xref: /linux/kernel/sched/core.c (revision db1ecca22edf27c5a3dd66af406c88b5b5ac7cc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
100 
101 /*
102  * Export tracepoints that act as a bare tracehook (ie: have no trace event
103  * associated with them) to allow external modules to probe them.
104  */
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	do {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
928 
929 	return true;
930 }
931 
932 #else
933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	set_tsk_need_resched(p);
936 	return true;
937 }
938 
939 #ifdef CONFIG_SMP
940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 	return false;
943 }
944 #endif
945 #endif
946 
947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 	struct wake_q_node *node = &task->wake_q;
950 
951 	/*
952 	 * Atomically grab the task, if ->wake_q is !nil already it means
953 	 * it's already queued (either by us or someone else) and will get the
954 	 * wakeup due to that.
955 	 *
956 	 * In order to ensure that a pending wakeup will observe our pending
957 	 * state, even in the failed case, an explicit smp_mb() must be used.
958 	 */
959 	smp_mb__before_atomic();
960 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 		return false;
962 
963 	/*
964 	 * The head is context local, there can be no concurrency.
965 	 */
966 	*head->lastp = node;
967 	head->lastp = &node->next;
968 	return true;
969 }
970 
971 /**
972  * wake_q_add() - queue a wakeup for 'later' waking.
973  * @head: the wake_q_head to add @task to
974  * @task: the task to queue for 'later' wakeup
975  *
976  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978  * instantly.
979  *
980  * This function must be used as-if it were wake_up_process(); IOW the task
981  * must be ready to be woken at this location.
982  */
983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984 {
985 	if (__wake_q_add(head, task))
986 		get_task_struct(task);
987 }
988 
989 /**
990  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991  * @head: the wake_q_head to add @task to
992  * @task: the task to queue for 'later' wakeup
993  *
994  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996  * instantly.
997  *
998  * This function must be used as-if it were wake_up_process(); IOW the task
999  * must be ready to be woken at this location.
1000  *
1001  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002  * that already hold reference to @task can call the 'safe' version and trust
1003  * wake_q to do the right thing depending whether or not the @task is already
1004  * queued for wakeup.
1005  */
1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007 {
1008 	if (!__wake_q_add(head, task))
1009 		put_task_struct(task);
1010 }
1011 
1012 void wake_up_q(struct wake_q_head *head)
1013 {
1014 	struct wake_q_node *node = head->first;
1015 
1016 	while (node != WAKE_Q_TAIL) {
1017 		struct task_struct *task;
1018 
1019 		task = container_of(node, struct task_struct, wake_q);
1020 		/* Task can safely be re-inserted now: */
1021 		node = node->next;
1022 		task->wake_q.next = NULL;
1023 
1024 		/*
1025 		 * wake_up_process() executes a full barrier, which pairs with
1026 		 * the queueing in wake_q_add() so as not to miss wakeups.
1027 		 */
1028 		wake_up_process(task);
1029 		put_task_struct(task);
1030 	}
1031 }
1032 
1033 /*
1034  * resched_curr - mark rq's current task 'to be rescheduled now'.
1035  *
1036  * On UP this means the setting of the need_resched flag, on SMP it
1037  * might also involve a cross-CPU call to trigger the scheduler on
1038  * the target CPU.
1039  */
1040 void resched_curr(struct rq *rq)
1041 {
1042 	struct task_struct *curr = rq->curr;
1043 	int cpu;
1044 
1045 	lockdep_assert_rq_held(rq);
1046 
1047 	if (test_tsk_need_resched(curr))
1048 		return;
1049 
1050 	cpu = cpu_of(rq);
1051 
1052 	if (cpu == smp_processor_id()) {
1053 		set_tsk_need_resched(curr);
1054 		set_preempt_need_resched();
1055 		return;
1056 	}
1057 
1058 	if (set_nr_and_not_polling(curr))
1059 		smp_send_reschedule(cpu);
1060 	else
1061 		trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063 
1064 void resched_cpu(int cpu)
1065 {
1066 	struct rq *rq = cpu_rq(cpu);
1067 	unsigned long flags;
1068 
1069 	raw_spin_rq_lock_irqsave(rq, flags);
1070 	if (cpu_online(cpu) || cpu == smp_processor_id())
1071 		resched_curr(rq);
1072 	raw_spin_rq_unlock_irqrestore(rq, flags);
1073 }
1074 
1075 #ifdef CONFIG_SMP
1076 #ifdef CONFIG_NO_HZ_COMMON
1077 /*
1078  * In the semi idle case, use the nearest busy CPU for migrating timers
1079  * from an idle CPU.  This is good for power-savings.
1080  *
1081  * We don't do similar optimization for completely idle system, as
1082  * selecting an idle CPU will add more delays to the timers than intended
1083  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084  */
1085 int get_nohz_timer_target(void)
1086 {
1087 	int i, cpu = smp_processor_id(), default_cpu = -1;
1088 	struct sched_domain *sd;
1089 	const struct cpumask *hk_mask;
1090 
1091 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1092 		if (!idle_cpu(cpu))
1093 			return cpu;
1094 		default_cpu = cpu;
1095 	}
1096 
1097 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1098 
1099 	guard(rcu)();
1100 
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i))
1107 				return i;
1108 		}
1109 	}
1110 
1111 	if (default_cpu == -1)
1112 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1113 
1114 	return default_cpu;
1115 }
1116 
1117 /*
1118  * When add_timer_on() enqueues a timer into the timer wheel of an
1119  * idle CPU then this timer might expire before the next timer event
1120  * which is scheduled to wake up that CPU. In case of a completely
1121  * idle system the next event might even be infinite time into the
1122  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123  * leaves the inner idle loop so the newly added timer is taken into
1124  * account when the CPU goes back to idle and evaluates the timer
1125  * wheel for the next timer event.
1126  */
1127 static void wake_up_idle_cpu(int cpu)
1128 {
1129 	struct rq *rq = cpu_rq(cpu);
1130 
1131 	if (cpu == smp_processor_id())
1132 		return;
1133 
1134 	if (set_nr_and_not_polling(rq->idle))
1135 		smp_send_reschedule(cpu);
1136 	else
1137 		trace_sched_wake_idle_without_ipi(cpu);
1138 }
1139 
1140 static bool wake_up_full_nohz_cpu(int cpu)
1141 {
1142 	/*
1143 	 * We just need the target to call irq_exit() and re-evaluate
1144 	 * the next tick. The nohz full kick at least implies that.
1145 	 * If needed we can still optimize that later with an
1146 	 * empty IRQ.
1147 	 */
1148 	if (cpu_is_offline(cpu))
1149 		return true;  /* Don't try to wake offline CPUs. */
1150 	if (tick_nohz_full_cpu(cpu)) {
1151 		if (cpu != smp_processor_id() ||
1152 		    tick_nohz_tick_stopped())
1153 			tick_nohz_full_kick_cpu(cpu);
1154 		return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /*
1161  * Wake up the specified CPU.  If the CPU is going offline, it is the
1162  * caller's responsibility to deal with the lost wakeup, for example,
1163  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1164  */
1165 void wake_up_nohz_cpu(int cpu)
1166 {
1167 	if (!wake_up_full_nohz_cpu(cpu))
1168 		wake_up_idle_cpu(cpu);
1169 }
1170 
1171 static void nohz_csd_func(void *info)
1172 {
1173 	struct rq *rq = info;
1174 	int cpu = cpu_of(rq);
1175 	unsigned int flags;
1176 
1177 	/*
1178 	 * Release the rq::nohz_csd.
1179 	 */
1180 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1182 
1183 	rq->idle_balance = idle_cpu(cpu);
1184 	if (rq->idle_balance && !need_resched()) {
1185 		rq->nohz_idle_balance = flags;
1186 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1187 	}
1188 }
1189 
1190 #endif /* CONFIG_NO_HZ_COMMON */
1191 
1192 #ifdef CONFIG_NO_HZ_FULL
1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1194 {
1195 	if (rq->nr_running != 1)
1196 		return false;
1197 
1198 	if (p->sched_class != &fair_sched_class)
1199 		return false;
1200 
1201 	if (!task_on_rq_queued(p))
1202 		return false;
1203 
1204 	return true;
1205 }
1206 
1207 bool sched_can_stop_tick(struct rq *rq)
1208 {
1209 	int fifo_nr_running;
1210 
1211 	/* Deadline tasks, even if single, need the tick */
1212 	if (rq->dl.dl_nr_running)
1213 		return false;
1214 
1215 	/*
1216 	 * If there are more than one RR tasks, we need the tick to affect the
1217 	 * actual RR behaviour.
1218 	 */
1219 	if (rq->rt.rr_nr_running) {
1220 		if (rq->rt.rr_nr_running == 1)
1221 			return true;
1222 		else
1223 			return false;
1224 	}
1225 
1226 	/*
1227 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 	 * forced preemption between FIFO tasks.
1229 	 */
1230 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 	if (fifo_nr_running)
1232 		return true;
1233 
1234 	/*
1235 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 	 * if there's more than one we need the tick for involuntary
1237 	 * preemption.
1238 	 */
1239 	if (rq->nr_running > 1)
1240 		return false;
1241 
1242 	/*
1243 	 * If there is one task and it has CFS runtime bandwidth constraints
1244 	 * and it's on the cpu now we don't want to stop the tick.
1245 	 * This check prevents clearing the bit if a newly enqueued task here is
1246 	 * dequeued by migrating while the constrained task continues to run.
1247 	 * E.g. going from 2->1 without going through pick_next_task().
1248 	 */
1249 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 		if (cfs_task_bw_constrained(rq->curr))
1251 			return false;
1252 	}
1253 
1254 	return true;
1255 }
1256 #endif /* CONFIG_NO_HZ_FULL */
1257 #endif /* CONFIG_SMP */
1258 
1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1261 /*
1262  * Iterate task_group tree rooted at *from, calling @down when first entering a
1263  * node and @up when leaving it for the final time.
1264  *
1265  * Caller must hold rcu_lock or sufficient equivalent.
1266  */
1267 int walk_tg_tree_from(struct task_group *from,
1268 			     tg_visitor down, tg_visitor up, void *data)
1269 {
1270 	struct task_group *parent, *child;
1271 	int ret;
1272 
1273 	parent = from;
1274 
1275 down:
1276 	ret = (*down)(parent, data);
1277 	if (ret)
1278 		goto out;
1279 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1280 		parent = child;
1281 		goto down;
1282 
1283 up:
1284 		continue;
1285 	}
1286 	ret = (*up)(parent, data);
1287 	if (ret || parent == from)
1288 		goto out;
1289 
1290 	child = parent;
1291 	parent = parent->parent;
1292 	if (parent)
1293 		goto up;
1294 out:
1295 	return ret;
1296 }
1297 
1298 int tg_nop(struct task_group *tg, void *data)
1299 {
1300 	return 0;
1301 }
1302 #endif
1303 
1304 static void set_load_weight(struct task_struct *p, bool update_load)
1305 {
1306 	int prio = p->static_prio - MAX_RT_PRIO;
1307 	struct load_weight *load = &p->se.load;
1308 
1309 	/*
1310 	 * SCHED_IDLE tasks get minimal weight:
1311 	 */
1312 	if (task_has_idle_policy(p)) {
1313 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1314 		load->inv_weight = WMULT_IDLEPRIO;
1315 		return;
1316 	}
1317 
1318 	/*
1319 	 * SCHED_OTHER tasks have to update their load when changing their
1320 	 * weight
1321 	 */
1322 	if (update_load && p->sched_class == &fair_sched_class) {
1323 		reweight_task(p, prio);
1324 	} else {
1325 		load->weight = scale_load(sched_prio_to_weight[prio]);
1326 		load->inv_weight = sched_prio_to_wmult[prio];
1327 	}
1328 }
1329 
1330 #ifdef CONFIG_UCLAMP_TASK
1331 /*
1332  * Serializes updates of utilization clamp values
1333  *
1334  * The (slow-path) user-space triggers utilization clamp value updates which
1335  * can require updates on (fast-path) scheduler's data structures used to
1336  * support enqueue/dequeue operations.
1337  * While the per-CPU rq lock protects fast-path update operations, user-space
1338  * requests are serialized using a mutex to reduce the risk of conflicting
1339  * updates or API abuses.
1340  */
1341 static DEFINE_MUTEX(uclamp_mutex);
1342 
1343 /* Max allowed minimum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1345 
1346 /* Max allowed maximum utilization */
1347 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1348 
1349 /*
1350  * By default RT tasks run at the maximum performance point/capacity of the
1351  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1352  * SCHED_CAPACITY_SCALE.
1353  *
1354  * This knob allows admins to change the default behavior when uclamp is being
1355  * used. In battery powered devices, particularly, running at the maximum
1356  * capacity and frequency will increase energy consumption and shorten the
1357  * battery life.
1358  *
1359  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1360  *
1361  * This knob will not override the system default sched_util_clamp_min defined
1362  * above.
1363  */
1364 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1365 
1366 /* All clamps are required to be less or equal than these values */
1367 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1368 
1369 /*
1370  * This static key is used to reduce the uclamp overhead in the fast path. It
1371  * primarily disables the call to uclamp_rq_{inc, dec}() in
1372  * enqueue/dequeue_task().
1373  *
1374  * This allows users to continue to enable uclamp in their kernel config with
1375  * minimum uclamp overhead in the fast path.
1376  *
1377  * As soon as userspace modifies any of the uclamp knobs, the static key is
1378  * enabled, since we have an actual users that make use of uclamp
1379  * functionality.
1380  *
1381  * The knobs that would enable this static key are:
1382  *
1383  *   * A task modifying its uclamp value with sched_setattr().
1384  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1385  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1386  */
1387 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1388 
1389 /* Integer rounded range for each bucket */
1390 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1391 
1392 #define for_each_clamp_id(clamp_id) \
1393 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1394 
1395 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1396 {
1397 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1398 }
1399 
1400 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1401 {
1402 	if (clamp_id == UCLAMP_MIN)
1403 		return 0;
1404 	return SCHED_CAPACITY_SCALE;
1405 }
1406 
1407 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1408 				 unsigned int value, bool user_defined)
1409 {
1410 	uc_se->value = value;
1411 	uc_se->bucket_id = uclamp_bucket_id(value);
1412 	uc_se->user_defined = user_defined;
1413 }
1414 
1415 static inline unsigned int
1416 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1417 		  unsigned int clamp_value)
1418 {
1419 	/*
1420 	 * Avoid blocked utilization pushing up the frequency when we go
1421 	 * idle (which drops the max-clamp) by retaining the last known
1422 	 * max-clamp.
1423 	 */
1424 	if (clamp_id == UCLAMP_MAX) {
1425 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1426 		return clamp_value;
1427 	}
1428 
1429 	return uclamp_none(UCLAMP_MIN);
1430 }
1431 
1432 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1433 				     unsigned int clamp_value)
1434 {
1435 	/* Reset max-clamp retention only on idle exit */
1436 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1437 		return;
1438 
1439 	uclamp_rq_set(rq, clamp_id, clamp_value);
1440 }
1441 
1442 static inline
1443 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1444 				   unsigned int clamp_value)
1445 {
1446 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1447 	int bucket_id = UCLAMP_BUCKETS - 1;
1448 
1449 	/*
1450 	 * Since both min and max clamps are max aggregated, find the
1451 	 * top most bucket with tasks in.
1452 	 */
1453 	for ( ; bucket_id >= 0; bucket_id--) {
1454 		if (!bucket[bucket_id].tasks)
1455 			continue;
1456 		return bucket[bucket_id].value;
1457 	}
1458 
1459 	/* No tasks -- default clamp values */
1460 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1461 }
1462 
1463 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1464 {
1465 	unsigned int default_util_min;
1466 	struct uclamp_se *uc_se;
1467 
1468 	lockdep_assert_held(&p->pi_lock);
1469 
1470 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1471 
1472 	/* Only sync if user didn't override the default */
1473 	if (uc_se->user_defined)
1474 		return;
1475 
1476 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1477 	uclamp_se_set(uc_se, default_util_min, false);
1478 }
1479 
1480 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1481 {
1482 	if (!rt_task(p))
1483 		return;
1484 
1485 	/* Protect updates to p->uclamp_* */
1486 	guard(task_rq_lock)(p);
1487 	__uclamp_update_util_min_rt_default(p);
1488 }
1489 
1490 static inline struct uclamp_se
1491 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1492 {
1493 	/* Copy by value as we could modify it */
1494 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1495 #ifdef CONFIG_UCLAMP_TASK_GROUP
1496 	unsigned int tg_min, tg_max, value;
1497 
1498 	/*
1499 	 * Tasks in autogroups or root task group will be
1500 	 * restricted by system defaults.
1501 	 */
1502 	if (task_group_is_autogroup(task_group(p)))
1503 		return uc_req;
1504 	if (task_group(p) == &root_task_group)
1505 		return uc_req;
1506 
1507 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1508 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1509 	value = uc_req.value;
1510 	value = clamp(value, tg_min, tg_max);
1511 	uclamp_se_set(&uc_req, value, false);
1512 #endif
1513 
1514 	return uc_req;
1515 }
1516 
1517 /*
1518  * The effective clamp bucket index of a task depends on, by increasing
1519  * priority:
1520  * - the task specific clamp value, when explicitly requested from userspace
1521  * - the task group effective clamp value, for tasks not either in the root
1522  *   group or in an autogroup
1523  * - the system default clamp value, defined by the sysadmin
1524  */
1525 static inline struct uclamp_se
1526 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1527 {
1528 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1529 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1530 
1531 	/* System default restrictions always apply */
1532 	if (unlikely(uc_req.value > uc_max.value))
1533 		return uc_max;
1534 
1535 	return uc_req;
1536 }
1537 
1538 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1539 {
1540 	struct uclamp_se uc_eff;
1541 
1542 	/* Task currently refcounted: use back-annotated (effective) value */
1543 	if (p->uclamp[clamp_id].active)
1544 		return (unsigned long)p->uclamp[clamp_id].value;
1545 
1546 	uc_eff = uclamp_eff_get(p, clamp_id);
1547 
1548 	return (unsigned long)uc_eff.value;
1549 }
1550 
1551 /*
1552  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1553  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1554  * updates the rq's clamp value if required.
1555  *
1556  * Tasks can have a task-specific value requested from user-space, track
1557  * within each bucket the maximum value for tasks refcounted in it.
1558  * This "local max aggregation" allows to track the exact "requested" value
1559  * for each bucket when all its RUNNABLE tasks require the same clamp.
1560  */
1561 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1562 				    enum uclamp_id clamp_id)
1563 {
1564 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1565 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1566 	struct uclamp_bucket *bucket;
1567 
1568 	lockdep_assert_rq_held(rq);
1569 
1570 	/* Update task effective clamp */
1571 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1572 
1573 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1574 	bucket->tasks++;
1575 	uc_se->active = true;
1576 
1577 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1578 
1579 	/*
1580 	 * Local max aggregation: rq buckets always track the max
1581 	 * "requested" clamp value of its RUNNABLE tasks.
1582 	 */
1583 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1584 		bucket->value = uc_se->value;
1585 
1586 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1587 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1588 }
1589 
1590 /*
1591  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1592  * is released. If this is the last task reference counting the rq's max
1593  * active clamp value, then the rq's clamp value is updated.
1594  *
1595  * Both refcounted tasks and rq's cached clamp values are expected to be
1596  * always valid. If it's detected they are not, as defensive programming,
1597  * enforce the expected state and warn.
1598  */
1599 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1600 				    enum uclamp_id clamp_id)
1601 {
1602 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1603 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1604 	struct uclamp_bucket *bucket;
1605 	unsigned int bkt_clamp;
1606 	unsigned int rq_clamp;
1607 
1608 	lockdep_assert_rq_held(rq);
1609 
1610 	/*
1611 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1612 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1613 	 *
1614 	 * In this case the uc_se->active flag should be false since no uclamp
1615 	 * accounting was performed at enqueue time and we can just return
1616 	 * here.
1617 	 *
1618 	 * Need to be careful of the following enqueue/dequeue ordering
1619 	 * problem too
1620 	 *
1621 	 *	enqueue(taskA)
1622 	 *	// sched_uclamp_used gets enabled
1623 	 *	enqueue(taskB)
1624 	 *	dequeue(taskA)
1625 	 *	// Must not decrement bucket->tasks here
1626 	 *	dequeue(taskB)
1627 	 *
1628 	 * where we could end up with stale data in uc_se and
1629 	 * bucket[uc_se->bucket_id].
1630 	 *
1631 	 * The following check here eliminates the possibility of such race.
1632 	 */
1633 	if (unlikely(!uc_se->active))
1634 		return;
1635 
1636 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1637 
1638 	SCHED_WARN_ON(!bucket->tasks);
1639 	if (likely(bucket->tasks))
1640 		bucket->tasks--;
1641 
1642 	uc_se->active = false;
1643 
1644 	/*
1645 	 * Keep "local max aggregation" simple and accept to (possibly)
1646 	 * overboost some RUNNABLE tasks in the same bucket.
1647 	 * The rq clamp bucket value is reset to its base value whenever
1648 	 * there are no more RUNNABLE tasks refcounting it.
1649 	 */
1650 	if (likely(bucket->tasks))
1651 		return;
1652 
1653 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1654 	/*
1655 	 * Defensive programming: this should never happen. If it happens,
1656 	 * e.g. due to future modification, warn and fixup the expected value.
1657 	 */
1658 	SCHED_WARN_ON(bucket->value > rq_clamp);
1659 	if (bucket->value >= rq_clamp) {
1660 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1661 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1662 	}
1663 }
1664 
1665 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1666 {
1667 	enum uclamp_id clamp_id;
1668 
1669 	/*
1670 	 * Avoid any overhead until uclamp is actually used by the userspace.
1671 	 *
1672 	 * The condition is constructed such that a NOP is generated when
1673 	 * sched_uclamp_used is disabled.
1674 	 */
1675 	if (!static_branch_unlikely(&sched_uclamp_used))
1676 		return;
1677 
1678 	if (unlikely(!p->sched_class->uclamp_enabled))
1679 		return;
1680 
1681 	for_each_clamp_id(clamp_id)
1682 		uclamp_rq_inc_id(rq, p, clamp_id);
1683 
1684 	/* Reset clamp idle holding when there is one RUNNABLE task */
1685 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1686 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1687 }
1688 
1689 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1690 {
1691 	enum uclamp_id clamp_id;
1692 
1693 	/*
1694 	 * Avoid any overhead until uclamp is actually used by the userspace.
1695 	 *
1696 	 * The condition is constructed such that a NOP is generated when
1697 	 * sched_uclamp_used is disabled.
1698 	 */
1699 	if (!static_branch_unlikely(&sched_uclamp_used))
1700 		return;
1701 
1702 	if (unlikely(!p->sched_class->uclamp_enabled))
1703 		return;
1704 
1705 	for_each_clamp_id(clamp_id)
1706 		uclamp_rq_dec_id(rq, p, clamp_id);
1707 }
1708 
1709 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1710 				      enum uclamp_id clamp_id)
1711 {
1712 	if (!p->uclamp[clamp_id].active)
1713 		return;
1714 
1715 	uclamp_rq_dec_id(rq, p, clamp_id);
1716 	uclamp_rq_inc_id(rq, p, clamp_id);
1717 
1718 	/*
1719 	 * Make sure to clear the idle flag if we've transiently reached 0
1720 	 * active tasks on rq.
1721 	 */
1722 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1723 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1724 }
1725 
1726 static inline void
1727 uclamp_update_active(struct task_struct *p)
1728 {
1729 	enum uclamp_id clamp_id;
1730 	struct rq_flags rf;
1731 	struct rq *rq;
1732 
1733 	/*
1734 	 * Lock the task and the rq where the task is (or was) queued.
1735 	 *
1736 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1737 	 * price to pay to safely serialize util_{min,max} updates with
1738 	 * enqueues, dequeues and migration operations.
1739 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1740 	 */
1741 	rq = task_rq_lock(p, &rf);
1742 
1743 	/*
1744 	 * Setting the clamp bucket is serialized by task_rq_lock().
1745 	 * If the task is not yet RUNNABLE and its task_struct is not
1746 	 * affecting a valid clamp bucket, the next time it's enqueued,
1747 	 * it will already see the updated clamp bucket value.
1748 	 */
1749 	for_each_clamp_id(clamp_id)
1750 		uclamp_rq_reinc_id(rq, p, clamp_id);
1751 
1752 	task_rq_unlock(rq, p, &rf);
1753 }
1754 
1755 #ifdef CONFIG_UCLAMP_TASK_GROUP
1756 static inline void
1757 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1758 {
1759 	struct css_task_iter it;
1760 	struct task_struct *p;
1761 
1762 	css_task_iter_start(css, 0, &it);
1763 	while ((p = css_task_iter_next(&it)))
1764 		uclamp_update_active(p);
1765 	css_task_iter_end(&it);
1766 }
1767 
1768 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1769 #endif
1770 
1771 #ifdef CONFIG_SYSCTL
1772 #ifdef CONFIG_UCLAMP_TASK
1773 #ifdef CONFIG_UCLAMP_TASK_GROUP
1774 static void uclamp_update_root_tg(void)
1775 {
1776 	struct task_group *tg = &root_task_group;
1777 
1778 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1779 		      sysctl_sched_uclamp_util_min, false);
1780 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1781 		      sysctl_sched_uclamp_util_max, false);
1782 
1783 	guard(rcu)();
1784 	cpu_util_update_eff(&root_task_group.css);
1785 }
1786 #else
1787 static void uclamp_update_root_tg(void) { }
1788 #endif
1789 
1790 static void uclamp_sync_util_min_rt_default(void)
1791 {
1792 	struct task_struct *g, *p;
1793 
1794 	/*
1795 	 * copy_process()			sysctl_uclamp
1796 	 *					  uclamp_min_rt = X;
1797 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1798 	 *   // link thread			  smp_mb__after_spinlock()
1799 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1800 	 *   sched_post_fork()			  for_each_process_thread()
1801 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1802 	 *
1803 	 * Ensures that either sched_post_fork() will observe the new
1804 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1805 	 * task.
1806 	 */
1807 	read_lock(&tasklist_lock);
1808 	smp_mb__after_spinlock();
1809 	read_unlock(&tasklist_lock);
1810 
1811 	guard(rcu)();
1812 	for_each_process_thread(g, p)
1813 		uclamp_update_util_min_rt_default(p);
1814 }
1815 
1816 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1817 				void *buffer, size_t *lenp, loff_t *ppos)
1818 {
1819 	bool update_root_tg = false;
1820 	int old_min, old_max, old_min_rt;
1821 	int result;
1822 
1823 	guard(mutex)(&uclamp_mutex);
1824 
1825 	old_min = sysctl_sched_uclamp_util_min;
1826 	old_max = sysctl_sched_uclamp_util_max;
1827 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1828 
1829 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1830 	if (result)
1831 		goto undo;
1832 	if (!write)
1833 		return 0;
1834 
1835 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1836 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1837 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1838 
1839 		result = -EINVAL;
1840 		goto undo;
1841 	}
1842 
1843 	if (old_min != sysctl_sched_uclamp_util_min) {
1844 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1845 			      sysctl_sched_uclamp_util_min, false);
1846 		update_root_tg = true;
1847 	}
1848 	if (old_max != sysctl_sched_uclamp_util_max) {
1849 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1850 			      sysctl_sched_uclamp_util_max, false);
1851 		update_root_tg = true;
1852 	}
1853 
1854 	if (update_root_tg) {
1855 		static_branch_enable(&sched_uclamp_used);
1856 		uclamp_update_root_tg();
1857 	}
1858 
1859 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1860 		static_branch_enable(&sched_uclamp_used);
1861 		uclamp_sync_util_min_rt_default();
1862 	}
1863 
1864 	/*
1865 	 * We update all RUNNABLE tasks only when task groups are in use.
1866 	 * Otherwise, keep it simple and do just a lazy update at each next
1867 	 * task enqueue time.
1868 	 */
1869 	return 0;
1870 
1871 undo:
1872 	sysctl_sched_uclamp_util_min = old_min;
1873 	sysctl_sched_uclamp_util_max = old_max;
1874 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1875 	return result;
1876 }
1877 #endif
1878 #endif
1879 
1880 static int uclamp_validate(struct task_struct *p,
1881 			   const struct sched_attr *attr)
1882 {
1883 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1884 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1885 
1886 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1887 		util_min = attr->sched_util_min;
1888 
1889 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1890 			return -EINVAL;
1891 	}
1892 
1893 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1894 		util_max = attr->sched_util_max;
1895 
1896 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1897 			return -EINVAL;
1898 	}
1899 
1900 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1901 		return -EINVAL;
1902 
1903 	/*
1904 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1905 	 *
1906 	 * We need to do that here, because enabling static branches is a
1907 	 * blocking operation which obviously cannot be done while holding
1908 	 * scheduler locks.
1909 	 */
1910 	static_branch_enable(&sched_uclamp_used);
1911 
1912 	return 0;
1913 }
1914 
1915 static bool uclamp_reset(const struct sched_attr *attr,
1916 			 enum uclamp_id clamp_id,
1917 			 struct uclamp_se *uc_se)
1918 {
1919 	/* Reset on sched class change for a non user-defined clamp value. */
1920 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1921 	    !uc_se->user_defined)
1922 		return true;
1923 
1924 	/* Reset on sched_util_{min,max} == -1. */
1925 	if (clamp_id == UCLAMP_MIN &&
1926 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1927 	    attr->sched_util_min == -1) {
1928 		return true;
1929 	}
1930 
1931 	if (clamp_id == UCLAMP_MAX &&
1932 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1933 	    attr->sched_util_max == -1) {
1934 		return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 static void __setscheduler_uclamp(struct task_struct *p,
1941 				  const struct sched_attr *attr)
1942 {
1943 	enum uclamp_id clamp_id;
1944 
1945 	for_each_clamp_id(clamp_id) {
1946 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1947 		unsigned int value;
1948 
1949 		if (!uclamp_reset(attr, clamp_id, uc_se))
1950 			continue;
1951 
1952 		/*
1953 		 * RT by default have a 100% boost value that could be modified
1954 		 * at runtime.
1955 		 */
1956 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1957 			value = sysctl_sched_uclamp_util_min_rt_default;
1958 		else
1959 			value = uclamp_none(clamp_id);
1960 
1961 		uclamp_se_set(uc_se, value, false);
1962 
1963 	}
1964 
1965 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1966 		return;
1967 
1968 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1969 	    attr->sched_util_min != -1) {
1970 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1971 			      attr->sched_util_min, true);
1972 	}
1973 
1974 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1975 	    attr->sched_util_max != -1) {
1976 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1977 			      attr->sched_util_max, true);
1978 	}
1979 }
1980 
1981 static void uclamp_fork(struct task_struct *p)
1982 {
1983 	enum uclamp_id clamp_id;
1984 
1985 	/*
1986 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1987 	 * as the task is still at its early fork stages.
1988 	 */
1989 	for_each_clamp_id(clamp_id)
1990 		p->uclamp[clamp_id].active = false;
1991 
1992 	if (likely(!p->sched_reset_on_fork))
1993 		return;
1994 
1995 	for_each_clamp_id(clamp_id) {
1996 		uclamp_se_set(&p->uclamp_req[clamp_id],
1997 			      uclamp_none(clamp_id), false);
1998 	}
1999 }
2000 
2001 static void uclamp_post_fork(struct task_struct *p)
2002 {
2003 	uclamp_update_util_min_rt_default(p);
2004 }
2005 
2006 static void __init init_uclamp_rq(struct rq *rq)
2007 {
2008 	enum uclamp_id clamp_id;
2009 	struct uclamp_rq *uc_rq = rq->uclamp;
2010 
2011 	for_each_clamp_id(clamp_id) {
2012 		uc_rq[clamp_id] = (struct uclamp_rq) {
2013 			.value = uclamp_none(clamp_id)
2014 		};
2015 	}
2016 
2017 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2018 }
2019 
2020 static void __init init_uclamp(void)
2021 {
2022 	struct uclamp_se uc_max = {};
2023 	enum uclamp_id clamp_id;
2024 	int cpu;
2025 
2026 	for_each_possible_cpu(cpu)
2027 		init_uclamp_rq(cpu_rq(cpu));
2028 
2029 	for_each_clamp_id(clamp_id) {
2030 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2031 			      uclamp_none(clamp_id), false);
2032 	}
2033 
2034 	/* System defaults allow max clamp values for both indexes */
2035 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2036 	for_each_clamp_id(clamp_id) {
2037 		uclamp_default[clamp_id] = uc_max;
2038 #ifdef CONFIG_UCLAMP_TASK_GROUP
2039 		root_task_group.uclamp_req[clamp_id] = uc_max;
2040 		root_task_group.uclamp[clamp_id] = uc_max;
2041 #endif
2042 	}
2043 }
2044 
2045 #else /* CONFIG_UCLAMP_TASK */
2046 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2047 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2048 static inline int uclamp_validate(struct task_struct *p,
2049 				  const struct sched_attr *attr)
2050 {
2051 	return -EOPNOTSUPP;
2052 }
2053 static void __setscheduler_uclamp(struct task_struct *p,
2054 				  const struct sched_attr *attr) { }
2055 static inline void uclamp_fork(struct task_struct *p) { }
2056 static inline void uclamp_post_fork(struct task_struct *p) { }
2057 static inline void init_uclamp(void) { }
2058 #endif /* CONFIG_UCLAMP_TASK */
2059 
2060 bool sched_task_on_rq(struct task_struct *p)
2061 {
2062 	return task_on_rq_queued(p);
2063 }
2064 
2065 unsigned long get_wchan(struct task_struct *p)
2066 {
2067 	unsigned long ip = 0;
2068 	unsigned int state;
2069 
2070 	if (!p || p == current)
2071 		return 0;
2072 
2073 	/* Only get wchan if task is blocked and we can keep it that way. */
2074 	raw_spin_lock_irq(&p->pi_lock);
2075 	state = READ_ONCE(p->__state);
2076 	smp_rmb(); /* see try_to_wake_up() */
2077 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2078 		ip = __get_wchan(p);
2079 	raw_spin_unlock_irq(&p->pi_lock);
2080 
2081 	return ip;
2082 }
2083 
2084 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2085 {
2086 	if (!(flags & ENQUEUE_NOCLOCK))
2087 		update_rq_clock(rq);
2088 
2089 	if (!(flags & ENQUEUE_RESTORE)) {
2090 		sched_info_enqueue(rq, p);
2091 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2092 	}
2093 
2094 	uclamp_rq_inc(rq, p);
2095 	p->sched_class->enqueue_task(rq, p, flags);
2096 
2097 	if (sched_core_enabled(rq))
2098 		sched_core_enqueue(rq, p);
2099 }
2100 
2101 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2102 {
2103 	if (sched_core_enabled(rq))
2104 		sched_core_dequeue(rq, p, flags);
2105 
2106 	if (!(flags & DEQUEUE_NOCLOCK))
2107 		update_rq_clock(rq);
2108 
2109 	if (!(flags & DEQUEUE_SAVE)) {
2110 		sched_info_dequeue(rq, p);
2111 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2112 	}
2113 
2114 	uclamp_rq_dec(rq, p);
2115 	p->sched_class->dequeue_task(rq, p, flags);
2116 }
2117 
2118 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2119 {
2120 	if (task_on_rq_migrating(p))
2121 		flags |= ENQUEUE_MIGRATED;
2122 	if (flags & ENQUEUE_MIGRATED)
2123 		sched_mm_cid_migrate_to(rq, p);
2124 
2125 	enqueue_task(rq, p, flags);
2126 
2127 	p->on_rq = TASK_ON_RQ_QUEUED;
2128 }
2129 
2130 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2131 {
2132 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2133 
2134 	dequeue_task(rq, p, flags);
2135 }
2136 
2137 static inline int __normal_prio(int policy, int rt_prio, int nice)
2138 {
2139 	int prio;
2140 
2141 	if (dl_policy(policy))
2142 		prio = MAX_DL_PRIO - 1;
2143 	else if (rt_policy(policy))
2144 		prio = MAX_RT_PRIO - 1 - rt_prio;
2145 	else
2146 		prio = NICE_TO_PRIO(nice);
2147 
2148 	return prio;
2149 }
2150 
2151 /*
2152  * Calculate the expected normal priority: i.e. priority
2153  * without taking RT-inheritance into account. Might be
2154  * boosted by interactivity modifiers. Changes upon fork,
2155  * setprio syscalls, and whenever the interactivity
2156  * estimator recalculates.
2157  */
2158 static inline int normal_prio(struct task_struct *p)
2159 {
2160 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2161 }
2162 
2163 /*
2164  * Calculate the current priority, i.e. the priority
2165  * taken into account by the scheduler. This value might
2166  * be boosted by RT tasks, or might be boosted by
2167  * interactivity modifiers. Will be RT if the task got
2168  * RT-boosted. If not then it returns p->normal_prio.
2169  */
2170 static int effective_prio(struct task_struct *p)
2171 {
2172 	p->normal_prio = normal_prio(p);
2173 	/*
2174 	 * If we are RT tasks or we were boosted to RT priority,
2175 	 * keep the priority unchanged. Otherwise, update priority
2176 	 * to the normal priority:
2177 	 */
2178 	if (!rt_prio(p->prio))
2179 		return p->normal_prio;
2180 	return p->prio;
2181 }
2182 
2183 /**
2184  * task_curr - is this task currently executing on a CPU?
2185  * @p: the task in question.
2186  *
2187  * Return: 1 if the task is currently executing. 0 otherwise.
2188  */
2189 inline int task_curr(const struct task_struct *p)
2190 {
2191 	return cpu_curr(task_cpu(p)) == p;
2192 }
2193 
2194 /*
2195  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2196  * use the balance_callback list if you want balancing.
2197  *
2198  * this means any call to check_class_changed() must be followed by a call to
2199  * balance_callback().
2200  */
2201 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2202 				       const struct sched_class *prev_class,
2203 				       int oldprio)
2204 {
2205 	if (prev_class != p->sched_class) {
2206 		if (prev_class->switched_from)
2207 			prev_class->switched_from(rq, p);
2208 
2209 		p->sched_class->switched_to(rq, p);
2210 	} else if (oldprio != p->prio || dl_task(p))
2211 		p->sched_class->prio_changed(rq, p, oldprio);
2212 }
2213 
2214 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2215 {
2216 	if (p->sched_class == rq->curr->sched_class)
2217 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2218 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2219 		resched_curr(rq);
2220 
2221 	/*
2222 	 * A queue event has occurred, and we're going to schedule.  In
2223 	 * this case, we can save a useless back to back clock update.
2224 	 */
2225 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2226 		rq_clock_skip_update(rq);
2227 }
2228 
2229 static __always_inline
2230 int __task_state_match(struct task_struct *p, unsigned int state)
2231 {
2232 	if (READ_ONCE(p->__state) & state)
2233 		return 1;
2234 
2235 	if (READ_ONCE(p->saved_state) & state)
2236 		return -1;
2237 
2238 	return 0;
2239 }
2240 
2241 static __always_inline
2242 int task_state_match(struct task_struct *p, unsigned int state)
2243 {
2244 	/*
2245 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2246 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2247 	 */
2248 	guard(raw_spinlock_irq)(&p->pi_lock);
2249 	return __task_state_match(p, state);
2250 }
2251 
2252 /*
2253  * wait_task_inactive - wait for a thread to unschedule.
2254  *
2255  * Wait for the thread to block in any of the states set in @match_state.
2256  * If it changes, i.e. @p might have woken up, then return zero.  When we
2257  * succeed in waiting for @p to be off its CPU, we return a positive number
2258  * (its total switch count).  If a second call a short while later returns the
2259  * same number, the caller can be sure that @p has remained unscheduled the
2260  * whole time.
2261  *
2262  * The caller must ensure that the task *will* unschedule sometime soon,
2263  * else this function might spin for a *long* time. This function can't
2264  * be called with interrupts off, or it may introduce deadlock with
2265  * smp_call_function() if an IPI is sent by the same process we are
2266  * waiting to become inactive.
2267  */
2268 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2269 {
2270 	int running, queued, match;
2271 	struct rq_flags rf;
2272 	unsigned long ncsw;
2273 	struct rq *rq;
2274 
2275 	for (;;) {
2276 		/*
2277 		 * We do the initial early heuristics without holding
2278 		 * any task-queue locks at all. We'll only try to get
2279 		 * the runqueue lock when things look like they will
2280 		 * work out!
2281 		 */
2282 		rq = task_rq(p);
2283 
2284 		/*
2285 		 * If the task is actively running on another CPU
2286 		 * still, just relax and busy-wait without holding
2287 		 * any locks.
2288 		 *
2289 		 * NOTE! Since we don't hold any locks, it's not
2290 		 * even sure that "rq" stays as the right runqueue!
2291 		 * But we don't care, since "task_on_cpu()" will
2292 		 * return false if the runqueue has changed and p
2293 		 * is actually now running somewhere else!
2294 		 */
2295 		while (task_on_cpu(rq, p)) {
2296 			if (!task_state_match(p, match_state))
2297 				return 0;
2298 			cpu_relax();
2299 		}
2300 
2301 		/*
2302 		 * Ok, time to look more closely! We need the rq
2303 		 * lock now, to be *sure*. If we're wrong, we'll
2304 		 * just go back and repeat.
2305 		 */
2306 		rq = task_rq_lock(p, &rf);
2307 		trace_sched_wait_task(p);
2308 		running = task_on_cpu(rq, p);
2309 		queued = task_on_rq_queued(p);
2310 		ncsw = 0;
2311 		if ((match = __task_state_match(p, match_state))) {
2312 			/*
2313 			 * When matching on p->saved_state, consider this task
2314 			 * still queued so it will wait.
2315 			 */
2316 			if (match < 0)
2317 				queued = 1;
2318 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2319 		}
2320 		task_rq_unlock(rq, p, &rf);
2321 
2322 		/*
2323 		 * If it changed from the expected state, bail out now.
2324 		 */
2325 		if (unlikely(!ncsw))
2326 			break;
2327 
2328 		/*
2329 		 * Was it really running after all now that we
2330 		 * checked with the proper locks actually held?
2331 		 *
2332 		 * Oops. Go back and try again..
2333 		 */
2334 		if (unlikely(running)) {
2335 			cpu_relax();
2336 			continue;
2337 		}
2338 
2339 		/*
2340 		 * It's not enough that it's not actively running,
2341 		 * it must be off the runqueue _entirely_, and not
2342 		 * preempted!
2343 		 *
2344 		 * So if it was still runnable (but just not actively
2345 		 * running right now), it's preempted, and we should
2346 		 * yield - it could be a while.
2347 		 */
2348 		if (unlikely(queued)) {
2349 			ktime_t to = NSEC_PER_SEC / HZ;
2350 
2351 			set_current_state(TASK_UNINTERRUPTIBLE);
2352 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2353 			continue;
2354 		}
2355 
2356 		/*
2357 		 * Ahh, all good. It wasn't running, and it wasn't
2358 		 * runnable, which means that it will never become
2359 		 * running in the future either. We're all done!
2360 		 */
2361 		break;
2362 	}
2363 
2364 	return ncsw;
2365 }
2366 
2367 #ifdef CONFIG_SMP
2368 
2369 static void
2370 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2371 
2372 static int __set_cpus_allowed_ptr(struct task_struct *p,
2373 				  struct affinity_context *ctx);
2374 
2375 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2376 {
2377 	struct affinity_context ac = {
2378 		.new_mask  = cpumask_of(rq->cpu),
2379 		.flags     = SCA_MIGRATE_DISABLE,
2380 	};
2381 
2382 	if (likely(!p->migration_disabled))
2383 		return;
2384 
2385 	if (p->cpus_ptr != &p->cpus_mask)
2386 		return;
2387 
2388 	/*
2389 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2390 	 */
2391 	__do_set_cpus_allowed(p, &ac);
2392 }
2393 
2394 void migrate_disable(void)
2395 {
2396 	struct task_struct *p = current;
2397 
2398 	if (p->migration_disabled) {
2399 		p->migration_disabled++;
2400 		return;
2401 	}
2402 
2403 	guard(preempt)();
2404 	this_rq()->nr_pinned++;
2405 	p->migration_disabled = 1;
2406 }
2407 EXPORT_SYMBOL_GPL(migrate_disable);
2408 
2409 void migrate_enable(void)
2410 {
2411 	struct task_struct *p = current;
2412 	struct affinity_context ac = {
2413 		.new_mask  = &p->cpus_mask,
2414 		.flags     = SCA_MIGRATE_ENABLE,
2415 	};
2416 
2417 	if (p->migration_disabled > 1) {
2418 		p->migration_disabled--;
2419 		return;
2420 	}
2421 
2422 	if (WARN_ON_ONCE(!p->migration_disabled))
2423 		return;
2424 
2425 	/*
2426 	 * Ensure stop_task runs either before or after this, and that
2427 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2428 	 */
2429 	guard(preempt)();
2430 	if (p->cpus_ptr != &p->cpus_mask)
2431 		__set_cpus_allowed_ptr(p, &ac);
2432 	/*
2433 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2434 	 * regular cpus_mask, otherwise things that race (eg.
2435 	 * select_fallback_rq) get confused.
2436 	 */
2437 	barrier();
2438 	p->migration_disabled = 0;
2439 	this_rq()->nr_pinned--;
2440 }
2441 EXPORT_SYMBOL_GPL(migrate_enable);
2442 
2443 static inline bool rq_has_pinned_tasks(struct rq *rq)
2444 {
2445 	return rq->nr_pinned;
2446 }
2447 
2448 /*
2449  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2450  * __set_cpus_allowed_ptr() and select_fallback_rq().
2451  */
2452 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2453 {
2454 	/* When not in the task's cpumask, no point in looking further. */
2455 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2456 		return false;
2457 
2458 	/* migrate_disabled() must be allowed to finish. */
2459 	if (is_migration_disabled(p))
2460 		return cpu_online(cpu);
2461 
2462 	/* Non kernel threads are not allowed during either online or offline. */
2463 	if (!(p->flags & PF_KTHREAD))
2464 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2465 
2466 	/* KTHREAD_IS_PER_CPU is always allowed. */
2467 	if (kthread_is_per_cpu(p))
2468 		return cpu_online(cpu);
2469 
2470 	/* Regular kernel threads don't get to stay during offline. */
2471 	if (cpu_dying(cpu))
2472 		return false;
2473 
2474 	/* But are allowed during online. */
2475 	return cpu_online(cpu);
2476 }
2477 
2478 /*
2479  * This is how migration works:
2480  *
2481  * 1) we invoke migration_cpu_stop() on the target CPU using
2482  *    stop_one_cpu().
2483  * 2) stopper starts to run (implicitly forcing the migrated thread
2484  *    off the CPU)
2485  * 3) it checks whether the migrated task is still in the wrong runqueue.
2486  * 4) if it's in the wrong runqueue then the migration thread removes
2487  *    it and puts it into the right queue.
2488  * 5) stopper completes and stop_one_cpu() returns and the migration
2489  *    is done.
2490  */
2491 
2492 /*
2493  * move_queued_task - move a queued task to new rq.
2494  *
2495  * Returns (locked) new rq. Old rq's lock is released.
2496  */
2497 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2498 				   struct task_struct *p, int new_cpu)
2499 {
2500 	lockdep_assert_rq_held(rq);
2501 
2502 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2503 	set_task_cpu(p, new_cpu);
2504 	rq_unlock(rq, rf);
2505 
2506 	rq = cpu_rq(new_cpu);
2507 
2508 	rq_lock(rq, rf);
2509 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2510 	activate_task(rq, p, 0);
2511 	wakeup_preempt(rq, p, 0);
2512 
2513 	return rq;
2514 }
2515 
2516 struct migration_arg {
2517 	struct task_struct		*task;
2518 	int				dest_cpu;
2519 	struct set_affinity_pending	*pending;
2520 };
2521 
2522 /*
2523  * @refs: number of wait_for_completion()
2524  * @stop_pending: is @stop_work in use
2525  */
2526 struct set_affinity_pending {
2527 	refcount_t		refs;
2528 	unsigned int		stop_pending;
2529 	struct completion	done;
2530 	struct cpu_stop_work	stop_work;
2531 	struct migration_arg	arg;
2532 };
2533 
2534 /*
2535  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2536  * this because either it can't run here any more (set_cpus_allowed()
2537  * away from this CPU, or CPU going down), or because we're
2538  * attempting to rebalance this task on exec (sched_exec).
2539  *
2540  * So we race with normal scheduler movements, but that's OK, as long
2541  * as the task is no longer on this CPU.
2542  */
2543 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2544 				 struct task_struct *p, int dest_cpu)
2545 {
2546 	/* Affinity changed (again). */
2547 	if (!is_cpu_allowed(p, dest_cpu))
2548 		return rq;
2549 
2550 	rq = move_queued_task(rq, rf, p, dest_cpu);
2551 
2552 	return rq;
2553 }
2554 
2555 /*
2556  * migration_cpu_stop - this will be executed by a highprio stopper thread
2557  * and performs thread migration by bumping thread off CPU then
2558  * 'pushing' onto another runqueue.
2559  */
2560 static int migration_cpu_stop(void *data)
2561 {
2562 	struct migration_arg *arg = data;
2563 	struct set_affinity_pending *pending = arg->pending;
2564 	struct task_struct *p = arg->task;
2565 	struct rq *rq = this_rq();
2566 	bool complete = false;
2567 	struct rq_flags rf;
2568 
2569 	/*
2570 	 * The original target CPU might have gone down and we might
2571 	 * be on another CPU but it doesn't matter.
2572 	 */
2573 	local_irq_save(rf.flags);
2574 	/*
2575 	 * We need to explicitly wake pending tasks before running
2576 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2577 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2578 	 */
2579 	flush_smp_call_function_queue();
2580 
2581 	raw_spin_lock(&p->pi_lock);
2582 	rq_lock(rq, &rf);
2583 
2584 	/*
2585 	 * If we were passed a pending, then ->stop_pending was set, thus
2586 	 * p->migration_pending must have remained stable.
2587 	 */
2588 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2589 
2590 	/*
2591 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2592 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2593 	 * we're holding p->pi_lock.
2594 	 */
2595 	if (task_rq(p) == rq) {
2596 		if (is_migration_disabled(p))
2597 			goto out;
2598 
2599 		if (pending) {
2600 			p->migration_pending = NULL;
2601 			complete = true;
2602 
2603 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2604 				goto out;
2605 		}
2606 
2607 		if (task_on_rq_queued(p)) {
2608 			update_rq_clock(rq);
2609 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2610 		} else {
2611 			p->wake_cpu = arg->dest_cpu;
2612 		}
2613 
2614 		/*
2615 		 * XXX __migrate_task() can fail, at which point we might end
2616 		 * up running on a dodgy CPU, AFAICT this can only happen
2617 		 * during CPU hotplug, at which point we'll get pushed out
2618 		 * anyway, so it's probably not a big deal.
2619 		 */
2620 
2621 	} else if (pending) {
2622 		/*
2623 		 * This happens when we get migrated between migrate_enable()'s
2624 		 * preempt_enable() and scheduling the stopper task. At that
2625 		 * point we're a regular task again and not current anymore.
2626 		 *
2627 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2628 		 * more likely.
2629 		 */
2630 
2631 		/*
2632 		 * The task moved before the stopper got to run. We're holding
2633 		 * ->pi_lock, so the allowed mask is stable - if it got
2634 		 * somewhere allowed, we're done.
2635 		 */
2636 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2637 			p->migration_pending = NULL;
2638 			complete = true;
2639 			goto out;
2640 		}
2641 
2642 		/*
2643 		 * When migrate_enable() hits a rq mis-match we can't reliably
2644 		 * determine is_migration_disabled() and so have to chase after
2645 		 * it.
2646 		 */
2647 		WARN_ON_ONCE(!pending->stop_pending);
2648 		preempt_disable();
2649 		task_rq_unlock(rq, p, &rf);
2650 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2651 				    &pending->arg, &pending->stop_work);
2652 		preempt_enable();
2653 		return 0;
2654 	}
2655 out:
2656 	if (pending)
2657 		pending->stop_pending = false;
2658 	task_rq_unlock(rq, p, &rf);
2659 
2660 	if (complete)
2661 		complete_all(&pending->done);
2662 
2663 	return 0;
2664 }
2665 
2666 int push_cpu_stop(void *arg)
2667 {
2668 	struct rq *lowest_rq = NULL, *rq = this_rq();
2669 	struct task_struct *p = arg;
2670 
2671 	raw_spin_lock_irq(&p->pi_lock);
2672 	raw_spin_rq_lock(rq);
2673 
2674 	if (task_rq(p) != rq)
2675 		goto out_unlock;
2676 
2677 	if (is_migration_disabled(p)) {
2678 		p->migration_flags |= MDF_PUSH;
2679 		goto out_unlock;
2680 	}
2681 
2682 	p->migration_flags &= ~MDF_PUSH;
2683 
2684 	if (p->sched_class->find_lock_rq)
2685 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2686 
2687 	if (!lowest_rq)
2688 		goto out_unlock;
2689 
2690 	// XXX validate p is still the highest prio task
2691 	if (task_rq(p) == rq) {
2692 		deactivate_task(rq, p, 0);
2693 		set_task_cpu(p, lowest_rq->cpu);
2694 		activate_task(lowest_rq, p, 0);
2695 		resched_curr(lowest_rq);
2696 	}
2697 
2698 	double_unlock_balance(rq, lowest_rq);
2699 
2700 out_unlock:
2701 	rq->push_busy = false;
2702 	raw_spin_rq_unlock(rq);
2703 	raw_spin_unlock_irq(&p->pi_lock);
2704 
2705 	put_task_struct(p);
2706 	return 0;
2707 }
2708 
2709 /*
2710  * sched_class::set_cpus_allowed must do the below, but is not required to
2711  * actually call this function.
2712  */
2713 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2714 {
2715 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2716 		p->cpus_ptr = ctx->new_mask;
2717 		return;
2718 	}
2719 
2720 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2721 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2722 
2723 	/*
2724 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2725 	 */
2726 	if (ctx->flags & SCA_USER)
2727 		swap(p->user_cpus_ptr, ctx->user_mask);
2728 }
2729 
2730 static void
2731 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2732 {
2733 	struct rq *rq = task_rq(p);
2734 	bool queued, running;
2735 
2736 	/*
2737 	 * This here violates the locking rules for affinity, since we're only
2738 	 * supposed to change these variables while holding both rq->lock and
2739 	 * p->pi_lock.
2740 	 *
2741 	 * HOWEVER, it magically works, because ttwu() is the only code that
2742 	 * accesses these variables under p->pi_lock and only does so after
2743 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2744 	 * before finish_task().
2745 	 *
2746 	 * XXX do further audits, this smells like something putrid.
2747 	 */
2748 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2749 		SCHED_WARN_ON(!p->on_cpu);
2750 	else
2751 		lockdep_assert_held(&p->pi_lock);
2752 
2753 	queued = task_on_rq_queued(p);
2754 	running = task_current(rq, p);
2755 
2756 	if (queued) {
2757 		/*
2758 		 * Because __kthread_bind() calls this on blocked tasks without
2759 		 * holding rq->lock.
2760 		 */
2761 		lockdep_assert_rq_held(rq);
2762 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2763 	}
2764 	if (running)
2765 		put_prev_task(rq, p);
2766 
2767 	p->sched_class->set_cpus_allowed(p, ctx);
2768 
2769 	if (queued)
2770 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2771 	if (running)
2772 		set_next_task(rq, p);
2773 }
2774 
2775 /*
2776  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2777  * affinity (if any) should be destroyed too.
2778  */
2779 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2780 {
2781 	struct affinity_context ac = {
2782 		.new_mask  = new_mask,
2783 		.user_mask = NULL,
2784 		.flags     = SCA_USER,	/* clear the user requested mask */
2785 	};
2786 	union cpumask_rcuhead {
2787 		cpumask_t cpumask;
2788 		struct rcu_head rcu;
2789 	};
2790 
2791 	__do_set_cpus_allowed(p, &ac);
2792 
2793 	/*
2794 	 * Because this is called with p->pi_lock held, it is not possible
2795 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2796 	 * kfree_rcu().
2797 	 */
2798 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2799 }
2800 
2801 static cpumask_t *alloc_user_cpus_ptr(int node)
2802 {
2803 	/*
2804 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2805 	 */
2806 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2807 
2808 	return kmalloc_node(size, GFP_KERNEL, node);
2809 }
2810 
2811 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2812 		      int node)
2813 {
2814 	cpumask_t *user_mask;
2815 	unsigned long flags;
2816 
2817 	/*
2818 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2819 	 * may differ by now due to racing.
2820 	 */
2821 	dst->user_cpus_ptr = NULL;
2822 
2823 	/*
2824 	 * This check is racy and losing the race is a valid situation.
2825 	 * It is not worth the extra overhead of taking the pi_lock on
2826 	 * every fork/clone.
2827 	 */
2828 	if (data_race(!src->user_cpus_ptr))
2829 		return 0;
2830 
2831 	user_mask = alloc_user_cpus_ptr(node);
2832 	if (!user_mask)
2833 		return -ENOMEM;
2834 
2835 	/*
2836 	 * Use pi_lock to protect content of user_cpus_ptr
2837 	 *
2838 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2839 	 * do_set_cpus_allowed().
2840 	 */
2841 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2842 	if (src->user_cpus_ptr) {
2843 		swap(dst->user_cpus_ptr, user_mask);
2844 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2845 	}
2846 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2847 
2848 	if (unlikely(user_mask))
2849 		kfree(user_mask);
2850 
2851 	return 0;
2852 }
2853 
2854 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2855 {
2856 	struct cpumask *user_mask = NULL;
2857 
2858 	swap(p->user_cpus_ptr, user_mask);
2859 
2860 	return user_mask;
2861 }
2862 
2863 void release_user_cpus_ptr(struct task_struct *p)
2864 {
2865 	kfree(clear_user_cpus_ptr(p));
2866 }
2867 
2868 /*
2869  * This function is wildly self concurrent; here be dragons.
2870  *
2871  *
2872  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2873  * designated task is enqueued on an allowed CPU. If that task is currently
2874  * running, we have to kick it out using the CPU stopper.
2875  *
2876  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2877  * Consider:
2878  *
2879  *     Initial conditions: P0->cpus_mask = [0, 1]
2880  *
2881  *     P0@CPU0                  P1
2882  *
2883  *     migrate_disable();
2884  *     <preempted>
2885  *                              set_cpus_allowed_ptr(P0, [1]);
2886  *
2887  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2888  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2889  * This means we need the following scheme:
2890  *
2891  *     P0@CPU0                  P1
2892  *
2893  *     migrate_disable();
2894  *     <preempted>
2895  *                              set_cpus_allowed_ptr(P0, [1]);
2896  *                                <blocks>
2897  *     <resumes>
2898  *     migrate_enable();
2899  *       __set_cpus_allowed_ptr();
2900  *       <wakes local stopper>
2901  *                         `--> <woken on migration completion>
2902  *
2903  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2904  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2905  * task p are serialized by p->pi_lock, which we can leverage: the one that
2906  * should come into effect at the end of the Migrate-Disable region is the last
2907  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2908  * but we still need to properly signal those waiting tasks at the appropriate
2909  * moment.
2910  *
2911  * This is implemented using struct set_affinity_pending. The first
2912  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2913  * setup an instance of that struct and install it on the targeted task_struct.
2914  * Any and all further callers will reuse that instance. Those then wait for
2915  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2916  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2917  *
2918  *
2919  * (1) In the cases covered above. There is one more where the completion is
2920  * signaled within affine_move_task() itself: when a subsequent affinity request
2921  * occurs after the stopper bailed out due to the targeted task still being
2922  * Migrate-Disable. Consider:
2923  *
2924  *     Initial conditions: P0->cpus_mask = [0, 1]
2925  *
2926  *     CPU0		  P1				P2
2927  *     <P0>
2928  *       migrate_disable();
2929  *       <preempted>
2930  *                        set_cpus_allowed_ptr(P0, [1]);
2931  *                          <blocks>
2932  *     <migration/0>
2933  *       migration_cpu_stop()
2934  *         is_migration_disabled()
2935  *           <bails>
2936  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2937  *                                                         <signal completion>
2938  *                          <awakes>
2939  *
2940  * Note that the above is safe vs a concurrent migrate_enable(), as any
2941  * pending affinity completion is preceded by an uninstallation of
2942  * p->migration_pending done with p->pi_lock held.
2943  */
2944 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2945 			    int dest_cpu, unsigned int flags)
2946 	__releases(rq->lock)
2947 	__releases(p->pi_lock)
2948 {
2949 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2950 	bool stop_pending, complete = false;
2951 
2952 	/* Can the task run on the task's current CPU? If so, we're done */
2953 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2954 		struct task_struct *push_task = NULL;
2955 
2956 		if ((flags & SCA_MIGRATE_ENABLE) &&
2957 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2958 			rq->push_busy = true;
2959 			push_task = get_task_struct(p);
2960 		}
2961 
2962 		/*
2963 		 * If there are pending waiters, but no pending stop_work,
2964 		 * then complete now.
2965 		 */
2966 		pending = p->migration_pending;
2967 		if (pending && !pending->stop_pending) {
2968 			p->migration_pending = NULL;
2969 			complete = true;
2970 		}
2971 
2972 		preempt_disable();
2973 		task_rq_unlock(rq, p, rf);
2974 		if (push_task) {
2975 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2976 					    p, &rq->push_work);
2977 		}
2978 		preempt_enable();
2979 
2980 		if (complete)
2981 			complete_all(&pending->done);
2982 
2983 		return 0;
2984 	}
2985 
2986 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2987 		/* serialized by p->pi_lock */
2988 		if (!p->migration_pending) {
2989 			/* Install the request */
2990 			refcount_set(&my_pending.refs, 1);
2991 			init_completion(&my_pending.done);
2992 			my_pending.arg = (struct migration_arg) {
2993 				.task = p,
2994 				.dest_cpu = dest_cpu,
2995 				.pending = &my_pending,
2996 			};
2997 
2998 			p->migration_pending = &my_pending;
2999 		} else {
3000 			pending = p->migration_pending;
3001 			refcount_inc(&pending->refs);
3002 			/*
3003 			 * Affinity has changed, but we've already installed a
3004 			 * pending. migration_cpu_stop() *must* see this, else
3005 			 * we risk a completion of the pending despite having a
3006 			 * task on a disallowed CPU.
3007 			 *
3008 			 * Serialized by p->pi_lock, so this is safe.
3009 			 */
3010 			pending->arg.dest_cpu = dest_cpu;
3011 		}
3012 	}
3013 	pending = p->migration_pending;
3014 	/*
3015 	 * - !MIGRATE_ENABLE:
3016 	 *   we'll have installed a pending if there wasn't one already.
3017 	 *
3018 	 * - MIGRATE_ENABLE:
3019 	 *   we're here because the current CPU isn't matching anymore,
3020 	 *   the only way that can happen is because of a concurrent
3021 	 *   set_cpus_allowed_ptr() call, which should then still be
3022 	 *   pending completion.
3023 	 *
3024 	 * Either way, we really should have a @pending here.
3025 	 */
3026 	if (WARN_ON_ONCE(!pending)) {
3027 		task_rq_unlock(rq, p, rf);
3028 		return -EINVAL;
3029 	}
3030 
3031 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3032 		/*
3033 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3034 		 * anything else we cannot do is_migration_disabled(), punt
3035 		 * and have the stopper function handle it all race-free.
3036 		 */
3037 		stop_pending = pending->stop_pending;
3038 		if (!stop_pending)
3039 			pending->stop_pending = true;
3040 
3041 		if (flags & SCA_MIGRATE_ENABLE)
3042 			p->migration_flags &= ~MDF_PUSH;
3043 
3044 		preempt_disable();
3045 		task_rq_unlock(rq, p, rf);
3046 		if (!stop_pending) {
3047 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3048 					    &pending->arg, &pending->stop_work);
3049 		}
3050 		preempt_enable();
3051 
3052 		if (flags & SCA_MIGRATE_ENABLE)
3053 			return 0;
3054 	} else {
3055 
3056 		if (!is_migration_disabled(p)) {
3057 			if (task_on_rq_queued(p))
3058 				rq = move_queued_task(rq, rf, p, dest_cpu);
3059 
3060 			if (!pending->stop_pending) {
3061 				p->migration_pending = NULL;
3062 				complete = true;
3063 			}
3064 		}
3065 		task_rq_unlock(rq, p, rf);
3066 
3067 		if (complete)
3068 			complete_all(&pending->done);
3069 	}
3070 
3071 	wait_for_completion(&pending->done);
3072 
3073 	if (refcount_dec_and_test(&pending->refs))
3074 		wake_up_var(&pending->refs); /* No UaF, just an address */
3075 
3076 	/*
3077 	 * Block the original owner of &pending until all subsequent callers
3078 	 * have seen the completion and decremented the refcount
3079 	 */
3080 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3081 
3082 	/* ARGH */
3083 	WARN_ON_ONCE(my_pending.stop_pending);
3084 
3085 	return 0;
3086 }
3087 
3088 /*
3089  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3090  */
3091 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3092 					 struct affinity_context *ctx,
3093 					 struct rq *rq,
3094 					 struct rq_flags *rf)
3095 	__releases(rq->lock)
3096 	__releases(p->pi_lock)
3097 {
3098 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3099 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3100 	bool kthread = p->flags & PF_KTHREAD;
3101 	unsigned int dest_cpu;
3102 	int ret = 0;
3103 
3104 	update_rq_clock(rq);
3105 
3106 	if (kthread || is_migration_disabled(p)) {
3107 		/*
3108 		 * Kernel threads are allowed on online && !active CPUs,
3109 		 * however, during cpu-hot-unplug, even these might get pushed
3110 		 * away if not KTHREAD_IS_PER_CPU.
3111 		 *
3112 		 * Specifically, migration_disabled() tasks must not fail the
3113 		 * cpumask_any_and_distribute() pick below, esp. so on
3114 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3115 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3116 		 */
3117 		cpu_valid_mask = cpu_online_mask;
3118 	}
3119 
3120 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3121 		ret = -EINVAL;
3122 		goto out;
3123 	}
3124 
3125 	/*
3126 	 * Must re-check here, to close a race against __kthread_bind(),
3127 	 * sched_setaffinity() is not guaranteed to observe the flag.
3128 	 */
3129 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3130 		ret = -EINVAL;
3131 		goto out;
3132 	}
3133 
3134 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3135 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3136 			if (ctx->flags & SCA_USER)
3137 				swap(p->user_cpus_ptr, ctx->user_mask);
3138 			goto out;
3139 		}
3140 
3141 		if (WARN_ON_ONCE(p == current &&
3142 				 is_migration_disabled(p) &&
3143 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3144 			ret = -EBUSY;
3145 			goto out;
3146 		}
3147 	}
3148 
3149 	/*
3150 	 * Picking a ~random cpu helps in cases where we are changing affinity
3151 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3152 	 * immediately required to distribute the tasks within their new mask.
3153 	 */
3154 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3155 	if (dest_cpu >= nr_cpu_ids) {
3156 		ret = -EINVAL;
3157 		goto out;
3158 	}
3159 
3160 	__do_set_cpus_allowed(p, ctx);
3161 
3162 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3163 
3164 out:
3165 	task_rq_unlock(rq, p, rf);
3166 
3167 	return ret;
3168 }
3169 
3170 /*
3171  * Change a given task's CPU affinity. Migrate the thread to a
3172  * proper CPU and schedule it away if the CPU it's executing on
3173  * is removed from the allowed bitmask.
3174  *
3175  * NOTE: the caller must have a valid reference to the task, the
3176  * task must not exit() & deallocate itself prematurely. The
3177  * call is not atomic; no spinlocks may be held.
3178  */
3179 static int __set_cpus_allowed_ptr(struct task_struct *p,
3180 				  struct affinity_context *ctx)
3181 {
3182 	struct rq_flags rf;
3183 	struct rq *rq;
3184 
3185 	rq = task_rq_lock(p, &rf);
3186 	/*
3187 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3188 	 * flags are set.
3189 	 */
3190 	if (p->user_cpus_ptr &&
3191 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3192 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3193 		ctx->new_mask = rq->scratch_mask;
3194 
3195 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3196 }
3197 
3198 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3199 {
3200 	struct affinity_context ac = {
3201 		.new_mask  = new_mask,
3202 		.flags     = 0,
3203 	};
3204 
3205 	return __set_cpus_allowed_ptr(p, &ac);
3206 }
3207 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3208 
3209 /*
3210  * Change a given task's CPU affinity to the intersection of its current
3211  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3212  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3213  * affinity or use cpu_online_mask instead.
3214  *
3215  * If the resulting mask is empty, leave the affinity unchanged and return
3216  * -EINVAL.
3217  */
3218 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3219 				     struct cpumask *new_mask,
3220 				     const struct cpumask *subset_mask)
3221 {
3222 	struct affinity_context ac = {
3223 		.new_mask  = new_mask,
3224 		.flags     = 0,
3225 	};
3226 	struct rq_flags rf;
3227 	struct rq *rq;
3228 	int err;
3229 
3230 	rq = task_rq_lock(p, &rf);
3231 
3232 	/*
3233 	 * Forcefully restricting the affinity of a deadline task is
3234 	 * likely to cause problems, so fail and noisily override the
3235 	 * mask entirely.
3236 	 */
3237 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3238 		err = -EPERM;
3239 		goto err_unlock;
3240 	}
3241 
3242 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3243 		err = -EINVAL;
3244 		goto err_unlock;
3245 	}
3246 
3247 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3248 
3249 err_unlock:
3250 	task_rq_unlock(rq, p, &rf);
3251 	return err;
3252 }
3253 
3254 /*
3255  * Restrict the CPU affinity of task @p so that it is a subset of
3256  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3257  * old affinity mask. If the resulting mask is empty, we warn and walk
3258  * up the cpuset hierarchy until we find a suitable mask.
3259  */
3260 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3261 {
3262 	cpumask_var_t new_mask;
3263 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3264 
3265 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3266 
3267 	/*
3268 	 * __migrate_task() can fail silently in the face of concurrent
3269 	 * offlining of the chosen destination CPU, so take the hotplug
3270 	 * lock to ensure that the migration succeeds.
3271 	 */
3272 	cpus_read_lock();
3273 	if (!cpumask_available(new_mask))
3274 		goto out_set_mask;
3275 
3276 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3277 		goto out_free_mask;
3278 
3279 	/*
3280 	 * We failed to find a valid subset of the affinity mask for the
3281 	 * task, so override it based on its cpuset hierarchy.
3282 	 */
3283 	cpuset_cpus_allowed(p, new_mask);
3284 	override_mask = new_mask;
3285 
3286 out_set_mask:
3287 	if (printk_ratelimit()) {
3288 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3289 				task_pid_nr(p), p->comm,
3290 				cpumask_pr_args(override_mask));
3291 	}
3292 
3293 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3294 out_free_mask:
3295 	cpus_read_unlock();
3296 	free_cpumask_var(new_mask);
3297 }
3298 
3299 static int
3300 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3301 
3302 /*
3303  * Restore the affinity of a task @p which was previously restricted by a
3304  * call to force_compatible_cpus_allowed_ptr().
3305  *
3306  * It is the caller's responsibility to serialise this with any calls to
3307  * force_compatible_cpus_allowed_ptr(@p).
3308  */
3309 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3310 {
3311 	struct affinity_context ac = {
3312 		.new_mask  = task_user_cpus(p),
3313 		.flags     = 0,
3314 	};
3315 	int ret;
3316 
3317 	/*
3318 	 * Try to restore the old affinity mask with __sched_setaffinity().
3319 	 * Cpuset masking will be done there too.
3320 	 */
3321 	ret = __sched_setaffinity(p, &ac);
3322 	WARN_ON_ONCE(ret);
3323 }
3324 
3325 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3326 {
3327 #ifdef CONFIG_SCHED_DEBUG
3328 	unsigned int state = READ_ONCE(p->__state);
3329 
3330 	/*
3331 	 * We should never call set_task_cpu() on a blocked task,
3332 	 * ttwu() will sort out the placement.
3333 	 */
3334 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3335 
3336 	/*
3337 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3338 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3339 	 * time relying on p->on_rq.
3340 	 */
3341 	WARN_ON_ONCE(state == TASK_RUNNING &&
3342 		     p->sched_class == &fair_sched_class &&
3343 		     (p->on_rq && !task_on_rq_migrating(p)));
3344 
3345 #ifdef CONFIG_LOCKDEP
3346 	/*
3347 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3348 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3349 	 *
3350 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3351 	 * see task_group().
3352 	 *
3353 	 * Furthermore, all task_rq users should acquire both locks, see
3354 	 * task_rq_lock().
3355 	 */
3356 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3357 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3358 #endif
3359 	/*
3360 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3361 	 */
3362 	WARN_ON_ONCE(!cpu_online(new_cpu));
3363 
3364 	WARN_ON_ONCE(is_migration_disabled(p));
3365 #endif
3366 
3367 	trace_sched_migrate_task(p, new_cpu);
3368 
3369 	if (task_cpu(p) != new_cpu) {
3370 		if (p->sched_class->migrate_task_rq)
3371 			p->sched_class->migrate_task_rq(p, new_cpu);
3372 		p->se.nr_migrations++;
3373 		rseq_migrate(p);
3374 		sched_mm_cid_migrate_from(p);
3375 		perf_event_task_migrate(p);
3376 	}
3377 
3378 	__set_task_cpu(p, new_cpu);
3379 }
3380 
3381 #ifdef CONFIG_NUMA_BALANCING
3382 static void __migrate_swap_task(struct task_struct *p, int cpu)
3383 {
3384 	if (task_on_rq_queued(p)) {
3385 		struct rq *src_rq, *dst_rq;
3386 		struct rq_flags srf, drf;
3387 
3388 		src_rq = task_rq(p);
3389 		dst_rq = cpu_rq(cpu);
3390 
3391 		rq_pin_lock(src_rq, &srf);
3392 		rq_pin_lock(dst_rq, &drf);
3393 
3394 		deactivate_task(src_rq, p, 0);
3395 		set_task_cpu(p, cpu);
3396 		activate_task(dst_rq, p, 0);
3397 		wakeup_preempt(dst_rq, p, 0);
3398 
3399 		rq_unpin_lock(dst_rq, &drf);
3400 		rq_unpin_lock(src_rq, &srf);
3401 
3402 	} else {
3403 		/*
3404 		 * Task isn't running anymore; make it appear like we migrated
3405 		 * it before it went to sleep. This means on wakeup we make the
3406 		 * previous CPU our target instead of where it really is.
3407 		 */
3408 		p->wake_cpu = cpu;
3409 	}
3410 }
3411 
3412 struct migration_swap_arg {
3413 	struct task_struct *src_task, *dst_task;
3414 	int src_cpu, dst_cpu;
3415 };
3416 
3417 static int migrate_swap_stop(void *data)
3418 {
3419 	struct migration_swap_arg *arg = data;
3420 	struct rq *src_rq, *dst_rq;
3421 
3422 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3423 		return -EAGAIN;
3424 
3425 	src_rq = cpu_rq(arg->src_cpu);
3426 	dst_rq = cpu_rq(arg->dst_cpu);
3427 
3428 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3429 	guard(double_rq_lock)(src_rq, dst_rq);
3430 
3431 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3432 		return -EAGAIN;
3433 
3434 	if (task_cpu(arg->src_task) != arg->src_cpu)
3435 		return -EAGAIN;
3436 
3437 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3438 		return -EAGAIN;
3439 
3440 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3441 		return -EAGAIN;
3442 
3443 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3444 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3445 
3446 	return 0;
3447 }
3448 
3449 /*
3450  * Cross migrate two tasks
3451  */
3452 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3453 		int target_cpu, int curr_cpu)
3454 {
3455 	struct migration_swap_arg arg;
3456 	int ret = -EINVAL;
3457 
3458 	arg = (struct migration_swap_arg){
3459 		.src_task = cur,
3460 		.src_cpu = curr_cpu,
3461 		.dst_task = p,
3462 		.dst_cpu = target_cpu,
3463 	};
3464 
3465 	if (arg.src_cpu == arg.dst_cpu)
3466 		goto out;
3467 
3468 	/*
3469 	 * These three tests are all lockless; this is OK since all of them
3470 	 * will be re-checked with proper locks held further down the line.
3471 	 */
3472 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3473 		goto out;
3474 
3475 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3476 		goto out;
3477 
3478 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3479 		goto out;
3480 
3481 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3482 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3483 
3484 out:
3485 	return ret;
3486 }
3487 #endif /* CONFIG_NUMA_BALANCING */
3488 
3489 /***
3490  * kick_process - kick a running thread to enter/exit the kernel
3491  * @p: the to-be-kicked thread
3492  *
3493  * Cause a process which is running on another CPU to enter
3494  * kernel-mode, without any delay. (to get signals handled.)
3495  *
3496  * NOTE: this function doesn't have to take the runqueue lock,
3497  * because all it wants to ensure is that the remote task enters
3498  * the kernel. If the IPI races and the task has been migrated
3499  * to another CPU then no harm is done and the purpose has been
3500  * achieved as well.
3501  */
3502 void kick_process(struct task_struct *p)
3503 {
3504 	guard(preempt)();
3505 	int cpu = task_cpu(p);
3506 
3507 	if ((cpu != smp_processor_id()) && task_curr(p))
3508 		smp_send_reschedule(cpu);
3509 }
3510 EXPORT_SYMBOL_GPL(kick_process);
3511 
3512 /*
3513  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3514  *
3515  * A few notes on cpu_active vs cpu_online:
3516  *
3517  *  - cpu_active must be a subset of cpu_online
3518  *
3519  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3520  *    see __set_cpus_allowed_ptr(). At this point the newly online
3521  *    CPU isn't yet part of the sched domains, and balancing will not
3522  *    see it.
3523  *
3524  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3525  *    avoid the load balancer to place new tasks on the to be removed
3526  *    CPU. Existing tasks will remain running there and will be taken
3527  *    off.
3528  *
3529  * This means that fallback selection must not select !active CPUs.
3530  * And can assume that any active CPU must be online. Conversely
3531  * select_task_rq() below may allow selection of !active CPUs in order
3532  * to satisfy the above rules.
3533  */
3534 static int select_fallback_rq(int cpu, struct task_struct *p)
3535 {
3536 	int nid = cpu_to_node(cpu);
3537 	const struct cpumask *nodemask = NULL;
3538 	enum { cpuset, possible, fail } state = cpuset;
3539 	int dest_cpu;
3540 
3541 	/*
3542 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3543 	 * will return -1. There is no CPU on the node, and we should
3544 	 * select the CPU on the other node.
3545 	 */
3546 	if (nid != -1) {
3547 		nodemask = cpumask_of_node(nid);
3548 
3549 		/* Look for allowed, online CPU in same node. */
3550 		for_each_cpu(dest_cpu, nodemask) {
3551 			if (is_cpu_allowed(p, dest_cpu))
3552 				return dest_cpu;
3553 		}
3554 	}
3555 
3556 	for (;;) {
3557 		/* Any allowed, online CPU? */
3558 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3559 			if (!is_cpu_allowed(p, dest_cpu))
3560 				continue;
3561 
3562 			goto out;
3563 		}
3564 
3565 		/* No more Mr. Nice Guy. */
3566 		switch (state) {
3567 		case cpuset:
3568 			if (cpuset_cpus_allowed_fallback(p)) {
3569 				state = possible;
3570 				break;
3571 			}
3572 			fallthrough;
3573 		case possible:
3574 			/*
3575 			 * XXX When called from select_task_rq() we only
3576 			 * hold p->pi_lock and again violate locking order.
3577 			 *
3578 			 * More yuck to audit.
3579 			 */
3580 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3581 			state = fail;
3582 			break;
3583 		case fail:
3584 			BUG();
3585 			break;
3586 		}
3587 	}
3588 
3589 out:
3590 	if (state != cpuset) {
3591 		/*
3592 		 * Don't tell them about moving exiting tasks or
3593 		 * kernel threads (both mm NULL), since they never
3594 		 * leave kernel.
3595 		 */
3596 		if (p->mm && printk_ratelimit()) {
3597 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3598 					task_pid_nr(p), p->comm, cpu);
3599 		}
3600 	}
3601 
3602 	return dest_cpu;
3603 }
3604 
3605 /*
3606  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3607  */
3608 static inline
3609 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3610 {
3611 	lockdep_assert_held(&p->pi_lock);
3612 
3613 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3614 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3615 	else
3616 		cpu = cpumask_any(p->cpus_ptr);
3617 
3618 	/*
3619 	 * In order not to call set_task_cpu() on a blocking task we need
3620 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3621 	 * CPU.
3622 	 *
3623 	 * Since this is common to all placement strategies, this lives here.
3624 	 *
3625 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3626 	 *   not worry about this generic constraint ]
3627 	 */
3628 	if (unlikely(!is_cpu_allowed(p, cpu)))
3629 		cpu = select_fallback_rq(task_cpu(p), p);
3630 
3631 	return cpu;
3632 }
3633 
3634 void sched_set_stop_task(int cpu, struct task_struct *stop)
3635 {
3636 	static struct lock_class_key stop_pi_lock;
3637 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3638 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3639 
3640 	if (stop) {
3641 		/*
3642 		 * Make it appear like a SCHED_FIFO task, its something
3643 		 * userspace knows about and won't get confused about.
3644 		 *
3645 		 * Also, it will make PI more or less work without too
3646 		 * much confusion -- but then, stop work should not
3647 		 * rely on PI working anyway.
3648 		 */
3649 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3650 
3651 		stop->sched_class = &stop_sched_class;
3652 
3653 		/*
3654 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3655 		 * adjust the effective priority of a task. As a result,
3656 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3657 		 * which can then trigger wakeups of the stop thread to push
3658 		 * around the current task.
3659 		 *
3660 		 * The stop task itself will never be part of the PI-chain, it
3661 		 * never blocks, therefore that ->pi_lock recursion is safe.
3662 		 * Tell lockdep about this by placing the stop->pi_lock in its
3663 		 * own class.
3664 		 */
3665 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3666 	}
3667 
3668 	cpu_rq(cpu)->stop = stop;
3669 
3670 	if (old_stop) {
3671 		/*
3672 		 * Reset it back to a normal scheduling class so that
3673 		 * it can die in pieces.
3674 		 */
3675 		old_stop->sched_class = &rt_sched_class;
3676 	}
3677 }
3678 
3679 #else /* CONFIG_SMP */
3680 
3681 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3682 					 struct affinity_context *ctx)
3683 {
3684 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3685 }
3686 
3687 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3688 
3689 static inline bool rq_has_pinned_tasks(struct rq *rq)
3690 {
3691 	return false;
3692 }
3693 
3694 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3695 {
3696 	return NULL;
3697 }
3698 
3699 #endif /* !CONFIG_SMP */
3700 
3701 static void
3702 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3703 {
3704 	struct rq *rq;
3705 
3706 	if (!schedstat_enabled())
3707 		return;
3708 
3709 	rq = this_rq();
3710 
3711 #ifdef CONFIG_SMP
3712 	if (cpu == rq->cpu) {
3713 		__schedstat_inc(rq->ttwu_local);
3714 		__schedstat_inc(p->stats.nr_wakeups_local);
3715 	} else {
3716 		struct sched_domain *sd;
3717 
3718 		__schedstat_inc(p->stats.nr_wakeups_remote);
3719 
3720 		guard(rcu)();
3721 		for_each_domain(rq->cpu, sd) {
3722 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3723 				__schedstat_inc(sd->ttwu_wake_remote);
3724 				break;
3725 			}
3726 		}
3727 	}
3728 
3729 	if (wake_flags & WF_MIGRATED)
3730 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3731 #endif /* CONFIG_SMP */
3732 
3733 	__schedstat_inc(rq->ttwu_count);
3734 	__schedstat_inc(p->stats.nr_wakeups);
3735 
3736 	if (wake_flags & WF_SYNC)
3737 		__schedstat_inc(p->stats.nr_wakeups_sync);
3738 }
3739 
3740 /*
3741  * Mark the task runnable.
3742  */
3743 static inline void ttwu_do_wakeup(struct task_struct *p)
3744 {
3745 	WRITE_ONCE(p->__state, TASK_RUNNING);
3746 	trace_sched_wakeup(p);
3747 }
3748 
3749 static void
3750 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3751 		 struct rq_flags *rf)
3752 {
3753 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3754 
3755 	lockdep_assert_rq_held(rq);
3756 
3757 	if (p->sched_contributes_to_load)
3758 		rq->nr_uninterruptible--;
3759 
3760 #ifdef CONFIG_SMP
3761 	if (wake_flags & WF_MIGRATED)
3762 		en_flags |= ENQUEUE_MIGRATED;
3763 	else
3764 #endif
3765 	if (p->in_iowait) {
3766 		delayacct_blkio_end(p);
3767 		atomic_dec(&task_rq(p)->nr_iowait);
3768 	}
3769 
3770 	activate_task(rq, p, en_flags);
3771 	wakeup_preempt(rq, p, wake_flags);
3772 
3773 	ttwu_do_wakeup(p);
3774 
3775 #ifdef CONFIG_SMP
3776 	if (p->sched_class->task_woken) {
3777 		/*
3778 		 * Our task @p is fully woken up and running; so it's safe to
3779 		 * drop the rq->lock, hereafter rq is only used for statistics.
3780 		 */
3781 		rq_unpin_lock(rq, rf);
3782 		p->sched_class->task_woken(rq, p);
3783 		rq_repin_lock(rq, rf);
3784 	}
3785 
3786 	if (rq->idle_stamp) {
3787 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3788 		u64 max = 2*rq->max_idle_balance_cost;
3789 
3790 		update_avg(&rq->avg_idle, delta);
3791 
3792 		if (rq->avg_idle > max)
3793 			rq->avg_idle = max;
3794 
3795 		rq->idle_stamp = 0;
3796 	}
3797 #endif
3798 }
3799 
3800 /*
3801  * Consider @p being inside a wait loop:
3802  *
3803  *   for (;;) {
3804  *      set_current_state(TASK_UNINTERRUPTIBLE);
3805  *
3806  *      if (CONDITION)
3807  *         break;
3808  *
3809  *      schedule();
3810  *   }
3811  *   __set_current_state(TASK_RUNNING);
3812  *
3813  * between set_current_state() and schedule(). In this case @p is still
3814  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3815  * an atomic manner.
3816  *
3817  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3818  * then schedule() must still happen and p->state can be changed to
3819  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3820  * need to do a full wakeup with enqueue.
3821  *
3822  * Returns: %true when the wakeup is done,
3823  *          %false otherwise.
3824  */
3825 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3826 {
3827 	struct rq_flags rf;
3828 	struct rq *rq;
3829 	int ret = 0;
3830 
3831 	rq = __task_rq_lock(p, &rf);
3832 	if (task_on_rq_queued(p)) {
3833 		if (!task_on_cpu(rq, p)) {
3834 			/*
3835 			 * When on_rq && !on_cpu the task is preempted, see if
3836 			 * it should preempt the task that is current now.
3837 			 */
3838 			update_rq_clock(rq);
3839 			wakeup_preempt(rq, p, wake_flags);
3840 		}
3841 		ttwu_do_wakeup(p);
3842 		ret = 1;
3843 	}
3844 	__task_rq_unlock(rq, &rf);
3845 
3846 	return ret;
3847 }
3848 
3849 #ifdef CONFIG_SMP
3850 void sched_ttwu_pending(void *arg)
3851 {
3852 	struct llist_node *llist = arg;
3853 	struct rq *rq = this_rq();
3854 	struct task_struct *p, *t;
3855 	struct rq_flags rf;
3856 
3857 	if (!llist)
3858 		return;
3859 
3860 	rq_lock_irqsave(rq, &rf);
3861 	update_rq_clock(rq);
3862 
3863 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3864 		if (WARN_ON_ONCE(p->on_cpu))
3865 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3866 
3867 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3868 			set_task_cpu(p, cpu_of(rq));
3869 
3870 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3871 	}
3872 
3873 	/*
3874 	 * Must be after enqueueing at least once task such that
3875 	 * idle_cpu() does not observe a false-negative -- if it does,
3876 	 * it is possible for select_idle_siblings() to stack a number
3877 	 * of tasks on this CPU during that window.
3878 	 *
3879 	 * It is ok to clear ttwu_pending when another task pending.
3880 	 * We will receive IPI after local irq enabled and then enqueue it.
3881 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3882 	 */
3883 	WRITE_ONCE(rq->ttwu_pending, 0);
3884 	rq_unlock_irqrestore(rq, &rf);
3885 }
3886 
3887 /*
3888  * Prepare the scene for sending an IPI for a remote smp_call
3889  *
3890  * Returns true if the caller can proceed with sending the IPI.
3891  * Returns false otherwise.
3892  */
3893 bool call_function_single_prep_ipi(int cpu)
3894 {
3895 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3896 		trace_sched_wake_idle_without_ipi(cpu);
3897 		return false;
3898 	}
3899 
3900 	return true;
3901 }
3902 
3903 /*
3904  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3905  * necessary. The wakee CPU on receipt of the IPI will queue the task
3906  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3907  * of the wakeup instead of the waker.
3908  */
3909 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3910 {
3911 	struct rq *rq = cpu_rq(cpu);
3912 
3913 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3914 
3915 	WRITE_ONCE(rq->ttwu_pending, 1);
3916 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3917 }
3918 
3919 void wake_up_if_idle(int cpu)
3920 {
3921 	struct rq *rq = cpu_rq(cpu);
3922 
3923 	guard(rcu)();
3924 	if (is_idle_task(rcu_dereference(rq->curr))) {
3925 		guard(rq_lock_irqsave)(rq);
3926 		if (is_idle_task(rq->curr))
3927 			resched_curr(rq);
3928 	}
3929 }
3930 
3931 bool cpus_share_cache(int this_cpu, int that_cpu)
3932 {
3933 	if (this_cpu == that_cpu)
3934 		return true;
3935 
3936 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3937 }
3938 
3939 /*
3940  * Whether CPUs are share cache resources, which means LLC on non-cluster
3941  * machines and LLC tag or L2 on machines with clusters.
3942  */
3943 bool cpus_share_resources(int this_cpu, int that_cpu)
3944 {
3945 	if (this_cpu == that_cpu)
3946 		return true;
3947 
3948 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3949 }
3950 
3951 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3952 {
3953 	/*
3954 	 * Do not complicate things with the async wake_list while the CPU is
3955 	 * in hotplug state.
3956 	 */
3957 	if (!cpu_active(cpu))
3958 		return false;
3959 
3960 	/* Ensure the task will still be allowed to run on the CPU. */
3961 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3962 		return false;
3963 
3964 	/*
3965 	 * If the CPU does not share cache, then queue the task on the
3966 	 * remote rqs wakelist to avoid accessing remote data.
3967 	 */
3968 	if (!cpus_share_cache(smp_processor_id(), cpu))
3969 		return true;
3970 
3971 	if (cpu == smp_processor_id())
3972 		return false;
3973 
3974 	/*
3975 	 * If the wakee cpu is idle, or the task is descheduling and the
3976 	 * only running task on the CPU, then use the wakelist to offload
3977 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3978 	 * the current CPU is likely busy. nr_running is checked to
3979 	 * avoid unnecessary task stacking.
3980 	 *
3981 	 * Note that we can only get here with (wakee) p->on_rq=0,
3982 	 * p->on_cpu can be whatever, we've done the dequeue, so
3983 	 * the wakee has been accounted out of ->nr_running.
3984 	 */
3985 	if (!cpu_rq(cpu)->nr_running)
3986 		return true;
3987 
3988 	return false;
3989 }
3990 
3991 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3992 {
3993 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3994 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3995 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3996 		return true;
3997 	}
3998 
3999 	return false;
4000 }
4001 
4002 #else /* !CONFIG_SMP */
4003 
4004 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4005 {
4006 	return false;
4007 }
4008 
4009 #endif /* CONFIG_SMP */
4010 
4011 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4012 {
4013 	struct rq *rq = cpu_rq(cpu);
4014 	struct rq_flags rf;
4015 
4016 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4017 		return;
4018 
4019 	rq_lock(rq, &rf);
4020 	update_rq_clock(rq);
4021 	ttwu_do_activate(rq, p, wake_flags, &rf);
4022 	rq_unlock(rq, &rf);
4023 }
4024 
4025 /*
4026  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4027  *
4028  * The caller holds p::pi_lock if p != current or has preemption
4029  * disabled when p == current.
4030  *
4031  * The rules of saved_state:
4032  *
4033  *   The related locking code always holds p::pi_lock when updating
4034  *   p::saved_state, which means the code is fully serialized in both cases.
4035  *
4036  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4037  *   No other bits set. This allows to distinguish all wakeup scenarios.
4038  *
4039  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4040  *   allows us to prevent early wakeup of tasks before they can be run on
4041  *   asymmetric ISA architectures (eg ARMv9).
4042  */
4043 static __always_inline
4044 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4045 {
4046 	int match;
4047 
4048 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4049 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4050 			     state != TASK_RTLOCK_WAIT);
4051 	}
4052 
4053 	*success = !!(match = __task_state_match(p, state));
4054 
4055 	/*
4056 	 * Saved state preserves the task state across blocking on
4057 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4058 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4059 	 * because it waits for a lock wakeup or __thaw_task(). Also
4060 	 * indicate success because from the regular waker's point of
4061 	 * view this has succeeded.
4062 	 *
4063 	 * After acquiring the lock the task will restore p::__state
4064 	 * from p::saved_state which ensures that the regular
4065 	 * wakeup is not lost. The restore will also set
4066 	 * p::saved_state to TASK_RUNNING so any further tests will
4067 	 * not result in false positives vs. @success
4068 	 */
4069 	if (match < 0)
4070 		p->saved_state = TASK_RUNNING;
4071 
4072 	return match > 0;
4073 }
4074 
4075 /*
4076  * Notes on Program-Order guarantees on SMP systems.
4077  *
4078  *  MIGRATION
4079  *
4080  * The basic program-order guarantee on SMP systems is that when a task [t]
4081  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4082  * execution on its new CPU [c1].
4083  *
4084  * For migration (of runnable tasks) this is provided by the following means:
4085  *
4086  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4087  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4088  *     rq(c1)->lock (if not at the same time, then in that order).
4089  *  C) LOCK of the rq(c1)->lock scheduling in task
4090  *
4091  * Release/acquire chaining guarantees that B happens after A and C after B.
4092  * Note: the CPU doing B need not be c0 or c1
4093  *
4094  * Example:
4095  *
4096  *   CPU0            CPU1            CPU2
4097  *
4098  *   LOCK rq(0)->lock
4099  *   sched-out X
4100  *   sched-in Y
4101  *   UNLOCK rq(0)->lock
4102  *
4103  *                                   LOCK rq(0)->lock // orders against CPU0
4104  *                                   dequeue X
4105  *                                   UNLOCK rq(0)->lock
4106  *
4107  *                                   LOCK rq(1)->lock
4108  *                                   enqueue X
4109  *                                   UNLOCK rq(1)->lock
4110  *
4111  *                   LOCK rq(1)->lock // orders against CPU2
4112  *                   sched-out Z
4113  *                   sched-in X
4114  *                   UNLOCK rq(1)->lock
4115  *
4116  *
4117  *  BLOCKING -- aka. SLEEP + WAKEUP
4118  *
4119  * For blocking we (obviously) need to provide the same guarantee as for
4120  * migration. However the means are completely different as there is no lock
4121  * chain to provide order. Instead we do:
4122  *
4123  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4124  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4125  *
4126  * Example:
4127  *
4128  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4129  *
4130  *   LOCK rq(0)->lock LOCK X->pi_lock
4131  *   dequeue X
4132  *   sched-out X
4133  *   smp_store_release(X->on_cpu, 0);
4134  *
4135  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4136  *                    X->state = WAKING
4137  *                    set_task_cpu(X,2)
4138  *
4139  *                    LOCK rq(2)->lock
4140  *                    enqueue X
4141  *                    X->state = RUNNING
4142  *                    UNLOCK rq(2)->lock
4143  *
4144  *                                          LOCK rq(2)->lock // orders against CPU1
4145  *                                          sched-out Z
4146  *                                          sched-in X
4147  *                                          UNLOCK rq(2)->lock
4148  *
4149  *                    UNLOCK X->pi_lock
4150  *   UNLOCK rq(0)->lock
4151  *
4152  *
4153  * However, for wakeups there is a second guarantee we must provide, namely we
4154  * must ensure that CONDITION=1 done by the caller can not be reordered with
4155  * accesses to the task state; see try_to_wake_up() and set_current_state().
4156  */
4157 
4158 /**
4159  * try_to_wake_up - wake up a thread
4160  * @p: the thread to be awakened
4161  * @state: the mask of task states that can be woken
4162  * @wake_flags: wake modifier flags (WF_*)
4163  *
4164  * Conceptually does:
4165  *
4166  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4167  *
4168  * If the task was not queued/runnable, also place it back on a runqueue.
4169  *
4170  * This function is atomic against schedule() which would dequeue the task.
4171  *
4172  * It issues a full memory barrier before accessing @p->state, see the comment
4173  * with set_current_state().
4174  *
4175  * Uses p->pi_lock to serialize against concurrent wake-ups.
4176  *
4177  * Relies on p->pi_lock stabilizing:
4178  *  - p->sched_class
4179  *  - p->cpus_ptr
4180  *  - p->sched_task_group
4181  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4182  *
4183  * Tries really hard to only take one task_rq(p)->lock for performance.
4184  * Takes rq->lock in:
4185  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4186  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4187  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4188  *
4189  * As a consequence we race really badly with just about everything. See the
4190  * many memory barriers and their comments for details.
4191  *
4192  * Return: %true if @p->state changes (an actual wakeup was done),
4193  *	   %false otherwise.
4194  */
4195 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4196 {
4197 	guard(preempt)();
4198 	int cpu, success = 0;
4199 
4200 	if (p == current) {
4201 		/*
4202 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4203 		 * == smp_processor_id()'. Together this means we can special
4204 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4205 		 * without taking any locks.
4206 		 *
4207 		 * In particular:
4208 		 *  - we rely on Program-Order guarantees for all the ordering,
4209 		 *  - we're serialized against set_special_state() by virtue of
4210 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4211 		 */
4212 		if (!ttwu_state_match(p, state, &success))
4213 			goto out;
4214 
4215 		trace_sched_waking(p);
4216 		ttwu_do_wakeup(p);
4217 		goto out;
4218 	}
4219 
4220 	/*
4221 	 * If we are going to wake up a thread waiting for CONDITION we
4222 	 * need to ensure that CONDITION=1 done by the caller can not be
4223 	 * reordered with p->state check below. This pairs with smp_store_mb()
4224 	 * in set_current_state() that the waiting thread does.
4225 	 */
4226 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4227 		smp_mb__after_spinlock();
4228 		if (!ttwu_state_match(p, state, &success))
4229 			break;
4230 
4231 		trace_sched_waking(p);
4232 
4233 		/*
4234 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4235 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4236 		 * in smp_cond_load_acquire() below.
4237 		 *
4238 		 * sched_ttwu_pending()			try_to_wake_up()
4239 		 *   STORE p->on_rq = 1			  LOAD p->state
4240 		 *   UNLOCK rq->lock
4241 		 *
4242 		 * __schedule() (switch to task 'p')
4243 		 *   LOCK rq->lock			  smp_rmb();
4244 		 *   smp_mb__after_spinlock();
4245 		 *   UNLOCK rq->lock
4246 		 *
4247 		 * [task p]
4248 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4249 		 *
4250 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4251 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4252 		 *
4253 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4254 		 */
4255 		smp_rmb();
4256 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4257 			break;
4258 
4259 #ifdef CONFIG_SMP
4260 		/*
4261 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4262 		 * possible to, falsely, observe p->on_cpu == 0.
4263 		 *
4264 		 * One must be running (->on_cpu == 1) in order to remove oneself
4265 		 * from the runqueue.
4266 		 *
4267 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4268 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4269 		 *   UNLOCK rq->lock
4270 		 *
4271 		 * __schedule() (put 'p' to sleep)
4272 		 *   LOCK rq->lock			  smp_rmb();
4273 		 *   smp_mb__after_spinlock();
4274 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4275 		 *
4276 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4277 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4278 		 *
4279 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4280 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4281 		 * care about it's own p->state. See the comment in __schedule().
4282 		 */
4283 		smp_acquire__after_ctrl_dep();
4284 
4285 		/*
4286 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4287 		 * == 0), which means we need to do an enqueue, change p->state to
4288 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4289 		 * enqueue, such as ttwu_queue_wakelist().
4290 		 */
4291 		WRITE_ONCE(p->__state, TASK_WAKING);
4292 
4293 		/*
4294 		 * If the owning (remote) CPU is still in the middle of schedule() with
4295 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4296 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4297 		 * let the waker make forward progress. This is safe because IRQs are
4298 		 * disabled and the IPI will deliver after on_cpu is cleared.
4299 		 *
4300 		 * Ensure we load task_cpu(p) after p->on_cpu:
4301 		 *
4302 		 * set_task_cpu(p, cpu);
4303 		 *   STORE p->cpu = @cpu
4304 		 * __schedule() (switch to task 'p')
4305 		 *   LOCK rq->lock
4306 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4307 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4308 		 *
4309 		 * to ensure we observe the correct CPU on which the task is currently
4310 		 * scheduling.
4311 		 */
4312 		if (smp_load_acquire(&p->on_cpu) &&
4313 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4314 			break;
4315 
4316 		/*
4317 		 * If the owning (remote) CPU is still in the middle of schedule() with
4318 		 * this task as prev, wait until it's done referencing the task.
4319 		 *
4320 		 * Pairs with the smp_store_release() in finish_task().
4321 		 *
4322 		 * This ensures that tasks getting woken will be fully ordered against
4323 		 * their previous state and preserve Program Order.
4324 		 */
4325 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4326 
4327 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4328 		if (task_cpu(p) != cpu) {
4329 			if (p->in_iowait) {
4330 				delayacct_blkio_end(p);
4331 				atomic_dec(&task_rq(p)->nr_iowait);
4332 			}
4333 
4334 			wake_flags |= WF_MIGRATED;
4335 			psi_ttwu_dequeue(p);
4336 			set_task_cpu(p, cpu);
4337 		}
4338 #else
4339 		cpu = task_cpu(p);
4340 #endif /* CONFIG_SMP */
4341 
4342 		ttwu_queue(p, cpu, wake_flags);
4343 	}
4344 out:
4345 	if (success)
4346 		ttwu_stat(p, task_cpu(p), wake_flags);
4347 
4348 	return success;
4349 }
4350 
4351 static bool __task_needs_rq_lock(struct task_struct *p)
4352 {
4353 	unsigned int state = READ_ONCE(p->__state);
4354 
4355 	/*
4356 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4357 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4358 	 * locks at the end, see ttwu_queue_wakelist().
4359 	 */
4360 	if (state == TASK_RUNNING || state == TASK_WAKING)
4361 		return true;
4362 
4363 	/*
4364 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4365 	 * possible to, falsely, observe p->on_rq == 0.
4366 	 *
4367 	 * See try_to_wake_up() for a longer comment.
4368 	 */
4369 	smp_rmb();
4370 	if (p->on_rq)
4371 		return true;
4372 
4373 #ifdef CONFIG_SMP
4374 	/*
4375 	 * Ensure the task has finished __schedule() and will not be referenced
4376 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4377 	 */
4378 	smp_rmb();
4379 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4380 #endif
4381 
4382 	return false;
4383 }
4384 
4385 /**
4386  * task_call_func - Invoke a function on task in fixed state
4387  * @p: Process for which the function is to be invoked, can be @current.
4388  * @func: Function to invoke.
4389  * @arg: Argument to function.
4390  *
4391  * Fix the task in it's current state by avoiding wakeups and or rq operations
4392  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4393  * to work out what the state is, if required.  Given that @func can be invoked
4394  * with a runqueue lock held, it had better be quite lightweight.
4395  *
4396  * Returns:
4397  *   Whatever @func returns
4398  */
4399 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4400 {
4401 	struct rq *rq = NULL;
4402 	struct rq_flags rf;
4403 	int ret;
4404 
4405 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4406 
4407 	if (__task_needs_rq_lock(p))
4408 		rq = __task_rq_lock(p, &rf);
4409 
4410 	/*
4411 	 * At this point the task is pinned; either:
4412 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4413 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4414 	 *  - queued, and we're holding off schedule	 (rq->lock)
4415 	 *  - running, and we're holding off de-schedule (rq->lock)
4416 	 *
4417 	 * The called function (@func) can use: task_curr(), p->on_rq and
4418 	 * p->__state to differentiate between these states.
4419 	 */
4420 	ret = func(p, arg);
4421 
4422 	if (rq)
4423 		rq_unlock(rq, &rf);
4424 
4425 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4426 	return ret;
4427 }
4428 
4429 /**
4430  * cpu_curr_snapshot - Return a snapshot of the currently running task
4431  * @cpu: The CPU on which to snapshot the task.
4432  *
4433  * Returns the task_struct pointer of the task "currently" running on
4434  * the specified CPU.  If the same task is running on that CPU throughout,
4435  * the return value will be a pointer to that task's task_struct structure.
4436  * If the CPU did any context switches even vaguely concurrently with the
4437  * execution of this function, the return value will be a pointer to the
4438  * task_struct structure of a randomly chosen task that was running on
4439  * that CPU somewhere around the time that this function was executing.
4440  *
4441  * If the specified CPU was offline, the return value is whatever it
4442  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4443  * task, but there is no guarantee.  Callers wishing a useful return
4444  * value must take some action to ensure that the specified CPU remains
4445  * online throughout.
4446  *
4447  * This function executes full memory barriers before and after fetching
4448  * the pointer, which permits the caller to confine this function's fetch
4449  * with respect to the caller's accesses to other shared variables.
4450  */
4451 struct task_struct *cpu_curr_snapshot(int cpu)
4452 {
4453 	struct task_struct *t;
4454 
4455 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4456 	t = rcu_dereference(cpu_curr(cpu));
4457 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4458 	return t;
4459 }
4460 
4461 /**
4462  * wake_up_process - Wake up a specific process
4463  * @p: The process to be woken up.
4464  *
4465  * Attempt to wake up the nominated process and move it to the set of runnable
4466  * processes.
4467  *
4468  * Return: 1 if the process was woken up, 0 if it was already running.
4469  *
4470  * This function executes a full memory barrier before accessing the task state.
4471  */
4472 int wake_up_process(struct task_struct *p)
4473 {
4474 	return try_to_wake_up(p, TASK_NORMAL, 0);
4475 }
4476 EXPORT_SYMBOL(wake_up_process);
4477 
4478 int wake_up_state(struct task_struct *p, unsigned int state)
4479 {
4480 	return try_to_wake_up(p, state, 0);
4481 }
4482 
4483 /*
4484  * Perform scheduler related setup for a newly forked process p.
4485  * p is forked by current.
4486  *
4487  * __sched_fork() is basic setup used by init_idle() too:
4488  */
4489 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4490 {
4491 	p->on_rq			= 0;
4492 
4493 	p->se.on_rq			= 0;
4494 	p->se.exec_start		= 0;
4495 	p->se.sum_exec_runtime		= 0;
4496 	p->se.prev_sum_exec_runtime	= 0;
4497 	p->se.nr_migrations		= 0;
4498 	p->se.vruntime			= 0;
4499 	p->se.vlag			= 0;
4500 	p->se.slice			= sysctl_sched_base_slice;
4501 	INIT_LIST_HEAD(&p->se.group_node);
4502 
4503 #ifdef CONFIG_FAIR_GROUP_SCHED
4504 	p->se.cfs_rq			= NULL;
4505 #endif
4506 
4507 #ifdef CONFIG_SCHEDSTATS
4508 	/* Even if schedstat is disabled, there should not be garbage */
4509 	memset(&p->stats, 0, sizeof(p->stats));
4510 #endif
4511 
4512 	RB_CLEAR_NODE(&p->dl.rb_node);
4513 	init_dl_task_timer(&p->dl);
4514 	init_dl_inactive_task_timer(&p->dl);
4515 	__dl_clear_params(p);
4516 
4517 	INIT_LIST_HEAD(&p->rt.run_list);
4518 	p->rt.timeout		= 0;
4519 	p->rt.time_slice	= sched_rr_timeslice;
4520 	p->rt.on_rq		= 0;
4521 	p->rt.on_list		= 0;
4522 
4523 #ifdef CONFIG_PREEMPT_NOTIFIERS
4524 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4525 #endif
4526 
4527 #ifdef CONFIG_COMPACTION
4528 	p->capture_control = NULL;
4529 #endif
4530 	init_numa_balancing(clone_flags, p);
4531 #ifdef CONFIG_SMP
4532 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4533 	p->migration_pending = NULL;
4534 #endif
4535 	init_sched_mm_cid(p);
4536 }
4537 
4538 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4539 
4540 #ifdef CONFIG_NUMA_BALANCING
4541 
4542 int sysctl_numa_balancing_mode;
4543 
4544 static void __set_numabalancing_state(bool enabled)
4545 {
4546 	if (enabled)
4547 		static_branch_enable(&sched_numa_balancing);
4548 	else
4549 		static_branch_disable(&sched_numa_balancing);
4550 }
4551 
4552 void set_numabalancing_state(bool enabled)
4553 {
4554 	if (enabled)
4555 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4556 	else
4557 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4558 	__set_numabalancing_state(enabled);
4559 }
4560 
4561 #ifdef CONFIG_PROC_SYSCTL
4562 static void reset_memory_tiering(void)
4563 {
4564 	struct pglist_data *pgdat;
4565 
4566 	for_each_online_pgdat(pgdat) {
4567 		pgdat->nbp_threshold = 0;
4568 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4569 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4570 	}
4571 }
4572 
4573 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4574 			  void *buffer, size_t *lenp, loff_t *ppos)
4575 {
4576 	struct ctl_table t;
4577 	int err;
4578 	int state = sysctl_numa_balancing_mode;
4579 
4580 	if (write && !capable(CAP_SYS_ADMIN))
4581 		return -EPERM;
4582 
4583 	t = *table;
4584 	t.data = &state;
4585 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4586 	if (err < 0)
4587 		return err;
4588 	if (write) {
4589 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4590 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4591 			reset_memory_tiering();
4592 		sysctl_numa_balancing_mode = state;
4593 		__set_numabalancing_state(state);
4594 	}
4595 	return err;
4596 }
4597 #endif
4598 #endif
4599 
4600 #ifdef CONFIG_SCHEDSTATS
4601 
4602 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4603 
4604 static void set_schedstats(bool enabled)
4605 {
4606 	if (enabled)
4607 		static_branch_enable(&sched_schedstats);
4608 	else
4609 		static_branch_disable(&sched_schedstats);
4610 }
4611 
4612 void force_schedstat_enabled(void)
4613 {
4614 	if (!schedstat_enabled()) {
4615 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4616 		static_branch_enable(&sched_schedstats);
4617 	}
4618 }
4619 
4620 static int __init setup_schedstats(char *str)
4621 {
4622 	int ret = 0;
4623 	if (!str)
4624 		goto out;
4625 
4626 	if (!strcmp(str, "enable")) {
4627 		set_schedstats(true);
4628 		ret = 1;
4629 	} else if (!strcmp(str, "disable")) {
4630 		set_schedstats(false);
4631 		ret = 1;
4632 	}
4633 out:
4634 	if (!ret)
4635 		pr_warn("Unable to parse schedstats=\n");
4636 
4637 	return ret;
4638 }
4639 __setup("schedstats=", setup_schedstats);
4640 
4641 #ifdef CONFIG_PROC_SYSCTL
4642 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4643 		size_t *lenp, loff_t *ppos)
4644 {
4645 	struct ctl_table t;
4646 	int err;
4647 	int state = static_branch_likely(&sched_schedstats);
4648 
4649 	if (write && !capable(CAP_SYS_ADMIN))
4650 		return -EPERM;
4651 
4652 	t = *table;
4653 	t.data = &state;
4654 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4655 	if (err < 0)
4656 		return err;
4657 	if (write)
4658 		set_schedstats(state);
4659 	return err;
4660 }
4661 #endif /* CONFIG_PROC_SYSCTL */
4662 #endif /* CONFIG_SCHEDSTATS */
4663 
4664 #ifdef CONFIG_SYSCTL
4665 static struct ctl_table sched_core_sysctls[] = {
4666 #ifdef CONFIG_SCHEDSTATS
4667 	{
4668 		.procname       = "sched_schedstats",
4669 		.data           = NULL,
4670 		.maxlen         = sizeof(unsigned int),
4671 		.mode           = 0644,
4672 		.proc_handler   = sysctl_schedstats,
4673 		.extra1         = SYSCTL_ZERO,
4674 		.extra2         = SYSCTL_ONE,
4675 	},
4676 #endif /* CONFIG_SCHEDSTATS */
4677 #ifdef CONFIG_UCLAMP_TASK
4678 	{
4679 		.procname       = "sched_util_clamp_min",
4680 		.data           = &sysctl_sched_uclamp_util_min,
4681 		.maxlen         = sizeof(unsigned int),
4682 		.mode           = 0644,
4683 		.proc_handler   = sysctl_sched_uclamp_handler,
4684 	},
4685 	{
4686 		.procname       = "sched_util_clamp_max",
4687 		.data           = &sysctl_sched_uclamp_util_max,
4688 		.maxlen         = sizeof(unsigned int),
4689 		.mode           = 0644,
4690 		.proc_handler   = sysctl_sched_uclamp_handler,
4691 	},
4692 	{
4693 		.procname       = "sched_util_clamp_min_rt_default",
4694 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4695 		.maxlen         = sizeof(unsigned int),
4696 		.mode           = 0644,
4697 		.proc_handler   = sysctl_sched_uclamp_handler,
4698 	},
4699 #endif /* CONFIG_UCLAMP_TASK */
4700 #ifdef CONFIG_NUMA_BALANCING
4701 	{
4702 		.procname	= "numa_balancing",
4703 		.data		= NULL, /* filled in by handler */
4704 		.maxlen		= sizeof(unsigned int),
4705 		.mode		= 0644,
4706 		.proc_handler	= sysctl_numa_balancing,
4707 		.extra1		= SYSCTL_ZERO,
4708 		.extra2		= SYSCTL_FOUR,
4709 	},
4710 #endif /* CONFIG_NUMA_BALANCING */
4711 	{}
4712 };
4713 static int __init sched_core_sysctl_init(void)
4714 {
4715 	register_sysctl_init("kernel", sched_core_sysctls);
4716 	return 0;
4717 }
4718 late_initcall(sched_core_sysctl_init);
4719 #endif /* CONFIG_SYSCTL */
4720 
4721 /*
4722  * fork()/clone()-time setup:
4723  */
4724 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4725 {
4726 	__sched_fork(clone_flags, p);
4727 	/*
4728 	 * We mark the process as NEW here. This guarantees that
4729 	 * nobody will actually run it, and a signal or other external
4730 	 * event cannot wake it up and insert it on the runqueue either.
4731 	 */
4732 	p->__state = TASK_NEW;
4733 
4734 	/*
4735 	 * Make sure we do not leak PI boosting priority to the child.
4736 	 */
4737 	p->prio = current->normal_prio;
4738 
4739 	uclamp_fork(p);
4740 
4741 	/*
4742 	 * Revert to default priority/policy on fork if requested.
4743 	 */
4744 	if (unlikely(p->sched_reset_on_fork)) {
4745 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4746 			p->policy = SCHED_NORMAL;
4747 			p->static_prio = NICE_TO_PRIO(0);
4748 			p->rt_priority = 0;
4749 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4750 			p->static_prio = NICE_TO_PRIO(0);
4751 
4752 		p->prio = p->normal_prio = p->static_prio;
4753 		set_load_weight(p, false);
4754 
4755 		/*
4756 		 * We don't need the reset flag anymore after the fork. It has
4757 		 * fulfilled its duty:
4758 		 */
4759 		p->sched_reset_on_fork = 0;
4760 	}
4761 
4762 	if (dl_prio(p->prio))
4763 		return -EAGAIN;
4764 	else if (rt_prio(p->prio))
4765 		p->sched_class = &rt_sched_class;
4766 	else
4767 		p->sched_class = &fair_sched_class;
4768 
4769 	init_entity_runnable_average(&p->se);
4770 
4771 
4772 #ifdef CONFIG_SCHED_INFO
4773 	if (likely(sched_info_on()))
4774 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4775 #endif
4776 #if defined(CONFIG_SMP)
4777 	p->on_cpu = 0;
4778 #endif
4779 	init_task_preempt_count(p);
4780 #ifdef CONFIG_SMP
4781 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4782 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4783 #endif
4784 	return 0;
4785 }
4786 
4787 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4788 {
4789 	unsigned long flags;
4790 
4791 	/*
4792 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4793 	 * required yet, but lockdep gets upset if rules are violated.
4794 	 */
4795 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4796 #ifdef CONFIG_CGROUP_SCHED
4797 	if (1) {
4798 		struct task_group *tg;
4799 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4800 				  struct task_group, css);
4801 		tg = autogroup_task_group(p, tg);
4802 		p->sched_task_group = tg;
4803 	}
4804 #endif
4805 	rseq_migrate(p);
4806 	/*
4807 	 * We're setting the CPU for the first time, we don't migrate,
4808 	 * so use __set_task_cpu().
4809 	 */
4810 	__set_task_cpu(p, smp_processor_id());
4811 	if (p->sched_class->task_fork)
4812 		p->sched_class->task_fork(p);
4813 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4814 }
4815 
4816 void sched_post_fork(struct task_struct *p)
4817 {
4818 	uclamp_post_fork(p);
4819 }
4820 
4821 unsigned long to_ratio(u64 period, u64 runtime)
4822 {
4823 	if (runtime == RUNTIME_INF)
4824 		return BW_UNIT;
4825 
4826 	/*
4827 	 * Doing this here saves a lot of checks in all
4828 	 * the calling paths, and returning zero seems
4829 	 * safe for them anyway.
4830 	 */
4831 	if (period == 0)
4832 		return 0;
4833 
4834 	return div64_u64(runtime << BW_SHIFT, period);
4835 }
4836 
4837 /*
4838  * wake_up_new_task - wake up a newly created task for the first time.
4839  *
4840  * This function will do some initial scheduler statistics housekeeping
4841  * that must be done for every newly created context, then puts the task
4842  * on the runqueue and wakes it.
4843  */
4844 void wake_up_new_task(struct task_struct *p)
4845 {
4846 	struct rq_flags rf;
4847 	struct rq *rq;
4848 
4849 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4850 	WRITE_ONCE(p->__state, TASK_RUNNING);
4851 #ifdef CONFIG_SMP
4852 	/*
4853 	 * Fork balancing, do it here and not earlier because:
4854 	 *  - cpus_ptr can change in the fork path
4855 	 *  - any previously selected CPU might disappear through hotplug
4856 	 *
4857 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4858 	 * as we're not fully set-up yet.
4859 	 */
4860 	p->recent_used_cpu = task_cpu(p);
4861 	rseq_migrate(p);
4862 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4863 #endif
4864 	rq = __task_rq_lock(p, &rf);
4865 	update_rq_clock(rq);
4866 	post_init_entity_util_avg(p);
4867 
4868 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4869 	trace_sched_wakeup_new(p);
4870 	wakeup_preempt(rq, p, WF_FORK);
4871 #ifdef CONFIG_SMP
4872 	if (p->sched_class->task_woken) {
4873 		/*
4874 		 * Nothing relies on rq->lock after this, so it's fine to
4875 		 * drop it.
4876 		 */
4877 		rq_unpin_lock(rq, &rf);
4878 		p->sched_class->task_woken(rq, p);
4879 		rq_repin_lock(rq, &rf);
4880 	}
4881 #endif
4882 	task_rq_unlock(rq, p, &rf);
4883 }
4884 
4885 #ifdef CONFIG_PREEMPT_NOTIFIERS
4886 
4887 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4888 
4889 void preempt_notifier_inc(void)
4890 {
4891 	static_branch_inc(&preempt_notifier_key);
4892 }
4893 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4894 
4895 void preempt_notifier_dec(void)
4896 {
4897 	static_branch_dec(&preempt_notifier_key);
4898 }
4899 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4900 
4901 /**
4902  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4903  * @notifier: notifier struct to register
4904  */
4905 void preempt_notifier_register(struct preempt_notifier *notifier)
4906 {
4907 	if (!static_branch_unlikely(&preempt_notifier_key))
4908 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4909 
4910 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4911 }
4912 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4913 
4914 /**
4915  * preempt_notifier_unregister - no longer interested in preemption notifications
4916  * @notifier: notifier struct to unregister
4917  *
4918  * This is *not* safe to call from within a preemption notifier.
4919  */
4920 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4921 {
4922 	hlist_del(&notifier->link);
4923 }
4924 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4925 
4926 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4927 {
4928 	struct preempt_notifier *notifier;
4929 
4930 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4931 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4932 }
4933 
4934 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4935 {
4936 	if (static_branch_unlikely(&preempt_notifier_key))
4937 		__fire_sched_in_preempt_notifiers(curr);
4938 }
4939 
4940 static void
4941 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4942 				   struct task_struct *next)
4943 {
4944 	struct preempt_notifier *notifier;
4945 
4946 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4947 		notifier->ops->sched_out(notifier, next);
4948 }
4949 
4950 static __always_inline void
4951 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4952 				 struct task_struct *next)
4953 {
4954 	if (static_branch_unlikely(&preempt_notifier_key))
4955 		__fire_sched_out_preempt_notifiers(curr, next);
4956 }
4957 
4958 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4959 
4960 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4961 {
4962 }
4963 
4964 static inline void
4965 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4966 				 struct task_struct *next)
4967 {
4968 }
4969 
4970 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4971 
4972 static inline void prepare_task(struct task_struct *next)
4973 {
4974 #ifdef CONFIG_SMP
4975 	/*
4976 	 * Claim the task as running, we do this before switching to it
4977 	 * such that any running task will have this set.
4978 	 *
4979 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4980 	 * its ordering comment.
4981 	 */
4982 	WRITE_ONCE(next->on_cpu, 1);
4983 #endif
4984 }
4985 
4986 static inline void finish_task(struct task_struct *prev)
4987 {
4988 #ifdef CONFIG_SMP
4989 	/*
4990 	 * This must be the very last reference to @prev from this CPU. After
4991 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4992 	 * must ensure this doesn't happen until the switch is completely
4993 	 * finished.
4994 	 *
4995 	 * In particular, the load of prev->state in finish_task_switch() must
4996 	 * happen before this.
4997 	 *
4998 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4999 	 */
5000 	smp_store_release(&prev->on_cpu, 0);
5001 #endif
5002 }
5003 
5004 #ifdef CONFIG_SMP
5005 
5006 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5007 {
5008 	void (*func)(struct rq *rq);
5009 	struct balance_callback *next;
5010 
5011 	lockdep_assert_rq_held(rq);
5012 
5013 	while (head) {
5014 		func = (void (*)(struct rq *))head->func;
5015 		next = head->next;
5016 		head->next = NULL;
5017 		head = next;
5018 
5019 		func(rq);
5020 	}
5021 }
5022 
5023 static void balance_push(struct rq *rq);
5024 
5025 /*
5026  * balance_push_callback is a right abuse of the callback interface and plays
5027  * by significantly different rules.
5028  *
5029  * Where the normal balance_callback's purpose is to be ran in the same context
5030  * that queued it (only later, when it's safe to drop rq->lock again),
5031  * balance_push_callback is specifically targeted at __schedule().
5032  *
5033  * This abuse is tolerated because it places all the unlikely/odd cases behind
5034  * a single test, namely: rq->balance_callback == NULL.
5035  */
5036 struct balance_callback balance_push_callback = {
5037 	.next = NULL,
5038 	.func = balance_push,
5039 };
5040 
5041 static inline struct balance_callback *
5042 __splice_balance_callbacks(struct rq *rq, bool split)
5043 {
5044 	struct balance_callback *head = rq->balance_callback;
5045 
5046 	if (likely(!head))
5047 		return NULL;
5048 
5049 	lockdep_assert_rq_held(rq);
5050 	/*
5051 	 * Must not take balance_push_callback off the list when
5052 	 * splice_balance_callbacks() and balance_callbacks() are not
5053 	 * in the same rq->lock section.
5054 	 *
5055 	 * In that case it would be possible for __schedule() to interleave
5056 	 * and observe the list empty.
5057 	 */
5058 	if (split && head == &balance_push_callback)
5059 		head = NULL;
5060 	else
5061 		rq->balance_callback = NULL;
5062 
5063 	return head;
5064 }
5065 
5066 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5067 {
5068 	return __splice_balance_callbacks(rq, true);
5069 }
5070 
5071 static void __balance_callbacks(struct rq *rq)
5072 {
5073 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5074 }
5075 
5076 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5077 {
5078 	unsigned long flags;
5079 
5080 	if (unlikely(head)) {
5081 		raw_spin_rq_lock_irqsave(rq, flags);
5082 		do_balance_callbacks(rq, head);
5083 		raw_spin_rq_unlock_irqrestore(rq, flags);
5084 	}
5085 }
5086 
5087 #else
5088 
5089 static inline void __balance_callbacks(struct rq *rq)
5090 {
5091 }
5092 
5093 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5094 {
5095 	return NULL;
5096 }
5097 
5098 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5099 {
5100 }
5101 
5102 #endif
5103 
5104 static inline void
5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5106 {
5107 	/*
5108 	 * Since the runqueue lock will be released by the next
5109 	 * task (which is an invalid locking op but in the case
5110 	 * of the scheduler it's an obvious special-case), so we
5111 	 * do an early lockdep release here:
5112 	 */
5113 	rq_unpin_lock(rq, rf);
5114 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5115 #ifdef CONFIG_DEBUG_SPINLOCK
5116 	/* this is a valid case when another task releases the spinlock */
5117 	rq_lockp(rq)->owner = next;
5118 #endif
5119 }
5120 
5121 static inline void finish_lock_switch(struct rq *rq)
5122 {
5123 	/*
5124 	 * If we are tracking spinlock dependencies then we have to
5125 	 * fix up the runqueue lock - which gets 'carried over' from
5126 	 * prev into current:
5127 	 */
5128 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5129 	__balance_callbacks(rq);
5130 	raw_spin_rq_unlock_irq(rq);
5131 }
5132 
5133 /*
5134  * NOP if the arch has not defined these:
5135  */
5136 
5137 #ifndef prepare_arch_switch
5138 # define prepare_arch_switch(next)	do { } while (0)
5139 #endif
5140 
5141 #ifndef finish_arch_post_lock_switch
5142 # define finish_arch_post_lock_switch()	do { } while (0)
5143 #endif
5144 
5145 static inline void kmap_local_sched_out(void)
5146 {
5147 #ifdef CONFIG_KMAP_LOCAL
5148 	if (unlikely(current->kmap_ctrl.idx))
5149 		__kmap_local_sched_out();
5150 #endif
5151 }
5152 
5153 static inline void kmap_local_sched_in(void)
5154 {
5155 #ifdef CONFIG_KMAP_LOCAL
5156 	if (unlikely(current->kmap_ctrl.idx))
5157 		__kmap_local_sched_in();
5158 #endif
5159 }
5160 
5161 /**
5162  * prepare_task_switch - prepare to switch tasks
5163  * @rq: the runqueue preparing to switch
5164  * @prev: the current task that is being switched out
5165  * @next: the task we are going to switch to.
5166  *
5167  * This is called with the rq lock held and interrupts off. It must
5168  * be paired with a subsequent finish_task_switch after the context
5169  * switch.
5170  *
5171  * prepare_task_switch sets up locking and calls architecture specific
5172  * hooks.
5173  */
5174 static inline void
5175 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5176 		    struct task_struct *next)
5177 {
5178 	kcov_prepare_switch(prev);
5179 	sched_info_switch(rq, prev, next);
5180 	perf_event_task_sched_out(prev, next);
5181 	rseq_preempt(prev);
5182 	fire_sched_out_preempt_notifiers(prev, next);
5183 	kmap_local_sched_out();
5184 	prepare_task(next);
5185 	prepare_arch_switch(next);
5186 }
5187 
5188 /**
5189  * finish_task_switch - clean up after a task-switch
5190  * @prev: the thread we just switched away from.
5191  *
5192  * finish_task_switch must be called after the context switch, paired
5193  * with a prepare_task_switch call before the context switch.
5194  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5195  * and do any other architecture-specific cleanup actions.
5196  *
5197  * Note that we may have delayed dropping an mm in context_switch(). If
5198  * so, we finish that here outside of the runqueue lock. (Doing it
5199  * with the lock held can cause deadlocks; see schedule() for
5200  * details.)
5201  *
5202  * The context switch have flipped the stack from under us and restored the
5203  * local variables which were saved when this task called schedule() in the
5204  * past. prev == current is still correct but we need to recalculate this_rq
5205  * because prev may have moved to another CPU.
5206  */
5207 static struct rq *finish_task_switch(struct task_struct *prev)
5208 	__releases(rq->lock)
5209 {
5210 	struct rq *rq = this_rq();
5211 	struct mm_struct *mm = rq->prev_mm;
5212 	unsigned int prev_state;
5213 
5214 	/*
5215 	 * The previous task will have left us with a preempt_count of 2
5216 	 * because it left us after:
5217 	 *
5218 	 *	schedule()
5219 	 *	  preempt_disable();			// 1
5220 	 *	  __schedule()
5221 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5222 	 *
5223 	 * Also, see FORK_PREEMPT_COUNT.
5224 	 */
5225 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5226 		      "corrupted preempt_count: %s/%d/0x%x\n",
5227 		      current->comm, current->pid, preempt_count()))
5228 		preempt_count_set(FORK_PREEMPT_COUNT);
5229 
5230 	rq->prev_mm = NULL;
5231 
5232 	/*
5233 	 * A task struct has one reference for the use as "current".
5234 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5235 	 * schedule one last time. The schedule call will never return, and
5236 	 * the scheduled task must drop that reference.
5237 	 *
5238 	 * We must observe prev->state before clearing prev->on_cpu (in
5239 	 * finish_task), otherwise a concurrent wakeup can get prev
5240 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5241 	 * transition, resulting in a double drop.
5242 	 */
5243 	prev_state = READ_ONCE(prev->__state);
5244 	vtime_task_switch(prev);
5245 	perf_event_task_sched_in(prev, current);
5246 	finish_task(prev);
5247 	tick_nohz_task_switch();
5248 	finish_lock_switch(rq);
5249 	finish_arch_post_lock_switch();
5250 	kcov_finish_switch(current);
5251 	/*
5252 	 * kmap_local_sched_out() is invoked with rq::lock held and
5253 	 * interrupts disabled. There is no requirement for that, but the
5254 	 * sched out code does not have an interrupt enabled section.
5255 	 * Restoring the maps on sched in does not require interrupts being
5256 	 * disabled either.
5257 	 */
5258 	kmap_local_sched_in();
5259 
5260 	fire_sched_in_preempt_notifiers(current);
5261 	/*
5262 	 * When switching through a kernel thread, the loop in
5263 	 * membarrier_{private,global}_expedited() may have observed that
5264 	 * kernel thread and not issued an IPI. It is therefore possible to
5265 	 * schedule between user->kernel->user threads without passing though
5266 	 * switch_mm(). Membarrier requires a barrier after storing to
5267 	 * rq->curr, before returning to userspace, so provide them here:
5268 	 *
5269 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5270 	 *   provided by mmdrop_lazy_tlb(),
5271 	 * - a sync_core for SYNC_CORE.
5272 	 */
5273 	if (mm) {
5274 		membarrier_mm_sync_core_before_usermode(mm);
5275 		mmdrop_lazy_tlb_sched(mm);
5276 	}
5277 
5278 	if (unlikely(prev_state == TASK_DEAD)) {
5279 		if (prev->sched_class->task_dead)
5280 			prev->sched_class->task_dead(prev);
5281 
5282 		/* Task is done with its stack. */
5283 		put_task_stack(prev);
5284 
5285 		put_task_struct_rcu_user(prev);
5286 	}
5287 
5288 	return rq;
5289 }
5290 
5291 /**
5292  * schedule_tail - first thing a freshly forked thread must call.
5293  * @prev: the thread we just switched away from.
5294  */
5295 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5296 	__releases(rq->lock)
5297 {
5298 	/*
5299 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5300 	 * finish_task_switch() for details.
5301 	 *
5302 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5303 	 * and the preempt_enable() will end up enabling preemption (on
5304 	 * PREEMPT_COUNT kernels).
5305 	 */
5306 
5307 	finish_task_switch(prev);
5308 	preempt_enable();
5309 
5310 	if (current->set_child_tid)
5311 		put_user(task_pid_vnr(current), current->set_child_tid);
5312 
5313 	calculate_sigpending();
5314 }
5315 
5316 /*
5317  * context_switch - switch to the new MM and the new thread's register state.
5318  */
5319 static __always_inline struct rq *
5320 context_switch(struct rq *rq, struct task_struct *prev,
5321 	       struct task_struct *next, struct rq_flags *rf)
5322 {
5323 	prepare_task_switch(rq, prev, next);
5324 
5325 	/*
5326 	 * For paravirt, this is coupled with an exit in switch_to to
5327 	 * combine the page table reload and the switch backend into
5328 	 * one hypercall.
5329 	 */
5330 	arch_start_context_switch(prev);
5331 
5332 	/*
5333 	 * kernel -> kernel   lazy + transfer active
5334 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5335 	 *
5336 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5337 	 *   user ->   user   switch
5338 	 *
5339 	 * switch_mm_cid() needs to be updated if the barriers provided
5340 	 * by context_switch() are modified.
5341 	 */
5342 	if (!next->mm) {                                // to kernel
5343 		enter_lazy_tlb(prev->active_mm, next);
5344 
5345 		next->active_mm = prev->active_mm;
5346 		if (prev->mm)                           // from user
5347 			mmgrab_lazy_tlb(prev->active_mm);
5348 		else
5349 			prev->active_mm = NULL;
5350 	} else {                                        // to user
5351 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5352 		/*
5353 		 * sys_membarrier() requires an smp_mb() between setting
5354 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5355 		 *
5356 		 * The below provides this either through switch_mm(), or in
5357 		 * case 'prev->active_mm == next->mm' through
5358 		 * finish_task_switch()'s mmdrop().
5359 		 */
5360 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5361 		lru_gen_use_mm(next->mm);
5362 
5363 		if (!prev->mm) {                        // from kernel
5364 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5365 			rq->prev_mm = prev->active_mm;
5366 			prev->active_mm = NULL;
5367 		}
5368 	}
5369 
5370 	/* switch_mm_cid() requires the memory barriers above. */
5371 	switch_mm_cid(rq, prev, next);
5372 
5373 	prepare_lock_switch(rq, next, rf);
5374 
5375 	/* Here we just switch the register state and the stack. */
5376 	switch_to(prev, next, prev);
5377 	barrier();
5378 
5379 	return finish_task_switch(prev);
5380 }
5381 
5382 /*
5383  * nr_running and nr_context_switches:
5384  *
5385  * externally visible scheduler statistics: current number of runnable
5386  * threads, total number of context switches performed since bootup.
5387  */
5388 unsigned int nr_running(void)
5389 {
5390 	unsigned int i, sum = 0;
5391 
5392 	for_each_online_cpu(i)
5393 		sum += cpu_rq(i)->nr_running;
5394 
5395 	return sum;
5396 }
5397 
5398 /*
5399  * Check if only the current task is running on the CPU.
5400  *
5401  * Caution: this function does not check that the caller has disabled
5402  * preemption, thus the result might have a time-of-check-to-time-of-use
5403  * race.  The caller is responsible to use it correctly, for example:
5404  *
5405  * - from a non-preemptible section (of course)
5406  *
5407  * - from a thread that is bound to a single CPU
5408  *
5409  * - in a loop with very short iterations (e.g. a polling loop)
5410  */
5411 bool single_task_running(void)
5412 {
5413 	return raw_rq()->nr_running == 1;
5414 }
5415 EXPORT_SYMBOL(single_task_running);
5416 
5417 unsigned long long nr_context_switches_cpu(int cpu)
5418 {
5419 	return cpu_rq(cpu)->nr_switches;
5420 }
5421 
5422 unsigned long long nr_context_switches(void)
5423 {
5424 	int i;
5425 	unsigned long long sum = 0;
5426 
5427 	for_each_possible_cpu(i)
5428 		sum += cpu_rq(i)->nr_switches;
5429 
5430 	return sum;
5431 }
5432 
5433 /*
5434  * Consumers of these two interfaces, like for example the cpuidle menu
5435  * governor, are using nonsensical data. Preferring shallow idle state selection
5436  * for a CPU that has IO-wait which might not even end up running the task when
5437  * it does become runnable.
5438  */
5439 
5440 unsigned int nr_iowait_cpu(int cpu)
5441 {
5442 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5443 }
5444 
5445 /*
5446  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5447  *
5448  * The idea behind IO-wait account is to account the idle time that we could
5449  * have spend running if it were not for IO. That is, if we were to improve the
5450  * storage performance, we'd have a proportional reduction in IO-wait time.
5451  *
5452  * This all works nicely on UP, where, when a task blocks on IO, we account
5453  * idle time as IO-wait, because if the storage were faster, it could've been
5454  * running and we'd not be idle.
5455  *
5456  * This has been extended to SMP, by doing the same for each CPU. This however
5457  * is broken.
5458  *
5459  * Imagine for instance the case where two tasks block on one CPU, only the one
5460  * CPU will have IO-wait accounted, while the other has regular idle. Even
5461  * though, if the storage were faster, both could've ran at the same time,
5462  * utilising both CPUs.
5463  *
5464  * This means, that when looking globally, the current IO-wait accounting on
5465  * SMP is a lower bound, by reason of under accounting.
5466  *
5467  * Worse, since the numbers are provided per CPU, they are sometimes
5468  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5469  * associated with any one particular CPU, it can wake to another CPU than it
5470  * blocked on. This means the per CPU IO-wait number is meaningless.
5471  *
5472  * Task CPU affinities can make all that even more 'interesting'.
5473  */
5474 
5475 unsigned int nr_iowait(void)
5476 {
5477 	unsigned int i, sum = 0;
5478 
5479 	for_each_possible_cpu(i)
5480 		sum += nr_iowait_cpu(i);
5481 
5482 	return sum;
5483 }
5484 
5485 #ifdef CONFIG_SMP
5486 
5487 /*
5488  * sched_exec - execve() is a valuable balancing opportunity, because at
5489  * this point the task has the smallest effective memory and cache footprint.
5490  */
5491 void sched_exec(void)
5492 {
5493 	struct task_struct *p = current;
5494 	struct migration_arg arg;
5495 	int dest_cpu;
5496 
5497 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5498 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5499 		if (dest_cpu == smp_processor_id())
5500 			return;
5501 
5502 		if (unlikely(!cpu_active(dest_cpu)))
5503 			return;
5504 
5505 		arg = (struct migration_arg){ p, dest_cpu };
5506 	}
5507 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5508 }
5509 
5510 #endif
5511 
5512 DEFINE_PER_CPU(struct kernel_stat, kstat);
5513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5514 
5515 EXPORT_PER_CPU_SYMBOL(kstat);
5516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5517 
5518 /*
5519  * The function fair_sched_class.update_curr accesses the struct curr
5520  * and its field curr->exec_start; when called from task_sched_runtime(),
5521  * we observe a high rate of cache misses in practice.
5522  * Prefetching this data results in improved performance.
5523  */
5524 static inline void prefetch_curr_exec_start(struct task_struct *p)
5525 {
5526 #ifdef CONFIG_FAIR_GROUP_SCHED
5527 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5528 #else
5529 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5530 #endif
5531 	prefetch(curr);
5532 	prefetch(&curr->exec_start);
5533 }
5534 
5535 /*
5536  * Return accounted runtime for the task.
5537  * In case the task is currently running, return the runtime plus current's
5538  * pending runtime that have not been accounted yet.
5539  */
5540 unsigned long long task_sched_runtime(struct task_struct *p)
5541 {
5542 	struct rq_flags rf;
5543 	struct rq *rq;
5544 	u64 ns;
5545 
5546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5547 	/*
5548 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5549 	 * So we have a optimization chance when the task's delta_exec is 0.
5550 	 * Reading ->on_cpu is racy, but this is ok.
5551 	 *
5552 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5553 	 * If we race with it entering CPU, unaccounted time is 0. This is
5554 	 * indistinguishable from the read occurring a few cycles earlier.
5555 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5556 	 * been accounted, so we're correct here as well.
5557 	 */
5558 	if (!p->on_cpu || !task_on_rq_queued(p))
5559 		return p->se.sum_exec_runtime;
5560 #endif
5561 
5562 	rq = task_rq_lock(p, &rf);
5563 	/*
5564 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5565 	 * project cycles that may never be accounted to this
5566 	 * thread, breaking clock_gettime().
5567 	 */
5568 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5569 		prefetch_curr_exec_start(p);
5570 		update_rq_clock(rq);
5571 		p->sched_class->update_curr(rq);
5572 	}
5573 	ns = p->se.sum_exec_runtime;
5574 	task_rq_unlock(rq, p, &rf);
5575 
5576 	return ns;
5577 }
5578 
5579 #ifdef CONFIG_SCHED_DEBUG
5580 static u64 cpu_resched_latency(struct rq *rq)
5581 {
5582 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5583 	u64 resched_latency, now = rq_clock(rq);
5584 	static bool warned_once;
5585 
5586 	if (sysctl_resched_latency_warn_once && warned_once)
5587 		return 0;
5588 
5589 	if (!need_resched() || !latency_warn_ms)
5590 		return 0;
5591 
5592 	if (system_state == SYSTEM_BOOTING)
5593 		return 0;
5594 
5595 	if (!rq->last_seen_need_resched_ns) {
5596 		rq->last_seen_need_resched_ns = now;
5597 		rq->ticks_without_resched = 0;
5598 		return 0;
5599 	}
5600 
5601 	rq->ticks_without_resched++;
5602 	resched_latency = now - rq->last_seen_need_resched_ns;
5603 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5604 		return 0;
5605 
5606 	warned_once = true;
5607 
5608 	return resched_latency;
5609 }
5610 
5611 static int __init setup_resched_latency_warn_ms(char *str)
5612 {
5613 	long val;
5614 
5615 	if ((kstrtol(str, 0, &val))) {
5616 		pr_warn("Unable to set resched_latency_warn_ms\n");
5617 		return 1;
5618 	}
5619 
5620 	sysctl_resched_latency_warn_ms = val;
5621 	return 1;
5622 }
5623 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5624 #else
5625 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5626 #endif /* CONFIG_SCHED_DEBUG */
5627 
5628 /*
5629  * This function gets called by the timer code, with HZ frequency.
5630  * We call it with interrupts disabled.
5631  */
5632 void scheduler_tick(void)
5633 {
5634 	int cpu = smp_processor_id();
5635 	struct rq *rq = cpu_rq(cpu);
5636 	struct task_struct *curr = rq->curr;
5637 	struct rq_flags rf;
5638 	unsigned long thermal_pressure;
5639 	u64 resched_latency;
5640 
5641 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5642 		arch_scale_freq_tick();
5643 
5644 	sched_clock_tick();
5645 
5646 	rq_lock(rq, &rf);
5647 
5648 	update_rq_clock(rq);
5649 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5650 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5651 	curr->sched_class->task_tick(rq, curr, 0);
5652 	if (sched_feat(LATENCY_WARN))
5653 		resched_latency = cpu_resched_latency(rq);
5654 	calc_global_load_tick(rq);
5655 	sched_core_tick(rq);
5656 	task_tick_mm_cid(rq, curr);
5657 
5658 	rq_unlock(rq, &rf);
5659 
5660 	if (sched_feat(LATENCY_WARN) && resched_latency)
5661 		resched_latency_warn(cpu, resched_latency);
5662 
5663 	perf_event_task_tick();
5664 
5665 	if (curr->flags & PF_WQ_WORKER)
5666 		wq_worker_tick(curr);
5667 
5668 #ifdef CONFIG_SMP
5669 	rq->idle_balance = idle_cpu(cpu);
5670 	trigger_load_balance(rq);
5671 #endif
5672 }
5673 
5674 #ifdef CONFIG_NO_HZ_FULL
5675 
5676 struct tick_work {
5677 	int			cpu;
5678 	atomic_t		state;
5679 	struct delayed_work	work;
5680 };
5681 /* Values for ->state, see diagram below. */
5682 #define TICK_SCHED_REMOTE_OFFLINE	0
5683 #define TICK_SCHED_REMOTE_OFFLINING	1
5684 #define TICK_SCHED_REMOTE_RUNNING	2
5685 
5686 /*
5687  * State diagram for ->state:
5688  *
5689  *
5690  *          TICK_SCHED_REMOTE_OFFLINE
5691  *                    |   ^
5692  *                    |   |
5693  *                    |   | sched_tick_remote()
5694  *                    |   |
5695  *                    |   |
5696  *                    +--TICK_SCHED_REMOTE_OFFLINING
5697  *                    |   ^
5698  *                    |   |
5699  * sched_tick_start() |   | sched_tick_stop()
5700  *                    |   |
5701  *                    V   |
5702  *          TICK_SCHED_REMOTE_RUNNING
5703  *
5704  *
5705  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5706  * and sched_tick_start() are happy to leave the state in RUNNING.
5707  */
5708 
5709 static struct tick_work __percpu *tick_work_cpu;
5710 
5711 static void sched_tick_remote(struct work_struct *work)
5712 {
5713 	struct delayed_work *dwork = to_delayed_work(work);
5714 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5715 	int cpu = twork->cpu;
5716 	struct rq *rq = cpu_rq(cpu);
5717 	int os;
5718 
5719 	/*
5720 	 * Handle the tick only if it appears the remote CPU is running in full
5721 	 * dynticks mode. The check is racy by nature, but missing a tick or
5722 	 * having one too much is no big deal because the scheduler tick updates
5723 	 * statistics and checks timeslices in a time-independent way, regardless
5724 	 * of when exactly it is running.
5725 	 */
5726 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5727 		guard(rq_lock_irq)(rq);
5728 		struct task_struct *curr = rq->curr;
5729 
5730 		if (cpu_online(cpu)) {
5731 			update_rq_clock(rq);
5732 
5733 			if (!is_idle_task(curr)) {
5734 				/*
5735 				 * Make sure the next tick runs within a
5736 				 * reasonable amount of time.
5737 				 */
5738 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5739 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5740 			}
5741 			curr->sched_class->task_tick(rq, curr, 0);
5742 
5743 			calc_load_nohz_remote(rq);
5744 		}
5745 	}
5746 
5747 	/*
5748 	 * Run the remote tick once per second (1Hz). This arbitrary
5749 	 * frequency is large enough to avoid overload but short enough
5750 	 * to keep scheduler internal stats reasonably up to date.  But
5751 	 * first update state to reflect hotplug activity if required.
5752 	 */
5753 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5754 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5755 	if (os == TICK_SCHED_REMOTE_RUNNING)
5756 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5757 }
5758 
5759 static void sched_tick_start(int cpu)
5760 {
5761 	int os;
5762 	struct tick_work *twork;
5763 
5764 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5765 		return;
5766 
5767 	WARN_ON_ONCE(!tick_work_cpu);
5768 
5769 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5770 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5771 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5772 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5773 		twork->cpu = cpu;
5774 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5775 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5776 	}
5777 }
5778 
5779 #ifdef CONFIG_HOTPLUG_CPU
5780 static void sched_tick_stop(int cpu)
5781 {
5782 	struct tick_work *twork;
5783 	int os;
5784 
5785 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5786 		return;
5787 
5788 	WARN_ON_ONCE(!tick_work_cpu);
5789 
5790 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5791 	/* There cannot be competing actions, but don't rely on stop-machine. */
5792 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5793 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5794 	/* Don't cancel, as this would mess up the state machine. */
5795 }
5796 #endif /* CONFIG_HOTPLUG_CPU */
5797 
5798 int __init sched_tick_offload_init(void)
5799 {
5800 	tick_work_cpu = alloc_percpu(struct tick_work);
5801 	BUG_ON(!tick_work_cpu);
5802 	return 0;
5803 }
5804 
5805 #else /* !CONFIG_NO_HZ_FULL */
5806 static inline void sched_tick_start(int cpu) { }
5807 static inline void sched_tick_stop(int cpu) { }
5808 #endif
5809 
5810 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5811 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5812 /*
5813  * If the value passed in is equal to the current preempt count
5814  * then we just disabled preemption. Start timing the latency.
5815  */
5816 static inline void preempt_latency_start(int val)
5817 {
5818 	if (preempt_count() == val) {
5819 		unsigned long ip = get_lock_parent_ip();
5820 #ifdef CONFIG_DEBUG_PREEMPT
5821 		current->preempt_disable_ip = ip;
5822 #endif
5823 		trace_preempt_off(CALLER_ADDR0, ip);
5824 	}
5825 }
5826 
5827 void preempt_count_add(int val)
5828 {
5829 #ifdef CONFIG_DEBUG_PREEMPT
5830 	/*
5831 	 * Underflow?
5832 	 */
5833 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5834 		return;
5835 #endif
5836 	__preempt_count_add(val);
5837 #ifdef CONFIG_DEBUG_PREEMPT
5838 	/*
5839 	 * Spinlock count overflowing soon?
5840 	 */
5841 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5842 				PREEMPT_MASK - 10);
5843 #endif
5844 	preempt_latency_start(val);
5845 }
5846 EXPORT_SYMBOL(preempt_count_add);
5847 NOKPROBE_SYMBOL(preempt_count_add);
5848 
5849 /*
5850  * If the value passed in equals to the current preempt count
5851  * then we just enabled preemption. Stop timing the latency.
5852  */
5853 static inline void preempt_latency_stop(int val)
5854 {
5855 	if (preempt_count() == val)
5856 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5857 }
5858 
5859 void preempt_count_sub(int val)
5860 {
5861 #ifdef CONFIG_DEBUG_PREEMPT
5862 	/*
5863 	 * Underflow?
5864 	 */
5865 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5866 		return;
5867 	/*
5868 	 * Is the spinlock portion underflowing?
5869 	 */
5870 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5871 			!(preempt_count() & PREEMPT_MASK)))
5872 		return;
5873 #endif
5874 
5875 	preempt_latency_stop(val);
5876 	__preempt_count_sub(val);
5877 }
5878 EXPORT_SYMBOL(preempt_count_sub);
5879 NOKPROBE_SYMBOL(preempt_count_sub);
5880 
5881 #else
5882 static inline void preempt_latency_start(int val) { }
5883 static inline void preempt_latency_stop(int val) { }
5884 #endif
5885 
5886 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5887 {
5888 #ifdef CONFIG_DEBUG_PREEMPT
5889 	return p->preempt_disable_ip;
5890 #else
5891 	return 0;
5892 #endif
5893 }
5894 
5895 /*
5896  * Print scheduling while atomic bug:
5897  */
5898 static noinline void __schedule_bug(struct task_struct *prev)
5899 {
5900 	/* Save this before calling printk(), since that will clobber it */
5901 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5902 
5903 	if (oops_in_progress)
5904 		return;
5905 
5906 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5907 		prev->comm, prev->pid, preempt_count());
5908 
5909 	debug_show_held_locks(prev);
5910 	print_modules();
5911 	if (irqs_disabled())
5912 		print_irqtrace_events(prev);
5913 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5914 		pr_err("Preemption disabled at:");
5915 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5916 	}
5917 	check_panic_on_warn("scheduling while atomic");
5918 
5919 	dump_stack();
5920 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5921 }
5922 
5923 /*
5924  * Various schedule()-time debugging checks and statistics:
5925  */
5926 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5927 {
5928 #ifdef CONFIG_SCHED_STACK_END_CHECK
5929 	if (task_stack_end_corrupted(prev))
5930 		panic("corrupted stack end detected inside scheduler\n");
5931 
5932 	if (task_scs_end_corrupted(prev))
5933 		panic("corrupted shadow stack detected inside scheduler\n");
5934 #endif
5935 
5936 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5937 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5938 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5939 			prev->comm, prev->pid, prev->non_block_count);
5940 		dump_stack();
5941 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5942 	}
5943 #endif
5944 
5945 	if (unlikely(in_atomic_preempt_off())) {
5946 		__schedule_bug(prev);
5947 		preempt_count_set(PREEMPT_DISABLED);
5948 	}
5949 	rcu_sleep_check();
5950 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5951 
5952 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5953 
5954 	schedstat_inc(this_rq()->sched_count);
5955 }
5956 
5957 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5958 				  struct rq_flags *rf)
5959 {
5960 #ifdef CONFIG_SMP
5961 	const struct sched_class *class;
5962 	/*
5963 	 * We must do the balancing pass before put_prev_task(), such
5964 	 * that when we release the rq->lock the task is in the same
5965 	 * state as before we took rq->lock.
5966 	 *
5967 	 * We can terminate the balance pass as soon as we know there is
5968 	 * a runnable task of @class priority or higher.
5969 	 */
5970 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5971 		if (class->balance(rq, prev, rf))
5972 			break;
5973 	}
5974 #endif
5975 
5976 	put_prev_task(rq, prev);
5977 }
5978 
5979 /*
5980  * Pick up the highest-prio task:
5981  */
5982 static inline struct task_struct *
5983 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5984 {
5985 	const struct sched_class *class;
5986 	struct task_struct *p;
5987 
5988 	/*
5989 	 * Optimization: we know that if all tasks are in the fair class we can
5990 	 * call that function directly, but only if the @prev task wasn't of a
5991 	 * higher scheduling class, because otherwise those lose the
5992 	 * opportunity to pull in more work from other CPUs.
5993 	 */
5994 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5995 		   rq->nr_running == rq->cfs.h_nr_running)) {
5996 
5997 		p = pick_next_task_fair(rq, prev, rf);
5998 		if (unlikely(p == RETRY_TASK))
5999 			goto restart;
6000 
6001 		/* Assume the next prioritized class is idle_sched_class */
6002 		if (!p) {
6003 			put_prev_task(rq, prev);
6004 			p = pick_next_task_idle(rq);
6005 		}
6006 
6007 		return p;
6008 	}
6009 
6010 restart:
6011 	put_prev_task_balance(rq, prev, rf);
6012 
6013 	for_each_class(class) {
6014 		p = class->pick_next_task(rq);
6015 		if (p)
6016 			return p;
6017 	}
6018 
6019 	BUG(); /* The idle class should always have a runnable task. */
6020 }
6021 
6022 #ifdef CONFIG_SCHED_CORE
6023 static inline bool is_task_rq_idle(struct task_struct *t)
6024 {
6025 	return (task_rq(t)->idle == t);
6026 }
6027 
6028 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6029 {
6030 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6031 }
6032 
6033 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6034 {
6035 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6036 		return true;
6037 
6038 	return a->core_cookie == b->core_cookie;
6039 }
6040 
6041 static inline struct task_struct *pick_task(struct rq *rq)
6042 {
6043 	const struct sched_class *class;
6044 	struct task_struct *p;
6045 
6046 	for_each_class(class) {
6047 		p = class->pick_task(rq);
6048 		if (p)
6049 			return p;
6050 	}
6051 
6052 	BUG(); /* The idle class should always have a runnable task. */
6053 }
6054 
6055 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6056 
6057 static void queue_core_balance(struct rq *rq);
6058 
6059 static struct task_struct *
6060 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6061 {
6062 	struct task_struct *next, *p, *max = NULL;
6063 	const struct cpumask *smt_mask;
6064 	bool fi_before = false;
6065 	bool core_clock_updated = (rq == rq->core);
6066 	unsigned long cookie;
6067 	int i, cpu, occ = 0;
6068 	struct rq *rq_i;
6069 	bool need_sync;
6070 
6071 	if (!sched_core_enabled(rq))
6072 		return __pick_next_task(rq, prev, rf);
6073 
6074 	cpu = cpu_of(rq);
6075 
6076 	/* Stopper task is switching into idle, no need core-wide selection. */
6077 	if (cpu_is_offline(cpu)) {
6078 		/*
6079 		 * Reset core_pick so that we don't enter the fastpath when
6080 		 * coming online. core_pick would already be migrated to
6081 		 * another cpu during offline.
6082 		 */
6083 		rq->core_pick = NULL;
6084 		return __pick_next_task(rq, prev, rf);
6085 	}
6086 
6087 	/*
6088 	 * If there were no {en,de}queues since we picked (IOW, the task
6089 	 * pointers are all still valid), and we haven't scheduled the last
6090 	 * pick yet, do so now.
6091 	 *
6092 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6093 	 * it was either offline or went offline during a sibling's core-wide
6094 	 * selection. In this case, do a core-wide selection.
6095 	 */
6096 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6097 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6098 	    rq->core_pick) {
6099 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6100 
6101 		next = rq->core_pick;
6102 		if (next != prev) {
6103 			put_prev_task(rq, prev);
6104 			set_next_task(rq, next);
6105 		}
6106 
6107 		rq->core_pick = NULL;
6108 		goto out;
6109 	}
6110 
6111 	put_prev_task_balance(rq, prev, rf);
6112 
6113 	smt_mask = cpu_smt_mask(cpu);
6114 	need_sync = !!rq->core->core_cookie;
6115 
6116 	/* reset state */
6117 	rq->core->core_cookie = 0UL;
6118 	if (rq->core->core_forceidle_count) {
6119 		if (!core_clock_updated) {
6120 			update_rq_clock(rq->core);
6121 			core_clock_updated = true;
6122 		}
6123 		sched_core_account_forceidle(rq);
6124 		/* reset after accounting force idle */
6125 		rq->core->core_forceidle_start = 0;
6126 		rq->core->core_forceidle_count = 0;
6127 		rq->core->core_forceidle_occupation = 0;
6128 		need_sync = true;
6129 		fi_before = true;
6130 	}
6131 
6132 	/*
6133 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6134 	 *
6135 	 * @task_seq guards the task state ({en,de}queues)
6136 	 * @pick_seq is the @task_seq we did a selection on
6137 	 * @sched_seq is the @pick_seq we scheduled
6138 	 *
6139 	 * However, preemptions can cause multiple picks on the same task set.
6140 	 * 'Fix' this by also increasing @task_seq for every pick.
6141 	 */
6142 	rq->core->core_task_seq++;
6143 
6144 	/*
6145 	 * Optimize for common case where this CPU has no cookies
6146 	 * and there are no cookied tasks running on siblings.
6147 	 */
6148 	if (!need_sync) {
6149 		next = pick_task(rq);
6150 		if (!next->core_cookie) {
6151 			rq->core_pick = NULL;
6152 			/*
6153 			 * For robustness, update the min_vruntime_fi for
6154 			 * unconstrained picks as well.
6155 			 */
6156 			WARN_ON_ONCE(fi_before);
6157 			task_vruntime_update(rq, next, false);
6158 			goto out_set_next;
6159 		}
6160 	}
6161 
6162 	/*
6163 	 * For each thread: do the regular task pick and find the max prio task
6164 	 * amongst them.
6165 	 *
6166 	 * Tie-break prio towards the current CPU
6167 	 */
6168 	for_each_cpu_wrap(i, smt_mask, cpu) {
6169 		rq_i = cpu_rq(i);
6170 
6171 		/*
6172 		 * Current cpu always has its clock updated on entrance to
6173 		 * pick_next_task(). If the current cpu is not the core,
6174 		 * the core may also have been updated above.
6175 		 */
6176 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6177 			update_rq_clock(rq_i);
6178 
6179 		p = rq_i->core_pick = pick_task(rq_i);
6180 		if (!max || prio_less(max, p, fi_before))
6181 			max = p;
6182 	}
6183 
6184 	cookie = rq->core->core_cookie = max->core_cookie;
6185 
6186 	/*
6187 	 * For each thread: try and find a runnable task that matches @max or
6188 	 * force idle.
6189 	 */
6190 	for_each_cpu(i, smt_mask) {
6191 		rq_i = cpu_rq(i);
6192 		p = rq_i->core_pick;
6193 
6194 		if (!cookie_equals(p, cookie)) {
6195 			p = NULL;
6196 			if (cookie)
6197 				p = sched_core_find(rq_i, cookie);
6198 			if (!p)
6199 				p = idle_sched_class.pick_task(rq_i);
6200 		}
6201 
6202 		rq_i->core_pick = p;
6203 
6204 		if (p == rq_i->idle) {
6205 			if (rq_i->nr_running) {
6206 				rq->core->core_forceidle_count++;
6207 				if (!fi_before)
6208 					rq->core->core_forceidle_seq++;
6209 			}
6210 		} else {
6211 			occ++;
6212 		}
6213 	}
6214 
6215 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6216 		rq->core->core_forceidle_start = rq_clock(rq->core);
6217 		rq->core->core_forceidle_occupation = occ;
6218 	}
6219 
6220 	rq->core->core_pick_seq = rq->core->core_task_seq;
6221 	next = rq->core_pick;
6222 	rq->core_sched_seq = rq->core->core_pick_seq;
6223 
6224 	/* Something should have been selected for current CPU */
6225 	WARN_ON_ONCE(!next);
6226 
6227 	/*
6228 	 * Reschedule siblings
6229 	 *
6230 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6231 	 * sending an IPI (below) ensures the sibling will no longer be running
6232 	 * their task. This ensures there is no inter-sibling overlap between
6233 	 * non-matching user state.
6234 	 */
6235 	for_each_cpu(i, smt_mask) {
6236 		rq_i = cpu_rq(i);
6237 
6238 		/*
6239 		 * An online sibling might have gone offline before a task
6240 		 * could be picked for it, or it might be offline but later
6241 		 * happen to come online, but its too late and nothing was
6242 		 * picked for it.  That's Ok - it will pick tasks for itself,
6243 		 * so ignore it.
6244 		 */
6245 		if (!rq_i->core_pick)
6246 			continue;
6247 
6248 		/*
6249 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6250 		 * fi_before     fi      update?
6251 		 *  0            0       1
6252 		 *  0            1       1
6253 		 *  1            0       1
6254 		 *  1            1       0
6255 		 */
6256 		if (!(fi_before && rq->core->core_forceidle_count))
6257 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6258 
6259 		rq_i->core_pick->core_occupation = occ;
6260 
6261 		if (i == cpu) {
6262 			rq_i->core_pick = NULL;
6263 			continue;
6264 		}
6265 
6266 		/* Did we break L1TF mitigation requirements? */
6267 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6268 
6269 		if (rq_i->curr == rq_i->core_pick) {
6270 			rq_i->core_pick = NULL;
6271 			continue;
6272 		}
6273 
6274 		resched_curr(rq_i);
6275 	}
6276 
6277 out_set_next:
6278 	set_next_task(rq, next);
6279 out:
6280 	if (rq->core->core_forceidle_count && next == rq->idle)
6281 		queue_core_balance(rq);
6282 
6283 	return next;
6284 }
6285 
6286 static bool try_steal_cookie(int this, int that)
6287 {
6288 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6289 	struct task_struct *p;
6290 	unsigned long cookie;
6291 	bool success = false;
6292 
6293 	guard(irq)();
6294 	guard(double_rq_lock)(dst, src);
6295 
6296 	cookie = dst->core->core_cookie;
6297 	if (!cookie)
6298 		return false;
6299 
6300 	if (dst->curr != dst->idle)
6301 		return false;
6302 
6303 	p = sched_core_find(src, cookie);
6304 	if (!p)
6305 		return false;
6306 
6307 	do {
6308 		if (p == src->core_pick || p == src->curr)
6309 			goto next;
6310 
6311 		if (!is_cpu_allowed(p, this))
6312 			goto next;
6313 
6314 		if (p->core_occupation > dst->idle->core_occupation)
6315 			goto next;
6316 		/*
6317 		 * sched_core_find() and sched_core_next() will ensure
6318 		 * that task @p is not throttled now, we also need to
6319 		 * check whether the runqueue of the destination CPU is
6320 		 * being throttled.
6321 		 */
6322 		if (sched_task_is_throttled(p, this))
6323 			goto next;
6324 
6325 		deactivate_task(src, p, 0);
6326 		set_task_cpu(p, this);
6327 		activate_task(dst, p, 0);
6328 
6329 		resched_curr(dst);
6330 
6331 		success = true;
6332 		break;
6333 
6334 next:
6335 		p = sched_core_next(p, cookie);
6336 	} while (p);
6337 
6338 	return success;
6339 }
6340 
6341 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6342 {
6343 	int i;
6344 
6345 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6346 		if (i == cpu)
6347 			continue;
6348 
6349 		if (need_resched())
6350 			break;
6351 
6352 		if (try_steal_cookie(cpu, i))
6353 			return true;
6354 	}
6355 
6356 	return false;
6357 }
6358 
6359 static void sched_core_balance(struct rq *rq)
6360 {
6361 	struct sched_domain *sd;
6362 	int cpu = cpu_of(rq);
6363 
6364 	guard(preempt)();
6365 	guard(rcu)();
6366 
6367 	raw_spin_rq_unlock_irq(rq);
6368 	for_each_domain(cpu, sd) {
6369 		if (need_resched())
6370 			break;
6371 
6372 		if (steal_cookie_task(cpu, sd))
6373 			break;
6374 	}
6375 	raw_spin_rq_lock_irq(rq);
6376 }
6377 
6378 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6379 
6380 static void queue_core_balance(struct rq *rq)
6381 {
6382 	if (!sched_core_enabled(rq))
6383 		return;
6384 
6385 	if (!rq->core->core_cookie)
6386 		return;
6387 
6388 	if (!rq->nr_running) /* not forced idle */
6389 		return;
6390 
6391 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6392 }
6393 
6394 DEFINE_LOCK_GUARD_1(core_lock, int,
6395 		    sched_core_lock(*_T->lock, &_T->flags),
6396 		    sched_core_unlock(*_T->lock, &_T->flags),
6397 		    unsigned long flags)
6398 
6399 static void sched_core_cpu_starting(unsigned int cpu)
6400 {
6401 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6402 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6403 	int t;
6404 
6405 	guard(core_lock)(&cpu);
6406 
6407 	WARN_ON_ONCE(rq->core != rq);
6408 
6409 	/* if we're the first, we'll be our own leader */
6410 	if (cpumask_weight(smt_mask) == 1)
6411 		return;
6412 
6413 	/* find the leader */
6414 	for_each_cpu(t, smt_mask) {
6415 		if (t == cpu)
6416 			continue;
6417 		rq = cpu_rq(t);
6418 		if (rq->core == rq) {
6419 			core_rq = rq;
6420 			break;
6421 		}
6422 	}
6423 
6424 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6425 		return;
6426 
6427 	/* install and validate core_rq */
6428 	for_each_cpu(t, smt_mask) {
6429 		rq = cpu_rq(t);
6430 
6431 		if (t == cpu)
6432 			rq->core = core_rq;
6433 
6434 		WARN_ON_ONCE(rq->core != core_rq);
6435 	}
6436 }
6437 
6438 static void sched_core_cpu_deactivate(unsigned int cpu)
6439 {
6440 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6441 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6442 	int t;
6443 
6444 	guard(core_lock)(&cpu);
6445 
6446 	/* if we're the last man standing, nothing to do */
6447 	if (cpumask_weight(smt_mask) == 1) {
6448 		WARN_ON_ONCE(rq->core != rq);
6449 		return;
6450 	}
6451 
6452 	/* if we're not the leader, nothing to do */
6453 	if (rq->core != rq)
6454 		return;
6455 
6456 	/* find a new leader */
6457 	for_each_cpu(t, smt_mask) {
6458 		if (t == cpu)
6459 			continue;
6460 		core_rq = cpu_rq(t);
6461 		break;
6462 	}
6463 
6464 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6465 		return;
6466 
6467 	/* copy the shared state to the new leader */
6468 	core_rq->core_task_seq             = rq->core_task_seq;
6469 	core_rq->core_pick_seq             = rq->core_pick_seq;
6470 	core_rq->core_cookie               = rq->core_cookie;
6471 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6472 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6473 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6474 
6475 	/*
6476 	 * Accounting edge for forced idle is handled in pick_next_task().
6477 	 * Don't need another one here, since the hotplug thread shouldn't
6478 	 * have a cookie.
6479 	 */
6480 	core_rq->core_forceidle_start = 0;
6481 
6482 	/* install new leader */
6483 	for_each_cpu(t, smt_mask) {
6484 		rq = cpu_rq(t);
6485 		rq->core = core_rq;
6486 	}
6487 }
6488 
6489 static inline void sched_core_cpu_dying(unsigned int cpu)
6490 {
6491 	struct rq *rq = cpu_rq(cpu);
6492 
6493 	if (rq->core != rq)
6494 		rq->core = rq;
6495 }
6496 
6497 #else /* !CONFIG_SCHED_CORE */
6498 
6499 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6500 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6501 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6502 
6503 static struct task_struct *
6504 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6505 {
6506 	return __pick_next_task(rq, prev, rf);
6507 }
6508 
6509 #endif /* CONFIG_SCHED_CORE */
6510 
6511 /*
6512  * Constants for the sched_mode argument of __schedule().
6513  *
6514  * The mode argument allows RT enabled kernels to differentiate a
6515  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6516  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6517  * optimize the AND operation out and just check for zero.
6518  */
6519 #define SM_NONE			0x0
6520 #define SM_PREEMPT		0x1
6521 #define SM_RTLOCK_WAIT		0x2
6522 
6523 #ifndef CONFIG_PREEMPT_RT
6524 # define SM_MASK_PREEMPT	(~0U)
6525 #else
6526 # define SM_MASK_PREEMPT	SM_PREEMPT
6527 #endif
6528 
6529 /*
6530  * __schedule() is the main scheduler function.
6531  *
6532  * The main means of driving the scheduler and thus entering this function are:
6533  *
6534  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6535  *
6536  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6537  *      paths. For example, see arch/x86/entry_64.S.
6538  *
6539  *      To drive preemption between tasks, the scheduler sets the flag in timer
6540  *      interrupt handler scheduler_tick().
6541  *
6542  *   3. Wakeups don't really cause entry into schedule(). They add a
6543  *      task to the run-queue and that's it.
6544  *
6545  *      Now, if the new task added to the run-queue preempts the current
6546  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6547  *      called on the nearest possible occasion:
6548  *
6549  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6550  *
6551  *         - in syscall or exception context, at the next outmost
6552  *           preempt_enable(). (this might be as soon as the wake_up()'s
6553  *           spin_unlock()!)
6554  *
6555  *         - in IRQ context, return from interrupt-handler to
6556  *           preemptible context
6557  *
6558  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6559  *         then at the next:
6560  *
6561  *          - cond_resched() call
6562  *          - explicit schedule() call
6563  *          - return from syscall or exception to user-space
6564  *          - return from interrupt-handler to user-space
6565  *
6566  * WARNING: must be called with preemption disabled!
6567  */
6568 static void __sched notrace __schedule(unsigned int sched_mode)
6569 {
6570 	struct task_struct *prev, *next;
6571 	unsigned long *switch_count;
6572 	unsigned long prev_state;
6573 	struct rq_flags rf;
6574 	struct rq *rq;
6575 	int cpu;
6576 
6577 	cpu = smp_processor_id();
6578 	rq = cpu_rq(cpu);
6579 	prev = rq->curr;
6580 
6581 	schedule_debug(prev, !!sched_mode);
6582 
6583 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6584 		hrtick_clear(rq);
6585 
6586 	local_irq_disable();
6587 	rcu_note_context_switch(!!sched_mode);
6588 
6589 	/*
6590 	 * Make sure that signal_pending_state()->signal_pending() below
6591 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6592 	 * done by the caller to avoid the race with signal_wake_up():
6593 	 *
6594 	 * __set_current_state(@state)		signal_wake_up()
6595 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6596 	 *					  wake_up_state(p, state)
6597 	 *   LOCK rq->lock			    LOCK p->pi_state
6598 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6599 	 *     if (signal_pending_state())	    if (p->state & @state)
6600 	 *
6601 	 * Also, the membarrier system call requires a full memory barrier
6602 	 * after coming from user-space, before storing to rq->curr.
6603 	 */
6604 	rq_lock(rq, &rf);
6605 	smp_mb__after_spinlock();
6606 
6607 	/* Promote REQ to ACT */
6608 	rq->clock_update_flags <<= 1;
6609 	update_rq_clock(rq);
6610 	rq->clock_update_flags = RQCF_UPDATED;
6611 
6612 	switch_count = &prev->nivcsw;
6613 
6614 	/*
6615 	 * We must load prev->state once (task_struct::state is volatile), such
6616 	 * that we form a control dependency vs deactivate_task() below.
6617 	 */
6618 	prev_state = READ_ONCE(prev->__state);
6619 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6620 		if (signal_pending_state(prev_state, prev)) {
6621 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6622 		} else {
6623 			prev->sched_contributes_to_load =
6624 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6625 				!(prev_state & TASK_NOLOAD) &&
6626 				!(prev_state & TASK_FROZEN);
6627 
6628 			if (prev->sched_contributes_to_load)
6629 				rq->nr_uninterruptible++;
6630 
6631 			/*
6632 			 * __schedule()			ttwu()
6633 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6634 			 *   if (prev_state)		    goto out;
6635 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6636 			 *				  p->state = TASK_WAKING
6637 			 *
6638 			 * Where __schedule() and ttwu() have matching control dependencies.
6639 			 *
6640 			 * After this, schedule() must not care about p->state any more.
6641 			 */
6642 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6643 
6644 			if (prev->in_iowait) {
6645 				atomic_inc(&rq->nr_iowait);
6646 				delayacct_blkio_start();
6647 			}
6648 		}
6649 		switch_count = &prev->nvcsw;
6650 	}
6651 
6652 	next = pick_next_task(rq, prev, &rf);
6653 	clear_tsk_need_resched(prev);
6654 	clear_preempt_need_resched();
6655 #ifdef CONFIG_SCHED_DEBUG
6656 	rq->last_seen_need_resched_ns = 0;
6657 #endif
6658 
6659 	if (likely(prev != next)) {
6660 		rq->nr_switches++;
6661 		/*
6662 		 * RCU users of rcu_dereference(rq->curr) may not see
6663 		 * changes to task_struct made by pick_next_task().
6664 		 */
6665 		RCU_INIT_POINTER(rq->curr, next);
6666 		/*
6667 		 * The membarrier system call requires each architecture
6668 		 * to have a full memory barrier after updating
6669 		 * rq->curr, before returning to user-space.
6670 		 *
6671 		 * Here are the schemes providing that barrier on the
6672 		 * various architectures:
6673 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6674 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6675 		 * - finish_lock_switch() for weakly-ordered
6676 		 *   architectures where spin_unlock is a full barrier,
6677 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6678 		 *   is a RELEASE barrier),
6679 		 */
6680 		++*switch_count;
6681 
6682 		migrate_disable_switch(rq, prev);
6683 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6684 
6685 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6686 
6687 		/* Also unlocks the rq: */
6688 		rq = context_switch(rq, prev, next, &rf);
6689 	} else {
6690 		rq_unpin_lock(rq, &rf);
6691 		__balance_callbacks(rq);
6692 		raw_spin_rq_unlock_irq(rq);
6693 	}
6694 }
6695 
6696 void __noreturn do_task_dead(void)
6697 {
6698 	/* Causes final put_task_struct in finish_task_switch(): */
6699 	set_special_state(TASK_DEAD);
6700 
6701 	/* Tell freezer to ignore us: */
6702 	current->flags |= PF_NOFREEZE;
6703 
6704 	__schedule(SM_NONE);
6705 	BUG();
6706 
6707 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6708 	for (;;)
6709 		cpu_relax();
6710 }
6711 
6712 static inline void sched_submit_work(struct task_struct *tsk)
6713 {
6714 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6715 	unsigned int task_flags;
6716 
6717 	/*
6718 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6719 	 * will use a blocking primitive -- which would lead to recursion.
6720 	 */
6721 	lock_map_acquire_try(&sched_map);
6722 
6723 	task_flags = tsk->flags;
6724 	/*
6725 	 * If a worker goes to sleep, notify and ask workqueue whether it
6726 	 * wants to wake up a task to maintain concurrency.
6727 	 */
6728 	if (task_flags & PF_WQ_WORKER)
6729 		wq_worker_sleeping(tsk);
6730 	else if (task_flags & PF_IO_WORKER)
6731 		io_wq_worker_sleeping(tsk);
6732 
6733 	/*
6734 	 * spinlock and rwlock must not flush block requests.  This will
6735 	 * deadlock if the callback attempts to acquire a lock which is
6736 	 * already acquired.
6737 	 */
6738 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6739 
6740 	/*
6741 	 * If we are going to sleep and we have plugged IO queued,
6742 	 * make sure to submit it to avoid deadlocks.
6743 	 */
6744 	blk_flush_plug(tsk->plug, true);
6745 
6746 	lock_map_release(&sched_map);
6747 }
6748 
6749 static void sched_update_worker(struct task_struct *tsk)
6750 {
6751 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6752 		if (tsk->flags & PF_WQ_WORKER)
6753 			wq_worker_running(tsk);
6754 		else
6755 			io_wq_worker_running(tsk);
6756 	}
6757 }
6758 
6759 static __always_inline void __schedule_loop(unsigned int sched_mode)
6760 {
6761 	do {
6762 		preempt_disable();
6763 		__schedule(sched_mode);
6764 		sched_preempt_enable_no_resched();
6765 	} while (need_resched());
6766 }
6767 
6768 asmlinkage __visible void __sched schedule(void)
6769 {
6770 	struct task_struct *tsk = current;
6771 
6772 #ifdef CONFIG_RT_MUTEXES
6773 	lockdep_assert(!tsk->sched_rt_mutex);
6774 #endif
6775 
6776 	if (!task_is_running(tsk))
6777 		sched_submit_work(tsk);
6778 	__schedule_loop(SM_NONE);
6779 	sched_update_worker(tsk);
6780 }
6781 EXPORT_SYMBOL(schedule);
6782 
6783 /*
6784  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6785  * state (have scheduled out non-voluntarily) by making sure that all
6786  * tasks have either left the run queue or have gone into user space.
6787  * As idle tasks do not do either, they must not ever be preempted
6788  * (schedule out non-voluntarily).
6789  *
6790  * schedule_idle() is similar to schedule_preempt_disable() except that it
6791  * never enables preemption because it does not call sched_submit_work().
6792  */
6793 void __sched schedule_idle(void)
6794 {
6795 	/*
6796 	 * As this skips calling sched_submit_work(), which the idle task does
6797 	 * regardless because that function is a nop when the task is in a
6798 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6799 	 * current task can be in any other state. Note, idle is always in the
6800 	 * TASK_RUNNING state.
6801 	 */
6802 	WARN_ON_ONCE(current->__state);
6803 	do {
6804 		__schedule(SM_NONE);
6805 	} while (need_resched());
6806 }
6807 
6808 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6809 asmlinkage __visible void __sched schedule_user(void)
6810 {
6811 	/*
6812 	 * If we come here after a random call to set_need_resched(),
6813 	 * or we have been woken up remotely but the IPI has not yet arrived,
6814 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6815 	 * we find a better solution.
6816 	 *
6817 	 * NB: There are buggy callers of this function.  Ideally we
6818 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6819 	 * too frequently to make sense yet.
6820 	 */
6821 	enum ctx_state prev_state = exception_enter();
6822 	schedule();
6823 	exception_exit(prev_state);
6824 }
6825 #endif
6826 
6827 /**
6828  * schedule_preempt_disabled - called with preemption disabled
6829  *
6830  * Returns with preemption disabled. Note: preempt_count must be 1
6831  */
6832 void __sched schedule_preempt_disabled(void)
6833 {
6834 	sched_preempt_enable_no_resched();
6835 	schedule();
6836 	preempt_disable();
6837 }
6838 
6839 #ifdef CONFIG_PREEMPT_RT
6840 void __sched notrace schedule_rtlock(void)
6841 {
6842 	__schedule_loop(SM_RTLOCK_WAIT);
6843 }
6844 NOKPROBE_SYMBOL(schedule_rtlock);
6845 #endif
6846 
6847 static void __sched notrace preempt_schedule_common(void)
6848 {
6849 	do {
6850 		/*
6851 		 * Because the function tracer can trace preempt_count_sub()
6852 		 * and it also uses preempt_enable/disable_notrace(), if
6853 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6854 		 * by the function tracer will call this function again and
6855 		 * cause infinite recursion.
6856 		 *
6857 		 * Preemption must be disabled here before the function
6858 		 * tracer can trace. Break up preempt_disable() into two
6859 		 * calls. One to disable preemption without fear of being
6860 		 * traced. The other to still record the preemption latency,
6861 		 * which can also be traced by the function tracer.
6862 		 */
6863 		preempt_disable_notrace();
6864 		preempt_latency_start(1);
6865 		__schedule(SM_PREEMPT);
6866 		preempt_latency_stop(1);
6867 		preempt_enable_no_resched_notrace();
6868 
6869 		/*
6870 		 * Check again in case we missed a preemption opportunity
6871 		 * between schedule and now.
6872 		 */
6873 	} while (need_resched());
6874 }
6875 
6876 #ifdef CONFIG_PREEMPTION
6877 /*
6878  * This is the entry point to schedule() from in-kernel preemption
6879  * off of preempt_enable.
6880  */
6881 asmlinkage __visible void __sched notrace preempt_schedule(void)
6882 {
6883 	/*
6884 	 * If there is a non-zero preempt_count or interrupts are disabled,
6885 	 * we do not want to preempt the current task. Just return..
6886 	 */
6887 	if (likely(!preemptible()))
6888 		return;
6889 	preempt_schedule_common();
6890 }
6891 NOKPROBE_SYMBOL(preempt_schedule);
6892 EXPORT_SYMBOL(preempt_schedule);
6893 
6894 #ifdef CONFIG_PREEMPT_DYNAMIC
6895 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6896 #ifndef preempt_schedule_dynamic_enabled
6897 #define preempt_schedule_dynamic_enabled	preempt_schedule
6898 #define preempt_schedule_dynamic_disabled	NULL
6899 #endif
6900 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6901 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6902 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6903 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6904 void __sched notrace dynamic_preempt_schedule(void)
6905 {
6906 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6907 		return;
6908 	preempt_schedule();
6909 }
6910 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6911 EXPORT_SYMBOL(dynamic_preempt_schedule);
6912 #endif
6913 #endif
6914 
6915 /**
6916  * preempt_schedule_notrace - preempt_schedule called by tracing
6917  *
6918  * The tracing infrastructure uses preempt_enable_notrace to prevent
6919  * recursion and tracing preempt enabling caused by the tracing
6920  * infrastructure itself. But as tracing can happen in areas coming
6921  * from userspace or just about to enter userspace, a preempt enable
6922  * can occur before user_exit() is called. This will cause the scheduler
6923  * to be called when the system is still in usermode.
6924  *
6925  * To prevent this, the preempt_enable_notrace will use this function
6926  * instead of preempt_schedule() to exit user context if needed before
6927  * calling the scheduler.
6928  */
6929 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6930 {
6931 	enum ctx_state prev_ctx;
6932 
6933 	if (likely(!preemptible()))
6934 		return;
6935 
6936 	do {
6937 		/*
6938 		 * Because the function tracer can trace preempt_count_sub()
6939 		 * and it also uses preempt_enable/disable_notrace(), if
6940 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6941 		 * by the function tracer will call this function again and
6942 		 * cause infinite recursion.
6943 		 *
6944 		 * Preemption must be disabled here before the function
6945 		 * tracer can trace. Break up preempt_disable() into two
6946 		 * calls. One to disable preemption without fear of being
6947 		 * traced. The other to still record the preemption latency,
6948 		 * which can also be traced by the function tracer.
6949 		 */
6950 		preempt_disable_notrace();
6951 		preempt_latency_start(1);
6952 		/*
6953 		 * Needs preempt disabled in case user_exit() is traced
6954 		 * and the tracer calls preempt_enable_notrace() causing
6955 		 * an infinite recursion.
6956 		 */
6957 		prev_ctx = exception_enter();
6958 		__schedule(SM_PREEMPT);
6959 		exception_exit(prev_ctx);
6960 
6961 		preempt_latency_stop(1);
6962 		preempt_enable_no_resched_notrace();
6963 	} while (need_resched());
6964 }
6965 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6966 
6967 #ifdef CONFIG_PREEMPT_DYNAMIC
6968 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6969 #ifndef preempt_schedule_notrace_dynamic_enabled
6970 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6971 #define preempt_schedule_notrace_dynamic_disabled	NULL
6972 #endif
6973 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6974 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6975 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6976 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6977 void __sched notrace dynamic_preempt_schedule_notrace(void)
6978 {
6979 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6980 		return;
6981 	preempt_schedule_notrace();
6982 }
6983 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6984 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6985 #endif
6986 #endif
6987 
6988 #endif /* CONFIG_PREEMPTION */
6989 
6990 /*
6991  * This is the entry point to schedule() from kernel preemption
6992  * off of irq context.
6993  * Note, that this is called and return with irqs disabled. This will
6994  * protect us against recursive calling from irq.
6995  */
6996 asmlinkage __visible void __sched preempt_schedule_irq(void)
6997 {
6998 	enum ctx_state prev_state;
6999 
7000 	/* Catch callers which need to be fixed */
7001 	BUG_ON(preempt_count() || !irqs_disabled());
7002 
7003 	prev_state = exception_enter();
7004 
7005 	do {
7006 		preempt_disable();
7007 		local_irq_enable();
7008 		__schedule(SM_PREEMPT);
7009 		local_irq_disable();
7010 		sched_preempt_enable_no_resched();
7011 	} while (need_resched());
7012 
7013 	exception_exit(prev_state);
7014 }
7015 
7016 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7017 			  void *key)
7018 {
7019 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7020 	return try_to_wake_up(curr->private, mode, wake_flags);
7021 }
7022 EXPORT_SYMBOL(default_wake_function);
7023 
7024 static void __setscheduler_prio(struct task_struct *p, int prio)
7025 {
7026 	if (dl_prio(prio))
7027 		p->sched_class = &dl_sched_class;
7028 	else if (rt_prio(prio))
7029 		p->sched_class = &rt_sched_class;
7030 	else
7031 		p->sched_class = &fair_sched_class;
7032 
7033 	p->prio = prio;
7034 }
7035 
7036 #ifdef CONFIG_RT_MUTEXES
7037 
7038 /*
7039  * Would be more useful with typeof()/auto_type but they don't mix with
7040  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7041  * name such that if someone were to implement this function we get to compare
7042  * notes.
7043  */
7044 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7045 
7046 void rt_mutex_pre_schedule(void)
7047 {
7048 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7049 	sched_submit_work(current);
7050 }
7051 
7052 void rt_mutex_schedule(void)
7053 {
7054 	lockdep_assert(current->sched_rt_mutex);
7055 	__schedule_loop(SM_NONE);
7056 }
7057 
7058 void rt_mutex_post_schedule(void)
7059 {
7060 	sched_update_worker(current);
7061 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7062 }
7063 
7064 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7065 {
7066 	if (pi_task)
7067 		prio = min(prio, pi_task->prio);
7068 
7069 	return prio;
7070 }
7071 
7072 static inline int rt_effective_prio(struct task_struct *p, int prio)
7073 {
7074 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7075 
7076 	return __rt_effective_prio(pi_task, prio);
7077 }
7078 
7079 /*
7080  * rt_mutex_setprio - set the current priority of a task
7081  * @p: task to boost
7082  * @pi_task: donor task
7083  *
7084  * This function changes the 'effective' priority of a task. It does
7085  * not touch ->normal_prio like __setscheduler().
7086  *
7087  * Used by the rt_mutex code to implement priority inheritance
7088  * logic. Call site only calls if the priority of the task changed.
7089  */
7090 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7091 {
7092 	int prio, oldprio, queued, running, queue_flag =
7093 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7094 	const struct sched_class *prev_class;
7095 	struct rq_flags rf;
7096 	struct rq *rq;
7097 
7098 	/* XXX used to be waiter->prio, not waiter->task->prio */
7099 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7100 
7101 	/*
7102 	 * If nothing changed; bail early.
7103 	 */
7104 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7105 		return;
7106 
7107 	rq = __task_rq_lock(p, &rf);
7108 	update_rq_clock(rq);
7109 	/*
7110 	 * Set under pi_lock && rq->lock, such that the value can be used under
7111 	 * either lock.
7112 	 *
7113 	 * Note that there is loads of tricky to make this pointer cache work
7114 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7115 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7116 	 * task is allowed to run again (and can exit). This ensures the pointer
7117 	 * points to a blocked task -- which guarantees the task is present.
7118 	 */
7119 	p->pi_top_task = pi_task;
7120 
7121 	/*
7122 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7123 	 */
7124 	if (prio == p->prio && !dl_prio(prio))
7125 		goto out_unlock;
7126 
7127 	/*
7128 	 * Idle task boosting is a nono in general. There is one
7129 	 * exception, when PREEMPT_RT and NOHZ is active:
7130 	 *
7131 	 * The idle task calls get_next_timer_interrupt() and holds
7132 	 * the timer wheel base->lock on the CPU and another CPU wants
7133 	 * to access the timer (probably to cancel it). We can safely
7134 	 * ignore the boosting request, as the idle CPU runs this code
7135 	 * with interrupts disabled and will complete the lock
7136 	 * protected section without being interrupted. So there is no
7137 	 * real need to boost.
7138 	 */
7139 	if (unlikely(p == rq->idle)) {
7140 		WARN_ON(p != rq->curr);
7141 		WARN_ON(p->pi_blocked_on);
7142 		goto out_unlock;
7143 	}
7144 
7145 	trace_sched_pi_setprio(p, pi_task);
7146 	oldprio = p->prio;
7147 
7148 	if (oldprio == prio)
7149 		queue_flag &= ~DEQUEUE_MOVE;
7150 
7151 	prev_class = p->sched_class;
7152 	queued = task_on_rq_queued(p);
7153 	running = task_current(rq, p);
7154 	if (queued)
7155 		dequeue_task(rq, p, queue_flag);
7156 	if (running)
7157 		put_prev_task(rq, p);
7158 
7159 	/*
7160 	 * Boosting condition are:
7161 	 * 1. -rt task is running and holds mutex A
7162 	 *      --> -dl task blocks on mutex A
7163 	 *
7164 	 * 2. -dl task is running and holds mutex A
7165 	 *      --> -dl task blocks on mutex A and could preempt the
7166 	 *          running task
7167 	 */
7168 	if (dl_prio(prio)) {
7169 		if (!dl_prio(p->normal_prio) ||
7170 		    (pi_task && dl_prio(pi_task->prio) &&
7171 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7172 			p->dl.pi_se = pi_task->dl.pi_se;
7173 			queue_flag |= ENQUEUE_REPLENISH;
7174 		} else {
7175 			p->dl.pi_se = &p->dl;
7176 		}
7177 	} else if (rt_prio(prio)) {
7178 		if (dl_prio(oldprio))
7179 			p->dl.pi_se = &p->dl;
7180 		if (oldprio < prio)
7181 			queue_flag |= ENQUEUE_HEAD;
7182 	} else {
7183 		if (dl_prio(oldprio))
7184 			p->dl.pi_se = &p->dl;
7185 		if (rt_prio(oldprio))
7186 			p->rt.timeout = 0;
7187 	}
7188 
7189 	__setscheduler_prio(p, prio);
7190 
7191 	if (queued)
7192 		enqueue_task(rq, p, queue_flag);
7193 	if (running)
7194 		set_next_task(rq, p);
7195 
7196 	check_class_changed(rq, p, prev_class, oldprio);
7197 out_unlock:
7198 	/* Avoid rq from going away on us: */
7199 	preempt_disable();
7200 
7201 	rq_unpin_lock(rq, &rf);
7202 	__balance_callbacks(rq);
7203 	raw_spin_rq_unlock(rq);
7204 
7205 	preempt_enable();
7206 }
7207 #else
7208 static inline int rt_effective_prio(struct task_struct *p, int prio)
7209 {
7210 	return prio;
7211 }
7212 #endif
7213 
7214 void set_user_nice(struct task_struct *p, long nice)
7215 {
7216 	bool queued, running;
7217 	struct rq *rq;
7218 	int old_prio;
7219 
7220 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7221 		return;
7222 	/*
7223 	 * We have to be careful, if called from sys_setpriority(),
7224 	 * the task might be in the middle of scheduling on another CPU.
7225 	 */
7226 	CLASS(task_rq_lock, rq_guard)(p);
7227 	rq = rq_guard.rq;
7228 
7229 	update_rq_clock(rq);
7230 
7231 	/*
7232 	 * The RT priorities are set via sched_setscheduler(), but we still
7233 	 * allow the 'normal' nice value to be set - but as expected
7234 	 * it won't have any effect on scheduling until the task is
7235 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7236 	 */
7237 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7238 		p->static_prio = NICE_TO_PRIO(nice);
7239 		return;
7240 	}
7241 
7242 	queued = task_on_rq_queued(p);
7243 	running = task_current(rq, p);
7244 	if (queued)
7245 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7246 	if (running)
7247 		put_prev_task(rq, p);
7248 
7249 	p->static_prio = NICE_TO_PRIO(nice);
7250 	set_load_weight(p, true);
7251 	old_prio = p->prio;
7252 	p->prio = effective_prio(p);
7253 
7254 	if (queued)
7255 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7256 	if (running)
7257 		set_next_task(rq, p);
7258 
7259 	/*
7260 	 * If the task increased its priority or is running and
7261 	 * lowered its priority, then reschedule its CPU:
7262 	 */
7263 	p->sched_class->prio_changed(rq, p, old_prio);
7264 }
7265 EXPORT_SYMBOL(set_user_nice);
7266 
7267 /*
7268  * is_nice_reduction - check if nice value is an actual reduction
7269  *
7270  * Similar to can_nice() but does not perform a capability check.
7271  *
7272  * @p: task
7273  * @nice: nice value
7274  */
7275 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7276 {
7277 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7278 	int nice_rlim = nice_to_rlimit(nice);
7279 
7280 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7281 }
7282 
7283 /*
7284  * can_nice - check if a task can reduce its nice value
7285  * @p: task
7286  * @nice: nice value
7287  */
7288 int can_nice(const struct task_struct *p, const int nice)
7289 {
7290 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7291 }
7292 
7293 #ifdef __ARCH_WANT_SYS_NICE
7294 
7295 /*
7296  * sys_nice - change the priority of the current process.
7297  * @increment: priority increment
7298  *
7299  * sys_setpriority is a more generic, but much slower function that
7300  * does similar things.
7301  */
7302 SYSCALL_DEFINE1(nice, int, increment)
7303 {
7304 	long nice, retval;
7305 
7306 	/*
7307 	 * Setpriority might change our priority at the same moment.
7308 	 * We don't have to worry. Conceptually one call occurs first
7309 	 * and we have a single winner.
7310 	 */
7311 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7312 	nice = task_nice(current) + increment;
7313 
7314 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7315 	if (increment < 0 && !can_nice(current, nice))
7316 		return -EPERM;
7317 
7318 	retval = security_task_setnice(current, nice);
7319 	if (retval)
7320 		return retval;
7321 
7322 	set_user_nice(current, nice);
7323 	return 0;
7324 }
7325 
7326 #endif
7327 
7328 /**
7329  * task_prio - return the priority value of a given task.
7330  * @p: the task in question.
7331  *
7332  * Return: The priority value as seen by users in /proc.
7333  *
7334  * sched policy         return value   kernel prio    user prio/nice
7335  *
7336  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7337  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7338  * deadline                     -101             -1           0
7339  */
7340 int task_prio(const struct task_struct *p)
7341 {
7342 	return p->prio - MAX_RT_PRIO;
7343 }
7344 
7345 /**
7346  * idle_cpu - is a given CPU idle currently?
7347  * @cpu: the processor in question.
7348  *
7349  * Return: 1 if the CPU is currently idle. 0 otherwise.
7350  */
7351 int idle_cpu(int cpu)
7352 {
7353 	struct rq *rq = cpu_rq(cpu);
7354 
7355 	if (rq->curr != rq->idle)
7356 		return 0;
7357 
7358 	if (rq->nr_running)
7359 		return 0;
7360 
7361 #ifdef CONFIG_SMP
7362 	if (rq->ttwu_pending)
7363 		return 0;
7364 #endif
7365 
7366 	return 1;
7367 }
7368 
7369 /**
7370  * available_idle_cpu - is a given CPU idle for enqueuing work.
7371  * @cpu: the CPU in question.
7372  *
7373  * Return: 1 if the CPU is currently idle. 0 otherwise.
7374  */
7375 int available_idle_cpu(int cpu)
7376 {
7377 	if (!idle_cpu(cpu))
7378 		return 0;
7379 
7380 	if (vcpu_is_preempted(cpu))
7381 		return 0;
7382 
7383 	return 1;
7384 }
7385 
7386 /**
7387  * idle_task - return the idle task for a given CPU.
7388  * @cpu: the processor in question.
7389  *
7390  * Return: The idle task for the CPU @cpu.
7391  */
7392 struct task_struct *idle_task(int cpu)
7393 {
7394 	return cpu_rq(cpu)->idle;
7395 }
7396 
7397 #ifdef CONFIG_SCHED_CORE
7398 int sched_core_idle_cpu(int cpu)
7399 {
7400 	struct rq *rq = cpu_rq(cpu);
7401 
7402 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7403 		return 1;
7404 
7405 	return idle_cpu(cpu);
7406 }
7407 
7408 #endif
7409 
7410 #ifdef CONFIG_SMP
7411 /*
7412  * This function computes an effective utilization for the given CPU, to be
7413  * used for frequency selection given the linear relation: f = u * f_max.
7414  *
7415  * The scheduler tracks the following metrics:
7416  *
7417  *   cpu_util_{cfs,rt,dl,irq}()
7418  *   cpu_bw_dl()
7419  *
7420  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7421  * synchronized windows and are thus directly comparable.
7422  *
7423  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7424  * which excludes things like IRQ and steal-time. These latter are then accrued
7425  * in the irq utilization.
7426  *
7427  * The DL bandwidth number otoh is not a measured metric but a value computed
7428  * based on the task model parameters and gives the minimal utilization
7429  * required to meet deadlines.
7430  */
7431 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7432 				 enum cpu_util_type type,
7433 				 struct task_struct *p)
7434 {
7435 	unsigned long dl_util, util, irq, max;
7436 	struct rq *rq = cpu_rq(cpu);
7437 
7438 	max = arch_scale_cpu_capacity(cpu);
7439 
7440 	if (!uclamp_is_used() &&
7441 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7442 		return max;
7443 	}
7444 
7445 	/*
7446 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7447 	 * because of inaccuracies in how we track these -- see
7448 	 * update_irq_load_avg().
7449 	 */
7450 	irq = cpu_util_irq(rq);
7451 	if (unlikely(irq >= max))
7452 		return max;
7453 
7454 	/*
7455 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7456 	 * CFS tasks and we use the same metric to track the effective
7457 	 * utilization (PELT windows are synchronized) we can directly add them
7458 	 * to obtain the CPU's actual utilization.
7459 	 *
7460 	 * CFS and RT utilization can be boosted or capped, depending on
7461 	 * utilization clamp constraints requested by currently RUNNABLE
7462 	 * tasks.
7463 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7464 	 * frequency will be gracefully reduced with the utilization decay.
7465 	 */
7466 	util = util_cfs + cpu_util_rt(rq);
7467 	if (type == FREQUENCY_UTIL)
7468 		util = uclamp_rq_util_with(rq, util, p);
7469 
7470 	dl_util = cpu_util_dl(rq);
7471 
7472 	/*
7473 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7474 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7475 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7476 	 * that we select f_max when there is no idle time.
7477 	 *
7478 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7479 	 * saturation when we should -- something for later.
7480 	 */
7481 	if (util + dl_util >= max)
7482 		return max;
7483 
7484 	/*
7485 	 * OTOH, for energy computation we need the estimated running time, so
7486 	 * include util_dl and ignore dl_bw.
7487 	 */
7488 	if (type == ENERGY_UTIL)
7489 		util += dl_util;
7490 
7491 	/*
7492 	 * There is still idle time; further improve the number by using the
7493 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7494 	 * need to scale the task numbers:
7495 	 *
7496 	 *              max - irq
7497 	 *   U' = irq + --------- * U
7498 	 *                 max
7499 	 */
7500 	util = scale_irq_capacity(util, irq, max);
7501 	util += irq;
7502 
7503 	/*
7504 	 * Bandwidth required by DEADLINE must always be granted while, for
7505 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7506 	 * to gracefully reduce the frequency when no tasks show up for longer
7507 	 * periods of time.
7508 	 *
7509 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7510 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7511 	 * an interface. So, we only do the latter for now.
7512 	 */
7513 	if (type == FREQUENCY_UTIL)
7514 		util += cpu_bw_dl(rq);
7515 
7516 	return min(max, util);
7517 }
7518 
7519 unsigned long sched_cpu_util(int cpu)
7520 {
7521 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7522 }
7523 #endif /* CONFIG_SMP */
7524 
7525 /**
7526  * find_process_by_pid - find a process with a matching PID value.
7527  * @pid: the pid in question.
7528  *
7529  * The task of @pid, if found. %NULL otherwise.
7530  */
7531 static struct task_struct *find_process_by_pid(pid_t pid)
7532 {
7533 	return pid ? find_task_by_vpid(pid) : current;
7534 }
7535 
7536 static struct task_struct *find_get_task(pid_t pid)
7537 {
7538 	struct task_struct *p;
7539 	guard(rcu)();
7540 
7541 	p = find_process_by_pid(pid);
7542 	if (likely(p))
7543 		get_task_struct(p);
7544 
7545 	return p;
7546 }
7547 
7548 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7549 	     find_get_task(pid), pid_t pid)
7550 
7551 /*
7552  * sched_setparam() passes in -1 for its policy, to let the functions
7553  * it calls know not to change it.
7554  */
7555 #define SETPARAM_POLICY	-1
7556 
7557 static void __setscheduler_params(struct task_struct *p,
7558 		const struct sched_attr *attr)
7559 {
7560 	int policy = attr->sched_policy;
7561 
7562 	if (policy == SETPARAM_POLICY)
7563 		policy = p->policy;
7564 
7565 	p->policy = policy;
7566 
7567 	if (dl_policy(policy))
7568 		__setparam_dl(p, attr);
7569 	else if (fair_policy(policy))
7570 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7571 
7572 	/*
7573 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7574 	 * !rt_policy. Always setting this ensures that things like
7575 	 * getparam()/getattr() don't report silly values for !rt tasks.
7576 	 */
7577 	p->rt_priority = attr->sched_priority;
7578 	p->normal_prio = normal_prio(p);
7579 	set_load_weight(p, true);
7580 }
7581 
7582 /*
7583  * Check the target process has a UID that matches the current process's:
7584  */
7585 static bool check_same_owner(struct task_struct *p)
7586 {
7587 	const struct cred *cred = current_cred(), *pcred;
7588 	guard(rcu)();
7589 
7590 	pcred = __task_cred(p);
7591 	return (uid_eq(cred->euid, pcred->euid) ||
7592 		uid_eq(cred->euid, pcred->uid));
7593 }
7594 
7595 /*
7596  * Allow unprivileged RT tasks to decrease priority.
7597  * Only issue a capable test if needed and only once to avoid an audit
7598  * event on permitted non-privileged operations:
7599  */
7600 static int user_check_sched_setscheduler(struct task_struct *p,
7601 					 const struct sched_attr *attr,
7602 					 int policy, int reset_on_fork)
7603 {
7604 	if (fair_policy(policy)) {
7605 		if (attr->sched_nice < task_nice(p) &&
7606 		    !is_nice_reduction(p, attr->sched_nice))
7607 			goto req_priv;
7608 	}
7609 
7610 	if (rt_policy(policy)) {
7611 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7612 
7613 		/* Can't set/change the rt policy: */
7614 		if (policy != p->policy && !rlim_rtprio)
7615 			goto req_priv;
7616 
7617 		/* Can't increase priority: */
7618 		if (attr->sched_priority > p->rt_priority &&
7619 		    attr->sched_priority > rlim_rtprio)
7620 			goto req_priv;
7621 	}
7622 
7623 	/*
7624 	 * Can't set/change SCHED_DEADLINE policy at all for now
7625 	 * (safest behavior); in the future we would like to allow
7626 	 * unprivileged DL tasks to increase their relative deadline
7627 	 * or reduce their runtime (both ways reducing utilization)
7628 	 */
7629 	if (dl_policy(policy))
7630 		goto req_priv;
7631 
7632 	/*
7633 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7634 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7635 	 */
7636 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7637 		if (!is_nice_reduction(p, task_nice(p)))
7638 			goto req_priv;
7639 	}
7640 
7641 	/* Can't change other user's priorities: */
7642 	if (!check_same_owner(p))
7643 		goto req_priv;
7644 
7645 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7646 	if (p->sched_reset_on_fork && !reset_on_fork)
7647 		goto req_priv;
7648 
7649 	return 0;
7650 
7651 req_priv:
7652 	if (!capable(CAP_SYS_NICE))
7653 		return -EPERM;
7654 
7655 	return 0;
7656 }
7657 
7658 static int __sched_setscheduler(struct task_struct *p,
7659 				const struct sched_attr *attr,
7660 				bool user, bool pi)
7661 {
7662 	int oldpolicy = -1, policy = attr->sched_policy;
7663 	int retval, oldprio, newprio, queued, running;
7664 	const struct sched_class *prev_class;
7665 	struct balance_callback *head;
7666 	struct rq_flags rf;
7667 	int reset_on_fork;
7668 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7669 	struct rq *rq;
7670 	bool cpuset_locked = false;
7671 
7672 	/* The pi code expects interrupts enabled */
7673 	BUG_ON(pi && in_interrupt());
7674 recheck:
7675 	/* Double check policy once rq lock held: */
7676 	if (policy < 0) {
7677 		reset_on_fork = p->sched_reset_on_fork;
7678 		policy = oldpolicy = p->policy;
7679 	} else {
7680 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7681 
7682 		if (!valid_policy(policy))
7683 			return -EINVAL;
7684 	}
7685 
7686 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7687 		return -EINVAL;
7688 
7689 	/*
7690 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7691 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7692 	 * SCHED_BATCH and SCHED_IDLE is 0.
7693 	 */
7694 	if (attr->sched_priority > MAX_RT_PRIO-1)
7695 		return -EINVAL;
7696 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7697 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7698 		return -EINVAL;
7699 
7700 	if (user) {
7701 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7702 		if (retval)
7703 			return retval;
7704 
7705 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7706 			return -EINVAL;
7707 
7708 		retval = security_task_setscheduler(p);
7709 		if (retval)
7710 			return retval;
7711 	}
7712 
7713 	/* Update task specific "requested" clamps */
7714 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7715 		retval = uclamp_validate(p, attr);
7716 		if (retval)
7717 			return retval;
7718 	}
7719 
7720 	/*
7721 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7722 	 * information.
7723 	 */
7724 	if (dl_policy(policy) || dl_policy(p->policy)) {
7725 		cpuset_locked = true;
7726 		cpuset_lock();
7727 	}
7728 
7729 	/*
7730 	 * Make sure no PI-waiters arrive (or leave) while we are
7731 	 * changing the priority of the task:
7732 	 *
7733 	 * To be able to change p->policy safely, the appropriate
7734 	 * runqueue lock must be held.
7735 	 */
7736 	rq = task_rq_lock(p, &rf);
7737 	update_rq_clock(rq);
7738 
7739 	/*
7740 	 * Changing the policy of the stop threads its a very bad idea:
7741 	 */
7742 	if (p == rq->stop) {
7743 		retval = -EINVAL;
7744 		goto unlock;
7745 	}
7746 
7747 	/*
7748 	 * If not changing anything there's no need to proceed further,
7749 	 * but store a possible modification of reset_on_fork.
7750 	 */
7751 	if (unlikely(policy == p->policy)) {
7752 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7753 			goto change;
7754 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7755 			goto change;
7756 		if (dl_policy(policy) && dl_param_changed(p, attr))
7757 			goto change;
7758 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7759 			goto change;
7760 
7761 		p->sched_reset_on_fork = reset_on_fork;
7762 		retval = 0;
7763 		goto unlock;
7764 	}
7765 change:
7766 
7767 	if (user) {
7768 #ifdef CONFIG_RT_GROUP_SCHED
7769 		/*
7770 		 * Do not allow realtime tasks into groups that have no runtime
7771 		 * assigned.
7772 		 */
7773 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7774 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7775 				!task_group_is_autogroup(task_group(p))) {
7776 			retval = -EPERM;
7777 			goto unlock;
7778 		}
7779 #endif
7780 #ifdef CONFIG_SMP
7781 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7782 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7783 			cpumask_t *span = rq->rd->span;
7784 
7785 			/*
7786 			 * Don't allow tasks with an affinity mask smaller than
7787 			 * the entire root_domain to become SCHED_DEADLINE. We
7788 			 * will also fail if there's no bandwidth available.
7789 			 */
7790 			if (!cpumask_subset(span, p->cpus_ptr) ||
7791 			    rq->rd->dl_bw.bw == 0) {
7792 				retval = -EPERM;
7793 				goto unlock;
7794 			}
7795 		}
7796 #endif
7797 	}
7798 
7799 	/* Re-check policy now with rq lock held: */
7800 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7801 		policy = oldpolicy = -1;
7802 		task_rq_unlock(rq, p, &rf);
7803 		if (cpuset_locked)
7804 			cpuset_unlock();
7805 		goto recheck;
7806 	}
7807 
7808 	/*
7809 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7810 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7811 	 * is available.
7812 	 */
7813 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7814 		retval = -EBUSY;
7815 		goto unlock;
7816 	}
7817 
7818 	p->sched_reset_on_fork = reset_on_fork;
7819 	oldprio = p->prio;
7820 
7821 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7822 	if (pi) {
7823 		/*
7824 		 * Take priority boosted tasks into account. If the new
7825 		 * effective priority is unchanged, we just store the new
7826 		 * normal parameters and do not touch the scheduler class and
7827 		 * the runqueue. This will be done when the task deboost
7828 		 * itself.
7829 		 */
7830 		newprio = rt_effective_prio(p, newprio);
7831 		if (newprio == oldprio)
7832 			queue_flags &= ~DEQUEUE_MOVE;
7833 	}
7834 
7835 	queued = task_on_rq_queued(p);
7836 	running = task_current(rq, p);
7837 	if (queued)
7838 		dequeue_task(rq, p, queue_flags);
7839 	if (running)
7840 		put_prev_task(rq, p);
7841 
7842 	prev_class = p->sched_class;
7843 
7844 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7845 		__setscheduler_params(p, attr);
7846 		__setscheduler_prio(p, newprio);
7847 	}
7848 	__setscheduler_uclamp(p, attr);
7849 
7850 	if (queued) {
7851 		/*
7852 		 * We enqueue to tail when the priority of a task is
7853 		 * increased (user space view).
7854 		 */
7855 		if (oldprio < p->prio)
7856 			queue_flags |= ENQUEUE_HEAD;
7857 
7858 		enqueue_task(rq, p, queue_flags);
7859 	}
7860 	if (running)
7861 		set_next_task(rq, p);
7862 
7863 	check_class_changed(rq, p, prev_class, oldprio);
7864 
7865 	/* Avoid rq from going away on us: */
7866 	preempt_disable();
7867 	head = splice_balance_callbacks(rq);
7868 	task_rq_unlock(rq, p, &rf);
7869 
7870 	if (pi) {
7871 		if (cpuset_locked)
7872 			cpuset_unlock();
7873 		rt_mutex_adjust_pi(p);
7874 	}
7875 
7876 	/* Run balance callbacks after we've adjusted the PI chain: */
7877 	balance_callbacks(rq, head);
7878 	preempt_enable();
7879 
7880 	return 0;
7881 
7882 unlock:
7883 	task_rq_unlock(rq, p, &rf);
7884 	if (cpuset_locked)
7885 		cpuset_unlock();
7886 	return retval;
7887 }
7888 
7889 static int _sched_setscheduler(struct task_struct *p, int policy,
7890 			       const struct sched_param *param, bool check)
7891 {
7892 	struct sched_attr attr = {
7893 		.sched_policy   = policy,
7894 		.sched_priority = param->sched_priority,
7895 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7896 	};
7897 
7898 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7899 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7900 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7901 		policy &= ~SCHED_RESET_ON_FORK;
7902 		attr.sched_policy = policy;
7903 	}
7904 
7905 	return __sched_setscheduler(p, &attr, check, true);
7906 }
7907 /**
7908  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7909  * @p: the task in question.
7910  * @policy: new policy.
7911  * @param: structure containing the new RT priority.
7912  *
7913  * Use sched_set_fifo(), read its comment.
7914  *
7915  * Return: 0 on success. An error code otherwise.
7916  *
7917  * NOTE that the task may be already dead.
7918  */
7919 int sched_setscheduler(struct task_struct *p, int policy,
7920 		       const struct sched_param *param)
7921 {
7922 	return _sched_setscheduler(p, policy, param, true);
7923 }
7924 
7925 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7926 {
7927 	return __sched_setscheduler(p, attr, true, true);
7928 }
7929 
7930 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7931 {
7932 	return __sched_setscheduler(p, attr, false, true);
7933 }
7934 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7935 
7936 /**
7937  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7938  * @p: the task in question.
7939  * @policy: new policy.
7940  * @param: structure containing the new RT priority.
7941  *
7942  * Just like sched_setscheduler, only don't bother checking if the
7943  * current context has permission.  For example, this is needed in
7944  * stop_machine(): we create temporary high priority worker threads,
7945  * but our caller might not have that capability.
7946  *
7947  * Return: 0 on success. An error code otherwise.
7948  */
7949 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7950 			       const struct sched_param *param)
7951 {
7952 	return _sched_setscheduler(p, policy, param, false);
7953 }
7954 
7955 /*
7956  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7957  * incapable of resource management, which is the one thing an OS really should
7958  * be doing.
7959  *
7960  * This is of course the reason it is limited to privileged users only.
7961  *
7962  * Worse still; it is fundamentally impossible to compose static priority
7963  * workloads. You cannot take two correctly working static prio workloads
7964  * and smash them together and still expect them to work.
7965  *
7966  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7967  *
7968  *   MAX_RT_PRIO / 2
7969  *
7970  * The administrator _MUST_ configure the system, the kernel simply doesn't
7971  * know enough information to make a sensible choice.
7972  */
7973 void sched_set_fifo(struct task_struct *p)
7974 {
7975 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7976 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7977 }
7978 EXPORT_SYMBOL_GPL(sched_set_fifo);
7979 
7980 /*
7981  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7982  */
7983 void sched_set_fifo_low(struct task_struct *p)
7984 {
7985 	struct sched_param sp = { .sched_priority = 1 };
7986 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7987 }
7988 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7989 
7990 void sched_set_normal(struct task_struct *p, int nice)
7991 {
7992 	struct sched_attr attr = {
7993 		.sched_policy = SCHED_NORMAL,
7994 		.sched_nice = nice,
7995 	};
7996 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7997 }
7998 EXPORT_SYMBOL_GPL(sched_set_normal);
7999 
8000 static int
8001 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8002 {
8003 	struct sched_param lparam;
8004 
8005 	if (!param || pid < 0)
8006 		return -EINVAL;
8007 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8008 		return -EFAULT;
8009 
8010 	CLASS(find_get_task, p)(pid);
8011 	if (!p)
8012 		return -ESRCH;
8013 
8014 	return sched_setscheduler(p, policy, &lparam);
8015 }
8016 
8017 /*
8018  * Mimics kernel/events/core.c perf_copy_attr().
8019  */
8020 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8021 {
8022 	u32 size;
8023 	int ret;
8024 
8025 	/* Zero the full structure, so that a short copy will be nice: */
8026 	memset(attr, 0, sizeof(*attr));
8027 
8028 	ret = get_user(size, &uattr->size);
8029 	if (ret)
8030 		return ret;
8031 
8032 	/* ABI compatibility quirk: */
8033 	if (!size)
8034 		size = SCHED_ATTR_SIZE_VER0;
8035 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8036 		goto err_size;
8037 
8038 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8039 	if (ret) {
8040 		if (ret == -E2BIG)
8041 			goto err_size;
8042 		return ret;
8043 	}
8044 
8045 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8046 	    size < SCHED_ATTR_SIZE_VER1)
8047 		return -EINVAL;
8048 
8049 	/*
8050 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8051 	 * to be strict and return an error on out-of-bounds values?
8052 	 */
8053 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8054 
8055 	return 0;
8056 
8057 err_size:
8058 	put_user(sizeof(*attr), &uattr->size);
8059 	return -E2BIG;
8060 }
8061 
8062 static void get_params(struct task_struct *p, struct sched_attr *attr)
8063 {
8064 	if (task_has_dl_policy(p))
8065 		__getparam_dl(p, attr);
8066 	else if (task_has_rt_policy(p))
8067 		attr->sched_priority = p->rt_priority;
8068 	else
8069 		attr->sched_nice = task_nice(p);
8070 }
8071 
8072 /**
8073  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8074  * @pid: the pid in question.
8075  * @policy: new policy.
8076  * @param: structure containing the new RT priority.
8077  *
8078  * Return: 0 on success. An error code otherwise.
8079  */
8080 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8081 {
8082 	if (policy < 0)
8083 		return -EINVAL;
8084 
8085 	return do_sched_setscheduler(pid, policy, param);
8086 }
8087 
8088 /**
8089  * sys_sched_setparam - set/change the RT priority of a thread
8090  * @pid: the pid in question.
8091  * @param: structure containing the new RT priority.
8092  *
8093  * Return: 0 on success. An error code otherwise.
8094  */
8095 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8096 {
8097 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8098 }
8099 
8100 /**
8101  * sys_sched_setattr - same as above, but with extended sched_attr
8102  * @pid: the pid in question.
8103  * @uattr: structure containing the extended parameters.
8104  * @flags: for future extension.
8105  */
8106 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8107 			       unsigned int, flags)
8108 {
8109 	struct sched_attr attr;
8110 	int retval;
8111 
8112 	if (!uattr || pid < 0 || flags)
8113 		return -EINVAL;
8114 
8115 	retval = sched_copy_attr(uattr, &attr);
8116 	if (retval)
8117 		return retval;
8118 
8119 	if ((int)attr.sched_policy < 0)
8120 		return -EINVAL;
8121 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8122 		attr.sched_policy = SETPARAM_POLICY;
8123 
8124 	CLASS(find_get_task, p)(pid);
8125 	if (!p)
8126 		return -ESRCH;
8127 
8128 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8129 		get_params(p, &attr);
8130 
8131 	return sched_setattr(p, &attr);
8132 }
8133 
8134 /**
8135  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8136  * @pid: the pid in question.
8137  *
8138  * Return: On success, the policy of the thread. Otherwise, a negative error
8139  * code.
8140  */
8141 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8142 {
8143 	struct task_struct *p;
8144 	int retval;
8145 
8146 	if (pid < 0)
8147 		return -EINVAL;
8148 
8149 	guard(rcu)();
8150 	p = find_process_by_pid(pid);
8151 	if (!p)
8152 		return -ESRCH;
8153 
8154 	retval = security_task_getscheduler(p);
8155 	if (!retval) {
8156 		retval = p->policy;
8157 		if (p->sched_reset_on_fork)
8158 			retval |= SCHED_RESET_ON_FORK;
8159 	}
8160 	return retval;
8161 }
8162 
8163 /**
8164  * sys_sched_getparam - get the RT priority of a thread
8165  * @pid: the pid in question.
8166  * @param: structure containing the RT priority.
8167  *
8168  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8169  * code.
8170  */
8171 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8172 {
8173 	struct sched_param lp = { .sched_priority = 0 };
8174 	struct task_struct *p;
8175 	int retval;
8176 
8177 	if (!param || pid < 0)
8178 		return -EINVAL;
8179 
8180 	scoped_guard (rcu) {
8181 		p = find_process_by_pid(pid);
8182 		if (!p)
8183 			return -ESRCH;
8184 
8185 		retval = security_task_getscheduler(p);
8186 		if (retval)
8187 			return retval;
8188 
8189 		if (task_has_rt_policy(p))
8190 			lp.sched_priority = p->rt_priority;
8191 	}
8192 
8193 	/*
8194 	 * This one might sleep, we cannot do it with a spinlock held ...
8195 	 */
8196 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8197 }
8198 
8199 /*
8200  * Copy the kernel size attribute structure (which might be larger
8201  * than what user-space knows about) to user-space.
8202  *
8203  * Note that all cases are valid: user-space buffer can be larger or
8204  * smaller than the kernel-space buffer. The usual case is that both
8205  * have the same size.
8206  */
8207 static int
8208 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8209 			struct sched_attr *kattr,
8210 			unsigned int usize)
8211 {
8212 	unsigned int ksize = sizeof(*kattr);
8213 
8214 	if (!access_ok(uattr, usize))
8215 		return -EFAULT;
8216 
8217 	/*
8218 	 * sched_getattr() ABI forwards and backwards compatibility:
8219 	 *
8220 	 * If usize == ksize then we just copy everything to user-space and all is good.
8221 	 *
8222 	 * If usize < ksize then we only copy as much as user-space has space for,
8223 	 * this keeps ABI compatibility as well. We skip the rest.
8224 	 *
8225 	 * If usize > ksize then user-space is using a newer version of the ABI,
8226 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8227 	 * detect the kernel's knowledge of attributes from the attr->size value
8228 	 * which is set to ksize in this case.
8229 	 */
8230 	kattr->size = min(usize, ksize);
8231 
8232 	if (copy_to_user(uattr, kattr, kattr->size))
8233 		return -EFAULT;
8234 
8235 	return 0;
8236 }
8237 
8238 /**
8239  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8240  * @pid: the pid in question.
8241  * @uattr: structure containing the extended parameters.
8242  * @usize: sizeof(attr) for fwd/bwd comp.
8243  * @flags: for future extension.
8244  */
8245 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8246 		unsigned int, usize, unsigned int, flags)
8247 {
8248 	struct sched_attr kattr = { };
8249 	struct task_struct *p;
8250 	int retval;
8251 
8252 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8253 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8254 		return -EINVAL;
8255 
8256 	scoped_guard (rcu) {
8257 		p = find_process_by_pid(pid);
8258 		if (!p)
8259 			return -ESRCH;
8260 
8261 		retval = security_task_getscheduler(p);
8262 		if (retval)
8263 			return retval;
8264 
8265 		kattr.sched_policy = p->policy;
8266 		if (p->sched_reset_on_fork)
8267 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8268 		get_params(p, &kattr);
8269 		kattr.sched_flags &= SCHED_FLAG_ALL;
8270 
8271 #ifdef CONFIG_UCLAMP_TASK
8272 		/*
8273 		 * This could race with another potential updater, but this is fine
8274 		 * because it'll correctly read the old or the new value. We don't need
8275 		 * to guarantee who wins the race as long as it doesn't return garbage.
8276 		 */
8277 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8278 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8279 #endif
8280 	}
8281 
8282 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8283 }
8284 
8285 #ifdef CONFIG_SMP
8286 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8287 {
8288 	/*
8289 	 * If the task isn't a deadline task or admission control is
8290 	 * disabled then we don't care about affinity changes.
8291 	 */
8292 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8293 		return 0;
8294 
8295 	/*
8296 	 * Since bandwidth control happens on root_domain basis,
8297 	 * if admission test is enabled, we only admit -deadline
8298 	 * tasks allowed to run on all the CPUs in the task's
8299 	 * root_domain.
8300 	 */
8301 	guard(rcu)();
8302 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8303 		return -EBUSY;
8304 
8305 	return 0;
8306 }
8307 #endif
8308 
8309 static int
8310 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8311 {
8312 	int retval;
8313 	cpumask_var_t cpus_allowed, new_mask;
8314 
8315 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8316 		return -ENOMEM;
8317 
8318 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8319 		retval = -ENOMEM;
8320 		goto out_free_cpus_allowed;
8321 	}
8322 
8323 	cpuset_cpus_allowed(p, cpus_allowed);
8324 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8325 
8326 	ctx->new_mask = new_mask;
8327 	ctx->flags |= SCA_CHECK;
8328 
8329 	retval = dl_task_check_affinity(p, new_mask);
8330 	if (retval)
8331 		goto out_free_new_mask;
8332 
8333 	retval = __set_cpus_allowed_ptr(p, ctx);
8334 	if (retval)
8335 		goto out_free_new_mask;
8336 
8337 	cpuset_cpus_allowed(p, cpus_allowed);
8338 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8339 		/*
8340 		 * We must have raced with a concurrent cpuset update.
8341 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8342 		 */
8343 		cpumask_copy(new_mask, cpus_allowed);
8344 
8345 		/*
8346 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8347 		 * will restore the previous user_cpus_ptr value.
8348 		 *
8349 		 * In the unlikely event a previous user_cpus_ptr exists,
8350 		 * we need to further restrict the mask to what is allowed
8351 		 * by that old user_cpus_ptr.
8352 		 */
8353 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8354 			bool empty = !cpumask_and(new_mask, new_mask,
8355 						  ctx->user_mask);
8356 
8357 			if (WARN_ON_ONCE(empty))
8358 				cpumask_copy(new_mask, cpus_allowed);
8359 		}
8360 		__set_cpus_allowed_ptr(p, ctx);
8361 		retval = -EINVAL;
8362 	}
8363 
8364 out_free_new_mask:
8365 	free_cpumask_var(new_mask);
8366 out_free_cpus_allowed:
8367 	free_cpumask_var(cpus_allowed);
8368 	return retval;
8369 }
8370 
8371 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8372 {
8373 	struct affinity_context ac;
8374 	struct cpumask *user_mask;
8375 	int retval;
8376 
8377 	CLASS(find_get_task, p)(pid);
8378 	if (!p)
8379 		return -ESRCH;
8380 
8381 	if (p->flags & PF_NO_SETAFFINITY)
8382 		return -EINVAL;
8383 
8384 	if (!check_same_owner(p)) {
8385 		guard(rcu)();
8386 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8387 			return -EPERM;
8388 	}
8389 
8390 	retval = security_task_setscheduler(p);
8391 	if (retval)
8392 		return retval;
8393 
8394 	/*
8395 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8396 	 * alloc_user_cpus_ptr() returns NULL.
8397 	 */
8398 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8399 	if (user_mask) {
8400 		cpumask_copy(user_mask, in_mask);
8401 	} else if (IS_ENABLED(CONFIG_SMP)) {
8402 		return -ENOMEM;
8403 	}
8404 
8405 	ac = (struct affinity_context){
8406 		.new_mask  = in_mask,
8407 		.user_mask = user_mask,
8408 		.flags     = SCA_USER,
8409 	};
8410 
8411 	retval = __sched_setaffinity(p, &ac);
8412 	kfree(ac.user_mask);
8413 
8414 	return retval;
8415 }
8416 
8417 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8418 			     struct cpumask *new_mask)
8419 {
8420 	if (len < cpumask_size())
8421 		cpumask_clear(new_mask);
8422 	else if (len > cpumask_size())
8423 		len = cpumask_size();
8424 
8425 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8426 }
8427 
8428 /**
8429  * sys_sched_setaffinity - set the CPU affinity of a process
8430  * @pid: pid of the process
8431  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8432  * @user_mask_ptr: user-space pointer to the new CPU mask
8433  *
8434  * Return: 0 on success. An error code otherwise.
8435  */
8436 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8437 		unsigned long __user *, user_mask_ptr)
8438 {
8439 	cpumask_var_t new_mask;
8440 	int retval;
8441 
8442 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8443 		return -ENOMEM;
8444 
8445 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8446 	if (retval == 0)
8447 		retval = sched_setaffinity(pid, new_mask);
8448 	free_cpumask_var(new_mask);
8449 	return retval;
8450 }
8451 
8452 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8453 {
8454 	struct task_struct *p;
8455 	int retval;
8456 
8457 	guard(rcu)();
8458 	p = find_process_by_pid(pid);
8459 	if (!p)
8460 		return -ESRCH;
8461 
8462 	retval = security_task_getscheduler(p);
8463 	if (retval)
8464 		return retval;
8465 
8466 	guard(raw_spinlock_irqsave)(&p->pi_lock);
8467 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8468 
8469 	return 0;
8470 }
8471 
8472 /**
8473  * sys_sched_getaffinity - get the CPU affinity of a process
8474  * @pid: pid of the process
8475  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8476  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8477  *
8478  * Return: size of CPU mask copied to user_mask_ptr on success. An
8479  * error code otherwise.
8480  */
8481 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8482 		unsigned long __user *, user_mask_ptr)
8483 {
8484 	int ret;
8485 	cpumask_var_t mask;
8486 
8487 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8488 		return -EINVAL;
8489 	if (len & (sizeof(unsigned long)-1))
8490 		return -EINVAL;
8491 
8492 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8493 		return -ENOMEM;
8494 
8495 	ret = sched_getaffinity(pid, mask);
8496 	if (ret == 0) {
8497 		unsigned int retlen = min(len, cpumask_size());
8498 
8499 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8500 			ret = -EFAULT;
8501 		else
8502 			ret = retlen;
8503 	}
8504 	free_cpumask_var(mask);
8505 
8506 	return ret;
8507 }
8508 
8509 static void do_sched_yield(void)
8510 {
8511 	struct rq_flags rf;
8512 	struct rq *rq;
8513 
8514 	rq = this_rq_lock_irq(&rf);
8515 
8516 	schedstat_inc(rq->yld_count);
8517 	current->sched_class->yield_task(rq);
8518 
8519 	preempt_disable();
8520 	rq_unlock_irq(rq, &rf);
8521 	sched_preempt_enable_no_resched();
8522 
8523 	schedule();
8524 }
8525 
8526 /**
8527  * sys_sched_yield - yield the current processor to other threads.
8528  *
8529  * This function yields the current CPU to other tasks. If there are no
8530  * other threads running on this CPU then this function will return.
8531  *
8532  * Return: 0.
8533  */
8534 SYSCALL_DEFINE0(sched_yield)
8535 {
8536 	do_sched_yield();
8537 	return 0;
8538 }
8539 
8540 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8541 int __sched __cond_resched(void)
8542 {
8543 	if (should_resched(0)) {
8544 		preempt_schedule_common();
8545 		return 1;
8546 	}
8547 	/*
8548 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8549 	 * whether the current CPU is in an RCU read-side critical section,
8550 	 * so the tick can report quiescent states even for CPUs looping
8551 	 * in kernel context.  In contrast, in non-preemptible kernels,
8552 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8553 	 * processes executing in kernel context might never report an
8554 	 * RCU quiescent state.  Therefore, the following code causes
8555 	 * cond_resched() to report a quiescent state, but only when RCU
8556 	 * is in urgent need of one.
8557 	 */
8558 #ifndef CONFIG_PREEMPT_RCU
8559 	rcu_all_qs();
8560 #endif
8561 	return 0;
8562 }
8563 EXPORT_SYMBOL(__cond_resched);
8564 #endif
8565 
8566 #ifdef CONFIG_PREEMPT_DYNAMIC
8567 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8568 #define cond_resched_dynamic_enabled	__cond_resched
8569 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8570 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8571 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8572 
8573 #define might_resched_dynamic_enabled	__cond_resched
8574 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8575 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8576 EXPORT_STATIC_CALL_TRAMP(might_resched);
8577 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8578 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8579 int __sched dynamic_cond_resched(void)
8580 {
8581 	klp_sched_try_switch();
8582 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8583 		return 0;
8584 	return __cond_resched();
8585 }
8586 EXPORT_SYMBOL(dynamic_cond_resched);
8587 
8588 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8589 int __sched dynamic_might_resched(void)
8590 {
8591 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8592 		return 0;
8593 	return __cond_resched();
8594 }
8595 EXPORT_SYMBOL(dynamic_might_resched);
8596 #endif
8597 #endif
8598 
8599 /*
8600  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8601  * call schedule, and on return reacquire the lock.
8602  *
8603  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8604  * operations here to prevent schedule() from being called twice (once via
8605  * spin_unlock(), once by hand).
8606  */
8607 int __cond_resched_lock(spinlock_t *lock)
8608 {
8609 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8610 	int ret = 0;
8611 
8612 	lockdep_assert_held(lock);
8613 
8614 	if (spin_needbreak(lock) || resched) {
8615 		spin_unlock(lock);
8616 		if (!_cond_resched())
8617 			cpu_relax();
8618 		ret = 1;
8619 		spin_lock(lock);
8620 	}
8621 	return ret;
8622 }
8623 EXPORT_SYMBOL(__cond_resched_lock);
8624 
8625 int __cond_resched_rwlock_read(rwlock_t *lock)
8626 {
8627 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8628 	int ret = 0;
8629 
8630 	lockdep_assert_held_read(lock);
8631 
8632 	if (rwlock_needbreak(lock) || resched) {
8633 		read_unlock(lock);
8634 		if (!_cond_resched())
8635 			cpu_relax();
8636 		ret = 1;
8637 		read_lock(lock);
8638 	}
8639 	return ret;
8640 }
8641 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8642 
8643 int __cond_resched_rwlock_write(rwlock_t *lock)
8644 {
8645 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8646 	int ret = 0;
8647 
8648 	lockdep_assert_held_write(lock);
8649 
8650 	if (rwlock_needbreak(lock) || resched) {
8651 		write_unlock(lock);
8652 		if (!_cond_resched())
8653 			cpu_relax();
8654 		ret = 1;
8655 		write_lock(lock);
8656 	}
8657 	return ret;
8658 }
8659 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8660 
8661 #ifdef CONFIG_PREEMPT_DYNAMIC
8662 
8663 #ifdef CONFIG_GENERIC_ENTRY
8664 #include <linux/entry-common.h>
8665 #endif
8666 
8667 /*
8668  * SC:cond_resched
8669  * SC:might_resched
8670  * SC:preempt_schedule
8671  * SC:preempt_schedule_notrace
8672  * SC:irqentry_exit_cond_resched
8673  *
8674  *
8675  * NONE:
8676  *   cond_resched               <- __cond_resched
8677  *   might_resched              <- RET0
8678  *   preempt_schedule           <- NOP
8679  *   preempt_schedule_notrace   <- NOP
8680  *   irqentry_exit_cond_resched <- NOP
8681  *
8682  * VOLUNTARY:
8683  *   cond_resched               <- __cond_resched
8684  *   might_resched              <- __cond_resched
8685  *   preempt_schedule           <- NOP
8686  *   preempt_schedule_notrace   <- NOP
8687  *   irqentry_exit_cond_resched <- NOP
8688  *
8689  * FULL:
8690  *   cond_resched               <- RET0
8691  *   might_resched              <- RET0
8692  *   preempt_schedule           <- preempt_schedule
8693  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8694  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8695  */
8696 
8697 enum {
8698 	preempt_dynamic_undefined = -1,
8699 	preempt_dynamic_none,
8700 	preempt_dynamic_voluntary,
8701 	preempt_dynamic_full,
8702 };
8703 
8704 int preempt_dynamic_mode = preempt_dynamic_undefined;
8705 
8706 int sched_dynamic_mode(const char *str)
8707 {
8708 	if (!strcmp(str, "none"))
8709 		return preempt_dynamic_none;
8710 
8711 	if (!strcmp(str, "voluntary"))
8712 		return preempt_dynamic_voluntary;
8713 
8714 	if (!strcmp(str, "full"))
8715 		return preempt_dynamic_full;
8716 
8717 	return -EINVAL;
8718 }
8719 
8720 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8721 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8722 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8723 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8724 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8725 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8726 #else
8727 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8728 #endif
8729 
8730 static DEFINE_MUTEX(sched_dynamic_mutex);
8731 static bool klp_override;
8732 
8733 static void __sched_dynamic_update(int mode)
8734 {
8735 	/*
8736 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8737 	 * the ZERO state, which is invalid.
8738 	 */
8739 	if (!klp_override)
8740 		preempt_dynamic_enable(cond_resched);
8741 	preempt_dynamic_enable(might_resched);
8742 	preempt_dynamic_enable(preempt_schedule);
8743 	preempt_dynamic_enable(preempt_schedule_notrace);
8744 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8745 
8746 	switch (mode) {
8747 	case preempt_dynamic_none:
8748 		if (!klp_override)
8749 			preempt_dynamic_enable(cond_resched);
8750 		preempt_dynamic_disable(might_resched);
8751 		preempt_dynamic_disable(preempt_schedule);
8752 		preempt_dynamic_disable(preempt_schedule_notrace);
8753 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8754 		if (mode != preempt_dynamic_mode)
8755 			pr_info("Dynamic Preempt: none\n");
8756 		break;
8757 
8758 	case preempt_dynamic_voluntary:
8759 		if (!klp_override)
8760 			preempt_dynamic_enable(cond_resched);
8761 		preempt_dynamic_enable(might_resched);
8762 		preempt_dynamic_disable(preempt_schedule);
8763 		preempt_dynamic_disable(preempt_schedule_notrace);
8764 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8765 		if (mode != preempt_dynamic_mode)
8766 			pr_info("Dynamic Preempt: voluntary\n");
8767 		break;
8768 
8769 	case preempt_dynamic_full:
8770 		if (!klp_override)
8771 			preempt_dynamic_disable(cond_resched);
8772 		preempt_dynamic_disable(might_resched);
8773 		preempt_dynamic_enable(preempt_schedule);
8774 		preempt_dynamic_enable(preempt_schedule_notrace);
8775 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8776 		if (mode != preempt_dynamic_mode)
8777 			pr_info("Dynamic Preempt: full\n");
8778 		break;
8779 	}
8780 
8781 	preempt_dynamic_mode = mode;
8782 }
8783 
8784 void sched_dynamic_update(int mode)
8785 {
8786 	mutex_lock(&sched_dynamic_mutex);
8787 	__sched_dynamic_update(mode);
8788 	mutex_unlock(&sched_dynamic_mutex);
8789 }
8790 
8791 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8792 
8793 static int klp_cond_resched(void)
8794 {
8795 	__klp_sched_try_switch();
8796 	return __cond_resched();
8797 }
8798 
8799 void sched_dynamic_klp_enable(void)
8800 {
8801 	mutex_lock(&sched_dynamic_mutex);
8802 
8803 	klp_override = true;
8804 	static_call_update(cond_resched, klp_cond_resched);
8805 
8806 	mutex_unlock(&sched_dynamic_mutex);
8807 }
8808 
8809 void sched_dynamic_klp_disable(void)
8810 {
8811 	mutex_lock(&sched_dynamic_mutex);
8812 
8813 	klp_override = false;
8814 	__sched_dynamic_update(preempt_dynamic_mode);
8815 
8816 	mutex_unlock(&sched_dynamic_mutex);
8817 }
8818 
8819 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8820 
8821 static int __init setup_preempt_mode(char *str)
8822 {
8823 	int mode = sched_dynamic_mode(str);
8824 	if (mode < 0) {
8825 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8826 		return 0;
8827 	}
8828 
8829 	sched_dynamic_update(mode);
8830 	return 1;
8831 }
8832 __setup("preempt=", setup_preempt_mode);
8833 
8834 static void __init preempt_dynamic_init(void)
8835 {
8836 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8837 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8838 			sched_dynamic_update(preempt_dynamic_none);
8839 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8840 			sched_dynamic_update(preempt_dynamic_voluntary);
8841 		} else {
8842 			/* Default static call setting, nothing to do */
8843 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8844 			preempt_dynamic_mode = preempt_dynamic_full;
8845 			pr_info("Dynamic Preempt: full\n");
8846 		}
8847 	}
8848 }
8849 
8850 #define PREEMPT_MODEL_ACCESSOR(mode) \
8851 	bool preempt_model_##mode(void)						 \
8852 	{									 \
8853 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8854 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8855 	}									 \
8856 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8857 
8858 PREEMPT_MODEL_ACCESSOR(none);
8859 PREEMPT_MODEL_ACCESSOR(voluntary);
8860 PREEMPT_MODEL_ACCESSOR(full);
8861 
8862 #else /* !CONFIG_PREEMPT_DYNAMIC */
8863 
8864 static inline void preempt_dynamic_init(void) { }
8865 
8866 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8867 
8868 /**
8869  * yield - yield the current processor to other threads.
8870  *
8871  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8872  *
8873  * The scheduler is at all times free to pick the calling task as the most
8874  * eligible task to run, if removing the yield() call from your code breaks
8875  * it, it's already broken.
8876  *
8877  * Typical broken usage is:
8878  *
8879  * while (!event)
8880  *	yield();
8881  *
8882  * where one assumes that yield() will let 'the other' process run that will
8883  * make event true. If the current task is a SCHED_FIFO task that will never
8884  * happen. Never use yield() as a progress guarantee!!
8885  *
8886  * If you want to use yield() to wait for something, use wait_event().
8887  * If you want to use yield() to be 'nice' for others, use cond_resched().
8888  * If you still want to use yield(), do not!
8889  */
8890 void __sched yield(void)
8891 {
8892 	set_current_state(TASK_RUNNING);
8893 	do_sched_yield();
8894 }
8895 EXPORT_SYMBOL(yield);
8896 
8897 /**
8898  * yield_to - yield the current processor to another thread in
8899  * your thread group, or accelerate that thread toward the
8900  * processor it's on.
8901  * @p: target task
8902  * @preempt: whether task preemption is allowed or not
8903  *
8904  * It's the caller's job to ensure that the target task struct
8905  * can't go away on us before we can do any checks.
8906  *
8907  * Return:
8908  *	true (>0) if we indeed boosted the target task.
8909  *	false (0) if we failed to boost the target.
8910  *	-ESRCH if there's no task to yield to.
8911  */
8912 int __sched yield_to(struct task_struct *p, bool preempt)
8913 {
8914 	struct task_struct *curr = current;
8915 	struct rq *rq, *p_rq;
8916 	int yielded = 0;
8917 
8918 	scoped_guard (irqsave) {
8919 		rq = this_rq();
8920 
8921 again:
8922 		p_rq = task_rq(p);
8923 		/*
8924 		 * If we're the only runnable task on the rq and target rq also
8925 		 * has only one task, there's absolutely no point in yielding.
8926 		 */
8927 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
8928 			return -ESRCH;
8929 
8930 		guard(double_rq_lock)(rq, p_rq);
8931 		if (task_rq(p) != p_rq)
8932 			goto again;
8933 
8934 		if (!curr->sched_class->yield_to_task)
8935 			return 0;
8936 
8937 		if (curr->sched_class != p->sched_class)
8938 			return 0;
8939 
8940 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
8941 			return 0;
8942 
8943 		yielded = curr->sched_class->yield_to_task(rq, p);
8944 		if (yielded) {
8945 			schedstat_inc(rq->yld_count);
8946 			/*
8947 			 * Make p's CPU reschedule; pick_next_entity
8948 			 * takes care of fairness.
8949 			 */
8950 			if (preempt && rq != p_rq)
8951 				resched_curr(p_rq);
8952 		}
8953 	}
8954 
8955 	if (yielded)
8956 		schedule();
8957 
8958 	return yielded;
8959 }
8960 EXPORT_SYMBOL_GPL(yield_to);
8961 
8962 int io_schedule_prepare(void)
8963 {
8964 	int old_iowait = current->in_iowait;
8965 
8966 	current->in_iowait = 1;
8967 	blk_flush_plug(current->plug, true);
8968 	return old_iowait;
8969 }
8970 
8971 void io_schedule_finish(int token)
8972 {
8973 	current->in_iowait = token;
8974 }
8975 
8976 /*
8977  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8978  * that process accounting knows that this is a task in IO wait state.
8979  */
8980 long __sched io_schedule_timeout(long timeout)
8981 {
8982 	int token;
8983 	long ret;
8984 
8985 	token = io_schedule_prepare();
8986 	ret = schedule_timeout(timeout);
8987 	io_schedule_finish(token);
8988 
8989 	return ret;
8990 }
8991 EXPORT_SYMBOL(io_schedule_timeout);
8992 
8993 void __sched io_schedule(void)
8994 {
8995 	int token;
8996 
8997 	token = io_schedule_prepare();
8998 	schedule();
8999 	io_schedule_finish(token);
9000 }
9001 EXPORT_SYMBOL(io_schedule);
9002 
9003 /**
9004  * sys_sched_get_priority_max - return maximum RT priority.
9005  * @policy: scheduling class.
9006  *
9007  * Return: On success, this syscall returns the maximum
9008  * rt_priority that can be used by a given scheduling class.
9009  * On failure, a negative error code is returned.
9010  */
9011 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9012 {
9013 	int ret = -EINVAL;
9014 
9015 	switch (policy) {
9016 	case SCHED_FIFO:
9017 	case SCHED_RR:
9018 		ret = MAX_RT_PRIO-1;
9019 		break;
9020 	case SCHED_DEADLINE:
9021 	case SCHED_NORMAL:
9022 	case SCHED_BATCH:
9023 	case SCHED_IDLE:
9024 		ret = 0;
9025 		break;
9026 	}
9027 	return ret;
9028 }
9029 
9030 /**
9031  * sys_sched_get_priority_min - return minimum RT priority.
9032  * @policy: scheduling class.
9033  *
9034  * Return: On success, this syscall returns the minimum
9035  * rt_priority that can be used by a given scheduling class.
9036  * On failure, a negative error code is returned.
9037  */
9038 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9039 {
9040 	int ret = -EINVAL;
9041 
9042 	switch (policy) {
9043 	case SCHED_FIFO:
9044 	case SCHED_RR:
9045 		ret = 1;
9046 		break;
9047 	case SCHED_DEADLINE:
9048 	case SCHED_NORMAL:
9049 	case SCHED_BATCH:
9050 	case SCHED_IDLE:
9051 		ret = 0;
9052 	}
9053 	return ret;
9054 }
9055 
9056 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9057 {
9058 	unsigned int time_slice = 0;
9059 	int retval;
9060 
9061 	if (pid < 0)
9062 		return -EINVAL;
9063 
9064 	scoped_guard (rcu) {
9065 		struct task_struct *p = find_process_by_pid(pid);
9066 		if (!p)
9067 			return -ESRCH;
9068 
9069 		retval = security_task_getscheduler(p);
9070 		if (retval)
9071 			return retval;
9072 
9073 		scoped_guard (task_rq_lock, p) {
9074 			struct rq *rq = scope.rq;
9075 			if (p->sched_class->get_rr_interval)
9076 				time_slice = p->sched_class->get_rr_interval(rq, p);
9077 		}
9078 	}
9079 
9080 	jiffies_to_timespec64(time_slice, t);
9081 	return 0;
9082 }
9083 
9084 /**
9085  * sys_sched_rr_get_interval - return the default timeslice of a process.
9086  * @pid: pid of the process.
9087  * @interval: userspace pointer to the timeslice value.
9088  *
9089  * this syscall writes the default timeslice value of a given process
9090  * into the user-space timespec buffer. A value of '0' means infinity.
9091  *
9092  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9093  * an error code.
9094  */
9095 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9096 		struct __kernel_timespec __user *, interval)
9097 {
9098 	struct timespec64 t;
9099 	int retval = sched_rr_get_interval(pid, &t);
9100 
9101 	if (retval == 0)
9102 		retval = put_timespec64(&t, interval);
9103 
9104 	return retval;
9105 }
9106 
9107 #ifdef CONFIG_COMPAT_32BIT_TIME
9108 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9109 		struct old_timespec32 __user *, interval)
9110 {
9111 	struct timespec64 t;
9112 	int retval = sched_rr_get_interval(pid, &t);
9113 
9114 	if (retval == 0)
9115 		retval = put_old_timespec32(&t, interval);
9116 	return retval;
9117 }
9118 #endif
9119 
9120 void sched_show_task(struct task_struct *p)
9121 {
9122 	unsigned long free = 0;
9123 	int ppid;
9124 
9125 	if (!try_get_task_stack(p))
9126 		return;
9127 
9128 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9129 
9130 	if (task_is_running(p))
9131 		pr_cont("  running task    ");
9132 #ifdef CONFIG_DEBUG_STACK_USAGE
9133 	free = stack_not_used(p);
9134 #endif
9135 	ppid = 0;
9136 	rcu_read_lock();
9137 	if (pid_alive(p))
9138 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9139 	rcu_read_unlock();
9140 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9141 		free, task_pid_nr(p), task_tgid_nr(p),
9142 		ppid, read_task_thread_flags(p));
9143 
9144 	print_worker_info(KERN_INFO, p);
9145 	print_stop_info(KERN_INFO, p);
9146 	show_stack(p, NULL, KERN_INFO);
9147 	put_task_stack(p);
9148 }
9149 EXPORT_SYMBOL_GPL(sched_show_task);
9150 
9151 static inline bool
9152 state_filter_match(unsigned long state_filter, struct task_struct *p)
9153 {
9154 	unsigned int state = READ_ONCE(p->__state);
9155 
9156 	/* no filter, everything matches */
9157 	if (!state_filter)
9158 		return true;
9159 
9160 	/* filter, but doesn't match */
9161 	if (!(state & state_filter))
9162 		return false;
9163 
9164 	/*
9165 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9166 	 * TASK_KILLABLE).
9167 	 */
9168 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9169 		return false;
9170 
9171 	return true;
9172 }
9173 
9174 
9175 void show_state_filter(unsigned int state_filter)
9176 {
9177 	struct task_struct *g, *p;
9178 
9179 	rcu_read_lock();
9180 	for_each_process_thread(g, p) {
9181 		/*
9182 		 * reset the NMI-timeout, listing all files on a slow
9183 		 * console might take a lot of time:
9184 		 * Also, reset softlockup watchdogs on all CPUs, because
9185 		 * another CPU might be blocked waiting for us to process
9186 		 * an IPI.
9187 		 */
9188 		touch_nmi_watchdog();
9189 		touch_all_softlockup_watchdogs();
9190 		if (state_filter_match(state_filter, p))
9191 			sched_show_task(p);
9192 	}
9193 
9194 #ifdef CONFIG_SCHED_DEBUG
9195 	if (!state_filter)
9196 		sysrq_sched_debug_show();
9197 #endif
9198 	rcu_read_unlock();
9199 	/*
9200 	 * Only show locks if all tasks are dumped:
9201 	 */
9202 	if (!state_filter)
9203 		debug_show_all_locks();
9204 }
9205 
9206 /**
9207  * init_idle - set up an idle thread for a given CPU
9208  * @idle: task in question
9209  * @cpu: CPU the idle task belongs to
9210  *
9211  * NOTE: this function does not set the idle thread's NEED_RESCHED
9212  * flag, to make booting more robust.
9213  */
9214 void __init init_idle(struct task_struct *idle, int cpu)
9215 {
9216 #ifdef CONFIG_SMP
9217 	struct affinity_context ac = (struct affinity_context) {
9218 		.new_mask  = cpumask_of(cpu),
9219 		.flags     = 0,
9220 	};
9221 #endif
9222 	struct rq *rq = cpu_rq(cpu);
9223 	unsigned long flags;
9224 
9225 	__sched_fork(0, idle);
9226 
9227 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9228 	raw_spin_rq_lock(rq);
9229 
9230 	idle->__state = TASK_RUNNING;
9231 	idle->se.exec_start = sched_clock();
9232 	/*
9233 	 * PF_KTHREAD should already be set at this point; regardless, make it
9234 	 * look like a proper per-CPU kthread.
9235 	 */
9236 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9237 	kthread_set_per_cpu(idle, cpu);
9238 
9239 #ifdef CONFIG_SMP
9240 	/*
9241 	 * It's possible that init_idle() gets called multiple times on a task,
9242 	 * in that case do_set_cpus_allowed() will not do the right thing.
9243 	 *
9244 	 * And since this is boot we can forgo the serialization.
9245 	 */
9246 	set_cpus_allowed_common(idle, &ac);
9247 #endif
9248 	/*
9249 	 * We're having a chicken and egg problem, even though we are
9250 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9251 	 * lockdep check in task_group() will fail.
9252 	 *
9253 	 * Similar case to sched_fork(). / Alternatively we could
9254 	 * use task_rq_lock() here and obtain the other rq->lock.
9255 	 *
9256 	 * Silence PROVE_RCU
9257 	 */
9258 	rcu_read_lock();
9259 	__set_task_cpu(idle, cpu);
9260 	rcu_read_unlock();
9261 
9262 	rq->idle = idle;
9263 	rcu_assign_pointer(rq->curr, idle);
9264 	idle->on_rq = TASK_ON_RQ_QUEUED;
9265 #ifdef CONFIG_SMP
9266 	idle->on_cpu = 1;
9267 #endif
9268 	raw_spin_rq_unlock(rq);
9269 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9270 
9271 	/* Set the preempt count _outside_ the spinlocks! */
9272 	init_idle_preempt_count(idle, cpu);
9273 
9274 	/*
9275 	 * The idle tasks have their own, simple scheduling class:
9276 	 */
9277 	idle->sched_class = &idle_sched_class;
9278 	ftrace_graph_init_idle_task(idle, cpu);
9279 	vtime_init_idle(idle, cpu);
9280 #ifdef CONFIG_SMP
9281 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9282 #endif
9283 }
9284 
9285 #ifdef CONFIG_SMP
9286 
9287 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9288 			      const struct cpumask *trial)
9289 {
9290 	int ret = 1;
9291 
9292 	if (cpumask_empty(cur))
9293 		return ret;
9294 
9295 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9296 
9297 	return ret;
9298 }
9299 
9300 int task_can_attach(struct task_struct *p)
9301 {
9302 	int ret = 0;
9303 
9304 	/*
9305 	 * Kthreads which disallow setaffinity shouldn't be moved
9306 	 * to a new cpuset; we don't want to change their CPU
9307 	 * affinity and isolating such threads by their set of
9308 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9309 	 * applicable for such threads.  This prevents checking for
9310 	 * success of set_cpus_allowed_ptr() on all attached tasks
9311 	 * before cpus_mask may be changed.
9312 	 */
9313 	if (p->flags & PF_NO_SETAFFINITY)
9314 		ret = -EINVAL;
9315 
9316 	return ret;
9317 }
9318 
9319 bool sched_smp_initialized __read_mostly;
9320 
9321 #ifdef CONFIG_NUMA_BALANCING
9322 /* Migrate current task p to target_cpu */
9323 int migrate_task_to(struct task_struct *p, int target_cpu)
9324 {
9325 	struct migration_arg arg = { p, target_cpu };
9326 	int curr_cpu = task_cpu(p);
9327 
9328 	if (curr_cpu == target_cpu)
9329 		return 0;
9330 
9331 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9332 		return -EINVAL;
9333 
9334 	/* TODO: This is not properly updating schedstats */
9335 
9336 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9337 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9338 }
9339 
9340 /*
9341  * Requeue a task on a given node and accurately track the number of NUMA
9342  * tasks on the runqueues
9343  */
9344 void sched_setnuma(struct task_struct *p, int nid)
9345 {
9346 	bool queued, running;
9347 	struct rq_flags rf;
9348 	struct rq *rq;
9349 
9350 	rq = task_rq_lock(p, &rf);
9351 	queued = task_on_rq_queued(p);
9352 	running = task_current(rq, p);
9353 
9354 	if (queued)
9355 		dequeue_task(rq, p, DEQUEUE_SAVE);
9356 	if (running)
9357 		put_prev_task(rq, p);
9358 
9359 	p->numa_preferred_nid = nid;
9360 
9361 	if (queued)
9362 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9363 	if (running)
9364 		set_next_task(rq, p);
9365 	task_rq_unlock(rq, p, &rf);
9366 }
9367 #endif /* CONFIG_NUMA_BALANCING */
9368 
9369 #ifdef CONFIG_HOTPLUG_CPU
9370 /*
9371  * Ensure that the idle task is using init_mm right before its CPU goes
9372  * offline.
9373  */
9374 void idle_task_exit(void)
9375 {
9376 	struct mm_struct *mm = current->active_mm;
9377 
9378 	BUG_ON(cpu_online(smp_processor_id()));
9379 	BUG_ON(current != this_rq()->idle);
9380 
9381 	if (mm != &init_mm) {
9382 		switch_mm(mm, &init_mm, current);
9383 		finish_arch_post_lock_switch();
9384 	}
9385 
9386 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9387 }
9388 
9389 static int __balance_push_cpu_stop(void *arg)
9390 {
9391 	struct task_struct *p = arg;
9392 	struct rq *rq = this_rq();
9393 	struct rq_flags rf;
9394 	int cpu;
9395 
9396 	raw_spin_lock_irq(&p->pi_lock);
9397 	rq_lock(rq, &rf);
9398 
9399 	update_rq_clock(rq);
9400 
9401 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9402 		cpu = select_fallback_rq(rq->cpu, p);
9403 		rq = __migrate_task(rq, &rf, p, cpu);
9404 	}
9405 
9406 	rq_unlock(rq, &rf);
9407 	raw_spin_unlock_irq(&p->pi_lock);
9408 
9409 	put_task_struct(p);
9410 
9411 	return 0;
9412 }
9413 
9414 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9415 
9416 /*
9417  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9418  *
9419  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9420  * effective when the hotplug motion is down.
9421  */
9422 static void balance_push(struct rq *rq)
9423 {
9424 	struct task_struct *push_task = rq->curr;
9425 
9426 	lockdep_assert_rq_held(rq);
9427 
9428 	/*
9429 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9430 	 */
9431 	rq->balance_callback = &balance_push_callback;
9432 
9433 	/*
9434 	 * Only active while going offline and when invoked on the outgoing
9435 	 * CPU.
9436 	 */
9437 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9438 		return;
9439 
9440 	/*
9441 	 * Both the cpu-hotplug and stop task are in this case and are
9442 	 * required to complete the hotplug process.
9443 	 */
9444 	if (kthread_is_per_cpu(push_task) ||
9445 	    is_migration_disabled(push_task)) {
9446 
9447 		/*
9448 		 * If this is the idle task on the outgoing CPU try to wake
9449 		 * up the hotplug control thread which might wait for the
9450 		 * last task to vanish. The rcuwait_active() check is
9451 		 * accurate here because the waiter is pinned on this CPU
9452 		 * and can't obviously be running in parallel.
9453 		 *
9454 		 * On RT kernels this also has to check whether there are
9455 		 * pinned and scheduled out tasks on the runqueue. They
9456 		 * need to leave the migrate disabled section first.
9457 		 */
9458 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9459 		    rcuwait_active(&rq->hotplug_wait)) {
9460 			raw_spin_rq_unlock(rq);
9461 			rcuwait_wake_up(&rq->hotplug_wait);
9462 			raw_spin_rq_lock(rq);
9463 		}
9464 		return;
9465 	}
9466 
9467 	get_task_struct(push_task);
9468 	/*
9469 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9470 	 * Both preemption and IRQs are still disabled.
9471 	 */
9472 	preempt_disable();
9473 	raw_spin_rq_unlock(rq);
9474 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9475 			    this_cpu_ptr(&push_work));
9476 	preempt_enable();
9477 	/*
9478 	 * At this point need_resched() is true and we'll take the loop in
9479 	 * schedule(). The next pick is obviously going to be the stop task
9480 	 * which kthread_is_per_cpu() and will push this task away.
9481 	 */
9482 	raw_spin_rq_lock(rq);
9483 }
9484 
9485 static void balance_push_set(int cpu, bool on)
9486 {
9487 	struct rq *rq = cpu_rq(cpu);
9488 	struct rq_flags rf;
9489 
9490 	rq_lock_irqsave(rq, &rf);
9491 	if (on) {
9492 		WARN_ON_ONCE(rq->balance_callback);
9493 		rq->balance_callback = &balance_push_callback;
9494 	} else if (rq->balance_callback == &balance_push_callback) {
9495 		rq->balance_callback = NULL;
9496 	}
9497 	rq_unlock_irqrestore(rq, &rf);
9498 }
9499 
9500 /*
9501  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9502  * inactive. All tasks which are not per CPU kernel threads are either
9503  * pushed off this CPU now via balance_push() or placed on a different CPU
9504  * during wakeup. Wait until the CPU is quiescent.
9505  */
9506 static void balance_hotplug_wait(void)
9507 {
9508 	struct rq *rq = this_rq();
9509 
9510 	rcuwait_wait_event(&rq->hotplug_wait,
9511 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9512 			   TASK_UNINTERRUPTIBLE);
9513 }
9514 
9515 #else
9516 
9517 static inline void balance_push(struct rq *rq)
9518 {
9519 }
9520 
9521 static inline void balance_push_set(int cpu, bool on)
9522 {
9523 }
9524 
9525 static inline void balance_hotplug_wait(void)
9526 {
9527 }
9528 
9529 #endif /* CONFIG_HOTPLUG_CPU */
9530 
9531 void set_rq_online(struct rq *rq)
9532 {
9533 	if (!rq->online) {
9534 		const struct sched_class *class;
9535 
9536 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9537 		rq->online = 1;
9538 
9539 		for_each_class(class) {
9540 			if (class->rq_online)
9541 				class->rq_online(rq);
9542 		}
9543 	}
9544 }
9545 
9546 void set_rq_offline(struct rq *rq)
9547 {
9548 	if (rq->online) {
9549 		const struct sched_class *class;
9550 
9551 		update_rq_clock(rq);
9552 		for_each_class(class) {
9553 			if (class->rq_offline)
9554 				class->rq_offline(rq);
9555 		}
9556 
9557 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9558 		rq->online = 0;
9559 	}
9560 }
9561 
9562 /*
9563  * used to mark begin/end of suspend/resume:
9564  */
9565 static int num_cpus_frozen;
9566 
9567 /*
9568  * Update cpusets according to cpu_active mask.  If cpusets are
9569  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9570  * around partition_sched_domains().
9571  *
9572  * If we come here as part of a suspend/resume, don't touch cpusets because we
9573  * want to restore it back to its original state upon resume anyway.
9574  */
9575 static void cpuset_cpu_active(void)
9576 {
9577 	if (cpuhp_tasks_frozen) {
9578 		/*
9579 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9580 		 * resume sequence. As long as this is not the last online
9581 		 * operation in the resume sequence, just build a single sched
9582 		 * domain, ignoring cpusets.
9583 		 */
9584 		partition_sched_domains(1, NULL, NULL);
9585 		if (--num_cpus_frozen)
9586 			return;
9587 		/*
9588 		 * This is the last CPU online operation. So fall through and
9589 		 * restore the original sched domains by considering the
9590 		 * cpuset configurations.
9591 		 */
9592 		cpuset_force_rebuild();
9593 	}
9594 	cpuset_update_active_cpus();
9595 }
9596 
9597 static int cpuset_cpu_inactive(unsigned int cpu)
9598 {
9599 	if (!cpuhp_tasks_frozen) {
9600 		int ret = dl_bw_check_overflow(cpu);
9601 
9602 		if (ret)
9603 			return ret;
9604 		cpuset_update_active_cpus();
9605 	} else {
9606 		num_cpus_frozen++;
9607 		partition_sched_domains(1, NULL, NULL);
9608 	}
9609 	return 0;
9610 }
9611 
9612 int sched_cpu_activate(unsigned int cpu)
9613 {
9614 	struct rq *rq = cpu_rq(cpu);
9615 	struct rq_flags rf;
9616 
9617 	/*
9618 	 * Clear the balance_push callback and prepare to schedule
9619 	 * regular tasks.
9620 	 */
9621 	balance_push_set(cpu, false);
9622 
9623 #ifdef CONFIG_SCHED_SMT
9624 	/*
9625 	 * When going up, increment the number of cores with SMT present.
9626 	 */
9627 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9628 		static_branch_inc_cpuslocked(&sched_smt_present);
9629 #endif
9630 	set_cpu_active(cpu, true);
9631 
9632 	if (sched_smp_initialized) {
9633 		sched_update_numa(cpu, true);
9634 		sched_domains_numa_masks_set(cpu);
9635 		cpuset_cpu_active();
9636 	}
9637 
9638 	/*
9639 	 * Put the rq online, if not already. This happens:
9640 	 *
9641 	 * 1) In the early boot process, because we build the real domains
9642 	 *    after all CPUs have been brought up.
9643 	 *
9644 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9645 	 *    domains.
9646 	 */
9647 	rq_lock_irqsave(rq, &rf);
9648 	if (rq->rd) {
9649 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9650 		set_rq_online(rq);
9651 	}
9652 	rq_unlock_irqrestore(rq, &rf);
9653 
9654 	return 0;
9655 }
9656 
9657 int sched_cpu_deactivate(unsigned int cpu)
9658 {
9659 	struct rq *rq = cpu_rq(cpu);
9660 	struct rq_flags rf;
9661 	int ret;
9662 
9663 	/*
9664 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9665 	 * load balancing when not active
9666 	 */
9667 	nohz_balance_exit_idle(rq);
9668 
9669 	set_cpu_active(cpu, false);
9670 
9671 	/*
9672 	 * From this point forward, this CPU will refuse to run any task that
9673 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9674 	 * push those tasks away until this gets cleared, see
9675 	 * sched_cpu_dying().
9676 	 */
9677 	balance_push_set(cpu, true);
9678 
9679 	/*
9680 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9681 	 * preempt-disabled and RCU users of this state to go away such that
9682 	 * all new such users will observe it.
9683 	 *
9684 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9685 	 * ttwu_queue_cond() and is_cpu_allowed().
9686 	 *
9687 	 * Do sync before park smpboot threads to take care the rcu boost case.
9688 	 */
9689 	synchronize_rcu();
9690 
9691 	rq_lock_irqsave(rq, &rf);
9692 	if (rq->rd) {
9693 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9694 		set_rq_offline(rq);
9695 	}
9696 	rq_unlock_irqrestore(rq, &rf);
9697 
9698 #ifdef CONFIG_SCHED_SMT
9699 	/*
9700 	 * When going down, decrement the number of cores with SMT present.
9701 	 */
9702 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9703 		static_branch_dec_cpuslocked(&sched_smt_present);
9704 
9705 	sched_core_cpu_deactivate(cpu);
9706 #endif
9707 
9708 	if (!sched_smp_initialized)
9709 		return 0;
9710 
9711 	sched_update_numa(cpu, false);
9712 	ret = cpuset_cpu_inactive(cpu);
9713 	if (ret) {
9714 		balance_push_set(cpu, false);
9715 		set_cpu_active(cpu, true);
9716 		sched_update_numa(cpu, true);
9717 		return ret;
9718 	}
9719 	sched_domains_numa_masks_clear(cpu);
9720 	return 0;
9721 }
9722 
9723 static void sched_rq_cpu_starting(unsigned int cpu)
9724 {
9725 	struct rq *rq = cpu_rq(cpu);
9726 
9727 	rq->calc_load_update = calc_load_update;
9728 	update_max_interval();
9729 }
9730 
9731 int sched_cpu_starting(unsigned int cpu)
9732 {
9733 	sched_core_cpu_starting(cpu);
9734 	sched_rq_cpu_starting(cpu);
9735 	sched_tick_start(cpu);
9736 	return 0;
9737 }
9738 
9739 #ifdef CONFIG_HOTPLUG_CPU
9740 
9741 /*
9742  * Invoked immediately before the stopper thread is invoked to bring the
9743  * CPU down completely. At this point all per CPU kthreads except the
9744  * hotplug thread (current) and the stopper thread (inactive) have been
9745  * either parked or have been unbound from the outgoing CPU. Ensure that
9746  * any of those which might be on the way out are gone.
9747  *
9748  * If after this point a bound task is being woken on this CPU then the
9749  * responsible hotplug callback has failed to do it's job.
9750  * sched_cpu_dying() will catch it with the appropriate fireworks.
9751  */
9752 int sched_cpu_wait_empty(unsigned int cpu)
9753 {
9754 	balance_hotplug_wait();
9755 	return 0;
9756 }
9757 
9758 /*
9759  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9760  * might have. Called from the CPU stopper task after ensuring that the
9761  * stopper is the last running task on the CPU, so nr_active count is
9762  * stable. We need to take the teardown thread which is calling this into
9763  * account, so we hand in adjust = 1 to the load calculation.
9764  *
9765  * Also see the comment "Global load-average calculations".
9766  */
9767 static void calc_load_migrate(struct rq *rq)
9768 {
9769 	long delta = calc_load_fold_active(rq, 1);
9770 
9771 	if (delta)
9772 		atomic_long_add(delta, &calc_load_tasks);
9773 }
9774 
9775 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9776 {
9777 	struct task_struct *g, *p;
9778 	int cpu = cpu_of(rq);
9779 
9780 	lockdep_assert_rq_held(rq);
9781 
9782 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9783 	for_each_process_thread(g, p) {
9784 		if (task_cpu(p) != cpu)
9785 			continue;
9786 
9787 		if (!task_on_rq_queued(p))
9788 			continue;
9789 
9790 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9791 	}
9792 }
9793 
9794 int sched_cpu_dying(unsigned int cpu)
9795 {
9796 	struct rq *rq = cpu_rq(cpu);
9797 	struct rq_flags rf;
9798 
9799 	/* Handle pending wakeups and then migrate everything off */
9800 	sched_tick_stop(cpu);
9801 
9802 	rq_lock_irqsave(rq, &rf);
9803 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9804 		WARN(true, "Dying CPU not properly vacated!");
9805 		dump_rq_tasks(rq, KERN_WARNING);
9806 	}
9807 	rq_unlock_irqrestore(rq, &rf);
9808 
9809 	calc_load_migrate(rq);
9810 	update_max_interval();
9811 	hrtick_clear(rq);
9812 	sched_core_cpu_dying(cpu);
9813 	return 0;
9814 }
9815 #endif
9816 
9817 void __init sched_init_smp(void)
9818 {
9819 	sched_init_numa(NUMA_NO_NODE);
9820 
9821 	/*
9822 	 * There's no userspace yet to cause hotplug operations; hence all the
9823 	 * CPU masks are stable and all blatant races in the below code cannot
9824 	 * happen.
9825 	 */
9826 	mutex_lock(&sched_domains_mutex);
9827 	sched_init_domains(cpu_active_mask);
9828 	mutex_unlock(&sched_domains_mutex);
9829 
9830 	/* Move init over to a non-isolated CPU */
9831 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9832 		BUG();
9833 	current->flags &= ~PF_NO_SETAFFINITY;
9834 	sched_init_granularity();
9835 
9836 	init_sched_rt_class();
9837 	init_sched_dl_class();
9838 
9839 	sched_smp_initialized = true;
9840 }
9841 
9842 static int __init migration_init(void)
9843 {
9844 	sched_cpu_starting(smp_processor_id());
9845 	return 0;
9846 }
9847 early_initcall(migration_init);
9848 
9849 #else
9850 void __init sched_init_smp(void)
9851 {
9852 	sched_init_granularity();
9853 }
9854 #endif /* CONFIG_SMP */
9855 
9856 int in_sched_functions(unsigned long addr)
9857 {
9858 	return in_lock_functions(addr) ||
9859 		(addr >= (unsigned long)__sched_text_start
9860 		&& addr < (unsigned long)__sched_text_end);
9861 }
9862 
9863 #ifdef CONFIG_CGROUP_SCHED
9864 /*
9865  * Default task group.
9866  * Every task in system belongs to this group at bootup.
9867  */
9868 struct task_group root_task_group;
9869 LIST_HEAD(task_groups);
9870 
9871 /* Cacheline aligned slab cache for task_group */
9872 static struct kmem_cache *task_group_cache __ro_after_init;
9873 #endif
9874 
9875 void __init sched_init(void)
9876 {
9877 	unsigned long ptr = 0;
9878 	int i;
9879 
9880 	/* Make sure the linker didn't screw up */
9881 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9882 	       &fair_sched_class != &rt_sched_class + 1 ||
9883 	       &rt_sched_class   != &dl_sched_class + 1);
9884 #ifdef CONFIG_SMP
9885 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9886 #endif
9887 
9888 	wait_bit_init();
9889 
9890 #ifdef CONFIG_FAIR_GROUP_SCHED
9891 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9892 #endif
9893 #ifdef CONFIG_RT_GROUP_SCHED
9894 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9895 #endif
9896 	if (ptr) {
9897 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9898 
9899 #ifdef CONFIG_FAIR_GROUP_SCHED
9900 		root_task_group.se = (struct sched_entity **)ptr;
9901 		ptr += nr_cpu_ids * sizeof(void **);
9902 
9903 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9904 		ptr += nr_cpu_ids * sizeof(void **);
9905 
9906 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9907 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9908 #endif /* CONFIG_FAIR_GROUP_SCHED */
9909 #ifdef CONFIG_RT_GROUP_SCHED
9910 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9911 		ptr += nr_cpu_ids * sizeof(void **);
9912 
9913 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9914 		ptr += nr_cpu_ids * sizeof(void **);
9915 
9916 #endif /* CONFIG_RT_GROUP_SCHED */
9917 	}
9918 
9919 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9920 
9921 #ifdef CONFIG_SMP
9922 	init_defrootdomain();
9923 #endif
9924 
9925 #ifdef CONFIG_RT_GROUP_SCHED
9926 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9927 			global_rt_period(), global_rt_runtime());
9928 #endif /* CONFIG_RT_GROUP_SCHED */
9929 
9930 #ifdef CONFIG_CGROUP_SCHED
9931 	task_group_cache = KMEM_CACHE(task_group, 0);
9932 
9933 	list_add(&root_task_group.list, &task_groups);
9934 	INIT_LIST_HEAD(&root_task_group.children);
9935 	INIT_LIST_HEAD(&root_task_group.siblings);
9936 	autogroup_init(&init_task);
9937 #endif /* CONFIG_CGROUP_SCHED */
9938 
9939 	for_each_possible_cpu(i) {
9940 		struct rq *rq;
9941 
9942 		rq = cpu_rq(i);
9943 		raw_spin_lock_init(&rq->__lock);
9944 		rq->nr_running = 0;
9945 		rq->calc_load_active = 0;
9946 		rq->calc_load_update = jiffies + LOAD_FREQ;
9947 		init_cfs_rq(&rq->cfs);
9948 		init_rt_rq(&rq->rt);
9949 		init_dl_rq(&rq->dl);
9950 #ifdef CONFIG_FAIR_GROUP_SCHED
9951 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9952 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9953 		/*
9954 		 * How much CPU bandwidth does root_task_group get?
9955 		 *
9956 		 * In case of task-groups formed thr' the cgroup filesystem, it
9957 		 * gets 100% of the CPU resources in the system. This overall
9958 		 * system CPU resource is divided among the tasks of
9959 		 * root_task_group and its child task-groups in a fair manner,
9960 		 * based on each entity's (task or task-group's) weight
9961 		 * (se->load.weight).
9962 		 *
9963 		 * In other words, if root_task_group has 10 tasks of weight
9964 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9965 		 * then A0's share of the CPU resource is:
9966 		 *
9967 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9968 		 *
9969 		 * We achieve this by letting root_task_group's tasks sit
9970 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9971 		 */
9972 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9973 #endif /* CONFIG_FAIR_GROUP_SCHED */
9974 
9975 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9976 #ifdef CONFIG_RT_GROUP_SCHED
9977 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9978 #endif
9979 #ifdef CONFIG_SMP
9980 		rq->sd = NULL;
9981 		rq->rd = NULL;
9982 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
9983 		rq->balance_callback = &balance_push_callback;
9984 		rq->active_balance = 0;
9985 		rq->next_balance = jiffies;
9986 		rq->push_cpu = 0;
9987 		rq->cpu = i;
9988 		rq->online = 0;
9989 		rq->idle_stamp = 0;
9990 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9991 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9992 
9993 		INIT_LIST_HEAD(&rq->cfs_tasks);
9994 
9995 		rq_attach_root(rq, &def_root_domain);
9996 #ifdef CONFIG_NO_HZ_COMMON
9997 		rq->last_blocked_load_update_tick = jiffies;
9998 		atomic_set(&rq->nohz_flags, 0);
9999 
10000 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10001 #endif
10002 #ifdef CONFIG_HOTPLUG_CPU
10003 		rcuwait_init(&rq->hotplug_wait);
10004 #endif
10005 #endif /* CONFIG_SMP */
10006 		hrtick_rq_init(rq);
10007 		atomic_set(&rq->nr_iowait, 0);
10008 
10009 #ifdef CONFIG_SCHED_CORE
10010 		rq->core = rq;
10011 		rq->core_pick = NULL;
10012 		rq->core_enabled = 0;
10013 		rq->core_tree = RB_ROOT;
10014 		rq->core_forceidle_count = 0;
10015 		rq->core_forceidle_occupation = 0;
10016 		rq->core_forceidle_start = 0;
10017 
10018 		rq->core_cookie = 0UL;
10019 #endif
10020 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10021 	}
10022 
10023 	set_load_weight(&init_task, false);
10024 
10025 	/*
10026 	 * The boot idle thread does lazy MMU switching as well:
10027 	 */
10028 	mmgrab_lazy_tlb(&init_mm);
10029 	enter_lazy_tlb(&init_mm, current);
10030 
10031 	/*
10032 	 * The idle task doesn't need the kthread struct to function, but it
10033 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10034 	 * if we want to avoid special-casing it in code that deals with per-CPU
10035 	 * kthreads.
10036 	 */
10037 	WARN_ON(!set_kthread_struct(current));
10038 
10039 	/*
10040 	 * Make us the idle thread. Technically, schedule() should not be
10041 	 * called from this thread, however somewhere below it might be,
10042 	 * but because we are the idle thread, we just pick up running again
10043 	 * when this runqueue becomes "idle".
10044 	 */
10045 	init_idle(current, smp_processor_id());
10046 
10047 	calc_load_update = jiffies + LOAD_FREQ;
10048 
10049 #ifdef CONFIG_SMP
10050 	idle_thread_set_boot_cpu();
10051 	balance_push_set(smp_processor_id(), false);
10052 #endif
10053 	init_sched_fair_class();
10054 
10055 	psi_init();
10056 
10057 	init_uclamp();
10058 
10059 	preempt_dynamic_init();
10060 
10061 	scheduler_running = 1;
10062 }
10063 
10064 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10065 
10066 void __might_sleep(const char *file, int line)
10067 {
10068 	unsigned int state = get_current_state();
10069 	/*
10070 	 * Blocking primitives will set (and therefore destroy) current->state,
10071 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10072 	 * otherwise we will destroy state.
10073 	 */
10074 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10075 			"do not call blocking ops when !TASK_RUNNING; "
10076 			"state=%x set at [<%p>] %pS\n", state,
10077 			(void *)current->task_state_change,
10078 			(void *)current->task_state_change);
10079 
10080 	__might_resched(file, line, 0);
10081 }
10082 EXPORT_SYMBOL(__might_sleep);
10083 
10084 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10085 {
10086 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10087 		return;
10088 
10089 	if (preempt_count() == preempt_offset)
10090 		return;
10091 
10092 	pr_err("Preemption disabled at:");
10093 	print_ip_sym(KERN_ERR, ip);
10094 }
10095 
10096 static inline bool resched_offsets_ok(unsigned int offsets)
10097 {
10098 	unsigned int nested = preempt_count();
10099 
10100 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10101 
10102 	return nested == offsets;
10103 }
10104 
10105 void __might_resched(const char *file, int line, unsigned int offsets)
10106 {
10107 	/* Ratelimiting timestamp: */
10108 	static unsigned long prev_jiffy;
10109 
10110 	unsigned long preempt_disable_ip;
10111 
10112 	/* WARN_ON_ONCE() by default, no rate limit required: */
10113 	rcu_sleep_check();
10114 
10115 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10116 	     !is_idle_task(current) && !current->non_block_count) ||
10117 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10118 	    oops_in_progress)
10119 		return;
10120 
10121 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10122 		return;
10123 	prev_jiffy = jiffies;
10124 
10125 	/* Save this before calling printk(), since that will clobber it: */
10126 	preempt_disable_ip = get_preempt_disable_ip(current);
10127 
10128 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10129 	       file, line);
10130 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10131 	       in_atomic(), irqs_disabled(), current->non_block_count,
10132 	       current->pid, current->comm);
10133 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10134 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10135 
10136 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10137 		pr_err("RCU nest depth: %d, expected: %u\n",
10138 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10139 	}
10140 
10141 	if (task_stack_end_corrupted(current))
10142 		pr_emerg("Thread overran stack, or stack corrupted\n");
10143 
10144 	debug_show_held_locks(current);
10145 	if (irqs_disabled())
10146 		print_irqtrace_events(current);
10147 
10148 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10149 				 preempt_disable_ip);
10150 
10151 	dump_stack();
10152 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10153 }
10154 EXPORT_SYMBOL(__might_resched);
10155 
10156 void __cant_sleep(const char *file, int line, int preempt_offset)
10157 {
10158 	static unsigned long prev_jiffy;
10159 
10160 	if (irqs_disabled())
10161 		return;
10162 
10163 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10164 		return;
10165 
10166 	if (preempt_count() > preempt_offset)
10167 		return;
10168 
10169 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10170 		return;
10171 	prev_jiffy = jiffies;
10172 
10173 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10174 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10175 			in_atomic(), irqs_disabled(),
10176 			current->pid, current->comm);
10177 
10178 	debug_show_held_locks(current);
10179 	dump_stack();
10180 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10181 }
10182 EXPORT_SYMBOL_GPL(__cant_sleep);
10183 
10184 #ifdef CONFIG_SMP
10185 void __cant_migrate(const char *file, int line)
10186 {
10187 	static unsigned long prev_jiffy;
10188 
10189 	if (irqs_disabled())
10190 		return;
10191 
10192 	if (is_migration_disabled(current))
10193 		return;
10194 
10195 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10196 		return;
10197 
10198 	if (preempt_count() > 0)
10199 		return;
10200 
10201 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10202 		return;
10203 	prev_jiffy = jiffies;
10204 
10205 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10206 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10207 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10208 	       current->pid, current->comm);
10209 
10210 	debug_show_held_locks(current);
10211 	dump_stack();
10212 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10213 }
10214 EXPORT_SYMBOL_GPL(__cant_migrate);
10215 #endif
10216 #endif
10217 
10218 #ifdef CONFIG_MAGIC_SYSRQ
10219 void normalize_rt_tasks(void)
10220 {
10221 	struct task_struct *g, *p;
10222 	struct sched_attr attr = {
10223 		.sched_policy = SCHED_NORMAL,
10224 	};
10225 
10226 	read_lock(&tasklist_lock);
10227 	for_each_process_thread(g, p) {
10228 		/*
10229 		 * Only normalize user tasks:
10230 		 */
10231 		if (p->flags & PF_KTHREAD)
10232 			continue;
10233 
10234 		p->se.exec_start = 0;
10235 		schedstat_set(p->stats.wait_start,  0);
10236 		schedstat_set(p->stats.sleep_start, 0);
10237 		schedstat_set(p->stats.block_start, 0);
10238 
10239 		if (!dl_task(p) && !rt_task(p)) {
10240 			/*
10241 			 * Renice negative nice level userspace
10242 			 * tasks back to 0:
10243 			 */
10244 			if (task_nice(p) < 0)
10245 				set_user_nice(p, 0);
10246 			continue;
10247 		}
10248 
10249 		__sched_setscheduler(p, &attr, false, false);
10250 	}
10251 	read_unlock(&tasklist_lock);
10252 }
10253 
10254 #endif /* CONFIG_MAGIC_SYSRQ */
10255 
10256 #if defined(CONFIG_KGDB_KDB)
10257 /*
10258  * These functions are only useful for kdb.
10259  *
10260  * They can only be called when the whole system has been
10261  * stopped - every CPU needs to be quiescent, and no scheduling
10262  * activity can take place. Using them for anything else would
10263  * be a serious bug, and as a result, they aren't even visible
10264  * under any other configuration.
10265  */
10266 
10267 /**
10268  * curr_task - return the current task for a given CPU.
10269  * @cpu: the processor in question.
10270  *
10271  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10272  *
10273  * Return: The current task for @cpu.
10274  */
10275 struct task_struct *curr_task(int cpu)
10276 {
10277 	return cpu_curr(cpu);
10278 }
10279 
10280 #endif /* defined(CONFIG_KGDB_KDB) */
10281 
10282 #ifdef CONFIG_CGROUP_SCHED
10283 /* task_group_lock serializes the addition/removal of task groups */
10284 static DEFINE_SPINLOCK(task_group_lock);
10285 
10286 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10287 					    struct task_group *parent)
10288 {
10289 #ifdef CONFIG_UCLAMP_TASK_GROUP
10290 	enum uclamp_id clamp_id;
10291 
10292 	for_each_clamp_id(clamp_id) {
10293 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10294 			      uclamp_none(clamp_id), false);
10295 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10296 	}
10297 #endif
10298 }
10299 
10300 static void sched_free_group(struct task_group *tg)
10301 {
10302 	free_fair_sched_group(tg);
10303 	free_rt_sched_group(tg);
10304 	autogroup_free(tg);
10305 	kmem_cache_free(task_group_cache, tg);
10306 }
10307 
10308 static void sched_free_group_rcu(struct rcu_head *rcu)
10309 {
10310 	sched_free_group(container_of(rcu, struct task_group, rcu));
10311 }
10312 
10313 static void sched_unregister_group(struct task_group *tg)
10314 {
10315 	unregister_fair_sched_group(tg);
10316 	unregister_rt_sched_group(tg);
10317 	/*
10318 	 * We have to wait for yet another RCU grace period to expire, as
10319 	 * print_cfs_stats() might run concurrently.
10320 	 */
10321 	call_rcu(&tg->rcu, sched_free_group_rcu);
10322 }
10323 
10324 /* allocate runqueue etc for a new task group */
10325 struct task_group *sched_create_group(struct task_group *parent)
10326 {
10327 	struct task_group *tg;
10328 
10329 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10330 	if (!tg)
10331 		return ERR_PTR(-ENOMEM);
10332 
10333 	if (!alloc_fair_sched_group(tg, parent))
10334 		goto err;
10335 
10336 	if (!alloc_rt_sched_group(tg, parent))
10337 		goto err;
10338 
10339 	alloc_uclamp_sched_group(tg, parent);
10340 
10341 	return tg;
10342 
10343 err:
10344 	sched_free_group(tg);
10345 	return ERR_PTR(-ENOMEM);
10346 }
10347 
10348 void sched_online_group(struct task_group *tg, struct task_group *parent)
10349 {
10350 	unsigned long flags;
10351 
10352 	spin_lock_irqsave(&task_group_lock, flags);
10353 	list_add_rcu(&tg->list, &task_groups);
10354 
10355 	/* Root should already exist: */
10356 	WARN_ON(!parent);
10357 
10358 	tg->parent = parent;
10359 	INIT_LIST_HEAD(&tg->children);
10360 	list_add_rcu(&tg->siblings, &parent->children);
10361 	spin_unlock_irqrestore(&task_group_lock, flags);
10362 
10363 	online_fair_sched_group(tg);
10364 }
10365 
10366 /* rcu callback to free various structures associated with a task group */
10367 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10368 {
10369 	/* Now it should be safe to free those cfs_rqs: */
10370 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10371 }
10372 
10373 void sched_destroy_group(struct task_group *tg)
10374 {
10375 	/* Wait for possible concurrent references to cfs_rqs complete: */
10376 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10377 }
10378 
10379 void sched_release_group(struct task_group *tg)
10380 {
10381 	unsigned long flags;
10382 
10383 	/*
10384 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10385 	 * sched_cfs_period_timer()).
10386 	 *
10387 	 * For this to be effective, we have to wait for all pending users of
10388 	 * this task group to leave their RCU critical section to ensure no new
10389 	 * user will see our dying task group any more. Specifically ensure
10390 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10391 	 *
10392 	 * We therefore defer calling unregister_fair_sched_group() to
10393 	 * sched_unregister_group() which is guarantied to get called only after the
10394 	 * current RCU grace period has expired.
10395 	 */
10396 	spin_lock_irqsave(&task_group_lock, flags);
10397 	list_del_rcu(&tg->list);
10398 	list_del_rcu(&tg->siblings);
10399 	spin_unlock_irqrestore(&task_group_lock, flags);
10400 }
10401 
10402 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10403 {
10404 	struct task_group *tg;
10405 
10406 	/*
10407 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10408 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10409 	 * to prevent lockdep warnings.
10410 	 */
10411 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10412 			  struct task_group, css);
10413 	tg = autogroup_task_group(tsk, tg);
10414 
10415 	return tg;
10416 }
10417 
10418 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10419 {
10420 	tsk->sched_task_group = group;
10421 
10422 #ifdef CONFIG_FAIR_GROUP_SCHED
10423 	if (tsk->sched_class->task_change_group)
10424 		tsk->sched_class->task_change_group(tsk);
10425 	else
10426 #endif
10427 		set_task_rq(tsk, task_cpu(tsk));
10428 }
10429 
10430 /*
10431  * Change task's runqueue when it moves between groups.
10432  *
10433  * The caller of this function should have put the task in its new group by
10434  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10435  * its new group.
10436  */
10437 void sched_move_task(struct task_struct *tsk)
10438 {
10439 	int queued, running, queue_flags =
10440 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10441 	struct task_group *group;
10442 	struct rq *rq;
10443 
10444 	CLASS(task_rq_lock, rq_guard)(tsk);
10445 	rq = rq_guard.rq;
10446 
10447 	/*
10448 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10449 	 * group changes.
10450 	 */
10451 	group = sched_get_task_group(tsk);
10452 	if (group == tsk->sched_task_group)
10453 		return;
10454 
10455 	update_rq_clock(rq);
10456 
10457 	running = task_current(rq, tsk);
10458 	queued = task_on_rq_queued(tsk);
10459 
10460 	if (queued)
10461 		dequeue_task(rq, tsk, queue_flags);
10462 	if (running)
10463 		put_prev_task(rq, tsk);
10464 
10465 	sched_change_group(tsk, group);
10466 
10467 	if (queued)
10468 		enqueue_task(rq, tsk, queue_flags);
10469 	if (running) {
10470 		set_next_task(rq, tsk);
10471 		/*
10472 		 * After changing group, the running task may have joined a
10473 		 * throttled one but it's still the running task. Trigger a
10474 		 * resched to make sure that task can still run.
10475 		 */
10476 		resched_curr(rq);
10477 	}
10478 }
10479 
10480 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10481 {
10482 	return css ? container_of(css, struct task_group, css) : NULL;
10483 }
10484 
10485 static struct cgroup_subsys_state *
10486 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10487 {
10488 	struct task_group *parent = css_tg(parent_css);
10489 	struct task_group *tg;
10490 
10491 	if (!parent) {
10492 		/* This is early initialization for the top cgroup */
10493 		return &root_task_group.css;
10494 	}
10495 
10496 	tg = sched_create_group(parent);
10497 	if (IS_ERR(tg))
10498 		return ERR_PTR(-ENOMEM);
10499 
10500 	return &tg->css;
10501 }
10502 
10503 /* Expose task group only after completing cgroup initialization */
10504 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10505 {
10506 	struct task_group *tg = css_tg(css);
10507 	struct task_group *parent = css_tg(css->parent);
10508 
10509 	if (parent)
10510 		sched_online_group(tg, parent);
10511 
10512 #ifdef CONFIG_UCLAMP_TASK_GROUP
10513 	/* Propagate the effective uclamp value for the new group */
10514 	guard(mutex)(&uclamp_mutex);
10515 	guard(rcu)();
10516 	cpu_util_update_eff(css);
10517 #endif
10518 
10519 	return 0;
10520 }
10521 
10522 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10523 {
10524 	struct task_group *tg = css_tg(css);
10525 
10526 	sched_release_group(tg);
10527 }
10528 
10529 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10530 {
10531 	struct task_group *tg = css_tg(css);
10532 
10533 	/*
10534 	 * Relies on the RCU grace period between css_released() and this.
10535 	 */
10536 	sched_unregister_group(tg);
10537 }
10538 
10539 #ifdef CONFIG_RT_GROUP_SCHED
10540 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10541 {
10542 	struct task_struct *task;
10543 	struct cgroup_subsys_state *css;
10544 
10545 	cgroup_taskset_for_each(task, css, tset) {
10546 		if (!sched_rt_can_attach(css_tg(css), task))
10547 			return -EINVAL;
10548 	}
10549 	return 0;
10550 }
10551 #endif
10552 
10553 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10554 {
10555 	struct task_struct *task;
10556 	struct cgroup_subsys_state *css;
10557 
10558 	cgroup_taskset_for_each(task, css, tset)
10559 		sched_move_task(task);
10560 }
10561 
10562 #ifdef CONFIG_UCLAMP_TASK_GROUP
10563 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10564 {
10565 	struct cgroup_subsys_state *top_css = css;
10566 	struct uclamp_se *uc_parent = NULL;
10567 	struct uclamp_se *uc_se = NULL;
10568 	unsigned int eff[UCLAMP_CNT];
10569 	enum uclamp_id clamp_id;
10570 	unsigned int clamps;
10571 
10572 	lockdep_assert_held(&uclamp_mutex);
10573 	SCHED_WARN_ON(!rcu_read_lock_held());
10574 
10575 	css_for_each_descendant_pre(css, top_css) {
10576 		uc_parent = css_tg(css)->parent
10577 			? css_tg(css)->parent->uclamp : NULL;
10578 
10579 		for_each_clamp_id(clamp_id) {
10580 			/* Assume effective clamps matches requested clamps */
10581 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10582 			/* Cap effective clamps with parent's effective clamps */
10583 			if (uc_parent &&
10584 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10585 				eff[clamp_id] = uc_parent[clamp_id].value;
10586 			}
10587 		}
10588 		/* Ensure protection is always capped by limit */
10589 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10590 
10591 		/* Propagate most restrictive effective clamps */
10592 		clamps = 0x0;
10593 		uc_se = css_tg(css)->uclamp;
10594 		for_each_clamp_id(clamp_id) {
10595 			if (eff[clamp_id] == uc_se[clamp_id].value)
10596 				continue;
10597 			uc_se[clamp_id].value = eff[clamp_id];
10598 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10599 			clamps |= (0x1 << clamp_id);
10600 		}
10601 		if (!clamps) {
10602 			css = css_rightmost_descendant(css);
10603 			continue;
10604 		}
10605 
10606 		/* Immediately update descendants RUNNABLE tasks */
10607 		uclamp_update_active_tasks(css);
10608 	}
10609 }
10610 
10611 /*
10612  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10613  * C expression. Since there is no way to convert a macro argument (N) into a
10614  * character constant, use two levels of macros.
10615  */
10616 #define _POW10(exp) ((unsigned int)1e##exp)
10617 #define POW10(exp) _POW10(exp)
10618 
10619 struct uclamp_request {
10620 #define UCLAMP_PERCENT_SHIFT	2
10621 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10622 	s64 percent;
10623 	u64 util;
10624 	int ret;
10625 };
10626 
10627 static inline struct uclamp_request
10628 capacity_from_percent(char *buf)
10629 {
10630 	struct uclamp_request req = {
10631 		.percent = UCLAMP_PERCENT_SCALE,
10632 		.util = SCHED_CAPACITY_SCALE,
10633 		.ret = 0,
10634 	};
10635 
10636 	buf = strim(buf);
10637 	if (strcmp(buf, "max")) {
10638 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10639 					     &req.percent);
10640 		if (req.ret)
10641 			return req;
10642 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10643 			req.ret = -ERANGE;
10644 			return req;
10645 		}
10646 
10647 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10648 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10649 	}
10650 
10651 	return req;
10652 }
10653 
10654 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10655 				size_t nbytes, loff_t off,
10656 				enum uclamp_id clamp_id)
10657 {
10658 	struct uclamp_request req;
10659 	struct task_group *tg;
10660 
10661 	req = capacity_from_percent(buf);
10662 	if (req.ret)
10663 		return req.ret;
10664 
10665 	static_branch_enable(&sched_uclamp_used);
10666 
10667 	guard(mutex)(&uclamp_mutex);
10668 	guard(rcu)();
10669 
10670 	tg = css_tg(of_css(of));
10671 	if (tg->uclamp_req[clamp_id].value != req.util)
10672 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10673 
10674 	/*
10675 	 * Because of not recoverable conversion rounding we keep track of the
10676 	 * exact requested value
10677 	 */
10678 	tg->uclamp_pct[clamp_id] = req.percent;
10679 
10680 	/* Update effective clamps to track the most restrictive value */
10681 	cpu_util_update_eff(of_css(of));
10682 
10683 	return nbytes;
10684 }
10685 
10686 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10687 				    char *buf, size_t nbytes,
10688 				    loff_t off)
10689 {
10690 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10691 }
10692 
10693 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10694 				    char *buf, size_t nbytes,
10695 				    loff_t off)
10696 {
10697 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10698 }
10699 
10700 static inline void cpu_uclamp_print(struct seq_file *sf,
10701 				    enum uclamp_id clamp_id)
10702 {
10703 	struct task_group *tg;
10704 	u64 util_clamp;
10705 	u64 percent;
10706 	u32 rem;
10707 
10708 	scoped_guard (rcu) {
10709 		tg = css_tg(seq_css(sf));
10710 		util_clamp = tg->uclamp_req[clamp_id].value;
10711 	}
10712 
10713 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10714 		seq_puts(sf, "max\n");
10715 		return;
10716 	}
10717 
10718 	percent = tg->uclamp_pct[clamp_id];
10719 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10720 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10721 }
10722 
10723 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10724 {
10725 	cpu_uclamp_print(sf, UCLAMP_MIN);
10726 	return 0;
10727 }
10728 
10729 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10730 {
10731 	cpu_uclamp_print(sf, UCLAMP_MAX);
10732 	return 0;
10733 }
10734 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10735 
10736 #ifdef CONFIG_FAIR_GROUP_SCHED
10737 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10738 				struct cftype *cftype, u64 shareval)
10739 {
10740 	if (shareval > scale_load_down(ULONG_MAX))
10741 		shareval = MAX_SHARES;
10742 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10743 }
10744 
10745 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10746 			       struct cftype *cft)
10747 {
10748 	struct task_group *tg = css_tg(css);
10749 
10750 	return (u64) scale_load_down(tg->shares);
10751 }
10752 
10753 #ifdef CONFIG_CFS_BANDWIDTH
10754 static DEFINE_MUTEX(cfs_constraints_mutex);
10755 
10756 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10757 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10758 /* More than 203 days if BW_SHIFT equals 20. */
10759 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10760 
10761 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10762 
10763 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10764 				u64 burst)
10765 {
10766 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10767 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10768 
10769 	if (tg == &root_task_group)
10770 		return -EINVAL;
10771 
10772 	/*
10773 	 * Ensure we have at some amount of bandwidth every period.  This is
10774 	 * to prevent reaching a state of large arrears when throttled via
10775 	 * entity_tick() resulting in prolonged exit starvation.
10776 	 */
10777 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10778 		return -EINVAL;
10779 
10780 	/*
10781 	 * Likewise, bound things on the other side by preventing insane quota
10782 	 * periods.  This also allows us to normalize in computing quota
10783 	 * feasibility.
10784 	 */
10785 	if (period > max_cfs_quota_period)
10786 		return -EINVAL;
10787 
10788 	/*
10789 	 * Bound quota to defend quota against overflow during bandwidth shift.
10790 	 */
10791 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10792 		return -EINVAL;
10793 
10794 	if (quota != RUNTIME_INF && (burst > quota ||
10795 				     burst + quota > max_cfs_runtime))
10796 		return -EINVAL;
10797 
10798 	/*
10799 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10800 	 * unthrottle_offline_cfs_rqs().
10801 	 */
10802 	guard(cpus_read_lock)();
10803 	guard(mutex)(&cfs_constraints_mutex);
10804 
10805 	ret = __cfs_schedulable(tg, period, quota);
10806 	if (ret)
10807 		return ret;
10808 
10809 	runtime_enabled = quota != RUNTIME_INF;
10810 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10811 	/*
10812 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10813 	 * before making related changes, and on->off must occur afterwards
10814 	 */
10815 	if (runtime_enabled && !runtime_was_enabled)
10816 		cfs_bandwidth_usage_inc();
10817 
10818 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10819 		cfs_b->period = ns_to_ktime(period);
10820 		cfs_b->quota = quota;
10821 		cfs_b->burst = burst;
10822 
10823 		__refill_cfs_bandwidth_runtime(cfs_b);
10824 
10825 		/*
10826 		 * Restart the period timer (if active) to handle new
10827 		 * period expiry:
10828 		 */
10829 		if (runtime_enabled)
10830 			start_cfs_bandwidth(cfs_b);
10831 	}
10832 
10833 	for_each_online_cpu(i) {
10834 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10835 		struct rq *rq = cfs_rq->rq;
10836 
10837 		guard(rq_lock_irq)(rq);
10838 		cfs_rq->runtime_enabled = runtime_enabled;
10839 		cfs_rq->runtime_remaining = 0;
10840 
10841 		if (cfs_rq->throttled)
10842 			unthrottle_cfs_rq(cfs_rq);
10843 	}
10844 
10845 	if (runtime_was_enabled && !runtime_enabled)
10846 		cfs_bandwidth_usage_dec();
10847 
10848 	return 0;
10849 }
10850 
10851 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10852 {
10853 	u64 quota, period, burst;
10854 
10855 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10856 	burst = tg->cfs_bandwidth.burst;
10857 	if (cfs_quota_us < 0)
10858 		quota = RUNTIME_INF;
10859 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10860 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10861 	else
10862 		return -EINVAL;
10863 
10864 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10865 }
10866 
10867 static long tg_get_cfs_quota(struct task_group *tg)
10868 {
10869 	u64 quota_us;
10870 
10871 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10872 		return -1;
10873 
10874 	quota_us = tg->cfs_bandwidth.quota;
10875 	do_div(quota_us, NSEC_PER_USEC);
10876 
10877 	return quota_us;
10878 }
10879 
10880 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10881 {
10882 	u64 quota, period, burst;
10883 
10884 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10885 		return -EINVAL;
10886 
10887 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10888 	quota = tg->cfs_bandwidth.quota;
10889 	burst = tg->cfs_bandwidth.burst;
10890 
10891 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10892 }
10893 
10894 static long tg_get_cfs_period(struct task_group *tg)
10895 {
10896 	u64 cfs_period_us;
10897 
10898 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10899 	do_div(cfs_period_us, NSEC_PER_USEC);
10900 
10901 	return cfs_period_us;
10902 }
10903 
10904 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10905 {
10906 	u64 quota, period, burst;
10907 
10908 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10909 		return -EINVAL;
10910 
10911 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10912 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10913 	quota = tg->cfs_bandwidth.quota;
10914 
10915 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10916 }
10917 
10918 static long tg_get_cfs_burst(struct task_group *tg)
10919 {
10920 	u64 burst_us;
10921 
10922 	burst_us = tg->cfs_bandwidth.burst;
10923 	do_div(burst_us, NSEC_PER_USEC);
10924 
10925 	return burst_us;
10926 }
10927 
10928 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10929 				  struct cftype *cft)
10930 {
10931 	return tg_get_cfs_quota(css_tg(css));
10932 }
10933 
10934 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10935 				   struct cftype *cftype, s64 cfs_quota_us)
10936 {
10937 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10938 }
10939 
10940 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10941 				   struct cftype *cft)
10942 {
10943 	return tg_get_cfs_period(css_tg(css));
10944 }
10945 
10946 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10947 				    struct cftype *cftype, u64 cfs_period_us)
10948 {
10949 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10950 }
10951 
10952 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10953 				  struct cftype *cft)
10954 {
10955 	return tg_get_cfs_burst(css_tg(css));
10956 }
10957 
10958 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10959 				   struct cftype *cftype, u64 cfs_burst_us)
10960 {
10961 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10962 }
10963 
10964 struct cfs_schedulable_data {
10965 	struct task_group *tg;
10966 	u64 period, quota;
10967 };
10968 
10969 /*
10970  * normalize group quota/period to be quota/max_period
10971  * note: units are usecs
10972  */
10973 static u64 normalize_cfs_quota(struct task_group *tg,
10974 			       struct cfs_schedulable_data *d)
10975 {
10976 	u64 quota, period;
10977 
10978 	if (tg == d->tg) {
10979 		period = d->period;
10980 		quota = d->quota;
10981 	} else {
10982 		period = tg_get_cfs_period(tg);
10983 		quota = tg_get_cfs_quota(tg);
10984 	}
10985 
10986 	/* note: these should typically be equivalent */
10987 	if (quota == RUNTIME_INF || quota == -1)
10988 		return RUNTIME_INF;
10989 
10990 	return to_ratio(period, quota);
10991 }
10992 
10993 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10994 {
10995 	struct cfs_schedulable_data *d = data;
10996 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10997 	s64 quota = 0, parent_quota = -1;
10998 
10999 	if (!tg->parent) {
11000 		quota = RUNTIME_INF;
11001 	} else {
11002 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11003 
11004 		quota = normalize_cfs_quota(tg, d);
11005 		parent_quota = parent_b->hierarchical_quota;
11006 
11007 		/*
11008 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11009 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11010 		 * inherit when no limit is set. In both cases this is used
11011 		 * by the scheduler to determine if a given CFS task has a
11012 		 * bandwidth constraint at some higher level.
11013 		 */
11014 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11015 			if (quota == RUNTIME_INF)
11016 				quota = parent_quota;
11017 			else if (parent_quota != RUNTIME_INF)
11018 				quota = min(quota, parent_quota);
11019 		} else {
11020 			if (quota == RUNTIME_INF)
11021 				quota = parent_quota;
11022 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11023 				return -EINVAL;
11024 		}
11025 	}
11026 	cfs_b->hierarchical_quota = quota;
11027 
11028 	return 0;
11029 }
11030 
11031 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11032 {
11033 	struct cfs_schedulable_data data = {
11034 		.tg = tg,
11035 		.period = period,
11036 		.quota = quota,
11037 	};
11038 
11039 	if (quota != RUNTIME_INF) {
11040 		do_div(data.period, NSEC_PER_USEC);
11041 		do_div(data.quota, NSEC_PER_USEC);
11042 	}
11043 
11044 	guard(rcu)();
11045 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11046 }
11047 
11048 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11049 {
11050 	struct task_group *tg = css_tg(seq_css(sf));
11051 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11052 
11053 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11054 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11055 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11056 
11057 	if (schedstat_enabled() && tg != &root_task_group) {
11058 		struct sched_statistics *stats;
11059 		u64 ws = 0;
11060 		int i;
11061 
11062 		for_each_possible_cpu(i) {
11063 			stats = __schedstats_from_se(tg->se[i]);
11064 			ws += schedstat_val(stats->wait_sum);
11065 		}
11066 
11067 		seq_printf(sf, "wait_sum %llu\n", ws);
11068 	}
11069 
11070 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11071 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11072 
11073 	return 0;
11074 }
11075 
11076 static u64 throttled_time_self(struct task_group *tg)
11077 {
11078 	int i;
11079 	u64 total = 0;
11080 
11081 	for_each_possible_cpu(i) {
11082 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11083 	}
11084 
11085 	return total;
11086 }
11087 
11088 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11089 {
11090 	struct task_group *tg = css_tg(seq_css(sf));
11091 
11092 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11093 
11094 	return 0;
11095 }
11096 #endif /* CONFIG_CFS_BANDWIDTH */
11097 #endif /* CONFIG_FAIR_GROUP_SCHED */
11098 
11099 #ifdef CONFIG_RT_GROUP_SCHED
11100 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11101 				struct cftype *cft, s64 val)
11102 {
11103 	return sched_group_set_rt_runtime(css_tg(css), val);
11104 }
11105 
11106 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11107 			       struct cftype *cft)
11108 {
11109 	return sched_group_rt_runtime(css_tg(css));
11110 }
11111 
11112 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11113 				    struct cftype *cftype, u64 rt_period_us)
11114 {
11115 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11116 }
11117 
11118 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11119 				   struct cftype *cft)
11120 {
11121 	return sched_group_rt_period(css_tg(css));
11122 }
11123 #endif /* CONFIG_RT_GROUP_SCHED */
11124 
11125 #ifdef CONFIG_FAIR_GROUP_SCHED
11126 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11127 			       struct cftype *cft)
11128 {
11129 	return css_tg(css)->idle;
11130 }
11131 
11132 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11133 				struct cftype *cft, s64 idle)
11134 {
11135 	return sched_group_set_idle(css_tg(css), idle);
11136 }
11137 #endif
11138 
11139 static struct cftype cpu_legacy_files[] = {
11140 #ifdef CONFIG_FAIR_GROUP_SCHED
11141 	{
11142 		.name = "shares",
11143 		.read_u64 = cpu_shares_read_u64,
11144 		.write_u64 = cpu_shares_write_u64,
11145 	},
11146 	{
11147 		.name = "idle",
11148 		.read_s64 = cpu_idle_read_s64,
11149 		.write_s64 = cpu_idle_write_s64,
11150 	},
11151 #endif
11152 #ifdef CONFIG_CFS_BANDWIDTH
11153 	{
11154 		.name = "cfs_quota_us",
11155 		.read_s64 = cpu_cfs_quota_read_s64,
11156 		.write_s64 = cpu_cfs_quota_write_s64,
11157 	},
11158 	{
11159 		.name = "cfs_period_us",
11160 		.read_u64 = cpu_cfs_period_read_u64,
11161 		.write_u64 = cpu_cfs_period_write_u64,
11162 	},
11163 	{
11164 		.name = "cfs_burst_us",
11165 		.read_u64 = cpu_cfs_burst_read_u64,
11166 		.write_u64 = cpu_cfs_burst_write_u64,
11167 	},
11168 	{
11169 		.name = "stat",
11170 		.seq_show = cpu_cfs_stat_show,
11171 	},
11172 	{
11173 		.name = "stat.local",
11174 		.seq_show = cpu_cfs_local_stat_show,
11175 	},
11176 #endif
11177 #ifdef CONFIG_RT_GROUP_SCHED
11178 	{
11179 		.name = "rt_runtime_us",
11180 		.read_s64 = cpu_rt_runtime_read,
11181 		.write_s64 = cpu_rt_runtime_write,
11182 	},
11183 	{
11184 		.name = "rt_period_us",
11185 		.read_u64 = cpu_rt_period_read_uint,
11186 		.write_u64 = cpu_rt_period_write_uint,
11187 	},
11188 #endif
11189 #ifdef CONFIG_UCLAMP_TASK_GROUP
11190 	{
11191 		.name = "uclamp.min",
11192 		.flags = CFTYPE_NOT_ON_ROOT,
11193 		.seq_show = cpu_uclamp_min_show,
11194 		.write = cpu_uclamp_min_write,
11195 	},
11196 	{
11197 		.name = "uclamp.max",
11198 		.flags = CFTYPE_NOT_ON_ROOT,
11199 		.seq_show = cpu_uclamp_max_show,
11200 		.write = cpu_uclamp_max_write,
11201 	},
11202 #endif
11203 	{ }	/* Terminate */
11204 };
11205 
11206 static int cpu_extra_stat_show(struct seq_file *sf,
11207 			       struct cgroup_subsys_state *css)
11208 {
11209 #ifdef CONFIG_CFS_BANDWIDTH
11210 	{
11211 		struct task_group *tg = css_tg(css);
11212 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11213 		u64 throttled_usec, burst_usec;
11214 
11215 		throttled_usec = cfs_b->throttled_time;
11216 		do_div(throttled_usec, NSEC_PER_USEC);
11217 		burst_usec = cfs_b->burst_time;
11218 		do_div(burst_usec, NSEC_PER_USEC);
11219 
11220 		seq_printf(sf, "nr_periods %d\n"
11221 			   "nr_throttled %d\n"
11222 			   "throttled_usec %llu\n"
11223 			   "nr_bursts %d\n"
11224 			   "burst_usec %llu\n",
11225 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11226 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11227 	}
11228 #endif
11229 	return 0;
11230 }
11231 
11232 static int cpu_local_stat_show(struct seq_file *sf,
11233 			       struct cgroup_subsys_state *css)
11234 {
11235 #ifdef CONFIG_CFS_BANDWIDTH
11236 	{
11237 		struct task_group *tg = css_tg(css);
11238 		u64 throttled_self_usec;
11239 
11240 		throttled_self_usec = throttled_time_self(tg);
11241 		do_div(throttled_self_usec, NSEC_PER_USEC);
11242 
11243 		seq_printf(sf, "throttled_usec %llu\n",
11244 			   throttled_self_usec);
11245 	}
11246 #endif
11247 	return 0;
11248 }
11249 
11250 #ifdef CONFIG_FAIR_GROUP_SCHED
11251 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11252 			       struct cftype *cft)
11253 {
11254 	struct task_group *tg = css_tg(css);
11255 	u64 weight = scale_load_down(tg->shares);
11256 
11257 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11258 }
11259 
11260 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11261 				struct cftype *cft, u64 weight)
11262 {
11263 	/*
11264 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11265 	 * values which are 1, 100 and 10000 respectively.  While it loses
11266 	 * a bit of range on both ends, it maps pretty well onto the shares
11267 	 * value used by scheduler and the round-trip conversions preserve
11268 	 * the original value over the entire range.
11269 	 */
11270 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11271 		return -ERANGE;
11272 
11273 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11274 
11275 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11276 }
11277 
11278 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11279 				    struct cftype *cft)
11280 {
11281 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11282 	int last_delta = INT_MAX;
11283 	int prio, delta;
11284 
11285 	/* find the closest nice value to the current weight */
11286 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11287 		delta = abs(sched_prio_to_weight[prio] - weight);
11288 		if (delta >= last_delta)
11289 			break;
11290 		last_delta = delta;
11291 	}
11292 
11293 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11294 }
11295 
11296 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11297 				     struct cftype *cft, s64 nice)
11298 {
11299 	unsigned long weight;
11300 	int idx;
11301 
11302 	if (nice < MIN_NICE || nice > MAX_NICE)
11303 		return -ERANGE;
11304 
11305 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11306 	idx = array_index_nospec(idx, 40);
11307 	weight = sched_prio_to_weight[idx];
11308 
11309 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11310 }
11311 #endif
11312 
11313 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11314 						  long period, long quota)
11315 {
11316 	if (quota < 0)
11317 		seq_puts(sf, "max");
11318 	else
11319 		seq_printf(sf, "%ld", quota);
11320 
11321 	seq_printf(sf, " %ld\n", period);
11322 }
11323 
11324 /* caller should put the current value in *@periodp before calling */
11325 static int __maybe_unused cpu_period_quota_parse(char *buf,
11326 						 u64 *periodp, u64 *quotap)
11327 {
11328 	char tok[21];	/* U64_MAX */
11329 
11330 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11331 		return -EINVAL;
11332 
11333 	*periodp *= NSEC_PER_USEC;
11334 
11335 	if (sscanf(tok, "%llu", quotap))
11336 		*quotap *= NSEC_PER_USEC;
11337 	else if (!strcmp(tok, "max"))
11338 		*quotap = RUNTIME_INF;
11339 	else
11340 		return -EINVAL;
11341 
11342 	return 0;
11343 }
11344 
11345 #ifdef CONFIG_CFS_BANDWIDTH
11346 static int cpu_max_show(struct seq_file *sf, void *v)
11347 {
11348 	struct task_group *tg = css_tg(seq_css(sf));
11349 
11350 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11351 	return 0;
11352 }
11353 
11354 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11355 			     char *buf, size_t nbytes, loff_t off)
11356 {
11357 	struct task_group *tg = css_tg(of_css(of));
11358 	u64 period = tg_get_cfs_period(tg);
11359 	u64 burst = tg_get_cfs_burst(tg);
11360 	u64 quota;
11361 	int ret;
11362 
11363 	ret = cpu_period_quota_parse(buf, &period, &quota);
11364 	if (!ret)
11365 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11366 	return ret ?: nbytes;
11367 }
11368 #endif
11369 
11370 static struct cftype cpu_files[] = {
11371 #ifdef CONFIG_FAIR_GROUP_SCHED
11372 	{
11373 		.name = "weight",
11374 		.flags = CFTYPE_NOT_ON_ROOT,
11375 		.read_u64 = cpu_weight_read_u64,
11376 		.write_u64 = cpu_weight_write_u64,
11377 	},
11378 	{
11379 		.name = "weight.nice",
11380 		.flags = CFTYPE_NOT_ON_ROOT,
11381 		.read_s64 = cpu_weight_nice_read_s64,
11382 		.write_s64 = cpu_weight_nice_write_s64,
11383 	},
11384 	{
11385 		.name = "idle",
11386 		.flags = CFTYPE_NOT_ON_ROOT,
11387 		.read_s64 = cpu_idle_read_s64,
11388 		.write_s64 = cpu_idle_write_s64,
11389 	},
11390 #endif
11391 #ifdef CONFIG_CFS_BANDWIDTH
11392 	{
11393 		.name = "max",
11394 		.flags = CFTYPE_NOT_ON_ROOT,
11395 		.seq_show = cpu_max_show,
11396 		.write = cpu_max_write,
11397 	},
11398 	{
11399 		.name = "max.burst",
11400 		.flags = CFTYPE_NOT_ON_ROOT,
11401 		.read_u64 = cpu_cfs_burst_read_u64,
11402 		.write_u64 = cpu_cfs_burst_write_u64,
11403 	},
11404 #endif
11405 #ifdef CONFIG_UCLAMP_TASK_GROUP
11406 	{
11407 		.name = "uclamp.min",
11408 		.flags = CFTYPE_NOT_ON_ROOT,
11409 		.seq_show = cpu_uclamp_min_show,
11410 		.write = cpu_uclamp_min_write,
11411 	},
11412 	{
11413 		.name = "uclamp.max",
11414 		.flags = CFTYPE_NOT_ON_ROOT,
11415 		.seq_show = cpu_uclamp_max_show,
11416 		.write = cpu_uclamp_max_write,
11417 	},
11418 #endif
11419 	{ }	/* terminate */
11420 };
11421 
11422 struct cgroup_subsys cpu_cgrp_subsys = {
11423 	.css_alloc	= cpu_cgroup_css_alloc,
11424 	.css_online	= cpu_cgroup_css_online,
11425 	.css_released	= cpu_cgroup_css_released,
11426 	.css_free	= cpu_cgroup_css_free,
11427 	.css_extra_stat_show = cpu_extra_stat_show,
11428 	.css_local_stat_show = cpu_local_stat_show,
11429 #ifdef CONFIG_RT_GROUP_SCHED
11430 	.can_attach	= cpu_cgroup_can_attach,
11431 #endif
11432 	.attach		= cpu_cgroup_attach,
11433 	.legacy_cftypes	= cpu_legacy_files,
11434 	.dfl_cftypes	= cpu_files,
11435 	.early_init	= true,
11436 	.threaded	= true,
11437 };
11438 
11439 #endif	/* CONFIG_CGROUP_SCHED */
11440 
11441 void dump_cpu_task(int cpu)
11442 {
11443 	if (cpu == smp_processor_id() && in_hardirq()) {
11444 		struct pt_regs *regs;
11445 
11446 		regs = get_irq_regs();
11447 		if (regs) {
11448 			show_regs(regs);
11449 			return;
11450 		}
11451 	}
11452 
11453 	if (trigger_single_cpu_backtrace(cpu))
11454 		return;
11455 
11456 	pr_info("Task dump for CPU %d:\n", cpu);
11457 	sched_show_task(cpu_curr(cpu));
11458 }
11459 
11460 /*
11461  * Nice levels are multiplicative, with a gentle 10% change for every
11462  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11463  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11464  * that remained on nice 0.
11465  *
11466  * The "10% effect" is relative and cumulative: from _any_ nice level,
11467  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11468  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11469  * If a task goes up by ~10% and another task goes down by ~10% then
11470  * the relative distance between them is ~25%.)
11471  */
11472 const int sched_prio_to_weight[40] = {
11473  /* -20 */     88761,     71755,     56483,     46273,     36291,
11474  /* -15 */     29154,     23254,     18705,     14949,     11916,
11475  /* -10 */      9548,      7620,      6100,      4904,      3906,
11476  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11477  /*   0 */      1024,       820,       655,       526,       423,
11478  /*   5 */       335,       272,       215,       172,       137,
11479  /*  10 */       110,        87,        70,        56,        45,
11480  /*  15 */        36,        29,        23,        18,        15,
11481 };
11482 
11483 /*
11484  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11485  *
11486  * In cases where the weight does not change often, we can use the
11487  * precalculated inverse to speed up arithmetics by turning divisions
11488  * into multiplications:
11489  */
11490 const u32 sched_prio_to_wmult[40] = {
11491  /* -20 */     48388,     59856,     76040,     92818,    118348,
11492  /* -15 */    147320,    184698,    229616,    287308,    360437,
11493  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11494  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11495  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11496  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11497  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11498  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11499 };
11500 
11501 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11502 {
11503         trace_sched_update_nr_running_tp(rq, count);
11504 }
11505 
11506 #ifdef CONFIG_SCHED_MM_CID
11507 
11508 /*
11509  * @cid_lock: Guarantee forward-progress of cid allocation.
11510  *
11511  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11512  * is only used when contention is detected by the lock-free allocation so
11513  * forward progress can be guaranteed.
11514  */
11515 DEFINE_RAW_SPINLOCK(cid_lock);
11516 
11517 /*
11518  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11519  *
11520  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11521  * detected, it is set to 1 to ensure that all newly coming allocations are
11522  * serialized by @cid_lock until the allocation which detected contention
11523  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11524  * of a cid allocation.
11525  */
11526 int use_cid_lock;
11527 
11528 /*
11529  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11530  * concurrently with respect to the execution of the source runqueue context
11531  * switch.
11532  *
11533  * There is one basic properties we want to guarantee here:
11534  *
11535  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11536  * used by a task. That would lead to concurrent allocation of the cid and
11537  * userspace corruption.
11538  *
11539  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11540  * that a pair of loads observe at least one of a pair of stores, which can be
11541  * shown as:
11542  *
11543  *      X = Y = 0
11544  *
11545  *      w[X]=1          w[Y]=1
11546  *      MB              MB
11547  *      r[Y]=y          r[X]=x
11548  *
11549  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11550  * values 0 and 1, this algorithm cares about specific state transitions of the
11551  * runqueue current task (as updated by the scheduler context switch), and the
11552  * per-mm/cpu cid value.
11553  *
11554  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11555  * task->mm != mm for the rest of the discussion. There are two scheduler state
11556  * transitions on context switch we care about:
11557  *
11558  * (TSA) Store to rq->curr with transition from (N) to (Y)
11559  *
11560  * (TSB) Store to rq->curr with transition from (Y) to (N)
11561  *
11562  * On the remote-clear side, there is one transition we care about:
11563  *
11564  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11565  *
11566  * There is also a transition to UNSET state which can be performed from all
11567  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11568  * guarantees that only a single thread will succeed:
11569  *
11570  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11571  *
11572  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11573  * when a thread is actively using the cid (property (1)).
11574  *
11575  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11576  *
11577  * Scenario A) (TSA)+(TMA) (from next task perspective)
11578  *
11579  * CPU0                                      CPU1
11580  *
11581  * Context switch CS-1                       Remote-clear
11582  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11583  *                                             (implied barrier after cmpxchg)
11584  *   - switch_mm_cid()
11585  *     - memory barrier (see switch_mm_cid()
11586  *       comment explaining how this barrier
11587  *       is combined with other scheduler
11588  *       barriers)
11589  *     - mm_cid_get (next)
11590  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11591  *
11592  * This Dekker ensures that either task (Y) is observed by the
11593  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11594  * observed.
11595  *
11596  * If task (Y) store is observed by rcu_dereference(), it means that there is
11597  * still an active task on the cpu. Remote-clear will therefore not transition
11598  * to UNSET, which fulfills property (1).
11599  *
11600  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11601  * it will move its state to UNSET, which clears the percpu cid perhaps
11602  * uselessly (which is not an issue for correctness). Because task (Y) is not
11603  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11604  * state to UNSET is done with a cmpxchg expecting that the old state has the
11605  * LAZY flag set, only one thread will successfully UNSET.
11606  *
11607  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11608  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11609  * CPU1 will observe task (Y) and do nothing more, which is fine.
11610  *
11611  * What we are effectively preventing with this Dekker is a scenario where
11612  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11613  * because this would UNSET a cid which is actively used.
11614  */
11615 
11616 void sched_mm_cid_migrate_from(struct task_struct *t)
11617 {
11618 	t->migrate_from_cpu = task_cpu(t);
11619 }
11620 
11621 static
11622 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11623 					  struct task_struct *t,
11624 					  struct mm_cid *src_pcpu_cid)
11625 {
11626 	struct mm_struct *mm = t->mm;
11627 	struct task_struct *src_task;
11628 	int src_cid, last_mm_cid;
11629 
11630 	if (!mm)
11631 		return -1;
11632 
11633 	last_mm_cid = t->last_mm_cid;
11634 	/*
11635 	 * If the migrated task has no last cid, or if the current
11636 	 * task on src rq uses the cid, it means the source cid does not need
11637 	 * to be moved to the destination cpu.
11638 	 */
11639 	if (last_mm_cid == -1)
11640 		return -1;
11641 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11642 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11643 		return -1;
11644 
11645 	/*
11646 	 * If we observe an active task using the mm on this rq, it means we
11647 	 * are not the last task to be migrated from this cpu for this mm, so
11648 	 * there is no need to move src_cid to the destination cpu.
11649 	 */
11650 	guard(rcu)();
11651 	src_task = rcu_dereference(src_rq->curr);
11652 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11653 		t->last_mm_cid = -1;
11654 		return -1;
11655 	}
11656 
11657 	return src_cid;
11658 }
11659 
11660 static
11661 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11662 					      struct task_struct *t,
11663 					      struct mm_cid *src_pcpu_cid,
11664 					      int src_cid)
11665 {
11666 	struct task_struct *src_task;
11667 	struct mm_struct *mm = t->mm;
11668 	int lazy_cid;
11669 
11670 	if (src_cid == -1)
11671 		return -1;
11672 
11673 	/*
11674 	 * Attempt to clear the source cpu cid to move it to the destination
11675 	 * cpu.
11676 	 */
11677 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11678 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11679 		return -1;
11680 
11681 	/*
11682 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11683 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11684 	 * between store to rq->curr and load of prev and next task's
11685 	 * per-mm/cpu cid.
11686 	 *
11687 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11688 	 * rq->curr->mm_cid_active matches the barrier in
11689 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11690 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11691 	 * load of per-mm/cpu cid.
11692 	 */
11693 
11694 	/*
11695 	 * If we observe an active task using the mm on this rq after setting
11696 	 * the lazy-put flag, this task will be responsible for transitioning
11697 	 * from lazy-put flag set to MM_CID_UNSET.
11698 	 */
11699 	scoped_guard (rcu) {
11700 		src_task = rcu_dereference(src_rq->curr);
11701 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11702 			/*
11703 			 * We observed an active task for this mm, there is therefore
11704 			 * no point in moving this cid to the destination cpu.
11705 			 */
11706 			t->last_mm_cid = -1;
11707 			return -1;
11708 		}
11709 	}
11710 
11711 	/*
11712 	 * The src_cid is unused, so it can be unset.
11713 	 */
11714 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11715 		return -1;
11716 	return src_cid;
11717 }
11718 
11719 /*
11720  * Migration to dst cpu. Called with dst_rq lock held.
11721  * Interrupts are disabled, which keeps the window of cid ownership without the
11722  * source rq lock held small.
11723  */
11724 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11725 {
11726 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11727 	struct mm_struct *mm = t->mm;
11728 	int src_cid, dst_cid, src_cpu;
11729 	struct rq *src_rq;
11730 
11731 	lockdep_assert_rq_held(dst_rq);
11732 
11733 	if (!mm)
11734 		return;
11735 	src_cpu = t->migrate_from_cpu;
11736 	if (src_cpu == -1) {
11737 		t->last_mm_cid = -1;
11738 		return;
11739 	}
11740 	/*
11741 	 * Move the src cid if the dst cid is unset. This keeps id
11742 	 * allocation closest to 0 in cases where few threads migrate around
11743 	 * many cpus.
11744 	 *
11745 	 * If destination cid is already set, we may have to just clear
11746 	 * the src cid to ensure compactness in frequent migrations
11747 	 * scenarios.
11748 	 *
11749 	 * It is not useful to clear the src cid when the number of threads is
11750 	 * greater or equal to the number of allowed cpus, because user-space
11751 	 * can expect that the number of allowed cids can reach the number of
11752 	 * allowed cpus.
11753 	 */
11754 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11755 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11756 	if (!mm_cid_is_unset(dst_cid) &&
11757 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11758 		return;
11759 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11760 	src_rq = cpu_rq(src_cpu);
11761 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11762 	if (src_cid == -1)
11763 		return;
11764 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11765 							    src_cid);
11766 	if (src_cid == -1)
11767 		return;
11768 	if (!mm_cid_is_unset(dst_cid)) {
11769 		__mm_cid_put(mm, src_cid);
11770 		return;
11771 	}
11772 	/* Move src_cid to dst cpu. */
11773 	mm_cid_snapshot_time(dst_rq, mm);
11774 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11775 }
11776 
11777 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11778 				      int cpu)
11779 {
11780 	struct rq *rq = cpu_rq(cpu);
11781 	struct task_struct *t;
11782 	int cid, lazy_cid;
11783 
11784 	cid = READ_ONCE(pcpu_cid->cid);
11785 	if (!mm_cid_is_valid(cid))
11786 		return;
11787 
11788 	/*
11789 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11790 	 * there happens to be other tasks left on the source cpu using this
11791 	 * mm, the next task using this mm will reallocate its cid on context
11792 	 * switch.
11793 	 */
11794 	lazy_cid = mm_cid_set_lazy_put(cid);
11795 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11796 		return;
11797 
11798 	/*
11799 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11800 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11801 	 * between store to rq->curr and load of prev and next task's
11802 	 * per-mm/cpu cid.
11803 	 *
11804 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11805 	 * rq->curr->mm_cid_active matches the barrier in
11806 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11807 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11808 	 * load of per-mm/cpu cid.
11809 	 */
11810 
11811 	/*
11812 	 * If we observe an active task using the mm on this rq after setting
11813 	 * the lazy-put flag, that task will be responsible for transitioning
11814 	 * from lazy-put flag set to MM_CID_UNSET.
11815 	 */
11816 	scoped_guard (rcu) {
11817 		t = rcu_dereference(rq->curr);
11818 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11819 			return;
11820 	}
11821 
11822 	/*
11823 	 * The cid is unused, so it can be unset.
11824 	 * Disable interrupts to keep the window of cid ownership without rq
11825 	 * lock small.
11826 	 */
11827 	scoped_guard (irqsave) {
11828 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11829 			__mm_cid_put(mm, cid);
11830 	}
11831 }
11832 
11833 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11834 {
11835 	struct rq *rq = cpu_rq(cpu);
11836 	struct mm_cid *pcpu_cid;
11837 	struct task_struct *curr;
11838 	u64 rq_clock;
11839 
11840 	/*
11841 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11842 	 * while is irrelevant.
11843 	 */
11844 	rq_clock = READ_ONCE(rq->clock);
11845 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11846 
11847 	/*
11848 	 * In order to take care of infrequently scheduled tasks, bump the time
11849 	 * snapshot associated with this cid if an active task using the mm is
11850 	 * observed on this rq.
11851 	 */
11852 	scoped_guard (rcu) {
11853 		curr = rcu_dereference(rq->curr);
11854 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11855 			WRITE_ONCE(pcpu_cid->time, rq_clock);
11856 			return;
11857 		}
11858 	}
11859 
11860 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11861 		return;
11862 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11863 }
11864 
11865 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11866 					     int weight)
11867 {
11868 	struct mm_cid *pcpu_cid;
11869 	int cid;
11870 
11871 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11872 	cid = READ_ONCE(pcpu_cid->cid);
11873 	if (!mm_cid_is_valid(cid) || cid < weight)
11874 		return;
11875 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11876 }
11877 
11878 static void task_mm_cid_work(struct callback_head *work)
11879 {
11880 	unsigned long now = jiffies, old_scan, next_scan;
11881 	struct task_struct *t = current;
11882 	struct cpumask *cidmask;
11883 	struct mm_struct *mm;
11884 	int weight, cpu;
11885 
11886 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11887 
11888 	work->next = work;	/* Prevent double-add */
11889 	if (t->flags & PF_EXITING)
11890 		return;
11891 	mm = t->mm;
11892 	if (!mm)
11893 		return;
11894 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11895 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11896 	if (!old_scan) {
11897 		unsigned long res;
11898 
11899 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11900 		if (res != old_scan)
11901 			old_scan = res;
11902 		else
11903 			old_scan = next_scan;
11904 	}
11905 	if (time_before(now, old_scan))
11906 		return;
11907 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11908 		return;
11909 	cidmask = mm_cidmask(mm);
11910 	/* Clear cids that were not recently used. */
11911 	for_each_possible_cpu(cpu)
11912 		sched_mm_cid_remote_clear_old(mm, cpu);
11913 	weight = cpumask_weight(cidmask);
11914 	/*
11915 	 * Clear cids that are greater or equal to the cidmask weight to
11916 	 * recompact it.
11917 	 */
11918 	for_each_possible_cpu(cpu)
11919 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11920 }
11921 
11922 void init_sched_mm_cid(struct task_struct *t)
11923 {
11924 	struct mm_struct *mm = t->mm;
11925 	int mm_users = 0;
11926 
11927 	if (mm) {
11928 		mm_users = atomic_read(&mm->mm_users);
11929 		if (mm_users == 1)
11930 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11931 	}
11932 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11933 	init_task_work(&t->cid_work, task_mm_cid_work);
11934 }
11935 
11936 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11937 {
11938 	struct callback_head *work = &curr->cid_work;
11939 	unsigned long now = jiffies;
11940 
11941 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11942 	    work->next != work)
11943 		return;
11944 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11945 		return;
11946 	task_work_add(curr, work, TWA_RESUME);
11947 }
11948 
11949 void sched_mm_cid_exit_signals(struct task_struct *t)
11950 {
11951 	struct mm_struct *mm = t->mm;
11952 	struct rq *rq;
11953 
11954 	if (!mm)
11955 		return;
11956 
11957 	preempt_disable();
11958 	rq = this_rq();
11959 	guard(rq_lock_irqsave)(rq);
11960 	preempt_enable_no_resched();	/* holding spinlock */
11961 	WRITE_ONCE(t->mm_cid_active, 0);
11962 	/*
11963 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11964 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11965 	 */
11966 	smp_mb();
11967 	mm_cid_put(mm);
11968 	t->last_mm_cid = t->mm_cid = -1;
11969 }
11970 
11971 void sched_mm_cid_before_execve(struct task_struct *t)
11972 {
11973 	struct mm_struct *mm = t->mm;
11974 	struct rq *rq;
11975 
11976 	if (!mm)
11977 		return;
11978 
11979 	preempt_disable();
11980 	rq = this_rq();
11981 	guard(rq_lock_irqsave)(rq);
11982 	preempt_enable_no_resched();	/* holding spinlock */
11983 	WRITE_ONCE(t->mm_cid_active, 0);
11984 	/*
11985 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11986 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11987 	 */
11988 	smp_mb();
11989 	mm_cid_put(mm);
11990 	t->last_mm_cid = t->mm_cid = -1;
11991 }
11992 
11993 void sched_mm_cid_after_execve(struct task_struct *t)
11994 {
11995 	struct mm_struct *mm = t->mm;
11996 	struct rq *rq;
11997 
11998 	if (!mm)
11999 		return;
12000 
12001 	preempt_disable();
12002 	rq = this_rq();
12003 	scoped_guard (rq_lock_irqsave, rq) {
12004 		preempt_enable_no_resched();	/* holding spinlock */
12005 		WRITE_ONCE(t->mm_cid_active, 1);
12006 		/*
12007 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12008 		 * Matches barrier in sched_mm_cid_remote_clear_old().
12009 		 */
12010 		smp_mb();
12011 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12012 	}
12013 	rseq_set_notify_resume(t);
12014 }
12015 
12016 void sched_mm_cid_fork(struct task_struct *t)
12017 {
12018 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12019 	t->mm_cid_active = 1;
12020 }
12021 #endif
12022