1 /* 2 * kernel/sched/core.c 3 * 4 * Kernel scheduler and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 * 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 9 * make semaphores SMP safe 10 * 1998-11-19 Implemented schedule_timeout() and related stuff 11 * by Andrea Arcangeli 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 13 * hybrid priority-list and round-robin design with 14 * an array-switch method of distributing timeslices 15 * and per-CPU runqueues. Cleanups and useful suggestions 16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 17 * 2003-09-03 Interactivity tuning by Con Kolivas. 18 * 2004-04-02 Scheduler domains code by Nick Piggin 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 20 * fair scheduling design by Con Kolivas. 21 * 2007-05-05 Load balancing (smp-nice) and other improvements 22 * by Peter Williams 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 26 * Thomas Gleixner, Mike Kravetz 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/nmi.h> 32 #include <linux/init.h> 33 #include <linux/uaccess.h> 34 #include <linux/highmem.h> 35 #include <asm/mmu_context.h> 36 #include <linux/interrupt.h> 37 #include <linux/capability.h> 38 #include <linux/completion.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/debug_locks.h> 41 #include <linux/perf_event.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/profile.h> 45 #include <linux/freezer.h> 46 #include <linux/vmalloc.h> 47 #include <linux/blkdev.h> 48 #include <linux/delay.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/smp.h> 51 #include <linux/threads.h> 52 #include <linux/timer.h> 53 #include <linux/rcupdate.h> 54 #include <linux/cpu.h> 55 #include <linux/cpuset.h> 56 #include <linux/percpu.h> 57 #include <linux/proc_fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/sysctl.h> 60 #include <linux/syscalls.h> 61 #include <linux/times.h> 62 #include <linux/tsacct_kern.h> 63 #include <linux/kprobes.h> 64 #include <linux/delayacct.h> 65 #include <linux/unistd.h> 66 #include <linux/pagemap.h> 67 #include <linux/hrtimer.h> 68 #include <linux/tick.h> 69 #include <linux/debugfs.h> 70 #include <linux/ctype.h> 71 #include <linux/ftrace.h> 72 #include <linux/slab.h> 73 #include <linux/init_task.h> 74 #include <linux/binfmts.h> 75 #include <linux/context_tracking.h> 76 #include <linux/compiler.h> 77 78 #include <asm/switch_to.h> 79 #include <asm/tlb.h> 80 #include <asm/irq_regs.h> 81 #include <asm/mutex.h> 82 #ifdef CONFIG_PARAVIRT 83 #include <asm/paravirt.h> 84 #endif 85 86 #include "sched.h" 87 #include "../workqueue_internal.h" 88 #include "../smpboot.h" 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/sched.h> 92 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 94 { 95 unsigned long delta; 96 ktime_t soft, hard, now; 97 98 for (;;) { 99 if (hrtimer_active(period_timer)) 100 break; 101 102 now = hrtimer_cb_get_time(period_timer); 103 hrtimer_forward(period_timer, now, period); 104 105 soft = hrtimer_get_softexpires(period_timer); 106 hard = hrtimer_get_expires(period_timer); 107 delta = ktime_to_ns(ktime_sub(hard, soft)); 108 __hrtimer_start_range_ns(period_timer, soft, delta, 109 HRTIMER_MODE_ABS_PINNED, 0); 110 } 111 } 112 113 DEFINE_MUTEX(sched_domains_mutex); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 static void update_rq_clock_task(struct rq *rq, s64 delta); 117 118 void update_rq_clock(struct rq *rq) 119 { 120 s64 delta; 121 122 if (rq->skip_clock_update > 0) 123 return; 124 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 126 if (delta < 0) 127 return; 128 rq->clock += delta; 129 update_rq_clock_task(rq, delta); 130 } 131 132 /* 133 * Debugging: various feature bits 134 */ 135 136 #define SCHED_FEAT(name, enabled) \ 137 (1UL << __SCHED_FEAT_##name) * enabled | 138 139 const_debug unsigned int sysctl_sched_features = 140 #include "features.h" 141 0; 142 143 #undef SCHED_FEAT 144 145 #ifdef CONFIG_SCHED_DEBUG 146 #define SCHED_FEAT(name, enabled) \ 147 #name , 148 149 static const char * const sched_feat_names[] = { 150 #include "features.h" 151 }; 152 153 #undef SCHED_FEAT 154 155 static int sched_feat_show(struct seq_file *m, void *v) 156 { 157 int i; 158 159 for (i = 0; i < __SCHED_FEAT_NR; i++) { 160 if (!(sysctl_sched_features & (1UL << i))) 161 seq_puts(m, "NO_"); 162 seq_printf(m, "%s ", sched_feat_names[i]); 163 } 164 seq_puts(m, "\n"); 165 166 return 0; 167 } 168 169 #ifdef HAVE_JUMP_LABEL 170 171 #define jump_label_key__true STATIC_KEY_INIT_TRUE 172 #define jump_label_key__false STATIC_KEY_INIT_FALSE 173 174 #define SCHED_FEAT(name, enabled) \ 175 jump_label_key__##enabled , 176 177 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 178 #include "features.h" 179 }; 180 181 #undef SCHED_FEAT 182 183 static void sched_feat_disable(int i) 184 { 185 if (static_key_enabled(&sched_feat_keys[i])) 186 static_key_slow_dec(&sched_feat_keys[i]); 187 } 188 189 static void sched_feat_enable(int i) 190 { 191 if (!static_key_enabled(&sched_feat_keys[i])) 192 static_key_slow_inc(&sched_feat_keys[i]); 193 } 194 #else 195 static void sched_feat_disable(int i) { }; 196 static void sched_feat_enable(int i) { }; 197 #endif /* HAVE_JUMP_LABEL */ 198 199 static int sched_feat_set(char *cmp) 200 { 201 int i; 202 int neg = 0; 203 204 if (strncmp(cmp, "NO_", 3) == 0) { 205 neg = 1; 206 cmp += 3; 207 } 208 209 for (i = 0; i < __SCHED_FEAT_NR; i++) { 210 if (strcmp(cmp, sched_feat_names[i]) == 0) { 211 if (neg) { 212 sysctl_sched_features &= ~(1UL << i); 213 sched_feat_disable(i); 214 } else { 215 sysctl_sched_features |= (1UL << i); 216 sched_feat_enable(i); 217 } 218 break; 219 } 220 } 221 222 return i; 223 } 224 225 static ssize_t 226 sched_feat_write(struct file *filp, const char __user *ubuf, 227 size_t cnt, loff_t *ppos) 228 { 229 char buf[64]; 230 char *cmp; 231 int i; 232 struct inode *inode; 233 234 if (cnt > 63) 235 cnt = 63; 236 237 if (copy_from_user(&buf, ubuf, cnt)) 238 return -EFAULT; 239 240 buf[cnt] = 0; 241 cmp = strstrip(buf); 242 243 /* Ensure the static_key remains in a consistent state */ 244 inode = file_inode(filp); 245 mutex_lock(&inode->i_mutex); 246 i = sched_feat_set(cmp); 247 mutex_unlock(&inode->i_mutex); 248 if (i == __SCHED_FEAT_NR) 249 return -EINVAL; 250 251 *ppos += cnt; 252 253 return cnt; 254 } 255 256 static int sched_feat_open(struct inode *inode, struct file *filp) 257 { 258 return single_open(filp, sched_feat_show, NULL); 259 } 260 261 static const struct file_operations sched_feat_fops = { 262 .open = sched_feat_open, 263 .write = sched_feat_write, 264 .read = seq_read, 265 .llseek = seq_lseek, 266 .release = single_release, 267 }; 268 269 static __init int sched_init_debug(void) 270 { 271 debugfs_create_file("sched_features", 0644, NULL, NULL, 272 &sched_feat_fops); 273 274 return 0; 275 } 276 late_initcall(sched_init_debug); 277 #endif /* CONFIG_SCHED_DEBUG */ 278 279 /* 280 * Number of tasks to iterate in a single balance run. 281 * Limited because this is done with IRQs disabled. 282 */ 283 const_debug unsigned int sysctl_sched_nr_migrate = 32; 284 285 /* 286 * period over which we average the RT time consumption, measured 287 * in ms. 288 * 289 * default: 1s 290 */ 291 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 292 293 /* 294 * period over which we measure -rt task cpu usage in us. 295 * default: 1s 296 */ 297 unsigned int sysctl_sched_rt_period = 1000000; 298 299 __read_mostly int scheduler_running; 300 301 /* 302 * part of the period that we allow rt tasks to run in us. 303 * default: 0.95s 304 */ 305 int sysctl_sched_rt_runtime = 950000; 306 307 /* 308 * __task_rq_lock - lock the rq @p resides on. 309 */ 310 static inline struct rq *__task_rq_lock(struct task_struct *p) 311 __acquires(rq->lock) 312 { 313 struct rq *rq; 314 315 lockdep_assert_held(&p->pi_lock); 316 317 for (;;) { 318 rq = task_rq(p); 319 raw_spin_lock(&rq->lock); 320 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 321 return rq; 322 raw_spin_unlock(&rq->lock); 323 324 while (unlikely(task_on_rq_migrating(p))) 325 cpu_relax(); 326 } 327 } 328 329 /* 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 331 */ 332 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 333 __acquires(p->pi_lock) 334 __acquires(rq->lock) 335 { 336 struct rq *rq; 337 338 for (;;) { 339 raw_spin_lock_irqsave(&p->pi_lock, *flags); 340 rq = task_rq(p); 341 raw_spin_lock(&rq->lock); 342 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) 343 return rq; 344 raw_spin_unlock(&rq->lock); 345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 346 347 while (unlikely(task_on_rq_migrating(p))) 348 cpu_relax(); 349 } 350 } 351 352 static void __task_rq_unlock(struct rq *rq) 353 __releases(rq->lock) 354 { 355 raw_spin_unlock(&rq->lock); 356 } 357 358 static inline void 359 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 360 __releases(rq->lock) 361 __releases(p->pi_lock) 362 { 363 raw_spin_unlock(&rq->lock); 364 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 365 } 366 367 /* 368 * this_rq_lock - lock this runqueue and disable interrupts. 369 */ 370 static struct rq *this_rq_lock(void) 371 __acquires(rq->lock) 372 { 373 struct rq *rq; 374 375 local_irq_disable(); 376 rq = this_rq(); 377 raw_spin_lock(&rq->lock); 378 379 return rq; 380 } 381 382 #ifdef CONFIG_SCHED_HRTICK 383 /* 384 * Use HR-timers to deliver accurate preemption points. 385 */ 386 387 static void hrtick_clear(struct rq *rq) 388 { 389 if (hrtimer_active(&rq->hrtick_timer)) 390 hrtimer_cancel(&rq->hrtick_timer); 391 } 392 393 /* 394 * High-resolution timer tick. 395 * Runs from hardirq context with interrupts disabled. 396 */ 397 static enum hrtimer_restart hrtick(struct hrtimer *timer) 398 { 399 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 400 401 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 402 403 raw_spin_lock(&rq->lock); 404 update_rq_clock(rq); 405 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 406 raw_spin_unlock(&rq->lock); 407 408 return HRTIMER_NORESTART; 409 } 410 411 #ifdef CONFIG_SMP 412 413 static int __hrtick_restart(struct rq *rq) 414 { 415 struct hrtimer *timer = &rq->hrtick_timer; 416 ktime_t time = hrtimer_get_softexpires(timer); 417 418 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 419 } 420 421 /* 422 * called from hardirq (IPI) context 423 */ 424 static void __hrtick_start(void *arg) 425 { 426 struct rq *rq = arg; 427 428 raw_spin_lock(&rq->lock); 429 __hrtick_restart(rq); 430 rq->hrtick_csd_pending = 0; 431 raw_spin_unlock(&rq->lock); 432 } 433 434 /* 435 * Called to set the hrtick timer state. 436 * 437 * called with rq->lock held and irqs disabled 438 */ 439 void hrtick_start(struct rq *rq, u64 delay) 440 { 441 struct hrtimer *timer = &rq->hrtick_timer; 442 ktime_t time; 443 s64 delta; 444 445 /* 446 * Don't schedule slices shorter than 10000ns, that just 447 * doesn't make sense and can cause timer DoS. 448 */ 449 delta = max_t(s64, delay, 10000LL); 450 time = ktime_add_ns(timer->base->get_time(), delta); 451 452 hrtimer_set_expires(timer, time); 453 454 if (rq == this_rq()) { 455 __hrtick_restart(rq); 456 } else if (!rq->hrtick_csd_pending) { 457 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 458 rq->hrtick_csd_pending = 1; 459 } 460 } 461 462 static int 463 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 464 { 465 int cpu = (int)(long)hcpu; 466 467 switch (action) { 468 case CPU_UP_CANCELED: 469 case CPU_UP_CANCELED_FROZEN: 470 case CPU_DOWN_PREPARE: 471 case CPU_DOWN_PREPARE_FROZEN: 472 case CPU_DEAD: 473 case CPU_DEAD_FROZEN: 474 hrtick_clear(cpu_rq(cpu)); 475 return NOTIFY_OK; 476 } 477 478 return NOTIFY_DONE; 479 } 480 481 static __init void init_hrtick(void) 482 { 483 hotcpu_notifier(hotplug_hrtick, 0); 484 } 485 #else 486 /* 487 * Called to set the hrtick timer state. 488 * 489 * called with rq->lock held and irqs disabled 490 */ 491 void hrtick_start(struct rq *rq, u64 delay) 492 { 493 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 494 HRTIMER_MODE_REL_PINNED, 0); 495 } 496 497 static inline void init_hrtick(void) 498 { 499 } 500 #endif /* CONFIG_SMP */ 501 502 static void init_rq_hrtick(struct rq *rq) 503 { 504 #ifdef CONFIG_SMP 505 rq->hrtick_csd_pending = 0; 506 507 rq->hrtick_csd.flags = 0; 508 rq->hrtick_csd.func = __hrtick_start; 509 rq->hrtick_csd.info = rq; 510 #endif 511 512 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 513 rq->hrtick_timer.function = hrtick; 514 } 515 #else /* CONFIG_SCHED_HRTICK */ 516 static inline void hrtick_clear(struct rq *rq) 517 { 518 } 519 520 static inline void init_rq_hrtick(struct rq *rq) 521 { 522 } 523 524 static inline void init_hrtick(void) 525 { 526 } 527 #endif /* CONFIG_SCHED_HRTICK */ 528 529 /* 530 * cmpxchg based fetch_or, macro so it works for different integer types 531 */ 532 #define fetch_or(ptr, val) \ 533 ({ typeof(*(ptr)) __old, __val = *(ptr); \ 534 for (;;) { \ 535 __old = cmpxchg((ptr), __val, __val | (val)); \ 536 if (__old == __val) \ 537 break; \ 538 __val = __old; \ 539 } \ 540 __old; \ 541 }) 542 543 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 544 /* 545 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 546 * this avoids any races wrt polling state changes and thereby avoids 547 * spurious IPIs. 548 */ 549 static bool set_nr_and_not_polling(struct task_struct *p) 550 { 551 struct thread_info *ti = task_thread_info(p); 552 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 553 } 554 555 /* 556 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 557 * 558 * If this returns true, then the idle task promises to call 559 * sched_ttwu_pending() and reschedule soon. 560 */ 561 static bool set_nr_if_polling(struct task_struct *p) 562 { 563 struct thread_info *ti = task_thread_info(p); 564 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags); 565 566 for (;;) { 567 if (!(val & _TIF_POLLING_NRFLAG)) 568 return false; 569 if (val & _TIF_NEED_RESCHED) 570 return true; 571 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 572 if (old == val) 573 break; 574 val = old; 575 } 576 return true; 577 } 578 579 #else 580 static bool set_nr_and_not_polling(struct task_struct *p) 581 { 582 set_tsk_need_resched(p); 583 return true; 584 } 585 586 #ifdef CONFIG_SMP 587 static bool set_nr_if_polling(struct task_struct *p) 588 { 589 return false; 590 } 591 #endif 592 #endif 593 594 /* 595 * resched_curr - mark rq's current task 'to be rescheduled now'. 596 * 597 * On UP this means the setting of the need_resched flag, on SMP it 598 * might also involve a cross-CPU call to trigger the scheduler on 599 * the target CPU. 600 */ 601 void resched_curr(struct rq *rq) 602 { 603 struct task_struct *curr = rq->curr; 604 int cpu; 605 606 lockdep_assert_held(&rq->lock); 607 608 if (test_tsk_need_resched(curr)) 609 return; 610 611 cpu = cpu_of(rq); 612 613 if (cpu == smp_processor_id()) { 614 set_tsk_need_resched(curr); 615 set_preempt_need_resched(); 616 return; 617 } 618 619 if (set_nr_and_not_polling(curr)) 620 smp_send_reschedule(cpu); 621 else 622 trace_sched_wake_idle_without_ipi(cpu); 623 } 624 625 void resched_cpu(int cpu) 626 { 627 struct rq *rq = cpu_rq(cpu); 628 unsigned long flags; 629 630 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 631 return; 632 resched_curr(rq); 633 raw_spin_unlock_irqrestore(&rq->lock, flags); 634 } 635 636 #ifdef CONFIG_SMP 637 #ifdef CONFIG_NO_HZ_COMMON 638 /* 639 * In the semi idle case, use the nearest busy cpu for migrating timers 640 * from an idle cpu. This is good for power-savings. 641 * 642 * We don't do similar optimization for completely idle system, as 643 * selecting an idle cpu will add more delays to the timers than intended 644 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 645 */ 646 int get_nohz_timer_target(int pinned) 647 { 648 int cpu = smp_processor_id(); 649 int i; 650 struct sched_domain *sd; 651 652 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 653 return cpu; 654 655 rcu_read_lock(); 656 for_each_domain(cpu, sd) { 657 for_each_cpu(i, sched_domain_span(sd)) { 658 if (!idle_cpu(i)) { 659 cpu = i; 660 goto unlock; 661 } 662 } 663 } 664 unlock: 665 rcu_read_unlock(); 666 return cpu; 667 } 668 /* 669 * When add_timer_on() enqueues a timer into the timer wheel of an 670 * idle CPU then this timer might expire before the next timer event 671 * which is scheduled to wake up that CPU. In case of a completely 672 * idle system the next event might even be infinite time into the 673 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 674 * leaves the inner idle loop so the newly added timer is taken into 675 * account when the CPU goes back to idle and evaluates the timer 676 * wheel for the next timer event. 677 */ 678 static void wake_up_idle_cpu(int cpu) 679 { 680 struct rq *rq = cpu_rq(cpu); 681 682 if (cpu == smp_processor_id()) 683 return; 684 685 if (set_nr_and_not_polling(rq->idle)) 686 smp_send_reschedule(cpu); 687 else 688 trace_sched_wake_idle_without_ipi(cpu); 689 } 690 691 static bool wake_up_full_nohz_cpu(int cpu) 692 { 693 /* 694 * We just need the target to call irq_exit() and re-evaluate 695 * the next tick. The nohz full kick at least implies that. 696 * If needed we can still optimize that later with an 697 * empty IRQ. 698 */ 699 if (tick_nohz_full_cpu(cpu)) { 700 if (cpu != smp_processor_id() || 701 tick_nohz_tick_stopped()) 702 tick_nohz_full_kick_cpu(cpu); 703 return true; 704 } 705 706 return false; 707 } 708 709 void wake_up_nohz_cpu(int cpu) 710 { 711 if (!wake_up_full_nohz_cpu(cpu)) 712 wake_up_idle_cpu(cpu); 713 } 714 715 static inline bool got_nohz_idle_kick(void) 716 { 717 int cpu = smp_processor_id(); 718 719 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 720 return false; 721 722 if (idle_cpu(cpu) && !need_resched()) 723 return true; 724 725 /* 726 * We can't run Idle Load Balance on this CPU for this time so we 727 * cancel it and clear NOHZ_BALANCE_KICK 728 */ 729 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 730 return false; 731 } 732 733 #else /* CONFIG_NO_HZ_COMMON */ 734 735 static inline bool got_nohz_idle_kick(void) 736 { 737 return false; 738 } 739 740 #endif /* CONFIG_NO_HZ_COMMON */ 741 742 #ifdef CONFIG_NO_HZ_FULL 743 bool sched_can_stop_tick(void) 744 { 745 /* 746 * More than one running task need preemption. 747 * nr_running update is assumed to be visible 748 * after IPI is sent from wakers. 749 */ 750 if (this_rq()->nr_running > 1) 751 return false; 752 753 return true; 754 } 755 #endif /* CONFIG_NO_HZ_FULL */ 756 757 void sched_avg_update(struct rq *rq) 758 { 759 s64 period = sched_avg_period(); 760 761 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 762 /* 763 * Inline assembly required to prevent the compiler 764 * optimising this loop into a divmod call. 765 * See __iter_div_u64_rem() for another example of this. 766 */ 767 asm("" : "+rm" (rq->age_stamp)); 768 rq->age_stamp += period; 769 rq->rt_avg /= 2; 770 } 771 } 772 773 #endif /* CONFIG_SMP */ 774 775 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 776 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 777 /* 778 * Iterate task_group tree rooted at *from, calling @down when first entering a 779 * node and @up when leaving it for the final time. 780 * 781 * Caller must hold rcu_lock or sufficient equivalent. 782 */ 783 int walk_tg_tree_from(struct task_group *from, 784 tg_visitor down, tg_visitor up, void *data) 785 { 786 struct task_group *parent, *child; 787 int ret; 788 789 parent = from; 790 791 down: 792 ret = (*down)(parent, data); 793 if (ret) 794 goto out; 795 list_for_each_entry_rcu(child, &parent->children, siblings) { 796 parent = child; 797 goto down; 798 799 up: 800 continue; 801 } 802 ret = (*up)(parent, data); 803 if (ret || parent == from) 804 goto out; 805 806 child = parent; 807 parent = parent->parent; 808 if (parent) 809 goto up; 810 out: 811 return ret; 812 } 813 814 int tg_nop(struct task_group *tg, void *data) 815 { 816 return 0; 817 } 818 #endif 819 820 static void set_load_weight(struct task_struct *p) 821 { 822 int prio = p->static_prio - MAX_RT_PRIO; 823 struct load_weight *load = &p->se.load; 824 825 /* 826 * SCHED_IDLE tasks get minimal weight: 827 */ 828 if (p->policy == SCHED_IDLE) { 829 load->weight = scale_load(WEIGHT_IDLEPRIO); 830 load->inv_weight = WMULT_IDLEPRIO; 831 return; 832 } 833 834 load->weight = scale_load(prio_to_weight[prio]); 835 load->inv_weight = prio_to_wmult[prio]; 836 } 837 838 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 839 { 840 update_rq_clock(rq); 841 sched_info_queued(rq, p); 842 p->sched_class->enqueue_task(rq, p, flags); 843 } 844 845 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 846 { 847 update_rq_clock(rq); 848 sched_info_dequeued(rq, p); 849 p->sched_class->dequeue_task(rq, p, flags); 850 } 851 852 void activate_task(struct rq *rq, struct task_struct *p, int flags) 853 { 854 if (task_contributes_to_load(p)) 855 rq->nr_uninterruptible--; 856 857 enqueue_task(rq, p, flags); 858 } 859 860 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 861 { 862 if (task_contributes_to_load(p)) 863 rq->nr_uninterruptible++; 864 865 dequeue_task(rq, p, flags); 866 } 867 868 static void update_rq_clock_task(struct rq *rq, s64 delta) 869 { 870 /* 871 * In theory, the compile should just see 0 here, and optimize out the call 872 * to sched_rt_avg_update. But I don't trust it... 873 */ 874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 875 s64 steal = 0, irq_delta = 0; 876 #endif 877 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 878 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 879 880 /* 881 * Since irq_time is only updated on {soft,}irq_exit, we might run into 882 * this case when a previous update_rq_clock() happened inside a 883 * {soft,}irq region. 884 * 885 * When this happens, we stop ->clock_task and only update the 886 * prev_irq_time stamp to account for the part that fit, so that a next 887 * update will consume the rest. This ensures ->clock_task is 888 * monotonic. 889 * 890 * It does however cause some slight miss-attribution of {soft,}irq 891 * time, a more accurate solution would be to update the irq_time using 892 * the current rq->clock timestamp, except that would require using 893 * atomic ops. 894 */ 895 if (irq_delta > delta) 896 irq_delta = delta; 897 898 rq->prev_irq_time += irq_delta; 899 delta -= irq_delta; 900 #endif 901 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 902 if (static_key_false((¶virt_steal_rq_enabled))) { 903 steal = paravirt_steal_clock(cpu_of(rq)); 904 steal -= rq->prev_steal_time_rq; 905 906 if (unlikely(steal > delta)) 907 steal = delta; 908 909 rq->prev_steal_time_rq += steal; 910 delta -= steal; 911 } 912 #endif 913 914 rq->clock_task += delta; 915 916 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 917 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 918 sched_rt_avg_update(rq, irq_delta + steal); 919 #endif 920 } 921 922 void sched_set_stop_task(int cpu, struct task_struct *stop) 923 { 924 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 925 struct task_struct *old_stop = cpu_rq(cpu)->stop; 926 927 if (stop) { 928 /* 929 * Make it appear like a SCHED_FIFO task, its something 930 * userspace knows about and won't get confused about. 931 * 932 * Also, it will make PI more or less work without too 933 * much confusion -- but then, stop work should not 934 * rely on PI working anyway. 935 */ 936 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 937 938 stop->sched_class = &stop_sched_class; 939 } 940 941 cpu_rq(cpu)->stop = stop; 942 943 if (old_stop) { 944 /* 945 * Reset it back to a normal scheduling class so that 946 * it can die in pieces. 947 */ 948 old_stop->sched_class = &rt_sched_class; 949 } 950 } 951 952 /* 953 * __normal_prio - return the priority that is based on the static prio 954 */ 955 static inline int __normal_prio(struct task_struct *p) 956 { 957 return p->static_prio; 958 } 959 960 /* 961 * Calculate the expected normal priority: i.e. priority 962 * without taking RT-inheritance into account. Might be 963 * boosted by interactivity modifiers. Changes upon fork, 964 * setprio syscalls, and whenever the interactivity 965 * estimator recalculates. 966 */ 967 static inline int normal_prio(struct task_struct *p) 968 { 969 int prio; 970 971 if (task_has_dl_policy(p)) 972 prio = MAX_DL_PRIO-1; 973 else if (task_has_rt_policy(p)) 974 prio = MAX_RT_PRIO-1 - p->rt_priority; 975 else 976 prio = __normal_prio(p); 977 return prio; 978 } 979 980 /* 981 * Calculate the current priority, i.e. the priority 982 * taken into account by the scheduler. This value might 983 * be boosted by RT tasks, or might be boosted by 984 * interactivity modifiers. Will be RT if the task got 985 * RT-boosted. If not then it returns p->normal_prio. 986 */ 987 static int effective_prio(struct task_struct *p) 988 { 989 p->normal_prio = normal_prio(p); 990 /* 991 * If we are RT tasks or we were boosted to RT priority, 992 * keep the priority unchanged. Otherwise, update priority 993 * to the normal priority: 994 */ 995 if (!rt_prio(p->prio)) 996 return p->normal_prio; 997 return p->prio; 998 } 999 1000 /** 1001 * task_curr - is this task currently executing on a CPU? 1002 * @p: the task in question. 1003 * 1004 * Return: 1 if the task is currently executing. 0 otherwise. 1005 */ 1006 inline int task_curr(const struct task_struct *p) 1007 { 1008 return cpu_curr(task_cpu(p)) == p; 1009 } 1010 1011 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1012 const struct sched_class *prev_class, 1013 int oldprio) 1014 { 1015 if (prev_class != p->sched_class) { 1016 if (prev_class->switched_from) 1017 prev_class->switched_from(rq, p); 1018 p->sched_class->switched_to(rq, p); 1019 } else if (oldprio != p->prio || dl_task(p)) 1020 p->sched_class->prio_changed(rq, p, oldprio); 1021 } 1022 1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1024 { 1025 const struct sched_class *class; 1026 1027 if (p->sched_class == rq->curr->sched_class) { 1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1029 } else { 1030 for_each_class(class) { 1031 if (class == rq->curr->sched_class) 1032 break; 1033 if (class == p->sched_class) { 1034 resched_curr(rq); 1035 break; 1036 } 1037 } 1038 } 1039 1040 /* 1041 * A queue event has occurred, and we're going to schedule. In 1042 * this case, we can save a useless back to back clock update. 1043 */ 1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1045 rq->skip_clock_update = 1; 1046 } 1047 1048 #ifdef CONFIG_SMP 1049 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1050 { 1051 #ifdef CONFIG_SCHED_DEBUG 1052 /* 1053 * We should never call set_task_cpu() on a blocked task, 1054 * ttwu() will sort out the placement. 1055 */ 1056 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1057 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 1058 1059 #ifdef CONFIG_LOCKDEP 1060 /* 1061 * The caller should hold either p->pi_lock or rq->lock, when changing 1062 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1063 * 1064 * sched_move_task() holds both and thus holding either pins the cgroup, 1065 * see task_group(). 1066 * 1067 * Furthermore, all task_rq users should acquire both locks, see 1068 * task_rq_lock(). 1069 */ 1070 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1071 lockdep_is_held(&task_rq(p)->lock))); 1072 #endif 1073 #endif 1074 1075 trace_sched_migrate_task(p, new_cpu); 1076 1077 if (task_cpu(p) != new_cpu) { 1078 if (p->sched_class->migrate_task_rq) 1079 p->sched_class->migrate_task_rq(p, new_cpu); 1080 p->se.nr_migrations++; 1081 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1082 } 1083 1084 __set_task_cpu(p, new_cpu); 1085 } 1086 1087 static void __migrate_swap_task(struct task_struct *p, int cpu) 1088 { 1089 if (task_on_rq_queued(p)) { 1090 struct rq *src_rq, *dst_rq; 1091 1092 src_rq = task_rq(p); 1093 dst_rq = cpu_rq(cpu); 1094 1095 deactivate_task(src_rq, p, 0); 1096 set_task_cpu(p, cpu); 1097 activate_task(dst_rq, p, 0); 1098 check_preempt_curr(dst_rq, p, 0); 1099 } else { 1100 /* 1101 * Task isn't running anymore; make it appear like we migrated 1102 * it before it went to sleep. This means on wakeup we make the 1103 * previous cpu our targer instead of where it really is. 1104 */ 1105 p->wake_cpu = cpu; 1106 } 1107 } 1108 1109 struct migration_swap_arg { 1110 struct task_struct *src_task, *dst_task; 1111 int src_cpu, dst_cpu; 1112 }; 1113 1114 static int migrate_swap_stop(void *data) 1115 { 1116 struct migration_swap_arg *arg = data; 1117 struct rq *src_rq, *dst_rq; 1118 int ret = -EAGAIN; 1119 1120 src_rq = cpu_rq(arg->src_cpu); 1121 dst_rq = cpu_rq(arg->dst_cpu); 1122 1123 double_raw_lock(&arg->src_task->pi_lock, 1124 &arg->dst_task->pi_lock); 1125 double_rq_lock(src_rq, dst_rq); 1126 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1127 goto unlock; 1128 1129 if (task_cpu(arg->src_task) != arg->src_cpu) 1130 goto unlock; 1131 1132 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1133 goto unlock; 1134 1135 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1136 goto unlock; 1137 1138 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1139 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1140 1141 ret = 0; 1142 1143 unlock: 1144 double_rq_unlock(src_rq, dst_rq); 1145 raw_spin_unlock(&arg->dst_task->pi_lock); 1146 raw_spin_unlock(&arg->src_task->pi_lock); 1147 1148 return ret; 1149 } 1150 1151 /* 1152 * Cross migrate two tasks 1153 */ 1154 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1155 { 1156 struct migration_swap_arg arg; 1157 int ret = -EINVAL; 1158 1159 arg = (struct migration_swap_arg){ 1160 .src_task = cur, 1161 .src_cpu = task_cpu(cur), 1162 .dst_task = p, 1163 .dst_cpu = task_cpu(p), 1164 }; 1165 1166 if (arg.src_cpu == arg.dst_cpu) 1167 goto out; 1168 1169 /* 1170 * These three tests are all lockless; this is OK since all of them 1171 * will be re-checked with proper locks held further down the line. 1172 */ 1173 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1174 goto out; 1175 1176 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1177 goto out; 1178 1179 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1180 goto out; 1181 1182 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1183 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1184 1185 out: 1186 return ret; 1187 } 1188 1189 struct migration_arg { 1190 struct task_struct *task; 1191 int dest_cpu; 1192 }; 1193 1194 static int migration_cpu_stop(void *data); 1195 1196 /* 1197 * wait_task_inactive - wait for a thread to unschedule. 1198 * 1199 * If @match_state is nonzero, it's the @p->state value just checked and 1200 * not expected to change. If it changes, i.e. @p might have woken up, 1201 * then return zero. When we succeed in waiting for @p to be off its CPU, 1202 * we return a positive number (its total switch count). If a second call 1203 * a short while later returns the same number, the caller can be sure that 1204 * @p has remained unscheduled the whole time. 1205 * 1206 * The caller must ensure that the task *will* unschedule sometime soon, 1207 * else this function might spin for a *long* time. This function can't 1208 * be called with interrupts off, or it may introduce deadlock with 1209 * smp_call_function() if an IPI is sent by the same process we are 1210 * waiting to become inactive. 1211 */ 1212 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1213 { 1214 unsigned long flags; 1215 int running, queued; 1216 unsigned long ncsw; 1217 struct rq *rq; 1218 1219 for (;;) { 1220 /* 1221 * We do the initial early heuristics without holding 1222 * any task-queue locks at all. We'll only try to get 1223 * the runqueue lock when things look like they will 1224 * work out! 1225 */ 1226 rq = task_rq(p); 1227 1228 /* 1229 * If the task is actively running on another CPU 1230 * still, just relax and busy-wait without holding 1231 * any locks. 1232 * 1233 * NOTE! Since we don't hold any locks, it's not 1234 * even sure that "rq" stays as the right runqueue! 1235 * But we don't care, since "task_running()" will 1236 * return false if the runqueue has changed and p 1237 * is actually now running somewhere else! 1238 */ 1239 while (task_running(rq, p)) { 1240 if (match_state && unlikely(p->state != match_state)) 1241 return 0; 1242 cpu_relax(); 1243 } 1244 1245 /* 1246 * Ok, time to look more closely! We need the rq 1247 * lock now, to be *sure*. If we're wrong, we'll 1248 * just go back and repeat. 1249 */ 1250 rq = task_rq_lock(p, &flags); 1251 trace_sched_wait_task(p); 1252 running = task_running(rq, p); 1253 queued = task_on_rq_queued(p); 1254 ncsw = 0; 1255 if (!match_state || p->state == match_state) 1256 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1257 task_rq_unlock(rq, p, &flags); 1258 1259 /* 1260 * If it changed from the expected state, bail out now. 1261 */ 1262 if (unlikely(!ncsw)) 1263 break; 1264 1265 /* 1266 * Was it really running after all now that we 1267 * checked with the proper locks actually held? 1268 * 1269 * Oops. Go back and try again.. 1270 */ 1271 if (unlikely(running)) { 1272 cpu_relax(); 1273 continue; 1274 } 1275 1276 /* 1277 * It's not enough that it's not actively running, 1278 * it must be off the runqueue _entirely_, and not 1279 * preempted! 1280 * 1281 * So if it was still runnable (but just not actively 1282 * running right now), it's preempted, and we should 1283 * yield - it could be a while. 1284 */ 1285 if (unlikely(queued)) { 1286 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1287 1288 set_current_state(TASK_UNINTERRUPTIBLE); 1289 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1290 continue; 1291 } 1292 1293 /* 1294 * Ahh, all good. It wasn't running, and it wasn't 1295 * runnable, which means that it will never become 1296 * running in the future either. We're all done! 1297 */ 1298 break; 1299 } 1300 1301 return ncsw; 1302 } 1303 1304 /*** 1305 * kick_process - kick a running thread to enter/exit the kernel 1306 * @p: the to-be-kicked thread 1307 * 1308 * Cause a process which is running on another CPU to enter 1309 * kernel-mode, without any delay. (to get signals handled.) 1310 * 1311 * NOTE: this function doesn't have to take the runqueue lock, 1312 * because all it wants to ensure is that the remote task enters 1313 * the kernel. If the IPI races and the task has been migrated 1314 * to another CPU then no harm is done and the purpose has been 1315 * achieved as well. 1316 */ 1317 void kick_process(struct task_struct *p) 1318 { 1319 int cpu; 1320 1321 preempt_disable(); 1322 cpu = task_cpu(p); 1323 if ((cpu != smp_processor_id()) && task_curr(p)) 1324 smp_send_reschedule(cpu); 1325 preempt_enable(); 1326 } 1327 EXPORT_SYMBOL_GPL(kick_process); 1328 #endif /* CONFIG_SMP */ 1329 1330 #ifdef CONFIG_SMP 1331 /* 1332 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1333 */ 1334 static int select_fallback_rq(int cpu, struct task_struct *p) 1335 { 1336 int nid = cpu_to_node(cpu); 1337 const struct cpumask *nodemask = NULL; 1338 enum { cpuset, possible, fail } state = cpuset; 1339 int dest_cpu; 1340 1341 /* 1342 * If the node that the cpu is on has been offlined, cpu_to_node() 1343 * will return -1. There is no cpu on the node, and we should 1344 * select the cpu on the other node. 1345 */ 1346 if (nid != -1) { 1347 nodemask = cpumask_of_node(nid); 1348 1349 /* Look for allowed, online CPU in same node. */ 1350 for_each_cpu(dest_cpu, nodemask) { 1351 if (!cpu_online(dest_cpu)) 1352 continue; 1353 if (!cpu_active(dest_cpu)) 1354 continue; 1355 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1356 return dest_cpu; 1357 } 1358 } 1359 1360 for (;;) { 1361 /* Any allowed, online CPU? */ 1362 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1363 if (!cpu_online(dest_cpu)) 1364 continue; 1365 if (!cpu_active(dest_cpu)) 1366 continue; 1367 goto out; 1368 } 1369 1370 switch (state) { 1371 case cpuset: 1372 /* No more Mr. Nice Guy. */ 1373 cpuset_cpus_allowed_fallback(p); 1374 state = possible; 1375 break; 1376 1377 case possible: 1378 do_set_cpus_allowed(p, cpu_possible_mask); 1379 state = fail; 1380 break; 1381 1382 case fail: 1383 BUG(); 1384 break; 1385 } 1386 } 1387 1388 out: 1389 if (state != cpuset) { 1390 /* 1391 * Don't tell them about moving exiting tasks or 1392 * kernel threads (both mm NULL), since they never 1393 * leave kernel. 1394 */ 1395 if (p->mm && printk_ratelimit()) { 1396 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1397 task_pid_nr(p), p->comm, cpu); 1398 } 1399 } 1400 1401 return dest_cpu; 1402 } 1403 1404 /* 1405 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1406 */ 1407 static inline 1408 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1409 { 1410 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1411 1412 /* 1413 * In order not to call set_task_cpu() on a blocking task we need 1414 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1415 * cpu. 1416 * 1417 * Since this is common to all placement strategies, this lives here. 1418 * 1419 * [ this allows ->select_task() to simply return task_cpu(p) and 1420 * not worry about this generic constraint ] 1421 */ 1422 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1423 !cpu_online(cpu))) 1424 cpu = select_fallback_rq(task_cpu(p), p); 1425 1426 return cpu; 1427 } 1428 1429 static void update_avg(u64 *avg, u64 sample) 1430 { 1431 s64 diff = sample - *avg; 1432 *avg += diff >> 3; 1433 } 1434 #endif 1435 1436 static void 1437 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1438 { 1439 #ifdef CONFIG_SCHEDSTATS 1440 struct rq *rq = this_rq(); 1441 1442 #ifdef CONFIG_SMP 1443 int this_cpu = smp_processor_id(); 1444 1445 if (cpu == this_cpu) { 1446 schedstat_inc(rq, ttwu_local); 1447 schedstat_inc(p, se.statistics.nr_wakeups_local); 1448 } else { 1449 struct sched_domain *sd; 1450 1451 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1452 rcu_read_lock(); 1453 for_each_domain(this_cpu, sd) { 1454 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1455 schedstat_inc(sd, ttwu_wake_remote); 1456 break; 1457 } 1458 } 1459 rcu_read_unlock(); 1460 } 1461 1462 if (wake_flags & WF_MIGRATED) 1463 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1464 1465 #endif /* CONFIG_SMP */ 1466 1467 schedstat_inc(rq, ttwu_count); 1468 schedstat_inc(p, se.statistics.nr_wakeups); 1469 1470 if (wake_flags & WF_SYNC) 1471 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1472 1473 #endif /* CONFIG_SCHEDSTATS */ 1474 } 1475 1476 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1477 { 1478 activate_task(rq, p, en_flags); 1479 p->on_rq = TASK_ON_RQ_QUEUED; 1480 1481 /* if a worker is waking up, notify workqueue */ 1482 if (p->flags & PF_WQ_WORKER) 1483 wq_worker_waking_up(p, cpu_of(rq)); 1484 } 1485 1486 /* 1487 * Mark the task runnable and perform wakeup-preemption. 1488 */ 1489 static void 1490 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1491 { 1492 check_preempt_curr(rq, p, wake_flags); 1493 trace_sched_wakeup(p, true); 1494 1495 p->state = TASK_RUNNING; 1496 #ifdef CONFIG_SMP 1497 if (p->sched_class->task_woken) 1498 p->sched_class->task_woken(rq, p); 1499 1500 if (rq->idle_stamp) { 1501 u64 delta = rq_clock(rq) - rq->idle_stamp; 1502 u64 max = 2*rq->max_idle_balance_cost; 1503 1504 update_avg(&rq->avg_idle, delta); 1505 1506 if (rq->avg_idle > max) 1507 rq->avg_idle = max; 1508 1509 rq->idle_stamp = 0; 1510 } 1511 #endif 1512 } 1513 1514 static void 1515 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1516 { 1517 #ifdef CONFIG_SMP 1518 if (p->sched_contributes_to_load) 1519 rq->nr_uninterruptible--; 1520 #endif 1521 1522 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1523 ttwu_do_wakeup(rq, p, wake_flags); 1524 } 1525 1526 /* 1527 * Called in case the task @p isn't fully descheduled from its runqueue, 1528 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1529 * since all we need to do is flip p->state to TASK_RUNNING, since 1530 * the task is still ->on_rq. 1531 */ 1532 static int ttwu_remote(struct task_struct *p, int wake_flags) 1533 { 1534 struct rq *rq; 1535 int ret = 0; 1536 1537 rq = __task_rq_lock(p); 1538 if (task_on_rq_queued(p)) { 1539 /* check_preempt_curr() may use rq clock */ 1540 update_rq_clock(rq); 1541 ttwu_do_wakeup(rq, p, wake_flags); 1542 ret = 1; 1543 } 1544 __task_rq_unlock(rq); 1545 1546 return ret; 1547 } 1548 1549 #ifdef CONFIG_SMP 1550 void sched_ttwu_pending(void) 1551 { 1552 struct rq *rq = this_rq(); 1553 struct llist_node *llist = llist_del_all(&rq->wake_list); 1554 struct task_struct *p; 1555 unsigned long flags; 1556 1557 if (!llist) 1558 return; 1559 1560 raw_spin_lock_irqsave(&rq->lock, flags); 1561 1562 while (llist) { 1563 p = llist_entry(llist, struct task_struct, wake_entry); 1564 llist = llist_next(llist); 1565 ttwu_do_activate(rq, p, 0); 1566 } 1567 1568 raw_spin_unlock_irqrestore(&rq->lock, flags); 1569 } 1570 1571 void scheduler_ipi(void) 1572 { 1573 /* 1574 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1575 * TIF_NEED_RESCHED remotely (for the first time) will also send 1576 * this IPI. 1577 */ 1578 preempt_fold_need_resched(); 1579 1580 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1581 return; 1582 1583 /* 1584 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1585 * traditionally all their work was done from the interrupt return 1586 * path. Now that we actually do some work, we need to make sure 1587 * we do call them. 1588 * 1589 * Some archs already do call them, luckily irq_enter/exit nest 1590 * properly. 1591 * 1592 * Arguably we should visit all archs and update all handlers, 1593 * however a fair share of IPIs are still resched only so this would 1594 * somewhat pessimize the simple resched case. 1595 */ 1596 irq_enter(); 1597 sched_ttwu_pending(); 1598 1599 /* 1600 * Check if someone kicked us for doing the nohz idle load balance. 1601 */ 1602 if (unlikely(got_nohz_idle_kick())) { 1603 this_rq()->idle_balance = 1; 1604 raise_softirq_irqoff(SCHED_SOFTIRQ); 1605 } 1606 irq_exit(); 1607 } 1608 1609 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1610 { 1611 struct rq *rq = cpu_rq(cpu); 1612 1613 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1614 if (!set_nr_if_polling(rq->idle)) 1615 smp_send_reschedule(cpu); 1616 else 1617 trace_sched_wake_idle_without_ipi(cpu); 1618 } 1619 } 1620 1621 void wake_up_if_idle(int cpu) 1622 { 1623 struct rq *rq = cpu_rq(cpu); 1624 unsigned long flags; 1625 1626 if (!is_idle_task(rq->curr)) 1627 return; 1628 1629 if (set_nr_if_polling(rq->idle)) { 1630 trace_sched_wake_idle_without_ipi(cpu); 1631 } else { 1632 raw_spin_lock_irqsave(&rq->lock, flags); 1633 if (is_idle_task(rq->curr)) 1634 smp_send_reschedule(cpu); 1635 /* Else cpu is not in idle, do nothing here */ 1636 raw_spin_unlock_irqrestore(&rq->lock, flags); 1637 } 1638 } 1639 1640 bool cpus_share_cache(int this_cpu, int that_cpu) 1641 { 1642 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1643 } 1644 #endif /* CONFIG_SMP */ 1645 1646 static void ttwu_queue(struct task_struct *p, int cpu) 1647 { 1648 struct rq *rq = cpu_rq(cpu); 1649 1650 #if defined(CONFIG_SMP) 1651 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1652 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1653 ttwu_queue_remote(p, cpu); 1654 return; 1655 } 1656 #endif 1657 1658 raw_spin_lock(&rq->lock); 1659 ttwu_do_activate(rq, p, 0); 1660 raw_spin_unlock(&rq->lock); 1661 } 1662 1663 /** 1664 * try_to_wake_up - wake up a thread 1665 * @p: the thread to be awakened 1666 * @state: the mask of task states that can be woken 1667 * @wake_flags: wake modifier flags (WF_*) 1668 * 1669 * Put it on the run-queue if it's not already there. The "current" 1670 * thread is always on the run-queue (except when the actual 1671 * re-schedule is in progress), and as such you're allowed to do 1672 * the simpler "current->state = TASK_RUNNING" to mark yourself 1673 * runnable without the overhead of this. 1674 * 1675 * Return: %true if @p was woken up, %false if it was already running. 1676 * or @state didn't match @p's state. 1677 */ 1678 static int 1679 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1680 { 1681 unsigned long flags; 1682 int cpu, success = 0; 1683 1684 /* 1685 * If we are going to wake up a thread waiting for CONDITION we 1686 * need to ensure that CONDITION=1 done by the caller can not be 1687 * reordered with p->state check below. This pairs with mb() in 1688 * set_current_state() the waiting thread does. 1689 */ 1690 smp_mb__before_spinlock(); 1691 raw_spin_lock_irqsave(&p->pi_lock, flags); 1692 if (!(p->state & state)) 1693 goto out; 1694 1695 success = 1; /* we're going to change ->state */ 1696 cpu = task_cpu(p); 1697 1698 if (p->on_rq && ttwu_remote(p, wake_flags)) 1699 goto stat; 1700 1701 #ifdef CONFIG_SMP 1702 /* 1703 * If the owning (remote) cpu is still in the middle of schedule() with 1704 * this task as prev, wait until its done referencing the task. 1705 */ 1706 while (p->on_cpu) 1707 cpu_relax(); 1708 /* 1709 * Pairs with the smp_wmb() in finish_lock_switch(). 1710 */ 1711 smp_rmb(); 1712 1713 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1714 p->state = TASK_WAKING; 1715 1716 if (p->sched_class->task_waking) 1717 p->sched_class->task_waking(p); 1718 1719 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1720 if (task_cpu(p) != cpu) { 1721 wake_flags |= WF_MIGRATED; 1722 set_task_cpu(p, cpu); 1723 } 1724 #endif /* CONFIG_SMP */ 1725 1726 ttwu_queue(p, cpu); 1727 stat: 1728 ttwu_stat(p, cpu, wake_flags); 1729 out: 1730 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1731 1732 return success; 1733 } 1734 1735 /** 1736 * try_to_wake_up_local - try to wake up a local task with rq lock held 1737 * @p: the thread to be awakened 1738 * 1739 * Put @p on the run-queue if it's not already there. The caller must 1740 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1741 * the current task. 1742 */ 1743 static void try_to_wake_up_local(struct task_struct *p) 1744 { 1745 struct rq *rq = task_rq(p); 1746 1747 if (WARN_ON_ONCE(rq != this_rq()) || 1748 WARN_ON_ONCE(p == current)) 1749 return; 1750 1751 lockdep_assert_held(&rq->lock); 1752 1753 if (!raw_spin_trylock(&p->pi_lock)) { 1754 raw_spin_unlock(&rq->lock); 1755 raw_spin_lock(&p->pi_lock); 1756 raw_spin_lock(&rq->lock); 1757 } 1758 1759 if (!(p->state & TASK_NORMAL)) 1760 goto out; 1761 1762 if (!task_on_rq_queued(p)) 1763 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1764 1765 ttwu_do_wakeup(rq, p, 0); 1766 ttwu_stat(p, smp_processor_id(), 0); 1767 out: 1768 raw_spin_unlock(&p->pi_lock); 1769 } 1770 1771 /** 1772 * wake_up_process - Wake up a specific process 1773 * @p: The process to be woken up. 1774 * 1775 * Attempt to wake up the nominated process and move it to the set of runnable 1776 * processes. 1777 * 1778 * Return: 1 if the process was woken up, 0 if it was already running. 1779 * 1780 * It may be assumed that this function implies a write memory barrier before 1781 * changing the task state if and only if any tasks are woken up. 1782 */ 1783 int wake_up_process(struct task_struct *p) 1784 { 1785 WARN_ON(task_is_stopped_or_traced(p)); 1786 return try_to_wake_up(p, TASK_NORMAL, 0); 1787 } 1788 EXPORT_SYMBOL(wake_up_process); 1789 1790 int wake_up_state(struct task_struct *p, unsigned int state) 1791 { 1792 return try_to_wake_up(p, state, 0); 1793 } 1794 1795 /* 1796 * This function clears the sched_dl_entity static params. 1797 */ 1798 void __dl_clear_params(struct task_struct *p) 1799 { 1800 struct sched_dl_entity *dl_se = &p->dl; 1801 1802 dl_se->dl_runtime = 0; 1803 dl_se->dl_deadline = 0; 1804 dl_se->dl_period = 0; 1805 dl_se->flags = 0; 1806 dl_se->dl_bw = 0; 1807 } 1808 1809 /* 1810 * Perform scheduler related setup for a newly forked process p. 1811 * p is forked by current. 1812 * 1813 * __sched_fork() is basic setup used by init_idle() too: 1814 */ 1815 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1816 { 1817 p->on_rq = 0; 1818 1819 p->se.on_rq = 0; 1820 p->se.exec_start = 0; 1821 p->se.sum_exec_runtime = 0; 1822 p->se.prev_sum_exec_runtime = 0; 1823 p->se.nr_migrations = 0; 1824 p->se.vruntime = 0; 1825 INIT_LIST_HEAD(&p->se.group_node); 1826 1827 #ifdef CONFIG_SCHEDSTATS 1828 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1829 #endif 1830 1831 RB_CLEAR_NODE(&p->dl.rb_node); 1832 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1833 __dl_clear_params(p); 1834 1835 INIT_LIST_HEAD(&p->rt.run_list); 1836 1837 #ifdef CONFIG_PREEMPT_NOTIFIERS 1838 INIT_HLIST_HEAD(&p->preempt_notifiers); 1839 #endif 1840 1841 #ifdef CONFIG_NUMA_BALANCING 1842 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1843 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1844 p->mm->numa_scan_seq = 0; 1845 } 1846 1847 if (clone_flags & CLONE_VM) 1848 p->numa_preferred_nid = current->numa_preferred_nid; 1849 else 1850 p->numa_preferred_nid = -1; 1851 1852 p->node_stamp = 0ULL; 1853 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1854 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1855 p->numa_work.next = &p->numa_work; 1856 p->numa_faults_memory = NULL; 1857 p->numa_faults_buffer_memory = NULL; 1858 p->last_task_numa_placement = 0; 1859 p->last_sum_exec_runtime = 0; 1860 1861 INIT_LIST_HEAD(&p->numa_entry); 1862 p->numa_group = NULL; 1863 #endif /* CONFIG_NUMA_BALANCING */ 1864 } 1865 1866 #ifdef CONFIG_NUMA_BALANCING 1867 #ifdef CONFIG_SCHED_DEBUG 1868 void set_numabalancing_state(bool enabled) 1869 { 1870 if (enabled) 1871 sched_feat_set("NUMA"); 1872 else 1873 sched_feat_set("NO_NUMA"); 1874 } 1875 #else 1876 __read_mostly bool numabalancing_enabled; 1877 1878 void set_numabalancing_state(bool enabled) 1879 { 1880 numabalancing_enabled = enabled; 1881 } 1882 #endif /* CONFIG_SCHED_DEBUG */ 1883 1884 #ifdef CONFIG_PROC_SYSCTL 1885 int sysctl_numa_balancing(struct ctl_table *table, int write, 1886 void __user *buffer, size_t *lenp, loff_t *ppos) 1887 { 1888 struct ctl_table t; 1889 int err; 1890 int state = numabalancing_enabled; 1891 1892 if (write && !capable(CAP_SYS_ADMIN)) 1893 return -EPERM; 1894 1895 t = *table; 1896 t.data = &state; 1897 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1898 if (err < 0) 1899 return err; 1900 if (write) 1901 set_numabalancing_state(state); 1902 return err; 1903 } 1904 #endif 1905 #endif 1906 1907 /* 1908 * fork()/clone()-time setup: 1909 */ 1910 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1911 { 1912 unsigned long flags; 1913 int cpu = get_cpu(); 1914 1915 __sched_fork(clone_flags, p); 1916 /* 1917 * We mark the process as running here. This guarantees that 1918 * nobody will actually run it, and a signal or other external 1919 * event cannot wake it up and insert it on the runqueue either. 1920 */ 1921 p->state = TASK_RUNNING; 1922 1923 /* 1924 * Make sure we do not leak PI boosting priority to the child. 1925 */ 1926 p->prio = current->normal_prio; 1927 1928 /* 1929 * Revert to default priority/policy on fork if requested. 1930 */ 1931 if (unlikely(p->sched_reset_on_fork)) { 1932 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1933 p->policy = SCHED_NORMAL; 1934 p->static_prio = NICE_TO_PRIO(0); 1935 p->rt_priority = 0; 1936 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1937 p->static_prio = NICE_TO_PRIO(0); 1938 1939 p->prio = p->normal_prio = __normal_prio(p); 1940 set_load_weight(p); 1941 1942 /* 1943 * We don't need the reset flag anymore after the fork. It has 1944 * fulfilled its duty: 1945 */ 1946 p->sched_reset_on_fork = 0; 1947 } 1948 1949 if (dl_prio(p->prio)) { 1950 put_cpu(); 1951 return -EAGAIN; 1952 } else if (rt_prio(p->prio)) { 1953 p->sched_class = &rt_sched_class; 1954 } else { 1955 p->sched_class = &fair_sched_class; 1956 } 1957 1958 if (p->sched_class->task_fork) 1959 p->sched_class->task_fork(p); 1960 1961 /* 1962 * The child is not yet in the pid-hash so no cgroup attach races, 1963 * and the cgroup is pinned to this child due to cgroup_fork() 1964 * is ran before sched_fork(). 1965 * 1966 * Silence PROVE_RCU. 1967 */ 1968 raw_spin_lock_irqsave(&p->pi_lock, flags); 1969 set_task_cpu(p, cpu); 1970 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1971 1972 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1973 if (likely(sched_info_on())) 1974 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1975 #endif 1976 #if defined(CONFIG_SMP) 1977 p->on_cpu = 0; 1978 #endif 1979 init_task_preempt_count(p); 1980 #ifdef CONFIG_SMP 1981 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1982 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1983 #endif 1984 1985 put_cpu(); 1986 return 0; 1987 } 1988 1989 unsigned long to_ratio(u64 period, u64 runtime) 1990 { 1991 if (runtime == RUNTIME_INF) 1992 return 1ULL << 20; 1993 1994 /* 1995 * Doing this here saves a lot of checks in all 1996 * the calling paths, and returning zero seems 1997 * safe for them anyway. 1998 */ 1999 if (period == 0) 2000 return 0; 2001 2002 return div64_u64(runtime << 20, period); 2003 } 2004 2005 #ifdef CONFIG_SMP 2006 inline struct dl_bw *dl_bw_of(int i) 2007 { 2008 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2009 "sched RCU must be held"); 2010 return &cpu_rq(i)->rd->dl_bw; 2011 } 2012 2013 static inline int dl_bw_cpus(int i) 2014 { 2015 struct root_domain *rd = cpu_rq(i)->rd; 2016 int cpus = 0; 2017 2018 rcu_lockdep_assert(rcu_read_lock_sched_held(), 2019 "sched RCU must be held"); 2020 for_each_cpu_and(i, rd->span, cpu_active_mask) 2021 cpus++; 2022 2023 return cpus; 2024 } 2025 #else 2026 inline struct dl_bw *dl_bw_of(int i) 2027 { 2028 return &cpu_rq(i)->dl.dl_bw; 2029 } 2030 2031 static inline int dl_bw_cpus(int i) 2032 { 2033 return 1; 2034 } 2035 #endif 2036 2037 static inline 2038 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 2039 { 2040 dl_b->total_bw -= tsk_bw; 2041 } 2042 2043 static inline 2044 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 2045 { 2046 dl_b->total_bw += tsk_bw; 2047 } 2048 2049 static inline 2050 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 2051 { 2052 return dl_b->bw != -1 && 2053 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 2054 } 2055 2056 /* 2057 * We must be sure that accepting a new task (or allowing changing the 2058 * parameters of an existing one) is consistent with the bandwidth 2059 * constraints. If yes, this function also accordingly updates the currently 2060 * allocated bandwidth to reflect the new situation. 2061 * 2062 * This function is called while holding p's rq->lock. 2063 */ 2064 static int dl_overflow(struct task_struct *p, int policy, 2065 const struct sched_attr *attr) 2066 { 2067 2068 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 2069 u64 period = attr->sched_period ?: attr->sched_deadline; 2070 u64 runtime = attr->sched_runtime; 2071 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 2072 int cpus, err = -1; 2073 2074 if (new_bw == p->dl.dl_bw) 2075 return 0; 2076 2077 /* 2078 * Either if a task, enters, leave, or stays -deadline but changes 2079 * its parameters, we may need to update accordingly the total 2080 * allocated bandwidth of the container. 2081 */ 2082 raw_spin_lock(&dl_b->lock); 2083 cpus = dl_bw_cpus(task_cpu(p)); 2084 if (dl_policy(policy) && !task_has_dl_policy(p) && 2085 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 2086 __dl_add(dl_b, new_bw); 2087 err = 0; 2088 } else if (dl_policy(policy) && task_has_dl_policy(p) && 2089 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 2090 __dl_clear(dl_b, p->dl.dl_bw); 2091 __dl_add(dl_b, new_bw); 2092 err = 0; 2093 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 2094 __dl_clear(dl_b, p->dl.dl_bw); 2095 err = 0; 2096 } 2097 raw_spin_unlock(&dl_b->lock); 2098 2099 return err; 2100 } 2101 2102 extern void init_dl_bw(struct dl_bw *dl_b); 2103 2104 /* 2105 * wake_up_new_task - wake up a newly created task for the first time. 2106 * 2107 * This function will do some initial scheduler statistics housekeeping 2108 * that must be done for every newly created context, then puts the task 2109 * on the runqueue and wakes it. 2110 */ 2111 void wake_up_new_task(struct task_struct *p) 2112 { 2113 unsigned long flags; 2114 struct rq *rq; 2115 2116 raw_spin_lock_irqsave(&p->pi_lock, flags); 2117 #ifdef CONFIG_SMP 2118 /* 2119 * Fork balancing, do it here and not earlier because: 2120 * - cpus_allowed can change in the fork path 2121 * - any previously selected cpu might disappear through hotplug 2122 */ 2123 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2124 #endif 2125 2126 /* Initialize new task's runnable average */ 2127 init_task_runnable_average(p); 2128 rq = __task_rq_lock(p); 2129 activate_task(rq, p, 0); 2130 p->on_rq = TASK_ON_RQ_QUEUED; 2131 trace_sched_wakeup_new(p, true); 2132 check_preempt_curr(rq, p, WF_FORK); 2133 #ifdef CONFIG_SMP 2134 if (p->sched_class->task_woken) 2135 p->sched_class->task_woken(rq, p); 2136 #endif 2137 task_rq_unlock(rq, p, &flags); 2138 } 2139 2140 #ifdef CONFIG_PREEMPT_NOTIFIERS 2141 2142 /** 2143 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2144 * @notifier: notifier struct to register 2145 */ 2146 void preempt_notifier_register(struct preempt_notifier *notifier) 2147 { 2148 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2149 } 2150 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2151 2152 /** 2153 * preempt_notifier_unregister - no longer interested in preemption notifications 2154 * @notifier: notifier struct to unregister 2155 * 2156 * This is safe to call from within a preemption notifier. 2157 */ 2158 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2159 { 2160 hlist_del(¬ifier->link); 2161 } 2162 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2163 2164 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2165 { 2166 struct preempt_notifier *notifier; 2167 2168 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2169 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2170 } 2171 2172 static void 2173 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2174 struct task_struct *next) 2175 { 2176 struct preempt_notifier *notifier; 2177 2178 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2179 notifier->ops->sched_out(notifier, next); 2180 } 2181 2182 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2183 2184 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2185 { 2186 } 2187 2188 static void 2189 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2190 struct task_struct *next) 2191 { 2192 } 2193 2194 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2195 2196 /** 2197 * prepare_task_switch - prepare to switch tasks 2198 * @rq: the runqueue preparing to switch 2199 * @prev: the current task that is being switched out 2200 * @next: the task we are going to switch to. 2201 * 2202 * This is called with the rq lock held and interrupts off. It must 2203 * be paired with a subsequent finish_task_switch after the context 2204 * switch. 2205 * 2206 * prepare_task_switch sets up locking and calls architecture specific 2207 * hooks. 2208 */ 2209 static inline void 2210 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2211 struct task_struct *next) 2212 { 2213 trace_sched_switch(prev, next); 2214 sched_info_switch(rq, prev, next); 2215 perf_event_task_sched_out(prev, next); 2216 fire_sched_out_preempt_notifiers(prev, next); 2217 prepare_lock_switch(rq, next); 2218 prepare_arch_switch(next); 2219 } 2220 2221 /** 2222 * finish_task_switch - clean up after a task-switch 2223 * @rq: runqueue associated with task-switch 2224 * @prev: the thread we just switched away from. 2225 * 2226 * finish_task_switch must be called after the context switch, paired 2227 * with a prepare_task_switch call before the context switch. 2228 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2229 * and do any other architecture-specific cleanup actions. 2230 * 2231 * Note that we may have delayed dropping an mm in context_switch(). If 2232 * so, we finish that here outside of the runqueue lock. (Doing it 2233 * with the lock held can cause deadlocks; see schedule() for 2234 * details.) 2235 */ 2236 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2237 __releases(rq->lock) 2238 { 2239 struct mm_struct *mm = rq->prev_mm; 2240 long prev_state; 2241 2242 rq->prev_mm = NULL; 2243 2244 /* 2245 * A task struct has one reference for the use as "current". 2246 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2247 * schedule one last time. The schedule call will never return, and 2248 * the scheduled task must drop that reference. 2249 * The test for TASK_DEAD must occur while the runqueue locks are 2250 * still held, otherwise prev could be scheduled on another cpu, die 2251 * there before we look at prev->state, and then the reference would 2252 * be dropped twice. 2253 * Manfred Spraul <manfred@colorfullife.com> 2254 */ 2255 prev_state = prev->state; 2256 vtime_task_switch(prev); 2257 finish_arch_switch(prev); 2258 perf_event_task_sched_in(prev, current); 2259 finish_lock_switch(rq, prev); 2260 finish_arch_post_lock_switch(); 2261 2262 fire_sched_in_preempt_notifiers(current); 2263 if (mm) 2264 mmdrop(mm); 2265 if (unlikely(prev_state == TASK_DEAD)) { 2266 if (prev->sched_class->task_dead) 2267 prev->sched_class->task_dead(prev); 2268 2269 /* 2270 * Remove function-return probe instances associated with this 2271 * task and put them back on the free list. 2272 */ 2273 kprobe_flush_task(prev); 2274 put_task_struct(prev); 2275 } 2276 2277 tick_nohz_task_switch(current); 2278 } 2279 2280 #ifdef CONFIG_SMP 2281 2282 /* rq->lock is NOT held, but preemption is disabled */ 2283 static inline void post_schedule(struct rq *rq) 2284 { 2285 if (rq->post_schedule) { 2286 unsigned long flags; 2287 2288 raw_spin_lock_irqsave(&rq->lock, flags); 2289 if (rq->curr->sched_class->post_schedule) 2290 rq->curr->sched_class->post_schedule(rq); 2291 raw_spin_unlock_irqrestore(&rq->lock, flags); 2292 2293 rq->post_schedule = 0; 2294 } 2295 } 2296 2297 #else 2298 2299 static inline void post_schedule(struct rq *rq) 2300 { 2301 } 2302 2303 #endif 2304 2305 /** 2306 * schedule_tail - first thing a freshly forked thread must call. 2307 * @prev: the thread we just switched away from. 2308 */ 2309 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2310 __releases(rq->lock) 2311 { 2312 struct rq *rq = this_rq(); 2313 2314 finish_task_switch(rq, prev); 2315 2316 /* 2317 * FIXME: do we need to worry about rq being invalidated by the 2318 * task_switch? 2319 */ 2320 post_schedule(rq); 2321 2322 if (current->set_child_tid) 2323 put_user(task_pid_vnr(current), current->set_child_tid); 2324 } 2325 2326 /* 2327 * context_switch - switch to the new MM and the new 2328 * thread's register state. 2329 */ 2330 static inline void 2331 context_switch(struct rq *rq, struct task_struct *prev, 2332 struct task_struct *next) 2333 { 2334 struct mm_struct *mm, *oldmm; 2335 2336 prepare_task_switch(rq, prev, next); 2337 2338 mm = next->mm; 2339 oldmm = prev->active_mm; 2340 /* 2341 * For paravirt, this is coupled with an exit in switch_to to 2342 * combine the page table reload and the switch backend into 2343 * one hypercall. 2344 */ 2345 arch_start_context_switch(prev); 2346 2347 if (!mm) { 2348 next->active_mm = oldmm; 2349 atomic_inc(&oldmm->mm_count); 2350 enter_lazy_tlb(oldmm, next); 2351 } else 2352 switch_mm(oldmm, mm, next); 2353 2354 if (!prev->mm) { 2355 prev->active_mm = NULL; 2356 rq->prev_mm = oldmm; 2357 } 2358 /* 2359 * Since the runqueue lock will be released by the next 2360 * task (which is an invalid locking op but in the case 2361 * of the scheduler it's an obvious special-case), so we 2362 * do an early lockdep release here: 2363 */ 2364 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2365 2366 context_tracking_task_switch(prev, next); 2367 /* Here we just switch the register state and the stack. */ 2368 switch_to(prev, next, prev); 2369 2370 barrier(); 2371 /* 2372 * this_rq must be evaluated again because prev may have moved 2373 * CPUs since it called schedule(), thus the 'rq' on its stack 2374 * frame will be invalid. 2375 */ 2376 finish_task_switch(this_rq(), prev); 2377 } 2378 2379 /* 2380 * nr_running and nr_context_switches: 2381 * 2382 * externally visible scheduler statistics: current number of runnable 2383 * threads, total number of context switches performed since bootup. 2384 */ 2385 unsigned long nr_running(void) 2386 { 2387 unsigned long i, sum = 0; 2388 2389 for_each_online_cpu(i) 2390 sum += cpu_rq(i)->nr_running; 2391 2392 return sum; 2393 } 2394 2395 /* 2396 * Check if only the current task is running on the cpu. 2397 */ 2398 bool single_task_running(void) 2399 { 2400 if (cpu_rq(smp_processor_id())->nr_running == 1) 2401 return true; 2402 else 2403 return false; 2404 } 2405 EXPORT_SYMBOL(single_task_running); 2406 2407 unsigned long long nr_context_switches(void) 2408 { 2409 int i; 2410 unsigned long long sum = 0; 2411 2412 for_each_possible_cpu(i) 2413 sum += cpu_rq(i)->nr_switches; 2414 2415 return sum; 2416 } 2417 2418 unsigned long nr_iowait(void) 2419 { 2420 unsigned long i, sum = 0; 2421 2422 for_each_possible_cpu(i) 2423 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2424 2425 return sum; 2426 } 2427 2428 unsigned long nr_iowait_cpu(int cpu) 2429 { 2430 struct rq *this = cpu_rq(cpu); 2431 return atomic_read(&this->nr_iowait); 2432 } 2433 2434 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2435 { 2436 struct rq *this = this_rq(); 2437 *nr_waiters = atomic_read(&this->nr_iowait); 2438 *load = this->cpu_load[0]; 2439 } 2440 2441 #ifdef CONFIG_SMP 2442 2443 /* 2444 * sched_exec - execve() is a valuable balancing opportunity, because at 2445 * this point the task has the smallest effective memory and cache footprint. 2446 */ 2447 void sched_exec(void) 2448 { 2449 struct task_struct *p = current; 2450 unsigned long flags; 2451 int dest_cpu; 2452 2453 raw_spin_lock_irqsave(&p->pi_lock, flags); 2454 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2455 if (dest_cpu == smp_processor_id()) 2456 goto unlock; 2457 2458 if (likely(cpu_active(dest_cpu))) { 2459 struct migration_arg arg = { p, dest_cpu }; 2460 2461 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2462 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2463 return; 2464 } 2465 unlock: 2466 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2467 } 2468 2469 #endif 2470 2471 DEFINE_PER_CPU(struct kernel_stat, kstat); 2472 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2473 2474 EXPORT_PER_CPU_SYMBOL(kstat); 2475 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2476 2477 /* 2478 * Return accounted runtime for the task. 2479 * In case the task is currently running, return the runtime plus current's 2480 * pending runtime that have not been accounted yet. 2481 */ 2482 unsigned long long task_sched_runtime(struct task_struct *p) 2483 { 2484 unsigned long flags; 2485 struct rq *rq; 2486 u64 ns; 2487 2488 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2489 /* 2490 * 64-bit doesn't need locks to atomically read a 64bit value. 2491 * So we have a optimization chance when the task's delta_exec is 0. 2492 * Reading ->on_cpu is racy, but this is ok. 2493 * 2494 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2495 * If we race with it entering cpu, unaccounted time is 0. This is 2496 * indistinguishable from the read occurring a few cycles earlier. 2497 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 2498 * been accounted, so we're correct here as well. 2499 */ 2500 if (!p->on_cpu || !task_on_rq_queued(p)) 2501 return p->se.sum_exec_runtime; 2502 #endif 2503 2504 rq = task_rq_lock(p, &flags); 2505 /* 2506 * Must be ->curr _and_ ->on_rq. If dequeued, we would 2507 * project cycles that may never be accounted to this 2508 * thread, breaking clock_gettime(). 2509 */ 2510 if (task_current(rq, p) && task_on_rq_queued(p)) { 2511 update_rq_clock(rq); 2512 p->sched_class->update_curr(rq); 2513 } 2514 ns = p->se.sum_exec_runtime; 2515 task_rq_unlock(rq, p, &flags); 2516 2517 return ns; 2518 } 2519 2520 /* 2521 * This function gets called by the timer code, with HZ frequency. 2522 * We call it with interrupts disabled. 2523 */ 2524 void scheduler_tick(void) 2525 { 2526 int cpu = smp_processor_id(); 2527 struct rq *rq = cpu_rq(cpu); 2528 struct task_struct *curr = rq->curr; 2529 2530 sched_clock_tick(); 2531 2532 raw_spin_lock(&rq->lock); 2533 update_rq_clock(rq); 2534 curr->sched_class->task_tick(rq, curr, 0); 2535 update_cpu_load_active(rq); 2536 raw_spin_unlock(&rq->lock); 2537 2538 perf_event_task_tick(); 2539 2540 #ifdef CONFIG_SMP 2541 rq->idle_balance = idle_cpu(cpu); 2542 trigger_load_balance(rq); 2543 #endif 2544 rq_last_tick_reset(rq); 2545 } 2546 2547 #ifdef CONFIG_NO_HZ_FULL 2548 /** 2549 * scheduler_tick_max_deferment 2550 * 2551 * Keep at least one tick per second when a single 2552 * active task is running because the scheduler doesn't 2553 * yet completely support full dynticks environment. 2554 * 2555 * This makes sure that uptime, CFS vruntime, load 2556 * balancing, etc... continue to move forward, even 2557 * with a very low granularity. 2558 * 2559 * Return: Maximum deferment in nanoseconds. 2560 */ 2561 u64 scheduler_tick_max_deferment(void) 2562 { 2563 struct rq *rq = this_rq(); 2564 unsigned long next, now = ACCESS_ONCE(jiffies); 2565 2566 next = rq->last_sched_tick + HZ; 2567 2568 if (time_before_eq(next, now)) 2569 return 0; 2570 2571 return jiffies_to_nsecs(next - now); 2572 } 2573 #endif 2574 2575 notrace unsigned long get_parent_ip(unsigned long addr) 2576 { 2577 if (in_lock_functions(addr)) { 2578 addr = CALLER_ADDR2; 2579 if (in_lock_functions(addr)) 2580 addr = CALLER_ADDR3; 2581 } 2582 return addr; 2583 } 2584 2585 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2586 defined(CONFIG_PREEMPT_TRACER)) 2587 2588 void preempt_count_add(int val) 2589 { 2590 #ifdef CONFIG_DEBUG_PREEMPT 2591 /* 2592 * Underflow? 2593 */ 2594 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2595 return; 2596 #endif 2597 __preempt_count_add(val); 2598 #ifdef CONFIG_DEBUG_PREEMPT 2599 /* 2600 * Spinlock count overflowing soon? 2601 */ 2602 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2603 PREEMPT_MASK - 10); 2604 #endif 2605 if (preempt_count() == val) { 2606 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2607 #ifdef CONFIG_DEBUG_PREEMPT 2608 current->preempt_disable_ip = ip; 2609 #endif 2610 trace_preempt_off(CALLER_ADDR0, ip); 2611 } 2612 } 2613 EXPORT_SYMBOL(preempt_count_add); 2614 NOKPROBE_SYMBOL(preempt_count_add); 2615 2616 void preempt_count_sub(int val) 2617 { 2618 #ifdef CONFIG_DEBUG_PREEMPT 2619 /* 2620 * Underflow? 2621 */ 2622 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2623 return; 2624 /* 2625 * Is the spinlock portion underflowing? 2626 */ 2627 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2628 !(preempt_count() & PREEMPT_MASK))) 2629 return; 2630 #endif 2631 2632 if (preempt_count() == val) 2633 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2634 __preempt_count_sub(val); 2635 } 2636 EXPORT_SYMBOL(preempt_count_sub); 2637 NOKPROBE_SYMBOL(preempt_count_sub); 2638 2639 #endif 2640 2641 /* 2642 * Print scheduling while atomic bug: 2643 */ 2644 static noinline void __schedule_bug(struct task_struct *prev) 2645 { 2646 if (oops_in_progress) 2647 return; 2648 2649 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2650 prev->comm, prev->pid, preempt_count()); 2651 2652 debug_show_held_locks(prev); 2653 print_modules(); 2654 if (irqs_disabled()) 2655 print_irqtrace_events(prev); 2656 #ifdef CONFIG_DEBUG_PREEMPT 2657 if (in_atomic_preempt_off()) { 2658 pr_err("Preemption disabled at:"); 2659 print_ip_sym(current->preempt_disable_ip); 2660 pr_cont("\n"); 2661 } 2662 #endif 2663 dump_stack(); 2664 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2665 } 2666 2667 /* 2668 * Various schedule()-time debugging checks and statistics: 2669 */ 2670 static inline void schedule_debug(struct task_struct *prev) 2671 { 2672 #ifdef CONFIG_SCHED_STACK_END_CHECK 2673 BUG_ON(unlikely(task_stack_end_corrupted(prev))); 2674 #endif 2675 /* 2676 * Test if we are atomic. Since do_exit() needs to call into 2677 * schedule() atomically, we ignore that path. Otherwise whine 2678 * if we are scheduling when we should not. 2679 */ 2680 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2681 __schedule_bug(prev); 2682 rcu_sleep_check(); 2683 2684 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2685 2686 schedstat_inc(this_rq(), sched_count); 2687 } 2688 2689 /* 2690 * Pick up the highest-prio task: 2691 */ 2692 static inline struct task_struct * 2693 pick_next_task(struct rq *rq, struct task_struct *prev) 2694 { 2695 const struct sched_class *class = &fair_sched_class; 2696 struct task_struct *p; 2697 2698 /* 2699 * Optimization: we know that if all tasks are in 2700 * the fair class we can call that function directly: 2701 */ 2702 if (likely(prev->sched_class == class && 2703 rq->nr_running == rq->cfs.h_nr_running)) { 2704 p = fair_sched_class.pick_next_task(rq, prev); 2705 if (unlikely(p == RETRY_TASK)) 2706 goto again; 2707 2708 /* assumes fair_sched_class->next == idle_sched_class */ 2709 if (unlikely(!p)) 2710 p = idle_sched_class.pick_next_task(rq, prev); 2711 2712 return p; 2713 } 2714 2715 again: 2716 for_each_class(class) { 2717 p = class->pick_next_task(rq, prev); 2718 if (p) { 2719 if (unlikely(p == RETRY_TASK)) 2720 goto again; 2721 return p; 2722 } 2723 } 2724 2725 BUG(); /* the idle class will always have a runnable task */ 2726 } 2727 2728 /* 2729 * __schedule() is the main scheduler function. 2730 * 2731 * The main means of driving the scheduler and thus entering this function are: 2732 * 2733 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2734 * 2735 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2736 * paths. For example, see arch/x86/entry_64.S. 2737 * 2738 * To drive preemption between tasks, the scheduler sets the flag in timer 2739 * interrupt handler scheduler_tick(). 2740 * 2741 * 3. Wakeups don't really cause entry into schedule(). They add a 2742 * task to the run-queue and that's it. 2743 * 2744 * Now, if the new task added to the run-queue preempts the current 2745 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2746 * called on the nearest possible occasion: 2747 * 2748 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2749 * 2750 * - in syscall or exception context, at the next outmost 2751 * preempt_enable(). (this might be as soon as the wake_up()'s 2752 * spin_unlock()!) 2753 * 2754 * - in IRQ context, return from interrupt-handler to 2755 * preemptible context 2756 * 2757 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2758 * then at the next: 2759 * 2760 * - cond_resched() call 2761 * - explicit schedule() call 2762 * - return from syscall or exception to user-space 2763 * - return from interrupt-handler to user-space 2764 */ 2765 static void __sched __schedule(void) 2766 { 2767 struct task_struct *prev, *next; 2768 unsigned long *switch_count; 2769 struct rq *rq; 2770 int cpu; 2771 2772 need_resched: 2773 preempt_disable(); 2774 cpu = smp_processor_id(); 2775 rq = cpu_rq(cpu); 2776 rcu_note_context_switch(cpu); 2777 prev = rq->curr; 2778 2779 schedule_debug(prev); 2780 2781 if (sched_feat(HRTICK)) 2782 hrtick_clear(rq); 2783 2784 /* 2785 * Make sure that signal_pending_state()->signal_pending() below 2786 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2787 * done by the caller to avoid the race with signal_wake_up(). 2788 */ 2789 smp_mb__before_spinlock(); 2790 raw_spin_lock_irq(&rq->lock); 2791 2792 switch_count = &prev->nivcsw; 2793 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2794 if (unlikely(signal_pending_state(prev->state, prev))) { 2795 prev->state = TASK_RUNNING; 2796 } else { 2797 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2798 prev->on_rq = 0; 2799 2800 /* 2801 * If a worker went to sleep, notify and ask workqueue 2802 * whether it wants to wake up a task to maintain 2803 * concurrency. 2804 */ 2805 if (prev->flags & PF_WQ_WORKER) { 2806 struct task_struct *to_wakeup; 2807 2808 to_wakeup = wq_worker_sleeping(prev, cpu); 2809 if (to_wakeup) 2810 try_to_wake_up_local(to_wakeup); 2811 } 2812 } 2813 switch_count = &prev->nvcsw; 2814 } 2815 2816 if (task_on_rq_queued(prev) || rq->skip_clock_update < 0) 2817 update_rq_clock(rq); 2818 2819 next = pick_next_task(rq, prev); 2820 clear_tsk_need_resched(prev); 2821 clear_preempt_need_resched(); 2822 rq->skip_clock_update = 0; 2823 2824 if (likely(prev != next)) { 2825 rq->nr_switches++; 2826 rq->curr = next; 2827 ++*switch_count; 2828 2829 context_switch(rq, prev, next); /* unlocks the rq */ 2830 /* 2831 * The context switch have flipped the stack from under us 2832 * and restored the local variables which were saved when 2833 * this task called schedule() in the past. prev == current 2834 * is still correct, but it can be moved to another cpu/rq. 2835 */ 2836 cpu = smp_processor_id(); 2837 rq = cpu_rq(cpu); 2838 } else 2839 raw_spin_unlock_irq(&rq->lock); 2840 2841 post_schedule(rq); 2842 2843 sched_preempt_enable_no_resched(); 2844 if (need_resched()) 2845 goto need_resched; 2846 } 2847 2848 static inline void sched_submit_work(struct task_struct *tsk) 2849 { 2850 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2851 return; 2852 /* 2853 * If we are going to sleep and we have plugged IO queued, 2854 * make sure to submit it to avoid deadlocks. 2855 */ 2856 if (blk_needs_flush_plug(tsk)) 2857 blk_schedule_flush_plug(tsk); 2858 } 2859 2860 asmlinkage __visible void __sched schedule(void) 2861 { 2862 struct task_struct *tsk = current; 2863 2864 sched_submit_work(tsk); 2865 __schedule(); 2866 } 2867 EXPORT_SYMBOL(schedule); 2868 2869 #ifdef CONFIG_CONTEXT_TRACKING 2870 asmlinkage __visible void __sched schedule_user(void) 2871 { 2872 /* 2873 * If we come here after a random call to set_need_resched(), 2874 * or we have been woken up remotely but the IPI has not yet arrived, 2875 * we haven't yet exited the RCU idle mode. Do it here manually until 2876 * we find a better solution. 2877 */ 2878 user_exit(); 2879 schedule(); 2880 user_enter(); 2881 } 2882 #endif 2883 2884 /** 2885 * schedule_preempt_disabled - called with preemption disabled 2886 * 2887 * Returns with preemption disabled. Note: preempt_count must be 1 2888 */ 2889 void __sched schedule_preempt_disabled(void) 2890 { 2891 sched_preempt_enable_no_resched(); 2892 schedule(); 2893 preempt_disable(); 2894 } 2895 2896 #ifdef CONFIG_PREEMPT 2897 /* 2898 * this is the entry point to schedule() from in-kernel preemption 2899 * off of preempt_enable. Kernel preemptions off return from interrupt 2900 * occur there and call schedule directly. 2901 */ 2902 asmlinkage __visible void __sched notrace preempt_schedule(void) 2903 { 2904 /* 2905 * If there is a non-zero preempt_count or interrupts are disabled, 2906 * we do not want to preempt the current task. Just return.. 2907 */ 2908 if (likely(!preemptible())) 2909 return; 2910 2911 do { 2912 __preempt_count_add(PREEMPT_ACTIVE); 2913 __schedule(); 2914 __preempt_count_sub(PREEMPT_ACTIVE); 2915 2916 /* 2917 * Check again in case we missed a preemption opportunity 2918 * between schedule and now. 2919 */ 2920 barrier(); 2921 } while (need_resched()); 2922 } 2923 NOKPROBE_SYMBOL(preempt_schedule); 2924 EXPORT_SYMBOL(preempt_schedule); 2925 2926 #ifdef CONFIG_CONTEXT_TRACKING 2927 /** 2928 * preempt_schedule_context - preempt_schedule called by tracing 2929 * 2930 * The tracing infrastructure uses preempt_enable_notrace to prevent 2931 * recursion and tracing preempt enabling caused by the tracing 2932 * infrastructure itself. But as tracing can happen in areas coming 2933 * from userspace or just about to enter userspace, a preempt enable 2934 * can occur before user_exit() is called. This will cause the scheduler 2935 * to be called when the system is still in usermode. 2936 * 2937 * To prevent this, the preempt_enable_notrace will use this function 2938 * instead of preempt_schedule() to exit user context if needed before 2939 * calling the scheduler. 2940 */ 2941 asmlinkage __visible void __sched notrace preempt_schedule_context(void) 2942 { 2943 enum ctx_state prev_ctx; 2944 2945 if (likely(!preemptible())) 2946 return; 2947 2948 do { 2949 __preempt_count_add(PREEMPT_ACTIVE); 2950 /* 2951 * Needs preempt disabled in case user_exit() is traced 2952 * and the tracer calls preempt_enable_notrace() causing 2953 * an infinite recursion. 2954 */ 2955 prev_ctx = exception_enter(); 2956 __schedule(); 2957 exception_exit(prev_ctx); 2958 2959 __preempt_count_sub(PREEMPT_ACTIVE); 2960 barrier(); 2961 } while (need_resched()); 2962 } 2963 EXPORT_SYMBOL_GPL(preempt_schedule_context); 2964 #endif /* CONFIG_CONTEXT_TRACKING */ 2965 2966 #endif /* CONFIG_PREEMPT */ 2967 2968 /* 2969 * this is the entry point to schedule() from kernel preemption 2970 * off of irq context. 2971 * Note, that this is called and return with irqs disabled. This will 2972 * protect us against recursive calling from irq. 2973 */ 2974 asmlinkage __visible void __sched preempt_schedule_irq(void) 2975 { 2976 enum ctx_state prev_state; 2977 2978 /* Catch callers which need to be fixed */ 2979 BUG_ON(preempt_count() || !irqs_disabled()); 2980 2981 prev_state = exception_enter(); 2982 2983 do { 2984 __preempt_count_add(PREEMPT_ACTIVE); 2985 local_irq_enable(); 2986 __schedule(); 2987 local_irq_disable(); 2988 __preempt_count_sub(PREEMPT_ACTIVE); 2989 2990 /* 2991 * Check again in case we missed a preemption opportunity 2992 * between schedule and now. 2993 */ 2994 barrier(); 2995 } while (need_resched()); 2996 2997 exception_exit(prev_state); 2998 } 2999 3000 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 3001 void *key) 3002 { 3003 return try_to_wake_up(curr->private, mode, wake_flags); 3004 } 3005 EXPORT_SYMBOL(default_wake_function); 3006 3007 #ifdef CONFIG_RT_MUTEXES 3008 3009 /* 3010 * rt_mutex_setprio - set the current priority of a task 3011 * @p: task 3012 * @prio: prio value (kernel-internal form) 3013 * 3014 * This function changes the 'effective' priority of a task. It does 3015 * not touch ->normal_prio like __setscheduler(). 3016 * 3017 * Used by the rt_mutex code to implement priority inheritance 3018 * logic. Call site only calls if the priority of the task changed. 3019 */ 3020 void rt_mutex_setprio(struct task_struct *p, int prio) 3021 { 3022 int oldprio, queued, running, enqueue_flag = 0; 3023 struct rq *rq; 3024 const struct sched_class *prev_class; 3025 3026 BUG_ON(prio > MAX_PRIO); 3027 3028 rq = __task_rq_lock(p); 3029 3030 /* 3031 * Idle task boosting is a nono in general. There is one 3032 * exception, when PREEMPT_RT and NOHZ is active: 3033 * 3034 * The idle task calls get_next_timer_interrupt() and holds 3035 * the timer wheel base->lock on the CPU and another CPU wants 3036 * to access the timer (probably to cancel it). We can safely 3037 * ignore the boosting request, as the idle CPU runs this code 3038 * with interrupts disabled and will complete the lock 3039 * protected section without being interrupted. So there is no 3040 * real need to boost. 3041 */ 3042 if (unlikely(p == rq->idle)) { 3043 WARN_ON(p != rq->curr); 3044 WARN_ON(p->pi_blocked_on); 3045 goto out_unlock; 3046 } 3047 3048 trace_sched_pi_setprio(p, prio); 3049 oldprio = p->prio; 3050 prev_class = p->sched_class; 3051 queued = task_on_rq_queued(p); 3052 running = task_current(rq, p); 3053 if (queued) 3054 dequeue_task(rq, p, 0); 3055 if (running) 3056 put_prev_task(rq, p); 3057 3058 /* 3059 * Boosting condition are: 3060 * 1. -rt task is running and holds mutex A 3061 * --> -dl task blocks on mutex A 3062 * 3063 * 2. -dl task is running and holds mutex A 3064 * --> -dl task blocks on mutex A and could preempt the 3065 * running task 3066 */ 3067 if (dl_prio(prio)) { 3068 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3069 if (!dl_prio(p->normal_prio) || 3070 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3071 p->dl.dl_boosted = 1; 3072 p->dl.dl_throttled = 0; 3073 enqueue_flag = ENQUEUE_REPLENISH; 3074 } else 3075 p->dl.dl_boosted = 0; 3076 p->sched_class = &dl_sched_class; 3077 } else if (rt_prio(prio)) { 3078 if (dl_prio(oldprio)) 3079 p->dl.dl_boosted = 0; 3080 if (oldprio < prio) 3081 enqueue_flag = ENQUEUE_HEAD; 3082 p->sched_class = &rt_sched_class; 3083 } else { 3084 if (dl_prio(oldprio)) 3085 p->dl.dl_boosted = 0; 3086 p->sched_class = &fair_sched_class; 3087 } 3088 3089 p->prio = prio; 3090 3091 if (running) 3092 p->sched_class->set_curr_task(rq); 3093 if (queued) 3094 enqueue_task(rq, p, enqueue_flag); 3095 3096 check_class_changed(rq, p, prev_class, oldprio); 3097 out_unlock: 3098 __task_rq_unlock(rq); 3099 } 3100 #endif 3101 3102 void set_user_nice(struct task_struct *p, long nice) 3103 { 3104 int old_prio, delta, queued; 3105 unsigned long flags; 3106 struct rq *rq; 3107 3108 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3109 return; 3110 /* 3111 * We have to be careful, if called from sys_setpriority(), 3112 * the task might be in the middle of scheduling on another CPU. 3113 */ 3114 rq = task_rq_lock(p, &flags); 3115 /* 3116 * The RT priorities are set via sched_setscheduler(), but we still 3117 * allow the 'normal' nice value to be set - but as expected 3118 * it wont have any effect on scheduling until the task is 3119 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3120 */ 3121 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3122 p->static_prio = NICE_TO_PRIO(nice); 3123 goto out_unlock; 3124 } 3125 queued = task_on_rq_queued(p); 3126 if (queued) 3127 dequeue_task(rq, p, 0); 3128 3129 p->static_prio = NICE_TO_PRIO(nice); 3130 set_load_weight(p); 3131 old_prio = p->prio; 3132 p->prio = effective_prio(p); 3133 delta = p->prio - old_prio; 3134 3135 if (queued) { 3136 enqueue_task(rq, p, 0); 3137 /* 3138 * If the task increased its priority or is running and 3139 * lowered its priority, then reschedule its CPU: 3140 */ 3141 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3142 resched_curr(rq); 3143 } 3144 out_unlock: 3145 task_rq_unlock(rq, p, &flags); 3146 } 3147 EXPORT_SYMBOL(set_user_nice); 3148 3149 /* 3150 * can_nice - check if a task can reduce its nice value 3151 * @p: task 3152 * @nice: nice value 3153 */ 3154 int can_nice(const struct task_struct *p, const int nice) 3155 { 3156 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3157 int nice_rlim = nice_to_rlimit(nice); 3158 3159 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3160 capable(CAP_SYS_NICE)); 3161 } 3162 3163 #ifdef __ARCH_WANT_SYS_NICE 3164 3165 /* 3166 * sys_nice - change the priority of the current process. 3167 * @increment: priority increment 3168 * 3169 * sys_setpriority is a more generic, but much slower function that 3170 * does similar things. 3171 */ 3172 SYSCALL_DEFINE1(nice, int, increment) 3173 { 3174 long nice, retval; 3175 3176 /* 3177 * Setpriority might change our priority at the same moment. 3178 * We don't have to worry. Conceptually one call occurs first 3179 * and we have a single winner. 3180 */ 3181 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3182 nice = task_nice(current) + increment; 3183 3184 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 3185 if (increment < 0 && !can_nice(current, nice)) 3186 return -EPERM; 3187 3188 retval = security_task_setnice(current, nice); 3189 if (retval) 3190 return retval; 3191 3192 set_user_nice(current, nice); 3193 return 0; 3194 } 3195 3196 #endif 3197 3198 /** 3199 * task_prio - return the priority value of a given task. 3200 * @p: the task in question. 3201 * 3202 * Return: The priority value as seen by users in /proc. 3203 * RT tasks are offset by -200. Normal tasks are centered 3204 * around 0, value goes from -16 to +15. 3205 */ 3206 int task_prio(const struct task_struct *p) 3207 { 3208 return p->prio - MAX_RT_PRIO; 3209 } 3210 3211 /** 3212 * idle_cpu - is a given cpu idle currently? 3213 * @cpu: the processor in question. 3214 * 3215 * Return: 1 if the CPU is currently idle. 0 otherwise. 3216 */ 3217 int idle_cpu(int cpu) 3218 { 3219 struct rq *rq = cpu_rq(cpu); 3220 3221 if (rq->curr != rq->idle) 3222 return 0; 3223 3224 if (rq->nr_running) 3225 return 0; 3226 3227 #ifdef CONFIG_SMP 3228 if (!llist_empty(&rq->wake_list)) 3229 return 0; 3230 #endif 3231 3232 return 1; 3233 } 3234 3235 /** 3236 * idle_task - return the idle task for a given cpu. 3237 * @cpu: the processor in question. 3238 * 3239 * Return: The idle task for the cpu @cpu. 3240 */ 3241 struct task_struct *idle_task(int cpu) 3242 { 3243 return cpu_rq(cpu)->idle; 3244 } 3245 3246 /** 3247 * find_process_by_pid - find a process with a matching PID value. 3248 * @pid: the pid in question. 3249 * 3250 * The task of @pid, if found. %NULL otherwise. 3251 */ 3252 static struct task_struct *find_process_by_pid(pid_t pid) 3253 { 3254 return pid ? find_task_by_vpid(pid) : current; 3255 } 3256 3257 /* 3258 * This function initializes the sched_dl_entity of a newly becoming 3259 * SCHED_DEADLINE task. 3260 * 3261 * Only the static values are considered here, the actual runtime and the 3262 * absolute deadline will be properly calculated when the task is enqueued 3263 * for the first time with its new policy. 3264 */ 3265 static void 3266 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3267 { 3268 struct sched_dl_entity *dl_se = &p->dl; 3269 3270 init_dl_task_timer(dl_se); 3271 dl_se->dl_runtime = attr->sched_runtime; 3272 dl_se->dl_deadline = attr->sched_deadline; 3273 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3274 dl_se->flags = attr->sched_flags; 3275 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3276 dl_se->dl_throttled = 0; 3277 dl_se->dl_new = 1; 3278 dl_se->dl_yielded = 0; 3279 } 3280 3281 /* 3282 * sched_setparam() passes in -1 for its policy, to let the functions 3283 * it calls know not to change it. 3284 */ 3285 #define SETPARAM_POLICY -1 3286 3287 static void __setscheduler_params(struct task_struct *p, 3288 const struct sched_attr *attr) 3289 { 3290 int policy = attr->sched_policy; 3291 3292 if (policy == SETPARAM_POLICY) 3293 policy = p->policy; 3294 3295 p->policy = policy; 3296 3297 if (dl_policy(policy)) 3298 __setparam_dl(p, attr); 3299 else if (fair_policy(policy)) 3300 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3301 3302 /* 3303 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3304 * !rt_policy. Always setting this ensures that things like 3305 * getparam()/getattr() don't report silly values for !rt tasks. 3306 */ 3307 p->rt_priority = attr->sched_priority; 3308 p->normal_prio = normal_prio(p); 3309 set_load_weight(p); 3310 } 3311 3312 /* Actually do priority change: must hold pi & rq lock. */ 3313 static void __setscheduler(struct rq *rq, struct task_struct *p, 3314 const struct sched_attr *attr) 3315 { 3316 __setscheduler_params(p, attr); 3317 3318 /* 3319 * If we get here, there was no pi waiters boosting the 3320 * task. It is safe to use the normal prio. 3321 */ 3322 p->prio = normal_prio(p); 3323 3324 if (dl_prio(p->prio)) 3325 p->sched_class = &dl_sched_class; 3326 else if (rt_prio(p->prio)) 3327 p->sched_class = &rt_sched_class; 3328 else 3329 p->sched_class = &fair_sched_class; 3330 } 3331 3332 static void 3333 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3334 { 3335 struct sched_dl_entity *dl_se = &p->dl; 3336 3337 attr->sched_priority = p->rt_priority; 3338 attr->sched_runtime = dl_se->dl_runtime; 3339 attr->sched_deadline = dl_se->dl_deadline; 3340 attr->sched_period = dl_se->dl_period; 3341 attr->sched_flags = dl_se->flags; 3342 } 3343 3344 /* 3345 * This function validates the new parameters of a -deadline task. 3346 * We ask for the deadline not being zero, and greater or equal 3347 * than the runtime, as well as the period of being zero or 3348 * greater than deadline. Furthermore, we have to be sure that 3349 * user parameters are above the internal resolution of 1us (we 3350 * check sched_runtime only since it is always the smaller one) and 3351 * below 2^63 ns (we have to check both sched_deadline and 3352 * sched_period, as the latter can be zero). 3353 */ 3354 static bool 3355 __checkparam_dl(const struct sched_attr *attr) 3356 { 3357 /* deadline != 0 */ 3358 if (attr->sched_deadline == 0) 3359 return false; 3360 3361 /* 3362 * Since we truncate DL_SCALE bits, make sure we're at least 3363 * that big. 3364 */ 3365 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3366 return false; 3367 3368 /* 3369 * Since we use the MSB for wrap-around and sign issues, make 3370 * sure it's not set (mind that period can be equal to zero). 3371 */ 3372 if (attr->sched_deadline & (1ULL << 63) || 3373 attr->sched_period & (1ULL << 63)) 3374 return false; 3375 3376 /* runtime <= deadline <= period (if period != 0) */ 3377 if ((attr->sched_period != 0 && 3378 attr->sched_period < attr->sched_deadline) || 3379 attr->sched_deadline < attr->sched_runtime) 3380 return false; 3381 3382 return true; 3383 } 3384 3385 /* 3386 * check the target process has a UID that matches the current process's 3387 */ 3388 static bool check_same_owner(struct task_struct *p) 3389 { 3390 const struct cred *cred = current_cred(), *pcred; 3391 bool match; 3392 3393 rcu_read_lock(); 3394 pcred = __task_cred(p); 3395 match = (uid_eq(cred->euid, pcred->euid) || 3396 uid_eq(cred->euid, pcred->uid)); 3397 rcu_read_unlock(); 3398 return match; 3399 } 3400 3401 static int __sched_setscheduler(struct task_struct *p, 3402 const struct sched_attr *attr, 3403 bool user) 3404 { 3405 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3406 MAX_RT_PRIO - 1 - attr->sched_priority; 3407 int retval, oldprio, oldpolicy = -1, queued, running; 3408 int policy = attr->sched_policy; 3409 unsigned long flags; 3410 const struct sched_class *prev_class; 3411 struct rq *rq; 3412 int reset_on_fork; 3413 3414 /* may grab non-irq protected spin_locks */ 3415 BUG_ON(in_interrupt()); 3416 recheck: 3417 /* double check policy once rq lock held */ 3418 if (policy < 0) { 3419 reset_on_fork = p->sched_reset_on_fork; 3420 policy = oldpolicy = p->policy; 3421 } else { 3422 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3423 3424 if (policy != SCHED_DEADLINE && 3425 policy != SCHED_FIFO && policy != SCHED_RR && 3426 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3427 policy != SCHED_IDLE) 3428 return -EINVAL; 3429 } 3430 3431 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3432 return -EINVAL; 3433 3434 /* 3435 * Valid priorities for SCHED_FIFO and SCHED_RR are 3436 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3437 * SCHED_BATCH and SCHED_IDLE is 0. 3438 */ 3439 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3440 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3441 return -EINVAL; 3442 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3443 (rt_policy(policy) != (attr->sched_priority != 0))) 3444 return -EINVAL; 3445 3446 /* 3447 * Allow unprivileged RT tasks to decrease priority: 3448 */ 3449 if (user && !capable(CAP_SYS_NICE)) { 3450 if (fair_policy(policy)) { 3451 if (attr->sched_nice < task_nice(p) && 3452 !can_nice(p, attr->sched_nice)) 3453 return -EPERM; 3454 } 3455 3456 if (rt_policy(policy)) { 3457 unsigned long rlim_rtprio = 3458 task_rlimit(p, RLIMIT_RTPRIO); 3459 3460 /* can't set/change the rt policy */ 3461 if (policy != p->policy && !rlim_rtprio) 3462 return -EPERM; 3463 3464 /* can't increase priority */ 3465 if (attr->sched_priority > p->rt_priority && 3466 attr->sched_priority > rlim_rtprio) 3467 return -EPERM; 3468 } 3469 3470 /* 3471 * Can't set/change SCHED_DEADLINE policy at all for now 3472 * (safest behavior); in the future we would like to allow 3473 * unprivileged DL tasks to increase their relative deadline 3474 * or reduce their runtime (both ways reducing utilization) 3475 */ 3476 if (dl_policy(policy)) 3477 return -EPERM; 3478 3479 /* 3480 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3481 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3482 */ 3483 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3484 if (!can_nice(p, task_nice(p))) 3485 return -EPERM; 3486 } 3487 3488 /* can't change other user's priorities */ 3489 if (!check_same_owner(p)) 3490 return -EPERM; 3491 3492 /* Normal users shall not reset the sched_reset_on_fork flag */ 3493 if (p->sched_reset_on_fork && !reset_on_fork) 3494 return -EPERM; 3495 } 3496 3497 if (user) { 3498 retval = security_task_setscheduler(p); 3499 if (retval) 3500 return retval; 3501 } 3502 3503 /* 3504 * make sure no PI-waiters arrive (or leave) while we are 3505 * changing the priority of the task: 3506 * 3507 * To be able to change p->policy safely, the appropriate 3508 * runqueue lock must be held. 3509 */ 3510 rq = task_rq_lock(p, &flags); 3511 3512 /* 3513 * Changing the policy of the stop threads its a very bad idea 3514 */ 3515 if (p == rq->stop) { 3516 task_rq_unlock(rq, p, &flags); 3517 return -EINVAL; 3518 } 3519 3520 /* 3521 * If not changing anything there's no need to proceed further, 3522 * but store a possible modification of reset_on_fork. 3523 */ 3524 if (unlikely(policy == p->policy)) { 3525 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3526 goto change; 3527 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3528 goto change; 3529 if (dl_policy(policy)) 3530 goto change; 3531 3532 p->sched_reset_on_fork = reset_on_fork; 3533 task_rq_unlock(rq, p, &flags); 3534 return 0; 3535 } 3536 change: 3537 3538 if (user) { 3539 #ifdef CONFIG_RT_GROUP_SCHED 3540 /* 3541 * Do not allow realtime tasks into groups that have no runtime 3542 * assigned. 3543 */ 3544 if (rt_bandwidth_enabled() && rt_policy(policy) && 3545 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3546 !task_group_is_autogroup(task_group(p))) { 3547 task_rq_unlock(rq, p, &flags); 3548 return -EPERM; 3549 } 3550 #endif 3551 #ifdef CONFIG_SMP 3552 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3553 cpumask_t *span = rq->rd->span; 3554 3555 /* 3556 * Don't allow tasks with an affinity mask smaller than 3557 * the entire root_domain to become SCHED_DEADLINE. We 3558 * will also fail if there's no bandwidth available. 3559 */ 3560 if (!cpumask_subset(span, &p->cpus_allowed) || 3561 rq->rd->dl_bw.bw == 0) { 3562 task_rq_unlock(rq, p, &flags); 3563 return -EPERM; 3564 } 3565 } 3566 #endif 3567 } 3568 3569 /* recheck policy now with rq lock held */ 3570 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3571 policy = oldpolicy = -1; 3572 task_rq_unlock(rq, p, &flags); 3573 goto recheck; 3574 } 3575 3576 /* 3577 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3578 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3579 * is available. 3580 */ 3581 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3582 task_rq_unlock(rq, p, &flags); 3583 return -EBUSY; 3584 } 3585 3586 p->sched_reset_on_fork = reset_on_fork; 3587 oldprio = p->prio; 3588 3589 /* 3590 * Special case for priority boosted tasks. 3591 * 3592 * If the new priority is lower or equal (user space view) 3593 * than the current (boosted) priority, we just store the new 3594 * normal parameters and do not touch the scheduler class and 3595 * the runqueue. This will be done when the task deboost 3596 * itself. 3597 */ 3598 if (rt_mutex_check_prio(p, newprio)) { 3599 __setscheduler_params(p, attr); 3600 task_rq_unlock(rq, p, &flags); 3601 return 0; 3602 } 3603 3604 queued = task_on_rq_queued(p); 3605 running = task_current(rq, p); 3606 if (queued) 3607 dequeue_task(rq, p, 0); 3608 if (running) 3609 put_prev_task(rq, p); 3610 3611 prev_class = p->sched_class; 3612 __setscheduler(rq, p, attr); 3613 3614 if (running) 3615 p->sched_class->set_curr_task(rq); 3616 if (queued) { 3617 /* 3618 * We enqueue to tail when the priority of a task is 3619 * increased (user space view). 3620 */ 3621 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3622 } 3623 3624 check_class_changed(rq, p, prev_class, oldprio); 3625 task_rq_unlock(rq, p, &flags); 3626 3627 rt_mutex_adjust_pi(p); 3628 3629 return 0; 3630 } 3631 3632 static int _sched_setscheduler(struct task_struct *p, int policy, 3633 const struct sched_param *param, bool check) 3634 { 3635 struct sched_attr attr = { 3636 .sched_policy = policy, 3637 .sched_priority = param->sched_priority, 3638 .sched_nice = PRIO_TO_NICE(p->static_prio), 3639 }; 3640 3641 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 3642 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 3643 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3644 policy &= ~SCHED_RESET_ON_FORK; 3645 attr.sched_policy = policy; 3646 } 3647 3648 return __sched_setscheduler(p, &attr, check); 3649 } 3650 /** 3651 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3652 * @p: the task in question. 3653 * @policy: new policy. 3654 * @param: structure containing the new RT priority. 3655 * 3656 * Return: 0 on success. An error code otherwise. 3657 * 3658 * NOTE that the task may be already dead. 3659 */ 3660 int sched_setscheduler(struct task_struct *p, int policy, 3661 const struct sched_param *param) 3662 { 3663 return _sched_setscheduler(p, policy, param, true); 3664 } 3665 EXPORT_SYMBOL_GPL(sched_setscheduler); 3666 3667 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3668 { 3669 return __sched_setscheduler(p, attr, true); 3670 } 3671 EXPORT_SYMBOL_GPL(sched_setattr); 3672 3673 /** 3674 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3675 * @p: the task in question. 3676 * @policy: new policy. 3677 * @param: structure containing the new RT priority. 3678 * 3679 * Just like sched_setscheduler, only don't bother checking if the 3680 * current context has permission. For example, this is needed in 3681 * stop_machine(): we create temporary high priority worker threads, 3682 * but our caller might not have that capability. 3683 * 3684 * Return: 0 on success. An error code otherwise. 3685 */ 3686 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3687 const struct sched_param *param) 3688 { 3689 return _sched_setscheduler(p, policy, param, false); 3690 } 3691 3692 static int 3693 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3694 { 3695 struct sched_param lparam; 3696 struct task_struct *p; 3697 int retval; 3698 3699 if (!param || pid < 0) 3700 return -EINVAL; 3701 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3702 return -EFAULT; 3703 3704 rcu_read_lock(); 3705 retval = -ESRCH; 3706 p = find_process_by_pid(pid); 3707 if (p != NULL) 3708 retval = sched_setscheduler(p, policy, &lparam); 3709 rcu_read_unlock(); 3710 3711 return retval; 3712 } 3713 3714 /* 3715 * Mimics kernel/events/core.c perf_copy_attr(). 3716 */ 3717 static int sched_copy_attr(struct sched_attr __user *uattr, 3718 struct sched_attr *attr) 3719 { 3720 u32 size; 3721 int ret; 3722 3723 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3724 return -EFAULT; 3725 3726 /* 3727 * zero the full structure, so that a short copy will be nice. 3728 */ 3729 memset(attr, 0, sizeof(*attr)); 3730 3731 ret = get_user(size, &uattr->size); 3732 if (ret) 3733 return ret; 3734 3735 if (size > PAGE_SIZE) /* silly large */ 3736 goto err_size; 3737 3738 if (!size) /* abi compat */ 3739 size = SCHED_ATTR_SIZE_VER0; 3740 3741 if (size < SCHED_ATTR_SIZE_VER0) 3742 goto err_size; 3743 3744 /* 3745 * If we're handed a bigger struct than we know of, 3746 * ensure all the unknown bits are 0 - i.e. new 3747 * user-space does not rely on any kernel feature 3748 * extensions we dont know about yet. 3749 */ 3750 if (size > sizeof(*attr)) { 3751 unsigned char __user *addr; 3752 unsigned char __user *end; 3753 unsigned char val; 3754 3755 addr = (void __user *)uattr + sizeof(*attr); 3756 end = (void __user *)uattr + size; 3757 3758 for (; addr < end; addr++) { 3759 ret = get_user(val, addr); 3760 if (ret) 3761 return ret; 3762 if (val) 3763 goto err_size; 3764 } 3765 size = sizeof(*attr); 3766 } 3767 3768 ret = copy_from_user(attr, uattr, size); 3769 if (ret) 3770 return -EFAULT; 3771 3772 /* 3773 * XXX: do we want to be lenient like existing syscalls; or do we want 3774 * to be strict and return an error on out-of-bounds values? 3775 */ 3776 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3777 3778 return 0; 3779 3780 err_size: 3781 put_user(sizeof(*attr), &uattr->size); 3782 return -E2BIG; 3783 } 3784 3785 /** 3786 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3787 * @pid: the pid in question. 3788 * @policy: new policy. 3789 * @param: structure containing the new RT priority. 3790 * 3791 * Return: 0 on success. An error code otherwise. 3792 */ 3793 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3794 struct sched_param __user *, param) 3795 { 3796 /* negative values for policy are not valid */ 3797 if (policy < 0) 3798 return -EINVAL; 3799 3800 return do_sched_setscheduler(pid, policy, param); 3801 } 3802 3803 /** 3804 * sys_sched_setparam - set/change the RT priority of a thread 3805 * @pid: the pid in question. 3806 * @param: structure containing the new RT priority. 3807 * 3808 * Return: 0 on success. An error code otherwise. 3809 */ 3810 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3811 { 3812 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 3813 } 3814 3815 /** 3816 * sys_sched_setattr - same as above, but with extended sched_attr 3817 * @pid: the pid in question. 3818 * @uattr: structure containing the extended parameters. 3819 * @flags: for future extension. 3820 */ 3821 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3822 unsigned int, flags) 3823 { 3824 struct sched_attr attr; 3825 struct task_struct *p; 3826 int retval; 3827 3828 if (!uattr || pid < 0 || flags) 3829 return -EINVAL; 3830 3831 retval = sched_copy_attr(uattr, &attr); 3832 if (retval) 3833 return retval; 3834 3835 if ((int)attr.sched_policy < 0) 3836 return -EINVAL; 3837 3838 rcu_read_lock(); 3839 retval = -ESRCH; 3840 p = find_process_by_pid(pid); 3841 if (p != NULL) 3842 retval = sched_setattr(p, &attr); 3843 rcu_read_unlock(); 3844 3845 return retval; 3846 } 3847 3848 /** 3849 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3850 * @pid: the pid in question. 3851 * 3852 * Return: On success, the policy of the thread. Otherwise, a negative error 3853 * code. 3854 */ 3855 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3856 { 3857 struct task_struct *p; 3858 int retval; 3859 3860 if (pid < 0) 3861 return -EINVAL; 3862 3863 retval = -ESRCH; 3864 rcu_read_lock(); 3865 p = find_process_by_pid(pid); 3866 if (p) { 3867 retval = security_task_getscheduler(p); 3868 if (!retval) 3869 retval = p->policy 3870 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3871 } 3872 rcu_read_unlock(); 3873 return retval; 3874 } 3875 3876 /** 3877 * sys_sched_getparam - get the RT priority of a thread 3878 * @pid: the pid in question. 3879 * @param: structure containing the RT priority. 3880 * 3881 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3882 * code. 3883 */ 3884 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3885 { 3886 struct sched_param lp = { .sched_priority = 0 }; 3887 struct task_struct *p; 3888 int retval; 3889 3890 if (!param || pid < 0) 3891 return -EINVAL; 3892 3893 rcu_read_lock(); 3894 p = find_process_by_pid(pid); 3895 retval = -ESRCH; 3896 if (!p) 3897 goto out_unlock; 3898 3899 retval = security_task_getscheduler(p); 3900 if (retval) 3901 goto out_unlock; 3902 3903 if (task_has_rt_policy(p)) 3904 lp.sched_priority = p->rt_priority; 3905 rcu_read_unlock(); 3906 3907 /* 3908 * This one might sleep, we cannot do it with a spinlock held ... 3909 */ 3910 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3911 3912 return retval; 3913 3914 out_unlock: 3915 rcu_read_unlock(); 3916 return retval; 3917 } 3918 3919 static int sched_read_attr(struct sched_attr __user *uattr, 3920 struct sched_attr *attr, 3921 unsigned int usize) 3922 { 3923 int ret; 3924 3925 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3926 return -EFAULT; 3927 3928 /* 3929 * If we're handed a smaller struct than we know of, 3930 * ensure all the unknown bits are 0 - i.e. old 3931 * user-space does not get uncomplete information. 3932 */ 3933 if (usize < sizeof(*attr)) { 3934 unsigned char *addr; 3935 unsigned char *end; 3936 3937 addr = (void *)attr + usize; 3938 end = (void *)attr + sizeof(*attr); 3939 3940 for (; addr < end; addr++) { 3941 if (*addr) 3942 return -EFBIG; 3943 } 3944 3945 attr->size = usize; 3946 } 3947 3948 ret = copy_to_user(uattr, attr, attr->size); 3949 if (ret) 3950 return -EFAULT; 3951 3952 return 0; 3953 } 3954 3955 /** 3956 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3957 * @pid: the pid in question. 3958 * @uattr: structure containing the extended parameters. 3959 * @size: sizeof(attr) for fwd/bwd comp. 3960 * @flags: for future extension. 3961 */ 3962 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3963 unsigned int, size, unsigned int, flags) 3964 { 3965 struct sched_attr attr = { 3966 .size = sizeof(struct sched_attr), 3967 }; 3968 struct task_struct *p; 3969 int retval; 3970 3971 if (!uattr || pid < 0 || size > PAGE_SIZE || 3972 size < SCHED_ATTR_SIZE_VER0 || flags) 3973 return -EINVAL; 3974 3975 rcu_read_lock(); 3976 p = find_process_by_pid(pid); 3977 retval = -ESRCH; 3978 if (!p) 3979 goto out_unlock; 3980 3981 retval = security_task_getscheduler(p); 3982 if (retval) 3983 goto out_unlock; 3984 3985 attr.sched_policy = p->policy; 3986 if (p->sched_reset_on_fork) 3987 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3988 if (task_has_dl_policy(p)) 3989 __getparam_dl(p, &attr); 3990 else if (task_has_rt_policy(p)) 3991 attr.sched_priority = p->rt_priority; 3992 else 3993 attr.sched_nice = task_nice(p); 3994 3995 rcu_read_unlock(); 3996 3997 retval = sched_read_attr(uattr, &attr, size); 3998 return retval; 3999 4000 out_unlock: 4001 rcu_read_unlock(); 4002 return retval; 4003 } 4004 4005 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4006 { 4007 cpumask_var_t cpus_allowed, new_mask; 4008 struct task_struct *p; 4009 int retval; 4010 4011 rcu_read_lock(); 4012 4013 p = find_process_by_pid(pid); 4014 if (!p) { 4015 rcu_read_unlock(); 4016 return -ESRCH; 4017 } 4018 4019 /* Prevent p going away */ 4020 get_task_struct(p); 4021 rcu_read_unlock(); 4022 4023 if (p->flags & PF_NO_SETAFFINITY) { 4024 retval = -EINVAL; 4025 goto out_put_task; 4026 } 4027 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4028 retval = -ENOMEM; 4029 goto out_put_task; 4030 } 4031 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4032 retval = -ENOMEM; 4033 goto out_free_cpus_allowed; 4034 } 4035 retval = -EPERM; 4036 if (!check_same_owner(p)) { 4037 rcu_read_lock(); 4038 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4039 rcu_read_unlock(); 4040 goto out_free_new_mask; 4041 } 4042 rcu_read_unlock(); 4043 } 4044 4045 retval = security_task_setscheduler(p); 4046 if (retval) 4047 goto out_free_new_mask; 4048 4049 4050 cpuset_cpus_allowed(p, cpus_allowed); 4051 cpumask_and(new_mask, in_mask, cpus_allowed); 4052 4053 /* 4054 * Since bandwidth control happens on root_domain basis, 4055 * if admission test is enabled, we only admit -deadline 4056 * tasks allowed to run on all the CPUs in the task's 4057 * root_domain. 4058 */ 4059 #ifdef CONFIG_SMP 4060 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4061 rcu_read_lock(); 4062 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4063 retval = -EBUSY; 4064 rcu_read_unlock(); 4065 goto out_free_new_mask; 4066 } 4067 rcu_read_unlock(); 4068 } 4069 #endif 4070 again: 4071 retval = set_cpus_allowed_ptr(p, new_mask); 4072 4073 if (!retval) { 4074 cpuset_cpus_allowed(p, cpus_allowed); 4075 if (!cpumask_subset(new_mask, cpus_allowed)) { 4076 /* 4077 * We must have raced with a concurrent cpuset 4078 * update. Just reset the cpus_allowed to the 4079 * cpuset's cpus_allowed 4080 */ 4081 cpumask_copy(new_mask, cpus_allowed); 4082 goto again; 4083 } 4084 } 4085 out_free_new_mask: 4086 free_cpumask_var(new_mask); 4087 out_free_cpus_allowed: 4088 free_cpumask_var(cpus_allowed); 4089 out_put_task: 4090 put_task_struct(p); 4091 return retval; 4092 } 4093 4094 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4095 struct cpumask *new_mask) 4096 { 4097 if (len < cpumask_size()) 4098 cpumask_clear(new_mask); 4099 else if (len > cpumask_size()) 4100 len = cpumask_size(); 4101 4102 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4103 } 4104 4105 /** 4106 * sys_sched_setaffinity - set the cpu affinity of a process 4107 * @pid: pid of the process 4108 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4109 * @user_mask_ptr: user-space pointer to the new cpu mask 4110 * 4111 * Return: 0 on success. An error code otherwise. 4112 */ 4113 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4114 unsigned long __user *, user_mask_ptr) 4115 { 4116 cpumask_var_t new_mask; 4117 int retval; 4118 4119 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4120 return -ENOMEM; 4121 4122 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4123 if (retval == 0) 4124 retval = sched_setaffinity(pid, new_mask); 4125 free_cpumask_var(new_mask); 4126 return retval; 4127 } 4128 4129 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4130 { 4131 struct task_struct *p; 4132 unsigned long flags; 4133 int retval; 4134 4135 rcu_read_lock(); 4136 4137 retval = -ESRCH; 4138 p = find_process_by_pid(pid); 4139 if (!p) 4140 goto out_unlock; 4141 4142 retval = security_task_getscheduler(p); 4143 if (retval) 4144 goto out_unlock; 4145 4146 raw_spin_lock_irqsave(&p->pi_lock, flags); 4147 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4148 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4149 4150 out_unlock: 4151 rcu_read_unlock(); 4152 4153 return retval; 4154 } 4155 4156 /** 4157 * sys_sched_getaffinity - get the cpu affinity of a process 4158 * @pid: pid of the process 4159 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4160 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4161 * 4162 * Return: 0 on success. An error code otherwise. 4163 */ 4164 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4165 unsigned long __user *, user_mask_ptr) 4166 { 4167 int ret; 4168 cpumask_var_t mask; 4169 4170 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4171 return -EINVAL; 4172 if (len & (sizeof(unsigned long)-1)) 4173 return -EINVAL; 4174 4175 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4176 return -ENOMEM; 4177 4178 ret = sched_getaffinity(pid, mask); 4179 if (ret == 0) { 4180 size_t retlen = min_t(size_t, len, cpumask_size()); 4181 4182 if (copy_to_user(user_mask_ptr, mask, retlen)) 4183 ret = -EFAULT; 4184 else 4185 ret = retlen; 4186 } 4187 free_cpumask_var(mask); 4188 4189 return ret; 4190 } 4191 4192 /** 4193 * sys_sched_yield - yield the current processor to other threads. 4194 * 4195 * This function yields the current CPU to other tasks. If there are no 4196 * other threads running on this CPU then this function will return. 4197 * 4198 * Return: 0. 4199 */ 4200 SYSCALL_DEFINE0(sched_yield) 4201 { 4202 struct rq *rq = this_rq_lock(); 4203 4204 schedstat_inc(rq, yld_count); 4205 current->sched_class->yield_task(rq); 4206 4207 /* 4208 * Since we are going to call schedule() anyway, there's 4209 * no need to preempt or enable interrupts: 4210 */ 4211 __release(rq->lock); 4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4213 do_raw_spin_unlock(&rq->lock); 4214 sched_preempt_enable_no_resched(); 4215 4216 schedule(); 4217 4218 return 0; 4219 } 4220 4221 static void __cond_resched(void) 4222 { 4223 __preempt_count_add(PREEMPT_ACTIVE); 4224 __schedule(); 4225 __preempt_count_sub(PREEMPT_ACTIVE); 4226 } 4227 4228 int __sched _cond_resched(void) 4229 { 4230 if (should_resched()) { 4231 __cond_resched(); 4232 return 1; 4233 } 4234 return 0; 4235 } 4236 EXPORT_SYMBOL(_cond_resched); 4237 4238 /* 4239 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4240 * call schedule, and on return reacquire the lock. 4241 * 4242 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4243 * operations here to prevent schedule() from being called twice (once via 4244 * spin_unlock(), once by hand). 4245 */ 4246 int __cond_resched_lock(spinlock_t *lock) 4247 { 4248 int resched = should_resched(); 4249 int ret = 0; 4250 4251 lockdep_assert_held(lock); 4252 4253 if (spin_needbreak(lock) || resched) { 4254 spin_unlock(lock); 4255 if (resched) 4256 __cond_resched(); 4257 else 4258 cpu_relax(); 4259 ret = 1; 4260 spin_lock(lock); 4261 } 4262 return ret; 4263 } 4264 EXPORT_SYMBOL(__cond_resched_lock); 4265 4266 int __sched __cond_resched_softirq(void) 4267 { 4268 BUG_ON(!in_softirq()); 4269 4270 if (should_resched()) { 4271 local_bh_enable(); 4272 __cond_resched(); 4273 local_bh_disable(); 4274 return 1; 4275 } 4276 return 0; 4277 } 4278 EXPORT_SYMBOL(__cond_resched_softirq); 4279 4280 /** 4281 * yield - yield the current processor to other threads. 4282 * 4283 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4284 * 4285 * The scheduler is at all times free to pick the calling task as the most 4286 * eligible task to run, if removing the yield() call from your code breaks 4287 * it, its already broken. 4288 * 4289 * Typical broken usage is: 4290 * 4291 * while (!event) 4292 * yield(); 4293 * 4294 * where one assumes that yield() will let 'the other' process run that will 4295 * make event true. If the current task is a SCHED_FIFO task that will never 4296 * happen. Never use yield() as a progress guarantee!! 4297 * 4298 * If you want to use yield() to wait for something, use wait_event(). 4299 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4300 * If you still want to use yield(), do not! 4301 */ 4302 void __sched yield(void) 4303 { 4304 set_current_state(TASK_RUNNING); 4305 sys_sched_yield(); 4306 } 4307 EXPORT_SYMBOL(yield); 4308 4309 /** 4310 * yield_to - yield the current processor to another thread in 4311 * your thread group, or accelerate that thread toward the 4312 * processor it's on. 4313 * @p: target task 4314 * @preempt: whether task preemption is allowed or not 4315 * 4316 * It's the caller's job to ensure that the target task struct 4317 * can't go away on us before we can do any checks. 4318 * 4319 * Return: 4320 * true (>0) if we indeed boosted the target task. 4321 * false (0) if we failed to boost the target. 4322 * -ESRCH if there's no task to yield to. 4323 */ 4324 int __sched yield_to(struct task_struct *p, bool preempt) 4325 { 4326 struct task_struct *curr = current; 4327 struct rq *rq, *p_rq; 4328 unsigned long flags; 4329 int yielded = 0; 4330 4331 local_irq_save(flags); 4332 rq = this_rq(); 4333 4334 again: 4335 p_rq = task_rq(p); 4336 /* 4337 * If we're the only runnable task on the rq and target rq also 4338 * has only one task, there's absolutely no point in yielding. 4339 */ 4340 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4341 yielded = -ESRCH; 4342 goto out_irq; 4343 } 4344 4345 double_rq_lock(rq, p_rq); 4346 if (task_rq(p) != p_rq) { 4347 double_rq_unlock(rq, p_rq); 4348 goto again; 4349 } 4350 4351 if (!curr->sched_class->yield_to_task) 4352 goto out_unlock; 4353 4354 if (curr->sched_class != p->sched_class) 4355 goto out_unlock; 4356 4357 if (task_running(p_rq, p) || p->state) 4358 goto out_unlock; 4359 4360 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4361 if (yielded) { 4362 schedstat_inc(rq, yld_count); 4363 /* 4364 * Make p's CPU reschedule; pick_next_entity takes care of 4365 * fairness. 4366 */ 4367 if (preempt && rq != p_rq) 4368 resched_curr(p_rq); 4369 } 4370 4371 out_unlock: 4372 double_rq_unlock(rq, p_rq); 4373 out_irq: 4374 local_irq_restore(flags); 4375 4376 if (yielded > 0) 4377 schedule(); 4378 4379 return yielded; 4380 } 4381 EXPORT_SYMBOL_GPL(yield_to); 4382 4383 /* 4384 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4385 * that process accounting knows that this is a task in IO wait state. 4386 */ 4387 void __sched io_schedule(void) 4388 { 4389 struct rq *rq = raw_rq(); 4390 4391 delayacct_blkio_start(); 4392 atomic_inc(&rq->nr_iowait); 4393 blk_flush_plug(current); 4394 current->in_iowait = 1; 4395 schedule(); 4396 current->in_iowait = 0; 4397 atomic_dec(&rq->nr_iowait); 4398 delayacct_blkio_end(); 4399 } 4400 EXPORT_SYMBOL(io_schedule); 4401 4402 long __sched io_schedule_timeout(long timeout) 4403 { 4404 struct rq *rq = raw_rq(); 4405 long ret; 4406 4407 delayacct_blkio_start(); 4408 atomic_inc(&rq->nr_iowait); 4409 blk_flush_plug(current); 4410 current->in_iowait = 1; 4411 ret = schedule_timeout(timeout); 4412 current->in_iowait = 0; 4413 atomic_dec(&rq->nr_iowait); 4414 delayacct_blkio_end(); 4415 return ret; 4416 } 4417 4418 /** 4419 * sys_sched_get_priority_max - return maximum RT priority. 4420 * @policy: scheduling class. 4421 * 4422 * Return: On success, this syscall returns the maximum 4423 * rt_priority that can be used by a given scheduling class. 4424 * On failure, a negative error code is returned. 4425 */ 4426 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4427 { 4428 int ret = -EINVAL; 4429 4430 switch (policy) { 4431 case SCHED_FIFO: 4432 case SCHED_RR: 4433 ret = MAX_USER_RT_PRIO-1; 4434 break; 4435 case SCHED_DEADLINE: 4436 case SCHED_NORMAL: 4437 case SCHED_BATCH: 4438 case SCHED_IDLE: 4439 ret = 0; 4440 break; 4441 } 4442 return ret; 4443 } 4444 4445 /** 4446 * sys_sched_get_priority_min - return minimum RT priority. 4447 * @policy: scheduling class. 4448 * 4449 * Return: On success, this syscall returns the minimum 4450 * rt_priority that can be used by a given scheduling class. 4451 * On failure, a negative error code is returned. 4452 */ 4453 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4454 { 4455 int ret = -EINVAL; 4456 4457 switch (policy) { 4458 case SCHED_FIFO: 4459 case SCHED_RR: 4460 ret = 1; 4461 break; 4462 case SCHED_DEADLINE: 4463 case SCHED_NORMAL: 4464 case SCHED_BATCH: 4465 case SCHED_IDLE: 4466 ret = 0; 4467 } 4468 return ret; 4469 } 4470 4471 /** 4472 * sys_sched_rr_get_interval - return the default timeslice of a process. 4473 * @pid: pid of the process. 4474 * @interval: userspace pointer to the timeslice value. 4475 * 4476 * this syscall writes the default timeslice value of a given process 4477 * into the user-space timespec buffer. A value of '0' means infinity. 4478 * 4479 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4480 * an error code. 4481 */ 4482 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4483 struct timespec __user *, interval) 4484 { 4485 struct task_struct *p; 4486 unsigned int time_slice; 4487 unsigned long flags; 4488 struct rq *rq; 4489 int retval; 4490 struct timespec t; 4491 4492 if (pid < 0) 4493 return -EINVAL; 4494 4495 retval = -ESRCH; 4496 rcu_read_lock(); 4497 p = find_process_by_pid(pid); 4498 if (!p) 4499 goto out_unlock; 4500 4501 retval = security_task_getscheduler(p); 4502 if (retval) 4503 goto out_unlock; 4504 4505 rq = task_rq_lock(p, &flags); 4506 time_slice = 0; 4507 if (p->sched_class->get_rr_interval) 4508 time_slice = p->sched_class->get_rr_interval(rq, p); 4509 task_rq_unlock(rq, p, &flags); 4510 4511 rcu_read_unlock(); 4512 jiffies_to_timespec(time_slice, &t); 4513 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4514 return retval; 4515 4516 out_unlock: 4517 rcu_read_unlock(); 4518 return retval; 4519 } 4520 4521 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4522 4523 void sched_show_task(struct task_struct *p) 4524 { 4525 unsigned long free = 0; 4526 int ppid; 4527 unsigned state; 4528 4529 state = p->state ? __ffs(p->state) + 1 : 0; 4530 printk(KERN_INFO "%-15.15s %c", p->comm, 4531 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4532 #if BITS_PER_LONG == 32 4533 if (state == TASK_RUNNING) 4534 printk(KERN_CONT " running "); 4535 else 4536 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4537 #else 4538 if (state == TASK_RUNNING) 4539 printk(KERN_CONT " running task "); 4540 else 4541 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4542 #endif 4543 #ifdef CONFIG_DEBUG_STACK_USAGE 4544 free = stack_not_used(p); 4545 #endif 4546 rcu_read_lock(); 4547 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4548 rcu_read_unlock(); 4549 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4550 task_pid_nr(p), ppid, 4551 (unsigned long)task_thread_info(p)->flags); 4552 4553 print_worker_info(KERN_INFO, p); 4554 show_stack(p, NULL); 4555 } 4556 4557 void show_state_filter(unsigned long state_filter) 4558 { 4559 struct task_struct *g, *p; 4560 4561 #if BITS_PER_LONG == 32 4562 printk(KERN_INFO 4563 " task PC stack pid father\n"); 4564 #else 4565 printk(KERN_INFO 4566 " task PC stack pid father\n"); 4567 #endif 4568 rcu_read_lock(); 4569 for_each_process_thread(g, p) { 4570 /* 4571 * reset the NMI-timeout, listing all files on a slow 4572 * console might take a lot of time: 4573 */ 4574 touch_nmi_watchdog(); 4575 if (!state_filter || (p->state & state_filter)) 4576 sched_show_task(p); 4577 } 4578 4579 touch_all_softlockup_watchdogs(); 4580 4581 #ifdef CONFIG_SCHED_DEBUG 4582 sysrq_sched_debug_show(); 4583 #endif 4584 rcu_read_unlock(); 4585 /* 4586 * Only show locks if all tasks are dumped: 4587 */ 4588 if (!state_filter) 4589 debug_show_all_locks(); 4590 } 4591 4592 void init_idle_bootup_task(struct task_struct *idle) 4593 { 4594 idle->sched_class = &idle_sched_class; 4595 } 4596 4597 /** 4598 * init_idle - set up an idle thread for a given CPU 4599 * @idle: task in question 4600 * @cpu: cpu the idle task belongs to 4601 * 4602 * NOTE: this function does not set the idle thread's NEED_RESCHED 4603 * flag, to make booting more robust. 4604 */ 4605 void init_idle(struct task_struct *idle, int cpu) 4606 { 4607 struct rq *rq = cpu_rq(cpu); 4608 unsigned long flags; 4609 4610 raw_spin_lock_irqsave(&rq->lock, flags); 4611 4612 __sched_fork(0, idle); 4613 idle->state = TASK_RUNNING; 4614 idle->se.exec_start = sched_clock(); 4615 4616 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4617 /* 4618 * We're having a chicken and egg problem, even though we are 4619 * holding rq->lock, the cpu isn't yet set to this cpu so the 4620 * lockdep check in task_group() will fail. 4621 * 4622 * Similar case to sched_fork(). / Alternatively we could 4623 * use task_rq_lock() here and obtain the other rq->lock. 4624 * 4625 * Silence PROVE_RCU 4626 */ 4627 rcu_read_lock(); 4628 __set_task_cpu(idle, cpu); 4629 rcu_read_unlock(); 4630 4631 rq->curr = rq->idle = idle; 4632 idle->on_rq = TASK_ON_RQ_QUEUED; 4633 #if defined(CONFIG_SMP) 4634 idle->on_cpu = 1; 4635 #endif 4636 raw_spin_unlock_irqrestore(&rq->lock, flags); 4637 4638 /* Set the preempt count _outside_ the spinlocks! */ 4639 init_idle_preempt_count(idle, cpu); 4640 4641 /* 4642 * The idle tasks have their own, simple scheduling class: 4643 */ 4644 idle->sched_class = &idle_sched_class; 4645 ftrace_graph_init_idle_task(idle, cpu); 4646 vtime_init_idle(idle, cpu); 4647 #if defined(CONFIG_SMP) 4648 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4649 #endif 4650 } 4651 4652 #ifdef CONFIG_SMP 4653 /* 4654 * move_queued_task - move a queued task to new rq. 4655 * 4656 * Returns (locked) new rq. Old rq's lock is released. 4657 */ 4658 static struct rq *move_queued_task(struct task_struct *p, int new_cpu) 4659 { 4660 struct rq *rq = task_rq(p); 4661 4662 lockdep_assert_held(&rq->lock); 4663 4664 dequeue_task(rq, p, 0); 4665 p->on_rq = TASK_ON_RQ_MIGRATING; 4666 set_task_cpu(p, new_cpu); 4667 raw_spin_unlock(&rq->lock); 4668 4669 rq = cpu_rq(new_cpu); 4670 4671 raw_spin_lock(&rq->lock); 4672 BUG_ON(task_cpu(p) != new_cpu); 4673 p->on_rq = TASK_ON_RQ_QUEUED; 4674 enqueue_task(rq, p, 0); 4675 check_preempt_curr(rq, p, 0); 4676 4677 return rq; 4678 } 4679 4680 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4681 { 4682 if (p->sched_class && p->sched_class->set_cpus_allowed) 4683 p->sched_class->set_cpus_allowed(p, new_mask); 4684 4685 cpumask_copy(&p->cpus_allowed, new_mask); 4686 p->nr_cpus_allowed = cpumask_weight(new_mask); 4687 } 4688 4689 /* 4690 * This is how migration works: 4691 * 4692 * 1) we invoke migration_cpu_stop() on the target CPU using 4693 * stop_one_cpu(). 4694 * 2) stopper starts to run (implicitly forcing the migrated thread 4695 * off the CPU) 4696 * 3) it checks whether the migrated task is still in the wrong runqueue. 4697 * 4) if it's in the wrong runqueue then the migration thread removes 4698 * it and puts it into the right queue. 4699 * 5) stopper completes and stop_one_cpu() returns and the migration 4700 * is done. 4701 */ 4702 4703 /* 4704 * Change a given task's CPU affinity. Migrate the thread to a 4705 * proper CPU and schedule it away if the CPU it's executing on 4706 * is removed from the allowed bitmask. 4707 * 4708 * NOTE: the caller must have a valid reference to the task, the 4709 * task must not exit() & deallocate itself prematurely. The 4710 * call is not atomic; no spinlocks may be held. 4711 */ 4712 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4713 { 4714 unsigned long flags; 4715 struct rq *rq; 4716 unsigned int dest_cpu; 4717 int ret = 0; 4718 4719 rq = task_rq_lock(p, &flags); 4720 4721 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4722 goto out; 4723 4724 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4725 ret = -EINVAL; 4726 goto out; 4727 } 4728 4729 do_set_cpus_allowed(p, new_mask); 4730 4731 /* Can the task run on the task's current CPU? If so, we're done */ 4732 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4733 goto out; 4734 4735 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4736 if (task_running(rq, p) || p->state == TASK_WAKING) { 4737 struct migration_arg arg = { p, dest_cpu }; 4738 /* Need help from migration thread: drop lock and wait. */ 4739 task_rq_unlock(rq, p, &flags); 4740 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4741 tlb_migrate_finish(p->mm); 4742 return 0; 4743 } else if (task_on_rq_queued(p)) 4744 rq = move_queued_task(p, dest_cpu); 4745 out: 4746 task_rq_unlock(rq, p, &flags); 4747 4748 return ret; 4749 } 4750 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4751 4752 /* 4753 * Move (not current) task off this cpu, onto dest cpu. We're doing 4754 * this because either it can't run here any more (set_cpus_allowed() 4755 * away from this CPU, or CPU going down), or because we're 4756 * attempting to rebalance this task on exec (sched_exec). 4757 * 4758 * So we race with normal scheduler movements, but that's OK, as long 4759 * as the task is no longer on this CPU. 4760 * 4761 * Returns non-zero if task was successfully migrated. 4762 */ 4763 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4764 { 4765 struct rq *rq; 4766 int ret = 0; 4767 4768 if (unlikely(!cpu_active(dest_cpu))) 4769 return ret; 4770 4771 rq = cpu_rq(src_cpu); 4772 4773 raw_spin_lock(&p->pi_lock); 4774 raw_spin_lock(&rq->lock); 4775 /* Already moved. */ 4776 if (task_cpu(p) != src_cpu) 4777 goto done; 4778 4779 /* Affinity changed (again). */ 4780 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4781 goto fail; 4782 4783 /* 4784 * If we're not on a rq, the next wake-up will ensure we're 4785 * placed properly. 4786 */ 4787 if (task_on_rq_queued(p)) 4788 rq = move_queued_task(p, dest_cpu); 4789 done: 4790 ret = 1; 4791 fail: 4792 raw_spin_unlock(&rq->lock); 4793 raw_spin_unlock(&p->pi_lock); 4794 return ret; 4795 } 4796 4797 #ifdef CONFIG_NUMA_BALANCING 4798 /* Migrate current task p to target_cpu */ 4799 int migrate_task_to(struct task_struct *p, int target_cpu) 4800 { 4801 struct migration_arg arg = { p, target_cpu }; 4802 int curr_cpu = task_cpu(p); 4803 4804 if (curr_cpu == target_cpu) 4805 return 0; 4806 4807 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4808 return -EINVAL; 4809 4810 /* TODO: This is not properly updating schedstats */ 4811 4812 trace_sched_move_numa(p, curr_cpu, target_cpu); 4813 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4814 } 4815 4816 /* 4817 * Requeue a task on a given node and accurately track the number of NUMA 4818 * tasks on the runqueues 4819 */ 4820 void sched_setnuma(struct task_struct *p, int nid) 4821 { 4822 struct rq *rq; 4823 unsigned long flags; 4824 bool queued, running; 4825 4826 rq = task_rq_lock(p, &flags); 4827 queued = task_on_rq_queued(p); 4828 running = task_current(rq, p); 4829 4830 if (queued) 4831 dequeue_task(rq, p, 0); 4832 if (running) 4833 put_prev_task(rq, p); 4834 4835 p->numa_preferred_nid = nid; 4836 4837 if (running) 4838 p->sched_class->set_curr_task(rq); 4839 if (queued) 4840 enqueue_task(rq, p, 0); 4841 task_rq_unlock(rq, p, &flags); 4842 } 4843 #endif 4844 4845 /* 4846 * migration_cpu_stop - this will be executed by a highprio stopper thread 4847 * and performs thread migration by bumping thread off CPU then 4848 * 'pushing' onto another runqueue. 4849 */ 4850 static int migration_cpu_stop(void *data) 4851 { 4852 struct migration_arg *arg = data; 4853 4854 /* 4855 * The original target cpu might have gone down and we might 4856 * be on another cpu but it doesn't matter. 4857 */ 4858 local_irq_disable(); 4859 /* 4860 * We need to explicitly wake pending tasks before running 4861 * __migrate_task() such that we will not miss enforcing cpus_allowed 4862 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 4863 */ 4864 sched_ttwu_pending(); 4865 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4866 local_irq_enable(); 4867 return 0; 4868 } 4869 4870 #ifdef CONFIG_HOTPLUG_CPU 4871 4872 /* 4873 * Ensures that the idle task is using init_mm right before its cpu goes 4874 * offline. 4875 */ 4876 void idle_task_exit(void) 4877 { 4878 struct mm_struct *mm = current->active_mm; 4879 4880 BUG_ON(cpu_online(smp_processor_id())); 4881 4882 if (mm != &init_mm) { 4883 switch_mm(mm, &init_mm, current); 4884 finish_arch_post_lock_switch(); 4885 } 4886 mmdrop(mm); 4887 } 4888 4889 /* 4890 * Since this CPU is going 'away' for a while, fold any nr_active delta 4891 * we might have. Assumes we're called after migrate_tasks() so that the 4892 * nr_active count is stable. 4893 * 4894 * Also see the comment "Global load-average calculations". 4895 */ 4896 static void calc_load_migrate(struct rq *rq) 4897 { 4898 long delta = calc_load_fold_active(rq); 4899 if (delta) 4900 atomic_long_add(delta, &calc_load_tasks); 4901 } 4902 4903 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4904 { 4905 } 4906 4907 static const struct sched_class fake_sched_class = { 4908 .put_prev_task = put_prev_task_fake, 4909 }; 4910 4911 static struct task_struct fake_task = { 4912 /* 4913 * Avoid pull_{rt,dl}_task() 4914 */ 4915 .prio = MAX_PRIO + 1, 4916 .sched_class = &fake_sched_class, 4917 }; 4918 4919 /* 4920 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4921 * try_to_wake_up()->select_task_rq(). 4922 * 4923 * Called with rq->lock held even though we'er in stop_machine() and 4924 * there's no concurrency possible, we hold the required locks anyway 4925 * because of lock validation efforts. 4926 */ 4927 static void migrate_tasks(unsigned int dead_cpu) 4928 { 4929 struct rq *rq = cpu_rq(dead_cpu); 4930 struct task_struct *next, *stop = rq->stop; 4931 int dest_cpu; 4932 4933 /* 4934 * Fudge the rq selection such that the below task selection loop 4935 * doesn't get stuck on the currently eligible stop task. 4936 * 4937 * We're currently inside stop_machine() and the rq is either stuck 4938 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4939 * either way we should never end up calling schedule() until we're 4940 * done here. 4941 */ 4942 rq->stop = NULL; 4943 4944 /* 4945 * put_prev_task() and pick_next_task() sched 4946 * class method both need to have an up-to-date 4947 * value of rq->clock[_task] 4948 */ 4949 update_rq_clock(rq); 4950 4951 for ( ; ; ) { 4952 /* 4953 * There's this thread running, bail when that's the only 4954 * remaining thread. 4955 */ 4956 if (rq->nr_running == 1) 4957 break; 4958 4959 next = pick_next_task(rq, &fake_task); 4960 BUG_ON(!next); 4961 next->sched_class->put_prev_task(rq, next); 4962 4963 /* Find suitable destination for @next, with force if needed. */ 4964 dest_cpu = select_fallback_rq(dead_cpu, next); 4965 raw_spin_unlock(&rq->lock); 4966 4967 __migrate_task(next, dead_cpu, dest_cpu); 4968 4969 raw_spin_lock(&rq->lock); 4970 } 4971 4972 rq->stop = stop; 4973 } 4974 4975 #endif /* CONFIG_HOTPLUG_CPU */ 4976 4977 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4978 4979 static struct ctl_table sd_ctl_dir[] = { 4980 { 4981 .procname = "sched_domain", 4982 .mode = 0555, 4983 }, 4984 {} 4985 }; 4986 4987 static struct ctl_table sd_ctl_root[] = { 4988 { 4989 .procname = "kernel", 4990 .mode = 0555, 4991 .child = sd_ctl_dir, 4992 }, 4993 {} 4994 }; 4995 4996 static struct ctl_table *sd_alloc_ctl_entry(int n) 4997 { 4998 struct ctl_table *entry = 4999 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 5000 5001 return entry; 5002 } 5003 5004 static void sd_free_ctl_entry(struct ctl_table **tablep) 5005 { 5006 struct ctl_table *entry; 5007 5008 /* 5009 * In the intermediate directories, both the child directory and 5010 * procname are dynamically allocated and could fail but the mode 5011 * will always be set. In the lowest directory the names are 5012 * static strings and all have proc handlers. 5013 */ 5014 for (entry = *tablep; entry->mode; entry++) { 5015 if (entry->child) 5016 sd_free_ctl_entry(&entry->child); 5017 if (entry->proc_handler == NULL) 5018 kfree(entry->procname); 5019 } 5020 5021 kfree(*tablep); 5022 *tablep = NULL; 5023 } 5024 5025 static int min_load_idx = 0; 5026 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 5027 5028 static void 5029 set_table_entry(struct ctl_table *entry, 5030 const char *procname, void *data, int maxlen, 5031 umode_t mode, proc_handler *proc_handler, 5032 bool load_idx) 5033 { 5034 entry->procname = procname; 5035 entry->data = data; 5036 entry->maxlen = maxlen; 5037 entry->mode = mode; 5038 entry->proc_handler = proc_handler; 5039 5040 if (load_idx) { 5041 entry->extra1 = &min_load_idx; 5042 entry->extra2 = &max_load_idx; 5043 } 5044 } 5045 5046 static struct ctl_table * 5047 sd_alloc_ctl_domain_table(struct sched_domain *sd) 5048 { 5049 struct ctl_table *table = sd_alloc_ctl_entry(14); 5050 5051 if (table == NULL) 5052 return NULL; 5053 5054 set_table_entry(&table[0], "min_interval", &sd->min_interval, 5055 sizeof(long), 0644, proc_doulongvec_minmax, false); 5056 set_table_entry(&table[1], "max_interval", &sd->max_interval, 5057 sizeof(long), 0644, proc_doulongvec_minmax, false); 5058 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 5059 sizeof(int), 0644, proc_dointvec_minmax, true); 5060 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 5061 sizeof(int), 0644, proc_dointvec_minmax, true); 5062 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 5063 sizeof(int), 0644, proc_dointvec_minmax, true); 5064 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 5065 sizeof(int), 0644, proc_dointvec_minmax, true); 5066 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 5067 sizeof(int), 0644, proc_dointvec_minmax, true); 5068 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 5069 sizeof(int), 0644, proc_dointvec_minmax, false); 5070 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 5071 sizeof(int), 0644, proc_dointvec_minmax, false); 5072 set_table_entry(&table[9], "cache_nice_tries", 5073 &sd->cache_nice_tries, 5074 sizeof(int), 0644, proc_dointvec_minmax, false); 5075 set_table_entry(&table[10], "flags", &sd->flags, 5076 sizeof(int), 0644, proc_dointvec_minmax, false); 5077 set_table_entry(&table[11], "max_newidle_lb_cost", 5078 &sd->max_newidle_lb_cost, 5079 sizeof(long), 0644, proc_doulongvec_minmax, false); 5080 set_table_entry(&table[12], "name", sd->name, 5081 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 5082 /* &table[13] is terminator */ 5083 5084 return table; 5085 } 5086 5087 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 5088 { 5089 struct ctl_table *entry, *table; 5090 struct sched_domain *sd; 5091 int domain_num = 0, i; 5092 char buf[32]; 5093 5094 for_each_domain(cpu, sd) 5095 domain_num++; 5096 entry = table = sd_alloc_ctl_entry(domain_num + 1); 5097 if (table == NULL) 5098 return NULL; 5099 5100 i = 0; 5101 for_each_domain(cpu, sd) { 5102 snprintf(buf, 32, "domain%d", i); 5103 entry->procname = kstrdup(buf, GFP_KERNEL); 5104 entry->mode = 0555; 5105 entry->child = sd_alloc_ctl_domain_table(sd); 5106 entry++; 5107 i++; 5108 } 5109 return table; 5110 } 5111 5112 static struct ctl_table_header *sd_sysctl_header; 5113 static void register_sched_domain_sysctl(void) 5114 { 5115 int i, cpu_num = num_possible_cpus(); 5116 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 5117 char buf[32]; 5118 5119 WARN_ON(sd_ctl_dir[0].child); 5120 sd_ctl_dir[0].child = entry; 5121 5122 if (entry == NULL) 5123 return; 5124 5125 for_each_possible_cpu(i) { 5126 snprintf(buf, 32, "cpu%d", i); 5127 entry->procname = kstrdup(buf, GFP_KERNEL); 5128 entry->mode = 0555; 5129 entry->child = sd_alloc_ctl_cpu_table(i); 5130 entry++; 5131 } 5132 5133 WARN_ON(sd_sysctl_header); 5134 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 5135 } 5136 5137 /* may be called multiple times per register */ 5138 static void unregister_sched_domain_sysctl(void) 5139 { 5140 if (sd_sysctl_header) 5141 unregister_sysctl_table(sd_sysctl_header); 5142 sd_sysctl_header = NULL; 5143 if (sd_ctl_dir[0].child) 5144 sd_free_ctl_entry(&sd_ctl_dir[0].child); 5145 } 5146 #else 5147 static void register_sched_domain_sysctl(void) 5148 { 5149 } 5150 static void unregister_sched_domain_sysctl(void) 5151 { 5152 } 5153 #endif 5154 5155 static void set_rq_online(struct rq *rq) 5156 { 5157 if (!rq->online) { 5158 const struct sched_class *class; 5159 5160 cpumask_set_cpu(rq->cpu, rq->rd->online); 5161 rq->online = 1; 5162 5163 for_each_class(class) { 5164 if (class->rq_online) 5165 class->rq_online(rq); 5166 } 5167 } 5168 } 5169 5170 static void set_rq_offline(struct rq *rq) 5171 { 5172 if (rq->online) { 5173 const struct sched_class *class; 5174 5175 for_each_class(class) { 5176 if (class->rq_offline) 5177 class->rq_offline(rq); 5178 } 5179 5180 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5181 rq->online = 0; 5182 } 5183 } 5184 5185 /* 5186 * migration_call - callback that gets triggered when a CPU is added. 5187 * Here we can start up the necessary migration thread for the new CPU. 5188 */ 5189 static int 5190 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5191 { 5192 int cpu = (long)hcpu; 5193 unsigned long flags; 5194 struct rq *rq = cpu_rq(cpu); 5195 5196 switch (action & ~CPU_TASKS_FROZEN) { 5197 5198 case CPU_UP_PREPARE: 5199 rq->calc_load_update = calc_load_update; 5200 break; 5201 5202 case CPU_ONLINE: 5203 /* Update our root-domain */ 5204 raw_spin_lock_irqsave(&rq->lock, flags); 5205 if (rq->rd) { 5206 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5207 5208 set_rq_online(rq); 5209 } 5210 raw_spin_unlock_irqrestore(&rq->lock, flags); 5211 break; 5212 5213 #ifdef CONFIG_HOTPLUG_CPU 5214 case CPU_DYING: 5215 sched_ttwu_pending(); 5216 /* Update our root-domain */ 5217 raw_spin_lock_irqsave(&rq->lock, flags); 5218 if (rq->rd) { 5219 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5220 set_rq_offline(rq); 5221 } 5222 migrate_tasks(cpu); 5223 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5224 raw_spin_unlock_irqrestore(&rq->lock, flags); 5225 break; 5226 5227 case CPU_DEAD: 5228 calc_load_migrate(rq); 5229 break; 5230 #endif 5231 } 5232 5233 update_max_interval(); 5234 5235 return NOTIFY_OK; 5236 } 5237 5238 /* 5239 * Register at high priority so that task migration (migrate_all_tasks) 5240 * happens before everything else. This has to be lower priority than 5241 * the notifier in the perf_event subsystem, though. 5242 */ 5243 static struct notifier_block migration_notifier = { 5244 .notifier_call = migration_call, 5245 .priority = CPU_PRI_MIGRATION, 5246 }; 5247 5248 static void __cpuinit set_cpu_rq_start_time(void) 5249 { 5250 int cpu = smp_processor_id(); 5251 struct rq *rq = cpu_rq(cpu); 5252 rq->age_stamp = sched_clock_cpu(cpu); 5253 } 5254 5255 static int sched_cpu_active(struct notifier_block *nfb, 5256 unsigned long action, void *hcpu) 5257 { 5258 switch (action & ~CPU_TASKS_FROZEN) { 5259 case CPU_STARTING: 5260 set_cpu_rq_start_time(); 5261 return NOTIFY_OK; 5262 case CPU_DOWN_FAILED: 5263 set_cpu_active((long)hcpu, true); 5264 return NOTIFY_OK; 5265 default: 5266 return NOTIFY_DONE; 5267 } 5268 } 5269 5270 static int sched_cpu_inactive(struct notifier_block *nfb, 5271 unsigned long action, void *hcpu) 5272 { 5273 unsigned long flags; 5274 long cpu = (long)hcpu; 5275 struct dl_bw *dl_b; 5276 5277 switch (action & ~CPU_TASKS_FROZEN) { 5278 case CPU_DOWN_PREPARE: 5279 set_cpu_active(cpu, false); 5280 5281 /* explicitly allow suspend */ 5282 if (!(action & CPU_TASKS_FROZEN)) { 5283 bool overflow; 5284 int cpus; 5285 5286 rcu_read_lock_sched(); 5287 dl_b = dl_bw_of(cpu); 5288 5289 raw_spin_lock_irqsave(&dl_b->lock, flags); 5290 cpus = dl_bw_cpus(cpu); 5291 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5292 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5293 5294 rcu_read_unlock_sched(); 5295 5296 if (overflow) 5297 return notifier_from_errno(-EBUSY); 5298 } 5299 return NOTIFY_OK; 5300 } 5301 5302 return NOTIFY_DONE; 5303 } 5304 5305 static int __init migration_init(void) 5306 { 5307 void *cpu = (void *)(long)smp_processor_id(); 5308 int err; 5309 5310 /* Initialize migration for the boot CPU */ 5311 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5312 BUG_ON(err == NOTIFY_BAD); 5313 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5314 register_cpu_notifier(&migration_notifier); 5315 5316 /* Register cpu active notifiers */ 5317 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5318 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5319 5320 return 0; 5321 } 5322 early_initcall(migration_init); 5323 #endif 5324 5325 #ifdef CONFIG_SMP 5326 5327 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5328 5329 #ifdef CONFIG_SCHED_DEBUG 5330 5331 static __read_mostly int sched_debug_enabled; 5332 5333 static int __init sched_debug_setup(char *str) 5334 { 5335 sched_debug_enabled = 1; 5336 5337 return 0; 5338 } 5339 early_param("sched_debug", sched_debug_setup); 5340 5341 static inline bool sched_debug(void) 5342 { 5343 return sched_debug_enabled; 5344 } 5345 5346 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5347 struct cpumask *groupmask) 5348 { 5349 struct sched_group *group = sd->groups; 5350 char str[256]; 5351 5352 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5353 cpumask_clear(groupmask); 5354 5355 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5356 5357 if (!(sd->flags & SD_LOAD_BALANCE)) { 5358 printk("does not load-balance\n"); 5359 if (sd->parent) 5360 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5361 " has parent"); 5362 return -1; 5363 } 5364 5365 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5366 5367 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5368 printk(KERN_ERR "ERROR: domain->span does not contain " 5369 "CPU%d\n", cpu); 5370 } 5371 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5372 printk(KERN_ERR "ERROR: domain->groups does not contain" 5373 " CPU%d\n", cpu); 5374 } 5375 5376 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5377 do { 5378 if (!group) { 5379 printk("\n"); 5380 printk(KERN_ERR "ERROR: group is NULL\n"); 5381 break; 5382 } 5383 5384 /* 5385 * Even though we initialize ->capacity to something semi-sane, 5386 * we leave capacity_orig unset. This allows us to detect if 5387 * domain iteration is still funny without causing /0 traps. 5388 */ 5389 if (!group->sgc->capacity_orig) { 5390 printk(KERN_CONT "\n"); 5391 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n"); 5392 break; 5393 } 5394 5395 if (!cpumask_weight(sched_group_cpus(group))) { 5396 printk(KERN_CONT "\n"); 5397 printk(KERN_ERR "ERROR: empty group\n"); 5398 break; 5399 } 5400 5401 if (!(sd->flags & SD_OVERLAP) && 5402 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5403 printk(KERN_CONT "\n"); 5404 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5405 break; 5406 } 5407 5408 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5409 5410 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5411 5412 printk(KERN_CONT " %s", str); 5413 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { 5414 printk(KERN_CONT " (cpu_capacity = %d)", 5415 group->sgc->capacity); 5416 } 5417 5418 group = group->next; 5419 } while (group != sd->groups); 5420 printk(KERN_CONT "\n"); 5421 5422 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5423 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5424 5425 if (sd->parent && 5426 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5427 printk(KERN_ERR "ERROR: parent span is not a superset " 5428 "of domain->span\n"); 5429 return 0; 5430 } 5431 5432 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5433 { 5434 int level = 0; 5435 5436 if (!sched_debug_enabled) 5437 return; 5438 5439 if (!sd) { 5440 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5441 return; 5442 } 5443 5444 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5445 5446 for (;;) { 5447 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5448 break; 5449 level++; 5450 sd = sd->parent; 5451 if (!sd) 5452 break; 5453 } 5454 } 5455 #else /* !CONFIG_SCHED_DEBUG */ 5456 # define sched_domain_debug(sd, cpu) do { } while (0) 5457 static inline bool sched_debug(void) 5458 { 5459 return false; 5460 } 5461 #endif /* CONFIG_SCHED_DEBUG */ 5462 5463 static int sd_degenerate(struct sched_domain *sd) 5464 { 5465 if (cpumask_weight(sched_domain_span(sd)) == 1) 5466 return 1; 5467 5468 /* Following flags need at least 2 groups */ 5469 if (sd->flags & (SD_LOAD_BALANCE | 5470 SD_BALANCE_NEWIDLE | 5471 SD_BALANCE_FORK | 5472 SD_BALANCE_EXEC | 5473 SD_SHARE_CPUCAPACITY | 5474 SD_SHARE_PKG_RESOURCES | 5475 SD_SHARE_POWERDOMAIN)) { 5476 if (sd->groups != sd->groups->next) 5477 return 0; 5478 } 5479 5480 /* Following flags don't use groups */ 5481 if (sd->flags & (SD_WAKE_AFFINE)) 5482 return 0; 5483 5484 return 1; 5485 } 5486 5487 static int 5488 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5489 { 5490 unsigned long cflags = sd->flags, pflags = parent->flags; 5491 5492 if (sd_degenerate(parent)) 5493 return 1; 5494 5495 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5496 return 0; 5497 5498 /* Flags needing groups don't count if only 1 group in parent */ 5499 if (parent->groups == parent->groups->next) { 5500 pflags &= ~(SD_LOAD_BALANCE | 5501 SD_BALANCE_NEWIDLE | 5502 SD_BALANCE_FORK | 5503 SD_BALANCE_EXEC | 5504 SD_SHARE_CPUCAPACITY | 5505 SD_SHARE_PKG_RESOURCES | 5506 SD_PREFER_SIBLING | 5507 SD_SHARE_POWERDOMAIN); 5508 if (nr_node_ids == 1) 5509 pflags &= ~SD_SERIALIZE; 5510 } 5511 if (~cflags & pflags) 5512 return 0; 5513 5514 return 1; 5515 } 5516 5517 static void free_rootdomain(struct rcu_head *rcu) 5518 { 5519 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5520 5521 cpupri_cleanup(&rd->cpupri); 5522 cpudl_cleanup(&rd->cpudl); 5523 free_cpumask_var(rd->dlo_mask); 5524 free_cpumask_var(rd->rto_mask); 5525 free_cpumask_var(rd->online); 5526 free_cpumask_var(rd->span); 5527 kfree(rd); 5528 } 5529 5530 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5531 { 5532 struct root_domain *old_rd = NULL; 5533 unsigned long flags; 5534 5535 raw_spin_lock_irqsave(&rq->lock, flags); 5536 5537 if (rq->rd) { 5538 old_rd = rq->rd; 5539 5540 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5541 set_rq_offline(rq); 5542 5543 cpumask_clear_cpu(rq->cpu, old_rd->span); 5544 5545 /* 5546 * If we dont want to free the old_rd yet then 5547 * set old_rd to NULL to skip the freeing later 5548 * in this function: 5549 */ 5550 if (!atomic_dec_and_test(&old_rd->refcount)) 5551 old_rd = NULL; 5552 } 5553 5554 atomic_inc(&rd->refcount); 5555 rq->rd = rd; 5556 5557 cpumask_set_cpu(rq->cpu, rd->span); 5558 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5559 set_rq_online(rq); 5560 5561 raw_spin_unlock_irqrestore(&rq->lock, flags); 5562 5563 if (old_rd) 5564 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5565 } 5566 5567 static int init_rootdomain(struct root_domain *rd) 5568 { 5569 memset(rd, 0, sizeof(*rd)); 5570 5571 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5572 goto out; 5573 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5574 goto free_span; 5575 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5576 goto free_online; 5577 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5578 goto free_dlo_mask; 5579 5580 init_dl_bw(&rd->dl_bw); 5581 if (cpudl_init(&rd->cpudl) != 0) 5582 goto free_dlo_mask; 5583 5584 if (cpupri_init(&rd->cpupri) != 0) 5585 goto free_rto_mask; 5586 return 0; 5587 5588 free_rto_mask: 5589 free_cpumask_var(rd->rto_mask); 5590 free_dlo_mask: 5591 free_cpumask_var(rd->dlo_mask); 5592 free_online: 5593 free_cpumask_var(rd->online); 5594 free_span: 5595 free_cpumask_var(rd->span); 5596 out: 5597 return -ENOMEM; 5598 } 5599 5600 /* 5601 * By default the system creates a single root-domain with all cpus as 5602 * members (mimicking the global state we have today). 5603 */ 5604 struct root_domain def_root_domain; 5605 5606 static void init_defrootdomain(void) 5607 { 5608 init_rootdomain(&def_root_domain); 5609 5610 atomic_set(&def_root_domain.refcount, 1); 5611 } 5612 5613 static struct root_domain *alloc_rootdomain(void) 5614 { 5615 struct root_domain *rd; 5616 5617 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5618 if (!rd) 5619 return NULL; 5620 5621 if (init_rootdomain(rd) != 0) { 5622 kfree(rd); 5623 return NULL; 5624 } 5625 5626 return rd; 5627 } 5628 5629 static void free_sched_groups(struct sched_group *sg, int free_sgc) 5630 { 5631 struct sched_group *tmp, *first; 5632 5633 if (!sg) 5634 return; 5635 5636 first = sg; 5637 do { 5638 tmp = sg->next; 5639 5640 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 5641 kfree(sg->sgc); 5642 5643 kfree(sg); 5644 sg = tmp; 5645 } while (sg != first); 5646 } 5647 5648 static void free_sched_domain(struct rcu_head *rcu) 5649 { 5650 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5651 5652 /* 5653 * If its an overlapping domain it has private groups, iterate and 5654 * nuke them all. 5655 */ 5656 if (sd->flags & SD_OVERLAP) { 5657 free_sched_groups(sd->groups, 1); 5658 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5659 kfree(sd->groups->sgc); 5660 kfree(sd->groups); 5661 } 5662 kfree(sd); 5663 } 5664 5665 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5666 { 5667 call_rcu(&sd->rcu, free_sched_domain); 5668 } 5669 5670 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5671 { 5672 for (; sd; sd = sd->parent) 5673 destroy_sched_domain(sd, cpu); 5674 } 5675 5676 /* 5677 * Keep a special pointer to the highest sched_domain that has 5678 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5679 * allows us to avoid some pointer chasing select_idle_sibling(). 5680 * 5681 * Also keep a unique ID per domain (we use the first cpu number in 5682 * the cpumask of the domain), this allows us to quickly tell if 5683 * two cpus are in the same cache domain, see cpus_share_cache(). 5684 */ 5685 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5686 DEFINE_PER_CPU(int, sd_llc_size); 5687 DEFINE_PER_CPU(int, sd_llc_id); 5688 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5689 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5690 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5691 5692 static void update_top_cache_domain(int cpu) 5693 { 5694 struct sched_domain *sd; 5695 struct sched_domain *busy_sd = NULL; 5696 int id = cpu; 5697 int size = 1; 5698 5699 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5700 if (sd) { 5701 id = cpumask_first(sched_domain_span(sd)); 5702 size = cpumask_weight(sched_domain_span(sd)); 5703 busy_sd = sd->parent; /* sd_busy */ 5704 } 5705 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5706 5707 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5708 per_cpu(sd_llc_size, cpu) = size; 5709 per_cpu(sd_llc_id, cpu) = id; 5710 5711 sd = lowest_flag_domain(cpu, SD_NUMA); 5712 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5713 5714 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5715 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5716 } 5717 5718 /* 5719 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5720 * hold the hotplug lock. 5721 */ 5722 static void 5723 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5724 { 5725 struct rq *rq = cpu_rq(cpu); 5726 struct sched_domain *tmp; 5727 5728 /* Remove the sched domains which do not contribute to scheduling. */ 5729 for (tmp = sd; tmp; ) { 5730 struct sched_domain *parent = tmp->parent; 5731 if (!parent) 5732 break; 5733 5734 if (sd_parent_degenerate(tmp, parent)) { 5735 tmp->parent = parent->parent; 5736 if (parent->parent) 5737 parent->parent->child = tmp; 5738 /* 5739 * Transfer SD_PREFER_SIBLING down in case of a 5740 * degenerate parent; the spans match for this 5741 * so the property transfers. 5742 */ 5743 if (parent->flags & SD_PREFER_SIBLING) 5744 tmp->flags |= SD_PREFER_SIBLING; 5745 destroy_sched_domain(parent, cpu); 5746 } else 5747 tmp = tmp->parent; 5748 } 5749 5750 if (sd && sd_degenerate(sd)) { 5751 tmp = sd; 5752 sd = sd->parent; 5753 destroy_sched_domain(tmp, cpu); 5754 if (sd) 5755 sd->child = NULL; 5756 } 5757 5758 sched_domain_debug(sd, cpu); 5759 5760 rq_attach_root(rq, rd); 5761 tmp = rq->sd; 5762 rcu_assign_pointer(rq->sd, sd); 5763 destroy_sched_domains(tmp, cpu); 5764 5765 update_top_cache_domain(cpu); 5766 } 5767 5768 /* cpus with isolated domains */ 5769 static cpumask_var_t cpu_isolated_map; 5770 5771 /* Setup the mask of cpus configured for isolated domains */ 5772 static int __init isolated_cpu_setup(char *str) 5773 { 5774 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5775 cpulist_parse(str, cpu_isolated_map); 5776 return 1; 5777 } 5778 5779 __setup("isolcpus=", isolated_cpu_setup); 5780 5781 struct s_data { 5782 struct sched_domain ** __percpu sd; 5783 struct root_domain *rd; 5784 }; 5785 5786 enum s_alloc { 5787 sa_rootdomain, 5788 sa_sd, 5789 sa_sd_storage, 5790 sa_none, 5791 }; 5792 5793 /* 5794 * Build an iteration mask that can exclude certain CPUs from the upwards 5795 * domain traversal. 5796 * 5797 * Asymmetric node setups can result in situations where the domain tree is of 5798 * unequal depth, make sure to skip domains that already cover the entire 5799 * range. 5800 * 5801 * In that case build_sched_domains() will have terminated the iteration early 5802 * and our sibling sd spans will be empty. Domains should always include the 5803 * cpu they're built on, so check that. 5804 * 5805 */ 5806 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5807 { 5808 const struct cpumask *span = sched_domain_span(sd); 5809 struct sd_data *sdd = sd->private; 5810 struct sched_domain *sibling; 5811 int i; 5812 5813 for_each_cpu(i, span) { 5814 sibling = *per_cpu_ptr(sdd->sd, i); 5815 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5816 continue; 5817 5818 cpumask_set_cpu(i, sched_group_mask(sg)); 5819 } 5820 } 5821 5822 /* 5823 * Return the canonical balance cpu for this group, this is the first cpu 5824 * of this group that's also in the iteration mask. 5825 */ 5826 int group_balance_cpu(struct sched_group *sg) 5827 { 5828 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5829 } 5830 5831 static int 5832 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5833 { 5834 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5835 const struct cpumask *span = sched_domain_span(sd); 5836 struct cpumask *covered = sched_domains_tmpmask; 5837 struct sd_data *sdd = sd->private; 5838 struct sched_domain *sibling; 5839 int i; 5840 5841 cpumask_clear(covered); 5842 5843 for_each_cpu(i, span) { 5844 struct cpumask *sg_span; 5845 5846 if (cpumask_test_cpu(i, covered)) 5847 continue; 5848 5849 sibling = *per_cpu_ptr(sdd->sd, i); 5850 5851 /* See the comment near build_group_mask(). */ 5852 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5853 continue; 5854 5855 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5856 GFP_KERNEL, cpu_to_node(cpu)); 5857 5858 if (!sg) 5859 goto fail; 5860 5861 sg_span = sched_group_cpus(sg); 5862 if (sibling->child) 5863 cpumask_copy(sg_span, sched_domain_span(sibling->child)); 5864 else 5865 cpumask_set_cpu(i, sg_span); 5866 5867 cpumask_or(covered, covered, sg_span); 5868 5869 sg->sgc = *per_cpu_ptr(sdd->sgc, i); 5870 if (atomic_inc_return(&sg->sgc->ref) == 1) 5871 build_group_mask(sd, sg); 5872 5873 /* 5874 * Initialize sgc->capacity such that even if we mess up the 5875 * domains and no possible iteration will get us here, we won't 5876 * die on a /0 trap. 5877 */ 5878 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 5879 sg->sgc->capacity_orig = sg->sgc->capacity; 5880 5881 /* 5882 * Make sure the first group of this domain contains the 5883 * canonical balance cpu. Otherwise the sched_domain iteration 5884 * breaks. See update_sg_lb_stats(). 5885 */ 5886 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5887 group_balance_cpu(sg) == cpu) 5888 groups = sg; 5889 5890 if (!first) 5891 first = sg; 5892 if (last) 5893 last->next = sg; 5894 last = sg; 5895 last->next = first; 5896 } 5897 sd->groups = groups; 5898 5899 return 0; 5900 5901 fail: 5902 free_sched_groups(first, 0); 5903 5904 return -ENOMEM; 5905 } 5906 5907 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5908 { 5909 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5910 struct sched_domain *child = sd->child; 5911 5912 if (child) 5913 cpu = cpumask_first(sched_domain_span(child)); 5914 5915 if (sg) { 5916 *sg = *per_cpu_ptr(sdd->sg, cpu); 5917 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); 5918 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */ 5919 } 5920 5921 return cpu; 5922 } 5923 5924 /* 5925 * build_sched_groups will build a circular linked list of the groups 5926 * covered by the given span, and will set each group's ->cpumask correctly, 5927 * and ->cpu_capacity to 0. 5928 * 5929 * Assumes the sched_domain tree is fully constructed 5930 */ 5931 static int 5932 build_sched_groups(struct sched_domain *sd, int cpu) 5933 { 5934 struct sched_group *first = NULL, *last = NULL; 5935 struct sd_data *sdd = sd->private; 5936 const struct cpumask *span = sched_domain_span(sd); 5937 struct cpumask *covered; 5938 int i; 5939 5940 get_group(cpu, sdd, &sd->groups); 5941 atomic_inc(&sd->groups->ref); 5942 5943 if (cpu != cpumask_first(span)) 5944 return 0; 5945 5946 lockdep_assert_held(&sched_domains_mutex); 5947 covered = sched_domains_tmpmask; 5948 5949 cpumask_clear(covered); 5950 5951 for_each_cpu(i, span) { 5952 struct sched_group *sg; 5953 int group, j; 5954 5955 if (cpumask_test_cpu(i, covered)) 5956 continue; 5957 5958 group = get_group(i, sdd, &sg); 5959 cpumask_setall(sched_group_mask(sg)); 5960 5961 for_each_cpu(j, span) { 5962 if (get_group(j, sdd, NULL) != group) 5963 continue; 5964 5965 cpumask_set_cpu(j, covered); 5966 cpumask_set_cpu(j, sched_group_cpus(sg)); 5967 } 5968 5969 if (!first) 5970 first = sg; 5971 if (last) 5972 last->next = sg; 5973 last = sg; 5974 } 5975 last->next = first; 5976 5977 return 0; 5978 } 5979 5980 /* 5981 * Initialize sched groups cpu_capacity. 5982 * 5983 * cpu_capacity indicates the capacity of sched group, which is used while 5984 * distributing the load between different sched groups in a sched domain. 5985 * Typically cpu_capacity for all the groups in a sched domain will be same 5986 * unless there are asymmetries in the topology. If there are asymmetries, 5987 * group having more cpu_capacity will pickup more load compared to the 5988 * group having less cpu_capacity. 5989 */ 5990 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 5991 { 5992 struct sched_group *sg = sd->groups; 5993 5994 WARN_ON(!sg); 5995 5996 do { 5997 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5998 sg = sg->next; 5999 } while (sg != sd->groups); 6000 6001 if (cpu != group_balance_cpu(sg)) 6002 return; 6003 6004 update_group_capacity(sd, cpu); 6005 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight); 6006 } 6007 6008 /* 6009 * Initializers for schedule domains 6010 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 6011 */ 6012 6013 static int default_relax_domain_level = -1; 6014 int sched_domain_level_max; 6015 6016 static int __init setup_relax_domain_level(char *str) 6017 { 6018 if (kstrtoint(str, 0, &default_relax_domain_level)) 6019 pr_warn("Unable to set relax_domain_level\n"); 6020 6021 return 1; 6022 } 6023 __setup("relax_domain_level=", setup_relax_domain_level); 6024 6025 static void set_domain_attribute(struct sched_domain *sd, 6026 struct sched_domain_attr *attr) 6027 { 6028 int request; 6029 6030 if (!attr || attr->relax_domain_level < 0) { 6031 if (default_relax_domain_level < 0) 6032 return; 6033 else 6034 request = default_relax_domain_level; 6035 } else 6036 request = attr->relax_domain_level; 6037 if (request < sd->level) { 6038 /* turn off idle balance on this domain */ 6039 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6040 } else { 6041 /* turn on idle balance on this domain */ 6042 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 6043 } 6044 } 6045 6046 static void __sdt_free(const struct cpumask *cpu_map); 6047 static int __sdt_alloc(const struct cpumask *cpu_map); 6048 6049 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 6050 const struct cpumask *cpu_map) 6051 { 6052 switch (what) { 6053 case sa_rootdomain: 6054 if (!atomic_read(&d->rd->refcount)) 6055 free_rootdomain(&d->rd->rcu); /* fall through */ 6056 case sa_sd: 6057 free_percpu(d->sd); /* fall through */ 6058 case sa_sd_storage: 6059 __sdt_free(cpu_map); /* fall through */ 6060 case sa_none: 6061 break; 6062 } 6063 } 6064 6065 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 6066 const struct cpumask *cpu_map) 6067 { 6068 memset(d, 0, sizeof(*d)); 6069 6070 if (__sdt_alloc(cpu_map)) 6071 return sa_sd_storage; 6072 d->sd = alloc_percpu(struct sched_domain *); 6073 if (!d->sd) 6074 return sa_sd_storage; 6075 d->rd = alloc_rootdomain(); 6076 if (!d->rd) 6077 return sa_sd; 6078 return sa_rootdomain; 6079 } 6080 6081 /* 6082 * NULL the sd_data elements we've used to build the sched_domain and 6083 * sched_group structure so that the subsequent __free_domain_allocs() 6084 * will not free the data we're using. 6085 */ 6086 static void claim_allocations(int cpu, struct sched_domain *sd) 6087 { 6088 struct sd_data *sdd = sd->private; 6089 6090 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 6091 *per_cpu_ptr(sdd->sd, cpu) = NULL; 6092 6093 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 6094 *per_cpu_ptr(sdd->sg, cpu) = NULL; 6095 6096 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 6097 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 6098 } 6099 6100 #ifdef CONFIG_NUMA 6101 static int sched_domains_numa_levels; 6102 static int *sched_domains_numa_distance; 6103 static struct cpumask ***sched_domains_numa_masks; 6104 static int sched_domains_curr_level; 6105 #endif 6106 6107 /* 6108 * SD_flags allowed in topology descriptions. 6109 * 6110 * SD_SHARE_CPUCAPACITY - describes SMT topologies 6111 * SD_SHARE_PKG_RESOURCES - describes shared caches 6112 * SD_NUMA - describes NUMA topologies 6113 * SD_SHARE_POWERDOMAIN - describes shared power domain 6114 * 6115 * Odd one out: 6116 * SD_ASYM_PACKING - describes SMT quirks 6117 */ 6118 #define TOPOLOGY_SD_FLAGS \ 6119 (SD_SHARE_CPUCAPACITY | \ 6120 SD_SHARE_PKG_RESOURCES | \ 6121 SD_NUMA | \ 6122 SD_ASYM_PACKING | \ 6123 SD_SHARE_POWERDOMAIN) 6124 6125 static struct sched_domain * 6126 sd_init(struct sched_domain_topology_level *tl, int cpu) 6127 { 6128 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6129 int sd_weight, sd_flags = 0; 6130 6131 #ifdef CONFIG_NUMA 6132 /* 6133 * Ugly hack to pass state to sd_numa_mask()... 6134 */ 6135 sched_domains_curr_level = tl->numa_level; 6136 #endif 6137 6138 sd_weight = cpumask_weight(tl->mask(cpu)); 6139 6140 if (tl->sd_flags) 6141 sd_flags = (*tl->sd_flags)(); 6142 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 6143 "wrong sd_flags in topology description\n")) 6144 sd_flags &= ~TOPOLOGY_SD_FLAGS; 6145 6146 *sd = (struct sched_domain){ 6147 .min_interval = sd_weight, 6148 .max_interval = 2*sd_weight, 6149 .busy_factor = 32, 6150 .imbalance_pct = 125, 6151 6152 .cache_nice_tries = 0, 6153 .busy_idx = 0, 6154 .idle_idx = 0, 6155 .newidle_idx = 0, 6156 .wake_idx = 0, 6157 .forkexec_idx = 0, 6158 6159 .flags = 1*SD_LOAD_BALANCE 6160 | 1*SD_BALANCE_NEWIDLE 6161 | 1*SD_BALANCE_EXEC 6162 | 1*SD_BALANCE_FORK 6163 | 0*SD_BALANCE_WAKE 6164 | 1*SD_WAKE_AFFINE 6165 | 0*SD_SHARE_CPUCAPACITY 6166 | 0*SD_SHARE_PKG_RESOURCES 6167 | 0*SD_SERIALIZE 6168 | 0*SD_PREFER_SIBLING 6169 | 0*SD_NUMA 6170 | sd_flags 6171 , 6172 6173 .last_balance = jiffies, 6174 .balance_interval = sd_weight, 6175 .smt_gain = 0, 6176 .max_newidle_lb_cost = 0, 6177 .next_decay_max_lb_cost = jiffies, 6178 #ifdef CONFIG_SCHED_DEBUG 6179 .name = tl->name, 6180 #endif 6181 }; 6182 6183 /* 6184 * Convert topological properties into behaviour. 6185 */ 6186 6187 if (sd->flags & SD_SHARE_CPUCAPACITY) { 6188 sd->imbalance_pct = 110; 6189 sd->smt_gain = 1178; /* ~15% */ 6190 6191 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { 6192 sd->imbalance_pct = 117; 6193 sd->cache_nice_tries = 1; 6194 sd->busy_idx = 2; 6195 6196 #ifdef CONFIG_NUMA 6197 } else if (sd->flags & SD_NUMA) { 6198 sd->cache_nice_tries = 2; 6199 sd->busy_idx = 3; 6200 sd->idle_idx = 2; 6201 6202 sd->flags |= SD_SERIALIZE; 6203 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { 6204 sd->flags &= ~(SD_BALANCE_EXEC | 6205 SD_BALANCE_FORK | 6206 SD_WAKE_AFFINE); 6207 } 6208 6209 #endif 6210 } else { 6211 sd->flags |= SD_PREFER_SIBLING; 6212 sd->cache_nice_tries = 1; 6213 sd->busy_idx = 2; 6214 sd->idle_idx = 1; 6215 } 6216 6217 sd->private = &tl->data; 6218 6219 return sd; 6220 } 6221 6222 /* 6223 * Topology list, bottom-up. 6224 */ 6225 static struct sched_domain_topology_level default_topology[] = { 6226 #ifdef CONFIG_SCHED_SMT 6227 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 6228 #endif 6229 #ifdef CONFIG_SCHED_MC 6230 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 6231 #endif 6232 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 6233 { NULL, }, 6234 }; 6235 6236 struct sched_domain_topology_level *sched_domain_topology = default_topology; 6237 6238 #define for_each_sd_topology(tl) \ 6239 for (tl = sched_domain_topology; tl->mask; tl++) 6240 6241 void set_sched_topology(struct sched_domain_topology_level *tl) 6242 { 6243 sched_domain_topology = tl; 6244 } 6245 6246 #ifdef CONFIG_NUMA 6247 6248 static const struct cpumask *sd_numa_mask(int cpu) 6249 { 6250 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6251 } 6252 6253 static void sched_numa_warn(const char *str) 6254 { 6255 static int done = false; 6256 int i,j; 6257 6258 if (done) 6259 return; 6260 6261 done = true; 6262 6263 printk(KERN_WARNING "ERROR: %s\n\n", str); 6264 6265 for (i = 0; i < nr_node_ids; i++) { 6266 printk(KERN_WARNING " "); 6267 for (j = 0; j < nr_node_ids; j++) 6268 printk(KERN_CONT "%02d ", node_distance(i,j)); 6269 printk(KERN_CONT "\n"); 6270 } 6271 printk(KERN_WARNING "\n"); 6272 } 6273 6274 static bool find_numa_distance(int distance) 6275 { 6276 int i; 6277 6278 if (distance == node_distance(0, 0)) 6279 return true; 6280 6281 for (i = 0; i < sched_domains_numa_levels; i++) { 6282 if (sched_domains_numa_distance[i] == distance) 6283 return true; 6284 } 6285 6286 return false; 6287 } 6288 6289 static void sched_init_numa(void) 6290 { 6291 int next_distance, curr_distance = node_distance(0, 0); 6292 struct sched_domain_topology_level *tl; 6293 int level = 0; 6294 int i, j, k; 6295 6296 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6297 if (!sched_domains_numa_distance) 6298 return; 6299 6300 /* 6301 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6302 * unique distances in the node_distance() table. 6303 * 6304 * Assumes node_distance(0,j) includes all distances in 6305 * node_distance(i,j) in order to avoid cubic time. 6306 */ 6307 next_distance = curr_distance; 6308 for (i = 0; i < nr_node_ids; i++) { 6309 for (j = 0; j < nr_node_ids; j++) { 6310 for (k = 0; k < nr_node_ids; k++) { 6311 int distance = node_distance(i, k); 6312 6313 if (distance > curr_distance && 6314 (distance < next_distance || 6315 next_distance == curr_distance)) 6316 next_distance = distance; 6317 6318 /* 6319 * While not a strong assumption it would be nice to know 6320 * about cases where if node A is connected to B, B is not 6321 * equally connected to A. 6322 */ 6323 if (sched_debug() && node_distance(k, i) != distance) 6324 sched_numa_warn("Node-distance not symmetric"); 6325 6326 if (sched_debug() && i && !find_numa_distance(distance)) 6327 sched_numa_warn("Node-0 not representative"); 6328 } 6329 if (next_distance != curr_distance) { 6330 sched_domains_numa_distance[level++] = next_distance; 6331 sched_domains_numa_levels = level; 6332 curr_distance = next_distance; 6333 } else break; 6334 } 6335 6336 /* 6337 * In case of sched_debug() we verify the above assumption. 6338 */ 6339 if (!sched_debug()) 6340 break; 6341 } 6342 6343 if (!level) 6344 return; 6345 6346 /* 6347 * 'level' contains the number of unique distances, excluding the 6348 * identity distance node_distance(i,i). 6349 * 6350 * The sched_domains_numa_distance[] array includes the actual distance 6351 * numbers. 6352 */ 6353 6354 /* 6355 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6356 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6357 * the array will contain less then 'level' members. This could be 6358 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6359 * in other functions. 6360 * 6361 * We reset it to 'level' at the end of this function. 6362 */ 6363 sched_domains_numa_levels = 0; 6364 6365 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6366 if (!sched_domains_numa_masks) 6367 return; 6368 6369 /* 6370 * Now for each level, construct a mask per node which contains all 6371 * cpus of nodes that are that many hops away from us. 6372 */ 6373 for (i = 0; i < level; i++) { 6374 sched_domains_numa_masks[i] = 6375 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6376 if (!sched_domains_numa_masks[i]) 6377 return; 6378 6379 for (j = 0; j < nr_node_ids; j++) { 6380 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6381 if (!mask) 6382 return; 6383 6384 sched_domains_numa_masks[i][j] = mask; 6385 6386 for (k = 0; k < nr_node_ids; k++) { 6387 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6388 continue; 6389 6390 cpumask_or(mask, mask, cpumask_of_node(k)); 6391 } 6392 } 6393 } 6394 6395 /* Compute default topology size */ 6396 for (i = 0; sched_domain_topology[i].mask; i++); 6397 6398 tl = kzalloc((i + level + 1) * 6399 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6400 if (!tl) 6401 return; 6402 6403 /* 6404 * Copy the default topology bits.. 6405 */ 6406 for (i = 0; sched_domain_topology[i].mask; i++) 6407 tl[i] = sched_domain_topology[i]; 6408 6409 /* 6410 * .. and append 'j' levels of NUMA goodness. 6411 */ 6412 for (j = 0; j < level; i++, j++) { 6413 tl[i] = (struct sched_domain_topology_level){ 6414 .mask = sd_numa_mask, 6415 .sd_flags = cpu_numa_flags, 6416 .flags = SDTL_OVERLAP, 6417 .numa_level = j, 6418 SD_INIT_NAME(NUMA) 6419 }; 6420 } 6421 6422 sched_domain_topology = tl; 6423 6424 sched_domains_numa_levels = level; 6425 } 6426 6427 static void sched_domains_numa_masks_set(int cpu) 6428 { 6429 int i, j; 6430 int node = cpu_to_node(cpu); 6431 6432 for (i = 0; i < sched_domains_numa_levels; i++) { 6433 for (j = 0; j < nr_node_ids; j++) { 6434 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6435 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6436 } 6437 } 6438 } 6439 6440 static void sched_domains_numa_masks_clear(int cpu) 6441 { 6442 int i, j; 6443 for (i = 0; i < sched_domains_numa_levels; i++) { 6444 for (j = 0; j < nr_node_ids; j++) 6445 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6446 } 6447 } 6448 6449 /* 6450 * Update sched_domains_numa_masks[level][node] array when new cpus 6451 * are onlined. 6452 */ 6453 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6454 unsigned long action, 6455 void *hcpu) 6456 { 6457 int cpu = (long)hcpu; 6458 6459 switch (action & ~CPU_TASKS_FROZEN) { 6460 case CPU_ONLINE: 6461 sched_domains_numa_masks_set(cpu); 6462 break; 6463 6464 case CPU_DEAD: 6465 sched_domains_numa_masks_clear(cpu); 6466 break; 6467 6468 default: 6469 return NOTIFY_DONE; 6470 } 6471 6472 return NOTIFY_OK; 6473 } 6474 #else 6475 static inline void sched_init_numa(void) 6476 { 6477 } 6478 6479 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6480 unsigned long action, 6481 void *hcpu) 6482 { 6483 return 0; 6484 } 6485 #endif /* CONFIG_NUMA */ 6486 6487 static int __sdt_alloc(const struct cpumask *cpu_map) 6488 { 6489 struct sched_domain_topology_level *tl; 6490 int j; 6491 6492 for_each_sd_topology(tl) { 6493 struct sd_data *sdd = &tl->data; 6494 6495 sdd->sd = alloc_percpu(struct sched_domain *); 6496 if (!sdd->sd) 6497 return -ENOMEM; 6498 6499 sdd->sg = alloc_percpu(struct sched_group *); 6500 if (!sdd->sg) 6501 return -ENOMEM; 6502 6503 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 6504 if (!sdd->sgc) 6505 return -ENOMEM; 6506 6507 for_each_cpu(j, cpu_map) { 6508 struct sched_domain *sd; 6509 struct sched_group *sg; 6510 struct sched_group_capacity *sgc; 6511 6512 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6513 GFP_KERNEL, cpu_to_node(j)); 6514 if (!sd) 6515 return -ENOMEM; 6516 6517 *per_cpu_ptr(sdd->sd, j) = sd; 6518 6519 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6520 GFP_KERNEL, cpu_to_node(j)); 6521 if (!sg) 6522 return -ENOMEM; 6523 6524 sg->next = sg; 6525 6526 *per_cpu_ptr(sdd->sg, j) = sg; 6527 6528 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 6529 GFP_KERNEL, cpu_to_node(j)); 6530 if (!sgc) 6531 return -ENOMEM; 6532 6533 *per_cpu_ptr(sdd->sgc, j) = sgc; 6534 } 6535 } 6536 6537 return 0; 6538 } 6539 6540 static void __sdt_free(const struct cpumask *cpu_map) 6541 { 6542 struct sched_domain_topology_level *tl; 6543 int j; 6544 6545 for_each_sd_topology(tl) { 6546 struct sd_data *sdd = &tl->data; 6547 6548 for_each_cpu(j, cpu_map) { 6549 struct sched_domain *sd; 6550 6551 if (sdd->sd) { 6552 sd = *per_cpu_ptr(sdd->sd, j); 6553 if (sd && (sd->flags & SD_OVERLAP)) 6554 free_sched_groups(sd->groups, 0); 6555 kfree(*per_cpu_ptr(sdd->sd, j)); 6556 } 6557 6558 if (sdd->sg) 6559 kfree(*per_cpu_ptr(sdd->sg, j)); 6560 if (sdd->sgc) 6561 kfree(*per_cpu_ptr(sdd->sgc, j)); 6562 } 6563 free_percpu(sdd->sd); 6564 sdd->sd = NULL; 6565 free_percpu(sdd->sg); 6566 sdd->sg = NULL; 6567 free_percpu(sdd->sgc); 6568 sdd->sgc = NULL; 6569 } 6570 } 6571 6572 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6573 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6574 struct sched_domain *child, int cpu) 6575 { 6576 struct sched_domain *sd = sd_init(tl, cpu); 6577 if (!sd) 6578 return child; 6579 6580 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6581 if (child) { 6582 sd->level = child->level + 1; 6583 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6584 child->parent = sd; 6585 sd->child = child; 6586 6587 if (!cpumask_subset(sched_domain_span(child), 6588 sched_domain_span(sd))) { 6589 pr_err("BUG: arch topology borken\n"); 6590 #ifdef CONFIG_SCHED_DEBUG 6591 pr_err(" the %s domain not a subset of the %s domain\n", 6592 child->name, sd->name); 6593 #endif 6594 /* Fixup, ensure @sd has at least @child cpus. */ 6595 cpumask_or(sched_domain_span(sd), 6596 sched_domain_span(sd), 6597 sched_domain_span(child)); 6598 } 6599 6600 } 6601 set_domain_attribute(sd, attr); 6602 6603 return sd; 6604 } 6605 6606 /* 6607 * Build sched domains for a given set of cpus and attach the sched domains 6608 * to the individual cpus 6609 */ 6610 static int build_sched_domains(const struct cpumask *cpu_map, 6611 struct sched_domain_attr *attr) 6612 { 6613 enum s_alloc alloc_state; 6614 struct sched_domain *sd; 6615 struct s_data d; 6616 int i, ret = -ENOMEM; 6617 6618 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6619 if (alloc_state != sa_rootdomain) 6620 goto error; 6621 6622 /* Set up domains for cpus specified by the cpu_map. */ 6623 for_each_cpu(i, cpu_map) { 6624 struct sched_domain_topology_level *tl; 6625 6626 sd = NULL; 6627 for_each_sd_topology(tl) { 6628 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6629 if (tl == sched_domain_topology) 6630 *per_cpu_ptr(d.sd, i) = sd; 6631 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6632 sd->flags |= SD_OVERLAP; 6633 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6634 break; 6635 } 6636 } 6637 6638 /* Build the groups for the domains */ 6639 for_each_cpu(i, cpu_map) { 6640 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6641 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6642 if (sd->flags & SD_OVERLAP) { 6643 if (build_overlap_sched_groups(sd, i)) 6644 goto error; 6645 } else { 6646 if (build_sched_groups(sd, i)) 6647 goto error; 6648 } 6649 } 6650 } 6651 6652 /* Calculate CPU capacity for physical packages and nodes */ 6653 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6654 if (!cpumask_test_cpu(i, cpu_map)) 6655 continue; 6656 6657 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6658 claim_allocations(i, sd); 6659 init_sched_groups_capacity(i, sd); 6660 } 6661 } 6662 6663 /* Attach the domains */ 6664 rcu_read_lock(); 6665 for_each_cpu(i, cpu_map) { 6666 sd = *per_cpu_ptr(d.sd, i); 6667 cpu_attach_domain(sd, d.rd, i); 6668 } 6669 rcu_read_unlock(); 6670 6671 ret = 0; 6672 error: 6673 __free_domain_allocs(&d, alloc_state, cpu_map); 6674 return ret; 6675 } 6676 6677 static cpumask_var_t *doms_cur; /* current sched domains */ 6678 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6679 static struct sched_domain_attr *dattr_cur; 6680 /* attribues of custom domains in 'doms_cur' */ 6681 6682 /* 6683 * Special case: If a kmalloc of a doms_cur partition (array of 6684 * cpumask) fails, then fallback to a single sched domain, 6685 * as determined by the single cpumask fallback_doms. 6686 */ 6687 static cpumask_var_t fallback_doms; 6688 6689 /* 6690 * arch_update_cpu_topology lets virtualized architectures update the 6691 * cpu core maps. It is supposed to return 1 if the topology changed 6692 * or 0 if it stayed the same. 6693 */ 6694 int __weak arch_update_cpu_topology(void) 6695 { 6696 return 0; 6697 } 6698 6699 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6700 { 6701 int i; 6702 cpumask_var_t *doms; 6703 6704 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6705 if (!doms) 6706 return NULL; 6707 for (i = 0; i < ndoms; i++) { 6708 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6709 free_sched_domains(doms, i); 6710 return NULL; 6711 } 6712 } 6713 return doms; 6714 } 6715 6716 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6717 { 6718 unsigned int i; 6719 for (i = 0; i < ndoms; i++) 6720 free_cpumask_var(doms[i]); 6721 kfree(doms); 6722 } 6723 6724 /* 6725 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6726 * For now this just excludes isolated cpus, but could be used to 6727 * exclude other special cases in the future. 6728 */ 6729 static int init_sched_domains(const struct cpumask *cpu_map) 6730 { 6731 int err; 6732 6733 arch_update_cpu_topology(); 6734 ndoms_cur = 1; 6735 doms_cur = alloc_sched_domains(ndoms_cur); 6736 if (!doms_cur) 6737 doms_cur = &fallback_doms; 6738 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6739 err = build_sched_domains(doms_cur[0], NULL); 6740 register_sched_domain_sysctl(); 6741 6742 return err; 6743 } 6744 6745 /* 6746 * Detach sched domains from a group of cpus specified in cpu_map 6747 * These cpus will now be attached to the NULL domain 6748 */ 6749 static void detach_destroy_domains(const struct cpumask *cpu_map) 6750 { 6751 int i; 6752 6753 rcu_read_lock(); 6754 for_each_cpu(i, cpu_map) 6755 cpu_attach_domain(NULL, &def_root_domain, i); 6756 rcu_read_unlock(); 6757 } 6758 6759 /* handle null as "default" */ 6760 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6761 struct sched_domain_attr *new, int idx_new) 6762 { 6763 struct sched_domain_attr tmp; 6764 6765 /* fast path */ 6766 if (!new && !cur) 6767 return 1; 6768 6769 tmp = SD_ATTR_INIT; 6770 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6771 new ? (new + idx_new) : &tmp, 6772 sizeof(struct sched_domain_attr)); 6773 } 6774 6775 /* 6776 * Partition sched domains as specified by the 'ndoms_new' 6777 * cpumasks in the array doms_new[] of cpumasks. This compares 6778 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6779 * It destroys each deleted domain and builds each new domain. 6780 * 6781 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6782 * The masks don't intersect (don't overlap.) We should setup one 6783 * sched domain for each mask. CPUs not in any of the cpumasks will 6784 * not be load balanced. If the same cpumask appears both in the 6785 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6786 * it as it is. 6787 * 6788 * The passed in 'doms_new' should be allocated using 6789 * alloc_sched_domains. This routine takes ownership of it and will 6790 * free_sched_domains it when done with it. If the caller failed the 6791 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6792 * and partition_sched_domains() will fallback to the single partition 6793 * 'fallback_doms', it also forces the domains to be rebuilt. 6794 * 6795 * If doms_new == NULL it will be replaced with cpu_online_mask. 6796 * ndoms_new == 0 is a special case for destroying existing domains, 6797 * and it will not create the default domain. 6798 * 6799 * Call with hotplug lock held 6800 */ 6801 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6802 struct sched_domain_attr *dattr_new) 6803 { 6804 int i, j, n; 6805 int new_topology; 6806 6807 mutex_lock(&sched_domains_mutex); 6808 6809 /* always unregister in case we don't destroy any domains */ 6810 unregister_sched_domain_sysctl(); 6811 6812 /* Let architecture update cpu core mappings. */ 6813 new_topology = arch_update_cpu_topology(); 6814 6815 n = doms_new ? ndoms_new : 0; 6816 6817 /* Destroy deleted domains */ 6818 for (i = 0; i < ndoms_cur; i++) { 6819 for (j = 0; j < n && !new_topology; j++) { 6820 if (cpumask_equal(doms_cur[i], doms_new[j]) 6821 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6822 goto match1; 6823 } 6824 /* no match - a current sched domain not in new doms_new[] */ 6825 detach_destroy_domains(doms_cur[i]); 6826 match1: 6827 ; 6828 } 6829 6830 n = ndoms_cur; 6831 if (doms_new == NULL) { 6832 n = 0; 6833 doms_new = &fallback_doms; 6834 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6835 WARN_ON_ONCE(dattr_new); 6836 } 6837 6838 /* Build new domains */ 6839 for (i = 0; i < ndoms_new; i++) { 6840 for (j = 0; j < n && !new_topology; j++) { 6841 if (cpumask_equal(doms_new[i], doms_cur[j]) 6842 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6843 goto match2; 6844 } 6845 /* no match - add a new doms_new */ 6846 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6847 match2: 6848 ; 6849 } 6850 6851 /* Remember the new sched domains */ 6852 if (doms_cur != &fallback_doms) 6853 free_sched_domains(doms_cur, ndoms_cur); 6854 kfree(dattr_cur); /* kfree(NULL) is safe */ 6855 doms_cur = doms_new; 6856 dattr_cur = dattr_new; 6857 ndoms_cur = ndoms_new; 6858 6859 register_sched_domain_sysctl(); 6860 6861 mutex_unlock(&sched_domains_mutex); 6862 } 6863 6864 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6865 6866 /* 6867 * Update cpusets according to cpu_active mask. If cpusets are 6868 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6869 * around partition_sched_domains(). 6870 * 6871 * If we come here as part of a suspend/resume, don't touch cpusets because we 6872 * want to restore it back to its original state upon resume anyway. 6873 */ 6874 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6875 void *hcpu) 6876 { 6877 switch (action) { 6878 case CPU_ONLINE_FROZEN: 6879 case CPU_DOWN_FAILED_FROZEN: 6880 6881 /* 6882 * num_cpus_frozen tracks how many CPUs are involved in suspend 6883 * resume sequence. As long as this is not the last online 6884 * operation in the resume sequence, just build a single sched 6885 * domain, ignoring cpusets. 6886 */ 6887 num_cpus_frozen--; 6888 if (likely(num_cpus_frozen)) { 6889 partition_sched_domains(1, NULL, NULL); 6890 break; 6891 } 6892 6893 /* 6894 * This is the last CPU online operation. So fall through and 6895 * restore the original sched domains by considering the 6896 * cpuset configurations. 6897 */ 6898 6899 case CPU_ONLINE: 6900 case CPU_DOWN_FAILED: 6901 cpuset_update_active_cpus(true); 6902 break; 6903 default: 6904 return NOTIFY_DONE; 6905 } 6906 return NOTIFY_OK; 6907 } 6908 6909 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6910 void *hcpu) 6911 { 6912 switch (action) { 6913 case CPU_DOWN_PREPARE: 6914 cpuset_update_active_cpus(false); 6915 break; 6916 case CPU_DOWN_PREPARE_FROZEN: 6917 num_cpus_frozen++; 6918 partition_sched_domains(1, NULL, NULL); 6919 break; 6920 default: 6921 return NOTIFY_DONE; 6922 } 6923 return NOTIFY_OK; 6924 } 6925 6926 void __init sched_init_smp(void) 6927 { 6928 cpumask_var_t non_isolated_cpus; 6929 6930 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6931 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6932 6933 sched_init_numa(); 6934 6935 /* 6936 * There's no userspace yet to cause hotplug operations; hence all the 6937 * cpu masks are stable and all blatant races in the below code cannot 6938 * happen. 6939 */ 6940 mutex_lock(&sched_domains_mutex); 6941 init_sched_domains(cpu_active_mask); 6942 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6943 if (cpumask_empty(non_isolated_cpus)) 6944 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6945 mutex_unlock(&sched_domains_mutex); 6946 6947 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6948 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6949 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6950 6951 init_hrtick(); 6952 6953 /* Move init over to a non-isolated CPU */ 6954 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6955 BUG(); 6956 sched_init_granularity(); 6957 free_cpumask_var(non_isolated_cpus); 6958 6959 init_sched_rt_class(); 6960 init_sched_dl_class(); 6961 } 6962 #else 6963 void __init sched_init_smp(void) 6964 { 6965 sched_init_granularity(); 6966 } 6967 #endif /* CONFIG_SMP */ 6968 6969 const_debug unsigned int sysctl_timer_migration = 1; 6970 6971 int in_sched_functions(unsigned long addr) 6972 { 6973 return in_lock_functions(addr) || 6974 (addr >= (unsigned long)__sched_text_start 6975 && addr < (unsigned long)__sched_text_end); 6976 } 6977 6978 #ifdef CONFIG_CGROUP_SCHED 6979 /* 6980 * Default task group. 6981 * Every task in system belongs to this group at bootup. 6982 */ 6983 struct task_group root_task_group; 6984 LIST_HEAD(task_groups); 6985 #endif 6986 6987 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6988 6989 void __init sched_init(void) 6990 { 6991 int i, j; 6992 unsigned long alloc_size = 0, ptr; 6993 6994 #ifdef CONFIG_FAIR_GROUP_SCHED 6995 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6996 #endif 6997 #ifdef CONFIG_RT_GROUP_SCHED 6998 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6999 #endif 7000 #ifdef CONFIG_CPUMASK_OFFSTACK 7001 alloc_size += num_possible_cpus() * cpumask_size(); 7002 #endif 7003 if (alloc_size) { 7004 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 7005 7006 #ifdef CONFIG_FAIR_GROUP_SCHED 7007 root_task_group.se = (struct sched_entity **)ptr; 7008 ptr += nr_cpu_ids * sizeof(void **); 7009 7010 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 7011 ptr += nr_cpu_ids * sizeof(void **); 7012 7013 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7014 #ifdef CONFIG_RT_GROUP_SCHED 7015 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 7016 ptr += nr_cpu_ids * sizeof(void **); 7017 7018 root_task_group.rt_rq = (struct rt_rq **)ptr; 7019 ptr += nr_cpu_ids * sizeof(void **); 7020 7021 #endif /* CONFIG_RT_GROUP_SCHED */ 7022 #ifdef CONFIG_CPUMASK_OFFSTACK 7023 for_each_possible_cpu(i) { 7024 per_cpu(load_balance_mask, i) = (void *)ptr; 7025 ptr += cpumask_size(); 7026 } 7027 #endif /* CONFIG_CPUMASK_OFFSTACK */ 7028 } 7029 7030 init_rt_bandwidth(&def_rt_bandwidth, 7031 global_rt_period(), global_rt_runtime()); 7032 init_dl_bandwidth(&def_dl_bandwidth, 7033 global_rt_period(), global_rt_runtime()); 7034 7035 #ifdef CONFIG_SMP 7036 init_defrootdomain(); 7037 #endif 7038 7039 #ifdef CONFIG_RT_GROUP_SCHED 7040 init_rt_bandwidth(&root_task_group.rt_bandwidth, 7041 global_rt_period(), global_rt_runtime()); 7042 #endif /* CONFIG_RT_GROUP_SCHED */ 7043 7044 #ifdef CONFIG_CGROUP_SCHED 7045 list_add(&root_task_group.list, &task_groups); 7046 INIT_LIST_HEAD(&root_task_group.children); 7047 INIT_LIST_HEAD(&root_task_group.siblings); 7048 autogroup_init(&init_task); 7049 7050 #endif /* CONFIG_CGROUP_SCHED */ 7051 7052 for_each_possible_cpu(i) { 7053 struct rq *rq; 7054 7055 rq = cpu_rq(i); 7056 raw_spin_lock_init(&rq->lock); 7057 rq->nr_running = 0; 7058 rq->calc_load_active = 0; 7059 rq->calc_load_update = jiffies + LOAD_FREQ; 7060 init_cfs_rq(&rq->cfs); 7061 init_rt_rq(&rq->rt, rq); 7062 init_dl_rq(&rq->dl, rq); 7063 #ifdef CONFIG_FAIR_GROUP_SCHED 7064 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 7065 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 7066 /* 7067 * How much cpu bandwidth does root_task_group get? 7068 * 7069 * In case of task-groups formed thr' the cgroup filesystem, it 7070 * gets 100% of the cpu resources in the system. This overall 7071 * system cpu resource is divided among the tasks of 7072 * root_task_group and its child task-groups in a fair manner, 7073 * based on each entity's (task or task-group's) weight 7074 * (se->load.weight). 7075 * 7076 * In other words, if root_task_group has 10 tasks of weight 7077 * 1024) and two child groups A0 and A1 (of weight 1024 each), 7078 * then A0's share of the cpu resource is: 7079 * 7080 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 7081 * 7082 * We achieve this by letting root_task_group's tasks sit 7083 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 7084 */ 7085 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 7086 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 7087 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7088 7089 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 7090 #ifdef CONFIG_RT_GROUP_SCHED 7091 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 7092 #endif 7093 7094 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 7095 rq->cpu_load[j] = 0; 7096 7097 rq->last_load_update_tick = jiffies; 7098 7099 #ifdef CONFIG_SMP 7100 rq->sd = NULL; 7101 rq->rd = NULL; 7102 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 7103 rq->post_schedule = 0; 7104 rq->active_balance = 0; 7105 rq->next_balance = jiffies; 7106 rq->push_cpu = 0; 7107 rq->cpu = i; 7108 rq->online = 0; 7109 rq->idle_stamp = 0; 7110 rq->avg_idle = 2*sysctl_sched_migration_cost; 7111 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 7112 7113 INIT_LIST_HEAD(&rq->cfs_tasks); 7114 7115 rq_attach_root(rq, &def_root_domain); 7116 #ifdef CONFIG_NO_HZ_COMMON 7117 rq->nohz_flags = 0; 7118 #endif 7119 #ifdef CONFIG_NO_HZ_FULL 7120 rq->last_sched_tick = 0; 7121 #endif 7122 #endif 7123 init_rq_hrtick(rq); 7124 atomic_set(&rq->nr_iowait, 0); 7125 } 7126 7127 set_load_weight(&init_task); 7128 7129 #ifdef CONFIG_PREEMPT_NOTIFIERS 7130 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 7131 #endif 7132 7133 /* 7134 * The boot idle thread does lazy MMU switching as well: 7135 */ 7136 atomic_inc(&init_mm.mm_count); 7137 enter_lazy_tlb(&init_mm, current); 7138 7139 /* 7140 * Make us the idle thread. Technically, schedule() should not be 7141 * called from this thread, however somewhere below it might be, 7142 * but because we are the idle thread, we just pick up running again 7143 * when this runqueue becomes "idle". 7144 */ 7145 init_idle(current, smp_processor_id()); 7146 7147 calc_load_update = jiffies + LOAD_FREQ; 7148 7149 /* 7150 * During early bootup we pretend to be a normal task: 7151 */ 7152 current->sched_class = &fair_sched_class; 7153 7154 #ifdef CONFIG_SMP 7155 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 7156 /* May be allocated at isolcpus cmdline parse time */ 7157 if (cpu_isolated_map == NULL) 7158 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 7159 idle_thread_set_boot_cpu(); 7160 set_cpu_rq_start_time(); 7161 #endif 7162 init_sched_fair_class(); 7163 7164 scheduler_running = 1; 7165 } 7166 7167 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 7168 static inline int preempt_count_equals(int preempt_offset) 7169 { 7170 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 7171 7172 return (nested == preempt_offset); 7173 } 7174 7175 void __might_sleep(const char *file, int line, int preempt_offset) 7176 { 7177 static unsigned long prev_jiffy; /* ratelimiting */ 7178 7179 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 7180 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 7181 !is_idle_task(current)) || 7182 system_state != SYSTEM_RUNNING || oops_in_progress) 7183 return; 7184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 7185 return; 7186 prev_jiffy = jiffies; 7187 7188 printk(KERN_ERR 7189 "BUG: sleeping function called from invalid context at %s:%d\n", 7190 file, line); 7191 printk(KERN_ERR 7192 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 7193 in_atomic(), irqs_disabled(), 7194 current->pid, current->comm); 7195 7196 debug_show_held_locks(current); 7197 if (irqs_disabled()) 7198 print_irqtrace_events(current); 7199 #ifdef CONFIG_DEBUG_PREEMPT 7200 if (!preempt_count_equals(preempt_offset)) { 7201 pr_err("Preemption disabled at:"); 7202 print_ip_sym(current->preempt_disable_ip); 7203 pr_cont("\n"); 7204 } 7205 #endif 7206 dump_stack(); 7207 } 7208 EXPORT_SYMBOL(__might_sleep); 7209 #endif 7210 7211 #ifdef CONFIG_MAGIC_SYSRQ 7212 static void normalize_task(struct rq *rq, struct task_struct *p) 7213 { 7214 const struct sched_class *prev_class = p->sched_class; 7215 struct sched_attr attr = { 7216 .sched_policy = SCHED_NORMAL, 7217 }; 7218 int old_prio = p->prio; 7219 int queued; 7220 7221 queued = task_on_rq_queued(p); 7222 if (queued) 7223 dequeue_task(rq, p, 0); 7224 __setscheduler(rq, p, &attr); 7225 if (queued) { 7226 enqueue_task(rq, p, 0); 7227 resched_curr(rq); 7228 } 7229 7230 check_class_changed(rq, p, prev_class, old_prio); 7231 } 7232 7233 void normalize_rt_tasks(void) 7234 { 7235 struct task_struct *g, *p; 7236 unsigned long flags; 7237 struct rq *rq; 7238 7239 read_lock(&tasklist_lock); 7240 for_each_process_thread(g, p) { 7241 /* 7242 * Only normalize user tasks: 7243 */ 7244 if (p->flags & PF_KTHREAD) 7245 continue; 7246 7247 p->se.exec_start = 0; 7248 #ifdef CONFIG_SCHEDSTATS 7249 p->se.statistics.wait_start = 0; 7250 p->se.statistics.sleep_start = 0; 7251 p->se.statistics.block_start = 0; 7252 #endif 7253 7254 if (!dl_task(p) && !rt_task(p)) { 7255 /* 7256 * Renice negative nice level userspace 7257 * tasks back to 0: 7258 */ 7259 if (task_nice(p) < 0) 7260 set_user_nice(p, 0); 7261 continue; 7262 } 7263 7264 rq = task_rq_lock(p, &flags); 7265 normalize_task(rq, p); 7266 task_rq_unlock(rq, p, &flags); 7267 } 7268 read_unlock(&tasklist_lock); 7269 } 7270 7271 #endif /* CONFIG_MAGIC_SYSRQ */ 7272 7273 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7274 /* 7275 * These functions are only useful for the IA64 MCA handling, or kdb. 7276 * 7277 * They can only be called when the whole system has been 7278 * stopped - every CPU needs to be quiescent, and no scheduling 7279 * activity can take place. Using them for anything else would 7280 * be a serious bug, and as a result, they aren't even visible 7281 * under any other configuration. 7282 */ 7283 7284 /** 7285 * curr_task - return the current task for a given cpu. 7286 * @cpu: the processor in question. 7287 * 7288 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7289 * 7290 * Return: The current task for @cpu. 7291 */ 7292 struct task_struct *curr_task(int cpu) 7293 { 7294 return cpu_curr(cpu); 7295 } 7296 7297 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7298 7299 #ifdef CONFIG_IA64 7300 /** 7301 * set_curr_task - set the current task for a given cpu. 7302 * @cpu: the processor in question. 7303 * @p: the task pointer to set. 7304 * 7305 * Description: This function must only be used when non-maskable interrupts 7306 * are serviced on a separate stack. It allows the architecture to switch the 7307 * notion of the current task on a cpu in a non-blocking manner. This function 7308 * must be called with all CPU's synchronized, and interrupts disabled, the 7309 * and caller must save the original value of the current task (see 7310 * curr_task() above) and restore that value before reenabling interrupts and 7311 * re-starting the system. 7312 * 7313 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7314 */ 7315 void set_curr_task(int cpu, struct task_struct *p) 7316 { 7317 cpu_curr(cpu) = p; 7318 } 7319 7320 #endif 7321 7322 #ifdef CONFIG_CGROUP_SCHED 7323 /* task_group_lock serializes the addition/removal of task groups */ 7324 static DEFINE_SPINLOCK(task_group_lock); 7325 7326 static void free_sched_group(struct task_group *tg) 7327 { 7328 free_fair_sched_group(tg); 7329 free_rt_sched_group(tg); 7330 autogroup_free(tg); 7331 kfree(tg); 7332 } 7333 7334 /* allocate runqueue etc for a new task group */ 7335 struct task_group *sched_create_group(struct task_group *parent) 7336 { 7337 struct task_group *tg; 7338 7339 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7340 if (!tg) 7341 return ERR_PTR(-ENOMEM); 7342 7343 if (!alloc_fair_sched_group(tg, parent)) 7344 goto err; 7345 7346 if (!alloc_rt_sched_group(tg, parent)) 7347 goto err; 7348 7349 return tg; 7350 7351 err: 7352 free_sched_group(tg); 7353 return ERR_PTR(-ENOMEM); 7354 } 7355 7356 void sched_online_group(struct task_group *tg, struct task_group *parent) 7357 { 7358 unsigned long flags; 7359 7360 spin_lock_irqsave(&task_group_lock, flags); 7361 list_add_rcu(&tg->list, &task_groups); 7362 7363 WARN_ON(!parent); /* root should already exist */ 7364 7365 tg->parent = parent; 7366 INIT_LIST_HEAD(&tg->children); 7367 list_add_rcu(&tg->siblings, &parent->children); 7368 spin_unlock_irqrestore(&task_group_lock, flags); 7369 } 7370 7371 /* rcu callback to free various structures associated with a task group */ 7372 static void free_sched_group_rcu(struct rcu_head *rhp) 7373 { 7374 /* now it should be safe to free those cfs_rqs */ 7375 free_sched_group(container_of(rhp, struct task_group, rcu)); 7376 } 7377 7378 /* Destroy runqueue etc associated with a task group */ 7379 void sched_destroy_group(struct task_group *tg) 7380 { 7381 /* wait for possible concurrent references to cfs_rqs complete */ 7382 call_rcu(&tg->rcu, free_sched_group_rcu); 7383 } 7384 7385 void sched_offline_group(struct task_group *tg) 7386 { 7387 unsigned long flags; 7388 int i; 7389 7390 /* end participation in shares distribution */ 7391 for_each_possible_cpu(i) 7392 unregister_fair_sched_group(tg, i); 7393 7394 spin_lock_irqsave(&task_group_lock, flags); 7395 list_del_rcu(&tg->list); 7396 list_del_rcu(&tg->siblings); 7397 spin_unlock_irqrestore(&task_group_lock, flags); 7398 } 7399 7400 /* change task's runqueue when it moves between groups. 7401 * The caller of this function should have put the task in its new group 7402 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7403 * reflect its new group. 7404 */ 7405 void sched_move_task(struct task_struct *tsk) 7406 { 7407 struct task_group *tg; 7408 int queued, running; 7409 unsigned long flags; 7410 struct rq *rq; 7411 7412 rq = task_rq_lock(tsk, &flags); 7413 7414 running = task_current(rq, tsk); 7415 queued = task_on_rq_queued(tsk); 7416 7417 if (queued) 7418 dequeue_task(rq, tsk, 0); 7419 if (unlikely(running)) 7420 put_prev_task(rq, tsk); 7421 7422 /* 7423 * All callers are synchronized by task_rq_lock(); we do not use RCU 7424 * which is pointless here. Thus, we pass "true" to task_css_check() 7425 * to prevent lockdep warnings. 7426 */ 7427 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7428 struct task_group, css); 7429 tg = autogroup_task_group(tsk, tg); 7430 tsk->sched_task_group = tg; 7431 7432 #ifdef CONFIG_FAIR_GROUP_SCHED 7433 if (tsk->sched_class->task_move_group) 7434 tsk->sched_class->task_move_group(tsk, queued); 7435 else 7436 #endif 7437 set_task_rq(tsk, task_cpu(tsk)); 7438 7439 if (unlikely(running)) 7440 tsk->sched_class->set_curr_task(rq); 7441 if (queued) 7442 enqueue_task(rq, tsk, 0); 7443 7444 task_rq_unlock(rq, tsk, &flags); 7445 } 7446 #endif /* CONFIG_CGROUP_SCHED */ 7447 7448 #ifdef CONFIG_RT_GROUP_SCHED 7449 /* 7450 * Ensure that the real time constraints are schedulable. 7451 */ 7452 static DEFINE_MUTEX(rt_constraints_mutex); 7453 7454 /* Must be called with tasklist_lock held */ 7455 static inline int tg_has_rt_tasks(struct task_group *tg) 7456 { 7457 struct task_struct *g, *p; 7458 7459 for_each_process_thread(g, p) { 7460 if (rt_task(p) && task_group(p) == tg) 7461 return 1; 7462 } 7463 7464 return 0; 7465 } 7466 7467 struct rt_schedulable_data { 7468 struct task_group *tg; 7469 u64 rt_period; 7470 u64 rt_runtime; 7471 }; 7472 7473 static int tg_rt_schedulable(struct task_group *tg, void *data) 7474 { 7475 struct rt_schedulable_data *d = data; 7476 struct task_group *child; 7477 unsigned long total, sum = 0; 7478 u64 period, runtime; 7479 7480 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7481 runtime = tg->rt_bandwidth.rt_runtime; 7482 7483 if (tg == d->tg) { 7484 period = d->rt_period; 7485 runtime = d->rt_runtime; 7486 } 7487 7488 /* 7489 * Cannot have more runtime than the period. 7490 */ 7491 if (runtime > period && runtime != RUNTIME_INF) 7492 return -EINVAL; 7493 7494 /* 7495 * Ensure we don't starve existing RT tasks. 7496 */ 7497 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7498 return -EBUSY; 7499 7500 total = to_ratio(period, runtime); 7501 7502 /* 7503 * Nobody can have more than the global setting allows. 7504 */ 7505 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7506 return -EINVAL; 7507 7508 /* 7509 * The sum of our children's runtime should not exceed our own. 7510 */ 7511 list_for_each_entry_rcu(child, &tg->children, siblings) { 7512 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7513 runtime = child->rt_bandwidth.rt_runtime; 7514 7515 if (child == d->tg) { 7516 period = d->rt_period; 7517 runtime = d->rt_runtime; 7518 } 7519 7520 sum += to_ratio(period, runtime); 7521 } 7522 7523 if (sum > total) 7524 return -EINVAL; 7525 7526 return 0; 7527 } 7528 7529 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7530 { 7531 int ret; 7532 7533 struct rt_schedulable_data data = { 7534 .tg = tg, 7535 .rt_period = period, 7536 .rt_runtime = runtime, 7537 }; 7538 7539 rcu_read_lock(); 7540 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7541 rcu_read_unlock(); 7542 7543 return ret; 7544 } 7545 7546 static int tg_set_rt_bandwidth(struct task_group *tg, 7547 u64 rt_period, u64 rt_runtime) 7548 { 7549 int i, err = 0; 7550 7551 mutex_lock(&rt_constraints_mutex); 7552 read_lock(&tasklist_lock); 7553 err = __rt_schedulable(tg, rt_period, rt_runtime); 7554 if (err) 7555 goto unlock; 7556 7557 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7558 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7559 tg->rt_bandwidth.rt_runtime = rt_runtime; 7560 7561 for_each_possible_cpu(i) { 7562 struct rt_rq *rt_rq = tg->rt_rq[i]; 7563 7564 raw_spin_lock(&rt_rq->rt_runtime_lock); 7565 rt_rq->rt_runtime = rt_runtime; 7566 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7567 } 7568 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7569 unlock: 7570 read_unlock(&tasklist_lock); 7571 mutex_unlock(&rt_constraints_mutex); 7572 7573 return err; 7574 } 7575 7576 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7577 { 7578 u64 rt_runtime, rt_period; 7579 7580 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7581 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7582 if (rt_runtime_us < 0) 7583 rt_runtime = RUNTIME_INF; 7584 7585 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7586 } 7587 7588 static long sched_group_rt_runtime(struct task_group *tg) 7589 { 7590 u64 rt_runtime_us; 7591 7592 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7593 return -1; 7594 7595 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7596 do_div(rt_runtime_us, NSEC_PER_USEC); 7597 return rt_runtime_us; 7598 } 7599 7600 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7601 { 7602 u64 rt_runtime, rt_period; 7603 7604 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7605 rt_runtime = tg->rt_bandwidth.rt_runtime; 7606 7607 if (rt_period == 0) 7608 return -EINVAL; 7609 7610 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7611 } 7612 7613 static long sched_group_rt_period(struct task_group *tg) 7614 { 7615 u64 rt_period_us; 7616 7617 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7618 do_div(rt_period_us, NSEC_PER_USEC); 7619 return rt_period_us; 7620 } 7621 #endif /* CONFIG_RT_GROUP_SCHED */ 7622 7623 #ifdef CONFIG_RT_GROUP_SCHED 7624 static int sched_rt_global_constraints(void) 7625 { 7626 int ret = 0; 7627 7628 mutex_lock(&rt_constraints_mutex); 7629 read_lock(&tasklist_lock); 7630 ret = __rt_schedulable(NULL, 0, 0); 7631 read_unlock(&tasklist_lock); 7632 mutex_unlock(&rt_constraints_mutex); 7633 7634 return ret; 7635 } 7636 7637 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7638 { 7639 /* Don't accept realtime tasks when there is no way for them to run */ 7640 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7641 return 0; 7642 7643 return 1; 7644 } 7645 7646 #else /* !CONFIG_RT_GROUP_SCHED */ 7647 static int sched_rt_global_constraints(void) 7648 { 7649 unsigned long flags; 7650 int i, ret = 0; 7651 7652 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7653 for_each_possible_cpu(i) { 7654 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7655 7656 raw_spin_lock(&rt_rq->rt_runtime_lock); 7657 rt_rq->rt_runtime = global_rt_runtime(); 7658 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7659 } 7660 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7661 7662 return ret; 7663 } 7664 #endif /* CONFIG_RT_GROUP_SCHED */ 7665 7666 static int sched_dl_global_constraints(void) 7667 { 7668 u64 runtime = global_rt_runtime(); 7669 u64 period = global_rt_period(); 7670 u64 new_bw = to_ratio(period, runtime); 7671 struct dl_bw *dl_b; 7672 int cpu, ret = 0; 7673 unsigned long flags; 7674 7675 /* 7676 * Here we want to check the bandwidth not being set to some 7677 * value smaller than the currently allocated bandwidth in 7678 * any of the root_domains. 7679 * 7680 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7681 * cycling on root_domains... Discussion on different/better 7682 * solutions is welcome! 7683 */ 7684 for_each_possible_cpu(cpu) { 7685 rcu_read_lock_sched(); 7686 dl_b = dl_bw_of(cpu); 7687 7688 raw_spin_lock_irqsave(&dl_b->lock, flags); 7689 if (new_bw < dl_b->total_bw) 7690 ret = -EBUSY; 7691 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7692 7693 rcu_read_unlock_sched(); 7694 7695 if (ret) 7696 break; 7697 } 7698 7699 return ret; 7700 } 7701 7702 static void sched_dl_do_global(void) 7703 { 7704 u64 new_bw = -1; 7705 struct dl_bw *dl_b; 7706 int cpu; 7707 unsigned long flags; 7708 7709 def_dl_bandwidth.dl_period = global_rt_period(); 7710 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7711 7712 if (global_rt_runtime() != RUNTIME_INF) 7713 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7714 7715 /* 7716 * FIXME: As above... 7717 */ 7718 for_each_possible_cpu(cpu) { 7719 rcu_read_lock_sched(); 7720 dl_b = dl_bw_of(cpu); 7721 7722 raw_spin_lock_irqsave(&dl_b->lock, flags); 7723 dl_b->bw = new_bw; 7724 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7725 7726 rcu_read_unlock_sched(); 7727 } 7728 } 7729 7730 static int sched_rt_global_validate(void) 7731 { 7732 if (sysctl_sched_rt_period <= 0) 7733 return -EINVAL; 7734 7735 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7736 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7737 return -EINVAL; 7738 7739 return 0; 7740 } 7741 7742 static void sched_rt_do_global(void) 7743 { 7744 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7745 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7746 } 7747 7748 int sched_rt_handler(struct ctl_table *table, int write, 7749 void __user *buffer, size_t *lenp, 7750 loff_t *ppos) 7751 { 7752 int old_period, old_runtime; 7753 static DEFINE_MUTEX(mutex); 7754 int ret; 7755 7756 mutex_lock(&mutex); 7757 old_period = sysctl_sched_rt_period; 7758 old_runtime = sysctl_sched_rt_runtime; 7759 7760 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7761 7762 if (!ret && write) { 7763 ret = sched_rt_global_validate(); 7764 if (ret) 7765 goto undo; 7766 7767 ret = sched_rt_global_constraints(); 7768 if (ret) 7769 goto undo; 7770 7771 ret = sched_dl_global_constraints(); 7772 if (ret) 7773 goto undo; 7774 7775 sched_rt_do_global(); 7776 sched_dl_do_global(); 7777 } 7778 if (0) { 7779 undo: 7780 sysctl_sched_rt_period = old_period; 7781 sysctl_sched_rt_runtime = old_runtime; 7782 } 7783 mutex_unlock(&mutex); 7784 7785 return ret; 7786 } 7787 7788 int sched_rr_handler(struct ctl_table *table, int write, 7789 void __user *buffer, size_t *lenp, 7790 loff_t *ppos) 7791 { 7792 int ret; 7793 static DEFINE_MUTEX(mutex); 7794 7795 mutex_lock(&mutex); 7796 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7797 /* make sure that internally we keep jiffies */ 7798 /* also, writing zero resets timeslice to default */ 7799 if (!ret && write) { 7800 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7801 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7802 } 7803 mutex_unlock(&mutex); 7804 return ret; 7805 } 7806 7807 #ifdef CONFIG_CGROUP_SCHED 7808 7809 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7810 { 7811 return css ? container_of(css, struct task_group, css) : NULL; 7812 } 7813 7814 static struct cgroup_subsys_state * 7815 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7816 { 7817 struct task_group *parent = css_tg(parent_css); 7818 struct task_group *tg; 7819 7820 if (!parent) { 7821 /* This is early initialization for the top cgroup */ 7822 return &root_task_group.css; 7823 } 7824 7825 tg = sched_create_group(parent); 7826 if (IS_ERR(tg)) 7827 return ERR_PTR(-ENOMEM); 7828 7829 return &tg->css; 7830 } 7831 7832 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7833 { 7834 struct task_group *tg = css_tg(css); 7835 struct task_group *parent = css_tg(css->parent); 7836 7837 if (parent) 7838 sched_online_group(tg, parent); 7839 return 0; 7840 } 7841 7842 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7843 { 7844 struct task_group *tg = css_tg(css); 7845 7846 sched_destroy_group(tg); 7847 } 7848 7849 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7850 { 7851 struct task_group *tg = css_tg(css); 7852 7853 sched_offline_group(tg); 7854 } 7855 7856 static void cpu_cgroup_fork(struct task_struct *task) 7857 { 7858 sched_move_task(task); 7859 } 7860 7861 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7862 struct cgroup_taskset *tset) 7863 { 7864 struct task_struct *task; 7865 7866 cgroup_taskset_for_each(task, tset) { 7867 #ifdef CONFIG_RT_GROUP_SCHED 7868 if (!sched_rt_can_attach(css_tg(css), task)) 7869 return -EINVAL; 7870 #else 7871 /* We don't support RT-tasks being in separate groups */ 7872 if (task->sched_class != &fair_sched_class) 7873 return -EINVAL; 7874 #endif 7875 } 7876 return 0; 7877 } 7878 7879 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7880 struct cgroup_taskset *tset) 7881 { 7882 struct task_struct *task; 7883 7884 cgroup_taskset_for_each(task, tset) 7885 sched_move_task(task); 7886 } 7887 7888 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7889 struct cgroup_subsys_state *old_css, 7890 struct task_struct *task) 7891 { 7892 /* 7893 * cgroup_exit() is called in the copy_process() failure path. 7894 * Ignore this case since the task hasn't ran yet, this avoids 7895 * trying to poke a half freed task state from generic code. 7896 */ 7897 if (!(task->flags & PF_EXITING)) 7898 return; 7899 7900 sched_move_task(task); 7901 } 7902 7903 #ifdef CONFIG_FAIR_GROUP_SCHED 7904 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7905 struct cftype *cftype, u64 shareval) 7906 { 7907 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7908 } 7909 7910 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7911 struct cftype *cft) 7912 { 7913 struct task_group *tg = css_tg(css); 7914 7915 return (u64) scale_load_down(tg->shares); 7916 } 7917 7918 #ifdef CONFIG_CFS_BANDWIDTH 7919 static DEFINE_MUTEX(cfs_constraints_mutex); 7920 7921 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7922 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7923 7924 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7925 7926 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7927 { 7928 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7929 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7930 7931 if (tg == &root_task_group) 7932 return -EINVAL; 7933 7934 /* 7935 * Ensure we have at some amount of bandwidth every period. This is 7936 * to prevent reaching a state of large arrears when throttled via 7937 * entity_tick() resulting in prolonged exit starvation. 7938 */ 7939 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7940 return -EINVAL; 7941 7942 /* 7943 * Likewise, bound things on the otherside by preventing insane quota 7944 * periods. This also allows us to normalize in computing quota 7945 * feasibility. 7946 */ 7947 if (period > max_cfs_quota_period) 7948 return -EINVAL; 7949 7950 /* 7951 * Prevent race between setting of cfs_rq->runtime_enabled and 7952 * unthrottle_offline_cfs_rqs(). 7953 */ 7954 get_online_cpus(); 7955 mutex_lock(&cfs_constraints_mutex); 7956 ret = __cfs_schedulable(tg, period, quota); 7957 if (ret) 7958 goto out_unlock; 7959 7960 runtime_enabled = quota != RUNTIME_INF; 7961 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7962 /* 7963 * If we need to toggle cfs_bandwidth_used, off->on must occur 7964 * before making related changes, and on->off must occur afterwards 7965 */ 7966 if (runtime_enabled && !runtime_was_enabled) 7967 cfs_bandwidth_usage_inc(); 7968 raw_spin_lock_irq(&cfs_b->lock); 7969 cfs_b->period = ns_to_ktime(period); 7970 cfs_b->quota = quota; 7971 7972 __refill_cfs_bandwidth_runtime(cfs_b); 7973 /* restart the period timer (if active) to handle new period expiry */ 7974 if (runtime_enabled && cfs_b->timer_active) { 7975 /* force a reprogram */ 7976 __start_cfs_bandwidth(cfs_b, true); 7977 } 7978 raw_spin_unlock_irq(&cfs_b->lock); 7979 7980 for_each_online_cpu(i) { 7981 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7982 struct rq *rq = cfs_rq->rq; 7983 7984 raw_spin_lock_irq(&rq->lock); 7985 cfs_rq->runtime_enabled = runtime_enabled; 7986 cfs_rq->runtime_remaining = 0; 7987 7988 if (cfs_rq->throttled) 7989 unthrottle_cfs_rq(cfs_rq); 7990 raw_spin_unlock_irq(&rq->lock); 7991 } 7992 if (runtime_was_enabled && !runtime_enabled) 7993 cfs_bandwidth_usage_dec(); 7994 out_unlock: 7995 mutex_unlock(&cfs_constraints_mutex); 7996 put_online_cpus(); 7997 7998 return ret; 7999 } 8000 8001 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 8002 { 8003 u64 quota, period; 8004 8005 period = ktime_to_ns(tg->cfs_bandwidth.period); 8006 if (cfs_quota_us < 0) 8007 quota = RUNTIME_INF; 8008 else 8009 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 8010 8011 return tg_set_cfs_bandwidth(tg, period, quota); 8012 } 8013 8014 long tg_get_cfs_quota(struct task_group *tg) 8015 { 8016 u64 quota_us; 8017 8018 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 8019 return -1; 8020 8021 quota_us = tg->cfs_bandwidth.quota; 8022 do_div(quota_us, NSEC_PER_USEC); 8023 8024 return quota_us; 8025 } 8026 8027 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 8028 { 8029 u64 quota, period; 8030 8031 period = (u64)cfs_period_us * NSEC_PER_USEC; 8032 quota = tg->cfs_bandwidth.quota; 8033 8034 return tg_set_cfs_bandwidth(tg, period, quota); 8035 } 8036 8037 long tg_get_cfs_period(struct task_group *tg) 8038 { 8039 u64 cfs_period_us; 8040 8041 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 8042 do_div(cfs_period_us, NSEC_PER_USEC); 8043 8044 return cfs_period_us; 8045 } 8046 8047 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 8048 struct cftype *cft) 8049 { 8050 return tg_get_cfs_quota(css_tg(css)); 8051 } 8052 8053 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 8054 struct cftype *cftype, s64 cfs_quota_us) 8055 { 8056 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 8057 } 8058 8059 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 8060 struct cftype *cft) 8061 { 8062 return tg_get_cfs_period(css_tg(css)); 8063 } 8064 8065 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 8066 struct cftype *cftype, u64 cfs_period_us) 8067 { 8068 return tg_set_cfs_period(css_tg(css), cfs_period_us); 8069 } 8070 8071 struct cfs_schedulable_data { 8072 struct task_group *tg; 8073 u64 period, quota; 8074 }; 8075 8076 /* 8077 * normalize group quota/period to be quota/max_period 8078 * note: units are usecs 8079 */ 8080 static u64 normalize_cfs_quota(struct task_group *tg, 8081 struct cfs_schedulable_data *d) 8082 { 8083 u64 quota, period; 8084 8085 if (tg == d->tg) { 8086 period = d->period; 8087 quota = d->quota; 8088 } else { 8089 period = tg_get_cfs_period(tg); 8090 quota = tg_get_cfs_quota(tg); 8091 } 8092 8093 /* note: these should typically be equivalent */ 8094 if (quota == RUNTIME_INF || quota == -1) 8095 return RUNTIME_INF; 8096 8097 return to_ratio(period, quota); 8098 } 8099 8100 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 8101 { 8102 struct cfs_schedulable_data *d = data; 8103 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8104 s64 quota = 0, parent_quota = -1; 8105 8106 if (!tg->parent) { 8107 quota = RUNTIME_INF; 8108 } else { 8109 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 8110 8111 quota = normalize_cfs_quota(tg, d); 8112 parent_quota = parent_b->hierarchical_quota; 8113 8114 /* 8115 * ensure max(child_quota) <= parent_quota, inherit when no 8116 * limit is set 8117 */ 8118 if (quota == RUNTIME_INF) 8119 quota = parent_quota; 8120 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 8121 return -EINVAL; 8122 } 8123 cfs_b->hierarchical_quota = quota; 8124 8125 return 0; 8126 } 8127 8128 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 8129 { 8130 int ret; 8131 struct cfs_schedulable_data data = { 8132 .tg = tg, 8133 .period = period, 8134 .quota = quota, 8135 }; 8136 8137 if (quota != RUNTIME_INF) { 8138 do_div(data.period, NSEC_PER_USEC); 8139 do_div(data.quota, NSEC_PER_USEC); 8140 } 8141 8142 rcu_read_lock(); 8143 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 8144 rcu_read_unlock(); 8145 8146 return ret; 8147 } 8148 8149 static int cpu_stats_show(struct seq_file *sf, void *v) 8150 { 8151 struct task_group *tg = css_tg(seq_css(sf)); 8152 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 8153 8154 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 8155 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 8156 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 8157 8158 return 0; 8159 } 8160 #endif /* CONFIG_CFS_BANDWIDTH */ 8161 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8162 8163 #ifdef CONFIG_RT_GROUP_SCHED 8164 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 8165 struct cftype *cft, s64 val) 8166 { 8167 return sched_group_set_rt_runtime(css_tg(css), val); 8168 } 8169 8170 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 8171 struct cftype *cft) 8172 { 8173 return sched_group_rt_runtime(css_tg(css)); 8174 } 8175 8176 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 8177 struct cftype *cftype, u64 rt_period_us) 8178 { 8179 return sched_group_set_rt_period(css_tg(css), rt_period_us); 8180 } 8181 8182 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 8183 struct cftype *cft) 8184 { 8185 return sched_group_rt_period(css_tg(css)); 8186 } 8187 #endif /* CONFIG_RT_GROUP_SCHED */ 8188 8189 static struct cftype cpu_files[] = { 8190 #ifdef CONFIG_FAIR_GROUP_SCHED 8191 { 8192 .name = "shares", 8193 .read_u64 = cpu_shares_read_u64, 8194 .write_u64 = cpu_shares_write_u64, 8195 }, 8196 #endif 8197 #ifdef CONFIG_CFS_BANDWIDTH 8198 { 8199 .name = "cfs_quota_us", 8200 .read_s64 = cpu_cfs_quota_read_s64, 8201 .write_s64 = cpu_cfs_quota_write_s64, 8202 }, 8203 { 8204 .name = "cfs_period_us", 8205 .read_u64 = cpu_cfs_period_read_u64, 8206 .write_u64 = cpu_cfs_period_write_u64, 8207 }, 8208 { 8209 .name = "stat", 8210 .seq_show = cpu_stats_show, 8211 }, 8212 #endif 8213 #ifdef CONFIG_RT_GROUP_SCHED 8214 { 8215 .name = "rt_runtime_us", 8216 .read_s64 = cpu_rt_runtime_read, 8217 .write_s64 = cpu_rt_runtime_write, 8218 }, 8219 { 8220 .name = "rt_period_us", 8221 .read_u64 = cpu_rt_period_read_uint, 8222 .write_u64 = cpu_rt_period_write_uint, 8223 }, 8224 #endif 8225 { } /* terminate */ 8226 }; 8227 8228 struct cgroup_subsys cpu_cgrp_subsys = { 8229 .css_alloc = cpu_cgroup_css_alloc, 8230 .css_free = cpu_cgroup_css_free, 8231 .css_online = cpu_cgroup_css_online, 8232 .css_offline = cpu_cgroup_css_offline, 8233 .fork = cpu_cgroup_fork, 8234 .can_attach = cpu_cgroup_can_attach, 8235 .attach = cpu_cgroup_attach, 8236 .exit = cpu_cgroup_exit, 8237 .legacy_cftypes = cpu_files, 8238 .early_init = 1, 8239 }; 8240 8241 #endif /* CONFIG_CGROUP_SCHED */ 8242 8243 void dump_cpu_task(int cpu) 8244 { 8245 pr_info("Task dump for CPU %d:\n", cpu); 8246 sched_show_task(cpu_curr(cpu)); 8247 } 8248