1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include "sched.h" 10 11 #include <linux/nospec.h> 12 13 #include <linux/kcov.h> 14 #include <linux/scs.h> 15 16 #include <asm/switch_to.h> 17 #include <asm/tlb.h> 18 19 #include "../workqueue_internal.h" 20 #include "../../fs/io-wq.h" 21 #include "../smpboot.h" 22 23 #include "pelt.h" 24 25 #define CREATE_TRACE_POINTS 26 #include <trace/events/sched.h> 27 28 /* 29 * Export tracepoints that act as a bare tracehook (ie: have no trace event 30 * associated with them) to allow external modules to probe them. 31 */ 32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 38 39 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 40 41 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 42 /* 43 * Debugging: various feature bits 44 * 45 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 46 * sysctl_sched_features, defined in sched.h, to allow constants propagation 47 * at compile time and compiler optimization based on features default. 48 */ 49 #define SCHED_FEAT(name, enabled) \ 50 (1UL << __SCHED_FEAT_##name) * enabled | 51 const_debug unsigned int sysctl_sched_features = 52 #include "features.h" 53 0; 54 #undef SCHED_FEAT 55 #endif 56 57 /* 58 * Number of tasks to iterate in a single balance run. 59 * Limited because this is done with IRQs disabled. 60 */ 61 const_debug unsigned int sysctl_sched_nr_migrate = 32; 62 63 /* 64 * period over which we measure -rt task CPU usage in us. 65 * default: 1s 66 */ 67 unsigned int sysctl_sched_rt_period = 1000000; 68 69 __read_mostly int scheduler_running; 70 71 /* 72 * part of the period that we allow rt tasks to run in us. 73 * default: 0.95s 74 */ 75 int sysctl_sched_rt_runtime = 950000; 76 77 /* 78 * __task_rq_lock - lock the rq @p resides on. 79 */ 80 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 81 __acquires(rq->lock) 82 { 83 struct rq *rq; 84 85 lockdep_assert_held(&p->pi_lock); 86 87 for (;;) { 88 rq = task_rq(p); 89 raw_spin_lock(&rq->lock); 90 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 91 rq_pin_lock(rq, rf); 92 return rq; 93 } 94 raw_spin_unlock(&rq->lock); 95 96 while (unlikely(task_on_rq_migrating(p))) 97 cpu_relax(); 98 } 99 } 100 101 /* 102 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 103 */ 104 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 105 __acquires(p->pi_lock) 106 __acquires(rq->lock) 107 { 108 struct rq *rq; 109 110 for (;;) { 111 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 112 rq = task_rq(p); 113 raw_spin_lock(&rq->lock); 114 /* 115 * move_queued_task() task_rq_lock() 116 * 117 * ACQUIRE (rq->lock) 118 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 119 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 120 * [S] ->cpu = new_cpu [L] task_rq() 121 * [L] ->on_rq 122 * RELEASE (rq->lock) 123 * 124 * If we observe the old CPU in task_rq_lock(), the acquire of 125 * the old rq->lock will fully serialize against the stores. 126 * 127 * If we observe the new CPU in task_rq_lock(), the address 128 * dependency headed by '[L] rq = task_rq()' and the acquire 129 * will pair with the WMB to ensure we then also see migrating. 130 */ 131 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 132 rq_pin_lock(rq, rf); 133 return rq; 134 } 135 raw_spin_unlock(&rq->lock); 136 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 137 138 while (unlikely(task_on_rq_migrating(p))) 139 cpu_relax(); 140 } 141 } 142 143 /* 144 * RQ-clock updating methods: 145 */ 146 147 static void update_rq_clock_task(struct rq *rq, s64 delta) 148 { 149 /* 150 * In theory, the compile should just see 0 here, and optimize out the call 151 * to sched_rt_avg_update. But I don't trust it... 152 */ 153 s64 __maybe_unused steal = 0, irq_delta = 0; 154 155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 156 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 157 158 /* 159 * Since irq_time is only updated on {soft,}irq_exit, we might run into 160 * this case when a previous update_rq_clock() happened inside a 161 * {soft,}irq region. 162 * 163 * When this happens, we stop ->clock_task and only update the 164 * prev_irq_time stamp to account for the part that fit, so that a next 165 * update will consume the rest. This ensures ->clock_task is 166 * monotonic. 167 * 168 * It does however cause some slight miss-attribution of {soft,}irq 169 * time, a more accurate solution would be to update the irq_time using 170 * the current rq->clock timestamp, except that would require using 171 * atomic ops. 172 */ 173 if (irq_delta > delta) 174 irq_delta = delta; 175 176 rq->prev_irq_time += irq_delta; 177 delta -= irq_delta; 178 #endif 179 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 180 if (static_key_false((¶virt_steal_rq_enabled))) { 181 steal = paravirt_steal_clock(cpu_of(rq)); 182 steal -= rq->prev_steal_time_rq; 183 184 if (unlikely(steal > delta)) 185 steal = delta; 186 187 rq->prev_steal_time_rq += steal; 188 delta -= steal; 189 } 190 #endif 191 192 rq->clock_task += delta; 193 194 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 195 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 196 update_irq_load_avg(rq, irq_delta + steal); 197 #endif 198 update_rq_clock_pelt(rq, delta); 199 } 200 201 void update_rq_clock(struct rq *rq) 202 { 203 s64 delta; 204 205 lockdep_assert_held(&rq->lock); 206 207 if (rq->clock_update_flags & RQCF_ACT_SKIP) 208 return; 209 210 #ifdef CONFIG_SCHED_DEBUG 211 if (sched_feat(WARN_DOUBLE_CLOCK)) 212 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 213 rq->clock_update_flags |= RQCF_UPDATED; 214 #endif 215 216 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 217 if (delta < 0) 218 return; 219 rq->clock += delta; 220 update_rq_clock_task(rq, delta); 221 } 222 223 224 #ifdef CONFIG_SCHED_HRTICK 225 /* 226 * Use HR-timers to deliver accurate preemption points. 227 */ 228 229 static void hrtick_clear(struct rq *rq) 230 { 231 if (hrtimer_active(&rq->hrtick_timer)) 232 hrtimer_cancel(&rq->hrtick_timer); 233 } 234 235 /* 236 * High-resolution timer tick. 237 * Runs from hardirq context with interrupts disabled. 238 */ 239 static enum hrtimer_restart hrtick(struct hrtimer *timer) 240 { 241 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 242 struct rq_flags rf; 243 244 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 245 246 rq_lock(rq, &rf); 247 update_rq_clock(rq); 248 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 249 rq_unlock(rq, &rf); 250 251 return HRTIMER_NORESTART; 252 } 253 254 #ifdef CONFIG_SMP 255 256 static void __hrtick_restart(struct rq *rq) 257 { 258 struct hrtimer *timer = &rq->hrtick_timer; 259 260 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 261 } 262 263 /* 264 * called from hardirq (IPI) context 265 */ 266 static void __hrtick_start(void *arg) 267 { 268 struct rq *rq = arg; 269 struct rq_flags rf; 270 271 rq_lock(rq, &rf); 272 __hrtick_restart(rq); 273 rq_unlock(rq, &rf); 274 } 275 276 /* 277 * Called to set the hrtick timer state. 278 * 279 * called with rq->lock held and irqs disabled 280 */ 281 void hrtick_start(struct rq *rq, u64 delay) 282 { 283 struct hrtimer *timer = &rq->hrtick_timer; 284 ktime_t time; 285 s64 delta; 286 287 /* 288 * Don't schedule slices shorter than 10000ns, that just 289 * doesn't make sense and can cause timer DoS. 290 */ 291 delta = max_t(s64, delay, 10000LL); 292 time = ktime_add_ns(timer->base->get_time(), delta); 293 294 hrtimer_set_expires(timer, time); 295 296 if (rq == this_rq()) 297 __hrtick_restart(rq); 298 else 299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 300 } 301 302 #else 303 /* 304 * Called to set the hrtick timer state. 305 * 306 * called with rq->lock held and irqs disabled 307 */ 308 void hrtick_start(struct rq *rq, u64 delay) 309 { 310 /* 311 * Don't schedule slices shorter than 10000ns, that just 312 * doesn't make sense. Rely on vruntime for fairness. 313 */ 314 delay = max_t(u64, delay, 10000LL); 315 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 316 HRTIMER_MODE_REL_PINNED_HARD); 317 } 318 #endif /* CONFIG_SMP */ 319 320 static void hrtick_rq_init(struct rq *rq) 321 { 322 #ifdef CONFIG_SMP 323 rq->hrtick_csd.flags = 0; 324 rq->hrtick_csd.func = __hrtick_start; 325 rq->hrtick_csd.info = rq; 326 #endif 327 328 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 329 rq->hrtick_timer.function = hrtick; 330 } 331 #else /* CONFIG_SCHED_HRTICK */ 332 static inline void hrtick_clear(struct rq *rq) 333 { 334 } 335 336 static inline void hrtick_rq_init(struct rq *rq) 337 { 338 } 339 #endif /* CONFIG_SCHED_HRTICK */ 340 341 /* 342 * cmpxchg based fetch_or, macro so it works for different integer types 343 */ 344 #define fetch_or(ptr, mask) \ 345 ({ \ 346 typeof(ptr) _ptr = (ptr); \ 347 typeof(mask) _mask = (mask); \ 348 typeof(*_ptr) _old, _val = *_ptr; \ 349 \ 350 for (;;) { \ 351 _old = cmpxchg(_ptr, _val, _val | _mask); \ 352 if (_old == _val) \ 353 break; \ 354 _val = _old; \ 355 } \ 356 _old; \ 357 }) 358 359 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 360 /* 361 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 362 * this avoids any races wrt polling state changes and thereby avoids 363 * spurious IPIs. 364 */ 365 static bool set_nr_and_not_polling(struct task_struct *p) 366 { 367 struct thread_info *ti = task_thread_info(p); 368 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 369 } 370 371 /* 372 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 373 * 374 * If this returns true, then the idle task promises to call 375 * sched_ttwu_pending() and reschedule soon. 376 */ 377 static bool set_nr_if_polling(struct task_struct *p) 378 { 379 struct thread_info *ti = task_thread_info(p); 380 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 381 382 for (;;) { 383 if (!(val & _TIF_POLLING_NRFLAG)) 384 return false; 385 if (val & _TIF_NEED_RESCHED) 386 return true; 387 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 388 if (old == val) 389 break; 390 val = old; 391 } 392 return true; 393 } 394 395 #else 396 static bool set_nr_and_not_polling(struct task_struct *p) 397 { 398 set_tsk_need_resched(p); 399 return true; 400 } 401 402 #ifdef CONFIG_SMP 403 static bool set_nr_if_polling(struct task_struct *p) 404 { 405 return false; 406 } 407 #endif 408 #endif 409 410 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 411 { 412 struct wake_q_node *node = &task->wake_q; 413 414 /* 415 * Atomically grab the task, if ->wake_q is !nil already it means 416 * its already queued (either by us or someone else) and will get the 417 * wakeup due to that. 418 * 419 * In order to ensure that a pending wakeup will observe our pending 420 * state, even in the failed case, an explicit smp_mb() must be used. 421 */ 422 smp_mb__before_atomic(); 423 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 424 return false; 425 426 /* 427 * The head is context local, there can be no concurrency. 428 */ 429 *head->lastp = node; 430 head->lastp = &node->next; 431 return true; 432 } 433 434 /** 435 * wake_q_add() - queue a wakeup for 'later' waking. 436 * @head: the wake_q_head to add @task to 437 * @task: the task to queue for 'later' wakeup 438 * 439 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 440 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 441 * instantly. 442 * 443 * This function must be used as-if it were wake_up_process(); IOW the task 444 * must be ready to be woken at this location. 445 */ 446 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 447 { 448 if (__wake_q_add(head, task)) 449 get_task_struct(task); 450 } 451 452 /** 453 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 454 * @head: the wake_q_head to add @task to 455 * @task: the task to queue for 'later' wakeup 456 * 457 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 458 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 459 * instantly. 460 * 461 * This function must be used as-if it were wake_up_process(); IOW the task 462 * must be ready to be woken at this location. 463 * 464 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 465 * that already hold reference to @task can call the 'safe' version and trust 466 * wake_q to do the right thing depending whether or not the @task is already 467 * queued for wakeup. 468 */ 469 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 470 { 471 if (!__wake_q_add(head, task)) 472 put_task_struct(task); 473 } 474 475 void wake_up_q(struct wake_q_head *head) 476 { 477 struct wake_q_node *node = head->first; 478 479 while (node != WAKE_Q_TAIL) { 480 struct task_struct *task; 481 482 task = container_of(node, struct task_struct, wake_q); 483 BUG_ON(!task); 484 /* Task can safely be re-inserted now: */ 485 node = node->next; 486 task->wake_q.next = NULL; 487 488 /* 489 * wake_up_process() executes a full barrier, which pairs with 490 * the queueing in wake_q_add() so as not to miss wakeups. 491 */ 492 wake_up_process(task); 493 put_task_struct(task); 494 } 495 } 496 497 /* 498 * resched_curr - mark rq's current task 'to be rescheduled now'. 499 * 500 * On UP this means the setting of the need_resched flag, on SMP it 501 * might also involve a cross-CPU call to trigger the scheduler on 502 * the target CPU. 503 */ 504 void resched_curr(struct rq *rq) 505 { 506 struct task_struct *curr = rq->curr; 507 int cpu; 508 509 lockdep_assert_held(&rq->lock); 510 511 if (test_tsk_need_resched(curr)) 512 return; 513 514 cpu = cpu_of(rq); 515 516 if (cpu == smp_processor_id()) { 517 set_tsk_need_resched(curr); 518 set_preempt_need_resched(); 519 return; 520 } 521 522 if (set_nr_and_not_polling(curr)) 523 smp_send_reschedule(cpu); 524 else 525 trace_sched_wake_idle_without_ipi(cpu); 526 } 527 528 void resched_cpu(int cpu) 529 { 530 struct rq *rq = cpu_rq(cpu); 531 unsigned long flags; 532 533 raw_spin_lock_irqsave(&rq->lock, flags); 534 if (cpu_online(cpu) || cpu == smp_processor_id()) 535 resched_curr(rq); 536 raw_spin_unlock_irqrestore(&rq->lock, flags); 537 } 538 539 #ifdef CONFIG_SMP 540 #ifdef CONFIG_NO_HZ_COMMON 541 /* 542 * In the semi idle case, use the nearest busy CPU for migrating timers 543 * from an idle CPU. This is good for power-savings. 544 * 545 * We don't do similar optimization for completely idle system, as 546 * selecting an idle CPU will add more delays to the timers than intended 547 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 548 */ 549 int get_nohz_timer_target(void) 550 { 551 int i, cpu = smp_processor_id(), default_cpu = -1; 552 struct sched_domain *sd; 553 554 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) { 555 if (!idle_cpu(cpu)) 556 return cpu; 557 default_cpu = cpu; 558 } 559 560 rcu_read_lock(); 561 for_each_domain(cpu, sd) { 562 for_each_cpu_and(i, sched_domain_span(sd), 563 housekeeping_cpumask(HK_FLAG_TIMER)) { 564 if (cpu == i) 565 continue; 566 567 if (!idle_cpu(i)) { 568 cpu = i; 569 goto unlock; 570 } 571 } 572 } 573 574 if (default_cpu == -1) 575 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 576 cpu = default_cpu; 577 unlock: 578 rcu_read_unlock(); 579 return cpu; 580 } 581 582 /* 583 * When add_timer_on() enqueues a timer into the timer wheel of an 584 * idle CPU then this timer might expire before the next timer event 585 * which is scheduled to wake up that CPU. In case of a completely 586 * idle system the next event might even be infinite time into the 587 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 588 * leaves the inner idle loop so the newly added timer is taken into 589 * account when the CPU goes back to idle and evaluates the timer 590 * wheel for the next timer event. 591 */ 592 static void wake_up_idle_cpu(int cpu) 593 { 594 struct rq *rq = cpu_rq(cpu); 595 596 if (cpu == smp_processor_id()) 597 return; 598 599 if (set_nr_and_not_polling(rq->idle)) 600 smp_send_reschedule(cpu); 601 else 602 trace_sched_wake_idle_without_ipi(cpu); 603 } 604 605 static bool wake_up_full_nohz_cpu(int cpu) 606 { 607 /* 608 * We just need the target to call irq_exit() and re-evaluate 609 * the next tick. The nohz full kick at least implies that. 610 * If needed we can still optimize that later with an 611 * empty IRQ. 612 */ 613 if (cpu_is_offline(cpu)) 614 return true; /* Don't try to wake offline CPUs. */ 615 if (tick_nohz_full_cpu(cpu)) { 616 if (cpu != smp_processor_id() || 617 tick_nohz_tick_stopped()) 618 tick_nohz_full_kick_cpu(cpu); 619 return true; 620 } 621 622 return false; 623 } 624 625 /* 626 * Wake up the specified CPU. If the CPU is going offline, it is the 627 * caller's responsibility to deal with the lost wakeup, for example, 628 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 629 */ 630 void wake_up_nohz_cpu(int cpu) 631 { 632 if (!wake_up_full_nohz_cpu(cpu)) 633 wake_up_idle_cpu(cpu); 634 } 635 636 static inline bool got_nohz_idle_kick(void) 637 { 638 int cpu = smp_processor_id(); 639 640 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 641 return false; 642 643 if (idle_cpu(cpu) && !need_resched()) 644 return true; 645 646 /* 647 * We can't run Idle Load Balance on this CPU for this time so we 648 * cancel it and clear NOHZ_BALANCE_KICK 649 */ 650 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 651 return false; 652 } 653 654 #else /* CONFIG_NO_HZ_COMMON */ 655 656 static inline bool got_nohz_idle_kick(void) 657 { 658 return false; 659 } 660 661 #endif /* CONFIG_NO_HZ_COMMON */ 662 663 #ifdef CONFIG_NO_HZ_FULL 664 bool sched_can_stop_tick(struct rq *rq) 665 { 666 int fifo_nr_running; 667 668 /* Deadline tasks, even if single, need the tick */ 669 if (rq->dl.dl_nr_running) 670 return false; 671 672 /* 673 * If there are more than one RR tasks, we need the tick to effect the 674 * actual RR behaviour. 675 */ 676 if (rq->rt.rr_nr_running) { 677 if (rq->rt.rr_nr_running == 1) 678 return true; 679 else 680 return false; 681 } 682 683 /* 684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 685 * forced preemption between FIFO tasks. 686 */ 687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 688 if (fifo_nr_running) 689 return true; 690 691 /* 692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 693 * if there's more than one we need the tick for involuntary 694 * preemption. 695 */ 696 if (rq->nr_running > 1) 697 return false; 698 699 return true; 700 } 701 #endif /* CONFIG_NO_HZ_FULL */ 702 #endif /* CONFIG_SMP */ 703 704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 706 /* 707 * Iterate task_group tree rooted at *from, calling @down when first entering a 708 * node and @up when leaving it for the final time. 709 * 710 * Caller must hold rcu_lock or sufficient equivalent. 711 */ 712 int walk_tg_tree_from(struct task_group *from, 713 tg_visitor down, tg_visitor up, void *data) 714 { 715 struct task_group *parent, *child; 716 int ret; 717 718 parent = from; 719 720 down: 721 ret = (*down)(parent, data); 722 if (ret) 723 goto out; 724 list_for_each_entry_rcu(child, &parent->children, siblings) { 725 parent = child; 726 goto down; 727 728 up: 729 continue; 730 } 731 ret = (*up)(parent, data); 732 if (ret || parent == from) 733 goto out; 734 735 child = parent; 736 parent = parent->parent; 737 if (parent) 738 goto up; 739 out: 740 return ret; 741 } 742 743 int tg_nop(struct task_group *tg, void *data) 744 { 745 return 0; 746 } 747 #endif 748 749 static void set_load_weight(struct task_struct *p, bool update_load) 750 { 751 int prio = p->static_prio - MAX_RT_PRIO; 752 struct load_weight *load = &p->se.load; 753 754 /* 755 * SCHED_IDLE tasks get minimal weight: 756 */ 757 if (task_has_idle_policy(p)) { 758 load->weight = scale_load(WEIGHT_IDLEPRIO); 759 load->inv_weight = WMULT_IDLEPRIO; 760 return; 761 } 762 763 /* 764 * SCHED_OTHER tasks have to update their load when changing their 765 * weight 766 */ 767 if (update_load && p->sched_class == &fair_sched_class) { 768 reweight_task(p, prio); 769 } else { 770 load->weight = scale_load(sched_prio_to_weight[prio]); 771 load->inv_weight = sched_prio_to_wmult[prio]; 772 } 773 } 774 775 #ifdef CONFIG_UCLAMP_TASK 776 /* 777 * Serializes updates of utilization clamp values 778 * 779 * The (slow-path) user-space triggers utilization clamp value updates which 780 * can require updates on (fast-path) scheduler's data structures used to 781 * support enqueue/dequeue operations. 782 * While the per-CPU rq lock protects fast-path update operations, user-space 783 * requests are serialized using a mutex to reduce the risk of conflicting 784 * updates or API abuses. 785 */ 786 static DEFINE_MUTEX(uclamp_mutex); 787 788 /* Max allowed minimum utilization */ 789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 790 791 /* Max allowed maximum utilization */ 792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 793 794 /* All clamps are required to be less or equal than these values */ 795 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 796 797 /* Integer rounded range for each bucket */ 798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 799 800 #define for_each_clamp_id(clamp_id) \ 801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 802 803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 804 { 805 return clamp_value / UCLAMP_BUCKET_DELTA; 806 } 807 808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value) 809 { 810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value); 811 } 812 813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 814 { 815 if (clamp_id == UCLAMP_MIN) 816 return 0; 817 return SCHED_CAPACITY_SCALE; 818 } 819 820 static inline void uclamp_se_set(struct uclamp_se *uc_se, 821 unsigned int value, bool user_defined) 822 { 823 uc_se->value = value; 824 uc_se->bucket_id = uclamp_bucket_id(value); 825 uc_se->user_defined = user_defined; 826 } 827 828 static inline unsigned int 829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 830 unsigned int clamp_value) 831 { 832 /* 833 * Avoid blocked utilization pushing up the frequency when we go 834 * idle (which drops the max-clamp) by retaining the last known 835 * max-clamp. 836 */ 837 if (clamp_id == UCLAMP_MAX) { 838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 839 return clamp_value; 840 } 841 842 return uclamp_none(UCLAMP_MIN); 843 } 844 845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 846 unsigned int clamp_value) 847 { 848 /* Reset max-clamp retention only on idle exit */ 849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 850 return; 851 852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 853 } 854 855 static inline 856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 857 unsigned int clamp_value) 858 { 859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 860 int bucket_id = UCLAMP_BUCKETS - 1; 861 862 /* 863 * Since both min and max clamps are max aggregated, find the 864 * top most bucket with tasks in. 865 */ 866 for ( ; bucket_id >= 0; bucket_id--) { 867 if (!bucket[bucket_id].tasks) 868 continue; 869 return bucket[bucket_id].value; 870 } 871 872 /* No tasks -- default clamp values */ 873 return uclamp_idle_value(rq, clamp_id, clamp_value); 874 } 875 876 static inline struct uclamp_se 877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 878 { 879 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 880 #ifdef CONFIG_UCLAMP_TASK_GROUP 881 struct uclamp_se uc_max; 882 883 /* 884 * Tasks in autogroups or root task group will be 885 * restricted by system defaults. 886 */ 887 if (task_group_is_autogroup(task_group(p))) 888 return uc_req; 889 if (task_group(p) == &root_task_group) 890 return uc_req; 891 892 uc_max = task_group(p)->uclamp[clamp_id]; 893 if (uc_req.value > uc_max.value || !uc_req.user_defined) 894 return uc_max; 895 #endif 896 897 return uc_req; 898 } 899 900 /* 901 * The effective clamp bucket index of a task depends on, by increasing 902 * priority: 903 * - the task specific clamp value, when explicitly requested from userspace 904 * - the task group effective clamp value, for tasks not either in the root 905 * group or in an autogroup 906 * - the system default clamp value, defined by the sysadmin 907 */ 908 static inline struct uclamp_se 909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 910 { 911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 912 struct uclamp_se uc_max = uclamp_default[clamp_id]; 913 914 /* System default restrictions always apply */ 915 if (unlikely(uc_req.value > uc_max.value)) 916 return uc_max; 917 918 return uc_req; 919 } 920 921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 922 { 923 struct uclamp_se uc_eff; 924 925 /* Task currently refcounted: use back-annotated (effective) value */ 926 if (p->uclamp[clamp_id].active) 927 return (unsigned long)p->uclamp[clamp_id].value; 928 929 uc_eff = uclamp_eff_get(p, clamp_id); 930 931 return (unsigned long)uc_eff.value; 932 } 933 934 /* 935 * When a task is enqueued on a rq, the clamp bucket currently defined by the 936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 937 * updates the rq's clamp value if required. 938 * 939 * Tasks can have a task-specific value requested from user-space, track 940 * within each bucket the maximum value for tasks refcounted in it. 941 * This "local max aggregation" allows to track the exact "requested" value 942 * for each bucket when all its RUNNABLE tasks require the same clamp. 943 */ 944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 945 enum uclamp_id clamp_id) 946 { 947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 948 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 949 struct uclamp_bucket *bucket; 950 951 lockdep_assert_held(&rq->lock); 952 953 /* Update task effective clamp */ 954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 955 956 bucket = &uc_rq->bucket[uc_se->bucket_id]; 957 bucket->tasks++; 958 uc_se->active = true; 959 960 uclamp_idle_reset(rq, clamp_id, uc_se->value); 961 962 /* 963 * Local max aggregation: rq buckets always track the max 964 * "requested" clamp value of its RUNNABLE tasks. 965 */ 966 if (bucket->tasks == 1 || uc_se->value > bucket->value) 967 bucket->value = uc_se->value; 968 969 if (uc_se->value > READ_ONCE(uc_rq->value)) 970 WRITE_ONCE(uc_rq->value, uc_se->value); 971 } 972 973 /* 974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 975 * is released. If this is the last task reference counting the rq's max 976 * active clamp value, then the rq's clamp value is updated. 977 * 978 * Both refcounted tasks and rq's cached clamp values are expected to be 979 * always valid. If it's detected they are not, as defensive programming, 980 * enforce the expected state and warn. 981 */ 982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 983 enum uclamp_id clamp_id) 984 { 985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 986 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 987 struct uclamp_bucket *bucket; 988 unsigned int bkt_clamp; 989 unsigned int rq_clamp; 990 991 lockdep_assert_held(&rq->lock); 992 993 bucket = &uc_rq->bucket[uc_se->bucket_id]; 994 SCHED_WARN_ON(!bucket->tasks); 995 if (likely(bucket->tasks)) 996 bucket->tasks--; 997 uc_se->active = false; 998 999 /* 1000 * Keep "local max aggregation" simple and accept to (possibly) 1001 * overboost some RUNNABLE tasks in the same bucket. 1002 * The rq clamp bucket value is reset to its base value whenever 1003 * there are no more RUNNABLE tasks refcounting it. 1004 */ 1005 if (likely(bucket->tasks)) 1006 return; 1007 1008 rq_clamp = READ_ONCE(uc_rq->value); 1009 /* 1010 * Defensive programming: this should never happen. If it happens, 1011 * e.g. due to future modification, warn and fixup the expected value. 1012 */ 1013 SCHED_WARN_ON(bucket->value > rq_clamp); 1014 if (bucket->value >= rq_clamp) { 1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1016 WRITE_ONCE(uc_rq->value, bkt_clamp); 1017 } 1018 } 1019 1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1021 { 1022 enum uclamp_id clamp_id; 1023 1024 if (unlikely(!p->sched_class->uclamp_enabled)) 1025 return; 1026 1027 for_each_clamp_id(clamp_id) 1028 uclamp_rq_inc_id(rq, p, clamp_id); 1029 1030 /* Reset clamp idle holding when there is one RUNNABLE task */ 1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1033 } 1034 1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1036 { 1037 enum uclamp_id clamp_id; 1038 1039 if (unlikely(!p->sched_class->uclamp_enabled)) 1040 return; 1041 1042 for_each_clamp_id(clamp_id) 1043 uclamp_rq_dec_id(rq, p, clamp_id); 1044 } 1045 1046 static inline void 1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id) 1048 { 1049 struct rq_flags rf; 1050 struct rq *rq; 1051 1052 /* 1053 * Lock the task and the rq where the task is (or was) queued. 1054 * 1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1056 * price to pay to safely serialize util_{min,max} updates with 1057 * enqueues, dequeues and migration operations. 1058 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1059 */ 1060 rq = task_rq_lock(p, &rf); 1061 1062 /* 1063 * Setting the clamp bucket is serialized by task_rq_lock(). 1064 * If the task is not yet RUNNABLE and its task_struct is not 1065 * affecting a valid clamp bucket, the next time it's enqueued, 1066 * it will already see the updated clamp bucket value. 1067 */ 1068 if (p->uclamp[clamp_id].active) { 1069 uclamp_rq_dec_id(rq, p, clamp_id); 1070 uclamp_rq_inc_id(rq, p, clamp_id); 1071 } 1072 1073 task_rq_unlock(rq, p, &rf); 1074 } 1075 1076 #ifdef CONFIG_UCLAMP_TASK_GROUP 1077 static inline void 1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css, 1079 unsigned int clamps) 1080 { 1081 enum uclamp_id clamp_id; 1082 struct css_task_iter it; 1083 struct task_struct *p; 1084 1085 css_task_iter_start(css, 0, &it); 1086 while ((p = css_task_iter_next(&it))) { 1087 for_each_clamp_id(clamp_id) { 1088 if ((0x1 << clamp_id) & clamps) 1089 uclamp_update_active(p, clamp_id); 1090 } 1091 } 1092 css_task_iter_end(&it); 1093 } 1094 1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1096 static void uclamp_update_root_tg(void) 1097 { 1098 struct task_group *tg = &root_task_group; 1099 1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1101 sysctl_sched_uclamp_util_min, false); 1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1103 sysctl_sched_uclamp_util_max, false); 1104 1105 rcu_read_lock(); 1106 cpu_util_update_eff(&root_task_group.css); 1107 rcu_read_unlock(); 1108 } 1109 #else 1110 static void uclamp_update_root_tg(void) { } 1111 #endif 1112 1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1114 void __user *buffer, size_t *lenp, 1115 loff_t *ppos) 1116 { 1117 bool update_root_tg = false; 1118 int old_min, old_max; 1119 int result; 1120 1121 mutex_lock(&uclamp_mutex); 1122 old_min = sysctl_sched_uclamp_util_min; 1123 old_max = sysctl_sched_uclamp_util_max; 1124 1125 result = proc_dointvec(table, write, buffer, lenp, ppos); 1126 if (result) 1127 goto undo; 1128 if (!write) 1129 goto done; 1130 1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) { 1133 result = -EINVAL; 1134 goto undo; 1135 } 1136 1137 if (old_min != sysctl_sched_uclamp_util_min) { 1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1139 sysctl_sched_uclamp_util_min, false); 1140 update_root_tg = true; 1141 } 1142 if (old_max != sysctl_sched_uclamp_util_max) { 1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1144 sysctl_sched_uclamp_util_max, false); 1145 update_root_tg = true; 1146 } 1147 1148 if (update_root_tg) 1149 uclamp_update_root_tg(); 1150 1151 /* 1152 * We update all RUNNABLE tasks only when task groups are in use. 1153 * Otherwise, keep it simple and do just a lazy update at each next 1154 * task enqueue time. 1155 */ 1156 1157 goto done; 1158 1159 undo: 1160 sysctl_sched_uclamp_util_min = old_min; 1161 sysctl_sched_uclamp_util_max = old_max; 1162 done: 1163 mutex_unlock(&uclamp_mutex); 1164 1165 return result; 1166 } 1167 1168 static int uclamp_validate(struct task_struct *p, 1169 const struct sched_attr *attr) 1170 { 1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value; 1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value; 1173 1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) 1175 lower_bound = attr->sched_util_min; 1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) 1177 upper_bound = attr->sched_util_max; 1178 1179 if (lower_bound > upper_bound) 1180 return -EINVAL; 1181 if (upper_bound > SCHED_CAPACITY_SCALE) 1182 return -EINVAL; 1183 1184 return 0; 1185 } 1186 1187 static void __setscheduler_uclamp(struct task_struct *p, 1188 const struct sched_attr *attr) 1189 { 1190 enum uclamp_id clamp_id; 1191 1192 /* 1193 * On scheduling class change, reset to default clamps for tasks 1194 * without a task-specific value. 1195 */ 1196 for_each_clamp_id(clamp_id) { 1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1198 unsigned int clamp_value = uclamp_none(clamp_id); 1199 1200 /* Keep using defined clamps across class changes */ 1201 if (uc_se->user_defined) 1202 continue; 1203 1204 /* By default, RT tasks always get 100% boost */ 1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1206 clamp_value = uclamp_none(UCLAMP_MAX); 1207 1208 uclamp_se_set(uc_se, clamp_value, false); 1209 } 1210 1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1212 return; 1213 1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1216 attr->sched_util_min, true); 1217 } 1218 1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1221 attr->sched_util_max, true); 1222 } 1223 } 1224 1225 static void uclamp_fork(struct task_struct *p) 1226 { 1227 enum uclamp_id clamp_id; 1228 1229 for_each_clamp_id(clamp_id) 1230 p->uclamp[clamp_id].active = false; 1231 1232 if (likely(!p->sched_reset_on_fork)) 1233 return; 1234 1235 for_each_clamp_id(clamp_id) { 1236 uclamp_se_set(&p->uclamp_req[clamp_id], 1237 uclamp_none(clamp_id), false); 1238 } 1239 } 1240 1241 static void __init init_uclamp(void) 1242 { 1243 struct uclamp_se uc_max = {}; 1244 enum uclamp_id clamp_id; 1245 int cpu; 1246 1247 mutex_init(&uclamp_mutex); 1248 1249 for_each_possible_cpu(cpu) { 1250 memset(&cpu_rq(cpu)->uclamp, 0, 1251 sizeof(struct uclamp_rq)*UCLAMP_CNT); 1252 cpu_rq(cpu)->uclamp_flags = 0; 1253 } 1254 1255 for_each_clamp_id(clamp_id) { 1256 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1257 uclamp_none(clamp_id), false); 1258 } 1259 1260 /* System defaults allow max clamp values for both indexes */ 1261 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 1262 for_each_clamp_id(clamp_id) { 1263 uclamp_default[clamp_id] = uc_max; 1264 #ifdef CONFIG_UCLAMP_TASK_GROUP 1265 root_task_group.uclamp_req[clamp_id] = uc_max; 1266 root_task_group.uclamp[clamp_id] = uc_max; 1267 #endif 1268 } 1269 } 1270 1271 #else /* CONFIG_UCLAMP_TASK */ 1272 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 1273 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 1274 static inline int uclamp_validate(struct task_struct *p, 1275 const struct sched_attr *attr) 1276 { 1277 return -EOPNOTSUPP; 1278 } 1279 static void __setscheduler_uclamp(struct task_struct *p, 1280 const struct sched_attr *attr) { } 1281 static inline void uclamp_fork(struct task_struct *p) { } 1282 static inline void init_uclamp(void) { } 1283 #endif /* CONFIG_UCLAMP_TASK */ 1284 1285 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 1286 { 1287 if (!(flags & ENQUEUE_NOCLOCK)) 1288 update_rq_clock(rq); 1289 1290 if (!(flags & ENQUEUE_RESTORE)) { 1291 sched_info_queued(rq, p); 1292 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 1293 } 1294 1295 uclamp_rq_inc(rq, p); 1296 p->sched_class->enqueue_task(rq, p, flags); 1297 } 1298 1299 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 1300 { 1301 if (!(flags & DEQUEUE_NOCLOCK)) 1302 update_rq_clock(rq); 1303 1304 if (!(flags & DEQUEUE_SAVE)) { 1305 sched_info_dequeued(rq, p); 1306 psi_dequeue(p, flags & DEQUEUE_SLEEP); 1307 } 1308 1309 uclamp_rq_dec(rq, p); 1310 p->sched_class->dequeue_task(rq, p, flags); 1311 } 1312 1313 void activate_task(struct rq *rq, struct task_struct *p, int flags) 1314 { 1315 if (task_contributes_to_load(p)) 1316 rq->nr_uninterruptible--; 1317 1318 enqueue_task(rq, p, flags); 1319 1320 p->on_rq = TASK_ON_RQ_QUEUED; 1321 } 1322 1323 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 1324 { 1325 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 1326 1327 if (task_contributes_to_load(p)) 1328 rq->nr_uninterruptible++; 1329 1330 dequeue_task(rq, p, flags); 1331 } 1332 1333 /* 1334 * __normal_prio - return the priority that is based on the static prio 1335 */ 1336 static inline int __normal_prio(struct task_struct *p) 1337 { 1338 return p->static_prio; 1339 } 1340 1341 /* 1342 * Calculate the expected normal priority: i.e. priority 1343 * without taking RT-inheritance into account. Might be 1344 * boosted by interactivity modifiers. Changes upon fork, 1345 * setprio syscalls, and whenever the interactivity 1346 * estimator recalculates. 1347 */ 1348 static inline int normal_prio(struct task_struct *p) 1349 { 1350 int prio; 1351 1352 if (task_has_dl_policy(p)) 1353 prio = MAX_DL_PRIO-1; 1354 else if (task_has_rt_policy(p)) 1355 prio = MAX_RT_PRIO-1 - p->rt_priority; 1356 else 1357 prio = __normal_prio(p); 1358 return prio; 1359 } 1360 1361 /* 1362 * Calculate the current priority, i.e. the priority 1363 * taken into account by the scheduler. This value might 1364 * be boosted by RT tasks, or might be boosted by 1365 * interactivity modifiers. Will be RT if the task got 1366 * RT-boosted. If not then it returns p->normal_prio. 1367 */ 1368 static int effective_prio(struct task_struct *p) 1369 { 1370 p->normal_prio = normal_prio(p); 1371 /* 1372 * If we are RT tasks or we were boosted to RT priority, 1373 * keep the priority unchanged. Otherwise, update priority 1374 * to the normal priority: 1375 */ 1376 if (!rt_prio(p->prio)) 1377 return p->normal_prio; 1378 return p->prio; 1379 } 1380 1381 /** 1382 * task_curr - is this task currently executing on a CPU? 1383 * @p: the task in question. 1384 * 1385 * Return: 1 if the task is currently executing. 0 otherwise. 1386 */ 1387 inline int task_curr(const struct task_struct *p) 1388 { 1389 return cpu_curr(task_cpu(p)) == p; 1390 } 1391 1392 /* 1393 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 1394 * use the balance_callback list if you want balancing. 1395 * 1396 * this means any call to check_class_changed() must be followed by a call to 1397 * balance_callback(). 1398 */ 1399 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1400 const struct sched_class *prev_class, 1401 int oldprio) 1402 { 1403 if (prev_class != p->sched_class) { 1404 if (prev_class->switched_from) 1405 prev_class->switched_from(rq, p); 1406 1407 p->sched_class->switched_to(rq, p); 1408 } else if (oldprio != p->prio || dl_task(p)) 1409 p->sched_class->prio_changed(rq, p, oldprio); 1410 } 1411 1412 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 1413 { 1414 const struct sched_class *class; 1415 1416 if (p->sched_class == rq->curr->sched_class) { 1417 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 1418 } else { 1419 for_each_class(class) { 1420 if (class == rq->curr->sched_class) 1421 break; 1422 if (class == p->sched_class) { 1423 resched_curr(rq); 1424 break; 1425 } 1426 } 1427 } 1428 1429 /* 1430 * A queue event has occurred, and we're going to schedule. In 1431 * this case, we can save a useless back to back clock update. 1432 */ 1433 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 1434 rq_clock_skip_update(rq); 1435 } 1436 1437 #ifdef CONFIG_SMP 1438 1439 /* 1440 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 1441 * __set_cpus_allowed_ptr() and select_fallback_rq(). 1442 */ 1443 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 1444 { 1445 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 1446 return false; 1447 1448 if (is_per_cpu_kthread(p)) 1449 return cpu_online(cpu); 1450 1451 return cpu_active(cpu); 1452 } 1453 1454 /* 1455 * This is how migration works: 1456 * 1457 * 1) we invoke migration_cpu_stop() on the target CPU using 1458 * stop_one_cpu(). 1459 * 2) stopper starts to run (implicitly forcing the migrated thread 1460 * off the CPU) 1461 * 3) it checks whether the migrated task is still in the wrong runqueue. 1462 * 4) if it's in the wrong runqueue then the migration thread removes 1463 * it and puts it into the right queue. 1464 * 5) stopper completes and stop_one_cpu() returns and the migration 1465 * is done. 1466 */ 1467 1468 /* 1469 * move_queued_task - move a queued task to new rq. 1470 * 1471 * Returns (locked) new rq. Old rq's lock is released. 1472 */ 1473 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 1474 struct task_struct *p, int new_cpu) 1475 { 1476 lockdep_assert_held(&rq->lock); 1477 1478 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 1479 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 1480 set_task_cpu(p, new_cpu); 1481 rq_unlock(rq, rf); 1482 1483 rq = cpu_rq(new_cpu); 1484 1485 rq_lock(rq, rf); 1486 BUG_ON(task_cpu(p) != new_cpu); 1487 enqueue_task(rq, p, 0); 1488 p->on_rq = TASK_ON_RQ_QUEUED; 1489 check_preempt_curr(rq, p, 0); 1490 1491 return rq; 1492 } 1493 1494 struct migration_arg { 1495 struct task_struct *task; 1496 int dest_cpu; 1497 }; 1498 1499 /* 1500 * Move (not current) task off this CPU, onto the destination CPU. We're doing 1501 * this because either it can't run here any more (set_cpus_allowed() 1502 * away from this CPU, or CPU going down), or because we're 1503 * attempting to rebalance this task on exec (sched_exec). 1504 * 1505 * So we race with normal scheduler movements, but that's OK, as long 1506 * as the task is no longer on this CPU. 1507 */ 1508 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 1509 struct task_struct *p, int dest_cpu) 1510 { 1511 /* Affinity changed (again). */ 1512 if (!is_cpu_allowed(p, dest_cpu)) 1513 return rq; 1514 1515 update_rq_clock(rq); 1516 rq = move_queued_task(rq, rf, p, dest_cpu); 1517 1518 return rq; 1519 } 1520 1521 /* 1522 * migration_cpu_stop - this will be executed by a highprio stopper thread 1523 * and performs thread migration by bumping thread off CPU then 1524 * 'pushing' onto another runqueue. 1525 */ 1526 static int migration_cpu_stop(void *data) 1527 { 1528 struct migration_arg *arg = data; 1529 struct task_struct *p = arg->task; 1530 struct rq *rq = this_rq(); 1531 struct rq_flags rf; 1532 1533 /* 1534 * The original target CPU might have gone down and we might 1535 * be on another CPU but it doesn't matter. 1536 */ 1537 local_irq_disable(); 1538 /* 1539 * We need to explicitly wake pending tasks before running 1540 * __migrate_task() such that we will not miss enforcing cpus_ptr 1541 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 1542 */ 1543 sched_ttwu_pending(); 1544 1545 raw_spin_lock(&p->pi_lock); 1546 rq_lock(rq, &rf); 1547 /* 1548 * If task_rq(p) != rq, it cannot be migrated here, because we're 1549 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1550 * we're holding p->pi_lock. 1551 */ 1552 if (task_rq(p) == rq) { 1553 if (task_on_rq_queued(p)) 1554 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1555 else 1556 p->wake_cpu = arg->dest_cpu; 1557 } 1558 rq_unlock(rq, &rf); 1559 raw_spin_unlock(&p->pi_lock); 1560 1561 local_irq_enable(); 1562 return 0; 1563 } 1564 1565 /* 1566 * sched_class::set_cpus_allowed must do the below, but is not required to 1567 * actually call this function. 1568 */ 1569 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1570 { 1571 cpumask_copy(&p->cpus_mask, new_mask); 1572 p->nr_cpus_allowed = cpumask_weight(new_mask); 1573 } 1574 1575 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1576 { 1577 struct rq *rq = task_rq(p); 1578 bool queued, running; 1579 1580 lockdep_assert_held(&p->pi_lock); 1581 1582 queued = task_on_rq_queued(p); 1583 running = task_current(rq, p); 1584 1585 if (queued) { 1586 /* 1587 * Because __kthread_bind() calls this on blocked tasks without 1588 * holding rq->lock. 1589 */ 1590 lockdep_assert_held(&rq->lock); 1591 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1592 } 1593 if (running) 1594 put_prev_task(rq, p); 1595 1596 p->sched_class->set_cpus_allowed(p, new_mask); 1597 1598 if (queued) 1599 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1600 if (running) 1601 set_next_task(rq, p); 1602 } 1603 1604 /* 1605 * Change a given task's CPU affinity. Migrate the thread to a 1606 * proper CPU and schedule it away if the CPU it's executing on 1607 * is removed from the allowed bitmask. 1608 * 1609 * NOTE: the caller must have a valid reference to the task, the 1610 * task must not exit() & deallocate itself prematurely. The 1611 * call is not atomic; no spinlocks may be held. 1612 */ 1613 static int __set_cpus_allowed_ptr(struct task_struct *p, 1614 const struct cpumask *new_mask, bool check) 1615 { 1616 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1617 unsigned int dest_cpu; 1618 struct rq_flags rf; 1619 struct rq *rq; 1620 int ret = 0; 1621 1622 rq = task_rq_lock(p, &rf); 1623 update_rq_clock(rq); 1624 1625 if (p->flags & PF_KTHREAD) { 1626 /* 1627 * Kernel threads are allowed on online && !active CPUs 1628 */ 1629 cpu_valid_mask = cpu_online_mask; 1630 } 1631 1632 /* 1633 * Must re-check here, to close a race against __kthread_bind(), 1634 * sched_setaffinity() is not guaranteed to observe the flag. 1635 */ 1636 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1637 ret = -EINVAL; 1638 goto out; 1639 } 1640 1641 if (cpumask_equal(p->cpus_ptr, new_mask)) 1642 goto out; 1643 1644 /* 1645 * Picking a ~random cpu helps in cases where we are changing affinity 1646 * for groups of tasks (ie. cpuset), so that load balancing is not 1647 * immediately required to distribute the tasks within their new mask. 1648 */ 1649 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 1650 if (dest_cpu >= nr_cpu_ids) { 1651 ret = -EINVAL; 1652 goto out; 1653 } 1654 1655 do_set_cpus_allowed(p, new_mask); 1656 1657 if (p->flags & PF_KTHREAD) { 1658 /* 1659 * For kernel threads that do indeed end up on online && 1660 * !active we want to ensure they are strict per-CPU threads. 1661 */ 1662 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1663 !cpumask_intersects(new_mask, cpu_active_mask) && 1664 p->nr_cpus_allowed != 1); 1665 } 1666 1667 /* Can the task run on the task's current CPU? If so, we're done */ 1668 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1669 goto out; 1670 1671 if (task_running(rq, p) || p->state == TASK_WAKING) { 1672 struct migration_arg arg = { p, dest_cpu }; 1673 /* Need help from migration thread: drop lock and wait. */ 1674 task_rq_unlock(rq, p, &rf); 1675 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1676 return 0; 1677 } else if (task_on_rq_queued(p)) { 1678 /* 1679 * OK, since we're going to drop the lock immediately 1680 * afterwards anyway. 1681 */ 1682 rq = move_queued_task(rq, &rf, p, dest_cpu); 1683 } 1684 out: 1685 task_rq_unlock(rq, p, &rf); 1686 1687 return ret; 1688 } 1689 1690 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1691 { 1692 return __set_cpus_allowed_ptr(p, new_mask, false); 1693 } 1694 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1695 1696 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1697 { 1698 #ifdef CONFIG_SCHED_DEBUG 1699 /* 1700 * We should never call set_task_cpu() on a blocked task, 1701 * ttwu() will sort out the placement. 1702 */ 1703 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1704 !p->on_rq); 1705 1706 /* 1707 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1708 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1709 * time relying on p->on_rq. 1710 */ 1711 WARN_ON_ONCE(p->state == TASK_RUNNING && 1712 p->sched_class == &fair_sched_class && 1713 (p->on_rq && !task_on_rq_migrating(p))); 1714 1715 #ifdef CONFIG_LOCKDEP 1716 /* 1717 * The caller should hold either p->pi_lock or rq->lock, when changing 1718 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1719 * 1720 * sched_move_task() holds both and thus holding either pins the cgroup, 1721 * see task_group(). 1722 * 1723 * Furthermore, all task_rq users should acquire both locks, see 1724 * task_rq_lock(). 1725 */ 1726 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1727 lockdep_is_held(&task_rq(p)->lock))); 1728 #endif 1729 /* 1730 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1731 */ 1732 WARN_ON_ONCE(!cpu_online(new_cpu)); 1733 #endif 1734 1735 trace_sched_migrate_task(p, new_cpu); 1736 1737 if (task_cpu(p) != new_cpu) { 1738 if (p->sched_class->migrate_task_rq) 1739 p->sched_class->migrate_task_rq(p, new_cpu); 1740 p->se.nr_migrations++; 1741 rseq_migrate(p); 1742 perf_event_task_migrate(p); 1743 } 1744 1745 __set_task_cpu(p, new_cpu); 1746 } 1747 1748 #ifdef CONFIG_NUMA_BALANCING 1749 static void __migrate_swap_task(struct task_struct *p, int cpu) 1750 { 1751 if (task_on_rq_queued(p)) { 1752 struct rq *src_rq, *dst_rq; 1753 struct rq_flags srf, drf; 1754 1755 src_rq = task_rq(p); 1756 dst_rq = cpu_rq(cpu); 1757 1758 rq_pin_lock(src_rq, &srf); 1759 rq_pin_lock(dst_rq, &drf); 1760 1761 deactivate_task(src_rq, p, 0); 1762 set_task_cpu(p, cpu); 1763 activate_task(dst_rq, p, 0); 1764 check_preempt_curr(dst_rq, p, 0); 1765 1766 rq_unpin_lock(dst_rq, &drf); 1767 rq_unpin_lock(src_rq, &srf); 1768 1769 } else { 1770 /* 1771 * Task isn't running anymore; make it appear like we migrated 1772 * it before it went to sleep. This means on wakeup we make the 1773 * previous CPU our target instead of where it really is. 1774 */ 1775 p->wake_cpu = cpu; 1776 } 1777 } 1778 1779 struct migration_swap_arg { 1780 struct task_struct *src_task, *dst_task; 1781 int src_cpu, dst_cpu; 1782 }; 1783 1784 static int migrate_swap_stop(void *data) 1785 { 1786 struct migration_swap_arg *arg = data; 1787 struct rq *src_rq, *dst_rq; 1788 int ret = -EAGAIN; 1789 1790 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1791 return -EAGAIN; 1792 1793 src_rq = cpu_rq(arg->src_cpu); 1794 dst_rq = cpu_rq(arg->dst_cpu); 1795 1796 double_raw_lock(&arg->src_task->pi_lock, 1797 &arg->dst_task->pi_lock); 1798 double_rq_lock(src_rq, dst_rq); 1799 1800 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1801 goto unlock; 1802 1803 if (task_cpu(arg->src_task) != arg->src_cpu) 1804 goto unlock; 1805 1806 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 1807 goto unlock; 1808 1809 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 1810 goto unlock; 1811 1812 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1813 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1814 1815 ret = 0; 1816 1817 unlock: 1818 double_rq_unlock(src_rq, dst_rq); 1819 raw_spin_unlock(&arg->dst_task->pi_lock); 1820 raw_spin_unlock(&arg->src_task->pi_lock); 1821 1822 return ret; 1823 } 1824 1825 /* 1826 * Cross migrate two tasks 1827 */ 1828 int migrate_swap(struct task_struct *cur, struct task_struct *p, 1829 int target_cpu, int curr_cpu) 1830 { 1831 struct migration_swap_arg arg; 1832 int ret = -EINVAL; 1833 1834 arg = (struct migration_swap_arg){ 1835 .src_task = cur, 1836 .src_cpu = curr_cpu, 1837 .dst_task = p, 1838 .dst_cpu = target_cpu, 1839 }; 1840 1841 if (arg.src_cpu == arg.dst_cpu) 1842 goto out; 1843 1844 /* 1845 * These three tests are all lockless; this is OK since all of them 1846 * will be re-checked with proper locks held further down the line. 1847 */ 1848 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1849 goto out; 1850 1851 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 1852 goto out; 1853 1854 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 1855 goto out; 1856 1857 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1858 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1859 1860 out: 1861 return ret; 1862 } 1863 #endif /* CONFIG_NUMA_BALANCING */ 1864 1865 /* 1866 * wait_task_inactive - wait for a thread to unschedule. 1867 * 1868 * If @match_state is nonzero, it's the @p->state value just checked and 1869 * not expected to change. If it changes, i.e. @p might have woken up, 1870 * then return zero. When we succeed in waiting for @p to be off its CPU, 1871 * we return a positive number (its total switch count). If a second call 1872 * a short while later returns the same number, the caller can be sure that 1873 * @p has remained unscheduled the whole time. 1874 * 1875 * The caller must ensure that the task *will* unschedule sometime soon, 1876 * else this function might spin for a *long* time. This function can't 1877 * be called with interrupts off, or it may introduce deadlock with 1878 * smp_call_function() if an IPI is sent by the same process we are 1879 * waiting to become inactive. 1880 */ 1881 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1882 { 1883 int running, queued; 1884 struct rq_flags rf; 1885 unsigned long ncsw; 1886 struct rq *rq; 1887 1888 for (;;) { 1889 /* 1890 * We do the initial early heuristics without holding 1891 * any task-queue locks at all. We'll only try to get 1892 * the runqueue lock when things look like they will 1893 * work out! 1894 */ 1895 rq = task_rq(p); 1896 1897 /* 1898 * If the task is actively running on another CPU 1899 * still, just relax and busy-wait without holding 1900 * any locks. 1901 * 1902 * NOTE! Since we don't hold any locks, it's not 1903 * even sure that "rq" stays as the right runqueue! 1904 * But we don't care, since "task_running()" will 1905 * return false if the runqueue has changed and p 1906 * is actually now running somewhere else! 1907 */ 1908 while (task_running(rq, p)) { 1909 if (match_state && unlikely(p->state != match_state)) 1910 return 0; 1911 cpu_relax(); 1912 } 1913 1914 /* 1915 * Ok, time to look more closely! We need the rq 1916 * lock now, to be *sure*. If we're wrong, we'll 1917 * just go back and repeat. 1918 */ 1919 rq = task_rq_lock(p, &rf); 1920 trace_sched_wait_task(p); 1921 running = task_running(rq, p); 1922 queued = task_on_rq_queued(p); 1923 ncsw = 0; 1924 if (!match_state || p->state == match_state) 1925 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1926 task_rq_unlock(rq, p, &rf); 1927 1928 /* 1929 * If it changed from the expected state, bail out now. 1930 */ 1931 if (unlikely(!ncsw)) 1932 break; 1933 1934 /* 1935 * Was it really running after all now that we 1936 * checked with the proper locks actually held? 1937 * 1938 * Oops. Go back and try again.. 1939 */ 1940 if (unlikely(running)) { 1941 cpu_relax(); 1942 continue; 1943 } 1944 1945 /* 1946 * It's not enough that it's not actively running, 1947 * it must be off the runqueue _entirely_, and not 1948 * preempted! 1949 * 1950 * So if it was still runnable (but just not actively 1951 * running right now), it's preempted, and we should 1952 * yield - it could be a while. 1953 */ 1954 if (unlikely(queued)) { 1955 ktime_t to = NSEC_PER_SEC / HZ; 1956 1957 set_current_state(TASK_UNINTERRUPTIBLE); 1958 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1959 continue; 1960 } 1961 1962 /* 1963 * Ahh, all good. It wasn't running, and it wasn't 1964 * runnable, which means that it will never become 1965 * running in the future either. We're all done! 1966 */ 1967 break; 1968 } 1969 1970 return ncsw; 1971 } 1972 1973 /*** 1974 * kick_process - kick a running thread to enter/exit the kernel 1975 * @p: the to-be-kicked thread 1976 * 1977 * Cause a process which is running on another CPU to enter 1978 * kernel-mode, without any delay. (to get signals handled.) 1979 * 1980 * NOTE: this function doesn't have to take the runqueue lock, 1981 * because all it wants to ensure is that the remote task enters 1982 * the kernel. If the IPI races and the task has been migrated 1983 * to another CPU then no harm is done and the purpose has been 1984 * achieved as well. 1985 */ 1986 void kick_process(struct task_struct *p) 1987 { 1988 int cpu; 1989 1990 preempt_disable(); 1991 cpu = task_cpu(p); 1992 if ((cpu != smp_processor_id()) && task_curr(p)) 1993 smp_send_reschedule(cpu); 1994 preempt_enable(); 1995 } 1996 EXPORT_SYMBOL_GPL(kick_process); 1997 1998 /* 1999 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 2000 * 2001 * A few notes on cpu_active vs cpu_online: 2002 * 2003 * - cpu_active must be a subset of cpu_online 2004 * 2005 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 2006 * see __set_cpus_allowed_ptr(). At this point the newly online 2007 * CPU isn't yet part of the sched domains, and balancing will not 2008 * see it. 2009 * 2010 * - on CPU-down we clear cpu_active() to mask the sched domains and 2011 * avoid the load balancer to place new tasks on the to be removed 2012 * CPU. Existing tasks will remain running there and will be taken 2013 * off. 2014 * 2015 * This means that fallback selection must not select !active CPUs. 2016 * And can assume that any active CPU must be online. Conversely 2017 * select_task_rq() below may allow selection of !active CPUs in order 2018 * to satisfy the above rules. 2019 */ 2020 static int select_fallback_rq(int cpu, struct task_struct *p) 2021 { 2022 int nid = cpu_to_node(cpu); 2023 const struct cpumask *nodemask = NULL; 2024 enum { cpuset, possible, fail } state = cpuset; 2025 int dest_cpu; 2026 2027 /* 2028 * If the node that the CPU is on has been offlined, cpu_to_node() 2029 * will return -1. There is no CPU on the node, and we should 2030 * select the CPU on the other node. 2031 */ 2032 if (nid != -1) { 2033 nodemask = cpumask_of_node(nid); 2034 2035 /* Look for allowed, online CPU in same node. */ 2036 for_each_cpu(dest_cpu, nodemask) { 2037 if (!cpu_active(dest_cpu)) 2038 continue; 2039 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) 2040 return dest_cpu; 2041 } 2042 } 2043 2044 for (;;) { 2045 /* Any allowed, online CPU? */ 2046 for_each_cpu(dest_cpu, p->cpus_ptr) { 2047 if (!is_cpu_allowed(p, dest_cpu)) 2048 continue; 2049 2050 goto out; 2051 } 2052 2053 /* No more Mr. Nice Guy. */ 2054 switch (state) { 2055 case cpuset: 2056 if (IS_ENABLED(CONFIG_CPUSETS)) { 2057 cpuset_cpus_allowed_fallback(p); 2058 state = possible; 2059 break; 2060 } 2061 /* Fall-through */ 2062 case possible: 2063 do_set_cpus_allowed(p, cpu_possible_mask); 2064 state = fail; 2065 break; 2066 2067 case fail: 2068 BUG(); 2069 break; 2070 } 2071 } 2072 2073 out: 2074 if (state != cpuset) { 2075 /* 2076 * Don't tell them about moving exiting tasks or 2077 * kernel threads (both mm NULL), since they never 2078 * leave kernel. 2079 */ 2080 if (p->mm && printk_ratelimit()) { 2081 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 2082 task_pid_nr(p), p->comm, cpu); 2083 } 2084 } 2085 2086 return dest_cpu; 2087 } 2088 2089 /* 2090 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 2091 */ 2092 static inline 2093 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 2094 { 2095 lockdep_assert_held(&p->pi_lock); 2096 2097 if (p->nr_cpus_allowed > 1) 2098 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 2099 else 2100 cpu = cpumask_any(p->cpus_ptr); 2101 2102 /* 2103 * In order not to call set_task_cpu() on a blocking task we need 2104 * to rely on ttwu() to place the task on a valid ->cpus_ptr 2105 * CPU. 2106 * 2107 * Since this is common to all placement strategies, this lives here. 2108 * 2109 * [ this allows ->select_task() to simply return task_cpu(p) and 2110 * not worry about this generic constraint ] 2111 */ 2112 if (unlikely(!is_cpu_allowed(p, cpu))) 2113 cpu = select_fallback_rq(task_cpu(p), p); 2114 2115 return cpu; 2116 } 2117 2118 void sched_set_stop_task(int cpu, struct task_struct *stop) 2119 { 2120 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 2121 struct task_struct *old_stop = cpu_rq(cpu)->stop; 2122 2123 if (stop) { 2124 /* 2125 * Make it appear like a SCHED_FIFO task, its something 2126 * userspace knows about and won't get confused about. 2127 * 2128 * Also, it will make PI more or less work without too 2129 * much confusion -- but then, stop work should not 2130 * rely on PI working anyway. 2131 */ 2132 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 2133 2134 stop->sched_class = &stop_sched_class; 2135 } 2136 2137 cpu_rq(cpu)->stop = stop; 2138 2139 if (old_stop) { 2140 /* 2141 * Reset it back to a normal scheduling class so that 2142 * it can die in pieces. 2143 */ 2144 old_stop->sched_class = &rt_sched_class; 2145 } 2146 } 2147 2148 #else 2149 2150 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2151 const struct cpumask *new_mask, bool check) 2152 { 2153 return set_cpus_allowed_ptr(p, new_mask); 2154 } 2155 2156 #endif /* CONFIG_SMP */ 2157 2158 static void 2159 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 2160 { 2161 struct rq *rq; 2162 2163 if (!schedstat_enabled()) 2164 return; 2165 2166 rq = this_rq(); 2167 2168 #ifdef CONFIG_SMP 2169 if (cpu == rq->cpu) { 2170 __schedstat_inc(rq->ttwu_local); 2171 __schedstat_inc(p->se.statistics.nr_wakeups_local); 2172 } else { 2173 struct sched_domain *sd; 2174 2175 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 2176 rcu_read_lock(); 2177 for_each_domain(rq->cpu, sd) { 2178 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2179 __schedstat_inc(sd->ttwu_wake_remote); 2180 break; 2181 } 2182 } 2183 rcu_read_unlock(); 2184 } 2185 2186 if (wake_flags & WF_MIGRATED) 2187 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 2188 #endif /* CONFIG_SMP */ 2189 2190 __schedstat_inc(rq->ttwu_count); 2191 __schedstat_inc(p->se.statistics.nr_wakeups); 2192 2193 if (wake_flags & WF_SYNC) 2194 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 2195 } 2196 2197 /* 2198 * Mark the task runnable and perform wakeup-preemption. 2199 */ 2200 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 2201 struct rq_flags *rf) 2202 { 2203 check_preempt_curr(rq, p, wake_flags); 2204 p->state = TASK_RUNNING; 2205 trace_sched_wakeup(p); 2206 2207 #ifdef CONFIG_SMP 2208 if (p->sched_class->task_woken) { 2209 /* 2210 * Our task @p is fully woken up and running; so its safe to 2211 * drop the rq->lock, hereafter rq is only used for statistics. 2212 */ 2213 rq_unpin_lock(rq, rf); 2214 p->sched_class->task_woken(rq, p); 2215 rq_repin_lock(rq, rf); 2216 } 2217 2218 if (rq->idle_stamp) { 2219 u64 delta = rq_clock(rq) - rq->idle_stamp; 2220 u64 max = 2*rq->max_idle_balance_cost; 2221 2222 update_avg(&rq->avg_idle, delta); 2223 2224 if (rq->avg_idle > max) 2225 rq->avg_idle = max; 2226 2227 rq->idle_stamp = 0; 2228 } 2229 #endif 2230 } 2231 2232 static void 2233 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 2234 struct rq_flags *rf) 2235 { 2236 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 2237 2238 lockdep_assert_held(&rq->lock); 2239 2240 #ifdef CONFIG_SMP 2241 if (p->sched_contributes_to_load) 2242 rq->nr_uninterruptible--; 2243 2244 if (wake_flags & WF_MIGRATED) 2245 en_flags |= ENQUEUE_MIGRATED; 2246 #endif 2247 2248 activate_task(rq, p, en_flags); 2249 ttwu_do_wakeup(rq, p, wake_flags, rf); 2250 } 2251 2252 /* 2253 * Called in case the task @p isn't fully descheduled from its runqueue, 2254 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 2255 * since all we need to do is flip p->state to TASK_RUNNING, since 2256 * the task is still ->on_rq. 2257 */ 2258 static int ttwu_remote(struct task_struct *p, int wake_flags) 2259 { 2260 struct rq_flags rf; 2261 struct rq *rq; 2262 int ret = 0; 2263 2264 rq = __task_rq_lock(p, &rf); 2265 if (task_on_rq_queued(p)) { 2266 /* check_preempt_curr() may use rq clock */ 2267 update_rq_clock(rq); 2268 ttwu_do_wakeup(rq, p, wake_flags, &rf); 2269 ret = 1; 2270 } 2271 __task_rq_unlock(rq, &rf); 2272 2273 return ret; 2274 } 2275 2276 #ifdef CONFIG_SMP 2277 void sched_ttwu_pending(void) 2278 { 2279 struct rq *rq = this_rq(); 2280 struct llist_node *llist = llist_del_all(&rq->wake_list); 2281 struct task_struct *p, *t; 2282 struct rq_flags rf; 2283 2284 if (!llist) 2285 return; 2286 2287 rq_lock_irqsave(rq, &rf); 2288 update_rq_clock(rq); 2289 2290 llist_for_each_entry_safe(p, t, llist, wake_entry) 2291 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 2292 2293 rq_unlock_irqrestore(rq, &rf); 2294 } 2295 2296 void scheduler_ipi(void) 2297 { 2298 /* 2299 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 2300 * TIF_NEED_RESCHED remotely (for the first time) will also send 2301 * this IPI. 2302 */ 2303 preempt_fold_need_resched(); 2304 2305 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 2306 return; 2307 2308 /* 2309 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 2310 * traditionally all their work was done from the interrupt return 2311 * path. Now that we actually do some work, we need to make sure 2312 * we do call them. 2313 * 2314 * Some archs already do call them, luckily irq_enter/exit nest 2315 * properly. 2316 * 2317 * Arguably we should visit all archs and update all handlers, 2318 * however a fair share of IPIs are still resched only so this would 2319 * somewhat pessimize the simple resched case. 2320 */ 2321 irq_enter(); 2322 sched_ttwu_pending(); 2323 2324 /* 2325 * Check if someone kicked us for doing the nohz idle load balance. 2326 */ 2327 if (unlikely(got_nohz_idle_kick())) { 2328 this_rq()->idle_balance = 1; 2329 raise_softirq_irqoff(SCHED_SOFTIRQ); 2330 } 2331 irq_exit(); 2332 } 2333 2334 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 2335 { 2336 struct rq *rq = cpu_rq(cpu); 2337 2338 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 2339 2340 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 2341 if (!set_nr_if_polling(rq->idle)) 2342 smp_send_reschedule(cpu); 2343 else 2344 trace_sched_wake_idle_without_ipi(cpu); 2345 } 2346 } 2347 2348 void wake_up_if_idle(int cpu) 2349 { 2350 struct rq *rq = cpu_rq(cpu); 2351 struct rq_flags rf; 2352 2353 rcu_read_lock(); 2354 2355 if (!is_idle_task(rcu_dereference(rq->curr))) 2356 goto out; 2357 2358 if (set_nr_if_polling(rq->idle)) { 2359 trace_sched_wake_idle_without_ipi(cpu); 2360 } else { 2361 rq_lock_irqsave(rq, &rf); 2362 if (is_idle_task(rq->curr)) 2363 smp_send_reschedule(cpu); 2364 /* Else CPU is not idle, do nothing here: */ 2365 rq_unlock_irqrestore(rq, &rf); 2366 } 2367 2368 out: 2369 rcu_read_unlock(); 2370 } 2371 2372 bool cpus_share_cache(int this_cpu, int that_cpu) 2373 { 2374 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 2375 } 2376 #endif /* CONFIG_SMP */ 2377 2378 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 2379 { 2380 struct rq *rq = cpu_rq(cpu); 2381 struct rq_flags rf; 2382 2383 #if defined(CONFIG_SMP) 2384 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 2385 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 2386 ttwu_queue_remote(p, cpu, wake_flags); 2387 return; 2388 } 2389 #endif 2390 2391 rq_lock(rq, &rf); 2392 update_rq_clock(rq); 2393 ttwu_do_activate(rq, p, wake_flags, &rf); 2394 rq_unlock(rq, &rf); 2395 } 2396 2397 /* 2398 * Notes on Program-Order guarantees on SMP systems. 2399 * 2400 * MIGRATION 2401 * 2402 * The basic program-order guarantee on SMP systems is that when a task [t] 2403 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 2404 * execution on its new CPU [c1]. 2405 * 2406 * For migration (of runnable tasks) this is provided by the following means: 2407 * 2408 * A) UNLOCK of the rq(c0)->lock scheduling out task t 2409 * B) migration for t is required to synchronize *both* rq(c0)->lock and 2410 * rq(c1)->lock (if not at the same time, then in that order). 2411 * C) LOCK of the rq(c1)->lock scheduling in task 2412 * 2413 * Release/acquire chaining guarantees that B happens after A and C after B. 2414 * Note: the CPU doing B need not be c0 or c1 2415 * 2416 * Example: 2417 * 2418 * CPU0 CPU1 CPU2 2419 * 2420 * LOCK rq(0)->lock 2421 * sched-out X 2422 * sched-in Y 2423 * UNLOCK rq(0)->lock 2424 * 2425 * LOCK rq(0)->lock // orders against CPU0 2426 * dequeue X 2427 * UNLOCK rq(0)->lock 2428 * 2429 * LOCK rq(1)->lock 2430 * enqueue X 2431 * UNLOCK rq(1)->lock 2432 * 2433 * LOCK rq(1)->lock // orders against CPU2 2434 * sched-out Z 2435 * sched-in X 2436 * UNLOCK rq(1)->lock 2437 * 2438 * 2439 * BLOCKING -- aka. SLEEP + WAKEUP 2440 * 2441 * For blocking we (obviously) need to provide the same guarantee as for 2442 * migration. However the means are completely different as there is no lock 2443 * chain to provide order. Instead we do: 2444 * 2445 * 1) smp_store_release(X->on_cpu, 0) 2446 * 2) smp_cond_load_acquire(!X->on_cpu) 2447 * 2448 * Example: 2449 * 2450 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 2451 * 2452 * LOCK rq(0)->lock LOCK X->pi_lock 2453 * dequeue X 2454 * sched-out X 2455 * smp_store_release(X->on_cpu, 0); 2456 * 2457 * smp_cond_load_acquire(&X->on_cpu, !VAL); 2458 * X->state = WAKING 2459 * set_task_cpu(X,2) 2460 * 2461 * LOCK rq(2)->lock 2462 * enqueue X 2463 * X->state = RUNNING 2464 * UNLOCK rq(2)->lock 2465 * 2466 * LOCK rq(2)->lock // orders against CPU1 2467 * sched-out Z 2468 * sched-in X 2469 * UNLOCK rq(2)->lock 2470 * 2471 * UNLOCK X->pi_lock 2472 * UNLOCK rq(0)->lock 2473 * 2474 * 2475 * However, for wakeups there is a second guarantee we must provide, namely we 2476 * must ensure that CONDITION=1 done by the caller can not be reordered with 2477 * accesses to the task state; see try_to_wake_up() and set_current_state(). 2478 */ 2479 2480 /** 2481 * try_to_wake_up - wake up a thread 2482 * @p: the thread to be awakened 2483 * @state: the mask of task states that can be woken 2484 * @wake_flags: wake modifier flags (WF_*) 2485 * 2486 * If (@state & @p->state) @p->state = TASK_RUNNING. 2487 * 2488 * If the task was not queued/runnable, also place it back on a runqueue. 2489 * 2490 * Atomic against schedule() which would dequeue a task, also see 2491 * set_current_state(). 2492 * 2493 * This function executes a full memory barrier before accessing the task 2494 * state; see set_current_state(). 2495 * 2496 * Return: %true if @p->state changes (an actual wakeup was done), 2497 * %false otherwise. 2498 */ 2499 static int 2500 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 2501 { 2502 unsigned long flags; 2503 int cpu, success = 0; 2504 2505 preempt_disable(); 2506 if (p == current) { 2507 /* 2508 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 2509 * == smp_processor_id()'. Together this means we can special 2510 * case the whole 'p->on_rq && ttwu_remote()' case below 2511 * without taking any locks. 2512 * 2513 * In particular: 2514 * - we rely on Program-Order guarantees for all the ordering, 2515 * - we're serialized against set_special_state() by virtue of 2516 * it disabling IRQs (this allows not taking ->pi_lock). 2517 */ 2518 if (!(p->state & state)) 2519 goto out; 2520 2521 success = 1; 2522 cpu = task_cpu(p); 2523 trace_sched_waking(p); 2524 p->state = TASK_RUNNING; 2525 trace_sched_wakeup(p); 2526 goto out; 2527 } 2528 2529 /* 2530 * If we are going to wake up a thread waiting for CONDITION we 2531 * need to ensure that CONDITION=1 done by the caller can not be 2532 * reordered with p->state check below. This pairs with mb() in 2533 * set_current_state() the waiting thread does. 2534 */ 2535 raw_spin_lock_irqsave(&p->pi_lock, flags); 2536 smp_mb__after_spinlock(); 2537 if (!(p->state & state)) 2538 goto unlock; 2539 2540 trace_sched_waking(p); 2541 2542 /* We're going to change ->state: */ 2543 success = 1; 2544 cpu = task_cpu(p); 2545 2546 /* 2547 * Ensure we load p->on_rq _after_ p->state, otherwise it would 2548 * be possible to, falsely, observe p->on_rq == 0 and get stuck 2549 * in smp_cond_load_acquire() below. 2550 * 2551 * sched_ttwu_pending() try_to_wake_up() 2552 * STORE p->on_rq = 1 LOAD p->state 2553 * UNLOCK rq->lock 2554 * 2555 * __schedule() (switch to task 'p') 2556 * LOCK rq->lock smp_rmb(); 2557 * smp_mb__after_spinlock(); 2558 * UNLOCK rq->lock 2559 * 2560 * [task p] 2561 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 2562 * 2563 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2564 * __schedule(). See the comment for smp_mb__after_spinlock(). 2565 * 2566 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 2567 */ 2568 smp_rmb(); 2569 if (p->on_rq && ttwu_remote(p, wake_flags)) 2570 goto unlock; 2571 2572 #ifdef CONFIG_SMP 2573 /* 2574 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2575 * possible to, falsely, observe p->on_cpu == 0. 2576 * 2577 * One must be running (->on_cpu == 1) in order to remove oneself 2578 * from the runqueue. 2579 * 2580 * __schedule() (switch to task 'p') try_to_wake_up() 2581 * STORE p->on_cpu = 1 LOAD p->on_rq 2582 * UNLOCK rq->lock 2583 * 2584 * __schedule() (put 'p' to sleep) 2585 * LOCK rq->lock smp_rmb(); 2586 * smp_mb__after_spinlock(); 2587 * STORE p->on_rq = 0 LOAD p->on_cpu 2588 * 2589 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 2590 * __schedule(). See the comment for smp_mb__after_spinlock(). 2591 */ 2592 smp_rmb(); 2593 2594 /* 2595 * If the owning (remote) CPU is still in the middle of schedule() with 2596 * this task as prev, wait until its done referencing the task. 2597 * 2598 * Pairs with the smp_store_release() in finish_task(). 2599 * 2600 * This ensures that tasks getting woken will be fully ordered against 2601 * their previous state and preserve Program Order. 2602 */ 2603 smp_cond_load_acquire(&p->on_cpu, !VAL); 2604 2605 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2606 p->state = TASK_WAKING; 2607 2608 if (p->in_iowait) { 2609 delayacct_blkio_end(p); 2610 atomic_dec(&task_rq(p)->nr_iowait); 2611 } 2612 2613 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2614 if (task_cpu(p) != cpu) { 2615 wake_flags |= WF_MIGRATED; 2616 psi_ttwu_dequeue(p); 2617 set_task_cpu(p, cpu); 2618 } 2619 2620 #else /* CONFIG_SMP */ 2621 2622 if (p->in_iowait) { 2623 delayacct_blkio_end(p); 2624 atomic_dec(&task_rq(p)->nr_iowait); 2625 } 2626 2627 #endif /* CONFIG_SMP */ 2628 2629 ttwu_queue(p, cpu, wake_flags); 2630 unlock: 2631 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2632 out: 2633 if (success) 2634 ttwu_stat(p, cpu, wake_flags); 2635 preempt_enable(); 2636 2637 return success; 2638 } 2639 2640 /** 2641 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state 2642 * @p: Process for which the function is to be invoked. 2643 * @func: Function to invoke. 2644 * @arg: Argument to function. 2645 * 2646 * If the specified task can be quickly locked into a definite state 2647 * (either sleeping or on a given runqueue), arrange to keep it in that 2648 * state while invoking @func(@arg). This function can use ->on_rq and 2649 * task_curr() to work out what the state is, if required. Given that 2650 * @func can be invoked with a runqueue lock held, it had better be quite 2651 * lightweight. 2652 * 2653 * Returns: 2654 * @false if the task slipped out from under the locks. 2655 * @true if the task was locked onto a runqueue or is sleeping. 2656 * However, @func can override this by returning @false. 2657 */ 2658 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg) 2659 { 2660 bool ret = false; 2661 struct rq_flags rf; 2662 struct rq *rq; 2663 2664 lockdep_assert_irqs_enabled(); 2665 raw_spin_lock_irq(&p->pi_lock); 2666 if (p->on_rq) { 2667 rq = __task_rq_lock(p, &rf); 2668 if (task_rq(p) == rq) 2669 ret = func(p, arg); 2670 rq_unlock(rq, &rf); 2671 } else { 2672 switch (p->state) { 2673 case TASK_RUNNING: 2674 case TASK_WAKING: 2675 break; 2676 default: 2677 smp_rmb(); // See smp_rmb() comment in try_to_wake_up(). 2678 if (!p->on_rq) 2679 ret = func(p, arg); 2680 } 2681 } 2682 raw_spin_unlock_irq(&p->pi_lock); 2683 return ret; 2684 } 2685 2686 /** 2687 * wake_up_process - Wake up a specific process 2688 * @p: The process to be woken up. 2689 * 2690 * Attempt to wake up the nominated process and move it to the set of runnable 2691 * processes. 2692 * 2693 * Return: 1 if the process was woken up, 0 if it was already running. 2694 * 2695 * This function executes a full memory barrier before accessing the task state. 2696 */ 2697 int wake_up_process(struct task_struct *p) 2698 { 2699 return try_to_wake_up(p, TASK_NORMAL, 0); 2700 } 2701 EXPORT_SYMBOL(wake_up_process); 2702 2703 int wake_up_state(struct task_struct *p, unsigned int state) 2704 { 2705 return try_to_wake_up(p, state, 0); 2706 } 2707 2708 /* 2709 * Perform scheduler related setup for a newly forked process p. 2710 * p is forked by current. 2711 * 2712 * __sched_fork() is basic setup used by init_idle() too: 2713 */ 2714 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2715 { 2716 p->on_rq = 0; 2717 2718 p->se.on_rq = 0; 2719 p->se.exec_start = 0; 2720 p->se.sum_exec_runtime = 0; 2721 p->se.prev_sum_exec_runtime = 0; 2722 p->se.nr_migrations = 0; 2723 p->se.vruntime = 0; 2724 INIT_LIST_HEAD(&p->se.group_node); 2725 2726 #ifdef CONFIG_FAIR_GROUP_SCHED 2727 p->se.cfs_rq = NULL; 2728 #endif 2729 2730 #ifdef CONFIG_SCHEDSTATS 2731 /* Even if schedstat is disabled, there should not be garbage */ 2732 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2733 #endif 2734 2735 RB_CLEAR_NODE(&p->dl.rb_node); 2736 init_dl_task_timer(&p->dl); 2737 init_dl_inactive_task_timer(&p->dl); 2738 __dl_clear_params(p); 2739 2740 INIT_LIST_HEAD(&p->rt.run_list); 2741 p->rt.timeout = 0; 2742 p->rt.time_slice = sched_rr_timeslice; 2743 p->rt.on_rq = 0; 2744 p->rt.on_list = 0; 2745 2746 #ifdef CONFIG_PREEMPT_NOTIFIERS 2747 INIT_HLIST_HEAD(&p->preempt_notifiers); 2748 #endif 2749 2750 #ifdef CONFIG_COMPACTION 2751 p->capture_control = NULL; 2752 #endif 2753 init_numa_balancing(clone_flags, p); 2754 } 2755 2756 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2757 2758 #ifdef CONFIG_NUMA_BALANCING 2759 2760 void set_numabalancing_state(bool enabled) 2761 { 2762 if (enabled) 2763 static_branch_enable(&sched_numa_balancing); 2764 else 2765 static_branch_disable(&sched_numa_balancing); 2766 } 2767 2768 #ifdef CONFIG_PROC_SYSCTL 2769 int sysctl_numa_balancing(struct ctl_table *table, int write, 2770 void __user *buffer, size_t *lenp, loff_t *ppos) 2771 { 2772 struct ctl_table t; 2773 int err; 2774 int state = static_branch_likely(&sched_numa_balancing); 2775 2776 if (write && !capable(CAP_SYS_ADMIN)) 2777 return -EPERM; 2778 2779 t = *table; 2780 t.data = &state; 2781 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2782 if (err < 0) 2783 return err; 2784 if (write) 2785 set_numabalancing_state(state); 2786 return err; 2787 } 2788 #endif 2789 #endif 2790 2791 #ifdef CONFIG_SCHEDSTATS 2792 2793 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2794 static bool __initdata __sched_schedstats = false; 2795 2796 static void set_schedstats(bool enabled) 2797 { 2798 if (enabled) 2799 static_branch_enable(&sched_schedstats); 2800 else 2801 static_branch_disable(&sched_schedstats); 2802 } 2803 2804 void force_schedstat_enabled(void) 2805 { 2806 if (!schedstat_enabled()) { 2807 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2808 static_branch_enable(&sched_schedstats); 2809 } 2810 } 2811 2812 static int __init setup_schedstats(char *str) 2813 { 2814 int ret = 0; 2815 if (!str) 2816 goto out; 2817 2818 /* 2819 * This code is called before jump labels have been set up, so we can't 2820 * change the static branch directly just yet. Instead set a temporary 2821 * variable so init_schedstats() can do it later. 2822 */ 2823 if (!strcmp(str, "enable")) { 2824 __sched_schedstats = true; 2825 ret = 1; 2826 } else if (!strcmp(str, "disable")) { 2827 __sched_schedstats = false; 2828 ret = 1; 2829 } 2830 out: 2831 if (!ret) 2832 pr_warn("Unable to parse schedstats=\n"); 2833 2834 return ret; 2835 } 2836 __setup("schedstats=", setup_schedstats); 2837 2838 static void __init init_schedstats(void) 2839 { 2840 set_schedstats(__sched_schedstats); 2841 } 2842 2843 #ifdef CONFIG_PROC_SYSCTL 2844 int sysctl_schedstats(struct ctl_table *table, int write, 2845 void __user *buffer, size_t *lenp, loff_t *ppos) 2846 { 2847 struct ctl_table t; 2848 int err; 2849 int state = static_branch_likely(&sched_schedstats); 2850 2851 if (write && !capable(CAP_SYS_ADMIN)) 2852 return -EPERM; 2853 2854 t = *table; 2855 t.data = &state; 2856 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2857 if (err < 0) 2858 return err; 2859 if (write) 2860 set_schedstats(state); 2861 return err; 2862 } 2863 #endif /* CONFIG_PROC_SYSCTL */ 2864 #else /* !CONFIG_SCHEDSTATS */ 2865 static inline void init_schedstats(void) {} 2866 #endif /* CONFIG_SCHEDSTATS */ 2867 2868 /* 2869 * fork()/clone()-time setup: 2870 */ 2871 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2872 { 2873 unsigned long flags; 2874 2875 __sched_fork(clone_flags, p); 2876 /* 2877 * We mark the process as NEW here. This guarantees that 2878 * nobody will actually run it, and a signal or other external 2879 * event cannot wake it up and insert it on the runqueue either. 2880 */ 2881 p->state = TASK_NEW; 2882 2883 /* 2884 * Make sure we do not leak PI boosting priority to the child. 2885 */ 2886 p->prio = current->normal_prio; 2887 2888 uclamp_fork(p); 2889 2890 /* 2891 * Revert to default priority/policy on fork if requested. 2892 */ 2893 if (unlikely(p->sched_reset_on_fork)) { 2894 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2895 p->policy = SCHED_NORMAL; 2896 p->static_prio = NICE_TO_PRIO(0); 2897 p->rt_priority = 0; 2898 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2899 p->static_prio = NICE_TO_PRIO(0); 2900 2901 p->prio = p->normal_prio = __normal_prio(p); 2902 set_load_weight(p, false); 2903 2904 /* 2905 * We don't need the reset flag anymore after the fork. It has 2906 * fulfilled its duty: 2907 */ 2908 p->sched_reset_on_fork = 0; 2909 } 2910 2911 if (dl_prio(p->prio)) 2912 return -EAGAIN; 2913 else if (rt_prio(p->prio)) 2914 p->sched_class = &rt_sched_class; 2915 else 2916 p->sched_class = &fair_sched_class; 2917 2918 init_entity_runnable_average(&p->se); 2919 2920 /* 2921 * The child is not yet in the pid-hash so no cgroup attach races, 2922 * and the cgroup is pinned to this child due to cgroup_fork() 2923 * is ran before sched_fork(). 2924 * 2925 * Silence PROVE_RCU. 2926 */ 2927 raw_spin_lock_irqsave(&p->pi_lock, flags); 2928 /* 2929 * We're setting the CPU for the first time, we don't migrate, 2930 * so use __set_task_cpu(). 2931 */ 2932 __set_task_cpu(p, smp_processor_id()); 2933 if (p->sched_class->task_fork) 2934 p->sched_class->task_fork(p); 2935 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2936 2937 #ifdef CONFIG_SCHED_INFO 2938 if (likely(sched_info_on())) 2939 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2940 #endif 2941 #if defined(CONFIG_SMP) 2942 p->on_cpu = 0; 2943 #endif 2944 init_task_preempt_count(p); 2945 #ifdef CONFIG_SMP 2946 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2947 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2948 #endif 2949 return 0; 2950 } 2951 2952 unsigned long to_ratio(u64 period, u64 runtime) 2953 { 2954 if (runtime == RUNTIME_INF) 2955 return BW_UNIT; 2956 2957 /* 2958 * Doing this here saves a lot of checks in all 2959 * the calling paths, and returning zero seems 2960 * safe for them anyway. 2961 */ 2962 if (period == 0) 2963 return 0; 2964 2965 return div64_u64(runtime << BW_SHIFT, period); 2966 } 2967 2968 /* 2969 * wake_up_new_task - wake up a newly created task for the first time. 2970 * 2971 * This function will do some initial scheduler statistics housekeeping 2972 * that must be done for every newly created context, then puts the task 2973 * on the runqueue and wakes it. 2974 */ 2975 void wake_up_new_task(struct task_struct *p) 2976 { 2977 struct rq_flags rf; 2978 struct rq *rq; 2979 2980 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2981 p->state = TASK_RUNNING; 2982 #ifdef CONFIG_SMP 2983 /* 2984 * Fork balancing, do it here and not earlier because: 2985 * - cpus_ptr can change in the fork path 2986 * - any previously selected CPU might disappear through hotplug 2987 * 2988 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2989 * as we're not fully set-up yet. 2990 */ 2991 p->recent_used_cpu = task_cpu(p); 2992 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2993 #endif 2994 rq = __task_rq_lock(p, &rf); 2995 update_rq_clock(rq); 2996 post_init_entity_util_avg(p); 2997 2998 activate_task(rq, p, ENQUEUE_NOCLOCK); 2999 trace_sched_wakeup_new(p); 3000 check_preempt_curr(rq, p, WF_FORK); 3001 #ifdef CONFIG_SMP 3002 if (p->sched_class->task_woken) { 3003 /* 3004 * Nothing relies on rq->lock after this, so its fine to 3005 * drop it. 3006 */ 3007 rq_unpin_lock(rq, &rf); 3008 p->sched_class->task_woken(rq, p); 3009 rq_repin_lock(rq, &rf); 3010 } 3011 #endif 3012 task_rq_unlock(rq, p, &rf); 3013 } 3014 3015 #ifdef CONFIG_PREEMPT_NOTIFIERS 3016 3017 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 3018 3019 void preempt_notifier_inc(void) 3020 { 3021 static_branch_inc(&preempt_notifier_key); 3022 } 3023 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 3024 3025 void preempt_notifier_dec(void) 3026 { 3027 static_branch_dec(&preempt_notifier_key); 3028 } 3029 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 3030 3031 /** 3032 * preempt_notifier_register - tell me when current is being preempted & rescheduled 3033 * @notifier: notifier struct to register 3034 */ 3035 void preempt_notifier_register(struct preempt_notifier *notifier) 3036 { 3037 if (!static_branch_unlikely(&preempt_notifier_key)) 3038 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 3039 3040 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 3041 } 3042 EXPORT_SYMBOL_GPL(preempt_notifier_register); 3043 3044 /** 3045 * preempt_notifier_unregister - no longer interested in preemption notifications 3046 * @notifier: notifier struct to unregister 3047 * 3048 * This is *not* safe to call from within a preemption notifier. 3049 */ 3050 void preempt_notifier_unregister(struct preempt_notifier *notifier) 3051 { 3052 hlist_del(¬ifier->link); 3053 } 3054 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 3055 3056 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 3057 { 3058 struct preempt_notifier *notifier; 3059 3060 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3061 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 3062 } 3063 3064 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3065 { 3066 if (static_branch_unlikely(&preempt_notifier_key)) 3067 __fire_sched_in_preempt_notifiers(curr); 3068 } 3069 3070 static void 3071 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 3072 struct task_struct *next) 3073 { 3074 struct preempt_notifier *notifier; 3075 3076 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 3077 notifier->ops->sched_out(notifier, next); 3078 } 3079 3080 static __always_inline void 3081 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3082 struct task_struct *next) 3083 { 3084 if (static_branch_unlikely(&preempt_notifier_key)) 3085 __fire_sched_out_preempt_notifiers(curr, next); 3086 } 3087 3088 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 3089 3090 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 3091 { 3092 } 3093 3094 static inline void 3095 fire_sched_out_preempt_notifiers(struct task_struct *curr, 3096 struct task_struct *next) 3097 { 3098 } 3099 3100 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 3101 3102 static inline void prepare_task(struct task_struct *next) 3103 { 3104 #ifdef CONFIG_SMP 3105 /* 3106 * Claim the task as running, we do this before switching to it 3107 * such that any running task will have this set. 3108 */ 3109 next->on_cpu = 1; 3110 #endif 3111 } 3112 3113 static inline void finish_task(struct task_struct *prev) 3114 { 3115 #ifdef CONFIG_SMP 3116 /* 3117 * After ->on_cpu is cleared, the task can be moved to a different CPU. 3118 * We must ensure this doesn't happen until the switch is completely 3119 * finished. 3120 * 3121 * In particular, the load of prev->state in finish_task_switch() must 3122 * happen before this. 3123 * 3124 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 3125 */ 3126 smp_store_release(&prev->on_cpu, 0); 3127 #endif 3128 } 3129 3130 static inline void 3131 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 3132 { 3133 /* 3134 * Since the runqueue lock will be released by the next 3135 * task (which is an invalid locking op but in the case 3136 * of the scheduler it's an obvious special-case), so we 3137 * do an early lockdep release here: 3138 */ 3139 rq_unpin_lock(rq, rf); 3140 spin_release(&rq->lock.dep_map, _THIS_IP_); 3141 #ifdef CONFIG_DEBUG_SPINLOCK 3142 /* this is a valid case when another task releases the spinlock */ 3143 rq->lock.owner = next; 3144 #endif 3145 } 3146 3147 static inline void finish_lock_switch(struct rq *rq) 3148 { 3149 /* 3150 * If we are tracking spinlock dependencies then we have to 3151 * fix up the runqueue lock - which gets 'carried over' from 3152 * prev into current: 3153 */ 3154 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 3155 raw_spin_unlock_irq(&rq->lock); 3156 } 3157 3158 /* 3159 * NOP if the arch has not defined these: 3160 */ 3161 3162 #ifndef prepare_arch_switch 3163 # define prepare_arch_switch(next) do { } while (0) 3164 #endif 3165 3166 #ifndef finish_arch_post_lock_switch 3167 # define finish_arch_post_lock_switch() do { } while (0) 3168 #endif 3169 3170 /** 3171 * prepare_task_switch - prepare to switch tasks 3172 * @rq: the runqueue preparing to switch 3173 * @prev: the current task that is being switched out 3174 * @next: the task we are going to switch to. 3175 * 3176 * This is called with the rq lock held and interrupts off. It must 3177 * be paired with a subsequent finish_task_switch after the context 3178 * switch. 3179 * 3180 * prepare_task_switch sets up locking and calls architecture specific 3181 * hooks. 3182 */ 3183 static inline void 3184 prepare_task_switch(struct rq *rq, struct task_struct *prev, 3185 struct task_struct *next) 3186 { 3187 kcov_prepare_switch(prev); 3188 sched_info_switch(rq, prev, next); 3189 perf_event_task_sched_out(prev, next); 3190 rseq_preempt(prev); 3191 fire_sched_out_preempt_notifiers(prev, next); 3192 prepare_task(next); 3193 prepare_arch_switch(next); 3194 } 3195 3196 /** 3197 * finish_task_switch - clean up after a task-switch 3198 * @prev: the thread we just switched away from. 3199 * 3200 * finish_task_switch must be called after the context switch, paired 3201 * with a prepare_task_switch call before the context switch. 3202 * finish_task_switch will reconcile locking set up by prepare_task_switch, 3203 * and do any other architecture-specific cleanup actions. 3204 * 3205 * Note that we may have delayed dropping an mm in context_switch(). If 3206 * so, we finish that here outside of the runqueue lock. (Doing it 3207 * with the lock held can cause deadlocks; see schedule() for 3208 * details.) 3209 * 3210 * The context switch have flipped the stack from under us and restored the 3211 * local variables which were saved when this task called schedule() in the 3212 * past. prev == current is still correct but we need to recalculate this_rq 3213 * because prev may have moved to another CPU. 3214 */ 3215 static struct rq *finish_task_switch(struct task_struct *prev) 3216 __releases(rq->lock) 3217 { 3218 struct rq *rq = this_rq(); 3219 struct mm_struct *mm = rq->prev_mm; 3220 long prev_state; 3221 3222 /* 3223 * The previous task will have left us with a preempt_count of 2 3224 * because it left us after: 3225 * 3226 * schedule() 3227 * preempt_disable(); // 1 3228 * __schedule() 3229 * raw_spin_lock_irq(&rq->lock) // 2 3230 * 3231 * Also, see FORK_PREEMPT_COUNT. 3232 */ 3233 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 3234 "corrupted preempt_count: %s/%d/0x%x\n", 3235 current->comm, current->pid, preempt_count())) 3236 preempt_count_set(FORK_PREEMPT_COUNT); 3237 3238 rq->prev_mm = NULL; 3239 3240 /* 3241 * A task struct has one reference for the use as "current". 3242 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 3243 * schedule one last time. The schedule call will never return, and 3244 * the scheduled task must drop that reference. 3245 * 3246 * We must observe prev->state before clearing prev->on_cpu (in 3247 * finish_task), otherwise a concurrent wakeup can get prev 3248 * running on another CPU and we could rave with its RUNNING -> DEAD 3249 * transition, resulting in a double drop. 3250 */ 3251 prev_state = prev->state; 3252 vtime_task_switch(prev); 3253 perf_event_task_sched_in(prev, current); 3254 finish_task(prev); 3255 finish_lock_switch(rq); 3256 finish_arch_post_lock_switch(); 3257 kcov_finish_switch(current); 3258 3259 fire_sched_in_preempt_notifiers(current); 3260 /* 3261 * When switching through a kernel thread, the loop in 3262 * membarrier_{private,global}_expedited() may have observed that 3263 * kernel thread and not issued an IPI. It is therefore possible to 3264 * schedule between user->kernel->user threads without passing though 3265 * switch_mm(). Membarrier requires a barrier after storing to 3266 * rq->curr, before returning to userspace, so provide them here: 3267 * 3268 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 3269 * provided by mmdrop(), 3270 * - a sync_core for SYNC_CORE. 3271 */ 3272 if (mm) { 3273 membarrier_mm_sync_core_before_usermode(mm); 3274 mmdrop(mm); 3275 } 3276 if (unlikely(prev_state == TASK_DEAD)) { 3277 if (prev->sched_class->task_dead) 3278 prev->sched_class->task_dead(prev); 3279 3280 /* 3281 * Remove function-return probe instances associated with this 3282 * task and put them back on the free list. 3283 */ 3284 kprobe_flush_task(prev); 3285 3286 /* Task is done with its stack. */ 3287 put_task_stack(prev); 3288 3289 put_task_struct_rcu_user(prev); 3290 } 3291 3292 tick_nohz_task_switch(); 3293 return rq; 3294 } 3295 3296 #ifdef CONFIG_SMP 3297 3298 /* rq->lock is NOT held, but preemption is disabled */ 3299 static void __balance_callback(struct rq *rq) 3300 { 3301 struct callback_head *head, *next; 3302 void (*func)(struct rq *rq); 3303 unsigned long flags; 3304 3305 raw_spin_lock_irqsave(&rq->lock, flags); 3306 head = rq->balance_callback; 3307 rq->balance_callback = NULL; 3308 while (head) { 3309 func = (void (*)(struct rq *))head->func; 3310 next = head->next; 3311 head->next = NULL; 3312 head = next; 3313 3314 func(rq); 3315 } 3316 raw_spin_unlock_irqrestore(&rq->lock, flags); 3317 } 3318 3319 static inline void balance_callback(struct rq *rq) 3320 { 3321 if (unlikely(rq->balance_callback)) 3322 __balance_callback(rq); 3323 } 3324 3325 #else 3326 3327 static inline void balance_callback(struct rq *rq) 3328 { 3329 } 3330 3331 #endif 3332 3333 /** 3334 * schedule_tail - first thing a freshly forked thread must call. 3335 * @prev: the thread we just switched away from. 3336 */ 3337 asmlinkage __visible void schedule_tail(struct task_struct *prev) 3338 __releases(rq->lock) 3339 { 3340 struct rq *rq; 3341 3342 /* 3343 * New tasks start with FORK_PREEMPT_COUNT, see there and 3344 * finish_task_switch() for details. 3345 * 3346 * finish_task_switch() will drop rq->lock() and lower preempt_count 3347 * and the preempt_enable() will end up enabling preemption (on 3348 * PREEMPT_COUNT kernels). 3349 */ 3350 3351 rq = finish_task_switch(prev); 3352 balance_callback(rq); 3353 preempt_enable(); 3354 3355 if (current->set_child_tid) 3356 put_user(task_pid_vnr(current), current->set_child_tid); 3357 3358 calculate_sigpending(); 3359 } 3360 3361 /* 3362 * context_switch - switch to the new MM and the new thread's register state. 3363 */ 3364 static __always_inline struct rq * 3365 context_switch(struct rq *rq, struct task_struct *prev, 3366 struct task_struct *next, struct rq_flags *rf) 3367 { 3368 prepare_task_switch(rq, prev, next); 3369 3370 /* 3371 * For paravirt, this is coupled with an exit in switch_to to 3372 * combine the page table reload and the switch backend into 3373 * one hypercall. 3374 */ 3375 arch_start_context_switch(prev); 3376 3377 /* 3378 * kernel -> kernel lazy + transfer active 3379 * user -> kernel lazy + mmgrab() active 3380 * 3381 * kernel -> user switch + mmdrop() active 3382 * user -> user switch 3383 */ 3384 if (!next->mm) { // to kernel 3385 enter_lazy_tlb(prev->active_mm, next); 3386 3387 next->active_mm = prev->active_mm; 3388 if (prev->mm) // from user 3389 mmgrab(prev->active_mm); 3390 else 3391 prev->active_mm = NULL; 3392 } else { // to user 3393 membarrier_switch_mm(rq, prev->active_mm, next->mm); 3394 /* 3395 * sys_membarrier() requires an smp_mb() between setting 3396 * rq->curr / membarrier_switch_mm() and returning to userspace. 3397 * 3398 * The below provides this either through switch_mm(), or in 3399 * case 'prev->active_mm == next->mm' through 3400 * finish_task_switch()'s mmdrop(). 3401 */ 3402 switch_mm_irqs_off(prev->active_mm, next->mm, next); 3403 3404 if (!prev->mm) { // from kernel 3405 /* will mmdrop() in finish_task_switch(). */ 3406 rq->prev_mm = prev->active_mm; 3407 prev->active_mm = NULL; 3408 } 3409 } 3410 3411 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3412 3413 prepare_lock_switch(rq, next, rf); 3414 3415 /* Here we just switch the register state and the stack. */ 3416 switch_to(prev, next, prev); 3417 barrier(); 3418 3419 return finish_task_switch(prev); 3420 } 3421 3422 /* 3423 * nr_running and nr_context_switches: 3424 * 3425 * externally visible scheduler statistics: current number of runnable 3426 * threads, total number of context switches performed since bootup. 3427 */ 3428 unsigned long nr_running(void) 3429 { 3430 unsigned long i, sum = 0; 3431 3432 for_each_online_cpu(i) 3433 sum += cpu_rq(i)->nr_running; 3434 3435 return sum; 3436 } 3437 3438 /* 3439 * Check if only the current task is running on the CPU. 3440 * 3441 * Caution: this function does not check that the caller has disabled 3442 * preemption, thus the result might have a time-of-check-to-time-of-use 3443 * race. The caller is responsible to use it correctly, for example: 3444 * 3445 * - from a non-preemptible section (of course) 3446 * 3447 * - from a thread that is bound to a single CPU 3448 * 3449 * - in a loop with very short iterations (e.g. a polling loop) 3450 */ 3451 bool single_task_running(void) 3452 { 3453 return raw_rq()->nr_running == 1; 3454 } 3455 EXPORT_SYMBOL(single_task_running); 3456 3457 unsigned long long nr_context_switches(void) 3458 { 3459 int i; 3460 unsigned long long sum = 0; 3461 3462 for_each_possible_cpu(i) 3463 sum += cpu_rq(i)->nr_switches; 3464 3465 return sum; 3466 } 3467 3468 /* 3469 * Consumers of these two interfaces, like for example the cpuidle menu 3470 * governor, are using nonsensical data. Preferring shallow idle state selection 3471 * for a CPU that has IO-wait which might not even end up running the task when 3472 * it does become runnable. 3473 */ 3474 3475 unsigned long nr_iowait_cpu(int cpu) 3476 { 3477 return atomic_read(&cpu_rq(cpu)->nr_iowait); 3478 } 3479 3480 /* 3481 * IO-wait accounting, and how its mostly bollocks (on SMP). 3482 * 3483 * The idea behind IO-wait account is to account the idle time that we could 3484 * have spend running if it were not for IO. That is, if we were to improve the 3485 * storage performance, we'd have a proportional reduction in IO-wait time. 3486 * 3487 * This all works nicely on UP, where, when a task blocks on IO, we account 3488 * idle time as IO-wait, because if the storage were faster, it could've been 3489 * running and we'd not be idle. 3490 * 3491 * This has been extended to SMP, by doing the same for each CPU. This however 3492 * is broken. 3493 * 3494 * Imagine for instance the case where two tasks block on one CPU, only the one 3495 * CPU will have IO-wait accounted, while the other has regular idle. Even 3496 * though, if the storage were faster, both could've ran at the same time, 3497 * utilising both CPUs. 3498 * 3499 * This means, that when looking globally, the current IO-wait accounting on 3500 * SMP is a lower bound, by reason of under accounting. 3501 * 3502 * Worse, since the numbers are provided per CPU, they are sometimes 3503 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 3504 * associated with any one particular CPU, it can wake to another CPU than it 3505 * blocked on. This means the per CPU IO-wait number is meaningless. 3506 * 3507 * Task CPU affinities can make all that even more 'interesting'. 3508 */ 3509 3510 unsigned long nr_iowait(void) 3511 { 3512 unsigned long i, sum = 0; 3513 3514 for_each_possible_cpu(i) 3515 sum += nr_iowait_cpu(i); 3516 3517 return sum; 3518 } 3519 3520 #ifdef CONFIG_SMP 3521 3522 /* 3523 * sched_exec - execve() is a valuable balancing opportunity, because at 3524 * this point the task has the smallest effective memory and cache footprint. 3525 */ 3526 void sched_exec(void) 3527 { 3528 struct task_struct *p = current; 3529 unsigned long flags; 3530 int dest_cpu; 3531 3532 raw_spin_lock_irqsave(&p->pi_lock, flags); 3533 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3534 if (dest_cpu == smp_processor_id()) 3535 goto unlock; 3536 3537 if (likely(cpu_active(dest_cpu))) { 3538 struct migration_arg arg = { p, dest_cpu }; 3539 3540 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3541 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3542 return; 3543 } 3544 unlock: 3545 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3546 } 3547 3548 #endif 3549 3550 DEFINE_PER_CPU(struct kernel_stat, kstat); 3551 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3552 3553 EXPORT_PER_CPU_SYMBOL(kstat); 3554 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3555 3556 /* 3557 * The function fair_sched_class.update_curr accesses the struct curr 3558 * and its field curr->exec_start; when called from task_sched_runtime(), 3559 * we observe a high rate of cache misses in practice. 3560 * Prefetching this data results in improved performance. 3561 */ 3562 static inline void prefetch_curr_exec_start(struct task_struct *p) 3563 { 3564 #ifdef CONFIG_FAIR_GROUP_SCHED 3565 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3566 #else 3567 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3568 #endif 3569 prefetch(curr); 3570 prefetch(&curr->exec_start); 3571 } 3572 3573 /* 3574 * Return accounted runtime for the task. 3575 * In case the task is currently running, return the runtime plus current's 3576 * pending runtime that have not been accounted yet. 3577 */ 3578 unsigned long long task_sched_runtime(struct task_struct *p) 3579 { 3580 struct rq_flags rf; 3581 struct rq *rq; 3582 u64 ns; 3583 3584 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3585 /* 3586 * 64-bit doesn't need locks to atomically read a 64-bit value. 3587 * So we have a optimization chance when the task's delta_exec is 0. 3588 * Reading ->on_cpu is racy, but this is ok. 3589 * 3590 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3591 * If we race with it entering CPU, unaccounted time is 0. This is 3592 * indistinguishable from the read occurring a few cycles earlier. 3593 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3594 * been accounted, so we're correct here as well. 3595 */ 3596 if (!p->on_cpu || !task_on_rq_queued(p)) 3597 return p->se.sum_exec_runtime; 3598 #endif 3599 3600 rq = task_rq_lock(p, &rf); 3601 /* 3602 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3603 * project cycles that may never be accounted to this 3604 * thread, breaking clock_gettime(). 3605 */ 3606 if (task_current(rq, p) && task_on_rq_queued(p)) { 3607 prefetch_curr_exec_start(p); 3608 update_rq_clock(rq); 3609 p->sched_class->update_curr(rq); 3610 } 3611 ns = p->se.sum_exec_runtime; 3612 task_rq_unlock(rq, p, &rf); 3613 3614 return ns; 3615 } 3616 3617 DEFINE_PER_CPU(unsigned long, thermal_pressure); 3618 3619 void arch_set_thermal_pressure(struct cpumask *cpus, 3620 unsigned long th_pressure) 3621 { 3622 int cpu; 3623 3624 for_each_cpu(cpu, cpus) 3625 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 3626 } 3627 3628 /* 3629 * This function gets called by the timer code, with HZ frequency. 3630 * We call it with interrupts disabled. 3631 */ 3632 void scheduler_tick(void) 3633 { 3634 int cpu = smp_processor_id(); 3635 struct rq *rq = cpu_rq(cpu); 3636 struct task_struct *curr = rq->curr; 3637 struct rq_flags rf; 3638 unsigned long thermal_pressure; 3639 3640 arch_scale_freq_tick(); 3641 sched_clock_tick(); 3642 3643 rq_lock(rq, &rf); 3644 3645 update_rq_clock(rq); 3646 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 3647 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 3648 curr->sched_class->task_tick(rq, curr, 0); 3649 calc_global_load_tick(rq); 3650 psi_task_tick(rq); 3651 3652 rq_unlock(rq, &rf); 3653 3654 perf_event_task_tick(); 3655 3656 #ifdef CONFIG_SMP 3657 rq->idle_balance = idle_cpu(cpu); 3658 trigger_load_balance(rq); 3659 #endif 3660 } 3661 3662 #ifdef CONFIG_NO_HZ_FULL 3663 3664 struct tick_work { 3665 int cpu; 3666 atomic_t state; 3667 struct delayed_work work; 3668 }; 3669 /* Values for ->state, see diagram below. */ 3670 #define TICK_SCHED_REMOTE_OFFLINE 0 3671 #define TICK_SCHED_REMOTE_OFFLINING 1 3672 #define TICK_SCHED_REMOTE_RUNNING 2 3673 3674 /* 3675 * State diagram for ->state: 3676 * 3677 * 3678 * TICK_SCHED_REMOTE_OFFLINE 3679 * | ^ 3680 * | | 3681 * | | sched_tick_remote() 3682 * | | 3683 * | | 3684 * +--TICK_SCHED_REMOTE_OFFLINING 3685 * | ^ 3686 * | | 3687 * sched_tick_start() | | sched_tick_stop() 3688 * | | 3689 * V | 3690 * TICK_SCHED_REMOTE_RUNNING 3691 * 3692 * 3693 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 3694 * and sched_tick_start() are happy to leave the state in RUNNING. 3695 */ 3696 3697 static struct tick_work __percpu *tick_work_cpu; 3698 3699 static void sched_tick_remote(struct work_struct *work) 3700 { 3701 struct delayed_work *dwork = to_delayed_work(work); 3702 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3703 int cpu = twork->cpu; 3704 struct rq *rq = cpu_rq(cpu); 3705 struct task_struct *curr; 3706 struct rq_flags rf; 3707 u64 delta; 3708 int os; 3709 3710 /* 3711 * Handle the tick only if it appears the remote CPU is running in full 3712 * dynticks mode. The check is racy by nature, but missing a tick or 3713 * having one too much is no big deal because the scheduler tick updates 3714 * statistics and checks timeslices in a time-independent way, regardless 3715 * of when exactly it is running. 3716 */ 3717 if (!tick_nohz_tick_stopped_cpu(cpu)) 3718 goto out_requeue; 3719 3720 rq_lock_irq(rq, &rf); 3721 curr = rq->curr; 3722 if (cpu_is_offline(cpu)) 3723 goto out_unlock; 3724 3725 update_rq_clock(rq); 3726 3727 if (!is_idle_task(curr)) { 3728 /* 3729 * Make sure the next tick runs within a reasonable 3730 * amount of time. 3731 */ 3732 delta = rq_clock_task(rq) - curr->se.exec_start; 3733 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3734 } 3735 curr->sched_class->task_tick(rq, curr, 0); 3736 3737 calc_load_nohz_remote(rq); 3738 out_unlock: 3739 rq_unlock_irq(rq, &rf); 3740 out_requeue: 3741 3742 /* 3743 * Run the remote tick once per second (1Hz). This arbitrary 3744 * frequency is large enough to avoid overload but short enough 3745 * to keep scheduler internal stats reasonably up to date. But 3746 * first update state to reflect hotplug activity if required. 3747 */ 3748 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 3749 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 3750 if (os == TICK_SCHED_REMOTE_RUNNING) 3751 queue_delayed_work(system_unbound_wq, dwork, HZ); 3752 } 3753 3754 static void sched_tick_start(int cpu) 3755 { 3756 int os; 3757 struct tick_work *twork; 3758 3759 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3760 return; 3761 3762 WARN_ON_ONCE(!tick_work_cpu); 3763 3764 twork = per_cpu_ptr(tick_work_cpu, cpu); 3765 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 3766 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 3767 if (os == TICK_SCHED_REMOTE_OFFLINE) { 3768 twork->cpu = cpu; 3769 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3770 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3771 } 3772 } 3773 3774 #ifdef CONFIG_HOTPLUG_CPU 3775 static void sched_tick_stop(int cpu) 3776 { 3777 struct tick_work *twork; 3778 int os; 3779 3780 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3781 return; 3782 3783 WARN_ON_ONCE(!tick_work_cpu); 3784 3785 twork = per_cpu_ptr(tick_work_cpu, cpu); 3786 /* There cannot be competing actions, but don't rely on stop-machine. */ 3787 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 3788 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 3789 /* Don't cancel, as this would mess up the state machine. */ 3790 } 3791 #endif /* CONFIG_HOTPLUG_CPU */ 3792 3793 int __init sched_tick_offload_init(void) 3794 { 3795 tick_work_cpu = alloc_percpu(struct tick_work); 3796 BUG_ON(!tick_work_cpu); 3797 return 0; 3798 } 3799 3800 #else /* !CONFIG_NO_HZ_FULL */ 3801 static inline void sched_tick_start(int cpu) { } 3802 static inline void sched_tick_stop(int cpu) { } 3803 #endif 3804 3805 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3806 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 3807 /* 3808 * If the value passed in is equal to the current preempt count 3809 * then we just disabled preemption. Start timing the latency. 3810 */ 3811 static inline void preempt_latency_start(int val) 3812 { 3813 if (preempt_count() == val) { 3814 unsigned long ip = get_lock_parent_ip(); 3815 #ifdef CONFIG_DEBUG_PREEMPT 3816 current->preempt_disable_ip = ip; 3817 #endif 3818 trace_preempt_off(CALLER_ADDR0, ip); 3819 } 3820 } 3821 3822 void preempt_count_add(int val) 3823 { 3824 #ifdef CONFIG_DEBUG_PREEMPT 3825 /* 3826 * Underflow? 3827 */ 3828 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3829 return; 3830 #endif 3831 __preempt_count_add(val); 3832 #ifdef CONFIG_DEBUG_PREEMPT 3833 /* 3834 * Spinlock count overflowing soon? 3835 */ 3836 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3837 PREEMPT_MASK - 10); 3838 #endif 3839 preempt_latency_start(val); 3840 } 3841 EXPORT_SYMBOL(preempt_count_add); 3842 NOKPROBE_SYMBOL(preempt_count_add); 3843 3844 /* 3845 * If the value passed in equals to the current preempt count 3846 * then we just enabled preemption. Stop timing the latency. 3847 */ 3848 static inline void preempt_latency_stop(int val) 3849 { 3850 if (preempt_count() == val) 3851 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3852 } 3853 3854 void preempt_count_sub(int val) 3855 { 3856 #ifdef CONFIG_DEBUG_PREEMPT 3857 /* 3858 * Underflow? 3859 */ 3860 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3861 return; 3862 /* 3863 * Is the spinlock portion underflowing? 3864 */ 3865 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3866 !(preempt_count() & PREEMPT_MASK))) 3867 return; 3868 #endif 3869 3870 preempt_latency_stop(val); 3871 __preempt_count_sub(val); 3872 } 3873 EXPORT_SYMBOL(preempt_count_sub); 3874 NOKPROBE_SYMBOL(preempt_count_sub); 3875 3876 #else 3877 static inline void preempt_latency_start(int val) { } 3878 static inline void preempt_latency_stop(int val) { } 3879 #endif 3880 3881 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3882 { 3883 #ifdef CONFIG_DEBUG_PREEMPT 3884 return p->preempt_disable_ip; 3885 #else 3886 return 0; 3887 #endif 3888 } 3889 3890 /* 3891 * Print scheduling while atomic bug: 3892 */ 3893 static noinline void __schedule_bug(struct task_struct *prev) 3894 { 3895 /* Save this before calling printk(), since that will clobber it */ 3896 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3897 3898 if (oops_in_progress) 3899 return; 3900 3901 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3902 prev->comm, prev->pid, preempt_count()); 3903 3904 debug_show_held_locks(prev); 3905 print_modules(); 3906 if (irqs_disabled()) 3907 print_irqtrace_events(prev); 3908 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3909 && in_atomic_preempt_off()) { 3910 pr_err("Preemption disabled at:"); 3911 print_ip_sym(preempt_disable_ip); 3912 pr_cont("\n"); 3913 } 3914 if (panic_on_warn) 3915 panic("scheduling while atomic\n"); 3916 3917 dump_stack(); 3918 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3919 } 3920 3921 /* 3922 * Various schedule()-time debugging checks and statistics: 3923 */ 3924 static inline void schedule_debug(struct task_struct *prev, bool preempt) 3925 { 3926 #ifdef CONFIG_SCHED_STACK_END_CHECK 3927 if (task_stack_end_corrupted(prev)) 3928 panic("corrupted stack end detected inside scheduler\n"); 3929 3930 if (task_scs_end_corrupted(prev)) 3931 panic("corrupted shadow stack detected inside scheduler\n"); 3932 #endif 3933 3934 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 3935 if (!preempt && prev->state && prev->non_block_count) { 3936 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 3937 prev->comm, prev->pid, prev->non_block_count); 3938 dump_stack(); 3939 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3940 } 3941 #endif 3942 3943 if (unlikely(in_atomic_preempt_off())) { 3944 __schedule_bug(prev); 3945 preempt_count_set(PREEMPT_DISABLED); 3946 } 3947 rcu_sleep_check(); 3948 3949 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3950 3951 schedstat_inc(this_rq()->sched_count); 3952 } 3953 3954 /* 3955 * Pick up the highest-prio task: 3956 */ 3957 static inline struct task_struct * 3958 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3959 { 3960 const struct sched_class *class; 3961 struct task_struct *p; 3962 3963 /* 3964 * Optimization: we know that if all tasks are in the fair class we can 3965 * call that function directly, but only if the @prev task wasn't of a 3966 * higher scheduling class, because otherwise those loose the 3967 * opportunity to pull in more work from other CPUs. 3968 */ 3969 if (likely((prev->sched_class == &idle_sched_class || 3970 prev->sched_class == &fair_sched_class) && 3971 rq->nr_running == rq->cfs.h_nr_running)) { 3972 3973 p = pick_next_task_fair(rq, prev, rf); 3974 if (unlikely(p == RETRY_TASK)) 3975 goto restart; 3976 3977 /* Assumes fair_sched_class->next == idle_sched_class */ 3978 if (!p) { 3979 put_prev_task(rq, prev); 3980 p = pick_next_task_idle(rq); 3981 } 3982 3983 return p; 3984 } 3985 3986 restart: 3987 #ifdef CONFIG_SMP 3988 /* 3989 * We must do the balancing pass before put_next_task(), such 3990 * that when we release the rq->lock the task is in the same 3991 * state as before we took rq->lock. 3992 * 3993 * We can terminate the balance pass as soon as we know there is 3994 * a runnable task of @class priority or higher. 3995 */ 3996 for_class_range(class, prev->sched_class, &idle_sched_class) { 3997 if (class->balance(rq, prev, rf)) 3998 break; 3999 } 4000 #endif 4001 4002 put_prev_task(rq, prev); 4003 4004 for_each_class(class) { 4005 p = class->pick_next_task(rq); 4006 if (p) 4007 return p; 4008 } 4009 4010 /* The idle class should always have a runnable task: */ 4011 BUG(); 4012 } 4013 4014 /* 4015 * __schedule() is the main scheduler function. 4016 * 4017 * The main means of driving the scheduler and thus entering this function are: 4018 * 4019 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 4020 * 4021 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 4022 * paths. For example, see arch/x86/entry_64.S. 4023 * 4024 * To drive preemption between tasks, the scheduler sets the flag in timer 4025 * interrupt handler scheduler_tick(). 4026 * 4027 * 3. Wakeups don't really cause entry into schedule(). They add a 4028 * task to the run-queue and that's it. 4029 * 4030 * Now, if the new task added to the run-queue preempts the current 4031 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 4032 * called on the nearest possible occasion: 4033 * 4034 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 4035 * 4036 * - in syscall or exception context, at the next outmost 4037 * preempt_enable(). (this might be as soon as the wake_up()'s 4038 * spin_unlock()!) 4039 * 4040 * - in IRQ context, return from interrupt-handler to 4041 * preemptible context 4042 * 4043 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 4044 * then at the next: 4045 * 4046 * - cond_resched() call 4047 * - explicit schedule() call 4048 * - return from syscall or exception to user-space 4049 * - return from interrupt-handler to user-space 4050 * 4051 * WARNING: must be called with preemption disabled! 4052 */ 4053 static void __sched notrace __schedule(bool preempt) 4054 { 4055 struct task_struct *prev, *next; 4056 unsigned long *switch_count; 4057 struct rq_flags rf; 4058 struct rq *rq; 4059 int cpu; 4060 4061 cpu = smp_processor_id(); 4062 rq = cpu_rq(cpu); 4063 prev = rq->curr; 4064 4065 schedule_debug(prev, preempt); 4066 4067 if (sched_feat(HRTICK)) 4068 hrtick_clear(rq); 4069 4070 local_irq_disable(); 4071 rcu_note_context_switch(preempt); 4072 4073 /* 4074 * Make sure that signal_pending_state()->signal_pending() below 4075 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 4076 * done by the caller to avoid the race with signal_wake_up(). 4077 * 4078 * The membarrier system call requires a full memory barrier 4079 * after coming from user-space, before storing to rq->curr. 4080 */ 4081 rq_lock(rq, &rf); 4082 smp_mb__after_spinlock(); 4083 4084 /* Promote REQ to ACT */ 4085 rq->clock_update_flags <<= 1; 4086 update_rq_clock(rq); 4087 4088 switch_count = &prev->nivcsw; 4089 if (!preempt && prev->state) { 4090 if (signal_pending_state(prev->state, prev)) { 4091 prev->state = TASK_RUNNING; 4092 } else { 4093 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 4094 4095 if (prev->in_iowait) { 4096 atomic_inc(&rq->nr_iowait); 4097 delayacct_blkio_start(); 4098 } 4099 } 4100 switch_count = &prev->nvcsw; 4101 } 4102 4103 next = pick_next_task(rq, prev, &rf); 4104 clear_tsk_need_resched(prev); 4105 clear_preempt_need_resched(); 4106 4107 if (likely(prev != next)) { 4108 rq->nr_switches++; 4109 /* 4110 * RCU users of rcu_dereference(rq->curr) may not see 4111 * changes to task_struct made by pick_next_task(). 4112 */ 4113 RCU_INIT_POINTER(rq->curr, next); 4114 /* 4115 * The membarrier system call requires each architecture 4116 * to have a full memory barrier after updating 4117 * rq->curr, before returning to user-space. 4118 * 4119 * Here are the schemes providing that barrier on the 4120 * various architectures: 4121 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 4122 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 4123 * - finish_lock_switch() for weakly-ordered 4124 * architectures where spin_unlock is a full barrier, 4125 * - switch_to() for arm64 (weakly-ordered, spin_unlock 4126 * is a RELEASE barrier), 4127 */ 4128 ++*switch_count; 4129 4130 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 4131 4132 trace_sched_switch(preempt, prev, next); 4133 4134 /* Also unlocks the rq: */ 4135 rq = context_switch(rq, prev, next, &rf); 4136 } else { 4137 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 4138 rq_unlock_irq(rq, &rf); 4139 } 4140 4141 balance_callback(rq); 4142 } 4143 4144 void __noreturn do_task_dead(void) 4145 { 4146 /* Causes final put_task_struct in finish_task_switch(): */ 4147 set_special_state(TASK_DEAD); 4148 4149 /* Tell freezer to ignore us: */ 4150 current->flags |= PF_NOFREEZE; 4151 4152 __schedule(false); 4153 BUG(); 4154 4155 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 4156 for (;;) 4157 cpu_relax(); 4158 } 4159 4160 static inline void sched_submit_work(struct task_struct *tsk) 4161 { 4162 if (!tsk->state) 4163 return; 4164 4165 /* 4166 * If a worker went to sleep, notify and ask workqueue whether 4167 * it wants to wake up a task to maintain concurrency. 4168 * As this function is called inside the schedule() context, 4169 * we disable preemption to avoid it calling schedule() again 4170 * in the possible wakeup of a kworker and because wq_worker_sleeping() 4171 * requires it. 4172 */ 4173 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4174 preempt_disable(); 4175 if (tsk->flags & PF_WQ_WORKER) 4176 wq_worker_sleeping(tsk); 4177 else 4178 io_wq_worker_sleeping(tsk); 4179 preempt_enable_no_resched(); 4180 } 4181 4182 if (tsk_is_pi_blocked(tsk)) 4183 return; 4184 4185 /* 4186 * If we are going to sleep and we have plugged IO queued, 4187 * make sure to submit it to avoid deadlocks. 4188 */ 4189 if (blk_needs_flush_plug(tsk)) 4190 blk_schedule_flush_plug(tsk); 4191 } 4192 4193 static void sched_update_worker(struct task_struct *tsk) 4194 { 4195 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 4196 if (tsk->flags & PF_WQ_WORKER) 4197 wq_worker_running(tsk); 4198 else 4199 io_wq_worker_running(tsk); 4200 } 4201 } 4202 4203 asmlinkage __visible void __sched schedule(void) 4204 { 4205 struct task_struct *tsk = current; 4206 4207 sched_submit_work(tsk); 4208 do { 4209 preempt_disable(); 4210 __schedule(false); 4211 sched_preempt_enable_no_resched(); 4212 } while (need_resched()); 4213 sched_update_worker(tsk); 4214 } 4215 EXPORT_SYMBOL(schedule); 4216 4217 /* 4218 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 4219 * state (have scheduled out non-voluntarily) by making sure that all 4220 * tasks have either left the run queue or have gone into user space. 4221 * As idle tasks do not do either, they must not ever be preempted 4222 * (schedule out non-voluntarily). 4223 * 4224 * schedule_idle() is similar to schedule_preempt_disable() except that it 4225 * never enables preemption because it does not call sched_submit_work(). 4226 */ 4227 void __sched schedule_idle(void) 4228 { 4229 /* 4230 * As this skips calling sched_submit_work(), which the idle task does 4231 * regardless because that function is a nop when the task is in a 4232 * TASK_RUNNING state, make sure this isn't used someplace that the 4233 * current task can be in any other state. Note, idle is always in the 4234 * TASK_RUNNING state. 4235 */ 4236 WARN_ON_ONCE(current->state); 4237 do { 4238 __schedule(false); 4239 } while (need_resched()); 4240 } 4241 4242 #ifdef CONFIG_CONTEXT_TRACKING 4243 asmlinkage __visible void __sched schedule_user(void) 4244 { 4245 /* 4246 * If we come here after a random call to set_need_resched(), 4247 * or we have been woken up remotely but the IPI has not yet arrived, 4248 * we haven't yet exited the RCU idle mode. Do it here manually until 4249 * we find a better solution. 4250 * 4251 * NB: There are buggy callers of this function. Ideally we 4252 * should warn if prev_state != CONTEXT_USER, but that will trigger 4253 * too frequently to make sense yet. 4254 */ 4255 enum ctx_state prev_state = exception_enter(); 4256 schedule(); 4257 exception_exit(prev_state); 4258 } 4259 #endif 4260 4261 /** 4262 * schedule_preempt_disabled - called with preemption disabled 4263 * 4264 * Returns with preemption disabled. Note: preempt_count must be 1 4265 */ 4266 void __sched schedule_preempt_disabled(void) 4267 { 4268 sched_preempt_enable_no_resched(); 4269 schedule(); 4270 preempt_disable(); 4271 } 4272 4273 static void __sched notrace preempt_schedule_common(void) 4274 { 4275 do { 4276 /* 4277 * Because the function tracer can trace preempt_count_sub() 4278 * and it also uses preempt_enable/disable_notrace(), if 4279 * NEED_RESCHED is set, the preempt_enable_notrace() called 4280 * by the function tracer will call this function again and 4281 * cause infinite recursion. 4282 * 4283 * Preemption must be disabled here before the function 4284 * tracer can trace. Break up preempt_disable() into two 4285 * calls. One to disable preemption without fear of being 4286 * traced. The other to still record the preemption latency, 4287 * which can also be traced by the function tracer. 4288 */ 4289 preempt_disable_notrace(); 4290 preempt_latency_start(1); 4291 __schedule(true); 4292 preempt_latency_stop(1); 4293 preempt_enable_no_resched_notrace(); 4294 4295 /* 4296 * Check again in case we missed a preemption opportunity 4297 * between schedule and now. 4298 */ 4299 } while (need_resched()); 4300 } 4301 4302 #ifdef CONFIG_PREEMPTION 4303 /* 4304 * This is the entry point to schedule() from in-kernel preemption 4305 * off of preempt_enable. 4306 */ 4307 asmlinkage __visible void __sched notrace preempt_schedule(void) 4308 { 4309 /* 4310 * If there is a non-zero preempt_count or interrupts are disabled, 4311 * we do not want to preempt the current task. Just return.. 4312 */ 4313 if (likely(!preemptible())) 4314 return; 4315 4316 preempt_schedule_common(); 4317 } 4318 NOKPROBE_SYMBOL(preempt_schedule); 4319 EXPORT_SYMBOL(preempt_schedule); 4320 4321 /** 4322 * preempt_schedule_notrace - preempt_schedule called by tracing 4323 * 4324 * The tracing infrastructure uses preempt_enable_notrace to prevent 4325 * recursion and tracing preempt enabling caused by the tracing 4326 * infrastructure itself. But as tracing can happen in areas coming 4327 * from userspace or just about to enter userspace, a preempt enable 4328 * can occur before user_exit() is called. This will cause the scheduler 4329 * to be called when the system is still in usermode. 4330 * 4331 * To prevent this, the preempt_enable_notrace will use this function 4332 * instead of preempt_schedule() to exit user context if needed before 4333 * calling the scheduler. 4334 */ 4335 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 4336 { 4337 enum ctx_state prev_ctx; 4338 4339 if (likely(!preemptible())) 4340 return; 4341 4342 do { 4343 /* 4344 * Because the function tracer can trace preempt_count_sub() 4345 * and it also uses preempt_enable/disable_notrace(), if 4346 * NEED_RESCHED is set, the preempt_enable_notrace() called 4347 * by the function tracer will call this function again and 4348 * cause infinite recursion. 4349 * 4350 * Preemption must be disabled here before the function 4351 * tracer can trace. Break up preempt_disable() into two 4352 * calls. One to disable preemption without fear of being 4353 * traced. The other to still record the preemption latency, 4354 * which can also be traced by the function tracer. 4355 */ 4356 preempt_disable_notrace(); 4357 preempt_latency_start(1); 4358 /* 4359 * Needs preempt disabled in case user_exit() is traced 4360 * and the tracer calls preempt_enable_notrace() causing 4361 * an infinite recursion. 4362 */ 4363 prev_ctx = exception_enter(); 4364 __schedule(true); 4365 exception_exit(prev_ctx); 4366 4367 preempt_latency_stop(1); 4368 preempt_enable_no_resched_notrace(); 4369 } while (need_resched()); 4370 } 4371 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 4372 4373 #endif /* CONFIG_PREEMPTION */ 4374 4375 /* 4376 * This is the entry point to schedule() from kernel preemption 4377 * off of irq context. 4378 * Note, that this is called and return with irqs disabled. This will 4379 * protect us against recursive calling from irq. 4380 */ 4381 asmlinkage __visible void __sched preempt_schedule_irq(void) 4382 { 4383 enum ctx_state prev_state; 4384 4385 /* Catch callers which need to be fixed */ 4386 BUG_ON(preempt_count() || !irqs_disabled()); 4387 4388 prev_state = exception_enter(); 4389 4390 do { 4391 preempt_disable(); 4392 local_irq_enable(); 4393 __schedule(true); 4394 local_irq_disable(); 4395 sched_preempt_enable_no_resched(); 4396 } while (need_resched()); 4397 4398 exception_exit(prev_state); 4399 } 4400 4401 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 4402 void *key) 4403 { 4404 return try_to_wake_up(curr->private, mode, wake_flags); 4405 } 4406 EXPORT_SYMBOL(default_wake_function); 4407 4408 #ifdef CONFIG_RT_MUTEXES 4409 4410 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 4411 { 4412 if (pi_task) 4413 prio = min(prio, pi_task->prio); 4414 4415 return prio; 4416 } 4417 4418 static inline int rt_effective_prio(struct task_struct *p, int prio) 4419 { 4420 struct task_struct *pi_task = rt_mutex_get_top_task(p); 4421 4422 return __rt_effective_prio(pi_task, prio); 4423 } 4424 4425 /* 4426 * rt_mutex_setprio - set the current priority of a task 4427 * @p: task to boost 4428 * @pi_task: donor task 4429 * 4430 * This function changes the 'effective' priority of a task. It does 4431 * not touch ->normal_prio like __setscheduler(). 4432 * 4433 * Used by the rt_mutex code to implement priority inheritance 4434 * logic. Call site only calls if the priority of the task changed. 4435 */ 4436 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 4437 { 4438 int prio, oldprio, queued, running, queue_flag = 4439 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4440 const struct sched_class *prev_class; 4441 struct rq_flags rf; 4442 struct rq *rq; 4443 4444 /* XXX used to be waiter->prio, not waiter->task->prio */ 4445 prio = __rt_effective_prio(pi_task, p->normal_prio); 4446 4447 /* 4448 * If nothing changed; bail early. 4449 */ 4450 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 4451 return; 4452 4453 rq = __task_rq_lock(p, &rf); 4454 update_rq_clock(rq); 4455 /* 4456 * Set under pi_lock && rq->lock, such that the value can be used under 4457 * either lock. 4458 * 4459 * Note that there is loads of tricky to make this pointer cache work 4460 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 4461 * ensure a task is de-boosted (pi_task is set to NULL) before the 4462 * task is allowed to run again (and can exit). This ensures the pointer 4463 * points to a blocked task -- which guaratees the task is present. 4464 */ 4465 p->pi_top_task = pi_task; 4466 4467 /* 4468 * For FIFO/RR we only need to set prio, if that matches we're done. 4469 */ 4470 if (prio == p->prio && !dl_prio(prio)) 4471 goto out_unlock; 4472 4473 /* 4474 * Idle task boosting is a nono in general. There is one 4475 * exception, when PREEMPT_RT and NOHZ is active: 4476 * 4477 * The idle task calls get_next_timer_interrupt() and holds 4478 * the timer wheel base->lock on the CPU and another CPU wants 4479 * to access the timer (probably to cancel it). We can safely 4480 * ignore the boosting request, as the idle CPU runs this code 4481 * with interrupts disabled and will complete the lock 4482 * protected section without being interrupted. So there is no 4483 * real need to boost. 4484 */ 4485 if (unlikely(p == rq->idle)) { 4486 WARN_ON(p != rq->curr); 4487 WARN_ON(p->pi_blocked_on); 4488 goto out_unlock; 4489 } 4490 4491 trace_sched_pi_setprio(p, pi_task); 4492 oldprio = p->prio; 4493 4494 if (oldprio == prio) 4495 queue_flag &= ~DEQUEUE_MOVE; 4496 4497 prev_class = p->sched_class; 4498 queued = task_on_rq_queued(p); 4499 running = task_current(rq, p); 4500 if (queued) 4501 dequeue_task(rq, p, queue_flag); 4502 if (running) 4503 put_prev_task(rq, p); 4504 4505 /* 4506 * Boosting condition are: 4507 * 1. -rt task is running and holds mutex A 4508 * --> -dl task blocks on mutex A 4509 * 4510 * 2. -dl task is running and holds mutex A 4511 * --> -dl task blocks on mutex A and could preempt the 4512 * running task 4513 */ 4514 if (dl_prio(prio)) { 4515 if (!dl_prio(p->normal_prio) || 4516 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 4517 p->dl.dl_boosted = 1; 4518 queue_flag |= ENQUEUE_REPLENISH; 4519 } else 4520 p->dl.dl_boosted = 0; 4521 p->sched_class = &dl_sched_class; 4522 } else if (rt_prio(prio)) { 4523 if (dl_prio(oldprio)) 4524 p->dl.dl_boosted = 0; 4525 if (oldprio < prio) 4526 queue_flag |= ENQUEUE_HEAD; 4527 p->sched_class = &rt_sched_class; 4528 } else { 4529 if (dl_prio(oldprio)) 4530 p->dl.dl_boosted = 0; 4531 if (rt_prio(oldprio)) 4532 p->rt.timeout = 0; 4533 p->sched_class = &fair_sched_class; 4534 } 4535 4536 p->prio = prio; 4537 4538 if (queued) 4539 enqueue_task(rq, p, queue_flag); 4540 if (running) 4541 set_next_task(rq, p); 4542 4543 check_class_changed(rq, p, prev_class, oldprio); 4544 out_unlock: 4545 /* Avoid rq from going away on us: */ 4546 preempt_disable(); 4547 __task_rq_unlock(rq, &rf); 4548 4549 balance_callback(rq); 4550 preempt_enable(); 4551 } 4552 #else 4553 static inline int rt_effective_prio(struct task_struct *p, int prio) 4554 { 4555 return prio; 4556 } 4557 #endif 4558 4559 void set_user_nice(struct task_struct *p, long nice) 4560 { 4561 bool queued, running; 4562 int old_prio; 4563 struct rq_flags rf; 4564 struct rq *rq; 4565 4566 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 4567 return; 4568 /* 4569 * We have to be careful, if called from sys_setpriority(), 4570 * the task might be in the middle of scheduling on another CPU. 4571 */ 4572 rq = task_rq_lock(p, &rf); 4573 update_rq_clock(rq); 4574 4575 /* 4576 * The RT priorities are set via sched_setscheduler(), but we still 4577 * allow the 'normal' nice value to be set - but as expected 4578 * it wont have any effect on scheduling until the task is 4579 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 4580 */ 4581 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4582 p->static_prio = NICE_TO_PRIO(nice); 4583 goto out_unlock; 4584 } 4585 queued = task_on_rq_queued(p); 4586 running = task_current(rq, p); 4587 if (queued) 4588 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 4589 if (running) 4590 put_prev_task(rq, p); 4591 4592 p->static_prio = NICE_TO_PRIO(nice); 4593 set_load_weight(p, true); 4594 old_prio = p->prio; 4595 p->prio = effective_prio(p); 4596 4597 if (queued) 4598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 4599 if (running) 4600 set_next_task(rq, p); 4601 4602 /* 4603 * If the task increased its priority or is running and 4604 * lowered its priority, then reschedule its CPU: 4605 */ 4606 p->sched_class->prio_changed(rq, p, old_prio); 4607 4608 out_unlock: 4609 task_rq_unlock(rq, p, &rf); 4610 } 4611 EXPORT_SYMBOL(set_user_nice); 4612 4613 /* 4614 * can_nice - check if a task can reduce its nice value 4615 * @p: task 4616 * @nice: nice value 4617 */ 4618 int can_nice(const struct task_struct *p, const int nice) 4619 { 4620 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 4621 int nice_rlim = nice_to_rlimit(nice); 4622 4623 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 4624 capable(CAP_SYS_NICE)); 4625 } 4626 4627 #ifdef __ARCH_WANT_SYS_NICE 4628 4629 /* 4630 * sys_nice - change the priority of the current process. 4631 * @increment: priority increment 4632 * 4633 * sys_setpriority is a more generic, but much slower function that 4634 * does similar things. 4635 */ 4636 SYSCALL_DEFINE1(nice, int, increment) 4637 { 4638 long nice, retval; 4639 4640 /* 4641 * Setpriority might change our priority at the same moment. 4642 * We don't have to worry. Conceptually one call occurs first 4643 * and we have a single winner. 4644 */ 4645 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 4646 nice = task_nice(current) + increment; 4647 4648 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4649 if (increment < 0 && !can_nice(current, nice)) 4650 return -EPERM; 4651 4652 retval = security_task_setnice(current, nice); 4653 if (retval) 4654 return retval; 4655 4656 set_user_nice(current, nice); 4657 return 0; 4658 } 4659 4660 #endif 4661 4662 /** 4663 * task_prio - return the priority value of a given task. 4664 * @p: the task in question. 4665 * 4666 * Return: The priority value as seen by users in /proc. 4667 * RT tasks are offset by -200. Normal tasks are centered 4668 * around 0, value goes from -16 to +15. 4669 */ 4670 int task_prio(const struct task_struct *p) 4671 { 4672 return p->prio - MAX_RT_PRIO; 4673 } 4674 4675 /** 4676 * idle_cpu - is a given CPU idle currently? 4677 * @cpu: the processor in question. 4678 * 4679 * Return: 1 if the CPU is currently idle. 0 otherwise. 4680 */ 4681 int idle_cpu(int cpu) 4682 { 4683 struct rq *rq = cpu_rq(cpu); 4684 4685 if (rq->curr != rq->idle) 4686 return 0; 4687 4688 if (rq->nr_running) 4689 return 0; 4690 4691 #ifdef CONFIG_SMP 4692 if (!llist_empty(&rq->wake_list)) 4693 return 0; 4694 #endif 4695 4696 return 1; 4697 } 4698 4699 /** 4700 * available_idle_cpu - is a given CPU idle for enqueuing work. 4701 * @cpu: the CPU in question. 4702 * 4703 * Return: 1 if the CPU is currently idle. 0 otherwise. 4704 */ 4705 int available_idle_cpu(int cpu) 4706 { 4707 if (!idle_cpu(cpu)) 4708 return 0; 4709 4710 if (vcpu_is_preempted(cpu)) 4711 return 0; 4712 4713 return 1; 4714 } 4715 4716 /** 4717 * idle_task - return the idle task for a given CPU. 4718 * @cpu: the processor in question. 4719 * 4720 * Return: The idle task for the CPU @cpu. 4721 */ 4722 struct task_struct *idle_task(int cpu) 4723 { 4724 return cpu_rq(cpu)->idle; 4725 } 4726 4727 /** 4728 * find_process_by_pid - find a process with a matching PID value. 4729 * @pid: the pid in question. 4730 * 4731 * The task of @pid, if found. %NULL otherwise. 4732 */ 4733 static struct task_struct *find_process_by_pid(pid_t pid) 4734 { 4735 return pid ? find_task_by_vpid(pid) : current; 4736 } 4737 4738 /* 4739 * sched_setparam() passes in -1 for its policy, to let the functions 4740 * it calls know not to change it. 4741 */ 4742 #define SETPARAM_POLICY -1 4743 4744 static void __setscheduler_params(struct task_struct *p, 4745 const struct sched_attr *attr) 4746 { 4747 int policy = attr->sched_policy; 4748 4749 if (policy == SETPARAM_POLICY) 4750 policy = p->policy; 4751 4752 p->policy = policy; 4753 4754 if (dl_policy(policy)) 4755 __setparam_dl(p, attr); 4756 else if (fair_policy(policy)) 4757 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4758 4759 /* 4760 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4761 * !rt_policy. Always setting this ensures that things like 4762 * getparam()/getattr() don't report silly values for !rt tasks. 4763 */ 4764 p->rt_priority = attr->sched_priority; 4765 p->normal_prio = normal_prio(p); 4766 set_load_weight(p, true); 4767 } 4768 4769 /* Actually do priority change: must hold pi & rq lock. */ 4770 static void __setscheduler(struct rq *rq, struct task_struct *p, 4771 const struct sched_attr *attr, bool keep_boost) 4772 { 4773 /* 4774 * If params can't change scheduling class changes aren't allowed 4775 * either. 4776 */ 4777 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS) 4778 return; 4779 4780 __setscheduler_params(p, attr); 4781 4782 /* 4783 * Keep a potential priority boosting if called from 4784 * sched_setscheduler(). 4785 */ 4786 p->prio = normal_prio(p); 4787 if (keep_boost) 4788 p->prio = rt_effective_prio(p, p->prio); 4789 4790 if (dl_prio(p->prio)) 4791 p->sched_class = &dl_sched_class; 4792 else if (rt_prio(p->prio)) 4793 p->sched_class = &rt_sched_class; 4794 else 4795 p->sched_class = &fair_sched_class; 4796 } 4797 4798 /* 4799 * Check the target process has a UID that matches the current process's: 4800 */ 4801 static bool check_same_owner(struct task_struct *p) 4802 { 4803 const struct cred *cred = current_cred(), *pcred; 4804 bool match; 4805 4806 rcu_read_lock(); 4807 pcred = __task_cred(p); 4808 match = (uid_eq(cred->euid, pcred->euid) || 4809 uid_eq(cred->euid, pcred->uid)); 4810 rcu_read_unlock(); 4811 return match; 4812 } 4813 4814 static int __sched_setscheduler(struct task_struct *p, 4815 const struct sched_attr *attr, 4816 bool user, bool pi) 4817 { 4818 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4819 MAX_RT_PRIO - 1 - attr->sched_priority; 4820 int retval, oldprio, oldpolicy = -1, queued, running; 4821 int new_effective_prio, policy = attr->sched_policy; 4822 const struct sched_class *prev_class; 4823 struct rq_flags rf; 4824 int reset_on_fork; 4825 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4826 struct rq *rq; 4827 4828 /* The pi code expects interrupts enabled */ 4829 BUG_ON(pi && in_interrupt()); 4830 recheck: 4831 /* Double check policy once rq lock held: */ 4832 if (policy < 0) { 4833 reset_on_fork = p->sched_reset_on_fork; 4834 policy = oldpolicy = p->policy; 4835 } else { 4836 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4837 4838 if (!valid_policy(policy)) 4839 return -EINVAL; 4840 } 4841 4842 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4843 return -EINVAL; 4844 4845 /* 4846 * Valid priorities for SCHED_FIFO and SCHED_RR are 4847 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4848 * SCHED_BATCH and SCHED_IDLE is 0. 4849 */ 4850 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4851 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4852 return -EINVAL; 4853 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4854 (rt_policy(policy) != (attr->sched_priority != 0))) 4855 return -EINVAL; 4856 4857 /* 4858 * Allow unprivileged RT tasks to decrease priority: 4859 */ 4860 if (user && !capable(CAP_SYS_NICE)) { 4861 if (fair_policy(policy)) { 4862 if (attr->sched_nice < task_nice(p) && 4863 !can_nice(p, attr->sched_nice)) 4864 return -EPERM; 4865 } 4866 4867 if (rt_policy(policy)) { 4868 unsigned long rlim_rtprio = 4869 task_rlimit(p, RLIMIT_RTPRIO); 4870 4871 /* Can't set/change the rt policy: */ 4872 if (policy != p->policy && !rlim_rtprio) 4873 return -EPERM; 4874 4875 /* Can't increase priority: */ 4876 if (attr->sched_priority > p->rt_priority && 4877 attr->sched_priority > rlim_rtprio) 4878 return -EPERM; 4879 } 4880 4881 /* 4882 * Can't set/change SCHED_DEADLINE policy at all for now 4883 * (safest behavior); in the future we would like to allow 4884 * unprivileged DL tasks to increase their relative deadline 4885 * or reduce their runtime (both ways reducing utilization) 4886 */ 4887 if (dl_policy(policy)) 4888 return -EPERM; 4889 4890 /* 4891 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4892 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4893 */ 4894 if (task_has_idle_policy(p) && !idle_policy(policy)) { 4895 if (!can_nice(p, task_nice(p))) 4896 return -EPERM; 4897 } 4898 4899 /* Can't change other user's priorities: */ 4900 if (!check_same_owner(p)) 4901 return -EPERM; 4902 4903 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4904 if (p->sched_reset_on_fork && !reset_on_fork) 4905 return -EPERM; 4906 } 4907 4908 if (user) { 4909 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4910 return -EINVAL; 4911 4912 retval = security_task_setscheduler(p); 4913 if (retval) 4914 return retval; 4915 } 4916 4917 /* Update task specific "requested" clamps */ 4918 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 4919 retval = uclamp_validate(p, attr); 4920 if (retval) 4921 return retval; 4922 } 4923 4924 if (pi) 4925 cpuset_read_lock(); 4926 4927 /* 4928 * Make sure no PI-waiters arrive (or leave) while we are 4929 * changing the priority of the task: 4930 * 4931 * To be able to change p->policy safely, the appropriate 4932 * runqueue lock must be held. 4933 */ 4934 rq = task_rq_lock(p, &rf); 4935 update_rq_clock(rq); 4936 4937 /* 4938 * Changing the policy of the stop threads its a very bad idea: 4939 */ 4940 if (p == rq->stop) { 4941 retval = -EINVAL; 4942 goto unlock; 4943 } 4944 4945 /* 4946 * If not changing anything there's no need to proceed further, 4947 * but store a possible modification of reset_on_fork. 4948 */ 4949 if (unlikely(policy == p->policy)) { 4950 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4951 goto change; 4952 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4953 goto change; 4954 if (dl_policy(policy) && dl_param_changed(p, attr)) 4955 goto change; 4956 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 4957 goto change; 4958 4959 p->sched_reset_on_fork = reset_on_fork; 4960 retval = 0; 4961 goto unlock; 4962 } 4963 change: 4964 4965 if (user) { 4966 #ifdef CONFIG_RT_GROUP_SCHED 4967 /* 4968 * Do not allow realtime tasks into groups that have no runtime 4969 * assigned. 4970 */ 4971 if (rt_bandwidth_enabled() && rt_policy(policy) && 4972 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4973 !task_group_is_autogroup(task_group(p))) { 4974 retval = -EPERM; 4975 goto unlock; 4976 } 4977 #endif 4978 #ifdef CONFIG_SMP 4979 if (dl_bandwidth_enabled() && dl_policy(policy) && 4980 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4981 cpumask_t *span = rq->rd->span; 4982 4983 /* 4984 * Don't allow tasks with an affinity mask smaller than 4985 * the entire root_domain to become SCHED_DEADLINE. We 4986 * will also fail if there's no bandwidth available. 4987 */ 4988 if (!cpumask_subset(span, p->cpus_ptr) || 4989 rq->rd->dl_bw.bw == 0) { 4990 retval = -EPERM; 4991 goto unlock; 4992 } 4993 } 4994 #endif 4995 } 4996 4997 /* Re-check policy now with rq lock held: */ 4998 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4999 policy = oldpolicy = -1; 5000 task_rq_unlock(rq, p, &rf); 5001 if (pi) 5002 cpuset_read_unlock(); 5003 goto recheck; 5004 } 5005 5006 /* 5007 * If setscheduling to SCHED_DEADLINE (or changing the parameters 5008 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 5009 * is available. 5010 */ 5011 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 5012 retval = -EBUSY; 5013 goto unlock; 5014 } 5015 5016 p->sched_reset_on_fork = reset_on_fork; 5017 oldprio = p->prio; 5018 5019 if (pi) { 5020 /* 5021 * Take priority boosted tasks into account. If the new 5022 * effective priority is unchanged, we just store the new 5023 * normal parameters and do not touch the scheduler class and 5024 * the runqueue. This will be done when the task deboost 5025 * itself. 5026 */ 5027 new_effective_prio = rt_effective_prio(p, newprio); 5028 if (new_effective_prio == oldprio) 5029 queue_flags &= ~DEQUEUE_MOVE; 5030 } 5031 5032 queued = task_on_rq_queued(p); 5033 running = task_current(rq, p); 5034 if (queued) 5035 dequeue_task(rq, p, queue_flags); 5036 if (running) 5037 put_prev_task(rq, p); 5038 5039 prev_class = p->sched_class; 5040 5041 __setscheduler(rq, p, attr, pi); 5042 __setscheduler_uclamp(p, attr); 5043 5044 if (queued) { 5045 /* 5046 * We enqueue to tail when the priority of a task is 5047 * increased (user space view). 5048 */ 5049 if (oldprio < p->prio) 5050 queue_flags |= ENQUEUE_HEAD; 5051 5052 enqueue_task(rq, p, queue_flags); 5053 } 5054 if (running) 5055 set_next_task(rq, p); 5056 5057 check_class_changed(rq, p, prev_class, oldprio); 5058 5059 /* Avoid rq from going away on us: */ 5060 preempt_disable(); 5061 task_rq_unlock(rq, p, &rf); 5062 5063 if (pi) { 5064 cpuset_read_unlock(); 5065 rt_mutex_adjust_pi(p); 5066 } 5067 5068 /* Run balance callbacks after we've adjusted the PI chain: */ 5069 balance_callback(rq); 5070 preempt_enable(); 5071 5072 return 0; 5073 5074 unlock: 5075 task_rq_unlock(rq, p, &rf); 5076 if (pi) 5077 cpuset_read_unlock(); 5078 return retval; 5079 } 5080 5081 static int _sched_setscheduler(struct task_struct *p, int policy, 5082 const struct sched_param *param, bool check) 5083 { 5084 struct sched_attr attr = { 5085 .sched_policy = policy, 5086 .sched_priority = param->sched_priority, 5087 .sched_nice = PRIO_TO_NICE(p->static_prio), 5088 }; 5089 5090 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 5091 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 5092 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5093 policy &= ~SCHED_RESET_ON_FORK; 5094 attr.sched_policy = policy; 5095 } 5096 5097 return __sched_setscheduler(p, &attr, check, true); 5098 } 5099 /** 5100 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 5101 * @p: the task in question. 5102 * @policy: new policy. 5103 * @param: structure containing the new RT priority. 5104 * 5105 * Return: 0 on success. An error code otherwise. 5106 * 5107 * NOTE that the task may be already dead. 5108 */ 5109 int sched_setscheduler(struct task_struct *p, int policy, 5110 const struct sched_param *param) 5111 { 5112 return _sched_setscheduler(p, policy, param, true); 5113 } 5114 EXPORT_SYMBOL_GPL(sched_setscheduler); 5115 5116 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 5117 { 5118 return __sched_setscheduler(p, attr, true, true); 5119 } 5120 EXPORT_SYMBOL_GPL(sched_setattr); 5121 5122 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 5123 { 5124 return __sched_setscheduler(p, attr, false, true); 5125 } 5126 5127 /** 5128 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 5129 * @p: the task in question. 5130 * @policy: new policy. 5131 * @param: structure containing the new RT priority. 5132 * 5133 * Just like sched_setscheduler, only don't bother checking if the 5134 * current context has permission. For example, this is needed in 5135 * stop_machine(): we create temporary high priority worker threads, 5136 * but our caller might not have that capability. 5137 * 5138 * Return: 0 on success. An error code otherwise. 5139 */ 5140 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 5141 const struct sched_param *param) 5142 { 5143 return _sched_setscheduler(p, policy, param, false); 5144 } 5145 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 5146 5147 static int 5148 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 5149 { 5150 struct sched_param lparam; 5151 struct task_struct *p; 5152 int retval; 5153 5154 if (!param || pid < 0) 5155 return -EINVAL; 5156 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 5157 return -EFAULT; 5158 5159 rcu_read_lock(); 5160 retval = -ESRCH; 5161 p = find_process_by_pid(pid); 5162 if (likely(p)) 5163 get_task_struct(p); 5164 rcu_read_unlock(); 5165 5166 if (likely(p)) { 5167 retval = sched_setscheduler(p, policy, &lparam); 5168 put_task_struct(p); 5169 } 5170 5171 return retval; 5172 } 5173 5174 /* 5175 * Mimics kernel/events/core.c perf_copy_attr(). 5176 */ 5177 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 5178 { 5179 u32 size; 5180 int ret; 5181 5182 /* Zero the full structure, so that a short copy will be nice: */ 5183 memset(attr, 0, sizeof(*attr)); 5184 5185 ret = get_user(size, &uattr->size); 5186 if (ret) 5187 return ret; 5188 5189 /* ABI compatibility quirk: */ 5190 if (!size) 5191 size = SCHED_ATTR_SIZE_VER0; 5192 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 5193 goto err_size; 5194 5195 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 5196 if (ret) { 5197 if (ret == -E2BIG) 5198 goto err_size; 5199 return ret; 5200 } 5201 5202 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 5203 size < SCHED_ATTR_SIZE_VER1) 5204 return -EINVAL; 5205 5206 /* 5207 * XXX: Do we want to be lenient like existing syscalls; or do we want 5208 * to be strict and return an error on out-of-bounds values? 5209 */ 5210 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 5211 5212 return 0; 5213 5214 err_size: 5215 put_user(sizeof(*attr), &uattr->size); 5216 return -E2BIG; 5217 } 5218 5219 /** 5220 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 5221 * @pid: the pid in question. 5222 * @policy: new policy. 5223 * @param: structure containing the new RT priority. 5224 * 5225 * Return: 0 on success. An error code otherwise. 5226 */ 5227 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 5228 { 5229 if (policy < 0) 5230 return -EINVAL; 5231 5232 return do_sched_setscheduler(pid, policy, param); 5233 } 5234 5235 /** 5236 * sys_sched_setparam - set/change the RT priority of a thread 5237 * @pid: the pid in question. 5238 * @param: structure containing the new RT priority. 5239 * 5240 * Return: 0 on success. An error code otherwise. 5241 */ 5242 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 5243 { 5244 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 5245 } 5246 5247 /** 5248 * sys_sched_setattr - same as above, but with extended sched_attr 5249 * @pid: the pid in question. 5250 * @uattr: structure containing the extended parameters. 5251 * @flags: for future extension. 5252 */ 5253 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 5254 unsigned int, flags) 5255 { 5256 struct sched_attr attr; 5257 struct task_struct *p; 5258 int retval; 5259 5260 if (!uattr || pid < 0 || flags) 5261 return -EINVAL; 5262 5263 retval = sched_copy_attr(uattr, &attr); 5264 if (retval) 5265 return retval; 5266 5267 if ((int)attr.sched_policy < 0) 5268 return -EINVAL; 5269 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 5270 attr.sched_policy = SETPARAM_POLICY; 5271 5272 rcu_read_lock(); 5273 retval = -ESRCH; 5274 p = find_process_by_pid(pid); 5275 if (likely(p)) 5276 get_task_struct(p); 5277 rcu_read_unlock(); 5278 5279 if (likely(p)) { 5280 retval = sched_setattr(p, &attr); 5281 put_task_struct(p); 5282 } 5283 5284 return retval; 5285 } 5286 5287 /** 5288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 5289 * @pid: the pid in question. 5290 * 5291 * Return: On success, the policy of the thread. Otherwise, a negative error 5292 * code. 5293 */ 5294 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 5295 { 5296 struct task_struct *p; 5297 int retval; 5298 5299 if (pid < 0) 5300 return -EINVAL; 5301 5302 retval = -ESRCH; 5303 rcu_read_lock(); 5304 p = find_process_by_pid(pid); 5305 if (p) { 5306 retval = security_task_getscheduler(p); 5307 if (!retval) 5308 retval = p->policy 5309 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 5310 } 5311 rcu_read_unlock(); 5312 return retval; 5313 } 5314 5315 /** 5316 * sys_sched_getparam - get the RT priority of a thread 5317 * @pid: the pid in question. 5318 * @param: structure containing the RT priority. 5319 * 5320 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 5321 * code. 5322 */ 5323 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 5324 { 5325 struct sched_param lp = { .sched_priority = 0 }; 5326 struct task_struct *p; 5327 int retval; 5328 5329 if (!param || pid < 0) 5330 return -EINVAL; 5331 5332 rcu_read_lock(); 5333 p = find_process_by_pid(pid); 5334 retval = -ESRCH; 5335 if (!p) 5336 goto out_unlock; 5337 5338 retval = security_task_getscheduler(p); 5339 if (retval) 5340 goto out_unlock; 5341 5342 if (task_has_rt_policy(p)) 5343 lp.sched_priority = p->rt_priority; 5344 rcu_read_unlock(); 5345 5346 /* 5347 * This one might sleep, we cannot do it with a spinlock held ... 5348 */ 5349 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 5350 5351 return retval; 5352 5353 out_unlock: 5354 rcu_read_unlock(); 5355 return retval; 5356 } 5357 5358 /* 5359 * Copy the kernel size attribute structure (which might be larger 5360 * than what user-space knows about) to user-space. 5361 * 5362 * Note that all cases are valid: user-space buffer can be larger or 5363 * smaller than the kernel-space buffer. The usual case is that both 5364 * have the same size. 5365 */ 5366 static int 5367 sched_attr_copy_to_user(struct sched_attr __user *uattr, 5368 struct sched_attr *kattr, 5369 unsigned int usize) 5370 { 5371 unsigned int ksize = sizeof(*kattr); 5372 5373 if (!access_ok(uattr, usize)) 5374 return -EFAULT; 5375 5376 /* 5377 * sched_getattr() ABI forwards and backwards compatibility: 5378 * 5379 * If usize == ksize then we just copy everything to user-space and all is good. 5380 * 5381 * If usize < ksize then we only copy as much as user-space has space for, 5382 * this keeps ABI compatibility as well. We skip the rest. 5383 * 5384 * If usize > ksize then user-space is using a newer version of the ABI, 5385 * which part the kernel doesn't know about. Just ignore it - tooling can 5386 * detect the kernel's knowledge of attributes from the attr->size value 5387 * which is set to ksize in this case. 5388 */ 5389 kattr->size = min(usize, ksize); 5390 5391 if (copy_to_user(uattr, kattr, kattr->size)) 5392 return -EFAULT; 5393 5394 return 0; 5395 } 5396 5397 /** 5398 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 5399 * @pid: the pid in question. 5400 * @uattr: structure containing the extended parameters. 5401 * @usize: sizeof(attr) for fwd/bwd comp. 5402 * @flags: for future extension. 5403 */ 5404 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 5405 unsigned int, usize, unsigned int, flags) 5406 { 5407 struct sched_attr kattr = { }; 5408 struct task_struct *p; 5409 int retval; 5410 5411 if (!uattr || pid < 0 || usize > PAGE_SIZE || 5412 usize < SCHED_ATTR_SIZE_VER0 || flags) 5413 return -EINVAL; 5414 5415 rcu_read_lock(); 5416 p = find_process_by_pid(pid); 5417 retval = -ESRCH; 5418 if (!p) 5419 goto out_unlock; 5420 5421 retval = security_task_getscheduler(p); 5422 if (retval) 5423 goto out_unlock; 5424 5425 kattr.sched_policy = p->policy; 5426 if (p->sched_reset_on_fork) 5427 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 5428 if (task_has_dl_policy(p)) 5429 __getparam_dl(p, &kattr); 5430 else if (task_has_rt_policy(p)) 5431 kattr.sched_priority = p->rt_priority; 5432 else 5433 kattr.sched_nice = task_nice(p); 5434 5435 #ifdef CONFIG_UCLAMP_TASK 5436 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 5437 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 5438 #endif 5439 5440 rcu_read_unlock(); 5441 5442 return sched_attr_copy_to_user(uattr, &kattr, usize); 5443 5444 out_unlock: 5445 rcu_read_unlock(); 5446 return retval; 5447 } 5448 5449 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 5450 { 5451 cpumask_var_t cpus_allowed, new_mask; 5452 struct task_struct *p; 5453 int retval; 5454 5455 rcu_read_lock(); 5456 5457 p = find_process_by_pid(pid); 5458 if (!p) { 5459 rcu_read_unlock(); 5460 return -ESRCH; 5461 } 5462 5463 /* Prevent p going away */ 5464 get_task_struct(p); 5465 rcu_read_unlock(); 5466 5467 if (p->flags & PF_NO_SETAFFINITY) { 5468 retval = -EINVAL; 5469 goto out_put_task; 5470 } 5471 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 5472 retval = -ENOMEM; 5473 goto out_put_task; 5474 } 5475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 5476 retval = -ENOMEM; 5477 goto out_free_cpus_allowed; 5478 } 5479 retval = -EPERM; 5480 if (!check_same_owner(p)) { 5481 rcu_read_lock(); 5482 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 5483 rcu_read_unlock(); 5484 goto out_free_new_mask; 5485 } 5486 rcu_read_unlock(); 5487 } 5488 5489 retval = security_task_setscheduler(p); 5490 if (retval) 5491 goto out_free_new_mask; 5492 5493 5494 cpuset_cpus_allowed(p, cpus_allowed); 5495 cpumask_and(new_mask, in_mask, cpus_allowed); 5496 5497 /* 5498 * Since bandwidth control happens on root_domain basis, 5499 * if admission test is enabled, we only admit -deadline 5500 * tasks allowed to run on all the CPUs in the task's 5501 * root_domain. 5502 */ 5503 #ifdef CONFIG_SMP 5504 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 5505 rcu_read_lock(); 5506 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 5507 retval = -EBUSY; 5508 rcu_read_unlock(); 5509 goto out_free_new_mask; 5510 } 5511 rcu_read_unlock(); 5512 } 5513 #endif 5514 again: 5515 retval = __set_cpus_allowed_ptr(p, new_mask, true); 5516 5517 if (!retval) { 5518 cpuset_cpus_allowed(p, cpus_allowed); 5519 if (!cpumask_subset(new_mask, cpus_allowed)) { 5520 /* 5521 * We must have raced with a concurrent cpuset 5522 * update. Just reset the cpus_allowed to the 5523 * cpuset's cpus_allowed 5524 */ 5525 cpumask_copy(new_mask, cpus_allowed); 5526 goto again; 5527 } 5528 } 5529 out_free_new_mask: 5530 free_cpumask_var(new_mask); 5531 out_free_cpus_allowed: 5532 free_cpumask_var(cpus_allowed); 5533 out_put_task: 5534 put_task_struct(p); 5535 return retval; 5536 } 5537 5538 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 5539 struct cpumask *new_mask) 5540 { 5541 if (len < cpumask_size()) 5542 cpumask_clear(new_mask); 5543 else if (len > cpumask_size()) 5544 len = cpumask_size(); 5545 5546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 5547 } 5548 5549 /** 5550 * sys_sched_setaffinity - set the CPU affinity of a process 5551 * @pid: pid of the process 5552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5553 * @user_mask_ptr: user-space pointer to the new CPU mask 5554 * 5555 * Return: 0 on success. An error code otherwise. 5556 */ 5557 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 5558 unsigned long __user *, user_mask_ptr) 5559 { 5560 cpumask_var_t new_mask; 5561 int retval; 5562 5563 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 5564 return -ENOMEM; 5565 5566 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 5567 if (retval == 0) 5568 retval = sched_setaffinity(pid, new_mask); 5569 free_cpumask_var(new_mask); 5570 return retval; 5571 } 5572 5573 long sched_getaffinity(pid_t pid, struct cpumask *mask) 5574 { 5575 struct task_struct *p; 5576 unsigned long flags; 5577 int retval; 5578 5579 rcu_read_lock(); 5580 5581 retval = -ESRCH; 5582 p = find_process_by_pid(pid); 5583 if (!p) 5584 goto out_unlock; 5585 5586 retval = security_task_getscheduler(p); 5587 if (retval) 5588 goto out_unlock; 5589 5590 raw_spin_lock_irqsave(&p->pi_lock, flags); 5591 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 5592 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5593 5594 out_unlock: 5595 rcu_read_unlock(); 5596 5597 return retval; 5598 } 5599 5600 /** 5601 * sys_sched_getaffinity - get the CPU affinity of a process 5602 * @pid: pid of the process 5603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 5604 * @user_mask_ptr: user-space pointer to hold the current CPU mask 5605 * 5606 * Return: size of CPU mask copied to user_mask_ptr on success. An 5607 * error code otherwise. 5608 */ 5609 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 5610 unsigned long __user *, user_mask_ptr) 5611 { 5612 int ret; 5613 cpumask_var_t mask; 5614 5615 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 5616 return -EINVAL; 5617 if (len & (sizeof(unsigned long)-1)) 5618 return -EINVAL; 5619 5620 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 5621 return -ENOMEM; 5622 5623 ret = sched_getaffinity(pid, mask); 5624 if (ret == 0) { 5625 unsigned int retlen = min(len, cpumask_size()); 5626 5627 if (copy_to_user(user_mask_ptr, mask, retlen)) 5628 ret = -EFAULT; 5629 else 5630 ret = retlen; 5631 } 5632 free_cpumask_var(mask); 5633 5634 return ret; 5635 } 5636 5637 /** 5638 * sys_sched_yield - yield the current processor to other threads. 5639 * 5640 * This function yields the current CPU to other tasks. If there are no 5641 * other threads running on this CPU then this function will return. 5642 * 5643 * Return: 0. 5644 */ 5645 static void do_sched_yield(void) 5646 { 5647 struct rq_flags rf; 5648 struct rq *rq; 5649 5650 rq = this_rq_lock_irq(&rf); 5651 5652 schedstat_inc(rq->yld_count); 5653 current->sched_class->yield_task(rq); 5654 5655 /* 5656 * Since we are going to call schedule() anyway, there's 5657 * no need to preempt or enable interrupts: 5658 */ 5659 preempt_disable(); 5660 rq_unlock(rq, &rf); 5661 sched_preempt_enable_no_resched(); 5662 5663 schedule(); 5664 } 5665 5666 SYSCALL_DEFINE0(sched_yield) 5667 { 5668 do_sched_yield(); 5669 return 0; 5670 } 5671 5672 #ifndef CONFIG_PREEMPTION 5673 int __sched _cond_resched(void) 5674 { 5675 if (should_resched(0)) { 5676 preempt_schedule_common(); 5677 return 1; 5678 } 5679 rcu_all_qs(); 5680 return 0; 5681 } 5682 EXPORT_SYMBOL(_cond_resched); 5683 #endif 5684 5685 /* 5686 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5687 * call schedule, and on return reacquire the lock. 5688 * 5689 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 5690 * operations here to prevent schedule() from being called twice (once via 5691 * spin_unlock(), once by hand). 5692 */ 5693 int __cond_resched_lock(spinlock_t *lock) 5694 { 5695 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5696 int ret = 0; 5697 5698 lockdep_assert_held(lock); 5699 5700 if (spin_needbreak(lock) || resched) { 5701 spin_unlock(lock); 5702 if (resched) 5703 preempt_schedule_common(); 5704 else 5705 cpu_relax(); 5706 ret = 1; 5707 spin_lock(lock); 5708 } 5709 return ret; 5710 } 5711 EXPORT_SYMBOL(__cond_resched_lock); 5712 5713 /** 5714 * yield - yield the current processor to other threads. 5715 * 5716 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5717 * 5718 * The scheduler is at all times free to pick the calling task as the most 5719 * eligible task to run, if removing the yield() call from your code breaks 5720 * it, its already broken. 5721 * 5722 * Typical broken usage is: 5723 * 5724 * while (!event) 5725 * yield(); 5726 * 5727 * where one assumes that yield() will let 'the other' process run that will 5728 * make event true. If the current task is a SCHED_FIFO task that will never 5729 * happen. Never use yield() as a progress guarantee!! 5730 * 5731 * If you want to use yield() to wait for something, use wait_event(). 5732 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5733 * If you still want to use yield(), do not! 5734 */ 5735 void __sched yield(void) 5736 { 5737 set_current_state(TASK_RUNNING); 5738 do_sched_yield(); 5739 } 5740 EXPORT_SYMBOL(yield); 5741 5742 /** 5743 * yield_to - yield the current processor to another thread in 5744 * your thread group, or accelerate that thread toward the 5745 * processor it's on. 5746 * @p: target task 5747 * @preempt: whether task preemption is allowed or not 5748 * 5749 * It's the caller's job to ensure that the target task struct 5750 * can't go away on us before we can do any checks. 5751 * 5752 * Return: 5753 * true (>0) if we indeed boosted the target task. 5754 * false (0) if we failed to boost the target. 5755 * -ESRCH if there's no task to yield to. 5756 */ 5757 int __sched yield_to(struct task_struct *p, bool preempt) 5758 { 5759 struct task_struct *curr = current; 5760 struct rq *rq, *p_rq; 5761 unsigned long flags; 5762 int yielded = 0; 5763 5764 local_irq_save(flags); 5765 rq = this_rq(); 5766 5767 again: 5768 p_rq = task_rq(p); 5769 /* 5770 * If we're the only runnable task on the rq and target rq also 5771 * has only one task, there's absolutely no point in yielding. 5772 */ 5773 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5774 yielded = -ESRCH; 5775 goto out_irq; 5776 } 5777 5778 double_rq_lock(rq, p_rq); 5779 if (task_rq(p) != p_rq) { 5780 double_rq_unlock(rq, p_rq); 5781 goto again; 5782 } 5783 5784 if (!curr->sched_class->yield_to_task) 5785 goto out_unlock; 5786 5787 if (curr->sched_class != p->sched_class) 5788 goto out_unlock; 5789 5790 if (task_running(p_rq, p) || p->state) 5791 goto out_unlock; 5792 5793 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5794 if (yielded) { 5795 schedstat_inc(rq->yld_count); 5796 /* 5797 * Make p's CPU reschedule; pick_next_entity takes care of 5798 * fairness. 5799 */ 5800 if (preempt && rq != p_rq) 5801 resched_curr(p_rq); 5802 } 5803 5804 out_unlock: 5805 double_rq_unlock(rq, p_rq); 5806 out_irq: 5807 local_irq_restore(flags); 5808 5809 if (yielded > 0) 5810 schedule(); 5811 5812 return yielded; 5813 } 5814 EXPORT_SYMBOL_GPL(yield_to); 5815 5816 int io_schedule_prepare(void) 5817 { 5818 int old_iowait = current->in_iowait; 5819 5820 current->in_iowait = 1; 5821 blk_schedule_flush_plug(current); 5822 5823 return old_iowait; 5824 } 5825 5826 void io_schedule_finish(int token) 5827 { 5828 current->in_iowait = token; 5829 } 5830 5831 /* 5832 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5833 * that process accounting knows that this is a task in IO wait state. 5834 */ 5835 long __sched io_schedule_timeout(long timeout) 5836 { 5837 int token; 5838 long ret; 5839 5840 token = io_schedule_prepare(); 5841 ret = schedule_timeout(timeout); 5842 io_schedule_finish(token); 5843 5844 return ret; 5845 } 5846 EXPORT_SYMBOL(io_schedule_timeout); 5847 5848 void __sched io_schedule(void) 5849 { 5850 int token; 5851 5852 token = io_schedule_prepare(); 5853 schedule(); 5854 io_schedule_finish(token); 5855 } 5856 EXPORT_SYMBOL(io_schedule); 5857 5858 /** 5859 * sys_sched_get_priority_max - return maximum RT priority. 5860 * @policy: scheduling class. 5861 * 5862 * Return: On success, this syscall returns the maximum 5863 * rt_priority that can be used by a given scheduling class. 5864 * On failure, a negative error code is returned. 5865 */ 5866 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5867 { 5868 int ret = -EINVAL; 5869 5870 switch (policy) { 5871 case SCHED_FIFO: 5872 case SCHED_RR: 5873 ret = MAX_USER_RT_PRIO-1; 5874 break; 5875 case SCHED_DEADLINE: 5876 case SCHED_NORMAL: 5877 case SCHED_BATCH: 5878 case SCHED_IDLE: 5879 ret = 0; 5880 break; 5881 } 5882 return ret; 5883 } 5884 5885 /** 5886 * sys_sched_get_priority_min - return minimum RT priority. 5887 * @policy: scheduling class. 5888 * 5889 * Return: On success, this syscall returns the minimum 5890 * rt_priority that can be used by a given scheduling class. 5891 * On failure, a negative error code is returned. 5892 */ 5893 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5894 { 5895 int ret = -EINVAL; 5896 5897 switch (policy) { 5898 case SCHED_FIFO: 5899 case SCHED_RR: 5900 ret = 1; 5901 break; 5902 case SCHED_DEADLINE: 5903 case SCHED_NORMAL: 5904 case SCHED_BATCH: 5905 case SCHED_IDLE: 5906 ret = 0; 5907 } 5908 return ret; 5909 } 5910 5911 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5912 { 5913 struct task_struct *p; 5914 unsigned int time_slice; 5915 struct rq_flags rf; 5916 struct rq *rq; 5917 int retval; 5918 5919 if (pid < 0) 5920 return -EINVAL; 5921 5922 retval = -ESRCH; 5923 rcu_read_lock(); 5924 p = find_process_by_pid(pid); 5925 if (!p) 5926 goto out_unlock; 5927 5928 retval = security_task_getscheduler(p); 5929 if (retval) 5930 goto out_unlock; 5931 5932 rq = task_rq_lock(p, &rf); 5933 time_slice = 0; 5934 if (p->sched_class->get_rr_interval) 5935 time_slice = p->sched_class->get_rr_interval(rq, p); 5936 task_rq_unlock(rq, p, &rf); 5937 5938 rcu_read_unlock(); 5939 jiffies_to_timespec64(time_slice, t); 5940 return 0; 5941 5942 out_unlock: 5943 rcu_read_unlock(); 5944 return retval; 5945 } 5946 5947 /** 5948 * sys_sched_rr_get_interval - return the default timeslice of a process. 5949 * @pid: pid of the process. 5950 * @interval: userspace pointer to the timeslice value. 5951 * 5952 * this syscall writes the default timeslice value of a given process 5953 * into the user-space timespec buffer. A value of '0' means infinity. 5954 * 5955 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5956 * an error code. 5957 */ 5958 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5959 struct __kernel_timespec __user *, interval) 5960 { 5961 struct timespec64 t; 5962 int retval = sched_rr_get_interval(pid, &t); 5963 5964 if (retval == 0) 5965 retval = put_timespec64(&t, interval); 5966 5967 return retval; 5968 } 5969 5970 #ifdef CONFIG_COMPAT_32BIT_TIME 5971 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 5972 struct old_timespec32 __user *, interval) 5973 { 5974 struct timespec64 t; 5975 int retval = sched_rr_get_interval(pid, &t); 5976 5977 if (retval == 0) 5978 retval = put_old_timespec32(&t, interval); 5979 return retval; 5980 } 5981 #endif 5982 5983 void sched_show_task(struct task_struct *p) 5984 { 5985 unsigned long free = 0; 5986 int ppid; 5987 5988 if (!try_get_task_stack(p)) 5989 return; 5990 5991 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5992 5993 if (p->state == TASK_RUNNING) 5994 printk(KERN_CONT " running task "); 5995 #ifdef CONFIG_DEBUG_STACK_USAGE 5996 free = stack_not_used(p); 5997 #endif 5998 ppid = 0; 5999 rcu_read_lock(); 6000 if (pid_alive(p)) 6001 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 6002 rcu_read_unlock(); 6003 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 6004 task_pid_nr(p), ppid, 6005 (unsigned long)task_thread_info(p)->flags); 6006 6007 print_worker_info(KERN_INFO, p); 6008 show_stack(p, NULL); 6009 put_task_stack(p); 6010 } 6011 EXPORT_SYMBOL_GPL(sched_show_task); 6012 6013 static inline bool 6014 state_filter_match(unsigned long state_filter, struct task_struct *p) 6015 { 6016 /* no filter, everything matches */ 6017 if (!state_filter) 6018 return true; 6019 6020 /* filter, but doesn't match */ 6021 if (!(p->state & state_filter)) 6022 return false; 6023 6024 /* 6025 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 6026 * TASK_KILLABLE). 6027 */ 6028 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 6029 return false; 6030 6031 return true; 6032 } 6033 6034 6035 void show_state_filter(unsigned long state_filter) 6036 { 6037 struct task_struct *g, *p; 6038 6039 #if BITS_PER_LONG == 32 6040 printk(KERN_INFO 6041 " task PC stack pid father\n"); 6042 #else 6043 printk(KERN_INFO 6044 " task PC stack pid father\n"); 6045 #endif 6046 rcu_read_lock(); 6047 for_each_process_thread(g, p) { 6048 /* 6049 * reset the NMI-timeout, listing all files on a slow 6050 * console might take a lot of time: 6051 * Also, reset softlockup watchdogs on all CPUs, because 6052 * another CPU might be blocked waiting for us to process 6053 * an IPI. 6054 */ 6055 touch_nmi_watchdog(); 6056 touch_all_softlockup_watchdogs(); 6057 if (state_filter_match(state_filter, p)) 6058 sched_show_task(p); 6059 } 6060 6061 #ifdef CONFIG_SCHED_DEBUG 6062 if (!state_filter) 6063 sysrq_sched_debug_show(); 6064 #endif 6065 rcu_read_unlock(); 6066 /* 6067 * Only show locks if all tasks are dumped: 6068 */ 6069 if (!state_filter) 6070 debug_show_all_locks(); 6071 } 6072 6073 /** 6074 * init_idle - set up an idle thread for a given CPU 6075 * @idle: task in question 6076 * @cpu: CPU the idle task belongs to 6077 * 6078 * NOTE: this function does not set the idle thread's NEED_RESCHED 6079 * flag, to make booting more robust. 6080 */ 6081 void init_idle(struct task_struct *idle, int cpu) 6082 { 6083 struct rq *rq = cpu_rq(cpu); 6084 unsigned long flags; 6085 6086 __sched_fork(0, idle); 6087 6088 raw_spin_lock_irqsave(&idle->pi_lock, flags); 6089 raw_spin_lock(&rq->lock); 6090 6091 idle->state = TASK_RUNNING; 6092 idle->se.exec_start = sched_clock(); 6093 idle->flags |= PF_IDLE; 6094 6095 scs_task_reset(idle); 6096 kasan_unpoison_task_stack(idle); 6097 6098 #ifdef CONFIG_SMP 6099 /* 6100 * Its possible that init_idle() gets called multiple times on a task, 6101 * in that case do_set_cpus_allowed() will not do the right thing. 6102 * 6103 * And since this is boot we can forgo the serialization. 6104 */ 6105 set_cpus_allowed_common(idle, cpumask_of(cpu)); 6106 #endif 6107 /* 6108 * We're having a chicken and egg problem, even though we are 6109 * holding rq->lock, the CPU isn't yet set to this CPU so the 6110 * lockdep check in task_group() will fail. 6111 * 6112 * Similar case to sched_fork(). / Alternatively we could 6113 * use task_rq_lock() here and obtain the other rq->lock. 6114 * 6115 * Silence PROVE_RCU 6116 */ 6117 rcu_read_lock(); 6118 __set_task_cpu(idle, cpu); 6119 rcu_read_unlock(); 6120 6121 rq->idle = idle; 6122 rcu_assign_pointer(rq->curr, idle); 6123 idle->on_rq = TASK_ON_RQ_QUEUED; 6124 #ifdef CONFIG_SMP 6125 idle->on_cpu = 1; 6126 #endif 6127 raw_spin_unlock(&rq->lock); 6128 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 6129 6130 /* Set the preempt count _outside_ the spinlocks! */ 6131 init_idle_preempt_count(idle, cpu); 6132 6133 /* 6134 * The idle tasks have their own, simple scheduling class: 6135 */ 6136 idle->sched_class = &idle_sched_class; 6137 ftrace_graph_init_idle_task(idle, cpu); 6138 vtime_init_idle(idle, cpu); 6139 #ifdef CONFIG_SMP 6140 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 6141 #endif 6142 } 6143 6144 #ifdef CONFIG_SMP 6145 6146 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 6147 const struct cpumask *trial) 6148 { 6149 int ret = 1; 6150 6151 if (!cpumask_weight(cur)) 6152 return ret; 6153 6154 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 6155 6156 return ret; 6157 } 6158 6159 int task_can_attach(struct task_struct *p, 6160 const struct cpumask *cs_cpus_allowed) 6161 { 6162 int ret = 0; 6163 6164 /* 6165 * Kthreads which disallow setaffinity shouldn't be moved 6166 * to a new cpuset; we don't want to change their CPU 6167 * affinity and isolating such threads by their set of 6168 * allowed nodes is unnecessary. Thus, cpusets are not 6169 * applicable for such threads. This prevents checking for 6170 * success of set_cpus_allowed_ptr() on all attached tasks 6171 * before cpus_mask may be changed. 6172 */ 6173 if (p->flags & PF_NO_SETAFFINITY) { 6174 ret = -EINVAL; 6175 goto out; 6176 } 6177 6178 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 6179 cs_cpus_allowed)) 6180 ret = dl_task_can_attach(p, cs_cpus_allowed); 6181 6182 out: 6183 return ret; 6184 } 6185 6186 bool sched_smp_initialized __read_mostly; 6187 6188 #ifdef CONFIG_NUMA_BALANCING 6189 /* Migrate current task p to target_cpu */ 6190 int migrate_task_to(struct task_struct *p, int target_cpu) 6191 { 6192 struct migration_arg arg = { p, target_cpu }; 6193 int curr_cpu = task_cpu(p); 6194 6195 if (curr_cpu == target_cpu) 6196 return 0; 6197 6198 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 6199 return -EINVAL; 6200 6201 /* TODO: This is not properly updating schedstats */ 6202 6203 trace_sched_move_numa(p, curr_cpu, target_cpu); 6204 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 6205 } 6206 6207 /* 6208 * Requeue a task on a given node and accurately track the number of NUMA 6209 * tasks on the runqueues 6210 */ 6211 void sched_setnuma(struct task_struct *p, int nid) 6212 { 6213 bool queued, running; 6214 struct rq_flags rf; 6215 struct rq *rq; 6216 6217 rq = task_rq_lock(p, &rf); 6218 queued = task_on_rq_queued(p); 6219 running = task_current(rq, p); 6220 6221 if (queued) 6222 dequeue_task(rq, p, DEQUEUE_SAVE); 6223 if (running) 6224 put_prev_task(rq, p); 6225 6226 p->numa_preferred_nid = nid; 6227 6228 if (queued) 6229 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6230 if (running) 6231 set_next_task(rq, p); 6232 task_rq_unlock(rq, p, &rf); 6233 } 6234 #endif /* CONFIG_NUMA_BALANCING */ 6235 6236 #ifdef CONFIG_HOTPLUG_CPU 6237 /* 6238 * Ensure that the idle task is using init_mm right before its CPU goes 6239 * offline. 6240 */ 6241 void idle_task_exit(void) 6242 { 6243 struct mm_struct *mm = current->active_mm; 6244 6245 BUG_ON(cpu_online(smp_processor_id())); 6246 6247 if (mm != &init_mm) { 6248 switch_mm(mm, &init_mm, current); 6249 current->active_mm = &init_mm; 6250 finish_arch_post_lock_switch(); 6251 } 6252 mmdrop(mm); 6253 } 6254 6255 /* 6256 * Since this CPU is going 'away' for a while, fold any nr_active delta 6257 * we might have. Assumes we're called after migrate_tasks() so that the 6258 * nr_active count is stable. We need to take the teardown thread which 6259 * is calling this into account, so we hand in adjust = 1 to the load 6260 * calculation. 6261 * 6262 * Also see the comment "Global load-average calculations". 6263 */ 6264 static void calc_load_migrate(struct rq *rq) 6265 { 6266 long delta = calc_load_fold_active(rq, 1); 6267 if (delta) 6268 atomic_long_add(delta, &calc_load_tasks); 6269 } 6270 6271 static struct task_struct *__pick_migrate_task(struct rq *rq) 6272 { 6273 const struct sched_class *class; 6274 struct task_struct *next; 6275 6276 for_each_class(class) { 6277 next = class->pick_next_task(rq); 6278 if (next) { 6279 next->sched_class->put_prev_task(rq, next); 6280 return next; 6281 } 6282 } 6283 6284 /* The idle class should always have a runnable task */ 6285 BUG(); 6286 } 6287 6288 /* 6289 * Migrate all tasks from the rq, sleeping tasks will be migrated by 6290 * try_to_wake_up()->select_task_rq(). 6291 * 6292 * Called with rq->lock held even though we'er in stop_machine() and 6293 * there's no concurrency possible, we hold the required locks anyway 6294 * because of lock validation efforts. 6295 */ 6296 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 6297 { 6298 struct rq *rq = dead_rq; 6299 struct task_struct *next, *stop = rq->stop; 6300 struct rq_flags orf = *rf; 6301 int dest_cpu; 6302 6303 /* 6304 * Fudge the rq selection such that the below task selection loop 6305 * doesn't get stuck on the currently eligible stop task. 6306 * 6307 * We're currently inside stop_machine() and the rq is either stuck 6308 * in the stop_machine_cpu_stop() loop, or we're executing this code, 6309 * either way we should never end up calling schedule() until we're 6310 * done here. 6311 */ 6312 rq->stop = NULL; 6313 6314 /* 6315 * put_prev_task() and pick_next_task() sched 6316 * class method both need to have an up-to-date 6317 * value of rq->clock[_task] 6318 */ 6319 update_rq_clock(rq); 6320 6321 for (;;) { 6322 /* 6323 * There's this thread running, bail when that's the only 6324 * remaining thread: 6325 */ 6326 if (rq->nr_running == 1) 6327 break; 6328 6329 next = __pick_migrate_task(rq); 6330 6331 /* 6332 * Rules for changing task_struct::cpus_mask are holding 6333 * both pi_lock and rq->lock, such that holding either 6334 * stabilizes the mask. 6335 * 6336 * Drop rq->lock is not quite as disastrous as it usually is 6337 * because !cpu_active at this point, which means load-balance 6338 * will not interfere. Also, stop-machine. 6339 */ 6340 rq_unlock(rq, rf); 6341 raw_spin_lock(&next->pi_lock); 6342 rq_relock(rq, rf); 6343 6344 /* 6345 * Since we're inside stop-machine, _nothing_ should have 6346 * changed the task, WARN if weird stuff happened, because in 6347 * that case the above rq->lock drop is a fail too. 6348 */ 6349 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 6350 raw_spin_unlock(&next->pi_lock); 6351 continue; 6352 } 6353 6354 /* Find suitable destination for @next, with force if needed. */ 6355 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 6356 rq = __migrate_task(rq, rf, next, dest_cpu); 6357 if (rq != dead_rq) { 6358 rq_unlock(rq, rf); 6359 rq = dead_rq; 6360 *rf = orf; 6361 rq_relock(rq, rf); 6362 } 6363 raw_spin_unlock(&next->pi_lock); 6364 } 6365 6366 rq->stop = stop; 6367 } 6368 #endif /* CONFIG_HOTPLUG_CPU */ 6369 6370 void set_rq_online(struct rq *rq) 6371 { 6372 if (!rq->online) { 6373 const struct sched_class *class; 6374 6375 cpumask_set_cpu(rq->cpu, rq->rd->online); 6376 rq->online = 1; 6377 6378 for_each_class(class) { 6379 if (class->rq_online) 6380 class->rq_online(rq); 6381 } 6382 } 6383 } 6384 6385 void set_rq_offline(struct rq *rq) 6386 { 6387 if (rq->online) { 6388 const struct sched_class *class; 6389 6390 for_each_class(class) { 6391 if (class->rq_offline) 6392 class->rq_offline(rq); 6393 } 6394 6395 cpumask_clear_cpu(rq->cpu, rq->rd->online); 6396 rq->online = 0; 6397 } 6398 } 6399 6400 /* 6401 * used to mark begin/end of suspend/resume: 6402 */ 6403 static int num_cpus_frozen; 6404 6405 /* 6406 * Update cpusets according to cpu_active mask. If cpusets are 6407 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6408 * around partition_sched_domains(). 6409 * 6410 * If we come here as part of a suspend/resume, don't touch cpusets because we 6411 * want to restore it back to its original state upon resume anyway. 6412 */ 6413 static void cpuset_cpu_active(void) 6414 { 6415 if (cpuhp_tasks_frozen) { 6416 /* 6417 * num_cpus_frozen tracks how many CPUs are involved in suspend 6418 * resume sequence. As long as this is not the last online 6419 * operation in the resume sequence, just build a single sched 6420 * domain, ignoring cpusets. 6421 */ 6422 partition_sched_domains(1, NULL, NULL); 6423 if (--num_cpus_frozen) 6424 return; 6425 /* 6426 * This is the last CPU online operation. So fall through and 6427 * restore the original sched domains by considering the 6428 * cpuset configurations. 6429 */ 6430 cpuset_force_rebuild(); 6431 } 6432 cpuset_update_active_cpus(); 6433 } 6434 6435 static int cpuset_cpu_inactive(unsigned int cpu) 6436 { 6437 if (!cpuhp_tasks_frozen) { 6438 if (dl_cpu_busy(cpu)) 6439 return -EBUSY; 6440 cpuset_update_active_cpus(); 6441 } else { 6442 num_cpus_frozen++; 6443 partition_sched_domains(1, NULL, NULL); 6444 } 6445 return 0; 6446 } 6447 6448 int sched_cpu_activate(unsigned int cpu) 6449 { 6450 struct rq *rq = cpu_rq(cpu); 6451 struct rq_flags rf; 6452 6453 #ifdef CONFIG_SCHED_SMT 6454 /* 6455 * When going up, increment the number of cores with SMT present. 6456 */ 6457 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6458 static_branch_inc_cpuslocked(&sched_smt_present); 6459 #endif 6460 set_cpu_active(cpu, true); 6461 6462 if (sched_smp_initialized) { 6463 sched_domains_numa_masks_set(cpu); 6464 cpuset_cpu_active(); 6465 } 6466 6467 /* 6468 * Put the rq online, if not already. This happens: 6469 * 6470 * 1) In the early boot process, because we build the real domains 6471 * after all CPUs have been brought up. 6472 * 6473 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 6474 * domains. 6475 */ 6476 rq_lock_irqsave(rq, &rf); 6477 if (rq->rd) { 6478 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6479 set_rq_online(rq); 6480 } 6481 rq_unlock_irqrestore(rq, &rf); 6482 6483 return 0; 6484 } 6485 6486 int sched_cpu_deactivate(unsigned int cpu) 6487 { 6488 int ret; 6489 6490 set_cpu_active(cpu, false); 6491 /* 6492 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 6493 * users of this state to go away such that all new such users will 6494 * observe it. 6495 * 6496 * Do sync before park smpboot threads to take care the rcu boost case. 6497 */ 6498 synchronize_rcu(); 6499 6500 #ifdef CONFIG_SCHED_SMT 6501 /* 6502 * When going down, decrement the number of cores with SMT present. 6503 */ 6504 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 6505 static_branch_dec_cpuslocked(&sched_smt_present); 6506 #endif 6507 6508 if (!sched_smp_initialized) 6509 return 0; 6510 6511 ret = cpuset_cpu_inactive(cpu); 6512 if (ret) { 6513 set_cpu_active(cpu, true); 6514 return ret; 6515 } 6516 sched_domains_numa_masks_clear(cpu); 6517 return 0; 6518 } 6519 6520 static void sched_rq_cpu_starting(unsigned int cpu) 6521 { 6522 struct rq *rq = cpu_rq(cpu); 6523 6524 rq->calc_load_update = calc_load_update; 6525 update_max_interval(); 6526 } 6527 6528 int sched_cpu_starting(unsigned int cpu) 6529 { 6530 sched_rq_cpu_starting(cpu); 6531 sched_tick_start(cpu); 6532 return 0; 6533 } 6534 6535 #ifdef CONFIG_HOTPLUG_CPU 6536 int sched_cpu_dying(unsigned int cpu) 6537 { 6538 struct rq *rq = cpu_rq(cpu); 6539 struct rq_flags rf; 6540 6541 /* Handle pending wakeups and then migrate everything off */ 6542 sched_ttwu_pending(); 6543 sched_tick_stop(cpu); 6544 6545 rq_lock_irqsave(rq, &rf); 6546 if (rq->rd) { 6547 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 6548 set_rq_offline(rq); 6549 } 6550 migrate_tasks(rq, &rf); 6551 BUG_ON(rq->nr_running != 1); 6552 rq_unlock_irqrestore(rq, &rf); 6553 6554 calc_load_migrate(rq); 6555 update_max_interval(); 6556 nohz_balance_exit_idle(rq); 6557 hrtick_clear(rq); 6558 return 0; 6559 } 6560 #endif 6561 6562 void __init sched_init_smp(void) 6563 { 6564 sched_init_numa(); 6565 6566 /* 6567 * There's no userspace yet to cause hotplug operations; hence all the 6568 * CPU masks are stable and all blatant races in the below code cannot 6569 * happen. 6570 */ 6571 mutex_lock(&sched_domains_mutex); 6572 sched_init_domains(cpu_active_mask); 6573 mutex_unlock(&sched_domains_mutex); 6574 6575 /* Move init over to a non-isolated CPU */ 6576 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 6577 BUG(); 6578 sched_init_granularity(); 6579 6580 init_sched_rt_class(); 6581 init_sched_dl_class(); 6582 6583 sched_smp_initialized = true; 6584 } 6585 6586 static int __init migration_init(void) 6587 { 6588 sched_cpu_starting(smp_processor_id()); 6589 return 0; 6590 } 6591 early_initcall(migration_init); 6592 6593 #else 6594 void __init sched_init_smp(void) 6595 { 6596 sched_init_granularity(); 6597 } 6598 #endif /* CONFIG_SMP */ 6599 6600 int in_sched_functions(unsigned long addr) 6601 { 6602 return in_lock_functions(addr) || 6603 (addr >= (unsigned long)__sched_text_start 6604 && addr < (unsigned long)__sched_text_end); 6605 } 6606 6607 #ifdef CONFIG_CGROUP_SCHED 6608 /* 6609 * Default task group. 6610 * Every task in system belongs to this group at bootup. 6611 */ 6612 struct task_group root_task_group; 6613 LIST_HEAD(task_groups); 6614 6615 /* Cacheline aligned slab cache for task_group */ 6616 static struct kmem_cache *task_group_cache __read_mostly; 6617 #endif 6618 6619 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6620 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 6621 6622 void __init sched_init(void) 6623 { 6624 unsigned long ptr = 0; 6625 int i; 6626 6627 wait_bit_init(); 6628 6629 #ifdef CONFIG_FAIR_GROUP_SCHED 6630 ptr += 2 * nr_cpu_ids * sizeof(void **); 6631 #endif 6632 #ifdef CONFIG_RT_GROUP_SCHED 6633 ptr += 2 * nr_cpu_ids * sizeof(void **); 6634 #endif 6635 if (ptr) { 6636 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 6637 6638 #ifdef CONFIG_FAIR_GROUP_SCHED 6639 root_task_group.se = (struct sched_entity **)ptr; 6640 ptr += nr_cpu_ids * sizeof(void **); 6641 6642 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6643 ptr += nr_cpu_ids * sizeof(void **); 6644 6645 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6646 #ifdef CONFIG_RT_GROUP_SCHED 6647 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6648 ptr += nr_cpu_ids * sizeof(void **); 6649 6650 root_task_group.rt_rq = (struct rt_rq **)ptr; 6651 ptr += nr_cpu_ids * sizeof(void **); 6652 6653 #endif /* CONFIG_RT_GROUP_SCHED */ 6654 } 6655 #ifdef CONFIG_CPUMASK_OFFSTACK 6656 for_each_possible_cpu(i) { 6657 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6658 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6659 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6660 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6661 } 6662 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6663 6664 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6665 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6666 6667 #ifdef CONFIG_SMP 6668 init_defrootdomain(); 6669 #endif 6670 6671 #ifdef CONFIG_RT_GROUP_SCHED 6672 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6673 global_rt_period(), global_rt_runtime()); 6674 #endif /* CONFIG_RT_GROUP_SCHED */ 6675 6676 #ifdef CONFIG_CGROUP_SCHED 6677 task_group_cache = KMEM_CACHE(task_group, 0); 6678 6679 list_add(&root_task_group.list, &task_groups); 6680 INIT_LIST_HEAD(&root_task_group.children); 6681 INIT_LIST_HEAD(&root_task_group.siblings); 6682 autogroup_init(&init_task); 6683 #endif /* CONFIG_CGROUP_SCHED */ 6684 6685 for_each_possible_cpu(i) { 6686 struct rq *rq; 6687 6688 rq = cpu_rq(i); 6689 raw_spin_lock_init(&rq->lock); 6690 rq->nr_running = 0; 6691 rq->calc_load_active = 0; 6692 rq->calc_load_update = jiffies + LOAD_FREQ; 6693 init_cfs_rq(&rq->cfs); 6694 init_rt_rq(&rq->rt); 6695 init_dl_rq(&rq->dl); 6696 #ifdef CONFIG_FAIR_GROUP_SCHED 6697 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6698 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6699 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6700 /* 6701 * How much CPU bandwidth does root_task_group get? 6702 * 6703 * In case of task-groups formed thr' the cgroup filesystem, it 6704 * gets 100% of the CPU resources in the system. This overall 6705 * system CPU resource is divided among the tasks of 6706 * root_task_group and its child task-groups in a fair manner, 6707 * based on each entity's (task or task-group's) weight 6708 * (se->load.weight). 6709 * 6710 * In other words, if root_task_group has 10 tasks of weight 6711 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6712 * then A0's share of the CPU resource is: 6713 * 6714 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6715 * 6716 * We achieve this by letting root_task_group's tasks sit 6717 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6718 */ 6719 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6720 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6721 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6722 6723 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6724 #ifdef CONFIG_RT_GROUP_SCHED 6725 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6726 #endif 6727 #ifdef CONFIG_SMP 6728 rq->sd = NULL; 6729 rq->rd = NULL; 6730 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6731 rq->balance_callback = NULL; 6732 rq->active_balance = 0; 6733 rq->next_balance = jiffies; 6734 rq->push_cpu = 0; 6735 rq->cpu = i; 6736 rq->online = 0; 6737 rq->idle_stamp = 0; 6738 rq->avg_idle = 2*sysctl_sched_migration_cost; 6739 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6740 6741 INIT_LIST_HEAD(&rq->cfs_tasks); 6742 6743 rq_attach_root(rq, &def_root_domain); 6744 #ifdef CONFIG_NO_HZ_COMMON 6745 rq->last_blocked_load_update_tick = jiffies; 6746 atomic_set(&rq->nohz_flags, 0); 6747 #endif 6748 #endif /* CONFIG_SMP */ 6749 hrtick_rq_init(rq); 6750 atomic_set(&rq->nr_iowait, 0); 6751 } 6752 6753 set_load_weight(&init_task, false); 6754 6755 /* 6756 * The boot idle thread does lazy MMU switching as well: 6757 */ 6758 mmgrab(&init_mm); 6759 enter_lazy_tlb(&init_mm, current); 6760 6761 /* 6762 * Make us the idle thread. Technically, schedule() should not be 6763 * called from this thread, however somewhere below it might be, 6764 * but because we are the idle thread, we just pick up running again 6765 * when this runqueue becomes "idle". 6766 */ 6767 init_idle(current, smp_processor_id()); 6768 6769 calc_load_update = jiffies + LOAD_FREQ; 6770 6771 #ifdef CONFIG_SMP 6772 idle_thread_set_boot_cpu(); 6773 #endif 6774 init_sched_fair_class(); 6775 6776 init_schedstats(); 6777 6778 psi_init(); 6779 6780 init_uclamp(); 6781 6782 scheduler_running = 1; 6783 } 6784 6785 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6786 static inline int preempt_count_equals(int preempt_offset) 6787 { 6788 int nested = preempt_count() + rcu_preempt_depth(); 6789 6790 return (nested == preempt_offset); 6791 } 6792 6793 void __might_sleep(const char *file, int line, int preempt_offset) 6794 { 6795 /* 6796 * Blocking primitives will set (and therefore destroy) current->state, 6797 * since we will exit with TASK_RUNNING make sure we enter with it, 6798 * otherwise we will destroy state. 6799 */ 6800 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6801 "do not call blocking ops when !TASK_RUNNING; " 6802 "state=%lx set at [<%p>] %pS\n", 6803 current->state, 6804 (void *)current->task_state_change, 6805 (void *)current->task_state_change); 6806 6807 ___might_sleep(file, line, preempt_offset); 6808 } 6809 EXPORT_SYMBOL(__might_sleep); 6810 6811 void ___might_sleep(const char *file, int line, int preempt_offset) 6812 { 6813 /* Ratelimiting timestamp: */ 6814 static unsigned long prev_jiffy; 6815 6816 unsigned long preempt_disable_ip; 6817 6818 /* WARN_ON_ONCE() by default, no rate limit required: */ 6819 rcu_sleep_check(); 6820 6821 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6822 !is_idle_task(current) && !current->non_block_count) || 6823 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6824 oops_in_progress) 6825 return; 6826 6827 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6828 return; 6829 prev_jiffy = jiffies; 6830 6831 /* Save this before calling printk(), since that will clobber it: */ 6832 preempt_disable_ip = get_preempt_disable_ip(current); 6833 6834 printk(KERN_ERR 6835 "BUG: sleeping function called from invalid context at %s:%d\n", 6836 file, line); 6837 printk(KERN_ERR 6838 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 6839 in_atomic(), irqs_disabled(), current->non_block_count, 6840 current->pid, current->comm); 6841 6842 if (task_stack_end_corrupted(current)) 6843 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6844 6845 debug_show_held_locks(current); 6846 if (irqs_disabled()) 6847 print_irqtrace_events(current); 6848 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6849 && !preempt_count_equals(preempt_offset)) { 6850 pr_err("Preemption disabled at:"); 6851 print_ip_sym(preempt_disable_ip); 6852 pr_cont("\n"); 6853 } 6854 dump_stack(); 6855 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6856 } 6857 EXPORT_SYMBOL(___might_sleep); 6858 6859 void __cant_sleep(const char *file, int line, int preempt_offset) 6860 { 6861 static unsigned long prev_jiffy; 6862 6863 if (irqs_disabled()) 6864 return; 6865 6866 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 6867 return; 6868 6869 if (preempt_count() > preempt_offset) 6870 return; 6871 6872 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6873 return; 6874 prev_jiffy = jiffies; 6875 6876 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 6877 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6878 in_atomic(), irqs_disabled(), 6879 current->pid, current->comm); 6880 6881 debug_show_held_locks(current); 6882 dump_stack(); 6883 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6884 } 6885 EXPORT_SYMBOL_GPL(__cant_sleep); 6886 #endif 6887 6888 #ifdef CONFIG_MAGIC_SYSRQ 6889 void normalize_rt_tasks(void) 6890 { 6891 struct task_struct *g, *p; 6892 struct sched_attr attr = { 6893 .sched_policy = SCHED_NORMAL, 6894 }; 6895 6896 read_lock(&tasklist_lock); 6897 for_each_process_thread(g, p) { 6898 /* 6899 * Only normalize user tasks: 6900 */ 6901 if (p->flags & PF_KTHREAD) 6902 continue; 6903 6904 p->se.exec_start = 0; 6905 schedstat_set(p->se.statistics.wait_start, 0); 6906 schedstat_set(p->se.statistics.sleep_start, 0); 6907 schedstat_set(p->se.statistics.block_start, 0); 6908 6909 if (!dl_task(p) && !rt_task(p)) { 6910 /* 6911 * Renice negative nice level userspace 6912 * tasks back to 0: 6913 */ 6914 if (task_nice(p) < 0) 6915 set_user_nice(p, 0); 6916 continue; 6917 } 6918 6919 __sched_setscheduler(p, &attr, false, false); 6920 } 6921 read_unlock(&tasklist_lock); 6922 } 6923 6924 #endif /* CONFIG_MAGIC_SYSRQ */ 6925 6926 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6927 /* 6928 * These functions are only useful for the IA64 MCA handling, or kdb. 6929 * 6930 * They can only be called when the whole system has been 6931 * stopped - every CPU needs to be quiescent, and no scheduling 6932 * activity can take place. Using them for anything else would 6933 * be a serious bug, and as a result, they aren't even visible 6934 * under any other configuration. 6935 */ 6936 6937 /** 6938 * curr_task - return the current task for a given CPU. 6939 * @cpu: the processor in question. 6940 * 6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6942 * 6943 * Return: The current task for @cpu. 6944 */ 6945 struct task_struct *curr_task(int cpu) 6946 { 6947 return cpu_curr(cpu); 6948 } 6949 6950 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6951 6952 #ifdef CONFIG_IA64 6953 /** 6954 * ia64_set_curr_task - set the current task for a given CPU. 6955 * @cpu: the processor in question. 6956 * @p: the task pointer to set. 6957 * 6958 * Description: This function must only be used when non-maskable interrupts 6959 * are serviced on a separate stack. It allows the architecture to switch the 6960 * notion of the current task on a CPU in a non-blocking manner. This function 6961 * must be called with all CPU's synchronized, and interrupts disabled, the 6962 * and caller must save the original value of the current task (see 6963 * curr_task() above) and restore that value before reenabling interrupts and 6964 * re-starting the system. 6965 * 6966 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6967 */ 6968 void ia64_set_curr_task(int cpu, struct task_struct *p) 6969 { 6970 cpu_curr(cpu) = p; 6971 } 6972 6973 #endif 6974 6975 #ifdef CONFIG_CGROUP_SCHED 6976 /* task_group_lock serializes the addition/removal of task groups */ 6977 static DEFINE_SPINLOCK(task_group_lock); 6978 6979 static inline void alloc_uclamp_sched_group(struct task_group *tg, 6980 struct task_group *parent) 6981 { 6982 #ifdef CONFIG_UCLAMP_TASK_GROUP 6983 enum uclamp_id clamp_id; 6984 6985 for_each_clamp_id(clamp_id) { 6986 uclamp_se_set(&tg->uclamp_req[clamp_id], 6987 uclamp_none(clamp_id), false); 6988 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 6989 } 6990 #endif 6991 } 6992 6993 static void sched_free_group(struct task_group *tg) 6994 { 6995 free_fair_sched_group(tg); 6996 free_rt_sched_group(tg); 6997 autogroup_free(tg); 6998 kmem_cache_free(task_group_cache, tg); 6999 } 7000 7001 /* allocate runqueue etc for a new task group */ 7002 struct task_group *sched_create_group(struct task_group *parent) 7003 { 7004 struct task_group *tg; 7005 7006 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 7007 if (!tg) 7008 return ERR_PTR(-ENOMEM); 7009 7010 if (!alloc_fair_sched_group(tg, parent)) 7011 goto err; 7012 7013 if (!alloc_rt_sched_group(tg, parent)) 7014 goto err; 7015 7016 alloc_uclamp_sched_group(tg, parent); 7017 7018 return tg; 7019 7020 err: 7021 sched_free_group(tg); 7022 return ERR_PTR(-ENOMEM); 7023 } 7024 7025 void sched_online_group(struct task_group *tg, struct task_group *parent) 7026 { 7027 unsigned long flags; 7028 7029 spin_lock_irqsave(&task_group_lock, flags); 7030 list_add_rcu(&tg->list, &task_groups); 7031 7032 /* Root should already exist: */ 7033 WARN_ON(!parent); 7034 7035 tg->parent = parent; 7036 INIT_LIST_HEAD(&tg->children); 7037 list_add_rcu(&tg->siblings, &parent->children); 7038 spin_unlock_irqrestore(&task_group_lock, flags); 7039 7040 online_fair_sched_group(tg); 7041 } 7042 7043 /* rcu callback to free various structures associated with a task group */ 7044 static void sched_free_group_rcu(struct rcu_head *rhp) 7045 { 7046 /* Now it should be safe to free those cfs_rqs: */ 7047 sched_free_group(container_of(rhp, struct task_group, rcu)); 7048 } 7049 7050 void sched_destroy_group(struct task_group *tg) 7051 { 7052 /* Wait for possible concurrent references to cfs_rqs complete: */ 7053 call_rcu(&tg->rcu, sched_free_group_rcu); 7054 } 7055 7056 void sched_offline_group(struct task_group *tg) 7057 { 7058 unsigned long flags; 7059 7060 /* End participation in shares distribution: */ 7061 unregister_fair_sched_group(tg); 7062 7063 spin_lock_irqsave(&task_group_lock, flags); 7064 list_del_rcu(&tg->list); 7065 list_del_rcu(&tg->siblings); 7066 spin_unlock_irqrestore(&task_group_lock, flags); 7067 } 7068 7069 static void sched_change_group(struct task_struct *tsk, int type) 7070 { 7071 struct task_group *tg; 7072 7073 /* 7074 * All callers are synchronized by task_rq_lock(); we do not use RCU 7075 * which is pointless here. Thus, we pass "true" to task_css_check() 7076 * to prevent lockdep warnings. 7077 */ 7078 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 7079 struct task_group, css); 7080 tg = autogroup_task_group(tsk, tg); 7081 tsk->sched_task_group = tg; 7082 7083 #ifdef CONFIG_FAIR_GROUP_SCHED 7084 if (tsk->sched_class->task_change_group) 7085 tsk->sched_class->task_change_group(tsk, type); 7086 else 7087 #endif 7088 set_task_rq(tsk, task_cpu(tsk)); 7089 } 7090 7091 /* 7092 * Change task's runqueue when it moves between groups. 7093 * 7094 * The caller of this function should have put the task in its new group by 7095 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 7096 * its new group. 7097 */ 7098 void sched_move_task(struct task_struct *tsk) 7099 { 7100 int queued, running, queue_flags = 7101 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7102 struct rq_flags rf; 7103 struct rq *rq; 7104 7105 rq = task_rq_lock(tsk, &rf); 7106 update_rq_clock(rq); 7107 7108 running = task_current(rq, tsk); 7109 queued = task_on_rq_queued(tsk); 7110 7111 if (queued) 7112 dequeue_task(rq, tsk, queue_flags); 7113 if (running) 7114 put_prev_task(rq, tsk); 7115 7116 sched_change_group(tsk, TASK_MOVE_GROUP); 7117 7118 if (queued) 7119 enqueue_task(rq, tsk, queue_flags); 7120 if (running) { 7121 set_next_task(rq, tsk); 7122 /* 7123 * After changing group, the running task may have joined a 7124 * throttled one but it's still the running task. Trigger a 7125 * resched to make sure that task can still run. 7126 */ 7127 resched_curr(rq); 7128 } 7129 7130 task_rq_unlock(rq, tsk, &rf); 7131 } 7132 7133 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7134 { 7135 return css ? container_of(css, struct task_group, css) : NULL; 7136 } 7137 7138 static struct cgroup_subsys_state * 7139 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7140 { 7141 struct task_group *parent = css_tg(parent_css); 7142 struct task_group *tg; 7143 7144 if (!parent) { 7145 /* This is early initialization for the top cgroup */ 7146 return &root_task_group.css; 7147 } 7148 7149 tg = sched_create_group(parent); 7150 if (IS_ERR(tg)) 7151 return ERR_PTR(-ENOMEM); 7152 7153 return &tg->css; 7154 } 7155 7156 /* Expose task group only after completing cgroup initialization */ 7157 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7158 { 7159 struct task_group *tg = css_tg(css); 7160 struct task_group *parent = css_tg(css->parent); 7161 7162 if (parent) 7163 sched_online_group(tg, parent); 7164 7165 #ifdef CONFIG_UCLAMP_TASK_GROUP 7166 /* Propagate the effective uclamp value for the new group */ 7167 cpu_util_update_eff(css); 7168 #endif 7169 7170 return 0; 7171 } 7172 7173 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 7174 { 7175 struct task_group *tg = css_tg(css); 7176 7177 sched_offline_group(tg); 7178 } 7179 7180 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7181 { 7182 struct task_group *tg = css_tg(css); 7183 7184 /* 7185 * Relies on the RCU grace period between css_released() and this. 7186 */ 7187 sched_free_group(tg); 7188 } 7189 7190 /* 7191 * This is called before wake_up_new_task(), therefore we really only 7192 * have to set its group bits, all the other stuff does not apply. 7193 */ 7194 static void cpu_cgroup_fork(struct task_struct *task) 7195 { 7196 struct rq_flags rf; 7197 struct rq *rq; 7198 7199 rq = task_rq_lock(task, &rf); 7200 7201 update_rq_clock(rq); 7202 sched_change_group(task, TASK_SET_GROUP); 7203 7204 task_rq_unlock(rq, task, &rf); 7205 } 7206 7207 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 7208 { 7209 struct task_struct *task; 7210 struct cgroup_subsys_state *css; 7211 int ret = 0; 7212 7213 cgroup_taskset_for_each(task, css, tset) { 7214 #ifdef CONFIG_RT_GROUP_SCHED 7215 if (!sched_rt_can_attach(css_tg(css), task)) 7216 return -EINVAL; 7217 #endif 7218 /* 7219 * Serialize against wake_up_new_task() such that if its 7220 * running, we're sure to observe its full state. 7221 */ 7222 raw_spin_lock_irq(&task->pi_lock); 7223 /* 7224 * Avoid calling sched_move_task() before wake_up_new_task() 7225 * has happened. This would lead to problems with PELT, due to 7226 * move wanting to detach+attach while we're not attached yet. 7227 */ 7228 if (task->state == TASK_NEW) 7229 ret = -EINVAL; 7230 raw_spin_unlock_irq(&task->pi_lock); 7231 7232 if (ret) 7233 break; 7234 } 7235 return ret; 7236 } 7237 7238 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 7239 { 7240 struct task_struct *task; 7241 struct cgroup_subsys_state *css; 7242 7243 cgroup_taskset_for_each(task, css, tset) 7244 sched_move_task(task); 7245 } 7246 7247 #ifdef CONFIG_UCLAMP_TASK_GROUP 7248 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 7249 { 7250 struct cgroup_subsys_state *top_css = css; 7251 struct uclamp_se *uc_parent = NULL; 7252 struct uclamp_se *uc_se = NULL; 7253 unsigned int eff[UCLAMP_CNT]; 7254 enum uclamp_id clamp_id; 7255 unsigned int clamps; 7256 7257 css_for_each_descendant_pre(css, top_css) { 7258 uc_parent = css_tg(css)->parent 7259 ? css_tg(css)->parent->uclamp : NULL; 7260 7261 for_each_clamp_id(clamp_id) { 7262 /* Assume effective clamps matches requested clamps */ 7263 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 7264 /* Cap effective clamps with parent's effective clamps */ 7265 if (uc_parent && 7266 eff[clamp_id] > uc_parent[clamp_id].value) { 7267 eff[clamp_id] = uc_parent[clamp_id].value; 7268 } 7269 } 7270 /* Ensure protection is always capped by limit */ 7271 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 7272 7273 /* Propagate most restrictive effective clamps */ 7274 clamps = 0x0; 7275 uc_se = css_tg(css)->uclamp; 7276 for_each_clamp_id(clamp_id) { 7277 if (eff[clamp_id] == uc_se[clamp_id].value) 7278 continue; 7279 uc_se[clamp_id].value = eff[clamp_id]; 7280 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 7281 clamps |= (0x1 << clamp_id); 7282 } 7283 if (!clamps) { 7284 css = css_rightmost_descendant(css); 7285 continue; 7286 } 7287 7288 /* Immediately update descendants RUNNABLE tasks */ 7289 uclamp_update_active_tasks(css, clamps); 7290 } 7291 } 7292 7293 /* 7294 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 7295 * C expression. Since there is no way to convert a macro argument (N) into a 7296 * character constant, use two levels of macros. 7297 */ 7298 #define _POW10(exp) ((unsigned int)1e##exp) 7299 #define POW10(exp) _POW10(exp) 7300 7301 struct uclamp_request { 7302 #define UCLAMP_PERCENT_SHIFT 2 7303 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 7304 s64 percent; 7305 u64 util; 7306 int ret; 7307 }; 7308 7309 static inline struct uclamp_request 7310 capacity_from_percent(char *buf) 7311 { 7312 struct uclamp_request req = { 7313 .percent = UCLAMP_PERCENT_SCALE, 7314 .util = SCHED_CAPACITY_SCALE, 7315 .ret = 0, 7316 }; 7317 7318 buf = strim(buf); 7319 if (strcmp(buf, "max")) { 7320 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 7321 &req.percent); 7322 if (req.ret) 7323 return req; 7324 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 7325 req.ret = -ERANGE; 7326 return req; 7327 } 7328 7329 req.util = req.percent << SCHED_CAPACITY_SHIFT; 7330 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 7331 } 7332 7333 return req; 7334 } 7335 7336 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 7337 size_t nbytes, loff_t off, 7338 enum uclamp_id clamp_id) 7339 { 7340 struct uclamp_request req; 7341 struct task_group *tg; 7342 7343 req = capacity_from_percent(buf); 7344 if (req.ret) 7345 return req.ret; 7346 7347 mutex_lock(&uclamp_mutex); 7348 rcu_read_lock(); 7349 7350 tg = css_tg(of_css(of)); 7351 if (tg->uclamp_req[clamp_id].value != req.util) 7352 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 7353 7354 /* 7355 * Because of not recoverable conversion rounding we keep track of the 7356 * exact requested value 7357 */ 7358 tg->uclamp_pct[clamp_id] = req.percent; 7359 7360 /* Update effective clamps to track the most restrictive value */ 7361 cpu_util_update_eff(of_css(of)); 7362 7363 rcu_read_unlock(); 7364 mutex_unlock(&uclamp_mutex); 7365 7366 return nbytes; 7367 } 7368 7369 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 7370 char *buf, size_t nbytes, 7371 loff_t off) 7372 { 7373 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 7374 } 7375 7376 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 7377 char *buf, size_t nbytes, 7378 loff_t off) 7379 { 7380 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 7381 } 7382 7383 static inline void cpu_uclamp_print(struct seq_file *sf, 7384 enum uclamp_id clamp_id) 7385 { 7386 struct task_group *tg; 7387 u64 util_clamp; 7388 u64 percent; 7389 u32 rem; 7390 7391 rcu_read_lock(); 7392 tg = css_tg(seq_css(sf)); 7393 util_clamp = tg->uclamp_req[clamp_id].value; 7394 rcu_read_unlock(); 7395 7396 if (util_clamp == SCHED_CAPACITY_SCALE) { 7397 seq_puts(sf, "max\n"); 7398 return; 7399 } 7400 7401 percent = tg->uclamp_pct[clamp_id]; 7402 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 7403 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 7404 } 7405 7406 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 7407 { 7408 cpu_uclamp_print(sf, UCLAMP_MIN); 7409 return 0; 7410 } 7411 7412 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 7413 { 7414 cpu_uclamp_print(sf, UCLAMP_MAX); 7415 return 0; 7416 } 7417 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 7418 7419 #ifdef CONFIG_FAIR_GROUP_SCHED 7420 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7421 struct cftype *cftype, u64 shareval) 7422 { 7423 if (shareval > scale_load_down(ULONG_MAX)) 7424 shareval = MAX_SHARES; 7425 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7426 } 7427 7428 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7429 struct cftype *cft) 7430 { 7431 struct task_group *tg = css_tg(css); 7432 7433 return (u64) scale_load_down(tg->shares); 7434 } 7435 7436 #ifdef CONFIG_CFS_BANDWIDTH 7437 static DEFINE_MUTEX(cfs_constraints_mutex); 7438 7439 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7440 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7441 7442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7443 7444 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7445 { 7446 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7447 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7448 7449 if (tg == &root_task_group) 7450 return -EINVAL; 7451 7452 /* 7453 * Ensure we have at some amount of bandwidth every period. This is 7454 * to prevent reaching a state of large arrears when throttled via 7455 * entity_tick() resulting in prolonged exit starvation. 7456 */ 7457 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7458 return -EINVAL; 7459 7460 /* 7461 * Likewise, bound things on the otherside by preventing insane quota 7462 * periods. This also allows us to normalize in computing quota 7463 * feasibility. 7464 */ 7465 if (period > max_cfs_quota_period) 7466 return -EINVAL; 7467 7468 /* 7469 * Prevent race between setting of cfs_rq->runtime_enabled and 7470 * unthrottle_offline_cfs_rqs(). 7471 */ 7472 get_online_cpus(); 7473 mutex_lock(&cfs_constraints_mutex); 7474 ret = __cfs_schedulable(tg, period, quota); 7475 if (ret) 7476 goto out_unlock; 7477 7478 runtime_enabled = quota != RUNTIME_INF; 7479 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7480 /* 7481 * If we need to toggle cfs_bandwidth_used, off->on must occur 7482 * before making related changes, and on->off must occur afterwards 7483 */ 7484 if (runtime_enabled && !runtime_was_enabled) 7485 cfs_bandwidth_usage_inc(); 7486 raw_spin_lock_irq(&cfs_b->lock); 7487 cfs_b->period = ns_to_ktime(period); 7488 cfs_b->quota = quota; 7489 7490 __refill_cfs_bandwidth_runtime(cfs_b); 7491 7492 /* Restart the period timer (if active) to handle new period expiry: */ 7493 if (runtime_enabled) 7494 start_cfs_bandwidth(cfs_b); 7495 7496 raw_spin_unlock_irq(&cfs_b->lock); 7497 7498 for_each_online_cpu(i) { 7499 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7500 struct rq *rq = cfs_rq->rq; 7501 struct rq_flags rf; 7502 7503 rq_lock_irq(rq, &rf); 7504 cfs_rq->runtime_enabled = runtime_enabled; 7505 cfs_rq->runtime_remaining = 0; 7506 7507 if (cfs_rq->throttled) 7508 unthrottle_cfs_rq(cfs_rq); 7509 rq_unlock_irq(rq, &rf); 7510 } 7511 if (runtime_was_enabled && !runtime_enabled) 7512 cfs_bandwidth_usage_dec(); 7513 out_unlock: 7514 mutex_unlock(&cfs_constraints_mutex); 7515 put_online_cpus(); 7516 7517 return ret; 7518 } 7519 7520 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7521 { 7522 u64 quota, period; 7523 7524 period = ktime_to_ns(tg->cfs_bandwidth.period); 7525 if (cfs_quota_us < 0) 7526 quota = RUNTIME_INF; 7527 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 7528 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7529 else 7530 return -EINVAL; 7531 7532 return tg_set_cfs_bandwidth(tg, period, quota); 7533 } 7534 7535 static long tg_get_cfs_quota(struct task_group *tg) 7536 { 7537 u64 quota_us; 7538 7539 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7540 return -1; 7541 7542 quota_us = tg->cfs_bandwidth.quota; 7543 do_div(quota_us, NSEC_PER_USEC); 7544 7545 return quota_us; 7546 } 7547 7548 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7549 { 7550 u64 quota, period; 7551 7552 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 7553 return -EINVAL; 7554 7555 period = (u64)cfs_period_us * NSEC_PER_USEC; 7556 quota = tg->cfs_bandwidth.quota; 7557 7558 return tg_set_cfs_bandwidth(tg, period, quota); 7559 } 7560 7561 static long tg_get_cfs_period(struct task_group *tg) 7562 { 7563 u64 cfs_period_us; 7564 7565 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7566 do_div(cfs_period_us, NSEC_PER_USEC); 7567 7568 return cfs_period_us; 7569 } 7570 7571 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7572 struct cftype *cft) 7573 { 7574 return tg_get_cfs_quota(css_tg(css)); 7575 } 7576 7577 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7578 struct cftype *cftype, s64 cfs_quota_us) 7579 { 7580 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7581 } 7582 7583 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7584 struct cftype *cft) 7585 { 7586 return tg_get_cfs_period(css_tg(css)); 7587 } 7588 7589 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7590 struct cftype *cftype, u64 cfs_period_us) 7591 { 7592 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7593 } 7594 7595 struct cfs_schedulable_data { 7596 struct task_group *tg; 7597 u64 period, quota; 7598 }; 7599 7600 /* 7601 * normalize group quota/period to be quota/max_period 7602 * note: units are usecs 7603 */ 7604 static u64 normalize_cfs_quota(struct task_group *tg, 7605 struct cfs_schedulable_data *d) 7606 { 7607 u64 quota, period; 7608 7609 if (tg == d->tg) { 7610 period = d->period; 7611 quota = d->quota; 7612 } else { 7613 period = tg_get_cfs_period(tg); 7614 quota = tg_get_cfs_quota(tg); 7615 } 7616 7617 /* note: these should typically be equivalent */ 7618 if (quota == RUNTIME_INF || quota == -1) 7619 return RUNTIME_INF; 7620 7621 return to_ratio(period, quota); 7622 } 7623 7624 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7625 { 7626 struct cfs_schedulable_data *d = data; 7627 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7628 s64 quota = 0, parent_quota = -1; 7629 7630 if (!tg->parent) { 7631 quota = RUNTIME_INF; 7632 } else { 7633 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7634 7635 quota = normalize_cfs_quota(tg, d); 7636 parent_quota = parent_b->hierarchical_quota; 7637 7638 /* 7639 * Ensure max(child_quota) <= parent_quota. On cgroup2, 7640 * always take the min. On cgroup1, only inherit when no 7641 * limit is set: 7642 */ 7643 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 7644 quota = min(quota, parent_quota); 7645 } else { 7646 if (quota == RUNTIME_INF) 7647 quota = parent_quota; 7648 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7649 return -EINVAL; 7650 } 7651 } 7652 cfs_b->hierarchical_quota = quota; 7653 7654 return 0; 7655 } 7656 7657 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7658 { 7659 int ret; 7660 struct cfs_schedulable_data data = { 7661 .tg = tg, 7662 .period = period, 7663 .quota = quota, 7664 }; 7665 7666 if (quota != RUNTIME_INF) { 7667 do_div(data.period, NSEC_PER_USEC); 7668 do_div(data.quota, NSEC_PER_USEC); 7669 } 7670 7671 rcu_read_lock(); 7672 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7673 rcu_read_unlock(); 7674 7675 return ret; 7676 } 7677 7678 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 7679 { 7680 struct task_group *tg = css_tg(seq_css(sf)); 7681 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7682 7683 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7684 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7685 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7686 7687 if (schedstat_enabled() && tg != &root_task_group) { 7688 u64 ws = 0; 7689 int i; 7690 7691 for_each_possible_cpu(i) 7692 ws += schedstat_val(tg->se[i]->statistics.wait_sum); 7693 7694 seq_printf(sf, "wait_sum %llu\n", ws); 7695 } 7696 7697 return 0; 7698 } 7699 #endif /* CONFIG_CFS_BANDWIDTH */ 7700 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7701 7702 #ifdef CONFIG_RT_GROUP_SCHED 7703 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7704 struct cftype *cft, s64 val) 7705 { 7706 return sched_group_set_rt_runtime(css_tg(css), val); 7707 } 7708 7709 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7710 struct cftype *cft) 7711 { 7712 return sched_group_rt_runtime(css_tg(css)); 7713 } 7714 7715 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7716 struct cftype *cftype, u64 rt_period_us) 7717 { 7718 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7719 } 7720 7721 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7722 struct cftype *cft) 7723 { 7724 return sched_group_rt_period(css_tg(css)); 7725 } 7726 #endif /* CONFIG_RT_GROUP_SCHED */ 7727 7728 static struct cftype cpu_legacy_files[] = { 7729 #ifdef CONFIG_FAIR_GROUP_SCHED 7730 { 7731 .name = "shares", 7732 .read_u64 = cpu_shares_read_u64, 7733 .write_u64 = cpu_shares_write_u64, 7734 }, 7735 #endif 7736 #ifdef CONFIG_CFS_BANDWIDTH 7737 { 7738 .name = "cfs_quota_us", 7739 .read_s64 = cpu_cfs_quota_read_s64, 7740 .write_s64 = cpu_cfs_quota_write_s64, 7741 }, 7742 { 7743 .name = "cfs_period_us", 7744 .read_u64 = cpu_cfs_period_read_u64, 7745 .write_u64 = cpu_cfs_period_write_u64, 7746 }, 7747 { 7748 .name = "stat", 7749 .seq_show = cpu_cfs_stat_show, 7750 }, 7751 #endif 7752 #ifdef CONFIG_RT_GROUP_SCHED 7753 { 7754 .name = "rt_runtime_us", 7755 .read_s64 = cpu_rt_runtime_read, 7756 .write_s64 = cpu_rt_runtime_write, 7757 }, 7758 { 7759 .name = "rt_period_us", 7760 .read_u64 = cpu_rt_period_read_uint, 7761 .write_u64 = cpu_rt_period_write_uint, 7762 }, 7763 #endif 7764 #ifdef CONFIG_UCLAMP_TASK_GROUP 7765 { 7766 .name = "uclamp.min", 7767 .flags = CFTYPE_NOT_ON_ROOT, 7768 .seq_show = cpu_uclamp_min_show, 7769 .write = cpu_uclamp_min_write, 7770 }, 7771 { 7772 .name = "uclamp.max", 7773 .flags = CFTYPE_NOT_ON_ROOT, 7774 .seq_show = cpu_uclamp_max_show, 7775 .write = cpu_uclamp_max_write, 7776 }, 7777 #endif 7778 { } /* Terminate */ 7779 }; 7780 7781 static int cpu_extra_stat_show(struct seq_file *sf, 7782 struct cgroup_subsys_state *css) 7783 { 7784 #ifdef CONFIG_CFS_BANDWIDTH 7785 { 7786 struct task_group *tg = css_tg(css); 7787 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7788 u64 throttled_usec; 7789 7790 throttled_usec = cfs_b->throttled_time; 7791 do_div(throttled_usec, NSEC_PER_USEC); 7792 7793 seq_printf(sf, "nr_periods %d\n" 7794 "nr_throttled %d\n" 7795 "throttled_usec %llu\n", 7796 cfs_b->nr_periods, cfs_b->nr_throttled, 7797 throttled_usec); 7798 } 7799 #endif 7800 return 0; 7801 } 7802 7803 #ifdef CONFIG_FAIR_GROUP_SCHED 7804 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 7805 struct cftype *cft) 7806 { 7807 struct task_group *tg = css_tg(css); 7808 u64 weight = scale_load_down(tg->shares); 7809 7810 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 7811 } 7812 7813 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 7814 struct cftype *cft, u64 weight) 7815 { 7816 /* 7817 * cgroup weight knobs should use the common MIN, DFL and MAX 7818 * values which are 1, 100 and 10000 respectively. While it loses 7819 * a bit of range on both ends, it maps pretty well onto the shares 7820 * value used by scheduler and the round-trip conversions preserve 7821 * the original value over the entire range. 7822 */ 7823 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 7824 return -ERANGE; 7825 7826 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 7827 7828 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7829 } 7830 7831 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 7832 struct cftype *cft) 7833 { 7834 unsigned long weight = scale_load_down(css_tg(css)->shares); 7835 int last_delta = INT_MAX; 7836 int prio, delta; 7837 7838 /* find the closest nice value to the current weight */ 7839 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 7840 delta = abs(sched_prio_to_weight[prio] - weight); 7841 if (delta >= last_delta) 7842 break; 7843 last_delta = delta; 7844 } 7845 7846 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 7847 } 7848 7849 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 7850 struct cftype *cft, s64 nice) 7851 { 7852 unsigned long weight; 7853 int idx; 7854 7855 if (nice < MIN_NICE || nice > MAX_NICE) 7856 return -ERANGE; 7857 7858 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 7859 idx = array_index_nospec(idx, 40); 7860 weight = sched_prio_to_weight[idx]; 7861 7862 return sched_group_set_shares(css_tg(css), scale_load(weight)); 7863 } 7864 #endif 7865 7866 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 7867 long period, long quota) 7868 { 7869 if (quota < 0) 7870 seq_puts(sf, "max"); 7871 else 7872 seq_printf(sf, "%ld", quota); 7873 7874 seq_printf(sf, " %ld\n", period); 7875 } 7876 7877 /* caller should put the current value in *@periodp before calling */ 7878 static int __maybe_unused cpu_period_quota_parse(char *buf, 7879 u64 *periodp, u64 *quotap) 7880 { 7881 char tok[21]; /* U64_MAX */ 7882 7883 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 7884 return -EINVAL; 7885 7886 *periodp *= NSEC_PER_USEC; 7887 7888 if (sscanf(tok, "%llu", quotap)) 7889 *quotap *= NSEC_PER_USEC; 7890 else if (!strcmp(tok, "max")) 7891 *quotap = RUNTIME_INF; 7892 else 7893 return -EINVAL; 7894 7895 return 0; 7896 } 7897 7898 #ifdef CONFIG_CFS_BANDWIDTH 7899 static int cpu_max_show(struct seq_file *sf, void *v) 7900 { 7901 struct task_group *tg = css_tg(seq_css(sf)); 7902 7903 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 7904 return 0; 7905 } 7906 7907 static ssize_t cpu_max_write(struct kernfs_open_file *of, 7908 char *buf, size_t nbytes, loff_t off) 7909 { 7910 struct task_group *tg = css_tg(of_css(of)); 7911 u64 period = tg_get_cfs_period(tg); 7912 u64 quota; 7913 int ret; 7914 7915 ret = cpu_period_quota_parse(buf, &period, "a); 7916 if (!ret) 7917 ret = tg_set_cfs_bandwidth(tg, period, quota); 7918 return ret ?: nbytes; 7919 } 7920 #endif 7921 7922 static struct cftype cpu_files[] = { 7923 #ifdef CONFIG_FAIR_GROUP_SCHED 7924 { 7925 .name = "weight", 7926 .flags = CFTYPE_NOT_ON_ROOT, 7927 .read_u64 = cpu_weight_read_u64, 7928 .write_u64 = cpu_weight_write_u64, 7929 }, 7930 { 7931 .name = "weight.nice", 7932 .flags = CFTYPE_NOT_ON_ROOT, 7933 .read_s64 = cpu_weight_nice_read_s64, 7934 .write_s64 = cpu_weight_nice_write_s64, 7935 }, 7936 #endif 7937 #ifdef CONFIG_CFS_BANDWIDTH 7938 { 7939 .name = "max", 7940 .flags = CFTYPE_NOT_ON_ROOT, 7941 .seq_show = cpu_max_show, 7942 .write = cpu_max_write, 7943 }, 7944 #endif 7945 #ifdef CONFIG_UCLAMP_TASK_GROUP 7946 { 7947 .name = "uclamp.min", 7948 .flags = CFTYPE_NOT_ON_ROOT, 7949 .seq_show = cpu_uclamp_min_show, 7950 .write = cpu_uclamp_min_write, 7951 }, 7952 { 7953 .name = "uclamp.max", 7954 .flags = CFTYPE_NOT_ON_ROOT, 7955 .seq_show = cpu_uclamp_max_show, 7956 .write = cpu_uclamp_max_write, 7957 }, 7958 #endif 7959 { } /* terminate */ 7960 }; 7961 7962 struct cgroup_subsys cpu_cgrp_subsys = { 7963 .css_alloc = cpu_cgroup_css_alloc, 7964 .css_online = cpu_cgroup_css_online, 7965 .css_released = cpu_cgroup_css_released, 7966 .css_free = cpu_cgroup_css_free, 7967 .css_extra_stat_show = cpu_extra_stat_show, 7968 .fork = cpu_cgroup_fork, 7969 .can_attach = cpu_cgroup_can_attach, 7970 .attach = cpu_cgroup_attach, 7971 .legacy_cftypes = cpu_legacy_files, 7972 .dfl_cftypes = cpu_files, 7973 .early_init = true, 7974 .threaded = true, 7975 }; 7976 7977 #endif /* CONFIG_CGROUP_SCHED */ 7978 7979 void dump_cpu_task(int cpu) 7980 { 7981 pr_info("Task dump for CPU %d:\n", cpu); 7982 sched_show_task(cpu_curr(cpu)); 7983 } 7984 7985 /* 7986 * Nice levels are multiplicative, with a gentle 10% change for every 7987 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7988 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7989 * that remained on nice 0. 7990 * 7991 * The "10% effect" is relative and cumulative: from _any_ nice level, 7992 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7993 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7994 * If a task goes up by ~10% and another task goes down by ~10% then 7995 * the relative distance between them is ~25%.) 7996 */ 7997 const int sched_prio_to_weight[40] = { 7998 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7999 /* -15 */ 29154, 23254, 18705, 14949, 11916, 8000 /* -10 */ 9548, 7620, 6100, 4904, 3906, 8001 /* -5 */ 3121, 2501, 1991, 1586, 1277, 8002 /* 0 */ 1024, 820, 655, 526, 423, 8003 /* 5 */ 335, 272, 215, 172, 137, 8004 /* 10 */ 110, 87, 70, 56, 45, 8005 /* 15 */ 36, 29, 23, 18, 15, 8006 }; 8007 8008 /* 8009 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 8010 * 8011 * In cases where the weight does not change often, we can use the 8012 * precalculated inverse to speed up arithmetics by turning divisions 8013 * into multiplications: 8014 */ 8015 const u32 sched_prio_to_wmult[40] = { 8016 /* -20 */ 48388, 59856, 76040, 92818, 118348, 8017 /* -15 */ 147320, 184698, 229616, 287308, 360437, 8018 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 8019 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 8020 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 8021 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 8022 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 8023 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 8024 }; 8025 8026 #undef CREATE_TRACE_POINTS 8027