xref: /linux/kernel/sched/core.c (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include "sched.h"
10 
11 #include <linux/nospec.h>
12 
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15 
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18 
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22 
23 #include "pelt.h"
24 
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/sched.h>
27 
28 /*
29  * Export tracepoints that act as a bare tracehook (ie: have no trace event
30  * associated with them) to allow external modules to probe them.
31  */
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
38 
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
40 
41 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
42 /*
43  * Debugging: various feature bits
44  *
45  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
46  * sysctl_sched_features, defined in sched.h, to allow constants propagation
47  * at compile time and compiler optimization based on features default.
48  */
49 #define SCHED_FEAT(name, enabled)	\
50 	(1UL << __SCHED_FEAT_##name) * enabled |
51 const_debug unsigned int sysctl_sched_features =
52 #include "features.h"
53 	0;
54 #undef SCHED_FEAT
55 #endif
56 
57 /*
58  * Number of tasks to iterate in a single balance run.
59  * Limited because this is done with IRQs disabled.
60  */
61 const_debug unsigned int sysctl_sched_nr_migrate = 32;
62 
63 /*
64  * period over which we measure -rt task CPU usage in us.
65  * default: 1s
66  */
67 unsigned int sysctl_sched_rt_period = 1000000;
68 
69 __read_mostly int scheduler_running;
70 
71 /*
72  * part of the period that we allow rt tasks to run in us.
73  * default: 0.95s
74  */
75 int sysctl_sched_rt_runtime = 950000;
76 
77 /*
78  * __task_rq_lock - lock the rq @p resides on.
79  */
80 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
81 	__acquires(rq->lock)
82 {
83 	struct rq *rq;
84 
85 	lockdep_assert_held(&p->pi_lock);
86 
87 	for (;;) {
88 		rq = task_rq(p);
89 		raw_spin_lock(&rq->lock);
90 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
91 			rq_pin_lock(rq, rf);
92 			return rq;
93 		}
94 		raw_spin_unlock(&rq->lock);
95 
96 		while (unlikely(task_on_rq_migrating(p)))
97 			cpu_relax();
98 	}
99 }
100 
101 /*
102  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
103  */
104 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
105 	__acquires(p->pi_lock)
106 	__acquires(rq->lock)
107 {
108 	struct rq *rq;
109 
110 	for (;;) {
111 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
112 		rq = task_rq(p);
113 		raw_spin_lock(&rq->lock);
114 		/*
115 		 *	move_queued_task()		task_rq_lock()
116 		 *
117 		 *	ACQUIRE (rq->lock)
118 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
119 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
120 		 *	[S] ->cpu = new_cpu		[L] task_rq()
121 		 *					[L] ->on_rq
122 		 *	RELEASE (rq->lock)
123 		 *
124 		 * If we observe the old CPU in task_rq_lock(), the acquire of
125 		 * the old rq->lock will fully serialize against the stores.
126 		 *
127 		 * If we observe the new CPU in task_rq_lock(), the address
128 		 * dependency headed by '[L] rq = task_rq()' and the acquire
129 		 * will pair with the WMB to ensure we then also see migrating.
130 		 */
131 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
132 			rq_pin_lock(rq, rf);
133 			return rq;
134 		}
135 		raw_spin_unlock(&rq->lock);
136 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
137 
138 		while (unlikely(task_on_rq_migrating(p)))
139 			cpu_relax();
140 	}
141 }
142 
143 /*
144  * RQ-clock updating methods:
145  */
146 
147 static void update_rq_clock_task(struct rq *rq, s64 delta)
148 {
149 /*
150  * In theory, the compile should just see 0 here, and optimize out the call
151  * to sched_rt_avg_update. But I don't trust it...
152  */
153 	s64 __maybe_unused steal = 0, irq_delta = 0;
154 
155 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
156 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
157 
158 	/*
159 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
160 	 * this case when a previous update_rq_clock() happened inside a
161 	 * {soft,}irq region.
162 	 *
163 	 * When this happens, we stop ->clock_task and only update the
164 	 * prev_irq_time stamp to account for the part that fit, so that a next
165 	 * update will consume the rest. This ensures ->clock_task is
166 	 * monotonic.
167 	 *
168 	 * It does however cause some slight miss-attribution of {soft,}irq
169 	 * time, a more accurate solution would be to update the irq_time using
170 	 * the current rq->clock timestamp, except that would require using
171 	 * atomic ops.
172 	 */
173 	if (irq_delta > delta)
174 		irq_delta = delta;
175 
176 	rq->prev_irq_time += irq_delta;
177 	delta -= irq_delta;
178 #endif
179 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
180 	if (static_key_false((&paravirt_steal_rq_enabled))) {
181 		steal = paravirt_steal_clock(cpu_of(rq));
182 		steal -= rq->prev_steal_time_rq;
183 
184 		if (unlikely(steal > delta))
185 			steal = delta;
186 
187 		rq->prev_steal_time_rq += steal;
188 		delta -= steal;
189 	}
190 #endif
191 
192 	rq->clock_task += delta;
193 
194 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
195 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
196 		update_irq_load_avg(rq, irq_delta + steal);
197 #endif
198 	update_rq_clock_pelt(rq, delta);
199 }
200 
201 void update_rq_clock(struct rq *rq)
202 {
203 	s64 delta;
204 
205 	lockdep_assert_held(&rq->lock);
206 
207 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
208 		return;
209 
210 #ifdef CONFIG_SCHED_DEBUG
211 	if (sched_feat(WARN_DOUBLE_CLOCK))
212 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
213 	rq->clock_update_flags |= RQCF_UPDATED;
214 #endif
215 
216 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
217 	if (delta < 0)
218 		return;
219 	rq->clock += delta;
220 	update_rq_clock_task(rq, delta);
221 }
222 
223 
224 #ifdef CONFIG_SCHED_HRTICK
225 /*
226  * Use HR-timers to deliver accurate preemption points.
227  */
228 
229 static void hrtick_clear(struct rq *rq)
230 {
231 	if (hrtimer_active(&rq->hrtick_timer))
232 		hrtimer_cancel(&rq->hrtick_timer);
233 }
234 
235 /*
236  * High-resolution timer tick.
237  * Runs from hardirq context with interrupts disabled.
238  */
239 static enum hrtimer_restart hrtick(struct hrtimer *timer)
240 {
241 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
242 	struct rq_flags rf;
243 
244 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
245 
246 	rq_lock(rq, &rf);
247 	update_rq_clock(rq);
248 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
249 	rq_unlock(rq, &rf);
250 
251 	return HRTIMER_NORESTART;
252 }
253 
254 #ifdef CONFIG_SMP
255 
256 static void __hrtick_restart(struct rq *rq)
257 {
258 	struct hrtimer *timer = &rq->hrtick_timer;
259 
260 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
261 }
262 
263 /*
264  * called from hardirq (IPI) context
265  */
266 static void __hrtick_start(void *arg)
267 {
268 	struct rq *rq = arg;
269 	struct rq_flags rf;
270 
271 	rq_lock(rq, &rf);
272 	__hrtick_restart(rq);
273 	rq_unlock(rq, &rf);
274 }
275 
276 /*
277  * Called to set the hrtick timer state.
278  *
279  * called with rq->lock held and irqs disabled
280  */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 	struct hrtimer *timer = &rq->hrtick_timer;
284 	ktime_t time;
285 	s64 delta;
286 
287 	/*
288 	 * Don't schedule slices shorter than 10000ns, that just
289 	 * doesn't make sense and can cause timer DoS.
290 	 */
291 	delta = max_t(s64, delay, 10000LL);
292 	time = ktime_add_ns(timer->base->get_time(), delta);
293 
294 	hrtimer_set_expires(timer, time);
295 
296 	if (rq == this_rq())
297 		__hrtick_restart(rq);
298 	else
299 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 }
301 
302 #else
303 /*
304  * Called to set the hrtick timer state.
305  *
306  * called with rq->lock held and irqs disabled
307  */
308 void hrtick_start(struct rq *rq, u64 delay)
309 {
310 	/*
311 	 * Don't schedule slices shorter than 10000ns, that just
312 	 * doesn't make sense. Rely on vruntime for fairness.
313 	 */
314 	delay = max_t(u64, delay, 10000LL);
315 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
316 		      HRTIMER_MODE_REL_PINNED_HARD);
317 }
318 #endif /* CONFIG_SMP */
319 
320 static void hrtick_rq_init(struct rq *rq)
321 {
322 #ifdef CONFIG_SMP
323 	rq->hrtick_csd.flags = 0;
324 	rq->hrtick_csd.func = __hrtick_start;
325 	rq->hrtick_csd.info = rq;
326 #endif
327 
328 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
329 	rq->hrtick_timer.function = hrtick;
330 }
331 #else	/* CONFIG_SCHED_HRTICK */
332 static inline void hrtick_clear(struct rq *rq)
333 {
334 }
335 
336 static inline void hrtick_rq_init(struct rq *rq)
337 {
338 }
339 #endif	/* CONFIG_SCHED_HRTICK */
340 
341 /*
342  * cmpxchg based fetch_or, macro so it works for different integer types
343  */
344 #define fetch_or(ptr, mask)						\
345 	({								\
346 		typeof(ptr) _ptr = (ptr);				\
347 		typeof(mask) _mask = (mask);				\
348 		typeof(*_ptr) _old, _val = *_ptr;			\
349 									\
350 		for (;;) {						\
351 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
352 			if (_old == _val)				\
353 				break;					\
354 			_val = _old;					\
355 		}							\
356 	_old;								\
357 })
358 
359 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
360 /*
361  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
362  * this avoids any races wrt polling state changes and thereby avoids
363  * spurious IPIs.
364  */
365 static bool set_nr_and_not_polling(struct task_struct *p)
366 {
367 	struct thread_info *ti = task_thread_info(p);
368 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
369 }
370 
371 /*
372  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
373  *
374  * If this returns true, then the idle task promises to call
375  * sched_ttwu_pending() and reschedule soon.
376  */
377 static bool set_nr_if_polling(struct task_struct *p)
378 {
379 	struct thread_info *ti = task_thread_info(p);
380 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
381 
382 	for (;;) {
383 		if (!(val & _TIF_POLLING_NRFLAG))
384 			return false;
385 		if (val & _TIF_NEED_RESCHED)
386 			return true;
387 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
388 		if (old == val)
389 			break;
390 		val = old;
391 	}
392 	return true;
393 }
394 
395 #else
396 static bool set_nr_and_not_polling(struct task_struct *p)
397 {
398 	set_tsk_need_resched(p);
399 	return true;
400 }
401 
402 #ifdef CONFIG_SMP
403 static bool set_nr_if_polling(struct task_struct *p)
404 {
405 	return false;
406 }
407 #endif
408 #endif
409 
410 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
411 {
412 	struct wake_q_node *node = &task->wake_q;
413 
414 	/*
415 	 * Atomically grab the task, if ->wake_q is !nil already it means
416 	 * its already queued (either by us or someone else) and will get the
417 	 * wakeup due to that.
418 	 *
419 	 * In order to ensure that a pending wakeup will observe our pending
420 	 * state, even in the failed case, an explicit smp_mb() must be used.
421 	 */
422 	smp_mb__before_atomic();
423 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
424 		return false;
425 
426 	/*
427 	 * The head is context local, there can be no concurrency.
428 	 */
429 	*head->lastp = node;
430 	head->lastp = &node->next;
431 	return true;
432 }
433 
434 /**
435  * wake_q_add() - queue a wakeup for 'later' waking.
436  * @head: the wake_q_head to add @task to
437  * @task: the task to queue for 'later' wakeup
438  *
439  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
440  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
441  * instantly.
442  *
443  * This function must be used as-if it were wake_up_process(); IOW the task
444  * must be ready to be woken at this location.
445  */
446 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
447 {
448 	if (__wake_q_add(head, task))
449 		get_task_struct(task);
450 }
451 
452 /**
453  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
454  * @head: the wake_q_head to add @task to
455  * @task: the task to queue for 'later' wakeup
456  *
457  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
458  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
459  * instantly.
460  *
461  * This function must be used as-if it were wake_up_process(); IOW the task
462  * must be ready to be woken at this location.
463  *
464  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
465  * that already hold reference to @task can call the 'safe' version and trust
466  * wake_q to do the right thing depending whether or not the @task is already
467  * queued for wakeup.
468  */
469 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
470 {
471 	if (!__wake_q_add(head, task))
472 		put_task_struct(task);
473 }
474 
475 void wake_up_q(struct wake_q_head *head)
476 {
477 	struct wake_q_node *node = head->first;
478 
479 	while (node != WAKE_Q_TAIL) {
480 		struct task_struct *task;
481 
482 		task = container_of(node, struct task_struct, wake_q);
483 		BUG_ON(!task);
484 		/* Task can safely be re-inserted now: */
485 		node = node->next;
486 		task->wake_q.next = NULL;
487 
488 		/*
489 		 * wake_up_process() executes a full barrier, which pairs with
490 		 * the queueing in wake_q_add() so as not to miss wakeups.
491 		 */
492 		wake_up_process(task);
493 		put_task_struct(task);
494 	}
495 }
496 
497 /*
498  * resched_curr - mark rq's current task 'to be rescheduled now'.
499  *
500  * On UP this means the setting of the need_resched flag, on SMP it
501  * might also involve a cross-CPU call to trigger the scheduler on
502  * the target CPU.
503  */
504 void resched_curr(struct rq *rq)
505 {
506 	struct task_struct *curr = rq->curr;
507 	int cpu;
508 
509 	lockdep_assert_held(&rq->lock);
510 
511 	if (test_tsk_need_resched(curr))
512 		return;
513 
514 	cpu = cpu_of(rq);
515 
516 	if (cpu == smp_processor_id()) {
517 		set_tsk_need_resched(curr);
518 		set_preempt_need_resched();
519 		return;
520 	}
521 
522 	if (set_nr_and_not_polling(curr))
523 		smp_send_reschedule(cpu);
524 	else
525 		trace_sched_wake_idle_without_ipi(cpu);
526 }
527 
528 void resched_cpu(int cpu)
529 {
530 	struct rq *rq = cpu_rq(cpu);
531 	unsigned long flags;
532 
533 	raw_spin_lock_irqsave(&rq->lock, flags);
534 	if (cpu_online(cpu) || cpu == smp_processor_id())
535 		resched_curr(rq);
536 	raw_spin_unlock_irqrestore(&rq->lock, flags);
537 }
538 
539 #ifdef CONFIG_SMP
540 #ifdef CONFIG_NO_HZ_COMMON
541 /*
542  * In the semi idle case, use the nearest busy CPU for migrating timers
543  * from an idle CPU.  This is good for power-savings.
544  *
545  * We don't do similar optimization for completely idle system, as
546  * selecting an idle CPU will add more delays to the timers than intended
547  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
548  */
549 int get_nohz_timer_target(void)
550 {
551 	int i, cpu = smp_processor_id(), default_cpu = -1;
552 	struct sched_domain *sd;
553 
554 	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
555 		if (!idle_cpu(cpu))
556 			return cpu;
557 		default_cpu = cpu;
558 	}
559 
560 	rcu_read_lock();
561 	for_each_domain(cpu, sd) {
562 		for_each_cpu_and(i, sched_domain_span(sd),
563 			housekeeping_cpumask(HK_FLAG_TIMER)) {
564 			if (cpu == i)
565 				continue;
566 
567 			if (!idle_cpu(i)) {
568 				cpu = i;
569 				goto unlock;
570 			}
571 		}
572 	}
573 
574 	if (default_cpu == -1)
575 		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
576 	cpu = default_cpu;
577 unlock:
578 	rcu_read_unlock();
579 	return cpu;
580 }
581 
582 /*
583  * When add_timer_on() enqueues a timer into the timer wheel of an
584  * idle CPU then this timer might expire before the next timer event
585  * which is scheduled to wake up that CPU. In case of a completely
586  * idle system the next event might even be infinite time into the
587  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
588  * leaves the inner idle loop so the newly added timer is taken into
589  * account when the CPU goes back to idle and evaluates the timer
590  * wheel for the next timer event.
591  */
592 static void wake_up_idle_cpu(int cpu)
593 {
594 	struct rq *rq = cpu_rq(cpu);
595 
596 	if (cpu == smp_processor_id())
597 		return;
598 
599 	if (set_nr_and_not_polling(rq->idle))
600 		smp_send_reschedule(cpu);
601 	else
602 		trace_sched_wake_idle_without_ipi(cpu);
603 }
604 
605 static bool wake_up_full_nohz_cpu(int cpu)
606 {
607 	/*
608 	 * We just need the target to call irq_exit() and re-evaluate
609 	 * the next tick. The nohz full kick at least implies that.
610 	 * If needed we can still optimize that later with an
611 	 * empty IRQ.
612 	 */
613 	if (cpu_is_offline(cpu))
614 		return true;  /* Don't try to wake offline CPUs. */
615 	if (tick_nohz_full_cpu(cpu)) {
616 		if (cpu != smp_processor_id() ||
617 		    tick_nohz_tick_stopped())
618 			tick_nohz_full_kick_cpu(cpu);
619 		return true;
620 	}
621 
622 	return false;
623 }
624 
625 /*
626  * Wake up the specified CPU.  If the CPU is going offline, it is the
627  * caller's responsibility to deal with the lost wakeup, for example,
628  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
629  */
630 void wake_up_nohz_cpu(int cpu)
631 {
632 	if (!wake_up_full_nohz_cpu(cpu))
633 		wake_up_idle_cpu(cpu);
634 }
635 
636 static inline bool got_nohz_idle_kick(void)
637 {
638 	int cpu = smp_processor_id();
639 
640 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
641 		return false;
642 
643 	if (idle_cpu(cpu) && !need_resched())
644 		return true;
645 
646 	/*
647 	 * We can't run Idle Load Balance on this CPU for this time so we
648 	 * cancel it and clear NOHZ_BALANCE_KICK
649 	 */
650 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
651 	return false;
652 }
653 
654 #else /* CONFIG_NO_HZ_COMMON */
655 
656 static inline bool got_nohz_idle_kick(void)
657 {
658 	return false;
659 }
660 
661 #endif /* CONFIG_NO_HZ_COMMON */
662 
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 	int fifo_nr_running;
667 
668 	/* Deadline tasks, even if single, need the tick */
669 	if (rq->dl.dl_nr_running)
670 		return false;
671 
672 	/*
673 	 * If there are more than one RR tasks, we need the tick to effect the
674 	 * actual RR behaviour.
675 	 */
676 	if (rq->rt.rr_nr_running) {
677 		if (rq->rt.rr_nr_running == 1)
678 			return true;
679 		else
680 			return false;
681 	}
682 
683 	/*
684 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 	 * forced preemption between FIFO tasks.
686 	 */
687 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 	if (fifo_nr_running)
689 		return true;
690 
691 	/*
692 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 	 * if there's more than one we need the tick for involuntary
694 	 * preemption.
695 	 */
696 	if (rq->nr_running > 1)
697 		return false;
698 
699 	return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703 
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707  * Iterate task_group tree rooted at *from, calling @down when first entering a
708  * node and @up when leaving it for the final time.
709  *
710  * Caller must hold rcu_lock or sufficient equivalent.
711  */
712 int walk_tg_tree_from(struct task_group *from,
713 			     tg_visitor down, tg_visitor up, void *data)
714 {
715 	struct task_group *parent, *child;
716 	int ret;
717 
718 	parent = from;
719 
720 down:
721 	ret = (*down)(parent, data);
722 	if (ret)
723 		goto out;
724 	list_for_each_entry_rcu(child, &parent->children, siblings) {
725 		parent = child;
726 		goto down;
727 
728 up:
729 		continue;
730 	}
731 	ret = (*up)(parent, data);
732 	if (ret || parent == from)
733 		goto out;
734 
735 	child = parent;
736 	parent = parent->parent;
737 	if (parent)
738 		goto up;
739 out:
740 	return ret;
741 }
742 
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 	return 0;
746 }
747 #endif
748 
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 	int prio = p->static_prio - MAX_RT_PRIO;
752 	struct load_weight *load = &p->se.load;
753 
754 	/*
755 	 * SCHED_IDLE tasks get minimal weight:
756 	 */
757 	if (task_has_idle_policy(p)) {
758 		load->weight = scale_load(WEIGHT_IDLEPRIO);
759 		load->inv_weight = WMULT_IDLEPRIO;
760 		return;
761 	}
762 
763 	/*
764 	 * SCHED_OTHER tasks have to update their load when changing their
765 	 * weight
766 	 */
767 	if (update_load && p->sched_class == &fair_sched_class) {
768 		reweight_task(p, prio);
769 	} else {
770 		load->weight = scale_load(sched_prio_to_weight[prio]);
771 		load->inv_weight = sched_prio_to_wmult[prio];
772 	}
773 }
774 
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777  * Serializes updates of utilization clamp values
778  *
779  * The (slow-path) user-space triggers utilization clamp value updates which
780  * can require updates on (fast-path) scheduler's data structures used to
781  * support enqueue/dequeue operations.
782  * While the per-CPU rq lock protects fast-path update operations, user-space
783  * requests are serialized using a mutex to reduce the risk of conflicting
784  * updates or API abuses.
785  */
786 static DEFINE_MUTEX(uclamp_mutex);
787 
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790 
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793 
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796 
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799 
800 #define for_each_clamp_id(clamp_id) \
801 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802 
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 	return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807 
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812 
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 	if (clamp_id == UCLAMP_MIN)
816 		return 0;
817 	return SCHED_CAPACITY_SCALE;
818 }
819 
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 				 unsigned int value, bool user_defined)
822 {
823 	uc_se->value = value;
824 	uc_se->bucket_id = uclamp_bucket_id(value);
825 	uc_se->user_defined = user_defined;
826 }
827 
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 		  unsigned int clamp_value)
831 {
832 	/*
833 	 * Avoid blocked utilization pushing up the frequency when we go
834 	 * idle (which drops the max-clamp) by retaining the last known
835 	 * max-clamp.
836 	 */
837 	if (clamp_id == UCLAMP_MAX) {
838 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 		return clamp_value;
840 	}
841 
842 	return uclamp_none(UCLAMP_MIN);
843 }
844 
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 				     unsigned int clamp_value)
847 {
848 	/* Reset max-clamp retention only on idle exit */
849 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 		return;
851 
852 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854 
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 				   unsigned int clamp_value)
858 {
859 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 	int bucket_id = UCLAMP_BUCKETS - 1;
861 
862 	/*
863 	 * Since both min and max clamps are max aggregated, find the
864 	 * top most bucket with tasks in.
865 	 */
866 	for ( ; bucket_id >= 0; bucket_id--) {
867 		if (!bucket[bucket_id].tasks)
868 			continue;
869 		return bucket[bucket_id].value;
870 	}
871 
872 	/* No tasks -- default clamp values */
873 	return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875 
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 	struct uclamp_se uc_max;
882 
883 	/*
884 	 * Tasks in autogroups or root task group will be
885 	 * restricted by system defaults.
886 	 */
887 	if (task_group_is_autogroup(task_group(p)))
888 		return uc_req;
889 	if (task_group(p) == &root_task_group)
890 		return uc_req;
891 
892 	uc_max = task_group(p)->uclamp[clamp_id];
893 	if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 		return uc_max;
895 #endif
896 
897 	return uc_req;
898 }
899 
900 /*
901  * The effective clamp bucket index of a task depends on, by increasing
902  * priority:
903  * - the task specific clamp value, when explicitly requested from userspace
904  * - the task group effective clamp value, for tasks not either in the root
905  *   group or in an autogroup
906  * - the system default clamp value, defined by the sysadmin
907  */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 	struct uclamp_se uc_max = uclamp_default[clamp_id];
913 
914 	/* System default restrictions always apply */
915 	if (unlikely(uc_req.value > uc_max.value))
916 		return uc_max;
917 
918 	return uc_req;
919 }
920 
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 	struct uclamp_se uc_eff;
924 
925 	/* Task currently refcounted: use back-annotated (effective) value */
926 	if (p->uclamp[clamp_id].active)
927 		return (unsigned long)p->uclamp[clamp_id].value;
928 
929 	uc_eff = uclamp_eff_get(p, clamp_id);
930 
931 	return (unsigned long)uc_eff.value;
932 }
933 
934 /*
935  * When a task is enqueued on a rq, the clamp bucket currently defined by the
936  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937  * updates the rq's clamp value if required.
938  *
939  * Tasks can have a task-specific value requested from user-space, track
940  * within each bucket the maximum value for tasks refcounted in it.
941  * This "local max aggregation" allows to track the exact "requested" value
942  * for each bucket when all its RUNNABLE tasks require the same clamp.
943  */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 				    enum uclamp_id clamp_id)
946 {
947 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 	struct uclamp_bucket *bucket;
950 
951 	lockdep_assert_held(&rq->lock);
952 
953 	/* Update task effective clamp */
954 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955 
956 	bucket = &uc_rq->bucket[uc_se->bucket_id];
957 	bucket->tasks++;
958 	uc_se->active = true;
959 
960 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
961 
962 	/*
963 	 * Local max aggregation: rq buckets always track the max
964 	 * "requested" clamp value of its RUNNABLE tasks.
965 	 */
966 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 		bucket->value = uc_se->value;
968 
969 	if (uc_se->value > READ_ONCE(uc_rq->value))
970 		WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972 
973 /*
974  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975  * is released. If this is the last task reference counting the rq's max
976  * active clamp value, then the rq's clamp value is updated.
977  *
978  * Both refcounted tasks and rq's cached clamp values are expected to be
979  * always valid. If it's detected they are not, as defensive programming,
980  * enforce the expected state and warn.
981  */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 				    enum uclamp_id clamp_id)
984 {
985 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 	struct uclamp_bucket *bucket;
988 	unsigned int bkt_clamp;
989 	unsigned int rq_clamp;
990 
991 	lockdep_assert_held(&rq->lock);
992 
993 	bucket = &uc_rq->bucket[uc_se->bucket_id];
994 	SCHED_WARN_ON(!bucket->tasks);
995 	if (likely(bucket->tasks))
996 		bucket->tasks--;
997 	uc_se->active = false;
998 
999 	/*
1000 	 * Keep "local max aggregation" simple and accept to (possibly)
1001 	 * overboost some RUNNABLE tasks in the same bucket.
1002 	 * The rq clamp bucket value is reset to its base value whenever
1003 	 * there are no more RUNNABLE tasks refcounting it.
1004 	 */
1005 	if (likely(bucket->tasks))
1006 		return;
1007 
1008 	rq_clamp = READ_ONCE(uc_rq->value);
1009 	/*
1010 	 * Defensive programming: this should never happen. If it happens,
1011 	 * e.g. due to future modification, warn and fixup the expected value.
1012 	 */
1013 	SCHED_WARN_ON(bucket->value > rq_clamp);
1014 	if (bucket->value >= rq_clamp) {
1015 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 	}
1018 }
1019 
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 	enum uclamp_id clamp_id;
1023 
1024 	if (unlikely(!p->sched_class->uclamp_enabled))
1025 		return;
1026 
1027 	for_each_clamp_id(clamp_id)
1028 		uclamp_rq_inc_id(rq, p, clamp_id);
1029 
1030 	/* Reset clamp idle holding when there is one RUNNABLE task */
1031 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034 
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 	enum uclamp_id clamp_id;
1038 
1039 	if (unlikely(!p->sched_class->uclamp_enabled))
1040 		return;
1041 
1042 	for_each_clamp_id(clamp_id)
1043 		uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045 
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 	struct rq_flags rf;
1050 	struct rq *rq;
1051 
1052 	/*
1053 	 * Lock the task and the rq where the task is (or was) queued.
1054 	 *
1055 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 	 * price to pay to safely serialize util_{min,max} updates with
1057 	 * enqueues, dequeues and migration operations.
1058 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 	 */
1060 	rq = task_rq_lock(p, &rf);
1061 
1062 	/*
1063 	 * Setting the clamp bucket is serialized by task_rq_lock().
1064 	 * If the task is not yet RUNNABLE and its task_struct is not
1065 	 * affecting a valid clamp bucket, the next time it's enqueued,
1066 	 * it will already see the updated clamp bucket value.
1067 	 */
1068 	if (p->uclamp[clamp_id].active) {
1069 		uclamp_rq_dec_id(rq, p, clamp_id);
1070 		uclamp_rq_inc_id(rq, p, clamp_id);
1071 	}
1072 
1073 	task_rq_unlock(rq, p, &rf);
1074 }
1075 
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 			   unsigned int clamps)
1080 {
1081 	enum uclamp_id clamp_id;
1082 	struct css_task_iter it;
1083 	struct task_struct *p;
1084 
1085 	css_task_iter_start(css, 0, &it);
1086 	while ((p = css_task_iter_next(&it))) {
1087 		for_each_clamp_id(clamp_id) {
1088 			if ((0x1 << clamp_id) & clamps)
1089 				uclamp_update_active(p, clamp_id);
1090 		}
1091 	}
1092 	css_task_iter_end(&it);
1093 }
1094 
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 	struct task_group *tg = &root_task_group;
1099 
1100 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 		      sysctl_sched_uclamp_util_min, false);
1102 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 		      sysctl_sched_uclamp_util_max, false);
1104 
1105 	rcu_read_lock();
1106 	cpu_util_update_eff(&root_task_group.css);
1107 	rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112 
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 				void __user *buffer, size_t *lenp,
1115 				loff_t *ppos)
1116 {
1117 	bool update_root_tg = false;
1118 	int old_min, old_max;
1119 	int result;
1120 
1121 	mutex_lock(&uclamp_mutex);
1122 	old_min = sysctl_sched_uclamp_util_min;
1123 	old_max = sysctl_sched_uclamp_util_max;
1124 
1125 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 	if (result)
1127 		goto undo;
1128 	if (!write)
1129 		goto done;
1130 
1131 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 		result = -EINVAL;
1134 		goto undo;
1135 	}
1136 
1137 	if (old_min != sysctl_sched_uclamp_util_min) {
1138 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 			      sysctl_sched_uclamp_util_min, false);
1140 		update_root_tg = true;
1141 	}
1142 	if (old_max != sysctl_sched_uclamp_util_max) {
1143 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 			      sysctl_sched_uclamp_util_max, false);
1145 		update_root_tg = true;
1146 	}
1147 
1148 	if (update_root_tg)
1149 		uclamp_update_root_tg();
1150 
1151 	/*
1152 	 * We update all RUNNABLE tasks only when task groups are in use.
1153 	 * Otherwise, keep it simple and do just a lazy update at each next
1154 	 * task enqueue time.
1155 	 */
1156 
1157 	goto done;
1158 
1159 undo:
1160 	sysctl_sched_uclamp_util_min = old_min;
1161 	sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 	mutex_unlock(&uclamp_mutex);
1164 
1165 	return result;
1166 }
1167 
1168 static int uclamp_validate(struct task_struct *p,
1169 			   const struct sched_attr *attr)
1170 {
1171 	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173 
1174 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 		lower_bound = attr->sched_util_min;
1176 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 		upper_bound = attr->sched_util_max;
1178 
1179 	if (lower_bound > upper_bound)
1180 		return -EINVAL;
1181 	if (upper_bound > SCHED_CAPACITY_SCALE)
1182 		return -EINVAL;
1183 
1184 	return 0;
1185 }
1186 
1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 				  const struct sched_attr *attr)
1189 {
1190 	enum uclamp_id clamp_id;
1191 
1192 	/*
1193 	 * On scheduling class change, reset to default clamps for tasks
1194 	 * without a task-specific value.
1195 	 */
1196 	for_each_clamp_id(clamp_id) {
1197 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 		unsigned int clamp_value = uclamp_none(clamp_id);
1199 
1200 		/* Keep using defined clamps across class changes */
1201 		if (uc_se->user_defined)
1202 			continue;
1203 
1204 		/* By default, RT tasks always get 100% boost */
1205 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 			clamp_value = uclamp_none(UCLAMP_MAX);
1207 
1208 		uclamp_se_set(uc_se, clamp_value, false);
1209 	}
1210 
1211 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 		return;
1213 
1214 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 			      attr->sched_util_min, true);
1217 	}
1218 
1219 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 			      attr->sched_util_max, true);
1222 	}
1223 }
1224 
1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 	enum uclamp_id clamp_id;
1228 
1229 	for_each_clamp_id(clamp_id)
1230 		p->uclamp[clamp_id].active = false;
1231 
1232 	if (likely(!p->sched_reset_on_fork))
1233 		return;
1234 
1235 	for_each_clamp_id(clamp_id) {
1236 		uclamp_se_set(&p->uclamp_req[clamp_id],
1237 			      uclamp_none(clamp_id), false);
1238 	}
1239 }
1240 
1241 static void __init init_uclamp(void)
1242 {
1243 	struct uclamp_se uc_max = {};
1244 	enum uclamp_id clamp_id;
1245 	int cpu;
1246 
1247 	mutex_init(&uclamp_mutex);
1248 
1249 	for_each_possible_cpu(cpu) {
1250 		memset(&cpu_rq(cpu)->uclamp, 0,
1251 				sizeof(struct uclamp_rq)*UCLAMP_CNT);
1252 		cpu_rq(cpu)->uclamp_flags = 0;
1253 	}
1254 
1255 	for_each_clamp_id(clamp_id) {
1256 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1257 			      uclamp_none(clamp_id), false);
1258 	}
1259 
1260 	/* System defaults allow max clamp values for both indexes */
1261 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1262 	for_each_clamp_id(clamp_id) {
1263 		uclamp_default[clamp_id] = uc_max;
1264 #ifdef CONFIG_UCLAMP_TASK_GROUP
1265 		root_task_group.uclamp_req[clamp_id] = uc_max;
1266 		root_task_group.uclamp[clamp_id] = uc_max;
1267 #endif
1268 	}
1269 }
1270 
1271 #else /* CONFIG_UCLAMP_TASK */
1272 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1273 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1274 static inline int uclamp_validate(struct task_struct *p,
1275 				  const struct sched_attr *attr)
1276 {
1277 	return -EOPNOTSUPP;
1278 }
1279 static void __setscheduler_uclamp(struct task_struct *p,
1280 				  const struct sched_attr *attr) { }
1281 static inline void uclamp_fork(struct task_struct *p) { }
1282 static inline void init_uclamp(void) { }
1283 #endif /* CONFIG_UCLAMP_TASK */
1284 
1285 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 {
1287 	if (!(flags & ENQUEUE_NOCLOCK))
1288 		update_rq_clock(rq);
1289 
1290 	if (!(flags & ENQUEUE_RESTORE)) {
1291 		sched_info_queued(rq, p);
1292 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1293 	}
1294 
1295 	uclamp_rq_inc(rq, p);
1296 	p->sched_class->enqueue_task(rq, p, flags);
1297 }
1298 
1299 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 {
1301 	if (!(flags & DEQUEUE_NOCLOCK))
1302 		update_rq_clock(rq);
1303 
1304 	if (!(flags & DEQUEUE_SAVE)) {
1305 		sched_info_dequeued(rq, p);
1306 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1307 	}
1308 
1309 	uclamp_rq_dec(rq, p);
1310 	p->sched_class->dequeue_task(rq, p, flags);
1311 }
1312 
1313 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 {
1315 	if (task_contributes_to_load(p))
1316 		rq->nr_uninterruptible--;
1317 
1318 	enqueue_task(rq, p, flags);
1319 
1320 	p->on_rq = TASK_ON_RQ_QUEUED;
1321 }
1322 
1323 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 {
1325 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326 
1327 	if (task_contributes_to_load(p))
1328 		rq->nr_uninterruptible++;
1329 
1330 	dequeue_task(rq, p, flags);
1331 }
1332 
1333 /*
1334  * __normal_prio - return the priority that is based on the static prio
1335  */
1336 static inline int __normal_prio(struct task_struct *p)
1337 {
1338 	return p->static_prio;
1339 }
1340 
1341 /*
1342  * Calculate the expected normal priority: i.e. priority
1343  * without taking RT-inheritance into account. Might be
1344  * boosted by interactivity modifiers. Changes upon fork,
1345  * setprio syscalls, and whenever the interactivity
1346  * estimator recalculates.
1347  */
1348 static inline int normal_prio(struct task_struct *p)
1349 {
1350 	int prio;
1351 
1352 	if (task_has_dl_policy(p))
1353 		prio = MAX_DL_PRIO-1;
1354 	else if (task_has_rt_policy(p))
1355 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1356 	else
1357 		prio = __normal_prio(p);
1358 	return prio;
1359 }
1360 
1361 /*
1362  * Calculate the current priority, i.e. the priority
1363  * taken into account by the scheduler. This value might
1364  * be boosted by RT tasks, or might be boosted by
1365  * interactivity modifiers. Will be RT if the task got
1366  * RT-boosted. If not then it returns p->normal_prio.
1367  */
1368 static int effective_prio(struct task_struct *p)
1369 {
1370 	p->normal_prio = normal_prio(p);
1371 	/*
1372 	 * If we are RT tasks or we were boosted to RT priority,
1373 	 * keep the priority unchanged. Otherwise, update priority
1374 	 * to the normal priority:
1375 	 */
1376 	if (!rt_prio(p->prio))
1377 		return p->normal_prio;
1378 	return p->prio;
1379 }
1380 
1381 /**
1382  * task_curr - is this task currently executing on a CPU?
1383  * @p: the task in question.
1384  *
1385  * Return: 1 if the task is currently executing. 0 otherwise.
1386  */
1387 inline int task_curr(const struct task_struct *p)
1388 {
1389 	return cpu_curr(task_cpu(p)) == p;
1390 }
1391 
1392 /*
1393  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1394  * use the balance_callback list if you want balancing.
1395  *
1396  * this means any call to check_class_changed() must be followed by a call to
1397  * balance_callback().
1398  */
1399 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1400 				       const struct sched_class *prev_class,
1401 				       int oldprio)
1402 {
1403 	if (prev_class != p->sched_class) {
1404 		if (prev_class->switched_from)
1405 			prev_class->switched_from(rq, p);
1406 
1407 		p->sched_class->switched_to(rq, p);
1408 	} else if (oldprio != p->prio || dl_task(p))
1409 		p->sched_class->prio_changed(rq, p, oldprio);
1410 }
1411 
1412 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 {
1414 	const struct sched_class *class;
1415 
1416 	if (p->sched_class == rq->curr->sched_class) {
1417 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1418 	} else {
1419 		for_each_class(class) {
1420 			if (class == rq->curr->sched_class)
1421 				break;
1422 			if (class == p->sched_class) {
1423 				resched_curr(rq);
1424 				break;
1425 			}
1426 		}
1427 	}
1428 
1429 	/*
1430 	 * A queue event has occurred, and we're going to schedule.  In
1431 	 * this case, we can save a useless back to back clock update.
1432 	 */
1433 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1434 		rq_clock_skip_update(rq);
1435 }
1436 
1437 #ifdef CONFIG_SMP
1438 
1439 /*
1440  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1441  * __set_cpus_allowed_ptr() and select_fallback_rq().
1442  */
1443 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444 {
1445 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1446 		return false;
1447 
1448 	if (is_per_cpu_kthread(p))
1449 		return cpu_online(cpu);
1450 
1451 	return cpu_active(cpu);
1452 }
1453 
1454 /*
1455  * This is how migration works:
1456  *
1457  * 1) we invoke migration_cpu_stop() on the target CPU using
1458  *    stop_one_cpu().
1459  * 2) stopper starts to run (implicitly forcing the migrated thread
1460  *    off the CPU)
1461  * 3) it checks whether the migrated task is still in the wrong runqueue.
1462  * 4) if it's in the wrong runqueue then the migration thread removes
1463  *    it and puts it into the right queue.
1464  * 5) stopper completes and stop_one_cpu() returns and the migration
1465  *    is done.
1466  */
1467 
1468 /*
1469  * move_queued_task - move a queued task to new rq.
1470  *
1471  * Returns (locked) new rq. Old rq's lock is released.
1472  */
1473 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1474 				   struct task_struct *p, int new_cpu)
1475 {
1476 	lockdep_assert_held(&rq->lock);
1477 
1478 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1479 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1480 	set_task_cpu(p, new_cpu);
1481 	rq_unlock(rq, rf);
1482 
1483 	rq = cpu_rq(new_cpu);
1484 
1485 	rq_lock(rq, rf);
1486 	BUG_ON(task_cpu(p) != new_cpu);
1487 	enqueue_task(rq, p, 0);
1488 	p->on_rq = TASK_ON_RQ_QUEUED;
1489 	check_preempt_curr(rq, p, 0);
1490 
1491 	return rq;
1492 }
1493 
1494 struct migration_arg {
1495 	struct task_struct *task;
1496 	int dest_cpu;
1497 };
1498 
1499 /*
1500  * Move (not current) task off this CPU, onto the destination CPU. We're doing
1501  * this because either it can't run here any more (set_cpus_allowed()
1502  * away from this CPU, or CPU going down), or because we're
1503  * attempting to rebalance this task on exec (sched_exec).
1504  *
1505  * So we race with normal scheduler movements, but that's OK, as long
1506  * as the task is no longer on this CPU.
1507  */
1508 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1509 				 struct task_struct *p, int dest_cpu)
1510 {
1511 	/* Affinity changed (again). */
1512 	if (!is_cpu_allowed(p, dest_cpu))
1513 		return rq;
1514 
1515 	update_rq_clock(rq);
1516 	rq = move_queued_task(rq, rf, p, dest_cpu);
1517 
1518 	return rq;
1519 }
1520 
1521 /*
1522  * migration_cpu_stop - this will be executed by a highprio stopper thread
1523  * and performs thread migration by bumping thread off CPU then
1524  * 'pushing' onto another runqueue.
1525  */
1526 static int migration_cpu_stop(void *data)
1527 {
1528 	struct migration_arg *arg = data;
1529 	struct task_struct *p = arg->task;
1530 	struct rq *rq = this_rq();
1531 	struct rq_flags rf;
1532 
1533 	/*
1534 	 * The original target CPU might have gone down and we might
1535 	 * be on another CPU but it doesn't matter.
1536 	 */
1537 	local_irq_disable();
1538 	/*
1539 	 * We need to explicitly wake pending tasks before running
1540 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1541 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 	 */
1543 	sched_ttwu_pending();
1544 
1545 	raw_spin_lock(&p->pi_lock);
1546 	rq_lock(rq, &rf);
1547 	/*
1548 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1549 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1550 	 * we're holding p->pi_lock.
1551 	 */
1552 	if (task_rq(p) == rq) {
1553 		if (task_on_rq_queued(p))
1554 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1555 		else
1556 			p->wake_cpu = arg->dest_cpu;
1557 	}
1558 	rq_unlock(rq, &rf);
1559 	raw_spin_unlock(&p->pi_lock);
1560 
1561 	local_irq_enable();
1562 	return 0;
1563 }
1564 
1565 /*
1566  * sched_class::set_cpus_allowed must do the below, but is not required to
1567  * actually call this function.
1568  */
1569 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1570 {
1571 	cpumask_copy(&p->cpus_mask, new_mask);
1572 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1573 }
1574 
1575 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576 {
1577 	struct rq *rq = task_rq(p);
1578 	bool queued, running;
1579 
1580 	lockdep_assert_held(&p->pi_lock);
1581 
1582 	queued = task_on_rq_queued(p);
1583 	running = task_current(rq, p);
1584 
1585 	if (queued) {
1586 		/*
1587 		 * Because __kthread_bind() calls this on blocked tasks without
1588 		 * holding rq->lock.
1589 		 */
1590 		lockdep_assert_held(&rq->lock);
1591 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1592 	}
1593 	if (running)
1594 		put_prev_task(rq, p);
1595 
1596 	p->sched_class->set_cpus_allowed(p, new_mask);
1597 
1598 	if (queued)
1599 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1600 	if (running)
1601 		set_next_task(rq, p);
1602 }
1603 
1604 /*
1605  * Change a given task's CPU affinity. Migrate the thread to a
1606  * proper CPU and schedule it away if the CPU it's executing on
1607  * is removed from the allowed bitmask.
1608  *
1609  * NOTE: the caller must have a valid reference to the task, the
1610  * task must not exit() & deallocate itself prematurely. The
1611  * call is not atomic; no spinlocks may be held.
1612  */
1613 static int __set_cpus_allowed_ptr(struct task_struct *p,
1614 				  const struct cpumask *new_mask, bool check)
1615 {
1616 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1617 	unsigned int dest_cpu;
1618 	struct rq_flags rf;
1619 	struct rq *rq;
1620 	int ret = 0;
1621 
1622 	rq = task_rq_lock(p, &rf);
1623 	update_rq_clock(rq);
1624 
1625 	if (p->flags & PF_KTHREAD) {
1626 		/*
1627 		 * Kernel threads are allowed on online && !active CPUs
1628 		 */
1629 		cpu_valid_mask = cpu_online_mask;
1630 	}
1631 
1632 	/*
1633 	 * Must re-check here, to close a race against __kthread_bind(),
1634 	 * sched_setaffinity() is not guaranteed to observe the flag.
1635 	 */
1636 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1637 		ret = -EINVAL;
1638 		goto out;
1639 	}
1640 
1641 	if (cpumask_equal(p->cpus_ptr, new_mask))
1642 		goto out;
1643 
1644 	/*
1645 	 * Picking a ~random cpu helps in cases where we are changing affinity
1646 	 * for groups of tasks (ie. cpuset), so that load balancing is not
1647 	 * immediately required to distribute the tasks within their new mask.
1648 	 */
1649 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1650 	if (dest_cpu >= nr_cpu_ids) {
1651 		ret = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	do_set_cpus_allowed(p, new_mask);
1656 
1657 	if (p->flags & PF_KTHREAD) {
1658 		/*
1659 		 * For kernel threads that do indeed end up on online &&
1660 		 * !active we want to ensure they are strict per-CPU threads.
1661 		 */
1662 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1663 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1664 			p->nr_cpus_allowed != 1);
1665 	}
1666 
1667 	/* Can the task run on the task's current CPU? If so, we're done */
1668 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1669 		goto out;
1670 
1671 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1672 		struct migration_arg arg = { p, dest_cpu };
1673 		/* Need help from migration thread: drop lock and wait. */
1674 		task_rq_unlock(rq, p, &rf);
1675 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1676 		return 0;
1677 	} else if (task_on_rq_queued(p)) {
1678 		/*
1679 		 * OK, since we're going to drop the lock immediately
1680 		 * afterwards anyway.
1681 		 */
1682 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1683 	}
1684 out:
1685 	task_rq_unlock(rq, p, &rf);
1686 
1687 	return ret;
1688 }
1689 
1690 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691 {
1692 	return __set_cpus_allowed_ptr(p, new_mask, false);
1693 }
1694 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695 
1696 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1697 {
1698 #ifdef CONFIG_SCHED_DEBUG
1699 	/*
1700 	 * We should never call set_task_cpu() on a blocked task,
1701 	 * ttwu() will sort out the placement.
1702 	 */
1703 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1704 			!p->on_rq);
1705 
1706 	/*
1707 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1708 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1709 	 * time relying on p->on_rq.
1710 	 */
1711 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1712 		     p->sched_class == &fair_sched_class &&
1713 		     (p->on_rq && !task_on_rq_migrating(p)));
1714 
1715 #ifdef CONFIG_LOCKDEP
1716 	/*
1717 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1718 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 	 *
1720 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1721 	 * see task_group().
1722 	 *
1723 	 * Furthermore, all task_rq users should acquire both locks, see
1724 	 * task_rq_lock().
1725 	 */
1726 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1727 				      lockdep_is_held(&task_rq(p)->lock)));
1728 #endif
1729 	/*
1730 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 	 */
1732 	WARN_ON_ONCE(!cpu_online(new_cpu));
1733 #endif
1734 
1735 	trace_sched_migrate_task(p, new_cpu);
1736 
1737 	if (task_cpu(p) != new_cpu) {
1738 		if (p->sched_class->migrate_task_rq)
1739 			p->sched_class->migrate_task_rq(p, new_cpu);
1740 		p->se.nr_migrations++;
1741 		rseq_migrate(p);
1742 		perf_event_task_migrate(p);
1743 	}
1744 
1745 	__set_task_cpu(p, new_cpu);
1746 }
1747 
1748 #ifdef CONFIG_NUMA_BALANCING
1749 static void __migrate_swap_task(struct task_struct *p, int cpu)
1750 {
1751 	if (task_on_rq_queued(p)) {
1752 		struct rq *src_rq, *dst_rq;
1753 		struct rq_flags srf, drf;
1754 
1755 		src_rq = task_rq(p);
1756 		dst_rq = cpu_rq(cpu);
1757 
1758 		rq_pin_lock(src_rq, &srf);
1759 		rq_pin_lock(dst_rq, &drf);
1760 
1761 		deactivate_task(src_rq, p, 0);
1762 		set_task_cpu(p, cpu);
1763 		activate_task(dst_rq, p, 0);
1764 		check_preempt_curr(dst_rq, p, 0);
1765 
1766 		rq_unpin_lock(dst_rq, &drf);
1767 		rq_unpin_lock(src_rq, &srf);
1768 
1769 	} else {
1770 		/*
1771 		 * Task isn't running anymore; make it appear like we migrated
1772 		 * it before it went to sleep. This means on wakeup we make the
1773 		 * previous CPU our target instead of where it really is.
1774 		 */
1775 		p->wake_cpu = cpu;
1776 	}
1777 }
1778 
1779 struct migration_swap_arg {
1780 	struct task_struct *src_task, *dst_task;
1781 	int src_cpu, dst_cpu;
1782 };
1783 
1784 static int migrate_swap_stop(void *data)
1785 {
1786 	struct migration_swap_arg *arg = data;
1787 	struct rq *src_rq, *dst_rq;
1788 	int ret = -EAGAIN;
1789 
1790 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1791 		return -EAGAIN;
1792 
1793 	src_rq = cpu_rq(arg->src_cpu);
1794 	dst_rq = cpu_rq(arg->dst_cpu);
1795 
1796 	double_raw_lock(&arg->src_task->pi_lock,
1797 			&arg->dst_task->pi_lock);
1798 	double_rq_lock(src_rq, dst_rq);
1799 
1800 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1801 		goto unlock;
1802 
1803 	if (task_cpu(arg->src_task) != arg->src_cpu)
1804 		goto unlock;
1805 
1806 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1807 		goto unlock;
1808 
1809 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1810 		goto unlock;
1811 
1812 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1813 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1814 
1815 	ret = 0;
1816 
1817 unlock:
1818 	double_rq_unlock(src_rq, dst_rq);
1819 	raw_spin_unlock(&arg->dst_task->pi_lock);
1820 	raw_spin_unlock(&arg->src_task->pi_lock);
1821 
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Cross migrate two tasks
1827  */
1828 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1829 		int target_cpu, int curr_cpu)
1830 {
1831 	struct migration_swap_arg arg;
1832 	int ret = -EINVAL;
1833 
1834 	arg = (struct migration_swap_arg){
1835 		.src_task = cur,
1836 		.src_cpu = curr_cpu,
1837 		.dst_task = p,
1838 		.dst_cpu = target_cpu,
1839 	};
1840 
1841 	if (arg.src_cpu == arg.dst_cpu)
1842 		goto out;
1843 
1844 	/*
1845 	 * These three tests are all lockless; this is OK since all of them
1846 	 * will be re-checked with proper locks held further down the line.
1847 	 */
1848 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1849 		goto out;
1850 
1851 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1852 		goto out;
1853 
1854 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1855 		goto out;
1856 
1857 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1858 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859 
1860 out:
1861 	return ret;
1862 }
1863 #endif /* CONFIG_NUMA_BALANCING */
1864 
1865 /*
1866  * wait_task_inactive - wait for a thread to unschedule.
1867  *
1868  * If @match_state is nonzero, it's the @p->state value just checked and
1869  * not expected to change.  If it changes, i.e. @p might have woken up,
1870  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1871  * we return a positive number (its total switch count).  If a second call
1872  * a short while later returns the same number, the caller can be sure that
1873  * @p has remained unscheduled the whole time.
1874  *
1875  * The caller must ensure that the task *will* unschedule sometime soon,
1876  * else this function might spin for a *long* time. This function can't
1877  * be called with interrupts off, or it may introduce deadlock with
1878  * smp_call_function() if an IPI is sent by the same process we are
1879  * waiting to become inactive.
1880  */
1881 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1882 {
1883 	int running, queued;
1884 	struct rq_flags rf;
1885 	unsigned long ncsw;
1886 	struct rq *rq;
1887 
1888 	for (;;) {
1889 		/*
1890 		 * We do the initial early heuristics without holding
1891 		 * any task-queue locks at all. We'll only try to get
1892 		 * the runqueue lock when things look like they will
1893 		 * work out!
1894 		 */
1895 		rq = task_rq(p);
1896 
1897 		/*
1898 		 * If the task is actively running on another CPU
1899 		 * still, just relax and busy-wait without holding
1900 		 * any locks.
1901 		 *
1902 		 * NOTE! Since we don't hold any locks, it's not
1903 		 * even sure that "rq" stays as the right runqueue!
1904 		 * But we don't care, since "task_running()" will
1905 		 * return false if the runqueue has changed and p
1906 		 * is actually now running somewhere else!
1907 		 */
1908 		while (task_running(rq, p)) {
1909 			if (match_state && unlikely(p->state != match_state))
1910 				return 0;
1911 			cpu_relax();
1912 		}
1913 
1914 		/*
1915 		 * Ok, time to look more closely! We need the rq
1916 		 * lock now, to be *sure*. If we're wrong, we'll
1917 		 * just go back and repeat.
1918 		 */
1919 		rq = task_rq_lock(p, &rf);
1920 		trace_sched_wait_task(p);
1921 		running = task_running(rq, p);
1922 		queued = task_on_rq_queued(p);
1923 		ncsw = 0;
1924 		if (!match_state || p->state == match_state)
1925 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 		task_rq_unlock(rq, p, &rf);
1927 
1928 		/*
1929 		 * If it changed from the expected state, bail out now.
1930 		 */
1931 		if (unlikely(!ncsw))
1932 			break;
1933 
1934 		/*
1935 		 * Was it really running after all now that we
1936 		 * checked with the proper locks actually held?
1937 		 *
1938 		 * Oops. Go back and try again..
1939 		 */
1940 		if (unlikely(running)) {
1941 			cpu_relax();
1942 			continue;
1943 		}
1944 
1945 		/*
1946 		 * It's not enough that it's not actively running,
1947 		 * it must be off the runqueue _entirely_, and not
1948 		 * preempted!
1949 		 *
1950 		 * So if it was still runnable (but just not actively
1951 		 * running right now), it's preempted, and we should
1952 		 * yield - it could be a while.
1953 		 */
1954 		if (unlikely(queued)) {
1955 			ktime_t to = NSEC_PER_SEC / HZ;
1956 
1957 			set_current_state(TASK_UNINTERRUPTIBLE);
1958 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1959 			continue;
1960 		}
1961 
1962 		/*
1963 		 * Ahh, all good. It wasn't running, and it wasn't
1964 		 * runnable, which means that it will never become
1965 		 * running in the future either. We're all done!
1966 		 */
1967 		break;
1968 	}
1969 
1970 	return ncsw;
1971 }
1972 
1973 /***
1974  * kick_process - kick a running thread to enter/exit the kernel
1975  * @p: the to-be-kicked thread
1976  *
1977  * Cause a process which is running on another CPU to enter
1978  * kernel-mode, without any delay. (to get signals handled.)
1979  *
1980  * NOTE: this function doesn't have to take the runqueue lock,
1981  * because all it wants to ensure is that the remote task enters
1982  * the kernel. If the IPI races and the task has been migrated
1983  * to another CPU then no harm is done and the purpose has been
1984  * achieved as well.
1985  */
1986 void kick_process(struct task_struct *p)
1987 {
1988 	int cpu;
1989 
1990 	preempt_disable();
1991 	cpu = task_cpu(p);
1992 	if ((cpu != smp_processor_id()) && task_curr(p))
1993 		smp_send_reschedule(cpu);
1994 	preempt_enable();
1995 }
1996 EXPORT_SYMBOL_GPL(kick_process);
1997 
1998 /*
1999  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2000  *
2001  * A few notes on cpu_active vs cpu_online:
2002  *
2003  *  - cpu_active must be a subset of cpu_online
2004  *
2005  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2006  *    see __set_cpus_allowed_ptr(). At this point the newly online
2007  *    CPU isn't yet part of the sched domains, and balancing will not
2008  *    see it.
2009  *
2010  *  - on CPU-down we clear cpu_active() to mask the sched domains and
2011  *    avoid the load balancer to place new tasks on the to be removed
2012  *    CPU. Existing tasks will remain running there and will be taken
2013  *    off.
2014  *
2015  * This means that fallback selection must not select !active CPUs.
2016  * And can assume that any active CPU must be online. Conversely
2017  * select_task_rq() below may allow selection of !active CPUs in order
2018  * to satisfy the above rules.
2019  */
2020 static int select_fallback_rq(int cpu, struct task_struct *p)
2021 {
2022 	int nid = cpu_to_node(cpu);
2023 	const struct cpumask *nodemask = NULL;
2024 	enum { cpuset, possible, fail } state = cpuset;
2025 	int dest_cpu;
2026 
2027 	/*
2028 	 * If the node that the CPU is on has been offlined, cpu_to_node()
2029 	 * will return -1. There is no CPU on the node, and we should
2030 	 * select the CPU on the other node.
2031 	 */
2032 	if (nid != -1) {
2033 		nodemask = cpumask_of_node(nid);
2034 
2035 		/* Look for allowed, online CPU in same node. */
2036 		for_each_cpu(dest_cpu, nodemask) {
2037 			if (!cpu_active(dest_cpu))
2038 				continue;
2039 			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2040 				return dest_cpu;
2041 		}
2042 	}
2043 
2044 	for (;;) {
2045 		/* Any allowed, online CPU? */
2046 		for_each_cpu(dest_cpu, p->cpus_ptr) {
2047 			if (!is_cpu_allowed(p, dest_cpu))
2048 				continue;
2049 
2050 			goto out;
2051 		}
2052 
2053 		/* No more Mr. Nice Guy. */
2054 		switch (state) {
2055 		case cpuset:
2056 			if (IS_ENABLED(CONFIG_CPUSETS)) {
2057 				cpuset_cpus_allowed_fallback(p);
2058 				state = possible;
2059 				break;
2060 			}
2061 			/* Fall-through */
2062 		case possible:
2063 			do_set_cpus_allowed(p, cpu_possible_mask);
2064 			state = fail;
2065 			break;
2066 
2067 		case fail:
2068 			BUG();
2069 			break;
2070 		}
2071 	}
2072 
2073 out:
2074 	if (state != cpuset) {
2075 		/*
2076 		 * Don't tell them about moving exiting tasks or
2077 		 * kernel threads (both mm NULL), since they never
2078 		 * leave kernel.
2079 		 */
2080 		if (p->mm && printk_ratelimit()) {
2081 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2082 					task_pid_nr(p), p->comm, cpu);
2083 		}
2084 	}
2085 
2086 	return dest_cpu;
2087 }
2088 
2089 /*
2090  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2091  */
2092 static inline
2093 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2094 {
2095 	lockdep_assert_held(&p->pi_lock);
2096 
2097 	if (p->nr_cpus_allowed > 1)
2098 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2099 	else
2100 		cpu = cpumask_any(p->cpus_ptr);
2101 
2102 	/*
2103 	 * In order not to call set_task_cpu() on a blocking task we need
2104 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2105 	 * CPU.
2106 	 *
2107 	 * Since this is common to all placement strategies, this lives here.
2108 	 *
2109 	 * [ this allows ->select_task() to simply return task_cpu(p) and
2110 	 *   not worry about this generic constraint ]
2111 	 */
2112 	if (unlikely(!is_cpu_allowed(p, cpu)))
2113 		cpu = select_fallback_rq(task_cpu(p), p);
2114 
2115 	return cpu;
2116 }
2117 
2118 void sched_set_stop_task(int cpu, struct task_struct *stop)
2119 {
2120 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2121 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122 
2123 	if (stop) {
2124 		/*
2125 		 * Make it appear like a SCHED_FIFO task, its something
2126 		 * userspace knows about and won't get confused about.
2127 		 *
2128 		 * Also, it will make PI more or less work without too
2129 		 * much confusion -- but then, stop work should not
2130 		 * rely on PI working anyway.
2131 		 */
2132 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133 
2134 		stop->sched_class = &stop_sched_class;
2135 	}
2136 
2137 	cpu_rq(cpu)->stop = stop;
2138 
2139 	if (old_stop) {
2140 		/*
2141 		 * Reset it back to a normal scheduling class so that
2142 		 * it can die in pieces.
2143 		 */
2144 		old_stop->sched_class = &rt_sched_class;
2145 	}
2146 }
2147 
2148 #else
2149 
2150 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2151 					 const struct cpumask *new_mask, bool check)
2152 {
2153 	return set_cpus_allowed_ptr(p, new_mask);
2154 }
2155 
2156 #endif /* CONFIG_SMP */
2157 
2158 static void
2159 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2160 {
2161 	struct rq *rq;
2162 
2163 	if (!schedstat_enabled())
2164 		return;
2165 
2166 	rq = this_rq();
2167 
2168 #ifdef CONFIG_SMP
2169 	if (cpu == rq->cpu) {
2170 		__schedstat_inc(rq->ttwu_local);
2171 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2172 	} else {
2173 		struct sched_domain *sd;
2174 
2175 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2176 		rcu_read_lock();
2177 		for_each_domain(rq->cpu, sd) {
2178 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2179 				__schedstat_inc(sd->ttwu_wake_remote);
2180 				break;
2181 			}
2182 		}
2183 		rcu_read_unlock();
2184 	}
2185 
2186 	if (wake_flags & WF_MIGRATED)
2187 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2188 #endif /* CONFIG_SMP */
2189 
2190 	__schedstat_inc(rq->ttwu_count);
2191 	__schedstat_inc(p->se.statistics.nr_wakeups);
2192 
2193 	if (wake_flags & WF_SYNC)
2194 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2195 }
2196 
2197 /*
2198  * Mark the task runnable and perform wakeup-preemption.
2199  */
2200 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2201 			   struct rq_flags *rf)
2202 {
2203 	check_preempt_curr(rq, p, wake_flags);
2204 	p->state = TASK_RUNNING;
2205 	trace_sched_wakeup(p);
2206 
2207 #ifdef CONFIG_SMP
2208 	if (p->sched_class->task_woken) {
2209 		/*
2210 		 * Our task @p is fully woken up and running; so its safe to
2211 		 * drop the rq->lock, hereafter rq is only used for statistics.
2212 		 */
2213 		rq_unpin_lock(rq, rf);
2214 		p->sched_class->task_woken(rq, p);
2215 		rq_repin_lock(rq, rf);
2216 	}
2217 
2218 	if (rq->idle_stamp) {
2219 		u64 delta = rq_clock(rq) - rq->idle_stamp;
2220 		u64 max = 2*rq->max_idle_balance_cost;
2221 
2222 		update_avg(&rq->avg_idle, delta);
2223 
2224 		if (rq->avg_idle > max)
2225 			rq->avg_idle = max;
2226 
2227 		rq->idle_stamp = 0;
2228 	}
2229 #endif
2230 }
2231 
2232 static void
2233 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2234 		 struct rq_flags *rf)
2235 {
2236 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2237 
2238 	lockdep_assert_held(&rq->lock);
2239 
2240 #ifdef CONFIG_SMP
2241 	if (p->sched_contributes_to_load)
2242 		rq->nr_uninterruptible--;
2243 
2244 	if (wake_flags & WF_MIGRATED)
2245 		en_flags |= ENQUEUE_MIGRATED;
2246 #endif
2247 
2248 	activate_task(rq, p, en_flags);
2249 	ttwu_do_wakeup(rq, p, wake_flags, rf);
2250 }
2251 
2252 /*
2253  * Called in case the task @p isn't fully descheduled from its runqueue,
2254  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2255  * since all we need to do is flip p->state to TASK_RUNNING, since
2256  * the task is still ->on_rq.
2257  */
2258 static int ttwu_remote(struct task_struct *p, int wake_flags)
2259 {
2260 	struct rq_flags rf;
2261 	struct rq *rq;
2262 	int ret = 0;
2263 
2264 	rq = __task_rq_lock(p, &rf);
2265 	if (task_on_rq_queued(p)) {
2266 		/* check_preempt_curr() may use rq clock */
2267 		update_rq_clock(rq);
2268 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2269 		ret = 1;
2270 	}
2271 	__task_rq_unlock(rq, &rf);
2272 
2273 	return ret;
2274 }
2275 
2276 #ifdef CONFIG_SMP
2277 void sched_ttwu_pending(void)
2278 {
2279 	struct rq *rq = this_rq();
2280 	struct llist_node *llist = llist_del_all(&rq->wake_list);
2281 	struct task_struct *p, *t;
2282 	struct rq_flags rf;
2283 
2284 	if (!llist)
2285 		return;
2286 
2287 	rq_lock_irqsave(rq, &rf);
2288 	update_rq_clock(rq);
2289 
2290 	llist_for_each_entry_safe(p, t, llist, wake_entry)
2291 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2292 
2293 	rq_unlock_irqrestore(rq, &rf);
2294 }
2295 
2296 void scheduler_ipi(void)
2297 {
2298 	/*
2299 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2300 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2301 	 * this IPI.
2302 	 */
2303 	preempt_fold_need_resched();
2304 
2305 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2306 		return;
2307 
2308 	/*
2309 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2310 	 * traditionally all their work was done from the interrupt return
2311 	 * path. Now that we actually do some work, we need to make sure
2312 	 * we do call them.
2313 	 *
2314 	 * Some archs already do call them, luckily irq_enter/exit nest
2315 	 * properly.
2316 	 *
2317 	 * Arguably we should visit all archs and update all handlers,
2318 	 * however a fair share of IPIs are still resched only so this would
2319 	 * somewhat pessimize the simple resched case.
2320 	 */
2321 	irq_enter();
2322 	sched_ttwu_pending();
2323 
2324 	/*
2325 	 * Check if someone kicked us for doing the nohz idle load balance.
2326 	 */
2327 	if (unlikely(got_nohz_idle_kick())) {
2328 		this_rq()->idle_balance = 1;
2329 		raise_softirq_irqoff(SCHED_SOFTIRQ);
2330 	}
2331 	irq_exit();
2332 }
2333 
2334 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2335 {
2336 	struct rq *rq = cpu_rq(cpu);
2337 
2338 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2339 
2340 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2341 		if (!set_nr_if_polling(rq->idle))
2342 			smp_send_reschedule(cpu);
2343 		else
2344 			trace_sched_wake_idle_without_ipi(cpu);
2345 	}
2346 }
2347 
2348 void wake_up_if_idle(int cpu)
2349 {
2350 	struct rq *rq = cpu_rq(cpu);
2351 	struct rq_flags rf;
2352 
2353 	rcu_read_lock();
2354 
2355 	if (!is_idle_task(rcu_dereference(rq->curr)))
2356 		goto out;
2357 
2358 	if (set_nr_if_polling(rq->idle)) {
2359 		trace_sched_wake_idle_without_ipi(cpu);
2360 	} else {
2361 		rq_lock_irqsave(rq, &rf);
2362 		if (is_idle_task(rq->curr))
2363 			smp_send_reschedule(cpu);
2364 		/* Else CPU is not idle, do nothing here: */
2365 		rq_unlock_irqrestore(rq, &rf);
2366 	}
2367 
2368 out:
2369 	rcu_read_unlock();
2370 }
2371 
2372 bool cpus_share_cache(int this_cpu, int that_cpu)
2373 {
2374 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2375 }
2376 #endif /* CONFIG_SMP */
2377 
2378 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2379 {
2380 	struct rq *rq = cpu_rq(cpu);
2381 	struct rq_flags rf;
2382 
2383 #if defined(CONFIG_SMP)
2384 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2385 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2386 		ttwu_queue_remote(p, cpu, wake_flags);
2387 		return;
2388 	}
2389 #endif
2390 
2391 	rq_lock(rq, &rf);
2392 	update_rq_clock(rq);
2393 	ttwu_do_activate(rq, p, wake_flags, &rf);
2394 	rq_unlock(rq, &rf);
2395 }
2396 
2397 /*
2398  * Notes on Program-Order guarantees on SMP systems.
2399  *
2400  *  MIGRATION
2401  *
2402  * The basic program-order guarantee on SMP systems is that when a task [t]
2403  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2404  * execution on its new CPU [c1].
2405  *
2406  * For migration (of runnable tasks) this is provided by the following means:
2407  *
2408  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2409  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2410  *     rq(c1)->lock (if not at the same time, then in that order).
2411  *  C) LOCK of the rq(c1)->lock scheduling in task
2412  *
2413  * Release/acquire chaining guarantees that B happens after A and C after B.
2414  * Note: the CPU doing B need not be c0 or c1
2415  *
2416  * Example:
2417  *
2418  *   CPU0            CPU1            CPU2
2419  *
2420  *   LOCK rq(0)->lock
2421  *   sched-out X
2422  *   sched-in Y
2423  *   UNLOCK rq(0)->lock
2424  *
2425  *                                   LOCK rq(0)->lock // orders against CPU0
2426  *                                   dequeue X
2427  *                                   UNLOCK rq(0)->lock
2428  *
2429  *                                   LOCK rq(1)->lock
2430  *                                   enqueue X
2431  *                                   UNLOCK rq(1)->lock
2432  *
2433  *                   LOCK rq(1)->lock // orders against CPU2
2434  *                   sched-out Z
2435  *                   sched-in X
2436  *                   UNLOCK rq(1)->lock
2437  *
2438  *
2439  *  BLOCKING -- aka. SLEEP + WAKEUP
2440  *
2441  * For blocking we (obviously) need to provide the same guarantee as for
2442  * migration. However the means are completely different as there is no lock
2443  * chain to provide order. Instead we do:
2444  *
2445  *   1) smp_store_release(X->on_cpu, 0)
2446  *   2) smp_cond_load_acquire(!X->on_cpu)
2447  *
2448  * Example:
2449  *
2450  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2451  *
2452  *   LOCK rq(0)->lock LOCK X->pi_lock
2453  *   dequeue X
2454  *   sched-out X
2455  *   smp_store_release(X->on_cpu, 0);
2456  *
2457  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2458  *                    X->state = WAKING
2459  *                    set_task_cpu(X,2)
2460  *
2461  *                    LOCK rq(2)->lock
2462  *                    enqueue X
2463  *                    X->state = RUNNING
2464  *                    UNLOCK rq(2)->lock
2465  *
2466  *                                          LOCK rq(2)->lock // orders against CPU1
2467  *                                          sched-out Z
2468  *                                          sched-in X
2469  *                                          UNLOCK rq(2)->lock
2470  *
2471  *                    UNLOCK X->pi_lock
2472  *   UNLOCK rq(0)->lock
2473  *
2474  *
2475  * However, for wakeups there is a second guarantee we must provide, namely we
2476  * must ensure that CONDITION=1 done by the caller can not be reordered with
2477  * accesses to the task state; see try_to_wake_up() and set_current_state().
2478  */
2479 
2480 /**
2481  * try_to_wake_up - wake up a thread
2482  * @p: the thread to be awakened
2483  * @state: the mask of task states that can be woken
2484  * @wake_flags: wake modifier flags (WF_*)
2485  *
2486  * If (@state & @p->state) @p->state = TASK_RUNNING.
2487  *
2488  * If the task was not queued/runnable, also place it back on a runqueue.
2489  *
2490  * Atomic against schedule() which would dequeue a task, also see
2491  * set_current_state().
2492  *
2493  * This function executes a full memory barrier before accessing the task
2494  * state; see set_current_state().
2495  *
2496  * Return: %true if @p->state changes (an actual wakeup was done),
2497  *	   %false otherwise.
2498  */
2499 static int
2500 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2501 {
2502 	unsigned long flags;
2503 	int cpu, success = 0;
2504 
2505 	preempt_disable();
2506 	if (p == current) {
2507 		/*
2508 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2509 		 * == smp_processor_id()'. Together this means we can special
2510 		 * case the whole 'p->on_rq && ttwu_remote()' case below
2511 		 * without taking any locks.
2512 		 *
2513 		 * In particular:
2514 		 *  - we rely on Program-Order guarantees for all the ordering,
2515 		 *  - we're serialized against set_special_state() by virtue of
2516 		 *    it disabling IRQs (this allows not taking ->pi_lock).
2517 		 */
2518 		if (!(p->state & state))
2519 			goto out;
2520 
2521 		success = 1;
2522 		cpu = task_cpu(p);
2523 		trace_sched_waking(p);
2524 		p->state = TASK_RUNNING;
2525 		trace_sched_wakeup(p);
2526 		goto out;
2527 	}
2528 
2529 	/*
2530 	 * If we are going to wake up a thread waiting for CONDITION we
2531 	 * need to ensure that CONDITION=1 done by the caller can not be
2532 	 * reordered with p->state check below. This pairs with mb() in
2533 	 * set_current_state() the waiting thread does.
2534 	 */
2535 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2536 	smp_mb__after_spinlock();
2537 	if (!(p->state & state))
2538 		goto unlock;
2539 
2540 	trace_sched_waking(p);
2541 
2542 	/* We're going to change ->state: */
2543 	success = 1;
2544 	cpu = task_cpu(p);
2545 
2546 	/*
2547 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2548 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2549 	 * in smp_cond_load_acquire() below.
2550 	 *
2551 	 * sched_ttwu_pending()			try_to_wake_up()
2552 	 *   STORE p->on_rq = 1			  LOAD p->state
2553 	 *   UNLOCK rq->lock
2554 	 *
2555 	 * __schedule() (switch to task 'p')
2556 	 *   LOCK rq->lock			  smp_rmb();
2557 	 *   smp_mb__after_spinlock();
2558 	 *   UNLOCK rq->lock
2559 	 *
2560 	 * [task p]
2561 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2562 	 *
2563 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2564 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2565 	 *
2566 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2567 	 */
2568 	smp_rmb();
2569 	if (p->on_rq && ttwu_remote(p, wake_flags))
2570 		goto unlock;
2571 
2572 #ifdef CONFIG_SMP
2573 	/*
2574 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2575 	 * possible to, falsely, observe p->on_cpu == 0.
2576 	 *
2577 	 * One must be running (->on_cpu == 1) in order to remove oneself
2578 	 * from the runqueue.
2579 	 *
2580 	 * __schedule() (switch to task 'p')	try_to_wake_up()
2581 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2582 	 *   UNLOCK rq->lock
2583 	 *
2584 	 * __schedule() (put 'p' to sleep)
2585 	 *   LOCK rq->lock			  smp_rmb();
2586 	 *   smp_mb__after_spinlock();
2587 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2588 	 *
2589 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2590 	 * __schedule().  See the comment for smp_mb__after_spinlock().
2591 	 */
2592 	smp_rmb();
2593 
2594 	/*
2595 	 * If the owning (remote) CPU is still in the middle of schedule() with
2596 	 * this task as prev, wait until its done referencing the task.
2597 	 *
2598 	 * Pairs with the smp_store_release() in finish_task().
2599 	 *
2600 	 * This ensures that tasks getting woken will be fully ordered against
2601 	 * their previous state and preserve Program Order.
2602 	 */
2603 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2604 
2605 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2606 	p->state = TASK_WAKING;
2607 
2608 	if (p->in_iowait) {
2609 		delayacct_blkio_end(p);
2610 		atomic_dec(&task_rq(p)->nr_iowait);
2611 	}
2612 
2613 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2614 	if (task_cpu(p) != cpu) {
2615 		wake_flags |= WF_MIGRATED;
2616 		psi_ttwu_dequeue(p);
2617 		set_task_cpu(p, cpu);
2618 	}
2619 
2620 #else /* CONFIG_SMP */
2621 
2622 	if (p->in_iowait) {
2623 		delayacct_blkio_end(p);
2624 		atomic_dec(&task_rq(p)->nr_iowait);
2625 	}
2626 
2627 #endif /* CONFIG_SMP */
2628 
2629 	ttwu_queue(p, cpu, wake_flags);
2630 unlock:
2631 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2632 out:
2633 	if (success)
2634 		ttwu_stat(p, cpu, wake_flags);
2635 	preempt_enable();
2636 
2637 	return success;
2638 }
2639 
2640 /**
2641  * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2642  * @p: Process for which the function is to be invoked.
2643  * @func: Function to invoke.
2644  * @arg: Argument to function.
2645  *
2646  * If the specified task can be quickly locked into a definite state
2647  * (either sleeping or on a given runqueue), arrange to keep it in that
2648  * state while invoking @func(@arg).  This function can use ->on_rq and
2649  * task_curr() to work out what the state is, if required.  Given that
2650  * @func can be invoked with a runqueue lock held, it had better be quite
2651  * lightweight.
2652  *
2653  * Returns:
2654  *	@false if the task slipped out from under the locks.
2655  *	@true if the task was locked onto a runqueue or is sleeping.
2656  *		However, @func can override this by returning @false.
2657  */
2658 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2659 {
2660 	bool ret = false;
2661 	struct rq_flags rf;
2662 	struct rq *rq;
2663 
2664 	lockdep_assert_irqs_enabled();
2665 	raw_spin_lock_irq(&p->pi_lock);
2666 	if (p->on_rq) {
2667 		rq = __task_rq_lock(p, &rf);
2668 		if (task_rq(p) == rq)
2669 			ret = func(p, arg);
2670 		rq_unlock(rq, &rf);
2671 	} else {
2672 		switch (p->state) {
2673 		case TASK_RUNNING:
2674 		case TASK_WAKING:
2675 			break;
2676 		default:
2677 			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2678 			if (!p->on_rq)
2679 				ret = func(p, arg);
2680 		}
2681 	}
2682 	raw_spin_unlock_irq(&p->pi_lock);
2683 	return ret;
2684 }
2685 
2686 /**
2687  * wake_up_process - Wake up a specific process
2688  * @p: The process to be woken up.
2689  *
2690  * Attempt to wake up the nominated process and move it to the set of runnable
2691  * processes.
2692  *
2693  * Return: 1 if the process was woken up, 0 if it was already running.
2694  *
2695  * This function executes a full memory barrier before accessing the task state.
2696  */
2697 int wake_up_process(struct task_struct *p)
2698 {
2699 	return try_to_wake_up(p, TASK_NORMAL, 0);
2700 }
2701 EXPORT_SYMBOL(wake_up_process);
2702 
2703 int wake_up_state(struct task_struct *p, unsigned int state)
2704 {
2705 	return try_to_wake_up(p, state, 0);
2706 }
2707 
2708 /*
2709  * Perform scheduler related setup for a newly forked process p.
2710  * p is forked by current.
2711  *
2712  * __sched_fork() is basic setup used by init_idle() too:
2713  */
2714 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2715 {
2716 	p->on_rq			= 0;
2717 
2718 	p->se.on_rq			= 0;
2719 	p->se.exec_start		= 0;
2720 	p->se.sum_exec_runtime		= 0;
2721 	p->se.prev_sum_exec_runtime	= 0;
2722 	p->se.nr_migrations		= 0;
2723 	p->se.vruntime			= 0;
2724 	INIT_LIST_HEAD(&p->se.group_node);
2725 
2726 #ifdef CONFIG_FAIR_GROUP_SCHED
2727 	p->se.cfs_rq			= NULL;
2728 #endif
2729 
2730 #ifdef CONFIG_SCHEDSTATS
2731 	/* Even if schedstat is disabled, there should not be garbage */
2732 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2733 #endif
2734 
2735 	RB_CLEAR_NODE(&p->dl.rb_node);
2736 	init_dl_task_timer(&p->dl);
2737 	init_dl_inactive_task_timer(&p->dl);
2738 	__dl_clear_params(p);
2739 
2740 	INIT_LIST_HEAD(&p->rt.run_list);
2741 	p->rt.timeout		= 0;
2742 	p->rt.time_slice	= sched_rr_timeslice;
2743 	p->rt.on_rq		= 0;
2744 	p->rt.on_list		= 0;
2745 
2746 #ifdef CONFIG_PREEMPT_NOTIFIERS
2747 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2748 #endif
2749 
2750 #ifdef CONFIG_COMPACTION
2751 	p->capture_control = NULL;
2752 #endif
2753 	init_numa_balancing(clone_flags, p);
2754 }
2755 
2756 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2757 
2758 #ifdef CONFIG_NUMA_BALANCING
2759 
2760 void set_numabalancing_state(bool enabled)
2761 {
2762 	if (enabled)
2763 		static_branch_enable(&sched_numa_balancing);
2764 	else
2765 		static_branch_disable(&sched_numa_balancing);
2766 }
2767 
2768 #ifdef CONFIG_PROC_SYSCTL
2769 int sysctl_numa_balancing(struct ctl_table *table, int write,
2770 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2771 {
2772 	struct ctl_table t;
2773 	int err;
2774 	int state = static_branch_likely(&sched_numa_balancing);
2775 
2776 	if (write && !capable(CAP_SYS_ADMIN))
2777 		return -EPERM;
2778 
2779 	t = *table;
2780 	t.data = &state;
2781 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2782 	if (err < 0)
2783 		return err;
2784 	if (write)
2785 		set_numabalancing_state(state);
2786 	return err;
2787 }
2788 #endif
2789 #endif
2790 
2791 #ifdef CONFIG_SCHEDSTATS
2792 
2793 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2794 static bool __initdata __sched_schedstats = false;
2795 
2796 static void set_schedstats(bool enabled)
2797 {
2798 	if (enabled)
2799 		static_branch_enable(&sched_schedstats);
2800 	else
2801 		static_branch_disable(&sched_schedstats);
2802 }
2803 
2804 void force_schedstat_enabled(void)
2805 {
2806 	if (!schedstat_enabled()) {
2807 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2808 		static_branch_enable(&sched_schedstats);
2809 	}
2810 }
2811 
2812 static int __init setup_schedstats(char *str)
2813 {
2814 	int ret = 0;
2815 	if (!str)
2816 		goto out;
2817 
2818 	/*
2819 	 * This code is called before jump labels have been set up, so we can't
2820 	 * change the static branch directly just yet.  Instead set a temporary
2821 	 * variable so init_schedstats() can do it later.
2822 	 */
2823 	if (!strcmp(str, "enable")) {
2824 		__sched_schedstats = true;
2825 		ret = 1;
2826 	} else if (!strcmp(str, "disable")) {
2827 		__sched_schedstats = false;
2828 		ret = 1;
2829 	}
2830 out:
2831 	if (!ret)
2832 		pr_warn("Unable to parse schedstats=\n");
2833 
2834 	return ret;
2835 }
2836 __setup("schedstats=", setup_schedstats);
2837 
2838 static void __init init_schedstats(void)
2839 {
2840 	set_schedstats(__sched_schedstats);
2841 }
2842 
2843 #ifdef CONFIG_PROC_SYSCTL
2844 int sysctl_schedstats(struct ctl_table *table, int write,
2845 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2846 {
2847 	struct ctl_table t;
2848 	int err;
2849 	int state = static_branch_likely(&sched_schedstats);
2850 
2851 	if (write && !capable(CAP_SYS_ADMIN))
2852 		return -EPERM;
2853 
2854 	t = *table;
2855 	t.data = &state;
2856 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2857 	if (err < 0)
2858 		return err;
2859 	if (write)
2860 		set_schedstats(state);
2861 	return err;
2862 }
2863 #endif /* CONFIG_PROC_SYSCTL */
2864 #else  /* !CONFIG_SCHEDSTATS */
2865 static inline void init_schedstats(void) {}
2866 #endif /* CONFIG_SCHEDSTATS */
2867 
2868 /*
2869  * fork()/clone()-time setup:
2870  */
2871 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2872 {
2873 	unsigned long flags;
2874 
2875 	__sched_fork(clone_flags, p);
2876 	/*
2877 	 * We mark the process as NEW here. This guarantees that
2878 	 * nobody will actually run it, and a signal or other external
2879 	 * event cannot wake it up and insert it on the runqueue either.
2880 	 */
2881 	p->state = TASK_NEW;
2882 
2883 	/*
2884 	 * Make sure we do not leak PI boosting priority to the child.
2885 	 */
2886 	p->prio = current->normal_prio;
2887 
2888 	uclamp_fork(p);
2889 
2890 	/*
2891 	 * Revert to default priority/policy on fork if requested.
2892 	 */
2893 	if (unlikely(p->sched_reset_on_fork)) {
2894 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2895 			p->policy = SCHED_NORMAL;
2896 			p->static_prio = NICE_TO_PRIO(0);
2897 			p->rt_priority = 0;
2898 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2899 			p->static_prio = NICE_TO_PRIO(0);
2900 
2901 		p->prio = p->normal_prio = __normal_prio(p);
2902 		set_load_weight(p, false);
2903 
2904 		/*
2905 		 * We don't need the reset flag anymore after the fork. It has
2906 		 * fulfilled its duty:
2907 		 */
2908 		p->sched_reset_on_fork = 0;
2909 	}
2910 
2911 	if (dl_prio(p->prio))
2912 		return -EAGAIN;
2913 	else if (rt_prio(p->prio))
2914 		p->sched_class = &rt_sched_class;
2915 	else
2916 		p->sched_class = &fair_sched_class;
2917 
2918 	init_entity_runnable_average(&p->se);
2919 
2920 	/*
2921 	 * The child is not yet in the pid-hash so no cgroup attach races,
2922 	 * and the cgroup is pinned to this child due to cgroup_fork()
2923 	 * is ran before sched_fork().
2924 	 *
2925 	 * Silence PROVE_RCU.
2926 	 */
2927 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2928 	/*
2929 	 * We're setting the CPU for the first time, we don't migrate,
2930 	 * so use __set_task_cpu().
2931 	 */
2932 	__set_task_cpu(p, smp_processor_id());
2933 	if (p->sched_class->task_fork)
2934 		p->sched_class->task_fork(p);
2935 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2936 
2937 #ifdef CONFIG_SCHED_INFO
2938 	if (likely(sched_info_on()))
2939 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2940 #endif
2941 #if defined(CONFIG_SMP)
2942 	p->on_cpu = 0;
2943 #endif
2944 	init_task_preempt_count(p);
2945 #ifdef CONFIG_SMP
2946 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2947 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2948 #endif
2949 	return 0;
2950 }
2951 
2952 unsigned long to_ratio(u64 period, u64 runtime)
2953 {
2954 	if (runtime == RUNTIME_INF)
2955 		return BW_UNIT;
2956 
2957 	/*
2958 	 * Doing this here saves a lot of checks in all
2959 	 * the calling paths, and returning zero seems
2960 	 * safe for them anyway.
2961 	 */
2962 	if (period == 0)
2963 		return 0;
2964 
2965 	return div64_u64(runtime << BW_SHIFT, period);
2966 }
2967 
2968 /*
2969  * wake_up_new_task - wake up a newly created task for the first time.
2970  *
2971  * This function will do some initial scheduler statistics housekeeping
2972  * that must be done for every newly created context, then puts the task
2973  * on the runqueue and wakes it.
2974  */
2975 void wake_up_new_task(struct task_struct *p)
2976 {
2977 	struct rq_flags rf;
2978 	struct rq *rq;
2979 
2980 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2981 	p->state = TASK_RUNNING;
2982 #ifdef CONFIG_SMP
2983 	/*
2984 	 * Fork balancing, do it here and not earlier because:
2985 	 *  - cpus_ptr can change in the fork path
2986 	 *  - any previously selected CPU might disappear through hotplug
2987 	 *
2988 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2989 	 * as we're not fully set-up yet.
2990 	 */
2991 	p->recent_used_cpu = task_cpu(p);
2992 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2993 #endif
2994 	rq = __task_rq_lock(p, &rf);
2995 	update_rq_clock(rq);
2996 	post_init_entity_util_avg(p);
2997 
2998 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2999 	trace_sched_wakeup_new(p);
3000 	check_preempt_curr(rq, p, WF_FORK);
3001 #ifdef CONFIG_SMP
3002 	if (p->sched_class->task_woken) {
3003 		/*
3004 		 * Nothing relies on rq->lock after this, so its fine to
3005 		 * drop it.
3006 		 */
3007 		rq_unpin_lock(rq, &rf);
3008 		p->sched_class->task_woken(rq, p);
3009 		rq_repin_lock(rq, &rf);
3010 	}
3011 #endif
3012 	task_rq_unlock(rq, p, &rf);
3013 }
3014 
3015 #ifdef CONFIG_PREEMPT_NOTIFIERS
3016 
3017 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3018 
3019 void preempt_notifier_inc(void)
3020 {
3021 	static_branch_inc(&preempt_notifier_key);
3022 }
3023 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3024 
3025 void preempt_notifier_dec(void)
3026 {
3027 	static_branch_dec(&preempt_notifier_key);
3028 }
3029 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3030 
3031 /**
3032  * preempt_notifier_register - tell me when current is being preempted & rescheduled
3033  * @notifier: notifier struct to register
3034  */
3035 void preempt_notifier_register(struct preempt_notifier *notifier)
3036 {
3037 	if (!static_branch_unlikely(&preempt_notifier_key))
3038 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3039 
3040 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3041 }
3042 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3043 
3044 /**
3045  * preempt_notifier_unregister - no longer interested in preemption notifications
3046  * @notifier: notifier struct to unregister
3047  *
3048  * This is *not* safe to call from within a preemption notifier.
3049  */
3050 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3051 {
3052 	hlist_del(&notifier->link);
3053 }
3054 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3055 
3056 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3057 {
3058 	struct preempt_notifier *notifier;
3059 
3060 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3061 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3062 }
3063 
3064 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3065 {
3066 	if (static_branch_unlikely(&preempt_notifier_key))
3067 		__fire_sched_in_preempt_notifiers(curr);
3068 }
3069 
3070 static void
3071 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3072 				   struct task_struct *next)
3073 {
3074 	struct preempt_notifier *notifier;
3075 
3076 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3077 		notifier->ops->sched_out(notifier, next);
3078 }
3079 
3080 static __always_inline void
3081 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3082 				 struct task_struct *next)
3083 {
3084 	if (static_branch_unlikely(&preempt_notifier_key))
3085 		__fire_sched_out_preempt_notifiers(curr, next);
3086 }
3087 
3088 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3089 
3090 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3091 {
3092 }
3093 
3094 static inline void
3095 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3096 				 struct task_struct *next)
3097 {
3098 }
3099 
3100 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3101 
3102 static inline void prepare_task(struct task_struct *next)
3103 {
3104 #ifdef CONFIG_SMP
3105 	/*
3106 	 * Claim the task as running, we do this before switching to it
3107 	 * such that any running task will have this set.
3108 	 */
3109 	next->on_cpu = 1;
3110 #endif
3111 }
3112 
3113 static inline void finish_task(struct task_struct *prev)
3114 {
3115 #ifdef CONFIG_SMP
3116 	/*
3117 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3118 	 * We must ensure this doesn't happen until the switch is completely
3119 	 * finished.
3120 	 *
3121 	 * In particular, the load of prev->state in finish_task_switch() must
3122 	 * happen before this.
3123 	 *
3124 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3125 	 */
3126 	smp_store_release(&prev->on_cpu, 0);
3127 #endif
3128 }
3129 
3130 static inline void
3131 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3132 {
3133 	/*
3134 	 * Since the runqueue lock will be released by the next
3135 	 * task (which is an invalid locking op but in the case
3136 	 * of the scheduler it's an obvious special-case), so we
3137 	 * do an early lockdep release here:
3138 	 */
3139 	rq_unpin_lock(rq, rf);
3140 	spin_release(&rq->lock.dep_map, _THIS_IP_);
3141 #ifdef CONFIG_DEBUG_SPINLOCK
3142 	/* this is a valid case when another task releases the spinlock */
3143 	rq->lock.owner = next;
3144 #endif
3145 }
3146 
3147 static inline void finish_lock_switch(struct rq *rq)
3148 {
3149 	/*
3150 	 * If we are tracking spinlock dependencies then we have to
3151 	 * fix up the runqueue lock - which gets 'carried over' from
3152 	 * prev into current:
3153 	 */
3154 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3155 	raw_spin_unlock_irq(&rq->lock);
3156 }
3157 
3158 /*
3159  * NOP if the arch has not defined these:
3160  */
3161 
3162 #ifndef prepare_arch_switch
3163 # define prepare_arch_switch(next)	do { } while (0)
3164 #endif
3165 
3166 #ifndef finish_arch_post_lock_switch
3167 # define finish_arch_post_lock_switch()	do { } while (0)
3168 #endif
3169 
3170 /**
3171  * prepare_task_switch - prepare to switch tasks
3172  * @rq: the runqueue preparing to switch
3173  * @prev: the current task that is being switched out
3174  * @next: the task we are going to switch to.
3175  *
3176  * This is called with the rq lock held and interrupts off. It must
3177  * be paired with a subsequent finish_task_switch after the context
3178  * switch.
3179  *
3180  * prepare_task_switch sets up locking and calls architecture specific
3181  * hooks.
3182  */
3183 static inline void
3184 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3185 		    struct task_struct *next)
3186 {
3187 	kcov_prepare_switch(prev);
3188 	sched_info_switch(rq, prev, next);
3189 	perf_event_task_sched_out(prev, next);
3190 	rseq_preempt(prev);
3191 	fire_sched_out_preempt_notifiers(prev, next);
3192 	prepare_task(next);
3193 	prepare_arch_switch(next);
3194 }
3195 
3196 /**
3197  * finish_task_switch - clean up after a task-switch
3198  * @prev: the thread we just switched away from.
3199  *
3200  * finish_task_switch must be called after the context switch, paired
3201  * with a prepare_task_switch call before the context switch.
3202  * finish_task_switch will reconcile locking set up by prepare_task_switch,
3203  * and do any other architecture-specific cleanup actions.
3204  *
3205  * Note that we may have delayed dropping an mm in context_switch(). If
3206  * so, we finish that here outside of the runqueue lock. (Doing it
3207  * with the lock held can cause deadlocks; see schedule() for
3208  * details.)
3209  *
3210  * The context switch have flipped the stack from under us and restored the
3211  * local variables which were saved when this task called schedule() in the
3212  * past. prev == current is still correct but we need to recalculate this_rq
3213  * because prev may have moved to another CPU.
3214  */
3215 static struct rq *finish_task_switch(struct task_struct *prev)
3216 	__releases(rq->lock)
3217 {
3218 	struct rq *rq = this_rq();
3219 	struct mm_struct *mm = rq->prev_mm;
3220 	long prev_state;
3221 
3222 	/*
3223 	 * The previous task will have left us with a preempt_count of 2
3224 	 * because it left us after:
3225 	 *
3226 	 *	schedule()
3227 	 *	  preempt_disable();			// 1
3228 	 *	  __schedule()
3229 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3230 	 *
3231 	 * Also, see FORK_PREEMPT_COUNT.
3232 	 */
3233 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3234 		      "corrupted preempt_count: %s/%d/0x%x\n",
3235 		      current->comm, current->pid, preempt_count()))
3236 		preempt_count_set(FORK_PREEMPT_COUNT);
3237 
3238 	rq->prev_mm = NULL;
3239 
3240 	/*
3241 	 * A task struct has one reference for the use as "current".
3242 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3243 	 * schedule one last time. The schedule call will never return, and
3244 	 * the scheduled task must drop that reference.
3245 	 *
3246 	 * We must observe prev->state before clearing prev->on_cpu (in
3247 	 * finish_task), otherwise a concurrent wakeup can get prev
3248 	 * running on another CPU and we could rave with its RUNNING -> DEAD
3249 	 * transition, resulting in a double drop.
3250 	 */
3251 	prev_state = prev->state;
3252 	vtime_task_switch(prev);
3253 	perf_event_task_sched_in(prev, current);
3254 	finish_task(prev);
3255 	finish_lock_switch(rq);
3256 	finish_arch_post_lock_switch();
3257 	kcov_finish_switch(current);
3258 
3259 	fire_sched_in_preempt_notifiers(current);
3260 	/*
3261 	 * When switching through a kernel thread, the loop in
3262 	 * membarrier_{private,global}_expedited() may have observed that
3263 	 * kernel thread and not issued an IPI. It is therefore possible to
3264 	 * schedule between user->kernel->user threads without passing though
3265 	 * switch_mm(). Membarrier requires a barrier after storing to
3266 	 * rq->curr, before returning to userspace, so provide them here:
3267 	 *
3268 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3269 	 *   provided by mmdrop(),
3270 	 * - a sync_core for SYNC_CORE.
3271 	 */
3272 	if (mm) {
3273 		membarrier_mm_sync_core_before_usermode(mm);
3274 		mmdrop(mm);
3275 	}
3276 	if (unlikely(prev_state == TASK_DEAD)) {
3277 		if (prev->sched_class->task_dead)
3278 			prev->sched_class->task_dead(prev);
3279 
3280 		/*
3281 		 * Remove function-return probe instances associated with this
3282 		 * task and put them back on the free list.
3283 		 */
3284 		kprobe_flush_task(prev);
3285 
3286 		/* Task is done with its stack. */
3287 		put_task_stack(prev);
3288 
3289 		put_task_struct_rcu_user(prev);
3290 	}
3291 
3292 	tick_nohz_task_switch();
3293 	return rq;
3294 }
3295 
3296 #ifdef CONFIG_SMP
3297 
3298 /* rq->lock is NOT held, but preemption is disabled */
3299 static void __balance_callback(struct rq *rq)
3300 {
3301 	struct callback_head *head, *next;
3302 	void (*func)(struct rq *rq);
3303 	unsigned long flags;
3304 
3305 	raw_spin_lock_irqsave(&rq->lock, flags);
3306 	head = rq->balance_callback;
3307 	rq->balance_callback = NULL;
3308 	while (head) {
3309 		func = (void (*)(struct rq *))head->func;
3310 		next = head->next;
3311 		head->next = NULL;
3312 		head = next;
3313 
3314 		func(rq);
3315 	}
3316 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3317 }
3318 
3319 static inline void balance_callback(struct rq *rq)
3320 {
3321 	if (unlikely(rq->balance_callback))
3322 		__balance_callback(rq);
3323 }
3324 
3325 #else
3326 
3327 static inline void balance_callback(struct rq *rq)
3328 {
3329 }
3330 
3331 #endif
3332 
3333 /**
3334  * schedule_tail - first thing a freshly forked thread must call.
3335  * @prev: the thread we just switched away from.
3336  */
3337 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3338 	__releases(rq->lock)
3339 {
3340 	struct rq *rq;
3341 
3342 	/*
3343 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3344 	 * finish_task_switch() for details.
3345 	 *
3346 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3347 	 * and the preempt_enable() will end up enabling preemption (on
3348 	 * PREEMPT_COUNT kernels).
3349 	 */
3350 
3351 	rq = finish_task_switch(prev);
3352 	balance_callback(rq);
3353 	preempt_enable();
3354 
3355 	if (current->set_child_tid)
3356 		put_user(task_pid_vnr(current), current->set_child_tid);
3357 
3358 	calculate_sigpending();
3359 }
3360 
3361 /*
3362  * context_switch - switch to the new MM and the new thread's register state.
3363  */
3364 static __always_inline struct rq *
3365 context_switch(struct rq *rq, struct task_struct *prev,
3366 	       struct task_struct *next, struct rq_flags *rf)
3367 {
3368 	prepare_task_switch(rq, prev, next);
3369 
3370 	/*
3371 	 * For paravirt, this is coupled with an exit in switch_to to
3372 	 * combine the page table reload and the switch backend into
3373 	 * one hypercall.
3374 	 */
3375 	arch_start_context_switch(prev);
3376 
3377 	/*
3378 	 * kernel -> kernel   lazy + transfer active
3379 	 *   user -> kernel   lazy + mmgrab() active
3380 	 *
3381 	 * kernel ->   user   switch + mmdrop() active
3382 	 *   user ->   user   switch
3383 	 */
3384 	if (!next->mm) {                                // to kernel
3385 		enter_lazy_tlb(prev->active_mm, next);
3386 
3387 		next->active_mm = prev->active_mm;
3388 		if (prev->mm)                           // from user
3389 			mmgrab(prev->active_mm);
3390 		else
3391 			prev->active_mm = NULL;
3392 	} else {                                        // to user
3393 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3394 		/*
3395 		 * sys_membarrier() requires an smp_mb() between setting
3396 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3397 		 *
3398 		 * The below provides this either through switch_mm(), or in
3399 		 * case 'prev->active_mm == next->mm' through
3400 		 * finish_task_switch()'s mmdrop().
3401 		 */
3402 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3403 
3404 		if (!prev->mm) {                        // from kernel
3405 			/* will mmdrop() in finish_task_switch(). */
3406 			rq->prev_mm = prev->active_mm;
3407 			prev->active_mm = NULL;
3408 		}
3409 	}
3410 
3411 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3412 
3413 	prepare_lock_switch(rq, next, rf);
3414 
3415 	/* Here we just switch the register state and the stack. */
3416 	switch_to(prev, next, prev);
3417 	barrier();
3418 
3419 	return finish_task_switch(prev);
3420 }
3421 
3422 /*
3423  * nr_running and nr_context_switches:
3424  *
3425  * externally visible scheduler statistics: current number of runnable
3426  * threads, total number of context switches performed since bootup.
3427  */
3428 unsigned long nr_running(void)
3429 {
3430 	unsigned long i, sum = 0;
3431 
3432 	for_each_online_cpu(i)
3433 		sum += cpu_rq(i)->nr_running;
3434 
3435 	return sum;
3436 }
3437 
3438 /*
3439  * Check if only the current task is running on the CPU.
3440  *
3441  * Caution: this function does not check that the caller has disabled
3442  * preemption, thus the result might have a time-of-check-to-time-of-use
3443  * race.  The caller is responsible to use it correctly, for example:
3444  *
3445  * - from a non-preemptible section (of course)
3446  *
3447  * - from a thread that is bound to a single CPU
3448  *
3449  * - in a loop with very short iterations (e.g. a polling loop)
3450  */
3451 bool single_task_running(void)
3452 {
3453 	return raw_rq()->nr_running == 1;
3454 }
3455 EXPORT_SYMBOL(single_task_running);
3456 
3457 unsigned long long nr_context_switches(void)
3458 {
3459 	int i;
3460 	unsigned long long sum = 0;
3461 
3462 	for_each_possible_cpu(i)
3463 		sum += cpu_rq(i)->nr_switches;
3464 
3465 	return sum;
3466 }
3467 
3468 /*
3469  * Consumers of these two interfaces, like for example the cpuidle menu
3470  * governor, are using nonsensical data. Preferring shallow idle state selection
3471  * for a CPU that has IO-wait which might not even end up running the task when
3472  * it does become runnable.
3473  */
3474 
3475 unsigned long nr_iowait_cpu(int cpu)
3476 {
3477 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3478 }
3479 
3480 /*
3481  * IO-wait accounting, and how its mostly bollocks (on SMP).
3482  *
3483  * The idea behind IO-wait account is to account the idle time that we could
3484  * have spend running if it were not for IO. That is, if we were to improve the
3485  * storage performance, we'd have a proportional reduction in IO-wait time.
3486  *
3487  * This all works nicely on UP, where, when a task blocks on IO, we account
3488  * idle time as IO-wait, because if the storage were faster, it could've been
3489  * running and we'd not be idle.
3490  *
3491  * This has been extended to SMP, by doing the same for each CPU. This however
3492  * is broken.
3493  *
3494  * Imagine for instance the case where two tasks block on one CPU, only the one
3495  * CPU will have IO-wait accounted, while the other has regular idle. Even
3496  * though, if the storage were faster, both could've ran at the same time,
3497  * utilising both CPUs.
3498  *
3499  * This means, that when looking globally, the current IO-wait accounting on
3500  * SMP is a lower bound, by reason of under accounting.
3501  *
3502  * Worse, since the numbers are provided per CPU, they are sometimes
3503  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3504  * associated with any one particular CPU, it can wake to another CPU than it
3505  * blocked on. This means the per CPU IO-wait number is meaningless.
3506  *
3507  * Task CPU affinities can make all that even more 'interesting'.
3508  */
3509 
3510 unsigned long nr_iowait(void)
3511 {
3512 	unsigned long i, sum = 0;
3513 
3514 	for_each_possible_cpu(i)
3515 		sum += nr_iowait_cpu(i);
3516 
3517 	return sum;
3518 }
3519 
3520 #ifdef CONFIG_SMP
3521 
3522 /*
3523  * sched_exec - execve() is a valuable balancing opportunity, because at
3524  * this point the task has the smallest effective memory and cache footprint.
3525  */
3526 void sched_exec(void)
3527 {
3528 	struct task_struct *p = current;
3529 	unsigned long flags;
3530 	int dest_cpu;
3531 
3532 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3533 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3534 	if (dest_cpu == smp_processor_id())
3535 		goto unlock;
3536 
3537 	if (likely(cpu_active(dest_cpu))) {
3538 		struct migration_arg arg = { p, dest_cpu };
3539 
3540 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3541 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3542 		return;
3543 	}
3544 unlock:
3545 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3546 }
3547 
3548 #endif
3549 
3550 DEFINE_PER_CPU(struct kernel_stat, kstat);
3551 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3552 
3553 EXPORT_PER_CPU_SYMBOL(kstat);
3554 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3555 
3556 /*
3557  * The function fair_sched_class.update_curr accesses the struct curr
3558  * and its field curr->exec_start; when called from task_sched_runtime(),
3559  * we observe a high rate of cache misses in practice.
3560  * Prefetching this data results in improved performance.
3561  */
3562 static inline void prefetch_curr_exec_start(struct task_struct *p)
3563 {
3564 #ifdef CONFIG_FAIR_GROUP_SCHED
3565 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3566 #else
3567 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3568 #endif
3569 	prefetch(curr);
3570 	prefetch(&curr->exec_start);
3571 }
3572 
3573 /*
3574  * Return accounted runtime for the task.
3575  * In case the task is currently running, return the runtime plus current's
3576  * pending runtime that have not been accounted yet.
3577  */
3578 unsigned long long task_sched_runtime(struct task_struct *p)
3579 {
3580 	struct rq_flags rf;
3581 	struct rq *rq;
3582 	u64 ns;
3583 
3584 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3585 	/*
3586 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3587 	 * So we have a optimization chance when the task's delta_exec is 0.
3588 	 * Reading ->on_cpu is racy, but this is ok.
3589 	 *
3590 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3591 	 * If we race with it entering CPU, unaccounted time is 0. This is
3592 	 * indistinguishable from the read occurring a few cycles earlier.
3593 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3594 	 * been accounted, so we're correct here as well.
3595 	 */
3596 	if (!p->on_cpu || !task_on_rq_queued(p))
3597 		return p->se.sum_exec_runtime;
3598 #endif
3599 
3600 	rq = task_rq_lock(p, &rf);
3601 	/*
3602 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3603 	 * project cycles that may never be accounted to this
3604 	 * thread, breaking clock_gettime().
3605 	 */
3606 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3607 		prefetch_curr_exec_start(p);
3608 		update_rq_clock(rq);
3609 		p->sched_class->update_curr(rq);
3610 	}
3611 	ns = p->se.sum_exec_runtime;
3612 	task_rq_unlock(rq, p, &rf);
3613 
3614 	return ns;
3615 }
3616 
3617 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3618 
3619 void arch_set_thermal_pressure(struct cpumask *cpus,
3620 			       unsigned long th_pressure)
3621 {
3622 	int cpu;
3623 
3624 	for_each_cpu(cpu, cpus)
3625 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3626 }
3627 
3628 /*
3629  * This function gets called by the timer code, with HZ frequency.
3630  * We call it with interrupts disabled.
3631  */
3632 void scheduler_tick(void)
3633 {
3634 	int cpu = smp_processor_id();
3635 	struct rq *rq = cpu_rq(cpu);
3636 	struct task_struct *curr = rq->curr;
3637 	struct rq_flags rf;
3638 	unsigned long thermal_pressure;
3639 
3640 	arch_scale_freq_tick();
3641 	sched_clock_tick();
3642 
3643 	rq_lock(rq, &rf);
3644 
3645 	update_rq_clock(rq);
3646 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3647 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3648 	curr->sched_class->task_tick(rq, curr, 0);
3649 	calc_global_load_tick(rq);
3650 	psi_task_tick(rq);
3651 
3652 	rq_unlock(rq, &rf);
3653 
3654 	perf_event_task_tick();
3655 
3656 #ifdef CONFIG_SMP
3657 	rq->idle_balance = idle_cpu(cpu);
3658 	trigger_load_balance(rq);
3659 #endif
3660 }
3661 
3662 #ifdef CONFIG_NO_HZ_FULL
3663 
3664 struct tick_work {
3665 	int			cpu;
3666 	atomic_t		state;
3667 	struct delayed_work	work;
3668 };
3669 /* Values for ->state, see diagram below. */
3670 #define TICK_SCHED_REMOTE_OFFLINE	0
3671 #define TICK_SCHED_REMOTE_OFFLINING	1
3672 #define TICK_SCHED_REMOTE_RUNNING	2
3673 
3674 /*
3675  * State diagram for ->state:
3676  *
3677  *
3678  *          TICK_SCHED_REMOTE_OFFLINE
3679  *                    |   ^
3680  *                    |   |
3681  *                    |   | sched_tick_remote()
3682  *                    |   |
3683  *                    |   |
3684  *                    +--TICK_SCHED_REMOTE_OFFLINING
3685  *                    |   ^
3686  *                    |   |
3687  * sched_tick_start() |   | sched_tick_stop()
3688  *                    |   |
3689  *                    V   |
3690  *          TICK_SCHED_REMOTE_RUNNING
3691  *
3692  *
3693  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3694  * and sched_tick_start() are happy to leave the state in RUNNING.
3695  */
3696 
3697 static struct tick_work __percpu *tick_work_cpu;
3698 
3699 static void sched_tick_remote(struct work_struct *work)
3700 {
3701 	struct delayed_work *dwork = to_delayed_work(work);
3702 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3703 	int cpu = twork->cpu;
3704 	struct rq *rq = cpu_rq(cpu);
3705 	struct task_struct *curr;
3706 	struct rq_flags rf;
3707 	u64 delta;
3708 	int os;
3709 
3710 	/*
3711 	 * Handle the tick only if it appears the remote CPU is running in full
3712 	 * dynticks mode. The check is racy by nature, but missing a tick or
3713 	 * having one too much is no big deal because the scheduler tick updates
3714 	 * statistics and checks timeslices in a time-independent way, regardless
3715 	 * of when exactly it is running.
3716 	 */
3717 	if (!tick_nohz_tick_stopped_cpu(cpu))
3718 		goto out_requeue;
3719 
3720 	rq_lock_irq(rq, &rf);
3721 	curr = rq->curr;
3722 	if (cpu_is_offline(cpu))
3723 		goto out_unlock;
3724 
3725 	update_rq_clock(rq);
3726 
3727 	if (!is_idle_task(curr)) {
3728 		/*
3729 		 * Make sure the next tick runs within a reasonable
3730 		 * amount of time.
3731 		 */
3732 		delta = rq_clock_task(rq) - curr->se.exec_start;
3733 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3734 	}
3735 	curr->sched_class->task_tick(rq, curr, 0);
3736 
3737 	calc_load_nohz_remote(rq);
3738 out_unlock:
3739 	rq_unlock_irq(rq, &rf);
3740 out_requeue:
3741 
3742 	/*
3743 	 * Run the remote tick once per second (1Hz). This arbitrary
3744 	 * frequency is large enough to avoid overload but short enough
3745 	 * to keep scheduler internal stats reasonably up to date.  But
3746 	 * first update state to reflect hotplug activity if required.
3747 	 */
3748 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3749 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3750 	if (os == TICK_SCHED_REMOTE_RUNNING)
3751 		queue_delayed_work(system_unbound_wq, dwork, HZ);
3752 }
3753 
3754 static void sched_tick_start(int cpu)
3755 {
3756 	int os;
3757 	struct tick_work *twork;
3758 
3759 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3760 		return;
3761 
3762 	WARN_ON_ONCE(!tick_work_cpu);
3763 
3764 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3765 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3766 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3767 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
3768 		twork->cpu = cpu;
3769 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3770 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3771 	}
3772 }
3773 
3774 #ifdef CONFIG_HOTPLUG_CPU
3775 static void sched_tick_stop(int cpu)
3776 {
3777 	struct tick_work *twork;
3778 	int os;
3779 
3780 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3781 		return;
3782 
3783 	WARN_ON_ONCE(!tick_work_cpu);
3784 
3785 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3786 	/* There cannot be competing actions, but don't rely on stop-machine. */
3787 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3788 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3789 	/* Don't cancel, as this would mess up the state machine. */
3790 }
3791 #endif /* CONFIG_HOTPLUG_CPU */
3792 
3793 int __init sched_tick_offload_init(void)
3794 {
3795 	tick_work_cpu = alloc_percpu(struct tick_work);
3796 	BUG_ON(!tick_work_cpu);
3797 	return 0;
3798 }
3799 
3800 #else /* !CONFIG_NO_HZ_FULL */
3801 static inline void sched_tick_start(int cpu) { }
3802 static inline void sched_tick_stop(int cpu) { }
3803 #endif
3804 
3805 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3806 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3807 /*
3808  * If the value passed in is equal to the current preempt count
3809  * then we just disabled preemption. Start timing the latency.
3810  */
3811 static inline void preempt_latency_start(int val)
3812 {
3813 	if (preempt_count() == val) {
3814 		unsigned long ip = get_lock_parent_ip();
3815 #ifdef CONFIG_DEBUG_PREEMPT
3816 		current->preempt_disable_ip = ip;
3817 #endif
3818 		trace_preempt_off(CALLER_ADDR0, ip);
3819 	}
3820 }
3821 
3822 void preempt_count_add(int val)
3823 {
3824 #ifdef CONFIG_DEBUG_PREEMPT
3825 	/*
3826 	 * Underflow?
3827 	 */
3828 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3829 		return;
3830 #endif
3831 	__preempt_count_add(val);
3832 #ifdef CONFIG_DEBUG_PREEMPT
3833 	/*
3834 	 * Spinlock count overflowing soon?
3835 	 */
3836 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3837 				PREEMPT_MASK - 10);
3838 #endif
3839 	preempt_latency_start(val);
3840 }
3841 EXPORT_SYMBOL(preempt_count_add);
3842 NOKPROBE_SYMBOL(preempt_count_add);
3843 
3844 /*
3845  * If the value passed in equals to the current preempt count
3846  * then we just enabled preemption. Stop timing the latency.
3847  */
3848 static inline void preempt_latency_stop(int val)
3849 {
3850 	if (preempt_count() == val)
3851 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3852 }
3853 
3854 void preempt_count_sub(int val)
3855 {
3856 #ifdef CONFIG_DEBUG_PREEMPT
3857 	/*
3858 	 * Underflow?
3859 	 */
3860 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3861 		return;
3862 	/*
3863 	 * Is the spinlock portion underflowing?
3864 	 */
3865 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3866 			!(preempt_count() & PREEMPT_MASK)))
3867 		return;
3868 #endif
3869 
3870 	preempt_latency_stop(val);
3871 	__preempt_count_sub(val);
3872 }
3873 EXPORT_SYMBOL(preempt_count_sub);
3874 NOKPROBE_SYMBOL(preempt_count_sub);
3875 
3876 #else
3877 static inline void preempt_latency_start(int val) { }
3878 static inline void preempt_latency_stop(int val) { }
3879 #endif
3880 
3881 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3882 {
3883 #ifdef CONFIG_DEBUG_PREEMPT
3884 	return p->preempt_disable_ip;
3885 #else
3886 	return 0;
3887 #endif
3888 }
3889 
3890 /*
3891  * Print scheduling while atomic bug:
3892  */
3893 static noinline void __schedule_bug(struct task_struct *prev)
3894 {
3895 	/* Save this before calling printk(), since that will clobber it */
3896 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3897 
3898 	if (oops_in_progress)
3899 		return;
3900 
3901 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3902 		prev->comm, prev->pid, preempt_count());
3903 
3904 	debug_show_held_locks(prev);
3905 	print_modules();
3906 	if (irqs_disabled())
3907 		print_irqtrace_events(prev);
3908 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3909 	    && in_atomic_preempt_off()) {
3910 		pr_err("Preemption disabled at:");
3911 		print_ip_sym(preempt_disable_ip);
3912 		pr_cont("\n");
3913 	}
3914 	if (panic_on_warn)
3915 		panic("scheduling while atomic\n");
3916 
3917 	dump_stack();
3918 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3919 }
3920 
3921 /*
3922  * Various schedule()-time debugging checks and statistics:
3923  */
3924 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3925 {
3926 #ifdef CONFIG_SCHED_STACK_END_CHECK
3927 	if (task_stack_end_corrupted(prev))
3928 		panic("corrupted stack end detected inside scheduler\n");
3929 
3930 	if (task_scs_end_corrupted(prev))
3931 		panic("corrupted shadow stack detected inside scheduler\n");
3932 #endif
3933 
3934 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3935 	if (!preempt && prev->state && prev->non_block_count) {
3936 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3937 			prev->comm, prev->pid, prev->non_block_count);
3938 		dump_stack();
3939 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3940 	}
3941 #endif
3942 
3943 	if (unlikely(in_atomic_preempt_off())) {
3944 		__schedule_bug(prev);
3945 		preempt_count_set(PREEMPT_DISABLED);
3946 	}
3947 	rcu_sleep_check();
3948 
3949 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3950 
3951 	schedstat_inc(this_rq()->sched_count);
3952 }
3953 
3954 /*
3955  * Pick up the highest-prio task:
3956  */
3957 static inline struct task_struct *
3958 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3959 {
3960 	const struct sched_class *class;
3961 	struct task_struct *p;
3962 
3963 	/*
3964 	 * Optimization: we know that if all tasks are in the fair class we can
3965 	 * call that function directly, but only if the @prev task wasn't of a
3966 	 * higher scheduling class, because otherwise those loose the
3967 	 * opportunity to pull in more work from other CPUs.
3968 	 */
3969 	if (likely((prev->sched_class == &idle_sched_class ||
3970 		    prev->sched_class == &fair_sched_class) &&
3971 		   rq->nr_running == rq->cfs.h_nr_running)) {
3972 
3973 		p = pick_next_task_fair(rq, prev, rf);
3974 		if (unlikely(p == RETRY_TASK))
3975 			goto restart;
3976 
3977 		/* Assumes fair_sched_class->next == idle_sched_class */
3978 		if (!p) {
3979 			put_prev_task(rq, prev);
3980 			p = pick_next_task_idle(rq);
3981 		}
3982 
3983 		return p;
3984 	}
3985 
3986 restart:
3987 #ifdef CONFIG_SMP
3988 	/*
3989 	 * We must do the balancing pass before put_next_task(), such
3990 	 * that when we release the rq->lock the task is in the same
3991 	 * state as before we took rq->lock.
3992 	 *
3993 	 * We can terminate the balance pass as soon as we know there is
3994 	 * a runnable task of @class priority or higher.
3995 	 */
3996 	for_class_range(class, prev->sched_class, &idle_sched_class) {
3997 		if (class->balance(rq, prev, rf))
3998 			break;
3999 	}
4000 #endif
4001 
4002 	put_prev_task(rq, prev);
4003 
4004 	for_each_class(class) {
4005 		p = class->pick_next_task(rq);
4006 		if (p)
4007 			return p;
4008 	}
4009 
4010 	/* The idle class should always have a runnable task: */
4011 	BUG();
4012 }
4013 
4014 /*
4015  * __schedule() is the main scheduler function.
4016  *
4017  * The main means of driving the scheduler and thus entering this function are:
4018  *
4019  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4020  *
4021  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4022  *      paths. For example, see arch/x86/entry_64.S.
4023  *
4024  *      To drive preemption between tasks, the scheduler sets the flag in timer
4025  *      interrupt handler scheduler_tick().
4026  *
4027  *   3. Wakeups don't really cause entry into schedule(). They add a
4028  *      task to the run-queue and that's it.
4029  *
4030  *      Now, if the new task added to the run-queue preempts the current
4031  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4032  *      called on the nearest possible occasion:
4033  *
4034  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4035  *
4036  *         - in syscall or exception context, at the next outmost
4037  *           preempt_enable(). (this might be as soon as the wake_up()'s
4038  *           spin_unlock()!)
4039  *
4040  *         - in IRQ context, return from interrupt-handler to
4041  *           preemptible context
4042  *
4043  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4044  *         then at the next:
4045  *
4046  *          - cond_resched() call
4047  *          - explicit schedule() call
4048  *          - return from syscall or exception to user-space
4049  *          - return from interrupt-handler to user-space
4050  *
4051  * WARNING: must be called with preemption disabled!
4052  */
4053 static void __sched notrace __schedule(bool preempt)
4054 {
4055 	struct task_struct *prev, *next;
4056 	unsigned long *switch_count;
4057 	struct rq_flags rf;
4058 	struct rq *rq;
4059 	int cpu;
4060 
4061 	cpu = smp_processor_id();
4062 	rq = cpu_rq(cpu);
4063 	prev = rq->curr;
4064 
4065 	schedule_debug(prev, preempt);
4066 
4067 	if (sched_feat(HRTICK))
4068 		hrtick_clear(rq);
4069 
4070 	local_irq_disable();
4071 	rcu_note_context_switch(preempt);
4072 
4073 	/*
4074 	 * Make sure that signal_pending_state()->signal_pending() below
4075 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4076 	 * done by the caller to avoid the race with signal_wake_up().
4077 	 *
4078 	 * The membarrier system call requires a full memory barrier
4079 	 * after coming from user-space, before storing to rq->curr.
4080 	 */
4081 	rq_lock(rq, &rf);
4082 	smp_mb__after_spinlock();
4083 
4084 	/* Promote REQ to ACT */
4085 	rq->clock_update_flags <<= 1;
4086 	update_rq_clock(rq);
4087 
4088 	switch_count = &prev->nivcsw;
4089 	if (!preempt && prev->state) {
4090 		if (signal_pending_state(prev->state, prev)) {
4091 			prev->state = TASK_RUNNING;
4092 		} else {
4093 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4094 
4095 			if (prev->in_iowait) {
4096 				atomic_inc(&rq->nr_iowait);
4097 				delayacct_blkio_start();
4098 			}
4099 		}
4100 		switch_count = &prev->nvcsw;
4101 	}
4102 
4103 	next = pick_next_task(rq, prev, &rf);
4104 	clear_tsk_need_resched(prev);
4105 	clear_preempt_need_resched();
4106 
4107 	if (likely(prev != next)) {
4108 		rq->nr_switches++;
4109 		/*
4110 		 * RCU users of rcu_dereference(rq->curr) may not see
4111 		 * changes to task_struct made by pick_next_task().
4112 		 */
4113 		RCU_INIT_POINTER(rq->curr, next);
4114 		/*
4115 		 * The membarrier system call requires each architecture
4116 		 * to have a full memory barrier after updating
4117 		 * rq->curr, before returning to user-space.
4118 		 *
4119 		 * Here are the schemes providing that barrier on the
4120 		 * various architectures:
4121 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4122 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4123 		 * - finish_lock_switch() for weakly-ordered
4124 		 *   architectures where spin_unlock is a full barrier,
4125 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4126 		 *   is a RELEASE barrier),
4127 		 */
4128 		++*switch_count;
4129 
4130 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4131 
4132 		trace_sched_switch(preempt, prev, next);
4133 
4134 		/* Also unlocks the rq: */
4135 		rq = context_switch(rq, prev, next, &rf);
4136 	} else {
4137 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4138 		rq_unlock_irq(rq, &rf);
4139 	}
4140 
4141 	balance_callback(rq);
4142 }
4143 
4144 void __noreturn do_task_dead(void)
4145 {
4146 	/* Causes final put_task_struct in finish_task_switch(): */
4147 	set_special_state(TASK_DEAD);
4148 
4149 	/* Tell freezer to ignore us: */
4150 	current->flags |= PF_NOFREEZE;
4151 
4152 	__schedule(false);
4153 	BUG();
4154 
4155 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4156 	for (;;)
4157 		cpu_relax();
4158 }
4159 
4160 static inline void sched_submit_work(struct task_struct *tsk)
4161 {
4162 	if (!tsk->state)
4163 		return;
4164 
4165 	/*
4166 	 * If a worker went to sleep, notify and ask workqueue whether
4167 	 * it wants to wake up a task to maintain concurrency.
4168 	 * As this function is called inside the schedule() context,
4169 	 * we disable preemption to avoid it calling schedule() again
4170 	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4171 	 * requires it.
4172 	 */
4173 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4174 		preempt_disable();
4175 		if (tsk->flags & PF_WQ_WORKER)
4176 			wq_worker_sleeping(tsk);
4177 		else
4178 			io_wq_worker_sleeping(tsk);
4179 		preempt_enable_no_resched();
4180 	}
4181 
4182 	if (tsk_is_pi_blocked(tsk))
4183 		return;
4184 
4185 	/*
4186 	 * If we are going to sleep and we have plugged IO queued,
4187 	 * make sure to submit it to avoid deadlocks.
4188 	 */
4189 	if (blk_needs_flush_plug(tsk))
4190 		blk_schedule_flush_plug(tsk);
4191 }
4192 
4193 static void sched_update_worker(struct task_struct *tsk)
4194 {
4195 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4196 		if (tsk->flags & PF_WQ_WORKER)
4197 			wq_worker_running(tsk);
4198 		else
4199 			io_wq_worker_running(tsk);
4200 	}
4201 }
4202 
4203 asmlinkage __visible void __sched schedule(void)
4204 {
4205 	struct task_struct *tsk = current;
4206 
4207 	sched_submit_work(tsk);
4208 	do {
4209 		preempt_disable();
4210 		__schedule(false);
4211 		sched_preempt_enable_no_resched();
4212 	} while (need_resched());
4213 	sched_update_worker(tsk);
4214 }
4215 EXPORT_SYMBOL(schedule);
4216 
4217 /*
4218  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4219  * state (have scheduled out non-voluntarily) by making sure that all
4220  * tasks have either left the run queue or have gone into user space.
4221  * As idle tasks do not do either, they must not ever be preempted
4222  * (schedule out non-voluntarily).
4223  *
4224  * schedule_idle() is similar to schedule_preempt_disable() except that it
4225  * never enables preemption because it does not call sched_submit_work().
4226  */
4227 void __sched schedule_idle(void)
4228 {
4229 	/*
4230 	 * As this skips calling sched_submit_work(), which the idle task does
4231 	 * regardless because that function is a nop when the task is in a
4232 	 * TASK_RUNNING state, make sure this isn't used someplace that the
4233 	 * current task can be in any other state. Note, idle is always in the
4234 	 * TASK_RUNNING state.
4235 	 */
4236 	WARN_ON_ONCE(current->state);
4237 	do {
4238 		__schedule(false);
4239 	} while (need_resched());
4240 }
4241 
4242 #ifdef CONFIG_CONTEXT_TRACKING
4243 asmlinkage __visible void __sched schedule_user(void)
4244 {
4245 	/*
4246 	 * If we come here after a random call to set_need_resched(),
4247 	 * or we have been woken up remotely but the IPI has not yet arrived,
4248 	 * we haven't yet exited the RCU idle mode. Do it here manually until
4249 	 * we find a better solution.
4250 	 *
4251 	 * NB: There are buggy callers of this function.  Ideally we
4252 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4253 	 * too frequently to make sense yet.
4254 	 */
4255 	enum ctx_state prev_state = exception_enter();
4256 	schedule();
4257 	exception_exit(prev_state);
4258 }
4259 #endif
4260 
4261 /**
4262  * schedule_preempt_disabled - called with preemption disabled
4263  *
4264  * Returns with preemption disabled. Note: preempt_count must be 1
4265  */
4266 void __sched schedule_preempt_disabled(void)
4267 {
4268 	sched_preempt_enable_no_resched();
4269 	schedule();
4270 	preempt_disable();
4271 }
4272 
4273 static void __sched notrace preempt_schedule_common(void)
4274 {
4275 	do {
4276 		/*
4277 		 * Because the function tracer can trace preempt_count_sub()
4278 		 * and it also uses preempt_enable/disable_notrace(), if
4279 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4280 		 * by the function tracer will call this function again and
4281 		 * cause infinite recursion.
4282 		 *
4283 		 * Preemption must be disabled here before the function
4284 		 * tracer can trace. Break up preempt_disable() into two
4285 		 * calls. One to disable preemption without fear of being
4286 		 * traced. The other to still record the preemption latency,
4287 		 * which can also be traced by the function tracer.
4288 		 */
4289 		preempt_disable_notrace();
4290 		preempt_latency_start(1);
4291 		__schedule(true);
4292 		preempt_latency_stop(1);
4293 		preempt_enable_no_resched_notrace();
4294 
4295 		/*
4296 		 * Check again in case we missed a preemption opportunity
4297 		 * between schedule and now.
4298 		 */
4299 	} while (need_resched());
4300 }
4301 
4302 #ifdef CONFIG_PREEMPTION
4303 /*
4304  * This is the entry point to schedule() from in-kernel preemption
4305  * off of preempt_enable.
4306  */
4307 asmlinkage __visible void __sched notrace preempt_schedule(void)
4308 {
4309 	/*
4310 	 * If there is a non-zero preempt_count or interrupts are disabled,
4311 	 * we do not want to preempt the current task. Just return..
4312 	 */
4313 	if (likely(!preemptible()))
4314 		return;
4315 
4316 	preempt_schedule_common();
4317 }
4318 NOKPROBE_SYMBOL(preempt_schedule);
4319 EXPORT_SYMBOL(preempt_schedule);
4320 
4321 /**
4322  * preempt_schedule_notrace - preempt_schedule called by tracing
4323  *
4324  * The tracing infrastructure uses preempt_enable_notrace to prevent
4325  * recursion and tracing preempt enabling caused by the tracing
4326  * infrastructure itself. But as tracing can happen in areas coming
4327  * from userspace or just about to enter userspace, a preempt enable
4328  * can occur before user_exit() is called. This will cause the scheduler
4329  * to be called when the system is still in usermode.
4330  *
4331  * To prevent this, the preempt_enable_notrace will use this function
4332  * instead of preempt_schedule() to exit user context if needed before
4333  * calling the scheduler.
4334  */
4335 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4336 {
4337 	enum ctx_state prev_ctx;
4338 
4339 	if (likely(!preemptible()))
4340 		return;
4341 
4342 	do {
4343 		/*
4344 		 * Because the function tracer can trace preempt_count_sub()
4345 		 * and it also uses preempt_enable/disable_notrace(), if
4346 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4347 		 * by the function tracer will call this function again and
4348 		 * cause infinite recursion.
4349 		 *
4350 		 * Preemption must be disabled here before the function
4351 		 * tracer can trace. Break up preempt_disable() into two
4352 		 * calls. One to disable preemption without fear of being
4353 		 * traced. The other to still record the preemption latency,
4354 		 * which can also be traced by the function tracer.
4355 		 */
4356 		preempt_disable_notrace();
4357 		preempt_latency_start(1);
4358 		/*
4359 		 * Needs preempt disabled in case user_exit() is traced
4360 		 * and the tracer calls preempt_enable_notrace() causing
4361 		 * an infinite recursion.
4362 		 */
4363 		prev_ctx = exception_enter();
4364 		__schedule(true);
4365 		exception_exit(prev_ctx);
4366 
4367 		preempt_latency_stop(1);
4368 		preempt_enable_no_resched_notrace();
4369 	} while (need_resched());
4370 }
4371 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4372 
4373 #endif /* CONFIG_PREEMPTION */
4374 
4375 /*
4376  * This is the entry point to schedule() from kernel preemption
4377  * off of irq context.
4378  * Note, that this is called and return with irqs disabled. This will
4379  * protect us against recursive calling from irq.
4380  */
4381 asmlinkage __visible void __sched preempt_schedule_irq(void)
4382 {
4383 	enum ctx_state prev_state;
4384 
4385 	/* Catch callers which need to be fixed */
4386 	BUG_ON(preempt_count() || !irqs_disabled());
4387 
4388 	prev_state = exception_enter();
4389 
4390 	do {
4391 		preempt_disable();
4392 		local_irq_enable();
4393 		__schedule(true);
4394 		local_irq_disable();
4395 		sched_preempt_enable_no_resched();
4396 	} while (need_resched());
4397 
4398 	exception_exit(prev_state);
4399 }
4400 
4401 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4402 			  void *key)
4403 {
4404 	return try_to_wake_up(curr->private, mode, wake_flags);
4405 }
4406 EXPORT_SYMBOL(default_wake_function);
4407 
4408 #ifdef CONFIG_RT_MUTEXES
4409 
4410 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4411 {
4412 	if (pi_task)
4413 		prio = min(prio, pi_task->prio);
4414 
4415 	return prio;
4416 }
4417 
4418 static inline int rt_effective_prio(struct task_struct *p, int prio)
4419 {
4420 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4421 
4422 	return __rt_effective_prio(pi_task, prio);
4423 }
4424 
4425 /*
4426  * rt_mutex_setprio - set the current priority of a task
4427  * @p: task to boost
4428  * @pi_task: donor task
4429  *
4430  * This function changes the 'effective' priority of a task. It does
4431  * not touch ->normal_prio like __setscheduler().
4432  *
4433  * Used by the rt_mutex code to implement priority inheritance
4434  * logic. Call site only calls if the priority of the task changed.
4435  */
4436 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4437 {
4438 	int prio, oldprio, queued, running, queue_flag =
4439 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4440 	const struct sched_class *prev_class;
4441 	struct rq_flags rf;
4442 	struct rq *rq;
4443 
4444 	/* XXX used to be waiter->prio, not waiter->task->prio */
4445 	prio = __rt_effective_prio(pi_task, p->normal_prio);
4446 
4447 	/*
4448 	 * If nothing changed; bail early.
4449 	 */
4450 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4451 		return;
4452 
4453 	rq = __task_rq_lock(p, &rf);
4454 	update_rq_clock(rq);
4455 	/*
4456 	 * Set under pi_lock && rq->lock, such that the value can be used under
4457 	 * either lock.
4458 	 *
4459 	 * Note that there is loads of tricky to make this pointer cache work
4460 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4461 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4462 	 * task is allowed to run again (and can exit). This ensures the pointer
4463 	 * points to a blocked task -- which guaratees the task is present.
4464 	 */
4465 	p->pi_top_task = pi_task;
4466 
4467 	/*
4468 	 * For FIFO/RR we only need to set prio, if that matches we're done.
4469 	 */
4470 	if (prio == p->prio && !dl_prio(prio))
4471 		goto out_unlock;
4472 
4473 	/*
4474 	 * Idle task boosting is a nono in general. There is one
4475 	 * exception, when PREEMPT_RT and NOHZ is active:
4476 	 *
4477 	 * The idle task calls get_next_timer_interrupt() and holds
4478 	 * the timer wheel base->lock on the CPU and another CPU wants
4479 	 * to access the timer (probably to cancel it). We can safely
4480 	 * ignore the boosting request, as the idle CPU runs this code
4481 	 * with interrupts disabled and will complete the lock
4482 	 * protected section without being interrupted. So there is no
4483 	 * real need to boost.
4484 	 */
4485 	if (unlikely(p == rq->idle)) {
4486 		WARN_ON(p != rq->curr);
4487 		WARN_ON(p->pi_blocked_on);
4488 		goto out_unlock;
4489 	}
4490 
4491 	trace_sched_pi_setprio(p, pi_task);
4492 	oldprio = p->prio;
4493 
4494 	if (oldprio == prio)
4495 		queue_flag &= ~DEQUEUE_MOVE;
4496 
4497 	prev_class = p->sched_class;
4498 	queued = task_on_rq_queued(p);
4499 	running = task_current(rq, p);
4500 	if (queued)
4501 		dequeue_task(rq, p, queue_flag);
4502 	if (running)
4503 		put_prev_task(rq, p);
4504 
4505 	/*
4506 	 * Boosting condition are:
4507 	 * 1. -rt task is running and holds mutex A
4508 	 *      --> -dl task blocks on mutex A
4509 	 *
4510 	 * 2. -dl task is running and holds mutex A
4511 	 *      --> -dl task blocks on mutex A and could preempt the
4512 	 *          running task
4513 	 */
4514 	if (dl_prio(prio)) {
4515 		if (!dl_prio(p->normal_prio) ||
4516 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4517 			p->dl.dl_boosted = 1;
4518 			queue_flag |= ENQUEUE_REPLENISH;
4519 		} else
4520 			p->dl.dl_boosted = 0;
4521 		p->sched_class = &dl_sched_class;
4522 	} else if (rt_prio(prio)) {
4523 		if (dl_prio(oldprio))
4524 			p->dl.dl_boosted = 0;
4525 		if (oldprio < prio)
4526 			queue_flag |= ENQUEUE_HEAD;
4527 		p->sched_class = &rt_sched_class;
4528 	} else {
4529 		if (dl_prio(oldprio))
4530 			p->dl.dl_boosted = 0;
4531 		if (rt_prio(oldprio))
4532 			p->rt.timeout = 0;
4533 		p->sched_class = &fair_sched_class;
4534 	}
4535 
4536 	p->prio = prio;
4537 
4538 	if (queued)
4539 		enqueue_task(rq, p, queue_flag);
4540 	if (running)
4541 		set_next_task(rq, p);
4542 
4543 	check_class_changed(rq, p, prev_class, oldprio);
4544 out_unlock:
4545 	/* Avoid rq from going away on us: */
4546 	preempt_disable();
4547 	__task_rq_unlock(rq, &rf);
4548 
4549 	balance_callback(rq);
4550 	preempt_enable();
4551 }
4552 #else
4553 static inline int rt_effective_prio(struct task_struct *p, int prio)
4554 {
4555 	return prio;
4556 }
4557 #endif
4558 
4559 void set_user_nice(struct task_struct *p, long nice)
4560 {
4561 	bool queued, running;
4562 	int old_prio;
4563 	struct rq_flags rf;
4564 	struct rq *rq;
4565 
4566 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4567 		return;
4568 	/*
4569 	 * We have to be careful, if called from sys_setpriority(),
4570 	 * the task might be in the middle of scheduling on another CPU.
4571 	 */
4572 	rq = task_rq_lock(p, &rf);
4573 	update_rq_clock(rq);
4574 
4575 	/*
4576 	 * The RT priorities are set via sched_setscheduler(), but we still
4577 	 * allow the 'normal' nice value to be set - but as expected
4578 	 * it wont have any effect on scheduling until the task is
4579 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4580 	 */
4581 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4582 		p->static_prio = NICE_TO_PRIO(nice);
4583 		goto out_unlock;
4584 	}
4585 	queued = task_on_rq_queued(p);
4586 	running = task_current(rq, p);
4587 	if (queued)
4588 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4589 	if (running)
4590 		put_prev_task(rq, p);
4591 
4592 	p->static_prio = NICE_TO_PRIO(nice);
4593 	set_load_weight(p, true);
4594 	old_prio = p->prio;
4595 	p->prio = effective_prio(p);
4596 
4597 	if (queued)
4598 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4599 	if (running)
4600 		set_next_task(rq, p);
4601 
4602 	/*
4603 	 * If the task increased its priority or is running and
4604 	 * lowered its priority, then reschedule its CPU:
4605 	 */
4606 	p->sched_class->prio_changed(rq, p, old_prio);
4607 
4608 out_unlock:
4609 	task_rq_unlock(rq, p, &rf);
4610 }
4611 EXPORT_SYMBOL(set_user_nice);
4612 
4613 /*
4614  * can_nice - check if a task can reduce its nice value
4615  * @p: task
4616  * @nice: nice value
4617  */
4618 int can_nice(const struct task_struct *p, const int nice)
4619 {
4620 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
4621 	int nice_rlim = nice_to_rlimit(nice);
4622 
4623 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4624 		capable(CAP_SYS_NICE));
4625 }
4626 
4627 #ifdef __ARCH_WANT_SYS_NICE
4628 
4629 /*
4630  * sys_nice - change the priority of the current process.
4631  * @increment: priority increment
4632  *
4633  * sys_setpriority is a more generic, but much slower function that
4634  * does similar things.
4635  */
4636 SYSCALL_DEFINE1(nice, int, increment)
4637 {
4638 	long nice, retval;
4639 
4640 	/*
4641 	 * Setpriority might change our priority at the same moment.
4642 	 * We don't have to worry. Conceptually one call occurs first
4643 	 * and we have a single winner.
4644 	 */
4645 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4646 	nice = task_nice(current) + increment;
4647 
4648 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4649 	if (increment < 0 && !can_nice(current, nice))
4650 		return -EPERM;
4651 
4652 	retval = security_task_setnice(current, nice);
4653 	if (retval)
4654 		return retval;
4655 
4656 	set_user_nice(current, nice);
4657 	return 0;
4658 }
4659 
4660 #endif
4661 
4662 /**
4663  * task_prio - return the priority value of a given task.
4664  * @p: the task in question.
4665  *
4666  * Return: The priority value as seen by users in /proc.
4667  * RT tasks are offset by -200. Normal tasks are centered
4668  * around 0, value goes from -16 to +15.
4669  */
4670 int task_prio(const struct task_struct *p)
4671 {
4672 	return p->prio - MAX_RT_PRIO;
4673 }
4674 
4675 /**
4676  * idle_cpu - is a given CPU idle currently?
4677  * @cpu: the processor in question.
4678  *
4679  * Return: 1 if the CPU is currently idle. 0 otherwise.
4680  */
4681 int idle_cpu(int cpu)
4682 {
4683 	struct rq *rq = cpu_rq(cpu);
4684 
4685 	if (rq->curr != rq->idle)
4686 		return 0;
4687 
4688 	if (rq->nr_running)
4689 		return 0;
4690 
4691 #ifdef CONFIG_SMP
4692 	if (!llist_empty(&rq->wake_list))
4693 		return 0;
4694 #endif
4695 
4696 	return 1;
4697 }
4698 
4699 /**
4700  * available_idle_cpu - is a given CPU idle for enqueuing work.
4701  * @cpu: the CPU in question.
4702  *
4703  * Return: 1 if the CPU is currently idle. 0 otherwise.
4704  */
4705 int available_idle_cpu(int cpu)
4706 {
4707 	if (!idle_cpu(cpu))
4708 		return 0;
4709 
4710 	if (vcpu_is_preempted(cpu))
4711 		return 0;
4712 
4713 	return 1;
4714 }
4715 
4716 /**
4717  * idle_task - return the idle task for a given CPU.
4718  * @cpu: the processor in question.
4719  *
4720  * Return: The idle task for the CPU @cpu.
4721  */
4722 struct task_struct *idle_task(int cpu)
4723 {
4724 	return cpu_rq(cpu)->idle;
4725 }
4726 
4727 /**
4728  * find_process_by_pid - find a process with a matching PID value.
4729  * @pid: the pid in question.
4730  *
4731  * The task of @pid, if found. %NULL otherwise.
4732  */
4733 static struct task_struct *find_process_by_pid(pid_t pid)
4734 {
4735 	return pid ? find_task_by_vpid(pid) : current;
4736 }
4737 
4738 /*
4739  * sched_setparam() passes in -1 for its policy, to let the functions
4740  * it calls know not to change it.
4741  */
4742 #define SETPARAM_POLICY	-1
4743 
4744 static void __setscheduler_params(struct task_struct *p,
4745 		const struct sched_attr *attr)
4746 {
4747 	int policy = attr->sched_policy;
4748 
4749 	if (policy == SETPARAM_POLICY)
4750 		policy = p->policy;
4751 
4752 	p->policy = policy;
4753 
4754 	if (dl_policy(policy))
4755 		__setparam_dl(p, attr);
4756 	else if (fair_policy(policy))
4757 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4758 
4759 	/*
4760 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4761 	 * !rt_policy. Always setting this ensures that things like
4762 	 * getparam()/getattr() don't report silly values for !rt tasks.
4763 	 */
4764 	p->rt_priority = attr->sched_priority;
4765 	p->normal_prio = normal_prio(p);
4766 	set_load_weight(p, true);
4767 }
4768 
4769 /* Actually do priority change: must hold pi & rq lock. */
4770 static void __setscheduler(struct rq *rq, struct task_struct *p,
4771 			   const struct sched_attr *attr, bool keep_boost)
4772 {
4773 	/*
4774 	 * If params can't change scheduling class changes aren't allowed
4775 	 * either.
4776 	 */
4777 	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4778 		return;
4779 
4780 	__setscheduler_params(p, attr);
4781 
4782 	/*
4783 	 * Keep a potential priority boosting if called from
4784 	 * sched_setscheduler().
4785 	 */
4786 	p->prio = normal_prio(p);
4787 	if (keep_boost)
4788 		p->prio = rt_effective_prio(p, p->prio);
4789 
4790 	if (dl_prio(p->prio))
4791 		p->sched_class = &dl_sched_class;
4792 	else if (rt_prio(p->prio))
4793 		p->sched_class = &rt_sched_class;
4794 	else
4795 		p->sched_class = &fair_sched_class;
4796 }
4797 
4798 /*
4799  * Check the target process has a UID that matches the current process's:
4800  */
4801 static bool check_same_owner(struct task_struct *p)
4802 {
4803 	const struct cred *cred = current_cred(), *pcred;
4804 	bool match;
4805 
4806 	rcu_read_lock();
4807 	pcred = __task_cred(p);
4808 	match = (uid_eq(cred->euid, pcred->euid) ||
4809 		 uid_eq(cred->euid, pcred->uid));
4810 	rcu_read_unlock();
4811 	return match;
4812 }
4813 
4814 static int __sched_setscheduler(struct task_struct *p,
4815 				const struct sched_attr *attr,
4816 				bool user, bool pi)
4817 {
4818 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4819 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4820 	int retval, oldprio, oldpolicy = -1, queued, running;
4821 	int new_effective_prio, policy = attr->sched_policy;
4822 	const struct sched_class *prev_class;
4823 	struct rq_flags rf;
4824 	int reset_on_fork;
4825 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4826 	struct rq *rq;
4827 
4828 	/* The pi code expects interrupts enabled */
4829 	BUG_ON(pi && in_interrupt());
4830 recheck:
4831 	/* Double check policy once rq lock held: */
4832 	if (policy < 0) {
4833 		reset_on_fork = p->sched_reset_on_fork;
4834 		policy = oldpolicy = p->policy;
4835 	} else {
4836 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4837 
4838 		if (!valid_policy(policy))
4839 			return -EINVAL;
4840 	}
4841 
4842 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4843 		return -EINVAL;
4844 
4845 	/*
4846 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4847 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4848 	 * SCHED_BATCH and SCHED_IDLE is 0.
4849 	 */
4850 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4851 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4852 		return -EINVAL;
4853 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4854 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4855 		return -EINVAL;
4856 
4857 	/*
4858 	 * Allow unprivileged RT tasks to decrease priority:
4859 	 */
4860 	if (user && !capable(CAP_SYS_NICE)) {
4861 		if (fair_policy(policy)) {
4862 			if (attr->sched_nice < task_nice(p) &&
4863 			    !can_nice(p, attr->sched_nice))
4864 				return -EPERM;
4865 		}
4866 
4867 		if (rt_policy(policy)) {
4868 			unsigned long rlim_rtprio =
4869 					task_rlimit(p, RLIMIT_RTPRIO);
4870 
4871 			/* Can't set/change the rt policy: */
4872 			if (policy != p->policy && !rlim_rtprio)
4873 				return -EPERM;
4874 
4875 			/* Can't increase priority: */
4876 			if (attr->sched_priority > p->rt_priority &&
4877 			    attr->sched_priority > rlim_rtprio)
4878 				return -EPERM;
4879 		}
4880 
4881 		 /*
4882 		  * Can't set/change SCHED_DEADLINE policy at all for now
4883 		  * (safest behavior); in the future we would like to allow
4884 		  * unprivileged DL tasks to increase their relative deadline
4885 		  * or reduce their runtime (both ways reducing utilization)
4886 		  */
4887 		if (dl_policy(policy))
4888 			return -EPERM;
4889 
4890 		/*
4891 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4892 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4893 		 */
4894 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
4895 			if (!can_nice(p, task_nice(p)))
4896 				return -EPERM;
4897 		}
4898 
4899 		/* Can't change other user's priorities: */
4900 		if (!check_same_owner(p))
4901 			return -EPERM;
4902 
4903 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4904 		if (p->sched_reset_on_fork && !reset_on_fork)
4905 			return -EPERM;
4906 	}
4907 
4908 	if (user) {
4909 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4910 			return -EINVAL;
4911 
4912 		retval = security_task_setscheduler(p);
4913 		if (retval)
4914 			return retval;
4915 	}
4916 
4917 	/* Update task specific "requested" clamps */
4918 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4919 		retval = uclamp_validate(p, attr);
4920 		if (retval)
4921 			return retval;
4922 	}
4923 
4924 	if (pi)
4925 		cpuset_read_lock();
4926 
4927 	/*
4928 	 * Make sure no PI-waiters arrive (or leave) while we are
4929 	 * changing the priority of the task:
4930 	 *
4931 	 * To be able to change p->policy safely, the appropriate
4932 	 * runqueue lock must be held.
4933 	 */
4934 	rq = task_rq_lock(p, &rf);
4935 	update_rq_clock(rq);
4936 
4937 	/*
4938 	 * Changing the policy of the stop threads its a very bad idea:
4939 	 */
4940 	if (p == rq->stop) {
4941 		retval = -EINVAL;
4942 		goto unlock;
4943 	}
4944 
4945 	/*
4946 	 * If not changing anything there's no need to proceed further,
4947 	 * but store a possible modification of reset_on_fork.
4948 	 */
4949 	if (unlikely(policy == p->policy)) {
4950 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4951 			goto change;
4952 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4953 			goto change;
4954 		if (dl_policy(policy) && dl_param_changed(p, attr))
4955 			goto change;
4956 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4957 			goto change;
4958 
4959 		p->sched_reset_on_fork = reset_on_fork;
4960 		retval = 0;
4961 		goto unlock;
4962 	}
4963 change:
4964 
4965 	if (user) {
4966 #ifdef CONFIG_RT_GROUP_SCHED
4967 		/*
4968 		 * Do not allow realtime tasks into groups that have no runtime
4969 		 * assigned.
4970 		 */
4971 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4972 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4973 				!task_group_is_autogroup(task_group(p))) {
4974 			retval = -EPERM;
4975 			goto unlock;
4976 		}
4977 #endif
4978 #ifdef CONFIG_SMP
4979 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4980 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4981 			cpumask_t *span = rq->rd->span;
4982 
4983 			/*
4984 			 * Don't allow tasks with an affinity mask smaller than
4985 			 * the entire root_domain to become SCHED_DEADLINE. We
4986 			 * will also fail if there's no bandwidth available.
4987 			 */
4988 			if (!cpumask_subset(span, p->cpus_ptr) ||
4989 			    rq->rd->dl_bw.bw == 0) {
4990 				retval = -EPERM;
4991 				goto unlock;
4992 			}
4993 		}
4994 #endif
4995 	}
4996 
4997 	/* Re-check policy now with rq lock held: */
4998 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4999 		policy = oldpolicy = -1;
5000 		task_rq_unlock(rq, p, &rf);
5001 		if (pi)
5002 			cpuset_read_unlock();
5003 		goto recheck;
5004 	}
5005 
5006 	/*
5007 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5008 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5009 	 * is available.
5010 	 */
5011 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5012 		retval = -EBUSY;
5013 		goto unlock;
5014 	}
5015 
5016 	p->sched_reset_on_fork = reset_on_fork;
5017 	oldprio = p->prio;
5018 
5019 	if (pi) {
5020 		/*
5021 		 * Take priority boosted tasks into account. If the new
5022 		 * effective priority is unchanged, we just store the new
5023 		 * normal parameters and do not touch the scheduler class and
5024 		 * the runqueue. This will be done when the task deboost
5025 		 * itself.
5026 		 */
5027 		new_effective_prio = rt_effective_prio(p, newprio);
5028 		if (new_effective_prio == oldprio)
5029 			queue_flags &= ~DEQUEUE_MOVE;
5030 	}
5031 
5032 	queued = task_on_rq_queued(p);
5033 	running = task_current(rq, p);
5034 	if (queued)
5035 		dequeue_task(rq, p, queue_flags);
5036 	if (running)
5037 		put_prev_task(rq, p);
5038 
5039 	prev_class = p->sched_class;
5040 
5041 	__setscheduler(rq, p, attr, pi);
5042 	__setscheduler_uclamp(p, attr);
5043 
5044 	if (queued) {
5045 		/*
5046 		 * We enqueue to tail when the priority of a task is
5047 		 * increased (user space view).
5048 		 */
5049 		if (oldprio < p->prio)
5050 			queue_flags |= ENQUEUE_HEAD;
5051 
5052 		enqueue_task(rq, p, queue_flags);
5053 	}
5054 	if (running)
5055 		set_next_task(rq, p);
5056 
5057 	check_class_changed(rq, p, prev_class, oldprio);
5058 
5059 	/* Avoid rq from going away on us: */
5060 	preempt_disable();
5061 	task_rq_unlock(rq, p, &rf);
5062 
5063 	if (pi) {
5064 		cpuset_read_unlock();
5065 		rt_mutex_adjust_pi(p);
5066 	}
5067 
5068 	/* Run balance callbacks after we've adjusted the PI chain: */
5069 	balance_callback(rq);
5070 	preempt_enable();
5071 
5072 	return 0;
5073 
5074 unlock:
5075 	task_rq_unlock(rq, p, &rf);
5076 	if (pi)
5077 		cpuset_read_unlock();
5078 	return retval;
5079 }
5080 
5081 static int _sched_setscheduler(struct task_struct *p, int policy,
5082 			       const struct sched_param *param, bool check)
5083 {
5084 	struct sched_attr attr = {
5085 		.sched_policy   = policy,
5086 		.sched_priority = param->sched_priority,
5087 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5088 	};
5089 
5090 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5091 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5092 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5093 		policy &= ~SCHED_RESET_ON_FORK;
5094 		attr.sched_policy = policy;
5095 	}
5096 
5097 	return __sched_setscheduler(p, &attr, check, true);
5098 }
5099 /**
5100  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5101  * @p: the task in question.
5102  * @policy: new policy.
5103  * @param: structure containing the new RT priority.
5104  *
5105  * Return: 0 on success. An error code otherwise.
5106  *
5107  * NOTE that the task may be already dead.
5108  */
5109 int sched_setscheduler(struct task_struct *p, int policy,
5110 		       const struct sched_param *param)
5111 {
5112 	return _sched_setscheduler(p, policy, param, true);
5113 }
5114 EXPORT_SYMBOL_GPL(sched_setscheduler);
5115 
5116 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5117 {
5118 	return __sched_setscheduler(p, attr, true, true);
5119 }
5120 EXPORT_SYMBOL_GPL(sched_setattr);
5121 
5122 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5123 {
5124 	return __sched_setscheduler(p, attr, false, true);
5125 }
5126 
5127 /**
5128  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5129  * @p: the task in question.
5130  * @policy: new policy.
5131  * @param: structure containing the new RT priority.
5132  *
5133  * Just like sched_setscheduler, only don't bother checking if the
5134  * current context has permission.  For example, this is needed in
5135  * stop_machine(): we create temporary high priority worker threads,
5136  * but our caller might not have that capability.
5137  *
5138  * Return: 0 on success. An error code otherwise.
5139  */
5140 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5141 			       const struct sched_param *param)
5142 {
5143 	return _sched_setscheduler(p, policy, param, false);
5144 }
5145 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5146 
5147 static int
5148 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5149 {
5150 	struct sched_param lparam;
5151 	struct task_struct *p;
5152 	int retval;
5153 
5154 	if (!param || pid < 0)
5155 		return -EINVAL;
5156 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5157 		return -EFAULT;
5158 
5159 	rcu_read_lock();
5160 	retval = -ESRCH;
5161 	p = find_process_by_pid(pid);
5162 	if (likely(p))
5163 		get_task_struct(p);
5164 	rcu_read_unlock();
5165 
5166 	if (likely(p)) {
5167 		retval = sched_setscheduler(p, policy, &lparam);
5168 		put_task_struct(p);
5169 	}
5170 
5171 	return retval;
5172 }
5173 
5174 /*
5175  * Mimics kernel/events/core.c perf_copy_attr().
5176  */
5177 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5178 {
5179 	u32 size;
5180 	int ret;
5181 
5182 	/* Zero the full structure, so that a short copy will be nice: */
5183 	memset(attr, 0, sizeof(*attr));
5184 
5185 	ret = get_user(size, &uattr->size);
5186 	if (ret)
5187 		return ret;
5188 
5189 	/* ABI compatibility quirk: */
5190 	if (!size)
5191 		size = SCHED_ATTR_SIZE_VER0;
5192 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5193 		goto err_size;
5194 
5195 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5196 	if (ret) {
5197 		if (ret == -E2BIG)
5198 			goto err_size;
5199 		return ret;
5200 	}
5201 
5202 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5203 	    size < SCHED_ATTR_SIZE_VER1)
5204 		return -EINVAL;
5205 
5206 	/*
5207 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5208 	 * to be strict and return an error on out-of-bounds values?
5209 	 */
5210 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5211 
5212 	return 0;
5213 
5214 err_size:
5215 	put_user(sizeof(*attr), &uattr->size);
5216 	return -E2BIG;
5217 }
5218 
5219 /**
5220  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5221  * @pid: the pid in question.
5222  * @policy: new policy.
5223  * @param: structure containing the new RT priority.
5224  *
5225  * Return: 0 on success. An error code otherwise.
5226  */
5227 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5228 {
5229 	if (policy < 0)
5230 		return -EINVAL;
5231 
5232 	return do_sched_setscheduler(pid, policy, param);
5233 }
5234 
5235 /**
5236  * sys_sched_setparam - set/change the RT priority of a thread
5237  * @pid: the pid in question.
5238  * @param: structure containing the new RT priority.
5239  *
5240  * Return: 0 on success. An error code otherwise.
5241  */
5242 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5243 {
5244 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5245 }
5246 
5247 /**
5248  * sys_sched_setattr - same as above, but with extended sched_attr
5249  * @pid: the pid in question.
5250  * @uattr: structure containing the extended parameters.
5251  * @flags: for future extension.
5252  */
5253 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5254 			       unsigned int, flags)
5255 {
5256 	struct sched_attr attr;
5257 	struct task_struct *p;
5258 	int retval;
5259 
5260 	if (!uattr || pid < 0 || flags)
5261 		return -EINVAL;
5262 
5263 	retval = sched_copy_attr(uattr, &attr);
5264 	if (retval)
5265 		return retval;
5266 
5267 	if ((int)attr.sched_policy < 0)
5268 		return -EINVAL;
5269 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5270 		attr.sched_policy = SETPARAM_POLICY;
5271 
5272 	rcu_read_lock();
5273 	retval = -ESRCH;
5274 	p = find_process_by_pid(pid);
5275 	if (likely(p))
5276 		get_task_struct(p);
5277 	rcu_read_unlock();
5278 
5279 	if (likely(p)) {
5280 		retval = sched_setattr(p, &attr);
5281 		put_task_struct(p);
5282 	}
5283 
5284 	return retval;
5285 }
5286 
5287 /**
5288  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5289  * @pid: the pid in question.
5290  *
5291  * Return: On success, the policy of the thread. Otherwise, a negative error
5292  * code.
5293  */
5294 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5295 {
5296 	struct task_struct *p;
5297 	int retval;
5298 
5299 	if (pid < 0)
5300 		return -EINVAL;
5301 
5302 	retval = -ESRCH;
5303 	rcu_read_lock();
5304 	p = find_process_by_pid(pid);
5305 	if (p) {
5306 		retval = security_task_getscheduler(p);
5307 		if (!retval)
5308 			retval = p->policy
5309 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5310 	}
5311 	rcu_read_unlock();
5312 	return retval;
5313 }
5314 
5315 /**
5316  * sys_sched_getparam - get the RT priority of a thread
5317  * @pid: the pid in question.
5318  * @param: structure containing the RT priority.
5319  *
5320  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5321  * code.
5322  */
5323 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5324 {
5325 	struct sched_param lp = { .sched_priority = 0 };
5326 	struct task_struct *p;
5327 	int retval;
5328 
5329 	if (!param || pid < 0)
5330 		return -EINVAL;
5331 
5332 	rcu_read_lock();
5333 	p = find_process_by_pid(pid);
5334 	retval = -ESRCH;
5335 	if (!p)
5336 		goto out_unlock;
5337 
5338 	retval = security_task_getscheduler(p);
5339 	if (retval)
5340 		goto out_unlock;
5341 
5342 	if (task_has_rt_policy(p))
5343 		lp.sched_priority = p->rt_priority;
5344 	rcu_read_unlock();
5345 
5346 	/*
5347 	 * This one might sleep, we cannot do it with a spinlock held ...
5348 	 */
5349 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5350 
5351 	return retval;
5352 
5353 out_unlock:
5354 	rcu_read_unlock();
5355 	return retval;
5356 }
5357 
5358 /*
5359  * Copy the kernel size attribute structure (which might be larger
5360  * than what user-space knows about) to user-space.
5361  *
5362  * Note that all cases are valid: user-space buffer can be larger or
5363  * smaller than the kernel-space buffer. The usual case is that both
5364  * have the same size.
5365  */
5366 static int
5367 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5368 			struct sched_attr *kattr,
5369 			unsigned int usize)
5370 {
5371 	unsigned int ksize = sizeof(*kattr);
5372 
5373 	if (!access_ok(uattr, usize))
5374 		return -EFAULT;
5375 
5376 	/*
5377 	 * sched_getattr() ABI forwards and backwards compatibility:
5378 	 *
5379 	 * If usize == ksize then we just copy everything to user-space and all is good.
5380 	 *
5381 	 * If usize < ksize then we only copy as much as user-space has space for,
5382 	 * this keeps ABI compatibility as well. We skip the rest.
5383 	 *
5384 	 * If usize > ksize then user-space is using a newer version of the ABI,
5385 	 * which part the kernel doesn't know about. Just ignore it - tooling can
5386 	 * detect the kernel's knowledge of attributes from the attr->size value
5387 	 * which is set to ksize in this case.
5388 	 */
5389 	kattr->size = min(usize, ksize);
5390 
5391 	if (copy_to_user(uattr, kattr, kattr->size))
5392 		return -EFAULT;
5393 
5394 	return 0;
5395 }
5396 
5397 /**
5398  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5399  * @pid: the pid in question.
5400  * @uattr: structure containing the extended parameters.
5401  * @usize: sizeof(attr) for fwd/bwd comp.
5402  * @flags: for future extension.
5403  */
5404 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5405 		unsigned int, usize, unsigned int, flags)
5406 {
5407 	struct sched_attr kattr = { };
5408 	struct task_struct *p;
5409 	int retval;
5410 
5411 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5412 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5413 		return -EINVAL;
5414 
5415 	rcu_read_lock();
5416 	p = find_process_by_pid(pid);
5417 	retval = -ESRCH;
5418 	if (!p)
5419 		goto out_unlock;
5420 
5421 	retval = security_task_getscheduler(p);
5422 	if (retval)
5423 		goto out_unlock;
5424 
5425 	kattr.sched_policy = p->policy;
5426 	if (p->sched_reset_on_fork)
5427 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5428 	if (task_has_dl_policy(p))
5429 		__getparam_dl(p, &kattr);
5430 	else if (task_has_rt_policy(p))
5431 		kattr.sched_priority = p->rt_priority;
5432 	else
5433 		kattr.sched_nice = task_nice(p);
5434 
5435 #ifdef CONFIG_UCLAMP_TASK
5436 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5437 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5438 #endif
5439 
5440 	rcu_read_unlock();
5441 
5442 	return sched_attr_copy_to_user(uattr, &kattr, usize);
5443 
5444 out_unlock:
5445 	rcu_read_unlock();
5446 	return retval;
5447 }
5448 
5449 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5450 {
5451 	cpumask_var_t cpus_allowed, new_mask;
5452 	struct task_struct *p;
5453 	int retval;
5454 
5455 	rcu_read_lock();
5456 
5457 	p = find_process_by_pid(pid);
5458 	if (!p) {
5459 		rcu_read_unlock();
5460 		return -ESRCH;
5461 	}
5462 
5463 	/* Prevent p going away */
5464 	get_task_struct(p);
5465 	rcu_read_unlock();
5466 
5467 	if (p->flags & PF_NO_SETAFFINITY) {
5468 		retval = -EINVAL;
5469 		goto out_put_task;
5470 	}
5471 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5472 		retval = -ENOMEM;
5473 		goto out_put_task;
5474 	}
5475 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5476 		retval = -ENOMEM;
5477 		goto out_free_cpus_allowed;
5478 	}
5479 	retval = -EPERM;
5480 	if (!check_same_owner(p)) {
5481 		rcu_read_lock();
5482 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5483 			rcu_read_unlock();
5484 			goto out_free_new_mask;
5485 		}
5486 		rcu_read_unlock();
5487 	}
5488 
5489 	retval = security_task_setscheduler(p);
5490 	if (retval)
5491 		goto out_free_new_mask;
5492 
5493 
5494 	cpuset_cpus_allowed(p, cpus_allowed);
5495 	cpumask_and(new_mask, in_mask, cpus_allowed);
5496 
5497 	/*
5498 	 * Since bandwidth control happens on root_domain basis,
5499 	 * if admission test is enabled, we only admit -deadline
5500 	 * tasks allowed to run on all the CPUs in the task's
5501 	 * root_domain.
5502 	 */
5503 #ifdef CONFIG_SMP
5504 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5505 		rcu_read_lock();
5506 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5507 			retval = -EBUSY;
5508 			rcu_read_unlock();
5509 			goto out_free_new_mask;
5510 		}
5511 		rcu_read_unlock();
5512 	}
5513 #endif
5514 again:
5515 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5516 
5517 	if (!retval) {
5518 		cpuset_cpus_allowed(p, cpus_allowed);
5519 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5520 			/*
5521 			 * We must have raced with a concurrent cpuset
5522 			 * update. Just reset the cpus_allowed to the
5523 			 * cpuset's cpus_allowed
5524 			 */
5525 			cpumask_copy(new_mask, cpus_allowed);
5526 			goto again;
5527 		}
5528 	}
5529 out_free_new_mask:
5530 	free_cpumask_var(new_mask);
5531 out_free_cpus_allowed:
5532 	free_cpumask_var(cpus_allowed);
5533 out_put_task:
5534 	put_task_struct(p);
5535 	return retval;
5536 }
5537 
5538 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5539 			     struct cpumask *new_mask)
5540 {
5541 	if (len < cpumask_size())
5542 		cpumask_clear(new_mask);
5543 	else if (len > cpumask_size())
5544 		len = cpumask_size();
5545 
5546 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5547 }
5548 
5549 /**
5550  * sys_sched_setaffinity - set the CPU affinity of a process
5551  * @pid: pid of the process
5552  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5553  * @user_mask_ptr: user-space pointer to the new CPU mask
5554  *
5555  * Return: 0 on success. An error code otherwise.
5556  */
5557 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5558 		unsigned long __user *, user_mask_ptr)
5559 {
5560 	cpumask_var_t new_mask;
5561 	int retval;
5562 
5563 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5564 		return -ENOMEM;
5565 
5566 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5567 	if (retval == 0)
5568 		retval = sched_setaffinity(pid, new_mask);
5569 	free_cpumask_var(new_mask);
5570 	return retval;
5571 }
5572 
5573 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5574 {
5575 	struct task_struct *p;
5576 	unsigned long flags;
5577 	int retval;
5578 
5579 	rcu_read_lock();
5580 
5581 	retval = -ESRCH;
5582 	p = find_process_by_pid(pid);
5583 	if (!p)
5584 		goto out_unlock;
5585 
5586 	retval = security_task_getscheduler(p);
5587 	if (retval)
5588 		goto out_unlock;
5589 
5590 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5591 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5592 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5593 
5594 out_unlock:
5595 	rcu_read_unlock();
5596 
5597 	return retval;
5598 }
5599 
5600 /**
5601  * sys_sched_getaffinity - get the CPU affinity of a process
5602  * @pid: pid of the process
5603  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5604  * @user_mask_ptr: user-space pointer to hold the current CPU mask
5605  *
5606  * Return: size of CPU mask copied to user_mask_ptr on success. An
5607  * error code otherwise.
5608  */
5609 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5610 		unsigned long __user *, user_mask_ptr)
5611 {
5612 	int ret;
5613 	cpumask_var_t mask;
5614 
5615 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5616 		return -EINVAL;
5617 	if (len & (sizeof(unsigned long)-1))
5618 		return -EINVAL;
5619 
5620 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5621 		return -ENOMEM;
5622 
5623 	ret = sched_getaffinity(pid, mask);
5624 	if (ret == 0) {
5625 		unsigned int retlen = min(len, cpumask_size());
5626 
5627 		if (copy_to_user(user_mask_ptr, mask, retlen))
5628 			ret = -EFAULT;
5629 		else
5630 			ret = retlen;
5631 	}
5632 	free_cpumask_var(mask);
5633 
5634 	return ret;
5635 }
5636 
5637 /**
5638  * sys_sched_yield - yield the current processor to other threads.
5639  *
5640  * This function yields the current CPU to other tasks. If there are no
5641  * other threads running on this CPU then this function will return.
5642  *
5643  * Return: 0.
5644  */
5645 static void do_sched_yield(void)
5646 {
5647 	struct rq_flags rf;
5648 	struct rq *rq;
5649 
5650 	rq = this_rq_lock_irq(&rf);
5651 
5652 	schedstat_inc(rq->yld_count);
5653 	current->sched_class->yield_task(rq);
5654 
5655 	/*
5656 	 * Since we are going to call schedule() anyway, there's
5657 	 * no need to preempt or enable interrupts:
5658 	 */
5659 	preempt_disable();
5660 	rq_unlock(rq, &rf);
5661 	sched_preempt_enable_no_resched();
5662 
5663 	schedule();
5664 }
5665 
5666 SYSCALL_DEFINE0(sched_yield)
5667 {
5668 	do_sched_yield();
5669 	return 0;
5670 }
5671 
5672 #ifndef CONFIG_PREEMPTION
5673 int __sched _cond_resched(void)
5674 {
5675 	if (should_resched(0)) {
5676 		preempt_schedule_common();
5677 		return 1;
5678 	}
5679 	rcu_all_qs();
5680 	return 0;
5681 }
5682 EXPORT_SYMBOL(_cond_resched);
5683 #endif
5684 
5685 /*
5686  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5687  * call schedule, and on return reacquire the lock.
5688  *
5689  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5690  * operations here to prevent schedule() from being called twice (once via
5691  * spin_unlock(), once by hand).
5692  */
5693 int __cond_resched_lock(spinlock_t *lock)
5694 {
5695 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5696 	int ret = 0;
5697 
5698 	lockdep_assert_held(lock);
5699 
5700 	if (spin_needbreak(lock) || resched) {
5701 		spin_unlock(lock);
5702 		if (resched)
5703 			preempt_schedule_common();
5704 		else
5705 			cpu_relax();
5706 		ret = 1;
5707 		spin_lock(lock);
5708 	}
5709 	return ret;
5710 }
5711 EXPORT_SYMBOL(__cond_resched_lock);
5712 
5713 /**
5714  * yield - yield the current processor to other threads.
5715  *
5716  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5717  *
5718  * The scheduler is at all times free to pick the calling task as the most
5719  * eligible task to run, if removing the yield() call from your code breaks
5720  * it, its already broken.
5721  *
5722  * Typical broken usage is:
5723  *
5724  * while (!event)
5725  *	yield();
5726  *
5727  * where one assumes that yield() will let 'the other' process run that will
5728  * make event true. If the current task is a SCHED_FIFO task that will never
5729  * happen. Never use yield() as a progress guarantee!!
5730  *
5731  * If you want to use yield() to wait for something, use wait_event().
5732  * If you want to use yield() to be 'nice' for others, use cond_resched().
5733  * If you still want to use yield(), do not!
5734  */
5735 void __sched yield(void)
5736 {
5737 	set_current_state(TASK_RUNNING);
5738 	do_sched_yield();
5739 }
5740 EXPORT_SYMBOL(yield);
5741 
5742 /**
5743  * yield_to - yield the current processor to another thread in
5744  * your thread group, or accelerate that thread toward the
5745  * processor it's on.
5746  * @p: target task
5747  * @preempt: whether task preemption is allowed or not
5748  *
5749  * It's the caller's job to ensure that the target task struct
5750  * can't go away on us before we can do any checks.
5751  *
5752  * Return:
5753  *	true (>0) if we indeed boosted the target task.
5754  *	false (0) if we failed to boost the target.
5755  *	-ESRCH if there's no task to yield to.
5756  */
5757 int __sched yield_to(struct task_struct *p, bool preempt)
5758 {
5759 	struct task_struct *curr = current;
5760 	struct rq *rq, *p_rq;
5761 	unsigned long flags;
5762 	int yielded = 0;
5763 
5764 	local_irq_save(flags);
5765 	rq = this_rq();
5766 
5767 again:
5768 	p_rq = task_rq(p);
5769 	/*
5770 	 * If we're the only runnable task on the rq and target rq also
5771 	 * has only one task, there's absolutely no point in yielding.
5772 	 */
5773 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5774 		yielded = -ESRCH;
5775 		goto out_irq;
5776 	}
5777 
5778 	double_rq_lock(rq, p_rq);
5779 	if (task_rq(p) != p_rq) {
5780 		double_rq_unlock(rq, p_rq);
5781 		goto again;
5782 	}
5783 
5784 	if (!curr->sched_class->yield_to_task)
5785 		goto out_unlock;
5786 
5787 	if (curr->sched_class != p->sched_class)
5788 		goto out_unlock;
5789 
5790 	if (task_running(p_rq, p) || p->state)
5791 		goto out_unlock;
5792 
5793 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5794 	if (yielded) {
5795 		schedstat_inc(rq->yld_count);
5796 		/*
5797 		 * Make p's CPU reschedule; pick_next_entity takes care of
5798 		 * fairness.
5799 		 */
5800 		if (preempt && rq != p_rq)
5801 			resched_curr(p_rq);
5802 	}
5803 
5804 out_unlock:
5805 	double_rq_unlock(rq, p_rq);
5806 out_irq:
5807 	local_irq_restore(flags);
5808 
5809 	if (yielded > 0)
5810 		schedule();
5811 
5812 	return yielded;
5813 }
5814 EXPORT_SYMBOL_GPL(yield_to);
5815 
5816 int io_schedule_prepare(void)
5817 {
5818 	int old_iowait = current->in_iowait;
5819 
5820 	current->in_iowait = 1;
5821 	blk_schedule_flush_plug(current);
5822 
5823 	return old_iowait;
5824 }
5825 
5826 void io_schedule_finish(int token)
5827 {
5828 	current->in_iowait = token;
5829 }
5830 
5831 /*
5832  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5833  * that process accounting knows that this is a task in IO wait state.
5834  */
5835 long __sched io_schedule_timeout(long timeout)
5836 {
5837 	int token;
5838 	long ret;
5839 
5840 	token = io_schedule_prepare();
5841 	ret = schedule_timeout(timeout);
5842 	io_schedule_finish(token);
5843 
5844 	return ret;
5845 }
5846 EXPORT_SYMBOL(io_schedule_timeout);
5847 
5848 void __sched io_schedule(void)
5849 {
5850 	int token;
5851 
5852 	token = io_schedule_prepare();
5853 	schedule();
5854 	io_schedule_finish(token);
5855 }
5856 EXPORT_SYMBOL(io_schedule);
5857 
5858 /**
5859  * sys_sched_get_priority_max - return maximum RT priority.
5860  * @policy: scheduling class.
5861  *
5862  * Return: On success, this syscall returns the maximum
5863  * rt_priority that can be used by a given scheduling class.
5864  * On failure, a negative error code is returned.
5865  */
5866 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5867 {
5868 	int ret = -EINVAL;
5869 
5870 	switch (policy) {
5871 	case SCHED_FIFO:
5872 	case SCHED_RR:
5873 		ret = MAX_USER_RT_PRIO-1;
5874 		break;
5875 	case SCHED_DEADLINE:
5876 	case SCHED_NORMAL:
5877 	case SCHED_BATCH:
5878 	case SCHED_IDLE:
5879 		ret = 0;
5880 		break;
5881 	}
5882 	return ret;
5883 }
5884 
5885 /**
5886  * sys_sched_get_priority_min - return minimum RT priority.
5887  * @policy: scheduling class.
5888  *
5889  * Return: On success, this syscall returns the minimum
5890  * rt_priority that can be used by a given scheduling class.
5891  * On failure, a negative error code is returned.
5892  */
5893 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5894 {
5895 	int ret = -EINVAL;
5896 
5897 	switch (policy) {
5898 	case SCHED_FIFO:
5899 	case SCHED_RR:
5900 		ret = 1;
5901 		break;
5902 	case SCHED_DEADLINE:
5903 	case SCHED_NORMAL:
5904 	case SCHED_BATCH:
5905 	case SCHED_IDLE:
5906 		ret = 0;
5907 	}
5908 	return ret;
5909 }
5910 
5911 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5912 {
5913 	struct task_struct *p;
5914 	unsigned int time_slice;
5915 	struct rq_flags rf;
5916 	struct rq *rq;
5917 	int retval;
5918 
5919 	if (pid < 0)
5920 		return -EINVAL;
5921 
5922 	retval = -ESRCH;
5923 	rcu_read_lock();
5924 	p = find_process_by_pid(pid);
5925 	if (!p)
5926 		goto out_unlock;
5927 
5928 	retval = security_task_getscheduler(p);
5929 	if (retval)
5930 		goto out_unlock;
5931 
5932 	rq = task_rq_lock(p, &rf);
5933 	time_slice = 0;
5934 	if (p->sched_class->get_rr_interval)
5935 		time_slice = p->sched_class->get_rr_interval(rq, p);
5936 	task_rq_unlock(rq, p, &rf);
5937 
5938 	rcu_read_unlock();
5939 	jiffies_to_timespec64(time_slice, t);
5940 	return 0;
5941 
5942 out_unlock:
5943 	rcu_read_unlock();
5944 	return retval;
5945 }
5946 
5947 /**
5948  * sys_sched_rr_get_interval - return the default timeslice of a process.
5949  * @pid: pid of the process.
5950  * @interval: userspace pointer to the timeslice value.
5951  *
5952  * this syscall writes the default timeslice value of a given process
5953  * into the user-space timespec buffer. A value of '0' means infinity.
5954  *
5955  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5956  * an error code.
5957  */
5958 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5959 		struct __kernel_timespec __user *, interval)
5960 {
5961 	struct timespec64 t;
5962 	int retval = sched_rr_get_interval(pid, &t);
5963 
5964 	if (retval == 0)
5965 		retval = put_timespec64(&t, interval);
5966 
5967 	return retval;
5968 }
5969 
5970 #ifdef CONFIG_COMPAT_32BIT_TIME
5971 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5972 		struct old_timespec32 __user *, interval)
5973 {
5974 	struct timespec64 t;
5975 	int retval = sched_rr_get_interval(pid, &t);
5976 
5977 	if (retval == 0)
5978 		retval = put_old_timespec32(&t, interval);
5979 	return retval;
5980 }
5981 #endif
5982 
5983 void sched_show_task(struct task_struct *p)
5984 {
5985 	unsigned long free = 0;
5986 	int ppid;
5987 
5988 	if (!try_get_task_stack(p))
5989 		return;
5990 
5991 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5992 
5993 	if (p->state == TASK_RUNNING)
5994 		printk(KERN_CONT "  running task    ");
5995 #ifdef CONFIG_DEBUG_STACK_USAGE
5996 	free = stack_not_used(p);
5997 #endif
5998 	ppid = 0;
5999 	rcu_read_lock();
6000 	if (pid_alive(p))
6001 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6002 	rcu_read_unlock();
6003 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6004 		task_pid_nr(p), ppid,
6005 		(unsigned long)task_thread_info(p)->flags);
6006 
6007 	print_worker_info(KERN_INFO, p);
6008 	show_stack(p, NULL);
6009 	put_task_stack(p);
6010 }
6011 EXPORT_SYMBOL_GPL(sched_show_task);
6012 
6013 static inline bool
6014 state_filter_match(unsigned long state_filter, struct task_struct *p)
6015 {
6016 	/* no filter, everything matches */
6017 	if (!state_filter)
6018 		return true;
6019 
6020 	/* filter, but doesn't match */
6021 	if (!(p->state & state_filter))
6022 		return false;
6023 
6024 	/*
6025 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6026 	 * TASK_KILLABLE).
6027 	 */
6028 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6029 		return false;
6030 
6031 	return true;
6032 }
6033 
6034 
6035 void show_state_filter(unsigned long state_filter)
6036 {
6037 	struct task_struct *g, *p;
6038 
6039 #if BITS_PER_LONG == 32
6040 	printk(KERN_INFO
6041 		"  task                PC stack   pid father\n");
6042 #else
6043 	printk(KERN_INFO
6044 		"  task                        PC stack   pid father\n");
6045 #endif
6046 	rcu_read_lock();
6047 	for_each_process_thread(g, p) {
6048 		/*
6049 		 * reset the NMI-timeout, listing all files on a slow
6050 		 * console might take a lot of time:
6051 		 * Also, reset softlockup watchdogs on all CPUs, because
6052 		 * another CPU might be blocked waiting for us to process
6053 		 * an IPI.
6054 		 */
6055 		touch_nmi_watchdog();
6056 		touch_all_softlockup_watchdogs();
6057 		if (state_filter_match(state_filter, p))
6058 			sched_show_task(p);
6059 	}
6060 
6061 #ifdef CONFIG_SCHED_DEBUG
6062 	if (!state_filter)
6063 		sysrq_sched_debug_show();
6064 #endif
6065 	rcu_read_unlock();
6066 	/*
6067 	 * Only show locks if all tasks are dumped:
6068 	 */
6069 	if (!state_filter)
6070 		debug_show_all_locks();
6071 }
6072 
6073 /**
6074  * init_idle - set up an idle thread for a given CPU
6075  * @idle: task in question
6076  * @cpu: CPU the idle task belongs to
6077  *
6078  * NOTE: this function does not set the idle thread's NEED_RESCHED
6079  * flag, to make booting more robust.
6080  */
6081 void init_idle(struct task_struct *idle, int cpu)
6082 {
6083 	struct rq *rq = cpu_rq(cpu);
6084 	unsigned long flags;
6085 
6086 	__sched_fork(0, idle);
6087 
6088 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6089 	raw_spin_lock(&rq->lock);
6090 
6091 	idle->state = TASK_RUNNING;
6092 	idle->se.exec_start = sched_clock();
6093 	idle->flags |= PF_IDLE;
6094 
6095 	scs_task_reset(idle);
6096 	kasan_unpoison_task_stack(idle);
6097 
6098 #ifdef CONFIG_SMP
6099 	/*
6100 	 * Its possible that init_idle() gets called multiple times on a task,
6101 	 * in that case do_set_cpus_allowed() will not do the right thing.
6102 	 *
6103 	 * And since this is boot we can forgo the serialization.
6104 	 */
6105 	set_cpus_allowed_common(idle, cpumask_of(cpu));
6106 #endif
6107 	/*
6108 	 * We're having a chicken and egg problem, even though we are
6109 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6110 	 * lockdep check in task_group() will fail.
6111 	 *
6112 	 * Similar case to sched_fork(). / Alternatively we could
6113 	 * use task_rq_lock() here and obtain the other rq->lock.
6114 	 *
6115 	 * Silence PROVE_RCU
6116 	 */
6117 	rcu_read_lock();
6118 	__set_task_cpu(idle, cpu);
6119 	rcu_read_unlock();
6120 
6121 	rq->idle = idle;
6122 	rcu_assign_pointer(rq->curr, idle);
6123 	idle->on_rq = TASK_ON_RQ_QUEUED;
6124 #ifdef CONFIG_SMP
6125 	idle->on_cpu = 1;
6126 #endif
6127 	raw_spin_unlock(&rq->lock);
6128 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6129 
6130 	/* Set the preempt count _outside_ the spinlocks! */
6131 	init_idle_preempt_count(idle, cpu);
6132 
6133 	/*
6134 	 * The idle tasks have their own, simple scheduling class:
6135 	 */
6136 	idle->sched_class = &idle_sched_class;
6137 	ftrace_graph_init_idle_task(idle, cpu);
6138 	vtime_init_idle(idle, cpu);
6139 #ifdef CONFIG_SMP
6140 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6141 #endif
6142 }
6143 
6144 #ifdef CONFIG_SMP
6145 
6146 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6147 			      const struct cpumask *trial)
6148 {
6149 	int ret = 1;
6150 
6151 	if (!cpumask_weight(cur))
6152 		return ret;
6153 
6154 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6155 
6156 	return ret;
6157 }
6158 
6159 int task_can_attach(struct task_struct *p,
6160 		    const struct cpumask *cs_cpus_allowed)
6161 {
6162 	int ret = 0;
6163 
6164 	/*
6165 	 * Kthreads which disallow setaffinity shouldn't be moved
6166 	 * to a new cpuset; we don't want to change their CPU
6167 	 * affinity and isolating such threads by their set of
6168 	 * allowed nodes is unnecessary.  Thus, cpusets are not
6169 	 * applicable for such threads.  This prevents checking for
6170 	 * success of set_cpus_allowed_ptr() on all attached tasks
6171 	 * before cpus_mask may be changed.
6172 	 */
6173 	if (p->flags & PF_NO_SETAFFINITY) {
6174 		ret = -EINVAL;
6175 		goto out;
6176 	}
6177 
6178 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6179 					      cs_cpus_allowed))
6180 		ret = dl_task_can_attach(p, cs_cpus_allowed);
6181 
6182 out:
6183 	return ret;
6184 }
6185 
6186 bool sched_smp_initialized __read_mostly;
6187 
6188 #ifdef CONFIG_NUMA_BALANCING
6189 /* Migrate current task p to target_cpu */
6190 int migrate_task_to(struct task_struct *p, int target_cpu)
6191 {
6192 	struct migration_arg arg = { p, target_cpu };
6193 	int curr_cpu = task_cpu(p);
6194 
6195 	if (curr_cpu == target_cpu)
6196 		return 0;
6197 
6198 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6199 		return -EINVAL;
6200 
6201 	/* TODO: This is not properly updating schedstats */
6202 
6203 	trace_sched_move_numa(p, curr_cpu, target_cpu);
6204 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6205 }
6206 
6207 /*
6208  * Requeue a task on a given node and accurately track the number of NUMA
6209  * tasks on the runqueues
6210  */
6211 void sched_setnuma(struct task_struct *p, int nid)
6212 {
6213 	bool queued, running;
6214 	struct rq_flags rf;
6215 	struct rq *rq;
6216 
6217 	rq = task_rq_lock(p, &rf);
6218 	queued = task_on_rq_queued(p);
6219 	running = task_current(rq, p);
6220 
6221 	if (queued)
6222 		dequeue_task(rq, p, DEQUEUE_SAVE);
6223 	if (running)
6224 		put_prev_task(rq, p);
6225 
6226 	p->numa_preferred_nid = nid;
6227 
6228 	if (queued)
6229 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6230 	if (running)
6231 		set_next_task(rq, p);
6232 	task_rq_unlock(rq, p, &rf);
6233 }
6234 #endif /* CONFIG_NUMA_BALANCING */
6235 
6236 #ifdef CONFIG_HOTPLUG_CPU
6237 /*
6238  * Ensure that the idle task is using init_mm right before its CPU goes
6239  * offline.
6240  */
6241 void idle_task_exit(void)
6242 {
6243 	struct mm_struct *mm = current->active_mm;
6244 
6245 	BUG_ON(cpu_online(smp_processor_id()));
6246 
6247 	if (mm != &init_mm) {
6248 		switch_mm(mm, &init_mm, current);
6249 		current->active_mm = &init_mm;
6250 		finish_arch_post_lock_switch();
6251 	}
6252 	mmdrop(mm);
6253 }
6254 
6255 /*
6256  * Since this CPU is going 'away' for a while, fold any nr_active delta
6257  * we might have. Assumes we're called after migrate_tasks() so that the
6258  * nr_active count is stable. We need to take the teardown thread which
6259  * is calling this into account, so we hand in adjust = 1 to the load
6260  * calculation.
6261  *
6262  * Also see the comment "Global load-average calculations".
6263  */
6264 static void calc_load_migrate(struct rq *rq)
6265 {
6266 	long delta = calc_load_fold_active(rq, 1);
6267 	if (delta)
6268 		atomic_long_add(delta, &calc_load_tasks);
6269 }
6270 
6271 static struct task_struct *__pick_migrate_task(struct rq *rq)
6272 {
6273 	const struct sched_class *class;
6274 	struct task_struct *next;
6275 
6276 	for_each_class(class) {
6277 		next = class->pick_next_task(rq);
6278 		if (next) {
6279 			next->sched_class->put_prev_task(rq, next);
6280 			return next;
6281 		}
6282 	}
6283 
6284 	/* The idle class should always have a runnable task */
6285 	BUG();
6286 }
6287 
6288 /*
6289  * Migrate all tasks from the rq, sleeping tasks will be migrated by
6290  * try_to_wake_up()->select_task_rq().
6291  *
6292  * Called with rq->lock held even though we'er in stop_machine() and
6293  * there's no concurrency possible, we hold the required locks anyway
6294  * because of lock validation efforts.
6295  */
6296 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6297 {
6298 	struct rq *rq = dead_rq;
6299 	struct task_struct *next, *stop = rq->stop;
6300 	struct rq_flags orf = *rf;
6301 	int dest_cpu;
6302 
6303 	/*
6304 	 * Fudge the rq selection such that the below task selection loop
6305 	 * doesn't get stuck on the currently eligible stop task.
6306 	 *
6307 	 * We're currently inside stop_machine() and the rq is either stuck
6308 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6309 	 * either way we should never end up calling schedule() until we're
6310 	 * done here.
6311 	 */
6312 	rq->stop = NULL;
6313 
6314 	/*
6315 	 * put_prev_task() and pick_next_task() sched
6316 	 * class method both need to have an up-to-date
6317 	 * value of rq->clock[_task]
6318 	 */
6319 	update_rq_clock(rq);
6320 
6321 	for (;;) {
6322 		/*
6323 		 * There's this thread running, bail when that's the only
6324 		 * remaining thread:
6325 		 */
6326 		if (rq->nr_running == 1)
6327 			break;
6328 
6329 		next = __pick_migrate_task(rq);
6330 
6331 		/*
6332 		 * Rules for changing task_struct::cpus_mask are holding
6333 		 * both pi_lock and rq->lock, such that holding either
6334 		 * stabilizes the mask.
6335 		 *
6336 		 * Drop rq->lock is not quite as disastrous as it usually is
6337 		 * because !cpu_active at this point, which means load-balance
6338 		 * will not interfere. Also, stop-machine.
6339 		 */
6340 		rq_unlock(rq, rf);
6341 		raw_spin_lock(&next->pi_lock);
6342 		rq_relock(rq, rf);
6343 
6344 		/*
6345 		 * Since we're inside stop-machine, _nothing_ should have
6346 		 * changed the task, WARN if weird stuff happened, because in
6347 		 * that case the above rq->lock drop is a fail too.
6348 		 */
6349 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6350 			raw_spin_unlock(&next->pi_lock);
6351 			continue;
6352 		}
6353 
6354 		/* Find suitable destination for @next, with force if needed. */
6355 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6356 		rq = __migrate_task(rq, rf, next, dest_cpu);
6357 		if (rq != dead_rq) {
6358 			rq_unlock(rq, rf);
6359 			rq = dead_rq;
6360 			*rf = orf;
6361 			rq_relock(rq, rf);
6362 		}
6363 		raw_spin_unlock(&next->pi_lock);
6364 	}
6365 
6366 	rq->stop = stop;
6367 }
6368 #endif /* CONFIG_HOTPLUG_CPU */
6369 
6370 void set_rq_online(struct rq *rq)
6371 {
6372 	if (!rq->online) {
6373 		const struct sched_class *class;
6374 
6375 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6376 		rq->online = 1;
6377 
6378 		for_each_class(class) {
6379 			if (class->rq_online)
6380 				class->rq_online(rq);
6381 		}
6382 	}
6383 }
6384 
6385 void set_rq_offline(struct rq *rq)
6386 {
6387 	if (rq->online) {
6388 		const struct sched_class *class;
6389 
6390 		for_each_class(class) {
6391 			if (class->rq_offline)
6392 				class->rq_offline(rq);
6393 		}
6394 
6395 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6396 		rq->online = 0;
6397 	}
6398 }
6399 
6400 /*
6401  * used to mark begin/end of suspend/resume:
6402  */
6403 static int num_cpus_frozen;
6404 
6405 /*
6406  * Update cpusets according to cpu_active mask.  If cpusets are
6407  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6408  * around partition_sched_domains().
6409  *
6410  * If we come here as part of a suspend/resume, don't touch cpusets because we
6411  * want to restore it back to its original state upon resume anyway.
6412  */
6413 static void cpuset_cpu_active(void)
6414 {
6415 	if (cpuhp_tasks_frozen) {
6416 		/*
6417 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6418 		 * resume sequence. As long as this is not the last online
6419 		 * operation in the resume sequence, just build a single sched
6420 		 * domain, ignoring cpusets.
6421 		 */
6422 		partition_sched_domains(1, NULL, NULL);
6423 		if (--num_cpus_frozen)
6424 			return;
6425 		/*
6426 		 * This is the last CPU online operation. So fall through and
6427 		 * restore the original sched domains by considering the
6428 		 * cpuset configurations.
6429 		 */
6430 		cpuset_force_rebuild();
6431 	}
6432 	cpuset_update_active_cpus();
6433 }
6434 
6435 static int cpuset_cpu_inactive(unsigned int cpu)
6436 {
6437 	if (!cpuhp_tasks_frozen) {
6438 		if (dl_cpu_busy(cpu))
6439 			return -EBUSY;
6440 		cpuset_update_active_cpus();
6441 	} else {
6442 		num_cpus_frozen++;
6443 		partition_sched_domains(1, NULL, NULL);
6444 	}
6445 	return 0;
6446 }
6447 
6448 int sched_cpu_activate(unsigned int cpu)
6449 {
6450 	struct rq *rq = cpu_rq(cpu);
6451 	struct rq_flags rf;
6452 
6453 #ifdef CONFIG_SCHED_SMT
6454 	/*
6455 	 * When going up, increment the number of cores with SMT present.
6456 	 */
6457 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6458 		static_branch_inc_cpuslocked(&sched_smt_present);
6459 #endif
6460 	set_cpu_active(cpu, true);
6461 
6462 	if (sched_smp_initialized) {
6463 		sched_domains_numa_masks_set(cpu);
6464 		cpuset_cpu_active();
6465 	}
6466 
6467 	/*
6468 	 * Put the rq online, if not already. This happens:
6469 	 *
6470 	 * 1) In the early boot process, because we build the real domains
6471 	 *    after all CPUs have been brought up.
6472 	 *
6473 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6474 	 *    domains.
6475 	 */
6476 	rq_lock_irqsave(rq, &rf);
6477 	if (rq->rd) {
6478 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6479 		set_rq_online(rq);
6480 	}
6481 	rq_unlock_irqrestore(rq, &rf);
6482 
6483 	return 0;
6484 }
6485 
6486 int sched_cpu_deactivate(unsigned int cpu)
6487 {
6488 	int ret;
6489 
6490 	set_cpu_active(cpu, false);
6491 	/*
6492 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6493 	 * users of this state to go away such that all new such users will
6494 	 * observe it.
6495 	 *
6496 	 * Do sync before park smpboot threads to take care the rcu boost case.
6497 	 */
6498 	synchronize_rcu();
6499 
6500 #ifdef CONFIG_SCHED_SMT
6501 	/*
6502 	 * When going down, decrement the number of cores with SMT present.
6503 	 */
6504 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6505 		static_branch_dec_cpuslocked(&sched_smt_present);
6506 #endif
6507 
6508 	if (!sched_smp_initialized)
6509 		return 0;
6510 
6511 	ret = cpuset_cpu_inactive(cpu);
6512 	if (ret) {
6513 		set_cpu_active(cpu, true);
6514 		return ret;
6515 	}
6516 	sched_domains_numa_masks_clear(cpu);
6517 	return 0;
6518 }
6519 
6520 static void sched_rq_cpu_starting(unsigned int cpu)
6521 {
6522 	struct rq *rq = cpu_rq(cpu);
6523 
6524 	rq->calc_load_update = calc_load_update;
6525 	update_max_interval();
6526 }
6527 
6528 int sched_cpu_starting(unsigned int cpu)
6529 {
6530 	sched_rq_cpu_starting(cpu);
6531 	sched_tick_start(cpu);
6532 	return 0;
6533 }
6534 
6535 #ifdef CONFIG_HOTPLUG_CPU
6536 int sched_cpu_dying(unsigned int cpu)
6537 {
6538 	struct rq *rq = cpu_rq(cpu);
6539 	struct rq_flags rf;
6540 
6541 	/* Handle pending wakeups and then migrate everything off */
6542 	sched_ttwu_pending();
6543 	sched_tick_stop(cpu);
6544 
6545 	rq_lock_irqsave(rq, &rf);
6546 	if (rq->rd) {
6547 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6548 		set_rq_offline(rq);
6549 	}
6550 	migrate_tasks(rq, &rf);
6551 	BUG_ON(rq->nr_running != 1);
6552 	rq_unlock_irqrestore(rq, &rf);
6553 
6554 	calc_load_migrate(rq);
6555 	update_max_interval();
6556 	nohz_balance_exit_idle(rq);
6557 	hrtick_clear(rq);
6558 	return 0;
6559 }
6560 #endif
6561 
6562 void __init sched_init_smp(void)
6563 {
6564 	sched_init_numa();
6565 
6566 	/*
6567 	 * There's no userspace yet to cause hotplug operations; hence all the
6568 	 * CPU masks are stable and all blatant races in the below code cannot
6569 	 * happen.
6570 	 */
6571 	mutex_lock(&sched_domains_mutex);
6572 	sched_init_domains(cpu_active_mask);
6573 	mutex_unlock(&sched_domains_mutex);
6574 
6575 	/* Move init over to a non-isolated CPU */
6576 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6577 		BUG();
6578 	sched_init_granularity();
6579 
6580 	init_sched_rt_class();
6581 	init_sched_dl_class();
6582 
6583 	sched_smp_initialized = true;
6584 }
6585 
6586 static int __init migration_init(void)
6587 {
6588 	sched_cpu_starting(smp_processor_id());
6589 	return 0;
6590 }
6591 early_initcall(migration_init);
6592 
6593 #else
6594 void __init sched_init_smp(void)
6595 {
6596 	sched_init_granularity();
6597 }
6598 #endif /* CONFIG_SMP */
6599 
6600 int in_sched_functions(unsigned long addr)
6601 {
6602 	return in_lock_functions(addr) ||
6603 		(addr >= (unsigned long)__sched_text_start
6604 		&& addr < (unsigned long)__sched_text_end);
6605 }
6606 
6607 #ifdef CONFIG_CGROUP_SCHED
6608 /*
6609  * Default task group.
6610  * Every task in system belongs to this group at bootup.
6611  */
6612 struct task_group root_task_group;
6613 LIST_HEAD(task_groups);
6614 
6615 /* Cacheline aligned slab cache for task_group */
6616 static struct kmem_cache *task_group_cache __read_mostly;
6617 #endif
6618 
6619 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6620 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6621 
6622 void __init sched_init(void)
6623 {
6624 	unsigned long ptr = 0;
6625 	int i;
6626 
6627 	wait_bit_init();
6628 
6629 #ifdef CONFIG_FAIR_GROUP_SCHED
6630 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6631 #endif
6632 #ifdef CONFIG_RT_GROUP_SCHED
6633 	ptr += 2 * nr_cpu_ids * sizeof(void **);
6634 #endif
6635 	if (ptr) {
6636 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6637 
6638 #ifdef CONFIG_FAIR_GROUP_SCHED
6639 		root_task_group.se = (struct sched_entity **)ptr;
6640 		ptr += nr_cpu_ids * sizeof(void **);
6641 
6642 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6643 		ptr += nr_cpu_ids * sizeof(void **);
6644 
6645 #endif /* CONFIG_FAIR_GROUP_SCHED */
6646 #ifdef CONFIG_RT_GROUP_SCHED
6647 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6648 		ptr += nr_cpu_ids * sizeof(void **);
6649 
6650 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6651 		ptr += nr_cpu_ids * sizeof(void **);
6652 
6653 #endif /* CONFIG_RT_GROUP_SCHED */
6654 	}
6655 #ifdef CONFIG_CPUMASK_OFFSTACK
6656 	for_each_possible_cpu(i) {
6657 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6658 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6659 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6660 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6661 	}
6662 #endif /* CONFIG_CPUMASK_OFFSTACK */
6663 
6664 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6665 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6666 
6667 #ifdef CONFIG_SMP
6668 	init_defrootdomain();
6669 #endif
6670 
6671 #ifdef CONFIG_RT_GROUP_SCHED
6672 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6673 			global_rt_period(), global_rt_runtime());
6674 #endif /* CONFIG_RT_GROUP_SCHED */
6675 
6676 #ifdef CONFIG_CGROUP_SCHED
6677 	task_group_cache = KMEM_CACHE(task_group, 0);
6678 
6679 	list_add(&root_task_group.list, &task_groups);
6680 	INIT_LIST_HEAD(&root_task_group.children);
6681 	INIT_LIST_HEAD(&root_task_group.siblings);
6682 	autogroup_init(&init_task);
6683 #endif /* CONFIG_CGROUP_SCHED */
6684 
6685 	for_each_possible_cpu(i) {
6686 		struct rq *rq;
6687 
6688 		rq = cpu_rq(i);
6689 		raw_spin_lock_init(&rq->lock);
6690 		rq->nr_running = 0;
6691 		rq->calc_load_active = 0;
6692 		rq->calc_load_update = jiffies + LOAD_FREQ;
6693 		init_cfs_rq(&rq->cfs);
6694 		init_rt_rq(&rq->rt);
6695 		init_dl_rq(&rq->dl);
6696 #ifdef CONFIG_FAIR_GROUP_SCHED
6697 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6698 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6699 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6700 		/*
6701 		 * How much CPU bandwidth does root_task_group get?
6702 		 *
6703 		 * In case of task-groups formed thr' the cgroup filesystem, it
6704 		 * gets 100% of the CPU resources in the system. This overall
6705 		 * system CPU resource is divided among the tasks of
6706 		 * root_task_group and its child task-groups in a fair manner,
6707 		 * based on each entity's (task or task-group's) weight
6708 		 * (se->load.weight).
6709 		 *
6710 		 * In other words, if root_task_group has 10 tasks of weight
6711 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6712 		 * then A0's share of the CPU resource is:
6713 		 *
6714 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6715 		 *
6716 		 * We achieve this by letting root_task_group's tasks sit
6717 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6718 		 */
6719 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6720 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6721 #endif /* CONFIG_FAIR_GROUP_SCHED */
6722 
6723 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6724 #ifdef CONFIG_RT_GROUP_SCHED
6725 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6726 #endif
6727 #ifdef CONFIG_SMP
6728 		rq->sd = NULL;
6729 		rq->rd = NULL;
6730 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6731 		rq->balance_callback = NULL;
6732 		rq->active_balance = 0;
6733 		rq->next_balance = jiffies;
6734 		rq->push_cpu = 0;
6735 		rq->cpu = i;
6736 		rq->online = 0;
6737 		rq->idle_stamp = 0;
6738 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6739 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6740 
6741 		INIT_LIST_HEAD(&rq->cfs_tasks);
6742 
6743 		rq_attach_root(rq, &def_root_domain);
6744 #ifdef CONFIG_NO_HZ_COMMON
6745 		rq->last_blocked_load_update_tick = jiffies;
6746 		atomic_set(&rq->nohz_flags, 0);
6747 #endif
6748 #endif /* CONFIG_SMP */
6749 		hrtick_rq_init(rq);
6750 		atomic_set(&rq->nr_iowait, 0);
6751 	}
6752 
6753 	set_load_weight(&init_task, false);
6754 
6755 	/*
6756 	 * The boot idle thread does lazy MMU switching as well:
6757 	 */
6758 	mmgrab(&init_mm);
6759 	enter_lazy_tlb(&init_mm, current);
6760 
6761 	/*
6762 	 * Make us the idle thread. Technically, schedule() should not be
6763 	 * called from this thread, however somewhere below it might be,
6764 	 * but because we are the idle thread, we just pick up running again
6765 	 * when this runqueue becomes "idle".
6766 	 */
6767 	init_idle(current, smp_processor_id());
6768 
6769 	calc_load_update = jiffies + LOAD_FREQ;
6770 
6771 #ifdef CONFIG_SMP
6772 	idle_thread_set_boot_cpu();
6773 #endif
6774 	init_sched_fair_class();
6775 
6776 	init_schedstats();
6777 
6778 	psi_init();
6779 
6780 	init_uclamp();
6781 
6782 	scheduler_running = 1;
6783 }
6784 
6785 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6786 static inline int preempt_count_equals(int preempt_offset)
6787 {
6788 	int nested = preempt_count() + rcu_preempt_depth();
6789 
6790 	return (nested == preempt_offset);
6791 }
6792 
6793 void __might_sleep(const char *file, int line, int preempt_offset)
6794 {
6795 	/*
6796 	 * Blocking primitives will set (and therefore destroy) current->state,
6797 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6798 	 * otherwise we will destroy state.
6799 	 */
6800 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6801 			"do not call blocking ops when !TASK_RUNNING; "
6802 			"state=%lx set at [<%p>] %pS\n",
6803 			current->state,
6804 			(void *)current->task_state_change,
6805 			(void *)current->task_state_change);
6806 
6807 	___might_sleep(file, line, preempt_offset);
6808 }
6809 EXPORT_SYMBOL(__might_sleep);
6810 
6811 void ___might_sleep(const char *file, int line, int preempt_offset)
6812 {
6813 	/* Ratelimiting timestamp: */
6814 	static unsigned long prev_jiffy;
6815 
6816 	unsigned long preempt_disable_ip;
6817 
6818 	/* WARN_ON_ONCE() by default, no rate limit required: */
6819 	rcu_sleep_check();
6820 
6821 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6822 	     !is_idle_task(current) && !current->non_block_count) ||
6823 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6824 	    oops_in_progress)
6825 		return;
6826 
6827 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6828 		return;
6829 	prev_jiffy = jiffies;
6830 
6831 	/* Save this before calling printk(), since that will clobber it: */
6832 	preempt_disable_ip = get_preempt_disable_ip(current);
6833 
6834 	printk(KERN_ERR
6835 		"BUG: sleeping function called from invalid context at %s:%d\n",
6836 			file, line);
6837 	printk(KERN_ERR
6838 		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6839 			in_atomic(), irqs_disabled(), current->non_block_count,
6840 			current->pid, current->comm);
6841 
6842 	if (task_stack_end_corrupted(current))
6843 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6844 
6845 	debug_show_held_locks(current);
6846 	if (irqs_disabled())
6847 		print_irqtrace_events(current);
6848 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6849 	    && !preempt_count_equals(preempt_offset)) {
6850 		pr_err("Preemption disabled at:");
6851 		print_ip_sym(preempt_disable_ip);
6852 		pr_cont("\n");
6853 	}
6854 	dump_stack();
6855 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6856 }
6857 EXPORT_SYMBOL(___might_sleep);
6858 
6859 void __cant_sleep(const char *file, int line, int preempt_offset)
6860 {
6861 	static unsigned long prev_jiffy;
6862 
6863 	if (irqs_disabled())
6864 		return;
6865 
6866 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6867 		return;
6868 
6869 	if (preempt_count() > preempt_offset)
6870 		return;
6871 
6872 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6873 		return;
6874 	prev_jiffy = jiffies;
6875 
6876 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6877 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6878 			in_atomic(), irqs_disabled(),
6879 			current->pid, current->comm);
6880 
6881 	debug_show_held_locks(current);
6882 	dump_stack();
6883 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6884 }
6885 EXPORT_SYMBOL_GPL(__cant_sleep);
6886 #endif
6887 
6888 #ifdef CONFIG_MAGIC_SYSRQ
6889 void normalize_rt_tasks(void)
6890 {
6891 	struct task_struct *g, *p;
6892 	struct sched_attr attr = {
6893 		.sched_policy = SCHED_NORMAL,
6894 	};
6895 
6896 	read_lock(&tasklist_lock);
6897 	for_each_process_thread(g, p) {
6898 		/*
6899 		 * Only normalize user tasks:
6900 		 */
6901 		if (p->flags & PF_KTHREAD)
6902 			continue;
6903 
6904 		p->se.exec_start = 0;
6905 		schedstat_set(p->se.statistics.wait_start,  0);
6906 		schedstat_set(p->se.statistics.sleep_start, 0);
6907 		schedstat_set(p->se.statistics.block_start, 0);
6908 
6909 		if (!dl_task(p) && !rt_task(p)) {
6910 			/*
6911 			 * Renice negative nice level userspace
6912 			 * tasks back to 0:
6913 			 */
6914 			if (task_nice(p) < 0)
6915 				set_user_nice(p, 0);
6916 			continue;
6917 		}
6918 
6919 		__sched_setscheduler(p, &attr, false, false);
6920 	}
6921 	read_unlock(&tasklist_lock);
6922 }
6923 
6924 #endif /* CONFIG_MAGIC_SYSRQ */
6925 
6926 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6927 /*
6928  * These functions are only useful for the IA64 MCA handling, or kdb.
6929  *
6930  * They can only be called when the whole system has been
6931  * stopped - every CPU needs to be quiescent, and no scheduling
6932  * activity can take place. Using them for anything else would
6933  * be a serious bug, and as a result, they aren't even visible
6934  * under any other configuration.
6935  */
6936 
6937 /**
6938  * curr_task - return the current task for a given CPU.
6939  * @cpu: the processor in question.
6940  *
6941  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942  *
6943  * Return: The current task for @cpu.
6944  */
6945 struct task_struct *curr_task(int cpu)
6946 {
6947 	return cpu_curr(cpu);
6948 }
6949 
6950 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6951 
6952 #ifdef CONFIG_IA64
6953 /**
6954  * ia64_set_curr_task - set the current task for a given CPU.
6955  * @cpu: the processor in question.
6956  * @p: the task pointer to set.
6957  *
6958  * Description: This function must only be used when non-maskable interrupts
6959  * are serviced on a separate stack. It allows the architecture to switch the
6960  * notion of the current task on a CPU in a non-blocking manner. This function
6961  * must be called with all CPU's synchronized, and interrupts disabled, the
6962  * and caller must save the original value of the current task (see
6963  * curr_task() above) and restore that value before reenabling interrupts and
6964  * re-starting the system.
6965  *
6966  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6967  */
6968 void ia64_set_curr_task(int cpu, struct task_struct *p)
6969 {
6970 	cpu_curr(cpu) = p;
6971 }
6972 
6973 #endif
6974 
6975 #ifdef CONFIG_CGROUP_SCHED
6976 /* task_group_lock serializes the addition/removal of task groups */
6977 static DEFINE_SPINLOCK(task_group_lock);
6978 
6979 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6980 					    struct task_group *parent)
6981 {
6982 #ifdef CONFIG_UCLAMP_TASK_GROUP
6983 	enum uclamp_id clamp_id;
6984 
6985 	for_each_clamp_id(clamp_id) {
6986 		uclamp_se_set(&tg->uclamp_req[clamp_id],
6987 			      uclamp_none(clamp_id), false);
6988 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6989 	}
6990 #endif
6991 }
6992 
6993 static void sched_free_group(struct task_group *tg)
6994 {
6995 	free_fair_sched_group(tg);
6996 	free_rt_sched_group(tg);
6997 	autogroup_free(tg);
6998 	kmem_cache_free(task_group_cache, tg);
6999 }
7000 
7001 /* allocate runqueue etc for a new task group */
7002 struct task_group *sched_create_group(struct task_group *parent)
7003 {
7004 	struct task_group *tg;
7005 
7006 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7007 	if (!tg)
7008 		return ERR_PTR(-ENOMEM);
7009 
7010 	if (!alloc_fair_sched_group(tg, parent))
7011 		goto err;
7012 
7013 	if (!alloc_rt_sched_group(tg, parent))
7014 		goto err;
7015 
7016 	alloc_uclamp_sched_group(tg, parent);
7017 
7018 	return tg;
7019 
7020 err:
7021 	sched_free_group(tg);
7022 	return ERR_PTR(-ENOMEM);
7023 }
7024 
7025 void sched_online_group(struct task_group *tg, struct task_group *parent)
7026 {
7027 	unsigned long flags;
7028 
7029 	spin_lock_irqsave(&task_group_lock, flags);
7030 	list_add_rcu(&tg->list, &task_groups);
7031 
7032 	/* Root should already exist: */
7033 	WARN_ON(!parent);
7034 
7035 	tg->parent = parent;
7036 	INIT_LIST_HEAD(&tg->children);
7037 	list_add_rcu(&tg->siblings, &parent->children);
7038 	spin_unlock_irqrestore(&task_group_lock, flags);
7039 
7040 	online_fair_sched_group(tg);
7041 }
7042 
7043 /* rcu callback to free various structures associated with a task group */
7044 static void sched_free_group_rcu(struct rcu_head *rhp)
7045 {
7046 	/* Now it should be safe to free those cfs_rqs: */
7047 	sched_free_group(container_of(rhp, struct task_group, rcu));
7048 }
7049 
7050 void sched_destroy_group(struct task_group *tg)
7051 {
7052 	/* Wait for possible concurrent references to cfs_rqs complete: */
7053 	call_rcu(&tg->rcu, sched_free_group_rcu);
7054 }
7055 
7056 void sched_offline_group(struct task_group *tg)
7057 {
7058 	unsigned long flags;
7059 
7060 	/* End participation in shares distribution: */
7061 	unregister_fair_sched_group(tg);
7062 
7063 	spin_lock_irqsave(&task_group_lock, flags);
7064 	list_del_rcu(&tg->list);
7065 	list_del_rcu(&tg->siblings);
7066 	spin_unlock_irqrestore(&task_group_lock, flags);
7067 }
7068 
7069 static void sched_change_group(struct task_struct *tsk, int type)
7070 {
7071 	struct task_group *tg;
7072 
7073 	/*
7074 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7075 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7076 	 * to prevent lockdep warnings.
7077 	 */
7078 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7079 			  struct task_group, css);
7080 	tg = autogroup_task_group(tsk, tg);
7081 	tsk->sched_task_group = tg;
7082 
7083 #ifdef CONFIG_FAIR_GROUP_SCHED
7084 	if (tsk->sched_class->task_change_group)
7085 		tsk->sched_class->task_change_group(tsk, type);
7086 	else
7087 #endif
7088 		set_task_rq(tsk, task_cpu(tsk));
7089 }
7090 
7091 /*
7092  * Change task's runqueue when it moves between groups.
7093  *
7094  * The caller of this function should have put the task in its new group by
7095  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7096  * its new group.
7097  */
7098 void sched_move_task(struct task_struct *tsk)
7099 {
7100 	int queued, running, queue_flags =
7101 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7102 	struct rq_flags rf;
7103 	struct rq *rq;
7104 
7105 	rq = task_rq_lock(tsk, &rf);
7106 	update_rq_clock(rq);
7107 
7108 	running = task_current(rq, tsk);
7109 	queued = task_on_rq_queued(tsk);
7110 
7111 	if (queued)
7112 		dequeue_task(rq, tsk, queue_flags);
7113 	if (running)
7114 		put_prev_task(rq, tsk);
7115 
7116 	sched_change_group(tsk, TASK_MOVE_GROUP);
7117 
7118 	if (queued)
7119 		enqueue_task(rq, tsk, queue_flags);
7120 	if (running) {
7121 		set_next_task(rq, tsk);
7122 		/*
7123 		 * After changing group, the running task may have joined a
7124 		 * throttled one but it's still the running task. Trigger a
7125 		 * resched to make sure that task can still run.
7126 		 */
7127 		resched_curr(rq);
7128 	}
7129 
7130 	task_rq_unlock(rq, tsk, &rf);
7131 }
7132 
7133 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7134 {
7135 	return css ? container_of(css, struct task_group, css) : NULL;
7136 }
7137 
7138 static struct cgroup_subsys_state *
7139 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7140 {
7141 	struct task_group *parent = css_tg(parent_css);
7142 	struct task_group *tg;
7143 
7144 	if (!parent) {
7145 		/* This is early initialization for the top cgroup */
7146 		return &root_task_group.css;
7147 	}
7148 
7149 	tg = sched_create_group(parent);
7150 	if (IS_ERR(tg))
7151 		return ERR_PTR(-ENOMEM);
7152 
7153 	return &tg->css;
7154 }
7155 
7156 /* Expose task group only after completing cgroup initialization */
7157 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7158 {
7159 	struct task_group *tg = css_tg(css);
7160 	struct task_group *parent = css_tg(css->parent);
7161 
7162 	if (parent)
7163 		sched_online_group(tg, parent);
7164 
7165 #ifdef CONFIG_UCLAMP_TASK_GROUP
7166 	/* Propagate the effective uclamp value for the new group */
7167 	cpu_util_update_eff(css);
7168 #endif
7169 
7170 	return 0;
7171 }
7172 
7173 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7174 {
7175 	struct task_group *tg = css_tg(css);
7176 
7177 	sched_offline_group(tg);
7178 }
7179 
7180 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7181 {
7182 	struct task_group *tg = css_tg(css);
7183 
7184 	/*
7185 	 * Relies on the RCU grace period between css_released() and this.
7186 	 */
7187 	sched_free_group(tg);
7188 }
7189 
7190 /*
7191  * This is called before wake_up_new_task(), therefore we really only
7192  * have to set its group bits, all the other stuff does not apply.
7193  */
7194 static void cpu_cgroup_fork(struct task_struct *task)
7195 {
7196 	struct rq_flags rf;
7197 	struct rq *rq;
7198 
7199 	rq = task_rq_lock(task, &rf);
7200 
7201 	update_rq_clock(rq);
7202 	sched_change_group(task, TASK_SET_GROUP);
7203 
7204 	task_rq_unlock(rq, task, &rf);
7205 }
7206 
7207 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7208 {
7209 	struct task_struct *task;
7210 	struct cgroup_subsys_state *css;
7211 	int ret = 0;
7212 
7213 	cgroup_taskset_for_each(task, css, tset) {
7214 #ifdef CONFIG_RT_GROUP_SCHED
7215 		if (!sched_rt_can_attach(css_tg(css), task))
7216 			return -EINVAL;
7217 #endif
7218 		/*
7219 		 * Serialize against wake_up_new_task() such that if its
7220 		 * running, we're sure to observe its full state.
7221 		 */
7222 		raw_spin_lock_irq(&task->pi_lock);
7223 		/*
7224 		 * Avoid calling sched_move_task() before wake_up_new_task()
7225 		 * has happened. This would lead to problems with PELT, due to
7226 		 * move wanting to detach+attach while we're not attached yet.
7227 		 */
7228 		if (task->state == TASK_NEW)
7229 			ret = -EINVAL;
7230 		raw_spin_unlock_irq(&task->pi_lock);
7231 
7232 		if (ret)
7233 			break;
7234 	}
7235 	return ret;
7236 }
7237 
7238 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7239 {
7240 	struct task_struct *task;
7241 	struct cgroup_subsys_state *css;
7242 
7243 	cgroup_taskset_for_each(task, css, tset)
7244 		sched_move_task(task);
7245 }
7246 
7247 #ifdef CONFIG_UCLAMP_TASK_GROUP
7248 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7249 {
7250 	struct cgroup_subsys_state *top_css = css;
7251 	struct uclamp_se *uc_parent = NULL;
7252 	struct uclamp_se *uc_se = NULL;
7253 	unsigned int eff[UCLAMP_CNT];
7254 	enum uclamp_id clamp_id;
7255 	unsigned int clamps;
7256 
7257 	css_for_each_descendant_pre(css, top_css) {
7258 		uc_parent = css_tg(css)->parent
7259 			? css_tg(css)->parent->uclamp : NULL;
7260 
7261 		for_each_clamp_id(clamp_id) {
7262 			/* Assume effective clamps matches requested clamps */
7263 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7264 			/* Cap effective clamps with parent's effective clamps */
7265 			if (uc_parent &&
7266 			    eff[clamp_id] > uc_parent[clamp_id].value) {
7267 				eff[clamp_id] = uc_parent[clamp_id].value;
7268 			}
7269 		}
7270 		/* Ensure protection is always capped by limit */
7271 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7272 
7273 		/* Propagate most restrictive effective clamps */
7274 		clamps = 0x0;
7275 		uc_se = css_tg(css)->uclamp;
7276 		for_each_clamp_id(clamp_id) {
7277 			if (eff[clamp_id] == uc_se[clamp_id].value)
7278 				continue;
7279 			uc_se[clamp_id].value = eff[clamp_id];
7280 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7281 			clamps |= (0x1 << clamp_id);
7282 		}
7283 		if (!clamps) {
7284 			css = css_rightmost_descendant(css);
7285 			continue;
7286 		}
7287 
7288 		/* Immediately update descendants RUNNABLE tasks */
7289 		uclamp_update_active_tasks(css, clamps);
7290 	}
7291 }
7292 
7293 /*
7294  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7295  * C expression. Since there is no way to convert a macro argument (N) into a
7296  * character constant, use two levels of macros.
7297  */
7298 #define _POW10(exp) ((unsigned int)1e##exp)
7299 #define POW10(exp) _POW10(exp)
7300 
7301 struct uclamp_request {
7302 #define UCLAMP_PERCENT_SHIFT	2
7303 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7304 	s64 percent;
7305 	u64 util;
7306 	int ret;
7307 };
7308 
7309 static inline struct uclamp_request
7310 capacity_from_percent(char *buf)
7311 {
7312 	struct uclamp_request req = {
7313 		.percent = UCLAMP_PERCENT_SCALE,
7314 		.util = SCHED_CAPACITY_SCALE,
7315 		.ret = 0,
7316 	};
7317 
7318 	buf = strim(buf);
7319 	if (strcmp(buf, "max")) {
7320 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7321 					     &req.percent);
7322 		if (req.ret)
7323 			return req;
7324 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7325 			req.ret = -ERANGE;
7326 			return req;
7327 		}
7328 
7329 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7330 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7331 	}
7332 
7333 	return req;
7334 }
7335 
7336 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7337 				size_t nbytes, loff_t off,
7338 				enum uclamp_id clamp_id)
7339 {
7340 	struct uclamp_request req;
7341 	struct task_group *tg;
7342 
7343 	req = capacity_from_percent(buf);
7344 	if (req.ret)
7345 		return req.ret;
7346 
7347 	mutex_lock(&uclamp_mutex);
7348 	rcu_read_lock();
7349 
7350 	tg = css_tg(of_css(of));
7351 	if (tg->uclamp_req[clamp_id].value != req.util)
7352 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7353 
7354 	/*
7355 	 * Because of not recoverable conversion rounding we keep track of the
7356 	 * exact requested value
7357 	 */
7358 	tg->uclamp_pct[clamp_id] = req.percent;
7359 
7360 	/* Update effective clamps to track the most restrictive value */
7361 	cpu_util_update_eff(of_css(of));
7362 
7363 	rcu_read_unlock();
7364 	mutex_unlock(&uclamp_mutex);
7365 
7366 	return nbytes;
7367 }
7368 
7369 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7370 				    char *buf, size_t nbytes,
7371 				    loff_t off)
7372 {
7373 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7374 }
7375 
7376 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7377 				    char *buf, size_t nbytes,
7378 				    loff_t off)
7379 {
7380 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7381 }
7382 
7383 static inline void cpu_uclamp_print(struct seq_file *sf,
7384 				    enum uclamp_id clamp_id)
7385 {
7386 	struct task_group *tg;
7387 	u64 util_clamp;
7388 	u64 percent;
7389 	u32 rem;
7390 
7391 	rcu_read_lock();
7392 	tg = css_tg(seq_css(sf));
7393 	util_clamp = tg->uclamp_req[clamp_id].value;
7394 	rcu_read_unlock();
7395 
7396 	if (util_clamp == SCHED_CAPACITY_SCALE) {
7397 		seq_puts(sf, "max\n");
7398 		return;
7399 	}
7400 
7401 	percent = tg->uclamp_pct[clamp_id];
7402 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7403 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7404 }
7405 
7406 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7407 {
7408 	cpu_uclamp_print(sf, UCLAMP_MIN);
7409 	return 0;
7410 }
7411 
7412 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7413 {
7414 	cpu_uclamp_print(sf, UCLAMP_MAX);
7415 	return 0;
7416 }
7417 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7418 
7419 #ifdef CONFIG_FAIR_GROUP_SCHED
7420 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7421 				struct cftype *cftype, u64 shareval)
7422 {
7423 	if (shareval > scale_load_down(ULONG_MAX))
7424 		shareval = MAX_SHARES;
7425 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7426 }
7427 
7428 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7429 			       struct cftype *cft)
7430 {
7431 	struct task_group *tg = css_tg(css);
7432 
7433 	return (u64) scale_load_down(tg->shares);
7434 }
7435 
7436 #ifdef CONFIG_CFS_BANDWIDTH
7437 static DEFINE_MUTEX(cfs_constraints_mutex);
7438 
7439 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7440 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7441 
7442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7443 
7444 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7445 {
7446 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7447 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7448 
7449 	if (tg == &root_task_group)
7450 		return -EINVAL;
7451 
7452 	/*
7453 	 * Ensure we have at some amount of bandwidth every period.  This is
7454 	 * to prevent reaching a state of large arrears when throttled via
7455 	 * entity_tick() resulting in prolonged exit starvation.
7456 	 */
7457 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7458 		return -EINVAL;
7459 
7460 	/*
7461 	 * Likewise, bound things on the otherside by preventing insane quota
7462 	 * periods.  This also allows us to normalize in computing quota
7463 	 * feasibility.
7464 	 */
7465 	if (period > max_cfs_quota_period)
7466 		return -EINVAL;
7467 
7468 	/*
7469 	 * Prevent race between setting of cfs_rq->runtime_enabled and
7470 	 * unthrottle_offline_cfs_rqs().
7471 	 */
7472 	get_online_cpus();
7473 	mutex_lock(&cfs_constraints_mutex);
7474 	ret = __cfs_schedulable(tg, period, quota);
7475 	if (ret)
7476 		goto out_unlock;
7477 
7478 	runtime_enabled = quota != RUNTIME_INF;
7479 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7480 	/*
7481 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7482 	 * before making related changes, and on->off must occur afterwards
7483 	 */
7484 	if (runtime_enabled && !runtime_was_enabled)
7485 		cfs_bandwidth_usage_inc();
7486 	raw_spin_lock_irq(&cfs_b->lock);
7487 	cfs_b->period = ns_to_ktime(period);
7488 	cfs_b->quota = quota;
7489 
7490 	__refill_cfs_bandwidth_runtime(cfs_b);
7491 
7492 	/* Restart the period timer (if active) to handle new period expiry: */
7493 	if (runtime_enabled)
7494 		start_cfs_bandwidth(cfs_b);
7495 
7496 	raw_spin_unlock_irq(&cfs_b->lock);
7497 
7498 	for_each_online_cpu(i) {
7499 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7500 		struct rq *rq = cfs_rq->rq;
7501 		struct rq_flags rf;
7502 
7503 		rq_lock_irq(rq, &rf);
7504 		cfs_rq->runtime_enabled = runtime_enabled;
7505 		cfs_rq->runtime_remaining = 0;
7506 
7507 		if (cfs_rq->throttled)
7508 			unthrottle_cfs_rq(cfs_rq);
7509 		rq_unlock_irq(rq, &rf);
7510 	}
7511 	if (runtime_was_enabled && !runtime_enabled)
7512 		cfs_bandwidth_usage_dec();
7513 out_unlock:
7514 	mutex_unlock(&cfs_constraints_mutex);
7515 	put_online_cpus();
7516 
7517 	return ret;
7518 }
7519 
7520 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7521 {
7522 	u64 quota, period;
7523 
7524 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7525 	if (cfs_quota_us < 0)
7526 		quota = RUNTIME_INF;
7527 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7528 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7529 	else
7530 		return -EINVAL;
7531 
7532 	return tg_set_cfs_bandwidth(tg, period, quota);
7533 }
7534 
7535 static long tg_get_cfs_quota(struct task_group *tg)
7536 {
7537 	u64 quota_us;
7538 
7539 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7540 		return -1;
7541 
7542 	quota_us = tg->cfs_bandwidth.quota;
7543 	do_div(quota_us, NSEC_PER_USEC);
7544 
7545 	return quota_us;
7546 }
7547 
7548 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7549 {
7550 	u64 quota, period;
7551 
7552 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7553 		return -EINVAL;
7554 
7555 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7556 	quota = tg->cfs_bandwidth.quota;
7557 
7558 	return tg_set_cfs_bandwidth(tg, period, quota);
7559 }
7560 
7561 static long tg_get_cfs_period(struct task_group *tg)
7562 {
7563 	u64 cfs_period_us;
7564 
7565 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7566 	do_div(cfs_period_us, NSEC_PER_USEC);
7567 
7568 	return cfs_period_us;
7569 }
7570 
7571 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7572 				  struct cftype *cft)
7573 {
7574 	return tg_get_cfs_quota(css_tg(css));
7575 }
7576 
7577 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7578 				   struct cftype *cftype, s64 cfs_quota_us)
7579 {
7580 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7581 }
7582 
7583 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7584 				   struct cftype *cft)
7585 {
7586 	return tg_get_cfs_period(css_tg(css));
7587 }
7588 
7589 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7590 				    struct cftype *cftype, u64 cfs_period_us)
7591 {
7592 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7593 }
7594 
7595 struct cfs_schedulable_data {
7596 	struct task_group *tg;
7597 	u64 period, quota;
7598 };
7599 
7600 /*
7601  * normalize group quota/period to be quota/max_period
7602  * note: units are usecs
7603  */
7604 static u64 normalize_cfs_quota(struct task_group *tg,
7605 			       struct cfs_schedulable_data *d)
7606 {
7607 	u64 quota, period;
7608 
7609 	if (tg == d->tg) {
7610 		period = d->period;
7611 		quota = d->quota;
7612 	} else {
7613 		period = tg_get_cfs_period(tg);
7614 		quota = tg_get_cfs_quota(tg);
7615 	}
7616 
7617 	/* note: these should typically be equivalent */
7618 	if (quota == RUNTIME_INF || quota == -1)
7619 		return RUNTIME_INF;
7620 
7621 	return to_ratio(period, quota);
7622 }
7623 
7624 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7625 {
7626 	struct cfs_schedulable_data *d = data;
7627 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7628 	s64 quota = 0, parent_quota = -1;
7629 
7630 	if (!tg->parent) {
7631 		quota = RUNTIME_INF;
7632 	} else {
7633 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7634 
7635 		quota = normalize_cfs_quota(tg, d);
7636 		parent_quota = parent_b->hierarchical_quota;
7637 
7638 		/*
7639 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
7640 		 * always take the min.  On cgroup1, only inherit when no
7641 		 * limit is set:
7642 		 */
7643 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7644 			quota = min(quota, parent_quota);
7645 		} else {
7646 			if (quota == RUNTIME_INF)
7647 				quota = parent_quota;
7648 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7649 				return -EINVAL;
7650 		}
7651 	}
7652 	cfs_b->hierarchical_quota = quota;
7653 
7654 	return 0;
7655 }
7656 
7657 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7658 {
7659 	int ret;
7660 	struct cfs_schedulable_data data = {
7661 		.tg = tg,
7662 		.period = period,
7663 		.quota = quota,
7664 	};
7665 
7666 	if (quota != RUNTIME_INF) {
7667 		do_div(data.period, NSEC_PER_USEC);
7668 		do_div(data.quota, NSEC_PER_USEC);
7669 	}
7670 
7671 	rcu_read_lock();
7672 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7673 	rcu_read_unlock();
7674 
7675 	return ret;
7676 }
7677 
7678 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7679 {
7680 	struct task_group *tg = css_tg(seq_css(sf));
7681 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7682 
7683 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7684 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7685 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7686 
7687 	if (schedstat_enabled() && tg != &root_task_group) {
7688 		u64 ws = 0;
7689 		int i;
7690 
7691 		for_each_possible_cpu(i)
7692 			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7693 
7694 		seq_printf(sf, "wait_sum %llu\n", ws);
7695 	}
7696 
7697 	return 0;
7698 }
7699 #endif /* CONFIG_CFS_BANDWIDTH */
7700 #endif /* CONFIG_FAIR_GROUP_SCHED */
7701 
7702 #ifdef CONFIG_RT_GROUP_SCHED
7703 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7704 				struct cftype *cft, s64 val)
7705 {
7706 	return sched_group_set_rt_runtime(css_tg(css), val);
7707 }
7708 
7709 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7710 			       struct cftype *cft)
7711 {
7712 	return sched_group_rt_runtime(css_tg(css));
7713 }
7714 
7715 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7716 				    struct cftype *cftype, u64 rt_period_us)
7717 {
7718 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7719 }
7720 
7721 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7722 				   struct cftype *cft)
7723 {
7724 	return sched_group_rt_period(css_tg(css));
7725 }
7726 #endif /* CONFIG_RT_GROUP_SCHED */
7727 
7728 static struct cftype cpu_legacy_files[] = {
7729 #ifdef CONFIG_FAIR_GROUP_SCHED
7730 	{
7731 		.name = "shares",
7732 		.read_u64 = cpu_shares_read_u64,
7733 		.write_u64 = cpu_shares_write_u64,
7734 	},
7735 #endif
7736 #ifdef CONFIG_CFS_BANDWIDTH
7737 	{
7738 		.name = "cfs_quota_us",
7739 		.read_s64 = cpu_cfs_quota_read_s64,
7740 		.write_s64 = cpu_cfs_quota_write_s64,
7741 	},
7742 	{
7743 		.name = "cfs_period_us",
7744 		.read_u64 = cpu_cfs_period_read_u64,
7745 		.write_u64 = cpu_cfs_period_write_u64,
7746 	},
7747 	{
7748 		.name = "stat",
7749 		.seq_show = cpu_cfs_stat_show,
7750 	},
7751 #endif
7752 #ifdef CONFIG_RT_GROUP_SCHED
7753 	{
7754 		.name = "rt_runtime_us",
7755 		.read_s64 = cpu_rt_runtime_read,
7756 		.write_s64 = cpu_rt_runtime_write,
7757 	},
7758 	{
7759 		.name = "rt_period_us",
7760 		.read_u64 = cpu_rt_period_read_uint,
7761 		.write_u64 = cpu_rt_period_write_uint,
7762 	},
7763 #endif
7764 #ifdef CONFIG_UCLAMP_TASK_GROUP
7765 	{
7766 		.name = "uclamp.min",
7767 		.flags = CFTYPE_NOT_ON_ROOT,
7768 		.seq_show = cpu_uclamp_min_show,
7769 		.write = cpu_uclamp_min_write,
7770 	},
7771 	{
7772 		.name = "uclamp.max",
7773 		.flags = CFTYPE_NOT_ON_ROOT,
7774 		.seq_show = cpu_uclamp_max_show,
7775 		.write = cpu_uclamp_max_write,
7776 	},
7777 #endif
7778 	{ }	/* Terminate */
7779 };
7780 
7781 static int cpu_extra_stat_show(struct seq_file *sf,
7782 			       struct cgroup_subsys_state *css)
7783 {
7784 #ifdef CONFIG_CFS_BANDWIDTH
7785 	{
7786 		struct task_group *tg = css_tg(css);
7787 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7788 		u64 throttled_usec;
7789 
7790 		throttled_usec = cfs_b->throttled_time;
7791 		do_div(throttled_usec, NSEC_PER_USEC);
7792 
7793 		seq_printf(sf, "nr_periods %d\n"
7794 			   "nr_throttled %d\n"
7795 			   "throttled_usec %llu\n",
7796 			   cfs_b->nr_periods, cfs_b->nr_throttled,
7797 			   throttled_usec);
7798 	}
7799 #endif
7800 	return 0;
7801 }
7802 
7803 #ifdef CONFIG_FAIR_GROUP_SCHED
7804 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7805 			       struct cftype *cft)
7806 {
7807 	struct task_group *tg = css_tg(css);
7808 	u64 weight = scale_load_down(tg->shares);
7809 
7810 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7811 }
7812 
7813 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7814 				struct cftype *cft, u64 weight)
7815 {
7816 	/*
7817 	 * cgroup weight knobs should use the common MIN, DFL and MAX
7818 	 * values which are 1, 100 and 10000 respectively.  While it loses
7819 	 * a bit of range on both ends, it maps pretty well onto the shares
7820 	 * value used by scheduler and the round-trip conversions preserve
7821 	 * the original value over the entire range.
7822 	 */
7823 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7824 		return -ERANGE;
7825 
7826 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7827 
7828 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7829 }
7830 
7831 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7832 				    struct cftype *cft)
7833 {
7834 	unsigned long weight = scale_load_down(css_tg(css)->shares);
7835 	int last_delta = INT_MAX;
7836 	int prio, delta;
7837 
7838 	/* find the closest nice value to the current weight */
7839 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7840 		delta = abs(sched_prio_to_weight[prio] - weight);
7841 		if (delta >= last_delta)
7842 			break;
7843 		last_delta = delta;
7844 	}
7845 
7846 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7847 }
7848 
7849 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7850 				     struct cftype *cft, s64 nice)
7851 {
7852 	unsigned long weight;
7853 	int idx;
7854 
7855 	if (nice < MIN_NICE || nice > MAX_NICE)
7856 		return -ERANGE;
7857 
7858 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7859 	idx = array_index_nospec(idx, 40);
7860 	weight = sched_prio_to_weight[idx];
7861 
7862 	return sched_group_set_shares(css_tg(css), scale_load(weight));
7863 }
7864 #endif
7865 
7866 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7867 						  long period, long quota)
7868 {
7869 	if (quota < 0)
7870 		seq_puts(sf, "max");
7871 	else
7872 		seq_printf(sf, "%ld", quota);
7873 
7874 	seq_printf(sf, " %ld\n", period);
7875 }
7876 
7877 /* caller should put the current value in *@periodp before calling */
7878 static int __maybe_unused cpu_period_quota_parse(char *buf,
7879 						 u64 *periodp, u64 *quotap)
7880 {
7881 	char tok[21];	/* U64_MAX */
7882 
7883 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7884 		return -EINVAL;
7885 
7886 	*periodp *= NSEC_PER_USEC;
7887 
7888 	if (sscanf(tok, "%llu", quotap))
7889 		*quotap *= NSEC_PER_USEC;
7890 	else if (!strcmp(tok, "max"))
7891 		*quotap = RUNTIME_INF;
7892 	else
7893 		return -EINVAL;
7894 
7895 	return 0;
7896 }
7897 
7898 #ifdef CONFIG_CFS_BANDWIDTH
7899 static int cpu_max_show(struct seq_file *sf, void *v)
7900 {
7901 	struct task_group *tg = css_tg(seq_css(sf));
7902 
7903 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7904 	return 0;
7905 }
7906 
7907 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7908 			     char *buf, size_t nbytes, loff_t off)
7909 {
7910 	struct task_group *tg = css_tg(of_css(of));
7911 	u64 period = tg_get_cfs_period(tg);
7912 	u64 quota;
7913 	int ret;
7914 
7915 	ret = cpu_period_quota_parse(buf, &period, &quota);
7916 	if (!ret)
7917 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7918 	return ret ?: nbytes;
7919 }
7920 #endif
7921 
7922 static struct cftype cpu_files[] = {
7923 #ifdef CONFIG_FAIR_GROUP_SCHED
7924 	{
7925 		.name = "weight",
7926 		.flags = CFTYPE_NOT_ON_ROOT,
7927 		.read_u64 = cpu_weight_read_u64,
7928 		.write_u64 = cpu_weight_write_u64,
7929 	},
7930 	{
7931 		.name = "weight.nice",
7932 		.flags = CFTYPE_NOT_ON_ROOT,
7933 		.read_s64 = cpu_weight_nice_read_s64,
7934 		.write_s64 = cpu_weight_nice_write_s64,
7935 	},
7936 #endif
7937 #ifdef CONFIG_CFS_BANDWIDTH
7938 	{
7939 		.name = "max",
7940 		.flags = CFTYPE_NOT_ON_ROOT,
7941 		.seq_show = cpu_max_show,
7942 		.write = cpu_max_write,
7943 	},
7944 #endif
7945 #ifdef CONFIG_UCLAMP_TASK_GROUP
7946 	{
7947 		.name = "uclamp.min",
7948 		.flags = CFTYPE_NOT_ON_ROOT,
7949 		.seq_show = cpu_uclamp_min_show,
7950 		.write = cpu_uclamp_min_write,
7951 	},
7952 	{
7953 		.name = "uclamp.max",
7954 		.flags = CFTYPE_NOT_ON_ROOT,
7955 		.seq_show = cpu_uclamp_max_show,
7956 		.write = cpu_uclamp_max_write,
7957 	},
7958 #endif
7959 	{ }	/* terminate */
7960 };
7961 
7962 struct cgroup_subsys cpu_cgrp_subsys = {
7963 	.css_alloc	= cpu_cgroup_css_alloc,
7964 	.css_online	= cpu_cgroup_css_online,
7965 	.css_released	= cpu_cgroup_css_released,
7966 	.css_free	= cpu_cgroup_css_free,
7967 	.css_extra_stat_show = cpu_extra_stat_show,
7968 	.fork		= cpu_cgroup_fork,
7969 	.can_attach	= cpu_cgroup_can_attach,
7970 	.attach		= cpu_cgroup_attach,
7971 	.legacy_cftypes	= cpu_legacy_files,
7972 	.dfl_cftypes	= cpu_files,
7973 	.early_init	= true,
7974 	.threaded	= true,
7975 };
7976 
7977 #endif	/* CONFIG_CGROUP_SCHED */
7978 
7979 void dump_cpu_task(int cpu)
7980 {
7981 	pr_info("Task dump for CPU %d:\n", cpu);
7982 	sched_show_task(cpu_curr(cpu));
7983 }
7984 
7985 /*
7986  * Nice levels are multiplicative, with a gentle 10% change for every
7987  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7988  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7989  * that remained on nice 0.
7990  *
7991  * The "10% effect" is relative and cumulative: from _any_ nice level,
7992  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7993  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7994  * If a task goes up by ~10% and another task goes down by ~10% then
7995  * the relative distance between them is ~25%.)
7996  */
7997 const int sched_prio_to_weight[40] = {
7998  /* -20 */     88761,     71755,     56483,     46273,     36291,
7999  /* -15 */     29154,     23254,     18705,     14949,     11916,
8000  /* -10 */      9548,      7620,      6100,      4904,      3906,
8001  /*  -5 */      3121,      2501,      1991,      1586,      1277,
8002  /*   0 */      1024,       820,       655,       526,       423,
8003  /*   5 */       335,       272,       215,       172,       137,
8004  /*  10 */       110,        87,        70,        56,        45,
8005  /*  15 */        36,        29,        23,        18,        15,
8006 };
8007 
8008 /*
8009  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8010  *
8011  * In cases where the weight does not change often, we can use the
8012  * precalculated inverse to speed up arithmetics by turning divisions
8013  * into multiplications:
8014  */
8015 const u32 sched_prio_to_wmult[40] = {
8016  /* -20 */     48388,     59856,     76040,     92818,    118348,
8017  /* -15 */    147320,    184698,    229616,    287308,    360437,
8018  /* -10 */    449829,    563644,    704093,    875809,   1099582,
8019  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8020  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8021  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8022  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8023  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8024 };
8025 
8026 #undef CREATE_TRACE_POINTS
8027