1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #include <trace/events/ipi.h> 84 #undef CREATE_TRACE_POINTS 85 86 #include "sched.h" 87 #include "stats.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 100 101 /* 102 * Export tracepoints that act as a bare tracehook (ie: have no trace event 103 * associated with them) to allow external modules to probe them. 104 */ 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 117 118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 119 120 #ifdef CONFIG_SCHED_DEBUG 121 /* 122 * Debugging: various feature bits 123 * 124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 125 * sysctl_sched_features, defined in sched.h, to allow constants propagation 126 * at compile time and compiler optimization based on features default. 127 */ 128 #define SCHED_FEAT(name, enabled) \ 129 (1UL << __SCHED_FEAT_##name) * enabled | 130 const_debug unsigned int sysctl_sched_features = 131 #include "features.h" 132 0; 133 #undef SCHED_FEAT 134 135 /* 136 * Print a warning if need_resched is set for the given duration (if 137 * LATENCY_WARN is enabled). 138 * 139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 140 * per boot. 141 */ 142 __read_mostly int sysctl_resched_latency_warn_ms = 100; 143 __read_mostly int sysctl_resched_latency_warn_once = 1; 144 #endif /* CONFIG_SCHED_DEBUG */ 145 146 /* 147 * Number of tasks to iterate in a single balance run. 148 * Limited because this is done with IRQs disabled. 149 */ 150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 151 152 __read_mostly int scheduler_running; 153 154 #ifdef CONFIG_SCHED_CORE 155 156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 157 158 /* kernel prio, less is more */ 159 static inline int __task_prio(const struct task_struct *p) 160 { 161 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 162 return -2; 163 164 if (rt_prio(p->prio)) /* includes deadline */ 165 return p->prio; /* [-1, 99] */ 166 167 if (p->sched_class == &idle_sched_class) 168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 169 170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 171 } 172 173 /* 174 * l(a,b) 175 * le(a,b) := !l(b,a) 176 * g(a,b) := l(b,a) 177 * ge(a,b) := !l(a,b) 178 */ 179 180 /* real prio, less is less */ 181 static inline bool prio_less(const struct task_struct *a, 182 const struct task_struct *b, bool in_fi) 183 { 184 185 int pa = __task_prio(a), pb = __task_prio(b); 186 187 if (-pa < -pb) 188 return true; 189 190 if (-pb < -pa) 191 return false; 192 193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 194 return !dl_time_before(a->dl.deadline, b->dl.deadline); 195 196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 197 return cfs_prio_less(a, b, in_fi); 198 199 return false; 200 } 201 202 static inline bool __sched_core_less(const struct task_struct *a, 203 const struct task_struct *b) 204 { 205 if (a->core_cookie < b->core_cookie) 206 return true; 207 208 if (a->core_cookie > b->core_cookie) 209 return false; 210 211 /* flip prio, so high prio is leftmost */ 212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 213 return true; 214 215 return false; 216 } 217 218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 219 220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 221 { 222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 223 } 224 225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 226 { 227 const struct task_struct *p = __node_2_sc(node); 228 unsigned long cookie = (unsigned long)key; 229 230 if (cookie < p->core_cookie) 231 return -1; 232 233 if (cookie > p->core_cookie) 234 return 1; 235 236 return 0; 237 } 238 239 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 240 { 241 rq->core->core_task_seq++; 242 243 if (!p->core_cookie) 244 return; 245 246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 247 } 248 249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 250 { 251 rq->core->core_task_seq++; 252 253 if (sched_core_enqueued(p)) { 254 rb_erase(&p->core_node, &rq->core_tree); 255 RB_CLEAR_NODE(&p->core_node); 256 } 257 258 /* 259 * Migrating the last task off the cpu, with the cpu in forced idle 260 * state. Reschedule to create an accounting edge for forced idle, 261 * and re-examine whether the core is still in forced idle state. 262 */ 263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 264 rq->core->core_forceidle_count && rq->curr == rq->idle) 265 resched_curr(rq); 266 } 267 268 static int sched_task_is_throttled(struct task_struct *p, int cpu) 269 { 270 if (p->sched_class->task_is_throttled) 271 return p->sched_class->task_is_throttled(p, cpu); 272 273 return 0; 274 } 275 276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 277 { 278 struct rb_node *node = &p->core_node; 279 int cpu = task_cpu(p); 280 281 do { 282 node = rb_next(node); 283 if (!node) 284 return NULL; 285 286 p = __node_2_sc(node); 287 if (p->core_cookie != cookie) 288 return NULL; 289 290 } while (sched_task_is_throttled(p, cpu)); 291 292 return p; 293 } 294 295 /* 296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 297 * If no suitable task is found, NULL will be returned. 298 */ 299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 300 { 301 struct task_struct *p; 302 struct rb_node *node; 303 304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 305 if (!node) 306 return NULL; 307 308 p = __node_2_sc(node); 309 if (!sched_task_is_throttled(p, rq->cpu)) 310 return p; 311 312 return sched_core_next(p, cookie); 313 } 314 315 /* 316 * Magic required such that: 317 * 318 * raw_spin_rq_lock(rq); 319 * ... 320 * raw_spin_rq_unlock(rq); 321 * 322 * ends up locking and unlocking the _same_ lock, and all CPUs 323 * always agree on what rq has what lock. 324 * 325 * XXX entirely possible to selectively enable cores, don't bother for now. 326 */ 327 328 static DEFINE_MUTEX(sched_core_mutex); 329 static atomic_t sched_core_count; 330 static struct cpumask sched_core_mask; 331 332 static void sched_core_lock(int cpu, unsigned long *flags) 333 { 334 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 335 int t, i = 0; 336 337 local_irq_save(*flags); 338 for_each_cpu(t, smt_mask) 339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 340 } 341 342 static void sched_core_unlock(int cpu, unsigned long *flags) 343 { 344 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 345 int t; 346 347 for_each_cpu(t, smt_mask) 348 raw_spin_unlock(&cpu_rq(t)->__lock); 349 local_irq_restore(*flags); 350 } 351 352 static void __sched_core_flip(bool enabled) 353 { 354 unsigned long flags; 355 int cpu, t; 356 357 cpus_read_lock(); 358 359 /* 360 * Toggle the online cores, one by one. 361 */ 362 cpumask_copy(&sched_core_mask, cpu_online_mask); 363 for_each_cpu(cpu, &sched_core_mask) { 364 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 365 366 sched_core_lock(cpu, &flags); 367 368 for_each_cpu(t, smt_mask) 369 cpu_rq(t)->core_enabled = enabled; 370 371 cpu_rq(cpu)->core->core_forceidle_start = 0; 372 373 sched_core_unlock(cpu, &flags); 374 375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 376 } 377 378 /* 379 * Toggle the offline CPUs. 380 */ 381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 382 cpu_rq(cpu)->core_enabled = enabled; 383 384 cpus_read_unlock(); 385 } 386 387 static void sched_core_assert_empty(void) 388 { 389 int cpu; 390 391 for_each_possible_cpu(cpu) 392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 393 } 394 395 static void __sched_core_enable(void) 396 { 397 static_branch_enable(&__sched_core_enabled); 398 /* 399 * Ensure all previous instances of raw_spin_rq_*lock() have finished 400 * and future ones will observe !sched_core_disabled(). 401 */ 402 synchronize_rcu(); 403 __sched_core_flip(true); 404 sched_core_assert_empty(); 405 } 406 407 static void __sched_core_disable(void) 408 { 409 sched_core_assert_empty(); 410 __sched_core_flip(false); 411 static_branch_disable(&__sched_core_enabled); 412 } 413 414 void sched_core_get(void) 415 { 416 if (atomic_inc_not_zero(&sched_core_count)) 417 return; 418 419 mutex_lock(&sched_core_mutex); 420 if (!atomic_read(&sched_core_count)) 421 __sched_core_enable(); 422 423 smp_mb__before_atomic(); 424 atomic_inc(&sched_core_count); 425 mutex_unlock(&sched_core_mutex); 426 } 427 428 static void __sched_core_put(struct work_struct *work) 429 { 430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 431 __sched_core_disable(); 432 mutex_unlock(&sched_core_mutex); 433 } 434 } 435 436 void sched_core_put(void) 437 { 438 static DECLARE_WORK(_work, __sched_core_put); 439 440 /* 441 * "There can be only one" 442 * 443 * Either this is the last one, or we don't actually need to do any 444 * 'work'. If it is the last *again*, we rely on 445 * WORK_STRUCT_PENDING_BIT. 446 */ 447 if (!atomic_add_unless(&sched_core_count, -1, 1)) 448 schedule_work(&_work); 449 } 450 451 #else /* !CONFIG_SCHED_CORE */ 452 453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 454 static inline void 455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 456 457 #endif /* CONFIG_SCHED_CORE */ 458 459 /* 460 * Serialization rules: 461 * 462 * Lock order: 463 * 464 * p->pi_lock 465 * rq->lock 466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 467 * 468 * rq1->lock 469 * rq2->lock where: rq1 < rq2 470 * 471 * Regular state: 472 * 473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 474 * local CPU's rq->lock, it optionally removes the task from the runqueue and 475 * always looks at the local rq data structures to find the most eligible task 476 * to run next. 477 * 478 * Task enqueue is also under rq->lock, possibly taken from another CPU. 479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 480 * the local CPU to avoid bouncing the runqueue state around [ see 481 * ttwu_queue_wakelist() ] 482 * 483 * Task wakeup, specifically wakeups that involve migration, are horribly 484 * complicated to avoid having to take two rq->locks. 485 * 486 * Special state: 487 * 488 * System-calls and anything external will use task_rq_lock() which acquires 489 * both p->pi_lock and rq->lock. As a consequence the state they change is 490 * stable while holding either lock: 491 * 492 * - sched_setaffinity()/ 493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 494 * - set_user_nice(): p->se.load, p->*prio 495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 496 * p->se.load, p->rt_priority, 497 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 498 * - sched_setnuma(): p->numa_preferred_nid 499 * - sched_move_task(): p->sched_task_group 500 * - uclamp_update_active() p->uclamp* 501 * 502 * p->state <- TASK_*: 503 * 504 * is changed locklessly using set_current_state(), __set_current_state() or 505 * set_special_state(), see their respective comments, or by 506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 507 * concurrent self. 508 * 509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 510 * 511 * is set by activate_task() and cleared by deactivate_task(), under 512 * rq->lock. Non-zero indicates the task is runnable, the special 513 * ON_RQ_MIGRATING state is used for migration without holding both 514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 515 * 516 * p->on_cpu <- { 0, 1 }: 517 * 518 * is set by prepare_task() and cleared by finish_task() such that it will be 519 * set before p is scheduled-in and cleared after p is scheduled-out, both 520 * under rq->lock. Non-zero indicates the task is running on its CPU. 521 * 522 * [ The astute reader will observe that it is possible for two tasks on one 523 * CPU to have ->on_cpu = 1 at the same time. ] 524 * 525 * task_cpu(p): is changed by set_task_cpu(), the rules are: 526 * 527 * - Don't call set_task_cpu() on a blocked task: 528 * 529 * We don't care what CPU we're not running on, this simplifies hotplug, 530 * the CPU assignment of blocked tasks isn't required to be valid. 531 * 532 * - for try_to_wake_up(), called under p->pi_lock: 533 * 534 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 535 * 536 * - for migration called under rq->lock: 537 * [ see task_on_rq_migrating() in task_rq_lock() ] 538 * 539 * o move_queued_task() 540 * o detach_task() 541 * 542 * - for migration called under double_rq_lock(): 543 * 544 * o __migrate_swap_task() 545 * o push_rt_task() / pull_rt_task() 546 * o push_dl_task() / pull_dl_task() 547 * o dl_task_offline_migration() 548 * 549 */ 550 551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 552 { 553 raw_spinlock_t *lock; 554 555 /* Matches synchronize_rcu() in __sched_core_enable() */ 556 preempt_disable(); 557 if (sched_core_disabled()) { 558 raw_spin_lock_nested(&rq->__lock, subclass); 559 /* preempt_count *MUST* be > 1 */ 560 preempt_enable_no_resched(); 561 return; 562 } 563 564 for (;;) { 565 lock = __rq_lockp(rq); 566 raw_spin_lock_nested(lock, subclass); 567 if (likely(lock == __rq_lockp(rq))) { 568 /* preempt_count *MUST* be > 1 */ 569 preempt_enable_no_resched(); 570 return; 571 } 572 raw_spin_unlock(lock); 573 } 574 } 575 576 bool raw_spin_rq_trylock(struct rq *rq) 577 { 578 raw_spinlock_t *lock; 579 bool ret; 580 581 /* Matches synchronize_rcu() in __sched_core_enable() */ 582 preempt_disable(); 583 if (sched_core_disabled()) { 584 ret = raw_spin_trylock(&rq->__lock); 585 preempt_enable(); 586 return ret; 587 } 588 589 for (;;) { 590 lock = __rq_lockp(rq); 591 ret = raw_spin_trylock(lock); 592 if (!ret || (likely(lock == __rq_lockp(rq)))) { 593 preempt_enable(); 594 return ret; 595 } 596 raw_spin_unlock(lock); 597 } 598 } 599 600 void raw_spin_rq_unlock(struct rq *rq) 601 { 602 raw_spin_unlock(rq_lockp(rq)); 603 } 604 605 #ifdef CONFIG_SMP 606 /* 607 * double_rq_lock - safely lock two runqueues 608 */ 609 void double_rq_lock(struct rq *rq1, struct rq *rq2) 610 { 611 lockdep_assert_irqs_disabled(); 612 613 if (rq_order_less(rq2, rq1)) 614 swap(rq1, rq2); 615 616 raw_spin_rq_lock(rq1); 617 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 619 620 double_rq_clock_clear_update(rq1, rq2); 621 } 622 #endif 623 624 /* 625 * __task_rq_lock - lock the rq @p resides on. 626 */ 627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 628 __acquires(rq->lock) 629 { 630 struct rq *rq; 631 632 lockdep_assert_held(&p->pi_lock); 633 634 for (;;) { 635 rq = task_rq(p); 636 raw_spin_rq_lock(rq); 637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 638 rq_pin_lock(rq, rf); 639 return rq; 640 } 641 raw_spin_rq_unlock(rq); 642 643 while (unlikely(task_on_rq_migrating(p))) 644 cpu_relax(); 645 } 646 } 647 648 /* 649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 650 */ 651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 652 __acquires(p->pi_lock) 653 __acquires(rq->lock) 654 { 655 struct rq *rq; 656 657 for (;;) { 658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 659 rq = task_rq(p); 660 raw_spin_rq_lock(rq); 661 /* 662 * move_queued_task() task_rq_lock() 663 * 664 * ACQUIRE (rq->lock) 665 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 667 * [S] ->cpu = new_cpu [L] task_rq() 668 * [L] ->on_rq 669 * RELEASE (rq->lock) 670 * 671 * If we observe the old CPU in task_rq_lock(), the acquire of 672 * the old rq->lock will fully serialize against the stores. 673 * 674 * If we observe the new CPU in task_rq_lock(), the address 675 * dependency headed by '[L] rq = task_rq()' and the acquire 676 * will pair with the WMB to ensure we then also see migrating. 677 */ 678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 679 rq_pin_lock(rq, rf); 680 return rq; 681 } 682 raw_spin_rq_unlock(rq); 683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 684 685 while (unlikely(task_on_rq_migrating(p))) 686 cpu_relax(); 687 } 688 } 689 690 /* 691 * RQ-clock updating methods: 692 */ 693 694 static void update_rq_clock_task(struct rq *rq, s64 delta) 695 { 696 /* 697 * In theory, the compile should just see 0 here, and optimize out the call 698 * to sched_rt_avg_update. But I don't trust it... 699 */ 700 s64 __maybe_unused steal = 0, irq_delta = 0; 701 702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 704 705 /* 706 * Since irq_time is only updated on {soft,}irq_exit, we might run into 707 * this case when a previous update_rq_clock() happened inside a 708 * {soft,}irq region. 709 * 710 * When this happens, we stop ->clock_task and only update the 711 * prev_irq_time stamp to account for the part that fit, so that a next 712 * update will consume the rest. This ensures ->clock_task is 713 * monotonic. 714 * 715 * It does however cause some slight miss-attribution of {soft,}irq 716 * time, a more accurate solution would be to update the irq_time using 717 * the current rq->clock timestamp, except that would require using 718 * atomic ops. 719 */ 720 if (irq_delta > delta) 721 irq_delta = delta; 722 723 rq->prev_irq_time += irq_delta; 724 delta -= irq_delta; 725 psi_account_irqtime(rq->curr, irq_delta); 726 delayacct_irq(rq->curr, irq_delta); 727 #endif 728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 729 if (static_key_false((¶virt_steal_rq_enabled))) { 730 steal = paravirt_steal_clock(cpu_of(rq)); 731 steal -= rq->prev_steal_time_rq; 732 733 if (unlikely(steal > delta)) 734 steal = delta; 735 736 rq->prev_steal_time_rq += steal; 737 delta -= steal; 738 } 739 #endif 740 741 rq->clock_task += delta; 742 743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 745 update_irq_load_avg(rq, irq_delta + steal); 746 #endif 747 update_rq_clock_pelt(rq, delta); 748 } 749 750 void update_rq_clock(struct rq *rq) 751 { 752 s64 delta; 753 754 lockdep_assert_rq_held(rq); 755 756 if (rq->clock_update_flags & RQCF_ACT_SKIP) 757 return; 758 759 #ifdef CONFIG_SCHED_DEBUG 760 if (sched_feat(WARN_DOUBLE_CLOCK)) 761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 762 rq->clock_update_flags |= RQCF_UPDATED; 763 #endif 764 765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 766 if (delta < 0) 767 return; 768 rq->clock += delta; 769 update_rq_clock_task(rq, delta); 770 } 771 772 #ifdef CONFIG_SCHED_HRTICK 773 /* 774 * Use HR-timers to deliver accurate preemption points. 775 */ 776 777 static void hrtick_clear(struct rq *rq) 778 { 779 if (hrtimer_active(&rq->hrtick_timer)) 780 hrtimer_cancel(&rq->hrtick_timer); 781 } 782 783 /* 784 * High-resolution timer tick. 785 * Runs from hardirq context with interrupts disabled. 786 */ 787 static enum hrtimer_restart hrtick(struct hrtimer *timer) 788 { 789 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 790 struct rq_flags rf; 791 792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 793 794 rq_lock(rq, &rf); 795 update_rq_clock(rq); 796 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 797 rq_unlock(rq, &rf); 798 799 return HRTIMER_NORESTART; 800 } 801 802 #ifdef CONFIG_SMP 803 804 static void __hrtick_restart(struct rq *rq) 805 { 806 struct hrtimer *timer = &rq->hrtick_timer; 807 ktime_t time = rq->hrtick_time; 808 809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 810 } 811 812 /* 813 * called from hardirq (IPI) context 814 */ 815 static void __hrtick_start(void *arg) 816 { 817 struct rq *rq = arg; 818 struct rq_flags rf; 819 820 rq_lock(rq, &rf); 821 __hrtick_restart(rq); 822 rq_unlock(rq, &rf); 823 } 824 825 /* 826 * Called to set the hrtick timer state. 827 * 828 * called with rq->lock held and irqs disabled 829 */ 830 void hrtick_start(struct rq *rq, u64 delay) 831 { 832 struct hrtimer *timer = &rq->hrtick_timer; 833 s64 delta; 834 835 /* 836 * Don't schedule slices shorter than 10000ns, that just 837 * doesn't make sense and can cause timer DoS. 838 */ 839 delta = max_t(s64, delay, 10000LL); 840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 841 842 if (rq == this_rq()) 843 __hrtick_restart(rq); 844 else 845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 846 } 847 848 #else 849 /* 850 * Called to set the hrtick timer state. 851 * 852 * called with rq->lock held and irqs disabled 853 */ 854 void hrtick_start(struct rq *rq, u64 delay) 855 { 856 /* 857 * Don't schedule slices shorter than 10000ns, that just 858 * doesn't make sense. Rely on vruntime for fairness. 859 */ 860 delay = max_t(u64, delay, 10000LL); 861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 862 HRTIMER_MODE_REL_PINNED_HARD); 863 } 864 865 #endif /* CONFIG_SMP */ 866 867 static void hrtick_rq_init(struct rq *rq) 868 { 869 #ifdef CONFIG_SMP 870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 871 #endif 872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 873 rq->hrtick_timer.function = hrtick; 874 } 875 #else /* CONFIG_SCHED_HRTICK */ 876 static inline void hrtick_clear(struct rq *rq) 877 { 878 } 879 880 static inline void hrtick_rq_init(struct rq *rq) 881 { 882 } 883 #endif /* CONFIG_SCHED_HRTICK */ 884 885 /* 886 * cmpxchg based fetch_or, macro so it works for different integer types 887 */ 888 #define fetch_or(ptr, mask) \ 889 ({ \ 890 typeof(ptr) _ptr = (ptr); \ 891 typeof(mask) _mask = (mask); \ 892 typeof(*_ptr) _val = *_ptr; \ 893 \ 894 do { \ 895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 896 _val; \ 897 }) 898 899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 900 /* 901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 902 * this avoids any races wrt polling state changes and thereby avoids 903 * spurious IPIs. 904 */ 905 static inline bool set_nr_and_not_polling(struct task_struct *p) 906 { 907 struct thread_info *ti = task_thread_info(p); 908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 909 } 910 911 /* 912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 913 * 914 * If this returns true, then the idle task promises to call 915 * sched_ttwu_pending() and reschedule soon. 916 */ 917 static bool set_nr_if_polling(struct task_struct *p) 918 { 919 struct thread_info *ti = task_thread_info(p); 920 typeof(ti->flags) val = READ_ONCE(ti->flags); 921 922 do { 923 if (!(val & _TIF_POLLING_NRFLAG)) 924 return false; 925 if (val & _TIF_NEED_RESCHED) 926 return true; 927 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 928 929 return true; 930 } 931 932 #else 933 static inline bool set_nr_and_not_polling(struct task_struct *p) 934 { 935 set_tsk_need_resched(p); 936 return true; 937 } 938 939 #ifdef CONFIG_SMP 940 static inline bool set_nr_if_polling(struct task_struct *p) 941 { 942 return false; 943 } 944 #endif 945 #endif 946 947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 948 { 949 struct wake_q_node *node = &task->wake_q; 950 951 /* 952 * Atomically grab the task, if ->wake_q is !nil already it means 953 * it's already queued (either by us or someone else) and will get the 954 * wakeup due to that. 955 * 956 * In order to ensure that a pending wakeup will observe our pending 957 * state, even in the failed case, an explicit smp_mb() must be used. 958 */ 959 smp_mb__before_atomic(); 960 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 961 return false; 962 963 /* 964 * The head is context local, there can be no concurrency. 965 */ 966 *head->lastp = node; 967 head->lastp = &node->next; 968 return true; 969 } 970 971 /** 972 * wake_q_add() - queue a wakeup for 'later' waking. 973 * @head: the wake_q_head to add @task to 974 * @task: the task to queue for 'later' wakeup 975 * 976 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 977 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 978 * instantly. 979 * 980 * This function must be used as-if it were wake_up_process(); IOW the task 981 * must be ready to be woken at this location. 982 */ 983 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 984 { 985 if (__wake_q_add(head, task)) 986 get_task_struct(task); 987 } 988 989 /** 990 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 991 * @head: the wake_q_head to add @task to 992 * @task: the task to queue for 'later' wakeup 993 * 994 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 995 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 996 * instantly. 997 * 998 * This function must be used as-if it were wake_up_process(); IOW the task 999 * must be ready to be woken at this location. 1000 * 1001 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1002 * that already hold reference to @task can call the 'safe' version and trust 1003 * wake_q to do the right thing depending whether or not the @task is already 1004 * queued for wakeup. 1005 */ 1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1007 { 1008 if (!__wake_q_add(head, task)) 1009 put_task_struct(task); 1010 } 1011 1012 void wake_up_q(struct wake_q_head *head) 1013 { 1014 struct wake_q_node *node = head->first; 1015 1016 while (node != WAKE_Q_TAIL) { 1017 struct task_struct *task; 1018 1019 task = container_of(node, struct task_struct, wake_q); 1020 /* Task can safely be re-inserted now: */ 1021 node = node->next; 1022 task->wake_q.next = NULL; 1023 1024 /* 1025 * wake_up_process() executes a full barrier, which pairs with 1026 * the queueing in wake_q_add() so as not to miss wakeups. 1027 */ 1028 wake_up_process(task); 1029 put_task_struct(task); 1030 } 1031 } 1032 1033 /* 1034 * resched_curr - mark rq's current task 'to be rescheduled now'. 1035 * 1036 * On UP this means the setting of the need_resched flag, on SMP it 1037 * might also involve a cross-CPU call to trigger the scheduler on 1038 * the target CPU. 1039 */ 1040 void resched_curr(struct rq *rq) 1041 { 1042 struct task_struct *curr = rq->curr; 1043 int cpu; 1044 1045 lockdep_assert_rq_held(rq); 1046 1047 if (test_tsk_need_resched(curr)) 1048 return; 1049 1050 cpu = cpu_of(rq); 1051 1052 if (cpu == smp_processor_id()) { 1053 set_tsk_need_resched(curr); 1054 set_preempt_need_resched(); 1055 return; 1056 } 1057 1058 if (set_nr_and_not_polling(curr)) 1059 smp_send_reschedule(cpu); 1060 else 1061 trace_sched_wake_idle_without_ipi(cpu); 1062 } 1063 1064 void resched_cpu(int cpu) 1065 { 1066 struct rq *rq = cpu_rq(cpu); 1067 unsigned long flags; 1068 1069 raw_spin_rq_lock_irqsave(rq, flags); 1070 if (cpu_online(cpu) || cpu == smp_processor_id()) 1071 resched_curr(rq); 1072 raw_spin_rq_unlock_irqrestore(rq, flags); 1073 } 1074 1075 #ifdef CONFIG_SMP 1076 #ifdef CONFIG_NO_HZ_COMMON 1077 /* 1078 * In the semi idle case, use the nearest busy CPU for migrating timers 1079 * from an idle CPU. This is good for power-savings. 1080 * 1081 * We don't do similar optimization for completely idle system, as 1082 * selecting an idle CPU will add more delays to the timers than intended 1083 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1084 */ 1085 int get_nohz_timer_target(void) 1086 { 1087 int i, cpu = smp_processor_id(), default_cpu = -1; 1088 struct sched_domain *sd; 1089 const struct cpumask *hk_mask; 1090 1091 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1092 if (!idle_cpu(cpu)) 1093 return cpu; 1094 default_cpu = cpu; 1095 } 1096 1097 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1098 1099 guard(rcu)(); 1100 1101 for_each_domain(cpu, sd) { 1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1103 if (cpu == i) 1104 continue; 1105 1106 if (!idle_cpu(i)) 1107 return i; 1108 } 1109 } 1110 1111 if (default_cpu == -1) 1112 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1113 1114 return default_cpu; 1115 } 1116 1117 /* 1118 * When add_timer_on() enqueues a timer into the timer wheel of an 1119 * idle CPU then this timer might expire before the next timer event 1120 * which is scheduled to wake up that CPU. In case of a completely 1121 * idle system the next event might even be infinite time into the 1122 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1123 * leaves the inner idle loop so the newly added timer is taken into 1124 * account when the CPU goes back to idle and evaluates the timer 1125 * wheel for the next timer event. 1126 */ 1127 static void wake_up_idle_cpu(int cpu) 1128 { 1129 struct rq *rq = cpu_rq(cpu); 1130 1131 if (cpu == smp_processor_id()) 1132 return; 1133 1134 if (set_nr_and_not_polling(rq->idle)) 1135 smp_send_reschedule(cpu); 1136 else 1137 trace_sched_wake_idle_without_ipi(cpu); 1138 } 1139 1140 static bool wake_up_full_nohz_cpu(int cpu) 1141 { 1142 /* 1143 * We just need the target to call irq_exit() and re-evaluate 1144 * the next tick. The nohz full kick at least implies that. 1145 * If needed we can still optimize that later with an 1146 * empty IRQ. 1147 */ 1148 if (cpu_is_offline(cpu)) 1149 return true; /* Don't try to wake offline CPUs. */ 1150 if (tick_nohz_full_cpu(cpu)) { 1151 if (cpu != smp_processor_id() || 1152 tick_nohz_tick_stopped()) 1153 tick_nohz_full_kick_cpu(cpu); 1154 return true; 1155 } 1156 1157 return false; 1158 } 1159 1160 /* 1161 * Wake up the specified CPU. If the CPU is going offline, it is the 1162 * caller's responsibility to deal with the lost wakeup, for example, 1163 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1164 */ 1165 void wake_up_nohz_cpu(int cpu) 1166 { 1167 if (!wake_up_full_nohz_cpu(cpu)) 1168 wake_up_idle_cpu(cpu); 1169 } 1170 1171 static void nohz_csd_func(void *info) 1172 { 1173 struct rq *rq = info; 1174 int cpu = cpu_of(rq); 1175 unsigned int flags; 1176 1177 /* 1178 * Release the rq::nohz_csd. 1179 */ 1180 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1181 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1182 1183 rq->idle_balance = idle_cpu(cpu); 1184 if (rq->idle_balance && !need_resched()) { 1185 rq->nohz_idle_balance = flags; 1186 raise_softirq_irqoff(SCHED_SOFTIRQ); 1187 } 1188 } 1189 1190 #endif /* CONFIG_NO_HZ_COMMON */ 1191 1192 #ifdef CONFIG_NO_HZ_FULL 1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1194 { 1195 if (rq->nr_running != 1) 1196 return false; 1197 1198 if (p->sched_class != &fair_sched_class) 1199 return false; 1200 1201 if (!task_on_rq_queued(p)) 1202 return false; 1203 1204 return true; 1205 } 1206 1207 bool sched_can_stop_tick(struct rq *rq) 1208 { 1209 int fifo_nr_running; 1210 1211 /* Deadline tasks, even if single, need the tick */ 1212 if (rq->dl.dl_nr_running) 1213 return false; 1214 1215 /* 1216 * If there are more than one RR tasks, we need the tick to affect the 1217 * actual RR behaviour. 1218 */ 1219 if (rq->rt.rr_nr_running) { 1220 if (rq->rt.rr_nr_running == 1) 1221 return true; 1222 else 1223 return false; 1224 } 1225 1226 /* 1227 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1228 * forced preemption between FIFO tasks. 1229 */ 1230 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1231 if (fifo_nr_running) 1232 return true; 1233 1234 /* 1235 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1236 * if there's more than one we need the tick for involuntary 1237 * preemption. 1238 */ 1239 if (rq->nr_running > 1) 1240 return false; 1241 1242 /* 1243 * If there is one task and it has CFS runtime bandwidth constraints 1244 * and it's on the cpu now we don't want to stop the tick. 1245 * This check prevents clearing the bit if a newly enqueued task here is 1246 * dequeued by migrating while the constrained task continues to run. 1247 * E.g. going from 2->1 without going through pick_next_task(). 1248 */ 1249 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { 1250 if (cfs_task_bw_constrained(rq->curr)) 1251 return false; 1252 } 1253 1254 return true; 1255 } 1256 #endif /* CONFIG_NO_HZ_FULL */ 1257 #endif /* CONFIG_SMP */ 1258 1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1260 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1261 /* 1262 * Iterate task_group tree rooted at *from, calling @down when first entering a 1263 * node and @up when leaving it for the final time. 1264 * 1265 * Caller must hold rcu_lock or sufficient equivalent. 1266 */ 1267 int walk_tg_tree_from(struct task_group *from, 1268 tg_visitor down, tg_visitor up, void *data) 1269 { 1270 struct task_group *parent, *child; 1271 int ret; 1272 1273 parent = from; 1274 1275 down: 1276 ret = (*down)(parent, data); 1277 if (ret) 1278 goto out; 1279 list_for_each_entry_rcu(child, &parent->children, siblings) { 1280 parent = child; 1281 goto down; 1282 1283 up: 1284 continue; 1285 } 1286 ret = (*up)(parent, data); 1287 if (ret || parent == from) 1288 goto out; 1289 1290 child = parent; 1291 parent = parent->parent; 1292 if (parent) 1293 goto up; 1294 out: 1295 return ret; 1296 } 1297 1298 int tg_nop(struct task_group *tg, void *data) 1299 { 1300 return 0; 1301 } 1302 #endif 1303 1304 static void set_load_weight(struct task_struct *p, bool update_load) 1305 { 1306 int prio = p->static_prio - MAX_RT_PRIO; 1307 struct load_weight *load = &p->se.load; 1308 1309 /* 1310 * SCHED_IDLE tasks get minimal weight: 1311 */ 1312 if (task_has_idle_policy(p)) { 1313 load->weight = scale_load(WEIGHT_IDLEPRIO); 1314 load->inv_weight = WMULT_IDLEPRIO; 1315 return; 1316 } 1317 1318 /* 1319 * SCHED_OTHER tasks have to update their load when changing their 1320 * weight 1321 */ 1322 if (update_load && p->sched_class == &fair_sched_class) { 1323 reweight_task(p, prio); 1324 } else { 1325 load->weight = scale_load(sched_prio_to_weight[prio]); 1326 load->inv_weight = sched_prio_to_wmult[prio]; 1327 } 1328 } 1329 1330 #ifdef CONFIG_UCLAMP_TASK 1331 /* 1332 * Serializes updates of utilization clamp values 1333 * 1334 * The (slow-path) user-space triggers utilization clamp value updates which 1335 * can require updates on (fast-path) scheduler's data structures used to 1336 * support enqueue/dequeue operations. 1337 * While the per-CPU rq lock protects fast-path update operations, user-space 1338 * requests are serialized using a mutex to reduce the risk of conflicting 1339 * updates or API abuses. 1340 */ 1341 static DEFINE_MUTEX(uclamp_mutex); 1342 1343 /* Max allowed minimum utilization */ 1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1345 1346 /* Max allowed maximum utilization */ 1347 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1348 1349 /* 1350 * By default RT tasks run at the maximum performance point/capacity of the 1351 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1352 * SCHED_CAPACITY_SCALE. 1353 * 1354 * This knob allows admins to change the default behavior when uclamp is being 1355 * used. In battery powered devices, particularly, running at the maximum 1356 * capacity and frequency will increase energy consumption and shorten the 1357 * battery life. 1358 * 1359 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1360 * 1361 * This knob will not override the system default sched_util_clamp_min defined 1362 * above. 1363 */ 1364 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1365 1366 /* All clamps are required to be less or equal than these values */ 1367 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1368 1369 /* 1370 * This static key is used to reduce the uclamp overhead in the fast path. It 1371 * primarily disables the call to uclamp_rq_{inc, dec}() in 1372 * enqueue/dequeue_task(). 1373 * 1374 * This allows users to continue to enable uclamp in their kernel config with 1375 * minimum uclamp overhead in the fast path. 1376 * 1377 * As soon as userspace modifies any of the uclamp knobs, the static key is 1378 * enabled, since we have an actual users that make use of uclamp 1379 * functionality. 1380 * 1381 * The knobs that would enable this static key are: 1382 * 1383 * * A task modifying its uclamp value with sched_setattr(). 1384 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1385 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1386 */ 1387 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1388 1389 /* Integer rounded range for each bucket */ 1390 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1391 1392 #define for_each_clamp_id(clamp_id) \ 1393 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1394 1395 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1396 { 1397 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1398 } 1399 1400 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1401 { 1402 if (clamp_id == UCLAMP_MIN) 1403 return 0; 1404 return SCHED_CAPACITY_SCALE; 1405 } 1406 1407 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1408 unsigned int value, bool user_defined) 1409 { 1410 uc_se->value = value; 1411 uc_se->bucket_id = uclamp_bucket_id(value); 1412 uc_se->user_defined = user_defined; 1413 } 1414 1415 static inline unsigned int 1416 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1417 unsigned int clamp_value) 1418 { 1419 /* 1420 * Avoid blocked utilization pushing up the frequency when we go 1421 * idle (which drops the max-clamp) by retaining the last known 1422 * max-clamp. 1423 */ 1424 if (clamp_id == UCLAMP_MAX) { 1425 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1426 return clamp_value; 1427 } 1428 1429 return uclamp_none(UCLAMP_MIN); 1430 } 1431 1432 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1433 unsigned int clamp_value) 1434 { 1435 /* Reset max-clamp retention only on idle exit */ 1436 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1437 return; 1438 1439 uclamp_rq_set(rq, clamp_id, clamp_value); 1440 } 1441 1442 static inline 1443 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1444 unsigned int clamp_value) 1445 { 1446 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1447 int bucket_id = UCLAMP_BUCKETS - 1; 1448 1449 /* 1450 * Since both min and max clamps are max aggregated, find the 1451 * top most bucket with tasks in. 1452 */ 1453 for ( ; bucket_id >= 0; bucket_id--) { 1454 if (!bucket[bucket_id].tasks) 1455 continue; 1456 return bucket[bucket_id].value; 1457 } 1458 1459 /* No tasks -- default clamp values */ 1460 return uclamp_idle_value(rq, clamp_id, clamp_value); 1461 } 1462 1463 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1464 { 1465 unsigned int default_util_min; 1466 struct uclamp_se *uc_se; 1467 1468 lockdep_assert_held(&p->pi_lock); 1469 1470 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1471 1472 /* Only sync if user didn't override the default */ 1473 if (uc_se->user_defined) 1474 return; 1475 1476 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1477 uclamp_se_set(uc_se, default_util_min, false); 1478 } 1479 1480 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1481 { 1482 if (!rt_task(p)) 1483 return; 1484 1485 /* Protect updates to p->uclamp_* */ 1486 guard(task_rq_lock)(p); 1487 __uclamp_update_util_min_rt_default(p); 1488 } 1489 1490 static inline struct uclamp_se 1491 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1492 { 1493 /* Copy by value as we could modify it */ 1494 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1495 #ifdef CONFIG_UCLAMP_TASK_GROUP 1496 unsigned int tg_min, tg_max, value; 1497 1498 /* 1499 * Tasks in autogroups or root task group will be 1500 * restricted by system defaults. 1501 */ 1502 if (task_group_is_autogroup(task_group(p))) 1503 return uc_req; 1504 if (task_group(p) == &root_task_group) 1505 return uc_req; 1506 1507 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1508 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1509 value = uc_req.value; 1510 value = clamp(value, tg_min, tg_max); 1511 uclamp_se_set(&uc_req, value, false); 1512 #endif 1513 1514 return uc_req; 1515 } 1516 1517 /* 1518 * The effective clamp bucket index of a task depends on, by increasing 1519 * priority: 1520 * - the task specific clamp value, when explicitly requested from userspace 1521 * - the task group effective clamp value, for tasks not either in the root 1522 * group or in an autogroup 1523 * - the system default clamp value, defined by the sysadmin 1524 */ 1525 static inline struct uclamp_se 1526 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1527 { 1528 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1529 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1530 1531 /* System default restrictions always apply */ 1532 if (unlikely(uc_req.value > uc_max.value)) 1533 return uc_max; 1534 1535 return uc_req; 1536 } 1537 1538 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1539 { 1540 struct uclamp_se uc_eff; 1541 1542 /* Task currently refcounted: use back-annotated (effective) value */ 1543 if (p->uclamp[clamp_id].active) 1544 return (unsigned long)p->uclamp[clamp_id].value; 1545 1546 uc_eff = uclamp_eff_get(p, clamp_id); 1547 1548 return (unsigned long)uc_eff.value; 1549 } 1550 1551 /* 1552 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1553 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1554 * updates the rq's clamp value if required. 1555 * 1556 * Tasks can have a task-specific value requested from user-space, track 1557 * within each bucket the maximum value for tasks refcounted in it. 1558 * This "local max aggregation" allows to track the exact "requested" value 1559 * for each bucket when all its RUNNABLE tasks require the same clamp. 1560 */ 1561 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1562 enum uclamp_id clamp_id) 1563 { 1564 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1565 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1566 struct uclamp_bucket *bucket; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* Update task effective clamp */ 1571 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1572 1573 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1574 bucket->tasks++; 1575 uc_se->active = true; 1576 1577 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1578 1579 /* 1580 * Local max aggregation: rq buckets always track the max 1581 * "requested" clamp value of its RUNNABLE tasks. 1582 */ 1583 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1584 bucket->value = uc_se->value; 1585 1586 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1587 uclamp_rq_set(rq, clamp_id, uc_se->value); 1588 } 1589 1590 /* 1591 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1592 * is released. If this is the last task reference counting the rq's max 1593 * active clamp value, then the rq's clamp value is updated. 1594 * 1595 * Both refcounted tasks and rq's cached clamp values are expected to be 1596 * always valid. If it's detected they are not, as defensive programming, 1597 * enforce the expected state and warn. 1598 */ 1599 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1600 enum uclamp_id clamp_id) 1601 { 1602 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1603 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1604 struct uclamp_bucket *bucket; 1605 unsigned int bkt_clamp; 1606 unsigned int rq_clamp; 1607 1608 lockdep_assert_rq_held(rq); 1609 1610 /* 1611 * If sched_uclamp_used was enabled after task @p was enqueued, 1612 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1613 * 1614 * In this case the uc_se->active flag should be false since no uclamp 1615 * accounting was performed at enqueue time and we can just return 1616 * here. 1617 * 1618 * Need to be careful of the following enqueue/dequeue ordering 1619 * problem too 1620 * 1621 * enqueue(taskA) 1622 * // sched_uclamp_used gets enabled 1623 * enqueue(taskB) 1624 * dequeue(taskA) 1625 * // Must not decrement bucket->tasks here 1626 * dequeue(taskB) 1627 * 1628 * where we could end up with stale data in uc_se and 1629 * bucket[uc_se->bucket_id]. 1630 * 1631 * The following check here eliminates the possibility of such race. 1632 */ 1633 if (unlikely(!uc_se->active)) 1634 return; 1635 1636 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1637 1638 SCHED_WARN_ON(!bucket->tasks); 1639 if (likely(bucket->tasks)) 1640 bucket->tasks--; 1641 1642 uc_se->active = false; 1643 1644 /* 1645 * Keep "local max aggregation" simple and accept to (possibly) 1646 * overboost some RUNNABLE tasks in the same bucket. 1647 * The rq clamp bucket value is reset to its base value whenever 1648 * there are no more RUNNABLE tasks refcounting it. 1649 */ 1650 if (likely(bucket->tasks)) 1651 return; 1652 1653 rq_clamp = uclamp_rq_get(rq, clamp_id); 1654 /* 1655 * Defensive programming: this should never happen. If it happens, 1656 * e.g. due to future modification, warn and fixup the expected value. 1657 */ 1658 SCHED_WARN_ON(bucket->value > rq_clamp); 1659 if (bucket->value >= rq_clamp) { 1660 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1661 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1662 } 1663 } 1664 1665 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1666 { 1667 enum uclamp_id clamp_id; 1668 1669 /* 1670 * Avoid any overhead until uclamp is actually used by the userspace. 1671 * 1672 * The condition is constructed such that a NOP is generated when 1673 * sched_uclamp_used is disabled. 1674 */ 1675 if (!static_branch_unlikely(&sched_uclamp_used)) 1676 return; 1677 1678 if (unlikely(!p->sched_class->uclamp_enabled)) 1679 return; 1680 1681 for_each_clamp_id(clamp_id) 1682 uclamp_rq_inc_id(rq, p, clamp_id); 1683 1684 /* Reset clamp idle holding when there is one RUNNABLE task */ 1685 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1686 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1687 } 1688 1689 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1690 { 1691 enum uclamp_id clamp_id; 1692 1693 /* 1694 * Avoid any overhead until uclamp is actually used by the userspace. 1695 * 1696 * The condition is constructed such that a NOP is generated when 1697 * sched_uclamp_used is disabled. 1698 */ 1699 if (!static_branch_unlikely(&sched_uclamp_used)) 1700 return; 1701 1702 if (unlikely(!p->sched_class->uclamp_enabled)) 1703 return; 1704 1705 for_each_clamp_id(clamp_id) 1706 uclamp_rq_dec_id(rq, p, clamp_id); 1707 } 1708 1709 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1710 enum uclamp_id clamp_id) 1711 { 1712 if (!p->uclamp[clamp_id].active) 1713 return; 1714 1715 uclamp_rq_dec_id(rq, p, clamp_id); 1716 uclamp_rq_inc_id(rq, p, clamp_id); 1717 1718 /* 1719 * Make sure to clear the idle flag if we've transiently reached 0 1720 * active tasks on rq. 1721 */ 1722 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1723 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1724 } 1725 1726 static inline void 1727 uclamp_update_active(struct task_struct *p) 1728 { 1729 enum uclamp_id clamp_id; 1730 struct rq_flags rf; 1731 struct rq *rq; 1732 1733 /* 1734 * Lock the task and the rq where the task is (or was) queued. 1735 * 1736 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1737 * price to pay to safely serialize util_{min,max} updates with 1738 * enqueues, dequeues and migration operations. 1739 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1740 */ 1741 rq = task_rq_lock(p, &rf); 1742 1743 /* 1744 * Setting the clamp bucket is serialized by task_rq_lock(). 1745 * If the task is not yet RUNNABLE and its task_struct is not 1746 * affecting a valid clamp bucket, the next time it's enqueued, 1747 * it will already see the updated clamp bucket value. 1748 */ 1749 for_each_clamp_id(clamp_id) 1750 uclamp_rq_reinc_id(rq, p, clamp_id); 1751 1752 task_rq_unlock(rq, p, &rf); 1753 } 1754 1755 #ifdef CONFIG_UCLAMP_TASK_GROUP 1756 static inline void 1757 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1758 { 1759 struct css_task_iter it; 1760 struct task_struct *p; 1761 1762 css_task_iter_start(css, 0, &it); 1763 while ((p = css_task_iter_next(&it))) 1764 uclamp_update_active(p); 1765 css_task_iter_end(&it); 1766 } 1767 1768 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1769 #endif 1770 1771 #ifdef CONFIG_SYSCTL 1772 #ifdef CONFIG_UCLAMP_TASK 1773 #ifdef CONFIG_UCLAMP_TASK_GROUP 1774 static void uclamp_update_root_tg(void) 1775 { 1776 struct task_group *tg = &root_task_group; 1777 1778 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1779 sysctl_sched_uclamp_util_min, false); 1780 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1781 sysctl_sched_uclamp_util_max, false); 1782 1783 guard(rcu)(); 1784 cpu_util_update_eff(&root_task_group.css); 1785 } 1786 #else 1787 static void uclamp_update_root_tg(void) { } 1788 #endif 1789 1790 static void uclamp_sync_util_min_rt_default(void) 1791 { 1792 struct task_struct *g, *p; 1793 1794 /* 1795 * copy_process() sysctl_uclamp 1796 * uclamp_min_rt = X; 1797 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1798 * // link thread smp_mb__after_spinlock() 1799 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1800 * sched_post_fork() for_each_process_thread() 1801 * __uclamp_sync_rt() __uclamp_sync_rt() 1802 * 1803 * Ensures that either sched_post_fork() will observe the new 1804 * uclamp_min_rt or for_each_process_thread() will observe the new 1805 * task. 1806 */ 1807 read_lock(&tasklist_lock); 1808 smp_mb__after_spinlock(); 1809 read_unlock(&tasklist_lock); 1810 1811 guard(rcu)(); 1812 for_each_process_thread(g, p) 1813 uclamp_update_util_min_rt_default(p); 1814 } 1815 1816 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1817 void *buffer, size_t *lenp, loff_t *ppos) 1818 { 1819 bool update_root_tg = false; 1820 int old_min, old_max, old_min_rt; 1821 int result; 1822 1823 guard(mutex)(&uclamp_mutex); 1824 1825 old_min = sysctl_sched_uclamp_util_min; 1826 old_max = sysctl_sched_uclamp_util_max; 1827 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1828 1829 result = proc_dointvec(table, write, buffer, lenp, ppos); 1830 if (result) 1831 goto undo; 1832 if (!write) 1833 return 0; 1834 1835 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1836 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1837 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1838 1839 result = -EINVAL; 1840 goto undo; 1841 } 1842 1843 if (old_min != sysctl_sched_uclamp_util_min) { 1844 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1845 sysctl_sched_uclamp_util_min, false); 1846 update_root_tg = true; 1847 } 1848 if (old_max != sysctl_sched_uclamp_util_max) { 1849 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1850 sysctl_sched_uclamp_util_max, false); 1851 update_root_tg = true; 1852 } 1853 1854 if (update_root_tg) { 1855 static_branch_enable(&sched_uclamp_used); 1856 uclamp_update_root_tg(); 1857 } 1858 1859 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1860 static_branch_enable(&sched_uclamp_used); 1861 uclamp_sync_util_min_rt_default(); 1862 } 1863 1864 /* 1865 * We update all RUNNABLE tasks only when task groups are in use. 1866 * Otherwise, keep it simple and do just a lazy update at each next 1867 * task enqueue time. 1868 */ 1869 return 0; 1870 1871 undo: 1872 sysctl_sched_uclamp_util_min = old_min; 1873 sysctl_sched_uclamp_util_max = old_max; 1874 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1875 return result; 1876 } 1877 #endif 1878 #endif 1879 1880 static int uclamp_validate(struct task_struct *p, 1881 const struct sched_attr *attr) 1882 { 1883 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1884 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1885 1886 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1887 util_min = attr->sched_util_min; 1888 1889 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1890 return -EINVAL; 1891 } 1892 1893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1894 util_max = attr->sched_util_max; 1895 1896 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1897 return -EINVAL; 1898 } 1899 1900 if (util_min != -1 && util_max != -1 && util_min > util_max) 1901 return -EINVAL; 1902 1903 /* 1904 * We have valid uclamp attributes; make sure uclamp is enabled. 1905 * 1906 * We need to do that here, because enabling static branches is a 1907 * blocking operation which obviously cannot be done while holding 1908 * scheduler locks. 1909 */ 1910 static_branch_enable(&sched_uclamp_used); 1911 1912 return 0; 1913 } 1914 1915 static bool uclamp_reset(const struct sched_attr *attr, 1916 enum uclamp_id clamp_id, 1917 struct uclamp_se *uc_se) 1918 { 1919 /* Reset on sched class change for a non user-defined clamp value. */ 1920 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1921 !uc_se->user_defined) 1922 return true; 1923 1924 /* Reset on sched_util_{min,max} == -1. */ 1925 if (clamp_id == UCLAMP_MIN && 1926 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1927 attr->sched_util_min == -1) { 1928 return true; 1929 } 1930 1931 if (clamp_id == UCLAMP_MAX && 1932 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1933 attr->sched_util_max == -1) { 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 static void __setscheduler_uclamp(struct task_struct *p, 1941 const struct sched_attr *attr) 1942 { 1943 enum uclamp_id clamp_id; 1944 1945 for_each_clamp_id(clamp_id) { 1946 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1947 unsigned int value; 1948 1949 if (!uclamp_reset(attr, clamp_id, uc_se)) 1950 continue; 1951 1952 /* 1953 * RT by default have a 100% boost value that could be modified 1954 * at runtime. 1955 */ 1956 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1957 value = sysctl_sched_uclamp_util_min_rt_default; 1958 else 1959 value = uclamp_none(clamp_id); 1960 1961 uclamp_se_set(uc_se, value, false); 1962 1963 } 1964 1965 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1966 return; 1967 1968 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1969 attr->sched_util_min != -1) { 1970 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1971 attr->sched_util_min, true); 1972 } 1973 1974 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1975 attr->sched_util_max != -1) { 1976 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1977 attr->sched_util_max, true); 1978 } 1979 } 1980 1981 static void uclamp_fork(struct task_struct *p) 1982 { 1983 enum uclamp_id clamp_id; 1984 1985 /* 1986 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1987 * as the task is still at its early fork stages. 1988 */ 1989 for_each_clamp_id(clamp_id) 1990 p->uclamp[clamp_id].active = false; 1991 1992 if (likely(!p->sched_reset_on_fork)) 1993 return; 1994 1995 for_each_clamp_id(clamp_id) { 1996 uclamp_se_set(&p->uclamp_req[clamp_id], 1997 uclamp_none(clamp_id), false); 1998 } 1999 } 2000 2001 static void uclamp_post_fork(struct task_struct *p) 2002 { 2003 uclamp_update_util_min_rt_default(p); 2004 } 2005 2006 static void __init init_uclamp_rq(struct rq *rq) 2007 { 2008 enum uclamp_id clamp_id; 2009 struct uclamp_rq *uc_rq = rq->uclamp; 2010 2011 for_each_clamp_id(clamp_id) { 2012 uc_rq[clamp_id] = (struct uclamp_rq) { 2013 .value = uclamp_none(clamp_id) 2014 }; 2015 } 2016 2017 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2018 } 2019 2020 static void __init init_uclamp(void) 2021 { 2022 struct uclamp_se uc_max = {}; 2023 enum uclamp_id clamp_id; 2024 int cpu; 2025 2026 for_each_possible_cpu(cpu) 2027 init_uclamp_rq(cpu_rq(cpu)); 2028 2029 for_each_clamp_id(clamp_id) { 2030 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2031 uclamp_none(clamp_id), false); 2032 } 2033 2034 /* System defaults allow max clamp values for both indexes */ 2035 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2036 for_each_clamp_id(clamp_id) { 2037 uclamp_default[clamp_id] = uc_max; 2038 #ifdef CONFIG_UCLAMP_TASK_GROUP 2039 root_task_group.uclamp_req[clamp_id] = uc_max; 2040 root_task_group.uclamp[clamp_id] = uc_max; 2041 #endif 2042 } 2043 } 2044 2045 #else /* CONFIG_UCLAMP_TASK */ 2046 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2047 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2048 static inline int uclamp_validate(struct task_struct *p, 2049 const struct sched_attr *attr) 2050 { 2051 return -EOPNOTSUPP; 2052 } 2053 static void __setscheduler_uclamp(struct task_struct *p, 2054 const struct sched_attr *attr) { } 2055 static inline void uclamp_fork(struct task_struct *p) { } 2056 static inline void uclamp_post_fork(struct task_struct *p) { } 2057 static inline void init_uclamp(void) { } 2058 #endif /* CONFIG_UCLAMP_TASK */ 2059 2060 bool sched_task_on_rq(struct task_struct *p) 2061 { 2062 return task_on_rq_queued(p); 2063 } 2064 2065 unsigned long get_wchan(struct task_struct *p) 2066 { 2067 unsigned long ip = 0; 2068 unsigned int state; 2069 2070 if (!p || p == current) 2071 return 0; 2072 2073 /* Only get wchan if task is blocked and we can keep it that way. */ 2074 raw_spin_lock_irq(&p->pi_lock); 2075 state = READ_ONCE(p->__state); 2076 smp_rmb(); /* see try_to_wake_up() */ 2077 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2078 ip = __get_wchan(p); 2079 raw_spin_unlock_irq(&p->pi_lock); 2080 2081 return ip; 2082 } 2083 2084 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2085 { 2086 if (!(flags & ENQUEUE_NOCLOCK)) 2087 update_rq_clock(rq); 2088 2089 if (!(flags & ENQUEUE_RESTORE)) { 2090 sched_info_enqueue(rq, p); 2091 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2092 } 2093 2094 uclamp_rq_inc(rq, p); 2095 p->sched_class->enqueue_task(rq, p, flags); 2096 2097 if (sched_core_enabled(rq)) 2098 sched_core_enqueue(rq, p); 2099 } 2100 2101 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2102 { 2103 if (sched_core_enabled(rq)) 2104 sched_core_dequeue(rq, p, flags); 2105 2106 if (!(flags & DEQUEUE_NOCLOCK)) 2107 update_rq_clock(rq); 2108 2109 if (!(flags & DEQUEUE_SAVE)) { 2110 sched_info_dequeue(rq, p); 2111 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2112 } 2113 2114 uclamp_rq_dec(rq, p); 2115 p->sched_class->dequeue_task(rq, p, flags); 2116 } 2117 2118 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2119 { 2120 if (task_on_rq_migrating(p)) 2121 flags |= ENQUEUE_MIGRATED; 2122 if (flags & ENQUEUE_MIGRATED) 2123 sched_mm_cid_migrate_to(rq, p); 2124 2125 enqueue_task(rq, p, flags); 2126 2127 p->on_rq = TASK_ON_RQ_QUEUED; 2128 } 2129 2130 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2131 { 2132 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2133 2134 dequeue_task(rq, p, flags); 2135 } 2136 2137 static inline int __normal_prio(int policy, int rt_prio, int nice) 2138 { 2139 int prio; 2140 2141 if (dl_policy(policy)) 2142 prio = MAX_DL_PRIO - 1; 2143 else if (rt_policy(policy)) 2144 prio = MAX_RT_PRIO - 1 - rt_prio; 2145 else 2146 prio = NICE_TO_PRIO(nice); 2147 2148 return prio; 2149 } 2150 2151 /* 2152 * Calculate the expected normal priority: i.e. priority 2153 * without taking RT-inheritance into account. Might be 2154 * boosted by interactivity modifiers. Changes upon fork, 2155 * setprio syscalls, and whenever the interactivity 2156 * estimator recalculates. 2157 */ 2158 static inline int normal_prio(struct task_struct *p) 2159 { 2160 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2161 } 2162 2163 /* 2164 * Calculate the current priority, i.e. the priority 2165 * taken into account by the scheduler. This value might 2166 * be boosted by RT tasks, or might be boosted by 2167 * interactivity modifiers. Will be RT if the task got 2168 * RT-boosted. If not then it returns p->normal_prio. 2169 */ 2170 static int effective_prio(struct task_struct *p) 2171 { 2172 p->normal_prio = normal_prio(p); 2173 /* 2174 * If we are RT tasks or we were boosted to RT priority, 2175 * keep the priority unchanged. Otherwise, update priority 2176 * to the normal priority: 2177 */ 2178 if (!rt_prio(p->prio)) 2179 return p->normal_prio; 2180 return p->prio; 2181 } 2182 2183 /** 2184 * task_curr - is this task currently executing on a CPU? 2185 * @p: the task in question. 2186 * 2187 * Return: 1 if the task is currently executing. 0 otherwise. 2188 */ 2189 inline int task_curr(const struct task_struct *p) 2190 { 2191 return cpu_curr(task_cpu(p)) == p; 2192 } 2193 2194 /* 2195 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2196 * use the balance_callback list if you want balancing. 2197 * 2198 * this means any call to check_class_changed() must be followed by a call to 2199 * balance_callback(). 2200 */ 2201 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2202 const struct sched_class *prev_class, 2203 int oldprio) 2204 { 2205 if (prev_class != p->sched_class) { 2206 if (prev_class->switched_from) 2207 prev_class->switched_from(rq, p); 2208 2209 p->sched_class->switched_to(rq, p); 2210 } else if (oldprio != p->prio || dl_task(p)) 2211 p->sched_class->prio_changed(rq, p, oldprio); 2212 } 2213 2214 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2215 { 2216 if (p->sched_class == rq->curr->sched_class) 2217 rq->curr->sched_class->wakeup_preempt(rq, p, flags); 2218 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2219 resched_curr(rq); 2220 2221 /* 2222 * A queue event has occurred, and we're going to schedule. In 2223 * this case, we can save a useless back to back clock update. 2224 */ 2225 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2226 rq_clock_skip_update(rq); 2227 } 2228 2229 static __always_inline 2230 int __task_state_match(struct task_struct *p, unsigned int state) 2231 { 2232 if (READ_ONCE(p->__state) & state) 2233 return 1; 2234 2235 if (READ_ONCE(p->saved_state) & state) 2236 return -1; 2237 2238 return 0; 2239 } 2240 2241 static __always_inline 2242 int task_state_match(struct task_struct *p, unsigned int state) 2243 { 2244 /* 2245 * Serialize against current_save_and_set_rtlock_wait_state(), 2246 * current_restore_rtlock_saved_state(), and __refrigerator(). 2247 */ 2248 guard(raw_spinlock_irq)(&p->pi_lock); 2249 return __task_state_match(p, state); 2250 } 2251 2252 /* 2253 * wait_task_inactive - wait for a thread to unschedule. 2254 * 2255 * Wait for the thread to block in any of the states set in @match_state. 2256 * If it changes, i.e. @p might have woken up, then return zero. When we 2257 * succeed in waiting for @p to be off its CPU, we return a positive number 2258 * (its total switch count). If a second call a short while later returns the 2259 * same number, the caller can be sure that @p has remained unscheduled the 2260 * whole time. 2261 * 2262 * The caller must ensure that the task *will* unschedule sometime soon, 2263 * else this function might spin for a *long* time. This function can't 2264 * be called with interrupts off, or it may introduce deadlock with 2265 * smp_call_function() if an IPI is sent by the same process we are 2266 * waiting to become inactive. 2267 */ 2268 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2269 { 2270 int running, queued, match; 2271 struct rq_flags rf; 2272 unsigned long ncsw; 2273 struct rq *rq; 2274 2275 for (;;) { 2276 /* 2277 * We do the initial early heuristics without holding 2278 * any task-queue locks at all. We'll only try to get 2279 * the runqueue lock when things look like they will 2280 * work out! 2281 */ 2282 rq = task_rq(p); 2283 2284 /* 2285 * If the task is actively running on another CPU 2286 * still, just relax and busy-wait without holding 2287 * any locks. 2288 * 2289 * NOTE! Since we don't hold any locks, it's not 2290 * even sure that "rq" stays as the right runqueue! 2291 * But we don't care, since "task_on_cpu()" will 2292 * return false if the runqueue has changed and p 2293 * is actually now running somewhere else! 2294 */ 2295 while (task_on_cpu(rq, p)) { 2296 if (!task_state_match(p, match_state)) 2297 return 0; 2298 cpu_relax(); 2299 } 2300 2301 /* 2302 * Ok, time to look more closely! We need the rq 2303 * lock now, to be *sure*. If we're wrong, we'll 2304 * just go back and repeat. 2305 */ 2306 rq = task_rq_lock(p, &rf); 2307 trace_sched_wait_task(p); 2308 running = task_on_cpu(rq, p); 2309 queued = task_on_rq_queued(p); 2310 ncsw = 0; 2311 if ((match = __task_state_match(p, match_state))) { 2312 /* 2313 * When matching on p->saved_state, consider this task 2314 * still queued so it will wait. 2315 */ 2316 if (match < 0) 2317 queued = 1; 2318 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2319 } 2320 task_rq_unlock(rq, p, &rf); 2321 2322 /* 2323 * If it changed from the expected state, bail out now. 2324 */ 2325 if (unlikely(!ncsw)) 2326 break; 2327 2328 /* 2329 * Was it really running after all now that we 2330 * checked with the proper locks actually held? 2331 * 2332 * Oops. Go back and try again.. 2333 */ 2334 if (unlikely(running)) { 2335 cpu_relax(); 2336 continue; 2337 } 2338 2339 /* 2340 * It's not enough that it's not actively running, 2341 * it must be off the runqueue _entirely_, and not 2342 * preempted! 2343 * 2344 * So if it was still runnable (but just not actively 2345 * running right now), it's preempted, and we should 2346 * yield - it could be a while. 2347 */ 2348 if (unlikely(queued)) { 2349 ktime_t to = NSEC_PER_SEC / HZ; 2350 2351 set_current_state(TASK_UNINTERRUPTIBLE); 2352 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2353 continue; 2354 } 2355 2356 /* 2357 * Ahh, all good. It wasn't running, and it wasn't 2358 * runnable, which means that it will never become 2359 * running in the future either. We're all done! 2360 */ 2361 break; 2362 } 2363 2364 return ncsw; 2365 } 2366 2367 #ifdef CONFIG_SMP 2368 2369 static void 2370 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2371 2372 static int __set_cpus_allowed_ptr(struct task_struct *p, 2373 struct affinity_context *ctx); 2374 2375 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2376 { 2377 struct affinity_context ac = { 2378 .new_mask = cpumask_of(rq->cpu), 2379 .flags = SCA_MIGRATE_DISABLE, 2380 }; 2381 2382 if (likely(!p->migration_disabled)) 2383 return; 2384 2385 if (p->cpus_ptr != &p->cpus_mask) 2386 return; 2387 2388 /* 2389 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2390 */ 2391 __do_set_cpus_allowed(p, &ac); 2392 } 2393 2394 void migrate_disable(void) 2395 { 2396 struct task_struct *p = current; 2397 2398 if (p->migration_disabled) { 2399 p->migration_disabled++; 2400 return; 2401 } 2402 2403 guard(preempt)(); 2404 this_rq()->nr_pinned++; 2405 p->migration_disabled = 1; 2406 } 2407 EXPORT_SYMBOL_GPL(migrate_disable); 2408 2409 void migrate_enable(void) 2410 { 2411 struct task_struct *p = current; 2412 struct affinity_context ac = { 2413 .new_mask = &p->cpus_mask, 2414 .flags = SCA_MIGRATE_ENABLE, 2415 }; 2416 2417 if (p->migration_disabled > 1) { 2418 p->migration_disabled--; 2419 return; 2420 } 2421 2422 if (WARN_ON_ONCE(!p->migration_disabled)) 2423 return; 2424 2425 /* 2426 * Ensure stop_task runs either before or after this, and that 2427 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2428 */ 2429 guard(preempt)(); 2430 if (p->cpus_ptr != &p->cpus_mask) 2431 __set_cpus_allowed_ptr(p, &ac); 2432 /* 2433 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2434 * regular cpus_mask, otherwise things that race (eg. 2435 * select_fallback_rq) get confused. 2436 */ 2437 barrier(); 2438 p->migration_disabled = 0; 2439 this_rq()->nr_pinned--; 2440 } 2441 EXPORT_SYMBOL_GPL(migrate_enable); 2442 2443 static inline bool rq_has_pinned_tasks(struct rq *rq) 2444 { 2445 return rq->nr_pinned; 2446 } 2447 2448 /* 2449 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2450 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2451 */ 2452 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2453 { 2454 /* When not in the task's cpumask, no point in looking further. */ 2455 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2456 return false; 2457 2458 /* migrate_disabled() must be allowed to finish. */ 2459 if (is_migration_disabled(p)) 2460 return cpu_online(cpu); 2461 2462 /* Non kernel threads are not allowed during either online or offline. */ 2463 if (!(p->flags & PF_KTHREAD)) 2464 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2465 2466 /* KTHREAD_IS_PER_CPU is always allowed. */ 2467 if (kthread_is_per_cpu(p)) 2468 return cpu_online(cpu); 2469 2470 /* Regular kernel threads don't get to stay during offline. */ 2471 if (cpu_dying(cpu)) 2472 return false; 2473 2474 /* But are allowed during online. */ 2475 return cpu_online(cpu); 2476 } 2477 2478 /* 2479 * This is how migration works: 2480 * 2481 * 1) we invoke migration_cpu_stop() on the target CPU using 2482 * stop_one_cpu(). 2483 * 2) stopper starts to run (implicitly forcing the migrated thread 2484 * off the CPU) 2485 * 3) it checks whether the migrated task is still in the wrong runqueue. 2486 * 4) if it's in the wrong runqueue then the migration thread removes 2487 * it and puts it into the right queue. 2488 * 5) stopper completes and stop_one_cpu() returns and the migration 2489 * is done. 2490 */ 2491 2492 /* 2493 * move_queued_task - move a queued task to new rq. 2494 * 2495 * Returns (locked) new rq. Old rq's lock is released. 2496 */ 2497 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2498 struct task_struct *p, int new_cpu) 2499 { 2500 lockdep_assert_rq_held(rq); 2501 2502 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2503 set_task_cpu(p, new_cpu); 2504 rq_unlock(rq, rf); 2505 2506 rq = cpu_rq(new_cpu); 2507 2508 rq_lock(rq, rf); 2509 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2510 activate_task(rq, p, 0); 2511 wakeup_preempt(rq, p, 0); 2512 2513 return rq; 2514 } 2515 2516 struct migration_arg { 2517 struct task_struct *task; 2518 int dest_cpu; 2519 struct set_affinity_pending *pending; 2520 }; 2521 2522 /* 2523 * @refs: number of wait_for_completion() 2524 * @stop_pending: is @stop_work in use 2525 */ 2526 struct set_affinity_pending { 2527 refcount_t refs; 2528 unsigned int stop_pending; 2529 struct completion done; 2530 struct cpu_stop_work stop_work; 2531 struct migration_arg arg; 2532 }; 2533 2534 /* 2535 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2536 * this because either it can't run here any more (set_cpus_allowed() 2537 * away from this CPU, or CPU going down), or because we're 2538 * attempting to rebalance this task on exec (sched_exec). 2539 * 2540 * So we race with normal scheduler movements, but that's OK, as long 2541 * as the task is no longer on this CPU. 2542 */ 2543 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2544 struct task_struct *p, int dest_cpu) 2545 { 2546 /* Affinity changed (again). */ 2547 if (!is_cpu_allowed(p, dest_cpu)) 2548 return rq; 2549 2550 rq = move_queued_task(rq, rf, p, dest_cpu); 2551 2552 return rq; 2553 } 2554 2555 /* 2556 * migration_cpu_stop - this will be executed by a highprio stopper thread 2557 * and performs thread migration by bumping thread off CPU then 2558 * 'pushing' onto another runqueue. 2559 */ 2560 static int migration_cpu_stop(void *data) 2561 { 2562 struct migration_arg *arg = data; 2563 struct set_affinity_pending *pending = arg->pending; 2564 struct task_struct *p = arg->task; 2565 struct rq *rq = this_rq(); 2566 bool complete = false; 2567 struct rq_flags rf; 2568 2569 /* 2570 * The original target CPU might have gone down and we might 2571 * be on another CPU but it doesn't matter. 2572 */ 2573 local_irq_save(rf.flags); 2574 /* 2575 * We need to explicitly wake pending tasks before running 2576 * __migrate_task() such that we will not miss enforcing cpus_ptr 2577 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2578 */ 2579 flush_smp_call_function_queue(); 2580 2581 raw_spin_lock(&p->pi_lock); 2582 rq_lock(rq, &rf); 2583 2584 /* 2585 * If we were passed a pending, then ->stop_pending was set, thus 2586 * p->migration_pending must have remained stable. 2587 */ 2588 WARN_ON_ONCE(pending && pending != p->migration_pending); 2589 2590 /* 2591 * If task_rq(p) != rq, it cannot be migrated here, because we're 2592 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2593 * we're holding p->pi_lock. 2594 */ 2595 if (task_rq(p) == rq) { 2596 if (is_migration_disabled(p)) 2597 goto out; 2598 2599 if (pending) { 2600 p->migration_pending = NULL; 2601 complete = true; 2602 2603 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2604 goto out; 2605 } 2606 2607 if (task_on_rq_queued(p)) { 2608 update_rq_clock(rq); 2609 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2610 } else { 2611 p->wake_cpu = arg->dest_cpu; 2612 } 2613 2614 /* 2615 * XXX __migrate_task() can fail, at which point we might end 2616 * up running on a dodgy CPU, AFAICT this can only happen 2617 * during CPU hotplug, at which point we'll get pushed out 2618 * anyway, so it's probably not a big deal. 2619 */ 2620 2621 } else if (pending) { 2622 /* 2623 * This happens when we get migrated between migrate_enable()'s 2624 * preempt_enable() and scheduling the stopper task. At that 2625 * point we're a regular task again and not current anymore. 2626 * 2627 * A !PREEMPT kernel has a giant hole here, which makes it far 2628 * more likely. 2629 */ 2630 2631 /* 2632 * The task moved before the stopper got to run. We're holding 2633 * ->pi_lock, so the allowed mask is stable - if it got 2634 * somewhere allowed, we're done. 2635 */ 2636 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2637 p->migration_pending = NULL; 2638 complete = true; 2639 goto out; 2640 } 2641 2642 /* 2643 * When migrate_enable() hits a rq mis-match we can't reliably 2644 * determine is_migration_disabled() and so have to chase after 2645 * it. 2646 */ 2647 WARN_ON_ONCE(!pending->stop_pending); 2648 preempt_disable(); 2649 task_rq_unlock(rq, p, &rf); 2650 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2651 &pending->arg, &pending->stop_work); 2652 preempt_enable(); 2653 return 0; 2654 } 2655 out: 2656 if (pending) 2657 pending->stop_pending = false; 2658 task_rq_unlock(rq, p, &rf); 2659 2660 if (complete) 2661 complete_all(&pending->done); 2662 2663 return 0; 2664 } 2665 2666 int push_cpu_stop(void *arg) 2667 { 2668 struct rq *lowest_rq = NULL, *rq = this_rq(); 2669 struct task_struct *p = arg; 2670 2671 raw_spin_lock_irq(&p->pi_lock); 2672 raw_spin_rq_lock(rq); 2673 2674 if (task_rq(p) != rq) 2675 goto out_unlock; 2676 2677 if (is_migration_disabled(p)) { 2678 p->migration_flags |= MDF_PUSH; 2679 goto out_unlock; 2680 } 2681 2682 p->migration_flags &= ~MDF_PUSH; 2683 2684 if (p->sched_class->find_lock_rq) 2685 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2686 2687 if (!lowest_rq) 2688 goto out_unlock; 2689 2690 // XXX validate p is still the highest prio task 2691 if (task_rq(p) == rq) { 2692 deactivate_task(rq, p, 0); 2693 set_task_cpu(p, lowest_rq->cpu); 2694 activate_task(lowest_rq, p, 0); 2695 resched_curr(lowest_rq); 2696 } 2697 2698 double_unlock_balance(rq, lowest_rq); 2699 2700 out_unlock: 2701 rq->push_busy = false; 2702 raw_spin_rq_unlock(rq); 2703 raw_spin_unlock_irq(&p->pi_lock); 2704 2705 put_task_struct(p); 2706 return 0; 2707 } 2708 2709 /* 2710 * sched_class::set_cpus_allowed must do the below, but is not required to 2711 * actually call this function. 2712 */ 2713 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2714 { 2715 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2716 p->cpus_ptr = ctx->new_mask; 2717 return; 2718 } 2719 2720 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2721 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2722 2723 /* 2724 * Swap in a new user_cpus_ptr if SCA_USER flag set 2725 */ 2726 if (ctx->flags & SCA_USER) 2727 swap(p->user_cpus_ptr, ctx->user_mask); 2728 } 2729 2730 static void 2731 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2732 { 2733 struct rq *rq = task_rq(p); 2734 bool queued, running; 2735 2736 /* 2737 * This here violates the locking rules for affinity, since we're only 2738 * supposed to change these variables while holding both rq->lock and 2739 * p->pi_lock. 2740 * 2741 * HOWEVER, it magically works, because ttwu() is the only code that 2742 * accesses these variables under p->pi_lock and only does so after 2743 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2744 * before finish_task(). 2745 * 2746 * XXX do further audits, this smells like something putrid. 2747 */ 2748 if (ctx->flags & SCA_MIGRATE_DISABLE) 2749 SCHED_WARN_ON(!p->on_cpu); 2750 else 2751 lockdep_assert_held(&p->pi_lock); 2752 2753 queued = task_on_rq_queued(p); 2754 running = task_current(rq, p); 2755 2756 if (queued) { 2757 /* 2758 * Because __kthread_bind() calls this on blocked tasks without 2759 * holding rq->lock. 2760 */ 2761 lockdep_assert_rq_held(rq); 2762 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2763 } 2764 if (running) 2765 put_prev_task(rq, p); 2766 2767 p->sched_class->set_cpus_allowed(p, ctx); 2768 2769 if (queued) 2770 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2771 if (running) 2772 set_next_task(rq, p); 2773 } 2774 2775 /* 2776 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2777 * affinity (if any) should be destroyed too. 2778 */ 2779 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2780 { 2781 struct affinity_context ac = { 2782 .new_mask = new_mask, 2783 .user_mask = NULL, 2784 .flags = SCA_USER, /* clear the user requested mask */ 2785 }; 2786 union cpumask_rcuhead { 2787 cpumask_t cpumask; 2788 struct rcu_head rcu; 2789 }; 2790 2791 __do_set_cpus_allowed(p, &ac); 2792 2793 /* 2794 * Because this is called with p->pi_lock held, it is not possible 2795 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2796 * kfree_rcu(). 2797 */ 2798 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2799 } 2800 2801 static cpumask_t *alloc_user_cpus_ptr(int node) 2802 { 2803 /* 2804 * See do_set_cpus_allowed() above for the rcu_head usage. 2805 */ 2806 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2807 2808 return kmalloc_node(size, GFP_KERNEL, node); 2809 } 2810 2811 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2812 int node) 2813 { 2814 cpumask_t *user_mask; 2815 unsigned long flags; 2816 2817 /* 2818 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2819 * may differ by now due to racing. 2820 */ 2821 dst->user_cpus_ptr = NULL; 2822 2823 /* 2824 * This check is racy and losing the race is a valid situation. 2825 * It is not worth the extra overhead of taking the pi_lock on 2826 * every fork/clone. 2827 */ 2828 if (data_race(!src->user_cpus_ptr)) 2829 return 0; 2830 2831 user_mask = alloc_user_cpus_ptr(node); 2832 if (!user_mask) 2833 return -ENOMEM; 2834 2835 /* 2836 * Use pi_lock to protect content of user_cpus_ptr 2837 * 2838 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2839 * do_set_cpus_allowed(). 2840 */ 2841 raw_spin_lock_irqsave(&src->pi_lock, flags); 2842 if (src->user_cpus_ptr) { 2843 swap(dst->user_cpus_ptr, user_mask); 2844 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2845 } 2846 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2847 2848 if (unlikely(user_mask)) 2849 kfree(user_mask); 2850 2851 return 0; 2852 } 2853 2854 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2855 { 2856 struct cpumask *user_mask = NULL; 2857 2858 swap(p->user_cpus_ptr, user_mask); 2859 2860 return user_mask; 2861 } 2862 2863 void release_user_cpus_ptr(struct task_struct *p) 2864 { 2865 kfree(clear_user_cpus_ptr(p)); 2866 } 2867 2868 /* 2869 * This function is wildly self concurrent; here be dragons. 2870 * 2871 * 2872 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2873 * designated task is enqueued on an allowed CPU. If that task is currently 2874 * running, we have to kick it out using the CPU stopper. 2875 * 2876 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2877 * Consider: 2878 * 2879 * Initial conditions: P0->cpus_mask = [0, 1] 2880 * 2881 * P0@CPU0 P1 2882 * 2883 * migrate_disable(); 2884 * <preempted> 2885 * set_cpus_allowed_ptr(P0, [1]); 2886 * 2887 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2888 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2889 * This means we need the following scheme: 2890 * 2891 * P0@CPU0 P1 2892 * 2893 * migrate_disable(); 2894 * <preempted> 2895 * set_cpus_allowed_ptr(P0, [1]); 2896 * <blocks> 2897 * <resumes> 2898 * migrate_enable(); 2899 * __set_cpus_allowed_ptr(); 2900 * <wakes local stopper> 2901 * `--> <woken on migration completion> 2902 * 2903 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2904 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2905 * task p are serialized by p->pi_lock, which we can leverage: the one that 2906 * should come into effect at the end of the Migrate-Disable region is the last 2907 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2908 * but we still need to properly signal those waiting tasks at the appropriate 2909 * moment. 2910 * 2911 * This is implemented using struct set_affinity_pending. The first 2912 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2913 * setup an instance of that struct and install it on the targeted task_struct. 2914 * Any and all further callers will reuse that instance. Those then wait for 2915 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2916 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2917 * 2918 * 2919 * (1) In the cases covered above. There is one more where the completion is 2920 * signaled within affine_move_task() itself: when a subsequent affinity request 2921 * occurs after the stopper bailed out due to the targeted task still being 2922 * Migrate-Disable. Consider: 2923 * 2924 * Initial conditions: P0->cpus_mask = [0, 1] 2925 * 2926 * CPU0 P1 P2 2927 * <P0> 2928 * migrate_disable(); 2929 * <preempted> 2930 * set_cpus_allowed_ptr(P0, [1]); 2931 * <blocks> 2932 * <migration/0> 2933 * migration_cpu_stop() 2934 * is_migration_disabled() 2935 * <bails> 2936 * set_cpus_allowed_ptr(P0, [0, 1]); 2937 * <signal completion> 2938 * <awakes> 2939 * 2940 * Note that the above is safe vs a concurrent migrate_enable(), as any 2941 * pending affinity completion is preceded by an uninstallation of 2942 * p->migration_pending done with p->pi_lock held. 2943 */ 2944 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2945 int dest_cpu, unsigned int flags) 2946 __releases(rq->lock) 2947 __releases(p->pi_lock) 2948 { 2949 struct set_affinity_pending my_pending = { }, *pending = NULL; 2950 bool stop_pending, complete = false; 2951 2952 /* Can the task run on the task's current CPU? If so, we're done */ 2953 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2954 struct task_struct *push_task = NULL; 2955 2956 if ((flags & SCA_MIGRATE_ENABLE) && 2957 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2958 rq->push_busy = true; 2959 push_task = get_task_struct(p); 2960 } 2961 2962 /* 2963 * If there are pending waiters, but no pending stop_work, 2964 * then complete now. 2965 */ 2966 pending = p->migration_pending; 2967 if (pending && !pending->stop_pending) { 2968 p->migration_pending = NULL; 2969 complete = true; 2970 } 2971 2972 preempt_disable(); 2973 task_rq_unlock(rq, p, rf); 2974 if (push_task) { 2975 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2976 p, &rq->push_work); 2977 } 2978 preempt_enable(); 2979 2980 if (complete) 2981 complete_all(&pending->done); 2982 2983 return 0; 2984 } 2985 2986 if (!(flags & SCA_MIGRATE_ENABLE)) { 2987 /* serialized by p->pi_lock */ 2988 if (!p->migration_pending) { 2989 /* Install the request */ 2990 refcount_set(&my_pending.refs, 1); 2991 init_completion(&my_pending.done); 2992 my_pending.arg = (struct migration_arg) { 2993 .task = p, 2994 .dest_cpu = dest_cpu, 2995 .pending = &my_pending, 2996 }; 2997 2998 p->migration_pending = &my_pending; 2999 } else { 3000 pending = p->migration_pending; 3001 refcount_inc(&pending->refs); 3002 /* 3003 * Affinity has changed, but we've already installed a 3004 * pending. migration_cpu_stop() *must* see this, else 3005 * we risk a completion of the pending despite having a 3006 * task on a disallowed CPU. 3007 * 3008 * Serialized by p->pi_lock, so this is safe. 3009 */ 3010 pending->arg.dest_cpu = dest_cpu; 3011 } 3012 } 3013 pending = p->migration_pending; 3014 /* 3015 * - !MIGRATE_ENABLE: 3016 * we'll have installed a pending if there wasn't one already. 3017 * 3018 * - MIGRATE_ENABLE: 3019 * we're here because the current CPU isn't matching anymore, 3020 * the only way that can happen is because of a concurrent 3021 * set_cpus_allowed_ptr() call, which should then still be 3022 * pending completion. 3023 * 3024 * Either way, we really should have a @pending here. 3025 */ 3026 if (WARN_ON_ONCE(!pending)) { 3027 task_rq_unlock(rq, p, rf); 3028 return -EINVAL; 3029 } 3030 3031 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3032 /* 3033 * MIGRATE_ENABLE gets here because 'p == current', but for 3034 * anything else we cannot do is_migration_disabled(), punt 3035 * and have the stopper function handle it all race-free. 3036 */ 3037 stop_pending = pending->stop_pending; 3038 if (!stop_pending) 3039 pending->stop_pending = true; 3040 3041 if (flags & SCA_MIGRATE_ENABLE) 3042 p->migration_flags &= ~MDF_PUSH; 3043 3044 preempt_disable(); 3045 task_rq_unlock(rq, p, rf); 3046 if (!stop_pending) { 3047 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3048 &pending->arg, &pending->stop_work); 3049 } 3050 preempt_enable(); 3051 3052 if (flags & SCA_MIGRATE_ENABLE) 3053 return 0; 3054 } else { 3055 3056 if (!is_migration_disabled(p)) { 3057 if (task_on_rq_queued(p)) 3058 rq = move_queued_task(rq, rf, p, dest_cpu); 3059 3060 if (!pending->stop_pending) { 3061 p->migration_pending = NULL; 3062 complete = true; 3063 } 3064 } 3065 task_rq_unlock(rq, p, rf); 3066 3067 if (complete) 3068 complete_all(&pending->done); 3069 } 3070 3071 wait_for_completion(&pending->done); 3072 3073 if (refcount_dec_and_test(&pending->refs)) 3074 wake_up_var(&pending->refs); /* No UaF, just an address */ 3075 3076 /* 3077 * Block the original owner of &pending until all subsequent callers 3078 * have seen the completion and decremented the refcount 3079 */ 3080 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3081 3082 /* ARGH */ 3083 WARN_ON_ONCE(my_pending.stop_pending); 3084 3085 return 0; 3086 } 3087 3088 /* 3089 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3090 */ 3091 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3092 struct affinity_context *ctx, 3093 struct rq *rq, 3094 struct rq_flags *rf) 3095 __releases(rq->lock) 3096 __releases(p->pi_lock) 3097 { 3098 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3099 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3100 bool kthread = p->flags & PF_KTHREAD; 3101 unsigned int dest_cpu; 3102 int ret = 0; 3103 3104 update_rq_clock(rq); 3105 3106 if (kthread || is_migration_disabled(p)) { 3107 /* 3108 * Kernel threads are allowed on online && !active CPUs, 3109 * however, during cpu-hot-unplug, even these might get pushed 3110 * away if not KTHREAD_IS_PER_CPU. 3111 * 3112 * Specifically, migration_disabled() tasks must not fail the 3113 * cpumask_any_and_distribute() pick below, esp. so on 3114 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3115 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3116 */ 3117 cpu_valid_mask = cpu_online_mask; 3118 } 3119 3120 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3121 ret = -EINVAL; 3122 goto out; 3123 } 3124 3125 /* 3126 * Must re-check here, to close a race against __kthread_bind(), 3127 * sched_setaffinity() is not guaranteed to observe the flag. 3128 */ 3129 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3130 ret = -EINVAL; 3131 goto out; 3132 } 3133 3134 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3135 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3136 if (ctx->flags & SCA_USER) 3137 swap(p->user_cpus_ptr, ctx->user_mask); 3138 goto out; 3139 } 3140 3141 if (WARN_ON_ONCE(p == current && 3142 is_migration_disabled(p) && 3143 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3144 ret = -EBUSY; 3145 goto out; 3146 } 3147 } 3148 3149 /* 3150 * Picking a ~random cpu helps in cases where we are changing affinity 3151 * for groups of tasks (ie. cpuset), so that load balancing is not 3152 * immediately required to distribute the tasks within their new mask. 3153 */ 3154 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3155 if (dest_cpu >= nr_cpu_ids) { 3156 ret = -EINVAL; 3157 goto out; 3158 } 3159 3160 __do_set_cpus_allowed(p, ctx); 3161 3162 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3163 3164 out: 3165 task_rq_unlock(rq, p, rf); 3166 3167 return ret; 3168 } 3169 3170 /* 3171 * Change a given task's CPU affinity. Migrate the thread to a 3172 * proper CPU and schedule it away if the CPU it's executing on 3173 * is removed from the allowed bitmask. 3174 * 3175 * NOTE: the caller must have a valid reference to the task, the 3176 * task must not exit() & deallocate itself prematurely. The 3177 * call is not atomic; no spinlocks may be held. 3178 */ 3179 static int __set_cpus_allowed_ptr(struct task_struct *p, 3180 struct affinity_context *ctx) 3181 { 3182 struct rq_flags rf; 3183 struct rq *rq; 3184 3185 rq = task_rq_lock(p, &rf); 3186 /* 3187 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3188 * flags are set. 3189 */ 3190 if (p->user_cpus_ptr && 3191 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3192 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3193 ctx->new_mask = rq->scratch_mask; 3194 3195 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3196 } 3197 3198 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3199 { 3200 struct affinity_context ac = { 3201 .new_mask = new_mask, 3202 .flags = 0, 3203 }; 3204 3205 return __set_cpus_allowed_ptr(p, &ac); 3206 } 3207 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3208 3209 /* 3210 * Change a given task's CPU affinity to the intersection of its current 3211 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3212 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3213 * affinity or use cpu_online_mask instead. 3214 * 3215 * If the resulting mask is empty, leave the affinity unchanged and return 3216 * -EINVAL. 3217 */ 3218 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3219 struct cpumask *new_mask, 3220 const struct cpumask *subset_mask) 3221 { 3222 struct affinity_context ac = { 3223 .new_mask = new_mask, 3224 .flags = 0, 3225 }; 3226 struct rq_flags rf; 3227 struct rq *rq; 3228 int err; 3229 3230 rq = task_rq_lock(p, &rf); 3231 3232 /* 3233 * Forcefully restricting the affinity of a deadline task is 3234 * likely to cause problems, so fail and noisily override the 3235 * mask entirely. 3236 */ 3237 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3238 err = -EPERM; 3239 goto err_unlock; 3240 } 3241 3242 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3243 err = -EINVAL; 3244 goto err_unlock; 3245 } 3246 3247 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3248 3249 err_unlock: 3250 task_rq_unlock(rq, p, &rf); 3251 return err; 3252 } 3253 3254 /* 3255 * Restrict the CPU affinity of task @p so that it is a subset of 3256 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3257 * old affinity mask. If the resulting mask is empty, we warn and walk 3258 * up the cpuset hierarchy until we find a suitable mask. 3259 */ 3260 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3261 { 3262 cpumask_var_t new_mask; 3263 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3264 3265 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3266 3267 /* 3268 * __migrate_task() can fail silently in the face of concurrent 3269 * offlining of the chosen destination CPU, so take the hotplug 3270 * lock to ensure that the migration succeeds. 3271 */ 3272 cpus_read_lock(); 3273 if (!cpumask_available(new_mask)) 3274 goto out_set_mask; 3275 3276 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3277 goto out_free_mask; 3278 3279 /* 3280 * We failed to find a valid subset of the affinity mask for the 3281 * task, so override it based on its cpuset hierarchy. 3282 */ 3283 cpuset_cpus_allowed(p, new_mask); 3284 override_mask = new_mask; 3285 3286 out_set_mask: 3287 if (printk_ratelimit()) { 3288 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3289 task_pid_nr(p), p->comm, 3290 cpumask_pr_args(override_mask)); 3291 } 3292 3293 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3294 out_free_mask: 3295 cpus_read_unlock(); 3296 free_cpumask_var(new_mask); 3297 } 3298 3299 static int 3300 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3301 3302 /* 3303 * Restore the affinity of a task @p which was previously restricted by a 3304 * call to force_compatible_cpus_allowed_ptr(). 3305 * 3306 * It is the caller's responsibility to serialise this with any calls to 3307 * force_compatible_cpus_allowed_ptr(@p). 3308 */ 3309 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3310 { 3311 struct affinity_context ac = { 3312 .new_mask = task_user_cpus(p), 3313 .flags = 0, 3314 }; 3315 int ret; 3316 3317 /* 3318 * Try to restore the old affinity mask with __sched_setaffinity(). 3319 * Cpuset masking will be done there too. 3320 */ 3321 ret = __sched_setaffinity(p, &ac); 3322 WARN_ON_ONCE(ret); 3323 } 3324 3325 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3326 { 3327 #ifdef CONFIG_SCHED_DEBUG 3328 unsigned int state = READ_ONCE(p->__state); 3329 3330 /* 3331 * We should never call set_task_cpu() on a blocked task, 3332 * ttwu() will sort out the placement. 3333 */ 3334 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3335 3336 /* 3337 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3338 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3339 * time relying on p->on_rq. 3340 */ 3341 WARN_ON_ONCE(state == TASK_RUNNING && 3342 p->sched_class == &fair_sched_class && 3343 (p->on_rq && !task_on_rq_migrating(p))); 3344 3345 #ifdef CONFIG_LOCKDEP 3346 /* 3347 * The caller should hold either p->pi_lock or rq->lock, when changing 3348 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3349 * 3350 * sched_move_task() holds both and thus holding either pins the cgroup, 3351 * see task_group(). 3352 * 3353 * Furthermore, all task_rq users should acquire both locks, see 3354 * task_rq_lock(). 3355 */ 3356 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3357 lockdep_is_held(__rq_lockp(task_rq(p))))); 3358 #endif 3359 /* 3360 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3361 */ 3362 WARN_ON_ONCE(!cpu_online(new_cpu)); 3363 3364 WARN_ON_ONCE(is_migration_disabled(p)); 3365 #endif 3366 3367 trace_sched_migrate_task(p, new_cpu); 3368 3369 if (task_cpu(p) != new_cpu) { 3370 if (p->sched_class->migrate_task_rq) 3371 p->sched_class->migrate_task_rq(p, new_cpu); 3372 p->se.nr_migrations++; 3373 rseq_migrate(p); 3374 sched_mm_cid_migrate_from(p); 3375 perf_event_task_migrate(p); 3376 } 3377 3378 __set_task_cpu(p, new_cpu); 3379 } 3380 3381 #ifdef CONFIG_NUMA_BALANCING 3382 static void __migrate_swap_task(struct task_struct *p, int cpu) 3383 { 3384 if (task_on_rq_queued(p)) { 3385 struct rq *src_rq, *dst_rq; 3386 struct rq_flags srf, drf; 3387 3388 src_rq = task_rq(p); 3389 dst_rq = cpu_rq(cpu); 3390 3391 rq_pin_lock(src_rq, &srf); 3392 rq_pin_lock(dst_rq, &drf); 3393 3394 deactivate_task(src_rq, p, 0); 3395 set_task_cpu(p, cpu); 3396 activate_task(dst_rq, p, 0); 3397 wakeup_preempt(dst_rq, p, 0); 3398 3399 rq_unpin_lock(dst_rq, &drf); 3400 rq_unpin_lock(src_rq, &srf); 3401 3402 } else { 3403 /* 3404 * Task isn't running anymore; make it appear like we migrated 3405 * it before it went to sleep. This means on wakeup we make the 3406 * previous CPU our target instead of where it really is. 3407 */ 3408 p->wake_cpu = cpu; 3409 } 3410 } 3411 3412 struct migration_swap_arg { 3413 struct task_struct *src_task, *dst_task; 3414 int src_cpu, dst_cpu; 3415 }; 3416 3417 static int migrate_swap_stop(void *data) 3418 { 3419 struct migration_swap_arg *arg = data; 3420 struct rq *src_rq, *dst_rq; 3421 3422 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3423 return -EAGAIN; 3424 3425 src_rq = cpu_rq(arg->src_cpu); 3426 dst_rq = cpu_rq(arg->dst_cpu); 3427 3428 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3429 guard(double_rq_lock)(src_rq, dst_rq); 3430 3431 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3432 return -EAGAIN; 3433 3434 if (task_cpu(arg->src_task) != arg->src_cpu) 3435 return -EAGAIN; 3436 3437 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3438 return -EAGAIN; 3439 3440 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3441 return -EAGAIN; 3442 3443 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3444 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3445 3446 return 0; 3447 } 3448 3449 /* 3450 * Cross migrate two tasks 3451 */ 3452 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3453 int target_cpu, int curr_cpu) 3454 { 3455 struct migration_swap_arg arg; 3456 int ret = -EINVAL; 3457 3458 arg = (struct migration_swap_arg){ 3459 .src_task = cur, 3460 .src_cpu = curr_cpu, 3461 .dst_task = p, 3462 .dst_cpu = target_cpu, 3463 }; 3464 3465 if (arg.src_cpu == arg.dst_cpu) 3466 goto out; 3467 3468 /* 3469 * These three tests are all lockless; this is OK since all of them 3470 * will be re-checked with proper locks held further down the line. 3471 */ 3472 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3473 goto out; 3474 3475 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3476 goto out; 3477 3478 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3479 goto out; 3480 3481 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3482 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3483 3484 out: 3485 return ret; 3486 } 3487 #endif /* CONFIG_NUMA_BALANCING */ 3488 3489 /*** 3490 * kick_process - kick a running thread to enter/exit the kernel 3491 * @p: the to-be-kicked thread 3492 * 3493 * Cause a process which is running on another CPU to enter 3494 * kernel-mode, without any delay. (to get signals handled.) 3495 * 3496 * NOTE: this function doesn't have to take the runqueue lock, 3497 * because all it wants to ensure is that the remote task enters 3498 * the kernel. If the IPI races and the task has been migrated 3499 * to another CPU then no harm is done and the purpose has been 3500 * achieved as well. 3501 */ 3502 void kick_process(struct task_struct *p) 3503 { 3504 guard(preempt)(); 3505 int cpu = task_cpu(p); 3506 3507 if ((cpu != smp_processor_id()) && task_curr(p)) 3508 smp_send_reschedule(cpu); 3509 } 3510 EXPORT_SYMBOL_GPL(kick_process); 3511 3512 /* 3513 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3514 * 3515 * A few notes on cpu_active vs cpu_online: 3516 * 3517 * - cpu_active must be a subset of cpu_online 3518 * 3519 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3520 * see __set_cpus_allowed_ptr(). At this point the newly online 3521 * CPU isn't yet part of the sched domains, and balancing will not 3522 * see it. 3523 * 3524 * - on CPU-down we clear cpu_active() to mask the sched domains and 3525 * avoid the load balancer to place new tasks on the to be removed 3526 * CPU. Existing tasks will remain running there and will be taken 3527 * off. 3528 * 3529 * This means that fallback selection must not select !active CPUs. 3530 * And can assume that any active CPU must be online. Conversely 3531 * select_task_rq() below may allow selection of !active CPUs in order 3532 * to satisfy the above rules. 3533 */ 3534 static int select_fallback_rq(int cpu, struct task_struct *p) 3535 { 3536 int nid = cpu_to_node(cpu); 3537 const struct cpumask *nodemask = NULL; 3538 enum { cpuset, possible, fail } state = cpuset; 3539 int dest_cpu; 3540 3541 /* 3542 * If the node that the CPU is on has been offlined, cpu_to_node() 3543 * will return -1. There is no CPU on the node, and we should 3544 * select the CPU on the other node. 3545 */ 3546 if (nid != -1) { 3547 nodemask = cpumask_of_node(nid); 3548 3549 /* Look for allowed, online CPU in same node. */ 3550 for_each_cpu(dest_cpu, nodemask) { 3551 if (is_cpu_allowed(p, dest_cpu)) 3552 return dest_cpu; 3553 } 3554 } 3555 3556 for (;;) { 3557 /* Any allowed, online CPU? */ 3558 for_each_cpu(dest_cpu, p->cpus_ptr) { 3559 if (!is_cpu_allowed(p, dest_cpu)) 3560 continue; 3561 3562 goto out; 3563 } 3564 3565 /* No more Mr. Nice Guy. */ 3566 switch (state) { 3567 case cpuset: 3568 if (cpuset_cpus_allowed_fallback(p)) { 3569 state = possible; 3570 break; 3571 } 3572 fallthrough; 3573 case possible: 3574 /* 3575 * XXX When called from select_task_rq() we only 3576 * hold p->pi_lock and again violate locking order. 3577 * 3578 * More yuck to audit. 3579 */ 3580 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3581 state = fail; 3582 break; 3583 case fail: 3584 BUG(); 3585 break; 3586 } 3587 } 3588 3589 out: 3590 if (state != cpuset) { 3591 /* 3592 * Don't tell them about moving exiting tasks or 3593 * kernel threads (both mm NULL), since they never 3594 * leave kernel. 3595 */ 3596 if (p->mm && printk_ratelimit()) { 3597 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3598 task_pid_nr(p), p->comm, cpu); 3599 } 3600 } 3601 3602 return dest_cpu; 3603 } 3604 3605 /* 3606 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3607 */ 3608 static inline 3609 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3610 { 3611 lockdep_assert_held(&p->pi_lock); 3612 3613 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3614 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3615 else 3616 cpu = cpumask_any(p->cpus_ptr); 3617 3618 /* 3619 * In order not to call set_task_cpu() on a blocking task we need 3620 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3621 * CPU. 3622 * 3623 * Since this is common to all placement strategies, this lives here. 3624 * 3625 * [ this allows ->select_task() to simply return task_cpu(p) and 3626 * not worry about this generic constraint ] 3627 */ 3628 if (unlikely(!is_cpu_allowed(p, cpu))) 3629 cpu = select_fallback_rq(task_cpu(p), p); 3630 3631 return cpu; 3632 } 3633 3634 void sched_set_stop_task(int cpu, struct task_struct *stop) 3635 { 3636 static struct lock_class_key stop_pi_lock; 3637 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3638 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3639 3640 if (stop) { 3641 /* 3642 * Make it appear like a SCHED_FIFO task, its something 3643 * userspace knows about and won't get confused about. 3644 * 3645 * Also, it will make PI more or less work without too 3646 * much confusion -- but then, stop work should not 3647 * rely on PI working anyway. 3648 */ 3649 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3650 3651 stop->sched_class = &stop_sched_class; 3652 3653 /* 3654 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3655 * adjust the effective priority of a task. As a result, 3656 * rt_mutex_setprio() can trigger (RT) balancing operations, 3657 * which can then trigger wakeups of the stop thread to push 3658 * around the current task. 3659 * 3660 * The stop task itself will never be part of the PI-chain, it 3661 * never blocks, therefore that ->pi_lock recursion is safe. 3662 * Tell lockdep about this by placing the stop->pi_lock in its 3663 * own class. 3664 */ 3665 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3666 } 3667 3668 cpu_rq(cpu)->stop = stop; 3669 3670 if (old_stop) { 3671 /* 3672 * Reset it back to a normal scheduling class so that 3673 * it can die in pieces. 3674 */ 3675 old_stop->sched_class = &rt_sched_class; 3676 } 3677 } 3678 3679 #else /* CONFIG_SMP */ 3680 3681 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3682 struct affinity_context *ctx) 3683 { 3684 return set_cpus_allowed_ptr(p, ctx->new_mask); 3685 } 3686 3687 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3688 3689 static inline bool rq_has_pinned_tasks(struct rq *rq) 3690 { 3691 return false; 3692 } 3693 3694 static inline cpumask_t *alloc_user_cpus_ptr(int node) 3695 { 3696 return NULL; 3697 } 3698 3699 #endif /* !CONFIG_SMP */ 3700 3701 static void 3702 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3703 { 3704 struct rq *rq; 3705 3706 if (!schedstat_enabled()) 3707 return; 3708 3709 rq = this_rq(); 3710 3711 #ifdef CONFIG_SMP 3712 if (cpu == rq->cpu) { 3713 __schedstat_inc(rq->ttwu_local); 3714 __schedstat_inc(p->stats.nr_wakeups_local); 3715 } else { 3716 struct sched_domain *sd; 3717 3718 __schedstat_inc(p->stats.nr_wakeups_remote); 3719 3720 guard(rcu)(); 3721 for_each_domain(rq->cpu, sd) { 3722 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3723 __schedstat_inc(sd->ttwu_wake_remote); 3724 break; 3725 } 3726 } 3727 } 3728 3729 if (wake_flags & WF_MIGRATED) 3730 __schedstat_inc(p->stats.nr_wakeups_migrate); 3731 #endif /* CONFIG_SMP */ 3732 3733 __schedstat_inc(rq->ttwu_count); 3734 __schedstat_inc(p->stats.nr_wakeups); 3735 3736 if (wake_flags & WF_SYNC) 3737 __schedstat_inc(p->stats.nr_wakeups_sync); 3738 } 3739 3740 /* 3741 * Mark the task runnable. 3742 */ 3743 static inline void ttwu_do_wakeup(struct task_struct *p) 3744 { 3745 WRITE_ONCE(p->__state, TASK_RUNNING); 3746 trace_sched_wakeup(p); 3747 } 3748 3749 static void 3750 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3751 struct rq_flags *rf) 3752 { 3753 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3754 3755 lockdep_assert_rq_held(rq); 3756 3757 if (p->sched_contributes_to_load) 3758 rq->nr_uninterruptible--; 3759 3760 #ifdef CONFIG_SMP 3761 if (wake_flags & WF_MIGRATED) 3762 en_flags |= ENQUEUE_MIGRATED; 3763 else 3764 #endif 3765 if (p->in_iowait) { 3766 delayacct_blkio_end(p); 3767 atomic_dec(&task_rq(p)->nr_iowait); 3768 } 3769 3770 activate_task(rq, p, en_flags); 3771 wakeup_preempt(rq, p, wake_flags); 3772 3773 ttwu_do_wakeup(p); 3774 3775 #ifdef CONFIG_SMP 3776 if (p->sched_class->task_woken) { 3777 /* 3778 * Our task @p is fully woken up and running; so it's safe to 3779 * drop the rq->lock, hereafter rq is only used for statistics. 3780 */ 3781 rq_unpin_lock(rq, rf); 3782 p->sched_class->task_woken(rq, p); 3783 rq_repin_lock(rq, rf); 3784 } 3785 3786 if (rq->idle_stamp) { 3787 u64 delta = rq_clock(rq) - rq->idle_stamp; 3788 u64 max = 2*rq->max_idle_balance_cost; 3789 3790 update_avg(&rq->avg_idle, delta); 3791 3792 if (rq->avg_idle > max) 3793 rq->avg_idle = max; 3794 3795 rq->idle_stamp = 0; 3796 } 3797 #endif 3798 } 3799 3800 /* 3801 * Consider @p being inside a wait loop: 3802 * 3803 * for (;;) { 3804 * set_current_state(TASK_UNINTERRUPTIBLE); 3805 * 3806 * if (CONDITION) 3807 * break; 3808 * 3809 * schedule(); 3810 * } 3811 * __set_current_state(TASK_RUNNING); 3812 * 3813 * between set_current_state() and schedule(). In this case @p is still 3814 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3815 * an atomic manner. 3816 * 3817 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3818 * then schedule() must still happen and p->state can be changed to 3819 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3820 * need to do a full wakeup with enqueue. 3821 * 3822 * Returns: %true when the wakeup is done, 3823 * %false otherwise. 3824 */ 3825 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3826 { 3827 struct rq_flags rf; 3828 struct rq *rq; 3829 int ret = 0; 3830 3831 rq = __task_rq_lock(p, &rf); 3832 if (task_on_rq_queued(p)) { 3833 if (!task_on_cpu(rq, p)) { 3834 /* 3835 * When on_rq && !on_cpu the task is preempted, see if 3836 * it should preempt the task that is current now. 3837 */ 3838 update_rq_clock(rq); 3839 wakeup_preempt(rq, p, wake_flags); 3840 } 3841 ttwu_do_wakeup(p); 3842 ret = 1; 3843 } 3844 __task_rq_unlock(rq, &rf); 3845 3846 return ret; 3847 } 3848 3849 #ifdef CONFIG_SMP 3850 void sched_ttwu_pending(void *arg) 3851 { 3852 struct llist_node *llist = arg; 3853 struct rq *rq = this_rq(); 3854 struct task_struct *p, *t; 3855 struct rq_flags rf; 3856 3857 if (!llist) 3858 return; 3859 3860 rq_lock_irqsave(rq, &rf); 3861 update_rq_clock(rq); 3862 3863 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3864 if (WARN_ON_ONCE(p->on_cpu)) 3865 smp_cond_load_acquire(&p->on_cpu, !VAL); 3866 3867 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3868 set_task_cpu(p, cpu_of(rq)); 3869 3870 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3871 } 3872 3873 /* 3874 * Must be after enqueueing at least once task such that 3875 * idle_cpu() does not observe a false-negative -- if it does, 3876 * it is possible for select_idle_siblings() to stack a number 3877 * of tasks on this CPU during that window. 3878 * 3879 * It is ok to clear ttwu_pending when another task pending. 3880 * We will receive IPI after local irq enabled and then enqueue it. 3881 * Since now nr_running > 0, idle_cpu() will always get correct result. 3882 */ 3883 WRITE_ONCE(rq->ttwu_pending, 0); 3884 rq_unlock_irqrestore(rq, &rf); 3885 } 3886 3887 /* 3888 * Prepare the scene for sending an IPI for a remote smp_call 3889 * 3890 * Returns true if the caller can proceed with sending the IPI. 3891 * Returns false otherwise. 3892 */ 3893 bool call_function_single_prep_ipi(int cpu) 3894 { 3895 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3896 trace_sched_wake_idle_without_ipi(cpu); 3897 return false; 3898 } 3899 3900 return true; 3901 } 3902 3903 /* 3904 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3905 * necessary. The wakee CPU on receipt of the IPI will queue the task 3906 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3907 * of the wakeup instead of the waker. 3908 */ 3909 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3910 { 3911 struct rq *rq = cpu_rq(cpu); 3912 3913 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3914 3915 WRITE_ONCE(rq->ttwu_pending, 1); 3916 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3917 } 3918 3919 void wake_up_if_idle(int cpu) 3920 { 3921 struct rq *rq = cpu_rq(cpu); 3922 3923 guard(rcu)(); 3924 if (is_idle_task(rcu_dereference(rq->curr))) { 3925 guard(rq_lock_irqsave)(rq); 3926 if (is_idle_task(rq->curr)) 3927 resched_curr(rq); 3928 } 3929 } 3930 3931 bool cpus_share_cache(int this_cpu, int that_cpu) 3932 { 3933 if (this_cpu == that_cpu) 3934 return true; 3935 3936 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3937 } 3938 3939 /* 3940 * Whether CPUs are share cache resources, which means LLC on non-cluster 3941 * machines and LLC tag or L2 on machines with clusters. 3942 */ 3943 bool cpus_share_resources(int this_cpu, int that_cpu) 3944 { 3945 if (this_cpu == that_cpu) 3946 return true; 3947 3948 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3949 } 3950 3951 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3952 { 3953 /* 3954 * Do not complicate things with the async wake_list while the CPU is 3955 * in hotplug state. 3956 */ 3957 if (!cpu_active(cpu)) 3958 return false; 3959 3960 /* Ensure the task will still be allowed to run on the CPU. */ 3961 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3962 return false; 3963 3964 /* 3965 * If the CPU does not share cache, then queue the task on the 3966 * remote rqs wakelist to avoid accessing remote data. 3967 */ 3968 if (!cpus_share_cache(smp_processor_id(), cpu)) 3969 return true; 3970 3971 if (cpu == smp_processor_id()) 3972 return false; 3973 3974 /* 3975 * If the wakee cpu is idle, or the task is descheduling and the 3976 * only running task on the CPU, then use the wakelist to offload 3977 * the task activation to the idle (or soon-to-be-idle) CPU as 3978 * the current CPU is likely busy. nr_running is checked to 3979 * avoid unnecessary task stacking. 3980 * 3981 * Note that we can only get here with (wakee) p->on_rq=0, 3982 * p->on_cpu can be whatever, we've done the dequeue, so 3983 * the wakee has been accounted out of ->nr_running. 3984 */ 3985 if (!cpu_rq(cpu)->nr_running) 3986 return true; 3987 3988 return false; 3989 } 3990 3991 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3992 { 3993 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3994 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3995 __ttwu_queue_wakelist(p, cpu, wake_flags); 3996 return true; 3997 } 3998 3999 return false; 4000 } 4001 4002 #else /* !CONFIG_SMP */ 4003 4004 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 4005 { 4006 return false; 4007 } 4008 4009 #endif /* CONFIG_SMP */ 4010 4011 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 4012 { 4013 struct rq *rq = cpu_rq(cpu); 4014 struct rq_flags rf; 4015 4016 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 4017 return; 4018 4019 rq_lock(rq, &rf); 4020 update_rq_clock(rq); 4021 ttwu_do_activate(rq, p, wake_flags, &rf); 4022 rq_unlock(rq, &rf); 4023 } 4024 4025 /* 4026 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4027 * 4028 * The caller holds p::pi_lock if p != current or has preemption 4029 * disabled when p == current. 4030 * 4031 * The rules of saved_state: 4032 * 4033 * The related locking code always holds p::pi_lock when updating 4034 * p::saved_state, which means the code is fully serialized in both cases. 4035 * 4036 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4037 * No other bits set. This allows to distinguish all wakeup scenarios. 4038 * 4039 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4040 * allows us to prevent early wakeup of tasks before they can be run on 4041 * asymmetric ISA architectures (eg ARMv9). 4042 */ 4043 static __always_inline 4044 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4045 { 4046 int match; 4047 4048 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4049 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4050 state != TASK_RTLOCK_WAIT); 4051 } 4052 4053 *success = !!(match = __task_state_match(p, state)); 4054 4055 /* 4056 * Saved state preserves the task state across blocking on 4057 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4058 * set p::saved_state to TASK_RUNNING, but do not wake the task 4059 * because it waits for a lock wakeup or __thaw_task(). Also 4060 * indicate success because from the regular waker's point of 4061 * view this has succeeded. 4062 * 4063 * After acquiring the lock the task will restore p::__state 4064 * from p::saved_state which ensures that the regular 4065 * wakeup is not lost. The restore will also set 4066 * p::saved_state to TASK_RUNNING so any further tests will 4067 * not result in false positives vs. @success 4068 */ 4069 if (match < 0) 4070 p->saved_state = TASK_RUNNING; 4071 4072 return match > 0; 4073 } 4074 4075 /* 4076 * Notes on Program-Order guarantees on SMP systems. 4077 * 4078 * MIGRATION 4079 * 4080 * The basic program-order guarantee on SMP systems is that when a task [t] 4081 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4082 * execution on its new CPU [c1]. 4083 * 4084 * For migration (of runnable tasks) this is provided by the following means: 4085 * 4086 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4087 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4088 * rq(c1)->lock (if not at the same time, then in that order). 4089 * C) LOCK of the rq(c1)->lock scheduling in task 4090 * 4091 * Release/acquire chaining guarantees that B happens after A and C after B. 4092 * Note: the CPU doing B need not be c0 or c1 4093 * 4094 * Example: 4095 * 4096 * CPU0 CPU1 CPU2 4097 * 4098 * LOCK rq(0)->lock 4099 * sched-out X 4100 * sched-in Y 4101 * UNLOCK rq(0)->lock 4102 * 4103 * LOCK rq(0)->lock // orders against CPU0 4104 * dequeue X 4105 * UNLOCK rq(0)->lock 4106 * 4107 * LOCK rq(1)->lock 4108 * enqueue X 4109 * UNLOCK rq(1)->lock 4110 * 4111 * LOCK rq(1)->lock // orders against CPU2 4112 * sched-out Z 4113 * sched-in X 4114 * UNLOCK rq(1)->lock 4115 * 4116 * 4117 * BLOCKING -- aka. SLEEP + WAKEUP 4118 * 4119 * For blocking we (obviously) need to provide the same guarantee as for 4120 * migration. However the means are completely different as there is no lock 4121 * chain to provide order. Instead we do: 4122 * 4123 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4124 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4125 * 4126 * Example: 4127 * 4128 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4129 * 4130 * LOCK rq(0)->lock LOCK X->pi_lock 4131 * dequeue X 4132 * sched-out X 4133 * smp_store_release(X->on_cpu, 0); 4134 * 4135 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4136 * X->state = WAKING 4137 * set_task_cpu(X,2) 4138 * 4139 * LOCK rq(2)->lock 4140 * enqueue X 4141 * X->state = RUNNING 4142 * UNLOCK rq(2)->lock 4143 * 4144 * LOCK rq(2)->lock // orders against CPU1 4145 * sched-out Z 4146 * sched-in X 4147 * UNLOCK rq(2)->lock 4148 * 4149 * UNLOCK X->pi_lock 4150 * UNLOCK rq(0)->lock 4151 * 4152 * 4153 * However, for wakeups there is a second guarantee we must provide, namely we 4154 * must ensure that CONDITION=1 done by the caller can not be reordered with 4155 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4156 */ 4157 4158 /** 4159 * try_to_wake_up - wake up a thread 4160 * @p: the thread to be awakened 4161 * @state: the mask of task states that can be woken 4162 * @wake_flags: wake modifier flags (WF_*) 4163 * 4164 * Conceptually does: 4165 * 4166 * If (@state & @p->state) @p->state = TASK_RUNNING. 4167 * 4168 * If the task was not queued/runnable, also place it back on a runqueue. 4169 * 4170 * This function is atomic against schedule() which would dequeue the task. 4171 * 4172 * It issues a full memory barrier before accessing @p->state, see the comment 4173 * with set_current_state(). 4174 * 4175 * Uses p->pi_lock to serialize against concurrent wake-ups. 4176 * 4177 * Relies on p->pi_lock stabilizing: 4178 * - p->sched_class 4179 * - p->cpus_ptr 4180 * - p->sched_task_group 4181 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4182 * 4183 * Tries really hard to only take one task_rq(p)->lock for performance. 4184 * Takes rq->lock in: 4185 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4186 * - ttwu_queue() -- new rq, for enqueue of the task; 4187 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4188 * 4189 * As a consequence we race really badly with just about everything. See the 4190 * many memory barriers and their comments for details. 4191 * 4192 * Return: %true if @p->state changes (an actual wakeup was done), 4193 * %false otherwise. 4194 */ 4195 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4196 { 4197 guard(preempt)(); 4198 int cpu, success = 0; 4199 4200 if (p == current) { 4201 /* 4202 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4203 * == smp_processor_id()'. Together this means we can special 4204 * case the whole 'p->on_rq && ttwu_runnable()' case below 4205 * without taking any locks. 4206 * 4207 * In particular: 4208 * - we rely on Program-Order guarantees for all the ordering, 4209 * - we're serialized against set_special_state() by virtue of 4210 * it disabling IRQs (this allows not taking ->pi_lock). 4211 */ 4212 if (!ttwu_state_match(p, state, &success)) 4213 goto out; 4214 4215 trace_sched_waking(p); 4216 ttwu_do_wakeup(p); 4217 goto out; 4218 } 4219 4220 /* 4221 * If we are going to wake up a thread waiting for CONDITION we 4222 * need to ensure that CONDITION=1 done by the caller can not be 4223 * reordered with p->state check below. This pairs with smp_store_mb() 4224 * in set_current_state() that the waiting thread does. 4225 */ 4226 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4227 smp_mb__after_spinlock(); 4228 if (!ttwu_state_match(p, state, &success)) 4229 break; 4230 4231 trace_sched_waking(p); 4232 4233 /* 4234 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4235 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4236 * in smp_cond_load_acquire() below. 4237 * 4238 * sched_ttwu_pending() try_to_wake_up() 4239 * STORE p->on_rq = 1 LOAD p->state 4240 * UNLOCK rq->lock 4241 * 4242 * __schedule() (switch to task 'p') 4243 * LOCK rq->lock smp_rmb(); 4244 * smp_mb__after_spinlock(); 4245 * UNLOCK rq->lock 4246 * 4247 * [task p] 4248 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4249 * 4250 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4251 * __schedule(). See the comment for smp_mb__after_spinlock(). 4252 * 4253 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4254 */ 4255 smp_rmb(); 4256 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4257 break; 4258 4259 #ifdef CONFIG_SMP 4260 /* 4261 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4262 * possible to, falsely, observe p->on_cpu == 0. 4263 * 4264 * One must be running (->on_cpu == 1) in order to remove oneself 4265 * from the runqueue. 4266 * 4267 * __schedule() (switch to task 'p') try_to_wake_up() 4268 * STORE p->on_cpu = 1 LOAD p->on_rq 4269 * UNLOCK rq->lock 4270 * 4271 * __schedule() (put 'p' to sleep) 4272 * LOCK rq->lock smp_rmb(); 4273 * smp_mb__after_spinlock(); 4274 * STORE p->on_rq = 0 LOAD p->on_cpu 4275 * 4276 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4277 * __schedule(). See the comment for smp_mb__after_spinlock(). 4278 * 4279 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4280 * schedule()'s deactivate_task() has 'happened' and p will no longer 4281 * care about it's own p->state. See the comment in __schedule(). 4282 */ 4283 smp_acquire__after_ctrl_dep(); 4284 4285 /* 4286 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4287 * == 0), which means we need to do an enqueue, change p->state to 4288 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4289 * enqueue, such as ttwu_queue_wakelist(). 4290 */ 4291 WRITE_ONCE(p->__state, TASK_WAKING); 4292 4293 /* 4294 * If the owning (remote) CPU is still in the middle of schedule() with 4295 * this task as prev, considering queueing p on the remote CPUs wake_list 4296 * which potentially sends an IPI instead of spinning on p->on_cpu to 4297 * let the waker make forward progress. This is safe because IRQs are 4298 * disabled and the IPI will deliver after on_cpu is cleared. 4299 * 4300 * Ensure we load task_cpu(p) after p->on_cpu: 4301 * 4302 * set_task_cpu(p, cpu); 4303 * STORE p->cpu = @cpu 4304 * __schedule() (switch to task 'p') 4305 * LOCK rq->lock 4306 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4307 * STORE p->on_cpu = 1 LOAD p->cpu 4308 * 4309 * to ensure we observe the correct CPU on which the task is currently 4310 * scheduling. 4311 */ 4312 if (smp_load_acquire(&p->on_cpu) && 4313 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4314 break; 4315 4316 /* 4317 * If the owning (remote) CPU is still in the middle of schedule() with 4318 * this task as prev, wait until it's done referencing the task. 4319 * 4320 * Pairs with the smp_store_release() in finish_task(). 4321 * 4322 * This ensures that tasks getting woken will be fully ordered against 4323 * their previous state and preserve Program Order. 4324 */ 4325 smp_cond_load_acquire(&p->on_cpu, !VAL); 4326 4327 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4328 if (task_cpu(p) != cpu) { 4329 if (p->in_iowait) { 4330 delayacct_blkio_end(p); 4331 atomic_dec(&task_rq(p)->nr_iowait); 4332 } 4333 4334 wake_flags |= WF_MIGRATED; 4335 psi_ttwu_dequeue(p); 4336 set_task_cpu(p, cpu); 4337 } 4338 #else 4339 cpu = task_cpu(p); 4340 #endif /* CONFIG_SMP */ 4341 4342 ttwu_queue(p, cpu, wake_flags); 4343 } 4344 out: 4345 if (success) 4346 ttwu_stat(p, task_cpu(p), wake_flags); 4347 4348 return success; 4349 } 4350 4351 static bool __task_needs_rq_lock(struct task_struct *p) 4352 { 4353 unsigned int state = READ_ONCE(p->__state); 4354 4355 /* 4356 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4357 * the task is blocked. Make sure to check @state since ttwu() can drop 4358 * locks at the end, see ttwu_queue_wakelist(). 4359 */ 4360 if (state == TASK_RUNNING || state == TASK_WAKING) 4361 return true; 4362 4363 /* 4364 * Ensure we load p->on_rq after p->__state, otherwise it would be 4365 * possible to, falsely, observe p->on_rq == 0. 4366 * 4367 * See try_to_wake_up() for a longer comment. 4368 */ 4369 smp_rmb(); 4370 if (p->on_rq) 4371 return true; 4372 4373 #ifdef CONFIG_SMP 4374 /* 4375 * Ensure the task has finished __schedule() and will not be referenced 4376 * anymore. Again, see try_to_wake_up() for a longer comment. 4377 */ 4378 smp_rmb(); 4379 smp_cond_load_acquire(&p->on_cpu, !VAL); 4380 #endif 4381 4382 return false; 4383 } 4384 4385 /** 4386 * task_call_func - Invoke a function on task in fixed state 4387 * @p: Process for which the function is to be invoked, can be @current. 4388 * @func: Function to invoke. 4389 * @arg: Argument to function. 4390 * 4391 * Fix the task in it's current state by avoiding wakeups and or rq operations 4392 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4393 * to work out what the state is, if required. Given that @func can be invoked 4394 * with a runqueue lock held, it had better be quite lightweight. 4395 * 4396 * Returns: 4397 * Whatever @func returns 4398 */ 4399 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4400 { 4401 struct rq *rq = NULL; 4402 struct rq_flags rf; 4403 int ret; 4404 4405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4406 4407 if (__task_needs_rq_lock(p)) 4408 rq = __task_rq_lock(p, &rf); 4409 4410 /* 4411 * At this point the task is pinned; either: 4412 * - blocked and we're holding off wakeups (pi->lock) 4413 * - woken, and we're holding off enqueue (rq->lock) 4414 * - queued, and we're holding off schedule (rq->lock) 4415 * - running, and we're holding off de-schedule (rq->lock) 4416 * 4417 * The called function (@func) can use: task_curr(), p->on_rq and 4418 * p->__state to differentiate between these states. 4419 */ 4420 ret = func(p, arg); 4421 4422 if (rq) 4423 rq_unlock(rq, &rf); 4424 4425 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4426 return ret; 4427 } 4428 4429 /** 4430 * cpu_curr_snapshot - Return a snapshot of the currently running task 4431 * @cpu: The CPU on which to snapshot the task. 4432 * 4433 * Returns the task_struct pointer of the task "currently" running on 4434 * the specified CPU. If the same task is running on that CPU throughout, 4435 * the return value will be a pointer to that task's task_struct structure. 4436 * If the CPU did any context switches even vaguely concurrently with the 4437 * execution of this function, the return value will be a pointer to the 4438 * task_struct structure of a randomly chosen task that was running on 4439 * that CPU somewhere around the time that this function was executing. 4440 * 4441 * If the specified CPU was offline, the return value is whatever it 4442 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4443 * task, but there is no guarantee. Callers wishing a useful return 4444 * value must take some action to ensure that the specified CPU remains 4445 * online throughout. 4446 * 4447 * This function executes full memory barriers before and after fetching 4448 * the pointer, which permits the caller to confine this function's fetch 4449 * with respect to the caller's accesses to other shared variables. 4450 */ 4451 struct task_struct *cpu_curr_snapshot(int cpu) 4452 { 4453 struct task_struct *t; 4454 4455 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4456 t = rcu_dereference(cpu_curr(cpu)); 4457 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4458 return t; 4459 } 4460 4461 /** 4462 * wake_up_process - Wake up a specific process 4463 * @p: The process to be woken up. 4464 * 4465 * Attempt to wake up the nominated process and move it to the set of runnable 4466 * processes. 4467 * 4468 * Return: 1 if the process was woken up, 0 if it was already running. 4469 * 4470 * This function executes a full memory barrier before accessing the task state. 4471 */ 4472 int wake_up_process(struct task_struct *p) 4473 { 4474 return try_to_wake_up(p, TASK_NORMAL, 0); 4475 } 4476 EXPORT_SYMBOL(wake_up_process); 4477 4478 int wake_up_state(struct task_struct *p, unsigned int state) 4479 { 4480 return try_to_wake_up(p, state, 0); 4481 } 4482 4483 /* 4484 * Perform scheduler related setup for a newly forked process p. 4485 * p is forked by current. 4486 * 4487 * __sched_fork() is basic setup used by init_idle() too: 4488 */ 4489 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4490 { 4491 p->on_rq = 0; 4492 4493 p->se.on_rq = 0; 4494 p->se.exec_start = 0; 4495 p->se.sum_exec_runtime = 0; 4496 p->se.prev_sum_exec_runtime = 0; 4497 p->se.nr_migrations = 0; 4498 p->se.vruntime = 0; 4499 p->se.vlag = 0; 4500 p->se.slice = sysctl_sched_base_slice; 4501 INIT_LIST_HEAD(&p->se.group_node); 4502 4503 #ifdef CONFIG_FAIR_GROUP_SCHED 4504 p->se.cfs_rq = NULL; 4505 #endif 4506 4507 #ifdef CONFIG_SCHEDSTATS 4508 /* Even if schedstat is disabled, there should not be garbage */ 4509 memset(&p->stats, 0, sizeof(p->stats)); 4510 #endif 4511 4512 RB_CLEAR_NODE(&p->dl.rb_node); 4513 init_dl_task_timer(&p->dl); 4514 init_dl_inactive_task_timer(&p->dl); 4515 __dl_clear_params(p); 4516 4517 INIT_LIST_HEAD(&p->rt.run_list); 4518 p->rt.timeout = 0; 4519 p->rt.time_slice = sched_rr_timeslice; 4520 p->rt.on_rq = 0; 4521 p->rt.on_list = 0; 4522 4523 #ifdef CONFIG_PREEMPT_NOTIFIERS 4524 INIT_HLIST_HEAD(&p->preempt_notifiers); 4525 #endif 4526 4527 #ifdef CONFIG_COMPACTION 4528 p->capture_control = NULL; 4529 #endif 4530 init_numa_balancing(clone_flags, p); 4531 #ifdef CONFIG_SMP 4532 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4533 p->migration_pending = NULL; 4534 #endif 4535 init_sched_mm_cid(p); 4536 } 4537 4538 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4539 4540 #ifdef CONFIG_NUMA_BALANCING 4541 4542 int sysctl_numa_balancing_mode; 4543 4544 static void __set_numabalancing_state(bool enabled) 4545 { 4546 if (enabled) 4547 static_branch_enable(&sched_numa_balancing); 4548 else 4549 static_branch_disable(&sched_numa_balancing); 4550 } 4551 4552 void set_numabalancing_state(bool enabled) 4553 { 4554 if (enabled) 4555 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4556 else 4557 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4558 __set_numabalancing_state(enabled); 4559 } 4560 4561 #ifdef CONFIG_PROC_SYSCTL 4562 static void reset_memory_tiering(void) 4563 { 4564 struct pglist_data *pgdat; 4565 4566 for_each_online_pgdat(pgdat) { 4567 pgdat->nbp_threshold = 0; 4568 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4569 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4570 } 4571 } 4572 4573 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4574 void *buffer, size_t *lenp, loff_t *ppos) 4575 { 4576 struct ctl_table t; 4577 int err; 4578 int state = sysctl_numa_balancing_mode; 4579 4580 if (write && !capable(CAP_SYS_ADMIN)) 4581 return -EPERM; 4582 4583 t = *table; 4584 t.data = &state; 4585 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4586 if (err < 0) 4587 return err; 4588 if (write) { 4589 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4590 (state & NUMA_BALANCING_MEMORY_TIERING)) 4591 reset_memory_tiering(); 4592 sysctl_numa_balancing_mode = state; 4593 __set_numabalancing_state(state); 4594 } 4595 return err; 4596 } 4597 #endif 4598 #endif 4599 4600 #ifdef CONFIG_SCHEDSTATS 4601 4602 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4603 4604 static void set_schedstats(bool enabled) 4605 { 4606 if (enabled) 4607 static_branch_enable(&sched_schedstats); 4608 else 4609 static_branch_disable(&sched_schedstats); 4610 } 4611 4612 void force_schedstat_enabled(void) 4613 { 4614 if (!schedstat_enabled()) { 4615 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4616 static_branch_enable(&sched_schedstats); 4617 } 4618 } 4619 4620 static int __init setup_schedstats(char *str) 4621 { 4622 int ret = 0; 4623 if (!str) 4624 goto out; 4625 4626 if (!strcmp(str, "enable")) { 4627 set_schedstats(true); 4628 ret = 1; 4629 } else if (!strcmp(str, "disable")) { 4630 set_schedstats(false); 4631 ret = 1; 4632 } 4633 out: 4634 if (!ret) 4635 pr_warn("Unable to parse schedstats=\n"); 4636 4637 return ret; 4638 } 4639 __setup("schedstats=", setup_schedstats); 4640 4641 #ifdef CONFIG_PROC_SYSCTL 4642 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4643 size_t *lenp, loff_t *ppos) 4644 { 4645 struct ctl_table t; 4646 int err; 4647 int state = static_branch_likely(&sched_schedstats); 4648 4649 if (write && !capable(CAP_SYS_ADMIN)) 4650 return -EPERM; 4651 4652 t = *table; 4653 t.data = &state; 4654 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4655 if (err < 0) 4656 return err; 4657 if (write) 4658 set_schedstats(state); 4659 return err; 4660 } 4661 #endif /* CONFIG_PROC_SYSCTL */ 4662 #endif /* CONFIG_SCHEDSTATS */ 4663 4664 #ifdef CONFIG_SYSCTL 4665 static struct ctl_table sched_core_sysctls[] = { 4666 #ifdef CONFIG_SCHEDSTATS 4667 { 4668 .procname = "sched_schedstats", 4669 .data = NULL, 4670 .maxlen = sizeof(unsigned int), 4671 .mode = 0644, 4672 .proc_handler = sysctl_schedstats, 4673 .extra1 = SYSCTL_ZERO, 4674 .extra2 = SYSCTL_ONE, 4675 }, 4676 #endif /* CONFIG_SCHEDSTATS */ 4677 #ifdef CONFIG_UCLAMP_TASK 4678 { 4679 .procname = "sched_util_clamp_min", 4680 .data = &sysctl_sched_uclamp_util_min, 4681 .maxlen = sizeof(unsigned int), 4682 .mode = 0644, 4683 .proc_handler = sysctl_sched_uclamp_handler, 4684 }, 4685 { 4686 .procname = "sched_util_clamp_max", 4687 .data = &sysctl_sched_uclamp_util_max, 4688 .maxlen = sizeof(unsigned int), 4689 .mode = 0644, 4690 .proc_handler = sysctl_sched_uclamp_handler, 4691 }, 4692 { 4693 .procname = "sched_util_clamp_min_rt_default", 4694 .data = &sysctl_sched_uclamp_util_min_rt_default, 4695 .maxlen = sizeof(unsigned int), 4696 .mode = 0644, 4697 .proc_handler = sysctl_sched_uclamp_handler, 4698 }, 4699 #endif /* CONFIG_UCLAMP_TASK */ 4700 #ifdef CONFIG_NUMA_BALANCING 4701 { 4702 .procname = "numa_balancing", 4703 .data = NULL, /* filled in by handler */ 4704 .maxlen = sizeof(unsigned int), 4705 .mode = 0644, 4706 .proc_handler = sysctl_numa_balancing, 4707 .extra1 = SYSCTL_ZERO, 4708 .extra2 = SYSCTL_FOUR, 4709 }, 4710 #endif /* CONFIG_NUMA_BALANCING */ 4711 {} 4712 }; 4713 static int __init sched_core_sysctl_init(void) 4714 { 4715 register_sysctl_init("kernel", sched_core_sysctls); 4716 return 0; 4717 } 4718 late_initcall(sched_core_sysctl_init); 4719 #endif /* CONFIG_SYSCTL */ 4720 4721 /* 4722 * fork()/clone()-time setup: 4723 */ 4724 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4725 { 4726 __sched_fork(clone_flags, p); 4727 /* 4728 * We mark the process as NEW here. This guarantees that 4729 * nobody will actually run it, and a signal or other external 4730 * event cannot wake it up and insert it on the runqueue either. 4731 */ 4732 p->__state = TASK_NEW; 4733 4734 /* 4735 * Make sure we do not leak PI boosting priority to the child. 4736 */ 4737 p->prio = current->normal_prio; 4738 4739 uclamp_fork(p); 4740 4741 /* 4742 * Revert to default priority/policy on fork if requested. 4743 */ 4744 if (unlikely(p->sched_reset_on_fork)) { 4745 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4746 p->policy = SCHED_NORMAL; 4747 p->static_prio = NICE_TO_PRIO(0); 4748 p->rt_priority = 0; 4749 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4750 p->static_prio = NICE_TO_PRIO(0); 4751 4752 p->prio = p->normal_prio = p->static_prio; 4753 set_load_weight(p, false); 4754 4755 /* 4756 * We don't need the reset flag anymore after the fork. It has 4757 * fulfilled its duty: 4758 */ 4759 p->sched_reset_on_fork = 0; 4760 } 4761 4762 if (dl_prio(p->prio)) 4763 return -EAGAIN; 4764 else if (rt_prio(p->prio)) 4765 p->sched_class = &rt_sched_class; 4766 else 4767 p->sched_class = &fair_sched_class; 4768 4769 init_entity_runnable_average(&p->se); 4770 4771 4772 #ifdef CONFIG_SCHED_INFO 4773 if (likely(sched_info_on())) 4774 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4775 #endif 4776 #if defined(CONFIG_SMP) 4777 p->on_cpu = 0; 4778 #endif 4779 init_task_preempt_count(p); 4780 #ifdef CONFIG_SMP 4781 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4782 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4783 #endif 4784 return 0; 4785 } 4786 4787 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4788 { 4789 unsigned long flags; 4790 4791 /* 4792 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4793 * required yet, but lockdep gets upset if rules are violated. 4794 */ 4795 raw_spin_lock_irqsave(&p->pi_lock, flags); 4796 #ifdef CONFIG_CGROUP_SCHED 4797 if (1) { 4798 struct task_group *tg; 4799 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4800 struct task_group, css); 4801 tg = autogroup_task_group(p, tg); 4802 p->sched_task_group = tg; 4803 } 4804 #endif 4805 rseq_migrate(p); 4806 /* 4807 * We're setting the CPU for the first time, we don't migrate, 4808 * so use __set_task_cpu(). 4809 */ 4810 __set_task_cpu(p, smp_processor_id()); 4811 if (p->sched_class->task_fork) 4812 p->sched_class->task_fork(p); 4813 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4814 } 4815 4816 void sched_post_fork(struct task_struct *p) 4817 { 4818 uclamp_post_fork(p); 4819 } 4820 4821 unsigned long to_ratio(u64 period, u64 runtime) 4822 { 4823 if (runtime == RUNTIME_INF) 4824 return BW_UNIT; 4825 4826 /* 4827 * Doing this here saves a lot of checks in all 4828 * the calling paths, and returning zero seems 4829 * safe for them anyway. 4830 */ 4831 if (period == 0) 4832 return 0; 4833 4834 return div64_u64(runtime << BW_SHIFT, period); 4835 } 4836 4837 /* 4838 * wake_up_new_task - wake up a newly created task for the first time. 4839 * 4840 * This function will do some initial scheduler statistics housekeeping 4841 * that must be done for every newly created context, then puts the task 4842 * on the runqueue and wakes it. 4843 */ 4844 void wake_up_new_task(struct task_struct *p) 4845 { 4846 struct rq_flags rf; 4847 struct rq *rq; 4848 4849 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4850 WRITE_ONCE(p->__state, TASK_RUNNING); 4851 #ifdef CONFIG_SMP 4852 /* 4853 * Fork balancing, do it here and not earlier because: 4854 * - cpus_ptr can change in the fork path 4855 * - any previously selected CPU might disappear through hotplug 4856 * 4857 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4858 * as we're not fully set-up yet. 4859 */ 4860 p->recent_used_cpu = task_cpu(p); 4861 rseq_migrate(p); 4862 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4863 #endif 4864 rq = __task_rq_lock(p, &rf); 4865 update_rq_clock(rq); 4866 post_init_entity_util_avg(p); 4867 4868 activate_task(rq, p, ENQUEUE_NOCLOCK); 4869 trace_sched_wakeup_new(p); 4870 wakeup_preempt(rq, p, WF_FORK); 4871 #ifdef CONFIG_SMP 4872 if (p->sched_class->task_woken) { 4873 /* 4874 * Nothing relies on rq->lock after this, so it's fine to 4875 * drop it. 4876 */ 4877 rq_unpin_lock(rq, &rf); 4878 p->sched_class->task_woken(rq, p); 4879 rq_repin_lock(rq, &rf); 4880 } 4881 #endif 4882 task_rq_unlock(rq, p, &rf); 4883 } 4884 4885 #ifdef CONFIG_PREEMPT_NOTIFIERS 4886 4887 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4888 4889 void preempt_notifier_inc(void) 4890 { 4891 static_branch_inc(&preempt_notifier_key); 4892 } 4893 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4894 4895 void preempt_notifier_dec(void) 4896 { 4897 static_branch_dec(&preempt_notifier_key); 4898 } 4899 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4900 4901 /** 4902 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4903 * @notifier: notifier struct to register 4904 */ 4905 void preempt_notifier_register(struct preempt_notifier *notifier) 4906 { 4907 if (!static_branch_unlikely(&preempt_notifier_key)) 4908 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4909 4910 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4911 } 4912 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4913 4914 /** 4915 * preempt_notifier_unregister - no longer interested in preemption notifications 4916 * @notifier: notifier struct to unregister 4917 * 4918 * This is *not* safe to call from within a preemption notifier. 4919 */ 4920 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4921 { 4922 hlist_del(¬ifier->link); 4923 } 4924 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4925 4926 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4927 { 4928 struct preempt_notifier *notifier; 4929 4930 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4931 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4932 } 4933 4934 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4935 { 4936 if (static_branch_unlikely(&preempt_notifier_key)) 4937 __fire_sched_in_preempt_notifiers(curr); 4938 } 4939 4940 static void 4941 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4942 struct task_struct *next) 4943 { 4944 struct preempt_notifier *notifier; 4945 4946 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4947 notifier->ops->sched_out(notifier, next); 4948 } 4949 4950 static __always_inline void 4951 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4952 struct task_struct *next) 4953 { 4954 if (static_branch_unlikely(&preempt_notifier_key)) 4955 __fire_sched_out_preempt_notifiers(curr, next); 4956 } 4957 4958 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4959 4960 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4961 { 4962 } 4963 4964 static inline void 4965 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4966 struct task_struct *next) 4967 { 4968 } 4969 4970 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4971 4972 static inline void prepare_task(struct task_struct *next) 4973 { 4974 #ifdef CONFIG_SMP 4975 /* 4976 * Claim the task as running, we do this before switching to it 4977 * such that any running task will have this set. 4978 * 4979 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4980 * its ordering comment. 4981 */ 4982 WRITE_ONCE(next->on_cpu, 1); 4983 #endif 4984 } 4985 4986 static inline void finish_task(struct task_struct *prev) 4987 { 4988 #ifdef CONFIG_SMP 4989 /* 4990 * This must be the very last reference to @prev from this CPU. After 4991 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4992 * must ensure this doesn't happen until the switch is completely 4993 * finished. 4994 * 4995 * In particular, the load of prev->state in finish_task_switch() must 4996 * happen before this. 4997 * 4998 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4999 */ 5000 smp_store_release(&prev->on_cpu, 0); 5001 #endif 5002 } 5003 5004 #ifdef CONFIG_SMP 5005 5006 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5007 { 5008 void (*func)(struct rq *rq); 5009 struct balance_callback *next; 5010 5011 lockdep_assert_rq_held(rq); 5012 5013 while (head) { 5014 func = (void (*)(struct rq *))head->func; 5015 next = head->next; 5016 head->next = NULL; 5017 head = next; 5018 5019 func(rq); 5020 } 5021 } 5022 5023 static void balance_push(struct rq *rq); 5024 5025 /* 5026 * balance_push_callback is a right abuse of the callback interface and plays 5027 * by significantly different rules. 5028 * 5029 * Where the normal balance_callback's purpose is to be ran in the same context 5030 * that queued it (only later, when it's safe to drop rq->lock again), 5031 * balance_push_callback is specifically targeted at __schedule(). 5032 * 5033 * This abuse is tolerated because it places all the unlikely/odd cases behind 5034 * a single test, namely: rq->balance_callback == NULL. 5035 */ 5036 struct balance_callback balance_push_callback = { 5037 .next = NULL, 5038 .func = balance_push, 5039 }; 5040 5041 static inline struct balance_callback * 5042 __splice_balance_callbacks(struct rq *rq, bool split) 5043 { 5044 struct balance_callback *head = rq->balance_callback; 5045 5046 if (likely(!head)) 5047 return NULL; 5048 5049 lockdep_assert_rq_held(rq); 5050 /* 5051 * Must not take balance_push_callback off the list when 5052 * splice_balance_callbacks() and balance_callbacks() are not 5053 * in the same rq->lock section. 5054 * 5055 * In that case it would be possible for __schedule() to interleave 5056 * and observe the list empty. 5057 */ 5058 if (split && head == &balance_push_callback) 5059 head = NULL; 5060 else 5061 rq->balance_callback = NULL; 5062 5063 return head; 5064 } 5065 5066 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5067 { 5068 return __splice_balance_callbacks(rq, true); 5069 } 5070 5071 static void __balance_callbacks(struct rq *rq) 5072 { 5073 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5074 } 5075 5076 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5077 { 5078 unsigned long flags; 5079 5080 if (unlikely(head)) { 5081 raw_spin_rq_lock_irqsave(rq, flags); 5082 do_balance_callbacks(rq, head); 5083 raw_spin_rq_unlock_irqrestore(rq, flags); 5084 } 5085 } 5086 5087 #else 5088 5089 static inline void __balance_callbacks(struct rq *rq) 5090 { 5091 } 5092 5093 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 5094 { 5095 return NULL; 5096 } 5097 5098 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 5099 { 5100 } 5101 5102 #endif 5103 5104 static inline void 5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5106 { 5107 /* 5108 * Since the runqueue lock will be released by the next 5109 * task (which is an invalid locking op but in the case 5110 * of the scheduler it's an obvious special-case), so we 5111 * do an early lockdep release here: 5112 */ 5113 rq_unpin_lock(rq, rf); 5114 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5115 #ifdef CONFIG_DEBUG_SPINLOCK 5116 /* this is a valid case when another task releases the spinlock */ 5117 rq_lockp(rq)->owner = next; 5118 #endif 5119 } 5120 5121 static inline void finish_lock_switch(struct rq *rq) 5122 { 5123 /* 5124 * If we are tracking spinlock dependencies then we have to 5125 * fix up the runqueue lock - which gets 'carried over' from 5126 * prev into current: 5127 */ 5128 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5129 __balance_callbacks(rq); 5130 raw_spin_rq_unlock_irq(rq); 5131 } 5132 5133 /* 5134 * NOP if the arch has not defined these: 5135 */ 5136 5137 #ifndef prepare_arch_switch 5138 # define prepare_arch_switch(next) do { } while (0) 5139 #endif 5140 5141 #ifndef finish_arch_post_lock_switch 5142 # define finish_arch_post_lock_switch() do { } while (0) 5143 #endif 5144 5145 static inline void kmap_local_sched_out(void) 5146 { 5147 #ifdef CONFIG_KMAP_LOCAL 5148 if (unlikely(current->kmap_ctrl.idx)) 5149 __kmap_local_sched_out(); 5150 #endif 5151 } 5152 5153 static inline void kmap_local_sched_in(void) 5154 { 5155 #ifdef CONFIG_KMAP_LOCAL 5156 if (unlikely(current->kmap_ctrl.idx)) 5157 __kmap_local_sched_in(); 5158 #endif 5159 } 5160 5161 /** 5162 * prepare_task_switch - prepare to switch tasks 5163 * @rq: the runqueue preparing to switch 5164 * @prev: the current task that is being switched out 5165 * @next: the task we are going to switch to. 5166 * 5167 * This is called with the rq lock held and interrupts off. It must 5168 * be paired with a subsequent finish_task_switch after the context 5169 * switch. 5170 * 5171 * prepare_task_switch sets up locking and calls architecture specific 5172 * hooks. 5173 */ 5174 static inline void 5175 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5176 struct task_struct *next) 5177 { 5178 kcov_prepare_switch(prev); 5179 sched_info_switch(rq, prev, next); 5180 perf_event_task_sched_out(prev, next); 5181 rseq_preempt(prev); 5182 fire_sched_out_preempt_notifiers(prev, next); 5183 kmap_local_sched_out(); 5184 prepare_task(next); 5185 prepare_arch_switch(next); 5186 } 5187 5188 /** 5189 * finish_task_switch - clean up after a task-switch 5190 * @prev: the thread we just switched away from. 5191 * 5192 * finish_task_switch must be called after the context switch, paired 5193 * with a prepare_task_switch call before the context switch. 5194 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5195 * and do any other architecture-specific cleanup actions. 5196 * 5197 * Note that we may have delayed dropping an mm in context_switch(). If 5198 * so, we finish that here outside of the runqueue lock. (Doing it 5199 * with the lock held can cause deadlocks; see schedule() for 5200 * details.) 5201 * 5202 * The context switch have flipped the stack from under us and restored the 5203 * local variables which were saved when this task called schedule() in the 5204 * past. prev == current is still correct but we need to recalculate this_rq 5205 * because prev may have moved to another CPU. 5206 */ 5207 static struct rq *finish_task_switch(struct task_struct *prev) 5208 __releases(rq->lock) 5209 { 5210 struct rq *rq = this_rq(); 5211 struct mm_struct *mm = rq->prev_mm; 5212 unsigned int prev_state; 5213 5214 /* 5215 * The previous task will have left us with a preempt_count of 2 5216 * because it left us after: 5217 * 5218 * schedule() 5219 * preempt_disable(); // 1 5220 * __schedule() 5221 * raw_spin_lock_irq(&rq->lock) // 2 5222 * 5223 * Also, see FORK_PREEMPT_COUNT. 5224 */ 5225 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5226 "corrupted preempt_count: %s/%d/0x%x\n", 5227 current->comm, current->pid, preempt_count())) 5228 preempt_count_set(FORK_PREEMPT_COUNT); 5229 5230 rq->prev_mm = NULL; 5231 5232 /* 5233 * A task struct has one reference for the use as "current". 5234 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5235 * schedule one last time. The schedule call will never return, and 5236 * the scheduled task must drop that reference. 5237 * 5238 * We must observe prev->state before clearing prev->on_cpu (in 5239 * finish_task), otherwise a concurrent wakeup can get prev 5240 * running on another CPU and we could rave with its RUNNING -> DEAD 5241 * transition, resulting in a double drop. 5242 */ 5243 prev_state = READ_ONCE(prev->__state); 5244 vtime_task_switch(prev); 5245 perf_event_task_sched_in(prev, current); 5246 finish_task(prev); 5247 tick_nohz_task_switch(); 5248 finish_lock_switch(rq); 5249 finish_arch_post_lock_switch(); 5250 kcov_finish_switch(current); 5251 /* 5252 * kmap_local_sched_out() is invoked with rq::lock held and 5253 * interrupts disabled. There is no requirement for that, but the 5254 * sched out code does not have an interrupt enabled section. 5255 * Restoring the maps on sched in does not require interrupts being 5256 * disabled either. 5257 */ 5258 kmap_local_sched_in(); 5259 5260 fire_sched_in_preempt_notifiers(current); 5261 /* 5262 * When switching through a kernel thread, the loop in 5263 * membarrier_{private,global}_expedited() may have observed that 5264 * kernel thread and not issued an IPI. It is therefore possible to 5265 * schedule between user->kernel->user threads without passing though 5266 * switch_mm(). Membarrier requires a barrier after storing to 5267 * rq->curr, before returning to userspace, so provide them here: 5268 * 5269 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5270 * provided by mmdrop_lazy_tlb(), 5271 * - a sync_core for SYNC_CORE. 5272 */ 5273 if (mm) { 5274 membarrier_mm_sync_core_before_usermode(mm); 5275 mmdrop_lazy_tlb_sched(mm); 5276 } 5277 5278 if (unlikely(prev_state == TASK_DEAD)) { 5279 if (prev->sched_class->task_dead) 5280 prev->sched_class->task_dead(prev); 5281 5282 /* Task is done with its stack. */ 5283 put_task_stack(prev); 5284 5285 put_task_struct_rcu_user(prev); 5286 } 5287 5288 return rq; 5289 } 5290 5291 /** 5292 * schedule_tail - first thing a freshly forked thread must call. 5293 * @prev: the thread we just switched away from. 5294 */ 5295 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5296 __releases(rq->lock) 5297 { 5298 /* 5299 * New tasks start with FORK_PREEMPT_COUNT, see there and 5300 * finish_task_switch() for details. 5301 * 5302 * finish_task_switch() will drop rq->lock() and lower preempt_count 5303 * and the preempt_enable() will end up enabling preemption (on 5304 * PREEMPT_COUNT kernels). 5305 */ 5306 5307 finish_task_switch(prev); 5308 preempt_enable(); 5309 5310 if (current->set_child_tid) 5311 put_user(task_pid_vnr(current), current->set_child_tid); 5312 5313 calculate_sigpending(); 5314 } 5315 5316 /* 5317 * context_switch - switch to the new MM and the new thread's register state. 5318 */ 5319 static __always_inline struct rq * 5320 context_switch(struct rq *rq, struct task_struct *prev, 5321 struct task_struct *next, struct rq_flags *rf) 5322 { 5323 prepare_task_switch(rq, prev, next); 5324 5325 /* 5326 * For paravirt, this is coupled with an exit in switch_to to 5327 * combine the page table reload and the switch backend into 5328 * one hypercall. 5329 */ 5330 arch_start_context_switch(prev); 5331 5332 /* 5333 * kernel -> kernel lazy + transfer active 5334 * user -> kernel lazy + mmgrab_lazy_tlb() active 5335 * 5336 * kernel -> user switch + mmdrop_lazy_tlb() active 5337 * user -> user switch 5338 * 5339 * switch_mm_cid() needs to be updated if the barriers provided 5340 * by context_switch() are modified. 5341 */ 5342 if (!next->mm) { // to kernel 5343 enter_lazy_tlb(prev->active_mm, next); 5344 5345 next->active_mm = prev->active_mm; 5346 if (prev->mm) // from user 5347 mmgrab_lazy_tlb(prev->active_mm); 5348 else 5349 prev->active_mm = NULL; 5350 } else { // to user 5351 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5352 /* 5353 * sys_membarrier() requires an smp_mb() between setting 5354 * rq->curr / membarrier_switch_mm() and returning to userspace. 5355 * 5356 * The below provides this either through switch_mm(), or in 5357 * case 'prev->active_mm == next->mm' through 5358 * finish_task_switch()'s mmdrop(). 5359 */ 5360 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5361 lru_gen_use_mm(next->mm); 5362 5363 if (!prev->mm) { // from kernel 5364 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5365 rq->prev_mm = prev->active_mm; 5366 prev->active_mm = NULL; 5367 } 5368 } 5369 5370 /* switch_mm_cid() requires the memory barriers above. */ 5371 switch_mm_cid(rq, prev, next); 5372 5373 prepare_lock_switch(rq, next, rf); 5374 5375 /* Here we just switch the register state and the stack. */ 5376 switch_to(prev, next, prev); 5377 barrier(); 5378 5379 return finish_task_switch(prev); 5380 } 5381 5382 /* 5383 * nr_running and nr_context_switches: 5384 * 5385 * externally visible scheduler statistics: current number of runnable 5386 * threads, total number of context switches performed since bootup. 5387 */ 5388 unsigned int nr_running(void) 5389 { 5390 unsigned int i, sum = 0; 5391 5392 for_each_online_cpu(i) 5393 sum += cpu_rq(i)->nr_running; 5394 5395 return sum; 5396 } 5397 5398 /* 5399 * Check if only the current task is running on the CPU. 5400 * 5401 * Caution: this function does not check that the caller has disabled 5402 * preemption, thus the result might have a time-of-check-to-time-of-use 5403 * race. The caller is responsible to use it correctly, for example: 5404 * 5405 * - from a non-preemptible section (of course) 5406 * 5407 * - from a thread that is bound to a single CPU 5408 * 5409 * - in a loop with very short iterations (e.g. a polling loop) 5410 */ 5411 bool single_task_running(void) 5412 { 5413 return raw_rq()->nr_running == 1; 5414 } 5415 EXPORT_SYMBOL(single_task_running); 5416 5417 unsigned long long nr_context_switches_cpu(int cpu) 5418 { 5419 return cpu_rq(cpu)->nr_switches; 5420 } 5421 5422 unsigned long long nr_context_switches(void) 5423 { 5424 int i; 5425 unsigned long long sum = 0; 5426 5427 for_each_possible_cpu(i) 5428 sum += cpu_rq(i)->nr_switches; 5429 5430 return sum; 5431 } 5432 5433 /* 5434 * Consumers of these two interfaces, like for example the cpuidle menu 5435 * governor, are using nonsensical data. Preferring shallow idle state selection 5436 * for a CPU that has IO-wait which might not even end up running the task when 5437 * it does become runnable. 5438 */ 5439 5440 unsigned int nr_iowait_cpu(int cpu) 5441 { 5442 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5443 } 5444 5445 /* 5446 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5447 * 5448 * The idea behind IO-wait account is to account the idle time that we could 5449 * have spend running if it were not for IO. That is, if we were to improve the 5450 * storage performance, we'd have a proportional reduction in IO-wait time. 5451 * 5452 * This all works nicely on UP, where, when a task blocks on IO, we account 5453 * idle time as IO-wait, because if the storage were faster, it could've been 5454 * running and we'd not be idle. 5455 * 5456 * This has been extended to SMP, by doing the same for each CPU. This however 5457 * is broken. 5458 * 5459 * Imagine for instance the case where two tasks block on one CPU, only the one 5460 * CPU will have IO-wait accounted, while the other has regular idle. Even 5461 * though, if the storage were faster, both could've ran at the same time, 5462 * utilising both CPUs. 5463 * 5464 * This means, that when looking globally, the current IO-wait accounting on 5465 * SMP is a lower bound, by reason of under accounting. 5466 * 5467 * Worse, since the numbers are provided per CPU, they are sometimes 5468 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5469 * associated with any one particular CPU, it can wake to another CPU than it 5470 * blocked on. This means the per CPU IO-wait number is meaningless. 5471 * 5472 * Task CPU affinities can make all that even more 'interesting'. 5473 */ 5474 5475 unsigned int nr_iowait(void) 5476 { 5477 unsigned int i, sum = 0; 5478 5479 for_each_possible_cpu(i) 5480 sum += nr_iowait_cpu(i); 5481 5482 return sum; 5483 } 5484 5485 #ifdef CONFIG_SMP 5486 5487 /* 5488 * sched_exec - execve() is a valuable balancing opportunity, because at 5489 * this point the task has the smallest effective memory and cache footprint. 5490 */ 5491 void sched_exec(void) 5492 { 5493 struct task_struct *p = current; 5494 struct migration_arg arg; 5495 int dest_cpu; 5496 5497 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5498 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5499 if (dest_cpu == smp_processor_id()) 5500 return; 5501 5502 if (unlikely(!cpu_active(dest_cpu))) 5503 return; 5504 5505 arg = (struct migration_arg){ p, dest_cpu }; 5506 } 5507 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5508 } 5509 5510 #endif 5511 5512 DEFINE_PER_CPU(struct kernel_stat, kstat); 5513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5514 5515 EXPORT_PER_CPU_SYMBOL(kstat); 5516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5517 5518 /* 5519 * The function fair_sched_class.update_curr accesses the struct curr 5520 * and its field curr->exec_start; when called from task_sched_runtime(), 5521 * we observe a high rate of cache misses in practice. 5522 * Prefetching this data results in improved performance. 5523 */ 5524 static inline void prefetch_curr_exec_start(struct task_struct *p) 5525 { 5526 #ifdef CONFIG_FAIR_GROUP_SCHED 5527 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5528 #else 5529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5530 #endif 5531 prefetch(curr); 5532 prefetch(&curr->exec_start); 5533 } 5534 5535 /* 5536 * Return accounted runtime for the task. 5537 * In case the task is currently running, return the runtime plus current's 5538 * pending runtime that have not been accounted yet. 5539 */ 5540 unsigned long long task_sched_runtime(struct task_struct *p) 5541 { 5542 struct rq_flags rf; 5543 struct rq *rq; 5544 u64 ns; 5545 5546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5547 /* 5548 * 64-bit doesn't need locks to atomically read a 64-bit value. 5549 * So we have a optimization chance when the task's delta_exec is 0. 5550 * Reading ->on_cpu is racy, but this is ok. 5551 * 5552 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5553 * If we race with it entering CPU, unaccounted time is 0. This is 5554 * indistinguishable from the read occurring a few cycles earlier. 5555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5556 * been accounted, so we're correct here as well. 5557 */ 5558 if (!p->on_cpu || !task_on_rq_queued(p)) 5559 return p->se.sum_exec_runtime; 5560 #endif 5561 5562 rq = task_rq_lock(p, &rf); 5563 /* 5564 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5565 * project cycles that may never be accounted to this 5566 * thread, breaking clock_gettime(). 5567 */ 5568 if (task_current(rq, p) && task_on_rq_queued(p)) { 5569 prefetch_curr_exec_start(p); 5570 update_rq_clock(rq); 5571 p->sched_class->update_curr(rq); 5572 } 5573 ns = p->se.sum_exec_runtime; 5574 task_rq_unlock(rq, p, &rf); 5575 5576 return ns; 5577 } 5578 5579 #ifdef CONFIG_SCHED_DEBUG 5580 static u64 cpu_resched_latency(struct rq *rq) 5581 { 5582 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5583 u64 resched_latency, now = rq_clock(rq); 5584 static bool warned_once; 5585 5586 if (sysctl_resched_latency_warn_once && warned_once) 5587 return 0; 5588 5589 if (!need_resched() || !latency_warn_ms) 5590 return 0; 5591 5592 if (system_state == SYSTEM_BOOTING) 5593 return 0; 5594 5595 if (!rq->last_seen_need_resched_ns) { 5596 rq->last_seen_need_resched_ns = now; 5597 rq->ticks_without_resched = 0; 5598 return 0; 5599 } 5600 5601 rq->ticks_without_resched++; 5602 resched_latency = now - rq->last_seen_need_resched_ns; 5603 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5604 return 0; 5605 5606 warned_once = true; 5607 5608 return resched_latency; 5609 } 5610 5611 static int __init setup_resched_latency_warn_ms(char *str) 5612 { 5613 long val; 5614 5615 if ((kstrtol(str, 0, &val))) { 5616 pr_warn("Unable to set resched_latency_warn_ms\n"); 5617 return 1; 5618 } 5619 5620 sysctl_resched_latency_warn_ms = val; 5621 return 1; 5622 } 5623 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5624 #else 5625 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5626 #endif /* CONFIG_SCHED_DEBUG */ 5627 5628 /* 5629 * This function gets called by the timer code, with HZ frequency. 5630 * We call it with interrupts disabled. 5631 */ 5632 void scheduler_tick(void) 5633 { 5634 int cpu = smp_processor_id(); 5635 struct rq *rq = cpu_rq(cpu); 5636 struct task_struct *curr = rq->curr; 5637 struct rq_flags rf; 5638 unsigned long thermal_pressure; 5639 u64 resched_latency; 5640 5641 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5642 arch_scale_freq_tick(); 5643 5644 sched_clock_tick(); 5645 5646 rq_lock(rq, &rf); 5647 5648 update_rq_clock(rq); 5649 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5650 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5651 curr->sched_class->task_tick(rq, curr, 0); 5652 if (sched_feat(LATENCY_WARN)) 5653 resched_latency = cpu_resched_latency(rq); 5654 calc_global_load_tick(rq); 5655 sched_core_tick(rq); 5656 task_tick_mm_cid(rq, curr); 5657 5658 rq_unlock(rq, &rf); 5659 5660 if (sched_feat(LATENCY_WARN) && resched_latency) 5661 resched_latency_warn(cpu, resched_latency); 5662 5663 perf_event_task_tick(); 5664 5665 if (curr->flags & PF_WQ_WORKER) 5666 wq_worker_tick(curr); 5667 5668 #ifdef CONFIG_SMP 5669 rq->idle_balance = idle_cpu(cpu); 5670 trigger_load_balance(rq); 5671 #endif 5672 } 5673 5674 #ifdef CONFIG_NO_HZ_FULL 5675 5676 struct tick_work { 5677 int cpu; 5678 atomic_t state; 5679 struct delayed_work work; 5680 }; 5681 /* Values for ->state, see diagram below. */ 5682 #define TICK_SCHED_REMOTE_OFFLINE 0 5683 #define TICK_SCHED_REMOTE_OFFLINING 1 5684 #define TICK_SCHED_REMOTE_RUNNING 2 5685 5686 /* 5687 * State diagram for ->state: 5688 * 5689 * 5690 * TICK_SCHED_REMOTE_OFFLINE 5691 * | ^ 5692 * | | 5693 * | | sched_tick_remote() 5694 * | | 5695 * | | 5696 * +--TICK_SCHED_REMOTE_OFFLINING 5697 * | ^ 5698 * | | 5699 * sched_tick_start() | | sched_tick_stop() 5700 * | | 5701 * V | 5702 * TICK_SCHED_REMOTE_RUNNING 5703 * 5704 * 5705 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5706 * and sched_tick_start() are happy to leave the state in RUNNING. 5707 */ 5708 5709 static struct tick_work __percpu *tick_work_cpu; 5710 5711 static void sched_tick_remote(struct work_struct *work) 5712 { 5713 struct delayed_work *dwork = to_delayed_work(work); 5714 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5715 int cpu = twork->cpu; 5716 struct rq *rq = cpu_rq(cpu); 5717 int os; 5718 5719 /* 5720 * Handle the tick only if it appears the remote CPU is running in full 5721 * dynticks mode. The check is racy by nature, but missing a tick or 5722 * having one too much is no big deal because the scheduler tick updates 5723 * statistics and checks timeslices in a time-independent way, regardless 5724 * of when exactly it is running. 5725 */ 5726 if (tick_nohz_tick_stopped_cpu(cpu)) { 5727 guard(rq_lock_irq)(rq); 5728 struct task_struct *curr = rq->curr; 5729 5730 if (cpu_online(cpu)) { 5731 update_rq_clock(rq); 5732 5733 if (!is_idle_task(curr)) { 5734 /* 5735 * Make sure the next tick runs within a 5736 * reasonable amount of time. 5737 */ 5738 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5739 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5740 } 5741 curr->sched_class->task_tick(rq, curr, 0); 5742 5743 calc_load_nohz_remote(rq); 5744 } 5745 } 5746 5747 /* 5748 * Run the remote tick once per second (1Hz). This arbitrary 5749 * frequency is large enough to avoid overload but short enough 5750 * to keep scheduler internal stats reasonably up to date. But 5751 * first update state to reflect hotplug activity if required. 5752 */ 5753 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5754 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5755 if (os == TICK_SCHED_REMOTE_RUNNING) 5756 queue_delayed_work(system_unbound_wq, dwork, HZ); 5757 } 5758 5759 static void sched_tick_start(int cpu) 5760 { 5761 int os; 5762 struct tick_work *twork; 5763 5764 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5765 return; 5766 5767 WARN_ON_ONCE(!tick_work_cpu); 5768 5769 twork = per_cpu_ptr(tick_work_cpu, cpu); 5770 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5771 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5772 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5773 twork->cpu = cpu; 5774 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5775 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5776 } 5777 } 5778 5779 #ifdef CONFIG_HOTPLUG_CPU 5780 static void sched_tick_stop(int cpu) 5781 { 5782 struct tick_work *twork; 5783 int os; 5784 5785 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5786 return; 5787 5788 WARN_ON_ONCE(!tick_work_cpu); 5789 5790 twork = per_cpu_ptr(tick_work_cpu, cpu); 5791 /* There cannot be competing actions, but don't rely on stop-machine. */ 5792 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5793 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5794 /* Don't cancel, as this would mess up the state machine. */ 5795 } 5796 #endif /* CONFIG_HOTPLUG_CPU */ 5797 5798 int __init sched_tick_offload_init(void) 5799 { 5800 tick_work_cpu = alloc_percpu(struct tick_work); 5801 BUG_ON(!tick_work_cpu); 5802 return 0; 5803 } 5804 5805 #else /* !CONFIG_NO_HZ_FULL */ 5806 static inline void sched_tick_start(int cpu) { } 5807 static inline void sched_tick_stop(int cpu) { } 5808 #endif 5809 5810 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5811 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5812 /* 5813 * If the value passed in is equal to the current preempt count 5814 * then we just disabled preemption. Start timing the latency. 5815 */ 5816 static inline void preempt_latency_start(int val) 5817 { 5818 if (preempt_count() == val) { 5819 unsigned long ip = get_lock_parent_ip(); 5820 #ifdef CONFIG_DEBUG_PREEMPT 5821 current->preempt_disable_ip = ip; 5822 #endif 5823 trace_preempt_off(CALLER_ADDR0, ip); 5824 } 5825 } 5826 5827 void preempt_count_add(int val) 5828 { 5829 #ifdef CONFIG_DEBUG_PREEMPT 5830 /* 5831 * Underflow? 5832 */ 5833 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5834 return; 5835 #endif 5836 __preempt_count_add(val); 5837 #ifdef CONFIG_DEBUG_PREEMPT 5838 /* 5839 * Spinlock count overflowing soon? 5840 */ 5841 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5842 PREEMPT_MASK - 10); 5843 #endif 5844 preempt_latency_start(val); 5845 } 5846 EXPORT_SYMBOL(preempt_count_add); 5847 NOKPROBE_SYMBOL(preempt_count_add); 5848 5849 /* 5850 * If the value passed in equals to the current preempt count 5851 * then we just enabled preemption. Stop timing the latency. 5852 */ 5853 static inline void preempt_latency_stop(int val) 5854 { 5855 if (preempt_count() == val) 5856 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5857 } 5858 5859 void preempt_count_sub(int val) 5860 { 5861 #ifdef CONFIG_DEBUG_PREEMPT 5862 /* 5863 * Underflow? 5864 */ 5865 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5866 return; 5867 /* 5868 * Is the spinlock portion underflowing? 5869 */ 5870 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5871 !(preempt_count() & PREEMPT_MASK))) 5872 return; 5873 #endif 5874 5875 preempt_latency_stop(val); 5876 __preempt_count_sub(val); 5877 } 5878 EXPORT_SYMBOL(preempt_count_sub); 5879 NOKPROBE_SYMBOL(preempt_count_sub); 5880 5881 #else 5882 static inline void preempt_latency_start(int val) { } 5883 static inline void preempt_latency_stop(int val) { } 5884 #endif 5885 5886 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5887 { 5888 #ifdef CONFIG_DEBUG_PREEMPT 5889 return p->preempt_disable_ip; 5890 #else 5891 return 0; 5892 #endif 5893 } 5894 5895 /* 5896 * Print scheduling while atomic bug: 5897 */ 5898 static noinline void __schedule_bug(struct task_struct *prev) 5899 { 5900 /* Save this before calling printk(), since that will clobber it */ 5901 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5902 5903 if (oops_in_progress) 5904 return; 5905 5906 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5907 prev->comm, prev->pid, preempt_count()); 5908 5909 debug_show_held_locks(prev); 5910 print_modules(); 5911 if (irqs_disabled()) 5912 print_irqtrace_events(prev); 5913 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5914 pr_err("Preemption disabled at:"); 5915 print_ip_sym(KERN_ERR, preempt_disable_ip); 5916 } 5917 check_panic_on_warn("scheduling while atomic"); 5918 5919 dump_stack(); 5920 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5921 } 5922 5923 /* 5924 * Various schedule()-time debugging checks and statistics: 5925 */ 5926 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5927 { 5928 #ifdef CONFIG_SCHED_STACK_END_CHECK 5929 if (task_stack_end_corrupted(prev)) 5930 panic("corrupted stack end detected inside scheduler\n"); 5931 5932 if (task_scs_end_corrupted(prev)) 5933 panic("corrupted shadow stack detected inside scheduler\n"); 5934 #endif 5935 5936 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5937 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5938 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5939 prev->comm, prev->pid, prev->non_block_count); 5940 dump_stack(); 5941 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5942 } 5943 #endif 5944 5945 if (unlikely(in_atomic_preempt_off())) { 5946 __schedule_bug(prev); 5947 preempt_count_set(PREEMPT_DISABLED); 5948 } 5949 rcu_sleep_check(); 5950 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5951 5952 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5953 5954 schedstat_inc(this_rq()->sched_count); 5955 } 5956 5957 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5958 struct rq_flags *rf) 5959 { 5960 #ifdef CONFIG_SMP 5961 const struct sched_class *class; 5962 /* 5963 * We must do the balancing pass before put_prev_task(), such 5964 * that when we release the rq->lock the task is in the same 5965 * state as before we took rq->lock. 5966 * 5967 * We can terminate the balance pass as soon as we know there is 5968 * a runnable task of @class priority or higher. 5969 */ 5970 for_class_range(class, prev->sched_class, &idle_sched_class) { 5971 if (class->balance(rq, prev, rf)) 5972 break; 5973 } 5974 #endif 5975 5976 put_prev_task(rq, prev); 5977 } 5978 5979 /* 5980 * Pick up the highest-prio task: 5981 */ 5982 static inline struct task_struct * 5983 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5984 { 5985 const struct sched_class *class; 5986 struct task_struct *p; 5987 5988 /* 5989 * Optimization: we know that if all tasks are in the fair class we can 5990 * call that function directly, but only if the @prev task wasn't of a 5991 * higher scheduling class, because otherwise those lose the 5992 * opportunity to pull in more work from other CPUs. 5993 */ 5994 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5995 rq->nr_running == rq->cfs.h_nr_running)) { 5996 5997 p = pick_next_task_fair(rq, prev, rf); 5998 if (unlikely(p == RETRY_TASK)) 5999 goto restart; 6000 6001 /* Assume the next prioritized class is idle_sched_class */ 6002 if (!p) { 6003 put_prev_task(rq, prev); 6004 p = pick_next_task_idle(rq); 6005 } 6006 6007 return p; 6008 } 6009 6010 restart: 6011 put_prev_task_balance(rq, prev, rf); 6012 6013 for_each_class(class) { 6014 p = class->pick_next_task(rq); 6015 if (p) 6016 return p; 6017 } 6018 6019 BUG(); /* The idle class should always have a runnable task. */ 6020 } 6021 6022 #ifdef CONFIG_SCHED_CORE 6023 static inline bool is_task_rq_idle(struct task_struct *t) 6024 { 6025 return (task_rq(t)->idle == t); 6026 } 6027 6028 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6029 { 6030 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6031 } 6032 6033 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6034 { 6035 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6036 return true; 6037 6038 return a->core_cookie == b->core_cookie; 6039 } 6040 6041 static inline struct task_struct *pick_task(struct rq *rq) 6042 { 6043 const struct sched_class *class; 6044 struct task_struct *p; 6045 6046 for_each_class(class) { 6047 p = class->pick_task(rq); 6048 if (p) 6049 return p; 6050 } 6051 6052 BUG(); /* The idle class should always have a runnable task. */ 6053 } 6054 6055 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6056 6057 static void queue_core_balance(struct rq *rq); 6058 6059 static struct task_struct * 6060 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6061 { 6062 struct task_struct *next, *p, *max = NULL; 6063 const struct cpumask *smt_mask; 6064 bool fi_before = false; 6065 bool core_clock_updated = (rq == rq->core); 6066 unsigned long cookie; 6067 int i, cpu, occ = 0; 6068 struct rq *rq_i; 6069 bool need_sync; 6070 6071 if (!sched_core_enabled(rq)) 6072 return __pick_next_task(rq, prev, rf); 6073 6074 cpu = cpu_of(rq); 6075 6076 /* Stopper task is switching into idle, no need core-wide selection. */ 6077 if (cpu_is_offline(cpu)) { 6078 /* 6079 * Reset core_pick so that we don't enter the fastpath when 6080 * coming online. core_pick would already be migrated to 6081 * another cpu during offline. 6082 */ 6083 rq->core_pick = NULL; 6084 return __pick_next_task(rq, prev, rf); 6085 } 6086 6087 /* 6088 * If there were no {en,de}queues since we picked (IOW, the task 6089 * pointers are all still valid), and we haven't scheduled the last 6090 * pick yet, do so now. 6091 * 6092 * rq->core_pick can be NULL if no selection was made for a CPU because 6093 * it was either offline or went offline during a sibling's core-wide 6094 * selection. In this case, do a core-wide selection. 6095 */ 6096 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6097 rq->core->core_pick_seq != rq->core_sched_seq && 6098 rq->core_pick) { 6099 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6100 6101 next = rq->core_pick; 6102 if (next != prev) { 6103 put_prev_task(rq, prev); 6104 set_next_task(rq, next); 6105 } 6106 6107 rq->core_pick = NULL; 6108 goto out; 6109 } 6110 6111 put_prev_task_balance(rq, prev, rf); 6112 6113 smt_mask = cpu_smt_mask(cpu); 6114 need_sync = !!rq->core->core_cookie; 6115 6116 /* reset state */ 6117 rq->core->core_cookie = 0UL; 6118 if (rq->core->core_forceidle_count) { 6119 if (!core_clock_updated) { 6120 update_rq_clock(rq->core); 6121 core_clock_updated = true; 6122 } 6123 sched_core_account_forceidle(rq); 6124 /* reset after accounting force idle */ 6125 rq->core->core_forceidle_start = 0; 6126 rq->core->core_forceidle_count = 0; 6127 rq->core->core_forceidle_occupation = 0; 6128 need_sync = true; 6129 fi_before = true; 6130 } 6131 6132 /* 6133 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6134 * 6135 * @task_seq guards the task state ({en,de}queues) 6136 * @pick_seq is the @task_seq we did a selection on 6137 * @sched_seq is the @pick_seq we scheduled 6138 * 6139 * However, preemptions can cause multiple picks on the same task set. 6140 * 'Fix' this by also increasing @task_seq for every pick. 6141 */ 6142 rq->core->core_task_seq++; 6143 6144 /* 6145 * Optimize for common case where this CPU has no cookies 6146 * and there are no cookied tasks running on siblings. 6147 */ 6148 if (!need_sync) { 6149 next = pick_task(rq); 6150 if (!next->core_cookie) { 6151 rq->core_pick = NULL; 6152 /* 6153 * For robustness, update the min_vruntime_fi for 6154 * unconstrained picks as well. 6155 */ 6156 WARN_ON_ONCE(fi_before); 6157 task_vruntime_update(rq, next, false); 6158 goto out_set_next; 6159 } 6160 } 6161 6162 /* 6163 * For each thread: do the regular task pick and find the max prio task 6164 * amongst them. 6165 * 6166 * Tie-break prio towards the current CPU 6167 */ 6168 for_each_cpu_wrap(i, smt_mask, cpu) { 6169 rq_i = cpu_rq(i); 6170 6171 /* 6172 * Current cpu always has its clock updated on entrance to 6173 * pick_next_task(). If the current cpu is not the core, 6174 * the core may also have been updated above. 6175 */ 6176 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6177 update_rq_clock(rq_i); 6178 6179 p = rq_i->core_pick = pick_task(rq_i); 6180 if (!max || prio_less(max, p, fi_before)) 6181 max = p; 6182 } 6183 6184 cookie = rq->core->core_cookie = max->core_cookie; 6185 6186 /* 6187 * For each thread: try and find a runnable task that matches @max or 6188 * force idle. 6189 */ 6190 for_each_cpu(i, smt_mask) { 6191 rq_i = cpu_rq(i); 6192 p = rq_i->core_pick; 6193 6194 if (!cookie_equals(p, cookie)) { 6195 p = NULL; 6196 if (cookie) 6197 p = sched_core_find(rq_i, cookie); 6198 if (!p) 6199 p = idle_sched_class.pick_task(rq_i); 6200 } 6201 6202 rq_i->core_pick = p; 6203 6204 if (p == rq_i->idle) { 6205 if (rq_i->nr_running) { 6206 rq->core->core_forceidle_count++; 6207 if (!fi_before) 6208 rq->core->core_forceidle_seq++; 6209 } 6210 } else { 6211 occ++; 6212 } 6213 } 6214 6215 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6216 rq->core->core_forceidle_start = rq_clock(rq->core); 6217 rq->core->core_forceidle_occupation = occ; 6218 } 6219 6220 rq->core->core_pick_seq = rq->core->core_task_seq; 6221 next = rq->core_pick; 6222 rq->core_sched_seq = rq->core->core_pick_seq; 6223 6224 /* Something should have been selected for current CPU */ 6225 WARN_ON_ONCE(!next); 6226 6227 /* 6228 * Reschedule siblings 6229 * 6230 * NOTE: L1TF -- at this point we're no longer running the old task and 6231 * sending an IPI (below) ensures the sibling will no longer be running 6232 * their task. This ensures there is no inter-sibling overlap between 6233 * non-matching user state. 6234 */ 6235 for_each_cpu(i, smt_mask) { 6236 rq_i = cpu_rq(i); 6237 6238 /* 6239 * An online sibling might have gone offline before a task 6240 * could be picked for it, or it might be offline but later 6241 * happen to come online, but its too late and nothing was 6242 * picked for it. That's Ok - it will pick tasks for itself, 6243 * so ignore it. 6244 */ 6245 if (!rq_i->core_pick) 6246 continue; 6247 6248 /* 6249 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6250 * fi_before fi update? 6251 * 0 0 1 6252 * 0 1 1 6253 * 1 0 1 6254 * 1 1 0 6255 */ 6256 if (!(fi_before && rq->core->core_forceidle_count)) 6257 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6258 6259 rq_i->core_pick->core_occupation = occ; 6260 6261 if (i == cpu) { 6262 rq_i->core_pick = NULL; 6263 continue; 6264 } 6265 6266 /* Did we break L1TF mitigation requirements? */ 6267 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6268 6269 if (rq_i->curr == rq_i->core_pick) { 6270 rq_i->core_pick = NULL; 6271 continue; 6272 } 6273 6274 resched_curr(rq_i); 6275 } 6276 6277 out_set_next: 6278 set_next_task(rq, next); 6279 out: 6280 if (rq->core->core_forceidle_count && next == rq->idle) 6281 queue_core_balance(rq); 6282 6283 return next; 6284 } 6285 6286 static bool try_steal_cookie(int this, int that) 6287 { 6288 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6289 struct task_struct *p; 6290 unsigned long cookie; 6291 bool success = false; 6292 6293 guard(irq)(); 6294 guard(double_rq_lock)(dst, src); 6295 6296 cookie = dst->core->core_cookie; 6297 if (!cookie) 6298 return false; 6299 6300 if (dst->curr != dst->idle) 6301 return false; 6302 6303 p = sched_core_find(src, cookie); 6304 if (!p) 6305 return false; 6306 6307 do { 6308 if (p == src->core_pick || p == src->curr) 6309 goto next; 6310 6311 if (!is_cpu_allowed(p, this)) 6312 goto next; 6313 6314 if (p->core_occupation > dst->idle->core_occupation) 6315 goto next; 6316 /* 6317 * sched_core_find() and sched_core_next() will ensure 6318 * that task @p is not throttled now, we also need to 6319 * check whether the runqueue of the destination CPU is 6320 * being throttled. 6321 */ 6322 if (sched_task_is_throttled(p, this)) 6323 goto next; 6324 6325 deactivate_task(src, p, 0); 6326 set_task_cpu(p, this); 6327 activate_task(dst, p, 0); 6328 6329 resched_curr(dst); 6330 6331 success = true; 6332 break; 6333 6334 next: 6335 p = sched_core_next(p, cookie); 6336 } while (p); 6337 6338 return success; 6339 } 6340 6341 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6342 { 6343 int i; 6344 6345 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6346 if (i == cpu) 6347 continue; 6348 6349 if (need_resched()) 6350 break; 6351 6352 if (try_steal_cookie(cpu, i)) 6353 return true; 6354 } 6355 6356 return false; 6357 } 6358 6359 static void sched_core_balance(struct rq *rq) 6360 { 6361 struct sched_domain *sd; 6362 int cpu = cpu_of(rq); 6363 6364 guard(preempt)(); 6365 guard(rcu)(); 6366 6367 raw_spin_rq_unlock_irq(rq); 6368 for_each_domain(cpu, sd) { 6369 if (need_resched()) 6370 break; 6371 6372 if (steal_cookie_task(cpu, sd)) 6373 break; 6374 } 6375 raw_spin_rq_lock_irq(rq); 6376 } 6377 6378 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6379 6380 static void queue_core_balance(struct rq *rq) 6381 { 6382 if (!sched_core_enabled(rq)) 6383 return; 6384 6385 if (!rq->core->core_cookie) 6386 return; 6387 6388 if (!rq->nr_running) /* not forced idle */ 6389 return; 6390 6391 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6392 } 6393 6394 DEFINE_LOCK_GUARD_1(core_lock, int, 6395 sched_core_lock(*_T->lock, &_T->flags), 6396 sched_core_unlock(*_T->lock, &_T->flags), 6397 unsigned long flags) 6398 6399 static void sched_core_cpu_starting(unsigned int cpu) 6400 { 6401 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6402 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6403 int t; 6404 6405 guard(core_lock)(&cpu); 6406 6407 WARN_ON_ONCE(rq->core != rq); 6408 6409 /* if we're the first, we'll be our own leader */ 6410 if (cpumask_weight(smt_mask) == 1) 6411 return; 6412 6413 /* find the leader */ 6414 for_each_cpu(t, smt_mask) { 6415 if (t == cpu) 6416 continue; 6417 rq = cpu_rq(t); 6418 if (rq->core == rq) { 6419 core_rq = rq; 6420 break; 6421 } 6422 } 6423 6424 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6425 return; 6426 6427 /* install and validate core_rq */ 6428 for_each_cpu(t, smt_mask) { 6429 rq = cpu_rq(t); 6430 6431 if (t == cpu) 6432 rq->core = core_rq; 6433 6434 WARN_ON_ONCE(rq->core != core_rq); 6435 } 6436 } 6437 6438 static void sched_core_cpu_deactivate(unsigned int cpu) 6439 { 6440 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6441 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6442 int t; 6443 6444 guard(core_lock)(&cpu); 6445 6446 /* if we're the last man standing, nothing to do */ 6447 if (cpumask_weight(smt_mask) == 1) { 6448 WARN_ON_ONCE(rq->core != rq); 6449 return; 6450 } 6451 6452 /* if we're not the leader, nothing to do */ 6453 if (rq->core != rq) 6454 return; 6455 6456 /* find a new leader */ 6457 for_each_cpu(t, smt_mask) { 6458 if (t == cpu) 6459 continue; 6460 core_rq = cpu_rq(t); 6461 break; 6462 } 6463 6464 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6465 return; 6466 6467 /* copy the shared state to the new leader */ 6468 core_rq->core_task_seq = rq->core_task_seq; 6469 core_rq->core_pick_seq = rq->core_pick_seq; 6470 core_rq->core_cookie = rq->core_cookie; 6471 core_rq->core_forceidle_count = rq->core_forceidle_count; 6472 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6473 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6474 6475 /* 6476 * Accounting edge for forced idle is handled in pick_next_task(). 6477 * Don't need another one here, since the hotplug thread shouldn't 6478 * have a cookie. 6479 */ 6480 core_rq->core_forceidle_start = 0; 6481 6482 /* install new leader */ 6483 for_each_cpu(t, smt_mask) { 6484 rq = cpu_rq(t); 6485 rq->core = core_rq; 6486 } 6487 } 6488 6489 static inline void sched_core_cpu_dying(unsigned int cpu) 6490 { 6491 struct rq *rq = cpu_rq(cpu); 6492 6493 if (rq->core != rq) 6494 rq->core = rq; 6495 } 6496 6497 #else /* !CONFIG_SCHED_CORE */ 6498 6499 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6500 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6501 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6502 6503 static struct task_struct * 6504 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6505 { 6506 return __pick_next_task(rq, prev, rf); 6507 } 6508 6509 #endif /* CONFIG_SCHED_CORE */ 6510 6511 /* 6512 * Constants for the sched_mode argument of __schedule(). 6513 * 6514 * The mode argument allows RT enabled kernels to differentiate a 6515 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6516 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6517 * optimize the AND operation out and just check for zero. 6518 */ 6519 #define SM_NONE 0x0 6520 #define SM_PREEMPT 0x1 6521 #define SM_RTLOCK_WAIT 0x2 6522 6523 #ifndef CONFIG_PREEMPT_RT 6524 # define SM_MASK_PREEMPT (~0U) 6525 #else 6526 # define SM_MASK_PREEMPT SM_PREEMPT 6527 #endif 6528 6529 /* 6530 * __schedule() is the main scheduler function. 6531 * 6532 * The main means of driving the scheduler and thus entering this function are: 6533 * 6534 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6535 * 6536 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6537 * paths. For example, see arch/x86/entry_64.S. 6538 * 6539 * To drive preemption between tasks, the scheduler sets the flag in timer 6540 * interrupt handler scheduler_tick(). 6541 * 6542 * 3. Wakeups don't really cause entry into schedule(). They add a 6543 * task to the run-queue and that's it. 6544 * 6545 * Now, if the new task added to the run-queue preempts the current 6546 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6547 * called on the nearest possible occasion: 6548 * 6549 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6550 * 6551 * - in syscall or exception context, at the next outmost 6552 * preempt_enable(). (this might be as soon as the wake_up()'s 6553 * spin_unlock()!) 6554 * 6555 * - in IRQ context, return from interrupt-handler to 6556 * preemptible context 6557 * 6558 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6559 * then at the next: 6560 * 6561 * - cond_resched() call 6562 * - explicit schedule() call 6563 * - return from syscall or exception to user-space 6564 * - return from interrupt-handler to user-space 6565 * 6566 * WARNING: must be called with preemption disabled! 6567 */ 6568 static void __sched notrace __schedule(unsigned int sched_mode) 6569 { 6570 struct task_struct *prev, *next; 6571 unsigned long *switch_count; 6572 unsigned long prev_state; 6573 struct rq_flags rf; 6574 struct rq *rq; 6575 int cpu; 6576 6577 cpu = smp_processor_id(); 6578 rq = cpu_rq(cpu); 6579 prev = rq->curr; 6580 6581 schedule_debug(prev, !!sched_mode); 6582 6583 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6584 hrtick_clear(rq); 6585 6586 local_irq_disable(); 6587 rcu_note_context_switch(!!sched_mode); 6588 6589 /* 6590 * Make sure that signal_pending_state()->signal_pending() below 6591 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6592 * done by the caller to avoid the race with signal_wake_up(): 6593 * 6594 * __set_current_state(@state) signal_wake_up() 6595 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6596 * wake_up_state(p, state) 6597 * LOCK rq->lock LOCK p->pi_state 6598 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6599 * if (signal_pending_state()) if (p->state & @state) 6600 * 6601 * Also, the membarrier system call requires a full memory barrier 6602 * after coming from user-space, before storing to rq->curr. 6603 */ 6604 rq_lock(rq, &rf); 6605 smp_mb__after_spinlock(); 6606 6607 /* Promote REQ to ACT */ 6608 rq->clock_update_flags <<= 1; 6609 update_rq_clock(rq); 6610 rq->clock_update_flags = RQCF_UPDATED; 6611 6612 switch_count = &prev->nivcsw; 6613 6614 /* 6615 * We must load prev->state once (task_struct::state is volatile), such 6616 * that we form a control dependency vs deactivate_task() below. 6617 */ 6618 prev_state = READ_ONCE(prev->__state); 6619 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6620 if (signal_pending_state(prev_state, prev)) { 6621 WRITE_ONCE(prev->__state, TASK_RUNNING); 6622 } else { 6623 prev->sched_contributes_to_load = 6624 (prev_state & TASK_UNINTERRUPTIBLE) && 6625 !(prev_state & TASK_NOLOAD) && 6626 !(prev_state & TASK_FROZEN); 6627 6628 if (prev->sched_contributes_to_load) 6629 rq->nr_uninterruptible++; 6630 6631 /* 6632 * __schedule() ttwu() 6633 * prev_state = prev->state; if (p->on_rq && ...) 6634 * if (prev_state) goto out; 6635 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6636 * p->state = TASK_WAKING 6637 * 6638 * Where __schedule() and ttwu() have matching control dependencies. 6639 * 6640 * After this, schedule() must not care about p->state any more. 6641 */ 6642 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6643 6644 if (prev->in_iowait) { 6645 atomic_inc(&rq->nr_iowait); 6646 delayacct_blkio_start(); 6647 } 6648 } 6649 switch_count = &prev->nvcsw; 6650 } 6651 6652 next = pick_next_task(rq, prev, &rf); 6653 clear_tsk_need_resched(prev); 6654 clear_preempt_need_resched(); 6655 #ifdef CONFIG_SCHED_DEBUG 6656 rq->last_seen_need_resched_ns = 0; 6657 #endif 6658 6659 if (likely(prev != next)) { 6660 rq->nr_switches++; 6661 /* 6662 * RCU users of rcu_dereference(rq->curr) may not see 6663 * changes to task_struct made by pick_next_task(). 6664 */ 6665 RCU_INIT_POINTER(rq->curr, next); 6666 /* 6667 * The membarrier system call requires each architecture 6668 * to have a full memory barrier after updating 6669 * rq->curr, before returning to user-space. 6670 * 6671 * Here are the schemes providing that barrier on the 6672 * various architectures: 6673 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6674 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6675 * - finish_lock_switch() for weakly-ordered 6676 * architectures where spin_unlock is a full barrier, 6677 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6678 * is a RELEASE barrier), 6679 */ 6680 ++*switch_count; 6681 6682 migrate_disable_switch(rq, prev); 6683 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6684 6685 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6686 6687 /* Also unlocks the rq: */ 6688 rq = context_switch(rq, prev, next, &rf); 6689 } else { 6690 rq_unpin_lock(rq, &rf); 6691 __balance_callbacks(rq); 6692 raw_spin_rq_unlock_irq(rq); 6693 } 6694 } 6695 6696 void __noreturn do_task_dead(void) 6697 { 6698 /* Causes final put_task_struct in finish_task_switch(): */ 6699 set_special_state(TASK_DEAD); 6700 6701 /* Tell freezer to ignore us: */ 6702 current->flags |= PF_NOFREEZE; 6703 6704 __schedule(SM_NONE); 6705 BUG(); 6706 6707 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6708 for (;;) 6709 cpu_relax(); 6710 } 6711 6712 static inline void sched_submit_work(struct task_struct *tsk) 6713 { 6714 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6715 unsigned int task_flags; 6716 6717 /* 6718 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6719 * will use a blocking primitive -- which would lead to recursion. 6720 */ 6721 lock_map_acquire_try(&sched_map); 6722 6723 task_flags = tsk->flags; 6724 /* 6725 * If a worker goes to sleep, notify and ask workqueue whether it 6726 * wants to wake up a task to maintain concurrency. 6727 */ 6728 if (task_flags & PF_WQ_WORKER) 6729 wq_worker_sleeping(tsk); 6730 else if (task_flags & PF_IO_WORKER) 6731 io_wq_worker_sleeping(tsk); 6732 6733 /* 6734 * spinlock and rwlock must not flush block requests. This will 6735 * deadlock if the callback attempts to acquire a lock which is 6736 * already acquired. 6737 */ 6738 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6739 6740 /* 6741 * If we are going to sleep and we have plugged IO queued, 6742 * make sure to submit it to avoid deadlocks. 6743 */ 6744 blk_flush_plug(tsk->plug, true); 6745 6746 lock_map_release(&sched_map); 6747 } 6748 6749 static void sched_update_worker(struct task_struct *tsk) 6750 { 6751 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6752 if (tsk->flags & PF_WQ_WORKER) 6753 wq_worker_running(tsk); 6754 else 6755 io_wq_worker_running(tsk); 6756 } 6757 } 6758 6759 static __always_inline void __schedule_loop(unsigned int sched_mode) 6760 { 6761 do { 6762 preempt_disable(); 6763 __schedule(sched_mode); 6764 sched_preempt_enable_no_resched(); 6765 } while (need_resched()); 6766 } 6767 6768 asmlinkage __visible void __sched schedule(void) 6769 { 6770 struct task_struct *tsk = current; 6771 6772 #ifdef CONFIG_RT_MUTEXES 6773 lockdep_assert(!tsk->sched_rt_mutex); 6774 #endif 6775 6776 if (!task_is_running(tsk)) 6777 sched_submit_work(tsk); 6778 __schedule_loop(SM_NONE); 6779 sched_update_worker(tsk); 6780 } 6781 EXPORT_SYMBOL(schedule); 6782 6783 /* 6784 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6785 * state (have scheduled out non-voluntarily) by making sure that all 6786 * tasks have either left the run queue or have gone into user space. 6787 * As idle tasks do not do either, they must not ever be preempted 6788 * (schedule out non-voluntarily). 6789 * 6790 * schedule_idle() is similar to schedule_preempt_disable() except that it 6791 * never enables preemption because it does not call sched_submit_work(). 6792 */ 6793 void __sched schedule_idle(void) 6794 { 6795 /* 6796 * As this skips calling sched_submit_work(), which the idle task does 6797 * regardless because that function is a nop when the task is in a 6798 * TASK_RUNNING state, make sure this isn't used someplace that the 6799 * current task can be in any other state. Note, idle is always in the 6800 * TASK_RUNNING state. 6801 */ 6802 WARN_ON_ONCE(current->__state); 6803 do { 6804 __schedule(SM_NONE); 6805 } while (need_resched()); 6806 } 6807 6808 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6809 asmlinkage __visible void __sched schedule_user(void) 6810 { 6811 /* 6812 * If we come here after a random call to set_need_resched(), 6813 * or we have been woken up remotely but the IPI has not yet arrived, 6814 * we haven't yet exited the RCU idle mode. Do it here manually until 6815 * we find a better solution. 6816 * 6817 * NB: There are buggy callers of this function. Ideally we 6818 * should warn if prev_state != CONTEXT_USER, but that will trigger 6819 * too frequently to make sense yet. 6820 */ 6821 enum ctx_state prev_state = exception_enter(); 6822 schedule(); 6823 exception_exit(prev_state); 6824 } 6825 #endif 6826 6827 /** 6828 * schedule_preempt_disabled - called with preemption disabled 6829 * 6830 * Returns with preemption disabled. Note: preempt_count must be 1 6831 */ 6832 void __sched schedule_preempt_disabled(void) 6833 { 6834 sched_preempt_enable_no_resched(); 6835 schedule(); 6836 preempt_disable(); 6837 } 6838 6839 #ifdef CONFIG_PREEMPT_RT 6840 void __sched notrace schedule_rtlock(void) 6841 { 6842 __schedule_loop(SM_RTLOCK_WAIT); 6843 } 6844 NOKPROBE_SYMBOL(schedule_rtlock); 6845 #endif 6846 6847 static void __sched notrace preempt_schedule_common(void) 6848 { 6849 do { 6850 /* 6851 * Because the function tracer can trace preempt_count_sub() 6852 * and it also uses preempt_enable/disable_notrace(), if 6853 * NEED_RESCHED is set, the preempt_enable_notrace() called 6854 * by the function tracer will call this function again and 6855 * cause infinite recursion. 6856 * 6857 * Preemption must be disabled here before the function 6858 * tracer can trace. Break up preempt_disable() into two 6859 * calls. One to disable preemption without fear of being 6860 * traced. The other to still record the preemption latency, 6861 * which can also be traced by the function tracer. 6862 */ 6863 preempt_disable_notrace(); 6864 preempt_latency_start(1); 6865 __schedule(SM_PREEMPT); 6866 preempt_latency_stop(1); 6867 preempt_enable_no_resched_notrace(); 6868 6869 /* 6870 * Check again in case we missed a preemption opportunity 6871 * between schedule and now. 6872 */ 6873 } while (need_resched()); 6874 } 6875 6876 #ifdef CONFIG_PREEMPTION 6877 /* 6878 * This is the entry point to schedule() from in-kernel preemption 6879 * off of preempt_enable. 6880 */ 6881 asmlinkage __visible void __sched notrace preempt_schedule(void) 6882 { 6883 /* 6884 * If there is a non-zero preempt_count or interrupts are disabled, 6885 * we do not want to preempt the current task. Just return.. 6886 */ 6887 if (likely(!preemptible())) 6888 return; 6889 preempt_schedule_common(); 6890 } 6891 NOKPROBE_SYMBOL(preempt_schedule); 6892 EXPORT_SYMBOL(preempt_schedule); 6893 6894 #ifdef CONFIG_PREEMPT_DYNAMIC 6895 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6896 #ifndef preempt_schedule_dynamic_enabled 6897 #define preempt_schedule_dynamic_enabled preempt_schedule 6898 #define preempt_schedule_dynamic_disabled NULL 6899 #endif 6900 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6901 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6902 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6903 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6904 void __sched notrace dynamic_preempt_schedule(void) 6905 { 6906 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6907 return; 6908 preempt_schedule(); 6909 } 6910 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6911 EXPORT_SYMBOL(dynamic_preempt_schedule); 6912 #endif 6913 #endif 6914 6915 /** 6916 * preempt_schedule_notrace - preempt_schedule called by tracing 6917 * 6918 * The tracing infrastructure uses preempt_enable_notrace to prevent 6919 * recursion and tracing preempt enabling caused by the tracing 6920 * infrastructure itself. But as tracing can happen in areas coming 6921 * from userspace or just about to enter userspace, a preempt enable 6922 * can occur before user_exit() is called. This will cause the scheduler 6923 * to be called when the system is still in usermode. 6924 * 6925 * To prevent this, the preempt_enable_notrace will use this function 6926 * instead of preempt_schedule() to exit user context if needed before 6927 * calling the scheduler. 6928 */ 6929 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6930 { 6931 enum ctx_state prev_ctx; 6932 6933 if (likely(!preemptible())) 6934 return; 6935 6936 do { 6937 /* 6938 * Because the function tracer can trace preempt_count_sub() 6939 * and it also uses preempt_enable/disable_notrace(), if 6940 * NEED_RESCHED is set, the preempt_enable_notrace() called 6941 * by the function tracer will call this function again and 6942 * cause infinite recursion. 6943 * 6944 * Preemption must be disabled here before the function 6945 * tracer can trace. Break up preempt_disable() into two 6946 * calls. One to disable preemption without fear of being 6947 * traced. The other to still record the preemption latency, 6948 * which can also be traced by the function tracer. 6949 */ 6950 preempt_disable_notrace(); 6951 preempt_latency_start(1); 6952 /* 6953 * Needs preempt disabled in case user_exit() is traced 6954 * and the tracer calls preempt_enable_notrace() causing 6955 * an infinite recursion. 6956 */ 6957 prev_ctx = exception_enter(); 6958 __schedule(SM_PREEMPT); 6959 exception_exit(prev_ctx); 6960 6961 preempt_latency_stop(1); 6962 preempt_enable_no_resched_notrace(); 6963 } while (need_resched()); 6964 } 6965 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6966 6967 #ifdef CONFIG_PREEMPT_DYNAMIC 6968 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6969 #ifndef preempt_schedule_notrace_dynamic_enabled 6970 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6971 #define preempt_schedule_notrace_dynamic_disabled NULL 6972 #endif 6973 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6974 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6975 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6976 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6977 void __sched notrace dynamic_preempt_schedule_notrace(void) 6978 { 6979 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6980 return; 6981 preempt_schedule_notrace(); 6982 } 6983 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6984 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6985 #endif 6986 #endif 6987 6988 #endif /* CONFIG_PREEMPTION */ 6989 6990 /* 6991 * This is the entry point to schedule() from kernel preemption 6992 * off of irq context. 6993 * Note, that this is called and return with irqs disabled. This will 6994 * protect us against recursive calling from irq. 6995 */ 6996 asmlinkage __visible void __sched preempt_schedule_irq(void) 6997 { 6998 enum ctx_state prev_state; 6999 7000 /* Catch callers which need to be fixed */ 7001 BUG_ON(preempt_count() || !irqs_disabled()); 7002 7003 prev_state = exception_enter(); 7004 7005 do { 7006 preempt_disable(); 7007 local_irq_enable(); 7008 __schedule(SM_PREEMPT); 7009 local_irq_disable(); 7010 sched_preempt_enable_no_resched(); 7011 } while (need_resched()); 7012 7013 exception_exit(prev_state); 7014 } 7015 7016 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7017 void *key) 7018 { 7019 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7020 return try_to_wake_up(curr->private, mode, wake_flags); 7021 } 7022 EXPORT_SYMBOL(default_wake_function); 7023 7024 static void __setscheduler_prio(struct task_struct *p, int prio) 7025 { 7026 if (dl_prio(prio)) 7027 p->sched_class = &dl_sched_class; 7028 else if (rt_prio(prio)) 7029 p->sched_class = &rt_sched_class; 7030 else 7031 p->sched_class = &fair_sched_class; 7032 7033 p->prio = prio; 7034 } 7035 7036 #ifdef CONFIG_RT_MUTEXES 7037 7038 /* 7039 * Would be more useful with typeof()/auto_type but they don't mix with 7040 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7041 * name such that if someone were to implement this function we get to compare 7042 * notes. 7043 */ 7044 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7045 7046 void rt_mutex_pre_schedule(void) 7047 { 7048 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7049 sched_submit_work(current); 7050 } 7051 7052 void rt_mutex_schedule(void) 7053 { 7054 lockdep_assert(current->sched_rt_mutex); 7055 __schedule_loop(SM_NONE); 7056 } 7057 7058 void rt_mutex_post_schedule(void) 7059 { 7060 sched_update_worker(current); 7061 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7062 } 7063 7064 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 7065 { 7066 if (pi_task) 7067 prio = min(prio, pi_task->prio); 7068 7069 return prio; 7070 } 7071 7072 static inline int rt_effective_prio(struct task_struct *p, int prio) 7073 { 7074 struct task_struct *pi_task = rt_mutex_get_top_task(p); 7075 7076 return __rt_effective_prio(pi_task, prio); 7077 } 7078 7079 /* 7080 * rt_mutex_setprio - set the current priority of a task 7081 * @p: task to boost 7082 * @pi_task: donor task 7083 * 7084 * This function changes the 'effective' priority of a task. It does 7085 * not touch ->normal_prio like __setscheduler(). 7086 * 7087 * Used by the rt_mutex code to implement priority inheritance 7088 * logic. Call site only calls if the priority of the task changed. 7089 */ 7090 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7091 { 7092 int prio, oldprio, queued, running, queue_flag = 7093 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7094 const struct sched_class *prev_class; 7095 struct rq_flags rf; 7096 struct rq *rq; 7097 7098 /* XXX used to be waiter->prio, not waiter->task->prio */ 7099 prio = __rt_effective_prio(pi_task, p->normal_prio); 7100 7101 /* 7102 * If nothing changed; bail early. 7103 */ 7104 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7105 return; 7106 7107 rq = __task_rq_lock(p, &rf); 7108 update_rq_clock(rq); 7109 /* 7110 * Set under pi_lock && rq->lock, such that the value can be used under 7111 * either lock. 7112 * 7113 * Note that there is loads of tricky to make this pointer cache work 7114 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7115 * ensure a task is de-boosted (pi_task is set to NULL) before the 7116 * task is allowed to run again (and can exit). This ensures the pointer 7117 * points to a blocked task -- which guarantees the task is present. 7118 */ 7119 p->pi_top_task = pi_task; 7120 7121 /* 7122 * For FIFO/RR we only need to set prio, if that matches we're done. 7123 */ 7124 if (prio == p->prio && !dl_prio(prio)) 7125 goto out_unlock; 7126 7127 /* 7128 * Idle task boosting is a nono in general. There is one 7129 * exception, when PREEMPT_RT and NOHZ is active: 7130 * 7131 * The idle task calls get_next_timer_interrupt() and holds 7132 * the timer wheel base->lock on the CPU and another CPU wants 7133 * to access the timer (probably to cancel it). We can safely 7134 * ignore the boosting request, as the idle CPU runs this code 7135 * with interrupts disabled and will complete the lock 7136 * protected section without being interrupted. So there is no 7137 * real need to boost. 7138 */ 7139 if (unlikely(p == rq->idle)) { 7140 WARN_ON(p != rq->curr); 7141 WARN_ON(p->pi_blocked_on); 7142 goto out_unlock; 7143 } 7144 7145 trace_sched_pi_setprio(p, pi_task); 7146 oldprio = p->prio; 7147 7148 if (oldprio == prio) 7149 queue_flag &= ~DEQUEUE_MOVE; 7150 7151 prev_class = p->sched_class; 7152 queued = task_on_rq_queued(p); 7153 running = task_current(rq, p); 7154 if (queued) 7155 dequeue_task(rq, p, queue_flag); 7156 if (running) 7157 put_prev_task(rq, p); 7158 7159 /* 7160 * Boosting condition are: 7161 * 1. -rt task is running and holds mutex A 7162 * --> -dl task blocks on mutex A 7163 * 7164 * 2. -dl task is running and holds mutex A 7165 * --> -dl task blocks on mutex A and could preempt the 7166 * running task 7167 */ 7168 if (dl_prio(prio)) { 7169 if (!dl_prio(p->normal_prio) || 7170 (pi_task && dl_prio(pi_task->prio) && 7171 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7172 p->dl.pi_se = pi_task->dl.pi_se; 7173 queue_flag |= ENQUEUE_REPLENISH; 7174 } else { 7175 p->dl.pi_se = &p->dl; 7176 } 7177 } else if (rt_prio(prio)) { 7178 if (dl_prio(oldprio)) 7179 p->dl.pi_se = &p->dl; 7180 if (oldprio < prio) 7181 queue_flag |= ENQUEUE_HEAD; 7182 } else { 7183 if (dl_prio(oldprio)) 7184 p->dl.pi_se = &p->dl; 7185 if (rt_prio(oldprio)) 7186 p->rt.timeout = 0; 7187 } 7188 7189 __setscheduler_prio(p, prio); 7190 7191 if (queued) 7192 enqueue_task(rq, p, queue_flag); 7193 if (running) 7194 set_next_task(rq, p); 7195 7196 check_class_changed(rq, p, prev_class, oldprio); 7197 out_unlock: 7198 /* Avoid rq from going away on us: */ 7199 preempt_disable(); 7200 7201 rq_unpin_lock(rq, &rf); 7202 __balance_callbacks(rq); 7203 raw_spin_rq_unlock(rq); 7204 7205 preempt_enable(); 7206 } 7207 #else 7208 static inline int rt_effective_prio(struct task_struct *p, int prio) 7209 { 7210 return prio; 7211 } 7212 #endif 7213 7214 void set_user_nice(struct task_struct *p, long nice) 7215 { 7216 bool queued, running; 7217 struct rq *rq; 7218 int old_prio; 7219 7220 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7221 return; 7222 /* 7223 * We have to be careful, if called from sys_setpriority(), 7224 * the task might be in the middle of scheduling on another CPU. 7225 */ 7226 CLASS(task_rq_lock, rq_guard)(p); 7227 rq = rq_guard.rq; 7228 7229 update_rq_clock(rq); 7230 7231 /* 7232 * The RT priorities are set via sched_setscheduler(), but we still 7233 * allow the 'normal' nice value to be set - but as expected 7234 * it won't have any effect on scheduling until the task is 7235 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7236 */ 7237 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7238 p->static_prio = NICE_TO_PRIO(nice); 7239 return; 7240 } 7241 7242 queued = task_on_rq_queued(p); 7243 running = task_current(rq, p); 7244 if (queued) 7245 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7246 if (running) 7247 put_prev_task(rq, p); 7248 7249 p->static_prio = NICE_TO_PRIO(nice); 7250 set_load_weight(p, true); 7251 old_prio = p->prio; 7252 p->prio = effective_prio(p); 7253 7254 if (queued) 7255 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7256 if (running) 7257 set_next_task(rq, p); 7258 7259 /* 7260 * If the task increased its priority or is running and 7261 * lowered its priority, then reschedule its CPU: 7262 */ 7263 p->sched_class->prio_changed(rq, p, old_prio); 7264 } 7265 EXPORT_SYMBOL(set_user_nice); 7266 7267 /* 7268 * is_nice_reduction - check if nice value is an actual reduction 7269 * 7270 * Similar to can_nice() but does not perform a capability check. 7271 * 7272 * @p: task 7273 * @nice: nice value 7274 */ 7275 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7276 { 7277 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7278 int nice_rlim = nice_to_rlimit(nice); 7279 7280 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7281 } 7282 7283 /* 7284 * can_nice - check if a task can reduce its nice value 7285 * @p: task 7286 * @nice: nice value 7287 */ 7288 int can_nice(const struct task_struct *p, const int nice) 7289 { 7290 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7291 } 7292 7293 #ifdef __ARCH_WANT_SYS_NICE 7294 7295 /* 7296 * sys_nice - change the priority of the current process. 7297 * @increment: priority increment 7298 * 7299 * sys_setpriority is a more generic, but much slower function that 7300 * does similar things. 7301 */ 7302 SYSCALL_DEFINE1(nice, int, increment) 7303 { 7304 long nice, retval; 7305 7306 /* 7307 * Setpriority might change our priority at the same moment. 7308 * We don't have to worry. Conceptually one call occurs first 7309 * and we have a single winner. 7310 */ 7311 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7312 nice = task_nice(current) + increment; 7313 7314 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7315 if (increment < 0 && !can_nice(current, nice)) 7316 return -EPERM; 7317 7318 retval = security_task_setnice(current, nice); 7319 if (retval) 7320 return retval; 7321 7322 set_user_nice(current, nice); 7323 return 0; 7324 } 7325 7326 #endif 7327 7328 /** 7329 * task_prio - return the priority value of a given task. 7330 * @p: the task in question. 7331 * 7332 * Return: The priority value as seen by users in /proc. 7333 * 7334 * sched policy return value kernel prio user prio/nice 7335 * 7336 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7337 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7338 * deadline -101 -1 0 7339 */ 7340 int task_prio(const struct task_struct *p) 7341 { 7342 return p->prio - MAX_RT_PRIO; 7343 } 7344 7345 /** 7346 * idle_cpu - is a given CPU idle currently? 7347 * @cpu: the processor in question. 7348 * 7349 * Return: 1 if the CPU is currently idle. 0 otherwise. 7350 */ 7351 int idle_cpu(int cpu) 7352 { 7353 struct rq *rq = cpu_rq(cpu); 7354 7355 if (rq->curr != rq->idle) 7356 return 0; 7357 7358 if (rq->nr_running) 7359 return 0; 7360 7361 #ifdef CONFIG_SMP 7362 if (rq->ttwu_pending) 7363 return 0; 7364 #endif 7365 7366 return 1; 7367 } 7368 7369 /** 7370 * available_idle_cpu - is a given CPU idle for enqueuing work. 7371 * @cpu: the CPU in question. 7372 * 7373 * Return: 1 if the CPU is currently idle. 0 otherwise. 7374 */ 7375 int available_idle_cpu(int cpu) 7376 { 7377 if (!idle_cpu(cpu)) 7378 return 0; 7379 7380 if (vcpu_is_preempted(cpu)) 7381 return 0; 7382 7383 return 1; 7384 } 7385 7386 /** 7387 * idle_task - return the idle task for a given CPU. 7388 * @cpu: the processor in question. 7389 * 7390 * Return: The idle task for the CPU @cpu. 7391 */ 7392 struct task_struct *idle_task(int cpu) 7393 { 7394 return cpu_rq(cpu)->idle; 7395 } 7396 7397 #ifdef CONFIG_SCHED_CORE 7398 int sched_core_idle_cpu(int cpu) 7399 { 7400 struct rq *rq = cpu_rq(cpu); 7401 7402 if (sched_core_enabled(rq) && rq->curr == rq->idle) 7403 return 1; 7404 7405 return idle_cpu(cpu); 7406 } 7407 7408 #endif 7409 7410 #ifdef CONFIG_SMP 7411 /* 7412 * This function computes an effective utilization for the given CPU, to be 7413 * used for frequency selection given the linear relation: f = u * f_max. 7414 * 7415 * The scheduler tracks the following metrics: 7416 * 7417 * cpu_util_{cfs,rt,dl,irq}() 7418 * cpu_bw_dl() 7419 * 7420 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7421 * synchronized windows and are thus directly comparable. 7422 * 7423 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7424 * which excludes things like IRQ and steal-time. These latter are then accrued 7425 * in the irq utilization. 7426 * 7427 * The DL bandwidth number otoh is not a measured metric but a value computed 7428 * based on the task model parameters and gives the minimal utilization 7429 * required to meet deadlines. 7430 */ 7431 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7432 enum cpu_util_type type, 7433 struct task_struct *p) 7434 { 7435 unsigned long dl_util, util, irq, max; 7436 struct rq *rq = cpu_rq(cpu); 7437 7438 max = arch_scale_cpu_capacity(cpu); 7439 7440 if (!uclamp_is_used() && 7441 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7442 return max; 7443 } 7444 7445 /* 7446 * Early check to see if IRQ/steal time saturates the CPU, can be 7447 * because of inaccuracies in how we track these -- see 7448 * update_irq_load_avg(). 7449 */ 7450 irq = cpu_util_irq(rq); 7451 if (unlikely(irq >= max)) 7452 return max; 7453 7454 /* 7455 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7456 * CFS tasks and we use the same metric to track the effective 7457 * utilization (PELT windows are synchronized) we can directly add them 7458 * to obtain the CPU's actual utilization. 7459 * 7460 * CFS and RT utilization can be boosted or capped, depending on 7461 * utilization clamp constraints requested by currently RUNNABLE 7462 * tasks. 7463 * When there are no CFS RUNNABLE tasks, clamps are released and 7464 * frequency will be gracefully reduced with the utilization decay. 7465 */ 7466 util = util_cfs + cpu_util_rt(rq); 7467 if (type == FREQUENCY_UTIL) 7468 util = uclamp_rq_util_with(rq, util, p); 7469 7470 dl_util = cpu_util_dl(rq); 7471 7472 /* 7473 * For frequency selection we do not make cpu_util_dl() a permanent part 7474 * of this sum because we want to use cpu_bw_dl() later on, but we need 7475 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7476 * that we select f_max when there is no idle time. 7477 * 7478 * NOTE: numerical errors or stop class might cause us to not quite hit 7479 * saturation when we should -- something for later. 7480 */ 7481 if (util + dl_util >= max) 7482 return max; 7483 7484 /* 7485 * OTOH, for energy computation we need the estimated running time, so 7486 * include util_dl and ignore dl_bw. 7487 */ 7488 if (type == ENERGY_UTIL) 7489 util += dl_util; 7490 7491 /* 7492 * There is still idle time; further improve the number by using the 7493 * irq metric. Because IRQ/steal time is hidden from the task clock we 7494 * need to scale the task numbers: 7495 * 7496 * max - irq 7497 * U' = irq + --------- * U 7498 * max 7499 */ 7500 util = scale_irq_capacity(util, irq, max); 7501 util += irq; 7502 7503 /* 7504 * Bandwidth required by DEADLINE must always be granted while, for 7505 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7506 * to gracefully reduce the frequency when no tasks show up for longer 7507 * periods of time. 7508 * 7509 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7510 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7511 * an interface. So, we only do the latter for now. 7512 */ 7513 if (type == FREQUENCY_UTIL) 7514 util += cpu_bw_dl(rq); 7515 7516 return min(max, util); 7517 } 7518 7519 unsigned long sched_cpu_util(int cpu) 7520 { 7521 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7522 } 7523 #endif /* CONFIG_SMP */ 7524 7525 /** 7526 * find_process_by_pid - find a process with a matching PID value. 7527 * @pid: the pid in question. 7528 * 7529 * The task of @pid, if found. %NULL otherwise. 7530 */ 7531 static struct task_struct *find_process_by_pid(pid_t pid) 7532 { 7533 return pid ? find_task_by_vpid(pid) : current; 7534 } 7535 7536 static struct task_struct *find_get_task(pid_t pid) 7537 { 7538 struct task_struct *p; 7539 guard(rcu)(); 7540 7541 p = find_process_by_pid(pid); 7542 if (likely(p)) 7543 get_task_struct(p); 7544 7545 return p; 7546 } 7547 7548 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), 7549 find_get_task(pid), pid_t pid) 7550 7551 /* 7552 * sched_setparam() passes in -1 for its policy, to let the functions 7553 * it calls know not to change it. 7554 */ 7555 #define SETPARAM_POLICY -1 7556 7557 static void __setscheduler_params(struct task_struct *p, 7558 const struct sched_attr *attr) 7559 { 7560 int policy = attr->sched_policy; 7561 7562 if (policy == SETPARAM_POLICY) 7563 policy = p->policy; 7564 7565 p->policy = policy; 7566 7567 if (dl_policy(policy)) 7568 __setparam_dl(p, attr); 7569 else if (fair_policy(policy)) 7570 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7571 7572 /* 7573 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7574 * !rt_policy. Always setting this ensures that things like 7575 * getparam()/getattr() don't report silly values for !rt tasks. 7576 */ 7577 p->rt_priority = attr->sched_priority; 7578 p->normal_prio = normal_prio(p); 7579 set_load_weight(p, true); 7580 } 7581 7582 /* 7583 * Check the target process has a UID that matches the current process's: 7584 */ 7585 static bool check_same_owner(struct task_struct *p) 7586 { 7587 const struct cred *cred = current_cred(), *pcred; 7588 guard(rcu)(); 7589 7590 pcred = __task_cred(p); 7591 return (uid_eq(cred->euid, pcred->euid) || 7592 uid_eq(cred->euid, pcred->uid)); 7593 } 7594 7595 /* 7596 * Allow unprivileged RT tasks to decrease priority. 7597 * Only issue a capable test if needed and only once to avoid an audit 7598 * event on permitted non-privileged operations: 7599 */ 7600 static int user_check_sched_setscheduler(struct task_struct *p, 7601 const struct sched_attr *attr, 7602 int policy, int reset_on_fork) 7603 { 7604 if (fair_policy(policy)) { 7605 if (attr->sched_nice < task_nice(p) && 7606 !is_nice_reduction(p, attr->sched_nice)) 7607 goto req_priv; 7608 } 7609 7610 if (rt_policy(policy)) { 7611 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7612 7613 /* Can't set/change the rt policy: */ 7614 if (policy != p->policy && !rlim_rtprio) 7615 goto req_priv; 7616 7617 /* Can't increase priority: */ 7618 if (attr->sched_priority > p->rt_priority && 7619 attr->sched_priority > rlim_rtprio) 7620 goto req_priv; 7621 } 7622 7623 /* 7624 * Can't set/change SCHED_DEADLINE policy at all for now 7625 * (safest behavior); in the future we would like to allow 7626 * unprivileged DL tasks to increase their relative deadline 7627 * or reduce their runtime (both ways reducing utilization) 7628 */ 7629 if (dl_policy(policy)) 7630 goto req_priv; 7631 7632 /* 7633 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7634 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7635 */ 7636 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7637 if (!is_nice_reduction(p, task_nice(p))) 7638 goto req_priv; 7639 } 7640 7641 /* Can't change other user's priorities: */ 7642 if (!check_same_owner(p)) 7643 goto req_priv; 7644 7645 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7646 if (p->sched_reset_on_fork && !reset_on_fork) 7647 goto req_priv; 7648 7649 return 0; 7650 7651 req_priv: 7652 if (!capable(CAP_SYS_NICE)) 7653 return -EPERM; 7654 7655 return 0; 7656 } 7657 7658 static int __sched_setscheduler(struct task_struct *p, 7659 const struct sched_attr *attr, 7660 bool user, bool pi) 7661 { 7662 int oldpolicy = -1, policy = attr->sched_policy; 7663 int retval, oldprio, newprio, queued, running; 7664 const struct sched_class *prev_class; 7665 struct balance_callback *head; 7666 struct rq_flags rf; 7667 int reset_on_fork; 7668 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7669 struct rq *rq; 7670 bool cpuset_locked = false; 7671 7672 /* The pi code expects interrupts enabled */ 7673 BUG_ON(pi && in_interrupt()); 7674 recheck: 7675 /* Double check policy once rq lock held: */ 7676 if (policy < 0) { 7677 reset_on_fork = p->sched_reset_on_fork; 7678 policy = oldpolicy = p->policy; 7679 } else { 7680 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7681 7682 if (!valid_policy(policy)) 7683 return -EINVAL; 7684 } 7685 7686 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7687 return -EINVAL; 7688 7689 /* 7690 * Valid priorities for SCHED_FIFO and SCHED_RR are 7691 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7692 * SCHED_BATCH and SCHED_IDLE is 0. 7693 */ 7694 if (attr->sched_priority > MAX_RT_PRIO-1) 7695 return -EINVAL; 7696 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7697 (rt_policy(policy) != (attr->sched_priority != 0))) 7698 return -EINVAL; 7699 7700 if (user) { 7701 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7702 if (retval) 7703 return retval; 7704 7705 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7706 return -EINVAL; 7707 7708 retval = security_task_setscheduler(p); 7709 if (retval) 7710 return retval; 7711 } 7712 7713 /* Update task specific "requested" clamps */ 7714 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7715 retval = uclamp_validate(p, attr); 7716 if (retval) 7717 return retval; 7718 } 7719 7720 /* 7721 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 7722 * information. 7723 */ 7724 if (dl_policy(policy) || dl_policy(p->policy)) { 7725 cpuset_locked = true; 7726 cpuset_lock(); 7727 } 7728 7729 /* 7730 * Make sure no PI-waiters arrive (or leave) while we are 7731 * changing the priority of the task: 7732 * 7733 * To be able to change p->policy safely, the appropriate 7734 * runqueue lock must be held. 7735 */ 7736 rq = task_rq_lock(p, &rf); 7737 update_rq_clock(rq); 7738 7739 /* 7740 * Changing the policy of the stop threads its a very bad idea: 7741 */ 7742 if (p == rq->stop) { 7743 retval = -EINVAL; 7744 goto unlock; 7745 } 7746 7747 /* 7748 * If not changing anything there's no need to proceed further, 7749 * but store a possible modification of reset_on_fork. 7750 */ 7751 if (unlikely(policy == p->policy)) { 7752 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7753 goto change; 7754 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7755 goto change; 7756 if (dl_policy(policy) && dl_param_changed(p, attr)) 7757 goto change; 7758 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7759 goto change; 7760 7761 p->sched_reset_on_fork = reset_on_fork; 7762 retval = 0; 7763 goto unlock; 7764 } 7765 change: 7766 7767 if (user) { 7768 #ifdef CONFIG_RT_GROUP_SCHED 7769 /* 7770 * Do not allow realtime tasks into groups that have no runtime 7771 * assigned. 7772 */ 7773 if (rt_bandwidth_enabled() && rt_policy(policy) && 7774 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7775 !task_group_is_autogroup(task_group(p))) { 7776 retval = -EPERM; 7777 goto unlock; 7778 } 7779 #endif 7780 #ifdef CONFIG_SMP 7781 if (dl_bandwidth_enabled() && dl_policy(policy) && 7782 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7783 cpumask_t *span = rq->rd->span; 7784 7785 /* 7786 * Don't allow tasks with an affinity mask smaller than 7787 * the entire root_domain to become SCHED_DEADLINE. We 7788 * will also fail if there's no bandwidth available. 7789 */ 7790 if (!cpumask_subset(span, p->cpus_ptr) || 7791 rq->rd->dl_bw.bw == 0) { 7792 retval = -EPERM; 7793 goto unlock; 7794 } 7795 } 7796 #endif 7797 } 7798 7799 /* Re-check policy now with rq lock held: */ 7800 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7801 policy = oldpolicy = -1; 7802 task_rq_unlock(rq, p, &rf); 7803 if (cpuset_locked) 7804 cpuset_unlock(); 7805 goto recheck; 7806 } 7807 7808 /* 7809 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7810 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7811 * is available. 7812 */ 7813 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7814 retval = -EBUSY; 7815 goto unlock; 7816 } 7817 7818 p->sched_reset_on_fork = reset_on_fork; 7819 oldprio = p->prio; 7820 7821 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7822 if (pi) { 7823 /* 7824 * Take priority boosted tasks into account. If the new 7825 * effective priority is unchanged, we just store the new 7826 * normal parameters and do not touch the scheduler class and 7827 * the runqueue. This will be done when the task deboost 7828 * itself. 7829 */ 7830 newprio = rt_effective_prio(p, newprio); 7831 if (newprio == oldprio) 7832 queue_flags &= ~DEQUEUE_MOVE; 7833 } 7834 7835 queued = task_on_rq_queued(p); 7836 running = task_current(rq, p); 7837 if (queued) 7838 dequeue_task(rq, p, queue_flags); 7839 if (running) 7840 put_prev_task(rq, p); 7841 7842 prev_class = p->sched_class; 7843 7844 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7845 __setscheduler_params(p, attr); 7846 __setscheduler_prio(p, newprio); 7847 } 7848 __setscheduler_uclamp(p, attr); 7849 7850 if (queued) { 7851 /* 7852 * We enqueue to tail when the priority of a task is 7853 * increased (user space view). 7854 */ 7855 if (oldprio < p->prio) 7856 queue_flags |= ENQUEUE_HEAD; 7857 7858 enqueue_task(rq, p, queue_flags); 7859 } 7860 if (running) 7861 set_next_task(rq, p); 7862 7863 check_class_changed(rq, p, prev_class, oldprio); 7864 7865 /* Avoid rq from going away on us: */ 7866 preempt_disable(); 7867 head = splice_balance_callbacks(rq); 7868 task_rq_unlock(rq, p, &rf); 7869 7870 if (pi) { 7871 if (cpuset_locked) 7872 cpuset_unlock(); 7873 rt_mutex_adjust_pi(p); 7874 } 7875 7876 /* Run balance callbacks after we've adjusted the PI chain: */ 7877 balance_callbacks(rq, head); 7878 preempt_enable(); 7879 7880 return 0; 7881 7882 unlock: 7883 task_rq_unlock(rq, p, &rf); 7884 if (cpuset_locked) 7885 cpuset_unlock(); 7886 return retval; 7887 } 7888 7889 static int _sched_setscheduler(struct task_struct *p, int policy, 7890 const struct sched_param *param, bool check) 7891 { 7892 struct sched_attr attr = { 7893 .sched_policy = policy, 7894 .sched_priority = param->sched_priority, 7895 .sched_nice = PRIO_TO_NICE(p->static_prio), 7896 }; 7897 7898 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7899 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7900 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7901 policy &= ~SCHED_RESET_ON_FORK; 7902 attr.sched_policy = policy; 7903 } 7904 7905 return __sched_setscheduler(p, &attr, check, true); 7906 } 7907 /** 7908 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7909 * @p: the task in question. 7910 * @policy: new policy. 7911 * @param: structure containing the new RT priority. 7912 * 7913 * Use sched_set_fifo(), read its comment. 7914 * 7915 * Return: 0 on success. An error code otherwise. 7916 * 7917 * NOTE that the task may be already dead. 7918 */ 7919 int sched_setscheduler(struct task_struct *p, int policy, 7920 const struct sched_param *param) 7921 { 7922 return _sched_setscheduler(p, policy, param, true); 7923 } 7924 7925 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7926 { 7927 return __sched_setscheduler(p, attr, true, true); 7928 } 7929 7930 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7931 { 7932 return __sched_setscheduler(p, attr, false, true); 7933 } 7934 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7935 7936 /** 7937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7938 * @p: the task in question. 7939 * @policy: new policy. 7940 * @param: structure containing the new RT priority. 7941 * 7942 * Just like sched_setscheduler, only don't bother checking if the 7943 * current context has permission. For example, this is needed in 7944 * stop_machine(): we create temporary high priority worker threads, 7945 * but our caller might not have that capability. 7946 * 7947 * Return: 0 on success. An error code otherwise. 7948 */ 7949 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7950 const struct sched_param *param) 7951 { 7952 return _sched_setscheduler(p, policy, param, false); 7953 } 7954 7955 /* 7956 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7957 * incapable of resource management, which is the one thing an OS really should 7958 * be doing. 7959 * 7960 * This is of course the reason it is limited to privileged users only. 7961 * 7962 * Worse still; it is fundamentally impossible to compose static priority 7963 * workloads. You cannot take two correctly working static prio workloads 7964 * and smash them together and still expect them to work. 7965 * 7966 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7967 * 7968 * MAX_RT_PRIO / 2 7969 * 7970 * The administrator _MUST_ configure the system, the kernel simply doesn't 7971 * know enough information to make a sensible choice. 7972 */ 7973 void sched_set_fifo(struct task_struct *p) 7974 { 7975 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7976 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7977 } 7978 EXPORT_SYMBOL_GPL(sched_set_fifo); 7979 7980 /* 7981 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7982 */ 7983 void sched_set_fifo_low(struct task_struct *p) 7984 { 7985 struct sched_param sp = { .sched_priority = 1 }; 7986 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7987 } 7988 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7989 7990 void sched_set_normal(struct task_struct *p, int nice) 7991 { 7992 struct sched_attr attr = { 7993 .sched_policy = SCHED_NORMAL, 7994 .sched_nice = nice, 7995 }; 7996 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7997 } 7998 EXPORT_SYMBOL_GPL(sched_set_normal); 7999 8000 static int 8001 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 8002 { 8003 struct sched_param lparam; 8004 8005 if (!param || pid < 0) 8006 return -EINVAL; 8007 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 8008 return -EFAULT; 8009 8010 CLASS(find_get_task, p)(pid); 8011 if (!p) 8012 return -ESRCH; 8013 8014 return sched_setscheduler(p, policy, &lparam); 8015 } 8016 8017 /* 8018 * Mimics kernel/events/core.c perf_copy_attr(). 8019 */ 8020 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 8021 { 8022 u32 size; 8023 int ret; 8024 8025 /* Zero the full structure, so that a short copy will be nice: */ 8026 memset(attr, 0, sizeof(*attr)); 8027 8028 ret = get_user(size, &uattr->size); 8029 if (ret) 8030 return ret; 8031 8032 /* ABI compatibility quirk: */ 8033 if (!size) 8034 size = SCHED_ATTR_SIZE_VER0; 8035 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 8036 goto err_size; 8037 8038 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 8039 if (ret) { 8040 if (ret == -E2BIG) 8041 goto err_size; 8042 return ret; 8043 } 8044 8045 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 8046 size < SCHED_ATTR_SIZE_VER1) 8047 return -EINVAL; 8048 8049 /* 8050 * XXX: Do we want to be lenient like existing syscalls; or do we want 8051 * to be strict and return an error on out-of-bounds values? 8052 */ 8053 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 8054 8055 return 0; 8056 8057 err_size: 8058 put_user(sizeof(*attr), &uattr->size); 8059 return -E2BIG; 8060 } 8061 8062 static void get_params(struct task_struct *p, struct sched_attr *attr) 8063 { 8064 if (task_has_dl_policy(p)) 8065 __getparam_dl(p, attr); 8066 else if (task_has_rt_policy(p)) 8067 attr->sched_priority = p->rt_priority; 8068 else 8069 attr->sched_nice = task_nice(p); 8070 } 8071 8072 /** 8073 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 8074 * @pid: the pid in question. 8075 * @policy: new policy. 8076 * @param: structure containing the new RT priority. 8077 * 8078 * Return: 0 on success. An error code otherwise. 8079 */ 8080 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 8081 { 8082 if (policy < 0) 8083 return -EINVAL; 8084 8085 return do_sched_setscheduler(pid, policy, param); 8086 } 8087 8088 /** 8089 * sys_sched_setparam - set/change the RT priority of a thread 8090 * @pid: the pid in question. 8091 * @param: structure containing the new RT priority. 8092 * 8093 * Return: 0 on success. An error code otherwise. 8094 */ 8095 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 8096 { 8097 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 8098 } 8099 8100 /** 8101 * sys_sched_setattr - same as above, but with extended sched_attr 8102 * @pid: the pid in question. 8103 * @uattr: structure containing the extended parameters. 8104 * @flags: for future extension. 8105 */ 8106 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 8107 unsigned int, flags) 8108 { 8109 struct sched_attr attr; 8110 int retval; 8111 8112 if (!uattr || pid < 0 || flags) 8113 return -EINVAL; 8114 8115 retval = sched_copy_attr(uattr, &attr); 8116 if (retval) 8117 return retval; 8118 8119 if ((int)attr.sched_policy < 0) 8120 return -EINVAL; 8121 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 8122 attr.sched_policy = SETPARAM_POLICY; 8123 8124 CLASS(find_get_task, p)(pid); 8125 if (!p) 8126 return -ESRCH; 8127 8128 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 8129 get_params(p, &attr); 8130 8131 return sched_setattr(p, &attr); 8132 } 8133 8134 /** 8135 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 8136 * @pid: the pid in question. 8137 * 8138 * Return: On success, the policy of the thread. Otherwise, a negative error 8139 * code. 8140 */ 8141 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 8142 { 8143 struct task_struct *p; 8144 int retval; 8145 8146 if (pid < 0) 8147 return -EINVAL; 8148 8149 guard(rcu)(); 8150 p = find_process_by_pid(pid); 8151 if (!p) 8152 return -ESRCH; 8153 8154 retval = security_task_getscheduler(p); 8155 if (!retval) { 8156 retval = p->policy; 8157 if (p->sched_reset_on_fork) 8158 retval |= SCHED_RESET_ON_FORK; 8159 } 8160 return retval; 8161 } 8162 8163 /** 8164 * sys_sched_getparam - get the RT priority of a thread 8165 * @pid: the pid in question. 8166 * @param: structure containing the RT priority. 8167 * 8168 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 8169 * code. 8170 */ 8171 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 8172 { 8173 struct sched_param lp = { .sched_priority = 0 }; 8174 struct task_struct *p; 8175 int retval; 8176 8177 if (!param || pid < 0) 8178 return -EINVAL; 8179 8180 scoped_guard (rcu) { 8181 p = find_process_by_pid(pid); 8182 if (!p) 8183 return -ESRCH; 8184 8185 retval = security_task_getscheduler(p); 8186 if (retval) 8187 return retval; 8188 8189 if (task_has_rt_policy(p)) 8190 lp.sched_priority = p->rt_priority; 8191 } 8192 8193 /* 8194 * This one might sleep, we cannot do it with a spinlock held ... 8195 */ 8196 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8197 } 8198 8199 /* 8200 * Copy the kernel size attribute structure (which might be larger 8201 * than what user-space knows about) to user-space. 8202 * 8203 * Note that all cases are valid: user-space buffer can be larger or 8204 * smaller than the kernel-space buffer. The usual case is that both 8205 * have the same size. 8206 */ 8207 static int 8208 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8209 struct sched_attr *kattr, 8210 unsigned int usize) 8211 { 8212 unsigned int ksize = sizeof(*kattr); 8213 8214 if (!access_ok(uattr, usize)) 8215 return -EFAULT; 8216 8217 /* 8218 * sched_getattr() ABI forwards and backwards compatibility: 8219 * 8220 * If usize == ksize then we just copy everything to user-space and all is good. 8221 * 8222 * If usize < ksize then we only copy as much as user-space has space for, 8223 * this keeps ABI compatibility as well. We skip the rest. 8224 * 8225 * If usize > ksize then user-space is using a newer version of the ABI, 8226 * which part the kernel doesn't know about. Just ignore it - tooling can 8227 * detect the kernel's knowledge of attributes from the attr->size value 8228 * which is set to ksize in this case. 8229 */ 8230 kattr->size = min(usize, ksize); 8231 8232 if (copy_to_user(uattr, kattr, kattr->size)) 8233 return -EFAULT; 8234 8235 return 0; 8236 } 8237 8238 /** 8239 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8240 * @pid: the pid in question. 8241 * @uattr: structure containing the extended parameters. 8242 * @usize: sizeof(attr) for fwd/bwd comp. 8243 * @flags: for future extension. 8244 */ 8245 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8246 unsigned int, usize, unsigned int, flags) 8247 { 8248 struct sched_attr kattr = { }; 8249 struct task_struct *p; 8250 int retval; 8251 8252 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8253 usize < SCHED_ATTR_SIZE_VER0 || flags) 8254 return -EINVAL; 8255 8256 scoped_guard (rcu) { 8257 p = find_process_by_pid(pid); 8258 if (!p) 8259 return -ESRCH; 8260 8261 retval = security_task_getscheduler(p); 8262 if (retval) 8263 return retval; 8264 8265 kattr.sched_policy = p->policy; 8266 if (p->sched_reset_on_fork) 8267 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8268 get_params(p, &kattr); 8269 kattr.sched_flags &= SCHED_FLAG_ALL; 8270 8271 #ifdef CONFIG_UCLAMP_TASK 8272 /* 8273 * This could race with another potential updater, but this is fine 8274 * because it'll correctly read the old or the new value. We don't need 8275 * to guarantee who wins the race as long as it doesn't return garbage. 8276 */ 8277 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8278 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8279 #endif 8280 } 8281 8282 return sched_attr_copy_to_user(uattr, &kattr, usize); 8283 } 8284 8285 #ifdef CONFIG_SMP 8286 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8287 { 8288 /* 8289 * If the task isn't a deadline task or admission control is 8290 * disabled then we don't care about affinity changes. 8291 */ 8292 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8293 return 0; 8294 8295 /* 8296 * Since bandwidth control happens on root_domain basis, 8297 * if admission test is enabled, we only admit -deadline 8298 * tasks allowed to run on all the CPUs in the task's 8299 * root_domain. 8300 */ 8301 guard(rcu)(); 8302 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8303 return -EBUSY; 8304 8305 return 0; 8306 } 8307 #endif 8308 8309 static int 8310 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8311 { 8312 int retval; 8313 cpumask_var_t cpus_allowed, new_mask; 8314 8315 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8316 return -ENOMEM; 8317 8318 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8319 retval = -ENOMEM; 8320 goto out_free_cpus_allowed; 8321 } 8322 8323 cpuset_cpus_allowed(p, cpus_allowed); 8324 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8325 8326 ctx->new_mask = new_mask; 8327 ctx->flags |= SCA_CHECK; 8328 8329 retval = dl_task_check_affinity(p, new_mask); 8330 if (retval) 8331 goto out_free_new_mask; 8332 8333 retval = __set_cpus_allowed_ptr(p, ctx); 8334 if (retval) 8335 goto out_free_new_mask; 8336 8337 cpuset_cpus_allowed(p, cpus_allowed); 8338 if (!cpumask_subset(new_mask, cpus_allowed)) { 8339 /* 8340 * We must have raced with a concurrent cpuset update. 8341 * Just reset the cpumask to the cpuset's cpus_allowed. 8342 */ 8343 cpumask_copy(new_mask, cpus_allowed); 8344 8345 /* 8346 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8347 * will restore the previous user_cpus_ptr value. 8348 * 8349 * In the unlikely event a previous user_cpus_ptr exists, 8350 * we need to further restrict the mask to what is allowed 8351 * by that old user_cpus_ptr. 8352 */ 8353 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8354 bool empty = !cpumask_and(new_mask, new_mask, 8355 ctx->user_mask); 8356 8357 if (WARN_ON_ONCE(empty)) 8358 cpumask_copy(new_mask, cpus_allowed); 8359 } 8360 __set_cpus_allowed_ptr(p, ctx); 8361 retval = -EINVAL; 8362 } 8363 8364 out_free_new_mask: 8365 free_cpumask_var(new_mask); 8366 out_free_cpus_allowed: 8367 free_cpumask_var(cpus_allowed); 8368 return retval; 8369 } 8370 8371 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8372 { 8373 struct affinity_context ac; 8374 struct cpumask *user_mask; 8375 int retval; 8376 8377 CLASS(find_get_task, p)(pid); 8378 if (!p) 8379 return -ESRCH; 8380 8381 if (p->flags & PF_NO_SETAFFINITY) 8382 return -EINVAL; 8383 8384 if (!check_same_owner(p)) { 8385 guard(rcu)(); 8386 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 8387 return -EPERM; 8388 } 8389 8390 retval = security_task_setscheduler(p); 8391 if (retval) 8392 return retval; 8393 8394 /* 8395 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 8396 * alloc_user_cpus_ptr() returns NULL. 8397 */ 8398 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 8399 if (user_mask) { 8400 cpumask_copy(user_mask, in_mask); 8401 } else if (IS_ENABLED(CONFIG_SMP)) { 8402 return -ENOMEM; 8403 } 8404 8405 ac = (struct affinity_context){ 8406 .new_mask = in_mask, 8407 .user_mask = user_mask, 8408 .flags = SCA_USER, 8409 }; 8410 8411 retval = __sched_setaffinity(p, &ac); 8412 kfree(ac.user_mask); 8413 8414 return retval; 8415 } 8416 8417 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8418 struct cpumask *new_mask) 8419 { 8420 if (len < cpumask_size()) 8421 cpumask_clear(new_mask); 8422 else if (len > cpumask_size()) 8423 len = cpumask_size(); 8424 8425 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8426 } 8427 8428 /** 8429 * sys_sched_setaffinity - set the CPU affinity of a process 8430 * @pid: pid of the process 8431 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8432 * @user_mask_ptr: user-space pointer to the new CPU mask 8433 * 8434 * Return: 0 on success. An error code otherwise. 8435 */ 8436 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8437 unsigned long __user *, user_mask_ptr) 8438 { 8439 cpumask_var_t new_mask; 8440 int retval; 8441 8442 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8443 return -ENOMEM; 8444 8445 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8446 if (retval == 0) 8447 retval = sched_setaffinity(pid, new_mask); 8448 free_cpumask_var(new_mask); 8449 return retval; 8450 } 8451 8452 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8453 { 8454 struct task_struct *p; 8455 int retval; 8456 8457 guard(rcu)(); 8458 p = find_process_by_pid(pid); 8459 if (!p) 8460 return -ESRCH; 8461 8462 retval = security_task_getscheduler(p); 8463 if (retval) 8464 return retval; 8465 8466 guard(raw_spinlock_irqsave)(&p->pi_lock); 8467 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8468 8469 return 0; 8470 } 8471 8472 /** 8473 * sys_sched_getaffinity - get the CPU affinity of a process 8474 * @pid: pid of the process 8475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8476 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8477 * 8478 * Return: size of CPU mask copied to user_mask_ptr on success. An 8479 * error code otherwise. 8480 */ 8481 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8482 unsigned long __user *, user_mask_ptr) 8483 { 8484 int ret; 8485 cpumask_var_t mask; 8486 8487 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8488 return -EINVAL; 8489 if (len & (sizeof(unsigned long)-1)) 8490 return -EINVAL; 8491 8492 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 8493 return -ENOMEM; 8494 8495 ret = sched_getaffinity(pid, mask); 8496 if (ret == 0) { 8497 unsigned int retlen = min(len, cpumask_size()); 8498 8499 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 8500 ret = -EFAULT; 8501 else 8502 ret = retlen; 8503 } 8504 free_cpumask_var(mask); 8505 8506 return ret; 8507 } 8508 8509 static void do_sched_yield(void) 8510 { 8511 struct rq_flags rf; 8512 struct rq *rq; 8513 8514 rq = this_rq_lock_irq(&rf); 8515 8516 schedstat_inc(rq->yld_count); 8517 current->sched_class->yield_task(rq); 8518 8519 preempt_disable(); 8520 rq_unlock_irq(rq, &rf); 8521 sched_preempt_enable_no_resched(); 8522 8523 schedule(); 8524 } 8525 8526 /** 8527 * sys_sched_yield - yield the current processor to other threads. 8528 * 8529 * This function yields the current CPU to other tasks. If there are no 8530 * other threads running on this CPU then this function will return. 8531 * 8532 * Return: 0. 8533 */ 8534 SYSCALL_DEFINE0(sched_yield) 8535 { 8536 do_sched_yield(); 8537 return 0; 8538 } 8539 8540 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8541 int __sched __cond_resched(void) 8542 { 8543 if (should_resched(0)) { 8544 preempt_schedule_common(); 8545 return 1; 8546 } 8547 /* 8548 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8549 * whether the current CPU is in an RCU read-side critical section, 8550 * so the tick can report quiescent states even for CPUs looping 8551 * in kernel context. In contrast, in non-preemptible kernels, 8552 * RCU readers leave no in-memory hints, which means that CPU-bound 8553 * processes executing in kernel context might never report an 8554 * RCU quiescent state. Therefore, the following code causes 8555 * cond_resched() to report a quiescent state, but only when RCU 8556 * is in urgent need of one. 8557 */ 8558 #ifndef CONFIG_PREEMPT_RCU 8559 rcu_all_qs(); 8560 #endif 8561 return 0; 8562 } 8563 EXPORT_SYMBOL(__cond_resched); 8564 #endif 8565 8566 #ifdef CONFIG_PREEMPT_DYNAMIC 8567 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8568 #define cond_resched_dynamic_enabled __cond_resched 8569 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8570 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8571 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8572 8573 #define might_resched_dynamic_enabled __cond_resched 8574 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8575 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8576 EXPORT_STATIC_CALL_TRAMP(might_resched); 8577 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8578 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8579 int __sched dynamic_cond_resched(void) 8580 { 8581 klp_sched_try_switch(); 8582 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8583 return 0; 8584 return __cond_resched(); 8585 } 8586 EXPORT_SYMBOL(dynamic_cond_resched); 8587 8588 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8589 int __sched dynamic_might_resched(void) 8590 { 8591 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8592 return 0; 8593 return __cond_resched(); 8594 } 8595 EXPORT_SYMBOL(dynamic_might_resched); 8596 #endif 8597 #endif 8598 8599 /* 8600 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8601 * call schedule, and on return reacquire the lock. 8602 * 8603 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8604 * operations here to prevent schedule() from being called twice (once via 8605 * spin_unlock(), once by hand). 8606 */ 8607 int __cond_resched_lock(spinlock_t *lock) 8608 { 8609 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8610 int ret = 0; 8611 8612 lockdep_assert_held(lock); 8613 8614 if (spin_needbreak(lock) || resched) { 8615 spin_unlock(lock); 8616 if (!_cond_resched()) 8617 cpu_relax(); 8618 ret = 1; 8619 spin_lock(lock); 8620 } 8621 return ret; 8622 } 8623 EXPORT_SYMBOL(__cond_resched_lock); 8624 8625 int __cond_resched_rwlock_read(rwlock_t *lock) 8626 { 8627 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8628 int ret = 0; 8629 8630 lockdep_assert_held_read(lock); 8631 8632 if (rwlock_needbreak(lock) || resched) { 8633 read_unlock(lock); 8634 if (!_cond_resched()) 8635 cpu_relax(); 8636 ret = 1; 8637 read_lock(lock); 8638 } 8639 return ret; 8640 } 8641 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8642 8643 int __cond_resched_rwlock_write(rwlock_t *lock) 8644 { 8645 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8646 int ret = 0; 8647 8648 lockdep_assert_held_write(lock); 8649 8650 if (rwlock_needbreak(lock) || resched) { 8651 write_unlock(lock); 8652 if (!_cond_resched()) 8653 cpu_relax(); 8654 ret = 1; 8655 write_lock(lock); 8656 } 8657 return ret; 8658 } 8659 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8660 8661 #ifdef CONFIG_PREEMPT_DYNAMIC 8662 8663 #ifdef CONFIG_GENERIC_ENTRY 8664 #include <linux/entry-common.h> 8665 #endif 8666 8667 /* 8668 * SC:cond_resched 8669 * SC:might_resched 8670 * SC:preempt_schedule 8671 * SC:preempt_schedule_notrace 8672 * SC:irqentry_exit_cond_resched 8673 * 8674 * 8675 * NONE: 8676 * cond_resched <- __cond_resched 8677 * might_resched <- RET0 8678 * preempt_schedule <- NOP 8679 * preempt_schedule_notrace <- NOP 8680 * irqentry_exit_cond_resched <- NOP 8681 * 8682 * VOLUNTARY: 8683 * cond_resched <- __cond_resched 8684 * might_resched <- __cond_resched 8685 * preempt_schedule <- NOP 8686 * preempt_schedule_notrace <- NOP 8687 * irqentry_exit_cond_resched <- NOP 8688 * 8689 * FULL: 8690 * cond_resched <- RET0 8691 * might_resched <- RET0 8692 * preempt_schedule <- preempt_schedule 8693 * preempt_schedule_notrace <- preempt_schedule_notrace 8694 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8695 */ 8696 8697 enum { 8698 preempt_dynamic_undefined = -1, 8699 preempt_dynamic_none, 8700 preempt_dynamic_voluntary, 8701 preempt_dynamic_full, 8702 }; 8703 8704 int preempt_dynamic_mode = preempt_dynamic_undefined; 8705 8706 int sched_dynamic_mode(const char *str) 8707 { 8708 if (!strcmp(str, "none")) 8709 return preempt_dynamic_none; 8710 8711 if (!strcmp(str, "voluntary")) 8712 return preempt_dynamic_voluntary; 8713 8714 if (!strcmp(str, "full")) 8715 return preempt_dynamic_full; 8716 8717 return -EINVAL; 8718 } 8719 8720 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8721 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8722 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8723 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8724 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8725 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8726 #else 8727 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8728 #endif 8729 8730 static DEFINE_MUTEX(sched_dynamic_mutex); 8731 static bool klp_override; 8732 8733 static void __sched_dynamic_update(int mode) 8734 { 8735 /* 8736 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8737 * the ZERO state, which is invalid. 8738 */ 8739 if (!klp_override) 8740 preempt_dynamic_enable(cond_resched); 8741 preempt_dynamic_enable(might_resched); 8742 preempt_dynamic_enable(preempt_schedule); 8743 preempt_dynamic_enable(preempt_schedule_notrace); 8744 preempt_dynamic_enable(irqentry_exit_cond_resched); 8745 8746 switch (mode) { 8747 case preempt_dynamic_none: 8748 if (!klp_override) 8749 preempt_dynamic_enable(cond_resched); 8750 preempt_dynamic_disable(might_resched); 8751 preempt_dynamic_disable(preempt_schedule); 8752 preempt_dynamic_disable(preempt_schedule_notrace); 8753 preempt_dynamic_disable(irqentry_exit_cond_resched); 8754 if (mode != preempt_dynamic_mode) 8755 pr_info("Dynamic Preempt: none\n"); 8756 break; 8757 8758 case preempt_dynamic_voluntary: 8759 if (!klp_override) 8760 preempt_dynamic_enable(cond_resched); 8761 preempt_dynamic_enable(might_resched); 8762 preempt_dynamic_disable(preempt_schedule); 8763 preempt_dynamic_disable(preempt_schedule_notrace); 8764 preempt_dynamic_disable(irqentry_exit_cond_resched); 8765 if (mode != preempt_dynamic_mode) 8766 pr_info("Dynamic Preempt: voluntary\n"); 8767 break; 8768 8769 case preempt_dynamic_full: 8770 if (!klp_override) 8771 preempt_dynamic_disable(cond_resched); 8772 preempt_dynamic_disable(might_resched); 8773 preempt_dynamic_enable(preempt_schedule); 8774 preempt_dynamic_enable(preempt_schedule_notrace); 8775 preempt_dynamic_enable(irqentry_exit_cond_resched); 8776 if (mode != preempt_dynamic_mode) 8777 pr_info("Dynamic Preempt: full\n"); 8778 break; 8779 } 8780 8781 preempt_dynamic_mode = mode; 8782 } 8783 8784 void sched_dynamic_update(int mode) 8785 { 8786 mutex_lock(&sched_dynamic_mutex); 8787 __sched_dynamic_update(mode); 8788 mutex_unlock(&sched_dynamic_mutex); 8789 } 8790 8791 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 8792 8793 static int klp_cond_resched(void) 8794 { 8795 __klp_sched_try_switch(); 8796 return __cond_resched(); 8797 } 8798 8799 void sched_dynamic_klp_enable(void) 8800 { 8801 mutex_lock(&sched_dynamic_mutex); 8802 8803 klp_override = true; 8804 static_call_update(cond_resched, klp_cond_resched); 8805 8806 mutex_unlock(&sched_dynamic_mutex); 8807 } 8808 8809 void sched_dynamic_klp_disable(void) 8810 { 8811 mutex_lock(&sched_dynamic_mutex); 8812 8813 klp_override = false; 8814 __sched_dynamic_update(preempt_dynamic_mode); 8815 8816 mutex_unlock(&sched_dynamic_mutex); 8817 } 8818 8819 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 8820 8821 static int __init setup_preempt_mode(char *str) 8822 { 8823 int mode = sched_dynamic_mode(str); 8824 if (mode < 0) { 8825 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8826 return 0; 8827 } 8828 8829 sched_dynamic_update(mode); 8830 return 1; 8831 } 8832 __setup("preempt=", setup_preempt_mode); 8833 8834 static void __init preempt_dynamic_init(void) 8835 { 8836 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8837 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8838 sched_dynamic_update(preempt_dynamic_none); 8839 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8840 sched_dynamic_update(preempt_dynamic_voluntary); 8841 } else { 8842 /* Default static call setting, nothing to do */ 8843 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8844 preempt_dynamic_mode = preempt_dynamic_full; 8845 pr_info("Dynamic Preempt: full\n"); 8846 } 8847 } 8848 } 8849 8850 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8851 bool preempt_model_##mode(void) \ 8852 { \ 8853 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8854 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8855 } \ 8856 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8857 8858 PREEMPT_MODEL_ACCESSOR(none); 8859 PREEMPT_MODEL_ACCESSOR(voluntary); 8860 PREEMPT_MODEL_ACCESSOR(full); 8861 8862 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8863 8864 static inline void preempt_dynamic_init(void) { } 8865 8866 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8867 8868 /** 8869 * yield - yield the current processor to other threads. 8870 * 8871 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8872 * 8873 * The scheduler is at all times free to pick the calling task as the most 8874 * eligible task to run, if removing the yield() call from your code breaks 8875 * it, it's already broken. 8876 * 8877 * Typical broken usage is: 8878 * 8879 * while (!event) 8880 * yield(); 8881 * 8882 * where one assumes that yield() will let 'the other' process run that will 8883 * make event true. If the current task is a SCHED_FIFO task that will never 8884 * happen. Never use yield() as a progress guarantee!! 8885 * 8886 * If you want to use yield() to wait for something, use wait_event(). 8887 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8888 * If you still want to use yield(), do not! 8889 */ 8890 void __sched yield(void) 8891 { 8892 set_current_state(TASK_RUNNING); 8893 do_sched_yield(); 8894 } 8895 EXPORT_SYMBOL(yield); 8896 8897 /** 8898 * yield_to - yield the current processor to another thread in 8899 * your thread group, or accelerate that thread toward the 8900 * processor it's on. 8901 * @p: target task 8902 * @preempt: whether task preemption is allowed or not 8903 * 8904 * It's the caller's job to ensure that the target task struct 8905 * can't go away on us before we can do any checks. 8906 * 8907 * Return: 8908 * true (>0) if we indeed boosted the target task. 8909 * false (0) if we failed to boost the target. 8910 * -ESRCH if there's no task to yield to. 8911 */ 8912 int __sched yield_to(struct task_struct *p, bool preempt) 8913 { 8914 struct task_struct *curr = current; 8915 struct rq *rq, *p_rq; 8916 int yielded = 0; 8917 8918 scoped_guard (irqsave) { 8919 rq = this_rq(); 8920 8921 again: 8922 p_rq = task_rq(p); 8923 /* 8924 * If we're the only runnable task on the rq and target rq also 8925 * has only one task, there's absolutely no point in yielding. 8926 */ 8927 if (rq->nr_running == 1 && p_rq->nr_running == 1) 8928 return -ESRCH; 8929 8930 guard(double_rq_lock)(rq, p_rq); 8931 if (task_rq(p) != p_rq) 8932 goto again; 8933 8934 if (!curr->sched_class->yield_to_task) 8935 return 0; 8936 8937 if (curr->sched_class != p->sched_class) 8938 return 0; 8939 8940 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8941 return 0; 8942 8943 yielded = curr->sched_class->yield_to_task(rq, p); 8944 if (yielded) { 8945 schedstat_inc(rq->yld_count); 8946 /* 8947 * Make p's CPU reschedule; pick_next_entity 8948 * takes care of fairness. 8949 */ 8950 if (preempt && rq != p_rq) 8951 resched_curr(p_rq); 8952 } 8953 } 8954 8955 if (yielded) 8956 schedule(); 8957 8958 return yielded; 8959 } 8960 EXPORT_SYMBOL_GPL(yield_to); 8961 8962 int io_schedule_prepare(void) 8963 { 8964 int old_iowait = current->in_iowait; 8965 8966 current->in_iowait = 1; 8967 blk_flush_plug(current->plug, true); 8968 return old_iowait; 8969 } 8970 8971 void io_schedule_finish(int token) 8972 { 8973 current->in_iowait = token; 8974 } 8975 8976 /* 8977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8978 * that process accounting knows that this is a task in IO wait state. 8979 */ 8980 long __sched io_schedule_timeout(long timeout) 8981 { 8982 int token; 8983 long ret; 8984 8985 token = io_schedule_prepare(); 8986 ret = schedule_timeout(timeout); 8987 io_schedule_finish(token); 8988 8989 return ret; 8990 } 8991 EXPORT_SYMBOL(io_schedule_timeout); 8992 8993 void __sched io_schedule(void) 8994 { 8995 int token; 8996 8997 token = io_schedule_prepare(); 8998 schedule(); 8999 io_schedule_finish(token); 9000 } 9001 EXPORT_SYMBOL(io_schedule); 9002 9003 /** 9004 * sys_sched_get_priority_max - return maximum RT priority. 9005 * @policy: scheduling class. 9006 * 9007 * Return: On success, this syscall returns the maximum 9008 * rt_priority that can be used by a given scheduling class. 9009 * On failure, a negative error code is returned. 9010 */ 9011 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 9012 { 9013 int ret = -EINVAL; 9014 9015 switch (policy) { 9016 case SCHED_FIFO: 9017 case SCHED_RR: 9018 ret = MAX_RT_PRIO-1; 9019 break; 9020 case SCHED_DEADLINE: 9021 case SCHED_NORMAL: 9022 case SCHED_BATCH: 9023 case SCHED_IDLE: 9024 ret = 0; 9025 break; 9026 } 9027 return ret; 9028 } 9029 9030 /** 9031 * sys_sched_get_priority_min - return minimum RT priority. 9032 * @policy: scheduling class. 9033 * 9034 * Return: On success, this syscall returns the minimum 9035 * rt_priority that can be used by a given scheduling class. 9036 * On failure, a negative error code is returned. 9037 */ 9038 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 9039 { 9040 int ret = -EINVAL; 9041 9042 switch (policy) { 9043 case SCHED_FIFO: 9044 case SCHED_RR: 9045 ret = 1; 9046 break; 9047 case SCHED_DEADLINE: 9048 case SCHED_NORMAL: 9049 case SCHED_BATCH: 9050 case SCHED_IDLE: 9051 ret = 0; 9052 } 9053 return ret; 9054 } 9055 9056 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 9057 { 9058 unsigned int time_slice = 0; 9059 int retval; 9060 9061 if (pid < 0) 9062 return -EINVAL; 9063 9064 scoped_guard (rcu) { 9065 struct task_struct *p = find_process_by_pid(pid); 9066 if (!p) 9067 return -ESRCH; 9068 9069 retval = security_task_getscheduler(p); 9070 if (retval) 9071 return retval; 9072 9073 scoped_guard (task_rq_lock, p) { 9074 struct rq *rq = scope.rq; 9075 if (p->sched_class->get_rr_interval) 9076 time_slice = p->sched_class->get_rr_interval(rq, p); 9077 } 9078 } 9079 9080 jiffies_to_timespec64(time_slice, t); 9081 return 0; 9082 } 9083 9084 /** 9085 * sys_sched_rr_get_interval - return the default timeslice of a process. 9086 * @pid: pid of the process. 9087 * @interval: userspace pointer to the timeslice value. 9088 * 9089 * this syscall writes the default timeslice value of a given process 9090 * into the user-space timespec buffer. A value of '0' means infinity. 9091 * 9092 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 9093 * an error code. 9094 */ 9095 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 9096 struct __kernel_timespec __user *, interval) 9097 { 9098 struct timespec64 t; 9099 int retval = sched_rr_get_interval(pid, &t); 9100 9101 if (retval == 0) 9102 retval = put_timespec64(&t, interval); 9103 9104 return retval; 9105 } 9106 9107 #ifdef CONFIG_COMPAT_32BIT_TIME 9108 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 9109 struct old_timespec32 __user *, interval) 9110 { 9111 struct timespec64 t; 9112 int retval = sched_rr_get_interval(pid, &t); 9113 9114 if (retval == 0) 9115 retval = put_old_timespec32(&t, interval); 9116 return retval; 9117 } 9118 #endif 9119 9120 void sched_show_task(struct task_struct *p) 9121 { 9122 unsigned long free = 0; 9123 int ppid; 9124 9125 if (!try_get_task_stack(p)) 9126 return; 9127 9128 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 9129 9130 if (task_is_running(p)) 9131 pr_cont(" running task "); 9132 #ifdef CONFIG_DEBUG_STACK_USAGE 9133 free = stack_not_used(p); 9134 #endif 9135 ppid = 0; 9136 rcu_read_lock(); 9137 if (pid_alive(p)) 9138 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 9139 rcu_read_unlock(); 9140 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 9141 free, task_pid_nr(p), task_tgid_nr(p), 9142 ppid, read_task_thread_flags(p)); 9143 9144 print_worker_info(KERN_INFO, p); 9145 print_stop_info(KERN_INFO, p); 9146 show_stack(p, NULL, KERN_INFO); 9147 put_task_stack(p); 9148 } 9149 EXPORT_SYMBOL_GPL(sched_show_task); 9150 9151 static inline bool 9152 state_filter_match(unsigned long state_filter, struct task_struct *p) 9153 { 9154 unsigned int state = READ_ONCE(p->__state); 9155 9156 /* no filter, everything matches */ 9157 if (!state_filter) 9158 return true; 9159 9160 /* filter, but doesn't match */ 9161 if (!(state & state_filter)) 9162 return false; 9163 9164 /* 9165 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 9166 * TASK_KILLABLE). 9167 */ 9168 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 9169 return false; 9170 9171 return true; 9172 } 9173 9174 9175 void show_state_filter(unsigned int state_filter) 9176 { 9177 struct task_struct *g, *p; 9178 9179 rcu_read_lock(); 9180 for_each_process_thread(g, p) { 9181 /* 9182 * reset the NMI-timeout, listing all files on a slow 9183 * console might take a lot of time: 9184 * Also, reset softlockup watchdogs on all CPUs, because 9185 * another CPU might be blocked waiting for us to process 9186 * an IPI. 9187 */ 9188 touch_nmi_watchdog(); 9189 touch_all_softlockup_watchdogs(); 9190 if (state_filter_match(state_filter, p)) 9191 sched_show_task(p); 9192 } 9193 9194 #ifdef CONFIG_SCHED_DEBUG 9195 if (!state_filter) 9196 sysrq_sched_debug_show(); 9197 #endif 9198 rcu_read_unlock(); 9199 /* 9200 * Only show locks if all tasks are dumped: 9201 */ 9202 if (!state_filter) 9203 debug_show_all_locks(); 9204 } 9205 9206 /** 9207 * init_idle - set up an idle thread for a given CPU 9208 * @idle: task in question 9209 * @cpu: CPU the idle task belongs to 9210 * 9211 * NOTE: this function does not set the idle thread's NEED_RESCHED 9212 * flag, to make booting more robust. 9213 */ 9214 void __init init_idle(struct task_struct *idle, int cpu) 9215 { 9216 #ifdef CONFIG_SMP 9217 struct affinity_context ac = (struct affinity_context) { 9218 .new_mask = cpumask_of(cpu), 9219 .flags = 0, 9220 }; 9221 #endif 9222 struct rq *rq = cpu_rq(cpu); 9223 unsigned long flags; 9224 9225 __sched_fork(0, idle); 9226 9227 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9228 raw_spin_rq_lock(rq); 9229 9230 idle->__state = TASK_RUNNING; 9231 idle->se.exec_start = sched_clock(); 9232 /* 9233 * PF_KTHREAD should already be set at this point; regardless, make it 9234 * look like a proper per-CPU kthread. 9235 */ 9236 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 9237 kthread_set_per_cpu(idle, cpu); 9238 9239 #ifdef CONFIG_SMP 9240 /* 9241 * It's possible that init_idle() gets called multiple times on a task, 9242 * in that case do_set_cpus_allowed() will not do the right thing. 9243 * 9244 * And since this is boot we can forgo the serialization. 9245 */ 9246 set_cpus_allowed_common(idle, &ac); 9247 #endif 9248 /* 9249 * We're having a chicken and egg problem, even though we are 9250 * holding rq->lock, the CPU isn't yet set to this CPU so the 9251 * lockdep check in task_group() will fail. 9252 * 9253 * Similar case to sched_fork(). / Alternatively we could 9254 * use task_rq_lock() here and obtain the other rq->lock. 9255 * 9256 * Silence PROVE_RCU 9257 */ 9258 rcu_read_lock(); 9259 __set_task_cpu(idle, cpu); 9260 rcu_read_unlock(); 9261 9262 rq->idle = idle; 9263 rcu_assign_pointer(rq->curr, idle); 9264 idle->on_rq = TASK_ON_RQ_QUEUED; 9265 #ifdef CONFIG_SMP 9266 idle->on_cpu = 1; 9267 #endif 9268 raw_spin_rq_unlock(rq); 9269 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9270 9271 /* Set the preempt count _outside_ the spinlocks! */ 9272 init_idle_preempt_count(idle, cpu); 9273 9274 /* 9275 * The idle tasks have their own, simple scheduling class: 9276 */ 9277 idle->sched_class = &idle_sched_class; 9278 ftrace_graph_init_idle_task(idle, cpu); 9279 vtime_init_idle(idle, cpu); 9280 #ifdef CONFIG_SMP 9281 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9282 #endif 9283 } 9284 9285 #ifdef CONFIG_SMP 9286 9287 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9288 const struct cpumask *trial) 9289 { 9290 int ret = 1; 9291 9292 if (cpumask_empty(cur)) 9293 return ret; 9294 9295 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9296 9297 return ret; 9298 } 9299 9300 int task_can_attach(struct task_struct *p) 9301 { 9302 int ret = 0; 9303 9304 /* 9305 * Kthreads which disallow setaffinity shouldn't be moved 9306 * to a new cpuset; we don't want to change their CPU 9307 * affinity and isolating such threads by their set of 9308 * allowed nodes is unnecessary. Thus, cpusets are not 9309 * applicable for such threads. This prevents checking for 9310 * success of set_cpus_allowed_ptr() on all attached tasks 9311 * before cpus_mask may be changed. 9312 */ 9313 if (p->flags & PF_NO_SETAFFINITY) 9314 ret = -EINVAL; 9315 9316 return ret; 9317 } 9318 9319 bool sched_smp_initialized __read_mostly; 9320 9321 #ifdef CONFIG_NUMA_BALANCING 9322 /* Migrate current task p to target_cpu */ 9323 int migrate_task_to(struct task_struct *p, int target_cpu) 9324 { 9325 struct migration_arg arg = { p, target_cpu }; 9326 int curr_cpu = task_cpu(p); 9327 9328 if (curr_cpu == target_cpu) 9329 return 0; 9330 9331 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9332 return -EINVAL; 9333 9334 /* TODO: This is not properly updating schedstats */ 9335 9336 trace_sched_move_numa(p, curr_cpu, target_cpu); 9337 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9338 } 9339 9340 /* 9341 * Requeue a task on a given node and accurately track the number of NUMA 9342 * tasks on the runqueues 9343 */ 9344 void sched_setnuma(struct task_struct *p, int nid) 9345 { 9346 bool queued, running; 9347 struct rq_flags rf; 9348 struct rq *rq; 9349 9350 rq = task_rq_lock(p, &rf); 9351 queued = task_on_rq_queued(p); 9352 running = task_current(rq, p); 9353 9354 if (queued) 9355 dequeue_task(rq, p, DEQUEUE_SAVE); 9356 if (running) 9357 put_prev_task(rq, p); 9358 9359 p->numa_preferred_nid = nid; 9360 9361 if (queued) 9362 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9363 if (running) 9364 set_next_task(rq, p); 9365 task_rq_unlock(rq, p, &rf); 9366 } 9367 #endif /* CONFIG_NUMA_BALANCING */ 9368 9369 #ifdef CONFIG_HOTPLUG_CPU 9370 /* 9371 * Ensure that the idle task is using init_mm right before its CPU goes 9372 * offline. 9373 */ 9374 void idle_task_exit(void) 9375 { 9376 struct mm_struct *mm = current->active_mm; 9377 9378 BUG_ON(cpu_online(smp_processor_id())); 9379 BUG_ON(current != this_rq()->idle); 9380 9381 if (mm != &init_mm) { 9382 switch_mm(mm, &init_mm, current); 9383 finish_arch_post_lock_switch(); 9384 } 9385 9386 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9387 } 9388 9389 static int __balance_push_cpu_stop(void *arg) 9390 { 9391 struct task_struct *p = arg; 9392 struct rq *rq = this_rq(); 9393 struct rq_flags rf; 9394 int cpu; 9395 9396 raw_spin_lock_irq(&p->pi_lock); 9397 rq_lock(rq, &rf); 9398 9399 update_rq_clock(rq); 9400 9401 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9402 cpu = select_fallback_rq(rq->cpu, p); 9403 rq = __migrate_task(rq, &rf, p, cpu); 9404 } 9405 9406 rq_unlock(rq, &rf); 9407 raw_spin_unlock_irq(&p->pi_lock); 9408 9409 put_task_struct(p); 9410 9411 return 0; 9412 } 9413 9414 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9415 9416 /* 9417 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9418 * 9419 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9420 * effective when the hotplug motion is down. 9421 */ 9422 static void balance_push(struct rq *rq) 9423 { 9424 struct task_struct *push_task = rq->curr; 9425 9426 lockdep_assert_rq_held(rq); 9427 9428 /* 9429 * Ensure the thing is persistent until balance_push_set(.on = false); 9430 */ 9431 rq->balance_callback = &balance_push_callback; 9432 9433 /* 9434 * Only active while going offline and when invoked on the outgoing 9435 * CPU. 9436 */ 9437 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9438 return; 9439 9440 /* 9441 * Both the cpu-hotplug and stop task are in this case and are 9442 * required to complete the hotplug process. 9443 */ 9444 if (kthread_is_per_cpu(push_task) || 9445 is_migration_disabled(push_task)) { 9446 9447 /* 9448 * If this is the idle task on the outgoing CPU try to wake 9449 * up the hotplug control thread which might wait for the 9450 * last task to vanish. The rcuwait_active() check is 9451 * accurate here because the waiter is pinned on this CPU 9452 * and can't obviously be running in parallel. 9453 * 9454 * On RT kernels this also has to check whether there are 9455 * pinned and scheduled out tasks on the runqueue. They 9456 * need to leave the migrate disabled section first. 9457 */ 9458 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9459 rcuwait_active(&rq->hotplug_wait)) { 9460 raw_spin_rq_unlock(rq); 9461 rcuwait_wake_up(&rq->hotplug_wait); 9462 raw_spin_rq_lock(rq); 9463 } 9464 return; 9465 } 9466 9467 get_task_struct(push_task); 9468 /* 9469 * Temporarily drop rq->lock such that we can wake-up the stop task. 9470 * Both preemption and IRQs are still disabled. 9471 */ 9472 preempt_disable(); 9473 raw_spin_rq_unlock(rq); 9474 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9475 this_cpu_ptr(&push_work)); 9476 preempt_enable(); 9477 /* 9478 * At this point need_resched() is true and we'll take the loop in 9479 * schedule(). The next pick is obviously going to be the stop task 9480 * which kthread_is_per_cpu() and will push this task away. 9481 */ 9482 raw_spin_rq_lock(rq); 9483 } 9484 9485 static void balance_push_set(int cpu, bool on) 9486 { 9487 struct rq *rq = cpu_rq(cpu); 9488 struct rq_flags rf; 9489 9490 rq_lock_irqsave(rq, &rf); 9491 if (on) { 9492 WARN_ON_ONCE(rq->balance_callback); 9493 rq->balance_callback = &balance_push_callback; 9494 } else if (rq->balance_callback == &balance_push_callback) { 9495 rq->balance_callback = NULL; 9496 } 9497 rq_unlock_irqrestore(rq, &rf); 9498 } 9499 9500 /* 9501 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9502 * inactive. All tasks which are not per CPU kernel threads are either 9503 * pushed off this CPU now via balance_push() or placed on a different CPU 9504 * during wakeup. Wait until the CPU is quiescent. 9505 */ 9506 static void balance_hotplug_wait(void) 9507 { 9508 struct rq *rq = this_rq(); 9509 9510 rcuwait_wait_event(&rq->hotplug_wait, 9511 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9512 TASK_UNINTERRUPTIBLE); 9513 } 9514 9515 #else 9516 9517 static inline void balance_push(struct rq *rq) 9518 { 9519 } 9520 9521 static inline void balance_push_set(int cpu, bool on) 9522 { 9523 } 9524 9525 static inline void balance_hotplug_wait(void) 9526 { 9527 } 9528 9529 #endif /* CONFIG_HOTPLUG_CPU */ 9530 9531 void set_rq_online(struct rq *rq) 9532 { 9533 if (!rq->online) { 9534 const struct sched_class *class; 9535 9536 cpumask_set_cpu(rq->cpu, rq->rd->online); 9537 rq->online = 1; 9538 9539 for_each_class(class) { 9540 if (class->rq_online) 9541 class->rq_online(rq); 9542 } 9543 } 9544 } 9545 9546 void set_rq_offline(struct rq *rq) 9547 { 9548 if (rq->online) { 9549 const struct sched_class *class; 9550 9551 update_rq_clock(rq); 9552 for_each_class(class) { 9553 if (class->rq_offline) 9554 class->rq_offline(rq); 9555 } 9556 9557 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9558 rq->online = 0; 9559 } 9560 } 9561 9562 /* 9563 * used to mark begin/end of suspend/resume: 9564 */ 9565 static int num_cpus_frozen; 9566 9567 /* 9568 * Update cpusets according to cpu_active mask. If cpusets are 9569 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9570 * around partition_sched_domains(). 9571 * 9572 * If we come here as part of a suspend/resume, don't touch cpusets because we 9573 * want to restore it back to its original state upon resume anyway. 9574 */ 9575 static void cpuset_cpu_active(void) 9576 { 9577 if (cpuhp_tasks_frozen) { 9578 /* 9579 * num_cpus_frozen tracks how many CPUs are involved in suspend 9580 * resume sequence. As long as this is not the last online 9581 * operation in the resume sequence, just build a single sched 9582 * domain, ignoring cpusets. 9583 */ 9584 partition_sched_domains(1, NULL, NULL); 9585 if (--num_cpus_frozen) 9586 return; 9587 /* 9588 * This is the last CPU online operation. So fall through and 9589 * restore the original sched domains by considering the 9590 * cpuset configurations. 9591 */ 9592 cpuset_force_rebuild(); 9593 } 9594 cpuset_update_active_cpus(); 9595 } 9596 9597 static int cpuset_cpu_inactive(unsigned int cpu) 9598 { 9599 if (!cpuhp_tasks_frozen) { 9600 int ret = dl_bw_check_overflow(cpu); 9601 9602 if (ret) 9603 return ret; 9604 cpuset_update_active_cpus(); 9605 } else { 9606 num_cpus_frozen++; 9607 partition_sched_domains(1, NULL, NULL); 9608 } 9609 return 0; 9610 } 9611 9612 int sched_cpu_activate(unsigned int cpu) 9613 { 9614 struct rq *rq = cpu_rq(cpu); 9615 struct rq_flags rf; 9616 9617 /* 9618 * Clear the balance_push callback and prepare to schedule 9619 * regular tasks. 9620 */ 9621 balance_push_set(cpu, false); 9622 9623 #ifdef CONFIG_SCHED_SMT 9624 /* 9625 * When going up, increment the number of cores with SMT present. 9626 */ 9627 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9628 static_branch_inc_cpuslocked(&sched_smt_present); 9629 #endif 9630 set_cpu_active(cpu, true); 9631 9632 if (sched_smp_initialized) { 9633 sched_update_numa(cpu, true); 9634 sched_domains_numa_masks_set(cpu); 9635 cpuset_cpu_active(); 9636 } 9637 9638 /* 9639 * Put the rq online, if not already. This happens: 9640 * 9641 * 1) In the early boot process, because we build the real domains 9642 * after all CPUs have been brought up. 9643 * 9644 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9645 * domains. 9646 */ 9647 rq_lock_irqsave(rq, &rf); 9648 if (rq->rd) { 9649 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9650 set_rq_online(rq); 9651 } 9652 rq_unlock_irqrestore(rq, &rf); 9653 9654 return 0; 9655 } 9656 9657 int sched_cpu_deactivate(unsigned int cpu) 9658 { 9659 struct rq *rq = cpu_rq(cpu); 9660 struct rq_flags rf; 9661 int ret; 9662 9663 /* 9664 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9665 * load balancing when not active 9666 */ 9667 nohz_balance_exit_idle(rq); 9668 9669 set_cpu_active(cpu, false); 9670 9671 /* 9672 * From this point forward, this CPU will refuse to run any task that 9673 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9674 * push those tasks away until this gets cleared, see 9675 * sched_cpu_dying(). 9676 */ 9677 balance_push_set(cpu, true); 9678 9679 /* 9680 * We've cleared cpu_active_mask / set balance_push, wait for all 9681 * preempt-disabled and RCU users of this state to go away such that 9682 * all new such users will observe it. 9683 * 9684 * Specifically, we rely on ttwu to no longer target this CPU, see 9685 * ttwu_queue_cond() and is_cpu_allowed(). 9686 * 9687 * Do sync before park smpboot threads to take care the rcu boost case. 9688 */ 9689 synchronize_rcu(); 9690 9691 rq_lock_irqsave(rq, &rf); 9692 if (rq->rd) { 9693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9694 set_rq_offline(rq); 9695 } 9696 rq_unlock_irqrestore(rq, &rf); 9697 9698 #ifdef CONFIG_SCHED_SMT 9699 /* 9700 * When going down, decrement the number of cores with SMT present. 9701 */ 9702 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9703 static_branch_dec_cpuslocked(&sched_smt_present); 9704 9705 sched_core_cpu_deactivate(cpu); 9706 #endif 9707 9708 if (!sched_smp_initialized) 9709 return 0; 9710 9711 sched_update_numa(cpu, false); 9712 ret = cpuset_cpu_inactive(cpu); 9713 if (ret) { 9714 balance_push_set(cpu, false); 9715 set_cpu_active(cpu, true); 9716 sched_update_numa(cpu, true); 9717 return ret; 9718 } 9719 sched_domains_numa_masks_clear(cpu); 9720 return 0; 9721 } 9722 9723 static void sched_rq_cpu_starting(unsigned int cpu) 9724 { 9725 struct rq *rq = cpu_rq(cpu); 9726 9727 rq->calc_load_update = calc_load_update; 9728 update_max_interval(); 9729 } 9730 9731 int sched_cpu_starting(unsigned int cpu) 9732 { 9733 sched_core_cpu_starting(cpu); 9734 sched_rq_cpu_starting(cpu); 9735 sched_tick_start(cpu); 9736 return 0; 9737 } 9738 9739 #ifdef CONFIG_HOTPLUG_CPU 9740 9741 /* 9742 * Invoked immediately before the stopper thread is invoked to bring the 9743 * CPU down completely. At this point all per CPU kthreads except the 9744 * hotplug thread (current) and the stopper thread (inactive) have been 9745 * either parked or have been unbound from the outgoing CPU. Ensure that 9746 * any of those which might be on the way out are gone. 9747 * 9748 * If after this point a bound task is being woken on this CPU then the 9749 * responsible hotplug callback has failed to do it's job. 9750 * sched_cpu_dying() will catch it with the appropriate fireworks. 9751 */ 9752 int sched_cpu_wait_empty(unsigned int cpu) 9753 { 9754 balance_hotplug_wait(); 9755 return 0; 9756 } 9757 9758 /* 9759 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9760 * might have. Called from the CPU stopper task after ensuring that the 9761 * stopper is the last running task on the CPU, so nr_active count is 9762 * stable. We need to take the teardown thread which is calling this into 9763 * account, so we hand in adjust = 1 to the load calculation. 9764 * 9765 * Also see the comment "Global load-average calculations". 9766 */ 9767 static void calc_load_migrate(struct rq *rq) 9768 { 9769 long delta = calc_load_fold_active(rq, 1); 9770 9771 if (delta) 9772 atomic_long_add(delta, &calc_load_tasks); 9773 } 9774 9775 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9776 { 9777 struct task_struct *g, *p; 9778 int cpu = cpu_of(rq); 9779 9780 lockdep_assert_rq_held(rq); 9781 9782 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9783 for_each_process_thread(g, p) { 9784 if (task_cpu(p) != cpu) 9785 continue; 9786 9787 if (!task_on_rq_queued(p)) 9788 continue; 9789 9790 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9791 } 9792 } 9793 9794 int sched_cpu_dying(unsigned int cpu) 9795 { 9796 struct rq *rq = cpu_rq(cpu); 9797 struct rq_flags rf; 9798 9799 /* Handle pending wakeups and then migrate everything off */ 9800 sched_tick_stop(cpu); 9801 9802 rq_lock_irqsave(rq, &rf); 9803 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9804 WARN(true, "Dying CPU not properly vacated!"); 9805 dump_rq_tasks(rq, KERN_WARNING); 9806 } 9807 rq_unlock_irqrestore(rq, &rf); 9808 9809 calc_load_migrate(rq); 9810 update_max_interval(); 9811 hrtick_clear(rq); 9812 sched_core_cpu_dying(cpu); 9813 return 0; 9814 } 9815 #endif 9816 9817 void __init sched_init_smp(void) 9818 { 9819 sched_init_numa(NUMA_NO_NODE); 9820 9821 /* 9822 * There's no userspace yet to cause hotplug operations; hence all the 9823 * CPU masks are stable and all blatant races in the below code cannot 9824 * happen. 9825 */ 9826 mutex_lock(&sched_domains_mutex); 9827 sched_init_domains(cpu_active_mask); 9828 mutex_unlock(&sched_domains_mutex); 9829 9830 /* Move init over to a non-isolated CPU */ 9831 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9832 BUG(); 9833 current->flags &= ~PF_NO_SETAFFINITY; 9834 sched_init_granularity(); 9835 9836 init_sched_rt_class(); 9837 init_sched_dl_class(); 9838 9839 sched_smp_initialized = true; 9840 } 9841 9842 static int __init migration_init(void) 9843 { 9844 sched_cpu_starting(smp_processor_id()); 9845 return 0; 9846 } 9847 early_initcall(migration_init); 9848 9849 #else 9850 void __init sched_init_smp(void) 9851 { 9852 sched_init_granularity(); 9853 } 9854 #endif /* CONFIG_SMP */ 9855 9856 int in_sched_functions(unsigned long addr) 9857 { 9858 return in_lock_functions(addr) || 9859 (addr >= (unsigned long)__sched_text_start 9860 && addr < (unsigned long)__sched_text_end); 9861 } 9862 9863 #ifdef CONFIG_CGROUP_SCHED 9864 /* 9865 * Default task group. 9866 * Every task in system belongs to this group at bootup. 9867 */ 9868 struct task_group root_task_group; 9869 LIST_HEAD(task_groups); 9870 9871 /* Cacheline aligned slab cache for task_group */ 9872 static struct kmem_cache *task_group_cache __ro_after_init; 9873 #endif 9874 9875 void __init sched_init(void) 9876 { 9877 unsigned long ptr = 0; 9878 int i; 9879 9880 /* Make sure the linker didn't screw up */ 9881 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9882 &fair_sched_class != &rt_sched_class + 1 || 9883 &rt_sched_class != &dl_sched_class + 1); 9884 #ifdef CONFIG_SMP 9885 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9886 #endif 9887 9888 wait_bit_init(); 9889 9890 #ifdef CONFIG_FAIR_GROUP_SCHED 9891 ptr += 2 * nr_cpu_ids * sizeof(void **); 9892 #endif 9893 #ifdef CONFIG_RT_GROUP_SCHED 9894 ptr += 2 * nr_cpu_ids * sizeof(void **); 9895 #endif 9896 if (ptr) { 9897 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9898 9899 #ifdef CONFIG_FAIR_GROUP_SCHED 9900 root_task_group.se = (struct sched_entity **)ptr; 9901 ptr += nr_cpu_ids * sizeof(void **); 9902 9903 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9904 ptr += nr_cpu_ids * sizeof(void **); 9905 9906 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 9908 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9909 #ifdef CONFIG_RT_GROUP_SCHED 9910 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9911 ptr += nr_cpu_ids * sizeof(void **); 9912 9913 root_task_group.rt_rq = (struct rt_rq **)ptr; 9914 ptr += nr_cpu_ids * sizeof(void **); 9915 9916 #endif /* CONFIG_RT_GROUP_SCHED */ 9917 } 9918 9919 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9920 9921 #ifdef CONFIG_SMP 9922 init_defrootdomain(); 9923 #endif 9924 9925 #ifdef CONFIG_RT_GROUP_SCHED 9926 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9927 global_rt_period(), global_rt_runtime()); 9928 #endif /* CONFIG_RT_GROUP_SCHED */ 9929 9930 #ifdef CONFIG_CGROUP_SCHED 9931 task_group_cache = KMEM_CACHE(task_group, 0); 9932 9933 list_add(&root_task_group.list, &task_groups); 9934 INIT_LIST_HEAD(&root_task_group.children); 9935 INIT_LIST_HEAD(&root_task_group.siblings); 9936 autogroup_init(&init_task); 9937 #endif /* CONFIG_CGROUP_SCHED */ 9938 9939 for_each_possible_cpu(i) { 9940 struct rq *rq; 9941 9942 rq = cpu_rq(i); 9943 raw_spin_lock_init(&rq->__lock); 9944 rq->nr_running = 0; 9945 rq->calc_load_active = 0; 9946 rq->calc_load_update = jiffies + LOAD_FREQ; 9947 init_cfs_rq(&rq->cfs); 9948 init_rt_rq(&rq->rt); 9949 init_dl_rq(&rq->dl); 9950 #ifdef CONFIG_FAIR_GROUP_SCHED 9951 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9952 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9953 /* 9954 * How much CPU bandwidth does root_task_group get? 9955 * 9956 * In case of task-groups formed thr' the cgroup filesystem, it 9957 * gets 100% of the CPU resources in the system. This overall 9958 * system CPU resource is divided among the tasks of 9959 * root_task_group and its child task-groups in a fair manner, 9960 * based on each entity's (task or task-group's) weight 9961 * (se->load.weight). 9962 * 9963 * In other words, if root_task_group has 10 tasks of weight 9964 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9965 * then A0's share of the CPU resource is: 9966 * 9967 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9968 * 9969 * We achieve this by letting root_task_group's tasks sit 9970 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9971 */ 9972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9973 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9974 9975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9976 #ifdef CONFIG_RT_GROUP_SCHED 9977 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9978 #endif 9979 #ifdef CONFIG_SMP 9980 rq->sd = NULL; 9981 rq->rd = NULL; 9982 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 9983 rq->balance_callback = &balance_push_callback; 9984 rq->active_balance = 0; 9985 rq->next_balance = jiffies; 9986 rq->push_cpu = 0; 9987 rq->cpu = i; 9988 rq->online = 0; 9989 rq->idle_stamp = 0; 9990 rq->avg_idle = 2*sysctl_sched_migration_cost; 9991 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9992 9993 INIT_LIST_HEAD(&rq->cfs_tasks); 9994 9995 rq_attach_root(rq, &def_root_domain); 9996 #ifdef CONFIG_NO_HZ_COMMON 9997 rq->last_blocked_load_update_tick = jiffies; 9998 atomic_set(&rq->nohz_flags, 0); 9999 10000 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 10001 #endif 10002 #ifdef CONFIG_HOTPLUG_CPU 10003 rcuwait_init(&rq->hotplug_wait); 10004 #endif 10005 #endif /* CONFIG_SMP */ 10006 hrtick_rq_init(rq); 10007 atomic_set(&rq->nr_iowait, 0); 10008 10009 #ifdef CONFIG_SCHED_CORE 10010 rq->core = rq; 10011 rq->core_pick = NULL; 10012 rq->core_enabled = 0; 10013 rq->core_tree = RB_ROOT; 10014 rq->core_forceidle_count = 0; 10015 rq->core_forceidle_occupation = 0; 10016 rq->core_forceidle_start = 0; 10017 10018 rq->core_cookie = 0UL; 10019 #endif 10020 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 10021 } 10022 10023 set_load_weight(&init_task, false); 10024 10025 /* 10026 * The boot idle thread does lazy MMU switching as well: 10027 */ 10028 mmgrab_lazy_tlb(&init_mm); 10029 enter_lazy_tlb(&init_mm, current); 10030 10031 /* 10032 * The idle task doesn't need the kthread struct to function, but it 10033 * is dressed up as a per-CPU kthread and thus needs to play the part 10034 * if we want to avoid special-casing it in code that deals with per-CPU 10035 * kthreads. 10036 */ 10037 WARN_ON(!set_kthread_struct(current)); 10038 10039 /* 10040 * Make us the idle thread. Technically, schedule() should not be 10041 * called from this thread, however somewhere below it might be, 10042 * but because we are the idle thread, we just pick up running again 10043 * when this runqueue becomes "idle". 10044 */ 10045 init_idle(current, smp_processor_id()); 10046 10047 calc_load_update = jiffies + LOAD_FREQ; 10048 10049 #ifdef CONFIG_SMP 10050 idle_thread_set_boot_cpu(); 10051 balance_push_set(smp_processor_id(), false); 10052 #endif 10053 init_sched_fair_class(); 10054 10055 psi_init(); 10056 10057 init_uclamp(); 10058 10059 preempt_dynamic_init(); 10060 10061 scheduler_running = 1; 10062 } 10063 10064 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 10065 10066 void __might_sleep(const char *file, int line) 10067 { 10068 unsigned int state = get_current_state(); 10069 /* 10070 * Blocking primitives will set (and therefore destroy) current->state, 10071 * since we will exit with TASK_RUNNING make sure we enter with it, 10072 * otherwise we will destroy state. 10073 */ 10074 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 10075 "do not call blocking ops when !TASK_RUNNING; " 10076 "state=%x set at [<%p>] %pS\n", state, 10077 (void *)current->task_state_change, 10078 (void *)current->task_state_change); 10079 10080 __might_resched(file, line, 0); 10081 } 10082 EXPORT_SYMBOL(__might_sleep); 10083 10084 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 10085 { 10086 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 10087 return; 10088 10089 if (preempt_count() == preempt_offset) 10090 return; 10091 10092 pr_err("Preemption disabled at:"); 10093 print_ip_sym(KERN_ERR, ip); 10094 } 10095 10096 static inline bool resched_offsets_ok(unsigned int offsets) 10097 { 10098 unsigned int nested = preempt_count(); 10099 10100 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 10101 10102 return nested == offsets; 10103 } 10104 10105 void __might_resched(const char *file, int line, unsigned int offsets) 10106 { 10107 /* Ratelimiting timestamp: */ 10108 static unsigned long prev_jiffy; 10109 10110 unsigned long preempt_disable_ip; 10111 10112 /* WARN_ON_ONCE() by default, no rate limit required: */ 10113 rcu_sleep_check(); 10114 10115 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 10116 !is_idle_task(current) && !current->non_block_count) || 10117 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 10118 oops_in_progress) 10119 return; 10120 10121 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10122 return; 10123 prev_jiffy = jiffies; 10124 10125 /* Save this before calling printk(), since that will clobber it: */ 10126 preempt_disable_ip = get_preempt_disable_ip(current); 10127 10128 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 10129 file, line); 10130 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 10131 in_atomic(), irqs_disabled(), current->non_block_count, 10132 current->pid, current->comm); 10133 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 10134 offsets & MIGHT_RESCHED_PREEMPT_MASK); 10135 10136 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 10137 pr_err("RCU nest depth: %d, expected: %u\n", 10138 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 10139 } 10140 10141 if (task_stack_end_corrupted(current)) 10142 pr_emerg("Thread overran stack, or stack corrupted\n"); 10143 10144 debug_show_held_locks(current); 10145 if (irqs_disabled()) 10146 print_irqtrace_events(current); 10147 10148 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 10149 preempt_disable_ip); 10150 10151 dump_stack(); 10152 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10153 } 10154 EXPORT_SYMBOL(__might_resched); 10155 10156 void __cant_sleep(const char *file, int line, int preempt_offset) 10157 { 10158 static unsigned long prev_jiffy; 10159 10160 if (irqs_disabled()) 10161 return; 10162 10163 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10164 return; 10165 10166 if (preempt_count() > preempt_offset) 10167 return; 10168 10169 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10170 return; 10171 prev_jiffy = jiffies; 10172 10173 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10174 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10175 in_atomic(), irqs_disabled(), 10176 current->pid, current->comm); 10177 10178 debug_show_held_locks(current); 10179 dump_stack(); 10180 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10181 } 10182 EXPORT_SYMBOL_GPL(__cant_sleep); 10183 10184 #ifdef CONFIG_SMP 10185 void __cant_migrate(const char *file, int line) 10186 { 10187 static unsigned long prev_jiffy; 10188 10189 if (irqs_disabled()) 10190 return; 10191 10192 if (is_migration_disabled(current)) 10193 return; 10194 10195 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10196 return; 10197 10198 if (preempt_count() > 0) 10199 return; 10200 10201 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10202 return; 10203 prev_jiffy = jiffies; 10204 10205 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10206 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10207 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10208 current->pid, current->comm); 10209 10210 debug_show_held_locks(current); 10211 dump_stack(); 10212 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10213 } 10214 EXPORT_SYMBOL_GPL(__cant_migrate); 10215 #endif 10216 #endif 10217 10218 #ifdef CONFIG_MAGIC_SYSRQ 10219 void normalize_rt_tasks(void) 10220 { 10221 struct task_struct *g, *p; 10222 struct sched_attr attr = { 10223 .sched_policy = SCHED_NORMAL, 10224 }; 10225 10226 read_lock(&tasklist_lock); 10227 for_each_process_thread(g, p) { 10228 /* 10229 * Only normalize user tasks: 10230 */ 10231 if (p->flags & PF_KTHREAD) 10232 continue; 10233 10234 p->se.exec_start = 0; 10235 schedstat_set(p->stats.wait_start, 0); 10236 schedstat_set(p->stats.sleep_start, 0); 10237 schedstat_set(p->stats.block_start, 0); 10238 10239 if (!dl_task(p) && !rt_task(p)) { 10240 /* 10241 * Renice negative nice level userspace 10242 * tasks back to 0: 10243 */ 10244 if (task_nice(p) < 0) 10245 set_user_nice(p, 0); 10246 continue; 10247 } 10248 10249 __sched_setscheduler(p, &attr, false, false); 10250 } 10251 read_unlock(&tasklist_lock); 10252 } 10253 10254 #endif /* CONFIG_MAGIC_SYSRQ */ 10255 10256 #if defined(CONFIG_KGDB_KDB) 10257 /* 10258 * These functions are only useful for kdb. 10259 * 10260 * They can only be called when the whole system has been 10261 * stopped - every CPU needs to be quiescent, and no scheduling 10262 * activity can take place. Using them for anything else would 10263 * be a serious bug, and as a result, they aren't even visible 10264 * under any other configuration. 10265 */ 10266 10267 /** 10268 * curr_task - return the current task for a given CPU. 10269 * @cpu: the processor in question. 10270 * 10271 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10272 * 10273 * Return: The current task for @cpu. 10274 */ 10275 struct task_struct *curr_task(int cpu) 10276 { 10277 return cpu_curr(cpu); 10278 } 10279 10280 #endif /* defined(CONFIG_KGDB_KDB) */ 10281 10282 #ifdef CONFIG_CGROUP_SCHED 10283 /* task_group_lock serializes the addition/removal of task groups */ 10284 static DEFINE_SPINLOCK(task_group_lock); 10285 10286 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10287 struct task_group *parent) 10288 { 10289 #ifdef CONFIG_UCLAMP_TASK_GROUP 10290 enum uclamp_id clamp_id; 10291 10292 for_each_clamp_id(clamp_id) { 10293 uclamp_se_set(&tg->uclamp_req[clamp_id], 10294 uclamp_none(clamp_id), false); 10295 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10296 } 10297 #endif 10298 } 10299 10300 static void sched_free_group(struct task_group *tg) 10301 { 10302 free_fair_sched_group(tg); 10303 free_rt_sched_group(tg); 10304 autogroup_free(tg); 10305 kmem_cache_free(task_group_cache, tg); 10306 } 10307 10308 static void sched_free_group_rcu(struct rcu_head *rcu) 10309 { 10310 sched_free_group(container_of(rcu, struct task_group, rcu)); 10311 } 10312 10313 static void sched_unregister_group(struct task_group *tg) 10314 { 10315 unregister_fair_sched_group(tg); 10316 unregister_rt_sched_group(tg); 10317 /* 10318 * We have to wait for yet another RCU grace period to expire, as 10319 * print_cfs_stats() might run concurrently. 10320 */ 10321 call_rcu(&tg->rcu, sched_free_group_rcu); 10322 } 10323 10324 /* allocate runqueue etc for a new task group */ 10325 struct task_group *sched_create_group(struct task_group *parent) 10326 { 10327 struct task_group *tg; 10328 10329 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10330 if (!tg) 10331 return ERR_PTR(-ENOMEM); 10332 10333 if (!alloc_fair_sched_group(tg, parent)) 10334 goto err; 10335 10336 if (!alloc_rt_sched_group(tg, parent)) 10337 goto err; 10338 10339 alloc_uclamp_sched_group(tg, parent); 10340 10341 return tg; 10342 10343 err: 10344 sched_free_group(tg); 10345 return ERR_PTR(-ENOMEM); 10346 } 10347 10348 void sched_online_group(struct task_group *tg, struct task_group *parent) 10349 { 10350 unsigned long flags; 10351 10352 spin_lock_irqsave(&task_group_lock, flags); 10353 list_add_rcu(&tg->list, &task_groups); 10354 10355 /* Root should already exist: */ 10356 WARN_ON(!parent); 10357 10358 tg->parent = parent; 10359 INIT_LIST_HEAD(&tg->children); 10360 list_add_rcu(&tg->siblings, &parent->children); 10361 spin_unlock_irqrestore(&task_group_lock, flags); 10362 10363 online_fair_sched_group(tg); 10364 } 10365 10366 /* rcu callback to free various structures associated with a task group */ 10367 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10368 { 10369 /* Now it should be safe to free those cfs_rqs: */ 10370 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10371 } 10372 10373 void sched_destroy_group(struct task_group *tg) 10374 { 10375 /* Wait for possible concurrent references to cfs_rqs complete: */ 10376 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10377 } 10378 10379 void sched_release_group(struct task_group *tg) 10380 { 10381 unsigned long flags; 10382 10383 /* 10384 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10385 * sched_cfs_period_timer()). 10386 * 10387 * For this to be effective, we have to wait for all pending users of 10388 * this task group to leave their RCU critical section to ensure no new 10389 * user will see our dying task group any more. Specifically ensure 10390 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10391 * 10392 * We therefore defer calling unregister_fair_sched_group() to 10393 * sched_unregister_group() which is guarantied to get called only after the 10394 * current RCU grace period has expired. 10395 */ 10396 spin_lock_irqsave(&task_group_lock, flags); 10397 list_del_rcu(&tg->list); 10398 list_del_rcu(&tg->siblings); 10399 spin_unlock_irqrestore(&task_group_lock, flags); 10400 } 10401 10402 static struct task_group *sched_get_task_group(struct task_struct *tsk) 10403 { 10404 struct task_group *tg; 10405 10406 /* 10407 * All callers are synchronized by task_rq_lock(); we do not use RCU 10408 * which is pointless here. Thus, we pass "true" to task_css_check() 10409 * to prevent lockdep warnings. 10410 */ 10411 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10412 struct task_group, css); 10413 tg = autogroup_task_group(tsk, tg); 10414 10415 return tg; 10416 } 10417 10418 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 10419 { 10420 tsk->sched_task_group = group; 10421 10422 #ifdef CONFIG_FAIR_GROUP_SCHED 10423 if (tsk->sched_class->task_change_group) 10424 tsk->sched_class->task_change_group(tsk); 10425 else 10426 #endif 10427 set_task_rq(tsk, task_cpu(tsk)); 10428 } 10429 10430 /* 10431 * Change task's runqueue when it moves between groups. 10432 * 10433 * The caller of this function should have put the task in its new group by 10434 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10435 * its new group. 10436 */ 10437 void sched_move_task(struct task_struct *tsk) 10438 { 10439 int queued, running, queue_flags = 10440 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10441 struct task_group *group; 10442 struct rq *rq; 10443 10444 CLASS(task_rq_lock, rq_guard)(tsk); 10445 rq = rq_guard.rq; 10446 10447 /* 10448 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 10449 * group changes. 10450 */ 10451 group = sched_get_task_group(tsk); 10452 if (group == tsk->sched_task_group) 10453 return; 10454 10455 update_rq_clock(rq); 10456 10457 running = task_current(rq, tsk); 10458 queued = task_on_rq_queued(tsk); 10459 10460 if (queued) 10461 dequeue_task(rq, tsk, queue_flags); 10462 if (running) 10463 put_prev_task(rq, tsk); 10464 10465 sched_change_group(tsk, group); 10466 10467 if (queued) 10468 enqueue_task(rq, tsk, queue_flags); 10469 if (running) { 10470 set_next_task(rq, tsk); 10471 /* 10472 * After changing group, the running task may have joined a 10473 * throttled one but it's still the running task. Trigger a 10474 * resched to make sure that task can still run. 10475 */ 10476 resched_curr(rq); 10477 } 10478 } 10479 10480 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10481 { 10482 return css ? container_of(css, struct task_group, css) : NULL; 10483 } 10484 10485 static struct cgroup_subsys_state * 10486 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10487 { 10488 struct task_group *parent = css_tg(parent_css); 10489 struct task_group *tg; 10490 10491 if (!parent) { 10492 /* This is early initialization for the top cgroup */ 10493 return &root_task_group.css; 10494 } 10495 10496 tg = sched_create_group(parent); 10497 if (IS_ERR(tg)) 10498 return ERR_PTR(-ENOMEM); 10499 10500 return &tg->css; 10501 } 10502 10503 /* Expose task group only after completing cgroup initialization */ 10504 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10505 { 10506 struct task_group *tg = css_tg(css); 10507 struct task_group *parent = css_tg(css->parent); 10508 10509 if (parent) 10510 sched_online_group(tg, parent); 10511 10512 #ifdef CONFIG_UCLAMP_TASK_GROUP 10513 /* Propagate the effective uclamp value for the new group */ 10514 guard(mutex)(&uclamp_mutex); 10515 guard(rcu)(); 10516 cpu_util_update_eff(css); 10517 #endif 10518 10519 return 0; 10520 } 10521 10522 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10523 { 10524 struct task_group *tg = css_tg(css); 10525 10526 sched_release_group(tg); 10527 } 10528 10529 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10530 { 10531 struct task_group *tg = css_tg(css); 10532 10533 /* 10534 * Relies on the RCU grace period between css_released() and this. 10535 */ 10536 sched_unregister_group(tg); 10537 } 10538 10539 #ifdef CONFIG_RT_GROUP_SCHED 10540 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10541 { 10542 struct task_struct *task; 10543 struct cgroup_subsys_state *css; 10544 10545 cgroup_taskset_for_each(task, css, tset) { 10546 if (!sched_rt_can_attach(css_tg(css), task)) 10547 return -EINVAL; 10548 } 10549 return 0; 10550 } 10551 #endif 10552 10553 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10554 { 10555 struct task_struct *task; 10556 struct cgroup_subsys_state *css; 10557 10558 cgroup_taskset_for_each(task, css, tset) 10559 sched_move_task(task); 10560 } 10561 10562 #ifdef CONFIG_UCLAMP_TASK_GROUP 10563 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10564 { 10565 struct cgroup_subsys_state *top_css = css; 10566 struct uclamp_se *uc_parent = NULL; 10567 struct uclamp_se *uc_se = NULL; 10568 unsigned int eff[UCLAMP_CNT]; 10569 enum uclamp_id clamp_id; 10570 unsigned int clamps; 10571 10572 lockdep_assert_held(&uclamp_mutex); 10573 SCHED_WARN_ON(!rcu_read_lock_held()); 10574 10575 css_for_each_descendant_pre(css, top_css) { 10576 uc_parent = css_tg(css)->parent 10577 ? css_tg(css)->parent->uclamp : NULL; 10578 10579 for_each_clamp_id(clamp_id) { 10580 /* Assume effective clamps matches requested clamps */ 10581 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10582 /* Cap effective clamps with parent's effective clamps */ 10583 if (uc_parent && 10584 eff[clamp_id] > uc_parent[clamp_id].value) { 10585 eff[clamp_id] = uc_parent[clamp_id].value; 10586 } 10587 } 10588 /* Ensure protection is always capped by limit */ 10589 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10590 10591 /* Propagate most restrictive effective clamps */ 10592 clamps = 0x0; 10593 uc_se = css_tg(css)->uclamp; 10594 for_each_clamp_id(clamp_id) { 10595 if (eff[clamp_id] == uc_se[clamp_id].value) 10596 continue; 10597 uc_se[clamp_id].value = eff[clamp_id]; 10598 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10599 clamps |= (0x1 << clamp_id); 10600 } 10601 if (!clamps) { 10602 css = css_rightmost_descendant(css); 10603 continue; 10604 } 10605 10606 /* Immediately update descendants RUNNABLE tasks */ 10607 uclamp_update_active_tasks(css); 10608 } 10609 } 10610 10611 /* 10612 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10613 * C expression. Since there is no way to convert a macro argument (N) into a 10614 * character constant, use two levels of macros. 10615 */ 10616 #define _POW10(exp) ((unsigned int)1e##exp) 10617 #define POW10(exp) _POW10(exp) 10618 10619 struct uclamp_request { 10620 #define UCLAMP_PERCENT_SHIFT 2 10621 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10622 s64 percent; 10623 u64 util; 10624 int ret; 10625 }; 10626 10627 static inline struct uclamp_request 10628 capacity_from_percent(char *buf) 10629 { 10630 struct uclamp_request req = { 10631 .percent = UCLAMP_PERCENT_SCALE, 10632 .util = SCHED_CAPACITY_SCALE, 10633 .ret = 0, 10634 }; 10635 10636 buf = strim(buf); 10637 if (strcmp(buf, "max")) { 10638 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10639 &req.percent); 10640 if (req.ret) 10641 return req; 10642 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10643 req.ret = -ERANGE; 10644 return req; 10645 } 10646 10647 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10648 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10649 } 10650 10651 return req; 10652 } 10653 10654 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10655 size_t nbytes, loff_t off, 10656 enum uclamp_id clamp_id) 10657 { 10658 struct uclamp_request req; 10659 struct task_group *tg; 10660 10661 req = capacity_from_percent(buf); 10662 if (req.ret) 10663 return req.ret; 10664 10665 static_branch_enable(&sched_uclamp_used); 10666 10667 guard(mutex)(&uclamp_mutex); 10668 guard(rcu)(); 10669 10670 tg = css_tg(of_css(of)); 10671 if (tg->uclamp_req[clamp_id].value != req.util) 10672 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10673 10674 /* 10675 * Because of not recoverable conversion rounding we keep track of the 10676 * exact requested value 10677 */ 10678 tg->uclamp_pct[clamp_id] = req.percent; 10679 10680 /* Update effective clamps to track the most restrictive value */ 10681 cpu_util_update_eff(of_css(of)); 10682 10683 return nbytes; 10684 } 10685 10686 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10687 char *buf, size_t nbytes, 10688 loff_t off) 10689 { 10690 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10691 } 10692 10693 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10694 char *buf, size_t nbytes, 10695 loff_t off) 10696 { 10697 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10698 } 10699 10700 static inline void cpu_uclamp_print(struct seq_file *sf, 10701 enum uclamp_id clamp_id) 10702 { 10703 struct task_group *tg; 10704 u64 util_clamp; 10705 u64 percent; 10706 u32 rem; 10707 10708 scoped_guard (rcu) { 10709 tg = css_tg(seq_css(sf)); 10710 util_clamp = tg->uclamp_req[clamp_id].value; 10711 } 10712 10713 if (util_clamp == SCHED_CAPACITY_SCALE) { 10714 seq_puts(sf, "max\n"); 10715 return; 10716 } 10717 10718 percent = tg->uclamp_pct[clamp_id]; 10719 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10720 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10721 } 10722 10723 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10724 { 10725 cpu_uclamp_print(sf, UCLAMP_MIN); 10726 return 0; 10727 } 10728 10729 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10730 { 10731 cpu_uclamp_print(sf, UCLAMP_MAX); 10732 return 0; 10733 } 10734 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10735 10736 #ifdef CONFIG_FAIR_GROUP_SCHED 10737 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10738 struct cftype *cftype, u64 shareval) 10739 { 10740 if (shareval > scale_load_down(ULONG_MAX)) 10741 shareval = MAX_SHARES; 10742 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10743 } 10744 10745 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10746 struct cftype *cft) 10747 { 10748 struct task_group *tg = css_tg(css); 10749 10750 return (u64) scale_load_down(tg->shares); 10751 } 10752 10753 #ifdef CONFIG_CFS_BANDWIDTH 10754 static DEFINE_MUTEX(cfs_constraints_mutex); 10755 10756 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10757 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10758 /* More than 203 days if BW_SHIFT equals 20. */ 10759 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10760 10761 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10762 10763 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10764 u64 burst) 10765 { 10766 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10767 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10768 10769 if (tg == &root_task_group) 10770 return -EINVAL; 10771 10772 /* 10773 * Ensure we have at some amount of bandwidth every period. This is 10774 * to prevent reaching a state of large arrears when throttled via 10775 * entity_tick() resulting in prolonged exit starvation. 10776 */ 10777 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10778 return -EINVAL; 10779 10780 /* 10781 * Likewise, bound things on the other side by preventing insane quota 10782 * periods. This also allows us to normalize in computing quota 10783 * feasibility. 10784 */ 10785 if (period > max_cfs_quota_period) 10786 return -EINVAL; 10787 10788 /* 10789 * Bound quota to defend quota against overflow during bandwidth shift. 10790 */ 10791 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10792 return -EINVAL; 10793 10794 if (quota != RUNTIME_INF && (burst > quota || 10795 burst + quota > max_cfs_runtime)) 10796 return -EINVAL; 10797 10798 /* 10799 * Prevent race between setting of cfs_rq->runtime_enabled and 10800 * unthrottle_offline_cfs_rqs(). 10801 */ 10802 guard(cpus_read_lock)(); 10803 guard(mutex)(&cfs_constraints_mutex); 10804 10805 ret = __cfs_schedulable(tg, period, quota); 10806 if (ret) 10807 return ret; 10808 10809 runtime_enabled = quota != RUNTIME_INF; 10810 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10811 /* 10812 * If we need to toggle cfs_bandwidth_used, off->on must occur 10813 * before making related changes, and on->off must occur afterwards 10814 */ 10815 if (runtime_enabled && !runtime_was_enabled) 10816 cfs_bandwidth_usage_inc(); 10817 10818 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 10819 cfs_b->period = ns_to_ktime(period); 10820 cfs_b->quota = quota; 10821 cfs_b->burst = burst; 10822 10823 __refill_cfs_bandwidth_runtime(cfs_b); 10824 10825 /* 10826 * Restart the period timer (if active) to handle new 10827 * period expiry: 10828 */ 10829 if (runtime_enabled) 10830 start_cfs_bandwidth(cfs_b); 10831 } 10832 10833 for_each_online_cpu(i) { 10834 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10835 struct rq *rq = cfs_rq->rq; 10836 10837 guard(rq_lock_irq)(rq); 10838 cfs_rq->runtime_enabled = runtime_enabled; 10839 cfs_rq->runtime_remaining = 0; 10840 10841 if (cfs_rq->throttled) 10842 unthrottle_cfs_rq(cfs_rq); 10843 } 10844 10845 if (runtime_was_enabled && !runtime_enabled) 10846 cfs_bandwidth_usage_dec(); 10847 10848 return 0; 10849 } 10850 10851 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10852 { 10853 u64 quota, period, burst; 10854 10855 period = ktime_to_ns(tg->cfs_bandwidth.period); 10856 burst = tg->cfs_bandwidth.burst; 10857 if (cfs_quota_us < 0) 10858 quota = RUNTIME_INF; 10859 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10860 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10861 else 10862 return -EINVAL; 10863 10864 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10865 } 10866 10867 static long tg_get_cfs_quota(struct task_group *tg) 10868 { 10869 u64 quota_us; 10870 10871 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10872 return -1; 10873 10874 quota_us = tg->cfs_bandwidth.quota; 10875 do_div(quota_us, NSEC_PER_USEC); 10876 10877 return quota_us; 10878 } 10879 10880 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10881 { 10882 u64 quota, period, burst; 10883 10884 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10885 return -EINVAL; 10886 10887 period = (u64)cfs_period_us * NSEC_PER_USEC; 10888 quota = tg->cfs_bandwidth.quota; 10889 burst = tg->cfs_bandwidth.burst; 10890 10891 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10892 } 10893 10894 static long tg_get_cfs_period(struct task_group *tg) 10895 { 10896 u64 cfs_period_us; 10897 10898 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10899 do_div(cfs_period_us, NSEC_PER_USEC); 10900 10901 return cfs_period_us; 10902 } 10903 10904 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10905 { 10906 u64 quota, period, burst; 10907 10908 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10909 return -EINVAL; 10910 10911 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10912 period = ktime_to_ns(tg->cfs_bandwidth.period); 10913 quota = tg->cfs_bandwidth.quota; 10914 10915 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10916 } 10917 10918 static long tg_get_cfs_burst(struct task_group *tg) 10919 { 10920 u64 burst_us; 10921 10922 burst_us = tg->cfs_bandwidth.burst; 10923 do_div(burst_us, NSEC_PER_USEC); 10924 10925 return burst_us; 10926 } 10927 10928 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10929 struct cftype *cft) 10930 { 10931 return tg_get_cfs_quota(css_tg(css)); 10932 } 10933 10934 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10935 struct cftype *cftype, s64 cfs_quota_us) 10936 { 10937 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10938 } 10939 10940 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10941 struct cftype *cft) 10942 { 10943 return tg_get_cfs_period(css_tg(css)); 10944 } 10945 10946 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10947 struct cftype *cftype, u64 cfs_period_us) 10948 { 10949 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10950 } 10951 10952 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10953 struct cftype *cft) 10954 { 10955 return tg_get_cfs_burst(css_tg(css)); 10956 } 10957 10958 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10959 struct cftype *cftype, u64 cfs_burst_us) 10960 { 10961 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10962 } 10963 10964 struct cfs_schedulable_data { 10965 struct task_group *tg; 10966 u64 period, quota; 10967 }; 10968 10969 /* 10970 * normalize group quota/period to be quota/max_period 10971 * note: units are usecs 10972 */ 10973 static u64 normalize_cfs_quota(struct task_group *tg, 10974 struct cfs_schedulable_data *d) 10975 { 10976 u64 quota, period; 10977 10978 if (tg == d->tg) { 10979 period = d->period; 10980 quota = d->quota; 10981 } else { 10982 period = tg_get_cfs_period(tg); 10983 quota = tg_get_cfs_quota(tg); 10984 } 10985 10986 /* note: these should typically be equivalent */ 10987 if (quota == RUNTIME_INF || quota == -1) 10988 return RUNTIME_INF; 10989 10990 return to_ratio(period, quota); 10991 } 10992 10993 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10994 { 10995 struct cfs_schedulable_data *d = data; 10996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10997 s64 quota = 0, parent_quota = -1; 10998 10999 if (!tg->parent) { 11000 quota = RUNTIME_INF; 11001 } else { 11002 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 11003 11004 quota = normalize_cfs_quota(tg, d); 11005 parent_quota = parent_b->hierarchical_quota; 11006 11007 /* 11008 * Ensure max(child_quota) <= parent_quota. On cgroup2, 11009 * always take the non-RUNTIME_INF min. On cgroup1, only 11010 * inherit when no limit is set. In both cases this is used 11011 * by the scheduler to determine if a given CFS task has a 11012 * bandwidth constraint at some higher level. 11013 */ 11014 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 11015 if (quota == RUNTIME_INF) 11016 quota = parent_quota; 11017 else if (parent_quota != RUNTIME_INF) 11018 quota = min(quota, parent_quota); 11019 } else { 11020 if (quota == RUNTIME_INF) 11021 quota = parent_quota; 11022 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 11023 return -EINVAL; 11024 } 11025 } 11026 cfs_b->hierarchical_quota = quota; 11027 11028 return 0; 11029 } 11030 11031 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 11032 { 11033 struct cfs_schedulable_data data = { 11034 .tg = tg, 11035 .period = period, 11036 .quota = quota, 11037 }; 11038 11039 if (quota != RUNTIME_INF) { 11040 do_div(data.period, NSEC_PER_USEC); 11041 do_div(data.quota, NSEC_PER_USEC); 11042 } 11043 11044 guard(rcu)(); 11045 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 11046 } 11047 11048 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 11049 { 11050 struct task_group *tg = css_tg(seq_css(sf)); 11051 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11052 11053 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 11054 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 11055 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 11056 11057 if (schedstat_enabled() && tg != &root_task_group) { 11058 struct sched_statistics *stats; 11059 u64 ws = 0; 11060 int i; 11061 11062 for_each_possible_cpu(i) { 11063 stats = __schedstats_from_se(tg->se[i]); 11064 ws += schedstat_val(stats->wait_sum); 11065 } 11066 11067 seq_printf(sf, "wait_sum %llu\n", ws); 11068 } 11069 11070 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 11071 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 11072 11073 return 0; 11074 } 11075 11076 static u64 throttled_time_self(struct task_group *tg) 11077 { 11078 int i; 11079 u64 total = 0; 11080 11081 for_each_possible_cpu(i) { 11082 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 11083 } 11084 11085 return total; 11086 } 11087 11088 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 11089 { 11090 struct task_group *tg = css_tg(seq_css(sf)); 11091 11092 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 11093 11094 return 0; 11095 } 11096 #endif /* CONFIG_CFS_BANDWIDTH */ 11097 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11098 11099 #ifdef CONFIG_RT_GROUP_SCHED 11100 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 11101 struct cftype *cft, s64 val) 11102 { 11103 return sched_group_set_rt_runtime(css_tg(css), val); 11104 } 11105 11106 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 11107 struct cftype *cft) 11108 { 11109 return sched_group_rt_runtime(css_tg(css)); 11110 } 11111 11112 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 11113 struct cftype *cftype, u64 rt_period_us) 11114 { 11115 return sched_group_set_rt_period(css_tg(css), rt_period_us); 11116 } 11117 11118 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 11119 struct cftype *cft) 11120 { 11121 return sched_group_rt_period(css_tg(css)); 11122 } 11123 #endif /* CONFIG_RT_GROUP_SCHED */ 11124 11125 #ifdef CONFIG_FAIR_GROUP_SCHED 11126 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 11127 struct cftype *cft) 11128 { 11129 return css_tg(css)->idle; 11130 } 11131 11132 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 11133 struct cftype *cft, s64 idle) 11134 { 11135 return sched_group_set_idle(css_tg(css), idle); 11136 } 11137 #endif 11138 11139 static struct cftype cpu_legacy_files[] = { 11140 #ifdef CONFIG_FAIR_GROUP_SCHED 11141 { 11142 .name = "shares", 11143 .read_u64 = cpu_shares_read_u64, 11144 .write_u64 = cpu_shares_write_u64, 11145 }, 11146 { 11147 .name = "idle", 11148 .read_s64 = cpu_idle_read_s64, 11149 .write_s64 = cpu_idle_write_s64, 11150 }, 11151 #endif 11152 #ifdef CONFIG_CFS_BANDWIDTH 11153 { 11154 .name = "cfs_quota_us", 11155 .read_s64 = cpu_cfs_quota_read_s64, 11156 .write_s64 = cpu_cfs_quota_write_s64, 11157 }, 11158 { 11159 .name = "cfs_period_us", 11160 .read_u64 = cpu_cfs_period_read_u64, 11161 .write_u64 = cpu_cfs_period_write_u64, 11162 }, 11163 { 11164 .name = "cfs_burst_us", 11165 .read_u64 = cpu_cfs_burst_read_u64, 11166 .write_u64 = cpu_cfs_burst_write_u64, 11167 }, 11168 { 11169 .name = "stat", 11170 .seq_show = cpu_cfs_stat_show, 11171 }, 11172 { 11173 .name = "stat.local", 11174 .seq_show = cpu_cfs_local_stat_show, 11175 }, 11176 #endif 11177 #ifdef CONFIG_RT_GROUP_SCHED 11178 { 11179 .name = "rt_runtime_us", 11180 .read_s64 = cpu_rt_runtime_read, 11181 .write_s64 = cpu_rt_runtime_write, 11182 }, 11183 { 11184 .name = "rt_period_us", 11185 .read_u64 = cpu_rt_period_read_uint, 11186 .write_u64 = cpu_rt_period_write_uint, 11187 }, 11188 #endif 11189 #ifdef CONFIG_UCLAMP_TASK_GROUP 11190 { 11191 .name = "uclamp.min", 11192 .flags = CFTYPE_NOT_ON_ROOT, 11193 .seq_show = cpu_uclamp_min_show, 11194 .write = cpu_uclamp_min_write, 11195 }, 11196 { 11197 .name = "uclamp.max", 11198 .flags = CFTYPE_NOT_ON_ROOT, 11199 .seq_show = cpu_uclamp_max_show, 11200 .write = cpu_uclamp_max_write, 11201 }, 11202 #endif 11203 { } /* Terminate */ 11204 }; 11205 11206 static int cpu_extra_stat_show(struct seq_file *sf, 11207 struct cgroup_subsys_state *css) 11208 { 11209 #ifdef CONFIG_CFS_BANDWIDTH 11210 { 11211 struct task_group *tg = css_tg(css); 11212 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11213 u64 throttled_usec, burst_usec; 11214 11215 throttled_usec = cfs_b->throttled_time; 11216 do_div(throttled_usec, NSEC_PER_USEC); 11217 burst_usec = cfs_b->burst_time; 11218 do_div(burst_usec, NSEC_PER_USEC); 11219 11220 seq_printf(sf, "nr_periods %d\n" 11221 "nr_throttled %d\n" 11222 "throttled_usec %llu\n" 11223 "nr_bursts %d\n" 11224 "burst_usec %llu\n", 11225 cfs_b->nr_periods, cfs_b->nr_throttled, 11226 throttled_usec, cfs_b->nr_burst, burst_usec); 11227 } 11228 #endif 11229 return 0; 11230 } 11231 11232 static int cpu_local_stat_show(struct seq_file *sf, 11233 struct cgroup_subsys_state *css) 11234 { 11235 #ifdef CONFIG_CFS_BANDWIDTH 11236 { 11237 struct task_group *tg = css_tg(css); 11238 u64 throttled_self_usec; 11239 11240 throttled_self_usec = throttled_time_self(tg); 11241 do_div(throttled_self_usec, NSEC_PER_USEC); 11242 11243 seq_printf(sf, "throttled_usec %llu\n", 11244 throttled_self_usec); 11245 } 11246 #endif 11247 return 0; 11248 } 11249 11250 #ifdef CONFIG_FAIR_GROUP_SCHED 11251 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11252 struct cftype *cft) 11253 { 11254 struct task_group *tg = css_tg(css); 11255 u64 weight = scale_load_down(tg->shares); 11256 11257 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11258 } 11259 11260 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11261 struct cftype *cft, u64 weight) 11262 { 11263 /* 11264 * cgroup weight knobs should use the common MIN, DFL and MAX 11265 * values which are 1, 100 and 10000 respectively. While it loses 11266 * a bit of range on both ends, it maps pretty well onto the shares 11267 * value used by scheduler and the round-trip conversions preserve 11268 * the original value over the entire range. 11269 */ 11270 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11271 return -ERANGE; 11272 11273 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11274 11275 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11276 } 11277 11278 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11279 struct cftype *cft) 11280 { 11281 unsigned long weight = scale_load_down(css_tg(css)->shares); 11282 int last_delta = INT_MAX; 11283 int prio, delta; 11284 11285 /* find the closest nice value to the current weight */ 11286 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11287 delta = abs(sched_prio_to_weight[prio] - weight); 11288 if (delta >= last_delta) 11289 break; 11290 last_delta = delta; 11291 } 11292 11293 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11294 } 11295 11296 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11297 struct cftype *cft, s64 nice) 11298 { 11299 unsigned long weight; 11300 int idx; 11301 11302 if (nice < MIN_NICE || nice > MAX_NICE) 11303 return -ERANGE; 11304 11305 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11306 idx = array_index_nospec(idx, 40); 11307 weight = sched_prio_to_weight[idx]; 11308 11309 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11310 } 11311 #endif 11312 11313 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11314 long period, long quota) 11315 { 11316 if (quota < 0) 11317 seq_puts(sf, "max"); 11318 else 11319 seq_printf(sf, "%ld", quota); 11320 11321 seq_printf(sf, " %ld\n", period); 11322 } 11323 11324 /* caller should put the current value in *@periodp before calling */ 11325 static int __maybe_unused cpu_period_quota_parse(char *buf, 11326 u64 *periodp, u64 *quotap) 11327 { 11328 char tok[21]; /* U64_MAX */ 11329 11330 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11331 return -EINVAL; 11332 11333 *periodp *= NSEC_PER_USEC; 11334 11335 if (sscanf(tok, "%llu", quotap)) 11336 *quotap *= NSEC_PER_USEC; 11337 else if (!strcmp(tok, "max")) 11338 *quotap = RUNTIME_INF; 11339 else 11340 return -EINVAL; 11341 11342 return 0; 11343 } 11344 11345 #ifdef CONFIG_CFS_BANDWIDTH 11346 static int cpu_max_show(struct seq_file *sf, void *v) 11347 { 11348 struct task_group *tg = css_tg(seq_css(sf)); 11349 11350 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11351 return 0; 11352 } 11353 11354 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11355 char *buf, size_t nbytes, loff_t off) 11356 { 11357 struct task_group *tg = css_tg(of_css(of)); 11358 u64 period = tg_get_cfs_period(tg); 11359 u64 burst = tg_get_cfs_burst(tg); 11360 u64 quota; 11361 int ret; 11362 11363 ret = cpu_period_quota_parse(buf, &period, "a); 11364 if (!ret) 11365 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11366 return ret ?: nbytes; 11367 } 11368 #endif 11369 11370 static struct cftype cpu_files[] = { 11371 #ifdef CONFIG_FAIR_GROUP_SCHED 11372 { 11373 .name = "weight", 11374 .flags = CFTYPE_NOT_ON_ROOT, 11375 .read_u64 = cpu_weight_read_u64, 11376 .write_u64 = cpu_weight_write_u64, 11377 }, 11378 { 11379 .name = "weight.nice", 11380 .flags = CFTYPE_NOT_ON_ROOT, 11381 .read_s64 = cpu_weight_nice_read_s64, 11382 .write_s64 = cpu_weight_nice_write_s64, 11383 }, 11384 { 11385 .name = "idle", 11386 .flags = CFTYPE_NOT_ON_ROOT, 11387 .read_s64 = cpu_idle_read_s64, 11388 .write_s64 = cpu_idle_write_s64, 11389 }, 11390 #endif 11391 #ifdef CONFIG_CFS_BANDWIDTH 11392 { 11393 .name = "max", 11394 .flags = CFTYPE_NOT_ON_ROOT, 11395 .seq_show = cpu_max_show, 11396 .write = cpu_max_write, 11397 }, 11398 { 11399 .name = "max.burst", 11400 .flags = CFTYPE_NOT_ON_ROOT, 11401 .read_u64 = cpu_cfs_burst_read_u64, 11402 .write_u64 = cpu_cfs_burst_write_u64, 11403 }, 11404 #endif 11405 #ifdef CONFIG_UCLAMP_TASK_GROUP 11406 { 11407 .name = "uclamp.min", 11408 .flags = CFTYPE_NOT_ON_ROOT, 11409 .seq_show = cpu_uclamp_min_show, 11410 .write = cpu_uclamp_min_write, 11411 }, 11412 { 11413 .name = "uclamp.max", 11414 .flags = CFTYPE_NOT_ON_ROOT, 11415 .seq_show = cpu_uclamp_max_show, 11416 .write = cpu_uclamp_max_write, 11417 }, 11418 #endif 11419 { } /* terminate */ 11420 }; 11421 11422 struct cgroup_subsys cpu_cgrp_subsys = { 11423 .css_alloc = cpu_cgroup_css_alloc, 11424 .css_online = cpu_cgroup_css_online, 11425 .css_released = cpu_cgroup_css_released, 11426 .css_free = cpu_cgroup_css_free, 11427 .css_extra_stat_show = cpu_extra_stat_show, 11428 .css_local_stat_show = cpu_local_stat_show, 11429 #ifdef CONFIG_RT_GROUP_SCHED 11430 .can_attach = cpu_cgroup_can_attach, 11431 #endif 11432 .attach = cpu_cgroup_attach, 11433 .legacy_cftypes = cpu_legacy_files, 11434 .dfl_cftypes = cpu_files, 11435 .early_init = true, 11436 .threaded = true, 11437 }; 11438 11439 #endif /* CONFIG_CGROUP_SCHED */ 11440 11441 void dump_cpu_task(int cpu) 11442 { 11443 if (cpu == smp_processor_id() && in_hardirq()) { 11444 struct pt_regs *regs; 11445 11446 regs = get_irq_regs(); 11447 if (regs) { 11448 show_regs(regs); 11449 return; 11450 } 11451 } 11452 11453 if (trigger_single_cpu_backtrace(cpu)) 11454 return; 11455 11456 pr_info("Task dump for CPU %d:\n", cpu); 11457 sched_show_task(cpu_curr(cpu)); 11458 } 11459 11460 /* 11461 * Nice levels are multiplicative, with a gentle 10% change for every 11462 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11463 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11464 * that remained on nice 0. 11465 * 11466 * The "10% effect" is relative and cumulative: from _any_ nice level, 11467 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11468 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11469 * If a task goes up by ~10% and another task goes down by ~10% then 11470 * the relative distance between them is ~25%.) 11471 */ 11472 const int sched_prio_to_weight[40] = { 11473 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11474 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11475 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11476 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11477 /* 0 */ 1024, 820, 655, 526, 423, 11478 /* 5 */ 335, 272, 215, 172, 137, 11479 /* 10 */ 110, 87, 70, 56, 45, 11480 /* 15 */ 36, 29, 23, 18, 15, 11481 }; 11482 11483 /* 11484 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11485 * 11486 * In cases where the weight does not change often, we can use the 11487 * precalculated inverse to speed up arithmetics by turning divisions 11488 * into multiplications: 11489 */ 11490 const u32 sched_prio_to_wmult[40] = { 11491 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11492 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11493 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11494 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11495 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11496 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11497 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11498 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11499 }; 11500 11501 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11502 { 11503 trace_sched_update_nr_running_tp(rq, count); 11504 } 11505 11506 #ifdef CONFIG_SCHED_MM_CID 11507 11508 /* 11509 * @cid_lock: Guarantee forward-progress of cid allocation. 11510 * 11511 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 11512 * is only used when contention is detected by the lock-free allocation so 11513 * forward progress can be guaranteed. 11514 */ 11515 DEFINE_RAW_SPINLOCK(cid_lock); 11516 11517 /* 11518 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 11519 * 11520 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 11521 * detected, it is set to 1 to ensure that all newly coming allocations are 11522 * serialized by @cid_lock until the allocation which detected contention 11523 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 11524 * of a cid allocation. 11525 */ 11526 int use_cid_lock; 11527 11528 /* 11529 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 11530 * concurrently with respect to the execution of the source runqueue context 11531 * switch. 11532 * 11533 * There is one basic properties we want to guarantee here: 11534 * 11535 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 11536 * used by a task. That would lead to concurrent allocation of the cid and 11537 * userspace corruption. 11538 * 11539 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 11540 * that a pair of loads observe at least one of a pair of stores, which can be 11541 * shown as: 11542 * 11543 * X = Y = 0 11544 * 11545 * w[X]=1 w[Y]=1 11546 * MB MB 11547 * r[Y]=y r[X]=x 11548 * 11549 * Which guarantees that x==0 && y==0 is impossible. But rather than using 11550 * values 0 and 1, this algorithm cares about specific state transitions of the 11551 * runqueue current task (as updated by the scheduler context switch), and the 11552 * per-mm/cpu cid value. 11553 * 11554 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 11555 * task->mm != mm for the rest of the discussion. There are two scheduler state 11556 * transitions on context switch we care about: 11557 * 11558 * (TSA) Store to rq->curr with transition from (N) to (Y) 11559 * 11560 * (TSB) Store to rq->curr with transition from (Y) to (N) 11561 * 11562 * On the remote-clear side, there is one transition we care about: 11563 * 11564 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 11565 * 11566 * There is also a transition to UNSET state which can be performed from all 11567 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 11568 * guarantees that only a single thread will succeed: 11569 * 11570 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 11571 * 11572 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 11573 * when a thread is actively using the cid (property (1)). 11574 * 11575 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 11576 * 11577 * Scenario A) (TSA)+(TMA) (from next task perspective) 11578 * 11579 * CPU0 CPU1 11580 * 11581 * Context switch CS-1 Remote-clear 11582 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 11583 * (implied barrier after cmpxchg) 11584 * - switch_mm_cid() 11585 * - memory barrier (see switch_mm_cid() 11586 * comment explaining how this barrier 11587 * is combined with other scheduler 11588 * barriers) 11589 * - mm_cid_get (next) 11590 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 11591 * 11592 * This Dekker ensures that either task (Y) is observed by the 11593 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 11594 * observed. 11595 * 11596 * If task (Y) store is observed by rcu_dereference(), it means that there is 11597 * still an active task on the cpu. Remote-clear will therefore not transition 11598 * to UNSET, which fulfills property (1). 11599 * 11600 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 11601 * it will move its state to UNSET, which clears the percpu cid perhaps 11602 * uselessly (which is not an issue for correctness). Because task (Y) is not 11603 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 11604 * state to UNSET is done with a cmpxchg expecting that the old state has the 11605 * LAZY flag set, only one thread will successfully UNSET. 11606 * 11607 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 11608 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 11609 * CPU1 will observe task (Y) and do nothing more, which is fine. 11610 * 11611 * What we are effectively preventing with this Dekker is a scenario where 11612 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 11613 * because this would UNSET a cid which is actively used. 11614 */ 11615 11616 void sched_mm_cid_migrate_from(struct task_struct *t) 11617 { 11618 t->migrate_from_cpu = task_cpu(t); 11619 } 11620 11621 static 11622 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 11623 struct task_struct *t, 11624 struct mm_cid *src_pcpu_cid) 11625 { 11626 struct mm_struct *mm = t->mm; 11627 struct task_struct *src_task; 11628 int src_cid, last_mm_cid; 11629 11630 if (!mm) 11631 return -1; 11632 11633 last_mm_cid = t->last_mm_cid; 11634 /* 11635 * If the migrated task has no last cid, or if the current 11636 * task on src rq uses the cid, it means the source cid does not need 11637 * to be moved to the destination cpu. 11638 */ 11639 if (last_mm_cid == -1) 11640 return -1; 11641 src_cid = READ_ONCE(src_pcpu_cid->cid); 11642 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 11643 return -1; 11644 11645 /* 11646 * If we observe an active task using the mm on this rq, it means we 11647 * are not the last task to be migrated from this cpu for this mm, so 11648 * there is no need to move src_cid to the destination cpu. 11649 */ 11650 guard(rcu)(); 11651 src_task = rcu_dereference(src_rq->curr); 11652 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11653 t->last_mm_cid = -1; 11654 return -1; 11655 } 11656 11657 return src_cid; 11658 } 11659 11660 static 11661 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 11662 struct task_struct *t, 11663 struct mm_cid *src_pcpu_cid, 11664 int src_cid) 11665 { 11666 struct task_struct *src_task; 11667 struct mm_struct *mm = t->mm; 11668 int lazy_cid; 11669 11670 if (src_cid == -1) 11671 return -1; 11672 11673 /* 11674 * Attempt to clear the source cpu cid to move it to the destination 11675 * cpu. 11676 */ 11677 lazy_cid = mm_cid_set_lazy_put(src_cid); 11678 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 11679 return -1; 11680 11681 /* 11682 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11683 * rq->curr->mm matches the scheduler barrier in context_switch() 11684 * between store to rq->curr and load of prev and next task's 11685 * per-mm/cpu cid. 11686 * 11687 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11688 * rq->curr->mm_cid_active matches the barrier in 11689 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11690 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11691 * load of per-mm/cpu cid. 11692 */ 11693 11694 /* 11695 * If we observe an active task using the mm on this rq after setting 11696 * the lazy-put flag, this task will be responsible for transitioning 11697 * from lazy-put flag set to MM_CID_UNSET. 11698 */ 11699 scoped_guard (rcu) { 11700 src_task = rcu_dereference(src_rq->curr); 11701 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 11702 /* 11703 * We observed an active task for this mm, there is therefore 11704 * no point in moving this cid to the destination cpu. 11705 */ 11706 t->last_mm_cid = -1; 11707 return -1; 11708 } 11709 } 11710 11711 /* 11712 * The src_cid is unused, so it can be unset. 11713 */ 11714 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11715 return -1; 11716 return src_cid; 11717 } 11718 11719 /* 11720 * Migration to dst cpu. Called with dst_rq lock held. 11721 * Interrupts are disabled, which keeps the window of cid ownership without the 11722 * source rq lock held small. 11723 */ 11724 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 11725 { 11726 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 11727 struct mm_struct *mm = t->mm; 11728 int src_cid, dst_cid, src_cpu; 11729 struct rq *src_rq; 11730 11731 lockdep_assert_rq_held(dst_rq); 11732 11733 if (!mm) 11734 return; 11735 src_cpu = t->migrate_from_cpu; 11736 if (src_cpu == -1) { 11737 t->last_mm_cid = -1; 11738 return; 11739 } 11740 /* 11741 * Move the src cid if the dst cid is unset. This keeps id 11742 * allocation closest to 0 in cases where few threads migrate around 11743 * many cpus. 11744 * 11745 * If destination cid is already set, we may have to just clear 11746 * the src cid to ensure compactness in frequent migrations 11747 * scenarios. 11748 * 11749 * It is not useful to clear the src cid when the number of threads is 11750 * greater or equal to the number of allowed cpus, because user-space 11751 * can expect that the number of allowed cids can reach the number of 11752 * allowed cpus. 11753 */ 11754 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 11755 dst_cid = READ_ONCE(dst_pcpu_cid->cid); 11756 if (!mm_cid_is_unset(dst_cid) && 11757 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) 11758 return; 11759 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 11760 src_rq = cpu_rq(src_cpu); 11761 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 11762 if (src_cid == -1) 11763 return; 11764 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 11765 src_cid); 11766 if (src_cid == -1) 11767 return; 11768 if (!mm_cid_is_unset(dst_cid)) { 11769 __mm_cid_put(mm, src_cid); 11770 return; 11771 } 11772 /* Move src_cid to dst cpu. */ 11773 mm_cid_snapshot_time(dst_rq, mm); 11774 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 11775 } 11776 11777 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 11778 int cpu) 11779 { 11780 struct rq *rq = cpu_rq(cpu); 11781 struct task_struct *t; 11782 int cid, lazy_cid; 11783 11784 cid = READ_ONCE(pcpu_cid->cid); 11785 if (!mm_cid_is_valid(cid)) 11786 return; 11787 11788 /* 11789 * Clear the cpu cid if it is set to keep cid allocation compact. If 11790 * there happens to be other tasks left on the source cpu using this 11791 * mm, the next task using this mm will reallocate its cid on context 11792 * switch. 11793 */ 11794 lazy_cid = mm_cid_set_lazy_put(cid); 11795 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 11796 return; 11797 11798 /* 11799 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11800 * rq->curr->mm matches the scheduler barrier in context_switch() 11801 * between store to rq->curr and load of prev and next task's 11802 * per-mm/cpu cid. 11803 * 11804 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 11805 * rq->curr->mm_cid_active matches the barrier in 11806 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 11807 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 11808 * load of per-mm/cpu cid. 11809 */ 11810 11811 /* 11812 * If we observe an active task using the mm on this rq after setting 11813 * the lazy-put flag, that task will be responsible for transitioning 11814 * from lazy-put flag set to MM_CID_UNSET. 11815 */ 11816 scoped_guard (rcu) { 11817 t = rcu_dereference(rq->curr); 11818 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 11819 return; 11820 } 11821 11822 /* 11823 * The cid is unused, so it can be unset. 11824 * Disable interrupts to keep the window of cid ownership without rq 11825 * lock small. 11826 */ 11827 scoped_guard (irqsave) { 11828 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 11829 __mm_cid_put(mm, cid); 11830 } 11831 } 11832 11833 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 11834 { 11835 struct rq *rq = cpu_rq(cpu); 11836 struct mm_cid *pcpu_cid; 11837 struct task_struct *curr; 11838 u64 rq_clock; 11839 11840 /* 11841 * rq->clock load is racy on 32-bit but one spurious clear once in a 11842 * while is irrelevant. 11843 */ 11844 rq_clock = READ_ONCE(rq->clock); 11845 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11846 11847 /* 11848 * In order to take care of infrequently scheduled tasks, bump the time 11849 * snapshot associated with this cid if an active task using the mm is 11850 * observed on this rq. 11851 */ 11852 scoped_guard (rcu) { 11853 curr = rcu_dereference(rq->curr); 11854 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 11855 WRITE_ONCE(pcpu_cid->time, rq_clock); 11856 return; 11857 } 11858 } 11859 11860 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 11861 return; 11862 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11863 } 11864 11865 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 11866 int weight) 11867 { 11868 struct mm_cid *pcpu_cid; 11869 int cid; 11870 11871 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 11872 cid = READ_ONCE(pcpu_cid->cid); 11873 if (!mm_cid_is_valid(cid) || cid < weight) 11874 return; 11875 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 11876 } 11877 11878 static void task_mm_cid_work(struct callback_head *work) 11879 { 11880 unsigned long now = jiffies, old_scan, next_scan; 11881 struct task_struct *t = current; 11882 struct cpumask *cidmask; 11883 struct mm_struct *mm; 11884 int weight, cpu; 11885 11886 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 11887 11888 work->next = work; /* Prevent double-add */ 11889 if (t->flags & PF_EXITING) 11890 return; 11891 mm = t->mm; 11892 if (!mm) 11893 return; 11894 old_scan = READ_ONCE(mm->mm_cid_next_scan); 11895 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 11896 if (!old_scan) { 11897 unsigned long res; 11898 11899 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 11900 if (res != old_scan) 11901 old_scan = res; 11902 else 11903 old_scan = next_scan; 11904 } 11905 if (time_before(now, old_scan)) 11906 return; 11907 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 11908 return; 11909 cidmask = mm_cidmask(mm); 11910 /* Clear cids that were not recently used. */ 11911 for_each_possible_cpu(cpu) 11912 sched_mm_cid_remote_clear_old(mm, cpu); 11913 weight = cpumask_weight(cidmask); 11914 /* 11915 * Clear cids that are greater or equal to the cidmask weight to 11916 * recompact it. 11917 */ 11918 for_each_possible_cpu(cpu) 11919 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 11920 } 11921 11922 void init_sched_mm_cid(struct task_struct *t) 11923 { 11924 struct mm_struct *mm = t->mm; 11925 int mm_users = 0; 11926 11927 if (mm) { 11928 mm_users = atomic_read(&mm->mm_users); 11929 if (mm_users == 1) 11930 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 11931 } 11932 t->cid_work.next = &t->cid_work; /* Protect against double add */ 11933 init_task_work(&t->cid_work, task_mm_cid_work); 11934 } 11935 11936 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 11937 { 11938 struct callback_head *work = &curr->cid_work; 11939 unsigned long now = jiffies; 11940 11941 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 11942 work->next != work) 11943 return; 11944 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 11945 return; 11946 task_work_add(curr, work, TWA_RESUME); 11947 } 11948 11949 void sched_mm_cid_exit_signals(struct task_struct *t) 11950 { 11951 struct mm_struct *mm = t->mm; 11952 struct rq *rq; 11953 11954 if (!mm) 11955 return; 11956 11957 preempt_disable(); 11958 rq = this_rq(); 11959 guard(rq_lock_irqsave)(rq); 11960 preempt_enable_no_resched(); /* holding spinlock */ 11961 WRITE_ONCE(t->mm_cid_active, 0); 11962 /* 11963 * Store t->mm_cid_active before loading per-mm/cpu cid. 11964 * Matches barrier in sched_mm_cid_remote_clear_old(). 11965 */ 11966 smp_mb(); 11967 mm_cid_put(mm); 11968 t->last_mm_cid = t->mm_cid = -1; 11969 } 11970 11971 void sched_mm_cid_before_execve(struct task_struct *t) 11972 { 11973 struct mm_struct *mm = t->mm; 11974 struct rq *rq; 11975 11976 if (!mm) 11977 return; 11978 11979 preempt_disable(); 11980 rq = this_rq(); 11981 guard(rq_lock_irqsave)(rq); 11982 preempt_enable_no_resched(); /* holding spinlock */ 11983 WRITE_ONCE(t->mm_cid_active, 0); 11984 /* 11985 * Store t->mm_cid_active before loading per-mm/cpu cid. 11986 * Matches barrier in sched_mm_cid_remote_clear_old(). 11987 */ 11988 smp_mb(); 11989 mm_cid_put(mm); 11990 t->last_mm_cid = t->mm_cid = -1; 11991 } 11992 11993 void sched_mm_cid_after_execve(struct task_struct *t) 11994 { 11995 struct mm_struct *mm = t->mm; 11996 struct rq *rq; 11997 11998 if (!mm) 11999 return; 12000 12001 preempt_disable(); 12002 rq = this_rq(); 12003 scoped_guard (rq_lock_irqsave, rq) { 12004 preempt_enable_no_resched(); /* holding spinlock */ 12005 WRITE_ONCE(t->mm_cid_active, 1); 12006 /* 12007 * Store t->mm_cid_active before loading per-mm/cpu cid. 12008 * Matches barrier in sched_mm_cid_remote_clear_old(). 12009 */ 12010 smp_mb(); 12011 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); 12012 } 12013 rseq_set_notify_resume(t); 12014 } 12015 12016 void sched_mm_cid_fork(struct task_struct *t) 12017 { 12018 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 12019 t->mm_cid_active = 1; 12020 } 12021 #endif 12022