xref: /linux/kernel/sched/core.c (revision ea77850e98410987525eb392c229949c87779835)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	for (;;) {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 			break;
929 	}
930 	return true;
931 }
932 
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	if (set_nr_and_not_polling(rq->idle))
1136 		smp_send_reschedule(cpu);
1137 	else
1138 		trace_sched_wake_idle_without_ipi(cpu);
1139 }
1140 
1141 static bool wake_up_full_nohz_cpu(int cpu)
1142 {
1143 	/*
1144 	 * We just need the target to call irq_exit() and re-evaluate
1145 	 * the next tick. The nohz full kick at least implies that.
1146 	 * If needed we can still optimize that later with an
1147 	 * empty IRQ.
1148 	 */
1149 	if (cpu_is_offline(cpu))
1150 		return true;  /* Don't try to wake offline CPUs. */
1151 	if (tick_nohz_full_cpu(cpu)) {
1152 		if (cpu != smp_processor_id() ||
1153 		    tick_nohz_tick_stopped())
1154 			tick_nohz_full_kick_cpu(cpu);
1155 		return true;
1156 	}
1157 
1158 	return false;
1159 }
1160 
1161 /*
1162  * Wake up the specified CPU.  If the CPU is going offline, it is the
1163  * caller's responsibility to deal with the lost wakeup, for example,
1164  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165  */
1166 void wake_up_nohz_cpu(int cpu)
1167 {
1168 	if (!wake_up_full_nohz_cpu(cpu))
1169 		wake_up_idle_cpu(cpu);
1170 }
1171 
1172 static void nohz_csd_func(void *info)
1173 {
1174 	struct rq *rq = info;
1175 	int cpu = cpu_of(rq);
1176 	unsigned int flags;
1177 
1178 	/*
1179 	 * Release the rq::nohz_csd.
1180 	 */
1181 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1182 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1183 
1184 	rq->idle_balance = idle_cpu(cpu);
1185 	if (rq->idle_balance && !need_resched()) {
1186 		rq->nohz_idle_balance = flags;
1187 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1188 	}
1189 }
1190 
1191 #endif /* CONFIG_NO_HZ_COMMON */
1192 
1193 #ifdef CONFIG_NO_HZ_FULL
1194 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 {
1196 	if (rq->nr_running != 1)
1197 		return false;
1198 
1199 	if (p->sched_class != &fair_sched_class)
1200 		return false;
1201 
1202 	if (!task_on_rq_queued(p))
1203 		return false;
1204 
1205 	return true;
1206 }
1207 
1208 bool sched_can_stop_tick(struct rq *rq)
1209 {
1210 	int fifo_nr_running;
1211 
1212 	/* Deadline tasks, even if single, need the tick */
1213 	if (rq->dl.dl_nr_running)
1214 		return false;
1215 
1216 	/*
1217 	 * If there are more than one RR tasks, we need the tick to affect the
1218 	 * actual RR behaviour.
1219 	 */
1220 	if (rq->rt.rr_nr_running) {
1221 		if (rq->rt.rr_nr_running == 1)
1222 			return true;
1223 		else
1224 			return false;
1225 	}
1226 
1227 	/*
1228 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1229 	 * forced preemption between FIFO tasks.
1230 	 */
1231 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1232 	if (fifo_nr_running)
1233 		return true;
1234 
1235 	/*
1236 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1237 	 * if there's more than one we need the tick for involuntary
1238 	 * preemption.
1239 	 */
1240 	if (rq->nr_running > 1)
1241 		return false;
1242 
1243 	/*
1244 	 * If there is one task and it has CFS runtime bandwidth constraints
1245 	 * and it's on the cpu now we don't want to stop the tick.
1246 	 * This check prevents clearing the bit if a newly enqueued task here is
1247 	 * dequeued by migrating while the constrained task continues to run.
1248 	 * E.g. going from 2->1 without going through pick_next_task().
1249 	 */
1250 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1251 		if (cfs_task_bw_constrained(rq->curr))
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 #endif /* CONFIG_NO_HZ_FULL */
1258 #endif /* CONFIG_SMP */
1259 
1260 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1261 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 /*
1263  * Iterate task_group tree rooted at *from, calling @down when first entering a
1264  * node and @up when leaving it for the final time.
1265  *
1266  * Caller must hold rcu_lock or sufficient equivalent.
1267  */
1268 int walk_tg_tree_from(struct task_group *from,
1269 			     tg_visitor down, tg_visitor up, void *data)
1270 {
1271 	struct task_group *parent, *child;
1272 	int ret;
1273 
1274 	parent = from;
1275 
1276 down:
1277 	ret = (*down)(parent, data);
1278 	if (ret)
1279 		goto out;
1280 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1281 		parent = child;
1282 		goto down;
1283 
1284 up:
1285 		continue;
1286 	}
1287 	ret = (*up)(parent, data);
1288 	if (ret || parent == from)
1289 		goto out;
1290 
1291 	child = parent;
1292 	parent = parent->parent;
1293 	if (parent)
1294 		goto up;
1295 out:
1296 	return ret;
1297 }
1298 
1299 int tg_nop(struct task_group *tg, void *data)
1300 {
1301 	return 0;
1302 }
1303 #endif
1304 
1305 static void set_load_weight(struct task_struct *p, bool update_load)
1306 {
1307 	int prio = p->static_prio - MAX_RT_PRIO;
1308 	struct load_weight *load = &p->se.load;
1309 
1310 	/*
1311 	 * SCHED_IDLE tasks get minimal weight:
1312 	 */
1313 	if (task_has_idle_policy(p)) {
1314 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1315 		load->inv_weight = WMULT_IDLEPRIO;
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * SCHED_OTHER tasks have to update their load when changing their
1321 	 * weight
1322 	 */
1323 	if (update_load && p->sched_class == &fair_sched_class) {
1324 		reweight_task(p, prio);
1325 	} else {
1326 		load->weight = scale_load(sched_prio_to_weight[prio]);
1327 		load->inv_weight = sched_prio_to_wmult[prio];
1328 	}
1329 }
1330 
1331 #ifdef CONFIG_UCLAMP_TASK
1332 /*
1333  * Serializes updates of utilization clamp values
1334  *
1335  * The (slow-path) user-space triggers utilization clamp value updates which
1336  * can require updates on (fast-path) scheduler's data structures used to
1337  * support enqueue/dequeue operations.
1338  * While the per-CPU rq lock protects fast-path update operations, user-space
1339  * requests are serialized using a mutex to reduce the risk of conflicting
1340  * updates or API abuses.
1341  */
1342 static DEFINE_MUTEX(uclamp_mutex);
1343 
1344 /* Max allowed minimum utilization */
1345 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1346 
1347 /* Max allowed maximum utilization */
1348 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1349 
1350 /*
1351  * By default RT tasks run at the maximum performance point/capacity of the
1352  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1353  * SCHED_CAPACITY_SCALE.
1354  *
1355  * This knob allows admins to change the default behavior when uclamp is being
1356  * used. In battery powered devices, particularly, running at the maximum
1357  * capacity and frequency will increase energy consumption and shorten the
1358  * battery life.
1359  *
1360  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1361  *
1362  * This knob will not override the system default sched_util_clamp_min defined
1363  * above.
1364  */
1365 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1366 
1367 /* All clamps are required to be less or equal than these values */
1368 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1369 
1370 /*
1371  * This static key is used to reduce the uclamp overhead in the fast path. It
1372  * primarily disables the call to uclamp_rq_{inc, dec}() in
1373  * enqueue/dequeue_task().
1374  *
1375  * This allows users to continue to enable uclamp in their kernel config with
1376  * minimum uclamp overhead in the fast path.
1377  *
1378  * As soon as userspace modifies any of the uclamp knobs, the static key is
1379  * enabled, since we have an actual users that make use of uclamp
1380  * functionality.
1381  *
1382  * The knobs that would enable this static key are:
1383  *
1384  *   * A task modifying its uclamp value with sched_setattr().
1385  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1386  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1387  */
1388 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1389 
1390 /* Integer rounded range for each bucket */
1391 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1392 
1393 #define for_each_clamp_id(clamp_id) \
1394 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1395 
1396 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1397 {
1398 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1399 }
1400 
1401 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1402 {
1403 	if (clamp_id == UCLAMP_MIN)
1404 		return 0;
1405 	return SCHED_CAPACITY_SCALE;
1406 }
1407 
1408 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1409 				 unsigned int value, bool user_defined)
1410 {
1411 	uc_se->value = value;
1412 	uc_se->bucket_id = uclamp_bucket_id(value);
1413 	uc_se->user_defined = user_defined;
1414 }
1415 
1416 static inline unsigned int
1417 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1418 		  unsigned int clamp_value)
1419 {
1420 	/*
1421 	 * Avoid blocked utilization pushing up the frequency when we go
1422 	 * idle (which drops the max-clamp) by retaining the last known
1423 	 * max-clamp.
1424 	 */
1425 	if (clamp_id == UCLAMP_MAX) {
1426 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1427 		return clamp_value;
1428 	}
1429 
1430 	return uclamp_none(UCLAMP_MIN);
1431 }
1432 
1433 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1434 				     unsigned int clamp_value)
1435 {
1436 	/* Reset max-clamp retention only on idle exit */
1437 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1438 		return;
1439 
1440 	uclamp_rq_set(rq, clamp_id, clamp_value);
1441 }
1442 
1443 static inline
1444 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1445 				   unsigned int clamp_value)
1446 {
1447 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1448 	int bucket_id = UCLAMP_BUCKETS - 1;
1449 
1450 	/*
1451 	 * Since both min and max clamps are max aggregated, find the
1452 	 * top most bucket with tasks in.
1453 	 */
1454 	for ( ; bucket_id >= 0; bucket_id--) {
1455 		if (!bucket[bucket_id].tasks)
1456 			continue;
1457 		return bucket[bucket_id].value;
1458 	}
1459 
1460 	/* No tasks -- default clamp values */
1461 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1462 }
1463 
1464 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1465 {
1466 	unsigned int default_util_min;
1467 	struct uclamp_se *uc_se;
1468 
1469 	lockdep_assert_held(&p->pi_lock);
1470 
1471 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1472 
1473 	/* Only sync if user didn't override the default */
1474 	if (uc_se->user_defined)
1475 		return;
1476 
1477 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1478 	uclamp_se_set(uc_se, default_util_min, false);
1479 }
1480 
1481 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1482 {
1483 	struct rq_flags rf;
1484 	struct rq *rq;
1485 
1486 	if (!rt_task(p))
1487 		return;
1488 
1489 	/* Protect updates to p->uclamp_* */
1490 	rq = task_rq_lock(p, &rf);
1491 	__uclamp_update_util_min_rt_default(p);
1492 	task_rq_unlock(rq, p, &rf);
1493 }
1494 
1495 static inline struct uclamp_se
1496 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1497 {
1498 	/* Copy by value as we could modify it */
1499 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1500 #ifdef CONFIG_UCLAMP_TASK_GROUP
1501 	unsigned int tg_min, tg_max, value;
1502 
1503 	/*
1504 	 * Tasks in autogroups or root task group will be
1505 	 * restricted by system defaults.
1506 	 */
1507 	if (task_group_is_autogroup(task_group(p)))
1508 		return uc_req;
1509 	if (task_group(p) == &root_task_group)
1510 		return uc_req;
1511 
1512 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1513 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1514 	value = uc_req.value;
1515 	value = clamp(value, tg_min, tg_max);
1516 	uclamp_se_set(&uc_req, value, false);
1517 #endif
1518 
1519 	return uc_req;
1520 }
1521 
1522 /*
1523  * The effective clamp bucket index of a task depends on, by increasing
1524  * priority:
1525  * - the task specific clamp value, when explicitly requested from userspace
1526  * - the task group effective clamp value, for tasks not either in the root
1527  *   group or in an autogroup
1528  * - the system default clamp value, defined by the sysadmin
1529  */
1530 static inline struct uclamp_se
1531 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1532 {
1533 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1534 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1535 
1536 	/* System default restrictions always apply */
1537 	if (unlikely(uc_req.value > uc_max.value))
1538 		return uc_max;
1539 
1540 	return uc_req;
1541 }
1542 
1543 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1544 {
1545 	struct uclamp_se uc_eff;
1546 
1547 	/* Task currently refcounted: use back-annotated (effective) value */
1548 	if (p->uclamp[clamp_id].active)
1549 		return (unsigned long)p->uclamp[clamp_id].value;
1550 
1551 	uc_eff = uclamp_eff_get(p, clamp_id);
1552 
1553 	return (unsigned long)uc_eff.value;
1554 }
1555 
1556 /*
1557  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1558  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1559  * updates the rq's clamp value if required.
1560  *
1561  * Tasks can have a task-specific value requested from user-space, track
1562  * within each bucket the maximum value for tasks refcounted in it.
1563  * This "local max aggregation" allows to track the exact "requested" value
1564  * for each bucket when all its RUNNABLE tasks require the same clamp.
1565  */
1566 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1567 				    enum uclamp_id clamp_id)
1568 {
1569 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1570 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1571 	struct uclamp_bucket *bucket;
1572 
1573 	lockdep_assert_rq_held(rq);
1574 
1575 	/* Update task effective clamp */
1576 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1577 
1578 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1579 	bucket->tasks++;
1580 	uc_se->active = true;
1581 
1582 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1583 
1584 	/*
1585 	 * Local max aggregation: rq buckets always track the max
1586 	 * "requested" clamp value of its RUNNABLE tasks.
1587 	 */
1588 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1589 		bucket->value = uc_se->value;
1590 
1591 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1592 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1593 }
1594 
1595 /*
1596  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1597  * is released. If this is the last task reference counting the rq's max
1598  * active clamp value, then the rq's clamp value is updated.
1599  *
1600  * Both refcounted tasks and rq's cached clamp values are expected to be
1601  * always valid. If it's detected they are not, as defensive programming,
1602  * enforce the expected state and warn.
1603  */
1604 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1605 				    enum uclamp_id clamp_id)
1606 {
1607 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1608 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1609 	struct uclamp_bucket *bucket;
1610 	unsigned int bkt_clamp;
1611 	unsigned int rq_clamp;
1612 
1613 	lockdep_assert_rq_held(rq);
1614 
1615 	/*
1616 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1617 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1618 	 *
1619 	 * In this case the uc_se->active flag should be false since no uclamp
1620 	 * accounting was performed at enqueue time and we can just return
1621 	 * here.
1622 	 *
1623 	 * Need to be careful of the following enqueue/dequeue ordering
1624 	 * problem too
1625 	 *
1626 	 *	enqueue(taskA)
1627 	 *	// sched_uclamp_used gets enabled
1628 	 *	enqueue(taskB)
1629 	 *	dequeue(taskA)
1630 	 *	// Must not decrement bucket->tasks here
1631 	 *	dequeue(taskB)
1632 	 *
1633 	 * where we could end up with stale data in uc_se and
1634 	 * bucket[uc_se->bucket_id].
1635 	 *
1636 	 * The following check here eliminates the possibility of such race.
1637 	 */
1638 	if (unlikely(!uc_se->active))
1639 		return;
1640 
1641 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1642 
1643 	SCHED_WARN_ON(!bucket->tasks);
1644 	if (likely(bucket->tasks))
1645 		bucket->tasks--;
1646 
1647 	uc_se->active = false;
1648 
1649 	/*
1650 	 * Keep "local max aggregation" simple and accept to (possibly)
1651 	 * overboost some RUNNABLE tasks in the same bucket.
1652 	 * The rq clamp bucket value is reset to its base value whenever
1653 	 * there are no more RUNNABLE tasks refcounting it.
1654 	 */
1655 	if (likely(bucket->tasks))
1656 		return;
1657 
1658 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1659 	/*
1660 	 * Defensive programming: this should never happen. If it happens,
1661 	 * e.g. due to future modification, warn and fixup the expected value.
1662 	 */
1663 	SCHED_WARN_ON(bucket->value > rq_clamp);
1664 	if (bucket->value >= rq_clamp) {
1665 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1666 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1667 	}
1668 }
1669 
1670 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1671 {
1672 	enum uclamp_id clamp_id;
1673 
1674 	/*
1675 	 * Avoid any overhead until uclamp is actually used by the userspace.
1676 	 *
1677 	 * The condition is constructed such that a NOP is generated when
1678 	 * sched_uclamp_used is disabled.
1679 	 */
1680 	if (!static_branch_unlikely(&sched_uclamp_used))
1681 		return;
1682 
1683 	if (unlikely(!p->sched_class->uclamp_enabled))
1684 		return;
1685 
1686 	for_each_clamp_id(clamp_id)
1687 		uclamp_rq_inc_id(rq, p, clamp_id);
1688 
1689 	/* Reset clamp idle holding when there is one RUNNABLE task */
1690 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1691 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1692 }
1693 
1694 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1695 {
1696 	enum uclamp_id clamp_id;
1697 
1698 	/*
1699 	 * Avoid any overhead until uclamp is actually used by the userspace.
1700 	 *
1701 	 * The condition is constructed such that a NOP is generated when
1702 	 * sched_uclamp_used is disabled.
1703 	 */
1704 	if (!static_branch_unlikely(&sched_uclamp_used))
1705 		return;
1706 
1707 	if (unlikely(!p->sched_class->uclamp_enabled))
1708 		return;
1709 
1710 	for_each_clamp_id(clamp_id)
1711 		uclamp_rq_dec_id(rq, p, clamp_id);
1712 }
1713 
1714 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1715 				      enum uclamp_id clamp_id)
1716 {
1717 	if (!p->uclamp[clamp_id].active)
1718 		return;
1719 
1720 	uclamp_rq_dec_id(rq, p, clamp_id);
1721 	uclamp_rq_inc_id(rq, p, clamp_id);
1722 
1723 	/*
1724 	 * Make sure to clear the idle flag if we've transiently reached 0
1725 	 * active tasks on rq.
1726 	 */
1727 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1728 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1729 }
1730 
1731 static inline void
1732 uclamp_update_active(struct task_struct *p)
1733 {
1734 	enum uclamp_id clamp_id;
1735 	struct rq_flags rf;
1736 	struct rq *rq;
1737 
1738 	/*
1739 	 * Lock the task and the rq where the task is (or was) queued.
1740 	 *
1741 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1742 	 * price to pay to safely serialize util_{min,max} updates with
1743 	 * enqueues, dequeues and migration operations.
1744 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1745 	 */
1746 	rq = task_rq_lock(p, &rf);
1747 
1748 	/*
1749 	 * Setting the clamp bucket is serialized by task_rq_lock().
1750 	 * If the task is not yet RUNNABLE and its task_struct is not
1751 	 * affecting a valid clamp bucket, the next time it's enqueued,
1752 	 * it will already see the updated clamp bucket value.
1753 	 */
1754 	for_each_clamp_id(clamp_id)
1755 		uclamp_rq_reinc_id(rq, p, clamp_id);
1756 
1757 	task_rq_unlock(rq, p, &rf);
1758 }
1759 
1760 #ifdef CONFIG_UCLAMP_TASK_GROUP
1761 static inline void
1762 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1763 {
1764 	struct css_task_iter it;
1765 	struct task_struct *p;
1766 
1767 	css_task_iter_start(css, 0, &it);
1768 	while ((p = css_task_iter_next(&it)))
1769 		uclamp_update_active(p);
1770 	css_task_iter_end(&it);
1771 }
1772 
1773 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1774 #endif
1775 
1776 #ifdef CONFIG_SYSCTL
1777 #ifdef CONFIG_UCLAMP_TASK
1778 #ifdef CONFIG_UCLAMP_TASK_GROUP
1779 static void uclamp_update_root_tg(void)
1780 {
1781 	struct task_group *tg = &root_task_group;
1782 
1783 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1784 		      sysctl_sched_uclamp_util_min, false);
1785 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1786 		      sysctl_sched_uclamp_util_max, false);
1787 
1788 	rcu_read_lock();
1789 	cpu_util_update_eff(&root_task_group.css);
1790 	rcu_read_unlock();
1791 }
1792 #else
1793 static void uclamp_update_root_tg(void) { }
1794 #endif
1795 
1796 static void uclamp_sync_util_min_rt_default(void)
1797 {
1798 	struct task_struct *g, *p;
1799 
1800 	/*
1801 	 * copy_process()			sysctl_uclamp
1802 	 *					  uclamp_min_rt = X;
1803 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1804 	 *   // link thread			  smp_mb__after_spinlock()
1805 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1806 	 *   sched_post_fork()			  for_each_process_thread()
1807 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1808 	 *
1809 	 * Ensures that either sched_post_fork() will observe the new
1810 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1811 	 * task.
1812 	 */
1813 	read_lock(&tasklist_lock);
1814 	smp_mb__after_spinlock();
1815 	read_unlock(&tasklist_lock);
1816 
1817 	rcu_read_lock();
1818 	for_each_process_thread(g, p)
1819 		uclamp_update_util_min_rt_default(p);
1820 	rcu_read_unlock();
1821 }
1822 
1823 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1824 				void *buffer, size_t *lenp, loff_t *ppos)
1825 {
1826 	bool update_root_tg = false;
1827 	int old_min, old_max, old_min_rt;
1828 	int result;
1829 
1830 	guard(mutex)(&uclamp_mutex);
1831 
1832 	old_min = sysctl_sched_uclamp_util_min;
1833 	old_max = sysctl_sched_uclamp_util_max;
1834 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1835 
1836 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1837 	if (result)
1838 		goto undo;
1839 	if (!write)
1840 		return 0;
1841 
1842 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1843 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1844 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1845 
1846 		result = -EINVAL;
1847 		goto undo;
1848 	}
1849 
1850 	if (old_min != sysctl_sched_uclamp_util_min) {
1851 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1852 			      sysctl_sched_uclamp_util_min, false);
1853 		update_root_tg = true;
1854 	}
1855 	if (old_max != sysctl_sched_uclamp_util_max) {
1856 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1857 			      sysctl_sched_uclamp_util_max, false);
1858 		update_root_tg = true;
1859 	}
1860 
1861 	if (update_root_tg) {
1862 		static_branch_enable(&sched_uclamp_used);
1863 		uclamp_update_root_tg();
1864 	}
1865 
1866 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1867 		static_branch_enable(&sched_uclamp_used);
1868 		uclamp_sync_util_min_rt_default();
1869 	}
1870 
1871 	/*
1872 	 * We update all RUNNABLE tasks only when task groups are in use.
1873 	 * Otherwise, keep it simple and do just a lazy update at each next
1874 	 * task enqueue time.
1875 	 */
1876 	return 0;
1877 
1878 undo:
1879 	sysctl_sched_uclamp_util_min = old_min;
1880 	sysctl_sched_uclamp_util_max = old_max;
1881 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1882 	return result;
1883 }
1884 #endif
1885 #endif
1886 
1887 static int uclamp_validate(struct task_struct *p,
1888 			   const struct sched_attr *attr)
1889 {
1890 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1891 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1892 
1893 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1894 		util_min = attr->sched_util_min;
1895 
1896 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1897 			return -EINVAL;
1898 	}
1899 
1900 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1901 		util_max = attr->sched_util_max;
1902 
1903 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1904 			return -EINVAL;
1905 	}
1906 
1907 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1908 		return -EINVAL;
1909 
1910 	/*
1911 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1912 	 *
1913 	 * We need to do that here, because enabling static branches is a
1914 	 * blocking operation which obviously cannot be done while holding
1915 	 * scheduler locks.
1916 	 */
1917 	static_branch_enable(&sched_uclamp_used);
1918 
1919 	return 0;
1920 }
1921 
1922 static bool uclamp_reset(const struct sched_attr *attr,
1923 			 enum uclamp_id clamp_id,
1924 			 struct uclamp_se *uc_se)
1925 {
1926 	/* Reset on sched class change for a non user-defined clamp value. */
1927 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1928 	    !uc_se->user_defined)
1929 		return true;
1930 
1931 	/* Reset on sched_util_{min,max} == -1. */
1932 	if (clamp_id == UCLAMP_MIN &&
1933 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 	    attr->sched_util_min == -1) {
1935 		return true;
1936 	}
1937 
1938 	if (clamp_id == UCLAMP_MAX &&
1939 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 	    attr->sched_util_max == -1) {
1941 		return true;
1942 	}
1943 
1944 	return false;
1945 }
1946 
1947 static void __setscheduler_uclamp(struct task_struct *p,
1948 				  const struct sched_attr *attr)
1949 {
1950 	enum uclamp_id clamp_id;
1951 
1952 	for_each_clamp_id(clamp_id) {
1953 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1954 		unsigned int value;
1955 
1956 		if (!uclamp_reset(attr, clamp_id, uc_se))
1957 			continue;
1958 
1959 		/*
1960 		 * RT by default have a 100% boost value that could be modified
1961 		 * at runtime.
1962 		 */
1963 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1964 			value = sysctl_sched_uclamp_util_min_rt_default;
1965 		else
1966 			value = uclamp_none(clamp_id);
1967 
1968 		uclamp_se_set(uc_se, value, false);
1969 
1970 	}
1971 
1972 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1973 		return;
1974 
1975 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1976 	    attr->sched_util_min != -1) {
1977 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1978 			      attr->sched_util_min, true);
1979 	}
1980 
1981 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1982 	    attr->sched_util_max != -1) {
1983 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1984 			      attr->sched_util_max, true);
1985 	}
1986 }
1987 
1988 static void uclamp_fork(struct task_struct *p)
1989 {
1990 	enum uclamp_id clamp_id;
1991 
1992 	/*
1993 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1994 	 * as the task is still at its early fork stages.
1995 	 */
1996 	for_each_clamp_id(clamp_id)
1997 		p->uclamp[clamp_id].active = false;
1998 
1999 	if (likely(!p->sched_reset_on_fork))
2000 		return;
2001 
2002 	for_each_clamp_id(clamp_id) {
2003 		uclamp_se_set(&p->uclamp_req[clamp_id],
2004 			      uclamp_none(clamp_id), false);
2005 	}
2006 }
2007 
2008 static void uclamp_post_fork(struct task_struct *p)
2009 {
2010 	uclamp_update_util_min_rt_default(p);
2011 }
2012 
2013 static void __init init_uclamp_rq(struct rq *rq)
2014 {
2015 	enum uclamp_id clamp_id;
2016 	struct uclamp_rq *uc_rq = rq->uclamp;
2017 
2018 	for_each_clamp_id(clamp_id) {
2019 		uc_rq[clamp_id] = (struct uclamp_rq) {
2020 			.value = uclamp_none(clamp_id)
2021 		};
2022 	}
2023 
2024 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2025 }
2026 
2027 static void __init init_uclamp(void)
2028 {
2029 	struct uclamp_se uc_max = {};
2030 	enum uclamp_id clamp_id;
2031 	int cpu;
2032 
2033 	for_each_possible_cpu(cpu)
2034 		init_uclamp_rq(cpu_rq(cpu));
2035 
2036 	for_each_clamp_id(clamp_id) {
2037 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2038 			      uclamp_none(clamp_id), false);
2039 	}
2040 
2041 	/* System defaults allow max clamp values for both indexes */
2042 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2043 	for_each_clamp_id(clamp_id) {
2044 		uclamp_default[clamp_id] = uc_max;
2045 #ifdef CONFIG_UCLAMP_TASK_GROUP
2046 		root_task_group.uclamp_req[clamp_id] = uc_max;
2047 		root_task_group.uclamp[clamp_id] = uc_max;
2048 #endif
2049 	}
2050 }
2051 
2052 #else /* CONFIG_UCLAMP_TASK */
2053 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2054 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2055 static inline int uclamp_validate(struct task_struct *p,
2056 				  const struct sched_attr *attr)
2057 {
2058 	return -EOPNOTSUPP;
2059 }
2060 static void __setscheduler_uclamp(struct task_struct *p,
2061 				  const struct sched_attr *attr) { }
2062 static inline void uclamp_fork(struct task_struct *p) { }
2063 static inline void uclamp_post_fork(struct task_struct *p) { }
2064 static inline void init_uclamp(void) { }
2065 #endif /* CONFIG_UCLAMP_TASK */
2066 
2067 bool sched_task_on_rq(struct task_struct *p)
2068 {
2069 	return task_on_rq_queued(p);
2070 }
2071 
2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074 	unsigned long ip = 0;
2075 	unsigned int state;
2076 
2077 	if (!p || p == current)
2078 		return 0;
2079 
2080 	/* Only get wchan if task is blocked and we can keep it that way. */
2081 	raw_spin_lock_irq(&p->pi_lock);
2082 	state = READ_ONCE(p->__state);
2083 	smp_rmb(); /* see try_to_wake_up() */
2084 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2085 		ip = __get_wchan(p);
2086 	raw_spin_unlock_irq(&p->pi_lock);
2087 
2088 	return ip;
2089 }
2090 
2091 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2092 {
2093 	if (!(flags & ENQUEUE_NOCLOCK))
2094 		update_rq_clock(rq);
2095 
2096 	if (!(flags & ENQUEUE_RESTORE)) {
2097 		sched_info_enqueue(rq, p);
2098 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2099 	}
2100 
2101 	uclamp_rq_inc(rq, p);
2102 	p->sched_class->enqueue_task(rq, p, flags);
2103 
2104 	if (sched_core_enabled(rq))
2105 		sched_core_enqueue(rq, p);
2106 }
2107 
2108 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2109 {
2110 	if (sched_core_enabled(rq))
2111 		sched_core_dequeue(rq, p, flags);
2112 
2113 	if (!(flags & DEQUEUE_NOCLOCK))
2114 		update_rq_clock(rq);
2115 
2116 	if (!(flags & DEQUEUE_SAVE)) {
2117 		sched_info_dequeue(rq, p);
2118 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2119 	}
2120 
2121 	uclamp_rq_dec(rq, p);
2122 	p->sched_class->dequeue_task(rq, p, flags);
2123 }
2124 
2125 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 	if (task_on_rq_migrating(p))
2128 		flags |= ENQUEUE_MIGRATED;
2129 	if (flags & ENQUEUE_MIGRATED)
2130 		sched_mm_cid_migrate_to(rq, p);
2131 
2132 	enqueue_task(rq, p, flags);
2133 
2134 	p->on_rq = TASK_ON_RQ_QUEUED;
2135 }
2136 
2137 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2138 {
2139 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2140 
2141 	dequeue_task(rq, p, flags);
2142 }
2143 
2144 static inline int __normal_prio(int policy, int rt_prio, int nice)
2145 {
2146 	int prio;
2147 
2148 	if (dl_policy(policy))
2149 		prio = MAX_DL_PRIO - 1;
2150 	else if (rt_policy(policy))
2151 		prio = MAX_RT_PRIO - 1 - rt_prio;
2152 	else
2153 		prio = NICE_TO_PRIO(nice);
2154 
2155 	return prio;
2156 }
2157 
2158 /*
2159  * Calculate the expected normal priority: i.e. priority
2160  * without taking RT-inheritance into account. Might be
2161  * boosted by interactivity modifiers. Changes upon fork,
2162  * setprio syscalls, and whenever the interactivity
2163  * estimator recalculates.
2164  */
2165 static inline int normal_prio(struct task_struct *p)
2166 {
2167 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2168 }
2169 
2170 /*
2171  * Calculate the current priority, i.e. the priority
2172  * taken into account by the scheduler. This value might
2173  * be boosted by RT tasks, or might be boosted by
2174  * interactivity modifiers. Will be RT if the task got
2175  * RT-boosted. If not then it returns p->normal_prio.
2176  */
2177 static int effective_prio(struct task_struct *p)
2178 {
2179 	p->normal_prio = normal_prio(p);
2180 	/*
2181 	 * If we are RT tasks or we were boosted to RT priority,
2182 	 * keep the priority unchanged. Otherwise, update priority
2183 	 * to the normal priority:
2184 	 */
2185 	if (!rt_prio(p->prio))
2186 		return p->normal_prio;
2187 	return p->prio;
2188 }
2189 
2190 /**
2191  * task_curr - is this task currently executing on a CPU?
2192  * @p: the task in question.
2193  *
2194  * Return: 1 if the task is currently executing. 0 otherwise.
2195  */
2196 inline int task_curr(const struct task_struct *p)
2197 {
2198 	return cpu_curr(task_cpu(p)) == p;
2199 }
2200 
2201 /*
2202  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2203  * use the balance_callback list if you want balancing.
2204  *
2205  * this means any call to check_class_changed() must be followed by a call to
2206  * balance_callback().
2207  */
2208 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2209 				       const struct sched_class *prev_class,
2210 				       int oldprio)
2211 {
2212 	if (prev_class != p->sched_class) {
2213 		if (prev_class->switched_from)
2214 			prev_class->switched_from(rq, p);
2215 
2216 		p->sched_class->switched_to(rq, p);
2217 	} else if (oldprio != p->prio || dl_task(p))
2218 		p->sched_class->prio_changed(rq, p, oldprio);
2219 }
2220 
2221 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2222 {
2223 	if (p->sched_class == rq->curr->sched_class)
2224 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2225 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2226 		resched_curr(rq);
2227 
2228 	/*
2229 	 * A queue event has occurred, and we're going to schedule.  In
2230 	 * this case, we can save a useless back to back clock update.
2231 	 */
2232 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2233 		rq_clock_skip_update(rq);
2234 }
2235 
2236 static __always_inline
2237 int __task_state_match(struct task_struct *p, unsigned int state)
2238 {
2239 	if (READ_ONCE(p->__state) & state)
2240 		return 1;
2241 
2242 #ifdef CONFIG_PREEMPT_RT
2243 	if (READ_ONCE(p->saved_state) & state)
2244 		return -1;
2245 #endif
2246 	return 0;
2247 }
2248 
2249 static __always_inline
2250 int task_state_match(struct task_struct *p, unsigned int state)
2251 {
2252 #ifdef CONFIG_PREEMPT_RT
2253 	int match;
2254 
2255 	/*
2256 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2257 	 * current_restore_rtlock_saved_state().
2258 	 */
2259 	raw_spin_lock_irq(&p->pi_lock);
2260 	match = __task_state_match(p, state);
2261 	raw_spin_unlock_irq(&p->pi_lock);
2262 
2263 	return match;
2264 #else
2265 	return __task_state_match(p, state);
2266 #endif
2267 }
2268 
2269 /*
2270  * wait_task_inactive - wait for a thread to unschedule.
2271  *
2272  * Wait for the thread to block in any of the states set in @match_state.
2273  * If it changes, i.e. @p might have woken up, then return zero.  When we
2274  * succeed in waiting for @p to be off its CPU, we return a positive number
2275  * (its total switch count).  If a second call a short while later returns the
2276  * same number, the caller can be sure that @p has remained unscheduled the
2277  * whole time.
2278  *
2279  * The caller must ensure that the task *will* unschedule sometime soon,
2280  * else this function might spin for a *long* time. This function can't
2281  * be called with interrupts off, or it may introduce deadlock with
2282  * smp_call_function() if an IPI is sent by the same process we are
2283  * waiting to become inactive.
2284  */
2285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2286 {
2287 	int running, queued, match;
2288 	struct rq_flags rf;
2289 	unsigned long ncsw;
2290 	struct rq *rq;
2291 
2292 	for (;;) {
2293 		/*
2294 		 * We do the initial early heuristics without holding
2295 		 * any task-queue locks at all. We'll only try to get
2296 		 * the runqueue lock when things look like they will
2297 		 * work out!
2298 		 */
2299 		rq = task_rq(p);
2300 
2301 		/*
2302 		 * If the task is actively running on another CPU
2303 		 * still, just relax and busy-wait without holding
2304 		 * any locks.
2305 		 *
2306 		 * NOTE! Since we don't hold any locks, it's not
2307 		 * even sure that "rq" stays as the right runqueue!
2308 		 * But we don't care, since "task_on_cpu()" will
2309 		 * return false if the runqueue has changed and p
2310 		 * is actually now running somewhere else!
2311 		 */
2312 		while (task_on_cpu(rq, p)) {
2313 			if (!task_state_match(p, match_state))
2314 				return 0;
2315 			cpu_relax();
2316 		}
2317 
2318 		/*
2319 		 * Ok, time to look more closely! We need the rq
2320 		 * lock now, to be *sure*. If we're wrong, we'll
2321 		 * just go back and repeat.
2322 		 */
2323 		rq = task_rq_lock(p, &rf);
2324 		trace_sched_wait_task(p);
2325 		running = task_on_cpu(rq, p);
2326 		queued = task_on_rq_queued(p);
2327 		ncsw = 0;
2328 		if ((match = __task_state_match(p, match_state))) {
2329 			/*
2330 			 * When matching on p->saved_state, consider this task
2331 			 * still queued so it will wait.
2332 			 */
2333 			if (match < 0)
2334 				queued = 1;
2335 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2336 		}
2337 		task_rq_unlock(rq, p, &rf);
2338 
2339 		/*
2340 		 * If it changed from the expected state, bail out now.
2341 		 */
2342 		if (unlikely(!ncsw))
2343 			break;
2344 
2345 		/*
2346 		 * Was it really running after all now that we
2347 		 * checked with the proper locks actually held?
2348 		 *
2349 		 * Oops. Go back and try again..
2350 		 */
2351 		if (unlikely(running)) {
2352 			cpu_relax();
2353 			continue;
2354 		}
2355 
2356 		/*
2357 		 * It's not enough that it's not actively running,
2358 		 * it must be off the runqueue _entirely_, and not
2359 		 * preempted!
2360 		 *
2361 		 * So if it was still runnable (but just not actively
2362 		 * running right now), it's preempted, and we should
2363 		 * yield - it could be a while.
2364 		 */
2365 		if (unlikely(queued)) {
2366 			ktime_t to = NSEC_PER_SEC / HZ;
2367 
2368 			set_current_state(TASK_UNINTERRUPTIBLE);
2369 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2370 			continue;
2371 		}
2372 
2373 		/*
2374 		 * Ahh, all good. It wasn't running, and it wasn't
2375 		 * runnable, which means that it will never become
2376 		 * running in the future either. We're all done!
2377 		 */
2378 		break;
2379 	}
2380 
2381 	return ncsw;
2382 }
2383 
2384 #ifdef CONFIG_SMP
2385 
2386 static void
2387 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2388 
2389 static int __set_cpus_allowed_ptr(struct task_struct *p,
2390 				  struct affinity_context *ctx);
2391 
2392 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2393 {
2394 	struct affinity_context ac = {
2395 		.new_mask  = cpumask_of(rq->cpu),
2396 		.flags     = SCA_MIGRATE_DISABLE,
2397 	};
2398 
2399 	if (likely(!p->migration_disabled))
2400 		return;
2401 
2402 	if (p->cpus_ptr != &p->cpus_mask)
2403 		return;
2404 
2405 	/*
2406 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2407 	 */
2408 	__do_set_cpus_allowed(p, &ac);
2409 }
2410 
2411 void migrate_disable(void)
2412 {
2413 	struct task_struct *p = current;
2414 
2415 	if (p->migration_disabled) {
2416 		p->migration_disabled++;
2417 		return;
2418 	}
2419 
2420 	preempt_disable();
2421 	this_rq()->nr_pinned++;
2422 	p->migration_disabled = 1;
2423 	preempt_enable();
2424 }
2425 EXPORT_SYMBOL_GPL(migrate_disable);
2426 
2427 void migrate_enable(void)
2428 {
2429 	struct task_struct *p = current;
2430 	struct affinity_context ac = {
2431 		.new_mask  = &p->cpus_mask,
2432 		.flags     = SCA_MIGRATE_ENABLE,
2433 	};
2434 
2435 	if (p->migration_disabled > 1) {
2436 		p->migration_disabled--;
2437 		return;
2438 	}
2439 
2440 	if (WARN_ON_ONCE(!p->migration_disabled))
2441 		return;
2442 
2443 	/*
2444 	 * Ensure stop_task runs either before or after this, and that
2445 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2446 	 */
2447 	preempt_disable();
2448 	if (p->cpus_ptr != &p->cpus_mask)
2449 		__set_cpus_allowed_ptr(p, &ac);
2450 	/*
2451 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2452 	 * regular cpus_mask, otherwise things that race (eg.
2453 	 * select_fallback_rq) get confused.
2454 	 */
2455 	barrier();
2456 	p->migration_disabled = 0;
2457 	this_rq()->nr_pinned--;
2458 	preempt_enable();
2459 }
2460 EXPORT_SYMBOL_GPL(migrate_enable);
2461 
2462 static inline bool rq_has_pinned_tasks(struct rq *rq)
2463 {
2464 	return rq->nr_pinned;
2465 }
2466 
2467 /*
2468  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2469  * __set_cpus_allowed_ptr() and select_fallback_rq().
2470  */
2471 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2472 {
2473 	/* When not in the task's cpumask, no point in looking further. */
2474 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2475 		return false;
2476 
2477 	/* migrate_disabled() must be allowed to finish. */
2478 	if (is_migration_disabled(p))
2479 		return cpu_online(cpu);
2480 
2481 	/* Non kernel threads are not allowed during either online or offline. */
2482 	if (!(p->flags & PF_KTHREAD))
2483 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2484 
2485 	/* KTHREAD_IS_PER_CPU is always allowed. */
2486 	if (kthread_is_per_cpu(p))
2487 		return cpu_online(cpu);
2488 
2489 	/* Regular kernel threads don't get to stay during offline. */
2490 	if (cpu_dying(cpu))
2491 		return false;
2492 
2493 	/* But are allowed during online. */
2494 	return cpu_online(cpu);
2495 }
2496 
2497 /*
2498  * This is how migration works:
2499  *
2500  * 1) we invoke migration_cpu_stop() on the target CPU using
2501  *    stop_one_cpu().
2502  * 2) stopper starts to run (implicitly forcing the migrated thread
2503  *    off the CPU)
2504  * 3) it checks whether the migrated task is still in the wrong runqueue.
2505  * 4) if it's in the wrong runqueue then the migration thread removes
2506  *    it and puts it into the right queue.
2507  * 5) stopper completes and stop_one_cpu() returns and the migration
2508  *    is done.
2509  */
2510 
2511 /*
2512  * move_queued_task - move a queued task to new rq.
2513  *
2514  * Returns (locked) new rq. Old rq's lock is released.
2515  */
2516 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2517 				   struct task_struct *p, int new_cpu)
2518 {
2519 	lockdep_assert_rq_held(rq);
2520 
2521 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2522 	set_task_cpu(p, new_cpu);
2523 	rq_unlock(rq, rf);
2524 
2525 	rq = cpu_rq(new_cpu);
2526 
2527 	rq_lock(rq, rf);
2528 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2529 	activate_task(rq, p, 0);
2530 	check_preempt_curr(rq, p, 0);
2531 
2532 	return rq;
2533 }
2534 
2535 struct migration_arg {
2536 	struct task_struct		*task;
2537 	int				dest_cpu;
2538 	struct set_affinity_pending	*pending;
2539 };
2540 
2541 /*
2542  * @refs: number of wait_for_completion()
2543  * @stop_pending: is @stop_work in use
2544  */
2545 struct set_affinity_pending {
2546 	refcount_t		refs;
2547 	unsigned int		stop_pending;
2548 	struct completion	done;
2549 	struct cpu_stop_work	stop_work;
2550 	struct migration_arg	arg;
2551 };
2552 
2553 /*
2554  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2555  * this because either it can't run here any more (set_cpus_allowed()
2556  * away from this CPU, or CPU going down), or because we're
2557  * attempting to rebalance this task on exec (sched_exec).
2558  *
2559  * So we race with normal scheduler movements, but that's OK, as long
2560  * as the task is no longer on this CPU.
2561  */
2562 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2563 				 struct task_struct *p, int dest_cpu)
2564 {
2565 	/* Affinity changed (again). */
2566 	if (!is_cpu_allowed(p, dest_cpu))
2567 		return rq;
2568 
2569 	rq = move_queued_task(rq, rf, p, dest_cpu);
2570 
2571 	return rq;
2572 }
2573 
2574 /*
2575  * migration_cpu_stop - this will be executed by a highprio stopper thread
2576  * and performs thread migration by bumping thread off CPU then
2577  * 'pushing' onto another runqueue.
2578  */
2579 static int migration_cpu_stop(void *data)
2580 {
2581 	struct migration_arg *arg = data;
2582 	struct set_affinity_pending *pending = arg->pending;
2583 	struct task_struct *p = arg->task;
2584 	struct rq *rq = this_rq();
2585 	bool complete = false;
2586 	struct rq_flags rf;
2587 
2588 	/*
2589 	 * The original target CPU might have gone down and we might
2590 	 * be on another CPU but it doesn't matter.
2591 	 */
2592 	local_irq_save(rf.flags);
2593 	/*
2594 	 * We need to explicitly wake pending tasks before running
2595 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2596 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2597 	 */
2598 	flush_smp_call_function_queue();
2599 
2600 	raw_spin_lock(&p->pi_lock);
2601 	rq_lock(rq, &rf);
2602 
2603 	/*
2604 	 * If we were passed a pending, then ->stop_pending was set, thus
2605 	 * p->migration_pending must have remained stable.
2606 	 */
2607 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2608 
2609 	/*
2610 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2611 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2612 	 * we're holding p->pi_lock.
2613 	 */
2614 	if (task_rq(p) == rq) {
2615 		if (is_migration_disabled(p))
2616 			goto out;
2617 
2618 		if (pending) {
2619 			p->migration_pending = NULL;
2620 			complete = true;
2621 
2622 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2623 				goto out;
2624 		}
2625 
2626 		if (task_on_rq_queued(p)) {
2627 			update_rq_clock(rq);
2628 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2629 		} else {
2630 			p->wake_cpu = arg->dest_cpu;
2631 		}
2632 
2633 		/*
2634 		 * XXX __migrate_task() can fail, at which point we might end
2635 		 * up running on a dodgy CPU, AFAICT this can only happen
2636 		 * during CPU hotplug, at which point we'll get pushed out
2637 		 * anyway, so it's probably not a big deal.
2638 		 */
2639 
2640 	} else if (pending) {
2641 		/*
2642 		 * This happens when we get migrated between migrate_enable()'s
2643 		 * preempt_enable() and scheduling the stopper task. At that
2644 		 * point we're a regular task again and not current anymore.
2645 		 *
2646 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2647 		 * more likely.
2648 		 */
2649 
2650 		/*
2651 		 * The task moved before the stopper got to run. We're holding
2652 		 * ->pi_lock, so the allowed mask is stable - if it got
2653 		 * somewhere allowed, we're done.
2654 		 */
2655 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2656 			p->migration_pending = NULL;
2657 			complete = true;
2658 			goto out;
2659 		}
2660 
2661 		/*
2662 		 * When migrate_enable() hits a rq mis-match we can't reliably
2663 		 * determine is_migration_disabled() and so have to chase after
2664 		 * it.
2665 		 */
2666 		WARN_ON_ONCE(!pending->stop_pending);
2667 		task_rq_unlock(rq, p, &rf);
2668 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2669 				    &pending->arg, &pending->stop_work);
2670 		return 0;
2671 	}
2672 out:
2673 	if (pending)
2674 		pending->stop_pending = false;
2675 	task_rq_unlock(rq, p, &rf);
2676 
2677 	if (complete)
2678 		complete_all(&pending->done);
2679 
2680 	return 0;
2681 }
2682 
2683 int push_cpu_stop(void *arg)
2684 {
2685 	struct rq *lowest_rq = NULL, *rq = this_rq();
2686 	struct task_struct *p = arg;
2687 
2688 	raw_spin_lock_irq(&p->pi_lock);
2689 	raw_spin_rq_lock(rq);
2690 
2691 	if (task_rq(p) != rq)
2692 		goto out_unlock;
2693 
2694 	if (is_migration_disabled(p)) {
2695 		p->migration_flags |= MDF_PUSH;
2696 		goto out_unlock;
2697 	}
2698 
2699 	p->migration_flags &= ~MDF_PUSH;
2700 
2701 	if (p->sched_class->find_lock_rq)
2702 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2703 
2704 	if (!lowest_rq)
2705 		goto out_unlock;
2706 
2707 	// XXX validate p is still the highest prio task
2708 	if (task_rq(p) == rq) {
2709 		deactivate_task(rq, p, 0);
2710 		set_task_cpu(p, lowest_rq->cpu);
2711 		activate_task(lowest_rq, p, 0);
2712 		resched_curr(lowest_rq);
2713 	}
2714 
2715 	double_unlock_balance(rq, lowest_rq);
2716 
2717 out_unlock:
2718 	rq->push_busy = false;
2719 	raw_spin_rq_unlock(rq);
2720 	raw_spin_unlock_irq(&p->pi_lock);
2721 
2722 	put_task_struct(p);
2723 	return 0;
2724 }
2725 
2726 /*
2727  * sched_class::set_cpus_allowed must do the below, but is not required to
2728  * actually call this function.
2729  */
2730 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2731 {
2732 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2733 		p->cpus_ptr = ctx->new_mask;
2734 		return;
2735 	}
2736 
2737 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2738 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2739 
2740 	/*
2741 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2742 	 */
2743 	if (ctx->flags & SCA_USER)
2744 		swap(p->user_cpus_ptr, ctx->user_mask);
2745 }
2746 
2747 static void
2748 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2749 {
2750 	struct rq *rq = task_rq(p);
2751 	bool queued, running;
2752 
2753 	/*
2754 	 * This here violates the locking rules for affinity, since we're only
2755 	 * supposed to change these variables while holding both rq->lock and
2756 	 * p->pi_lock.
2757 	 *
2758 	 * HOWEVER, it magically works, because ttwu() is the only code that
2759 	 * accesses these variables under p->pi_lock and only does so after
2760 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2761 	 * before finish_task().
2762 	 *
2763 	 * XXX do further audits, this smells like something putrid.
2764 	 */
2765 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2766 		SCHED_WARN_ON(!p->on_cpu);
2767 	else
2768 		lockdep_assert_held(&p->pi_lock);
2769 
2770 	queued = task_on_rq_queued(p);
2771 	running = task_current(rq, p);
2772 
2773 	if (queued) {
2774 		/*
2775 		 * Because __kthread_bind() calls this on blocked tasks without
2776 		 * holding rq->lock.
2777 		 */
2778 		lockdep_assert_rq_held(rq);
2779 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2780 	}
2781 	if (running)
2782 		put_prev_task(rq, p);
2783 
2784 	p->sched_class->set_cpus_allowed(p, ctx);
2785 
2786 	if (queued)
2787 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2788 	if (running)
2789 		set_next_task(rq, p);
2790 }
2791 
2792 /*
2793  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2794  * affinity (if any) should be destroyed too.
2795  */
2796 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2797 {
2798 	struct affinity_context ac = {
2799 		.new_mask  = new_mask,
2800 		.user_mask = NULL,
2801 		.flags     = SCA_USER,	/* clear the user requested mask */
2802 	};
2803 	union cpumask_rcuhead {
2804 		cpumask_t cpumask;
2805 		struct rcu_head rcu;
2806 	};
2807 
2808 	__do_set_cpus_allowed(p, &ac);
2809 
2810 	/*
2811 	 * Because this is called with p->pi_lock held, it is not possible
2812 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2813 	 * kfree_rcu().
2814 	 */
2815 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2816 }
2817 
2818 static cpumask_t *alloc_user_cpus_ptr(int node)
2819 {
2820 	/*
2821 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2822 	 */
2823 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2824 
2825 	return kmalloc_node(size, GFP_KERNEL, node);
2826 }
2827 
2828 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2829 		      int node)
2830 {
2831 	cpumask_t *user_mask;
2832 	unsigned long flags;
2833 
2834 	/*
2835 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2836 	 * may differ by now due to racing.
2837 	 */
2838 	dst->user_cpus_ptr = NULL;
2839 
2840 	/*
2841 	 * This check is racy and losing the race is a valid situation.
2842 	 * It is not worth the extra overhead of taking the pi_lock on
2843 	 * every fork/clone.
2844 	 */
2845 	if (data_race(!src->user_cpus_ptr))
2846 		return 0;
2847 
2848 	user_mask = alloc_user_cpus_ptr(node);
2849 	if (!user_mask)
2850 		return -ENOMEM;
2851 
2852 	/*
2853 	 * Use pi_lock to protect content of user_cpus_ptr
2854 	 *
2855 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2856 	 * do_set_cpus_allowed().
2857 	 */
2858 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2859 	if (src->user_cpus_ptr) {
2860 		swap(dst->user_cpus_ptr, user_mask);
2861 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2862 	}
2863 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2864 
2865 	if (unlikely(user_mask))
2866 		kfree(user_mask);
2867 
2868 	return 0;
2869 }
2870 
2871 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2872 {
2873 	struct cpumask *user_mask = NULL;
2874 
2875 	swap(p->user_cpus_ptr, user_mask);
2876 
2877 	return user_mask;
2878 }
2879 
2880 void release_user_cpus_ptr(struct task_struct *p)
2881 {
2882 	kfree(clear_user_cpus_ptr(p));
2883 }
2884 
2885 /*
2886  * This function is wildly self concurrent; here be dragons.
2887  *
2888  *
2889  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2890  * designated task is enqueued on an allowed CPU. If that task is currently
2891  * running, we have to kick it out using the CPU stopper.
2892  *
2893  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2894  * Consider:
2895  *
2896  *     Initial conditions: P0->cpus_mask = [0, 1]
2897  *
2898  *     P0@CPU0                  P1
2899  *
2900  *     migrate_disable();
2901  *     <preempted>
2902  *                              set_cpus_allowed_ptr(P0, [1]);
2903  *
2904  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2905  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2906  * This means we need the following scheme:
2907  *
2908  *     P0@CPU0                  P1
2909  *
2910  *     migrate_disable();
2911  *     <preempted>
2912  *                              set_cpus_allowed_ptr(P0, [1]);
2913  *                                <blocks>
2914  *     <resumes>
2915  *     migrate_enable();
2916  *       __set_cpus_allowed_ptr();
2917  *       <wakes local stopper>
2918  *                         `--> <woken on migration completion>
2919  *
2920  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2921  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2922  * task p are serialized by p->pi_lock, which we can leverage: the one that
2923  * should come into effect at the end of the Migrate-Disable region is the last
2924  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2925  * but we still need to properly signal those waiting tasks at the appropriate
2926  * moment.
2927  *
2928  * This is implemented using struct set_affinity_pending. The first
2929  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2930  * setup an instance of that struct and install it on the targeted task_struct.
2931  * Any and all further callers will reuse that instance. Those then wait for
2932  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2933  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2934  *
2935  *
2936  * (1) In the cases covered above. There is one more where the completion is
2937  * signaled within affine_move_task() itself: when a subsequent affinity request
2938  * occurs after the stopper bailed out due to the targeted task still being
2939  * Migrate-Disable. Consider:
2940  *
2941  *     Initial conditions: P0->cpus_mask = [0, 1]
2942  *
2943  *     CPU0		  P1				P2
2944  *     <P0>
2945  *       migrate_disable();
2946  *       <preempted>
2947  *                        set_cpus_allowed_ptr(P0, [1]);
2948  *                          <blocks>
2949  *     <migration/0>
2950  *       migration_cpu_stop()
2951  *         is_migration_disabled()
2952  *           <bails>
2953  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2954  *                                                         <signal completion>
2955  *                          <awakes>
2956  *
2957  * Note that the above is safe vs a concurrent migrate_enable(), as any
2958  * pending affinity completion is preceded by an uninstallation of
2959  * p->migration_pending done with p->pi_lock held.
2960  */
2961 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2962 			    int dest_cpu, unsigned int flags)
2963 	__releases(rq->lock)
2964 	__releases(p->pi_lock)
2965 {
2966 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2967 	bool stop_pending, complete = false;
2968 
2969 	/* Can the task run on the task's current CPU? If so, we're done */
2970 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2971 		struct task_struct *push_task = NULL;
2972 
2973 		if ((flags & SCA_MIGRATE_ENABLE) &&
2974 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2975 			rq->push_busy = true;
2976 			push_task = get_task_struct(p);
2977 		}
2978 
2979 		/*
2980 		 * If there are pending waiters, but no pending stop_work,
2981 		 * then complete now.
2982 		 */
2983 		pending = p->migration_pending;
2984 		if (pending && !pending->stop_pending) {
2985 			p->migration_pending = NULL;
2986 			complete = true;
2987 		}
2988 
2989 		task_rq_unlock(rq, p, rf);
2990 
2991 		if (push_task) {
2992 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2993 					    p, &rq->push_work);
2994 		}
2995 
2996 		if (complete)
2997 			complete_all(&pending->done);
2998 
2999 		return 0;
3000 	}
3001 
3002 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3003 		/* serialized by p->pi_lock */
3004 		if (!p->migration_pending) {
3005 			/* Install the request */
3006 			refcount_set(&my_pending.refs, 1);
3007 			init_completion(&my_pending.done);
3008 			my_pending.arg = (struct migration_arg) {
3009 				.task = p,
3010 				.dest_cpu = dest_cpu,
3011 				.pending = &my_pending,
3012 			};
3013 
3014 			p->migration_pending = &my_pending;
3015 		} else {
3016 			pending = p->migration_pending;
3017 			refcount_inc(&pending->refs);
3018 			/*
3019 			 * Affinity has changed, but we've already installed a
3020 			 * pending. migration_cpu_stop() *must* see this, else
3021 			 * we risk a completion of the pending despite having a
3022 			 * task on a disallowed CPU.
3023 			 *
3024 			 * Serialized by p->pi_lock, so this is safe.
3025 			 */
3026 			pending->arg.dest_cpu = dest_cpu;
3027 		}
3028 	}
3029 	pending = p->migration_pending;
3030 	/*
3031 	 * - !MIGRATE_ENABLE:
3032 	 *   we'll have installed a pending if there wasn't one already.
3033 	 *
3034 	 * - MIGRATE_ENABLE:
3035 	 *   we're here because the current CPU isn't matching anymore,
3036 	 *   the only way that can happen is because of a concurrent
3037 	 *   set_cpus_allowed_ptr() call, which should then still be
3038 	 *   pending completion.
3039 	 *
3040 	 * Either way, we really should have a @pending here.
3041 	 */
3042 	if (WARN_ON_ONCE(!pending)) {
3043 		task_rq_unlock(rq, p, rf);
3044 		return -EINVAL;
3045 	}
3046 
3047 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3048 		/*
3049 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3050 		 * anything else we cannot do is_migration_disabled(), punt
3051 		 * and have the stopper function handle it all race-free.
3052 		 */
3053 		stop_pending = pending->stop_pending;
3054 		if (!stop_pending)
3055 			pending->stop_pending = true;
3056 
3057 		if (flags & SCA_MIGRATE_ENABLE)
3058 			p->migration_flags &= ~MDF_PUSH;
3059 
3060 		task_rq_unlock(rq, p, rf);
3061 
3062 		if (!stop_pending) {
3063 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3064 					    &pending->arg, &pending->stop_work);
3065 		}
3066 
3067 		if (flags & SCA_MIGRATE_ENABLE)
3068 			return 0;
3069 	} else {
3070 
3071 		if (!is_migration_disabled(p)) {
3072 			if (task_on_rq_queued(p))
3073 				rq = move_queued_task(rq, rf, p, dest_cpu);
3074 
3075 			if (!pending->stop_pending) {
3076 				p->migration_pending = NULL;
3077 				complete = true;
3078 			}
3079 		}
3080 		task_rq_unlock(rq, p, rf);
3081 
3082 		if (complete)
3083 			complete_all(&pending->done);
3084 	}
3085 
3086 	wait_for_completion(&pending->done);
3087 
3088 	if (refcount_dec_and_test(&pending->refs))
3089 		wake_up_var(&pending->refs); /* No UaF, just an address */
3090 
3091 	/*
3092 	 * Block the original owner of &pending until all subsequent callers
3093 	 * have seen the completion and decremented the refcount
3094 	 */
3095 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3096 
3097 	/* ARGH */
3098 	WARN_ON_ONCE(my_pending.stop_pending);
3099 
3100 	return 0;
3101 }
3102 
3103 /*
3104  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3105  */
3106 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3107 					 struct affinity_context *ctx,
3108 					 struct rq *rq,
3109 					 struct rq_flags *rf)
3110 	__releases(rq->lock)
3111 	__releases(p->pi_lock)
3112 {
3113 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3114 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3115 	bool kthread = p->flags & PF_KTHREAD;
3116 	unsigned int dest_cpu;
3117 	int ret = 0;
3118 
3119 	update_rq_clock(rq);
3120 
3121 	if (kthread || is_migration_disabled(p)) {
3122 		/*
3123 		 * Kernel threads are allowed on online && !active CPUs,
3124 		 * however, during cpu-hot-unplug, even these might get pushed
3125 		 * away if not KTHREAD_IS_PER_CPU.
3126 		 *
3127 		 * Specifically, migration_disabled() tasks must not fail the
3128 		 * cpumask_any_and_distribute() pick below, esp. so on
3129 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3130 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3131 		 */
3132 		cpu_valid_mask = cpu_online_mask;
3133 	}
3134 
3135 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3136 		ret = -EINVAL;
3137 		goto out;
3138 	}
3139 
3140 	/*
3141 	 * Must re-check here, to close a race against __kthread_bind(),
3142 	 * sched_setaffinity() is not guaranteed to observe the flag.
3143 	 */
3144 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3145 		ret = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3150 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3151 			if (ctx->flags & SCA_USER)
3152 				swap(p->user_cpus_ptr, ctx->user_mask);
3153 			goto out;
3154 		}
3155 
3156 		if (WARN_ON_ONCE(p == current &&
3157 				 is_migration_disabled(p) &&
3158 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3159 			ret = -EBUSY;
3160 			goto out;
3161 		}
3162 	}
3163 
3164 	/*
3165 	 * Picking a ~random cpu helps in cases where we are changing affinity
3166 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3167 	 * immediately required to distribute the tasks within their new mask.
3168 	 */
3169 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3170 	if (dest_cpu >= nr_cpu_ids) {
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 
3175 	__do_set_cpus_allowed(p, ctx);
3176 
3177 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3178 
3179 out:
3180 	task_rq_unlock(rq, p, rf);
3181 
3182 	return ret;
3183 }
3184 
3185 /*
3186  * Change a given task's CPU affinity. Migrate the thread to a
3187  * proper CPU and schedule it away if the CPU it's executing on
3188  * is removed from the allowed bitmask.
3189  *
3190  * NOTE: the caller must have a valid reference to the task, the
3191  * task must not exit() & deallocate itself prematurely. The
3192  * call is not atomic; no spinlocks may be held.
3193  */
3194 static int __set_cpus_allowed_ptr(struct task_struct *p,
3195 				  struct affinity_context *ctx)
3196 {
3197 	struct rq_flags rf;
3198 	struct rq *rq;
3199 
3200 	rq = task_rq_lock(p, &rf);
3201 	/*
3202 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3203 	 * flags are set.
3204 	 */
3205 	if (p->user_cpus_ptr &&
3206 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3207 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3208 		ctx->new_mask = rq->scratch_mask;
3209 
3210 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3211 }
3212 
3213 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3214 {
3215 	struct affinity_context ac = {
3216 		.new_mask  = new_mask,
3217 		.flags     = 0,
3218 	};
3219 
3220 	return __set_cpus_allowed_ptr(p, &ac);
3221 }
3222 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3223 
3224 /*
3225  * Change a given task's CPU affinity to the intersection of its current
3226  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3227  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3228  * affinity or use cpu_online_mask instead.
3229  *
3230  * If the resulting mask is empty, leave the affinity unchanged and return
3231  * -EINVAL.
3232  */
3233 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3234 				     struct cpumask *new_mask,
3235 				     const struct cpumask *subset_mask)
3236 {
3237 	struct affinity_context ac = {
3238 		.new_mask  = new_mask,
3239 		.flags     = 0,
3240 	};
3241 	struct rq_flags rf;
3242 	struct rq *rq;
3243 	int err;
3244 
3245 	rq = task_rq_lock(p, &rf);
3246 
3247 	/*
3248 	 * Forcefully restricting the affinity of a deadline task is
3249 	 * likely to cause problems, so fail and noisily override the
3250 	 * mask entirely.
3251 	 */
3252 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3253 		err = -EPERM;
3254 		goto err_unlock;
3255 	}
3256 
3257 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3258 		err = -EINVAL;
3259 		goto err_unlock;
3260 	}
3261 
3262 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3263 
3264 err_unlock:
3265 	task_rq_unlock(rq, p, &rf);
3266 	return err;
3267 }
3268 
3269 /*
3270  * Restrict the CPU affinity of task @p so that it is a subset of
3271  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3272  * old affinity mask. If the resulting mask is empty, we warn and walk
3273  * up the cpuset hierarchy until we find a suitable mask.
3274  */
3275 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3276 {
3277 	cpumask_var_t new_mask;
3278 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3279 
3280 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3281 
3282 	/*
3283 	 * __migrate_task() can fail silently in the face of concurrent
3284 	 * offlining of the chosen destination CPU, so take the hotplug
3285 	 * lock to ensure that the migration succeeds.
3286 	 */
3287 	cpus_read_lock();
3288 	if (!cpumask_available(new_mask))
3289 		goto out_set_mask;
3290 
3291 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3292 		goto out_free_mask;
3293 
3294 	/*
3295 	 * We failed to find a valid subset of the affinity mask for the
3296 	 * task, so override it based on its cpuset hierarchy.
3297 	 */
3298 	cpuset_cpus_allowed(p, new_mask);
3299 	override_mask = new_mask;
3300 
3301 out_set_mask:
3302 	if (printk_ratelimit()) {
3303 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3304 				task_pid_nr(p), p->comm,
3305 				cpumask_pr_args(override_mask));
3306 	}
3307 
3308 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3309 out_free_mask:
3310 	cpus_read_unlock();
3311 	free_cpumask_var(new_mask);
3312 }
3313 
3314 static int
3315 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3316 
3317 /*
3318  * Restore the affinity of a task @p which was previously restricted by a
3319  * call to force_compatible_cpus_allowed_ptr().
3320  *
3321  * It is the caller's responsibility to serialise this with any calls to
3322  * force_compatible_cpus_allowed_ptr(@p).
3323  */
3324 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3325 {
3326 	struct affinity_context ac = {
3327 		.new_mask  = task_user_cpus(p),
3328 		.flags     = 0,
3329 	};
3330 	int ret;
3331 
3332 	/*
3333 	 * Try to restore the old affinity mask with __sched_setaffinity().
3334 	 * Cpuset masking will be done there too.
3335 	 */
3336 	ret = __sched_setaffinity(p, &ac);
3337 	WARN_ON_ONCE(ret);
3338 }
3339 
3340 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3341 {
3342 #ifdef CONFIG_SCHED_DEBUG
3343 	unsigned int state = READ_ONCE(p->__state);
3344 
3345 	/*
3346 	 * We should never call set_task_cpu() on a blocked task,
3347 	 * ttwu() will sort out the placement.
3348 	 */
3349 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3350 
3351 	/*
3352 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3353 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3354 	 * time relying on p->on_rq.
3355 	 */
3356 	WARN_ON_ONCE(state == TASK_RUNNING &&
3357 		     p->sched_class == &fair_sched_class &&
3358 		     (p->on_rq && !task_on_rq_migrating(p)));
3359 
3360 #ifdef CONFIG_LOCKDEP
3361 	/*
3362 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3363 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3364 	 *
3365 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3366 	 * see task_group().
3367 	 *
3368 	 * Furthermore, all task_rq users should acquire both locks, see
3369 	 * task_rq_lock().
3370 	 */
3371 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3372 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3373 #endif
3374 	/*
3375 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3376 	 */
3377 	WARN_ON_ONCE(!cpu_online(new_cpu));
3378 
3379 	WARN_ON_ONCE(is_migration_disabled(p));
3380 #endif
3381 
3382 	trace_sched_migrate_task(p, new_cpu);
3383 
3384 	if (task_cpu(p) != new_cpu) {
3385 		if (p->sched_class->migrate_task_rq)
3386 			p->sched_class->migrate_task_rq(p, new_cpu);
3387 		p->se.nr_migrations++;
3388 		rseq_migrate(p);
3389 		sched_mm_cid_migrate_from(p);
3390 		perf_event_task_migrate(p);
3391 	}
3392 
3393 	__set_task_cpu(p, new_cpu);
3394 }
3395 
3396 #ifdef CONFIG_NUMA_BALANCING
3397 static void __migrate_swap_task(struct task_struct *p, int cpu)
3398 {
3399 	if (task_on_rq_queued(p)) {
3400 		struct rq *src_rq, *dst_rq;
3401 		struct rq_flags srf, drf;
3402 
3403 		src_rq = task_rq(p);
3404 		dst_rq = cpu_rq(cpu);
3405 
3406 		rq_pin_lock(src_rq, &srf);
3407 		rq_pin_lock(dst_rq, &drf);
3408 
3409 		deactivate_task(src_rq, p, 0);
3410 		set_task_cpu(p, cpu);
3411 		activate_task(dst_rq, p, 0);
3412 		check_preempt_curr(dst_rq, p, 0);
3413 
3414 		rq_unpin_lock(dst_rq, &drf);
3415 		rq_unpin_lock(src_rq, &srf);
3416 
3417 	} else {
3418 		/*
3419 		 * Task isn't running anymore; make it appear like we migrated
3420 		 * it before it went to sleep. This means on wakeup we make the
3421 		 * previous CPU our target instead of where it really is.
3422 		 */
3423 		p->wake_cpu = cpu;
3424 	}
3425 }
3426 
3427 struct migration_swap_arg {
3428 	struct task_struct *src_task, *dst_task;
3429 	int src_cpu, dst_cpu;
3430 };
3431 
3432 static int migrate_swap_stop(void *data)
3433 {
3434 	struct migration_swap_arg *arg = data;
3435 	struct rq *src_rq, *dst_rq;
3436 
3437 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3438 		return -EAGAIN;
3439 
3440 	src_rq = cpu_rq(arg->src_cpu);
3441 	dst_rq = cpu_rq(arg->dst_cpu);
3442 
3443 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3444 	guard(double_rq_lock)(src_rq, dst_rq);
3445 
3446 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3447 		return -EAGAIN;
3448 
3449 	if (task_cpu(arg->src_task) != arg->src_cpu)
3450 		return -EAGAIN;
3451 
3452 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3453 		return -EAGAIN;
3454 
3455 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3456 		return -EAGAIN;
3457 
3458 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3459 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3460 
3461 	return 0;
3462 }
3463 
3464 /*
3465  * Cross migrate two tasks
3466  */
3467 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3468 		int target_cpu, int curr_cpu)
3469 {
3470 	struct migration_swap_arg arg;
3471 	int ret = -EINVAL;
3472 
3473 	arg = (struct migration_swap_arg){
3474 		.src_task = cur,
3475 		.src_cpu = curr_cpu,
3476 		.dst_task = p,
3477 		.dst_cpu = target_cpu,
3478 	};
3479 
3480 	if (arg.src_cpu == arg.dst_cpu)
3481 		goto out;
3482 
3483 	/*
3484 	 * These three tests are all lockless; this is OK since all of them
3485 	 * will be re-checked with proper locks held further down the line.
3486 	 */
3487 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3488 		goto out;
3489 
3490 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3491 		goto out;
3492 
3493 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3494 		goto out;
3495 
3496 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3497 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3498 
3499 out:
3500 	return ret;
3501 }
3502 #endif /* CONFIG_NUMA_BALANCING */
3503 
3504 /***
3505  * kick_process - kick a running thread to enter/exit the kernel
3506  * @p: the to-be-kicked thread
3507  *
3508  * Cause a process which is running on another CPU to enter
3509  * kernel-mode, without any delay. (to get signals handled.)
3510  *
3511  * NOTE: this function doesn't have to take the runqueue lock,
3512  * because all it wants to ensure is that the remote task enters
3513  * the kernel. If the IPI races and the task has been migrated
3514  * to another CPU then no harm is done and the purpose has been
3515  * achieved as well.
3516  */
3517 void kick_process(struct task_struct *p)
3518 {
3519 	int cpu;
3520 
3521 	preempt_disable();
3522 	cpu = task_cpu(p);
3523 	if ((cpu != smp_processor_id()) && task_curr(p))
3524 		smp_send_reschedule(cpu);
3525 	preempt_enable();
3526 }
3527 EXPORT_SYMBOL_GPL(kick_process);
3528 
3529 /*
3530  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3531  *
3532  * A few notes on cpu_active vs cpu_online:
3533  *
3534  *  - cpu_active must be a subset of cpu_online
3535  *
3536  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3537  *    see __set_cpus_allowed_ptr(). At this point the newly online
3538  *    CPU isn't yet part of the sched domains, and balancing will not
3539  *    see it.
3540  *
3541  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3542  *    avoid the load balancer to place new tasks on the to be removed
3543  *    CPU. Existing tasks will remain running there and will be taken
3544  *    off.
3545  *
3546  * This means that fallback selection must not select !active CPUs.
3547  * And can assume that any active CPU must be online. Conversely
3548  * select_task_rq() below may allow selection of !active CPUs in order
3549  * to satisfy the above rules.
3550  */
3551 static int select_fallback_rq(int cpu, struct task_struct *p)
3552 {
3553 	int nid = cpu_to_node(cpu);
3554 	const struct cpumask *nodemask = NULL;
3555 	enum { cpuset, possible, fail } state = cpuset;
3556 	int dest_cpu;
3557 
3558 	/*
3559 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3560 	 * will return -1. There is no CPU on the node, and we should
3561 	 * select the CPU on the other node.
3562 	 */
3563 	if (nid != -1) {
3564 		nodemask = cpumask_of_node(nid);
3565 
3566 		/* Look for allowed, online CPU in same node. */
3567 		for_each_cpu(dest_cpu, nodemask) {
3568 			if (is_cpu_allowed(p, dest_cpu))
3569 				return dest_cpu;
3570 		}
3571 	}
3572 
3573 	for (;;) {
3574 		/* Any allowed, online CPU? */
3575 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3576 			if (!is_cpu_allowed(p, dest_cpu))
3577 				continue;
3578 
3579 			goto out;
3580 		}
3581 
3582 		/* No more Mr. Nice Guy. */
3583 		switch (state) {
3584 		case cpuset:
3585 			if (cpuset_cpus_allowed_fallback(p)) {
3586 				state = possible;
3587 				break;
3588 			}
3589 			fallthrough;
3590 		case possible:
3591 			/*
3592 			 * XXX When called from select_task_rq() we only
3593 			 * hold p->pi_lock and again violate locking order.
3594 			 *
3595 			 * More yuck to audit.
3596 			 */
3597 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3598 			state = fail;
3599 			break;
3600 		case fail:
3601 			BUG();
3602 			break;
3603 		}
3604 	}
3605 
3606 out:
3607 	if (state != cpuset) {
3608 		/*
3609 		 * Don't tell them about moving exiting tasks or
3610 		 * kernel threads (both mm NULL), since they never
3611 		 * leave kernel.
3612 		 */
3613 		if (p->mm && printk_ratelimit()) {
3614 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3615 					task_pid_nr(p), p->comm, cpu);
3616 		}
3617 	}
3618 
3619 	return dest_cpu;
3620 }
3621 
3622 /*
3623  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3624  */
3625 static inline
3626 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3627 {
3628 	lockdep_assert_held(&p->pi_lock);
3629 
3630 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3631 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3632 	else
3633 		cpu = cpumask_any(p->cpus_ptr);
3634 
3635 	/*
3636 	 * In order not to call set_task_cpu() on a blocking task we need
3637 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3638 	 * CPU.
3639 	 *
3640 	 * Since this is common to all placement strategies, this lives here.
3641 	 *
3642 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3643 	 *   not worry about this generic constraint ]
3644 	 */
3645 	if (unlikely(!is_cpu_allowed(p, cpu)))
3646 		cpu = select_fallback_rq(task_cpu(p), p);
3647 
3648 	return cpu;
3649 }
3650 
3651 void sched_set_stop_task(int cpu, struct task_struct *stop)
3652 {
3653 	static struct lock_class_key stop_pi_lock;
3654 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3655 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3656 
3657 	if (stop) {
3658 		/*
3659 		 * Make it appear like a SCHED_FIFO task, its something
3660 		 * userspace knows about and won't get confused about.
3661 		 *
3662 		 * Also, it will make PI more or less work without too
3663 		 * much confusion -- but then, stop work should not
3664 		 * rely on PI working anyway.
3665 		 */
3666 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3667 
3668 		stop->sched_class = &stop_sched_class;
3669 
3670 		/*
3671 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3672 		 * adjust the effective priority of a task. As a result,
3673 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3674 		 * which can then trigger wakeups of the stop thread to push
3675 		 * around the current task.
3676 		 *
3677 		 * The stop task itself will never be part of the PI-chain, it
3678 		 * never blocks, therefore that ->pi_lock recursion is safe.
3679 		 * Tell lockdep about this by placing the stop->pi_lock in its
3680 		 * own class.
3681 		 */
3682 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3683 	}
3684 
3685 	cpu_rq(cpu)->stop = stop;
3686 
3687 	if (old_stop) {
3688 		/*
3689 		 * Reset it back to a normal scheduling class so that
3690 		 * it can die in pieces.
3691 		 */
3692 		old_stop->sched_class = &rt_sched_class;
3693 	}
3694 }
3695 
3696 #else /* CONFIG_SMP */
3697 
3698 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3699 					 struct affinity_context *ctx)
3700 {
3701 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3702 }
3703 
3704 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3705 
3706 static inline bool rq_has_pinned_tasks(struct rq *rq)
3707 {
3708 	return false;
3709 }
3710 
3711 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3712 {
3713 	return NULL;
3714 }
3715 
3716 #endif /* !CONFIG_SMP */
3717 
3718 static void
3719 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3720 {
3721 	struct rq *rq;
3722 
3723 	if (!schedstat_enabled())
3724 		return;
3725 
3726 	rq = this_rq();
3727 
3728 #ifdef CONFIG_SMP
3729 	if (cpu == rq->cpu) {
3730 		__schedstat_inc(rq->ttwu_local);
3731 		__schedstat_inc(p->stats.nr_wakeups_local);
3732 	} else {
3733 		struct sched_domain *sd;
3734 
3735 		__schedstat_inc(p->stats.nr_wakeups_remote);
3736 
3737 		guard(rcu)();
3738 		for_each_domain(rq->cpu, sd) {
3739 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3740 				__schedstat_inc(sd->ttwu_wake_remote);
3741 				break;
3742 			}
3743 		}
3744 	}
3745 
3746 	if (wake_flags & WF_MIGRATED)
3747 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3748 #endif /* CONFIG_SMP */
3749 
3750 	__schedstat_inc(rq->ttwu_count);
3751 	__schedstat_inc(p->stats.nr_wakeups);
3752 
3753 	if (wake_flags & WF_SYNC)
3754 		__schedstat_inc(p->stats.nr_wakeups_sync);
3755 }
3756 
3757 /*
3758  * Mark the task runnable.
3759  */
3760 static inline void ttwu_do_wakeup(struct task_struct *p)
3761 {
3762 	WRITE_ONCE(p->__state, TASK_RUNNING);
3763 	trace_sched_wakeup(p);
3764 }
3765 
3766 static void
3767 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3768 		 struct rq_flags *rf)
3769 {
3770 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3771 
3772 	lockdep_assert_rq_held(rq);
3773 
3774 	if (p->sched_contributes_to_load)
3775 		rq->nr_uninterruptible--;
3776 
3777 #ifdef CONFIG_SMP
3778 	if (wake_flags & WF_MIGRATED)
3779 		en_flags |= ENQUEUE_MIGRATED;
3780 	else
3781 #endif
3782 	if (p->in_iowait) {
3783 		delayacct_blkio_end(p);
3784 		atomic_dec(&task_rq(p)->nr_iowait);
3785 	}
3786 
3787 	activate_task(rq, p, en_flags);
3788 	check_preempt_curr(rq, p, wake_flags);
3789 
3790 	ttwu_do_wakeup(p);
3791 
3792 #ifdef CONFIG_SMP
3793 	if (p->sched_class->task_woken) {
3794 		/*
3795 		 * Our task @p is fully woken up and running; so it's safe to
3796 		 * drop the rq->lock, hereafter rq is only used for statistics.
3797 		 */
3798 		rq_unpin_lock(rq, rf);
3799 		p->sched_class->task_woken(rq, p);
3800 		rq_repin_lock(rq, rf);
3801 	}
3802 
3803 	if (rq->idle_stamp) {
3804 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3805 		u64 max = 2*rq->max_idle_balance_cost;
3806 
3807 		update_avg(&rq->avg_idle, delta);
3808 
3809 		if (rq->avg_idle > max)
3810 			rq->avg_idle = max;
3811 
3812 		rq->wake_stamp = jiffies;
3813 		rq->wake_avg_idle = rq->avg_idle / 2;
3814 
3815 		rq->idle_stamp = 0;
3816 	}
3817 #endif
3818 }
3819 
3820 /*
3821  * Consider @p being inside a wait loop:
3822  *
3823  *   for (;;) {
3824  *      set_current_state(TASK_UNINTERRUPTIBLE);
3825  *
3826  *      if (CONDITION)
3827  *         break;
3828  *
3829  *      schedule();
3830  *   }
3831  *   __set_current_state(TASK_RUNNING);
3832  *
3833  * between set_current_state() and schedule(). In this case @p is still
3834  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3835  * an atomic manner.
3836  *
3837  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3838  * then schedule() must still happen and p->state can be changed to
3839  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3840  * need to do a full wakeup with enqueue.
3841  *
3842  * Returns: %true when the wakeup is done,
3843  *          %false otherwise.
3844  */
3845 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3846 {
3847 	struct rq_flags rf;
3848 	struct rq *rq;
3849 	int ret = 0;
3850 
3851 	rq = __task_rq_lock(p, &rf);
3852 	if (task_on_rq_queued(p)) {
3853 		if (!task_on_cpu(rq, p)) {
3854 			/*
3855 			 * When on_rq && !on_cpu the task is preempted, see if
3856 			 * it should preempt the task that is current now.
3857 			 */
3858 			update_rq_clock(rq);
3859 			check_preempt_curr(rq, p, wake_flags);
3860 		}
3861 		ttwu_do_wakeup(p);
3862 		ret = 1;
3863 	}
3864 	__task_rq_unlock(rq, &rf);
3865 
3866 	return ret;
3867 }
3868 
3869 #ifdef CONFIG_SMP
3870 void sched_ttwu_pending(void *arg)
3871 {
3872 	struct llist_node *llist = arg;
3873 	struct rq *rq = this_rq();
3874 	struct task_struct *p, *t;
3875 	struct rq_flags rf;
3876 
3877 	if (!llist)
3878 		return;
3879 
3880 	rq_lock_irqsave(rq, &rf);
3881 	update_rq_clock(rq);
3882 
3883 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3884 		if (WARN_ON_ONCE(p->on_cpu))
3885 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3886 
3887 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3888 			set_task_cpu(p, cpu_of(rq));
3889 
3890 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3891 	}
3892 
3893 	/*
3894 	 * Must be after enqueueing at least once task such that
3895 	 * idle_cpu() does not observe a false-negative -- if it does,
3896 	 * it is possible for select_idle_siblings() to stack a number
3897 	 * of tasks on this CPU during that window.
3898 	 *
3899 	 * It is ok to clear ttwu_pending when another task pending.
3900 	 * We will receive IPI after local irq enabled and then enqueue it.
3901 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3902 	 */
3903 	WRITE_ONCE(rq->ttwu_pending, 0);
3904 	rq_unlock_irqrestore(rq, &rf);
3905 }
3906 
3907 /*
3908  * Prepare the scene for sending an IPI for a remote smp_call
3909  *
3910  * Returns true if the caller can proceed with sending the IPI.
3911  * Returns false otherwise.
3912  */
3913 bool call_function_single_prep_ipi(int cpu)
3914 {
3915 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3916 		trace_sched_wake_idle_without_ipi(cpu);
3917 		return false;
3918 	}
3919 
3920 	return true;
3921 }
3922 
3923 /*
3924  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3925  * necessary. The wakee CPU on receipt of the IPI will queue the task
3926  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3927  * of the wakeup instead of the waker.
3928  */
3929 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3930 {
3931 	struct rq *rq = cpu_rq(cpu);
3932 
3933 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3934 
3935 	WRITE_ONCE(rq->ttwu_pending, 1);
3936 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3937 }
3938 
3939 void wake_up_if_idle(int cpu)
3940 {
3941 	struct rq *rq = cpu_rq(cpu);
3942 
3943 	guard(rcu)();
3944 	if (is_idle_task(rcu_dereference(rq->curr))) {
3945 		guard(rq_lock_irqsave)(rq);
3946 		if (is_idle_task(rq->curr))
3947 			resched_curr(rq);
3948 	}
3949 }
3950 
3951 bool cpus_share_cache(int this_cpu, int that_cpu)
3952 {
3953 	if (this_cpu == that_cpu)
3954 		return true;
3955 
3956 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3957 }
3958 
3959 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3960 {
3961 	/*
3962 	 * Do not complicate things with the async wake_list while the CPU is
3963 	 * in hotplug state.
3964 	 */
3965 	if (!cpu_active(cpu))
3966 		return false;
3967 
3968 	/* Ensure the task will still be allowed to run on the CPU. */
3969 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3970 		return false;
3971 
3972 	/*
3973 	 * If the CPU does not share cache, then queue the task on the
3974 	 * remote rqs wakelist to avoid accessing remote data.
3975 	 */
3976 	if (!cpus_share_cache(smp_processor_id(), cpu))
3977 		return true;
3978 
3979 	if (cpu == smp_processor_id())
3980 		return false;
3981 
3982 	/*
3983 	 * If the wakee cpu is idle, or the task is descheduling and the
3984 	 * only running task on the CPU, then use the wakelist to offload
3985 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3986 	 * the current CPU is likely busy. nr_running is checked to
3987 	 * avoid unnecessary task stacking.
3988 	 *
3989 	 * Note that we can only get here with (wakee) p->on_rq=0,
3990 	 * p->on_cpu can be whatever, we've done the dequeue, so
3991 	 * the wakee has been accounted out of ->nr_running.
3992 	 */
3993 	if (!cpu_rq(cpu)->nr_running)
3994 		return true;
3995 
3996 	return false;
3997 }
3998 
3999 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4000 {
4001 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4002 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4003 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4004 		return true;
4005 	}
4006 
4007 	return false;
4008 }
4009 
4010 #else /* !CONFIG_SMP */
4011 
4012 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4013 {
4014 	return false;
4015 }
4016 
4017 #endif /* CONFIG_SMP */
4018 
4019 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4020 {
4021 	struct rq *rq = cpu_rq(cpu);
4022 	struct rq_flags rf;
4023 
4024 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4025 		return;
4026 
4027 	rq_lock(rq, &rf);
4028 	update_rq_clock(rq);
4029 	ttwu_do_activate(rq, p, wake_flags, &rf);
4030 	rq_unlock(rq, &rf);
4031 }
4032 
4033 /*
4034  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4035  *
4036  * The caller holds p::pi_lock if p != current or has preemption
4037  * disabled when p == current.
4038  *
4039  * The rules of PREEMPT_RT saved_state:
4040  *
4041  *   The related locking code always holds p::pi_lock when updating
4042  *   p::saved_state, which means the code is fully serialized in both cases.
4043  *
4044  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4045  *   bits set. This allows to distinguish all wakeup scenarios.
4046  */
4047 static __always_inline
4048 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4049 {
4050 	int match;
4051 
4052 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4053 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4054 			     state != TASK_RTLOCK_WAIT);
4055 	}
4056 
4057 	*success = !!(match = __task_state_match(p, state));
4058 
4059 #ifdef CONFIG_PREEMPT_RT
4060 	/*
4061 	 * Saved state preserves the task state across blocking on
4062 	 * an RT lock.  If the state matches, set p::saved_state to
4063 	 * TASK_RUNNING, but do not wake the task because it waits
4064 	 * for a lock wakeup. Also indicate success because from
4065 	 * the regular waker's point of view this has succeeded.
4066 	 *
4067 	 * After acquiring the lock the task will restore p::__state
4068 	 * from p::saved_state which ensures that the regular
4069 	 * wakeup is not lost. The restore will also set
4070 	 * p::saved_state to TASK_RUNNING so any further tests will
4071 	 * not result in false positives vs. @success
4072 	 */
4073 	if (match < 0)
4074 		p->saved_state = TASK_RUNNING;
4075 #endif
4076 	return match > 0;
4077 }
4078 
4079 /*
4080  * Notes on Program-Order guarantees on SMP systems.
4081  *
4082  *  MIGRATION
4083  *
4084  * The basic program-order guarantee on SMP systems is that when a task [t]
4085  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4086  * execution on its new CPU [c1].
4087  *
4088  * For migration (of runnable tasks) this is provided by the following means:
4089  *
4090  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4091  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4092  *     rq(c1)->lock (if not at the same time, then in that order).
4093  *  C) LOCK of the rq(c1)->lock scheduling in task
4094  *
4095  * Release/acquire chaining guarantees that B happens after A and C after B.
4096  * Note: the CPU doing B need not be c0 or c1
4097  *
4098  * Example:
4099  *
4100  *   CPU0            CPU1            CPU2
4101  *
4102  *   LOCK rq(0)->lock
4103  *   sched-out X
4104  *   sched-in Y
4105  *   UNLOCK rq(0)->lock
4106  *
4107  *                                   LOCK rq(0)->lock // orders against CPU0
4108  *                                   dequeue X
4109  *                                   UNLOCK rq(0)->lock
4110  *
4111  *                                   LOCK rq(1)->lock
4112  *                                   enqueue X
4113  *                                   UNLOCK rq(1)->lock
4114  *
4115  *                   LOCK rq(1)->lock // orders against CPU2
4116  *                   sched-out Z
4117  *                   sched-in X
4118  *                   UNLOCK rq(1)->lock
4119  *
4120  *
4121  *  BLOCKING -- aka. SLEEP + WAKEUP
4122  *
4123  * For blocking we (obviously) need to provide the same guarantee as for
4124  * migration. However the means are completely different as there is no lock
4125  * chain to provide order. Instead we do:
4126  *
4127  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4128  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4129  *
4130  * Example:
4131  *
4132  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4133  *
4134  *   LOCK rq(0)->lock LOCK X->pi_lock
4135  *   dequeue X
4136  *   sched-out X
4137  *   smp_store_release(X->on_cpu, 0);
4138  *
4139  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4140  *                    X->state = WAKING
4141  *                    set_task_cpu(X,2)
4142  *
4143  *                    LOCK rq(2)->lock
4144  *                    enqueue X
4145  *                    X->state = RUNNING
4146  *                    UNLOCK rq(2)->lock
4147  *
4148  *                                          LOCK rq(2)->lock // orders against CPU1
4149  *                                          sched-out Z
4150  *                                          sched-in X
4151  *                                          UNLOCK rq(2)->lock
4152  *
4153  *                    UNLOCK X->pi_lock
4154  *   UNLOCK rq(0)->lock
4155  *
4156  *
4157  * However, for wakeups there is a second guarantee we must provide, namely we
4158  * must ensure that CONDITION=1 done by the caller can not be reordered with
4159  * accesses to the task state; see try_to_wake_up() and set_current_state().
4160  */
4161 
4162 /**
4163  * try_to_wake_up - wake up a thread
4164  * @p: the thread to be awakened
4165  * @state: the mask of task states that can be woken
4166  * @wake_flags: wake modifier flags (WF_*)
4167  *
4168  * Conceptually does:
4169  *
4170  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4171  *
4172  * If the task was not queued/runnable, also place it back on a runqueue.
4173  *
4174  * This function is atomic against schedule() which would dequeue the task.
4175  *
4176  * It issues a full memory barrier before accessing @p->state, see the comment
4177  * with set_current_state().
4178  *
4179  * Uses p->pi_lock to serialize against concurrent wake-ups.
4180  *
4181  * Relies on p->pi_lock stabilizing:
4182  *  - p->sched_class
4183  *  - p->cpus_ptr
4184  *  - p->sched_task_group
4185  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4186  *
4187  * Tries really hard to only take one task_rq(p)->lock for performance.
4188  * Takes rq->lock in:
4189  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4190  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4191  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4192  *
4193  * As a consequence we race really badly with just about everything. See the
4194  * many memory barriers and their comments for details.
4195  *
4196  * Return: %true if @p->state changes (an actual wakeup was done),
4197  *	   %false otherwise.
4198  */
4199 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4200 {
4201 	guard(preempt)();
4202 	int cpu, success = 0;
4203 
4204 	if (p == current) {
4205 		/*
4206 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4207 		 * == smp_processor_id()'. Together this means we can special
4208 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4209 		 * without taking any locks.
4210 		 *
4211 		 * In particular:
4212 		 *  - we rely on Program-Order guarantees for all the ordering,
4213 		 *  - we're serialized against set_special_state() by virtue of
4214 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4215 		 */
4216 		if (!ttwu_state_match(p, state, &success))
4217 			goto out;
4218 
4219 		trace_sched_waking(p);
4220 		ttwu_do_wakeup(p);
4221 		goto out;
4222 	}
4223 
4224 	/*
4225 	 * If we are going to wake up a thread waiting for CONDITION we
4226 	 * need to ensure that CONDITION=1 done by the caller can not be
4227 	 * reordered with p->state check below. This pairs with smp_store_mb()
4228 	 * in set_current_state() that the waiting thread does.
4229 	 */
4230 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4231 		smp_mb__after_spinlock();
4232 		if (!ttwu_state_match(p, state, &success))
4233 			break;
4234 
4235 		trace_sched_waking(p);
4236 
4237 		/*
4238 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4239 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4240 		 * in smp_cond_load_acquire() below.
4241 		 *
4242 		 * sched_ttwu_pending()			try_to_wake_up()
4243 		 *   STORE p->on_rq = 1			  LOAD p->state
4244 		 *   UNLOCK rq->lock
4245 		 *
4246 		 * __schedule() (switch to task 'p')
4247 		 *   LOCK rq->lock			  smp_rmb();
4248 		 *   smp_mb__after_spinlock();
4249 		 *   UNLOCK rq->lock
4250 		 *
4251 		 * [task p]
4252 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4253 		 *
4254 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4255 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4256 		 *
4257 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4258 		 */
4259 		smp_rmb();
4260 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4261 			break;
4262 
4263 #ifdef CONFIG_SMP
4264 		/*
4265 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4266 		 * possible to, falsely, observe p->on_cpu == 0.
4267 		 *
4268 		 * One must be running (->on_cpu == 1) in order to remove oneself
4269 		 * from the runqueue.
4270 		 *
4271 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4272 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4273 		 *   UNLOCK rq->lock
4274 		 *
4275 		 * __schedule() (put 'p' to sleep)
4276 		 *   LOCK rq->lock			  smp_rmb();
4277 		 *   smp_mb__after_spinlock();
4278 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4279 		 *
4280 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4281 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4282 		 *
4283 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4284 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4285 		 * care about it's own p->state. See the comment in __schedule().
4286 		 */
4287 		smp_acquire__after_ctrl_dep();
4288 
4289 		/*
4290 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4291 		 * == 0), which means we need to do an enqueue, change p->state to
4292 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4293 		 * enqueue, such as ttwu_queue_wakelist().
4294 		 */
4295 		WRITE_ONCE(p->__state, TASK_WAKING);
4296 
4297 		/*
4298 		 * If the owning (remote) CPU is still in the middle of schedule() with
4299 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4300 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4301 		 * let the waker make forward progress. This is safe because IRQs are
4302 		 * disabled and the IPI will deliver after on_cpu is cleared.
4303 		 *
4304 		 * Ensure we load task_cpu(p) after p->on_cpu:
4305 		 *
4306 		 * set_task_cpu(p, cpu);
4307 		 *   STORE p->cpu = @cpu
4308 		 * __schedule() (switch to task 'p')
4309 		 *   LOCK rq->lock
4310 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4311 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4312 		 *
4313 		 * to ensure we observe the correct CPU on which the task is currently
4314 		 * scheduling.
4315 		 */
4316 		if (smp_load_acquire(&p->on_cpu) &&
4317 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4318 			break;
4319 
4320 		/*
4321 		 * If the owning (remote) CPU is still in the middle of schedule() with
4322 		 * this task as prev, wait until it's done referencing the task.
4323 		 *
4324 		 * Pairs with the smp_store_release() in finish_task().
4325 		 *
4326 		 * This ensures that tasks getting woken will be fully ordered against
4327 		 * their previous state and preserve Program Order.
4328 		 */
4329 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4330 
4331 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4332 		if (task_cpu(p) != cpu) {
4333 			if (p->in_iowait) {
4334 				delayacct_blkio_end(p);
4335 				atomic_dec(&task_rq(p)->nr_iowait);
4336 			}
4337 
4338 			wake_flags |= WF_MIGRATED;
4339 			psi_ttwu_dequeue(p);
4340 			set_task_cpu(p, cpu);
4341 		}
4342 #else
4343 		cpu = task_cpu(p);
4344 #endif /* CONFIG_SMP */
4345 
4346 		ttwu_queue(p, cpu, wake_flags);
4347 	}
4348 out:
4349 	if (success)
4350 		ttwu_stat(p, task_cpu(p), wake_flags);
4351 
4352 	return success;
4353 }
4354 
4355 static bool __task_needs_rq_lock(struct task_struct *p)
4356 {
4357 	unsigned int state = READ_ONCE(p->__state);
4358 
4359 	/*
4360 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4361 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4362 	 * locks at the end, see ttwu_queue_wakelist().
4363 	 */
4364 	if (state == TASK_RUNNING || state == TASK_WAKING)
4365 		return true;
4366 
4367 	/*
4368 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4369 	 * possible to, falsely, observe p->on_rq == 0.
4370 	 *
4371 	 * See try_to_wake_up() for a longer comment.
4372 	 */
4373 	smp_rmb();
4374 	if (p->on_rq)
4375 		return true;
4376 
4377 #ifdef CONFIG_SMP
4378 	/*
4379 	 * Ensure the task has finished __schedule() and will not be referenced
4380 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4381 	 */
4382 	smp_rmb();
4383 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4384 #endif
4385 
4386 	return false;
4387 }
4388 
4389 /**
4390  * task_call_func - Invoke a function on task in fixed state
4391  * @p: Process for which the function is to be invoked, can be @current.
4392  * @func: Function to invoke.
4393  * @arg: Argument to function.
4394  *
4395  * Fix the task in it's current state by avoiding wakeups and or rq operations
4396  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4397  * to work out what the state is, if required.  Given that @func can be invoked
4398  * with a runqueue lock held, it had better be quite lightweight.
4399  *
4400  * Returns:
4401  *   Whatever @func returns
4402  */
4403 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4404 {
4405 	struct rq *rq = NULL;
4406 	struct rq_flags rf;
4407 	int ret;
4408 
4409 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4410 
4411 	if (__task_needs_rq_lock(p))
4412 		rq = __task_rq_lock(p, &rf);
4413 
4414 	/*
4415 	 * At this point the task is pinned; either:
4416 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4417 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4418 	 *  - queued, and we're holding off schedule	 (rq->lock)
4419 	 *  - running, and we're holding off de-schedule (rq->lock)
4420 	 *
4421 	 * The called function (@func) can use: task_curr(), p->on_rq and
4422 	 * p->__state to differentiate between these states.
4423 	 */
4424 	ret = func(p, arg);
4425 
4426 	if (rq)
4427 		rq_unlock(rq, &rf);
4428 
4429 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4430 	return ret;
4431 }
4432 
4433 /**
4434  * cpu_curr_snapshot - Return a snapshot of the currently running task
4435  * @cpu: The CPU on which to snapshot the task.
4436  *
4437  * Returns the task_struct pointer of the task "currently" running on
4438  * the specified CPU.  If the same task is running on that CPU throughout,
4439  * the return value will be a pointer to that task's task_struct structure.
4440  * If the CPU did any context switches even vaguely concurrently with the
4441  * execution of this function, the return value will be a pointer to the
4442  * task_struct structure of a randomly chosen task that was running on
4443  * that CPU somewhere around the time that this function was executing.
4444  *
4445  * If the specified CPU was offline, the return value is whatever it
4446  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4447  * task, but there is no guarantee.  Callers wishing a useful return
4448  * value must take some action to ensure that the specified CPU remains
4449  * online throughout.
4450  *
4451  * This function executes full memory barriers before and after fetching
4452  * the pointer, which permits the caller to confine this function's fetch
4453  * with respect to the caller's accesses to other shared variables.
4454  */
4455 struct task_struct *cpu_curr_snapshot(int cpu)
4456 {
4457 	struct task_struct *t;
4458 
4459 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4460 	t = rcu_dereference(cpu_curr(cpu));
4461 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4462 	return t;
4463 }
4464 
4465 /**
4466  * wake_up_process - Wake up a specific process
4467  * @p: The process to be woken up.
4468  *
4469  * Attempt to wake up the nominated process and move it to the set of runnable
4470  * processes.
4471  *
4472  * Return: 1 if the process was woken up, 0 if it was already running.
4473  *
4474  * This function executes a full memory barrier before accessing the task state.
4475  */
4476 int wake_up_process(struct task_struct *p)
4477 {
4478 	return try_to_wake_up(p, TASK_NORMAL, 0);
4479 }
4480 EXPORT_SYMBOL(wake_up_process);
4481 
4482 int wake_up_state(struct task_struct *p, unsigned int state)
4483 {
4484 	return try_to_wake_up(p, state, 0);
4485 }
4486 
4487 /*
4488  * Perform scheduler related setup for a newly forked process p.
4489  * p is forked by current.
4490  *
4491  * __sched_fork() is basic setup used by init_idle() too:
4492  */
4493 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4494 {
4495 	p->on_rq			= 0;
4496 
4497 	p->se.on_rq			= 0;
4498 	p->se.exec_start		= 0;
4499 	p->se.sum_exec_runtime		= 0;
4500 	p->se.prev_sum_exec_runtime	= 0;
4501 	p->se.nr_migrations		= 0;
4502 	p->se.vruntime			= 0;
4503 	p->se.vlag			= 0;
4504 	p->se.slice			= sysctl_sched_base_slice;
4505 	INIT_LIST_HEAD(&p->se.group_node);
4506 
4507 #ifdef CONFIG_FAIR_GROUP_SCHED
4508 	p->se.cfs_rq			= NULL;
4509 #endif
4510 
4511 #ifdef CONFIG_SCHEDSTATS
4512 	/* Even if schedstat is disabled, there should not be garbage */
4513 	memset(&p->stats, 0, sizeof(p->stats));
4514 #endif
4515 
4516 	RB_CLEAR_NODE(&p->dl.rb_node);
4517 	init_dl_task_timer(&p->dl);
4518 	init_dl_inactive_task_timer(&p->dl);
4519 	__dl_clear_params(p);
4520 
4521 	INIT_LIST_HEAD(&p->rt.run_list);
4522 	p->rt.timeout		= 0;
4523 	p->rt.time_slice	= sched_rr_timeslice;
4524 	p->rt.on_rq		= 0;
4525 	p->rt.on_list		= 0;
4526 
4527 #ifdef CONFIG_PREEMPT_NOTIFIERS
4528 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4529 #endif
4530 
4531 #ifdef CONFIG_COMPACTION
4532 	p->capture_control = NULL;
4533 #endif
4534 	init_numa_balancing(clone_flags, p);
4535 #ifdef CONFIG_SMP
4536 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4537 	p->migration_pending = NULL;
4538 #endif
4539 	init_sched_mm_cid(p);
4540 }
4541 
4542 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4543 
4544 #ifdef CONFIG_NUMA_BALANCING
4545 
4546 int sysctl_numa_balancing_mode;
4547 
4548 static void __set_numabalancing_state(bool enabled)
4549 {
4550 	if (enabled)
4551 		static_branch_enable(&sched_numa_balancing);
4552 	else
4553 		static_branch_disable(&sched_numa_balancing);
4554 }
4555 
4556 void set_numabalancing_state(bool enabled)
4557 {
4558 	if (enabled)
4559 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4560 	else
4561 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4562 	__set_numabalancing_state(enabled);
4563 }
4564 
4565 #ifdef CONFIG_PROC_SYSCTL
4566 static void reset_memory_tiering(void)
4567 {
4568 	struct pglist_data *pgdat;
4569 
4570 	for_each_online_pgdat(pgdat) {
4571 		pgdat->nbp_threshold = 0;
4572 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4573 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4574 	}
4575 }
4576 
4577 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4578 			  void *buffer, size_t *lenp, loff_t *ppos)
4579 {
4580 	struct ctl_table t;
4581 	int err;
4582 	int state = sysctl_numa_balancing_mode;
4583 
4584 	if (write && !capable(CAP_SYS_ADMIN))
4585 		return -EPERM;
4586 
4587 	t = *table;
4588 	t.data = &state;
4589 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4590 	if (err < 0)
4591 		return err;
4592 	if (write) {
4593 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4594 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4595 			reset_memory_tiering();
4596 		sysctl_numa_balancing_mode = state;
4597 		__set_numabalancing_state(state);
4598 	}
4599 	return err;
4600 }
4601 #endif
4602 #endif
4603 
4604 #ifdef CONFIG_SCHEDSTATS
4605 
4606 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4607 
4608 static void set_schedstats(bool enabled)
4609 {
4610 	if (enabled)
4611 		static_branch_enable(&sched_schedstats);
4612 	else
4613 		static_branch_disable(&sched_schedstats);
4614 }
4615 
4616 void force_schedstat_enabled(void)
4617 {
4618 	if (!schedstat_enabled()) {
4619 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4620 		static_branch_enable(&sched_schedstats);
4621 	}
4622 }
4623 
4624 static int __init setup_schedstats(char *str)
4625 {
4626 	int ret = 0;
4627 	if (!str)
4628 		goto out;
4629 
4630 	if (!strcmp(str, "enable")) {
4631 		set_schedstats(true);
4632 		ret = 1;
4633 	} else if (!strcmp(str, "disable")) {
4634 		set_schedstats(false);
4635 		ret = 1;
4636 	}
4637 out:
4638 	if (!ret)
4639 		pr_warn("Unable to parse schedstats=\n");
4640 
4641 	return ret;
4642 }
4643 __setup("schedstats=", setup_schedstats);
4644 
4645 #ifdef CONFIG_PROC_SYSCTL
4646 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4647 		size_t *lenp, loff_t *ppos)
4648 {
4649 	struct ctl_table t;
4650 	int err;
4651 	int state = static_branch_likely(&sched_schedstats);
4652 
4653 	if (write && !capable(CAP_SYS_ADMIN))
4654 		return -EPERM;
4655 
4656 	t = *table;
4657 	t.data = &state;
4658 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4659 	if (err < 0)
4660 		return err;
4661 	if (write)
4662 		set_schedstats(state);
4663 	return err;
4664 }
4665 #endif /* CONFIG_PROC_SYSCTL */
4666 #endif /* CONFIG_SCHEDSTATS */
4667 
4668 #ifdef CONFIG_SYSCTL
4669 static struct ctl_table sched_core_sysctls[] = {
4670 #ifdef CONFIG_SCHEDSTATS
4671 	{
4672 		.procname       = "sched_schedstats",
4673 		.data           = NULL,
4674 		.maxlen         = sizeof(unsigned int),
4675 		.mode           = 0644,
4676 		.proc_handler   = sysctl_schedstats,
4677 		.extra1         = SYSCTL_ZERO,
4678 		.extra2         = SYSCTL_ONE,
4679 	},
4680 #endif /* CONFIG_SCHEDSTATS */
4681 #ifdef CONFIG_UCLAMP_TASK
4682 	{
4683 		.procname       = "sched_util_clamp_min",
4684 		.data           = &sysctl_sched_uclamp_util_min,
4685 		.maxlen         = sizeof(unsigned int),
4686 		.mode           = 0644,
4687 		.proc_handler   = sysctl_sched_uclamp_handler,
4688 	},
4689 	{
4690 		.procname       = "sched_util_clamp_max",
4691 		.data           = &sysctl_sched_uclamp_util_max,
4692 		.maxlen         = sizeof(unsigned int),
4693 		.mode           = 0644,
4694 		.proc_handler   = sysctl_sched_uclamp_handler,
4695 	},
4696 	{
4697 		.procname       = "sched_util_clamp_min_rt_default",
4698 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4699 		.maxlen         = sizeof(unsigned int),
4700 		.mode           = 0644,
4701 		.proc_handler   = sysctl_sched_uclamp_handler,
4702 	},
4703 #endif /* CONFIG_UCLAMP_TASK */
4704 #ifdef CONFIG_NUMA_BALANCING
4705 	{
4706 		.procname	= "numa_balancing",
4707 		.data		= NULL, /* filled in by handler */
4708 		.maxlen		= sizeof(unsigned int),
4709 		.mode		= 0644,
4710 		.proc_handler	= sysctl_numa_balancing,
4711 		.extra1		= SYSCTL_ZERO,
4712 		.extra2		= SYSCTL_FOUR,
4713 	},
4714 #endif /* CONFIG_NUMA_BALANCING */
4715 	{}
4716 };
4717 static int __init sched_core_sysctl_init(void)
4718 {
4719 	register_sysctl_init("kernel", sched_core_sysctls);
4720 	return 0;
4721 }
4722 late_initcall(sched_core_sysctl_init);
4723 #endif /* CONFIG_SYSCTL */
4724 
4725 /*
4726  * fork()/clone()-time setup:
4727  */
4728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4729 {
4730 	__sched_fork(clone_flags, p);
4731 	/*
4732 	 * We mark the process as NEW here. This guarantees that
4733 	 * nobody will actually run it, and a signal or other external
4734 	 * event cannot wake it up and insert it on the runqueue either.
4735 	 */
4736 	p->__state = TASK_NEW;
4737 
4738 	/*
4739 	 * Make sure we do not leak PI boosting priority to the child.
4740 	 */
4741 	p->prio = current->normal_prio;
4742 
4743 	uclamp_fork(p);
4744 
4745 	/*
4746 	 * Revert to default priority/policy on fork if requested.
4747 	 */
4748 	if (unlikely(p->sched_reset_on_fork)) {
4749 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4750 			p->policy = SCHED_NORMAL;
4751 			p->static_prio = NICE_TO_PRIO(0);
4752 			p->rt_priority = 0;
4753 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4754 			p->static_prio = NICE_TO_PRIO(0);
4755 
4756 		p->prio = p->normal_prio = p->static_prio;
4757 		set_load_weight(p, false);
4758 
4759 		/*
4760 		 * We don't need the reset flag anymore after the fork. It has
4761 		 * fulfilled its duty:
4762 		 */
4763 		p->sched_reset_on_fork = 0;
4764 	}
4765 
4766 	if (dl_prio(p->prio))
4767 		return -EAGAIN;
4768 	else if (rt_prio(p->prio))
4769 		p->sched_class = &rt_sched_class;
4770 	else
4771 		p->sched_class = &fair_sched_class;
4772 
4773 	init_entity_runnable_average(&p->se);
4774 
4775 
4776 #ifdef CONFIG_SCHED_INFO
4777 	if (likely(sched_info_on()))
4778 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4779 #endif
4780 #if defined(CONFIG_SMP)
4781 	p->on_cpu = 0;
4782 #endif
4783 	init_task_preempt_count(p);
4784 #ifdef CONFIG_SMP
4785 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4786 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4787 #endif
4788 	return 0;
4789 }
4790 
4791 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4792 {
4793 	unsigned long flags;
4794 
4795 	/*
4796 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4797 	 * required yet, but lockdep gets upset if rules are violated.
4798 	 */
4799 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4800 #ifdef CONFIG_CGROUP_SCHED
4801 	if (1) {
4802 		struct task_group *tg;
4803 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4804 				  struct task_group, css);
4805 		tg = autogroup_task_group(p, tg);
4806 		p->sched_task_group = tg;
4807 	}
4808 #endif
4809 	rseq_migrate(p);
4810 	/*
4811 	 * We're setting the CPU for the first time, we don't migrate,
4812 	 * so use __set_task_cpu().
4813 	 */
4814 	__set_task_cpu(p, smp_processor_id());
4815 	if (p->sched_class->task_fork)
4816 		p->sched_class->task_fork(p);
4817 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4818 }
4819 
4820 void sched_post_fork(struct task_struct *p)
4821 {
4822 	uclamp_post_fork(p);
4823 }
4824 
4825 unsigned long to_ratio(u64 period, u64 runtime)
4826 {
4827 	if (runtime == RUNTIME_INF)
4828 		return BW_UNIT;
4829 
4830 	/*
4831 	 * Doing this here saves a lot of checks in all
4832 	 * the calling paths, and returning zero seems
4833 	 * safe for them anyway.
4834 	 */
4835 	if (period == 0)
4836 		return 0;
4837 
4838 	return div64_u64(runtime << BW_SHIFT, period);
4839 }
4840 
4841 /*
4842  * wake_up_new_task - wake up a newly created task for the first time.
4843  *
4844  * This function will do some initial scheduler statistics housekeeping
4845  * that must be done for every newly created context, then puts the task
4846  * on the runqueue and wakes it.
4847  */
4848 void wake_up_new_task(struct task_struct *p)
4849 {
4850 	struct rq_flags rf;
4851 	struct rq *rq;
4852 
4853 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4854 	WRITE_ONCE(p->__state, TASK_RUNNING);
4855 #ifdef CONFIG_SMP
4856 	/*
4857 	 * Fork balancing, do it here and not earlier because:
4858 	 *  - cpus_ptr can change in the fork path
4859 	 *  - any previously selected CPU might disappear through hotplug
4860 	 *
4861 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4862 	 * as we're not fully set-up yet.
4863 	 */
4864 	p->recent_used_cpu = task_cpu(p);
4865 	rseq_migrate(p);
4866 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4867 #endif
4868 	rq = __task_rq_lock(p, &rf);
4869 	update_rq_clock(rq);
4870 	post_init_entity_util_avg(p);
4871 
4872 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4873 	trace_sched_wakeup_new(p);
4874 	check_preempt_curr(rq, p, WF_FORK);
4875 #ifdef CONFIG_SMP
4876 	if (p->sched_class->task_woken) {
4877 		/*
4878 		 * Nothing relies on rq->lock after this, so it's fine to
4879 		 * drop it.
4880 		 */
4881 		rq_unpin_lock(rq, &rf);
4882 		p->sched_class->task_woken(rq, p);
4883 		rq_repin_lock(rq, &rf);
4884 	}
4885 #endif
4886 	task_rq_unlock(rq, p, &rf);
4887 }
4888 
4889 #ifdef CONFIG_PREEMPT_NOTIFIERS
4890 
4891 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4892 
4893 void preempt_notifier_inc(void)
4894 {
4895 	static_branch_inc(&preempt_notifier_key);
4896 }
4897 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4898 
4899 void preempt_notifier_dec(void)
4900 {
4901 	static_branch_dec(&preempt_notifier_key);
4902 }
4903 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4904 
4905 /**
4906  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4907  * @notifier: notifier struct to register
4908  */
4909 void preempt_notifier_register(struct preempt_notifier *notifier)
4910 {
4911 	if (!static_branch_unlikely(&preempt_notifier_key))
4912 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4913 
4914 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4917 
4918 /**
4919  * preempt_notifier_unregister - no longer interested in preemption notifications
4920  * @notifier: notifier struct to unregister
4921  *
4922  * This is *not* safe to call from within a preemption notifier.
4923  */
4924 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4925 {
4926 	hlist_del(&notifier->link);
4927 }
4928 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4929 
4930 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4931 {
4932 	struct preempt_notifier *notifier;
4933 
4934 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4935 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4936 }
4937 
4938 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4939 {
4940 	if (static_branch_unlikely(&preempt_notifier_key))
4941 		__fire_sched_in_preempt_notifiers(curr);
4942 }
4943 
4944 static void
4945 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4946 				   struct task_struct *next)
4947 {
4948 	struct preempt_notifier *notifier;
4949 
4950 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4951 		notifier->ops->sched_out(notifier, next);
4952 }
4953 
4954 static __always_inline void
4955 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4956 				 struct task_struct *next)
4957 {
4958 	if (static_branch_unlikely(&preempt_notifier_key))
4959 		__fire_sched_out_preempt_notifiers(curr, next);
4960 }
4961 
4962 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4963 
4964 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965 {
4966 }
4967 
4968 static inline void
4969 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 				 struct task_struct *next)
4971 {
4972 }
4973 
4974 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4975 
4976 static inline void prepare_task(struct task_struct *next)
4977 {
4978 #ifdef CONFIG_SMP
4979 	/*
4980 	 * Claim the task as running, we do this before switching to it
4981 	 * such that any running task will have this set.
4982 	 *
4983 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4984 	 * its ordering comment.
4985 	 */
4986 	WRITE_ONCE(next->on_cpu, 1);
4987 #endif
4988 }
4989 
4990 static inline void finish_task(struct task_struct *prev)
4991 {
4992 #ifdef CONFIG_SMP
4993 	/*
4994 	 * This must be the very last reference to @prev from this CPU. After
4995 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4996 	 * must ensure this doesn't happen until the switch is completely
4997 	 * finished.
4998 	 *
4999 	 * In particular, the load of prev->state in finish_task_switch() must
5000 	 * happen before this.
5001 	 *
5002 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5003 	 */
5004 	smp_store_release(&prev->on_cpu, 0);
5005 #endif
5006 }
5007 
5008 #ifdef CONFIG_SMP
5009 
5010 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5011 {
5012 	void (*func)(struct rq *rq);
5013 	struct balance_callback *next;
5014 
5015 	lockdep_assert_rq_held(rq);
5016 
5017 	while (head) {
5018 		func = (void (*)(struct rq *))head->func;
5019 		next = head->next;
5020 		head->next = NULL;
5021 		head = next;
5022 
5023 		func(rq);
5024 	}
5025 }
5026 
5027 static void balance_push(struct rq *rq);
5028 
5029 /*
5030  * balance_push_callback is a right abuse of the callback interface and plays
5031  * by significantly different rules.
5032  *
5033  * Where the normal balance_callback's purpose is to be ran in the same context
5034  * that queued it (only later, when it's safe to drop rq->lock again),
5035  * balance_push_callback is specifically targeted at __schedule().
5036  *
5037  * This abuse is tolerated because it places all the unlikely/odd cases behind
5038  * a single test, namely: rq->balance_callback == NULL.
5039  */
5040 struct balance_callback balance_push_callback = {
5041 	.next = NULL,
5042 	.func = balance_push,
5043 };
5044 
5045 static inline struct balance_callback *
5046 __splice_balance_callbacks(struct rq *rq, bool split)
5047 {
5048 	struct balance_callback *head = rq->balance_callback;
5049 
5050 	if (likely(!head))
5051 		return NULL;
5052 
5053 	lockdep_assert_rq_held(rq);
5054 	/*
5055 	 * Must not take balance_push_callback off the list when
5056 	 * splice_balance_callbacks() and balance_callbacks() are not
5057 	 * in the same rq->lock section.
5058 	 *
5059 	 * In that case it would be possible for __schedule() to interleave
5060 	 * and observe the list empty.
5061 	 */
5062 	if (split && head == &balance_push_callback)
5063 		head = NULL;
5064 	else
5065 		rq->balance_callback = NULL;
5066 
5067 	return head;
5068 }
5069 
5070 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5071 {
5072 	return __splice_balance_callbacks(rq, true);
5073 }
5074 
5075 static void __balance_callbacks(struct rq *rq)
5076 {
5077 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5078 }
5079 
5080 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5081 {
5082 	unsigned long flags;
5083 
5084 	if (unlikely(head)) {
5085 		raw_spin_rq_lock_irqsave(rq, flags);
5086 		do_balance_callbacks(rq, head);
5087 		raw_spin_rq_unlock_irqrestore(rq, flags);
5088 	}
5089 }
5090 
5091 #else
5092 
5093 static inline void __balance_callbacks(struct rq *rq)
5094 {
5095 }
5096 
5097 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5098 {
5099 	return NULL;
5100 }
5101 
5102 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5103 {
5104 }
5105 
5106 #endif
5107 
5108 static inline void
5109 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5110 {
5111 	/*
5112 	 * Since the runqueue lock will be released by the next
5113 	 * task (which is an invalid locking op but in the case
5114 	 * of the scheduler it's an obvious special-case), so we
5115 	 * do an early lockdep release here:
5116 	 */
5117 	rq_unpin_lock(rq, rf);
5118 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5119 #ifdef CONFIG_DEBUG_SPINLOCK
5120 	/* this is a valid case when another task releases the spinlock */
5121 	rq_lockp(rq)->owner = next;
5122 #endif
5123 }
5124 
5125 static inline void finish_lock_switch(struct rq *rq)
5126 {
5127 	/*
5128 	 * If we are tracking spinlock dependencies then we have to
5129 	 * fix up the runqueue lock - which gets 'carried over' from
5130 	 * prev into current:
5131 	 */
5132 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5133 	__balance_callbacks(rq);
5134 	raw_spin_rq_unlock_irq(rq);
5135 }
5136 
5137 /*
5138  * NOP if the arch has not defined these:
5139  */
5140 
5141 #ifndef prepare_arch_switch
5142 # define prepare_arch_switch(next)	do { } while (0)
5143 #endif
5144 
5145 #ifndef finish_arch_post_lock_switch
5146 # define finish_arch_post_lock_switch()	do { } while (0)
5147 #endif
5148 
5149 static inline void kmap_local_sched_out(void)
5150 {
5151 #ifdef CONFIG_KMAP_LOCAL
5152 	if (unlikely(current->kmap_ctrl.idx))
5153 		__kmap_local_sched_out();
5154 #endif
5155 }
5156 
5157 static inline void kmap_local_sched_in(void)
5158 {
5159 #ifdef CONFIG_KMAP_LOCAL
5160 	if (unlikely(current->kmap_ctrl.idx))
5161 		__kmap_local_sched_in();
5162 #endif
5163 }
5164 
5165 /**
5166  * prepare_task_switch - prepare to switch tasks
5167  * @rq: the runqueue preparing to switch
5168  * @prev: the current task that is being switched out
5169  * @next: the task we are going to switch to.
5170  *
5171  * This is called with the rq lock held and interrupts off. It must
5172  * be paired with a subsequent finish_task_switch after the context
5173  * switch.
5174  *
5175  * prepare_task_switch sets up locking and calls architecture specific
5176  * hooks.
5177  */
5178 static inline void
5179 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5180 		    struct task_struct *next)
5181 {
5182 	kcov_prepare_switch(prev);
5183 	sched_info_switch(rq, prev, next);
5184 	perf_event_task_sched_out(prev, next);
5185 	rseq_preempt(prev);
5186 	fire_sched_out_preempt_notifiers(prev, next);
5187 	kmap_local_sched_out();
5188 	prepare_task(next);
5189 	prepare_arch_switch(next);
5190 }
5191 
5192 /**
5193  * finish_task_switch - clean up after a task-switch
5194  * @prev: the thread we just switched away from.
5195  *
5196  * finish_task_switch must be called after the context switch, paired
5197  * with a prepare_task_switch call before the context switch.
5198  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5199  * and do any other architecture-specific cleanup actions.
5200  *
5201  * Note that we may have delayed dropping an mm in context_switch(). If
5202  * so, we finish that here outside of the runqueue lock. (Doing it
5203  * with the lock held can cause deadlocks; see schedule() for
5204  * details.)
5205  *
5206  * The context switch have flipped the stack from under us and restored the
5207  * local variables which were saved when this task called schedule() in the
5208  * past. prev == current is still correct but we need to recalculate this_rq
5209  * because prev may have moved to another CPU.
5210  */
5211 static struct rq *finish_task_switch(struct task_struct *prev)
5212 	__releases(rq->lock)
5213 {
5214 	struct rq *rq = this_rq();
5215 	struct mm_struct *mm = rq->prev_mm;
5216 	unsigned int prev_state;
5217 
5218 	/*
5219 	 * The previous task will have left us with a preempt_count of 2
5220 	 * because it left us after:
5221 	 *
5222 	 *	schedule()
5223 	 *	  preempt_disable();			// 1
5224 	 *	  __schedule()
5225 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5226 	 *
5227 	 * Also, see FORK_PREEMPT_COUNT.
5228 	 */
5229 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5230 		      "corrupted preempt_count: %s/%d/0x%x\n",
5231 		      current->comm, current->pid, preempt_count()))
5232 		preempt_count_set(FORK_PREEMPT_COUNT);
5233 
5234 	rq->prev_mm = NULL;
5235 
5236 	/*
5237 	 * A task struct has one reference for the use as "current".
5238 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5239 	 * schedule one last time. The schedule call will never return, and
5240 	 * the scheduled task must drop that reference.
5241 	 *
5242 	 * We must observe prev->state before clearing prev->on_cpu (in
5243 	 * finish_task), otherwise a concurrent wakeup can get prev
5244 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5245 	 * transition, resulting in a double drop.
5246 	 */
5247 	prev_state = READ_ONCE(prev->__state);
5248 	vtime_task_switch(prev);
5249 	perf_event_task_sched_in(prev, current);
5250 	finish_task(prev);
5251 	tick_nohz_task_switch();
5252 	finish_lock_switch(rq);
5253 	finish_arch_post_lock_switch();
5254 	kcov_finish_switch(current);
5255 	/*
5256 	 * kmap_local_sched_out() is invoked with rq::lock held and
5257 	 * interrupts disabled. There is no requirement for that, but the
5258 	 * sched out code does not have an interrupt enabled section.
5259 	 * Restoring the maps on sched in does not require interrupts being
5260 	 * disabled either.
5261 	 */
5262 	kmap_local_sched_in();
5263 
5264 	fire_sched_in_preempt_notifiers(current);
5265 	/*
5266 	 * When switching through a kernel thread, the loop in
5267 	 * membarrier_{private,global}_expedited() may have observed that
5268 	 * kernel thread and not issued an IPI. It is therefore possible to
5269 	 * schedule between user->kernel->user threads without passing though
5270 	 * switch_mm(). Membarrier requires a barrier after storing to
5271 	 * rq->curr, before returning to userspace, so provide them here:
5272 	 *
5273 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5274 	 *   provided by mmdrop_lazy_tlb(),
5275 	 * - a sync_core for SYNC_CORE.
5276 	 */
5277 	if (mm) {
5278 		membarrier_mm_sync_core_before_usermode(mm);
5279 		mmdrop_lazy_tlb_sched(mm);
5280 	}
5281 
5282 	if (unlikely(prev_state == TASK_DEAD)) {
5283 		if (prev->sched_class->task_dead)
5284 			prev->sched_class->task_dead(prev);
5285 
5286 		/* Task is done with its stack. */
5287 		put_task_stack(prev);
5288 
5289 		put_task_struct_rcu_user(prev);
5290 	}
5291 
5292 	return rq;
5293 }
5294 
5295 /**
5296  * schedule_tail - first thing a freshly forked thread must call.
5297  * @prev: the thread we just switched away from.
5298  */
5299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5300 	__releases(rq->lock)
5301 {
5302 	/*
5303 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5304 	 * finish_task_switch() for details.
5305 	 *
5306 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5307 	 * and the preempt_enable() will end up enabling preemption (on
5308 	 * PREEMPT_COUNT kernels).
5309 	 */
5310 
5311 	finish_task_switch(prev);
5312 	preempt_enable();
5313 
5314 	if (current->set_child_tid)
5315 		put_user(task_pid_vnr(current), current->set_child_tid);
5316 
5317 	calculate_sigpending();
5318 }
5319 
5320 /*
5321  * context_switch - switch to the new MM and the new thread's register state.
5322  */
5323 static __always_inline struct rq *
5324 context_switch(struct rq *rq, struct task_struct *prev,
5325 	       struct task_struct *next, struct rq_flags *rf)
5326 {
5327 	prepare_task_switch(rq, prev, next);
5328 
5329 	/*
5330 	 * For paravirt, this is coupled with an exit in switch_to to
5331 	 * combine the page table reload and the switch backend into
5332 	 * one hypercall.
5333 	 */
5334 	arch_start_context_switch(prev);
5335 
5336 	/*
5337 	 * kernel -> kernel   lazy + transfer active
5338 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5339 	 *
5340 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5341 	 *   user ->   user   switch
5342 	 *
5343 	 * switch_mm_cid() needs to be updated if the barriers provided
5344 	 * by context_switch() are modified.
5345 	 */
5346 	if (!next->mm) {                                // to kernel
5347 		enter_lazy_tlb(prev->active_mm, next);
5348 
5349 		next->active_mm = prev->active_mm;
5350 		if (prev->mm)                           // from user
5351 			mmgrab_lazy_tlb(prev->active_mm);
5352 		else
5353 			prev->active_mm = NULL;
5354 	} else {                                        // to user
5355 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5356 		/*
5357 		 * sys_membarrier() requires an smp_mb() between setting
5358 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5359 		 *
5360 		 * The below provides this either through switch_mm(), or in
5361 		 * case 'prev->active_mm == next->mm' through
5362 		 * finish_task_switch()'s mmdrop().
5363 		 */
5364 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5365 		lru_gen_use_mm(next->mm);
5366 
5367 		if (!prev->mm) {                        // from kernel
5368 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5369 			rq->prev_mm = prev->active_mm;
5370 			prev->active_mm = NULL;
5371 		}
5372 	}
5373 
5374 	/* switch_mm_cid() requires the memory barriers above. */
5375 	switch_mm_cid(rq, prev, next);
5376 
5377 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5378 
5379 	prepare_lock_switch(rq, next, rf);
5380 
5381 	/* Here we just switch the register state and the stack. */
5382 	switch_to(prev, next, prev);
5383 	barrier();
5384 
5385 	return finish_task_switch(prev);
5386 }
5387 
5388 /*
5389  * nr_running and nr_context_switches:
5390  *
5391  * externally visible scheduler statistics: current number of runnable
5392  * threads, total number of context switches performed since bootup.
5393  */
5394 unsigned int nr_running(void)
5395 {
5396 	unsigned int i, sum = 0;
5397 
5398 	for_each_online_cpu(i)
5399 		sum += cpu_rq(i)->nr_running;
5400 
5401 	return sum;
5402 }
5403 
5404 /*
5405  * Check if only the current task is running on the CPU.
5406  *
5407  * Caution: this function does not check that the caller has disabled
5408  * preemption, thus the result might have a time-of-check-to-time-of-use
5409  * race.  The caller is responsible to use it correctly, for example:
5410  *
5411  * - from a non-preemptible section (of course)
5412  *
5413  * - from a thread that is bound to a single CPU
5414  *
5415  * - in a loop with very short iterations (e.g. a polling loop)
5416  */
5417 bool single_task_running(void)
5418 {
5419 	return raw_rq()->nr_running == 1;
5420 }
5421 EXPORT_SYMBOL(single_task_running);
5422 
5423 unsigned long long nr_context_switches_cpu(int cpu)
5424 {
5425 	return cpu_rq(cpu)->nr_switches;
5426 }
5427 
5428 unsigned long long nr_context_switches(void)
5429 {
5430 	int i;
5431 	unsigned long long sum = 0;
5432 
5433 	for_each_possible_cpu(i)
5434 		sum += cpu_rq(i)->nr_switches;
5435 
5436 	return sum;
5437 }
5438 
5439 /*
5440  * Consumers of these two interfaces, like for example the cpuidle menu
5441  * governor, are using nonsensical data. Preferring shallow idle state selection
5442  * for a CPU that has IO-wait which might not even end up running the task when
5443  * it does become runnable.
5444  */
5445 
5446 unsigned int nr_iowait_cpu(int cpu)
5447 {
5448 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5449 }
5450 
5451 /*
5452  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5453  *
5454  * The idea behind IO-wait account is to account the idle time that we could
5455  * have spend running if it were not for IO. That is, if we were to improve the
5456  * storage performance, we'd have a proportional reduction in IO-wait time.
5457  *
5458  * This all works nicely on UP, where, when a task blocks on IO, we account
5459  * idle time as IO-wait, because if the storage were faster, it could've been
5460  * running and we'd not be idle.
5461  *
5462  * This has been extended to SMP, by doing the same for each CPU. This however
5463  * is broken.
5464  *
5465  * Imagine for instance the case where two tasks block on one CPU, only the one
5466  * CPU will have IO-wait accounted, while the other has regular idle. Even
5467  * though, if the storage were faster, both could've ran at the same time,
5468  * utilising both CPUs.
5469  *
5470  * This means, that when looking globally, the current IO-wait accounting on
5471  * SMP is a lower bound, by reason of under accounting.
5472  *
5473  * Worse, since the numbers are provided per CPU, they are sometimes
5474  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5475  * associated with any one particular CPU, it can wake to another CPU than it
5476  * blocked on. This means the per CPU IO-wait number is meaningless.
5477  *
5478  * Task CPU affinities can make all that even more 'interesting'.
5479  */
5480 
5481 unsigned int nr_iowait(void)
5482 {
5483 	unsigned int i, sum = 0;
5484 
5485 	for_each_possible_cpu(i)
5486 		sum += nr_iowait_cpu(i);
5487 
5488 	return sum;
5489 }
5490 
5491 #ifdef CONFIG_SMP
5492 
5493 /*
5494  * sched_exec - execve() is a valuable balancing opportunity, because at
5495  * this point the task has the smallest effective memory and cache footprint.
5496  */
5497 void sched_exec(void)
5498 {
5499 	struct task_struct *p = current;
5500 	struct migration_arg arg;
5501 	int dest_cpu;
5502 
5503 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5504 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5505 		if (dest_cpu == smp_processor_id())
5506 			return;
5507 
5508 		if (unlikely(!cpu_active(dest_cpu)))
5509 			return;
5510 
5511 		arg = (struct migration_arg){ p, dest_cpu };
5512 	}
5513 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5514 }
5515 
5516 #endif
5517 
5518 DEFINE_PER_CPU(struct kernel_stat, kstat);
5519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5520 
5521 EXPORT_PER_CPU_SYMBOL(kstat);
5522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5523 
5524 /*
5525  * The function fair_sched_class.update_curr accesses the struct curr
5526  * and its field curr->exec_start; when called from task_sched_runtime(),
5527  * we observe a high rate of cache misses in practice.
5528  * Prefetching this data results in improved performance.
5529  */
5530 static inline void prefetch_curr_exec_start(struct task_struct *p)
5531 {
5532 #ifdef CONFIG_FAIR_GROUP_SCHED
5533 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5534 #else
5535 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5536 #endif
5537 	prefetch(curr);
5538 	prefetch(&curr->exec_start);
5539 }
5540 
5541 /*
5542  * Return accounted runtime for the task.
5543  * In case the task is currently running, return the runtime plus current's
5544  * pending runtime that have not been accounted yet.
5545  */
5546 unsigned long long task_sched_runtime(struct task_struct *p)
5547 {
5548 	struct rq_flags rf;
5549 	struct rq *rq;
5550 	u64 ns;
5551 
5552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5553 	/*
5554 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5555 	 * So we have a optimization chance when the task's delta_exec is 0.
5556 	 * Reading ->on_cpu is racy, but this is ok.
5557 	 *
5558 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5559 	 * If we race with it entering CPU, unaccounted time is 0. This is
5560 	 * indistinguishable from the read occurring a few cycles earlier.
5561 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5562 	 * been accounted, so we're correct here as well.
5563 	 */
5564 	if (!p->on_cpu || !task_on_rq_queued(p))
5565 		return p->se.sum_exec_runtime;
5566 #endif
5567 
5568 	rq = task_rq_lock(p, &rf);
5569 	/*
5570 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5571 	 * project cycles that may never be accounted to this
5572 	 * thread, breaking clock_gettime().
5573 	 */
5574 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5575 		prefetch_curr_exec_start(p);
5576 		update_rq_clock(rq);
5577 		p->sched_class->update_curr(rq);
5578 	}
5579 	ns = p->se.sum_exec_runtime;
5580 	task_rq_unlock(rq, p, &rf);
5581 
5582 	return ns;
5583 }
5584 
5585 #ifdef CONFIG_SCHED_DEBUG
5586 static u64 cpu_resched_latency(struct rq *rq)
5587 {
5588 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5589 	u64 resched_latency, now = rq_clock(rq);
5590 	static bool warned_once;
5591 
5592 	if (sysctl_resched_latency_warn_once && warned_once)
5593 		return 0;
5594 
5595 	if (!need_resched() || !latency_warn_ms)
5596 		return 0;
5597 
5598 	if (system_state == SYSTEM_BOOTING)
5599 		return 0;
5600 
5601 	if (!rq->last_seen_need_resched_ns) {
5602 		rq->last_seen_need_resched_ns = now;
5603 		rq->ticks_without_resched = 0;
5604 		return 0;
5605 	}
5606 
5607 	rq->ticks_without_resched++;
5608 	resched_latency = now - rq->last_seen_need_resched_ns;
5609 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5610 		return 0;
5611 
5612 	warned_once = true;
5613 
5614 	return resched_latency;
5615 }
5616 
5617 static int __init setup_resched_latency_warn_ms(char *str)
5618 {
5619 	long val;
5620 
5621 	if ((kstrtol(str, 0, &val))) {
5622 		pr_warn("Unable to set resched_latency_warn_ms\n");
5623 		return 1;
5624 	}
5625 
5626 	sysctl_resched_latency_warn_ms = val;
5627 	return 1;
5628 }
5629 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5630 #else
5631 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5632 #endif /* CONFIG_SCHED_DEBUG */
5633 
5634 /*
5635  * This function gets called by the timer code, with HZ frequency.
5636  * We call it with interrupts disabled.
5637  */
5638 void scheduler_tick(void)
5639 {
5640 	int cpu = smp_processor_id();
5641 	struct rq *rq = cpu_rq(cpu);
5642 	struct task_struct *curr = rq->curr;
5643 	struct rq_flags rf;
5644 	unsigned long thermal_pressure;
5645 	u64 resched_latency;
5646 
5647 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5648 		arch_scale_freq_tick();
5649 
5650 	sched_clock_tick();
5651 
5652 	rq_lock(rq, &rf);
5653 
5654 	update_rq_clock(rq);
5655 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5656 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5657 	curr->sched_class->task_tick(rq, curr, 0);
5658 	if (sched_feat(LATENCY_WARN))
5659 		resched_latency = cpu_resched_latency(rq);
5660 	calc_global_load_tick(rq);
5661 	sched_core_tick(rq);
5662 	task_tick_mm_cid(rq, curr);
5663 
5664 	rq_unlock(rq, &rf);
5665 
5666 	if (sched_feat(LATENCY_WARN) && resched_latency)
5667 		resched_latency_warn(cpu, resched_latency);
5668 
5669 	perf_event_task_tick();
5670 
5671 	if (curr->flags & PF_WQ_WORKER)
5672 		wq_worker_tick(curr);
5673 
5674 #ifdef CONFIG_SMP
5675 	rq->idle_balance = idle_cpu(cpu);
5676 	trigger_load_balance(rq);
5677 #endif
5678 }
5679 
5680 #ifdef CONFIG_NO_HZ_FULL
5681 
5682 struct tick_work {
5683 	int			cpu;
5684 	atomic_t		state;
5685 	struct delayed_work	work;
5686 };
5687 /* Values for ->state, see diagram below. */
5688 #define TICK_SCHED_REMOTE_OFFLINE	0
5689 #define TICK_SCHED_REMOTE_OFFLINING	1
5690 #define TICK_SCHED_REMOTE_RUNNING	2
5691 
5692 /*
5693  * State diagram for ->state:
5694  *
5695  *
5696  *          TICK_SCHED_REMOTE_OFFLINE
5697  *                    |   ^
5698  *                    |   |
5699  *                    |   | sched_tick_remote()
5700  *                    |   |
5701  *                    |   |
5702  *                    +--TICK_SCHED_REMOTE_OFFLINING
5703  *                    |   ^
5704  *                    |   |
5705  * sched_tick_start() |   | sched_tick_stop()
5706  *                    |   |
5707  *                    V   |
5708  *          TICK_SCHED_REMOTE_RUNNING
5709  *
5710  *
5711  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5712  * and sched_tick_start() are happy to leave the state in RUNNING.
5713  */
5714 
5715 static struct tick_work __percpu *tick_work_cpu;
5716 
5717 static void sched_tick_remote(struct work_struct *work)
5718 {
5719 	struct delayed_work *dwork = to_delayed_work(work);
5720 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5721 	int cpu = twork->cpu;
5722 	struct rq *rq = cpu_rq(cpu);
5723 	int os;
5724 
5725 	/*
5726 	 * Handle the tick only if it appears the remote CPU is running in full
5727 	 * dynticks mode. The check is racy by nature, but missing a tick or
5728 	 * having one too much is no big deal because the scheduler tick updates
5729 	 * statistics and checks timeslices in a time-independent way, regardless
5730 	 * of when exactly it is running.
5731 	 */
5732 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5733 		guard(rq_lock_irq)(rq);
5734 		struct task_struct *curr = rq->curr;
5735 
5736 		if (cpu_online(cpu)) {
5737 			update_rq_clock(rq);
5738 
5739 			if (!is_idle_task(curr)) {
5740 				/*
5741 				 * Make sure the next tick runs within a
5742 				 * reasonable amount of time.
5743 				 */
5744 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5745 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5746 			}
5747 			curr->sched_class->task_tick(rq, curr, 0);
5748 
5749 			calc_load_nohz_remote(rq);
5750 		}
5751 	}
5752 
5753 	/*
5754 	 * Run the remote tick once per second (1Hz). This arbitrary
5755 	 * frequency is large enough to avoid overload but short enough
5756 	 * to keep scheduler internal stats reasonably up to date.  But
5757 	 * first update state to reflect hotplug activity if required.
5758 	 */
5759 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5760 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5761 	if (os == TICK_SCHED_REMOTE_RUNNING)
5762 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5763 }
5764 
5765 static void sched_tick_start(int cpu)
5766 {
5767 	int os;
5768 	struct tick_work *twork;
5769 
5770 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5771 		return;
5772 
5773 	WARN_ON_ONCE(!tick_work_cpu);
5774 
5775 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5776 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5777 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5778 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5779 		twork->cpu = cpu;
5780 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5781 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5782 	}
5783 }
5784 
5785 #ifdef CONFIG_HOTPLUG_CPU
5786 static void sched_tick_stop(int cpu)
5787 {
5788 	struct tick_work *twork;
5789 	int os;
5790 
5791 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5792 		return;
5793 
5794 	WARN_ON_ONCE(!tick_work_cpu);
5795 
5796 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5797 	/* There cannot be competing actions, but don't rely on stop-machine. */
5798 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5799 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5800 	/* Don't cancel, as this would mess up the state machine. */
5801 }
5802 #endif /* CONFIG_HOTPLUG_CPU */
5803 
5804 int __init sched_tick_offload_init(void)
5805 {
5806 	tick_work_cpu = alloc_percpu(struct tick_work);
5807 	BUG_ON(!tick_work_cpu);
5808 	return 0;
5809 }
5810 
5811 #else /* !CONFIG_NO_HZ_FULL */
5812 static inline void sched_tick_start(int cpu) { }
5813 static inline void sched_tick_stop(int cpu) { }
5814 #endif
5815 
5816 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5817 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5818 /*
5819  * If the value passed in is equal to the current preempt count
5820  * then we just disabled preemption. Start timing the latency.
5821  */
5822 static inline void preempt_latency_start(int val)
5823 {
5824 	if (preempt_count() == val) {
5825 		unsigned long ip = get_lock_parent_ip();
5826 #ifdef CONFIG_DEBUG_PREEMPT
5827 		current->preempt_disable_ip = ip;
5828 #endif
5829 		trace_preempt_off(CALLER_ADDR0, ip);
5830 	}
5831 }
5832 
5833 void preempt_count_add(int val)
5834 {
5835 #ifdef CONFIG_DEBUG_PREEMPT
5836 	/*
5837 	 * Underflow?
5838 	 */
5839 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5840 		return;
5841 #endif
5842 	__preempt_count_add(val);
5843 #ifdef CONFIG_DEBUG_PREEMPT
5844 	/*
5845 	 * Spinlock count overflowing soon?
5846 	 */
5847 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5848 				PREEMPT_MASK - 10);
5849 #endif
5850 	preempt_latency_start(val);
5851 }
5852 EXPORT_SYMBOL(preempt_count_add);
5853 NOKPROBE_SYMBOL(preempt_count_add);
5854 
5855 /*
5856  * If the value passed in equals to the current preempt count
5857  * then we just enabled preemption. Stop timing the latency.
5858  */
5859 static inline void preempt_latency_stop(int val)
5860 {
5861 	if (preempt_count() == val)
5862 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5863 }
5864 
5865 void preempt_count_sub(int val)
5866 {
5867 #ifdef CONFIG_DEBUG_PREEMPT
5868 	/*
5869 	 * Underflow?
5870 	 */
5871 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5872 		return;
5873 	/*
5874 	 * Is the spinlock portion underflowing?
5875 	 */
5876 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5877 			!(preempt_count() & PREEMPT_MASK)))
5878 		return;
5879 #endif
5880 
5881 	preempt_latency_stop(val);
5882 	__preempt_count_sub(val);
5883 }
5884 EXPORT_SYMBOL(preempt_count_sub);
5885 NOKPROBE_SYMBOL(preempt_count_sub);
5886 
5887 #else
5888 static inline void preempt_latency_start(int val) { }
5889 static inline void preempt_latency_stop(int val) { }
5890 #endif
5891 
5892 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5893 {
5894 #ifdef CONFIG_DEBUG_PREEMPT
5895 	return p->preempt_disable_ip;
5896 #else
5897 	return 0;
5898 #endif
5899 }
5900 
5901 /*
5902  * Print scheduling while atomic bug:
5903  */
5904 static noinline void __schedule_bug(struct task_struct *prev)
5905 {
5906 	/* Save this before calling printk(), since that will clobber it */
5907 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5908 
5909 	if (oops_in_progress)
5910 		return;
5911 
5912 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5913 		prev->comm, prev->pid, preempt_count());
5914 
5915 	debug_show_held_locks(prev);
5916 	print_modules();
5917 	if (irqs_disabled())
5918 		print_irqtrace_events(prev);
5919 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5920 	    && in_atomic_preempt_off()) {
5921 		pr_err("Preemption disabled at:");
5922 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5923 	}
5924 	check_panic_on_warn("scheduling while atomic");
5925 
5926 	dump_stack();
5927 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5928 }
5929 
5930 /*
5931  * Various schedule()-time debugging checks and statistics:
5932  */
5933 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5934 {
5935 #ifdef CONFIG_SCHED_STACK_END_CHECK
5936 	if (task_stack_end_corrupted(prev))
5937 		panic("corrupted stack end detected inside scheduler\n");
5938 
5939 	if (task_scs_end_corrupted(prev))
5940 		panic("corrupted shadow stack detected inside scheduler\n");
5941 #endif
5942 
5943 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5944 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5945 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5946 			prev->comm, prev->pid, prev->non_block_count);
5947 		dump_stack();
5948 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5949 	}
5950 #endif
5951 
5952 	if (unlikely(in_atomic_preempt_off())) {
5953 		__schedule_bug(prev);
5954 		preempt_count_set(PREEMPT_DISABLED);
5955 	}
5956 	rcu_sleep_check();
5957 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5958 
5959 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5960 
5961 	schedstat_inc(this_rq()->sched_count);
5962 }
5963 
5964 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5965 				  struct rq_flags *rf)
5966 {
5967 #ifdef CONFIG_SMP
5968 	const struct sched_class *class;
5969 	/*
5970 	 * We must do the balancing pass before put_prev_task(), such
5971 	 * that when we release the rq->lock the task is in the same
5972 	 * state as before we took rq->lock.
5973 	 *
5974 	 * We can terminate the balance pass as soon as we know there is
5975 	 * a runnable task of @class priority or higher.
5976 	 */
5977 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5978 		if (class->balance(rq, prev, rf))
5979 			break;
5980 	}
5981 #endif
5982 
5983 	put_prev_task(rq, prev);
5984 }
5985 
5986 /*
5987  * Pick up the highest-prio task:
5988  */
5989 static inline struct task_struct *
5990 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5991 {
5992 	const struct sched_class *class;
5993 	struct task_struct *p;
5994 
5995 	/*
5996 	 * Optimization: we know that if all tasks are in the fair class we can
5997 	 * call that function directly, but only if the @prev task wasn't of a
5998 	 * higher scheduling class, because otherwise those lose the
5999 	 * opportunity to pull in more work from other CPUs.
6000 	 */
6001 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6002 		   rq->nr_running == rq->cfs.h_nr_running)) {
6003 
6004 		p = pick_next_task_fair(rq, prev, rf);
6005 		if (unlikely(p == RETRY_TASK))
6006 			goto restart;
6007 
6008 		/* Assume the next prioritized class is idle_sched_class */
6009 		if (!p) {
6010 			put_prev_task(rq, prev);
6011 			p = pick_next_task_idle(rq);
6012 		}
6013 
6014 		return p;
6015 	}
6016 
6017 restart:
6018 	put_prev_task_balance(rq, prev, rf);
6019 
6020 	for_each_class(class) {
6021 		p = class->pick_next_task(rq);
6022 		if (p)
6023 			return p;
6024 	}
6025 
6026 	BUG(); /* The idle class should always have a runnable task. */
6027 }
6028 
6029 #ifdef CONFIG_SCHED_CORE
6030 static inline bool is_task_rq_idle(struct task_struct *t)
6031 {
6032 	return (task_rq(t)->idle == t);
6033 }
6034 
6035 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6036 {
6037 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6038 }
6039 
6040 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6041 {
6042 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6043 		return true;
6044 
6045 	return a->core_cookie == b->core_cookie;
6046 }
6047 
6048 static inline struct task_struct *pick_task(struct rq *rq)
6049 {
6050 	const struct sched_class *class;
6051 	struct task_struct *p;
6052 
6053 	for_each_class(class) {
6054 		p = class->pick_task(rq);
6055 		if (p)
6056 			return p;
6057 	}
6058 
6059 	BUG(); /* The idle class should always have a runnable task. */
6060 }
6061 
6062 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6063 
6064 static void queue_core_balance(struct rq *rq);
6065 
6066 static struct task_struct *
6067 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6068 {
6069 	struct task_struct *next, *p, *max = NULL;
6070 	const struct cpumask *smt_mask;
6071 	bool fi_before = false;
6072 	bool core_clock_updated = (rq == rq->core);
6073 	unsigned long cookie;
6074 	int i, cpu, occ = 0;
6075 	struct rq *rq_i;
6076 	bool need_sync;
6077 
6078 	if (!sched_core_enabled(rq))
6079 		return __pick_next_task(rq, prev, rf);
6080 
6081 	cpu = cpu_of(rq);
6082 
6083 	/* Stopper task is switching into idle, no need core-wide selection. */
6084 	if (cpu_is_offline(cpu)) {
6085 		/*
6086 		 * Reset core_pick so that we don't enter the fastpath when
6087 		 * coming online. core_pick would already be migrated to
6088 		 * another cpu during offline.
6089 		 */
6090 		rq->core_pick = NULL;
6091 		return __pick_next_task(rq, prev, rf);
6092 	}
6093 
6094 	/*
6095 	 * If there were no {en,de}queues since we picked (IOW, the task
6096 	 * pointers are all still valid), and we haven't scheduled the last
6097 	 * pick yet, do so now.
6098 	 *
6099 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6100 	 * it was either offline or went offline during a sibling's core-wide
6101 	 * selection. In this case, do a core-wide selection.
6102 	 */
6103 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6104 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6105 	    rq->core_pick) {
6106 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6107 
6108 		next = rq->core_pick;
6109 		if (next != prev) {
6110 			put_prev_task(rq, prev);
6111 			set_next_task(rq, next);
6112 		}
6113 
6114 		rq->core_pick = NULL;
6115 		goto out;
6116 	}
6117 
6118 	put_prev_task_balance(rq, prev, rf);
6119 
6120 	smt_mask = cpu_smt_mask(cpu);
6121 	need_sync = !!rq->core->core_cookie;
6122 
6123 	/* reset state */
6124 	rq->core->core_cookie = 0UL;
6125 	if (rq->core->core_forceidle_count) {
6126 		if (!core_clock_updated) {
6127 			update_rq_clock(rq->core);
6128 			core_clock_updated = true;
6129 		}
6130 		sched_core_account_forceidle(rq);
6131 		/* reset after accounting force idle */
6132 		rq->core->core_forceidle_start = 0;
6133 		rq->core->core_forceidle_count = 0;
6134 		rq->core->core_forceidle_occupation = 0;
6135 		need_sync = true;
6136 		fi_before = true;
6137 	}
6138 
6139 	/*
6140 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6141 	 *
6142 	 * @task_seq guards the task state ({en,de}queues)
6143 	 * @pick_seq is the @task_seq we did a selection on
6144 	 * @sched_seq is the @pick_seq we scheduled
6145 	 *
6146 	 * However, preemptions can cause multiple picks on the same task set.
6147 	 * 'Fix' this by also increasing @task_seq for every pick.
6148 	 */
6149 	rq->core->core_task_seq++;
6150 
6151 	/*
6152 	 * Optimize for common case where this CPU has no cookies
6153 	 * and there are no cookied tasks running on siblings.
6154 	 */
6155 	if (!need_sync) {
6156 		next = pick_task(rq);
6157 		if (!next->core_cookie) {
6158 			rq->core_pick = NULL;
6159 			/*
6160 			 * For robustness, update the min_vruntime_fi for
6161 			 * unconstrained picks as well.
6162 			 */
6163 			WARN_ON_ONCE(fi_before);
6164 			task_vruntime_update(rq, next, false);
6165 			goto out_set_next;
6166 		}
6167 	}
6168 
6169 	/*
6170 	 * For each thread: do the regular task pick and find the max prio task
6171 	 * amongst them.
6172 	 *
6173 	 * Tie-break prio towards the current CPU
6174 	 */
6175 	for_each_cpu_wrap(i, smt_mask, cpu) {
6176 		rq_i = cpu_rq(i);
6177 
6178 		/*
6179 		 * Current cpu always has its clock updated on entrance to
6180 		 * pick_next_task(). If the current cpu is not the core,
6181 		 * the core may also have been updated above.
6182 		 */
6183 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6184 			update_rq_clock(rq_i);
6185 
6186 		p = rq_i->core_pick = pick_task(rq_i);
6187 		if (!max || prio_less(max, p, fi_before))
6188 			max = p;
6189 	}
6190 
6191 	cookie = rq->core->core_cookie = max->core_cookie;
6192 
6193 	/*
6194 	 * For each thread: try and find a runnable task that matches @max or
6195 	 * force idle.
6196 	 */
6197 	for_each_cpu(i, smt_mask) {
6198 		rq_i = cpu_rq(i);
6199 		p = rq_i->core_pick;
6200 
6201 		if (!cookie_equals(p, cookie)) {
6202 			p = NULL;
6203 			if (cookie)
6204 				p = sched_core_find(rq_i, cookie);
6205 			if (!p)
6206 				p = idle_sched_class.pick_task(rq_i);
6207 		}
6208 
6209 		rq_i->core_pick = p;
6210 
6211 		if (p == rq_i->idle) {
6212 			if (rq_i->nr_running) {
6213 				rq->core->core_forceidle_count++;
6214 				if (!fi_before)
6215 					rq->core->core_forceidle_seq++;
6216 			}
6217 		} else {
6218 			occ++;
6219 		}
6220 	}
6221 
6222 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6223 		rq->core->core_forceidle_start = rq_clock(rq->core);
6224 		rq->core->core_forceidle_occupation = occ;
6225 	}
6226 
6227 	rq->core->core_pick_seq = rq->core->core_task_seq;
6228 	next = rq->core_pick;
6229 	rq->core_sched_seq = rq->core->core_pick_seq;
6230 
6231 	/* Something should have been selected for current CPU */
6232 	WARN_ON_ONCE(!next);
6233 
6234 	/*
6235 	 * Reschedule siblings
6236 	 *
6237 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6238 	 * sending an IPI (below) ensures the sibling will no longer be running
6239 	 * their task. This ensures there is no inter-sibling overlap between
6240 	 * non-matching user state.
6241 	 */
6242 	for_each_cpu(i, smt_mask) {
6243 		rq_i = cpu_rq(i);
6244 
6245 		/*
6246 		 * An online sibling might have gone offline before a task
6247 		 * could be picked for it, or it might be offline but later
6248 		 * happen to come online, but its too late and nothing was
6249 		 * picked for it.  That's Ok - it will pick tasks for itself,
6250 		 * so ignore it.
6251 		 */
6252 		if (!rq_i->core_pick)
6253 			continue;
6254 
6255 		/*
6256 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6257 		 * fi_before     fi      update?
6258 		 *  0            0       1
6259 		 *  0            1       1
6260 		 *  1            0       1
6261 		 *  1            1       0
6262 		 */
6263 		if (!(fi_before && rq->core->core_forceidle_count))
6264 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6265 
6266 		rq_i->core_pick->core_occupation = occ;
6267 
6268 		if (i == cpu) {
6269 			rq_i->core_pick = NULL;
6270 			continue;
6271 		}
6272 
6273 		/* Did we break L1TF mitigation requirements? */
6274 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6275 
6276 		if (rq_i->curr == rq_i->core_pick) {
6277 			rq_i->core_pick = NULL;
6278 			continue;
6279 		}
6280 
6281 		resched_curr(rq_i);
6282 	}
6283 
6284 out_set_next:
6285 	set_next_task(rq, next);
6286 out:
6287 	if (rq->core->core_forceidle_count && next == rq->idle)
6288 		queue_core_balance(rq);
6289 
6290 	return next;
6291 }
6292 
6293 static bool try_steal_cookie(int this, int that)
6294 {
6295 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6296 	struct task_struct *p;
6297 	unsigned long cookie;
6298 	bool success = false;
6299 
6300 	guard(irq)();
6301 	guard(double_rq_lock)(dst, src);
6302 
6303 	cookie = dst->core->core_cookie;
6304 	if (!cookie)
6305 		return false;
6306 
6307 	if (dst->curr != dst->idle)
6308 		return false;
6309 
6310 	p = sched_core_find(src, cookie);
6311 	if (!p)
6312 		return false;
6313 
6314 	do {
6315 		if (p == src->core_pick || p == src->curr)
6316 			goto next;
6317 
6318 		if (!is_cpu_allowed(p, this))
6319 			goto next;
6320 
6321 		if (p->core_occupation > dst->idle->core_occupation)
6322 			goto next;
6323 		/*
6324 		 * sched_core_find() and sched_core_next() will ensure
6325 		 * that task @p is not throttled now, we also need to
6326 		 * check whether the runqueue of the destination CPU is
6327 		 * being throttled.
6328 		 */
6329 		if (sched_task_is_throttled(p, this))
6330 			goto next;
6331 
6332 		deactivate_task(src, p, 0);
6333 		set_task_cpu(p, this);
6334 		activate_task(dst, p, 0);
6335 
6336 		resched_curr(dst);
6337 
6338 		success = true;
6339 		break;
6340 
6341 next:
6342 		p = sched_core_next(p, cookie);
6343 	} while (p);
6344 
6345 	return success;
6346 }
6347 
6348 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6349 {
6350 	int i;
6351 
6352 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6353 		if (i == cpu)
6354 			continue;
6355 
6356 		if (need_resched())
6357 			break;
6358 
6359 		if (try_steal_cookie(cpu, i))
6360 			return true;
6361 	}
6362 
6363 	return false;
6364 }
6365 
6366 static void sched_core_balance(struct rq *rq)
6367 {
6368 	struct sched_domain *sd;
6369 	int cpu = cpu_of(rq);
6370 
6371 	preempt_disable();
6372 	rcu_read_lock();
6373 	raw_spin_rq_unlock_irq(rq);
6374 	for_each_domain(cpu, sd) {
6375 		if (need_resched())
6376 			break;
6377 
6378 		if (steal_cookie_task(cpu, sd))
6379 			break;
6380 	}
6381 	raw_spin_rq_lock_irq(rq);
6382 	rcu_read_unlock();
6383 	preempt_enable();
6384 }
6385 
6386 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6387 
6388 static void queue_core_balance(struct rq *rq)
6389 {
6390 	if (!sched_core_enabled(rq))
6391 		return;
6392 
6393 	if (!rq->core->core_cookie)
6394 		return;
6395 
6396 	if (!rq->nr_running) /* not forced idle */
6397 		return;
6398 
6399 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6400 }
6401 
6402 DEFINE_LOCK_GUARD_1(core_lock, int,
6403 		    sched_core_lock(*_T->lock, &_T->flags),
6404 		    sched_core_unlock(*_T->lock, &_T->flags),
6405 		    unsigned long flags)
6406 
6407 static void sched_core_cpu_starting(unsigned int cpu)
6408 {
6409 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6410 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6411 	int t;
6412 
6413 	guard(core_lock)(&cpu);
6414 
6415 	WARN_ON_ONCE(rq->core != rq);
6416 
6417 	/* if we're the first, we'll be our own leader */
6418 	if (cpumask_weight(smt_mask) == 1)
6419 		return;
6420 
6421 	/* find the leader */
6422 	for_each_cpu(t, smt_mask) {
6423 		if (t == cpu)
6424 			continue;
6425 		rq = cpu_rq(t);
6426 		if (rq->core == rq) {
6427 			core_rq = rq;
6428 			break;
6429 		}
6430 	}
6431 
6432 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6433 		return;
6434 
6435 	/* install and validate core_rq */
6436 	for_each_cpu(t, smt_mask) {
6437 		rq = cpu_rq(t);
6438 
6439 		if (t == cpu)
6440 			rq->core = core_rq;
6441 
6442 		WARN_ON_ONCE(rq->core != core_rq);
6443 	}
6444 }
6445 
6446 static void sched_core_cpu_deactivate(unsigned int cpu)
6447 {
6448 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6449 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6450 	int t;
6451 
6452 	guard(core_lock)(&cpu);
6453 
6454 	/* if we're the last man standing, nothing to do */
6455 	if (cpumask_weight(smt_mask) == 1) {
6456 		WARN_ON_ONCE(rq->core != rq);
6457 		return;
6458 	}
6459 
6460 	/* if we're not the leader, nothing to do */
6461 	if (rq->core != rq)
6462 		return;
6463 
6464 	/* find a new leader */
6465 	for_each_cpu(t, smt_mask) {
6466 		if (t == cpu)
6467 			continue;
6468 		core_rq = cpu_rq(t);
6469 		break;
6470 	}
6471 
6472 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6473 		return;
6474 
6475 	/* copy the shared state to the new leader */
6476 	core_rq->core_task_seq             = rq->core_task_seq;
6477 	core_rq->core_pick_seq             = rq->core_pick_seq;
6478 	core_rq->core_cookie               = rq->core_cookie;
6479 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6480 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6481 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6482 
6483 	/*
6484 	 * Accounting edge for forced idle is handled in pick_next_task().
6485 	 * Don't need another one here, since the hotplug thread shouldn't
6486 	 * have a cookie.
6487 	 */
6488 	core_rq->core_forceidle_start = 0;
6489 
6490 	/* install new leader */
6491 	for_each_cpu(t, smt_mask) {
6492 		rq = cpu_rq(t);
6493 		rq->core = core_rq;
6494 	}
6495 }
6496 
6497 static inline void sched_core_cpu_dying(unsigned int cpu)
6498 {
6499 	struct rq *rq = cpu_rq(cpu);
6500 
6501 	if (rq->core != rq)
6502 		rq->core = rq;
6503 }
6504 
6505 #else /* !CONFIG_SCHED_CORE */
6506 
6507 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6508 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6509 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6510 
6511 static struct task_struct *
6512 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6513 {
6514 	return __pick_next_task(rq, prev, rf);
6515 }
6516 
6517 #endif /* CONFIG_SCHED_CORE */
6518 
6519 /*
6520  * Constants for the sched_mode argument of __schedule().
6521  *
6522  * The mode argument allows RT enabled kernels to differentiate a
6523  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6524  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6525  * optimize the AND operation out and just check for zero.
6526  */
6527 #define SM_NONE			0x0
6528 #define SM_PREEMPT		0x1
6529 #define SM_RTLOCK_WAIT		0x2
6530 
6531 #ifndef CONFIG_PREEMPT_RT
6532 # define SM_MASK_PREEMPT	(~0U)
6533 #else
6534 # define SM_MASK_PREEMPT	SM_PREEMPT
6535 #endif
6536 
6537 /*
6538  * __schedule() is the main scheduler function.
6539  *
6540  * The main means of driving the scheduler and thus entering this function are:
6541  *
6542  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6543  *
6544  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6545  *      paths. For example, see arch/x86/entry_64.S.
6546  *
6547  *      To drive preemption between tasks, the scheduler sets the flag in timer
6548  *      interrupt handler scheduler_tick().
6549  *
6550  *   3. Wakeups don't really cause entry into schedule(). They add a
6551  *      task to the run-queue and that's it.
6552  *
6553  *      Now, if the new task added to the run-queue preempts the current
6554  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6555  *      called on the nearest possible occasion:
6556  *
6557  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6558  *
6559  *         - in syscall or exception context, at the next outmost
6560  *           preempt_enable(). (this might be as soon as the wake_up()'s
6561  *           spin_unlock()!)
6562  *
6563  *         - in IRQ context, return from interrupt-handler to
6564  *           preemptible context
6565  *
6566  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6567  *         then at the next:
6568  *
6569  *          - cond_resched() call
6570  *          - explicit schedule() call
6571  *          - return from syscall or exception to user-space
6572  *          - return from interrupt-handler to user-space
6573  *
6574  * WARNING: must be called with preemption disabled!
6575  */
6576 static void __sched notrace __schedule(unsigned int sched_mode)
6577 {
6578 	struct task_struct *prev, *next;
6579 	unsigned long *switch_count;
6580 	unsigned long prev_state;
6581 	struct rq_flags rf;
6582 	struct rq *rq;
6583 	int cpu;
6584 
6585 	cpu = smp_processor_id();
6586 	rq = cpu_rq(cpu);
6587 	prev = rq->curr;
6588 
6589 	schedule_debug(prev, !!sched_mode);
6590 
6591 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6592 		hrtick_clear(rq);
6593 
6594 	local_irq_disable();
6595 	rcu_note_context_switch(!!sched_mode);
6596 
6597 	/*
6598 	 * Make sure that signal_pending_state()->signal_pending() below
6599 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6600 	 * done by the caller to avoid the race with signal_wake_up():
6601 	 *
6602 	 * __set_current_state(@state)		signal_wake_up()
6603 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6604 	 *					  wake_up_state(p, state)
6605 	 *   LOCK rq->lock			    LOCK p->pi_state
6606 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6607 	 *     if (signal_pending_state())	    if (p->state & @state)
6608 	 *
6609 	 * Also, the membarrier system call requires a full memory barrier
6610 	 * after coming from user-space, before storing to rq->curr.
6611 	 */
6612 	rq_lock(rq, &rf);
6613 	smp_mb__after_spinlock();
6614 
6615 	/* Promote REQ to ACT */
6616 	rq->clock_update_flags <<= 1;
6617 	update_rq_clock(rq);
6618 
6619 	switch_count = &prev->nivcsw;
6620 
6621 	/*
6622 	 * We must load prev->state once (task_struct::state is volatile), such
6623 	 * that we form a control dependency vs deactivate_task() below.
6624 	 */
6625 	prev_state = READ_ONCE(prev->__state);
6626 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6627 		if (signal_pending_state(prev_state, prev)) {
6628 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6629 		} else {
6630 			prev->sched_contributes_to_load =
6631 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6632 				!(prev_state & TASK_NOLOAD) &&
6633 				!(prev_state & TASK_FROZEN);
6634 
6635 			if (prev->sched_contributes_to_load)
6636 				rq->nr_uninterruptible++;
6637 
6638 			/*
6639 			 * __schedule()			ttwu()
6640 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6641 			 *   if (prev_state)		    goto out;
6642 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6643 			 *				  p->state = TASK_WAKING
6644 			 *
6645 			 * Where __schedule() and ttwu() have matching control dependencies.
6646 			 *
6647 			 * After this, schedule() must not care about p->state any more.
6648 			 */
6649 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6650 
6651 			if (prev->in_iowait) {
6652 				atomic_inc(&rq->nr_iowait);
6653 				delayacct_blkio_start();
6654 			}
6655 		}
6656 		switch_count = &prev->nvcsw;
6657 	}
6658 
6659 	next = pick_next_task(rq, prev, &rf);
6660 	clear_tsk_need_resched(prev);
6661 	clear_preempt_need_resched();
6662 #ifdef CONFIG_SCHED_DEBUG
6663 	rq->last_seen_need_resched_ns = 0;
6664 #endif
6665 
6666 	if (likely(prev != next)) {
6667 		rq->nr_switches++;
6668 		/*
6669 		 * RCU users of rcu_dereference(rq->curr) may not see
6670 		 * changes to task_struct made by pick_next_task().
6671 		 */
6672 		RCU_INIT_POINTER(rq->curr, next);
6673 		/*
6674 		 * The membarrier system call requires each architecture
6675 		 * to have a full memory barrier after updating
6676 		 * rq->curr, before returning to user-space.
6677 		 *
6678 		 * Here are the schemes providing that barrier on the
6679 		 * various architectures:
6680 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6681 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6682 		 * - finish_lock_switch() for weakly-ordered
6683 		 *   architectures where spin_unlock is a full barrier,
6684 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6685 		 *   is a RELEASE barrier),
6686 		 */
6687 		++*switch_count;
6688 
6689 		migrate_disable_switch(rq, prev);
6690 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6691 
6692 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6693 
6694 		/* Also unlocks the rq: */
6695 		rq = context_switch(rq, prev, next, &rf);
6696 	} else {
6697 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6698 
6699 		rq_unpin_lock(rq, &rf);
6700 		__balance_callbacks(rq);
6701 		raw_spin_rq_unlock_irq(rq);
6702 	}
6703 }
6704 
6705 void __noreturn do_task_dead(void)
6706 {
6707 	/* Causes final put_task_struct in finish_task_switch(): */
6708 	set_special_state(TASK_DEAD);
6709 
6710 	/* Tell freezer to ignore us: */
6711 	current->flags |= PF_NOFREEZE;
6712 
6713 	__schedule(SM_NONE);
6714 	BUG();
6715 
6716 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6717 	for (;;)
6718 		cpu_relax();
6719 }
6720 
6721 static inline void sched_submit_work(struct task_struct *tsk)
6722 {
6723 	unsigned int task_flags;
6724 
6725 	if (task_is_running(tsk))
6726 		return;
6727 
6728 	task_flags = tsk->flags;
6729 	/*
6730 	 * If a worker goes to sleep, notify and ask workqueue whether it
6731 	 * wants to wake up a task to maintain concurrency.
6732 	 */
6733 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6734 		if (task_flags & PF_WQ_WORKER)
6735 			wq_worker_sleeping(tsk);
6736 		else
6737 			io_wq_worker_sleeping(tsk);
6738 	}
6739 
6740 	/*
6741 	 * spinlock and rwlock must not flush block requests.  This will
6742 	 * deadlock if the callback attempts to acquire a lock which is
6743 	 * already acquired.
6744 	 */
6745 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6746 
6747 	/*
6748 	 * If we are going to sleep and we have plugged IO queued,
6749 	 * make sure to submit it to avoid deadlocks.
6750 	 */
6751 	blk_flush_plug(tsk->plug, true);
6752 }
6753 
6754 static void sched_update_worker(struct task_struct *tsk)
6755 {
6756 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6757 		if (tsk->flags & PF_WQ_WORKER)
6758 			wq_worker_running(tsk);
6759 		else
6760 			io_wq_worker_running(tsk);
6761 	}
6762 }
6763 
6764 asmlinkage __visible void __sched schedule(void)
6765 {
6766 	struct task_struct *tsk = current;
6767 
6768 	sched_submit_work(tsk);
6769 	do {
6770 		preempt_disable();
6771 		__schedule(SM_NONE);
6772 		sched_preempt_enable_no_resched();
6773 	} while (need_resched());
6774 	sched_update_worker(tsk);
6775 }
6776 EXPORT_SYMBOL(schedule);
6777 
6778 /*
6779  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6780  * state (have scheduled out non-voluntarily) by making sure that all
6781  * tasks have either left the run queue or have gone into user space.
6782  * As idle tasks do not do either, they must not ever be preempted
6783  * (schedule out non-voluntarily).
6784  *
6785  * schedule_idle() is similar to schedule_preempt_disable() except that it
6786  * never enables preemption because it does not call sched_submit_work().
6787  */
6788 void __sched schedule_idle(void)
6789 {
6790 	/*
6791 	 * As this skips calling sched_submit_work(), which the idle task does
6792 	 * regardless because that function is a nop when the task is in a
6793 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6794 	 * current task can be in any other state. Note, idle is always in the
6795 	 * TASK_RUNNING state.
6796 	 */
6797 	WARN_ON_ONCE(current->__state);
6798 	do {
6799 		__schedule(SM_NONE);
6800 	} while (need_resched());
6801 }
6802 
6803 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6804 asmlinkage __visible void __sched schedule_user(void)
6805 {
6806 	/*
6807 	 * If we come here after a random call to set_need_resched(),
6808 	 * or we have been woken up remotely but the IPI has not yet arrived,
6809 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6810 	 * we find a better solution.
6811 	 *
6812 	 * NB: There are buggy callers of this function.  Ideally we
6813 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6814 	 * too frequently to make sense yet.
6815 	 */
6816 	enum ctx_state prev_state = exception_enter();
6817 	schedule();
6818 	exception_exit(prev_state);
6819 }
6820 #endif
6821 
6822 /**
6823  * schedule_preempt_disabled - called with preemption disabled
6824  *
6825  * Returns with preemption disabled. Note: preempt_count must be 1
6826  */
6827 void __sched schedule_preempt_disabled(void)
6828 {
6829 	sched_preempt_enable_no_resched();
6830 	schedule();
6831 	preempt_disable();
6832 }
6833 
6834 #ifdef CONFIG_PREEMPT_RT
6835 void __sched notrace schedule_rtlock(void)
6836 {
6837 	do {
6838 		preempt_disable();
6839 		__schedule(SM_RTLOCK_WAIT);
6840 		sched_preempt_enable_no_resched();
6841 	} while (need_resched());
6842 }
6843 NOKPROBE_SYMBOL(schedule_rtlock);
6844 #endif
6845 
6846 static void __sched notrace preempt_schedule_common(void)
6847 {
6848 	do {
6849 		/*
6850 		 * Because the function tracer can trace preempt_count_sub()
6851 		 * and it also uses preempt_enable/disable_notrace(), if
6852 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6853 		 * by the function tracer will call this function again and
6854 		 * cause infinite recursion.
6855 		 *
6856 		 * Preemption must be disabled here before the function
6857 		 * tracer can trace. Break up preempt_disable() into two
6858 		 * calls. One to disable preemption without fear of being
6859 		 * traced. The other to still record the preemption latency,
6860 		 * which can also be traced by the function tracer.
6861 		 */
6862 		preempt_disable_notrace();
6863 		preempt_latency_start(1);
6864 		__schedule(SM_PREEMPT);
6865 		preempt_latency_stop(1);
6866 		preempt_enable_no_resched_notrace();
6867 
6868 		/*
6869 		 * Check again in case we missed a preemption opportunity
6870 		 * between schedule and now.
6871 		 */
6872 	} while (need_resched());
6873 }
6874 
6875 #ifdef CONFIG_PREEMPTION
6876 /*
6877  * This is the entry point to schedule() from in-kernel preemption
6878  * off of preempt_enable.
6879  */
6880 asmlinkage __visible void __sched notrace preempt_schedule(void)
6881 {
6882 	/*
6883 	 * If there is a non-zero preempt_count or interrupts are disabled,
6884 	 * we do not want to preempt the current task. Just return..
6885 	 */
6886 	if (likely(!preemptible()))
6887 		return;
6888 	preempt_schedule_common();
6889 }
6890 NOKPROBE_SYMBOL(preempt_schedule);
6891 EXPORT_SYMBOL(preempt_schedule);
6892 
6893 #ifdef CONFIG_PREEMPT_DYNAMIC
6894 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6895 #ifndef preempt_schedule_dynamic_enabled
6896 #define preempt_schedule_dynamic_enabled	preempt_schedule
6897 #define preempt_schedule_dynamic_disabled	NULL
6898 #endif
6899 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6900 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6901 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6902 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6903 void __sched notrace dynamic_preempt_schedule(void)
6904 {
6905 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6906 		return;
6907 	preempt_schedule();
6908 }
6909 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6910 EXPORT_SYMBOL(dynamic_preempt_schedule);
6911 #endif
6912 #endif
6913 
6914 /**
6915  * preempt_schedule_notrace - preempt_schedule called by tracing
6916  *
6917  * The tracing infrastructure uses preempt_enable_notrace to prevent
6918  * recursion and tracing preempt enabling caused by the tracing
6919  * infrastructure itself. But as tracing can happen in areas coming
6920  * from userspace or just about to enter userspace, a preempt enable
6921  * can occur before user_exit() is called. This will cause the scheduler
6922  * to be called when the system is still in usermode.
6923  *
6924  * To prevent this, the preempt_enable_notrace will use this function
6925  * instead of preempt_schedule() to exit user context if needed before
6926  * calling the scheduler.
6927  */
6928 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6929 {
6930 	enum ctx_state prev_ctx;
6931 
6932 	if (likely(!preemptible()))
6933 		return;
6934 
6935 	do {
6936 		/*
6937 		 * Because the function tracer can trace preempt_count_sub()
6938 		 * and it also uses preempt_enable/disable_notrace(), if
6939 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6940 		 * by the function tracer will call this function again and
6941 		 * cause infinite recursion.
6942 		 *
6943 		 * Preemption must be disabled here before the function
6944 		 * tracer can trace. Break up preempt_disable() into two
6945 		 * calls. One to disable preemption without fear of being
6946 		 * traced. The other to still record the preemption latency,
6947 		 * which can also be traced by the function tracer.
6948 		 */
6949 		preempt_disable_notrace();
6950 		preempt_latency_start(1);
6951 		/*
6952 		 * Needs preempt disabled in case user_exit() is traced
6953 		 * and the tracer calls preempt_enable_notrace() causing
6954 		 * an infinite recursion.
6955 		 */
6956 		prev_ctx = exception_enter();
6957 		__schedule(SM_PREEMPT);
6958 		exception_exit(prev_ctx);
6959 
6960 		preempt_latency_stop(1);
6961 		preempt_enable_no_resched_notrace();
6962 	} while (need_resched());
6963 }
6964 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6965 
6966 #ifdef CONFIG_PREEMPT_DYNAMIC
6967 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6968 #ifndef preempt_schedule_notrace_dynamic_enabled
6969 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6970 #define preempt_schedule_notrace_dynamic_disabled	NULL
6971 #endif
6972 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6973 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6974 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6975 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6976 void __sched notrace dynamic_preempt_schedule_notrace(void)
6977 {
6978 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6979 		return;
6980 	preempt_schedule_notrace();
6981 }
6982 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6983 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6984 #endif
6985 #endif
6986 
6987 #endif /* CONFIG_PREEMPTION */
6988 
6989 /*
6990  * This is the entry point to schedule() from kernel preemption
6991  * off of irq context.
6992  * Note, that this is called and return with irqs disabled. This will
6993  * protect us against recursive calling from irq.
6994  */
6995 asmlinkage __visible void __sched preempt_schedule_irq(void)
6996 {
6997 	enum ctx_state prev_state;
6998 
6999 	/* Catch callers which need to be fixed */
7000 	BUG_ON(preempt_count() || !irqs_disabled());
7001 
7002 	prev_state = exception_enter();
7003 
7004 	do {
7005 		preempt_disable();
7006 		local_irq_enable();
7007 		__schedule(SM_PREEMPT);
7008 		local_irq_disable();
7009 		sched_preempt_enable_no_resched();
7010 	} while (need_resched());
7011 
7012 	exception_exit(prev_state);
7013 }
7014 
7015 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7016 			  void *key)
7017 {
7018 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7019 	return try_to_wake_up(curr->private, mode, wake_flags);
7020 }
7021 EXPORT_SYMBOL(default_wake_function);
7022 
7023 static void __setscheduler_prio(struct task_struct *p, int prio)
7024 {
7025 	if (dl_prio(prio))
7026 		p->sched_class = &dl_sched_class;
7027 	else if (rt_prio(prio))
7028 		p->sched_class = &rt_sched_class;
7029 	else
7030 		p->sched_class = &fair_sched_class;
7031 
7032 	p->prio = prio;
7033 }
7034 
7035 #ifdef CONFIG_RT_MUTEXES
7036 
7037 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7038 {
7039 	if (pi_task)
7040 		prio = min(prio, pi_task->prio);
7041 
7042 	return prio;
7043 }
7044 
7045 static inline int rt_effective_prio(struct task_struct *p, int prio)
7046 {
7047 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7048 
7049 	return __rt_effective_prio(pi_task, prio);
7050 }
7051 
7052 /*
7053  * rt_mutex_setprio - set the current priority of a task
7054  * @p: task to boost
7055  * @pi_task: donor task
7056  *
7057  * This function changes the 'effective' priority of a task. It does
7058  * not touch ->normal_prio like __setscheduler().
7059  *
7060  * Used by the rt_mutex code to implement priority inheritance
7061  * logic. Call site only calls if the priority of the task changed.
7062  */
7063 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7064 {
7065 	int prio, oldprio, queued, running, queue_flag =
7066 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7067 	const struct sched_class *prev_class;
7068 	struct rq_flags rf;
7069 	struct rq *rq;
7070 
7071 	/* XXX used to be waiter->prio, not waiter->task->prio */
7072 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7073 
7074 	/*
7075 	 * If nothing changed; bail early.
7076 	 */
7077 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7078 		return;
7079 
7080 	rq = __task_rq_lock(p, &rf);
7081 	update_rq_clock(rq);
7082 	/*
7083 	 * Set under pi_lock && rq->lock, such that the value can be used under
7084 	 * either lock.
7085 	 *
7086 	 * Note that there is loads of tricky to make this pointer cache work
7087 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7088 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7089 	 * task is allowed to run again (and can exit). This ensures the pointer
7090 	 * points to a blocked task -- which guarantees the task is present.
7091 	 */
7092 	p->pi_top_task = pi_task;
7093 
7094 	/*
7095 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7096 	 */
7097 	if (prio == p->prio && !dl_prio(prio))
7098 		goto out_unlock;
7099 
7100 	/*
7101 	 * Idle task boosting is a nono in general. There is one
7102 	 * exception, when PREEMPT_RT and NOHZ is active:
7103 	 *
7104 	 * The idle task calls get_next_timer_interrupt() and holds
7105 	 * the timer wheel base->lock on the CPU and another CPU wants
7106 	 * to access the timer (probably to cancel it). We can safely
7107 	 * ignore the boosting request, as the idle CPU runs this code
7108 	 * with interrupts disabled and will complete the lock
7109 	 * protected section without being interrupted. So there is no
7110 	 * real need to boost.
7111 	 */
7112 	if (unlikely(p == rq->idle)) {
7113 		WARN_ON(p != rq->curr);
7114 		WARN_ON(p->pi_blocked_on);
7115 		goto out_unlock;
7116 	}
7117 
7118 	trace_sched_pi_setprio(p, pi_task);
7119 	oldprio = p->prio;
7120 
7121 	if (oldprio == prio)
7122 		queue_flag &= ~DEQUEUE_MOVE;
7123 
7124 	prev_class = p->sched_class;
7125 	queued = task_on_rq_queued(p);
7126 	running = task_current(rq, p);
7127 	if (queued)
7128 		dequeue_task(rq, p, queue_flag);
7129 	if (running)
7130 		put_prev_task(rq, p);
7131 
7132 	/*
7133 	 * Boosting condition are:
7134 	 * 1. -rt task is running and holds mutex A
7135 	 *      --> -dl task blocks on mutex A
7136 	 *
7137 	 * 2. -dl task is running and holds mutex A
7138 	 *      --> -dl task blocks on mutex A and could preempt the
7139 	 *          running task
7140 	 */
7141 	if (dl_prio(prio)) {
7142 		if (!dl_prio(p->normal_prio) ||
7143 		    (pi_task && dl_prio(pi_task->prio) &&
7144 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7145 			p->dl.pi_se = pi_task->dl.pi_se;
7146 			queue_flag |= ENQUEUE_REPLENISH;
7147 		} else {
7148 			p->dl.pi_se = &p->dl;
7149 		}
7150 	} else if (rt_prio(prio)) {
7151 		if (dl_prio(oldprio))
7152 			p->dl.pi_se = &p->dl;
7153 		if (oldprio < prio)
7154 			queue_flag |= ENQUEUE_HEAD;
7155 	} else {
7156 		if (dl_prio(oldprio))
7157 			p->dl.pi_se = &p->dl;
7158 		if (rt_prio(oldprio))
7159 			p->rt.timeout = 0;
7160 	}
7161 
7162 	__setscheduler_prio(p, prio);
7163 
7164 	if (queued)
7165 		enqueue_task(rq, p, queue_flag);
7166 	if (running)
7167 		set_next_task(rq, p);
7168 
7169 	check_class_changed(rq, p, prev_class, oldprio);
7170 out_unlock:
7171 	/* Avoid rq from going away on us: */
7172 	preempt_disable();
7173 
7174 	rq_unpin_lock(rq, &rf);
7175 	__balance_callbacks(rq);
7176 	raw_spin_rq_unlock(rq);
7177 
7178 	preempt_enable();
7179 }
7180 #else
7181 static inline int rt_effective_prio(struct task_struct *p, int prio)
7182 {
7183 	return prio;
7184 }
7185 #endif
7186 
7187 void set_user_nice(struct task_struct *p, long nice)
7188 {
7189 	bool queued, running;
7190 	int old_prio;
7191 	struct rq_flags rf;
7192 	struct rq *rq;
7193 
7194 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7195 		return;
7196 	/*
7197 	 * We have to be careful, if called from sys_setpriority(),
7198 	 * the task might be in the middle of scheduling on another CPU.
7199 	 */
7200 	rq = task_rq_lock(p, &rf);
7201 	update_rq_clock(rq);
7202 
7203 	/*
7204 	 * The RT priorities are set via sched_setscheduler(), but we still
7205 	 * allow the 'normal' nice value to be set - but as expected
7206 	 * it won't have any effect on scheduling until the task is
7207 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7208 	 */
7209 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7210 		p->static_prio = NICE_TO_PRIO(nice);
7211 		goto out_unlock;
7212 	}
7213 	queued = task_on_rq_queued(p);
7214 	running = task_current(rq, p);
7215 	if (queued)
7216 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7217 	if (running)
7218 		put_prev_task(rq, p);
7219 
7220 	p->static_prio = NICE_TO_PRIO(nice);
7221 	set_load_weight(p, true);
7222 	old_prio = p->prio;
7223 	p->prio = effective_prio(p);
7224 
7225 	if (queued)
7226 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7227 	if (running)
7228 		set_next_task(rq, p);
7229 
7230 	/*
7231 	 * If the task increased its priority or is running and
7232 	 * lowered its priority, then reschedule its CPU:
7233 	 */
7234 	p->sched_class->prio_changed(rq, p, old_prio);
7235 
7236 out_unlock:
7237 	task_rq_unlock(rq, p, &rf);
7238 }
7239 EXPORT_SYMBOL(set_user_nice);
7240 
7241 /*
7242  * is_nice_reduction - check if nice value is an actual reduction
7243  *
7244  * Similar to can_nice() but does not perform a capability check.
7245  *
7246  * @p: task
7247  * @nice: nice value
7248  */
7249 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7250 {
7251 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7252 	int nice_rlim = nice_to_rlimit(nice);
7253 
7254 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7255 }
7256 
7257 /*
7258  * can_nice - check if a task can reduce its nice value
7259  * @p: task
7260  * @nice: nice value
7261  */
7262 int can_nice(const struct task_struct *p, const int nice)
7263 {
7264 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7265 }
7266 
7267 #ifdef __ARCH_WANT_SYS_NICE
7268 
7269 /*
7270  * sys_nice - change the priority of the current process.
7271  * @increment: priority increment
7272  *
7273  * sys_setpriority is a more generic, but much slower function that
7274  * does similar things.
7275  */
7276 SYSCALL_DEFINE1(nice, int, increment)
7277 {
7278 	long nice, retval;
7279 
7280 	/*
7281 	 * Setpriority might change our priority at the same moment.
7282 	 * We don't have to worry. Conceptually one call occurs first
7283 	 * and we have a single winner.
7284 	 */
7285 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7286 	nice = task_nice(current) + increment;
7287 
7288 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7289 	if (increment < 0 && !can_nice(current, nice))
7290 		return -EPERM;
7291 
7292 	retval = security_task_setnice(current, nice);
7293 	if (retval)
7294 		return retval;
7295 
7296 	set_user_nice(current, nice);
7297 	return 0;
7298 }
7299 
7300 #endif
7301 
7302 /**
7303  * task_prio - return the priority value of a given task.
7304  * @p: the task in question.
7305  *
7306  * Return: The priority value as seen by users in /proc.
7307  *
7308  * sched policy         return value   kernel prio    user prio/nice
7309  *
7310  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7311  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7312  * deadline                     -101             -1           0
7313  */
7314 int task_prio(const struct task_struct *p)
7315 {
7316 	return p->prio - MAX_RT_PRIO;
7317 }
7318 
7319 /**
7320  * idle_cpu - is a given CPU idle currently?
7321  * @cpu: the processor in question.
7322  *
7323  * Return: 1 if the CPU is currently idle. 0 otherwise.
7324  */
7325 int idle_cpu(int cpu)
7326 {
7327 	struct rq *rq = cpu_rq(cpu);
7328 
7329 	if (rq->curr != rq->idle)
7330 		return 0;
7331 
7332 	if (rq->nr_running)
7333 		return 0;
7334 
7335 #ifdef CONFIG_SMP
7336 	if (rq->ttwu_pending)
7337 		return 0;
7338 #endif
7339 
7340 	return 1;
7341 }
7342 
7343 /**
7344  * available_idle_cpu - is a given CPU idle for enqueuing work.
7345  * @cpu: the CPU in question.
7346  *
7347  * Return: 1 if the CPU is currently idle. 0 otherwise.
7348  */
7349 int available_idle_cpu(int cpu)
7350 {
7351 	if (!idle_cpu(cpu))
7352 		return 0;
7353 
7354 	if (vcpu_is_preempted(cpu))
7355 		return 0;
7356 
7357 	return 1;
7358 }
7359 
7360 /**
7361  * idle_task - return the idle task for a given CPU.
7362  * @cpu: the processor in question.
7363  *
7364  * Return: The idle task for the CPU @cpu.
7365  */
7366 struct task_struct *idle_task(int cpu)
7367 {
7368 	return cpu_rq(cpu)->idle;
7369 }
7370 
7371 #ifdef CONFIG_SCHED_CORE
7372 int sched_core_idle_cpu(int cpu)
7373 {
7374 	struct rq *rq = cpu_rq(cpu);
7375 
7376 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7377 		return 1;
7378 
7379 	return idle_cpu(cpu);
7380 }
7381 
7382 #endif
7383 
7384 #ifdef CONFIG_SMP
7385 /*
7386  * This function computes an effective utilization for the given CPU, to be
7387  * used for frequency selection given the linear relation: f = u * f_max.
7388  *
7389  * The scheduler tracks the following metrics:
7390  *
7391  *   cpu_util_{cfs,rt,dl,irq}()
7392  *   cpu_bw_dl()
7393  *
7394  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7395  * synchronized windows and are thus directly comparable.
7396  *
7397  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7398  * which excludes things like IRQ and steal-time. These latter are then accrued
7399  * in the irq utilization.
7400  *
7401  * The DL bandwidth number otoh is not a measured metric but a value computed
7402  * based on the task model parameters and gives the minimal utilization
7403  * required to meet deadlines.
7404  */
7405 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7406 				 enum cpu_util_type type,
7407 				 struct task_struct *p)
7408 {
7409 	unsigned long dl_util, util, irq, max;
7410 	struct rq *rq = cpu_rq(cpu);
7411 
7412 	max = arch_scale_cpu_capacity(cpu);
7413 
7414 	if (!uclamp_is_used() &&
7415 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7416 		return max;
7417 	}
7418 
7419 	/*
7420 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7421 	 * because of inaccuracies in how we track these -- see
7422 	 * update_irq_load_avg().
7423 	 */
7424 	irq = cpu_util_irq(rq);
7425 	if (unlikely(irq >= max))
7426 		return max;
7427 
7428 	/*
7429 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7430 	 * CFS tasks and we use the same metric to track the effective
7431 	 * utilization (PELT windows are synchronized) we can directly add them
7432 	 * to obtain the CPU's actual utilization.
7433 	 *
7434 	 * CFS and RT utilization can be boosted or capped, depending on
7435 	 * utilization clamp constraints requested by currently RUNNABLE
7436 	 * tasks.
7437 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7438 	 * frequency will be gracefully reduced with the utilization decay.
7439 	 */
7440 	util = util_cfs + cpu_util_rt(rq);
7441 	if (type == FREQUENCY_UTIL)
7442 		util = uclamp_rq_util_with(rq, util, p);
7443 
7444 	dl_util = cpu_util_dl(rq);
7445 
7446 	/*
7447 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7448 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7449 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7450 	 * that we select f_max when there is no idle time.
7451 	 *
7452 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7453 	 * saturation when we should -- something for later.
7454 	 */
7455 	if (util + dl_util >= max)
7456 		return max;
7457 
7458 	/*
7459 	 * OTOH, for energy computation we need the estimated running time, so
7460 	 * include util_dl and ignore dl_bw.
7461 	 */
7462 	if (type == ENERGY_UTIL)
7463 		util += dl_util;
7464 
7465 	/*
7466 	 * There is still idle time; further improve the number by using the
7467 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7468 	 * need to scale the task numbers:
7469 	 *
7470 	 *              max - irq
7471 	 *   U' = irq + --------- * U
7472 	 *                 max
7473 	 */
7474 	util = scale_irq_capacity(util, irq, max);
7475 	util += irq;
7476 
7477 	/*
7478 	 * Bandwidth required by DEADLINE must always be granted while, for
7479 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7480 	 * to gracefully reduce the frequency when no tasks show up for longer
7481 	 * periods of time.
7482 	 *
7483 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7484 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7485 	 * an interface. So, we only do the latter for now.
7486 	 */
7487 	if (type == FREQUENCY_UTIL)
7488 		util += cpu_bw_dl(rq);
7489 
7490 	return min(max, util);
7491 }
7492 
7493 unsigned long sched_cpu_util(int cpu)
7494 {
7495 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7496 }
7497 #endif /* CONFIG_SMP */
7498 
7499 /**
7500  * find_process_by_pid - find a process with a matching PID value.
7501  * @pid: the pid in question.
7502  *
7503  * The task of @pid, if found. %NULL otherwise.
7504  */
7505 static struct task_struct *find_process_by_pid(pid_t pid)
7506 {
7507 	return pid ? find_task_by_vpid(pid) : current;
7508 }
7509 
7510 /*
7511  * sched_setparam() passes in -1 for its policy, to let the functions
7512  * it calls know not to change it.
7513  */
7514 #define SETPARAM_POLICY	-1
7515 
7516 static void __setscheduler_params(struct task_struct *p,
7517 		const struct sched_attr *attr)
7518 {
7519 	int policy = attr->sched_policy;
7520 
7521 	if (policy == SETPARAM_POLICY)
7522 		policy = p->policy;
7523 
7524 	p->policy = policy;
7525 
7526 	if (dl_policy(policy))
7527 		__setparam_dl(p, attr);
7528 	else if (fair_policy(policy))
7529 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7530 
7531 	/*
7532 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7533 	 * !rt_policy. Always setting this ensures that things like
7534 	 * getparam()/getattr() don't report silly values for !rt tasks.
7535 	 */
7536 	p->rt_priority = attr->sched_priority;
7537 	p->normal_prio = normal_prio(p);
7538 	set_load_weight(p, true);
7539 }
7540 
7541 /*
7542  * Check the target process has a UID that matches the current process's:
7543  */
7544 static bool check_same_owner(struct task_struct *p)
7545 {
7546 	const struct cred *cred = current_cred(), *pcred;
7547 	bool match;
7548 
7549 	rcu_read_lock();
7550 	pcred = __task_cred(p);
7551 	match = (uid_eq(cred->euid, pcred->euid) ||
7552 		 uid_eq(cred->euid, pcred->uid));
7553 	rcu_read_unlock();
7554 	return match;
7555 }
7556 
7557 /*
7558  * Allow unprivileged RT tasks to decrease priority.
7559  * Only issue a capable test if needed and only once to avoid an audit
7560  * event on permitted non-privileged operations:
7561  */
7562 static int user_check_sched_setscheduler(struct task_struct *p,
7563 					 const struct sched_attr *attr,
7564 					 int policy, int reset_on_fork)
7565 {
7566 	if (fair_policy(policy)) {
7567 		if (attr->sched_nice < task_nice(p) &&
7568 		    !is_nice_reduction(p, attr->sched_nice))
7569 			goto req_priv;
7570 	}
7571 
7572 	if (rt_policy(policy)) {
7573 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7574 
7575 		/* Can't set/change the rt policy: */
7576 		if (policy != p->policy && !rlim_rtprio)
7577 			goto req_priv;
7578 
7579 		/* Can't increase priority: */
7580 		if (attr->sched_priority > p->rt_priority &&
7581 		    attr->sched_priority > rlim_rtprio)
7582 			goto req_priv;
7583 	}
7584 
7585 	/*
7586 	 * Can't set/change SCHED_DEADLINE policy at all for now
7587 	 * (safest behavior); in the future we would like to allow
7588 	 * unprivileged DL tasks to increase their relative deadline
7589 	 * or reduce their runtime (both ways reducing utilization)
7590 	 */
7591 	if (dl_policy(policy))
7592 		goto req_priv;
7593 
7594 	/*
7595 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7596 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7597 	 */
7598 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7599 		if (!is_nice_reduction(p, task_nice(p)))
7600 			goto req_priv;
7601 	}
7602 
7603 	/* Can't change other user's priorities: */
7604 	if (!check_same_owner(p))
7605 		goto req_priv;
7606 
7607 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7608 	if (p->sched_reset_on_fork && !reset_on_fork)
7609 		goto req_priv;
7610 
7611 	return 0;
7612 
7613 req_priv:
7614 	if (!capable(CAP_SYS_NICE))
7615 		return -EPERM;
7616 
7617 	return 0;
7618 }
7619 
7620 static int __sched_setscheduler(struct task_struct *p,
7621 				const struct sched_attr *attr,
7622 				bool user, bool pi)
7623 {
7624 	int oldpolicy = -1, policy = attr->sched_policy;
7625 	int retval, oldprio, newprio, queued, running;
7626 	const struct sched_class *prev_class;
7627 	struct balance_callback *head;
7628 	struct rq_flags rf;
7629 	int reset_on_fork;
7630 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7631 	struct rq *rq;
7632 	bool cpuset_locked = false;
7633 
7634 	/* The pi code expects interrupts enabled */
7635 	BUG_ON(pi && in_interrupt());
7636 recheck:
7637 	/* Double check policy once rq lock held: */
7638 	if (policy < 0) {
7639 		reset_on_fork = p->sched_reset_on_fork;
7640 		policy = oldpolicy = p->policy;
7641 	} else {
7642 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7643 
7644 		if (!valid_policy(policy))
7645 			return -EINVAL;
7646 	}
7647 
7648 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7649 		return -EINVAL;
7650 
7651 	/*
7652 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7653 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7654 	 * SCHED_BATCH and SCHED_IDLE is 0.
7655 	 */
7656 	if (attr->sched_priority > MAX_RT_PRIO-1)
7657 		return -EINVAL;
7658 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7659 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7660 		return -EINVAL;
7661 
7662 	if (user) {
7663 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7664 		if (retval)
7665 			return retval;
7666 
7667 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7668 			return -EINVAL;
7669 
7670 		retval = security_task_setscheduler(p);
7671 		if (retval)
7672 			return retval;
7673 	}
7674 
7675 	/* Update task specific "requested" clamps */
7676 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7677 		retval = uclamp_validate(p, attr);
7678 		if (retval)
7679 			return retval;
7680 	}
7681 
7682 	/*
7683 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7684 	 * information.
7685 	 */
7686 	if (dl_policy(policy) || dl_policy(p->policy)) {
7687 		cpuset_locked = true;
7688 		cpuset_lock();
7689 	}
7690 
7691 	/*
7692 	 * Make sure no PI-waiters arrive (or leave) while we are
7693 	 * changing the priority of the task:
7694 	 *
7695 	 * To be able to change p->policy safely, the appropriate
7696 	 * runqueue lock must be held.
7697 	 */
7698 	rq = task_rq_lock(p, &rf);
7699 	update_rq_clock(rq);
7700 
7701 	/*
7702 	 * Changing the policy of the stop threads its a very bad idea:
7703 	 */
7704 	if (p == rq->stop) {
7705 		retval = -EINVAL;
7706 		goto unlock;
7707 	}
7708 
7709 	/*
7710 	 * If not changing anything there's no need to proceed further,
7711 	 * but store a possible modification of reset_on_fork.
7712 	 */
7713 	if (unlikely(policy == p->policy)) {
7714 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7715 			goto change;
7716 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7717 			goto change;
7718 		if (dl_policy(policy) && dl_param_changed(p, attr))
7719 			goto change;
7720 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7721 			goto change;
7722 
7723 		p->sched_reset_on_fork = reset_on_fork;
7724 		retval = 0;
7725 		goto unlock;
7726 	}
7727 change:
7728 
7729 	if (user) {
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 		/*
7732 		 * Do not allow realtime tasks into groups that have no runtime
7733 		 * assigned.
7734 		 */
7735 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7736 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7737 				!task_group_is_autogroup(task_group(p))) {
7738 			retval = -EPERM;
7739 			goto unlock;
7740 		}
7741 #endif
7742 #ifdef CONFIG_SMP
7743 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7744 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7745 			cpumask_t *span = rq->rd->span;
7746 
7747 			/*
7748 			 * Don't allow tasks with an affinity mask smaller than
7749 			 * the entire root_domain to become SCHED_DEADLINE. We
7750 			 * will also fail if there's no bandwidth available.
7751 			 */
7752 			if (!cpumask_subset(span, p->cpus_ptr) ||
7753 			    rq->rd->dl_bw.bw == 0) {
7754 				retval = -EPERM;
7755 				goto unlock;
7756 			}
7757 		}
7758 #endif
7759 	}
7760 
7761 	/* Re-check policy now with rq lock held: */
7762 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7763 		policy = oldpolicy = -1;
7764 		task_rq_unlock(rq, p, &rf);
7765 		if (cpuset_locked)
7766 			cpuset_unlock();
7767 		goto recheck;
7768 	}
7769 
7770 	/*
7771 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7772 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7773 	 * is available.
7774 	 */
7775 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7776 		retval = -EBUSY;
7777 		goto unlock;
7778 	}
7779 
7780 	p->sched_reset_on_fork = reset_on_fork;
7781 	oldprio = p->prio;
7782 
7783 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7784 	if (pi) {
7785 		/*
7786 		 * Take priority boosted tasks into account. If the new
7787 		 * effective priority is unchanged, we just store the new
7788 		 * normal parameters and do not touch the scheduler class and
7789 		 * the runqueue. This will be done when the task deboost
7790 		 * itself.
7791 		 */
7792 		newprio = rt_effective_prio(p, newprio);
7793 		if (newprio == oldprio)
7794 			queue_flags &= ~DEQUEUE_MOVE;
7795 	}
7796 
7797 	queued = task_on_rq_queued(p);
7798 	running = task_current(rq, p);
7799 	if (queued)
7800 		dequeue_task(rq, p, queue_flags);
7801 	if (running)
7802 		put_prev_task(rq, p);
7803 
7804 	prev_class = p->sched_class;
7805 
7806 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7807 		__setscheduler_params(p, attr);
7808 		__setscheduler_prio(p, newprio);
7809 	}
7810 	__setscheduler_uclamp(p, attr);
7811 
7812 	if (queued) {
7813 		/*
7814 		 * We enqueue to tail when the priority of a task is
7815 		 * increased (user space view).
7816 		 */
7817 		if (oldprio < p->prio)
7818 			queue_flags |= ENQUEUE_HEAD;
7819 
7820 		enqueue_task(rq, p, queue_flags);
7821 	}
7822 	if (running)
7823 		set_next_task(rq, p);
7824 
7825 	check_class_changed(rq, p, prev_class, oldprio);
7826 
7827 	/* Avoid rq from going away on us: */
7828 	preempt_disable();
7829 	head = splice_balance_callbacks(rq);
7830 	task_rq_unlock(rq, p, &rf);
7831 
7832 	if (pi) {
7833 		if (cpuset_locked)
7834 			cpuset_unlock();
7835 		rt_mutex_adjust_pi(p);
7836 	}
7837 
7838 	/* Run balance callbacks after we've adjusted the PI chain: */
7839 	balance_callbacks(rq, head);
7840 	preempt_enable();
7841 
7842 	return 0;
7843 
7844 unlock:
7845 	task_rq_unlock(rq, p, &rf);
7846 	if (cpuset_locked)
7847 		cpuset_unlock();
7848 	return retval;
7849 }
7850 
7851 static int _sched_setscheduler(struct task_struct *p, int policy,
7852 			       const struct sched_param *param, bool check)
7853 {
7854 	struct sched_attr attr = {
7855 		.sched_policy   = policy,
7856 		.sched_priority = param->sched_priority,
7857 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7858 	};
7859 
7860 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7861 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7862 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7863 		policy &= ~SCHED_RESET_ON_FORK;
7864 		attr.sched_policy = policy;
7865 	}
7866 
7867 	return __sched_setscheduler(p, &attr, check, true);
7868 }
7869 /**
7870  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7871  * @p: the task in question.
7872  * @policy: new policy.
7873  * @param: structure containing the new RT priority.
7874  *
7875  * Use sched_set_fifo(), read its comment.
7876  *
7877  * Return: 0 on success. An error code otherwise.
7878  *
7879  * NOTE that the task may be already dead.
7880  */
7881 int sched_setscheduler(struct task_struct *p, int policy,
7882 		       const struct sched_param *param)
7883 {
7884 	return _sched_setscheduler(p, policy, param, true);
7885 }
7886 
7887 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7888 {
7889 	return __sched_setscheduler(p, attr, true, true);
7890 }
7891 
7892 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7893 {
7894 	return __sched_setscheduler(p, attr, false, true);
7895 }
7896 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7897 
7898 /**
7899  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7900  * @p: the task in question.
7901  * @policy: new policy.
7902  * @param: structure containing the new RT priority.
7903  *
7904  * Just like sched_setscheduler, only don't bother checking if the
7905  * current context has permission.  For example, this is needed in
7906  * stop_machine(): we create temporary high priority worker threads,
7907  * but our caller might not have that capability.
7908  *
7909  * Return: 0 on success. An error code otherwise.
7910  */
7911 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7912 			       const struct sched_param *param)
7913 {
7914 	return _sched_setscheduler(p, policy, param, false);
7915 }
7916 
7917 /*
7918  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7919  * incapable of resource management, which is the one thing an OS really should
7920  * be doing.
7921  *
7922  * This is of course the reason it is limited to privileged users only.
7923  *
7924  * Worse still; it is fundamentally impossible to compose static priority
7925  * workloads. You cannot take two correctly working static prio workloads
7926  * and smash them together and still expect them to work.
7927  *
7928  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7929  *
7930  *   MAX_RT_PRIO / 2
7931  *
7932  * The administrator _MUST_ configure the system, the kernel simply doesn't
7933  * know enough information to make a sensible choice.
7934  */
7935 void sched_set_fifo(struct task_struct *p)
7936 {
7937 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7938 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7939 }
7940 EXPORT_SYMBOL_GPL(sched_set_fifo);
7941 
7942 /*
7943  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7944  */
7945 void sched_set_fifo_low(struct task_struct *p)
7946 {
7947 	struct sched_param sp = { .sched_priority = 1 };
7948 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7949 }
7950 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7951 
7952 void sched_set_normal(struct task_struct *p, int nice)
7953 {
7954 	struct sched_attr attr = {
7955 		.sched_policy = SCHED_NORMAL,
7956 		.sched_nice = nice,
7957 	};
7958 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7959 }
7960 EXPORT_SYMBOL_GPL(sched_set_normal);
7961 
7962 static int
7963 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7964 {
7965 	struct sched_param lparam;
7966 	struct task_struct *p;
7967 	int retval;
7968 
7969 	if (!param || pid < 0)
7970 		return -EINVAL;
7971 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7972 		return -EFAULT;
7973 
7974 	rcu_read_lock();
7975 	retval = -ESRCH;
7976 	p = find_process_by_pid(pid);
7977 	if (likely(p))
7978 		get_task_struct(p);
7979 	rcu_read_unlock();
7980 
7981 	if (likely(p)) {
7982 		retval = sched_setscheduler(p, policy, &lparam);
7983 		put_task_struct(p);
7984 	}
7985 
7986 	return retval;
7987 }
7988 
7989 /*
7990  * Mimics kernel/events/core.c perf_copy_attr().
7991  */
7992 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7993 {
7994 	u32 size;
7995 	int ret;
7996 
7997 	/* Zero the full structure, so that a short copy will be nice: */
7998 	memset(attr, 0, sizeof(*attr));
7999 
8000 	ret = get_user(size, &uattr->size);
8001 	if (ret)
8002 		return ret;
8003 
8004 	/* ABI compatibility quirk: */
8005 	if (!size)
8006 		size = SCHED_ATTR_SIZE_VER0;
8007 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8008 		goto err_size;
8009 
8010 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8011 	if (ret) {
8012 		if (ret == -E2BIG)
8013 			goto err_size;
8014 		return ret;
8015 	}
8016 
8017 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8018 	    size < SCHED_ATTR_SIZE_VER1)
8019 		return -EINVAL;
8020 
8021 	/*
8022 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8023 	 * to be strict and return an error on out-of-bounds values?
8024 	 */
8025 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8026 
8027 	return 0;
8028 
8029 err_size:
8030 	put_user(sizeof(*attr), &uattr->size);
8031 	return -E2BIG;
8032 }
8033 
8034 static void get_params(struct task_struct *p, struct sched_attr *attr)
8035 {
8036 	if (task_has_dl_policy(p))
8037 		__getparam_dl(p, attr);
8038 	else if (task_has_rt_policy(p))
8039 		attr->sched_priority = p->rt_priority;
8040 	else
8041 		attr->sched_nice = task_nice(p);
8042 }
8043 
8044 /**
8045  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8046  * @pid: the pid in question.
8047  * @policy: new policy.
8048  * @param: structure containing the new RT priority.
8049  *
8050  * Return: 0 on success. An error code otherwise.
8051  */
8052 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8053 {
8054 	if (policy < 0)
8055 		return -EINVAL;
8056 
8057 	return do_sched_setscheduler(pid, policy, param);
8058 }
8059 
8060 /**
8061  * sys_sched_setparam - set/change the RT priority of a thread
8062  * @pid: the pid in question.
8063  * @param: structure containing the new RT priority.
8064  *
8065  * Return: 0 on success. An error code otherwise.
8066  */
8067 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8068 {
8069 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8070 }
8071 
8072 /**
8073  * sys_sched_setattr - same as above, but with extended sched_attr
8074  * @pid: the pid in question.
8075  * @uattr: structure containing the extended parameters.
8076  * @flags: for future extension.
8077  */
8078 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8079 			       unsigned int, flags)
8080 {
8081 	struct sched_attr attr;
8082 	struct task_struct *p;
8083 	int retval;
8084 
8085 	if (!uattr || pid < 0 || flags)
8086 		return -EINVAL;
8087 
8088 	retval = sched_copy_attr(uattr, &attr);
8089 	if (retval)
8090 		return retval;
8091 
8092 	if ((int)attr.sched_policy < 0)
8093 		return -EINVAL;
8094 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8095 		attr.sched_policy = SETPARAM_POLICY;
8096 
8097 	rcu_read_lock();
8098 	retval = -ESRCH;
8099 	p = find_process_by_pid(pid);
8100 	if (likely(p))
8101 		get_task_struct(p);
8102 	rcu_read_unlock();
8103 
8104 	if (likely(p)) {
8105 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8106 			get_params(p, &attr);
8107 		retval = sched_setattr(p, &attr);
8108 		put_task_struct(p);
8109 	}
8110 
8111 	return retval;
8112 }
8113 
8114 /**
8115  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8116  * @pid: the pid in question.
8117  *
8118  * Return: On success, the policy of the thread. Otherwise, a negative error
8119  * code.
8120  */
8121 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8122 {
8123 	struct task_struct *p;
8124 	int retval;
8125 
8126 	if (pid < 0)
8127 		return -EINVAL;
8128 
8129 	retval = -ESRCH;
8130 	rcu_read_lock();
8131 	p = find_process_by_pid(pid);
8132 	if (p) {
8133 		retval = security_task_getscheduler(p);
8134 		if (!retval)
8135 			retval = p->policy
8136 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8137 	}
8138 	rcu_read_unlock();
8139 	return retval;
8140 }
8141 
8142 /**
8143  * sys_sched_getparam - get the RT priority of a thread
8144  * @pid: the pid in question.
8145  * @param: structure containing the RT priority.
8146  *
8147  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8148  * code.
8149  */
8150 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8151 {
8152 	struct sched_param lp = { .sched_priority = 0 };
8153 	struct task_struct *p;
8154 	int retval;
8155 
8156 	if (!param || pid < 0)
8157 		return -EINVAL;
8158 
8159 	rcu_read_lock();
8160 	p = find_process_by_pid(pid);
8161 	retval = -ESRCH;
8162 	if (!p)
8163 		goto out_unlock;
8164 
8165 	retval = security_task_getscheduler(p);
8166 	if (retval)
8167 		goto out_unlock;
8168 
8169 	if (task_has_rt_policy(p))
8170 		lp.sched_priority = p->rt_priority;
8171 	rcu_read_unlock();
8172 
8173 	/*
8174 	 * This one might sleep, we cannot do it with a spinlock held ...
8175 	 */
8176 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8177 
8178 	return retval;
8179 
8180 out_unlock:
8181 	rcu_read_unlock();
8182 	return retval;
8183 }
8184 
8185 /*
8186  * Copy the kernel size attribute structure (which might be larger
8187  * than what user-space knows about) to user-space.
8188  *
8189  * Note that all cases are valid: user-space buffer can be larger or
8190  * smaller than the kernel-space buffer. The usual case is that both
8191  * have the same size.
8192  */
8193 static int
8194 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8195 			struct sched_attr *kattr,
8196 			unsigned int usize)
8197 {
8198 	unsigned int ksize = sizeof(*kattr);
8199 
8200 	if (!access_ok(uattr, usize))
8201 		return -EFAULT;
8202 
8203 	/*
8204 	 * sched_getattr() ABI forwards and backwards compatibility:
8205 	 *
8206 	 * If usize == ksize then we just copy everything to user-space and all is good.
8207 	 *
8208 	 * If usize < ksize then we only copy as much as user-space has space for,
8209 	 * this keeps ABI compatibility as well. We skip the rest.
8210 	 *
8211 	 * If usize > ksize then user-space is using a newer version of the ABI,
8212 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8213 	 * detect the kernel's knowledge of attributes from the attr->size value
8214 	 * which is set to ksize in this case.
8215 	 */
8216 	kattr->size = min(usize, ksize);
8217 
8218 	if (copy_to_user(uattr, kattr, kattr->size))
8219 		return -EFAULT;
8220 
8221 	return 0;
8222 }
8223 
8224 /**
8225  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8226  * @pid: the pid in question.
8227  * @uattr: structure containing the extended parameters.
8228  * @usize: sizeof(attr) for fwd/bwd comp.
8229  * @flags: for future extension.
8230  */
8231 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8232 		unsigned int, usize, unsigned int, flags)
8233 {
8234 	struct sched_attr kattr = { };
8235 	struct task_struct *p;
8236 	int retval;
8237 
8238 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8239 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8240 		return -EINVAL;
8241 
8242 	rcu_read_lock();
8243 	p = find_process_by_pid(pid);
8244 	retval = -ESRCH;
8245 	if (!p)
8246 		goto out_unlock;
8247 
8248 	retval = security_task_getscheduler(p);
8249 	if (retval)
8250 		goto out_unlock;
8251 
8252 	kattr.sched_policy = p->policy;
8253 	if (p->sched_reset_on_fork)
8254 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8255 	get_params(p, &kattr);
8256 	kattr.sched_flags &= SCHED_FLAG_ALL;
8257 
8258 #ifdef CONFIG_UCLAMP_TASK
8259 	/*
8260 	 * This could race with another potential updater, but this is fine
8261 	 * because it'll correctly read the old or the new value. We don't need
8262 	 * to guarantee who wins the race as long as it doesn't return garbage.
8263 	 */
8264 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8265 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8266 #endif
8267 
8268 	rcu_read_unlock();
8269 
8270 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8271 
8272 out_unlock:
8273 	rcu_read_unlock();
8274 	return retval;
8275 }
8276 
8277 #ifdef CONFIG_SMP
8278 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8279 {
8280 	int ret = 0;
8281 
8282 	/*
8283 	 * If the task isn't a deadline task or admission control is
8284 	 * disabled then we don't care about affinity changes.
8285 	 */
8286 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8287 		return 0;
8288 
8289 	/*
8290 	 * Since bandwidth control happens on root_domain basis,
8291 	 * if admission test is enabled, we only admit -deadline
8292 	 * tasks allowed to run on all the CPUs in the task's
8293 	 * root_domain.
8294 	 */
8295 	rcu_read_lock();
8296 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8297 		ret = -EBUSY;
8298 	rcu_read_unlock();
8299 	return ret;
8300 }
8301 #endif
8302 
8303 static int
8304 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8305 {
8306 	int retval;
8307 	cpumask_var_t cpus_allowed, new_mask;
8308 
8309 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8310 		return -ENOMEM;
8311 
8312 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8313 		retval = -ENOMEM;
8314 		goto out_free_cpus_allowed;
8315 	}
8316 
8317 	cpuset_cpus_allowed(p, cpus_allowed);
8318 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8319 
8320 	ctx->new_mask = new_mask;
8321 	ctx->flags |= SCA_CHECK;
8322 
8323 	retval = dl_task_check_affinity(p, new_mask);
8324 	if (retval)
8325 		goto out_free_new_mask;
8326 
8327 	retval = __set_cpus_allowed_ptr(p, ctx);
8328 	if (retval)
8329 		goto out_free_new_mask;
8330 
8331 	cpuset_cpus_allowed(p, cpus_allowed);
8332 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8333 		/*
8334 		 * We must have raced with a concurrent cpuset update.
8335 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8336 		 */
8337 		cpumask_copy(new_mask, cpus_allowed);
8338 
8339 		/*
8340 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8341 		 * will restore the previous user_cpus_ptr value.
8342 		 *
8343 		 * In the unlikely event a previous user_cpus_ptr exists,
8344 		 * we need to further restrict the mask to what is allowed
8345 		 * by that old user_cpus_ptr.
8346 		 */
8347 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8348 			bool empty = !cpumask_and(new_mask, new_mask,
8349 						  ctx->user_mask);
8350 
8351 			if (WARN_ON_ONCE(empty))
8352 				cpumask_copy(new_mask, cpus_allowed);
8353 		}
8354 		__set_cpus_allowed_ptr(p, ctx);
8355 		retval = -EINVAL;
8356 	}
8357 
8358 out_free_new_mask:
8359 	free_cpumask_var(new_mask);
8360 out_free_cpus_allowed:
8361 	free_cpumask_var(cpus_allowed);
8362 	return retval;
8363 }
8364 
8365 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8366 {
8367 	struct affinity_context ac;
8368 	struct cpumask *user_mask;
8369 	struct task_struct *p;
8370 	int retval;
8371 
8372 	rcu_read_lock();
8373 
8374 	p = find_process_by_pid(pid);
8375 	if (!p) {
8376 		rcu_read_unlock();
8377 		return -ESRCH;
8378 	}
8379 
8380 	/* Prevent p going away */
8381 	get_task_struct(p);
8382 	rcu_read_unlock();
8383 
8384 	if (p->flags & PF_NO_SETAFFINITY) {
8385 		retval = -EINVAL;
8386 		goto out_put_task;
8387 	}
8388 
8389 	if (!check_same_owner(p)) {
8390 		rcu_read_lock();
8391 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8392 			rcu_read_unlock();
8393 			retval = -EPERM;
8394 			goto out_put_task;
8395 		}
8396 		rcu_read_unlock();
8397 	}
8398 
8399 	retval = security_task_setscheduler(p);
8400 	if (retval)
8401 		goto out_put_task;
8402 
8403 	/*
8404 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8405 	 * alloc_user_cpus_ptr() returns NULL.
8406 	 */
8407 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8408 	if (user_mask) {
8409 		cpumask_copy(user_mask, in_mask);
8410 	} else if (IS_ENABLED(CONFIG_SMP)) {
8411 		retval = -ENOMEM;
8412 		goto out_put_task;
8413 	}
8414 
8415 	ac = (struct affinity_context){
8416 		.new_mask  = in_mask,
8417 		.user_mask = user_mask,
8418 		.flags     = SCA_USER,
8419 	};
8420 
8421 	retval = __sched_setaffinity(p, &ac);
8422 	kfree(ac.user_mask);
8423 
8424 out_put_task:
8425 	put_task_struct(p);
8426 	return retval;
8427 }
8428 
8429 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8430 			     struct cpumask *new_mask)
8431 {
8432 	if (len < cpumask_size())
8433 		cpumask_clear(new_mask);
8434 	else if (len > cpumask_size())
8435 		len = cpumask_size();
8436 
8437 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8438 }
8439 
8440 /**
8441  * sys_sched_setaffinity - set the CPU affinity of a process
8442  * @pid: pid of the process
8443  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8444  * @user_mask_ptr: user-space pointer to the new CPU mask
8445  *
8446  * Return: 0 on success. An error code otherwise.
8447  */
8448 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8449 		unsigned long __user *, user_mask_ptr)
8450 {
8451 	cpumask_var_t new_mask;
8452 	int retval;
8453 
8454 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8455 		return -ENOMEM;
8456 
8457 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8458 	if (retval == 0)
8459 		retval = sched_setaffinity(pid, new_mask);
8460 	free_cpumask_var(new_mask);
8461 	return retval;
8462 }
8463 
8464 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8465 {
8466 	struct task_struct *p;
8467 	unsigned long flags;
8468 	int retval;
8469 
8470 	rcu_read_lock();
8471 
8472 	retval = -ESRCH;
8473 	p = find_process_by_pid(pid);
8474 	if (!p)
8475 		goto out_unlock;
8476 
8477 	retval = security_task_getscheduler(p);
8478 	if (retval)
8479 		goto out_unlock;
8480 
8481 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8482 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8483 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8484 
8485 out_unlock:
8486 	rcu_read_unlock();
8487 
8488 	return retval;
8489 }
8490 
8491 /**
8492  * sys_sched_getaffinity - get the CPU affinity of a process
8493  * @pid: pid of the process
8494  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8495  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8496  *
8497  * Return: size of CPU mask copied to user_mask_ptr on success. An
8498  * error code otherwise.
8499  */
8500 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8501 		unsigned long __user *, user_mask_ptr)
8502 {
8503 	int ret;
8504 	cpumask_var_t mask;
8505 
8506 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8507 		return -EINVAL;
8508 	if (len & (sizeof(unsigned long)-1))
8509 		return -EINVAL;
8510 
8511 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8512 		return -ENOMEM;
8513 
8514 	ret = sched_getaffinity(pid, mask);
8515 	if (ret == 0) {
8516 		unsigned int retlen = min(len, cpumask_size());
8517 
8518 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8519 			ret = -EFAULT;
8520 		else
8521 			ret = retlen;
8522 	}
8523 	free_cpumask_var(mask);
8524 
8525 	return ret;
8526 }
8527 
8528 static void do_sched_yield(void)
8529 {
8530 	struct rq_flags rf;
8531 	struct rq *rq;
8532 
8533 	rq = this_rq_lock_irq(&rf);
8534 
8535 	schedstat_inc(rq->yld_count);
8536 	current->sched_class->yield_task(rq);
8537 
8538 	preempt_disable();
8539 	rq_unlock_irq(rq, &rf);
8540 	sched_preempt_enable_no_resched();
8541 
8542 	schedule();
8543 }
8544 
8545 /**
8546  * sys_sched_yield - yield the current processor to other threads.
8547  *
8548  * This function yields the current CPU to other tasks. If there are no
8549  * other threads running on this CPU then this function will return.
8550  *
8551  * Return: 0.
8552  */
8553 SYSCALL_DEFINE0(sched_yield)
8554 {
8555 	do_sched_yield();
8556 	return 0;
8557 }
8558 
8559 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8560 int __sched __cond_resched(void)
8561 {
8562 	if (should_resched(0)) {
8563 		preempt_schedule_common();
8564 		return 1;
8565 	}
8566 	/*
8567 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8568 	 * whether the current CPU is in an RCU read-side critical section,
8569 	 * so the tick can report quiescent states even for CPUs looping
8570 	 * in kernel context.  In contrast, in non-preemptible kernels,
8571 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8572 	 * processes executing in kernel context might never report an
8573 	 * RCU quiescent state.  Therefore, the following code causes
8574 	 * cond_resched() to report a quiescent state, but only when RCU
8575 	 * is in urgent need of one.
8576 	 */
8577 #ifndef CONFIG_PREEMPT_RCU
8578 	rcu_all_qs();
8579 #endif
8580 	return 0;
8581 }
8582 EXPORT_SYMBOL(__cond_resched);
8583 #endif
8584 
8585 #ifdef CONFIG_PREEMPT_DYNAMIC
8586 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8587 #define cond_resched_dynamic_enabled	__cond_resched
8588 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8589 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8590 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8591 
8592 #define might_resched_dynamic_enabled	__cond_resched
8593 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8594 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8595 EXPORT_STATIC_CALL_TRAMP(might_resched);
8596 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8597 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8598 int __sched dynamic_cond_resched(void)
8599 {
8600 	klp_sched_try_switch();
8601 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8602 		return 0;
8603 	return __cond_resched();
8604 }
8605 EXPORT_SYMBOL(dynamic_cond_resched);
8606 
8607 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8608 int __sched dynamic_might_resched(void)
8609 {
8610 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8611 		return 0;
8612 	return __cond_resched();
8613 }
8614 EXPORT_SYMBOL(dynamic_might_resched);
8615 #endif
8616 #endif
8617 
8618 /*
8619  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8620  * call schedule, and on return reacquire the lock.
8621  *
8622  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8623  * operations here to prevent schedule() from being called twice (once via
8624  * spin_unlock(), once by hand).
8625  */
8626 int __cond_resched_lock(spinlock_t *lock)
8627 {
8628 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8629 	int ret = 0;
8630 
8631 	lockdep_assert_held(lock);
8632 
8633 	if (spin_needbreak(lock) || resched) {
8634 		spin_unlock(lock);
8635 		if (!_cond_resched())
8636 			cpu_relax();
8637 		ret = 1;
8638 		spin_lock(lock);
8639 	}
8640 	return ret;
8641 }
8642 EXPORT_SYMBOL(__cond_resched_lock);
8643 
8644 int __cond_resched_rwlock_read(rwlock_t *lock)
8645 {
8646 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8647 	int ret = 0;
8648 
8649 	lockdep_assert_held_read(lock);
8650 
8651 	if (rwlock_needbreak(lock) || resched) {
8652 		read_unlock(lock);
8653 		if (!_cond_resched())
8654 			cpu_relax();
8655 		ret = 1;
8656 		read_lock(lock);
8657 	}
8658 	return ret;
8659 }
8660 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8661 
8662 int __cond_resched_rwlock_write(rwlock_t *lock)
8663 {
8664 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8665 	int ret = 0;
8666 
8667 	lockdep_assert_held_write(lock);
8668 
8669 	if (rwlock_needbreak(lock) || resched) {
8670 		write_unlock(lock);
8671 		if (!_cond_resched())
8672 			cpu_relax();
8673 		ret = 1;
8674 		write_lock(lock);
8675 	}
8676 	return ret;
8677 }
8678 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8679 
8680 #ifdef CONFIG_PREEMPT_DYNAMIC
8681 
8682 #ifdef CONFIG_GENERIC_ENTRY
8683 #include <linux/entry-common.h>
8684 #endif
8685 
8686 /*
8687  * SC:cond_resched
8688  * SC:might_resched
8689  * SC:preempt_schedule
8690  * SC:preempt_schedule_notrace
8691  * SC:irqentry_exit_cond_resched
8692  *
8693  *
8694  * NONE:
8695  *   cond_resched               <- __cond_resched
8696  *   might_resched              <- RET0
8697  *   preempt_schedule           <- NOP
8698  *   preempt_schedule_notrace   <- NOP
8699  *   irqentry_exit_cond_resched <- NOP
8700  *
8701  * VOLUNTARY:
8702  *   cond_resched               <- __cond_resched
8703  *   might_resched              <- __cond_resched
8704  *   preempt_schedule           <- NOP
8705  *   preempt_schedule_notrace   <- NOP
8706  *   irqentry_exit_cond_resched <- NOP
8707  *
8708  * FULL:
8709  *   cond_resched               <- RET0
8710  *   might_resched              <- RET0
8711  *   preempt_schedule           <- preempt_schedule
8712  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8713  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8714  */
8715 
8716 enum {
8717 	preempt_dynamic_undefined = -1,
8718 	preempt_dynamic_none,
8719 	preempt_dynamic_voluntary,
8720 	preempt_dynamic_full,
8721 };
8722 
8723 int preempt_dynamic_mode = preempt_dynamic_undefined;
8724 
8725 int sched_dynamic_mode(const char *str)
8726 {
8727 	if (!strcmp(str, "none"))
8728 		return preempt_dynamic_none;
8729 
8730 	if (!strcmp(str, "voluntary"))
8731 		return preempt_dynamic_voluntary;
8732 
8733 	if (!strcmp(str, "full"))
8734 		return preempt_dynamic_full;
8735 
8736 	return -EINVAL;
8737 }
8738 
8739 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8740 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8741 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8742 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8743 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8744 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8745 #else
8746 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8747 #endif
8748 
8749 static DEFINE_MUTEX(sched_dynamic_mutex);
8750 static bool klp_override;
8751 
8752 static void __sched_dynamic_update(int mode)
8753 {
8754 	/*
8755 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8756 	 * the ZERO state, which is invalid.
8757 	 */
8758 	if (!klp_override)
8759 		preempt_dynamic_enable(cond_resched);
8760 	preempt_dynamic_enable(might_resched);
8761 	preempt_dynamic_enable(preempt_schedule);
8762 	preempt_dynamic_enable(preempt_schedule_notrace);
8763 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8764 
8765 	switch (mode) {
8766 	case preempt_dynamic_none:
8767 		if (!klp_override)
8768 			preempt_dynamic_enable(cond_resched);
8769 		preempt_dynamic_disable(might_resched);
8770 		preempt_dynamic_disable(preempt_schedule);
8771 		preempt_dynamic_disable(preempt_schedule_notrace);
8772 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8773 		if (mode != preempt_dynamic_mode)
8774 			pr_info("Dynamic Preempt: none\n");
8775 		break;
8776 
8777 	case preempt_dynamic_voluntary:
8778 		if (!klp_override)
8779 			preempt_dynamic_enable(cond_resched);
8780 		preempt_dynamic_enable(might_resched);
8781 		preempt_dynamic_disable(preempt_schedule);
8782 		preempt_dynamic_disable(preempt_schedule_notrace);
8783 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8784 		if (mode != preempt_dynamic_mode)
8785 			pr_info("Dynamic Preempt: voluntary\n");
8786 		break;
8787 
8788 	case preempt_dynamic_full:
8789 		if (!klp_override)
8790 			preempt_dynamic_disable(cond_resched);
8791 		preempt_dynamic_disable(might_resched);
8792 		preempt_dynamic_enable(preempt_schedule);
8793 		preempt_dynamic_enable(preempt_schedule_notrace);
8794 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8795 		if (mode != preempt_dynamic_mode)
8796 			pr_info("Dynamic Preempt: full\n");
8797 		break;
8798 	}
8799 
8800 	preempt_dynamic_mode = mode;
8801 }
8802 
8803 void sched_dynamic_update(int mode)
8804 {
8805 	mutex_lock(&sched_dynamic_mutex);
8806 	__sched_dynamic_update(mode);
8807 	mutex_unlock(&sched_dynamic_mutex);
8808 }
8809 
8810 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8811 
8812 static int klp_cond_resched(void)
8813 {
8814 	__klp_sched_try_switch();
8815 	return __cond_resched();
8816 }
8817 
8818 void sched_dynamic_klp_enable(void)
8819 {
8820 	mutex_lock(&sched_dynamic_mutex);
8821 
8822 	klp_override = true;
8823 	static_call_update(cond_resched, klp_cond_resched);
8824 
8825 	mutex_unlock(&sched_dynamic_mutex);
8826 }
8827 
8828 void sched_dynamic_klp_disable(void)
8829 {
8830 	mutex_lock(&sched_dynamic_mutex);
8831 
8832 	klp_override = false;
8833 	__sched_dynamic_update(preempt_dynamic_mode);
8834 
8835 	mutex_unlock(&sched_dynamic_mutex);
8836 }
8837 
8838 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8839 
8840 static int __init setup_preempt_mode(char *str)
8841 {
8842 	int mode = sched_dynamic_mode(str);
8843 	if (mode < 0) {
8844 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8845 		return 0;
8846 	}
8847 
8848 	sched_dynamic_update(mode);
8849 	return 1;
8850 }
8851 __setup("preempt=", setup_preempt_mode);
8852 
8853 static void __init preempt_dynamic_init(void)
8854 {
8855 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8856 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8857 			sched_dynamic_update(preempt_dynamic_none);
8858 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8859 			sched_dynamic_update(preempt_dynamic_voluntary);
8860 		} else {
8861 			/* Default static call setting, nothing to do */
8862 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8863 			preempt_dynamic_mode = preempt_dynamic_full;
8864 			pr_info("Dynamic Preempt: full\n");
8865 		}
8866 	}
8867 }
8868 
8869 #define PREEMPT_MODEL_ACCESSOR(mode) \
8870 	bool preempt_model_##mode(void)						 \
8871 	{									 \
8872 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8873 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8874 	}									 \
8875 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8876 
8877 PREEMPT_MODEL_ACCESSOR(none);
8878 PREEMPT_MODEL_ACCESSOR(voluntary);
8879 PREEMPT_MODEL_ACCESSOR(full);
8880 
8881 #else /* !CONFIG_PREEMPT_DYNAMIC */
8882 
8883 static inline void preempt_dynamic_init(void) { }
8884 
8885 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8886 
8887 /**
8888  * yield - yield the current processor to other threads.
8889  *
8890  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8891  *
8892  * The scheduler is at all times free to pick the calling task as the most
8893  * eligible task to run, if removing the yield() call from your code breaks
8894  * it, it's already broken.
8895  *
8896  * Typical broken usage is:
8897  *
8898  * while (!event)
8899  *	yield();
8900  *
8901  * where one assumes that yield() will let 'the other' process run that will
8902  * make event true. If the current task is a SCHED_FIFO task that will never
8903  * happen. Never use yield() as a progress guarantee!!
8904  *
8905  * If you want to use yield() to wait for something, use wait_event().
8906  * If you want to use yield() to be 'nice' for others, use cond_resched().
8907  * If you still want to use yield(), do not!
8908  */
8909 void __sched yield(void)
8910 {
8911 	set_current_state(TASK_RUNNING);
8912 	do_sched_yield();
8913 }
8914 EXPORT_SYMBOL(yield);
8915 
8916 /**
8917  * yield_to - yield the current processor to another thread in
8918  * your thread group, or accelerate that thread toward the
8919  * processor it's on.
8920  * @p: target task
8921  * @preempt: whether task preemption is allowed or not
8922  *
8923  * It's the caller's job to ensure that the target task struct
8924  * can't go away on us before we can do any checks.
8925  *
8926  * Return:
8927  *	true (>0) if we indeed boosted the target task.
8928  *	false (0) if we failed to boost the target.
8929  *	-ESRCH if there's no task to yield to.
8930  */
8931 int __sched yield_to(struct task_struct *p, bool preempt)
8932 {
8933 	struct task_struct *curr = current;
8934 	struct rq *rq, *p_rq;
8935 	unsigned long flags;
8936 	int yielded = 0;
8937 
8938 	local_irq_save(flags);
8939 	rq = this_rq();
8940 
8941 again:
8942 	p_rq = task_rq(p);
8943 	/*
8944 	 * If we're the only runnable task on the rq and target rq also
8945 	 * has only one task, there's absolutely no point in yielding.
8946 	 */
8947 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8948 		yielded = -ESRCH;
8949 		goto out_irq;
8950 	}
8951 
8952 	double_rq_lock(rq, p_rq);
8953 	if (task_rq(p) != p_rq) {
8954 		double_rq_unlock(rq, p_rq);
8955 		goto again;
8956 	}
8957 
8958 	if (!curr->sched_class->yield_to_task)
8959 		goto out_unlock;
8960 
8961 	if (curr->sched_class != p->sched_class)
8962 		goto out_unlock;
8963 
8964 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8965 		goto out_unlock;
8966 
8967 	yielded = curr->sched_class->yield_to_task(rq, p);
8968 	if (yielded) {
8969 		schedstat_inc(rq->yld_count);
8970 		/*
8971 		 * Make p's CPU reschedule; pick_next_entity takes care of
8972 		 * fairness.
8973 		 */
8974 		if (preempt && rq != p_rq)
8975 			resched_curr(p_rq);
8976 	}
8977 
8978 out_unlock:
8979 	double_rq_unlock(rq, p_rq);
8980 out_irq:
8981 	local_irq_restore(flags);
8982 
8983 	if (yielded > 0)
8984 		schedule();
8985 
8986 	return yielded;
8987 }
8988 EXPORT_SYMBOL_GPL(yield_to);
8989 
8990 int io_schedule_prepare(void)
8991 {
8992 	int old_iowait = current->in_iowait;
8993 
8994 	current->in_iowait = 1;
8995 	blk_flush_plug(current->plug, true);
8996 	return old_iowait;
8997 }
8998 
8999 void io_schedule_finish(int token)
9000 {
9001 	current->in_iowait = token;
9002 }
9003 
9004 /*
9005  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9006  * that process accounting knows that this is a task in IO wait state.
9007  */
9008 long __sched io_schedule_timeout(long timeout)
9009 {
9010 	int token;
9011 	long ret;
9012 
9013 	token = io_schedule_prepare();
9014 	ret = schedule_timeout(timeout);
9015 	io_schedule_finish(token);
9016 
9017 	return ret;
9018 }
9019 EXPORT_SYMBOL(io_schedule_timeout);
9020 
9021 void __sched io_schedule(void)
9022 {
9023 	int token;
9024 
9025 	token = io_schedule_prepare();
9026 	schedule();
9027 	io_schedule_finish(token);
9028 }
9029 EXPORT_SYMBOL(io_schedule);
9030 
9031 /**
9032  * sys_sched_get_priority_max - return maximum RT priority.
9033  * @policy: scheduling class.
9034  *
9035  * Return: On success, this syscall returns the maximum
9036  * rt_priority that can be used by a given scheduling class.
9037  * On failure, a negative error code is returned.
9038  */
9039 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9040 {
9041 	int ret = -EINVAL;
9042 
9043 	switch (policy) {
9044 	case SCHED_FIFO:
9045 	case SCHED_RR:
9046 		ret = MAX_RT_PRIO-1;
9047 		break;
9048 	case SCHED_DEADLINE:
9049 	case SCHED_NORMAL:
9050 	case SCHED_BATCH:
9051 	case SCHED_IDLE:
9052 		ret = 0;
9053 		break;
9054 	}
9055 	return ret;
9056 }
9057 
9058 /**
9059  * sys_sched_get_priority_min - return minimum RT priority.
9060  * @policy: scheduling class.
9061  *
9062  * Return: On success, this syscall returns the minimum
9063  * rt_priority that can be used by a given scheduling class.
9064  * On failure, a negative error code is returned.
9065  */
9066 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9067 {
9068 	int ret = -EINVAL;
9069 
9070 	switch (policy) {
9071 	case SCHED_FIFO:
9072 	case SCHED_RR:
9073 		ret = 1;
9074 		break;
9075 	case SCHED_DEADLINE:
9076 	case SCHED_NORMAL:
9077 	case SCHED_BATCH:
9078 	case SCHED_IDLE:
9079 		ret = 0;
9080 	}
9081 	return ret;
9082 }
9083 
9084 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9085 {
9086 	struct task_struct *p;
9087 	unsigned int time_slice;
9088 	struct rq_flags rf;
9089 	struct rq *rq;
9090 	int retval;
9091 
9092 	if (pid < 0)
9093 		return -EINVAL;
9094 
9095 	retval = -ESRCH;
9096 	rcu_read_lock();
9097 	p = find_process_by_pid(pid);
9098 	if (!p)
9099 		goto out_unlock;
9100 
9101 	retval = security_task_getscheduler(p);
9102 	if (retval)
9103 		goto out_unlock;
9104 
9105 	rq = task_rq_lock(p, &rf);
9106 	time_slice = 0;
9107 	if (p->sched_class->get_rr_interval)
9108 		time_slice = p->sched_class->get_rr_interval(rq, p);
9109 	task_rq_unlock(rq, p, &rf);
9110 
9111 	rcu_read_unlock();
9112 	jiffies_to_timespec64(time_slice, t);
9113 	return 0;
9114 
9115 out_unlock:
9116 	rcu_read_unlock();
9117 	return retval;
9118 }
9119 
9120 /**
9121  * sys_sched_rr_get_interval - return the default timeslice of a process.
9122  * @pid: pid of the process.
9123  * @interval: userspace pointer to the timeslice value.
9124  *
9125  * this syscall writes the default timeslice value of a given process
9126  * into the user-space timespec buffer. A value of '0' means infinity.
9127  *
9128  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9129  * an error code.
9130  */
9131 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9132 		struct __kernel_timespec __user *, interval)
9133 {
9134 	struct timespec64 t;
9135 	int retval = sched_rr_get_interval(pid, &t);
9136 
9137 	if (retval == 0)
9138 		retval = put_timespec64(&t, interval);
9139 
9140 	return retval;
9141 }
9142 
9143 #ifdef CONFIG_COMPAT_32BIT_TIME
9144 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9145 		struct old_timespec32 __user *, interval)
9146 {
9147 	struct timespec64 t;
9148 	int retval = sched_rr_get_interval(pid, &t);
9149 
9150 	if (retval == 0)
9151 		retval = put_old_timespec32(&t, interval);
9152 	return retval;
9153 }
9154 #endif
9155 
9156 void sched_show_task(struct task_struct *p)
9157 {
9158 	unsigned long free = 0;
9159 	int ppid;
9160 
9161 	if (!try_get_task_stack(p))
9162 		return;
9163 
9164 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9165 
9166 	if (task_is_running(p))
9167 		pr_cont("  running task    ");
9168 #ifdef CONFIG_DEBUG_STACK_USAGE
9169 	free = stack_not_used(p);
9170 #endif
9171 	ppid = 0;
9172 	rcu_read_lock();
9173 	if (pid_alive(p))
9174 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9175 	rcu_read_unlock();
9176 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9177 		free, task_pid_nr(p), ppid,
9178 		read_task_thread_flags(p));
9179 
9180 	print_worker_info(KERN_INFO, p);
9181 	print_stop_info(KERN_INFO, p);
9182 	show_stack(p, NULL, KERN_INFO);
9183 	put_task_stack(p);
9184 }
9185 EXPORT_SYMBOL_GPL(sched_show_task);
9186 
9187 static inline bool
9188 state_filter_match(unsigned long state_filter, struct task_struct *p)
9189 {
9190 	unsigned int state = READ_ONCE(p->__state);
9191 
9192 	/* no filter, everything matches */
9193 	if (!state_filter)
9194 		return true;
9195 
9196 	/* filter, but doesn't match */
9197 	if (!(state & state_filter))
9198 		return false;
9199 
9200 	/*
9201 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9202 	 * TASK_KILLABLE).
9203 	 */
9204 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9205 		return false;
9206 
9207 	return true;
9208 }
9209 
9210 
9211 void show_state_filter(unsigned int state_filter)
9212 {
9213 	struct task_struct *g, *p;
9214 
9215 	rcu_read_lock();
9216 	for_each_process_thread(g, p) {
9217 		/*
9218 		 * reset the NMI-timeout, listing all files on a slow
9219 		 * console might take a lot of time:
9220 		 * Also, reset softlockup watchdogs on all CPUs, because
9221 		 * another CPU might be blocked waiting for us to process
9222 		 * an IPI.
9223 		 */
9224 		touch_nmi_watchdog();
9225 		touch_all_softlockup_watchdogs();
9226 		if (state_filter_match(state_filter, p))
9227 			sched_show_task(p);
9228 	}
9229 
9230 #ifdef CONFIG_SCHED_DEBUG
9231 	if (!state_filter)
9232 		sysrq_sched_debug_show();
9233 #endif
9234 	rcu_read_unlock();
9235 	/*
9236 	 * Only show locks if all tasks are dumped:
9237 	 */
9238 	if (!state_filter)
9239 		debug_show_all_locks();
9240 }
9241 
9242 /**
9243  * init_idle - set up an idle thread for a given CPU
9244  * @idle: task in question
9245  * @cpu: CPU the idle task belongs to
9246  *
9247  * NOTE: this function does not set the idle thread's NEED_RESCHED
9248  * flag, to make booting more robust.
9249  */
9250 void __init init_idle(struct task_struct *idle, int cpu)
9251 {
9252 #ifdef CONFIG_SMP
9253 	struct affinity_context ac = (struct affinity_context) {
9254 		.new_mask  = cpumask_of(cpu),
9255 		.flags     = 0,
9256 	};
9257 #endif
9258 	struct rq *rq = cpu_rq(cpu);
9259 	unsigned long flags;
9260 
9261 	__sched_fork(0, idle);
9262 
9263 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9264 	raw_spin_rq_lock(rq);
9265 
9266 	idle->__state = TASK_RUNNING;
9267 	idle->se.exec_start = sched_clock();
9268 	/*
9269 	 * PF_KTHREAD should already be set at this point; regardless, make it
9270 	 * look like a proper per-CPU kthread.
9271 	 */
9272 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9273 	kthread_set_per_cpu(idle, cpu);
9274 
9275 #ifdef CONFIG_SMP
9276 	/*
9277 	 * It's possible that init_idle() gets called multiple times on a task,
9278 	 * in that case do_set_cpus_allowed() will not do the right thing.
9279 	 *
9280 	 * And since this is boot we can forgo the serialization.
9281 	 */
9282 	set_cpus_allowed_common(idle, &ac);
9283 #endif
9284 	/*
9285 	 * We're having a chicken and egg problem, even though we are
9286 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9287 	 * lockdep check in task_group() will fail.
9288 	 *
9289 	 * Similar case to sched_fork(). / Alternatively we could
9290 	 * use task_rq_lock() here and obtain the other rq->lock.
9291 	 *
9292 	 * Silence PROVE_RCU
9293 	 */
9294 	rcu_read_lock();
9295 	__set_task_cpu(idle, cpu);
9296 	rcu_read_unlock();
9297 
9298 	rq->idle = idle;
9299 	rcu_assign_pointer(rq->curr, idle);
9300 	idle->on_rq = TASK_ON_RQ_QUEUED;
9301 #ifdef CONFIG_SMP
9302 	idle->on_cpu = 1;
9303 #endif
9304 	raw_spin_rq_unlock(rq);
9305 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9306 
9307 	/* Set the preempt count _outside_ the spinlocks! */
9308 	init_idle_preempt_count(idle, cpu);
9309 
9310 	/*
9311 	 * The idle tasks have their own, simple scheduling class:
9312 	 */
9313 	idle->sched_class = &idle_sched_class;
9314 	ftrace_graph_init_idle_task(idle, cpu);
9315 	vtime_init_idle(idle, cpu);
9316 #ifdef CONFIG_SMP
9317 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9318 #endif
9319 }
9320 
9321 #ifdef CONFIG_SMP
9322 
9323 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9324 			      const struct cpumask *trial)
9325 {
9326 	int ret = 1;
9327 
9328 	if (cpumask_empty(cur))
9329 		return ret;
9330 
9331 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9332 
9333 	return ret;
9334 }
9335 
9336 int task_can_attach(struct task_struct *p)
9337 {
9338 	int ret = 0;
9339 
9340 	/*
9341 	 * Kthreads which disallow setaffinity shouldn't be moved
9342 	 * to a new cpuset; we don't want to change their CPU
9343 	 * affinity and isolating such threads by their set of
9344 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9345 	 * applicable for such threads.  This prevents checking for
9346 	 * success of set_cpus_allowed_ptr() on all attached tasks
9347 	 * before cpus_mask may be changed.
9348 	 */
9349 	if (p->flags & PF_NO_SETAFFINITY)
9350 		ret = -EINVAL;
9351 
9352 	return ret;
9353 }
9354 
9355 bool sched_smp_initialized __read_mostly;
9356 
9357 #ifdef CONFIG_NUMA_BALANCING
9358 /* Migrate current task p to target_cpu */
9359 int migrate_task_to(struct task_struct *p, int target_cpu)
9360 {
9361 	struct migration_arg arg = { p, target_cpu };
9362 	int curr_cpu = task_cpu(p);
9363 
9364 	if (curr_cpu == target_cpu)
9365 		return 0;
9366 
9367 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9368 		return -EINVAL;
9369 
9370 	/* TODO: This is not properly updating schedstats */
9371 
9372 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9373 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9374 }
9375 
9376 /*
9377  * Requeue a task on a given node and accurately track the number of NUMA
9378  * tasks on the runqueues
9379  */
9380 void sched_setnuma(struct task_struct *p, int nid)
9381 {
9382 	bool queued, running;
9383 	struct rq_flags rf;
9384 	struct rq *rq;
9385 
9386 	rq = task_rq_lock(p, &rf);
9387 	queued = task_on_rq_queued(p);
9388 	running = task_current(rq, p);
9389 
9390 	if (queued)
9391 		dequeue_task(rq, p, DEQUEUE_SAVE);
9392 	if (running)
9393 		put_prev_task(rq, p);
9394 
9395 	p->numa_preferred_nid = nid;
9396 
9397 	if (queued)
9398 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9399 	if (running)
9400 		set_next_task(rq, p);
9401 	task_rq_unlock(rq, p, &rf);
9402 }
9403 #endif /* CONFIG_NUMA_BALANCING */
9404 
9405 #ifdef CONFIG_HOTPLUG_CPU
9406 /*
9407  * Ensure that the idle task is using init_mm right before its CPU goes
9408  * offline.
9409  */
9410 void idle_task_exit(void)
9411 {
9412 	struct mm_struct *mm = current->active_mm;
9413 
9414 	BUG_ON(cpu_online(smp_processor_id()));
9415 	BUG_ON(current != this_rq()->idle);
9416 
9417 	if (mm != &init_mm) {
9418 		switch_mm(mm, &init_mm, current);
9419 		finish_arch_post_lock_switch();
9420 	}
9421 
9422 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9423 }
9424 
9425 static int __balance_push_cpu_stop(void *arg)
9426 {
9427 	struct task_struct *p = arg;
9428 	struct rq *rq = this_rq();
9429 	struct rq_flags rf;
9430 	int cpu;
9431 
9432 	raw_spin_lock_irq(&p->pi_lock);
9433 	rq_lock(rq, &rf);
9434 
9435 	update_rq_clock(rq);
9436 
9437 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9438 		cpu = select_fallback_rq(rq->cpu, p);
9439 		rq = __migrate_task(rq, &rf, p, cpu);
9440 	}
9441 
9442 	rq_unlock(rq, &rf);
9443 	raw_spin_unlock_irq(&p->pi_lock);
9444 
9445 	put_task_struct(p);
9446 
9447 	return 0;
9448 }
9449 
9450 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9451 
9452 /*
9453  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9454  *
9455  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9456  * effective when the hotplug motion is down.
9457  */
9458 static void balance_push(struct rq *rq)
9459 {
9460 	struct task_struct *push_task = rq->curr;
9461 
9462 	lockdep_assert_rq_held(rq);
9463 
9464 	/*
9465 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9466 	 */
9467 	rq->balance_callback = &balance_push_callback;
9468 
9469 	/*
9470 	 * Only active while going offline and when invoked on the outgoing
9471 	 * CPU.
9472 	 */
9473 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9474 		return;
9475 
9476 	/*
9477 	 * Both the cpu-hotplug and stop task are in this case and are
9478 	 * required to complete the hotplug process.
9479 	 */
9480 	if (kthread_is_per_cpu(push_task) ||
9481 	    is_migration_disabled(push_task)) {
9482 
9483 		/*
9484 		 * If this is the idle task on the outgoing CPU try to wake
9485 		 * up the hotplug control thread which might wait for the
9486 		 * last task to vanish. The rcuwait_active() check is
9487 		 * accurate here because the waiter is pinned on this CPU
9488 		 * and can't obviously be running in parallel.
9489 		 *
9490 		 * On RT kernels this also has to check whether there are
9491 		 * pinned and scheduled out tasks on the runqueue. They
9492 		 * need to leave the migrate disabled section first.
9493 		 */
9494 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9495 		    rcuwait_active(&rq->hotplug_wait)) {
9496 			raw_spin_rq_unlock(rq);
9497 			rcuwait_wake_up(&rq->hotplug_wait);
9498 			raw_spin_rq_lock(rq);
9499 		}
9500 		return;
9501 	}
9502 
9503 	get_task_struct(push_task);
9504 	/*
9505 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9506 	 * Both preemption and IRQs are still disabled.
9507 	 */
9508 	raw_spin_rq_unlock(rq);
9509 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9510 			    this_cpu_ptr(&push_work));
9511 	/*
9512 	 * At this point need_resched() is true and we'll take the loop in
9513 	 * schedule(). The next pick is obviously going to be the stop task
9514 	 * which kthread_is_per_cpu() and will push this task away.
9515 	 */
9516 	raw_spin_rq_lock(rq);
9517 }
9518 
9519 static void balance_push_set(int cpu, bool on)
9520 {
9521 	struct rq *rq = cpu_rq(cpu);
9522 	struct rq_flags rf;
9523 
9524 	rq_lock_irqsave(rq, &rf);
9525 	if (on) {
9526 		WARN_ON_ONCE(rq->balance_callback);
9527 		rq->balance_callback = &balance_push_callback;
9528 	} else if (rq->balance_callback == &balance_push_callback) {
9529 		rq->balance_callback = NULL;
9530 	}
9531 	rq_unlock_irqrestore(rq, &rf);
9532 }
9533 
9534 /*
9535  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9536  * inactive. All tasks which are not per CPU kernel threads are either
9537  * pushed off this CPU now via balance_push() or placed on a different CPU
9538  * during wakeup. Wait until the CPU is quiescent.
9539  */
9540 static void balance_hotplug_wait(void)
9541 {
9542 	struct rq *rq = this_rq();
9543 
9544 	rcuwait_wait_event(&rq->hotplug_wait,
9545 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9546 			   TASK_UNINTERRUPTIBLE);
9547 }
9548 
9549 #else
9550 
9551 static inline void balance_push(struct rq *rq)
9552 {
9553 }
9554 
9555 static inline void balance_push_set(int cpu, bool on)
9556 {
9557 }
9558 
9559 static inline void balance_hotplug_wait(void)
9560 {
9561 }
9562 
9563 #endif /* CONFIG_HOTPLUG_CPU */
9564 
9565 void set_rq_online(struct rq *rq)
9566 {
9567 	if (!rq->online) {
9568 		const struct sched_class *class;
9569 
9570 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9571 		rq->online = 1;
9572 
9573 		for_each_class(class) {
9574 			if (class->rq_online)
9575 				class->rq_online(rq);
9576 		}
9577 	}
9578 }
9579 
9580 void set_rq_offline(struct rq *rq)
9581 {
9582 	if (rq->online) {
9583 		const struct sched_class *class;
9584 
9585 		update_rq_clock(rq);
9586 		for_each_class(class) {
9587 			if (class->rq_offline)
9588 				class->rq_offline(rq);
9589 		}
9590 
9591 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9592 		rq->online = 0;
9593 	}
9594 }
9595 
9596 /*
9597  * used to mark begin/end of suspend/resume:
9598  */
9599 static int num_cpus_frozen;
9600 
9601 /*
9602  * Update cpusets according to cpu_active mask.  If cpusets are
9603  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9604  * around partition_sched_domains().
9605  *
9606  * If we come here as part of a suspend/resume, don't touch cpusets because we
9607  * want to restore it back to its original state upon resume anyway.
9608  */
9609 static void cpuset_cpu_active(void)
9610 {
9611 	if (cpuhp_tasks_frozen) {
9612 		/*
9613 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9614 		 * resume sequence. As long as this is not the last online
9615 		 * operation in the resume sequence, just build a single sched
9616 		 * domain, ignoring cpusets.
9617 		 */
9618 		partition_sched_domains(1, NULL, NULL);
9619 		if (--num_cpus_frozen)
9620 			return;
9621 		/*
9622 		 * This is the last CPU online operation. So fall through and
9623 		 * restore the original sched domains by considering the
9624 		 * cpuset configurations.
9625 		 */
9626 		cpuset_force_rebuild();
9627 	}
9628 	cpuset_update_active_cpus();
9629 }
9630 
9631 static int cpuset_cpu_inactive(unsigned int cpu)
9632 {
9633 	if (!cpuhp_tasks_frozen) {
9634 		int ret = dl_bw_check_overflow(cpu);
9635 
9636 		if (ret)
9637 			return ret;
9638 		cpuset_update_active_cpus();
9639 	} else {
9640 		num_cpus_frozen++;
9641 		partition_sched_domains(1, NULL, NULL);
9642 	}
9643 	return 0;
9644 }
9645 
9646 int sched_cpu_activate(unsigned int cpu)
9647 {
9648 	struct rq *rq = cpu_rq(cpu);
9649 	struct rq_flags rf;
9650 
9651 	/*
9652 	 * Clear the balance_push callback and prepare to schedule
9653 	 * regular tasks.
9654 	 */
9655 	balance_push_set(cpu, false);
9656 
9657 #ifdef CONFIG_SCHED_SMT
9658 	/*
9659 	 * When going up, increment the number of cores with SMT present.
9660 	 */
9661 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9662 		static_branch_inc_cpuslocked(&sched_smt_present);
9663 #endif
9664 	set_cpu_active(cpu, true);
9665 
9666 	if (sched_smp_initialized) {
9667 		sched_update_numa(cpu, true);
9668 		sched_domains_numa_masks_set(cpu);
9669 		cpuset_cpu_active();
9670 	}
9671 
9672 	/*
9673 	 * Put the rq online, if not already. This happens:
9674 	 *
9675 	 * 1) In the early boot process, because we build the real domains
9676 	 *    after all CPUs have been brought up.
9677 	 *
9678 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9679 	 *    domains.
9680 	 */
9681 	rq_lock_irqsave(rq, &rf);
9682 	if (rq->rd) {
9683 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9684 		set_rq_online(rq);
9685 	}
9686 	rq_unlock_irqrestore(rq, &rf);
9687 
9688 	return 0;
9689 }
9690 
9691 int sched_cpu_deactivate(unsigned int cpu)
9692 {
9693 	struct rq *rq = cpu_rq(cpu);
9694 	struct rq_flags rf;
9695 	int ret;
9696 
9697 	/*
9698 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9699 	 * load balancing when not active
9700 	 */
9701 	nohz_balance_exit_idle(rq);
9702 
9703 	set_cpu_active(cpu, false);
9704 
9705 	/*
9706 	 * From this point forward, this CPU will refuse to run any task that
9707 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9708 	 * push those tasks away until this gets cleared, see
9709 	 * sched_cpu_dying().
9710 	 */
9711 	balance_push_set(cpu, true);
9712 
9713 	/*
9714 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9715 	 * preempt-disabled and RCU users of this state to go away such that
9716 	 * all new such users will observe it.
9717 	 *
9718 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9719 	 * ttwu_queue_cond() and is_cpu_allowed().
9720 	 *
9721 	 * Do sync before park smpboot threads to take care the rcu boost case.
9722 	 */
9723 	synchronize_rcu();
9724 
9725 	rq_lock_irqsave(rq, &rf);
9726 	if (rq->rd) {
9727 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9728 		set_rq_offline(rq);
9729 	}
9730 	rq_unlock_irqrestore(rq, &rf);
9731 
9732 #ifdef CONFIG_SCHED_SMT
9733 	/*
9734 	 * When going down, decrement the number of cores with SMT present.
9735 	 */
9736 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9737 		static_branch_dec_cpuslocked(&sched_smt_present);
9738 
9739 	sched_core_cpu_deactivate(cpu);
9740 #endif
9741 
9742 	if (!sched_smp_initialized)
9743 		return 0;
9744 
9745 	sched_update_numa(cpu, false);
9746 	ret = cpuset_cpu_inactive(cpu);
9747 	if (ret) {
9748 		balance_push_set(cpu, false);
9749 		set_cpu_active(cpu, true);
9750 		sched_update_numa(cpu, true);
9751 		return ret;
9752 	}
9753 	sched_domains_numa_masks_clear(cpu);
9754 	return 0;
9755 }
9756 
9757 static void sched_rq_cpu_starting(unsigned int cpu)
9758 {
9759 	struct rq *rq = cpu_rq(cpu);
9760 
9761 	rq->calc_load_update = calc_load_update;
9762 	update_max_interval();
9763 }
9764 
9765 int sched_cpu_starting(unsigned int cpu)
9766 {
9767 	sched_core_cpu_starting(cpu);
9768 	sched_rq_cpu_starting(cpu);
9769 	sched_tick_start(cpu);
9770 	return 0;
9771 }
9772 
9773 #ifdef CONFIG_HOTPLUG_CPU
9774 
9775 /*
9776  * Invoked immediately before the stopper thread is invoked to bring the
9777  * CPU down completely. At this point all per CPU kthreads except the
9778  * hotplug thread (current) and the stopper thread (inactive) have been
9779  * either parked or have been unbound from the outgoing CPU. Ensure that
9780  * any of those which might be on the way out are gone.
9781  *
9782  * If after this point a bound task is being woken on this CPU then the
9783  * responsible hotplug callback has failed to do it's job.
9784  * sched_cpu_dying() will catch it with the appropriate fireworks.
9785  */
9786 int sched_cpu_wait_empty(unsigned int cpu)
9787 {
9788 	balance_hotplug_wait();
9789 	return 0;
9790 }
9791 
9792 /*
9793  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9794  * might have. Called from the CPU stopper task after ensuring that the
9795  * stopper is the last running task on the CPU, so nr_active count is
9796  * stable. We need to take the teardown thread which is calling this into
9797  * account, so we hand in adjust = 1 to the load calculation.
9798  *
9799  * Also see the comment "Global load-average calculations".
9800  */
9801 static void calc_load_migrate(struct rq *rq)
9802 {
9803 	long delta = calc_load_fold_active(rq, 1);
9804 
9805 	if (delta)
9806 		atomic_long_add(delta, &calc_load_tasks);
9807 }
9808 
9809 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9810 {
9811 	struct task_struct *g, *p;
9812 	int cpu = cpu_of(rq);
9813 
9814 	lockdep_assert_rq_held(rq);
9815 
9816 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9817 	for_each_process_thread(g, p) {
9818 		if (task_cpu(p) != cpu)
9819 			continue;
9820 
9821 		if (!task_on_rq_queued(p))
9822 			continue;
9823 
9824 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9825 	}
9826 }
9827 
9828 int sched_cpu_dying(unsigned int cpu)
9829 {
9830 	struct rq *rq = cpu_rq(cpu);
9831 	struct rq_flags rf;
9832 
9833 	/* Handle pending wakeups and then migrate everything off */
9834 	sched_tick_stop(cpu);
9835 
9836 	rq_lock_irqsave(rq, &rf);
9837 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9838 		WARN(true, "Dying CPU not properly vacated!");
9839 		dump_rq_tasks(rq, KERN_WARNING);
9840 	}
9841 	rq_unlock_irqrestore(rq, &rf);
9842 
9843 	calc_load_migrate(rq);
9844 	update_max_interval();
9845 	hrtick_clear(rq);
9846 	sched_core_cpu_dying(cpu);
9847 	return 0;
9848 }
9849 #endif
9850 
9851 void __init sched_init_smp(void)
9852 {
9853 	sched_init_numa(NUMA_NO_NODE);
9854 
9855 	/*
9856 	 * There's no userspace yet to cause hotplug operations; hence all the
9857 	 * CPU masks are stable and all blatant races in the below code cannot
9858 	 * happen.
9859 	 */
9860 	mutex_lock(&sched_domains_mutex);
9861 	sched_init_domains(cpu_active_mask);
9862 	mutex_unlock(&sched_domains_mutex);
9863 
9864 	/* Move init over to a non-isolated CPU */
9865 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9866 		BUG();
9867 	current->flags &= ~PF_NO_SETAFFINITY;
9868 	sched_init_granularity();
9869 
9870 	init_sched_rt_class();
9871 	init_sched_dl_class();
9872 
9873 	sched_smp_initialized = true;
9874 }
9875 
9876 static int __init migration_init(void)
9877 {
9878 	sched_cpu_starting(smp_processor_id());
9879 	return 0;
9880 }
9881 early_initcall(migration_init);
9882 
9883 #else
9884 void __init sched_init_smp(void)
9885 {
9886 	sched_init_granularity();
9887 }
9888 #endif /* CONFIG_SMP */
9889 
9890 int in_sched_functions(unsigned long addr)
9891 {
9892 	return in_lock_functions(addr) ||
9893 		(addr >= (unsigned long)__sched_text_start
9894 		&& addr < (unsigned long)__sched_text_end);
9895 }
9896 
9897 #ifdef CONFIG_CGROUP_SCHED
9898 /*
9899  * Default task group.
9900  * Every task in system belongs to this group at bootup.
9901  */
9902 struct task_group root_task_group;
9903 LIST_HEAD(task_groups);
9904 
9905 /* Cacheline aligned slab cache for task_group */
9906 static struct kmem_cache *task_group_cache __read_mostly;
9907 #endif
9908 
9909 void __init sched_init(void)
9910 {
9911 	unsigned long ptr = 0;
9912 	int i;
9913 
9914 	/* Make sure the linker didn't screw up */
9915 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9916 	       &fair_sched_class != &rt_sched_class + 1 ||
9917 	       &rt_sched_class   != &dl_sched_class + 1);
9918 #ifdef CONFIG_SMP
9919 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9920 #endif
9921 
9922 	wait_bit_init();
9923 
9924 #ifdef CONFIG_FAIR_GROUP_SCHED
9925 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9926 #endif
9927 #ifdef CONFIG_RT_GROUP_SCHED
9928 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9929 #endif
9930 	if (ptr) {
9931 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9932 
9933 #ifdef CONFIG_FAIR_GROUP_SCHED
9934 		root_task_group.se = (struct sched_entity **)ptr;
9935 		ptr += nr_cpu_ids * sizeof(void **);
9936 
9937 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9938 		ptr += nr_cpu_ids * sizeof(void **);
9939 
9940 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9941 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9942 #endif /* CONFIG_FAIR_GROUP_SCHED */
9943 #ifdef CONFIG_RT_GROUP_SCHED
9944 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9945 		ptr += nr_cpu_ids * sizeof(void **);
9946 
9947 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9948 		ptr += nr_cpu_ids * sizeof(void **);
9949 
9950 #endif /* CONFIG_RT_GROUP_SCHED */
9951 	}
9952 
9953 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9954 
9955 #ifdef CONFIG_SMP
9956 	init_defrootdomain();
9957 #endif
9958 
9959 #ifdef CONFIG_RT_GROUP_SCHED
9960 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9961 			global_rt_period(), global_rt_runtime());
9962 #endif /* CONFIG_RT_GROUP_SCHED */
9963 
9964 #ifdef CONFIG_CGROUP_SCHED
9965 	task_group_cache = KMEM_CACHE(task_group, 0);
9966 
9967 	list_add(&root_task_group.list, &task_groups);
9968 	INIT_LIST_HEAD(&root_task_group.children);
9969 	INIT_LIST_HEAD(&root_task_group.siblings);
9970 	autogroup_init(&init_task);
9971 #endif /* CONFIG_CGROUP_SCHED */
9972 
9973 	for_each_possible_cpu(i) {
9974 		struct rq *rq;
9975 
9976 		rq = cpu_rq(i);
9977 		raw_spin_lock_init(&rq->__lock);
9978 		rq->nr_running = 0;
9979 		rq->calc_load_active = 0;
9980 		rq->calc_load_update = jiffies + LOAD_FREQ;
9981 		init_cfs_rq(&rq->cfs);
9982 		init_rt_rq(&rq->rt);
9983 		init_dl_rq(&rq->dl);
9984 #ifdef CONFIG_FAIR_GROUP_SCHED
9985 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9986 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9987 		/*
9988 		 * How much CPU bandwidth does root_task_group get?
9989 		 *
9990 		 * In case of task-groups formed thr' the cgroup filesystem, it
9991 		 * gets 100% of the CPU resources in the system. This overall
9992 		 * system CPU resource is divided among the tasks of
9993 		 * root_task_group and its child task-groups in a fair manner,
9994 		 * based on each entity's (task or task-group's) weight
9995 		 * (se->load.weight).
9996 		 *
9997 		 * In other words, if root_task_group has 10 tasks of weight
9998 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9999 		 * then A0's share of the CPU resource is:
10000 		 *
10001 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10002 		 *
10003 		 * We achieve this by letting root_task_group's tasks sit
10004 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10005 		 */
10006 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10007 #endif /* CONFIG_FAIR_GROUP_SCHED */
10008 
10009 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10010 #ifdef CONFIG_RT_GROUP_SCHED
10011 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10012 #endif
10013 #ifdef CONFIG_SMP
10014 		rq->sd = NULL;
10015 		rq->rd = NULL;
10016 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10017 		rq->balance_callback = &balance_push_callback;
10018 		rq->active_balance = 0;
10019 		rq->next_balance = jiffies;
10020 		rq->push_cpu = 0;
10021 		rq->cpu = i;
10022 		rq->online = 0;
10023 		rq->idle_stamp = 0;
10024 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10025 		rq->wake_stamp = jiffies;
10026 		rq->wake_avg_idle = rq->avg_idle;
10027 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10028 
10029 		INIT_LIST_HEAD(&rq->cfs_tasks);
10030 
10031 		rq_attach_root(rq, &def_root_domain);
10032 #ifdef CONFIG_NO_HZ_COMMON
10033 		rq->last_blocked_load_update_tick = jiffies;
10034 		atomic_set(&rq->nohz_flags, 0);
10035 
10036 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10037 #endif
10038 #ifdef CONFIG_HOTPLUG_CPU
10039 		rcuwait_init(&rq->hotplug_wait);
10040 #endif
10041 #endif /* CONFIG_SMP */
10042 		hrtick_rq_init(rq);
10043 		atomic_set(&rq->nr_iowait, 0);
10044 
10045 #ifdef CONFIG_SCHED_CORE
10046 		rq->core = rq;
10047 		rq->core_pick = NULL;
10048 		rq->core_enabled = 0;
10049 		rq->core_tree = RB_ROOT;
10050 		rq->core_forceidle_count = 0;
10051 		rq->core_forceidle_occupation = 0;
10052 		rq->core_forceidle_start = 0;
10053 
10054 		rq->core_cookie = 0UL;
10055 #endif
10056 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10057 	}
10058 
10059 	set_load_weight(&init_task, false);
10060 
10061 	/*
10062 	 * The boot idle thread does lazy MMU switching as well:
10063 	 */
10064 	mmgrab_lazy_tlb(&init_mm);
10065 	enter_lazy_tlb(&init_mm, current);
10066 
10067 	/*
10068 	 * The idle task doesn't need the kthread struct to function, but it
10069 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10070 	 * if we want to avoid special-casing it in code that deals with per-CPU
10071 	 * kthreads.
10072 	 */
10073 	WARN_ON(!set_kthread_struct(current));
10074 
10075 	/*
10076 	 * Make us the idle thread. Technically, schedule() should not be
10077 	 * called from this thread, however somewhere below it might be,
10078 	 * but because we are the idle thread, we just pick up running again
10079 	 * when this runqueue becomes "idle".
10080 	 */
10081 	init_idle(current, smp_processor_id());
10082 
10083 	calc_load_update = jiffies + LOAD_FREQ;
10084 
10085 #ifdef CONFIG_SMP
10086 	idle_thread_set_boot_cpu();
10087 	balance_push_set(smp_processor_id(), false);
10088 #endif
10089 	init_sched_fair_class();
10090 
10091 	psi_init();
10092 
10093 	init_uclamp();
10094 
10095 	preempt_dynamic_init();
10096 
10097 	scheduler_running = 1;
10098 }
10099 
10100 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10101 
10102 void __might_sleep(const char *file, int line)
10103 {
10104 	unsigned int state = get_current_state();
10105 	/*
10106 	 * Blocking primitives will set (and therefore destroy) current->state,
10107 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10108 	 * otherwise we will destroy state.
10109 	 */
10110 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10111 			"do not call blocking ops when !TASK_RUNNING; "
10112 			"state=%x set at [<%p>] %pS\n", state,
10113 			(void *)current->task_state_change,
10114 			(void *)current->task_state_change);
10115 
10116 	__might_resched(file, line, 0);
10117 }
10118 EXPORT_SYMBOL(__might_sleep);
10119 
10120 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10121 {
10122 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10123 		return;
10124 
10125 	if (preempt_count() == preempt_offset)
10126 		return;
10127 
10128 	pr_err("Preemption disabled at:");
10129 	print_ip_sym(KERN_ERR, ip);
10130 }
10131 
10132 static inline bool resched_offsets_ok(unsigned int offsets)
10133 {
10134 	unsigned int nested = preempt_count();
10135 
10136 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10137 
10138 	return nested == offsets;
10139 }
10140 
10141 void __might_resched(const char *file, int line, unsigned int offsets)
10142 {
10143 	/* Ratelimiting timestamp: */
10144 	static unsigned long prev_jiffy;
10145 
10146 	unsigned long preempt_disable_ip;
10147 
10148 	/* WARN_ON_ONCE() by default, no rate limit required: */
10149 	rcu_sleep_check();
10150 
10151 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10152 	     !is_idle_task(current) && !current->non_block_count) ||
10153 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10154 	    oops_in_progress)
10155 		return;
10156 
10157 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10158 		return;
10159 	prev_jiffy = jiffies;
10160 
10161 	/* Save this before calling printk(), since that will clobber it: */
10162 	preempt_disable_ip = get_preempt_disable_ip(current);
10163 
10164 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10165 	       file, line);
10166 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10167 	       in_atomic(), irqs_disabled(), current->non_block_count,
10168 	       current->pid, current->comm);
10169 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10170 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10171 
10172 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10173 		pr_err("RCU nest depth: %d, expected: %u\n",
10174 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10175 	}
10176 
10177 	if (task_stack_end_corrupted(current))
10178 		pr_emerg("Thread overran stack, or stack corrupted\n");
10179 
10180 	debug_show_held_locks(current);
10181 	if (irqs_disabled())
10182 		print_irqtrace_events(current);
10183 
10184 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10185 				 preempt_disable_ip);
10186 
10187 	dump_stack();
10188 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10189 }
10190 EXPORT_SYMBOL(__might_resched);
10191 
10192 void __cant_sleep(const char *file, int line, int preempt_offset)
10193 {
10194 	static unsigned long prev_jiffy;
10195 
10196 	if (irqs_disabled())
10197 		return;
10198 
10199 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10200 		return;
10201 
10202 	if (preempt_count() > preempt_offset)
10203 		return;
10204 
10205 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10206 		return;
10207 	prev_jiffy = jiffies;
10208 
10209 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10210 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10211 			in_atomic(), irqs_disabled(),
10212 			current->pid, current->comm);
10213 
10214 	debug_show_held_locks(current);
10215 	dump_stack();
10216 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10217 }
10218 EXPORT_SYMBOL_GPL(__cant_sleep);
10219 
10220 #ifdef CONFIG_SMP
10221 void __cant_migrate(const char *file, int line)
10222 {
10223 	static unsigned long prev_jiffy;
10224 
10225 	if (irqs_disabled())
10226 		return;
10227 
10228 	if (is_migration_disabled(current))
10229 		return;
10230 
10231 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10232 		return;
10233 
10234 	if (preempt_count() > 0)
10235 		return;
10236 
10237 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10238 		return;
10239 	prev_jiffy = jiffies;
10240 
10241 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10242 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10243 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10244 	       current->pid, current->comm);
10245 
10246 	debug_show_held_locks(current);
10247 	dump_stack();
10248 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10249 }
10250 EXPORT_SYMBOL_GPL(__cant_migrate);
10251 #endif
10252 #endif
10253 
10254 #ifdef CONFIG_MAGIC_SYSRQ
10255 void normalize_rt_tasks(void)
10256 {
10257 	struct task_struct *g, *p;
10258 	struct sched_attr attr = {
10259 		.sched_policy = SCHED_NORMAL,
10260 	};
10261 
10262 	read_lock(&tasklist_lock);
10263 	for_each_process_thread(g, p) {
10264 		/*
10265 		 * Only normalize user tasks:
10266 		 */
10267 		if (p->flags & PF_KTHREAD)
10268 			continue;
10269 
10270 		p->se.exec_start = 0;
10271 		schedstat_set(p->stats.wait_start,  0);
10272 		schedstat_set(p->stats.sleep_start, 0);
10273 		schedstat_set(p->stats.block_start, 0);
10274 
10275 		if (!dl_task(p) && !rt_task(p)) {
10276 			/*
10277 			 * Renice negative nice level userspace
10278 			 * tasks back to 0:
10279 			 */
10280 			if (task_nice(p) < 0)
10281 				set_user_nice(p, 0);
10282 			continue;
10283 		}
10284 
10285 		__sched_setscheduler(p, &attr, false, false);
10286 	}
10287 	read_unlock(&tasklist_lock);
10288 }
10289 
10290 #endif /* CONFIG_MAGIC_SYSRQ */
10291 
10292 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10293 /*
10294  * These functions are only useful for the IA64 MCA handling, or kdb.
10295  *
10296  * They can only be called when the whole system has been
10297  * stopped - every CPU needs to be quiescent, and no scheduling
10298  * activity can take place. Using them for anything else would
10299  * be a serious bug, and as a result, they aren't even visible
10300  * under any other configuration.
10301  */
10302 
10303 /**
10304  * curr_task - return the current task for a given CPU.
10305  * @cpu: the processor in question.
10306  *
10307  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10308  *
10309  * Return: The current task for @cpu.
10310  */
10311 struct task_struct *curr_task(int cpu)
10312 {
10313 	return cpu_curr(cpu);
10314 }
10315 
10316 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10317 
10318 #ifdef CONFIG_IA64
10319 /**
10320  * ia64_set_curr_task - set the current task for a given CPU.
10321  * @cpu: the processor in question.
10322  * @p: the task pointer to set.
10323  *
10324  * Description: This function must only be used when non-maskable interrupts
10325  * are serviced on a separate stack. It allows the architecture to switch the
10326  * notion of the current task on a CPU in a non-blocking manner. This function
10327  * must be called with all CPU's synchronized, and interrupts disabled, the
10328  * and caller must save the original value of the current task (see
10329  * curr_task() above) and restore that value before reenabling interrupts and
10330  * re-starting the system.
10331  *
10332  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10333  */
10334 void ia64_set_curr_task(int cpu, struct task_struct *p)
10335 {
10336 	cpu_curr(cpu) = p;
10337 }
10338 
10339 #endif
10340 
10341 #ifdef CONFIG_CGROUP_SCHED
10342 /* task_group_lock serializes the addition/removal of task groups */
10343 static DEFINE_SPINLOCK(task_group_lock);
10344 
10345 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10346 					    struct task_group *parent)
10347 {
10348 #ifdef CONFIG_UCLAMP_TASK_GROUP
10349 	enum uclamp_id clamp_id;
10350 
10351 	for_each_clamp_id(clamp_id) {
10352 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10353 			      uclamp_none(clamp_id), false);
10354 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10355 	}
10356 #endif
10357 }
10358 
10359 static void sched_free_group(struct task_group *tg)
10360 {
10361 	free_fair_sched_group(tg);
10362 	free_rt_sched_group(tg);
10363 	autogroup_free(tg);
10364 	kmem_cache_free(task_group_cache, tg);
10365 }
10366 
10367 static void sched_free_group_rcu(struct rcu_head *rcu)
10368 {
10369 	sched_free_group(container_of(rcu, struct task_group, rcu));
10370 }
10371 
10372 static void sched_unregister_group(struct task_group *tg)
10373 {
10374 	unregister_fair_sched_group(tg);
10375 	unregister_rt_sched_group(tg);
10376 	/*
10377 	 * We have to wait for yet another RCU grace period to expire, as
10378 	 * print_cfs_stats() might run concurrently.
10379 	 */
10380 	call_rcu(&tg->rcu, sched_free_group_rcu);
10381 }
10382 
10383 /* allocate runqueue etc for a new task group */
10384 struct task_group *sched_create_group(struct task_group *parent)
10385 {
10386 	struct task_group *tg;
10387 
10388 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10389 	if (!tg)
10390 		return ERR_PTR(-ENOMEM);
10391 
10392 	if (!alloc_fair_sched_group(tg, parent))
10393 		goto err;
10394 
10395 	if (!alloc_rt_sched_group(tg, parent))
10396 		goto err;
10397 
10398 	alloc_uclamp_sched_group(tg, parent);
10399 
10400 	return tg;
10401 
10402 err:
10403 	sched_free_group(tg);
10404 	return ERR_PTR(-ENOMEM);
10405 }
10406 
10407 void sched_online_group(struct task_group *tg, struct task_group *parent)
10408 {
10409 	unsigned long flags;
10410 
10411 	spin_lock_irqsave(&task_group_lock, flags);
10412 	list_add_rcu(&tg->list, &task_groups);
10413 
10414 	/* Root should already exist: */
10415 	WARN_ON(!parent);
10416 
10417 	tg->parent = parent;
10418 	INIT_LIST_HEAD(&tg->children);
10419 	list_add_rcu(&tg->siblings, &parent->children);
10420 	spin_unlock_irqrestore(&task_group_lock, flags);
10421 
10422 	online_fair_sched_group(tg);
10423 }
10424 
10425 /* rcu callback to free various structures associated with a task group */
10426 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10427 {
10428 	/* Now it should be safe to free those cfs_rqs: */
10429 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10430 }
10431 
10432 void sched_destroy_group(struct task_group *tg)
10433 {
10434 	/* Wait for possible concurrent references to cfs_rqs complete: */
10435 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10436 }
10437 
10438 void sched_release_group(struct task_group *tg)
10439 {
10440 	unsigned long flags;
10441 
10442 	/*
10443 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10444 	 * sched_cfs_period_timer()).
10445 	 *
10446 	 * For this to be effective, we have to wait for all pending users of
10447 	 * this task group to leave their RCU critical section to ensure no new
10448 	 * user will see our dying task group any more. Specifically ensure
10449 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10450 	 *
10451 	 * We therefore defer calling unregister_fair_sched_group() to
10452 	 * sched_unregister_group() which is guarantied to get called only after the
10453 	 * current RCU grace period has expired.
10454 	 */
10455 	spin_lock_irqsave(&task_group_lock, flags);
10456 	list_del_rcu(&tg->list);
10457 	list_del_rcu(&tg->siblings);
10458 	spin_unlock_irqrestore(&task_group_lock, flags);
10459 }
10460 
10461 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10462 {
10463 	struct task_group *tg;
10464 
10465 	/*
10466 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10467 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10468 	 * to prevent lockdep warnings.
10469 	 */
10470 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10471 			  struct task_group, css);
10472 	tg = autogroup_task_group(tsk, tg);
10473 
10474 	return tg;
10475 }
10476 
10477 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10478 {
10479 	tsk->sched_task_group = group;
10480 
10481 #ifdef CONFIG_FAIR_GROUP_SCHED
10482 	if (tsk->sched_class->task_change_group)
10483 		tsk->sched_class->task_change_group(tsk);
10484 	else
10485 #endif
10486 		set_task_rq(tsk, task_cpu(tsk));
10487 }
10488 
10489 /*
10490  * Change task's runqueue when it moves between groups.
10491  *
10492  * The caller of this function should have put the task in its new group by
10493  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10494  * its new group.
10495  */
10496 void sched_move_task(struct task_struct *tsk)
10497 {
10498 	int queued, running, queue_flags =
10499 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10500 	struct task_group *group;
10501 	struct rq_flags rf;
10502 	struct rq *rq;
10503 
10504 	rq = task_rq_lock(tsk, &rf);
10505 	/*
10506 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10507 	 * group changes.
10508 	 */
10509 	group = sched_get_task_group(tsk);
10510 	if (group == tsk->sched_task_group)
10511 		goto unlock;
10512 
10513 	update_rq_clock(rq);
10514 
10515 	running = task_current(rq, tsk);
10516 	queued = task_on_rq_queued(tsk);
10517 
10518 	if (queued)
10519 		dequeue_task(rq, tsk, queue_flags);
10520 	if (running)
10521 		put_prev_task(rq, tsk);
10522 
10523 	sched_change_group(tsk, group);
10524 
10525 	if (queued)
10526 		enqueue_task(rq, tsk, queue_flags);
10527 	if (running) {
10528 		set_next_task(rq, tsk);
10529 		/*
10530 		 * After changing group, the running task may have joined a
10531 		 * throttled one but it's still the running task. Trigger a
10532 		 * resched to make sure that task can still run.
10533 		 */
10534 		resched_curr(rq);
10535 	}
10536 
10537 unlock:
10538 	task_rq_unlock(rq, tsk, &rf);
10539 }
10540 
10541 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10542 {
10543 	return css ? container_of(css, struct task_group, css) : NULL;
10544 }
10545 
10546 static struct cgroup_subsys_state *
10547 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10548 {
10549 	struct task_group *parent = css_tg(parent_css);
10550 	struct task_group *tg;
10551 
10552 	if (!parent) {
10553 		/* This is early initialization for the top cgroup */
10554 		return &root_task_group.css;
10555 	}
10556 
10557 	tg = sched_create_group(parent);
10558 	if (IS_ERR(tg))
10559 		return ERR_PTR(-ENOMEM);
10560 
10561 	return &tg->css;
10562 }
10563 
10564 /* Expose task group only after completing cgroup initialization */
10565 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10566 {
10567 	struct task_group *tg = css_tg(css);
10568 	struct task_group *parent = css_tg(css->parent);
10569 
10570 	if (parent)
10571 		sched_online_group(tg, parent);
10572 
10573 #ifdef CONFIG_UCLAMP_TASK_GROUP
10574 	/* Propagate the effective uclamp value for the new group */
10575 	mutex_lock(&uclamp_mutex);
10576 	rcu_read_lock();
10577 	cpu_util_update_eff(css);
10578 	rcu_read_unlock();
10579 	mutex_unlock(&uclamp_mutex);
10580 #endif
10581 
10582 	return 0;
10583 }
10584 
10585 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10586 {
10587 	struct task_group *tg = css_tg(css);
10588 
10589 	sched_release_group(tg);
10590 }
10591 
10592 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10593 {
10594 	struct task_group *tg = css_tg(css);
10595 
10596 	/*
10597 	 * Relies on the RCU grace period between css_released() and this.
10598 	 */
10599 	sched_unregister_group(tg);
10600 }
10601 
10602 #ifdef CONFIG_RT_GROUP_SCHED
10603 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10604 {
10605 	struct task_struct *task;
10606 	struct cgroup_subsys_state *css;
10607 
10608 	cgroup_taskset_for_each(task, css, tset) {
10609 		if (!sched_rt_can_attach(css_tg(css), task))
10610 			return -EINVAL;
10611 	}
10612 	return 0;
10613 }
10614 #endif
10615 
10616 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10617 {
10618 	struct task_struct *task;
10619 	struct cgroup_subsys_state *css;
10620 
10621 	cgroup_taskset_for_each(task, css, tset)
10622 		sched_move_task(task);
10623 }
10624 
10625 #ifdef CONFIG_UCLAMP_TASK_GROUP
10626 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10627 {
10628 	struct cgroup_subsys_state *top_css = css;
10629 	struct uclamp_se *uc_parent = NULL;
10630 	struct uclamp_se *uc_se = NULL;
10631 	unsigned int eff[UCLAMP_CNT];
10632 	enum uclamp_id clamp_id;
10633 	unsigned int clamps;
10634 
10635 	lockdep_assert_held(&uclamp_mutex);
10636 	SCHED_WARN_ON(!rcu_read_lock_held());
10637 
10638 	css_for_each_descendant_pre(css, top_css) {
10639 		uc_parent = css_tg(css)->parent
10640 			? css_tg(css)->parent->uclamp : NULL;
10641 
10642 		for_each_clamp_id(clamp_id) {
10643 			/* Assume effective clamps matches requested clamps */
10644 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10645 			/* Cap effective clamps with parent's effective clamps */
10646 			if (uc_parent &&
10647 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10648 				eff[clamp_id] = uc_parent[clamp_id].value;
10649 			}
10650 		}
10651 		/* Ensure protection is always capped by limit */
10652 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10653 
10654 		/* Propagate most restrictive effective clamps */
10655 		clamps = 0x0;
10656 		uc_se = css_tg(css)->uclamp;
10657 		for_each_clamp_id(clamp_id) {
10658 			if (eff[clamp_id] == uc_se[clamp_id].value)
10659 				continue;
10660 			uc_se[clamp_id].value = eff[clamp_id];
10661 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10662 			clamps |= (0x1 << clamp_id);
10663 		}
10664 		if (!clamps) {
10665 			css = css_rightmost_descendant(css);
10666 			continue;
10667 		}
10668 
10669 		/* Immediately update descendants RUNNABLE tasks */
10670 		uclamp_update_active_tasks(css);
10671 	}
10672 }
10673 
10674 /*
10675  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10676  * C expression. Since there is no way to convert a macro argument (N) into a
10677  * character constant, use two levels of macros.
10678  */
10679 #define _POW10(exp) ((unsigned int)1e##exp)
10680 #define POW10(exp) _POW10(exp)
10681 
10682 struct uclamp_request {
10683 #define UCLAMP_PERCENT_SHIFT	2
10684 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10685 	s64 percent;
10686 	u64 util;
10687 	int ret;
10688 };
10689 
10690 static inline struct uclamp_request
10691 capacity_from_percent(char *buf)
10692 {
10693 	struct uclamp_request req = {
10694 		.percent = UCLAMP_PERCENT_SCALE,
10695 		.util = SCHED_CAPACITY_SCALE,
10696 		.ret = 0,
10697 	};
10698 
10699 	buf = strim(buf);
10700 	if (strcmp(buf, "max")) {
10701 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10702 					     &req.percent);
10703 		if (req.ret)
10704 			return req;
10705 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10706 			req.ret = -ERANGE;
10707 			return req;
10708 		}
10709 
10710 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10711 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10712 	}
10713 
10714 	return req;
10715 }
10716 
10717 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10718 				size_t nbytes, loff_t off,
10719 				enum uclamp_id clamp_id)
10720 {
10721 	struct uclamp_request req;
10722 	struct task_group *tg;
10723 
10724 	req = capacity_from_percent(buf);
10725 	if (req.ret)
10726 		return req.ret;
10727 
10728 	static_branch_enable(&sched_uclamp_used);
10729 
10730 	mutex_lock(&uclamp_mutex);
10731 	rcu_read_lock();
10732 
10733 	tg = css_tg(of_css(of));
10734 	if (tg->uclamp_req[clamp_id].value != req.util)
10735 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10736 
10737 	/*
10738 	 * Because of not recoverable conversion rounding we keep track of the
10739 	 * exact requested value
10740 	 */
10741 	tg->uclamp_pct[clamp_id] = req.percent;
10742 
10743 	/* Update effective clamps to track the most restrictive value */
10744 	cpu_util_update_eff(of_css(of));
10745 
10746 	rcu_read_unlock();
10747 	mutex_unlock(&uclamp_mutex);
10748 
10749 	return nbytes;
10750 }
10751 
10752 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10753 				    char *buf, size_t nbytes,
10754 				    loff_t off)
10755 {
10756 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10757 }
10758 
10759 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10760 				    char *buf, size_t nbytes,
10761 				    loff_t off)
10762 {
10763 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10764 }
10765 
10766 static inline void cpu_uclamp_print(struct seq_file *sf,
10767 				    enum uclamp_id clamp_id)
10768 {
10769 	struct task_group *tg;
10770 	u64 util_clamp;
10771 	u64 percent;
10772 	u32 rem;
10773 
10774 	rcu_read_lock();
10775 	tg = css_tg(seq_css(sf));
10776 	util_clamp = tg->uclamp_req[clamp_id].value;
10777 	rcu_read_unlock();
10778 
10779 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10780 		seq_puts(sf, "max\n");
10781 		return;
10782 	}
10783 
10784 	percent = tg->uclamp_pct[clamp_id];
10785 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10786 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10787 }
10788 
10789 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10790 {
10791 	cpu_uclamp_print(sf, UCLAMP_MIN);
10792 	return 0;
10793 }
10794 
10795 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10796 {
10797 	cpu_uclamp_print(sf, UCLAMP_MAX);
10798 	return 0;
10799 }
10800 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10801 
10802 #ifdef CONFIG_FAIR_GROUP_SCHED
10803 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10804 				struct cftype *cftype, u64 shareval)
10805 {
10806 	if (shareval > scale_load_down(ULONG_MAX))
10807 		shareval = MAX_SHARES;
10808 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10809 }
10810 
10811 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10812 			       struct cftype *cft)
10813 {
10814 	struct task_group *tg = css_tg(css);
10815 
10816 	return (u64) scale_load_down(tg->shares);
10817 }
10818 
10819 #ifdef CONFIG_CFS_BANDWIDTH
10820 static DEFINE_MUTEX(cfs_constraints_mutex);
10821 
10822 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10823 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10824 /* More than 203 days if BW_SHIFT equals 20. */
10825 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10826 
10827 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10828 
10829 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10830 				u64 burst)
10831 {
10832 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10833 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10834 
10835 	if (tg == &root_task_group)
10836 		return -EINVAL;
10837 
10838 	/*
10839 	 * Ensure we have at some amount of bandwidth every period.  This is
10840 	 * to prevent reaching a state of large arrears when throttled via
10841 	 * entity_tick() resulting in prolonged exit starvation.
10842 	 */
10843 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10844 		return -EINVAL;
10845 
10846 	/*
10847 	 * Likewise, bound things on the other side by preventing insane quota
10848 	 * periods.  This also allows us to normalize in computing quota
10849 	 * feasibility.
10850 	 */
10851 	if (period > max_cfs_quota_period)
10852 		return -EINVAL;
10853 
10854 	/*
10855 	 * Bound quota to defend quota against overflow during bandwidth shift.
10856 	 */
10857 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10858 		return -EINVAL;
10859 
10860 	if (quota != RUNTIME_INF && (burst > quota ||
10861 				     burst + quota > max_cfs_runtime))
10862 		return -EINVAL;
10863 
10864 	/*
10865 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10866 	 * unthrottle_offline_cfs_rqs().
10867 	 */
10868 	cpus_read_lock();
10869 	mutex_lock(&cfs_constraints_mutex);
10870 	ret = __cfs_schedulable(tg, period, quota);
10871 	if (ret)
10872 		goto out_unlock;
10873 
10874 	runtime_enabled = quota != RUNTIME_INF;
10875 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10876 	/*
10877 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10878 	 * before making related changes, and on->off must occur afterwards
10879 	 */
10880 	if (runtime_enabled && !runtime_was_enabled)
10881 		cfs_bandwidth_usage_inc();
10882 	raw_spin_lock_irq(&cfs_b->lock);
10883 	cfs_b->period = ns_to_ktime(period);
10884 	cfs_b->quota = quota;
10885 	cfs_b->burst = burst;
10886 
10887 	__refill_cfs_bandwidth_runtime(cfs_b);
10888 
10889 	/* Restart the period timer (if active) to handle new period expiry: */
10890 	if (runtime_enabled)
10891 		start_cfs_bandwidth(cfs_b);
10892 
10893 	raw_spin_unlock_irq(&cfs_b->lock);
10894 
10895 	for_each_online_cpu(i) {
10896 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10897 		struct rq *rq = cfs_rq->rq;
10898 		struct rq_flags rf;
10899 
10900 		rq_lock_irq(rq, &rf);
10901 		cfs_rq->runtime_enabled = runtime_enabled;
10902 		cfs_rq->runtime_remaining = 0;
10903 
10904 		if (cfs_rq->throttled)
10905 			unthrottle_cfs_rq(cfs_rq);
10906 		rq_unlock_irq(rq, &rf);
10907 	}
10908 	if (runtime_was_enabled && !runtime_enabled)
10909 		cfs_bandwidth_usage_dec();
10910 out_unlock:
10911 	mutex_unlock(&cfs_constraints_mutex);
10912 	cpus_read_unlock();
10913 
10914 	return ret;
10915 }
10916 
10917 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10918 {
10919 	u64 quota, period, burst;
10920 
10921 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10922 	burst = tg->cfs_bandwidth.burst;
10923 	if (cfs_quota_us < 0)
10924 		quota = RUNTIME_INF;
10925 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10926 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10927 	else
10928 		return -EINVAL;
10929 
10930 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10931 }
10932 
10933 static long tg_get_cfs_quota(struct task_group *tg)
10934 {
10935 	u64 quota_us;
10936 
10937 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10938 		return -1;
10939 
10940 	quota_us = tg->cfs_bandwidth.quota;
10941 	do_div(quota_us, NSEC_PER_USEC);
10942 
10943 	return quota_us;
10944 }
10945 
10946 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10947 {
10948 	u64 quota, period, burst;
10949 
10950 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10951 		return -EINVAL;
10952 
10953 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10954 	quota = tg->cfs_bandwidth.quota;
10955 	burst = tg->cfs_bandwidth.burst;
10956 
10957 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10958 }
10959 
10960 static long tg_get_cfs_period(struct task_group *tg)
10961 {
10962 	u64 cfs_period_us;
10963 
10964 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10965 	do_div(cfs_period_us, NSEC_PER_USEC);
10966 
10967 	return cfs_period_us;
10968 }
10969 
10970 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10971 {
10972 	u64 quota, period, burst;
10973 
10974 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10975 		return -EINVAL;
10976 
10977 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10978 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10979 	quota = tg->cfs_bandwidth.quota;
10980 
10981 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10982 }
10983 
10984 static long tg_get_cfs_burst(struct task_group *tg)
10985 {
10986 	u64 burst_us;
10987 
10988 	burst_us = tg->cfs_bandwidth.burst;
10989 	do_div(burst_us, NSEC_PER_USEC);
10990 
10991 	return burst_us;
10992 }
10993 
10994 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10995 				  struct cftype *cft)
10996 {
10997 	return tg_get_cfs_quota(css_tg(css));
10998 }
10999 
11000 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11001 				   struct cftype *cftype, s64 cfs_quota_us)
11002 {
11003 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11004 }
11005 
11006 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11007 				   struct cftype *cft)
11008 {
11009 	return tg_get_cfs_period(css_tg(css));
11010 }
11011 
11012 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11013 				    struct cftype *cftype, u64 cfs_period_us)
11014 {
11015 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11016 }
11017 
11018 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11019 				  struct cftype *cft)
11020 {
11021 	return tg_get_cfs_burst(css_tg(css));
11022 }
11023 
11024 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11025 				   struct cftype *cftype, u64 cfs_burst_us)
11026 {
11027 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11028 }
11029 
11030 struct cfs_schedulable_data {
11031 	struct task_group *tg;
11032 	u64 period, quota;
11033 };
11034 
11035 /*
11036  * normalize group quota/period to be quota/max_period
11037  * note: units are usecs
11038  */
11039 static u64 normalize_cfs_quota(struct task_group *tg,
11040 			       struct cfs_schedulable_data *d)
11041 {
11042 	u64 quota, period;
11043 
11044 	if (tg == d->tg) {
11045 		period = d->period;
11046 		quota = d->quota;
11047 	} else {
11048 		period = tg_get_cfs_period(tg);
11049 		quota = tg_get_cfs_quota(tg);
11050 	}
11051 
11052 	/* note: these should typically be equivalent */
11053 	if (quota == RUNTIME_INF || quota == -1)
11054 		return RUNTIME_INF;
11055 
11056 	return to_ratio(period, quota);
11057 }
11058 
11059 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11060 {
11061 	struct cfs_schedulable_data *d = data;
11062 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11063 	s64 quota = 0, parent_quota = -1;
11064 
11065 	if (!tg->parent) {
11066 		quota = RUNTIME_INF;
11067 	} else {
11068 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11069 
11070 		quota = normalize_cfs_quota(tg, d);
11071 		parent_quota = parent_b->hierarchical_quota;
11072 
11073 		/*
11074 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11075 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11076 		 * inherit when no limit is set. In both cases this is used
11077 		 * by the scheduler to determine if a given CFS task has a
11078 		 * bandwidth constraint at some higher level.
11079 		 */
11080 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11081 			if (quota == RUNTIME_INF)
11082 				quota = parent_quota;
11083 			else if (parent_quota != RUNTIME_INF)
11084 				quota = min(quota, parent_quota);
11085 		} else {
11086 			if (quota == RUNTIME_INF)
11087 				quota = parent_quota;
11088 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11089 				return -EINVAL;
11090 		}
11091 	}
11092 	cfs_b->hierarchical_quota = quota;
11093 
11094 	return 0;
11095 }
11096 
11097 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11098 {
11099 	int ret;
11100 	struct cfs_schedulable_data data = {
11101 		.tg = tg,
11102 		.period = period,
11103 		.quota = quota,
11104 	};
11105 
11106 	if (quota != RUNTIME_INF) {
11107 		do_div(data.period, NSEC_PER_USEC);
11108 		do_div(data.quota, NSEC_PER_USEC);
11109 	}
11110 
11111 	rcu_read_lock();
11112 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11113 	rcu_read_unlock();
11114 
11115 	return ret;
11116 }
11117 
11118 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11119 {
11120 	struct task_group *tg = css_tg(seq_css(sf));
11121 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11122 
11123 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11124 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11125 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11126 
11127 	if (schedstat_enabled() && tg != &root_task_group) {
11128 		struct sched_statistics *stats;
11129 		u64 ws = 0;
11130 		int i;
11131 
11132 		for_each_possible_cpu(i) {
11133 			stats = __schedstats_from_se(tg->se[i]);
11134 			ws += schedstat_val(stats->wait_sum);
11135 		}
11136 
11137 		seq_printf(sf, "wait_sum %llu\n", ws);
11138 	}
11139 
11140 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11141 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11142 
11143 	return 0;
11144 }
11145 
11146 static u64 throttled_time_self(struct task_group *tg)
11147 {
11148 	int i;
11149 	u64 total = 0;
11150 
11151 	for_each_possible_cpu(i) {
11152 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11153 	}
11154 
11155 	return total;
11156 }
11157 
11158 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11159 {
11160 	struct task_group *tg = css_tg(seq_css(sf));
11161 
11162 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11163 
11164 	return 0;
11165 }
11166 #endif /* CONFIG_CFS_BANDWIDTH */
11167 #endif /* CONFIG_FAIR_GROUP_SCHED */
11168 
11169 #ifdef CONFIG_RT_GROUP_SCHED
11170 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11171 				struct cftype *cft, s64 val)
11172 {
11173 	return sched_group_set_rt_runtime(css_tg(css), val);
11174 }
11175 
11176 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11177 			       struct cftype *cft)
11178 {
11179 	return sched_group_rt_runtime(css_tg(css));
11180 }
11181 
11182 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11183 				    struct cftype *cftype, u64 rt_period_us)
11184 {
11185 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11186 }
11187 
11188 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11189 				   struct cftype *cft)
11190 {
11191 	return sched_group_rt_period(css_tg(css));
11192 }
11193 #endif /* CONFIG_RT_GROUP_SCHED */
11194 
11195 #ifdef CONFIG_FAIR_GROUP_SCHED
11196 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11197 			       struct cftype *cft)
11198 {
11199 	return css_tg(css)->idle;
11200 }
11201 
11202 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11203 				struct cftype *cft, s64 idle)
11204 {
11205 	return sched_group_set_idle(css_tg(css), idle);
11206 }
11207 #endif
11208 
11209 static struct cftype cpu_legacy_files[] = {
11210 #ifdef CONFIG_FAIR_GROUP_SCHED
11211 	{
11212 		.name = "shares",
11213 		.read_u64 = cpu_shares_read_u64,
11214 		.write_u64 = cpu_shares_write_u64,
11215 	},
11216 	{
11217 		.name = "idle",
11218 		.read_s64 = cpu_idle_read_s64,
11219 		.write_s64 = cpu_idle_write_s64,
11220 	},
11221 #endif
11222 #ifdef CONFIG_CFS_BANDWIDTH
11223 	{
11224 		.name = "cfs_quota_us",
11225 		.read_s64 = cpu_cfs_quota_read_s64,
11226 		.write_s64 = cpu_cfs_quota_write_s64,
11227 	},
11228 	{
11229 		.name = "cfs_period_us",
11230 		.read_u64 = cpu_cfs_period_read_u64,
11231 		.write_u64 = cpu_cfs_period_write_u64,
11232 	},
11233 	{
11234 		.name = "cfs_burst_us",
11235 		.read_u64 = cpu_cfs_burst_read_u64,
11236 		.write_u64 = cpu_cfs_burst_write_u64,
11237 	},
11238 	{
11239 		.name = "stat",
11240 		.seq_show = cpu_cfs_stat_show,
11241 	},
11242 	{
11243 		.name = "stat.local",
11244 		.seq_show = cpu_cfs_local_stat_show,
11245 	},
11246 #endif
11247 #ifdef CONFIG_RT_GROUP_SCHED
11248 	{
11249 		.name = "rt_runtime_us",
11250 		.read_s64 = cpu_rt_runtime_read,
11251 		.write_s64 = cpu_rt_runtime_write,
11252 	},
11253 	{
11254 		.name = "rt_period_us",
11255 		.read_u64 = cpu_rt_period_read_uint,
11256 		.write_u64 = cpu_rt_period_write_uint,
11257 	},
11258 #endif
11259 #ifdef CONFIG_UCLAMP_TASK_GROUP
11260 	{
11261 		.name = "uclamp.min",
11262 		.flags = CFTYPE_NOT_ON_ROOT,
11263 		.seq_show = cpu_uclamp_min_show,
11264 		.write = cpu_uclamp_min_write,
11265 	},
11266 	{
11267 		.name = "uclamp.max",
11268 		.flags = CFTYPE_NOT_ON_ROOT,
11269 		.seq_show = cpu_uclamp_max_show,
11270 		.write = cpu_uclamp_max_write,
11271 	},
11272 #endif
11273 	{ }	/* Terminate */
11274 };
11275 
11276 static int cpu_extra_stat_show(struct seq_file *sf,
11277 			       struct cgroup_subsys_state *css)
11278 {
11279 #ifdef CONFIG_CFS_BANDWIDTH
11280 	{
11281 		struct task_group *tg = css_tg(css);
11282 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11283 		u64 throttled_usec, burst_usec;
11284 
11285 		throttled_usec = cfs_b->throttled_time;
11286 		do_div(throttled_usec, NSEC_PER_USEC);
11287 		burst_usec = cfs_b->burst_time;
11288 		do_div(burst_usec, NSEC_PER_USEC);
11289 
11290 		seq_printf(sf, "nr_periods %d\n"
11291 			   "nr_throttled %d\n"
11292 			   "throttled_usec %llu\n"
11293 			   "nr_bursts %d\n"
11294 			   "burst_usec %llu\n",
11295 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11296 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11297 	}
11298 #endif
11299 	return 0;
11300 }
11301 
11302 static int cpu_local_stat_show(struct seq_file *sf,
11303 			       struct cgroup_subsys_state *css)
11304 {
11305 #ifdef CONFIG_CFS_BANDWIDTH
11306 	{
11307 		struct task_group *tg = css_tg(css);
11308 		u64 throttled_self_usec;
11309 
11310 		throttled_self_usec = throttled_time_self(tg);
11311 		do_div(throttled_self_usec, NSEC_PER_USEC);
11312 
11313 		seq_printf(sf, "throttled_usec %llu\n",
11314 			   throttled_self_usec);
11315 	}
11316 #endif
11317 	return 0;
11318 }
11319 
11320 #ifdef CONFIG_FAIR_GROUP_SCHED
11321 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11322 			       struct cftype *cft)
11323 {
11324 	struct task_group *tg = css_tg(css);
11325 	u64 weight = scale_load_down(tg->shares);
11326 
11327 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11328 }
11329 
11330 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11331 				struct cftype *cft, u64 weight)
11332 {
11333 	/*
11334 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11335 	 * values which are 1, 100 and 10000 respectively.  While it loses
11336 	 * a bit of range on both ends, it maps pretty well onto the shares
11337 	 * value used by scheduler and the round-trip conversions preserve
11338 	 * the original value over the entire range.
11339 	 */
11340 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11341 		return -ERANGE;
11342 
11343 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11344 
11345 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11346 }
11347 
11348 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11349 				    struct cftype *cft)
11350 {
11351 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11352 	int last_delta = INT_MAX;
11353 	int prio, delta;
11354 
11355 	/* find the closest nice value to the current weight */
11356 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11357 		delta = abs(sched_prio_to_weight[prio] - weight);
11358 		if (delta >= last_delta)
11359 			break;
11360 		last_delta = delta;
11361 	}
11362 
11363 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11364 }
11365 
11366 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11367 				     struct cftype *cft, s64 nice)
11368 {
11369 	unsigned long weight;
11370 	int idx;
11371 
11372 	if (nice < MIN_NICE || nice > MAX_NICE)
11373 		return -ERANGE;
11374 
11375 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11376 	idx = array_index_nospec(idx, 40);
11377 	weight = sched_prio_to_weight[idx];
11378 
11379 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11380 }
11381 #endif
11382 
11383 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11384 						  long period, long quota)
11385 {
11386 	if (quota < 0)
11387 		seq_puts(sf, "max");
11388 	else
11389 		seq_printf(sf, "%ld", quota);
11390 
11391 	seq_printf(sf, " %ld\n", period);
11392 }
11393 
11394 /* caller should put the current value in *@periodp before calling */
11395 static int __maybe_unused cpu_period_quota_parse(char *buf,
11396 						 u64 *periodp, u64 *quotap)
11397 {
11398 	char tok[21];	/* U64_MAX */
11399 
11400 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11401 		return -EINVAL;
11402 
11403 	*periodp *= NSEC_PER_USEC;
11404 
11405 	if (sscanf(tok, "%llu", quotap))
11406 		*quotap *= NSEC_PER_USEC;
11407 	else if (!strcmp(tok, "max"))
11408 		*quotap = RUNTIME_INF;
11409 	else
11410 		return -EINVAL;
11411 
11412 	return 0;
11413 }
11414 
11415 #ifdef CONFIG_CFS_BANDWIDTH
11416 static int cpu_max_show(struct seq_file *sf, void *v)
11417 {
11418 	struct task_group *tg = css_tg(seq_css(sf));
11419 
11420 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11421 	return 0;
11422 }
11423 
11424 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11425 			     char *buf, size_t nbytes, loff_t off)
11426 {
11427 	struct task_group *tg = css_tg(of_css(of));
11428 	u64 period = tg_get_cfs_period(tg);
11429 	u64 burst = tg_get_cfs_burst(tg);
11430 	u64 quota;
11431 	int ret;
11432 
11433 	ret = cpu_period_quota_parse(buf, &period, &quota);
11434 	if (!ret)
11435 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11436 	return ret ?: nbytes;
11437 }
11438 #endif
11439 
11440 static struct cftype cpu_files[] = {
11441 #ifdef CONFIG_FAIR_GROUP_SCHED
11442 	{
11443 		.name = "weight",
11444 		.flags = CFTYPE_NOT_ON_ROOT,
11445 		.read_u64 = cpu_weight_read_u64,
11446 		.write_u64 = cpu_weight_write_u64,
11447 	},
11448 	{
11449 		.name = "weight.nice",
11450 		.flags = CFTYPE_NOT_ON_ROOT,
11451 		.read_s64 = cpu_weight_nice_read_s64,
11452 		.write_s64 = cpu_weight_nice_write_s64,
11453 	},
11454 	{
11455 		.name = "idle",
11456 		.flags = CFTYPE_NOT_ON_ROOT,
11457 		.read_s64 = cpu_idle_read_s64,
11458 		.write_s64 = cpu_idle_write_s64,
11459 	},
11460 #endif
11461 #ifdef CONFIG_CFS_BANDWIDTH
11462 	{
11463 		.name = "max",
11464 		.flags = CFTYPE_NOT_ON_ROOT,
11465 		.seq_show = cpu_max_show,
11466 		.write = cpu_max_write,
11467 	},
11468 	{
11469 		.name = "max.burst",
11470 		.flags = CFTYPE_NOT_ON_ROOT,
11471 		.read_u64 = cpu_cfs_burst_read_u64,
11472 		.write_u64 = cpu_cfs_burst_write_u64,
11473 	},
11474 #endif
11475 #ifdef CONFIG_UCLAMP_TASK_GROUP
11476 	{
11477 		.name = "uclamp.min",
11478 		.flags = CFTYPE_NOT_ON_ROOT,
11479 		.seq_show = cpu_uclamp_min_show,
11480 		.write = cpu_uclamp_min_write,
11481 	},
11482 	{
11483 		.name = "uclamp.max",
11484 		.flags = CFTYPE_NOT_ON_ROOT,
11485 		.seq_show = cpu_uclamp_max_show,
11486 		.write = cpu_uclamp_max_write,
11487 	},
11488 #endif
11489 	{ }	/* terminate */
11490 };
11491 
11492 struct cgroup_subsys cpu_cgrp_subsys = {
11493 	.css_alloc	= cpu_cgroup_css_alloc,
11494 	.css_online	= cpu_cgroup_css_online,
11495 	.css_released	= cpu_cgroup_css_released,
11496 	.css_free	= cpu_cgroup_css_free,
11497 	.css_extra_stat_show = cpu_extra_stat_show,
11498 	.css_local_stat_show = cpu_local_stat_show,
11499 #ifdef CONFIG_RT_GROUP_SCHED
11500 	.can_attach	= cpu_cgroup_can_attach,
11501 #endif
11502 	.attach		= cpu_cgroup_attach,
11503 	.legacy_cftypes	= cpu_legacy_files,
11504 	.dfl_cftypes	= cpu_files,
11505 	.early_init	= true,
11506 	.threaded	= true,
11507 };
11508 
11509 #endif	/* CONFIG_CGROUP_SCHED */
11510 
11511 void dump_cpu_task(int cpu)
11512 {
11513 	if (cpu == smp_processor_id() && in_hardirq()) {
11514 		struct pt_regs *regs;
11515 
11516 		regs = get_irq_regs();
11517 		if (regs) {
11518 			show_regs(regs);
11519 			return;
11520 		}
11521 	}
11522 
11523 	if (trigger_single_cpu_backtrace(cpu))
11524 		return;
11525 
11526 	pr_info("Task dump for CPU %d:\n", cpu);
11527 	sched_show_task(cpu_curr(cpu));
11528 }
11529 
11530 /*
11531  * Nice levels are multiplicative, with a gentle 10% change for every
11532  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11533  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11534  * that remained on nice 0.
11535  *
11536  * The "10% effect" is relative and cumulative: from _any_ nice level,
11537  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11538  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11539  * If a task goes up by ~10% and another task goes down by ~10% then
11540  * the relative distance between them is ~25%.)
11541  */
11542 const int sched_prio_to_weight[40] = {
11543  /* -20 */     88761,     71755,     56483,     46273,     36291,
11544  /* -15 */     29154,     23254,     18705,     14949,     11916,
11545  /* -10 */      9548,      7620,      6100,      4904,      3906,
11546  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11547  /*   0 */      1024,       820,       655,       526,       423,
11548  /*   5 */       335,       272,       215,       172,       137,
11549  /*  10 */       110,        87,        70,        56,        45,
11550  /*  15 */        36,        29,        23,        18,        15,
11551 };
11552 
11553 /*
11554  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11555  *
11556  * In cases where the weight does not change often, we can use the
11557  * precalculated inverse to speed up arithmetics by turning divisions
11558  * into multiplications:
11559  */
11560 const u32 sched_prio_to_wmult[40] = {
11561  /* -20 */     48388,     59856,     76040,     92818,    118348,
11562  /* -15 */    147320,    184698,    229616,    287308,    360437,
11563  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11564  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11565  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11566  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11567  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11568  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11569 };
11570 
11571 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11572 {
11573         trace_sched_update_nr_running_tp(rq, count);
11574 }
11575 
11576 #ifdef CONFIG_SCHED_MM_CID
11577 
11578 /*
11579  * @cid_lock: Guarantee forward-progress of cid allocation.
11580  *
11581  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11582  * is only used when contention is detected by the lock-free allocation so
11583  * forward progress can be guaranteed.
11584  */
11585 DEFINE_RAW_SPINLOCK(cid_lock);
11586 
11587 /*
11588  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11589  *
11590  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11591  * detected, it is set to 1 to ensure that all newly coming allocations are
11592  * serialized by @cid_lock until the allocation which detected contention
11593  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11594  * of a cid allocation.
11595  */
11596 int use_cid_lock;
11597 
11598 /*
11599  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11600  * concurrently with respect to the execution of the source runqueue context
11601  * switch.
11602  *
11603  * There is one basic properties we want to guarantee here:
11604  *
11605  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11606  * used by a task. That would lead to concurrent allocation of the cid and
11607  * userspace corruption.
11608  *
11609  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11610  * that a pair of loads observe at least one of a pair of stores, which can be
11611  * shown as:
11612  *
11613  *      X = Y = 0
11614  *
11615  *      w[X]=1          w[Y]=1
11616  *      MB              MB
11617  *      r[Y]=y          r[X]=x
11618  *
11619  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11620  * values 0 and 1, this algorithm cares about specific state transitions of the
11621  * runqueue current task (as updated by the scheduler context switch), and the
11622  * per-mm/cpu cid value.
11623  *
11624  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11625  * task->mm != mm for the rest of the discussion. There are two scheduler state
11626  * transitions on context switch we care about:
11627  *
11628  * (TSA) Store to rq->curr with transition from (N) to (Y)
11629  *
11630  * (TSB) Store to rq->curr with transition from (Y) to (N)
11631  *
11632  * On the remote-clear side, there is one transition we care about:
11633  *
11634  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11635  *
11636  * There is also a transition to UNSET state which can be performed from all
11637  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11638  * guarantees that only a single thread will succeed:
11639  *
11640  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11641  *
11642  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11643  * when a thread is actively using the cid (property (1)).
11644  *
11645  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11646  *
11647  * Scenario A) (TSA)+(TMA) (from next task perspective)
11648  *
11649  * CPU0                                      CPU1
11650  *
11651  * Context switch CS-1                       Remote-clear
11652  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11653  *                                             (implied barrier after cmpxchg)
11654  *   - switch_mm_cid()
11655  *     - memory barrier (see switch_mm_cid()
11656  *       comment explaining how this barrier
11657  *       is combined with other scheduler
11658  *       barriers)
11659  *     - mm_cid_get (next)
11660  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11661  *
11662  * This Dekker ensures that either task (Y) is observed by the
11663  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11664  * observed.
11665  *
11666  * If task (Y) store is observed by rcu_dereference(), it means that there is
11667  * still an active task on the cpu. Remote-clear will therefore not transition
11668  * to UNSET, which fulfills property (1).
11669  *
11670  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11671  * it will move its state to UNSET, which clears the percpu cid perhaps
11672  * uselessly (which is not an issue for correctness). Because task (Y) is not
11673  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11674  * state to UNSET is done with a cmpxchg expecting that the old state has the
11675  * LAZY flag set, only one thread will successfully UNSET.
11676  *
11677  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11678  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11679  * CPU1 will observe task (Y) and do nothing more, which is fine.
11680  *
11681  * What we are effectively preventing with this Dekker is a scenario where
11682  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11683  * because this would UNSET a cid which is actively used.
11684  */
11685 
11686 void sched_mm_cid_migrate_from(struct task_struct *t)
11687 {
11688 	t->migrate_from_cpu = task_cpu(t);
11689 }
11690 
11691 static
11692 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11693 					  struct task_struct *t,
11694 					  struct mm_cid *src_pcpu_cid)
11695 {
11696 	struct mm_struct *mm = t->mm;
11697 	struct task_struct *src_task;
11698 	int src_cid, last_mm_cid;
11699 
11700 	if (!mm)
11701 		return -1;
11702 
11703 	last_mm_cid = t->last_mm_cid;
11704 	/*
11705 	 * If the migrated task has no last cid, or if the current
11706 	 * task on src rq uses the cid, it means the source cid does not need
11707 	 * to be moved to the destination cpu.
11708 	 */
11709 	if (last_mm_cid == -1)
11710 		return -1;
11711 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11712 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11713 		return -1;
11714 
11715 	/*
11716 	 * If we observe an active task using the mm on this rq, it means we
11717 	 * are not the last task to be migrated from this cpu for this mm, so
11718 	 * there is no need to move src_cid to the destination cpu.
11719 	 */
11720 	rcu_read_lock();
11721 	src_task = rcu_dereference(src_rq->curr);
11722 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11723 		rcu_read_unlock();
11724 		t->last_mm_cid = -1;
11725 		return -1;
11726 	}
11727 	rcu_read_unlock();
11728 
11729 	return src_cid;
11730 }
11731 
11732 static
11733 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11734 					      struct task_struct *t,
11735 					      struct mm_cid *src_pcpu_cid,
11736 					      int src_cid)
11737 {
11738 	struct task_struct *src_task;
11739 	struct mm_struct *mm = t->mm;
11740 	int lazy_cid;
11741 
11742 	if (src_cid == -1)
11743 		return -1;
11744 
11745 	/*
11746 	 * Attempt to clear the source cpu cid to move it to the destination
11747 	 * cpu.
11748 	 */
11749 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11750 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11751 		return -1;
11752 
11753 	/*
11754 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11755 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11756 	 * between store to rq->curr and load of prev and next task's
11757 	 * per-mm/cpu cid.
11758 	 *
11759 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11760 	 * rq->curr->mm_cid_active matches the barrier in
11761 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11762 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11763 	 * load of per-mm/cpu cid.
11764 	 */
11765 
11766 	/*
11767 	 * If we observe an active task using the mm on this rq after setting
11768 	 * the lazy-put flag, this task will be responsible for transitioning
11769 	 * from lazy-put flag set to MM_CID_UNSET.
11770 	 */
11771 	rcu_read_lock();
11772 	src_task = rcu_dereference(src_rq->curr);
11773 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11774 		rcu_read_unlock();
11775 		/*
11776 		 * We observed an active task for this mm, there is therefore
11777 		 * no point in moving this cid to the destination cpu.
11778 		 */
11779 		t->last_mm_cid = -1;
11780 		return -1;
11781 	}
11782 	rcu_read_unlock();
11783 
11784 	/*
11785 	 * The src_cid is unused, so it can be unset.
11786 	 */
11787 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11788 		return -1;
11789 	return src_cid;
11790 }
11791 
11792 /*
11793  * Migration to dst cpu. Called with dst_rq lock held.
11794  * Interrupts are disabled, which keeps the window of cid ownership without the
11795  * source rq lock held small.
11796  */
11797 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11798 {
11799 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11800 	struct mm_struct *mm = t->mm;
11801 	int src_cid, dst_cid, src_cpu;
11802 	struct rq *src_rq;
11803 
11804 	lockdep_assert_rq_held(dst_rq);
11805 
11806 	if (!mm)
11807 		return;
11808 	src_cpu = t->migrate_from_cpu;
11809 	if (src_cpu == -1) {
11810 		t->last_mm_cid = -1;
11811 		return;
11812 	}
11813 	/*
11814 	 * Move the src cid if the dst cid is unset. This keeps id
11815 	 * allocation closest to 0 in cases where few threads migrate around
11816 	 * many cpus.
11817 	 *
11818 	 * If destination cid is already set, we may have to just clear
11819 	 * the src cid to ensure compactness in frequent migrations
11820 	 * scenarios.
11821 	 *
11822 	 * It is not useful to clear the src cid when the number of threads is
11823 	 * greater or equal to the number of allowed cpus, because user-space
11824 	 * can expect that the number of allowed cids can reach the number of
11825 	 * allowed cpus.
11826 	 */
11827 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11828 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11829 	if (!mm_cid_is_unset(dst_cid) &&
11830 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11831 		return;
11832 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11833 	src_rq = cpu_rq(src_cpu);
11834 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11835 	if (src_cid == -1)
11836 		return;
11837 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11838 							    src_cid);
11839 	if (src_cid == -1)
11840 		return;
11841 	if (!mm_cid_is_unset(dst_cid)) {
11842 		__mm_cid_put(mm, src_cid);
11843 		return;
11844 	}
11845 	/* Move src_cid to dst cpu. */
11846 	mm_cid_snapshot_time(dst_rq, mm);
11847 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11848 }
11849 
11850 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11851 				      int cpu)
11852 {
11853 	struct rq *rq = cpu_rq(cpu);
11854 	struct task_struct *t;
11855 	unsigned long flags;
11856 	int cid, lazy_cid;
11857 
11858 	cid = READ_ONCE(pcpu_cid->cid);
11859 	if (!mm_cid_is_valid(cid))
11860 		return;
11861 
11862 	/*
11863 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11864 	 * there happens to be other tasks left on the source cpu using this
11865 	 * mm, the next task using this mm will reallocate its cid on context
11866 	 * switch.
11867 	 */
11868 	lazy_cid = mm_cid_set_lazy_put(cid);
11869 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11870 		return;
11871 
11872 	/*
11873 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11874 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11875 	 * between store to rq->curr and load of prev and next task's
11876 	 * per-mm/cpu cid.
11877 	 *
11878 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11879 	 * rq->curr->mm_cid_active matches the barrier in
11880 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11881 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11882 	 * load of per-mm/cpu cid.
11883 	 */
11884 
11885 	/*
11886 	 * If we observe an active task using the mm on this rq after setting
11887 	 * the lazy-put flag, that task will be responsible for transitioning
11888 	 * from lazy-put flag set to MM_CID_UNSET.
11889 	 */
11890 	rcu_read_lock();
11891 	t = rcu_dereference(rq->curr);
11892 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11893 		rcu_read_unlock();
11894 		return;
11895 	}
11896 	rcu_read_unlock();
11897 
11898 	/*
11899 	 * The cid is unused, so it can be unset.
11900 	 * Disable interrupts to keep the window of cid ownership without rq
11901 	 * lock small.
11902 	 */
11903 	local_irq_save(flags);
11904 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11905 		__mm_cid_put(mm, cid);
11906 	local_irq_restore(flags);
11907 }
11908 
11909 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11910 {
11911 	struct rq *rq = cpu_rq(cpu);
11912 	struct mm_cid *pcpu_cid;
11913 	struct task_struct *curr;
11914 	u64 rq_clock;
11915 
11916 	/*
11917 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11918 	 * while is irrelevant.
11919 	 */
11920 	rq_clock = READ_ONCE(rq->clock);
11921 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11922 
11923 	/*
11924 	 * In order to take care of infrequently scheduled tasks, bump the time
11925 	 * snapshot associated with this cid if an active task using the mm is
11926 	 * observed on this rq.
11927 	 */
11928 	rcu_read_lock();
11929 	curr = rcu_dereference(rq->curr);
11930 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11931 		WRITE_ONCE(pcpu_cid->time, rq_clock);
11932 		rcu_read_unlock();
11933 		return;
11934 	}
11935 	rcu_read_unlock();
11936 
11937 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11938 		return;
11939 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11940 }
11941 
11942 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11943 					     int weight)
11944 {
11945 	struct mm_cid *pcpu_cid;
11946 	int cid;
11947 
11948 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11949 	cid = READ_ONCE(pcpu_cid->cid);
11950 	if (!mm_cid_is_valid(cid) || cid < weight)
11951 		return;
11952 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11953 }
11954 
11955 static void task_mm_cid_work(struct callback_head *work)
11956 {
11957 	unsigned long now = jiffies, old_scan, next_scan;
11958 	struct task_struct *t = current;
11959 	struct cpumask *cidmask;
11960 	struct mm_struct *mm;
11961 	int weight, cpu;
11962 
11963 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11964 
11965 	work->next = work;	/* Prevent double-add */
11966 	if (t->flags & PF_EXITING)
11967 		return;
11968 	mm = t->mm;
11969 	if (!mm)
11970 		return;
11971 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11972 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11973 	if (!old_scan) {
11974 		unsigned long res;
11975 
11976 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11977 		if (res != old_scan)
11978 			old_scan = res;
11979 		else
11980 			old_scan = next_scan;
11981 	}
11982 	if (time_before(now, old_scan))
11983 		return;
11984 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11985 		return;
11986 	cidmask = mm_cidmask(mm);
11987 	/* Clear cids that were not recently used. */
11988 	for_each_possible_cpu(cpu)
11989 		sched_mm_cid_remote_clear_old(mm, cpu);
11990 	weight = cpumask_weight(cidmask);
11991 	/*
11992 	 * Clear cids that are greater or equal to the cidmask weight to
11993 	 * recompact it.
11994 	 */
11995 	for_each_possible_cpu(cpu)
11996 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11997 }
11998 
11999 void init_sched_mm_cid(struct task_struct *t)
12000 {
12001 	struct mm_struct *mm = t->mm;
12002 	int mm_users = 0;
12003 
12004 	if (mm) {
12005 		mm_users = atomic_read(&mm->mm_users);
12006 		if (mm_users == 1)
12007 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12008 	}
12009 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12010 	init_task_work(&t->cid_work, task_mm_cid_work);
12011 }
12012 
12013 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12014 {
12015 	struct callback_head *work = &curr->cid_work;
12016 	unsigned long now = jiffies;
12017 
12018 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12019 	    work->next != work)
12020 		return;
12021 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12022 		return;
12023 	task_work_add(curr, work, TWA_RESUME);
12024 }
12025 
12026 void sched_mm_cid_exit_signals(struct task_struct *t)
12027 {
12028 	struct mm_struct *mm = t->mm;
12029 	struct rq_flags rf;
12030 	struct rq *rq;
12031 
12032 	if (!mm)
12033 		return;
12034 
12035 	preempt_disable();
12036 	rq = this_rq();
12037 	rq_lock_irqsave(rq, &rf);
12038 	preempt_enable_no_resched();	/* holding spinlock */
12039 	WRITE_ONCE(t->mm_cid_active, 0);
12040 	/*
12041 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12042 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12043 	 */
12044 	smp_mb();
12045 	mm_cid_put(mm);
12046 	t->last_mm_cid = t->mm_cid = -1;
12047 	rq_unlock_irqrestore(rq, &rf);
12048 }
12049 
12050 void sched_mm_cid_before_execve(struct task_struct *t)
12051 {
12052 	struct mm_struct *mm = t->mm;
12053 	struct rq_flags rf;
12054 	struct rq *rq;
12055 
12056 	if (!mm)
12057 		return;
12058 
12059 	preempt_disable();
12060 	rq = this_rq();
12061 	rq_lock_irqsave(rq, &rf);
12062 	preempt_enable_no_resched();	/* holding spinlock */
12063 	WRITE_ONCE(t->mm_cid_active, 0);
12064 	/*
12065 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12066 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12067 	 */
12068 	smp_mb();
12069 	mm_cid_put(mm);
12070 	t->last_mm_cid = t->mm_cid = -1;
12071 	rq_unlock_irqrestore(rq, &rf);
12072 }
12073 
12074 void sched_mm_cid_after_execve(struct task_struct *t)
12075 {
12076 	struct mm_struct *mm = t->mm;
12077 	struct rq_flags rf;
12078 	struct rq *rq;
12079 
12080 	if (!mm)
12081 		return;
12082 
12083 	preempt_disable();
12084 	rq = this_rq();
12085 	rq_lock_irqsave(rq, &rf);
12086 	preempt_enable_no_resched();	/* holding spinlock */
12087 	WRITE_ONCE(t->mm_cid_active, 1);
12088 	/*
12089 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12090 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12091 	 */
12092 	smp_mb();
12093 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12094 	rq_unlock_irqrestore(rq, &rf);
12095 	rseq_set_notify_resume(t);
12096 }
12097 
12098 void sched_mm_cid_fork(struct task_struct *t)
12099 {
12100 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12101 	t->mm_cid_active = 1;
12102 }
12103 #endif
12104