1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/switch_to.h> 77 #include <asm/tlb.h> 78 79 #define CREATE_TRACE_POINTS 80 #include <linux/sched/rseq_api.h> 81 #include <trace/events/sched.h> 82 #undef CREATE_TRACE_POINTS 83 84 #include "sched.h" 85 #include "stats.h" 86 #include "autogroup.h" 87 88 #include "autogroup.h" 89 #include "pelt.h" 90 #include "smp.h" 91 #include "stats.h" 92 93 #include "../workqueue_internal.h" 94 #include "../../fs/io-wq.h" 95 #include "../smpboot.h" 96 97 /* 98 * Export tracepoints that act as a bare tracehook (ie: have no trace event 99 * associated with them) to allow external modules to probe them. 100 */ 101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 112 113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 115 #ifdef CONFIG_SCHED_DEBUG 116 /* 117 * Debugging: various feature bits 118 * 119 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 120 * sysctl_sched_features, defined in sched.h, to allow constants propagation 121 * at compile time and compiler optimization based on features default. 122 */ 123 #define SCHED_FEAT(name, enabled) \ 124 (1UL << __SCHED_FEAT_##name) * enabled | 125 const_debug unsigned int sysctl_sched_features = 126 #include "features.h" 127 0; 128 #undef SCHED_FEAT 129 130 /* 131 * Print a warning if need_resched is set for the given duration (if 132 * LATENCY_WARN is enabled). 133 * 134 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 135 * per boot. 136 */ 137 __read_mostly int sysctl_resched_latency_warn_ms = 100; 138 __read_mostly int sysctl_resched_latency_warn_once = 1; 139 #endif /* CONFIG_SCHED_DEBUG */ 140 141 /* 142 * Number of tasks to iterate in a single balance run. 143 * Limited because this is done with IRQs disabled. 144 */ 145 #ifdef CONFIG_PREEMPT_RT 146 const_debug unsigned int sysctl_sched_nr_migrate = 8; 147 #else 148 const_debug unsigned int sysctl_sched_nr_migrate = 32; 149 #endif 150 151 __read_mostly int scheduler_running; 152 153 #ifdef CONFIG_SCHED_CORE 154 155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 156 157 /* kernel prio, less is more */ 158 static inline int __task_prio(struct task_struct *p) 159 { 160 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 161 return -2; 162 163 if (rt_prio(p->prio)) /* includes deadline */ 164 return p->prio; /* [-1, 99] */ 165 166 if (p->sched_class == &idle_sched_class) 167 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 168 169 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 170 } 171 172 /* 173 * l(a,b) 174 * le(a,b) := !l(b,a) 175 * g(a,b) := l(b,a) 176 * ge(a,b) := !l(a,b) 177 */ 178 179 /* real prio, less is less */ 180 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 181 { 182 183 int pa = __task_prio(a), pb = __task_prio(b); 184 185 if (-pa < -pb) 186 return true; 187 188 if (-pb < -pa) 189 return false; 190 191 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 192 return !dl_time_before(a->dl.deadline, b->dl.deadline); 193 194 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 195 return cfs_prio_less(a, b, in_fi); 196 197 return false; 198 } 199 200 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 201 { 202 if (a->core_cookie < b->core_cookie) 203 return true; 204 205 if (a->core_cookie > b->core_cookie) 206 return false; 207 208 /* flip prio, so high prio is leftmost */ 209 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 210 return true; 211 212 return false; 213 } 214 215 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 216 217 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 218 { 219 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 220 } 221 222 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 223 { 224 const struct task_struct *p = __node_2_sc(node); 225 unsigned long cookie = (unsigned long)key; 226 227 if (cookie < p->core_cookie) 228 return -1; 229 230 if (cookie > p->core_cookie) 231 return 1; 232 233 return 0; 234 } 235 236 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 237 { 238 rq->core->core_task_seq++; 239 240 if (!p->core_cookie) 241 return; 242 243 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 244 } 245 246 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 247 { 248 rq->core->core_task_seq++; 249 250 if (sched_core_enqueued(p)) { 251 rb_erase(&p->core_node, &rq->core_tree); 252 RB_CLEAR_NODE(&p->core_node); 253 } 254 255 /* 256 * Migrating the last task off the cpu, with the cpu in forced idle 257 * state. Reschedule to create an accounting edge for forced idle, 258 * and re-examine whether the core is still in forced idle state. 259 */ 260 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 261 rq->core->core_forceidle_count && rq->curr == rq->idle) 262 resched_curr(rq); 263 } 264 265 /* 266 * Find left-most (aka, highest priority) task matching @cookie. 267 */ 268 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 269 { 270 struct rb_node *node; 271 272 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 273 /* 274 * The idle task always matches any cookie! 275 */ 276 if (!node) 277 return idle_sched_class.pick_task(rq); 278 279 return __node_2_sc(node); 280 } 281 282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 283 { 284 struct rb_node *node = &p->core_node; 285 286 node = rb_next(node); 287 if (!node) 288 return NULL; 289 290 p = container_of(node, struct task_struct, core_node); 291 if (p->core_cookie != cookie) 292 return NULL; 293 294 return p; 295 } 296 297 /* 298 * Magic required such that: 299 * 300 * raw_spin_rq_lock(rq); 301 * ... 302 * raw_spin_rq_unlock(rq); 303 * 304 * ends up locking and unlocking the _same_ lock, and all CPUs 305 * always agree on what rq has what lock. 306 * 307 * XXX entirely possible to selectively enable cores, don't bother for now. 308 */ 309 310 static DEFINE_MUTEX(sched_core_mutex); 311 static atomic_t sched_core_count; 312 static struct cpumask sched_core_mask; 313 314 static void sched_core_lock(int cpu, unsigned long *flags) 315 { 316 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 317 int t, i = 0; 318 319 local_irq_save(*flags); 320 for_each_cpu(t, smt_mask) 321 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 322 } 323 324 static void sched_core_unlock(int cpu, unsigned long *flags) 325 { 326 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 327 int t; 328 329 for_each_cpu(t, smt_mask) 330 raw_spin_unlock(&cpu_rq(t)->__lock); 331 local_irq_restore(*flags); 332 } 333 334 static void __sched_core_flip(bool enabled) 335 { 336 unsigned long flags; 337 int cpu, t; 338 339 cpus_read_lock(); 340 341 /* 342 * Toggle the online cores, one by one. 343 */ 344 cpumask_copy(&sched_core_mask, cpu_online_mask); 345 for_each_cpu(cpu, &sched_core_mask) { 346 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 347 348 sched_core_lock(cpu, &flags); 349 350 for_each_cpu(t, smt_mask) 351 cpu_rq(t)->core_enabled = enabled; 352 353 cpu_rq(cpu)->core->core_forceidle_start = 0; 354 355 sched_core_unlock(cpu, &flags); 356 357 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 358 } 359 360 /* 361 * Toggle the offline CPUs. 362 */ 363 cpumask_copy(&sched_core_mask, cpu_possible_mask); 364 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask); 365 366 for_each_cpu(cpu, &sched_core_mask) 367 cpu_rq(cpu)->core_enabled = enabled; 368 369 cpus_read_unlock(); 370 } 371 372 static void sched_core_assert_empty(void) 373 { 374 int cpu; 375 376 for_each_possible_cpu(cpu) 377 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 378 } 379 380 static void __sched_core_enable(void) 381 { 382 static_branch_enable(&__sched_core_enabled); 383 /* 384 * Ensure all previous instances of raw_spin_rq_*lock() have finished 385 * and future ones will observe !sched_core_disabled(). 386 */ 387 synchronize_rcu(); 388 __sched_core_flip(true); 389 sched_core_assert_empty(); 390 } 391 392 static void __sched_core_disable(void) 393 { 394 sched_core_assert_empty(); 395 __sched_core_flip(false); 396 static_branch_disable(&__sched_core_enabled); 397 } 398 399 void sched_core_get(void) 400 { 401 if (atomic_inc_not_zero(&sched_core_count)) 402 return; 403 404 mutex_lock(&sched_core_mutex); 405 if (!atomic_read(&sched_core_count)) 406 __sched_core_enable(); 407 408 smp_mb__before_atomic(); 409 atomic_inc(&sched_core_count); 410 mutex_unlock(&sched_core_mutex); 411 } 412 413 static void __sched_core_put(struct work_struct *work) 414 { 415 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 416 __sched_core_disable(); 417 mutex_unlock(&sched_core_mutex); 418 } 419 } 420 421 void sched_core_put(void) 422 { 423 static DECLARE_WORK(_work, __sched_core_put); 424 425 /* 426 * "There can be only one" 427 * 428 * Either this is the last one, or we don't actually need to do any 429 * 'work'. If it is the last *again*, we rely on 430 * WORK_STRUCT_PENDING_BIT. 431 */ 432 if (!atomic_add_unless(&sched_core_count, -1, 1)) 433 schedule_work(&_work); 434 } 435 436 #else /* !CONFIG_SCHED_CORE */ 437 438 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 439 static inline void 440 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 441 442 #endif /* CONFIG_SCHED_CORE */ 443 444 /* 445 * Serialization rules: 446 * 447 * Lock order: 448 * 449 * p->pi_lock 450 * rq->lock 451 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 452 * 453 * rq1->lock 454 * rq2->lock where: rq1 < rq2 455 * 456 * Regular state: 457 * 458 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 459 * local CPU's rq->lock, it optionally removes the task from the runqueue and 460 * always looks at the local rq data structures to find the most eligible task 461 * to run next. 462 * 463 * Task enqueue is also under rq->lock, possibly taken from another CPU. 464 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 465 * the local CPU to avoid bouncing the runqueue state around [ see 466 * ttwu_queue_wakelist() ] 467 * 468 * Task wakeup, specifically wakeups that involve migration, are horribly 469 * complicated to avoid having to take two rq->locks. 470 * 471 * Special state: 472 * 473 * System-calls and anything external will use task_rq_lock() which acquires 474 * both p->pi_lock and rq->lock. As a consequence the state they change is 475 * stable while holding either lock: 476 * 477 * - sched_setaffinity()/ 478 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 479 * - set_user_nice(): p->se.load, p->*prio 480 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 481 * p->se.load, p->rt_priority, 482 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 483 * - sched_setnuma(): p->numa_preferred_nid 484 * - sched_move_task()/ 485 * cpu_cgroup_fork(): p->sched_task_group 486 * - uclamp_update_active() p->uclamp* 487 * 488 * p->state <- TASK_*: 489 * 490 * is changed locklessly using set_current_state(), __set_current_state() or 491 * set_special_state(), see their respective comments, or by 492 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 493 * concurrent self. 494 * 495 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 496 * 497 * is set by activate_task() and cleared by deactivate_task(), under 498 * rq->lock. Non-zero indicates the task is runnable, the special 499 * ON_RQ_MIGRATING state is used for migration without holding both 500 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 501 * 502 * p->on_cpu <- { 0, 1 }: 503 * 504 * is set by prepare_task() and cleared by finish_task() such that it will be 505 * set before p is scheduled-in and cleared after p is scheduled-out, both 506 * under rq->lock. Non-zero indicates the task is running on its CPU. 507 * 508 * [ The astute reader will observe that it is possible for two tasks on one 509 * CPU to have ->on_cpu = 1 at the same time. ] 510 * 511 * task_cpu(p): is changed by set_task_cpu(), the rules are: 512 * 513 * - Don't call set_task_cpu() on a blocked task: 514 * 515 * We don't care what CPU we're not running on, this simplifies hotplug, 516 * the CPU assignment of blocked tasks isn't required to be valid. 517 * 518 * - for try_to_wake_up(), called under p->pi_lock: 519 * 520 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 521 * 522 * - for migration called under rq->lock: 523 * [ see task_on_rq_migrating() in task_rq_lock() ] 524 * 525 * o move_queued_task() 526 * o detach_task() 527 * 528 * - for migration called under double_rq_lock(): 529 * 530 * o __migrate_swap_task() 531 * o push_rt_task() / pull_rt_task() 532 * o push_dl_task() / pull_dl_task() 533 * o dl_task_offline_migration() 534 * 535 */ 536 537 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 538 { 539 raw_spinlock_t *lock; 540 541 /* Matches synchronize_rcu() in __sched_core_enable() */ 542 preempt_disable(); 543 if (sched_core_disabled()) { 544 raw_spin_lock_nested(&rq->__lock, subclass); 545 /* preempt_count *MUST* be > 1 */ 546 preempt_enable_no_resched(); 547 return; 548 } 549 550 for (;;) { 551 lock = __rq_lockp(rq); 552 raw_spin_lock_nested(lock, subclass); 553 if (likely(lock == __rq_lockp(rq))) { 554 /* preempt_count *MUST* be > 1 */ 555 preempt_enable_no_resched(); 556 return; 557 } 558 raw_spin_unlock(lock); 559 } 560 } 561 562 bool raw_spin_rq_trylock(struct rq *rq) 563 { 564 raw_spinlock_t *lock; 565 bool ret; 566 567 /* Matches synchronize_rcu() in __sched_core_enable() */ 568 preempt_disable(); 569 if (sched_core_disabled()) { 570 ret = raw_spin_trylock(&rq->__lock); 571 preempt_enable(); 572 return ret; 573 } 574 575 for (;;) { 576 lock = __rq_lockp(rq); 577 ret = raw_spin_trylock(lock); 578 if (!ret || (likely(lock == __rq_lockp(rq)))) { 579 preempt_enable(); 580 return ret; 581 } 582 raw_spin_unlock(lock); 583 } 584 } 585 586 void raw_spin_rq_unlock(struct rq *rq) 587 { 588 raw_spin_unlock(rq_lockp(rq)); 589 } 590 591 #ifdef CONFIG_SMP 592 /* 593 * double_rq_lock - safely lock two runqueues 594 */ 595 void double_rq_lock(struct rq *rq1, struct rq *rq2) 596 { 597 lockdep_assert_irqs_disabled(); 598 599 if (rq_order_less(rq2, rq1)) 600 swap(rq1, rq2); 601 602 raw_spin_rq_lock(rq1); 603 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 604 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 605 606 double_rq_clock_clear_update(rq1, rq2); 607 } 608 #endif 609 610 /* 611 * __task_rq_lock - lock the rq @p resides on. 612 */ 613 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 614 __acquires(rq->lock) 615 { 616 struct rq *rq; 617 618 lockdep_assert_held(&p->pi_lock); 619 620 for (;;) { 621 rq = task_rq(p); 622 raw_spin_rq_lock(rq); 623 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 624 rq_pin_lock(rq, rf); 625 return rq; 626 } 627 raw_spin_rq_unlock(rq); 628 629 while (unlikely(task_on_rq_migrating(p))) 630 cpu_relax(); 631 } 632 } 633 634 /* 635 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 636 */ 637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 638 __acquires(p->pi_lock) 639 __acquires(rq->lock) 640 { 641 struct rq *rq; 642 643 for (;;) { 644 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 645 rq = task_rq(p); 646 raw_spin_rq_lock(rq); 647 /* 648 * move_queued_task() task_rq_lock() 649 * 650 * ACQUIRE (rq->lock) 651 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 652 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 653 * [S] ->cpu = new_cpu [L] task_rq() 654 * [L] ->on_rq 655 * RELEASE (rq->lock) 656 * 657 * If we observe the old CPU in task_rq_lock(), the acquire of 658 * the old rq->lock will fully serialize against the stores. 659 * 660 * If we observe the new CPU in task_rq_lock(), the address 661 * dependency headed by '[L] rq = task_rq()' and the acquire 662 * will pair with the WMB to ensure we then also see migrating. 663 */ 664 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 665 rq_pin_lock(rq, rf); 666 return rq; 667 } 668 raw_spin_rq_unlock(rq); 669 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 670 671 while (unlikely(task_on_rq_migrating(p))) 672 cpu_relax(); 673 } 674 } 675 676 /* 677 * RQ-clock updating methods: 678 */ 679 680 static void update_rq_clock_task(struct rq *rq, s64 delta) 681 { 682 /* 683 * In theory, the compile should just see 0 here, and optimize out the call 684 * to sched_rt_avg_update. But I don't trust it... 685 */ 686 s64 __maybe_unused steal = 0, irq_delta = 0; 687 688 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 689 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 690 691 /* 692 * Since irq_time is only updated on {soft,}irq_exit, we might run into 693 * this case when a previous update_rq_clock() happened inside a 694 * {soft,}irq region. 695 * 696 * When this happens, we stop ->clock_task and only update the 697 * prev_irq_time stamp to account for the part that fit, so that a next 698 * update will consume the rest. This ensures ->clock_task is 699 * monotonic. 700 * 701 * It does however cause some slight miss-attribution of {soft,}irq 702 * time, a more accurate solution would be to update the irq_time using 703 * the current rq->clock timestamp, except that would require using 704 * atomic ops. 705 */ 706 if (irq_delta > delta) 707 irq_delta = delta; 708 709 rq->prev_irq_time += irq_delta; 710 delta -= irq_delta; 711 #endif 712 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 713 if (static_key_false((¶virt_steal_rq_enabled))) { 714 steal = paravirt_steal_clock(cpu_of(rq)); 715 steal -= rq->prev_steal_time_rq; 716 717 if (unlikely(steal > delta)) 718 steal = delta; 719 720 rq->prev_steal_time_rq += steal; 721 delta -= steal; 722 } 723 #endif 724 725 rq->clock_task += delta; 726 727 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 728 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 729 update_irq_load_avg(rq, irq_delta + steal); 730 #endif 731 update_rq_clock_pelt(rq, delta); 732 } 733 734 void update_rq_clock(struct rq *rq) 735 { 736 s64 delta; 737 738 lockdep_assert_rq_held(rq); 739 740 if (rq->clock_update_flags & RQCF_ACT_SKIP) 741 return; 742 743 #ifdef CONFIG_SCHED_DEBUG 744 if (sched_feat(WARN_DOUBLE_CLOCK)) 745 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 746 rq->clock_update_flags |= RQCF_UPDATED; 747 #endif 748 749 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 750 if (delta < 0) 751 return; 752 rq->clock += delta; 753 update_rq_clock_task(rq, delta); 754 } 755 756 #ifdef CONFIG_SCHED_HRTICK 757 /* 758 * Use HR-timers to deliver accurate preemption points. 759 */ 760 761 static void hrtick_clear(struct rq *rq) 762 { 763 if (hrtimer_active(&rq->hrtick_timer)) 764 hrtimer_cancel(&rq->hrtick_timer); 765 } 766 767 /* 768 * High-resolution timer tick. 769 * Runs from hardirq context with interrupts disabled. 770 */ 771 static enum hrtimer_restart hrtick(struct hrtimer *timer) 772 { 773 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 774 struct rq_flags rf; 775 776 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 777 778 rq_lock(rq, &rf); 779 update_rq_clock(rq); 780 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 781 rq_unlock(rq, &rf); 782 783 return HRTIMER_NORESTART; 784 } 785 786 #ifdef CONFIG_SMP 787 788 static void __hrtick_restart(struct rq *rq) 789 { 790 struct hrtimer *timer = &rq->hrtick_timer; 791 ktime_t time = rq->hrtick_time; 792 793 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 794 } 795 796 /* 797 * called from hardirq (IPI) context 798 */ 799 static void __hrtick_start(void *arg) 800 { 801 struct rq *rq = arg; 802 struct rq_flags rf; 803 804 rq_lock(rq, &rf); 805 __hrtick_restart(rq); 806 rq_unlock(rq, &rf); 807 } 808 809 /* 810 * Called to set the hrtick timer state. 811 * 812 * called with rq->lock held and irqs disabled 813 */ 814 void hrtick_start(struct rq *rq, u64 delay) 815 { 816 struct hrtimer *timer = &rq->hrtick_timer; 817 s64 delta; 818 819 /* 820 * Don't schedule slices shorter than 10000ns, that just 821 * doesn't make sense and can cause timer DoS. 822 */ 823 delta = max_t(s64, delay, 10000LL); 824 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 825 826 if (rq == this_rq()) 827 __hrtick_restart(rq); 828 else 829 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 830 } 831 832 #else 833 /* 834 * Called to set the hrtick timer state. 835 * 836 * called with rq->lock held and irqs disabled 837 */ 838 void hrtick_start(struct rq *rq, u64 delay) 839 { 840 /* 841 * Don't schedule slices shorter than 10000ns, that just 842 * doesn't make sense. Rely on vruntime for fairness. 843 */ 844 delay = max_t(u64, delay, 10000LL); 845 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 846 HRTIMER_MODE_REL_PINNED_HARD); 847 } 848 849 #endif /* CONFIG_SMP */ 850 851 static void hrtick_rq_init(struct rq *rq) 852 { 853 #ifdef CONFIG_SMP 854 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 855 #endif 856 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 857 rq->hrtick_timer.function = hrtick; 858 } 859 #else /* CONFIG_SCHED_HRTICK */ 860 static inline void hrtick_clear(struct rq *rq) 861 { 862 } 863 864 static inline void hrtick_rq_init(struct rq *rq) 865 { 866 } 867 #endif /* CONFIG_SCHED_HRTICK */ 868 869 /* 870 * cmpxchg based fetch_or, macro so it works for different integer types 871 */ 872 #define fetch_or(ptr, mask) \ 873 ({ \ 874 typeof(ptr) _ptr = (ptr); \ 875 typeof(mask) _mask = (mask); \ 876 typeof(*_ptr) _old, _val = *_ptr; \ 877 \ 878 for (;;) { \ 879 _old = cmpxchg(_ptr, _val, _val | _mask); \ 880 if (_old == _val) \ 881 break; \ 882 _val = _old; \ 883 } \ 884 _old; \ 885 }) 886 887 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 888 /* 889 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 890 * this avoids any races wrt polling state changes and thereby avoids 891 * spurious IPIs. 892 */ 893 static bool set_nr_and_not_polling(struct task_struct *p) 894 { 895 struct thread_info *ti = task_thread_info(p); 896 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 897 } 898 899 /* 900 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 901 * 902 * If this returns true, then the idle task promises to call 903 * sched_ttwu_pending() and reschedule soon. 904 */ 905 static bool set_nr_if_polling(struct task_struct *p) 906 { 907 struct thread_info *ti = task_thread_info(p); 908 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 909 910 for (;;) { 911 if (!(val & _TIF_POLLING_NRFLAG)) 912 return false; 913 if (val & _TIF_NEED_RESCHED) 914 return true; 915 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 916 if (old == val) 917 break; 918 val = old; 919 } 920 return true; 921 } 922 923 #else 924 static bool set_nr_and_not_polling(struct task_struct *p) 925 { 926 set_tsk_need_resched(p); 927 return true; 928 } 929 930 #ifdef CONFIG_SMP 931 static bool set_nr_if_polling(struct task_struct *p) 932 { 933 return false; 934 } 935 #endif 936 #endif 937 938 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 939 { 940 struct wake_q_node *node = &task->wake_q; 941 942 /* 943 * Atomically grab the task, if ->wake_q is !nil already it means 944 * it's already queued (either by us or someone else) and will get the 945 * wakeup due to that. 946 * 947 * In order to ensure that a pending wakeup will observe our pending 948 * state, even in the failed case, an explicit smp_mb() must be used. 949 */ 950 smp_mb__before_atomic(); 951 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 952 return false; 953 954 /* 955 * The head is context local, there can be no concurrency. 956 */ 957 *head->lastp = node; 958 head->lastp = &node->next; 959 return true; 960 } 961 962 /** 963 * wake_q_add() - queue a wakeup for 'later' waking. 964 * @head: the wake_q_head to add @task to 965 * @task: the task to queue for 'later' wakeup 966 * 967 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 968 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 969 * instantly. 970 * 971 * This function must be used as-if it were wake_up_process(); IOW the task 972 * must be ready to be woken at this location. 973 */ 974 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 975 { 976 if (__wake_q_add(head, task)) 977 get_task_struct(task); 978 } 979 980 /** 981 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 982 * @head: the wake_q_head to add @task to 983 * @task: the task to queue for 'later' wakeup 984 * 985 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 986 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 987 * instantly. 988 * 989 * This function must be used as-if it were wake_up_process(); IOW the task 990 * must be ready to be woken at this location. 991 * 992 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 993 * that already hold reference to @task can call the 'safe' version and trust 994 * wake_q to do the right thing depending whether or not the @task is already 995 * queued for wakeup. 996 */ 997 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 998 { 999 if (!__wake_q_add(head, task)) 1000 put_task_struct(task); 1001 } 1002 1003 void wake_up_q(struct wake_q_head *head) 1004 { 1005 struct wake_q_node *node = head->first; 1006 1007 while (node != WAKE_Q_TAIL) { 1008 struct task_struct *task; 1009 1010 task = container_of(node, struct task_struct, wake_q); 1011 /* Task can safely be re-inserted now: */ 1012 node = node->next; 1013 task->wake_q.next = NULL; 1014 1015 /* 1016 * wake_up_process() executes a full barrier, which pairs with 1017 * the queueing in wake_q_add() so as not to miss wakeups. 1018 */ 1019 wake_up_process(task); 1020 put_task_struct(task); 1021 } 1022 } 1023 1024 /* 1025 * resched_curr - mark rq's current task 'to be rescheduled now'. 1026 * 1027 * On UP this means the setting of the need_resched flag, on SMP it 1028 * might also involve a cross-CPU call to trigger the scheduler on 1029 * the target CPU. 1030 */ 1031 void resched_curr(struct rq *rq) 1032 { 1033 struct task_struct *curr = rq->curr; 1034 int cpu; 1035 1036 lockdep_assert_rq_held(rq); 1037 1038 if (test_tsk_need_resched(curr)) 1039 return; 1040 1041 cpu = cpu_of(rq); 1042 1043 if (cpu == smp_processor_id()) { 1044 set_tsk_need_resched(curr); 1045 set_preempt_need_resched(); 1046 return; 1047 } 1048 1049 if (set_nr_and_not_polling(curr)) 1050 smp_send_reschedule(cpu); 1051 else 1052 trace_sched_wake_idle_without_ipi(cpu); 1053 } 1054 1055 void resched_cpu(int cpu) 1056 { 1057 struct rq *rq = cpu_rq(cpu); 1058 unsigned long flags; 1059 1060 raw_spin_rq_lock_irqsave(rq, flags); 1061 if (cpu_online(cpu) || cpu == smp_processor_id()) 1062 resched_curr(rq); 1063 raw_spin_rq_unlock_irqrestore(rq, flags); 1064 } 1065 1066 #ifdef CONFIG_SMP 1067 #ifdef CONFIG_NO_HZ_COMMON 1068 /* 1069 * In the semi idle case, use the nearest busy CPU for migrating timers 1070 * from an idle CPU. This is good for power-savings. 1071 * 1072 * We don't do similar optimization for completely idle system, as 1073 * selecting an idle CPU will add more delays to the timers than intended 1074 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1075 */ 1076 int get_nohz_timer_target(void) 1077 { 1078 int i, cpu = smp_processor_id(), default_cpu = -1; 1079 struct sched_domain *sd; 1080 const struct cpumask *hk_mask; 1081 1082 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1083 if (!idle_cpu(cpu)) 1084 return cpu; 1085 default_cpu = cpu; 1086 } 1087 1088 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1089 1090 rcu_read_lock(); 1091 for_each_domain(cpu, sd) { 1092 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1093 if (cpu == i) 1094 continue; 1095 1096 if (!idle_cpu(i)) { 1097 cpu = i; 1098 goto unlock; 1099 } 1100 } 1101 } 1102 1103 if (default_cpu == -1) 1104 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1105 cpu = default_cpu; 1106 unlock: 1107 rcu_read_unlock(); 1108 return cpu; 1109 } 1110 1111 /* 1112 * When add_timer_on() enqueues a timer into the timer wheel of an 1113 * idle CPU then this timer might expire before the next timer event 1114 * which is scheduled to wake up that CPU. In case of a completely 1115 * idle system the next event might even be infinite time into the 1116 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1117 * leaves the inner idle loop so the newly added timer is taken into 1118 * account when the CPU goes back to idle and evaluates the timer 1119 * wheel for the next timer event. 1120 */ 1121 static void wake_up_idle_cpu(int cpu) 1122 { 1123 struct rq *rq = cpu_rq(cpu); 1124 1125 if (cpu == smp_processor_id()) 1126 return; 1127 1128 if (set_nr_and_not_polling(rq->idle)) 1129 smp_send_reschedule(cpu); 1130 else 1131 trace_sched_wake_idle_without_ipi(cpu); 1132 } 1133 1134 static bool wake_up_full_nohz_cpu(int cpu) 1135 { 1136 /* 1137 * We just need the target to call irq_exit() and re-evaluate 1138 * the next tick. The nohz full kick at least implies that. 1139 * If needed we can still optimize that later with an 1140 * empty IRQ. 1141 */ 1142 if (cpu_is_offline(cpu)) 1143 return true; /* Don't try to wake offline CPUs. */ 1144 if (tick_nohz_full_cpu(cpu)) { 1145 if (cpu != smp_processor_id() || 1146 tick_nohz_tick_stopped()) 1147 tick_nohz_full_kick_cpu(cpu); 1148 return true; 1149 } 1150 1151 return false; 1152 } 1153 1154 /* 1155 * Wake up the specified CPU. If the CPU is going offline, it is the 1156 * caller's responsibility to deal with the lost wakeup, for example, 1157 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1158 */ 1159 void wake_up_nohz_cpu(int cpu) 1160 { 1161 if (!wake_up_full_nohz_cpu(cpu)) 1162 wake_up_idle_cpu(cpu); 1163 } 1164 1165 static void nohz_csd_func(void *info) 1166 { 1167 struct rq *rq = info; 1168 int cpu = cpu_of(rq); 1169 unsigned int flags; 1170 1171 /* 1172 * Release the rq::nohz_csd. 1173 */ 1174 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1175 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1176 1177 rq->idle_balance = idle_cpu(cpu); 1178 if (rq->idle_balance && !need_resched()) { 1179 rq->nohz_idle_balance = flags; 1180 raise_softirq_irqoff(SCHED_SOFTIRQ); 1181 } 1182 } 1183 1184 #endif /* CONFIG_NO_HZ_COMMON */ 1185 1186 #ifdef CONFIG_NO_HZ_FULL 1187 bool sched_can_stop_tick(struct rq *rq) 1188 { 1189 int fifo_nr_running; 1190 1191 /* Deadline tasks, even if single, need the tick */ 1192 if (rq->dl.dl_nr_running) 1193 return false; 1194 1195 /* 1196 * If there are more than one RR tasks, we need the tick to affect the 1197 * actual RR behaviour. 1198 */ 1199 if (rq->rt.rr_nr_running) { 1200 if (rq->rt.rr_nr_running == 1) 1201 return true; 1202 else 1203 return false; 1204 } 1205 1206 /* 1207 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1208 * forced preemption between FIFO tasks. 1209 */ 1210 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1211 if (fifo_nr_running) 1212 return true; 1213 1214 /* 1215 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1216 * if there's more than one we need the tick for involuntary 1217 * preemption. 1218 */ 1219 if (rq->nr_running > 1) 1220 return false; 1221 1222 return true; 1223 } 1224 #endif /* CONFIG_NO_HZ_FULL */ 1225 #endif /* CONFIG_SMP */ 1226 1227 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1228 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1229 /* 1230 * Iterate task_group tree rooted at *from, calling @down when first entering a 1231 * node and @up when leaving it for the final time. 1232 * 1233 * Caller must hold rcu_lock or sufficient equivalent. 1234 */ 1235 int walk_tg_tree_from(struct task_group *from, 1236 tg_visitor down, tg_visitor up, void *data) 1237 { 1238 struct task_group *parent, *child; 1239 int ret; 1240 1241 parent = from; 1242 1243 down: 1244 ret = (*down)(parent, data); 1245 if (ret) 1246 goto out; 1247 list_for_each_entry_rcu(child, &parent->children, siblings) { 1248 parent = child; 1249 goto down; 1250 1251 up: 1252 continue; 1253 } 1254 ret = (*up)(parent, data); 1255 if (ret || parent == from) 1256 goto out; 1257 1258 child = parent; 1259 parent = parent->parent; 1260 if (parent) 1261 goto up; 1262 out: 1263 return ret; 1264 } 1265 1266 int tg_nop(struct task_group *tg, void *data) 1267 { 1268 return 0; 1269 } 1270 #endif 1271 1272 static void set_load_weight(struct task_struct *p, bool update_load) 1273 { 1274 int prio = p->static_prio - MAX_RT_PRIO; 1275 struct load_weight *load = &p->se.load; 1276 1277 /* 1278 * SCHED_IDLE tasks get minimal weight: 1279 */ 1280 if (task_has_idle_policy(p)) { 1281 load->weight = scale_load(WEIGHT_IDLEPRIO); 1282 load->inv_weight = WMULT_IDLEPRIO; 1283 return; 1284 } 1285 1286 /* 1287 * SCHED_OTHER tasks have to update their load when changing their 1288 * weight 1289 */ 1290 if (update_load && p->sched_class == &fair_sched_class) { 1291 reweight_task(p, prio); 1292 } else { 1293 load->weight = scale_load(sched_prio_to_weight[prio]); 1294 load->inv_weight = sched_prio_to_wmult[prio]; 1295 } 1296 } 1297 1298 #ifdef CONFIG_UCLAMP_TASK 1299 /* 1300 * Serializes updates of utilization clamp values 1301 * 1302 * The (slow-path) user-space triggers utilization clamp value updates which 1303 * can require updates on (fast-path) scheduler's data structures used to 1304 * support enqueue/dequeue operations. 1305 * While the per-CPU rq lock protects fast-path update operations, user-space 1306 * requests are serialized using a mutex to reduce the risk of conflicting 1307 * updates or API abuses. 1308 */ 1309 static DEFINE_MUTEX(uclamp_mutex); 1310 1311 /* Max allowed minimum utilization */ 1312 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1313 1314 /* Max allowed maximum utilization */ 1315 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1316 1317 /* 1318 * By default RT tasks run at the maximum performance point/capacity of the 1319 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1320 * SCHED_CAPACITY_SCALE. 1321 * 1322 * This knob allows admins to change the default behavior when uclamp is being 1323 * used. In battery powered devices, particularly, running at the maximum 1324 * capacity and frequency will increase energy consumption and shorten the 1325 * battery life. 1326 * 1327 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1328 * 1329 * This knob will not override the system default sched_util_clamp_min defined 1330 * above. 1331 */ 1332 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1333 1334 /* All clamps are required to be less or equal than these values */ 1335 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1336 1337 /* 1338 * This static key is used to reduce the uclamp overhead in the fast path. It 1339 * primarily disables the call to uclamp_rq_{inc, dec}() in 1340 * enqueue/dequeue_task(). 1341 * 1342 * This allows users to continue to enable uclamp in their kernel config with 1343 * minimum uclamp overhead in the fast path. 1344 * 1345 * As soon as userspace modifies any of the uclamp knobs, the static key is 1346 * enabled, since we have an actual users that make use of uclamp 1347 * functionality. 1348 * 1349 * The knobs that would enable this static key are: 1350 * 1351 * * A task modifying its uclamp value with sched_setattr(). 1352 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1353 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1354 */ 1355 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1356 1357 /* Integer rounded range for each bucket */ 1358 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1359 1360 #define for_each_clamp_id(clamp_id) \ 1361 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1362 1363 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1364 { 1365 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1366 } 1367 1368 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1369 { 1370 if (clamp_id == UCLAMP_MIN) 1371 return 0; 1372 return SCHED_CAPACITY_SCALE; 1373 } 1374 1375 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1376 unsigned int value, bool user_defined) 1377 { 1378 uc_se->value = value; 1379 uc_se->bucket_id = uclamp_bucket_id(value); 1380 uc_se->user_defined = user_defined; 1381 } 1382 1383 static inline unsigned int 1384 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1385 unsigned int clamp_value) 1386 { 1387 /* 1388 * Avoid blocked utilization pushing up the frequency when we go 1389 * idle (which drops the max-clamp) by retaining the last known 1390 * max-clamp. 1391 */ 1392 if (clamp_id == UCLAMP_MAX) { 1393 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1394 return clamp_value; 1395 } 1396 1397 return uclamp_none(UCLAMP_MIN); 1398 } 1399 1400 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1401 unsigned int clamp_value) 1402 { 1403 /* Reset max-clamp retention only on idle exit */ 1404 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1405 return; 1406 1407 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value); 1408 } 1409 1410 static inline 1411 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1412 unsigned int clamp_value) 1413 { 1414 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1415 int bucket_id = UCLAMP_BUCKETS - 1; 1416 1417 /* 1418 * Since both min and max clamps are max aggregated, find the 1419 * top most bucket with tasks in. 1420 */ 1421 for ( ; bucket_id >= 0; bucket_id--) { 1422 if (!bucket[bucket_id].tasks) 1423 continue; 1424 return bucket[bucket_id].value; 1425 } 1426 1427 /* No tasks -- default clamp values */ 1428 return uclamp_idle_value(rq, clamp_id, clamp_value); 1429 } 1430 1431 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1432 { 1433 unsigned int default_util_min; 1434 struct uclamp_se *uc_se; 1435 1436 lockdep_assert_held(&p->pi_lock); 1437 1438 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1439 1440 /* Only sync if user didn't override the default */ 1441 if (uc_se->user_defined) 1442 return; 1443 1444 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1445 uclamp_se_set(uc_se, default_util_min, false); 1446 } 1447 1448 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1449 { 1450 struct rq_flags rf; 1451 struct rq *rq; 1452 1453 if (!rt_task(p)) 1454 return; 1455 1456 /* Protect updates to p->uclamp_* */ 1457 rq = task_rq_lock(p, &rf); 1458 __uclamp_update_util_min_rt_default(p); 1459 task_rq_unlock(rq, p, &rf); 1460 } 1461 1462 static inline struct uclamp_se 1463 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1464 { 1465 /* Copy by value as we could modify it */ 1466 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1467 #ifdef CONFIG_UCLAMP_TASK_GROUP 1468 unsigned int tg_min, tg_max, value; 1469 1470 /* 1471 * Tasks in autogroups or root task group will be 1472 * restricted by system defaults. 1473 */ 1474 if (task_group_is_autogroup(task_group(p))) 1475 return uc_req; 1476 if (task_group(p) == &root_task_group) 1477 return uc_req; 1478 1479 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1480 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1481 value = uc_req.value; 1482 value = clamp(value, tg_min, tg_max); 1483 uclamp_se_set(&uc_req, value, false); 1484 #endif 1485 1486 return uc_req; 1487 } 1488 1489 /* 1490 * The effective clamp bucket index of a task depends on, by increasing 1491 * priority: 1492 * - the task specific clamp value, when explicitly requested from userspace 1493 * - the task group effective clamp value, for tasks not either in the root 1494 * group or in an autogroup 1495 * - the system default clamp value, defined by the sysadmin 1496 */ 1497 static inline struct uclamp_se 1498 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1501 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1502 1503 /* System default restrictions always apply */ 1504 if (unlikely(uc_req.value > uc_max.value)) 1505 return uc_max; 1506 1507 return uc_req; 1508 } 1509 1510 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1511 { 1512 struct uclamp_se uc_eff; 1513 1514 /* Task currently refcounted: use back-annotated (effective) value */ 1515 if (p->uclamp[clamp_id].active) 1516 return (unsigned long)p->uclamp[clamp_id].value; 1517 1518 uc_eff = uclamp_eff_get(p, clamp_id); 1519 1520 return (unsigned long)uc_eff.value; 1521 } 1522 1523 /* 1524 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1525 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1526 * updates the rq's clamp value if required. 1527 * 1528 * Tasks can have a task-specific value requested from user-space, track 1529 * within each bucket the maximum value for tasks refcounted in it. 1530 * This "local max aggregation" allows to track the exact "requested" value 1531 * for each bucket when all its RUNNABLE tasks require the same clamp. 1532 */ 1533 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1534 enum uclamp_id clamp_id) 1535 { 1536 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1537 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1538 struct uclamp_bucket *bucket; 1539 1540 lockdep_assert_rq_held(rq); 1541 1542 /* Update task effective clamp */ 1543 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1544 1545 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1546 bucket->tasks++; 1547 uc_se->active = true; 1548 1549 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1550 1551 /* 1552 * Local max aggregation: rq buckets always track the max 1553 * "requested" clamp value of its RUNNABLE tasks. 1554 */ 1555 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1556 bucket->value = uc_se->value; 1557 1558 if (uc_se->value > READ_ONCE(uc_rq->value)) 1559 WRITE_ONCE(uc_rq->value, uc_se->value); 1560 } 1561 1562 /* 1563 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1564 * is released. If this is the last task reference counting the rq's max 1565 * active clamp value, then the rq's clamp value is updated. 1566 * 1567 * Both refcounted tasks and rq's cached clamp values are expected to be 1568 * always valid. If it's detected they are not, as defensive programming, 1569 * enforce the expected state and warn. 1570 */ 1571 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1572 enum uclamp_id clamp_id) 1573 { 1574 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1575 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1576 struct uclamp_bucket *bucket; 1577 unsigned int bkt_clamp; 1578 unsigned int rq_clamp; 1579 1580 lockdep_assert_rq_held(rq); 1581 1582 /* 1583 * If sched_uclamp_used was enabled after task @p was enqueued, 1584 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1585 * 1586 * In this case the uc_se->active flag should be false since no uclamp 1587 * accounting was performed at enqueue time and we can just return 1588 * here. 1589 * 1590 * Need to be careful of the following enqueue/dequeue ordering 1591 * problem too 1592 * 1593 * enqueue(taskA) 1594 * // sched_uclamp_used gets enabled 1595 * enqueue(taskB) 1596 * dequeue(taskA) 1597 * // Must not decrement bucket->tasks here 1598 * dequeue(taskB) 1599 * 1600 * where we could end up with stale data in uc_se and 1601 * bucket[uc_se->bucket_id]. 1602 * 1603 * The following check here eliminates the possibility of such race. 1604 */ 1605 if (unlikely(!uc_se->active)) 1606 return; 1607 1608 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1609 1610 SCHED_WARN_ON(!bucket->tasks); 1611 if (likely(bucket->tasks)) 1612 bucket->tasks--; 1613 1614 uc_se->active = false; 1615 1616 /* 1617 * Keep "local max aggregation" simple and accept to (possibly) 1618 * overboost some RUNNABLE tasks in the same bucket. 1619 * The rq clamp bucket value is reset to its base value whenever 1620 * there are no more RUNNABLE tasks refcounting it. 1621 */ 1622 if (likely(bucket->tasks)) 1623 return; 1624 1625 rq_clamp = READ_ONCE(uc_rq->value); 1626 /* 1627 * Defensive programming: this should never happen. If it happens, 1628 * e.g. due to future modification, warn and fixup the expected value. 1629 */ 1630 SCHED_WARN_ON(bucket->value > rq_clamp); 1631 if (bucket->value >= rq_clamp) { 1632 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1633 WRITE_ONCE(uc_rq->value, bkt_clamp); 1634 } 1635 } 1636 1637 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1638 { 1639 enum uclamp_id clamp_id; 1640 1641 /* 1642 * Avoid any overhead until uclamp is actually used by the userspace. 1643 * 1644 * The condition is constructed such that a NOP is generated when 1645 * sched_uclamp_used is disabled. 1646 */ 1647 if (!static_branch_unlikely(&sched_uclamp_used)) 1648 return; 1649 1650 if (unlikely(!p->sched_class->uclamp_enabled)) 1651 return; 1652 1653 for_each_clamp_id(clamp_id) 1654 uclamp_rq_inc_id(rq, p, clamp_id); 1655 1656 /* Reset clamp idle holding when there is one RUNNABLE task */ 1657 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1658 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1659 } 1660 1661 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1662 { 1663 enum uclamp_id clamp_id; 1664 1665 /* 1666 * Avoid any overhead until uclamp is actually used by the userspace. 1667 * 1668 * The condition is constructed such that a NOP is generated when 1669 * sched_uclamp_used is disabled. 1670 */ 1671 if (!static_branch_unlikely(&sched_uclamp_used)) 1672 return; 1673 1674 if (unlikely(!p->sched_class->uclamp_enabled)) 1675 return; 1676 1677 for_each_clamp_id(clamp_id) 1678 uclamp_rq_dec_id(rq, p, clamp_id); 1679 } 1680 1681 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1682 enum uclamp_id clamp_id) 1683 { 1684 if (!p->uclamp[clamp_id].active) 1685 return; 1686 1687 uclamp_rq_dec_id(rq, p, clamp_id); 1688 uclamp_rq_inc_id(rq, p, clamp_id); 1689 1690 /* 1691 * Make sure to clear the idle flag if we've transiently reached 0 1692 * active tasks on rq. 1693 */ 1694 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1695 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1696 } 1697 1698 static inline void 1699 uclamp_update_active(struct task_struct *p) 1700 { 1701 enum uclamp_id clamp_id; 1702 struct rq_flags rf; 1703 struct rq *rq; 1704 1705 /* 1706 * Lock the task and the rq where the task is (or was) queued. 1707 * 1708 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1709 * price to pay to safely serialize util_{min,max} updates with 1710 * enqueues, dequeues and migration operations. 1711 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1712 */ 1713 rq = task_rq_lock(p, &rf); 1714 1715 /* 1716 * Setting the clamp bucket is serialized by task_rq_lock(). 1717 * If the task is not yet RUNNABLE and its task_struct is not 1718 * affecting a valid clamp bucket, the next time it's enqueued, 1719 * it will already see the updated clamp bucket value. 1720 */ 1721 for_each_clamp_id(clamp_id) 1722 uclamp_rq_reinc_id(rq, p, clamp_id); 1723 1724 task_rq_unlock(rq, p, &rf); 1725 } 1726 1727 #ifdef CONFIG_UCLAMP_TASK_GROUP 1728 static inline void 1729 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1730 { 1731 struct css_task_iter it; 1732 struct task_struct *p; 1733 1734 css_task_iter_start(css, 0, &it); 1735 while ((p = css_task_iter_next(&it))) 1736 uclamp_update_active(p); 1737 css_task_iter_end(&it); 1738 } 1739 1740 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1741 #endif 1742 1743 #ifdef CONFIG_SYSCTL 1744 #ifdef CONFIG_UCLAMP_TASK 1745 #ifdef CONFIG_UCLAMP_TASK_GROUP 1746 static void uclamp_update_root_tg(void) 1747 { 1748 struct task_group *tg = &root_task_group; 1749 1750 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1751 sysctl_sched_uclamp_util_min, false); 1752 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1753 sysctl_sched_uclamp_util_max, false); 1754 1755 rcu_read_lock(); 1756 cpu_util_update_eff(&root_task_group.css); 1757 rcu_read_unlock(); 1758 } 1759 #else 1760 static void uclamp_update_root_tg(void) { } 1761 #endif 1762 1763 static void uclamp_sync_util_min_rt_default(void) 1764 { 1765 struct task_struct *g, *p; 1766 1767 /* 1768 * copy_process() sysctl_uclamp 1769 * uclamp_min_rt = X; 1770 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1771 * // link thread smp_mb__after_spinlock() 1772 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1773 * sched_post_fork() for_each_process_thread() 1774 * __uclamp_sync_rt() __uclamp_sync_rt() 1775 * 1776 * Ensures that either sched_post_fork() will observe the new 1777 * uclamp_min_rt or for_each_process_thread() will observe the new 1778 * task. 1779 */ 1780 read_lock(&tasklist_lock); 1781 smp_mb__after_spinlock(); 1782 read_unlock(&tasklist_lock); 1783 1784 rcu_read_lock(); 1785 for_each_process_thread(g, p) 1786 uclamp_update_util_min_rt_default(p); 1787 rcu_read_unlock(); 1788 } 1789 1790 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1791 void *buffer, size_t *lenp, loff_t *ppos) 1792 { 1793 bool update_root_tg = false; 1794 int old_min, old_max, old_min_rt; 1795 int result; 1796 1797 mutex_lock(&uclamp_mutex); 1798 old_min = sysctl_sched_uclamp_util_min; 1799 old_max = sysctl_sched_uclamp_util_max; 1800 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1801 1802 result = proc_dointvec(table, write, buffer, lenp, ppos); 1803 if (result) 1804 goto undo; 1805 if (!write) 1806 goto done; 1807 1808 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1809 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1810 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1811 1812 result = -EINVAL; 1813 goto undo; 1814 } 1815 1816 if (old_min != sysctl_sched_uclamp_util_min) { 1817 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1818 sysctl_sched_uclamp_util_min, false); 1819 update_root_tg = true; 1820 } 1821 if (old_max != sysctl_sched_uclamp_util_max) { 1822 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1823 sysctl_sched_uclamp_util_max, false); 1824 update_root_tg = true; 1825 } 1826 1827 if (update_root_tg) { 1828 static_branch_enable(&sched_uclamp_used); 1829 uclamp_update_root_tg(); 1830 } 1831 1832 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1833 static_branch_enable(&sched_uclamp_used); 1834 uclamp_sync_util_min_rt_default(); 1835 } 1836 1837 /* 1838 * We update all RUNNABLE tasks only when task groups are in use. 1839 * Otherwise, keep it simple and do just a lazy update at each next 1840 * task enqueue time. 1841 */ 1842 1843 goto done; 1844 1845 undo: 1846 sysctl_sched_uclamp_util_min = old_min; 1847 sysctl_sched_uclamp_util_max = old_max; 1848 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1849 done: 1850 mutex_unlock(&uclamp_mutex); 1851 1852 return result; 1853 } 1854 #endif 1855 #endif 1856 1857 static int uclamp_validate(struct task_struct *p, 1858 const struct sched_attr *attr) 1859 { 1860 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1861 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1862 1863 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1864 util_min = attr->sched_util_min; 1865 1866 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1867 return -EINVAL; 1868 } 1869 1870 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1871 util_max = attr->sched_util_max; 1872 1873 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1874 return -EINVAL; 1875 } 1876 1877 if (util_min != -1 && util_max != -1 && util_min > util_max) 1878 return -EINVAL; 1879 1880 /* 1881 * We have valid uclamp attributes; make sure uclamp is enabled. 1882 * 1883 * We need to do that here, because enabling static branches is a 1884 * blocking operation which obviously cannot be done while holding 1885 * scheduler locks. 1886 */ 1887 static_branch_enable(&sched_uclamp_used); 1888 1889 return 0; 1890 } 1891 1892 static bool uclamp_reset(const struct sched_attr *attr, 1893 enum uclamp_id clamp_id, 1894 struct uclamp_se *uc_se) 1895 { 1896 /* Reset on sched class change for a non user-defined clamp value. */ 1897 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1898 !uc_se->user_defined) 1899 return true; 1900 1901 /* Reset on sched_util_{min,max} == -1. */ 1902 if (clamp_id == UCLAMP_MIN && 1903 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1904 attr->sched_util_min == -1) { 1905 return true; 1906 } 1907 1908 if (clamp_id == UCLAMP_MAX && 1909 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1910 attr->sched_util_max == -1) { 1911 return true; 1912 } 1913 1914 return false; 1915 } 1916 1917 static void __setscheduler_uclamp(struct task_struct *p, 1918 const struct sched_attr *attr) 1919 { 1920 enum uclamp_id clamp_id; 1921 1922 for_each_clamp_id(clamp_id) { 1923 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1924 unsigned int value; 1925 1926 if (!uclamp_reset(attr, clamp_id, uc_se)) 1927 continue; 1928 1929 /* 1930 * RT by default have a 100% boost value that could be modified 1931 * at runtime. 1932 */ 1933 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1934 value = sysctl_sched_uclamp_util_min_rt_default; 1935 else 1936 value = uclamp_none(clamp_id); 1937 1938 uclamp_se_set(uc_se, value, false); 1939 1940 } 1941 1942 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1943 return; 1944 1945 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1946 attr->sched_util_min != -1) { 1947 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1948 attr->sched_util_min, true); 1949 } 1950 1951 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1952 attr->sched_util_max != -1) { 1953 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1954 attr->sched_util_max, true); 1955 } 1956 } 1957 1958 static void uclamp_fork(struct task_struct *p) 1959 { 1960 enum uclamp_id clamp_id; 1961 1962 /* 1963 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1964 * as the task is still at its early fork stages. 1965 */ 1966 for_each_clamp_id(clamp_id) 1967 p->uclamp[clamp_id].active = false; 1968 1969 if (likely(!p->sched_reset_on_fork)) 1970 return; 1971 1972 for_each_clamp_id(clamp_id) { 1973 uclamp_se_set(&p->uclamp_req[clamp_id], 1974 uclamp_none(clamp_id), false); 1975 } 1976 } 1977 1978 static void uclamp_post_fork(struct task_struct *p) 1979 { 1980 uclamp_update_util_min_rt_default(p); 1981 } 1982 1983 static void __init init_uclamp_rq(struct rq *rq) 1984 { 1985 enum uclamp_id clamp_id; 1986 struct uclamp_rq *uc_rq = rq->uclamp; 1987 1988 for_each_clamp_id(clamp_id) { 1989 uc_rq[clamp_id] = (struct uclamp_rq) { 1990 .value = uclamp_none(clamp_id) 1991 }; 1992 } 1993 1994 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1995 } 1996 1997 static void __init init_uclamp(void) 1998 { 1999 struct uclamp_se uc_max = {}; 2000 enum uclamp_id clamp_id; 2001 int cpu; 2002 2003 for_each_possible_cpu(cpu) 2004 init_uclamp_rq(cpu_rq(cpu)); 2005 2006 for_each_clamp_id(clamp_id) { 2007 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2008 uclamp_none(clamp_id), false); 2009 } 2010 2011 /* System defaults allow max clamp values for both indexes */ 2012 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2013 for_each_clamp_id(clamp_id) { 2014 uclamp_default[clamp_id] = uc_max; 2015 #ifdef CONFIG_UCLAMP_TASK_GROUP 2016 root_task_group.uclamp_req[clamp_id] = uc_max; 2017 root_task_group.uclamp[clamp_id] = uc_max; 2018 #endif 2019 } 2020 } 2021 2022 #else /* CONFIG_UCLAMP_TASK */ 2023 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2024 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2025 static inline int uclamp_validate(struct task_struct *p, 2026 const struct sched_attr *attr) 2027 { 2028 return -EOPNOTSUPP; 2029 } 2030 static void __setscheduler_uclamp(struct task_struct *p, 2031 const struct sched_attr *attr) { } 2032 static inline void uclamp_fork(struct task_struct *p) { } 2033 static inline void uclamp_post_fork(struct task_struct *p) { } 2034 static inline void init_uclamp(void) { } 2035 #endif /* CONFIG_UCLAMP_TASK */ 2036 2037 bool sched_task_on_rq(struct task_struct *p) 2038 { 2039 return task_on_rq_queued(p); 2040 } 2041 2042 unsigned long get_wchan(struct task_struct *p) 2043 { 2044 unsigned long ip = 0; 2045 unsigned int state; 2046 2047 if (!p || p == current) 2048 return 0; 2049 2050 /* Only get wchan if task is blocked and we can keep it that way. */ 2051 raw_spin_lock_irq(&p->pi_lock); 2052 state = READ_ONCE(p->__state); 2053 smp_rmb(); /* see try_to_wake_up() */ 2054 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2055 ip = __get_wchan(p); 2056 raw_spin_unlock_irq(&p->pi_lock); 2057 2058 return ip; 2059 } 2060 2061 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2062 { 2063 if (!(flags & ENQUEUE_NOCLOCK)) 2064 update_rq_clock(rq); 2065 2066 if (!(flags & ENQUEUE_RESTORE)) { 2067 sched_info_enqueue(rq, p); 2068 psi_enqueue(p, flags & ENQUEUE_WAKEUP); 2069 } 2070 2071 uclamp_rq_inc(rq, p); 2072 p->sched_class->enqueue_task(rq, p, flags); 2073 2074 if (sched_core_enabled(rq)) 2075 sched_core_enqueue(rq, p); 2076 } 2077 2078 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2079 { 2080 if (sched_core_enabled(rq)) 2081 sched_core_dequeue(rq, p, flags); 2082 2083 if (!(flags & DEQUEUE_NOCLOCK)) 2084 update_rq_clock(rq); 2085 2086 if (!(flags & DEQUEUE_SAVE)) { 2087 sched_info_dequeue(rq, p); 2088 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2089 } 2090 2091 uclamp_rq_dec(rq, p); 2092 p->sched_class->dequeue_task(rq, p, flags); 2093 } 2094 2095 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2096 { 2097 enqueue_task(rq, p, flags); 2098 2099 p->on_rq = TASK_ON_RQ_QUEUED; 2100 } 2101 2102 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2103 { 2104 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2105 2106 dequeue_task(rq, p, flags); 2107 } 2108 2109 static inline int __normal_prio(int policy, int rt_prio, int nice) 2110 { 2111 int prio; 2112 2113 if (dl_policy(policy)) 2114 prio = MAX_DL_PRIO - 1; 2115 else if (rt_policy(policy)) 2116 prio = MAX_RT_PRIO - 1 - rt_prio; 2117 else 2118 prio = NICE_TO_PRIO(nice); 2119 2120 return prio; 2121 } 2122 2123 /* 2124 * Calculate the expected normal priority: i.e. priority 2125 * without taking RT-inheritance into account. Might be 2126 * boosted by interactivity modifiers. Changes upon fork, 2127 * setprio syscalls, and whenever the interactivity 2128 * estimator recalculates. 2129 */ 2130 static inline int normal_prio(struct task_struct *p) 2131 { 2132 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2133 } 2134 2135 /* 2136 * Calculate the current priority, i.e. the priority 2137 * taken into account by the scheduler. This value might 2138 * be boosted by RT tasks, or might be boosted by 2139 * interactivity modifiers. Will be RT if the task got 2140 * RT-boosted. If not then it returns p->normal_prio. 2141 */ 2142 static int effective_prio(struct task_struct *p) 2143 { 2144 p->normal_prio = normal_prio(p); 2145 /* 2146 * If we are RT tasks or we were boosted to RT priority, 2147 * keep the priority unchanged. Otherwise, update priority 2148 * to the normal priority: 2149 */ 2150 if (!rt_prio(p->prio)) 2151 return p->normal_prio; 2152 return p->prio; 2153 } 2154 2155 /** 2156 * task_curr - is this task currently executing on a CPU? 2157 * @p: the task in question. 2158 * 2159 * Return: 1 if the task is currently executing. 0 otherwise. 2160 */ 2161 inline int task_curr(const struct task_struct *p) 2162 { 2163 return cpu_curr(task_cpu(p)) == p; 2164 } 2165 2166 /* 2167 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2168 * use the balance_callback list if you want balancing. 2169 * 2170 * this means any call to check_class_changed() must be followed by a call to 2171 * balance_callback(). 2172 */ 2173 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2174 const struct sched_class *prev_class, 2175 int oldprio) 2176 { 2177 if (prev_class != p->sched_class) { 2178 if (prev_class->switched_from) 2179 prev_class->switched_from(rq, p); 2180 2181 p->sched_class->switched_to(rq, p); 2182 } else if (oldprio != p->prio || dl_task(p)) 2183 p->sched_class->prio_changed(rq, p, oldprio); 2184 } 2185 2186 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2187 { 2188 if (p->sched_class == rq->curr->sched_class) 2189 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2190 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2191 resched_curr(rq); 2192 2193 /* 2194 * A queue event has occurred, and we're going to schedule. In 2195 * this case, we can save a useless back to back clock update. 2196 */ 2197 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2198 rq_clock_skip_update(rq); 2199 } 2200 2201 #ifdef CONFIG_SMP 2202 2203 static void 2204 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2205 2206 static int __set_cpus_allowed_ptr(struct task_struct *p, 2207 const struct cpumask *new_mask, 2208 u32 flags); 2209 2210 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2211 { 2212 if (likely(!p->migration_disabled)) 2213 return; 2214 2215 if (p->cpus_ptr != &p->cpus_mask) 2216 return; 2217 2218 /* 2219 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2220 */ 2221 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); 2222 } 2223 2224 void migrate_disable(void) 2225 { 2226 struct task_struct *p = current; 2227 2228 if (p->migration_disabled) { 2229 p->migration_disabled++; 2230 return; 2231 } 2232 2233 preempt_disable(); 2234 this_rq()->nr_pinned++; 2235 p->migration_disabled = 1; 2236 preempt_enable(); 2237 } 2238 EXPORT_SYMBOL_GPL(migrate_disable); 2239 2240 void migrate_enable(void) 2241 { 2242 struct task_struct *p = current; 2243 2244 if (p->migration_disabled > 1) { 2245 p->migration_disabled--; 2246 return; 2247 } 2248 2249 if (WARN_ON_ONCE(!p->migration_disabled)) 2250 return; 2251 2252 /* 2253 * Ensure stop_task runs either before or after this, and that 2254 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2255 */ 2256 preempt_disable(); 2257 if (p->cpus_ptr != &p->cpus_mask) 2258 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); 2259 /* 2260 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2261 * regular cpus_mask, otherwise things that race (eg. 2262 * select_fallback_rq) get confused. 2263 */ 2264 barrier(); 2265 p->migration_disabled = 0; 2266 this_rq()->nr_pinned--; 2267 preempt_enable(); 2268 } 2269 EXPORT_SYMBOL_GPL(migrate_enable); 2270 2271 static inline bool rq_has_pinned_tasks(struct rq *rq) 2272 { 2273 return rq->nr_pinned; 2274 } 2275 2276 /* 2277 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2278 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2279 */ 2280 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2281 { 2282 /* When not in the task's cpumask, no point in looking further. */ 2283 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2284 return false; 2285 2286 /* migrate_disabled() must be allowed to finish. */ 2287 if (is_migration_disabled(p)) 2288 return cpu_online(cpu); 2289 2290 /* Non kernel threads are not allowed during either online or offline. */ 2291 if (!(p->flags & PF_KTHREAD)) 2292 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2293 2294 /* KTHREAD_IS_PER_CPU is always allowed. */ 2295 if (kthread_is_per_cpu(p)) 2296 return cpu_online(cpu); 2297 2298 /* Regular kernel threads don't get to stay during offline. */ 2299 if (cpu_dying(cpu)) 2300 return false; 2301 2302 /* But are allowed during online. */ 2303 return cpu_online(cpu); 2304 } 2305 2306 /* 2307 * This is how migration works: 2308 * 2309 * 1) we invoke migration_cpu_stop() on the target CPU using 2310 * stop_one_cpu(). 2311 * 2) stopper starts to run (implicitly forcing the migrated thread 2312 * off the CPU) 2313 * 3) it checks whether the migrated task is still in the wrong runqueue. 2314 * 4) if it's in the wrong runqueue then the migration thread removes 2315 * it and puts it into the right queue. 2316 * 5) stopper completes and stop_one_cpu() returns and the migration 2317 * is done. 2318 */ 2319 2320 /* 2321 * move_queued_task - move a queued task to new rq. 2322 * 2323 * Returns (locked) new rq. Old rq's lock is released. 2324 */ 2325 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2326 struct task_struct *p, int new_cpu) 2327 { 2328 lockdep_assert_rq_held(rq); 2329 2330 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2331 set_task_cpu(p, new_cpu); 2332 rq_unlock(rq, rf); 2333 2334 rq = cpu_rq(new_cpu); 2335 2336 rq_lock(rq, rf); 2337 BUG_ON(task_cpu(p) != new_cpu); 2338 activate_task(rq, p, 0); 2339 check_preempt_curr(rq, p, 0); 2340 2341 return rq; 2342 } 2343 2344 struct migration_arg { 2345 struct task_struct *task; 2346 int dest_cpu; 2347 struct set_affinity_pending *pending; 2348 }; 2349 2350 /* 2351 * @refs: number of wait_for_completion() 2352 * @stop_pending: is @stop_work in use 2353 */ 2354 struct set_affinity_pending { 2355 refcount_t refs; 2356 unsigned int stop_pending; 2357 struct completion done; 2358 struct cpu_stop_work stop_work; 2359 struct migration_arg arg; 2360 }; 2361 2362 /* 2363 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2364 * this because either it can't run here any more (set_cpus_allowed() 2365 * away from this CPU, or CPU going down), or because we're 2366 * attempting to rebalance this task on exec (sched_exec). 2367 * 2368 * So we race with normal scheduler movements, but that's OK, as long 2369 * as the task is no longer on this CPU. 2370 */ 2371 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2372 struct task_struct *p, int dest_cpu) 2373 { 2374 /* Affinity changed (again). */ 2375 if (!is_cpu_allowed(p, dest_cpu)) 2376 return rq; 2377 2378 update_rq_clock(rq); 2379 rq = move_queued_task(rq, rf, p, dest_cpu); 2380 2381 return rq; 2382 } 2383 2384 /* 2385 * migration_cpu_stop - this will be executed by a highprio stopper thread 2386 * and performs thread migration by bumping thread off CPU then 2387 * 'pushing' onto another runqueue. 2388 */ 2389 static int migration_cpu_stop(void *data) 2390 { 2391 struct migration_arg *arg = data; 2392 struct set_affinity_pending *pending = arg->pending; 2393 struct task_struct *p = arg->task; 2394 struct rq *rq = this_rq(); 2395 bool complete = false; 2396 struct rq_flags rf; 2397 2398 /* 2399 * The original target CPU might have gone down and we might 2400 * be on another CPU but it doesn't matter. 2401 */ 2402 local_irq_save(rf.flags); 2403 /* 2404 * We need to explicitly wake pending tasks before running 2405 * __migrate_task() such that we will not miss enforcing cpus_ptr 2406 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2407 */ 2408 flush_smp_call_function_queue(); 2409 2410 raw_spin_lock(&p->pi_lock); 2411 rq_lock(rq, &rf); 2412 2413 /* 2414 * If we were passed a pending, then ->stop_pending was set, thus 2415 * p->migration_pending must have remained stable. 2416 */ 2417 WARN_ON_ONCE(pending && pending != p->migration_pending); 2418 2419 /* 2420 * If task_rq(p) != rq, it cannot be migrated here, because we're 2421 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2422 * we're holding p->pi_lock. 2423 */ 2424 if (task_rq(p) == rq) { 2425 if (is_migration_disabled(p)) 2426 goto out; 2427 2428 if (pending) { 2429 p->migration_pending = NULL; 2430 complete = true; 2431 2432 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2433 goto out; 2434 } 2435 2436 if (task_on_rq_queued(p)) 2437 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2438 else 2439 p->wake_cpu = arg->dest_cpu; 2440 2441 /* 2442 * XXX __migrate_task() can fail, at which point we might end 2443 * up running on a dodgy CPU, AFAICT this can only happen 2444 * during CPU hotplug, at which point we'll get pushed out 2445 * anyway, so it's probably not a big deal. 2446 */ 2447 2448 } else if (pending) { 2449 /* 2450 * This happens when we get migrated between migrate_enable()'s 2451 * preempt_enable() and scheduling the stopper task. At that 2452 * point we're a regular task again and not current anymore. 2453 * 2454 * A !PREEMPT kernel has a giant hole here, which makes it far 2455 * more likely. 2456 */ 2457 2458 /* 2459 * The task moved before the stopper got to run. We're holding 2460 * ->pi_lock, so the allowed mask is stable - if it got 2461 * somewhere allowed, we're done. 2462 */ 2463 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2464 p->migration_pending = NULL; 2465 complete = true; 2466 goto out; 2467 } 2468 2469 /* 2470 * When migrate_enable() hits a rq mis-match we can't reliably 2471 * determine is_migration_disabled() and so have to chase after 2472 * it. 2473 */ 2474 WARN_ON_ONCE(!pending->stop_pending); 2475 task_rq_unlock(rq, p, &rf); 2476 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2477 &pending->arg, &pending->stop_work); 2478 return 0; 2479 } 2480 out: 2481 if (pending) 2482 pending->stop_pending = false; 2483 task_rq_unlock(rq, p, &rf); 2484 2485 if (complete) 2486 complete_all(&pending->done); 2487 2488 return 0; 2489 } 2490 2491 int push_cpu_stop(void *arg) 2492 { 2493 struct rq *lowest_rq = NULL, *rq = this_rq(); 2494 struct task_struct *p = arg; 2495 2496 raw_spin_lock_irq(&p->pi_lock); 2497 raw_spin_rq_lock(rq); 2498 2499 if (task_rq(p) != rq) 2500 goto out_unlock; 2501 2502 if (is_migration_disabled(p)) { 2503 p->migration_flags |= MDF_PUSH; 2504 goto out_unlock; 2505 } 2506 2507 p->migration_flags &= ~MDF_PUSH; 2508 2509 if (p->sched_class->find_lock_rq) 2510 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2511 2512 if (!lowest_rq) 2513 goto out_unlock; 2514 2515 // XXX validate p is still the highest prio task 2516 if (task_rq(p) == rq) { 2517 deactivate_task(rq, p, 0); 2518 set_task_cpu(p, lowest_rq->cpu); 2519 activate_task(lowest_rq, p, 0); 2520 resched_curr(lowest_rq); 2521 } 2522 2523 double_unlock_balance(rq, lowest_rq); 2524 2525 out_unlock: 2526 rq->push_busy = false; 2527 raw_spin_rq_unlock(rq); 2528 raw_spin_unlock_irq(&p->pi_lock); 2529 2530 put_task_struct(p); 2531 return 0; 2532 } 2533 2534 /* 2535 * sched_class::set_cpus_allowed must do the below, but is not required to 2536 * actually call this function. 2537 */ 2538 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2539 { 2540 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2541 p->cpus_ptr = new_mask; 2542 return; 2543 } 2544 2545 cpumask_copy(&p->cpus_mask, new_mask); 2546 p->nr_cpus_allowed = cpumask_weight(new_mask); 2547 } 2548 2549 static void 2550 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) 2551 { 2552 struct rq *rq = task_rq(p); 2553 bool queued, running; 2554 2555 /* 2556 * This here violates the locking rules for affinity, since we're only 2557 * supposed to change these variables while holding both rq->lock and 2558 * p->pi_lock. 2559 * 2560 * HOWEVER, it magically works, because ttwu() is the only code that 2561 * accesses these variables under p->pi_lock and only does so after 2562 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2563 * before finish_task(). 2564 * 2565 * XXX do further audits, this smells like something putrid. 2566 */ 2567 if (flags & SCA_MIGRATE_DISABLE) 2568 SCHED_WARN_ON(!p->on_cpu); 2569 else 2570 lockdep_assert_held(&p->pi_lock); 2571 2572 queued = task_on_rq_queued(p); 2573 running = task_current(rq, p); 2574 2575 if (queued) { 2576 /* 2577 * Because __kthread_bind() calls this on blocked tasks without 2578 * holding rq->lock. 2579 */ 2580 lockdep_assert_rq_held(rq); 2581 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2582 } 2583 if (running) 2584 put_prev_task(rq, p); 2585 2586 p->sched_class->set_cpus_allowed(p, new_mask, flags); 2587 2588 if (queued) 2589 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2590 if (running) 2591 set_next_task(rq, p); 2592 } 2593 2594 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2595 { 2596 __do_set_cpus_allowed(p, new_mask, 0); 2597 } 2598 2599 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2600 int node) 2601 { 2602 if (!src->user_cpus_ptr) 2603 return 0; 2604 2605 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2606 if (!dst->user_cpus_ptr) 2607 return -ENOMEM; 2608 2609 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2610 return 0; 2611 } 2612 2613 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2614 { 2615 struct cpumask *user_mask = NULL; 2616 2617 swap(p->user_cpus_ptr, user_mask); 2618 2619 return user_mask; 2620 } 2621 2622 void release_user_cpus_ptr(struct task_struct *p) 2623 { 2624 kfree(clear_user_cpus_ptr(p)); 2625 } 2626 2627 /* 2628 * This function is wildly self concurrent; here be dragons. 2629 * 2630 * 2631 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2632 * designated task is enqueued on an allowed CPU. If that task is currently 2633 * running, we have to kick it out using the CPU stopper. 2634 * 2635 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2636 * Consider: 2637 * 2638 * Initial conditions: P0->cpus_mask = [0, 1] 2639 * 2640 * P0@CPU0 P1 2641 * 2642 * migrate_disable(); 2643 * <preempted> 2644 * set_cpus_allowed_ptr(P0, [1]); 2645 * 2646 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2647 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2648 * This means we need the following scheme: 2649 * 2650 * P0@CPU0 P1 2651 * 2652 * migrate_disable(); 2653 * <preempted> 2654 * set_cpus_allowed_ptr(P0, [1]); 2655 * <blocks> 2656 * <resumes> 2657 * migrate_enable(); 2658 * __set_cpus_allowed_ptr(); 2659 * <wakes local stopper> 2660 * `--> <woken on migration completion> 2661 * 2662 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2663 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2664 * task p are serialized by p->pi_lock, which we can leverage: the one that 2665 * should come into effect at the end of the Migrate-Disable region is the last 2666 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2667 * but we still need to properly signal those waiting tasks at the appropriate 2668 * moment. 2669 * 2670 * This is implemented using struct set_affinity_pending. The first 2671 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2672 * setup an instance of that struct and install it on the targeted task_struct. 2673 * Any and all further callers will reuse that instance. Those then wait for 2674 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2675 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2676 * 2677 * 2678 * (1) In the cases covered above. There is one more where the completion is 2679 * signaled within affine_move_task() itself: when a subsequent affinity request 2680 * occurs after the stopper bailed out due to the targeted task still being 2681 * Migrate-Disable. Consider: 2682 * 2683 * Initial conditions: P0->cpus_mask = [0, 1] 2684 * 2685 * CPU0 P1 P2 2686 * <P0> 2687 * migrate_disable(); 2688 * <preempted> 2689 * set_cpus_allowed_ptr(P0, [1]); 2690 * <blocks> 2691 * <migration/0> 2692 * migration_cpu_stop() 2693 * is_migration_disabled() 2694 * <bails> 2695 * set_cpus_allowed_ptr(P0, [0, 1]); 2696 * <signal completion> 2697 * <awakes> 2698 * 2699 * Note that the above is safe vs a concurrent migrate_enable(), as any 2700 * pending affinity completion is preceded by an uninstallation of 2701 * p->migration_pending done with p->pi_lock held. 2702 */ 2703 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2704 int dest_cpu, unsigned int flags) 2705 { 2706 struct set_affinity_pending my_pending = { }, *pending = NULL; 2707 bool stop_pending, complete = false; 2708 2709 /* Can the task run on the task's current CPU? If so, we're done */ 2710 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2711 struct task_struct *push_task = NULL; 2712 2713 if ((flags & SCA_MIGRATE_ENABLE) && 2714 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2715 rq->push_busy = true; 2716 push_task = get_task_struct(p); 2717 } 2718 2719 /* 2720 * If there are pending waiters, but no pending stop_work, 2721 * then complete now. 2722 */ 2723 pending = p->migration_pending; 2724 if (pending && !pending->stop_pending) { 2725 p->migration_pending = NULL; 2726 complete = true; 2727 } 2728 2729 task_rq_unlock(rq, p, rf); 2730 2731 if (push_task) { 2732 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2733 p, &rq->push_work); 2734 } 2735 2736 if (complete) 2737 complete_all(&pending->done); 2738 2739 return 0; 2740 } 2741 2742 if (!(flags & SCA_MIGRATE_ENABLE)) { 2743 /* serialized by p->pi_lock */ 2744 if (!p->migration_pending) { 2745 /* Install the request */ 2746 refcount_set(&my_pending.refs, 1); 2747 init_completion(&my_pending.done); 2748 my_pending.arg = (struct migration_arg) { 2749 .task = p, 2750 .dest_cpu = dest_cpu, 2751 .pending = &my_pending, 2752 }; 2753 2754 p->migration_pending = &my_pending; 2755 } else { 2756 pending = p->migration_pending; 2757 refcount_inc(&pending->refs); 2758 /* 2759 * Affinity has changed, but we've already installed a 2760 * pending. migration_cpu_stop() *must* see this, else 2761 * we risk a completion of the pending despite having a 2762 * task on a disallowed CPU. 2763 * 2764 * Serialized by p->pi_lock, so this is safe. 2765 */ 2766 pending->arg.dest_cpu = dest_cpu; 2767 } 2768 } 2769 pending = p->migration_pending; 2770 /* 2771 * - !MIGRATE_ENABLE: 2772 * we'll have installed a pending if there wasn't one already. 2773 * 2774 * - MIGRATE_ENABLE: 2775 * we're here because the current CPU isn't matching anymore, 2776 * the only way that can happen is because of a concurrent 2777 * set_cpus_allowed_ptr() call, which should then still be 2778 * pending completion. 2779 * 2780 * Either way, we really should have a @pending here. 2781 */ 2782 if (WARN_ON_ONCE(!pending)) { 2783 task_rq_unlock(rq, p, rf); 2784 return -EINVAL; 2785 } 2786 2787 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2788 /* 2789 * MIGRATE_ENABLE gets here because 'p == current', but for 2790 * anything else we cannot do is_migration_disabled(), punt 2791 * and have the stopper function handle it all race-free. 2792 */ 2793 stop_pending = pending->stop_pending; 2794 if (!stop_pending) 2795 pending->stop_pending = true; 2796 2797 if (flags & SCA_MIGRATE_ENABLE) 2798 p->migration_flags &= ~MDF_PUSH; 2799 2800 task_rq_unlock(rq, p, rf); 2801 2802 if (!stop_pending) { 2803 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2804 &pending->arg, &pending->stop_work); 2805 } 2806 2807 if (flags & SCA_MIGRATE_ENABLE) 2808 return 0; 2809 } else { 2810 2811 if (!is_migration_disabled(p)) { 2812 if (task_on_rq_queued(p)) 2813 rq = move_queued_task(rq, rf, p, dest_cpu); 2814 2815 if (!pending->stop_pending) { 2816 p->migration_pending = NULL; 2817 complete = true; 2818 } 2819 } 2820 task_rq_unlock(rq, p, rf); 2821 2822 if (complete) 2823 complete_all(&pending->done); 2824 } 2825 2826 wait_for_completion(&pending->done); 2827 2828 if (refcount_dec_and_test(&pending->refs)) 2829 wake_up_var(&pending->refs); /* No UaF, just an address */ 2830 2831 /* 2832 * Block the original owner of &pending until all subsequent callers 2833 * have seen the completion and decremented the refcount 2834 */ 2835 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2836 2837 /* ARGH */ 2838 WARN_ON_ONCE(my_pending.stop_pending); 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2845 */ 2846 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2847 const struct cpumask *new_mask, 2848 u32 flags, 2849 struct rq *rq, 2850 struct rq_flags *rf) 2851 __releases(rq->lock) 2852 __releases(p->pi_lock) 2853 { 2854 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2855 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2856 bool kthread = p->flags & PF_KTHREAD; 2857 struct cpumask *user_mask = NULL; 2858 unsigned int dest_cpu; 2859 int ret = 0; 2860 2861 update_rq_clock(rq); 2862 2863 if (kthread || is_migration_disabled(p)) { 2864 /* 2865 * Kernel threads are allowed on online && !active CPUs, 2866 * however, during cpu-hot-unplug, even these might get pushed 2867 * away if not KTHREAD_IS_PER_CPU. 2868 * 2869 * Specifically, migration_disabled() tasks must not fail the 2870 * cpumask_any_and_distribute() pick below, esp. so on 2871 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2872 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2873 */ 2874 cpu_valid_mask = cpu_online_mask; 2875 } 2876 2877 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { 2878 ret = -EINVAL; 2879 goto out; 2880 } 2881 2882 /* 2883 * Must re-check here, to close a race against __kthread_bind(), 2884 * sched_setaffinity() is not guaranteed to observe the flag. 2885 */ 2886 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2887 ret = -EINVAL; 2888 goto out; 2889 } 2890 2891 if (!(flags & SCA_MIGRATE_ENABLE)) { 2892 if (cpumask_equal(&p->cpus_mask, new_mask)) 2893 goto out; 2894 2895 if (WARN_ON_ONCE(p == current && 2896 is_migration_disabled(p) && 2897 !cpumask_test_cpu(task_cpu(p), new_mask))) { 2898 ret = -EBUSY; 2899 goto out; 2900 } 2901 } 2902 2903 /* 2904 * Picking a ~random cpu helps in cases where we are changing affinity 2905 * for groups of tasks (ie. cpuset), so that load balancing is not 2906 * immediately required to distribute the tasks within their new mask. 2907 */ 2908 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); 2909 if (dest_cpu >= nr_cpu_ids) { 2910 ret = -EINVAL; 2911 goto out; 2912 } 2913 2914 __do_set_cpus_allowed(p, new_mask, flags); 2915 2916 if (flags & SCA_USER) 2917 user_mask = clear_user_cpus_ptr(p); 2918 2919 ret = affine_move_task(rq, p, rf, dest_cpu, flags); 2920 2921 kfree(user_mask); 2922 2923 return ret; 2924 2925 out: 2926 task_rq_unlock(rq, p, rf); 2927 2928 return ret; 2929 } 2930 2931 /* 2932 * Change a given task's CPU affinity. Migrate the thread to a 2933 * proper CPU and schedule it away if the CPU it's executing on 2934 * is removed from the allowed bitmask. 2935 * 2936 * NOTE: the caller must have a valid reference to the task, the 2937 * task must not exit() & deallocate itself prematurely. The 2938 * call is not atomic; no spinlocks may be held. 2939 */ 2940 static int __set_cpus_allowed_ptr(struct task_struct *p, 2941 const struct cpumask *new_mask, u32 flags) 2942 { 2943 struct rq_flags rf; 2944 struct rq *rq; 2945 2946 rq = task_rq_lock(p, &rf); 2947 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); 2948 } 2949 2950 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2951 { 2952 return __set_cpus_allowed_ptr(p, new_mask, 0); 2953 } 2954 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2955 2956 /* 2957 * Change a given task's CPU affinity to the intersection of its current 2958 * affinity mask and @subset_mask, writing the resulting mask to @new_mask 2959 * and pointing @p->user_cpus_ptr to a copy of the old mask. 2960 * If the resulting mask is empty, leave the affinity unchanged and return 2961 * -EINVAL. 2962 */ 2963 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2964 struct cpumask *new_mask, 2965 const struct cpumask *subset_mask) 2966 { 2967 struct cpumask *user_mask = NULL; 2968 struct rq_flags rf; 2969 struct rq *rq; 2970 int err; 2971 2972 if (!p->user_cpus_ptr) { 2973 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 2974 if (!user_mask) 2975 return -ENOMEM; 2976 } 2977 2978 rq = task_rq_lock(p, &rf); 2979 2980 /* 2981 * Forcefully restricting the affinity of a deadline task is 2982 * likely to cause problems, so fail and noisily override the 2983 * mask entirely. 2984 */ 2985 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 2986 err = -EPERM; 2987 goto err_unlock; 2988 } 2989 2990 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { 2991 err = -EINVAL; 2992 goto err_unlock; 2993 } 2994 2995 /* 2996 * We're about to butcher the task affinity, so keep track of what 2997 * the user asked for in case we're able to restore it later on. 2998 */ 2999 if (user_mask) { 3000 cpumask_copy(user_mask, p->cpus_ptr); 3001 p->user_cpus_ptr = user_mask; 3002 } 3003 3004 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); 3005 3006 err_unlock: 3007 task_rq_unlock(rq, p, &rf); 3008 kfree(user_mask); 3009 return err; 3010 } 3011 3012 /* 3013 * Restrict the CPU affinity of task @p so that it is a subset of 3014 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the 3015 * old affinity mask. If the resulting mask is empty, we warn and walk 3016 * up the cpuset hierarchy until we find a suitable mask. 3017 */ 3018 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3019 { 3020 cpumask_var_t new_mask; 3021 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3022 3023 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3024 3025 /* 3026 * __migrate_task() can fail silently in the face of concurrent 3027 * offlining of the chosen destination CPU, so take the hotplug 3028 * lock to ensure that the migration succeeds. 3029 */ 3030 cpus_read_lock(); 3031 if (!cpumask_available(new_mask)) 3032 goto out_set_mask; 3033 3034 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3035 goto out_free_mask; 3036 3037 /* 3038 * We failed to find a valid subset of the affinity mask for the 3039 * task, so override it based on its cpuset hierarchy. 3040 */ 3041 cpuset_cpus_allowed(p, new_mask); 3042 override_mask = new_mask; 3043 3044 out_set_mask: 3045 if (printk_ratelimit()) { 3046 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3047 task_pid_nr(p), p->comm, 3048 cpumask_pr_args(override_mask)); 3049 } 3050 3051 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3052 out_free_mask: 3053 cpus_read_unlock(); 3054 free_cpumask_var(new_mask); 3055 } 3056 3057 static int 3058 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask); 3059 3060 /* 3061 * Restore the affinity of a task @p which was previously restricted by a 3062 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) 3063 * @p->user_cpus_ptr. 3064 * 3065 * It is the caller's responsibility to serialise this with any calls to 3066 * force_compatible_cpus_allowed_ptr(@p). 3067 */ 3068 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3069 { 3070 struct cpumask *user_mask = p->user_cpus_ptr; 3071 unsigned long flags; 3072 3073 /* 3074 * Try to restore the old affinity mask. If this fails, then 3075 * we free the mask explicitly to avoid it being inherited across 3076 * a subsequent fork(). 3077 */ 3078 if (!user_mask || !__sched_setaffinity(p, user_mask)) 3079 return; 3080 3081 raw_spin_lock_irqsave(&p->pi_lock, flags); 3082 user_mask = clear_user_cpus_ptr(p); 3083 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3084 3085 kfree(user_mask); 3086 } 3087 3088 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3089 { 3090 #ifdef CONFIG_SCHED_DEBUG 3091 unsigned int state = READ_ONCE(p->__state); 3092 3093 /* 3094 * We should never call set_task_cpu() on a blocked task, 3095 * ttwu() will sort out the placement. 3096 */ 3097 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3098 3099 /* 3100 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3101 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3102 * time relying on p->on_rq. 3103 */ 3104 WARN_ON_ONCE(state == TASK_RUNNING && 3105 p->sched_class == &fair_sched_class && 3106 (p->on_rq && !task_on_rq_migrating(p))); 3107 3108 #ifdef CONFIG_LOCKDEP 3109 /* 3110 * The caller should hold either p->pi_lock or rq->lock, when changing 3111 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3112 * 3113 * sched_move_task() holds both and thus holding either pins the cgroup, 3114 * see task_group(). 3115 * 3116 * Furthermore, all task_rq users should acquire both locks, see 3117 * task_rq_lock(). 3118 */ 3119 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3120 lockdep_is_held(__rq_lockp(task_rq(p))))); 3121 #endif 3122 /* 3123 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3124 */ 3125 WARN_ON_ONCE(!cpu_online(new_cpu)); 3126 3127 WARN_ON_ONCE(is_migration_disabled(p)); 3128 #endif 3129 3130 trace_sched_migrate_task(p, new_cpu); 3131 3132 if (task_cpu(p) != new_cpu) { 3133 if (p->sched_class->migrate_task_rq) 3134 p->sched_class->migrate_task_rq(p, new_cpu); 3135 p->se.nr_migrations++; 3136 rseq_migrate(p); 3137 perf_event_task_migrate(p); 3138 } 3139 3140 __set_task_cpu(p, new_cpu); 3141 } 3142 3143 #ifdef CONFIG_NUMA_BALANCING 3144 static void __migrate_swap_task(struct task_struct *p, int cpu) 3145 { 3146 if (task_on_rq_queued(p)) { 3147 struct rq *src_rq, *dst_rq; 3148 struct rq_flags srf, drf; 3149 3150 src_rq = task_rq(p); 3151 dst_rq = cpu_rq(cpu); 3152 3153 rq_pin_lock(src_rq, &srf); 3154 rq_pin_lock(dst_rq, &drf); 3155 3156 deactivate_task(src_rq, p, 0); 3157 set_task_cpu(p, cpu); 3158 activate_task(dst_rq, p, 0); 3159 check_preempt_curr(dst_rq, p, 0); 3160 3161 rq_unpin_lock(dst_rq, &drf); 3162 rq_unpin_lock(src_rq, &srf); 3163 3164 } else { 3165 /* 3166 * Task isn't running anymore; make it appear like we migrated 3167 * it before it went to sleep. This means on wakeup we make the 3168 * previous CPU our target instead of where it really is. 3169 */ 3170 p->wake_cpu = cpu; 3171 } 3172 } 3173 3174 struct migration_swap_arg { 3175 struct task_struct *src_task, *dst_task; 3176 int src_cpu, dst_cpu; 3177 }; 3178 3179 static int migrate_swap_stop(void *data) 3180 { 3181 struct migration_swap_arg *arg = data; 3182 struct rq *src_rq, *dst_rq; 3183 int ret = -EAGAIN; 3184 3185 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3186 return -EAGAIN; 3187 3188 src_rq = cpu_rq(arg->src_cpu); 3189 dst_rq = cpu_rq(arg->dst_cpu); 3190 3191 double_raw_lock(&arg->src_task->pi_lock, 3192 &arg->dst_task->pi_lock); 3193 double_rq_lock(src_rq, dst_rq); 3194 3195 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3196 goto unlock; 3197 3198 if (task_cpu(arg->src_task) != arg->src_cpu) 3199 goto unlock; 3200 3201 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3202 goto unlock; 3203 3204 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3205 goto unlock; 3206 3207 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3208 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3209 3210 ret = 0; 3211 3212 unlock: 3213 double_rq_unlock(src_rq, dst_rq); 3214 raw_spin_unlock(&arg->dst_task->pi_lock); 3215 raw_spin_unlock(&arg->src_task->pi_lock); 3216 3217 return ret; 3218 } 3219 3220 /* 3221 * Cross migrate two tasks 3222 */ 3223 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3224 int target_cpu, int curr_cpu) 3225 { 3226 struct migration_swap_arg arg; 3227 int ret = -EINVAL; 3228 3229 arg = (struct migration_swap_arg){ 3230 .src_task = cur, 3231 .src_cpu = curr_cpu, 3232 .dst_task = p, 3233 .dst_cpu = target_cpu, 3234 }; 3235 3236 if (arg.src_cpu == arg.dst_cpu) 3237 goto out; 3238 3239 /* 3240 * These three tests are all lockless; this is OK since all of them 3241 * will be re-checked with proper locks held further down the line. 3242 */ 3243 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3244 goto out; 3245 3246 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3247 goto out; 3248 3249 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3250 goto out; 3251 3252 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3253 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3254 3255 out: 3256 return ret; 3257 } 3258 #endif /* CONFIG_NUMA_BALANCING */ 3259 3260 /* 3261 * wait_task_inactive - wait for a thread to unschedule. 3262 * 3263 * If @match_state is nonzero, it's the @p->state value just checked and 3264 * not expected to change. If it changes, i.e. @p might have woken up, 3265 * then return zero. When we succeed in waiting for @p to be off its CPU, 3266 * we return a positive number (its total switch count). If a second call 3267 * a short while later returns the same number, the caller can be sure that 3268 * @p has remained unscheduled the whole time. 3269 * 3270 * The caller must ensure that the task *will* unschedule sometime soon, 3271 * else this function might spin for a *long* time. This function can't 3272 * be called with interrupts off, or it may introduce deadlock with 3273 * smp_call_function() if an IPI is sent by the same process we are 3274 * waiting to become inactive. 3275 */ 3276 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3277 { 3278 int running, queued; 3279 struct rq_flags rf; 3280 unsigned long ncsw; 3281 struct rq *rq; 3282 3283 for (;;) { 3284 /* 3285 * We do the initial early heuristics without holding 3286 * any task-queue locks at all. We'll only try to get 3287 * the runqueue lock when things look like they will 3288 * work out! 3289 */ 3290 rq = task_rq(p); 3291 3292 /* 3293 * If the task is actively running on another CPU 3294 * still, just relax and busy-wait without holding 3295 * any locks. 3296 * 3297 * NOTE! Since we don't hold any locks, it's not 3298 * even sure that "rq" stays as the right runqueue! 3299 * But we don't care, since "task_running()" will 3300 * return false if the runqueue has changed and p 3301 * is actually now running somewhere else! 3302 */ 3303 while (task_running(rq, p)) { 3304 if (match_state && unlikely(READ_ONCE(p->__state) != match_state)) 3305 return 0; 3306 cpu_relax(); 3307 } 3308 3309 /* 3310 * Ok, time to look more closely! We need the rq 3311 * lock now, to be *sure*. If we're wrong, we'll 3312 * just go back and repeat. 3313 */ 3314 rq = task_rq_lock(p, &rf); 3315 trace_sched_wait_task(p); 3316 running = task_running(rq, p); 3317 queued = task_on_rq_queued(p); 3318 ncsw = 0; 3319 if (!match_state || READ_ONCE(p->__state) == match_state) 3320 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3321 task_rq_unlock(rq, p, &rf); 3322 3323 /* 3324 * If it changed from the expected state, bail out now. 3325 */ 3326 if (unlikely(!ncsw)) 3327 break; 3328 3329 /* 3330 * Was it really running after all now that we 3331 * checked with the proper locks actually held? 3332 * 3333 * Oops. Go back and try again.. 3334 */ 3335 if (unlikely(running)) { 3336 cpu_relax(); 3337 continue; 3338 } 3339 3340 /* 3341 * It's not enough that it's not actively running, 3342 * it must be off the runqueue _entirely_, and not 3343 * preempted! 3344 * 3345 * So if it was still runnable (but just not actively 3346 * running right now), it's preempted, and we should 3347 * yield - it could be a while. 3348 */ 3349 if (unlikely(queued)) { 3350 ktime_t to = NSEC_PER_SEC / HZ; 3351 3352 set_current_state(TASK_UNINTERRUPTIBLE); 3353 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3354 continue; 3355 } 3356 3357 /* 3358 * Ahh, all good. It wasn't running, and it wasn't 3359 * runnable, which means that it will never become 3360 * running in the future either. We're all done! 3361 */ 3362 break; 3363 } 3364 3365 return ncsw; 3366 } 3367 3368 /*** 3369 * kick_process - kick a running thread to enter/exit the kernel 3370 * @p: the to-be-kicked thread 3371 * 3372 * Cause a process which is running on another CPU to enter 3373 * kernel-mode, without any delay. (to get signals handled.) 3374 * 3375 * NOTE: this function doesn't have to take the runqueue lock, 3376 * because all it wants to ensure is that the remote task enters 3377 * the kernel. If the IPI races and the task has been migrated 3378 * to another CPU then no harm is done and the purpose has been 3379 * achieved as well. 3380 */ 3381 void kick_process(struct task_struct *p) 3382 { 3383 int cpu; 3384 3385 preempt_disable(); 3386 cpu = task_cpu(p); 3387 if ((cpu != smp_processor_id()) && task_curr(p)) 3388 smp_send_reschedule(cpu); 3389 preempt_enable(); 3390 } 3391 EXPORT_SYMBOL_GPL(kick_process); 3392 3393 /* 3394 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3395 * 3396 * A few notes on cpu_active vs cpu_online: 3397 * 3398 * - cpu_active must be a subset of cpu_online 3399 * 3400 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3401 * see __set_cpus_allowed_ptr(). At this point the newly online 3402 * CPU isn't yet part of the sched domains, and balancing will not 3403 * see it. 3404 * 3405 * - on CPU-down we clear cpu_active() to mask the sched domains and 3406 * avoid the load balancer to place new tasks on the to be removed 3407 * CPU. Existing tasks will remain running there and will be taken 3408 * off. 3409 * 3410 * This means that fallback selection must not select !active CPUs. 3411 * And can assume that any active CPU must be online. Conversely 3412 * select_task_rq() below may allow selection of !active CPUs in order 3413 * to satisfy the above rules. 3414 */ 3415 static int select_fallback_rq(int cpu, struct task_struct *p) 3416 { 3417 int nid = cpu_to_node(cpu); 3418 const struct cpumask *nodemask = NULL; 3419 enum { cpuset, possible, fail } state = cpuset; 3420 int dest_cpu; 3421 3422 /* 3423 * If the node that the CPU is on has been offlined, cpu_to_node() 3424 * will return -1. There is no CPU on the node, and we should 3425 * select the CPU on the other node. 3426 */ 3427 if (nid != -1) { 3428 nodemask = cpumask_of_node(nid); 3429 3430 /* Look for allowed, online CPU in same node. */ 3431 for_each_cpu(dest_cpu, nodemask) { 3432 if (is_cpu_allowed(p, dest_cpu)) 3433 return dest_cpu; 3434 } 3435 } 3436 3437 for (;;) { 3438 /* Any allowed, online CPU? */ 3439 for_each_cpu(dest_cpu, p->cpus_ptr) { 3440 if (!is_cpu_allowed(p, dest_cpu)) 3441 continue; 3442 3443 goto out; 3444 } 3445 3446 /* No more Mr. Nice Guy. */ 3447 switch (state) { 3448 case cpuset: 3449 if (cpuset_cpus_allowed_fallback(p)) { 3450 state = possible; 3451 break; 3452 } 3453 fallthrough; 3454 case possible: 3455 /* 3456 * XXX When called from select_task_rq() we only 3457 * hold p->pi_lock and again violate locking order. 3458 * 3459 * More yuck to audit. 3460 */ 3461 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3462 state = fail; 3463 break; 3464 case fail: 3465 BUG(); 3466 break; 3467 } 3468 } 3469 3470 out: 3471 if (state != cpuset) { 3472 /* 3473 * Don't tell them about moving exiting tasks or 3474 * kernel threads (both mm NULL), since they never 3475 * leave kernel. 3476 */ 3477 if (p->mm && printk_ratelimit()) { 3478 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3479 task_pid_nr(p), p->comm, cpu); 3480 } 3481 } 3482 3483 return dest_cpu; 3484 } 3485 3486 /* 3487 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3488 */ 3489 static inline 3490 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3491 { 3492 lockdep_assert_held(&p->pi_lock); 3493 3494 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3495 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3496 else 3497 cpu = cpumask_any(p->cpus_ptr); 3498 3499 /* 3500 * In order not to call set_task_cpu() on a blocking task we need 3501 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3502 * CPU. 3503 * 3504 * Since this is common to all placement strategies, this lives here. 3505 * 3506 * [ this allows ->select_task() to simply return task_cpu(p) and 3507 * not worry about this generic constraint ] 3508 */ 3509 if (unlikely(!is_cpu_allowed(p, cpu))) 3510 cpu = select_fallback_rq(task_cpu(p), p); 3511 3512 return cpu; 3513 } 3514 3515 void sched_set_stop_task(int cpu, struct task_struct *stop) 3516 { 3517 static struct lock_class_key stop_pi_lock; 3518 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3519 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3520 3521 if (stop) { 3522 /* 3523 * Make it appear like a SCHED_FIFO task, its something 3524 * userspace knows about and won't get confused about. 3525 * 3526 * Also, it will make PI more or less work without too 3527 * much confusion -- but then, stop work should not 3528 * rely on PI working anyway. 3529 */ 3530 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3531 3532 stop->sched_class = &stop_sched_class; 3533 3534 /* 3535 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3536 * adjust the effective priority of a task. As a result, 3537 * rt_mutex_setprio() can trigger (RT) balancing operations, 3538 * which can then trigger wakeups of the stop thread to push 3539 * around the current task. 3540 * 3541 * The stop task itself will never be part of the PI-chain, it 3542 * never blocks, therefore that ->pi_lock recursion is safe. 3543 * Tell lockdep about this by placing the stop->pi_lock in its 3544 * own class. 3545 */ 3546 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3547 } 3548 3549 cpu_rq(cpu)->stop = stop; 3550 3551 if (old_stop) { 3552 /* 3553 * Reset it back to a normal scheduling class so that 3554 * it can die in pieces. 3555 */ 3556 old_stop->sched_class = &rt_sched_class; 3557 } 3558 } 3559 3560 #else /* CONFIG_SMP */ 3561 3562 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3563 const struct cpumask *new_mask, 3564 u32 flags) 3565 { 3566 return set_cpus_allowed_ptr(p, new_mask); 3567 } 3568 3569 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3570 3571 static inline bool rq_has_pinned_tasks(struct rq *rq) 3572 { 3573 return false; 3574 } 3575 3576 #endif /* !CONFIG_SMP */ 3577 3578 static void 3579 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3580 { 3581 struct rq *rq; 3582 3583 if (!schedstat_enabled()) 3584 return; 3585 3586 rq = this_rq(); 3587 3588 #ifdef CONFIG_SMP 3589 if (cpu == rq->cpu) { 3590 __schedstat_inc(rq->ttwu_local); 3591 __schedstat_inc(p->stats.nr_wakeups_local); 3592 } else { 3593 struct sched_domain *sd; 3594 3595 __schedstat_inc(p->stats.nr_wakeups_remote); 3596 rcu_read_lock(); 3597 for_each_domain(rq->cpu, sd) { 3598 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3599 __schedstat_inc(sd->ttwu_wake_remote); 3600 break; 3601 } 3602 } 3603 rcu_read_unlock(); 3604 } 3605 3606 if (wake_flags & WF_MIGRATED) 3607 __schedstat_inc(p->stats.nr_wakeups_migrate); 3608 #endif /* CONFIG_SMP */ 3609 3610 __schedstat_inc(rq->ttwu_count); 3611 __schedstat_inc(p->stats.nr_wakeups); 3612 3613 if (wake_flags & WF_SYNC) 3614 __schedstat_inc(p->stats.nr_wakeups_sync); 3615 } 3616 3617 /* 3618 * Mark the task runnable and perform wakeup-preemption. 3619 */ 3620 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3621 struct rq_flags *rf) 3622 { 3623 check_preempt_curr(rq, p, wake_flags); 3624 WRITE_ONCE(p->__state, TASK_RUNNING); 3625 trace_sched_wakeup(p); 3626 3627 #ifdef CONFIG_SMP 3628 if (p->sched_class->task_woken) { 3629 /* 3630 * Our task @p is fully woken up and running; so it's safe to 3631 * drop the rq->lock, hereafter rq is only used for statistics. 3632 */ 3633 rq_unpin_lock(rq, rf); 3634 p->sched_class->task_woken(rq, p); 3635 rq_repin_lock(rq, rf); 3636 } 3637 3638 if (rq->idle_stamp) { 3639 u64 delta = rq_clock(rq) - rq->idle_stamp; 3640 u64 max = 2*rq->max_idle_balance_cost; 3641 3642 update_avg(&rq->avg_idle, delta); 3643 3644 if (rq->avg_idle > max) 3645 rq->avg_idle = max; 3646 3647 rq->wake_stamp = jiffies; 3648 rq->wake_avg_idle = rq->avg_idle / 2; 3649 3650 rq->idle_stamp = 0; 3651 } 3652 #endif 3653 } 3654 3655 static void 3656 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3657 struct rq_flags *rf) 3658 { 3659 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3660 3661 lockdep_assert_rq_held(rq); 3662 3663 if (p->sched_contributes_to_load) 3664 rq->nr_uninterruptible--; 3665 3666 #ifdef CONFIG_SMP 3667 if (wake_flags & WF_MIGRATED) 3668 en_flags |= ENQUEUE_MIGRATED; 3669 else 3670 #endif 3671 if (p->in_iowait) { 3672 delayacct_blkio_end(p); 3673 atomic_dec(&task_rq(p)->nr_iowait); 3674 } 3675 3676 activate_task(rq, p, en_flags); 3677 ttwu_do_wakeup(rq, p, wake_flags, rf); 3678 } 3679 3680 /* 3681 * Consider @p being inside a wait loop: 3682 * 3683 * for (;;) { 3684 * set_current_state(TASK_UNINTERRUPTIBLE); 3685 * 3686 * if (CONDITION) 3687 * break; 3688 * 3689 * schedule(); 3690 * } 3691 * __set_current_state(TASK_RUNNING); 3692 * 3693 * between set_current_state() and schedule(). In this case @p is still 3694 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3695 * an atomic manner. 3696 * 3697 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3698 * then schedule() must still happen and p->state can be changed to 3699 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3700 * need to do a full wakeup with enqueue. 3701 * 3702 * Returns: %true when the wakeup is done, 3703 * %false otherwise. 3704 */ 3705 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3706 { 3707 struct rq_flags rf; 3708 struct rq *rq; 3709 int ret = 0; 3710 3711 rq = __task_rq_lock(p, &rf); 3712 if (task_on_rq_queued(p)) { 3713 /* check_preempt_curr() may use rq clock */ 3714 update_rq_clock(rq); 3715 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3716 ret = 1; 3717 } 3718 __task_rq_unlock(rq, &rf); 3719 3720 return ret; 3721 } 3722 3723 #ifdef CONFIG_SMP 3724 void sched_ttwu_pending(void *arg) 3725 { 3726 struct llist_node *llist = arg; 3727 struct rq *rq = this_rq(); 3728 struct task_struct *p, *t; 3729 struct rq_flags rf; 3730 3731 if (!llist) 3732 return; 3733 3734 /* 3735 * rq::ttwu_pending racy indication of out-standing wakeups. 3736 * Races such that false-negatives are possible, since they 3737 * are shorter lived that false-positives would be. 3738 */ 3739 WRITE_ONCE(rq->ttwu_pending, 0); 3740 3741 rq_lock_irqsave(rq, &rf); 3742 update_rq_clock(rq); 3743 3744 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3745 if (WARN_ON_ONCE(p->on_cpu)) 3746 smp_cond_load_acquire(&p->on_cpu, !VAL); 3747 3748 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3749 set_task_cpu(p, cpu_of(rq)); 3750 3751 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3752 } 3753 3754 rq_unlock_irqrestore(rq, &rf); 3755 } 3756 3757 void send_call_function_single_ipi(int cpu) 3758 { 3759 struct rq *rq = cpu_rq(cpu); 3760 3761 if (!set_nr_if_polling(rq->idle)) 3762 arch_send_call_function_single_ipi(cpu); 3763 else 3764 trace_sched_wake_idle_without_ipi(cpu); 3765 } 3766 3767 /* 3768 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3769 * necessary. The wakee CPU on receipt of the IPI will queue the task 3770 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3771 * of the wakeup instead of the waker. 3772 */ 3773 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3774 { 3775 struct rq *rq = cpu_rq(cpu); 3776 3777 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3778 3779 WRITE_ONCE(rq->ttwu_pending, 1); 3780 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3781 } 3782 3783 void wake_up_if_idle(int cpu) 3784 { 3785 struct rq *rq = cpu_rq(cpu); 3786 struct rq_flags rf; 3787 3788 rcu_read_lock(); 3789 3790 if (!is_idle_task(rcu_dereference(rq->curr))) 3791 goto out; 3792 3793 rq_lock_irqsave(rq, &rf); 3794 if (is_idle_task(rq->curr)) 3795 resched_curr(rq); 3796 /* Else CPU is not idle, do nothing here: */ 3797 rq_unlock_irqrestore(rq, &rf); 3798 3799 out: 3800 rcu_read_unlock(); 3801 } 3802 3803 bool cpus_share_cache(int this_cpu, int that_cpu) 3804 { 3805 if (this_cpu == that_cpu) 3806 return true; 3807 3808 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3809 } 3810 3811 static inline bool ttwu_queue_cond(int cpu, int wake_flags) 3812 { 3813 /* 3814 * Do not complicate things with the async wake_list while the CPU is 3815 * in hotplug state. 3816 */ 3817 if (!cpu_active(cpu)) 3818 return false; 3819 3820 /* 3821 * If the CPU does not share cache, then queue the task on the 3822 * remote rqs wakelist to avoid accessing remote data. 3823 */ 3824 if (!cpus_share_cache(smp_processor_id(), cpu)) 3825 return true; 3826 3827 /* 3828 * If the task is descheduling and the only running task on the 3829 * CPU then use the wakelist to offload the task activation to 3830 * the soon-to-be-idle CPU as the current CPU is likely busy. 3831 * nr_running is checked to avoid unnecessary task stacking. 3832 */ 3833 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1) 3834 return true; 3835 3836 return false; 3837 } 3838 3839 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3840 { 3841 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) { 3842 if (WARN_ON_ONCE(cpu == smp_processor_id())) 3843 return false; 3844 3845 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3846 __ttwu_queue_wakelist(p, cpu, wake_flags); 3847 return true; 3848 } 3849 3850 return false; 3851 } 3852 3853 #else /* !CONFIG_SMP */ 3854 3855 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3856 { 3857 return false; 3858 } 3859 3860 #endif /* CONFIG_SMP */ 3861 3862 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3863 { 3864 struct rq *rq = cpu_rq(cpu); 3865 struct rq_flags rf; 3866 3867 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3868 return; 3869 3870 rq_lock(rq, &rf); 3871 update_rq_clock(rq); 3872 ttwu_do_activate(rq, p, wake_flags, &rf); 3873 rq_unlock(rq, &rf); 3874 } 3875 3876 /* 3877 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3878 * 3879 * The caller holds p::pi_lock if p != current or has preemption 3880 * disabled when p == current. 3881 * 3882 * The rules of PREEMPT_RT saved_state: 3883 * 3884 * The related locking code always holds p::pi_lock when updating 3885 * p::saved_state, which means the code is fully serialized in both cases. 3886 * 3887 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3888 * bits set. This allows to distinguish all wakeup scenarios. 3889 */ 3890 static __always_inline 3891 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3892 { 3893 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3894 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3895 state != TASK_RTLOCK_WAIT); 3896 } 3897 3898 if (READ_ONCE(p->__state) & state) { 3899 *success = 1; 3900 return true; 3901 } 3902 3903 #ifdef CONFIG_PREEMPT_RT 3904 /* 3905 * Saved state preserves the task state across blocking on 3906 * an RT lock. If the state matches, set p::saved_state to 3907 * TASK_RUNNING, but do not wake the task because it waits 3908 * for a lock wakeup. Also indicate success because from 3909 * the regular waker's point of view this has succeeded. 3910 * 3911 * After acquiring the lock the task will restore p::__state 3912 * from p::saved_state which ensures that the regular 3913 * wakeup is not lost. The restore will also set 3914 * p::saved_state to TASK_RUNNING so any further tests will 3915 * not result in false positives vs. @success 3916 */ 3917 if (p->saved_state & state) { 3918 p->saved_state = TASK_RUNNING; 3919 *success = 1; 3920 } 3921 #endif 3922 return false; 3923 } 3924 3925 /* 3926 * Notes on Program-Order guarantees on SMP systems. 3927 * 3928 * MIGRATION 3929 * 3930 * The basic program-order guarantee on SMP systems is that when a task [t] 3931 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3932 * execution on its new CPU [c1]. 3933 * 3934 * For migration (of runnable tasks) this is provided by the following means: 3935 * 3936 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3937 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3938 * rq(c1)->lock (if not at the same time, then in that order). 3939 * C) LOCK of the rq(c1)->lock scheduling in task 3940 * 3941 * Release/acquire chaining guarantees that B happens after A and C after B. 3942 * Note: the CPU doing B need not be c0 or c1 3943 * 3944 * Example: 3945 * 3946 * CPU0 CPU1 CPU2 3947 * 3948 * LOCK rq(0)->lock 3949 * sched-out X 3950 * sched-in Y 3951 * UNLOCK rq(0)->lock 3952 * 3953 * LOCK rq(0)->lock // orders against CPU0 3954 * dequeue X 3955 * UNLOCK rq(0)->lock 3956 * 3957 * LOCK rq(1)->lock 3958 * enqueue X 3959 * UNLOCK rq(1)->lock 3960 * 3961 * LOCK rq(1)->lock // orders against CPU2 3962 * sched-out Z 3963 * sched-in X 3964 * UNLOCK rq(1)->lock 3965 * 3966 * 3967 * BLOCKING -- aka. SLEEP + WAKEUP 3968 * 3969 * For blocking we (obviously) need to provide the same guarantee as for 3970 * migration. However the means are completely different as there is no lock 3971 * chain to provide order. Instead we do: 3972 * 3973 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3974 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3975 * 3976 * Example: 3977 * 3978 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 3979 * 3980 * LOCK rq(0)->lock LOCK X->pi_lock 3981 * dequeue X 3982 * sched-out X 3983 * smp_store_release(X->on_cpu, 0); 3984 * 3985 * smp_cond_load_acquire(&X->on_cpu, !VAL); 3986 * X->state = WAKING 3987 * set_task_cpu(X,2) 3988 * 3989 * LOCK rq(2)->lock 3990 * enqueue X 3991 * X->state = RUNNING 3992 * UNLOCK rq(2)->lock 3993 * 3994 * LOCK rq(2)->lock // orders against CPU1 3995 * sched-out Z 3996 * sched-in X 3997 * UNLOCK rq(2)->lock 3998 * 3999 * UNLOCK X->pi_lock 4000 * UNLOCK rq(0)->lock 4001 * 4002 * 4003 * However, for wakeups there is a second guarantee we must provide, namely we 4004 * must ensure that CONDITION=1 done by the caller can not be reordered with 4005 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4006 */ 4007 4008 /** 4009 * try_to_wake_up - wake up a thread 4010 * @p: the thread to be awakened 4011 * @state: the mask of task states that can be woken 4012 * @wake_flags: wake modifier flags (WF_*) 4013 * 4014 * Conceptually does: 4015 * 4016 * If (@state & @p->state) @p->state = TASK_RUNNING. 4017 * 4018 * If the task was not queued/runnable, also place it back on a runqueue. 4019 * 4020 * This function is atomic against schedule() which would dequeue the task. 4021 * 4022 * It issues a full memory barrier before accessing @p->state, see the comment 4023 * with set_current_state(). 4024 * 4025 * Uses p->pi_lock to serialize against concurrent wake-ups. 4026 * 4027 * Relies on p->pi_lock stabilizing: 4028 * - p->sched_class 4029 * - p->cpus_ptr 4030 * - p->sched_task_group 4031 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4032 * 4033 * Tries really hard to only take one task_rq(p)->lock for performance. 4034 * Takes rq->lock in: 4035 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4036 * - ttwu_queue() -- new rq, for enqueue of the task; 4037 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4038 * 4039 * As a consequence we race really badly with just about everything. See the 4040 * many memory barriers and their comments for details. 4041 * 4042 * Return: %true if @p->state changes (an actual wakeup was done), 4043 * %false otherwise. 4044 */ 4045 static int 4046 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4047 { 4048 unsigned long flags; 4049 int cpu, success = 0; 4050 4051 preempt_disable(); 4052 if (p == current) { 4053 /* 4054 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4055 * == smp_processor_id()'. Together this means we can special 4056 * case the whole 'p->on_rq && ttwu_runnable()' case below 4057 * without taking any locks. 4058 * 4059 * In particular: 4060 * - we rely on Program-Order guarantees for all the ordering, 4061 * - we're serialized against set_special_state() by virtue of 4062 * it disabling IRQs (this allows not taking ->pi_lock). 4063 */ 4064 if (!ttwu_state_match(p, state, &success)) 4065 goto out; 4066 4067 trace_sched_waking(p); 4068 WRITE_ONCE(p->__state, TASK_RUNNING); 4069 trace_sched_wakeup(p); 4070 goto out; 4071 } 4072 4073 /* 4074 * If we are going to wake up a thread waiting for CONDITION we 4075 * need to ensure that CONDITION=1 done by the caller can not be 4076 * reordered with p->state check below. This pairs with smp_store_mb() 4077 * in set_current_state() that the waiting thread does. 4078 */ 4079 raw_spin_lock_irqsave(&p->pi_lock, flags); 4080 smp_mb__after_spinlock(); 4081 if (!ttwu_state_match(p, state, &success)) 4082 goto unlock; 4083 4084 trace_sched_waking(p); 4085 4086 /* 4087 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4088 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4089 * in smp_cond_load_acquire() below. 4090 * 4091 * sched_ttwu_pending() try_to_wake_up() 4092 * STORE p->on_rq = 1 LOAD p->state 4093 * UNLOCK rq->lock 4094 * 4095 * __schedule() (switch to task 'p') 4096 * LOCK rq->lock smp_rmb(); 4097 * smp_mb__after_spinlock(); 4098 * UNLOCK rq->lock 4099 * 4100 * [task p] 4101 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4102 * 4103 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4104 * __schedule(). See the comment for smp_mb__after_spinlock(). 4105 * 4106 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4107 */ 4108 smp_rmb(); 4109 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4110 goto unlock; 4111 4112 #ifdef CONFIG_SMP 4113 /* 4114 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4115 * possible to, falsely, observe p->on_cpu == 0. 4116 * 4117 * One must be running (->on_cpu == 1) in order to remove oneself 4118 * from the runqueue. 4119 * 4120 * __schedule() (switch to task 'p') try_to_wake_up() 4121 * STORE p->on_cpu = 1 LOAD p->on_rq 4122 * UNLOCK rq->lock 4123 * 4124 * __schedule() (put 'p' to sleep) 4125 * LOCK rq->lock smp_rmb(); 4126 * smp_mb__after_spinlock(); 4127 * STORE p->on_rq = 0 LOAD p->on_cpu 4128 * 4129 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4130 * __schedule(). See the comment for smp_mb__after_spinlock(). 4131 * 4132 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4133 * schedule()'s deactivate_task() has 'happened' and p will no longer 4134 * care about it's own p->state. See the comment in __schedule(). 4135 */ 4136 smp_acquire__after_ctrl_dep(); 4137 4138 /* 4139 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4140 * == 0), which means we need to do an enqueue, change p->state to 4141 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4142 * enqueue, such as ttwu_queue_wakelist(). 4143 */ 4144 WRITE_ONCE(p->__state, TASK_WAKING); 4145 4146 /* 4147 * If the owning (remote) CPU is still in the middle of schedule() with 4148 * this task as prev, considering queueing p on the remote CPUs wake_list 4149 * which potentially sends an IPI instead of spinning on p->on_cpu to 4150 * let the waker make forward progress. This is safe because IRQs are 4151 * disabled and the IPI will deliver after on_cpu is cleared. 4152 * 4153 * Ensure we load task_cpu(p) after p->on_cpu: 4154 * 4155 * set_task_cpu(p, cpu); 4156 * STORE p->cpu = @cpu 4157 * __schedule() (switch to task 'p') 4158 * LOCK rq->lock 4159 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4160 * STORE p->on_cpu = 1 LOAD p->cpu 4161 * 4162 * to ensure we observe the correct CPU on which the task is currently 4163 * scheduling. 4164 */ 4165 if (smp_load_acquire(&p->on_cpu) && 4166 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU)) 4167 goto unlock; 4168 4169 /* 4170 * If the owning (remote) CPU is still in the middle of schedule() with 4171 * this task as prev, wait until it's done referencing the task. 4172 * 4173 * Pairs with the smp_store_release() in finish_task(). 4174 * 4175 * This ensures that tasks getting woken will be fully ordered against 4176 * their previous state and preserve Program Order. 4177 */ 4178 smp_cond_load_acquire(&p->on_cpu, !VAL); 4179 4180 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4181 if (task_cpu(p) != cpu) { 4182 if (p->in_iowait) { 4183 delayacct_blkio_end(p); 4184 atomic_dec(&task_rq(p)->nr_iowait); 4185 } 4186 4187 wake_flags |= WF_MIGRATED; 4188 psi_ttwu_dequeue(p); 4189 set_task_cpu(p, cpu); 4190 } 4191 #else 4192 cpu = task_cpu(p); 4193 #endif /* CONFIG_SMP */ 4194 4195 ttwu_queue(p, cpu, wake_flags); 4196 unlock: 4197 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4198 out: 4199 if (success) 4200 ttwu_stat(p, task_cpu(p), wake_flags); 4201 preempt_enable(); 4202 4203 return success; 4204 } 4205 4206 /** 4207 * task_call_func - Invoke a function on task in fixed state 4208 * @p: Process for which the function is to be invoked, can be @current. 4209 * @func: Function to invoke. 4210 * @arg: Argument to function. 4211 * 4212 * Fix the task in it's current state by avoiding wakeups and or rq operations 4213 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4214 * to work out what the state is, if required. Given that @func can be invoked 4215 * with a runqueue lock held, it had better be quite lightweight. 4216 * 4217 * Returns: 4218 * Whatever @func returns 4219 */ 4220 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4221 { 4222 struct rq *rq = NULL; 4223 unsigned int state; 4224 struct rq_flags rf; 4225 int ret; 4226 4227 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4228 4229 state = READ_ONCE(p->__state); 4230 4231 /* 4232 * Ensure we load p->on_rq after p->__state, otherwise it would be 4233 * possible to, falsely, observe p->on_rq == 0. 4234 * 4235 * See try_to_wake_up() for a longer comment. 4236 */ 4237 smp_rmb(); 4238 4239 /* 4240 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4241 * the task is blocked. Make sure to check @state since ttwu() can drop 4242 * locks at the end, see ttwu_queue_wakelist(). 4243 */ 4244 if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq) 4245 rq = __task_rq_lock(p, &rf); 4246 4247 /* 4248 * At this point the task is pinned; either: 4249 * - blocked and we're holding off wakeups (pi->lock) 4250 * - woken, and we're holding off enqueue (rq->lock) 4251 * - queued, and we're holding off schedule (rq->lock) 4252 * - running, and we're holding off de-schedule (rq->lock) 4253 * 4254 * The called function (@func) can use: task_curr(), p->on_rq and 4255 * p->__state to differentiate between these states. 4256 */ 4257 ret = func(p, arg); 4258 4259 if (rq) 4260 rq_unlock(rq, &rf); 4261 4262 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4263 return ret; 4264 } 4265 4266 /** 4267 * wake_up_process - Wake up a specific process 4268 * @p: The process to be woken up. 4269 * 4270 * Attempt to wake up the nominated process and move it to the set of runnable 4271 * processes. 4272 * 4273 * Return: 1 if the process was woken up, 0 if it was already running. 4274 * 4275 * This function executes a full memory barrier before accessing the task state. 4276 */ 4277 int wake_up_process(struct task_struct *p) 4278 { 4279 return try_to_wake_up(p, TASK_NORMAL, 0); 4280 } 4281 EXPORT_SYMBOL(wake_up_process); 4282 4283 int wake_up_state(struct task_struct *p, unsigned int state) 4284 { 4285 return try_to_wake_up(p, state, 0); 4286 } 4287 4288 /* 4289 * Perform scheduler related setup for a newly forked process p. 4290 * p is forked by current. 4291 * 4292 * __sched_fork() is basic setup used by init_idle() too: 4293 */ 4294 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4295 { 4296 p->on_rq = 0; 4297 4298 p->se.on_rq = 0; 4299 p->se.exec_start = 0; 4300 p->se.sum_exec_runtime = 0; 4301 p->se.prev_sum_exec_runtime = 0; 4302 p->se.nr_migrations = 0; 4303 p->se.vruntime = 0; 4304 INIT_LIST_HEAD(&p->se.group_node); 4305 4306 #ifdef CONFIG_FAIR_GROUP_SCHED 4307 p->se.cfs_rq = NULL; 4308 #endif 4309 4310 #ifdef CONFIG_SCHEDSTATS 4311 /* Even if schedstat is disabled, there should not be garbage */ 4312 memset(&p->stats, 0, sizeof(p->stats)); 4313 #endif 4314 4315 RB_CLEAR_NODE(&p->dl.rb_node); 4316 init_dl_task_timer(&p->dl); 4317 init_dl_inactive_task_timer(&p->dl); 4318 __dl_clear_params(p); 4319 4320 INIT_LIST_HEAD(&p->rt.run_list); 4321 p->rt.timeout = 0; 4322 p->rt.time_slice = sched_rr_timeslice; 4323 p->rt.on_rq = 0; 4324 p->rt.on_list = 0; 4325 4326 #ifdef CONFIG_PREEMPT_NOTIFIERS 4327 INIT_HLIST_HEAD(&p->preempt_notifiers); 4328 #endif 4329 4330 #ifdef CONFIG_COMPACTION 4331 p->capture_control = NULL; 4332 #endif 4333 init_numa_balancing(clone_flags, p); 4334 #ifdef CONFIG_SMP 4335 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4336 p->migration_pending = NULL; 4337 #endif 4338 } 4339 4340 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4341 4342 #ifdef CONFIG_NUMA_BALANCING 4343 4344 int sysctl_numa_balancing_mode; 4345 4346 static void __set_numabalancing_state(bool enabled) 4347 { 4348 if (enabled) 4349 static_branch_enable(&sched_numa_balancing); 4350 else 4351 static_branch_disable(&sched_numa_balancing); 4352 } 4353 4354 void set_numabalancing_state(bool enabled) 4355 { 4356 if (enabled) 4357 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4358 else 4359 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4360 __set_numabalancing_state(enabled); 4361 } 4362 4363 #ifdef CONFIG_PROC_SYSCTL 4364 int sysctl_numa_balancing(struct ctl_table *table, int write, 4365 void *buffer, size_t *lenp, loff_t *ppos) 4366 { 4367 struct ctl_table t; 4368 int err; 4369 int state = sysctl_numa_balancing_mode; 4370 4371 if (write && !capable(CAP_SYS_ADMIN)) 4372 return -EPERM; 4373 4374 t = *table; 4375 t.data = &state; 4376 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4377 if (err < 0) 4378 return err; 4379 if (write) { 4380 sysctl_numa_balancing_mode = state; 4381 __set_numabalancing_state(state); 4382 } 4383 return err; 4384 } 4385 #endif 4386 #endif 4387 4388 #ifdef CONFIG_SCHEDSTATS 4389 4390 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4391 4392 static void set_schedstats(bool enabled) 4393 { 4394 if (enabled) 4395 static_branch_enable(&sched_schedstats); 4396 else 4397 static_branch_disable(&sched_schedstats); 4398 } 4399 4400 void force_schedstat_enabled(void) 4401 { 4402 if (!schedstat_enabled()) { 4403 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4404 static_branch_enable(&sched_schedstats); 4405 } 4406 } 4407 4408 static int __init setup_schedstats(char *str) 4409 { 4410 int ret = 0; 4411 if (!str) 4412 goto out; 4413 4414 if (!strcmp(str, "enable")) { 4415 set_schedstats(true); 4416 ret = 1; 4417 } else if (!strcmp(str, "disable")) { 4418 set_schedstats(false); 4419 ret = 1; 4420 } 4421 out: 4422 if (!ret) 4423 pr_warn("Unable to parse schedstats=\n"); 4424 4425 return ret; 4426 } 4427 __setup("schedstats=", setup_schedstats); 4428 4429 #ifdef CONFIG_PROC_SYSCTL 4430 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4431 size_t *lenp, loff_t *ppos) 4432 { 4433 struct ctl_table t; 4434 int err; 4435 int state = static_branch_likely(&sched_schedstats); 4436 4437 if (write && !capable(CAP_SYS_ADMIN)) 4438 return -EPERM; 4439 4440 t = *table; 4441 t.data = &state; 4442 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4443 if (err < 0) 4444 return err; 4445 if (write) 4446 set_schedstats(state); 4447 return err; 4448 } 4449 #endif /* CONFIG_PROC_SYSCTL */ 4450 #endif /* CONFIG_SCHEDSTATS */ 4451 4452 #ifdef CONFIG_SYSCTL 4453 static struct ctl_table sched_core_sysctls[] = { 4454 #ifdef CONFIG_SCHEDSTATS 4455 { 4456 .procname = "sched_schedstats", 4457 .data = NULL, 4458 .maxlen = sizeof(unsigned int), 4459 .mode = 0644, 4460 .proc_handler = sysctl_schedstats, 4461 .extra1 = SYSCTL_ZERO, 4462 .extra2 = SYSCTL_ONE, 4463 }, 4464 #endif /* CONFIG_SCHEDSTATS */ 4465 #ifdef CONFIG_UCLAMP_TASK 4466 { 4467 .procname = "sched_util_clamp_min", 4468 .data = &sysctl_sched_uclamp_util_min, 4469 .maxlen = sizeof(unsigned int), 4470 .mode = 0644, 4471 .proc_handler = sysctl_sched_uclamp_handler, 4472 }, 4473 { 4474 .procname = "sched_util_clamp_max", 4475 .data = &sysctl_sched_uclamp_util_max, 4476 .maxlen = sizeof(unsigned int), 4477 .mode = 0644, 4478 .proc_handler = sysctl_sched_uclamp_handler, 4479 }, 4480 { 4481 .procname = "sched_util_clamp_min_rt_default", 4482 .data = &sysctl_sched_uclamp_util_min_rt_default, 4483 .maxlen = sizeof(unsigned int), 4484 .mode = 0644, 4485 .proc_handler = sysctl_sched_uclamp_handler, 4486 }, 4487 #endif /* CONFIG_UCLAMP_TASK */ 4488 {} 4489 }; 4490 static int __init sched_core_sysctl_init(void) 4491 { 4492 register_sysctl_init("kernel", sched_core_sysctls); 4493 return 0; 4494 } 4495 late_initcall(sched_core_sysctl_init); 4496 #endif /* CONFIG_SYSCTL */ 4497 4498 /* 4499 * fork()/clone()-time setup: 4500 */ 4501 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4502 { 4503 __sched_fork(clone_flags, p); 4504 /* 4505 * We mark the process as NEW here. This guarantees that 4506 * nobody will actually run it, and a signal or other external 4507 * event cannot wake it up and insert it on the runqueue either. 4508 */ 4509 p->__state = TASK_NEW; 4510 4511 /* 4512 * Make sure we do not leak PI boosting priority to the child. 4513 */ 4514 p->prio = current->normal_prio; 4515 4516 uclamp_fork(p); 4517 4518 /* 4519 * Revert to default priority/policy on fork if requested. 4520 */ 4521 if (unlikely(p->sched_reset_on_fork)) { 4522 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4523 p->policy = SCHED_NORMAL; 4524 p->static_prio = NICE_TO_PRIO(0); 4525 p->rt_priority = 0; 4526 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4527 p->static_prio = NICE_TO_PRIO(0); 4528 4529 p->prio = p->normal_prio = p->static_prio; 4530 set_load_weight(p, false); 4531 4532 /* 4533 * We don't need the reset flag anymore after the fork. It has 4534 * fulfilled its duty: 4535 */ 4536 p->sched_reset_on_fork = 0; 4537 } 4538 4539 if (dl_prio(p->prio)) 4540 return -EAGAIN; 4541 else if (rt_prio(p->prio)) 4542 p->sched_class = &rt_sched_class; 4543 else 4544 p->sched_class = &fair_sched_class; 4545 4546 init_entity_runnable_average(&p->se); 4547 4548 4549 #ifdef CONFIG_SCHED_INFO 4550 if (likely(sched_info_on())) 4551 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4552 #endif 4553 #if defined(CONFIG_SMP) 4554 p->on_cpu = 0; 4555 #endif 4556 init_task_preempt_count(p); 4557 #ifdef CONFIG_SMP 4558 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4559 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4560 #endif 4561 return 0; 4562 } 4563 4564 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4565 { 4566 unsigned long flags; 4567 4568 /* 4569 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4570 * required yet, but lockdep gets upset if rules are violated. 4571 */ 4572 raw_spin_lock_irqsave(&p->pi_lock, flags); 4573 #ifdef CONFIG_CGROUP_SCHED 4574 if (1) { 4575 struct task_group *tg; 4576 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4577 struct task_group, css); 4578 tg = autogroup_task_group(p, tg); 4579 p->sched_task_group = tg; 4580 } 4581 #endif 4582 rseq_migrate(p); 4583 /* 4584 * We're setting the CPU for the first time, we don't migrate, 4585 * so use __set_task_cpu(). 4586 */ 4587 __set_task_cpu(p, smp_processor_id()); 4588 if (p->sched_class->task_fork) 4589 p->sched_class->task_fork(p); 4590 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4591 } 4592 4593 void sched_post_fork(struct task_struct *p) 4594 { 4595 uclamp_post_fork(p); 4596 } 4597 4598 unsigned long to_ratio(u64 period, u64 runtime) 4599 { 4600 if (runtime == RUNTIME_INF) 4601 return BW_UNIT; 4602 4603 /* 4604 * Doing this here saves a lot of checks in all 4605 * the calling paths, and returning zero seems 4606 * safe for them anyway. 4607 */ 4608 if (period == 0) 4609 return 0; 4610 4611 return div64_u64(runtime << BW_SHIFT, period); 4612 } 4613 4614 /* 4615 * wake_up_new_task - wake up a newly created task for the first time. 4616 * 4617 * This function will do some initial scheduler statistics housekeeping 4618 * that must be done for every newly created context, then puts the task 4619 * on the runqueue and wakes it. 4620 */ 4621 void wake_up_new_task(struct task_struct *p) 4622 { 4623 struct rq_flags rf; 4624 struct rq *rq; 4625 4626 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4627 WRITE_ONCE(p->__state, TASK_RUNNING); 4628 #ifdef CONFIG_SMP 4629 /* 4630 * Fork balancing, do it here and not earlier because: 4631 * - cpus_ptr can change in the fork path 4632 * - any previously selected CPU might disappear through hotplug 4633 * 4634 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4635 * as we're not fully set-up yet. 4636 */ 4637 p->recent_used_cpu = task_cpu(p); 4638 rseq_migrate(p); 4639 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4640 #endif 4641 rq = __task_rq_lock(p, &rf); 4642 update_rq_clock(rq); 4643 post_init_entity_util_avg(p); 4644 4645 activate_task(rq, p, ENQUEUE_NOCLOCK); 4646 trace_sched_wakeup_new(p); 4647 check_preempt_curr(rq, p, WF_FORK); 4648 #ifdef CONFIG_SMP 4649 if (p->sched_class->task_woken) { 4650 /* 4651 * Nothing relies on rq->lock after this, so it's fine to 4652 * drop it. 4653 */ 4654 rq_unpin_lock(rq, &rf); 4655 p->sched_class->task_woken(rq, p); 4656 rq_repin_lock(rq, &rf); 4657 } 4658 #endif 4659 task_rq_unlock(rq, p, &rf); 4660 } 4661 4662 #ifdef CONFIG_PREEMPT_NOTIFIERS 4663 4664 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4665 4666 void preempt_notifier_inc(void) 4667 { 4668 static_branch_inc(&preempt_notifier_key); 4669 } 4670 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4671 4672 void preempt_notifier_dec(void) 4673 { 4674 static_branch_dec(&preempt_notifier_key); 4675 } 4676 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4677 4678 /** 4679 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4680 * @notifier: notifier struct to register 4681 */ 4682 void preempt_notifier_register(struct preempt_notifier *notifier) 4683 { 4684 if (!static_branch_unlikely(&preempt_notifier_key)) 4685 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4686 4687 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4688 } 4689 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4690 4691 /** 4692 * preempt_notifier_unregister - no longer interested in preemption notifications 4693 * @notifier: notifier struct to unregister 4694 * 4695 * This is *not* safe to call from within a preemption notifier. 4696 */ 4697 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4698 { 4699 hlist_del(¬ifier->link); 4700 } 4701 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4702 4703 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4704 { 4705 struct preempt_notifier *notifier; 4706 4707 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4708 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4709 } 4710 4711 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4712 { 4713 if (static_branch_unlikely(&preempt_notifier_key)) 4714 __fire_sched_in_preempt_notifiers(curr); 4715 } 4716 4717 static void 4718 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4719 struct task_struct *next) 4720 { 4721 struct preempt_notifier *notifier; 4722 4723 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4724 notifier->ops->sched_out(notifier, next); 4725 } 4726 4727 static __always_inline void 4728 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4729 struct task_struct *next) 4730 { 4731 if (static_branch_unlikely(&preempt_notifier_key)) 4732 __fire_sched_out_preempt_notifiers(curr, next); 4733 } 4734 4735 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4736 4737 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4738 { 4739 } 4740 4741 static inline void 4742 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4743 struct task_struct *next) 4744 { 4745 } 4746 4747 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4748 4749 static inline void prepare_task(struct task_struct *next) 4750 { 4751 #ifdef CONFIG_SMP 4752 /* 4753 * Claim the task as running, we do this before switching to it 4754 * such that any running task will have this set. 4755 * 4756 * See the ttwu() WF_ON_CPU case and its ordering comment. 4757 */ 4758 WRITE_ONCE(next->on_cpu, 1); 4759 #endif 4760 } 4761 4762 static inline void finish_task(struct task_struct *prev) 4763 { 4764 #ifdef CONFIG_SMP 4765 /* 4766 * This must be the very last reference to @prev from this CPU. After 4767 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4768 * must ensure this doesn't happen until the switch is completely 4769 * finished. 4770 * 4771 * In particular, the load of prev->state in finish_task_switch() must 4772 * happen before this. 4773 * 4774 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4775 */ 4776 smp_store_release(&prev->on_cpu, 0); 4777 #endif 4778 } 4779 4780 #ifdef CONFIG_SMP 4781 4782 static void do_balance_callbacks(struct rq *rq, struct callback_head *head) 4783 { 4784 void (*func)(struct rq *rq); 4785 struct callback_head *next; 4786 4787 lockdep_assert_rq_held(rq); 4788 4789 while (head) { 4790 func = (void (*)(struct rq *))head->func; 4791 next = head->next; 4792 head->next = NULL; 4793 head = next; 4794 4795 func(rq); 4796 } 4797 } 4798 4799 static void balance_push(struct rq *rq); 4800 4801 struct callback_head balance_push_callback = { 4802 .next = NULL, 4803 .func = (void (*)(struct callback_head *))balance_push, 4804 }; 4805 4806 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4807 { 4808 struct callback_head *head = rq->balance_callback; 4809 4810 lockdep_assert_rq_held(rq); 4811 if (head) 4812 rq->balance_callback = NULL; 4813 4814 return head; 4815 } 4816 4817 static void __balance_callbacks(struct rq *rq) 4818 { 4819 do_balance_callbacks(rq, splice_balance_callbacks(rq)); 4820 } 4821 4822 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4823 { 4824 unsigned long flags; 4825 4826 if (unlikely(head)) { 4827 raw_spin_rq_lock_irqsave(rq, flags); 4828 do_balance_callbacks(rq, head); 4829 raw_spin_rq_unlock_irqrestore(rq, flags); 4830 } 4831 } 4832 4833 #else 4834 4835 static inline void __balance_callbacks(struct rq *rq) 4836 { 4837 } 4838 4839 static inline struct callback_head *splice_balance_callbacks(struct rq *rq) 4840 { 4841 return NULL; 4842 } 4843 4844 static inline void balance_callbacks(struct rq *rq, struct callback_head *head) 4845 { 4846 } 4847 4848 #endif 4849 4850 static inline void 4851 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4852 { 4853 /* 4854 * Since the runqueue lock will be released by the next 4855 * task (which is an invalid locking op but in the case 4856 * of the scheduler it's an obvious special-case), so we 4857 * do an early lockdep release here: 4858 */ 4859 rq_unpin_lock(rq, rf); 4860 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4861 #ifdef CONFIG_DEBUG_SPINLOCK 4862 /* this is a valid case when another task releases the spinlock */ 4863 rq_lockp(rq)->owner = next; 4864 #endif 4865 } 4866 4867 static inline void finish_lock_switch(struct rq *rq) 4868 { 4869 /* 4870 * If we are tracking spinlock dependencies then we have to 4871 * fix up the runqueue lock - which gets 'carried over' from 4872 * prev into current: 4873 */ 4874 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 4875 __balance_callbacks(rq); 4876 raw_spin_rq_unlock_irq(rq); 4877 } 4878 4879 /* 4880 * NOP if the arch has not defined these: 4881 */ 4882 4883 #ifndef prepare_arch_switch 4884 # define prepare_arch_switch(next) do { } while (0) 4885 #endif 4886 4887 #ifndef finish_arch_post_lock_switch 4888 # define finish_arch_post_lock_switch() do { } while (0) 4889 #endif 4890 4891 static inline void kmap_local_sched_out(void) 4892 { 4893 #ifdef CONFIG_KMAP_LOCAL 4894 if (unlikely(current->kmap_ctrl.idx)) 4895 __kmap_local_sched_out(); 4896 #endif 4897 } 4898 4899 static inline void kmap_local_sched_in(void) 4900 { 4901 #ifdef CONFIG_KMAP_LOCAL 4902 if (unlikely(current->kmap_ctrl.idx)) 4903 __kmap_local_sched_in(); 4904 #endif 4905 } 4906 4907 /** 4908 * prepare_task_switch - prepare to switch tasks 4909 * @rq: the runqueue preparing to switch 4910 * @prev: the current task that is being switched out 4911 * @next: the task we are going to switch to. 4912 * 4913 * This is called with the rq lock held and interrupts off. It must 4914 * be paired with a subsequent finish_task_switch after the context 4915 * switch. 4916 * 4917 * prepare_task_switch sets up locking and calls architecture specific 4918 * hooks. 4919 */ 4920 static inline void 4921 prepare_task_switch(struct rq *rq, struct task_struct *prev, 4922 struct task_struct *next) 4923 { 4924 kcov_prepare_switch(prev); 4925 sched_info_switch(rq, prev, next); 4926 perf_event_task_sched_out(prev, next); 4927 rseq_preempt(prev); 4928 fire_sched_out_preempt_notifiers(prev, next); 4929 kmap_local_sched_out(); 4930 prepare_task(next); 4931 prepare_arch_switch(next); 4932 } 4933 4934 /** 4935 * finish_task_switch - clean up after a task-switch 4936 * @prev: the thread we just switched away from. 4937 * 4938 * finish_task_switch must be called after the context switch, paired 4939 * with a prepare_task_switch call before the context switch. 4940 * finish_task_switch will reconcile locking set up by prepare_task_switch, 4941 * and do any other architecture-specific cleanup actions. 4942 * 4943 * Note that we may have delayed dropping an mm in context_switch(). If 4944 * so, we finish that here outside of the runqueue lock. (Doing it 4945 * with the lock held can cause deadlocks; see schedule() for 4946 * details.) 4947 * 4948 * The context switch have flipped the stack from under us and restored the 4949 * local variables which were saved when this task called schedule() in the 4950 * past. prev == current is still correct but we need to recalculate this_rq 4951 * because prev may have moved to another CPU. 4952 */ 4953 static struct rq *finish_task_switch(struct task_struct *prev) 4954 __releases(rq->lock) 4955 { 4956 struct rq *rq = this_rq(); 4957 struct mm_struct *mm = rq->prev_mm; 4958 unsigned int prev_state; 4959 4960 /* 4961 * The previous task will have left us with a preempt_count of 2 4962 * because it left us after: 4963 * 4964 * schedule() 4965 * preempt_disable(); // 1 4966 * __schedule() 4967 * raw_spin_lock_irq(&rq->lock) // 2 4968 * 4969 * Also, see FORK_PREEMPT_COUNT. 4970 */ 4971 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 4972 "corrupted preempt_count: %s/%d/0x%x\n", 4973 current->comm, current->pid, preempt_count())) 4974 preempt_count_set(FORK_PREEMPT_COUNT); 4975 4976 rq->prev_mm = NULL; 4977 4978 /* 4979 * A task struct has one reference for the use as "current". 4980 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 4981 * schedule one last time. The schedule call will never return, and 4982 * the scheduled task must drop that reference. 4983 * 4984 * We must observe prev->state before clearing prev->on_cpu (in 4985 * finish_task), otherwise a concurrent wakeup can get prev 4986 * running on another CPU and we could rave with its RUNNING -> DEAD 4987 * transition, resulting in a double drop. 4988 */ 4989 prev_state = READ_ONCE(prev->__state); 4990 vtime_task_switch(prev); 4991 perf_event_task_sched_in(prev, current); 4992 finish_task(prev); 4993 tick_nohz_task_switch(); 4994 finish_lock_switch(rq); 4995 finish_arch_post_lock_switch(); 4996 kcov_finish_switch(current); 4997 /* 4998 * kmap_local_sched_out() is invoked with rq::lock held and 4999 * interrupts disabled. There is no requirement for that, but the 5000 * sched out code does not have an interrupt enabled section. 5001 * Restoring the maps on sched in does not require interrupts being 5002 * disabled either. 5003 */ 5004 kmap_local_sched_in(); 5005 5006 fire_sched_in_preempt_notifiers(current); 5007 /* 5008 * When switching through a kernel thread, the loop in 5009 * membarrier_{private,global}_expedited() may have observed that 5010 * kernel thread and not issued an IPI. It is therefore possible to 5011 * schedule between user->kernel->user threads without passing though 5012 * switch_mm(). Membarrier requires a barrier after storing to 5013 * rq->curr, before returning to userspace, so provide them here: 5014 * 5015 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5016 * provided by mmdrop(), 5017 * - a sync_core for SYNC_CORE. 5018 */ 5019 if (mm) { 5020 membarrier_mm_sync_core_before_usermode(mm); 5021 mmdrop_sched(mm); 5022 } 5023 if (unlikely(prev_state == TASK_DEAD)) { 5024 if (prev->sched_class->task_dead) 5025 prev->sched_class->task_dead(prev); 5026 5027 /* Task is done with its stack. */ 5028 put_task_stack(prev); 5029 5030 put_task_struct_rcu_user(prev); 5031 } 5032 5033 return rq; 5034 } 5035 5036 /** 5037 * schedule_tail - first thing a freshly forked thread must call. 5038 * @prev: the thread we just switched away from. 5039 */ 5040 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5041 __releases(rq->lock) 5042 { 5043 /* 5044 * New tasks start with FORK_PREEMPT_COUNT, see there and 5045 * finish_task_switch() for details. 5046 * 5047 * finish_task_switch() will drop rq->lock() and lower preempt_count 5048 * and the preempt_enable() will end up enabling preemption (on 5049 * PREEMPT_COUNT kernels). 5050 */ 5051 5052 finish_task_switch(prev); 5053 preempt_enable(); 5054 5055 if (current->set_child_tid) 5056 put_user(task_pid_vnr(current), current->set_child_tid); 5057 5058 calculate_sigpending(); 5059 } 5060 5061 /* 5062 * context_switch - switch to the new MM and the new thread's register state. 5063 */ 5064 static __always_inline struct rq * 5065 context_switch(struct rq *rq, struct task_struct *prev, 5066 struct task_struct *next, struct rq_flags *rf) 5067 { 5068 prepare_task_switch(rq, prev, next); 5069 5070 /* 5071 * For paravirt, this is coupled with an exit in switch_to to 5072 * combine the page table reload and the switch backend into 5073 * one hypercall. 5074 */ 5075 arch_start_context_switch(prev); 5076 5077 /* 5078 * kernel -> kernel lazy + transfer active 5079 * user -> kernel lazy + mmgrab() active 5080 * 5081 * kernel -> user switch + mmdrop() active 5082 * user -> user switch 5083 */ 5084 if (!next->mm) { // to kernel 5085 enter_lazy_tlb(prev->active_mm, next); 5086 5087 next->active_mm = prev->active_mm; 5088 if (prev->mm) // from user 5089 mmgrab(prev->active_mm); 5090 else 5091 prev->active_mm = NULL; 5092 } else { // to user 5093 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5094 /* 5095 * sys_membarrier() requires an smp_mb() between setting 5096 * rq->curr / membarrier_switch_mm() and returning to userspace. 5097 * 5098 * The below provides this either through switch_mm(), or in 5099 * case 'prev->active_mm == next->mm' through 5100 * finish_task_switch()'s mmdrop(). 5101 */ 5102 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5103 5104 if (!prev->mm) { // from kernel 5105 /* will mmdrop() in finish_task_switch(). */ 5106 rq->prev_mm = prev->active_mm; 5107 prev->active_mm = NULL; 5108 } 5109 } 5110 5111 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5112 5113 prepare_lock_switch(rq, next, rf); 5114 5115 /* Here we just switch the register state and the stack. */ 5116 switch_to(prev, next, prev); 5117 barrier(); 5118 5119 return finish_task_switch(prev); 5120 } 5121 5122 /* 5123 * nr_running and nr_context_switches: 5124 * 5125 * externally visible scheduler statistics: current number of runnable 5126 * threads, total number of context switches performed since bootup. 5127 */ 5128 unsigned int nr_running(void) 5129 { 5130 unsigned int i, sum = 0; 5131 5132 for_each_online_cpu(i) 5133 sum += cpu_rq(i)->nr_running; 5134 5135 return sum; 5136 } 5137 5138 /* 5139 * Check if only the current task is running on the CPU. 5140 * 5141 * Caution: this function does not check that the caller has disabled 5142 * preemption, thus the result might have a time-of-check-to-time-of-use 5143 * race. The caller is responsible to use it correctly, for example: 5144 * 5145 * - from a non-preemptible section (of course) 5146 * 5147 * - from a thread that is bound to a single CPU 5148 * 5149 * - in a loop with very short iterations (e.g. a polling loop) 5150 */ 5151 bool single_task_running(void) 5152 { 5153 return raw_rq()->nr_running == 1; 5154 } 5155 EXPORT_SYMBOL(single_task_running); 5156 5157 unsigned long long nr_context_switches(void) 5158 { 5159 int i; 5160 unsigned long long sum = 0; 5161 5162 for_each_possible_cpu(i) 5163 sum += cpu_rq(i)->nr_switches; 5164 5165 return sum; 5166 } 5167 5168 /* 5169 * Consumers of these two interfaces, like for example the cpuidle menu 5170 * governor, are using nonsensical data. Preferring shallow idle state selection 5171 * for a CPU that has IO-wait which might not even end up running the task when 5172 * it does become runnable. 5173 */ 5174 5175 unsigned int nr_iowait_cpu(int cpu) 5176 { 5177 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5178 } 5179 5180 /* 5181 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5182 * 5183 * The idea behind IO-wait account is to account the idle time that we could 5184 * have spend running if it were not for IO. That is, if we were to improve the 5185 * storage performance, we'd have a proportional reduction in IO-wait time. 5186 * 5187 * This all works nicely on UP, where, when a task blocks on IO, we account 5188 * idle time as IO-wait, because if the storage were faster, it could've been 5189 * running and we'd not be idle. 5190 * 5191 * This has been extended to SMP, by doing the same for each CPU. This however 5192 * is broken. 5193 * 5194 * Imagine for instance the case where two tasks block on one CPU, only the one 5195 * CPU will have IO-wait accounted, while the other has regular idle. Even 5196 * though, if the storage were faster, both could've ran at the same time, 5197 * utilising both CPUs. 5198 * 5199 * This means, that when looking globally, the current IO-wait accounting on 5200 * SMP is a lower bound, by reason of under accounting. 5201 * 5202 * Worse, since the numbers are provided per CPU, they are sometimes 5203 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5204 * associated with any one particular CPU, it can wake to another CPU than it 5205 * blocked on. This means the per CPU IO-wait number is meaningless. 5206 * 5207 * Task CPU affinities can make all that even more 'interesting'. 5208 */ 5209 5210 unsigned int nr_iowait(void) 5211 { 5212 unsigned int i, sum = 0; 5213 5214 for_each_possible_cpu(i) 5215 sum += nr_iowait_cpu(i); 5216 5217 return sum; 5218 } 5219 5220 #ifdef CONFIG_SMP 5221 5222 /* 5223 * sched_exec - execve() is a valuable balancing opportunity, because at 5224 * this point the task has the smallest effective memory and cache footprint. 5225 */ 5226 void sched_exec(void) 5227 { 5228 struct task_struct *p = current; 5229 unsigned long flags; 5230 int dest_cpu; 5231 5232 raw_spin_lock_irqsave(&p->pi_lock, flags); 5233 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5234 if (dest_cpu == smp_processor_id()) 5235 goto unlock; 5236 5237 if (likely(cpu_active(dest_cpu))) { 5238 struct migration_arg arg = { p, dest_cpu }; 5239 5240 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5241 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5242 return; 5243 } 5244 unlock: 5245 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5246 } 5247 5248 #endif 5249 5250 DEFINE_PER_CPU(struct kernel_stat, kstat); 5251 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5252 5253 EXPORT_PER_CPU_SYMBOL(kstat); 5254 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5255 5256 /* 5257 * The function fair_sched_class.update_curr accesses the struct curr 5258 * and its field curr->exec_start; when called from task_sched_runtime(), 5259 * we observe a high rate of cache misses in practice. 5260 * Prefetching this data results in improved performance. 5261 */ 5262 static inline void prefetch_curr_exec_start(struct task_struct *p) 5263 { 5264 #ifdef CONFIG_FAIR_GROUP_SCHED 5265 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5266 #else 5267 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5268 #endif 5269 prefetch(curr); 5270 prefetch(&curr->exec_start); 5271 } 5272 5273 /* 5274 * Return accounted runtime for the task. 5275 * In case the task is currently running, return the runtime plus current's 5276 * pending runtime that have not been accounted yet. 5277 */ 5278 unsigned long long task_sched_runtime(struct task_struct *p) 5279 { 5280 struct rq_flags rf; 5281 struct rq *rq; 5282 u64 ns; 5283 5284 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5285 /* 5286 * 64-bit doesn't need locks to atomically read a 64-bit value. 5287 * So we have a optimization chance when the task's delta_exec is 0. 5288 * Reading ->on_cpu is racy, but this is ok. 5289 * 5290 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5291 * If we race with it entering CPU, unaccounted time is 0. This is 5292 * indistinguishable from the read occurring a few cycles earlier. 5293 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5294 * been accounted, so we're correct here as well. 5295 */ 5296 if (!p->on_cpu || !task_on_rq_queued(p)) 5297 return p->se.sum_exec_runtime; 5298 #endif 5299 5300 rq = task_rq_lock(p, &rf); 5301 /* 5302 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5303 * project cycles that may never be accounted to this 5304 * thread, breaking clock_gettime(). 5305 */ 5306 if (task_current(rq, p) && task_on_rq_queued(p)) { 5307 prefetch_curr_exec_start(p); 5308 update_rq_clock(rq); 5309 p->sched_class->update_curr(rq); 5310 } 5311 ns = p->se.sum_exec_runtime; 5312 task_rq_unlock(rq, p, &rf); 5313 5314 return ns; 5315 } 5316 5317 #ifdef CONFIG_SCHED_DEBUG 5318 static u64 cpu_resched_latency(struct rq *rq) 5319 { 5320 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5321 u64 resched_latency, now = rq_clock(rq); 5322 static bool warned_once; 5323 5324 if (sysctl_resched_latency_warn_once && warned_once) 5325 return 0; 5326 5327 if (!need_resched() || !latency_warn_ms) 5328 return 0; 5329 5330 if (system_state == SYSTEM_BOOTING) 5331 return 0; 5332 5333 if (!rq->last_seen_need_resched_ns) { 5334 rq->last_seen_need_resched_ns = now; 5335 rq->ticks_without_resched = 0; 5336 return 0; 5337 } 5338 5339 rq->ticks_without_resched++; 5340 resched_latency = now - rq->last_seen_need_resched_ns; 5341 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5342 return 0; 5343 5344 warned_once = true; 5345 5346 return resched_latency; 5347 } 5348 5349 static int __init setup_resched_latency_warn_ms(char *str) 5350 { 5351 long val; 5352 5353 if ((kstrtol(str, 0, &val))) { 5354 pr_warn("Unable to set resched_latency_warn_ms\n"); 5355 return 1; 5356 } 5357 5358 sysctl_resched_latency_warn_ms = val; 5359 return 1; 5360 } 5361 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5362 #else 5363 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5364 #endif /* CONFIG_SCHED_DEBUG */ 5365 5366 /* 5367 * This function gets called by the timer code, with HZ frequency. 5368 * We call it with interrupts disabled. 5369 */ 5370 void scheduler_tick(void) 5371 { 5372 int cpu = smp_processor_id(); 5373 struct rq *rq = cpu_rq(cpu); 5374 struct task_struct *curr = rq->curr; 5375 struct rq_flags rf; 5376 unsigned long thermal_pressure; 5377 u64 resched_latency; 5378 5379 arch_scale_freq_tick(); 5380 sched_clock_tick(); 5381 5382 rq_lock(rq, &rf); 5383 5384 update_rq_clock(rq); 5385 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5386 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5387 curr->sched_class->task_tick(rq, curr, 0); 5388 if (sched_feat(LATENCY_WARN)) 5389 resched_latency = cpu_resched_latency(rq); 5390 calc_global_load_tick(rq); 5391 sched_core_tick(rq); 5392 5393 rq_unlock(rq, &rf); 5394 5395 if (sched_feat(LATENCY_WARN) && resched_latency) 5396 resched_latency_warn(cpu, resched_latency); 5397 5398 perf_event_task_tick(); 5399 5400 #ifdef CONFIG_SMP 5401 rq->idle_balance = idle_cpu(cpu); 5402 trigger_load_balance(rq); 5403 #endif 5404 } 5405 5406 #ifdef CONFIG_NO_HZ_FULL 5407 5408 struct tick_work { 5409 int cpu; 5410 atomic_t state; 5411 struct delayed_work work; 5412 }; 5413 /* Values for ->state, see diagram below. */ 5414 #define TICK_SCHED_REMOTE_OFFLINE 0 5415 #define TICK_SCHED_REMOTE_OFFLINING 1 5416 #define TICK_SCHED_REMOTE_RUNNING 2 5417 5418 /* 5419 * State diagram for ->state: 5420 * 5421 * 5422 * TICK_SCHED_REMOTE_OFFLINE 5423 * | ^ 5424 * | | 5425 * | | sched_tick_remote() 5426 * | | 5427 * | | 5428 * +--TICK_SCHED_REMOTE_OFFLINING 5429 * | ^ 5430 * | | 5431 * sched_tick_start() | | sched_tick_stop() 5432 * | | 5433 * V | 5434 * TICK_SCHED_REMOTE_RUNNING 5435 * 5436 * 5437 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5438 * and sched_tick_start() are happy to leave the state in RUNNING. 5439 */ 5440 5441 static struct tick_work __percpu *tick_work_cpu; 5442 5443 static void sched_tick_remote(struct work_struct *work) 5444 { 5445 struct delayed_work *dwork = to_delayed_work(work); 5446 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5447 int cpu = twork->cpu; 5448 struct rq *rq = cpu_rq(cpu); 5449 struct task_struct *curr; 5450 struct rq_flags rf; 5451 u64 delta; 5452 int os; 5453 5454 /* 5455 * Handle the tick only if it appears the remote CPU is running in full 5456 * dynticks mode. The check is racy by nature, but missing a tick or 5457 * having one too much is no big deal because the scheduler tick updates 5458 * statistics and checks timeslices in a time-independent way, regardless 5459 * of when exactly it is running. 5460 */ 5461 if (!tick_nohz_tick_stopped_cpu(cpu)) 5462 goto out_requeue; 5463 5464 rq_lock_irq(rq, &rf); 5465 curr = rq->curr; 5466 if (cpu_is_offline(cpu)) 5467 goto out_unlock; 5468 5469 update_rq_clock(rq); 5470 5471 if (!is_idle_task(curr)) { 5472 /* 5473 * Make sure the next tick runs within a reasonable 5474 * amount of time. 5475 */ 5476 delta = rq_clock_task(rq) - curr->se.exec_start; 5477 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5478 } 5479 curr->sched_class->task_tick(rq, curr, 0); 5480 5481 calc_load_nohz_remote(rq); 5482 out_unlock: 5483 rq_unlock_irq(rq, &rf); 5484 out_requeue: 5485 5486 /* 5487 * Run the remote tick once per second (1Hz). This arbitrary 5488 * frequency is large enough to avoid overload but short enough 5489 * to keep scheduler internal stats reasonably up to date. But 5490 * first update state to reflect hotplug activity if required. 5491 */ 5492 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5493 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5494 if (os == TICK_SCHED_REMOTE_RUNNING) 5495 queue_delayed_work(system_unbound_wq, dwork, HZ); 5496 } 5497 5498 static void sched_tick_start(int cpu) 5499 { 5500 int os; 5501 struct tick_work *twork; 5502 5503 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5504 return; 5505 5506 WARN_ON_ONCE(!tick_work_cpu); 5507 5508 twork = per_cpu_ptr(tick_work_cpu, cpu); 5509 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5510 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5511 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5512 twork->cpu = cpu; 5513 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5514 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5515 } 5516 } 5517 5518 #ifdef CONFIG_HOTPLUG_CPU 5519 static void sched_tick_stop(int cpu) 5520 { 5521 struct tick_work *twork; 5522 int os; 5523 5524 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5525 return; 5526 5527 WARN_ON_ONCE(!tick_work_cpu); 5528 5529 twork = per_cpu_ptr(tick_work_cpu, cpu); 5530 /* There cannot be competing actions, but don't rely on stop-machine. */ 5531 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5532 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5533 /* Don't cancel, as this would mess up the state machine. */ 5534 } 5535 #endif /* CONFIG_HOTPLUG_CPU */ 5536 5537 int __init sched_tick_offload_init(void) 5538 { 5539 tick_work_cpu = alloc_percpu(struct tick_work); 5540 BUG_ON(!tick_work_cpu); 5541 return 0; 5542 } 5543 5544 #else /* !CONFIG_NO_HZ_FULL */ 5545 static inline void sched_tick_start(int cpu) { } 5546 static inline void sched_tick_stop(int cpu) { } 5547 #endif 5548 5549 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5550 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5551 /* 5552 * If the value passed in is equal to the current preempt count 5553 * then we just disabled preemption. Start timing the latency. 5554 */ 5555 static inline void preempt_latency_start(int val) 5556 { 5557 if (preempt_count() == val) { 5558 unsigned long ip = get_lock_parent_ip(); 5559 #ifdef CONFIG_DEBUG_PREEMPT 5560 current->preempt_disable_ip = ip; 5561 #endif 5562 trace_preempt_off(CALLER_ADDR0, ip); 5563 } 5564 } 5565 5566 void preempt_count_add(int val) 5567 { 5568 #ifdef CONFIG_DEBUG_PREEMPT 5569 /* 5570 * Underflow? 5571 */ 5572 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5573 return; 5574 #endif 5575 __preempt_count_add(val); 5576 #ifdef CONFIG_DEBUG_PREEMPT 5577 /* 5578 * Spinlock count overflowing soon? 5579 */ 5580 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5581 PREEMPT_MASK - 10); 5582 #endif 5583 preempt_latency_start(val); 5584 } 5585 EXPORT_SYMBOL(preempt_count_add); 5586 NOKPROBE_SYMBOL(preempt_count_add); 5587 5588 /* 5589 * If the value passed in equals to the current preempt count 5590 * then we just enabled preemption. Stop timing the latency. 5591 */ 5592 static inline void preempt_latency_stop(int val) 5593 { 5594 if (preempt_count() == val) 5595 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5596 } 5597 5598 void preempt_count_sub(int val) 5599 { 5600 #ifdef CONFIG_DEBUG_PREEMPT 5601 /* 5602 * Underflow? 5603 */ 5604 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5605 return; 5606 /* 5607 * Is the spinlock portion underflowing? 5608 */ 5609 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5610 !(preempt_count() & PREEMPT_MASK))) 5611 return; 5612 #endif 5613 5614 preempt_latency_stop(val); 5615 __preempt_count_sub(val); 5616 } 5617 EXPORT_SYMBOL(preempt_count_sub); 5618 NOKPROBE_SYMBOL(preempt_count_sub); 5619 5620 #else 5621 static inline void preempt_latency_start(int val) { } 5622 static inline void preempt_latency_stop(int val) { } 5623 #endif 5624 5625 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5626 { 5627 #ifdef CONFIG_DEBUG_PREEMPT 5628 return p->preempt_disable_ip; 5629 #else 5630 return 0; 5631 #endif 5632 } 5633 5634 /* 5635 * Print scheduling while atomic bug: 5636 */ 5637 static noinline void __schedule_bug(struct task_struct *prev) 5638 { 5639 /* Save this before calling printk(), since that will clobber it */ 5640 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5641 5642 if (oops_in_progress) 5643 return; 5644 5645 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5646 prev->comm, prev->pid, preempt_count()); 5647 5648 debug_show_held_locks(prev); 5649 print_modules(); 5650 if (irqs_disabled()) 5651 print_irqtrace_events(prev); 5652 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5653 && in_atomic_preempt_off()) { 5654 pr_err("Preemption disabled at:"); 5655 print_ip_sym(KERN_ERR, preempt_disable_ip); 5656 } 5657 if (panic_on_warn) 5658 panic("scheduling while atomic\n"); 5659 5660 dump_stack(); 5661 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5662 } 5663 5664 /* 5665 * Various schedule()-time debugging checks and statistics: 5666 */ 5667 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5668 { 5669 #ifdef CONFIG_SCHED_STACK_END_CHECK 5670 if (task_stack_end_corrupted(prev)) 5671 panic("corrupted stack end detected inside scheduler\n"); 5672 5673 if (task_scs_end_corrupted(prev)) 5674 panic("corrupted shadow stack detected inside scheduler\n"); 5675 #endif 5676 5677 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5678 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5679 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5680 prev->comm, prev->pid, prev->non_block_count); 5681 dump_stack(); 5682 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5683 } 5684 #endif 5685 5686 if (unlikely(in_atomic_preempt_off())) { 5687 __schedule_bug(prev); 5688 preempt_count_set(PREEMPT_DISABLED); 5689 } 5690 rcu_sleep_check(); 5691 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5692 5693 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5694 5695 schedstat_inc(this_rq()->sched_count); 5696 } 5697 5698 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5699 struct rq_flags *rf) 5700 { 5701 #ifdef CONFIG_SMP 5702 const struct sched_class *class; 5703 /* 5704 * We must do the balancing pass before put_prev_task(), such 5705 * that when we release the rq->lock the task is in the same 5706 * state as before we took rq->lock. 5707 * 5708 * We can terminate the balance pass as soon as we know there is 5709 * a runnable task of @class priority or higher. 5710 */ 5711 for_class_range(class, prev->sched_class, &idle_sched_class) { 5712 if (class->balance(rq, prev, rf)) 5713 break; 5714 } 5715 #endif 5716 5717 put_prev_task(rq, prev); 5718 } 5719 5720 /* 5721 * Pick up the highest-prio task: 5722 */ 5723 static inline struct task_struct * 5724 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5725 { 5726 const struct sched_class *class; 5727 struct task_struct *p; 5728 5729 /* 5730 * Optimization: we know that if all tasks are in the fair class we can 5731 * call that function directly, but only if the @prev task wasn't of a 5732 * higher scheduling class, because otherwise those lose the 5733 * opportunity to pull in more work from other CPUs. 5734 */ 5735 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5736 rq->nr_running == rq->cfs.h_nr_running)) { 5737 5738 p = pick_next_task_fair(rq, prev, rf); 5739 if (unlikely(p == RETRY_TASK)) 5740 goto restart; 5741 5742 /* Assume the next prioritized class is idle_sched_class */ 5743 if (!p) { 5744 put_prev_task(rq, prev); 5745 p = pick_next_task_idle(rq); 5746 } 5747 5748 return p; 5749 } 5750 5751 restart: 5752 put_prev_task_balance(rq, prev, rf); 5753 5754 for_each_class(class) { 5755 p = class->pick_next_task(rq); 5756 if (p) 5757 return p; 5758 } 5759 5760 BUG(); /* The idle class should always have a runnable task. */ 5761 } 5762 5763 #ifdef CONFIG_SCHED_CORE 5764 static inline bool is_task_rq_idle(struct task_struct *t) 5765 { 5766 return (task_rq(t)->idle == t); 5767 } 5768 5769 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5770 { 5771 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5772 } 5773 5774 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5775 { 5776 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5777 return true; 5778 5779 return a->core_cookie == b->core_cookie; 5780 } 5781 5782 static inline struct task_struct *pick_task(struct rq *rq) 5783 { 5784 const struct sched_class *class; 5785 struct task_struct *p; 5786 5787 for_each_class(class) { 5788 p = class->pick_task(rq); 5789 if (p) 5790 return p; 5791 } 5792 5793 BUG(); /* The idle class should always have a runnable task. */ 5794 } 5795 5796 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5797 5798 static void queue_core_balance(struct rq *rq); 5799 5800 static struct task_struct * 5801 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5802 { 5803 struct task_struct *next, *p, *max = NULL; 5804 const struct cpumask *smt_mask; 5805 bool fi_before = false; 5806 bool core_clock_updated = (rq == rq->core); 5807 unsigned long cookie; 5808 int i, cpu, occ = 0; 5809 struct rq *rq_i; 5810 bool need_sync; 5811 5812 if (!sched_core_enabled(rq)) 5813 return __pick_next_task(rq, prev, rf); 5814 5815 cpu = cpu_of(rq); 5816 5817 /* Stopper task is switching into idle, no need core-wide selection. */ 5818 if (cpu_is_offline(cpu)) { 5819 /* 5820 * Reset core_pick so that we don't enter the fastpath when 5821 * coming online. core_pick would already be migrated to 5822 * another cpu during offline. 5823 */ 5824 rq->core_pick = NULL; 5825 return __pick_next_task(rq, prev, rf); 5826 } 5827 5828 /* 5829 * If there were no {en,de}queues since we picked (IOW, the task 5830 * pointers are all still valid), and we haven't scheduled the last 5831 * pick yet, do so now. 5832 * 5833 * rq->core_pick can be NULL if no selection was made for a CPU because 5834 * it was either offline or went offline during a sibling's core-wide 5835 * selection. In this case, do a core-wide selection. 5836 */ 5837 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5838 rq->core->core_pick_seq != rq->core_sched_seq && 5839 rq->core_pick) { 5840 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5841 5842 next = rq->core_pick; 5843 if (next != prev) { 5844 put_prev_task(rq, prev); 5845 set_next_task(rq, next); 5846 } 5847 5848 rq->core_pick = NULL; 5849 goto out; 5850 } 5851 5852 put_prev_task_balance(rq, prev, rf); 5853 5854 smt_mask = cpu_smt_mask(cpu); 5855 need_sync = !!rq->core->core_cookie; 5856 5857 /* reset state */ 5858 rq->core->core_cookie = 0UL; 5859 if (rq->core->core_forceidle_count) { 5860 if (!core_clock_updated) { 5861 update_rq_clock(rq->core); 5862 core_clock_updated = true; 5863 } 5864 sched_core_account_forceidle(rq); 5865 /* reset after accounting force idle */ 5866 rq->core->core_forceidle_start = 0; 5867 rq->core->core_forceidle_count = 0; 5868 rq->core->core_forceidle_occupation = 0; 5869 need_sync = true; 5870 fi_before = true; 5871 } 5872 5873 /* 5874 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 5875 * 5876 * @task_seq guards the task state ({en,de}queues) 5877 * @pick_seq is the @task_seq we did a selection on 5878 * @sched_seq is the @pick_seq we scheduled 5879 * 5880 * However, preemptions can cause multiple picks on the same task set. 5881 * 'Fix' this by also increasing @task_seq for every pick. 5882 */ 5883 rq->core->core_task_seq++; 5884 5885 /* 5886 * Optimize for common case where this CPU has no cookies 5887 * and there are no cookied tasks running on siblings. 5888 */ 5889 if (!need_sync) { 5890 next = pick_task(rq); 5891 if (!next->core_cookie) { 5892 rq->core_pick = NULL; 5893 /* 5894 * For robustness, update the min_vruntime_fi for 5895 * unconstrained picks as well. 5896 */ 5897 WARN_ON_ONCE(fi_before); 5898 task_vruntime_update(rq, next, false); 5899 goto out_set_next; 5900 } 5901 } 5902 5903 /* 5904 * For each thread: do the regular task pick and find the max prio task 5905 * amongst them. 5906 * 5907 * Tie-break prio towards the current CPU 5908 */ 5909 for_each_cpu_wrap(i, smt_mask, cpu) { 5910 rq_i = cpu_rq(i); 5911 5912 /* 5913 * Current cpu always has its clock updated on entrance to 5914 * pick_next_task(). If the current cpu is not the core, 5915 * the core may also have been updated above. 5916 */ 5917 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 5918 update_rq_clock(rq_i); 5919 5920 p = rq_i->core_pick = pick_task(rq_i); 5921 if (!max || prio_less(max, p, fi_before)) 5922 max = p; 5923 } 5924 5925 cookie = rq->core->core_cookie = max->core_cookie; 5926 5927 /* 5928 * For each thread: try and find a runnable task that matches @max or 5929 * force idle. 5930 */ 5931 for_each_cpu(i, smt_mask) { 5932 rq_i = cpu_rq(i); 5933 p = rq_i->core_pick; 5934 5935 if (!cookie_equals(p, cookie)) { 5936 p = NULL; 5937 if (cookie) 5938 p = sched_core_find(rq_i, cookie); 5939 if (!p) 5940 p = idle_sched_class.pick_task(rq_i); 5941 } 5942 5943 rq_i->core_pick = p; 5944 5945 if (p == rq_i->idle) { 5946 if (rq_i->nr_running) { 5947 rq->core->core_forceidle_count++; 5948 if (!fi_before) 5949 rq->core->core_forceidle_seq++; 5950 } 5951 } else { 5952 occ++; 5953 } 5954 } 5955 5956 if (schedstat_enabled() && rq->core->core_forceidle_count) { 5957 rq->core->core_forceidle_start = rq_clock(rq->core); 5958 rq->core->core_forceidle_occupation = occ; 5959 } 5960 5961 rq->core->core_pick_seq = rq->core->core_task_seq; 5962 next = rq->core_pick; 5963 rq->core_sched_seq = rq->core->core_pick_seq; 5964 5965 /* Something should have been selected for current CPU */ 5966 WARN_ON_ONCE(!next); 5967 5968 /* 5969 * Reschedule siblings 5970 * 5971 * NOTE: L1TF -- at this point we're no longer running the old task and 5972 * sending an IPI (below) ensures the sibling will no longer be running 5973 * their task. This ensures there is no inter-sibling overlap between 5974 * non-matching user state. 5975 */ 5976 for_each_cpu(i, smt_mask) { 5977 rq_i = cpu_rq(i); 5978 5979 /* 5980 * An online sibling might have gone offline before a task 5981 * could be picked for it, or it might be offline but later 5982 * happen to come online, but its too late and nothing was 5983 * picked for it. That's Ok - it will pick tasks for itself, 5984 * so ignore it. 5985 */ 5986 if (!rq_i->core_pick) 5987 continue; 5988 5989 /* 5990 * Update for new !FI->FI transitions, or if continuing to be in !FI: 5991 * fi_before fi update? 5992 * 0 0 1 5993 * 0 1 1 5994 * 1 0 1 5995 * 1 1 0 5996 */ 5997 if (!(fi_before && rq->core->core_forceidle_count)) 5998 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 5999 6000 rq_i->core_pick->core_occupation = occ; 6001 6002 if (i == cpu) { 6003 rq_i->core_pick = NULL; 6004 continue; 6005 } 6006 6007 /* Did we break L1TF mitigation requirements? */ 6008 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6009 6010 if (rq_i->curr == rq_i->core_pick) { 6011 rq_i->core_pick = NULL; 6012 continue; 6013 } 6014 6015 resched_curr(rq_i); 6016 } 6017 6018 out_set_next: 6019 set_next_task(rq, next); 6020 out: 6021 if (rq->core->core_forceidle_count && next == rq->idle) 6022 queue_core_balance(rq); 6023 6024 return next; 6025 } 6026 6027 static bool try_steal_cookie(int this, int that) 6028 { 6029 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6030 struct task_struct *p; 6031 unsigned long cookie; 6032 bool success = false; 6033 6034 local_irq_disable(); 6035 double_rq_lock(dst, src); 6036 6037 cookie = dst->core->core_cookie; 6038 if (!cookie) 6039 goto unlock; 6040 6041 if (dst->curr != dst->idle) 6042 goto unlock; 6043 6044 p = sched_core_find(src, cookie); 6045 if (p == src->idle) 6046 goto unlock; 6047 6048 do { 6049 if (p == src->core_pick || p == src->curr) 6050 goto next; 6051 6052 if (!is_cpu_allowed(p, this)) 6053 goto next; 6054 6055 if (p->core_occupation > dst->idle->core_occupation) 6056 goto next; 6057 6058 deactivate_task(src, p, 0); 6059 set_task_cpu(p, this); 6060 activate_task(dst, p, 0); 6061 6062 resched_curr(dst); 6063 6064 success = true; 6065 break; 6066 6067 next: 6068 p = sched_core_next(p, cookie); 6069 } while (p); 6070 6071 unlock: 6072 double_rq_unlock(dst, src); 6073 local_irq_enable(); 6074 6075 return success; 6076 } 6077 6078 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6079 { 6080 int i; 6081 6082 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6083 if (i == cpu) 6084 continue; 6085 6086 if (need_resched()) 6087 break; 6088 6089 if (try_steal_cookie(cpu, i)) 6090 return true; 6091 } 6092 6093 return false; 6094 } 6095 6096 static void sched_core_balance(struct rq *rq) 6097 { 6098 struct sched_domain *sd; 6099 int cpu = cpu_of(rq); 6100 6101 preempt_disable(); 6102 rcu_read_lock(); 6103 raw_spin_rq_unlock_irq(rq); 6104 for_each_domain(cpu, sd) { 6105 if (need_resched()) 6106 break; 6107 6108 if (steal_cookie_task(cpu, sd)) 6109 break; 6110 } 6111 raw_spin_rq_lock_irq(rq); 6112 rcu_read_unlock(); 6113 preempt_enable(); 6114 } 6115 6116 static DEFINE_PER_CPU(struct callback_head, core_balance_head); 6117 6118 static void queue_core_balance(struct rq *rq) 6119 { 6120 if (!sched_core_enabled(rq)) 6121 return; 6122 6123 if (!rq->core->core_cookie) 6124 return; 6125 6126 if (!rq->nr_running) /* not forced idle */ 6127 return; 6128 6129 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6130 } 6131 6132 static void sched_core_cpu_starting(unsigned int cpu) 6133 { 6134 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6135 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6136 unsigned long flags; 6137 int t; 6138 6139 sched_core_lock(cpu, &flags); 6140 6141 WARN_ON_ONCE(rq->core != rq); 6142 6143 /* if we're the first, we'll be our own leader */ 6144 if (cpumask_weight(smt_mask) == 1) 6145 goto unlock; 6146 6147 /* find the leader */ 6148 for_each_cpu(t, smt_mask) { 6149 if (t == cpu) 6150 continue; 6151 rq = cpu_rq(t); 6152 if (rq->core == rq) { 6153 core_rq = rq; 6154 break; 6155 } 6156 } 6157 6158 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6159 goto unlock; 6160 6161 /* install and validate core_rq */ 6162 for_each_cpu(t, smt_mask) { 6163 rq = cpu_rq(t); 6164 6165 if (t == cpu) 6166 rq->core = core_rq; 6167 6168 WARN_ON_ONCE(rq->core != core_rq); 6169 } 6170 6171 unlock: 6172 sched_core_unlock(cpu, &flags); 6173 } 6174 6175 static void sched_core_cpu_deactivate(unsigned int cpu) 6176 { 6177 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6178 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6179 unsigned long flags; 6180 int t; 6181 6182 sched_core_lock(cpu, &flags); 6183 6184 /* if we're the last man standing, nothing to do */ 6185 if (cpumask_weight(smt_mask) == 1) { 6186 WARN_ON_ONCE(rq->core != rq); 6187 goto unlock; 6188 } 6189 6190 /* if we're not the leader, nothing to do */ 6191 if (rq->core != rq) 6192 goto unlock; 6193 6194 /* find a new leader */ 6195 for_each_cpu(t, smt_mask) { 6196 if (t == cpu) 6197 continue; 6198 core_rq = cpu_rq(t); 6199 break; 6200 } 6201 6202 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6203 goto unlock; 6204 6205 /* copy the shared state to the new leader */ 6206 core_rq->core_task_seq = rq->core_task_seq; 6207 core_rq->core_pick_seq = rq->core_pick_seq; 6208 core_rq->core_cookie = rq->core_cookie; 6209 core_rq->core_forceidle_count = rq->core_forceidle_count; 6210 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6211 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6212 6213 /* 6214 * Accounting edge for forced idle is handled in pick_next_task(). 6215 * Don't need another one here, since the hotplug thread shouldn't 6216 * have a cookie. 6217 */ 6218 core_rq->core_forceidle_start = 0; 6219 6220 /* install new leader */ 6221 for_each_cpu(t, smt_mask) { 6222 rq = cpu_rq(t); 6223 rq->core = core_rq; 6224 } 6225 6226 unlock: 6227 sched_core_unlock(cpu, &flags); 6228 } 6229 6230 static inline void sched_core_cpu_dying(unsigned int cpu) 6231 { 6232 struct rq *rq = cpu_rq(cpu); 6233 6234 if (rq->core != rq) 6235 rq->core = rq; 6236 } 6237 6238 #else /* !CONFIG_SCHED_CORE */ 6239 6240 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6241 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6242 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6243 6244 static struct task_struct * 6245 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6246 { 6247 return __pick_next_task(rq, prev, rf); 6248 } 6249 6250 #endif /* CONFIG_SCHED_CORE */ 6251 6252 /* 6253 * Constants for the sched_mode argument of __schedule(). 6254 * 6255 * The mode argument allows RT enabled kernels to differentiate a 6256 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6257 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6258 * optimize the AND operation out and just check for zero. 6259 */ 6260 #define SM_NONE 0x0 6261 #define SM_PREEMPT 0x1 6262 #define SM_RTLOCK_WAIT 0x2 6263 6264 #ifndef CONFIG_PREEMPT_RT 6265 # define SM_MASK_PREEMPT (~0U) 6266 #else 6267 # define SM_MASK_PREEMPT SM_PREEMPT 6268 #endif 6269 6270 /* 6271 * __schedule() is the main scheduler function. 6272 * 6273 * The main means of driving the scheduler and thus entering this function are: 6274 * 6275 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6276 * 6277 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6278 * paths. For example, see arch/x86/entry_64.S. 6279 * 6280 * To drive preemption between tasks, the scheduler sets the flag in timer 6281 * interrupt handler scheduler_tick(). 6282 * 6283 * 3. Wakeups don't really cause entry into schedule(). They add a 6284 * task to the run-queue and that's it. 6285 * 6286 * Now, if the new task added to the run-queue preempts the current 6287 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6288 * called on the nearest possible occasion: 6289 * 6290 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6291 * 6292 * - in syscall or exception context, at the next outmost 6293 * preempt_enable(). (this might be as soon as the wake_up()'s 6294 * spin_unlock()!) 6295 * 6296 * - in IRQ context, return from interrupt-handler to 6297 * preemptible context 6298 * 6299 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6300 * then at the next: 6301 * 6302 * - cond_resched() call 6303 * - explicit schedule() call 6304 * - return from syscall or exception to user-space 6305 * - return from interrupt-handler to user-space 6306 * 6307 * WARNING: must be called with preemption disabled! 6308 */ 6309 static void __sched notrace __schedule(unsigned int sched_mode) 6310 { 6311 struct task_struct *prev, *next; 6312 unsigned long *switch_count; 6313 unsigned long prev_state; 6314 struct rq_flags rf; 6315 struct rq *rq; 6316 int cpu; 6317 6318 cpu = smp_processor_id(); 6319 rq = cpu_rq(cpu); 6320 prev = rq->curr; 6321 6322 schedule_debug(prev, !!sched_mode); 6323 6324 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6325 hrtick_clear(rq); 6326 6327 local_irq_disable(); 6328 rcu_note_context_switch(!!sched_mode); 6329 6330 /* 6331 * Make sure that signal_pending_state()->signal_pending() below 6332 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6333 * done by the caller to avoid the race with signal_wake_up(): 6334 * 6335 * __set_current_state(@state) signal_wake_up() 6336 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6337 * wake_up_state(p, state) 6338 * LOCK rq->lock LOCK p->pi_state 6339 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6340 * if (signal_pending_state()) if (p->state & @state) 6341 * 6342 * Also, the membarrier system call requires a full memory barrier 6343 * after coming from user-space, before storing to rq->curr. 6344 */ 6345 rq_lock(rq, &rf); 6346 smp_mb__after_spinlock(); 6347 6348 /* Promote REQ to ACT */ 6349 rq->clock_update_flags <<= 1; 6350 update_rq_clock(rq); 6351 6352 switch_count = &prev->nivcsw; 6353 6354 /* 6355 * We must load prev->state once (task_struct::state is volatile), such 6356 * that: 6357 * 6358 * - we form a control dependency vs deactivate_task() below. 6359 * - ptrace_{,un}freeze_traced() can change ->state underneath us. 6360 */ 6361 prev_state = READ_ONCE(prev->__state); 6362 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6363 if (signal_pending_state(prev_state, prev)) { 6364 WRITE_ONCE(prev->__state, TASK_RUNNING); 6365 } else { 6366 prev->sched_contributes_to_load = 6367 (prev_state & TASK_UNINTERRUPTIBLE) && 6368 !(prev_state & TASK_NOLOAD) && 6369 !(prev->flags & PF_FROZEN); 6370 6371 if (prev->sched_contributes_to_load) 6372 rq->nr_uninterruptible++; 6373 6374 /* 6375 * __schedule() ttwu() 6376 * prev_state = prev->state; if (p->on_rq && ...) 6377 * if (prev_state) goto out; 6378 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6379 * p->state = TASK_WAKING 6380 * 6381 * Where __schedule() and ttwu() have matching control dependencies. 6382 * 6383 * After this, schedule() must not care about p->state any more. 6384 */ 6385 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6386 6387 if (prev->in_iowait) { 6388 atomic_inc(&rq->nr_iowait); 6389 delayacct_blkio_start(); 6390 } 6391 } 6392 switch_count = &prev->nvcsw; 6393 } 6394 6395 next = pick_next_task(rq, prev, &rf); 6396 clear_tsk_need_resched(prev); 6397 clear_preempt_need_resched(); 6398 #ifdef CONFIG_SCHED_DEBUG 6399 rq->last_seen_need_resched_ns = 0; 6400 #endif 6401 6402 if (likely(prev != next)) { 6403 rq->nr_switches++; 6404 /* 6405 * RCU users of rcu_dereference(rq->curr) may not see 6406 * changes to task_struct made by pick_next_task(). 6407 */ 6408 RCU_INIT_POINTER(rq->curr, next); 6409 /* 6410 * The membarrier system call requires each architecture 6411 * to have a full memory barrier after updating 6412 * rq->curr, before returning to user-space. 6413 * 6414 * Here are the schemes providing that barrier on the 6415 * various architectures: 6416 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6417 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6418 * - finish_lock_switch() for weakly-ordered 6419 * architectures where spin_unlock is a full barrier, 6420 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6421 * is a RELEASE barrier), 6422 */ 6423 ++*switch_count; 6424 6425 migrate_disable_switch(rq, prev); 6426 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6427 6428 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6429 6430 /* Also unlocks the rq: */ 6431 rq = context_switch(rq, prev, next, &rf); 6432 } else { 6433 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6434 6435 rq_unpin_lock(rq, &rf); 6436 __balance_callbacks(rq); 6437 raw_spin_rq_unlock_irq(rq); 6438 } 6439 } 6440 6441 void __noreturn do_task_dead(void) 6442 { 6443 /* Causes final put_task_struct in finish_task_switch(): */ 6444 set_special_state(TASK_DEAD); 6445 6446 /* Tell freezer to ignore us: */ 6447 current->flags |= PF_NOFREEZE; 6448 6449 __schedule(SM_NONE); 6450 BUG(); 6451 6452 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6453 for (;;) 6454 cpu_relax(); 6455 } 6456 6457 static inline void sched_submit_work(struct task_struct *tsk) 6458 { 6459 unsigned int task_flags; 6460 6461 if (task_is_running(tsk)) 6462 return; 6463 6464 task_flags = tsk->flags; 6465 /* 6466 * If a worker goes to sleep, notify and ask workqueue whether it 6467 * wants to wake up a task to maintain concurrency. 6468 */ 6469 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6470 if (task_flags & PF_WQ_WORKER) 6471 wq_worker_sleeping(tsk); 6472 else 6473 io_wq_worker_sleeping(tsk); 6474 } 6475 6476 if (tsk_is_pi_blocked(tsk)) 6477 return; 6478 6479 /* 6480 * If we are going to sleep and we have plugged IO queued, 6481 * make sure to submit it to avoid deadlocks. 6482 */ 6483 blk_flush_plug(tsk->plug, true); 6484 } 6485 6486 static void sched_update_worker(struct task_struct *tsk) 6487 { 6488 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6489 if (tsk->flags & PF_WQ_WORKER) 6490 wq_worker_running(tsk); 6491 else 6492 io_wq_worker_running(tsk); 6493 } 6494 } 6495 6496 asmlinkage __visible void __sched schedule(void) 6497 { 6498 struct task_struct *tsk = current; 6499 6500 sched_submit_work(tsk); 6501 do { 6502 preempt_disable(); 6503 __schedule(SM_NONE); 6504 sched_preempt_enable_no_resched(); 6505 } while (need_resched()); 6506 sched_update_worker(tsk); 6507 } 6508 EXPORT_SYMBOL(schedule); 6509 6510 /* 6511 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6512 * state (have scheduled out non-voluntarily) by making sure that all 6513 * tasks have either left the run queue or have gone into user space. 6514 * As idle tasks do not do either, they must not ever be preempted 6515 * (schedule out non-voluntarily). 6516 * 6517 * schedule_idle() is similar to schedule_preempt_disable() except that it 6518 * never enables preemption because it does not call sched_submit_work(). 6519 */ 6520 void __sched schedule_idle(void) 6521 { 6522 /* 6523 * As this skips calling sched_submit_work(), which the idle task does 6524 * regardless because that function is a nop when the task is in a 6525 * TASK_RUNNING state, make sure this isn't used someplace that the 6526 * current task can be in any other state. Note, idle is always in the 6527 * TASK_RUNNING state. 6528 */ 6529 WARN_ON_ONCE(current->__state); 6530 do { 6531 __schedule(SM_NONE); 6532 } while (need_resched()); 6533 } 6534 6535 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK) 6536 asmlinkage __visible void __sched schedule_user(void) 6537 { 6538 /* 6539 * If we come here after a random call to set_need_resched(), 6540 * or we have been woken up remotely but the IPI has not yet arrived, 6541 * we haven't yet exited the RCU idle mode. Do it here manually until 6542 * we find a better solution. 6543 * 6544 * NB: There are buggy callers of this function. Ideally we 6545 * should warn if prev_state != CONTEXT_USER, but that will trigger 6546 * too frequently to make sense yet. 6547 */ 6548 enum ctx_state prev_state = exception_enter(); 6549 schedule(); 6550 exception_exit(prev_state); 6551 } 6552 #endif 6553 6554 /** 6555 * schedule_preempt_disabled - called with preemption disabled 6556 * 6557 * Returns with preemption disabled. Note: preempt_count must be 1 6558 */ 6559 void __sched schedule_preempt_disabled(void) 6560 { 6561 sched_preempt_enable_no_resched(); 6562 schedule(); 6563 preempt_disable(); 6564 } 6565 6566 #ifdef CONFIG_PREEMPT_RT 6567 void __sched notrace schedule_rtlock(void) 6568 { 6569 do { 6570 preempt_disable(); 6571 __schedule(SM_RTLOCK_WAIT); 6572 sched_preempt_enable_no_resched(); 6573 } while (need_resched()); 6574 } 6575 NOKPROBE_SYMBOL(schedule_rtlock); 6576 #endif 6577 6578 static void __sched notrace preempt_schedule_common(void) 6579 { 6580 do { 6581 /* 6582 * Because the function tracer can trace preempt_count_sub() 6583 * and it also uses preempt_enable/disable_notrace(), if 6584 * NEED_RESCHED is set, the preempt_enable_notrace() called 6585 * by the function tracer will call this function again and 6586 * cause infinite recursion. 6587 * 6588 * Preemption must be disabled here before the function 6589 * tracer can trace. Break up preempt_disable() into two 6590 * calls. One to disable preemption without fear of being 6591 * traced. The other to still record the preemption latency, 6592 * which can also be traced by the function tracer. 6593 */ 6594 preempt_disable_notrace(); 6595 preempt_latency_start(1); 6596 __schedule(SM_PREEMPT); 6597 preempt_latency_stop(1); 6598 preempt_enable_no_resched_notrace(); 6599 6600 /* 6601 * Check again in case we missed a preemption opportunity 6602 * between schedule and now. 6603 */ 6604 } while (need_resched()); 6605 } 6606 6607 #ifdef CONFIG_PREEMPTION 6608 /* 6609 * This is the entry point to schedule() from in-kernel preemption 6610 * off of preempt_enable. 6611 */ 6612 asmlinkage __visible void __sched notrace preempt_schedule(void) 6613 { 6614 /* 6615 * If there is a non-zero preempt_count or interrupts are disabled, 6616 * we do not want to preempt the current task. Just return.. 6617 */ 6618 if (likely(!preemptible())) 6619 return; 6620 preempt_schedule_common(); 6621 } 6622 NOKPROBE_SYMBOL(preempt_schedule); 6623 EXPORT_SYMBOL(preempt_schedule); 6624 6625 #ifdef CONFIG_PREEMPT_DYNAMIC 6626 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6627 #ifndef preempt_schedule_dynamic_enabled 6628 #define preempt_schedule_dynamic_enabled preempt_schedule 6629 #define preempt_schedule_dynamic_disabled NULL 6630 #endif 6631 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6632 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6633 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6634 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6635 void __sched notrace dynamic_preempt_schedule(void) 6636 { 6637 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6638 return; 6639 preempt_schedule(); 6640 } 6641 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6642 EXPORT_SYMBOL(dynamic_preempt_schedule); 6643 #endif 6644 #endif 6645 6646 /** 6647 * preempt_schedule_notrace - preempt_schedule called by tracing 6648 * 6649 * The tracing infrastructure uses preempt_enable_notrace to prevent 6650 * recursion and tracing preempt enabling caused by the tracing 6651 * infrastructure itself. But as tracing can happen in areas coming 6652 * from userspace or just about to enter userspace, a preempt enable 6653 * can occur before user_exit() is called. This will cause the scheduler 6654 * to be called when the system is still in usermode. 6655 * 6656 * To prevent this, the preempt_enable_notrace will use this function 6657 * instead of preempt_schedule() to exit user context if needed before 6658 * calling the scheduler. 6659 */ 6660 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6661 { 6662 enum ctx_state prev_ctx; 6663 6664 if (likely(!preemptible())) 6665 return; 6666 6667 do { 6668 /* 6669 * Because the function tracer can trace preempt_count_sub() 6670 * and it also uses preempt_enable/disable_notrace(), if 6671 * NEED_RESCHED is set, the preempt_enable_notrace() called 6672 * by the function tracer will call this function again and 6673 * cause infinite recursion. 6674 * 6675 * Preemption must be disabled here before the function 6676 * tracer can trace. Break up preempt_disable() into two 6677 * calls. One to disable preemption without fear of being 6678 * traced. The other to still record the preemption latency, 6679 * which can also be traced by the function tracer. 6680 */ 6681 preempt_disable_notrace(); 6682 preempt_latency_start(1); 6683 /* 6684 * Needs preempt disabled in case user_exit() is traced 6685 * and the tracer calls preempt_enable_notrace() causing 6686 * an infinite recursion. 6687 */ 6688 prev_ctx = exception_enter(); 6689 __schedule(SM_PREEMPT); 6690 exception_exit(prev_ctx); 6691 6692 preempt_latency_stop(1); 6693 preempt_enable_no_resched_notrace(); 6694 } while (need_resched()); 6695 } 6696 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6697 6698 #ifdef CONFIG_PREEMPT_DYNAMIC 6699 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6700 #ifndef preempt_schedule_notrace_dynamic_enabled 6701 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6702 #define preempt_schedule_notrace_dynamic_disabled NULL 6703 #endif 6704 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6705 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6706 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6707 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6708 void __sched notrace dynamic_preempt_schedule_notrace(void) 6709 { 6710 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6711 return; 6712 preempt_schedule_notrace(); 6713 } 6714 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6715 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6716 #endif 6717 #endif 6718 6719 #endif /* CONFIG_PREEMPTION */ 6720 6721 /* 6722 * This is the entry point to schedule() from kernel preemption 6723 * off of irq context. 6724 * Note, that this is called and return with irqs disabled. This will 6725 * protect us against recursive calling from irq. 6726 */ 6727 asmlinkage __visible void __sched preempt_schedule_irq(void) 6728 { 6729 enum ctx_state prev_state; 6730 6731 /* Catch callers which need to be fixed */ 6732 BUG_ON(preempt_count() || !irqs_disabled()); 6733 6734 prev_state = exception_enter(); 6735 6736 do { 6737 preempt_disable(); 6738 local_irq_enable(); 6739 __schedule(SM_PREEMPT); 6740 local_irq_disable(); 6741 sched_preempt_enable_no_resched(); 6742 } while (need_resched()); 6743 6744 exception_exit(prev_state); 6745 } 6746 6747 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6748 void *key) 6749 { 6750 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6751 return try_to_wake_up(curr->private, mode, wake_flags); 6752 } 6753 EXPORT_SYMBOL(default_wake_function); 6754 6755 static void __setscheduler_prio(struct task_struct *p, int prio) 6756 { 6757 if (dl_prio(prio)) 6758 p->sched_class = &dl_sched_class; 6759 else if (rt_prio(prio)) 6760 p->sched_class = &rt_sched_class; 6761 else 6762 p->sched_class = &fair_sched_class; 6763 6764 p->prio = prio; 6765 } 6766 6767 #ifdef CONFIG_RT_MUTEXES 6768 6769 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6770 { 6771 if (pi_task) 6772 prio = min(prio, pi_task->prio); 6773 6774 return prio; 6775 } 6776 6777 static inline int rt_effective_prio(struct task_struct *p, int prio) 6778 { 6779 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6780 6781 return __rt_effective_prio(pi_task, prio); 6782 } 6783 6784 /* 6785 * rt_mutex_setprio - set the current priority of a task 6786 * @p: task to boost 6787 * @pi_task: donor task 6788 * 6789 * This function changes the 'effective' priority of a task. It does 6790 * not touch ->normal_prio like __setscheduler(). 6791 * 6792 * Used by the rt_mutex code to implement priority inheritance 6793 * logic. Call site only calls if the priority of the task changed. 6794 */ 6795 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6796 { 6797 int prio, oldprio, queued, running, queue_flag = 6798 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6799 const struct sched_class *prev_class; 6800 struct rq_flags rf; 6801 struct rq *rq; 6802 6803 /* XXX used to be waiter->prio, not waiter->task->prio */ 6804 prio = __rt_effective_prio(pi_task, p->normal_prio); 6805 6806 /* 6807 * If nothing changed; bail early. 6808 */ 6809 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6810 return; 6811 6812 rq = __task_rq_lock(p, &rf); 6813 update_rq_clock(rq); 6814 /* 6815 * Set under pi_lock && rq->lock, such that the value can be used under 6816 * either lock. 6817 * 6818 * Note that there is loads of tricky to make this pointer cache work 6819 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6820 * ensure a task is de-boosted (pi_task is set to NULL) before the 6821 * task is allowed to run again (and can exit). This ensures the pointer 6822 * points to a blocked task -- which guarantees the task is present. 6823 */ 6824 p->pi_top_task = pi_task; 6825 6826 /* 6827 * For FIFO/RR we only need to set prio, if that matches we're done. 6828 */ 6829 if (prio == p->prio && !dl_prio(prio)) 6830 goto out_unlock; 6831 6832 /* 6833 * Idle task boosting is a nono in general. There is one 6834 * exception, when PREEMPT_RT and NOHZ is active: 6835 * 6836 * The idle task calls get_next_timer_interrupt() and holds 6837 * the timer wheel base->lock on the CPU and another CPU wants 6838 * to access the timer (probably to cancel it). We can safely 6839 * ignore the boosting request, as the idle CPU runs this code 6840 * with interrupts disabled and will complete the lock 6841 * protected section without being interrupted. So there is no 6842 * real need to boost. 6843 */ 6844 if (unlikely(p == rq->idle)) { 6845 WARN_ON(p != rq->curr); 6846 WARN_ON(p->pi_blocked_on); 6847 goto out_unlock; 6848 } 6849 6850 trace_sched_pi_setprio(p, pi_task); 6851 oldprio = p->prio; 6852 6853 if (oldprio == prio) 6854 queue_flag &= ~DEQUEUE_MOVE; 6855 6856 prev_class = p->sched_class; 6857 queued = task_on_rq_queued(p); 6858 running = task_current(rq, p); 6859 if (queued) 6860 dequeue_task(rq, p, queue_flag); 6861 if (running) 6862 put_prev_task(rq, p); 6863 6864 /* 6865 * Boosting condition are: 6866 * 1. -rt task is running and holds mutex A 6867 * --> -dl task blocks on mutex A 6868 * 6869 * 2. -dl task is running and holds mutex A 6870 * --> -dl task blocks on mutex A and could preempt the 6871 * running task 6872 */ 6873 if (dl_prio(prio)) { 6874 if (!dl_prio(p->normal_prio) || 6875 (pi_task && dl_prio(pi_task->prio) && 6876 dl_entity_preempt(&pi_task->dl, &p->dl))) { 6877 p->dl.pi_se = pi_task->dl.pi_se; 6878 queue_flag |= ENQUEUE_REPLENISH; 6879 } else { 6880 p->dl.pi_se = &p->dl; 6881 } 6882 } else if (rt_prio(prio)) { 6883 if (dl_prio(oldprio)) 6884 p->dl.pi_se = &p->dl; 6885 if (oldprio < prio) 6886 queue_flag |= ENQUEUE_HEAD; 6887 } else { 6888 if (dl_prio(oldprio)) 6889 p->dl.pi_se = &p->dl; 6890 if (rt_prio(oldprio)) 6891 p->rt.timeout = 0; 6892 } 6893 6894 __setscheduler_prio(p, prio); 6895 6896 if (queued) 6897 enqueue_task(rq, p, queue_flag); 6898 if (running) 6899 set_next_task(rq, p); 6900 6901 check_class_changed(rq, p, prev_class, oldprio); 6902 out_unlock: 6903 /* Avoid rq from going away on us: */ 6904 preempt_disable(); 6905 6906 rq_unpin_lock(rq, &rf); 6907 __balance_callbacks(rq); 6908 raw_spin_rq_unlock(rq); 6909 6910 preempt_enable(); 6911 } 6912 #else 6913 static inline int rt_effective_prio(struct task_struct *p, int prio) 6914 { 6915 return prio; 6916 } 6917 #endif 6918 6919 void set_user_nice(struct task_struct *p, long nice) 6920 { 6921 bool queued, running; 6922 int old_prio; 6923 struct rq_flags rf; 6924 struct rq *rq; 6925 6926 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 6927 return; 6928 /* 6929 * We have to be careful, if called from sys_setpriority(), 6930 * the task might be in the middle of scheduling on another CPU. 6931 */ 6932 rq = task_rq_lock(p, &rf); 6933 update_rq_clock(rq); 6934 6935 /* 6936 * The RT priorities are set via sched_setscheduler(), but we still 6937 * allow the 'normal' nice value to be set - but as expected 6938 * it won't have any effect on scheduling until the task is 6939 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 6940 */ 6941 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 6942 p->static_prio = NICE_TO_PRIO(nice); 6943 goto out_unlock; 6944 } 6945 queued = task_on_rq_queued(p); 6946 running = task_current(rq, p); 6947 if (queued) 6948 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 6949 if (running) 6950 put_prev_task(rq, p); 6951 6952 p->static_prio = NICE_TO_PRIO(nice); 6953 set_load_weight(p, true); 6954 old_prio = p->prio; 6955 p->prio = effective_prio(p); 6956 6957 if (queued) 6958 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 6959 if (running) 6960 set_next_task(rq, p); 6961 6962 /* 6963 * If the task increased its priority or is running and 6964 * lowered its priority, then reschedule its CPU: 6965 */ 6966 p->sched_class->prio_changed(rq, p, old_prio); 6967 6968 out_unlock: 6969 task_rq_unlock(rq, p, &rf); 6970 } 6971 EXPORT_SYMBOL(set_user_nice); 6972 6973 /* 6974 * can_nice - check if a task can reduce its nice value 6975 * @p: task 6976 * @nice: nice value 6977 */ 6978 int can_nice(const struct task_struct *p, const int nice) 6979 { 6980 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 6981 int nice_rlim = nice_to_rlimit(nice); 6982 6983 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 6984 capable(CAP_SYS_NICE)); 6985 } 6986 6987 #ifdef __ARCH_WANT_SYS_NICE 6988 6989 /* 6990 * sys_nice - change the priority of the current process. 6991 * @increment: priority increment 6992 * 6993 * sys_setpriority is a more generic, but much slower function that 6994 * does similar things. 6995 */ 6996 SYSCALL_DEFINE1(nice, int, increment) 6997 { 6998 long nice, retval; 6999 7000 /* 7001 * Setpriority might change our priority at the same moment. 7002 * We don't have to worry. Conceptually one call occurs first 7003 * and we have a single winner. 7004 */ 7005 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7006 nice = task_nice(current) + increment; 7007 7008 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7009 if (increment < 0 && !can_nice(current, nice)) 7010 return -EPERM; 7011 7012 retval = security_task_setnice(current, nice); 7013 if (retval) 7014 return retval; 7015 7016 set_user_nice(current, nice); 7017 return 0; 7018 } 7019 7020 #endif 7021 7022 /** 7023 * task_prio - return the priority value of a given task. 7024 * @p: the task in question. 7025 * 7026 * Return: The priority value as seen by users in /proc. 7027 * 7028 * sched policy return value kernel prio user prio/nice 7029 * 7030 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7031 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7032 * deadline -101 -1 0 7033 */ 7034 int task_prio(const struct task_struct *p) 7035 { 7036 return p->prio - MAX_RT_PRIO; 7037 } 7038 7039 /** 7040 * idle_cpu - is a given CPU idle currently? 7041 * @cpu: the processor in question. 7042 * 7043 * Return: 1 if the CPU is currently idle. 0 otherwise. 7044 */ 7045 int idle_cpu(int cpu) 7046 { 7047 struct rq *rq = cpu_rq(cpu); 7048 7049 if (rq->curr != rq->idle) 7050 return 0; 7051 7052 if (rq->nr_running) 7053 return 0; 7054 7055 #ifdef CONFIG_SMP 7056 if (rq->ttwu_pending) 7057 return 0; 7058 #endif 7059 7060 return 1; 7061 } 7062 7063 /** 7064 * available_idle_cpu - is a given CPU idle for enqueuing work. 7065 * @cpu: the CPU in question. 7066 * 7067 * Return: 1 if the CPU is currently idle. 0 otherwise. 7068 */ 7069 int available_idle_cpu(int cpu) 7070 { 7071 if (!idle_cpu(cpu)) 7072 return 0; 7073 7074 if (vcpu_is_preempted(cpu)) 7075 return 0; 7076 7077 return 1; 7078 } 7079 7080 /** 7081 * idle_task - return the idle task for a given CPU. 7082 * @cpu: the processor in question. 7083 * 7084 * Return: The idle task for the CPU @cpu. 7085 */ 7086 struct task_struct *idle_task(int cpu) 7087 { 7088 return cpu_rq(cpu)->idle; 7089 } 7090 7091 #ifdef CONFIG_SMP 7092 /* 7093 * This function computes an effective utilization for the given CPU, to be 7094 * used for frequency selection given the linear relation: f = u * f_max. 7095 * 7096 * The scheduler tracks the following metrics: 7097 * 7098 * cpu_util_{cfs,rt,dl,irq}() 7099 * cpu_bw_dl() 7100 * 7101 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7102 * synchronized windows and are thus directly comparable. 7103 * 7104 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7105 * which excludes things like IRQ and steal-time. These latter are then accrued 7106 * in the irq utilization. 7107 * 7108 * The DL bandwidth number otoh is not a measured metric but a value computed 7109 * based on the task model parameters and gives the minimal utilization 7110 * required to meet deadlines. 7111 */ 7112 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7113 unsigned long max, enum cpu_util_type type, 7114 struct task_struct *p) 7115 { 7116 unsigned long dl_util, util, irq; 7117 struct rq *rq = cpu_rq(cpu); 7118 7119 if (!uclamp_is_used() && 7120 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7121 return max; 7122 } 7123 7124 /* 7125 * Early check to see if IRQ/steal time saturates the CPU, can be 7126 * because of inaccuracies in how we track these -- see 7127 * update_irq_load_avg(). 7128 */ 7129 irq = cpu_util_irq(rq); 7130 if (unlikely(irq >= max)) 7131 return max; 7132 7133 /* 7134 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7135 * CFS tasks and we use the same metric to track the effective 7136 * utilization (PELT windows are synchronized) we can directly add them 7137 * to obtain the CPU's actual utilization. 7138 * 7139 * CFS and RT utilization can be boosted or capped, depending on 7140 * utilization clamp constraints requested by currently RUNNABLE 7141 * tasks. 7142 * When there are no CFS RUNNABLE tasks, clamps are released and 7143 * frequency will be gracefully reduced with the utilization decay. 7144 */ 7145 util = util_cfs + cpu_util_rt(rq); 7146 if (type == FREQUENCY_UTIL) 7147 util = uclamp_rq_util_with(rq, util, p); 7148 7149 dl_util = cpu_util_dl(rq); 7150 7151 /* 7152 * For frequency selection we do not make cpu_util_dl() a permanent part 7153 * of this sum because we want to use cpu_bw_dl() later on, but we need 7154 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7155 * that we select f_max when there is no idle time. 7156 * 7157 * NOTE: numerical errors or stop class might cause us to not quite hit 7158 * saturation when we should -- something for later. 7159 */ 7160 if (util + dl_util >= max) 7161 return max; 7162 7163 /* 7164 * OTOH, for energy computation we need the estimated running time, so 7165 * include util_dl and ignore dl_bw. 7166 */ 7167 if (type == ENERGY_UTIL) 7168 util += dl_util; 7169 7170 /* 7171 * There is still idle time; further improve the number by using the 7172 * irq metric. Because IRQ/steal time is hidden from the task clock we 7173 * need to scale the task numbers: 7174 * 7175 * max - irq 7176 * U' = irq + --------- * U 7177 * max 7178 */ 7179 util = scale_irq_capacity(util, irq, max); 7180 util += irq; 7181 7182 /* 7183 * Bandwidth required by DEADLINE must always be granted while, for 7184 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7185 * to gracefully reduce the frequency when no tasks show up for longer 7186 * periods of time. 7187 * 7188 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7189 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7190 * an interface. So, we only do the latter for now. 7191 */ 7192 if (type == FREQUENCY_UTIL) 7193 util += cpu_bw_dl(rq); 7194 7195 return min(max, util); 7196 } 7197 7198 unsigned long sched_cpu_util(int cpu, unsigned long max) 7199 { 7200 return effective_cpu_util(cpu, cpu_util_cfs(cpu), max, 7201 ENERGY_UTIL, NULL); 7202 } 7203 #endif /* CONFIG_SMP */ 7204 7205 /** 7206 * find_process_by_pid - find a process with a matching PID value. 7207 * @pid: the pid in question. 7208 * 7209 * The task of @pid, if found. %NULL otherwise. 7210 */ 7211 static struct task_struct *find_process_by_pid(pid_t pid) 7212 { 7213 return pid ? find_task_by_vpid(pid) : current; 7214 } 7215 7216 /* 7217 * sched_setparam() passes in -1 for its policy, to let the functions 7218 * it calls know not to change it. 7219 */ 7220 #define SETPARAM_POLICY -1 7221 7222 static void __setscheduler_params(struct task_struct *p, 7223 const struct sched_attr *attr) 7224 { 7225 int policy = attr->sched_policy; 7226 7227 if (policy == SETPARAM_POLICY) 7228 policy = p->policy; 7229 7230 p->policy = policy; 7231 7232 if (dl_policy(policy)) 7233 __setparam_dl(p, attr); 7234 else if (fair_policy(policy)) 7235 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7236 7237 /* 7238 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7239 * !rt_policy. Always setting this ensures that things like 7240 * getparam()/getattr() don't report silly values for !rt tasks. 7241 */ 7242 p->rt_priority = attr->sched_priority; 7243 p->normal_prio = normal_prio(p); 7244 set_load_weight(p, true); 7245 } 7246 7247 /* 7248 * Check the target process has a UID that matches the current process's: 7249 */ 7250 static bool check_same_owner(struct task_struct *p) 7251 { 7252 const struct cred *cred = current_cred(), *pcred; 7253 bool match; 7254 7255 rcu_read_lock(); 7256 pcred = __task_cred(p); 7257 match = (uid_eq(cred->euid, pcred->euid) || 7258 uid_eq(cred->euid, pcred->uid)); 7259 rcu_read_unlock(); 7260 return match; 7261 } 7262 7263 static int __sched_setscheduler(struct task_struct *p, 7264 const struct sched_attr *attr, 7265 bool user, bool pi) 7266 { 7267 int oldpolicy = -1, policy = attr->sched_policy; 7268 int retval, oldprio, newprio, queued, running; 7269 const struct sched_class *prev_class; 7270 struct callback_head *head; 7271 struct rq_flags rf; 7272 int reset_on_fork; 7273 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7274 struct rq *rq; 7275 7276 /* The pi code expects interrupts enabled */ 7277 BUG_ON(pi && in_interrupt()); 7278 recheck: 7279 /* Double check policy once rq lock held: */ 7280 if (policy < 0) { 7281 reset_on_fork = p->sched_reset_on_fork; 7282 policy = oldpolicy = p->policy; 7283 } else { 7284 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7285 7286 if (!valid_policy(policy)) 7287 return -EINVAL; 7288 } 7289 7290 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7291 return -EINVAL; 7292 7293 /* 7294 * Valid priorities for SCHED_FIFO and SCHED_RR are 7295 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7296 * SCHED_BATCH and SCHED_IDLE is 0. 7297 */ 7298 if (attr->sched_priority > MAX_RT_PRIO-1) 7299 return -EINVAL; 7300 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7301 (rt_policy(policy) != (attr->sched_priority != 0))) 7302 return -EINVAL; 7303 7304 /* 7305 * Allow unprivileged RT tasks to decrease priority: 7306 */ 7307 if (user && !capable(CAP_SYS_NICE)) { 7308 if (fair_policy(policy)) { 7309 if (attr->sched_nice < task_nice(p) && 7310 !can_nice(p, attr->sched_nice)) 7311 return -EPERM; 7312 } 7313 7314 if (rt_policy(policy)) { 7315 unsigned long rlim_rtprio = 7316 task_rlimit(p, RLIMIT_RTPRIO); 7317 7318 /* Can't set/change the rt policy: */ 7319 if (policy != p->policy && !rlim_rtprio) 7320 return -EPERM; 7321 7322 /* Can't increase priority: */ 7323 if (attr->sched_priority > p->rt_priority && 7324 attr->sched_priority > rlim_rtprio) 7325 return -EPERM; 7326 } 7327 7328 /* 7329 * Can't set/change SCHED_DEADLINE policy at all for now 7330 * (safest behavior); in the future we would like to allow 7331 * unprivileged DL tasks to increase their relative deadline 7332 * or reduce their runtime (both ways reducing utilization) 7333 */ 7334 if (dl_policy(policy)) 7335 return -EPERM; 7336 7337 /* 7338 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7339 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7340 */ 7341 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7342 if (!can_nice(p, task_nice(p))) 7343 return -EPERM; 7344 } 7345 7346 /* Can't change other user's priorities: */ 7347 if (!check_same_owner(p)) 7348 return -EPERM; 7349 7350 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7351 if (p->sched_reset_on_fork && !reset_on_fork) 7352 return -EPERM; 7353 } 7354 7355 if (user) { 7356 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7357 return -EINVAL; 7358 7359 retval = security_task_setscheduler(p); 7360 if (retval) 7361 return retval; 7362 } 7363 7364 /* Update task specific "requested" clamps */ 7365 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7366 retval = uclamp_validate(p, attr); 7367 if (retval) 7368 return retval; 7369 } 7370 7371 if (pi) 7372 cpuset_read_lock(); 7373 7374 /* 7375 * Make sure no PI-waiters arrive (or leave) while we are 7376 * changing the priority of the task: 7377 * 7378 * To be able to change p->policy safely, the appropriate 7379 * runqueue lock must be held. 7380 */ 7381 rq = task_rq_lock(p, &rf); 7382 update_rq_clock(rq); 7383 7384 /* 7385 * Changing the policy of the stop threads its a very bad idea: 7386 */ 7387 if (p == rq->stop) { 7388 retval = -EINVAL; 7389 goto unlock; 7390 } 7391 7392 /* 7393 * If not changing anything there's no need to proceed further, 7394 * but store a possible modification of reset_on_fork. 7395 */ 7396 if (unlikely(policy == p->policy)) { 7397 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7398 goto change; 7399 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7400 goto change; 7401 if (dl_policy(policy) && dl_param_changed(p, attr)) 7402 goto change; 7403 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7404 goto change; 7405 7406 p->sched_reset_on_fork = reset_on_fork; 7407 retval = 0; 7408 goto unlock; 7409 } 7410 change: 7411 7412 if (user) { 7413 #ifdef CONFIG_RT_GROUP_SCHED 7414 /* 7415 * Do not allow realtime tasks into groups that have no runtime 7416 * assigned. 7417 */ 7418 if (rt_bandwidth_enabled() && rt_policy(policy) && 7419 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7420 !task_group_is_autogroup(task_group(p))) { 7421 retval = -EPERM; 7422 goto unlock; 7423 } 7424 #endif 7425 #ifdef CONFIG_SMP 7426 if (dl_bandwidth_enabled() && dl_policy(policy) && 7427 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7428 cpumask_t *span = rq->rd->span; 7429 7430 /* 7431 * Don't allow tasks with an affinity mask smaller than 7432 * the entire root_domain to become SCHED_DEADLINE. We 7433 * will also fail if there's no bandwidth available. 7434 */ 7435 if (!cpumask_subset(span, p->cpus_ptr) || 7436 rq->rd->dl_bw.bw == 0) { 7437 retval = -EPERM; 7438 goto unlock; 7439 } 7440 } 7441 #endif 7442 } 7443 7444 /* Re-check policy now with rq lock held: */ 7445 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7446 policy = oldpolicy = -1; 7447 task_rq_unlock(rq, p, &rf); 7448 if (pi) 7449 cpuset_read_unlock(); 7450 goto recheck; 7451 } 7452 7453 /* 7454 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7455 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7456 * is available. 7457 */ 7458 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7459 retval = -EBUSY; 7460 goto unlock; 7461 } 7462 7463 p->sched_reset_on_fork = reset_on_fork; 7464 oldprio = p->prio; 7465 7466 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7467 if (pi) { 7468 /* 7469 * Take priority boosted tasks into account. If the new 7470 * effective priority is unchanged, we just store the new 7471 * normal parameters and do not touch the scheduler class and 7472 * the runqueue. This will be done when the task deboost 7473 * itself. 7474 */ 7475 newprio = rt_effective_prio(p, newprio); 7476 if (newprio == oldprio) 7477 queue_flags &= ~DEQUEUE_MOVE; 7478 } 7479 7480 queued = task_on_rq_queued(p); 7481 running = task_current(rq, p); 7482 if (queued) 7483 dequeue_task(rq, p, queue_flags); 7484 if (running) 7485 put_prev_task(rq, p); 7486 7487 prev_class = p->sched_class; 7488 7489 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7490 __setscheduler_params(p, attr); 7491 __setscheduler_prio(p, newprio); 7492 } 7493 __setscheduler_uclamp(p, attr); 7494 7495 if (queued) { 7496 /* 7497 * We enqueue to tail when the priority of a task is 7498 * increased (user space view). 7499 */ 7500 if (oldprio < p->prio) 7501 queue_flags |= ENQUEUE_HEAD; 7502 7503 enqueue_task(rq, p, queue_flags); 7504 } 7505 if (running) 7506 set_next_task(rq, p); 7507 7508 check_class_changed(rq, p, prev_class, oldprio); 7509 7510 /* Avoid rq from going away on us: */ 7511 preempt_disable(); 7512 head = splice_balance_callbacks(rq); 7513 task_rq_unlock(rq, p, &rf); 7514 7515 if (pi) { 7516 cpuset_read_unlock(); 7517 rt_mutex_adjust_pi(p); 7518 } 7519 7520 /* Run balance callbacks after we've adjusted the PI chain: */ 7521 balance_callbacks(rq, head); 7522 preempt_enable(); 7523 7524 return 0; 7525 7526 unlock: 7527 task_rq_unlock(rq, p, &rf); 7528 if (pi) 7529 cpuset_read_unlock(); 7530 return retval; 7531 } 7532 7533 static int _sched_setscheduler(struct task_struct *p, int policy, 7534 const struct sched_param *param, bool check) 7535 { 7536 struct sched_attr attr = { 7537 .sched_policy = policy, 7538 .sched_priority = param->sched_priority, 7539 .sched_nice = PRIO_TO_NICE(p->static_prio), 7540 }; 7541 7542 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7543 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7544 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7545 policy &= ~SCHED_RESET_ON_FORK; 7546 attr.sched_policy = policy; 7547 } 7548 7549 return __sched_setscheduler(p, &attr, check, true); 7550 } 7551 /** 7552 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7553 * @p: the task in question. 7554 * @policy: new policy. 7555 * @param: structure containing the new RT priority. 7556 * 7557 * Use sched_set_fifo(), read its comment. 7558 * 7559 * Return: 0 on success. An error code otherwise. 7560 * 7561 * NOTE that the task may be already dead. 7562 */ 7563 int sched_setscheduler(struct task_struct *p, int policy, 7564 const struct sched_param *param) 7565 { 7566 return _sched_setscheduler(p, policy, param, true); 7567 } 7568 7569 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7570 { 7571 return __sched_setscheduler(p, attr, true, true); 7572 } 7573 7574 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7575 { 7576 return __sched_setscheduler(p, attr, false, true); 7577 } 7578 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7579 7580 /** 7581 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7582 * @p: the task in question. 7583 * @policy: new policy. 7584 * @param: structure containing the new RT priority. 7585 * 7586 * Just like sched_setscheduler, only don't bother checking if the 7587 * current context has permission. For example, this is needed in 7588 * stop_machine(): we create temporary high priority worker threads, 7589 * but our caller might not have that capability. 7590 * 7591 * Return: 0 on success. An error code otherwise. 7592 */ 7593 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7594 const struct sched_param *param) 7595 { 7596 return _sched_setscheduler(p, policy, param, false); 7597 } 7598 7599 /* 7600 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7601 * incapable of resource management, which is the one thing an OS really should 7602 * be doing. 7603 * 7604 * This is of course the reason it is limited to privileged users only. 7605 * 7606 * Worse still; it is fundamentally impossible to compose static priority 7607 * workloads. You cannot take two correctly working static prio workloads 7608 * and smash them together and still expect them to work. 7609 * 7610 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7611 * 7612 * MAX_RT_PRIO / 2 7613 * 7614 * The administrator _MUST_ configure the system, the kernel simply doesn't 7615 * know enough information to make a sensible choice. 7616 */ 7617 void sched_set_fifo(struct task_struct *p) 7618 { 7619 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7620 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7621 } 7622 EXPORT_SYMBOL_GPL(sched_set_fifo); 7623 7624 /* 7625 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7626 */ 7627 void sched_set_fifo_low(struct task_struct *p) 7628 { 7629 struct sched_param sp = { .sched_priority = 1 }; 7630 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7631 } 7632 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7633 7634 void sched_set_normal(struct task_struct *p, int nice) 7635 { 7636 struct sched_attr attr = { 7637 .sched_policy = SCHED_NORMAL, 7638 .sched_nice = nice, 7639 }; 7640 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7641 } 7642 EXPORT_SYMBOL_GPL(sched_set_normal); 7643 7644 static int 7645 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7646 { 7647 struct sched_param lparam; 7648 struct task_struct *p; 7649 int retval; 7650 7651 if (!param || pid < 0) 7652 return -EINVAL; 7653 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7654 return -EFAULT; 7655 7656 rcu_read_lock(); 7657 retval = -ESRCH; 7658 p = find_process_by_pid(pid); 7659 if (likely(p)) 7660 get_task_struct(p); 7661 rcu_read_unlock(); 7662 7663 if (likely(p)) { 7664 retval = sched_setscheduler(p, policy, &lparam); 7665 put_task_struct(p); 7666 } 7667 7668 return retval; 7669 } 7670 7671 /* 7672 * Mimics kernel/events/core.c perf_copy_attr(). 7673 */ 7674 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7675 { 7676 u32 size; 7677 int ret; 7678 7679 /* Zero the full structure, so that a short copy will be nice: */ 7680 memset(attr, 0, sizeof(*attr)); 7681 7682 ret = get_user(size, &uattr->size); 7683 if (ret) 7684 return ret; 7685 7686 /* ABI compatibility quirk: */ 7687 if (!size) 7688 size = SCHED_ATTR_SIZE_VER0; 7689 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7690 goto err_size; 7691 7692 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7693 if (ret) { 7694 if (ret == -E2BIG) 7695 goto err_size; 7696 return ret; 7697 } 7698 7699 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7700 size < SCHED_ATTR_SIZE_VER1) 7701 return -EINVAL; 7702 7703 /* 7704 * XXX: Do we want to be lenient like existing syscalls; or do we want 7705 * to be strict and return an error on out-of-bounds values? 7706 */ 7707 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7708 7709 return 0; 7710 7711 err_size: 7712 put_user(sizeof(*attr), &uattr->size); 7713 return -E2BIG; 7714 } 7715 7716 static void get_params(struct task_struct *p, struct sched_attr *attr) 7717 { 7718 if (task_has_dl_policy(p)) 7719 __getparam_dl(p, attr); 7720 else if (task_has_rt_policy(p)) 7721 attr->sched_priority = p->rt_priority; 7722 else 7723 attr->sched_nice = task_nice(p); 7724 } 7725 7726 /** 7727 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7728 * @pid: the pid in question. 7729 * @policy: new policy. 7730 * @param: structure containing the new RT priority. 7731 * 7732 * Return: 0 on success. An error code otherwise. 7733 */ 7734 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7735 { 7736 if (policy < 0) 7737 return -EINVAL; 7738 7739 return do_sched_setscheduler(pid, policy, param); 7740 } 7741 7742 /** 7743 * sys_sched_setparam - set/change the RT priority of a thread 7744 * @pid: the pid in question. 7745 * @param: structure containing the new RT priority. 7746 * 7747 * Return: 0 on success. An error code otherwise. 7748 */ 7749 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7750 { 7751 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7752 } 7753 7754 /** 7755 * sys_sched_setattr - same as above, but with extended sched_attr 7756 * @pid: the pid in question. 7757 * @uattr: structure containing the extended parameters. 7758 * @flags: for future extension. 7759 */ 7760 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7761 unsigned int, flags) 7762 { 7763 struct sched_attr attr; 7764 struct task_struct *p; 7765 int retval; 7766 7767 if (!uattr || pid < 0 || flags) 7768 return -EINVAL; 7769 7770 retval = sched_copy_attr(uattr, &attr); 7771 if (retval) 7772 return retval; 7773 7774 if ((int)attr.sched_policy < 0) 7775 return -EINVAL; 7776 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7777 attr.sched_policy = SETPARAM_POLICY; 7778 7779 rcu_read_lock(); 7780 retval = -ESRCH; 7781 p = find_process_by_pid(pid); 7782 if (likely(p)) 7783 get_task_struct(p); 7784 rcu_read_unlock(); 7785 7786 if (likely(p)) { 7787 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7788 get_params(p, &attr); 7789 retval = sched_setattr(p, &attr); 7790 put_task_struct(p); 7791 } 7792 7793 return retval; 7794 } 7795 7796 /** 7797 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7798 * @pid: the pid in question. 7799 * 7800 * Return: On success, the policy of the thread. Otherwise, a negative error 7801 * code. 7802 */ 7803 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7804 { 7805 struct task_struct *p; 7806 int retval; 7807 7808 if (pid < 0) 7809 return -EINVAL; 7810 7811 retval = -ESRCH; 7812 rcu_read_lock(); 7813 p = find_process_by_pid(pid); 7814 if (p) { 7815 retval = security_task_getscheduler(p); 7816 if (!retval) 7817 retval = p->policy 7818 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7819 } 7820 rcu_read_unlock(); 7821 return retval; 7822 } 7823 7824 /** 7825 * sys_sched_getparam - get the RT priority of a thread 7826 * @pid: the pid in question. 7827 * @param: structure containing the RT priority. 7828 * 7829 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7830 * code. 7831 */ 7832 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7833 { 7834 struct sched_param lp = { .sched_priority = 0 }; 7835 struct task_struct *p; 7836 int retval; 7837 7838 if (!param || pid < 0) 7839 return -EINVAL; 7840 7841 rcu_read_lock(); 7842 p = find_process_by_pid(pid); 7843 retval = -ESRCH; 7844 if (!p) 7845 goto out_unlock; 7846 7847 retval = security_task_getscheduler(p); 7848 if (retval) 7849 goto out_unlock; 7850 7851 if (task_has_rt_policy(p)) 7852 lp.sched_priority = p->rt_priority; 7853 rcu_read_unlock(); 7854 7855 /* 7856 * This one might sleep, we cannot do it with a spinlock held ... 7857 */ 7858 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 7859 7860 return retval; 7861 7862 out_unlock: 7863 rcu_read_unlock(); 7864 return retval; 7865 } 7866 7867 /* 7868 * Copy the kernel size attribute structure (which might be larger 7869 * than what user-space knows about) to user-space. 7870 * 7871 * Note that all cases are valid: user-space buffer can be larger or 7872 * smaller than the kernel-space buffer. The usual case is that both 7873 * have the same size. 7874 */ 7875 static int 7876 sched_attr_copy_to_user(struct sched_attr __user *uattr, 7877 struct sched_attr *kattr, 7878 unsigned int usize) 7879 { 7880 unsigned int ksize = sizeof(*kattr); 7881 7882 if (!access_ok(uattr, usize)) 7883 return -EFAULT; 7884 7885 /* 7886 * sched_getattr() ABI forwards and backwards compatibility: 7887 * 7888 * If usize == ksize then we just copy everything to user-space and all is good. 7889 * 7890 * If usize < ksize then we only copy as much as user-space has space for, 7891 * this keeps ABI compatibility as well. We skip the rest. 7892 * 7893 * If usize > ksize then user-space is using a newer version of the ABI, 7894 * which part the kernel doesn't know about. Just ignore it - tooling can 7895 * detect the kernel's knowledge of attributes from the attr->size value 7896 * which is set to ksize in this case. 7897 */ 7898 kattr->size = min(usize, ksize); 7899 7900 if (copy_to_user(uattr, kattr, kattr->size)) 7901 return -EFAULT; 7902 7903 return 0; 7904 } 7905 7906 /** 7907 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 7908 * @pid: the pid in question. 7909 * @uattr: structure containing the extended parameters. 7910 * @usize: sizeof(attr) for fwd/bwd comp. 7911 * @flags: for future extension. 7912 */ 7913 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 7914 unsigned int, usize, unsigned int, flags) 7915 { 7916 struct sched_attr kattr = { }; 7917 struct task_struct *p; 7918 int retval; 7919 7920 if (!uattr || pid < 0 || usize > PAGE_SIZE || 7921 usize < SCHED_ATTR_SIZE_VER0 || flags) 7922 return -EINVAL; 7923 7924 rcu_read_lock(); 7925 p = find_process_by_pid(pid); 7926 retval = -ESRCH; 7927 if (!p) 7928 goto out_unlock; 7929 7930 retval = security_task_getscheduler(p); 7931 if (retval) 7932 goto out_unlock; 7933 7934 kattr.sched_policy = p->policy; 7935 if (p->sched_reset_on_fork) 7936 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7937 get_params(p, &kattr); 7938 kattr.sched_flags &= SCHED_FLAG_ALL; 7939 7940 #ifdef CONFIG_UCLAMP_TASK 7941 /* 7942 * This could race with another potential updater, but this is fine 7943 * because it'll correctly read the old or the new value. We don't need 7944 * to guarantee who wins the race as long as it doesn't return garbage. 7945 */ 7946 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 7947 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 7948 #endif 7949 7950 rcu_read_unlock(); 7951 7952 return sched_attr_copy_to_user(uattr, &kattr, usize); 7953 7954 out_unlock: 7955 rcu_read_unlock(); 7956 return retval; 7957 } 7958 7959 #ifdef CONFIG_SMP 7960 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 7961 { 7962 int ret = 0; 7963 7964 /* 7965 * If the task isn't a deadline task or admission control is 7966 * disabled then we don't care about affinity changes. 7967 */ 7968 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 7969 return 0; 7970 7971 /* 7972 * Since bandwidth control happens on root_domain basis, 7973 * if admission test is enabled, we only admit -deadline 7974 * tasks allowed to run on all the CPUs in the task's 7975 * root_domain. 7976 */ 7977 rcu_read_lock(); 7978 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 7979 ret = -EBUSY; 7980 rcu_read_unlock(); 7981 return ret; 7982 } 7983 #endif 7984 7985 static int 7986 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask) 7987 { 7988 int retval; 7989 cpumask_var_t cpus_allowed, new_mask; 7990 7991 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 7992 return -ENOMEM; 7993 7994 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 7995 retval = -ENOMEM; 7996 goto out_free_cpus_allowed; 7997 } 7998 7999 cpuset_cpus_allowed(p, cpus_allowed); 8000 cpumask_and(new_mask, mask, cpus_allowed); 8001 8002 retval = dl_task_check_affinity(p, new_mask); 8003 if (retval) 8004 goto out_free_new_mask; 8005 again: 8006 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); 8007 if (retval) 8008 goto out_free_new_mask; 8009 8010 cpuset_cpus_allowed(p, cpus_allowed); 8011 if (!cpumask_subset(new_mask, cpus_allowed)) { 8012 /* 8013 * We must have raced with a concurrent cpuset update. 8014 * Just reset the cpumask to the cpuset's cpus_allowed. 8015 */ 8016 cpumask_copy(new_mask, cpus_allowed); 8017 goto again; 8018 } 8019 8020 out_free_new_mask: 8021 free_cpumask_var(new_mask); 8022 out_free_cpus_allowed: 8023 free_cpumask_var(cpus_allowed); 8024 return retval; 8025 } 8026 8027 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8028 { 8029 struct task_struct *p; 8030 int retval; 8031 8032 rcu_read_lock(); 8033 8034 p = find_process_by_pid(pid); 8035 if (!p) { 8036 rcu_read_unlock(); 8037 return -ESRCH; 8038 } 8039 8040 /* Prevent p going away */ 8041 get_task_struct(p); 8042 rcu_read_unlock(); 8043 8044 if (p->flags & PF_NO_SETAFFINITY) { 8045 retval = -EINVAL; 8046 goto out_put_task; 8047 } 8048 8049 if (!check_same_owner(p)) { 8050 rcu_read_lock(); 8051 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8052 rcu_read_unlock(); 8053 retval = -EPERM; 8054 goto out_put_task; 8055 } 8056 rcu_read_unlock(); 8057 } 8058 8059 retval = security_task_setscheduler(p); 8060 if (retval) 8061 goto out_put_task; 8062 8063 retval = __sched_setaffinity(p, in_mask); 8064 out_put_task: 8065 put_task_struct(p); 8066 return retval; 8067 } 8068 8069 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8070 struct cpumask *new_mask) 8071 { 8072 if (len < cpumask_size()) 8073 cpumask_clear(new_mask); 8074 else if (len > cpumask_size()) 8075 len = cpumask_size(); 8076 8077 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8078 } 8079 8080 /** 8081 * sys_sched_setaffinity - set the CPU affinity of a process 8082 * @pid: pid of the process 8083 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8084 * @user_mask_ptr: user-space pointer to the new CPU mask 8085 * 8086 * Return: 0 on success. An error code otherwise. 8087 */ 8088 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8089 unsigned long __user *, user_mask_ptr) 8090 { 8091 cpumask_var_t new_mask; 8092 int retval; 8093 8094 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8095 return -ENOMEM; 8096 8097 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8098 if (retval == 0) 8099 retval = sched_setaffinity(pid, new_mask); 8100 free_cpumask_var(new_mask); 8101 return retval; 8102 } 8103 8104 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8105 { 8106 struct task_struct *p; 8107 unsigned long flags; 8108 int retval; 8109 8110 rcu_read_lock(); 8111 8112 retval = -ESRCH; 8113 p = find_process_by_pid(pid); 8114 if (!p) 8115 goto out_unlock; 8116 8117 retval = security_task_getscheduler(p); 8118 if (retval) 8119 goto out_unlock; 8120 8121 raw_spin_lock_irqsave(&p->pi_lock, flags); 8122 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8123 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8124 8125 out_unlock: 8126 rcu_read_unlock(); 8127 8128 return retval; 8129 } 8130 8131 /** 8132 * sys_sched_getaffinity - get the CPU affinity of a process 8133 * @pid: pid of the process 8134 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8135 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8136 * 8137 * Return: size of CPU mask copied to user_mask_ptr on success. An 8138 * error code otherwise. 8139 */ 8140 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8141 unsigned long __user *, user_mask_ptr) 8142 { 8143 int ret; 8144 cpumask_var_t mask; 8145 8146 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8147 return -EINVAL; 8148 if (len & (sizeof(unsigned long)-1)) 8149 return -EINVAL; 8150 8151 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8152 return -ENOMEM; 8153 8154 ret = sched_getaffinity(pid, mask); 8155 if (ret == 0) { 8156 unsigned int retlen = min(len, cpumask_size()); 8157 8158 if (copy_to_user(user_mask_ptr, mask, retlen)) 8159 ret = -EFAULT; 8160 else 8161 ret = retlen; 8162 } 8163 free_cpumask_var(mask); 8164 8165 return ret; 8166 } 8167 8168 static void do_sched_yield(void) 8169 { 8170 struct rq_flags rf; 8171 struct rq *rq; 8172 8173 rq = this_rq_lock_irq(&rf); 8174 8175 schedstat_inc(rq->yld_count); 8176 current->sched_class->yield_task(rq); 8177 8178 preempt_disable(); 8179 rq_unlock_irq(rq, &rf); 8180 sched_preempt_enable_no_resched(); 8181 8182 schedule(); 8183 } 8184 8185 /** 8186 * sys_sched_yield - yield the current processor to other threads. 8187 * 8188 * This function yields the current CPU to other tasks. If there are no 8189 * other threads running on this CPU then this function will return. 8190 * 8191 * Return: 0. 8192 */ 8193 SYSCALL_DEFINE0(sched_yield) 8194 { 8195 do_sched_yield(); 8196 return 0; 8197 } 8198 8199 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8200 int __sched __cond_resched(void) 8201 { 8202 if (should_resched(0)) { 8203 preempt_schedule_common(); 8204 return 1; 8205 } 8206 /* 8207 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8208 * whether the current CPU is in an RCU read-side critical section, 8209 * so the tick can report quiescent states even for CPUs looping 8210 * in kernel context. In contrast, in non-preemptible kernels, 8211 * RCU readers leave no in-memory hints, which means that CPU-bound 8212 * processes executing in kernel context might never report an 8213 * RCU quiescent state. Therefore, the following code causes 8214 * cond_resched() to report a quiescent state, but only when RCU 8215 * is in urgent need of one. 8216 */ 8217 #ifndef CONFIG_PREEMPT_RCU 8218 rcu_all_qs(); 8219 #endif 8220 return 0; 8221 } 8222 EXPORT_SYMBOL(__cond_resched); 8223 #endif 8224 8225 #ifdef CONFIG_PREEMPT_DYNAMIC 8226 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8227 #define cond_resched_dynamic_enabled __cond_resched 8228 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8229 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8230 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8231 8232 #define might_resched_dynamic_enabled __cond_resched 8233 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8234 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8235 EXPORT_STATIC_CALL_TRAMP(might_resched); 8236 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8237 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8238 int __sched dynamic_cond_resched(void) 8239 { 8240 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8241 return 0; 8242 return __cond_resched(); 8243 } 8244 EXPORT_SYMBOL(dynamic_cond_resched); 8245 8246 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8247 int __sched dynamic_might_resched(void) 8248 { 8249 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8250 return 0; 8251 return __cond_resched(); 8252 } 8253 EXPORT_SYMBOL(dynamic_might_resched); 8254 #endif 8255 #endif 8256 8257 /* 8258 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8259 * call schedule, and on return reacquire the lock. 8260 * 8261 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8262 * operations here to prevent schedule() from being called twice (once via 8263 * spin_unlock(), once by hand). 8264 */ 8265 int __cond_resched_lock(spinlock_t *lock) 8266 { 8267 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8268 int ret = 0; 8269 8270 lockdep_assert_held(lock); 8271 8272 if (spin_needbreak(lock) || resched) { 8273 spin_unlock(lock); 8274 if (!_cond_resched()) 8275 cpu_relax(); 8276 ret = 1; 8277 spin_lock(lock); 8278 } 8279 return ret; 8280 } 8281 EXPORT_SYMBOL(__cond_resched_lock); 8282 8283 int __cond_resched_rwlock_read(rwlock_t *lock) 8284 { 8285 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8286 int ret = 0; 8287 8288 lockdep_assert_held_read(lock); 8289 8290 if (rwlock_needbreak(lock) || resched) { 8291 read_unlock(lock); 8292 if (!_cond_resched()) 8293 cpu_relax(); 8294 ret = 1; 8295 read_lock(lock); 8296 } 8297 return ret; 8298 } 8299 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8300 8301 int __cond_resched_rwlock_write(rwlock_t *lock) 8302 { 8303 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8304 int ret = 0; 8305 8306 lockdep_assert_held_write(lock); 8307 8308 if (rwlock_needbreak(lock) || resched) { 8309 write_unlock(lock); 8310 if (!_cond_resched()) 8311 cpu_relax(); 8312 ret = 1; 8313 write_lock(lock); 8314 } 8315 return ret; 8316 } 8317 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8318 8319 #ifdef CONFIG_PREEMPT_DYNAMIC 8320 8321 #ifdef CONFIG_GENERIC_ENTRY 8322 #include <linux/entry-common.h> 8323 #endif 8324 8325 /* 8326 * SC:cond_resched 8327 * SC:might_resched 8328 * SC:preempt_schedule 8329 * SC:preempt_schedule_notrace 8330 * SC:irqentry_exit_cond_resched 8331 * 8332 * 8333 * NONE: 8334 * cond_resched <- __cond_resched 8335 * might_resched <- RET0 8336 * preempt_schedule <- NOP 8337 * preempt_schedule_notrace <- NOP 8338 * irqentry_exit_cond_resched <- NOP 8339 * 8340 * VOLUNTARY: 8341 * cond_resched <- __cond_resched 8342 * might_resched <- __cond_resched 8343 * preempt_schedule <- NOP 8344 * preempt_schedule_notrace <- NOP 8345 * irqentry_exit_cond_resched <- NOP 8346 * 8347 * FULL: 8348 * cond_resched <- RET0 8349 * might_resched <- RET0 8350 * preempt_schedule <- preempt_schedule 8351 * preempt_schedule_notrace <- preempt_schedule_notrace 8352 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8353 */ 8354 8355 enum { 8356 preempt_dynamic_undefined = -1, 8357 preempt_dynamic_none, 8358 preempt_dynamic_voluntary, 8359 preempt_dynamic_full, 8360 }; 8361 8362 int preempt_dynamic_mode = preempt_dynamic_undefined; 8363 8364 int sched_dynamic_mode(const char *str) 8365 { 8366 if (!strcmp(str, "none")) 8367 return preempt_dynamic_none; 8368 8369 if (!strcmp(str, "voluntary")) 8370 return preempt_dynamic_voluntary; 8371 8372 if (!strcmp(str, "full")) 8373 return preempt_dynamic_full; 8374 8375 return -EINVAL; 8376 } 8377 8378 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8379 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8380 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8381 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8382 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8383 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8384 #else 8385 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8386 #endif 8387 8388 void sched_dynamic_update(int mode) 8389 { 8390 /* 8391 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8392 * the ZERO state, which is invalid. 8393 */ 8394 preempt_dynamic_enable(cond_resched); 8395 preempt_dynamic_enable(might_resched); 8396 preempt_dynamic_enable(preempt_schedule); 8397 preempt_dynamic_enable(preempt_schedule_notrace); 8398 preempt_dynamic_enable(irqentry_exit_cond_resched); 8399 8400 switch (mode) { 8401 case preempt_dynamic_none: 8402 preempt_dynamic_enable(cond_resched); 8403 preempt_dynamic_disable(might_resched); 8404 preempt_dynamic_disable(preempt_schedule); 8405 preempt_dynamic_disable(preempt_schedule_notrace); 8406 preempt_dynamic_disable(irqentry_exit_cond_resched); 8407 pr_info("Dynamic Preempt: none\n"); 8408 break; 8409 8410 case preempt_dynamic_voluntary: 8411 preempt_dynamic_enable(cond_resched); 8412 preempt_dynamic_enable(might_resched); 8413 preempt_dynamic_disable(preempt_schedule); 8414 preempt_dynamic_disable(preempt_schedule_notrace); 8415 preempt_dynamic_disable(irqentry_exit_cond_resched); 8416 pr_info("Dynamic Preempt: voluntary\n"); 8417 break; 8418 8419 case preempt_dynamic_full: 8420 preempt_dynamic_disable(cond_resched); 8421 preempt_dynamic_disable(might_resched); 8422 preempt_dynamic_enable(preempt_schedule); 8423 preempt_dynamic_enable(preempt_schedule_notrace); 8424 preempt_dynamic_enable(irqentry_exit_cond_resched); 8425 pr_info("Dynamic Preempt: full\n"); 8426 break; 8427 } 8428 8429 preempt_dynamic_mode = mode; 8430 } 8431 8432 static int __init setup_preempt_mode(char *str) 8433 { 8434 int mode = sched_dynamic_mode(str); 8435 if (mode < 0) { 8436 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8437 return 0; 8438 } 8439 8440 sched_dynamic_update(mode); 8441 return 1; 8442 } 8443 __setup("preempt=", setup_preempt_mode); 8444 8445 static void __init preempt_dynamic_init(void) 8446 { 8447 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8448 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8449 sched_dynamic_update(preempt_dynamic_none); 8450 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8451 sched_dynamic_update(preempt_dynamic_voluntary); 8452 } else { 8453 /* Default static call setting, nothing to do */ 8454 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8455 preempt_dynamic_mode = preempt_dynamic_full; 8456 pr_info("Dynamic Preempt: full\n"); 8457 } 8458 } 8459 } 8460 8461 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8462 bool preempt_model_##mode(void) \ 8463 { \ 8464 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8465 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8466 } \ 8467 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8468 8469 PREEMPT_MODEL_ACCESSOR(none); 8470 PREEMPT_MODEL_ACCESSOR(voluntary); 8471 PREEMPT_MODEL_ACCESSOR(full); 8472 8473 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8474 8475 static inline void preempt_dynamic_init(void) { } 8476 8477 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8478 8479 /** 8480 * yield - yield the current processor to other threads. 8481 * 8482 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8483 * 8484 * The scheduler is at all times free to pick the calling task as the most 8485 * eligible task to run, if removing the yield() call from your code breaks 8486 * it, it's already broken. 8487 * 8488 * Typical broken usage is: 8489 * 8490 * while (!event) 8491 * yield(); 8492 * 8493 * where one assumes that yield() will let 'the other' process run that will 8494 * make event true. If the current task is a SCHED_FIFO task that will never 8495 * happen. Never use yield() as a progress guarantee!! 8496 * 8497 * If you want to use yield() to wait for something, use wait_event(). 8498 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8499 * If you still want to use yield(), do not! 8500 */ 8501 void __sched yield(void) 8502 { 8503 set_current_state(TASK_RUNNING); 8504 do_sched_yield(); 8505 } 8506 EXPORT_SYMBOL(yield); 8507 8508 /** 8509 * yield_to - yield the current processor to another thread in 8510 * your thread group, or accelerate that thread toward the 8511 * processor it's on. 8512 * @p: target task 8513 * @preempt: whether task preemption is allowed or not 8514 * 8515 * It's the caller's job to ensure that the target task struct 8516 * can't go away on us before we can do any checks. 8517 * 8518 * Return: 8519 * true (>0) if we indeed boosted the target task. 8520 * false (0) if we failed to boost the target. 8521 * -ESRCH if there's no task to yield to. 8522 */ 8523 int __sched yield_to(struct task_struct *p, bool preempt) 8524 { 8525 struct task_struct *curr = current; 8526 struct rq *rq, *p_rq; 8527 unsigned long flags; 8528 int yielded = 0; 8529 8530 local_irq_save(flags); 8531 rq = this_rq(); 8532 8533 again: 8534 p_rq = task_rq(p); 8535 /* 8536 * If we're the only runnable task on the rq and target rq also 8537 * has only one task, there's absolutely no point in yielding. 8538 */ 8539 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8540 yielded = -ESRCH; 8541 goto out_irq; 8542 } 8543 8544 double_rq_lock(rq, p_rq); 8545 if (task_rq(p) != p_rq) { 8546 double_rq_unlock(rq, p_rq); 8547 goto again; 8548 } 8549 8550 if (!curr->sched_class->yield_to_task) 8551 goto out_unlock; 8552 8553 if (curr->sched_class != p->sched_class) 8554 goto out_unlock; 8555 8556 if (task_running(p_rq, p) || !task_is_running(p)) 8557 goto out_unlock; 8558 8559 yielded = curr->sched_class->yield_to_task(rq, p); 8560 if (yielded) { 8561 schedstat_inc(rq->yld_count); 8562 /* 8563 * Make p's CPU reschedule; pick_next_entity takes care of 8564 * fairness. 8565 */ 8566 if (preempt && rq != p_rq) 8567 resched_curr(p_rq); 8568 } 8569 8570 out_unlock: 8571 double_rq_unlock(rq, p_rq); 8572 out_irq: 8573 local_irq_restore(flags); 8574 8575 if (yielded > 0) 8576 schedule(); 8577 8578 return yielded; 8579 } 8580 EXPORT_SYMBOL_GPL(yield_to); 8581 8582 int io_schedule_prepare(void) 8583 { 8584 int old_iowait = current->in_iowait; 8585 8586 current->in_iowait = 1; 8587 blk_flush_plug(current->plug, true); 8588 return old_iowait; 8589 } 8590 8591 void io_schedule_finish(int token) 8592 { 8593 current->in_iowait = token; 8594 } 8595 8596 /* 8597 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8598 * that process accounting knows that this is a task in IO wait state. 8599 */ 8600 long __sched io_schedule_timeout(long timeout) 8601 { 8602 int token; 8603 long ret; 8604 8605 token = io_schedule_prepare(); 8606 ret = schedule_timeout(timeout); 8607 io_schedule_finish(token); 8608 8609 return ret; 8610 } 8611 EXPORT_SYMBOL(io_schedule_timeout); 8612 8613 void __sched io_schedule(void) 8614 { 8615 int token; 8616 8617 token = io_schedule_prepare(); 8618 schedule(); 8619 io_schedule_finish(token); 8620 } 8621 EXPORT_SYMBOL(io_schedule); 8622 8623 /** 8624 * sys_sched_get_priority_max - return maximum RT priority. 8625 * @policy: scheduling class. 8626 * 8627 * Return: On success, this syscall returns the maximum 8628 * rt_priority that can be used by a given scheduling class. 8629 * On failure, a negative error code is returned. 8630 */ 8631 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8632 { 8633 int ret = -EINVAL; 8634 8635 switch (policy) { 8636 case SCHED_FIFO: 8637 case SCHED_RR: 8638 ret = MAX_RT_PRIO-1; 8639 break; 8640 case SCHED_DEADLINE: 8641 case SCHED_NORMAL: 8642 case SCHED_BATCH: 8643 case SCHED_IDLE: 8644 ret = 0; 8645 break; 8646 } 8647 return ret; 8648 } 8649 8650 /** 8651 * sys_sched_get_priority_min - return minimum RT priority. 8652 * @policy: scheduling class. 8653 * 8654 * Return: On success, this syscall returns the minimum 8655 * rt_priority that can be used by a given scheduling class. 8656 * On failure, a negative error code is returned. 8657 */ 8658 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8659 { 8660 int ret = -EINVAL; 8661 8662 switch (policy) { 8663 case SCHED_FIFO: 8664 case SCHED_RR: 8665 ret = 1; 8666 break; 8667 case SCHED_DEADLINE: 8668 case SCHED_NORMAL: 8669 case SCHED_BATCH: 8670 case SCHED_IDLE: 8671 ret = 0; 8672 } 8673 return ret; 8674 } 8675 8676 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8677 { 8678 struct task_struct *p; 8679 unsigned int time_slice; 8680 struct rq_flags rf; 8681 struct rq *rq; 8682 int retval; 8683 8684 if (pid < 0) 8685 return -EINVAL; 8686 8687 retval = -ESRCH; 8688 rcu_read_lock(); 8689 p = find_process_by_pid(pid); 8690 if (!p) 8691 goto out_unlock; 8692 8693 retval = security_task_getscheduler(p); 8694 if (retval) 8695 goto out_unlock; 8696 8697 rq = task_rq_lock(p, &rf); 8698 time_slice = 0; 8699 if (p->sched_class->get_rr_interval) 8700 time_slice = p->sched_class->get_rr_interval(rq, p); 8701 task_rq_unlock(rq, p, &rf); 8702 8703 rcu_read_unlock(); 8704 jiffies_to_timespec64(time_slice, t); 8705 return 0; 8706 8707 out_unlock: 8708 rcu_read_unlock(); 8709 return retval; 8710 } 8711 8712 /** 8713 * sys_sched_rr_get_interval - return the default timeslice of a process. 8714 * @pid: pid of the process. 8715 * @interval: userspace pointer to the timeslice value. 8716 * 8717 * this syscall writes the default timeslice value of a given process 8718 * into the user-space timespec buffer. A value of '0' means infinity. 8719 * 8720 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8721 * an error code. 8722 */ 8723 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8724 struct __kernel_timespec __user *, interval) 8725 { 8726 struct timespec64 t; 8727 int retval = sched_rr_get_interval(pid, &t); 8728 8729 if (retval == 0) 8730 retval = put_timespec64(&t, interval); 8731 8732 return retval; 8733 } 8734 8735 #ifdef CONFIG_COMPAT_32BIT_TIME 8736 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8737 struct old_timespec32 __user *, interval) 8738 { 8739 struct timespec64 t; 8740 int retval = sched_rr_get_interval(pid, &t); 8741 8742 if (retval == 0) 8743 retval = put_old_timespec32(&t, interval); 8744 return retval; 8745 } 8746 #endif 8747 8748 void sched_show_task(struct task_struct *p) 8749 { 8750 unsigned long free = 0; 8751 int ppid; 8752 8753 if (!try_get_task_stack(p)) 8754 return; 8755 8756 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8757 8758 if (task_is_running(p)) 8759 pr_cont(" running task "); 8760 #ifdef CONFIG_DEBUG_STACK_USAGE 8761 free = stack_not_used(p); 8762 #endif 8763 ppid = 0; 8764 rcu_read_lock(); 8765 if (pid_alive(p)) 8766 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8767 rcu_read_unlock(); 8768 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n", 8769 free, task_pid_nr(p), ppid, 8770 read_task_thread_flags(p)); 8771 8772 print_worker_info(KERN_INFO, p); 8773 print_stop_info(KERN_INFO, p); 8774 show_stack(p, NULL, KERN_INFO); 8775 put_task_stack(p); 8776 } 8777 EXPORT_SYMBOL_GPL(sched_show_task); 8778 8779 static inline bool 8780 state_filter_match(unsigned long state_filter, struct task_struct *p) 8781 { 8782 unsigned int state = READ_ONCE(p->__state); 8783 8784 /* no filter, everything matches */ 8785 if (!state_filter) 8786 return true; 8787 8788 /* filter, but doesn't match */ 8789 if (!(state & state_filter)) 8790 return false; 8791 8792 /* 8793 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8794 * TASK_KILLABLE). 8795 */ 8796 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE) 8797 return false; 8798 8799 return true; 8800 } 8801 8802 8803 void show_state_filter(unsigned int state_filter) 8804 { 8805 struct task_struct *g, *p; 8806 8807 rcu_read_lock(); 8808 for_each_process_thread(g, p) { 8809 /* 8810 * reset the NMI-timeout, listing all files on a slow 8811 * console might take a lot of time: 8812 * Also, reset softlockup watchdogs on all CPUs, because 8813 * another CPU might be blocked waiting for us to process 8814 * an IPI. 8815 */ 8816 touch_nmi_watchdog(); 8817 touch_all_softlockup_watchdogs(); 8818 if (state_filter_match(state_filter, p)) 8819 sched_show_task(p); 8820 } 8821 8822 #ifdef CONFIG_SCHED_DEBUG 8823 if (!state_filter) 8824 sysrq_sched_debug_show(); 8825 #endif 8826 rcu_read_unlock(); 8827 /* 8828 * Only show locks if all tasks are dumped: 8829 */ 8830 if (!state_filter) 8831 debug_show_all_locks(); 8832 } 8833 8834 /** 8835 * init_idle - set up an idle thread for a given CPU 8836 * @idle: task in question 8837 * @cpu: CPU the idle task belongs to 8838 * 8839 * NOTE: this function does not set the idle thread's NEED_RESCHED 8840 * flag, to make booting more robust. 8841 */ 8842 void __init init_idle(struct task_struct *idle, int cpu) 8843 { 8844 struct rq *rq = cpu_rq(cpu); 8845 unsigned long flags; 8846 8847 __sched_fork(0, idle); 8848 8849 raw_spin_lock_irqsave(&idle->pi_lock, flags); 8850 raw_spin_rq_lock(rq); 8851 8852 idle->__state = TASK_RUNNING; 8853 idle->se.exec_start = sched_clock(); 8854 /* 8855 * PF_KTHREAD should already be set at this point; regardless, make it 8856 * look like a proper per-CPU kthread. 8857 */ 8858 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 8859 kthread_set_per_cpu(idle, cpu); 8860 8861 #ifdef CONFIG_SMP 8862 /* 8863 * It's possible that init_idle() gets called multiple times on a task, 8864 * in that case do_set_cpus_allowed() will not do the right thing. 8865 * 8866 * And since this is boot we can forgo the serialization. 8867 */ 8868 set_cpus_allowed_common(idle, cpumask_of(cpu), 0); 8869 #endif 8870 /* 8871 * We're having a chicken and egg problem, even though we are 8872 * holding rq->lock, the CPU isn't yet set to this CPU so the 8873 * lockdep check in task_group() will fail. 8874 * 8875 * Similar case to sched_fork(). / Alternatively we could 8876 * use task_rq_lock() here and obtain the other rq->lock. 8877 * 8878 * Silence PROVE_RCU 8879 */ 8880 rcu_read_lock(); 8881 __set_task_cpu(idle, cpu); 8882 rcu_read_unlock(); 8883 8884 rq->idle = idle; 8885 rcu_assign_pointer(rq->curr, idle); 8886 idle->on_rq = TASK_ON_RQ_QUEUED; 8887 #ifdef CONFIG_SMP 8888 idle->on_cpu = 1; 8889 #endif 8890 raw_spin_rq_unlock(rq); 8891 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 8892 8893 /* Set the preempt count _outside_ the spinlocks! */ 8894 init_idle_preempt_count(idle, cpu); 8895 8896 /* 8897 * The idle tasks have their own, simple scheduling class: 8898 */ 8899 idle->sched_class = &idle_sched_class; 8900 ftrace_graph_init_idle_task(idle, cpu); 8901 vtime_init_idle(idle, cpu); 8902 #ifdef CONFIG_SMP 8903 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 8904 #endif 8905 } 8906 8907 #ifdef CONFIG_SMP 8908 8909 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 8910 const struct cpumask *trial) 8911 { 8912 int ret = 1; 8913 8914 if (cpumask_empty(cur)) 8915 return ret; 8916 8917 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 8918 8919 return ret; 8920 } 8921 8922 int task_can_attach(struct task_struct *p, 8923 const struct cpumask *cs_cpus_allowed) 8924 { 8925 int ret = 0; 8926 8927 /* 8928 * Kthreads which disallow setaffinity shouldn't be moved 8929 * to a new cpuset; we don't want to change their CPU 8930 * affinity and isolating such threads by their set of 8931 * allowed nodes is unnecessary. Thus, cpusets are not 8932 * applicable for such threads. This prevents checking for 8933 * success of set_cpus_allowed_ptr() on all attached tasks 8934 * before cpus_mask may be changed. 8935 */ 8936 if (p->flags & PF_NO_SETAFFINITY) { 8937 ret = -EINVAL; 8938 goto out; 8939 } 8940 8941 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 8942 cs_cpus_allowed)) { 8943 int cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed); 8944 8945 ret = dl_cpu_busy(cpu, p); 8946 } 8947 8948 out: 8949 return ret; 8950 } 8951 8952 bool sched_smp_initialized __read_mostly; 8953 8954 #ifdef CONFIG_NUMA_BALANCING 8955 /* Migrate current task p to target_cpu */ 8956 int migrate_task_to(struct task_struct *p, int target_cpu) 8957 { 8958 struct migration_arg arg = { p, target_cpu }; 8959 int curr_cpu = task_cpu(p); 8960 8961 if (curr_cpu == target_cpu) 8962 return 0; 8963 8964 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 8965 return -EINVAL; 8966 8967 /* TODO: This is not properly updating schedstats */ 8968 8969 trace_sched_move_numa(p, curr_cpu, target_cpu); 8970 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 8971 } 8972 8973 /* 8974 * Requeue a task on a given node and accurately track the number of NUMA 8975 * tasks on the runqueues 8976 */ 8977 void sched_setnuma(struct task_struct *p, int nid) 8978 { 8979 bool queued, running; 8980 struct rq_flags rf; 8981 struct rq *rq; 8982 8983 rq = task_rq_lock(p, &rf); 8984 queued = task_on_rq_queued(p); 8985 running = task_current(rq, p); 8986 8987 if (queued) 8988 dequeue_task(rq, p, DEQUEUE_SAVE); 8989 if (running) 8990 put_prev_task(rq, p); 8991 8992 p->numa_preferred_nid = nid; 8993 8994 if (queued) 8995 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 8996 if (running) 8997 set_next_task(rq, p); 8998 task_rq_unlock(rq, p, &rf); 8999 } 9000 #endif /* CONFIG_NUMA_BALANCING */ 9001 9002 #ifdef CONFIG_HOTPLUG_CPU 9003 /* 9004 * Ensure that the idle task is using init_mm right before its CPU goes 9005 * offline. 9006 */ 9007 void idle_task_exit(void) 9008 { 9009 struct mm_struct *mm = current->active_mm; 9010 9011 BUG_ON(cpu_online(smp_processor_id())); 9012 BUG_ON(current != this_rq()->idle); 9013 9014 if (mm != &init_mm) { 9015 switch_mm(mm, &init_mm, current); 9016 finish_arch_post_lock_switch(); 9017 } 9018 9019 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9020 } 9021 9022 static int __balance_push_cpu_stop(void *arg) 9023 { 9024 struct task_struct *p = arg; 9025 struct rq *rq = this_rq(); 9026 struct rq_flags rf; 9027 int cpu; 9028 9029 raw_spin_lock_irq(&p->pi_lock); 9030 rq_lock(rq, &rf); 9031 9032 update_rq_clock(rq); 9033 9034 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9035 cpu = select_fallback_rq(rq->cpu, p); 9036 rq = __migrate_task(rq, &rf, p, cpu); 9037 } 9038 9039 rq_unlock(rq, &rf); 9040 raw_spin_unlock_irq(&p->pi_lock); 9041 9042 put_task_struct(p); 9043 9044 return 0; 9045 } 9046 9047 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9048 9049 /* 9050 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9051 * 9052 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9053 * effective when the hotplug motion is down. 9054 */ 9055 static void balance_push(struct rq *rq) 9056 { 9057 struct task_struct *push_task = rq->curr; 9058 9059 lockdep_assert_rq_held(rq); 9060 9061 /* 9062 * Ensure the thing is persistent until balance_push_set(.on = false); 9063 */ 9064 rq->balance_callback = &balance_push_callback; 9065 9066 /* 9067 * Only active while going offline and when invoked on the outgoing 9068 * CPU. 9069 */ 9070 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9071 return; 9072 9073 /* 9074 * Both the cpu-hotplug and stop task are in this case and are 9075 * required to complete the hotplug process. 9076 */ 9077 if (kthread_is_per_cpu(push_task) || 9078 is_migration_disabled(push_task)) { 9079 9080 /* 9081 * If this is the idle task on the outgoing CPU try to wake 9082 * up the hotplug control thread which might wait for the 9083 * last task to vanish. The rcuwait_active() check is 9084 * accurate here because the waiter is pinned on this CPU 9085 * and can't obviously be running in parallel. 9086 * 9087 * On RT kernels this also has to check whether there are 9088 * pinned and scheduled out tasks on the runqueue. They 9089 * need to leave the migrate disabled section first. 9090 */ 9091 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9092 rcuwait_active(&rq->hotplug_wait)) { 9093 raw_spin_rq_unlock(rq); 9094 rcuwait_wake_up(&rq->hotplug_wait); 9095 raw_spin_rq_lock(rq); 9096 } 9097 return; 9098 } 9099 9100 get_task_struct(push_task); 9101 /* 9102 * Temporarily drop rq->lock such that we can wake-up the stop task. 9103 * Both preemption and IRQs are still disabled. 9104 */ 9105 raw_spin_rq_unlock(rq); 9106 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9107 this_cpu_ptr(&push_work)); 9108 /* 9109 * At this point need_resched() is true and we'll take the loop in 9110 * schedule(). The next pick is obviously going to be the stop task 9111 * which kthread_is_per_cpu() and will push this task away. 9112 */ 9113 raw_spin_rq_lock(rq); 9114 } 9115 9116 static void balance_push_set(int cpu, bool on) 9117 { 9118 struct rq *rq = cpu_rq(cpu); 9119 struct rq_flags rf; 9120 9121 rq_lock_irqsave(rq, &rf); 9122 if (on) { 9123 WARN_ON_ONCE(rq->balance_callback); 9124 rq->balance_callback = &balance_push_callback; 9125 } else if (rq->balance_callback == &balance_push_callback) { 9126 rq->balance_callback = NULL; 9127 } 9128 rq_unlock_irqrestore(rq, &rf); 9129 } 9130 9131 /* 9132 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9133 * inactive. All tasks which are not per CPU kernel threads are either 9134 * pushed off this CPU now via balance_push() or placed on a different CPU 9135 * during wakeup. Wait until the CPU is quiescent. 9136 */ 9137 static void balance_hotplug_wait(void) 9138 { 9139 struct rq *rq = this_rq(); 9140 9141 rcuwait_wait_event(&rq->hotplug_wait, 9142 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9143 TASK_UNINTERRUPTIBLE); 9144 } 9145 9146 #else 9147 9148 static inline void balance_push(struct rq *rq) 9149 { 9150 } 9151 9152 static inline void balance_push_set(int cpu, bool on) 9153 { 9154 } 9155 9156 static inline void balance_hotplug_wait(void) 9157 { 9158 } 9159 9160 #endif /* CONFIG_HOTPLUG_CPU */ 9161 9162 void set_rq_online(struct rq *rq) 9163 { 9164 if (!rq->online) { 9165 const struct sched_class *class; 9166 9167 cpumask_set_cpu(rq->cpu, rq->rd->online); 9168 rq->online = 1; 9169 9170 for_each_class(class) { 9171 if (class->rq_online) 9172 class->rq_online(rq); 9173 } 9174 } 9175 } 9176 9177 void set_rq_offline(struct rq *rq) 9178 { 9179 if (rq->online) { 9180 const struct sched_class *class; 9181 9182 for_each_class(class) { 9183 if (class->rq_offline) 9184 class->rq_offline(rq); 9185 } 9186 9187 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9188 rq->online = 0; 9189 } 9190 } 9191 9192 /* 9193 * used to mark begin/end of suspend/resume: 9194 */ 9195 static int num_cpus_frozen; 9196 9197 /* 9198 * Update cpusets according to cpu_active mask. If cpusets are 9199 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9200 * around partition_sched_domains(). 9201 * 9202 * If we come here as part of a suspend/resume, don't touch cpusets because we 9203 * want to restore it back to its original state upon resume anyway. 9204 */ 9205 static void cpuset_cpu_active(void) 9206 { 9207 if (cpuhp_tasks_frozen) { 9208 /* 9209 * num_cpus_frozen tracks how many CPUs are involved in suspend 9210 * resume sequence. As long as this is not the last online 9211 * operation in the resume sequence, just build a single sched 9212 * domain, ignoring cpusets. 9213 */ 9214 partition_sched_domains(1, NULL, NULL); 9215 if (--num_cpus_frozen) 9216 return; 9217 /* 9218 * This is the last CPU online operation. So fall through and 9219 * restore the original sched domains by considering the 9220 * cpuset configurations. 9221 */ 9222 cpuset_force_rebuild(); 9223 } 9224 cpuset_update_active_cpus(); 9225 } 9226 9227 static int cpuset_cpu_inactive(unsigned int cpu) 9228 { 9229 if (!cpuhp_tasks_frozen) { 9230 int ret = dl_cpu_busy(cpu, NULL); 9231 9232 if (ret) 9233 return ret; 9234 cpuset_update_active_cpus(); 9235 } else { 9236 num_cpus_frozen++; 9237 partition_sched_domains(1, NULL, NULL); 9238 } 9239 return 0; 9240 } 9241 9242 int sched_cpu_activate(unsigned int cpu) 9243 { 9244 struct rq *rq = cpu_rq(cpu); 9245 struct rq_flags rf; 9246 9247 /* 9248 * Clear the balance_push callback and prepare to schedule 9249 * regular tasks. 9250 */ 9251 balance_push_set(cpu, false); 9252 9253 #ifdef CONFIG_SCHED_SMT 9254 /* 9255 * When going up, increment the number of cores with SMT present. 9256 */ 9257 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9258 static_branch_inc_cpuslocked(&sched_smt_present); 9259 #endif 9260 set_cpu_active(cpu, true); 9261 9262 if (sched_smp_initialized) { 9263 sched_update_numa(cpu, true); 9264 sched_domains_numa_masks_set(cpu); 9265 cpuset_cpu_active(); 9266 } 9267 9268 /* 9269 * Put the rq online, if not already. This happens: 9270 * 9271 * 1) In the early boot process, because we build the real domains 9272 * after all CPUs have been brought up. 9273 * 9274 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9275 * domains. 9276 */ 9277 rq_lock_irqsave(rq, &rf); 9278 if (rq->rd) { 9279 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9280 set_rq_online(rq); 9281 } 9282 rq_unlock_irqrestore(rq, &rf); 9283 9284 return 0; 9285 } 9286 9287 int sched_cpu_deactivate(unsigned int cpu) 9288 { 9289 struct rq *rq = cpu_rq(cpu); 9290 struct rq_flags rf; 9291 int ret; 9292 9293 /* 9294 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9295 * load balancing when not active 9296 */ 9297 nohz_balance_exit_idle(rq); 9298 9299 set_cpu_active(cpu, false); 9300 9301 /* 9302 * From this point forward, this CPU will refuse to run any task that 9303 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9304 * push those tasks away until this gets cleared, see 9305 * sched_cpu_dying(). 9306 */ 9307 balance_push_set(cpu, true); 9308 9309 /* 9310 * We've cleared cpu_active_mask / set balance_push, wait for all 9311 * preempt-disabled and RCU users of this state to go away such that 9312 * all new such users will observe it. 9313 * 9314 * Specifically, we rely on ttwu to no longer target this CPU, see 9315 * ttwu_queue_cond() and is_cpu_allowed(). 9316 * 9317 * Do sync before park smpboot threads to take care the rcu boost case. 9318 */ 9319 synchronize_rcu(); 9320 9321 rq_lock_irqsave(rq, &rf); 9322 if (rq->rd) { 9323 update_rq_clock(rq); 9324 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9325 set_rq_offline(rq); 9326 } 9327 rq_unlock_irqrestore(rq, &rf); 9328 9329 #ifdef CONFIG_SCHED_SMT 9330 /* 9331 * When going down, decrement the number of cores with SMT present. 9332 */ 9333 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9334 static_branch_dec_cpuslocked(&sched_smt_present); 9335 9336 sched_core_cpu_deactivate(cpu); 9337 #endif 9338 9339 if (!sched_smp_initialized) 9340 return 0; 9341 9342 sched_update_numa(cpu, false); 9343 ret = cpuset_cpu_inactive(cpu); 9344 if (ret) { 9345 balance_push_set(cpu, false); 9346 set_cpu_active(cpu, true); 9347 sched_update_numa(cpu, true); 9348 return ret; 9349 } 9350 sched_domains_numa_masks_clear(cpu); 9351 return 0; 9352 } 9353 9354 static void sched_rq_cpu_starting(unsigned int cpu) 9355 { 9356 struct rq *rq = cpu_rq(cpu); 9357 9358 rq->calc_load_update = calc_load_update; 9359 update_max_interval(); 9360 } 9361 9362 int sched_cpu_starting(unsigned int cpu) 9363 { 9364 sched_core_cpu_starting(cpu); 9365 sched_rq_cpu_starting(cpu); 9366 sched_tick_start(cpu); 9367 return 0; 9368 } 9369 9370 #ifdef CONFIG_HOTPLUG_CPU 9371 9372 /* 9373 * Invoked immediately before the stopper thread is invoked to bring the 9374 * CPU down completely. At this point all per CPU kthreads except the 9375 * hotplug thread (current) and the stopper thread (inactive) have been 9376 * either parked or have been unbound from the outgoing CPU. Ensure that 9377 * any of those which might be on the way out are gone. 9378 * 9379 * If after this point a bound task is being woken on this CPU then the 9380 * responsible hotplug callback has failed to do it's job. 9381 * sched_cpu_dying() will catch it with the appropriate fireworks. 9382 */ 9383 int sched_cpu_wait_empty(unsigned int cpu) 9384 { 9385 balance_hotplug_wait(); 9386 return 0; 9387 } 9388 9389 /* 9390 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9391 * might have. Called from the CPU stopper task after ensuring that the 9392 * stopper is the last running task on the CPU, so nr_active count is 9393 * stable. We need to take the teardown thread which is calling this into 9394 * account, so we hand in adjust = 1 to the load calculation. 9395 * 9396 * Also see the comment "Global load-average calculations". 9397 */ 9398 static void calc_load_migrate(struct rq *rq) 9399 { 9400 long delta = calc_load_fold_active(rq, 1); 9401 9402 if (delta) 9403 atomic_long_add(delta, &calc_load_tasks); 9404 } 9405 9406 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9407 { 9408 struct task_struct *g, *p; 9409 int cpu = cpu_of(rq); 9410 9411 lockdep_assert_rq_held(rq); 9412 9413 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9414 for_each_process_thread(g, p) { 9415 if (task_cpu(p) != cpu) 9416 continue; 9417 9418 if (!task_on_rq_queued(p)) 9419 continue; 9420 9421 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9422 } 9423 } 9424 9425 int sched_cpu_dying(unsigned int cpu) 9426 { 9427 struct rq *rq = cpu_rq(cpu); 9428 struct rq_flags rf; 9429 9430 /* Handle pending wakeups and then migrate everything off */ 9431 sched_tick_stop(cpu); 9432 9433 rq_lock_irqsave(rq, &rf); 9434 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9435 WARN(true, "Dying CPU not properly vacated!"); 9436 dump_rq_tasks(rq, KERN_WARNING); 9437 } 9438 rq_unlock_irqrestore(rq, &rf); 9439 9440 calc_load_migrate(rq); 9441 update_max_interval(); 9442 hrtick_clear(rq); 9443 sched_core_cpu_dying(cpu); 9444 return 0; 9445 } 9446 #endif 9447 9448 void __init sched_init_smp(void) 9449 { 9450 sched_init_numa(NUMA_NO_NODE); 9451 9452 /* 9453 * There's no userspace yet to cause hotplug operations; hence all the 9454 * CPU masks are stable and all blatant races in the below code cannot 9455 * happen. 9456 */ 9457 mutex_lock(&sched_domains_mutex); 9458 sched_init_domains(cpu_active_mask); 9459 mutex_unlock(&sched_domains_mutex); 9460 9461 /* Move init over to a non-isolated CPU */ 9462 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9463 BUG(); 9464 current->flags &= ~PF_NO_SETAFFINITY; 9465 sched_init_granularity(); 9466 9467 init_sched_rt_class(); 9468 init_sched_dl_class(); 9469 9470 sched_smp_initialized = true; 9471 } 9472 9473 static int __init migration_init(void) 9474 { 9475 sched_cpu_starting(smp_processor_id()); 9476 return 0; 9477 } 9478 early_initcall(migration_init); 9479 9480 #else 9481 void __init sched_init_smp(void) 9482 { 9483 sched_init_granularity(); 9484 } 9485 #endif /* CONFIG_SMP */ 9486 9487 int in_sched_functions(unsigned long addr) 9488 { 9489 return in_lock_functions(addr) || 9490 (addr >= (unsigned long)__sched_text_start 9491 && addr < (unsigned long)__sched_text_end); 9492 } 9493 9494 #ifdef CONFIG_CGROUP_SCHED 9495 /* 9496 * Default task group. 9497 * Every task in system belongs to this group at bootup. 9498 */ 9499 struct task_group root_task_group; 9500 LIST_HEAD(task_groups); 9501 9502 /* Cacheline aligned slab cache for task_group */ 9503 static struct kmem_cache *task_group_cache __read_mostly; 9504 #endif 9505 9506 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 9507 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 9508 9509 void __init sched_init(void) 9510 { 9511 unsigned long ptr = 0; 9512 int i; 9513 9514 /* Make sure the linker didn't screw up */ 9515 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9516 &fair_sched_class != &rt_sched_class + 1 || 9517 &rt_sched_class != &dl_sched_class + 1); 9518 #ifdef CONFIG_SMP 9519 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9520 #endif 9521 9522 wait_bit_init(); 9523 9524 #ifdef CONFIG_FAIR_GROUP_SCHED 9525 ptr += 2 * nr_cpu_ids * sizeof(void **); 9526 #endif 9527 #ifdef CONFIG_RT_GROUP_SCHED 9528 ptr += 2 * nr_cpu_ids * sizeof(void **); 9529 #endif 9530 if (ptr) { 9531 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9532 9533 #ifdef CONFIG_FAIR_GROUP_SCHED 9534 root_task_group.se = (struct sched_entity **)ptr; 9535 ptr += nr_cpu_ids * sizeof(void **); 9536 9537 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9538 ptr += nr_cpu_ids * sizeof(void **); 9539 9540 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9541 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9542 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9543 #ifdef CONFIG_RT_GROUP_SCHED 9544 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9545 ptr += nr_cpu_ids * sizeof(void **); 9546 9547 root_task_group.rt_rq = (struct rt_rq **)ptr; 9548 ptr += nr_cpu_ids * sizeof(void **); 9549 9550 #endif /* CONFIG_RT_GROUP_SCHED */ 9551 } 9552 #ifdef CONFIG_CPUMASK_OFFSTACK 9553 for_each_possible_cpu(i) { 9554 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 9555 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9556 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 9557 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 9558 } 9559 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9560 9561 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9562 9563 #ifdef CONFIG_SMP 9564 init_defrootdomain(); 9565 #endif 9566 9567 #ifdef CONFIG_RT_GROUP_SCHED 9568 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9569 global_rt_period(), global_rt_runtime()); 9570 #endif /* CONFIG_RT_GROUP_SCHED */ 9571 9572 #ifdef CONFIG_CGROUP_SCHED 9573 task_group_cache = KMEM_CACHE(task_group, 0); 9574 9575 list_add(&root_task_group.list, &task_groups); 9576 INIT_LIST_HEAD(&root_task_group.children); 9577 INIT_LIST_HEAD(&root_task_group.siblings); 9578 autogroup_init(&init_task); 9579 #endif /* CONFIG_CGROUP_SCHED */ 9580 9581 for_each_possible_cpu(i) { 9582 struct rq *rq; 9583 9584 rq = cpu_rq(i); 9585 raw_spin_lock_init(&rq->__lock); 9586 rq->nr_running = 0; 9587 rq->calc_load_active = 0; 9588 rq->calc_load_update = jiffies + LOAD_FREQ; 9589 init_cfs_rq(&rq->cfs); 9590 init_rt_rq(&rq->rt); 9591 init_dl_rq(&rq->dl); 9592 #ifdef CONFIG_FAIR_GROUP_SCHED 9593 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9594 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9595 /* 9596 * How much CPU bandwidth does root_task_group get? 9597 * 9598 * In case of task-groups formed thr' the cgroup filesystem, it 9599 * gets 100% of the CPU resources in the system. This overall 9600 * system CPU resource is divided among the tasks of 9601 * root_task_group and its child task-groups in a fair manner, 9602 * based on each entity's (task or task-group's) weight 9603 * (se->load.weight). 9604 * 9605 * In other words, if root_task_group has 10 tasks of weight 9606 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9607 * then A0's share of the CPU resource is: 9608 * 9609 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9610 * 9611 * We achieve this by letting root_task_group's tasks sit 9612 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9613 */ 9614 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9615 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9616 9617 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9618 #ifdef CONFIG_RT_GROUP_SCHED 9619 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9620 #endif 9621 #ifdef CONFIG_SMP 9622 rq->sd = NULL; 9623 rq->rd = NULL; 9624 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9625 rq->balance_callback = &balance_push_callback; 9626 rq->active_balance = 0; 9627 rq->next_balance = jiffies; 9628 rq->push_cpu = 0; 9629 rq->cpu = i; 9630 rq->online = 0; 9631 rq->idle_stamp = 0; 9632 rq->avg_idle = 2*sysctl_sched_migration_cost; 9633 rq->wake_stamp = jiffies; 9634 rq->wake_avg_idle = rq->avg_idle; 9635 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9636 9637 INIT_LIST_HEAD(&rq->cfs_tasks); 9638 9639 rq_attach_root(rq, &def_root_domain); 9640 #ifdef CONFIG_NO_HZ_COMMON 9641 rq->last_blocked_load_update_tick = jiffies; 9642 atomic_set(&rq->nohz_flags, 0); 9643 9644 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9645 #endif 9646 #ifdef CONFIG_HOTPLUG_CPU 9647 rcuwait_init(&rq->hotplug_wait); 9648 #endif 9649 #endif /* CONFIG_SMP */ 9650 hrtick_rq_init(rq); 9651 atomic_set(&rq->nr_iowait, 0); 9652 9653 #ifdef CONFIG_SCHED_CORE 9654 rq->core = rq; 9655 rq->core_pick = NULL; 9656 rq->core_enabled = 0; 9657 rq->core_tree = RB_ROOT; 9658 rq->core_forceidle_count = 0; 9659 rq->core_forceidle_occupation = 0; 9660 rq->core_forceidle_start = 0; 9661 9662 rq->core_cookie = 0UL; 9663 #endif 9664 } 9665 9666 set_load_weight(&init_task, false); 9667 9668 /* 9669 * The boot idle thread does lazy MMU switching as well: 9670 */ 9671 mmgrab(&init_mm); 9672 enter_lazy_tlb(&init_mm, current); 9673 9674 /* 9675 * The idle task doesn't need the kthread struct to function, but it 9676 * is dressed up as a per-CPU kthread and thus needs to play the part 9677 * if we want to avoid special-casing it in code that deals with per-CPU 9678 * kthreads. 9679 */ 9680 WARN_ON(!set_kthread_struct(current)); 9681 9682 /* 9683 * Make us the idle thread. Technically, schedule() should not be 9684 * called from this thread, however somewhere below it might be, 9685 * but because we are the idle thread, we just pick up running again 9686 * when this runqueue becomes "idle". 9687 */ 9688 init_idle(current, smp_processor_id()); 9689 9690 calc_load_update = jiffies + LOAD_FREQ; 9691 9692 #ifdef CONFIG_SMP 9693 idle_thread_set_boot_cpu(); 9694 balance_push_set(smp_processor_id(), false); 9695 #endif 9696 init_sched_fair_class(); 9697 9698 psi_init(); 9699 9700 init_uclamp(); 9701 9702 preempt_dynamic_init(); 9703 9704 scheduler_running = 1; 9705 } 9706 9707 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9708 9709 void __might_sleep(const char *file, int line) 9710 { 9711 unsigned int state = get_current_state(); 9712 /* 9713 * Blocking primitives will set (and therefore destroy) current->state, 9714 * since we will exit with TASK_RUNNING make sure we enter with it, 9715 * otherwise we will destroy state. 9716 */ 9717 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9718 "do not call blocking ops when !TASK_RUNNING; " 9719 "state=%x set at [<%p>] %pS\n", state, 9720 (void *)current->task_state_change, 9721 (void *)current->task_state_change); 9722 9723 __might_resched(file, line, 0); 9724 } 9725 EXPORT_SYMBOL(__might_sleep); 9726 9727 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9728 { 9729 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9730 return; 9731 9732 if (preempt_count() == preempt_offset) 9733 return; 9734 9735 pr_err("Preemption disabled at:"); 9736 print_ip_sym(KERN_ERR, ip); 9737 } 9738 9739 static inline bool resched_offsets_ok(unsigned int offsets) 9740 { 9741 unsigned int nested = preempt_count(); 9742 9743 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9744 9745 return nested == offsets; 9746 } 9747 9748 void __might_resched(const char *file, int line, unsigned int offsets) 9749 { 9750 /* Ratelimiting timestamp: */ 9751 static unsigned long prev_jiffy; 9752 9753 unsigned long preempt_disable_ip; 9754 9755 /* WARN_ON_ONCE() by default, no rate limit required: */ 9756 rcu_sleep_check(); 9757 9758 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9759 !is_idle_task(current) && !current->non_block_count) || 9760 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9761 oops_in_progress) 9762 return; 9763 9764 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9765 return; 9766 prev_jiffy = jiffies; 9767 9768 /* Save this before calling printk(), since that will clobber it: */ 9769 preempt_disable_ip = get_preempt_disable_ip(current); 9770 9771 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9772 file, line); 9773 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9774 in_atomic(), irqs_disabled(), current->non_block_count, 9775 current->pid, current->comm); 9776 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9777 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9778 9779 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9780 pr_err("RCU nest depth: %d, expected: %u\n", 9781 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9782 } 9783 9784 if (task_stack_end_corrupted(current)) 9785 pr_emerg("Thread overran stack, or stack corrupted\n"); 9786 9787 debug_show_held_locks(current); 9788 if (irqs_disabled()) 9789 print_irqtrace_events(current); 9790 9791 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9792 preempt_disable_ip); 9793 9794 dump_stack(); 9795 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9796 } 9797 EXPORT_SYMBOL(__might_resched); 9798 9799 void __cant_sleep(const char *file, int line, int preempt_offset) 9800 { 9801 static unsigned long prev_jiffy; 9802 9803 if (irqs_disabled()) 9804 return; 9805 9806 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9807 return; 9808 9809 if (preempt_count() > preempt_offset) 9810 return; 9811 9812 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9813 return; 9814 prev_jiffy = jiffies; 9815 9816 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 9817 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9818 in_atomic(), irqs_disabled(), 9819 current->pid, current->comm); 9820 9821 debug_show_held_locks(current); 9822 dump_stack(); 9823 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9824 } 9825 EXPORT_SYMBOL_GPL(__cant_sleep); 9826 9827 #ifdef CONFIG_SMP 9828 void __cant_migrate(const char *file, int line) 9829 { 9830 static unsigned long prev_jiffy; 9831 9832 if (irqs_disabled()) 9833 return; 9834 9835 if (is_migration_disabled(current)) 9836 return; 9837 9838 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9839 return; 9840 9841 if (preempt_count() > 0) 9842 return; 9843 9844 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9845 return; 9846 prev_jiffy = jiffies; 9847 9848 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 9849 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 9850 in_atomic(), irqs_disabled(), is_migration_disabled(current), 9851 current->pid, current->comm); 9852 9853 debug_show_held_locks(current); 9854 dump_stack(); 9855 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9856 } 9857 EXPORT_SYMBOL_GPL(__cant_migrate); 9858 #endif 9859 #endif 9860 9861 #ifdef CONFIG_MAGIC_SYSRQ 9862 void normalize_rt_tasks(void) 9863 { 9864 struct task_struct *g, *p; 9865 struct sched_attr attr = { 9866 .sched_policy = SCHED_NORMAL, 9867 }; 9868 9869 read_lock(&tasklist_lock); 9870 for_each_process_thread(g, p) { 9871 /* 9872 * Only normalize user tasks: 9873 */ 9874 if (p->flags & PF_KTHREAD) 9875 continue; 9876 9877 p->se.exec_start = 0; 9878 schedstat_set(p->stats.wait_start, 0); 9879 schedstat_set(p->stats.sleep_start, 0); 9880 schedstat_set(p->stats.block_start, 0); 9881 9882 if (!dl_task(p) && !rt_task(p)) { 9883 /* 9884 * Renice negative nice level userspace 9885 * tasks back to 0: 9886 */ 9887 if (task_nice(p) < 0) 9888 set_user_nice(p, 0); 9889 continue; 9890 } 9891 9892 __sched_setscheduler(p, &attr, false, false); 9893 } 9894 read_unlock(&tasklist_lock); 9895 } 9896 9897 #endif /* CONFIG_MAGIC_SYSRQ */ 9898 9899 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 9900 /* 9901 * These functions are only useful for the IA64 MCA handling, or kdb. 9902 * 9903 * They can only be called when the whole system has been 9904 * stopped - every CPU needs to be quiescent, and no scheduling 9905 * activity can take place. Using them for anything else would 9906 * be a serious bug, and as a result, they aren't even visible 9907 * under any other configuration. 9908 */ 9909 9910 /** 9911 * curr_task - return the current task for a given CPU. 9912 * @cpu: the processor in question. 9913 * 9914 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9915 * 9916 * Return: The current task for @cpu. 9917 */ 9918 struct task_struct *curr_task(int cpu) 9919 { 9920 return cpu_curr(cpu); 9921 } 9922 9923 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 9924 9925 #ifdef CONFIG_IA64 9926 /** 9927 * ia64_set_curr_task - set the current task for a given CPU. 9928 * @cpu: the processor in question. 9929 * @p: the task pointer to set. 9930 * 9931 * Description: This function must only be used when non-maskable interrupts 9932 * are serviced on a separate stack. It allows the architecture to switch the 9933 * notion of the current task on a CPU in a non-blocking manner. This function 9934 * must be called with all CPU's synchronized, and interrupts disabled, the 9935 * and caller must save the original value of the current task (see 9936 * curr_task() above) and restore that value before reenabling interrupts and 9937 * re-starting the system. 9938 * 9939 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9940 */ 9941 void ia64_set_curr_task(int cpu, struct task_struct *p) 9942 { 9943 cpu_curr(cpu) = p; 9944 } 9945 9946 #endif 9947 9948 #ifdef CONFIG_CGROUP_SCHED 9949 /* task_group_lock serializes the addition/removal of task groups */ 9950 static DEFINE_SPINLOCK(task_group_lock); 9951 9952 static inline void alloc_uclamp_sched_group(struct task_group *tg, 9953 struct task_group *parent) 9954 { 9955 #ifdef CONFIG_UCLAMP_TASK_GROUP 9956 enum uclamp_id clamp_id; 9957 9958 for_each_clamp_id(clamp_id) { 9959 uclamp_se_set(&tg->uclamp_req[clamp_id], 9960 uclamp_none(clamp_id), false); 9961 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 9962 } 9963 #endif 9964 } 9965 9966 static void sched_free_group(struct task_group *tg) 9967 { 9968 free_fair_sched_group(tg); 9969 free_rt_sched_group(tg); 9970 autogroup_free(tg); 9971 kmem_cache_free(task_group_cache, tg); 9972 } 9973 9974 static void sched_free_group_rcu(struct rcu_head *rcu) 9975 { 9976 sched_free_group(container_of(rcu, struct task_group, rcu)); 9977 } 9978 9979 static void sched_unregister_group(struct task_group *tg) 9980 { 9981 unregister_fair_sched_group(tg); 9982 unregister_rt_sched_group(tg); 9983 /* 9984 * We have to wait for yet another RCU grace period to expire, as 9985 * print_cfs_stats() might run concurrently. 9986 */ 9987 call_rcu(&tg->rcu, sched_free_group_rcu); 9988 } 9989 9990 /* allocate runqueue etc for a new task group */ 9991 struct task_group *sched_create_group(struct task_group *parent) 9992 { 9993 struct task_group *tg; 9994 9995 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 9996 if (!tg) 9997 return ERR_PTR(-ENOMEM); 9998 9999 if (!alloc_fair_sched_group(tg, parent)) 10000 goto err; 10001 10002 if (!alloc_rt_sched_group(tg, parent)) 10003 goto err; 10004 10005 alloc_uclamp_sched_group(tg, parent); 10006 10007 return tg; 10008 10009 err: 10010 sched_free_group(tg); 10011 return ERR_PTR(-ENOMEM); 10012 } 10013 10014 void sched_online_group(struct task_group *tg, struct task_group *parent) 10015 { 10016 unsigned long flags; 10017 10018 spin_lock_irqsave(&task_group_lock, flags); 10019 list_add_rcu(&tg->list, &task_groups); 10020 10021 /* Root should already exist: */ 10022 WARN_ON(!parent); 10023 10024 tg->parent = parent; 10025 INIT_LIST_HEAD(&tg->children); 10026 list_add_rcu(&tg->siblings, &parent->children); 10027 spin_unlock_irqrestore(&task_group_lock, flags); 10028 10029 online_fair_sched_group(tg); 10030 } 10031 10032 /* rcu callback to free various structures associated with a task group */ 10033 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10034 { 10035 /* Now it should be safe to free those cfs_rqs: */ 10036 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10037 } 10038 10039 void sched_destroy_group(struct task_group *tg) 10040 { 10041 /* Wait for possible concurrent references to cfs_rqs complete: */ 10042 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10043 } 10044 10045 void sched_release_group(struct task_group *tg) 10046 { 10047 unsigned long flags; 10048 10049 /* 10050 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10051 * sched_cfs_period_timer()). 10052 * 10053 * For this to be effective, we have to wait for all pending users of 10054 * this task group to leave their RCU critical section to ensure no new 10055 * user will see our dying task group any more. Specifically ensure 10056 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10057 * 10058 * We therefore defer calling unregister_fair_sched_group() to 10059 * sched_unregister_group() which is guarantied to get called only after the 10060 * current RCU grace period has expired. 10061 */ 10062 spin_lock_irqsave(&task_group_lock, flags); 10063 list_del_rcu(&tg->list); 10064 list_del_rcu(&tg->siblings); 10065 spin_unlock_irqrestore(&task_group_lock, flags); 10066 } 10067 10068 static void sched_change_group(struct task_struct *tsk, int type) 10069 { 10070 struct task_group *tg; 10071 10072 /* 10073 * All callers are synchronized by task_rq_lock(); we do not use RCU 10074 * which is pointless here. Thus, we pass "true" to task_css_check() 10075 * to prevent lockdep warnings. 10076 */ 10077 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10078 struct task_group, css); 10079 tg = autogroup_task_group(tsk, tg); 10080 tsk->sched_task_group = tg; 10081 10082 #ifdef CONFIG_FAIR_GROUP_SCHED 10083 if (tsk->sched_class->task_change_group) 10084 tsk->sched_class->task_change_group(tsk, type); 10085 else 10086 #endif 10087 set_task_rq(tsk, task_cpu(tsk)); 10088 } 10089 10090 /* 10091 * Change task's runqueue when it moves between groups. 10092 * 10093 * The caller of this function should have put the task in its new group by 10094 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10095 * its new group. 10096 */ 10097 void sched_move_task(struct task_struct *tsk) 10098 { 10099 int queued, running, queue_flags = 10100 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10101 struct rq_flags rf; 10102 struct rq *rq; 10103 10104 rq = task_rq_lock(tsk, &rf); 10105 update_rq_clock(rq); 10106 10107 running = task_current(rq, tsk); 10108 queued = task_on_rq_queued(tsk); 10109 10110 if (queued) 10111 dequeue_task(rq, tsk, queue_flags); 10112 if (running) 10113 put_prev_task(rq, tsk); 10114 10115 sched_change_group(tsk, TASK_MOVE_GROUP); 10116 10117 if (queued) 10118 enqueue_task(rq, tsk, queue_flags); 10119 if (running) { 10120 set_next_task(rq, tsk); 10121 /* 10122 * After changing group, the running task may have joined a 10123 * throttled one but it's still the running task. Trigger a 10124 * resched to make sure that task can still run. 10125 */ 10126 resched_curr(rq); 10127 } 10128 10129 task_rq_unlock(rq, tsk, &rf); 10130 } 10131 10132 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10133 { 10134 return css ? container_of(css, struct task_group, css) : NULL; 10135 } 10136 10137 static struct cgroup_subsys_state * 10138 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10139 { 10140 struct task_group *parent = css_tg(parent_css); 10141 struct task_group *tg; 10142 10143 if (!parent) { 10144 /* This is early initialization for the top cgroup */ 10145 return &root_task_group.css; 10146 } 10147 10148 tg = sched_create_group(parent); 10149 if (IS_ERR(tg)) 10150 return ERR_PTR(-ENOMEM); 10151 10152 return &tg->css; 10153 } 10154 10155 /* Expose task group only after completing cgroup initialization */ 10156 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10157 { 10158 struct task_group *tg = css_tg(css); 10159 struct task_group *parent = css_tg(css->parent); 10160 10161 if (parent) 10162 sched_online_group(tg, parent); 10163 10164 #ifdef CONFIG_UCLAMP_TASK_GROUP 10165 /* Propagate the effective uclamp value for the new group */ 10166 mutex_lock(&uclamp_mutex); 10167 rcu_read_lock(); 10168 cpu_util_update_eff(css); 10169 rcu_read_unlock(); 10170 mutex_unlock(&uclamp_mutex); 10171 #endif 10172 10173 return 0; 10174 } 10175 10176 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10177 { 10178 struct task_group *tg = css_tg(css); 10179 10180 sched_release_group(tg); 10181 } 10182 10183 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10184 { 10185 struct task_group *tg = css_tg(css); 10186 10187 /* 10188 * Relies on the RCU grace period between css_released() and this. 10189 */ 10190 sched_unregister_group(tg); 10191 } 10192 10193 /* 10194 * This is called before wake_up_new_task(), therefore we really only 10195 * have to set its group bits, all the other stuff does not apply. 10196 */ 10197 static void cpu_cgroup_fork(struct task_struct *task) 10198 { 10199 struct rq_flags rf; 10200 struct rq *rq; 10201 10202 rq = task_rq_lock(task, &rf); 10203 10204 update_rq_clock(rq); 10205 sched_change_group(task, TASK_SET_GROUP); 10206 10207 task_rq_unlock(rq, task, &rf); 10208 } 10209 10210 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10211 { 10212 struct task_struct *task; 10213 struct cgroup_subsys_state *css; 10214 int ret = 0; 10215 10216 cgroup_taskset_for_each(task, css, tset) { 10217 #ifdef CONFIG_RT_GROUP_SCHED 10218 if (!sched_rt_can_attach(css_tg(css), task)) 10219 return -EINVAL; 10220 #endif 10221 /* 10222 * Serialize against wake_up_new_task() such that if it's 10223 * running, we're sure to observe its full state. 10224 */ 10225 raw_spin_lock_irq(&task->pi_lock); 10226 /* 10227 * Avoid calling sched_move_task() before wake_up_new_task() 10228 * has happened. This would lead to problems with PELT, due to 10229 * move wanting to detach+attach while we're not attached yet. 10230 */ 10231 if (READ_ONCE(task->__state) == TASK_NEW) 10232 ret = -EINVAL; 10233 raw_spin_unlock_irq(&task->pi_lock); 10234 10235 if (ret) 10236 break; 10237 } 10238 return ret; 10239 } 10240 10241 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10242 { 10243 struct task_struct *task; 10244 struct cgroup_subsys_state *css; 10245 10246 cgroup_taskset_for_each(task, css, tset) 10247 sched_move_task(task); 10248 } 10249 10250 #ifdef CONFIG_UCLAMP_TASK_GROUP 10251 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10252 { 10253 struct cgroup_subsys_state *top_css = css; 10254 struct uclamp_se *uc_parent = NULL; 10255 struct uclamp_se *uc_se = NULL; 10256 unsigned int eff[UCLAMP_CNT]; 10257 enum uclamp_id clamp_id; 10258 unsigned int clamps; 10259 10260 lockdep_assert_held(&uclamp_mutex); 10261 SCHED_WARN_ON(!rcu_read_lock_held()); 10262 10263 css_for_each_descendant_pre(css, top_css) { 10264 uc_parent = css_tg(css)->parent 10265 ? css_tg(css)->parent->uclamp : NULL; 10266 10267 for_each_clamp_id(clamp_id) { 10268 /* Assume effective clamps matches requested clamps */ 10269 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10270 /* Cap effective clamps with parent's effective clamps */ 10271 if (uc_parent && 10272 eff[clamp_id] > uc_parent[clamp_id].value) { 10273 eff[clamp_id] = uc_parent[clamp_id].value; 10274 } 10275 } 10276 /* Ensure protection is always capped by limit */ 10277 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10278 10279 /* Propagate most restrictive effective clamps */ 10280 clamps = 0x0; 10281 uc_se = css_tg(css)->uclamp; 10282 for_each_clamp_id(clamp_id) { 10283 if (eff[clamp_id] == uc_se[clamp_id].value) 10284 continue; 10285 uc_se[clamp_id].value = eff[clamp_id]; 10286 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10287 clamps |= (0x1 << clamp_id); 10288 } 10289 if (!clamps) { 10290 css = css_rightmost_descendant(css); 10291 continue; 10292 } 10293 10294 /* Immediately update descendants RUNNABLE tasks */ 10295 uclamp_update_active_tasks(css); 10296 } 10297 } 10298 10299 /* 10300 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10301 * C expression. Since there is no way to convert a macro argument (N) into a 10302 * character constant, use two levels of macros. 10303 */ 10304 #define _POW10(exp) ((unsigned int)1e##exp) 10305 #define POW10(exp) _POW10(exp) 10306 10307 struct uclamp_request { 10308 #define UCLAMP_PERCENT_SHIFT 2 10309 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10310 s64 percent; 10311 u64 util; 10312 int ret; 10313 }; 10314 10315 static inline struct uclamp_request 10316 capacity_from_percent(char *buf) 10317 { 10318 struct uclamp_request req = { 10319 .percent = UCLAMP_PERCENT_SCALE, 10320 .util = SCHED_CAPACITY_SCALE, 10321 .ret = 0, 10322 }; 10323 10324 buf = strim(buf); 10325 if (strcmp(buf, "max")) { 10326 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10327 &req.percent); 10328 if (req.ret) 10329 return req; 10330 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10331 req.ret = -ERANGE; 10332 return req; 10333 } 10334 10335 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10336 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10337 } 10338 10339 return req; 10340 } 10341 10342 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10343 size_t nbytes, loff_t off, 10344 enum uclamp_id clamp_id) 10345 { 10346 struct uclamp_request req; 10347 struct task_group *tg; 10348 10349 req = capacity_from_percent(buf); 10350 if (req.ret) 10351 return req.ret; 10352 10353 static_branch_enable(&sched_uclamp_used); 10354 10355 mutex_lock(&uclamp_mutex); 10356 rcu_read_lock(); 10357 10358 tg = css_tg(of_css(of)); 10359 if (tg->uclamp_req[clamp_id].value != req.util) 10360 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10361 10362 /* 10363 * Because of not recoverable conversion rounding we keep track of the 10364 * exact requested value 10365 */ 10366 tg->uclamp_pct[clamp_id] = req.percent; 10367 10368 /* Update effective clamps to track the most restrictive value */ 10369 cpu_util_update_eff(of_css(of)); 10370 10371 rcu_read_unlock(); 10372 mutex_unlock(&uclamp_mutex); 10373 10374 return nbytes; 10375 } 10376 10377 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10378 char *buf, size_t nbytes, 10379 loff_t off) 10380 { 10381 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10382 } 10383 10384 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10385 char *buf, size_t nbytes, 10386 loff_t off) 10387 { 10388 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10389 } 10390 10391 static inline void cpu_uclamp_print(struct seq_file *sf, 10392 enum uclamp_id clamp_id) 10393 { 10394 struct task_group *tg; 10395 u64 util_clamp; 10396 u64 percent; 10397 u32 rem; 10398 10399 rcu_read_lock(); 10400 tg = css_tg(seq_css(sf)); 10401 util_clamp = tg->uclamp_req[clamp_id].value; 10402 rcu_read_unlock(); 10403 10404 if (util_clamp == SCHED_CAPACITY_SCALE) { 10405 seq_puts(sf, "max\n"); 10406 return; 10407 } 10408 10409 percent = tg->uclamp_pct[clamp_id]; 10410 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10411 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10412 } 10413 10414 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10415 { 10416 cpu_uclamp_print(sf, UCLAMP_MIN); 10417 return 0; 10418 } 10419 10420 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10421 { 10422 cpu_uclamp_print(sf, UCLAMP_MAX); 10423 return 0; 10424 } 10425 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10426 10427 #ifdef CONFIG_FAIR_GROUP_SCHED 10428 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10429 struct cftype *cftype, u64 shareval) 10430 { 10431 if (shareval > scale_load_down(ULONG_MAX)) 10432 shareval = MAX_SHARES; 10433 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10434 } 10435 10436 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10437 struct cftype *cft) 10438 { 10439 struct task_group *tg = css_tg(css); 10440 10441 return (u64) scale_load_down(tg->shares); 10442 } 10443 10444 #ifdef CONFIG_CFS_BANDWIDTH 10445 static DEFINE_MUTEX(cfs_constraints_mutex); 10446 10447 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10448 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10449 /* More than 203 days if BW_SHIFT equals 20. */ 10450 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10451 10452 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10453 10454 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10455 u64 burst) 10456 { 10457 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10458 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10459 10460 if (tg == &root_task_group) 10461 return -EINVAL; 10462 10463 /* 10464 * Ensure we have at some amount of bandwidth every period. This is 10465 * to prevent reaching a state of large arrears when throttled via 10466 * entity_tick() resulting in prolonged exit starvation. 10467 */ 10468 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10469 return -EINVAL; 10470 10471 /* 10472 * Likewise, bound things on the other side by preventing insane quota 10473 * periods. This also allows us to normalize in computing quota 10474 * feasibility. 10475 */ 10476 if (period > max_cfs_quota_period) 10477 return -EINVAL; 10478 10479 /* 10480 * Bound quota to defend quota against overflow during bandwidth shift. 10481 */ 10482 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10483 return -EINVAL; 10484 10485 if (quota != RUNTIME_INF && (burst > quota || 10486 burst + quota > max_cfs_runtime)) 10487 return -EINVAL; 10488 10489 /* 10490 * Prevent race between setting of cfs_rq->runtime_enabled and 10491 * unthrottle_offline_cfs_rqs(). 10492 */ 10493 cpus_read_lock(); 10494 mutex_lock(&cfs_constraints_mutex); 10495 ret = __cfs_schedulable(tg, period, quota); 10496 if (ret) 10497 goto out_unlock; 10498 10499 runtime_enabled = quota != RUNTIME_INF; 10500 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10501 /* 10502 * If we need to toggle cfs_bandwidth_used, off->on must occur 10503 * before making related changes, and on->off must occur afterwards 10504 */ 10505 if (runtime_enabled && !runtime_was_enabled) 10506 cfs_bandwidth_usage_inc(); 10507 raw_spin_lock_irq(&cfs_b->lock); 10508 cfs_b->period = ns_to_ktime(period); 10509 cfs_b->quota = quota; 10510 cfs_b->burst = burst; 10511 10512 __refill_cfs_bandwidth_runtime(cfs_b); 10513 10514 /* Restart the period timer (if active) to handle new period expiry: */ 10515 if (runtime_enabled) 10516 start_cfs_bandwidth(cfs_b); 10517 10518 raw_spin_unlock_irq(&cfs_b->lock); 10519 10520 for_each_online_cpu(i) { 10521 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10522 struct rq *rq = cfs_rq->rq; 10523 struct rq_flags rf; 10524 10525 rq_lock_irq(rq, &rf); 10526 cfs_rq->runtime_enabled = runtime_enabled; 10527 cfs_rq->runtime_remaining = 0; 10528 10529 if (cfs_rq->throttled) 10530 unthrottle_cfs_rq(cfs_rq); 10531 rq_unlock_irq(rq, &rf); 10532 } 10533 if (runtime_was_enabled && !runtime_enabled) 10534 cfs_bandwidth_usage_dec(); 10535 out_unlock: 10536 mutex_unlock(&cfs_constraints_mutex); 10537 cpus_read_unlock(); 10538 10539 return ret; 10540 } 10541 10542 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10543 { 10544 u64 quota, period, burst; 10545 10546 period = ktime_to_ns(tg->cfs_bandwidth.period); 10547 burst = tg->cfs_bandwidth.burst; 10548 if (cfs_quota_us < 0) 10549 quota = RUNTIME_INF; 10550 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10551 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10552 else 10553 return -EINVAL; 10554 10555 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10556 } 10557 10558 static long tg_get_cfs_quota(struct task_group *tg) 10559 { 10560 u64 quota_us; 10561 10562 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10563 return -1; 10564 10565 quota_us = tg->cfs_bandwidth.quota; 10566 do_div(quota_us, NSEC_PER_USEC); 10567 10568 return quota_us; 10569 } 10570 10571 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10572 { 10573 u64 quota, period, burst; 10574 10575 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10576 return -EINVAL; 10577 10578 period = (u64)cfs_period_us * NSEC_PER_USEC; 10579 quota = tg->cfs_bandwidth.quota; 10580 burst = tg->cfs_bandwidth.burst; 10581 10582 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10583 } 10584 10585 static long tg_get_cfs_period(struct task_group *tg) 10586 { 10587 u64 cfs_period_us; 10588 10589 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10590 do_div(cfs_period_us, NSEC_PER_USEC); 10591 10592 return cfs_period_us; 10593 } 10594 10595 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10596 { 10597 u64 quota, period, burst; 10598 10599 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10600 return -EINVAL; 10601 10602 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10603 period = ktime_to_ns(tg->cfs_bandwidth.period); 10604 quota = tg->cfs_bandwidth.quota; 10605 10606 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10607 } 10608 10609 static long tg_get_cfs_burst(struct task_group *tg) 10610 { 10611 u64 burst_us; 10612 10613 burst_us = tg->cfs_bandwidth.burst; 10614 do_div(burst_us, NSEC_PER_USEC); 10615 10616 return burst_us; 10617 } 10618 10619 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10620 struct cftype *cft) 10621 { 10622 return tg_get_cfs_quota(css_tg(css)); 10623 } 10624 10625 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10626 struct cftype *cftype, s64 cfs_quota_us) 10627 { 10628 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10629 } 10630 10631 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10632 struct cftype *cft) 10633 { 10634 return tg_get_cfs_period(css_tg(css)); 10635 } 10636 10637 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10638 struct cftype *cftype, u64 cfs_period_us) 10639 { 10640 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10641 } 10642 10643 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10644 struct cftype *cft) 10645 { 10646 return tg_get_cfs_burst(css_tg(css)); 10647 } 10648 10649 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10650 struct cftype *cftype, u64 cfs_burst_us) 10651 { 10652 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10653 } 10654 10655 struct cfs_schedulable_data { 10656 struct task_group *tg; 10657 u64 period, quota; 10658 }; 10659 10660 /* 10661 * normalize group quota/period to be quota/max_period 10662 * note: units are usecs 10663 */ 10664 static u64 normalize_cfs_quota(struct task_group *tg, 10665 struct cfs_schedulable_data *d) 10666 { 10667 u64 quota, period; 10668 10669 if (tg == d->tg) { 10670 period = d->period; 10671 quota = d->quota; 10672 } else { 10673 period = tg_get_cfs_period(tg); 10674 quota = tg_get_cfs_quota(tg); 10675 } 10676 10677 /* note: these should typically be equivalent */ 10678 if (quota == RUNTIME_INF || quota == -1) 10679 return RUNTIME_INF; 10680 10681 return to_ratio(period, quota); 10682 } 10683 10684 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10685 { 10686 struct cfs_schedulable_data *d = data; 10687 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10688 s64 quota = 0, parent_quota = -1; 10689 10690 if (!tg->parent) { 10691 quota = RUNTIME_INF; 10692 } else { 10693 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10694 10695 quota = normalize_cfs_quota(tg, d); 10696 parent_quota = parent_b->hierarchical_quota; 10697 10698 /* 10699 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10700 * always take the min. On cgroup1, only inherit when no 10701 * limit is set: 10702 */ 10703 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10704 quota = min(quota, parent_quota); 10705 } else { 10706 if (quota == RUNTIME_INF) 10707 quota = parent_quota; 10708 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10709 return -EINVAL; 10710 } 10711 } 10712 cfs_b->hierarchical_quota = quota; 10713 10714 return 0; 10715 } 10716 10717 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10718 { 10719 int ret; 10720 struct cfs_schedulable_data data = { 10721 .tg = tg, 10722 .period = period, 10723 .quota = quota, 10724 }; 10725 10726 if (quota != RUNTIME_INF) { 10727 do_div(data.period, NSEC_PER_USEC); 10728 do_div(data.quota, NSEC_PER_USEC); 10729 } 10730 10731 rcu_read_lock(); 10732 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10733 rcu_read_unlock(); 10734 10735 return ret; 10736 } 10737 10738 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10739 { 10740 struct task_group *tg = css_tg(seq_css(sf)); 10741 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10742 10743 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10744 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10745 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10746 10747 if (schedstat_enabled() && tg != &root_task_group) { 10748 struct sched_statistics *stats; 10749 u64 ws = 0; 10750 int i; 10751 10752 for_each_possible_cpu(i) { 10753 stats = __schedstats_from_se(tg->se[i]); 10754 ws += schedstat_val(stats->wait_sum); 10755 } 10756 10757 seq_printf(sf, "wait_sum %llu\n", ws); 10758 } 10759 10760 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10761 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10762 10763 return 0; 10764 } 10765 #endif /* CONFIG_CFS_BANDWIDTH */ 10766 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10767 10768 #ifdef CONFIG_RT_GROUP_SCHED 10769 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10770 struct cftype *cft, s64 val) 10771 { 10772 return sched_group_set_rt_runtime(css_tg(css), val); 10773 } 10774 10775 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10776 struct cftype *cft) 10777 { 10778 return sched_group_rt_runtime(css_tg(css)); 10779 } 10780 10781 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10782 struct cftype *cftype, u64 rt_period_us) 10783 { 10784 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10785 } 10786 10787 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10788 struct cftype *cft) 10789 { 10790 return sched_group_rt_period(css_tg(css)); 10791 } 10792 #endif /* CONFIG_RT_GROUP_SCHED */ 10793 10794 #ifdef CONFIG_FAIR_GROUP_SCHED 10795 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10796 struct cftype *cft) 10797 { 10798 return css_tg(css)->idle; 10799 } 10800 10801 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10802 struct cftype *cft, s64 idle) 10803 { 10804 return sched_group_set_idle(css_tg(css), idle); 10805 } 10806 #endif 10807 10808 static struct cftype cpu_legacy_files[] = { 10809 #ifdef CONFIG_FAIR_GROUP_SCHED 10810 { 10811 .name = "shares", 10812 .read_u64 = cpu_shares_read_u64, 10813 .write_u64 = cpu_shares_write_u64, 10814 }, 10815 { 10816 .name = "idle", 10817 .read_s64 = cpu_idle_read_s64, 10818 .write_s64 = cpu_idle_write_s64, 10819 }, 10820 #endif 10821 #ifdef CONFIG_CFS_BANDWIDTH 10822 { 10823 .name = "cfs_quota_us", 10824 .read_s64 = cpu_cfs_quota_read_s64, 10825 .write_s64 = cpu_cfs_quota_write_s64, 10826 }, 10827 { 10828 .name = "cfs_period_us", 10829 .read_u64 = cpu_cfs_period_read_u64, 10830 .write_u64 = cpu_cfs_period_write_u64, 10831 }, 10832 { 10833 .name = "cfs_burst_us", 10834 .read_u64 = cpu_cfs_burst_read_u64, 10835 .write_u64 = cpu_cfs_burst_write_u64, 10836 }, 10837 { 10838 .name = "stat", 10839 .seq_show = cpu_cfs_stat_show, 10840 }, 10841 #endif 10842 #ifdef CONFIG_RT_GROUP_SCHED 10843 { 10844 .name = "rt_runtime_us", 10845 .read_s64 = cpu_rt_runtime_read, 10846 .write_s64 = cpu_rt_runtime_write, 10847 }, 10848 { 10849 .name = "rt_period_us", 10850 .read_u64 = cpu_rt_period_read_uint, 10851 .write_u64 = cpu_rt_period_write_uint, 10852 }, 10853 #endif 10854 #ifdef CONFIG_UCLAMP_TASK_GROUP 10855 { 10856 .name = "uclamp.min", 10857 .flags = CFTYPE_NOT_ON_ROOT, 10858 .seq_show = cpu_uclamp_min_show, 10859 .write = cpu_uclamp_min_write, 10860 }, 10861 { 10862 .name = "uclamp.max", 10863 .flags = CFTYPE_NOT_ON_ROOT, 10864 .seq_show = cpu_uclamp_max_show, 10865 .write = cpu_uclamp_max_write, 10866 }, 10867 #endif 10868 { } /* Terminate */ 10869 }; 10870 10871 static int cpu_extra_stat_show(struct seq_file *sf, 10872 struct cgroup_subsys_state *css) 10873 { 10874 #ifdef CONFIG_CFS_BANDWIDTH 10875 { 10876 struct task_group *tg = css_tg(css); 10877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10878 u64 throttled_usec, burst_usec; 10879 10880 throttled_usec = cfs_b->throttled_time; 10881 do_div(throttled_usec, NSEC_PER_USEC); 10882 burst_usec = cfs_b->burst_time; 10883 do_div(burst_usec, NSEC_PER_USEC); 10884 10885 seq_printf(sf, "nr_periods %d\n" 10886 "nr_throttled %d\n" 10887 "throttled_usec %llu\n" 10888 "nr_bursts %d\n" 10889 "burst_usec %llu\n", 10890 cfs_b->nr_periods, cfs_b->nr_throttled, 10891 throttled_usec, cfs_b->nr_burst, burst_usec); 10892 } 10893 #endif 10894 return 0; 10895 } 10896 10897 #ifdef CONFIG_FAIR_GROUP_SCHED 10898 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 10899 struct cftype *cft) 10900 { 10901 struct task_group *tg = css_tg(css); 10902 u64 weight = scale_load_down(tg->shares); 10903 10904 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 10905 } 10906 10907 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 10908 struct cftype *cft, u64 weight) 10909 { 10910 /* 10911 * cgroup weight knobs should use the common MIN, DFL and MAX 10912 * values which are 1, 100 and 10000 respectively. While it loses 10913 * a bit of range on both ends, it maps pretty well onto the shares 10914 * value used by scheduler and the round-trip conversions preserve 10915 * the original value over the entire range. 10916 */ 10917 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 10918 return -ERANGE; 10919 10920 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 10921 10922 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10923 } 10924 10925 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 10926 struct cftype *cft) 10927 { 10928 unsigned long weight = scale_load_down(css_tg(css)->shares); 10929 int last_delta = INT_MAX; 10930 int prio, delta; 10931 10932 /* find the closest nice value to the current weight */ 10933 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 10934 delta = abs(sched_prio_to_weight[prio] - weight); 10935 if (delta >= last_delta) 10936 break; 10937 last_delta = delta; 10938 } 10939 10940 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 10941 } 10942 10943 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 10944 struct cftype *cft, s64 nice) 10945 { 10946 unsigned long weight; 10947 int idx; 10948 10949 if (nice < MIN_NICE || nice > MAX_NICE) 10950 return -ERANGE; 10951 10952 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 10953 idx = array_index_nospec(idx, 40); 10954 weight = sched_prio_to_weight[idx]; 10955 10956 return sched_group_set_shares(css_tg(css), scale_load(weight)); 10957 } 10958 #endif 10959 10960 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 10961 long period, long quota) 10962 { 10963 if (quota < 0) 10964 seq_puts(sf, "max"); 10965 else 10966 seq_printf(sf, "%ld", quota); 10967 10968 seq_printf(sf, " %ld\n", period); 10969 } 10970 10971 /* caller should put the current value in *@periodp before calling */ 10972 static int __maybe_unused cpu_period_quota_parse(char *buf, 10973 u64 *periodp, u64 *quotap) 10974 { 10975 char tok[21]; /* U64_MAX */ 10976 10977 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 10978 return -EINVAL; 10979 10980 *periodp *= NSEC_PER_USEC; 10981 10982 if (sscanf(tok, "%llu", quotap)) 10983 *quotap *= NSEC_PER_USEC; 10984 else if (!strcmp(tok, "max")) 10985 *quotap = RUNTIME_INF; 10986 else 10987 return -EINVAL; 10988 10989 return 0; 10990 } 10991 10992 #ifdef CONFIG_CFS_BANDWIDTH 10993 static int cpu_max_show(struct seq_file *sf, void *v) 10994 { 10995 struct task_group *tg = css_tg(seq_css(sf)); 10996 10997 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 10998 return 0; 10999 } 11000 11001 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11002 char *buf, size_t nbytes, loff_t off) 11003 { 11004 struct task_group *tg = css_tg(of_css(of)); 11005 u64 period = tg_get_cfs_period(tg); 11006 u64 burst = tg_get_cfs_burst(tg); 11007 u64 quota; 11008 int ret; 11009 11010 ret = cpu_period_quota_parse(buf, &period, "a); 11011 if (!ret) 11012 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11013 return ret ?: nbytes; 11014 } 11015 #endif 11016 11017 static struct cftype cpu_files[] = { 11018 #ifdef CONFIG_FAIR_GROUP_SCHED 11019 { 11020 .name = "weight", 11021 .flags = CFTYPE_NOT_ON_ROOT, 11022 .read_u64 = cpu_weight_read_u64, 11023 .write_u64 = cpu_weight_write_u64, 11024 }, 11025 { 11026 .name = "weight.nice", 11027 .flags = CFTYPE_NOT_ON_ROOT, 11028 .read_s64 = cpu_weight_nice_read_s64, 11029 .write_s64 = cpu_weight_nice_write_s64, 11030 }, 11031 { 11032 .name = "idle", 11033 .flags = CFTYPE_NOT_ON_ROOT, 11034 .read_s64 = cpu_idle_read_s64, 11035 .write_s64 = cpu_idle_write_s64, 11036 }, 11037 #endif 11038 #ifdef CONFIG_CFS_BANDWIDTH 11039 { 11040 .name = "max", 11041 .flags = CFTYPE_NOT_ON_ROOT, 11042 .seq_show = cpu_max_show, 11043 .write = cpu_max_write, 11044 }, 11045 { 11046 .name = "max.burst", 11047 .flags = CFTYPE_NOT_ON_ROOT, 11048 .read_u64 = cpu_cfs_burst_read_u64, 11049 .write_u64 = cpu_cfs_burst_write_u64, 11050 }, 11051 #endif 11052 #ifdef CONFIG_UCLAMP_TASK_GROUP 11053 { 11054 .name = "uclamp.min", 11055 .flags = CFTYPE_NOT_ON_ROOT, 11056 .seq_show = cpu_uclamp_min_show, 11057 .write = cpu_uclamp_min_write, 11058 }, 11059 { 11060 .name = "uclamp.max", 11061 .flags = CFTYPE_NOT_ON_ROOT, 11062 .seq_show = cpu_uclamp_max_show, 11063 .write = cpu_uclamp_max_write, 11064 }, 11065 #endif 11066 { } /* terminate */ 11067 }; 11068 11069 struct cgroup_subsys cpu_cgrp_subsys = { 11070 .css_alloc = cpu_cgroup_css_alloc, 11071 .css_online = cpu_cgroup_css_online, 11072 .css_released = cpu_cgroup_css_released, 11073 .css_free = cpu_cgroup_css_free, 11074 .css_extra_stat_show = cpu_extra_stat_show, 11075 .fork = cpu_cgroup_fork, 11076 .can_attach = cpu_cgroup_can_attach, 11077 .attach = cpu_cgroup_attach, 11078 .legacy_cftypes = cpu_legacy_files, 11079 .dfl_cftypes = cpu_files, 11080 .early_init = true, 11081 .threaded = true, 11082 }; 11083 11084 #endif /* CONFIG_CGROUP_SCHED */ 11085 11086 void dump_cpu_task(int cpu) 11087 { 11088 pr_info("Task dump for CPU %d:\n", cpu); 11089 sched_show_task(cpu_curr(cpu)); 11090 } 11091 11092 /* 11093 * Nice levels are multiplicative, with a gentle 10% change for every 11094 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11095 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11096 * that remained on nice 0. 11097 * 11098 * The "10% effect" is relative and cumulative: from _any_ nice level, 11099 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11100 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11101 * If a task goes up by ~10% and another task goes down by ~10% then 11102 * the relative distance between them is ~25%.) 11103 */ 11104 const int sched_prio_to_weight[40] = { 11105 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11106 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11107 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11108 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11109 /* 0 */ 1024, 820, 655, 526, 423, 11110 /* 5 */ 335, 272, 215, 172, 137, 11111 /* 10 */ 110, 87, 70, 56, 45, 11112 /* 15 */ 36, 29, 23, 18, 15, 11113 }; 11114 11115 /* 11116 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11117 * 11118 * In cases where the weight does not change often, we can use the 11119 * precalculated inverse to speed up arithmetics by turning divisions 11120 * into multiplications: 11121 */ 11122 const u32 sched_prio_to_wmult[40] = { 11123 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11124 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11125 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11126 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11127 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11128 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11129 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11130 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11131 }; 11132 11133 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11134 { 11135 trace_sched_update_nr_running_tp(rq, count); 11136 } 11137