xref: /linux/kernel/sched/core.c (revision e2afb7de6e7dad21f9d709f80f23bbd3c5bdad11)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 	unsigned long delta;
96 	ktime_t soft, hard, now;
97 
98 	for (;;) {
99 		if (hrtimer_active(period_timer))
100 			break;
101 
102 		now = hrtimer_cb_get_time(period_timer);
103 		hrtimer_forward(period_timer, now, period);
104 
105 		soft = hrtimer_get_softexpires(period_timer);
106 		hard = hrtimer_get_expires(period_timer);
107 		delta = ktime_to_ns(ktime_sub(hard, soft));
108 		__hrtimer_start_range_ns(period_timer, soft, delta,
109 					 HRTIMER_MODE_ABS_PINNED, 0);
110 	}
111 }
112 
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 
118 void update_rq_clock(struct rq *rq)
119 {
120 	s64 delta;
121 
122 	if (rq->skip_clock_update > 0)
123 		return;
124 
125 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 	if (delta < 0)
127 		return;
128 	rq->clock += delta;
129 	update_rq_clock_task(rq, delta);
130 }
131 
132 /*
133  * Debugging: various feature bits
134  */
135 
136 #define SCHED_FEAT(name, enabled)	\
137 	(1UL << __SCHED_FEAT_##name) * enabled |
138 
139 const_debug unsigned int sysctl_sched_features =
140 #include "features.h"
141 	0;
142 
143 #undef SCHED_FEAT
144 
145 #ifdef CONFIG_SCHED_DEBUG
146 #define SCHED_FEAT(name, enabled)	\
147 	#name ,
148 
149 static const char * const sched_feat_names[] = {
150 #include "features.h"
151 };
152 
153 #undef SCHED_FEAT
154 
155 static int sched_feat_show(struct seq_file *m, void *v)
156 {
157 	int i;
158 
159 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
160 		if (!(sysctl_sched_features & (1UL << i)))
161 			seq_puts(m, "NO_");
162 		seq_printf(m, "%s ", sched_feat_names[i]);
163 	}
164 	seq_puts(m, "\n");
165 
166 	return 0;
167 }
168 
169 #ifdef HAVE_JUMP_LABEL
170 
171 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
172 #define jump_label_key__false STATIC_KEY_INIT_FALSE
173 
174 #define SCHED_FEAT(name, enabled)	\
175 	jump_label_key__##enabled ,
176 
177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 #include "features.h"
179 };
180 
181 #undef SCHED_FEAT
182 
183 static void sched_feat_disable(int i)
184 {
185 	if (static_key_enabled(&sched_feat_keys[i]))
186 		static_key_slow_dec(&sched_feat_keys[i]);
187 }
188 
189 static void sched_feat_enable(int i)
190 {
191 	if (!static_key_enabled(&sched_feat_keys[i]))
192 		static_key_slow_inc(&sched_feat_keys[i]);
193 }
194 #else
195 static void sched_feat_disable(int i) { };
196 static void sched_feat_enable(int i) { };
197 #endif /* HAVE_JUMP_LABEL */
198 
199 static int sched_feat_set(char *cmp)
200 {
201 	int i;
202 	int neg = 0;
203 
204 	if (strncmp(cmp, "NO_", 3) == 0) {
205 		neg = 1;
206 		cmp += 3;
207 	}
208 
209 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211 			if (neg) {
212 				sysctl_sched_features &= ~(1UL << i);
213 				sched_feat_disable(i);
214 			} else {
215 				sysctl_sched_features |= (1UL << i);
216 				sched_feat_enable(i);
217 			}
218 			break;
219 		}
220 	}
221 
222 	return i;
223 }
224 
225 static ssize_t
226 sched_feat_write(struct file *filp, const char __user *ubuf,
227 		size_t cnt, loff_t *ppos)
228 {
229 	char buf[64];
230 	char *cmp;
231 	int i;
232 	struct inode *inode;
233 
234 	if (cnt > 63)
235 		cnt = 63;
236 
237 	if (copy_from_user(&buf, ubuf, cnt))
238 		return -EFAULT;
239 
240 	buf[cnt] = 0;
241 	cmp = strstrip(buf);
242 
243 	/* Ensure the static_key remains in a consistent state */
244 	inode = file_inode(filp);
245 	mutex_lock(&inode->i_mutex);
246 	i = sched_feat_set(cmp);
247 	mutex_unlock(&inode->i_mutex);
248 	if (i == __SCHED_FEAT_NR)
249 		return -EINVAL;
250 
251 	*ppos += cnt;
252 
253 	return cnt;
254 }
255 
256 static int sched_feat_open(struct inode *inode, struct file *filp)
257 {
258 	return single_open(filp, sched_feat_show, NULL);
259 }
260 
261 static const struct file_operations sched_feat_fops = {
262 	.open		= sched_feat_open,
263 	.write		= sched_feat_write,
264 	.read		= seq_read,
265 	.llseek		= seq_lseek,
266 	.release	= single_release,
267 };
268 
269 static __init int sched_init_debug(void)
270 {
271 	debugfs_create_file("sched_features", 0644, NULL, NULL,
272 			&sched_feat_fops);
273 
274 	return 0;
275 }
276 late_initcall(sched_init_debug);
277 #endif /* CONFIG_SCHED_DEBUG */
278 
279 /*
280  * Number of tasks to iterate in a single balance run.
281  * Limited because this is done with IRQs disabled.
282  */
283 const_debug unsigned int sysctl_sched_nr_migrate = 32;
284 
285 /*
286  * period over which we average the RT time consumption, measured
287  * in ms.
288  *
289  * default: 1s
290  */
291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
292 
293 /*
294  * period over which we measure -rt task cpu usage in us.
295  * default: 1s
296  */
297 unsigned int sysctl_sched_rt_period = 1000000;
298 
299 __read_mostly int scheduler_running;
300 
301 /*
302  * part of the period that we allow rt tasks to run in us.
303  * default: 0.95s
304  */
305 int sysctl_sched_rt_runtime = 950000;
306 
307 /*
308  * __task_rq_lock - lock the rq @p resides on.
309  */
310 static inline struct rq *__task_rq_lock(struct task_struct *p)
311 	__acquires(rq->lock)
312 {
313 	struct rq *rq;
314 
315 	lockdep_assert_held(&p->pi_lock);
316 
317 	for (;;) {
318 		rq = task_rq(p);
319 		raw_spin_lock(&rq->lock);
320 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321 			return rq;
322 		raw_spin_unlock(&rq->lock);
323 
324 		while (unlikely(task_on_rq_migrating(p)))
325 			cpu_relax();
326 	}
327 }
328 
329 /*
330  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331  */
332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333 	__acquires(p->pi_lock)
334 	__acquires(rq->lock)
335 {
336 	struct rq *rq;
337 
338 	for (;;) {
339 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340 		rq = task_rq(p);
341 		raw_spin_lock(&rq->lock);
342 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343 			return rq;
344 		raw_spin_unlock(&rq->lock);
345 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 
347 		while (unlikely(task_on_rq_migrating(p)))
348 			cpu_relax();
349 	}
350 }
351 
352 static void __task_rq_unlock(struct rq *rq)
353 	__releases(rq->lock)
354 {
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 static inline void
359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
360 	__releases(rq->lock)
361 	__releases(p->pi_lock)
362 {
363 	raw_spin_unlock(&rq->lock);
364 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
365 }
366 
367 /*
368  * this_rq_lock - lock this runqueue and disable interrupts.
369  */
370 static struct rq *this_rq_lock(void)
371 	__acquires(rq->lock)
372 {
373 	struct rq *rq;
374 
375 	local_irq_disable();
376 	rq = this_rq();
377 	raw_spin_lock(&rq->lock);
378 
379 	return rq;
380 }
381 
382 #ifdef CONFIG_SCHED_HRTICK
383 /*
384  * Use HR-timers to deliver accurate preemption points.
385  */
386 
387 static void hrtick_clear(struct rq *rq)
388 {
389 	if (hrtimer_active(&rq->hrtick_timer))
390 		hrtimer_cancel(&rq->hrtick_timer);
391 }
392 
393 /*
394  * High-resolution timer tick.
395  * Runs from hardirq context with interrupts disabled.
396  */
397 static enum hrtimer_restart hrtick(struct hrtimer *timer)
398 {
399 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
400 
401 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
402 
403 	raw_spin_lock(&rq->lock);
404 	update_rq_clock(rq);
405 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406 	raw_spin_unlock(&rq->lock);
407 
408 	return HRTIMER_NORESTART;
409 }
410 
411 #ifdef CONFIG_SMP
412 
413 static int __hrtick_restart(struct rq *rq)
414 {
415 	struct hrtimer *timer = &rq->hrtick_timer;
416 	ktime_t time = hrtimer_get_softexpires(timer);
417 
418 	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
419 }
420 
421 /*
422  * called from hardirq (IPI) context
423  */
424 static void __hrtick_start(void *arg)
425 {
426 	struct rq *rq = arg;
427 
428 	raw_spin_lock(&rq->lock);
429 	__hrtick_restart(rq);
430 	rq->hrtick_csd_pending = 0;
431 	raw_spin_unlock(&rq->lock);
432 }
433 
434 /*
435  * Called to set the hrtick timer state.
436  *
437  * called with rq->lock held and irqs disabled
438  */
439 void hrtick_start(struct rq *rq, u64 delay)
440 {
441 	struct hrtimer *timer = &rq->hrtick_timer;
442 	ktime_t time;
443 	s64 delta;
444 
445 	/*
446 	 * Don't schedule slices shorter than 10000ns, that just
447 	 * doesn't make sense and can cause timer DoS.
448 	 */
449 	delta = max_t(s64, delay, 10000LL);
450 	time = ktime_add_ns(timer->base->get_time(), delta);
451 
452 	hrtimer_set_expires(timer, time);
453 
454 	if (rq == this_rq()) {
455 		__hrtick_restart(rq);
456 	} else if (!rq->hrtick_csd_pending) {
457 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 		rq->hrtick_csd_pending = 1;
459 	}
460 }
461 
462 static int
463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
464 {
465 	int cpu = (int)(long)hcpu;
466 
467 	switch (action) {
468 	case CPU_UP_CANCELED:
469 	case CPU_UP_CANCELED_FROZEN:
470 	case CPU_DOWN_PREPARE:
471 	case CPU_DOWN_PREPARE_FROZEN:
472 	case CPU_DEAD:
473 	case CPU_DEAD_FROZEN:
474 		hrtick_clear(cpu_rq(cpu));
475 		return NOTIFY_OK;
476 	}
477 
478 	return NOTIFY_DONE;
479 }
480 
481 static __init void init_hrtick(void)
482 {
483 	hotcpu_notifier(hotplug_hrtick, 0);
484 }
485 #else
486 /*
487  * Called to set the hrtick timer state.
488  *
489  * called with rq->lock held and irqs disabled
490  */
491 void hrtick_start(struct rq *rq, u64 delay)
492 {
493 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494 			HRTIMER_MODE_REL_PINNED, 0);
495 }
496 
497 static inline void init_hrtick(void)
498 {
499 }
500 #endif /* CONFIG_SMP */
501 
502 static void init_rq_hrtick(struct rq *rq)
503 {
504 #ifdef CONFIG_SMP
505 	rq->hrtick_csd_pending = 0;
506 
507 	rq->hrtick_csd.flags = 0;
508 	rq->hrtick_csd.func = __hrtick_start;
509 	rq->hrtick_csd.info = rq;
510 #endif
511 
512 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
513 	rq->hrtick_timer.function = hrtick;
514 }
515 #else	/* CONFIG_SCHED_HRTICK */
516 static inline void hrtick_clear(struct rq *rq)
517 {
518 }
519 
520 static inline void init_rq_hrtick(struct rq *rq)
521 {
522 }
523 
524 static inline void init_hrtick(void)
525 {
526 }
527 #endif	/* CONFIG_SCHED_HRTICK */
528 
529 /*
530  * cmpxchg based fetch_or, macro so it works for different integer types
531  */
532 #define fetch_or(ptr, val)						\
533 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
534  	for (;;) {							\
535  		__old = cmpxchg((ptr), __val, __val | (val));		\
536  		if (__old == __val)					\
537  			break;						\
538  		__val = __old;						\
539  	}								\
540  	__old;								\
541 })
542 
543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 /*
545  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
546  * this avoids any races wrt polling state changes and thereby avoids
547  * spurious IPIs.
548  */
549 static bool set_nr_and_not_polling(struct task_struct *p)
550 {
551 	struct thread_info *ti = task_thread_info(p);
552 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
553 }
554 
555 /*
556  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
557  *
558  * If this returns true, then the idle task promises to call
559  * sched_ttwu_pending() and reschedule soon.
560  */
561 static bool set_nr_if_polling(struct task_struct *p)
562 {
563 	struct thread_info *ti = task_thread_info(p);
564 	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
565 
566 	for (;;) {
567 		if (!(val & _TIF_POLLING_NRFLAG))
568 			return false;
569 		if (val & _TIF_NEED_RESCHED)
570 			return true;
571 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
572 		if (old == val)
573 			break;
574 		val = old;
575 	}
576 	return true;
577 }
578 
579 #else
580 static bool set_nr_and_not_polling(struct task_struct *p)
581 {
582 	set_tsk_need_resched(p);
583 	return true;
584 }
585 
586 #ifdef CONFIG_SMP
587 static bool set_nr_if_polling(struct task_struct *p)
588 {
589 	return false;
590 }
591 #endif
592 #endif
593 
594 /*
595  * resched_curr - mark rq's current task 'to be rescheduled now'.
596  *
597  * On UP this means the setting of the need_resched flag, on SMP it
598  * might also involve a cross-CPU call to trigger the scheduler on
599  * the target CPU.
600  */
601 void resched_curr(struct rq *rq)
602 {
603 	struct task_struct *curr = rq->curr;
604 	int cpu;
605 
606 	lockdep_assert_held(&rq->lock);
607 
608 	if (test_tsk_need_resched(curr))
609 		return;
610 
611 	cpu = cpu_of(rq);
612 
613 	if (cpu == smp_processor_id()) {
614 		set_tsk_need_resched(curr);
615 		set_preempt_need_resched();
616 		return;
617 	}
618 
619 	if (set_nr_and_not_polling(curr))
620 		smp_send_reschedule(cpu);
621 	else
622 		trace_sched_wake_idle_without_ipi(cpu);
623 }
624 
625 void resched_cpu(int cpu)
626 {
627 	struct rq *rq = cpu_rq(cpu);
628 	unsigned long flags;
629 
630 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
631 		return;
632 	resched_curr(rq);
633 	raw_spin_unlock_irqrestore(&rq->lock, flags);
634 }
635 
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
638 /*
639  * In the semi idle case, use the nearest busy cpu for migrating timers
640  * from an idle cpu.  This is good for power-savings.
641  *
642  * We don't do similar optimization for completely idle system, as
643  * selecting an idle cpu will add more delays to the timers than intended
644  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
645  */
646 int get_nohz_timer_target(int pinned)
647 {
648 	int cpu = smp_processor_id();
649 	int i;
650 	struct sched_domain *sd;
651 
652 	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
653 		return cpu;
654 
655 	rcu_read_lock();
656 	for_each_domain(cpu, sd) {
657 		for_each_cpu(i, sched_domain_span(sd)) {
658 			if (!idle_cpu(i)) {
659 				cpu = i;
660 				goto unlock;
661 			}
662 		}
663 	}
664 unlock:
665 	rcu_read_unlock();
666 	return cpu;
667 }
668 /*
669  * When add_timer_on() enqueues a timer into the timer wheel of an
670  * idle CPU then this timer might expire before the next timer event
671  * which is scheduled to wake up that CPU. In case of a completely
672  * idle system the next event might even be infinite time into the
673  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
674  * leaves the inner idle loop so the newly added timer is taken into
675  * account when the CPU goes back to idle and evaluates the timer
676  * wheel for the next timer event.
677  */
678 static void wake_up_idle_cpu(int cpu)
679 {
680 	struct rq *rq = cpu_rq(cpu);
681 
682 	if (cpu == smp_processor_id())
683 		return;
684 
685 	if (set_nr_and_not_polling(rq->idle))
686 		smp_send_reschedule(cpu);
687 	else
688 		trace_sched_wake_idle_without_ipi(cpu);
689 }
690 
691 static bool wake_up_full_nohz_cpu(int cpu)
692 {
693 	/*
694 	 * We just need the target to call irq_exit() and re-evaluate
695 	 * the next tick. The nohz full kick at least implies that.
696 	 * If needed we can still optimize that later with an
697 	 * empty IRQ.
698 	 */
699 	if (tick_nohz_full_cpu(cpu)) {
700 		if (cpu != smp_processor_id() ||
701 		    tick_nohz_tick_stopped())
702 			tick_nohz_full_kick_cpu(cpu);
703 		return true;
704 	}
705 
706 	return false;
707 }
708 
709 void wake_up_nohz_cpu(int cpu)
710 {
711 	if (!wake_up_full_nohz_cpu(cpu))
712 		wake_up_idle_cpu(cpu);
713 }
714 
715 static inline bool got_nohz_idle_kick(void)
716 {
717 	int cpu = smp_processor_id();
718 
719 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
720 		return false;
721 
722 	if (idle_cpu(cpu) && !need_resched())
723 		return true;
724 
725 	/*
726 	 * We can't run Idle Load Balance on this CPU for this time so we
727 	 * cancel it and clear NOHZ_BALANCE_KICK
728 	 */
729 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
730 	return false;
731 }
732 
733 #else /* CONFIG_NO_HZ_COMMON */
734 
735 static inline bool got_nohz_idle_kick(void)
736 {
737 	return false;
738 }
739 
740 #endif /* CONFIG_NO_HZ_COMMON */
741 
742 #ifdef CONFIG_NO_HZ_FULL
743 bool sched_can_stop_tick(void)
744 {
745 	/*
746 	 * More than one running task need preemption.
747 	 * nr_running update is assumed to be visible
748 	 * after IPI is sent from wakers.
749 	 */
750 	if (this_rq()->nr_running > 1)
751 		return false;
752 
753 	return true;
754 }
755 #endif /* CONFIG_NO_HZ_FULL */
756 
757 void sched_avg_update(struct rq *rq)
758 {
759 	s64 period = sched_avg_period();
760 
761 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 		/*
763 		 * Inline assembly required to prevent the compiler
764 		 * optimising this loop into a divmod call.
765 		 * See __iter_div_u64_rem() for another example of this.
766 		 */
767 		asm("" : "+rm" (rq->age_stamp));
768 		rq->age_stamp += period;
769 		rq->rt_avg /= 2;
770 	}
771 }
772 
773 #endif /* CONFIG_SMP */
774 
775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
776 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777 /*
778  * Iterate task_group tree rooted at *from, calling @down when first entering a
779  * node and @up when leaving it for the final time.
780  *
781  * Caller must hold rcu_lock or sufficient equivalent.
782  */
783 int walk_tg_tree_from(struct task_group *from,
784 			     tg_visitor down, tg_visitor up, void *data)
785 {
786 	struct task_group *parent, *child;
787 	int ret;
788 
789 	parent = from;
790 
791 down:
792 	ret = (*down)(parent, data);
793 	if (ret)
794 		goto out;
795 	list_for_each_entry_rcu(child, &parent->children, siblings) {
796 		parent = child;
797 		goto down;
798 
799 up:
800 		continue;
801 	}
802 	ret = (*up)(parent, data);
803 	if (ret || parent == from)
804 		goto out;
805 
806 	child = parent;
807 	parent = parent->parent;
808 	if (parent)
809 		goto up;
810 out:
811 	return ret;
812 }
813 
814 int tg_nop(struct task_group *tg, void *data)
815 {
816 	return 0;
817 }
818 #endif
819 
820 static void set_load_weight(struct task_struct *p)
821 {
822 	int prio = p->static_prio - MAX_RT_PRIO;
823 	struct load_weight *load = &p->se.load;
824 
825 	/*
826 	 * SCHED_IDLE tasks get minimal weight:
827 	 */
828 	if (p->policy == SCHED_IDLE) {
829 		load->weight = scale_load(WEIGHT_IDLEPRIO);
830 		load->inv_weight = WMULT_IDLEPRIO;
831 		return;
832 	}
833 
834 	load->weight = scale_load(prio_to_weight[prio]);
835 	load->inv_weight = prio_to_wmult[prio];
836 }
837 
838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 	update_rq_clock(rq);
841 	sched_info_queued(rq, p);
842 	p->sched_class->enqueue_task(rq, p, flags);
843 }
844 
845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846 {
847 	update_rq_clock(rq);
848 	sched_info_dequeued(rq, p);
849 	p->sched_class->dequeue_task(rq, p, flags);
850 }
851 
852 void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 	if (task_contributes_to_load(p))
855 		rq->nr_uninterruptible--;
856 
857 	enqueue_task(rq, p, flags);
858 }
859 
860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 {
862 	if (task_contributes_to_load(p))
863 		rq->nr_uninterruptible++;
864 
865 	dequeue_task(rq, p, flags);
866 }
867 
868 static void update_rq_clock_task(struct rq *rq, s64 delta)
869 {
870 /*
871  * In theory, the compile should just see 0 here, and optimize out the call
872  * to sched_rt_avg_update. But I don't trust it...
873  */
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 	s64 steal = 0, irq_delta = 0;
876 #endif
877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
878 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 
880 	/*
881 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
882 	 * this case when a previous update_rq_clock() happened inside a
883 	 * {soft,}irq region.
884 	 *
885 	 * When this happens, we stop ->clock_task and only update the
886 	 * prev_irq_time stamp to account for the part that fit, so that a next
887 	 * update will consume the rest. This ensures ->clock_task is
888 	 * monotonic.
889 	 *
890 	 * It does however cause some slight miss-attribution of {soft,}irq
891 	 * time, a more accurate solution would be to update the irq_time using
892 	 * the current rq->clock timestamp, except that would require using
893 	 * atomic ops.
894 	 */
895 	if (irq_delta > delta)
896 		irq_delta = delta;
897 
898 	rq->prev_irq_time += irq_delta;
899 	delta -= irq_delta;
900 #endif
901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902 	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 		steal = paravirt_steal_clock(cpu_of(rq));
904 		steal -= rq->prev_steal_time_rq;
905 
906 		if (unlikely(steal > delta))
907 			steal = delta;
908 
909 		rq->prev_steal_time_rq += steal;
910 		delta -= steal;
911 	}
912 #endif
913 
914 	rq->clock_task += delta;
915 
916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 		sched_rt_avg_update(rq, irq_delta + steal);
919 #endif
920 }
921 
922 void sched_set_stop_task(int cpu, struct task_struct *stop)
923 {
924 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
925 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
926 
927 	if (stop) {
928 		/*
929 		 * Make it appear like a SCHED_FIFO task, its something
930 		 * userspace knows about and won't get confused about.
931 		 *
932 		 * Also, it will make PI more or less work without too
933 		 * much confusion -- but then, stop work should not
934 		 * rely on PI working anyway.
935 		 */
936 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
937 
938 		stop->sched_class = &stop_sched_class;
939 	}
940 
941 	cpu_rq(cpu)->stop = stop;
942 
943 	if (old_stop) {
944 		/*
945 		 * Reset it back to a normal scheduling class so that
946 		 * it can die in pieces.
947 		 */
948 		old_stop->sched_class = &rt_sched_class;
949 	}
950 }
951 
952 /*
953  * __normal_prio - return the priority that is based on the static prio
954  */
955 static inline int __normal_prio(struct task_struct *p)
956 {
957 	return p->static_prio;
958 }
959 
960 /*
961  * Calculate the expected normal priority: i.e. priority
962  * without taking RT-inheritance into account. Might be
963  * boosted by interactivity modifiers. Changes upon fork,
964  * setprio syscalls, and whenever the interactivity
965  * estimator recalculates.
966  */
967 static inline int normal_prio(struct task_struct *p)
968 {
969 	int prio;
970 
971 	if (task_has_dl_policy(p))
972 		prio = MAX_DL_PRIO-1;
973 	else if (task_has_rt_policy(p))
974 		prio = MAX_RT_PRIO-1 - p->rt_priority;
975 	else
976 		prio = __normal_prio(p);
977 	return prio;
978 }
979 
980 /*
981  * Calculate the current priority, i.e. the priority
982  * taken into account by the scheduler. This value might
983  * be boosted by RT tasks, or might be boosted by
984  * interactivity modifiers. Will be RT if the task got
985  * RT-boosted. If not then it returns p->normal_prio.
986  */
987 static int effective_prio(struct task_struct *p)
988 {
989 	p->normal_prio = normal_prio(p);
990 	/*
991 	 * If we are RT tasks or we were boosted to RT priority,
992 	 * keep the priority unchanged. Otherwise, update priority
993 	 * to the normal priority:
994 	 */
995 	if (!rt_prio(p->prio))
996 		return p->normal_prio;
997 	return p->prio;
998 }
999 
1000 /**
1001  * task_curr - is this task currently executing on a CPU?
1002  * @p: the task in question.
1003  *
1004  * Return: 1 if the task is currently executing. 0 otherwise.
1005  */
1006 inline int task_curr(const struct task_struct *p)
1007 {
1008 	return cpu_curr(task_cpu(p)) == p;
1009 }
1010 
1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1012 				       const struct sched_class *prev_class,
1013 				       int oldprio)
1014 {
1015 	if (prev_class != p->sched_class) {
1016 		if (prev_class->switched_from)
1017 			prev_class->switched_from(rq, p);
1018 		p->sched_class->switched_to(rq, p);
1019 	} else if (oldprio != p->prio || dl_task(p))
1020 		p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022 
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 	const struct sched_class *class;
1026 
1027 	if (p->sched_class == rq->curr->sched_class) {
1028 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 	} else {
1030 		for_each_class(class) {
1031 			if (class == rq->curr->sched_class)
1032 				break;
1033 			if (class == p->sched_class) {
1034 				resched_curr(rq);
1035 				break;
1036 			}
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * A queue event has occurred, and we're going to schedule.  In
1042 	 * this case, we can save a useless back to back clock update.
1043 	 */
1044 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 		rq->skip_clock_update = 1;
1046 }
1047 
1048 #ifdef CONFIG_SMP
1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1050 {
1051 #ifdef CONFIG_SCHED_DEBUG
1052 	/*
1053 	 * We should never call set_task_cpu() on a blocked task,
1054 	 * ttwu() will sort out the placement.
1055 	 */
1056 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1057 			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1058 
1059 #ifdef CONFIG_LOCKDEP
1060 	/*
1061 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1062 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1063 	 *
1064 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1065 	 * see task_group().
1066 	 *
1067 	 * Furthermore, all task_rq users should acquire both locks, see
1068 	 * task_rq_lock().
1069 	 */
1070 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1071 				      lockdep_is_held(&task_rq(p)->lock)));
1072 #endif
1073 #endif
1074 
1075 	trace_sched_migrate_task(p, new_cpu);
1076 
1077 	if (task_cpu(p) != new_cpu) {
1078 		if (p->sched_class->migrate_task_rq)
1079 			p->sched_class->migrate_task_rq(p, new_cpu);
1080 		p->se.nr_migrations++;
1081 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1082 	}
1083 
1084 	__set_task_cpu(p, new_cpu);
1085 }
1086 
1087 static void __migrate_swap_task(struct task_struct *p, int cpu)
1088 {
1089 	if (task_on_rq_queued(p)) {
1090 		struct rq *src_rq, *dst_rq;
1091 
1092 		src_rq = task_rq(p);
1093 		dst_rq = cpu_rq(cpu);
1094 
1095 		deactivate_task(src_rq, p, 0);
1096 		set_task_cpu(p, cpu);
1097 		activate_task(dst_rq, p, 0);
1098 		check_preempt_curr(dst_rq, p, 0);
1099 	} else {
1100 		/*
1101 		 * Task isn't running anymore; make it appear like we migrated
1102 		 * it before it went to sleep. This means on wakeup we make the
1103 		 * previous cpu our targer instead of where it really is.
1104 		 */
1105 		p->wake_cpu = cpu;
1106 	}
1107 }
1108 
1109 struct migration_swap_arg {
1110 	struct task_struct *src_task, *dst_task;
1111 	int src_cpu, dst_cpu;
1112 };
1113 
1114 static int migrate_swap_stop(void *data)
1115 {
1116 	struct migration_swap_arg *arg = data;
1117 	struct rq *src_rq, *dst_rq;
1118 	int ret = -EAGAIN;
1119 
1120 	src_rq = cpu_rq(arg->src_cpu);
1121 	dst_rq = cpu_rq(arg->dst_cpu);
1122 
1123 	double_raw_lock(&arg->src_task->pi_lock,
1124 			&arg->dst_task->pi_lock);
1125 	double_rq_lock(src_rq, dst_rq);
1126 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1127 		goto unlock;
1128 
1129 	if (task_cpu(arg->src_task) != arg->src_cpu)
1130 		goto unlock;
1131 
1132 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1133 		goto unlock;
1134 
1135 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1136 		goto unlock;
1137 
1138 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1139 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1140 
1141 	ret = 0;
1142 
1143 unlock:
1144 	double_rq_unlock(src_rq, dst_rq);
1145 	raw_spin_unlock(&arg->dst_task->pi_lock);
1146 	raw_spin_unlock(&arg->src_task->pi_lock);
1147 
1148 	return ret;
1149 }
1150 
1151 /*
1152  * Cross migrate two tasks
1153  */
1154 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1155 {
1156 	struct migration_swap_arg arg;
1157 	int ret = -EINVAL;
1158 
1159 	arg = (struct migration_swap_arg){
1160 		.src_task = cur,
1161 		.src_cpu = task_cpu(cur),
1162 		.dst_task = p,
1163 		.dst_cpu = task_cpu(p),
1164 	};
1165 
1166 	if (arg.src_cpu == arg.dst_cpu)
1167 		goto out;
1168 
1169 	/*
1170 	 * These three tests are all lockless; this is OK since all of them
1171 	 * will be re-checked with proper locks held further down the line.
1172 	 */
1173 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1174 		goto out;
1175 
1176 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1177 		goto out;
1178 
1179 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1180 		goto out;
1181 
1182 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1183 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1184 
1185 out:
1186 	return ret;
1187 }
1188 
1189 struct migration_arg {
1190 	struct task_struct *task;
1191 	int dest_cpu;
1192 };
1193 
1194 static int migration_cpu_stop(void *data);
1195 
1196 /*
1197  * wait_task_inactive - wait for a thread to unschedule.
1198  *
1199  * If @match_state is nonzero, it's the @p->state value just checked and
1200  * not expected to change.  If it changes, i.e. @p might have woken up,
1201  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1202  * we return a positive number (its total switch count).  If a second call
1203  * a short while later returns the same number, the caller can be sure that
1204  * @p has remained unscheduled the whole time.
1205  *
1206  * The caller must ensure that the task *will* unschedule sometime soon,
1207  * else this function might spin for a *long* time. This function can't
1208  * be called with interrupts off, or it may introduce deadlock with
1209  * smp_call_function() if an IPI is sent by the same process we are
1210  * waiting to become inactive.
1211  */
1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1213 {
1214 	unsigned long flags;
1215 	int running, queued;
1216 	unsigned long ncsw;
1217 	struct rq *rq;
1218 
1219 	for (;;) {
1220 		/*
1221 		 * We do the initial early heuristics without holding
1222 		 * any task-queue locks at all. We'll only try to get
1223 		 * the runqueue lock when things look like they will
1224 		 * work out!
1225 		 */
1226 		rq = task_rq(p);
1227 
1228 		/*
1229 		 * If the task is actively running on another CPU
1230 		 * still, just relax and busy-wait without holding
1231 		 * any locks.
1232 		 *
1233 		 * NOTE! Since we don't hold any locks, it's not
1234 		 * even sure that "rq" stays as the right runqueue!
1235 		 * But we don't care, since "task_running()" will
1236 		 * return false if the runqueue has changed and p
1237 		 * is actually now running somewhere else!
1238 		 */
1239 		while (task_running(rq, p)) {
1240 			if (match_state && unlikely(p->state != match_state))
1241 				return 0;
1242 			cpu_relax();
1243 		}
1244 
1245 		/*
1246 		 * Ok, time to look more closely! We need the rq
1247 		 * lock now, to be *sure*. If we're wrong, we'll
1248 		 * just go back and repeat.
1249 		 */
1250 		rq = task_rq_lock(p, &flags);
1251 		trace_sched_wait_task(p);
1252 		running = task_running(rq, p);
1253 		queued = task_on_rq_queued(p);
1254 		ncsw = 0;
1255 		if (!match_state || p->state == match_state)
1256 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1257 		task_rq_unlock(rq, p, &flags);
1258 
1259 		/*
1260 		 * If it changed from the expected state, bail out now.
1261 		 */
1262 		if (unlikely(!ncsw))
1263 			break;
1264 
1265 		/*
1266 		 * Was it really running after all now that we
1267 		 * checked with the proper locks actually held?
1268 		 *
1269 		 * Oops. Go back and try again..
1270 		 */
1271 		if (unlikely(running)) {
1272 			cpu_relax();
1273 			continue;
1274 		}
1275 
1276 		/*
1277 		 * It's not enough that it's not actively running,
1278 		 * it must be off the runqueue _entirely_, and not
1279 		 * preempted!
1280 		 *
1281 		 * So if it was still runnable (but just not actively
1282 		 * running right now), it's preempted, and we should
1283 		 * yield - it could be a while.
1284 		 */
1285 		if (unlikely(queued)) {
1286 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1287 
1288 			set_current_state(TASK_UNINTERRUPTIBLE);
1289 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1290 			continue;
1291 		}
1292 
1293 		/*
1294 		 * Ahh, all good. It wasn't running, and it wasn't
1295 		 * runnable, which means that it will never become
1296 		 * running in the future either. We're all done!
1297 		 */
1298 		break;
1299 	}
1300 
1301 	return ncsw;
1302 }
1303 
1304 /***
1305  * kick_process - kick a running thread to enter/exit the kernel
1306  * @p: the to-be-kicked thread
1307  *
1308  * Cause a process which is running on another CPU to enter
1309  * kernel-mode, without any delay. (to get signals handled.)
1310  *
1311  * NOTE: this function doesn't have to take the runqueue lock,
1312  * because all it wants to ensure is that the remote task enters
1313  * the kernel. If the IPI races and the task has been migrated
1314  * to another CPU then no harm is done and the purpose has been
1315  * achieved as well.
1316  */
1317 void kick_process(struct task_struct *p)
1318 {
1319 	int cpu;
1320 
1321 	preempt_disable();
1322 	cpu = task_cpu(p);
1323 	if ((cpu != smp_processor_id()) && task_curr(p))
1324 		smp_send_reschedule(cpu);
1325 	preempt_enable();
1326 }
1327 EXPORT_SYMBOL_GPL(kick_process);
1328 #endif /* CONFIG_SMP */
1329 
1330 #ifdef CONFIG_SMP
1331 /*
1332  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1333  */
1334 static int select_fallback_rq(int cpu, struct task_struct *p)
1335 {
1336 	int nid = cpu_to_node(cpu);
1337 	const struct cpumask *nodemask = NULL;
1338 	enum { cpuset, possible, fail } state = cpuset;
1339 	int dest_cpu;
1340 
1341 	/*
1342 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1343 	 * will return -1. There is no cpu on the node, and we should
1344 	 * select the cpu on the other node.
1345 	 */
1346 	if (nid != -1) {
1347 		nodemask = cpumask_of_node(nid);
1348 
1349 		/* Look for allowed, online CPU in same node. */
1350 		for_each_cpu(dest_cpu, nodemask) {
1351 			if (!cpu_online(dest_cpu))
1352 				continue;
1353 			if (!cpu_active(dest_cpu))
1354 				continue;
1355 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1356 				return dest_cpu;
1357 		}
1358 	}
1359 
1360 	for (;;) {
1361 		/* Any allowed, online CPU? */
1362 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1363 			if (!cpu_online(dest_cpu))
1364 				continue;
1365 			if (!cpu_active(dest_cpu))
1366 				continue;
1367 			goto out;
1368 		}
1369 
1370 		switch (state) {
1371 		case cpuset:
1372 			/* No more Mr. Nice Guy. */
1373 			cpuset_cpus_allowed_fallback(p);
1374 			state = possible;
1375 			break;
1376 
1377 		case possible:
1378 			do_set_cpus_allowed(p, cpu_possible_mask);
1379 			state = fail;
1380 			break;
1381 
1382 		case fail:
1383 			BUG();
1384 			break;
1385 		}
1386 	}
1387 
1388 out:
1389 	if (state != cpuset) {
1390 		/*
1391 		 * Don't tell them about moving exiting tasks or
1392 		 * kernel threads (both mm NULL), since they never
1393 		 * leave kernel.
1394 		 */
1395 		if (p->mm && printk_ratelimit()) {
1396 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1397 					task_pid_nr(p), p->comm, cpu);
1398 		}
1399 	}
1400 
1401 	return dest_cpu;
1402 }
1403 
1404 /*
1405  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1406  */
1407 static inline
1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1409 {
1410 	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1411 
1412 	/*
1413 	 * In order not to call set_task_cpu() on a blocking task we need
1414 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1415 	 * cpu.
1416 	 *
1417 	 * Since this is common to all placement strategies, this lives here.
1418 	 *
1419 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1420 	 *   not worry about this generic constraint ]
1421 	 */
1422 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1423 		     !cpu_online(cpu)))
1424 		cpu = select_fallback_rq(task_cpu(p), p);
1425 
1426 	return cpu;
1427 }
1428 
1429 static void update_avg(u64 *avg, u64 sample)
1430 {
1431 	s64 diff = sample - *avg;
1432 	*avg += diff >> 3;
1433 }
1434 #endif
1435 
1436 static void
1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1438 {
1439 #ifdef CONFIG_SCHEDSTATS
1440 	struct rq *rq = this_rq();
1441 
1442 #ifdef CONFIG_SMP
1443 	int this_cpu = smp_processor_id();
1444 
1445 	if (cpu == this_cpu) {
1446 		schedstat_inc(rq, ttwu_local);
1447 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1448 	} else {
1449 		struct sched_domain *sd;
1450 
1451 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1452 		rcu_read_lock();
1453 		for_each_domain(this_cpu, sd) {
1454 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1455 				schedstat_inc(sd, ttwu_wake_remote);
1456 				break;
1457 			}
1458 		}
1459 		rcu_read_unlock();
1460 	}
1461 
1462 	if (wake_flags & WF_MIGRATED)
1463 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1464 
1465 #endif /* CONFIG_SMP */
1466 
1467 	schedstat_inc(rq, ttwu_count);
1468 	schedstat_inc(p, se.statistics.nr_wakeups);
1469 
1470 	if (wake_flags & WF_SYNC)
1471 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1472 
1473 #endif /* CONFIG_SCHEDSTATS */
1474 }
1475 
1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1477 {
1478 	activate_task(rq, p, en_flags);
1479 	p->on_rq = TASK_ON_RQ_QUEUED;
1480 
1481 	/* if a worker is waking up, notify workqueue */
1482 	if (p->flags & PF_WQ_WORKER)
1483 		wq_worker_waking_up(p, cpu_of(rq));
1484 }
1485 
1486 /*
1487  * Mark the task runnable and perform wakeup-preemption.
1488  */
1489 static void
1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1491 {
1492 	check_preempt_curr(rq, p, wake_flags);
1493 	trace_sched_wakeup(p, true);
1494 
1495 	p->state = TASK_RUNNING;
1496 #ifdef CONFIG_SMP
1497 	if (p->sched_class->task_woken)
1498 		p->sched_class->task_woken(rq, p);
1499 
1500 	if (rq->idle_stamp) {
1501 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1502 		u64 max = 2*rq->max_idle_balance_cost;
1503 
1504 		update_avg(&rq->avg_idle, delta);
1505 
1506 		if (rq->avg_idle > max)
1507 			rq->avg_idle = max;
1508 
1509 		rq->idle_stamp = 0;
1510 	}
1511 #endif
1512 }
1513 
1514 static void
1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1516 {
1517 #ifdef CONFIG_SMP
1518 	if (p->sched_contributes_to_load)
1519 		rq->nr_uninterruptible--;
1520 #endif
1521 
1522 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1523 	ttwu_do_wakeup(rq, p, wake_flags);
1524 }
1525 
1526 /*
1527  * Called in case the task @p isn't fully descheduled from its runqueue,
1528  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1529  * since all we need to do is flip p->state to TASK_RUNNING, since
1530  * the task is still ->on_rq.
1531  */
1532 static int ttwu_remote(struct task_struct *p, int wake_flags)
1533 {
1534 	struct rq *rq;
1535 	int ret = 0;
1536 
1537 	rq = __task_rq_lock(p);
1538 	if (task_on_rq_queued(p)) {
1539 		/* check_preempt_curr() may use rq clock */
1540 		update_rq_clock(rq);
1541 		ttwu_do_wakeup(rq, p, wake_flags);
1542 		ret = 1;
1543 	}
1544 	__task_rq_unlock(rq);
1545 
1546 	return ret;
1547 }
1548 
1549 #ifdef CONFIG_SMP
1550 void sched_ttwu_pending(void)
1551 {
1552 	struct rq *rq = this_rq();
1553 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1554 	struct task_struct *p;
1555 	unsigned long flags;
1556 
1557 	if (!llist)
1558 		return;
1559 
1560 	raw_spin_lock_irqsave(&rq->lock, flags);
1561 
1562 	while (llist) {
1563 		p = llist_entry(llist, struct task_struct, wake_entry);
1564 		llist = llist_next(llist);
1565 		ttwu_do_activate(rq, p, 0);
1566 	}
1567 
1568 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1569 }
1570 
1571 void scheduler_ipi(void)
1572 {
1573 	/*
1574 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1575 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1576 	 * this IPI.
1577 	 */
1578 	preempt_fold_need_resched();
1579 
1580 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1581 		return;
1582 
1583 	/*
1584 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1585 	 * traditionally all their work was done from the interrupt return
1586 	 * path. Now that we actually do some work, we need to make sure
1587 	 * we do call them.
1588 	 *
1589 	 * Some archs already do call them, luckily irq_enter/exit nest
1590 	 * properly.
1591 	 *
1592 	 * Arguably we should visit all archs and update all handlers,
1593 	 * however a fair share of IPIs are still resched only so this would
1594 	 * somewhat pessimize the simple resched case.
1595 	 */
1596 	irq_enter();
1597 	sched_ttwu_pending();
1598 
1599 	/*
1600 	 * Check if someone kicked us for doing the nohz idle load balance.
1601 	 */
1602 	if (unlikely(got_nohz_idle_kick())) {
1603 		this_rq()->idle_balance = 1;
1604 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1605 	}
1606 	irq_exit();
1607 }
1608 
1609 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1610 {
1611 	struct rq *rq = cpu_rq(cpu);
1612 
1613 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1614 		if (!set_nr_if_polling(rq->idle))
1615 			smp_send_reschedule(cpu);
1616 		else
1617 			trace_sched_wake_idle_without_ipi(cpu);
1618 	}
1619 }
1620 
1621 void wake_up_if_idle(int cpu)
1622 {
1623 	struct rq *rq = cpu_rq(cpu);
1624 	unsigned long flags;
1625 
1626 	if (!is_idle_task(rq->curr))
1627 		return;
1628 
1629 	if (set_nr_if_polling(rq->idle)) {
1630 		trace_sched_wake_idle_without_ipi(cpu);
1631 	} else {
1632 		raw_spin_lock_irqsave(&rq->lock, flags);
1633 		if (is_idle_task(rq->curr))
1634 			smp_send_reschedule(cpu);
1635 		/* Else cpu is not in idle, do nothing here */
1636 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1637 	}
1638 }
1639 
1640 bool cpus_share_cache(int this_cpu, int that_cpu)
1641 {
1642 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1643 }
1644 #endif /* CONFIG_SMP */
1645 
1646 static void ttwu_queue(struct task_struct *p, int cpu)
1647 {
1648 	struct rq *rq = cpu_rq(cpu);
1649 
1650 #if defined(CONFIG_SMP)
1651 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1652 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1653 		ttwu_queue_remote(p, cpu);
1654 		return;
1655 	}
1656 #endif
1657 
1658 	raw_spin_lock(&rq->lock);
1659 	ttwu_do_activate(rq, p, 0);
1660 	raw_spin_unlock(&rq->lock);
1661 }
1662 
1663 /**
1664  * try_to_wake_up - wake up a thread
1665  * @p: the thread to be awakened
1666  * @state: the mask of task states that can be woken
1667  * @wake_flags: wake modifier flags (WF_*)
1668  *
1669  * Put it on the run-queue if it's not already there. The "current"
1670  * thread is always on the run-queue (except when the actual
1671  * re-schedule is in progress), and as such you're allowed to do
1672  * the simpler "current->state = TASK_RUNNING" to mark yourself
1673  * runnable without the overhead of this.
1674  *
1675  * Return: %true if @p was woken up, %false if it was already running.
1676  * or @state didn't match @p's state.
1677  */
1678 static int
1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1680 {
1681 	unsigned long flags;
1682 	int cpu, success = 0;
1683 
1684 	/*
1685 	 * If we are going to wake up a thread waiting for CONDITION we
1686 	 * need to ensure that CONDITION=1 done by the caller can not be
1687 	 * reordered with p->state check below. This pairs with mb() in
1688 	 * set_current_state() the waiting thread does.
1689 	 */
1690 	smp_mb__before_spinlock();
1691 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1692 	if (!(p->state & state))
1693 		goto out;
1694 
1695 	success = 1; /* we're going to change ->state */
1696 	cpu = task_cpu(p);
1697 
1698 	if (p->on_rq && ttwu_remote(p, wake_flags))
1699 		goto stat;
1700 
1701 #ifdef CONFIG_SMP
1702 	/*
1703 	 * If the owning (remote) cpu is still in the middle of schedule() with
1704 	 * this task as prev, wait until its done referencing the task.
1705 	 */
1706 	while (p->on_cpu)
1707 		cpu_relax();
1708 	/*
1709 	 * Pairs with the smp_wmb() in finish_lock_switch().
1710 	 */
1711 	smp_rmb();
1712 
1713 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1714 	p->state = TASK_WAKING;
1715 
1716 	if (p->sched_class->task_waking)
1717 		p->sched_class->task_waking(p);
1718 
1719 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1720 	if (task_cpu(p) != cpu) {
1721 		wake_flags |= WF_MIGRATED;
1722 		set_task_cpu(p, cpu);
1723 	}
1724 #endif /* CONFIG_SMP */
1725 
1726 	ttwu_queue(p, cpu);
1727 stat:
1728 	ttwu_stat(p, cpu, wake_flags);
1729 out:
1730 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1731 
1732 	return success;
1733 }
1734 
1735 /**
1736  * try_to_wake_up_local - try to wake up a local task with rq lock held
1737  * @p: the thread to be awakened
1738  *
1739  * Put @p on the run-queue if it's not already there. The caller must
1740  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1741  * the current task.
1742  */
1743 static void try_to_wake_up_local(struct task_struct *p)
1744 {
1745 	struct rq *rq = task_rq(p);
1746 
1747 	if (WARN_ON_ONCE(rq != this_rq()) ||
1748 	    WARN_ON_ONCE(p == current))
1749 		return;
1750 
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 	if (!raw_spin_trylock(&p->pi_lock)) {
1754 		raw_spin_unlock(&rq->lock);
1755 		raw_spin_lock(&p->pi_lock);
1756 		raw_spin_lock(&rq->lock);
1757 	}
1758 
1759 	if (!(p->state & TASK_NORMAL))
1760 		goto out;
1761 
1762 	if (!task_on_rq_queued(p))
1763 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1764 
1765 	ttwu_do_wakeup(rq, p, 0);
1766 	ttwu_stat(p, smp_processor_id(), 0);
1767 out:
1768 	raw_spin_unlock(&p->pi_lock);
1769 }
1770 
1771 /**
1772  * wake_up_process - Wake up a specific process
1773  * @p: The process to be woken up.
1774  *
1775  * Attempt to wake up the nominated process and move it to the set of runnable
1776  * processes.
1777  *
1778  * Return: 1 if the process was woken up, 0 if it was already running.
1779  *
1780  * It may be assumed that this function implies a write memory barrier before
1781  * changing the task state if and only if any tasks are woken up.
1782  */
1783 int wake_up_process(struct task_struct *p)
1784 {
1785 	WARN_ON(task_is_stopped_or_traced(p));
1786 	return try_to_wake_up(p, TASK_NORMAL, 0);
1787 }
1788 EXPORT_SYMBOL(wake_up_process);
1789 
1790 int wake_up_state(struct task_struct *p, unsigned int state)
1791 {
1792 	return try_to_wake_up(p, state, 0);
1793 }
1794 
1795 /*
1796  * This function clears the sched_dl_entity static params.
1797  */
1798 void __dl_clear_params(struct task_struct *p)
1799 {
1800 	struct sched_dl_entity *dl_se = &p->dl;
1801 
1802 	dl_se->dl_runtime = 0;
1803 	dl_se->dl_deadline = 0;
1804 	dl_se->dl_period = 0;
1805 	dl_se->flags = 0;
1806 	dl_se->dl_bw = 0;
1807 }
1808 
1809 /*
1810  * Perform scheduler related setup for a newly forked process p.
1811  * p is forked by current.
1812  *
1813  * __sched_fork() is basic setup used by init_idle() too:
1814  */
1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1816 {
1817 	p->on_rq			= 0;
1818 
1819 	p->se.on_rq			= 0;
1820 	p->se.exec_start		= 0;
1821 	p->se.sum_exec_runtime		= 0;
1822 	p->se.prev_sum_exec_runtime	= 0;
1823 	p->se.nr_migrations		= 0;
1824 	p->se.vruntime			= 0;
1825 	INIT_LIST_HEAD(&p->se.group_node);
1826 
1827 #ifdef CONFIG_SCHEDSTATS
1828 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1829 #endif
1830 
1831 	RB_CLEAR_NODE(&p->dl.rb_node);
1832 	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1833 	__dl_clear_params(p);
1834 
1835 	INIT_LIST_HEAD(&p->rt.run_list);
1836 
1837 #ifdef CONFIG_PREEMPT_NOTIFIERS
1838 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1839 #endif
1840 
1841 #ifdef CONFIG_NUMA_BALANCING
1842 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1843 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 		p->mm->numa_scan_seq = 0;
1845 	}
1846 
1847 	if (clone_flags & CLONE_VM)
1848 		p->numa_preferred_nid = current->numa_preferred_nid;
1849 	else
1850 		p->numa_preferred_nid = -1;
1851 
1852 	p->node_stamp = 0ULL;
1853 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1854 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1855 	p->numa_work.next = &p->numa_work;
1856 	p->numa_faults_memory = NULL;
1857 	p->numa_faults_buffer_memory = NULL;
1858 	p->last_task_numa_placement = 0;
1859 	p->last_sum_exec_runtime = 0;
1860 
1861 	INIT_LIST_HEAD(&p->numa_entry);
1862 	p->numa_group = NULL;
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 }
1865 
1866 #ifdef CONFIG_NUMA_BALANCING
1867 #ifdef CONFIG_SCHED_DEBUG
1868 void set_numabalancing_state(bool enabled)
1869 {
1870 	if (enabled)
1871 		sched_feat_set("NUMA");
1872 	else
1873 		sched_feat_set("NO_NUMA");
1874 }
1875 #else
1876 __read_mostly bool numabalancing_enabled;
1877 
1878 void set_numabalancing_state(bool enabled)
1879 {
1880 	numabalancing_enabled = enabled;
1881 }
1882 #endif /* CONFIG_SCHED_DEBUG */
1883 
1884 #ifdef CONFIG_PROC_SYSCTL
1885 int sysctl_numa_balancing(struct ctl_table *table, int write,
1886 			 void __user *buffer, size_t *lenp, loff_t *ppos)
1887 {
1888 	struct ctl_table t;
1889 	int err;
1890 	int state = numabalancing_enabled;
1891 
1892 	if (write && !capable(CAP_SYS_ADMIN))
1893 		return -EPERM;
1894 
1895 	t = *table;
1896 	t.data = &state;
1897 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1898 	if (err < 0)
1899 		return err;
1900 	if (write)
1901 		set_numabalancing_state(state);
1902 	return err;
1903 }
1904 #endif
1905 #endif
1906 
1907 /*
1908  * fork()/clone()-time setup:
1909  */
1910 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1911 {
1912 	unsigned long flags;
1913 	int cpu = get_cpu();
1914 
1915 	__sched_fork(clone_flags, p);
1916 	/*
1917 	 * We mark the process as running here. This guarantees that
1918 	 * nobody will actually run it, and a signal or other external
1919 	 * event cannot wake it up and insert it on the runqueue either.
1920 	 */
1921 	p->state = TASK_RUNNING;
1922 
1923 	/*
1924 	 * Make sure we do not leak PI boosting priority to the child.
1925 	 */
1926 	p->prio = current->normal_prio;
1927 
1928 	/*
1929 	 * Revert to default priority/policy on fork if requested.
1930 	 */
1931 	if (unlikely(p->sched_reset_on_fork)) {
1932 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1933 			p->policy = SCHED_NORMAL;
1934 			p->static_prio = NICE_TO_PRIO(0);
1935 			p->rt_priority = 0;
1936 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1937 			p->static_prio = NICE_TO_PRIO(0);
1938 
1939 		p->prio = p->normal_prio = __normal_prio(p);
1940 		set_load_weight(p);
1941 
1942 		/*
1943 		 * We don't need the reset flag anymore after the fork. It has
1944 		 * fulfilled its duty:
1945 		 */
1946 		p->sched_reset_on_fork = 0;
1947 	}
1948 
1949 	if (dl_prio(p->prio)) {
1950 		put_cpu();
1951 		return -EAGAIN;
1952 	} else if (rt_prio(p->prio)) {
1953 		p->sched_class = &rt_sched_class;
1954 	} else {
1955 		p->sched_class = &fair_sched_class;
1956 	}
1957 
1958 	if (p->sched_class->task_fork)
1959 		p->sched_class->task_fork(p);
1960 
1961 	/*
1962 	 * The child is not yet in the pid-hash so no cgroup attach races,
1963 	 * and the cgroup is pinned to this child due to cgroup_fork()
1964 	 * is ran before sched_fork().
1965 	 *
1966 	 * Silence PROVE_RCU.
1967 	 */
1968 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1969 	set_task_cpu(p, cpu);
1970 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1971 
1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1973 	if (likely(sched_info_on()))
1974 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1975 #endif
1976 #if defined(CONFIG_SMP)
1977 	p->on_cpu = 0;
1978 #endif
1979 	init_task_preempt_count(p);
1980 #ifdef CONFIG_SMP
1981 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1982 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1983 #endif
1984 
1985 	put_cpu();
1986 	return 0;
1987 }
1988 
1989 unsigned long to_ratio(u64 period, u64 runtime)
1990 {
1991 	if (runtime == RUNTIME_INF)
1992 		return 1ULL << 20;
1993 
1994 	/*
1995 	 * Doing this here saves a lot of checks in all
1996 	 * the calling paths, and returning zero seems
1997 	 * safe for them anyway.
1998 	 */
1999 	if (period == 0)
2000 		return 0;
2001 
2002 	return div64_u64(runtime << 20, period);
2003 }
2004 
2005 #ifdef CONFIG_SMP
2006 inline struct dl_bw *dl_bw_of(int i)
2007 {
2008 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2009 			   "sched RCU must be held");
2010 	return &cpu_rq(i)->rd->dl_bw;
2011 }
2012 
2013 static inline int dl_bw_cpus(int i)
2014 {
2015 	struct root_domain *rd = cpu_rq(i)->rd;
2016 	int cpus = 0;
2017 
2018 	rcu_lockdep_assert(rcu_read_lock_sched_held(),
2019 			   "sched RCU must be held");
2020 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2021 		cpus++;
2022 
2023 	return cpus;
2024 }
2025 #else
2026 inline struct dl_bw *dl_bw_of(int i)
2027 {
2028 	return &cpu_rq(i)->dl.dl_bw;
2029 }
2030 
2031 static inline int dl_bw_cpus(int i)
2032 {
2033 	return 1;
2034 }
2035 #endif
2036 
2037 static inline
2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2039 {
2040 	dl_b->total_bw -= tsk_bw;
2041 }
2042 
2043 static inline
2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2045 {
2046 	dl_b->total_bw += tsk_bw;
2047 }
2048 
2049 static inline
2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2051 {
2052 	return dl_b->bw != -1 &&
2053 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2054 }
2055 
2056 /*
2057  * We must be sure that accepting a new task (or allowing changing the
2058  * parameters of an existing one) is consistent with the bandwidth
2059  * constraints. If yes, this function also accordingly updates the currently
2060  * allocated bandwidth to reflect the new situation.
2061  *
2062  * This function is called while holding p's rq->lock.
2063  */
2064 static int dl_overflow(struct task_struct *p, int policy,
2065 		       const struct sched_attr *attr)
2066 {
2067 
2068 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2069 	u64 period = attr->sched_period ?: attr->sched_deadline;
2070 	u64 runtime = attr->sched_runtime;
2071 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2072 	int cpus, err = -1;
2073 
2074 	if (new_bw == p->dl.dl_bw)
2075 		return 0;
2076 
2077 	/*
2078 	 * Either if a task, enters, leave, or stays -deadline but changes
2079 	 * its parameters, we may need to update accordingly the total
2080 	 * allocated bandwidth of the container.
2081 	 */
2082 	raw_spin_lock(&dl_b->lock);
2083 	cpus = dl_bw_cpus(task_cpu(p));
2084 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2085 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2086 		__dl_add(dl_b, new_bw);
2087 		err = 0;
2088 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2089 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2090 		__dl_clear(dl_b, p->dl.dl_bw);
2091 		__dl_add(dl_b, new_bw);
2092 		err = 0;
2093 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2094 		__dl_clear(dl_b, p->dl.dl_bw);
2095 		err = 0;
2096 	}
2097 	raw_spin_unlock(&dl_b->lock);
2098 
2099 	return err;
2100 }
2101 
2102 extern void init_dl_bw(struct dl_bw *dl_b);
2103 
2104 /*
2105  * wake_up_new_task - wake up a newly created task for the first time.
2106  *
2107  * This function will do some initial scheduler statistics housekeeping
2108  * that must be done for every newly created context, then puts the task
2109  * on the runqueue and wakes it.
2110  */
2111 void wake_up_new_task(struct task_struct *p)
2112 {
2113 	unsigned long flags;
2114 	struct rq *rq;
2115 
2116 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2117 #ifdef CONFIG_SMP
2118 	/*
2119 	 * Fork balancing, do it here and not earlier because:
2120 	 *  - cpus_allowed can change in the fork path
2121 	 *  - any previously selected cpu might disappear through hotplug
2122 	 */
2123 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2124 #endif
2125 
2126 	/* Initialize new task's runnable average */
2127 	init_task_runnable_average(p);
2128 	rq = __task_rq_lock(p);
2129 	activate_task(rq, p, 0);
2130 	p->on_rq = TASK_ON_RQ_QUEUED;
2131 	trace_sched_wakeup_new(p, true);
2132 	check_preempt_curr(rq, p, WF_FORK);
2133 #ifdef CONFIG_SMP
2134 	if (p->sched_class->task_woken)
2135 		p->sched_class->task_woken(rq, p);
2136 #endif
2137 	task_rq_unlock(rq, p, &flags);
2138 }
2139 
2140 #ifdef CONFIG_PREEMPT_NOTIFIERS
2141 
2142 /**
2143  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2144  * @notifier: notifier struct to register
2145  */
2146 void preempt_notifier_register(struct preempt_notifier *notifier)
2147 {
2148 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2149 }
2150 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2151 
2152 /**
2153  * preempt_notifier_unregister - no longer interested in preemption notifications
2154  * @notifier: notifier struct to unregister
2155  *
2156  * This is safe to call from within a preemption notifier.
2157  */
2158 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2159 {
2160 	hlist_del(&notifier->link);
2161 }
2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2163 
2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2165 {
2166 	struct preempt_notifier *notifier;
2167 
2168 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2169 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2170 }
2171 
2172 static void
2173 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2174 				 struct task_struct *next)
2175 {
2176 	struct preempt_notifier *notifier;
2177 
2178 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2179 		notifier->ops->sched_out(notifier, next);
2180 }
2181 
2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2183 
2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2185 {
2186 }
2187 
2188 static void
2189 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2190 				 struct task_struct *next)
2191 {
2192 }
2193 
2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2195 
2196 /**
2197  * prepare_task_switch - prepare to switch tasks
2198  * @rq: the runqueue preparing to switch
2199  * @prev: the current task that is being switched out
2200  * @next: the task we are going to switch to.
2201  *
2202  * This is called with the rq lock held and interrupts off. It must
2203  * be paired with a subsequent finish_task_switch after the context
2204  * switch.
2205  *
2206  * prepare_task_switch sets up locking and calls architecture specific
2207  * hooks.
2208  */
2209 static inline void
2210 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2211 		    struct task_struct *next)
2212 {
2213 	trace_sched_switch(prev, next);
2214 	sched_info_switch(rq, prev, next);
2215 	perf_event_task_sched_out(prev, next);
2216 	fire_sched_out_preempt_notifiers(prev, next);
2217 	prepare_lock_switch(rq, next);
2218 	prepare_arch_switch(next);
2219 }
2220 
2221 /**
2222  * finish_task_switch - clean up after a task-switch
2223  * @rq: runqueue associated with task-switch
2224  * @prev: the thread we just switched away from.
2225  *
2226  * finish_task_switch must be called after the context switch, paired
2227  * with a prepare_task_switch call before the context switch.
2228  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2229  * and do any other architecture-specific cleanup actions.
2230  *
2231  * Note that we may have delayed dropping an mm in context_switch(). If
2232  * so, we finish that here outside of the runqueue lock. (Doing it
2233  * with the lock held can cause deadlocks; see schedule() for
2234  * details.)
2235  */
2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2237 	__releases(rq->lock)
2238 {
2239 	struct mm_struct *mm = rq->prev_mm;
2240 	long prev_state;
2241 
2242 	rq->prev_mm = NULL;
2243 
2244 	/*
2245 	 * A task struct has one reference for the use as "current".
2246 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2247 	 * schedule one last time. The schedule call will never return, and
2248 	 * the scheduled task must drop that reference.
2249 	 * The test for TASK_DEAD must occur while the runqueue locks are
2250 	 * still held, otherwise prev could be scheduled on another cpu, die
2251 	 * there before we look at prev->state, and then the reference would
2252 	 * be dropped twice.
2253 	 *		Manfred Spraul <manfred@colorfullife.com>
2254 	 */
2255 	prev_state = prev->state;
2256 	vtime_task_switch(prev);
2257 	finish_arch_switch(prev);
2258 	perf_event_task_sched_in(prev, current);
2259 	finish_lock_switch(rq, prev);
2260 	finish_arch_post_lock_switch();
2261 
2262 	fire_sched_in_preempt_notifiers(current);
2263 	if (mm)
2264 		mmdrop(mm);
2265 	if (unlikely(prev_state == TASK_DEAD)) {
2266 		if (prev->sched_class->task_dead)
2267 			prev->sched_class->task_dead(prev);
2268 
2269 		/*
2270 		 * Remove function-return probe instances associated with this
2271 		 * task and put them back on the free list.
2272 		 */
2273 		kprobe_flush_task(prev);
2274 		put_task_struct(prev);
2275 	}
2276 
2277 	tick_nohz_task_switch(current);
2278 }
2279 
2280 #ifdef CONFIG_SMP
2281 
2282 /* rq->lock is NOT held, but preemption is disabled */
2283 static inline void post_schedule(struct rq *rq)
2284 {
2285 	if (rq->post_schedule) {
2286 		unsigned long flags;
2287 
2288 		raw_spin_lock_irqsave(&rq->lock, flags);
2289 		if (rq->curr->sched_class->post_schedule)
2290 			rq->curr->sched_class->post_schedule(rq);
2291 		raw_spin_unlock_irqrestore(&rq->lock, flags);
2292 
2293 		rq->post_schedule = 0;
2294 	}
2295 }
2296 
2297 #else
2298 
2299 static inline void post_schedule(struct rq *rq)
2300 {
2301 }
2302 
2303 #endif
2304 
2305 /**
2306  * schedule_tail - first thing a freshly forked thread must call.
2307  * @prev: the thread we just switched away from.
2308  */
2309 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2310 	__releases(rq->lock)
2311 {
2312 	struct rq *rq = this_rq();
2313 
2314 	finish_task_switch(rq, prev);
2315 
2316 	/*
2317 	 * FIXME: do we need to worry about rq being invalidated by the
2318 	 * task_switch?
2319 	 */
2320 	post_schedule(rq);
2321 
2322 	if (current->set_child_tid)
2323 		put_user(task_pid_vnr(current), current->set_child_tid);
2324 }
2325 
2326 /*
2327  * context_switch - switch to the new MM and the new
2328  * thread's register state.
2329  */
2330 static inline void
2331 context_switch(struct rq *rq, struct task_struct *prev,
2332 	       struct task_struct *next)
2333 {
2334 	struct mm_struct *mm, *oldmm;
2335 
2336 	prepare_task_switch(rq, prev, next);
2337 
2338 	mm = next->mm;
2339 	oldmm = prev->active_mm;
2340 	/*
2341 	 * For paravirt, this is coupled with an exit in switch_to to
2342 	 * combine the page table reload and the switch backend into
2343 	 * one hypercall.
2344 	 */
2345 	arch_start_context_switch(prev);
2346 
2347 	if (!mm) {
2348 		next->active_mm = oldmm;
2349 		atomic_inc(&oldmm->mm_count);
2350 		enter_lazy_tlb(oldmm, next);
2351 	} else
2352 		switch_mm(oldmm, mm, next);
2353 
2354 	if (!prev->mm) {
2355 		prev->active_mm = NULL;
2356 		rq->prev_mm = oldmm;
2357 	}
2358 	/*
2359 	 * Since the runqueue lock will be released by the next
2360 	 * task (which is an invalid locking op but in the case
2361 	 * of the scheduler it's an obvious special-case), so we
2362 	 * do an early lockdep release here:
2363 	 */
2364 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2365 
2366 	context_tracking_task_switch(prev, next);
2367 	/* Here we just switch the register state and the stack. */
2368 	switch_to(prev, next, prev);
2369 
2370 	barrier();
2371 	/*
2372 	 * this_rq must be evaluated again because prev may have moved
2373 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2374 	 * frame will be invalid.
2375 	 */
2376 	finish_task_switch(this_rq(), prev);
2377 }
2378 
2379 /*
2380  * nr_running and nr_context_switches:
2381  *
2382  * externally visible scheduler statistics: current number of runnable
2383  * threads, total number of context switches performed since bootup.
2384  */
2385 unsigned long nr_running(void)
2386 {
2387 	unsigned long i, sum = 0;
2388 
2389 	for_each_online_cpu(i)
2390 		sum += cpu_rq(i)->nr_running;
2391 
2392 	return sum;
2393 }
2394 
2395 /*
2396  * Check if only the current task is running on the cpu.
2397  */
2398 bool single_task_running(void)
2399 {
2400 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2401 		return true;
2402 	else
2403 		return false;
2404 }
2405 EXPORT_SYMBOL(single_task_running);
2406 
2407 unsigned long long nr_context_switches(void)
2408 {
2409 	int i;
2410 	unsigned long long sum = 0;
2411 
2412 	for_each_possible_cpu(i)
2413 		sum += cpu_rq(i)->nr_switches;
2414 
2415 	return sum;
2416 }
2417 
2418 unsigned long nr_iowait(void)
2419 {
2420 	unsigned long i, sum = 0;
2421 
2422 	for_each_possible_cpu(i)
2423 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2424 
2425 	return sum;
2426 }
2427 
2428 unsigned long nr_iowait_cpu(int cpu)
2429 {
2430 	struct rq *this = cpu_rq(cpu);
2431 	return atomic_read(&this->nr_iowait);
2432 }
2433 
2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2435 {
2436 	struct rq *this = this_rq();
2437 	*nr_waiters = atomic_read(&this->nr_iowait);
2438 	*load = this->cpu_load[0];
2439 }
2440 
2441 #ifdef CONFIG_SMP
2442 
2443 /*
2444  * sched_exec - execve() is a valuable balancing opportunity, because at
2445  * this point the task has the smallest effective memory and cache footprint.
2446  */
2447 void sched_exec(void)
2448 {
2449 	struct task_struct *p = current;
2450 	unsigned long flags;
2451 	int dest_cpu;
2452 
2453 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2454 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2455 	if (dest_cpu == smp_processor_id())
2456 		goto unlock;
2457 
2458 	if (likely(cpu_active(dest_cpu))) {
2459 		struct migration_arg arg = { p, dest_cpu };
2460 
2461 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2462 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2463 		return;
2464 	}
2465 unlock:
2466 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2467 }
2468 
2469 #endif
2470 
2471 DEFINE_PER_CPU(struct kernel_stat, kstat);
2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2473 
2474 EXPORT_PER_CPU_SYMBOL(kstat);
2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2476 
2477 /*
2478  * Return accounted runtime for the task.
2479  * In case the task is currently running, return the runtime plus current's
2480  * pending runtime that have not been accounted yet.
2481  */
2482 unsigned long long task_sched_runtime(struct task_struct *p)
2483 {
2484 	unsigned long flags;
2485 	struct rq *rq;
2486 	u64 ns;
2487 
2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2489 	/*
2490 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2491 	 * So we have a optimization chance when the task's delta_exec is 0.
2492 	 * Reading ->on_cpu is racy, but this is ok.
2493 	 *
2494 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2495 	 * If we race with it entering cpu, unaccounted time is 0. This is
2496 	 * indistinguishable from the read occurring a few cycles earlier.
2497 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2498 	 * been accounted, so we're correct here as well.
2499 	 */
2500 	if (!p->on_cpu || !task_on_rq_queued(p))
2501 		return p->se.sum_exec_runtime;
2502 #endif
2503 
2504 	rq = task_rq_lock(p, &flags);
2505 	/*
2506 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2507 	 * project cycles that may never be accounted to this
2508 	 * thread, breaking clock_gettime().
2509 	 */
2510 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2511 		update_rq_clock(rq);
2512 		p->sched_class->update_curr(rq);
2513 	}
2514 	ns = p->se.sum_exec_runtime;
2515 	task_rq_unlock(rq, p, &flags);
2516 
2517 	return ns;
2518 }
2519 
2520 /*
2521  * This function gets called by the timer code, with HZ frequency.
2522  * We call it with interrupts disabled.
2523  */
2524 void scheduler_tick(void)
2525 {
2526 	int cpu = smp_processor_id();
2527 	struct rq *rq = cpu_rq(cpu);
2528 	struct task_struct *curr = rq->curr;
2529 
2530 	sched_clock_tick();
2531 
2532 	raw_spin_lock(&rq->lock);
2533 	update_rq_clock(rq);
2534 	curr->sched_class->task_tick(rq, curr, 0);
2535 	update_cpu_load_active(rq);
2536 	raw_spin_unlock(&rq->lock);
2537 
2538 	perf_event_task_tick();
2539 
2540 #ifdef CONFIG_SMP
2541 	rq->idle_balance = idle_cpu(cpu);
2542 	trigger_load_balance(rq);
2543 #endif
2544 	rq_last_tick_reset(rq);
2545 }
2546 
2547 #ifdef CONFIG_NO_HZ_FULL
2548 /**
2549  * scheduler_tick_max_deferment
2550  *
2551  * Keep at least one tick per second when a single
2552  * active task is running because the scheduler doesn't
2553  * yet completely support full dynticks environment.
2554  *
2555  * This makes sure that uptime, CFS vruntime, load
2556  * balancing, etc... continue to move forward, even
2557  * with a very low granularity.
2558  *
2559  * Return: Maximum deferment in nanoseconds.
2560  */
2561 u64 scheduler_tick_max_deferment(void)
2562 {
2563 	struct rq *rq = this_rq();
2564 	unsigned long next, now = ACCESS_ONCE(jiffies);
2565 
2566 	next = rq->last_sched_tick + HZ;
2567 
2568 	if (time_before_eq(next, now))
2569 		return 0;
2570 
2571 	return jiffies_to_nsecs(next - now);
2572 }
2573 #endif
2574 
2575 notrace unsigned long get_parent_ip(unsigned long addr)
2576 {
2577 	if (in_lock_functions(addr)) {
2578 		addr = CALLER_ADDR2;
2579 		if (in_lock_functions(addr))
2580 			addr = CALLER_ADDR3;
2581 	}
2582 	return addr;
2583 }
2584 
2585 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2586 				defined(CONFIG_PREEMPT_TRACER))
2587 
2588 void preempt_count_add(int val)
2589 {
2590 #ifdef CONFIG_DEBUG_PREEMPT
2591 	/*
2592 	 * Underflow?
2593 	 */
2594 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2595 		return;
2596 #endif
2597 	__preempt_count_add(val);
2598 #ifdef CONFIG_DEBUG_PREEMPT
2599 	/*
2600 	 * Spinlock count overflowing soon?
2601 	 */
2602 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2603 				PREEMPT_MASK - 10);
2604 #endif
2605 	if (preempt_count() == val) {
2606 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2607 #ifdef CONFIG_DEBUG_PREEMPT
2608 		current->preempt_disable_ip = ip;
2609 #endif
2610 		trace_preempt_off(CALLER_ADDR0, ip);
2611 	}
2612 }
2613 EXPORT_SYMBOL(preempt_count_add);
2614 NOKPROBE_SYMBOL(preempt_count_add);
2615 
2616 void preempt_count_sub(int val)
2617 {
2618 #ifdef CONFIG_DEBUG_PREEMPT
2619 	/*
2620 	 * Underflow?
2621 	 */
2622 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2623 		return;
2624 	/*
2625 	 * Is the spinlock portion underflowing?
2626 	 */
2627 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2628 			!(preempt_count() & PREEMPT_MASK)))
2629 		return;
2630 #endif
2631 
2632 	if (preempt_count() == val)
2633 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2634 	__preempt_count_sub(val);
2635 }
2636 EXPORT_SYMBOL(preempt_count_sub);
2637 NOKPROBE_SYMBOL(preempt_count_sub);
2638 
2639 #endif
2640 
2641 /*
2642  * Print scheduling while atomic bug:
2643  */
2644 static noinline void __schedule_bug(struct task_struct *prev)
2645 {
2646 	if (oops_in_progress)
2647 		return;
2648 
2649 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2650 		prev->comm, prev->pid, preempt_count());
2651 
2652 	debug_show_held_locks(prev);
2653 	print_modules();
2654 	if (irqs_disabled())
2655 		print_irqtrace_events(prev);
2656 #ifdef CONFIG_DEBUG_PREEMPT
2657 	if (in_atomic_preempt_off()) {
2658 		pr_err("Preemption disabled at:");
2659 		print_ip_sym(current->preempt_disable_ip);
2660 		pr_cont("\n");
2661 	}
2662 #endif
2663 	dump_stack();
2664 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2665 }
2666 
2667 /*
2668  * Various schedule()-time debugging checks and statistics:
2669  */
2670 static inline void schedule_debug(struct task_struct *prev)
2671 {
2672 #ifdef CONFIG_SCHED_STACK_END_CHECK
2673 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2674 #endif
2675 	/*
2676 	 * Test if we are atomic. Since do_exit() needs to call into
2677 	 * schedule() atomically, we ignore that path. Otherwise whine
2678 	 * if we are scheduling when we should not.
2679 	 */
2680 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2681 		__schedule_bug(prev);
2682 	rcu_sleep_check();
2683 
2684 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2685 
2686 	schedstat_inc(this_rq(), sched_count);
2687 }
2688 
2689 /*
2690  * Pick up the highest-prio task:
2691  */
2692 static inline struct task_struct *
2693 pick_next_task(struct rq *rq, struct task_struct *prev)
2694 {
2695 	const struct sched_class *class = &fair_sched_class;
2696 	struct task_struct *p;
2697 
2698 	/*
2699 	 * Optimization: we know that if all tasks are in
2700 	 * the fair class we can call that function directly:
2701 	 */
2702 	if (likely(prev->sched_class == class &&
2703 		   rq->nr_running == rq->cfs.h_nr_running)) {
2704 		p = fair_sched_class.pick_next_task(rq, prev);
2705 		if (unlikely(p == RETRY_TASK))
2706 			goto again;
2707 
2708 		/* assumes fair_sched_class->next == idle_sched_class */
2709 		if (unlikely(!p))
2710 			p = idle_sched_class.pick_next_task(rq, prev);
2711 
2712 		return p;
2713 	}
2714 
2715 again:
2716 	for_each_class(class) {
2717 		p = class->pick_next_task(rq, prev);
2718 		if (p) {
2719 			if (unlikely(p == RETRY_TASK))
2720 				goto again;
2721 			return p;
2722 		}
2723 	}
2724 
2725 	BUG(); /* the idle class will always have a runnable task */
2726 }
2727 
2728 /*
2729  * __schedule() is the main scheduler function.
2730  *
2731  * The main means of driving the scheduler and thus entering this function are:
2732  *
2733  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2734  *
2735  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2736  *      paths. For example, see arch/x86/entry_64.S.
2737  *
2738  *      To drive preemption between tasks, the scheduler sets the flag in timer
2739  *      interrupt handler scheduler_tick().
2740  *
2741  *   3. Wakeups don't really cause entry into schedule(). They add a
2742  *      task to the run-queue and that's it.
2743  *
2744  *      Now, if the new task added to the run-queue preempts the current
2745  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2746  *      called on the nearest possible occasion:
2747  *
2748  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2749  *
2750  *         - in syscall or exception context, at the next outmost
2751  *           preempt_enable(). (this might be as soon as the wake_up()'s
2752  *           spin_unlock()!)
2753  *
2754  *         - in IRQ context, return from interrupt-handler to
2755  *           preemptible context
2756  *
2757  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2758  *         then at the next:
2759  *
2760  *          - cond_resched() call
2761  *          - explicit schedule() call
2762  *          - return from syscall or exception to user-space
2763  *          - return from interrupt-handler to user-space
2764  */
2765 static void __sched __schedule(void)
2766 {
2767 	struct task_struct *prev, *next;
2768 	unsigned long *switch_count;
2769 	struct rq *rq;
2770 	int cpu;
2771 
2772 need_resched:
2773 	preempt_disable();
2774 	cpu = smp_processor_id();
2775 	rq = cpu_rq(cpu);
2776 	rcu_note_context_switch(cpu);
2777 	prev = rq->curr;
2778 
2779 	schedule_debug(prev);
2780 
2781 	if (sched_feat(HRTICK))
2782 		hrtick_clear(rq);
2783 
2784 	/*
2785 	 * Make sure that signal_pending_state()->signal_pending() below
2786 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2787 	 * done by the caller to avoid the race with signal_wake_up().
2788 	 */
2789 	smp_mb__before_spinlock();
2790 	raw_spin_lock_irq(&rq->lock);
2791 
2792 	switch_count = &prev->nivcsw;
2793 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2794 		if (unlikely(signal_pending_state(prev->state, prev))) {
2795 			prev->state = TASK_RUNNING;
2796 		} else {
2797 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2798 			prev->on_rq = 0;
2799 
2800 			/*
2801 			 * If a worker went to sleep, notify and ask workqueue
2802 			 * whether it wants to wake up a task to maintain
2803 			 * concurrency.
2804 			 */
2805 			if (prev->flags & PF_WQ_WORKER) {
2806 				struct task_struct *to_wakeup;
2807 
2808 				to_wakeup = wq_worker_sleeping(prev, cpu);
2809 				if (to_wakeup)
2810 					try_to_wake_up_local(to_wakeup);
2811 			}
2812 		}
2813 		switch_count = &prev->nvcsw;
2814 	}
2815 
2816 	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2817 		update_rq_clock(rq);
2818 
2819 	next = pick_next_task(rq, prev);
2820 	clear_tsk_need_resched(prev);
2821 	clear_preempt_need_resched();
2822 	rq->skip_clock_update = 0;
2823 
2824 	if (likely(prev != next)) {
2825 		rq->nr_switches++;
2826 		rq->curr = next;
2827 		++*switch_count;
2828 
2829 		context_switch(rq, prev, next); /* unlocks the rq */
2830 		/*
2831 		 * The context switch have flipped the stack from under us
2832 		 * and restored the local variables which were saved when
2833 		 * this task called schedule() in the past. prev == current
2834 		 * is still correct, but it can be moved to another cpu/rq.
2835 		 */
2836 		cpu = smp_processor_id();
2837 		rq = cpu_rq(cpu);
2838 	} else
2839 		raw_spin_unlock_irq(&rq->lock);
2840 
2841 	post_schedule(rq);
2842 
2843 	sched_preempt_enable_no_resched();
2844 	if (need_resched())
2845 		goto need_resched;
2846 }
2847 
2848 static inline void sched_submit_work(struct task_struct *tsk)
2849 {
2850 	if (!tsk->state || tsk_is_pi_blocked(tsk))
2851 		return;
2852 	/*
2853 	 * If we are going to sleep and we have plugged IO queued,
2854 	 * make sure to submit it to avoid deadlocks.
2855 	 */
2856 	if (blk_needs_flush_plug(tsk))
2857 		blk_schedule_flush_plug(tsk);
2858 }
2859 
2860 asmlinkage __visible void __sched schedule(void)
2861 {
2862 	struct task_struct *tsk = current;
2863 
2864 	sched_submit_work(tsk);
2865 	__schedule();
2866 }
2867 EXPORT_SYMBOL(schedule);
2868 
2869 #ifdef CONFIG_CONTEXT_TRACKING
2870 asmlinkage __visible void __sched schedule_user(void)
2871 {
2872 	/*
2873 	 * If we come here after a random call to set_need_resched(),
2874 	 * or we have been woken up remotely but the IPI has not yet arrived,
2875 	 * we haven't yet exited the RCU idle mode. Do it here manually until
2876 	 * we find a better solution.
2877 	 */
2878 	user_exit();
2879 	schedule();
2880 	user_enter();
2881 }
2882 #endif
2883 
2884 /**
2885  * schedule_preempt_disabled - called with preemption disabled
2886  *
2887  * Returns with preemption disabled. Note: preempt_count must be 1
2888  */
2889 void __sched schedule_preempt_disabled(void)
2890 {
2891 	sched_preempt_enable_no_resched();
2892 	schedule();
2893 	preempt_disable();
2894 }
2895 
2896 #ifdef CONFIG_PREEMPT
2897 /*
2898  * this is the entry point to schedule() from in-kernel preemption
2899  * off of preempt_enable. Kernel preemptions off return from interrupt
2900  * occur there and call schedule directly.
2901  */
2902 asmlinkage __visible void __sched notrace preempt_schedule(void)
2903 {
2904 	/*
2905 	 * If there is a non-zero preempt_count or interrupts are disabled,
2906 	 * we do not want to preempt the current task. Just return..
2907 	 */
2908 	if (likely(!preemptible()))
2909 		return;
2910 
2911 	do {
2912 		__preempt_count_add(PREEMPT_ACTIVE);
2913 		__schedule();
2914 		__preempt_count_sub(PREEMPT_ACTIVE);
2915 
2916 		/*
2917 		 * Check again in case we missed a preemption opportunity
2918 		 * between schedule and now.
2919 		 */
2920 		barrier();
2921 	} while (need_resched());
2922 }
2923 NOKPROBE_SYMBOL(preempt_schedule);
2924 EXPORT_SYMBOL(preempt_schedule);
2925 
2926 #ifdef CONFIG_CONTEXT_TRACKING
2927 /**
2928  * preempt_schedule_context - preempt_schedule called by tracing
2929  *
2930  * The tracing infrastructure uses preempt_enable_notrace to prevent
2931  * recursion and tracing preempt enabling caused by the tracing
2932  * infrastructure itself. But as tracing can happen in areas coming
2933  * from userspace or just about to enter userspace, a preempt enable
2934  * can occur before user_exit() is called. This will cause the scheduler
2935  * to be called when the system is still in usermode.
2936  *
2937  * To prevent this, the preempt_enable_notrace will use this function
2938  * instead of preempt_schedule() to exit user context if needed before
2939  * calling the scheduler.
2940  */
2941 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2942 {
2943 	enum ctx_state prev_ctx;
2944 
2945 	if (likely(!preemptible()))
2946 		return;
2947 
2948 	do {
2949 		__preempt_count_add(PREEMPT_ACTIVE);
2950 		/*
2951 		 * Needs preempt disabled in case user_exit() is traced
2952 		 * and the tracer calls preempt_enable_notrace() causing
2953 		 * an infinite recursion.
2954 		 */
2955 		prev_ctx = exception_enter();
2956 		__schedule();
2957 		exception_exit(prev_ctx);
2958 
2959 		__preempt_count_sub(PREEMPT_ACTIVE);
2960 		barrier();
2961 	} while (need_resched());
2962 }
2963 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2964 #endif /* CONFIG_CONTEXT_TRACKING */
2965 
2966 #endif /* CONFIG_PREEMPT */
2967 
2968 /*
2969  * this is the entry point to schedule() from kernel preemption
2970  * off of irq context.
2971  * Note, that this is called and return with irqs disabled. This will
2972  * protect us against recursive calling from irq.
2973  */
2974 asmlinkage __visible void __sched preempt_schedule_irq(void)
2975 {
2976 	enum ctx_state prev_state;
2977 
2978 	/* Catch callers which need to be fixed */
2979 	BUG_ON(preempt_count() || !irqs_disabled());
2980 
2981 	prev_state = exception_enter();
2982 
2983 	do {
2984 		__preempt_count_add(PREEMPT_ACTIVE);
2985 		local_irq_enable();
2986 		__schedule();
2987 		local_irq_disable();
2988 		__preempt_count_sub(PREEMPT_ACTIVE);
2989 
2990 		/*
2991 		 * Check again in case we missed a preemption opportunity
2992 		 * between schedule and now.
2993 		 */
2994 		barrier();
2995 	} while (need_resched());
2996 
2997 	exception_exit(prev_state);
2998 }
2999 
3000 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3001 			  void *key)
3002 {
3003 	return try_to_wake_up(curr->private, mode, wake_flags);
3004 }
3005 EXPORT_SYMBOL(default_wake_function);
3006 
3007 #ifdef CONFIG_RT_MUTEXES
3008 
3009 /*
3010  * rt_mutex_setprio - set the current priority of a task
3011  * @p: task
3012  * @prio: prio value (kernel-internal form)
3013  *
3014  * This function changes the 'effective' priority of a task. It does
3015  * not touch ->normal_prio like __setscheduler().
3016  *
3017  * Used by the rt_mutex code to implement priority inheritance
3018  * logic. Call site only calls if the priority of the task changed.
3019  */
3020 void rt_mutex_setprio(struct task_struct *p, int prio)
3021 {
3022 	int oldprio, queued, running, enqueue_flag = 0;
3023 	struct rq *rq;
3024 	const struct sched_class *prev_class;
3025 
3026 	BUG_ON(prio > MAX_PRIO);
3027 
3028 	rq = __task_rq_lock(p);
3029 
3030 	/*
3031 	 * Idle task boosting is a nono in general. There is one
3032 	 * exception, when PREEMPT_RT and NOHZ is active:
3033 	 *
3034 	 * The idle task calls get_next_timer_interrupt() and holds
3035 	 * the timer wheel base->lock on the CPU and another CPU wants
3036 	 * to access the timer (probably to cancel it). We can safely
3037 	 * ignore the boosting request, as the idle CPU runs this code
3038 	 * with interrupts disabled and will complete the lock
3039 	 * protected section without being interrupted. So there is no
3040 	 * real need to boost.
3041 	 */
3042 	if (unlikely(p == rq->idle)) {
3043 		WARN_ON(p != rq->curr);
3044 		WARN_ON(p->pi_blocked_on);
3045 		goto out_unlock;
3046 	}
3047 
3048 	trace_sched_pi_setprio(p, prio);
3049 	oldprio = p->prio;
3050 	prev_class = p->sched_class;
3051 	queued = task_on_rq_queued(p);
3052 	running = task_current(rq, p);
3053 	if (queued)
3054 		dequeue_task(rq, p, 0);
3055 	if (running)
3056 		put_prev_task(rq, p);
3057 
3058 	/*
3059 	 * Boosting condition are:
3060 	 * 1. -rt task is running and holds mutex A
3061 	 *      --> -dl task blocks on mutex A
3062 	 *
3063 	 * 2. -dl task is running and holds mutex A
3064 	 *      --> -dl task blocks on mutex A and could preempt the
3065 	 *          running task
3066 	 */
3067 	if (dl_prio(prio)) {
3068 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3069 		if (!dl_prio(p->normal_prio) ||
3070 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3071 			p->dl.dl_boosted = 1;
3072 			p->dl.dl_throttled = 0;
3073 			enqueue_flag = ENQUEUE_REPLENISH;
3074 		} else
3075 			p->dl.dl_boosted = 0;
3076 		p->sched_class = &dl_sched_class;
3077 	} else if (rt_prio(prio)) {
3078 		if (dl_prio(oldprio))
3079 			p->dl.dl_boosted = 0;
3080 		if (oldprio < prio)
3081 			enqueue_flag = ENQUEUE_HEAD;
3082 		p->sched_class = &rt_sched_class;
3083 	} else {
3084 		if (dl_prio(oldprio))
3085 			p->dl.dl_boosted = 0;
3086 		p->sched_class = &fair_sched_class;
3087 	}
3088 
3089 	p->prio = prio;
3090 
3091 	if (running)
3092 		p->sched_class->set_curr_task(rq);
3093 	if (queued)
3094 		enqueue_task(rq, p, enqueue_flag);
3095 
3096 	check_class_changed(rq, p, prev_class, oldprio);
3097 out_unlock:
3098 	__task_rq_unlock(rq);
3099 }
3100 #endif
3101 
3102 void set_user_nice(struct task_struct *p, long nice)
3103 {
3104 	int old_prio, delta, queued;
3105 	unsigned long flags;
3106 	struct rq *rq;
3107 
3108 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3109 		return;
3110 	/*
3111 	 * We have to be careful, if called from sys_setpriority(),
3112 	 * the task might be in the middle of scheduling on another CPU.
3113 	 */
3114 	rq = task_rq_lock(p, &flags);
3115 	/*
3116 	 * The RT priorities are set via sched_setscheduler(), but we still
3117 	 * allow the 'normal' nice value to be set - but as expected
3118 	 * it wont have any effect on scheduling until the task is
3119 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3120 	 */
3121 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3122 		p->static_prio = NICE_TO_PRIO(nice);
3123 		goto out_unlock;
3124 	}
3125 	queued = task_on_rq_queued(p);
3126 	if (queued)
3127 		dequeue_task(rq, p, 0);
3128 
3129 	p->static_prio = NICE_TO_PRIO(nice);
3130 	set_load_weight(p);
3131 	old_prio = p->prio;
3132 	p->prio = effective_prio(p);
3133 	delta = p->prio - old_prio;
3134 
3135 	if (queued) {
3136 		enqueue_task(rq, p, 0);
3137 		/*
3138 		 * If the task increased its priority or is running and
3139 		 * lowered its priority, then reschedule its CPU:
3140 		 */
3141 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3142 			resched_curr(rq);
3143 	}
3144 out_unlock:
3145 	task_rq_unlock(rq, p, &flags);
3146 }
3147 EXPORT_SYMBOL(set_user_nice);
3148 
3149 /*
3150  * can_nice - check if a task can reduce its nice value
3151  * @p: task
3152  * @nice: nice value
3153  */
3154 int can_nice(const struct task_struct *p, const int nice)
3155 {
3156 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3157 	int nice_rlim = nice_to_rlimit(nice);
3158 
3159 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3160 		capable(CAP_SYS_NICE));
3161 }
3162 
3163 #ifdef __ARCH_WANT_SYS_NICE
3164 
3165 /*
3166  * sys_nice - change the priority of the current process.
3167  * @increment: priority increment
3168  *
3169  * sys_setpriority is a more generic, but much slower function that
3170  * does similar things.
3171  */
3172 SYSCALL_DEFINE1(nice, int, increment)
3173 {
3174 	long nice, retval;
3175 
3176 	/*
3177 	 * Setpriority might change our priority at the same moment.
3178 	 * We don't have to worry. Conceptually one call occurs first
3179 	 * and we have a single winner.
3180 	 */
3181 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3182 	nice = task_nice(current) + increment;
3183 
3184 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3185 	if (increment < 0 && !can_nice(current, nice))
3186 		return -EPERM;
3187 
3188 	retval = security_task_setnice(current, nice);
3189 	if (retval)
3190 		return retval;
3191 
3192 	set_user_nice(current, nice);
3193 	return 0;
3194 }
3195 
3196 #endif
3197 
3198 /**
3199  * task_prio - return the priority value of a given task.
3200  * @p: the task in question.
3201  *
3202  * Return: The priority value as seen by users in /proc.
3203  * RT tasks are offset by -200. Normal tasks are centered
3204  * around 0, value goes from -16 to +15.
3205  */
3206 int task_prio(const struct task_struct *p)
3207 {
3208 	return p->prio - MAX_RT_PRIO;
3209 }
3210 
3211 /**
3212  * idle_cpu - is a given cpu idle currently?
3213  * @cpu: the processor in question.
3214  *
3215  * Return: 1 if the CPU is currently idle. 0 otherwise.
3216  */
3217 int idle_cpu(int cpu)
3218 {
3219 	struct rq *rq = cpu_rq(cpu);
3220 
3221 	if (rq->curr != rq->idle)
3222 		return 0;
3223 
3224 	if (rq->nr_running)
3225 		return 0;
3226 
3227 #ifdef CONFIG_SMP
3228 	if (!llist_empty(&rq->wake_list))
3229 		return 0;
3230 #endif
3231 
3232 	return 1;
3233 }
3234 
3235 /**
3236  * idle_task - return the idle task for a given cpu.
3237  * @cpu: the processor in question.
3238  *
3239  * Return: The idle task for the cpu @cpu.
3240  */
3241 struct task_struct *idle_task(int cpu)
3242 {
3243 	return cpu_rq(cpu)->idle;
3244 }
3245 
3246 /**
3247  * find_process_by_pid - find a process with a matching PID value.
3248  * @pid: the pid in question.
3249  *
3250  * The task of @pid, if found. %NULL otherwise.
3251  */
3252 static struct task_struct *find_process_by_pid(pid_t pid)
3253 {
3254 	return pid ? find_task_by_vpid(pid) : current;
3255 }
3256 
3257 /*
3258  * This function initializes the sched_dl_entity of a newly becoming
3259  * SCHED_DEADLINE task.
3260  *
3261  * Only the static values are considered here, the actual runtime and the
3262  * absolute deadline will be properly calculated when the task is enqueued
3263  * for the first time with its new policy.
3264  */
3265 static void
3266 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3267 {
3268 	struct sched_dl_entity *dl_se = &p->dl;
3269 
3270 	init_dl_task_timer(dl_se);
3271 	dl_se->dl_runtime = attr->sched_runtime;
3272 	dl_se->dl_deadline = attr->sched_deadline;
3273 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3274 	dl_se->flags = attr->sched_flags;
3275 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3276 	dl_se->dl_throttled = 0;
3277 	dl_se->dl_new = 1;
3278 	dl_se->dl_yielded = 0;
3279 }
3280 
3281 /*
3282  * sched_setparam() passes in -1 for its policy, to let the functions
3283  * it calls know not to change it.
3284  */
3285 #define SETPARAM_POLICY	-1
3286 
3287 static void __setscheduler_params(struct task_struct *p,
3288 		const struct sched_attr *attr)
3289 {
3290 	int policy = attr->sched_policy;
3291 
3292 	if (policy == SETPARAM_POLICY)
3293 		policy = p->policy;
3294 
3295 	p->policy = policy;
3296 
3297 	if (dl_policy(policy))
3298 		__setparam_dl(p, attr);
3299 	else if (fair_policy(policy))
3300 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3301 
3302 	/*
3303 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3304 	 * !rt_policy. Always setting this ensures that things like
3305 	 * getparam()/getattr() don't report silly values for !rt tasks.
3306 	 */
3307 	p->rt_priority = attr->sched_priority;
3308 	p->normal_prio = normal_prio(p);
3309 	set_load_weight(p);
3310 }
3311 
3312 /* Actually do priority change: must hold pi & rq lock. */
3313 static void __setscheduler(struct rq *rq, struct task_struct *p,
3314 			   const struct sched_attr *attr)
3315 {
3316 	__setscheduler_params(p, attr);
3317 
3318 	/*
3319 	 * If we get here, there was no pi waiters boosting the
3320 	 * task. It is safe to use the normal prio.
3321 	 */
3322 	p->prio = normal_prio(p);
3323 
3324 	if (dl_prio(p->prio))
3325 		p->sched_class = &dl_sched_class;
3326 	else if (rt_prio(p->prio))
3327 		p->sched_class = &rt_sched_class;
3328 	else
3329 		p->sched_class = &fair_sched_class;
3330 }
3331 
3332 static void
3333 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3334 {
3335 	struct sched_dl_entity *dl_se = &p->dl;
3336 
3337 	attr->sched_priority = p->rt_priority;
3338 	attr->sched_runtime = dl_se->dl_runtime;
3339 	attr->sched_deadline = dl_se->dl_deadline;
3340 	attr->sched_period = dl_se->dl_period;
3341 	attr->sched_flags = dl_se->flags;
3342 }
3343 
3344 /*
3345  * This function validates the new parameters of a -deadline task.
3346  * We ask for the deadline not being zero, and greater or equal
3347  * than the runtime, as well as the period of being zero or
3348  * greater than deadline. Furthermore, we have to be sure that
3349  * user parameters are above the internal resolution of 1us (we
3350  * check sched_runtime only since it is always the smaller one) and
3351  * below 2^63 ns (we have to check both sched_deadline and
3352  * sched_period, as the latter can be zero).
3353  */
3354 static bool
3355 __checkparam_dl(const struct sched_attr *attr)
3356 {
3357 	/* deadline != 0 */
3358 	if (attr->sched_deadline == 0)
3359 		return false;
3360 
3361 	/*
3362 	 * Since we truncate DL_SCALE bits, make sure we're at least
3363 	 * that big.
3364 	 */
3365 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3366 		return false;
3367 
3368 	/*
3369 	 * Since we use the MSB for wrap-around and sign issues, make
3370 	 * sure it's not set (mind that period can be equal to zero).
3371 	 */
3372 	if (attr->sched_deadline & (1ULL << 63) ||
3373 	    attr->sched_period & (1ULL << 63))
3374 		return false;
3375 
3376 	/* runtime <= deadline <= period (if period != 0) */
3377 	if ((attr->sched_period != 0 &&
3378 	     attr->sched_period < attr->sched_deadline) ||
3379 	    attr->sched_deadline < attr->sched_runtime)
3380 		return false;
3381 
3382 	return true;
3383 }
3384 
3385 /*
3386  * check the target process has a UID that matches the current process's
3387  */
3388 static bool check_same_owner(struct task_struct *p)
3389 {
3390 	const struct cred *cred = current_cred(), *pcred;
3391 	bool match;
3392 
3393 	rcu_read_lock();
3394 	pcred = __task_cred(p);
3395 	match = (uid_eq(cred->euid, pcred->euid) ||
3396 		 uid_eq(cred->euid, pcred->uid));
3397 	rcu_read_unlock();
3398 	return match;
3399 }
3400 
3401 static int __sched_setscheduler(struct task_struct *p,
3402 				const struct sched_attr *attr,
3403 				bool user)
3404 {
3405 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3406 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3407 	int retval, oldprio, oldpolicy = -1, queued, running;
3408 	int policy = attr->sched_policy;
3409 	unsigned long flags;
3410 	const struct sched_class *prev_class;
3411 	struct rq *rq;
3412 	int reset_on_fork;
3413 
3414 	/* may grab non-irq protected spin_locks */
3415 	BUG_ON(in_interrupt());
3416 recheck:
3417 	/* double check policy once rq lock held */
3418 	if (policy < 0) {
3419 		reset_on_fork = p->sched_reset_on_fork;
3420 		policy = oldpolicy = p->policy;
3421 	} else {
3422 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3423 
3424 		if (policy != SCHED_DEADLINE &&
3425 				policy != SCHED_FIFO && policy != SCHED_RR &&
3426 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3427 				policy != SCHED_IDLE)
3428 			return -EINVAL;
3429 	}
3430 
3431 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3432 		return -EINVAL;
3433 
3434 	/*
3435 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3436 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3437 	 * SCHED_BATCH and SCHED_IDLE is 0.
3438 	 */
3439 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3440 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3441 		return -EINVAL;
3442 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3443 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3444 		return -EINVAL;
3445 
3446 	/*
3447 	 * Allow unprivileged RT tasks to decrease priority:
3448 	 */
3449 	if (user && !capable(CAP_SYS_NICE)) {
3450 		if (fair_policy(policy)) {
3451 			if (attr->sched_nice < task_nice(p) &&
3452 			    !can_nice(p, attr->sched_nice))
3453 				return -EPERM;
3454 		}
3455 
3456 		if (rt_policy(policy)) {
3457 			unsigned long rlim_rtprio =
3458 					task_rlimit(p, RLIMIT_RTPRIO);
3459 
3460 			/* can't set/change the rt policy */
3461 			if (policy != p->policy && !rlim_rtprio)
3462 				return -EPERM;
3463 
3464 			/* can't increase priority */
3465 			if (attr->sched_priority > p->rt_priority &&
3466 			    attr->sched_priority > rlim_rtprio)
3467 				return -EPERM;
3468 		}
3469 
3470 		 /*
3471 		  * Can't set/change SCHED_DEADLINE policy at all for now
3472 		  * (safest behavior); in the future we would like to allow
3473 		  * unprivileged DL tasks to increase their relative deadline
3474 		  * or reduce their runtime (both ways reducing utilization)
3475 		  */
3476 		if (dl_policy(policy))
3477 			return -EPERM;
3478 
3479 		/*
3480 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3481 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3482 		 */
3483 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3484 			if (!can_nice(p, task_nice(p)))
3485 				return -EPERM;
3486 		}
3487 
3488 		/* can't change other user's priorities */
3489 		if (!check_same_owner(p))
3490 			return -EPERM;
3491 
3492 		/* Normal users shall not reset the sched_reset_on_fork flag */
3493 		if (p->sched_reset_on_fork && !reset_on_fork)
3494 			return -EPERM;
3495 	}
3496 
3497 	if (user) {
3498 		retval = security_task_setscheduler(p);
3499 		if (retval)
3500 			return retval;
3501 	}
3502 
3503 	/*
3504 	 * make sure no PI-waiters arrive (or leave) while we are
3505 	 * changing the priority of the task:
3506 	 *
3507 	 * To be able to change p->policy safely, the appropriate
3508 	 * runqueue lock must be held.
3509 	 */
3510 	rq = task_rq_lock(p, &flags);
3511 
3512 	/*
3513 	 * Changing the policy of the stop threads its a very bad idea
3514 	 */
3515 	if (p == rq->stop) {
3516 		task_rq_unlock(rq, p, &flags);
3517 		return -EINVAL;
3518 	}
3519 
3520 	/*
3521 	 * If not changing anything there's no need to proceed further,
3522 	 * but store a possible modification of reset_on_fork.
3523 	 */
3524 	if (unlikely(policy == p->policy)) {
3525 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3526 			goto change;
3527 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3528 			goto change;
3529 		if (dl_policy(policy))
3530 			goto change;
3531 
3532 		p->sched_reset_on_fork = reset_on_fork;
3533 		task_rq_unlock(rq, p, &flags);
3534 		return 0;
3535 	}
3536 change:
3537 
3538 	if (user) {
3539 #ifdef CONFIG_RT_GROUP_SCHED
3540 		/*
3541 		 * Do not allow realtime tasks into groups that have no runtime
3542 		 * assigned.
3543 		 */
3544 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3545 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3546 				!task_group_is_autogroup(task_group(p))) {
3547 			task_rq_unlock(rq, p, &flags);
3548 			return -EPERM;
3549 		}
3550 #endif
3551 #ifdef CONFIG_SMP
3552 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3553 			cpumask_t *span = rq->rd->span;
3554 
3555 			/*
3556 			 * Don't allow tasks with an affinity mask smaller than
3557 			 * the entire root_domain to become SCHED_DEADLINE. We
3558 			 * will also fail if there's no bandwidth available.
3559 			 */
3560 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3561 			    rq->rd->dl_bw.bw == 0) {
3562 				task_rq_unlock(rq, p, &flags);
3563 				return -EPERM;
3564 			}
3565 		}
3566 #endif
3567 	}
3568 
3569 	/* recheck policy now with rq lock held */
3570 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3571 		policy = oldpolicy = -1;
3572 		task_rq_unlock(rq, p, &flags);
3573 		goto recheck;
3574 	}
3575 
3576 	/*
3577 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3578 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3579 	 * is available.
3580 	 */
3581 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3582 		task_rq_unlock(rq, p, &flags);
3583 		return -EBUSY;
3584 	}
3585 
3586 	p->sched_reset_on_fork = reset_on_fork;
3587 	oldprio = p->prio;
3588 
3589 	/*
3590 	 * Special case for priority boosted tasks.
3591 	 *
3592 	 * If the new priority is lower or equal (user space view)
3593 	 * than the current (boosted) priority, we just store the new
3594 	 * normal parameters and do not touch the scheduler class and
3595 	 * the runqueue. This will be done when the task deboost
3596 	 * itself.
3597 	 */
3598 	if (rt_mutex_check_prio(p, newprio)) {
3599 		__setscheduler_params(p, attr);
3600 		task_rq_unlock(rq, p, &flags);
3601 		return 0;
3602 	}
3603 
3604 	queued = task_on_rq_queued(p);
3605 	running = task_current(rq, p);
3606 	if (queued)
3607 		dequeue_task(rq, p, 0);
3608 	if (running)
3609 		put_prev_task(rq, p);
3610 
3611 	prev_class = p->sched_class;
3612 	__setscheduler(rq, p, attr);
3613 
3614 	if (running)
3615 		p->sched_class->set_curr_task(rq);
3616 	if (queued) {
3617 		/*
3618 		 * We enqueue to tail when the priority of a task is
3619 		 * increased (user space view).
3620 		 */
3621 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3622 	}
3623 
3624 	check_class_changed(rq, p, prev_class, oldprio);
3625 	task_rq_unlock(rq, p, &flags);
3626 
3627 	rt_mutex_adjust_pi(p);
3628 
3629 	return 0;
3630 }
3631 
3632 static int _sched_setscheduler(struct task_struct *p, int policy,
3633 			       const struct sched_param *param, bool check)
3634 {
3635 	struct sched_attr attr = {
3636 		.sched_policy   = policy,
3637 		.sched_priority = param->sched_priority,
3638 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3639 	};
3640 
3641 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3642 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3643 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3644 		policy &= ~SCHED_RESET_ON_FORK;
3645 		attr.sched_policy = policy;
3646 	}
3647 
3648 	return __sched_setscheduler(p, &attr, check);
3649 }
3650 /**
3651  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3652  * @p: the task in question.
3653  * @policy: new policy.
3654  * @param: structure containing the new RT priority.
3655  *
3656  * Return: 0 on success. An error code otherwise.
3657  *
3658  * NOTE that the task may be already dead.
3659  */
3660 int sched_setscheduler(struct task_struct *p, int policy,
3661 		       const struct sched_param *param)
3662 {
3663 	return _sched_setscheduler(p, policy, param, true);
3664 }
3665 EXPORT_SYMBOL_GPL(sched_setscheduler);
3666 
3667 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3668 {
3669 	return __sched_setscheduler(p, attr, true);
3670 }
3671 EXPORT_SYMBOL_GPL(sched_setattr);
3672 
3673 /**
3674  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3675  * @p: the task in question.
3676  * @policy: new policy.
3677  * @param: structure containing the new RT priority.
3678  *
3679  * Just like sched_setscheduler, only don't bother checking if the
3680  * current context has permission.  For example, this is needed in
3681  * stop_machine(): we create temporary high priority worker threads,
3682  * but our caller might not have that capability.
3683  *
3684  * Return: 0 on success. An error code otherwise.
3685  */
3686 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3687 			       const struct sched_param *param)
3688 {
3689 	return _sched_setscheduler(p, policy, param, false);
3690 }
3691 
3692 static int
3693 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3694 {
3695 	struct sched_param lparam;
3696 	struct task_struct *p;
3697 	int retval;
3698 
3699 	if (!param || pid < 0)
3700 		return -EINVAL;
3701 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3702 		return -EFAULT;
3703 
3704 	rcu_read_lock();
3705 	retval = -ESRCH;
3706 	p = find_process_by_pid(pid);
3707 	if (p != NULL)
3708 		retval = sched_setscheduler(p, policy, &lparam);
3709 	rcu_read_unlock();
3710 
3711 	return retval;
3712 }
3713 
3714 /*
3715  * Mimics kernel/events/core.c perf_copy_attr().
3716  */
3717 static int sched_copy_attr(struct sched_attr __user *uattr,
3718 			   struct sched_attr *attr)
3719 {
3720 	u32 size;
3721 	int ret;
3722 
3723 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3724 		return -EFAULT;
3725 
3726 	/*
3727 	 * zero the full structure, so that a short copy will be nice.
3728 	 */
3729 	memset(attr, 0, sizeof(*attr));
3730 
3731 	ret = get_user(size, &uattr->size);
3732 	if (ret)
3733 		return ret;
3734 
3735 	if (size > PAGE_SIZE)	/* silly large */
3736 		goto err_size;
3737 
3738 	if (!size)		/* abi compat */
3739 		size = SCHED_ATTR_SIZE_VER0;
3740 
3741 	if (size < SCHED_ATTR_SIZE_VER0)
3742 		goto err_size;
3743 
3744 	/*
3745 	 * If we're handed a bigger struct than we know of,
3746 	 * ensure all the unknown bits are 0 - i.e. new
3747 	 * user-space does not rely on any kernel feature
3748 	 * extensions we dont know about yet.
3749 	 */
3750 	if (size > sizeof(*attr)) {
3751 		unsigned char __user *addr;
3752 		unsigned char __user *end;
3753 		unsigned char val;
3754 
3755 		addr = (void __user *)uattr + sizeof(*attr);
3756 		end  = (void __user *)uattr + size;
3757 
3758 		for (; addr < end; addr++) {
3759 			ret = get_user(val, addr);
3760 			if (ret)
3761 				return ret;
3762 			if (val)
3763 				goto err_size;
3764 		}
3765 		size = sizeof(*attr);
3766 	}
3767 
3768 	ret = copy_from_user(attr, uattr, size);
3769 	if (ret)
3770 		return -EFAULT;
3771 
3772 	/*
3773 	 * XXX: do we want to be lenient like existing syscalls; or do we want
3774 	 * to be strict and return an error on out-of-bounds values?
3775 	 */
3776 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3777 
3778 	return 0;
3779 
3780 err_size:
3781 	put_user(sizeof(*attr), &uattr->size);
3782 	return -E2BIG;
3783 }
3784 
3785 /**
3786  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3787  * @pid: the pid in question.
3788  * @policy: new policy.
3789  * @param: structure containing the new RT priority.
3790  *
3791  * Return: 0 on success. An error code otherwise.
3792  */
3793 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3794 		struct sched_param __user *, param)
3795 {
3796 	/* negative values for policy are not valid */
3797 	if (policy < 0)
3798 		return -EINVAL;
3799 
3800 	return do_sched_setscheduler(pid, policy, param);
3801 }
3802 
3803 /**
3804  * sys_sched_setparam - set/change the RT priority of a thread
3805  * @pid: the pid in question.
3806  * @param: structure containing the new RT priority.
3807  *
3808  * Return: 0 on success. An error code otherwise.
3809  */
3810 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3811 {
3812 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3813 }
3814 
3815 /**
3816  * sys_sched_setattr - same as above, but with extended sched_attr
3817  * @pid: the pid in question.
3818  * @uattr: structure containing the extended parameters.
3819  * @flags: for future extension.
3820  */
3821 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3822 			       unsigned int, flags)
3823 {
3824 	struct sched_attr attr;
3825 	struct task_struct *p;
3826 	int retval;
3827 
3828 	if (!uattr || pid < 0 || flags)
3829 		return -EINVAL;
3830 
3831 	retval = sched_copy_attr(uattr, &attr);
3832 	if (retval)
3833 		return retval;
3834 
3835 	if ((int)attr.sched_policy < 0)
3836 		return -EINVAL;
3837 
3838 	rcu_read_lock();
3839 	retval = -ESRCH;
3840 	p = find_process_by_pid(pid);
3841 	if (p != NULL)
3842 		retval = sched_setattr(p, &attr);
3843 	rcu_read_unlock();
3844 
3845 	return retval;
3846 }
3847 
3848 /**
3849  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3850  * @pid: the pid in question.
3851  *
3852  * Return: On success, the policy of the thread. Otherwise, a negative error
3853  * code.
3854  */
3855 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3856 {
3857 	struct task_struct *p;
3858 	int retval;
3859 
3860 	if (pid < 0)
3861 		return -EINVAL;
3862 
3863 	retval = -ESRCH;
3864 	rcu_read_lock();
3865 	p = find_process_by_pid(pid);
3866 	if (p) {
3867 		retval = security_task_getscheduler(p);
3868 		if (!retval)
3869 			retval = p->policy
3870 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3871 	}
3872 	rcu_read_unlock();
3873 	return retval;
3874 }
3875 
3876 /**
3877  * sys_sched_getparam - get the RT priority of a thread
3878  * @pid: the pid in question.
3879  * @param: structure containing the RT priority.
3880  *
3881  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3882  * code.
3883  */
3884 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3885 {
3886 	struct sched_param lp = { .sched_priority = 0 };
3887 	struct task_struct *p;
3888 	int retval;
3889 
3890 	if (!param || pid < 0)
3891 		return -EINVAL;
3892 
3893 	rcu_read_lock();
3894 	p = find_process_by_pid(pid);
3895 	retval = -ESRCH;
3896 	if (!p)
3897 		goto out_unlock;
3898 
3899 	retval = security_task_getscheduler(p);
3900 	if (retval)
3901 		goto out_unlock;
3902 
3903 	if (task_has_rt_policy(p))
3904 		lp.sched_priority = p->rt_priority;
3905 	rcu_read_unlock();
3906 
3907 	/*
3908 	 * This one might sleep, we cannot do it with a spinlock held ...
3909 	 */
3910 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3911 
3912 	return retval;
3913 
3914 out_unlock:
3915 	rcu_read_unlock();
3916 	return retval;
3917 }
3918 
3919 static int sched_read_attr(struct sched_attr __user *uattr,
3920 			   struct sched_attr *attr,
3921 			   unsigned int usize)
3922 {
3923 	int ret;
3924 
3925 	if (!access_ok(VERIFY_WRITE, uattr, usize))
3926 		return -EFAULT;
3927 
3928 	/*
3929 	 * If we're handed a smaller struct than we know of,
3930 	 * ensure all the unknown bits are 0 - i.e. old
3931 	 * user-space does not get uncomplete information.
3932 	 */
3933 	if (usize < sizeof(*attr)) {
3934 		unsigned char *addr;
3935 		unsigned char *end;
3936 
3937 		addr = (void *)attr + usize;
3938 		end  = (void *)attr + sizeof(*attr);
3939 
3940 		for (; addr < end; addr++) {
3941 			if (*addr)
3942 				return -EFBIG;
3943 		}
3944 
3945 		attr->size = usize;
3946 	}
3947 
3948 	ret = copy_to_user(uattr, attr, attr->size);
3949 	if (ret)
3950 		return -EFAULT;
3951 
3952 	return 0;
3953 }
3954 
3955 /**
3956  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3957  * @pid: the pid in question.
3958  * @uattr: structure containing the extended parameters.
3959  * @size: sizeof(attr) for fwd/bwd comp.
3960  * @flags: for future extension.
3961  */
3962 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3963 		unsigned int, size, unsigned int, flags)
3964 {
3965 	struct sched_attr attr = {
3966 		.size = sizeof(struct sched_attr),
3967 	};
3968 	struct task_struct *p;
3969 	int retval;
3970 
3971 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3972 	    size < SCHED_ATTR_SIZE_VER0 || flags)
3973 		return -EINVAL;
3974 
3975 	rcu_read_lock();
3976 	p = find_process_by_pid(pid);
3977 	retval = -ESRCH;
3978 	if (!p)
3979 		goto out_unlock;
3980 
3981 	retval = security_task_getscheduler(p);
3982 	if (retval)
3983 		goto out_unlock;
3984 
3985 	attr.sched_policy = p->policy;
3986 	if (p->sched_reset_on_fork)
3987 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3988 	if (task_has_dl_policy(p))
3989 		__getparam_dl(p, &attr);
3990 	else if (task_has_rt_policy(p))
3991 		attr.sched_priority = p->rt_priority;
3992 	else
3993 		attr.sched_nice = task_nice(p);
3994 
3995 	rcu_read_unlock();
3996 
3997 	retval = sched_read_attr(uattr, &attr, size);
3998 	return retval;
3999 
4000 out_unlock:
4001 	rcu_read_unlock();
4002 	return retval;
4003 }
4004 
4005 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4006 {
4007 	cpumask_var_t cpus_allowed, new_mask;
4008 	struct task_struct *p;
4009 	int retval;
4010 
4011 	rcu_read_lock();
4012 
4013 	p = find_process_by_pid(pid);
4014 	if (!p) {
4015 		rcu_read_unlock();
4016 		return -ESRCH;
4017 	}
4018 
4019 	/* Prevent p going away */
4020 	get_task_struct(p);
4021 	rcu_read_unlock();
4022 
4023 	if (p->flags & PF_NO_SETAFFINITY) {
4024 		retval = -EINVAL;
4025 		goto out_put_task;
4026 	}
4027 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4028 		retval = -ENOMEM;
4029 		goto out_put_task;
4030 	}
4031 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4032 		retval = -ENOMEM;
4033 		goto out_free_cpus_allowed;
4034 	}
4035 	retval = -EPERM;
4036 	if (!check_same_owner(p)) {
4037 		rcu_read_lock();
4038 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4039 			rcu_read_unlock();
4040 			goto out_free_new_mask;
4041 		}
4042 		rcu_read_unlock();
4043 	}
4044 
4045 	retval = security_task_setscheduler(p);
4046 	if (retval)
4047 		goto out_free_new_mask;
4048 
4049 
4050 	cpuset_cpus_allowed(p, cpus_allowed);
4051 	cpumask_and(new_mask, in_mask, cpus_allowed);
4052 
4053 	/*
4054 	 * Since bandwidth control happens on root_domain basis,
4055 	 * if admission test is enabled, we only admit -deadline
4056 	 * tasks allowed to run on all the CPUs in the task's
4057 	 * root_domain.
4058 	 */
4059 #ifdef CONFIG_SMP
4060 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4061 		rcu_read_lock();
4062 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4063 			retval = -EBUSY;
4064 			rcu_read_unlock();
4065 			goto out_free_new_mask;
4066 		}
4067 		rcu_read_unlock();
4068 	}
4069 #endif
4070 again:
4071 	retval = set_cpus_allowed_ptr(p, new_mask);
4072 
4073 	if (!retval) {
4074 		cpuset_cpus_allowed(p, cpus_allowed);
4075 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4076 			/*
4077 			 * We must have raced with a concurrent cpuset
4078 			 * update. Just reset the cpus_allowed to the
4079 			 * cpuset's cpus_allowed
4080 			 */
4081 			cpumask_copy(new_mask, cpus_allowed);
4082 			goto again;
4083 		}
4084 	}
4085 out_free_new_mask:
4086 	free_cpumask_var(new_mask);
4087 out_free_cpus_allowed:
4088 	free_cpumask_var(cpus_allowed);
4089 out_put_task:
4090 	put_task_struct(p);
4091 	return retval;
4092 }
4093 
4094 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4095 			     struct cpumask *new_mask)
4096 {
4097 	if (len < cpumask_size())
4098 		cpumask_clear(new_mask);
4099 	else if (len > cpumask_size())
4100 		len = cpumask_size();
4101 
4102 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4103 }
4104 
4105 /**
4106  * sys_sched_setaffinity - set the cpu affinity of a process
4107  * @pid: pid of the process
4108  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4109  * @user_mask_ptr: user-space pointer to the new cpu mask
4110  *
4111  * Return: 0 on success. An error code otherwise.
4112  */
4113 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4114 		unsigned long __user *, user_mask_ptr)
4115 {
4116 	cpumask_var_t new_mask;
4117 	int retval;
4118 
4119 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4120 		return -ENOMEM;
4121 
4122 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4123 	if (retval == 0)
4124 		retval = sched_setaffinity(pid, new_mask);
4125 	free_cpumask_var(new_mask);
4126 	return retval;
4127 }
4128 
4129 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4130 {
4131 	struct task_struct *p;
4132 	unsigned long flags;
4133 	int retval;
4134 
4135 	rcu_read_lock();
4136 
4137 	retval = -ESRCH;
4138 	p = find_process_by_pid(pid);
4139 	if (!p)
4140 		goto out_unlock;
4141 
4142 	retval = security_task_getscheduler(p);
4143 	if (retval)
4144 		goto out_unlock;
4145 
4146 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4147 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4148 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4149 
4150 out_unlock:
4151 	rcu_read_unlock();
4152 
4153 	return retval;
4154 }
4155 
4156 /**
4157  * sys_sched_getaffinity - get the cpu affinity of a process
4158  * @pid: pid of the process
4159  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4160  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4161  *
4162  * Return: 0 on success. An error code otherwise.
4163  */
4164 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4165 		unsigned long __user *, user_mask_ptr)
4166 {
4167 	int ret;
4168 	cpumask_var_t mask;
4169 
4170 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4171 		return -EINVAL;
4172 	if (len & (sizeof(unsigned long)-1))
4173 		return -EINVAL;
4174 
4175 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4176 		return -ENOMEM;
4177 
4178 	ret = sched_getaffinity(pid, mask);
4179 	if (ret == 0) {
4180 		size_t retlen = min_t(size_t, len, cpumask_size());
4181 
4182 		if (copy_to_user(user_mask_ptr, mask, retlen))
4183 			ret = -EFAULT;
4184 		else
4185 			ret = retlen;
4186 	}
4187 	free_cpumask_var(mask);
4188 
4189 	return ret;
4190 }
4191 
4192 /**
4193  * sys_sched_yield - yield the current processor to other threads.
4194  *
4195  * This function yields the current CPU to other tasks. If there are no
4196  * other threads running on this CPU then this function will return.
4197  *
4198  * Return: 0.
4199  */
4200 SYSCALL_DEFINE0(sched_yield)
4201 {
4202 	struct rq *rq = this_rq_lock();
4203 
4204 	schedstat_inc(rq, yld_count);
4205 	current->sched_class->yield_task(rq);
4206 
4207 	/*
4208 	 * Since we are going to call schedule() anyway, there's
4209 	 * no need to preempt or enable interrupts:
4210 	 */
4211 	__release(rq->lock);
4212 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213 	do_raw_spin_unlock(&rq->lock);
4214 	sched_preempt_enable_no_resched();
4215 
4216 	schedule();
4217 
4218 	return 0;
4219 }
4220 
4221 static void __cond_resched(void)
4222 {
4223 	__preempt_count_add(PREEMPT_ACTIVE);
4224 	__schedule();
4225 	__preempt_count_sub(PREEMPT_ACTIVE);
4226 }
4227 
4228 int __sched _cond_resched(void)
4229 {
4230 	if (should_resched()) {
4231 		__cond_resched();
4232 		return 1;
4233 	}
4234 	return 0;
4235 }
4236 EXPORT_SYMBOL(_cond_resched);
4237 
4238 /*
4239  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4240  * call schedule, and on return reacquire the lock.
4241  *
4242  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4243  * operations here to prevent schedule() from being called twice (once via
4244  * spin_unlock(), once by hand).
4245  */
4246 int __cond_resched_lock(spinlock_t *lock)
4247 {
4248 	int resched = should_resched();
4249 	int ret = 0;
4250 
4251 	lockdep_assert_held(lock);
4252 
4253 	if (spin_needbreak(lock) || resched) {
4254 		spin_unlock(lock);
4255 		if (resched)
4256 			__cond_resched();
4257 		else
4258 			cpu_relax();
4259 		ret = 1;
4260 		spin_lock(lock);
4261 	}
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL(__cond_resched_lock);
4265 
4266 int __sched __cond_resched_softirq(void)
4267 {
4268 	BUG_ON(!in_softirq());
4269 
4270 	if (should_resched()) {
4271 		local_bh_enable();
4272 		__cond_resched();
4273 		local_bh_disable();
4274 		return 1;
4275 	}
4276 	return 0;
4277 }
4278 EXPORT_SYMBOL(__cond_resched_softirq);
4279 
4280 /**
4281  * yield - yield the current processor to other threads.
4282  *
4283  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4284  *
4285  * The scheduler is at all times free to pick the calling task as the most
4286  * eligible task to run, if removing the yield() call from your code breaks
4287  * it, its already broken.
4288  *
4289  * Typical broken usage is:
4290  *
4291  * while (!event)
4292  * 	yield();
4293  *
4294  * where one assumes that yield() will let 'the other' process run that will
4295  * make event true. If the current task is a SCHED_FIFO task that will never
4296  * happen. Never use yield() as a progress guarantee!!
4297  *
4298  * If you want to use yield() to wait for something, use wait_event().
4299  * If you want to use yield() to be 'nice' for others, use cond_resched().
4300  * If you still want to use yield(), do not!
4301  */
4302 void __sched yield(void)
4303 {
4304 	set_current_state(TASK_RUNNING);
4305 	sys_sched_yield();
4306 }
4307 EXPORT_SYMBOL(yield);
4308 
4309 /**
4310  * yield_to - yield the current processor to another thread in
4311  * your thread group, or accelerate that thread toward the
4312  * processor it's on.
4313  * @p: target task
4314  * @preempt: whether task preemption is allowed or not
4315  *
4316  * It's the caller's job to ensure that the target task struct
4317  * can't go away on us before we can do any checks.
4318  *
4319  * Return:
4320  *	true (>0) if we indeed boosted the target task.
4321  *	false (0) if we failed to boost the target.
4322  *	-ESRCH if there's no task to yield to.
4323  */
4324 int __sched yield_to(struct task_struct *p, bool preempt)
4325 {
4326 	struct task_struct *curr = current;
4327 	struct rq *rq, *p_rq;
4328 	unsigned long flags;
4329 	int yielded = 0;
4330 
4331 	local_irq_save(flags);
4332 	rq = this_rq();
4333 
4334 again:
4335 	p_rq = task_rq(p);
4336 	/*
4337 	 * If we're the only runnable task on the rq and target rq also
4338 	 * has only one task, there's absolutely no point in yielding.
4339 	 */
4340 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4341 		yielded = -ESRCH;
4342 		goto out_irq;
4343 	}
4344 
4345 	double_rq_lock(rq, p_rq);
4346 	if (task_rq(p) != p_rq) {
4347 		double_rq_unlock(rq, p_rq);
4348 		goto again;
4349 	}
4350 
4351 	if (!curr->sched_class->yield_to_task)
4352 		goto out_unlock;
4353 
4354 	if (curr->sched_class != p->sched_class)
4355 		goto out_unlock;
4356 
4357 	if (task_running(p_rq, p) || p->state)
4358 		goto out_unlock;
4359 
4360 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4361 	if (yielded) {
4362 		schedstat_inc(rq, yld_count);
4363 		/*
4364 		 * Make p's CPU reschedule; pick_next_entity takes care of
4365 		 * fairness.
4366 		 */
4367 		if (preempt && rq != p_rq)
4368 			resched_curr(p_rq);
4369 	}
4370 
4371 out_unlock:
4372 	double_rq_unlock(rq, p_rq);
4373 out_irq:
4374 	local_irq_restore(flags);
4375 
4376 	if (yielded > 0)
4377 		schedule();
4378 
4379 	return yielded;
4380 }
4381 EXPORT_SYMBOL_GPL(yield_to);
4382 
4383 /*
4384  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4385  * that process accounting knows that this is a task in IO wait state.
4386  */
4387 void __sched io_schedule(void)
4388 {
4389 	struct rq *rq = raw_rq();
4390 
4391 	delayacct_blkio_start();
4392 	atomic_inc(&rq->nr_iowait);
4393 	blk_flush_plug(current);
4394 	current->in_iowait = 1;
4395 	schedule();
4396 	current->in_iowait = 0;
4397 	atomic_dec(&rq->nr_iowait);
4398 	delayacct_blkio_end();
4399 }
4400 EXPORT_SYMBOL(io_schedule);
4401 
4402 long __sched io_schedule_timeout(long timeout)
4403 {
4404 	struct rq *rq = raw_rq();
4405 	long ret;
4406 
4407 	delayacct_blkio_start();
4408 	atomic_inc(&rq->nr_iowait);
4409 	blk_flush_plug(current);
4410 	current->in_iowait = 1;
4411 	ret = schedule_timeout(timeout);
4412 	current->in_iowait = 0;
4413 	atomic_dec(&rq->nr_iowait);
4414 	delayacct_blkio_end();
4415 	return ret;
4416 }
4417 
4418 /**
4419  * sys_sched_get_priority_max - return maximum RT priority.
4420  * @policy: scheduling class.
4421  *
4422  * Return: On success, this syscall returns the maximum
4423  * rt_priority that can be used by a given scheduling class.
4424  * On failure, a negative error code is returned.
4425  */
4426 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4427 {
4428 	int ret = -EINVAL;
4429 
4430 	switch (policy) {
4431 	case SCHED_FIFO:
4432 	case SCHED_RR:
4433 		ret = MAX_USER_RT_PRIO-1;
4434 		break;
4435 	case SCHED_DEADLINE:
4436 	case SCHED_NORMAL:
4437 	case SCHED_BATCH:
4438 	case SCHED_IDLE:
4439 		ret = 0;
4440 		break;
4441 	}
4442 	return ret;
4443 }
4444 
4445 /**
4446  * sys_sched_get_priority_min - return minimum RT priority.
4447  * @policy: scheduling class.
4448  *
4449  * Return: On success, this syscall returns the minimum
4450  * rt_priority that can be used by a given scheduling class.
4451  * On failure, a negative error code is returned.
4452  */
4453 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4454 {
4455 	int ret = -EINVAL;
4456 
4457 	switch (policy) {
4458 	case SCHED_FIFO:
4459 	case SCHED_RR:
4460 		ret = 1;
4461 		break;
4462 	case SCHED_DEADLINE:
4463 	case SCHED_NORMAL:
4464 	case SCHED_BATCH:
4465 	case SCHED_IDLE:
4466 		ret = 0;
4467 	}
4468 	return ret;
4469 }
4470 
4471 /**
4472  * sys_sched_rr_get_interval - return the default timeslice of a process.
4473  * @pid: pid of the process.
4474  * @interval: userspace pointer to the timeslice value.
4475  *
4476  * this syscall writes the default timeslice value of a given process
4477  * into the user-space timespec buffer. A value of '0' means infinity.
4478  *
4479  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4480  * an error code.
4481  */
4482 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4483 		struct timespec __user *, interval)
4484 {
4485 	struct task_struct *p;
4486 	unsigned int time_slice;
4487 	unsigned long flags;
4488 	struct rq *rq;
4489 	int retval;
4490 	struct timespec t;
4491 
4492 	if (pid < 0)
4493 		return -EINVAL;
4494 
4495 	retval = -ESRCH;
4496 	rcu_read_lock();
4497 	p = find_process_by_pid(pid);
4498 	if (!p)
4499 		goto out_unlock;
4500 
4501 	retval = security_task_getscheduler(p);
4502 	if (retval)
4503 		goto out_unlock;
4504 
4505 	rq = task_rq_lock(p, &flags);
4506 	time_slice = 0;
4507 	if (p->sched_class->get_rr_interval)
4508 		time_slice = p->sched_class->get_rr_interval(rq, p);
4509 	task_rq_unlock(rq, p, &flags);
4510 
4511 	rcu_read_unlock();
4512 	jiffies_to_timespec(time_slice, &t);
4513 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4514 	return retval;
4515 
4516 out_unlock:
4517 	rcu_read_unlock();
4518 	return retval;
4519 }
4520 
4521 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4522 
4523 void sched_show_task(struct task_struct *p)
4524 {
4525 	unsigned long free = 0;
4526 	int ppid;
4527 	unsigned state;
4528 
4529 	state = p->state ? __ffs(p->state) + 1 : 0;
4530 	printk(KERN_INFO "%-15.15s %c", p->comm,
4531 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4532 #if BITS_PER_LONG == 32
4533 	if (state == TASK_RUNNING)
4534 		printk(KERN_CONT " running  ");
4535 	else
4536 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4537 #else
4538 	if (state == TASK_RUNNING)
4539 		printk(KERN_CONT "  running task    ");
4540 	else
4541 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4542 #endif
4543 #ifdef CONFIG_DEBUG_STACK_USAGE
4544 	free = stack_not_used(p);
4545 #endif
4546 	rcu_read_lock();
4547 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4548 	rcu_read_unlock();
4549 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4550 		task_pid_nr(p), ppid,
4551 		(unsigned long)task_thread_info(p)->flags);
4552 
4553 	print_worker_info(KERN_INFO, p);
4554 	show_stack(p, NULL);
4555 }
4556 
4557 void show_state_filter(unsigned long state_filter)
4558 {
4559 	struct task_struct *g, *p;
4560 
4561 #if BITS_PER_LONG == 32
4562 	printk(KERN_INFO
4563 		"  task                PC stack   pid father\n");
4564 #else
4565 	printk(KERN_INFO
4566 		"  task                        PC stack   pid father\n");
4567 #endif
4568 	rcu_read_lock();
4569 	for_each_process_thread(g, p) {
4570 		/*
4571 		 * reset the NMI-timeout, listing all files on a slow
4572 		 * console might take a lot of time:
4573 		 */
4574 		touch_nmi_watchdog();
4575 		if (!state_filter || (p->state & state_filter))
4576 			sched_show_task(p);
4577 	}
4578 
4579 	touch_all_softlockup_watchdogs();
4580 
4581 #ifdef CONFIG_SCHED_DEBUG
4582 	sysrq_sched_debug_show();
4583 #endif
4584 	rcu_read_unlock();
4585 	/*
4586 	 * Only show locks if all tasks are dumped:
4587 	 */
4588 	if (!state_filter)
4589 		debug_show_all_locks();
4590 }
4591 
4592 void init_idle_bootup_task(struct task_struct *idle)
4593 {
4594 	idle->sched_class = &idle_sched_class;
4595 }
4596 
4597 /**
4598  * init_idle - set up an idle thread for a given CPU
4599  * @idle: task in question
4600  * @cpu: cpu the idle task belongs to
4601  *
4602  * NOTE: this function does not set the idle thread's NEED_RESCHED
4603  * flag, to make booting more robust.
4604  */
4605 void init_idle(struct task_struct *idle, int cpu)
4606 {
4607 	struct rq *rq = cpu_rq(cpu);
4608 	unsigned long flags;
4609 
4610 	raw_spin_lock_irqsave(&rq->lock, flags);
4611 
4612 	__sched_fork(0, idle);
4613 	idle->state = TASK_RUNNING;
4614 	idle->se.exec_start = sched_clock();
4615 
4616 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4617 	/*
4618 	 * We're having a chicken and egg problem, even though we are
4619 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4620 	 * lockdep check in task_group() will fail.
4621 	 *
4622 	 * Similar case to sched_fork(). / Alternatively we could
4623 	 * use task_rq_lock() here and obtain the other rq->lock.
4624 	 *
4625 	 * Silence PROVE_RCU
4626 	 */
4627 	rcu_read_lock();
4628 	__set_task_cpu(idle, cpu);
4629 	rcu_read_unlock();
4630 
4631 	rq->curr = rq->idle = idle;
4632 	idle->on_rq = TASK_ON_RQ_QUEUED;
4633 #if defined(CONFIG_SMP)
4634 	idle->on_cpu = 1;
4635 #endif
4636 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4637 
4638 	/* Set the preempt count _outside_ the spinlocks! */
4639 	init_idle_preempt_count(idle, cpu);
4640 
4641 	/*
4642 	 * The idle tasks have their own, simple scheduling class:
4643 	 */
4644 	idle->sched_class = &idle_sched_class;
4645 	ftrace_graph_init_idle_task(idle, cpu);
4646 	vtime_init_idle(idle, cpu);
4647 #if defined(CONFIG_SMP)
4648 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4649 #endif
4650 }
4651 
4652 #ifdef CONFIG_SMP
4653 /*
4654  * move_queued_task - move a queued task to new rq.
4655  *
4656  * Returns (locked) new rq. Old rq's lock is released.
4657  */
4658 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4659 {
4660 	struct rq *rq = task_rq(p);
4661 
4662 	lockdep_assert_held(&rq->lock);
4663 
4664 	dequeue_task(rq, p, 0);
4665 	p->on_rq = TASK_ON_RQ_MIGRATING;
4666 	set_task_cpu(p, new_cpu);
4667 	raw_spin_unlock(&rq->lock);
4668 
4669 	rq = cpu_rq(new_cpu);
4670 
4671 	raw_spin_lock(&rq->lock);
4672 	BUG_ON(task_cpu(p) != new_cpu);
4673 	p->on_rq = TASK_ON_RQ_QUEUED;
4674 	enqueue_task(rq, p, 0);
4675 	check_preempt_curr(rq, p, 0);
4676 
4677 	return rq;
4678 }
4679 
4680 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4681 {
4682 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4683 		p->sched_class->set_cpus_allowed(p, new_mask);
4684 
4685 	cpumask_copy(&p->cpus_allowed, new_mask);
4686 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4687 }
4688 
4689 /*
4690  * This is how migration works:
4691  *
4692  * 1) we invoke migration_cpu_stop() on the target CPU using
4693  *    stop_one_cpu().
4694  * 2) stopper starts to run (implicitly forcing the migrated thread
4695  *    off the CPU)
4696  * 3) it checks whether the migrated task is still in the wrong runqueue.
4697  * 4) if it's in the wrong runqueue then the migration thread removes
4698  *    it and puts it into the right queue.
4699  * 5) stopper completes and stop_one_cpu() returns and the migration
4700  *    is done.
4701  */
4702 
4703 /*
4704  * Change a given task's CPU affinity. Migrate the thread to a
4705  * proper CPU and schedule it away if the CPU it's executing on
4706  * is removed from the allowed bitmask.
4707  *
4708  * NOTE: the caller must have a valid reference to the task, the
4709  * task must not exit() & deallocate itself prematurely. The
4710  * call is not atomic; no spinlocks may be held.
4711  */
4712 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4713 {
4714 	unsigned long flags;
4715 	struct rq *rq;
4716 	unsigned int dest_cpu;
4717 	int ret = 0;
4718 
4719 	rq = task_rq_lock(p, &flags);
4720 
4721 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4722 		goto out;
4723 
4724 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4725 		ret = -EINVAL;
4726 		goto out;
4727 	}
4728 
4729 	do_set_cpus_allowed(p, new_mask);
4730 
4731 	/* Can the task run on the task's current CPU? If so, we're done */
4732 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4733 		goto out;
4734 
4735 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4736 	if (task_running(rq, p) || p->state == TASK_WAKING) {
4737 		struct migration_arg arg = { p, dest_cpu };
4738 		/* Need help from migration thread: drop lock and wait. */
4739 		task_rq_unlock(rq, p, &flags);
4740 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4741 		tlb_migrate_finish(p->mm);
4742 		return 0;
4743 	} else if (task_on_rq_queued(p))
4744 		rq = move_queued_task(p, dest_cpu);
4745 out:
4746 	task_rq_unlock(rq, p, &flags);
4747 
4748 	return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4751 
4752 /*
4753  * Move (not current) task off this cpu, onto dest cpu. We're doing
4754  * this because either it can't run here any more (set_cpus_allowed()
4755  * away from this CPU, or CPU going down), or because we're
4756  * attempting to rebalance this task on exec (sched_exec).
4757  *
4758  * So we race with normal scheduler movements, but that's OK, as long
4759  * as the task is no longer on this CPU.
4760  *
4761  * Returns non-zero if task was successfully migrated.
4762  */
4763 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4764 {
4765 	struct rq *rq;
4766 	int ret = 0;
4767 
4768 	if (unlikely(!cpu_active(dest_cpu)))
4769 		return ret;
4770 
4771 	rq = cpu_rq(src_cpu);
4772 
4773 	raw_spin_lock(&p->pi_lock);
4774 	raw_spin_lock(&rq->lock);
4775 	/* Already moved. */
4776 	if (task_cpu(p) != src_cpu)
4777 		goto done;
4778 
4779 	/* Affinity changed (again). */
4780 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4781 		goto fail;
4782 
4783 	/*
4784 	 * If we're not on a rq, the next wake-up will ensure we're
4785 	 * placed properly.
4786 	 */
4787 	if (task_on_rq_queued(p))
4788 		rq = move_queued_task(p, dest_cpu);
4789 done:
4790 	ret = 1;
4791 fail:
4792 	raw_spin_unlock(&rq->lock);
4793 	raw_spin_unlock(&p->pi_lock);
4794 	return ret;
4795 }
4796 
4797 #ifdef CONFIG_NUMA_BALANCING
4798 /* Migrate current task p to target_cpu */
4799 int migrate_task_to(struct task_struct *p, int target_cpu)
4800 {
4801 	struct migration_arg arg = { p, target_cpu };
4802 	int curr_cpu = task_cpu(p);
4803 
4804 	if (curr_cpu == target_cpu)
4805 		return 0;
4806 
4807 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4808 		return -EINVAL;
4809 
4810 	/* TODO: This is not properly updating schedstats */
4811 
4812 	trace_sched_move_numa(p, curr_cpu, target_cpu);
4813 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4814 }
4815 
4816 /*
4817  * Requeue a task on a given node and accurately track the number of NUMA
4818  * tasks on the runqueues
4819  */
4820 void sched_setnuma(struct task_struct *p, int nid)
4821 {
4822 	struct rq *rq;
4823 	unsigned long flags;
4824 	bool queued, running;
4825 
4826 	rq = task_rq_lock(p, &flags);
4827 	queued = task_on_rq_queued(p);
4828 	running = task_current(rq, p);
4829 
4830 	if (queued)
4831 		dequeue_task(rq, p, 0);
4832 	if (running)
4833 		put_prev_task(rq, p);
4834 
4835 	p->numa_preferred_nid = nid;
4836 
4837 	if (running)
4838 		p->sched_class->set_curr_task(rq);
4839 	if (queued)
4840 		enqueue_task(rq, p, 0);
4841 	task_rq_unlock(rq, p, &flags);
4842 }
4843 #endif
4844 
4845 /*
4846  * migration_cpu_stop - this will be executed by a highprio stopper thread
4847  * and performs thread migration by bumping thread off CPU then
4848  * 'pushing' onto another runqueue.
4849  */
4850 static int migration_cpu_stop(void *data)
4851 {
4852 	struct migration_arg *arg = data;
4853 
4854 	/*
4855 	 * The original target cpu might have gone down and we might
4856 	 * be on another cpu but it doesn't matter.
4857 	 */
4858 	local_irq_disable();
4859 	/*
4860 	 * We need to explicitly wake pending tasks before running
4861 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4862 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4863 	 */
4864 	sched_ttwu_pending();
4865 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4866 	local_irq_enable();
4867 	return 0;
4868 }
4869 
4870 #ifdef CONFIG_HOTPLUG_CPU
4871 
4872 /*
4873  * Ensures that the idle task is using init_mm right before its cpu goes
4874  * offline.
4875  */
4876 void idle_task_exit(void)
4877 {
4878 	struct mm_struct *mm = current->active_mm;
4879 
4880 	BUG_ON(cpu_online(smp_processor_id()));
4881 
4882 	if (mm != &init_mm) {
4883 		switch_mm(mm, &init_mm, current);
4884 		finish_arch_post_lock_switch();
4885 	}
4886 	mmdrop(mm);
4887 }
4888 
4889 /*
4890  * Since this CPU is going 'away' for a while, fold any nr_active delta
4891  * we might have. Assumes we're called after migrate_tasks() so that the
4892  * nr_active count is stable.
4893  *
4894  * Also see the comment "Global load-average calculations".
4895  */
4896 static void calc_load_migrate(struct rq *rq)
4897 {
4898 	long delta = calc_load_fold_active(rq);
4899 	if (delta)
4900 		atomic_long_add(delta, &calc_load_tasks);
4901 }
4902 
4903 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4904 {
4905 }
4906 
4907 static const struct sched_class fake_sched_class = {
4908 	.put_prev_task = put_prev_task_fake,
4909 };
4910 
4911 static struct task_struct fake_task = {
4912 	/*
4913 	 * Avoid pull_{rt,dl}_task()
4914 	 */
4915 	.prio = MAX_PRIO + 1,
4916 	.sched_class = &fake_sched_class,
4917 };
4918 
4919 /*
4920  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4921  * try_to_wake_up()->select_task_rq().
4922  *
4923  * Called with rq->lock held even though we'er in stop_machine() and
4924  * there's no concurrency possible, we hold the required locks anyway
4925  * because of lock validation efforts.
4926  */
4927 static void migrate_tasks(unsigned int dead_cpu)
4928 {
4929 	struct rq *rq = cpu_rq(dead_cpu);
4930 	struct task_struct *next, *stop = rq->stop;
4931 	int dest_cpu;
4932 
4933 	/*
4934 	 * Fudge the rq selection such that the below task selection loop
4935 	 * doesn't get stuck on the currently eligible stop task.
4936 	 *
4937 	 * We're currently inside stop_machine() and the rq is either stuck
4938 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4939 	 * either way we should never end up calling schedule() until we're
4940 	 * done here.
4941 	 */
4942 	rq->stop = NULL;
4943 
4944 	/*
4945 	 * put_prev_task() and pick_next_task() sched
4946 	 * class method both need to have an up-to-date
4947 	 * value of rq->clock[_task]
4948 	 */
4949 	update_rq_clock(rq);
4950 
4951 	for ( ; ; ) {
4952 		/*
4953 		 * There's this thread running, bail when that's the only
4954 		 * remaining thread.
4955 		 */
4956 		if (rq->nr_running == 1)
4957 			break;
4958 
4959 		next = pick_next_task(rq, &fake_task);
4960 		BUG_ON(!next);
4961 		next->sched_class->put_prev_task(rq, next);
4962 
4963 		/* Find suitable destination for @next, with force if needed. */
4964 		dest_cpu = select_fallback_rq(dead_cpu, next);
4965 		raw_spin_unlock(&rq->lock);
4966 
4967 		__migrate_task(next, dead_cpu, dest_cpu);
4968 
4969 		raw_spin_lock(&rq->lock);
4970 	}
4971 
4972 	rq->stop = stop;
4973 }
4974 
4975 #endif /* CONFIG_HOTPLUG_CPU */
4976 
4977 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4978 
4979 static struct ctl_table sd_ctl_dir[] = {
4980 	{
4981 		.procname	= "sched_domain",
4982 		.mode		= 0555,
4983 	},
4984 	{}
4985 };
4986 
4987 static struct ctl_table sd_ctl_root[] = {
4988 	{
4989 		.procname	= "kernel",
4990 		.mode		= 0555,
4991 		.child		= sd_ctl_dir,
4992 	},
4993 	{}
4994 };
4995 
4996 static struct ctl_table *sd_alloc_ctl_entry(int n)
4997 {
4998 	struct ctl_table *entry =
4999 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5000 
5001 	return entry;
5002 }
5003 
5004 static void sd_free_ctl_entry(struct ctl_table **tablep)
5005 {
5006 	struct ctl_table *entry;
5007 
5008 	/*
5009 	 * In the intermediate directories, both the child directory and
5010 	 * procname are dynamically allocated and could fail but the mode
5011 	 * will always be set. In the lowest directory the names are
5012 	 * static strings and all have proc handlers.
5013 	 */
5014 	for (entry = *tablep; entry->mode; entry++) {
5015 		if (entry->child)
5016 			sd_free_ctl_entry(&entry->child);
5017 		if (entry->proc_handler == NULL)
5018 			kfree(entry->procname);
5019 	}
5020 
5021 	kfree(*tablep);
5022 	*tablep = NULL;
5023 }
5024 
5025 static int min_load_idx = 0;
5026 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5027 
5028 static void
5029 set_table_entry(struct ctl_table *entry,
5030 		const char *procname, void *data, int maxlen,
5031 		umode_t mode, proc_handler *proc_handler,
5032 		bool load_idx)
5033 {
5034 	entry->procname = procname;
5035 	entry->data = data;
5036 	entry->maxlen = maxlen;
5037 	entry->mode = mode;
5038 	entry->proc_handler = proc_handler;
5039 
5040 	if (load_idx) {
5041 		entry->extra1 = &min_load_idx;
5042 		entry->extra2 = &max_load_idx;
5043 	}
5044 }
5045 
5046 static struct ctl_table *
5047 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5048 {
5049 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5050 
5051 	if (table == NULL)
5052 		return NULL;
5053 
5054 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5055 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5056 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5057 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5058 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5059 		sizeof(int), 0644, proc_dointvec_minmax, true);
5060 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5061 		sizeof(int), 0644, proc_dointvec_minmax, true);
5062 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5063 		sizeof(int), 0644, proc_dointvec_minmax, true);
5064 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5065 		sizeof(int), 0644, proc_dointvec_minmax, true);
5066 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5067 		sizeof(int), 0644, proc_dointvec_minmax, true);
5068 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5069 		sizeof(int), 0644, proc_dointvec_minmax, false);
5070 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5071 		sizeof(int), 0644, proc_dointvec_minmax, false);
5072 	set_table_entry(&table[9], "cache_nice_tries",
5073 		&sd->cache_nice_tries,
5074 		sizeof(int), 0644, proc_dointvec_minmax, false);
5075 	set_table_entry(&table[10], "flags", &sd->flags,
5076 		sizeof(int), 0644, proc_dointvec_minmax, false);
5077 	set_table_entry(&table[11], "max_newidle_lb_cost",
5078 		&sd->max_newidle_lb_cost,
5079 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5080 	set_table_entry(&table[12], "name", sd->name,
5081 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5082 	/* &table[13] is terminator */
5083 
5084 	return table;
5085 }
5086 
5087 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5088 {
5089 	struct ctl_table *entry, *table;
5090 	struct sched_domain *sd;
5091 	int domain_num = 0, i;
5092 	char buf[32];
5093 
5094 	for_each_domain(cpu, sd)
5095 		domain_num++;
5096 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5097 	if (table == NULL)
5098 		return NULL;
5099 
5100 	i = 0;
5101 	for_each_domain(cpu, sd) {
5102 		snprintf(buf, 32, "domain%d", i);
5103 		entry->procname = kstrdup(buf, GFP_KERNEL);
5104 		entry->mode = 0555;
5105 		entry->child = sd_alloc_ctl_domain_table(sd);
5106 		entry++;
5107 		i++;
5108 	}
5109 	return table;
5110 }
5111 
5112 static struct ctl_table_header *sd_sysctl_header;
5113 static void register_sched_domain_sysctl(void)
5114 {
5115 	int i, cpu_num = num_possible_cpus();
5116 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5117 	char buf[32];
5118 
5119 	WARN_ON(sd_ctl_dir[0].child);
5120 	sd_ctl_dir[0].child = entry;
5121 
5122 	if (entry == NULL)
5123 		return;
5124 
5125 	for_each_possible_cpu(i) {
5126 		snprintf(buf, 32, "cpu%d", i);
5127 		entry->procname = kstrdup(buf, GFP_KERNEL);
5128 		entry->mode = 0555;
5129 		entry->child = sd_alloc_ctl_cpu_table(i);
5130 		entry++;
5131 	}
5132 
5133 	WARN_ON(sd_sysctl_header);
5134 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5135 }
5136 
5137 /* may be called multiple times per register */
5138 static void unregister_sched_domain_sysctl(void)
5139 {
5140 	if (sd_sysctl_header)
5141 		unregister_sysctl_table(sd_sysctl_header);
5142 	sd_sysctl_header = NULL;
5143 	if (sd_ctl_dir[0].child)
5144 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5145 }
5146 #else
5147 static void register_sched_domain_sysctl(void)
5148 {
5149 }
5150 static void unregister_sched_domain_sysctl(void)
5151 {
5152 }
5153 #endif
5154 
5155 static void set_rq_online(struct rq *rq)
5156 {
5157 	if (!rq->online) {
5158 		const struct sched_class *class;
5159 
5160 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5161 		rq->online = 1;
5162 
5163 		for_each_class(class) {
5164 			if (class->rq_online)
5165 				class->rq_online(rq);
5166 		}
5167 	}
5168 }
5169 
5170 static void set_rq_offline(struct rq *rq)
5171 {
5172 	if (rq->online) {
5173 		const struct sched_class *class;
5174 
5175 		for_each_class(class) {
5176 			if (class->rq_offline)
5177 				class->rq_offline(rq);
5178 		}
5179 
5180 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5181 		rq->online = 0;
5182 	}
5183 }
5184 
5185 /*
5186  * migration_call - callback that gets triggered when a CPU is added.
5187  * Here we can start up the necessary migration thread for the new CPU.
5188  */
5189 static int
5190 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5191 {
5192 	int cpu = (long)hcpu;
5193 	unsigned long flags;
5194 	struct rq *rq = cpu_rq(cpu);
5195 
5196 	switch (action & ~CPU_TASKS_FROZEN) {
5197 
5198 	case CPU_UP_PREPARE:
5199 		rq->calc_load_update = calc_load_update;
5200 		break;
5201 
5202 	case CPU_ONLINE:
5203 		/* Update our root-domain */
5204 		raw_spin_lock_irqsave(&rq->lock, flags);
5205 		if (rq->rd) {
5206 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5207 
5208 			set_rq_online(rq);
5209 		}
5210 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5211 		break;
5212 
5213 #ifdef CONFIG_HOTPLUG_CPU
5214 	case CPU_DYING:
5215 		sched_ttwu_pending();
5216 		/* Update our root-domain */
5217 		raw_spin_lock_irqsave(&rq->lock, flags);
5218 		if (rq->rd) {
5219 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5220 			set_rq_offline(rq);
5221 		}
5222 		migrate_tasks(cpu);
5223 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5224 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5225 		break;
5226 
5227 	case CPU_DEAD:
5228 		calc_load_migrate(rq);
5229 		break;
5230 #endif
5231 	}
5232 
5233 	update_max_interval();
5234 
5235 	return NOTIFY_OK;
5236 }
5237 
5238 /*
5239  * Register at high priority so that task migration (migrate_all_tasks)
5240  * happens before everything else.  This has to be lower priority than
5241  * the notifier in the perf_event subsystem, though.
5242  */
5243 static struct notifier_block migration_notifier = {
5244 	.notifier_call = migration_call,
5245 	.priority = CPU_PRI_MIGRATION,
5246 };
5247 
5248 static void __cpuinit set_cpu_rq_start_time(void)
5249 {
5250 	int cpu = smp_processor_id();
5251 	struct rq *rq = cpu_rq(cpu);
5252 	rq->age_stamp = sched_clock_cpu(cpu);
5253 }
5254 
5255 static int sched_cpu_active(struct notifier_block *nfb,
5256 				      unsigned long action, void *hcpu)
5257 {
5258 	switch (action & ~CPU_TASKS_FROZEN) {
5259 	case CPU_STARTING:
5260 		set_cpu_rq_start_time();
5261 		return NOTIFY_OK;
5262 	case CPU_DOWN_FAILED:
5263 		set_cpu_active((long)hcpu, true);
5264 		return NOTIFY_OK;
5265 	default:
5266 		return NOTIFY_DONE;
5267 	}
5268 }
5269 
5270 static int sched_cpu_inactive(struct notifier_block *nfb,
5271 					unsigned long action, void *hcpu)
5272 {
5273 	unsigned long flags;
5274 	long cpu = (long)hcpu;
5275 	struct dl_bw *dl_b;
5276 
5277 	switch (action & ~CPU_TASKS_FROZEN) {
5278 	case CPU_DOWN_PREPARE:
5279 		set_cpu_active(cpu, false);
5280 
5281 		/* explicitly allow suspend */
5282 		if (!(action & CPU_TASKS_FROZEN)) {
5283 			bool overflow;
5284 			int cpus;
5285 
5286 			rcu_read_lock_sched();
5287 			dl_b = dl_bw_of(cpu);
5288 
5289 			raw_spin_lock_irqsave(&dl_b->lock, flags);
5290 			cpus = dl_bw_cpus(cpu);
5291 			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5292 			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5293 
5294 			rcu_read_unlock_sched();
5295 
5296 			if (overflow)
5297 				return notifier_from_errno(-EBUSY);
5298 		}
5299 		return NOTIFY_OK;
5300 	}
5301 
5302 	return NOTIFY_DONE;
5303 }
5304 
5305 static int __init migration_init(void)
5306 {
5307 	void *cpu = (void *)(long)smp_processor_id();
5308 	int err;
5309 
5310 	/* Initialize migration for the boot CPU */
5311 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5312 	BUG_ON(err == NOTIFY_BAD);
5313 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5314 	register_cpu_notifier(&migration_notifier);
5315 
5316 	/* Register cpu active notifiers */
5317 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5318 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5319 
5320 	return 0;
5321 }
5322 early_initcall(migration_init);
5323 #endif
5324 
5325 #ifdef CONFIG_SMP
5326 
5327 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5328 
5329 #ifdef CONFIG_SCHED_DEBUG
5330 
5331 static __read_mostly int sched_debug_enabled;
5332 
5333 static int __init sched_debug_setup(char *str)
5334 {
5335 	sched_debug_enabled = 1;
5336 
5337 	return 0;
5338 }
5339 early_param("sched_debug", sched_debug_setup);
5340 
5341 static inline bool sched_debug(void)
5342 {
5343 	return sched_debug_enabled;
5344 }
5345 
5346 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5347 				  struct cpumask *groupmask)
5348 {
5349 	struct sched_group *group = sd->groups;
5350 	char str[256];
5351 
5352 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5353 	cpumask_clear(groupmask);
5354 
5355 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5356 
5357 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5358 		printk("does not load-balance\n");
5359 		if (sd->parent)
5360 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5361 					" has parent");
5362 		return -1;
5363 	}
5364 
5365 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5366 
5367 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5368 		printk(KERN_ERR "ERROR: domain->span does not contain "
5369 				"CPU%d\n", cpu);
5370 	}
5371 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5372 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5373 				" CPU%d\n", cpu);
5374 	}
5375 
5376 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5377 	do {
5378 		if (!group) {
5379 			printk("\n");
5380 			printk(KERN_ERR "ERROR: group is NULL\n");
5381 			break;
5382 		}
5383 
5384 		/*
5385 		 * Even though we initialize ->capacity to something semi-sane,
5386 		 * we leave capacity_orig unset. This allows us to detect if
5387 		 * domain iteration is still funny without causing /0 traps.
5388 		 */
5389 		if (!group->sgc->capacity_orig) {
5390 			printk(KERN_CONT "\n");
5391 			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5392 			break;
5393 		}
5394 
5395 		if (!cpumask_weight(sched_group_cpus(group))) {
5396 			printk(KERN_CONT "\n");
5397 			printk(KERN_ERR "ERROR: empty group\n");
5398 			break;
5399 		}
5400 
5401 		if (!(sd->flags & SD_OVERLAP) &&
5402 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5403 			printk(KERN_CONT "\n");
5404 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5405 			break;
5406 		}
5407 
5408 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5409 
5410 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5411 
5412 		printk(KERN_CONT " %s", str);
5413 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5414 			printk(KERN_CONT " (cpu_capacity = %d)",
5415 				group->sgc->capacity);
5416 		}
5417 
5418 		group = group->next;
5419 	} while (group != sd->groups);
5420 	printk(KERN_CONT "\n");
5421 
5422 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5423 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5424 
5425 	if (sd->parent &&
5426 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5427 		printk(KERN_ERR "ERROR: parent span is not a superset "
5428 			"of domain->span\n");
5429 	return 0;
5430 }
5431 
5432 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5433 {
5434 	int level = 0;
5435 
5436 	if (!sched_debug_enabled)
5437 		return;
5438 
5439 	if (!sd) {
5440 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5441 		return;
5442 	}
5443 
5444 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5445 
5446 	for (;;) {
5447 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5448 			break;
5449 		level++;
5450 		sd = sd->parent;
5451 		if (!sd)
5452 			break;
5453 	}
5454 }
5455 #else /* !CONFIG_SCHED_DEBUG */
5456 # define sched_domain_debug(sd, cpu) do { } while (0)
5457 static inline bool sched_debug(void)
5458 {
5459 	return false;
5460 }
5461 #endif /* CONFIG_SCHED_DEBUG */
5462 
5463 static int sd_degenerate(struct sched_domain *sd)
5464 {
5465 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5466 		return 1;
5467 
5468 	/* Following flags need at least 2 groups */
5469 	if (sd->flags & (SD_LOAD_BALANCE |
5470 			 SD_BALANCE_NEWIDLE |
5471 			 SD_BALANCE_FORK |
5472 			 SD_BALANCE_EXEC |
5473 			 SD_SHARE_CPUCAPACITY |
5474 			 SD_SHARE_PKG_RESOURCES |
5475 			 SD_SHARE_POWERDOMAIN)) {
5476 		if (sd->groups != sd->groups->next)
5477 			return 0;
5478 	}
5479 
5480 	/* Following flags don't use groups */
5481 	if (sd->flags & (SD_WAKE_AFFINE))
5482 		return 0;
5483 
5484 	return 1;
5485 }
5486 
5487 static int
5488 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5489 {
5490 	unsigned long cflags = sd->flags, pflags = parent->flags;
5491 
5492 	if (sd_degenerate(parent))
5493 		return 1;
5494 
5495 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5496 		return 0;
5497 
5498 	/* Flags needing groups don't count if only 1 group in parent */
5499 	if (parent->groups == parent->groups->next) {
5500 		pflags &= ~(SD_LOAD_BALANCE |
5501 				SD_BALANCE_NEWIDLE |
5502 				SD_BALANCE_FORK |
5503 				SD_BALANCE_EXEC |
5504 				SD_SHARE_CPUCAPACITY |
5505 				SD_SHARE_PKG_RESOURCES |
5506 				SD_PREFER_SIBLING |
5507 				SD_SHARE_POWERDOMAIN);
5508 		if (nr_node_ids == 1)
5509 			pflags &= ~SD_SERIALIZE;
5510 	}
5511 	if (~cflags & pflags)
5512 		return 0;
5513 
5514 	return 1;
5515 }
5516 
5517 static void free_rootdomain(struct rcu_head *rcu)
5518 {
5519 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5520 
5521 	cpupri_cleanup(&rd->cpupri);
5522 	cpudl_cleanup(&rd->cpudl);
5523 	free_cpumask_var(rd->dlo_mask);
5524 	free_cpumask_var(rd->rto_mask);
5525 	free_cpumask_var(rd->online);
5526 	free_cpumask_var(rd->span);
5527 	kfree(rd);
5528 }
5529 
5530 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5531 {
5532 	struct root_domain *old_rd = NULL;
5533 	unsigned long flags;
5534 
5535 	raw_spin_lock_irqsave(&rq->lock, flags);
5536 
5537 	if (rq->rd) {
5538 		old_rd = rq->rd;
5539 
5540 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5541 			set_rq_offline(rq);
5542 
5543 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5544 
5545 		/*
5546 		 * If we dont want to free the old_rd yet then
5547 		 * set old_rd to NULL to skip the freeing later
5548 		 * in this function:
5549 		 */
5550 		if (!atomic_dec_and_test(&old_rd->refcount))
5551 			old_rd = NULL;
5552 	}
5553 
5554 	atomic_inc(&rd->refcount);
5555 	rq->rd = rd;
5556 
5557 	cpumask_set_cpu(rq->cpu, rd->span);
5558 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5559 		set_rq_online(rq);
5560 
5561 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5562 
5563 	if (old_rd)
5564 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5565 }
5566 
5567 static int init_rootdomain(struct root_domain *rd)
5568 {
5569 	memset(rd, 0, sizeof(*rd));
5570 
5571 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5572 		goto out;
5573 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5574 		goto free_span;
5575 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5576 		goto free_online;
5577 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5578 		goto free_dlo_mask;
5579 
5580 	init_dl_bw(&rd->dl_bw);
5581 	if (cpudl_init(&rd->cpudl) != 0)
5582 		goto free_dlo_mask;
5583 
5584 	if (cpupri_init(&rd->cpupri) != 0)
5585 		goto free_rto_mask;
5586 	return 0;
5587 
5588 free_rto_mask:
5589 	free_cpumask_var(rd->rto_mask);
5590 free_dlo_mask:
5591 	free_cpumask_var(rd->dlo_mask);
5592 free_online:
5593 	free_cpumask_var(rd->online);
5594 free_span:
5595 	free_cpumask_var(rd->span);
5596 out:
5597 	return -ENOMEM;
5598 }
5599 
5600 /*
5601  * By default the system creates a single root-domain with all cpus as
5602  * members (mimicking the global state we have today).
5603  */
5604 struct root_domain def_root_domain;
5605 
5606 static void init_defrootdomain(void)
5607 {
5608 	init_rootdomain(&def_root_domain);
5609 
5610 	atomic_set(&def_root_domain.refcount, 1);
5611 }
5612 
5613 static struct root_domain *alloc_rootdomain(void)
5614 {
5615 	struct root_domain *rd;
5616 
5617 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5618 	if (!rd)
5619 		return NULL;
5620 
5621 	if (init_rootdomain(rd) != 0) {
5622 		kfree(rd);
5623 		return NULL;
5624 	}
5625 
5626 	return rd;
5627 }
5628 
5629 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5630 {
5631 	struct sched_group *tmp, *first;
5632 
5633 	if (!sg)
5634 		return;
5635 
5636 	first = sg;
5637 	do {
5638 		tmp = sg->next;
5639 
5640 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5641 			kfree(sg->sgc);
5642 
5643 		kfree(sg);
5644 		sg = tmp;
5645 	} while (sg != first);
5646 }
5647 
5648 static void free_sched_domain(struct rcu_head *rcu)
5649 {
5650 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5651 
5652 	/*
5653 	 * If its an overlapping domain it has private groups, iterate and
5654 	 * nuke them all.
5655 	 */
5656 	if (sd->flags & SD_OVERLAP) {
5657 		free_sched_groups(sd->groups, 1);
5658 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5659 		kfree(sd->groups->sgc);
5660 		kfree(sd->groups);
5661 	}
5662 	kfree(sd);
5663 }
5664 
5665 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5666 {
5667 	call_rcu(&sd->rcu, free_sched_domain);
5668 }
5669 
5670 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5671 {
5672 	for (; sd; sd = sd->parent)
5673 		destroy_sched_domain(sd, cpu);
5674 }
5675 
5676 /*
5677  * Keep a special pointer to the highest sched_domain that has
5678  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5679  * allows us to avoid some pointer chasing select_idle_sibling().
5680  *
5681  * Also keep a unique ID per domain (we use the first cpu number in
5682  * the cpumask of the domain), this allows us to quickly tell if
5683  * two cpus are in the same cache domain, see cpus_share_cache().
5684  */
5685 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5686 DEFINE_PER_CPU(int, sd_llc_size);
5687 DEFINE_PER_CPU(int, sd_llc_id);
5688 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5689 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5690 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5691 
5692 static void update_top_cache_domain(int cpu)
5693 {
5694 	struct sched_domain *sd;
5695 	struct sched_domain *busy_sd = NULL;
5696 	int id = cpu;
5697 	int size = 1;
5698 
5699 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5700 	if (sd) {
5701 		id = cpumask_first(sched_domain_span(sd));
5702 		size = cpumask_weight(sched_domain_span(sd));
5703 		busy_sd = sd->parent; /* sd_busy */
5704 	}
5705 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5706 
5707 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5708 	per_cpu(sd_llc_size, cpu) = size;
5709 	per_cpu(sd_llc_id, cpu) = id;
5710 
5711 	sd = lowest_flag_domain(cpu, SD_NUMA);
5712 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5713 
5714 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5715 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5716 }
5717 
5718 /*
5719  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5720  * hold the hotplug lock.
5721  */
5722 static void
5723 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5724 {
5725 	struct rq *rq = cpu_rq(cpu);
5726 	struct sched_domain *tmp;
5727 
5728 	/* Remove the sched domains which do not contribute to scheduling. */
5729 	for (tmp = sd; tmp; ) {
5730 		struct sched_domain *parent = tmp->parent;
5731 		if (!parent)
5732 			break;
5733 
5734 		if (sd_parent_degenerate(tmp, parent)) {
5735 			tmp->parent = parent->parent;
5736 			if (parent->parent)
5737 				parent->parent->child = tmp;
5738 			/*
5739 			 * Transfer SD_PREFER_SIBLING down in case of a
5740 			 * degenerate parent; the spans match for this
5741 			 * so the property transfers.
5742 			 */
5743 			if (parent->flags & SD_PREFER_SIBLING)
5744 				tmp->flags |= SD_PREFER_SIBLING;
5745 			destroy_sched_domain(parent, cpu);
5746 		} else
5747 			tmp = tmp->parent;
5748 	}
5749 
5750 	if (sd && sd_degenerate(sd)) {
5751 		tmp = sd;
5752 		sd = sd->parent;
5753 		destroy_sched_domain(tmp, cpu);
5754 		if (sd)
5755 			sd->child = NULL;
5756 	}
5757 
5758 	sched_domain_debug(sd, cpu);
5759 
5760 	rq_attach_root(rq, rd);
5761 	tmp = rq->sd;
5762 	rcu_assign_pointer(rq->sd, sd);
5763 	destroy_sched_domains(tmp, cpu);
5764 
5765 	update_top_cache_domain(cpu);
5766 }
5767 
5768 /* cpus with isolated domains */
5769 static cpumask_var_t cpu_isolated_map;
5770 
5771 /* Setup the mask of cpus configured for isolated domains */
5772 static int __init isolated_cpu_setup(char *str)
5773 {
5774 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5775 	cpulist_parse(str, cpu_isolated_map);
5776 	return 1;
5777 }
5778 
5779 __setup("isolcpus=", isolated_cpu_setup);
5780 
5781 struct s_data {
5782 	struct sched_domain ** __percpu sd;
5783 	struct root_domain	*rd;
5784 };
5785 
5786 enum s_alloc {
5787 	sa_rootdomain,
5788 	sa_sd,
5789 	sa_sd_storage,
5790 	sa_none,
5791 };
5792 
5793 /*
5794  * Build an iteration mask that can exclude certain CPUs from the upwards
5795  * domain traversal.
5796  *
5797  * Asymmetric node setups can result in situations where the domain tree is of
5798  * unequal depth, make sure to skip domains that already cover the entire
5799  * range.
5800  *
5801  * In that case build_sched_domains() will have terminated the iteration early
5802  * and our sibling sd spans will be empty. Domains should always include the
5803  * cpu they're built on, so check that.
5804  *
5805  */
5806 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5807 {
5808 	const struct cpumask *span = sched_domain_span(sd);
5809 	struct sd_data *sdd = sd->private;
5810 	struct sched_domain *sibling;
5811 	int i;
5812 
5813 	for_each_cpu(i, span) {
5814 		sibling = *per_cpu_ptr(sdd->sd, i);
5815 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5816 			continue;
5817 
5818 		cpumask_set_cpu(i, sched_group_mask(sg));
5819 	}
5820 }
5821 
5822 /*
5823  * Return the canonical balance cpu for this group, this is the first cpu
5824  * of this group that's also in the iteration mask.
5825  */
5826 int group_balance_cpu(struct sched_group *sg)
5827 {
5828 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5829 }
5830 
5831 static int
5832 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5833 {
5834 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5835 	const struct cpumask *span = sched_domain_span(sd);
5836 	struct cpumask *covered = sched_domains_tmpmask;
5837 	struct sd_data *sdd = sd->private;
5838 	struct sched_domain *sibling;
5839 	int i;
5840 
5841 	cpumask_clear(covered);
5842 
5843 	for_each_cpu(i, span) {
5844 		struct cpumask *sg_span;
5845 
5846 		if (cpumask_test_cpu(i, covered))
5847 			continue;
5848 
5849 		sibling = *per_cpu_ptr(sdd->sd, i);
5850 
5851 		/* See the comment near build_group_mask(). */
5852 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5853 			continue;
5854 
5855 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5856 				GFP_KERNEL, cpu_to_node(cpu));
5857 
5858 		if (!sg)
5859 			goto fail;
5860 
5861 		sg_span = sched_group_cpus(sg);
5862 		if (sibling->child)
5863 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5864 		else
5865 			cpumask_set_cpu(i, sg_span);
5866 
5867 		cpumask_or(covered, covered, sg_span);
5868 
5869 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5870 		if (atomic_inc_return(&sg->sgc->ref) == 1)
5871 			build_group_mask(sd, sg);
5872 
5873 		/*
5874 		 * Initialize sgc->capacity such that even if we mess up the
5875 		 * domains and no possible iteration will get us here, we won't
5876 		 * die on a /0 trap.
5877 		 */
5878 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5879 		sg->sgc->capacity_orig = sg->sgc->capacity;
5880 
5881 		/*
5882 		 * Make sure the first group of this domain contains the
5883 		 * canonical balance cpu. Otherwise the sched_domain iteration
5884 		 * breaks. See update_sg_lb_stats().
5885 		 */
5886 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5887 		    group_balance_cpu(sg) == cpu)
5888 			groups = sg;
5889 
5890 		if (!first)
5891 			first = sg;
5892 		if (last)
5893 			last->next = sg;
5894 		last = sg;
5895 		last->next = first;
5896 	}
5897 	sd->groups = groups;
5898 
5899 	return 0;
5900 
5901 fail:
5902 	free_sched_groups(first, 0);
5903 
5904 	return -ENOMEM;
5905 }
5906 
5907 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5908 {
5909 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5910 	struct sched_domain *child = sd->child;
5911 
5912 	if (child)
5913 		cpu = cpumask_first(sched_domain_span(child));
5914 
5915 	if (sg) {
5916 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5917 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5918 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5919 	}
5920 
5921 	return cpu;
5922 }
5923 
5924 /*
5925  * build_sched_groups will build a circular linked list of the groups
5926  * covered by the given span, and will set each group's ->cpumask correctly,
5927  * and ->cpu_capacity to 0.
5928  *
5929  * Assumes the sched_domain tree is fully constructed
5930  */
5931 static int
5932 build_sched_groups(struct sched_domain *sd, int cpu)
5933 {
5934 	struct sched_group *first = NULL, *last = NULL;
5935 	struct sd_data *sdd = sd->private;
5936 	const struct cpumask *span = sched_domain_span(sd);
5937 	struct cpumask *covered;
5938 	int i;
5939 
5940 	get_group(cpu, sdd, &sd->groups);
5941 	atomic_inc(&sd->groups->ref);
5942 
5943 	if (cpu != cpumask_first(span))
5944 		return 0;
5945 
5946 	lockdep_assert_held(&sched_domains_mutex);
5947 	covered = sched_domains_tmpmask;
5948 
5949 	cpumask_clear(covered);
5950 
5951 	for_each_cpu(i, span) {
5952 		struct sched_group *sg;
5953 		int group, j;
5954 
5955 		if (cpumask_test_cpu(i, covered))
5956 			continue;
5957 
5958 		group = get_group(i, sdd, &sg);
5959 		cpumask_setall(sched_group_mask(sg));
5960 
5961 		for_each_cpu(j, span) {
5962 			if (get_group(j, sdd, NULL) != group)
5963 				continue;
5964 
5965 			cpumask_set_cpu(j, covered);
5966 			cpumask_set_cpu(j, sched_group_cpus(sg));
5967 		}
5968 
5969 		if (!first)
5970 			first = sg;
5971 		if (last)
5972 			last->next = sg;
5973 		last = sg;
5974 	}
5975 	last->next = first;
5976 
5977 	return 0;
5978 }
5979 
5980 /*
5981  * Initialize sched groups cpu_capacity.
5982  *
5983  * cpu_capacity indicates the capacity of sched group, which is used while
5984  * distributing the load between different sched groups in a sched domain.
5985  * Typically cpu_capacity for all the groups in a sched domain will be same
5986  * unless there are asymmetries in the topology. If there are asymmetries,
5987  * group having more cpu_capacity will pickup more load compared to the
5988  * group having less cpu_capacity.
5989  */
5990 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5991 {
5992 	struct sched_group *sg = sd->groups;
5993 
5994 	WARN_ON(!sg);
5995 
5996 	do {
5997 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5998 		sg = sg->next;
5999 	} while (sg != sd->groups);
6000 
6001 	if (cpu != group_balance_cpu(sg))
6002 		return;
6003 
6004 	update_group_capacity(sd, cpu);
6005 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6006 }
6007 
6008 /*
6009  * Initializers for schedule domains
6010  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6011  */
6012 
6013 static int default_relax_domain_level = -1;
6014 int sched_domain_level_max;
6015 
6016 static int __init setup_relax_domain_level(char *str)
6017 {
6018 	if (kstrtoint(str, 0, &default_relax_domain_level))
6019 		pr_warn("Unable to set relax_domain_level\n");
6020 
6021 	return 1;
6022 }
6023 __setup("relax_domain_level=", setup_relax_domain_level);
6024 
6025 static void set_domain_attribute(struct sched_domain *sd,
6026 				 struct sched_domain_attr *attr)
6027 {
6028 	int request;
6029 
6030 	if (!attr || attr->relax_domain_level < 0) {
6031 		if (default_relax_domain_level < 0)
6032 			return;
6033 		else
6034 			request = default_relax_domain_level;
6035 	} else
6036 		request = attr->relax_domain_level;
6037 	if (request < sd->level) {
6038 		/* turn off idle balance on this domain */
6039 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6040 	} else {
6041 		/* turn on idle balance on this domain */
6042 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6043 	}
6044 }
6045 
6046 static void __sdt_free(const struct cpumask *cpu_map);
6047 static int __sdt_alloc(const struct cpumask *cpu_map);
6048 
6049 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6050 				 const struct cpumask *cpu_map)
6051 {
6052 	switch (what) {
6053 	case sa_rootdomain:
6054 		if (!atomic_read(&d->rd->refcount))
6055 			free_rootdomain(&d->rd->rcu); /* fall through */
6056 	case sa_sd:
6057 		free_percpu(d->sd); /* fall through */
6058 	case sa_sd_storage:
6059 		__sdt_free(cpu_map); /* fall through */
6060 	case sa_none:
6061 		break;
6062 	}
6063 }
6064 
6065 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6066 						   const struct cpumask *cpu_map)
6067 {
6068 	memset(d, 0, sizeof(*d));
6069 
6070 	if (__sdt_alloc(cpu_map))
6071 		return sa_sd_storage;
6072 	d->sd = alloc_percpu(struct sched_domain *);
6073 	if (!d->sd)
6074 		return sa_sd_storage;
6075 	d->rd = alloc_rootdomain();
6076 	if (!d->rd)
6077 		return sa_sd;
6078 	return sa_rootdomain;
6079 }
6080 
6081 /*
6082  * NULL the sd_data elements we've used to build the sched_domain and
6083  * sched_group structure so that the subsequent __free_domain_allocs()
6084  * will not free the data we're using.
6085  */
6086 static void claim_allocations(int cpu, struct sched_domain *sd)
6087 {
6088 	struct sd_data *sdd = sd->private;
6089 
6090 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6091 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6092 
6093 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6094 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6095 
6096 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6097 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6098 }
6099 
6100 #ifdef CONFIG_NUMA
6101 static int sched_domains_numa_levels;
6102 static int *sched_domains_numa_distance;
6103 static struct cpumask ***sched_domains_numa_masks;
6104 static int sched_domains_curr_level;
6105 #endif
6106 
6107 /*
6108  * SD_flags allowed in topology descriptions.
6109  *
6110  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6111  * SD_SHARE_PKG_RESOURCES - describes shared caches
6112  * SD_NUMA                - describes NUMA topologies
6113  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6114  *
6115  * Odd one out:
6116  * SD_ASYM_PACKING        - describes SMT quirks
6117  */
6118 #define TOPOLOGY_SD_FLAGS		\
6119 	(SD_SHARE_CPUCAPACITY |		\
6120 	 SD_SHARE_PKG_RESOURCES |	\
6121 	 SD_NUMA |			\
6122 	 SD_ASYM_PACKING |		\
6123 	 SD_SHARE_POWERDOMAIN)
6124 
6125 static struct sched_domain *
6126 sd_init(struct sched_domain_topology_level *tl, int cpu)
6127 {
6128 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6129 	int sd_weight, sd_flags = 0;
6130 
6131 #ifdef CONFIG_NUMA
6132 	/*
6133 	 * Ugly hack to pass state to sd_numa_mask()...
6134 	 */
6135 	sched_domains_curr_level = tl->numa_level;
6136 #endif
6137 
6138 	sd_weight = cpumask_weight(tl->mask(cpu));
6139 
6140 	if (tl->sd_flags)
6141 		sd_flags = (*tl->sd_flags)();
6142 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6143 			"wrong sd_flags in topology description\n"))
6144 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6145 
6146 	*sd = (struct sched_domain){
6147 		.min_interval		= sd_weight,
6148 		.max_interval		= 2*sd_weight,
6149 		.busy_factor		= 32,
6150 		.imbalance_pct		= 125,
6151 
6152 		.cache_nice_tries	= 0,
6153 		.busy_idx		= 0,
6154 		.idle_idx		= 0,
6155 		.newidle_idx		= 0,
6156 		.wake_idx		= 0,
6157 		.forkexec_idx		= 0,
6158 
6159 		.flags			= 1*SD_LOAD_BALANCE
6160 					| 1*SD_BALANCE_NEWIDLE
6161 					| 1*SD_BALANCE_EXEC
6162 					| 1*SD_BALANCE_FORK
6163 					| 0*SD_BALANCE_WAKE
6164 					| 1*SD_WAKE_AFFINE
6165 					| 0*SD_SHARE_CPUCAPACITY
6166 					| 0*SD_SHARE_PKG_RESOURCES
6167 					| 0*SD_SERIALIZE
6168 					| 0*SD_PREFER_SIBLING
6169 					| 0*SD_NUMA
6170 					| sd_flags
6171 					,
6172 
6173 		.last_balance		= jiffies,
6174 		.balance_interval	= sd_weight,
6175 		.smt_gain		= 0,
6176 		.max_newidle_lb_cost	= 0,
6177 		.next_decay_max_lb_cost	= jiffies,
6178 #ifdef CONFIG_SCHED_DEBUG
6179 		.name			= tl->name,
6180 #endif
6181 	};
6182 
6183 	/*
6184 	 * Convert topological properties into behaviour.
6185 	 */
6186 
6187 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6188 		sd->imbalance_pct = 110;
6189 		sd->smt_gain = 1178; /* ~15% */
6190 
6191 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6192 		sd->imbalance_pct = 117;
6193 		sd->cache_nice_tries = 1;
6194 		sd->busy_idx = 2;
6195 
6196 #ifdef CONFIG_NUMA
6197 	} else if (sd->flags & SD_NUMA) {
6198 		sd->cache_nice_tries = 2;
6199 		sd->busy_idx = 3;
6200 		sd->idle_idx = 2;
6201 
6202 		sd->flags |= SD_SERIALIZE;
6203 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6204 			sd->flags &= ~(SD_BALANCE_EXEC |
6205 				       SD_BALANCE_FORK |
6206 				       SD_WAKE_AFFINE);
6207 		}
6208 
6209 #endif
6210 	} else {
6211 		sd->flags |= SD_PREFER_SIBLING;
6212 		sd->cache_nice_tries = 1;
6213 		sd->busy_idx = 2;
6214 		sd->idle_idx = 1;
6215 	}
6216 
6217 	sd->private = &tl->data;
6218 
6219 	return sd;
6220 }
6221 
6222 /*
6223  * Topology list, bottom-up.
6224  */
6225 static struct sched_domain_topology_level default_topology[] = {
6226 #ifdef CONFIG_SCHED_SMT
6227 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6228 #endif
6229 #ifdef CONFIG_SCHED_MC
6230 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6231 #endif
6232 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6233 	{ NULL, },
6234 };
6235 
6236 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6237 
6238 #define for_each_sd_topology(tl)			\
6239 	for (tl = sched_domain_topology; tl->mask; tl++)
6240 
6241 void set_sched_topology(struct sched_domain_topology_level *tl)
6242 {
6243 	sched_domain_topology = tl;
6244 }
6245 
6246 #ifdef CONFIG_NUMA
6247 
6248 static const struct cpumask *sd_numa_mask(int cpu)
6249 {
6250 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6251 }
6252 
6253 static void sched_numa_warn(const char *str)
6254 {
6255 	static int done = false;
6256 	int i,j;
6257 
6258 	if (done)
6259 		return;
6260 
6261 	done = true;
6262 
6263 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6264 
6265 	for (i = 0; i < nr_node_ids; i++) {
6266 		printk(KERN_WARNING "  ");
6267 		for (j = 0; j < nr_node_ids; j++)
6268 			printk(KERN_CONT "%02d ", node_distance(i,j));
6269 		printk(KERN_CONT "\n");
6270 	}
6271 	printk(KERN_WARNING "\n");
6272 }
6273 
6274 static bool find_numa_distance(int distance)
6275 {
6276 	int i;
6277 
6278 	if (distance == node_distance(0, 0))
6279 		return true;
6280 
6281 	for (i = 0; i < sched_domains_numa_levels; i++) {
6282 		if (sched_domains_numa_distance[i] == distance)
6283 			return true;
6284 	}
6285 
6286 	return false;
6287 }
6288 
6289 static void sched_init_numa(void)
6290 {
6291 	int next_distance, curr_distance = node_distance(0, 0);
6292 	struct sched_domain_topology_level *tl;
6293 	int level = 0;
6294 	int i, j, k;
6295 
6296 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6297 	if (!sched_domains_numa_distance)
6298 		return;
6299 
6300 	/*
6301 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6302 	 * unique distances in the node_distance() table.
6303 	 *
6304 	 * Assumes node_distance(0,j) includes all distances in
6305 	 * node_distance(i,j) in order to avoid cubic time.
6306 	 */
6307 	next_distance = curr_distance;
6308 	for (i = 0; i < nr_node_ids; i++) {
6309 		for (j = 0; j < nr_node_ids; j++) {
6310 			for (k = 0; k < nr_node_ids; k++) {
6311 				int distance = node_distance(i, k);
6312 
6313 				if (distance > curr_distance &&
6314 				    (distance < next_distance ||
6315 				     next_distance == curr_distance))
6316 					next_distance = distance;
6317 
6318 				/*
6319 				 * While not a strong assumption it would be nice to know
6320 				 * about cases where if node A is connected to B, B is not
6321 				 * equally connected to A.
6322 				 */
6323 				if (sched_debug() && node_distance(k, i) != distance)
6324 					sched_numa_warn("Node-distance not symmetric");
6325 
6326 				if (sched_debug() && i && !find_numa_distance(distance))
6327 					sched_numa_warn("Node-0 not representative");
6328 			}
6329 			if (next_distance != curr_distance) {
6330 				sched_domains_numa_distance[level++] = next_distance;
6331 				sched_domains_numa_levels = level;
6332 				curr_distance = next_distance;
6333 			} else break;
6334 		}
6335 
6336 		/*
6337 		 * In case of sched_debug() we verify the above assumption.
6338 		 */
6339 		if (!sched_debug())
6340 			break;
6341 	}
6342 
6343 	if (!level)
6344 		return;
6345 
6346 	/*
6347 	 * 'level' contains the number of unique distances, excluding the
6348 	 * identity distance node_distance(i,i).
6349 	 *
6350 	 * The sched_domains_numa_distance[] array includes the actual distance
6351 	 * numbers.
6352 	 */
6353 
6354 	/*
6355 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6356 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6357 	 * the array will contain less then 'level' members. This could be
6358 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6359 	 * in other functions.
6360 	 *
6361 	 * We reset it to 'level' at the end of this function.
6362 	 */
6363 	sched_domains_numa_levels = 0;
6364 
6365 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6366 	if (!sched_domains_numa_masks)
6367 		return;
6368 
6369 	/*
6370 	 * Now for each level, construct a mask per node which contains all
6371 	 * cpus of nodes that are that many hops away from us.
6372 	 */
6373 	for (i = 0; i < level; i++) {
6374 		sched_domains_numa_masks[i] =
6375 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6376 		if (!sched_domains_numa_masks[i])
6377 			return;
6378 
6379 		for (j = 0; j < nr_node_ids; j++) {
6380 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6381 			if (!mask)
6382 				return;
6383 
6384 			sched_domains_numa_masks[i][j] = mask;
6385 
6386 			for (k = 0; k < nr_node_ids; k++) {
6387 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6388 					continue;
6389 
6390 				cpumask_or(mask, mask, cpumask_of_node(k));
6391 			}
6392 		}
6393 	}
6394 
6395 	/* Compute default topology size */
6396 	for (i = 0; sched_domain_topology[i].mask; i++);
6397 
6398 	tl = kzalloc((i + level + 1) *
6399 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6400 	if (!tl)
6401 		return;
6402 
6403 	/*
6404 	 * Copy the default topology bits..
6405 	 */
6406 	for (i = 0; sched_domain_topology[i].mask; i++)
6407 		tl[i] = sched_domain_topology[i];
6408 
6409 	/*
6410 	 * .. and append 'j' levels of NUMA goodness.
6411 	 */
6412 	for (j = 0; j < level; i++, j++) {
6413 		tl[i] = (struct sched_domain_topology_level){
6414 			.mask = sd_numa_mask,
6415 			.sd_flags = cpu_numa_flags,
6416 			.flags = SDTL_OVERLAP,
6417 			.numa_level = j,
6418 			SD_INIT_NAME(NUMA)
6419 		};
6420 	}
6421 
6422 	sched_domain_topology = tl;
6423 
6424 	sched_domains_numa_levels = level;
6425 }
6426 
6427 static void sched_domains_numa_masks_set(int cpu)
6428 {
6429 	int i, j;
6430 	int node = cpu_to_node(cpu);
6431 
6432 	for (i = 0; i < sched_domains_numa_levels; i++) {
6433 		for (j = 0; j < nr_node_ids; j++) {
6434 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6435 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6436 		}
6437 	}
6438 }
6439 
6440 static void sched_domains_numa_masks_clear(int cpu)
6441 {
6442 	int i, j;
6443 	for (i = 0; i < sched_domains_numa_levels; i++) {
6444 		for (j = 0; j < nr_node_ids; j++)
6445 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6446 	}
6447 }
6448 
6449 /*
6450  * Update sched_domains_numa_masks[level][node] array when new cpus
6451  * are onlined.
6452  */
6453 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6454 					   unsigned long action,
6455 					   void *hcpu)
6456 {
6457 	int cpu = (long)hcpu;
6458 
6459 	switch (action & ~CPU_TASKS_FROZEN) {
6460 	case CPU_ONLINE:
6461 		sched_domains_numa_masks_set(cpu);
6462 		break;
6463 
6464 	case CPU_DEAD:
6465 		sched_domains_numa_masks_clear(cpu);
6466 		break;
6467 
6468 	default:
6469 		return NOTIFY_DONE;
6470 	}
6471 
6472 	return NOTIFY_OK;
6473 }
6474 #else
6475 static inline void sched_init_numa(void)
6476 {
6477 }
6478 
6479 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6480 					   unsigned long action,
6481 					   void *hcpu)
6482 {
6483 	return 0;
6484 }
6485 #endif /* CONFIG_NUMA */
6486 
6487 static int __sdt_alloc(const struct cpumask *cpu_map)
6488 {
6489 	struct sched_domain_topology_level *tl;
6490 	int j;
6491 
6492 	for_each_sd_topology(tl) {
6493 		struct sd_data *sdd = &tl->data;
6494 
6495 		sdd->sd = alloc_percpu(struct sched_domain *);
6496 		if (!sdd->sd)
6497 			return -ENOMEM;
6498 
6499 		sdd->sg = alloc_percpu(struct sched_group *);
6500 		if (!sdd->sg)
6501 			return -ENOMEM;
6502 
6503 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6504 		if (!sdd->sgc)
6505 			return -ENOMEM;
6506 
6507 		for_each_cpu(j, cpu_map) {
6508 			struct sched_domain *sd;
6509 			struct sched_group *sg;
6510 			struct sched_group_capacity *sgc;
6511 
6512 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6513 					GFP_KERNEL, cpu_to_node(j));
6514 			if (!sd)
6515 				return -ENOMEM;
6516 
6517 			*per_cpu_ptr(sdd->sd, j) = sd;
6518 
6519 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6520 					GFP_KERNEL, cpu_to_node(j));
6521 			if (!sg)
6522 				return -ENOMEM;
6523 
6524 			sg->next = sg;
6525 
6526 			*per_cpu_ptr(sdd->sg, j) = sg;
6527 
6528 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6529 					GFP_KERNEL, cpu_to_node(j));
6530 			if (!sgc)
6531 				return -ENOMEM;
6532 
6533 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6534 		}
6535 	}
6536 
6537 	return 0;
6538 }
6539 
6540 static void __sdt_free(const struct cpumask *cpu_map)
6541 {
6542 	struct sched_domain_topology_level *tl;
6543 	int j;
6544 
6545 	for_each_sd_topology(tl) {
6546 		struct sd_data *sdd = &tl->data;
6547 
6548 		for_each_cpu(j, cpu_map) {
6549 			struct sched_domain *sd;
6550 
6551 			if (sdd->sd) {
6552 				sd = *per_cpu_ptr(sdd->sd, j);
6553 				if (sd && (sd->flags & SD_OVERLAP))
6554 					free_sched_groups(sd->groups, 0);
6555 				kfree(*per_cpu_ptr(sdd->sd, j));
6556 			}
6557 
6558 			if (sdd->sg)
6559 				kfree(*per_cpu_ptr(sdd->sg, j));
6560 			if (sdd->sgc)
6561 				kfree(*per_cpu_ptr(sdd->sgc, j));
6562 		}
6563 		free_percpu(sdd->sd);
6564 		sdd->sd = NULL;
6565 		free_percpu(sdd->sg);
6566 		sdd->sg = NULL;
6567 		free_percpu(sdd->sgc);
6568 		sdd->sgc = NULL;
6569 	}
6570 }
6571 
6572 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6573 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6574 		struct sched_domain *child, int cpu)
6575 {
6576 	struct sched_domain *sd = sd_init(tl, cpu);
6577 	if (!sd)
6578 		return child;
6579 
6580 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6581 	if (child) {
6582 		sd->level = child->level + 1;
6583 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6584 		child->parent = sd;
6585 		sd->child = child;
6586 
6587 		if (!cpumask_subset(sched_domain_span(child),
6588 				    sched_domain_span(sd))) {
6589 			pr_err("BUG: arch topology borken\n");
6590 #ifdef CONFIG_SCHED_DEBUG
6591 			pr_err("     the %s domain not a subset of the %s domain\n",
6592 					child->name, sd->name);
6593 #endif
6594 			/* Fixup, ensure @sd has at least @child cpus. */
6595 			cpumask_or(sched_domain_span(sd),
6596 				   sched_domain_span(sd),
6597 				   sched_domain_span(child));
6598 		}
6599 
6600 	}
6601 	set_domain_attribute(sd, attr);
6602 
6603 	return sd;
6604 }
6605 
6606 /*
6607  * Build sched domains for a given set of cpus and attach the sched domains
6608  * to the individual cpus
6609  */
6610 static int build_sched_domains(const struct cpumask *cpu_map,
6611 			       struct sched_domain_attr *attr)
6612 {
6613 	enum s_alloc alloc_state;
6614 	struct sched_domain *sd;
6615 	struct s_data d;
6616 	int i, ret = -ENOMEM;
6617 
6618 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6619 	if (alloc_state != sa_rootdomain)
6620 		goto error;
6621 
6622 	/* Set up domains for cpus specified by the cpu_map. */
6623 	for_each_cpu(i, cpu_map) {
6624 		struct sched_domain_topology_level *tl;
6625 
6626 		sd = NULL;
6627 		for_each_sd_topology(tl) {
6628 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6629 			if (tl == sched_domain_topology)
6630 				*per_cpu_ptr(d.sd, i) = sd;
6631 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6632 				sd->flags |= SD_OVERLAP;
6633 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6634 				break;
6635 		}
6636 	}
6637 
6638 	/* Build the groups for the domains */
6639 	for_each_cpu(i, cpu_map) {
6640 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6641 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6642 			if (sd->flags & SD_OVERLAP) {
6643 				if (build_overlap_sched_groups(sd, i))
6644 					goto error;
6645 			} else {
6646 				if (build_sched_groups(sd, i))
6647 					goto error;
6648 			}
6649 		}
6650 	}
6651 
6652 	/* Calculate CPU capacity for physical packages and nodes */
6653 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6654 		if (!cpumask_test_cpu(i, cpu_map))
6655 			continue;
6656 
6657 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6658 			claim_allocations(i, sd);
6659 			init_sched_groups_capacity(i, sd);
6660 		}
6661 	}
6662 
6663 	/* Attach the domains */
6664 	rcu_read_lock();
6665 	for_each_cpu(i, cpu_map) {
6666 		sd = *per_cpu_ptr(d.sd, i);
6667 		cpu_attach_domain(sd, d.rd, i);
6668 	}
6669 	rcu_read_unlock();
6670 
6671 	ret = 0;
6672 error:
6673 	__free_domain_allocs(&d, alloc_state, cpu_map);
6674 	return ret;
6675 }
6676 
6677 static cpumask_var_t *doms_cur;	/* current sched domains */
6678 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6679 static struct sched_domain_attr *dattr_cur;
6680 				/* attribues of custom domains in 'doms_cur' */
6681 
6682 /*
6683  * Special case: If a kmalloc of a doms_cur partition (array of
6684  * cpumask) fails, then fallback to a single sched domain,
6685  * as determined by the single cpumask fallback_doms.
6686  */
6687 static cpumask_var_t fallback_doms;
6688 
6689 /*
6690  * arch_update_cpu_topology lets virtualized architectures update the
6691  * cpu core maps. It is supposed to return 1 if the topology changed
6692  * or 0 if it stayed the same.
6693  */
6694 int __weak arch_update_cpu_topology(void)
6695 {
6696 	return 0;
6697 }
6698 
6699 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6700 {
6701 	int i;
6702 	cpumask_var_t *doms;
6703 
6704 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6705 	if (!doms)
6706 		return NULL;
6707 	for (i = 0; i < ndoms; i++) {
6708 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6709 			free_sched_domains(doms, i);
6710 			return NULL;
6711 		}
6712 	}
6713 	return doms;
6714 }
6715 
6716 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6717 {
6718 	unsigned int i;
6719 	for (i = 0; i < ndoms; i++)
6720 		free_cpumask_var(doms[i]);
6721 	kfree(doms);
6722 }
6723 
6724 /*
6725  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6726  * For now this just excludes isolated cpus, but could be used to
6727  * exclude other special cases in the future.
6728  */
6729 static int init_sched_domains(const struct cpumask *cpu_map)
6730 {
6731 	int err;
6732 
6733 	arch_update_cpu_topology();
6734 	ndoms_cur = 1;
6735 	doms_cur = alloc_sched_domains(ndoms_cur);
6736 	if (!doms_cur)
6737 		doms_cur = &fallback_doms;
6738 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6739 	err = build_sched_domains(doms_cur[0], NULL);
6740 	register_sched_domain_sysctl();
6741 
6742 	return err;
6743 }
6744 
6745 /*
6746  * Detach sched domains from a group of cpus specified in cpu_map
6747  * These cpus will now be attached to the NULL domain
6748  */
6749 static void detach_destroy_domains(const struct cpumask *cpu_map)
6750 {
6751 	int i;
6752 
6753 	rcu_read_lock();
6754 	for_each_cpu(i, cpu_map)
6755 		cpu_attach_domain(NULL, &def_root_domain, i);
6756 	rcu_read_unlock();
6757 }
6758 
6759 /* handle null as "default" */
6760 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6761 			struct sched_domain_attr *new, int idx_new)
6762 {
6763 	struct sched_domain_attr tmp;
6764 
6765 	/* fast path */
6766 	if (!new && !cur)
6767 		return 1;
6768 
6769 	tmp = SD_ATTR_INIT;
6770 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6771 			new ? (new + idx_new) : &tmp,
6772 			sizeof(struct sched_domain_attr));
6773 }
6774 
6775 /*
6776  * Partition sched domains as specified by the 'ndoms_new'
6777  * cpumasks in the array doms_new[] of cpumasks. This compares
6778  * doms_new[] to the current sched domain partitioning, doms_cur[].
6779  * It destroys each deleted domain and builds each new domain.
6780  *
6781  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6782  * The masks don't intersect (don't overlap.) We should setup one
6783  * sched domain for each mask. CPUs not in any of the cpumasks will
6784  * not be load balanced. If the same cpumask appears both in the
6785  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6786  * it as it is.
6787  *
6788  * The passed in 'doms_new' should be allocated using
6789  * alloc_sched_domains.  This routine takes ownership of it and will
6790  * free_sched_domains it when done with it. If the caller failed the
6791  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6792  * and partition_sched_domains() will fallback to the single partition
6793  * 'fallback_doms', it also forces the domains to be rebuilt.
6794  *
6795  * If doms_new == NULL it will be replaced with cpu_online_mask.
6796  * ndoms_new == 0 is a special case for destroying existing domains,
6797  * and it will not create the default domain.
6798  *
6799  * Call with hotplug lock held
6800  */
6801 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6802 			     struct sched_domain_attr *dattr_new)
6803 {
6804 	int i, j, n;
6805 	int new_topology;
6806 
6807 	mutex_lock(&sched_domains_mutex);
6808 
6809 	/* always unregister in case we don't destroy any domains */
6810 	unregister_sched_domain_sysctl();
6811 
6812 	/* Let architecture update cpu core mappings. */
6813 	new_topology = arch_update_cpu_topology();
6814 
6815 	n = doms_new ? ndoms_new : 0;
6816 
6817 	/* Destroy deleted domains */
6818 	for (i = 0; i < ndoms_cur; i++) {
6819 		for (j = 0; j < n && !new_topology; j++) {
6820 			if (cpumask_equal(doms_cur[i], doms_new[j])
6821 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6822 				goto match1;
6823 		}
6824 		/* no match - a current sched domain not in new doms_new[] */
6825 		detach_destroy_domains(doms_cur[i]);
6826 match1:
6827 		;
6828 	}
6829 
6830 	n = ndoms_cur;
6831 	if (doms_new == NULL) {
6832 		n = 0;
6833 		doms_new = &fallback_doms;
6834 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6835 		WARN_ON_ONCE(dattr_new);
6836 	}
6837 
6838 	/* Build new domains */
6839 	for (i = 0; i < ndoms_new; i++) {
6840 		for (j = 0; j < n && !new_topology; j++) {
6841 			if (cpumask_equal(doms_new[i], doms_cur[j])
6842 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6843 				goto match2;
6844 		}
6845 		/* no match - add a new doms_new */
6846 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6847 match2:
6848 		;
6849 	}
6850 
6851 	/* Remember the new sched domains */
6852 	if (doms_cur != &fallback_doms)
6853 		free_sched_domains(doms_cur, ndoms_cur);
6854 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6855 	doms_cur = doms_new;
6856 	dattr_cur = dattr_new;
6857 	ndoms_cur = ndoms_new;
6858 
6859 	register_sched_domain_sysctl();
6860 
6861 	mutex_unlock(&sched_domains_mutex);
6862 }
6863 
6864 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6865 
6866 /*
6867  * Update cpusets according to cpu_active mask.  If cpusets are
6868  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6869  * around partition_sched_domains().
6870  *
6871  * If we come here as part of a suspend/resume, don't touch cpusets because we
6872  * want to restore it back to its original state upon resume anyway.
6873  */
6874 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6875 			     void *hcpu)
6876 {
6877 	switch (action) {
6878 	case CPU_ONLINE_FROZEN:
6879 	case CPU_DOWN_FAILED_FROZEN:
6880 
6881 		/*
6882 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6883 		 * resume sequence. As long as this is not the last online
6884 		 * operation in the resume sequence, just build a single sched
6885 		 * domain, ignoring cpusets.
6886 		 */
6887 		num_cpus_frozen--;
6888 		if (likely(num_cpus_frozen)) {
6889 			partition_sched_domains(1, NULL, NULL);
6890 			break;
6891 		}
6892 
6893 		/*
6894 		 * This is the last CPU online operation. So fall through and
6895 		 * restore the original sched domains by considering the
6896 		 * cpuset configurations.
6897 		 */
6898 
6899 	case CPU_ONLINE:
6900 	case CPU_DOWN_FAILED:
6901 		cpuset_update_active_cpus(true);
6902 		break;
6903 	default:
6904 		return NOTIFY_DONE;
6905 	}
6906 	return NOTIFY_OK;
6907 }
6908 
6909 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6910 			       void *hcpu)
6911 {
6912 	switch (action) {
6913 	case CPU_DOWN_PREPARE:
6914 		cpuset_update_active_cpus(false);
6915 		break;
6916 	case CPU_DOWN_PREPARE_FROZEN:
6917 		num_cpus_frozen++;
6918 		partition_sched_domains(1, NULL, NULL);
6919 		break;
6920 	default:
6921 		return NOTIFY_DONE;
6922 	}
6923 	return NOTIFY_OK;
6924 }
6925 
6926 void __init sched_init_smp(void)
6927 {
6928 	cpumask_var_t non_isolated_cpus;
6929 
6930 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6931 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6932 
6933 	sched_init_numa();
6934 
6935 	/*
6936 	 * There's no userspace yet to cause hotplug operations; hence all the
6937 	 * cpu masks are stable and all blatant races in the below code cannot
6938 	 * happen.
6939 	 */
6940 	mutex_lock(&sched_domains_mutex);
6941 	init_sched_domains(cpu_active_mask);
6942 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6943 	if (cpumask_empty(non_isolated_cpus))
6944 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6945 	mutex_unlock(&sched_domains_mutex);
6946 
6947 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6948 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6949 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6950 
6951 	init_hrtick();
6952 
6953 	/* Move init over to a non-isolated CPU */
6954 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6955 		BUG();
6956 	sched_init_granularity();
6957 	free_cpumask_var(non_isolated_cpus);
6958 
6959 	init_sched_rt_class();
6960 	init_sched_dl_class();
6961 }
6962 #else
6963 void __init sched_init_smp(void)
6964 {
6965 	sched_init_granularity();
6966 }
6967 #endif /* CONFIG_SMP */
6968 
6969 const_debug unsigned int sysctl_timer_migration = 1;
6970 
6971 int in_sched_functions(unsigned long addr)
6972 {
6973 	return in_lock_functions(addr) ||
6974 		(addr >= (unsigned long)__sched_text_start
6975 		&& addr < (unsigned long)__sched_text_end);
6976 }
6977 
6978 #ifdef CONFIG_CGROUP_SCHED
6979 /*
6980  * Default task group.
6981  * Every task in system belongs to this group at bootup.
6982  */
6983 struct task_group root_task_group;
6984 LIST_HEAD(task_groups);
6985 #endif
6986 
6987 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6988 
6989 void __init sched_init(void)
6990 {
6991 	int i, j;
6992 	unsigned long alloc_size = 0, ptr;
6993 
6994 #ifdef CONFIG_FAIR_GROUP_SCHED
6995 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6996 #endif
6997 #ifdef CONFIG_RT_GROUP_SCHED
6998 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6999 #endif
7000 #ifdef CONFIG_CPUMASK_OFFSTACK
7001 	alloc_size += num_possible_cpus() * cpumask_size();
7002 #endif
7003 	if (alloc_size) {
7004 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7005 
7006 #ifdef CONFIG_FAIR_GROUP_SCHED
7007 		root_task_group.se = (struct sched_entity **)ptr;
7008 		ptr += nr_cpu_ids * sizeof(void **);
7009 
7010 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7011 		ptr += nr_cpu_ids * sizeof(void **);
7012 
7013 #endif /* CONFIG_FAIR_GROUP_SCHED */
7014 #ifdef CONFIG_RT_GROUP_SCHED
7015 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7016 		ptr += nr_cpu_ids * sizeof(void **);
7017 
7018 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7019 		ptr += nr_cpu_ids * sizeof(void **);
7020 
7021 #endif /* CONFIG_RT_GROUP_SCHED */
7022 #ifdef CONFIG_CPUMASK_OFFSTACK
7023 		for_each_possible_cpu(i) {
7024 			per_cpu(load_balance_mask, i) = (void *)ptr;
7025 			ptr += cpumask_size();
7026 		}
7027 #endif /* CONFIG_CPUMASK_OFFSTACK */
7028 	}
7029 
7030 	init_rt_bandwidth(&def_rt_bandwidth,
7031 			global_rt_period(), global_rt_runtime());
7032 	init_dl_bandwidth(&def_dl_bandwidth,
7033 			global_rt_period(), global_rt_runtime());
7034 
7035 #ifdef CONFIG_SMP
7036 	init_defrootdomain();
7037 #endif
7038 
7039 #ifdef CONFIG_RT_GROUP_SCHED
7040 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7041 			global_rt_period(), global_rt_runtime());
7042 #endif /* CONFIG_RT_GROUP_SCHED */
7043 
7044 #ifdef CONFIG_CGROUP_SCHED
7045 	list_add(&root_task_group.list, &task_groups);
7046 	INIT_LIST_HEAD(&root_task_group.children);
7047 	INIT_LIST_HEAD(&root_task_group.siblings);
7048 	autogroup_init(&init_task);
7049 
7050 #endif /* CONFIG_CGROUP_SCHED */
7051 
7052 	for_each_possible_cpu(i) {
7053 		struct rq *rq;
7054 
7055 		rq = cpu_rq(i);
7056 		raw_spin_lock_init(&rq->lock);
7057 		rq->nr_running = 0;
7058 		rq->calc_load_active = 0;
7059 		rq->calc_load_update = jiffies + LOAD_FREQ;
7060 		init_cfs_rq(&rq->cfs);
7061 		init_rt_rq(&rq->rt, rq);
7062 		init_dl_rq(&rq->dl, rq);
7063 #ifdef CONFIG_FAIR_GROUP_SCHED
7064 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7065 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7066 		/*
7067 		 * How much cpu bandwidth does root_task_group get?
7068 		 *
7069 		 * In case of task-groups formed thr' the cgroup filesystem, it
7070 		 * gets 100% of the cpu resources in the system. This overall
7071 		 * system cpu resource is divided among the tasks of
7072 		 * root_task_group and its child task-groups in a fair manner,
7073 		 * based on each entity's (task or task-group's) weight
7074 		 * (se->load.weight).
7075 		 *
7076 		 * In other words, if root_task_group has 10 tasks of weight
7077 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7078 		 * then A0's share of the cpu resource is:
7079 		 *
7080 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7081 		 *
7082 		 * We achieve this by letting root_task_group's tasks sit
7083 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7084 		 */
7085 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7086 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7087 #endif /* CONFIG_FAIR_GROUP_SCHED */
7088 
7089 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7090 #ifdef CONFIG_RT_GROUP_SCHED
7091 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7092 #endif
7093 
7094 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7095 			rq->cpu_load[j] = 0;
7096 
7097 		rq->last_load_update_tick = jiffies;
7098 
7099 #ifdef CONFIG_SMP
7100 		rq->sd = NULL;
7101 		rq->rd = NULL;
7102 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7103 		rq->post_schedule = 0;
7104 		rq->active_balance = 0;
7105 		rq->next_balance = jiffies;
7106 		rq->push_cpu = 0;
7107 		rq->cpu = i;
7108 		rq->online = 0;
7109 		rq->idle_stamp = 0;
7110 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7111 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7112 
7113 		INIT_LIST_HEAD(&rq->cfs_tasks);
7114 
7115 		rq_attach_root(rq, &def_root_domain);
7116 #ifdef CONFIG_NO_HZ_COMMON
7117 		rq->nohz_flags = 0;
7118 #endif
7119 #ifdef CONFIG_NO_HZ_FULL
7120 		rq->last_sched_tick = 0;
7121 #endif
7122 #endif
7123 		init_rq_hrtick(rq);
7124 		atomic_set(&rq->nr_iowait, 0);
7125 	}
7126 
7127 	set_load_weight(&init_task);
7128 
7129 #ifdef CONFIG_PREEMPT_NOTIFIERS
7130 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7131 #endif
7132 
7133 	/*
7134 	 * The boot idle thread does lazy MMU switching as well:
7135 	 */
7136 	atomic_inc(&init_mm.mm_count);
7137 	enter_lazy_tlb(&init_mm, current);
7138 
7139 	/*
7140 	 * Make us the idle thread. Technically, schedule() should not be
7141 	 * called from this thread, however somewhere below it might be,
7142 	 * but because we are the idle thread, we just pick up running again
7143 	 * when this runqueue becomes "idle".
7144 	 */
7145 	init_idle(current, smp_processor_id());
7146 
7147 	calc_load_update = jiffies + LOAD_FREQ;
7148 
7149 	/*
7150 	 * During early bootup we pretend to be a normal task:
7151 	 */
7152 	current->sched_class = &fair_sched_class;
7153 
7154 #ifdef CONFIG_SMP
7155 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7156 	/* May be allocated at isolcpus cmdline parse time */
7157 	if (cpu_isolated_map == NULL)
7158 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7159 	idle_thread_set_boot_cpu();
7160 	set_cpu_rq_start_time();
7161 #endif
7162 	init_sched_fair_class();
7163 
7164 	scheduler_running = 1;
7165 }
7166 
7167 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7168 static inline int preempt_count_equals(int preempt_offset)
7169 {
7170 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7171 
7172 	return (nested == preempt_offset);
7173 }
7174 
7175 void __might_sleep(const char *file, int line, int preempt_offset)
7176 {
7177 	static unsigned long prev_jiffy;	/* ratelimiting */
7178 
7179 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7180 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7181 	     !is_idle_task(current)) ||
7182 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7183 		return;
7184 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7185 		return;
7186 	prev_jiffy = jiffies;
7187 
7188 	printk(KERN_ERR
7189 		"BUG: sleeping function called from invalid context at %s:%d\n",
7190 			file, line);
7191 	printk(KERN_ERR
7192 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7193 			in_atomic(), irqs_disabled(),
7194 			current->pid, current->comm);
7195 
7196 	debug_show_held_locks(current);
7197 	if (irqs_disabled())
7198 		print_irqtrace_events(current);
7199 #ifdef CONFIG_DEBUG_PREEMPT
7200 	if (!preempt_count_equals(preempt_offset)) {
7201 		pr_err("Preemption disabled at:");
7202 		print_ip_sym(current->preempt_disable_ip);
7203 		pr_cont("\n");
7204 	}
7205 #endif
7206 	dump_stack();
7207 }
7208 EXPORT_SYMBOL(__might_sleep);
7209 #endif
7210 
7211 #ifdef CONFIG_MAGIC_SYSRQ
7212 static void normalize_task(struct rq *rq, struct task_struct *p)
7213 {
7214 	const struct sched_class *prev_class = p->sched_class;
7215 	struct sched_attr attr = {
7216 		.sched_policy = SCHED_NORMAL,
7217 	};
7218 	int old_prio = p->prio;
7219 	int queued;
7220 
7221 	queued = task_on_rq_queued(p);
7222 	if (queued)
7223 		dequeue_task(rq, p, 0);
7224 	__setscheduler(rq, p, &attr);
7225 	if (queued) {
7226 		enqueue_task(rq, p, 0);
7227 		resched_curr(rq);
7228 	}
7229 
7230 	check_class_changed(rq, p, prev_class, old_prio);
7231 }
7232 
7233 void normalize_rt_tasks(void)
7234 {
7235 	struct task_struct *g, *p;
7236 	unsigned long flags;
7237 	struct rq *rq;
7238 
7239 	read_lock(&tasklist_lock);
7240 	for_each_process_thread(g, p) {
7241 		/*
7242 		 * Only normalize user tasks:
7243 		 */
7244 		if (p->flags & PF_KTHREAD)
7245 			continue;
7246 
7247 		p->se.exec_start		= 0;
7248 #ifdef CONFIG_SCHEDSTATS
7249 		p->se.statistics.wait_start	= 0;
7250 		p->se.statistics.sleep_start	= 0;
7251 		p->se.statistics.block_start	= 0;
7252 #endif
7253 
7254 		if (!dl_task(p) && !rt_task(p)) {
7255 			/*
7256 			 * Renice negative nice level userspace
7257 			 * tasks back to 0:
7258 			 */
7259 			if (task_nice(p) < 0)
7260 				set_user_nice(p, 0);
7261 			continue;
7262 		}
7263 
7264 		rq = task_rq_lock(p, &flags);
7265 		normalize_task(rq, p);
7266 		task_rq_unlock(rq, p, &flags);
7267 	}
7268 	read_unlock(&tasklist_lock);
7269 }
7270 
7271 #endif /* CONFIG_MAGIC_SYSRQ */
7272 
7273 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7274 /*
7275  * These functions are only useful for the IA64 MCA handling, or kdb.
7276  *
7277  * They can only be called when the whole system has been
7278  * stopped - every CPU needs to be quiescent, and no scheduling
7279  * activity can take place. Using them for anything else would
7280  * be a serious bug, and as a result, they aren't even visible
7281  * under any other configuration.
7282  */
7283 
7284 /**
7285  * curr_task - return the current task for a given cpu.
7286  * @cpu: the processor in question.
7287  *
7288  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7289  *
7290  * Return: The current task for @cpu.
7291  */
7292 struct task_struct *curr_task(int cpu)
7293 {
7294 	return cpu_curr(cpu);
7295 }
7296 
7297 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7298 
7299 #ifdef CONFIG_IA64
7300 /**
7301  * set_curr_task - set the current task for a given cpu.
7302  * @cpu: the processor in question.
7303  * @p: the task pointer to set.
7304  *
7305  * Description: This function must only be used when non-maskable interrupts
7306  * are serviced on a separate stack. It allows the architecture to switch the
7307  * notion of the current task on a cpu in a non-blocking manner. This function
7308  * must be called with all CPU's synchronized, and interrupts disabled, the
7309  * and caller must save the original value of the current task (see
7310  * curr_task() above) and restore that value before reenabling interrupts and
7311  * re-starting the system.
7312  *
7313  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7314  */
7315 void set_curr_task(int cpu, struct task_struct *p)
7316 {
7317 	cpu_curr(cpu) = p;
7318 }
7319 
7320 #endif
7321 
7322 #ifdef CONFIG_CGROUP_SCHED
7323 /* task_group_lock serializes the addition/removal of task groups */
7324 static DEFINE_SPINLOCK(task_group_lock);
7325 
7326 static void free_sched_group(struct task_group *tg)
7327 {
7328 	free_fair_sched_group(tg);
7329 	free_rt_sched_group(tg);
7330 	autogroup_free(tg);
7331 	kfree(tg);
7332 }
7333 
7334 /* allocate runqueue etc for a new task group */
7335 struct task_group *sched_create_group(struct task_group *parent)
7336 {
7337 	struct task_group *tg;
7338 
7339 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7340 	if (!tg)
7341 		return ERR_PTR(-ENOMEM);
7342 
7343 	if (!alloc_fair_sched_group(tg, parent))
7344 		goto err;
7345 
7346 	if (!alloc_rt_sched_group(tg, parent))
7347 		goto err;
7348 
7349 	return tg;
7350 
7351 err:
7352 	free_sched_group(tg);
7353 	return ERR_PTR(-ENOMEM);
7354 }
7355 
7356 void sched_online_group(struct task_group *tg, struct task_group *parent)
7357 {
7358 	unsigned long flags;
7359 
7360 	spin_lock_irqsave(&task_group_lock, flags);
7361 	list_add_rcu(&tg->list, &task_groups);
7362 
7363 	WARN_ON(!parent); /* root should already exist */
7364 
7365 	tg->parent = parent;
7366 	INIT_LIST_HEAD(&tg->children);
7367 	list_add_rcu(&tg->siblings, &parent->children);
7368 	spin_unlock_irqrestore(&task_group_lock, flags);
7369 }
7370 
7371 /* rcu callback to free various structures associated with a task group */
7372 static void free_sched_group_rcu(struct rcu_head *rhp)
7373 {
7374 	/* now it should be safe to free those cfs_rqs */
7375 	free_sched_group(container_of(rhp, struct task_group, rcu));
7376 }
7377 
7378 /* Destroy runqueue etc associated with a task group */
7379 void sched_destroy_group(struct task_group *tg)
7380 {
7381 	/* wait for possible concurrent references to cfs_rqs complete */
7382 	call_rcu(&tg->rcu, free_sched_group_rcu);
7383 }
7384 
7385 void sched_offline_group(struct task_group *tg)
7386 {
7387 	unsigned long flags;
7388 	int i;
7389 
7390 	/* end participation in shares distribution */
7391 	for_each_possible_cpu(i)
7392 		unregister_fair_sched_group(tg, i);
7393 
7394 	spin_lock_irqsave(&task_group_lock, flags);
7395 	list_del_rcu(&tg->list);
7396 	list_del_rcu(&tg->siblings);
7397 	spin_unlock_irqrestore(&task_group_lock, flags);
7398 }
7399 
7400 /* change task's runqueue when it moves between groups.
7401  *	The caller of this function should have put the task in its new group
7402  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7403  *	reflect its new group.
7404  */
7405 void sched_move_task(struct task_struct *tsk)
7406 {
7407 	struct task_group *tg;
7408 	int queued, running;
7409 	unsigned long flags;
7410 	struct rq *rq;
7411 
7412 	rq = task_rq_lock(tsk, &flags);
7413 
7414 	running = task_current(rq, tsk);
7415 	queued = task_on_rq_queued(tsk);
7416 
7417 	if (queued)
7418 		dequeue_task(rq, tsk, 0);
7419 	if (unlikely(running))
7420 		put_prev_task(rq, tsk);
7421 
7422 	/*
7423 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7424 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7425 	 * to prevent lockdep warnings.
7426 	 */
7427 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7428 			  struct task_group, css);
7429 	tg = autogroup_task_group(tsk, tg);
7430 	tsk->sched_task_group = tg;
7431 
7432 #ifdef CONFIG_FAIR_GROUP_SCHED
7433 	if (tsk->sched_class->task_move_group)
7434 		tsk->sched_class->task_move_group(tsk, queued);
7435 	else
7436 #endif
7437 		set_task_rq(tsk, task_cpu(tsk));
7438 
7439 	if (unlikely(running))
7440 		tsk->sched_class->set_curr_task(rq);
7441 	if (queued)
7442 		enqueue_task(rq, tsk, 0);
7443 
7444 	task_rq_unlock(rq, tsk, &flags);
7445 }
7446 #endif /* CONFIG_CGROUP_SCHED */
7447 
7448 #ifdef CONFIG_RT_GROUP_SCHED
7449 /*
7450  * Ensure that the real time constraints are schedulable.
7451  */
7452 static DEFINE_MUTEX(rt_constraints_mutex);
7453 
7454 /* Must be called with tasklist_lock held */
7455 static inline int tg_has_rt_tasks(struct task_group *tg)
7456 {
7457 	struct task_struct *g, *p;
7458 
7459 	for_each_process_thread(g, p) {
7460 		if (rt_task(p) && task_group(p) == tg)
7461 			return 1;
7462 	}
7463 
7464 	return 0;
7465 }
7466 
7467 struct rt_schedulable_data {
7468 	struct task_group *tg;
7469 	u64 rt_period;
7470 	u64 rt_runtime;
7471 };
7472 
7473 static int tg_rt_schedulable(struct task_group *tg, void *data)
7474 {
7475 	struct rt_schedulable_data *d = data;
7476 	struct task_group *child;
7477 	unsigned long total, sum = 0;
7478 	u64 period, runtime;
7479 
7480 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7481 	runtime = tg->rt_bandwidth.rt_runtime;
7482 
7483 	if (tg == d->tg) {
7484 		period = d->rt_period;
7485 		runtime = d->rt_runtime;
7486 	}
7487 
7488 	/*
7489 	 * Cannot have more runtime than the period.
7490 	 */
7491 	if (runtime > period && runtime != RUNTIME_INF)
7492 		return -EINVAL;
7493 
7494 	/*
7495 	 * Ensure we don't starve existing RT tasks.
7496 	 */
7497 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7498 		return -EBUSY;
7499 
7500 	total = to_ratio(period, runtime);
7501 
7502 	/*
7503 	 * Nobody can have more than the global setting allows.
7504 	 */
7505 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7506 		return -EINVAL;
7507 
7508 	/*
7509 	 * The sum of our children's runtime should not exceed our own.
7510 	 */
7511 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7512 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7513 		runtime = child->rt_bandwidth.rt_runtime;
7514 
7515 		if (child == d->tg) {
7516 			period = d->rt_period;
7517 			runtime = d->rt_runtime;
7518 		}
7519 
7520 		sum += to_ratio(period, runtime);
7521 	}
7522 
7523 	if (sum > total)
7524 		return -EINVAL;
7525 
7526 	return 0;
7527 }
7528 
7529 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7530 {
7531 	int ret;
7532 
7533 	struct rt_schedulable_data data = {
7534 		.tg = tg,
7535 		.rt_period = period,
7536 		.rt_runtime = runtime,
7537 	};
7538 
7539 	rcu_read_lock();
7540 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7541 	rcu_read_unlock();
7542 
7543 	return ret;
7544 }
7545 
7546 static int tg_set_rt_bandwidth(struct task_group *tg,
7547 		u64 rt_period, u64 rt_runtime)
7548 {
7549 	int i, err = 0;
7550 
7551 	mutex_lock(&rt_constraints_mutex);
7552 	read_lock(&tasklist_lock);
7553 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7554 	if (err)
7555 		goto unlock;
7556 
7557 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7558 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7559 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7560 
7561 	for_each_possible_cpu(i) {
7562 		struct rt_rq *rt_rq = tg->rt_rq[i];
7563 
7564 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7565 		rt_rq->rt_runtime = rt_runtime;
7566 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7567 	}
7568 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7569 unlock:
7570 	read_unlock(&tasklist_lock);
7571 	mutex_unlock(&rt_constraints_mutex);
7572 
7573 	return err;
7574 }
7575 
7576 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7577 {
7578 	u64 rt_runtime, rt_period;
7579 
7580 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7581 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7582 	if (rt_runtime_us < 0)
7583 		rt_runtime = RUNTIME_INF;
7584 
7585 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7586 }
7587 
7588 static long sched_group_rt_runtime(struct task_group *tg)
7589 {
7590 	u64 rt_runtime_us;
7591 
7592 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7593 		return -1;
7594 
7595 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7596 	do_div(rt_runtime_us, NSEC_PER_USEC);
7597 	return rt_runtime_us;
7598 }
7599 
7600 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7601 {
7602 	u64 rt_runtime, rt_period;
7603 
7604 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7605 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7606 
7607 	if (rt_period == 0)
7608 		return -EINVAL;
7609 
7610 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7611 }
7612 
7613 static long sched_group_rt_period(struct task_group *tg)
7614 {
7615 	u64 rt_period_us;
7616 
7617 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7618 	do_div(rt_period_us, NSEC_PER_USEC);
7619 	return rt_period_us;
7620 }
7621 #endif /* CONFIG_RT_GROUP_SCHED */
7622 
7623 #ifdef CONFIG_RT_GROUP_SCHED
7624 static int sched_rt_global_constraints(void)
7625 {
7626 	int ret = 0;
7627 
7628 	mutex_lock(&rt_constraints_mutex);
7629 	read_lock(&tasklist_lock);
7630 	ret = __rt_schedulable(NULL, 0, 0);
7631 	read_unlock(&tasklist_lock);
7632 	mutex_unlock(&rt_constraints_mutex);
7633 
7634 	return ret;
7635 }
7636 
7637 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7638 {
7639 	/* Don't accept realtime tasks when there is no way for them to run */
7640 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7641 		return 0;
7642 
7643 	return 1;
7644 }
7645 
7646 #else /* !CONFIG_RT_GROUP_SCHED */
7647 static int sched_rt_global_constraints(void)
7648 {
7649 	unsigned long flags;
7650 	int i, ret = 0;
7651 
7652 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7653 	for_each_possible_cpu(i) {
7654 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7655 
7656 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7657 		rt_rq->rt_runtime = global_rt_runtime();
7658 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7659 	}
7660 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7661 
7662 	return ret;
7663 }
7664 #endif /* CONFIG_RT_GROUP_SCHED */
7665 
7666 static int sched_dl_global_constraints(void)
7667 {
7668 	u64 runtime = global_rt_runtime();
7669 	u64 period = global_rt_period();
7670 	u64 new_bw = to_ratio(period, runtime);
7671 	struct dl_bw *dl_b;
7672 	int cpu, ret = 0;
7673 	unsigned long flags;
7674 
7675 	/*
7676 	 * Here we want to check the bandwidth not being set to some
7677 	 * value smaller than the currently allocated bandwidth in
7678 	 * any of the root_domains.
7679 	 *
7680 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7681 	 * cycling on root_domains... Discussion on different/better
7682 	 * solutions is welcome!
7683 	 */
7684 	for_each_possible_cpu(cpu) {
7685 		rcu_read_lock_sched();
7686 		dl_b = dl_bw_of(cpu);
7687 
7688 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7689 		if (new_bw < dl_b->total_bw)
7690 			ret = -EBUSY;
7691 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7692 
7693 		rcu_read_unlock_sched();
7694 
7695 		if (ret)
7696 			break;
7697 	}
7698 
7699 	return ret;
7700 }
7701 
7702 static void sched_dl_do_global(void)
7703 {
7704 	u64 new_bw = -1;
7705 	struct dl_bw *dl_b;
7706 	int cpu;
7707 	unsigned long flags;
7708 
7709 	def_dl_bandwidth.dl_period = global_rt_period();
7710 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7711 
7712 	if (global_rt_runtime() != RUNTIME_INF)
7713 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7714 
7715 	/*
7716 	 * FIXME: As above...
7717 	 */
7718 	for_each_possible_cpu(cpu) {
7719 		rcu_read_lock_sched();
7720 		dl_b = dl_bw_of(cpu);
7721 
7722 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7723 		dl_b->bw = new_bw;
7724 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7725 
7726 		rcu_read_unlock_sched();
7727 	}
7728 }
7729 
7730 static int sched_rt_global_validate(void)
7731 {
7732 	if (sysctl_sched_rt_period <= 0)
7733 		return -EINVAL;
7734 
7735 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7736 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7737 		return -EINVAL;
7738 
7739 	return 0;
7740 }
7741 
7742 static void sched_rt_do_global(void)
7743 {
7744 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7745 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7746 }
7747 
7748 int sched_rt_handler(struct ctl_table *table, int write,
7749 		void __user *buffer, size_t *lenp,
7750 		loff_t *ppos)
7751 {
7752 	int old_period, old_runtime;
7753 	static DEFINE_MUTEX(mutex);
7754 	int ret;
7755 
7756 	mutex_lock(&mutex);
7757 	old_period = sysctl_sched_rt_period;
7758 	old_runtime = sysctl_sched_rt_runtime;
7759 
7760 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7761 
7762 	if (!ret && write) {
7763 		ret = sched_rt_global_validate();
7764 		if (ret)
7765 			goto undo;
7766 
7767 		ret = sched_rt_global_constraints();
7768 		if (ret)
7769 			goto undo;
7770 
7771 		ret = sched_dl_global_constraints();
7772 		if (ret)
7773 			goto undo;
7774 
7775 		sched_rt_do_global();
7776 		sched_dl_do_global();
7777 	}
7778 	if (0) {
7779 undo:
7780 		sysctl_sched_rt_period = old_period;
7781 		sysctl_sched_rt_runtime = old_runtime;
7782 	}
7783 	mutex_unlock(&mutex);
7784 
7785 	return ret;
7786 }
7787 
7788 int sched_rr_handler(struct ctl_table *table, int write,
7789 		void __user *buffer, size_t *lenp,
7790 		loff_t *ppos)
7791 {
7792 	int ret;
7793 	static DEFINE_MUTEX(mutex);
7794 
7795 	mutex_lock(&mutex);
7796 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7797 	/* make sure that internally we keep jiffies */
7798 	/* also, writing zero resets timeslice to default */
7799 	if (!ret && write) {
7800 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7801 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7802 	}
7803 	mutex_unlock(&mutex);
7804 	return ret;
7805 }
7806 
7807 #ifdef CONFIG_CGROUP_SCHED
7808 
7809 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7810 {
7811 	return css ? container_of(css, struct task_group, css) : NULL;
7812 }
7813 
7814 static struct cgroup_subsys_state *
7815 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7816 {
7817 	struct task_group *parent = css_tg(parent_css);
7818 	struct task_group *tg;
7819 
7820 	if (!parent) {
7821 		/* This is early initialization for the top cgroup */
7822 		return &root_task_group.css;
7823 	}
7824 
7825 	tg = sched_create_group(parent);
7826 	if (IS_ERR(tg))
7827 		return ERR_PTR(-ENOMEM);
7828 
7829 	return &tg->css;
7830 }
7831 
7832 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7833 {
7834 	struct task_group *tg = css_tg(css);
7835 	struct task_group *parent = css_tg(css->parent);
7836 
7837 	if (parent)
7838 		sched_online_group(tg, parent);
7839 	return 0;
7840 }
7841 
7842 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7843 {
7844 	struct task_group *tg = css_tg(css);
7845 
7846 	sched_destroy_group(tg);
7847 }
7848 
7849 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7850 {
7851 	struct task_group *tg = css_tg(css);
7852 
7853 	sched_offline_group(tg);
7854 }
7855 
7856 static void cpu_cgroup_fork(struct task_struct *task)
7857 {
7858 	sched_move_task(task);
7859 }
7860 
7861 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7862 				 struct cgroup_taskset *tset)
7863 {
7864 	struct task_struct *task;
7865 
7866 	cgroup_taskset_for_each(task, tset) {
7867 #ifdef CONFIG_RT_GROUP_SCHED
7868 		if (!sched_rt_can_attach(css_tg(css), task))
7869 			return -EINVAL;
7870 #else
7871 		/* We don't support RT-tasks being in separate groups */
7872 		if (task->sched_class != &fair_sched_class)
7873 			return -EINVAL;
7874 #endif
7875 	}
7876 	return 0;
7877 }
7878 
7879 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7880 			      struct cgroup_taskset *tset)
7881 {
7882 	struct task_struct *task;
7883 
7884 	cgroup_taskset_for_each(task, tset)
7885 		sched_move_task(task);
7886 }
7887 
7888 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7889 			    struct cgroup_subsys_state *old_css,
7890 			    struct task_struct *task)
7891 {
7892 	/*
7893 	 * cgroup_exit() is called in the copy_process() failure path.
7894 	 * Ignore this case since the task hasn't ran yet, this avoids
7895 	 * trying to poke a half freed task state from generic code.
7896 	 */
7897 	if (!(task->flags & PF_EXITING))
7898 		return;
7899 
7900 	sched_move_task(task);
7901 }
7902 
7903 #ifdef CONFIG_FAIR_GROUP_SCHED
7904 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7905 				struct cftype *cftype, u64 shareval)
7906 {
7907 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7908 }
7909 
7910 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7911 			       struct cftype *cft)
7912 {
7913 	struct task_group *tg = css_tg(css);
7914 
7915 	return (u64) scale_load_down(tg->shares);
7916 }
7917 
7918 #ifdef CONFIG_CFS_BANDWIDTH
7919 static DEFINE_MUTEX(cfs_constraints_mutex);
7920 
7921 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7922 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7923 
7924 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7925 
7926 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7927 {
7928 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7929 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7930 
7931 	if (tg == &root_task_group)
7932 		return -EINVAL;
7933 
7934 	/*
7935 	 * Ensure we have at some amount of bandwidth every period.  This is
7936 	 * to prevent reaching a state of large arrears when throttled via
7937 	 * entity_tick() resulting in prolonged exit starvation.
7938 	 */
7939 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7940 		return -EINVAL;
7941 
7942 	/*
7943 	 * Likewise, bound things on the otherside by preventing insane quota
7944 	 * periods.  This also allows us to normalize in computing quota
7945 	 * feasibility.
7946 	 */
7947 	if (period > max_cfs_quota_period)
7948 		return -EINVAL;
7949 
7950 	/*
7951 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7952 	 * unthrottle_offline_cfs_rqs().
7953 	 */
7954 	get_online_cpus();
7955 	mutex_lock(&cfs_constraints_mutex);
7956 	ret = __cfs_schedulable(tg, period, quota);
7957 	if (ret)
7958 		goto out_unlock;
7959 
7960 	runtime_enabled = quota != RUNTIME_INF;
7961 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7962 	/*
7963 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7964 	 * before making related changes, and on->off must occur afterwards
7965 	 */
7966 	if (runtime_enabled && !runtime_was_enabled)
7967 		cfs_bandwidth_usage_inc();
7968 	raw_spin_lock_irq(&cfs_b->lock);
7969 	cfs_b->period = ns_to_ktime(period);
7970 	cfs_b->quota = quota;
7971 
7972 	__refill_cfs_bandwidth_runtime(cfs_b);
7973 	/* restart the period timer (if active) to handle new period expiry */
7974 	if (runtime_enabled && cfs_b->timer_active) {
7975 		/* force a reprogram */
7976 		__start_cfs_bandwidth(cfs_b, true);
7977 	}
7978 	raw_spin_unlock_irq(&cfs_b->lock);
7979 
7980 	for_each_online_cpu(i) {
7981 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7982 		struct rq *rq = cfs_rq->rq;
7983 
7984 		raw_spin_lock_irq(&rq->lock);
7985 		cfs_rq->runtime_enabled = runtime_enabled;
7986 		cfs_rq->runtime_remaining = 0;
7987 
7988 		if (cfs_rq->throttled)
7989 			unthrottle_cfs_rq(cfs_rq);
7990 		raw_spin_unlock_irq(&rq->lock);
7991 	}
7992 	if (runtime_was_enabled && !runtime_enabled)
7993 		cfs_bandwidth_usage_dec();
7994 out_unlock:
7995 	mutex_unlock(&cfs_constraints_mutex);
7996 	put_online_cpus();
7997 
7998 	return ret;
7999 }
8000 
8001 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8002 {
8003 	u64 quota, period;
8004 
8005 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8006 	if (cfs_quota_us < 0)
8007 		quota = RUNTIME_INF;
8008 	else
8009 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8010 
8011 	return tg_set_cfs_bandwidth(tg, period, quota);
8012 }
8013 
8014 long tg_get_cfs_quota(struct task_group *tg)
8015 {
8016 	u64 quota_us;
8017 
8018 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8019 		return -1;
8020 
8021 	quota_us = tg->cfs_bandwidth.quota;
8022 	do_div(quota_us, NSEC_PER_USEC);
8023 
8024 	return quota_us;
8025 }
8026 
8027 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8028 {
8029 	u64 quota, period;
8030 
8031 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8032 	quota = tg->cfs_bandwidth.quota;
8033 
8034 	return tg_set_cfs_bandwidth(tg, period, quota);
8035 }
8036 
8037 long tg_get_cfs_period(struct task_group *tg)
8038 {
8039 	u64 cfs_period_us;
8040 
8041 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8042 	do_div(cfs_period_us, NSEC_PER_USEC);
8043 
8044 	return cfs_period_us;
8045 }
8046 
8047 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8048 				  struct cftype *cft)
8049 {
8050 	return tg_get_cfs_quota(css_tg(css));
8051 }
8052 
8053 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8054 				   struct cftype *cftype, s64 cfs_quota_us)
8055 {
8056 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8057 }
8058 
8059 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8060 				   struct cftype *cft)
8061 {
8062 	return tg_get_cfs_period(css_tg(css));
8063 }
8064 
8065 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8066 				    struct cftype *cftype, u64 cfs_period_us)
8067 {
8068 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8069 }
8070 
8071 struct cfs_schedulable_data {
8072 	struct task_group *tg;
8073 	u64 period, quota;
8074 };
8075 
8076 /*
8077  * normalize group quota/period to be quota/max_period
8078  * note: units are usecs
8079  */
8080 static u64 normalize_cfs_quota(struct task_group *tg,
8081 			       struct cfs_schedulable_data *d)
8082 {
8083 	u64 quota, period;
8084 
8085 	if (tg == d->tg) {
8086 		period = d->period;
8087 		quota = d->quota;
8088 	} else {
8089 		period = tg_get_cfs_period(tg);
8090 		quota = tg_get_cfs_quota(tg);
8091 	}
8092 
8093 	/* note: these should typically be equivalent */
8094 	if (quota == RUNTIME_INF || quota == -1)
8095 		return RUNTIME_INF;
8096 
8097 	return to_ratio(period, quota);
8098 }
8099 
8100 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8101 {
8102 	struct cfs_schedulable_data *d = data;
8103 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8104 	s64 quota = 0, parent_quota = -1;
8105 
8106 	if (!tg->parent) {
8107 		quota = RUNTIME_INF;
8108 	} else {
8109 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8110 
8111 		quota = normalize_cfs_quota(tg, d);
8112 		parent_quota = parent_b->hierarchical_quota;
8113 
8114 		/*
8115 		 * ensure max(child_quota) <= parent_quota, inherit when no
8116 		 * limit is set
8117 		 */
8118 		if (quota == RUNTIME_INF)
8119 			quota = parent_quota;
8120 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8121 			return -EINVAL;
8122 	}
8123 	cfs_b->hierarchical_quota = quota;
8124 
8125 	return 0;
8126 }
8127 
8128 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8129 {
8130 	int ret;
8131 	struct cfs_schedulable_data data = {
8132 		.tg = tg,
8133 		.period = period,
8134 		.quota = quota,
8135 	};
8136 
8137 	if (quota != RUNTIME_INF) {
8138 		do_div(data.period, NSEC_PER_USEC);
8139 		do_div(data.quota, NSEC_PER_USEC);
8140 	}
8141 
8142 	rcu_read_lock();
8143 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8144 	rcu_read_unlock();
8145 
8146 	return ret;
8147 }
8148 
8149 static int cpu_stats_show(struct seq_file *sf, void *v)
8150 {
8151 	struct task_group *tg = css_tg(seq_css(sf));
8152 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8153 
8154 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8155 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8156 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8157 
8158 	return 0;
8159 }
8160 #endif /* CONFIG_CFS_BANDWIDTH */
8161 #endif /* CONFIG_FAIR_GROUP_SCHED */
8162 
8163 #ifdef CONFIG_RT_GROUP_SCHED
8164 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8165 				struct cftype *cft, s64 val)
8166 {
8167 	return sched_group_set_rt_runtime(css_tg(css), val);
8168 }
8169 
8170 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8171 			       struct cftype *cft)
8172 {
8173 	return sched_group_rt_runtime(css_tg(css));
8174 }
8175 
8176 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8177 				    struct cftype *cftype, u64 rt_period_us)
8178 {
8179 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8180 }
8181 
8182 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8183 				   struct cftype *cft)
8184 {
8185 	return sched_group_rt_period(css_tg(css));
8186 }
8187 #endif /* CONFIG_RT_GROUP_SCHED */
8188 
8189 static struct cftype cpu_files[] = {
8190 #ifdef CONFIG_FAIR_GROUP_SCHED
8191 	{
8192 		.name = "shares",
8193 		.read_u64 = cpu_shares_read_u64,
8194 		.write_u64 = cpu_shares_write_u64,
8195 	},
8196 #endif
8197 #ifdef CONFIG_CFS_BANDWIDTH
8198 	{
8199 		.name = "cfs_quota_us",
8200 		.read_s64 = cpu_cfs_quota_read_s64,
8201 		.write_s64 = cpu_cfs_quota_write_s64,
8202 	},
8203 	{
8204 		.name = "cfs_period_us",
8205 		.read_u64 = cpu_cfs_period_read_u64,
8206 		.write_u64 = cpu_cfs_period_write_u64,
8207 	},
8208 	{
8209 		.name = "stat",
8210 		.seq_show = cpu_stats_show,
8211 	},
8212 #endif
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 	{
8215 		.name = "rt_runtime_us",
8216 		.read_s64 = cpu_rt_runtime_read,
8217 		.write_s64 = cpu_rt_runtime_write,
8218 	},
8219 	{
8220 		.name = "rt_period_us",
8221 		.read_u64 = cpu_rt_period_read_uint,
8222 		.write_u64 = cpu_rt_period_write_uint,
8223 	},
8224 #endif
8225 	{ }	/* terminate */
8226 };
8227 
8228 struct cgroup_subsys cpu_cgrp_subsys = {
8229 	.css_alloc	= cpu_cgroup_css_alloc,
8230 	.css_free	= cpu_cgroup_css_free,
8231 	.css_online	= cpu_cgroup_css_online,
8232 	.css_offline	= cpu_cgroup_css_offline,
8233 	.fork		= cpu_cgroup_fork,
8234 	.can_attach	= cpu_cgroup_can_attach,
8235 	.attach		= cpu_cgroup_attach,
8236 	.exit		= cpu_cgroup_exit,
8237 	.legacy_cftypes	= cpu_files,
8238 	.early_init	= 1,
8239 };
8240 
8241 #endif	/* CONFIG_CGROUP_SCHED */
8242 
8243 void dump_cpu_task(int cpu)
8244 {
8245 	pr_info("Task dump for CPU %d:\n", cpu);
8246 	sched_show_task(cpu_curr(cpu));
8247 }
8248