xref: /linux/kernel/sched/core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/rseq.h>
61 #include <linux/sched/wake_q.h>
62 #include <linux/scs.h>
63 #include <linux/slab.h>
64 #include <linux/syscalls.h>
65 #include <linux/vtime.h>
66 #include <linux/wait_api.h>
67 #include <linux/workqueue_api.h>
68 
69 #ifdef CONFIG_PREEMPT_DYNAMIC
70 # ifdef CONFIG_GENERIC_ENTRY
71 #  include <linux/entry-common.h>
72 # endif
73 #endif
74 
75 #include <uapi/linux/sched/types.h>
76 
77 #include <asm/irq_regs.h>
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <linux/sched/rseq_api.h>
83 #include <trace/events/sched.h>
84 #include <trace/events/ipi.h>
85 #undef CREATE_TRACE_POINTS
86 
87 #include "sched.h"
88 #include "stats.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 
119 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 
121 #ifdef CONFIG_SCHED_DEBUG
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 const_debug unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 #endif /* CONFIG_SCHED_DEBUG */
146 
147 /*
148  * Number of tasks to iterate in a single balance run.
149  * Limited because this is done with IRQs disabled.
150  */
151 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152 
153 __read_mostly int scheduler_running;
154 
155 #ifdef CONFIG_SCHED_CORE
156 
157 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158 
159 /* kernel prio, less is more */
160 static inline int __task_prio(const struct task_struct *p)
161 {
162 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
163 		return -2;
164 
165 	if (rt_prio(p->prio)) /* includes deadline */
166 		return p->prio; /* [-1, 99] */
167 
168 	if (p->sched_class == &idle_sched_class)
169 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
170 
171 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
172 }
173 
174 /*
175  * l(a,b)
176  * le(a,b) := !l(b,a)
177  * g(a,b)  := l(b,a)
178  * ge(a,b) := !l(a,b)
179  */
180 
181 /* real prio, less is less */
182 static inline bool prio_less(const struct task_struct *a,
183 			     const struct task_struct *b, bool in_fi)
184 {
185 
186 	int pa = __task_prio(a), pb = __task_prio(b);
187 
188 	if (-pa < -pb)
189 		return true;
190 
191 	if (-pb < -pa)
192 		return false;
193 
194 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
195 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
196 
197 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
198 		return cfs_prio_less(a, b, in_fi);
199 
200 	return false;
201 }
202 
203 static inline bool __sched_core_less(const struct task_struct *a,
204 				     const struct task_struct *b)
205 {
206 	if (a->core_cookie < b->core_cookie)
207 		return true;
208 
209 	if (a->core_cookie > b->core_cookie)
210 		return false;
211 
212 	/* flip prio, so high prio is leftmost */
213 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
214 		return true;
215 
216 	return false;
217 }
218 
219 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
220 
221 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
222 {
223 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
224 }
225 
226 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
227 {
228 	const struct task_struct *p = __node_2_sc(node);
229 	unsigned long cookie = (unsigned long)key;
230 
231 	if (cookie < p->core_cookie)
232 		return -1;
233 
234 	if (cookie > p->core_cookie)
235 		return 1;
236 
237 	return 0;
238 }
239 
240 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
241 {
242 	rq->core->core_task_seq++;
243 
244 	if (!p->core_cookie)
245 		return;
246 
247 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
248 }
249 
250 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
251 {
252 	rq->core->core_task_seq++;
253 
254 	if (sched_core_enqueued(p)) {
255 		rb_erase(&p->core_node, &rq->core_tree);
256 		RB_CLEAR_NODE(&p->core_node);
257 	}
258 
259 	/*
260 	 * Migrating the last task off the cpu, with the cpu in forced idle
261 	 * state. Reschedule to create an accounting edge for forced idle,
262 	 * and re-examine whether the core is still in forced idle state.
263 	 */
264 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
265 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
266 		resched_curr(rq);
267 }
268 
269 static int sched_task_is_throttled(struct task_struct *p, int cpu)
270 {
271 	if (p->sched_class->task_is_throttled)
272 		return p->sched_class->task_is_throttled(p, cpu);
273 
274 	return 0;
275 }
276 
277 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
278 {
279 	struct rb_node *node = &p->core_node;
280 	int cpu = task_cpu(p);
281 
282 	do {
283 		node = rb_next(node);
284 		if (!node)
285 			return NULL;
286 
287 		p = __node_2_sc(node);
288 		if (p->core_cookie != cookie)
289 			return NULL;
290 
291 	} while (sched_task_is_throttled(p, cpu));
292 
293 	return p;
294 }
295 
296 /*
297  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
298  * If no suitable task is found, NULL will be returned.
299  */
300 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
301 {
302 	struct task_struct *p;
303 	struct rb_node *node;
304 
305 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
306 	if (!node)
307 		return NULL;
308 
309 	p = __node_2_sc(node);
310 	if (!sched_task_is_throttled(p, rq->cpu))
311 		return p;
312 
313 	return sched_core_next(p, cookie);
314 }
315 
316 /*
317  * Magic required such that:
318  *
319  *	raw_spin_rq_lock(rq);
320  *	...
321  *	raw_spin_rq_unlock(rq);
322  *
323  * ends up locking and unlocking the _same_ lock, and all CPUs
324  * always agree on what rq has what lock.
325  *
326  * XXX entirely possible to selectively enable cores, don't bother for now.
327  */
328 
329 static DEFINE_MUTEX(sched_core_mutex);
330 static atomic_t sched_core_count;
331 static struct cpumask sched_core_mask;
332 
333 static void sched_core_lock(int cpu, unsigned long *flags)
334 {
335 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
336 	int t, i = 0;
337 
338 	local_irq_save(*flags);
339 	for_each_cpu(t, smt_mask)
340 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
341 }
342 
343 static void sched_core_unlock(int cpu, unsigned long *flags)
344 {
345 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
346 	int t;
347 
348 	for_each_cpu(t, smt_mask)
349 		raw_spin_unlock(&cpu_rq(t)->__lock);
350 	local_irq_restore(*flags);
351 }
352 
353 static void __sched_core_flip(bool enabled)
354 {
355 	unsigned long flags;
356 	int cpu, t;
357 
358 	cpus_read_lock();
359 
360 	/*
361 	 * Toggle the online cores, one by one.
362 	 */
363 	cpumask_copy(&sched_core_mask, cpu_online_mask);
364 	for_each_cpu(cpu, &sched_core_mask) {
365 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366 
367 		sched_core_lock(cpu, &flags);
368 
369 		for_each_cpu(t, smt_mask)
370 			cpu_rq(t)->core_enabled = enabled;
371 
372 		cpu_rq(cpu)->core->core_forceidle_start = 0;
373 
374 		sched_core_unlock(cpu, &flags);
375 
376 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
377 	}
378 
379 	/*
380 	 * Toggle the offline CPUs.
381 	 */
382 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
383 		cpu_rq(cpu)->core_enabled = enabled;
384 
385 	cpus_read_unlock();
386 }
387 
388 static void sched_core_assert_empty(void)
389 {
390 	int cpu;
391 
392 	for_each_possible_cpu(cpu)
393 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
394 }
395 
396 static void __sched_core_enable(void)
397 {
398 	static_branch_enable(&__sched_core_enabled);
399 	/*
400 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
401 	 * and future ones will observe !sched_core_disabled().
402 	 */
403 	synchronize_rcu();
404 	__sched_core_flip(true);
405 	sched_core_assert_empty();
406 }
407 
408 static void __sched_core_disable(void)
409 {
410 	sched_core_assert_empty();
411 	__sched_core_flip(false);
412 	static_branch_disable(&__sched_core_enabled);
413 }
414 
415 void sched_core_get(void)
416 {
417 	if (atomic_inc_not_zero(&sched_core_count))
418 		return;
419 
420 	mutex_lock(&sched_core_mutex);
421 	if (!atomic_read(&sched_core_count))
422 		__sched_core_enable();
423 
424 	smp_mb__before_atomic();
425 	atomic_inc(&sched_core_count);
426 	mutex_unlock(&sched_core_mutex);
427 }
428 
429 static void __sched_core_put(struct work_struct *work)
430 {
431 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
432 		__sched_core_disable();
433 		mutex_unlock(&sched_core_mutex);
434 	}
435 }
436 
437 void sched_core_put(void)
438 {
439 	static DECLARE_WORK(_work, __sched_core_put);
440 
441 	/*
442 	 * "There can be only one"
443 	 *
444 	 * Either this is the last one, or we don't actually need to do any
445 	 * 'work'. If it is the last *again*, we rely on
446 	 * WORK_STRUCT_PENDING_BIT.
447 	 */
448 	if (!atomic_add_unless(&sched_core_count, -1, 1))
449 		schedule_work(&_work);
450 }
451 
452 #else /* !CONFIG_SCHED_CORE */
453 
454 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
455 static inline void
456 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
457 
458 #endif /* CONFIG_SCHED_CORE */
459 
460 /*
461  * Serialization rules:
462  *
463  * Lock order:
464  *
465  *   p->pi_lock
466  *     rq->lock
467  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
468  *
469  *  rq1->lock
470  *    rq2->lock  where: rq1 < rq2
471  *
472  * Regular state:
473  *
474  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
475  * local CPU's rq->lock, it optionally removes the task from the runqueue and
476  * always looks at the local rq data structures to find the most eligible task
477  * to run next.
478  *
479  * Task enqueue is also under rq->lock, possibly taken from another CPU.
480  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
481  * the local CPU to avoid bouncing the runqueue state around [ see
482  * ttwu_queue_wakelist() ]
483  *
484  * Task wakeup, specifically wakeups that involve migration, are horribly
485  * complicated to avoid having to take two rq->locks.
486  *
487  * Special state:
488  *
489  * System-calls and anything external will use task_rq_lock() which acquires
490  * both p->pi_lock and rq->lock. As a consequence the state they change is
491  * stable while holding either lock:
492  *
493  *  - sched_setaffinity()/
494  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
495  *  - set_user_nice():		p->se.load, p->*prio
496  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
497  *				p->se.load, p->rt_priority,
498  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
499  *  - sched_setnuma():		p->numa_preferred_nid
500  *  - sched_move_task():	p->sched_task_group
501  *  - uclamp_update_active()	p->uclamp*
502  *
503  * p->state <- TASK_*:
504  *
505  *   is changed locklessly using set_current_state(), __set_current_state() or
506  *   set_special_state(), see their respective comments, or by
507  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
508  *   concurrent self.
509  *
510  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
511  *
512  *   is set by activate_task() and cleared by deactivate_task(), under
513  *   rq->lock. Non-zero indicates the task is runnable, the special
514  *   ON_RQ_MIGRATING state is used for migration without holding both
515  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
516  *
517  * p->on_cpu <- { 0, 1 }:
518  *
519  *   is set by prepare_task() and cleared by finish_task() such that it will be
520  *   set before p is scheduled-in and cleared after p is scheduled-out, both
521  *   under rq->lock. Non-zero indicates the task is running on its CPU.
522  *
523  *   [ The astute reader will observe that it is possible for two tasks on one
524  *     CPU to have ->on_cpu = 1 at the same time. ]
525  *
526  * task_cpu(p): is changed by set_task_cpu(), the rules are:
527  *
528  *  - Don't call set_task_cpu() on a blocked task:
529  *
530  *    We don't care what CPU we're not running on, this simplifies hotplug,
531  *    the CPU assignment of blocked tasks isn't required to be valid.
532  *
533  *  - for try_to_wake_up(), called under p->pi_lock:
534  *
535  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
536  *
537  *  - for migration called under rq->lock:
538  *    [ see task_on_rq_migrating() in task_rq_lock() ]
539  *
540  *    o move_queued_task()
541  *    o detach_task()
542  *
543  *  - for migration called under double_rq_lock():
544  *
545  *    o __migrate_swap_task()
546  *    o push_rt_task() / pull_rt_task()
547  *    o push_dl_task() / pull_dl_task()
548  *    o dl_task_offline_migration()
549  *
550  */
551 
552 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
553 {
554 	raw_spinlock_t *lock;
555 
556 	/* Matches synchronize_rcu() in __sched_core_enable() */
557 	preempt_disable();
558 	if (sched_core_disabled()) {
559 		raw_spin_lock_nested(&rq->__lock, subclass);
560 		/* preempt_count *MUST* be > 1 */
561 		preempt_enable_no_resched();
562 		return;
563 	}
564 
565 	for (;;) {
566 		lock = __rq_lockp(rq);
567 		raw_spin_lock_nested(lock, subclass);
568 		if (likely(lock == __rq_lockp(rq))) {
569 			/* preempt_count *MUST* be > 1 */
570 			preempt_enable_no_resched();
571 			return;
572 		}
573 		raw_spin_unlock(lock);
574 	}
575 }
576 
577 bool raw_spin_rq_trylock(struct rq *rq)
578 {
579 	raw_spinlock_t *lock;
580 	bool ret;
581 
582 	/* Matches synchronize_rcu() in __sched_core_enable() */
583 	preempt_disable();
584 	if (sched_core_disabled()) {
585 		ret = raw_spin_trylock(&rq->__lock);
586 		preempt_enable();
587 		return ret;
588 	}
589 
590 	for (;;) {
591 		lock = __rq_lockp(rq);
592 		ret = raw_spin_trylock(lock);
593 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
594 			preempt_enable();
595 			return ret;
596 		}
597 		raw_spin_unlock(lock);
598 	}
599 }
600 
601 void raw_spin_rq_unlock(struct rq *rq)
602 {
603 	raw_spin_unlock(rq_lockp(rq));
604 }
605 
606 #ifdef CONFIG_SMP
607 /*
608  * double_rq_lock - safely lock two runqueues
609  */
610 void double_rq_lock(struct rq *rq1, struct rq *rq2)
611 {
612 	lockdep_assert_irqs_disabled();
613 
614 	if (rq_order_less(rq2, rq1))
615 		swap(rq1, rq2);
616 
617 	raw_spin_rq_lock(rq1);
618 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
619 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
620 
621 	double_rq_clock_clear_update(rq1, rq2);
622 }
623 #endif
624 
625 /*
626  * __task_rq_lock - lock the rq @p resides on.
627  */
628 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
629 	__acquires(rq->lock)
630 {
631 	struct rq *rq;
632 
633 	lockdep_assert_held(&p->pi_lock);
634 
635 	for (;;) {
636 		rq = task_rq(p);
637 		raw_spin_rq_lock(rq);
638 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
639 			rq_pin_lock(rq, rf);
640 			return rq;
641 		}
642 		raw_spin_rq_unlock(rq);
643 
644 		while (unlikely(task_on_rq_migrating(p)))
645 			cpu_relax();
646 	}
647 }
648 
649 /*
650  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
651  */
652 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
653 	__acquires(p->pi_lock)
654 	__acquires(rq->lock)
655 {
656 	struct rq *rq;
657 
658 	for (;;) {
659 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
660 		rq = task_rq(p);
661 		raw_spin_rq_lock(rq);
662 		/*
663 		 *	move_queued_task()		task_rq_lock()
664 		 *
665 		 *	ACQUIRE (rq->lock)
666 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
667 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
668 		 *	[S] ->cpu = new_cpu		[L] task_rq()
669 		 *					[L] ->on_rq
670 		 *	RELEASE (rq->lock)
671 		 *
672 		 * If we observe the old CPU in task_rq_lock(), the acquire of
673 		 * the old rq->lock will fully serialize against the stores.
674 		 *
675 		 * If we observe the new CPU in task_rq_lock(), the address
676 		 * dependency headed by '[L] rq = task_rq()' and the acquire
677 		 * will pair with the WMB to ensure we then also see migrating.
678 		 */
679 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
680 			rq_pin_lock(rq, rf);
681 			return rq;
682 		}
683 		raw_spin_rq_unlock(rq);
684 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
685 
686 		while (unlikely(task_on_rq_migrating(p)))
687 			cpu_relax();
688 	}
689 }
690 
691 /*
692  * RQ-clock updating methods:
693  */
694 
695 static void update_rq_clock_task(struct rq *rq, s64 delta)
696 {
697 /*
698  * In theory, the compile should just see 0 here, and optimize out the call
699  * to sched_rt_avg_update. But I don't trust it...
700  */
701 	s64 __maybe_unused steal = 0, irq_delta = 0;
702 
703 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
704 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
705 
706 	/*
707 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
708 	 * this case when a previous update_rq_clock() happened inside a
709 	 * {soft,}irq region.
710 	 *
711 	 * When this happens, we stop ->clock_task and only update the
712 	 * prev_irq_time stamp to account for the part that fit, so that a next
713 	 * update will consume the rest. This ensures ->clock_task is
714 	 * monotonic.
715 	 *
716 	 * It does however cause some slight miss-attribution of {soft,}irq
717 	 * time, a more accurate solution would be to update the irq_time using
718 	 * the current rq->clock timestamp, except that would require using
719 	 * atomic ops.
720 	 */
721 	if (irq_delta > delta)
722 		irq_delta = delta;
723 
724 	rq->prev_irq_time += irq_delta;
725 	delta -= irq_delta;
726 	psi_account_irqtime(rq->curr, irq_delta);
727 	delayacct_irq(rq->curr, irq_delta);
728 #endif
729 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
730 	if (static_key_false((&paravirt_steal_rq_enabled))) {
731 		steal = paravirt_steal_clock(cpu_of(rq));
732 		steal -= rq->prev_steal_time_rq;
733 
734 		if (unlikely(steal > delta))
735 			steal = delta;
736 
737 		rq->prev_steal_time_rq += steal;
738 		delta -= steal;
739 	}
740 #endif
741 
742 	rq->clock_task += delta;
743 
744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 		update_irq_load_avg(rq, irq_delta + steal);
747 #endif
748 	update_rq_clock_pelt(rq, delta);
749 }
750 
751 void update_rq_clock(struct rq *rq)
752 {
753 	s64 delta;
754 
755 	lockdep_assert_rq_held(rq);
756 
757 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 		return;
759 
760 #ifdef CONFIG_SCHED_DEBUG
761 	if (sched_feat(WARN_DOUBLE_CLOCK))
762 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 	rq->clock_update_flags |= RQCF_UPDATED;
764 #endif
765 
766 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 	if (delta < 0)
768 		return;
769 	rq->clock += delta;
770 	update_rq_clock_task(rq, delta);
771 }
772 
773 #ifdef CONFIG_SCHED_HRTICK
774 /*
775  * Use HR-timers to deliver accurate preemption points.
776  */
777 
778 static void hrtick_clear(struct rq *rq)
779 {
780 	if (hrtimer_active(&rq->hrtick_timer))
781 		hrtimer_cancel(&rq->hrtick_timer);
782 }
783 
784 /*
785  * High-resolution timer tick.
786  * Runs from hardirq context with interrupts disabled.
787  */
788 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 {
790 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 	struct rq_flags rf;
792 
793 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794 
795 	rq_lock(rq, &rf);
796 	update_rq_clock(rq);
797 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 	rq_unlock(rq, &rf);
799 
800 	return HRTIMER_NORESTART;
801 }
802 
803 #ifdef CONFIG_SMP
804 
805 static void __hrtick_restart(struct rq *rq)
806 {
807 	struct hrtimer *timer = &rq->hrtick_timer;
808 	ktime_t time = rq->hrtick_time;
809 
810 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811 }
812 
813 /*
814  * called from hardirq (IPI) context
815  */
816 static void __hrtick_start(void *arg)
817 {
818 	struct rq *rq = arg;
819 	struct rq_flags rf;
820 
821 	rq_lock(rq, &rf);
822 	__hrtick_restart(rq);
823 	rq_unlock(rq, &rf);
824 }
825 
826 /*
827  * Called to set the hrtick timer state.
828  *
829  * called with rq->lock held and irqs disabled
830  */
831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 	struct hrtimer *timer = &rq->hrtick_timer;
834 	s64 delta;
835 
836 	/*
837 	 * Don't schedule slices shorter than 10000ns, that just
838 	 * doesn't make sense and can cause timer DoS.
839 	 */
840 	delta = max_t(s64, delay, 10000LL);
841 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842 
843 	if (rq == this_rq())
844 		__hrtick_restart(rq);
845 	else
846 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847 }
848 
849 #else
850 /*
851  * Called to set the hrtick timer state.
852  *
853  * called with rq->lock held and irqs disabled
854  */
855 void hrtick_start(struct rq *rq, u64 delay)
856 {
857 	/*
858 	 * Don't schedule slices shorter than 10000ns, that just
859 	 * doesn't make sense. Rely on vruntime for fairness.
860 	 */
861 	delay = max_t(u64, delay, 10000LL);
862 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 		      HRTIMER_MODE_REL_PINNED_HARD);
864 }
865 
866 #endif /* CONFIG_SMP */
867 
868 static void hrtick_rq_init(struct rq *rq)
869 {
870 #ifdef CONFIG_SMP
871 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 #endif
873 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 	rq->hrtick_timer.function = hrtick;
875 }
876 #else	/* CONFIG_SCHED_HRTICK */
877 static inline void hrtick_clear(struct rq *rq)
878 {
879 }
880 
881 static inline void hrtick_rq_init(struct rq *rq)
882 {
883 }
884 #endif	/* CONFIG_SCHED_HRTICK */
885 
886 /*
887  * cmpxchg based fetch_or, macro so it works for different integer types
888  */
889 #define fetch_or(ptr, mask)						\
890 	({								\
891 		typeof(ptr) _ptr = (ptr);				\
892 		typeof(mask) _mask = (mask);				\
893 		typeof(*_ptr) _val = *_ptr;				\
894 									\
895 		do {							\
896 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
897 	_val;								\
898 })
899 
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903  * this avoids any races wrt polling state changes and thereby avoids
904  * spurious IPIs.
905  */
906 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 	struct thread_info *ti = task_thread_info(p);
909 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911 
912 /*
913  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914  *
915  * If this returns true, then the idle task promises to call
916  * sched_ttwu_pending() and reschedule soon.
917  */
918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 	struct thread_info *ti = task_thread_info(p);
921 	typeof(ti->flags) val = READ_ONCE(ti->flags);
922 
923 	do {
924 		if (!(val & _TIF_POLLING_NRFLAG))
925 			return false;
926 		if (val & _TIF_NEED_RESCHED)
927 			return true;
928 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
929 
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	/*
1136 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1137 	 * part of the idle loop. This forces an exit from the idle loop
1138 	 * and a round trip to schedule(). Now this could be optimized
1139 	 * because a simple new idle loop iteration is enough to
1140 	 * re-evaluate the next tick. Provided some re-ordering of tick
1141 	 * nohz functions that would need to follow TIF_NR_POLLING
1142 	 * clearing:
1143 	 *
1144 	 * - On most archs, a simple fetch_or on ti::flags with a
1145 	 *   "0" value would be enough to know if an IPI needs to be sent.
1146 	 *
1147 	 * - x86 needs to perform a last need_resched() check between
1148 	 *   monitor and mwait which doesn't take timers into account.
1149 	 *   There a dedicated TIF_TIMER flag would be required to
1150 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1151 	 *   before mwait().
1152 	 *
1153 	 * However, remote timer enqueue is not such a frequent event
1154 	 * and testing of the above solutions didn't appear to report
1155 	 * much benefits.
1156 	 */
1157 	if (set_nr_and_not_polling(rq->idle))
1158 		smp_send_reschedule(cpu);
1159 	else
1160 		trace_sched_wake_idle_without_ipi(cpu);
1161 }
1162 
1163 static bool wake_up_full_nohz_cpu(int cpu)
1164 {
1165 	/*
1166 	 * We just need the target to call irq_exit() and re-evaluate
1167 	 * the next tick. The nohz full kick at least implies that.
1168 	 * If needed we can still optimize that later with an
1169 	 * empty IRQ.
1170 	 */
1171 	if (cpu_is_offline(cpu))
1172 		return true;  /* Don't try to wake offline CPUs. */
1173 	if (tick_nohz_full_cpu(cpu)) {
1174 		if (cpu != smp_processor_id() ||
1175 		    tick_nohz_tick_stopped())
1176 			tick_nohz_full_kick_cpu(cpu);
1177 		return true;
1178 	}
1179 
1180 	return false;
1181 }
1182 
1183 /*
1184  * Wake up the specified CPU.  If the CPU is going offline, it is the
1185  * caller's responsibility to deal with the lost wakeup, for example,
1186  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1187  */
1188 void wake_up_nohz_cpu(int cpu)
1189 {
1190 	if (!wake_up_full_nohz_cpu(cpu))
1191 		wake_up_idle_cpu(cpu);
1192 }
1193 
1194 static void nohz_csd_func(void *info)
1195 {
1196 	struct rq *rq = info;
1197 	int cpu = cpu_of(rq);
1198 	unsigned int flags;
1199 
1200 	/*
1201 	 * Release the rq::nohz_csd.
1202 	 */
1203 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1204 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1205 
1206 	rq->idle_balance = idle_cpu(cpu);
1207 	if (rq->idle_balance && !need_resched()) {
1208 		rq->nohz_idle_balance = flags;
1209 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1210 	}
1211 }
1212 
1213 #endif /* CONFIG_NO_HZ_COMMON */
1214 
1215 #ifdef CONFIG_NO_HZ_FULL
1216 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1217 {
1218 	if (rq->nr_running != 1)
1219 		return false;
1220 
1221 	if (p->sched_class != &fair_sched_class)
1222 		return false;
1223 
1224 	if (!task_on_rq_queued(p))
1225 		return false;
1226 
1227 	return true;
1228 }
1229 
1230 bool sched_can_stop_tick(struct rq *rq)
1231 {
1232 	int fifo_nr_running;
1233 
1234 	/* Deadline tasks, even if single, need the tick */
1235 	if (rq->dl.dl_nr_running)
1236 		return false;
1237 
1238 	/*
1239 	 * If there are more than one RR tasks, we need the tick to affect the
1240 	 * actual RR behaviour.
1241 	 */
1242 	if (rq->rt.rr_nr_running) {
1243 		if (rq->rt.rr_nr_running == 1)
1244 			return true;
1245 		else
1246 			return false;
1247 	}
1248 
1249 	/*
1250 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1251 	 * forced preemption between FIFO tasks.
1252 	 */
1253 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1254 	if (fifo_nr_running)
1255 		return true;
1256 
1257 	/*
1258 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1259 	 * if there's more than one we need the tick for involuntary
1260 	 * preemption.
1261 	 */
1262 	if (rq->nr_running > 1)
1263 		return false;
1264 
1265 	/*
1266 	 * If there is one task and it has CFS runtime bandwidth constraints
1267 	 * and it's on the cpu now we don't want to stop the tick.
1268 	 * This check prevents clearing the bit if a newly enqueued task here is
1269 	 * dequeued by migrating while the constrained task continues to run.
1270 	 * E.g. going from 2->1 without going through pick_next_task().
1271 	 */
1272 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1273 		if (cfs_task_bw_constrained(rq->curr))
1274 			return false;
1275 	}
1276 
1277 	return true;
1278 }
1279 #endif /* CONFIG_NO_HZ_FULL */
1280 #endif /* CONFIG_SMP */
1281 
1282 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1283 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1284 /*
1285  * Iterate task_group tree rooted at *from, calling @down when first entering a
1286  * node and @up when leaving it for the final time.
1287  *
1288  * Caller must hold rcu_lock or sufficient equivalent.
1289  */
1290 int walk_tg_tree_from(struct task_group *from,
1291 			     tg_visitor down, tg_visitor up, void *data)
1292 {
1293 	struct task_group *parent, *child;
1294 	int ret;
1295 
1296 	parent = from;
1297 
1298 down:
1299 	ret = (*down)(parent, data);
1300 	if (ret)
1301 		goto out;
1302 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1303 		parent = child;
1304 		goto down;
1305 
1306 up:
1307 		continue;
1308 	}
1309 	ret = (*up)(parent, data);
1310 	if (ret || parent == from)
1311 		goto out;
1312 
1313 	child = parent;
1314 	parent = parent->parent;
1315 	if (parent)
1316 		goto up;
1317 out:
1318 	return ret;
1319 }
1320 
1321 int tg_nop(struct task_group *tg, void *data)
1322 {
1323 	return 0;
1324 }
1325 #endif
1326 
1327 static void set_load_weight(struct task_struct *p, bool update_load)
1328 {
1329 	int prio = p->static_prio - MAX_RT_PRIO;
1330 	struct load_weight *load = &p->se.load;
1331 
1332 	/*
1333 	 * SCHED_IDLE tasks get minimal weight:
1334 	 */
1335 	if (task_has_idle_policy(p)) {
1336 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1337 		load->inv_weight = WMULT_IDLEPRIO;
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * SCHED_OTHER tasks have to update their load when changing their
1343 	 * weight
1344 	 */
1345 	if (update_load && p->sched_class == &fair_sched_class) {
1346 		reweight_task(p, prio);
1347 	} else {
1348 		load->weight = scale_load(sched_prio_to_weight[prio]);
1349 		load->inv_weight = sched_prio_to_wmult[prio];
1350 	}
1351 }
1352 
1353 #ifdef CONFIG_UCLAMP_TASK
1354 /*
1355  * Serializes updates of utilization clamp values
1356  *
1357  * The (slow-path) user-space triggers utilization clamp value updates which
1358  * can require updates on (fast-path) scheduler's data structures used to
1359  * support enqueue/dequeue operations.
1360  * While the per-CPU rq lock protects fast-path update operations, user-space
1361  * requests are serialized using a mutex to reduce the risk of conflicting
1362  * updates or API abuses.
1363  */
1364 static DEFINE_MUTEX(uclamp_mutex);
1365 
1366 /* Max allowed minimum utilization */
1367 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1368 
1369 /* Max allowed maximum utilization */
1370 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1371 
1372 /*
1373  * By default RT tasks run at the maximum performance point/capacity of the
1374  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1375  * SCHED_CAPACITY_SCALE.
1376  *
1377  * This knob allows admins to change the default behavior when uclamp is being
1378  * used. In battery powered devices, particularly, running at the maximum
1379  * capacity and frequency will increase energy consumption and shorten the
1380  * battery life.
1381  *
1382  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1383  *
1384  * This knob will not override the system default sched_util_clamp_min defined
1385  * above.
1386  */
1387 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1388 
1389 /* All clamps are required to be less or equal than these values */
1390 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1391 
1392 /*
1393  * This static key is used to reduce the uclamp overhead in the fast path. It
1394  * primarily disables the call to uclamp_rq_{inc, dec}() in
1395  * enqueue/dequeue_task().
1396  *
1397  * This allows users to continue to enable uclamp in their kernel config with
1398  * minimum uclamp overhead in the fast path.
1399  *
1400  * As soon as userspace modifies any of the uclamp knobs, the static key is
1401  * enabled, since we have an actual users that make use of uclamp
1402  * functionality.
1403  *
1404  * The knobs that would enable this static key are:
1405  *
1406  *   * A task modifying its uclamp value with sched_setattr().
1407  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1408  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1409  */
1410 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1411 
1412 /* Integer rounded range for each bucket */
1413 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1414 
1415 #define for_each_clamp_id(clamp_id) \
1416 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1417 
1418 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1419 {
1420 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1421 }
1422 
1423 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1424 {
1425 	if (clamp_id == UCLAMP_MIN)
1426 		return 0;
1427 	return SCHED_CAPACITY_SCALE;
1428 }
1429 
1430 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1431 				 unsigned int value, bool user_defined)
1432 {
1433 	uc_se->value = value;
1434 	uc_se->bucket_id = uclamp_bucket_id(value);
1435 	uc_se->user_defined = user_defined;
1436 }
1437 
1438 static inline unsigned int
1439 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1440 		  unsigned int clamp_value)
1441 {
1442 	/*
1443 	 * Avoid blocked utilization pushing up the frequency when we go
1444 	 * idle (which drops the max-clamp) by retaining the last known
1445 	 * max-clamp.
1446 	 */
1447 	if (clamp_id == UCLAMP_MAX) {
1448 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1449 		return clamp_value;
1450 	}
1451 
1452 	return uclamp_none(UCLAMP_MIN);
1453 }
1454 
1455 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1456 				     unsigned int clamp_value)
1457 {
1458 	/* Reset max-clamp retention only on idle exit */
1459 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1460 		return;
1461 
1462 	uclamp_rq_set(rq, clamp_id, clamp_value);
1463 }
1464 
1465 static inline
1466 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1467 				   unsigned int clamp_value)
1468 {
1469 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1470 	int bucket_id = UCLAMP_BUCKETS - 1;
1471 
1472 	/*
1473 	 * Since both min and max clamps are max aggregated, find the
1474 	 * top most bucket with tasks in.
1475 	 */
1476 	for ( ; bucket_id >= 0; bucket_id--) {
1477 		if (!bucket[bucket_id].tasks)
1478 			continue;
1479 		return bucket[bucket_id].value;
1480 	}
1481 
1482 	/* No tasks -- default clamp values */
1483 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1484 }
1485 
1486 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1487 {
1488 	unsigned int default_util_min;
1489 	struct uclamp_se *uc_se;
1490 
1491 	lockdep_assert_held(&p->pi_lock);
1492 
1493 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1494 
1495 	/* Only sync if user didn't override the default */
1496 	if (uc_se->user_defined)
1497 		return;
1498 
1499 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1500 	uclamp_se_set(uc_se, default_util_min, false);
1501 }
1502 
1503 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1504 {
1505 	if (!rt_task(p))
1506 		return;
1507 
1508 	/* Protect updates to p->uclamp_* */
1509 	guard(task_rq_lock)(p);
1510 	__uclamp_update_util_min_rt_default(p);
1511 }
1512 
1513 static inline struct uclamp_se
1514 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1515 {
1516 	/* Copy by value as we could modify it */
1517 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1518 #ifdef CONFIG_UCLAMP_TASK_GROUP
1519 	unsigned int tg_min, tg_max, value;
1520 
1521 	/*
1522 	 * Tasks in autogroups or root task group will be
1523 	 * restricted by system defaults.
1524 	 */
1525 	if (task_group_is_autogroup(task_group(p)))
1526 		return uc_req;
1527 	if (task_group(p) == &root_task_group)
1528 		return uc_req;
1529 
1530 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1531 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1532 	value = uc_req.value;
1533 	value = clamp(value, tg_min, tg_max);
1534 	uclamp_se_set(&uc_req, value, false);
1535 #endif
1536 
1537 	return uc_req;
1538 }
1539 
1540 /*
1541  * The effective clamp bucket index of a task depends on, by increasing
1542  * priority:
1543  * - the task specific clamp value, when explicitly requested from userspace
1544  * - the task group effective clamp value, for tasks not either in the root
1545  *   group or in an autogroup
1546  * - the system default clamp value, defined by the sysadmin
1547  */
1548 static inline struct uclamp_se
1549 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1550 {
1551 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1552 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1553 
1554 	/* System default restrictions always apply */
1555 	if (unlikely(uc_req.value > uc_max.value))
1556 		return uc_max;
1557 
1558 	return uc_req;
1559 }
1560 
1561 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1562 {
1563 	struct uclamp_se uc_eff;
1564 
1565 	/* Task currently refcounted: use back-annotated (effective) value */
1566 	if (p->uclamp[clamp_id].active)
1567 		return (unsigned long)p->uclamp[clamp_id].value;
1568 
1569 	uc_eff = uclamp_eff_get(p, clamp_id);
1570 
1571 	return (unsigned long)uc_eff.value;
1572 }
1573 
1574 /*
1575  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1576  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1577  * updates the rq's clamp value if required.
1578  *
1579  * Tasks can have a task-specific value requested from user-space, track
1580  * within each bucket the maximum value for tasks refcounted in it.
1581  * This "local max aggregation" allows to track the exact "requested" value
1582  * for each bucket when all its RUNNABLE tasks require the same clamp.
1583  */
1584 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1585 				    enum uclamp_id clamp_id)
1586 {
1587 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1588 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1589 	struct uclamp_bucket *bucket;
1590 
1591 	lockdep_assert_rq_held(rq);
1592 
1593 	/* Update task effective clamp */
1594 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1595 
1596 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1597 	bucket->tasks++;
1598 	uc_se->active = true;
1599 
1600 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1601 
1602 	/*
1603 	 * Local max aggregation: rq buckets always track the max
1604 	 * "requested" clamp value of its RUNNABLE tasks.
1605 	 */
1606 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1607 		bucket->value = uc_se->value;
1608 
1609 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1610 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1611 }
1612 
1613 /*
1614  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1615  * is released. If this is the last task reference counting the rq's max
1616  * active clamp value, then the rq's clamp value is updated.
1617  *
1618  * Both refcounted tasks and rq's cached clamp values are expected to be
1619  * always valid. If it's detected they are not, as defensive programming,
1620  * enforce the expected state and warn.
1621  */
1622 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1623 				    enum uclamp_id clamp_id)
1624 {
1625 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1626 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1627 	struct uclamp_bucket *bucket;
1628 	unsigned int bkt_clamp;
1629 	unsigned int rq_clamp;
1630 
1631 	lockdep_assert_rq_held(rq);
1632 
1633 	/*
1634 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1635 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1636 	 *
1637 	 * In this case the uc_se->active flag should be false since no uclamp
1638 	 * accounting was performed at enqueue time and we can just return
1639 	 * here.
1640 	 *
1641 	 * Need to be careful of the following enqueue/dequeue ordering
1642 	 * problem too
1643 	 *
1644 	 *	enqueue(taskA)
1645 	 *	// sched_uclamp_used gets enabled
1646 	 *	enqueue(taskB)
1647 	 *	dequeue(taskA)
1648 	 *	// Must not decrement bucket->tasks here
1649 	 *	dequeue(taskB)
1650 	 *
1651 	 * where we could end up with stale data in uc_se and
1652 	 * bucket[uc_se->bucket_id].
1653 	 *
1654 	 * The following check here eliminates the possibility of such race.
1655 	 */
1656 	if (unlikely(!uc_se->active))
1657 		return;
1658 
1659 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1660 
1661 	SCHED_WARN_ON(!bucket->tasks);
1662 	if (likely(bucket->tasks))
1663 		bucket->tasks--;
1664 
1665 	uc_se->active = false;
1666 
1667 	/*
1668 	 * Keep "local max aggregation" simple and accept to (possibly)
1669 	 * overboost some RUNNABLE tasks in the same bucket.
1670 	 * The rq clamp bucket value is reset to its base value whenever
1671 	 * there are no more RUNNABLE tasks refcounting it.
1672 	 */
1673 	if (likely(bucket->tasks))
1674 		return;
1675 
1676 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1677 	/*
1678 	 * Defensive programming: this should never happen. If it happens,
1679 	 * e.g. due to future modification, warn and fixup the expected value.
1680 	 */
1681 	SCHED_WARN_ON(bucket->value > rq_clamp);
1682 	if (bucket->value >= rq_clamp) {
1683 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1684 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1685 	}
1686 }
1687 
1688 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1689 {
1690 	enum uclamp_id clamp_id;
1691 
1692 	/*
1693 	 * Avoid any overhead until uclamp is actually used by the userspace.
1694 	 *
1695 	 * The condition is constructed such that a NOP is generated when
1696 	 * sched_uclamp_used is disabled.
1697 	 */
1698 	if (!static_branch_unlikely(&sched_uclamp_used))
1699 		return;
1700 
1701 	if (unlikely(!p->sched_class->uclamp_enabled))
1702 		return;
1703 
1704 	for_each_clamp_id(clamp_id)
1705 		uclamp_rq_inc_id(rq, p, clamp_id);
1706 
1707 	/* Reset clamp idle holding when there is one RUNNABLE task */
1708 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1709 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1710 }
1711 
1712 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1713 {
1714 	enum uclamp_id clamp_id;
1715 
1716 	/*
1717 	 * Avoid any overhead until uclamp is actually used by the userspace.
1718 	 *
1719 	 * The condition is constructed such that a NOP is generated when
1720 	 * sched_uclamp_used is disabled.
1721 	 */
1722 	if (!static_branch_unlikely(&sched_uclamp_used))
1723 		return;
1724 
1725 	if (unlikely(!p->sched_class->uclamp_enabled))
1726 		return;
1727 
1728 	for_each_clamp_id(clamp_id)
1729 		uclamp_rq_dec_id(rq, p, clamp_id);
1730 }
1731 
1732 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1733 				      enum uclamp_id clamp_id)
1734 {
1735 	if (!p->uclamp[clamp_id].active)
1736 		return;
1737 
1738 	uclamp_rq_dec_id(rq, p, clamp_id);
1739 	uclamp_rq_inc_id(rq, p, clamp_id);
1740 
1741 	/*
1742 	 * Make sure to clear the idle flag if we've transiently reached 0
1743 	 * active tasks on rq.
1744 	 */
1745 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1746 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1747 }
1748 
1749 static inline void
1750 uclamp_update_active(struct task_struct *p)
1751 {
1752 	enum uclamp_id clamp_id;
1753 	struct rq_flags rf;
1754 	struct rq *rq;
1755 
1756 	/*
1757 	 * Lock the task and the rq where the task is (or was) queued.
1758 	 *
1759 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1760 	 * price to pay to safely serialize util_{min,max} updates with
1761 	 * enqueues, dequeues and migration operations.
1762 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1763 	 */
1764 	rq = task_rq_lock(p, &rf);
1765 
1766 	/*
1767 	 * Setting the clamp bucket is serialized by task_rq_lock().
1768 	 * If the task is not yet RUNNABLE and its task_struct is not
1769 	 * affecting a valid clamp bucket, the next time it's enqueued,
1770 	 * it will already see the updated clamp bucket value.
1771 	 */
1772 	for_each_clamp_id(clamp_id)
1773 		uclamp_rq_reinc_id(rq, p, clamp_id);
1774 
1775 	task_rq_unlock(rq, p, &rf);
1776 }
1777 
1778 #ifdef CONFIG_UCLAMP_TASK_GROUP
1779 static inline void
1780 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1781 {
1782 	struct css_task_iter it;
1783 	struct task_struct *p;
1784 
1785 	css_task_iter_start(css, 0, &it);
1786 	while ((p = css_task_iter_next(&it)))
1787 		uclamp_update_active(p);
1788 	css_task_iter_end(&it);
1789 }
1790 
1791 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1792 #endif
1793 
1794 #ifdef CONFIG_SYSCTL
1795 #ifdef CONFIG_UCLAMP_TASK_GROUP
1796 static void uclamp_update_root_tg(void)
1797 {
1798 	struct task_group *tg = &root_task_group;
1799 
1800 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1801 		      sysctl_sched_uclamp_util_min, false);
1802 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1803 		      sysctl_sched_uclamp_util_max, false);
1804 
1805 	guard(rcu)();
1806 	cpu_util_update_eff(&root_task_group.css);
1807 }
1808 #else
1809 static void uclamp_update_root_tg(void) { }
1810 #endif
1811 
1812 static void uclamp_sync_util_min_rt_default(void)
1813 {
1814 	struct task_struct *g, *p;
1815 
1816 	/*
1817 	 * copy_process()			sysctl_uclamp
1818 	 *					  uclamp_min_rt = X;
1819 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1820 	 *   // link thread			  smp_mb__after_spinlock()
1821 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1822 	 *   sched_post_fork()			  for_each_process_thread()
1823 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1824 	 *
1825 	 * Ensures that either sched_post_fork() will observe the new
1826 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1827 	 * task.
1828 	 */
1829 	read_lock(&tasklist_lock);
1830 	smp_mb__after_spinlock();
1831 	read_unlock(&tasklist_lock);
1832 
1833 	guard(rcu)();
1834 	for_each_process_thread(g, p)
1835 		uclamp_update_util_min_rt_default(p);
1836 }
1837 
1838 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1839 				void *buffer, size_t *lenp, loff_t *ppos)
1840 {
1841 	bool update_root_tg = false;
1842 	int old_min, old_max, old_min_rt;
1843 	int result;
1844 
1845 	guard(mutex)(&uclamp_mutex);
1846 
1847 	old_min = sysctl_sched_uclamp_util_min;
1848 	old_max = sysctl_sched_uclamp_util_max;
1849 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1850 
1851 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1852 	if (result)
1853 		goto undo;
1854 	if (!write)
1855 		return 0;
1856 
1857 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1858 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1859 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1860 
1861 		result = -EINVAL;
1862 		goto undo;
1863 	}
1864 
1865 	if (old_min != sysctl_sched_uclamp_util_min) {
1866 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1867 			      sysctl_sched_uclamp_util_min, false);
1868 		update_root_tg = true;
1869 	}
1870 	if (old_max != sysctl_sched_uclamp_util_max) {
1871 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1872 			      sysctl_sched_uclamp_util_max, false);
1873 		update_root_tg = true;
1874 	}
1875 
1876 	if (update_root_tg) {
1877 		static_branch_enable(&sched_uclamp_used);
1878 		uclamp_update_root_tg();
1879 	}
1880 
1881 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1882 		static_branch_enable(&sched_uclamp_used);
1883 		uclamp_sync_util_min_rt_default();
1884 	}
1885 
1886 	/*
1887 	 * We update all RUNNABLE tasks only when task groups are in use.
1888 	 * Otherwise, keep it simple and do just a lazy update at each next
1889 	 * task enqueue time.
1890 	 */
1891 	return 0;
1892 
1893 undo:
1894 	sysctl_sched_uclamp_util_min = old_min;
1895 	sysctl_sched_uclamp_util_max = old_max;
1896 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1897 	return result;
1898 }
1899 #endif
1900 
1901 static int uclamp_validate(struct task_struct *p,
1902 			   const struct sched_attr *attr)
1903 {
1904 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1905 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1906 
1907 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1908 		util_min = attr->sched_util_min;
1909 
1910 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1911 			return -EINVAL;
1912 	}
1913 
1914 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1915 		util_max = attr->sched_util_max;
1916 
1917 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1918 			return -EINVAL;
1919 	}
1920 
1921 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1922 		return -EINVAL;
1923 
1924 	/*
1925 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1926 	 *
1927 	 * We need to do that here, because enabling static branches is a
1928 	 * blocking operation which obviously cannot be done while holding
1929 	 * scheduler locks.
1930 	 */
1931 	static_branch_enable(&sched_uclamp_used);
1932 
1933 	return 0;
1934 }
1935 
1936 static bool uclamp_reset(const struct sched_attr *attr,
1937 			 enum uclamp_id clamp_id,
1938 			 struct uclamp_se *uc_se)
1939 {
1940 	/* Reset on sched class change for a non user-defined clamp value. */
1941 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1942 	    !uc_se->user_defined)
1943 		return true;
1944 
1945 	/* Reset on sched_util_{min,max} == -1. */
1946 	if (clamp_id == UCLAMP_MIN &&
1947 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1948 	    attr->sched_util_min == -1) {
1949 		return true;
1950 	}
1951 
1952 	if (clamp_id == UCLAMP_MAX &&
1953 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1954 	    attr->sched_util_max == -1) {
1955 		return true;
1956 	}
1957 
1958 	return false;
1959 }
1960 
1961 static void __setscheduler_uclamp(struct task_struct *p,
1962 				  const struct sched_attr *attr)
1963 {
1964 	enum uclamp_id clamp_id;
1965 
1966 	for_each_clamp_id(clamp_id) {
1967 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1968 		unsigned int value;
1969 
1970 		if (!uclamp_reset(attr, clamp_id, uc_se))
1971 			continue;
1972 
1973 		/*
1974 		 * RT by default have a 100% boost value that could be modified
1975 		 * at runtime.
1976 		 */
1977 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1978 			value = sysctl_sched_uclamp_util_min_rt_default;
1979 		else
1980 			value = uclamp_none(clamp_id);
1981 
1982 		uclamp_se_set(uc_se, value, false);
1983 
1984 	}
1985 
1986 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1987 		return;
1988 
1989 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1990 	    attr->sched_util_min != -1) {
1991 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1992 			      attr->sched_util_min, true);
1993 	}
1994 
1995 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1996 	    attr->sched_util_max != -1) {
1997 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1998 			      attr->sched_util_max, true);
1999 	}
2000 }
2001 
2002 static void uclamp_fork(struct task_struct *p)
2003 {
2004 	enum uclamp_id clamp_id;
2005 
2006 	/*
2007 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2008 	 * as the task is still at its early fork stages.
2009 	 */
2010 	for_each_clamp_id(clamp_id)
2011 		p->uclamp[clamp_id].active = false;
2012 
2013 	if (likely(!p->sched_reset_on_fork))
2014 		return;
2015 
2016 	for_each_clamp_id(clamp_id) {
2017 		uclamp_se_set(&p->uclamp_req[clamp_id],
2018 			      uclamp_none(clamp_id), false);
2019 	}
2020 }
2021 
2022 static void uclamp_post_fork(struct task_struct *p)
2023 {
2024 	uclamp_update_util_min_rt_default(p);
2025 }
2026 
2027 static void __init init_uclamp_rq(struct rq *rq)
2028 {
2029 	enum uclamp_id clamp_id;
2030 	struct uclamp_rq *uc_rq = rq->uclamp;
2031 
2032 	for_each_clamp_id(clamp_id) {
2033 		uc_rq[clamp_id] = (struct uclamp_rq) {
2034 			.value = uclamp_none(clamp_id)
2035 		};
2036 	}
2037 
2038 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2039 }
2040 
2041 static void __init init_uclamp(void)
2042 {
2043 	struct uclamp_se uc_max = {};
2044 	enum uclamp_id clamp_id;
2045 	int cpu;
2046 
2047 	for_each_possible_cpu(cpu)
2048 		init_uclamp_rq(cpu_rq(cpu));
2049 
2050 	for_each_clamp_id(clamp_id) {
2051 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2052 			      uclamp_none(clamp_id), false);
2053 	}
2054 
2055 	/* System defaults allow max clamp values for both indexes */
2056 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2057 	for_each_clamp_id(clamp_id) {
2058 		uclamp_default[clamp_id] = uc_max;
2059 #ifdef CONFIG_UCLAMP_TASK_GROUP
2060 		root_task_group.uclamp_req[clamp_id] = uc_max;
2061 		root_task_group.uclamp[clamp_id] = uc_max;
2062 #endif
2063 	}
2064 }
2065 
2066 #else /* !CONFIG_UCLAMP_TASK */
2067 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2068 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2069 static inline int uclamp_validate(struct task_struct *p,
2070 				  const struct sched_attr *attr)
2071 {
2072 	return -EOPNOTSUPP;
2073 }
2074 static void __setscheduler_uclamp(struct task_struct *p,
2075 				  const struct sched_attr *attr) { }
2076 static inline void uclamp_fork(struct task_struct *p) { }
2077 static inline void uclamp_post_fork(struct task_struct *p) { }
2078 static inline void init_uclamp(void) { }
2079 #endif /* CONFIG_UCLAMP_TASK */
2080 
2081 bool sched_task_on_rq(struct task_struct *p)
2082 {
2083 	return task_on_rq_queued(p);
2084 }
2085 
2086 unsigned long get_wchan(struct task_struct *p)
2087 {
2088 	unsigned long ip = 0;
2089 	unsigned int state;
2090 
2091 	if (!p || p == current)
2092 		return 0;
2093 
2094 	/* Only get wchan if task is blocked and we can keep it that way. */
2095 	raw_spin_lock_irq(&p->pi_lock);
2096 	state = READ_ONCE(p->__state);
2097 	smp_rmb(); /* see try_to_wake_up() */
2098 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2099 		ip = __get_wchan(p);
2100 	raw_spin_unlock_irq(&p->pi_lock);
2101 
2102 	return ip;
2103 }
2104 
2105 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 	if (!(flags & ENQUEUE_NOCLOCK))
2108 		update_rq_clock(rq);
2109 
2110 	if (!(flags & ENQUEUE_RESTORE)) {
2111 		sched_info_enqueue(rq, p);
2112 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2113 	}
2114 
2115 	uclamp_rq_inc(rq, p);
2116 	p->sched_class->enqueue_task(rq, p, flags);
2117 
2118 	if (sched_core_enabled(rq))
2119 		sched_core_enqueue(rq, p);
2120 }
2121 
2122 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2123 {
2124 	if (sched_core_enabled(rq))
2125 		sched_core_dequeue(rq, p, flags);
2126 
2127 	if (!(flags & DEQUEUE_NOCLOCK))
2128 		update_rq_clock(rq);
2129 
2130 	if (!(flags & DEQUEUE_SAVE)) {
2131 		sched_info_dequeue(rq, p);
2132 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2133 	}
2134 
2135 	uclamp_rq_dec(rq, p);
2136 	p->sched_class->dequeue_task(rq, p, flags);
2137 }
2138 
2139 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2140 {
2141 	if (task_on_rq_migrating(p))
2142 		flags |= ENQUEUE_MIGRATED;
2143 	if (flags & ENQUEUE_MIGRATED)
2144 		sched_mm_cid_migrate_to(rq, p);
2145 
2146 	enqueue_task(rq, p, flags);
2147 
2148 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2149 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2150 }
2151 
2152 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2153 {
2154 	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2155 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2156 
2157 	dequeue_task(rq, p, flags);
2158 }
2159 
2160 static inline int __normal_prio(int policy, int rt_prio, int nice)
2161 {
2162 	int prio;
2163 
2164 	if (dl_policy(policy))
2165 		prio = MAX_DL_PRIO - 1;
2166 	else if (rt_policy(policy))
2167 		prio = MAX_RT_PRIO - 1 - rt_prio;
2168 	else
2169 		prio = NICE_TO_PRIO(nice);
2170 
2171 	return prio;
2172 }
2173 
2174 /*
2175  * Calculate the expected normal priority: i.e. priority
2176  * without taking RT-inheritance into account. Might be
2177  * boosted by interactivity modifiers. Changes upon fork,
2178  * setprio syscalls, and whenever the interactivity
2179  * estimator recalculates.
2180  */
2181 static inline int normal_prio(struct task_struct *p)
2182 {
2183 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2184 }
2185 
2186 /*
2187  * Calculate the current priority, i.e. the priority
2188  * taken into account by the scheduler. This value might
2189  * be boosted by RT tasks, or might be boosted by
2190  * interactivity modifiers. Will be RT if the task got
2191  * RT-boosted. If not then it returns p->normal_prio.
2192  */
2193 static int effective_prio(struct task_struct *p)
2194 {
2195 	p->normal_prio = normal_prio(p);
2196 	/*
2197 	 * If we are RT tasks or we were boosted to RT priority,
2198 	 * keep the priority unchanged. Otherwise, update priority
2199 	 * to the normal priority:
2200 	 */
2201 	if (!rt_prio(p->prio))
2202 		return p->normal_prio;
2203 	return p->prio;
2204 }
2205 
2206 /**
2207  * task_curr - is this task currently executing on a CPU?
2208  * @p: the task in question.
2209  *
2210  * Return: 1 if the task is currently executing. 0 otherwise.
2211  */
2212 inline int task_curr(const struct task_struct *p)
2213 {
2214 	return cpu_curr(task_cpu(p)) == p;
2215 }
2216 
2217 /*
2218  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2219  * use the balance_callback list if you want balancing.
2220  *
2221  * this means any call to check_class_changed() must be followed by a call to
2222  * balance_callback().
2223  */
2224 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2225 				       const struct sched_class *prev_class,
2226 				       int oldprio)
2227 {
2228 	if (prev_class != p->sched_class) {
2229 		if (prev_class->switched_from)
2230 			prev_class->switched_from(rq, p);
2231 
2232 		p->sched_class->switched_to(rq, p);
2233 	} else if (oldprio != p->prio || dl_task(p))
2234 		p->sched_class->prio_changed(rq, p, oldprio);
2235 }
2236 
2237 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2238 {
2239 	if (p->sched_class == rq->curr->sched_class)
2240 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2241 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2242 		resched_curr(rq);
2243 
2244 	/*
2245 	 * A queue event has occurred, and we're going to schedule.  In
2246 	 * this case, we can save a useless back to back clock update.
2247 	 */
2248 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2249 		rq_clock_skip_update(rq);
2250 }
2251 
2252 static __always_inline
2253 int __task_state_match(struct task_struct *p, unsigned int state)
2254 {
2255 	if (READ_ONCE(p->__state) & state)
2256 		return 1;
2257 
2258 	if (READ_ONCE(p->saved_state) & state)
2259 		return -1;
2260 
2261 	return 0;
2262 }
2263 
2264 static __always_inline
2265 int task_state_match(struct task_struct *p, unsigned int state)
2266 {
2267 	/*
2268 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2269 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2270 	 */
2271 	guard(raw_spinlock_irq)(&p->pi_lock);
2272 	return __task_state_match(p, state);
2273 }
2274 
2275 /*
2276  * wait_task_inactive - wait for a thread to unschedule.
2277  *
2278  * Wait for the thread to block in any of the states set in @match_state.
2279  * If it changes, i.e. @p might have woken up, then return zero.  When we
2280  * succeed in waiting for @p to be off its CPU, we return a positive number
2281  * (its total switch count).  If a second call a short while later returns the
2282  * same number, the caller can be sure that @p has remained unscheduled the
2283  * whole time.
2284  *
2285  * The caller must ensure that the task *will* unschedule sometime soon,
2286  * else this function might spin for a *long* time. This function can't
2287  * be called with interrupts off, or it may introduce deadlock with
2288  * smp_call_function() if an IPI is sent by the same process we are
2289  * waiting to become inactive.
2290  */
2291 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2292 {
2293 	int running, queued, match;
2294 	struct rq_flags rf;
2295 	unsigned long ncsw;
2296 	struct rq *rq;
2297 
2298 	for (;;) {
2299 		/*
2300 		 * We do the initial early heuristics without holding
2301 		 * any task-queue locks at all. We'll only try to get
2302 		 * the runqueue lock when things look like they will
2303 		 * work out!
2304 		 */
2305 		rq = task_rq(p);
2306 
2307 		/*
2308 		 * If the task is actively running on another CPU
2309 		 * still, just relax and busy-wait without holding
2310 		 * any locks.
2311 		 *
2312 		 * NOTE! Since we don't hold any locks, it's not
2313 		 * even sure that "rq" stays as the right runqueue!
2314 		 * But we don't care, since "task_on_cpu()" will
2315 		 * return false if the runqueue has changed and p
2316 		 * is actually now running somewhere else!
2317 		 */
2318 		while (task_on_cpu(rq, p)) {
2319 			if (!task_state_match(p, match_state))
2320 				return 0;
2321 			cpu_relax();
2322 		}
2323 
2324 		/*
2325 		 * Ok, time to look more closely! We need the rq
2326 		 * lock now, to be *sure*. If we're wrong, we'll
2327 		 * just go back and repeat.
2328 		 */
2329 		rq = task_rq_lock(p, &rf);
2330 		trace_sched_wait_task(p);
2331 		running = task_on_cpu(rq, p);
2332 		queued = task_on_rq_queued(p);
2333 		ncsw = 0;
2334 		if ((match = __task_state_match(p, match_state))) {
2335 			/*
2336 			 * When matching on p->saved_state, consider this task
2337 			 * still queued so it will wait.
2338 			 */
2339 			if (match < 0)
2340 				queued = 1;
2341 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2342 		}
2343 		task_rq_unlock(rq, p, &rf);
2344 
2345 		/*
2346 		 * If it changed from the expected state, bail out now.
2347 		 */
2348 		if (unlikely(!ncsw))
2349 			break;
2350 
2351 		/*
2352 		 * Was it really running after all now that we
2353 		 * checked with the proper locks actually held?
2354 		 *
2355 		 * Oops. Go back and try again..
2356 		 */
2357 		if (unlikely(running)) {
2358 			cpu_relax();
2359 			continue;
2360 		}
2361 
2362 		/*
2363 		 * It's not enough that it's not actively running,
2364 		 * it must be off the runqueue _entirely_, and not
2365 		 * preempted!
2366 		 *
2367 		 * So if it was still runnable (but just not actively
2368 		 * running right now), it's preempted, and we should
2369 		 * yield - it could be a while.
2370 		 */
2371 		if (unlikely(queued)) {
2372 			ktime_t to = NSEC_PER_SEC / HZ;
2373 
2374 			set_current_state(TASK_UNINTERRUPTIBLE);
2375 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2376 			continue;
2377 		}
2378 
2379 		/*
2380 		 * Ahh, all good. It wasn't running, and it wasn't
2381 		 * runnable, which means that it will never become
2382 		 * running in the future either. We're all done!
2383 		 */
2384 		break;
2385 	}
2386 
2387 	return ncsw;
2388 }
2389 
2390 #ifdef CONFIG_SMP
2391 
2392 static void
2393 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2394 
2395 static int __set_cpus_allowed_ptr(struct task_struct *p,
2396 				  struct affinity_context *ctx);
2397 
2398 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2399 {
2400 	struct affinity_context ac = {
2401 		.new_mask  = cpumask_of(rq->cpu),
2402 		.flags     = SCA_MIGRATE_DISABLE,
2403 	};
2404 
2405 	if (likely(!p->migration_disabled))
2406 		return;
2407 
2408 	if (p->cpus_ptr != &p->cpus_mask)
2409 		return;
2410 
2411 	/*
2412 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2413 	 */
2414 	__do_set_cpus_allowed(p, &ac);
2415 }
2416 
2417 void migrate_disable(void)
2418 {
2419 	struct task_struct *p = current;
2420 
2421 	if (p->migration_disabled) {
2422 		p->migration_disabled++;
2423 		return;
2424 	}
2425 
2426 	guard(preempt)();
2427 	this_rq()->nr_pinned++;
2428 	p->migration_disabled = 1;
2429 }
2430 EXPORT_SYMBOL_GPL(migrate_disable);
2431 
2432 void migrate_enable(void)
2433 {
2434 	struct task_struct *p = current;
2435 	struct affinity_context ac = {
2436 		.new_mask  = &p->cpus_mask,
2437 		.flags     = SCA_MIGRATE_ENABLE,
2438 	};
2439 
2440 	if (p->migration_disabled > 1) {
2441 		p->migration_disabled--;
2442 		return;
2443 	}
2444 
2445 	if (WARN_ON_ONCE(!p->migration_disabled))
2446 		return;
2447 
2448 	/*
2449 	 * Ensure stop_task runs either before or after this, and that
2450 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2451 	 */
2452 	guard(preempt)();
2453 	if (p->cpus_ptr != &p->cpus_mask)
2454 		__set_cpus_allowed_ptr(p, &ac);
2455 	/*
2456 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2457 	 * regular cpus_mask, otherwise things that race (eg.
2458 	 * select_fallback_rq) get confused.
2459 	 */
2460 	barrier();
2461 	p->migration_disabled = 0;
2462 	this_rq()->nr_pinned--;
2463 }
2464 EXPORT_SYMBOL_GPL(migrate_enable);
2465 
2466 static inline bool rq_has_pinned_tasks(struct rq *rq)
2467 {
2468 	return rq->nr_pinned;
2469 }
2470 
2471 /*
2472  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2473  * __set_cpus_allowed_ptr() and select_fallback_rq().
2474  */
2475 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2476 {
2477 	/* When not in the task's cpumask, no point in looking further. */
2478 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2479 		return false;
2480 
2481 	/* migrate_disabled() must be allowed to finish. */
2482 	if (is_migration_disabled(p))
2483 		return cpu_online(cpu);
2484 
2485 	/* Non kernel threads are not allowed during either online or offline. */
2486 	if (!(p->flags & PF_KTHREAD))
2487 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2488 
2489 	/* KTHREAD_IS_PER_CPU is always allowed. */
2490 	if (kthread_is_per_cpu(p))
2491 		return cpu_online(cpu);
2492 
2493 	/* Regular kernel threads don't get to stay during offline. */
2494 	if (cpu_dying(cpu))
2495 		return false;
2496 
2497 	/* But are allowed during online. */
2498 	return cpu_online(cpu);
2499 }
2500 
2501 /*
2502  * This is how migration works:
2503  *
2504  * 1) we invoke migration_cpu_stop() on the target CPU using
2505  *    stop_one_cpu().
2506  * 2) stopper starts to run (implicitly forcing the migrated thread
2507  *    off the CPU)
2508  * 3) it checks whether the migrated task is still in the wrong runqueue.
2509  * 4) if it's in the wrong runqueue then the migration thread removes
2510  *    it and puts it into the right queue.
2511  * 5) stopper completes and stop_one_cpu() returns and the migration
2512  *    is done.
2513  */
2514 
2515 /*
2516  * move_queued_task - move a queued task to new rq.
2517  *
2518  * Returns (locked) new rq. Old rq's lock is released.
2519  */
2520 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2521 				   struct task_struct *p, int new_cpu)
2522 {
2523 	lockdep_assert_rq_held(rq);
2524 
2525 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2526 	set_task_cpu(p, new_cpu);
2527 	rq_unlock(rq, rf);
2528 
2529 	rq = cpu_rq(new_cpu);
2530 
2531 	rq_lock(rq, rf);
2532 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2533 	activate_task(rq, p, 0);
2534 	wakeup_preempt(rq, p, 0);
2535 
2536 	return rq;
2537 }
2538 
2539 struct migration_arg {
2540 	struct task_struct		*task;
2541 	int				dest_cpu;
2542 	struct set_affinity_pending	*pending;
2543 };
2544 
2545 /*
2546  * @refs: number of wait_for_completion()
2547  * @stop_pending: is @stop_work in use
2548  */
2549 struct set_affinity_pending {
2550 	refcount_t		refs;
2551 	unsigned int		stop_pending;
2552 	struct completion	done;
2553 	struct cpu_stop_work	stop_work;
2554 	struct migration_arg	arg;
2555 };
2556 
2557 /*
2558  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2559  * this because either it can't run here any more (set_cpus_allowed()
2560  * away from this CPU, or CPU going down), or because we're
2561  * attempting to rebalance this task on exec (sched_exec).
2562  *
2563  * So we race with normal scheduler movements, but that's OK, as long
2564  * as the task is no longer on this CPU.
2565  */
2566 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2567 				 struct task_struct *p, int dest_cpu)
2568 {
2569 	/* Affinity changed (again). */
2570 	if (!is_cpu_allowed(p, dest_cpu))
2571 		return rq;
2572 
2573 	rq = move_queued_task(rq, rf, p, dest_cpu);
2574 
2575 	return rq;
2576 }
2577 
2578 /*
2579  * migration_cpu_stop - this will be executed by a highprio stopper thread
2580  * and performs thread migration by bumping thread off CPU then
2581  * 'pushing' onto another runqueue.
2582  */
2583 static int migration_cpu_stop(void *data)
2584 {
2585 	struct migration_arg *arg = data;
2586 	struct set_affinity_pending *pending = arg->pending;
2587 	struct task_struct *p = arg->task;
2588 	struct rq *rq = this_rq();
2589 	bool complete = false;
2590 	struct rq_flags rf;
2591 
2592 	/*
2593 	 * The original target CPU might have gone down and we might
2594 	 * be on another CPU but it doesn't matter.
2595 	 */
2596 	local_irq_save(rf.flags);
2597 	/*
2598 	 * We need to explicitly wake pending tasks before running
2599 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2600 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2601 	 */
2602 	flush_smp_call_function_queue();
2603 
2604 	raw_spin_lock(&p->pi_lock);
2605 	rq_lock(rq, &rf);
2606 
2607 	/*
2608 	 * If we were passed a pending, then ->stop_pending was set, thus
2609 	 * p->migration_pending must have remained stable.
2610 	 */
2611 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2612 
2613 	/*
2614 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2615 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2616 	 * we're holding p->pi_lock.
2617 	 */
2618 	if (task_rq(p) == rq) {
2619 		if (is_migration_disabled(p))
2620 			goto out;
2621 
2622 		if (pending) {
2623 			p->migration_pending = NULL;
2624 			complete = true;
2625 
2626 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2627 				goto out;
2628 		}
2629 
2630 		if (task_on_rq_queued(p)) {
2631 			update_rq_clock(rq);
2632 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2633 		} else {
2634 			p->wake_cpu = arg->dest_cpu;
2635 		}
2636 
2637 		/*
2638 		 * XXX __migrate_task() can fail, at which point we might end
2639 		 * up running on a dodgy CPU, AFAICT this can only happen
2640 		 * during CPU hotplug, at which point we'll get pushed out
2641 		 * anyway, so it's probably not a big deal.
2642 		 */
2643 
2644 	} else if (pending) {
2645 		/*
2646 		 * This happens when we get migrated between migrate_enable()'s
2647 		 * preempt_enable() and scheduling the stopper task. At that
2648 		 * point we're a regular task again and not current anymore.
2649 		 *
2650 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2651 		 * more likely.
2652 		 */
2653 
2654 		/*
2655 		 * The task moved before the stopper got to run. We're holding
2656 		 * ->pi_lock, so the allowed mask is stable - if it got
2657 		 * somewhere allowed, we're done.
2658 		 */
2659 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2660 			p->migration_pending = NULL;
2661 			complete = true;
2662 			goto out;
2663 		}
2664 
2665 		/*
2666 		 * When migrate_enable() hits a rq mis-match we can't reliably
2667 		 * determine is_migration_disabled() and so have to chase after
2668 		 * it.
2669 		 */
2670 		WARN_ON_ONCE(!pending->stop_pending);
2671 		preempt_disable();
2672 		task_rq_unlock(rq, p, &rf);
2673 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2674 				    &pending->arg, &pending->stop_work);
2675 		preempt_enable();
2676 		return 0;
2677 	}
2678 out:
2679 	if (pending)
2680 		pending->stop_pending = false;
2681 	task_rq_unlock(rq, p, &rf);
2682 
2683 	if (complete)
2684 		complete_all(&pending->done);
2685 
2686 	return 0;
2687 }
2688 
2689 int push_cpu_stop(void *arg)
2690 {
2691 	struct rq *lowest_rq = NULL, *rq = this_rq();
2692 	struct task_struct *p = arg;
2693 
2694 	raw_spin_lock_irq(&p->pi_lock);
2695 	raw_spin_rq_lock(rq);
2696 
2697 	if (task_rq(p) != rq)
2698 		goto out_unlock;
2699 
2700 	if (is_migration_disabled(p)) {
2701 		p->migration_flags |= MDF_PUSH;
2702 		goto out_unlock;
2703 	}
2704 
2705 	p->migration_flags &= ~MDF_PUSH;
2706 
2707 	if (p->sched_class->find_lock_rq)
2708 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2709 
2710 	if (!lowest_rq)
2711 		goto out_unlock;
2712 
2713 	// XXX validate p is still the highest prio task
2714 	if (task_rq(p) == rq) {
2715 		deactivate_task(rq, p, 0);
2716 		set_task_cpu(p, lowest_rq->cpu);
2717 		activate_task(lowest_rq, p, 0);
2718 		resched_curr(lowest_rq);
2719 	}
2720 
2721 	double_unlock_balance(rq, lowest_rq);
2722 
2723 out_unlock:
2724 	rq->push_busy = false;
2725 	raw_spin_rq_unlock(rq);
2726 	raw_spin_unlock_irq(&p->pi_lock);
2727 
2728 	put_task_struct(p);
2729 	return 0;
2730 }
2731 
2732 /*
2733  * sched_class::set_cpus_allowed must do the below, but is not required to
2734  * actually call this function.
2735  */
2736 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2737 {
2738 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2739 		p->cpus_ptr = ctx->new_mask;
2740 		return;
2741 	}
2742 
2743 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2744 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2745 
2746 	/*
2747 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2748 	 */
2749 	if (ctx->flags & SCA_USER)
2750 		swap(p->user_cpus_ptr, ctx->user_mask);
2751 }
2752 
2753 static void
2754 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2755 {
2756 	struct rq *rq = task_rq(p);
2757 	bool queued, running;
2758 
2759 	/*
2760 	 * This here violates the locking rules for affinity, since we're only
2761 	 * supposed to change these variables while holding both rq->lock and
2762 	 * p->pi_lock.
2763 	 *
2764 	 * HOWEVER, it magically works, because ttwu() is the only code that
2765 	 * accesses these variables under p->pi_lock and only does so after
2766 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2767 	 * before finish_task().
2768 	 *
2769 	 * XXX do further audits, this smells like something putrid.
2770 	 */
2771 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2772 		SCHED_WARN_ON(!p->on_cpu);
2773 	else
2774 		lockdep_assert_held(&p->pi_lock);
2775 
2776 	queued = task_on_rq_queued(p);
2777 	running = task_current(rq, p);
2778 
2779 	if (queued) {
2780 		/*
2781 		 * Because __kthread_bind() calls this on blocked tasks without
2782 		 * holding rq->lock.
2783 		 */
2784 		lockdep_assert_rq_held(rq);
2785 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2786 	}
2787 	if (running)
2788 		put_prev_task(rq, p);
2789 
2790 	p->sched_class->set_cpus_allowed(p, ctx);
2791 
2792 	if (queued)
2793 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2794 	if (running)
2795 		set_next_task(rq, p);
2796 }
2797 
2798 /*
2799  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2800  * affinity (if any) should be destroyed too.
2801  */
2802 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2803 {
2804 	struct affinity_context ac = {
2805 		.new_mask  = new_mask,
2806 		.user_mask = NULL,
2807 		.flags     = SCA_USER,	/* clear the user requested mask */
2808 	};
2809 	union cpumask_rcuhead {
2810 		cpumask_t cpumask;
2811 		struct rcu_head rcu;
2812 	};
2813 
2814 	__do_set_cpus_allowed(p, &ac);
2815 
2816 	/*
2817 	 * Because this is called with p->pi_lock held, it is not possible
2818 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2819 	 * kfree_rcu().
2820 	 */
2821 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2822 }
2823 
2824 static cpumask_t *alloc_user_cpus_ptr(int node)
2825 {
2826 	/*
2827 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2828 	 */
2829 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2830 
2831 	return kmalloc_node(size, GFP_KERNEL, node);
2832 }
2833 
2834 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2835 		      int node)
2836 {
2837 	cpumask_t *user_mask;
2838 	unsigned long flags;
2839 
2840 	/*
2841 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2842 	 * may differ by now due to racing.
2843 	 */
2844 	dst->user_cpus_ptr = NULL;
2845 
2846 	/*
2847 	 * This check is racy and losing the race is a valid situation.
2848 	 * It is not worth the extra overhead of taking the pi_lock on
2849 	 * every fork/clone.
2850 	 */
2851 	if (data_race(!src->user_cpus_ptr))
2852 		return 0;
2853 
2854 	user_mask = alloc_user_cpus_ptr(node);
2855 	if (!user_mask)
2856 		return -ENOMEM;
2857 
2858 	/*
2859 	 * Use pi_lock to protect content of user_cpus_ptr
2860 	 *
2861 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2862 	 * do_set_cpus_allowed().
2863 	 */
2864 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2865 	if (src->user_cpus_ptr) {
2866 		swap(dst->user_cpus_ptr, user_mask);
2867 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2868 	}
2869 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2870 
2871 	if (unlikely(user_mask))
2872 		kfree(user_mask);
2873 
2874 	return 0;
2875 }
2876 
2877 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2878 {
2879 	struct cpumask *user_mask = NULL;
2880 
2881 	swap(p->user_cpus_ptr, user_mask);
2882 
2883 	return user_mask;
2884 }
2885 
2886 void release_user_cpus_ptr(struct task_struct *p)
2887 {
2888 	kfree(clear_user_cpus_ptr(p));
2889 }
2890 
2891 /*
2892  * This function is wildly self concurrent; here be dragons.
2893  *
2894  *
2895  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2896  * designated task is enqueued on an allowed CPU. If that task is currently
2897  * running, we have to kick it out using the CPU stopper.
2898  *
2899  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2900  * Consider:
2901  *
2902  *     Initial conditions: P0->cpus_mask = [0, 1]
2903  *
2904  *     P0@CPU0                  P1
2905  *
2906  *     migrate_disable();
2907  *     <preempted>
2908  *                              set_cpus_allowed_ptr(P0, [1]);
2909  *
2910  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2911  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2912  * This means we need the following scheme:
2913  *
2914  *     P0@CPU0                  P1
2915  *
2916  *     migrate_disable();
2917  *     <preempted>
2918  *                              set_cpus_allowed_ptr(P0, [1]);
2919  *                                <blocks>
2920  *     <resumes>
2921  *     migrate_enable();
2922  *       __set_cpus_allowed_ptr();
2923  *       <wakes local stopper>
2924  *                         `--> <woken on migration completion>
2925  *
2926  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2927  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2928  * task p are serialized by p->pi_lock, which we can leverage: the one that
2929  * should come into effect at the end of the Migrate-Disable region is the last
2930  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2931  * but we still need to properly signal those waiting tasks at the appropriate
2932  * moment.
2933  *
2934  * This is implemented using struct set_affinity_pending. The first
2935  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2936  * setup an instance of that struct and install it on the targeted task_struct.
2937  * Any and all further callers will reuse that instance. Those then wait for
2938  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2939  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2940  *
2941  *
2942  * (1) In the cases covered above. There is one more where the completion is
2943  * signaled within affine_move_task() itself: when a subsequent affinity request
2944  * occurs after the stopper bailed out due to the targeted task still being
2945  * Migrate-Disable. Consider:
2946  *
2947  *     Initial conditions: P0->cpus_mask = [0, 1]
2948  *
2949  *     CPU0		  P1				P2
2950  *     <P0>
2951  *       migrate_disable();
2952  *       <preempted>
2953  *                        set_cpus_allowed_ptr(P0, [1]);
2954  *                          <blocks>
2955  *     <migration/0>
2956  *       migration_cpu_stop()
2957  *         is_migration_disabled()
2958  *           <bails>
2959  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2960  *                                                         <signal completion>
2961  *                          <awakes>
2962  *
2963  * Note that the above is safe vs a concurrent migrate_enable(), as any
2964  * pending affinity completion is preceded by an uninstallation of
2965  * p->migration_pending done with p->pi_lock held.
2966  */
2967 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2968 			    int dest_cpu, unsigned int flags)
2969 	__releases(rq->lock)
2970 	__releases(p->pi_lock)
2971 {
2972 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2973 	bool stop_pending, complete = false;
2974 
2975 	/* Can the task run on the task's current CPU? If so, we're done */
2976 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2977 		struct task_struct *push_task = NULL;
2978 
2979 		if ((flags & SCA_MIGRATE_ENABLE) &&
2980 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2981 			rq->push_busy = true;
2982 			push_task = get_task_struct(p);
2983 		}
2984 
2985 		/*
2986 		 * If there are pending waiters, but no pending stop_work,
2987 		 * then complete now.
2988 		 */
2989 		pending = p->migration_pending;
2990 		if (pending && !pending->stop_pending) {
2991 			p->migration_pending = NULL;
2992 			complete = true;
2993 		}
2994 
2995 		preempt_disable();
2996 		task_rq_unlock(rq, p, rf);
2997 		if (push_task) {
2998 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2999 					    p, &rq->push_work);
3000 		}
3001 		preempt_enable();
3002 
3003 		if (complete)
3004 			complete_all(&pending->done);
3005 
3006 		return 0;
3007 	}
3008 
3009 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3010 		/* serialized by p->pi_lock */
3011 		if (!p->migration_pending) {
3012 			/* Install the request */
3013 			refcount_set(&my_pending.refs, 1);
3014 			init_completion(&my_pending.done);
3015 			my_pending.arg = (struct migration_arg) {
3016 				.task = p,
3017 				.dest_cpu = dest_cpu,
3018 				.pending = &my_pending,
3019 			};
3020 
3021 			p->migration_pending = &my_pending;
3022 		} else {
3023 			pending = p->migration_pending;
3024 			refcount_inc(&pending->refs);
3025 			/*
3026 			 * Affinity has changed, but we've already installed a
3027 			 * pending. migration_cpu_stop() *must* see this, else
3028 			 * we risk a completion of the pending despite having a
3029 			 * task on a disallowed CPU.
3030 			 *
3031 			 * Serialized by p->pi_lock, so this is safe.
3032 			 */
3033 			pending->arg.dest_cpu = dest_cpu;
3034 		}
3035 	}
3036 	pending = p->migration_pending;
3037 	/*
3038 	 * - !MIGRATE_ENABLE:
3039 	 *   we'll have installed a pending if there wasn't one already.
3040 	 *
3041 	 * - MIGRATE_ENABLE:
3042 	 *   we're here because the current CPU isn't matching anymore,
3043 	 *   the only way that can happen is because of a concurrent
3044 	 *   set_cpus_allowed_ptr() call, which should then still be
3045 	 *   pending completion.
3046 	 *
3047 	 * Either way, we really should have a @pending here.
3048 	 */
3049 	if (WARN_ON_ONCE(!pending)) {
3050 		task_rq_unlock(rq, p, rf);
3051 		return -EINVAL;
3052 	}
3053 
3054 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3055 		/*
3056 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3057 		 * anything else we cannot do is_migration_disabled(), punt
3058 		 * and have the stopper function handle it all race-free.
3059 		 */
3060 		stop_pending = pending->stop_pending;
3061 		if (!stop_pending)
3062 			pending->stop_pending = true;
3063 
3064 		if (flags & SCA_MIGRATE_ENABLE)
3065 			p->migration_flags &= ~MDF_PUSH;
3066 
3067 		preempt_disable();
3068 		task_rq_unlock(rq, p, rf);
3069 		if (!stop_pending) {
3070 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3071 					    &pending->arg, &pending->stop_work);
3072 		}
3073 		preempt_enable();
3074 
3075 		if (flags & SCA_MIGRATE_ENABLE)
3076 			return 0;
3077 	} else {
3078 
3079 		if (!is_migration_disabled(p)) {
3080 			if (task_on_rq_queued(p))
3081 				rq = move_queued_task(rq, rf, p, dest_cpu);
3082 
3083 			if (!pending->stop_pending) {
3084 				p->migration_pending = NULL;
3085 				complete = true;
3086 			}
3087 		}
3088 		task_rq_unlock(rq, p, rf);
3089 
3090 		if (complete)
3091 			complete_all(&pending->done);
3092 	}
3093 
3094 	wait_for_completion(&pending->done);
3095 
3096 	if (refcount_dec_and_test(&pending->refs))
3097 		wake_up_var(&pending->refs); /* No UaF, just an address */
3098 
3099 	/*
3100 	 * Block the original owner of &pending until all subsequent callers
3101 	 * have seen the completion and decremented the refcount
3102 	 */
3103 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3104 
3105 	/* ARGH */
3106 	WARN_ON_ONCE(my_pending.stop_pending);
3107 
3108 	return 0;
3109 }
3110 
3111 /*
3112  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3113  */
3114 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3115 					 struct affinity_context *ctx,
3116 					 struct rq *rq,
3117 					 struct rq_flags *rf)
3118 	__releases(rq->lock)
3119 	__releases(p->pi_lock)
3120 {
3121 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3122 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3123 	bool kthread = p->flags & PF_KTHREAD;
3124 	unsigned int dest_cpu;
3125 	int ret = 0;
3126 
3127 	update_rq_clock(rq);
3128 
3129 	if (kthread || is_migration_disabled(p)) {
3130 		/*
3131 		 * Kernel threads are allowed on online && !active CPUs,
3132 		 * however, during cpu-hot-unplug, even these might get pushed
3133 		 * away if not KTHREAD_IS_PER_CPU.
3134 		 *
3135 		 * Specifically, migration_disabled() tasks must not fail the
3136 		 * cpumask_any_and_distribute() pick below, esp. so on
3137 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3138 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3139 		 */
3140 		cpu_valid_mask = cpu_online_mask;
3141 	}
3142 
3143 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3144 		ret = -EINVAL;
3145 		goto out;
3146 	}
3147 
3148 	/*
3149 	 * Must re-check here, to close a race against __kthread_bind(),
3150 	 * sched_setaffinity() is not guaranteed to observe the flag.
3151 	 */
3152 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3153 		ret = -EINVAL;
3154 		goto out;
3155 	}
3156 
3157 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3158 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3159 			if (ctx->flags & SCA_USER)
3160 				swap(p->user_cpus_ptr, ctx->user_mask);
3161 			goto out;
3162 		}
3163 
3164 		if (WARN_ON_ONCE(p == current &&
3165 				 is_migration_disabled(p) &&
3166 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3167 			ret = -EBUSY;
3168 			goto out;
3169 		}
3170 	}
3171 
3172 	/*
3173 	 * Picking a ~random cpu helps in cases where we are changing affinity
3174 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3175 	 * immediately required to distribute the tasks within their new mask.
3176 	 */
3177 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3178 	if (dest_cpu >= nr_cpu_ids) {
3179 		ret = -EINVAL;
3180 		goto out;
3181 	}
3182 
3183 	__do_set_cpus_allowed(p, ctx);
3184 
3185 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3186 
3187 out:
3188 	task_rq_unlock(rq, p, rf);
3189 
3190 	return ret;
3191 }
3192 
3193 /*
3194  * Change a given task's CPU affinity. Migrate the thread to a
3195  * proper CPU and schedule it away if the CPU it's executing on
3196  * is removed from the allowed bitmask.
3197  *
3198  * NOTE: the caller must have a valid reference to the task, the
3199  * task must not exit() & deallocate itself prematurely. The
3200  * call is not atomic; no spinlocks may be held.
3201  */
3202 static int __set_cpus_allowed_ptr(struct task_struct *p,
3203 				  struct affinity_context *ctx)
3204 {
3205 	struct rq_flags rf;
3206 	struct rq *rq;
3207 
3208 	rq = task_rq_lock(p, &rf);
3209 	/*
3210 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3211 	 * flags are set.
3212 	 */
3213 	if (p->user_cpus_ptr &&
3214 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3215 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3216 		ctx->new_mask = rq->scratch_mask;
3217 
3218 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3219 }
3220 
3221 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3222 {
3223 	struct affinity_context ac = {
3224 		.new_mask  = new_mask,
3225 		.flags     = 0,
3226 	};
3227 
3228 	return __set_cpus_allowed_ptr(p, &ac);
3229 }
3230 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3231 
3232 /*
3233  * Change a given task's CPU affinity to the intersection of its current
3234  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3235  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3236  * affinity or use cpu_online_mask instead.
3237  *
3238  * If the resulting mask is empty, leave the affinity unchanged and return
3239  * -EINVAL.
3240  */
3241 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3242 				     struct cpumask *new_mask,
3243 				     const struct cpumask *subset_mask)
3244 {
3245 	struct affinity_context ac = {
3246 		.new_mask  = new_mask,
3247 		.flags     = 0,
3248 	};
3249 	struct rq_flags rf;
3250 	struct rq *rq;
3251 	int err;
3252 
3253 	rq = task_rq_lock(p, &rf);
3254 
3255 	/*
3256 	 * Forcefully restricting the affinity of a deadline task is
3257 	 * likely to cause problems, so fail and noisily override the
3258 	 * mask entirely.
3259 	 */
3260 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3261 		err = -EPERM;
3262 		goto err_unlock;
3263 	}
3264 
3265 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3266 		err = -EINVAL;
3267 		goto err_unlock;
3268 	}
3269 
3270 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3271 
3272 err_unlock:
3273 	task_rq_unlock(rq, p, &rf);
3274 	return err;
3275 }
3276 
3277 /*
3278  * Restrict the CPU affinity of task @p so that it is a subset of
3279  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3280  * old affinity mask. If the resulting mask is empty, we warn and walk
3281  * up the cpuset hierarchy until we find a suitable mask.
3282  */
3283 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3284 {
3285 	cpumask_var_t new_mask;
3286 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3287 
3288 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3289 
3290 	/*
3291 	 * __migrate_task() can fail silently in the face of concurrent
3292 	 * offlining of the chosen destination CPU, so take the hotplug
3293 	 * lock to ensure that the migration succeeds.
3294 	 */
3295 	cpus_read_lock();
3296 	if (!cpumask_available(new_mask))
3297 		goto out_set_mask;
3298 
3299 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3300 		goto out_free_mask;
3301 
3302 	/*
3303 	 * We failed to find a valid subset of the affinity mask for the
3304 	 * task, so override it based on its cpuset hierarchy.
3305 	 */
3306 	cpuset_cpus_allowed(p, new_mask);
3307 	override_mask = new_mask;
3308 
3309 out_set_mask:
3310 	if (printk_ratelimit()) {
3311 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3312 				task_pid_nr(p), p->comm,
3313 				cpumask_pr_args(override_mask));
3314 	}
3315 
3316 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3317 out_free_mask:
3318 	cpus_read_unlock();
3319 	free_cpumask_var(new_mask);
3320 }
3321 
3322 static int
3323 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3324 
3325 /*
3326  * Restore the affinity of a task @p which was previously restricted by a
3327  * call to force_compatible_cpus_allowed_ptr().
3328  *
3329  * It is the caller's responsibility to serialise this with any calls to
3330  * force_compatible_cpus_allowed_ptr(@p).
3331  */
3332 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3333 {
3334 	struct affinity_context ac = {
3335 		.new_mask  = task_user_cpus(p),
3336 		.flags     = 0,
3337 	};
3338 	int ret;
3339 
3340 	/*
3341 	 * Try to restore the old affinity mask with __sched_setaffinity().
3342 	 * Cpuset masking will be done there too.
3343 	 */
3344 	ret = __sched_setaffinity(p, &ac);
3345 	WARN_ON_ONCE(ret);
3346 }
3347 
3348 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3349 {
3350 #ifdef CONFIG_SCHED_DEBUG
3351 	unsigned int state = READ_ONCE(p->__state);
3352 
3353 	/*
3354 	 * We should never call set_task_cpu() on a blocked task,
3355 	 * ttwu() will sort out the placement.
3356 	 */
3357 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3358 
3359 	/*
3360 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3361 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3362 	 * time relying on p->on_rq.
3363 	 */
3364 	WARN_ON_ONCE(state == TASK_RUNNING &&
3365 		     p->sched_class == &fair_sched_class &&
3366 		     (p->on_rq && !task_on_rq_migrating(p)));
3367 
3368 #ifdef CONFIG_LOCKDEP
3369 	/*
3370 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3371 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3372 	 *
3373 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3374 	 * see task_group().
3375 	 *
3376 	 * Furthermore, all task_rq users should acquire both locks, see
3377 	 * task_rq_lock().
3378 	 */
3379 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3380 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3381 #endif
3382 	/*
3383 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3384 	 */
3385 	WARN_ON_ONCE(!cpu_online(new_cpu));
3386 
3387 	WARN_ON_ONCE(is_migration_disabled(p));
3388 #endif
3389 
3390 	trace_sched_migrate_task(p, new_cpu);
3391 
3392 	if (task_cpu(p) != new_cpu) {
3393 		if (p->sched_class->migrate_task_rq)
3394 			p->sched_class->migrate_task_rq(p, new_cpu);
3395 		p->se.nr_migrations++;
3396 		rseq_migrate(p);
3397 		sched_mm_cid_migrate_from(p);
3398 		perf_event_task_migrate(p);
3399 	}
3400 
3401 	__set_task_cpu(p, new_cpu);
3402 }
3403 
3404 #ifdef CONFIG_NUMA_BALANCING
3405 static void __migrate_swap_task(struct task_struct *p, int cpu)
3406 {
3407 	if (task_on_rq_queued(p)) {
3408 		struct rq *src_rq, *dst_rq;
3409 		struct rq_flags srf, drf;
3410 
3411 		src_rq = task_rq(p);
3412 		dst_rq = cpu_rq(cpu);
3413 
3414 		rq_pin_lock(src_rq, &srf);
3415 		rq_pin_lock(dst_rq, &drf);
3416 
3417 		deactivate_task(src_rq, p, 0);
3418 		set_task_cpu(p, cpu);
3419 		activate_task(dst_rq, p, 0);
3420 		wakeup_preempt(dst_rq, p, 0);
3421 
3422 		rq_unpin_lock(dst_rq, &drf);
3423 		rq_unpin_lock(src_rq, &srf);
3424 
3425 	} else {
3426 		/*
3427 		 * Task isn't running anymore; make it appear like we migrated
3428 		 * it before it went to sleep. This means on wakeup we make the
3429 		 * previous CPU our target instead of where it really is.
3430 		 */
3431 		p->wake_cpu = cpu;
3432 	}
3433 }
3434 
3435 struct migration_swap_arg {
3436 	struct task_struct *src_task, *dst_task;
3437 	int src_cpu, dst_cpu;
3438 };
3439 
3440 static int migrate_swap_stop(void *data)
3441 {
3442 	struct migration_swap_arg *arg = data;
3443 	struct rq *src_rq, *dst_rq;
3444 
3445 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3446 		return -EAGAIN;
3447 
3448 	src_rq = cpu_rq(arg->src_cpu);
3449 	dst_rq = cpu_rq(arg->dst_cpu);
3450 
3451 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3452 	guard(double_rq_lock)(src_rq, dst_rq);
3453 
3454 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3455 		return -EAGAIN;
3456 
3457 	if (task_cpu(arg->src_task) != arg->src_cpu)
3458 		return -EAGAIN;
3459 
3460 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3461 		return -EAGAIN;
3462 
3463 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3464 		return -EAGAIN;
3465 
3466 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3467 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3468 
3469 	return 0;
3470 }
3471 
3472 /*
3473  * Cross migrate two tasks
3474  */
3475 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3476 		int target_cpu, int curr_cpu)
3477 {
3478 	struct migration_swap_arg arg;
3479 	int ret = -EINVAL;
3480 
3481 	arg = (struct migration_swap_arg){
3482 		.src_task = cur,
3483 		.src_cpu = curr_cpu,
3484 		.dst_task = p,
3485 		.dst_cpu = target_cpu,
3486 	};
3487 
3488 	if (arg.src_cpu == arg.dst_cpu)
3489 		goto out;
3490 
3491 	/*
3492 	 * These three tests are all lockless; this is OK since all of them
3493 	 * will be re-checked with proper locks held further down the line.
3494 	 */
3495 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3496 		goto out;
3497 
3498 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3499 		goto out;
3500 
3501 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3502 		goto out;
3503 
3504 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3505 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3506 
3507 out:
3508 	return ret;
3509 }
3510 #endif /* CONFIG_NUMA_BALANCING */
3511 
3512 /***
3513  * kick_process - kick a running thread to enter/exit the kernel
3514  * @p: the to-be-kicked thread
3515  *
3516  * Cause a process which is running on another CPU to enter
3517  * kernel-mode, without any delay. (to get signals handled.)
3518  *
3519  * NOTE: this function doesn't have to take the runqueue lock,
3520  * because all it wants to ensure is that the remote task enters
3521  * the kernel. If the IPI races and the task has been migrated
3522  * to another CPU then no harm is done and the purpose has been
3523  * achieved as well.
3524  */
3525 void kick_process(struct task_struct *p)
3526 {
3527 	guard(preempt)();
3528 	int cpu = task_cpu(p);
3529 
3530 	if ((cpu != smp_processor_id()) && task_curr(p))
3531 		smp_send_reschedule(cpu);
3532 }
3533 EXPORT_SYMBOL_GPL(kick_process);
3534 
3535 /*
3536  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3537  *
3538  * A few notes on cpu_active vs cpu_online:
3539  *
3540  *  - cpu_active must be a subset of cpu_online
3541  *
3542  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3543  *    see __set_cpus_allowed_ptr(). At this point the newly online
3544  *    CPU isn't yet part of the sched domains, and balancing will not
3545  *    see it.
3546  *
3547  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3548  *    avoid the load balancer to place new tasks on the to be removed
3549  *    CPU. Existing tasks will remain running there and will be taken
3550  *    off.
3551  *
3552  * This means that fallback selection must not select !active CPUs.
3553  * And can assume that any active CPU must be online. Conversely
3554  * select_task_rq() below may allow selection of !active CPUs in order
3555  * to satisfy the above rules.
3556  */
3557 static int select_fallback_rq(int cpu, struct task_struct *p)
3558 {
3559 	int nid = cpu_to_node(cpu);
3560 	const struct cpumask *nodemask = NULL;
3561 	enum { cpuset, possible, fail } state = cpuset;
3562 	int dest_cpu;
3563 
3564 	/*
3565 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3566 	 * will return -1. There is no CPU on the node, and we should
3567 	 * select the CPU on the other node.
3568 	 */
3569 	if (nid != -1) {
3570 		nodemask = cpumask_of_node(nid);
3571 
3572 		/* Look for allowed, online CPU in same node. */
3573 		for_each_cpu(dest_cpu, nodemask) {
3574 			if (is_cpu_allowed(p, dest_cpu))
3575 				return dest_cpu;
3576 		}
3577 	}
3578 
3579 	for (;;) {
3580 		/* Any allowed, online CPU? */
3581 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3582 			if (!is_cpu_allowed(p, dest_cpu))
3583 				continue;
3584 
3585 			goto out;
3586 		}
3587 
3588 		/* No more Mr. Nice Guy. */
3589 		switch (state) {
3590 		case cpuset:
3591 			if (cpuset_cpus_allowed_fallback(p)) {
3592 				state = possible;
3593 				break;
3594 			}
3595 			fallthrough;
3596 		case possible:
3597 			/*
3598 			 * XXX When called from select_task_rq() we only
3599 			 * hold p->pi_lock and again violate locking order.
3600 			 *
3601 			 * More yuck to audit.
3602 			 */
3603 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3604 			state = fail;
3605 			break;
3606 		case fail:
3607 			BUG();
3608 			break;
3609 		}
3610 	}
3611 
3612 out:
3613 	if (state != cpuset) {
3614 		/*
3615 		 * Don't tell them about moving exiting tasks or
3616 		 * kernel threads (both mm NULL), since they never
3617 		 * leave kernel.
3618 		 */
3619 		if (p->mm && printk_ratelimit()) {
3620 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3621 					task_pid_nr(p), p->comm, cpu);
3622 		}
3623 	}
3624 
3625 	return dest_cpu;
3626 }
3627 
3628 /*
3629  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3630  */
3631 static inline
3632 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3633 {
3634 	lockdep_assert_held(&p->pi_lock);
3635 
3636 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3637 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3638 	else
3639 		cpu = cpumask_any(p->cpus_ptr);
3640 
3641 	/*
3642 	 * In order not to call set_task_cpu() on a blocking task we need
3643 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3644 	 * CPU.
3645 	 *
3646 	 * Since this is common to all placement strategies, this lives here.
3647 	 *
3648 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3649 	 *   not worry about this generic constraint ]
3650 	 */
3651 	if (unlikely(!is_cpu_allowed(p, cpu)))
3652 		cpu = select_fallback_rq(task_cpu(p), p);
3653 
3654 	return cpu;
3655 }
3656 
3657 void sched_set_stop_task(int cpu, struct task_struct *stop)
3658 {
3659 	static struct lock_class_key stop_pi_lock;
3660 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3661 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3662 
3663 	if (stop) {
3664 		/*
3665 		 * Make it appear like a SCHED_FIFO task, its something
3666 		 * userspace knows about and won't get confused about.
3667 		 *
3668 		 * Also, it will make PI more or less work without too
3669 		 * much confusion -- but then, stop work should not
3670 		 * rely on PI working anyway.
3671 		 */
3672 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3673 
3674 		stop->sched_class = &stop_sched_class;
3675 
3676 		/*
3677 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3678 		 * adjust the effective priority of a task. As a result,
3679 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3680 		 * which can then trigger wakeups of the stop thread to push
3681 		 * around the current task.
3682 		 *
3683 		 * The stop task itself will never be part of the PI-chain, it
3684 		 * never blocks, therefore that ->pi_lock recursion is safe.
3685 		 * Tell lockdep about this by placing the stop->pi_lock in its
3686 		 * own class.
3687 		 */
3688 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3689 	}
3690 
3691 	cpu_rq(cpu)->stop = stop;
3692 
3693 	if (old_stop) {
3694 		/*
3695 		 * Reset it back to a normal scheduling class so that
3696 		 * it can die in pieces.
3697 		 */
3698 		old_stop->sched_class = &rt_sched_class;
3699 	}
3700 }
3701 
3702 #else /* CONFIG_SMP */
3703 
3704 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3705 					 struct affinity_context *ctx)
3706 {
3707 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3708 }
3709 
3710 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3711 
3712 static inline bool rq_has_pinned_tasks(struct rq *rq)
3713 {
3714 	return false;
3715 }
3716 
3717 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3718 {
3719 	return NULL;
3720 }
3721 
3722 #endif /* !CONFIG_SMP */
3723 
3724 static void
3725 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3726 {
3727 	struct rq *rq;
3728 
3729 	if (!schedstat_enabled())
3730 		return;
3731 
3732 	rq = this_rq();
3733 
3734 #ifdef CONFIG_SMP
3735 	if (cpu == rq->cpu) {
3736 		__schedstat_inc(rq->ttwu_local);
3737 		__schedstat_inc(p->stats.nr_wakeups_local);
3738 	} else {
3739 		struct sched_domain *sd;
3740 
3741 		__schedstat_inc(p->stats.nr_wakeups_remote);
3742 
3743 		guard(rcu)();
3744 		for_each_domain(rq->cpu, sd) {
3745 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3746 				__schedstat_inc(sd->ttwu_wake_remote);
3747 				break;
3748 			}
3749 		}
3750 	}
3751 
3752 	if (wake_flags & WF_MIGRATED)
3753 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3754 #endif /* CONFIG_SMP */
3755 
3756 	__schedstat_inc(rq->ttwu_count);
3757 	__schedstat_inc(p->stats.nr_wakeups);
3758 
3759 	if (wake_flags & WF_SYNC)
3760 		__schedstat_inc(p->stats.nr_wakeups_sync);
3761 }
3762 
3763 /*
3764  * Mark the task runnable.
3765  */
3766 static inline void ttwu_do_wakeup(struct task_struct *p)
3767 {
3768 	WRITE_ONCE(p->__state, TASK_RUNNING);
3769 	trace_sched_wakeup(p);
3770 }
3771 
3772 static void
3773 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3774 		 struct rq_flags *rf)
3775 {
3776 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3777 
3778 	lockdep_assert_rq_held(rq);
3779 
3780 	if (p->sched_contributes_to_load)
3781 		rq->nr_uninterruptible--;
3782 
3783 #ifdef CONFIG_SMP
3784 	if (wake_flags & WF_MIGRATED)
3785 		en_flags |= ENQUEUE_MIGRATED;
3786 	else
3787 #endif
3788 	if (p->in_iowait) {
3789 		delayacct_blkio_end(p);
3790 		atomic_dec(&task_rq(p)->nr_iowait);
3791 	}
3792 
3793 	activate_task(rq, p, en_flags);
3794 	wakeup_preempt(rq, p, wake_flags);
3795 
3796 	ttwu_do_wakeup(p);
3797 
3798 #ifdef CONFIG_SMP
3799 	if (p->sched_class->task_woken) {
3800 		/*
3801 		 * Our task @p is fully woken up and running; so it's safe to
3802 		 * drop the rq->lock, hereafter rq is only used for statistics.
3803 		 */
3804 		rq_unpin_lock(rq, rf);
3805 		p->sched_class->task_woken(rq, p);
3806 		rq_repin_lock(rq, rf);
3807 	}
3808 
3809 	if (rq->idle_stamp) {
3810 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3811 		u64 max = 2*rq->max_idle_balance_cost;
3812 
3813 		update_avg(&rq->avg_idle, delta);
3814 
3815 		if (rq->avg_idle > max)
3816 			rq->avg_idle = max;
3817 
3818 		rq->idle_stamp = 0;
3819 	}
3820 #endif
3821 
3822 	p->dl_server = NULL;
3823 }
3824 
3825 /*
3826  * Consider @p being inside a wait loop:
3827  *
3828  *   for (;;) {
3829  *      set_current_state(TASK_UNINTERRUPTIBLE);
3830  *
3831  *      if (CONDITION)
3832  *         break;
3833  *
3834  *      schedule();
3835  *   }
3836  *   __set_current_state(TASK_RUNNING);
3837  *
3838  * between set_current_state() and schedule(). In this case @p is still
3839  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3840  * an atomic manner.
3841  *
3842  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3843  * then schedule() must still happen and p->state can be changed to
3844  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3845  * need to do a full wakeup with enqueue.
3846  *
3847  * Returns: %true when the wakeup is done,
3848  *          %false otherwise.
3849  */
3850 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3851 {
3852 	struct rq_flags rf;
3853 	struct rq *rq;
3854 	int ret = 0;
3855 
3856 	rq = __task_rq_lock(p, &rf);
3857 	if (task_on_rq_queued(p)) {
3858 		if (!task_on_cpu(rq, p)) {
3859 			/*
3860 			 * When on_rq && !on_cpu the task is preempted, see if
3861 			 * it should preempt the task that is current now.
3862 			 */
3863 			update_rq_clock(rq);
3864 			wakeup_preempt(rq, p, wake_flags);
3865 		}
3866 		ttwu_do_wakeup(p);
3867 		ret = 1;
3868 	}
3869 	__task_rq_unlock(rq, &rf);
3870 
3871 	return ret;
3872 }
3873 
3874 #ifdef CONFIG_SMP
3875 void sched_ttwu_pending(void *arg)
3876 {
3877 	struct llist_node *llist = arg;
3878 	struct rq *rq = this_rq();
3879 	struct task_struct *p, *t;
3880 	struct rq_flags rf;
3881 
3882 	if (!llist)
3883 		return;
3884 
3885 	rq_lock_irqsave(rq, &rf);
3886 	update_rq_clock(rq);
3887 
3888 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3889 		if (WARN_ON_ONCE(p->on_cpu))
3890 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3891 
3892 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3893 			set_task_cpu(p, cpu_of(rq));
3894 
3895 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3896 	}
3897 
3898 	/*
3899 	 * Must be after enqueueing at least once task such that
3900 	 * idle_cpu() does not observe a false-negative -- if it does,
3901 	 * it is possible for select_idle_siblings() to stack a number
3902 	 * of tasks on this CPU during that window.
3903 	 *
3904 	 * It is ok to clear ttwu_pending when another task pending.
3905 	 * We will receive IPI after local irq enabled and then enqueue it.
3906 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3907 	 */
3908 	WRITE_ONCE(rq->ttwu_pending, 0);
3909 	rq_unlock_irqrestore(rq, &rf);
3910 }
3911 
3912 /*
3913  * Prepare the scene for sending an IPI for a remote smp_call
3914  *
3915  * Returns true if the caller can proceed with sending the IPI.
3916  * Returns false otherwise.
3917  */
3918 bool call_function_single_prep_ipi(int cpu)
3919 {
3920 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3921 		trace_sched_wake_idle_without_ipi(cpu);
3922 		return false;
3923 	}
3924 
3925 	return true;
3926 }
3927 
3928 /*
3929  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3930  * necessary. The wakee CPU on receipt of the IPI will queue the task
3931  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3932  * of the wakeup instead of the waker.
3933  */
3934 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3935 {
3936 	struct rq *rq = cpu_rq(cpu);
3937 
3938 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3939 
3940 	WRITE_ONCE(rq->ttwu_pending, 1);
3941 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3942 }
3943 
3944 void wake_up_if_idle(int cpu)
3945 {
3946 	struct rq *rq = cpu_rq(cpu);
3947 
3948 	guard(rcu)();
3949 	if (is_idle_task(rcu_dereference(rq->curr))) {
3950 		guard(rq_lock_irqsave)(rq);
3951 		if (is_idle_task(rq->curr))
3952 			resched_curr(rq);
3953 	}
3954 }
3955 
3956 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3957 {
3958 	if (!sched_asym_cpucap_active())
3959 		return true;
3960 
3961 	if (this_cpu == that_cpu)
3962 		return true;
3963 
3964 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3965 }
3966 
3967 bool cpus_share_cache(int this_cpu, int that_cpu)
3968 {
3969 	if (this_cpu == that_cpu)
3970 		return true;
3971 
3972 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3973 }
3974 
3975 /*
3976  * Whether CPUs are share cache resources, which means LLC on non-cluster
3977  * machines and LLC tag or L2 on machines with clusters.
3978  */
3979 bool cpus_share_resources(int this_cpu, int that_cpu)
3980 {
3981 	if (this_cpu == that_cpu)
3982 		return true;
3983 
3984 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3985 }
3986 
3987 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3988 {
3989 	/*
3990 	 * Do not complicate things with the async wake_list while the CPU is
3991 	 * in hotplug state.
3992 	 */
3993 	if (!cpu_active(cpu))
3994 		return false;
3995 
3996 	/* Ensure the task will still be allowed to run on the CPU. */
3997 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3998 		return false;
3999 
4000 	/*
4001 	 * If the CPU does not share cache, then queue the task on the
4002 	 * remote rqs wakelist to avoid accessing remote data.
4003 	 */
4004 	if (!cpus_share_cache(smp_processor_id(), cpu))
4005 		return true;
4006 
4007 	if (cpu == smp_processor_id())
4008 		return false;
4009 
4010 	/*
4011 	 * If the wakee cpu is idle, or the task is descheduling and the
4012 	 * only running task on the CPU, then use the wakelist to offload
4013 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4014 	 * the current CPU is likely busy. nr_running is checked to
4015 	 * avoid unnecessary task stacking.
4016 	 *
4017 	 * Note that we can only get here with (wakee) p->on_rq=0,
4018 	 * p->on_cpu can be whatever, we've done the dequeue, so
4019 	 * the wakee has been accounted out of ->nr_running.
4020 	 */
4021 	if (!cpu_rq(cpu)->nr_running)
4022 		return true;
4023 
4024 	return false;
4025 }
4026 
4027 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4028 {
4029 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4030 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4031 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4032 		return true;
4033 	}
4034 
4035 	return false;
4036 }
4037 
4038 #else /* !CONFIG_SMP */
4039 
4040 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4041 {
4042 	return false;
4043 }
4044 
4045 #endif /* CONFIG_SMP */
4046 
4047 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4048 {
4049 	struct rq *rq = cpu_rq(cpu);
4050 	struct rq_flags rf;
4051 
4052 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4053 		return;
4054 
4055 	rq_lock(rq, &rf);
4056 	update_rq_clock(rq);
4057 	ttwu_do_activate(rq, p, wake_flags, &rf);
4058 	rq_unlock(rq, &rf);
4059 }
4060 
4061 /*
4062  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4063  *
4064  * The caller holds p::pi_lock if p != current or has preemption
4065  * disabled when p == current.
4066  *
4067  * The rules of saved_state:
4068  *
4069  *   The related locking code always holds p::pi_lock when updating
4070  *   p::saved_state, which means the code is fully serialized in both cases.
4071  *
4072  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4073  *   No other bits set. This allows to distinguish all wakeup scenarios.
4074  *
4075  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4076  *   allows us to prevent early wakeup of tasks before they can be run on
4077  *   asymmetric ISA architectures (eg ARMv9).
4078  */
4079 static __always_inline
4080 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4081 {
4082 	int match;
4083 
4084 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4085 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4086 			     state != TASK_RTLOCK_WAIT);
4087 	}
4088 
4089 	*success = !!(match = __task_state_match(p, state));
4090 
4091 	/*
4092 	 * Saved state preserves the task state across blocking on
4093 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4094 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4095 	 * because it waits for a lock wakeup or __thaw_task(). Also
4096 	 * indicate success because from the regular waker's point of
4097 	 * view this has succeeded.
4098 	 *
4099 	 * After acquiring the lock the task will restore p::__state
4100 	 * from p::saved_state which ensures that the regular
4101 	 * wakeup is not lost. The restore will also set
4102 	 * p::saved_state to TASK_RUNNING so any further tests will
4103 	 * not result in false positives vs. @success
4104 	 */
4105 	if (match < 0)
4106 		p->saved_state = TASK_RUNNING;
4107 
4108 	return match > 0;
4109 }
4110 
4111 /*
4112  * Notes on Program-Order guarantees on SMP systems.
4113  *
4114  *  MIGRATION
4115  *
4116  * The basic program-order guarantee on SMP systems is that when a task [t]
4117  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4118  * execution on its new CPU [c1].
4119  *
4120  * For migration (of runnable tasks) this is provided by the following means:
4121  *
4122  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4123  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4124  *     rq(c1)->lock (if not at the same time, then in that order).
4125  *  C) LOCK of the rq(c1)->lock scheduling in task
4126  *
4127  * Release/acquire chaining guarantees that B happens after A and C after B.
4128  * Note: the CPU doing B need not be c0 or c1
4129  *
4130  * Example:
4131  *
4132  *   CPU0            CPU1            CPU2
4133  *
4134  *   LOCK rq(0)->lock
4135  *   sched-out X
4136  *   sched-in Y
4137  *   UNLOCK rq(0)->lock
4138  *
4139  *                                   LOCK rq(0)->lock // orders against CPU0
4140  *                                   dequeue X
4141  *                                   UNLOCK rq(0)->lock
4142  *
4143  *                                   LOCK rq(1)->lock
4144  *                                   enqueue X
4145  *                                   UNLOCK rq(1)->lock
4146  *
4147  *                   LOCK rq(1)->lock // orders against CPU2
4148  *                   sched-out Z
4149  *                   sched-in X
4150  *                   UNLOCK rq(1)->lock
4151  *
4152  *
4153  *  BLOCKING -- aka. SLEEP + WAKEUP
4154  *
4155  * For blocking we (obviously) need to provide the same guarantee as for
4156  * migration. However the means are completely different as there is no lock
4157  * chain to provide order. Instead we do:
4158  *
4159  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4160  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4161  *
4162  * Example:
4163  *
4164  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4165  *
4166  *   LOCK rq(0)->lock LOCK X->pi_lock
4167  *   dequeue X
4168  *   sched-out X
4169  *   smp_store_release(X->on_cpu, 0);
4170  *
4171  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4172  *                    X->state = WAKING
4173  *                    set_task_cpu(X,2)
4174  *
4175  *                    LOCK rq(2)->lock
4176  *                    enqueue X
4177  *                    X->state = RUNNING
4178  *                    UNLOCK rq(2)->lock
4179  *
4180  *                                          LOCK rq(2)->lock // orders against CPU1
4181  *                                          sched-out Z
4182  *                                          sched-in X
4183  *                                          UNLOCK rq(2)->lock
4184  *
4185  *                    UNLOCK X->pi_lock
4186  *   UNLOCK rq(0)->lock
4187  *
4188  *
4189  * However, for wakeups there is a second guarantee we must provide, namely we
4190  * must ensure that CONDITION=1 done by the caller can not be reordered with
4191  * accesses to the task state; see try_to_wake_up() and set_current_state().
4192  */
4193 
4194 /**
4195  * try_to_wake_up - wake up a thread
4196  * @p: the thread to be awakened
4197  * @state: the mask of task states that can be woken
4198  * @wake_flags: wake modifier flags (WF_*)
4199  *
4200  * Conceptually does:
4201  *
4202  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4203  *
4204  * If the task was not queued/runnable, also place it back on a runqueue.
4205  *
4206  * This function is atomic against schedule() which would dequeue the task.
4207  *
4208  * It issues a full memory barrier before accessing @p->state, see the comment
4209  * with set_current_state().
4210  *
4211  * Uses p->pi_lock to serialize against concurrent wake-ups.
4212  *
4213  * Relies on p->pi_lock stabilizing:
4214  *  - p->sched_class
4215  *  - p->cpus_ptr
4216  *  - p->sched_task_group
4217  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4218  *
4219  * Tries really hard to only take one task_rq(p)->lock for performance.
4220  * Takes rq->lock in:
4221  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4222  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4223  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4224  *
4225  * As a consequence we race really badly with just about everything. See the
4226  * many memory barriers and their comments for details.
4227  *
4228  * Return: %true if @p->state changes (an actual wakeup was done),
4229  *	   %false otherwise.
4230  */
4231 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4232 {
4233 	guard(preempt)();
4234 	int cpu, success = 0;
4235 
4236 	if (p == current) {
4237 		/*
4238 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4239 		 * == smp_processor_id()'. Together this means we can special
4240 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4241 		 * without taking any locks.
4242 		 *
4243 		 * In particular:
4244 		 *  - we rely on Program-Order guarantees for all the ordering,
4245 		 *  - we're serialized against set_special_state() by virtue of
4246 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4247 		 */
4248 		if (!ttwu_state_match(p, state, &success))
4249 			goto out;
4250 
4251 		trace_sched_waking(p);
4252 		ttwu_do_wakeup(p);
4253 		goto out;
4254 	}
4255 
4256 	/*
4257 	 * If we are going to wake up a thread waiting for CONDITION we
4258 	 * need to ensure that CONDITION=1 done by the caller can not be
4259 	 * reordered with p->state check below. This pairs with smp_store_mb()
4260 	 * in set_current_state() that the waiting thread does.
4261 	 */
4262 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4263 		smp_mb__after_spinlock();
4264 		if (!ttwu_state_match(p, state, &success))
4265 			break;
4266 
4267 		trace_sched_waking(p);
4268 
4269 		/*
4270 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4271 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4272 		 * in smp_cond_load_acquire() below.
4273 		 *
4274 		 * sched_ttwu_pending()			try_to_wake_up()
4275 		 *   STORE p->on_rq = 1			  LOAD p->state
4276 		 *   UNLOCK rq->lock
4277 		 *
4278 		 * __schedule() (switch to task 'p')
4279 		 *   LOCK rq->lock			  smp_rmb();
4280 		 *   smp_mb__after_spinlock();
4281 		 *   UNLOCK rq->lock
4282 		 *
4283 		 * [task p]
4284 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4285 		 *
4286 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4287 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4288 		 *
4289 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4290 		 */
4291 		smp_rmb();
4292 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4293 			break;
4294 
4295 #ifdef CONFIG_SMP
4296 		/*
4297 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4298 		 * possible to, falsely, observe p->on_cpu == 0.
4299 		 *
4300 		 * One must be running (->on_cpu == 1) in order to remove oneself
4301 		 * from the runqueue.
4302 		 *
4303 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4304 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4305 		 *   UNLOCK rq->lock
4306 		 *
4307 		 * __schedule() (put 'p' to sleep)
4308 		 *   LOCK rq->lock			  smp_rmb();
4309 		 *   smp_mb__after_spinlock();
4310 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4311 		 *
4312 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4313 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4314 		 *
4315 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4316 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4317 		 * care about it's own p->state. See the comment in __schedule().
4318 		 */
4319 		smp_acquire__after_ctrl_dep();
4320 
4321 		/*
4322 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4323 		 * == 0), which means we need to do an enqueue, change p->state to
4324 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4325 		 * enqueue, such as ttwu_queue_wakelist().
4326 		 */
4327 		WRITE_ONCE(p->__state, TASK_WAKING);
4328 
4329 		/*
4330 		 * If the owning (remote) CPU is still in the middle of schedule() with
4331 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4332 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4333 		 * let the waker make forward progress. This is safe because IRQs are
4334 		 * disabled and the IPI will deliver after on_cpu is cleared.
4335 		 *
4336 		 * Ensure we load task_cpu(p) after p->on_cpu:
4337 		 *
4338 		 * set_task_cpu(p, cpu);
4339 		 *   STORE p->cpu = @cpu
4340 		 * __schedule() (switch to task 'p')
4341 		 *   LOCK rq->lock
4342 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4343 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4344 		 *
4345 		 * to ensure we observe the correct CPU on which the task is currently
4346 		 * scheduling.
4347 		 */
4348 		if (smp_load_acquire(&p->on_cpu) &&
4349 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4350 			break;
4351 
4352 		/*
4353 		 * If the owning (remote) CPU is still in the middle of schedule() with
4354 		 * this task as prev, wait until it's done referencing the task.
4355 		 *
4356 		 * Pairs with the smp_store_release() in finish_task().
4357 		 *
4358 		 * This ensures that tasks getting woken will be fully ordered against
4359 		 * their previous state and preserve Program Order.
4360 		 */
4361 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4362 
4363 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4364 		if (task_cpu(p) != cpu) {
4365 			if (p->in_iowait) {
4366 				delayacct_blkio_end(p);
4367 				atomic_dec(&task_rq(p)->nr_iowait);
4368 			}
4369 
4370 			wake_flags |= WF_MIGRATED;
4371 			psi_ttwu_dequeue(p);
4372 			set_task_cpu(p, cpu);
4373 		}
4374 #else
4375 		cpu = task_cpu(p);
4376 #endif /* CONFIG_SMP */
4377 
4378 		ttwu_queue(p, cpu, wake_flags);
4379 	}
4380 out:
4381 	if (success)
4382 		ttwu_stat(p, task_cpu(p), wake_flags);
4383 
4384 	return success;
4385 }
4386 
4387 static bool __task_needs_rq_lock(struct task_struct *p)
4388 {
4389 	unsigned int state = READ_ONCE(p->__state);
4390 
4391 	/*
4392 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4393 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4394 	 * locks at the end, see ttwu_queue_wakelist().
4395 	 */
4396 	if (state == TASK_RUNNING || state == TASK_WAKING)
4397 		return true;
4398 
4399 	/*
4400 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4401 	 * possible to, falsely, observe p->on_rq == 0.
4402 	 *
4403 	 * See try_to_wake_up() for a longer comment.
4404 	 */
4405 	smp_rmb();
4406 	if (p->on_rq)
4407 		return true;
4408 
4409 #ifdef CONFIG_SMP
4410 	/*
4411 	 * Ensure the task has finished __schedule() and will not be referenced
4412 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4413 	 */
4414 	smp_rmb();
4415 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4416 #endif
4417 
4418 	return false;
4419 }
4420 
4421 /**
4422  * task_call_func - Invoke a function on task in fixed state
4423  * @p: Process for which the function is to be invoked, can be @current.
4424  * @func: Function to invoke.
4425  * @arg: Argument to function.
4426  *
4427  * Fix the task in it's current state by avoiding wakeups and or rq operations
4428  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4429  * to work out what the state is, if required.  Given that @func can be invoked
4430  * with a runqueue lock held, it had better be quite lightweight.
4431  *
4432  * Returns:
4433  *   Whatever @func returns
4434  */
4435 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4436 {
4437 	struct rq *rq = NULL;
4438 	struct rq_flags rf;
4439 	int ret;
4440 
4441 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4442 
4443 	if (__task_needs_rq_lock(p))
4444 		rq = __task_rq_lock(p, &rf);
4445 
4446 	/*
4447 	 * At this point the task is pinned; either:
4448 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4449 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4450 	 *  - queued, and we're holding off schedule	 (rq->lock)
4451 	 *  - running, and we're holding off de-schedule (rq->lock)
4452 	 *
4453 	 * The called function (@func) can use: task_curr(), p->on_rq and
4454 	 * p->__state to differentiate between these states.
4455 	 */
4456 	ret = func(p, arg);
4457 
4458 	if (rq)
4459 		rq_unlock(rq, &rf);
4460 
4461 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4462 	return ret;
4463 }
4464 
4465 /**
4466  * cpu_curr_snapshot - Return a snapshot of the currently running task
4467  * @cpu: The CPU on which to snapshot the task.
4468  *
4469  * Returns the task_struct pointer of the task "currently" running on
4470  * the specified CPU.  If the same task is running on that CPU throughout,
4471  * the return value will be a pointer to that task's task_struct structure.
4472  * If the CPU did any context switches even vaguely concurrently with the
4473  * execution of this function, the return value will be a pointer to the
4474  * task_struct structure of a randomly chosen task that was running on
4475  * that CPU somewhere around the time that this function was executing.
4476  *
4477  * If the specified CPU was offline, the return value is whatever it
4478  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4479  * task, but there is no guarantee.  Callers wishing a useful return
4480  * value must take some action to ensure that the specified CPU remains
4481  * online throughout.
4482  *
4483  * This function executes full memory barriers before and after fetching
4484  * the pointer, which permits the caller to confine this function's fetch
4485  * with respect to the caller's accesses to other shared variables.
4486  */
4487 struct task_struct *cpu_curr_snapshot(int cpu)
4488 {
4489 	struct task_struct *t;
4490 
4491 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4492 	t = rcu_dereference(cpu_curr(cpu));
4493 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4494 	return t;
4495 }
4496 
4497 /**
4498  * wake_up_process - Wake up a specific process
4499  * @p: The process to be woken up.
4500  *
4501  * Attempt to wake up the nominated process and move it to the set of runnable
4502  * processes.
4503  *
4504  * Return: 1 if the process was woken up, 0 if it was already running.
4505  *
4506  * This function executes a full memory barrier before accessing the task state.
4507  */
4508 int wake_up_process(struct task_struct *p)
4509 {
4510 	return try_to_wake_up(p, TASK_NORMAL, 0);
4511 }
4512 EXPORT_SYMBOL(wake_up_process);
4513 
4514 int wake_up_state(struct task_struct *p, unsigned int state)
4515 {
4516 	return try_to_wake_up(p, state, 0);
4517 }
4518 
4519 /*
4520  * Perform scheduler related setup for a newly forked process p.
4521  * p is forked by current.
4522  *
4523  * __sched_fork() is basic setup used by init_idle() too:
4524  */
4525 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4526 {
4527 	p->on_rq			= 0;
4528 
4529 	p->se.on_rq			= 0;
4530 	p->se.exec_start		= 0;
4531 	p->se.sum_exec_runtime		= 0;
4532 	p->se.prev_sum_exec_runtime	= 0;
4533 	p->se.nr_migrations		= 0;
4534 	p->se.vruntime			= 0;
4535 	p->se.vlag			= 0;
4536 	p->se.slice			= sysctl_sched_base_slice;
4537 	INIT_LIST_HEAD(&p->se.group_node);
4538 
4539 #ifdef CONFIG_FAIR_GROUP_SCHED
4540 	p->se.cfs_rq			= NULL;
4541 #endif
4542 
4543 #ifdef CONFIG_SCHEDSTATS
4544 	/* Even if schedstat is disabled, there should not be garbage */
4545 	memset(&p->stats, 0, sizeof(p->stats));
4546 #endif
4547 
4548 	init_dl_entity(&p->dl);
4549 
4550 	INIT_LIST_HEAD(&p->rt.run_list);
4551 	p->rt.timeout		= 0;
4552 	p->rt.time_slice	= sched_rr_timeslice;
4553 	p->rt.on_rq		= 0;
4554 	p->rt.on_list		= 0;
4555 
4556 #ifdef CONFIG_PREEMPT_NOTIFIERS
4557 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4558 #endif
4559 
4560 #ifdef CONFIG_COMPACTION
4561 	p->capture_control = NULL;
4562 #endif
4563 	init_numa_balancing(clone_flags, p);
4564 #ifdef CONFIG_SMP
4565 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4566 	p->migration_pending = NULL;
4567 #endif
4568 	init_sched_mm_cid(p);
4569 }
4570 
4571 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4572 
4573 #ifdef CONFIG_NUMA_BALANCING
4574 
4575 int sysctl_numa_balancing_mode;
4576 
4577 static void __set_numabalancing_state(bool enabled)
4578 {
4579 	if (enabled)
4580 		static_branch_enable(&sched_numa_balancing);
4581 	else
4582 		static_branch_disable(&sched_numa_balancing);
4583 }
4584 
4585 void set_numabalancing_state(bool enabled)
4586 {
4587 	if (enabled)
4588 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4589 	else
4590 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4591 	__set_numabalancing_state(enabled);
4592 }
4593 
4594 #ifdef CONFIG_PROC_SYSCTL
4595 static void reset_memory_tiering(void)
4596 {
4597 	struct pglist_data *pgdat;
4598 
4599 	for_each_online_pgdat(pgdat) {
4600 		pgdat->nbp_threshold = 0;
4601 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4602 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4603 	}
4604 }
4605 
4606 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4607 			  void *buffer, size_t *lenp, loff_t *ppos)
4608 {
4609 	struct ctl_table t;
4610 	int err;
4611 	int state = sysctl_numa_balancing_mode;
4612 
4613 	if (write && !capable(CAP_SYS_ADMIN))
4614 		return -EPERM;
4615 
4616 	t = *table;
4617 	t.data = &state;
4618 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4619 	if (err < 0)
4620 		return err;
4621 	if (write) {
4622 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4623 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4624 			reset_memory_tiering();
4625 		sysctl_numa_balancing_mode = state;
4626 		__set_numabalancing_state(state);
4627 	}
4628 	return err;
4629 }
4630 #endif
4631 #endif
4632 
4633 #ifdef CONFIG_SCHEDSTATS
4634 
4635 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4636 
4637 static void set_schedstats(bool enabled)
4638 {
4639 	if (enabled)
4640 		static_branch_enable(&sched_schedstats);
4641 	else
4642 		static_branch_disable(&sched_schedstats);
4643 }
4644 
4645 void force_schedstat_enabled(void)
4646 {
4647 	if (!schedstat_enabled()) {
4648 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4649 		static_branch_enable(&sched_schedstats);
4650 	}
4651 }
4652 
4653 static int __init setup_schedstats(char *str)
4654 {
4655 	int ret = 0;
4656 	if (!str)
4657 		goto out;
4658 
4659 	if (!strcmp(str, "enable")) {
4660 		set_schedstats(true);
4661 		ret = 1;
4662 	} else if (!strcmp(str, "disable")) {
4663 		set_schedstats(false);
4664 		ret = 1;
4665 	}
4666 out:
4667 	if (!ret)
4668 		pr_warn("Unable to parse schedstats=\n");
4669 
4670 	return ret;
4671 }
4672 __setup("schedstats=", setup_schedstats);
4673 
4674 #ifdef CONFIG_PROC_SYSCTL
4675 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4676 		size_t *lenp, loff_t *ppos)
4677 {
4678 	struct ctl_table t;
4679 	int err;
4680 	int state = static_branch_likely(&sched_schedstats);
4681 
4682 	if (write && !capable(CAP_SYS_ADMIN))
4683 		return -EPERM;
4684 
4685 	t = *table;
4686 	t.data = &state;
4687 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4688 	if (err < 0)
4689 		return err;
4690 	if (write)
4691 		set_schedstats(state);
4692 	return err;
4693 }
4694 #endif /* CONFIG_PROC_SYSCTL */
4695 #endif /* CONFIG_SCHEDSTATS */
4696 
4697 #ifdef CONFIG_SYSCTL
4698 static struct ctl_table sched_core_sysctls[] = {
4699 #ifdef CONFIG_SCHEDSTATS
4700 	{
4701 		.procname       = "sched_schedstats",
4702 		.data           = NULL,
4703 		.maxlen         = sizeof(unsigned int),
4704 		.mode           = 0644,
4705 		.proc_handler   = sysctl_schedstats,
4706 		.extra1         = SYSCTL_ZERO,
4707 		.extra2         = SYSCTL_ONE,
4708 	},
4709 #endif /* CONFIG_SCHEDSTATS */
4710 #ifdef CONFIG_UCLAMP_TASK
4711 	{
4712 		.procname       = "sched_util_clamp_min",
4713 		.data           = &sysctl_sched_uclamp_util_min,
4714 		.maxlen         = sizeof(unsigned int),
4715 		.mode           = 0644,
4716 		.proc_handler   = sysctl_sched_uclamp_handler,
4717 	},
4718 	{
4719 		.procname       = "sched_util_clamp_max",
4720 		.data           = &sysctl_sched_uclamp_util_max,
4721 		.maxlen         = sizeof(unsigned int),
4722 		.mode           = 0644,
4723 		.proc_handler   = sysctl_sched_uclamp_handler,
4724 	},
4725 	{
4726 		.procname       = "sched_util_clamp_min_rt_default",
4727 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4728 		.maxlen         = sizeof(unsigned int),
4729 		.mode           = 0644,
4730 		.proc_handler   = sysctl_sched_uclamp_handler,
4731 	},
4732 #endif /* CONFIG_UCLAMP_TASK */
4733 #ifdef CONFIG_NUMA_BALANCING
4734 	{
4735 		.procname	= "numa_balancing",
4736 		.data		= NULL, /* filled in by handler */
4737 		.maxlen		= sizeof(unsigned int),
4738 		.mode		= 0644,
4739 		.proc_handler	= sysctl_numa_balancing,
4740 		.extra1		= SYSCTL_ZERO,
4741 		.extra2		= SYSCTL_FOUR,
4742 	},
4743 #endif /* CONFIG_NUMA_BALANCING */
4744 	{}
4745 };
4746 static int __init sched_core_sysctl_init(void)
4747 {
4748 	register_sysctl_init("kernel", sched_core_sysctls);
4749 	return 0;
4750 }
4751 late_initcall(sched_core_sysctl_init);
4752 #endif /* CONFIG_SYSCTL */
4753 
4754 /*
4755  * fork()/clone()-time setup:
4756  */
4757 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4758 {
4759 	__sched_fork(clone_flags, p);
4760 	/*
4761 	 * We mark the process as NEW here. This guarantees that
4762 	 * nobody will actually run it, and a signal or other external
4763 	 * event cannot wake it up and insert it on the runqueue either.
4764 	 */
4765 	p->__state = TASK_NEW;
4766 
4767 	/*
4768 	 * Make sure we do not leak PI boosting priority to the child.
4769 	 */
4770 	p->prio = current->normal_prio;
4771 
4772 	uclamp_fork(p);
4773 
4774 	/*
4775 	 * Revert to default priority/policy on fork if requested.
4776 	 */
4777 	if (unlikely(p->sched_reset_on_fork)) {
4778 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4779 			p->policy = SCHED_NORMAL;
4780 			p->static_prio = NICE_TO_PRIO(0);
4781 			p->rt_priority = 0;
4782 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4783 			p->static_prio = NICE_TO_PRIO(0);
4784 
4785 		p->prio = p->normal_prio = p->static_prio;
4786 		set_load_weight(p, false);
4787 
4788 		/*
4789 		 * We don't need the reset flag anymore after the fork. It has
4790 		 * fulfilled its duty:
4791 		 */
4792 		p->sched_reset_on_fork = 0;
4793 	}
4794 
4795 	if (dl_prio(p->prio))
4796 		return -EAGAIN;
4797 	else if (rt_prio(p->prio))
4798 		p->sched_class = &rt_sched_class;
4799 	else
4800 		p->sched_class = &fair_sched_class;
4801 
4802 	init_entity_runnable_average(&p->se);
4803 
4804 
4805 #ifdef CONFIG_SCHED_INFO
4806 	if (likely(sched_info_on()))
4807 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4808 #endif
4809 #if defined(CONFIG_SMP)
4810 	p->on_cpu = 0;
4811 #endif
4812 	init_task_preempt_count(p);
4813 #ifdef CONFIG_SMP
4814 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4815 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4816 #endif
4817 	return 0;
4818 }
4819 
4820 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4821 {
4822 	unsigned long flags;
4823 
4824 	/*
4825 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4826 	 * required yet, but lockdep gets upset if rules are violated.
4827 	 */
4828 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4829 #ifdef CONFIG_CGROUP_SCHED
4830 	if (1) {
4831 		struct task_group *tg;
4832 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4833 				  struct task_group, css);
4834 		tg = autogroup_task_group(p, tg);
4835 		p->sched_task_group = tg;
4836 	}
4837 #endif
4838 	rseq_migrate(p);
4839 	/*
4840 	 * We're setting the CPU for the first time, we don't migrate,
4841 	 * so use __set_task_cpu().
4842 	 */
4843 	__set_task_cpu(p, smp_processor_id());
4844 	if (p->sched_class->task_fork)
4845 		p->sched_class->task_fork(p);
4846 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4847 }
4848 
4849 void sched_post_fork(struct task_struct *p)
4850 {
4851 	uclamp_post_fork(p);
4852 }
4853 
4854 unsigned long to_ratio(u64 period, u64 runtime)
4855 {
4856 	if (runtime == RUNTIME_INF)
4857 		return BW_UNIT;
4858 
4859 	/*
4860 	 * Doing this here saves a lot of checks in all
4861 	 * the calling paths, and returning zero seems
4862 	 * safe for them anyway.
4863 	 */
4864 	if (period == 0)
4865 		return 0;
4866 
4867 	return div64_u64(runtime << BW_SHIFT, period);
4868 }
4869 
4870 /*
4871  * wake_up_new_task - wake up a newly created task for the first time.
4872  *
4873  * This function will do some initial scheduler statistics housekeeping
4874  * that must be done for every newly created context, then puts the task
4875  * on the runqueue and wakes it.
4876  */
4877 void wake_up_new_task(struct task_struct *p)
4878 {
4879 	struct rq_flags rf;
4880 	struct rq *rq;
4881 
4882 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4883 	WRITE_ONCE(p->__state, TASK_RUNNING);
4884 #ifdef CONFIG_SMP
4885 	/*
4886 	 * Fork balancing, do it here and not earlier because:
4887 	 *  - cpus_ptr can change in the fork path
4888 	 *  - any previously selected CPU might disappear through hotplug
4889 	 *
4890 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4891 	 * as we're not fully set-up yet.
4892 	 */
4893 	p->recent_used_cpu = task_cpu(p);
4894 	rseq_migrate(p);
4895 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4896 #endif
4897 	rq = __task_rq_lock(p, &rf);
4898 	update_rq_clock(rq);
4899 	post_init_entity_util_avg(p);
4900 
4901 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4902 	trace_sched_wakeup_new(p);
4903 	wakeup_preempt(rq, p, WF_FORK);
4904 #ifdef CONFIG_SMP
4905 	if (p->sched_class->task_woken) {
4906 		/*
4907 		 * Nothing relies on rq->lock after this, so it's fine to
4908 		 * drop it.
4909 		 */
4910 		rq_unpin_lock(rq, &rf);
4911 		p->sched_class->task_woken(rq, p);
4912 		rq_repin_lock(rq, &rf);
4913 	}
4914 #endif
4915 	task_rq_unlock(rq, p, &rf);
4916 }
4917 
4918 #ifdef CONFIG_PREEMPT_NOTIFIERS
4919 
4920 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4921 
4922 void preempt_notifier_inc(void)
4923 {
4924 	static_branch_inc(&preempt_notifier_key);
4925 }
4926 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4927 
4928 void preempt_notifier_dec(void)
4929 {
4930 	static_branch_dec(&preempt_notifier_key);
4931 }
4932 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4933 
4934 /**
4935  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4936  * @notifier: notifier struct to register
4937  */
4938 void preempt_notifier_register(struct preempt_notifier *notifier)
4939 {
4940 	if (!static_branch_unlikely(&preempt_notifier_key))
4941 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4942 
4943 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4944 }
4945 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4946 
4947 /**
4948  * preempt_notifier_unregister - no longer interested in preemption notifications
4949  * @notifier: notifier struct to unregister
4950  *
4951  * This is *not* safe to call from within a preemption notifier.
4952  */
4953 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4954 {
4955 	hlist_del(&notifier->link);
4956 }
4957 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4958 
4959 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4960 {
4961 	struct preempt_notifier *notifier;
4962 
4963 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4964 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4965 }
4966 
4967 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4968 {
4969 	if (static_branch_unlikely(&preempt_notifier_key))
4970 		__fire_sched_in_preempt_notifiers(curr);
4971 }
4972 
4973 static void
4974 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975 				   struct task_struct *next)
4976 {
4977 	struct preempt_notifier *notifier;
4978 
4979 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4980 		notifier->ops->sched_out(notifier, next);
4981 }
4982 
4983 static __always_inline void
4984 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4985 				 struct task_struct *next)
4986 {
4987 	if (static_branch_unlikely(&preempt_notifier_key))
4988 		__fire_sched_out_preempt_notifiers(curr, next);
4989 }
4990 
4991 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4992 
4993 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4994 {
4995 }
4996 
4997 static inline void
4998 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4999 				 struct task_struct *next)
5000 {
5001 }
5002 
5003 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5004 
5005 static inline void prepare_task(struct task_struct *next)
5006 {
5007 #ifdef CONFIG_SMP
5008 	/*
5009 	 * Claim the task as running, we do this before switching to it
5010 	 * such that any running task will have this set.
5011 	 *
5012 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5013 	 * its ordering comment.
5014 	 */
5015 	WRITE_ONCE(next->on_cpu, 1);
5016 #endif
5017 }
5018 
5019 static inline void finish_task(struct task_struct *prev)
5020 {
5021 #ifdef CONFIG_SMP
5022 	/*
5023 	 * This must be the very last reference to @prev from this CPU. After
5024 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5025 	 * must ensure this doesn't happen until the switch is completely
5026 	 * finished.
5027 	 *
5028 	 * In particular, the load of prev->state in finish_task_switch() must
5029 	 * happen before this.
5030 	 *
5031 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5032 	 */
5033 	smp_store_release(&prev->on_cpu, 0);
5034 #endif
5035 }
5036 
5037 #ifdef CONFIG_SMP
5038 
5039 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5040 {
5041 	void (*func)(struct rq *rq);
5042 	struct balance_callback *next;
5043 
5044 	lockdep_assert_rq_held(rq);
5045 
5046 	while (head) {
5047 		func = (void (*)(struct rq *))head->func;
5048 		next = head->next;
5049 		head->next = NULL;
5050 		head = next;
5051 
5052 		func(rq);
5053 	}
5054 }
5055 
5056 static void balance_push(struct rq *rq);
5057 
5058 /*
5059  * balance_push_callback is a right abuse of the callback interface and plays
5060  * by significantly different rules.
5061  *
5062  * Where the normal balance_callback's purpose is to be ran in the same context
5063  * that queued it (only later, when it's safe to drop rq->lock again),
5064  * balance_push_callback is specifically targeted at __schedule().
5065  *
5066  * This abuse is tolerated because it places all the unlikely/odd cases behind
5067  * a single test, namely: rq->balance_callback == NULL.
5068  */
5069 struct balance_callback balance_push_callback = {
5070 	.next = NULL,
5071 	.func = balance_push,
5072 };
5073 
5074 static inline struct balance_callback *
5075 __splice_balance_callbacks(struct rq *rq, bool split)
5076 {
5077 	struct balance_callback *head = rq->balance_callback;
5078 
5079 	if (likely(!head))
5080 		return NULL;
5081 
5082 	lockdep_assert_rq_held(rq);
5083 	/*
5084 	 * Must not take balance_push_callback off the list when
5085 	 * splice_balance_callbacks() and balance_callbacks() are not
5086 	 * in the same rq->lock section.
5087 	 *
5088 	 * In that case it would be possible for __schedule() to interleave
5089 	 * and observe the list empty.
5090 	 */
5091 	if (split && head == &balance_push_callback)
5092 		head = NULL;
5093 	else
5094 		rq->balance_callback = NULL;
5095 
5096 	return head;
5097 }
5098 
5099 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5100 {
5101 	return __splice_balance_callbacks(rq, true);
5102 }
5103 
5104 static void __balance_callbacks(struct rq *rq)
5105 {
5106 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5107 }
5108 
5109 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5110 {
5111 	unsigned long flags;
5112 
5113 	if (unlikely(head)) {
5114 		raw_spin_rq_lock_irqsave(rq, flags);
5115 		do_balance_callbacks(rq, head);
5116 		raw_spin_rq_unlock_irqrestore(rq, flags);
5117 	}
5118 }
5119 
5120 #else
5121 
5122 static inline void __balance_callbacks(struct rq *rq)
5123 {
5124 }
5125 
5126 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5127 {
5128 	return NULL;
5129 }
5130 
5131 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5132 {
5133 }
5134 
5135 #endif
5136 
5137 static inline void
5138 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5139 {
5140 	/*
5141 	 * Since the runqueue lock will be released by the next
5142 	 * task (which is an invalid locking op but in the case
5143 	 * of the scheduler it's an obvious special-case), so we
5144 	 * do an early lockdep release here:
5145 	 */
5146 	rq_unpin_lock(rq, rf);
5147 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5148 #ifdef CONFIG_DEBUG_SPINLOCK
5149 	/* this is a valid case when another task releases the spinlock */
5150 	rq_lockp(rq)->owner = next;
5151 #endif
5152 }
5153 
5154 static inline void finish_lock_switch(struct rq *rq)
5155 {
5156 	/*
5157 	 * If we are tracking spinlock dependencies then we have to
5158 	 * fix up the runqueue lock - which gets 'carried over' from
5159 	 * prev into current:
5160 	 */
5161 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5162 	__balance_callbacks(rq);
5163 	raw_spin_rq_unlock_irq(rq);
5164 }
5165 
5166 /*
5167  * NOP if the arch has not defined these:
5168  */
5169 
5170 #ifndef prepare_arch_switch
5171 # define prepare_arch_switch(next)	do { } while (0)
5172 #endif
5173 
5174 #ifndef finish_arch_post_lock_switch
5175 # define finish_arch_post_lock_switch()	do { } while (0)
5176 #endif
5177 
5178 static inline void kmap_local_sched_out(void)
5179 {
5180 #ifdef CONFIG_KMAP_LOCAL
5181 	if (unlikely(current->kmap_ctrl.idx))
5182 		__kmap_local_sched_out();
5183 #endif
5184 }
5185 
5186 static inline void kmap_local_sched_in(void)
5187 {
5188 #ifdef CONFIG_KMAP_LOCAL
5189 	if (unlikely(current->kmap_ctrl.idx))
5190 		__kmap_local_sched_in();
5191 #endif
5192 }
5193 
5194 /**
5195  * prepare_task_switch - prepare to switch tasks
5196  * @rq: the runqueue preparing to switch
5197  * @prev: the current task that is being switched out
5198  * @next: the task we are going to switch to.
5199  *
5200  * This is called with the rq lock held and interrupts off. It must
5201  * be paired with a subsequent finish_task_switch after the context
5202  * switch.
5203  *
5204  * prepare_task_switch sets up locking and calls architecture specific
5205  * hooks.
5206  */
5207 static inline void
5208 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5209 		    struct task_struct *next)
5210 {
5211 	kcov_prepare_switch(prev);
5212 	sched_info_switch(rq, prev, next);
5213 	perf_event_task_sched_out(prev, next);
5214 	rseq_preempt(prev);
5215 	fire_sched_out_preempt_notifiers(prev, next);
5216 	kmap_local_sched_out();
5217 	prepare_task(next);
5218 	prepare_arch_switch(next);
5219 }
5220 
5221 /**
5222  * finish_task_switch - clean up after a task-switch
5223  * @prev: the thread we just switched away from.
5224  *
5225  * finish_task_switch must be called after the context switch, paired
5226  * with a prepare_task_switch call before the context switch.
5227  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5228  * and do any other architecture-specific cleanup actions.
5229  *
5230  * Note that we may have delayed dropping an mm in context_switch(). If
5231  * so, we finish that here outside of the runqueue lock. (Doing it
5232  * with the lock held can cause deadlocks; see schedule() for
5233  * details.)
5234  *
5235  * The context switch have flipped the stack from under us and restored the
5236  * local variables which were saved when this task called schedule() in the
5237  * past. prev == current is still correct but we need to recalculate this_rq
5238  * because prev may have moved to another CPU.
5239  */
5240 static struct rq *finish_task_switch(struct task_struct *prev)
5241 	__releases(rq->lock)
5242 {
5243 	struct rq *rq = this_rq();
5244 	struct mm_struct *mm = rq->prev_mm;
5245 	unsigned int prev_state;
5246 
5247 	/*
5248 	 * The previous task will have left us with a preempt_count of 2
5249 	 * because it left us after:
5250 	 *
5251 	 *	schedule()
5252 	 *	  preempt_disable();			// 1
5253 	 *	  __schedule()
5254 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5255 	 *
5256 	 * Also, see FORK_PREEMPT_COUNT.
5257 	 */
5258 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5259 		      "corrupted preempt_count: %s/%d/0x%x\n",
5260 		      current->comm, current->pid, preempt_count()))
5261 		preempt_count_set(FORK_PREEMPT_COUNT);
5262 
5263 	rq->prev_mm = NULL;
5264 
5265 	/*
5266 	 * A task struct has one reference for the use as "current".
5267 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5268 	 * schedule one last time. The schedule call will never return, and
5269 	 * the scheduled task must drop that reference.
5270 	 *
5271 	 * We must observe prev->state before clearing prev->on_cpu (in
5272 	 * finish_task), otherwise a concurrent wakeup can get prev
5273 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5274 	 * transition, resulting in a double drop.
5275 	 */
5276 	prev_state = READ_ONCE(prev->__state);
5277 	vtime_task_switch(prev);
5278 	perf_event_task_sched_in(prev, current);
5279 	finish_task(prev);
5280 	tick_nohz_task_switch();
5281 	finish_lock_switch(rq);
5282 	finish_arch_post_lock_switch();
5283 	kcov_finish_switch(current);
5284 	/*
5285 	 * kmap_local_sched_out() is invoked with rq::lock held and
5286 	 * interrupts disabled. There is no requirement for that, but the
5287 	 * sched out code does not have an interrupt enabled section.
5288 	 * Restoring the maps on sched in does not require interrupts being
5289 	 * disabled either.
5290 	 */
5291 	kmap_local_sched_in();
5292 
5293 	fire_sched_in_preempt_notifiers(current);
5294 	/*
5295 	 * When switching through a kernel thread, the loop in
5296 	 * membarrier_{private,global}_expedited() may have observed that
5297 	 * kernel thread and not issued an IPI. It is therefore possible to
5298 	 * schedule between user->kernel->user threads without passing though
5299 	 * switch_mm(). Membarrier requires a barrier after storing to
5300 	 * rq->curr, before returning to userspace, so provide them here:
5301 	 *
5302 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5303 	 *   provided by mmdrop_lazy_tlb(),
5304 	 * - a sync_core for SYNC_CORE.
5305 	 */
5306 	if (mm) {
5307 		membarrier_mm_sync_core_before_usermode(mm);
5308 		mmdrop_lazy_tlb_sched(mm);
5309 	}
5310 
5311 	if (unlikely(prev_state == TASK_DEAD)) {
5312 		if (prev->sched_class->task_dead)
5313 			prev->sched_class->task_dead(prev);
5314 
5315 		/* Task is done with its stack. */
5316 		put_task_stack(prev);
5317 
5318 		put_task_struct_rcu_user(prev);
5319 	}
5320 
5321 	return rq;
5322 }
5323 
5324 /**
5325  * schedule_tail - first thing a freshly forked thread must call.
5326  * @prev: the thread we just switched away from.
5327  */
5328 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5329 	__releases(rq->lock)
5330 {
5331 	/*
5332 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5333 	 * finish_task_switch() for details.
5334 	 *
5335 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5336 	 * and the preempt_enable() will end up enabling preemption (on
5337 	 * PREEMPT_COUNT kernels).
5338 	 */
5339 
5340 	finish_task_switch(prev);
5341 	preempt_enable();
5342 
5343 	if (current->set_child_tid)
5344 		put_user(task_pid_vnr(current), current->set_child_tid);
5345 
5346 	calculate_sigpending();
5347 }
5348 
5349 /*
5350  * context_switch - switch to the new MM and the new thread's register state.
5351  */
5352 static __always_inline struct rq *
5353 context_switch(struct rq *rq, struct task_struct *prev,
5354 	       struct task_struct *next, struct rq_flags *rf)
5355 {
5356 	prepare_task_switch(rq, prev, next);
5357 
5358 	/*
5359 	 * For paravirt, this is coupled with an exit in switch_to to
5360 	 * combine the page table reload and the switch backend into
5361 	 * one hypercall.
5362 	 */
5363 	arch_start_context_switch(prev);
5364 
5365 	/*
5366 	 * kernel -> kernel   lazy + transfer active
5367 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5368 	 *
5369 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5370 	 *   user ->   user   switch
5371 	 *
5372 	 * switch_mm_cid() needs to be updated if the barriers provided
5373 	 * by context_switch() are modified.
5374 	 */
5375 	if (!next->mm) {                                // to kernel
5376 		enter_lazy_tlb(prev->active_mm, next);
5377 
5378 		next->active_mm = prev->active_mm;
5379 		if (prev->mm)                           // from user
5380 			mmgrab_lazy_tlb(prev->active_mm);
5381 		else
5382 			prev->active_mm = NULL;
5383 	} else {                                        // to user
5384 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5385 		/*
5386 		 * sys_membarrier() requires an smp_mb() between setting
5387 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5388 		 *
5389 		 * The below provides this either through switch_mm(), or in
5390 		 * case 'prev->active_mm == next->mm' through
5391 		 * finish_task_switch()'s mmdrop().
5392 		 */
5393 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5394 		lru_gen_use_mm(next->mm);
5395 
5396 		if (!prev->mm) {                        // from kernel
5397 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5398 			rq->prev_mm = prev->active_mm;
5399 			prev->active_mm = NULL;
5400 		}
5401 	}
5402 
5403 	/* switch_mm_cid() requires the memory barriers above. */
5404 	switch_mm_cid(rq, prev, next);
5405 
5406 	prepare_lock_switch(rq, next, rf);
5407 
5408 	/* Here we just switch the register state and the stack. */
5409 	switch_to(prev, next, prev);
5410 	barrier();
5411 
5412 	return finish_task_switch(prev);
5413 }
5414 
5415 /*
5416  * nr_running and nr_context_switches:
5417  *
5418  * externally visible scheduler statistics: current number of runnable
5419  * threads, total number of context switches performed since bootup.
5420  */
5421 unsigned int nr_running(void)
5422 {
5423 	unsigned int i, sum = 0;
5424 
5425 	for_each_online_cpu(i)
5426 		sum += cpu_rq(i)->nr_running;
5427 
5428 	return sum;
5429 }
5430 
5431 /*
5432  * Check if only the current task is running on the CPU.
5433  *
5434  * Caution: this function does not check that the caller has disabled
5435  * preemption, thus the result might have a time-of-check-to-time-of-use
5436  * race.  The caller is responsible to use it correctly, for example:
5437  *
5438  * - from a non-preemptible section (of course)
5439  *
5440  * - from a thread that is bound to a single CPU
5441  *
5442  * - in a loop with very short iterations (e.g. a polling loop)
5443  */
5444 bool single_task_running(void)
5445 {
5446 	return raw_rq()->nr_running == 1;
5447 }
5448 EXPORT_SYMBOL(single_task_running);
5449 
5450 unsigned long long nr_context_switches_cpu(int cpu)
5451 {
5452 	return cpu_rq(cpu)->nr_switches;
5453 }
5454 
5455 unsigned long long nr_context_switches(void)
5456 {
5457 	int i;
5458 	unsigned long long sum = 0;
5459 
5460 	for_each_possible_cpu(i)
5461 		sum += cpu_rq(i)->nr_switches;
5462 
5463 	return sum;
5464 }
5465 
5466 /*
5467  * Consumers of these two interfaces, like for example the cpuidle menu
5468  * governor, are using nonsensical data. Preferring shallow idle state selection
5469  * for a CPU that has IO-wait which might not even end up running the task when
5470  * it does become runnable.
5471  */
5472 
5473 unsigned int nr_iowait_cpu(int cpu)
5474 {
5475 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5476 }
5477 
5478 /*
5479  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5480  *
5481  * The idea behind IO-wait account is to account the idle time that we could
5482  * have spend running if it were not for IO. That is, if we were to improve the
5483  * storage performance, we'd have a proportional reduction in IO-wait time.
5484  *
5485  * This all works nicely on UP, where, when a task blocks on IO, we account
5486  * idle time as IO-wait, because if the storage were faster, it could've been
5487  * running and we'd not be idle.
5488  *
5489  * This has been extended to SMP, by doing the same for each CPU. This however
5490  * is broken.
5491  *
5492  * Imagine for instance the case where two tasks block on one CPU, only the one
5493  * CPU will have IO-wait accounted, while the other has regular idle. Even
5494  * though, if the storage were faster, both could've ran at the same time,
5495  * utilising both CPUs.
5496  *
5497  * This means, that when looking globally, the current IO-wait accounting on
5498  * SMP is a lower bound, by reason of under accounting.
5499  *
5500  * Worse, since the numbers are provided per CPU, they are sometimes
5501  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5502  * associated with any one particular CPU, it can wake to another CPU than it
5503  * blocked on. This means the per CPU IO-wait number is meaningless.
5504  *
5505  * Task CPU affinities can make all that even more 'interesting'.
5506  */
5507 
5508 unsigned int nr_iowait(void)
5509 {
5510 	unsigned int i, sum = 0;
5511 
5512 	for_each_possible_cpu(i)
5513 		sum += nr_iowait_cpu(i);
5514 
5515 	return sum;
5516 }
5517 
5518 #ifdef CONFIG_SMP
5519 
5520 /*
5521  * sched_exec - execve() is a valuable balancing opportunity, because at
5522  * this point the task has the smallest effective memory and cache footprint.
5523  */
5524 void sched_exec(void)
5525 {
5526 	struct task_struct *p = current;
5527 	struct migration_arg arg;
5528 	int dest_cpu;
5529 
5530 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5531 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5532 		if (dest_cpu == smp_processor_id())
5533 			return;
5534 
5535 		if (unlikely(!cpu_active(dest_cpu)))
5536 			return;
5537 
5538 		arg = (struct migration_arg){ p, dest_cpu };
5539 	}
5540 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5541 }
5542 
5543 #endif
5544 
5545 DEFINE_PER_CPU(struct kernel_stat, kstat);
5546 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5547 
5548 EXPORT_PER_CPU_SYMBOL(kstat);
5549 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5550 
5551 /*
5552  * The function fair_sched_class.update_curr accesses the struct curr
5553  * and its field curr->exec_start; when called from task_sched_runtime(),
5554  * we observe a high rate of cache misses in practice.
5555  * Prefetching this data results in improved performance.
5556  */
5557 static inline void prefetch_curr_exec_start(struct task_struct *p)
5558 {
5559 #ifdef CONFIG_FAIR_GROUP_SCHED
5560 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5561 #else
5562 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5563 #endif
5564 	prefetch(curr);
5565 	prefetch(&curr->exec_start);
5566 }
5567 
5568 /*
5569  * Return accounted runtime for the task.
5570  * In case the task is currently running, return the runtime plus current's
5571  * pending runtime that have not been accounted yet.
5572  */
5573 unsigned long long task_sched_runtime(struct task_struct *p)
5574 {
5575 	struct rq_flags rf;
5576 	struct rq *rq;
5577 	u64 ns;
5578 
5579 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5580 	/*
5581 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5582 	 * So we have a optimization chance when the task's delta_exec is 0.
5583 	 * Reading ->on_cpu is racy, but this is ok.
5584 	 *
5585 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5586 	 * If we race with it entering CPU, unaccounted time is 0. This is
5587 	 * indistinguishable from the read occurring a few cycles earlier.
5588 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5589 	 * been accounted, so we're correct here as well.
5590 	 */
5591 	if (!p->on_cpu || !task_on_rq_queued(p))
5592 		return p->se.sum_exec_runtime;
5593 #endif
5594 
5595 	rq = task_rq_lock(p, &rf);
5596 	/*
5597 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5598 	 * project cycles that may never be accounted to this
5599 	 * thread, breaking clock_gettime().
5600 	 */
5601 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5602 		prefetch_curr_exec_start(p);
5603 		update_rq_clock(rq);
5604 		p->sched_class->update_curr(rq);
5605 	}
5606 	ns = p->se.sum_exec_runtime;
5607 	task_rq_unlock(rq, p, &rf);
5608 
5609 	return ns;
5610 }
5611 
5612 #ifdef CONFIG_SCHED_DEBUG
5613 static u64 cpu_resched_latency(struct rq *rq)
5614 {
5615 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5616 	u64 resched_latency, now = rq_clock(rq);
5617 	static bool warned_once;
5618 
5619 	if (sysctl_resched_latency_warn_once && warned_once)
5620 		return 0;
5621 
5622 	if (!need_resched() || !latency_warn_ms)
5623 		return 0;
5624 
5625 	if (system_state == SYSTEM_BOOTING)
5626 		return 0;
5627 
5628 	if (!rq->last_seen_need_resched_ns) {
5629 		rq->last_seen_need_resched_ns = now;
5630 		rq->ticks_without_resched = 0;
5631 		return 0;
5632 	}
5633 
5634 	rq->ticks_without_resched++;
5635 	resched_latency = now - rq->last_seen_need_resched_ns;
5636 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5637 		return 0;
5638 
5639 	warned_once = true;
5640 
5641 	return resched_latency;
5642 }
5643 
5644 static int __init setup_resched_latency_warn_ms(char *str)
5645 {
5646 	long val;
5647 
5648 	if ((kstrtol(str, 0, &val))) {
5649 		pr_warn("Unable to set resched_latency_warn_ms\n");
5650 		return 1;
5651 	}
5652 
5653 	sysctl_resched_latency_warn_ms = val;
5654 	return 1;
5655 }
5656 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5657 #else
5658 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5659 #endif /* CONFIG_SCHED_DEBUG */
5660 
5661 /*
5662  * This function gets called by the timer code, with HZ frequency.
5663  * We call it with interrupts disabled.
5664  */
5665 void scheduler_tick(void)
5666 {
5667 	int cpu = smp_processor_id();
5668 	struct rq *rq = cpu_rq(cpu);
5669 	struct task_struct *curr = rq->curr;
5670 	struct rq_flags rf;
5671 	unsigned long thermal_pressure;
5672 	u64 resched_latency;
5673 
5674 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5675 		arch_scale_freq_tick();
5676 
5677 	sched_clock_tick();
5678 
5679 	rq_lock(rq, &rf);
5680 
5681 	update_rq_clock(rq);
5682 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5683 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5684 	curr->sched_class->task_tick(rq, curr, 0);
5685 	if (sched_feat(LATENCY_WARN))
5686 		resched_latency = cpu_resched_latency(rq);
5687 	calc_global_load_tick(rq);
5688 	sched_core_tick(rq);
5689 	task_tick_mm_cid(rq, curr);
5690 
5691 	rq_unlock(rq, &rf);
5692 
5693 	if (sched_feat(LATENCY_WARN) && resched_latency)
5694 		resched_latency_warn(cpu, resched_latency);
5695 
5696 	perf_event_task_tick();
5697 
5698 	if (curr->flags & PF_WQ_WORKER)
5699 		wq_worker_tick(curr);
5700 
5701 #ifdef CONFIG_SMP
5702 	rq->idle_balance = idle_cpu(cpu);
5703 	trigger_load_balance(rq);
5704 #endif
5705 }
5706 
5707 #ifdef CONFIG_NO_HZ_FULL
5708 
5709 struct tick_work {
5710 	int			cpu;
5711 	atomic_t		state;
5712 	struct delayed_work	work;
5713 };
5714 /* Values for ->state, see diagram below. */
5715 #define TICK_SCHED_REMOTE_OFFLINE	0
5716 #define TICK_SCHED_REMOTE_OFFLINING	1
5717 #define TICK_SCHED_REMOTE_RUNNING	2
5718 
5719 /*
5720  * State diagram for ->state:
5721  *
5722  *
5723  *          TICK_SCHED_REMOTE_OFFLINE
5724  *                    |   ^
5725  *                    |   |
5726  *                    |   | sched_tick_remote()
5727  *                    |   |
5728  *                    |   |
5729  *                    +--TICK_SCHED_REMOTE_OFFLINING
5730  *                    |   ^
5731  *                    |   |
5732  * sched_tick_start() |   | sched_tick_stop()
5733  *                    |   |
5734  *                    V   |
5735  *          TICK_SCHED_REMOTE_RUNNING
5736  *
5737  *
5738  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5739  * and sched_tick_start() are happy to leave the state in RUNNING.
5740  */
5741 
5742 static struct tick_work __percpu *tick_work_cpu;
5743 
5744 static void sched_tick_remote(struct work_struct *work)
5745 {
5746 	struct delayed_work *dwork = to_delayed_work(work);
5747 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5748 	int cpu = twork->cpu;
5749 	struct rq *rq = cpu_rq(cpu);
5750 	int os;
5751 
5752 	/*
5753 	 * Handle the tick only if it appears the remote CPU is running in full
5754 	 * dynticks mode. The check is racy by nature, but missing a tick or
5755 	 * having one too much is no big deal because the scheduler tick updates
5756 	 * statistics and checks timeslices in a time-independent way, regardless
5757 	 * of when exactly it is running.
5758 	 */
5759 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5760 		guard(rq_lock_irq)(rq);
5761 		struct task_struct *curr = rq->curr;
5762 
5763 		if (cpu_online(cpu)) {
5764 			update_rq_clock(rq);
5765 
5766 			if (!is_idle_task(curr)) {
5767 				/*
5768 				 * Make sure the next tick runs within a
5769 				 * reasonable amount of time.
5770 				 */
5771 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5772 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5773 			}
5774 			curr->sched_class->task_tick(rq, curr, 0);
5775 
5776 			calc_load_nohz_remote(rq);
5777 		}
5778 	}
5779 
5780 	/*
5781 	 * Run the remote tick once per second (1Hz). This arbitrary
5782 	 * frequency is large enough to avoid overload but short enough
5783 	 * to keep scheduler internal stats reasonably up to date.  But
5784 	 * first update state to reflect hotplug activity if required.
5785 	 */
5786 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5787 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5788 	if (os == TICK_SCHED_REMOTE_RUNNING)
5789 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5790 }
5791 
5792 static void sched_tick_start(int cpu)
5793 {
5794 	int os;
5795 	struct tick_work *twork;
5796 
5797 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5798 		return;
5799 
5800 	WARN_ON_ONCE(!tick_work_cpu);
5801 
5802 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5803 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5804 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5805 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5806 		twork->cpu = cpu;
5807 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5808 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5809 	}
5810 }
5811 
5812 #ifdef CONFIG_HOTPLUG_CPU
5813 static void sched_tick_stop(int cpu)
5814 {
5815 	struct tick_work *twork;
5816 	int os;
5817 
5818 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5819 		return;
5820 
5821 	WARN_ON_ONCE(!tick_work_cpu);
5822 
5823 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5824 	/* There cannot be competing actions, but don't rely on stop-machine. */
5825 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5826 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5827 	/* Don't cancel, as this would mess up the state machine. */
5828 }
5829 #endif /* CONFIG_HOTPLUG_CPU */
5830 
5831 int __init sched_tick_offload_init(void)
5832 {
5833 	tick_work_cpu = alloc_percpu(struct tick_work);
5834 	BUG_ON(!tick_work_cpu);
5835 	return 0;
5836 }
5837 
5838 #else /* !CONFIG_NO_HZ_FULL */
5839 static inline void sched_tick_start(int cpu) { }
5840 static inline void sched_tick_stop(int cpu) { }
5841 #endif
5842 
5843 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5844 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5845 /*
5846  * If the value passed in is equal to the current preempt count
5847  * then we just disabled preemption. Start timing the latency.
5848  */
5849 static inline void preempt_latency_start(int val)
5850 {
5851 	if (preempt_count() == val) {
5852 		unsigned long ip = get_lock_parent_ip();
5853 #ifdef CONFIG_DEBUG_PREEMPT
5854 		current->preempt_disable_ip = ip;
5855 #endif
5856 		trace_preempt_off(CALLER_ADDR0, ip);
5857 	}
5858 }
5859 
5860 void preempt_count_add(int val)
5861 {
5862 #ifdef CONFIG_DEBUG_PREEMPT
5863 	/*
5864 	 * Underflow?
5865 	 */
5866 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5867 		return;
5868 #endif
5869 	__preempt_count_add(val);
5870 #ifdef CONFIG_DEBUG_PREEMPT
5871 	/*
5872 	 * Spinlock count overflowing soon?
5873 	 */
5874 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5875 				PREEMPT_MASK - 10);
5876 #endif
5877 	preempt_latency_start(val);
5878 }
5879 EXPORT_SYMBOL(preempt_count_add);
5880 NOKPROBE_SYMBOL(preempt_count_add);
5881 
5882 /*
5883  * If the value passed in equals to the current preempt count
5884  * then we just enabled preemption. Stop timing the latency.
5885  */
5886 static inline void preempt_latency_stop(int val)
5887 {
5888 	if (preempt_count() == val)
5889 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5890 }
5891 
5892 void preempt_count_sub(int val)
5893 {
5894 #ifdef CONFIG_DEBUG_PREEMPT
5895 	/*
5896 	 * Underflow?
5897 	 */
5898 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5899 		return;
5900 	/*
5901 	 * Is the spinlock portion underflowing?
5902 	 */
5903 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5904 			!(preempt_count() & PREEMPT_MASK)))
5905 		return;
5906 #endif
5907 
5908 	preempt_latency_stop(val);
5909 	__preempt_count_sub(val);
5910 }
5911 EXPORT_SYMBOL(preempt_count_sub);
5912 NOKPROBE_SYMBOL(preempt_count_sub);
5913 
5914 #else
5915 static inline void preempt_latency_start(int val) { }
5916 static inline void preempt_latency_stop(int val) { }
5917 #endif
5918 
5919 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5920 {
5921 #ifdef CONFIG_DEBUG_PREEMPT
5922 	return p->preempt_disable_ip;
5923 #else
5924 	return 0;
5925 #endif
5926 }
5927 
5928 /*
5929  * Print scheduling while atomic bug:
5930  */
5931 static noinline void __schedule_bug(struct task_struct *prev)
5932 {
5933 	/* Save this before calling printk(), since that will clobber it */
5934 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5935 
5936 	if (oops_in_progress)
5937 		return;
5938 
5939 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5940 		prev->comm, prev->pid, preempt_count());
5941 
5942 	debug_show_held_locks(prev);
5943 	print_modules();
5944 	if (irqs_disabled())
5945 		print_irqtrace_events(prev);
5946 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5947 		pr_err("Preemption disabled at:");
5948 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5949 	}
5950 	check_panic_on_warn("scheduling while atomic");
5951 
5952 	dump_stack();
5953 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5954 }
5955 
5956 /*
5957  * Various schedule()-time debugging checks and statistics:
5958  */
5959 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5960 {
5961 #ifdef CONFIG_SCHED_STACK_END_CHECK
5962 	if (task_stack_end_corrupted(prev))
5963 		panic("corrupted stack end detected inside scheduler\n");
5964 
5965 	if (task_scs_end_corrupted(prev))
5966 		panic("corrupted shadow stack detected inside scheduler\n");
5967 #endif
5968 
5969 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5970 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5971 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5972 			prev->comm, prev->pid, prev->non_block_count);
5973 		dump_stack();
5974 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5975 	}
5976 #endif
5977 
5978 	if (unlikely(in_atomic_preempt_off())) {
5979 		__schedule_bug(prev);
5980 		preempt_count_set(PREEMPT_DISABLED);
5981 	}
5982 	rcu_sleep_check();
5983 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5984 
5985 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5986 
5987 	schedstat_inc(this_rq()->sched_count);
5988 }
5989 
5990 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5991 				  struct rq_flags *rf)
5992 {
5993 #ifdef CONFIG_SMP
5994 	const struct sched_class *class;
5995 	/*
5996 	 * We must do the balancing pass before put_prev_task(), such
5997 	 * that when we release the rq->lock the task is in the same
5998 	 * state as before we took rq->lock.
5999 	 *
6000 	 * We can terminate the balance pass as soon as we know there is
6001 	 * a runnable task of @class priority or higher.
6002 	 */
6003 	for_class_range(class, prev->sched_class, &idle_sched_class) {
6004 		if (class->balance(rq, prev, rf))
6005 			break;
6006 	}
6007 #endif
6008 
6009 	put_prev_task(rq, prev);
6010 }
6011 
6012 /*
6013  * Pick up the highest-prio task:
6014  */
6015 static inline struct task_struct *
6016 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6017 {
6018 	const struct sched_class *class;
6019 	struct task_struct *p;
6020 
6021 	/*
6022 	 * Optimization: we know that if all tasks are in the fair class we can
6023 	 * call that function directly, but only if the @prev task wasn't of a
6024 	 * higher scheduling class, because otherwise those lose the
6025 	 * opportunity to pull in more work from other CPUs.
6026 	 */
6027 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6028 		   rq->nr_running == rq->cfs.h_nr_running)) {
6029 
6030 		p = pick_next_task_fair(rq, prev, rf);
6031 		if (unlikely(p == RETRY_TASK))
6032 			goto restart;
6033 
6034 		/* Assume the next prioritized class is idle_sched_class */
6035 		if (!p) {
6036 			put_prev_task(rq, prev);
6037 			p = pick_next_task_idle(rq);
6038 		}
6039 
6040 		/*
6041 		 * This is the fast path; it cannot be a DL server pick;
6042 		 * therefore even if @p == @prev, ->dl_server must be NULL.
6043 		 */
6044 		if (p->dl_server)
6045 			p->dl_server = NULL;
6046 
6047 		return p;
6048 	}
6049 
6050 restart:
6051 	put_prev_task_balance(rq, prev, rf);
6052 
6053 	/*
6054 	 * We've updated @prev and no longer need the server link, clear it.
6055 	 * Must be done before ->pick_next_task() because that can (re)set
6056 	 * ->dl_server.
6057 	 */
6058 	if (prev->dl_server)
6059 		prev->dl_server = NULL;
6060 
6061 	for_each_class(class) {
6062 		p = class->pick_next_task(rq);
6063 		if (p)
6064 			return p;
6065 	}
6066 
6067 	BUG(); /* The idle class should always have a runnable task. */
6068 }
6069 
6070 #ifdef CONFIG_SCHED_CORE
6071 static inline bool is_task_rq_idle(struct task_struct *t)
6072 {
6073 	return (task_rq(t)->idle == t);
6074 }
6075 
6076 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6077 {
6078 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6079 }
6080 
6081 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6082 {
6083 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6084 		return true;
6085 
6086 	return a->core_cookie == b->core_cookie;
6087 }
6088 
6089 static inline struct task_struct *pick_task(struct rq *rq)
6090 {
6091 	const struct sched_class *class;
6092 	struct task_struct *p;
6093 
6094 	for_each_class(class) {
6095 		p = class->pick_task(rq);
6096 		if (p)
6097 			return p;
6098 	}
6099 
6100 	BUG(); /* The idle class should always have a runnable task. */
6101 }
6102 
6103 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6104 
6105 static void queue_core_balance(struct rq *rq);
6106 
6107 static struct task_struct *
6108 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6109 {
6110 	struct task_struct *next, *p, *max = NULL;
6111 	const struct cpumask *smt_mask;
6112 	bool fi_before = false;
6113 	bool core_clock_updated = (rq == rq->core);
6114 	unsigned long cookie;
6115 	int i, cpu, occ = 0;
6116 	struct rq *rq_i;
6117 	bool need_sync;
6118 
6119 	if (!sched_core_enabled(rq))
6120 		return __pick_next_task(rq, prev, rf);
6121 
6122 	cpu = cpu_of(rq);
6123 
6124 	/* Stopper task is switching into idle, no need core-wide selection. */
6125 	if (cpu_is_offline(cpu)) {
6126 		/*
6127 		 * Reset core_pick so that we don't enter the fastpath when
6128 		 * coming online. core_pick would already be migrated to
6129 		 * another cpu during offline.
6130 		 */
6131 		rq->core_pick = NULL;
6132 		return __pick_next_task(rq, prev, rf);
6133 	}
6134 
6135 	/*
6136 	 * If there were no {en,de}queues since we picked (IOW, the task
6137 	 * pointers are all still valid), and we haven't scheduled the last
6138 	 * pick yet, do so now.
6139 	 *
6140 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6141 	 * it was either offline or went offline during a sibling's core-wide
6142 	 * selection. In this case, do a core-wide selection.
6143 	 */
6144 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6145 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6146 	    rq->core_pick) {
6147 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6148 
6149 		next = rq->core_pick;
6150 		if (next != prev) {
6151 			put_prev_task(rq, prev);
6152 			set_next_task(rq, next);
6153 		}
6154 
6155 		rq->core_pick = NULL;
6156 		goto out;
6157 	}
6158 
6159 	put_prev_task_balance(rq, prev, rf);
6160 
6161 	smt_mask = cpu_smt_mask(cpu);
6162 	need_sync = !!rq->core->core_cookie;
6163 
6164 	/* reset state */
6165 	rq->core->core_cookie = 0UL;
6166 	if (rq->core->core_forceidle_count) {
6167 		if (!core_clock_updated) {
6168 			update_rq_clock(rq->core);
6169 			core_clock_updated = true;
6170 		}
6171 		sched_core_account_forceidle(rq);
6172 		/* reset after accounting force idle */
6173 		rq->core->core_forceidle_start = 0;
6174 		rq->core->core_forceidle_count = 0;
6175 		rq->core->core_forceidle_occupation = 0;
6176 		need_sync = true;
6177 		fi_before = true;
6178 	}
6179 
6180 	/*
6181 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6182 	 *
6183 	 * @task_seq guards the task state ({en,de}queues)
6184 	 * @pick_seq is the @task_seq we did a selection on
6185 	 * @sched_seq is the @pick_seq we scheduled
6186 	 *
6187 	 * However, preemptions can cause multiple picks on the same task set.
6188 	 * 'Fix' this by also increasing @task_seq for every pick.
6189 	 */
6190 	rq->core->core_task_seq++;
6191 
6192 	/*
6193 	 * Optimize for common case where this CPU has no cookies
6194 	 * and there are no cookied tasks running on siblings.
6195 	 */
6196 	if (!need_sync) {
6197 		next = pick_task(rq);
6198 		if (!next->core_cookie) {
6199 			rq->core_pick = NULL;
6200 			/*
6201 			 * For robustness, update the min_vruntime_fi for
6202 			 * unconstrained picks as well.
6203 			 */
6204 			WARN_ON_ONCE(fi_before);
6205 			task_vruntime_update(rq, next, false);
6206 			goto out_set_next;
6207 		}
6208 	}
6209 
6210 	/*
6211 	 * For each thread: do the regular task pick and find the max prio task
6212 	 * amongst them.
6213 	 *
6214 	 * Tie-break prio towards the current CPU
6215 	 */
6216 	for_each_cpu_wrap(i, smt_mask, cpu) {
6217 		rq_i = cpu_rq(i);
6218 
6219 		/*
6220 		 * Current cpu always has its clock updated on entrance to
6221 		 * pick_next_task(). If the current cpu is not the core,
6222 		 * the core may also have been updated above.
6223 		 */
6224 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6225 			update_rq_clock(rq_i);
6226 
6227 		p = rq_i->core_pick = pick_task(rq_i);
6228 		if (!max || prio_less(max, p, fi_before))
6229 			max = p;
6230 	}
6231 
6232 	cookie = rq->core->core_cookie = max->core_cookie;
6233 
6234 	/*
6235 	 * For each thread: try and find a runnable task that matches @max or
6236 	 * force idle.
6237 	 */
6238 	for_each_cpu(i, smt_mask) {
6239 		rq_i = cpu_rq(i);
6240 		p = rq_i->core_pick;
6241 
6242 		if (!cookie_equals(p, cookie)) {
6243 			p = NULL;
6244 			if (cookie)
6245 				p = sched_core_find(rq_i, cookie);
6246 			if (!p)
6247 				p = idle_sched_class.pick_task(rq_i);
6248 		}
6249 
6250 		rq_i->core_pick = p;
6251 
6252 		if (p == rq_i->idle) {
6253 			if (rq_i->nr_running) {
6254 				rq->core->core_forceidle_count++;
6255 				if (!fi_before)
6256 					rq->core->core_forceidle_seq++;
6257 			}
6258 		} else {
6259 			occ++;
6260 		}
6261 	}
6262 
6263 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6264 		rq->core->core_forceidle_start = rq_clock(rq->core);
6265 		rq->core->core_forceidle_occupation = occ;
6266 	}
6267 
6268 	rq->core->core_pick_seq = rq->core->core_task_seq;
6269 	next = rq->core_pick;
6270 	rq->core_sched_seq = rq->core->core_pick_seq;
6271 
6272 	/* Something should have been selected for current CPU */
6273 	WARN_ON_ONCE(!next);
6274 
6275 	/*
6276 	 * Reschedule siblings
6277 	 *
6278 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6279 	 * sending an IPI (below) ensures the sibling will no longer be running
6280 	 * their task. This ensures there is no inter-sibling overlap between
6281 	 * non-matching user state.
6282 	 */
6283 	for_each_cpu(i, smt_mask) {
6284 		rq_i = cpu_rq(i);
6285 
6286 		/*
6287 		 * An online sibling might have gone offline before a task
6288 		 * could be picked for it, or it might be offline but later
6289 		 * happen to come online, but its too late and nothing was
6290 		 * picked for it.  That's Ok - it will pick tasks for itself,
6291 		 * so ignore it.
6292 		 */
6293 		if (!rq_i->core_pick)
6294 			continue;
6295 
6296 		/*
6297 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6298 		 * fi_before     fi      update?
6299 		 *  0            0       1
6300 		 *  0            1       1
6301 		 *  1            0       1
6302 		 *  1            1       0
6303 		 */
6304 		if (!(fi_before && rq->core->core_forceidle_count))
6305 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6306 
6307 		rq_i->core_pick->core_occupation = occ;
6308 
6309 		if (i == cpu) {
6310 			rq_i->core_pick = NULL;
6311 			continue;
6312 		}
6313 
6314 		/* Did we break L1TF mitigation requirements? */
6315 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6316 
6317 		if (rq_i->curr == rq_i->core_pick) {
6318 			rq_i->core_pick = NULL;
6319 			continue;
6320 		}
6321 
6322 		resched_curr(rq_i);
6323 	}
6324 
6325 out_set_next:
6326 	set_next_task(rq, next);
6327 out:
6328 	if (rq->core->core_forceidle_count && next == rq->idle)
6329 		queue_core_balance(rq);
6330 
6331 	return next;
6332 }
6333 
6334 static bool try_steal_cookie(int this, int that)
6335 {
6336 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6337 	struct task_struct *p;
6338 	unsigned long cookie;
6339 	bool success = false;
6340 
6341 	guard(irq)();
6342 	guard(double_rq_lock)(dst, src);
6343 
6344 	cookie = dst->core->core_cookie;
6345 	if (!cookie)
6346 		return false;
6347 
6348 	if (dst->curr != dst->idle)
6349 		return false;
6350 
6351 	p = sched_core_find(src, cookie);
6352 	if (!p)
6353 		return false;
6354 
6355 	do {
6356 		if (p == src->core_pick || p == src->curr)
6357 			goto next;
6358 
6359 		if (!is_cpu_allowed(p, this))
6360 			goto next;
6361 
6362 		if (p->core_occupation > dst->idle->core_occupation)
6363 			goto next;
6364 		/*
6365 		 * sched_core_find() and sched_core_next() will ensure
6366 		 * that task @p is not throttled now, we also need to
6367 		 * check whether the runqueue of the destination CPU is
6368 		 * being throttled.
6369 		 */
6370 		if (sched_task_is_throttled(p, this))
6371 			goto next;
6372 
6373 		deactivate_task(src, p, 0);
6374 		set_task_cpu(p, this);
6375 		activate_task(dst, p, 0);
6376 
6377 		resched_curr(dst);
6378 
6379 		success = true;
6380 		break;
6381 
6382 next:
6383 		p = sched_core_next(p, cookie);
6384 	} while (p);
6385 
6386 	return success;
6387 }
6388 
6389 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6390 {
6391 	int i;
6392 
6393 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6394 		if (i == cpu)
6395 			continue;
6396 
6397 		if (need_resched())
6398 			break;
6399 
6400 		if (try_steal_cookie(cpu, i))
6401 			return true;
6402 	}
6403 
6404 	return false;
6405 }
6406 
6407 static void sched_core_balance(struct rq *rq)
6408 {
6409 	struct sched_domain *sd;
6410 	int cpu = cpu_of(rq);
6411 
6412 	guard(preempt)();
6413 	guard(rcu)();
6414 
6415 	raw_spin_rq_unlock_irq(rq);
6416 	for_each_domain(cpu, sd) {
6417 		if (need_resched())
6418 			break;
6419 
6420 		if (steal_cookie_task(cpu, sd))
6421 			break;
6422 	}
6423 	raw_spin_rq_lock_irq(rq);
6424 }
6425 
6426 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6427 
6428 static void queue_core_balance(struct rq *rq)
6429 {
6430 	if (!sched_core_enabled(rq))
6431 		return;
6432 
6433 	if (!rq->core->core_cookie)
6434 		return;
6435 
6436 	if (!rq->nr_running) /* not forced idle */
6437 		return;
6438 
6439 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6440 }
6441 
6442 DEFINE_LOCK_GUARD_1(core_lock, int,
6443 		    sched_core_lock(*_T->lock, &_T->flags),
6444 		    sched_core_unlock(*_T->lock, &_T->flags),
6445 		    unsigned long flags)
6446 
6447 static void sched_core_cpu_starting(unsigned int cpu)
6448 {
6449 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6450 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6451 	int t;
6452 
6453 	guard(core_lock)(&cpu);
6454 
6455 	WARN_ON_ONCE(rq->core != rq);
6456 
6457 	/* if we're the first, we'll be our own leader */
6458 	if (cpumask_weight(smt_mask) == 1)
6459 		return;
6460 
6461 	/* find the leader */
6462 	for_each_cpu(t, smt_mask) {
6463 		if (t == cpu)
6464 			continue;
6465 		rq = cpu_rq(t);
6466 		if (rq->core == rq) {
6467 			core_rq = rq;
6468 			break;
6469 		}
6470 	}
6471 
6472 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6473 		return;
6474 
6475 	/* install and validate core_rq */
6476 	for_each_cpu(t, smt_mask) {
6477 		rq = cpu_rq(t);
6478 
6479 		if (t == cpu)
6480 			rq->core = core_rq;
6481 
6482 		WARN_ON_ONCE(rq->core != core_rq);
6483 	}
6484 }
6485 
6486 static void sched_core_cpu_deactivate(unsigned int cpu)
6487 {
6488 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6489 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6490 	int t;
6491 
6492 	guard(core_lock)(&cpu);
6493 
6494 	/* if we're the last man standing, nothing to do */
6495 	if (cpumask_weight(smt_mask) == 1) {
6496 		WARN_ON_ONCE(rq->core != rq);
6497 		return;
6498 	}
6499 
6500 	/* if we're not the leader, nothing to do */
6501 	if (rq->core != rq)
6502 		return;
6503 
6504 	/* find a new leader */
6505 	for_each_cpu(t, smt_mask) {
6506 		if (t == cpu)
6507 			continue;
6508 		core_rq = cpu_rq(t);
6509 		break;
6510 	}
6511 
6512 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6513 		return;
6514 
6515 	/* copy the shared state to the new leader */
6516 	core_rq->core_task_seq             = rq->core_task_seq;
6517 	core_rq->core_pick_seq             = rq->core_pick_seq;
6518 	core_rq->core_cookie               = rq->core_cookie;
6519 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6520 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6521 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6522 
6523 	/*
6524 	 * Accounting edge for forced idle is handled in pick_next_task().
6525 	 * Don't need another one here, since the hotplug thread shouldn't
6526 	 * have a cookie.
6527 	 */
6528 	core_rq->core_forceidle_start = 0;
6529 
6530 	/* install new leader */
6531 	for_each_cpu(t, smt_mask) {
6532 		rq = cpu_rq(t);
6533 		rq->core = core_rq;
6534 	}
6535 }
6536 
6537 static inline void sched_core_cpu_dying(unsigned int cpu)
6538 {
6539 	struct rq *rq = cpu_rq(cpu);
6540 
6541 	if (rq->core != rq)
6542 		rq->core = rq;
6543 }
6544 
6545 #else /* !CONFIG_SCHED_CORE */
6546 
6547 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6548 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6549 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6550 
6551 static struct task_struct *
6552 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6553 {
6554 	return __pick_next_task(rq, prev, rf);
6555 }
6556 
6557 #endif /* CONFIG_SCHED_CORE */
6558 
6559 /*
6560  * Constants for the sched_mode argument of __schedule().
6561  *
6562  * The mode argument allows RT enabled kernels to differentiate a
6563  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6564  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6565  * optimize the AND operation out and just check for zero.
6566  */
6567 #define SM_NONE			0x0
6568 #define SM_PREEMPT		0x1
6569 #define SM_RTLOCK_WAIT		0x2
6570 
6571 #ifndef CONFIG_PREEMPT_RT
6572 # define SM_MASK_PREEMPT	(~0U)
6573 #else
6574 # define SM_MASK_PREEMPT	SM_PREEMPT
6575 #endif
6576 
6577 /*
6578  * __schedule() is the main scheduler function.
6579  *
6580  * The main means of driving the scheduler and thus entering this function are:
6581  *
6582  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6583  *
6584  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6585  *      paths. For example, see arch/x86/entry_64.S.
6586  *
6587  *      To drive preemption between tasks, the scheduler sets the flag in timer
6588  *      interrupt handler scheduler_tick().
6589  *
6590  *   3. Wakeups don't really cause entry into schedule(). They add a
6591  *      task to the run-queue and that's it.
6592  *
6593  *      Now, if the new task added to the run-queue preempts the current
6594  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6595  *      called on the nearest possible occasion:
6596  *
6597  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6598  *
6599  *         - in syscall or exception context, at the next outmost
6600  *           preempt_enable(). (this might be as soon as the wake_up()'s
6601  *           spin_unlock()!)
6602  *
6603  *         - in IRQ context, return from interrupt-handler to
6604  *           preemptible context
6605  *
6606  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6607  *         then at the next:
6608  *
6609  *          - cond_resched() call
6610  *          - explicit schedule() call
6611  *          - return from syscall or exception to user-space
6612  *          - return from interrupt-handler to user-space
6613  *
6614  * WARNING: must be called with preemption disabled!
6615  */
6616 static void __sched notrace __schedule(unsigned int sched_mode)
6617 {
6618 	struct task_struct *prev, *next;
6619 	unsigned long *switch_count;
6620 	unsigned long prev_state;
6621 	struct rq_flags rf;
6622 	struct rq *rq;
6623 	int cpu;
6624 
6625 	cpu = smp_processor_id();
6626 	rq = cpu_rq(cpu);
6627 	prev = rq->curr;
6628 
6629 	schedule_debug(prev, !!sched_mode);
6630 
6631 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6632 		hrtick_clear(rq);
6633 
6634 	local_irq_disable();
6635 	rcu_note_context_switch(!!sched_mode);
6636 
6637 	/*
6638 	 * Make sure that signal_pending_state()->signal_pending() below
6639 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6640 	 * done by the caller to avoid the race with signal_wake_up():
6641 	 *
6642 	 * __set_current_state(@state)		signal_wake_up()
6643 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6644 	 *					  wake_up_state(p, state)
6645 	 *   LOCK rq->lock			    LOCK p->pi_state
6646 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6647 	 *     if (signal_pending_state())	    if (p->state & @state)
6648 	 *
6649 	 * Also, the membarrier system call requires a full memory barrier
6650 	 * after coming from user-space, before storing to rq->curr.
6651 	 */
6652 	rq_lock(rq, &rf);
6653 	smp_mb__after_spinlock();
6654 
6655 	/* Promote REQ to ACT */
6656 	rq->clock_update_flags <<= 1;
6657 	update_rq_clock(rq);
6658 	rq->clock_update_flags = RQCF_UPDATED;
6659 
6660 	switch_count = &prev->nivcsw;
6661 
6662 	/*
6663 	 * We must load prev->state once (task_struct::state is volatile), such
6664 	 * that we form a control dependency vs deactivate_task() below.
6665 	 */
6666 	prev_state = READ_ONCE(prev->__state);
6667 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6668 		if (signal_pending_state(prev_state, prev)) {
6669 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6670 		} else {
6671 			prev->sched_contributes_to_load =
6672 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6673 				!(prev_state & TASK_NOLOAD) &&
6674 				!(prev_state & TASK_FROZEN);
6675 
6676 			if (prev->sched_contributes_to_load)
6677 				rq->nr_uninterruptible++;
6678 
6679 			/*
6680 			 * __schedule()			ttwu()
6681 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6682 			 *   if (prev_state)		    goto out;
6683 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6684 			 *				  p->state = TASK_WAKING
6685 			 *
6686 			 * Where __schedule() and ttwu() have matching control dependencies.
6687 			 *
6688 			 * After this, schedule() must not care about p->state any more.
6689 			 */
6690 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6691 
6692 			if (prev->in_iowait) {
6693 				atomic_inc(&rq->nr_iowait);
6694 				delayacct_blkio_start();
6695 			}
6696 		}
6697 		switch_count = &prev->nvcsw;
6698 	}
6699 
6700 	next = pick_next_task(rq, prev, &rf);
6701 	clear_tsk_need_resched(prev);
6702 	clear_preempt_need_resched();
6703 #ifdef CONFIG_SCHED_DEBUG
6704 	rq->last_seen_need_resched_ns = 0;
6705 #endif
6706 
6707 	if (likely(prev != next)) {
6708 		rq->nr_switches++;
6709 		/*
6710 		 * RCU users of rcu_dereference(rq->curr) may not see
6711 		 * changes to task_struct made by pick_next_task().
6712 		 */
6713 		RCU_INIT_POINTER(rq->curr, next);
6714 		/*
6715 		 * The membarrier system call requires each architecture
6716 		 * to have a full memory barrier after updating
6717 		 * rq->curr, before returning to user-space.
6718 		 *
6719 		 * Here are the schemes providing that barrier on the
6720 		 * various architectures:
6721 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6722 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6723 		 * - finish_lock_switch() for weakly-ordered
6724 		 *   architectures where spin_unlock is a full barrier,
6725 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6726 		 *   is a RELEASE barrier),
6727 		 */
6728 		++*switch_count;
6729 
6730 		migrate_disable_switch(rq, prev);
6731 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6732 
6733 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6734 
6735 		/* Also unlocks the rq: */
6736 		rq = context_switch(rq, prev, next, &rf);
6737 	} else {
6738 		rq_unpin_lock(rq, &rf);
6739 		__balance_callbacks(rq);
6740 		raw_spin_rq_unlock_irq(rq);
6741 	}
6742 }
6743 
6744 void __noreturn do_task_dead(void)
6745 {
6746 	/* Causes final put_task_struct in finish_task_switch(): */
6747 	set_special_state(TASK_DEAD);
6748 
6749 	/* Tell freezer to ignore us: */
6750 	current->flags |= PF_NOFREEZE;
6751 
6752 	__schedule(SM_NONE);
6753 	BUG();
6754 
6755 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6756 	for (;;)
6757 		cpu_relax();
6758 }
6759 
6760 static inline void sched_submit_work(struct task_struct *tsk)
6761 {
6762 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6763 	unsigned int task_flags;
6764 
6765 	/*
6766 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6767 	 * will use a blocking primitive -- which would lead to recursion.
6768 	 */
6769 	lock_map_acquire_try(&sched_map);
6770 
6771 	task_flags = tsk->flags;
6772 	/*
6773 	 * If a worker goes to sleep, notify and ask workqueue whether it
6774 	 * wants to wake up a task to maintain concurrency.
6775 	 */
6776 	if (task_flags & PF_WQ_WORKER)
6777 		wq_worker_sleeping(tsk);
6778 	else if (task_flags & PF_IO_WORKER)
6779 		io_wq_worker_sleeping(tsk);
6780 
6781 	/*
6782 	 * spinlock and rwlock must not flush block requests.  This will
6783 	 * deadlock if the callback attempts to acquire a lock which is
6784 	 * already acquired.
6785 	 */
6786 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6787 
6788 	/*
6789 	 * If we are going to sleep and we have plugged IO queued,
6790 	 * make sure to submit it to avoid deadlocks.
6791 	 */
6792 	blk_flush_plug(tsk->plug, true);
6793 
6794 	lock_map_release(&sched_map);
6795 }
6796 
6797 static void sched_update_worker(struct task_struct *tsk)
6798 {
6799 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6800 		if (tsk->flags & PF_BLOCK_TS)
6801 			blk_plug_invalidate_ts(tsk);
6802 		if (tsk->flags & PF_WQ_WORKER)
6803 			wq_worker_running(tsk);
6804 		else if (tsk->flags & PF_IO_WORKER)
6805 			io_wq_worker_running(tsk);
6806 	}
6807 }
6808 
6809 static __always_inline void __schedule_loop(unsigned int sched_mode)
6810 {
6811 	do {
6812 		preempt_disable();
6813 		__schedule(sched_mode);
6814 		sched_preempt_enable_no_resched();
6815 	} while (need_resched());
6816 }
6817 
6818 asmlinkage __visible void __sched schedule(void)
6819 {
6820 	struct task_struct *tsk = current;
6821 
6822 #ifdef CONFIG_RT_MUTEXES
6823 	lockdep_assert(!tsk->sched_rt_mutex);
6824 #endif
6825 
6826 	if (!task_is_running(tsk))
6827 		sched_submit_work(tsk);
6828 	__schedule_loop(SM_NONE);
6829 	sched_update_worker(tsk);
6830 }
6831 EXPORT_SYMBOL(schedule);
6832 
6833 /*
6834  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6835  * state (have scheduled out non-voluntarily) by making sure that all
6836  * tasks have either left the run queue or have gone into user space.
6837  * As idle tasks do not do either, they must not ever be preempted
6838  * (schedule out non-voluntarily).
6839  *
6840  * schedule_idle() is similar to schedule_preempt_disable() except that it
6841  * never enables preemption because it does not call sched_submit_work().
6842  */
6843 void __sched schedule_idle(void)
6844 {
6845 	/*
6846 	 * As this skips calling sched_submit_work(), which the idle task does
6847 	 * regardless because that function is a nop when the task is in a
6848 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6849 	 * current task can be in any other state. Note, idle is always in the
6850 	 * TASK_RUNNING state.
6851 	 */
6852 	WARN_ON_ONCE(current->__state);
6853 	do {
6854 		__schedule(SM_NONE);
6855 	} while (need_resched());
6856 }
6857 
6858 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6859 asmlinkage __visible void __sched schedule_user(void)
6860 {
6861 	/*
6862 	 * If we come here after a random call to set_need_resched(),
6863 	 * or we have been woken up remotely but the IPI has not yet arrived,
6864 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6865 	 * we find a better solution.
6866 	 *
6867 	 * NB: There are buggy callers of this function.  Ideally we
6868 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6869 	 * too frequently to make sense yet.
6870 	 */
6871 	enum ctx_state prev_state = exception_enter();
6872 	schedule();
6873 	exception_exit(prev_state);
6874 }
6875 #endif
6876 
6877 /**
6878  * schedule_preempt_disabled - called with preemption disabled
6879  *
6880  * Returns with preemption disabled. Note: preempt_count must be 1
6881  */
6882 void __sched schedule_preempt_disabled(void)
6883 {
6884 	sched_preempt_enable_no_resched();
6885 	schedule();
6886 	preempt_disable();
6887 }
6888 
6889 #ifdef CONFIG_PREEMPT_RT
6890 void __sched notrace schedule_rtlock(void)
6891 {
6892 	__schedule_loop(SM_RTLOCK_WAIT);
6893 }
6894 NOKPROBE_SYMBOL(schedule_rtlock);
6895 #endif
6896 
6897 static void __sched notrace preempt_schedule_common(void)
6898 {
6899 	do {
6900 		/*
6901 		 * Because the function tracer can trace preempt_count_sub()
6902 		 * and it also uses preempt_enable/disable_notrace(), if
6903 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6904 		 * by the function tracer will call this function again and
6905 		 * cause infinite recursion.
6906 		 *
6907 		 * Preemption must be disabled here before the function
6908 		 * tracer can trace. Break up preempt_disable() into two
6909 		 * calls. One to disable preemption without fear of being
6910 		 * traced. The other to still record the preemption latency,
6911 		 * which can also be traced by the function tracer.
6912 		 */
6913 		preempt_disable_notrace();
6914 		preempt_latency_start(1);
6915 		__schedule(SM_PREEMPT);
6916 		preempt_latency_stop(1);
6917 		preempt_enable_no_resched_notrace();
6918 
6919 		/*
6920 		 * Check again in case we missed a preemption opportunity
6921 		 * between schedule and now.
6922 		 */
6923 	} while (need_resched());
6924 }
6925 
6926 #ifdef CONFIG_PREEMPTION
6927 /*
6928  * This is the entry point to schedule() from in-kernel preemption
6929  * off of preempt_enable.
6930  */
6931 asmlinkage __visible void __sched notrace preempt_schedule(void)
6932 {
6933 	/*
6934 	 * If there is a non-zero preempt_count or interrupts are disabled,
6935 	 * we do not want to preempt the current task. Just return..
6936 	 */
6937 	if (likely(!preemptible()))
6938 		return;
6939 	preempt_schedule_common();
6940 }
6941 NOKPROBE_SYMBOL(preempt_schedule);
6942 EXPORT_SYMBOL(preempt_schedule);
6943 
6944 #ifdef CONFIG_PREEMPT_DYNAMIC
6945 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6946 #ifndef preempt_schedule_dynamic_enabled
6947 #define preempt_schedule_dynamic_enabled	preempt_schedule
6948 #define preempt_schedule_dynamic_disabled	NULL
6949 #endif
6950 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6951 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6952 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6953 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6954 void __sched notrace dynamic_preempt_schedule(void)
6955 {
6956 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6957 		return;
6958 	preempt_schedule();
6959 }
6960 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6961 EXPORT_SYMBOL(dynamic_preempt_schedule);
6962 #endif
6963 #endif
6964 
6965 /**
6966  * preempt_schedule_notrace - preempt_schedule called by tracing
6967  *
6968  * The tracing infrastructure uses preempt_enable_notrace to prevent
6969  * recursion and tracing preempt enabling caused by the tracing
6970  * infrastructure itself. But as tracing can happen in areas coming
6971  * from userspace or just about to enter userspace, a preempt enable
6972  * can occur before user_exit() is called. This will cause the scheduler
6973  * to be called when the system is still in usermode.
6974  *
6975  * To prevent this, the preempt_enable_notrace will use this function
6976  * instead of preempt_schedule() to exit user context if needed before
6977  * calling the scheduler.
6978  */
6979 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6980 {
6981 	enum ctx_state prev_ctx;
6982 
6983 	if (likely(!preemptible()))
6984 		return;
6985 
6986 	do {
6987 		/*
6988 		 * Because the function tracer can trace preempt_count_sub()
6989 		 * and it also uses preempt_enable/disable_notrace(), if
6990 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6991 		 * by the function tracer will call this function again and
6992 		 * cause infinite recursion.
6993 		 *
6994 		 * Preemption must be disabled here before the function
6995 		 * tracer can trace. Break up preempt_disable() into two
6996 		 * calls. One to disable preemption without fear of being
6997 		 * traced. The other to still record the preemption latency,
6998 		 * which can also be traced by the function tracer.
6999 		 */
7000 		preempt_disable_notrace();
7001 		preempt_latency_start(1);
7002 		/*
7003 		 * Needs preempt disabled in case user_exit() is traced
7004 		 * and the tracer calls preempt_enable_notrace() causing
7005 		 * an infinite recursion.
7006 		 */
7007 		prev_ctx = exception_enter();
7008 		__schedule(SM_PREEMPT);
7009 		exception_exit(prev_ctx);
7010 
7011 		preempt_latency_stop(1);
7012 		preempt_enable_no_resched_notrace();
7013 	} while (need_resched());
7014 }
7015 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7016 
7017 #ifdef CONFIG_PREEMPT_DYNAMIC
7018 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7019 #ifndef preempt_schedule_notrace_dynamic_enabled
7020 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7021 #define preempt_schedule_notrace_dynamic_disabled	NULL
7022 #endif
7023 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7024 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7025 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7026 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7027 void __sched notrace dynamic_preempt_schedule_notrace(void)
7028 {
7029 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7030 		return;
7031 	preempt_schedule_notrace();
7032 }
7033 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7034 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7035 #endif
7036 #endif
7037 
7038 #endif /* CONFIG_PREEMPTION */
7039 
7040 /*
7041  * This is the entry point to schedule() from kernel preemption
7042  * off of irq context.
7043  * Note, that this is called and return with irqs disabled. This will
7044  * protect us against recursive calling from irq.
7045  */
7046 asmlinkage __visible void __sched preempt_schedule_irq(void)
7047 {
7048 	enum ctx_state prev_state;
7049 
7050 	/* Catch callers which need to be fixed */
7051 	BUG_ON(preempt_count() || !irqs_disabled());
7052 
7053 	prev_state = exception_enter();
7054 
7055 	do {
7056 		preempt_disable();
7057 		local_irq_enable();
7058 		__schedule(SM_PREEMPT);
7059 		local_irq_disable();
7060 		sched_preempt_enable_no_resched();
7061 	} while (need_resched());
7062 
7063 	exception_exit(prev_state);
7064 }
7065 
7066 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7067 			  void *key)
7068 {
7069 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7070 	return try_to_wake_up(curr->private, mode, wake_flags);
7071 }
7072 EXPORT_SYMBOL(default_wake_function);
7073 
7074 static void __setscheduler_prio(struct task_struct *p, int prio)
7075 {
7076 	if (dl_prio(prio))
7077 		p->sched_class = &dl_sched_class;
7078 	else if (rt_prio(prio))
7079 		p->sched_class = &rt_sched_class;
7080 	else
7081 		p->sched_class = &fair_sched_class;
7082 
7083 	p->prio = prio;
7084 }
7085 
7086 #ifdef CONFIG_RT_MUTEXES
7087 
7088 /*
7089  * Would be more useful with typeof()/auto_type but they don't mix with
7090  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7091  * name such that if someone were to implement this function we get to compare
7092  * notes.
7093  */
7094 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7095 
7096 void rt_mutex_pre_schedule(void)
7097 {
7098 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7099 	sched_submit_work(current);
7100 }
7101 
7102 void rt_mutex_schedule(void)
7103 {
7104 	lockdep_assert(current->sched_rt_mutex);
7105 	__schedule_loop(SM_NONE);
7106 }
7107 
7108 void rt_mutex_post_schedule(void)
7109 {
7110 	sched_update_worker(current);
7111 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7112 }
7113 
7114 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7115 {
7116 	if (pi_task)
7117 		prio = min(prio, pi_task->prio);
7118 
7119 	return prio;
7120 }
7121 
7122 static inline int rt_effective_prio(struct task_struct *p, int prio)
7123 {
7124 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7125 
7126 	return __rt_effective_prio(pi_task, prio);
7127 }
7128 
7129 /*
7130  * rt_mutex_setprio - set the current priority of a task
7131  * @p: task to boost
7132  * @pi_task: donor task
7133  *
7134  * This function changes the 'effective' priority of a task. It does
7135  * not touch ->normal_prio like __setscheduler().
7136  *
7137  * Used by the rt_mutex code to implement priority inheritance
7138  * logic. Call site only calls if the priority of the task changed.
7139  */
7140 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7141 {
7142 	int prio, oldprio, queued, running, queue_flag =
7143 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7144 	const struct sched_class *prev_class;
7145 	struct rq_flags rf;
7146 	struct rq *rq;
7147 
7148 	/* XXX used to be waiter->prio, not waiter->task->prio */
7149 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7150 
7151 	/*
7152 	 * If nothing changed; bail early.
7153 	 */
7154 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7155 		return;
7156 
7157 	rq = __task_rq_lock(p, &rf);
7158 	update_rq_clock(rq);
7159 	/*
7160 	 * Set under pi_lock && rq->lock, such that the value can be used under
7161 	 * either lock.
7162 	 *
7163 	 * Note that there is loads of tricky to make this pointer cache work
7164 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7165 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7166 	 * task is allowed to run again (and can exit). This ensures the pointer
7167 	 * points to a blocked task -- which guarantees the task is present.
7168 	 */
7169 	p->pi_top_task = pi_task;
7170 
7171 	/*
7172 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7173 	 */
7174 	if (prio == p->prio && !dl_prio(prio))
7175 		goto out_unlock;
7176 
7177 	/*
7178 	 * Idle task boosting is a nono in general. There is one
7179 	 * exception, when PREEMPT_RT and NOHZ is active:
7180 	 *
7181 	 * The idle task calls get_next_timer_interrupt() and holds
7182 	 * the timer wheel base->lock on the CPU and another CPU wants
7183 	 * to access the timer (probably to cancel it). We can safely
7184 	 * ignore the boosting request, as the idle CPU runs this code
7185 	 * with interrupts disabled and will complete the lock
7186 	 * protected section without being interrupted. So there is no
7187 	 * real need to boost.
7188 	 */
7189 	if (unlikely(p == rq->idle)) {
7190 		WARN_ON(p != rq->curr);
7191 		WARN_ON(p->pi_blocked_on);
7192 		goto out_unlock;
7193 	}
7194 
7195 	trace_sched_pi_setprio(p, pi_task);
7196 	oldprio = p->prio;
7197 
7198 	if (oldprio == prio)
7199 		queue_flag &= ~DEQUEUE_MOVE;
7200 
7201 	prev_class = p->sched_class;
7202 	queued = task_on_rq_queued(p);
7203 	running = task_current(rq, p);
7204 	if (queued)
7205 		dequeue_task(rq, p, queue_flag);
7206 	if (running)
7207 		put_prev_task(rq, p);
7208 
7209 	/*
7210 	 * Boosting condition are:
7211 	 * 1. -rt task is running and holds mutex A
7212 	 *      --> -dl task blocks on mutex A
7213 	 *
7214 	 * 2. -dl task is running and holds mutex A
7215 	 *      --> -dl task blocks on mutex A and could preempt the
7216 	 *          running task
7217 	 */
7218 	if (dl_prio(prio)) {
7219 		if (!dl_prio(p->normal_prio) ||
7220 		    (pi_task && dl_prio(pi_task->prio) &&
7221 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7222 			p->dl.pi_se = pi_task->dl.pi_se;
7223 			queue_flag |= ENQUEUE_REPLENISH;
7224 		} else {
7225 			p->dl.pi_se = &p->dl;
7226 		}
7227 	} else if (rt_prio(prio)) {
7228 		if (dl_prio(oldprio))
7229 			p->dl.pi_se = &p->dl;
7230 		if (oldprio < prio)
7231 			queue_flag |= ENQUEUE_HEAD;
7232 	} else {
7233 		if (dl_prio(oldprio))
7234 			p->dl.pi_se = &p->dl;
7235 		if (rt_prio(oldprio))
7236 			p->rt.timeout = 0;
7237 	}
7238 
7239 	__setscheduler_prio(p, prio);
7240 
7241 	if (queued)
7242 		enqueue_task(rq, p, queue_flag);
7243 	if (running)
7244 		set_next_task(rq, p);
7245 
7246 	check_class_changed(rq, p, prev_class, oldprio);
7247 out_unlock:
7248 	/* Avoid rq from going away on us: */
7249 	preempt_disable();
7250 
7251 	rq_unpin_lock(rq, &rf);
7252 	__balance_callbacks(rq);
7253 	raw_spin_rq_unlock(rq);
7254 
7255 	preempt_enable();
7256 }
7257 #else
7258 static inline int rt_effective_prio(struct task_struct *p, int prio)
7259 {
7260 	return prio;
7261 }
7262 #endif
7263 
7264 void set_user_nice(struct task_struct *p, long nice)
7265 {
7266 	bool queued, running;
7267 	struct rq *rq;
7268 	int old_prio;
7269 
7270 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7271 		return;
7272 	/*
7273 	 * We have to be careful, if called from sys_setpriority(),
7274 	 * the task might be in the middle of scheduling on another CPU.
7275 	 */
7276 	CLASS(task_rq_lock, rq_guard)(p);
7277 	rq = rq_guard.rq;
7278 
7279 	update_rq_clock(rq);
7280 
7281 	/*
7282 	 * The RT priorities are set via sched_setscheduler(), but we still
7283 	 * allow the 'normal' nice value to be set - but as expected
7284 	 * it won't have any effect on scheduling until the task is
7285 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7286 	 */
7287 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7288 		p->static_prio = NICE_TO_PRIO(nice);
7289 		return;
7290 	}
7291 
7292 	queued = task_on_rq_queued(p);
7293 	running = task_current(rq, p);
7294 	if (queued)
7295 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7296 	if (running)
7297 		put_prev_task(rq, p);
7298 
7299 	p->static_prio = NICE_TO_PRIO(nice);
7300 	set_load_weight(p, true);
7301 	old_prio = p->prio;
7302 	p->prio = effective_prio(p);
7303 
7304 	if (queued)
7305 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7306 	if (running)
7307 		set_next_task(rq, p);
7308 
7309 	/*
7310 	 * If the task increased its priority or is running and
7311 	 * lowered its priority, then reschedule its CPU:
7312 	 */
7313 	p->sched_class->prio_changed(rq, p, old_prio);
7314 }
7315 EXPORT_SYMBOL(set_user_nice);
7316 
7317 /*
7318  * is_nice_reduction - check if nice value is an actual reduction
7319  *
7320  * Similar to can_nice() but does not perform a capability check.
7321  *
7322  * @p: task
7323  * @nice: nice value
7324  */
7325 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7326 {
7327 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7328 	int nice_rlim = nice_to_rlimit(nice);
7329 
7330 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7331 }
7332 
7333 /*
7334  * can_nice - check if a task can reduce its nice value
7335  * @p: task
7336  * @nice: nice value
7337  */
7338 int can_nice(const struct task_struct *p, const int nice)
7339 {
7340 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7341 }
7342 
7343 #ifdef __ARCH_WANT_SYS_NICE
7344 
7345 /*
7346  * sys_nice - change the priority of the current process.
7347  * @increment: priority increment
7348  *
7349  * sys_setpriority is a more generic, but much slower function that
7350  * does similar things.
7351  */
7352 SYSCALL_DEFINE1(nice, int, increment)
7353 {
7354 	long nice, retval;
7355 
7356 	/*
7357 	 * Setpriority might change our priority at the same moment.
7358 	 * We don't have to worry. Conceptually one call occurs first
7359 	 * and we have a single winner.
7360 	 */
7361 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7362 	nice = task_nice(current) + increment;
7363 
7364 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7365 	if (increment < 0 && !can_nice(current, nice))
7366 		return -EPERM;
7367 
7368 	retval = security_task_setnice(current, nice);
7369 	if (retval)
7370 		return retval;
7371 
7372 	set_user_nice(current, nice);
7373 	return 0;
7374 }
7375 
7376 #endif
7377 
7378 /**
7379  * task_prio - return the priority value of a given task.
7380  * @p: the task in question.
7381  *
7382  * Return: The priority value as seen by users in /proc.
7383  *
7384  * sched policy         return value   kernel prio    user prio/nice
7385  *
7386  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7387  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7388  * deadline                     -101             -1           0
7389  */
7390 int task_prio(const struct task_struct *p)
7391 {
7392 	return p->prio - MAX_RT_PRIO;
7393 }
7394 
7395 /**
7396  * idle_cpu - is a given CPU idle currently?
7397  * @cpu: the processor in question.
7398  *
7399  * Return: 1 if the CPU is currently idle. 0 otherwise.
7400  */
7401 int idle_cpu(int cpu)
7402 {
7403 	struct rq *rq = cpu_rq(cpu);
7404 
7405 	if (rq->curr != rq->idle)
7406 		return 0;
7407 
7408 	if (rq->nr_running)
7409 		return 0;
7410 
7411 #ifdef CONFIG_SMP
7412 	if (rq->ttwu_pending)
7413 		return 0;
7414 #endif
7415 
7416 	return 1;
7417 }
7418 
7419 /**
7420  * available_idle_cpu - is a given CPU idle for enqueuing work.
7421  * @cpu: the CPU in question.
7422  *
7423  * Return: 1 if the CPU is currently idle. 0 otherwise.
7424  */
7425 int available_idle_cpu(int cpu)
7426 {
7427 	if (!idle_cpu(cpu))
7428 		return 0;
7429 
7430 	if (vcpu_is_preempted(cpu))
7431 		return 0;
7432 
7433 	return 1;
7434 }
7435 
7436 /**
7437  * idle_task - return the idle task for a given CPU.
7438  * @cpu: the processor in question.
7439  *
7440  * Return: The idle task for the CPU @cpu.
7441  */
7442 struct task_struct *idle_task(int cpu)
7443 {
7444 	return cpu_rq(cpu)->idle;
7445 }
7446 
7447 #ifdef CONFIG_SCHED_CORE
7448 int sched_core_idle_cpu(int cpu)
7449 {
7450 	struct rq *rq = cpu_rq(cpu);
7451 
7452 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7453 		return 1;
7454 
7455 	return idle_cpu(cpu);
7456 }
7457 
7458 #endif
7459 
7460 #ifdef CONFIG_SMP
7461 /*
7462  * This function computes an effective utilization for the given CPU, to be
7463  * used for frequency selection given the linear relation: f = u * f_max.
7464  *
7465  * The scheduler tracks the following metrics:
7466  *
7467  *   cpu_util_{cfs,rt,dl,irq}()
7468  *   cpu_bw_dl()
7469  *
7470  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7471  * synchronized windows and are thus directly comparable.
7472  *
7473  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7474  * which excludes things like IRQ and steal-time. These latter are then accrued
7475  * in the irq utilization.
7476  *
7477  * The DL bandwidth number otoh is not a measured metric but a value computed
7478  * based on the task model parameters and gives the minimal utilization
7479  * required to meet deadlines.
7480  */
7481 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7482 				 unsigned long *min,
7483 				 unsigned long *max)
7484 {
7485 	unsigned long util, irq, scale;
7486 	struct rq *rq = cpu_rq(cpu);
7487 
7488 	scale = arch_scale_cpu_capacity(cpu);
7489 
7490 	/*
7491 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7492 	 * because of inaccuracies in how we track these -- see
7493 	 * update_irq_load_avg().
7494 	 */
7495 	irq = cpu_util_irq(rq);
7496 	if (unlikely(irq >= scale)) {
7497 		if (min)
7498 			*min = scale;
7499 		if (max)
7500 			*max = scale;
7501 		return scale;
7502 	}
7503 
7504 	if (min) {
7505 		/*
7506 		 * The minimum utilization returns the highest level between:
7507 		 * - the computed DL bandwidth needed with the IRQ pressure which
7508 		 *   steals time to the deadline task.
7509 		 * - The minimum performance requirement for CFS and/or RT.
7510 		 */
7511 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
7512 
7513 		/*
7514 		 * When an RT task is runnable and uclamp is not used, we must
7515 		 * ensure that the task will run at maximum compute capacity.
7516 		 */
7517 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
7518 			*min = max(*min, scale);
7519 	}
7520 
7521 	/*
7522 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7523 	 * CFS tasks and we use the same metric to track the effective
7524 	 * utilization (PELT windows are synchronized) we can directly add them
7525 	 * to obtain the CPU's actual utilization.
7526 	 */
7527 	util = util_cfs + cpu_util_rt(rq);
7528 	util += cpu_util_dl(rq);
7529 
7530 	/*
7531 	 * The maximum hint is a soft bandwidth requirement, which can be lower
7532 	 * than the actual utilization because of uclamp_max requirements.
7533 	 */
7534 	if (max)
7535 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
7536 
7537 	if (util >= scale)
7538 		return scale;
7539 
7540 	/*
7541 	 * There is still idle time; further improve the number by using the
7542 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7543 	 * need to scale the task numbers:
7544 	 *
7545 	 *              max - irq
7546 	 *   U' = irq + --------- * U
7547 	 *                 max
7548 	 */
7549 	util = scale_irq_capacity(util, irq, scale);
7550 	util += irq;
7551 
7552 	return min(scale, util);
7553 }
7554 
7555 unsigned long sched_cpu_util(int cpu)
7556 {
7557 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
7558 }
7559 #endif /* CONFIG_SMP */
7560 
7561 /**
7562  * find_process_by_pid - find a process with a matching PID value.
7563  * @pid: the pid in question.
7564  *
7565  * The task of @pid, if found. %NULL otherwise.
7566  */
7567 static struct task_struct *find_process_by_pid(pid_t pid)
7568 {
7569 	return pid ? find_task_by_vpid(pid) : current;
7570 }
7571 
7572 static struct task_struct *find_get_task(pid_t pid)
7573 {
7574 	struct task_struct *p;
7575 	guard(rcu)();
7576 
7577 	p = find_process_by_pid(pid);
7578 	if (likely(p))
7579 		get_task_struct(p);
7580 
7581 	return p;
7582 }
7583 
7584 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7585 	     find_get_task(pid), pid_t pid)
7586 
7587 /*
7588  * sched_setparam() passes in -1 for its policy, to let the functions
7589  * it calls know not to change it.
7590  */
7591 #define SETPARAM_POLICY	-1
7592 
7593 static void __setscheduler_params(struct task_struct *p,
7594 		const struct sched_attr *attr)
7595 {
7596 	int policy = attr->sched_policy;
7597 
7598 	if (policy == SETPARAM_POLICY)
7599 		policy = p->policy;
7600 
7601 	p->policy = policy;
7602 
7603 	if (dl_policy(policy))
7604 		__setparam_dl(p, attr);
7605 	else if (fair_policy(policy))
7606 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7607 
7608 	/*
7609 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7610 	 * !rt_policy. Always setting this ensures that things like
7611 	 * getparam()/getattr() don't report silly values for !rt tasks.
7612 	 */
7613 	p->rt_priority = attr->sched_priority;
7614 	p->normal_prio = normal_prio(p);
7615 	set_load_weight(p, true);
7616 }
7617 
7618 /*
7619  * Check the target process has a UID that matches the current process's:
7620  */
7621 static bool check_same_owner(struct task_struct *p)
7622 {
7623 	const struct cred *cred = current_cred(), *pcred;
7624 	guard(rcu)();
7625 
7626 	pcred = __task_cred(p);
7627 	return (uid_eq(cred->euid, pcred->euid) ||
7628 		uid_eq(cred->euid, pcred->uid));
7629 }
7630 
7631 /*
7632  * Allow unprivileged RT tasks to decrease priority.
7633  * Only issue a capable test if needed and only once to avoid an audit
7634  * event on permitted non-privileged operations:
7635  */
7636 static int user_check_sched_setscheduler(struct task_struct *p,
7637 					 const struct sched_attr *attr,
7638 					 int policy, int reset_on_fork)
7639 {
7640 	if (fair_policy(policy)) {
7641 		if (attr->sched_nice < task_nice(p) &&
7642 		    !is_nice_reduction(p, attr->sched_nice))
7643 			goto req_priv;
7644 	}
7645 
7646 	if (rt_policy(policy)) {
7647 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7648 
7649 		/* Can't set/change the rt policy: */
7650 		if (policy != p->policy && !rlim_rtprio)
7651 			goto req_priv;
7652 
7653 		/* Can't increase priority: */
7654 		if (attr->sched_priority > p->rt_priority &&
7655 		    attr->sched_priority > rlim_rtprio)
7656 			goto req_priv;
7657 	}
7658 
7659 	/*
7660 	 * Can't set/change SCHED_DEADLINE policy at all for now
7661 	 * (safest behavior); in the future we would like to allow
7662 	 * unprivileged DL tasks to increase their relative deadline
7663 	 * or reduce their runtime (both ways reducing utilization)
7664 	 */
7665 	if (dl_policy(policy))
7666 		goto req_priv;
7667 
7668 	/*
7669 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7670 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7671 	 */
7672 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7673 		if (!is_nice_reduction(p, task_nice(p)))
7674 			goto req_priv;
7675 	}
7676 
7677 	/* Can't change other user's priorities: */
7678 	if (!check_same_owner(p))
7679 		goto req_priv;
7680 
7681 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7682 	if (p->sched_reset_on_fork && !reset_on_fork)
7683 		goto req_priv;
7684 
7685 	return 0;
7686 
7687 req_priv:
7688 	if (!capable(CAP_SYS_NICE))
7689 		return -EPERM;
7690 
7691 	return 0;
7692 }
7693 
7694 static int __sched_setscheduler(struct task_struct *p,
7695 				const struct sched_attr *attr,
7696 				bool user, bool pi)
7697 {
7698 	int oldpolicy = -1, policy = attr->sched_policy;
7699 	int retval, oldprio, newprio, queued, running;
7700 	const struct sched_class *prev_class;
7701 	struct balance_callback *head;
7702 	struct rq_flags rf;
7703 	int reset_on_fork;
7704 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7705 	struct rq *rq;
7706 	bool cpuset_locked = false;
7707 
7708 	/* The pi code expects interrupts enabled */
7709 	BUG_ON(pi && in_interrupt());
7710 recheck:
7711 	/* Double check policy once rq lock held: */
7712 	if (policy < 0) {
7713 		reset_on_fork = p->sched_reset_on_fork;
7714 		policy = oldpolicy = p->policy;
7715 	} else {
7716 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7717 
7718 		if (!valid_policy(policy))
7719 			return -EINVAL;
7720 	}
7721 
7722 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7723 		return -EINVAL;
7724 
7725 	/*
7726 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7727 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7728 	 * SCHED_BATCH and SCHED_IDLE is 0.
7729 	 */
7730 	if (attr->sched_priority > MAX_RT_PRIO-1)
7731 		return -EINVAL;
7732 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7733 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7734 		return -EINVAL;
7735 
7736 	if (user) {
7737 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7738 		if (retval)
7739 			return retval;
7740 
7741 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7742 			return -EINVAL;
7743 
7744 		retval = security_task_setscheduler(p);
7745 		if (retval)
7746 			return retval;
7747 	}
7748 
7749 	/* Update task specific "requested" clamps */
7750 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7751 		retval = uclamp_validate(p, attr);
7752 		if (retval)
7753 			return retval;
7754 	}
7755 
7756 	/*
7757 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7758 	 * information.
7759 	 */
7760 	if (dl_policy(policy) || dl_policy(p->policy)) {
7761 		cpuset_locked = true;
7762 		cpuset_lock();
7763 	}
7764 
7765 	/*
7766 	 * Make sure no PI-waiters arrive (or leave) while we are
7767 	 * changing the priority of the task:
7768 	 *
7769 	 * To be able to change p->policy safely, the appropriate
7770 	 * runqueue lock must be held.
7771 	 */
7772 	rq = task_rq_lock(p, &rf);
7773 	update_rq_clock(rq);
7774 
7775 	/*
7776 	 * Changing the policy of the stop threads its a very bad idea:
7777 	 */
7778 	if (p == rq->stop) {
7779 		retval = -EINVAL;
7780 		goto unlock;
7781 	}
7782 
7783 	/*
7784 	 * If not changing anything there's no need to proceed further,
7785 	 * but store a possible modification of reset_on_fork.
7786 	 */
7787 	if (unlikely(policy == p->policy)) {
7788 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7789 			goto change;
7790 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7791 			goto change;
7792 		if (dl_policy(policy) && dl_param_changed(p, attr))
7793 			goto change;
7794 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7795 			goto change;
7796 
7797 		p->sched_reset_on_fork = reset_on_fork;
7798 		retval = 0;
7799 		goto unlock;
7800 	}
7801 change:
7802 
7803 	if (user) {
7804 #ifdef CONFIG_RT_GROUP_SCHED
7805 		/*
7806 		 * Do not allow realtime tasks into groups that have no runtime
7807 		 * assigned.
7808 		 */
7809 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7810 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7811 				!task_group_is_autogroup(task_group(p))) {
7812 			retval = -EPERM;
7813 			goto unlock;
7814 		}
7815 #endif
7816 #ifdef CONFIG_SMP
7817 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7818 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7819 			cpumask_t *span = rq->rd->span;
7820 
7821 			/*
7822 			 * Don't allow tasks with an affinity mask smaller than
7823 			 * the entire root_domain to become SCHED_DEADLINE. We
7824 			 * will also fail if there's no bandwidth available.
7825 			 */
7826 			if (!cpumask_subset(span, p->cpus_ptr) ||
7827 			    rq->rd->dl_bw.bw == 0) {
7828 				retval = -EPERM;
7829 				goto unlock;
7830 			}
7831 		}
7832 #endif
7833 	}
7834 
7835 	/* Re-check policy now with rq lock held: */
7836 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7837 		policy = oldpolicy = -1;
7838 		task_rq_unlock(rq, p, &rf);
7839 		if (cpuset_locked)
7840 			cpuset_unlock();
7841 		goto recheck;
7842 	}
7843 
7844 	/*
7845 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7846 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7847 	 * is available.
7848 	 */
7849 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7850 		retval = -EBUSY;
7851 		goto unlock;
7852 	}
7853 
7854 	p->sched_reset_on_fork = reset_on_fork;
7855 	oldprio = p->prio;
7856 
7857 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7858 	if (pi) {
7859 		/*
7860 		 * Take priority boosted tasks into account. If the new
7861 		 * effective priority is unchanged, we just store the new
7862 		 * normal parameters and do not touch the scheduler class and
7863 		 * the runqueue. This will be done when the task deboost
7864 		 * itself.
7865 		 */
7866 		newprio = rt_effective_prio(p, newprio);
7867 		if (newprio == oldprio)
7868 			queue_flags &= ~DEQUEUE_MOVE;
7869 	}
7870 
7871 	queued = task_on_rq_queued(p);
7872 	running = task_current(rq, p);
7873 	if (queued)
7874 		dequeue_task(rq, p, queue_flags);
7875 	if (running)
7876 		put_prev_task(rq, p);
7877 
7878 	prev_class = p->sched_class;
7879 
7880 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7881 		__setscheduler_params(p, attr);
7882 		__setscheduler_prio(p, newprio);
7883 	}
7884 	__setscheduler_uclamp(p, attr);
7885 
7886 	if (queued) {
7887 		/*
7888 		 * We enqueue to tail when the priority of a task is
7889 		 * increased (user space view).
7890 		 */
7891 		if (oldprio < p->prio)
7892 			queue_flags |= ENQUEUE_HEAD;
7893 
7894 		enqueue_task(rq, p, queue_flags);
7895 	}
7896 	if (running)
7897 		set_next_task(rq, p);
7898 
7899 	check_class_changed(rq, p, prev_class, oldprio);
7900 
7901 	/* Avoid rq from going away on us: */
7902 	preempt_disable();
7903 	head = splice_balance_callbacks(rq);
7904 	task_rq_unlock(rq, p, &rf);
7905 
7906 	if (pi) {
7907 		if (cpuset_locked)
7908 			cpuset_unlock();
7909 		rt_mutex_adjust_pi(p);
7910 	}
7911 
7912 	/* Run balance callbacks after we've adjusted the PI chain: */
7913 	balance_callbacks(rq, head);
7914 	preempt_enable();
7915 
7916 	return 0;
7917 
7918 unlock:
7919 	task_rq_unlock(rq, p, &rf);
7920 	if (cpuset_locked)
7921 		cpuset_unlock();
7922 	return retval;
7923 }
7924 
7925 static int _sched_setscheduler(struct task_struct *p, int policy,
7926 			       const struct sched_param *param, bool check)
7927 {
7928 	struct sched_attr attr = {
7929 		.sched_policy   = policy,
7930 		.sched_priority = param->sched_priority,
7931 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7932 	};
7933 
7934 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7935 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7936 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7937 		policy &= ~SCHED_RESET_ON_FORK;
7938 		attr.sched_policy = policy;
7939 	}
7940 
7941 	return __sched_setscheduler(p, &attr, check, true);
7942 }
7943 /**
7944  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7945  * @p: the task in question.
7946  * @policy: new policy.
7947  * @param: structure containing the new RT priority.
7948  *
7949  * Use sched_set_fifo(), read its comment.
7950  *
7951  * Return: 0 on success. An error code otherwise.
7952  *
7953  * NOTE that the task may be already dead.
7954  */
7955 int sched_setscheduler(struct task_struct *p, int policy,
7956 		       const struct sched_param *param)
7957 {
7958 	return _sched_setscheduler(p, policy, param, true);
7959 }
7960 
7961 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7962 {
7963 	return __sched_setscheduler(p, attr, true, true);
7964 }
7965 
7966 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7967 {
7968 	return __sched_setscheduler(p, attr, false, true);
7969 }
7970 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7971 
7972 /**
7973  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7974  * @p: the task in question.
7975  * @policy: new policy.
7976  * @param: structure containing the new RT priority.
7977  *
7978  * Just like sched_setscheduler, only don't bother checking if the
7979  * current context has permission.  For example, this is needed in
7980  * stop_machine(): we create temporary high priority worker threads,
7981  * but our caller might not have that capability.
7982  *
7983  * Return: 0 on success. An error code otherwise.
7984  */
7985 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7986 			       const struct sched_param *param)
7987 {
7988 	return _sched_setscheduler(p, policy, param, false);
7989 }
7990 
7991 /*
7992  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7993  * incapable of resource management, which is the one thing an OS really should
7994  * be doing.
7995  *
7996  * This is of course the reason it is limited to privileged users only.
7997  *
7998  * Worse still; it is fundamentally impossible to compose static priority
7999  * workloads. You cannot take two correctly working static prio workloads
8000  * and smash them together and still expect them to work.
8001  *
8002  * For this reason 'all' FIFO tasks the kernel creates are basically at:
8003  *
8004  *   MAX_RT_PRIO / 2
8005  *
8006  * The administrator _MUST_ configure the system, the kernel simply doesn't
8007  * know enough information to make a sensible choice.
8008  */
8009 void sched_set_fifo(struct task_struct *p)
8010 {
8011 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8012 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8013 }
8014 EXPORT_SYMBOL_GPL(sched_set_fifo);
8015 
8016 /*
8017  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8018  */
8019 void sched_set_fifo_low(struct task_struct *p)
8020 {
8021 	struct sched_param sp = { .sched_priority = 1 };
8022 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8023 }
8024 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8025 
8026 void sched_set_normal(struct task_struct *p, int nice)
8027 {
8028 	struct sched_attr attr = {
8029 		.sched_policy = SCHED_NORMAL,
8030 		.sched_nice = nice,
8031 	};
8032 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8033 }
8034 EXPORT_SYMBOL_GPL(sched_set_normal);
8035 
8036 static int
8037 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8038 {
8039 	struct sched_param lparam;
8040 
8041 	if (!param || pid < 0)
8042 		return -EINVAL;
8043 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8044 		return -EFAULT;
8045 
8046 	CLASS(find_get_task, p)(pid);
8047 	if (!p)
8048 		return -ESRCH;
8049 
8050 	return sched_setscheduler(p, policy, &lparam);
8051 }
8052 
8053 /*
8054  * Mimics kernel/events/core.c perf_copy_attr().
8055  */
8056 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8057 {
8058 	u32 size;
8059 	int ret;
8060 
8061 	/* Zero the full structure, so that a short copy will be nice: */
8062 	memset(attr, 0, sizeof(*attr));
8063 
8064 	ret = get_user(size, &uattr->size);
8065 	if (ret)
8066 		return ret;
8067 
8068 	/* ABI compatibility quirk: */
8069 	if (!size)
8070 		size = SCHED_ATTR_SIZE_VER0;
8071 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8072 		goto err_size;
8073 
8074 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8075 	if (ret) {
8076 		if (ret == -E2BIG)
8077 			goto err_size;
8078 		return ret;
8079 	}
8080 
8081 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8082 	    size < SCHED_ATTR_SIZE_VER1)
8083 		return -EINVAL;
8084 
8085 	/*
8086 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8087 	 * to be strict and return an error on out-of-bounds values?
8088 	 */
8089 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8090 
8091 	return 0;
8092 
8093 err_size:
8094 	put_user(sizeof(*attr), &uattr->size);
8095 	return -E2BIG;
8096 }
8097 
8098 static void get_params(struct task_struct *p, struct sched_attr *attr)
8099 {
8100 	if (task_has_dl_policy(p))
8101 		__getparam_dl(p, attr);
8102 	else if (task_has_rt_policy(p))
8103 		attr->sched_priority = p->rt_priority;
8104 	else
8105 		attr->sched_nice = task_nice(p);
8106 }
8107 
8108 /**
8109  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8110  * @pid: the pid in question.
8111  * @policy: new policy.
8112  * @param: structure containing the new RT priority.
8113  *
8114  * Return: 0 on success. An error code otherwise.
8115  */
8116 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8117 {
8118 	if (policy < 0)
8119 		return -EINVAL;
8120 
8121 	return do_sched_setscheduler(pid, policy, param);
8122 }
8123 
8124 /**
8125  * sys_sched_setparam - set/change the RT priority of a thread
8126  * @pid: the pid in question.
8127  * @param: structure containing the new RT priority.
8128  *
8129  * Return: 0 on success. An error code otherwise.
8130  */
8131 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8132 {
8133 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8134 }
8135 
8136 /**
8137  * sys_sched_setattr - same as above, but with extended sched_attr
8138  * @pid: the pid in question.
8139  * @uattr: structure containing the extended parameters.
8140  * @flags: for future extension.
8141  */
8142 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8143 			       unsigned int, flags)
8144 {
8145 	struct sched_attr attr;
8146 	int retval;
8147 
8148 	if (!uattr || pid < 0 || flags)
8149 		return -EINVAL;
8150 
8151 	retval = sched_copy_attr(uattr, &attr);
8152 	if (retval)
8153 		return retval;
8154 
8155 	if ((int)attr.sched_policy < 0)
8156 		return -EINVAL;
8157 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8158 		attr.sched_policy = SETPARAM_POLICY;
8159 
8160 	CLASS(find_get_task, p)(pid);
8161 	if (!p)
8162 		return -ESRCH;
8163 
8164 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8165 		get_params(p, &attr);
8166 
8167 	return sched_setattr(p, &attr);
8168 }
8169 
8170 /**
8171  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8172  * @pid: the pid in question.
8173  *
8174  * Return: On success, the policy of the thread. Otherwise, a negative error
8175  * code.
8176  */
8177 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8178 {
8179 	struct task_struct *p;
8180 	int retval;
8181 
8182 	if (pid < 0)
8183 		return -EINVAL;
8184 
8185 	guard(rcu)();
8186 	p = find_process_by_pid(pid);
8187 	if (!p)
8188 		return -ESRCH;
8189 
8190 	retval = security_task_getscheduler(p);
8191 	if (!retval) {
8192 		retval = p->policy;
8193 		if (p->sched_reset_on_fork)
8194 			retval |= SCHED_RESET_ON_FORK;
8195 	}
8196 	return retval;
8197 }
8198 
8199 /**
8200  * sys_sched_getparam - get the RT priority of a thread
8201  * @pid: the pid in question.
8202  * @param: structure containing the RT priority.
8203  *
8204  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8205  * code.
8206  */
8207 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8208 {
8209 	struct sched_param lp = { .sched_priority = 0 };
8210 	struct task_struct *p;
8211 	int retval;
8212 
8213 	if (!param || pid < 0)
8214 		return -EINVAL;
8215 
8216 	scoped_guard (rcu) {
8217 		p = find_process_by_pid(pid);
8218 		if (!p)
8219 			return -ESRCH;
8220 
8221 		retval = security_task_getscheduler(p);
8222 		if (retval)
8223 			return retval;
8224 
8225 		if (task_has_rt_policy(p))
8226 			lp.sched_priority = p->rt_priority;
8227 	}
8228 
8229 	/*
8230 	 * This one might sleep, we cannot do it with a spinlock held ...
8231 	 */
8232 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8233 }
8234 
8235 /*
8236  * Copy the kernel size attribute structure (which might be larger
8237  * than what user-space knows about) to user-space.
8238  *
8239  * Note that all cases are valid: user-space buffer can be larger or
8240  * smaller than the kernel-space buffer. The usual case is that both
8241  * have the same size.
8242  */
8243 static int
8244 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8245 			struct sched_attr *kattr,
8246 			unsigned int usize)
8247 {
8248 	unsigned int ksize = sizeof(*kattr);
8249 
8250 	if (!access_ok(uattr, usize))
8251 		return -EFAULT;
8252 
8253 	/*
8254 	 * sched_getattr() ABI forwards and backwards compatibility:
8255 	 *
8256 	 * If usize == ksize then we just copy everything to user-space and all is good.
8257 	 *
8258 	 * If usize < ksize then we only copy as much as user-space has space for,
8259 	 * this keeps ABI compatibility as well. We skip the rest.
8260 	 *
8261 	 * If usize > ksize then user-space is using a newer version of the ABI,
8262 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8263 	 * detect the kernel's knowledge of attributes from the attr->size value
8264 	 * which is set to ksize in this case.
8265 	 */
8266 	kattr->size = min(usize, ksize);
8267 
8268 	if (copy_to_user(uattr, kattr, kattr->size))
8269 		return -EFAULT;
8270 
8271 	return 0;
8272 }
8273 
8274 /**
8275  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8276  * @pid: the pid in question.
8277  * @uattr: structure containing the extended parameters.
8278  * @usize: sizeof(attr) for fwd/bwd comp.
8279  * @flags: for future extension.
8280  */
8281 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8282 		unsigned int, usize, unsigned int, flags)
8283 {
8284 	struct sched_attr kattr = { };
8285 	struct task_struct *p;
8286 	int retval;
8287 
8288 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8289 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8290 		return -EINVAL;
8291 
8292 	scoped_guard (rcu) {
8293 		p = find_process_by_pid(pid);
8294 		if (!p)
8295 			return -ESRCH;
8296 
8297 		retval = security_task_getscheduler(p);
8298 		if (retval)
8299 			return retval;
8300 
8301 		kattr.sched_policy = p->policy;
8302 		if (p->sched_reset_on_fork)
8303 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8304 		get_params(p, &kattr);
8305 		kattr.sched_flags &= SCHED_FLAG_ALL;
8306 
8307 #ifdef CONFIG_UCLAMP_TASK
8308 		/*
8309 		 * This could race with another potential updater, but this is fine
8310 		 * because it'll correctly read the old or the new value. We don't need
8311 		 * to guarantee who wins the race as long as it doesn't return garbage.
8312 		 */
8313 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8314 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8315 #endif
8316 	}
8317 
8318 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8319 }
8320 
8321 #ifdef CONFIG_SMP
8322 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8323 {
8324 	/*
8325 	 * If the task isn't a deadline task or admission control is
8326 	 * disabled then we don't care about affinity changes.
8327 	 */
8328 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8329 		return 0;
8330 
8331 	/*
8332 	 * Since bandwidth control happens on root_domain basis,
8333 	 * if admission test is enabled, we only admit -deadline
8334 	 * tasks allowed to run on all the CPUs in the task's
8335 	 * root_domain.
8336 	 */
8337 	guard(rcu)();
8338 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8339 		return -EBUSY;
8340 
8341 	return 0;
8342 }
8343 #endif
8344 
8345 static int
8346 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8347 {
8348 	int retval;
8349 	cpumask_var_t cpus_allowed, new_mask;
8350 
8351 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8352 		return -ENOMEM;
8353 
8354 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8355 		retval = -ENOMEM;
8356 		goto out_free_cpus_allowed;
8357 	}
8358 
8359 	cpuset_cpus_allowed(p, cpus_allowed);
8360 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8361 
8362 	ctx->new_mask = new_mask;
8363 	ctx->flags |= SCA_CHECK;
8364 
8365 	retval = dl_task_check_affinity(p, new_mask);
8366 	if (retval)
8367 		goto out_free_new_mask;
8368 
8369 	retval = __set_cpus_allowed_ptr(p, ctx);
8370 	if (retval)
8371 		goto out_free_new_mask;
8372 
8373 	cpuset_cpus_allowed(p, cpus_allowed);
8374 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8375 		/*
8376 		 * We must have raced with a concurrent cpuset update.
8377 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8378 		 */
8379 		cpumask_copy(new_mask, cpus_allowed);
8380 
8381 		/*
8382 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8383 		 * will restore the previous user_cpus_ptr value.
8384 		 *
8385 		 * In the unlikely event a previous user_cpus_ptr exists,
8386 		 * we need to further restrict the mask to what is allowed
8387 		 * by that old user_cpus_ptr.
8388 		 */
8389 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8390 			bool empty = !cpumask_and(new_mask, new_mask,
8391 						  ctx->user_mask);
8392 
8393 			if (WARN_ON_ONCE(empty))
8394 				cpumask_copy(new_mask, cpus_allowed);
8395 		}
8396 		__set_cpus_allowed_ptr(p, ctx);
8397 		retval = -EINVAL;
8398 	}
8399 
8400 out_free_new_mask:
8401 	free_cpumask_var(new_mask);
8402 out_free_cpus_allowed:
8403 	free_cpumask_var(cpus_allowed);
8404 	return retval;
8405 }
8406 
8407 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8408 {
8409 	struct affinity_context ac;
8410 	struct cpumask *user_mask;
8411 	int retval;
8412 
8413 	CLASS(find_get_task, p)(pid);
8414 	if (!p)
8415 		return -ESRCH;
8416 
8417 	if (p->flags & PF_NO_SETAFFINITY)
8418 		return -EINVAL;
8419 
8420 	if (!check_same_owner(p)) {
8421 		guard(rcu)();
8422 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8423 			return -EPERM;
8424 	}
8425 
8426 	retval = security_task_setscheduler(p);
8427 	if (retval)
8428 		return retval;
8429 
8430 	/*
8431 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8432 	 * alloc_user_cpus_ptr() returns NULL.
8433 	 */
8434 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8435 	if (user_mask) {
8436 		cpumask_copy(user_mask, in_mask);
8437 	} else if (IS_ENABLED(CONFIG_SMP)) {
8438 		return -ENOMEM;
8439 	}
8440 
8441 	ac = (struct affinity_context){
8442 		.new_mask  = in_mask,
8443 		.user_mask = user_mask,
8444 		.flags     = SCA_USER,
8445 	};
8446 
8447 	retval = __sched_setaffinity(p, &ac);
8448 	kfree(ac.user_mask);
8449 
8450 	return retval;
8451 }
8452 
8453 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8454 			     struct cpumask *new_mask)
8455 {
8456 	if (len < cpumask_size())
8457 		cpumask_clear(new_mask);
8458 	else if (len > cpumask_size())
8459 		len = cpumask_size();
8460 
8461 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8462 }
8463 
8464 /**
8465  * sys_sched_setaffinity - set the CPU affinity of a process
8466  * @pid: pid of the process
8467  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8468  * @user_mask_ptr: user-space pointer to the new CPU mask
8469  *
8470  * Return: 0 on success. An error code otherwise.
8471  */
8472 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8473 		unsigned long __user *, user_mask_ptr)
8474 {
8475 	cpumask_var_t new_mask;
8476 	int retval;
8477 
8478 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8479 		return -ENOMEM;
8480 
8481 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8482 	if (retval == 0)
8483 		retval = sched_setaffinity(pid, new_mask);
8484 	free_cpumask_var(new_mask);
8485 	return retval;
8486 }
8487 
8488 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8489 {
8490 	struct task_struct *p;
8491 	int retval;
8492 
8493 	guard(rcu)();
8494 	p = find_process_by_pid(pid);
8495 	if (!p)
8496 		return -ESRCH;
8497 
8498 	retval = security_task_getscheduler(p);
8499 	if (retval)
8500 		return retval;
8501 
8502 	guard(raw_spinlock_irqsave)(&p->pi_lock);
8503 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8504 
8505 	return 0;
8506 }
8507 
8508 /**
8509  * sys_sched_getaffinity - get the CPU affinity of a process
8510  * @pid: pid of the process
8511  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8512  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8513  *
8514  * Return: size of CPU mask copied to user_mask_ptr on success. An
8515  * error code otherwise.
8516  */
8517 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8518 		unsigned long __user *, user_mask_ptr)
8519 {
8520 	int ret;
8521 	cpumask_var_t mask;
8522 
8523 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8524 		return -EINVAL;
8525 	if (len & (sizeof(unsigned long)-1))
8526 		return -EINVAL;
8527 
8528 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8529 		return -ENOMEM;
8530 
8531 	ret = sched_getaffinity(pid, mask);
8532 	if (ret == 0) {
8533 		unsigned int retlen = min(len, cpumask_size());
8534 
8535 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8536 			ret = -EFAULT;
8537 		else
8538 			ret = retlen;
8539 	}
8540 	free_cpumask_var(mask);
8541 
8542 	return ret;
8543 }
8544 
8545 static void do_sched_yield(void)
8546 {
8547 	struct rq_flags rf;
8548 	struct rq *rq;
8549 
8550 	rq = this_rq_lock_irq(&rf);
8551 
8552 	schedstat_inc(rq->yld_count);
8553 	current->sched_class->yield_task(rq);
8554 
8555 	preempt_disable();
8556 	rq_unlock_irq(rq, &rf);
8557 	sched_preempt_enable_no_resched();
8558 
8559 	schedule();
8560 }
8561 
8562 /**
8563  * sys_sched_yield - yield the current processor to other threads.
8564  *
8565  * This function yields the current CPU to other tasks. If there are no
8566  * other threads running on this CPU then this function will return.
8567  *
8568  * Return: 0.
8569  */
8570 SYSCALL_DEFINE0(sched_yield)
8571 {
8572 	do_sched_yield();
8573 	return 0;
8574 }
8575 
8576 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8577 int __sched __cond_resched(void)
8578 {
8579 	if (should_resched(0)) {
8580 		preempt_schedule_common();
8581 		return 1;
8582 	}
8583 	/*
8584 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8585 	 * whether the current CPU is in an RCU read-side critical section,
8586 	 * so the tick can report quiescent states even for CPUs looping
8587 	 * in kernel context.  In contrast, in non-preemptible kernels,
8588 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8589 	 * processes executing in kernel context might never report an
8590 	 * RCU quiescent state.  Therefore, the following code causes
8591 	 * cond_resched() to report a quiescent state, but only when RCU
8592 	 * is in urgent need of one.
8593 	 */
8594 #ifndef CONFIG_PREEMPT_RCU
8595 	rcu_all_qs();
8596 #endif
8597 	return 0;
8598 }
8599 EXPORT_SYMBOL(__cond_resched);
8600 #endif
8601 
8602 #ifdef CONFIG_PREEMPT_DYNAMIC
8603 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8604 #define cond_resched_dynamic_enabled	__cond_resched
8605 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8606 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8607 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8608 
8609 #define might_resched_dynamic_enabled	__cond_resched
8610 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8611 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8612 EXPORT_STATIC_CALL_TRAMP(might_resched);
8613 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8614 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8615 int __sched dynamic_cond_resched(void)
8616 {
8617 	klp_sched_try_switch();
8618 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8619 		return 0;
8620 	return __cond_resched();
8621 }
8622 EXPORT_SYMBOL(dynamic_cond_resched);
8623 
8624 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8625 int __sched dynamic_might_resched(void)
8626 {
8627 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8628 		return 0;
8629 	return __cond_resched();
8630 }
8631 EXPORT_SYMBOL(dynamic_might_resched);
8632 #endif
8633 #endif
8634 
8635 /*
8636  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8637  * call schedule, and on return reacquire the lock.
8638  *
8639  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8640  * operations here to prevent schedule() from being called twice (once via
8641  * spin_unlock(), once by hand).
8642  */
8643 int __cond_resched_lock(spinlock_t *lock)
8644 {
8645 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8646 	int ret = 0;
8647 
8648 	lockdep_assert_held(lock);
8649 
8650 	if (spin_needbreak(lock) || resched) {
8651 		spin_unlock(lock);
8652 		if (!_cond_resched())
8653 			cpu_relax();
8654 		ret = 1;
8655 		spin_lock(lock);
8656 	}
8657 	return ret;
8658 }
8659 EXPORT_SYMBOL(__cond_resched_lock);
8660 
8661 int __cond_resched_rwlock_read(rwlock_t *lock)
8662 {
8663 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8664 	int ret = 0;
8665 
8666 	lockdep_assert_held_read(lock);
8667 
8668 	if (rwlock_needbreak(lock) || resched) {
8669 		read_unlock(lock);
8670 		if (!_cond_resched())
8671 			cpu_relax();
8672 		ret = 1;
8673 		read_lock(lock);
8674 	}
8675 	return ret;
8676 }
8677 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8678 
8679 int __cond_resched_rwlock_write(rwlock_t *lock)
8680 {
8681 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8682 	int ret = 0;
8683 
8684 	lockdep_assert_held_write(lock);
8685 
8686 	if (rwlock_needbreak(lock) || resched) {
8687 		write_unlock(lock);
8688 		if (!_cond_resched())
8689 			cpu_relax();
8690 		ret = 1;
8691 		write_lock(lock);
8692 	}
8693 	return ret;
8694 }
8695 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8696 
8697 #ifdef CONFIG_PREEMPT_DYNAMIC
8698 
8699 #ifdef CONFIG_GENERIC_ENTRY
8700 #include <linux/entry-common.h>
8701 #endif
8702 
8703 /*
8704  * SC:cond_resched
8705  * SC:might_resched
8706  * SC:preempt_schedule
8707  * SC:preempt_schedule_notrace
8708  * SC:irqentry_exit_cond_resched
8709  *
8710  *
8711  * NONE:
8712  *   cond_resched               <- __cond_resched
8713  *   might_resched              <- RET0
8714  *   preempt_schedule           <- NOP
8715  *   preempt_schedule_notrace   <- NOP
8716  *   irqentry_exit_cond_resched <- NOP
8717  *
8718  * VOLUNTARY:
8719  *   cond_resched               <- __cond_resched
8720  *   might_resched              <- __cond_resched
8721  *   preempt_schedule           <- NOP
8722  *   preempt_schedule_notrace   <- NOP
8723  *   irqentry_exit_cond_resched <- NOP
8724  *
8725  * FULL:
8726  *   cond_resched               <- RET0
8727  *   might_resched              <- RET0
8728  *   preempt_schedule           <- preempt_schedule
8729  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8730  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8731  */
8732 
8733 enum {
8734 	preempt_dynamic_undefined = -1,
8735 	preempt_dynamic_none,
8736 	preempt_dynamic_voluntary,
8737 	preempt_dynamic_full,
8738 };
8739 
8740 int preempt_dynamic_mode = preempt_dynamic_undefined;
8741 
8742 int sched_dynamic_mode(const char *str)
8743 {
8744 	if (!strcmp(str, "none"))
8745 		return preempt_dynamic_none;
8746 
8747 	if (!strcmp(str, "voluntary"))
8748 		return preempt_dynamic_voluntary;
8749 
8750 	if (!strcmp(str, "full"))
8751 		return preempt_dynamic_full;
8752 
8753 	return -EINVAL;
8754 }
8755 
8756 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8757 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8758 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8759 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8760 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8761 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8762 #else
8763 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8764 #endif
8765 
8766 static DEFINE_MUTEX(sched_dynamic_mutex);
8767 static bool klp_override;
8768 
8769 static void __sched_dynamic_update(int mode)
8770 {
8771 	/*
8772 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8773 	 * the ZERO state, which is invalid.
8774 	 */
8775 	if (!klp_override)
8776 		preempt_dynamic_enable(cond_resched);
8777 	preempt_dynamic_enable(might_resched);
8778 	preempt_dynamic_enable(preempt_schedule);
8779 	preempt_dynamic_enable(preempt_schedule_notrace);
8780 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8781 
8782 	switch (mode) {
8783 	case preempt_dynamic_none:
8784 		if (!klp_override)
8785 			preempt_dynamic_enable(cond_resched);
8786 		preempt_dynamic_disable(might_resched);
8787 		preempt_dynamic_disable(preempt_schedule);
8788 		preempt_dynamic_disable(preempt_schedule_notrace);
8789 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8790 		if (mode != preempt_dynamic_mode)
8791 			pr_info("Dynamic Preempt: none\n");
8792 		break;
8793 
8794 	case preempt_dynamic_voluntary:
8795 		if (!klp_override)
8796 			preempt_dynamic_enable(cond_resched);
8797 		preempt_dynamic_enable(might_resched);
8798 		preempt_dynamic_disable(preempt_schedule);
8799 		preempt_dynamic_disable(preempt_schedule_notrace);
8800 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8801 		if (mode != preempt_dynamic_mode)
8802 			pr_info("Dynamic Preempt: voluntary\n");
8803 		break;
8804 
8805 	case preempt_dynamic_full:
8806 		if (!klp_override)
8807 			preempt_dynamic_disable(cond_resched);
8808 		preempt_dynamic_disable(might_resched);
8809 		preempt_dynamic_enable(preempt_schedule);
8810 		preempt_dynamic_enable(preempt_schedule_notrace);
8811 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8812 		if (mode != preempt_dynamic_mode)
8813 			pr_info("Dynamic Preempt: full\n");
8814 		break;
8815 	}
8816 
8817 	preempt_dynamic_mode = mode;
8818 }
8819 
8820 void sched_dynamic_update(int mode)
8821 {
8822 	mutex_lock(&sched_dynamic_mutex);
8823 	__sched_dynamic_update(mode);
8824 	mutex_unlock(&sched_dynamic_mutex);
8825 }
8826 
8827 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8828 
8829 static int klp_cond_resched(void)
8830 {
8831 	__klp_sched_try_switch();
8832 	return __cond_resched();
8833 }
8834 
8835 void sched_dynamic_klp_enable(void)
8836 {
8837 	mutex_lock(&sched_dynamic_mutex);
8838 
8839 	klp_override = true;
8840 	static_call_update(cond_resched, klp_cond_resched);
8841 
8842 	mutex_unlock(&sched_dynamic_mutex);
8843 }
8844 
8845 void sched_dynamic_klp_disable(void)
8846 {
8847 	mutex_lock(&sched_dynamic_mutex);
8848 
8849 	klp_override = false;
8850 	__sched_dynamic_update(preempt_dynamic_mode);
8851 
8852 	mutex_unlock(&sched_dynamic_mutex);
8853 }
8854 
8855 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8856 
8857 static int __init setup_preempt_mode(char *str)
8858 {
8859 	int mode = sched_dynamic_mode(str);
8860 	if (mode < 0) {
8861 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8862 		return 0;
8863 	}
8864 
8865 	sched_dynamic_update(mode);
8866 	return 1;
8867 }
8868 __setup("preempt=", setup_preempt_mode);
8869 
8870 static void __init preempt_dynamic_init(void)
8871 {
8872 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8873 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8874 			sched_dynamic_update(preempt_dynamic_none);
8875 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8876 			sched_dynamic_update(preempt_dynamic_voluntary);
8877 		} else {
8878 			/* Default static call setting, nothing to do */
8879 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8880 			preempt_dynamic_mode = preempt_dynamic_full;
8881 			pr_info("Dynamic Preempt: full\n");
8882 		}
8883 	}
8884 }
8885 
8886 #define PREEMPT_MODEL_ACCESSOR(mode) \
8887 	bool preempt_model_##mode(void)						 \
8888 	{									 \
8889 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8890 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8891 	}									 \
8892 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8893 
8894 PREEMPT_MODEL_ACCESSOR(none);
8895 PREEMPT_MODEL_ACCESSOR(voluntary);
8896 PREEMPT_MODEL_ACCESSOR(full);
8897 
8898 #else /* !CONFIG_PREEMPT_DYNAMIC */
8899 
8900 static inline void preempt_dynamic_init(void) { }
8901 
8902 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8903 
8904 /**
8905  * yield - yield the current processor to other threads.
8906  *
8907  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8908  *
8909  * The scheduler is at all times free to pick the calling task as the most
8910  * eligible task to run, if removing the yield() call from your code breaks
8911  * it, it's already broken.
8912  *
8913  * Typical broken usage is:
8914  *
8915  * while (!event)
8916  *	yield();
8917  *
8918  * where one assumes that yield() will let 'the other' process run that will
8919  * make event true. If the current task is a SCHED_FIFO task that will never
8920  * happen. Never use yield() as a progress guarantee!!
8921  *
8922  * If you want to use yield() to wait for something, use wait_event().
8923  * If you want to use yield() to be 'nice' for others, use cond_resched().
8924  * If you still want to use yield(), do not!
8925  */
8926 void __sched yield(void)
8927 {
8928 	set_current_state(TASK_RUNNING);
8929 	do_sched_yield();
8930 }
8931 EXPORT_SYMBOL(yield);
8932 
8933 /**
8934  * yield_to - yield the current processor to another thread in
8935  * your thread group, or accelerate that thread toward the
8936  * processor it's on.
8937  * @p: target task
8938  * @preempt: whether task preemption is allowed or not
8939  *
8940  * It's the caller's job to ensure that the target task struct
8941  * can't go away on us before we can do any checks.
8942  *
8943  * Return:
8944  *	true (>0) if we indeed boosted the target task.
8945  *	false (0) if we failed to boost the target.
8946  *	-ESRCH if there's no task to yield to.
8947  */
8948 int __sched yield_to(struct task_struct *p, bool preempt)
8949 {
8950 	struct task_struct *curr = current;
8951 	struct rq *rq, *p_rq;
8952 	int yielded = 0;
8953 
8954 	scoped_guard (irqsave) {
8955 		rq = this_rq();
8956 
8957 again:
8958 		p_rq = task_rq(p);
8959 		/*
8960 		 * If we're the only runnable task on the rq and target rq also
8961 		 * has only one task, there's absolutely no point in yielding.
8962 		 */
8963 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
8964 			return -ESRCH;
8965 
8966 		guard(double_rq_lock)(rq, p_rq);
8967 		if (task_rq(p) != p_rq)
8968 			goto again;
8969 
8970 		if (!curr->sched_class->yield_to_task)
8971 			return 0;
8972 
8973 		if (curr->sched_class != p->sched_class)
8974 			return 0;
8975 
8976 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
8977 			return 0;
8978 
8979 		yielded = curr->sched_class->yield_to_task(rq, p);
8980 		if (yielded) {
8981 			schedstat_inc(rq->yld_count);
8982 			/*
8983 			 * Make p's CPU reschedule; pick_next_entity
8984 			 * takes care of fairness.
8985 			 */
8986 			if (preempt && rq != p_rq)
8987 				resched_curr(p_rq);
8988 		}
8989 	}
8990 
8991 	if (yielded)
8992 		schedule();
8993 
8994 	return yielded;
8995 }
8996 EXPORT_SYMBOL_GPL(yield_to);
8997 
8998 int io_schedule_prepare(void)
8999 {
9000 	int old_iowait = current->in_iowait;
9001 
9002 	current->in_iowait = 1;
9003 	blk_flush_plug(current->plug, true);
9004 	return old_iowait;
9005 }
9006 
9007 void io_schedule_finish(int token)
9008 {
9009 	current->in_iowait = token;
9010 }
9011 
9012 /*
9013  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9014  * that process accounting knows that this is a task in IO wait state.
9015  */
9016 long __sched io_schedule_timeout(long timeout)
9017 {
9018 	int token;
9019 	long ret;
9020 
9021 	token = io_schedule_prepare();
9022 	ret = schedule_timeout(timeout);
9023 	io_schedule_finish(token);
9024 
9025 	return ret;
9026 }
9027 EXPORT_SYMBOL(io_schedule_timeout);
9028 
9029 void __sched io_schedule(void)
9030 {
9031 	int token;
9032 
9033 	token = io_schedule_prepare();
9034 	schedule();
9035 	io_schedule_finish(token);
9036 }
9037 EXPORT_SYMBOL(io_schedule);
9038 
9039 /**
9040  * sys_sched_get_priority_max - return maximum RT priority.
9041  * @policy: scheduling class.
9042  *
9043  * Return: On success, this syscall returns the maximum
9044  * rt_priority that can be used by a given scheduling class.
9045  * On failure, a negative error code is returned.
9046  */
9047 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9048 {
9049 	int ret = -EINVAL;
9050 
9051 	switch (policy) {
9052 	case SCHED_FIFO:
9053 	case SCHED_RR:
9054 		ret = MAX_RT_PRIO-1;
9055 		break;
9056 	case SCHED_DEADLINE:
9057 	case SCHED_NORMAL:
9058 	case SCHED_BATCH:
9059 	case SCHED_IDLE:
9060 		ret = 0;
9061 		break;
9062 	}
9063 	return ret;
9064 }
9065 
9066 /**
9067  * sys_sched_get_priority_min - return minimum RT priority.
9068  * @policy: scheduling class.
9069  *
9070  * Return: On success, this syscall returns the minimum
9071  * rt_priority that can be used by a given scheduling class.
9072  * On failure, a negative error code is returned.
9073  */
9074 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9075 {
9076 	int ret = -EINVAL;
9077 
9078 	switch (policy) {
9079 	case SCHED_FIFO:
9080 	case SCHED_RR:
9081 		ret = 1;
9082 		break;
9083 	case SCHED_DEADLINE:
9084 	case SCHED_NORMAL:
9085 	case SCHED_BATCH:
9086 	case SCHED_IDLE:
9087 		ret = 0;
9088 	}
9089 	return ret;
9090 }
9091 
9092 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9093 {
9094 	unsigned int time_slice = 0;
9095 	int retval;
9096 
9097 	if (pid < 0)
9098 		return -EINVAL;
9099 
9100 	scoped_guard (rcu) {
9101 		struct task_struct *p = find_process_by_pid(pid);
9102 		if (!p)
9103 			return -ESRCH;
9104 
9105 		retval = security_task_getscheduler(p);
9106 		if (retval)
9107 			return retval;
9108 
9109 		scoped_guard (task_rq_lock, p) {
9110 			struct rq *rq = scope.rq;
9111 			if (p->sched_class->get_rr_interval)
9112 				time_slice = p->sched_class->get_rr_interval(rq, p);
9113 		}
9114 	}
9115 
9116 	jiffies_to_timespec64(time_slice, t);
9117 	return 0;
9118 }
9119 
9120 /**
9121  * sys_sched_rr_get_interval - return the default timeslice of a process.
9122  * @pid: pid of the process.
9123  * @interval: userspace pointer to the timeslice value.
9124  *
9125  * this syscall writes the default timeslice value of a given process
9126  * into the user-space timespec buffer. A value of '0' means infinity.
9127  *
9128  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9129  * an error code.
9130  */
9131 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9132 		struct __kernel_timespec __user *, interval)
9133 {
9134 	struct timespec64 t;
9135 	int retval = sched_rr_get_interval(pid, &t);
9136 
9137 	if (retval == 0)
9138 		retval = put_timespec64(&t, interval);
9139 
9140 	return retval;
9141 }
9142 
9143 #ifdef CONFIG_COMPAT_32BIT_TIME
9144 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9145 		struct old_timespec32 __user *, interval)
9146 {
9147 	struct timespec64 t;
9148 	int retval = sched_rr_get_interval(pid, &t);
9149 
9150 	if (retval == 0)
9151 		retval = put_old_timespec32(&t, interval);
9152 	return retval;
9153 }
9154 #endif
9155 
9156 void sched_show_task(struct task_struct *p)
9157 {
9158 	unsigned long free = 0;
9159 	int ppid;
9160 
9161 	if (!try_get_task_stack(p))
9162 		return;
9163 
9164 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9165 
9166 	if (task_is_running(p))
9167 		pr_cont("  running task    ");
9168 #ifdef CONFIG_DEBUG_STACK_USAGE
9169 	free = stack_not_used(p);
9170 #endif
9171 	ppid = 0;
9172 	rcu_read_lock();
9173 	if (pid_alive(p))
9174 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9175 	rcu_read_unlock();
9176 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9177 		free, task_pid_nr(p), task_tgid_nr(p),
9178 		ppid, read_task_thread_flags(p));
9179 
9180 	print_worker_info(KERN_INFO, p);
9181 	print_stop_info(KERN_INFO, p);
9182 	show_stack(p, NULL, KERN_INFO);
9183 	put_task_stack(p);
9184 }
9185 EXPORT_SYMBOL_GPL(sched_show_task);
9186 
9187 static inline bool
9188 state_filter_match(unsigned long state_filter, struct task_struct *p)
9189 {
9190 	unsigned int state = READ_ONCE(p->__state);
9191 
9192 	/* no filter, everything matches */
9193 	if (!state_filter)
9194 		return true;
9195 
9196 	/* filter, but doesn't match */
9197 	if (!(state & state_filter))
9198 		return false;
9199 
9200 	/*
9201 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9202 	 * TASK_KILLABLE).
9203 	 */
9204 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9205 		return false;
9206 
9207 	return true;
9208 }
9209 
9210 
9211 void show_state_filter(unsigned int state_filter)
9212 {
9213 	struct task_struct *g, *p;
9214 
9215 	rcu_read_lock();
9216 	for_each_process_thread(g, p) {
9217 		/*
9218 		 * reset the NMI-timeout, listing all files on a slow
9219 		 * console might take a lot of time:
9220 		 * Also, reset softlockup watchdogs on all CPUs, because
9221 		 * another CPU might be blocked waiting for us to process
9222 		 * an IPI.
9223 		 */
9224 		touch_nmi_watchdog();
9225 		touch_all_softlockup_watchdogs();
9226 		if (state_filter_match(state_filter, p))
9227 			sched_show_task(p);
9228 	}
9229 
9230 #ifdef CONFIG_SCHED_DEBUG
9231 	if (!state_filter)
9232 		sysrq_sched_debug_show();
9233 #endif
9234 	rcu_read_unlock();
9235 	/*
9236 	 * Only show locks if all tasks are dumped:
9237 	 */
9238 	if (!state_filter)
9239 		debug_show_all_locks();
9240 }
9241 
9242 /**
9243  * init_idle - set up an idle thread for a given CPU
9244  * @idle: task in question
9245  * @cpu: CPU the idle task belongs to
9246  *
9247  * NOTE: this function does not set the idle thread's NEED_RESCHED
9248  * flag, to make booting more robust.
9249  */
9250 void __init init_idle(struct task_struct *idle, int cpu)
9251 {
9252 #ifdef CONFIG_SMP
9253 	struct affinity_context ac = (struct affinity_context) {
9254 		.new_mask  = cpumask_of(cpu),
9255 		.flags     = 0,
9256 	};
9257 #endif
9258 	struct rq *rq = cpu_rq(cpu);
9259 	unsigned long flags;
9260 
9261 	__sched_fork(0, idle);
9262 
9263 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9264 	raw_spin_rq_lock(rq);
9265 
9266 	idle->__state = TASK_RUNNING;
9267 	idle->se.exec_start = sched_clock();
9268 	/*
9269 	 * PF_KTHREAD should already be set at this point; regardless, make it
9270 	 * look like a proper per-CPU kthread.
9271 	 */
9272 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9273 	kthread_set_per_cpu(idle, cpu);
9274 
9275 #ifdef CONFIG_SMP
9276 	/*
9277 	 * It's possible that init_idle() gets called multiple times on a task,
9278 	 * in that case do_set_cpus_allowed() will not do the right thing.
9279 	 *
9280 	 * And since this is boot we can forgo the serialization.
9281 	 */
9282 	set_cpus_allowed_common(idle, &ac);
9283 #endif
9284 	/*
9285 	 * We're having a chicken and egg problem, even though we are
9286 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9287 	 * lockdep check in task_group() will fail.
9288 	 *
9289 	 * Similar case to sched_fork(). / Alternatively we could
9290 	 * use task_rq_lock() here and obtain the other rq->lock.
9291 	 *
9292 	 * Silence PROVE_RCU
9293 	 */
9294 	rcu_read_lock();
9295 	__set_task_cpu(idle, cpu);
9296 	rcu_read_unlock();
9297 
9298 	rq->idle = idle;
9299 	rcu_assign_pointer(rq->curr, idle);
9300 	idle->on_rq = TASK_ON_RQ_QUEUED;
9301 #ifdef CONFIG_SMP
9302 	idle->on_cpu = 1;
9303 #endif
9304 	raw_spin_rq_unlock(rq);
9305 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9306 
9307 	/* Set the preempt count _outside_ the spinlocks! */
9308 	init_idle_preempt_count(idle, cpu);
9309 
9310 	/*
9311 	 * The idle tasks have their own, simple scheduling class:
9312 	 */
9313 	idle->sched_class = &idle_sched_class;
9314 	ftrace_graph_init_idle_task(idle, cpu);
9315 	vtime_init_idle(idle, cpu);
9316 #ifdef CONFIG_SMP
9317 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9318 #endif
9319 }
9320 
9321 #ifdef CONFIG_SMP
9322 
9323 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9324 			      const struct cpumask *trial)
9325 {
9326 	int ret = 1;
9327 
9328 	if (cpumask_empty(cur))
9329 		return ret;
9330 
9331 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9332 
9333 	return ret;
9334 }
9335 
9336 int task_can_attach(struct task_struct *p)
9337 {
9338 	int ret = 0;
9339 
9340 	/*
9341 	 * Kthreads which disallow setaffinity shouldn't be moved
9342 	 * to a new cpuset; we don't want to change their CPU
9343 	 * affinity and isolating such threads by their set of
9344 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9345 	 * applicable for such threads.  This prevents checking for
9346 	 * success of set_cpus_allowed_ptr() on all attached tasks
9347 	 * before cpus_mask may be changed.
9348 	 */
9349 	if (p->flags & PF_NO_SETAFFINITY)
9350 		ret = -EINVAL;
9351 
9352 	return ret;
9353 }
9354 
9355 bool sched_smp_initialized __read_mostly;
9356 
9357 #ifdef CONFIG_NUMA_BALANCING
9358 /* Migrate current task p to target_cpu */
9359 int migrate_task_to(struct task_struct *p, int target_cpu)
9360 {
9361 	struct migration_arg arg = { p, target_cpu };
9362 	int curr_cpu = task_cpu(p);
9363 
9364 	if (curr_cpu == target_cpu)
9365 		return 0;
9366 
9367 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9368 		return -EINVAL;
9369 
9370 	/* TODO: This is not properly updating schedstats */
9371 
9372 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9373 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9374 }
9375 
9376 /*
9377  * Requeue a task on a given node and accurately track the number of NUMA
9378  * tasks on the runqueues
9379  */
9380 void sched_setnuma(struct task_struct *p, int nid)
9381 {
9382 	bool queued, running;
9383 	struct rq_flags rf;
9384 	struct rq *rq;
9385 
9386 	rq = task_rq_lock(p, &rf);
9387 	queued = task_on_rq_queued(p);
9388 	running = task_current(rq, p);
9389 
9390 	if (queued)
9391 		dequeue_task(rq, p, DEQUEUE_SAVE);
9392 	if (running)
9393 		put_prev_task(rq, p);
9394 
9395 	p->numa_preferred_nid = nid;
9396 
9397 	if (queued)
9398 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9399 	if (running)
9400 		set_next_task(rq, p);
9401 	task_rq_unlock(rq, p, &rf);
9402 }
9403 #endif /* CONFIG_NUMA_BALANCING */
9404 
9405 #ifdef CONFIG_HOTPLUG_CPU
9406 /*
9407  * Ensure that the idle task is using init_mm right before its CPU goes
9408  * offline.
9409  */
9410 void idle_task_exit(void)
9411 {
9412 	struct mm_struct *mm = current->active_mm;
9413 
9414 	BUG_ON(cpu_online(smp_processor_id()));
9415 	BUG_ON(current != this_rq()->idle);
9416 
9417 	if (mm != &init_mm) {
9418 		switch_mm(mm, &init_mm, current);
9419 		finish_arch_post_lock_switch();
9420 	}
9421 
9422 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9423 }
9424 
9425 static int __balance_push_cpu_stop(void *arg)
9426 {
9427 	struct task_struct *p = arg;
9428 	struct rq *rq = this_rq();
9429 	struct rq_flags rf;
9430 	int cpu;
9431 
9432 	raw_spin_lock_irq(&p->pi_lock);
9433 	rq_lock(rq, &rf);
9434 
9435 	update_rq_clock(rq);
9436 
9437 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9438 		cpu = select_fallback_rq(rq->cpu, p);
9439 		rq = __migrate_task(rq, &rf, p, cpu);
9440 	}
9441 
9442 	rq_unlock(rq, &rf);
9443 	raw_spin_unlock_irq(&p->pi_lock);
9444 
9445 	put_task_struct(p);
9446 
9447 	return 0;
9448 }
9449 
9450 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9451 
9452 /*
9453  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9454  *
9455  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9456  * effective when the hotplug motion is down.
9457  */
9458 static void balance_push(struct rq *rq)
9459 {
9460 	struct task_struct *push_task = rq->curr;
9461 
9462 	lockdep_assert_rq_held(rq);
9463 
9464 	/*
9465 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9466 	 */
9467 	rq->balance_callback = &balance_push_callback;
9468 
9469 	/*
9470 	 * Only active while going offline and when invoked on the outgoing
9471 	 * CPU.
9472 	 */
9473 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9474 		return;
9475 
9476 	/*
9477 	 * Both the cpu-hotplug and stop task are in this case and are
9478 	 * required to complete the hotplug process.
9479 	 */
9480 	if (kthread_is_per_cpu(push_task) ||
9481 	    is_migration_disabled(push_task)) {
9482 
9483 		/*
9484 		 * If this is the idle task on the outgoing CPU try to wake
9485 		 * up the hotplug control thread which might wait for the
9486 		 * last task to vanish. The rcuwait_active() check is
9487 		 * accurate here because the waiter is pinned on this CPU
9488 		 * and can't obviously be running in parallel.
9489 		 *
9490 		 * On RT kernels this also has to check whether there are
9491 		 * pinned and scheduled out tasks on the runqueue. They
9492 		 * need to leave the migrate disabled section first.
9493 		 */
9494 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9495 		    rcuwait_active(&rq->hotplug_wait)) {
9496 			raw_spin_rq_unlock(rq);
9497 			rcuwait_wake_up(&rq->hotplug_wait);
9498 			raw_spin_rq_lock(rq);
9499 		}
9500 		return;
9501 	}
9502 
9503 	get_task_struct(push_task);
9504 	/*
9505 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9506 	 * Both preemption and IRQs are still disabled.
9507 	 */
9508 	preempt_disable();
9509 	raw_spin_rq_unlock(rq);
9510 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9511 			    this_cpu_ptr(&push_work));
9512 	preempt_enable();
9513 	/*
9514 	 * At this point need_resched() is true and we'll take the loop in
9515 	 * schedule(). The next pick is obviously going to be the stop task
9516 	 * which kthread_is_per_cpu() and will push this task away.
9517 	 */
9518 	raw_spin_rq_lock(rq);
9519 }
9520 
9521 static void balance_push_set(int cpu, bool on)
9522 {
9523 	struct rq *rq = cpu_rq(cpu);
9524 	struct rq_flags rf;
9525 
9526 	rq_lock_irqsave(rq, &rf);
9527 	if (on) {
9528 		WARN_ON_ONCE(rq->balance_callback);
9529 		rq->balance_callback = &balance_push_callback;
9530 	} else if (rq->balance_callback == &balance_push_callback) {
9531 		rq->balance_callback = NULL;
9532 	}
9533 	rq_unlock_irqrestore(rq, &rf);
9534 }
9535 
9536 /*
9537  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9538  * inactive. All tasks which are not per CPU kernel threads are either
9539  * pushed off this CPU now via balance_push() or placed on a different CPU
9540  * during wakeup. Wait until the CPU is quiescent.
9541  */
9542 static void balance_hotplug_wait(void)
9543 {
9544 	struct rq *rq = this_rq();
9545 
9546 	rcuwait_wait_event(&rq->hotplug_wait,
9547 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9548 			   TASK_UNINTERRUPTIBLE);
9549 }
9550 
9551 #else
9552 
9553 static inline void balance_push(struct rq *rq)
9554 {
9555 }
9556 
9557 static inline void balance_push_set(int cpu, bool on)
9558 {
9559 }
9560 
9561 static inline void balance_hotplug_wait(void)
9562 {
9563 }
9564 
9565 #endif /* CONFIG_HOTPLUG_CPU */
9566 
9567 void set_rq_online(struct rq *rq)
9568 {
9569 	if (!rq->online) {
9570 		const struct sched_class *class;
9571 
9572 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9573 		rq->online = 1;
9574 
9575 		for_each_class(class) {
9576 			if (class->rq_online)
9577 				class->rq_online(rq);
9578 		}
9579 	}
9580 }
9581 
9582 void set_rq_offline(struct rq *rq)
9583 {
9584 	if (rq->online) {
9585 		const struct sched_class *class;
9586 
9587 		update_rq_clock(rq);
9588 		for_each_class(class) {
9589 			if (class->rq_offline)
9590 				class->rq_offline(rq);
9591 		}
9592 
9593 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9594 		rq->online = 0;
9595 	}
9596 }
9597 
9598 /*
9599  * used to mark begin/end of suspend/resume:
9600  */
9601 static int num_cpus_frozen;
9602 
9603 /*
9604  * Update cpusets according to cpu_active mask.  If cpusets are
9605  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9606  * around partition_sched_domains().
9607  *
9608  * If we come here as part of a suspend/resume, don't touch cpusets because we
9609  * want to restore it back to its original state upon resume anyway.
9610  */
9611 static void cpuset_cpu_active(void)
9612 {
9613 	if (cpuhp_tasks_frozen) {
9614 		/*
9615 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9616 		 * resume sequence. As long as this is not the last online
9617 		 * operation in the resume sequence, just build a single sched
9618 		 * domain, ignoring cpusets.
9619 		 */
9620 		partition_sched_domains(1, NULL, NULL);
9621 		if (--num_cpus_frozen)
9622 			return;
9623 		/*
9624 		 * This is the last CPU online operation. So fall through and
9625 		 * restore the original sched domains by considering the
9626 		 * cpuset configurations.
9627 		 */
9628 		cpuset_force_rebuild();
9629 	}
9630 	cpuset_update_active_cpus();
9631 }
9632 
9633 static int cpuset_cpu_inactive(unsigned int cpu)
9634 {
9635 	if (!cpuhp_tasks_frozen) {
9636 		int ret = dl_bw_check_overflow(cpu);
9637 
9638 		if (ret)
9639 			return ret;
9640 		cpuset_update_active_cpus();
9641 	} else {
9642 		num_cpus_frozen++;
9643 		partition_sched_domains(1, NULL, NULL);
9644 	}
9645 	return 0;
9646 }
9647 
9648 int sched_cpu_activate(unsigned int cpu)
9649 {
9650 	struct rq *rq = cpu_rq(cpu);
9651 	struct rq_flags rf;
9652 
9653 	/*
9654 	 * Clear the balance_push callback and prepare to schedule
9655 	 * regular tasks.
9656 	 */
9657 	balance_push_set(cpu, false);
9658 
9659 #ifdef CONFIG_SCHED_SMT
9660 	/*
9661 	 * When going up, increment the number of cores with SMT present.
9662 	 */
9663 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9664 		static_branch_inc_cpuslocked(&sched_smt_present);
9665 #endif
9666 	set_cpu_active(cpu, true);
9667 
9668 	if (sched_smp_initialized) {
9669 		sched_update_numa(cpu, true);
9670 		sched_domains_numa_masks_set(cpu);
9671 		cpuset_cpu_active();
9672 	}
9673 
9674 	/*
9675 	 * Put the rq online, if not already. This happens:
9676 	 *
9677 	 * 1) In the early boot process, because we build the real domains
9678 	 *    after all CPUs have been brought up.
9679 	 *
9680 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9681 	 *    domains.
9682 	 */
9683 	rq_lock_irqsave(rq, &rf);
9684 	if (rq->rd) {
9685 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9686 		set_rq_online(rq);
9687 	}
9688 	rq_unlock_irqrestore(rq, &rf);
9689 
9690 	return 0;
9691 }
9692 
9693 int sched_cpu_deactivate(unsigned int cpu)
9694 {
9695 	struct rq *rq = cpu_rq(cpu);
9696 	struct rq_flags rf;
9697 	int ret;
9698 
9699 	/*
9700 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9701 	 * load balancing when not active
9702 	 */
9703 	nohz_balance_exit_idle(rq);
9704 
9705 	set_cpu_active(cpu, false);
9706 
9707 	/*
9708 	 * From this point forward, this CPU will refuse to run any task that
9709 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9710 	 * push those tasks away until this gets cleared, see
9711 	 * sched_cpu_dying().
9712 	 */
9713 	balance_push_set(cpu, true);
9714 
9715 	/*
9716 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9717 	 * preempt-disabled and RCU users of this state to go away such that
9718 	 * all new such users will observe it.
9719 	 *
9720 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9721 	 * ttwu_queue_cond() and is_cpu_allowed().
9722 	 *
9723 	 * Do sync before park smpboot threads to take care the rcu boost case.
9724 	 */
9725 	synchronize_rcu();
9726 
9727 	rq_lock_irqsave(rq, &rf);
9728 	if (rq->rd) {
9729 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9730 		set_rq_offline(rq);
9731 	}
9732 	rq_unlock_irqrestore(rq, &rf);
9733 
9734 #ifdef CONFIG_SCHED_SMT
9735 	/*
9736 	 * When going down, decrement the number of cores with SMT present.
9737 	 */
9738 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9739 		static_branch_dec_cpuslocked(&sched_smt_present);
9740 
9741 	sched_core_cpu_deactivate(cpu);
9742 #endif
9743 
9744 	if (!sched_smp_initialized)
9745 		return 0;
9746 
9747 	sched_update_numa(cpu, false);
9748 	ret = cpuset_cpu_inactive(cpu);
9749 	if (ret) {
9750 		balance_push_set(cpu, false);
9751 		set_cpu_active(cpu, true);
9752 		sched_update_numa(cpu, true);
9753 		return ret;
9754 	}
9755 	sched_domains_numa_masks_clear(cpu);
9756 	return 0;
9757 }
9758 
9759 static void sched_rq_cpu_starting(unsigned int cpu)
9760 {
9761 	struct rq *rq = cpu_rq(cpu);
9762 
9763 	rq->calc_load_update = calc_load_update;
9764 	update_max_interval();
9765 }
9766 
9767 int sched_cpu_starting(unsigned int cpu)
9768 {
9769 	sched_core_cpu_starting(cpu);
9770 	sched_rq_cpu_starting(cpu);
9771 	sched_tick_start(cpu);
9772 	return 0;
9773 }
9774 
9775 #ifdef CONFIG_HOTPLUG_CPU
9776 
9777 /*
9778  * Invoked immediately before the stopper thread is invoked to bring the
9779  * CPU down completely. At this point all per CPU kthreads except the
9780  * hotplug thread (current) and the stopper thread (inactive) have been
9781  * either parked or have been unbound from the outgoing CPU. Ensure that
9782  * any of those which might be on the way out are gone.
9783  *
9784  * If after this point a bound task is being woken on this CPU then the
9785  * responsible hotplug callback has failed to do it's job.
9786  * sched_cpu_dying() will catch it with the appropriate fireworks.
9787  */
9788 int sched_cpu_wait_empty(unsigned int cpu)
9789 {
9790 	balance_hotplug_wait();
9791 	return 0;
9792 }
9793 
9794 /*
9795  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9796  * might have. Called from the CPU stopper task after ensuring that the
9797  * stopper is the last running task on the CPU, so nr_active count is
9798  * stable. We need to take the teardown thread which is calling this into
9799  * account, so we hand in adjust = 1 to the load calculation.
9800  *
9801  * Also see the comment "Global load-average calculations".
9802  */
9803 static void calc_load_migrate(struct rq *rq)
9804 {
9805 	long delta = calc_load_fold_active(rq, 1);
9806 
9807 	if (delta)
9808 		atomic_long_add(delta, &calc_load_tasks);
9809 }
9810 
9811 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9812 {
9813 	struct task_struct *g, *p;
9814 	int cpu = cpu_of(rq);
9815 
9816 	lockdep_assert_rq_held(rq);
9817 
9818 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9819 	for_each_process_thread(g, p) {
9820 		if (task_cpu(p) != cpu)
9821 			continue;
9822 
9823 		if (!task_on_rq_queued(p))
9824 			continue;
9825 
9826 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9827 	}
9828 }
9829 
9830 int sched_cpu_dying(unsigned int cpu)
9831 {
9832 	struct rq *rq = cpu_rq(cpu);
9833 	struct rq_flags rf;
9834 
9835 	/* Handle pending wakeups and then migrate everything off */
9836 	sched_tick_stop(cpu);
9837 
9838 	rq_lock_irqsave(rq, &rf);
9839 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9840 		WARN(true, "Dying CPU not properly vacated!");
9841 		dump_rq_tasks(rq, KERN_WARNING);
9842 	}
9843 	rq_unlock_irqrestore(rq, &rf);
9844 
9845 	calc_load_migrate(rq);
9846 	update_max_interval();
9847 	hrtick_clear(rq);
9848 	sched_core_cpu_dying(cpu);
9849 	return 0;
9850 }
9851 #endif
9852 
9853 void __init sched_init_smp(void)
9854 {
9855 	sched_init_numa(NUMA_NO_NODE);
9856 
9857 	/*
9858 	 * There's no userspace yet to cause hotplug operations; hence all the
9859 	 * CPU masks are stable and all blatant races in the below code cannot
9860 	 * happen.
9861 	 */
9862 	mutex_lock(&sched_domains_mutex);
9863 	sched_init_domains(cpu_active_mask);
9864 	mutex_unlock(&sched_domains_mutex);
9865 
9866 	/* Move init over to a non-isolated CPU */
9867 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9868 		BUG();
9869 	current->flags &= ~PF_NO_SETAFFINITY;
9870 	sched_init_granularity();
9871 
9872 	init_sched_rt_class();
9873 	init_sched_dl_class();
9874 
9875 	sched_smp_initialized = true;
9876 }
9877 
9878 static int __init migration_init(void)
9879 {
9880 	sched_cpu_starting(smp_processor_id());
9881 	return 0;
9882 }
9883 early_initcall(migration_init);
9884 
9885 #else
9886 void __init sched_init_smp(void)
9887 {
9888 	sched_init_granularity();
9889 }
9890 #endif /* CONFIG_SMP */
9891 
9892 int in_sched_functions(unsigned long addr)
9893 {
9894 	return in_lock_functions(addr) ||
9895 		(addr >= (unsigned long)__sched_text_start
9896 		&& addr < (unsigned long)__sched_text_end);
9897 }
9898 
9899 #ifdef CONFIG_CGROUP_SCHED
9900 /*
9901  * Default task group.
9902  * Every task in system belongs to this group at bootup.
9903  */
9904 struct task_group root_task_group;
9905 LIST_HEAD(task_groups);
9906 
9907 /* Cacheline aligned slab cache for task_group */
9908 static struct kmem_cache *task_group_cache __ro_after_init;
9909 #endif
9910 
9911 void __init sched_init(void)
9912 {
9913 	unsigned long ptr = 0;
9914 	int i;
9915 
9916 	/* Make sure the linker didn't screw up */
9917 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9918 	       &fair_sched_class != &rt_sched_class + 1 ||
9919 	       &rt_sched_class   != &dl_sched_class + 1);
9920 #ifdef CONFIG_SMP
9921 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9922 #endif
9923 
9924 	wait_bit_init();
9925 
9926 #ifdef CONFIG_FAIR_GROUP_SCHED
9927 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9928 #endif
9929 #ifdef CONFIG_RT_GROUP_SCHED
9930 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9931 #endif
9932 	if (ptr) {
9933 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9934 
9935 #ifdef CONFIG_FAIR_GROUP_SCHED
9936 		root_task_group.se = (struct sched_entity **)ptr;
9937 		ptr += nr_cpu_ids * sizeof(void **);
9938 
9939 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9940 		ptr += nr_cpu_ids * sizeof(void **);
9941 
9942 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9943 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9944 #endif /* CONFIG_FAIR_GROUP_SCHED */
9945 #ifdef CONFIG_RT_GROUP_SCHED
9946 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9947 		ptr += nr_cpu_ids * sizeof(void **);
9948 
9949 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9950 		ptr += nr_cpu_ids * sizeof(void **);
9951 
9952 #endif /* CONFIG_RT_GROUP_SCHED */
9953 	}
9954 
9955 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9956 
9957 #ifdef CONFIG_SMP
9958 	init_defrootdomain();
9959 #endif
9960 
9961 #ifdef CONFIG_RT_GROUP_SCHED
9962 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9963 			global_rt_period(), global_rt_runtime());
9964 #endif /* CONFIG_RT_GROUP_SCHED */
9965 
9966 #ifdef CONFIG_CGROUP_SCHED
9967 	task_group_cache = KMEM_CACHE(task_group, 0);
9968 
9969 	list_add(&root_task_group.list, &task_groups);
9970 	INIT_LIST_HEAD(&root_task_group.children);
9971 	INIT_LIST_HEAD(&root_task_group.siblings);
9972 	autogroup_init(&init_task);
9973 #endif /* CONFIG_CGROUP_SCHED */
9974 
9975 	for_each_possible_cpu(i) {
9976 		struct rq *rq;
9977 
9978 		rq = cpu_rq(i);
9979 		raw_spin_lock_init(&rq->__lock);
9980 		rq->nr_running = 0;
9981 		rq->calc_load_active = 0;
9982 		rq->calc_load_update = jiffies + LOAD_FREQ;
9983 		init_cfs_rq(&rq->cfs);
9984 		init_rt_rq(&rq->rt);
9985 		init_dl_rq(&rq->dl);
9986 #ifdef CONFIG_FAIR_GROUP_SCHED
9987 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9988 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9989 		/*
9990 		 * How much CPU bandwidth does root_task_group get?
9991 		 *
9992 		 * In case of task-groups formed thr' the cgroup filesystem, it
9993 		 * gets 100% of the CPU resources in the system. This overall
9994 		 * system CPU resource is divided among the tasks of
9995 		 * root_task_group and its child task-groups in a fair manner,
9996 		 * based on each entity's (task or task-group's) weight
9997 		 * (se->load.weight).
9998 		 *
9999 		 * In other words, if root_task_group has 10 tasks of weight
10000 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10001 		 * then A0's share of the CPU resource is:
10002 		 *
10003 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10004 		 *
10005 		 * We achieve this by letting root_task_group's tasks sit
10006 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10007 		 */
10008 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10009 #endif /* CONFIG_FAIR_GROUP_SCHED */
10010 
10011 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10012 #ifdef CONFIG_RT_GROUP_SCHED
10013 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10014 #endif
10015 #ifdef CONFIG_SMP
10016 		rq->sd = NULL;
10017 		rq->rd = NULL;
10018 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10019 		rq->balance_callback = &balance_push_callback;
10020 		rq->active_balance = 0;
10021 		rq->next_balance = jiffies;
10022 		rq->push_cpu = 0;
10023 		rq->cpu = i;
10024 		rq->online = 0;
10025 		rq->idle_stamp = 0;
10026 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10027 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10028 
10029 		INIT_LIST_HEAD(&rq->cfs_tasks);
10030 
10031 		rq_attach_root(rq, &def_root_domain);
10032 #ifdef CONFIG_NO_HZ_COMMON
10033 		rq->last_blocked_load_update_tick = jiffies;
10034 		atomic_set(&rq->nohz_flags, 0);
10035 
10036 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10037 #endif
10038 #ifdef CONFIG_HOTPLUG_CPU
10039 		rcuwait_init(&rq->hotplug_wait);
10040 #endif
10041 #endif /* CONFIG_SMP */
10042 		hrtick_rq_init(rq);
10043 		atomic_set(&rq->nr_iowait, 0);
10044 
10045 #ifdef CONFIG_SCHED_CORE
10046 		rq->core = rq;
10047 		rq->core_pick = NULL;
10048 		rq->core_enabled = 0;
10049 		rq->core_tree = RB_ROOT;
10050 		rq->core_forceidle_count = 0;
10051 		rq->core_forceidle_occupation = 0;
10052 		rq->core_forceidle_start = 0;
10053 
10054 		rq->core_cookie = 0UL;
10055 #endif
10056 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10057 	}
10058 
10059 	set_load_weight(&init_task, false);
10060 
10061 	/*
10062 	 * The boot idle thread does lazy MMU switching as well:
10063 	 */
10064 	mmgrab_lazy_tlb(&init_mm);
10065 	enter_lazy_tlb(&init_mm, current);
10066 
10067 	/*
10068 	 * The idle task doesn't need the kthread struct to function, but it
10069 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10070 	 * if we want to avoid special-casing it in code that deals with per-CPU
10071 	 * kthreads.
10072 	 */
10073 	WARN_ON(!set_kthread_struct(current));
10074 
10075 	/*
10076 	 * Make us the idle thread. Technically, schedule() should not be
10077 	 * called from this thread, however somewhere below it might be,
10078 	 * but because we are the idle thread, we just pick up running again
10079 	 * when this runqueue becomes "idle".
10080 	 */
10081 	init_idle(current, smp_processor_id());
10082 
10083 	calc_load_update = jiffies + LOAD_FREQ;
10084 
10085 #ifdef CONFIG_SMP
10086 	idle_thread_set_boot_cpu();
10087 	balance_push_set(smp_processor_id(), false);
10088 #endif
10089 	init_sched_fair_class();
10090 
10091 	psi_init();
10092 
10093 	init_uclamp();
10094 
10095 	preempt_dynamic_init();
10096 
10097 	scheduler_running = 1;
10098 }
10099 
10100 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10101 
10102 void __might_sleep(const char *file, int line)
10103 {
10104 	unsigned int state = get_current_state();
10105 	/*
10106 	 * Blocking primitives will set (and therefore destroy) current->state,
10107 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10108 	 * otherwise we will destroy state.
10109 	 */
10110 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10111 			"do not call blocking ops when !TASK_RUNNING; "
10112 			"state=%x set at [<%p>] %pS\n", state,
10113 			(void *)current->task_state_change,
10114 			(void *)current->task_state_change);
10115 
10116 	__might_resched(file, line, 0);
10117 }
10118 EXPORT_SYMBOL(__might_sleep);
10119 
10120 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10121 {
10122 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10123 		return;
10124 
10125 	if (preempt_count() == preempt_offset)
10126 		return;
10127 
10128 	pr_err("Preemption disabled at:");
10129 	print_ip_sym(KERN_ERR, ip);
10130 }
10131 
10132 static inline bool resched_offsets_ok(unsigned int offsets)
10133 {
10134 	unsigned int nested = preempt_count();
10135 
10136 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10137 
10138 	return nested == offsets;
10139 }
10140 
10141 void __might_resched(const char *file, int line, unsigned int offsets)
10142 {
10143 	/* Ratelimiting timestamp: */
10144 	static unsigned long prev_jiffy;
10145 
10146 	unsigned long preempt_disable_ip;
10147 
10148 	/* WARN_ON_ONCE() by default, no rate limit required: */
10149 	rcu_sleep_check();
10150 
10151 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10152 	     !is_idle_task(current) && !current->non_block_count) ||
10153 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10154 	    oops_in_progress)
10155 		return;
10156 
10157 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10158 		return;
10159 	prev_jiffy = jiffies;
10160 
10161 	/* Save this before calling printk(), since that will clobber it: */
10162 	preempt_disable_ip = get_preempt_disable_ip(current);
10163 
10164 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10165 	       file, line);
10166 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10167 	       in_atomic(), irqs_disabled(), current->non_block_count,
10168 	       current->pid, current->comm);
10169 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10170 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10171 
10172 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10173 		pr_err("RCU nest depth: %d, expected: %u\n",
10174 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10175 	}
10176 
10177 	if (task_stack_end_corrupted(current))
10178 		pr_emerg("Thread overran stack, or stack corrupted\n");
10179 
10180 	debug_show_held_locks(current);
10181 	if (irqs_disabled())
10182 		print_irqtrace_events(current);
10183 
10184 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10185 				 preempt_disable_ip);
10186 
10187 	dump_stack();
10188 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10189 }
10190 EXPORT_SYMBOL(__might_resched);
10191 
10192 void __cant_sleep(const char *file, int line, int preempt_offset)
10193 {
10194 	static unsigned long prev_jiffy;
10195 
10196 	if (irqs_disabled())
10197 		return;
10198 
10199 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10200 		return;
10201 
10202 	if (preempt_count() > preempt_offset)
10203 		return;
10204 
10205 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10206 		return;
10207 	prev_jiffy = jiffies;
10208 
10209 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10210 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10211 			in_atomic(), irqs_disabled(),
10212 			current->pid, current->comm);
10213 
10214 	debug_show_held_locks(current);
10215 	dump_stack();
10216 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10217 }
10218 EXPORT_SYMBOL_GPL(__cant_sleep);
10219 
10220 #ifdef CONFIG_SMP
10221 void __cant_migrate(const char *file, int line)
10222 {
10223 	static unsigned long prev_jiffy;
10224 
10225 	if (irqs_disabled())
10226 		return;
10227 
10228 	if (is_migration_disabled(current))
10229 		return;
10230 
10231 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10232 		return;
10233 
10234 	if (preempt_count() > 0)
10235 		return;
10236 
10237 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10238 		return;
10239 	prev_jiffy = jiffies;
10240 
10241 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10242 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10243 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10244 	       current->pid, current->comm);
10245 
10246 	debug_show_held_locks(current);
10247 	dump_stack();
10248 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10249 }
10250 EXPORT_SYMBOL_GPL(__cant_migrate);
10251 #endif
10252 #endif
10253 
10254 #ifdef CONFIG_MAGIC_SYSRQ
10255 void normalize_rt_tasks(void)
10256 {
10257 	struct task_struct *g, *p;
10258 	struct sched_attr attr = {
10259 		.sched_policy = SCHED_NORMAL,
10260 	};
10261 
10262 	read_lock(&tasklist_lock);
10263 	for_each_process_thread(g, p) {
10264 		/*
10265 		 * Only normalize user tasks:
10266 		 */
10267 		if (p->flags & PF_KTHREAD)
10268 			continue;
10269 
10270 		p->se.exec_start = 0;
10271 		schedstat_set(p->stats.wait_start,  0);
10272 		schedstat_set(p->stats.sleep_start, 0);
10273 		schedstat_set(p->stats.block_start, 0);
10274 
10275 		if (!dl_task(p) && !rt_task(p)) {
10276 			/*
10277 			 * Renice negative nice level userspace
10278 			 * tasks back to 0:
10279 			 */
10280 			if (task_nice(p) < 0)
10281 				set_user_nice(p, 0);
10282 			continue;
10283 		}
10284 
10285 		__sched_setscheduler(p, &attr, false, false);
10286 	}
10287 	read_unlock(&tasklist_lock);
10288 }
10289 
10290 #endif /* CONFIG_MAGIC_SYSRQ */
10291 
10292 #if defined(CONFIG_KGDB_KDB)
10293 /*
10294  * These functions are only useful for kdb.
10295  *
10296  * They can only be called when the whole system has been
10297  * stopped - every CPU needs to be quiescent, and no scheduling
10298  * activity can take place. Using them for anything else would
10299  * be a serious bug, and as a result, they aren't even visible
10300  * under any other configuration.
10301  */
10302 
10303 /**
10304  * curr_task - return the current task for a given CPU.
10305  * @cpu: the processor in question.
10306  *
10307  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10308  *
10309  * Return: The current task for @cpu.
10310  */
10311 struct task_struct *curr_task(int cpu)
10312 {
10313 	return cpu_curr(cpu);
10314 }
10315 
10316 #endif /* defined(CONFIG_KGDB_KDB) */
10317 
10318 #ifdef CONFIG_CGROUP_SCHED
10319 /* task_group_lock serializes the addition/removal of task groups */
10320 static DEFINE_SPINLOCK(task_group_lock);
10321 
10322 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10323 					    struct task_group *parent)
10324 {
10325 #ifdef CONFIG_UCLAMP_TASK_GROUP
10326 	enum uclamp_id clamp_id;
10327 
10328 	for_each_clamp_id(clamp_id) {
10329 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10330 			      uclamp_none(clamp_id), false);
10331 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10332 	}
10333 #endif
10334 }
10335 
10336 static void sched_free_group(struct task_group *tg)
10337 {
10338 	free_fair_sched_group(tg);
10339 	free_rt_sched_group(tg);
10340 	autogroup_free(tg);
10341 	kmem_cache_free(task_group_cache, tg);
10342 }
10343 
10344 static void sched_free_group_rcu(struct rcu_head *rcu)
10345 {
10346 	sched_free_group(container_of(rcu, struct task_group, rcu));
10347 }
10348 
10349 static void sched_unregister_group(struct task_group *tg)
10350 {
10351 	unregister_fair_sched_group(tg);
10352 	unregister_rt_sched_group(tg);
10353 	/*
10354 	 * We have to wait for yet another RCU grace period to expire, as
10355 	 * print_cfs_stats() might run concurrently.
10356 	 */
10357 	call_rcu(&tg->rcu, sched_free_group_rcu);
10358 }
10359 
10360 /* allocate runqueue etc for a new task group */
10361 struct task_group *sched_create_group(struct task_group *parent)
10362 {
10363 	struct task_group *tg;
10364 
10365 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10366 	if (!tg)
10367 		return ERR_PTR(-ENOMEM);
10368 
10369 	if (!alloc_fair_sched_group(tg, parent))
10370 		goto err;
10371 
10372 	if (!alloc_rt_sched_group(tg, parent))
10373 		goto err;
10374 
10375 	alloc_uclamp_sched_group(tg, parent);
10376 
10377 	return tg;
10378 
10379 err:
10380 	sched_free_group(tg);
10381 	return ERR_PTR(-ENOMEM);
10382 }
10383 
10384 void sched_online_group(struct task_group *tg, struct task_group *parent)
10385 {
10386 	unsigned long flags;
10387 
10388 	spin_lock_irqsave(&task_group_lock, flags);
10389 	list_add_rcu(&tg->list, &task_groups);
10390 
10391 	/* Root should already exist: */
10392 	WARN_ON(!parent);
10393 
10394 	tg->parent = parent;
10395 	INIT_LIST_HEAD(&tg->children);
10396 	list_add_rcu(&tg->siblings, &parent->children);
10397 	spin_unlock_irqrestore(&task_group_lock, flags);
10398 
10399 	online_fair_sched_group(tg);
10400 }
10401 
10402 /* rcu callback to free various structures associated with a task group */
10403 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10404 {
10405 	/* Now it should be safe to free those cfs_rqs: */
10406 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10407 }
10408 
10409 void sched_destroy_group(struct task_group *tg)
10410 {
10411 	/* Wait for possible concurrent references to cfs_rqs complete: */
10412 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10413 }
10414 
10415 void sched_release_group(struct task_group *tg)
10416 {
10417 	unsigned long flags;
10418 
10419 	/*
10420 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10421 	 * sched_cfs_period_timer()).
10422 	 *
10423 	 * For this to be effective, we have to wait for all pending users of
10424 	 * this task group to leave their RCU critical section to ensure no new
10425 	 * user will see our dying task group any more. Specifically ensure
10426 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10427 	 *
10428 	 * We therefore defer calling unregister_fair_sched_group() to
10429 	 * sched_unregister_group() which is guarantied to get called only after the
10430 	 * current RCU grace period has expired.
10431 	 */
10432 	spin_lock_irqsave(&task_group_lock, flags);
10433 	list_del_rcu(&tg->list);
10434 	list_del_rcu(&tg->siblings);
10435 	spin_unlock_irqrestore(&task_group_lock, flags);
10436 }
10437 
10438 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10439 {
10440 	struct task_group *tg;
10441 
10442 	/*
10443 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10444 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10445 	 * to prevent lockdep warnings.
10446 	 */
10447 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10448 			  struct task_group, css);
10449 	tg = autogroup_task_group(tsk, tg);
10450 
10451 	return tg;
10452 }
10453 
10454 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10455 {
10456 	tsk->sched_task_group = group;
10457 
10458 #ifdef CONFIG_FAIR_GROUP_SCHED
10459 	if (tsk->sched_class->task_change_group)
10460 		tsk->sched_class->task_change_group(tsk);
10461 	else
10462 #endif
10463 		set_task_rq(tsk, task_cpu(tsk));
10464 }
10465 
10466 /*
10467  * Change task's runqueue when it moves between groups.
10468  *
10469  * The caller of this function should have put the task in its new group by
10470  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10471  * its new group.
10472  */
10473 void sched_move_task(struct task_struct *tsk)
10474 {
10475 	int queued, running, queue_flags =
10476 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10477 	struct task_group *group;
10478 	struct rq *rq;
10479 
10480 	CLASS(task_rq_lock, rq_guard)(tsk);
10481 	rq = rq_guard.rq;
10482 
10483 	/*
10484 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10485 	 * group changes.
10486 	 */
10487 	group = sched_get_task_group(tsk);
10488 	if (group == tsk->sched_task_group)
10489 		return;
10490 
10491 	update_rq_clock(rq);
10492 
10493 	running = task_current(rq, tsk);
10494 	queued = task_on_rq_queued(tsk);
10495 
10496 	if (queued)
10497 		dequeue_task(rq, tsk, queue_flags);
10498 	if (running)
10499 		put_prev_task(rq, tsk);
10500 
10501 	sched_change_group(tsk, group);
10502 
10503 	if (queued)
10504 		enqueue_task(rq, tsk, queue_flags);
10505 	if (running) {
10506 		set_next_task(rq, tsk);
10507 		/*
10508 		 * After changing group, the running task may have joined a
10509 		 * throttled one but it's still the running task. Trigger a
10510 		 * resched to make sure that task can still run.
10511 		 */
10512 		resched_curr(rq);
10513 	}
10514 }
10515 
10516 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10517 {
10518 	return css ? container_of(css, struct task_group, css) : NULL;
10519 }
10520 
10521 static struct cgroup_subsys_state *
10522 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10523 {
10524 	struct task_group *parent = css_tg(parent_css);
10525 	struct task_group *tg;
10526 
10527 	if (!parent) {
10528 		/* This is early initialization for the top cgroup */
10529 		return &root_task_group.css;
10530 	}
10531 
10532 	tg = sched_create_group(parent);
10533 	if (IS_ERR(tg))
10534 		return ERR_PTR(-ENOMEM);
10535 
10536 	return &tg->css;
10537 }
10538 
10539 /* Expose task group only after completing cgroup initialization */
10540 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10541 {
10542 	struct task_group *tg = css_tg(css);
10543 	struct task_group *parent = css_tg(css->parent);
10544 
10545 	if (parent)
10546 		sched_online_group(tg, parent);
10547 
10548 #ifdef CONFIG_UCLAMP_TASK_GROUP
10549 	/* Propagate the effective uclamp value for the new group */
10550 	guard(mutex)(&uclamp_mutex);
10551 	guard(rcu)();
10552 	cpu_util_update_eff(css);
10553 #endif
10554 
10555 	return 0;
10556 }
10557 
10558 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10559 {
10560 	struct task_group *tg = css_tg(css);
10561 
10562 	sched_release_group(tg);
10563 }
10564 
10565 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10566 {
10567 	struct task_group *tg = css_tg(css);
10568 
10569 	/*
10570 	 * Relies on the RCU grace period between css_released() and this.
10571 	 */
10572 	sched_unregister_group(tg);
10573 }
10574 
10575 #ifdef CONFIG_RT_GROUP_SCHED
10576 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10577 {
10578 	struct task_struct *task;
10579 	struct cgroup_subsys_state *css;
10580 
10581 	cgroup_taskset_for_each(task, css, tset) {
10582 		if (!sched_rt_can_attach(css_tg(css), task))
10583 			return -EINVAL;
10584 	}
10585 	return 0;
10586 }
10587 #endif
10588 
10589 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10590 {
10591 	struct task_struct *task;
10592 	struct cgroup_subsys_state *css;
10593 
10594 	cgroup_taskset_for_each(task, css, tset)
10595 		sched_move_task(task);
10596 }
10597 
10598 #ifdef CONFIG_UCLAMP_TASK_GROUP
10599 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10600 {
10601 	struct cgroup_subsys_state *top_css = css;
10602 	struct uclamp_se *uc_parent = NULL;
10603 	struct uclamp_se *uc_se = NULL;
10604 	unsigned int eff[UCLAMP_CNT];
10605 	enum uclamp_id clamp_id;
10606 	unsigned int clamps;
10607 
10608 	lockdep_assert_held(&uclamp_mutex);
10609 	SCHED_WARN_ON(!rcu_read_lock_held());
10610 
10611 	css_for_each_descendant_pre(css, top_css) {
10612 		uc_parent = css_tg(css)->parent
10613 			? css_tg(css)->parent->uclamp : NULL;
10614 
10615 		for_each_clamp_id(clamp_id) {
10616 			/* Assume effective clamps matches requested clamps */
10617 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10618 			/* Cap effective clamps with parent's effective clamps */
10619 			if (uc_parent &&
10620 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10621 				eff[clamp_id] = uc_parent[clamp_id].value;
10622 			}
10623 		}
10624 		/* Ensure protection is always capped by limit */
10625 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10626 
10627 		/* Propagate most restrictive effective clamps */
10628 		clamps = 0x0;
10629 		uc_se = css_tg(css)->uclamp;
10630 		for_each_clamp_id(clamp_id) {
10631 			if (eff[clamp_id] == uc_se[clamp_id].value)
10632 				continue;
10633 			uc_se[clamp_id].value = eff[clamp_id];
10634 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10635 			clamps |= (0x1 << clamp_id);
10636 		}
10637 		if (!clamps) {
10638 			css = css_rightmost_descendant(css);
10639 			continue;
10640 		}
10641 
10642 		/* Immediately update descendants RUNNABLE tasks */
10643 		uclamp_update_active_tasks(css);
10644 	}
10645 }
10646 
10647 /*
10648  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10649  * C expression. Since there is no way to convert a macro argument (N) into a
10650  * character constant, use two levels of macros.
10651  */
10652 #define _POW10(exp) ((unsigned int)1e##exp)
10653 #define POW10(exp) _POW10(exp)
10654 
10655 struct uclamp_request {
10656 #define UCLAMP_PERCENT_SHIFT	2
10657 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10658 	s64 percent;
10659 	u64 util;
10660 	int ret;
10661 };
10662 
10663 static inline struct uclamp_request
10664 capacity_from_percent(char *buf)
10665 {
10666 	struct uclamp_request req = {
10667 		.percent = UCLAMP_PERCENT_SCALE,
10668 		.util = SCHED_CAPACITY_SCALE,
10669 		.ret = 0,
10670 	};
10671 
10672 	buf = strim(buf);
10673 	if (strcmp(buf, "max")) {
10674 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10675 					     &req.percent);
10676 		if (req.ret)
10677 			return req;
10678 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10679 			req.ret = -ERANGE;
10680 			return req;
10681 		}
10682 
10683 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10684 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10685 	}
10686 
10687 	return req;
10688 }
10689 
10690 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10691 				size_t nbytes, loff_t off,
10692 				enum uclamp_id clamp_id)
10693 {
10694 	struct uclamp_request req;
10695 	struct task_group *tg;
10696 
10697 	req = capacity_from_percent(buf);
10698 	if (req.ret)
10699 		return req.ret;
10700 
10701 	static_branch_enable(&sched_uclamp_used);
10702 
10703 	guard(mutex)(&uclamp_mutex);
10704 	guard(rcu)();
10705 
10706 	tg = css_tg(of_css(of));
10707 	if (tg->uclamp_req[clamp_id].value != req.util)
10708 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10709 
10710 	/*
10711 	 * Because of not recoverable conversion rounding we keep track of the
10712 	 * exact requested value
10713 	 */
10714 	tg->uclamp_pct[clamp_id] = req.percent;
10715 
10716 	/* Update effective clamps to track the most restrictive value */
10717 	cpu_util_update_eff(of_css(of));
10718 
10719 	return nbytes;
10720 }
10721 
10722 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10723 				    char *buf, size_t nbytes,
10724 				    loff_t off)
10725 {
10726 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10727 }
10728 
10729 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10730 				    char *buf, size_t nbytes,
10731 				    loff_t off)
10732 {
10733 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10734 }
10735 
10736 static inline void cpu_uclamp_print(struct seq_file *sf,
10737 				    enum uclamp_id clamp_id)
10738 {
10739 	struct task_group *tg;
10740 	u64 util_clamp;
10741 	u64 percent;
10742 	u32 rem;
10743 
10744 	scoped_guard (rcu) {
10745 		tg = css_tg(seq_css(sf));
10746 		util_clamp = tg->uclamp_req[clamp_id].value;
10747 	}
10748 
10749 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10750 		seq_puts(sf, "max\n");
10751 		return;
10752 	}
10753 
10754 	percent = tg->uclamp_pct[clamp_id];
10755 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10756 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10757 }
10758 
10759 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10760 {
10761 	cpu_uclamp_print(sf, UCLAMP_MIN);
10762 	return 0;
10763 }
10764 
10765 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10766 {
10767 	cpu_uclamp_print(sf, UCLAMP_MAX);
10768 	return 0;
10769 }
10770 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10771 
10772 #ifdef CONFIG_FAIR_GROUP_SCHED
10773 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10774 				struct cftype *cftype, u64 shareval)
10775 {
10776 	if (shareval > scale_load_down(ULONG_MAX))
10777 		shareval = MAX_SHARES;
10778 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10779 }
10780 
10781 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10782 			       struct cftype *cft)
10783 {
10784 	struct task_group *tg = css_tg(css);
10785 
10786 	return (u64) scale_load_down(tg->shares);
10787 }
10788 
10789 #ifdef CONFIG_CFS_BANDWIDTH
10790 static DEFINE_MUTEX(cfs_constraints_mutex);
10791 
10792 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10793 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10794 /* More than 203 days if BW_SHIFT equals 20. */
10795 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10796 
10797 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10798 
10799 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10800 				u64 burst)
10801 {
10802 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10803 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10804 
10805 	if (tg == &root_task_group)
10806 		return -EINVAL;
10807 
10808 	/*
10809 	 * Ensure we have at some amount of bandwidth every period.  This is
10810 	 * to prevent reaching a state of large arrears when throttled via
10811 	 * entity_tick() resulting in prolonged exit starvation.
10812 	 */
10813 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10814 		return -EINVAL;
10815 
10816 	/*
10817 	 * Likewise, bound things on the other side by preventing insane quota
10818 	 * periods.  This also allows us to normalize in computing quota
10819 	 * feasibility.
10820 	 */
10821 	if (period > max_cfs_quota_period)
10822 		return -EINVAL;
10823 
10824 	/*
10825 	 * Bound quota to defend quota against overflow during bandwidth shift.
10826 	 */
10827 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10828 		return -EINVAL;
10829 
10830 	if (quota != RUNTIME_INF && (burst > quota ||
10831 				     burst + quota > max_cfs_runtime))
10832 		return -EINVAL;
10833 
10834 	/*
10835 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10836 	 * unthrottle_offline_cfs_rqs().
10837 	 */
10838 	guard(cpus_read_lock)();
10839 	guard(mutex)(&cfs_constraints_mutex);
10840 
10841 	ret = __cfs_schedulable(tg, period, quota);
10842 	if (ret)
10843 		return ret;
10844 
10845 	runtime_enabled = quota != RUNTIME_INF;
10846 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10847 	/*
10848 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10849 	 * before making related changes, and on->off must occur afterwards
10850 	 */
10851 	if (runtime_enabled && !runtime_was_enabled)
10852 		cfs_bandwidth_usage_inc();
10853 
10854 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10855 		cfs_b->period = ns_to_ktime(period);
10856 		cfs_b->quota = quota;
10857 		cfs_b->burst = burst;
10858 
10859 		__refill_cfs_bandwidth_runtime(cfs_b);
10860 
10861 		/*
10862 		 * Restart the period timer (if active) to handle new
10863 		 * period expiry:
10864 		 */
10865 		if (runtime_enabled)
10866 			start_cfs_bandwidth(cfs_b);
10867 	}
10868 
10869 	for_each_online_cpu(i) {
10870 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10871 		struct rq *rq = cfs_rq->rq;
10872 
10873 		guard(rq_lock_irq)(rq);
10874 		cfs_rq->runtime_enabled = runtime_enabled;
10875 		cfs_rq->runtime_remaining = 0;
10876 
10877 		if (cfs_rq->throttled)
10878 			unthrottle_cfs_rq(cfs_rq);
10879 	}
10880 
10881 	if (runtime_was_enabled && !runtime_enabled)
10882 		cfs_bandwidth_usage_dec();
10883 
10884 	return 0;
10885 }
10886 
10887 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10888 {
10889 	u64 quota, period, burst;
10890 
10891 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10892 	burst = tg->cfs_bandwidth.burst;
10893 	if (cfs_quota_us < 0)
10894 		quota = RUNTIME_INF;
10895 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10896 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10897 	else
10898 		return -EINVAL;
10899 
10900 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10901 }
10902 
10903 static long tg_get_cfs_quota(struct task_group *tg)
10904 {
10905 	u64 quota_us;
10906 
10907 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10908 		return -1;
10909 
10910 	quota_us = tg->cfs_bandwidth.quota;
10911 	do_div(quota_us, NSEC_PER_USEC);
10912 
10913 	return quota_us;
10914 }
10915 
10916 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10917 {
10918 	u64 quota, period, burst;
10919 
10920 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10921 		return -EINVAL;
10922 
10923 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10924 	quota = tg->cfs_bandwidth.quota;
10925 	burst = tg->cfs_bandwidth.burst;
10926 
10927 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10928 }
10929 
10930 static long tg_get_cfs_period(struct task_group *tg)
10931 {
10932 	u64 cfs_period_us;
10933 
10934 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10935 	do_div(cfs_period_us, NSEC_PER_USEC);
10936 
10937 	return cfs_period_us;
10938 }
10939 
10940 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10941 {
10942 	u64 quota, period, burst;
10943 
10944 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10945 		return -EINVAL;
10946 
10947 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10948 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10949 	quota = tg->cfs_bandwidth.quota;
10950 
10951 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10952 }
10953 
10954 static long tg_get_cfs_burst(struct task_group *tg)
10955 {
10956 	u64 burst_us;
10957 
10958 	burst_us = tg->cfs_bandwidth.burst;
10959 	do_div(burst_us, NSEC_PER_USEC);
10960 
10961 	return burst_us;
10962 }
10963 
10964 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10965 				  struct cftype *cft)
10966 {
10967 	return tg_get_cfs_quota(css_tg(css));
10968 }
10969 
10970 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10971 				   struct cftype *cftype, s64 cfs_quota_us)
10972 {
10973 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10974 }
10975 
10976 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10977 				   struct cftype *cft)
10978 {
10979 	return tg_get_cfs_period(css_tg(css));
10980 }
10981 
10982 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10983 				    struct cftype *cftype, u64 cfs_period_us)
10984 {
10985 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10986 }
10987 
10988 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10989 				  struct cftype *cft)
10990 {
10991 	return tg_get_cfs_burst(css_tg(css));
10992 }
10993 
10994 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10995 				   struct cftype *cftype, u64 cfs_burst_us)
10996 {
10997 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10998 }
10999 
11000 struct cfs_schedulable_data {
11001 	struct task_group *tg;
11002 	u64 period, quota;
11003 };
11004 
11005 /*
11006  * normalize group quota/period to be quota/max_period
11007  * note: units are usecs
11008  */
11009 static u64 normalize_cfs_quota(struct task_group *tg,
11010 			       struct cfs_schedulable_data *d)
11011 {
11012 	u64 quota, period;
11013 
11014 	if (tg == d->tg) {
11015 		period = d->period;
11016 		quota = d->quota;
11017 	} else {
11018 		period = tg_get_cfs_period(tg);
11019 		quota = tg_get_cfs_quota(tg);
11020 	}
11021 
11022 	/* note: these should typically be equivalent */
11023 	if (quota == RUNTIME_INF || quota == -1)
11024 		return RUNTIME_INF;
11025 
11026 	return to_ratio(period, quota);
11027 }
11028 
11029 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11030 {
11031 	struct cfs_schedulable_data *d = data;
11032 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11033 	s64 quota = 0, parent_quota = -1;
11034 
11035 	if (!tg->parent) {
11036 		quota = RUNTIME_INF;
11037 	} else {
11038 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11039 
11040 		quota = normalize_cfs_quota(tg, d);
11041 		parent_quota = parent_b->hierarchical_quota;
11042 
11043 		/*
11044 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11045 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11046 		 * inherit when no limit is set. In both cases this is used
11047 		 * by the scheduler to determine if a given CFS task has a
11048 		 * bandwidth constraint at some higher level.
11049 		 */
11050 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11051 			if (quota == RUNTIME_INF)
11052 				quota = parent_quota;
11053 			else if (parent_quota != RUNTIME_INF)
11054 				quota = min(quota, parent_quota);
11055 		} else {
11056 			if (quota == RUNTIME_INF)
11057 				quota = parent_quota;
11058 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11059 				return -EINVAL;
11060 		}
11061 	}
11062 	cfs_b->hierarchical_quota = quota;
11063 
11064 	return 0;
11065 }
11066 
11067 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11068 {
11069 	struct cfs_schedulable_data data = {
11070 		.tg = tg,
11071 		.period = period,
11072 		.quota = quota,
11073 	};
11074 
11075 	if (quota != RUNTIME_INF) {
11076 		do_div(data.period, NSEC_PER_USEC);
11077 		do_div(data.quota, NSEC_PER_USEC);
11078 	}
11079 
11080 	guard(rcu)();
11081 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11082 }
11083 
11084 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11085 {
11086 	struct task_group *tg = css_tg(seq_css(sf));
11087 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11088 
11089 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11090 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11091 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11092 
11093 	if (schedstat_enabled() && tg != &root_task_group) {
11094 		struct sched_statistics *stats;
11095 		u64 ws = 0;
11096 		int i;
11097 
11098 		for_each_possible_cpu(i) {
11099 			stats = __schedstats_from_se(tg->se[i]);
11100 			ws += schedstat_val(stats->wait_sum);
11101 		}
11102 
11103 		seq_printf(sf, "wait_sum %llu\n", ws);
11104 	}
11105 
11106 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11107 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11108 
11109 	return 0;
11110 }
11111 
11112 static u64 throttled_time_self(struct task_group *tg)
11113 {
11114 	int i;
11115 	u64 total = 0;
11116 
11117 	for_each_possible_cpu(i) {
11118 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11119 	}
11120 
11121 	return total;
11122 }
11123 
11124 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11125 {
11126 	struct task_group *tg = css_tg(seq_css(sf));
11127 
11128 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11129 
11130 	return 0;
11131 }
11132 #endif /* CONFIG_CFS_BANDWIDTH */
11133 #endif /* CONFIG_FAIR_GROUP_SCHED */
11134 
11135 #ifdef CONFIG_RT_GROUP_SCHED
11136 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11137 				struct cftype *cft, s64 val)
11138 {
11139 	return sched_group_set_rt_runtime(css_tg(css), val);
11140 }
11141 
11142 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11143 			       struct cftype *cft)
11144 {
11145 	return sched_group_rt_runtime(css_tg(css));
11146 }
11147 
11148 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11149 				    struct cftype *cftype, u64 rt_period_us)
11150 {
11151 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11152 }
11153 
11154 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11155 				   struct cftype *cft)
11156 {
11157 	return sched_group_rt_period(css_tg(css));
11158 }
11159 #endif /* CONFIG_RT_GROUP_SCHED */
11160 
11161 #ifdef CONFIG_FAIR_GROUP_SCHED
11162 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11163 			       struct cftype *cft)
11164 {
11165 	return css_tg(css)->idle;
11166 }
11167 
11168 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11169 				struct cftype *cft, s64 idle)
11170 {
11171 	return sched_group_set_idle(css_tg(css), idle);
11172 }
11173 #endif
11174 
11175 static struct cftype cpu_legacy_files[] = {
11176 #ifdef CONFIG_FAIR_GROUP_SCHED
11177 	{
11178 		.name = "shares",
11179 		.read_u64 = cpu_shares_read_u64,
11180 		.write_u64 = cpu_shares_write_u64,
11181 	},
11182 	{
11183 		.name = "idle",
11184 		.read_s64 = cpu_idle_read_s64,
11185 		.write_s64 = cpu_idle_write_s64,
11186 	},
11187 #endif
11188 #ifdef CONFIG_CFS_BANDWIDTH
11189 	{
11190 		.name = "cfs_quota_us",
11191 		.read_s64 = cpu_cfs_quota_read_s64,
11192 		.write_s64 = cpu_cfs_quota_write_s64,
11193 	},
11194 	{
11195 		.name = "cfs_period_us",
11196 		.read_u64 = cpu_cfs_period_read_u64,
11197 		.write_u64 = cpu_cfs_period_write_u64,
11198 	},
11199 	{
11200 		.name = "cfs_burst_us",
11201 		.read_u64 = cpu_cfs_burst_read_u64,
11202 		.write_u64 = cpu_cfs_burst_write_u64,
11203 	},
11204 	{
11205 		.name = "stat",
11206 		.seq_show = cpu_cfs_stat_show,
11207 	},
11208 	{
11209 		.name = "stat.local",
11210 		.seq_show = cpu_cfs_local_stat_show,
11211 	},
11212 #endif
11213 #ifdef CONFIG_RT_GROUP_SCHED
11214 	{
11215 		.name = "rt_runtime_us",
11216 		.read_s64 = cpu_rt_runtime_read,
11217 		.write_s64 = cpu_rt_runtime_write,
11218 	},
11219 	{
11220 		.name = "rt_period_us",
11221 		.read_u64 = cpu_rt_period_read_uint,
11222 		.write_u64 = cpu_rt_period_write_uint,
11223 	},
11224 #endif
11225 #ifdef CONFIG_UCLAMP_TASK_GROUP
11226 	{
11227 		.name = "uclamp.min",
11228 		.flags = CFTYPE_NOT_ON_ROOT,
11229 		.seq_show = cpu_uclamp_min_show,
11230 		.write = cpu_uclamp_min_write,
11231 	},
11232 	{
11233 		.name = "uclamp.max",
11234 		.flags = CFTYPE_NOT_ON_ROOT,
11235 		.seq_show = cpu_uclamp_max_show,
11236 		.write = cpu_uclamp_max_write,
11237 	},
11238 #endif
11239 	{ }	/* Terminate */
11240 };
11241 
11242 static int cpu_extra_stat_show(struct seq_file *sf,
11243 			       struct cgroup_subsys_state *css)
11244 {
11245 #ifdef CONFIG_CFS_BANDWIDTH
11246 	{
11247 		struct task_group *tg = css_tg(css);
11248 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11249 		u64 throttled_usec, burst_usec;
11250 
11251 		throttled_usec = cfs_b->throttled_time;
11252 		do_div(throttled_usec, NSEC_PER_USEC);
11253 		burst_usec = cfs_b->burst_time;
11254 		do_div(burst_usec, NSEC_PER_USEC);
11255 
11256 		seq_printf(sf, "nr_periods %d\n"
11257 			   "nr_throttled %d\n"
11258 			   "throttled_usec %llu\n"
11259 			   "nr_bursts %d\n"
11260 			   "burst_usec %llu\n",
11261 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11262 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11263 	}
11264 #endif
11265 	return 0;
11266 }
11267 
11268 static int cpu_local_stat_show(struct seq_file *sf,
11269 			       struct cgroup_subsys_state *css)
11270 {
11271 #ifdef CONFIG_CFS_BANDWIDTH
11272 	{
11273 		struct task_group *tg = css_tg(css);
11274 		u64 throttled_self_usec;
11275 
11276 		throttled_self_usec = throttled_time_self(tg);
11277 		do_div(throttled_self_usec, NSEC_PER_USEC);
11278 
11279 		seq_printf(sf, "throttled_usec %llu\n",
11280 			   throttled_self_usec);
11281 	}
11282 #endif
11283 	return 0;
11284 }
11285 
11286 #ifdef CONFIG_FAIR_GROUP_SCHED
11287 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11288 			       struct cftype *cft)
11289 {
11290 	struct task_group *tg = css_tg(css);
11291 	u64 weight = scale_load_down(tg->shares);
11292 
11293 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11294 }
11295 
11296 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11297 				struct cftype *cft, u64 weight)
11298 {
11299 	/*
11300 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11301 	 * values which are 1, 100 and 10000 respectively.  While it loses
11302 	 * a bit of range on both ends, it maps pretty well onto the shares
11303 	 * value used by scheduler and the round-trip conversions preserve
11304 	 * the original value over the entire range.
11305 	 */
11306 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11307 		return -ERANGE;
11308 
11309 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11310 
11311 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11312 }
11313 
11314 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11315 				    struct cftype *cft)
11316 {
11317 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11318 	int last_delta = INT_MAX;
11319 	int prio, delta;
11320 
11321 	/* find the closest nice value to the current weight */
11322 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11323 		delta = abs(sched_prio_to_weight[prio] - weight);
11324 		if (delta >= last_delta)
11325 			break;
11326 		last_delta = delta;
11327 	}
11328 
11329 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11330 }
11331 
11332 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11333 				     struct cftype *cft, s64 nice)
11334 {
11335 	unsigned long weight;
11336 	int idx;
11337 
11338 	if (nice < MIN_NICE || nice > MAX_NICE)
11339 		return -ERANGE;
11340 
11341 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11342 	idx = array_index_nospec(idx, 40);
11343 	weight = sched_prio_to_weight[idx];
11344 
11345 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11346 }
11347 #endif
11348 
11349 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11350 						  long period, long quota)
11351 {
11352 	if (quota < 0)
11353 		seq_puts(sf, "max");
11354 	else
11355 		seq_printf(sf, "%ld", quota);
11356 
11357 	seq_printf(sf, " %ld\n", period);
11358 }
11359 
11360 /* caller should put the current value in *@periodp before calling */
11361 static int __maybe_unused cpu_period_quota_parse(char *buf,
11362 						 u64 *periodp, u64 *quotap)
11363 {
11364 	char tok[21];	/* U64_MAX */
11365 
11366 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11367 		return -EINVAL;
11368 
11369 	*periodp *= NSEC_PER_USEC;
11370 
11371 	if (sscanf(tok, "%llu", quotap))
11372 		*quotap *= NSEC_PER_USEC;
11373 	else if (!strcmp(tok, "max"))
11374 		*quotap = RUNTIME_INF;
11375 	else
11376 		return -EINVAL;
11377 
11378 	return 0;
11379 }
11380 
11381 #ifdef CONFIG_CFS_BANDWIDTH
11382 static int cpu_max_show(struct seq_file *sf, void *v)
11383 {
11384 	struct task_group *tg = css_tg(seq_css(sf));
11385 
11386 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11387 	return 0;
11388 }
11389 
11390 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11391 			     char *buf, size_t nbytes, loff_t off)
11392 {
11393 	struct task_group *tg = css_tg(of_css(of));
11394 	u64 period = tg_get_cfs_period(tg);
11395 	u64 burst = tg_get_cfs_burst(tg);
11396 	u64 quota;
11397 	int ret;
11398 
11399 	ret = cpu_period_quota_parse(buf, &period, &quota);
11400 	if (!ret)
11401 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11402 	return ret ?: nbytes;
11403 }
11404 #endif
11405 
11406 static struct cftype cpu_files[] = {
11407 #ifdef CONFIG_FAIR_GROUP_SCHED
11408 	{
11409 		.name = "weight",
11410 		.flags = CFTYPE_NOT_ON_ROOT,
11411 		.read_u64 = cpu_weight_read_u64,
11412 		.write_u64 = cpu_weight_write_u64,
11413 	},
11414 	{
11415 		.name = "weight.nice",
11416 		.flags = CFTYPE_NOT_ON_ROOT,
11417 		.read_s64 = cpu_weight_nice_read_s64,
11418 		.write_s64 = cpu_weight_nice_write_s64,
11419 	},
11420 	{
11421 		.name = "idle",
11422 		.flags = CFTYPE_NOT_ON_ROOT,
11423 		.read_s64 = cpu_idle_read_s64,
11424 		.write_s64 = cpu_idle_write_s64,
11425 	},
11426 #endif
11427 #ifdef CONFIG_CFS_BANDWIDTH
11428 	{
11429 		.name = "max",
11430 		.flags = CFTYPE_NOT_ON_ROOT,
11431 		.seq_show = cpu_max_show,
11432 		.write = cpu_max_write,
11433 	},
11434 	{
11435 		.name = "max.burst",
11436 		.flags = CFTYPE_NOT_ON_ROOT,
11437 		.read_u64 = cpu_cfs_burst_read_u64,
11438 		.write_u64 = cpu_cfs_burst_write_u64,
11439 	},
11440 #endif
11441 #ifdef CONFIG_UCLAMP_TASK_GROUP
11442 	{
11443 		.name = "uclamp.min",
11444 		.flags = CFTYPE_NOT_ON_ROOT,
11445 		.seq_show = cpu_uclamp_min_show,
11446 		.write = cpu_uclamp_min_write,
11447 	},
11448 	{
11449 		.name = "uclamp.max",
11450 		.flags = CFTYPE_NOT_ON_ROOT,
11451 		.seq_show = cpu_uclamp_max_show,
11452 		.write = cpu_uclamp_max_write,
11453 	},
11454 #endif
11455 	{ }	/* terminate */
11456 };
11457 
11458 struct cgroup_subsys cpu_cgrp_subsys = {
11459 	.css_alloc	= cpu_cgroup_css_alloc,
11460 	.css_online	= cpu_cgroup_css_online,
11461 	.css_released	= cpu_cgroup_css_released,
11462 	.css_free	= cpu_cgroup_css_free,
11463 	.css_extra_stat_show = cpu_extra_stat_show,
11464 	.css_local_stat_show = cpu_local_stat_show,
11465 #ifdef CONFIG_RT_GROUP_SCHED
11466 	.can_attach	= cpu_cgroup_can_attach,
11467 #endif
11468 	.attach		= cpu_cgroup_attach,
11469 	.legacy_cftypes	= cpu_legacy_files,
11470 	.dfl_cftypes	= cpu_files,
11471 	.early_init	= true,
11472 	.threaded	= true,
11473 };
11474 
11475 #endif	/* CONFIG_CGROUP_SCHED */
11476 
11477 void dump_cpu_task(int cpu)
11478 {
11479 	if (cpu == smp_processor_id() && in_hardirq()) {
11480 		struct pt_regs *regs;
11481 
11482 		regs = get_irq_regs();
11483 		if (regs) {
11484 			show_regs(regs);
11485 			return;
11486 		}
11487 	}
11488 
11489 	if (trigger_single_cpu_backtrace(cpu))
11490 		return;
11491 
11492 	pr_info("Task dump for CPU %d:\n", cpu);
11493 	sched_show_task(cpu_curr(cpu));
11494 }
11495 
11496 /*
11497  * Nice levels are multiplicative, with a gentle 10% change for every
11498  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11499  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11500  * that remained on nice 0.
11501  *
11502  * The "10% effect" is relative and cumulative: from _any_ nice level,
11503  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11504  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11505  * If a task goes up by ~10% and another task goes down by ~10% then
11506  * the relative distance between them is ~25%.)
11507  */
11508 const int sched_prio_to_weight[40] = {
11509  /* -20 */     88761,     71755,     56483,     46273,     36291,
11510  /* -15 */     29154,     23254,     18705,     14949,     11916,
11511  /* -10 */      9548,      7620,      6100,      4904,      3906,
11512  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11513  /*   0 */      1024,       820,       655,       526,       423,
11514  /*   5 */       335,       272,       215,       172,       137,
11515  /*  10 */       110,        87,        70,        56,        45,
11516  /*  15 */        36,        29,        23,        18,        15,
11517 };
11518 
11519 /*
11520  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11521  *
11522  * In cases where the weight does not change often, we can use the
11523  * precalculated inverse to speed up arithmetics by turning divisions
11524  * into multiplications:
11525  */
11526 const u32 sched_prio_to_wmult[40] = {
11527  /* -20 */     48388,     59856,     76040,     92818,    118348,
11528  /* -15 */    147320,    184698,    229616,    287308,    360437,
11529  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11530  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11531  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11532  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11533  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11534  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11535 };
11536 
11537 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11538 {
11539         trace_sched_update_nr_running_tp(rq, count);
11540 }
11541 
11542 #ifdef CONFIG_SCHED_MM_CID
11543 
11544 /*
11545  * @cid_lock: Guarantee forward-progress of cid allocation.
11546  *
11547  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11548  * is only used when contention is detected by the lock-free allocation so
11549  * forward progress can be guaranteed.
11550  */
11551 DEFINE_RAW_SPINLOCK(cid_lock);
11552 
11553 /*
11554  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11555  *
11556  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11557  * detected, it is set to 1 to ensure that all newly coming allocations are
11558  * serialized by @cid_lock until the allocation which detected contention
11559  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11560  * of a cid allocation.
11561  */
11562 int use_cid_lock;
11563 
11564 /*
11565  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11566  * concurrently with respect to the execution of the source runqueue context
11567  * switch.
11568  *
11569  * There is one basic properties we want to guarantee here:
11570  *
11571  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11572  * used by a task. That would lead to concurrent allocation of the cid and
11573  * userspace corruption.
11574  *
11575  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11576  * that a pair of loads observe at least one of a pair of stores, which can be
11577  * shown as:
11578  *
11579  *      X = Y = 0
11580  *
11581  *      w[X]=1          w[Y]=1
11582  *      MB              MB
11583  *      r[Y]=y          r[X]=x
11584  *
11585  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11586  * values 0 and 1, this algorithm cares about specific state transitions of the
11587  * runqueue current task (as updated by the scheduler context switch), and the
11588  * per-mm/cpu cid value.
11589  *
11590  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11591  * task->mm != mm for the rest of the discussion. There are two scheduler state
11592  * transitions on context switch we care about:
11593  *
11594  * (TSA) Store to rq->curr with transition from (N) to (Y)
11595  *
11596  * (TSB) Store to rq->curr with transition from (Y) to (N)
11597  *
11598  * On the remote-clear side, there is one transition we care about:
11599  *
11600  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11601  *
11602  * There is also a transition to UNSET state which can be performed from all
11603  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11604  * guarantees that only a single thread will succeed:
11605  *
11606  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11607  *
11608  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11609  * when a thread is actively using the cid (property (1)).
11610  *
11611  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11612  *
11613  * Scenario A) (TSA)+(TMA) (from next task perspective)
11614  *
11615  * CPU0                                      CPU1
11616  *
11617  * Context switch CS-1                       Remote-clear
11618  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11619  *                                             (implied barrier after cmpxchg)
11620  *   - switch_mm_cid()
11621  *     - memory barrier (see switch_mm_cid()
11622  *       comment explaining how this barrier
11623  *       is combined with other scheduler
11624  *       barriers)
11625  *     - mm_cid_get (next)
11626  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11627  *
11628  * This Dekker ensures that either task (Y) is observed by the
11629  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11630  * observed.
11631  *
11632  * If task (Y) store is observed by rcu_dereference(), it means that there is
11633  * still an active task on the cpu. Remote-clear will therefore not transition
11634  * to UNSET, which fulfills property (1).
11635  *
11636  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11637  * it will move its state to UNSET, which clears the percpu cid perhaps
11638  * uselessly (which is not an issue for correctness). Because task (Y) is not
11639  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11640  * state to UNSET is done with a cmpxchg expecting that the old state has the
11641  * LAZY flag set, only one thread will successfully UNSET.
11642  *
11643  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11644  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11645  * CPU1 will observe task (Y) and do nothing more, which is fine.
11646  *
11647  * What we are effectively preventing with this Dekker is a scenario where
11648  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11649  * because this would UNSET a cid which is actively used.
11650  */
11651 
11652 void sched_mm_cid_migrate_from(struct task_struct *t)
11653 {
11654 	t->migrate_from_cpu = task_cpu(t);
11655 }
11656 
11657 static
11658 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11659 					  struct task_struct *t,
11660 					  struct mm_cid *src_pcpu_cid)
11661 {
11662 	struct mm_struct *mm = t->mm;
11663 	struct task_struct *src_task;
11664 	int src_cid, last_mm_cid;
11665 
11666 	if (!mm)
11667 		return -1;
11668 
11669 	last_mm_cid = t->last_mm_cid;
11670 	/*
11671 	 * If the migrated task has no last cid, or if the current
11672 	 * task on src rq uses the cid, it means the source cid does not need
11673 	 * to be moved to the destination cpu.
11674 	 */
11675 	if (last_mm_cid == -1)
11676 		return -1;
11677 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11678 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11679 		return -1;
11680 
11681 	/*
11682 	 * If we observe an active task using the mm on this rq, it means we
11683 	 * are not the last task to be migrated from this cpu for this mm, so
11684 	 * there is no need to move src_cid to the destination cpu.
11685 	 */
11686 	guard(rcu)();
11687 	src_task = rcu_dereference(src_rq->curr);
11688 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11689 		t->last_mm_cid = -1;
11690 		return -1;
11691 	}
11692 
11693 	return src_cid;
11694 }
11695 
11696 static
11697 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11698 					      struct task_struct *t,
11699 					      struct mm_cid *src_pcpu_cid,
11700 					      int src_cid)
11701 {
11702 	struct task_struct *src_task;
11703 	struct mm_struct *mm = t->mm;
11704 	int lazy_cid;
11705 
11706 	if (src_cid == -1)
11707 		return -1;
11708 
11709 	/*
11710 	 * Attempt to clear the source cpu cid to move it to the destination
11711 	 * cpu.
11712 	 */
11713 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11714 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11715 		return -1;
11716 
11717 	/*
11718 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11719 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11720 	 * between store to rq->curr and load of prev and next task's
11721 	 * per-mm/cpu cid.
11722 	 *
11723 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11724 	 * rq->curr->mm_cid_active matches the barrier in
11725 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11726 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11727 	 * load of per-mm/cpu cid.
11728 	 */
11729 
11730 	/*
11731 	 * If we observe an active task using the mm on this rq after setting
11732 	 * the lazy-put flag, this task will be responsible for transitioning
11733 	 * from lazy-put flag set to MM_CID_UNSET.
11734 	 */
11735 	scoped_guard (rcu) {
11736 		src_task = rcu_dereference(src_rq->curr);
11737 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11738 			/*
11739 			 * We observed an active task for this mm, there is therefore
11740 			 * no point in moving this cid to the destination cpu.
11741 			 */
11742 			t->last_mm_cid = -1;
11743 			return -1;
11744 		}
11745 	}
11746 
11747 	/*
11748 	 * The src_cid is unused, so it can be unset.
11749 	 */
11750 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11751 		return -1;
11752 	return src_cid;
11753 }
11754 
11755 /*
11756  * Migration to dst cpu. Called with dst_rq lock held.
11757  * Interrupts are disabled, which keeps the window of cid ownership without the
11758  * source rq lock held small.
11759  */
11760 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11761 {
11762 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11763 	struct mm_struct *mm = t->mm;
11764 	int src_cid, dst_cid, src_cpu;
11765 	struct rq *src_rq;
11766 
11767 	lockdep_assert_rq_held(dst_rq);
11768 
11769 	if (!mm)
11770 		return;
11771 	src_cpu = t->migrate_from_cpu;
11772 	if (src_cpu == -1) {
11773 		t->last_mm_cid = -1;
11774 		return;
11775 	}
11776 	/*
11777 	 * Move the src cid if the dst cid is unset. This keeps id
11778 	 * allocation closest to 0 in cases where few threads migrate around
11779 	 * many cpus.
11780 	 *
11781 	 * If destination cid is already set, we may have to just clear
11782 	 * the src cid to ensure compactness in frequent migrations
11783 	 * scenarios.
11784 	 *
11785 	 * It is not useful to clear the src cid when the number of threads is
11786 	 * greater or equal to the number of allowed cpus, because user-space
11787 	 * can expect that the number of allowed cids can reach the number of
11788 	 * allowed cpus.
11789 	 */
11790 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11791 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11792 	if (!mm_cid_is_unset(dst_cid) &&
11793 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11794 		return;
11795 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11796 	src_rq = cpu_rq(src_cpu);
11797 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11798 	if (src_cid == -1)
11799 		return;
11800 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11801 							    src_cid);
11802 	if (src_cid == -1)
11803 		return;
11804 	if (!mm_cid_is_unset(dst_cid)) {
11805 		__mm_cid_put(mm, src_cid);
11806 		return;
11807 	}
11808 	/* Move src_cid to dst cpu. */
11809 	mm_cid_snapshot_time(dst_rq, mm);
11810 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11811 }
11812 
11813 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11814 				      int cpu)
11815 {
11816 	struct rq *rq = cpu_rq(cpu);
11817 	struct task_struct *t;
11818 	int cid, lazy_cid;
11819 
11820 	cid = READ_ONCE(pcpu_cid->cid);
11821 	if (!mm_cid_is_valid(cid))
11822 		return;
11823 
11824 	/*
11825 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11826 	 * there happens to be other tasks left on the source cpu using this
11827 	 * mm, the next task using this mm will reallocate its cid on context
11828 	 * switch.
11829 	 */
11830 	lazy_cid = mm_cid_set_lazy_put(cid);
11831 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11832 		return;
11833 
11834 	/*
11835 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11836 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11837 	 * between store to rq->curr and load of prev and next task's
11838 	 * per-mm/cpu cid.
11839 	 *
11840 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11841 	 * rq->curr->mm_cid_active matches the barrier in
11842 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11843 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11844 	 * load of per-mm/cpu cid.
11845 	 */
11846 
11847 	/*
11848 	 * If we observe an active task using the mm on this rq after setting
11849 	 * the lazy-put flag, that task will be responsible for transitioning
11850 	 * from lazy-put flag set to MM_CID_UNSET.
11851 	 */
11852 	scoped_guard (rcu) {
11853 		t = rcu_dereference(rq->curr);
11854 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11855 			return;
11856 	}
11857 
11858 	/*
11859 	 * The cid is unused, so it can be unset.
11860 	 * Disable interrupts to keep the window of cid ownership without rq
11861 	 * lock small.
11862 	 */
11863 	scoped_guard (irqsave) {
11864 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11865 			__mm_cid_put(mm, cid);
11866 	}
11867 }
11868 
11869 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11870 {
11871 	struct rq *rq = cpu_rq(cpu);
11872 	struct mm_cid *pcpu_cid;
11873 	struct task_struct *curr;
11874 	u64 rq_clock;
11875 
11876 	/*
11877 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11878 	 * while is irrelevant.
11879 	 */
11880 	rq_clock = READ_ONCE(rq->clock);
11881 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11882 
11883 	/*
11884 	 * In order to take care of infrequently scheduled tasks, bump the time
11885 	 * snapshot associated with this cid if an active task using the mm is
11886 	 * observed on this rq.
11887 	 */
11888 	scoped_guard (rcu) {
11889 		curr = rcu_dereference(rq->curr);
11890 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11891 			WRITE_ONCE(pcpu_cid->time, rq_clock);
11892 			return;
11893 		}
11894 	}
11895 
11896 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11897 		return;
11898 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11899 }
11900 
11901 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11902 					     int weight)
11903 {
11904 	struct mm_cid *pcpu_cid;
11905 	int cid;
11906 
11907 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11908 	cid = READ_ONCE(pcpu_cid->cid);
11909 	if (!mm_cid_is_valid(cid) || cid < weight)
11910 		return;
11911 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11912 }
11913 
11914 static void task_mm_cid_work(struct callback_head *work)
11915 {
11916 	unsigned long now = jiffies, old_scan, next_scan;
11917 	struct task_struct *t = current;
11918 	struct cpumask *cidmask;
11919 	struct mm_struct *mm;
11920 	int weight, cpu;
11921 
11922 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11923 
11924 	work->next = work;	/* Prevent double-add */
11925 	if (t->flags & PF_EXITING)
11926 		return;
11927 	mm = t->mm;
11928 	if (!mm)
11929 		return;
11930 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11931 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11932 	if (!old_scan) {
11933 		unsigned long res;
11934 
11935 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11936 		if (res != old_scan)
11937 			old_scan = res;
11938 		else
11939 			old_scan = next_scan;
11940 	}
11941 	if (time_before(now, old_scan))
11942 		return;
11943 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11944 		return;
11945 	cidmask = mm_cidmask(mm);
11946 	/* Clear cids that were not recently used. */
11947 	for_each_possible_cpu(cpu)
11948 		sched_mm_cid_remote_clear_old(mm, cpu);
11949 	weight = cpumask_weight(cidmask);
11950 	/*
11951 	 * Clear cids that are greater or equal to the cidmask weight to
11952 	 * recompact it.
11953 	 */
11954 	for_each_possible_cpu(cpu)
11955 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11956 }
11957 
11958 void init_sched_mm_cid(struct task_struct *t)
11959 {
11960 	struct mm_struct *mm = t->mm;
11961 	int mm_users = 0;
11962 
11963 	if (mm) {
11964 		mm_users = atomic_read(&mm->mm_users);
11965 		if (mm_users == 1)
11966 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11967 	}
11968 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11969 	init_task_work(&t->cid_work, task_mm_cid_work);
11970 }
11971 
11972 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11973 {
11974 	struct callback_head *work = &curr->cid_work;
11975 	unsigned long now = jiffies;
11976 
11977 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11978 	    work->next != work)
11979 		return;
11980 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11981 		return;
11982 	task_work_add(curr, work, TWA_RESUME);
11983 }
11984 
11985 void sched_mm_cid_exit_signals(struct task_struct *t)
11986 {
11987 	struct mm_struct *mm = t->mm;
11988 	struct rq *rq;
11989 
11990 	if (!mm)
11991 		return;
11992 
11993 	preempt_disable();
11994 	rq = this_rq();
11995 	guard(rq_lock_irqsave)(rq);
11996 	preempt_enable_no_resched();	/* holding spinlock */
11997 	WRITE_ONCE(t->mm_cid_active, 0);
11998 	/*
11999 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12000 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12001 	 */
12002 	smp_mb();
12003 	mm_cid_put(mm);
12004 	t->last_mm_cid = t->mm_cid = -1;
12005 }
12006 
12007 void sched_mm_cid_before_execve(struct task_struct *t)
12008 {
12009 	struct mm_struct *mm = t->mm;
12010 	struct rq *rq;
12011 
12012 	if (!mm)
12013 		return;
12014 
12015 	preempt_disable();
12016 	rq = this_rq();
12017 	guard(rq_lock_irqsave)(rq);
12018 	preempt_enable_no_resched();	/* holding spinlock */
12019 	WRITE_ONCE(t->mm_cid_active, 0);
12020 	/*
12021 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12022 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12023 	 */
12024 	smp_mb();
12025 	mm_cid_put(mm);
12026 	t->last_mm_cid = t->mm_cid = -1;
12027 }
12028 
12029 void sched_mm_cid_after_execve(struct task_struct *t)
12030 {
12031 	struct mm_struct *mm = t->mm;
12032 	struct rq *rq;
12033 
12034 	if (!mm)
12035 		return;
12036 
12037 	preempt_disable();
12038 	rq = this_rq();
12039 	scoped_guard (rq_lock_irqsave, rq) {
12040 		preempt_enable_no_resched();	/* holding spinlock */
12041 		WRITE_ONCE(t->mm_cid_active, 1);
12042 		/*
12043 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12044 		 * Matches barrier in sched_mm_cid_remote_clear_old().
12045 		 */
12046 		smp_mb();
12047 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12048 	}
12049 	rseq_set_notify_resume(t);
12050 }
12051 
12052 void sched_mm_cid_fork(struct task_struct *t)
12053 {
12054 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12055 	t->mm_cid_active = 1;
12056 }
12057 #endif
12058