xref: /linux/kernel/sched/core.c (revision d786bdf2a70545a868cd0b06b5603cd5a5fec011)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include <linux/sched/rseq_api.h>
81 #include <trace/events/sched.h>
82 #undef CREATE_TRACE_POINTS
83 
84 #include "sched.h"
85 #include "stats.h"
86 #include "autogroup.h"
87 
88 #include "autogroup.h"
89 #include "pelt.h"
90 #include "smp.h"
91 #include "stats.h"
92 
93 #include "../workqueue_internal.h"
94 #include "../../fs/io-wq.h"
95 #include "../smpboot.h"
96 
97 /*
98  * Export tracepoints that act as a bare tracehook (ie: have no trace event
99  * associated with them) to allow external modules to probe them.
100  */
101 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
112 
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 #ifdef CONFIG_SCHED_DEBUG
116 /*
117  * Debugging: various feature bits
118  *
119  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
120  * sysctl_sched_features, defined in sched.h, to allow constants propagation
121  * at compile time and compiler optimization based on features default.
122  */
123 #define SCHED_FEAT(name, enabled)	\
124 	(1UL << __SCHED_FEAT_##name) * enabled |
125 const_debug unsigned int sysctl_sched_features =
126 #include "features.h"
127 	0;
128 #undef SCHED_FEAT
129 
130 /*
131  * Print a warning if need_resched is set for the given duration (if
132  * LATENCY_WARN is enabled).
133  *
134  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
135  * per boot.
136  */
137 __read_mostly int sysctl_resched_latency_warn_ms = 100;
138 __read_mostly int sysctl_resched_latency_warn_once = 1;
139 #endif /* CONFIG_SCHED_DEBUG */
140 
141 /*
142  * Number of tasks to iterate in a single balance run.
143  * Limited because this is done with IRQs disabled.
144  */
145 #ifdef CONFIG_PREEMPT_RT
146 const_debug unsigned int sysctl_sched_nr_migrate = 8;
147 #else
148 const_debug unsigned int sysctl_sched_nr_migrate = 32;
149 #endif
150 
151 __read_mostly int scheduler_running;
152 
153 #ifdef CONFIG_SCHED_CORE
154 
155 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
156 
157 /* kernel prio, less is more */
158 static inline int __task_prio(struct task_struct *p)
159 {
160 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
161 		return -2;
162 
163 	if (rt_prio(p->prio)) /* includes deadline */
164 		return p->prio; /* [-1, 99] */
165 
166 	if (p->sched_class == &idle_sched_class)
167 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
168 
169 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
170 }
171 
172 /*
173  * l(a,b)
174  * le(a,b) := !l(b,a)
175  * g(a,b)  := l(b,a)
176  * ge(a,b) := !l(a,b)
177  */
178 
179 /* real prio, less is less */
180 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
181 {
182 
183 	int pa = __task_prio(a), pb = __task_prio(b);
184 
185 	if (-pa < -pb)
186 		return true;
187 
188 	if (-pb < -pa)
189 		return false;
190 
191 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
192 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
193 
194 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
195 		return cfs_prio_less(a, b, in_fi);
196 
197 	return false;
198 }
199 
200 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
201 {
202 	if (a->core_cookie < b->core_cookie)
203 		return true;
204 
205 	if (a->core_cookie > b->core_cookie)
206 		return false;
207 
208 	/* flip prio, so high prio is leftmost */
209 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
210 		return true;
211 
212 	return false;
213 }
214 
215 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
216 
217 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
218 {
219 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
220 }
221 
222 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
223 {
224 	const struct task_struct *p = __node_2_sc(node);
225 	unsigned long cookie = (unsigned long)key;
226 
227 	if (cookie < p->core_cookie)
228 		return -1;
229 
230 	if (cookie > p->core_cookie)
231 		return 1;
232 
233 	return 0;
234 }
235 
236 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
237 {
238 	rq->core->core_task_seq++;
239 
240 	if (!p->core_cookie)
241 		return;
242 
243 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
244 }
245 
246 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
247 {
248 	rq->core->core_task_seq++;
249 
250 	if (sched_core_enqueued(p)) {
251 		rb_erase(&p->core_node, &rq->core_tree);
252 		RB_CLEAR_NODE(&p->core_node);
253 	}
254 
255 	/*
256 	 * Migrating the last task off the cpu, with the cpu in forced idle
257 	 * state. Reschedule to create an accounting edge for forced idle,
258 	 * and re-examine whether the core is still in forced idle state.
259 	 */
260 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
261 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
262 		resched_curr(rq);
263 }
264 
265 /*
266  * Find left-most (aka, highest priority) task matching @cookie.
267  */
268 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
269 {
270 	struct rb_node *node;
271 
272 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
273 	/*
274 	 * The idle task always matches any cookie!
275 	 */
276 	if (!node)
277 		return idle_sched_class.pick_task(rq);
278 
279 	return __node_2_sc(node);
280 }
281 
282 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
283 {
284 	struct rb_node *node = &p->core_node;
285 
286 	node = rb_next(node);
287 	if (!node)
288 		return NULL;
289 
290 	p = container_of(node, struct task_struct, core_node);
291 	if (p->core_cookie != cookie)
292 		return NULL;
293 
294 	return p;
295 }
296 
297 /*
298  * Magic required such that:
299  *
300  *	raw_spin_rq_lock(rq);
301  *	...
302  *	raw_spin_rq_unlock(rq);
303  *
304  * ends up locking and unlocking the _same_ lock, and all CPUs
305  * always agree on what rq has what lock.
306  *
307  * XXX entirely possible to selectively enable cores, don't bother for now.
308  */
309 
310 static DEFINE_MUTEX(sched_core_mutex);
311 static atomic_t sched_core_count;
312 static struct cpumask sched_core_mask;
313 
314 static void sched_core_lock(int cpu, unsigned long *flags)
315 {
316 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
317 	int t, i = 0;
318 
319 	local_irq_save(*flags);
320 	for_each_cpu(t, smt_mask)
321 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
322 }
323 
324 static void sched_core_unlock(int cpu, unsigned long *flags)
325 {
326 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
327 	int t;
328 
329 	for_each_cpu(t, smt_mask)
330 		raw_spin_unlock(&cpu_rq(t)->__lock);
331 	local_irq_restore(*flags);
332 }
333 
334 static void __sched_core_flip(bool enabled)
335 {
336 	unsigned long flags;
337 	int cpu, t;
338 
339 	cpus_read_lock();
340 
341 	/*
342 	 * Toggle the online cores, one by one.
343 	 */
344 	cpumask_copy(&sched_core_mask, cpu_online_mask);
345 	for_each_cpu(cpu, &sched_core_mask) {
346 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
347 
348 		sched_core_lock(cpu, &flags);
349 
350 		for_each_cpu(t, smt_mask)
351 			cpu_rq(t)->core_enabled = enabled;
352 
353 		cpu_rq(cpu)->core->core_forceidle_start = 0;
354 
355 		sched_core_unlock(cpu, &flags);
356 
357 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
358 	}
359 
360 	/*
361 	 * Toggle the offline CPUs.
362 	 */
363 	cpumask_copy(&sched_core_mask, cpu_possible_mask);
364 	cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
365 
366 	for_each_cpu(cpu, &sched_core_mask)
367 		cpu_rq(cpu)->core_enabled = enabled;
368 
369 	cpus_read_unlock();
370 }
371 
372 static void sched_core_assert_empty(void)
373 {
374 	int cpu;
375 
376 	for_each_possible_cpu(cpu)
377 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
378 }
379 
380 static void __sched_core_enable(void)
381 {
382 	static_branch_enable(&__sched_core_enabled);
383 	/*
384 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
385 	 * and future ones will observe !sched_core_disabled().
386 	 */
387 	synchronize_rcu();
388 	__sched_core_flip(true);
389 	sched_core_assert_empty();
390 }
391 
392 static void __sched_core_disable(void)
393 {
394 	sched_core_assert_empty();
395 	__sched_core_flip(false);
396 	static_branch_disable(&__sched_core_enabled);
397 }
398 
399 void sched_core_get(void)
400 {
401 	if (atomic_inc_not_zero(&sched_core_count))
402 		return;
403 
404 	mutex_lock(&sched_core_mutex);
405 	if (!atomic_read(&sched_core_count))
406 		__sched_core_enable();
407 
408 	smp_mb__before_atomic();
409 	atomic_inc(&sched_core_count);
410 	mutex_unlock(&sched_core_mutex);
411 }
412 
413 static void __sched_core_put(struct work_struct *work)
414 {
415 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
416 		__sched_core_disable();
417 		mutex_unlock(&sched_core_mutex);
418 	}
419 }
420 
421 void sched_core_put(void)
422 {
423 	static DECLARE_WORK(_work, __sched_core_put);
424 
425 	/*
426 	 * "There can be only one"
427 	 *
428 	 * Either this is the last one, or we don't actually need to do any
429 	 * 'work'. If it is the last *again*, we rely on
430 	 * WORK_STRUCT_PENDING_BIT.
431 	 */
432 	if (!atomic_add_unless(&sched_core_count, -1, 1))
433 		schedule_work(&_work);
434 }
435 
436 #else /* !CONFIG_SCHED_CORE */
437 
438 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
439 static inline void
440 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
441 
442 #endif /* CONFIG_SCHED_CORE */
443 
444 /*
445  * Serialization rules:
446  *
447  * Lock order:
448  *
449  *   p->pi_lock
450  *     rq->lock
451  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
452  *
453  *  rq1->lock
454  *    rq2->lock  where: rq1 < rq2
455  *
456  * Regular state:
457  *
458  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
459  * local CPU's rq->lock, it optionally removes the task from the runqueue and
460  * always looks at the local rq data structures to find the most eligible task
461  * to run next.
462  *
463  * Task enqueue is also under rq->lock, possibly taken from another CPU.
464  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
465  * the local CPU to avoid bouncing the runqueue state around [ see
466  * ttwu_queue_wakelist() ]
467  *
468  * Task wakeup, specifically wakeups that involve migration, are horribly
469  * complicated to avoid having to take two rq->locks.
470  *
471  * Special state:
472  *
473  * System-calls and anything external will use task_rq_lock() which acquires
474  * both p->pi_lock and rq->lock. As a consequence the state they change is
475  * stable while holding either lock:
476  *
477  *  - sched_setaffinity()/
478  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
479  *  - set_user_nice():		p->se.load, p->*prio
480  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
481  *				p->se.load, p->rt_priority,
482  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
483  *  - sched_setnuma():		p->numa_preferred_nid
484  *  - sched_move_task()/
485  *    cpu_cgroup_fork():	p->sched_task_group
486  *  - uclamp_update_active()	p->uclamp*
487  *
488  * p->state <- TASK_*:
489  *
490  *   is changed locklessly using set_current_state(), __set_current_state() or
491  *   set_special_state(), see their respective comments, or by
492  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
493  *   concurrent self.
494  *
495  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
496  *
497  *   is set by activate_task() and cleared by deactivate_task(), under
498  *   rq->lock. Non-zero indicates the task is runnable, the special
499  *   ON_RQ_MIGRATING state is used for migration without holding both
500  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
501  *
502  * p->on_cpu <- { 0, 1 }:
503  *
504  *   is set by prepare_task() and cleared by finish_task() such that it will be
505  *   set before p is scheduled-in and cleared after p is scheduled-out, both
506  *   under rq->lock. Non-zero indicates the task is running on its CPU.
507  *
508  *   [ The astute reader will observe that it is possible for two tasks on one
509  *     CPU to have ->on_cpu = 1 at the same time. ]
510  *
511  * task_cpu(p): is changed by set_task_cpu(), the rules are:
512  *
513  *  - Don't call set_task_cpu() on a blocked task:
514  *
515  *    We don't care what CPU we're not running on, this simplifies hotplug,
516  *    the CPU assignment of blocked tasks isn't required to be valid.
517  *
518  *  - for try_to_wake_up(), called under p->pi_lock:
519  *
520  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
521  *
522  *  - for migration called under rq->lock:
523  *    [ see task_on_rq_migrating() in task_rq_lock() ]
524  *
525  *    o move_queued_task()
526  *    o detach_task()
527  *
528  *  - for migration called under double_rq_lock():
529  *
530  *    o __migrate_swap_task()
531  *    o push_rt_task() / pull_rt_task()
532  *    o push_dl_task() / pull_dl_task()
533  *    o dl_task_offline_migration()
534  *
535  */
536 
537 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
538 {
539 	raw_spinlock_t *lock;
540 
541 	/* Matches synchronize_rcu() in __sched_core_enable() */
542 	preempt_disable();
543 	if (sched_core_disabled()) {
544 		raw_spin_lock_nested(&rq->__lock, subclass);
545 		/* preempt_count *MUST* be > 1 */
546 		preempt_enable_no_resched();
547 		return;
548 	}
549 
550 	for (;;) {
551 		lock = __rq_lockp(rq);
552 		raw_spin_lock_nested(lock, subclass);
553 		if (likely(lock == __rq_lockp(rq))) {
554 			/* preempt_count *MUST* be > 1 */
555 			preempt_enable_no_resched();
556 			return;
557 		}
558 		raw_spin_unlock(lock);
559 	}
560 }
561 
562 bool raw_spin_rq_trylock(struct rq *rq)
563 {
564 	raw_spinlock_t *lock;
565 	bool ret;
566 
567 	/* Matches synchronize_rcu() in __sched_core_enable() */
568 	preempt_disable();
569 	if (sched_core_disabled()) {
570 		ret = raw_spin_trylock(&rq->__lock);
571 		preempt_enable();
572 		return ret;
573 	}
574 
575 	for (;;) {
576 		lock = __rq_lockp(rq);
577 		ret = raw_spin_trylock(lock);
578 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
579 			preempt_enable();
580 			return ret;
581 		}
582 		raw_spin_unlock(lock);
583 	}
584 }
585 
586 void raw_spin_rq_unlock(struct rq *rq)
587 {
588 	raw_spin_unlock(rq_lockp(rq));
589 }
590 
591 #ifdef CONFIG_SMP
592 /*
593  * double_rq_lock - safely lock two runqueues
594  */
595 void double_rq_lock(struct rq *rq1, struct rq *rq2)
596 {
597 	lockdep_assert_irqs_disabled();
598 
599 	if (rq_order_less(rq2, rq1))
600 		swap(rq1, rq2);
601 
602 	raw_spin_rq_lock(rq1);
603 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
604 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
605 
606 	double_rq_clock_clear_update(rq1, rq2);
607 }
608 #endif
609 
610 /*
611  * __task_rq_lock - lock the rq @p resides on.
612  */
613 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
614 	__acquires(rq->lock)
615 {
616 	struct rq *rq;
617 
618 	lockdep_assert_held(&p->pi_lock);
619 
620 	for (;;) {
621 		rq = task_rq(p);
622 		raw_spin_rq_lock(rq);
623 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
624 			rq_pin_lock(rq, rf);
625 			return rq;
626 		}
627 		raw_spin_rq_unlock(rq);
628 
629 		while (unlikely(task_on_rq_migrating(p)))
630 			cpu_relax();
631 	}
632 }
633 
634 /*
635  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
636  */
637 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
638 	__acquires(p->pi_lock)
639 	__acquires(rq->lock)
640 {
641 	struct rq *rq;
642 
643 	for (;;) {
644 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
645 		rq = task_rq(p);
646 		raw_spin_rq_lock(rq);
647 		/*
648 		 *	move_queued_task()		task_rq_lock()
649 		 *
650 		 *	ACQUIRE (rq->lock)
651 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
652 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
653 		 *	[S] ->cpu = new_cpu		[L] task_rq()
654 		 *					[L] ->on_rq
655 		 *	RELEASE (rq->lock)
656 		 *
657 		 * If we observe the old CPU in task_rq_lock(), the acquire of
658 		 * the old rq->lock will fully serialize against the stores.
659 		 *
660 		 * If we observe the new CPU in task_rq_lock(), the address
661 		 * dependency headed by '[L] rq = task_rq()' and the acquire
662 		 * will pair with the WMB to ensure we then also see migrating.
663 		 */
664 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
665 			rq_pin_lock(rq, rf);
666 			return rq;
667 		}
668 		raw_spin_rq_unlock(rq);
669 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
670 
671 		while (unlikely(task_on_rq_migrating(p)))
672 			cpu_relax();
673 	}
674 }
675 
676 /*
677  * RQ-clock updating methods:
678  */
679 
680 static void update_rq_clock_task(struct rq *rq, s64 delta)
681 {
682 /*
683  * In theory, the compile should just see 0 here, and optimize out the call
684  * to sched_rt_avg_update. But I don't trust it...
685  */
686 	s64 __maybe_unused steal = 0, irq_delta = 0;
687 
688 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
689 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
690 
691 	/*
692 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
693 	 * this case when a previous update_rq_clock() happened inside a
694 	 * {soft,}irq region.
695 	 *
696 	 * When this happens, we stop ->clock_task and only update the
697 	 * prev_irq_time stamp to account for the part that fit, so that a next
698 	 * update will consume the rest. This ensures ->clock_task is
699 	 * monotonic.
700 	 *
701 	 * It does however cause some slight miss-attribution of {soft,}irq
702 	 * time, a more accurate solution would be to update the irq_time using
703 	 * the current rq->clock timestamp, except that would require using
704 	 * atomic ops.
705 	 */
706 	if (irq_delta > delta)
707 		irq_delta = delta;
708 
709 	rq->prev_irq_time += irq_delta;
710 	delta -= irq_delta;
711 #endif
712 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
713 	if (static_key_false((&paravirt_steal_rq_enabled))) {
714 		steal = paravirt_steal_clock(cpu_of(rq));
715 		steal -= rq->prev_steal_time_rq;
716 
717 		if (unlikely(steal > delta))
718 			steal = delta;
719 
720 		rq->prev_steal_time_rq += steal;
721 		delta -= steal;
722 	}
723 #endif
724 
725 	rq->clock_task += delta;
726 
727 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
728 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
729 		update_irq_load_avg(rq, irq_delta + steal);
730 #endif
731 	update_rq_clock_pelt(rq, delta);
732 }
733 
734 void update_rq_clock(struct rq *rq)
735 {
736 	s64 delta;
737 
738 	lockdep_assert_rq_held(rq);
739 
740 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
741 		return;
742 
743 #ifdef CONFIG_SCHED_DEBUG
744 	if (sched_feat(WARN_DOUBLE_CLOCK))
745 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
746 	rq->clock_update_flags |= RQCF_UPDATED;
747 #endif
748 
749 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
750 	if (delta < 0)
751 		return;
752 	rq->clock += delta;
753 	update_rq_clock_task(rq, delta);
754 }
755 
756 #ifdef CONFIG_SCHED_HRTICK
757 /*
758  * Use HR-timers to deliver accurate preemption points.
759  */
760 
761 static void hrtick_clear(struct rq *rq)
762 {
763 	if (hrtimer_active(&rq->hrtick_timer))
764 		hrtimer_cancel(&rq->hrtick_timer);
765 }
766 
767 /*
768  * High-resolution timer tick.
769  * Runs from hardirq context with interrupts disabled.
770  */
771 static enum hrtimer_restart hrtick(struct hrtimer *timer)
772 {
773 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
774 	struct rq_flags rf;
775 
776 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
777 
778 	rq_lock(rq, &rf);
779 	update_rq_clock(rq);
780 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
781 	rq_unlock(rq, &rf);
782 
783 	return HRTIMER_NORESTART;
784 }
785 
786 #ifdef CONFIG_SMP
787 
788 static void __hrtick_restart(struct rq *rq)
789 {
790 	struct hrtimer *timer = &rq->hrtick_timer;
791 	ktime_t time = rq->hrtick_time;
792 
793 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
794 }
795 
796 /*
797  * called from hardirq (IPI) context
798  */
799 static void __hrtick_start(void *arg)
800 {
801 	struct rq *rq = arg;
802 	struct rq_flags rf;
803 
804 	rq_lock(rq, &rf);
805 	__hrtick_restart(rq);
806 	rq_unlock(rq, &rf);
807 }
808 
809 /*
810  * Called to set the hrtick timer state.
811  *
812  * called with rq->lock held and irqs disabled
813  */
814 void hrtick_start(struct rq *rq, u64 delay)
815 {
816 	struct hrtimer *timer = &rq->hrtick_timer;
817 	s64 delta;
818 
819 	/*
820 	 * Don't schedule slices shorter than 10000ns, that just
821 	 * doesn't make sense and can cause timer DoS.
822 	 */
823 	delta = max_t(s64, delay, 10000LL);
824 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
825 
826 	if (rq == this_rq())
827 		__hrtick_restart(rq);
828 	else
829 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
830 }
831 
832 #else
833 /*
834  * Called to set the hrtick timer state.
835  *
836  * called with rq->lock held and irqs disabled
837  */
838 void hrtick_start(struct rq *rq, u64 delay)
839 {
840 	/*
841 	 * Don't schedule slices shorter than 10000ns, that just
842 	 * doesn't make sense. Rely on vruntime for fairness.
843 	 */
844 	delay = max_t(u64, delay, 10000LL);
845 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
846 		      HRTIMER_MODE_REL_PINNED_HARD);
847 }
848 
849 #endif /* CONFIG_SMP */
850 
851 static void hrtick_rq_init(struct rq *rq)
852 {
853 #ifdef CONFIG_SMP
854 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
855 #endif
856 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
857 	rq->hrtick_timer.function = hrtick;
858 }
859 #else	/* CONFIG_SCHED_HRTICK */
860 static inline void hrtick_clear(struct rq *rq)
861 {
862 }
863 
864 static inline void hrtick_rq_init(struct rq *rq)
865 {
866 }
867 #endif	/* CONFIG_SCHED_HRTICK */
868 
869 /*
870  * cmpxchg based fetch_or, macro so it works for different integer types
871  */
872 #define fetch_or(ptr, mask)						\
873 	({								\
874 		typeof(ptr) _ptr = (ptr);				\
875 		typeof(mask) _mask = (mask);				\
876 		typeof(*_ptr) _old, _val = *_ptr;			\
877 									\
878 		for (;;) {						\
879 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
880 			if (_old == _val)				\
881 				break;					\
882 			_val = _old;					\
883 		}							\
884 	_old;								\
885 })
886 
887 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
888 /*
889  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
890  * this avoids any races wrt polling state changes and thereby avoids
891  * spurious IPIs.
892  */
893 static bool set_nr_and_not_polling(struct task_struct *p)
894 {
895 	struct thread_info *ti = task_thread_info(p);
896 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
897 }
898 
899 /*
900  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
901  *
902  * If this returns true, then the idle task promises to call
903  * sched_ttwu_pending() and reschedule soon.
904  */
905 static bool set_nr_if_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
909 
910 	for (;;) {
911 		if (!(val & _TIF_POLLING_NRFLAG))
912 			return false;
913 		if (val & _TIF_NEED_RESCHED)
914 			return true;
915 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
916 		if (old == val)
917 			break;
918 		val = old;
919 	}
920 	return true;
921 }
922 
923 #else
924 static bool set_nr_and_not_polling(struct task_struct *p)
925 {
926 	set_tsk_need_resched(p);
927 	return true;
928 }
929 
930 #ifdef CONFIG_SMP
931 static bool set_nr_if_polling(struct task_struct *p)
932 {
933 	return false;
934 }
935 #endif
936 #endif
937 
938 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
939 {
940 	struct wake_q_node *node = &task->wake_q;
941 
942 	/*
943 	 * Atomically grab the task, if ->wake_q is !nil already it means
944 	 * it's already queued (either by us or someone else) and will get the
945 	 * wakeup due to that.
946 	 *
947 	 * In order to ensure that a pending wakeup will observe our pending
948 	 * state, even in the failed case, an explicit smp_mb() must be used.
949 	 */
950 	smp_mb__before_atomic();
951 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
952 		return false;
953 
954 	/*
955 	 * The head is context local, there can be no concurrency.
956 	 */
957 	*head->lastp = node;
958 	head->lastp = &node->next;
959 	return true;
960 }
961 
962 /**
963  * wake_q_add() - queue a wakeup for 'later' waking.
964  * @head: the wake_q_head to add @task to
965  * @task: the task to queue for 'later' wakeup
966  *
967  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
968  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
969  * instantly.
970  *
971  * This function must be used as-if it were wake_up_process(); IOW the task
972  * must be ready to be woken at this location.
973  */
974 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
975 {
976 	if (__wake_q_add(head, task))
977 		get_task_struct(task);
978 }
979 
980 /**
981  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
982  * @head: the wake_q_head to add @task to
983  * @task: the task to queue for 'later' wakeup
984  *
985  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
986  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
987  * instantly.
988  *
989  * This function must be used as-if it were wake_up_process(); IOW the task
990  * must be ready to be woken at this location.
991  *
992  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
993  * that already hold reference to @task can call the 'safe' version and trust
994  * wake_q to do the right thing depending whether or not the @task is already
995  * queued for wakeup.
996  */
997 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
998 {
999 	if (!__wake_q_add(head, task))
1000 		put_task_struct(task);
1001 }
1002 
1003 void wake_up_q(struct wake_q_head *head)
1004 {
1005 	struct wake_q_node *node = head->first;
1006 
1007 	while (node != WAKE_Q_TAIL) {
1008 		struct task_struct *task;
1009 
1010 		task = container_of(node, struct task_struct, wake_q);
1011 		/* Task can safely be re-inserted now: */
1012 		node = node->next;
1013 		task->wake_q.next = NULL;
1014 
1015 		/*
1016 		 * wake_up_process() executes a full barrier, which pairs with
1017 		 * the queueing in wake_q_add() so as not to miss wakeups.
1018 		 */
1019 		wake_up_process(task);
1020 		put_task_struct(task);
1021 	}
1022 }
1023 
1024 /*
1025  * resched_curr - mark rq's current task 'to be rescheduled now'.
1026  *
1027  * On UP this means the setting of the need_resched flag, on SMP it
1028  * might also involve a cross-CPU call to trigger the scheduler on
1029  * the target CPU.
1030  */
1031 void resched_curr(struct rq *rq)
1032 {
1033 	struct task_struct *curr = rq->curr;
1034 	int cpu;
1035 
1036 	lockdep_assert_rq_held(rq);
1037 
1038 	if (test_tsk_need_resched(curr))
1039 		return;
1040 
1041 	cpu = cpu_of(rq);
1042 
1043 	if (cpu == smp_processor_id()) {
1044 		set_tsk_need_resched(curr);
1045 		set_preempt_need_resched();
1046 		return;
1047 	}
1048 
1049 	if (set_nr_and_not_polling(curr))
1050 		smp_send_reschedule(cpu);
1051 	else
1052 		trace_sched_wake_idle_without_ipi(cpu);
1053 }
1054 
1055 void resched_cpu(int cpu)
1056 {
1057 	struct rq *rq = cpu_rq(cpu);
1058 	unsigned long flags;
1059 
1060 	raw_spin_rq_lock_irqsave(rq, flags);
1061 	if (cpu_online(cpu) || cpu == smp_processor_id())
1062 		resched_curr(rq);
1063 	raw_spin_rq_unlock_irqrestore(rq, flags);
1064 }
1065 
1066 #ifdef CONFIG_SMP
1067 #ifdef CONFIG_NO_HZ_COMMON
1068 /*
1069  * In the semi idle case, use the nearest busy CPU for migrating timers
1070  * from an idle CPU.  This is good for power-savings.
1071  *
1072  * We don't do similar optimization for completely idle system, as
1073  * selecting an idle CPU will add more delays to the timers than intended
1074  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1075  */
1076 int get_nohz_timer_target(void)
1077 {
1078 	int i, cpu = smp_processor_id(), default_cpu = -1;
1079 	struct sched_domain *sd;
1080 	const struct cpumask *hk_mask;
1081 
1082 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1083 		if (!idle_cpu(cpu))
1084 			return cpu;
1085 		default_cpu = cpu;
1086 	}
1087 
1088 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1089 
1090 	rcu_read_lock();
1091 	for_each_domain(cpu, sd) {
1092 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1093 			if (cpu == i)
1094 				continue;
1095 
1096 			if (!idle_cpu(i)) {
1097 				cpu = i;
1098 				goto unlock;
1099 			}
1100 		}
1101 	}
1102 
1103 	if (default_cpu == -1)
1104 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1105 	cpu = default_cpu;
1106 unlock:
1107 	rcu_read_unlock();
1108 	return cpu;
1109 }
1110 
1111 /*
1112  * When add_timer_on() enqueues a timer into the timer wheel of an
1113  * idle CPU then this timer might expire before the next timer event
1114  * which is scheduled to wake up that CPU. In case of a completely
1115  * idle system the next event might even be infinite time into the
1116  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1117  * leaves the inner idle loop so the newly added timer is taken into
1118  * account when the CPU goes back to idle and evaluates the timer
1119  * wheel for the next timer event.
1120  */
1121 static void wake_up_idle_cpu(int cpu)
1122 {
1123 	struct rq *rq = cpu_rq(cpu);
1124 
1125 	if (cpu == smp_processor_id())
1126 		return;
1127 
1128 	if (set_nr_and_not_polling(rq->idle))
1129 		smp_send_reschedule(cpu);
1130 	else
1131 		trace_sched_wake_idle_without_ipi(cpu);
1132 }
1133 
1134 static bool wake_up_full_nohz_cpu(int cpu)
1135 {
1136 	/*
1137 	 * We just need the target to call irq_exit() and re-evaluate
1138 	 * the next tick. The nohz full kick at least implies that.
1139 	 * If needed we can still optimize that later with an
1140 	 * empty IRQ.
1141 	 */
1142 	if (cpu_is_offline(cpu))
1143 		return true;  /* Don't try to wake offline CPUs. */
1144 	if (tick_nohz_full_cpu(cpu)) {
1145 		if (cpu != smp_processor_id() ||
1146 		    tick_nohz_tick_stopped())
1147 			tick_nohz_full_kick_cpu(cpu);
1148 		return true;
1149 	}
1150 
1151 	return false;
1152 }
1153 
1154 /*
1155  * Wake up the specified CPU.  If the CPU is going offline, it is the
1156  * caller's responsibility to deal with the lost wakeup, for example,
1157  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1158  */
1159 void wake_up_nohz_cpu(int cpu)
1160 {
1161 	if (!wake_up_full_nohz_cpu(cpu))
1162 		wake_up_idle_cpu(cpu);
1163 }
1164 
1165 static void nohz_csd_func(void *info)
1166 {
1167 	struct rq *rq = info;
1168 	int cpu = cpu_of(rq);
1169 	unsigned int flags;
1170 
1171 	/*
1172 	 * Release the rq::nohz_csd.
1173 	 */
1174 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1175 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1176 
1177 	rq->idle_balance = idle_cpu(cpu);
1178 	if (rq->idle_balance && !need_resched()) {
1179 		rq->nohz_idle_balance = flags;
1180 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1181 	}
1182 }
1183 
1184 #endif /* CONFIG_NO_HZ_COMMON */
1185 
1186 #ifdef CONFIG_NO_HZ_FULL
1187 bool sched_can_stop_tick(struct rq *rq)
1188 {
1189 	int fifo_nr_running;
1190 
1191 	/* Deadline tasks, even if single, need the tick */
1192 	if (rq->dl.dl_nr_running)
1193 		return false;
1194 
1195 	/*
1196 	 * If there are more than one RR tasks, we need the tick to affect the
1197 	 * actual RR behaviour.
1198 	 */
1199 	if (rq->rt.rr_nr_running) {
1200 		if (rq->rt.rr_nr_running == 1)
1201 			return true;
1202 		else
1203 			return false;
1204 	}
1205 
1206 	/*
1207 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1208 	 * forced preemption between FIFO tasks.
1209 	 */
1210 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1211 	if (fifo_nr_running)
1212 		return true;
1213 
1214 	/*
1215 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1216 	 * if there's more than one we need the tick for involuntary
1217 	 * preemption.
1218 	 */
1219 	if (rq->nr_running > 1)
1220 		return false;
1221 
1222 	return true;
1223 }
1224 #endif /* CONFIG_NO_HZ_FULL */
1225 #endif /* CONFIG_SMP */
1226 
1227 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1228 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1229 /*
1230  * Iterate task_group tree rooted at *from, calling @down when first entering a
1231  * node and @up when leaving it for the final time.
1232  *
1233  * Caller must hold rcu_lock or sufficient equivalent.
1234  */
1235 int walk_tg_tree_from(struct task_group *from,
1236 			     tg_visitor down, tg_visitor up, void *data)
1237 {
1238 	struct task_group *parent, *child;
1239 	int ret;
1240 
1241 	parent = from;
1242 
1243 down:
1244 	ret = (*down)(parent, data);
1245 	if (ret)
1246 		goto out;
1247 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1248 		parent = child;
1249 		goto down;
1250 
1251 up:
1252 		continue;
1253 	}
1254 	ret = (*up)(parent, data);
1255 	if (ret || parent == from)
1256 		goto out;
1257 
1258 	child = parent;
1259 	parent = parent->parent;
1260 	if (parent)
1261 		goto up;
1262 out:
1263 	return ret;
1264 }
1265 
1266 int tg_nop(struct task_group *tg, void *data)
1267 {
1268 	return 0;
1269 }
1270 #endif
1271 
1272 static void set_load_weight(struct task_struct *p, bool update_load)
1273 {
1274 	int prio = p->static_prio - MAX_RT_PRIO;
1275 	struct load_weight *load = &p->se.load;
1276 
1277 	/*
1278 	 * SCHED_IDLE tasks get minimal weight:
1279 	 */
1280 	if (task_has_idle_policy(p)) {
1281 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1282 		load->inv_weight = WMULT_IDLEPRIO;
1283 		return;
1284 	}
1285 
1286 	/*
1287 	 * SCHED_OTHER tasks have to update their load when changing their
1288 	 * weight
1289 	 */
1290 	if (update_load && p->sched_class == &fair_sched_class) {
1291 		reweight_task(p, prio);
1292 	} else {
1293 		load->weight = scale_load(sched_prio_to_weight[prio]);
1294 		load->inv_weight = sched_prio_to_wmult[prio];
1295 	}
1296 }
1297 
1298 #ifdef CONFIG_UCLAMP_TASK
1299 /*
1300  * Serializes updates of utilization clamp values
1301  *
1302  * The (slow-path) user-space triggers utilization clamp value updates which
1303  * can require updates on (fast-path) scheduler's data structures used to
1304  * support enqueue/dequeue operations.
1305  * While the per-CPU rq lock protects fast-path update operations, user-space
1306  * requests are serialized using a mutex to reduce the risk of conflicting
1307  * updates or API abuses.
1308  */
1309 static DEFINE_MUTEX(uclamp_mutex);
1310 
1311 /* Max allowed minimum utilization */
1312 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1313 
1314 /* Max allowed maximum utilization */
1315 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1316 
1317 /*
1318  * By default RT tasks run at the maximum performance point/capacity of the
1319  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1320  * SCHED_CAPACITY_SCALE.
1321  *
1322  * This knob allows admins to change the default behavior when uclamp is being
1323  * used. In battery powered devices, particularly, running at the maximum
1324  * capacity and frequency will increase energy consumption and shorten the
1325  * battery life.
1326  *
1327  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1328  *
1329  * This knob will not override the system default sched_util_clamp_min defined
1330  * above.
1331  */
1332 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1333 
1334 /* All clamps are required to be less or equal than these values */
1335 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1336 
1337 /*
1338  * This static key is used to reduce the uclamp overhead in the fast path. It
1339  * primarily disables the call to uclamp_rq_{inc, dec}() in
1340  * enqueue/dequeue_task().
1341  *
1342  * This allows users to continue to enable uclamp in their kernel config with
1343  * minimum uclamp overhead in the fast path.
1344  *
1345  * As soon as userspace modifies any of the uclamp knobs, the static key is
1346  * enabled, since we have an actual users that make use of uclamp
1347  * functionality.
1348  *
1349  * The knobs that would enable this static key are:
1350  *
1351  *   * A task modifying its uclamp value with sched_setattr().
1352  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1353  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1354  */
1355 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1356 
1357 /* Integer rounded range for each bucket */
1358 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1359 
1360 #define for_each_clamp_id(clamp_id) \
1361 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1362 
1363 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1364 {
1365 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1366 }
1367 
1368 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1369 {
1370 	if (clamp_id == UCLAMP_MIN)
1371 		return 0;
1372 	return SCHED_CAPACITY_SCALE;
1373 }
1374 
1375 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1376 				 unsigned int value, bool user_defined)
1377 {
1378 	uc_se->value = value;
1379 	uc_se->bucket_id = uclamp_bucket_id(value);
1380 	uc_se->user_defined = user_defined;
1381 }
1382 
1383 static inline unsigned int
1384 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1385 		  unsigned int clamp_value)
1386 {
1387 	/*
1388 	 * Avoid blocked utilization pushing up the frequency when we go
1389 	 * idle (which drops the max-clamp) by retaining the last known
1390 	 * max-clamp.
1391 	 */
1392 	if (clamp_id == UCLAMP_MAX) {
1393 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1394 		return clamp_value;
1395 	}
1396 
1397 	return uclamp_none(UCLAMP_MIN);
1398 }
1399 
1400 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1401 				     unsigned int clamp_value)
1402 {
1403 	/* Reset max-clamp retention only on idle exit */
1404 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1405 		return;
1406 
1407 	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1408 }
1409 
1410 static inline
1411 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1412 				   unsigned int clamp_value)
1413 {
1414 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1415 	int bucket_id = UCLAMP_BUCKETS - 1;
1416 
1417 	/*
1418 	 * Since both min and max clamps are max aggregated, find the
1419 	 * top most bucket with tasks in.
1420 	 */
1421 	for ( ; bucket_id >= 0; bucket_id--) {
1422 		if (!bucket[bucket_id].tasks)
1423 			continue;
1424 		return bucket[bucket_id].value;
1425 	}
1426 
1427 	/* No tasks -- default clamp values */
1428 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1429 }
1430 
1431 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1432 {
1433 	unsigned int default_util_min;
1434 	struct uclamp_se *uc_se;
1435 
1436 	lockdep_assert_held(&p->pi_lock);
1437 
1438 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1439 
1440 	/* Only sync if user didn't override the default */
1441 	if (uc_se->user_defined)
1442 		return;
1443 
1444 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1445 	uclamp_se_set(uc_se, default_util_min, false);
1446 }
1447 
1448 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1449 {
1450 	struct rq_flags rf;
1451 	struct rq *rq;
1452 
1453 	if (!rt_task(p))
1454 		return;
1455 
1456 	/* Protect updates to p->uclamp_* */
1457 	rq = task_rq_lock(p, &rf);
1458 	__uclamp_update_util_min_rt_default(p);
1459 	task_rq_unlock(rq, p, &rf);
1460 }
1461 
1462 static inline struct uclamp_se
1463 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1464 {
1465 	/* Copy by value as we could modify it */
1466 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1467 #ifdef CONFIG_UCLAMP_TASK_GROUP
1468 	unsigned int tg_min, tg_max, value;
1469 
1470 	/*
1471 	 * Tasks in autogroups or root task group will be
1472 	 * restricted by system defaults.
1473 	 */
1474 	if (task_group_is_autogroup(task_group(p)))
1475 		return uc_req;
1476 	if (task_group(p) == &root_task_group)
1477 		return uc_req;
1478 
1479 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1480 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1481 	value = uc_req.value;
1482 	value = clamp(value, tg_min, tg_max);
1483 	uclamp_se_set(&uc_req, value, false);
1484 #endif
1485 
1486 	return uc_req;
1487 }
1488 
1489 /*
1490  * The effective clamp bucket index of a task depends on, by increasing
1491  * priority:
1492  * - the task specific clamp value, when explicitly requested from userspace
1493  * - the task group effective clamp value, for tasks not either in the root
1494  *   group or in an autogroup
1495  * - the system default clamp value, defined by the sysadmin
1496  */
1497 static inline struct uclamp_se
1498 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1501 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1502 
1503 	/* System default restrictions always apply */
1504 	if (unlikely(uc_req.value > uc_max.value))
1505 		return uc_max;
1506 
1507 	return uc_req;
1508 }
1509 
1510 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1511 {
1512 	struct uclamp_se uc_eff;
1513 
1514 	/* Task currently refcounted: use back-annotated (effective) value */
1515 	if (p->uclamp[clamp_id].active)
1516 		return (unsigned long)p->uclamp[clamp_id].value;
1517 
1518 	uc_eff = uclamp_eff_get(p, clamp_id);
1519 
1520 	return (unsigned long)uc_eff.value;
1521 }
1522 
1523 /*
1524  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1525  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1526  * updates the rq's clamp value if required.
1527  *
1528  * Tasks can have a task-specific value requested from user-space, track
1529  * within each bucket the maximum value for tasks refcounted in it.
1530  * This "local max aggregation" allows to track the exact "requested" value
1531  * for each bucket when all its RUNNABLE tasks require the same clamp.
1532  */
1533 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1534 				    enum uclamp_id clamp_id)
1535 {
1536 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1537 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1538 	struct uclamp_bucket *bucket;
1539 
1540 	lockdep_assert_rq_held(rq);
1541 
1542 	/* Update task effective clamp */
1543 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1544 
1545 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1546 	bucket->tasks++;
1547 	uc_se->active = true;
1548 
1549 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1550 
1551 	/*
1552 	 * Local max aggregation: rq buckets always track the max
1553 	 * "requested" clamp value of its RUNNABLE tasks.
1554 	 */
1555 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1556 		bucket->value = uc_se->value;
1557 
1558 	if (uc_se->value > READ_ONCE(uc_rq->value))
1559 		WRITE_ONCE(uc_rq->value, uc_se->value);
1560 }
1561 
1562 /*
1563  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1564  * is released. If this is the last task reference counting the rq's max
1565  * active clamp value, then the rq's clamp value is updated.
1566  *
1567  * Both refcounted tasks and rq's cached clamp values are expected to be
1568  * always valid. If it's detected they are not, as defensive programming,
1569  * enforce the expected state and warn.
1570  */
1571 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1572 				    enum uclamp_id clamp_id)
1573 {
1574 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1575 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1576 	struct uclamp_bucket *bucket;
1577 	unsigned int bkt_clamp;
1578 	unsigned int rq_clamp;
1579 
1580 	lockdep_assert_rq_held(rq);
1581 
1582 	/*
1583 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1584 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1585 	 *
1586 	 * In this case the uc_se->active flag should be false since no uclamp
1587 	 * accounting was performed at enqueue time and we can just return
1588 	 * here.
1589 	 *
1590 	 * Need to be careful of the following enqueue/dequeue ordering
1591 	 * problem too
1592 	 *
1593 	 *	enqueue(taskA)
1594 	 *	// sched_uclamp_used gets enabled
1595 	 *	enqueue(taskB)
1596 	 *	dequeue(taskA)
1597 	 *	// Must not decrement bucket->tasks here
1598 	 *	dequeue(taskB)
1599 	 *
1600 	 * where we could end up with stale data in uc_se and
1601 	 * bucket[uc_se->bucket_id].
1602 	 *
1603 	 * The following check here eliminates the possibility of such race.
1604 	 */
1605 	if (unlikely(!uc_se->active))
1606 		return;
1607 
1608 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1609 
1610 	SCHED_WARN_ON(!bucket->tasks);
1611 	if (likely(bucket->tasks))
1612 		bucket->tasks--;
1613 
1614 	uc_se->active = false;
1615 
1616 	/*
1617 	 * Keep "local max aggregation" simple and accept to (possibly)
1618 	 * overboost some RUNNABLE tasks in the same bucket.
1619 	 * The rq clamp bucket value is reset to its base value whenever
1620 	 * there are no more RUNNABLE tasks refcounting it.
1621 	 */
1622 	if (likely(bucket->tasks))
1623 		return;
1624 
1625 	rq_clamp = READ_ONCE(uc_rq->value);
1626 	/*
1627 	 * Defensive programming: this should never happen. If it happens,
1628 	 * e.g. due to future modification, warn and fixup the expected value.
1629 	 */
1630 	SCHED_WARN_ON(bucket->value > rq_clamp);
1631 	if (bucket->value >= rq_clamp) {
1632 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1633 		WRITE_ONCE(uc_rq->value, bkt_clamp);
1634 	}
1635 }
1636 
1637 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1638 {
1639 	enum uclamp_id clamp_id;
1640 
1641 	/*
1642 	 * Avoid any overhead until uclamp is actually used by the userspace.
1643 	 *
1644 	 * The condition is constructed such that a NOP is generated when
1645 	 * sched_uclamp_used is disabled.
1646 	 */
1647 	if (!static_branch_unlikely(&sched_uclamp_used))
1648 		return;
1649 
1650 	if (unlikely(!p->sched_class->uclamp_enabled))
1651 		return;
1652 
1653 	for_each_clamp_id(clamp_id)
1654 		uclamp_rq_inc_id(rq, p, clamp_id);
1655 
1656 	/* Reset clamp idle holding when there is one RUNNABLE task */
1657 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1658 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1659 }
1660 
1661 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1662 {
1663 	enum uclamp_id clamp_id;
1664 
1665 	/*
1666 	 * Avoid any overhead until uclamp is actually used by the userspace.
1667 	 *
1668 	 * The condition is constructed such that a NOP is generated when
1669 	 * sched_uclamp_used is disabled.
1670 	 */
1671 	if (!static_branch_unlikely(&sched_uclamp_used))
1672 		return;
1673 
1674 	if (unlikely(!p->sched_class->uclamp_enabled))
1675 		return;
1676 
1677 	for_each_clamp_id(clamp_id)
1678 		uclamp_rq_dec_id(rq, p, clamp_id);
1679 }
1680 
1681 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1682 				      enum uclamp_id clamp_id)
1683 {
1684 	if (!p->uclamp[clamp_id].active)
1685 		return;
1686 
1687 	uclamp_rq_dec_id(rq, p, clamp_id);
1688 	uclamp_rq_inc_id(rq, p, clamp_id);
1689 
1690 	/*
1691 	 * Make sure to clear the idle flag if we've transiently reached 0
1692 	 * active tasks on rq.
1693 	 */
1694 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1695 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1696 }
1697 
1698 static inline void
1699 uclamp_update_active(struct task_struct *p)
1700 {
1701 	enum uclamp_id clamp_id;
1702 	struct rq_flags rf;
1703 	struct rq *rq;
1704 
1705 	/*
1706 	 * Lock the task and the rq where the task is (or was) queued.
1707 	 *
1708 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1709 	 * price to pay to safely serialize util_{min,max} updates with
1710 	 * enqueues, dequeues and migration operations.
1711 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1712 	 */
1713 	rq = task_rq_lock(p, &rf);
1714 
1715 	/*
1716 	 * Setting the clamp bucket is serialized by task_rq_lock().
1717 	 * If the task is not yet RUNNABLE and its task_struct is not
1718 	 * affecting a valid clamp bucket, the next time it's enqueued,
1719 	 * it will already see the updated clamp bucket value.
1720 	 */
1721 	for_each_clamp_id(clamp_id)
1722 		uclamp_rq_reinc_id(rq, p, clamp_id);
1723 
1724 	task_rq_unlock(rq, p, &rf);
1725 }
1726 
1727 #ifdef CONFIG_UCLAMP_TASK_GROUP
1728 static inline void
1729 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1730 {
1731 	struct css_task_iter it;
1732 	struct task_struct *p;
1733 
1734 	css_task_iter_start(css, 0, &it);
1735 	while ((p = css_task_iter_next(&it)))
1736 		uclamp_update_active(p);
1737 	css_task_iter_end(&it);
1738 }
1739 
1740 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1741 #endif
1742 
1743 #ifdef CONFIG_SYSCTL
1744 #ifdef CONFIG_UCLAMP_TASK
1745 #ifdef CONFIG_UCLAMP_TASK_GROUP
1746 static void uclamp_update_root_tg(void)
1747 {
1748 	struct task_group *tg = &root_task_group;
1749 
1750 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1751 		      sysctl_sched_uclamp_util_min, false);
1752 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1753 		      sysctl_sched_uclamp_util_max, false);
1754 
1755 	rcu_read_lock();
1756 	cpu_util_update_eff(&root_task_group.css);
1757 	rcu_read_unlock();
1758 }
1759 #else
1760 static void uclamp_update_root_tg(void) { }
1761 #endif
1762 
1763 static void uclamp_sync_util_min_rt_default(void)
1764 {
1765 	struct task_struct *g, *p;
1766 
1767 	/*
1768 	 * copy_process()			sysctl_uclamp
1769 	 *					  uclamp_min_rt = X;
1770 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1771 	 *   // link thread			  smp_mb__after_spinlock()
1772 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1773 	 *   sched_post_fork()			  for_each_process_thread()
1774 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1775 	 *
1776 	 * Ensures that either sched_post_fork() will observe the new
1777 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1778 	 * task.
1779 	 */
1780 	read_lock(&tasklist_lock);
1781 	smp_mb__after_spinlock();
1782 	read_unlock(&tasklist_lock);
1783 
1784 	rcu_read_lock();
1785 	for_each_process_thread(g, p)
1786 		uclamp_update_util_min_rt_default(p);
1787 	rcu_read_unlock();
1788 }
1789 
1790 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1791 				void *buffer, size_t *lenp, loff_t *ppos)
1792 {
1793 	bool update_root_tg = false;
1794 	int old_min, old_max, old_min_rt;
1795 	int result;
1796 
1797 	mutex_lock(&uclamp_mutex);
1798 	old_min = sysctl_sched_uclamp_util_min;
1799 	old_max = sysctl_sched_uclamp_util_max;
1800 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1801 
1802 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1803 	if (result)
1804 		goto undo;
1805 	if (!write)
1806 		goto done;
1807 
1808 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1809 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1810 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1811 
1812 		result = -EINVAL;
1813 		goto undo;
1814 	}
1815 
1816 	if (old_min != sysctl_sched_uclamp_util_min) {
1817 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1818 			      sysctl_sched_uclamp_util_min, false);
1819 		update_root_tg = true;
1820 	}
1821 	if (old_max != sysctl_sched_uclamp_util_max) {
1822 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1823 			      sysctl_sched_uclamp_util_max, false);
1824 		update_root_tg = true;
1825 	}
1826 
1827 	if (update_root_tg) {
1828 		static_branch_enable(&sched_uclamp_used);
1829 		uclamp_update_root_tg();
1830 	}
1831 
1832 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1833 		static_branch_enable(&sched_uclamp_used);
1834 		uclamp_sync_util_min_rt_default();
1835 	}
1836 
1837 	/*
1838 	 * We update all RUNNABLE tasks only when task groups are in use.
1839 	 * Otherwise, keep it simple and do just a lazy update at each next
1840 	 * task enqueue time.
1841 	 */
1842 
1843 	goto done;
1844 
1845 undo:
1846 	sysctl_sched_uclamp_util_min = old_min;
1847 	sysctl_sched_uclamp_util_max = old_max;
1848 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1849 done:
1850 	mutex_unlock(&uclamp_mutex);
1851 
1852 	return result;
1853 }
1854 #endif
1855 #endif
1856 
1857 static int uclamp_validate(struct task_struct *p,
1858 			   const struct sched_attr *attr)
1859 {
1860 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1861 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1862 
1863 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1864 		util_min = attr->sched_util_min;
1865 
1866 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1867 			return -EINVAL;
1868 	}
1869 
1870 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1871 		util_max = attr->sched_util_max;
1872 
1873 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1874 			return -EINVAL;
1875 	}
1876 
1877 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1878 		return -EINVAL;
1879 
1880 	/*
1881 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1882 	 *
1883 	 * We need to do that here, because enabling static branches is a
1884 	 * blocking operation which obviously cannot be done while holding
1885 	 * scheduler locks.
1886 	 */
1887 	static_branch_enable(&sched_uclamp_used);
1888 
1889 	return 0;
1890 }
1891 
1892 static bool uclamp_reset(const struct sched_attr *attr,
1893 			 enum uclamp_id clamp_id,
1894 			 struct uclamp_se *uc_se)
1895 {
1896 	/* Reset on sched class change for a non user-defined clamp value. */
1897 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1898 	    !uc_se->user_defined)
1899 		return true;
1900 
1901 	/* Reset on sched_util_{min,max} == -1. */
1902 	if (clamp_id == UCLAMP_MIN &&
1903 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1904 	    attr->sched_util_min == -1) {
1905 		return true;
1906 	}
1907 
1908 	if (clamp_id == UCLAMP_MAX &&
1909 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1910 	    attr->sched_util_max == -1) {
1911 		return true;
1912 	}
1913 
1914 	return false;
1915 }
1916 
1917 static void __setscheduler_uclamp(struct task_struct *p,
1918 				  const struct sched_attr *attr)
1919 {
1920 	enum uclamp_id clamp_id;
1921 
1922 	for_each_clamp_id(clamp_id) {
1923 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1924 		unsigned int value;
1925 
1926 		if (!uclamp_reset(attr, clamp_id, uc_se))
1927 			continue;
1928 
1929 		/*
1930 		 * RT by default have a 100% boost value that could be modified
1931 		 * at runtime.
1932 		 */
1933 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1934 			value = sysctl_sched_uclamp_util_min_rt_default;
1935 		else
1936 			value = uclamp_none(clamp_id);
1937 
1938 		uclamp_se_set(uc_se, value, false);
1939 
1940 	}
1941 
1942 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1943 		return;
1944 
1945 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1946 	    attr->sched_util_min != -1) {
1947 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1948 			      attr->sched_util_min, true);
1949 	}
1950 
1951 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1952 	    attr->sched_util_max != -1) {
1953 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1954 			      attr->sched_util_max, true);
1955 	}
1956 }
1957 
1958 static void uclamp_fork(struct task_struct *p)
1959 {
1960 	enum uclamp_id clamp_id;
1961 
1962 	/*
1963 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1964 	 * as the task is still at its early fork stages.
1965 	 */
1966 	for_each_clamp_id(clamp_id)
1967 		p->uclamp[clamp_id].active = false;
1968 
1969 	if (likely(!p->sched_reset_on_fork))
1970 		return;
1971 
1972 	for_each_clamp_id(clamp_id) {
1973 		uclamp_se_set(&p->uclamp_req[clamp_id],
1974 			      uclamp_none(clamp_id), false);
1975 	}
1976 }
1977 
1978 static void uclamp_post_fork(struct task_struct *p)
1979 {
1980 	uclamp_update_util_min_rt_default(p);
1981 }
1982 
1983 static void __init init_uclamp_rq(struct rq *rq)
1984 {
1985 	enum uclamp_id clamp_id;
1986 	struct uclamp_rq *uc_rq = rq->uclamp;
1987 
1988 	for_each_clamp_id(clamp_id) {
1989 		uc_rq[clamp_id] = (struct uclamp_rq) {
1990 			.value = uclamp_none(clamp_id)
1991 		};
1992 	}
1993 
1994 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1995 }
1996 
1997 static void __init init_uclamp(void)
1998 {
1999 	struct uclamp_se uc_max = {};
2000 	enum uclamp_id clamp_id;
2001 	int cpu;
2002 
2003 	for_each_possible_cpu(cpu)
2004 		init_uclamp_rq(cpu_rq(cpu));
2005 
2006 	for_each_clamp_id(clamp_id) {
2007 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2008 			      uclamp_none(clamp_id), false);
2009 	}
2010 
2011 	/* System defaults allow max clamp values for both indexes */
2012 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2013 	for_each_clamp_id(clamp_id) {
2014 		uclamp_default[clamp_id] = uc_max;
2015 #ifdef CONFIG_UCLAMP_TASK_GROUP
2016 		root_task_group.uclamp_req[clamp_id] = uc_max;
2017 		root_task_group.uclamp[clamp_id] = uc_max;
2018 #endif
2019 	}
2020 }
2021 
2022 #else /* CONFIG_UCLAMP_TASK */
2023 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2024 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2025 static inline int uclamp_validate(struct task_struct *p,
2026 				  const struct sched_attr *attr)
2027 {
2028 	return -EOPNOTSUPP;
2029 }
2030 static void __setscheduler_uclamp(struct task_struct *p,
2031 				  const struct sched_attr *attr) { }
2032 static inline void uclamp_fork(struct task_struct *p) { }
2033 static inline void uclamp_post_fork(struct task_struct *p) { }
2034 static inline void init_uclamp(void) { }
2035 #endif /* CONFIG_UCLAMP_TASK */
2036 
2037 bool sched_task_on_rq(struct task_struct *p)
2038 {
2039 	return task_on_rq_queued(p);
2040 }
2041 
2042 unsigned long get_wchan(struct task_struct *p)
2043 {
2044 	unsigned long ip = 0;
2045 	unsigned int state;
2046 
2047 	if (!p || p == current)
2048 		return 0;
2049 
2050 	/* Only get wchan if task is blocked and we can keep it that way. */
2051 	raw_spin_lock_irq(&p->pi_lock);
2052 	state = READ_ONCE(p->__state);
2053 	smp_rmb(); /* see try_to_wake_up() */
2054 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2055 		ip = __get_wchan(p);
2056 	raw_spin_unlock_irq(&p->pi_lock);
2057 
2058 	return ip;
2059 }
2060 
2061 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2062 {
2063 	if (!(flags & ENQUEUE_NOCLOCK))
2064 		update_rq_clock(rq);
2065 
2066 	if (!(flags & ENQUEUE_RESTORE)) {
2067 		sched_info_enqueue(rq, p);
2068 		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2069 	}
2070 
2071 	uclamp_rq_inc(rq, p);
2072 	p->sched_class->enqueue_task(rq, p, flags);
2073 
2074 	if (sched_core_enabled(rq))
2075 		sched_core_enqueue(rq, p);
2076 }
2077 
2078 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2079 {
2080 	if (sched_core_enabled(rq))
2081 		sched_core_dequeue(rq, p, flags);
2082 
2083 	if (!(flags & DEQUEUE_NOCLOCK))
2084 		update_rq_clock(rq);
2085 
2086 	if (!(flags & DEQUEUE_SAVE)) {
2087 		sched_info_dequeue(rq, p);
2088 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2089 	}
2090 
2091 	uclamp_rq_dec(rq, p);
2092 	p->sched_class->dequeue_task(rq, p, flags);
2093 }
2094 
2095 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2096 {
2097 	enqueue_task(rq, p, flags);
2098 
2099 	p->on_rq = TASK_ON_RQ_QUEUED;
2100 }
2101 
2102 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2103 {
2104 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2105 
2106 	dequeue_task(rq, p, flags);
2107 }
2108 
2109 static inline int __normal_prio(int policy, int rt_prio, int nice)
2110 {
2111 	int prio;
2112 
2113 	if (dl_policy(policy))
2114 		prio = MAX_DL_PRIO - 1;
2115 	else if (rt_policy(policy))
2116 		prio = MAX_RT_PRIO - 1 - rt_prio;
2117 	else
2118 		prio = NICE_TO_PRIO(nice);
2119 
2120 	return prio;
2121 }
2122 
2123 /*
2124  * Calculate the expected normal priority: i.e. priority
2125  * without taking RT-inheritance into account. Might be
2126  * boosted by interactivity modifiers. Changes upon fork,
2127  * setprio syscalls, and whenever the interactivity
2128  * estimator recalculates.
2129  */
2130 static inline int normal_prio(struct task_struct *p)
2131 {
2132 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2133 }
2134 
2135 /*
2136  * Calculate the current priority, i.e. the priority
2137  * taken into account by the scheduler. This value might
2138  * be boosted by RT tasks, or might be boosted by
2139  * interactivity modifiers. Will be RT if the task got
2140  * RT-boosted. If not then it returns p->normal_prio.
2141  */
2142 static int effective_prio(struct task_struct *p)
2143 {
2144 	p->normal_prio = normal_prio(p);
2145 	/*
2146 	 * If we are RT tasks or we were boosted to RT priority,
2147 	 * keep the priority unchanged. Otherwise, update priority
2148 	 * to the normal priority:
2149 	 */
2150 	if (!rt_prio(p->prio))
2151 		return p->normal_prio;
2152 	return p->prio;
2153 }
2154 
2155 /**
2156  * task_curr - is this task currently executing on a CPU?
2157  * @p: the task in question.
2158  *
2159  * Return: 1 if the task is currently executing. 0 otherwise.
2160  */
2161 inline int task_curr(const struct task_struct *p)
2162 {
2163 	return cpu_curr(task_cpu(p)) == p;
2164 }
2165 
2166 /*
2167  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2168  * use the balance_callback list if you want balancing.
2169  *
2170  * this means any call to check_class_changed() must be followed by a call to
2171  * balance_callback().
2172  */
2173 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2174 				       const struct sched_class *prev_class,
2175 				       int oldprio)
2176 {
2177 	if (prev_class != p->sched_class) {
2178 		if (prev_class->switched_from)
2179 			prev_class->switched_from(rq, p);
2180 
2181 		p->sched_class->switched_to(rq, p);
2182 	} else if (oldprio != p->prio || dl_task(p))
2183 		p->sched_class->prio_changed(rq, p, oldprio);
2184 }
2185 
2186 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2187 {
2188 	if (p->sched_class == rq->curr->sched_class)
2189 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2190 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2191 		resched_curr(rq);
2192 
2193 	/*
2194 	 * A queue event has occurred, and we're going to schedule.  In
2195 	 * this case, we can save a useless back to back clock update.
2196 	 */
2197 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2198 		rq_clock_skip_update(rq);
2199 }
2200 
2201 #ifdef CONFIG_SMP
2202 
2203 static void
2204 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2205 
2206 static int __set_cpus_allowed_ptr(struct task_struct *p,
2207 				  const struct cpumask *new_mask,
2208 				  u32 flags);
2209 
2210 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2211 {
2212 	if (likely(!p->migration_disabled))
2213 		return;
2214 
2215 	if (p->cpus_ptr != &p->cpus_mask)
2216 		return;
2217 
2218 	/*
2219 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2220 	 */
2221 	__do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2222 }
2223 
2224 void migrate_disable(void)
2225 {
2226 	struct task_struct *p = current;
2227 
2228 	if (p->migration_disabled) {
2229 		p->migration_disabled++;
2230 		return;
2231 	}
2232 
2233 	preempt_disable();
2234 	this_rq()->nr_pinned++;
2235 	p->migration_disabled = 1;
2236 	preempt_enable();
2237 }
2238 EXPORT_SYMBOL_GPL(migrate_disable);
2239 
2240 void migrate_enable(void)
2241 {
2242 	struct task_struct *p = current;
2243 
2244 	if (p->migration_disabled > 1) {
2245 		p->migration_disabled--;
2246 		return;
2247 	}
2248 
2249 	if (WARN_ON_ONCE(!p->migration_disabled))
2250 		return;
2251 
2252 	/*
2253 	 * Ensure stop_task runs either before or after this, and that
2254 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2255 	 */
2256 	preempt_disable();
2257 	if (p->cpus_ptr != &p->cpus_mask)
2258 		__set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2259 	/*
2260 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2261 	 * regular cpus_mask, otherwise things that race (eg.
2262 	 * select_fallback_rq) get confused.
2263 	 */
2264 	barrier();
2265 	p->migration_disabled = 0;
2266 	this_rq()->nr_pinned--;
2267 	preempt_enable();
2268 }
2269 EXPORT_SYMBOL_GPL(migrate_enable);
2270 
2271 static inline bool rq_has_pinned_tasks(struct rq *rq)
2272 {
2273 	return rq->nr_pinned;
2274 }
2275 
2276 /*
2277  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2278  * __set_cpus_allowed_ptr() and select_fallback_rq().
2279  */
2280 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2281 {
2282 	/* When not in the task's cpumask, no point in looking further. */
2283 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2284 		return false;
2285 
2286 	/* migrate_disabled() must be allowed to finish. */
2287 	if (is_migration_disabled(p))
2288 		return cpu_online(cpu);
2289 
2290 	/* Non kernel threads are not allowed during either online or offline. */
2291 	if (!(p->flags & PF_KTHREAD))
2292 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2293 
2294 	/* KTHREAD_IS_PER_CPU is always allowed. */
2295 	if (kthread_is_per_cpu(p))
2296 		return cpu_online(cpu);
2297 
2298 	/* Regular kernel threads don't get to stay during offline. */
2299 	if (cpu_dying(cpu))
2300 		return false;
2301 
2302 	/* But are allowed during online. */
2303 	return cpu_online(cpu);
2304 }
2305 
2306 /*
2307  * This is how migration works:
2308  *
2309  * 1) we invoke migration_cpu_stop() on the target CPU using
2310  *    stop_one_cpu().
2311  * 2) stopper starts to run (implicitly forcing the migrated thread
2312  *    off the CPU)
2313  * 3) it checks whether the migrated task is still in the wrong runqueue.
2314  * 4) if it's in the wrong runqueue then the migration thread removes
2315  *    it and puts it into the right queue.
2316  * 5) stopper completes and stop_one_cpu() returns and the migration
2317  *    is done.
2318  */
2319 
2320 /*
2321  * move_queued_task - move a queued task to new rq.
2322  *
2323  * Returns (locked) new rq. Old rq's lock is released.
2324  */
2325 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2326 				   struct task_struct *p, int new_cpu)
2327 {
2328 	lockdep_assert_rq_held(rq);
2329 
2330 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2331 	set_task_cpu(p, new_cpu);
2332 	rq_unlock(rq, rf);
2333 
2334 	rq = cpu_rq(new_cpu);
2335 
2336 	rq_lock(rq, rf);
2337 	BUG_ON(task_cpu(p) != new_cpu);
2338 	activate_task(rq, p, 0);
2339 	check_preempt_curr(rq, p, 0);
2340 
2341 	return rq;
2342 }
2343 
2344 struct migration_arg {
2345 	struct task_struct		*task;
2346 	int				dest_cpu;
2347 	struct set_affinity_pending	*pending;
2348 };
2349 
2350 /*
2351  * @refs: number of wait_for_completion()
2352  * @stop_pending: is @stop_work in use
2353  */
2354 struct set_affinity_pending {
2355 	refcount_t		refs;
2356 	unsigned int		stop_pending;
2357 	struct completion	done;
2358 	struct cpu_stop_work	stop_work;
2359 	struct migration_arg	arg;
2360 };
2361 
2362 /*
2363  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2364  * this because either it can't run here any more (set_cpus_allowed()
2365  * away from this CPU, or CPU going down), or because we're
2366  * attempting to rebalance this task on exec (sched_exec).
2367  *
2368  * So we race with normal scheduler movements, but that's OK, as long
2369  * as the task is no longer on this CPU.
2370  */
2371 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2372 				 struct task_struct *p, int dest_cpu)
2373 {
2374 	/* Affinity changed (again). */
2375 	if (!is_cpu_allowed(p, dest_cpu))
2376 		return rq;
2377 
2378 	update_rq_clock(rq);
2379 	rq = move_queued_task(rq, rf, p, dest_cpu);
2380 
2381 	return rq;
2382 }
2383 
2384 /*
2385  * migration_cpu_stop - this will be executed by a highprio stopper thread
2386  * and performs thread migration by bumping thread off CPU then
2387  * 'pushing' onto another runqueue.
2388  */
2389 static int migration_cpu_stop(void *data)
2390 {
2391 	struct migration_arg *arg = data;
2392 	struct set_affinity_pending *pending = arg->pending;
2393 	struct task_struct *p = arg->task;
2394 	struct rq *rq = this_rq();
2395 	bool complete = false;
2396 	struct rq_flags rf;
2397 
2398 	/*
2399 	 * The original target CPU might have gone down and we might
2400 	 * be on another CPU but it doesn't matter.
2401 	 */
2402 	local_irq_save(rf.flags);
2403 	/*
2404 	 * We need to explicitly wake pending tasks before running
2405 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2406 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2407 	 */
2408 	flush_smp_call_function_queue();
2409 
2410 	raw_spin_lock(&p->pi_lock);
2411 	rq_lock(rq, &rf);
2412 
2413 	/*
2414 	 * If we were passed a pending, then ->stop_pending was set, thus
2415 	 * p->migration_pending must have remained stable.
2416 	 */
2417 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2418 
2419 	/*
2420 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2421 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2422 	 * we're holding p->pi_lock.
2423 	 */
2424 	if (task_rq(p) == rq) {
2425 		if (is_migration_disabled(p))
2426 			goto out;
2427 
2428 		if (pending) {
2429 			p->migration_pending = NULL;
2430 			complete = true;
2431 
2432 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2433 				goto out;
2434 		}
2435 
2436 		if (task_on_rq_queued(p))
2437 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2438 		else
2439 			p->wake_cpu = arg->dest_cpu;
2440 
2441 		/*
2442 		 * XXX __migrate_task() can fail, at which point we might end
2443 		 * up running on a dodgy CPU, AFAICT this can only happen
2444 		 * during CPU hotplug, at which point we'll get pushed out
2445 		 * anyway, so it's probably not a big deal.
2446 		 */
2447 
2448 	} else if (pending) {
2449 		/*
2450 		 * This happens when we get migrated between migrate_enable()'s
2451 		 * preempt_enable() and scheduling the stopper task. At that
2452 		 * point we're a regular task again and not current anymore.
2453 		 *
2454 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2455 		 * more likely.
2456 		 */
2457 
2458 		/*
2459 		 * The task moved before the stopper got to run. We're holding
2460 		 * ->pi_lock, so the allowed mask is stable - if it got
2461 		 * somewhere allowed, we're done.
2462 		 */
2463 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2464 			p->migration_pending = NULL;
2465 			complete = true;
2466 			goto out;
2467 		}
2468 
2469 		/*
2470 		 * When migrate_enable() hits a rq mis-match we can't reliably
2471 		 * determine is_migration_disabled() and so have to chase after
2472 		 * it.
2473 		 */
2474 		WARN_ON_ONCE(!pending->stop_pending);
2475 		task_rq_unlock(rq, p, &rf);
2476 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2477 				    &pending->arg, &pending->stop_work);
2478 		return 0;
2479 	}
2480 out:
2481 	if (pending)
2482 		pending->stop_pending = false;
2483 	task_rq_unlock(rq, p, &rf);
2484 
2485 	if (complete)
2486 		complete_all(&pending->done);
2487 
2488 	return 0;
2489 }
2490 
2491 int push_cpu_stop(void *arg)
2492 {
2493 	struct rq *lowest_rq = NULL, *rq = this_rq();
2494 	struct task_struct *p = arg;
2495 
2496 	raw_spin_lock_irq(&p->pi_lock);
2497 	raw_spin_rq_lock(rq);
2498 
2499 	if (task_rq(p) != rq)
2500 		goto out_unlock;
2501 
2502 	if (is_migration_disabled(p)) {
2503 		p->migration_flags |= MDF_PUSH;
2504 		goto out_unlock;
2505 	}
2506 
2507 	p->migration_flags &= ~MDF_PUSH;
2508 
2509 	if (p->sched_class->find_lock_rq)
2510 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2511 
2512 	if (!lowest_rq)
2513 		goto out_unlock;
2514 
2515 	// XXX validate p is still the highest prio task
2516 	if (task_rq(p) == rq) {
2517 		deactivate_task(rq, p, 0);
2518 		set_task_cpu(p, lowest_rq->cpu);
2519 		activate_task(lowest_rq, p, 0);
2520 		resched_curr(lowest_rq);
2521 	}
2522 
2523 	double_unlock_balance(rq, lowest_rq);
2524 
2525 out_unlock:
2526 	rq->push_busy = false;
2527 	raw_spin_rq_unlock(rq);
2528 	raw_spin_unlock_irq(&p->pi_lock);
2529 
2530 	put_task_struct(p);
2531 	return 0;
2532 }
2533 
2534 /*
2535  * sched_class::set_cpus_allowed must do the below, but is not required to
2536  * actually call this function.
2537  */
2538 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2539 {
2540 	if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2541 		p->cpus_ptr = new_mask;
2542 		return;
2543 	}
2544 
2545 	cpumask_copy(&p->cpus_mask, new_mask);
2546 	p->nr_cpus_allowed = cpumask_weight(new_mask);
2547 }
2548 
2549 static void
2550 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2551 {
2552 	struct rq *rq = task_rq(p);
2553 	bool queued, running;
2554 
2555 	/*
2556 	 * This here violates the locking rules for affinity, since we're only
2557 	 * supposed to change these variables while holding both rq->lock and
2558 	 * p->pi_lock.
2559 	 *
2560 	 * HOWEVER, it magically works, because ttwu() is the only code that
2561 	 * accesses these variables under p->pi_lock and only does so after
2562 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2563 	 * before finish_task().
2564 	 *
2565 	 * XXX do further audits, this smells like something putrid.
2566 	 */
2567 	if (flags & SCA_MIGRATE_DISABLE)
2568 		SCHED_WARN_ON(!p->on_cpu);
2569 	else
2570 		lockdep_assert_held(&p->pi_lock);
2571 
2572 	queued = task_on_rq_queued(p);
2573 	running = task_current(rq, p);
2574 
2575 	if (queued) {
2576 		/*
2577 		 * Because __kthread_bind() calls this on blocked tasks without
2578 		 * holding rq->lock.
2579 		 */
2580 		lockdep_assert_rq_held(rq);
2581 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2582 	}
2583 	if (running)
2584 		put_prev_task(rq, p);
2585 
2586 	p->sched_class->set_cpus_allowed(p, new_mask, flags);
2587 
2588 	if (queued)
2589 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2590 	if (running)
2591 		set_next_task(rq, p);
2592 }
2593 
2594 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2595 {
2596 	__do_set_cpus_allowed(p, new_mask, 0);
2597 }
2598 
2599 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2600 		      int node)
2601 {
2602 	if (!src->user_cpus_ptr)
2603 		return 0;
2604 
2605 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2606 	if (!dst->user_cpus_ptr)
2607 		return -ENOMEM;
2608 
2609 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2610 	return 0;
2611 }
2612 
2613 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2614 {
2615 	struct cpumask *user_mask = NULL;
2616 
2617 	swap(p->user_cpus_ptr, user_mask);
2618 
2619 	return user_mask;
2620 }
2621 
2622 void release_user_cpus_ptr(struct task_struct *p)
2623 {
2624 	kfree(clear_user_cpus_ptr(p));
2625 }
2626 
2627 /*
2628  * This function is wildly self concurrent; here be dragons.
2629  *
2630  *
2631  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2632  * designated task is enqueued on an allowed CPU. If that task is currently
2633  * running, we have to kick it out using the CPU stopper.
2634  *
2635  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2636  * Consider:
2637  *
2638  *     Initial conditions: P0->cpus_mask = [0, 1]
2639  *
2640  *     P0@CPU0                  P1
2641  *
2642  *     migrate_disable();
2643  *     <preempted>
2644  *                              set_cpus_allowed_ptr(P0, [1]);
2645  *
2646  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2647  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2648  * This means we need the following scheme:
2649  *
2650  *     P0@CPU0                  P1
2651  *
2652  *     migrate_disable();
2653  *     <preempted>
2654  *                              set_cpus_allowed_ptr(P0, [1]);
2655  *                                <blocks>
2656  *     <resumes>
2657  *     migrate_enable();
2658  *       __set_cpus_allowed_ptr();
2659  *       <wakes local stopper>
2660  *                         `--> <woken on migration completion>
2661  *
2662  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2663  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2664  * task p are serialized by p->pi_lock, which we can leverage: the one that
2665  * should come into effect at the end of the Migrate-Disable region is the last
2666  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2667  * but we still need to properly signal those waiting tasks at the appropriate
2668  * moment.
2669  *
2670  * This is implemented using struct set_affinity_pending. The first
2671  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2672  * setup an instance of that struct and install it on the targeted task_struct.
2673  * Any and all further callers will reuse that instance. Those then wait for
2674  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2675  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2676  *
2677  *
2678  * (1) In the cases covered above. There is one more where the completion is
2679  * signaled within affine_move_task() itself: when a subsequent affinity request
2680  * occurs after the stopper bailed out due to the targeted task still being
2681  * Migrate-Disable. Consider:
2682  *
2683  *     Initial conditions: P0->cpus_mask = [0, 1]
2684  *
2685  *     CPU0		  P1				P2
2686  *     <P0>
2687  *       migrate_disable();
2688  *       <preempted>
2689  *                        set_cpus_allowed_ptr(P0, [1]);
2690  *                          <blocks>
2691  *     <migration/0>
2692  *       migration_cpu_stop()
2693  *         is_migration_disabled()
2694  *           <bails>
2695  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2696  *                                                         <signal completion>
2697  *                          <awakes>
2698  *
2699  * Note that the above is safe vs a concurrent migrate_enable(), as any
2700  * pending affinity completion is preceded by an uninstallation of
2701  * p->migration_pending done with p->pi_lock held.
2702  */
2703 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2704 			    int dest_cpu, unsigned int flags)
2705 {
2706 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2707 	bool stop_pending, complete = false;
2708 
2709 	/* Can the task run on the task's current CPU? If so, we're done */
2710 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2711 		struct task_struct *push_task = NULL;
2712 
2713 		if ((flags & SCA_MIGRATE_ENABLE) &&
2714 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2715 			rq->push_busy = true;
2716 			push_task = get_task_struct(p);
2717 		}
2718 
2719 		/*
2720 		 * If there are pending waiters, but no pending stop_work,
2721 		 * then complete now.
2722 		 */
2723 		pending = p->migration_pending;
2724 		if (pending && !pending->stop_pending) {
2725 			p->migration_pending = NULL;
2726 			complete = true;
2727 		}
2728 
2729 		task_rq_unlock(rq, p, rf);
2730 
2731 		if (push_task) {
2732 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2733 					    p, &rq->push_work);
2734 		}
2735 
2736 		if (complete)
2737 			complete_all(&pending->done);
2738 
2739 		return 0;
2740 	}
2741 
2742 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2743 		/* serialized by p->pi_lock */
2744 		if (!p->migration_pending) {
2745 			/* Install the request */
2746 			refcount_set(&my_pending.refs, 1);
2747 			init_completion(&my_pending.done);
2748 			my_pending.arg = (struct migration_arg) {
2749 				.task = p,
2750 				.dest_cpu = dest_cpu,
2751 				.pending = &my_pending,
2752 			};
2753 
2754 			p->migration_pending = &my_pending;
2755 		} else {
2756 			pending = p->migration_pending;
2757 			refcount_inc(&pending->refs);
2758 			/*
2759 			 * Affinity has changed, but we've already installed a
2760 			 * pending. migration_cpu_stop() *must* see this, else
2761 			 * we risk a completion of the pending despite having a
2762 			 * task on a disallowed CPU.
2763 			 *
2764 			 * Serialized by p->pi_lock, so this is safe.
2765 			 */
2766 			pending->arg.dest_cpu = dest_cpu;
2767 		}
2768 	}
2769 	pending = p->migration_pending;
2770 	/*
2771 	 * - !MIGRATE_ENABLE:
2772 	 *   we'll have installed a pending if there wasn't one already.
2773 	 *
2774 	 * - MIGRATE_ENABLE:
2775 	 *   we're here because the current CPU isn't matching anymore,
2776 	 *   the only way that can happen is because of a concurrent
2777 	 *   set_cpus_allowed_ptr() call, which should then still be
2778 	 *   pending completion.
2779 	 *
2780 	 * Either way, we really should have a @pending here.
2781 	 */
2782 	if (WARN_ON_ONCE(!pending)) {
2783 		task_rq_unlock(rq, p, rf);
2784 		return -EINVAL;
2785 	}
2786 
2787 	if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2788 		/*
2789 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2790 		 * anything else we cannot do is_migration_disabled(), punt
2791 		 * and have the stopper function handle it all race-free.
2792 		 */
2793 		stop_pending = pending->stop_pending;
2794 		if (!stop_pending)
2795 			pending->stop_pending = true;
2796 
2797 		if (flags & SCA_MIGRATE_ENABLE)
2798 			p->migration_flags &= ~MDF_PUSH;
2799 
2800 		task_rq_unlock(rq, p, rf);
2801 
2802 		if (!stop_pending) {
2803 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2804 					    &pending->arg, &pending->stop_work);
2805 		}
2806 
2807 		if (flags & SCA_MIGRATE_ENABLE)
2808 			return 0;
2809 	} else {
2810 
2811 		if (!is_migration_disabled(p)) {
2812 			if (task_on_rq_queued(p))
2813 				rq = move_queued_task(rq, rf, p, dest_cpu);
2814 
2815 			if (!pending->stop_pending) {
2816 				p->migration_pending = NULL;
2817 				complete = true;
2818 			}
2819 		}
2820 		task_rq_unlock(rq, p, rf);
2821 
2822 		if (complete)
2823 			complete_all(&pending->done);
2824 	}
2825 
2826 	wait_for_completion(&pending->done);
2827 
2828 	if (refcount_dec_and_test(&pending->refs))
2829 		wake_up_var(&pending->refs); /* No UaF, just an address */
2830 
2831 	/*
2832 	 * Block the original owner of &pending until all subsequent callers
2833 	 * have seen the completion and decremented the refcount
2834 	 */
2835 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2836 
2837 	/* ARGH */
2838 	WARN_ON_ONCE(my_pending.stop_pending);
2839 
2840 	return 0;
2841 }
2842 
2843 /*
2844  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2845  */
2846 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2847 					 const struct cpumask *new_mask,
2848 					 u32 flags,
2849 					 struct rq *rq,
2850 					 struct rq_flags *rf)
2851 	__releases(rq->lock)
2852 	__releases(p->pi_lock)
2853 {
2854 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2855 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2856 	bool kthread = p->flags & PF_KTHREAD;
2857 	struct cpumask *user_mask = NULL;
2858 	unsigned int dest_cpu;
2859 	int ret = 0;
2860 
2861 	update_rq_clock(rq);
2862 
2863 	if (kthread || is_migration_disabled(p)) {
2864 		/*
2865 		 * Kernel threads are allowed on online && !active CPUs,
2866 		 * however, during cpu-hot-unplug, even these might get pushed
2867 		 * away if not KTHREAD_IS_PER_CPU.
2868 		 *
2869 		 * Specifically, migration_disabled() tasks must not fail the
2870 		 * cpumask_any_and_distribute() pick below, esp. so on
2871 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2872 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2873 		 */
2874 		cpu_valid_mask = cpu_online_mask;
2875 	}
2876 
2877 	if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2878 		ret = -EINVAL;
2879 		goto out;
2880 	}
2881 
2882 	/*
2883 	 * Must re-check here, to close a race against __kthread_bind(),
2884 	 * sched_setaffinity() is not guaranteed to observe the flag.
2885 	 */
2886 	if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2887 		ret = -EINVAL;
2888 		goto out;
2889 	}
2890 
2891 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2892 		if (cpumask_equal(&p->cpus_mask, new_mask))
2893 			goto out;
2894 
2895 		if (WARN_ON_ONCE(p == current &&
2896 				 is_migration_disabled(p) &&
2897 				 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2898 			ret = -EBUSY;
2899 			goto out;
2900 		}
2901 	}
2902 
2903 	/*
2904 	 * Picking a ~random cpu helps in cases where we are changing affinity
2905 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2906 	 * immediately required to distribute the tasks within their new mask.
2907 	 */
2908 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2909 	if (dest_cpu >= nr_cpu_ids) {
2910 		ret = -EINVAL;
2911 		goto out;
2912 	}
2913 
2914 	__do_set_cpus_allowed(p, new_mask, flags);
2915 
2916 	if (flags & SCA_USER)
2917 		user_mask = clear_user_cpus_ptr(p);
2918 
2919 	ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2920 
2921 	kfree(user_mask);
2922 
2923 	return ret;
2924 
2925 out:
2926 	task_rq_unlock(rq, p, rf);
2927 
2928 	return ret;
2929 }
2930 
2931 /*
2932  * Change a given task's CPU affinity. Migrate the thread to a
2933  * proper CPU and schedule it away if the CPU it's executing on
2934  * is removed from the allowed bitmask.
2935  *
2936  * NOTE: the caller must have a valid reference to the task, the
2937  * task must not exit() & deallocate itself prematurely. The
2938  * call is not atomic; no spinlocks may be held.
2939  */
2940 static int __set_cpus_allowed_ptr(struct task_struct *p,
2941 				  const struct cpumask *new_mask, u32 flags)
2942 {
2943 	struct rq_flags rf;
2944 	struct rq *rq;
2945 
2946 	rq = task_rq_lock(p, &rf);
2947 	return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2948 }
2949 
2950 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2951 {
2952 	return __set_cpus_allowed_ptr(p, new_mask, 0);
2953 }
2954 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2955 
2956 /*
2957  * Change a given task's CPU affinity to the intersection of its current
2958  * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2959  * and pointing @p->user_cpus_ptr to a copy of the old mask.
2960  * If the resulting mask is empty, leave the affinity unchanged and return
2961  * -EINVAL.
2962  */
2963 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2964 				     struct cpumask *new_mask,
2965 				     const struct cpumask *subset_mask)
2966 {
2967 	struct cpumask *user_mask = NULL;
2968 	struct rq_flags rf;
2969 	struct rq *rq;
2970 	int err;
2971 
2972 	if (!p->user_cpus_ptr) {
2973 		user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2974 		if (!user_mask)
2975 			return -ENOMEM;
2976 	}
2977 
2978 	rq = task_rq_lock(p, &rf);
2979 
2980 	/*
2981 	 * Forcefully restricting the affinity of a deadline task is
2982 	 * likely to cause problems, so fail and noisily override the
2983 	 * mask entirely.
2984 	 */
2985 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2986 		err = -EPERM;
2987 		goto err_unlock;
2988 	}
2989 
2990 	if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2991 		err = -EINVAL;
2992 		goto err_unlock;
2993 	}
2994 
2995 	/*
2996 	 * We're about to butcher the task affinity, so keep track of what
2997 	 * the user asked for in case we're able to restore it later on.
2998 	 */
2999 	if (user_mask) {
3000 		cpumask_copy(user_mask, p->cpus_ptr);
3001 		p->user_cpus_ptr = user_mask;
3002 	}
3003 
3004 	return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
3005 
3006 err_unlock:
3007 	task_rq_unlock(rq, p, &rf);
3008 	kfree(user_mask);
3009 	return err;
3010 }
3011 
3012 /*
3013  * Restrict the CPU affinity of task @p so that it is a subset of
3014  * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3015  * old affinity mask. If the resulting mask is empty, we warn and walk
3016  * up the cpuset hierarchy until we find a suitable mask.
3017  */
3018 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3019 {
3020 	cpumask_var_t new_mask;
3021 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3022 
3023 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3024 
3025 	/*
3026 	 * __migrate_task() can fail silently in the face of concurrent
3027 	 * offlining of the chosen destination CPU, so take the hotplug
3028 	 * lock to ensure that the migration succeeds.
3029 	 */
3030 	cpus_read_lock();
3031 	if (!cpumask_available(new_mask))
3032 		goto out_set_mask;
3033 
3034 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3035 		goto out_free_mask;
3036 
3037 	/*
3038 	 * We failed to find a valid subset of the affinity mask for the
3039 	 * task, so override it based on its cpuset hierarchy.
3040 	 */
3041 	cpuset_cpus_allowed(p, new_mask);
3042 	override_mask = new_mask;
3043 
3044 out_set_mask:
3045 	if (printk_ratelimit()) {
3046 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3047 				task_pid_nr(p), p->comm,
3048 				cpumask_pr_args(override_mask));
3049 	}
3050 
3051 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3052 out_free_mask:
3053 	cpus_read_unlock();
3054 	free_cpumask_var(new_mask);
3055 }
3056 
3057 static int
3058 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3059 
3060 /*
3061  * Restore the affinity of a task @p which was previously restricted by a
3062  * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3063  * @p->user_cpus_ptr.
3064  *
3065  * It is the caller's responsibility to serialise this with any calls to
3066  * force_compatible_cpus_allowed_ptr(@p).
3067  */
3068 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3069 {
3070 	struct cpumask *user_mask = p->user_cpus_ptr;
3071 	unsigned long flags;
3072 
3073 	/*
3074 	 * Try to restore the old affinity mask. If this fails, then
3075 	 * we free the mask explicitly to avoid it being inherited across
3076 	 * a subsequent fork().
3077 	 */
3078 	if (!user_mask || !__sched_setaffinity(p, user_mask))
3079 		return;
3080 
3081 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3082 	user_mask = clear_user_cpus_ptr(p);
3083 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3084 
3085 	kfree(user_mask);
3086 }
3087 
3088 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3089 {
3090 #ifdef CONFIG_SCHED_DEBUG
3091 	unsigned int state = READ_ONCE(p->__state);
3092 
3093 	/*
3094 	 * We should never call set_task_cpu() on a blocked task,
3095 	 * ttwu() will sort out the placement.
3096 	 */
3097 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3098 
3099 	/*
3100 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3101 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3102 	 * time relying on p->on_rq.
3103 	 */
3104 	WARN_ON_ONCE(state == TASK_RUNNING &&
3105 		     p->sched_class == &fair_sched_class &&
3106 		     (p->on_rq && !task_on_rq_migrating(p)));
3107 
3108 #ifdef CONFIG_LOCKDEP
3109 	/*
3110 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3111 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3112 	 *
3113 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3114 	 * see task_group().
3115 	 *
3116 	 * Furthermore, all task_rq users should acquire both locks, see
3117 	 * task_rq_lock().
3118 	 */
3119 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3120 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3121 #endif
3122 	/*
3123 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3124 	 */
3125 	WARN_ON_ONCE(!cpu_online(new_cpu));
3126 
3127 	WARN_ON_ONCE(is_migration_disabled(p));
3128 #endif
3129 
3130 	trace_sched_migrate_task(p, new_cpu);
3131 
3132 	if (task_cpu(p) != new_cpu) {
3133 		if (p->sched_class->migrate_task_rq)
3134 			p->sched_class->migrate_task_rq(p, new_cpu);
3135 		p->se.nr_migrations++;
3136 		rseq_migrate(p);
3137 		perf_event_task_migrate(p);
3138 	}
3139 
3140 	__set_task_cpu(p, new_cpu);
3141 }
3142 
3143 #ifdef CONFIG_NUMA_BALANCING
3144 static void __migrate_swap_task(struct task_struct *p, int cpu)
3145 {
3146 	if (task_on_rq_queued(p)) {
3147 		struct rq *src_rq, *dst_rq;
3148 		struct rq_flags srf, drf;
3149 
3150 		src_rq = task_rq(p);
3151 		dst_rq = cpu_rq(cpu);
3152 
3153 		rq_pin_lock(src_rq, &srf);
3154 		rq_pin_lock(dst_rq, &drf);
3155 
3156 		deactivate_task(src_rq, p, 0);
3157 		set_task_cpu(p, cpu);
3158 		activate_task(dst_rq, p, 0);
3159 		check_preempt_curr(dst_rq, p, 0);
3160 
3161 		rq_unpin_lock(dst_rq, &drf);
3162 		rq_unpin_lock(src_rq, &srf);
3163 
3164 	} else {
3165 		/*
3166 		 * Task isn't running anymore; make it appear like we migrated
3167 		 * it before it went to sleep. This means on wakeup we make the
3168 		 * previous CPU our target instead of where it really is.
3169 		 */
3170 		p->wake_cpu = cpu;
3171 	}
3172 }
3173 
3174 struct migration_swap_arg {
3175 	struct task_struct *src_task, *dst_task;
3176 	int src_cpu, dst_cpu;
3177 };
3178 
3179 static int migrate_swap_stop(void *data)
3180 {
3181 	struct migration_swap_arg *arg = data;
3182 	struct rq *src_rq, *dst_rq;
3183 	int ret = -EAGAIN;
3184 
3185 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3186 		return -EAGAIN;
3187 
3188 	src_rq = cpu_rq(arg->src_cpu);
3189 	dst_rq = cpu_rq(arg->dst_cpu);
3190 
3191 	double_raw_lock(&arg->src_task->pi_lock,
3192 			&arg->dst_task->pi_lock);
3193 	double_rq_lock(src_rq, dst_rq);
3194 
3195 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3196 		goto unlock;
3197 
3198 	if (task_cpu(arg->src_task) != arg->src_cpu)
3199 		goto unlock;
3200 
3201 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3202 		goto unlock;
3203 
3204 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3205 		goto unlock;
3206 
3207 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3208 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3209 
3210 	ret = 0;
3211 
3212 unlock:
3213 	double_rq_unlock(src_rq, dst_rq);
3214 	raw_spin_unlock(&arg->dst_task->pi_lock);
3215 	raw_spin_unlock(&arg->src_task->pi_lock);
3216 
3217 	return ret;
3218 }
3219 
3220 /*
3221  * Cross migrate two tasks
3222  */
3223 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3224 		int target_cpu, int curr_cpu)
3225 {
3226 	struct migration_swap_arg arg;
3227 	int ret = -EINVAL;
3228 
3229 	arg = (struct migration_swap_arg){
3230 		.src_task = cur,
3231 		.src_cpu = curr_cpu,
3232 		.dst_task = p,
3233 		.dst_cpu = target_cpu,
3234 	};
3235 
3236 	if (arg.src_cpu == arg.dst_cpu)
3237 		goto out;
3238 
3239 	/*
3240 	 * These three tests are all lockless; this is OK since all of them
3241 	 * will be re-checked with proper locks held further down the line.
3242 	 */
3243 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3244 		goto out;
3245 
3246 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3247 		goto out;
3248 
3249 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3250 		goto out;
3251 
3252 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3253 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3254 
3255 out:
3256 	return ret;
3257 }
3258 #endif /* CONFIG_NUMA_BALANCING */
3259 
3260 /*
3261  * wait_task_inactive - wait for a thread to unschedule.
3262  *
3263  * If @match_state is nonzero, it's the @p->state value just checked and
3264  * not expected to change.  If it changes, i.e. @p might have woken up,
3265  * then return zero.  When we succeed in waiting for @p to be off its CPU,
3266  * we return a positive number (its total switch count).  If a second call
3267  * a short while later returns the same number, the caller can be sure that
3268  * @p has remained unscheduled the whole time.
3269  *
3270  * The caller must ensure that the task *will* unschedule sometime soon,
3271  * else this function might spin for a *long* time. This function can't
3272  * be called with interrupts off, or it may introduce deadlock with
3273  * smp_call_function() if an IPI is sent by the same process we are
3274  * waiting to become inactive.
3275  */
3276 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3277 {
3278 	int running, queued;
3279 	struct rq_flags rf;
3280 	unsigned long ncsw;
3281 	struct rq *rq;
3282 
3283 	for (;;) {
3284 		/*
3285 		 * We do the initial early heuristics without holding
3286 		 * any task-queue locks at all. We'll only try to get
3287 		 * the runqueue lock when things look like they will
3288 		 * work out!
3289 		 */
3290 		rq = task_rq(p);
3291 
3292 		/*
3293 		 * If the task is actively running on another CPU
3294 		 * still, just relax and busy-wait without holding
3295 		 * any locks.
3296 		 *
3297 		 * NOTE! Since we don't hold any locks, it's not
3298 		 * even sure that "rq" stays as the right runqueue!
3299 		 * But we don't care, since "task_running()" will
3300 		 * return false if the runqueue has changed and p
3301 		 * is actually now running somewhere else!
3302 		 */
3303 		while (task_running(rq, p)) {
3304 			if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3305 				return 0;
3306 			cpu_relax();
3307 		}
3308 
3309 		/*
3310 		 * Ok, time to look more closely! We need the rq
3311 		 * lock now, to be *sure*. If we're wrong, we'll
3312 		 * just go back and repeat.
3313 		 */
3314 		rq = task_rq_lock(p, &rf);
3315 		trace_sched_wait_task(p);
3316 		running = task_running(rq, p);
3317 		queued = task_on_rq_queued(p);
3318 		ncsw = 0;
3319 		if (!match_state || READ_ONCE(p->__state) == match_state)
3320 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3321 		task_rq_unlock(rq, p, &rf);
3322 
3323 		/*
3324 		 * If it changed from the expected state, bail out now.
3325 		 */
3326 		if (unlikely(!ncsw))
3327 			break;
3328 
3329 		/*
3330 		 * Was it really running after all now that we
3331 		 * checked with the proper locks actually held?
3332 		 *
3333 		 * Oops. Go back and try again..
3334 		 */
3335 		if (unlikely(running)) {
3336 			cpu_relax();
3337 			continue;
3338 		}
3339 
3340 		/*
3341 		 * It's not enough that it's not actively running,
3342 		 * it must be off the runqueue _entirely_, and not
3343 		 * preempted!
3344 		 *
3345 		 * So if it was still runnable (but just not actively
3346 		 * running right now), it's preempted, and we should
3347 		 * yield - it could be a while.
3348 		 */
3349 		if (unlikely(queued)) {
3350 			ktime_t to = NSEC_PER_SEC / HZ;
3351 
3352 			set_current_state(TASK_UNINTERRUPTIBLE);
3353 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3354 			continue;
3355 		}
3356 
3357 		/*
3358 		 * Ahh, all good. It wasn't running, and it wasn't
3359 		 * runnable, which means that it will never become
3360 		 * running in the future either. We're all done!
3361 		 */
3362 		break;
3363 	}
3364 
3365 	return ncsw;
3366 }
3367 
3368 /***
3369  * kick_process - kick a running thread to enter/exit the kernel
3370  * @p: the to-be-kicked thread
3371  *
3372  * Cause a process which is running on another CPU to enter
3373  * kernel-mode, without any delay. (to get signals handled.)
3374  *
3375  * NOTE: this function doesn't have to take the runqueue lock,
3376  * because all it wants to ensure is that the remote task enters
3377  * the kernel. If the IPI races and the task has been migrated
3378  * to another CPU then no harm is done and the purpose has been
3379  * achieved as well.
3380  */
3381 void kick_process(struct task_struct *p)
3382 {
3383 	int cpu;
3384 
3385 	preempt_disable();
3386 	cpu = task_cpu(p);
3387 	if ((cpu != smp_processor_id()) && task_curr(p))
3388 		smp_send_reschedule(cpu);
3389 	preempt_enable();
3390 }
3391 EXPORT_SYMBOL_GPL(kick_process);
3392 
3393 /*
3394  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3395  *
3396  * A few notes on cpu_active vs cpu_online:
3397  *
3398  *  - cpu_active must be a subset of cpu_online
3399  *
3400  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3401  *    see __set_cpus_allowed_ptr(). At this point the newly online
3402  *    CPU isn't yet part of the sched domains, and balancing will not
3403  *    see it.
3404  *
3405  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3406  *    avoid the load balancer to place new tasks on the to be removed
3407  *    CPU. Existing tasks will remain running there and will be taken
3408  *    off.
3409  *
3410  * This means that fallback selection must not select !active CPUs.
3411  * And can assume that any active CPU must be online. Conversely
3412  * select_task_rq() below may allow selection of !active CPUs in order
3413  * to satisfy the above rules.
3414  */
3415 static int select_fallback_rq(int cpu, struct task_struct *p)
3416 {
3417 	int nid = cpu_to_node(cpu);
3418 	const struct cpumask *nodemask = NULL;
3419 	enum { cpuset, possible, fail } state = cpuset;
3420 	int dest_cpu;
3421 
3422 	/*
3423 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3424 	 * will return -1. There is no CPU on the node, and we should
3425 	 * select the CPU on the other node.
3426 	 */
3427 	if (nid != -1) {
3428 		nodemask = cpumask_of_node(nid);
3429 
3430 		/* Look for allowed, online CPU in same node. */
3431 		for_each_cpu(dest_cpu, nodemask) {
3432 			if (is_cpu_allowed(p, dest_cpu))
3433 				return dest_cpu;
3434 		}
3435 	}
3436 
3437 	for (;;) {
3438 		/* Any allowed, online CPU? */
3439 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3440 			if (!is_cpu_allowed(p, dest_cpu))
3441 				continue;
3442 
3443 			goto out;
3444 		}
3445 
3446 		/* No more Mr. Nice Guy. */
3447 		switch (state) {
3448 		case cpuset:
3449 			if (cpuset_cpus_allowed_fallback(p)) {
3450 				state = possible;
3451 				break;
3452 			}
3453 			fallthrough;
3454 		case possible:
3455 			/*
3456 			 * XXX When called from select_task_rq() we only
3457 			 * hold p->pi_lock and again violate locking order.
3458 			 *
3459 			 * More yuck to audit.
3460 			 */
3461 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3462 			state = fail;
3463 			break;
3464 		case fail:
3465 			BUG();
3466 			break;
3467 		}
3468 	}
3469 
3470 out:
3471 	if (state != cpuset) {
3472 		/*
3473 		 * Don't tell them about moving exiting tasks or
3474 		 * kernel threads (both mm NULL), since they never
3475 		 * leave kernel.
3476 		 */
3477 		if (p->mm && printk_ratelimit()) {
3478 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3479 					task_pid_nr(p), p->comm, cpu);
3480 		}
3481 	}
3482 
3483 	return dest_cpu;
3484 }
3485 
3486 /*
3487  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3488  */
3489 static inline
3490 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3491 {
3492 	lockdep_assert_held(&p->pi_lock);
3493 
3494 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3495 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3496 	else
3497 		cpu = cpumask_any(p->cpus_ptr);
3498 
3499 	/*
3500 	 * In order not to call set_task_cpu() on a blocking task we need
3501 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3502 	 * CPU.
3503 	 *
3504 	 * Since this is common to all placement strategies, this lives here.
3505 	 *
3506 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3507 	 *   not worry about this generic constraint ]
3508 	 */
3509 	if (unlikely(!is_cpu_allowed(p, cpu)))
3510 		cpu = select_fallback_rq(task_cpu(p), p);
3511 
3512 	return cpu;
3513 }
3514 
3515 void sched_set_stop_task(int cpu, struct task_struct *stop)
3516 {
3517 	static struct lock_class_key stop_pi_lock;
3518 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3519 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3520 
3521 	if (stop) {
3522 		/*
3523 		 * Make it appear like a SCHED_FIFO task, its something
3524 		 * userspace knows about and won't get confused about.
3525 		 *
3526 		 * Also, it will make PI more or less work without too
3527 		 * much confusion -- but then, stop work should not
3528 		 * rely on PI working anyway.
3529 		 */
3530 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3531 
3532 		stop->sched_class = &stop_sched_class;
3533 
3534 		/*
3535 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3536 		 * adjust the effective priority of a task. As a result,
3537 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3538 		 * which can then trigger wakeups of the stop thread to push
3539 		 * around the current task.
3540 		 *
3541 		 * The stop task itself will never be part of the PI-chain, it
3542 		 * never blocks, therefore that ->pi_lock recursion is safe.
3543 		 * Tell lockdep about this by placing the stop->pi_lock in its
3544 		 * own class.
3545 		 */
3546 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3547 	}
3548 
3549 	cpu_rq(cpu)->stop = stop;
3550 
3551 	if (old_stop) {
3552 		/*
3553 		 * Reset it back to a normal scheduling class so that
3554 		 * it can die in pieces.
3555 		 */
3556 		old_stop->sched_class = &rt_sched_class;
3557 	}
3558 }
3559 
3560 #else /* CONFIG_SMP */
3561 
3562 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3563 					 const struct cpumask *new_mask,
3564 					 u32 flags)
3565 {
3566 	return set_cpus_allowed_ptr(p, new_mask);
3567 }
3568 
3569 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3570 
3571 static inline bool rq_has_pinned_tasks(struct rq *rq)
3572 {
3573 	return false;
3574 }
3575 
3576 #endif /* !CONFIG_SMP */
3577 
3578 static void
3579 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3580 {
3581 	struct rq *rq;
3582 
3583 	if (!schedstat_enabled())
3584 		return;
3585 
3586 	rq = this_rq();
3587 
3588 #ifdef CONFIG_SMP
3589 	if (cpu == rq->cpu) {
3590 		__schedstat_inc(rq->ttwu_local);
3591 		__schedstat_inc(p->stats.nr_wakeups_local);
3592 	} else {
3593 		struct sched_domain *sd;
3594 
3595 		__schedstat_inc(p->stats.nr_wakeups_remote);
3596 		rcu_read_lock();
3597 		for_each_domain(rq->cpu, sd) {
3598 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3599 				__schedstat_inc(sd->ttwu_wake_remote);
3600 				break;
3601 			}
3602 		}
3603 		rcu_read_unlock();
3604 	}
3605 
3606 	if (wake_flags & WF_MIGRATED)
3607 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3608 #endif /* CONFIG_SMP */
3609 
3610 	__schedstat_inc(rq->ttwu_count);
3611 	__schedstat_inc(p->stats.nr_wakeups);
3612 
3613 	if (wake_flags & WF_SYNC)
3614 		__schedstat_inc(p->stats.nr_wakeups_sync);
3615 }
3616 
3617 /*
3618  * Mark the task runnable and perform wakeup-preemption.
3619  */
3620 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3621 			   struct rq_flags *rf)
3622 {
3623 	check_preempt_curr(rq, p, wake_flags);
3624 	WRITE_ONCE(p->__state, TASK_RUNNING);
3625 	trace_sched_wakeup(p);
3626 
3627 #ifdef CONFIG_SMP
3628 	if (p->sched_class->task_woken) {
3629 		/*
3630 		 * Our task @p is fully woken up and running; so it's safe to
3631 		 * drop the rq->lock, hereafter rq is only used for statistics.
3632 		 */
3633 		rq_unpin_lock(rq, rf);
3634 		p->sched_class->task_woken(rq, p);
3635 		rq_repin_lock(rq, rf);
3636 	}
3637 
3638 	if (rq->idle_stamp) {
3639 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3640 		u64 max = 2*rq->max_idle_balance_cost;
3641 
3642 		update_avg(&rq->avg_idle, delta);
3643 
3644 		if (rq->avg_idle > max)
3645 			rq->avg_idle = max;
3646 
3647 		rq->wake_stamp = jiffies;
3648 		rq->wake_avg_idle = rq->avg_idle / 2;
3649 
3650 		rq->idle_stamp = 0;
3651 	}
3652 #endif
3653 }
3654 
3655 static void
3656 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3657 		 struct rq_flags *rf)
3658 {
3659 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3660 
3661 	lockdep_assert_rq_held(rq);
3662 
3663 	if (p->sched_contributes_to_load)
3664 		rq->nr_uninterruptible--;
3665 
3666 #ifdef CONFIG_SMP
3667 	if (wake_flags & WF_MIGRATED)
3668 		en_flags |= ENQUEUE_MIGRATED;
3669 	else
3670 #endif
3671 	if (p->in_iowait) {
3672 		delayacct_blkio_end(p);
3673 		atomic_dec(&task_rq(p)->nr_iowait);
3674 	}
3675 
3676 	activate_task(rq, p, en_flags);
3677 	ttwu_do_wakeup(rq, p, wake_flags, rf);
3678 }
3679 
3680 /*
3681  * Consider @p being inside a wait loop:
3682  *
3683  *   for (;;) {
3684  *      set_current_state(TASK_UNINTERRUPTIBLE);
3685  *
3686  *      if (CONDITION)
3687  *         break;
3688  *
3689  *      schedule();
3690  *   }
3691  *   __set_current_state(TASK_RUNNING);
3692  *
3693  * between set_current_state() and schedule(). In this case @p is still
3694  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3695  * an atomic manner.
3696  *
3697  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3698  * then schedule() must still happen and p->state can be changed to
3699  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3700  * need to do a full wakeup with enqueue.
3701  *
3702  * Returns: %true when the wakeup is done,
3703  *          %false otherwise.
3704  */
3705 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3706 {
3707 	struct rq_flags rf;
3708 	struct rq *rq;
3709 	int ret = 0;
3710 
3711 	rq = __task_rq_lock(p, &rf);
3712 	if (task_on_rq_queued(p)) {
3713 		/* check_preempt_curr() may use rq clock */
3714 		update_rq_clock(rq);
3715 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
3716 		ret = 1;
3717 	}
3718 	__task_rq_unlock(rq, &rf);
3719 
3720 	return ret;
3721 }
3722 
3723 #ifdef CONFIG_SMP
3724 void sched_ttwu_pending(void *arg)
3725 {
3726 	struct llist_node *llist = arg;
3727 	struct rq *rq = this_rq();
3728 	struct task_struct *p, *t;
3729 	struct rq_flags rf;
3730 
3731 	if (!llist)
3732 		return;
3733 
3734 	/*
3735 	 * rq::ttwu_pending racy indication of out-standing wakeups.
3736 	 * Races such that false-negatives are possible, since they
3737 	 * are shorter lived that false-positives would be.
3738 	 */
3739 	WRITE_ONCE(rq->ttwu_pending, 0);
3740 
3741 	rq_lock_irqsave(rq, &rf);
3742 	update_rq_clock(rq);
3743 
3744 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3745 		if (WARN_ON_ONCE(p->on_cpu))
3746 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3747 
3748 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3749 			set_task_cpu(p, cpu_of(rq));
3750 
3751 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3752 	}
3753 
3754 	rq_unlock_irqrestore(rq, &rf);
3755 }
3756 
3757 void send_call_function_single_ipi(int cpu)
3758 {
3759 	struct rq *rq = cpu_rq(cpu);
3760 
3761 	if (!set_nr_if_polling(rq->idle))
3762 		arch_send_call_function_single_ipi(cpu);
3763 	else
3764 		trace_sched_wake_idle_without_ipi(cpu);
3765 }
3766 
3767 /*
3768  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3769  * necessary. The wakee CPU on receipt of the IPI will queue the task
3770  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3771  * of the wakeup instead of the waker.
3772  */
3773 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3774 {
3775 	struct rq *rq = cpu_rq(cpu);
3776 
3777 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3778 
3779 	WRITE_ONCE(rq->ttwu_pending, 1);
3780 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3781 }
3782 
3783 void wake_up_if_idle(int cpu)
3784 {
3785 	struct rq *rq = cpu_rq(cpu);
3786 	struct rq_flags rf;
3787 
3788 	rcu_read_lock();
3789 
3790 	if (!is_idle_task(rcu_dereference(rq->curr)))
3791 		goto out;
3792 
3793 	rq_lock_irqsave(rq, &rf);
3794 	if (is_idle_task(rq->curr))
3795 		resched_curr(rq);
3796 	/* Else CPU is not idle, do nothing here: */
3797 	rq_unlock_irqrestore(rq, &rf);
3798 
3799 out:
3800 	rcu_read_unlock();
3801 }
3802 
3803 bool cpus_share_cache(int this_cpu, int that_cpu)
3804 {
3805 	if (this_cpu == that_cpu)
3806 		return true;
3807 
3808 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3809 }
3810 
3811 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3812 {
3813 	/*
3814 	 * Do not complicate things with the async wake_list while the CPU is
3815 	 * in hotplug state.
3816 	 */
3817 	if (!cpu_active(cpu))
3818 		return false;
3819 
3820 	/*
3821 	 * If the CPU does not share cache, then queue the task on the
3822 	 * remote rqs wakelist to avoid accessing remote data.
3823 	 */
3824 	if (!cpus_share_cache(smp_processor_id(), cpu))
3825 		return true;
3826 
3827 	/*
3828 	 * If the task is descheduling and the only running task on the
3829 	 * CPU then use the wakelist to offload the task activation to
3830 	 * the soon-to-be-idle CPU as the current CPU is likely busy.
3831 	 * nr_running is checked to avoid unnecessary task stacking.
3832 	 */
3833 	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3834 		return true;
3835 
3836 	return false;
3837 }
3838 
3839 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3840 {
3841 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3842 		if (WARN_ON_ONCE(cpu == smp_processor_id()))
3843 			return false;
3844 
3845 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3846 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3847 		return true;
3848 	}
3849 
3850 	return false;
3851 }
3852 
3853 #else /* !CONFIG_SMP */
3854 
3855 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3856 {
3857 	return false;
3858 }
3859 
3860 #endif /* CONFIG_SMP */
3861 
3862 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3863 {
3864 	struct rq *rq = cpu_rq(cpu);
3865 	struct rq_flags rf;
3866 
3867 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3868 		return;
3869 
3870 	rq_lock(rq, &rf);
3871 	update_rq_clock(rq);
3872 	ttwu_do_activate(rq, p, wake_flags, &rf);
3873 	rq_unlock(rq, &rf);
3874 }
3875 
3876 /*
3877  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3878  *
3879  * The caller holds p::pi_lock if p != current or has preemption
3880  * disabled when p == current.
3881  *
3882  * The rules of PREEMPT_RT saved_state:
3883  *
3884  *   The related locking code always holds p::pi_lock when updating
3885  *   p::saved_state, which means the code is fully serialized in both cases.
3886  *
3887  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3888  *   bits set. This allows to distinguish all wakeup scenarios.
3889  */
3890 static __always_inline
3891 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3892 {
3893 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3894 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3895 			     state != TASK_RTLOCK_WAIT);
3896 	}
3897 
3898 	if (READ_ONCE(p->__state) & state) {
3899 		*success = 1;
3900 		return true;
3901 	}
3902 
3903 #ifdef CONFIG_PREEMPT_RT
3904 	/*
3905 	 * Saved state preserves the task state across blocking on
3906 	 * an RT lock.  If the state matches, set p::saved_state to
3907 	 * TASK_RUNNING, but do not wake the task because it waits
3908 	 * for a lock wakeup. Also indicate success because from
3909 	 * the regular waker's point of view this has succeeded.
3910 	 *
3911 	 * After acquiring the lock the task will restore p::__state
3912 	 * from p::saved_state which ensures that the regular
3913 	 * wakeup is not lost. The restore will also set
3914 	 * p::saved_state to TASK_RUNNING so any further tests will
3915 	 * not result in false positives vs. @success
3916 	 */
3917 	if (p->saved_state & state) {
3918 		p->saved_state = TASK_RUNNING;
3919 		*success = 1;
3920 	}
3921 #endif
3922 	return false;
3923 }
3924 
3925 /*
3926  * Notes on Program-Order guarantees on SMP systems.
3927  *
3928  *  MIGRATION
3929  *
3930  * The basic program-order guarantee on SMP systems is that when a task [t]
3931  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3932  * execution on its new CPU [c1].
3933  *
3934  * For migration (of runnable tasks) this is provided by the following means:
3935  *
3936  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3937  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3938  *     rq(c1)->lock (if not at the same time, then in that order).
3939  *  C) LOCK of the rq(c1)->lock scheduling in task
3940  *
3941  * Release/acquire chaining guarantees that B happens after A and C after B.
3942  * Note: the CPU doing B need not be c0 or c1
3943  *
3944  * Example:
3945  *
3946  *   CPU0            CPU1            CPU2
3947  *
3948  *   LOCK rq(0)->lock
3949  *   sched-out X
3950  *   sched-in Y
3951  *   UNLOCK rq(0)->lock
3952  *
3953  *                                   LOCK rq(0)->lock // orders against CPU0
3954  *                                   dequeue X
3955  *                                   UNLOCK rq(0)->lock
3956  *
3957  *                                   LOCK rq(1)->lock
3958  *                                   enqueue X
3959  *                                   UNLOCK rq(1)->lock
3960  *
3961  *                   LOCK rq(1)->lock // orders against CPU2
3962  *                   sched-out Z
3963  *                   sched-in X
3964  *                   UNLOCK rq(1)->lock
3965  *
3966  *
3967  *  BLOCKING -- aka. SLEEP + WAKEUP
3968  *
3969  * For blocking we (obviously) need to provide the same guarantee as for
3970  * migration. However the means are completely different as there is no lock
3971  * chain to provide order. Instead we do:
3972  *
3973  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
3974  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3975  *
3976  * Example:
3977  *
3978  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
3979  *
3980  *   LOCK rq(0)->lock LOCK X->pi_lock
3981  *   dequeue X
3982  *   sched-out X
3983  *   smp_store_release(X->on_cpu, 0);
3984  *
3985  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
3986  *                    X->state = WAKING
3987  *                    set_task_cpu(X,2)
3988  *
3989  *                    LOCK rq(2)->lock
3990  *                    enqueue X
3991  *                    X->state = RUNNING
3992  *                    UNLOCK rq(2)->lock
3993  *
3994  *                                          LOCK rq(2)->lock // orders against CPU1
3995  *                                          sched-out Z
3996  *                                          sched-in X
3997  *                                          UNLOCK rq(2)->lock
3998  *
3999  *                    UNLOCK X->pi_lock
4000  *   UNLOCK rq(0)->lock
4001  *
4002  *
4003  * However, for wakeups there is a second guarantee we must provide, namely we
4004  * must ensure that CONDITION=1 done by the caller can not be reordered with
4005  * accesses to the task state; see try_to_wake_up() and set_current_state().
4006  */
4007 
4008 /**
4009  * try_to_wake_up - wake up a thread
4010  * @p: the thread to be awakened
4011  * @state: the mask of task states that can be woken
4012  * @wake_flags: wake modifier flags (WF_*)
4013  *
4014  * Conceptually does:
4015  *
4016  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4017  *
4018  * If the task was not queued/runnable, also place it back on a runqueue.
4019  *
4020  * This function is atomic against schedule() which would dequeue the task.
4021  *
4022  * It issues a full memory barrier before accessing @p->state, see the comment
4023  * with set_current_state().
4024  *
4025  * Uses p->pi_lock to serialize against concurrent wake-ups.
4026  *
4027  * Relies on p->pi_lock stabilizing:
4028  *  - p->sched_class
4029  *  - p->cpus_ptr
4030  *  - p->sched_task_group
4031  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4032  *
4033  * Tries really hard to only take one task_rq(p)->lock for performance.
4034  * Takes rq->lock in:
4035  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4036  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4037  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4038  *
4039  * As a consequence we race really badly with just about everything. See the
4040  * many memory barriers and their comments for details.
4041  *
4042  * Return: %true if @p->state changes (an actual wakeup was done),
4043  *	   %false otherwise.
4044  */
4045 static int
4046 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4047 {
4048 	unsigned long flags;
4049 	int cpu, success = 0;
4050 
4051 	preempt_disable();
4052 	if (p == current) {
4053 		/*
4054 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4055 		 * == smp_processor_id()'. Together this means we can special
4056 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4057 		 * without taking any locks.
4058 		 *
4059 		 * In particular:
4060 		 *  - we rely on Program-Order guarantees for all the ordering,
4061 		 *  - we're serialized against set_special_state() by virtue of
4062 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4063 		 */
4064 		if (!ttwu_state_match(p, state, &success))
4065 			goto out;
4066 
4067 		trace_sched_waking(p);
4068 		WRITE_ONCE(p->__state, TASK_RUNNING);
4069 		trace_sched_wakeup(p);
4070 		goto out;
4071 	}
4072 
4073 	/*
4074 	 * If we are going to wake up a thread waiting for CONDITION we
4075 	 * need to ensure that CONDITION=1 done by the caller can not be
4076 	 * reordered with p->state check below. This pairs with smp_store_mb()
4077 	 * in set_current_state() that the waiting thread does.
4078 	 */
4079 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4080 	smp_mb__after_spinlock();
4081 	if (!ttwu_state_match(p, state, &success))
4082 		goto unlock;
4083 
4084 	trace_sched_waking(p);
4085 
4086 	/*
4087 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4088 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4089 	 * in smp_cond_load_acquire() below.
4090 	 *
4091 	 * sched_ttwu_pending()			try_to_wake_up()
4092 	 *   STORE p->on_rq = 1			  LOAD p->state
4093 	 *   UNLOCK rq->lock
4094 	 *
4095 	 * __schedule() (switch to task 'p')
4096 	 *   LOCK rq->lock			  smp_rmb();
4097 	 *   smp_mb__after_spinlock();
4098 	 *   UNLOCK rq->lock
4099 	 *
4100 	 * [task p]
4101 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4102 	 *
4103 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4104 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4105 	 *
4106 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4107 	 */
4108 	smp_rmb();
4109 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4110 		goto unlock;
4111 
4112 #ifdef CONFIG_SMP
4113 	/*
4114 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4115 	 * possible to, falsely, observe p->on_cpu == 0.
4116 	 *
4117 	 * One must be running (->on_cpu == 1) in order to remove oneself
4118 	 * from the runqueue.
4119 	 *
4120 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4121 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4122 	 *   UNLOCK rq->lock
4123 	 *
4124 	 * __schedule() (put 'p' to sleep)
4125 	 *   LOCK rq->lock			  smp_rmb();
4126 	 *   smp_mb__after_spinlock();
4127 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4128 	 *
4129 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4130 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4131 	 *
4132 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4133 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4134 	 * care about it's own p->state. See the comment in __schedule().
4135 	 */
4136 	smp_acquire__after_ctrl_dep();
4137 
4138 	/*
4139 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4140 	 * == 0), which means we need to do an enqueue, change p->state to
4141 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4142 	 * enqueue, such as ttwu_queue_wakelist().
4143 	 */
4144 	WRITE_ONCE(p->__state, TASK_WAKING);
4145 
4146 	/*
4147 	 * If the owning (remote) CPU is still in the middle of schedule() with
4148 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4149 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4150 	 * let the waker make forward progress. This is safe because IRQs are
4151 	 * disabled and the IPI will deliver after on_cpu is cleared.
4152 	 *
4153 	 * Ensure we load task_cpu(p) after p->on_cpu:
4154 	 *
4155 	 * set_task_cpu(p, cpu);
4156 	 *   STORE p->cpu = @cpu
4157 	 * __schedule() (switch to task 'p')
4158 	 *   LOCK rq->lock
4159 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4160 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4161 	 *
4162 	 * to ensure we observe the correct CPU on which the task is currently
4163 	 * scheduling.
4164 	 */
4165 	if (smp_load_acquire(&p->on_cpu) &&
4166 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4167 		goto unlock;
4168 
4169 	/*
4170 	 * If the owning (remote) CPU is still in the middle of schedule() with
4171 	 * this task as prev, wait until it's done referencing the task.
4172 	 *
4173 	 * Pairs with the smp_store_release() in finish_task().
4174 	 *
4175 	 * This ensures that tasks getting woken will be fully ordered against
4176 	 * their previous state and preserve Program Order.
4177 	 */
4178 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4179 
4180 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4181 	if (task_cpu(p) != cpu) {
4182 		if (p->in_iowait) {
4183 			delayacct_blkio_end(p);
4184 			atomic_dec(&task_rq(p)->nr_iowait);
4185 		}
4186 
4187 		wake_flags |= WF_MIGRATED;
4188 		psi_ttwu_dequeue(p);
4189 		set_task_cpu(p, cpu);
4190 	}
4191 #else
4192 	cpu = task_cpu(p);
4193 #endif /* CONFIG_SMP */
4194 
4195 	ttwu_queue(p, cpu, wake_flags);
4196 unlock:
4197 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4198 out:
4199 	if (success)
4200 		ttwu_stat(p, task_cpu(p), wake_flags);
4201 	preempt_enable();
4202 
4203 	return success;
4204 }
4205 
4206 /**
4207  * task_call_func - Invoke a function on task in fixed state
4208  * @p: Process for which the function is to be invoked, can be @current.
4209  * @func: Function to invoke.
4210  * @arg: Argument to function.
4211  *
4212  * Fix the task in it's current state by avoiding wakeups and or rq operations
4213  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4214  * to work out what the state is, if required.  Given that @func can be invoked
4215  * with a runqueue lock held, it had better be quite lightweight.
4216  *
4217  * Returns:
4218  *   Whatever @func returns
4219  */
4220 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4221 {
4222 	struct rq *rq = NULL;
4223 	unsigned int state;
4224 	struct rq_flags rf;
4225 	int ret;
4226 
4227 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4228 
4229 	state = READ_ONCE(p->__state);
4230 
4231 	/*
4232 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4233 	 * possible to, falsely, observe p->on_rq == 0.
4234 	 *
4235 	 * See try_to_wake_up() for a longer comment.
4236 	 */
4237 	smp_rmb();
4238 
4239 	/*
4240 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4241 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4242 	 * locks at the end, see ttwu_queue_wakelist().
4243 	 */
4244 	if (state == TASK_RUNNING || state == TASK_WAKING || p->on_rq)
4245 		rq = __task_rq_lock(p, &rf);
4246 
4247 	/*
4248 	 * At this point the task is pinned; either:
4249 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4250 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4251 	 *  - queued, and we're holding off schedule	 (rq->lock)
4252 	 *  - running, and we're holding off de-schedule (rq->lock)
4253 	 *
4254 	 * The called function (@func) can use: task_curr(), p->on_rq and
4255 	 * p->__state to differentiate between these states.
4256 	 */
4257 	ret = func(p, arg);
4258 
4259 	if (rq)
4260 		rq_unlock(rq, &rf);
4261 
4262 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4263 	return ret;
4264 }
4265 
4266 /**
4267  * wake_up_process - Wake up a specific process
4268  * @p: The process to be woken up.
4269  *
4270  * Attempt to wake up the nominated process and move it to the set of runnable
4271  * processes.
4272  *
4273  * Return: 1 if the process was woken up, 0 if it was already running.
4274  *
4275  * This function executes a full memory barrier before accessing the task state.
4276  */
4277 int wake_up_process(struct task_struct *p)
4278 {
4279 	return try_to_wake_up(p, TASK_NORMAL, 0);
4280 }
4281 EXPORT_SYMBOL(wake_up_process);
4282 
4283 int wake_up_state(struct task_struct *p, unsigned int state)
4284 {
4285 	return try_to_wake_up(p, state, 0);
4286 }
4287 
4288 /*
4289  * Perform scheduler related setup for a newly forked process p.
4290  * p is forked by current.
4291  *
4292  * __sched_fork() is basic setup used by init_idle() too:
4293  */
4294 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4295 {
4296 	p->on_rq			= 0;
4297 
4298 	p->se.on_rq			= 0;
4299 	p->se.exec_start		= 0;
4300 	p->se.sum_exec_runtime		= 0;
4301 	p->se.prev_sum_exec_runtime	= 0;
4302 	p->se.nr_migrations		= 0;
4303 	p->se.vruntime			= 0;
4304 	INIT_LIST_HEAD(&p->se.group_node);
4305 
4306 #ifdef CONFIG_FAIR_GROUP_SCHED
4307 	p->se.cfs_rq			= NULL;
4308 #endif
4309 
4310 #ifdef CONFIG_SCHEDSTATS
4311 	/* Even if schedstat is disabled, there should not be garbage */
4312 	memset(&p->stats, 0, sizeof(p->stats));
4313 #endif
4314 
4315 	RB_CLEAR_NODE(&p->dl.rb_node);
4316 	init_dl_task_timer(&p->dl);
4317 	init_dl_inactive_task_timer(&p->dl);
4318 	__dl_clear_params(p);
4319 
4320 	INIT_LIST_HEAD(&p->rt.run_list);
4321 	p->rt.timeout		= 0;
4322 	p->rt.time_slice	= sched_rr_timeslice;
4323 	p->rt.on_rq		= 0;
4324 	p->rt.on_list		= 0;
4325 
4326 #ifdef CONFIG_PREEMPT_NOTIFIERS
4327 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4328 #endif
4329 
4330 #ifdef CONFIG_COMPACTION
4331 	p->capture_control = NULL;
4332 #endif
4333 	init_numa_balancing(clone_flags, p);
4334 #ifdef CONFIG_SMP
4335 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4336 	p->migration_pending = NULL;
4337 #endif
4338 }
4339 
4340 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4341 
4342 #ifdef CONFIG_NUMA_BALANCING
4343 
4344 int sysctl_numa_balancing_mode;
4345 
4346 static void __set_numabalancing_state(bool enabled)
4347 {
4348 	if (enabled)
4349 		static_branch_enable(&sched_numa_balancing);
4350 	else
4351 		static_branch_disable(&sched_numa_balancing);
4352 }
4353 
4354 void set_numabalancing_state(bool enabled)
4355 {
4356 	if (enabled)
4357 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4358 	else
4359 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4360 	__set_numabalancing_state(enabled);
4361 }
4362 
4363 #ifdef CONFIG_PROC_SYSCTL
4364 int sysctl_numa_balancing(struct ctl_table *table, int write,
4365 			  void *buffer, size_t *lenp, loff_t *ppos)
4366 {
4367 	struct ctl_table t;
4368 	int err;
4369 	int state = sysctl_numa_balancing_mode;
4370 
4371 	if (write && !capable(CAP_SYS_ADMIN))
4372 		return -EPERM;
4373 
4374 	t = *table;
4375 	t.data = &state;
4376 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4377 	if (err < 0)
4378 		return err;
4379 	if (write) {
4380 		sysctl_numa_balancing_mode = state;
4381 		__set_numabalancing_state(state);
4382 	}
4383 	return err;
4384 }
4385 #endif
4386 #endif
4387 
4388 #ifdef CONFIG_SCHEDSTATS
4389 
4390 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4391 
4392 static void set_schedstats(bool enabled)
4393 {
4394 	if (enabled)
4395 		static_branch_enable(&sched_schedstats);
4396 	else
4397 		static_branch_disable(&sched_schedstats);
4398 }
4399 
4400 void force_schedstat_enabled(void)
4401 {
4402 	if (!schedstat_enabled()) {
4403 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4404 		static_branch_enable(&sched_schedstats);
4405 	}
4406 }
4407 
4408 static int __init setup_schedstats(char *str)
4409 {
4410 	int ret = 0;
4411 	if (!str)
4412 		goto out;
4413 
4414 	if (!strcmp(str, "enable")) {
4415 		set_schedstats(true);
4416 		ret = 1;
4417 	} else if (!strcmp(str, "disable")) {
4418 		set_schedstats(false);
4419 		ret = 1;
4420 	}
4421 out:
4422 	if (!ret)
4423 		pr_warn("Unable to parse schedstats=\n");
4424 
4425 	return ret;
4426 }
4427 __setup("schedstats=", setup_schedstats);
4428 
4429 #ifdef CONFIG_PROC_SYSCTL
4430 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4431 		size_t *lenp, loff_t *ppos)
4432 {
4433 	struct ctl_table t;
4434 	int err;
4435 	int state = static_branch_likely(&sched_schedstats);
4436 
4437 	if (write && !capable(CAP_SYS_ADMIN))
4438 		return -EPERM;
4439 
4440 	t = *table;
4441 	t.data = &state;
4442 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4443 	if (err < 0)
4444 		return err;
4445 	if (write)
4446 		set_schedstats(state);
4447 	return err;
4448 }
4449 #endif /* CONFIG_PROC_SYSCTL */
4450 #endif /* CONFIG_SCHEDSTATS */
4451 
4452 #ifdef CONFIG_SYSCTL
4453 static struct ctl_table sched_core_sysctls[] = {
4454 #ifdef CONFIG_SCHEDSTATS
4455 	{
4456 		.procname       = "sched_schedstats",
4457 		.data           = NULL,
4458 		.maxlen         = sizeof(unsigned int),
4459 		.mode           = 0644,
4460 		.proc_handler   = sysctl_schedstats,
4461 		.extra1         = SYSCTL_ZERO,
4462 		.extra2         = SYSCTL_ONE,
4463 	},
4464 #endif /* CONFIG_SCHEDSTATS */
4465 #ifdef CONFIG_UCLAMP_TASK
4466 	{
4467 		.procname       = "sched_util_clamp_min",
4468 		.data           = &sysctl_sched_uclamp_util_min,
4469 		.maxlen         = sizeof(unsigned int),
4470 		.mode           = 0644,
4471 		.proc_handler   = sysctl_sched_uclamp_handler,
4472 	},
4473 	{
4474 		.procname       = "sched_util_clamp_max",
4475 		.data           = &sysctl_sched_uclamp_util_max,
4476 		.maxlen         = sizeof(unsigned int),
4477 		.mode           = 0644,
4478 		.proc_handler   = sysctl_sched_uclamp_handler,
4479 	},
4480 	{
4481 		.procname       = "sched_util_clamp_min_rt_default",
4482 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4483 		.maxlen         = sizeof(unsigned int),
4484 		.mode           = 0644,
4485 		.proc_handler   = sysctl_sched_uclamp_handler,
4486 	},
4487 #endif /* CONFIG_UCLAMP_TASK */
4488 	{}
4489 };
4490 static int __init sched_core_sysctl_init(void)
4491 {
4492 	register_sysctl_init("kernel", sched_core_sysctls);
4493 	return 0;
4494 }
4495 late_initcall(sched_core_sysctl_init);
4496 #endif /* CONFIG_SYSCTL */
4497 
4498 /*
4499  * fork()/clone()-time setup:
4500  */
4501 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4502 {
4503 	__sched_fork(clone_flags, p);
4504 	/*
4505 	 * We mark the process as NEW here. This guarantees that
4506 	 * nobody will actually run it, and a signal or other external
4507 	 * event cannot wake it up and insert it on the runqueue either.
4508 	 */
4509 	p->__state = TASK_NEW;
4510 
4511 	/*
4512 	 * Make sure we do not leak PI boosting priority to the child.
4513 	 */
4514 	p->prio = current->normal_prio;
4515 
4516 	uclamp_fork(p);
4517 
4518 	/*
4519 	 * Revert to default priority/policy on fork if requested.
4520 	 */
4521 	if (unlikely(p->sched_reset_on_fork)) {
4522 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4523 			p->policy = SCHED_NORMAL;
4524 			p->static_prio = NICE_TO_PRIO(0);
4525 			p->rt_priority = 0;
4526 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4527 			p->static_prio = NICE_TO_PRIO(0);
4528 
4529 		p->prio = p->normal_prio = p->static_prio;
4530 		set_load_weight(p, false);
4531 
4532 		/*
4533 		 * We don't need the reset flag anymore after the fork. It has
4534 		 * fulfilled its duty:
4535 		 */
4536 		p->sched_reset_on_fork = 0;
4537 	}
4538 
4539 	if (dl_prio(p->prio))
4540 		return -EAGAIN;
4541 	else if (rt_prio(p->prio))
4542 		p->sched_class = &rt_sched_class;
4543 	else
4544 		p->sched_class = &fair_sched_class;
4545 
4546 	init_entity_runnable_average(&p->se);
4547 
4548 
4549 #ifdef CONFIG_SCHED_INFO
4550 	if (likely(sched_info_on()))
4551 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4552 #endif
4553 #if defined(CONFIG_SMP)
4554 	p->on_cpu = 0;
4555 #endif
4556 	init_task_preempt_count(p);
4557 #ifdef CONFIG_SMP
4558 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4559 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4560 #endif
4561 	return 0;
4562 }
4563 
4564 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4565 {
4566 	unsigned long flags;
4567 
4568 	/*
4569 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4570 	 * required yet, but lockdep gets upset if rules are violated.
4571 	 */
4572 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4573 #ifdef CONFIG_CGROUP_SCHED
4574 	if (1) {
4575 		struct task_group *tg;
4576 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4577 				  struct task_group, css);
4578 		tg = autogroup_task_group(p, tg);
4579 		p->sched_task_group = tg;
4580 	}
4581 #endif
4582 	rseq_migrate(p);
4583 	/*
4584 	 * We're setting the CPU for the first time, we don't migrate,
4585 	 * so use __set_task_cpu().
4586 	 */
4587 	__set_task_cpu(p, smp_processor_id());
4588 	if (p->sched_class->task_fork)
4589 		p->sched_class->task_fork(p);
4590 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4591 }
4592 
4593 void sched_post_fork(struct task_struct *p)
4594 {
4595 	uclamp_post_fork(p);
4596 }
4597 
4598 unsigned long to_ratio(u64 period, u64 runtime)
4599 {
4600 	if (runtime == RUNTIME_INF)
4601 		return BW_UNIT;
4602 
4603 	/*
4604 	 * Doing this here saves a lot of checks in all
4605 	 * the calling paths, and returning zero seems
4606 	 * safe for them anyway.
4607 	 */
4608 	if (period == 0)
4609 		return 0;
4610 
4611 	return div64_u64(runtime << BW_SHIFT, period);
4612 }
4613 
4614 /*
4615  * wake_up_new_task - wake up a newly created task for the first time.
4616  *
4617  * This function will do some initial scheduler statistics housekeeping
4618  * that must be done for every newly created context, then puts the task
4619  * on the runqueue and wakes it.
4620  */
4621 void wake_up_new_task(struct task_struct *p)
4622 {
4623 	struct rq_flags rf;
4624 	struct rq *rq;
4625 
4626 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4627 	WRITE_ONCE(p->__state, TASK_RUNNING);
4628 #ifdef CONFIG_SMP
4629 	/*
4630 	 * Fork balancing, do it here and not earlier because:
4631 	 *  - cpus_ptr can change in the fork path
4632 	 *  - any previously selected CPU might disappear through hotplug
4633 	 *
4634 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4635 	 * as we're not fully set-up yet.
4636 	 */
4637 	p->recent_used_cpu = task_cpu(p);
4638 	rseq_migrate(p);
4639 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4640 #endif
4641 	rq = __task_rq_lock(p, &rf);
4642 	update_rq_clock(rq);
4643 	post_init_entity_util_avg(p);
4644 
4645 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4646 	trace_sched_wakeup_new(p);
4647 	check_preempt_curr(rq, p, WF_FORK);
4648 #ifdef CONFIG_SMP
4649 	if (p->sched_class->task_woken) {
4650 		/*
4651 		 * Nothing relies on rq->lock after this, so it's fine to
4652 		 * drop it.
4653 		 */
4654 		rq_unpin_lock(rq, &rf);
4655 		p->sched_class->task_woken(rq, p);
4656 		rq_repin_lock(rq, &rf);
4657 	}
4658 #endif
4659 	task_rq_unlock(rq, p, &rf);
4660 }
4661 
4662 #ifdef CONFIG_PREEMPT_NOTIFIERS
4663 
4664 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4665 
4666 void preempt_notifier_inc(void)
4667 {
4668 	static_branch_inc(&preempt_notifier_key);
4669 }
4670 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4671 
4672 void preempt_notifier_dec(void)
4673 {
4674 	static_branch_dec(&preempt_notifier_key);
4675 }
4676 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4677 
4678 /**
4679  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4680  * @notifier: notifier struct to register
4681  */
4682 void preempt_notifier_register(struct preempt_notifier *notifier)
4683 {
4684 	if (!static_branch_unlikely(&preempt_notifier_key))
4685 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4686 
4687 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4688 }
4689 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4690 
4691 /**
4692  * preempt_notifier_unregister - no longer interested in preemption notifications
4693  * @notifier: notifier struct to unregister
4694  *
4695  * This is *not* safe to call from within a preemption notifier.
4696  */
4697 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4698 {
4699 	hlist_del(&notifier->link);
4700 }
4701 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4702 
4703 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4704 {
4705 	struct preempt_notifier *notifier;
4706 
4707 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4708 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4709 }
4710 
4711 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4712 {
4713 	if (static_branch_unlikely(&preempt_notifier_key))
4714 		__fire_sched_in_preempt_notifiers(curr);
4715 }
4716 
4717 static void
4718 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4719 				   struct task_struct *next)
4720 {
4721 	struct preempt_notifier *notifier;
4722 
4723 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4724 		notifier->ops->sched_out(notifier, next);
4725 }
4726 
4727 static __always_inline void
4728 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4729 				 struct task_struct *next)
4730 {
4731 	if (static_branch_unlikely(&preempt_notifier_key))
4732 		__fire_sched_out_preempt_notifiers(curr, next);
4733 }
4734 
4735 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4736 
4737 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4738 {
4739 }
4740 
4741 static inline void
4742 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4743 				 struct task_struct *next)
4744 {
4745 }
4746 
4747 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4748 
4749 static inline void prepare_task(struct task_struct *next)
4750 {
4751 #ifdef CONFIG_SMP
4752 	/*
4753 	 * Claim the task as running, we do this before switching to it
4754 	 * such that any running task will have this set.
4755 	 *
4756 	 * See the ttwu() WF_ON_CPU case and its ordering comment.
4757 	 */
4758 	WRITE_ONCE(next->on_cpu, 1);
4759 #endif
4760 }
4761 
4762 static inline void finish_task(struct task_struct *prev)
4763 {
4764 #ifdef CONFIG_SMP
4765 	/*
4766 	 * This must be the very last reference to @prev from this CPU. After
4767 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4768 	 * must ensure this doesn't happen until the switch is completely
4769 	 * finished.
4770 	 *
4771 	 * In particular, the load of prev->state in finish_task_switch() must
4772 	 * happen before this.
4773 	 *
4774 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4775 	 */
4776 	smp_store_release(&prev->on_cpu, 0);
4777 #endif
4778 }
4779 
4780 #ifdef CONFIG_SMP
4781 
4782 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4783 {
4784 	void (*func)(struct rq *rq);
4785 	struct callback_head *next;
4786 
4787 	lockdep_assert_rq_held(rq);
4788 
4789 	while (head) {
4790 		func = (void (*)(struct rq *))head->func;
4791 		next = head->next;
4792 		head->next = NULL;
4793 		head = next;
4794 
4795 		func(rq);
4796 	}
4797 }
4798 
4799 static void balance_push(struct rq *rq);
4800 
4801 struct callback_head balance_push_callback = {
4802 	.next = NULL,
4803 	.func = (void (*)(struct callback_head *))balance_push,
4804 };
4805 
4806 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4807 {
4808 	struct callback_head *head = rq->balance_callback;
4809 
4810 	lockdep_assert_rq_held(rq);
4811 	if (head)
4812 		rq->balance_callback = NULL;
4813 
4814 	return head;
4815 }
4816 
4817 static void __balance_callbacks(struct rq *rq)
4818 {
4819 	do_balance_callbacks(rq, splice_balance_callbacks(rq));
4820 }
4821 
4822 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4823 {
4824 	unsigned long flags;
4825 
4826 	if (unlikely(head)) {
4827 		raw_spin_rq_lock_irqsave(rq, flags);
4828 		do_balance_callbacks(rq, head);
4829 		raw_spin_rq_unlock_irqrestore(rq, flags);
4830 	}
4831 }
4832 
4833 #else
4834 
4835 static inline void __balance_callbacks(struct rq *rq)
4836 {
4837 }
4838 
4839 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4840 {
4841 	return NULL;
4842 }
4843 
4844 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4845 {
4846 }
4847 
4848 #endif
4849 
4850 static inline void
4851 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4852 {
4853 	/*
4854 	 * Since the runqueue lock will be released by the next
4855 	 * task (which is an invalid locking op but in the case
4856 	 * of the scheduler it's an obvious special-case), so we
4857 	 * do an early lockdep release here:
4858 	 */
4859 	rq_unpin_lock(rq, rf);
4860 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4861 #ifdef CONFIG_DEBUG_SPINLOCK
4862 	/* this is a valid case when another task releases the spinlock */
4863 	rq_lockp(rq)->owner = next;
4864 #endif
4865 }
4866 
4867 static inline void finish_lock_switch(struct rq *rq)
4868 {
4869 	/*
4870 	 * If we are tracking spinlock dependencies then we have to
4871 	 * fix up the runqueue lock - which gets 'carried over' from
4872 	 * prev into current:
4873 	 */
4874 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4875 	__balance_callbacks(rq);
4876 	raw_spin_rq_unlock_irq(rq);
4877 }
4878 
4879 /*
4880  * NOP if the arch has not defined these:
4881  */
4882 
4883 #ifndef prepare_arch_switch
4884 # define prepare_arch_switch(next)	do { } while (0)
4885 #endif
4886 
4887 #ifndef finish_arch_post_lock_switch
4888 # define finish_arch_post_lock_switch()	do { } while (0)
4889 #endif
4890 
4891 static inline void kmap_local_sched_out(void)
4892 {
4893 #ifdef CONFIG_KMAP_LOCAL
4894 	if (unlikely(current->kmap_ctrl.idx))
4895 		__kmap_local_sched_out();
4896 #endif
4897 }
4898 
4899 static inline void kmap_local_sched_in(void)
4900 {
4901 #ifdef CONFIG_KMAP_LOCAL
4902 	if (unlikely(current->kmap_ctrl.idx))
4903 		__kmap_local_sched_in();
4904 #endif
4905 }
4906 
4907 /**
4908  * prepare_task_switch - prepare to switch tasks
4909  * @rq: the runqueue preparing to switch
4910  * @prev: the current task that is being switched out
4911  * @next: the task we are going to switch to.
4912  *
4913  * This is called with the rq lock held and interrupts off. It must
4914  * be paired with a subsequent finish_task_switch after the context
4915  * switch.
4916  *
4917  * prepare_task_switch sets up locking and calls architecture specific
4918  * hooks.
4919  */
4920 static inline void
4921 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4922 		    struct task_struct *next)
4923 {
4924 	kcov_prepare_switch(prev);
4925 	sched_info_switch(rq, prev, next);
4926 	perf_event_task_sched_out(prev, next);
4927 	rseq_preempt(prev);
4928 	fire_sched_out_preempt_notifiers(prev, next);
4929 	kmap_local_sched_out();
4930 	prepare_task(next);
4931 	prepare_arch_switch(next);
4932 }
4933 
4934 /**
4935  * finish_task_switch - clean up after a task-switch
4936  * @prev: the thread we just switched away from.
4937  *
4938  * finish_task_switch must be called after the context switch, paired
4939  * with a prepare_task_switch call before the context switch.
4940  * finish_task_switch will reconcile locking set up by prepare_task_switch,
4941  * and do any other architecture-specific cleanup actions.
4942  *
4943  * Note that we may have delayed dropping an mm in context_switch(). If
4944  * so, we finish that here outside of the runqueue lock. (Doing it
4945  * with the lock held can cause deadlocks; see schedule() for
4946  * details.)
4947  *
4948  * The context switch have flipped the stack from under us and restored the
4949  * local variables which were saved when this task called schedule() in the
4950  * past. prev == current is still correct but we need to recalculate this_rq
4951  * because prev may have moved to another CPU.
4952  */
4953 static struct rq *finish_task_switch(struct task_struct *prev)
4954 	__releases(rq->lock)
4955 {
4956 	struct rq *rq = this_rq();
4957 	struct mm_struct *mm = rq->prev_mm;
4958 	unsigned int prev_state;
4959 
4960 	/*
4961 	 * The previous task will have left us with a preempt_count of 2
4962 	 * because it left us after:
4963 	 *
4964 	 *	schedule()
4965 	 *	  preempt_disable();			// 1
4966 	 *	  __schedule()
4967 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
4968 	 *
4969 	 * Also, see FORK_PREEMPT_COUNT.
4970 	 */
4971 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4972 		      "corrupted preempt_count: %s/%d/0x%x\n",
4973 		      current->comm, current->pid, preempt_count()))
4974 		preempt_count_set(FORK_PREEMPT_COUNT);
4975 
4976 	rq->prev_mm = NULL;
4977 
4978 	/*
4979 	 * A task struct has one reference for the use as "current".
4980 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4981 	 * schedule one last time. The schedule call will never return, and
4982 	 * the scheduled task must drop that reference.
4983 	 *
4984 	 * We must observe prev->state before clearing prev->on_cpu (in
4985 	 * finish_task), otherwise a concurrent wakeup can get prev
4986 	 * running on another CPU and we could rave with its RUNNING -> DEAD
4987 	 * transition, resulting in a double drop.
4988 	 */
4989 	prev_state = READ_ONCE(prev->__state);
4990 	vtime_task_switch(prev);
4991 	perf_event_task_sched_in(prev, current);
4992 	finish_task(prev);
4993 	tick_nohz_task_switch();
4994 	finish_lock_switch(rq);
4995 	finish_arch_post_lock_switch();
4996 	kcov_finish_switch(current);
4997 	/*
4998 	 * kmap_local_sched_out() is invoked with rq::lock held and
4999 	 * interrupts disabled. There is no requirement for that, but the
5000 	 * sched out code does not have an interrupt enabled section.
5001 	 * Restoring the maps on sched in does not require interrupts being
5002 	 * disabled either.
5003 	 */
5004 	kmap_local_sched_in();
5005 
5006 	fire_sched_in_preempt_notifiers(current);
5007 	/*
5008 	 * When switching through a kernel thread, the loop in
5009 	 * membarrier_{private,global}_expedited() may have observed that
5010 	 * kernel thread and not issued an IPI. It is therefore possible to
5011 	 * schedule between user->kernel->user threads without passing though
5012 	 * switch_mm(). Membarrier requires a barrier after storing to
5013 	 * rq->curr, before returning to userspace, so provide them here:
5014 	 *
5015 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5016 	 *   provided by mmdrop(),
5017 	 * - a sync_core for SYNC_CORE.
5018 	 */
5019 	if (mm) {
5020 		membarrier_mm_sync_core_before_usermode(mm);
5021 		mmdrop_sched(mm);
5022 	}
5023 	if (unlikely(prev_state == TASK_DEAD)) {
5024 		if (prev->sched_class->task_dead)
5025 			prev->sched_class->task_dead(prev);
5026 
5027 		/* Task is done with its stack. */
5028 		put_task_stack(prev);
5029 
5030 		put_task_struct_rcu_user(prev);
5031 	}
5032 
5033 	return rq;
5034 }
5035 
5036 /**
5037  * schedule_tail - first thing a freshly forked thread must call.
5038  * @prev: the thread we just switched away from.
5039  */
5040 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5041 	__releases(rq->lock)
5042 {
5043 	/*
5044 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5045 	 * finish_task_switch() for details.
5046 	 *
5047 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5048 	 * and the preempt_enable() will end up enabling preemption (on
5049 	 * PREEMPT_COUNT kernels).
5050 	 */
5051 
5052 	finish_task_switch(prev);
5053 	preempt_enable();
5054 
5055 	if (current->set_child_tid)
5056 		put_user(task_pid_vnr(current), current->set_child_tid);
5057 
5058 	calculate_sigpending();
5059 }
5060 
5061 /*
5062  * context_switch - switch to the new MM and the new thread's register state.
5063  */
5064 static __always_inline struct rq *
5065 context_switch(struct rq *rq, struct task_struct *prev,
5066 	       struct task_struct *next, struct rq_flags *rf)
5067 {
5068 	prepare_task_switch(rq, prev, next);
5069 
5070 	/*
5071 	 * For paravirt, this is coupled with an exit in switch_to to
5072 	 * combine the page table reload and the switch backend into
5073 	 * one hypercall.
5074 	 */
5075 	arch_start_context_switch(prev);
5076 
5077 	/*
5078 	 * kernel -> kernel   lazy + transfer active
5079 	 *   user -> kernel   lazy + mmgrab() active
5080 	 *
5081 	 * kernel ->   user   switch + mmdrop() active
5082 	 *   user ->   user   switch
5083 	 */
5084 	if (!next->mm) {                                // to kernel
5085 		enter_lazy_tlb(prev->active_mm, next);
5086 
5087 		next->active_mm = prev->active_mm;
5088 		if (prev->mm)                           // from user
5089 			mmgrab(prev->active_mm);
5090 		else
5091 			prev->active_mm = NULL;
5092 	} else {                                        // to user
5093 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5094 		/*
5095 		 * sys_membarrier() requires an smp_mb() between setting
5096 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5097 		 *
5098 		 * The below provides this either through switch_mm(), or in
5099 		 * case 'prev->active_mm == next->mm' through
5100 		 * finish_task_switch()'s mmdrop().
5101 		 */
5102 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5103 
5104 		if (!prev->mm) {                        // from kernel
5105 			/* will mmdrop() in finish_task_switch(). */
5106 			rq->prev_mm = prev->active_mm;
5107 			prev->active_mm = NULL;
5108 		}
5109 	}
5110 
5111 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5112 
5113 	prepare_lock_switch(rq, next, rf);
5114 
5115 	/* Here we just switch the register state and the stack. */
5116 	switch_to(prev, next, prev);
5117 	barrier();
5118 
5119 	return finish_task_switch(prev);
5120 }
5121 
5122 /*
5123  * nr_running and nr_context_switches:
5124  *
5125  * externally visible scheduler statistics: current number of runnable
5126  * threads, total number of context switches performed since bootup.
5127  */
5128 unsigned int nr_running(void)
5129 {
5130 	unsigned int i, sum = 0;
5131 
5132 	for_each_online_cpu(i)
5133 		sum += cpu_rq(i)->nr_running;
5134 
5135 	return sum;
5136 }
5137 
5138 /*
5139  * Check if only the current task is running on the CPU.
5140  *
5141  * Caution: this function does not check that the caller has disabled
5142  * preemption, thus the result might have a time-of-check-to-time-of-use
5143  * race.  The caller is responsible to use it correctly, for example:
5144  *
5145  * - from a non-preemptible section (of course)
5146  *
5147  * - from a thread that is bound to a single CPU
5148  *
5149  * - in a loop with very short iterations (e.g. a polling loop)
5150  */
5151 bool single_task_running(void)
5152 {
5153 	return raw_rq()->nr_running == 1;
5154 }
5155 EXPORT_SYMBOL(single_task_running);
5156 
5157 unsigned long long nr_context_switches(void)
5158 {
5159 	int i;
5160 	unsigned long long sum = 0;
5161 
5162 	for_each_possible_cpu(i)
5163 		sum += cpu_rq(i)->nr_switches;
5164 
5165 	return sum;
5166 }
5167 
5168 /*
5169  * Consumers of these two interfaces, like for example the cpuidle menu
5170  * governor, are using nonsensical data. Preferring shallow idle state selection
5171  * for a CPU that has IO-wait which might not even end up running the task when
5172  * it does become runnable.
5173  */
5174 
5175 unsigned int nr_iowait_cpu(int cpu)
5176 {
5177 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5178 }
5179 
5180 /*
5181  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5182  *
5183  * The idea behind IO-wait account is to account the idle time that we could
5184  * have spend running if it were not for IO. That is, if we were to improve the
5185  * storage performance, we'd have a proportional reduction in IO-wait time.
5186  *
5187  * This all works nicely on UP, where, when a task blocks on IO, we account
5188  * idle time as IO-wait, because if the storage were faster, it could've been
5189  * running and we'd not be idle.
5190  *
5191  * This has been extended to SMP, by doing the same for each CPU. This however
5192  * is broken.
5193  *
5194  * Imagine for instance the case where two tasks block on one CPU, only the one
5195  * CPU will have IO-wait accounted, while the other has regular idle. Even
5196  * though, if the storage were faster, both could've ran at the same time,
5197  * utilising both CPUs.
5198  *
5199  * This means, that when looking globally, the current IO-wait accounting on
5200  * SMP is a lower bound, by reason of under accounting.
5201  *
5202  * Worse, since the numbers are provided per CPU, they are sometimes
5203  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5204  * associated with any one particular CPU, it can wake to another CPU than it
5205  * blocked on. This means the per CPU IO-wait number is meaningless.
5206  *
5207  * Task CPU affinities can make all that even more 'interesting'.
5208  */
5209 
5210 unsigned int nr_iowait(void)
5211 {
5212 	unsigned int i, sum = 0;
5213 
5214 	for_each_possible_cpu(i)
5215 		sum += nr_iowait_cpu(i);
5216 
5217 	return sum;
5218 }
5219 
5220 #ifdef CONFIG_SMP
5221 
5222 /*
5223  * sched_exec - execve() is a valuable balancing opportunity, because at
5224  * this point the task has the smallest effective memory and cache footprint.
5225  */
5226 void sched_exec(void)
5227 {
5228 	struct task_struct *p = current;
5229 	unsigned long flags;
5230 	int dest_cpu;
5231 
5232 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5233 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5234 	if (dest_cpu == smp_processor_id())
5235 		goto unlock;
5236 
5237 	if (likely(cpu_active(dest_cpu))) {
5238 		struct migration_arg arg = { p, dest_cpu };
5239 
5240 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5241 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5242 		return;
5243 	}
5244 unlock:
5245 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5246 }
5247 
5248 #endif
5249 
5250 DEFINE_PER_CPU(struct kernel_stat, kstat);
5251 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5252 
5253 EXPORT_PER_CPU_SYMBOL(kstat);
5254 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5255 
5256 /*
5257  * The function fair_sched_class.update_curr accesses the struct curr
5258  * and its field curr->exec_start; when called from task_sched_runtime(),
5259  * we observe a high rate of cache misses in practice.
5260  * Prefetching this data results in improved performance.
5261  */
5262 static inline void prefetch_curr_exec_start(struct task_struct *p)
5263 {
5264 #ifdef CONFIG_FAIR_GROUP_SCHED
5265 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5266 #else
5267 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5268 #endif
5269 	prefetch(curr);
5270 	prefetch(&curr->exec_start);
5271 }
5272 
5273 /*
5274  * Return accounted runtime for the task.
5275  * In case the task is currently running, return the runtime plus current's
5276  * pending runtime that have not been accounted yet.
5277  */
5278 unsigned long long task_sched_runtime(struct task_struct *p)
5279 {
5280 	struct rq_flags rf;
5281 	struct rq *rq;
5282 	u64 ns;
5283 
5284 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5285 	/*
5286 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5287 	 * So we have a optimization chance when the task's delta_exec is 0.
5288 	 * Reading ->on_cpu is racy, but this is ok.
5289 	 *
5290 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5291 	 * If we race with it entering CPU, unaccounted time is 0. This is
5292 	 * indistinguishable from the read occurring a few cycles earlier.
5293 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5294 	 * been accounted, so we're correct here as well.
5295 	 */
5296 	if (!p->on_cpu || !task_on_rq_queued(p))
5297 		return p->se.sum_exec_runtime;
5298 #endif
5299 
5300 	rq = task_rq_lock(p, &rf);
5301 	/*
5302 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5303 	 * project cycles that may never be accounted to this
5304 	 * thread, breaking clock_gettime().
5305 	 */
5306 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5307 		prefetch_curr_exec_start(p);
5308 		update_rq_clock(rq);
5309 		p->sched_class->update_curr(rq);
5310 	}
5311 	ns = p->se.sum_exec_runtime;
5312 	task_rq_unlock(rq, p, &rf);
5313 
5314 	return ns;
5315 }
5316 
5317 #ifdef CONFIG_SCHED_DEBUG
5318 static u64 cpu_resched_latency(struct rq *rq)
5319 {
5320 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5321 	u64 resched_latency, now = rq_clock(rq);
5322 	static bool warned_once;
5323 
5324 	if (sysctl_resched_latency_warn_once && warned_once)
5325 		return 0;
5326 
5327 	if (!need_resched() || !latency_warn_ms)
5328 		return 0;
5329 
5330 	if (system_state == SYSTEM_BOOTING)
5331 		return 0;
5332 
5333 	if (!rq->last_seen_need_resched_ns) {
5334 		rq->last_seen_need_resched_ns = now;
5335 		rq->ticks_without_resched = 0;
5336 		return 0;
5337 	}
5338 
5339 	rq->ticks_without_resched++;
5340 	resched_latency = now - rq->last_seen_need_resched_ns;
5341 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5342 		return 0;
5343 
5344 	warned_once = true;
5345 
5346 	return resched_latency;
5347 }
5348 
5349 static int __init setup_resched_latency_warn_ms(char *str)
5350 {
5351 	long val;
5352 
5353 	if ((kstrtol(str, 0, &val))) {
5354 		pr_warn("Unable to set resched_latency_warn_ms\n");
5355 		return 1;
5356 	}
5357 
5358 	sysctl_resched_latency_warn_ms = val;
5359 	return 1;
5360 }
5361 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5362 #else
5363 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5364 #endif /* CONFIG_SCHED_DEBUG */
5365 
5366 /*
5367  * This function gets called by the timer code, with HZ frequency.
5368  * We call it with interrupts disabled.
5369  */
5370 void scheduler_tick(void)
5371 {
5372 	int cpu = smp_processor_id();
5373 	struct rq *rq = cpu_rq(cpu);
5374 	struct task_struct *curr = rq->curr;
5375 	struct rq_flags rf;
5376 	unsigned long thermal_pressure;
5377 	u64 resched_latency;
5378 
5379 	arch_scale_freq_tick();
5380 	sched_clock_tick();
5381 
5382 	rq_lock(rq, &rf);
5383 
5384 	update_rq_clock(rq);
5385 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5386 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5387 	curr->sched_class->task_tick(rq, curr, 0);
5388 	if (sched_feat(LATENCY_WARN))
5389 		resched_latency = cpu_resched_latency(rq);
5390 	calc_global_load_tick(rq);
5391 	sched_core_tick(rq);
5392 
5393 	rq_unlock(rq, &rf);
5394 
5395 	if (sched_feat(LATENCY_WARN) && resched_latency)
5396 		resched_latency_warn(cpu, resched_latency);
5397 
5398 	perf_event_task_tick();
5399 
5400 #ifdef CONFIG_SMP
5401 	rq->idle_balance = idle_cpu(cpu);
5402 	trigger_load_balance(rq);
5403 #endif
5404 }
5405 
5406 #ifdef CONFIG_NO_HZ_FULL
5407 
5408 struct tick_work {
5409 	int			cpu;
5410 	atomic_t		state;
5411 	struct delayed_work	work;
5412 };
5413 /* Values for ->state, see diagram below. */
5414 #define TICK_SCHED_REMOTE_OFFLINE	0
5415 #define TICK_SCHED_REMOTE_OFFLINING	1
5416 #define TICK_SCHED_REMOTE_RUNNING	2
5417 
5418 /*
5419  * State diagram for ->state:
5420  *
5421  *
5422  *          TICK_SCHED_REMOTE_OFFLINE
5423  *                    |   ^
5424  *                    |   |
5425  *                    |   | sched_tick_remote()
5426  *                    |   |
5427  *                    |   |
5428  *                    +--TICK_SCHED_REMOTE_OFFLINING
5429  *                    |   ^
5430  *                    |   |
5431  * sched_tick_start() |   | sched_tick_stop()
5432  *                    |   |
5433  *                    V   |
5434  *          TICK_SCHED_REMOTE_RUNNING
5435  *
5436  *
5437  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5438  * and sched_tick_start() are happy to leave the state in RUNNING.
5439  */
5440 
5441 static struct tick_work __percpu *tick_work_cpu;
5442 
5443 static void sched_tick_remote(struct work_struct *work)
5444 {
5445 	struct delayed_work *dwork = to_delayed_work(work);
5446 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5447 	int cpu = twork->cpu;
5448 	struct rq *rq = cpu_rq(cpu);
5449 	struct task_struct *curr;
5450 	struct rq_flags rf;
5451 	u64 delta;
5452 	int os;
5453 
5454 	/*
5455 	 * Handle the tick only if it appears the remote CPU is running in full
5456 	 * dynticks mode. The check is racy by nature, but missing a tick or
5457 	 * having one too much is no big deal because the scheduler tick updates
5458 	 * statistics and checks timeslices in a time-independent way, regardless
5459 	 * of when exactly it is running.
5460 	 */
5461 	if (!tick_nohz_tick_stopped_cpu(cpu))
5462 		goto out_requeue;
5463 
5464 	rq_lock_irq(rq, &rf);
5465 	curr = rq->curr;
5466 	if (cpu_is_offline(cpu))
5467 		goto out_unlock;
5468 
5469 	update_rq_clock(rq);
5470 
5471 	if (!is_idle_task(curr)) {
5472 		/*
5473 		 * Make sure the next tick runs within a reasonable
5474 		 * amount of time.
5475 		 */
5476 		delta = rq_clock_task(rq) - curr->se.exec_start;
5477 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5478 	}
5479 	curr->sched_class->task_tick(rq, curr, 0);
5480 
5481 	calc_load_nohz_remote(rq);
5482 out_unlock:
5483 	rq_unlock_irq(rq, &rf);
5484 out_requeue:
5485 
5486 	/*
5487 	 * Run the remote tick once per second (1Hz). This arbitrary
5488 	 * frequency is large enough to avoid overload but short enough
5489 	 * to keep scheduler internal stats reasonably up to date.  But
5490 	 * first update state to reflect hotplug activity if required.
5491 	 */
5492 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5493 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5494 	if (os == TICK_SCHED_REMOTE_RUNNING)
5495 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5496 }
5497 
5498 static void sched_tick_start(int cpu)
5499 {
5500 	int os;
5501 	struct tick_work *twork;
5502 
5503 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5504 		return;
5505 
5506 	WARN_ON_ONCE(!tick_work_cpu);
5507 
5508 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5509 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5510 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5511 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5512 		twork->cpu = cpu;
5513 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5514 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5515 	}
5516 }
5517 
5518 #ifdef CONFIG_HOTPLUG_CPU
5519 static void sched_tick_stop(int cpu)
5520 {
5521 	struct tick_work *twork;
5522 	int os;
5523 
5524 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5525 		return;
5526 
5527 	WARN_ON_ONCE(!tick_work_cpu);
5528 
5529 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5530 	/* There cannot be competing actions, but don't rely on stop-machine. */
5531 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5532 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5533 	/* Don't cancel, as this would mess up the state machine. */
5534 }
5535 #endif /* CONFIG_HOTPLUG_CPU */
5536 
5537 int __init sched_tick_offload_init(void)
5538 {
5539 	tick_work_cpu = alloc_percpu(struct tick_work);
5540 	BUG_ON(!tick_work_cpu);
5541 	return 0;
5542 }
5543 
5544 #else /* !CONFIG_NO_HZ_FULL */
5545 static inline void sched_tick_start(int cpu) { }
5546 static inline void sched_tick_stop(int cpu) { }
5547 #endif
5548 
5549 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5550 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5551 /*
5552  * If the value passed in is equal to the current preempt count
5553  * then we just disabled preemption. Start timing the latency.
5554  */
5555 static inline void preempt_latency_start(int val)
5556 {
5557 	if (preempt_count() == val) {
5558 		unsigned long ip = get_lock_parent_ip();
5559 #ifdef CONFIG_DEBUG_PREEMPT
5560 		current->preempt_disable_ip = ip;
5561 #endif
5562 		trace_preempt_off(CALLER_ADDR0, ip);
5563 	}
5564 }
5565 
5566 void preempt_count_add(int val)
5567 {
5568 #ifdef CONFIG_DEBUG_PREEMPT
5569 	/*
5570 	 * Underflow?
5571 	 */
5572 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5573 		return;
5574 #endif
5575 	__preempt_count_add(val);
5576 #ifdef CONFIG_DEBUG_PREEMPT
5577 	/*
5578 	 * Spinlock count overflowing soon?
5579 	 */
5580 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5581 				PREEMPT_MASK - 10);
5582 #endif
5583 	preempt_latency_start(val);
5584 }
5585 EXPORT_SYMBOL(preempt_count_add);
5586 NOKPROBE_SYMBOL(preempt_count_add);
5587 
5588 /*
5589  * If the value passed in equals to the current preempt count
5590  * then we just enabled preemption. Stop timing the latency.
5591  */
5592 static inline void preempt_latency_stop(int val)
5593 {
5594 	if (preempt_count() == val)
5595 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5596 }
5597 
5598 void preempt_count_sub(int val)
5599 {
5600 #ifdef CONFIG_DEBUG_PREEMPT
5601 	/*
5602 	 * Underflow?
5603 	 */
5604 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5605 		return;
5606 	/*
5607 	 * Is the spinlock portion underflowing?
5608 	 */
5609 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5610 			!(preempt_count() & PREEMPT_MASK)))
5611 		return;
5612 #endif
5613 
5614 	preempt_latency_stop(val);
5615 	__preempt_count_sub(val);
5616 }
5617 EXPORT_SYMBOL(preempt_count_sub);
5618 NOKPROBE_SYMBOL(preempt_count_sub);
5619 
5620 #else
5621 static inline void preempt_latency_start(int val) { }
5622 static inline void preempt_latency_stop(int val) { }
5623 #endif
5624 
5625 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5626 {
5627 #ifdef CONFIG_DEBUG_PREEMPT
5628 	return p->preempt_disable_ip;
5629 #else
5630 	return 0;
5631 #endif
5632 }
5633 
5634 /*
5635  * Print scheduling while atomic bug:
5636  */
5637 static noinline void __schedule_bug(struct task_struct *prev)
5638 {
5639 	/* Save this before calling printk(), since that will clobber it */
5640 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5641 
5642 	if (oops_in_progress)
5643 		return;
5644 
5645 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5646 		prev->comm, prev->pid, preempt_count());
5647 
5648 	debug_show_held_locks(prev);
5649 	print_modules();
5650 	if (irqs_disabled())
5651 		print_irqtrace_events(prev);
5652 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5653 	    && in_atomic_preempt_off()) {
5654 		pr_err("Preemption disabled at:");
5655 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5656 	}
5657 	if (panic_on_warn)
5658 		panic("scheduling while atomic\n");
5659 
5660 	dump_stack();
5661 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5662 }
5663 
5664 /*
5665  * Various schedule()-time debugging checks and statistics:
5666  */
5667 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5668 {
5669 #ifdef CONFIG_SCHED_STACK_END_CHECK
5670 	if (task_stack_end_corrupted(prev))
5671 		panic("corrupted stack end detected inside scheduler\n");
5672 
5673 	if (task_scs_end_corrupted(prev))
5674 		panic("corrupted shadow stack detected inside scheduler\n");
5675 #endif
5676 
5677 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5678 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5679 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5680 			prev->comm, prev->pid, prev->non_block_count);
5681 		dump_stack();
5682 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5683 	}
5684 #endif
5685 
5686 	if (unlikely(in_atomic_preempt_off())) {
5687 		__schedule_bug(prev);
5688 		preempt_count_set(PREEMPT_DISABLED);
5689 	}
5690 	rcu_sleep_check();
5691 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5692 
5693 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5694 
5695 	schedstat_inc(this_rq()->sched_count);
5696 }
5697 
5698 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5699 				  struct rq_flags *rf)
5700 {
5701 #ifdef CONFIG_SMP
5702 	const struct sched_class *class;
5703 	/*
5704 	 * We must do the balancing pass before put_prev_task(), such
5705 	 * that when we release the rq->lock the task is in the same
5706 	 * state as before we took rq->lock.
5707 	 *
5708 	 * We can terminate the balance pass as soon as we know there is
5709 	 * a runnable task of @class priority or higher.
5710 	 */
5711 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5712 		if (class->balance(rq, prev, rf))
5713 			break;
5714 	}
5715 #endif
5716 
5717 	put_prev_task(rq, prev);
5718 }
5719 
5720 /*
5721  * Pick up the highest-prio task:
5722  */
5723 static inline struct task_struct *
5724 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5725 {
5726 	const struct sched_class *class;
5727 	struct task_struct *p;
5728 
5729 	/*
5730 	 * Optimization: we know that if all tasks are in the fair class we can
5731 	 * call that function directly, but only if the @prev task wasn't of a
5732 	 * higher scheduling class, because otherwise those lose the
5733 	 * opportunity to pull in more work from other CPUs.
5734 	 */
5735 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5736 		   rq->nr_running == rq->cfs.h_nr_running)) {
5737 
5738 		p = pick_next_task_fair(rq, prev, rf);
5739 		if (unlikely(p == RETRY_TASK))
5740 			goto restart;
5741 
5742 		/* Assume the next prioritized class is idle_sched_class */
5743 		if (!p) {
5744 			put_prev_task(rq, prev);
5745 			p = pick_next_task_idle(rq);
5746 		}
5747 
5748 		return p;
5749 	}
5750 
5751 restart:
5752 	put_prev_task_balance(rq, prev, rf);
5753 
5754 	for_each_class(class) {
5755 		p = class->pick_next_task(rq);
5756 		if (p)
5757 			return p;
5758 	}
5759 
5760 	BUG(); /* The idle class should always have a runnable task. */
5761 }
5762 
5763 #ifdef CONFIG_SCHED_CORE
5764 static inline bool is_task_rq_idle(struct task_struct *t)
5765 {
5766 	return (task_rq(t)->idle == t);
5767 }
5768 
5769 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5770 {
5771 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5772 }
5773 
5774 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5775 {
5776 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5777 		return true;
5778 
5779 	return a->core_cookie == b->core_cookie;
5780 }
5781 
5782 static inline struct task_struct *pick_task(struct rq *rq)
5783 {
5784 	const struct sched_class *class;
5785 	struct task_struct *p;
5786 
5787 	for_each_class(class) {
5788 		p = class->pick_task(rq);
5789 		if (p)
5790 			return p;
5791 	}
5792 
5793 	BUG(); /* The idle class should always have a runnable task. */
5794 }
5795 
5796 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5797 
5798 static void queue_core_balance(struct rq *rq);
5799 
5800 static struct task_struct *
5801 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5802 {
5803 	struct task_struct *next, *p, *max = NULL;
5804 	const struct cpumask *smt_mask;
5805 	bool fi_before = false;
5806 	bool core_clock_updated = (rq == rq->core);
5807 	unsigned long cookie;
5808 	int i, cpu, occ = 0;
5809 	struct rq *rq_i;
5810 	bool need_sync;
5811 
5812 	if (!sched_core_enabled(rq))
5813 		return __pick_next_task(rq, prev, rf);
5814 
5815 	cpu = cpu_of(rq);
5816 
5817 	/* Stopper task is switching into idle, no need core-wide selection. */
5818 	if (cpu_is_offline(cpu)) {
5819 		/*
5820 		 * Reset core_pick so that we don't enter the fastpath when
5821 		 * coming online. core_pick would already be migrated to
5822 		 * another cpu during offline.
5823 		 */
5824 		rq->core_pick = NULL;
5825 		return __pick_next_task(rq, prev, rf);
5826 	}
5827 
5828 	/*
5829 	 * If there were no {en,de}queues since we picked (IOW, the task
5830 	 * pointers are all still valid), and we haven't scheduled the last
5831 	 * pick yet, do so now.
5832 	 *
5833 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5834 	 * it was either offline or went offline during a sibling's core-wide
5835 	 * selection. In this case, do a core-wide selection.
5836 	 */
5837 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5838 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5839 	    rq->core_pick) {
5840 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5841 
5842 		next = rq->core_pick;
5843 		if (next != prev) {
5844 			put_prev_task(rq, prev);
5845 			set_next_task(rq, next);
5846 		}
5847 
5848 		rq->core_pick = NULL;
5849 		goto out;
5850 	}
5851 
5852 	put_prev_task_balance(rq, prev, rf);
5853 
5854 	smt_mask = cpu_smt_mask(cpu);
5855 	need_sync = !!rq->core->core_cookie;
5856 
5857 	/* reset state */
5858 	rq->core->core_cookie = 0UL;
5859 	if (rq->core->core_forceidle_count) {
5860 		if (!core_clock_updated) {
5861 			update_rq_clock(rq->core);
5862 			core_clock_updated = true;
5863 		}
5864 		sched_core_account_forceidle(rq);
5865 		/* reset after accounting force idle */
5866 		rq->core->core_forceidle_start = 0;
5867 		rq->core->core_forceidle_count = 0;
5868 		rq->core->core_forceidle_occupation = 0;
5869 		need_sync = true;
5870 		fi_before = true;
5871 	}
5872 
5873 	/*
5874 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5875 	 *
5876 	 * @task_seq guards the task state ({en,de}queues)
5877 	 * @pick_seq is the @task_seq we did a selection on
5878 	 * @sched_seq is the @pick_seq we scheduled
5879 	 *
5880 	 * However, preemptions can cause multiple picks on the same task set.
5881 	 * 'Fix' this by also increasing @task_seq for every pick.
5882 	 */
5883 	rq->core->core_task_seq++;
5884 
5885 	/*
5886 	 * Optimize for common case where this CPU has no cookies
5887 	 * and there are no cookied tasks running on siblings.
5888 	 */
5889 	if (!need_sync) {
5890 		next = pick_task(rq);
5891 		if (!next->core_cookie) {
5892 			rq->core_pick = NULL;
5893 			/*
5894 			 * For robustness, update the min_vruntime_fi for
5895 			 * unconstrained picks as well.
5896 			 */
5897 			WARN_ON_ONCE(fi_before);
5898 			task_vruntime_update(rq, next, false);
5899 			goto out_set_next;
5900 		}
5901 	}
5902 
5903 	/*
5904 	 * For each thread: do the regular task pick and find the max prio task
5905 	 * amongst them.
5906 	 *
5907 	 * Tie-break prio towards the current CPU
5908 	 */
5909 	for_each_cpu_wrap(i, smt_mask, cpu) {
5910 		rq_i = cpu_rq(i);
5911 
5912 		/*
5913 		 * Current cpu always has its clock updated on entrance to
5914 		 * pick_next_task(). If the current cpu is not the core,
5915 		 * the core may also have been updated above.
5916 		 */
5917 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
5918 			update_rq_clock(rq_i);
5919 
5920 		p = rq_i->core_pick = pick_task(rq_i);
5921 		if (!max || prio_less(max, p, fi_before))
5922 			max = p;
5923 	}
5924 
5925 	cookie = rq->core->core_cookie = max->core_cookie;
5926 
5927 	/*
5928 	 * For each thread: try and find a runnable task that matches @max or
5929 	 * force idle.
5930 	 */
5931 	for_each_cpu(i, smt_mask) {
5932 		rq_i = cpu_rq(i);
5933 		p = rq_i->core_pick;
5934 
5935 		if (!cookie_equals(p, cookie)) {
5936 			p = NULL;
5937 			if (cookie)
5938 				p = sched_core_find(rq_i, cookie);
5939 			if (!p)
5940 				p = idle_sched_class.pick_task(rq_i);
5941 		}
5942 
5943 		rq_i->core_pick = p;
5944 
5945 		if (p == rq_i->idle) {
5946 			if (rq_i->nr_running) {
5947 				rq->core->core_forceidle_count++;
5948 				if (!fi_before)
5949 					rq->core->core_forceidle_seq++;
5950 			}
5951 		} else {
5952 			occ++;
5953 		}
5954 	}
5955 
5956 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
5957 		rq->core->core_forceidle_start = rq_clock(rq->core);
5958 		rq->core->core_forceidle_occupation = occ;
5959 	}
5960 
5961 	rq->core->core_pick_seq = rq->core->core_task_seq;
5962 	next = rq->core_pick;
5963 	rq->core_sched_seq = rq->core->core_pick_seq;
5964 
5965 	/* Something should have been selected for current CPU */
5966 	WARN_ON_ONCE(!next);
5967 
5968 	/*
5969 	 * Reschedule siblings
5970 	 *
5971 	 * NOTE: L1TF -- at this point we're no longer running the old task and
5972 	 * sending an IPI (below) ensures the sibling will no longer be running
5973 	 * their task. This ensures there is no inter-sibling overlap between
5974 	 * non-matching user state.
5975 	 */
5976 	for_each_cpu(i, smt_mask) {
5977 		rq_i = cpu_rq(i);
5978 
5979 		/*
5980 		 * An online sibling might have gone offline before a task
5981 		 * could be picked for it, or it might be offline but later
5982 		 * happen to come online, but its too late and nothing was
5983 		 * picked for it.  That's Ok - it will pick tasks for itself,
5984 		 * so ignore it.
5985 		 */
5986 		if (!rq_i->core_pick)
5987 			continue;
5988 
5989 		/*
5990 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5991 		 * fi_before     fi      update?
5992 		 *  0            0       1
5993 		 *  0            1       1
5994 		 *  1            0       1
5995 		 *  1            1       0
5996 		 */
5997 		if (!(fi_before && rq->core->core_forceidle_count))
5998 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
5999 
6000 		rq_i->core_pick->core_occupation = occ;
6001 
6002 		if (i == cpu) {
6003 			rq_i->core_pick = NULL;
6004 			continue;
6005 		}
6006 
6007 		/* Did we break L1TF mitigation requirements? */
6008 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6009 
6010 		if (rq_i->curr == rq_i->core_pick) {
6011 			rq_i->core_pick = NULL;
6012 			continue;
6013 		}
6014 
6015 		resched_curr(rq_i);
6016 	}
6017 
6018 out_set_next:
6019 	set_next_task(rq, next);
6020 out:
6021 	if (rq->core->core_forceidle_count && next == rq->idle)
6022 		queue_core_balance(rq);
6023 
6024 	return next;
6025 }
6026 
6027 static bool try_steal_cookie(int this, int that)
6028 {
6029 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6030 	struct task_struct *p;
6031 	unsigned long cookie;
6032 	bool success = false;
6033 
6034 	local_irq_disable();
6035 	double_rq_lock(dst, src);
6036 
6037 	cookie = dst->core->core_cookie;
6038 	if (!cookie)
6039 		goto unlock;
6040 
6041 	if (dst->curr != dst->idle)
6042 		goto unlock;
6043 
6044 	p = sched_core_find(src, cookie);
6045 	if (p == src->idle)
6046 		goto unlock;
6047 
6048 	do {
6049 		if (p == src->core_pick || p == src->curr)
6050 			goto next;
6051 
6052 		if (!is_cpu_allowed(p, this))
6053 			goto next;
6054 
6055 		if (p->core_occupation > dst->idle->core_occupation)
6056 			goto next;
6057 
6058 		deactivate_task(src, p, 0);
6059 		set_task_cpu(p, this);
6060 		activate_task(dst, p, 0);
6061 
6062 		resched_curr(dst);
6063 
6064 		success = true;
6065 		break;
6066 
6067 next:
6068 		p = sched_core_next(p, cookie);
6069 	} while (p);
6070 
6071 unlock:
6072 	double_rq_unlock(dst, src);
6073 	local_irq_enable();
6074 
6075 	return success;
6076 }
6077 
6078 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6079 {
6080 	int i;
6081 
6082 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6083 		if (i == cpu)
6084 			continue;
6085 
6086 		if (need_resched())
6087 			break;
6088 
6089 		if (try_steal_cookie(cpu, i))
6090 			return true;
6091 	}
6092 
6093 	return false;
6094 }
6095 
6096 static void sched_core_balance(struct rq *rq)
6097 {
6098 	struct sched_domain *sd;
6099 	int cpu = cpu_of(rq);
6100 
6101 	preempt_disable();
6102 	rcu_read_lock();
6103 	raw_spin_rq_unlock_irq(rq);
6104 	for_each_domain(cpu, sd) {
6105 		if (need_resched())
6106 			break;
6107 
6108 		if (steal_cookie_task(cpu, sd))
6109 			break;
6110 	}
6111 	raw_spin_rq_lock_irq(rq);
6112 	rcu_read_unlock();
6113 	preempt_enable();
6114 }
6115 
6116 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
6117 
6118 static void queue_core_balance(struct rq *rq)
6119 {
6120 	if (!sched_core_enabled(rq))
6121 		return;
6122 
6123 	if (!rq->core->core_cookie)
6124 		return;
6125 
6126 	if (!rq->nr_running) /* not forced idle */
6127 		return;
6128 
6129 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6130 }
6131 
6132 static void sched_core_cpu_starting(unsigned int cpu)
6133 {
6134 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6135 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6136 	unsigned long flags;
6137 	int t;
6138 
6139 	sched_core_lock(cpu, &flags);
6140 
6141 	WARN_ON_ONCE(rq->core != rq);
6142 
6143 	/* if we're the first, we'll be our own leader */
6144 	if (cpumask_weight(smt_mask) == 1)
6145 		goto unlock;
6146 
6147 	/* find the leader */
6148 	for_each_cpu(t, smt_mask) {
6149 		if (t == cpu)
6150 			continue;
6151 		rq = cpu_rq(t);
6152 		if (rq->core == rq) {
6153 			core_rq = rq;
6154 			break;
6155 		}
6156 	}
6157 
6158 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6159 		goto unlock;
6160 
6161 	/* install and validate core_rq */
6162 	for_each_cpu(t, smt_mask) {
6163 		rq = cpu_rq(t);
6164 
6165 		if (t == cpu)
6166 			rq->core = core_rq;
6167 
6168 		WARN_ON_ONCE(rq->core != core_rq);
6169 	}
6170 
6171 unlock:
6172 	sched_core_unlock(cpu, &flags);
6173 }
6174 
6175 static void sched_core_cpu_deactivate(unsigned int cpu)
6176 {
6177 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6178 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6179 	unsigned long flags;
6180 	int t;
6181 
6182 	sched_core_lock(cpu, &flags);
6183 
6184 	/* if we're the last man standing, nothing to do */
6185 	if (cpumask_weight(smt_mask) == 1) {
6186 		WARN_ON_ONCE(rq->core != rq);
6187 		goto unlock;
6188 	}
6189 
6190 	/* if we're not the leader, nothing to do */
6191 	if (rq->core != rq)
6192 		goto unlock;
6193 
6194 	/* find a new leader */
6195 	for_each_cpu(t, smt_mask) {
6196 		if (t == cpu)
6197 			continue;
6198 		core_rq = cpu_rq(t);
6199 		break;
6200 	}
6201 
6202 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6203 		goto unlock;
6204 
6205 	/* copy the shared state to the new leader */
6206 	core_rq->core_task_seq             = rq->core_task_seq;
6207 	core_rq->core_pick_seq             = rq->core_pick_seq;
6208 	core_rq->core_cookie               = rq->core_cookie;
6209 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6210 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6211 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6212 
6213 	/*
6214 	 * Accounting edge for forced idle is handled in pick_next_task().
6215 	 * Don't need another one here, since the hotplug thread shouldn't
6216 	 * have a cookie.
6217 	 */
6218 	core_rq->core_forceidle_start = 0;
6219 
6220 	/* install new leader */
6221 	for_each_cpu(t, smt_mask) {
6222 		rq = cpu_rq(t);
6223 		rq->core = core_rq;
6224 	}
6225 
6226 unlock:
6227 	sched_core_unlock(cpu, &flags);
6228 }
6229 
6230 static inline void sched_core_cpu_dying(unsigned int cpu)
6231 {
6232 	struct rq *rq = cpu_rq(cpu);
6233 
6234 	if (rq->core != rq)
6235 		rq->core = rq;
6236 }
6237 
6238 #else /* !CONFIG_SCHED_CORE */
6239 
6240 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6241 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6242 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6243 
6244 static struct task_struct *
6245 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6246 {
6247 	return __pick_next_task(rq, prev, rf);
6248 }
6249 
6250 #endif /* CONFIG_SCHED_CORE */
6251 
6252 /*
6253  * Constants for the sched_mode argument of __schedule().
6254  *
6255  * The mode argument allows RT enabled kernels to differentiate a
6256  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6257  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6258  * optimize the AND operation out and just check for zero.
6259  */
6260 #define SM_NONE			0x0
6261 #define SM_PREEMPT		0x1
6262 #define SM_RTLOCK_WAIT		0x2
6263 
6264 #ifndef CONFIG_PREEMPT_RT
6265 # define SM_MASK_PREEMPT	(~0U)
6266 #else
6267 # define SM_MASK_PREEMPT	SM_PREEMPT
6268 #endif
6269 
6270 /*
6271  * __schedule() is the main scheduler function.
6272  *
6273  * The main means of driving the scheduler and thus entering this function are:
6274  *
6275  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6276  *
6277  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6278  *      paths. For example, see arch/x86/entry_64.S.
6279  *
6280  *      To drive preemption between tasks, the scheduler sets the flag in timer
6281  *      interrupt handler scheduler_tick().
6282  *
6283  *   3. Wakeups don't really cause entry into schedule(). They add a
6284  *      task to the run-queue and that's it.
6285  *
6286  *      Now, if the new task added to the run-queue preempts the current
6287  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6288  *      called on the nearest possible occasion:
6289  *
6290  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6291  *
6292  *         - in syscall or exception context, at the next outmost
6293  *           preempt_enable(). (this might be as soon as the wake_up()'s
6294  *           spin_unlock()!)
6295  *
6296  *         - in IRQ context, return from interrupt-handler to
6297  *           preemptible context
6298  *
6299  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6300  *         then at the next:
6301  *
6302  *          - cond_resched() call
6303  *          - explicit schedule() call
6304  *          - return from syscall or exception to user-space
6305  *          - return from interrupt-handler to user-space
6306  *
6307  * WARNING: must be called with preemption disabled!
6308  */
6309 static void __sched notrace __schedule(unsigned int sched_mode)
6310 {
6311 	struct task_struct *prev, *next;
6312 	unsigned long *switch_count;
6313 	unsigned long prev_state;
6314 	struct rq_flags rf;
6315 	struct rq *rq;
6316 	int cpu;
6317 
6318 	cpu = smp_processor_id();
6319 	rq = cpu_rq(cpu);
6320 	prev = rq->curr;
6321 
6322 	schedule_debug(prev, !!sched_mode);
6323 
6324 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6325 		hrtick_clear(rq);
6326 
6327 	local_irq_disable();
6328 	rcu_note_context_switch(!!sched_mode);
6329 
6330 	/*
6331 	 * Make sure that signal_pending_state()->signal_pending() below
6332 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6333 	 * done by the caller to avoid the race with signal_wake_up():
6334 	 *
6335 	 * __set_current_state(@state)		signal_wake_up()
6336 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6337 	 *					  wake_up_state(p, state)
6338 	 *   LOCK rq->lock			    LOCK p->pi_state
6339 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6340 	 *     if (signal_pending_state())	    if (p->state & @state)
6341 	 *
6342 	 * Also, the membarrier system call requires a full memory barrier
6343 	 * after coming from user-space, before storing to rq->curr.
6344 	 */
6345 	rq_lock(rq, &rf);
6346 	smp_mb__after_spinlock();
6347 
6348 	/* Promote REQ to ACT */
6349 	rq->clock_update_flags <<= 1;
6350 	update_rq_clock(rq);
6351 
6352 	switch_count = &prev->nivcsw;
6353 
6354 	/*
6355 	 * We must load prev->state once (task_struct::state is volatile), such
6356 	 * that:
6357 	 *
6358 	 *  - we form a control dependency vs deactivate_task() below.
6359 	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
6360 	 */
6361 	prev_state = READ_ONCE(prev->__state);
6362 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6363 		if (signal_pending_state(prev_state, prev)) {
6364 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6365 		} else {
6366 			prev->sched_contributes_to_load =
6367 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6368 				!(prev_state & TASK_NOLOAD) &&
6369 				!(prev->flags & PF_FROZEN);
6370 
6371 			if (prev->sched_contributes_to_load)
6372 				rq->nr_uninterruptible++;
6373 
6374 			/*
6375 			 * __schedule()			ttwu()
6376 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6377 			 *   if (prev_state)		    goto out;
6378 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6379 			 *				  p->state = TASK_WAKING
6380 			 *
6381 			 * Where __schedule() and ttwu() have matching control dependencies.
6382 			 *
6383 			 * After this, schedule() must not care about p->state any more.
6384 			 */
6385 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6386 
6387 			if (prev->in_iowait) {
6388 				atomic_inc(&rq->nr_iowait);
6389 				delayacct_blkio_start();
6390 			}
6391 		}
6392 		switch_count = &prev->nvcsw;
6393 	}
6394 
6395 	next = pick_next_task(rq, prev, &rf);
6396 	clear_tsk_need_resched(prev);
6397 	clear_preempt_need_resched();
6398 #ifdef CONFIG_SCHED_DEBUG
6399 	rq->last_seen_need_resched_ns = 0;
6400 #endif
6401 
6402 	if (likely(prev != next)) {
6403 		rq->nr_switches++;
6404 		/*
6405 		 * RCU users of rcu_dereference(rq->curr) may not see
6406 		 * changes to task_struct made by pick_next_task().
6407 		 */
6408 		RCU_INIT_POINTER(rq->curr, next);
6409 		/*
6410 		 * The membarrier system call requires each architecture
6411 		 * to have a full memory barrier after updating
6412 		 * rq->curr, before returning to user-space.
6413 		 *
6414 		 * Here are the schemes providing that barrier on the
6415 		 * various architectures:
6416 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6417 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6418 		 * - finish_lock_switch() for weakly-ordered
6419 		 *   architectures where spin_unlock is a full barrier,
6420 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6421 		 *   is a RELEASE barrier),
6422 		 */
6423 		++*switch_count;
6424 
6425 		migrate_disable_switch(rq, prev);
6426 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6427 
6428 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6429 
6430 		/* Also unlocks the rq: */
6431 		rq = context_switch(rq, prev, next, &rf);
6432 	} else {
6433 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6434 
6435 		rq_unpin_lock(rq, &rf);
6436 		__balance_callbacks(rq);
6437 		raw_spin_rq_unlock_irq(rq);
6438 	}
6439 }
6440 
6441 void __noreturn do_task_dead(void)
6442 {
6443 	/* Causes final put_task_struct in finish_task_switch(): */
6444 	set_special_state(TASK_DEAD);
6445 
6446 	/* Tell freezer to ignore us: */
6447 	current->flags |= PF_NOFREEZE;
6448 
6449 	__schedule(SM_NONE);
6450 	BUG();
6451 
6452 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6453 	for (;;)
6454 		cpu_relax();
6455 }
6456 
6457 static inline void sched_submit_work(struct task_struct *tsk)
6458 {
6459 	unsigned int task_flags;
6460 
6461 	if (task_is_running(tsk))
6462 		return;
6463 
6464 	task_flags = tsk->flags;
6465 	/*
6466 	 * If a worker goes to sleep, notify and ask workqueue whether it
6467 	 * wants to wake up a task to maintain concurrency.
6468 	 */
6469 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6470 		if (task_flags & PF_WQ_WORKER)
6471 			wq_worker_sleeping(tsk);
6472 		else
6473 			io_wq_worker_sleeping(tsk);
6474 	}
6475 
6476 	if (tsk_is_pi_blocked(tsk))
6477 		return;
6478 
6479 	/*
6480 	 * If we are going to sleep and we have plugged IO queued,
6481 	 * make sure to submit it to avoid deadlocks.
6482 	 */
6483 	blk_flush_plug(tsk->plug, true);
6484 }
6485 
6486 static void sched_update_worker(struct task_struct *tsk)
6487 {
6488 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6489 		if (tsk->flags & PF_WQ_WORKER)
6490 			wq_worker_running(tsk);
6491 		else
6492 			io_wq_worker_running(tsk);
6493 	}
6494 }
6495 
6496 asmlinkage __visible void __sched schedule(void)
6497 {
6498 	struct task_struct *tsk = current;
6499 
6500 	sched_submit_work(tsk);
6501 	do {
6502 		preempt_disable();
6503 		__schedule(SM_NONE);
6504 		sched_preempt_enable_no_resched();
6505 	} while (need_resched());
6506 	sched_update_worker(tsk);
6507 }
6508 EXPORT_SYMBOL(schedule);
6509 
6510 /*
6511  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6512  * state (have scheduled out non-voluntarily) by making sure that all
6513  * tasks have either left the run queue or have gone into user space.
6514  * As idle tasks do not do either, they must not ever be preempted
6515  * (schedule out non-voluntarily).
6516  *
6517  * schedule_idle() is similar to schedule_preempt_disable() except that it
6518  * never enables preemption because it does not call sched_submit_work().
6519  */
6520 void __sched schedule_idle(void)
6521 {
6522 	/*
6523 	 * As this skips calling sched_submit_work(), which the idle task does
6524 	 * regardless because that function is a nop when the task is in a
6525 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6526 	 * current task can be in any other state. Note, idle is always in the
6527 	 * TASK_RUNNING state.
6528 	 */
6529 	WARN_ON_ONCE(current->__state);
6530 	do {
6531 		__schedule(SM_NONE);
6532 	} while (need_resched());
6533 }
6534 
6535 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6536 asmlinkage __visible void __sched schedule_user(void)
6537 {
6538 	/*
6539 	 * If we come here after a random call to set_need_resched(),
6540 	 * or we have been woken up remotely but the IPI has not yet arrived,
6541 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6542 	 * we find a better solution.
6543 	 *
6544 	 * NB: There are buggy callers of this function.  Ideally we
6545 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6546 	 * too frequently to make sense yet.
6547 	 */
6548 	enum ctx_state prev_state = exception_enter();
6549 	schedule();
6550 	exception_exit(prev_state);
6551 }
6552 #endif
6553 
6554 /**
6555  * schedule_preempt_disabled - called with preemption disabled
6556  *
6557  * Returns with preemption disabled. Note: preempt_count must be 1
6558  */
6559 void __sched schedule_preempt_disabled(void)
6560 {
6561 	sched_preempt_enable_no_resched();
6562 	schedule();
6563 	preempt_disable();
6564 }
6565 
6566 #ifdef CONFIG_PREEMPT_RT
6567 void __sched notrace schedule_rtlock(void)
6568 {
6569 	do {
6570 		preempt_disable();
6571 		__schedule(SM_RTLOCK_WAIT);
6572 		sched_preempt_enable_no_resched();
6573 	} while (need_resched());
6574 }
6575 NOKPROBE_SYMBOL(schedule_rtlock);
6576 #endif
6577 
6578 static void __sched notrace preempt_schedule_common(void)
6579 {
6580 	do {
6581 		/*
6582 		 * Because the function tracer can trace preempt_count_sub()
6583 		 * and it also uses preempt_enable/disable_notrace(), if
6584 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6585 		 * by the function tracer will call this function again and
6586 		 * cause infinite recursion.
6587 		 *
6588 		 * Preemption must be disabled here before the function
6589 		 * tracer can trace. Break up preempt_disable() into two
6590 		 * calls. One to disable preemption without fear of being
6591 		 * traced. The other to still record the preemption latency,
6592 		 * which can also be traced by the function tracer.
6593 		 */
6594 		preempt_disable_notrace();
6595 		preempt_latency_start(1);
6596 		__schedule(SM_PREEMPT);
6597 		preempt_latency_stop(1);
6598 		preempt_enable_no_resched_notrace();
6599 
6600 		/*
6601 		 * Check again in case we missed a preemption opportunity
6602 		 * between schedule and now.
6603 		 */
6604 	} while (need_resched());
6605 }
6606 
6607 #ifdef CONFIG_PREEMPTION
6608 /*
6609  * This is the entry point to schedule() from in-kernel preemption
6610  * off of preempt_enable.
6611  */
6612 asmlinkage __visible void __sched notrace preempt_schedule(void)
6613 {
6614 	/*
6615 	 * If there is a non-zero preempt_count or interrupts are disabled,
6616 	 * we do not want to preempt the current task. Just return..
6617 	 */
6618 	if (likely(!preemptible()))
6619 		return;
6620 	preempt_schedule_common();
6621 }
6622 NOKPROBE_SYMBOL(preempt_schedule);
6623 EXPORT_SYMBOL(preempt_schedule);
6624 
6625 #ifdef CONFIG_PREEMPT_DYNAMIC
6626 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6627 #ifndef preempt_schedule_dynamic_enabled
6628 #define preempt_schedule_dynamic_enabled	preempt_schedule
6629 #define preempt_schedule_dynamic_disabled	NULL
6630 #endif
6631 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6632 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6633 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6634 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6635 void __sched notrace dynamic_preempt_schedule(void)
6636 {
6637 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6638 		return;
6639 	preempt_schedule();
6640 }
6641 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6642 EXPORT_SYMBOL(dynamic_preempt_schedule);
6643 #endif
6644 #endif
6645 
6646 /**
6647  * preempt_schedule_notrace - preempt_schedule called by tracing
6648  *
6649  * The tracing infrastructure uses preempt_enable_notrace to prevent
6650  * recursion and tracing preempt enabling caused by the tracing
6651  * infrastructure itself. But as tracing can happen in areas coming
6652  * from userspace or just about to enter userspace, a preempt enable
6653  * can occur before user_exit() is called. This will cause the scheduler
6654  * to be called when the system is still in usermode.
6655  *
6656  * To prevent this, the preempt_enable_notrace will use this function
6657  * instead of preempt_schedule() to exit user context if needed before
6658  * calling the scheduler.
6659  */
6660 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6661 {
6662 	enum ctx_state prev_ctx;
6663 
6664 	if (likely(!preemptible()))
6665 		return;
6666 
6667 	do {
6668 		/*
6669 		 * Because the function tracer can trace preempt_count_sub()
6670 		 * and it also uses preempt_enable/disable_notrace(), if
6671 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6672 		 * by the function tracer will call this function again and
6673 		 * cause infinite recursion.
6674 		 *
6675 		 * Preemption must be disabled here before the function
6676 		 * tracer can trace. Break up preempt_disable() into two
6677 		 * calls. One to disable preemption without fear of being
6678 		 * traced. The other to still record the preemption latency,
6679 		 * which can also be traced by the function tracer.
6680 		 */
6681 		preempt_disable_notrace();
6682 		preempt_latency_start(1);
6683 		/*
6684 		 * Needs preempt disabled in case user_exit() is traced
6685 		 * and the tracer calls preempt_enable_notrace() causing
6686 		 * an infinite recursion.
6687 		 */
6688 		prev_ctx = exception_enter();
6689 		__schedule(SM_PREEMPT);
6690 		exception_exit(prev_ctx);
6691 
6692 		preempt_latency_stop(1);
6693 		preempt_enable_no_resched_notrace();
6694 	} while (need_resched());
6695 }
6696 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6697 
6698 #ifdef CONFIG_PREEMPT_DYNAMIC
6699 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6700 #ifndef preempt_schedule_notrace_dynamic_enabled
6701 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6702 #define preempt_schedule_notrace_dynamic_disabled	NULL
6703 #endif
6704 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6705 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6706 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6707 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6708 void __sched notrace dynamic_preempt_schedule_notrace(void)
6709 {
6710 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6711 		return;
6712 	preempt_schedule_notrace();
6713 }
6714 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6715 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6716 #endif
6717 #endif
6718 
6719 #endif /* CONFIG_PREEMPTION */
6720 
6721 /*
6722  * This is the entry point to schedule() from kernel preemption
6723  * off of irq context.
6724  * Note, that this is called and return with irqs disabled. This will
6725  * protect us against recursive calling from irq.
6726  */
6727 asmlinkage __visible void __sched preempt_schedule_irq(void)
6728 {
6729 	enum ctx_state prev_state;
6730 
6731 	/* Catch callers which need to be fixed */
6732 	BUG_ON(preempt_count() || !irqs_disabled());
6733 
6734 	prev_state = exception_enter();
6735 
6736 	do {
6737 		preempt_disable();
6738 		local_irq_enable();
6739 		__schedule(SM_PREEMPT);
6740 		local_irq_disable();
6741 		sched_preempt_enable_no_resched();
6742 	} while (need_resched());
6743 
6744 	exception_exit(prev_state);
6745 }
6746 
6747 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6748 			  void *key)
6749 {
6750 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6751 	return try_to_wake_up(curr->private, mode, wake_flags);
6752 }
6753 EXPORT_SYMBOL(default_wake_function);
6754 
6755 static void __setscheduler_prio(struct task_struct *p, int prio)
6756 {
6757 	if (dl_prio(prio))
6758 		p->sched_class = &dl_sched_class;
6759 	else if (rt_prio(prio))
6760 		p->sched_class = &rt_sched_class;
6761 	else
6762 		p->sched_class = &fair_sched_class;
6763 
6764 	p->prio = prio;
6765 }
6766 
6767 #ifdef CONFIG_RT_MUTEXES
6768 
6769 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6770 {
6771 	if (pi_task)
6772 		prio = min(prio, pi_task->prio);
6773 
6774 	return prio;
6775 }
6776 
6777 static inline int rt_effective_prio(struct task_struct *p, int prio)
6778 {
6779 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6780 
6781 	return __rt_effective_prio(pi_task, prio);
6782 }
6783 
6784 /*
6785  * rt_mutex_setprio - set the current priority of a task
6786  * @p: task to boost
6787  * @pi_task: donor task
6788  *
6789  * This function changes the 'effective' priority of a task. It does
6790  * not touch ->normal_prio like __setscheduler().
6791  *
6792  * Used by the rt_mutex code to implement priority inheritance
6793  * logic. Call site only calls if the priority of the task changed.
6794  */
6795 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6796 {
6797 	int prio, oldprio, queued, running, queue_flag =
6798 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6799 	const struct sched_class *prev_class;
6800 	struct rq_flags rf;
6801 	struct rq *rq;
6802 
6803 	/* XXX used to be waiter->prio, not waiter->task->prio */
6804 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6805 
6806 	/*
6807 	 * If nothing changed; bail early.
6808 	 */
6809 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6810 		return;
6811 
6812 	rq = __task_rq_lock(p, &rf);
6813 	update_rq_clock(rq);
6814 	/*
6815 	 * Set under pi_lock && rq->lock, such that the value can be used under
6816 	 * either lock.
6817 	 *
6818 	 * Note that there is loads of tricky to make this pointer cache work
6819 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6820 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6821 	 * task is allowed to run again (and can exit). This ensures the pointer
6822 	 * points to a blocked task -- which guarantees the task is present.
6823 	 */
6824 	p->pi_top_task = pi_task;
6825 
6826 	/*
6827 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6828 	 */
6829 	if (prio == p->prio && !dl_prio(prio))
6830 		goto out_unlock;
6831 
6832 	/*
6833 	 * Idle task boosting is a nono in general. There is one
6834 	 * exception, when PREEMPT_RT and NOHZ is active:
6835 	 *
6836 	 * The idle task calls get_next_timer_interrupt() and holds
6837 	 * the timer wheel base->lock on the CPU and another CPU wants
6838 	 * to access the timer (probably to cancel it). We can safely
6839 	 * ignore the boosting request, as the idle CPU runs this code
6840 	 * with interrupts disabled and will complete the lock
6841 	 * protected section without being interrupted. So there is no
6842 	 * real need to boost.
6843 	 */
6844 	if (unlikely(p == rq->idle)) {
6845 		WARN_ON(p != rq->curr);
6846 		WARN_ON(p->pi_blocked_on);
6847 		goto out_unlock;
6848 	}
6849 
6850 	trace_sched_pi_setprio(p, pi_task);
6851 	oldprio = p->prio;
6852 
6853 	if (oldprio == prio)
6854 		queue_flag &= ~DEQUEUE_MOVE;
6855 
6856 	prev_class = p->sched_class;
6857 	queued = task_on_rq_queued(p);
6858 	running = task_current(rq, p);
6859 	if (queued)
6860 		dequeue_task(rq, p, queue_flag);
6861 	if (running)
6862 		put_prev_task(rq, p);
6863 
6864 	/*
6865 	 * Boosting condition are:
6866 	 * 1. -rt task is running and holds mutex A
6867 	 *      --> -dl task blocks on mutex A
6868 	 *
6869 	 * 2. -dl task is running and holds mutex A
6870 	 *      --> -dl task blocks on mutex A and could preempt the
6871 	 *          running task
6872 	 */
6873 	if (dl_prio(prio)) {
6874 		if (!dl_prio(p->normal_prio) ||
6875 		    (pi_task && dl_prio(pi_task->prio) &&
6876 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
6877 			p->dl.pi_se = pi_task->dl.pi_se;
6878 			queue_flag |= ENQUEUE_REPLENISH;
6879 		} else {
6880 			p->dl.pi_se = &p->dl;
6881 		}
6882 	} else if (rt_prio(prio)) {
6883 		if (dl_prio(oldprio))
6884 			p->dl.pi_se = &p->dl;
6885 		if (oldprio < prio)
6886 			queue_flag |= ENQUEUE_HEAD;
6887 	} else {
6888 		if (dl_prio(oldprio))
6889 			p->dl.pi_se = &p->dl;
6890 		if (rt_prio(oldprio))
6891 			p->rt.timeout = 0;
6892 	}
6893 
6894 	__setscheduler_prio(p, prio);
6895 
6896 	if (queued)
6897 		enqueue_task(rq, p, queue_flag);
6898 	if (running)
6899 		set_next_task(rq, p);
6900 
6901 	check_class_changed(rq, p, prev_class, oldprio);
6902 out_unlock:
6903 	/* Avoid rq from going away on us: */
6904 	preempt_disable();
6905 
6906 	rq_unpin_lock(rq, &rf);
6907 	__balance_callbacks(rq);
6908 	raw_spin_rq_unlock(rq);
6909 
6910 	preempt_enable();
6911 }
6912 #else
6913 static inline int rt_effective_prio(struct task_struct *p, int prio)
6914 {
6915 	return prio;
6916 }
6917 #endif
6918 
6919 void set_user_nice(struct task_struct *p, long nice)
6920 {
6921 	bool queued, running;
6922 	int old_prio;
6923 	struct rq_flags rf;
6924 	struct rq *rq;
6925 
6926 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6927 		return;
6928 	/*
6929 	 * We have to be careful, if called from sys_setpriority(),
6930 	 * the task might be in the middle of scheduling on another CPU.
6931 	 */
6932 	rq = task_rq_lock(p, &rf);
6933 	update_rq_clock(rq);
6934 
6935 	/*
6936 	 * The RT priorities are set via sched_setscheduler(), but we still
6937 	 * allow the 'normal' nice value to be set - but as expected
6938 	 * it won't have any effect on scheduling until the task is
6939 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6940 	 */
6941 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6942 		p->static_prio = NICE_TO_PRIO(nice);
6943 		goto out_unlock;
6944 	}
6945 	queued = task_on_rq_queued(p);
6946 	running = task_current(rq, p);
6947 	if (queued)
6948 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6949 	if (running)
6950 		put_prev_task(rq, p);
6951 
6952 	p->static_prio = NICE_TO_PRIO(nice);
6953 	set_load_weight(p, true);
6954 	old_prio = p->prio;
6955 	p->prio = effective_prio(p);
6956 
6957 	if (queued)
6958 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6959 	if (running)
6960 		set_next_task(rq, p);
6961 
6962 	/*
6963 	 * If the task increased its priority or is running and
6964 	 * lowered its priority, then reschedule its CPU:
6965 	 */
6966 	p->sched_class->prio_changed(rq, p, old_prio);
6967 
6968 out_unlock:
6969 	task_rq_unlock(rq, p, &rf);
6970 }
6971 EXPORT_SYMBOL(set_user_nice);
6972 
6973 /*
6974  * can_nice - check if a task can reduce its nice value
6975  * @p: task
6976  * @nice: nice value
6977  */
6978 int can_nice(const struct task_struct *p, const int nice)
6979 {
6980 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
6981 	int nice_rlim = nice_to_rlimit(nice);
6982 
6983 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6984 		capable(CAP_SYS_NICE));
6985 }
6986 
6987 #ifdef __ARCH_WANT_SYS_NICE
6988 
6989 /*
6990  * sys_nice - change the priority of the current process.
6991  * @increment: priority increment
6992  *
6993  * sys_setpriority is a more generic, but much slower function that
6994  * does similar things.
6995  */
6996 SYSCALL_DEFINE1(nice, int, increment)
6997 {
6998 	long nice, retval;
6999 
7000 	/*
7001 	 * Setpriority might change our priority at the same moment.
7002 	 * We don't have to worry. Conceptually one call occurs first
7003 	 * and we have a single winner.
7004 	 */
7005 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7006 	nice = task_nice(current) + increment;
7007 
7008 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7009 	if (increment < 0 && !can_nice(current, nice))
7010 		return -EPERM;
7011 
7012 	retval = security_task_setnice(current, nice);
7013 	if (retval)
7014 		return retval;
7015 
7016 	set_user_nice(current, nice);
7017 	return 0;
7018 }
7019 
7020 #endif
7021 
7022 /**
7023  * task_prio - return the priority value of a given task.
7024  * @p: the task in question.
7025  *
7026  * Return: The priority value as seen by users in /proc.
7027  *
7028  * sched policy         return value   kernel prio    user prio/nice
7029  *
7030  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7031  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7032  * deadline                     -101             -1           0
7033  */
7034 int task_prio(const struct task_struct *p)
7035 {
7036 	return p->prio - MAX_RT_PRIO;
7037 }
7038 
7039 /**
7040  * idle_cpu - is a given CPU idle currently?
7041  * @cpu: the processor in question.
7042  *
7043  * Return: 1 if the CPU is currently idle. 0 otherwise.
7044  */
7045 int idle_cpu(int cpu)
7046 {
7047 	struct rq *rq = cpu_rq(cpu);
7048 
7049 	if (rq->curr != rq->idle)
7050 		return 0;
7051 
7052 	if (rq->nr_running)
7053 		return 0;
7054 
7055 #ifdef CONFIG_SMP
7056 	if (rq->ttwu_pending)
7057 		return 0;
7058 #endif
7059 
7060 	return 1;
7061 }
7062 
7063 /**
7064  * available_idle_cpu - is a given CPU idle for enqueuing work.
7065  * @cpu: the CPU in question.
7066  *
7067  * Return: 1 if the CPU is currently idle. 0 otherwise.
7068  */
7069 int available_idle_cpu(int cpu)
7070 {
7071 	if (!idle_cpu(cpu))
7072 		return 0;
7073 
7074 	if (vcpu_is_preempted(cpu))
7075 		return 0;
7076 
7077 	return 1;
7078 }
7079 
7080 /**
7081  * idle_task - return the idle task for a given CPU.
7082  * @cpu: the processor in question.
7083  *
7084  * Return: The idle task for the CPU @cpu.
7085  */
7086 struct task_struct *idle_task(int cpu)
7087 {
7088 	return cpu_rq(cpu)->idle;
7089 }
7090 
7091 #ifdef CONFIG_SMP
7092 /*
7093  * This function computes an effective utilization for the given CPU, to be
7094  * used for frequency selection given the linear relation: f = u * f_max.
7095  *
7096  * The scheduler tracks the following metrics:
7097  *
7098  *   cpu_util_{cfs,rt,dl,irq}()
7099  *   cpu_bw_dl()
7100  *
7101  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7102  * synchronized windows and are thus directly comparable.
7103  *
7104  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7105  * which excludes things like IRQ and steal-time. These latter are then accrued
7106  * in the irq utilization.
7107  *
7108  * The DL bandwidth number otoh is not a measured metric but a value computed
7109  * based on the task model parameters and gives the minimal utilization
7110  * required to meet deadlines.
7111  */
7112 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7113 				 unsigned long max, enum cpu_util_type type,
7114 				 struct task_struct *p)
7115 {
7116 	unsigned long dl_util, util, irq;
7117 	struct rq *rq = cpu_rq(cpu);
7118 
7119 	if (!uclamp_is_used() &&
7120 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7121 		return max;
7122 	}
7123 
7124 	/*
7125 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7126 	 * because of inaccuracies in how we track these -- see
7127 	 * update_irq_load_avg().
7128 	 */
7129 	irq = cpu_util_irq(rq);
7130 	if (unlikely(irq >= max))
7131 		return max;
7132 
7133 	/*
7134 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7135 	 * CFS tasks and we use the same metric to track the effective
7136 	 * utilization (PELT windows are synchronized) we can directly add them
7137 	 * to obtain the CPU's actual utilization.
7138 	 *
7139 	 * CFS and RT utilization can be boosted or capped, depending on
7140 	 * utilization clamp constraints requested by currently RUNNABLE
7141 	 * tasks.
7142 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7143 	 * frequency will be gracefully reduced with the utilization decay.
7144 	 */
7145 	util = util_cfs + cpu_util_rt(rq);
7146 	if (type == FREQUENCY_UTIL)
7147 		util = uclamp_rq_util_with(rq, util, p);
7148 
7149 	dl_util = cpu_util_dl(rq);
7150 
7151 	/*
7152 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7153 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7154 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7155 	 * that we select f_max when there is no idle time.
7156 	 *
7157 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7158 	 * saturation when we should -- something for later.
7159 	 */
7160 	if (util + dl_util >= max)
7161 		return max;
7162 
7163 	/*
7164 	 * OTOH, for energy computation we need the estimated running time, so
7165 	 * include util_dl and ignore dl_bw.
7166 	 */
7167 	if (type == ENERGY_UTIL)
7168 		util += dl_util;
7169 
7170 	/*
7171 	 * There is still idle time; further improve the number by using the
7172 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7173 	 * need to scale the task numbers:
7174 	 *
7175 	 *              max - irq
7176 	 *   U' = irq + --------- * U
7177 	 *                 max
7178 	 */
7179 	util = scale_irq_capacity(util, irq, max);
7180 	util += irq;
7181 
7182 	/*
7183 	 * Bandwidth required by DEADLINE must always be granted while, for
7184 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7185 	 * to gracefully reduce the frequency when no tasks show up for longer
7186 	 * periods of time.
7187 	 *
7188 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7189 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7190 	 * an interface. So, we only do the latter for now.
7191 	 */
7192 	if (type == FREQUENCY_UTIL)
7193 		util += cpu_bw_dl(rq);
7194 
7195 	return min(max, util);
7196 }
7197 
7198 unsigned long sched_cpu_util(int cpu, unsigned long max)
7199 {
7200 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), max,
7201 				  ENERGY_UTIL, NULL);
7202 }
7203 #endif /* CONFIG_SMP */
7204 
7205 /**
7206  * find_process_by_pid - find a process with a matching PID value.
7207  * @pid: the pid in question.
7208  *
7209  * The task of @pid, if found. %NULL otherwise.
7210  */
7211 static struct task_struct *find_process_by_pid(pid_t pid)
7212 {
7213 	return pid ? find_task_by_vpid(pid) : current;
7214 }
7215 
7216 /*
7217  * sched_setparam() passes in -1 for its policy, to let the functions
7218  * it calls know not to change it.
7219  */
7220 #define SETPARAM_POLICY	-1
7221 
7222 static void __setscheduler_params(struct task_struct *p,
7223 		const struct sched_attr *attr)
7224 {
7225 	int policy = attr->sched_policy;
7226 
7227 	if (policy == SETPARAM_POLICY)
7228 		policy = p->policy;
7229 
7230 	p->policy = policy;
7231 
7232 	if (dl_policy(policy))
7233 		__setparam_dl(p, attr);
7234 	else if (fair_policy(policy))
7235 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7236 
7237 	/*
7238 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7239 	 * !rt_policy. Always setting this ensures that things like
7240 	 * getparam()/getattr() don't report silly values for !rt tasks.
7241 	 */
7242 	p->rt_priority = attr->sched_priority;
7243 	p->normal_prio = normal_prio(p);
7244 	set_load_weight(p, true);
7245 }
7246 
7247 /*
7248  * Check the target process has a UID that matches the current process's:
7249  */
7250 static bool check_same_owner(struct task_struct *p)
7251 {
7252 	const struct cred *cred = current_cred(), *pcred;
7253 	bool match;
7254 
7255 	rcu_read_lock();
7256 	pcred = __task_cred(p);
7257 	match = (uid_eq(cred->euid, pcred->euid) ||
7258 		 uid_eq(cred->euid, pcred->uid));
7259 	rcu_read_unlock();
7260 	return match;
7261 }
7262 
7263 static int __sched_setscheduler(struct task_struct *p,
7264 				const struct sched_attr *attr,
7265 				bool user, bool pi)
7266 {
7267 	int oldpolicy = -1, policy = attr->sched_policy;
7268 	int retval, oldprio, newprio, queued, running;
7269 	const struct sched_class *prev_class;
7270 	struct callback_head *head;
7271 	struct rq_flags rf;
7272 	int reset_on_fork;
7273 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7274 	struct rq *rq;
7275 
7276 	/* The pi code expects interrupts enabled */
7277 	BUG_ON(pi && in_interrupt());
7278 recheck:
7279 	/* Double check policy once rq lock held: */
7280 	if (policy < 0) {
7281 		reset_on_fork = p->sched_reset_on_fork;
7282 		policy = oldpolicy = p->policy;
7283 	} else {
7284 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7285 
7286 		if (!valid_policy(policy))
7287 			return -EINVAL;
7288 	}
7289 
7290 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7291 		return -EINVAL;
7292 
7293 	/*
7294 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7295 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7296 	 * SCHED_BATCH and SCHED_IDLE is 0.
7297 	 */
7298 	if (attr->sched_priority > MAX_RT_PRIO-1)
7299 		return -EINVAL;
7300 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7301 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7302 		return -EINVAL;
7303 
7304 	/*
7305 	 * Allow unprivileged RT tasks to decrease priority:
7306 	 */
7307 	if (user && !capable(CAP_SYS_NICE)) {
7308 		if (fair_policy(policy)) {
7309 			if (attr->sched_nice < task_nice(p) &&
7310 			    !can_nice(p, attr->sched_nice))
7311 				return -EPERM;
7312 		}
7313 
7314 		if (rt_policy(policy)) {
7315 			unsigned long rlim_rtprio =
7316 					task_rlimit(p, RLIMIT_RTPRIO);
7317 
7318 			/* Can't set/change the rt policy: */
7319 			if (policy != p->policy && !rlim_rtprio)
7320 				return -EPERM;
7321 
7322 			/* Can't increase priority: */
7323 			if (attr->sched_priority > p->rt_priority &&
7324 			    attr->sched_priority > rlim_rtprio)
7325 				return -EPERM;
7326 		}
7327 
7328 		 /*
7329 		  * Can't set/change SCHED_DEADLINE policy at all for now
7330 		  * (safest behavior); in the future we would like to allow
7331 		  * unprivileged DL tasks to increase their relative deadline
7332 		  * or reduce their runtime (both ways reducing utilization)
7333 		  */
7334 		if (dl_policy(policy))
7335 			return -EPERM;
7336 
7337 		/*
7338 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7339 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7340 		 */
7341 		if (task_has_idle_policy(p) && !idle_policy(policy)) {
7342 			if (!can_nice(p, task_nice(p)))
7343 				return -EPERM;
7344 		}
7345 
7346 		/* Can't change other user's priorities: */
7347 		if (!check_same_owner(p))
7348 			return -EPERM;
7349 
7350 		/* Normal users shall not reset the sched_reset_on_fork flag: */
7351 		if (p->sched_reset_on_fork && !reset_on_fork)
7352 			return -EPERM;
7353 	}
7354 
7355 	if (user) {
7356 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7357 			return -EINVAL;
7358 
7359 		retval = security_task_setscheduler(p);
7360 		if (retval)
7361 			return retval;
7362 	}
7363 
7364 	/* Update task specific "requested" clamps */
7365 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7366 		retval = uclamp_validate(p, attr);
7367 		if (retval)
7368 			return retval;
7369 	}
7370 
7371 	if (pi)
7372 		cpuset_read_lock();
7373 
7374 	/*
7375 	 * Make sure no PI-waiters arrive (or leave) while we are
7376 	 * changing the priority of the task:
7377 	 *
7378 	 * To be able to change p->policy safely, the appropriate
7379 	 * runqueue lock must be held.
7380 	 */
7381 	rq = task_rq_lock(p, &rf);
7382 	update_rq_clock(rq);
7383 
7384 	/*
7385 	 * Changing the policy of the stop threads its a very bad idea:
7386 	 */
7387 	if (p == rq->stop) {
7388 		retval = -EINVAL;
7389 		goto unlock;
7390 	}
7391 
7392 	/*
7393 	 * If not changing anything there's no need to proceed further,
7394 	 * but store a possible modification of reset_on_fork.
7395 	 */
7396 	if (unlikely(policy == p->policy)) {
7397 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7398 			goto change;
7399 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7400 			goto change;
7401 		if (dl_policy(policy) && dl_param_changed(p, attr))
7402 			goto change;
7403 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7404 			goto change;
7405 
7406 		p->sched_reset_on_fork = reset_on_fork;
7407 		retval = 0;
7408 		goto unlock;
7409 	}
7410 change:
7411 
7412 	if (user) {
7413 #ifdef CONFIG_RT_GROUP_SCHED
7414 		/*
7415 		 * Do not allow realtime tasks into groups that have no runtime
7416 		 * assigned.
7417 		 */
7418 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7419 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7420 				!task_group_is_autogroup(task_group(p))) {
7421 			retval = -EPERM;
7422 			goto unlock;
7423 		}
7424 #endif
7425 #ifdef CONFIG_SMP
7426 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7427 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7428 			cpumask_t *span = rq->rd->span;
7429 
7430 			/*
7431 			 * Don't allow tasks with an affinity mask smaller than
7432 			 * the entire root_domain to become SCHED_DEADLINE. We
7433 			 * will also fail if there's no bandwidth available.
7434 			 */
7435 			if (!cpumask_subset(span, p->cpus_ptr) ||
7436 			    rq->rd->dl_bw.bw == 0) {
7437 				retval = -EPERM;
7438 				goto unlock;
7439 			}
7440 		}
7441 #endif
7442 	}
7443 
7444 	/* Re-check policy now with rq lock held: */
7445 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7446 		policy = oldpolicy = -1;
7447 		task_rq_unlock(rq, p, &rf);
7448 		if (pi)
7449 			cpuset_read_unlock();
7450 		goto recheck;
7451 	}
7452 
7453 	/*
7454 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7455 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7456 	 * is available.
7457 	 */
7458 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7459 		retval = -EBUSY;
7460 		goto unlock;
7461 	}
7462 
7463 	p->sched_reset_on_fork = reset_on_fork;
7464 	oldprio = p->prio;
7465 
7466 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7467 	if (pi) {
7468 		/*
7469 		 * Take priority boosted tasks into account. If the new
7470 		 * effective priority is unchanged, we just store the new
7471 		 * normal parameters and do not touch the scheduler class and
7472 		 * the runqueue. This will be done when the task deboost
7473 		 * itself.
7474 		 */
7475 		newprio = rt_effective_prio(p, newprio);
7476 		if (newprio == oldprio)
7477 			queue_flags &= ~DEQUEUE_MOVE;
7478 	}
7479 
7480 	queued = task_on_rq_queued(p);
7481 	running = task_current(rq, p);
7482 	if (queued)
7483 		dequeue_task(rq, p, queue_flags);
7484 	if (running)
7485 		put_prev_task(rq, p);
7486 
7487 	prev_class = p->sched_class;
7488 
7489 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7490 		__setscheduler_params(p, attr);
7491 		__setscheduler_prio(p, newprio);
7492 	}
7493 	__setscheduler_uclamp(p, attr);
7494 
7495 	if (queued) {
7496 		/*
7497 		 * We enqueue to tail when the priority of a task is
7498 		 * increased (user space view).
7499 		 */
7500 		if (oldprio < p->prio)
7501 			queue_flags |= ENQUEUE_HEAD;
7502 
7503 		enqueue_task(rq, p, queue_flags);
7504 	}
7505 	if (running)
7506 		set_next_task(rq, p);
7507 
7508 	check_class_changed(rq, p, prev_class, oldprio);
7509 
7510 	/* Avoid rq from going away on us: */
7511 	preempt_disable();
7512 	head = splice_balance_callbacks(rq);
7513 	task_rq_unlock(rq, p, &rf);
7514 
7515 	if (pi) {
7516 		cpuset_read_unlock();
7517 		rt_mutex_adjust_pi(p);
7518 	}
7519 
7520 	/* Run balance callbacks after we've adjusted the PI chain: */
7521 	balance_callbacks(rq, head);
7522 	preempt_enable();
7523 
7524 	return 0;
7525 
7526 unlock:
7527 	task_rq_unlock(rq, p, &rf);
7528 	if (pi)
7529 		cpuset_read_unlock();
7530 	return retval;
7531 }
7532 
7533 static int _sched_setscheduler(struct task_struct *p, int policy,
7534 			       const struct sched_param *param, bool check)
7535 {
7536 	struct sched_attr attr = {
7537 		.sched_policy   = policy,
7538 		.sched_priority = param->sched_priority,
7539 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7540 	};
7541 
7542 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7543 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7544 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7545 		policy &= ~SCHED_RESET_ON_FORK;
7546 		attr.sched_policy = policy;
7547 	}
7548 
7549 	return __sched_setscheduler(p, &attr, check, true);
7550 }
7551 /**
7552  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7553  * @p: the task in question.
7554  * @policy: new policy.
7555  * @param: structure containing the new RT priority.
7556  *
7557  * Use sched_set_fifo(), read its comment.
7558  *
7559  * Return: 0 on success. An error code otherwise.
7560  *
7561  * NOTE that the task may be already dead.
7562  */
7563 int sched_setscheduler(struct task_struct *p, int policy,
7564 		       const struct sched_param *param)
7565 {
7566 	return _sched_setscheduler(p, policy, param, true);
7567 }
7568 
7569 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7570 {
7571 	return __sched_setscheduler(p, attr, true, true);
7572 }
7573 
7574 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7575 {
7576 	return __sched_setscheduler(p, attr, false, true);
7577 }
7578 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7579 
7580 /**
7581  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7582  * @p: the task in question.
7583  * @policy: new policy.
7584  * @param: structure containing the new RT priority.
7585  *
7586  * Just like sched_setscheduler, only don't bother checking if the
7587  * current context has permission.  For example, this is needed in
7588  * stop_machine(): we create temporary high priority worker threads,
7589  * but our caller might not have that capability.
7590  *
7591  * Return: 0 on success. An error code otherwise.
7592  */
7593 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7594 			       const struct sched_param *param)
7595 {
7596 	return _sched_setscheduler(p, policy, param, false);
7597 }
7598 
7599 /*
7600  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7601  * incapable of resource management, which is the one thing an OS really should
7602  * be doing.
7603  *
7604  * This is of course the reason it is limited to privileged users only.
7605  *
7606  * Worse still; it is fundamentally impossible to compose static priority
7607  * workloads. You cannot take two correctly working static prio workloads
7608  * and smash them together and still expect them to work.
7609  *
7610  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7611  *
7612  *   MAX_RT_PRIO / 2
7613  *
7614  * The administrator _MUST_ configure the system, the kernel simply doesn't
7615  * know enough information to make a sensible choice.
7616  */
7617 void sched_set_fifo(struct task_struct *p)
7618 {
7619 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7620 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7621 }
7622 EXPORT_SYMBOL_GPL(sched_set_fifo);
7623 
7624 /*
7625  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7626  */
7627 void sched_set_fifo_low(struct task_struct *p)
7628 {
7629 	struct sched_param sp = { .sched_priority = 1 };
7630 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7631 }
7632 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7633 
7634 void sched_set_normal(struct task_struct *p, int nice)
7635 {
7636 	struct sched_attr attr = {
7637 		.sched_policy = SCHED_NORMAL,
7638 		.sched_nice = nice,
7639 	};
7640 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7641 }
7642 EXPORT_SYMBOL_GPL(sched_set_normal);
7643 
7644 static int
7645 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7646 {
7647 	struct sched_param lparam;
7648 	struct task_struct *p;
7649 	int retval;
7650 
7651 	if (!param || pid < 0)
7652 		return -EINVAL;
7653 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7654 		return -EFAULT;
7655 
7656 	rcu_read_lock();
7657 	retval = -ESRCH;
7658 	p = find_process_by_pid(pid);
7659 	if (likely(p))
7660 		get_task_struct(p);
7661 	rcu_read_unlock();
7662 
7663 	if (likely(p)) {
7664 		retval = sched_setscheduler(p, policy, &lparam);
7665 		put_task_struct(p);
7666 	}
7667 
7668 	return retval;
7669 }
7670 
7671 /*
7672  * Mimics kernel/events/core.c perf_copy_attr().
7673  */
7674 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7675 {
7676 	u32 size;
7677 	int ret;
7678 
7679 	/* Zero the full structure, so that a short copy will be nice: */
7680 	memset(attr, 0, sizeof(*attr));
7681 
7682 	ret = get_user(size, &uattr->size);
7683 	if (ret)
7684 		return ret;
7685 
7686 	/* ABI compatibility quirk: */
7687 	if (!size)
7688 		size = SCHED_ATTR_SIZE_VER0;
7689 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7690 		goto err_size;
7691 
7692 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7693 	if (ret) {
7694 		if (ret == -E2BIG)
7695 			goto err_size;
7696 		return ret;
7697 	}
7698 
7699 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7700 	    size < SCHED_ATTR_SIZE_VER1)
7701 		return -EINVAL;
7702 
7703 	/*
7704 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7705 	 * to be strict and return an error on out-of-bounds values?
7706 	 */
7707 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7708 
7709 	return 0;
7710 
7711 err_size:
7712 	put_user(sizeof(*attr), &uattr->size);
7713 	return -E2BIG;
7714 }
7715 
7716 static void get_params(struct task_struct *p, struct sched_attr *attr)
7717 {
7718 	if (task_has_dl_policy(p))
7719 		__getparam_dl(p, attr);
7720 	else if (task_has_rt_policy(p))
7721 		attr->sched_priority = p->rt_priority;
7722 	else
7723 		attr->sched_nice = task_nice(p);
7724 }
7725 
7726 /**
7727  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7728  * @pid: the pid in question.
7729  * @policy: new policy.
7730  * @param: structure containing the new RT priority.
7731  *
7732  * Return: 0 on success. An error code otherwise.
7733  */
7734 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7735 {
7736 	if (policy < 0)
7737 		return -EINVAL;
7738 
7739 	return do_sched_setscheduler(pid, policy, param);
7740 }
7741 
7742 /**
7743  * sys_sched_setparam - set/change the RT priority of a thread
7744  * @pid: the pid in question.
7745  * @param: structure containing the new RT priority.
7746  *
7747  * Return: 0 on success. An error code otherwise.
7748  */
7749 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7750 {
7751 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7752 }
7753 
7754 /**
7755  * sys_sched_setattr - same as above, but with extended sched_attr
7756  * @pid: the pid in question.
7757  * @uattr: structure containing the extended parameters.
7758  * @flags: for future extension.
7759  */
7760 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7761 			       unsigned int, flags)
7762 {
7763 	struct sched_attr attr;
7764 	struct task_struct *p;
7765 	int retval;
7766 
7767 	if (!uattr || pid < 0 || flags)
7768 		return -EINVAL;
7769 
7770 	retval = sched_copy_attr(uattr, &attr);
7771 	if (retval)
7772 		return retval;
7773 
7774 	if ((int)attr.sched_policy < 0)
7775 		return -EINVAL;
7776 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7777 		attr.sched_policy = SETPARAM_POLICY;
7778 
7779 	rcu_read_lock();
7780 	retval = -ESRCH;
7781 	p = find_process_by_pid(pid);
7782 	if (likely(p))
7783 		get_task_struct(p);
7784 	rcu_read_unlock();
7785 
7786 	if (likely(p)) {
7787 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7788 			get_params(p, &attr);
7789 		retval = sched_setattr(p, &attr);
7790 		put_task_struct(p);
7791 	}
7792 
7793 	return retval;
7794 }
7795 
7796 /**
7797  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7798  * @pid: the pid in question.
7799  *
7800  * Return: On success, the policy of the thread. Otherwise, a negative error
7801  * code.
7802  */
7803 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7804 {
7805 	struct task_struct *p;
7806 	int retval;
7807 
7808 	if (pid < 0)
7809 		return -EINVAL;
7810 
7811 	retval = -ESRCH;
7812 	rcu_read_lock();
7813 	p = find_process_by_pid(pid);
7814 	if (p) {
7815 		retval = security_task_getscheduler(p);
7816 		if (!retval)
7817 			retval = p->policy
7818 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7819 	}
7820 	rcu_read_unlock();
7821 	return retval;
7822 }
7823 
7824 /**
7825  * sys_sched_getparam - get the RT priority of a thread
7826  * @pid: the pid in question.
7827  * @param: structure containing the RT priority.
7828  *
7829  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7830  * code.
7831  */
7832 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7833 {
7834 	struct sched_param lp = { .sched_priority = 0 };
7835 	struct task_struct *p;
7836 	int retval;
7837 
7838 	if (!param || pid < 0)
7839 		return -EINVAL;
7840 
7841 	rcu_read_lock();
7842 	p = find_process_by_pid(pid);
7843 	retval = -ESRCH;
7844 	if (!p)
7845 		goto out_unlock;
7846 
7847 	retval = security_task_getscheduler(p);
7848 	if (retval)
7849 		goto out_unlock;
7850 
7851 	if (task_has_rt_policy(p))
7852 		lp.sched_priority = p->rt_priority;
7853 	rcu_read_unlock();
7854 
7855 	/*
7856 	 * This one might sleep, we cannot do it with a spinlock held ...
7857 	 */
7858 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7859 
7860 	return retval;
7861 
7862 out_unlock:
7863 	rcu_read_unlock();
7864 	return retval;
7865 }
7866 
7867 /*
7868  * Copy the kernel size attribute structure (which might be larger
7869  * than what user-space knows about) to user-space.
7870  *
7871  * Note that all cases are valid: user-space buffer can be larger or
7872  * smaller than the kernel-space buffer. The usual case is that both
7873  * have the same size.
7874  */
7875 static int
7876 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7877 			struct sched_attr *kattr,
7878 			unsigned int usize)
7879 {
7880 	unsigned int ksize = sizeof(*kattr);
7881 
7882 	if (!access_ok(uattr, usize))
7883 		return -EFAULT;
7884 
7885 	/*
7886 	 * sched_getattr() ABI forwards and backwards compatibility:
7887 	 *
7888 	 * If usize == ksize then we just copy everything to user-space and all is good.
7889 	 *
7890 	 * If usize < ksize then we only copy as much as user-space has space for,
7891 	 * this keeps ABI compatibility as well. We skip the rest.
7892 	 *
7893 	 * If usize > ksize then user-space is using a newer version of the ABI,
7894 	 * which part the kernel doesn't know about. Just ignore it - tooling can
7895 	 * detect the kernel's knowledge of attributes from the attr->size value
7896 	 * which is set to ksize in this case.
7897 	 */
7898 	kattr->size = min(usize, ksize);
7899 
7900 	if (copy_to_user(uattr, kattr, kattr->size))
7901 		return -EFAULT;
7902 
7903 	return 0;
7904 }
7905 
7906 /**
7907  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7908  * @pid: the pid in question.
7909  * @uattr: structure containing the extended parameters.
7910  * @usize: sizeof(attr) for fwd/bwd comp.
7911  * @flags: for future extension.
7912  */
7913 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7914 		unsigned int, usize, unsigned int, flags)
7915 {
7916 	struct sched_attr kattr = { };
7917 	struct task_struct *p;
7918 	int retval;
7919 
7920 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7921 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
7922 		return -EINVAL;
7923 
7924 	rcu_read_lock();
7925 	p = find_process_by_pid(pid);
7926 	retval = -ESRCH;
7927 	if (!p)
7928 		goto out_unlock;
7929 
7930 	retval = security_task_getscheduler(p);
7931 	if (retval)
7932 		goto out_unlock;
7933 
7934 	kattr.sched_policy = p->policy;
7935 	if (p->sched_reset_on_fork)
7936 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7937 	get_params(p, &kattr);
7938 	kattr.sched_flags &= SCHED_FLAG_ALL;
7939 
7940 #ifdef CONFIG_UCLAMP_TASK
7941 	/*
7942 	 * This could race with another potential updater, but this is fine
7943 	 * because it'll correctly read the old or the new value. We don't need
7944 	 * to guarantee who wins the race as long as it doesn't return garbage.
7945 	 */
7946 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7947 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7948 #endif
7949 
7950 	rcu_read_unlock();
7951 
7952 	return sched_attr_copy_to_user(uattr, &kattr, usize);
7953 
7954 out_unlock:
7955 	rcu_read_unlock();
7956 	return retval;
7957 }
7958 
7959 #ifdef CONFIG_SMP
7960 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7961 {
7962 	int ret = 0;
7963 
7964 	/*
7965 	 * If the task isn't a deadline task or admission control is
7966 	 * disabled then we don't care about affinity changes.
7967 	 */
7968 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7969 		return 0;
7970 
7971 	/*
7972 	 * Since bandwidth control happens on root_domain basis,
7973 	 * if admission test is enabled, we only admit -deadline
7974 	 * tasks allowed to run on all the CPUs in the task's
7975 	 * root_domain.
7976 	 */
7977 	rcu_read_lock();
7978 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
7979 		ret = -EBUSY;
7980 	rcu_read_unlock();
7981 	return ret;
7982 }
7983 #endif
7984 
7985 static int
7986 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7987 {
7988 	int retval;
7989 	cpumask_var_t cpus_allowed, new_mask;
7990 
7991 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7992 		return -ENOMEM;
7993 
7994 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7995 		retval = -ENOMEM;
7996 		goto out_free_cpus_allowed;
7997 	}
7998 
7999 	cpuset_cpus_allowed(p, cpus_allowed);
8000 	cpumask_and(new_mask, mask, cpus_allowed);
8001 
8002 	retval = dl_task_check_affinity(p, new_mask);
8003 	if (retval)
8004 		goto out_free_new_mask;
8005 again:
8006 	retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8007 	if (retval)
8008 		goto out_free_new_mask;
8009 
8010 	cpuset_cpus_allowed(p, cpus_allowed);
8011 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8012 		/*
8013 		 * We must have raced with a concurrent cpuset update.
8014 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8015 		 */
8016 		cpumask_copy(new_mask, cpus_allowed);
8017 		goto again;
8018 	}
8019 
8020 out_free_new_mask:
8021 	free_cpumask_var(new_mask);
8022 out_free_cpus_allowed:
8023 	free_cpumask_var(cpus_allowed);
8024 	return retval;
8025 }
8026 
8027 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8028 {
8029 	struct task_struct *p;
8030 	int retval;
8031 
8032 	rcu_read_lock();
8033 
8034 	p = find_process_by_pid(pid);
8035 	if (!p) {
8036 		rcu_read_unlock();
8037 		return -ESRCH;
8038 	}
8039 
8040 	/* Prevent p going away */
8041 	get_task_struct(p);
8042 	rcu_read_unlock();
8043 
8044 	if (p->flags & PF_NO_SETAFFINITY) {
8045 		retval = -EINVAL;
8046 		goto out_put_task;
8047 	}
8048 
8049 	if (!check_same_owner(p)) {
8050 		rcu_read_lock();
8051 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8052 			rcu_read_unlock();
8053 			retval = -EPERM;
8054 			goto out_put_task;
8055 		}
8056 		rcu_read_unlock();
8057 	}
8058 
8059 	retval = security_task_setscheduler(p);
8060 	if (retval)
8061 		goto out_put_task;
8062 
8063 	retval = __sched_setaffinity(p, in_mask);
8064 out_put_task:
8065 	put_task_struct(p);
8066 	return retval;
8067 }
8068 
8069 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8070 			     struct cpumask *new_mask)
8071 {
8072 	if (len < cpumask_size())
8073 		cpumask_clear(new_mask);
8074 	else if (len > cpumask_size())
8075 		len = cpumask_size();
8076 
8077 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8078 }
8079 
8080 /**
8081  * sys_sched_setaffinity - set the CPU affinity of a process
8082  * @pid: pid of the process
8083  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8084  * @user_mask_ptr: user-space pointer to the new CPU mask
8085  *
8086  * Return: 0 on success. An error code otherwise.
8087  */
8088 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8089 		unsigned long __user *, user_mask_ptr)
8090 {
8091 	cpumask_var_t new_mask;
8092 	int retval;
8093 
8094 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8095 		return -ENOMEM;
8096 
8097 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8098 	if (retval == 0)
8099 		retval = sched_setaffinity(pid, new_mask);
8100 	free_cpumask_var(new_mask);
8101 	return retval;
8102 }
8103 
8104 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8105 {
8106 	struct task_struct *p;
8107 	unsigned long flags;
8108 	int retval;
8109 
8110 	rcu_read_lock();
8111 
8112 	retval = -ESRCH;
8113 	p = find_process_by_pid(pid);
8114 	if (!p)
8115 		goto out_unlock;
8116 
8117 	retval = security_task_getscheduler(p);
8118 	if (retval)
8119 		goto out_unlock;
8120 
8121 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8122 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8123 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8124 
8125 out_unlock:
8126 	rcu_read_unlock();
8127 
8128 	return retval;
8129 }
8130 
8131 /**
8132  * sys_sched_getaffinity - get the CPU affinity of a process
8133  * @pid: pid of the process
8134  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8135  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8136  *
8137  * Return: size of CPU mask copied to user_mask_ptr on success. An
8138  * error code otherwise.
8139  */
8140 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8141 		unsigned long __user *, user_mask_ptr)
8142 {
8143 	int ret;
8144 	cpumask_var_t mask;
8145 
8146 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8147 		return -EINVAL;
8148 	if (len & (sizeof(unsigned long)-1))
8149 		return -EINVAL;
8150 
8151 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8152 		return -ENOMEM;
8153 
8154 	ret = sched_getaffinity(pid, mask);
8155 	if (ret == 0) {
8156 		unsigned int retlen = min(len, cpumask_size());
8157 
8158 		if (copy_to_user(user_mask_ptr, mask, retlen))
8159 			ret = -EFAULT;
8160 		else
8161 			ret = retlen;
8162 	}
8163 	free_cpumask_var(mask);
8164 
8165 	return ret;
8166 }
8167 
8168 static void do_sched_yield(void)
8169 {
8170 	struct rq_flags rf;
8171 	struct rq *rq;
8172 
8173 	rq = this_rq_lock_irq(&rf);
8174 
8175 	schedstat_inc(rq->yld_count);
8176 	current->sched_class->yield_task(rq);
8177 
8178 	preempt_disable();
8179 	rq_unlock_irq(rq, &rf);
8180 	sched_preempt_enable_no_resched();
8181 
8182 	schedule();
8183 }
8184 
8185 /**
8186  * sys_sched_yield - yield the current processor to other threads.
8187  *
8188  * This function yields the current CPU to other tasks. If there are no
8189  * other threads running on this CPU then this function will return.
8190  *
8191  * Return: 0.
8192  */
8193 SYSCALL_DEFINE0(sched_yield)
8194 {
8195 	do_sched_yield();
8196 	return 0;
8197 }
8198 
8199 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8200 int __sched __cond_resched(void)
8201 {
8202 	if (should_resched(0)) {
8203 		preempt_schedule_common();
8204 		return 1;
8205 	}
8206 	/*
8207 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8208 	 * whether the current CPU is in an RCU read-side critical section,
8209 	 * so the tick can report quiescent states even for CPUs looping
8210 	 * in kernel context.  In contrast, in non-preemptible kernels,
8211 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8212 	 * processes executing in kernel context might never report an
8213 	 * RCU quiescent state.  Therefore, the following code causes
8214 	 * cond_resched() to report a quiescent state, but only when RCU
8215 	 * is in urgent need of one.
8216 	 */
8217 #ifndef CONFIG_PREEMPT_RCU
8218 	rcu_all_qs();
8219 #endif
8220 	return 0;
8221 }
8222 EXPORT_SYMBOL(__cond_resched);
8223 #endif
8224 
8225 #ifdef CONFIG_PREEMPT_DYNAMIC
8226 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8227 #define cond_resched_dynamic_enabled	__cond_resched
8228 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8229 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8230 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8231 
8232 #define might_resched_dynamic_enabled	__cond_resched
8233 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8234 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8235 EXPORT_STATIC_CALL_TRAMP(might_resched);
8236 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8237 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8238 int __sched dynamic_cond_resched(void)
8239 {
8240 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8241 		return 0;
8242 	return __cond_resched();
8243 }
8244 EXPORT_SYMBOL(dynamic_cond_resched);
8245 
8246 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8247 int __sched dynamic_might_resched(void)
8248 {
8249 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8250 		return 0;
8251 	return __cond_resched();
8252 }
8253 EXPORT_SYMBOL(dynamic_might_resched);
8254 #endif
8255 #endif
8256 
8257 /*
8258  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8259  * call schedule, and on return reacquire the lock.
8260  *
8261  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8262  * operations here to prevent schedule() from being called twice (once via
8263  * spin_unlock(), once by hand).
8264  */
8265 int __cond_resched_lock(spinlock_t *lock)
8266 {
8267 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8268 	int ret = 0;
8269 
8270 	lockdep_assert_held(lock);
8271 
8272 	if (spin_needbreak(lock) || resched) {
8273 		spin_unlock(lock);
8274 		if (!_cond_resched())
8275 			cpu_relax();
8276 		ret = 1;
8277 		spin_lock(lock);
8278 	}
8279 	return ret;
8280 }
8281 EXPORT_SYMBOL(__cond_resched_lock);
8282 
8283 int __cond_resched_rwlock_read(rwlock_t *lock)
8284 {
8285 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8286 	int ret = 0;
8287 
8288 	lockdep_assert_held_read(lock);
8289 
8290 	if (rwlock_needbreak(lock) || resched) {
8291 		read_unlock(lock);
8292 		if (!_cond_resched())
8293 			cpu_relax();
8294 		ret = 1;
8295 		read_lock(lock);
8296 	}
8297 	return ret;
8298 }
8299 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8300 
8301 int __cond_resched_rwlock_write(rwlock_t *lock)
8302 {
8303 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8304 	int ret = 0;
8305 
8306 	lockdep_assert_held_write(lock);
8307 
8308 	if (rwlock_needbreak(lock) || resched) {
8309 		write_unlock(lock);
8310 		if (!_cond_resched())
8311 			cpu_relax();
8312 		ret = 1;
8313 		write_lock(lock);
8314 	}
8315 	return ret;
8316 }
8317 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8318 
8319 #ifdef CONFIG_PREEMPT_DYNAMIC
8320 
8321 #ifdef CONFIG_GENERIC_ENTRY
8322 #include <linux/entry-common.h>
8323 #endif
8324 
8325 /*
8326  * SC:cond_resched
8327  * SC:might_resched
8328  * SC:preempt_schedule
8329  * SC:preempt_schedule_notrace
8330  * SC:irqentry_exit_cond_resched
8331  *
8332  *
8333  * NONE:
8334  *   cond_resched               <- __cond_resched
8335  *   might_resched              <- RET0
8336  *   preempt_schedule           <- NOP
8337  *   preempt_schedule_notrace   <- NOP
8338  *   irqentry_exit_cond_resched <- NOP
8339  *
8340  * VOLUNTARY:
8341  *   cond_resched               <- __cond_resched
8342  *   might_resched              <- __cond_resched
8343  *   preempt_schedule           <- NOP
8344  *   preempt_schedule_notrace   <- NOP
8345  *   irqentry_exit_cond_resched <- NOP
8346  *
8347  * FULL:
8348  *   cond_resched               <- RET0
8349  *   might_resched              <- RET0
8350  *   preempt_schedule           <- preempt_schedule
8351  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8352  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8353  */
8354 
8355 enum {
8356 	preempt_dynamic_undefined = -1,
8357 	preempt_dynamic_none,
8358 	preempt_dynamic_voluntary,
8359 	preempt_dynamic_full,
8360 };
8361 
8362 int preempt_dynamic_mode = preempt_dynamic_undefined;
8363 
8364 int sched_dynamic_mode(const char *str)
8365 {
8366 	if (!strcmp(str, "none"))
8367 		return preempt_dynamic_none;
8368 
8369 	if (!strcmp(str, "voluntary"))
8370 		return preempt_dynamic_voluntary;
8371 
8372 	if (!strcmp(str, "full"))
8373 		return preempt_dynamic_full;
8374 
8375 	return -EINVAL;
8376 }
8377 
8378 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8379 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8380 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8381 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8382 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8383 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8384 #else
8385 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8386 #endif
8387 
8388 void sched_dynamic_update(int mode)
8389 {
8390 	/*
8391 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8392 	 * the ZERO state, which is invalid.
8393 	 */
8394 	preempt_dynamic_enable(cond_resched);
8395 	preempt_dynamic_enable(might_resched);
8396 	preempt_dynamic_enable(preempt_schedule);
8397 	preempt_dynamic_enable(preempt_schedule_notrace);
8398 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8399 
8400 	switch (mode) {
8401 	case preempt_dynamic_none:
8402 		preempt_dynamic_enable(cond_resched);
8403 		preempt_dynamic_disable(might_resched);
8404 		preempt_dynamic_disable(preempt_schedule);
8405 		preempt_dynamic_disable(preempt_schedule_notrace);
8406 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8407 		pr_info("Dynamic Preempt: none\n");
8408 		break;
8409 
8410 	case preempt_dynamic_voluntary:
8411 		preempt_dynamic_enable(cond_resched);
8412 		preempt_dynamic_enable(might_resched);
8413 		preempt_dynamic_disable(preempt_schedule);
8414 		preempt_dynamic_disable(preempt_schedule_notrace);
8415 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8416 		pr_info("Dynamic Preempt: voluntary\n");
8417 		break;
8418 
8419 	case preempt_dynamic_full:
8420 		preempt_dynamic_disable(cond_resched);
8421 		preempt_dynamic_disable(might_resched);
8422 		preempt_dynamic_enable(preempt_schedule);
8423 		preempt_dynamic_enable(preempt_schedule_notrace);
8424 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8425 		pr_info("Dynamic Preempt: full\n");
8426 		break;
8427 	}
8428 
8429 	preempt_dynamic_mode = mode;
8430 }
8431 
8432 static int __init setup_preempt_mode(char *str)
8433 {
8434 	int mode = sched_dynamic_mode(str);
8435 	if (mode < 0) {
8436 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8437 		return 0;
8438 	}
8439 
8440 	sched_dynamic_update(mode);
8441 	return 1;
8442 }
8443 __setup("preempt=", setup_preempt_mode);
8444 
8445 static void __init preempt_dynamic_init(void)
8446 {
8447 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8448 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8449 			sched_dynamic_update(preempt_dynamic_none);
8450 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8451 			sched_dynamic_update(preempt_dynamic_voluntary);
8452 		} else {
8453 			/* Default static call setting, nothing to do */
8454 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8455 			preempt_dynamic_mode = preempt_dynamic_full;
8456 			pr_info("Dynamic Preempt: full\n");
8457 		}
8458 	}
8459 }
8460 
8461 #define PREEMPT_MODEL_ACCESSOR(mode) \
8462 	bool preempt_model_##mode(void)						 \
8463 	{									 \
8464 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8465 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8466 	}									 \
8467 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8468 
8469 PREEMPT_MODEL_ACCESSOR(none);
8470 PREEMPT_MODEL_ACCESSOR(voluntary);
8471 PREEMPT_MODEL_ACCESSOR(full);
8472 
8473 #else /* !CONFIG_PREEMPT_DYNAMIC */
8474 
8475 static inline void preempt_dynamic_init(void) { }
8476 
8477 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8478 
8479 /**
8480  * yield - yield the current processor to other threads.
8481  *
8482  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8483  *
8484  * The scheduler is at all times free to pick the calling task as the most
8485  * eligible task to run, if removing the yield() call from your code breaks
8486  * it, it's already broken.
8487  *
8488  * Typical broken usage is:
8489  *
8490  * while (!event)
8491  *	yield();
8492  *
8493  * where one assumes that yield() will let 'the other' process run that will
8494  * make event true. If the current task is a SCHED_FIFO task that will never
8495  * happen. Never use yield() as a progress guarantee!!
8496  *
8497  * If you want to use yield() to wait for something, use wait_event().
8498  * If you want to use yield() to be 'nice' for others, use cond_resched().
8499  * If you still want to use yield(), do not!
8500  */
8501 void __sched yield(void)
8502 {
8503 	set_current_state(TASK_RUNNING);
8504 	do_sched_yield();
8505 }
8506 EXPORT_SYMBOL(yield);
8507 
8508 /**
8509  * yield_to - yield the current processor to another thread in
8510  * your thread group, or accelerate that thread toward the
8511  * processor it's on.
8512  * @p: target task
8513  * @preempt: whether task preemption is allowed or not
8514  *
8515  * It's the caller's job to ensure that the target task struct
8516  * can't go away on us before we can do any checks.
8517  *
8518  * Return:
8519  *	true (>0) if we indeed boosted the target task.
8520  *	false (0) if we failed to boost the target.
8521  *	-ESRCH if there's no task to yield to.
8522  */
8523 int __sched yield_to(struct task_struct *p, bool preempt)
8524 {
8525 	struct task_struct *curr = current;
8526 	struct rq *rq, *p_rq;
8527 	unsigned long flags;
8528 	int yielded = 0;
8529 
8530 	local_irq_save(flags);
8531 	rq = this_rq();
8532 
8533 again:
8534 	p_rq = task_rq(p);
8535 	/*
8536 	 * If we're the only runnable task on the rq and target rq also
8537 	 * has only one task, there's absolutely no point in yielding.
8538 	 */
8539 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8540 		yielded = -ESRCH;
8541 		goto out_irq;
8542 	}
8543 
8544 	double_rq_lock(rq, p_rq);
8545 	if (task_rq(p) != p_rq) {
8546 		double_rq_unlock(rq, p_rq);
8547 		goto again;
8548 	}
8549 
8550 	if (!curr->sched_class->yield_to_task)
8551 		goto out_unlock;
8552 
8553 	if (curr->sched_class != p->sched_class)
8554 		goto out_unlock;
8555 
8556 	if (task_running(p_rq, p) || !task_is_running(p))
8557 		goto out_unlock;
8558 
8559 	yielded = curr->sched_class->yield_to_task(rq, p);
8560 	if (yielded) {
8561 		schedstat_inc(rq->yld_count);
8562 		/*
8563 		 * Make p's CPU reschedule; pick_next_entity takes care of
8564 		 * fairness.
8565 		 */
8566 		if (preempt && rq != p_rq)
8567 			resched_curr(p_rq);
8568 	}
8569 
8570 out_unlock:
8571 	double_rq_unlock(rq, p_rq);
8572 out_irq:
8573 	local_irq_restore(flags);
8574 
8575 	if (yielded > 0)
8576 		schedule();
8577 
8578 	return yielded;
8579 }
8580 EXPORT_SYMBOL_GPL(yield_to);
8581 
8582 int io_schedule_prepare(void)
8583 {
8584 	int old_iowait = current->in_iowait;
8585 
8586 	current->in_iowait = 1;
8587 	blk_flush_plug(current->plug, true);
8588 	return old_iowait;
8589 }
8590 
8591 void io_schedule_finish(int token)
8592 {
8593 	current->in_iowait = token;
8594 }
8595 
8596 /*
8597  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8598  * that process accounting knows that this is a task in IO wait state.
8599  */
8600 long __sched io_schedule_timeout(long timeout)
8601 {
8602 	int token;
8603 	long ret;
8604 
8605 	token = io_schedule_prepare();
8606 	ret = schedule_timeout(timeout);
8607 	io_schedule_finish(token);
8608 
8609 	return ret;
8610 }
8611 EXPORT_SYMBOL(io_schedule_timeout);
8612 
8613 void __sched io_schedule(void)
8614 {
8615 	int token;
8616 
8617 	token = io_schedule_prepare();
8618 	schedule();
8619 	io_schedule_finish(token);
8620 }
8621 EXPORT_SYMBOL(io_schedule);
8622 
8623 /**
8624  * sys_sched_get_priority_max - return maximum RT priority.
8625  * @policy: scheduling class.
8626  *
8627  * Return: On success, this syscall returns the maximum
8628  * rt_priority that can be used by a given scheduling class.
8629  * On failure, a negative error code is returned.
8630  */
8631 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8632 {
8633 	int ret = -EINVAL;
8634 
8635 	switch (policy) {
8636 	case SCHED_FIFO:
8637 	case SCHED_RR:
8638 		ret = MAX_RT_PRIO-1;
8639 		break;
8640 	case SCHED_DEADLINE:
8641 	case SCHED_NORMAL:
8642 	case SCHED_BATCH:
8643 	case SCHED_IDLE:
8644 		ret = 0;
8645 		break;
8646 	}
8647 	return ret;
8648 }
8649 
8650 /**
8651  * sys_sched_get_priority_min - return minimum RT priority.
8652  * @policy: scheduling class.
8653  *
8654  * Return: On success, this syscall returns the minimum
8655  * rt_priority that can be used by a given scheduling class.
8656  * On failure, a negative error code is returned.
8657  */
8658 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8659 {
8660 	int ret = -EINVAL;
8661 
8662 	switch (policy) {
8663 	case SCHED_FIFO:
8664 	case SCHED_RR:
8665 		ret = 1;
8666 		break;
8667 	case SCHED_DEADLINE:
8668 	case SCHED_NORMAL:
8669 	case SCHED_BATCH:
8670 	case SCHED_IDLE:
8671 		ret = 0;
8672 	}
8673 	return ret;
8674 }
8675 
8676 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8677 {
8678 	struct task_struct *p;
8679 	unsigned int time_slice;
8680 	struct rq_flags rf;
8681 	struct rq *rq;
8682 	int retval;
8683 
8684 	if (pid < 0)
8685 		return -EINVAL;
8686 
8687 	retval = -ESRCH;
8688 	rcu_read_lock();
8689 	p = find_process_by_pid(pid);
8690 	if (!p)
8691 		goto out_unlock;
8692 
8693 	retval = security_task_getscheduler(p);
8694 	if (retval)
8695 		goto out_unlock;
8696 
8697 	rq = task_rq_lock(p, &rf);
8698 	time_slice = 0;
8699 	if (p->sched_class->get_rr_interval)
8700 		time_slice = p->sched_class->get_rr_interval(rq, p);
8701 	task_rq_unlock(rq, p, &rf);
8702 
8703 	rcu_read_unlock();
8704 	jiffies_to_timespec64(time_slice, t);
8705 	return 0;
8706 
8707 out_unlock:
8708 	rcu_read_unlock();
8709 	return retval;
8710 }
8711 
8712 /**
8713  * sys_sched_rr_get_interval - return the default timeslice of a process.
8714  * @pid: pid of the process.
8715  * @interval: userspace pointer to the timeslice value.
8716  *
8717  * this syscall writes the default timeslice value of a given process
8718  * into the user-space timespec buffer. A value of '0' means infinity.
8719  *
8720  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8721  * an error code.
8722  */
8723 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8724 		struct __kernel_timespec __user *, interval)
8725 {
8726 	struct timespec64 t;
8727 	int retval = sched_rr_get_interval(pid, &t);
8728 
8729 	if (retval == 0)
8730 		retval = put_timespec64(&t, interval);
8731 
8732 	return retval;
8733 }
8734 
8735 #ifdef CONFIG_COMPAT_32BIT_TIME
8736 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8737 		struct old_timespec32 __user *, interval)
8738 {
8739 	struct timespec64 t;
8740 	int retval = sched_rr_get_interval(pid, &t);
8741 
8742 	if (retval == 0)
8743 		retval = put_old_timespec32(&t, interval);
8744 	return retval;
8745 }
8746 #endif
8747 
8748 void sched_show_task(struct task_struct *p)
8749 {
8750 	unsigned long free = 0;
8751 	int ppid;
8752 
8753 	if (!try_get_task_stack(p))
8754 		return;
8755 
8756 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8757 
8758 	if (task_is_running(p))
8759 		pr_cont("  running task    ");
8760 #ifdef CONFIG_DEBUG_STACK_USAGE
8761 	free = stack_not_used(p);
8762 #endif
8763 	ppid = 0;
8764 	rcu_read_lock();
8765 	if (pid_alive(p))
8766 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8767 	rcu_read_unlock();
8768 	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8769 		free, task_pid_nr(p), ppid,
8770 		read_task_thread_flags(p));
8771 
8772 	print_worker_info(KERN_INFO, p);
8773 	print_stop_info(KERN_INFO, p);
8774 	show_stack(p, NULL, KERN_INFO);
8775 	put_task_stack(p);
8776 }
8777 EXPORT_SYMBOL_GPL(sched_show_task);
8778 
8779 static inline bool
8780 state_filter_match(unsigned long state_filter, struct task_struct *p)
8781 {
8782 	unsigned int state = READ_ONCE(p->__state);
8783 
8784 	/* no filter, everything matches */
8785 	if (!state_filter)
8786 		return true;
8787 
8788 	/* filter, but doesn't match */
8789 	if (!(state & state_filter))
8790 		return false;
8791 
8792 	/*
8793 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8794 	 * TASK_KILLABLE).
8795 	 */
8796 	if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8797 		return false;
8798 
8799 	return true;
8800 }
8801 
8802 
8803 void show_state_filter(unsigned int state_filter)
8804 {
8805 	struct task_struct *g, *p;
8806 
8807 	rcu_read_lock();
8808 	for_each_process_thread(g, p) {
8809 		/*
8810 		 * reset the NMI-timeout, listing all files on a slow
8811 		 * console might take a lot of time:
8812 		 * Also, reset softlockup watchdogs on all CPUs, because
8813 		 * another CPU might be blocked waiting for us to process
8814 		 * an IPI.
8815 		 */
8816 		touch_nmi_watchdog();
8817 		touch_all_softlockup_watchdogs();
8818 		if (state_filter_match(state_filter, p))
8819 			sched_show_task(p);
8820 	}
8821 
8822 #ifdef CONFIG_SCHED_DEBUG
8823 	if (!state_filter)
8824 		sysrq_sched_debug_show();
8825 #endif
8826 	rcu_read_unlock();
8827 	/*
8828 	 * Only show locks if all tasks are dumped:
8829 	 */
8830 	if (!state_filter)
8831 		debug_show_all_locks();
8832 }
8833 
8834 /**
8835  * init_idle - set up an idle thread for a given CPU
8836  * @idle: task in question
8837  * @cpu: CPU the idle task belongs to
8838  *
8839  * NOTE: this function does not set the idle thread's NEED_RESCHED
8840  * flag, to make booting more robust.
8841  */
8842 void __init init_idle(struct task_struct *idle, int cpu)
8843 {
8844 	struct rq *rq = cpu_rq(cpu);
8845 	unsigned long flags;
8846 
8847 	__sched_fork(0, idle);
8848 
8849 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8850 	raw_spin_rq_lock(rq);
8851 
8852 	idle->__state = TASK_RUNNING;
8853 	idle->se.exec_start = sched_clock();
8854 	/*
8855 	 * PF_KTHREAD should already be set at this point; regardless, make it
8856 	 * look like a proper per-CPU kthread.
8857 	 */
8858 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8859 	kthread_set_per_cpu(idle, cpu);
8860 
8861 #ifdef CONFIG_SMP
8862 	/*
8863 	 * It's possible that init_idle() gets called multiple times on a task,
8864 	 * in that case do_set_cpus_allowed() will not do the right thing.
8865 	 *
8866 	 * And since this is boot we can forgo the serialization.
8867 	 */
8868 	set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8869 #endif
8870 	/*
8871 	 * We're having a chicken and egg problem, even though we are
8872 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8873 	 * lockdep check in task_group() will fail.
8874 	 *
8875 	 * Similar case to sched_fork(). / Alternatively we could
8876 	 * use task_rq_lock() here and obtain the other rq->lock.
8877 	 *
8878 	 * Silence PROVE_RCU
8879 	 */
8880 	rcu_read_lock();
8881 	__set_task_cpu(idle, cpu);
8882 	rcu_read_unlock();
8883 
8884 	rq->idle = idle;
8885 	rcu_assign_pointer(rq->curr, idle);
8886 	idle->on_rq = TASK_ON_RQ_QUEUED;
8887 #ifdef CONFIG_SMP
8888 	idle->on_cpu = 1;
8889 #endif
8890 	raw_spin_rq_unlock(rq);
8891 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8892 
8893 	/* Set the preempt count _outside_ the spinlocks! */
8894 	init_idle_preempt_count(idle, cpu);
8895 
8896 	/*
8897 	 * The idle tasks have their own, simple scheduling class:
8898 	 */
8899 	idle->sched_class = &idle_sched_class;
8900 	ftrace_graph_init_idle_task(idle, cpu);
8901 	vtime_init_idle(idle, cpu);
8902 #ifdef CONFIG_SMP
8903 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8904 #endif
8905 }
8906 
8907 #ifdef CONFIG_SMP
8908 
8909 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8910 			      const struct cpumask *trial)
8911 {
8912 	int ret = 1;
8913 
8914 	if (cpumask_empty(cur))
8915 		return ret;
8916 
8917 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8918 
8919 	return ret;
8920 }
8921 
8922 int task_can_attach(struct task_struct *p,
8923 		    const struct cpumask *cs_cpus_allowed)
8924 {
8925 	int ret = 0;
8926 
8927 	/*
8928 	 * Kthreads which disallow setaffinity shouldn't be moved
8929 	 * to a new cpuset; we don't want to change their CPU
8930 	 * affinity and isolating such threads by their set of
8931 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8932 	 * applicable for such threads.  This prevents checking for
8933 	 * success of set_cpus_allowed_ptr() on all attached tasks
8934 	 * before cpus_mask may be changed.
8935 	 */
8936 	if (p->flags & PF_NO_SETAFFINITY) {
8937 		ret = -EINVAL;
8938 		goto out;
8939 	}
8940 
8941 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8942 					      cs_cpus_allowed)) {
8943 		int cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
8944 
8945 		ret = dl_cpu_busy(cpu, p);
8946 	}
8947 
8948 out:
8949 	return ret;
8950 }
8951 
8952 bool sched_smp_initialized __read_mostly;
8953 
8954 #ifdef CONFIG_NUMA_BALANCING
8955 /* Migrate current task p to target_cpu */
8956 int migrate_task_to(struct task_struct *p, int target_cpu)
8957 {
8958 	struct migration_arg arg = { p, target_cpu };
8959 	int curr_cpu = task_cpu(p);
8960 
8961 	if (curr_cpu == target_cpu)
8962 		return 0;
8963 
8964 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8965 		return -EINVAL;
8966 
8967 	/* TODO: This is not properly updating schedstats */
8968 
8969 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8970 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8971 }
8972 
8973 /*
8974  * Requeue a task on a given node and accurately track the number of NUMA
8975  * tasks on the runqueues
8976  */
8977 void sched_setnuma(struct task_struct *p, int nid)
8978 {
8979 	bool queued, running;
8980 	struct rq_flags rf;
8981 	struct rq *rq;
8982 
8983 	rq = task_rq_lock(p, &rf);
8984 	queued = task_on_rq_queued(p);
8985 	running = task_current(rq, p);
8986 
8987 	if (queued)
8988 		dequeue_task(rq, p, DEQUEUE_SAVE);
8989 	if (running)
8990 		put_prev_task(rq, p);
8991 
8992 	p->numa_preferred_nid = nid;
8993 
8994 	if (queued)
8995 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8996 	if (running)
8997 		set_next_task(rq, p);
8998 	task_rq_unlock(rq, p, &rf);
8999 }
9000 #endif /* CONFIG_NUMA_BALANCING */
9001 
9002 #ifdef CONFIG_HOTPLUG_CPU
9003 /*
9004  * Ensure that the idle task is using init_mm right before its CPU goes
9005  * offline.
9006  */
9007 void idle_task_exit(void)
9008 {
9009 	struct mm_struct *mm = current->active_mm;
9010 
9011 	BUG_ON(cpu_online(smp_processor_id()));
9012 	BUG_ON(current != this_rq()->idle);
9013 
9014 	if (mm != &init_mm) {
9015 		switch_mm(mm, &init_mm, current);
9016 		finish_arch_post_lock_switch();
9017 	}
9018 
9019 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9020 }
9021 
9022 static int __balance_push_cpu_stop(void *arg)
9023 {
9024 	struct task_struct *p = arg;
9025 	struct rq *rq = this_rq();
9026 	struct rq_flags rf;
9027 	int cpu;
9028 
9029 	raw_spin_lock_irq(&p->pi_lock);
9030 	rq_lock(rq, &rf);
9031 
9032 	update_rq_clock(rq);
9033 
9034 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9035 		cpu = select_fallback_rq(rq->cpu, p);
9036 		rq = __migrate_task(rq, &rf, p, cpu);
9037 	}
9038 
9039 	rq_unlock(rq, &rf);
9040 	raw_spin_unlock_irq(&p->pi_lock);
9041 
9042 	put_task_struct(p);
9043 
9044 	return 0;
9045 }
9046 
9047 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9048 
9049 /*
9050  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9051  *
9052  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9053  * effective when the hotplug motion is down.
9054  */
9055 static void balance_push(struct rq *rq)
9056 {
9057 	struct task_struct *push_task = rq->curr;
9058 
9059 	lockdep_assert_rq_held(rq);
9060 
9061 	/*
9062 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9063 	 */
9064 	rq->balance_callback = &balance_push_callback;
9065 
9066 	/*
9067 	 * Only active while going offline and when invoked on the outgoing
9068 	 * CPU.
9069 	 */
9070 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9071 		return;
9072 
9073 	/*
9074 	 * Both the cpu-hotplug and stop task are in this case and are
9075 	 * required to complete the hotplug process.
9076 	 */
9077 	if (kthread_is_per_cpu(push_task) ||
9078 	    is_migration_disabled(push_task)) {
9079 
9080 		/*
9081 		 * If this is the idle task on the outgoing CPU try to wake
9082 		 * up the hotplug control thread which might wait for the
9083 		 * last task to vanish. The rcuwait_active() check is
9084 		 * accurate here because the waiter is pinned on this CPU
9085 		 * and can't obviously be running in parallel.
9086 		 *
9087 		 * On RT kernels this also has to check whether there are
9088 		 * pinned and scheduled out tasks on the runqueue. They
9089 		 * need to leave the migrate disabled section first.
9090 		 */
9091 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9092 		    rcuwait_active(&rq->hotplug_wait)) {
9093 			raw_spin_rq_unlock(rq);
9094 			rcuwait_wake_up(&rq->hotplug_wait);
9095 			raw_spin_rq_lock(rq);
9096 		}
9097 		return;
9098 	}
9099 
9100 	get_task_struct(push_task);
9101 	/*
9102 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9103 	 * Both preemption and IRQs are still disabled.
9104 	 */
9105 	raw_spin_rq_unlock(rq);
9106 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9107 			    this_cpu_ptr(&push_work));
9108 	/*
9109 	 * At this point need_resched() is true and we'll take the loop in
9110 	 * schedule(). The next pick is obviously going to be the stop task
9111 	 * which kthread_is_per_cpu() and will push this task away.
9112 	 */
9113 	raw_spin_rq_lock(rq);
9114 }
9115 
9116 static void balance_push_set(int cpu, bool on)
9117 {
9118 	struct rq *rq = cpu_rq(cpu);
9119 	struct rq_flags rf;
9120 
9121 	rq_lock_irqsave(rq, &rf);
9122 	if (on) {
9123 		WARN_ON_ONCE(rq->balance_callback);
9124 		rq->balance_callback = &balance_push_callback;
9125 	} else if (rq->balance_callback == &balance_push_callback) {
9126 		rq->balance_callback = NULL;
9127 	}
9128 	rq_unlock_irqrestore(rq, &rf);
9129 }
9130 
9131 /*
9132  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9133  * inactive. All tasks which are not per CPU kernel threads are either
9134  * pushed off this CPU now via balance_push() or placed on a different CPU
9135  * during wakeup. Wait until the CPU is quiescent.
9136  */
9137 static void balance_hotplug_wait(void)
9138 {
9139 	struct rq *rq = this_rq();
9140 
9141 	rcuwait_wait_event(&rq->hotplug_wait,
9142 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9143 			   TASK_UNINTERRUPTIBLE);
9144 }
9145 
9146 #else
9147 
9148 static inline void balance_push(struct rq *rq)
9149 {
9150 }
9151 
9152 static inline void balance_push_set(int cpu, bool on)
9153 {
9154 }
9155 
9156 static inline void balance_hotplug_wait(void)
9157 {
9158 }
9159 
9160 #endif /* CONFIG_HOTPLUG_CPU */
9161 
9162 void set_rq_online(struct rq *rq)
9163 {
9164 	if (!rq->online) {
9165 		const struct sched_class *class;
9166 
9167 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9168 		rq->online = 1;
9169 
9170 		for_each_class(class) {
9171 			if (class->rq_online)
9172 				class->rq_online(rq);
9173 		}
9174 	}
9175 }
9176 
9177 void set_rq_offline(struct rq *rq)
9178 {
9179 	if (rq->online) {
9180 		const struct sched_class *class;
9181 
9182 		for_each_class(class) {
9183 			if (class->rq_offline)
9184 				class->rq_offline(rq);
9185 		}
9186 
9187 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9188 		rq->online = 0;
9189 	}
9190 }
9191 
9192 /*
9193  * used to mark begin/end of suspend/resume:
9194  */
9195 static int num_cpus_frozen;
9196 
9197 /*
9198  * Update cpusets according to cpu_active mask.  If cpusets are
9199  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9200  * around partition_sched_domains().
9201  *
9202  * If we come here as part of a suspend/resume, don't touch cpusets because we
9203  * want to restore it back to its original state upon resume anyway.
9204  */
9205 static void cpuset_cpu_active(void)
9206 {
9207 	if (cpuhp_tasks_frozen) {
9208 		/*
9209 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9210 		 * resume sequence. As long as this is not the last online
9211 		 * operation in the resume sequence, just build a single sched
9212 		 * domain, ignoring cpusets.
9213 		 */
9214 		partition_sched_domains(1, NULL, NULL);
9215 		if (--num_cpus_frozen)
9216 			return;
9217 		/*
9218 		 * This is the last CPU online operation. So fall through and
9219 		 * restore the original sched domains by considering the
9220 		 * cpuset configurations.
9221 		 */
9222 		cpuset_force_rebuild();
9223 	}
9224 	cpuset_update_active_cpus();
9225 }
9226 
9227 static int cpuset_cpu_inactive(unsigned int cpu)
9228 {
9229 	if (!cpuhp_tasks_frozen) {
9230 		int ret = dl_cpu_busy(cpu, NULL);
9231 
9232 		if (ret)
9233 			return ret;
9234 		cpuset_update_active_cpus();
9235 	} else {
9236 		num_cpus_frozen++;
9237 		partition_sched_domains(1, NULL, NULL);
9238 	}
9239 	return 0;
9240 }
9241 
9242 int sched_cpu_activate(unsigned int cpu)
9243 {
9244 	struct rq *rq = cpu_rq(cpu);
9245 	struct rq_flags rf;
9246 
9247 	/*
9248 	 * Clear the balance_push callback and prepare to schedule
9249 	 * regular tasks.
9250 	 */
9251 	balance_push_set(cpu, false);
9252 
9253 #ifdef CONFIG_SCHED_SMT
9254 	/*
9255 	 * When going up, increment the number of cores with SMT present.
9256 	 */
9257 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9258 		static_branch_inc_cpuslocked(&sched_smt_present);
9259 #endif
9260 	set_cpu_active(cpu, true);
9261 
9262 	if (sched_smp_initialized) {
9263 		sched_update_numa(cpu, true);
9264 		sched_domains_numa_masks_set(cpu);
9265 		cpuset_cpu_active();
9266 	}
9267 
9268 	/*
9269 	 * Put the rq online, if not already. This happens:
9270 	 *
9271 	 * 1) In the early boot process, because we build the real domains
9272 	 *    after all CPUs have been brought up.
9273 	 *
9274 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9275 	 *    domains.
9276 	 */
9277 	rq_lock_irqsave(rq, &rf);
9278 	if (rq->rd) {
9279 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9280 		set_rq_online(rq);
9281 	}
9282 	rq_unlock_irqrestore(rq, &rf);
9283 
9284 	return 0;
9285 }
9286 
9287 int sched_cpu_deactivate(unsigned int cpu)
9288 {
9289 	struct rq *rq = cpu_rq(cpu);
9290 	struct rq_flags rf;
9291 	int ret;
9292 
9293 	/*
9294 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9295 	 * load balancing when not active
9296 	 */
9297 	nohz_balance_exit_idle(rq);
9298 
9299 	set_cpu_active(cpu, false);
9300 
9301 	/*
9302 	 * From this point forward, this CPU will refuse to run any task that
9303 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9304 	 * push those tasks away until this gets cleared, see
9305 	 * sched_cpu_dying().
9306 	 */
9307 	balance_push_set(cpu, true);
9308 
9309 	/*
9310 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9311 	 * preempt-disabled and RCU users of this state to go away such that
9312 	 * all new such users will observe it.
9313 	 *
9314 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9315 	 * ttwu_queue_cond() and is_cpu_allowed().
9316 	 *
9317 	 * Do sync before park smpboot threads to take care the rcu boost case.
9318 	 */
9319 	synchronize_rcu();
9320 
9321 	rq_lock_irqsave(rq, &rf);
9322 	if (rq->rd) {
9323 		update_rq_clock(rq);
9324 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9325 		set_rq_offline(rq);
9326 	}
9327 	rq_unlock_irqrestore(rq, &rf);
9328 
9329 #ifdef CONFIG_SCHED_SMT
9330 	/*
9331 	 * When going down, decrement the number of cores with SMT present.
9332 	 */
9333 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9334 		static_branch_dec_cpuslocked(&sched_smt_present);
9335 
9336 	sched_core_cpu_deactivate(cpu);
9337 #endif
9338 
9339 	if (!sched_smp_initialized)
9340 		return 0;
9341 
9342 	sched_update_numa(cpu, false);
9343 	ret = cpuset_cpu_inactive(cpu);
9344 	if (ret) {
9345 		balance_push_set(cpu, false);
9346 		set_cpu_active(cpu, true);
9347 		sched_update_numa(cpu, true);
9348 		return ret;
9349 	}
9350 	sched_domains_numa_masks_clear(cpu);
9351 	return 0;
9352 }
9353 
9354 static void sched_rq_cpu_starting(unsigned int cpu)
9355 {
9356 	struct rq *rq = cpu_rq(cpu);
9357 
9358 	rq->calc_load_update = calc_load_update;
9359 	update_max_interval();
9360 }
9361 
9362 int sched_cpu_starting(unsigned int cpu)
9363 {
9364 	sched_core_cpu_starting(cpu);
9365 	sched_rq_cpu_starting(cpu);
9366 	sched_tick_start(cpu);
9367 	return 0;
9368 }
9369 
9370 #ifdef CONFIG_HOTPLUG_CPU
9371 
9372 /*
9373  * Invoked immediately before the stopper thread is invoked to bring the
9374  * CPU down completely. At this point all per CPU kthreads except the
9375  * hotplug thread (current) and the stopper thread (inactive) have been
9376  * either parked or have been unbound from the outgoing CPU. Ensure that
9377  * any of those which might be on the way out are gone.
9378  *
9379  * If after this point a bound task is being woken on this CPU then the
9380  * responsible hotplug callback has failed to do it's job.
9381  * sched_cpu_dying() will catch it with the appropriate fireworks.
9382  */
9383 int sched_cpu_wait_empty(unsigned int cpu)
9384 {
9385 	balance_hotplug_wait();
9386 	return 0;
9387 }
9388 
9389 /*
9390  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9391  * might have. Called from the CPU stopper task after ensuring that the
9392  * stopper is the last running task on the CPU, so nr_active count is
9393  * stable. We need to take the teardown thread which is calling this into
9394  * account, so we hand in adjust = 1 to the load calculation.
9395  *
9396  * Also see the comment "Global load-average calculations".
9397  */
9398 static void calc_load_migrate(struct rq *rq)
9399 {
9400 	long delta = calc_load_fold_active(rq, 1);
9401 
9402 	if (delta)
9403 		atomic_long_add(delta, &calc_load_tasks);
9404 }
9405 
9406 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9407 {
9408 	struct task_struct *g, *p;
9409 	int cpu = cpu_of(rq);
9410 
9411 	lockdep_assert_rq_held(rq);
9412 
9413 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9414 	for_each_process_thread(g, p) {
9415 		if (task_cpu(p) != cpu)
9416 			continue;
9417 
9418 		if (!task_on_rq_queued(p))
9419 			continue;
9420 
9421 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9422 	}
9423 }
9424 
9425 int sched_cpu_dying(unsigned int cpu)
9426 {
9427 	struct rq *rq = cpu_rq(cpu);
9428 	struct rq_flags rf;
9429 
9430 	/* Handle pending wakeups and then migrate everything off */
9431 	sched_tick_stop(cpu);
9432 
9433 	rq_lock_irqsave(rq, &rf);
9434 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9435 		WARN(true, "Dying CPU not properly vacated!");
9436 		dump_rq_tasks(rq, KERN_WARNING);
9437 	}
9438 	rq_unlock_irqrestore(rq, &rf);
9439 
9440 	calc_load_migrate(rq);
9441 	update_max_interval();
9442 	hrtick_clear(rq);
9443 	sched_core_cpu_dying(cpu);
9444 	return 0;
9445 }
9446 #endif
9447 
9448 void __init sched_init_smp(void)
9449 {
9450 	sched_init_numa(NUMA_NO_NODE);
9451 
9452 	/*
9453 	 * There's no userspace yet to cause hotplug operations; hence all the
9454 	 * CPU masks are stable and all blatant races in the below code cannot
9455 	 * happen.
9456 	 */
9457 	mutex_lock(&sched_domains_mutex);
9458 	sched_init_domains(cpu_active_mask);
9459 	mutex_unlock(&sched_domains_mutex);
9460 
9461 	/* Move init over to a non-isolated CPU */
9462 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9463 		BUG();
9464 	current->flags &= ~PF_NO_SETAFFINITY;
9465 	sched_init_granularity();
9466 
9467 	init_sched_rt_class();
9468 	init_sched_dl_class();
9469 
9470 	sched_smp_initialized = true;
9471 }
9472 
9473 static int __init migration_init(void)
9474 {
9475 	sched_cpu_starting(smp_processor_id());
9476 	return 0;
9477 }
9478 early_initcall(migration_init);
9479 
9480 #else
9481 void __init sched_init_smp(void)
9482 {
9483 	sched_init_granularity();
9484 }
9485 #endif /* CONFIG_SMP */
9486 
9487 int in_sched_functions(unsigned long addr)
9488 {
9489 	return in_lock_functions(addr) ||
9490 		(addr >= (unsigned long)__sched_text_start
9491 		&& addr < (unsigned long)__sched_text_end);
9492 }
9493 
9494 #ifdef CONFIG_CGROUP_SCHED
9495 /*
9496  * Default task group.
9497  * Every task in system belongs to this group at bootup.
9498  */
9499 struct task_group root_task_group;
9500 LIST_HEAD(task_groups);
9501 
9502 /* Cacheline aligned slab cache for task_group */
9503 static struct kmem_cache *task_group_cache __read_mostly;
9504 #endif
9505 
9506 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9507 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9508 
9509 void __init sched_init(void)
9510 {
9511 	unsigned long ptr = 0;
9512 	int i;
9513 
9514 	/* Make sure the linker didn't screw up */
9515 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9516 	       &fair_sched_class != &rt_sched_class + 1 ||
9517 	       &rt_sched_class   != &dl_sched_class + 1);
9518 #ifdef CONFIG_SMP
9519 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9520 #endif
9521 
9522 	wait_bit_init();
9523 
9524 #ifdef CONFIG_FAIR_GROUP_SCHED
9525 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9526 #endif
9527 #ifdef CONFIG_RT_GROUP_SCHED
9528 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9529 #endif
9530 	if (ptr) {
9531 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9532 
9533 #ifdef CONFIG_FAIR_GROUP_SCHED
9534 		root_task_group.se = (struct sched_entity **)ptr;
9535 		ptr += nr_cpu_ids * sizeof(void **);
9536 
9537 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9538 		ptr += nr_cpu_ids * sizeof(void **);
9539 
9540 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9541 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9542 #endif /* CONFIG_FAIR_GROUP_SCHED */
9543 #ifdef CONFIG_RT_GROUP_SCHED
9544 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9545 		ptr += nr_cpu_ids * sizeof(void **);
9546 
9547 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9548 		ptr += nr_cpu_ids * sizeof(void **);
9549 
9550 #endif /* CONFIG_RT_GROUP_SCHED */
9551 	}
9552 #ifdef CONFIG_CPUMASK_OFFSTACK
9553 	for_each_possible_cpu(i) {
9554 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9555 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9556 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9557 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9558 	}
9559 #endif /* CONFIG_CPUMASK_OFFSTACK */
9560 
9561 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9562 
9563 #ifdef CONFIG_SMP
9564 	init_defrootdomain();
9565 #endif
9566 
9567 #ifdef CONFIG_RT_GROUP_SCHED
9568 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9569 			global_rt_period(), global_rt_runtime());
9570 #endif /* CONFIG_RT_GROUP_SCHED */
9571 
9572 #ifdef CONFIG_CGROUP_SCHED
9573 	task_group_cache = KMEM_CACHE(task_group, 0);
9574 
9575 	list_add(&root_task_group.list, &task_groups);
9576 	INIT_LIST_HEAD(&root_task_group.children);
9577 	INIT_LIST_HEAD(&root_task_group.siblings);
9578 	autogroup_init(&init_task);
9579 #endif /* CONFIG_CGROUP_SCHED */
9580 
9581 	for_each_possible_cpu(i) {
9582 		struct rq *rq;
9583 
9584 		rq = cpu_rq(i);
9585 		raw_spin_lock_init(&rq->__lock);
9586 		rq->nr_running = 0;
9587 		rq->calc_load_active = 0;
9588 		rq->calc_load_update = jiffies + LOAD_FREQ;
9589 		init_cfs_rq(&rq->cfs);
9590 		init_rt_rq(&rq->rt);
9591 		init_dl_rq(&rq->dl);
9592 #ifdef CONFIG_FAIR_GROUP_SCHED
9593 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9594 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9595 		/*
9596 		 * How much CPU bandwidth does root_task_group get?
9597 		 *
9598 		 * In case of task-groups formed thr' the cgroup filesystem, it
9599 		 * gets 100% of the CPU resources in the system. This overall
9600 		 * system CPU resource is divided among the tasks of
9601 		 * root_task_group and its child task-groups in a fair manner,
9602 		 * based on each entity's (task or task-group's) weight
9603 		 * (se->load.weight).
9604 		 *
9605 		 * In other words, if root_task_group has 10 tasks of weight
9606 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9607 		 * then A0's share of the CPU resource is:
9608 		 *
9609 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9610 		 *
9611 		 * We achieve this by letting root_task_group's tasks sit
9612 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9613 		 */
9614 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9615 #endif /* CONFIG_FAIR_GROUP_SCHED */
9616 
9617 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9618 #ifdef CONFIG_RT_GROUP_SCHED
9619 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9620 #endif
9621 #ifdef CONFIG_SMP
9622 		rq->sd = NULL;
9623 		rq->rd = NULL;
9624 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9625 		rq->balance_callback = &balance_push_callback;
9626 		rq->active_balance = 0;
9627 		rq->next_balance = jiffies;
9628 		rq->push_cpu = 0;
9629 		rq->cpu = i;
9630 		rq->online = 0;
9631 		rq->idle_stamp = 0;
9632 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9633 		rq->wake_stamp = jiffies;
9634 		rq->wake_avg_idle = rq->avg_idle;
9635 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9636 
9637 		INIT_LIST_HEAD(&rq->cfs_tasks);
9638 
9639 		rq_attach_root(rq, &def_root_domain);
9640 #ifdef CONFIG_NO_HZ_COMMON
9641 		rq->last_blocked_load_update_tick = jiffies;
9642 		atomic_set(&rq->nohz_flags, 0);
9643 
9644 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9645 #endif
9646 #ifdef CONFIG_HOTPLUG_CPU
9647 		rcuwait_init(&rq->hotplug_wait);
9648 #endif
9649 #endif /* CONFIG_SMP */
9650 		hrtick_rq_init(rq);
9651 		atomic_set(&rq->nr_iowait, 0);
9652 
9653 #ifdef CONFIG_SCHED_CORE
9654 		rq->core = rq;
9655 		rq->core_pick = NULL;
9656 		rq->core_enabled = 0;
9657 		rq->core_tree = RB_ROOT;
9658 		rq->core_forceidle_count = 0;
9659 		rq->core_forceidle_occupation = 0;
9660 		rq->core_forceidle_start = 0;
9661 
9662 		rq->core_cookie = 0UL;
9663 #endif
9664 	}
9665 
9666 	set_load_weight(&init_task, false);
9667 
9668 	/*
9669 	 * The boot idle thread does lazy MMU switching as well:
9670 	 */
9671 	mmgrab(&init_mm);
9672 	enter_lazy_tlb(&init_mm, current);
9673 
9674 	/*
9675 	 * The idle task doesn't need the kthread struct to function, but it
9676 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9677 	 * if we want to avoid special-casing it in code that deals with per-CPU
9678 	 * kthreads.
9679 	 */
9680 	WARN_ON(!set_kthread_struct(current));
9681 
9682 	/*
9683 	 * Make us the idle thread. Technically, schedule() should not be
9684 	 * called from this thread, however somewhere below it might be,
9685 	 * but because we are the idle thread, we just pick up running again
9686 	 * when this runqueue becomes "idle".
9687 	 */
9688 	init_idle(current, smp_processor_id());
9689 
9690 	calc_load_update = jiffies + LOAD_FREQ;
9691 
9692 #ifdef CONFIG_SMP
9693 	idle_thread_set_boot_cpu();
9694 	balance_push_set(smp_processor_id(), false);
9695 #endif
9696 	init_sched_fair_class();
9697 
9698 	psi_init();
9699 
9700 	init_uclamp();
9701 
9702 	preempt_dynamic_init();
9703 
9704 	scheduler_running = 1;
9705 }
9706 
9707 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9708 
9709 void __might_sleep(const char *file, int line)
9710 {
9711 	unsigned int state = get_current_state();
9712 	/*
9713 	 * Blocking primitives will set (and therefore destroy) current->state,
9714 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9715 	 * otherwise we will destroy state.
9716 	 */
9717 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9718 			"do not call blocking ops when !TASK_RUNNING; "
9719 			"state=%x set at [<%p>] %pS\n", state,
9720 			(void *)current->task_state_change,
9721 			(void *)current->task_state_change);
9722 
9723 	__might_resched(file, line, 0);
9724 }
9725 EXPORT_SYMBOL(__might_sleep);
9726 
9727 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9728 {
9729 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9730 		return;
9731 
9732 	if (preempt_count() == preempt_offset)
9733 		return;
9734 
9735 	pr_err("Preemption disabled at:");
9736 	print_ip_sym(KERN_ERR, ip);
9737 }
9738 
9739 static inline bool resched_offsets_ok(unsigned int offsets)
9740 {
9741 	unsigned int nested = preempt_count();
9742 
9743 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9744 
9745 	return nested == offsets;
9746 }
9747 
9748 void __might_resched(const char *file, int line, unsigned int offsets)
9749 {
9750 	/* Ratelimiting timestamp: */
9751 	static unsigned long prev_jiffy;
9752 
9753 	unsigned long preempt_disable_ip;
9754 
9755 	/* WARN_ON_ONCE() by default, no rate limit required: */
9756 	rcu_sleep_check();
9757 
9758 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9759 	     !is_idle_task(current) && !current->non_block_count) ||
9760 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9761 	    oops_in_progress)
9762 		return;
9763 
9764 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9765 		return;
9766 	prev_jiffy = jiffies;
9767 
9768 	/* Save this before calling printk(), since that will clobber it: */
9769 	preempt_disable_ip = get_preempt_disable_ip(current);
9770 
9771 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9772 	       file, line);
9773 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9774 	       in_atomic(), irqs_disabled(), current->non_block_count,
9775 	       current->pid, current->comm);
9776 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9777 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9778 
9779 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9780 		pr_err("RCU nest depth: %d, expected: %u\n",
9781 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9782 	}
9783 
9784 	if (task_stack_end_corrupted(current))
9785 		pr_emerg("Thread overran stack, or stack corrupted\n");
9786 
9787 	debug_show_held_locks(current);
9788 	if (irqs_disabled())
9789 		print_irqtrace_events(current);
9790 
9791 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9792 				 preempt_disable_ip);
9793 
9794 	dump_stack();
9795 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9796 }
9797 EXPORT_SYMBOL(__might_resched);
9798 
9799 void __cant_sleep(const char *file, int line, int preempt_offset)
9800 {
9801 	static unsigned long prev_jiffy;
9802 
9803 	if (irqs_disabled())
9804 		return;
9805 
9806 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9807 		return;
9808 
9809 	if (preempt_count() > preempt_offset)
9810 		return;
9811 
9812 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9813 		return;
9814 	prev_jiffy = jiffies;
9815 
9816 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9817 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9818 			in_atomic(), irqs_disabled(),
9819 			current->pid, current->comm);
9820 
9821 	debug_show_held_locks(current);
9822 	dump_stack();
9823 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9824 }
9825 EXPORT_SYMBOL_GPL(__cant_sleep);
9826 
9827 #ifdef CONFIG_SMP
9828 void __cant_migrate(const char *file, int line)
9829 {
9830 	static unsigned long prev_jiffy;
9831 
9832 	if (irqs_disabled())
9833 		return;
9834 
9835 	if (is_migration_disabled(current))
9836 		return;
9837 
9838 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9839 		return;
9840 
9841 	if (preempt_count() > 0)
9842 		return;
9843 
9844 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9845 		return;
9846 	prev_jiffy = jiffies;
9847 
9848 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9849 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9850 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9851 	       current->pid, current->comm);
9852 
9853 	debug_show_held_locks(current);
9854 	dump_stack();
9855 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9856 }
9857 EXPORT_SYMBOL_GPL(__cant_migrate);
9858 #endif
9859 #endif
9860 
9861 #ifdef CONFIG_MAGIC_SYSRQ
9862 void normalize_rt_tasks(void)
9863 {
9864 	struct task_struct *g, *p;
9865 	struct sched_attr attr = {
9866 		.sched_policy = SCHED_NORMAL,
9867 	};
9868 
9869 	read_lock(&tasklist_lock);
9870 	for_each_process_thread(g, p) {
9871 		/*
9872 		 * Only normalize user tasks:
9873 		 */
9874 		if (p->flags & PF_KTHREAD)
9875 			continue;
9876 
9877 		p->se.exec_start = 0;
9878 		schedstat_set(p->stats.wait_start,  0);
9879 		schedstat_set(p->stats.sleep_start, 0);
9880 		schedstat_set(p->stats.block_start, 0);
9881 
9882 		if (!dl_task(p) && !rt_task(p)) {
9883 			/*
9884 			 * Renice negative nice level userspace
9885 			 * tasks back to 0:
9886 			 */
9887 			if (task_nice(p) < 0)
9888 				set_user_nice(p, 0);
9889 			continue;
9890 		}
9891 
9892 		__sched_setscheduler(p, &attr, false, false);
9893 	}
9894 	read_unlock(&tasklist_lock);
9895 }
9896 
9897 #endif /* CONFIG_MAGIC_SYSRQ */
9898 
9899 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9900 /*
9901  * These functions are only useful for the IA64 MCA handling, or kdb.
9902  *
9903  * They can only be called when the whole system has been
9904  * stopped - every CPU needs to be quiescent, and no scheduling
9905  * activity can take place. Using them for anything else would
9906  * be a serious bug, and as a result, they aren't even visible
9907  * under any other configuration.
9908  */
9909 
9910 /**
9911  * curr_task - return the current task for a given CPU.
9912  * @cpu: the processor in question.
9913  *
9914  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9915  *
9916  * Return: The current task for @cpu.
9917  */
9918 struct task_struct *curr_task(int cpu)
9919 {
9920 	return cpu_curr(cpu);
9921 }
9922 
9923 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9924 
9925 #ifdef CONFIG_IA64
9926 /**
9927  * ia64_set_curr_task - set the current task for a given CPU.
9928  * @cpu: the processor in question.
9929  * @p: the task pointer to set.
9930  *
9931  * Description: This function must only be used when non-maskable interrupts
9932  * are serviced on a separate stack. It allows the architecture to switch the
9933  * notion of the current task on a CPU in a non-blocking manner. This function
9934  * must be called with all CPU's synchronized, and interrupts disabled, the
9935  * and caller must save the original value of the current task (see
9936  * curr_task() above) and restore that value before reenabling interrupts and
9937  * re-starting the system.
9938  *
9939  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9940  */
9941 void ia64_set_curr_task(int cpu, struct task_struct *p)
9942 {
9943 	cpu_curr(cpu) = p;
9944 }
9945 
9946 #endif
9947 
9948 #ifdef CONFIG_CGROUP_SCHED
9949 /* task_group_lock serializes the addition/removal of task groups */
9950 static DEFINE_SPINLOCK(task_group_lock);
9951 
9952 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9953 					    struct task_group *parent)
9954 {
9955 #ifdef CONFIG_UCLAMP_TASK_GROUP
9956 	enum uclamp_id clamp_id;
9957 
9958 	for_each_clamp_id(clamp_id) {
9959 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9960 			      uclamp_none(clamp_id), false);
9961 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9962 	}
9963 #endif
9964 }
9965 
9966 static void sched_free_group(struct task_group *tg)
9967 {
9968 	free_fair_sched_group(tg);
9969 	free_rt_sched_group(tg);
9970 	autogroup_free(tg);
9971 	kmem_cache_free(task_group_cache, tg);
9972 }
9973 
9974 static void sched_free_group_rcu(struct rcu_head *rcu)
9975 {
9976 	sched_free_group(container_of(rcu, struct task_group, rcu));
9977 }
9978 
9979 static void sched_unregister_group(struct task_group *tg)
9980 {
9981 	unregister_fair_sched_group(tg);
9982 	unregister_rt_sched_group(tg);
9983 	/*
9984 	 * We have to wait for yet another RCU grace period to expire, as
9985 	 * print_cfs_stats() might run concurrently.
9986 	 */
9987 	call_rcu(&tg->rcu, sched_free_group_rcu);
9988 }
9989 
9990 /* allocate runqueue etc for a new task group */
9991 struct task_group *sched_create_group(struct task_group *parent)
9992 {
9993 	struct task_group *tg;
9994 
9995 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9996 	if (!tg)
9997 		return ERR_PTR(-ENOMEM);
9998 
9999 	if (!alloc_fair_sched_group(tg, parent))
10000 		goto err;
10001 
10002 	if (!alloc_rt_sched_group(tg, parent))
10003 		goto err;
10004 
10005 	alloc_uclamp_sched_group(tg, parent);
10006 
10007 	return tg;
10008 
10009 err:
10010 	sched_free_group(tg);
10011 	return ERR_PTR(-ENOMEM);
10012 }
10013 
10014 void sched_online_group(struct task_group *tg, struct task_group *parent)
10015 {
10016 	unsigned long flags;
10017 
10018 	spin_lock_irqsave(&task_group_lock, flags);
10019 	list_add_rcu(&tg->list, &task_groups);
10020 
10021 	/* Root should already exist: */
10022 	WARN_ON(!parent);
10023 
10024 	tg->parent = parent;
10025 	INIT_LIST_HEAD(&tg->children);
10026 	list_add_rcu(&tg->siblings, &parent->children);
10027 	spin_unlock_irqrestore(&task_group_lock, flags);
10028 
10029 	online_fair_sched_group(tg);
10030 }
10031 
10032 /* rcu callback to free various structures associated with a task group */
10033 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10034 {
10035 	/* Now it should be safe to free those cfs_rqs: */
10036 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10037 }
10038 
10039 void sched_destroy_group(struct task_group *tg)
10040 {
10041 	/* Wait for possible concurrent references to cfs_rqs complete: */
10042 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10043 }
10044 
10045 void sched_release_group(struct task_group *tg)
10046 {
10047 	unsigned long flags;
10048 
10049 	/*
10050 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10051 	 * sched_cfs_period_timer()).
10052 	 *
10053 	 * For this to be effective, we have to wait for all pending users of
10054 	 * this task group to leave their RCU critical section to ensure no new
10055 	 * user will see our dying task group any more. Specifically ensure
10056 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10057 	 *
10058 	 * We therefore defer calling unregister_fair_sched_group() to
10059 	 * sched_unregister_group() which is guarantied to get called only after the
10060 	 * current RCU grace period has expired.
10061 	 */
10062 	spin_lock_irqsave(&task_group_lock, flags);
10063 	list_del_rcu(&tg->list);
10064 	list_del_rcu(&tg->siblings);
10065 	spin_unlock_irqrestore(&task_group_lock, flags);
10066 }
10067 
10068 static void sched_change_group(struct task_struct *tsk, int type)
10069 {
10070 	struct task_group *tg;
10071 
10072 	/*
10073 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10074 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10075 	 * to prevent lockdep warnings.
10076 	 */
10077 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10078 			  struct task_group, css);
10079 	tg = autogroup_task_group(tsk, tg);
10080 	tsk->sched_task_group = tg;
10081 
10082 #ifdef CONFIG_FAIR_GROUP_SCHED
10083 	if (tsk->sched_class->task_change_group)
10084 		tsk->sched_class->task_change_group(tsk, type);
10085 	else
10086 #endif
10087 		set_task_rq(tsk, task_cpu(tsk));
10088 }
10089 
10090 /*
10091  * Change task's runqueue when it moves between groups.
10092  *
10093  * The caller of this function should have put the task in its new group by
10094  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10095  * its new group.
10096  */
10097 void sched_move_task(struct task_struct *tsk)
10098 {
10099 	int queued, running, queue_flags =
10100 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10101 	struct rq_flags rf;
10102 	struct rq *rq;
10103 
10104 	rq = task_rq_lock(tsk, &rf);
10105 	update_rq_clock(rq);
10106 
10107 	running = task_current(rq, tsk);
10108 	queued = task_on_rq_queued(tsk);
10109 
10110 	if (queued)
10111 		dequeue_task(rq, tsk, queue_flags);
10112 	if (running)
10113 		put_prev_task(rq, tsk);
10114 
10115 	sched_change_group(tsk, TASK_MOVE_GROUP);
10116 
10117 	if (queued)
10118 		enqueue_task(rq, tsk, queue_flags);
10119 	if (running) {
10120 		set_next_task(rq, tsk);
10121 		/*
10122 		 * After changing group, the running task may have joined a
10123 		 * throttled one but it's still the running task. Trigger a
10124 		 * resched to make sure that task can still run.
10125 		 */
10126 		resched_curr(rq);
10127 	}
10128 
10129 	task_rq_unlock(rq, tsk, &rf);
10130 }
10131 
10132 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10133 {
10134 	return css ? container_of(css, struct task_group, css) : NULL;
10135 }
10136 
10137 static struct cgroup_subsys_state *
10138 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10139 {
10140 	struct task_group *parent = css_tg(parent_css);
10141 	struct task_group *tg;
10142 
10143 	if (!parent) {
10144 		/* This is early initialization for the top cgroup */
10145 		return &root_task_group.css;
10146 	}
10147 
10148 	tg = sched_create_group(parent);
10149 	if (IS_ERR(tg))
10150 		return ERR_PTR(-ENOMEM);
10151 
10152 	return &tg->css;
10153 }
10154 
10155 /* Expose task group only after completing cgroup initialization */
10156 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10157 {
10158 	struct task_group *tg = css_tg(css);
10159 	struct task_group *parent = css_tg(css->parent);
10160 
10161 	if (parent)
10162 		sched_online_group(tg, parent);
10163 
10164 #ifdef CONFIG_UCLAMP_TASK_GROUP
10165 	/* Propagate the effective uclamp value for the new group */
10166 	mutex_lock(&uclamp_mutex);
10167 	rcu_read_lock();
10168 	cpu_util_update_eff(css);
10169 	rcu_read_unlock();
10170 	mutex_unlock(&uclamp_mutex);
10171 #endif
10172 
10173 	return 0;
10174 }
10175 
10176 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10177 {
10178 	struct task_group *tg = css_tg(css);
10179 
10180 	sched_release_group(tg);
10181 }
10182 
10183 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10184 {
10185 	struct task_group *tg = css_tg(css);
10186 
10187 	/*
10188 	 * Relies on the RCU grace period between css_released() and this.
10189 	 */
10190 	sched_unregister_group(tg);
10191 }
10192 
10193 /*
10194  * This is called before wake_up_new_task(), therefore we really only
10195  * have to set its group bits, all the other stuff does not apply.
10196  */
10197 static void cpu_cgroup_fork(struct task_struct *task)
10198 {
10199 	struct rq_flags rf;
10200 	struct rq *rq;
10201 
10202 	rq = task_rq_lock(task, &rf);
10203 
10204 	update_rq_clock(rq);
10205 	sched_change_group(task, TASK_SET_GROUP);
10206 
10207 	task_rq_unlock(rq, task, &rf);
10208 }
10209 
10210 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10211 {
10212 	struct task_struct *task;
10213 	struct cgroup_subsys_state *css;
10214 	int ret = 0;
10215 
10216 	cgroup_taskset_for_each(task, css, tset) {
10217 #ifdef CONFIG_RT_GROUP_SCHED
10218 		if (!sched_rt_can_attach(css_tg(css), task))
10219 			return -EINVAL;
10220 #endif
10221 		/*
10222 		 * Serialize against wake_up_new_task() such that if it's
10223 		 * running, we're sure to observe its full state.
10224 		 */
10225 		raw_spin_lock_irq(&task->pi_lock);
10226 		/*
10227 		 * Avoid calling sched_move_task() before wake_up_new_task()
10228 		 * has happened. This would lead to problems with PELT, due to
10229 		 * move wanting to detach+attach while we're not attached yet.
10230 		 */
10231 		if (READ_ONCE(task->__state) == TASK_NEW)
10232 			ret = -EINVAL;
10233 		raw_spin_unlock_irq(&task->pi_lock);
10234 
10235 		if (ret)
10236 			break;
10237 	}
10238 	return ret;
10239 }
10240 
10241 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10242 {
10243 	struct task_struct *task;
10244 	struct cgroup_subsys_state *css;
10245 
10246 	cgroup_taskset_for_each(task, css, tset)
10247 		sched_move_task(task);
10248 }
10249 
10250 #ifdef CONFIG_UCLAMP_TASK_GROUP
10251 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10252 {
10253 	struct cgroup_subsys_state *top_css = css;
10254 	struct uclamp_se *uc_parent = NULL;
10255 	struct uclamp_se *uc_se = NULL;
10256 	unsigned int eff[UCLAMP_CNT];
10257 	enum uclamp_id clamp_id;
10258 	unsigned int clamps;
10259 
10260 	lockdep_assert_held(&uclamp_mutex);
10261 	SCHED_WARN_ON(!rcu_read_lock_held());
10262 
10263 	css_for_each_descendant_pre(css, top_css) {
10264 		uc_parent = css_tg(css)->parent
10265 			? css_tg(css)->parent->uclamp : NULL;
10266 
10267 		for_each_clamp_id(clamp_id) {
10268 			/* Assume effective clamps matches requested clamps */
10269 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10270 			/* Cap effective clamps with parent's effective clamps */
10271 			if (uc_parent &&
10272 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10273 				eff[clamp_id] = uc_parent[clamp_id].value;
10274 			}
10275 		}
10276 		/* Ensure protection is always capped by limit */
10277 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10278 
10279 		/* Propagate most restrictive effective clamps */
10280 		clamps = 0x0;
10281 		uc_se = css_tg(css)->uclamp;
10282 		for_each_clamp_id(clamp_id) {
10283 			if (eff[clamp_id] == uc_se[clamp_id].value)
10284 				continue;
10285 			uc_se[clamp_id].value = eff[clamp_id];
10286 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10287 			clamps |= (0x1 << clamp_id);
10288 		}
10289 		if (!clamps) {
10290 			css = css_rightmost_descendant(css);
10291 			continue;
10292 		}
10293 
10294 		/* Immediately update descendants RUNNABLE tasks */
10295 		uclamp_update_active_tasks(css);
10296 	}
10297 }
10298 
10299 /*
10300  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10301  * C expression. Since there is no way to convert a macro argument (N) into a
10302  * character constant, use two levels of macros.
10303  */
10304 #define _POW10(exp) ((unsigned int)1e##exp)
10305 #define POW10(exp) _POW10(exp)
10306 
10307 struct uclamp_request {
10308 #define UCLAMP_PERCENT_SHIFT	2
10309 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10310 	s64 percent;
10311 	u64 util;
10312 	int ret;
10313 };
10314 
10315 static inline struct uclamp_request
10316 capacity_from_percent(char *buf)
10317 {
10318 	struct uclamp_request req = {
10319 		.percent = UCLAMP_PERCENT_SCALE,
10320 		.util = SCHED_CAPACITY_SCALE,
10321 		.ret = 0,
10322 	};
10323 
10324 	buf = strim(buf);
10325 	if (strcmp(buf, "max")) {
10326 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10327 					     &req.percent);
10328 		if (req.ret)
10329 			return req;
10330 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10331 			req.ret = -ERANGE;
10332 			return req;
10333 		}
10334 
10335 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10336 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10337 	}
10338 
10339 	return req;
10340 }
10341 
10342 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10343 				size_t nbytes, loff_t off,
10344 				enum uclamp_id clamp_id)
10345 {
10346 	struct uclamp_request req;
10347 	struct task_group *tg;
10348 
10349 	req = capacity_from_percent(buf);
10350 	if (req.ret)
10351 		return req.ret;
10352 
10353 	static_branch_enable(&sched_uclamp_used);
10354 
10355 	mutex_lock(&uclamp_mutex);
10356 	rcu_read_lock();
10357 
10358 	tg = css_tg(of_css(of));
10359 	if (tg->uclamp_req[clamp_id].value != req.util)
10360 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10361 
10362 	/*
10363 	 * Because of not recoverable conversion rounding we keep track of the
10364 	 * exact requested value
10365 	 */
10366 	tg->uclamp_pct[clamp_id] = req.percent;
10367 
10368 	/* Update effective clamps to track the most restrictive value */
10369 	cpu_util_update_eff(of_css(of));
10370 
10371 	rcu_read_unlock();
10372 	mutex_unlock(&uclamp_mutex);
10373 
10374 	return nbytes;
10375 }
10376 
10377 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10378 				    char *buf, size_t nbytes,
10379 				    loff_t off)
10380 {
10381 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10382 }
10383 
10384 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10385 				    char *buf, size_t nbytes,
10386 				    loff_t off)
10387 {
10388 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10389 }
10390 
10391 static inline void cpu_uclamp_print(struct seq_file *sf,
10392 				    enum uclamp_id clamp_id)
10393 {
10394 	struct task_group *tg;
10395 	u64 util_clamp;
10396 	u64 percent;
10397 	u32 rem;
10398 
10399 	rcu_read_lock();
10400 	tg = css_tg(seq_css(sf));
10401 	util_clamp = tg->uclamp_req[clamp_id].value;
10402 	rcu_read_unlock();
10403 
10404 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10405 		seq_puts(sf, "max\n");
10406 		return;
10407 	}
10408 
10409 	percent = tg->uclamp_pct[clamp_id];
10410 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10411 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10412 }
10413 
10414 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10415 {
10416 	cpu_uclamp_print(sf, UCLAMP_MIN);
10417 	return 0;
10418 }
10419 
10420 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10421 {
10422 	cpu_uclamp_print(sf, UCLAMP_MAX);
10423 	return 0;
10424 }
10425 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10426 
10427 #ifdef CONFIG_FAIR_GROUP_SCHED
10428 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10429 				struct cftype *cftype, u64 shareval)
10430 {
10431 	if (shareval > scale_load_down(ULONG_MAX))
10432 		shareval = MAX_SHARES;
10433 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10434 }
10435 
10436 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10437 			       struct cftype *cft)
10438 {
10439 	struct task_group *tg = css_tg(css);
10440 
10441 	return (u64) scale_load_down(tg->shares);
10442 }
10443 
10444 #ifdef CONFIG_CFS_BANDWIDTH
10445 static DEFINE_MUTEX(cfs_constraints_mutex);
10446 
10447 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10448 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10449 /* More than 203 days if BW_SHIFT equals 20. */
10450 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10451 
10452 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10453 
10454 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10455 				u64 burst)
10456 {
10457 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10458 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10459 
10460 	if (tg == &root_task_group)
10461 		return -EINVAL;
10462 
10463 	/*
10464 	 * Ensure we have at some amount of bandwidth every period.  This is
10465 	 * to prevent reaching a state of large arrears when throttled via
10466 	 * entity_tick() resulting in prolonged exit starvation.
10467 	 */
10468 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10469 		return -EINVAL;
10470 
10471 	/*
10472 	 * Likewise, bound things on the other side by preventing insane quota
10473 	 * periods.  This also allows us to normalize in computing quota
10474 	 * feasibility.
10475 	 */
10476 	if (period > max_cfs_quota_period)
10477 		return -EINVAL;
10478 
10479 	/*
10480 	 * Bound quota to defend quota against overflow during bandwidth shift.
10481 	 */
10482 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10483 		return -EINVAL;
10484 
10485 	if (quota != RUNTIME_INF && (burst > quota ||
10486 				     burst + quota > max_cfs_runtime))
10487 		return -EINVAL;
10488 
10489 	/*
10490 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10491 	 * unthrottle_offline_cfs_rqs().
10492 	 */
10493 	cpus_read_lock();
10494 	mutex_lock(&cfs_constraints_mutex);
10495 	ret = __cfs_schedulable(tg, period, quota);
10496 	if (ret)
10497 		goto out_unlock;
10498 
10499 	runtime_enabled = quota != RUNTIME_INF;
10500 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10501 	/*
10502 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10503 	 * before making related changes, and on->off must occur afterwards
10504 	 */
10505 	if (runtime_enabled && !runtime_was_enabled)
10506 		cfs_bandwidth_usage_inc();
10507 	raw_spin_lock_irq(&cfs_b->lock);
10508 	cfs_b->period = ns_to_ktime(period);
10509 	cfs_b->quota = quota;
10510 	cfs_b->burst = burst;
10511 
10512 	__refill_cfs_bandwidth_runtime(cfs_b);
10513 
10514 	/* Restart the period timer (if active) to handle new period expiry: */
10515 	if (runtime_enabled)
10516 		start_cfs_bandwidth(cfs_b);
10517 
10518 	raw_spin_unlock_irq(&cfs_b->lock);
10519 
10520 	for_each_online_cpu(i) {
10521 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10522 		struct rq *rq = cfs_rq->rq;
10523 		struct rq_flags rf;
10524 
10525 		rq_lock_irq(rq, &rf);
10526 		cfs_rq->runtime_enabled = runtime_enabled;
10527 		cfs_rq->runtime_remaining = 0;
10528 
10529 		if (cfs_rq->throttled)
10530 			unthrottle_cfs_rq(cfs_rq);
10531 		rq_unlock_irq(rq, &rf);
10532 	}
10533 	if (runtime_was_enabled && !runtime_enabled)
10534 		cfs_bandwidth_usage_dec();
10535 out_unlock:
10536 	mutex_unlock(&cfs_constraints_mutex);
10537 	cpus_read_unlock();
10538 
10539 	return ret;
10540 }
10541 
10542 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10543 {
10544 	u64 quota, period, burst;
10545 
10546 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10547 	burst = tg->cfs_bandwidth.burst;
10548 	if (cfs_quota_us < 0)
10549 		quota = RUNTIME_INF;
10550 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10551 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10552 	else
10553 		return -EINVAL;
10554 
10555 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10556 }
10557 
10558 static long tg_get_cfs_quota(struct task_group *tg)
10559 {
10560 	u64 quota_us;
10561 
10562 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10563 		return -1;
10564 
10565 	quota_us = tg->cfs_bandwidth.quota;
10566 	do_div(quota_us, NSEC_PER_USEC);
10567 
10568 	return quota_us;
10569 }
10570 
10571 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10572 {
10573 	u64 quota, period, burst;
10574 
10575 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10576 		return -EINVAL;
10577 
10578 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10579 	quota = tg->cfs_bandwidth.quota;
10580 	burst = tg->cfs_bandwidth.burst;
10581 
10582 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10583 }
10584 
10585 static long tg_get_cfs_period(struct task_group *tg)
10586 {
10587 	u64 cfs_period_us;
10588 
10589 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10590 	do_div(cfs_period_us, NSEC_PER_USEC);
10591 
10592 	return cfs_period_us;
10593 }
10594 
10595 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10596 {
10597 	u64 quota, period, burst;
10598 
10599 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10600 		return -EINVAL;
10601 
10602 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10603 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10604 	quota = tg->cfs_bandwidth.quota;
10605 
10606 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10607 }
10608 
10609 static long tg_get_cfs_burst(struct task_group *tg)
10610 {
10611 	u64 burst_us;
10612 
10613 	burst_us = tg->cfs_bandwidth.burst;
10614 	do_div(burst_us, NSEC_PER_USEC);
10615 
10616 	return burst_us;
10617 }
10618 
10619 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10620 				  struct cftype *cft)
10621 {
10622 	return tg_get_cfs_quota(css_tg(css));
10623 }
10624 
10625 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10626 				   struct cftype *cftype, s64 cfs_quota_us)
10627 {
10628 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10629 }
10630 
10631 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10632 				   struct cftype *cft)
10633 {
10634 	return tg_get_cfs_period(css_tg(css));
10635 }
10636 
10637 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10638 				    struct cftype *cftype, u64 cfs_period_us)
10639 {
10640 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10641 }
10642 
10643 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10644 				  struct cftype *cft)
10645 {
10646 	return tg_get_cfs_burst(css_tg(css));
10647 }
10648 
10649 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10650 				   struct cftype *cftype, u64 cfs_burst_us)
10651 {
10652 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10653 }
10654 
10655 struct cfs_schedulable_data {
10656 	struct task_group *tg;
10657 	u64 period, quota;
10658 };
10659 
10660 /*
10661  * normalize group quota/period to be quota/max_period
10662  * note: units are usecs
10663  */
10664 static u64 normalize_cfs_quota(struct task_group *tg,
10665 			       struct cfs_schedulable_data *d)
10666 {
10667 	u64 quota, period;
10668 
10669 	if (tg == d->tg) {
10670 		period = d->period;
10671 		quota = d->quota;
10672 	} else {
10673 		period = tg_get_cfs_period(tg);
10674 		quota = tg_get_cfs_quota(tg);
10675 	}
10676 
10677 	/* note: these should typically be equivalent */
10678 	if (quota == RUNTIME_INF || quota == -1)
10679 		return RUNTIME_INF;
10680 
10681 	return to_ratio(period, quota);
10682 }
10683 
10684 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10685 {
10686 	struct cfs_schedulable_data *d = data;
10687 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10688 	s64 quota = 0, parent_quota = -1;
10689 
10690 	if (!tg->parent) {
10691 		quota = RUNTIME_INF;
10692 	} else {
10693 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10694 
10695 		quota = normalize_cfs_quota(tg, d);
10696 		parent_quota = parent_b->hierarchical_quota;
10697 
10698 		/*
10699 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10700 		 * always take the min.  On cgroup1, only inherit when no
10701 		 * limit is set:
10702 		 */
10703 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10704 			quota = min(quota, parent_quota);
10705 		} else {
10706 			if (quota == RUNTIME_INF)
10707 				quota = parent_quota;
10708 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10709 				return -EINVAL;
10710 		}
10711 	}
10712 	cfs_b->hierarchical_quota = quota;
10713 
10714 	return 0;
10715 }
10716 
10717 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10718 {
10719 	int ret;
10720 	struct cfs_schedulable_data data = {
10721 		.tg = tg,
10722 		.period = period,
10723 		.quota = quota,
10724 	};
10725 
10726 	if (quota != RUNTIME_INF) {
10727 		do_div(data.period, NSEC_PER_USEC);
10728 		do_div(data.quota, NSEC_PER_USEC);
10729 	}
10730 
10731 	rcu_read_lock();
10732 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10733 	rcu_read_unlock();
10734 
10735 	return ret;
10736 }
10737 
10738 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10739 {
10740 	struct task_group *tg = css_tg(seq_css(sf));
10741 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10742 
10743 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10744 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10745 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10746 
10747 	if (schedstat_enabled() && tg != &root_task_group) {
10748 		struct sched_statistics *stats;
10749 		u64 ws = 0;
10750 		int i;
10751 
10752 		for_each_possible_cpu(i) {
10753 			stats = __schedstats_from_se(tg->se[i]);
10754 			ws += schedstat_val(stats->wait_sum);
10755 		}
10756 
10757 		seq_printf(sf, "wait_sum %llu\n", ws);
10758 	}
10759 
10760 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10761 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10762 
10763 	return 0;
10764 }
10765 #endif /* CONFIG_CFS_BANDWIDTH */
10766 #endif /* CONFIG_FAIR_GROUP_SCHED */
10767 
10768 #ifdef CONFIG_RT_GROUP_SCHED
10769 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10770 				struct cftype *cft, s64 val)
10771 {
10772 	return sched_group_set_rt_runtime(css_tg(css), val);
10773 }
10774 
10775 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10776 			       struct cftype *cft)
10777 {
10778 	return sched_group_rt_runtime(css_tg(css));
10779 }
10780 
10781 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10782 				    struct cftype *cftype, u64 rt_period_us)
10783 {
10784 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10785 }
10786 
10787 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10788 				   struct cftype *cft)
10789 {
10790 	return sched_group_rt_period(css_tg(css));
10791 }
10792 #endif /* CONFIG_RT_GROUP_SCHED */
10793 
10794 #ifdef CONFIG_FAIR_GROUP_SCHED
10795 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10796 			       struct cftype *cft)
10797 {
10798 	return css_tg(css)->idle;
10799 }
10800 
10801 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10802 				struct cftype *cft, s64 idle)
10803 {
10804 	return sched_group_set_idle(css_tg(css), idle);
10805 }
10806 #endif
10807 
10808 static struct cftype cpu_legacy_files[] = {
10809 #ifdef CONFIG_FAIR_GROUP_SCHED
10810 	{
10811 		.name = "shares",
10812 		.read_u64 = cpu_shares_read_u64,
10813 		.write_u64 = cpu_shares_write_u64,
10814 	},
10815 	{
10816 		.name = "idle",
10817 		.read_s64 = cpu_idle_read_s64,
10818 		.write_s64 = cpu_idle_write_s64,
10819 	},
10820 #endif
10821 #ifdef CONFIG_CFS_BANDWIDTH
10822 	{
10823 		.name = "cfs_quota_us",
10824 		.read_s64 = cpu_cfs_quota_read_s64,
10825 		.write_s64 = cpu_cfs_quota_write_s64,
10826 	},
10827 	{
10828 		.name = "cfs_period_us",
10829 		.read_u64 = cpu_cfs_period_read_u64,
10830 		.write_u64 = cpu_cfs_period_write_u64,
10831 	},
10832 	{
10833 		.name = "cfs_burst_us",
10834 		.read_u64 = cpu_cfs_burst_read_u64,
10835 		.write_u64 = cpu_cfs_burst_write_u64,
10836 	},
10837 	{
10838 		.name = "stat",
10839 		.seq_show = cpu_cfs_stat_show,
10840 	},
10841 #endif
10842 #ifdef CONFIG_RT_GROUP_SCHED
10843 	{
10844 		.name = "rt_runtime_us",
10845 		.read_s64 = cpu_rt_runtime_read,
10846 		.write_s64 = cpu_rt_runtime_write,
10847 	},
10848 	{
10849 		.name = "rt_period_us",
10850 		.read_u64 = cpu_rt_period_read_uint,
10851 		.write_u64 = cpu_rt_period_write_uint,
10852 	},
10853 #endif
10854 #ifdef CONFIG_UCLAMP_TASK_GROUP
10855 	{
10856 		.name = "uclamp.min",
10857 		.flags = CFTYPE_NOT_ON_ROOT,
10858 		.seq_show = cpu_uclamp_min_show,
10859 		.write = cpu_uclamp_min_write,
10860 	},
10861 	{
10862 		.name = "uclamp.max",
10863 		.flags = CFTYPE_NOT_ON_ROOT,
10864 		.seq_show = cpu_uclamp_max_show,
10865 		.write = cpu_uclamp_max_write,
10866 	},
10867 #endif
10868 	{ }	/* Terminate */
10869 };
10870 
10871 static int cpu_extra_stat_show(struct seq_file *sf,
10872 			       struct cgroup_subsys_state *css)
10873 {
10874 #ifdef CONFIG_CFS_BANDWIDTH
10875 	{
10876 		struct task_group *tg = css_tg(css);
10877 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10878 		u64 throttled_usec, burst_usec;
10879 
10880 		throttled_usec = cfs_b->throttled_time;
10881 		do_div(throttled_usec, NSEC_PER_USEC);
10882 		burst_usec = cfs_b->burst_time;
10883 		do_div(burst_usec, NSEC_PER_USEC);
10884 
10885 		seq_printf(sf, "nr_periods %d\n"
10886 			   "nr_throttled %d\n"
10887 			   "throttled_usec %llu\n"
10888 			   "nr_bursts %d\n"
10889 			   "burst_usec %llu\n",
10890 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10891 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10892 	}
10893 #endif
10894 	return 0;
10895 }
10896 
10897 #ifdef CONFIG_FAIR_GROUP_SCHED
10898 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10899 			       struct cftype *cft)
10900 {
10901 	struct task_group *tg = css_tg(css);
10902 	u64 weight = scale_load_down(tg->shares);
10903 
10904 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10905 }
10906 
10907 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10908 				struct cftype *cft, u64 weight)
10909 {
10910 	/*
10911 	 * cgroup weight knobs should use the common MIN, DFL and MAX
10912 	 * values which are 1, 100 and 10000 respectively.  While it loses
10913 	 * a bit of range on both ends, it maps pretty well onto the shares
10914 	 * value used by scheduler and the round-trip conversions preserve
10915 	 * the original value over the entire range.
10916 	 */
10917 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10918 		return -ERANGE;
10919 
10920 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10921 
10922 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10923 }
10924 
10925 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10926 				    struct cftype *cft)
10927 {
10928 	unsigned long weight = scale_load_down(css_tg(css)->shares);
10929 	int last_delta = INT_MAX;
10930 	int prio, delta;
10931 
10932 	/* find the closest nice value to the current weight */
10933 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10934 		delta = abs(sched_prio_to_weight[prio] - weight);
10935 		if (delta >= last_delta)
10936 			break;
10937 		last_delta = delta;
10938 	}
10939 
10940 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10941 }
10942 
10943 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10944 				     struct cftype *cft, s64 nice)
10945 {
10946 	unsigned long weight;
10947 	int idx;
10948 
10949 	if (nice < MIN_NICE || nice > MAX_NICE)
10950 		return -ERANGE;
10951 
10952 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10953 	idx = array_index_nospec(idx, 40);
10954 	weight = sched_prio_to_weight[idx];
10955 
10956 	return sched_group_set_shares(css_tg(css), scale_load(weight));
10957 }
10958 #endif
10959 
10960 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10961 						  long period, long quota)
10962 {
10963 	if (quota < 0)
10964 		seq_puts(sf, "max");
10965 	else
10966 		seq_printf(sf, "%ld", quota);
10967 
10968 	seq_printf(sf, " %ld\n", period);
10969 }
10970 
10971 /* caller should put the current value in *@periodp before calling */
10972 static int __maybe_unused cpu_period_quota_parse(char *buf,
10973 						 u64 *periodp, u64 *quotap)
10974 {
10975 	char tok[21];	/* U64_MAX */
10976 
10977 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10978 		return -EINVAL;
10979 
10980 	*periodp *= NSEC_PER_USEC;
10981 
10982 	if (sscanf(tok, "%llu", quotap))
10983 		*quotap *= NSEC_PER_USEC;
10984 	else if (!strcmp(tok, "max"))
10985 		*quotap = RUNTIME_INF;
10986 	else
10987 		return -EINVAL;
10988 
10989 	return 0;
10990 }
10991 
10992 #ifdef CONFIG_CFS_BANDWIDTH
10993 static int cpu_max_show(struct seq_file *sf, void *v)
10994 {
10995 	struct task_group *tg = css_tg(seq_css(sf));
10996 
10997 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10998 	return 0;
10999 }
11000 
11001 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11002 			     char *buf, size_t nbytes, loff_t off)
11003 {
11004 	struct task_group *tg = css_tg(of_css(of));
11005 	u64 period = tg_get_cfs_period(tg);
11006 	u64 burst = tg_get_cfs_burst(tg);
11007 	u64 quota;
11008 	int ret;
11009 
11010 	ret = cpu_period_quota_parse(buf, &period, &quota);
11011 	if (!ret)
11012 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11013 	return ret ?: nbytes;
11014 }
11015 #endif
11016 
11017 static struct cftype cpu_files[] = {
11018 #ifdef CONFIG_FAIR_GROUP_SCHED
11019 	{
11020 		.name = "weight",
11021 		.flags = CFTYPE_NOT_ON_ROOT,
11022 		.read_u64 = cpu_weight_read_u64,
11023 		.write_u64 = cpu_weight_write_u64,
11024 	},
11025 	{
11026 		.name = "weight.nice",
11027 		.flags = CFTYPE_NOT_ON_ROOT,
11028 		.read_s64 = cpu_weight_nice_read_s64,
11029 		.write_s64 = cpu_weight_nice_write_s64,
11030 	},
11031 	{
11032 		.name = "idle",
11033 		.flags = CFTYPE_NOT_ON_ROOT,
11034 		.read_s64 = cpu_idle_read_s64,
11035 		.write_s64 = cpu_idle_write_s64,
11036 	},
11037 #endif
11038 #ifdef CONFIG_CFS_BANDWIDTH
11039 	{
11040 		.name = "max",
11041 		.flags = CFTYPE_NOT_ON_ROOT,
11042 		.seq_show = cpu_max_show,
11043 		.write = cpu_max_write,
11044 	},
11045 	{
11046 		.name = "max.burst",
11047 		.flags = CFTYPE_NOT_ON_ROOT,
11048 		.read_u64 = cpu_cfs_burst_read_u64,
11049 		.write_u64 = cpu_cfs_burst_write_u64,
11050 	},
11051 #endif
11052 #ifdef CONFIG_UCLAMP_TASK_GROUP
11053 	{
11054 		.name = "uclamp.min",
11055 		.flags = CFTYPE_NOT_ON_ROOT,
11056 		.seq_show = cpu_uclamp_min_show,
11057 		.write = cpu_uclamp_min_write,
11058 	},
11059 	{
11060 		.name = "uclamp.max",
11061 		.flags = CFTYPE_NOT_ON_ROOT,
11062 		.seq_show = cpu_uclamp_max_show,
11063 		.write = cpu_uclamp_max_write,
11064 	},
11065 #endif
11066 	{ }	/* terminate */
11067 };
11068 
11069 struct cgroup_subsys cpu_cgrp_subsys = {
11070 	.css_alloc	= cpu_cgroup_css_alloc,
11071 	.css_online	= cpu_cgroup_css_online,
11072 	.css_released	= cpu_cgroup_css_released,
11073 	.css_free	= cpu_cgroup_css_free,
11074 	.css_extra_stat_show = cpu_extra_stat_show,
11075 	.fork		= cpu_cgroup_fork,
11076 	.can_attach	= cpu_cgroup_can_attach,
11077 	.attach		= cpu_cgroup_attach,
11078 	.legacy_cftypes	= cpu_legacy_files,
11079 	.dfl_cftypes	= cpu_files,
11080 	.early_init	= true,
11081 	.threaded	= true,
11082 };
11083 
11084 #endif	/* CONFIG_CGROUP_SCHED */
11085 
11086 void dump_cpu_task(int cpu)
11087 {
11088 	pr_info("Task dump for CPU %d:\n", cpu);
11089 	sched_show_task(cpu_curr(cpu));
11090 }
11091 
11092 /*
11093  * Nice levels are multiplicative, with a gentle 10% change for every
11094  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11095  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11096  * that remained on nice 0.
11097  *
11098  * The "10% effect" is relative and cumulative: from _any_ nice level,
11099  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11100  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11101  * If a task goes up by ~10% and another task goes down by ~10% then
11102  * the relative distance between them is ~25%.)
11103  */
11104 const int sched_prio_to_weight[40] = {
11105  /* -20 */     88761,     71755,     56483,     46273,     36291,
11106  /* -15 */     29154,     23254,     18705,     14949,     11916,
11107  /* -10 */      9548,      7620,      6100,      4904,      3906,
11108  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11109  /*   0 */      1024,       820,       655,       526,       423,
11110  /*   5 */       335,       272,       215,       172,       137,
11111  /*  10 */       110,        87,        70,        56,        45,
11112  /*  15 */        36,        29,        23,        18,        15,
11113 };
11114 
11115 /*
11116  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11117  *
11118  * In cases where the weight does not change often, we can use the
11119  * precalculated inverse to speed up arithmetics by turning divisions
11120  * into multiplications:
11121  */
11122 const u32 sched_prio_to_wmult[40] = {
11123  /* -20 */     48388,     59856,     76040,     92818,    118348,
11124  /* -15 */    147320,    184698,    229616,    287308,    360437,
11125  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11126  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11127  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11128  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11129  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11130  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11131 };
11132 
11133 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11134 {
11135         trace_sched_update_nr_running_tp(rq, count);
11136 }
11137