything else would 7139 * be a serious bug, and as a result, they aren't even visible 7140 * under any other configuration. 7141 */ 7142 7143 /** 7144 * curr_task - return the current task for a given cpu. 7145 * @cpu: the processor in question. 7146 * 7147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7148 */ 7149 struct task_struct *curr_task(int cpu) 7150 { 7151 return cpu_curr(cpu); 7152 } 7153 7154 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7155 7156 #ifdef CONFIG_IA64 7157 /** 7158 * set_curr_task - set the current task for a given cpu. 7159 * @cpu: the processor in question. 7160 * @p: the task pointer to set. 7161 * 7162 * Description: This function must only be used when non-maskable interrupts 7163 * are serviced on a separate stack. It allows the architecture to switch the 7164 * notion of the current task on a cpu in a non-blocking manner. This function 7165 * must be called with all CPU's synchronized, and interrupts disabled, the 7166 * and caller must save the original value of the current task (see 7167 * curr_task() above) and restore that value before reenabling interrupts and 7168 * re-starting the system. 7169 * 7170 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7171 */ 7172 void set_curr_task(int cpu, struct task_struct *p) 7173 { 7174 cpu_curr(cpu) = p; 7175 } 7176 7177 #endif 7178 7179 #ifdef CONFIG_CGROUP_SCHED 7180 /* task_group_lock serializes the addition/removal of task groups */ 7181 static DEFINE_SPINLOCK(task_group_lock); 7182 7183 static void free_sched_group(struct task_group *tg) 7184 { 7185 free_fair_sched_group(tg); 7186 free_rt_sched_group(tg); 7187 autogroup_free(tg); 7188 kfree(tg); 7189 } 7190 7191 /* allocate runqueue etc for a new task group */ 7192 struct task_group *sched_create_group(struct task_group *parent) 7193 { 7194 struct task_group *tg; 7195 unsigned long flags; 7196 7197 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7198 if (!tg) 7199 return ERR_PTR(-ENOMEM); 7200 7201 if (!alloc_fair_sched_group(tg, parent)) 7202 goto err; 7203 7204 if (!alloc_rt_sched_group(tg, parent)) 7205 goto err; 7206 7207 spin_lock_irqsave(&task_group_lock, flags); 7208 list_add_rcu(&tg->list, &task_groups); 7209 7210 WARN_ON(!parent); /* root should already exist */ 7211 7212 tg->parent = parent; 7213 INIT_LIST_HEAD(&tg->children); 7214 list_add_rcu(&tg->siblings, &parent->children); 7215 spin_unlock_irqrestore(&task_group_lock, flags); 7216 7217 return tg; 7218 7219 err: 7220 free_sched_group(tg); 7221 return ERR_PTR(-ENOMEM); 7222 } 7223 7224 /* rcu callback to free various structures associated with a task group */ 7225 static void free_sched_group_rcu(struct rcu_head *rhp) 7226 { 7227 /* now it should be safe to free those cfs_rqs */ 7228 free_sched_group(container_of(rhp, struct task_group, rcu)); 7229 } 7230 7231 /* Destroy runqueue etc associated with a task group */ 7232 void sched_destroy_group(struct task_group *tg) 7233 { 7234 unsigned long flags; 7235 int i; 7236 7237 /* end participation in shares distribution */ 7238 for_each_possible_cpu(i) 7239 unregister_fair_sched_group(tg, i); 7240 7241 spin_lock_irqsave(&task_group_lock, flags); 7242 list_del_rcu(&tg->list); 7243 list_del_rcu(&tg->siblings); 7244 spin_unlock_irqrestore(&task_group_lock, flags); 7245 7246 /* wait for possible concurrent references to cfs_rqs complete */ 7247 call_rcu(&tg->rcu, free_sched_group_rcu); 7248 } 7249 7250 /* change task's runqueue when it moves between groups. 7251 * The caller of this function should have put the task in its new group 7252 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7253 * reflect its new group. 7254 */ 7255 void sched_move_task(struct task_struct *tsk) 7256 { 7257 int on_rq, running; 7258 unsigned long flags; 7259 struct rq *rq; 7260 7261 rq = task_rq_lock(tsk, &flags); 7262 7263 running = task_current(rq, tsk); 7264 on_rq = tsk->on_rq; 7265 7266 if (on_rq) 7267 dequeue_task(rq, tsk, 0); 7268 if (unlikely(running)) 7269 tsk->sched_class->put_prev_task(rq, tsk); 7270 7271 #ifdef CONFIG_FAIR_GROUP_SCHED 7272 if (tsk->sched_class->task_move_group) 7273 tsk->sched_class->task_move_group(tsk, on_rq); 7274 else 7275 #endif 7276 set_task_rq(tsk, task_cpu(tsk)); 7277 7278 if (unlikely(running)) 7279 tsk->sched_class->set_curr_task(rq); 7280 if (on_rq) 7281 enqueue_task(rq, tsk, 0); 7282 7283 task_rq_unlock(rq, tsk, &flags); 7284 } 7285 #endif /* CONFIG_CGROUP_SCHED */ 7286 7287 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) 7288 static unsigned long to_ratio(u64 period, u64 runtime) 7289 { 7290 if (runtime == RUNTIME_INF) 7291 return 1ULL << 20; 7292 7293 return div64_u64(runtime << 20, period); 7294 } 7295 #endif 7296 7297 #ifdef CONFIG_RT_GROUP_SCHED 7298 /* 7299 * Ensure that the real time constraints are schedulable. 7300 */ 7301 static DEFINE_MUTEX(rt_constraints_mutex); 7302 7303 /* Must be called with tasklist_lock held */ 7304 static inline int tg_has_rt_tasks(struct task_group *tg) 7305 { 7306 struct task_struct *g, *p; 7307 7308 do_each_thread(g, p) { 7309 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7310 return 1; 7311 } while_each_thread(g, p); 7312 7313 return 0; 7314 } 7315 7316 struct rt_schedulable_data { 7317 struct task_group *tg; 7318 u64 rt_period; 7319 u64 rt_runtime; 7320 }; 7321 7322 static int tg_rt_schedulable(struct task_group *tg, void *data) 7323 { 7324 struct rt_schedulable_data *d = data; 7325 struct task_group *child; 7326 unsigned long total, sum = 0; 7327 u64 period, runtime; 7328 7329 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7330 runtime = tg->rt_bandwidth.rt_runtime; 7331 7332 if (tg == d->tg) { 7333 period = d->rt_period; 7334 runtime = d->rt_runtime; 7335 } 7336 7337 /* 7338 * Cannot have more runtime than the period. 7339 */ 7340 if (runtime > period && runtime != RUNTIME_INF) 7341 return -EINVAL; 7342 7343 /* 7344 * Ensure we don't starve existing RT tasks. 7345 */ 7346 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7347 return -EBUSY; 7348 7349 total = to_ratio(period, runtime); 7350 7351 /* 7352 * Nobody can have more than the global setting allows. 7353 */ 7354 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7355 return -EINVAL; 7356 7357 /* 7358 * The sum of our children's runtime should not exceed our own. 7359 */ 7360 list_for_each_entry_rcu(child, &tg->children, siblings) { 7361 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7362 runtime = child->rt_bandwidth.rt_runtime; 7363 7364 if (child == d->tg) { 7365 period = d->rt_period; 7366 runtime = d->rt_runtime; 7367 } 7368 7369 sum += to_ratio(period, runtime); 7370 } 7371 7372 if (sum > total) 7373 return -EINVAL; 7374 7375 return 0; 7376 } 7377 7378 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7379 { 7380 int ret; 7381 7382 struct rt_schedulable_data data = { 7383 .tg = tg, 7384 .rt_period = period, 7385 .rt_runtime = runtime, 7386 }; 7387 7388 rcu_read_lock(); 7389 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7390 rcu_read_unlock(); 7391 7392 return ret; 7393 } 7394 7395 static int tg_set_rt_bandwidth(struct task_group *tg, 7396 u64 rt_period, u64 rt_runtime) 7397 { 7398 int i, err = 0; 7399 7400 mutex_lock(&rt_constraints_mutex); 7401 read_lock(&tasklist_lock); 7402 err = __rt_schedulable(tg, rt_period, rt_runtime); 7403 if (err) 7404 goto unlock; 7405 7406 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7407 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7408 tg->rt_bandwidth.rt_runtime = rt_runtime; 7409 7410 for_each_possible_cpu(i) { 7411 struct rt_rq *rt_rq = tg->rt_rq[i]; 7412 7413 raw_spin_lock(&rt_rq->rt_runtime_lock); 7414 rt_rq->rt_runtime = rt_runtime; 7415 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7416 } 7417 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7418 unlock: 7419 read_unlock(&tasklist_lock); 7420 mutex_unlock(&rt_constraints_mutex); 7421 7422 return err; 7423 } 7424 7425 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7426 { 7427 u64 rt_runtime, rt_period; 7428 7429 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7430 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7431 if (rt_runtime_us < 0) 7432 rt_runtime = RUNTIME_INF; 7433 7434 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7435 } 7436 7437 long sched_group_rt_runtime(struct task_group *tg) 7438 { 7439 u64 rt_runtime_us; 7440 7441 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7442 return -1; 7443 7444 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7445 do_div(rt_runtime_us, NSEC_PER_USEC); 7446 return rt_runtime_us; 7447 } 7448 7449 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7450 { 7451 u64 rt_runtime, rt_period; 7452 7453 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7454 rt_runtime = tg->rt_bandwidth.rt_runtime; 7455 7456 if (rt_period == 0) 7457 return -EINVAL; 7458 7459 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7460 } 7461 7462 long sched_group_rt_period(struct task_group *tg) 7463 { 7464 u64 rt_period_us; 7465 7466 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7467 do_div(rt_period_us, NSEC_PER_USEC); 7468 return rt_period_us; 7469 } 7470 7471 static int sched_rt_global_constraints(void) 7472 { 7473 u64 runtime, period; 7474 int ret = 0; 7475 7476 if (sysctl_sched_rt_period <= 0) 7477 return -EINVAL; 7478 7479 runtime = global_rt_runtime(); 7480 period = global_rt_period(); 7481 7482 /* 7483 * Sanity check on the sysctl variables. 7484 */ 7485 if (runtime > period && runtime != RUNTIME_INF) 7486 return -EINVAL; 7487 7488 mutex_lock(&rt_constraints_mutex); 7489 read_lock(&tasklist_lock); 7490 ret = __rt_schedulable(NULL, 0, 0); 7491 read_unlock(&tasklist_lock); 7492 mutex_unlock(&rt_constraints_mutex); 7493 7494 return ret; 7495 } 7496 7497 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7498 { 7499 /* Don't accept realtime tasks when there is no way for them to run */ 7500 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7501 return 0; 7502 7503 return 1; 7504 } 7505 7506 #else /* !CONFIG_RT_GROUP_SCHED */ 7507 static int sched_rt_global_constraints(void) 7508 { 7509 unsigned long flags; 7510 int i; 7511 7512 if (sysctl_sched_rt_period <= 0) 7513 return -EINVAL; 7514 7515 /* 7516 * There's always some RT tasks in the root group 7517 * -- migration, kstopmachine etc.. 7518 */ 7519 if (sysctl_sched_rt_runtime == 0) 7520 return -EBUSY; 7521 7522 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7523 for_each_possible_cpu(i) { 7524 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7525 7526 raw_spin_lock(&rt_rq->rt_runtime_lock); 7527 rt_rq->rt_runtime = global_rt_runtime(); 7528 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7529 } 7530 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7531 7532 return 0; 7533 } 7534 #endif /* CONFIG_RT_GROUP_SCHED */ 7535 7536 int sched_rt_handler(struct ctl_table *table, int write, 7537 void __user *buffer, size_t *lenp, 7538 loff_t *ppos) 7539 { 7540 int ret; 7541 int old_period, old_runtime; 7542 static DEFINE_MUTEX(mutex); 7543 7544 mutex_lock(&mutex); 7545 old_period = sysctl_sched_rt_period; 7546 old_runtime = sysctl_sched_rt_runtime; 7547 7548 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7549 7550 if (!ret && write) { 7551 ret = sched_rt_global_constraints(); 7552 if (ret) { 7553 sysctl_sched_rt_period = old_period; 7554 sysctl_sched_rt_runtime = old_runtime; 7555 } else { 7556 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7557 def_rt_bandwidth.rt_period = 7558 ns_to_ktime(global_rt_period()); 7559 } 7560 } 7561 mutex_unlock(&mutex); 7562 7563 return ret; 7564 } 7565 7566 #ifdef CONFIG_CGROUP_SCHED 7567 7568 /* return corresponding task_group object of a cgroup */ 7569 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 7570 { 7571 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 7572 struct task_group, css); 7573 } 7574 7575 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp) 7576 { 7577 struct task_group *tg, *parent; 7578 7579 if (!cgrp->parent) { 7580 /* This is early initialization for the top cgroup */ 7581 return &root_task_group.css; 7582 } 7583 7584 parent = cgroup_tg(cgrp->parent); 7585 tg = sched_create_group(parent); 7586 if (IS_ERR(tg)) 7587 return ERR_PTR(-ENOMEM); 7588 7589 return &tg->css; 7590 } 7591 7592 static void cpu_cgroup_destroy(struct cgroup *cgrp) 7593 { 7594 struct task_group *tg = cgroup_tg(cgrp); 7595 7596 sched_destroy_group(tg); 7597 } 7598 7599 static int cpu_cgroup_can_attach(struct cgroup *cgrp, 7600 struct cgroup_taskset *tset) 7601 { 7602 struct task_struct *task; 7603 7604 cgroup_taskset_for_each(task, cgrp, tset) { 7605 #ifdef CONFIG_RT_GROUP_SCHED 7606 if (!sched_rt_can_attach(cgroup_tg(cgrp), task)) 7607 return -EINVAL; 7608 #else 7609 /* We don't support RT-tasks being in separate groups */ 7610 if (task->sched_class != &fair_sched_class) 7611 return -EINVAL; 7612 #endif 7613 } 7614 return 0; 7615 } 7616 7617 static void cpu_cgroup_attach(struct cgroup *cgrp, 7618 struct cgroup_taskset *tset) 7619 { 7620 struct task_struct *task; 7621 7622 cgroup_taskset_for_each(task, cgrp, tset) 7623 sched_move_task(task); 7624 } 7625 7626 static void 7627 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7628 struct task_struct *task) 7629 { 7630 /* 7631 * cgroup_exit() is called in the copy_process() failure path. 7632 * Ignore this case since the task hasn't ran yet, this avoids 7633 * trying to poke a half freed task state from generic code. 7634 */ 7635 if (!(task->flags & PF_EXITING)) 7636 return; 7637 7638 sched_move_task(task); 7639 } 7640 7641 #ifdef CONFIG_FAIR_GROUP_SCHED 7642 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7643 u64 shareval) 7644 { 7645 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval)); 7646 } 7647 7648 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 7649 { 7650 struct task_group *tg = cgroup_tg(cgrp); 7651 7652 return (u64) scale_load_down(tg->shares); 7653 } 7654 7655 #ifdef CONFIG_CFS_BANDWIDTH 7656 static DEFINE_MUTEX(cfs_constraints_mutex); 7657 7658 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7659 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7660 7661 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7662 7663 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7664 { 7665 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7666 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7667 7668 if (tg == &root_task_group) 7669 return -EINVAL; 7670 7671 /* 7672 * Ensure we have at some amount of bandwidth every period. This is 7673 * to prevent reaching a state of large arrears when throttled via 7674 * entity_tick() resulting in prolonged exit starvation. 7675 */ 7676 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7677 return -EINVAL; 7678 7679 /* 7680 * Likewise, bound things on the otherside by preventing insane quota 7681 * periods. This also allows us to normalize in computing quota 7682 * feasibility. 7683 */ 7684 if (period > max_cfs_quota_period) 7685 return -EINVAL; 7686 7687 mutex_lock(&cfs_constraints_mutex); 7688 ret = __cfs_schedulable(tg, period, quota); 7689 if (ret) 7690 goto out_unlock; 7691 7692 runtime_enabled = quota != RUNTIME_INF; 7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7694 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); 7695 raw_spin_lock_irq(&cfs_b->lock); 7696 cfs_b->period = ns_to_ktime(period); 7697 cfs_b->quota = quota; 7698 7699 __refill_cfs_bandwidth_runtime(cfs_b); 7700 /* restart the period timer (if active) to handle new period expiry */ 7701 if (runtime_enabled && cfs_b->timer_active) { 7702 /* force a reprogram */ 7703 cfs_b->timer_active = 0; 7704 __start_cfs_bandwidth(cfs_b); 7705 } 7706 raw_spin_unlock_irq(&cfs_b->lock); 7707 7708 for_each_possible_cpu(i) { 7709 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7710 struct rq *rq = cfs_rq->rq; 7711 7712 raw_spin_lock_irq(&rq->lock); 7713 cfs_rq->runtime_enabled = runtime_enabled; 7714 cfs_rq->runtime_remaining = 0; 7715 7716 if (cfs_rq->throttled) 7717 unthrottle_cfs_rq(cfs_rq); 7718 raw_spin_unlock_irq(&rq->lock); 7719 } 7720 out_unlock: 7721 mutex_unlock(&cfs_constraints_mutex); 7722 7723 return ret; 7724 } 7725 7726 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7727 { 7728 u64 quota, period; 7729 7730 period = ktime_to_ns(tg->cfs_bandwidth.period); 7731 if (cfs_quota_us < 0) 7732 quota = RUNTIME_INF; 7733 else 7734 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7735 7736 return tg_set_cfs_bandwidth(tg, period, quota); 7737 } 7738 7739 long tg_get_cfs_quota(struct task_group *tg) 7740 { 7741 u64 quota_us; 7742 7743 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7744 return -1; 7745 7746 quota_us = tg->cfs_bandwidth.quota; 7747 do_div(quota_us, NSEC_PER_USEC); 7748 7749 return quota_us; 7750 } 7751 7752 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7753 { 7754 u64 quota, period; 7755 7756 period = (u64)cfs_period_us * NSEC_PER_USEC; 7757 quota = tg->cfs_bandwidth.quota; 7758 7759 return tg_set_cfs_bandwidth(tg, period, quota); 7760 } 7761 7762 long tg_get_cfs_period(struct task_group *tg) 7763 { 7764 u64 cfs_period_us; 7765 7766 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7767 do_div(cfs_period_us, NSEC_PER_USEC); 7768 7769 return cfs_period_us; 7770 } 7771 7772 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft) 7773 { 7774 return tg_get_cfs_quota(cgroup_tg(cgrp)); 7775 } 7776 7777 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype, 7778 s64 cfs_quota_us) 7779 { 7780 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us); 7781 } 7782 7783 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft) 7784 { 7785 return tg_get_cfs_period(cgroup_tg(cgrp)); 7786 } 7787 7788 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype, 7789 u64 cfs_period_us) 7790 { 7791 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us); 7792 } 7793 7794 struct cfs_schedulable_data { 7795 struct task_group *tg; 7796 u64 period, quota; 7797 }; 7798 7799 /* 7800 * normalize group quota/period to be quota/max_period 7801 * note: units are usecs 7802 */ 7803 static u64 normalize_cfs_quota(struct task_group *tg, 7804 struct cfs_schedulable_data *d) 7805 { 7806 u64 quota, period; 7807 7808 if (tg == d->tg) { 7809 period = d->period; 7810 quota = d->quota; 7811 } else { 7812 period = tg_get_cfs_period(tg); 7813 quota = tg_get_cfs_quota(tg); 7814 } 7815 7816 /* note: these should typically be equivalent */ 7817 if (quota == RUNTIME_INF || quota == -1) 7818 return RUNTIME_INF; 7819 7820 return to_ratio(period, quota); 7821 } 7822 7823 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7824 { 7825 struct cfs_schedulable_data *d = data; 7826 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7827 s64 quota = 0, parent_quota = -1; 7828 7829 if (!tg->parent) { 7830 quota = RUNTIME_INF; 7831 } else { 7832 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7833 7834 quota = normalize_cfs_quota(tg, d); 7835 parent_quota = parent_b->hierarchal_quota; 7836 7837 /* 7838 * ensure max(child_quota) <= parent_quota, inherit when no 7839 * limit is set 7840 */ 7841 if (quota == RUNTIME_INF) 7842 quota = parent_quota; 7843 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7844 return -EINVAL; 7845 } 7846 cfs_b->hierarchal_quota = quota; 7847 7848 return 0; 7849 } 7850 7851 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7852 { 7853 int ret; 7854 struct cfs_schedulable_data data = { 7855 .tg = tg, 7856 .period = period, 7857 .quota = quota, 7858 }; 7859 7860 if (quota != RUNTIME_INF) { 7861 do_div(data.period, NSEC_PER_USEC); 7862 do_div(data.quota, NSEC_PER_USEC); 7863 } 7864 7865 rcu_read_lock(); 7866 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7867 rcu_read_unlock(); 7868 7869 return ret; 7870 } 7871 7872 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft, 7873 struct cgroup_map_cb *cb) 7874 { 7875 struct task_group *tg = cgroup_tg(cgrp); 7876 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7877 7878 cb->fill(cb, "nr_periods", cfs_b->nr_periods); 7879 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled); 7880 cb->fill(cb, "throttled_time", cfs_b->throttled_time); 7881 7882 return 0; 7883 } 7884 #endif /* CONFIG_CFS_BANDWIDTH */ 7885 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7886 7887 #ifdef CONFIG_RT_GROUP_SCHED 7888 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 7889 s64 val) 7890 { 7891 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 7892 } 7893 7894 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 7895 { 7896 return sched_group_rt_runtime(cgroup_tg(cgrp)); 7897 } 7898 7899 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 7900 u64 rt_period_us) 7901 { 7902 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 7903 } 7904 7905 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 7906 { 7907 return sched_group_rt_period(cgroup_tg(cgrp)); 7908 } 7909 #endif /* CONFIG_RT_GROUP_SCHED */ 7910 7911 static struct cftype cpu_files[] = { 7912 #ifdef CONFIG_FAIR_GROUP_SCHED 7913 { 7914 .name = "shares", 7915 .read_u64 = cpu_shares_read_u64, 7916 .write_u64 = cpu_shares_write_u64, 7917 }, 7918 #endif 7919 #ifdef CONFIG_CFS_BANDWIDTH 7920 { 7921 .name = "cfs_quota_us", 7922 .read_s64 = cpu_cfs_quota_read_s64, 7923 .write_s64 = cpu_cfs_quota_write_s64, 7924 }, 7925 { 7926 .name = "cfs_period_us", 7927 .read_u64 = cpu_cfs_period_read_u64, 7928 .write_u64 = cpu_cfs_period_write_u64, 7929 }, 7930 { 7931 .name = "stat", 7932 .read_map = cpu_stats_show, 7933 }, 7934 #endif 7935 #ifdef CONFIG_RT_GROUP_SCHED 7936 { 7937 .name = "rt_runtime_us", 7938 .read_s64 = cpu_rt_runtime_read, 7939 .write_s64 = cpu_rt_runtime_write, 7940 }, 7941 { 7942 .name = "rt_period_us", 7943 .read_u64 = cpu_rt_period_read_uint, 7944 .write_u64 = cpu_rt_period_write_uint, 7945 }, 7946 #endif 7947 }; 7948 7949 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 7950 { 7951 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 7952 } 7953 7954 struct cgroup_subsys cpu_cgroup_subsys = { 7955 .name = "cpu", 7956 .create = cpu_cgroup_create, 7957 .destroy = cpu_cgroup_destroy, 7958 .can_attach = cpu_cgroup_can_attach, 7959 .attach = cpu_cgroup_attach, 7960 .exit = cpu_cgroup_exit, 7961 .populate = cpu_cgroup_populate, 7962 .subsys_id = cpu_cgroup_subsys_id, 7963 .early_init = 1, 7964 }; 7965 7966 #endif /* CONFIG_CGROUP_SCHED */ 7967 7968 #ifdef CONFIG_CGROUP_CPUACCT 7969 7970 /* 7971 * CPU accounting code for task groups. 7972 * 7973 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 7974 * (balbir@in.ibm.com). 7975 */ 7976 7977 /* create a new cpu accounting group */ 7978 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp) 7979 { 7980 struct cpuacct *ca; 7981 7982 if (!cgrp->parent) 7983 return &root_cpuacct.css; 7984 7985 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 7986 if (!ca) 7987 goto out; 7988 7989 ca->cpuusage = alloc_percpu(u64); 7990 if (!ca->cpuusage) 7991 goto out_free_ca; 7992 7993 ca->cpustat = alloc_percpu(struct kernel_cpustat); 7994 if (!ca->cpustat) 7995 goto out_free_cpuusage; 7996 7997 return &ca->css; 7998 7999 out_free_cpuusage: 8000 free_percpu(ca->cpuusage); 8001 out_free_ca: 8002 kfree(ca); 8003 out: 8004 return ERR_PTR(-ENOMEM); 8005 } 8006 8007 /* destroy an existing cpu accounting group */ 8008 static void cpuacct_destroy(struct cgroup *cgrp) 8009 { 8010 struct cpuacct *ca = cgroup_ca(cgrp); 8011 8012 free_percpu(ca->cpustat); 8013 free_percpu(ca->cpuusage); 8014 kfree(ca); 8015 } 8016 8017 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 8018 { 8019 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8020 u64 data; 8021 8022 #ifndef CONFIG_64BIT 8023 /* 8024 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 8025 */ 8026 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8027 data = *cpuusage; 8028 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8029 #else 8030 data = *cpuusage; 8031 #endif 8032 8033 return data; 8034 } 8035 8036 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 8037 { 8038 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8039 8040 #ifndef CONFIG_64BIT 8041 /* 8042 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 8043 */ 8044 raw_spin_lock_irq(&cpu_rq(cpu)->lock); 8045 *cpuusage = val; 8046 raw_spin_unlock_irq(&cpu_rq(cpu)->lock); 8047 #else 8048 *cpuusage = val; 8049 #endif 8050 } 8051 8052 /* return total cpu usage (in nanoseconds) of a group */ 8053 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 8054 { 8055 struct cpuacct *ca = cgroup_ca(cgrp); 8056 u64 totalcpuusage = 0; 8057 int i; 8058 8059 for_each_present_cpu(i) 8060 totalcpuusage += cpuacct_cpuusage_read(ca, i); 8061 8062 return totalcpuusage; 8063 } 8064 8065 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 8066 u64 reset) 8067 { 8068 struct cpuacct *ca = cgroup_ca(cgrp); 8069 int err = 0; 8070 int i; 8071 8072 if (reset) { 8073 err = -EINVAL; 8074 goto out; 8075 } 8076 8077 for_each_present_cpu(i) 8078 cpuacct_cpuusage_write(ca, i, 0); 8079 8080 out: 8081 return err; 8082 } 8083 8084 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 8085 struct seq_file *m) 8086 { 8087 struct cpuacct *ca = cgroup_ca(cgroup); 8088 u64 percpu; 8089 int i; 8090 8091 for_each_present_cpu(i) { 8092 percpu = cpuacct_cpuusage_read(ca, i); 8093 seq_printf(m, "%llu ", (unsigned long long) percpu); 8094 } 8095 seq_printf(m, "\n"); 8096 return 0; 8097 } 8098 8099 static const char *cpuacct_stat_desc[] = { 8100 [CPUACCT_STAT_USER] = "user", 8101 [CPUACCT_STAT_SYSTEM] = "system", 8102 }; 8103 8104 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 8105 struct cgroup_map_cb *cb) 8106 { 8107 struct cpuacct *ca = cgroup_ca(cgrp); 8108 int cpu; 8109 s64 val = 0; 8110 8111 for_each_online_cpu(cpu) { 8112 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8113 val += kcpustat->cpustat[CPUTIME_USER]; 8114 val += kcpustat->cpustat[CPUTIME_NICE]; 8115 } 8116 val = cputime64_to_clock_t(val); 8117 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val); 8118 8119 val = 0; 8120 for_each_online_cpu(cpu) { 8121 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu); 8122 val += kcpustat->cpustat[CPUTIME_SYSTEM]; 8123 val += kcpustat->cpustat[CPUTIME_IRQ]; 8124 val += kcpustat->cpustat[CPUTIME_SOFTIRQ]; 8125 } 8126 8127 val = cputime64_to_clock_t(val); 8128 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val); 8129 8130 return 0; 8131 } 8132 8133 static struct cftype files[] = { 8134 { 8135 .name = "usage", 8136 .read_u64 = cpuusage_read, 8137 .write_u64 = cpuusage_write, 8138 }, 8139 { 8140 .name = "usage_percpu", 8141 .read_seq_string = cpuacct_percpu_seq_read, 8142 }, 8143 { 8144 .name = "stat", 8145 .read_map = cpuacct_stats_show, 8146 }, 8147 }; 8148 8149 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 8150 { 8151 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 8152 } 8153 8154 /* 8155 * charge this task's execution time to its accounting group. 8156 * 8157 * called with rq->lock held. 8158 */ 8159 void cpuacct_charge(struct task_struct *tsk, u64 cputime) 8160 { 8161 struct cpuacct *ca; 8162 int cpu; 8163 8164 if (unlikely(!cpuacct_subsys.active)) 8165 return; 8166 8167 cpu = task_cpu(tsk); 8168 8169 rcu_read_lock(); 8170 8171 ca = task_ca(tsk); 8172 8173 for (; ca; ca = parent_ca(ca)) { 8174 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 8175 *cpuusage += cputime; 8176 } 8177 8178 rcu_read_unlock(); 8179 } 8180 8181 struct cgroup_subsys cpuacct_subsys = { 8182 .name = "cpuacct", 8183 .create = cpuacct_create, 8184 .destroy = cpuacct_destroy, 8185 .populate = cpuacct_populate, 8186 .subsys_id = cpuacct_subsys_id, 8187 }; 8188 #endif /* CONFIG_CGROUP_CPUACCT */ 8189