xref: /linux/kernel/sched/core.c (revision d7851dc13d87688e2c532f0e77c2bd29f902d6cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
100 
101 /*
102  * Export tracepoints that act as a bare tracehook (ie: have no trace event
103  * associated with them) to allow external modules to probe them.
104  */
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	do {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
928 
929 	return true;
930 }
931 
932 #else
933 static inline bool set_nr_and_not_polling(struct task_struct *p)
934 {
935 	set_tsk_need_resched(p);
936 	return true;
937 }
938 
939 #ifdef CONFIG_SMP
940 static inline bool set_nr_if_polling(struct task_struct *p)
941 {
942 	return false;
943 }
944 #endif
945 #endif
946 
947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948 {
949 	struct wake_q_node *node = &task->wake_q;
950 
951 	/*
952 	 * Atomically grab the task, if ->wake_q is !nil already it means
953 	 * it's already queued (either by us or someone else) and will get the
954 	 * wakeup due to that.
955 	 *
956 	 * In order to ensure that a pending wakeup will observe our pending
957 	 * state, even in the failed case, an explicit smp_mb() must be used.
958 	 */
959 	smp_mb__before_atomic();
960 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 		return false;
962 
963 	/*
964 	 * The head is context local, there can be no concurrency.
965 	 */
966 	*head->lastp = node;
967 	head->lastp = &node->next;
968 	return true;
969 }
970 
971 /**
972  * wake_q_add() - queue a wakeup for 'later' waking.
973  * @head: the wake_q_head to add @task to
974  * @task: the task to queue for 'later' wakeup
975  *
976  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978  * instantly.
979  *
980  * This function must be used as-if it were wake_up_process(); IOW the task
981  * must be ready to be woken at this location.
982  */
983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984 {
985 	if (__wake_q_add(head, task))
986 		get_task_struct(task);
987 }
988 
989 /**
990  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991  * @head: the wake_q_head to add @task to
992  * @task: the task to queue for 'later' wakeup
993  *
994  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996  * instantly.
997  *
998  * This function must be used as-if it were wake_up_process(); IOW the task
999  * must be ready to be woken at this location.
1000  *
1001  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002  * that already hold reference to @task can call the 'safe' version and trust
1003  * wake_q to do the right thing depending whether or not the @task is already
1004  * queued for wakeup.
1005  */
1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007 {
1008 	if (!__wake_q_add(head, task))
1009 		put_task_struct(task);
1010 }
1011 
1012 void wake_up_q(struct wake_q_head *head)
1013 {
1014 	struct wake_q_node *node = head->first;
1015 
1016 	while (node != WAKE_Q_TAIL) {
1017 		struct task_struct *task;
1018 
1019 		task = container_of(node, struct task_struct, wake_q);
1020 		/* Task can safely be re-inserted now: */
1021 		node = node->next;
1022 		task->wake_q.next = NULL;
1023 
1024 		/*
1025 		 * wake_up_process() executes a full barrier, which pairs with
1026 		 * the queueing in wake_q_add() so as not to miss wakeups.
1027 		 */
1028 		wake_up_process(task);
1029 		put_task_struct(task);
1030 	}
1031 }
1032 
1033 /*
1034  * resched_curr - mark rq's current task 'to be rescheduled now'.
1035  *
1036  * On UP this means the setting of the need_resched flag, on SMP it
1037  * might also involve a cross-CPU call to trigger the scheduler on
1038  * the target CPU.
1039  */
1040 void resched_curr(struct rq *rq)
1041 {
1042 	struct task_struct *curr = rq->curr;
1043 	int cpu;
1044 
1045 	lockdep_assert_rq_held(rq);
1046 
1047 	if (test_tsk_need_resched(curr))
1048 		return;
1049 
1050 	cpu = cpu_of(rq);
1051 
1052 	if (cpu == smp_processor_id()) {
1053 		set_tsk_need_resched(curr);
1054 		set_preempt_need_resched();
1055 		return;
1056 	}
1057 
1058 	if (set_nr_and_not_polling(curr))
1059 		smp_send_reschedule(cpu);
1060 	else
1061 		trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063 
1064 void resched_cpu(int cpu)
1065 {
1066 	struct rq *rq = cpu_rq(cpu);
1067 	unsigned long flags;
1068 
1069 	raw_spin_rq_lock_irqsave(rq, flags);
1070 	if (cpu_online(cpu) || cpu == smp_processor_id())
1071 		resched_curr(rq);
1072 	raw_spin_rq_unlock_irqrestore(rq, flags);
1073 }
1074 
1075 #ifdef CONFIG_SMP
1076 #ifdef CONFIG_NO_HZ_COMMON
1077 /*
1078  * In the semi idle case, use the nearest busy CPU for migrating timers
1079  * from an idle CPU.  This is good for power-savings.
1080  *
1081  * We don't do similar optimization for completely idle system, as
1082  * selecting an idle CPU will add more delays to the timers than intended
1083  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084  */
1085 int get_nohz_timer_target(void)
1086 {
1087 	int i, cpu = smp_processor_id(), default_cpu = -1;
1088 	struct sched_domain *sd;
1089 	const struct cpumask *hk_mask;
1090 
1091 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1092 		if (!idle_cpu(cpu))
1093 			return cpu;
1094 		default_cpu = cpu;
1095 	}
1096 
1097 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1098 
1099 	guard(rcu)();
1100 
1101 	for_each_domain(cpu, sd) {
1102 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 			if (cpu == i)
1104 				continue;
1105 
1106 			if (!idle_cpu(i))
1107 				return i;
1108 		}
1109 	}
1110 
1111 	if (default_cpu == -1)
1112 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1113 
1114 	return default_cpu;
1115 }
1116 
1117 /*
1118  * When add_timer_on() enqueues a timer into the timer wheel of an
1119  * idle CPU then this timer might expire before the next timer event
1120  * which is scheduled to wake up that CPU. In case of a completely
1121  * idle system the next event might even be infinite time into the
1122  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123  * leaves the inner idle loop so the newly added timer is taken into
1124  * account when the CPU goes back to idle and evaluates the timer
1125  * wheel for the next timer event.
1126  */
1127 static void wake_up_idle_cpu(int cpu)
1128 {
1129 	struct rq *rq = cpu_rq(cpu);
1130 
1131 	if (cpu == smp_processor_id())
1132 		return;
1133 
1134 	/*
1135 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1136 	 * part of the idle loop. This forces an exit from the idle loop
1137 	 * and a round trip to schedule(). Now this could be optimized
1138 	 * because a simple new idle loop iteration is enough to
1139 	 * re-evaluate the next tick. Provided some re-ordering of tick
1140 	 * nohz functions that would need to follow TIF_NR_POLLING
1141 	 * clearing:
1142 	 *
1143 	 * - On most archs, a simple fetch_or on ti::flags with a
1144 	 *   "0" value would be enough to know if an IPI needs to be sent.
1145 	 *
1146 	 * - x86 needs to perform a last need_resched() check between
1147 	 *   monitor and mwait which doesn't take timers into account.
1148 	 *   There a dedicated TIF_TIMER flag would be required to
1149 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1150 	 *   before mwait().
1151 	 *
1152 	 * However, remote timer enqueue is not such a frequent event
1153 	 * and testing of the above solutions didn't appear to report
1154 	 * much benefits.
1155 	 */
1156 	if (set_nr_and_not_polling(rq->idle))
1157 		smp_send_reschedule(cpu);
1158 	else
1159 		trace_sched_wake_idle_without_ipi(cpu);
1160 }
1161 
1162 static bool wake_up_full_nohz_cpu(int cpu)
1163 {
1164 	/*
1165 	 * We just need the target to call irq_exit() and re-evaluate
1166 	 * the next tick. The nohz full kick at least implies that.
1167 	 * If needed we can still optimize that later with an
1168 	 * empty IRQ.
1169 	 */
1170 	if (cpu_is_offline(cpu))
1171 		return true;  /* Don't try to wake offline CPUs. */
1172 	if (tick_nohz_full_cpu(cpu)) {
1173 		if (cpu != smp_processor_id() ||
1174 		    tick_nohz_tick_stopped())
1175 			tick_nohz_full_kick_cpu(cpu);
1176 		return true;
1177 	}
1178 
1179 	return false;
1180 }
1181 
1182 /*
1183  * Wake up the specified CPU.  If the CPU is going offline, it is the
1184  * caller's responsibility to deal with the lost wakeup, for example,
1185  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1186  */
1187 void wake_up_nohz_cpu(int cpu)
1188 {
1189 	if (!wake_up_full_nohz_cpu(cpu))
1190 		wake_up_idle_cpu(cpu);
1191 }
1192 
1193 static void nohz_csd_func(void *info)
1194 {
1195 	struct rq *rq = info;
1196 	int cpu = cpu_of(rq);
1197 	unsigned int flags;
1198 
1199 	/*
1200 	 * Release the rq::nohz_csd.
1201 	 */
1202 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1203 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1204 
1205 	rq->idle_balance = idle_cpu(cpu);
1206 	if (rq->idle_balance && !need_resched()) {
1207 		rq->nohz_idle_balance = flags;
1208 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1209 	}
1210 }
1211 
1212 #endif /* CONFIG_NO_HZ_COMMON */
1213 
1214 #ifdef CONFIG_NO_HZ_FULL
1215 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1216 {
1217 	if (rq->nr_running != 1)
1218 		return false;
1219 
1220 	if (p->sched_class != &fair_sched_class)
1221 		return false;
1222 
1223 	if (!task_on_rq_queued(p))
1224 		return false;
1225 
1226 	return true;
1227 }
1228 
1229 bool sched_can_stop_tick(struct rq *rq)
1230 {
1231 	int fifo_nr_running;
1232 
1233 	/* Deadline tasks, even if single, need the tick */
1234 	if (rq->dl.dl_nr_running)
1235 		return false;
1236 
1237 	/*
1238 	 * If there are more than one RR tasks, we need the tick to affect the
1239 	 * actual RR behaviour.
1240 	 */
1241 	if (rq->rt.rr_nr_running) {
1242 		if (rq->rt.rr_nr_running == 1)
1243 			return true;
1244 		else
1245 			return false;
1246 	}
1247 
1248 	/*
1249 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1250 	 * forced preemption between FIFO tasks.
1251 	 */
1252 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1253 	if (fifo_nr_running)
1254 		return true;
1255 
1256 	/*
1257 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1258 	 * if there's more than one we need the tick for involuntary
1259 	 * preemption.
1260 	 */
1261 	if (rq->nr_running > 1)
1262 		return false;
1263 
1264 	/*
1265 	 * If there is one task and it has CFS runtime bandwidth constraints
1266 	 * and it's on the cpu now we don't want to stop the tick.
1267 	 * This check prevents clearing the bit if a newly enqueued task here is
1268 	 * dequeued by migrating while the constrained task continues to run.
1269 	 * E.g. going from 2->1 without going through pick_next_task().
1270 	 */
1271 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1272 		if (cfs_task_bw_constrained(rq->curr))
1273 			return false;
1274 	}
1275 
1276 	return true;
1277 }
1278 #endif /* CONFIG_NO_HZ_FULL */
1279 #endif /* CONFIG_SMP */
1280 
1281 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1282 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1283 /*
1284  * Iterate task_group tree rooted at *from, calling @down when first entering a
1285  * node and @up when leaving it for the final time.
1286  *
1287  * Caller must hold rcu_lock or sufficient equivalent.
1288  */
1289 int walk_tg_tree_from(struct task_group *from,
1290 			     tg_visitor down, tg_visitor up, void *data)
1291 {
1292 	struct task_group *parent, *child;
1293 	int ret;
1294 
1295 	parent = from;
1296 
1297 down:
1298 	ret = (*down)(parent, data);
1299 	if (ret)
1300 		goto out;
1301 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1302 		parent = child;
1303 		goto down;
1304 
1305 up:
1306 		continue;
1307 	}
1308 	ret = (*up)(parent, data);
1309 	if (ret || parent == from)
1310 		goto out;
1311 
1312 	child = parent;
1313 	parent = parent->parent;
1314 	if (parent)
1315 		goto up;
1316 out:
1317 	return ret;
1318 }
1319 
1320 int tg_nop(struct task_group *tg, void *data)
1321 {
1322 	return 0;
1323 }
1324 #endif
1325 
1326 static void set_load_weight(struct task_struct *p, bool update_load)
1327 {
1328 	int prio = p->static_prio - MAX_RT_PRIO;
1329 	struct load_weight *load = &p->se.load;
1330 
1331 	/*
1332 	 * SCHED_IDLE tasks get minimal weight:
1333 	 */
1334 	if (task_has_idle_policy(p)) {
1335 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1336 		load->inv_weight = WMULT_IDLEPRIO;
1337 		return;
1338 	}
1339 
1340 	/*
1341 	 * SCHED_OTHER tasks have to update their load when changing their
1342 	 * weight
1343 	 */
1344 	if (update_load && p->sched_class == &fair_sched_class) {
1345 		reweight_task(p, prio);
1346 	} else {
1347 		load->weight = scale_load(sched_prio_to_weight[prio]);
1348 		load->inv_weight = sched_prio_to_wmult[prio];
1349 	}
1350 }
1351 
1352 #ifdef CONFIG_UCLAMP_TASK
1353 /*
1354  * Serializes updates of utilization clamp values
1355  *
1356  * The (slow-path) user-space triggers utilization clamp value updates which
1357  * can require updates on (fast-path) scheduler's data structures used to
1358  * support enqueue/dequeue operations.
1359  * While the per-CPU rq lock protects fast-path update operations, user-space
1360  * requests are serialized using a mutex to reduce the risk of conflicting
1361  * updates or API abuses.
1362  */
1363 static DEFINE_MUTEX(uclamp_mutex);
1364 
1365 /* Max allowed minimum utilization */
1366 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1367 
1368 /* Max allowed maximum utilization */
1369 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1370 
1371 /*
1372  * By default RT tasks run at the maximum performance point/capacity of the
1373  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1374  * SCHED_CAPACITY_SCALE.
1375  *
1376  * This knob allows admins to change the default behavior when uclamp is being
1377  * used. In battery powered devices, particularly, running at the maximum
1378  * capacity and frequency will increase energy consumption and shorten the
1379  * battery life.
1380  *
1381  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1382  *
1383  * This knob will not override the system default sched_util_clamp_min defined
1384  * above.
1385  */
1386 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1387 
1388 /* All clamps are required to be less or equal than these values */
1389 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1390 
1391 /*
1392  * This static key is used to reduce the uclamp overhead in the fast path. It
1393  * primarily disables the call to uclamp_rq_{inc, dec}() in
1394  * enqueue/dequeue_task().
1395  *
1396  * This allows users to continue to enable uclamp in their kernel config with
1397  * minimum uclamp overhead in the fast path.
1398  *
1399  * As soon as userspace modifies any of the uclamp knobs, the static key is
1400  * enabled, since we have an actual users that make use of uclamp
1401  * functionality.
1402  *
1403  * The knobs that would enable this static key are:
1404  *
1405  *   * A task modifying its uclamp value with sched_setattr().
1406  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1407  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1408  */
1409 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1410 
1411 /* Integer rounded range for each bucket */
1412 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1413 
1414 #define for_each_clamp_id(clamp_id) \
1415 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1416 
1417 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1418 {
1419 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1420 }
1421 
1422 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1423 {
1424 	if (clamp_id == UCLAMP_MIN)
1425 		return 0;
1426 	return SCHED_CAPACITY_SCALE;
1427 }
1428 
1429 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1430 				 unsigned int value, bool user_defined)
1431 {
1432 	uc_se->value = value;
1433 	uc_se->bucket_id = uclamp_bucket_id(value);
1434 	uc_se->user_defined = user_defined;
1435 }
1436 
1437 static inline unsigned int
1438 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1439 		  unsigned int clamp_value)
1440 {
1441 	/*
1442 	 * Avoid blocked utilization pushing up the frequency when we go
1443 	 * idle (which drops the max-clamp) by retaining the last known
1444 	 * max-clamp.
1445 	 */
1446 	if (clamp_id == UCLAMP_MAX) {
1447 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1448 		return clamp_value;
1449 	}
1450 
1451 	return uclamp_none(UCLAMP_MIN);
1452 }
1453 
1454 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1455 				     unsigned int clamp_value)
1456 {
1457 	/* Reset max-clamp retention only on idle exit */
1458 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1459 		return;
1460 
1461 	uclamp_rq_set(rq, clamp_id, clamp_value);
1462 }
1463 
1464 static inline
1465 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1466 				   unsigned int clamp_value)
1467 {
1468 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1469 	int bucket_id = UCLAMP_BUCKETS - 1;
1470 
1471 	/*
1472 	 * Since both min and max clamps are max aggregated, find the
1473 	 * top most bucket with tasks in.
1474 	 */
1475 	for ( ; bucket_id >= 0; bucket_id--) {
1476 		if (!bucket[bucket_id].tasks)
1477 			continue;
1478 		return bucket[bucket_id].value;
1479 	}
1480 
1481 	/* No tasks -- default clamp values */
1482 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1483 }
1484 
1485 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1486 {
1487 	unsigned int default_util_min;
1488 	struct uclamp_se *uc_se;
1489 
1490 	lockdep_assert_held(&p->pi_lock);
1491 
1492 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1493 
1494 	/* Only sync if user didn't override the default */
1495 	if (uc_se->user_defined)
1496 		return;
1497 
1498 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1499 	uclamp_se_set(uc_se, default_util_min, false);
1500 }
1501 
1502 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1503 {
1504 	if (!rt_task(p))
1505 		return;
1506 
1507 	/* Protect updates to p->uclamp_* */
1508 	guard(task_rq_lock)(p);
1509 	__uclamp_update_util_min_rt_default(p);
1510 }
1511 
1512 static inline struct uclamp_se
1513 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1514 {
1515 	/* Copy by value as we could modify it */
1516 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1517 #ifdef CONFIG_UCLAMP_TASK_GROUP
1518 	unsigned int tg_min, tg_max, value;
1519 
1520 	/*
1521 	 * Tasks in autogroups or root task group will be
1522 	 * restricted by system defaults.
1523 	 */
1524 	if (task_group_is_autogroup(task_group(p)))
1525 		return uc_req;
1526 	if (task_group(p) == &root_task_group)
1527 		return uc_req;
1528 
1529 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1530 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1531 	value = uc_req.value;
1532 	value = clamp(value, tg_min, tg_max);
1533 	uclamp_se_set(&uc_req, value, false);
1534 #endif
1535 
1536 	return uc_req;
1537 }
1538 
1539 /*
1540  * The effective clamp bucket index of a task depends on, by increasing
1541  * priority:
1542  * - the task specific clamp value, when explicitly requested from userspace
1543  * - the task group effective clamp value, for tasks not either in the root
1544  *   group or in an autogroup
1545  * - the system default clamp value, defined by the sysadmin
1546  */
1547 static inline struct uclamp_se
1548 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1549 {
1550 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1551 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1552 
1553 	/* System default restrictions always apply */
1554 	if (unlikely(uc_req.value > uc_max.value))
1555 		return uc_max;
1556 
1557 	return uc_req;
1558 }
1559 
1560 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1561 {
1562 	struct uclamp_se uc_eff;
1563 
1564 	/* Task currently refcounted: use back-annotated (effective) value */
1565 	if (p->uclamp[clamp_id].active)
1566 		return (unsigned long)p->uclamp[clamp_id].value;
1567 
1568 	uc_eff = uclamp_eff_get(p, clamp_id);
1569 
1570 	return (unsigned long)uc_eff.value;
1571 }
1572 
1573 /*
1574  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1575  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1576  * updates the rq's clamp value if required.
1577  *
1578  * Tasks can have a task-specific value requested from user-space, track
1579  * within each bucket the maximum value for tasks refcounted in it.
1580  * This "local max aggregation" allows to track the exact "requested" value
1581  * for each bucket when all its RUNNABLE tasks require the same clamp.
1582  */
1583 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1584 				    enum uclamp_id clamp_id)
1585 {
1586 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1587 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1588 	struct uclamp_bucket *bucket;
1589 
1590 	lockdep_assert_rq_held(rq);
1591 
1592 	/* Update task effective clamp */
1593 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1594 
1595 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1596 	bucket->tasks++;
1597 	uc_se->active = true;
1598 
1599 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1600 
1601 	/*
1602 	 * Local max aggregation: rq buckets always track the max
1603 	 * "requested" clamp value of its RUNNABLE tasks.
1604 	 */
1605 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1606 		bucket->value = uc_se->value;
1607 
1608 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1609 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1610 }
1611 
1612 /*
1613  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1614  * is released. If this is the last task reference counting the rq's max
1615  * active clamp value, then the rq's clamp value is updated.
1616  *
1617  * Both refcounted tasks and rq's cached clamp values are expected to be
1618  * always valid. If it's detected they are not, as defensive programming,
1619  * enforce the expected state and warn.
1620  */
1621 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1622 				    enum uclamp_id clamp_id)
1623 {
1624 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1625 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1626 	struct uclamp_bucket *bucket;
1627 	unsigned int bkt_clamp;
1628 	unsigned int rq_clamp;
1629 
1630 	lockdep_assert_rq_held(rq);
1631 
1632 	/*
1633 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1634 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1635 	 *
1636 	 * In this case the uc_se->active flag should be false since no uclamp
1637 	 * accounting was performed at enqueue time and we can just return
1638 	 * here.
1639 	 *
1640 	 * Need to be careful of the following enqueue/dequeue ordering
1641 	 * problem too
1642 	 *
1643 	 *	enqueue(taskA)
1644 	 *	// sched_uclamp_used gets enabled
1645 	 *	enqueue(taskB)
1646 	 *	dequeue(taskA)
1647 	 *	// Must not decrement bucket->tasks here
1648 	 *	dequeue(taskB)
1649 	 *
1650 	 * where we could end up with stale data in uc_se and
1651 	 * bucket[uc_se->bucket_id].
1652 	 *
1653 	 * The following check here eliminates the possibility of such race.
1654 	 */
1655 	if (unlikely(!uc_se->active))
1656 		return;
1657 
1658 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1659 
1660 	SCHED_WARN_ON(!bucket->tasks);
1661 	if (likely(bucket->tasks))
1662 		bucket->tasks--;
1663 
1664 	uc_se->active = false;
1665 
1666 	/*
1667 	 * Keep "local max aggregation" simple and accept to (possibly)
1668 	 * overboost some RUNNABLE tasks in the same bucket.
1669 	 * The rq clamp bucket value is reset to its base value whenever
1670 	 * there are no more RUNNABLE tasks refcounting it.
1671 	 */
1672 	if (likely(bucket->tasks))
1673 		return;
1674 
1675 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1676 	/*
1677 	 * Defensive programming: this should never happen. If it happens,
1678 	 * e.g. due to future modification, warn and fixup the expected value.
1679 	 */
1680 	SCHED_WARN_ON(bucket->value > rq_clamp);
1681 	if (bucket->value >= rq_clamp) {
1682 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1683 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1684 	}
1685 }
1686 
1687 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1688 {
1689 	enum uclamp_id clamp_id;
1690 
1691 	/*
1692 	 * Avoid any overhead until uclamp is actually used by the userspace.
1693 	 *
1694 	 * The condition is constructed such that a NOP is generated when
1695 	 * sched_uclamp_used is disabled.
1696 	 */
1697 	if (!static_branch_unlikely(&sched_uclamp_used))
1698 		return;
1699 
1700 	if (unlikely(!p->sched_class->uclamp_enabled))
1701 		return;
1702 
1703 	for_each_clamp_id(clamp_id)
1704 		uclamp_rq_inc_id(rq, p, clamp_id);
1705 
1706 	/* Reset clamp idle holding when there is one RUNNABLE task */
1707 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1708 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1709 }
1710 
1711 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1712 {
1713 	enum uclamp_id clamp_id;
1714 
1715 	/*
1716 	 * Avoid any overhead until uclamp is actually used by the userspace.
1717 	 *
1718 	 * The condition is constructed such that a NOP is generated when
1719 	 * sched_uclamp_used is disabled.
1720 	 */
1721 	if (!static_branch_unlikely(&sched_uclamp_used))
1722 		return;
1723 
1724 	if (unlikely(!p->sched_class->uclamp_enabled))
1725 		return;
1726 
1727 	for_each_clamp_id(clamp_id)
1728 		uclamp_rq_dec_id(rq, p, clamp_id);
1729 }
1730 
1731 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1732 				      enum uclamp_id clamp_id)
1733 {
1734 	if (!p->uclamp[clamp_id].active)
1735 		return;
1736 
1737 	uclamp_rq_dec_id(rq, p, clamp_id);
1738 	uclamp_rq_inc_id(rq, p, clamp_id);
1739 
1740 	/*
1741 	 * Make sure to clear the idle flag if we've transiently reached 0
1742 	 * active tasks on rq.
1743 	 */
1744 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1745 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1746 }
1747 
1748 static inline void
1749 uclamp_update_active(struct task_struct *p)
1750 {
1751 	enum uclamp_id clamp_id;
1752 	struct rq_flags rf;
1753 	struct rq *rq;
1754 
1755 	/*
1756 	 * Lock the task and the rq where the task is (or was) queued.
1757 	 *
1758 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1759 	 * price to pay to safely serialize util_{min,max} updates with
1760 	 * enqueues, dequeues and migration operations.
1761 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1762 	 */
1763 	rq = task_rq_lock(p, &rf);
1764 
1765 	/*
1766 	 * Setting the clamp bucket is serialized by task_rq_lock().
1767 	 * If the task is not yet RUNNABLE and its task_struct is not
1768 	 * affecting a valid clamp bucket, the next time it's enqueued,
1769 	 * it will already see the updated clamp bucket value.
1770 	 */
1771 	for_each_clamp_id(clamp_id)
1772 		uclamp_rq_reinc_id(rq, p, clamp_id);
1773 
1774 	task_rq_unlock(rq, p, &rf);
1775 }
1776 
1777 #ifdef CONFIG_UCLAMP_TASK_GROUP
1778 static inline void
1779 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1780 {
1781 	struct css_task_iter it;
1782 	struct task_struct *p;
1783 
1784 	css_task_iter_start(css, 0, &it);
1785 	while ((p = css_task_iter_next(&it)))
1786 		uclamp_update_active(p);
1787 	css_task_iter_end(&it);
1788 }
1789 
1790 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1791 #endif
1792 
1793 #ifdef CONFIG_SYSCTL
1794 #ifdef CONFIG_UCLAMP_TASK
1795 #ifdef CONFIG_UCLAMP_TASK_GROUP
1796 static void uclamp_update_root_tg(void)
1797 {
1798 	struct task_group *tg = &root_task_group;
1799 
1800 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1801 		      sysctl_sched_uclamp_util_min, false);
1802 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1803 		      sysctl_sched_uclamp_util_max, false);
1804 
1805 	guard(rcu)();
1806 	cpu_util_update_eff(&root_task_group.css);
1807 }
1808 #else
1809 static void uclamp_update_root_tg(void) { }
1810 #endif
1811 
1812 static void uclamp_sync_util_min_rt_default(void)
1813 {
1814 	struct task_struct *g, *p;
1815 
1816 	/*
1817 	 * copy_process()			sysctl_uclamp
1818 	 *					  uclamp_min_rt = X;
1819 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1820 	 *   // link thread			  smp_mb__after_spinlock()
1821 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1822 	 *   sched_post_fork()			  for_each_process_thread()
1823 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1824 	 *
1825 	 * Ensures that either sched_post_fork() will observe the new
1826 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1827 	 * task.
1828 	 */
1829 	read_lock(&tasklist_lock);
1830 	smp_mb__after_spinlock();
1831 	read_unlock(&tasklist_lock);
1832 
1833 	guard(rcu)();
1834 	for_each_process_thread(g, p)
1835 		uclamp_update_util_min_rt_default(p);
1836 }
1837 
1838 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1839 				void *buffer, size_t *lenp, loff_t *ppos)
1840 {
1841 	bool update_root_tg = false;
1842 	int old_min, old_max, old_min_rt;
1843 	int result;
1844 
1845 	guard(mutex)(&uclamp_mutex);
1846 
1847 	old_min = sysctl_sched_uclamp_util_min;
1848 	old_max = sysctl_sched_uclamp_util_max;
1849 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1850 
1851 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1852 	if (result)
1853 		goto undo;
1854 	if (!write)
1855 		return 0;
1856 
1857 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1858 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1859 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1860 
1861 		result = -EINVAL;
1862 		goto undo;
1863 	}
1864 
1865 	if (old_min != sysctl_sched_uclamp_util_min) {
1866 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1867 			      sysctl_sched_uclamp_util_min, false);
1868 		update_root_tg = true;
1869 	}
1870 	if (old_max != sysctl_sched_uclamp_util_max) {
1871 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1872 			      sysctl_sched_uclamp_util_max, false);
1873 		update_root_tg = true;
1874 	}
1875 
1876 	if (update_root_tg) {
1877 		static_branch_enable(&sched_uclamp_used);
1878 		uclamp_update_root_tg();
1879 	}
1880 
1881 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1882 		static_branch_enable(&sched_uclamp_used);
1883 		uclamp_sync_util_min_rt_default();
1884 	}
1885 
1886 	/*
1887 	 * We update all RUNNABLE tasks only when task groups are in use.
1888 	 * Otherwise, keep it simple and do just a lazy update at each next
1889 	 * task enqueue time.
1890 	 */
1891 	return 0;
1892 
1893 undo:
1894 	sysctl_sched_uclamp_util_min = old_min;
1895 	sysctl_sched_uclamp_util_max = old_max;
1896 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1897 	return result;
1898 }
1899 #endif
1900 #endif
1901 
1902 static int uclamp_validate(struct task_struct *p,
1903 			   const struct sched_attr *attr)
1904 {
1905 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1906 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1907 
1908 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1909 		util_min = attr->sched_util_min;
1910 
1911 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1912 			return -EINVAL;
1913 	}
1914 
1915 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1916 		util_max = attr->sched_util_max;
1917 
1918 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1919 			return -EINVAL;
1920 	}
1921 
1922 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1923 		return -EINVAL;
1924 
1925 	/*
1926 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1927 	 *
1928 	 * We need to do that here, because enabling static branches is a
1929 	 * blocking operation which obviously cannot be done while holding
1930 	 * scheduler locks.
1931 	 */
1932 	static_branch_enable(&sched_uclamp_used);
1933 
1934 	return 0;
1935 }
1936 
1937 static bool uclamp_reset(const struct sched_attr *attr,
1938 			 enum uclamp_id clamp_id,
1939 			 struct uclamp_se *uc_se)
1940 {
1941 	/* Reset on sched class change for a non user-defined clamp value. */
1942 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1943 	    !uc_se->user_defined)
1944 		return true;
1945 
1946 	/* Reset on sched_util_{min,max} == -1. */
1947 	if (clamp_id == UCLAMP_MIN &&
1948 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1949 	    attr->sched_util_min == -1) {
1950 		return true;
1951 	}
1952 
1953 	if (clamp_id == UCLAMP_MAX &&
1954 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1955 	    attr->sched_util_max == -1) {
1956 		return true;
1957 	}
1958 
1959 	return false;
1960 }
1961 
1962 static void __setscheduler_uclamp(struct task_struct *p,
1963 				  const struct sched_attr *attr)
1964 {
1965 	enum uclamp_id clamp_id;
1966 
1967 	for_each_clamp_id(clamp_id) {
1968 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1969 		unsigned int value;
1970 
1971 		if (!uclamp_reset(attr, clamp_id, uc_se))
1972 			continue;
1973 
1974 		/*
1975 		 * RT by default have a 100% boost value that could be modified
1976 		 * at runtime.
1977 		 */
1978 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1979 			value = sysctl_sched_uclamp_util_min_rt_default;
1980 		else
1981 			value = uclamp_none(clamp_id);
1982 
1983 		uclamp_se_set(uc_se, value, false);
1984 
1985 	}
1986 
1987 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1988 		return;
1989 
1990 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1991 	    attr->sched_util_min != -1) {
1992 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1993 			      attr->sched_util_min, true);
1994 	}
1995 
1996 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1997 	    attr->sched_util_max != -1) {
1998 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1999 			      attr->sched_util_max, true);
2000 	}
2001 }
2002 
2003 static void uclamp_fork(struct task_struct *p)
2004 {
2005 	enum uclamp_id clamp_id;
2006 
2007 	/*
2008 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2009 	 * as the task is still at its early fork stages.
2010 	 */
2011 	for_each_clamp_id(clamp_id)
2012 		p->uclamp[clamp_id].active = false;
2013 
2014 	if (likely(!p->sched_reset_on_fork))
2015 		return;
2016 
2017 	for_each_clamp_id(clamp_id) {
2018 		uclamp_se_set(&p->uclamp_req[clamp_id],
2019 			      uclamp_none(clamp_id), false);
2020 	}
2021 }
2022 
2023 static void uclamp_post_fork(struct task_struct *p)
2024 {
2025 	uclamp_update_util_min_rt_default(p);
2026 }
2027 
2028 static void __init init_uclamp_rq(struct rq *rq)
2029 {
2030 	enum uclamp_id clamp_id;
2031 	struct uclamp_rq *uc_rq = rq->uclamp;
2032 
2033 	for_each_clamp_id(clamp_id) {
2034 		uc_rq[clamp_id] = (struct uclamp_rq) {
2035 			.value = uclamp_none(clamp_id)
2036 		};
2037 	}
2038 
2039 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2040 }
2041 
2042 static void __init init_uclamp(void)
2043 {
2044 	struct uclamp_se uc_max = {};
2045 	enum uclamp_id clamp_id;
2046 	int cpu;
2047 
2048 	for_each_possible_cpu(cpu)
2049 		init_uclamp_rq(cpu_rq(cpu));
2050 
2051 	for_each_clamp_id(clamp_id) {
2052 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2053 			      uclamp_none(clamp_id), false);
2054 	}
2055 
2056 	/* System defaults allow max clamp values for both indexes */
2057 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2058 	for_each_clamp_id(clamp_id) {
2059 		uclamp_default[clamp_id] = uc_max;
2060 #ifdef CONFIG_UCLAMP_TASK_GROUP
2061 		root_task_group.uclamp_req[clamp_id] = uc_max;
2062 		root_task_group.uclamp[clamp_id] = uc_max;
2063 #endif
2064 	}
2065 }
2066 
2067 #else /* CONFIG_UCLAMP_TASK */
2068 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2069 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2070 static inline int uclamp_validate(struct task_struct *p,
2071 				  const struct sched_attr *attr)
2072 {
2073 	return -EOPNOTSUPP;
2074 }
2075 static void __setscheduler_uclamp(struct task_struct *p,
2076 				  const struct sched_attr *attr) { }
2077 static inline void uclamp_fork(struct task_struct *p) { }
2078 static inline void uclamp_post_fork(struct task_struct *p) { }
2079 static inline void init_uclamp(void) { }
2080 #endif /* CONFIG_UCLAMP_TASK */
2081 
2082 bool sched_task_on_rq(struct task_struct *p)
2083 {
2084 	return task_on_rq_queued(p);
2085 }
2086 
2087 unsigned long get_wchan(struct task_struct *p)
2088 {
2089 	unsigned long ip = 0;
2090 	unsigned int state;
2091 
2092 	if (!p || p == current)
2093 		return 0;
2094 
2095 	/* Only get wchan if task is blocked and we can keep it that way. */
2096 	raw_spin_lock_irq(&p->pi_lock);
2097 	state = READ_ONCE(p->__state);
2098 	smp_rmb(); /* see try_to_wake_up() */
2099 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2100 		ip = __get_wchan(p);
2101 	raw_spin_unlock_irq(&p->pi_lock);
2102 
2103 	return ip;
2104 }
2105 
2106 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2107 {
2108 	if (!(flags & ENQUEUE_NOCLOCK))
2109 		update_rq_clock(rq);
2110 
2111 	if (!(flags & ENQUEUE_RESTORE)) {
2112 		sched_info_enqueue(rq, p);
2113 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2114 	}
2115 
2116 	uclamp_rq_inc(rq, p);
2117 	p->sched_class->enqueue_task(rq, p, flags);
2118 
2119 	if (sched_core_enabled(rq))
2120 		sched_core_enqueue(rq, p);
2121 }
2122 
2123 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2124 {
2125 	if (sched_core_enabled(rq))
2126 		sched_core_dequeue(rq, p, flags);
2127 
2128 	if (!(flags & DEQUEUE_NOCLOCK))
2129 		update_rq_clock(rq);
2130 
2131 	if (!(flags & DEQUEUE_SAVE)) {
2132 		sched_info_dequeue(rq, p);
2133 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2134 	}
2135 
2136 	uclamp_rq_dec(rq, p);
2137 	p->sched_class->dequeue_task(rq, p, flags);
2138 }
2139 
2140 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2141 {
2142 	if (task_on_rq_migrating(p))
2143 		flags |= ENQUEUE_MIGRATED;
2144 	if (flags & ENQUEUE_MIGRATED)
2145 		sched_mm_cid_migrate_to(rq, p);
2146 
2147 	enqueue_task(rq, p, flags);
2148 
2149 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2150 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2151 }
2152 
2153 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2154 {
2155 	WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
2156 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2157 
2158 	dequeue_task(rq, p, flags);
2159 }
2160 
2161 static inline int __normal_prio(int policy, int rt_prio, int nice)
2162 {
2163 	int prio;
2164 
2165 	if (dl_policy(policy))
2166 		prio = MAX_DL_PRIO - 1;
2167 	else if (rt_policy(policy))
2168 		prio = MAX_RT_PRIO - 1 - rt_prio;
2169 	else
2170 		prio = NICE_TO_PRIO(nice);
2171 
2172 	return prio;
2173 }
2174 
2175 /*
2176  * Calculate the expected normal priority: i.e. priority
2177  * without taking RT-inheritance into account. Might be
2178  * boosted by interactivity modifiers. Changes upon fork,
2179  * setprio syscalls, and whenever the interactivity
2180  * estimator recalculates.
2181  */
2182 static inline int normal_prio(struct task_struct *p)
2183 {
2184 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2185 }
2186 
2187 /*
2188  * Calculate the current priority, i.e. the priority
2189  * taken into account by the scheduler. This value might
2190  * be boosted by RT tasks, or might be boosted by
2191  * interactivity modifiers. Will be RT if the task got
2192  * RT-boosted. If not then it returns p->normal_prio.
2193  */
2194 static int effective_prio(struct task_struct *p)
2195 {
2196 	p->normal_prio = normal_prio(p);
2197 	/*
2198 	 * If we are RT tasks or we were boosted to RT priority,
2199 	 * keep the priority unchanged. Otherwise, update priority
2200 	 * to the normal priority:
2201 	 */
2202 	if (!rt_prio(p->prio))
2203 		return p->normal_prio;
2204 	return p->prio;
2205 }
2206 
2207 /**
2208  * task_curr - is this task currently executing on a CPU?
2209  * @p: the task in question.
2210  *
2211  * Return: 1 if the task is currently executing. 0 otherwise.
2212  */
2213 inline int task_curr(const struct task_struct *p)
2214 {
2215 	return cpu_curr(task_cpu(p)) == p;
2216 }
2217 
2218 /*
2219  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2220  * use the balance_callback list if you want balancing.
2221  *
2222  * this means any call to check_class_changed() must be followed by a call to
2223  * balance_callback().
2224  */
2225 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2226 				       const struct sched_class *prev_class,
2227 				       int oldprio)
2228 {
2229 	if (prev_class != p->sched_class) {
2230 		if (prev_class->switched_from)
2231 			prev_class->switched_from(rq, p);
2232 
2233 		p->sched_class->switched_to(rq, p);
2234 	} else if (oldprio != p->prio || dl_task(p))
2235 		p->sched_class->prio_changed(rq, p, oldprio);
2236 }
2237 
2238 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2239 {
2240 	if (p->sched_class == rq->curr->sched_class)
2241 		rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2242 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2243 		resched_curr(rq);
2244 
2245 	/*
2246 	 * A queue event has occurred, and we're going to schedule.  In
2247 	 * this case, we can save a useless back to back clock update.
2248 	 */
2249 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2250 		rq_clock_skip_update(rq);
2251 }
2252 
2253 static __always_inline
2254 int __task_state_match(struct task_struct *p, unsigned int state)
2255 {
2256 	if (READ_ONCE(p->__state) & state)
2257 		return 1;
2258 
2259 	if (READ_ONCE(p->saved_state) & state)
2260 		return -1;
2261 
2262 	return 0;
2263 }
2264 
2265 static __always_inline
2266 int task_state_match(struct task_struct *p, unsigned int state)
2267 {
2268 	/*
2269 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2270 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2271 	 */
2272 	guard(raw_spinlock_irq)(&p->pi_lock);
2273 	return __task_state_match(p, state);
2274 }
2275 
2276 /*
2277  * wait_task_inactive - wait for a thread to unschedule.
2278  *
2279  * Wait for the thread to block in any of the states set in @match_state.
2280  * If it changes, i.e. @p might have woken up, then return zero.  When we
2281  * succeed in waiting for @p to be off its CPU, we return a positive number
2282  * (its total switch count).  If a second call a short while later returns the
2283  * same number, the caller can be sure that @p has remained unscheduled the
2284  * whole time.
2285  *
2286  * The caller must ensure that the task *will* unschedule sometime soon,
2287  * else this function might spin for a *long* time. This function can't
2288  * be called with interrupts off, or it may introduce deadlock with
2289  * smp_call_function() if an IPI is sent by the same process we are
2290  * waiting to become inactive.
2291  */
2292 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2293 {
2294 	int running, queued, match;
2295 	struct rq_flags rf;
2296 	unsigned long ncsw;
2297 	struct rq *rq;
2298 
2299 	for (;;) {
2300 		/*
2301 		 * We do the initial early heuristics without holding
2302 		 * any task-queue locks at all. We'll only try to get
2303 		 * the runqueue lock when things look like they will
2304 		 * work out!
2305 		 */
2306 		rq = task_rq(p);
2307 
2308 		/*
2309 		 * If the task is actively running on another CPU
2310 		 * still, just relax and busy-wait without holding
2311 		 * any locks.
2312 		 *
2313 		 * NOTE! Since we don't hold any locks, it's not
2314 		 * even sure that "rq" stays as the right runqueue!
2315 		 * But we don't care, since "task_on_cpu()" will
2316 		 * return false if the runqueue has changed and p
2317 		 * is actually now running somewhere else!
2318 		 */
2319 		while (task_on_cpu(rq, p)) {
2320 			if (!task_state_match(p, match_state))
2321 				return 0;
2322 			cpu_relax();
2323 		}
2324 
2325 		/*
2326 		 * Ok, time to look more closely! We need the rq
2327 		 * lock now, to be *sure*. If we're wrong, we'll
2328 		 * just go back and repeat.
2329 		 */
2330 		rq = task_rq_lock(p, &rf);
2331 		trace_sched_wait_task(p);
2332 		running = task_on_cpu(rq, p);
2333 		queued = task_on_rq_queued(p);
2334 		ncsw = 0;
2335 		if ((match = __task_state_match(p, match_state))) {
2336 			/*
2337 			 * When matching on p->saved_state, consider this task
2338 			 * still queued so it will wait.
2339 			 */
2340 			if (match < 0)
2341 				queued = 1;
2342 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2343 		}
2344 		task_rq_unlock(rq, p, &rf);
2345 
2346 		/*
2347 		 * If it changed from the expected state, bail out now.
2348 		 */
2349 		if (unlikely(!ncsw))
2350 			break;
2351 
2352 		/*
2353 		 * Was it really running after all now that we
2354 		 * checked with the proper locks actually held?
2355 		 *
2356 		 * Oops. Go back and try again..
2357 		 */
2358 		if (unlikely(running)) {
2359 			cpu_relax();
2360 			continue;
2361 		}
2362 
2363 		/*
2364 		 * It's not enough that it's not actively running,
2365 		 * it must be off the runqueue _entirely_, and not
2366 		 * preempted!
2367 		 *
2368 		 * So if it was still runnable (but just not actively
2369 		 * running right now), it's preempted, and we should
2370 		 * yield - it could be a while.
2371 		 */
2372 		if (unlikely(queued)) {
2373 			ktime_t to = NSEC_PER_SEC / HZ;
2374 
2375 			set_current_state(TASK_UNINTERRUPTIBLE);
2376 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2377 			continue;
2378 		}
2379 
2380 		/*
2381 		 * Ahh, all good. It wasn't running, and it wasn't
2382 		 * runnable, which means that it will never become
2383 		 * running in the future either. We're all done!
2384 		 */
2385 		break;
2386 	}
2387 
2388 	return ncsw;
2389 }
2390 
2391 #ifdef CONFIG_SMP
2392 
2393 static void
2394 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2395 
2396 static int __set_cpus_allowed_ptr(struct task_struct *p,
2397 				  struct affinity_context *ctx);
2398 
2399 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2400 {
2401 	struct affinity_context ac = {
2402 		.new_mask  = cpumask_of(rq->cpu),
2403 		.flags     = SCA_MIGRATE_DISABLE,
2404 	};
2405 
2406 	if (likely(!p->migration_disabled))
2407 		return;
2408 
2409 	if (p->cpus_ptr != &p->cpus_mask)
2410 		return;
2411 
2412 	/*
2413 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2414 	 */
2415 	__do_set_cpus_allowed(p, &ac);
2416 }
2417 
2418 void migrate_disable(void)
2419 {
2420 	struct task_struct *p = current;
2421 
2422 	if (p->migration_disabled) {
2423 		p->migration_disabled++;
2424 		return;
2425 	}
2426 
2427 	guard(preempt)();
2428 	this_rq()->nr_pinned++;
2429 	p->migration_disabled = 1;
2430 }
2431 EXPORT_SYMBOL_GPL(migrate_disable);
2432 
2433 void migrate_enable(void)
2434 {
2435 	struct task_struct *p = current;
2436 	struct affinity_context ac = {
2437 		.new_mask  = &p->cpus_mask,
2438 		.flags     = SCA_MIGRATE_ENABLE,
2439 	};
2440 
2441 	if (p->migration_disabled > 1) {
2442 		p->migration_disabled--;
2443 		return;
2444 	}
2445 
2446 	if (WARN_ON_ONCE(!p->migration_disabled))
2447 		return;
2448 
2449 	/*
2450 	 * Ensure stop_task runs either before or after this, and that
2451 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2452 	 */
2453 	guard(preempt)();
2454 	if (p->cpus_ptr != &p->cpus_mask)
2455 		__set_cpus_allowed_ptr(p, &ac);
2456 	/*
2457 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2458 	 * regular cpus_mask, otherwise things that race (eg.
2459 	 * select_fallback_rq) get confused.
2460 	 */
2461 	barrier();
2462 	p->migration_disabled = 0;
2463 	this_rq()->nr_pinned--;
2464 }
2465 EXPORT_SYMBOL_GPL(migrate_enable);
2466 
2467 static inline bool rq_has_pinned_tasks(struct rq *rq)
2468 {
2469 	return rq->nr_pinned;
2470 }
2471 
2472 /*
2473  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2474  * __set_cpus_allowed_ptr() and select_fallback_rq().
2475  */
2476 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2477 {
2478 	/* When not in the task's cpumask, no point in looking further. */
2479 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2480 		return false;
2481 
2482 	/* migrate_disabled() must be allowed to finish. */
2483 	if (is_migration_disabled(p))
2484 		return cpu_online(cpu);
2485 
2486 	/* Non kernel threads are not allowed during either online or offline. */
2487 	if (!(p->flags & PF_KTHREAD))
2488 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2489 
2490 	/* KTHREAD_IS_PER_CPU is always allowed. */
2491 	if (kthread_is_per_cpu(p))
2492 		return cpu_online(cpu);
2493 
2494 	/* Regular kernel threads don't get to stay during offline. */
2495 	if (cpu_dying(cpu))
2496 		return false;
2497 
2498 	/* But are allowed during online. */
2499 	return cpu_online(cpu);
2500 }
2501 
2502 /*
2503  * This is how migration works:
2504  *
2505  * 1) we invoke migration_cpu_stop() on the target CPU using
2506  *    stop_one_cpu().
2507  * 2) stopper starts to run (implicitly forcing the migrated thread
2508  *    off the CPU)
2509  * 3) it checks whether the migrated task is still in the wrong runqueue.
2510  * 4) if it's in the wrong runqueue then the migration thread removes
2511  *    it and puts it into the right queue.
2512  * 5) stopper completes and stop_one_cpu() returns and the migration
2513  *    is done.
2514  */
2515 
2516 /*
2517  * move_queued_task - move a queued task to new rq.
2518  *
2519  * Returns (locked) new rq. Old rq's lock is released.
2520  */
2521 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2522 				   struct task_struct *p, int new_cpu)
2523 {
2524 	lockdep_assert_rq_held(rq);
2525 
2526 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2527 	set_task_cpu(p, new_cpu);
2528 	rq_unlock(rq, rf);
2529 
2530 	rq = cpu_rq(new_cpu);
2531 
2532 	rq_lock(rq, rf);
2533 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2534 	activate_task(rq, p, 0);
2535 	wakeup_preempt(rq, p, 0);
2536 
2537 	return rq;
2538 }
2539 
2540 struct migration_arg {
2541 	struct task_struct		*task;
2542 	int				dest_cpu;
2543 	struct set_affinity_pending	*pending;
2544 };
2545 
2546 /*
2547  * @refs: number of wait_for_completion()
2548  * @stop_pending: is @stop_work in use
2549  */
2550 struct set_affinity_pending {
2551 	refcount_t		refs;
2552 	unsigned int		stop_pending;
2553 	struct completion	done;
2554 	struct cpu_stop_work	stop_work;
2555 	struct migration_arg	arg;
2556 };
2557 
2558 /*
2559  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2560  * this because either it can't run here any more (set_cpus_allowed()
2561  * away from this CPU, or CPU going down), or because we're
2562  * attempting to rebalance this task on exec (sched_exec).
2563  *
2564  * So we race with normal scheduler movements, but that's OK, as long
2565  * as the task is no longer on this CPU.
2566  */
2567 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2568 				 struct task_struct *p, int dest_cpu)
2569 {
2570 	/* Affinity changed (again). */
2571 	if (!is_cpu_allowed(p, dest_cpu))
2572 		return rq;
2573 
2574 	rq = move_queued_task(rq, rf, p, dest_cpu);
2575 
2576 	return rq;
2577 }
2578 
2579 /*
2580  * migration_cpu_stop - this will be executed by a highprio stopper thread
2581  * and performs thread migration by bumping thread off CPU then
2582  * 'pushing' onto another runqueue.
2583  */
2584 static int migration_cpu_stop(void *data)
2585 {
2586 	struct migration_arg *arg = data;
2587 	struct set_affinity_pending *pending = arg->pending;
2588 	struct task_struct *p = arg->task;
2589 	struct rq *rq = this_rq();
2590 	bool complete = false;
2591 	struct rq_flags rf;
2592 
2593 	/*
2594 	 * The original target CPU might have gone down and we might
2595 	 * be on another CPU but it doesn't matter.
2596 	 */
2597 	local_irq_save(rf.flags);
2598 	/*
2599 	 * We need to explicitly wake pending tasks before running
2600 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2601 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2602 	 */
2603 	flush_smp_call_function_queue();
2604 
2605 	raw_spin_lock(&p->pi_lock);
2606 	rq_lock(rq, &rf);
2607 
2608 	/*
2609 	 * If we were passed a pending, then ->stop_pending was set, thus
2610 	 * p->migration_pending must have remained stable.
2611 	 */
2612 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2613 
2614 	/*
2615 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2616 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2617 	 * we're holding p->pi_lock.
2618 	 */
2619 	if (task_rq(p) == rq) {
2620 		if (is_migration_disabled(p))
2621 			goto out;
2622 
2623 		if (pending) {
2624 			p->migration_pending = NULL;
2625 			complete = true;
2626 
2627 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2628 				goto out;
2629 		}
2630 
2631 		if (task_on_rq_queued(p)) {
2632 			update_rq_clock(rq);
2633 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2634 		} else {
2635 			p->wake_cpu = arg->dest_cpu;
2636 		}
2637 
2638 		/*
2639 		 * XXX __migrate_task() can fail, at which point we might end
2640 		 * up running on a dodgy CPU, AFAICT this can only happen
2641 		 * during CPU hotplug, at which point we'll get pushed out
2642 		 * anyway, so it's probably not a big deal.
2643 		 */
2644 
2645 	} else if (pending) {
2646 		/*
2647 		 * This happens when we get migrated between migrate_enable()'s
2648 		 * preempt_enable() and scheduling the stopper task. At that
2649 		 * point we're a regular task again and not current anymore.
2650 		 *
2651 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2652 		 * more likely.
2653 		 */
2654 
2655 		/*
2656 		 * The task moved before the stopper got to run. We're holding
2657 		 * ->pi_lock, so the allowed mask is stable - if it got
2658 		 * somewhere allowed, we're done.
2659 		 */
2660 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2661 			p->migration_pending = NULL;
2662 			complete = true;
2663 			goto out;
2664 		}
2665 
2666 		/*
2667 		 * When migrate_enable() hits a rq mis-match we can't reliably
2668 		 * determine is_migration_disabled() and so have to chase after
2669 		 * it.
2670 		 */
2671 		WARN_ON_ONCE(!pending->stop_pending);
2672 		preempt_disable();
2673 		task_rq_unlock(rq, p, &rf);
2674 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2675 				    &pending->arg, &pending->stop_work);
2676 		preempt_enable();
2677 		return 0;
2678 	}
2679 out:
2680 	if (pending)
2681 		pending->stop_pending = false;
2682 	task_rq_unlock(rq, p, &rf);
2683 
2684 	if (complete)
2685 		complete_all(&pending->done);
2686 
2687 	return 0;
2688 }
2689 
2690 int push_cpu_stop(void *arg)
2691 {
2692 	struct rq *lowest_rq = NULL, *rq = this_rq();
2693 	struct task_struct *p = arg;
2694 
2695 	raw_spin_lock_irq(&p->pi_lock);
2696 	raw_spin_rq_lock(rq);
2697 
2698 	if (task_rq(p) != rq)
2699 		goto out_unlock;
2700 
2701 	if (is_migration_disabled(p)) {
2702 		p->migration_flags |= MDF_PUSH;
2703 		goto out_unlock;
2704 	}
2705 
2706 	p->migration_flags &= ~MDF_PUSH;
2707 
2708 	if (p->sched_class->find_lock_rq)
2709 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2710 
2711 	if (!lowest_rq)
2712 		goto out_unlock;
2713 
2714 	// XXX validate p is still the highest prio task
2715 	if (task_rq(p) == rq) {
2716 		deactivate_task(rq, p, 0);
2717 		set_task_cpu(p, lowest_rq->cpu);
2718 		activate_task(lowest_rq, p, 0);
2719 		resched_curr(lowest_rq);
2720 	}
2721 
2722 	double_unlock_balance(rq, lowest_rq);
2723 
2724 out_unlock:
2725 	rq->push_busy = false;
2726 	raw_spin_rq_unlock(rq);
2727 	raw_spin_unlock_irq(&p->pi_lock);
2728 
2729 	put_task_struct(p);
2730 	return 0;
2731 }
2732 
2733 /*
2734  * sched_class::set_cpus_allowed must do the below, but is not required to
2735  * actually call this function.
2736  */
2737 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2738 {
2739 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2740 		p->cpus_ptr = ctx->new_mask;
2741 		return;
2742 	}
2743 
2744 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2745 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2746 
2747 	/*
2748 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2749 	 */
2750 	if (ctx->flags & SCA_USER)
2751 		swap(p->user_cpus_ptr, ctx->user_mask);
2752 }
2753 
2754 static void
2755 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2756 {
2757 	struct rq *rq = task_rq(p);
2758 	bool queued, running;
2759 
2760 	/*
2761 	 * This here violates the locking rules for affinity, since we're only
2762 	 * supposed to change these variables while holding both rq->lock and
2763 	 * p->pi_lock.
2764 	 *
2765 	 * HOWEVER, it magically works, because ttwu() is the only code that
2766 	 * accesses these variables under p->pi_lock and only does so after
2767 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2768 	 * before finish_task().
2769 	 *
2770 	 * XXX do further audits, this smells like something putrid.
2771 	 */
2772 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2773 		SCHED_WARN_ON(!p->on_cpu);
2774 	else
2775 		lockdep_assert_held(&p->pi_lock);
2776 
2777 	queued = task_on_rq_queued(p);
2778 	running = task_current(rq, p);
2779 
2780 	if (queued) {
2781 		/*
2782 		 * Because __kthread_bind() calls this on blocked tasks without
2783 		 * holding rq->lock.
2784 		 */
2785 		lockdep_assert_rq_held(rq);
2786 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2787 	}
2788 	if (running)
2789 		put_prev_task(rq, p);
2790 
2791 	p->sched_class->set_cpus_allowed(p, ctx);
2792 
2793 	if (queued)
2794 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2795 	if (running)
2796 		set_next_task(rq, p);
2797 }
2798 
2799 /*
2800  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2801  * affinity (if any) should be destroyed too.
2802  */
2803 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2804 {
2805 	struct affinity_context ac = {
2806 		.new_mask  = new_mask,
2807 		.user_mask = NULL,
2808 		.flags     = SCA_USER,	/* clear the user requested mask */
2809 	};
2810 	union cpumask_rcuhead {
2811 		cpumask_t cpumask;
2812 		struct rcu_head rcu;
2813 	};
2814 
2815 	__do_set_cpus_allowed(p, &ac);
2816 
2817 	/*
2818 	 * Because this is called with p->pi_lock held, it is not possible
2819 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2820 	 * kfree_rcu().
2821 	 */
2822 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2823 }
2824 
2825 static cpumask_t *alloc_user_cpus_ptr(int node)
2826 {
2827 	/*
2828 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2829 	 */
2830 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2831 
2832 	return kmalloc_node(size, GFP_KERNEL, node);
2833 }
2834 
2835 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2836 		      int node)
2837 {
2838 	cpumask_t *user_mask;
2839 	unsigned long flags;
2840 
2841 	/*
2842 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2843 	 * may differ by now due to racing.
2844 	 */
2845 	dst->user_cpus_ptr = NULL;
2846 
2847 	/*
2848 	 * This check is racy and losing the race is a valid situation.
2849 	 * It is not worth the extra overhead of taking the pi_lock on
2850 	 * every fork/clone.
2851 	 */
2852 	if (data_race(!src->user_cpus_ptr))
2853 		return 0;
2854 
2855 	user_mask = alloc_user_cpus_ptr(node);
2856 	if (!user_mask)
2857 		return -ENOMEM;
2858 
2859 	/*
2860 	 * Use pi_lock to protect content of user_cpus_ptr
2861 	 *
2862 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2863 	 * do_set_cpus_allowed().
2864 	 */
2865 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2866 	if (src->user_cpus_ptr) {
2867 		swap(dst->user_cpus_ptr, user_mask);
2868 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2869 	}
2870 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2871 
2872 	if (unlikely(user_mask))
2873 		kfree(user_mask);
2874 
2875 	return 0;
2876 }
2877 
2878 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2879 {
2880 	struct cpumask *user_mask = NULL;
2881 
2882 	swap(p->user_cpus_ptr, user_mask);
2883 
2884 	return user_mask;
2885 }
2886 
2887 void release_user_cpus_ptr(struct task_struct *p)
2888 {
2889 	kfree(clear_user_cpus_ptr(p));
2890 }
2891 
2892 /*
2893  * This function is wildly self concurrent; here be dragons.
2894  *
2895  *
2896  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2897  * designated task is enqueued on an allowed CPU. If that task is currently
2898  * running, we have to kick it out using the CPU stopper.
2899  *
2900  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2901  * Consider:
2902  *
2903  *     Initial conditions: P0->cpus_mask = [0, 1]
2904  *
2905  *     P0@CPU0                  P1
2906  *
2907  *     migrate_disable();
2908  *     <preempted>
2909  *                              set_cpus_allowed_ptr(P0, [1]);
2910  *
2911  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2912  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2913  * This means we need the following scheme:
2914  *
2915  *     P0@CPU0                  P1
2916  *
2917  *     migrate_disable();
2918  *     <preempted>
2919  *                              set_cpus_allowed_ptr(P0, [1]);
2920  *                                <blocks>
2921  *     <resumes>
2922  *     migrate_enable();
2923  *       __set_cpus_allowed_ptr();
2924  *       <wakes local stopper>
2925  *                         `--> <woken on migration completion>
2926  *
2927  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2928  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2929  * task p are serialized by p->pi_lock, which we can leverage: the one that
2930  * should come into effect at the end of the Migrate-Disable region is the last
2931  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2932  * but we still need to properly signal those waiting tasks at the appropriate
2933  * moment.
2934  *
2935  * This is implemented using struct set_affinity_pending. The first
2936  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2937  * setup an instance of that struct and install it on the targeted task_struct.
2938  * Any and all further callers will reuse that instance. Those then wait for
2939  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2940  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2941  *
2942  *
2943  * (1) In the cases covered above. There is one more where the completion is
2944  * signaled within affine_move_task() itself: when a subsequent affinity request
2945  * occurs after the stopper bailed out due to the targeted task still being
2946  * Migrate-Disable. Consider:
2947  *
2948  *     Initial conditions: P0->cpus_mask = [0, 1]
2949  *
2950  *     CPU0		  P1				P2
2951  *     <P0>
2952  *       migrate_disable();
2953  *       <preempted>
2954  *                        set_cpus_allowed_ptr(P0, [1]);
2955  *                          <blocks>
2956  *     <migration/0>
2957  *       migration_cpu_stop()
2958  *         is_migration_disabled()
2959  *           <bails>
2960  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2961  *                                                         <signal completion>
2962  *                          <awakes>
2963  *
2964  * Note that the above is safe vs a concurrent migrate_enable(), as any
2965  * pending affinity completion is preceded by an uninstallation of
2966  * p->migration_pending done with p->pi_lock held.
2967  */
2968 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2969 			    int dest_cpu, unsigned int flags)
2970 	__releases(rq->lock)
2971 	__releases(p->pi_lock)
2972 {
2973 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2974 	bool stop_pending, complete = false;
2975 
2976 	/* Can the task run on the task's current CPU? If so, we're done */
2977 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2978 		struct task_struct *push_task = NULL;
2979 
2980 		if ((flags & SCA_MIGRATE_ENABLE) &&
2981 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2982 			rq->push_busy = true;
2983 			push_task = get_task_struct(p);
2984 		}
2985 
2986 		/*
2987 		 * If there are pending waiters, but no pending stop_work,
2988 		 * then complete now.
2989 		 */
2990 		pending = p->migration_pending;
2991 		if (pending && !pending->stop_pending) {
2992 			p->migration_pending = NULL;
2993 			complete = true;
2994 		}
2995 
2996 		preempt_disable();
2997 		task_rq_unlock(rq, p, rf);
2998 		if (push_task) {
2999 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3000 					    p, &rq->push_work);
3001 		}
3002 		preempt_enable();
3003 
3004 		if (complete)
3005 			complete_all(&pending->done);
3006 
3007 		return 0;
3008 	}
3009 
3010 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3011 		/* serialized by p->pi_lock */
3012 		if (!p->migration_pending) {
3013 			/* Install the request */
3014 			refcount_set(&my_pending.refs, 1);
3015 			init_completion(&my_pending.done);
3016 			my_pending.arg = (struct migration_arg) {
3017 				.task = p,
3018 				.dest_cpu = dest_cpu,
3019 				.pending = &my_pending,
3020 			};
3021 
3022 			p->migration_pending = &my_pending;
3023 		} else {
3024 			pending = p->migration_pending;
3025 			refcount_inc(&pending->refs);
3026 			/*
3027 			 * Affinity has changed, but we've already installed a
3028 			 * pending. migration_cpu_stop() *must* see this, else
3029 			 * we risk a completion of the pending despite having a
3030 			 * task on a disallowed CPU.
3031 			 *
3032 			 * Serialized by p->pi_lock, so this is safe.
3033 			 */
3034 			pending->arg.dest_cpu = dest_cpu;
3035 		}
3036 	}
3037 	pending = p->migration_pending;
3038 	/*
3039 	 * - !MIGRATE_ENABLE:
3040 	 *   we'll have installed a pending if there wasn't one already.
3041 	 *
3042 	 * - MIGRATE_ENABLE:
3043 	 *   we're here because the current CPU isn't matching anymore,
3044 	 *   the only way that can happen is because of a concurrent
3045 	 *   set_cpus_allowed_ptr() call, which should then still be
3046 	 *   pending completion.
3047 	 *
3048 	 * Either way, we really should have a @pending here.
3049 	 */
3050 	if (WARN_ON_ONCE(!pending)) {
3051 		task_rq_unlock(rq, p, rf);
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3056 		/*
3057 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3058 		 * anything else we cannot do is_migration_disabled(), punt
3059 		 * and have the stopper function handle it all race-free.
3060 		 */
3061 		stop_pending = pending->stop_pending;
3062 		if (!stop_pending)
3063 			pending->stop_pending = true;
3064 
3065 		if (flags & SCA_MIGRATE_ENABLE)
3066 			p->migration_flags &= ~MDF_PUSH;
3067 
3068 		preempt_disable();
3069 		task_rq_unlock(rq, p, rf);
3070 		if (!stop_pending) {
3071 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3072 					    &pending->arg, &pending->stop_work);
3073 		}
3074 		preempt_enable();
3075 
3076 		if (flags & SCA_MIGRATE_ENABLE)
3077 			return 0;
3078 	} else {
3079 
3080 		if (!is_migration_disabled(p)) {
3081 			if (task_on_rq_queued(p))
3082 				rq = move_queued_task(rq, rf, p, dest_cpu);
3083 
3084 			if (!pending->stop_pending) {
3085 				p->migration_pending = NULL;
3086 				complete = true;
3087 			}
3088 		}
3089 		task_rq_unlock(rq, p, rf);
3090 
3091 		if (complete)
3092 			complete_all(&pending->done);
3093 	}
3094 
3095 	wait_for_completion(&pending->done);
3096 
3097 	if (refcount_dec_and_test(&pending->refs))
3098 		wake_up_var(&pending->refs); /* No UaF, just an address */
3099 
3100 	/*
3101 	 * Block the original owner of &pending until all subsequent callers
3102 	 * have seen the completion and decremented the refcount
3103 	 */
3104 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3105 
3106 	/* ARGH */
3107 	WARN_ON_ONCE(my_pending.stop_pending);
3108 
3109 	return 0;
3110 }
3111 
3112 /*
3113  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3114  */
3115 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3116 					 struct affinity_context *ctx,
3117 					 struct rq *rq,
3118 					 struct rq_flags *rf)
3119 	__releases(rq->lock)
3120 	__releases(p->pi_lock)
3121 {
3122 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3123 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3124 	bool kthread = p->flags & PF_KTHREAD;
3125 	unsigned int dest_cpu;
3126 	int ret = 0;
3127 
3128 	update_rq_clock(rq);
3129 
3130 	if (kthread || is_migration_disabled(p)) {
3131 		/*
3132 		 * Kernel threads are allowed on online && !active CPUs,
3133 		 * however, during cpu-hot-unplug, even these might get pushed
3134 		 * away if not KTHREAD_IS_PER_CPU.
3135 		 *
3136 		 * Specifically, migration_disabled() tasks must not fail the
3137 		 * cpumask_any_and_distribute() pick below, esp. so on
3138 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3139 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3140 		 */
3141 		cpu_valid_mask = cpu_online_mask;
3142 	}
3143 
3144 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3145 		ret = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	/*
3150 	 * Must re-check here, to close a race against __kthread_bind(),
3151 	 * sched_setaffinity() is not guaranteed to observe the flag.
3152 	 */
3153 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3154 		ret = -EINVAL;
3155 		goto out;
3156 	}
3157 
3158 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3159 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3160 			if (ctx->flags & SCA_USER)
3161 				swap(p->user_cpus_ptr, ctx->user_mask);
3162 			goto out;
3163 		}
3164 
3165 		if (WARN_ON_ONCE(p == current &&
3166 				 is_migration_disabled(p) &&
3167 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3168 			ret = -EBUSY;
3169 			goto out;
3170 		}
3171 	}
3172 
3173 	/*
3174 	 * Picking a ~random cpu helps in cases where we are changing affinity
3175 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3176 	 * immediately required to distribute the tasks within their new mask.
3177 	 */
3178 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3179 	if (dest_cpu >= nr_cpu_ids) {
3180 		ret = -EINVAL;
3181 		goto out;
3182 	}
3183 
3184 	__do_set_cpus_allowed(p, ctx);
3185 
3186 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3187 
3188 out:
3189 	task_rq_unlock(rq, p, rf);
3190 
3191 	return ret;
3192 }
3193 
3194 /*
3195  * Change a given task's CPU affinity. Migrate the thread to a
3196  * proper CPU and schedule it away if the CPU it's executing on
3197  * is removed from the allowed bitmask.
3198  *
3199  * NOTE: the caller must have a valid reference to the task, the
3200  * task must not exit() & deallocate itself prematurely. The
3201  * call is not atomic; no spinlocks may be held.
3202  */
3203 static int __set_cpus_allowed_ptr(struct task_struct *p,
3204 				  struct affinity_context *ctx)
3205 {
3206 	struct rq_flags rf;
3207 	struct rq *rq;
3208 
3209 	rq = task_rq_lock(p, &rf);
3210 	/*
3211 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3212 	 * flags are set.
3213 	 */
3214 	if (p->user_cpus_ptr &&
3215 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3216 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3217 		ctx->new_mask = rq->scratch_mask;
3218 
3219 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3220 }
3221 
3222 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3223 {
3224 	struct affinity_context ac = {
3225 		.new_mask  = new_mask,
3226 		.flags     = 0,
3227 	};
3228 
3229 	return __set_cpus_allowed_ptr(p, &ac);
3230 }
3231 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3232 
3233 /*
3234  * Change a given task's CPU affinity to the intersection of its current
3235  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3236  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3237  * affinity or use cpu_online_mask instead.
3238  *
3239  * If the resulting mask is empty, leave the affinity unchanged and return
3240  * -EINVAL.
3241  */
3242 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3243 				     struct cpumask *new_mask,
3244 				     const struct cpumask *subset_mask)
3245 {
3246 	struct affinity_context ac = {
3247 		.new_mask  = new_mask,
3248 		.flags     = 0,
3249 	};
3250 	struct rq_flags rf;
3251 	struct rq *rq;
3252 	int err;
3253 
3254 	rq = task_rq_lock(p, &rf);
3255 
3256 	/*
3257 	 * Forcefully restricting the affinity of a deadline task is
3258 	 * likely to cause problems, so fail and noisily override the
3259 	 * mask entirely.
3260 	 */
3261 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3262 		err = -EPERM;
3263 		goto err_unlock;
3264 	}
3265 
3266 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3267 		err = -EINVAL;
3268 		goto err_unlock;
3269 	}
3270 
3271 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3272 
3273 err_unlock:
3274 	task_rq_unlock(rq, p, &rf);
3275 	return err;
3276 }
3277 
3278 /*
3279  * Restrict the CPU affinity of task @p so that it is a subset of
3280  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3281  * old affinity mask. If the resulting mask is empty, we warn and walk
3282  * up the cpuset hierarchy until we find a suitable mask.
3283  */
3284 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3285 {
3286 	cpumask_var_t new_mask;
3287 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3288 
3289 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3290 
3291 	/*
3292 	 * __migrate_task() can fail silently in the face of concurrent
3293 	 * offlining of the chosen destination CPU, so take the hotplug
3294 	 * lock to ensure that the migration succeeds.
3295 	 */
3296 	cpus_read_lock();
3297 	if (!cpumask_available(new_mask))
3298 		goto out_set_mask;
3299 
3300 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3301 		goto out_free_mask;
3302 
3303 	/*
3304 	 * We failed to find a valid subset of the affinity mask for the
3305 	 * task, so override it based on its cpuset hierarchy.
3306 	 */
3307 	cpuset_cpus_allowed(p, new_mask);
3308 	override_mask = new_mask;
3309 
3310 out_set_mask:
3311 	if (printk_ratelimit()) {
3312 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3313 				task_pid_nr(p), p->comm,
3314 				cpumask_pr_args(override_mask));
3315 	}
3316 
3317 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3318 out_free_mask:
3319 	cpus_read_unlock();
3320 	free_cpumask_var(new_mask);
3321 }
3322 
3323 static int
3324 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3325 
3326 /*
3327  * Restore the affinity of a task @p which was previously restricted by a
3328  * call to force_compatible_cpus_allowed_ptr().
3329  *
3330  * It is the caller's responsibility to serialise this with any calls to
3331  * force_compatible_cpus_allowed_ptr(@p).
3332  */
3333 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3334 {
3335 	struct affinity_context ac = {
3336 		.new_mask  = task_user_cpus(p),
3337 		.flags     = 0,
3338 	};
3339 	int ret;
3340 
3341 	/*
3342 	 * Try to restore the old affinity mask with __sched_setaffinity().
3343 	 * Cpuset masking will be done there too.
3344 	 */
3345 	ret = __sched_setaffinity(p, &ac);
3346 	WARN_ON_ONCE(ret);
3347 }
3348 
3349 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3350 {
3351 #ifdef CONFIG_SCHED_DEBUG
3352 	unsigned int state = READ_ONCE(p->__state);
3353 
3354 	/*
3355 	 * We should never call set_task_cpu() on a blocked task,
3356 	 * ttwu() will sort out the placement.
3357 	 */
3358 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3359 
3360 	/*
3361 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3362 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3363 	 * time relying on p->on_rq.
3364 	 */
3365 	WARN_ON_ONCE(state == TASK_RUNNING &&
3366 		     p->sched_class == &fair_sched_class &&
3367 		     (p->on_rq && !task_on_rq_migrating(p)));
3368 
3369 #ifdef CONFIG_LOCKDEP
3370 	/*
3371 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3372 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3373 	 *
3374 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3375 	 * see task_group().
3376 	 *
3377 	 * Furthermore, all task_rq users should acquire both locks, see
3378 	 * task_rq_lock().
3379 	 */
3380 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3381 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3382 #endif
3383 	/*
3384 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3385 	 */
3386 	WARN_ON_ONCE(!cpu_online(new_cpu));
3387 
3388 	WARN_ON_ONCE(is_migration_disabled(p));
3389 #endif
3390 
3391 	trace_sched_migrate_task(p, new_cpu);
3392 
3393 	if (task_cpu(p) != new_cpu) {
3394 		if (p->sched_class->migrate_task_rq)
3395 			p->sched_class->migrate_task_rq(p, new_cpu);
3396 		p->se.nr_migrations++;
3397 		rseq_migrate(p);
3398 		sched_mm_cid_migrate_from(p);
3399 		perf_event_task_migrate(p);
3400 	}
3401 
3402 	__set_task_cpu(p, new_cpu);
3403 }
3404 
3405 #ifdef CONFIG_NUMA_BALANCING
3406 static void __migrate_swap_task(struct task_struct *p, int cpu)
3407 {
3408 	if (task_on_rq_queued(p)) {
3409 		struct rq *src_rq, *dst_rq;
3410 		struct rq_flags srf, drf;
3411 
3412 		src_rq = task_rq(p);
3413 		dst_rq = cpu_rq(cpu);
3414 
3415 		rq_pin_lock(src_rq, &srf);
3416 		rq_pin_lock(dst_rq, &drf);
3417 
3418 		deactivate_task(src_rq, p, 0);
3419 		set_task_cpu(p, cpu);
3420 		activate_task(dst_rq, p, 0);
3421 		wakeup_preempt(dst_rq, p, 0);
3422 
3423 		rq_unpin_lock(dst_rq, &drf);
3424 		rq_unpin_lock(src_rq, &srf);
3425 
3426 	} else {
3427 		/*
3428 		 * Task isn't running anymore; make it appear like we migrated
3429 		 * it before it went to sleep. This means on wakeup we make the
3430 		 * previous CPU our target instead of where it really is.
3431 		 */
3432 		p->wake_cpu = cpu;
3433 	}
3434 }
3435 
3436 struct migration_swap_arg {
3437 	struct task_struct *src_task, *dst_task;
3438 	int src_cpu, dst_cpu;
3439 };
3440 
3441 static int migrate_swap_stop(void *data)
3442 {
3443 	struct migration_swap_arg *arg = data;
3444 	struct rq *src_rq, *dst_rq;
3445 
3446 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3447 		return -EAGAIN;
3448 
3449 	src_rq = cpu_rq(arg->src_cpu);
3450 	dst_rq = cpu_rq(arg->dst_cpu);
3451 
3452 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3453 	guard(double_rq_lock)(src_rq, dst_rq);
3454 
3455 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3456 		return -EAGAIN;
3457 
3458 	if (task_cpu(arg->src_task) != arg->src_cpu)
3459 		return -EAGAIN;
3460 
3461 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3462 		return -EAGAIN;
3463 
3464 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3465 		return -EAGAIN;
3466 
3467 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3468 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * Cross migrate two tasks
3475  */
3476 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3477 		int target_cpu, int curr_cpu)
3478 {
3479 	struct migration_swap_arg arg;
3480 	int ret = -EINVAL;
3481 
3482 	arg = (struct migration_swap_arg){
3483 		.src_task = cur,
3484 		.src_cpu = curr_cpu,
3485 		.dst_task = p,
3486 		.dst_cpu = target_cpu,
3487 	};
3488 
3489 	if (arg.src_cpu == arg.dst_cpu)
3490 		goto out;
3491 
3492 	/*
3493 	 * These three tests are all lockless; this is OK since all of them
3494 	 * will be re-checked with proper locks held further down the line.
3495 	 */
3496 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3497 		goto out;
3498 
3499 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3500 		goto out;
3501 
3502 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3503 		goto out;
3504 
3505 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3506 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3507 
3508 out:
3509 	return ret;
3510 }
3511 #endif /* CONFIG_NUMA_BALANCING */
3512 
3513 /***
3514  * kick_process - kick a running thread to enter/exit the kernel
3515  * @p: the to-be-kicked thread
3516  *
3517  * Cause a process which is running on another CPU to enter
3518  * kernel-mode, without any delay. (to get signals handled.)
3519  *
3520  * NOTE: this function doesn't have to take the runqueue lock,
3521  * because all it wants to ensure is that the remote task enters
3522  * the kernel. If the IPI races and the task has been migrated
3523  * to another CPU then no harm is done and the purpose has been
3524  * achieved as well.
3525  */
3526 void kick_process(struct task_struct *p)
3527 {
3528 	guard(preempt)();
3529 	int cpu = task_cpu(p);
3530 
3531 	if ((cpu != smp_processor_id()) && task_curr(p))
3532 		smp_send_reschedule(cpu);
3533 }
3534 EXPORT_SYMBOL_GPL(kick_process);
3535 
3536 /*
3537  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3538  *
3539  * A few notes on cpu_active vs cpu_online:
3540  *
3541  *  - cpu_active must be a subset of cpu_online
3542  *
3543  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3544  *    see __set_cpus_allowed_ptr(). At this point the newly online
3545  *    CPU isn't yet part of the sched domains, and balancing will not
3546  *    see it.
3547  *
3548  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3549  *    avoid the load balancer to place new tasks on the to be removed
3550  *    CPU. Existing tasks will remain running there and will be taken
3551  *    off.
3552  *
3553  * This means that fallback selection must not select !active CPUs.
3554  * And can assume that any active CPU must be online. Conversely
3555  * select_task_rq() below may allow selection of !active CPUs in order
3556  * to satisfy the above rules.
3557  */
3558 static int select_fallback_rq(int cpu, struct task_struct *p)
3559 {
3560 	int nid = cpu_to_node(cpu);
3561 	const struct cpumask *nodemask = NULL;
3562 	enum { cpuset, possible, fail } state = cpuset;
3563 	int dest_cpu;
3564 
3565 	/*
3566 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3567 	 * will return -1. There is no CPU on the node, and we should
3568 	 * select the CPU on the other node.
3569 	 */
3570 	if (nid != -1) {
3571 		nodemask = cpumask_of_node(nid);
3572 
3573 		/* Look for allowed, online CPU in same node. */
3574 		for_each_cpu(dest_cpu, nodemask) {
3575 			if (is_cpu_allowed(p, dest_cpu))
3576 				return dest_cpu;
3577 		}
3578 	}
3579 
3580 	for (;;) {
3581 		/* Any allowed, online CPU? */
3582 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3583 			if (!is_cpu_allowed(p, dest_cpu))
3584 				continue;
3585 
3586 			goto out;
3587 		}
3588 
3589 		/* No more Mr. Nice Guy. */
3590 		switch (state) {
3591 		case cpuset:
3592 			if (cpuset_cpus_allowed_fallback(p)) {
3593 				state = possible;
3594 				break;
3595 			}
3596 			fallthrough;
3597 		case possible:
3598 			/*
3599 			 * XXX When called from select_task_rq() we only
3600 			 * hold p->pi_lock and again violate locking order.
3601 			 *
3602 			 * More yuck to audit.
3603 			 */
3604 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3605 			state = fail;
3606 			break;
3607 		case fail:
3608 			BUG();
3609 			break;
3610 		}
3611 	}
3612 
3613 out:
3614 	if (state != cpuset) {
3615 		/*
3616 		 * Don't tell them about moving exiting tasks or
3617 		 * kernel threads (both mm NULL), since they never
3618 		 * leave kernel.
3619 		 */
3620 		if (p->mm && printk_ratelimit()) {
3621 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3622 					task_pid_nr(p), p->comm, cpu);
3623 		}
3624 	}
3625 
3626 	return dest_cpu;
3627 }
3628 
3629 /*
3630  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3631  */
3632 static inline
3633 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3634 {
3635 	lockdep_assert_held(&p->pi_lock);
3636 
3637 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3638 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3639 	else
3640 		cpu = cpumask_any(p->cpus_ptr);
3641 
3642 	/*
3643 	 * In order not to call set_task_cpu() on a blocking task we need
3644 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3645 	 * CPU.
3646 	 *
3647 	 * Since this is common to all placement strategies, this lives here.
3648 	 *
3649 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3650 	 *   not worry about this generic constraint ]
3651 	 */
3652 	if (unlikely(!is_cpu_allowed(p, cpu)))
3653 		cpu = select_fallback_rq(task_cpu(p), p);
3654 
3655 	return cpu;
3656 }
3657 
3658 void sched_set_stop_task(int cpu, struct task_struct *stop)
3659 {
3660 	static struct lock_class_key stop_pi_lock;
3661 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3662 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3663 
3664 	if (stop) {
3665 		/*
3666 		 * Make it appear like a SCHED_FIFO task, its something
3667 		 * userspace knows about and won't get confused about.
3668 		 *
3669 		 * Also, it will make PI more or less work without too
3670 		 * much confusion -- but then, stop work should not
3671 		 * rely on PI working anyway.
3672 		 */
3673 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3674 
3675 		stop->sched_class = &stop_sched_class;
3676 
3677 		/*
3678 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3679 		 * adjust the effective priority of a task. As a result,
3680 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3681 		 * which can then trigger wakeups of the stop thread to push
3682 		 * around the current task.
3683 		 *
3684 		 * The stop task itself will never be part of the PI-chain, it
3685 		 * never blocks, therefore that ->pi_lock recursion is safe.
3686 		 * Tell lockdep about this by placing the stop->pi_lock in its
3687 		 * own class.
3688 		 */
3689 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3690 	}
3691 
3692 	cpu_rq(cpu)->stop = stop;
3693 
3694 	if (old_stop) {
3695 		/*
3696 		 * Reset it back to a normal scheduling class so that
3697 		 * it can die in pieces.
3698 		 */
3699 		old_stop->sched_class = &rt_sched_class;
3700 	}
3701 }
3702 
3703 #else /* CONFIG_SMP */
3704 
3705 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3706 					 struct affinity_context *ctx)
3707 {
3708 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3709 }
3710 
3711 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3712 
3713 static inline bool rq_has_pinned_tasks(struct rq *rq)
3714 {
3715 	return false;
3716 }
3717 
3718 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3719 {
3720 	return NULL;
3721 }
3722 
3723 #endif /* !CONFIG_SMP */
3724 
3725 static void
3726 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3727 {
3728 	struct rq *rq;
3729 
3730 	if (!schedstat_enabled())
3731 		return;
3732 
3733 	rq = this_rq();
3734 
3735 #ifdef CONFIG_SMP
3736 	if (cpu == rq->cpu) {
3737 		__schedstat_inc(rq->ttwu_local);
3738 		__schedstat_inc(p->stats.nr_wakeups_local);
3739 	} else {
3740 		struct sched_domain *sd;
3741 
3742 		__schedstat_inc(p->stats.nr_wakeups_remote);
3743 
3744 		guard(rcu)();
3745 		for_each_domain(rq->cpu, sd) {
3746 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3747 				__schedstat_inc(sd->ttwu_wake_remote);
3748 				break;
3749 			}
3750 		}
3751 	}
3752 
3753 	if (wake_flags & WF_MIGRATED)
3754 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3755 #endif /* CONFIG_SMP */
3756 
3757 	__schedstat_inc(rq->ttwu_count);
3758 	__schedstat_inc(p->stats.nr_wakeups);
3759 
3760 	if (wake_flags & WF_SYNC)
3761 		__schedstat_inc(p->stats.nr_wakeups_sync);
3762 }
3763 
3764 /*
3765  * Mark the task runnable.
3766  */
3767 static inline void ttwu_do_wakeup(struct task_struct *p)
3768 {
3769 	WRITE_ONCE(p->__state, TASK_RUNNING);
3770 	trace_sched_wakeup(p);
3771 }
3772 
3773 static void
3774 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3775 		 struct rq_flags *rf)
3776 {
3777 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3778 
3779 	lockdep_assert_rq_held(rq);
3780 
3781 	if (p->sched_contributes_to_load)
3782 		rq->nr_uninterruptible--;
3783 
3784 #ifdef CONFIG_SMP
3785 	if (wake_flags & WF_MIGRATED)
3786 		en_flags |= ENQUEUE_MIGRATED;
3787 	else
3788 #endif
3789 	if (p->in_iowait) {
3790 		delayacct_blkio_end(p);
3791 		atomic_dec(&task_rq(p)->nr_iowait);
3792 	}
3793 
3794 	activate_task(rq, p, en_flags);
3795 	wakeup_preempt(rq, p, wake_flags);
3796 
3797 	ttwu_do_wakeup(p);
3798 
3799 #ifdef CONFIG_SMP
3800 	if (p->sched_class->task_woken) {
3801 		/*
3802 		 * Our task @p is fully woken up and running; so it's safe to
3803 		 * drop the rq->lock, hereafter rq is only used for statistics.
3804 		 */
3805 		rq_unpin_lock(rq, rf);
3806 		p->sched_class->task_woken(rq, p);
3807 		rq_repin_lock(rq, rf);
3808 	}
3809 
3810 	if (rq->idle_stamp) {
3811 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3812 		u64 max = 2*rq->max_idle_balance_cost;
3813 
3814 		update_avg(&rq->avg_idle, delta);
3815 
3816 		if (rq->avg_idle > max)
3817 			rq->avg_idle = max;
3818 
3819 		rq->idle_stamp = 0;
3820 	}
3821 #endif
3822 
3823 	p->dl_server = NULL;
3824 }
3825 
3826 /*
3827  * Consider @p being inside a wait loop:
3828  *
3829  *   for (;;) {
3830  *      set_current_state(TASK_UNINTERRUPTIBLE);
3831  *
3832  *      if (CONDITION)
3833  *         break;
3834  *
3835  *      schedule();
3836  *   }
3837  *   __set_current_state(TASK_RUNNING);
3838  *
3839  * between set_current_state() and schedule(). In this case @p is still
3840  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3841  * an atomic manner.
3842  *
3843  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3844  * then schedule() must still happen and p->state can be changed to
3845  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3846  * need to do a full wakeup with enqueue.
3847  *
3848  * Returns: %true when the wakeup is done,
3849  *          %false otherwise.
3850  */
3851 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3852 {
3853 	struct rq_flags rf;
3854 	struct rq *rq;
3855 	int ret = 0;
3856 
3857 	rq = __task_rq_lock(p, &rf);
3858 	if (task_on_rq_queued(p)) {
3859 		if (!task_on_cpu(rq, p)) {
3860 			/*
3861 			 * When on_rq && !on_cpu the task is preempted, see if
3862 			 * it should preempt the task that is current now.
3863 			 */
3864 			update_rq_clock(rq);
3865 			wakeup_preempt(rq, p, wake_flags);
3866 		}
3867 		ttwu_do_wakeup(p);
3868 		ret = 1;
3869 	}
3870 	__task_rq_unlock(rq, &rf);
3871 
3872 	return ret;
3873 }
3874 
3875 #ifdef CONFIG_SMP
3876 void sched_ttwu_pending(void *arg)
3877 {
3878 	struct llist_node *llist = arg;
3879 	struct rq *rq = this_rq();
3880 	struct task_struct *p, *t;
3881 	struct rq_flags rf;
3882 
3883 	if (!llist)
3884 		return;
3885 
3886 	rq_lock_irqsave(rq, &rf);
3887 	update_rq_clock(rq);
3888 
3889 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3890 		if (WARN_ON_ONCE(p->on_cpu))
3891 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3892 
3893 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3894 			set_task_cpu(p, cpu_of(rq));
3895 
3896 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3897 	}
3898 
3899 	/*
3900 	 * Must be after enqueueing at least once task such that
3901 	 * idle_cpu() does not observe a false-negative -- if it does,
3902 	 * it is possible for select_idle_siblings() to stack a number
3903 	 * of tasks on this CPU during that window.
3904 	 *
3905 	 * It is ok to clear ttwu_pending when another task pending.
3906 	 * We will receive IPI after local irq enabled and then enqueue it.
3907 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3908 	 */
3909 	WRITE_ONCE(rq->ttwu_pending, 0);
3910 	rq_unlock_irqrestore(rq, &rf);
3911 }
3912 
3913 /*
3914  * Prepare the scene for sending an IPI for a remote smp_call
3915  *
3916  * Returns true if the caller can proceed with sending the IPI.
3917  * Returns false otherwise.
3918  */
3919 bool call_function_single_prep_ipi(int cpu)
3920 {
3921 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3922 		trace_sched_wake_idle_without_ipi(cpu);
3923 		return false;
3924 	}
3925 
3926 	return true;
3927 }
3928 
3929 /*
3930  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3931  * necessary. The wakee CPU on receipt of the IPI will queue the task
3932  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3933  * of the wakeup instead of the waker.
3934  */
3935 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3936 {
3937 	struct rq *rq = cpu_rq(cpu);
3938 
3939 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3940 
3941 	WRITE_ONCE(rq->ttwu_pending, 1);
3942 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3943 }
3944 
3945 void wake_up_if_idle(int cpu)
3946 {
3947 	struct rq *rq = cpu_rq(cpu);
3948 
3949 	guard(rcu)();
3950 	if (is_idle_task(rcu_dereference(rq->curr))) {
3951 		guard(rq_lock_irqsave)(rq);
3952 		if (is_idle_task(rq->curr))
3953 			resched_curr(rq);
3954 	}
3955 }
3956 
3957 bool cpus_share_cache(int this_cpu, int that_cpu)
3958 {
3959 	if (this_cpu == that_cpu)
3960 		return true;
3961 
3962 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3963 }
3964 
3965 /*
3966  * Whether CPUs are share cache resources, which means LLC on non-cluster
3967  * machines and LLC tag or L2 on machines with clusters.
3968  */
3969 bool cpus_share_resources(int this_cpu, int that_cpu)
3970 {
3971 	if (this_cpu == that_cpu)
3972 		return true;
3973 
3974 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3975 }
3976 
3977 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3978 {
3979 	/*
3980 	 * Do not complicate things with the async wake_list while the CPU is
3981 	 * in hotplug state.
3982 	 */
3983 	if (!cpu_active(cpu))
3984 		return false;
3985 
3986 	/* Ensure the task will still be allowed to run on the CPU. */
3987 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3988 		return false;
3989 
3990 	/*
3991 	 * If the CPU does not share cache, then queue the task on the
3992 	 * remote rqs wakelist to avoid accessing remote data.
3993 	 */
3994 	if (!cpus_share_cache(smp_processor_id(), cpu))
3995 		return true;
3996 
3997 	if (cpu == smp_processor_id())
3998 		return false;
3999 
4000 	/*
4001 	 * If the wakee cpu is idle, or the task is descheduling and the
4002 	 * only running task on the CPU, then use the wakelist to offload
4003 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4004 	 * the current CPU is likely busy. nr_running is checked to
4005 	 * avoid unnecessary task stacking.
4006 	 *
4007 	 * Note that we can only get here with (wakee) p->on_rq=0,
4008 	 * p->on_cpu can be whatever, we've done the dequeue, so
4009 	 * the wakee has been accounted out of ->nr_running.
4010 	 */
4011 	if (!cpu_rq(cpu)->nr_running)
4012 		return true;
4013 
4014 	return false;
4015 }
4016 
4017 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4018 {
4019 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4020 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4021 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4022 		return true;
4023 	}
4024 
4025 	return false;
4026 }
4027 
4028 #else /* !CONFIG_SMP */
4029 
4030 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4031 {
4032 	return false;
4033 }
4034 
4035 #endif /* CONFIG_SMP */
4036 
4037 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4038 {
4039 	struct rq *rq = cpu_rq(cpu);
4040 	struct rq_flags rf;
4041 
4042 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4043 		return;
4044 
4045 	rq_lock(rq, &rf);
4046 	update_rq_clock(rq);
4047 	ttwu_do_activate(rq, p, wake_flags, &rf);
4048 	rq_unlock(rq, &rf);
4049 }
4050 
4051 /*
4052  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4053  *
4054  * The caller holds p::pi_lock if p != current or has preemption
4055  * disabled when p == current.
4056  *
4057  * The rules of saved_state:
4058  *
4059  *   The related locking code always holds p::pi_lock when updating
4060  *   p::saved_state, which means the code is fully serialized in both cases.
4061  *
4062  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4063  *   No other bits set. This allows to distinguish all wakeup scenarios.
4064  *
4065  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4066  *   allows us to prevent early wakeup of tasks before they can be run on
4067  *   asymmetric ISA architectures (eg ARMv9).
4068  */
4069 static __always_inline
4070 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4071 {
4072 	int match;
4073 
4074 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4075 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4076 			     state != TASK_RTLOCK_WAIT);
4077 	}
4078 
4079 	*success = !!(match = __task_state_match(p, state));
4080 
4081 	/*
4082 	 * Saved state preserves the task state across blocking on
4083 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4084 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4085 	 * because it waits for a lock wakeup or __thaw_task(). Also
4086 	 * indicate success because from the regular waker's point of
4087 	 * view this has succeeded.
4088 	 *
4089 	 * After acquiring the lock the task will restore p::__state
4090 	 * from p::saved_state which ensures that the regular
4091 	 * wakeup is not lost. The restore will also set
4092 	 * p::saved_state to TASK_RUNNING so any further tests will
4093 	 * not result in false positives vs. @success
4094 	 */
4095 	if (match < 0)
4096 		p->saved_state = TASK_RUNNING;
4097 
4098 	return match > 0;
4099 }
4100 
4101 /*
4102  * Notes on Program-Order guarantees on SMP systems.
4103  *
4104  *  MIGRATION
4105  *
4106  * The basic program-order guarantee on SMP systems is that when a task [t]
4107  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4108  * execution on its new CPU [c1].
4109  *
4110  * For migration (of runnable tasks) this is provided by the following means:
4111  *
4112  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4113  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4114  *     rq(c1)->lock (if not at the same time, then in that order).
4115  *  C) LOCK of the rq(c1)->lock scheduling in task
4116  *
4117  * Release/acquire chaining guarantees that B happens after A and C after B.
4118  * Note: the CPU doing B need not be c0 or c1
4119  *
4120  * Example:
4121  *
4122  *   CPU0            CPU1            CPU2
4123  *
4124  *   LOCK rq(0)->lock
4125  *   sched-out X
4126  *   sched-in Y
4127  *   UNLOCK rq(0)->lock
4128  *
4129  *                                   LOCK rq(0)->lock // orders against CPU0
4130  *                                   dequeue X
4131  *                                   UNLOCK rq(0)->lock
4132  *
4133  *                                   LOCK rq(1)->lock
4134  *                                   enqueue X
4135  *                                   UNLOCK rq(1)->lock
4136  *
4137  *                   LOCK rq(1)->lock // orders against CPU2
4138  *                   sched-out Z
4139  *                   sched-in X
4140  *                   UNLOCK rq(1)->lock
4141  *
4142  *
4143  *  BLOCKING -- aka. SLEEP + WAKEUP
4144  *
4145  * For blocking we (obviously) need to provide the same guarantee as for
4146  * migration. However the means are completely different as there is no lock
4147  * chain to provide order. Instead we do:
4148  *
4149  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4150  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4151  *
4152  * Example:
4153  *
4154  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4155  *
4156  *   LOCK rq(0)->lock LOCK X->pi_lock
4157  *   dequeue X
4158  *   sched-out X
4159  *   smp_store_release(X->on_cpu, 0);
4160  *
4161  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4162  *                    X->state = WAKING
4163  *                    set_task_cpu(X,2)
4164  *
4165  *                    LOCK rq(2)->lock
4166  *                    enqueue X
4167  *                    X->state = RUNNING
4168  *                    UNLOCK rq(2)->lock
4169  *
4170  *                                          LOCK rq(2)->lock // orders against CPU1
4171  *                                          sched-out Z
4172  *                                          sched-in X
4173  *                                          UNLOCK rq(2)->lock
4174  *
4175  *                    UNLOCK X->pi_lock
4176  *   UNLOCK rq(0)->lock
4177  *
4178  *
4179  * However, for wakeups there is a second guarantee we must provide, namely we
4180  * must ensure that CONDITION=1 done by the caller can not be reordered with
4181  * accesses to the task state; see try_to_wake_up() and set_current_state().
4182  */
4183 
4184 /**
4185  * try_to_wake_up - wake up a thread
4186  * @p: the thread to be awakened
4187  * @state: the mask of task states that can be woken
4188  * @wake_flags: wake modifier flags (WF_*)
4189  *
4190  * Conceptually does:
4191  *
4192  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4193  *
4194  * If the task was not queued/runnable, also place it back on a runqueue.
4195  *
4196  * This function is atomic against schedule() which would dequeue the task.
4197  *
4198  * It issues a full memory barrier before accessing @p->state, see the comment
4199  * with set_current_state().
4200  *
4201  * Uses p->pi_lock to serialize against concurrent wake-ups.
4202  *
4203  * Relies on p->pi_lock stabilizing:
4204  *  - p->sched_class
4205  *  - p->cpus_ptr
4206  *  - p->sched_task_group
4207  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4208  *
4209  * Tries really hard to only take one task_rq(p)->lock for performance.
4210  * Takes rq->lock in:
4211  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4212  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4213  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4214  *
4215  * As a consequence we race really badly with just about everything. See the
4216  * many memory barriers and their comments for details.
4217  *
4218  * Return: %true if @p->state changes (an actual wakeup was done),
4219  *	   %false otherwise.
4220  */
4221 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4222 {
4223 	guard(preempt)();
4224 	int cpu, success = 0;
4225 
4226 	if (p == current) {
4227 		/*
4228 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4229 		 * == smp_processor_id()'. Together this means we can special
4230 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4231 		 * without taking any locks.
4232 		 *
4233 		 * In particular:
4234 		 *  - we rely on Program-Order guarantees for all the ordering,
4235 		 *  - we're serialized against set_special_state() by virtue of
4236 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4237 		 */
4238 		if (!ttwu_state_match(p, state, &success))
4239 			goto out;
4240 
4241 		trace_sched_waking(p);
4242 		ttwu_do_wakeup(p);
4243 		goto out;
4244 	}
4245 
4246 	/*
4247 	 * If we are going to wake up a thread waiting for CONDITION we
4248 	 * need to ensure that CONDITION=1 done by the caller can not be
4249 	 * reordered with p->state check below. This pairs with smp_store_mb()
4250 	 * in set_current_state() that the waiting thread does.
4251 	 */
4252 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4253 		smp_mb__after_spinlock();
4254 		if (!ttwu_state_match(p, state, &success))
4255 			break;
4256 
4257 		trace_sched_waking(p);
4258 
4259 		/*
4260 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4261 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4262 		 * in smp_cond_load_acquire() below.
4263 		 *
4264 		 * sched_ttwu_pending()			try_to_wake_up()
4265 		 *   STORE p->on_rq = 1			  LOAD p->state
4266 		 *   UNLOCK rq->lock
4267 		 *
4268 		 * __schedule() (switch to task 'p')
4269 		 *   LOCK rq->lock			  smp_rmb();
4270 		 *   smp_mb__after_spinlock();
4271 		 *   UNLOCK rq->lock
4272 		 *
4273 		 * [task p]
4274 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4275 		 *
4276 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4277 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4278 		 *
4279 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4280 		 */
4281 		smp_rmb();
4282 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4283 			break;
4284 
4285 #ifdef CONFIG_SMP
4286 		/*
4287 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4288 		 * possible to, falsely, observe p->on_cpu == 0.
4289 		 *
4290 		 * One must be running (->on_cpu == 1) in order to remove oneself
4291 		 * from the runqueue.
4292 		 *
4293 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4294 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4295 		 *   UNLOCK rq->lock
4296 		 *
4297 		 * __schedule() (put 'p' to sleep)
4298 		 *   LOCK rq->lock			  smp_rmb();
4299 		 *   smp_mb__after_spinlock();
4300 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4301 		 *
4302 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4303 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4304 		 *
4305 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4306 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4307 		 * care about it's own p->state. See the comment in __schedule().
4308 		 */
4309 		smp_acquire__after_ctrl_dep();
4310 
4311 		/*
4312 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4313 		 * == 0), which means we need to do an enqueue, change p->state to
4314 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4315 		 * enqueue, such as ttwu_queue_wakelist().
4316 		 */
4317 		WRITE_ONCE(p->__state, TASK_WAKING);
4318 
4319 		/*
4320 		 * If the owning (remote) CPU is still in the middle of schedule() with
4321 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4322 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4323 		 * let the waker make forward progress. This is safe because IRQs are
4324 		 * disabled and the IPI will deliver after on_cpu is cleared.
4325 		 *
4326 		 * Ensure we load task_cpu(p) after p->on_cpu:
4327 		 *
4328 		 * set_task_cpu(p, cpu);
4329 		 *   STORE p->cpu = @cpu
4330 		 * __schedule() (switch to task 'p')
4331 		 *   LOCK rq->lock
4332 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4333 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4334 		 *
4335 		 * to ensure we observe the correct CPU on which the task is currently
4336 		 * scheduling.
4337 		 */
4338 		if (smp_load_acquire(&p->on_cpu) &&
4339 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4340 			break;
4341 
4342 		/*
4343 		 * If the owning (remote) CPU is still in the middle of schedule() with
4344 		 * this task as prev, wait until it's done referencing the task.
4345 		 *
4346 		 * Pairs with the smp_store_release() in finish_task().
4347 		 *
4348 		 * This ensures that tasks getting woken will be fully ordered against
4349 		 * their previous state and preserve Program Order.
4350 		 */
4351 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4352 
4353 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4354 		if (task_cpu(p) != cpu) {
4355 			if (p->in_iowait) {
4356 				delayacct_blkio_end(p);
4357 				atomic_dec(&task_rq(p)->nr_iowait);
4358 			}
4359 
4360 			wake_flags |= WF_MIGRATED;
4361 			psi_ttwu_dequeue(p);
4362 			set_task_cpu(p, cpu);
4363 		}
4364 #else
4365 		cpu = task_cpu(p);
4366 #endif /* CONFIG_SMP */
4367 
4368 		ttwu_queue(p, cpu, wake_flags);
4369 	}
4370 out:
4371 	if (success)
4372 		ttwu_stat(p, task_cpu(p), wake_flags);
4373 
4374 	return success;
4375 }
4376 
4377 static bool __task_needs_rq_lock(struct task_struct *p)
4378 {
4379 	unsigned int state = READ_ONCE(p->__state);
4380 
4381 	/*
4382 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4383 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4384 	 * locks at the end, see ttwu_queue_wakelist().
4385 	 */
4386 	if (state == TASK_RUNNING || state == TASK_WAKING)
4387 		return true;
4388 
4389 	/*
4390 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4391 	 * possible to, falsely, observe p->on_rq == 0.
4392 	 *
4393 	 * See try_to_wake_up() for a longer comment.
4394 	 */
4395 	smp_rmb();
4396 	if (p->on_rq)
4397 		return true;
4398 
4399 #ifdef CONFIG_SMP
4400 	/*
4401 	 * Ensure the task has finished __schedule() and will not be referenced
4402 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4403 	 */
4404 	smp_rmb();
4405 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4406 #endif
4407 
4408 	return false;
4409 }
4410 
4411 /**
4412  * task_call_func - Invoke a function on task in fixed state
4413  * @p: Process for which the function is to be invoked, can be @current.
4414  * @func: Function to invoke.
4415  * @arg: Argument to function.
4416  *
4417  * Fix the task in it's current state by avoiding wakeups and or rq operations
4418  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4419  * to work out what the state is, if required.  Given that @func can be invoked
4420  * with a runqueue lock held, it had better be quite lightweight.
4421  *
4422  * Returns:
4423  *   Whatever @func returns
4424  */
4425 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4426 {
4427 	struct rq *rq = NULL;
4428 	struct rq_flags rf;
4429 	int ret;
4430 
4431 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4432 
4433 	if (__task_needs_rq_lock(p))
4434 		rq = __task_rq_lock(p, &rf);
4435 
4436 	/*
4437 	 * At this point the task is pinned; either:
4438 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4439 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4440 	 *  - queued, and we're holding off schedule	 (rq->lock)
4441 	 *  - running, and we're holding off de-schedule (rq->lock)
4442 	 *
4443 	 * The called function (@func) can use: task_curr(), p->on_rq and
4444 	 * p->__state to differentiate between these states.
4445 	 */
4446 	ret = func(p, arg);
4447 
4448 	if (rq)
4449 		rq_unlock(rq, &rf);
4450 
4451 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4452 	return ret;
4453 }
4454 
4455 /**
4456  * cpu_curr_snapshot - Return a snapshot of the currently running task
4457  * @cpu: The CPU on which to snapshot the task.
4458  *
4459  * Returns the task_struct pointer of the task "currently" running on
4460  * the specified CPU.  If the same task is running on that CPU throughout,
4461  * the return value will be a pointer to that task's task_struct structure.
4462  * If the CPU did any context switches even vaguely concurrently with the
4463  * execution of this function, the return value will be a pointer to the
4464  * task_struct structure of a randomly chosen task that was running on
4465  * that CPU somewhere around the time that this function was executing.
4466  *
4467  * If the specified CPU was offline, the return value is whatever it
4468  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4469  * task, but there is no guarantee.  Callers wishing a useful return
4470  * value must take some action to ensure that the specified CPU remains
4471  * online throughout.
4472  *
4473  * This function executes full memory barriers before and after fetching
4474  * the pointer, which permits the caller to confine this function's fetch
4475  * with respect to the caller's accesses to other shared variables.
4476  */
4477 struct task_struct *cpu_curr_snapshot(int cpu)
4478 {
4479 	struct task_struct *t;
4480 
4481 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4482 	t = rcu_dereference(cpu_curr(cpu));
4483 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4484 	return t;
4485 }
4486 
4487 /**
4488  * wake_up_process - Wake up a specific process
4489  * @p: The process to be woken up.
4490  *
4491  * Attempt to wake up the nominated process and move it to the set of runnable
4492  * processes.
4493  *
4494  * Return: 1 if the process was woken up, 0 if it was already running.
4495  *
4496  * This function executes a full memory barrier before accessing the task state.
4497  */
4498 int wake_up_process(struct task_struct *p)
4499 {
4500 	return try_to_wake_up(p, TASK_NORMAL, 0);
4501 }
4502 EXPORT_SYMBOL(wake_up_process);
4503 
4504 int wake_up_state(struct task_struct *p, unsigned int state)
4505 {
4506 	return try_to_wake_up(p, state, 0);
4507 }
4508 
4509 /*
4510  * Perform scheduler related setup for a newly forked process p.
4511  * p is forked by current.
4512  *
4513  * __sched_fork() is basic setup used by init_idle() too:
4514  */
4515 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4516 {
4517 	p->on_rq			= 0;
4518 
4519 	p->se.on_rq			= 0;
4520 	p->se.exec_start		= 0;
4521 	p->se.sum_exec_runtime		= 0;
4522 	p->se.prev_sum_exec_runtime	= 0;
4523 	p->se.nr_migrations		= 0;
4524 	p->se.vruntime			= 0;
4525 	p->se.vlag			= 0;
4526 	p->se.slice			= sysctl_sched_base_slice;
4527 	INIT_LIST_HEAD(&p->se.group_node);
4528 
4529 #ifdef CONFIG_FAIR_GROUP_SCHED
4530 	p->se.cfs_rq			= NULL;
4531 #endif
4532 
4533 #ifdef CONFIG_SCHEDSTATS
4534 	/* Even if schedstat is disabled, there should not be garbage */
4535 	memset(&p->stats, 0, sizeof(p->stats));
4536 #endif
4537 
4538 	init_dl_entity(&p->dl);
4539 
4540 	INIT_LIST_HEAD(&p->rt.run_list);
4541 	p->rt.timeout		= 0;
4542 	p->rt.time_slice	= sched_rr_timeslice;
4543 	p->rt.on_rq		= 0;
4544 	p->rt.on_list		= 0;
4545 
4546 #ifdef CONFIG_PREEMPT_NOTIFIERS
4547 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4548 #endif
4549 
4550 #ifdef CONFIG_COMPACTION
4551 	p->capture_control = NULL;
4552 #endif
4553 	init_numa_balancing(clone_flags, p);
4554 #ifdef CONFIG_SMP
4555 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4556 	p->migration_pending = NULL;
4557 #endif
4558 	init_sched_mm_cid(p);
4559 }
4560 
4561 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4562 
4563 #ifdef CONFIG_NUMA_BALANCING
4564 
4565 int sysctl_numa_balancing_mode;
4566 
4567 static void __set_numabalancing_state(bool enabled)
4568 {
4569 	if (enabled)
4570 		static_branch_enable(&sched_numa_balancing);
4571 	else
4572 		static_branch_disable(&sched_numa_balancing);
4573 }
4574 
4575 void set_numabalancing_state(bool enabled)
4576 {
4577 	if (enabled)
4578 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4579 	else
4580 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4581 	__set_numabalancing_state(enabled);
4582 }
4583 
4584 #ifdef CONFIG_PROC_SYSCTL
4585 static void reset_memory_tiering(void)
4586 {
4587 	struct pglist_data *pgdat;
4588 
4589 	for_each_online_pgdat(pgdat) {
4590 		pgdat->nbp_threshold = 0;
4591 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4592 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4593 	}
4594 }
4595 
4596 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4597 			  void *buffer, size_t *lenp, loff_t *ppos)
4598 {
4599 	struct ctl_table t;
4600 	int err;
4601 	int state = sysctl_numa_balancing_mode;
4602 
4603 	if (write && !capable(CAP_SYS_ADMIN))
4604 		return -EPERM;
4605 
4606 	t = *table;
4607 	t.data = &state;
4608 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4609 	if (err < 0)
4610 		return err;
4611 	if (write) {
4612 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4613 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4614 			reset_memory_tiering();
4615 		sysctl_numa_balancing_mode = state;
4616 		__set_numabalancing_state(state);
4617 	}
4618 	return err;
4619 }
4620 #endif
4621 #endif
4622 
4623 #ifdef CONFIG_SCHEDSTATS
4624 
4625 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4626 
4627 static void set_schedstats(bool enabled)
4628 {
4629 	if (enabled)
4630 		static_branch_enable(&sched_schedstats);
4631 	else
4632 		static_branch_disable(&sched_schedstats);
4633 }
4634 
4635 void force_schedstat_enabled(void)
4636 {
4637 	if (!schedstat_enabled()) {
4638 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4639 		static_branch_enable(&sched_schedstats);
4640 	}
4641 }
4642 
4643 static int __init setup_schedstats(char *str)
4644 {
4645 	int ret = 0;
4646 	if (!str)
4647 		goto out;
4648 
4649 	if (!strcmp(str, "enable")) {
4650 		set_schedstats(true);
4651 		ret = 1;
4652 	} else if (!strcmp(str, "disable")) {
4653 		set_schedstats(false);
4654 		ret = 1;
4655 	}
4656 out:
4657 	if (!ret)
4658 		pr_warn("Unable to parse schedstats=\n");
4659 
4660 	return ret;
4661 }
4662 __setup("schedstats=", setup_schedstats);
4663 
4664 #ifdef CONFIG_PROC_SYSCTL
4665 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4666 		size_t *lenp, loff_t *ppos)
4667 {
4668 	struct ctl_table t;
4669 	int err;
4670 	int state = static_branch_likely(&sched_schedstats);
4671 
4672 	if (write && !capable(CAP_SYS_ADMIN))
4673 		return -EPERM;
4674 
4675 	t = *table;
4676 	t.data = &state;
4677 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4678 	if (err < 0)
4679 		return err;
4680 	if (write)
4681 		set_schedstats(state);
4682 	return err;
4683 }
4684 #endif /* CONFIG_PROC_SYSCTL */
4685 #endif /* CONFIG_SCHEDSTATS */
4686 
4687 #ifdef CONFIG_SYSCTL
4688 static struct ctl_table sched_core_sysctls[] = {
4689 #ifdef CONFIG_SCHEDSTATS
4690 	{
4691 		.procname       = "sched_schedstats",
4692 		.data           = NULL,
4693 		.maxlen         = sizeof(unsigned int),
4694 		.mode           = 0644,
4695 		.proc_handler   = sysctl_schedstats,
4696 		.extra1         = SYSCTL_ZERO,
4697 		.extra2         = SYSCTL_ONE,
4698 	},
4699 #endif /* CONFIG_SCHEDSTATS */
4700 #ifdef CONFIG_UCLAMP_TASK
4701 	{
4702 		.procname       = "sched_util_clamp_min",
4703 		.data           = &sysctl_sched_uclamp_util_min,
4704 		.maxlen         = sizeof(unsigned int),
4705 		.mode           = 0644,
4706 		.proc_handler   = sysctl_sched_uclamp_handler,
4707 	},
4708 	{
4709 		.procname       = "sched_util_clamp_max",
4710 		.data           = &sysctl_sched_uclamp_util_max,
4711 		.maxlen         = sizeof(unsigned int),
4712 		.mode           = 0644,
4713 		.proc_handler   = sysctl_sched_uclamp_handler,
4714 	},
4715 	{
4716 		.procname       = "sched_util_clamp_min_rt_default",
4717 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4718 		.maxlen         = sizeof(unsigned int),
4719 		.mode           = 0644,
4720 		.proc_handler   = sysctl_sched_uclamp_handler,
4721 	},
4722 #endif /* CONFIG_UCLAMP_TASK */
4723 #ifdef CONFIG_NUMA_BALANCING
4724 	{
4725 		.procname	= "numa_balancing",
4726 		.data		= NULL, /* filled in by handler */
4727 		.maxlen		= sizeof(unsigned int),
4728 		.mode		= 0644,
4729 		.proc_handler	= sysctl_numa_balancing,
4730 		.extra1		= SYSCTL_ZERO,
4731 		.extra2		= SYSCTL_FOUR,
4732 	},
4733 #endif /* CONFIG_NUMA_BALANCING */
4734 	{}
4735 };
4736 static int __init sched_core_sysctl_init(void)
4737 {
4738 	register_sysctl_init("kernel", sched_core_sysctls);
4739 	return 0;
4740 }
4741 late_initcall(sched_core_sysctl_init);
4742 #endif /* CONFIG_SYSCTL */
4743 
4744 /*
4745  * fork()/clone()-time setup:
4746  */
4747 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4748 {
4749 	__sched_fork(clone_flags, p);
4750 	/*
4751 	 * We mark the process as NEW here. This guarantees that
4752 	 * nobody will actually run it, and a signal or other external
4753 	 * event cannot wake it up and insert it on the runqueue either.
4754 	 */
4755 	p->__state = TASK_NEW;
4756 
4757 	/*
4758 	 * Make sure we do not leak PI boosting priority to the child.
4759 	 */
4760 	p->prio = current->normal_prio;
4761 
4762 	uclamp_fork(p);
4763 
4764 	/*
4765 	 * Revert to default priority/policy on fork if requested.
4766 	 */
4767 	if (unlikely(p->sched_reset_on_fork)) {
4768 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4769 			p->policy = SCHED_NORMAL;
4770 			p->static_prio = NICE_TO_PRIO(0);
4771 			p->rt_priority = 0;
4772 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4773 			p->static_prio = NICE_TO_PRIO(0);
4774 
4775 		p->prio = p->normal_prio = p->static_prio;
4776 		set_load_weight(p, false);
4777 
4778 		/*
4779 		 * We don't need the reset flag anymore after the fork. It has
4780 		 * fulfilled its duty:
4781 		 */
4782 		p->sched_reset_on_fork = 0;
4783 	}
4784 
4785 	if (dl_prio(p->prio))
4786 		return -EAGAIN;
4787 	else if (rt_prio(p->prio))
4788 		p->sched_class = &rt_sched_class;
4789 	else
4790 		p->sched_class = &fair_sched_class;
4791 
4792 	init_entity_runnable_average(&p->se);
4793 
4794 
4795 #ifdef CONFIG_SCHED_INFO
4796 	if (likely(sched_info_on()))
4797 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4798 #endif
4799 #if defined(CONFIG_SMP)
4800 	p->on_cpu = 0;
4801 #endif
4802 	init_task_preempt_count(p);
4803 #ifdef CONFIG_SMP
4804 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4805 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4806 #endif
4807 	return 0;
4808 }
4809 
4810 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4811 {
4812 	unsigned long flags;
4813 
4814 	/*
4815 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4816 	 * required yet, but lockdep gets upset if rules are violated.
4817 	 */
4818 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4819 #ifdef CONFIG_CGROUP_SCHED
4820 	if (1) {
4821 		struct task_group *tg;
4822 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4823 				  struct task_group, css);
4824 		tg = autogroup_task_group(p, tg);
4825 		p->sched_task_group = tg;
4826 	}
4827 #endif
4828 	rseq_migrate(p);
4829 	/*
4830 	 * We're setting the CPU for the first time, we don't migrate,
4831 	 * so use __set_task_cpu().
4832 	 */
4833 	__set_task_cpu(p, smp_processor_id());
4834 	if (p->sched_class->task_fork)
4835 		p->sched_class->task_fork(p);
4836 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4837 }
4838 
4839 void sched_post_fork(struct task_struct *p)
4840 {
4841 	uclamp_post_fork(p);
4842 }
4843 
4844 unsigned long to_ratio(u64 period, u64 runtime)
4845 {
4846 	if (runtime == RUNTIME_INF)
4847 		return BW_UNIT;
4848 
4849 	/*
4850 	 * Doing this here saves a lot of checks in all
4851 	 * the calling paths, and returning zero seems
4852 	 * safe for them anyway.
4853 	 */
4854 	if (period == 0)
4855 		return 0;
4856 
4857 	return div64_u64(runtime << BW_SHIFT, period);
4858 }
4859 
4860 /*
4861  * wake_up_new_task - wake up a newly created task for the first time.
4862  *
4863  * This function will do some initial scheduler statistics housekeeping
4864  * that must be done for every newly created context, then puts the task
4865  * on the runqueue and wakes it.
4866  */
4867 void wake_up_new_task(struct task_struct *p)
4868 {
4869 	struct rq_flags rf;
4870 	struct rq *rq;
4871 
4872 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4873 	WRITE_ONCE(p->__state, TASK_RUNNING);
4874 #ifdef CONFIG_SMP
4875 	/*
4876 	 * Fork balancing, do it here and not earlier because:
4877 	 *  - cpus_ptr can change in the fork path
4878 	 *  - any previously selected CPU might disappear through hotplug
4879 	 *
4880 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4881 	 * as we're not fully set-up yet.
4882 	 */
4883 	p->recent_used_cpu = task_cpu(p);
4884 	rseq_migrate(p);
4885 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4886 #endif
4887 	rq = __task_rq_lock(p, &rf);
4888 	update_rq_clock(rq);
4889 	post_init_entity_util_avg(p);
4890 
4891 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4892 	trace_sched_wakeup_new(p);
4893 	wakeup_preempt(rq, p, WF_FORK);
4894 #ifdef CONFIG_SMP
4895 	if (p->sched_class->task_woken) {
4896 		/*
4897 		 * Nothing relies on rq->lock after this, so it's fine to
4898 		 * drop it.
4899 		 */
4900 		rq_unpin_lock(rq, &rf);
4901 		p->sched_class->task_woken(rq, p);
4902 		rq_repin_lock(rq, &rf);
4903 	}
4904 #endif
4905 	task_rq_unlock(rq, p, &rf);
4906 }
4907 
4908 #ifdef CONFIG_PREEMPT_NOTIFIERS
4909 
4910 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4911 
4912 void preempt_notifier_inc(void)
4913 {
4914 	static_branch_inc(&preempt_notifier_key);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4917 
4918 void preempt_notifier_dec(void)
4919 {
4920 	static_branch_dec(&preempt_notifier_key);
4921 }
4922 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4923 
4924 /**
4925  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4926  * @notifier: notifier struct to register
4927  */
4928 void preempt_notifier_register(struct preempt_notifier *notifier)
4929 {
4930 	if (!static_branch_unlikely(&preempt_notifier_key))
4931 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4932 
4933 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4934 }
4935 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4936 
4937 /**
4938  * preempt_notifier_unregister - no longer interested in preemption notifications
4939  * @notifier: notifier struct to unregister
4940  *
4941  * This is *not* safe to call from within a preemption notifier.
4942  */
4943 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4944 {
4945 	hlist_del(&notifier->link);
4946 }
4947 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4948 
4949 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4950 {
4951 	struct preempt_notifier *notifier;
4952 
4953 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4954 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4955 }
4956 
4957 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4958 {
4959 	if (static_branch_unlikely(&preempt_notifier_key))
4960 		__fire_sched_in_preempt_notifiers(curr);
4961 }
4962 
4963 static void
4964 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4965 				   struct task_struct *next)
4966 {
4967 	struct preempt_notifier *notifier;
4968 
4969 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4970 		notifier->ops->sched_out(notifier, next);
4971 }
4972 
4973 static __always_inline void
4974 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4975 				 struct task_struct *next)
4976 {
4977 	if (static_branch_unlikely(&preempt_notifier_key))
4978 		__fire_sched_out_preempt_notifiers(curr, next);
4979 }
4980 
4981 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4982 
4983 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4984 {
4985 }
4986 
4987 static inline void
4988 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4989 				 struct task_struct *next)
4990 {
4991 }
4992 
4993 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4994 
4995 static inline void prepare_task(struct task_struct *next)
4996 {
4997 #ifdef CONFIG_SMP
4998 	/*
4999 	 * Claim the task as running, we do this before switching to it
5000 	 * such that any running task will have this set.
5001 	 *
5002 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5003 	 * its ordering comment.
5004 	 */
5005 	WRITE_ONCE(next->on_cpu, 1);
5006 #endif
5007 }
5008 
5009 static inline void finish_task(struct task_struct *prev)
5010 {
5011 #ifdef CONFIG_SMP
5012 	/*
5013 	 * This must be the very last reference to @prev from this CPU. After
5014 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5015 	 * must ensure this doesn't happen until the switch is completely
5016 	 * finished.
5017 	 *
5018 	 * In particular, the load of prev->state in finish_task_switch() must
5019 	 * happen before this.
5020 	 *
5021 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5022 	 */
5023 	smp_store_release(&prev->on_cpu, 0);
5024 #endif
5025 }
5026 
5027 #ifdef CONFIG_SMP
5028 
5029 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5030 {
5031 	void (*func)(struct rq *rq);
5032 	struct balance_callback *next;
5033 
5034 	lockdep_assert_rq_held(rq);
5035 
5036 	while (head) {
5037 		func = (void (*)(struct rq *))head->func;
5038 		next = head->next;
5039 		head->next = NULL;
5040 		head = next;
5041 
5042 		func(rq);
5043 	}
5044 }
5045 
5046 static void balance_push(struct rq *rq);
5047 
5048 /*
5049  * balance_push_callback is a right abuse of the callback interface and plays
5050  * by significantly different rules.
5051  *
5052  * Where the normal balance_callback's purpose is to be ran in the same context
5053  * that queued it (only later, when it's safe to drop rq->lock again),
5054  * balance_push_callback is specifically targeted at __schedule().
5055  *
5056  * This abuse is tolerated because it places all the unlikely/odd cases behind
5057  * a single test, namely: rq->balance_callback == NULL.
5058  */
5059 struct balance_callback balance_push_callback = {
5060 	.next = NULL,
5061 	.func = balance_push,
5062 };
5063 
5064 static inline struct balance_callback *
5065 __splice_balance_callbacks(struct rq *rq, bool split)
5066 {
5067 	struct balance_callback *head = rq->balance_callback;
5068 
5069 	if (likely(!head))
5070 		return NULL;
5071 
5072 	lockdep_assert_rq_held(rq);
5073 	/*
5074 	 * Must not take balance_push_callback off the list when
5075 	 * splice_balance_callbacks() and balance_callbacks() are not
5076 	 * in the same rq->lock section.
5077 	 *
5078 	 * In that case it would be possible for __schedule() to interleave
5079 	 * and observe the list empty.
5080 	 */
5081 	if (split && head == &balance_push_callback)
5082 		head = NULL;
5083 	else
5084 		rq->balance_callback = NULL;
5085 
5086 	return head;
5087 }
5088 
5089 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5090 {
5091 	return __splice_balance_callbacks(rq, true);
5092 }
5093 
5094 static void __balance_callbacks(struct rq *rq)
5095 {
5096 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5097 }
5098 
5099 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5100 {
5101 	unsigned long flags;
5102 
5103 	if (unlikely(head)) {
5104 		raw_spin_rq_lock_irqsave(rq, flags);
5105 		do_balance_callbacks(rq, head);
5106 		raw_spin_rq_unlock_irqrestore(rq, flags);
5107 	}
5108 }
5109 
5110 #else
5111 
5112 static inline void __balance_callbacks(struct rq *rq)
5113 {
5114 }
5115 
5116 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5117 {
5118 	return NULL;
5119 }
5120 
5121 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5122 {
5123 }
5124 
5125 #endif
5126 
5127 static inline void
5128 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5129 {
5130 	/*
5131 	 * Since the runqueue lock will be released by the next
5132 	 * task (which is an invalid locking op but in the case
5133 	 * of the scheduler it's an obvious special-case), so we
5134 	 * do an early lockdep release here:
5135 	 */
5136 	rq_unpin_lock(rq, rf);
5137 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5138 #ifdef CONFIG_DEBUG_SPINLOCK
5139 	/* this is a valid case when another task releases the spinlock */
5140 	rq_lockp(rq)->owner = next;
5141 #endif
5142 }
5143 
5144 static inline void finish_lock_switch(struct rq *rq)
5145 {
5146 	/*
5147 	 * If we are tracking spinlock dependencies then we have to
5148 	 * fix up the runqueue lock - which gets 'carried over' from
5149 	 * prev into current:
5150 	 */
5151 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5152 	__balance_callbacks(rq);
5153 	raw_spin_rq_unlock_irq(rq);
5154 }
5155 
5156 /*
5157  * NOP if the arch has not defined these:
5158  */
5159 
5160 #ifndef prepare_arch_switch
5161 # define prepare_arch_switch(next)	do { } while (0)
5162 #endif
5163 
5164 #ifndef finish_arch_post_lock_switch
5165 # define finish_arch_post_lock_switch()	do { } while (0)
5166 #endif
5167 
5168 static inline void kmap_local_sched_out(void)
5169 {
5170 #ifdef CONFIG_KMAP_LOCAL
5171 	if (unlikely(current->kmap_ctrl.idx))
5172 		__kmap_local_sched_out();
5173 #endif
5174 }
5175 
5176 static inline void kmap_local_sched_in(void)
5177 {
5178 #ifdef CONFIG_KMAP_LOCAL
5179 	if (unlikely(current->kmap_ctrl.idx))
5180 		__kmap_local_sched_in();
5181 #endif
5182 }
5183 
5184 /**
5185  * prepare_task_switch - prepare to switch tasks
5186  * @rq: the runqueue preparing to switch
5187  * @prev: the current task that is being switched out
5188  * @next: the task we are going to switch to.
5189  *
5190  * This is called with the rq lock held and interrupts off. It must
5191  * be paired with a subsequent finish_task_switch after the context
5192  * switch.
5193  *
5194  * prepare_task_switch sets up locking and calls architecture specific
5195  * hooks.
5196  */
5197 static inline void
5198 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5199 		    struct task_struct *next)
5200 {
5201 	kcov_prepare_switch(prev);
5202 	sched_info_switch(rq, prev, next);
5203 	perf_event_task_sched_out(prev, next);
5204 	rseq_preempt(prev);
5205 	fire_sched_out_preempt_notifiers(prev, next);
5206 	kmap_local_sched_out();
5207 	prepare_task(next);
5208 	prepare_arch_switch(next);
5209 }
5210 
5211 /**
5212  * finish_task_switch - clean up after a task-switch
5213  * @prev: the thread we just switched away from.
5214  *
5215  * finish_task_switch must be called after the context switch, paired
5216  * with a prepare_task_switch call before the context switch.
5217  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5218  * and do any other architecture-specific cleanup actions.
5219  *
5220  * Note that we may have delayed dropping an mm in context_switch(). If
5221  * so, we finish that here outside of the runqueue lock. (Doing it
5222  * with the lock held can cause deadlocks; see schedule() for
5223  * details.)
5224  *
5225  * The context switch have flipped the stack from under us and restored the
5226  * local variables which were saved when this task called schedule() in the
5227  * past. prev == current is still correct but we need to recalculate this_rq
5228  * because prev may have moved to another CPU.
5229  */
5230 static struct rq *finish_task_switch(struct task_struct *prev)
5231 	__releases(rq->lock)
5232 {
5233 	struct rq *rq = this_rq();
5234 	struct mm_struct *mm = rq->prev_mm;
5235 	unsigned int prev_state;
5236 
5237 	/*
5238 	 * The previous task will have left us with a preempt_count of 2
5239 	 * because it left us after:
5240 	 *
5241 	 *	schedule()
5242 	 *	  preempt_disable();			// 1
5243 	 *	  __schedule()
5244 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5245 	 *
5246 	 * Also, see FORK_PREEMPT_COUNT.
5247 	 */
5248 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5249 		      "corrupted preempt_count: %s/%d/0x%x\n",
5250 		      current->comm, current->pid, preempt_count()))
5251 		preempt_count_set(FORK_PREEMPT_COUNT);
5252 
5253 	rq->prev_mm = NULL;
5254 
5255 	/*
5256 	 * A task struct has one reference for the use as "current".
5257 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5258 	 * schedule one last time. The schedule call will never return, and
5259 	 * the scheduled task must drop that reference.
5260 	 *
5261 	 * We must observe prev->state before clearing prev->on_cpu (in
5262 	 * finish_task), otherwise a concurrent wakeup can get prev
5263 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5264 	 * transition, resulting in a double drop.
5265 	 */
5266 	prev_state = READ_ONCE(prev->__state);
5267 	vtime_task_switch(prev);
5268 	perf_event_task_sched_in(prev, current);
5269 	finish_task(prev);
5270 	tick_nohz_task_switch();
5271 	finish_lock_switch(rq);
5272 	finish_arch_post_lock_switch();
5273 	kcov_finish_switch(current);
5274 	/*
5275 	 * kmap_local_sched_out() is invoked with rq::lock held and
5276 	 * interrupts disabled. There is no requirement for that, but the
5277 	 * sched out code does not have an interrupt enabled section.
5278 	 * Restoring the maps on sched in does not require interrupts being
5279 	 * disabled either.
5280 	 */
5281 	kmap_local_sched_in();
5282 
5283 	fire_sched_in_preempt_notifiers(current);
5284 	/*
5285 	 * When switching through a kernel thread, the loop in
5286 	 * membarrier_{private,global}_expedited() may have observed that
5287 	 * kernel thread and not issued an IPI. It is therefore possible to
5288 	 * schedule between user->kernel->user threads without passing though
5289 	 * switch_mm(). Membarrier requires a barrier after storing to
5290 	 * rq->curr, before returning to userspace, so provide them here:
5291 	 *
5292 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5293 	 *   provided by mmdrop_lazy_tlb(),
5294 	 * - a sync_core for SYNC_CORE.
5295 	 */
5296 	if (mm) {
5297 		membarrier_mm_sync_core_before_usermode(mm);
5298 		mmdrop_lazy_tlb_sched(mm);
5299 	}
5300 
5301 	if (unlikely(prev_state == TASK_DEAD)) {
5302 		if (prev->sched_class->task_dead)
5303 			prev->sched_class->task_dead(prev);
5304 
5305 		/* Task is done with its stack. */
5306 		put_task_stack(prev);
5307 
5308 		put_task_struct_rcu_user(prev);
5309 	}
5310 
5311 	return rq;
5312 }
5313 
5314 /**
5315  * schedule_tail - first thing a freshly forked thread must call.
5316  * @prev: the thread we just switched away from.
5317  */
5318 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5319 	__releases(rq->lock)
5320 {
5321 	/*
5322 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5323 	 * finish_task_switch() for details.
5324 	 *
5325 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5326 	 * and the preempt_enable() will end up enabling preemption (on
5327 	 * PREEMPT_COUNT kernels).
5328 	 */
5329 
5330 	finish_task_switch(prev);
5331 	preempt_enable();
5332 
5333 	if (current->set_child_tid)
5334 		put_user(task_pid_vnr(current), current->set_child_tid);
5335 
5336 	calculate_sigpending();
5337 }
5338 
5339 /*
5340  * context_switch - switch to the new MM and the new thread's register state.
5341  */
5342 static __always_inline struct rq *
5343 context_switch(struct rq *rq, struct task_struct *prev,
5344 	       struct task_struct *next, struct rq_flags *rf)
5345 {
5346 	prepare_task_switch(rq, prev, next);
5347 
5348 	/*
5349 	 * For paravirt, this is coupled with an exit in switch_to to
5350 	 * combine the page table reload and the switch backend into
5351 	 * one hypercall.
5352 	 */
5353 	arch_start_context_switch(prev);
5354 
5355 	/*
5356 	 * kernel -> kernel   lazy + transfer active
5357 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5358 	 *
5359 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5360 	 *   user ->   user   switch
5361 	 *
5362 	 * switch_mm_cid() needs to be updated if the barriers provided
5363 	 * by context_switch() are modified.
5364 	 */
5365 	if (!next->mm) {                                // to kernel
5366 		enter_lazy_tlb(prev->active_mm, next);
5367 
5368 		next->active_mm = prev->active_mm;
5369 		if (prev->mm)                           // from user
5370 			mmgrab_lazy_tlb(prev->active_mm);
5371 		else
5372 			prev->active_mm = NULL;
5373 	} else {                                        // to user
5374 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5375 		/*
5376 		 * sys_membarrier() requires an smp_mb() between setting
5377 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5378 		 *
5379 		 * The below provides this either through switch_mm(), or in
5380 		 * case 'prev->active_mm == next->mm' through
5381 		 * finish_task_switch()'s mmdrop().
5382 		 */
5383 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5384 		lru_gen_use_mm(next->mm);
5385 
5386 		if (!prev->mm) {                        // from kernel
5387 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5388 			rq->prev_mm = prev->active_mm;
5389 			prev->active_mm = NULL;
5390 		}
5391 	}
5392 
5393 	/* switch_mm_cid() requires the memory barriers above. */
5394 	switch_mm_cid(rq, prev, next);
5395 
5396 	prepare_lock_switch(rq, next, rf);
5397 
5398 	/* Here we just switch the register state and the stack. */
5399 	switch_to(prev, next, prev);
5400 	barrier();
5401 
5402 	return finish_task_switch(prev);
5403 }
5404 
5405 /*
5406  * nr_running and nr_context_switches:
5407  *
5408  * externally visible scheduler statistics: current number of runnable
5409  * threads, total number of context switches performed since bootup.
5410  */
5411 unsigned int nr_running(void)
5412 {
5413 	unsigned int i, sum = 0;
5414 
5415 	for_each_online_cpu(i)
5416 		sum += cpu_rq(i)->nr_running;
5417 
5418 	return sum;
5419 }
5420 
5421 /*
5422  * Check if only the current task is running on the CPU.
5423  *
5424  * Caution: this function does not check that the caller has disabled
5425  * preemption, thus the result might have a time-of-check-to-time-of-use
5426  * race.  The caller is responsible to use it correctly, for example:
5427  *
5428  * - from a non-preemptible section (of course)
5429  *
5430  * - from a thread that is bound to a single CPU
5431  *
5432  * - in a loop with very short iterations (e.g. a polling loop)
5433  */
5434 bool single_task_running(void)
5435 {
5436 	return raw_rq()->nr_running == 1;
5437 }
5438 EXPORT_SYMBOL(single_task_running);
5439 
5440 unsigned long long nr_context_switches_cpu(int cpu)
5441 {
5442 	return cpu_rq(cpu)->nr_switches;
5443 }
5444 
5445 unsigned long long nr_context_switches(void)
5446 {
5447 	int i;
5448 	unsigned long long sum = 0;
5449 
5450 	for_each_possible_cpu(i)
5451 		sum += cpu_rq(i)->nr_switches;
5452 
5453 	return sum;
5454 }
5455 
5456 /*
5457  * Consumers of these two interfaces, like for example the cpuidle menu
5458  * governor, are using nonsensical data. Preferring shallow idle state selection
5459  * for a CPU that has IO-wait which might not even end up running the task when
5460  * it does become runnable.
5461  */
5462 
5463 unsigned int nr_iowait_cpu(int cpu)
5464 {
5465 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5466 }
5467 
5468 /*
5469  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5470  *
5471  * The idea behind IO-wait account is to account the idle time that we could
5472  * have spend running if it were not for IO. That is, if we were to improve the
5473  * storage performance, we'd have a proportional reduction in IO-wait time.
5474  *
5475  * This all works nicely on UP, where, when a task blocks on IO, we account
5476  * idle time as IO-wait, because if the storage were faster, it could've been
5477  * running and we'd not be idle.
5478  *
5479  * This has been extended to SMP, by doing the same for each CPU. This however
5480  * is broken.
5481  *
5482  * Imagine for instance the case where two tasks block on one CPU, only the one
5483  * CPU will have IO-wait accounted, while the other has regular idle. Even
5484  * though, if the storage were faster, both could've ran at the same time,
5485  * utilising both CPUs.
5486  *
5487  * This means, that when looking globally, the current IO-wait accounting on
5488  * SMP is a lower bound, by reason of under accounting.
5489  *
5490  * Worse, since the numbers are provided per CPU, they are sometimes
5491  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5492  * associated with any one particular CPU, it can wake to another CPU than it
5493  * blocked on. This means the per CPU IO-wait number is meaningless.
5494  *
5495  * Task CPU affinities can make all that even more 'interesting'.
5496  */
5497 
5498 unsigned int nr_iowait(void)
5499 {
5500 	unsigned int i, sum = 0;
5501 
5502 	for_each_possible_cpu(i)
5503 		sum += nr_iowait_cpu(i);
5504 
5505 	return sum;
5506 }
5507 
5508 #ifdef CONFIG_SMP
5509 
5510 /*
5511  * sched_exec - execve() is a valuable balancing opportunity, because at
5512  * this point the task has the smallest effective memory and cache footprint.
5513  */
5514 void sched_exec(void)
5515 {
5516 	struct task_struct *p = current;
5517 	struct migration_arg arg;
5518 	int dest_cpu;
5519 
5520 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5521 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5522 		if (dest_cpu == smp_processor_id())
5523 			return;
5524 
5525 		if (unlikely(!cpu_active(dest_cpu)))
5526 			return;
5527 
5528 		arg = (struct migration_arg){ p, dest_cpu };
5529 	}
5530 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5531 }
5532 
5533 #endif
5534 
5535 DEFINE_PER_CPU(struct kernel_stat, kstat);
5536 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5537 
5538 EXPORT_PER_CPU_SYMBOL(kstat);
5539 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5540 
5541 /*
5542  * The function fair_sched_class.update_curr accesses the struct curr
5543  * and its field curr->exec_start; when called from task_sched_runtime(),
5544  * we observe a high rate of cache misses in practice.
5545  * Prefetching this data results in improved performance.
5546  */
5547 static inline void prefetch_curr_exec_start(struct task_struct *p)
5548 {
5549 #ifdef CONFIG_FAIR_GROUP_SCHED
5550 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5551 #else
5552 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5553 #endif
5554 	prefetch(curr);
5555 	prefetch(&curr->exec_start);
5556 }
5557 
5558 /*
5559  * Return accounted runtime for the task.
5560  * In case the task is currently running, return the runtime plus current's
5561  * pending runtime that have not been accounted yet.
5562  */
5563 unsigned long long task_sched_runtime(struct task_struct *p)
5564 {
5565 	struct rq_flags rf;
5566 	struct rq *rq;
5567 	u64 ns;
5568 
5569 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5570 	/*
5571 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5572 	 * So we have a optimization chance when the task's delta_exec is 0.
5573 	 * Reading ->on_cpu is racy, but this is ok.
5574 	 *
5575 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5576 	 * If we race with it entering CPU, unaccounted time is 0. This is
5577 	 * indistinguishable from the read occurring a few cycles earlier.
5578 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5579 	 * been accounted, so we're correct here as well.
5580 	 */
5581 	if (!p->on_cpu || !task_on_rq_queued(p))
5582 		return p->se.sum_exec_runtime;
5583 #endif
5584 
5585 	rq = task_rq_lock(p, &rf);
5586 	/*
5587 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5588 	 * project cycles that may never be accounted to this
5589 	 * thread, breaking clock_gettime().
5590 	 */
5591 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5592 		prefetch_curr_exec_start(p);
5593 		update_rq_clock(rq);
5594 		p->sched_class->update_curr(rq);
5595 	}
5596 	ns = p->se.sum_exec_runtime;
5597 	task_rq_unlock(rq, p, &rf);
5598 
5599 	return ns;
5600 }
5601 
5602 #ifdef CONFIG_SCHED_DEBUG
5603 static u64 cpu_resched_latency(struct rq *rq)
5604 {
5605 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5606 	u64 resched_latency, now = rq_clock(rq);
5607 	static bool warned_once;
5608 
5609 	if (sysctl_resched_latency_warn_once && warned_once)
5610 		return 0;
5611 
5612 	if (!need_resched() || !latency_warn_ms)
5613 		return 0;
5614 
5615 	if (system_state == SYSTEM_BOOTING)
5616 		return 0;
5617 
5618 	if (!rq->last_seen_need_resched_ns) {
5619 		rq->last_seen_need_resched_ns = now;
5620 		rq->ticks_without_resched = 0;
5621 		return 0;
5622 	}
5623 
5624 	rq->ticks_without_resched++;
5625 	resched_latency = now - rq->last_seen_need_resched_ns;
5626 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5627 		return 0;
5628 
5629 	warned_once = true;
5630 
5631 	return resched_latency;
5632 }
5633 
5634 static int __init setup_resched_latency_warn_ms(char *str)
5635 {
5636 	long val;
5637 
5638 	if ((kstrtol(str, 0, &val))) {
5639 		pr_warn("Unable to set resched_latency_warn_ms\n");
5640 		return 1;
5641 	}
5642 
5643 	sysctl_resched_latency_warn_ms = val;
5644 	return 1;
5645 }
5646 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5647 #else
5648 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5649 #endif /* CONFIG_SCHED_DEBUG */
5650 
5651 /*
5652  * This function gets called by the timer code, with HZ frequency.
5653  * We call it with interrupts disabled.
5654  */
5655 void scheduler_tick(void)
5656 {
5657 	int cpu = smp_processor_id();
5658 	struct rq *rq = cpu_rq(cpu);
5659 	struct task_struct *curr = rq->curr;
5660 	struct rq_flags rf;
5661 	unsigned long thermal_pressure;
5662 	u64 resched_latency;
5663 
5664 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5665 		arch_scale_freq_tick();
5666 
5667 	sched_clock_tick();
5668 
5669 	rq_lock(rq, &rf);
5670 
5671 	update_rq_clock(rq);
5672 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5673 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5674 	curr->sched_class->task_tick(rq, curr, 0);
5675 	if (sched_feat(LATENCY_WARN))
5676 		resched_latency = cpu_resched_latency(rq);
5677 	calc_global_load_tick(rq);
5678 	sched_core_tick(rq);
5679 	task_tick_mm_cid(rq, curr);
5680 
5681 	rq_unlock(rq, &rf);
5682 
5683 	if (sched_feat(LATENCY_WARN) && resched_latency)
5684 		resched_latency_warn(cpu, resched_latency);
5685 
5686 	perf_event_task_tick();
5687 
5688 	if (curr->flags & PF_WQ_WORKER)
5689 		wq_worker_tick(curr);
5690 
5691 #ifdef CONFIG_SMP
5692 	rq->idle_balance = idle_cpu(cpu);
5693 	trigger_load_balance(rq);
5694 #endif
5695 }
5696 
5697 #ifdef CONFIG_NO_HZ_FULL
5698 
5699 struct tick_work {
5700 	int			cpu;
5701 	atomic_t		state;
5702 	struct delayed_work	work;
5703 };
5704 /* Values for ->state, see diagram below. */
5705 #define TICK_SCHED_REMOTE_OFFLINE	0
5706 #define TICK_SCHED_REMOTE_OFFLINING	1
5707 #define TICK_SCHED_REMOTE_RUNNING	2
5708 
5709 /*
5710  * State diagram for ->state:
5711  *
5712  *
5713  *          TICK_SCHED_REMOTE_OFFLINE
5714  *                    |   ^
5715  *                    |   |
5716  *                    |   | sched_tick_remote()
5717  *                    |   |
5718  *                    |   |
5719  *                    +--TICK_SCHED_REMOTE_OFFLINING
5720  *                    |   ^
5721  *                    |   |
5722  * sched_tick_start() |   | sched_tick_stop()
5723  *                    |   |
5724  *                    V   |
5725  *          TICK_SCHED_REMOTE_RUNNING
5726  *
5727  *
5728  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5729  * and sched_tick_start() are happy to leave the state in RUNNING.
5730  */
5731 
5732 static struct tick_work __percpu *tick_work_cpu;
5733 
5734 static void sched_tick_remote(struct work_struct *work)
5735 {
5736 	struct delayed_work *dwork = to_delayed_work(work);
5737 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5738 	int cpu = twork->cpu;
5739 	struct rq *rq = cpu_rq(cpu);
5740 	int os;
5741 
5742 	/*
5743 	 * Handle the tick only if it appears the remote CPU is running in full
5744 	 * dynticks mode. The check is racy by nature, but missing a tick or
5745 	 * having one too much is no big deal because the scheduler tick updates
5746 	 * statistics and checks timeslices in a time-independent way, regardless
5747 	 * of when exactly it is running.
5748 	 */
5749 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5750 		guard(rq_lock_irq)(rq);
5751 		struct task_struct *curr = rq->curr;
5752 
5753 		if (cpu_online(cpu)) {
5754 			update_rq_clock(rq);
5755 
5756 			if (!is_idle_task(curr)) {
5757 				/*
5758 				 * Make sure the next tick runs within a
5759 				 * reasonable amount of time.
5760 				 */
5761 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5762 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5763 			}
5764 			curr->sched_class->task_tick(rq, curr, 0);
5765 
5766 			calc_load_nohz_remote(rq);
5767 		}
5768 	}
5769 
5770 	/*
5771 	 * Run the remote tick once per second (1Hz). This arbitrary
5772 	 * frequency is large enough to avoid overload but short enough
5773 	 * to keep scheduler internal stats reasonably up to date.  But
5774 	 * first update state to reflect hotplug activity if required.
5775 	 */
5776 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5777 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5778 	if (os == TICK_SCHED_REMOTE_RUNNING)
5779 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5780 }
5781 
5782 static void sched_tick_start(int cpu)
5783 {
5784 	int os;
5785 	struct tick_work *twork;
5786 
5787 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5788 		return;
5789 
5790 	WARN_ON_ONCE(!tick_work_cpu);
5791 
5792 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5793 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5794 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5795 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5796 		twork->cpu = cpu;
5797 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5798 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5799 	}
5800 }
5801 
5802 #ifdef CONFIG_HOTPLUG_CPU
5803 static void sched_tick_stop(int cpu)
5804 {
5805 	struct tick_work *twork;
5806 	int os;
5807 
5808 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5809 		return;
5810 
5811 	WARN_ON_ONCE(!tick_work_cpu);
5812 
5813 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5814 	/* There cannot be competing actions, but don't rely on stop-machine. */
5815 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5816 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5817 	/* Don't cancel, as this would mess up the state machine. */
5818 }
5819 #endif /* CONFIG_HOTPLUG_CPU */
5820 
5821 int __init sched_tick_offload_init(void)
5822 {
5823 	tick_work_cpu = alloc_percpu(struct tick_work);
5824 	BUG_ON(!tick_work_cpu);
5825 	return 0;
5826 }
5827 
5828 #else /* !CONFIG_NO_HZ_FULL */
5829 static inline void sched_tick_start(int cpu) { }
5830 static inline void sched_tick_stop(int cpu) { }
5831 #endif
5832 
5833 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5834 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5835 /*
5836  * If the value passed in is equal to the current preempt count
5837  * then we just disabled preemption. Start timing the latency.
5838  */
5839 static inline void preempt_latency_start(int val)
5840 {
5841 	if (preempt_count() == val) {
5842 		unsigned long ip = get_lock_parent_ip();
5843 #ifdef CONFIG_DEBUG_PREEMPT
5844 		current->preempt_disable_ip = ip;
5845 #endif
5846 		trace_preempt_off(CALLER_ADDR0, ip);
5847 	}
5848 }
5849 
5850 void preempt_count_add(int val)
5851 {
5852 #ifdef CONFIG_DEBUG_PREEMPT
5853 	/*
5854 	 * Underflow?
5855 	 */
5856 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5857 		return;
5858 #endif
5859 	__preempt_count_add(val);
5860 #ifdef CONFIG_DEBUG_PREEMPT
5861 	/*
5862 	 * Spinlock count overflowing soon?
5863 	 */
5864 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5865 				PREEMPT_MASK - 10);
5866 #endif
5867 	preempt_latency_start(val);
5868 }
5869 EXPORT_SYMBOL(preempt_count_add);
5870 NOKPROBE_SYMBOL(preempt_count_add);
5871 
5872 /*
5873  * If the value passed in equals to the current preempt count
5874  * then we just enabled preemption. Stop timing the latency.
5875  */
5876 static inline void preempt_latency_stop(int val)
5877 {
5878 	if (preempt_count() == val)
5879 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5880 }
5881 
5882 void preempt_count_sub(int val)
5883 {
5884 #ifdef CONFIG_DEBUG_PREEMPT
5885 	/*
5886 	 * Underflow?
5887 	 */
5888 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5889 		return;
5890 	/*
5891 	 * Is the spinlock portion underflowing?
5892 	 */
5893 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5894 			!(preempt_count() & PREEMPT_MASK)))
5895 		return;
5896 #endif
5897 
5898 	preempt_latency_stop(val);
5899 	__preempt_count_sub(val);
5900 }
5901 EXPORT_SYMBOL(preempt_count_sub);
5902 NOKPROBE_SYMBOL(preempt_count_sub);
5903 
5904 #else
5905 static inline void preempt_latency_start(int val) { }
5906 static inline void preempt_latency_stop(int val) { }
5907 #endif
5908 
5909 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5910 {
5911 #ifdef CONFIG_DEBUG_PREEMPT
5912 	return p->preempt_disable_ip;
5913 #else
5914 	return 0;
5915 #endif
5916 }
5917 
5918 /*
5919  * Print scheduling while atomic bug:
5920  */
5921 static noinline void __schedule_bug(struct task_struct *prev)
5922 {
5923 	/* Save this before calling printk(), since that will clobber it */
5924 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5925 
5926 	if (oops_in_progress)
5927 		return;
5928 
5929 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5930 		prev->comm, prev->pid, preempt_count());
5931 
5932 	debug_show_held_locks(prev);
5933 	print_modules();
5934 	if (irqs_disabled())
5935 		print_irqtrace_events(prev);
5936 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5937 		pr_err("Preemption disabled at:");
5938 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5939 	}
5940 	check_panic_on_warn("scheduling while atomic");
5941 
5942 	dump_stack();
5943 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5944 }
5945 
5946 /*
5947  * Various schedule()-time debugging checks and statistics:
5948  */
5949 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5950 {
5951 #ifdef CONFIG_SCHED_STACK_END_CHECK
5952 	if (task_stack_end_corrupted(prev))
5953 		panic("corrupted stack end detected inside scheduler\n");
5954 
5955 	if (task_scs_end_corrupted(prev))
5956 		panic("corrupted shadow stack detected inside scheduler\n");
5957 #endif
5958 
5959 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5960 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5961 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5962 			prev->comm, prev->pid, prev->non_block_count);
5963 		dump_stack();
5964 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5965 	}
5966 #endif
5967 
5968 	if (unlikely(in_atomic_preempt_off())) {
5969 		__schedule_bug(prev);
5970 		preempt_count_set(PREEMPT_DISABLED);
5971 	}
5972 	rcu_sleep_check();
5973 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5974 
5975 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5976 
5977 	schedstat_inc(this_rq()->sched_count);
5978 }
5979 
5980 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5981 				  struct rq_flags *rf)
5982 {
5983 #ifdef CONFIG_SMP
5984 	const struct sched_class *class;
5985 	/*
5986 	 * We must do the balancing pass before put_prev_task(), such
5987 	 * that when we release the rq->lock the task is in the same
5988 	 * state as before we took rq->lock.
5989 	 *
5990 	 * We can terminate the balance pass as soon as we know there is
5991 	 * a runnable task of @class priority or higher.
5992 	 */
5993 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5994 		if (class->balance(rq, prev, rf))
5995 			break;
5996 	}
5997 #endif
5998 
5999 	put_prev_task(rq, prev);
6000 }
6001 
6002 /*
6003  * Pick up the highest-prio task:
6004  */
6005 static inline struct task_struct *
6006 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6007 {
6008 	const struct sched_class *class;
6009 	struct task_struct *p;
6010 
6011 	/*
6012 	 * Optimization: we know that if all tasks are in the fair class we can
6013 	 * call that function directly, but only if the @prev task wasn't of a
6014 	 * higher scheduling class, because otherwise those lose the
6015 	 * opportunity to pull in more work from other CPUs.
6016 	 */
6017 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6018 		   rq->nr_running == rq->cfs.h_nr_running)) {
6019 
6020 		p = pick_next_task_fair(rq, prev, rf);
6021 		if (unlikely(p == RETRY_TASK))
6022 			goto restart;
6023 
6024 		/* Assume the next prioritized class is idle_sched_class */
6025 		if (!p) {
6026 			put_prev_task(rq, prev);
6027 			p = pick_next_task_idle(rq);
6028 		}
6029 
6030 		/*
6031 		 * This is the fast path; it cannot be a DL server pick;
6032 		 * therefore even if @p == @prev, ->dl_server must be NULL.
6033 		 */
6034 		if (p->dl_server)
6035 			p->dl_server = NULL;
6036 
6037 		return p;
6038 	}
6039 
6040 restart:
6041 	put_prev_task_balance(rq, prev, rf);
6042 
6043 	/*
6044 	 * We've updated @prev and no longer need the server link, clear it.
6045 	 * Must be done before ->pick_next_task() because that can (re)set
6046 	 * ->dl_server.
6047 	 */
6048 	if (prev->dl_server)
6049 		prev->dl_server = NULL;
6050 
6051 	for_each_class(class) {
6052 		p = class->pick_next_task(rq);
6053 		if (p)
6054 			return p;
6055 	}
6056 
6057 	BUG(); /* The idle class should always have a runnable task. */
6058 }
6059 
6060 #ifdef CONFIG_SCHED_CORE
6061 static inline bool is_task_rq_idle(struct task_struct *t)
6062 {
6063 	return (task_rq(t)->idle == t);
6064 }
6065 
6066 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6067 {
6068 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6069 }
6070 
6071 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6072 {
6073 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6074 		return true;
6075 
6076 	return a->core_cookie == b->core_cookie;
6077 }
6078 
6079 static inline struct task_struct *pick_task(struct rq *rq)
6080 {
6081 	const struct sched_class *class;
6082 	struct task_struct *p;
6083 
6084 	for_each_class(class) {
6085 		p = class->pick_task(rq);
6086 		if (p)
6087 			return p;
6088 	}
6089 
6090 	BUG(); /* The idle class should always have a runnable task. */
6091 }
6092 
6093 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6094 
6095 static void queue_core_balance(struct rq *rq);
6096 
6097 static struct task_struct *
6098 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6099 {
6100 	struct task_struct *next, *p, *max = NULL;
6101 	const struct cpumask *smt_mask;
6102 	bool fi_before = false;
6103 	bool core_clock_updated = (rq == rq->core);
6104 	unsigned long cookie;
6105 	int i, cpu, occ = 0;
6106 	struct rq *rq_i;
6107 	bool need_sync;
6108 
6109 	if (!sched_core_enabled(rq))
6110 		return __pick_next_task(rq, prev, rf);
6111 
6112 	cpu = cpu_of(rq);
6113 
6114 	/* Stopper task is switching into idle, no need core-wide selection. */
6115 	if (cpu_is_offline(cpu)) {
6116 		/*
6117 		 * Reset core_pick so that we don't enter the fastpath when
6118 		 * coming online. core_pick would already be migrated to
6119 		 * another cpu during offline.
6120 		 */
6121 		rq->core_pick = NULL;
6122 		return __pick_next_task(rq, prev, rf);
6123 	}
6124 
6125 	/*
6126 	 * If there were no {en,de}queues since we picked (IOW, the task
6127 	 * pointers are all still valid), and we haven't scheduled the last
6128 	 * pick yet, do so now.
6129 	 *
6130 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6131 	 * it was either offline or went offline during a sibling's core-wide
6132 	 * selection. In this case, do a core-wide selection.
6133 	 */
6134 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6135 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6136 	    rq->core_pick) {
6137 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6138 
6139 		next = rq->core_pick;
6140 		if (next != prev) {
6141 			put_prev_task(rq, prev);
6142 			set_next_task(rq, next);
6143 		}
6144 
6145 		rq->core_pick = NULL;
6146 		goto out;
6147 	}
6148 
6149 	put_prev_task_balance(rq, prev, rf);
6150 
6151 	smt_mask = cpu_smt_mask(cpu);
6152 	need_sync = !!rq->core->core_cookie;
6153 
6154 	/* reset state */
6155 	rq->core->core_cookie = 0UL;
6156 	if (rq->core->core_forceidle_count) {
6157 		if (!core_clock_updated) {
6158 			update_rq_clock(rq->core);
6159 			core_clock_updated = true;
6160 		}
6161 		sched_core_account_forceidle(rq);
6162 		/* reset after accounting force idle */
6163 		rq->core->core_forceidle_start = 0;
6164 		rq->core->core_forceidle_count = 0;
6165 		rq->core->core_forceidle_occupation = 0;
6166 		need_sync = true;
6167 		fi_before = true;
6168 	}
6169 
6170 	/*
6171 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6172 	 *
6173 	 * @task_seq guards the task state ({en,de}queues)
6174 	 * @pick_seq is the @task_seq we did a selection on
6175 	 * @sched_seq is the @pick_seq we scheduled
6176 	 *
6177 	 * However, preemptions can cause multiple picks on the same task set.
6178 	 * 'Fix' this by also increasing @task_seq for every pick.
6179 	 */
6180 	rq->core->core_task_seq++;
6181 
6182 	/*
6183 	 * Optimize for common case where this CPU has no cookies
6184 	 * and there are no cookied tasks running on siblings.
6185 	 */
6186 	if (!need_sync) {
6187 		next = pick_task(rq);
6188 		if (!next->core_cookie) {
6189 			rq->core_pick = NULL;
6190 			/*
6191 			 * For robustness, update the min_vruntime_fi for
6192 			 * unconstrained picks as well.
6193 			 */
6194 			WARN_ON_ONCE(fi_before);
6195 			task_vruntime_update(rq, next, false);
6196 			goto out_set_next;
6197 		}
6198 	}
6199 
6200 	/*
6201 	 * For each thread: do the regular task pick and find the max prio task
6202 	 * amongst them.
6203 	 *
6204 	 * Tie-break prio towards the current CPU
6205 	 */
6206 	for_each_cpu_wrap(i, smt_mask, cpu) {
6207 		rq_i = cpu_rq(i);
6208 
6209 		/*
6210 		 * Current cpu always has its clock updated on entrance to
6211 		 * pick_next_task(). If the current cpu is not the core,
6212 		 * the core may also have been updated above.
6213 		 */
6214 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6215 			update_rq_clock(rq_i);
6216 
6217 		p = rq_i->core_pick = pick_task(rq_i);
6218 		if (!max || prio_less(max, p, fi_before))
6219 			max = p;
6220 	}
6221 
6222 	cookie = rq->core->core_cookie = max->core_cookie;
6223 
6224 	/*
6225 	 * For each thread: try and find a runnable task that matches @max or
6226 	 * force idle.
6227 	 */
6228 	for_each_cpu(i, smt_mask) {
6229 		rq_i = cpu_rq(i);
6230 		p = rq_i->core_pick;
6231 
6232 		if (!cookie_equals(p, cookie)) {
6233 			p = NULL;
6234 			if (cookie)
6235 				p = sched_core_find(rq_i, cookie);
6236 			if (!p)
6237 				p = idle_sched_class.pick_task(rq_i);
6238 		}
6239 
6240 		rq_i->core_pick = p;
6241 
6242 		if (p == rq_i->idle) {
6243 			if (rq_i->nr_running) {
6244 				rq->core->core_forceidle_count++;
6245 				if (!fi_before)
6246 					rq->core->core_forceidle_seq++;
6247 			}
6248 		} else {
6249 			occ++;
6250 		}
6251 	}
6252 
6253 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6254 		rq->core->core_forceidle_start = rq_clock(rq->core);
6255 		rq->core->core_forceidle_occupation = occ;
6256 	}
6257 
6258 	rq->core->core_pick_seq = rq->core->core_task_seq;
6259 	next = rq->core_pick;
6260 	rq->core_sched_seq = rq->core->core_pick_seq;
6261 
6262 	/* Something should have been selected for current CPU */
6263 	WARN_ON_ONCE(!next);
6264 
6265 	/*
6266 	 * Reschedule siblings
6267 	 *
6268 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6269 	 * sending an IPI (below) ensures the sibling will no longer be running
6270 	 * their task. This ensures there is no inter-sibling overlap between
6271 	 * non-matching user state.
6272 	 */
6273 	for_each_cpu(i, smt_mask) {
6274 		rq_i = cpu_rq(i);
6275 
6276 		/*
6277 		 * An online sibling might have gone offline before a task
6278 		 * could be picked for it, or it might be offline but later
6279 		 * happen to come online, but its too late and nothing was
6280 		 * picked for it.  That's Ok - it will pick tasks for itself,
6281 		 * so ignore it.
6282 		 */
6283 		if (!rq_i->core_pick)
6284 			continue;
6285 
6286 		/*
6287 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6288 		 * fi_before     fi      update?
6289 		 *  0            0       1
6290 		 *  0            1       1
6291 		 *  1            0       1
6292 		 *  1            1       0
6293 		 */
6294 		if (!(fi_before && rq->core->core_forceidle_count))
6295 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6296 
6297 		rq_i->core_pick->core_occupation = occ;
6298 
6299 		if (i == cpu) {
6300 			rq_i->core_pick = NULL;
6301 			continue;
6302 		}
6303 
6304 		/* Did we break L1TF mitigation requirements? */
6305 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6306 
6307 		if (rq_i->curr == rq_i->core_pick) {
6308 			rq_i->core_pick = NULL;
6309 			continue;
6310 		}
6311 
6312 		resched_curr(rq_i);
6313 	}
6314 
6315 out_set_next:
6316 	set_next_task(rq, next);
6317 out:
6318 	if (rq->core->core_forceidle_count && next == rq->idle)
6319 		queue_core_balance(rq);
6320 
6321 	return next;
6322 }
6323 
6324 static bool try_steal_cookie(int this, int that)
6325 {
6326 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6327 	struct task_struct *p;
6328 	unsigned long cookie;
6329 	bool success = false;
6330 
6331 	guard(irq)();
6332 	guard(double_rq_lock)(dst, src);
6333 
6334 	cookie = dst->core->core_cookie;
6335 	if (!cookie)
6336 		return false;
6337 
6338 	if (dst->curr != dst->idle)
6339 		return false;
6340 
6341 	p = sched_core_find(src, cookie);
6342 	if (!p)
6343 		return false;
6344 
6345 	do {
6346 		if (p == src->core_pick || p == src->curr)
6347 			goto next;
6348 
6349 		if (!is_cpu_allowed(p, this))
6350 			goto next;
6351 
6352 		if (p->core_occupation > dst->idle->core_occupation)
6353 			goto next;
6354 		/*
6355 		 * sched_core_find() and sched_core_next() will ensure
6356 		 * that task @p is not throttled now, we also need to
6357 		 * check whether the runqueue of the destination CPU is
6358 		 * being throttled.
6359 		 */
6360 		if (sched_task_is_throttled(p, this))
6361 			goto next;
6362 
6363 		deactivate_task(src, p, 0);
6364 		set_task_cpu(p, this);
6365 		activate_task(dst, p, 0);
6366 
6367 		resched_curr(dst);
6368 
6369 		success = true;
6370 		break;
6371 
6372 next:
6373 		p = sched_core_next(p, cookie);
6374 	} while (p);
6375 
6376 	return success;
6377 }
6378 
6379 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6380 {
6381 	int i;
6382 
6383 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6384 		if (i == cpu)
6385 			continue;
6386 
6387 		if (need_resched())
6388 			break;
6389 
6390 		if (try_steal_cookie(cpu, i))
6391 			return true;
6392 	}
6393 
6394 	return false;
6395 }
6396 
6397 static void sched_core_balance(struct rq *rq)
6398 {
6399 	struct sched_domain *sd;
6400 	int cpu = cpu_of(rq);
6401 
6402 	guard(preempt)();
6403 	guard(rcu)();
6404 
6405 	raw_spin_rq_unlock_irq(rq);
6406 	for_each_domain(cpu, sd) {
6407 		if (need_resched())
6408 			break;
6409 
6410 		if (steal_cookie_task(cpu, sd))
6411 			break;
6412 	}
6413 	raw_spin_rq_lock_irq(rq);
6414 }
6415 
6416 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6417 
6418 static void queue_core_balance(struct rq *rq)
6419 {
6420 	if (!sched_core_enabled(rq))
6421 		return;
6422 
6423 	if (!rq->core->core_cookie)
6424 		return;
6425 
6426 	if (!rq->nr_running) /* not forced idle */
6427 		return;
6428 
6429 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6430 }
6431 
6432 DEFINE_LOCK_GUARD_1(core_lock, int,
6433 		    sched_core_lock(*_T->lock, &_T->flags),
6434 		    sched_core_unlock(*_T->lock, &_T->flags),
6435 		    unsigned long flags)
6436 
6437 static void sched_core_cpu_starting(unsigned int cpu)
6438 {
6439 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6440 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6441 	int t;
6442 
6443 	guard(core_lock)(&cpu);
6444 
6445 	WARN_ON_ONCE(rq->core != rq);
6446 
6447 	/* if we're the first, we'll be our own leader */
6448 	if (cpumask_weight(smt_mask) == 1)
6449 		return;
6450 
6451 	/* find the leader */
6452 	for_each_cpu(t, smt_mask) {
6453 		if (t == cpu)
6454 			continue;
6455 		rq = cpu_rq(t);
6456 		if (rq->core == rq) {
6457 			core_rq = rq;
6458 			break;
6459 		}
6460 	}
6461 
6462 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6463 		return;
6464 
6465 	/* install and validate core_rq */
6466 	for_each_cpu(t, smt_mask) {
6467 		rq = cpu_rq(t);
6468 
6469 		if (t == cpu)
6470 			rq->core = core_rq;
6471 
6472 		WARN_ON_ONCE(rq->core != core_rq);
6473 	}
6474 }
6475 
6476 static void sched_core_cpu_deactivate(unsigned int cpu)
6477 {
6478 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6479 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6480 	int t;
6481 
6482 	guard(core_lock)(&cpu);
6483 
6484 	/* if we're the last man standing, nothing to do */
6485 	if (cpumask_weight(smt_mask) == 1) {
6486 		WARN_ON_ONCE(rq->core != rq);
6487 		return;
6488 	}
6489 
6490 	/* if we're not the leader, nothing to do */
6491 	if (rq->core != rq)
6492 		return;
6493 
6494 	/* find a new leader */
6495 	for_each_cpu(t, smt_mask) {
6496 		if (t == cpu)
6497 			continue;
6498 		core_rq = cpu_rq(t);
6499 		break;
6500 	}
6501 
6502 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6503 		return;
6504 
6505 	/* copy the shared state to the new leader */
6506 	core_rq->core_task_seq             = rq->core_task_seq;
6507 	core_rq->core_pick_seq             = rq->core_pick_seq;
6508 	core_rq->core_cookie               = rq->core_cookie;
6509 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6510 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6511 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6512 
6513 	/*
6514 	 * Accounting edge for forced idle is handled in pick_next_task().
6515 	 * Don't need another one here, since the hotplug thread shouldn't
6516 	 * have a cookie.
6517 	 */
6518 	core_rq->core_forceidle_start = 0;
6519 
6520 	/* install new leader */
6521 	for_each_cpu(t, smt_mask) {
6522 		rq = cpu_rq(t);
6523 		rq->core = core_rq;
6524 	}
6525 }
6526 
6527 static inline void sched_core_cpu_dying(unsigned int cpu)
6528 {
6529 	struct rq *rq = cpu_rq(cpu);
6530 
6531 	if (rq->core != rq)
6532 		rq->core = rq;
6533 }
6534 
6535 #else /* !CONFIG_SCHED_CORE */
6536 
6537 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6538 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6539 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6540 
6541 static struct task_struct *
6542 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6543 {
6544 	return __pick_next_task(rq, prev, rf);
6545 }
6546 
6547 #endif /* CONFIG_SCHED_CORE */
6548 
6549 /*
6550  * Constants for the sched_mode argument of __schedule().
6551  *
6552  * The mode argument allows RT enabled kernels to differentiate a
6553  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6554  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6555  * optimize the AND operation out and just check for zero.
6556  */
6557 #define SM_NONE			0x0
6558 #define SM_PREEMPT		0x1
6559 #define SM_RTLOCK_WAIT		0x2
6560 
6561 #ifndef CONFIG_PREEMPT_RT
6562 # define SM_MASK_PREEMPT	(~0U)
6563 #else
6564 # define SM_MASK_PREEMPT	SM_PREEMPT
6565 #endif
6566 
6567 /*
6568  * __schedule() is the main scheduler function.
6569  *
6570  * The main means of driving the scheduler and thus entering this function are:
6571  *
6572  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6573  *
6574  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6575  *      paths. For example, see arch/x86/entry_64.S.
6576  *
6577  *      To drive preemption between tasks, the scheduler sets the flag in timer
6578  *      interrupt handler scheduler_tick().
6579  *
6580  *   3. Wakeups don't really cause entry into schedule(). They add a
6581  *      task to the run-queue and that's it.
6582  *
6583  *      Now, if the new task added to the run-queue preempts the current
6584  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6585  *      called on the nearest possible occasion:
6586  *
6587  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6588  *
6589  *         - in syscall or exception context, at the next outmost
6590  *           preempt_enable(). (this might be as soon as the wake_up()'s
6591  *           spin_unlock()!)
6592  *
6593  *         - in IRQ context, return from interrupt-handler to
6594  *           preemptible context
6595  *
6596  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6597  *         then at the next:
6598  *
6599  *          - cond_resched() call
6600  *          - explicit schedule() call
6601  *          - return from syscall or exception to user-space
6602  *          - return from interrupt-handler to user-space
6603  *
6604  * WARNING: must be called with preemption disabled!
6605  */
6606 static void __sched notrace __schedule(unsigned int sched_mode)
6607 {
6608 	struct task_struct *prev, *next;
6609 	unsigned long *switch_count;
6610 	unsigned long prev_state;
6611 	struct rq_flags rf;
6612 	struct rq *rq;
6613 	int cpu;
6614 
6615 	cpu = smp_processor_id();
6616 	rq = cpu_rq(cpu);
6617 	prev = rq->curr;
6618 
6619 	schedule_debug(prev, !!sched_mode);
6620 
6621 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6622 		hrtick_clear(rq);
6623 
6624 	local_irq_disable();
6625 	rcu_note_context_switch(!!sched_mode);
6626 
6627 	/*
6628 	 * Make sure that signal_pending_state()->signal_pending() below
6629 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6630 	 * done by the caller to avoid the race with signal_wake_up():
6631 	 *
6632 	 * __set_current_state(@state)		signal_wake_up()
6633 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6634 	 *					  wake_up_state(p, state)
6635 	 *   LOCK rq->lock			    LOCK p->pi_state
6636 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6637 	 *     if (signal_pending_state())	    if (p->state & @state)
6638 	 *
6639 	 * Also, the membarrier system call requires a full memory barrier
6640 	 * after coming from user-space, before storing to rq->curr.
6641 	 */
6642 	rq_lock(rq, &rf);
6643 	smp_mb__after_spinlock();
6644 
6645 	/* Promote REQ to ACT */
6646 	rq->clock_update_flags <<= 1;
6647 	update_rq_clock(rq);
6648 	rq->clock_update_flags = RQCF_UPDATED;
6649 
6650 	switch_count = &prev->nivcsw;
6651 
6652 	/*
6653 	 * We must load prev->state once (task_struct::state is volatile), such
6654 	 * that we form a control dependency vs deactivate_task() below.
6655 	 */
6656 	prev_state = READ_ONCE(prev->__state);
6657 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6658 		if (signal_pending_state(prev_state, prev)) {
6659 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6660 		} else {
6661 			prev->sched_contributes_to_load =
6662 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6663 				!(prev_state & TASK_NOLOAD) &&
6664 				!(prev_state & TASK_FROZEN);
6665 
6666 			if (prev->sched_contributes_to_load)
6667 				rq->nr_uninterruptible++;
6668 
6669 			/*
6670 			 * __schedule()			ttwu()
6671 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6672 			 *   if (prev_state)		    goto out;
6673 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6674 			 *				  p->state = TASK_WAKING
6675 			 *
6676 			 * Where __schedule() and ttwu() have matching control dependencies.
6677 			 *
6678 			 * After this, schedule() must not care about p->state any more.
6679 			 */
6680 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6681 
6682 			if (prev->in_iowait) {
6683 				atomic_inc(&rq->nr_iowait);
6684 				delayacct_blkio_start();
6685 			}
6686 		}
6687 		switch_count = &prev->nvcsw;
6688 	}
6689 
6690 	next = pick_next_task(rq, prev, &rf);
6691 	clear_tsk_need_resched(prev);
6692 	clear_preempt_need_resched();
6693 #ifdef CONFIG_SCHED_DEBUG
6694 	rq->last_seen_need_resched_ns = 0;
6695 #endif
6696 
6697 	if (likely(prev != next)) {
6698 		rq->nr_switches++;
6699 		/*
6700 		 * RCU users of rcu_dereference(rq->curr) may not see
6701 		 * changes to task_struct made by pick_next_task().
6702 		 */
6703 		RCU_INIT_POINTER(rq->curr, next);
6704 		/*
6705 		 * The membarrier system call requires each architecture
6706 		 * to have a full memory barrier after updating
6707 		 * rq->curr, before returning to user-space.
6708 		 *
6709 		 * Here are the schemes providing that barrier on the
6710 		 * various architectures:
6711 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6712 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6713 		 * - finish_lock_switch() for weakly-ordered
6714 		 *   architectures where spin_unlock is a full barrier,
6715 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6716 		 *   is a RELEASE barrier),
6717 		 */
6718 		++*switch_count;
6719 
6720 		migrate_disable_switch(rq, prev);
6721 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6722 
6723 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6724 
6725 		/* Also unlocks the rq: */
6726 		rq = context_switch(rq, prev, next, &rf);
6727 	} else {
6728 		rq_unpin_lock(rq, &rf);
6729 		__balance_callbacks(rq);
6730 		raw_spin_rq_unlock_irq(rq);
6731 	}
6732 }
6733 
6734 void __noreturn do_task_dead(void)
6735 {
6736 	/* Causes final put_task_struct in finish_task_switch(): */
6737 	set_special_state(TASK_DEAD);
6738 
6739 	/* Tell freezer to ignore us: */
6740 	current->flags |= PF_NOFREEZE;
6741 
6742 	__schedule(SM_NONE);
6743 	BUG();
6744 
6745 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6746 	for (;;)
6747 		cpu_relax();
6748 }
6749 
6750 static inline void sched_submit_work(struct task_struct *tsk)
6751 {
6752 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6753 	unsigned int task_flags;
6754 
6755 	/*
6756 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6757 	 * will use a blocking primitive -- which would lead to recursion.
6758 	 */
6759 	lock_map_acquire_try(&sched_map);
6760 
6761 	task_flags = tsk->flags;
6762 	/*
6763 	 * If a worker goes to sleep, notify and ask workqueue whether it
6764 	 * wants to wake up a task to maintain concurrency.
6765 	 */
6766 	if (task_flags & PF_WQ_WORKER)
6767 		wq_worker_sleeping(tsk);
6768 	else if (task_flags & PF_IO_WORKER)
6769 		io_wq_worker_sleeping(tsk);
6770 
6771 	/*
6772 	 * spinlock and rwlock must not flush block requests.  This will
6773 	 * deadlock if the callback attempts to acquire a lock which is
6774 	 * already acquired.
6775 	 */
6776 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6777 
6778 	/*
6779 	 * If we are going to sleep and we have plugged IO queued,
6780 	 * make sure to submit it to avoid deadlocks.
6781 	 */
6782 	blk_flush_plug(tsk->plug, true);
6783 
6784 	lock_map_release(&sched_map);
6785 }
6786 
6787 static void sched_update_worker(struct task_struct *tsk)
6788 {
6789 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6790 		if (tsk->flags & PF_WQ_WORKER)
6791 			wq_worker_running(tsk);
6792 		else
6793 			io_wq_worker_running(tsk);
6794 	}
6795 }
6796 
6797 static __always_inline void __schedule_loop(unsigned int sched_mode)
6798 {
6799 	do {
6800 		preempt_disable();
6801 		__schedule(sched_mode);
6802 		sched_preempt_enable_no_resched();
6803 	} while (need_resched());
6804 }
6805 
6806 asmlinkage __visible void __sched schedule(void)
6807 {
6808 	struct task_struct *tsk = current;
6809 
6810 #ifdef CONFIG_RT_MUTEXES
6811 	lockdep_assert(!tsk->sched_rt_mutex);
6812 #endif
6813 
6814 	if (!task_is_running(tsk))
6815 		sched_submit_work(tsk);
6816 	__schedule_loop(SM_NONE);
6817 	sched_update_worker(tsk);
6818 }
6819 EXPORT_SYMBOL(schedule);
6820 
6821 /*
6822  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6823  * state (have scheduled out non-voluntarily) by making sure that all
6824  * tasks have either left the run queue or have gone into user space.
6825  * As idle tasks do not do either, they must not ever be preempted
6826  * (schedule out non-voluntarily).
6827  *
6828  * schedule_idle() is similar to schedule_preempt_disable() except that it
6829  * never enables preemption because it does not call sched_submit_work().
6830  */
6831 void __sched schedule_idle(void)
6832 {
6833 	/*
6834 	 * As this skips calling sched_submit_work(), which the idle task does
6835 	 * regardless because that function is a nop when the task is in a
6836 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6837 	 * current task can be in any other state. Note, idle is always in the
6838 	 * TASK_RUNNING state.
6839 	 */
6840 	WARN_ON_ONCE(current->__state);
6841 	do {
6842 		__schedule(SM_NONE);
6843 	} while (need_resched());
6844 }
6845 
6846 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6847 asmlinkage __visible void __sched schedule_user(void)
6848 {
6849 	/*
6850 	 * If we come here after a random call to set_need_resched(),
6851 	 * or we have been woken up remotely but the IPI has not yet arrived,
6852 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6853 	 * we find a better solution.
6854 	 *
6855 	 * NB: There are buggy callers of this function.  Ideally we
6856 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6857 	 * too frequently to make sense yet.
6858 	 */
6859 	enum ctx_state prev_state = exception_enter();
6860 	schedule();
6861 	exception_exit(prev_state);
6862 }
6863 #endif
6864 
6865 /**
6866  * schedule_preempt_disabled - called with preemption disabled
6867  *
6868  * Returns with preemption disabled. Note: preempt_count must be 1
6869  */
6870 void __sched schedule_preempt_disabled(void)
6871 {
6872 	sched_preempt_enable_no_resched();
6873 	schedule();
6874 	preempt_disable();
6875 }
6876 
6877 #ifdef CONFIG_PREEMPT_RT
6878 void __sched notrace schedule_rtlock(void)
6879 {
6880 	__schedule_loop(SM_RTLOCK_WAIT);
6881 }
6882 NOKPROBE_SYMBOL(schedule_rtlock);
6883 #endif
6884 
6885 static void __sched notrace preempt_schedule_common(void)
6886 {
6887 	do {
6888 		/*
6889 		 * Because the function tracer can trace preempt_count_sub()
6890 		 * and it also uses preempt_enable/disable_notrace(), if
6891 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6892 		 * by the function tracer will call this function again and
6893 		 * cause infinite recursion.
6894 		 *
6895 		 * Preemption must be disabled here before the function
6896 		 * tracer can trace. Break up preempt_disable() into two
6897 		 * calls. One to disable preemption without fear of being
6898 		 * traced. The other to still record the preemption latency,
6899 		 * which can also be traced by the function tracer.
6900 		 */
6901 		preempt_disable_notrace();
6902 		preempt_latency_start(1);
6903 		__schedule(SM_PREEMPT);
6904 		preempt_latency_stop(1);
6905 		preempt_enable_no_resched_notrace();
6906 
6907 		/*
6908 		 * Check again in case we missed a preemption opportunity
6909 		 * between schedule and now.
6910 		 */
6911 	} while (need_resched());
6912 }
6913 
6914 #ifdef CONFIG_PREEMPTION
6915 /*
6916  * This is the entry point to schedule() from in-kernel preemption
6917  * off of preempt_enable.
6918  */
6919 asmlinkage __visible void __sched notrace preempt_schedule(void)
6920 {
6921 	/*
6922 	 * If there is a non-zero preempt_count or interrupts are disabled,
6923 	 * we do not want to preempt the current task. Just return..
6924 	 */
6925 	if (likely(!preemptible()))
6926 		return;
6927 	preempt_schedule_common();
6928 }
6929 NOKPROBE_SYMBOL(preempt_schedule);
6930 EXPORT_SYMBOL(preempt_schedule);
6931 
6932 #ifdef CONFIG_PREEMPT_DYNAMIC
6933 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6934 #ifndef preempt_schedule_dynamic_enabled
6935 #define preempt_schedule_dynamic_enabled	preempt_schedule
6936 #define preempt_schedule_dynamic_disabled	NULL
6937 #endif
6938 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6939 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6940 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6941 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6942 void __sched notrace dynamic_preempt_schedule(void)
6943 {
6944 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6945 		return;
6946 	preempt_schedule();
6947 }
6948 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6949 EXPORT_SYMBOL(dynamic_preempt_schedule);
6950 #endif
6951 #endif
6952 
6953 /**
6954  * preempt_schedule_notrace - preempt_schedule called by tracing
6955  *
6956  * The tracing infrastructure uses preempt_enable_notrace to prevent
6957  * recursion and tracing preempt enabling caused by the tracing
6958  * infrastructure itself. But as tracing can happen in areas coming
6959  * from userspace or just about to enter userspace, a preempt enable
6960  * can occur before user_exit() is called. This will cause the scheduler
6961  * to be called when the system is still in usermode.
6962  *
6963  * To prevent this, the preempt_enable_notrace will use this function
6964  * instead of preempt_schedule() to exit user context if needed before
6965  * calling the scheduler.
6966  */
6967 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6968 {
6969 	enum ctx_state prev_ctx;
6970 
6971 	if (likely(!preemptible()))
6972 		return;
6973 
6974 	do {
6975 		/*
6976 		 * Because the function tracer can trace preempt_count_sub()
6977 		 * and it also uses preempt_enable/disable_notrace(), if
6978 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6979 		 * by the function tracer will call this function again and
6980 		 * cause infinite recursion.
6981 		 *
6982 		 * Preemption must be disabled here before the function
6983 		 * tracer can trace. Break up preempt_disable() into two
6984 		 * calls. One to disable preemption without fear of being
6985 		 * traced. The other to still record the preemption latency,
6986 		 * which can also be traced by the function tracer.
6987 		 */
6988 		preempt_disable_notrace();
6989 		preempt_latency_start(1);
6990 		/*
6991 		 * Needs preempt disabled in case user_exit() is traced
6992 		 * and the tracer calls preempt_enable_notrace() causing
6993 		 * an infinite recursion.
6994 		 */
6995 		prev_ctx = exception_enter();
6996 		__schedule(SM_PREEMPT);
6997 		exception_exit(prev_ctx);
6998 
6999 		preempt_latency_stop(1);
7000 		preempt_enable_no_resched_notrace();
7001 	} while (need_resched());
7002 }
7003 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7004 
7005 #ifdef CONFIG_PREEMPT_DYNAMIC
7006 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7007 #ifndef preempt_schedule_notrace_dynamic_enabled
7008 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7009 #define preempt_schedule_notrace_dynamic_disabled	NULL
7010 #endif
7011 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7012 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7013 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7014 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7015 void __sched notrace dynamic_preempt_schedule_notrace(void)
7016 {
7017 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7018 		return;
7019 	preempt_schedule_notrace();
7020 }
7021 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7022 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7023 #endif
7024 #endif
7025 
7026 #endif /* CONFIG_PREEMPTION */
7027 
7028 /*
7029  * This is the entry point to schedule() from kernel preemption
7030  * off of irq context.
7031  * Note, that this is called and return with irqs disabled. This will
7032  * protect us against recursive calling from irq.
7033  */
7034 asmlinkage __visible void __sched preempt_schedule_irq(void)
7035 {
7036 	enum ctx_state prev_state;
7037 
7038 	/* Catch callers which need to be fixed */
7039 	BUG_ON(preempt_count() || !irqs_disabled());
7040 
7041 	prev_state = exception_enter();
7042 
7043 	do {
7044 		preempt_disable();
7045 		local_irq_enable();
7046 		__schedule(SM_PREEMPT);
7047 		local_irq_disable();
7048 		sched_preempt_enable_no_resched();
7049 	} while (need_resched());
7050 
7051 	exception_exit(prev_state);
7052 }
7053 
7054 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7055 			  void *key)
7056 {
7057 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7058 	return try_to_wake_up(curr->private, mode, wake_flags);
7059 }
7060 EXPORT_SYMBOL(default_wake_function);
7061 
7062 static void __setscheduler_prio(struct task_struct *p, int prio)
7063 {
7064 	if (dl_prio(prio))
7065 		p->sched_class = &dl_sched_class;
7066 	else if (rt_prio(prio))
7067 		p->sched_class = &rt_sched_class;
7068 	else
7069 		p->sched_class = &fair_sched_class;
7070 
7071 	p->prio = prio;
7072 }
7073 
7074 #ifdef CONFIG_RT_MUTEXES
7075 
7076 /*
7077  * Would be more useful with typeof()/auto_type but they don't mix with
7078  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7079  * name such that if someone were to implement this function we get to compare
7080  * notes.
7081  */
7082 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7083 
7084 void rt_mutex_pre_schedule(void)
7085 {
7086 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7087 	sched_submit_work(current);
7088 }
7089 
7090 void rt_mutex_schedule(void)
7091 {
7092 	lockdep_assert(current->sched_rt_mutex);
7093 	__schedule_loop(SM_NONE);
7094 }
7095 
7096 void rt_mutex_post_schedule(void)
7097 {
7098 	sched_update_worker(current);
7099 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7100 }
7101 
7102 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7103 {
7104 	if (pi_task)
7105 		prio = min(prio, pi_task->prio);
7106 
7107 	return prio;
7108 }
7109 
7110 static inline int rt_effective_prio(struct task_struct *p, int prio)
7111 {
7112 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7113 
7114 	return __rt_effective_prio(pi_task, prio);
7115 }
7116 
7117 /*
7118  * rt_mutex_setprio - set the current priority of a task
7119  * @p: task to boost
7120  * @pi_task: donor task
7121  *
7122  * This function changes the 'effective' priority of a task. It does
7123  * not touch ->normal_prio like __setscheduler().
7124  *
7125  * Used by the rt_mutex code to implement priority inheritance
7126  * logic. Call site only calls if the priority of the task changed.
7127  */
7128 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7129 {
7130 	int prio, oldprio, queued, running, queue_flag =
7131 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7132 	const struct sched_class *prev_class;
7133 	struct rq_flags rf;
7134 	struct rq *rq;
7135 
7136 	/* XXX used to be waiter->prio, not waiter->task->prio */
7137 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7138 
7139 	/*
7140 	 * If nothing changed; bail early.
7141 	 */
7142 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7143 		return;
7144 
7145 	rq = __task_rq_lock(p, &rf);
7146 	update_rq_clock(rq);
7147 	/*
7148 	 * Set under pi_lock && rq->lock, such that the value can be used under
7149 	 * either lock.
7150 	 *
7151 	 * Note that there is loads of tricky to make this pointer cache work
7152 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7153 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7154 	 * task is allowed to run again (and can exit). This ensures the pointer
7155 	 * points to a blocked task -- which guarantees the task is present.
7156 	 */
7157 	p->pi_top_task = pi_task;
7158 
7159 	/*
7160 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7161 	 */
7162 	if (prio == p->prio && !dl_prio(prio))
7163 		goto out_unlock;
7164 
7165 	/*
7166 	 * Idle task boosting is a nono in general. There is one
7167 	 * exception, when PREEMPT_RT and NOHZ is active:
7168 	 *
7169 	 * The idle task calls get_next_timer_interrupt() and holds
7170 	 * the timer wheel base->lock on the CPU and another CPU wants
7171 	 * to access the timer (probably to cancel it). We can safely
7172 	 * ignore the boosting request, as the idle CPU runs this code
7173 	 * with interrupts disabled and will complete the lock
7174 	 * protected section without being interrupted. So there is no
7175 	 * real need to boost.
7176 	 */
7177 	if (unlikely(p == rq->idle)) {
7178 		WARN_ON(p != rq->curr);
7179 		WARN_ON(p->pi_blocked_on);
7180 		goto out_unlock;
7181 	}
7182 
7183 	trace_sched_pi_setprio(p, pi_task);
7184 	oldprio = p->prio;
7185 
7186 	if (oldprio == prio)
7187 		queue_flag &= ~DEQUEUE_MOVE;
7188 
7189 	prev_class = p->sched_class;
7190 	queued = task_on_rq_queued(p);
7191 	running = task_current(rq, p);
7192 	if (queued)
7193 		dequeue_task(rq, p, queue_flag);
7194 	if (running)
7195 		put_prev_task(rq, p);
7196 
7197 	/*
7198 	 * Boosting condition are:
7199 	 * 1. -rt task is running and holds mutex A
7200 	 *      --> -dl task blocks on mutex A
7201 	 *
7202 	 * 2. -dl task is running and holds mutex A
7203 	 *      --> -dl task blocks on mutex A and could preempt the
7204 	 *          running task
7205 	 */
7206 	if (dl_prio(prio)) {
7207 		if (!dl_prio(p->normal_prio) ||
7208 		    (pi_task && dl_prio(pi_task->prio) &&
7209 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7210 			p->dl.pi_se = pi_task->dl.pi_se;
7211 			queue_flag |= ENQUEUE_REPLENISH;
7212 		} else {
7213 			p->dl.pi_se = &p->dl;
7214 		}
7215 	} else if (rt_prio(prio)) {
7216 		if (dl_prio(oldprio))
7217 			p->dl.pi_se = &p->dl;
7218 		if (oldprio < prio)
7219 			queue_flag |= ENQUEUE_HEAD;
7220 	} else {
7221 		if (dl_prio(oldprio))
7222 			p->dl.pi_se = &p->dl;
7223 		if (rt_prio(oldprio))
7224 			p->rt.timeout = 0;
7225 	}
7226 
7227 	__setscheduler_prio(p, prio);
7228 
7229 	if (queued)
7230 		enqueue_task(rq, p, queue_flag);
7231 	if (running)
7232 		set_next_task(rq, p);
7233 
7234 	check_class_changed(rq, p, prev_class, oldprio);
7235 out_unlock:
7236 	/* Avoid rq from going away on us: */
7237 	preempt_disable();
7238 
7239 	rq_unpin_lock(rq, &rf);
7240 	__balance_callbacks(rq);
7241 	raw_spin_rq_unlock(rq);
7242 
7243 	preempt_enable();
7244 }
7245 #else
7246 static inline int rt_effective_prio(struct task_struct *p, int prio)
7247 {
7248 	return prio;
7249 }
7250 #endif
7251 
7252 void set_user_nice(struct task_struct *p, long nice)
7253 {
7254 	bool queued, running;
7255 	struct rq *rq;
7256 	int old_prio;
7257 
7258 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7259 		return;
7260 	/*
7261 	 * We have to be careful, if called from sys_setpriority(),
7262 	 * the task might be in the middle of scheduling on another CPU.
7263 	 */
7264 	CLASS(task_rq_lock, rq_guard)(p);
7265 	rq = rq_guard.rq;
7266 
7267 	update_rq_clock(rq);
7268 
7269 	/*
7270 	 * The RT priorities are set via sched_setscheduler(), but we still
7271 	 * allow the 'normal' nice value to be set - but as expected
7272 	 * it won't have any effect on scheduling until the task is
7273 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7274 	 */
7275 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7276 		p->static_prio = NICE_TO_PRIO(nice);
7277 		return;
7278 	}
7279 
7280 	queued = task_on_rq_queued(p);
7281 	running = task_current(rq, p);
7282 	if (queued)
7283 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7284 	if (running)
7285 		put_prev_task(rq, p);
7286 
7287 	p->static_prio = NICE_TO_PRIO(nice);
7288 	set_load_weight(p, true);
7289 	old_prio = p->prio;
7290 	p->prio = effective_prio(p);
7291 
7292 	if (queued)
7293 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7294 	if (running)
7295 		set_next_task(rq, p);
7296 
7297 	/*
7298 	 * If the task increased its priority or is running and
7299 	 * lowered its priority, then reschedule its CPU:
7300 	 */
7301 	p->sched_class->prio_changed(rq, p, old_prio);
7302 }
7303 EXPORT_SYMBOL(set_user_nice);
7304 
7305 /*
7306  * is_nice_reduction - check if nice value is an actual reduction
7307  *
7308  * Similar to can_nice() but does not perform a capability check.
7309  *
7310  * @p: task
7311  * @nice: nice value
7312  */
7313 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7314 {
7315 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7316 	int nice_rlim = nice_to_rlimit(nice);
7317 
7318 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7319 }
7320 
7321 /*
7322  * can_nice - check if a task can reduce its nice value
7323  * @p: task
7324  * @nice: nice value
7325  */
7326 int can_nice(const struct task_struct *p, const int nice)
7327 {
7328 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7329 }
7330 
7331 #ifdef __ARCH_WANT_SYS_NICE
7332 
7333 /*
7334  * sys_nice - change the priority of the current process.
7335  * @increment: priority increment
7336  *
7337  * sys_setpriority is a more generic, but much slower function that
7338  * does similar things.
7339  */
7340 SYSCALL_DEFINE1(nice, int, increment)
7341 {
7342 	long nice, retval;
7343 
7344 	/*
7345 	 * Setpriority might change our priority at the same moment.
7346 	 * We don't have to worry. Conceptually one call occurs first
7347 	 * and we have a single winner.
7348 	 */
7349 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7350 	nice = task_nice(current) + increment;
7351 
7352 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7353 	if (increment < 0 && !can_nice(current, nice))
7354 		return -EPERM;
7355 
7356 	retval = security_task_setnice(current, nice);
7357 	if (retval)
7358 		return retval;
7359 
7360 	set_user_nice(current, nice);
7361 	return 0;
7362 }
7363 
7364 #endif
7365 
7366 /**
7367  * task_prio - return the priority value of a given task.
7368  * @p: the task in question.
7369  *
7370  * Return: The priority value as seen by users in /proc.
7371  *
7372  * sched policy         return value   kernel prio    user prio/nice
7373  *
7374  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7375  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7376  * deadline                     -101             -1           0
7377  */
7378 int task_prio(const struct task_struct *p)
7379 {
7380 	return p->prio - MAX_RT_PRIO;
7381 }
7382 
7383 /**
7384  * idle_cpu - is a given CPU idle currently?
7385  * @cpu: the processor in question.
7386  *
7387  * Return: 1 if the CPU is currently idle. 0 otherwise.
7388  */
7389 int idle_cpu(int cpu)
7390 {
7391 	struct rq *rq = cpu_rq(cpu);
7392 
7393 	if (rq->curr != rq->idle)
7394 		return 0;
7395 
7396 	if (rq->nr_running)
7397 		return 0;
7398 
7399 #ifdef CONFIG_SMP
7400 	if (rq->ttwu_pending)
7401 		return 0;
7402 #endif
7403 
7404 	return 1;
7405 }
7406 
7407 /**
7408  * available_idle_cpu - is a given CPU idle for enqueuing work.
7409  * @cpu: the CPU in question.
7410  *
7411  * Return: 1 if the CPU is currently idle. 0 otherwise.
7412  */
7413 int available_idle_cpu(int cpu)
7414 {
7415 	if (!idle_cpu(cpu))
7416 		return 0;
7417 
7418 	if (vcpu_is_preempted(cpu))
7419 		return 0;
7420 
7421 	return 1;
7422 }
7423 
7424 /**
7425  * idle_task - return the idle task for a given CPU.
7426  * @cpu: the processor in question.
7427  *
7428  * Return: The idle task for the CPU @cpu.
7429  */
7430 struct task_struct *idle_task(int cpu)
7431 {
7432 	return cpu_rq(cpu)->idle;
7433 }
7434 
7435 #ifdef CONFIG_SCHED_CORE
7436 int sched_core_idle_cpu(int cpu)
7437 {
7438 	struct rq *rq = cpu_rq(cpu);
7439 
7440 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7441 		return 1;
7442 
7443 	return idle_cpu(cpu);
7444 }
7445 
7446 #endif
7447 
7448 #ifdef CONFIG_SMP
7449 /*
7450  * This function computes an effective utilization for the given CPU, to be
7451  * used for frequency selection given the linear relation: f = u * f_max.
7452  *
7453  * The scheduler tracks the following metrics:
7454  *
7455  *   cpu_util_{cfs,rt,dl,irq}()
7456  *   cpu_bw_dl()
7457  *
7458  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7459  * synchronized windows and are thus directly comparable.
7460  *
7461  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7462  * which excludes things like IRQ and steal-time. These latter are then accrued
7463  * in the irq utilization.
7464  *
7465  * The DL bandwidth number otoh is not a measured metric but a value computed
7466  * based on the task model parameters and gives the minimal utilization
7467  * required to meet deadlines.
7468  */
7469 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7470 				 unsigned long *min,
7471 				 unsigned long *max)
7472 {
7473 	unsigned long util, irq, scale;
7474 	struct rq *rq = cpu_rq(cpu);
7475 
7476 	scale = arch_scale_cpu_capacity(cpu);
7477 
7478 	/*
7479 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7480 	 * because of inaccuracies in how we track these -- see
7481 	 * update_irq_load_avg().
7482 	 */
7483 	irq = cpu_util_irq(rq);
7484 	if (unlikely(irq >= scale)) {
7485 		if (min)
7486 			*min = scale;
7487 		if (max)
7488 			*max = scale;
7489 		return scale;
7490 	}
7491 
7492 	if (min) {
7493 		/*
7494 		 * The minimum utilization returns the highest level between:
7495 		 * - the computed DL bandwidth needed with the IRQ pressure which
7496 		 *   steals time to the deadline task.
7497 		 * - The minimum performance requirement for CFS and/or RT.
7498 		 */
7499 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
7500 
7501 		/*
7502 		 * When an RT task is runnable and uclamp is not used, we must
7503 		 * ensure that the task will run at maximum compute capacity.
7504 		 */
7505 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
7506 			*min = max(*min, scale);
7507 	}
7508 
7509 	/*
7510 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7511 	 * CFS tasks and we use the same metric to track the effective
7512 	 * utilization (PELT windows are synchronized) we can directly add them
7513 	 * to obtain the CPU's actual utilization.
7514 	 */
7515 	util = util_cfs + cpu_util_rt(rq);
7516 	util += cpu_util_dl(rq);
7517 
7518 	/*
7519 	 * The maximum hint is a soft bandwidth requirement, which can be lower
7520 	 * than the actual utilization because of uclamp_max requirements.
7521 	 */
7522 	if (max)
7523 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
7524 
7525 	if (util >= scale)
7526 		return scale;
7527 
7528 	/*
7529 	 * There is still idle time; further improve the number by using the
7530 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7531 	 * need to scale the task numbers:
7532 	 *
7533 	 *              max - irq
7534 	 *   U' = irq + --------- * U
7535 	 *                 max
7536 	 */
7537 	util = scale_irq_capacity(util, irq, scale);
7538 	util += irq;
7539 
7540 	return min(scale, util);
7541 }
7542 
7543 unsigned long sched_cpu_util(int cpu)
7544 {
7545 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
7546 }
7547 #endif /* CONFIG_SMP */
7548 
7549 /**
7550  * find_process_by_pid - find a process with a matching PID value.
7551  * @pid: the pid in question.
7552  *
7553  * The task of @pid, if found. %NULL otherwise.
7554  */
7555 static struct task_struct *find_process_by_pid(pid_t pid)
7556 {
7557 	return pid ? find_task_by_vpid(pid) : current;
7558 }
7559 
7560 static struct task_struct *find_get_task(pid_t pid)
7561 {
7562 	struct task_struct *p;
7563 	guard(rcu)();
7564 
7565 	p = find_process_by_pid(pid);
7566 	if (likely(p))
7567 		get_task_struct(p);
7568 
7569 	return p;
7570 }
7571 
7572 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7573 	     find_get_task(pid), pid_t pid)
7574 
7575 /*
7576  * sched_setparam() passes in -1 for its policy, to let the functions
7577  * it calls know not to change it.
7578  */
7579 #define SETPARAM_POLICY	-1
7580 
7581 static void __setscheduler_params(struct task_struct *p,
7582 		const struct sched_attr *attr)
7583 {
7584 	int policy = attr->sched_policy;
7585 
7586 	if (policy == SETPARAM_POLICY)
7587 		policy = p->policy;
7588 
7589 	p->policy = policy;
7590 
7591 	if (dl_policy(policy))
7592 		__setparam_dl(p, attr);
7593 	else if (fair_policy(policy))
7594 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7595 
7596 	/*
7597 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7598 	 * !rt_policy. Always setting this ensures that things like
7599 	 * getparam()/getattr() don't report silly values for !rt tasks.
7600 	 */
7601 	p->rt_priority = attr->sched_priority;
7602 	p->normal_prio = normal_prio(p);
7603 	set_load_weight(p, true);
7604 }
7605 
7606 /*
7607  * Check the target process has a UID that matches the current process's:
7608  */
7609 static bool check_same_owner(struct task_struct *p)
7610 {
7611 	const struct cred *cred = current_cred(), *pcred;
7612 	guard(rcu)();
7613 
7614 	pcred = __task_cred(p);
7615 	return (uid_eq(cred->euid, pcred->euid) ||
7616 		uid_eq(cred->euid, pcred->uid));
7617 }
7618 
7619 /*
7620  * Allow unprivileged RT tasks to decrease priority.
7621  * Only issue a capable test if needed and only once to avoid an audit
7622  * event on permitted non-privileged operations:
7623  */
7624 static int user_check_sched_setscheduler(struct task_struct *p,
7625 					 const struct sched_attr *attr,
7626 					 int policy, int reset_on_fork)
7627 {
7628 	if (fair_policy(policy)) {
7629 		if (attr->sched_nice < task_nice(p) &&
7630 		    !is_nice_reduction(p, attr->sched_nice))
7631 			goto req_priv;
7632 	}
7633 
7634 	if (rt_policy(policy)) {
7635 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7636 
7637 		/* Can't set/change the rt policy: */
7638 		if (policy != p->policy && !rlim_rtprio)
7639 			goto req_priv;
7640 
7641 		/* Can't increase priority: */
7642 		if (attr->sched_priority > p->rt_priority &&
7643 		    attr->sched_priority > rlim_rtprio)
7644 			goto req_priv;
7645 	}
7646 
7647 	/*
7648 	 * Can't set/change SCHED_DEADLINE policy at all for now
7649 	 * (safest behavior); in the future we would like to allow
7650 	 * unprivileged DL tasks to increase their relative deadline
7651 	 * or reduce their runtime (both ways reducing utilization)
7652 	 */
7653 	if (dl_policy(policy))
7654 		goto req_priv;
7655 
7656 	/*
7657 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7658 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7659 	 */
7660 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7661 		if (!is_nice_reduction(p, task_nice(p)))
7662 			goto req_priv;
7663 	}
7664 
7665 	/* Can't change other user's priorities: */
7666 	if (!check_same_owner(p))
7667 		goto req_priv;
7668 
7669 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7670 	if (p->sched_reset_on_fork && !reset_on_fork)
7671 		goto req_priv;
7672 
7673 	return 0;
7674 
7675 req_priv:
7676 	if (!capable(CAP_SYS_NICE))
7677 		return -EPERM;
7678 
7679 	return 0;
7680 }
7681 
7682 static int __sched_setscheduler(struct task_struct *p,
7683 				const struct sched_attr *attr,
7684 				bool user, bool pi)
7685 {
7686 	int oldpolicy = -1, policy = attr->sched_policy;
7687 	int retval, oldprio, newprio, queued, running;
7688 	const struct sched_class *prev_class;
7689 	struct balance_callback *head;
7690 	struct rq_flags rf;
7691 	int reset_on_fork;
7692 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7693 	struct rq *rq;
7694 	bool cpuset_locked = false;
7695 
7696 	/* The pi code expects interrupts enabled */
7697 	BUG_ON(pi && in_interrupt());
7698 recheck:
7699 	/* Double check policy once rq lock held: */
7700 	if (policy < 0) {
7701 		reset_on_fork = p->sched_reset_on_fork;
7702 		policy = oldpolicy = p->policy;
7703 	} else {
7704 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7705 
7706 		if (!valid_policy(policy))
7707 			return -EINVAL;
7708 	}
7709 
7710 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7711 		return -EINVAL;
7712 
7713 	/*
7714 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7715 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7716 	 * SCHED_BATCH and SCHED_IDLE is 0.
7717 	 */
7718 	if (attr->sched_priority > MAX_RT_PRIO-1)
7719 		return -EINVAL;
7720 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7721 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7722 		return -EINVAL;
7723 
7724 	if (user) {
7725 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7726 		if (retval)
7727 			return retval;
7728 
7729 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7730 			return -EINVAL;
7731 
7732 		retval = security_task_setscheduler(p);
7733 		if (retval)
7734 			return retval;
7735 	}
7736 
7737 	/* Update task specific "requested" clamps */
7738 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7739 		retval = uclamp_validate(p, attr);
7740 		if (retval)
7741 			return retval;
7742 	}
7743 
7744 	/*
7745 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7746 	 * information.
7747 	 */
7748 	if (dl_policy(policy) || dl_policy(p->policy)) {
7749 		cpuset_locked = true;
7750 		cpuset_lock();
7751 	}
7752 
7753 	/*
7754 	 * Make sure no PI-waiters arrive (or leave) while we are
7755 	 * changing the priority of the task:
7756 	 *
7757 	 * To be able to change p->policy safely, the appropriate
7758 	 * runqueue lock must be held.
7759 	 */
7760 	rq = task_rq_lock(p, &rf);
7761 	update_rq_clock(rq);
7762 
7763 	/*
7764 	 * Changing the policy of the stop threads its a very bad idea:
7765 	 */
7766 	if (p == rq->stop) {
7767 		retval = -EINVAL;
7768 		goto unlock;
7769 	}
7770 
7771 	/*
7772 	 * If not changing anything there's no need to proceed further,
7773 	 * but store a possible modification of reset_on_fork.
7774 	 */
7775 	if (unlikely(policy == p->policy)) {
7776 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7777 			goto change;
7778 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7779 			goto change;
7780 		if (dl_policy(policy) && dl_param_changed(p, attr))
7781 			goto change;
7782 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7783 			goto change;
7784 
7785 		p->sched_reset_on_fork = reset_on_fork;
7786 		retval = 0;
7787 		goto unlock;
7788 	}
7789 change:
7790 
7791 	if (user) {
7792 #ifdef CONFIG_RT_GROUP_SCHED
7793 		/*
7794 		 * Do not allow realtime tasks into groups that have no runtime
7795 		 * assigned.
7796 		 */
7797 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7798 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7799 				!task_group_is_autogroup(task_group(p))) {
7800 			retval = -EPERM;
7801 			goto unlock;
7802 		}
7803 #endif
7804 #ifdef CONFIG_SMP
7805 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7806 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7807 			cpumask_t *span = rq->rd->span;
7808 
7809 			/*
7810 			 * Don't allow tasks with an affinity mask smaller than
7811 			 * the entire root_domain to become SCHED_DEADLINE. We
7812 			 * will also fail if there's no bandwidth available.
7813 			 */
7814 			if (!cpumask_subset(span, p->cpus_ptr) ||
7815 			    rq->rd->dl_bw.bw == 0) {
7816 				retval = -EPERM;
7817 				goto unlock;
7818 			}
7819 		}
7820 #endif
7821 	}
7822 
7823 	/* Re-check policy now with rq lock held: */
7824 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7825 		policy = oldpolicy = -1;
7826 		task_rq_unlock(rq, p, &rf);
7827 		if (cpuset_locked)
7828 			cpuset_unlock();
7829 		goto recheck;
7830 	}
7831 
7832 	/*
7833 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7834 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7835 	 * is available.
7836 	 */
7837 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7838 		retval = -EBUSY;
7839 		goto unlock;
7840 	}
7841 
7842 	p->sched_reset_on_fork = reset_on_fork;
7843 	oldprio = p->prio;
7844 
7845 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7846 	if (pi) {
7847 		/*
7848 		 * Take priority boosted tasks into account. If the new
7849 		 * effective priority is unchanged, we just store the new
7850 		 * normal parameters and do not touch the scheduler class and
7851 		 * the runqueue. This will be done when the task deboost
7852 		 * itself.
7853 		 */
7854 		newprio = rt_effective_prio(p, newprio);
7855 		if (newprio == oldprio)
7856 			queue_flags &= ~DEQUEUE_MOVE;
7857 	}
7858 
7859 	queued = task_on_rq_queued(p);
7860 	running = task_current(rq, p);
7861 	if (queued)
7862 		dequeue_task(rq, p, queue_flags);
7863 	if (running)
7864 		put_prev_task(rq, p);
7865 
7866 	prev_class = p->sched_class;
7867 
7868 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7869 		__setscheduler_params(p, attr);
7870 		__setscheduler_prio(p, newprio);
7871 	}
7872 	__setscheduler_uclamp(p, attr);
7873 
7874 	if (queued) {
7875 		/*
7876 		 * We enqueue to tail when the priority of a task is
7877 		 * increased (user space view).
7878 		 */
7879 		if (oldprio < p->prio)
7880 			queue_flags |= ENQUEUE_HEAD;
7881 
7882 		enqueue_task(rq, p, queue_flags);
7883 	}
7884 	if (running)
7885 		set_next_task(rq, p);
7886 
7887 	check_class_changed(rq, p, prev_class, oldprio);
7888 
7889 	/* Avoid rq from going away on us: */
7890 	preempt_disable();
7891 	head = splice_balance_callbacks(rq);
7892 	task_rq_unlock(rq, p, &rf);
7893 
7894 	if (pi) {
7895 		if (cpuset_locked)
7896 			cpuset_unlock();
7897 		rt_mutex_adjust_pi(p);
7898 	}
7899 
7900 	/* Run balance callbacks after we've adjusted the PI chain: */
7901 	balance_callbacks(rq, head);
7902 	preempt_enable();
7903 
7904 	return 0;
7905 
7906 unlock:
7907 	task_rq_unlock(rq, p, &rf);
7908 	if (cpuset_locked)
7909 		cpuset_unlock();
7910 	return retval;
7911 }
7912 
7913 static int _sched_setscheduler(struct task_struct *p, int policy,
7914 			       const struct sched_param *param, bool check)
7915 {
7916 	struct sched_attr attr = {
7917 		.sched_policy   = policy,
7918 		.sched_priority = param->sched_priority,
7919 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7920 	};
7921 
7922 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7923 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7924 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7925 		policy &= ~SCHED_RESET_ON_FORK;
7926 		attr.sched_policy = policy;
7927 	}
7928 
7929 	return __sched_setscheduler(p, &attr, check, true);
7930 }
7931 /**
7932  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7933  * @p: the task in question.
7934  * @policy: new policy.
7935  * @param: structure containing the new RT priority.
7936  *
7937  * Use sched_set_fifo(), read its comment.
7938  *
7939  * Return: 0 on success. An error code otherwise.
7940  *
7941  * NOTE that the task may be already dead.
7942  */
7943 int sched_setscheduler(struct task_struct *p, int policy,
7944 		       const struct sched_param *param)
7945 {
7946 	return _sched_setscheduler(p, policy, param, true);
7947 }
7948 
7949 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7950 {
7951 	return __sched_setscheduler(p, attr, true, true);
7952 }
7953 
7954 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7955 {
7956 	return __sched_setscheduler(p, attr, false, true);
7957 }
7958 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7959 
7960 /**
7961  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7962  * @p: the task in question.
7963  * @policy: new policy.
7964  * @param: structure containing the new RT priority.
7965  *
7966  * Just like sched_setscheduler, only don't bother checking if the
7967  * current context has permission.  For example, this is needed in
7968  * stop_machine(): we create temporary high priority worker threads,
7969  * but our caller might not have that capability.
7970  *
7971  * Return: 0 on success. An error code otherwise.
7972  */
7973 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7974 			       const struct sched_param *param)
7975 {
7976 	return _sched_setscheduler(p, policy, param, false);
7977 }
7978 
7979 /*
7980  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7981  * incapable of resource management, which is the one thing an OS really should
7982  * be doing.
7983  *
7984  * This is of course the reason it is limited to privileged users only.
7985  *
7986  * Worse still; it is fundamentally impossible to compose static priority
7987  * workloads. You cannot take two correctly working static prio workloads
7988  * and smash them together and still expect them to work.
7989  *
7990  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7991  *
7992  *   MAX_RT_PRIO / 2
7993  *
7994  * The administrator _MUST_ configure the system, the kernel simply doesn't
7995  * know enough information to make a sensible choice.
7996  */
7997 void sched_set_fifo(struct task_struct *p)
7998 {
7999 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8000 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8001 }
8002 EXPORT_SYMBOL_GPL(sched_set_fifo);
8003 
8004 /*
8005  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8006  */
8007 void sched_set_fifo_low(struct task_struct *p)
8008 {
8009 	struct sched_param sp = { .sched_priority = 1 };
8010 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8011 }
8012 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8013 
8014 void sched_set_normal(struct task_struct *p, int nice)
8015 {
8016 	struct sched_attr attr = {
8017 		.sched_policy = SCHED_NORMAL,
8018 		.sched_nice = nice,
8019 	};
8020 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8021 }
8022 EXPORT_SYMBOL_GPL(sched_set_normal);
8023 
8024 static int
8025 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8026 {
8027 	struct sched_param lparam;
8028 
8029 	if (!param || pid < 0)
8030 		return -EINVAL;
8031 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8032 		return -EFAULT;
8033 
8034 	CLASS(find_get_task, p)(pid);
8035 	if (!p)
8036 		return -ESRCH;
8037 
8038 	return sched_setscheduler(p, policy, &lparam);
8039 }
8040 
8041 /*
8042  * Mimics kernel/events/core.c perf_copy_attr().
8043  */
8044 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8045 {
8046 	u32 size;
8047 	int ret;
8048 
8049 	/* Zero the full structure, so that a short copy will be nice: */
8050 	memset(attr, 0, sizeof(*attr));
8051 
8052 	ret = get_user(size, &uattr->size);
8053 	if (ret)
8054 		return ret;
8055 
8056 	/* ABI compatibility quirk: */
8057 	if (!size)
8058 		size = SCHED_ATTR_SIZE_VER0;
8059 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8060 		goto err_size;
8061 
8062 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8063 	if (ret) {
8064 		if (ret == -E2BIG)
8065 			goto err_size;
8066 		return ret;
8067 	}
8068 
8069 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8070 	    size < SCHED_ATTR_SIZE_VER1)
8071 		return -EINVAL;
8072 
8073 	/*
8074 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8075 	 * to be strict and return an error on out-of-bounds values?
8076 	 */
8077 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8078 
8079 	return 0;
8080 
8081 err_size:
8082 	put_user(sizeof(*attr), &uattr->size);
8083 	return -E2BIG;
8084 }
8085 
8086 static void get_params(struct task_struct *p, struct sched_attr *attr)
8087 {
8088 	if (task_has_dl_policy(p))
8089 		__getparam_dl(p, attr);
8090 	else if (task_has_rt_policy(p))
8091 		attr->sched_priority = p->rt_priority;
8092 	else
8093 		attr->sched_nice = task_nice(p);
8094 }
8095 
8096 /**
8097  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8098  * @pid: the pid in question.
8099  * @policy: new policy.
8100  * @param: structure containing the new RT priority.
8101  *
8102  * Return: 0 on success. An error code otherwise.
8103  */
8104 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8105 {
8106 	if (policy < 0)
8107 		return -EINVAL;
8108 
8109 	return do_sched_setscheduler(pid, policy, param);
8110 }
8111 
8112 /**
8113  * sys_sched_setparam - set/change the RT priority of a thread
8114  * @pid: the pid in question.
8115  * @param: structure containing the new RT priority.
8116  *
8117  * Return: 0 on success. An error code otherwise.
8118  */
8119 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8120 {
8121 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8122 }
8123 
8124 /**
8125  * sys_sched_setattr - same as above, but with extended sched_attr
8126  * @pid: the pid in question.
8127  * @uattr: structure containing the extended parameters.
8128  * @flags: for future extension.
8129  */
8130 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8131 			       unsigned int, flags)
8132 {
8133 	struct sched_attr attr;
8134 	int retval;
8135 
8136 	if (!uattr || pid < 0 || flags)
8137 		return -EINVAL;
8138 
8139 	retval = sched_copy_attr(uattr, &attr);
8140 	if (retval)
8141 		return retval;
8142 
8143 	if ((int)attr.sched_policy < 0)
8144 		return -EINVAL;
8145 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8146 		attr.sched_policy = SETPARAM_POLICY;
8147 
8148 	CLASS(find_get_task, p)(pid);
8149 	if (!p)
8150 		return -ESRCH;
8151 
8152 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8153 		get_params(p, &attr);
8154 
8155 	return sched_setattr(p, &attr);
8156 }
8157 
8158 /**
8159  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8160  * @pid: the pid in question.
8161  *
8162  * Return: On success, the policy of the thread. Otherwise, a negative error
8163  * code.
8164  */
8165 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8166 {
8167 	struct task_struct *p;
8168 	int retval;
8169 
8170 	if (pid < 0)
8171 		return -EINVAL;
8172 
8173 	guard(rcu)();
8174 	p = find_process_by_pid(pid);
8175 	if (!p)
8176 		return -ESRCH;
8177 
8178 	retval = security_task_getscheduler(p);
8179 	if (!retval) {
8180 		retval = p->policy;
8181 		if (p->sched_reset_on_fork)
8182 			retval |= SCHED_RESET_ON_FORK;
8183 	}
8184 	return retval;
8185 }
8186 
8187 /**
8188  * sys_sched_getparam - get the RT priority of a thread
8189  * @pid: the pid in question.
8190  * @param: structure containing the RT priority.
8191  *
8192  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8193  * code.
8194  */
8195 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8196 {
8197 	struct sched_param lp = { .sched_priority = 0 };
8198 	struct task_struct *p;
8199 	int retval;
8200 
8201 	if (!param || pid < 0)
8202 		return -EINVAL;
8203 
8204 	scoped_guard (rcu) {
8205 		p = find_process_by_pid(pid);
8206 		if (!p)
8207 			return -ESRCH;
8208 
8209 		retval = security_task_getscheduler(p);
8210 		if (retval)
8211 			return retval;
8212 
8213 		if (task_has_rt_policy(p))
8214 			lp.sched_priority = p->rt_priority;
8215 	}
8216 
8217 	/*
8218 	 * This one might sleep, we cannot do it with a spinlock held ...
8219 	 */
8220 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8221 }
8222 
8223 /*
8224  * Copy the kernel size attribute structure (which might be larger
8225  * than what user-space knows about) to user-space.
8226  *
8227  * Note that all cases are valid: user-space buffer can be larger or
8228  * smaller than the kernel-space buffer. The usual case is that both
8229  * have the same size.
8230  */
8231 static int
8232 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8233 			struct sched_attr *kattr,
8234 			unsigned int usize)
8235 {
8236 	unsigned int ksize = sizeof(*kattr);
8237 
8238 	if (!access_ok(uattr, usize))
8239 		return -EFAULT;
8240 
8241 	/*
8242 	 * sched_getattr() ABI forwards and backwards compatibility:
8243 	 *
8244 	 * If usize == ksize then we just copy everything to user-space and all is good.
8245 	 *
8246 	 * If usize < ksize then we only copy as much as user-space has space for,
8247 	 * this keeps ABI compatibility as well. We skip the rest.
8248 	 *
8249 	 * If usize > ksize then user-space is using a newer version of the ABI,
8250 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8251 	 * detect the kernel's knowledge of attributes from the attr->size value
8252 	 * which is set to ksize in this case.
8253 	 */
8254 	kattr->size = min(usize, ksize);
8255 
8256 	if (copy_to_user(uattr, kattr, kattr->size))
8257 		return -EFAULT;
8258 
8259 	return 0;
8260 }
8261 
8262 /**
8263  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8264  * @pid: the pid in question.
8265  * @uattr: structure containing the extended parameters.
8266  * @usize: sizeof(attr) for fwd/bwd comp.
8267  * @flags: for future extension.
8268  */
8269 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8270 		unsigned int, usize, unsigned int, flags)
8271 {
8272 	struct sched_attr kattr = { };
8273 	struct task_struct *p;
8274 	int retval;
8275 
8276 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8277 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8278 		return -EINVAL;
8279 
8280 	scoped_guard (rcu) {
8281 		p = find_process_by_pid(pid);
8282 		if (!p)
8283 			return -ESRCH;
8284 
8285 		retval = security_task_getscheduler(p);
8286 		if (retval)
8287 			return retval;
8288 
8289 		kattr.sched_policy = p->policy;
8290 		if (p->sched_reset_on_fork)
8291 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8292 		get_params(p, &kattr);
8293 		kattr.sched_flags &= SCHED_FLAG_ALL;
8294 
8295 #ifdef CONFIG_UCLAMP_TASK
8296 		/*
8297 		 * This could race with another potential updater, but this is fine
8298 		 * because it'll correctly read the old or the new value. We don't need
8299 		 * to guarantee who wins the race as long as it doesn't return garbage.
8300 		 */
8301 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8302 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8303 #endif
8304 	}
8305 
8306 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8307 }
8308 
8309 #ifdef CONFIG_SMP
8310 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8311 {
8312 	/*
8313 	 * If the task isn't a deadline task or admission control is
8314 	 * disabled then we don't care about affinity changes.
8315 	 */
8316 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8317 		return 0;
8318 
8319 	/*
8320 	 * Since bandwidth control happens on root_domain basis,
8321 	 * if admission test is enabled, we only admit -deadline
8322 	 * tasks allowed to run on all the CPUs in the task's
8323 	 * root_domain.
8324 	 */
8325 	guard(rcu)();
8326 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8327 		return -EBUSY;
8328 
8329 	return 0;
8330 }
8331 #endif
8332 
8333 static int
8334 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8335 {
8336 	int retval;
8337 	cpumask_var_t cpus_allowed, new_mask;
8338 
8339 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8340 		return -ENOMEM;
8341 
8342 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8343 		retval = -ENOMEM;
8344 		goto out_free_cpus_allowed;
8345 	}
8346 
8347 	cpuset_cpus_allowed(p, cpus_allowed);
8348 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8349 
8350 	ctx->new_mask = new_mask;
8351 	ctx->flags |= SCA_CHECK;
8352 
8353 	retval = dl_task_check_affinity(p, new_mask);
8354 	if (retval)
8355 		goto out_free_new_mask;
8356 
8357 	retval = __set_cpus_allowed_ptr(p, ctx);
8358 	if (retval)
8359 		goto out_free_new_mask;
8360 
8361 	cpuset_cpus_allowed(p, cpus_allowed);
8362 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8363 		/*
8364 		 * We must have raced with a concurrent cpuset update.
8365 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8366 		 */
8367 		cpumask_copy(new_mask, cpus_allowed);
8368 
8369 		/*
8370 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8371 		 * will restore the previous user_cpus_ptr value.
8372 		 *
8373 		 * In the unlikely event a previous user_cpus_ptr exists,
8374 		 * we need to further restrict the mask to what is allowed
8375 		 * by that old user_cpus_ptr.
8376 		 */
8377 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8378 			bool empty = !cpumask_and(new_mask, new_mask,
8379 						  ctx->user_mask);
8380 
8381 			if (WARN_ON_ONCE(empty))
8382 				cpumask_copy(new_mask, cpus_allowed);
8383 		}
8384 		__set_cpus_allowed_ptr(p, ctx);
8385 		retval = -EINVAL;
8386 	}
8387 
8388 out_free_new_mask:
8389 	free_cpumask_var(new_mask);
8390 out_free_cpus_allowed:
8391 	free_cpumask_var(cpus_allowed);
8392 	return retval;
8393 }
8394 
8395 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8396 {
8397 	struct affinity_context ac;
8398 	struct cpumask *user_mask;
8399 	int retval;
8400 
8401 	CLASS(find_get_task, p)(pid);
8402 	if (!p)
8403 		return -ESRCH;
8404 
8405 	if (p->flags & PF_NO_SETAFFINITY)
8406 		return -EINVAL;
8407 
8408 	if (!check_same_owner(p)) {
8409 		guard(rcu)();
8410 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8411 			return -EPERM;
8412 	}
8413 
8414 	retval = security_task_setscheduler(p);
8415 	if (retval)
8416 		return retval;
8417 
8418 	/*
8419 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8420 	 * alloc_user_cpus_ptr() returns NULL.
8421 	 */
8422 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8423 	if (user_mask) {
8424 		cpumask_copy(user_mask, in_mask);
8425 	} else if (IS_ENABLED(CONFIG_SMP)) {
8426 		return -ENOMEM;
8427 	}
8428 
8429 	ac = (struct affinity_context){
8430 		.new_mask  = in_mask,
8431 		.user_mask = user_mask,
8432 		.flags     = SCA_USER,
8433 	};
8434 
8435 	retval = __sched_setaffinity(p, &ac);
8436 	kfree(ac.user_mask);
8437 
8438 	return retval;
8439 }
8440 
8441 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8442 			     struct cpumask *new_mask)
8443 {
8444 	if (len < cpumask_size())
8445 		cpumask_clear(new_mask);
8446 	else if (len > cpumask_size())
8447 		len = cpumask_size();
8448 
8449 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8450 }
8451 
8452 /**
8453  * sys_sched_setaffinity - set the CPU affinity of a process
8454  * @pid: pid of the process
8455  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8456  * @user_mask_ptr: user-space pointer to the new CPU mask
8457  *
8458  * Return: 0 on success. An error code otherwise.
8459  */
8460 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8461 		unsigned long __user *, user_mask_ptr)
8462 {
8463 	cpumask_var_t new_mask;
8464 	int retval;
8465 
8466 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8467 		return -ENOMEM;
8468 
8469 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8470 	if (retval == 0)
8471 		retval = sched_setaffinity(pid, new_mask);
8472 	free_cpumask_var(new_mask);
8473 	return retval;
8474 }
8475 
8476 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8477 {
8478 	struct task_struct *p;
8479 	int retval;
8480 
8481 	guard(rcu)();
8482 	p = find_process_by_pid(pid);
8483 	if (!p)
8484 		return -ESRCH;
8485 
8486 	retval = security_task_getscheduler(p);
8487 	if (retval)
8488 		return retval;
8489 
8490 	guard(raw_spinlock_irqsave)(&p->pi_lock);
8491 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8492 
8493 	return 0;
8494 }
8495 
8496 /**
8497  * sys_sched_getaffinity - get the CPU affinity of a process
8498  * @pid: pid of the process
8499  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8500  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8501  *
8502  * Return: size of CPU mask copied to user_mask_ptr on success. An
8503  * error code otherwise.
8504  */
8505 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8506 		unsigned long __user *, user_mask_ptr)
8507 {
8508 	int ret;
8509 	cpumask_var_t mask;
8510 
8511 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8512 		return -EINVAL;
8513 	if (len & (sizeof(unsigned long)-1))
8514 		return -EINVAL;
8515 
8516 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8517 		return -ENOMEM;
8518 
8519 	ret = sched_getaffinity(pid, mask);
8520 	if (ret == 0) {
8521 		unsigned int retlen = min(len, cpumask_size());
8522 
8523 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8524 			ret = -EFAULT;
8525 		else
8526 			ret = retlen;
8527 	}
8528 	free_cpumask_var(mask);
8529 
8530 	return ret;
8531 }
8532 
8533 static void do_sched_yield(void)
8534 {
8535 	struct rq_flags rf;
8536 	struct rq *rq;
8537 
8538 	rq = this_rq_lock_irq(&rf);
8539 
8540 	schedstat_inc(rq->yld_count);
8541 	current->sched_class->yield_task(rq);
8542 
8543 	preempt_disable();
8544 	rq_unlock_irq(rq, &rf);
8545 	sched_preempt_enable_no_resched();
8546 
8547 	schedule();
8548 }
8549 
8550 /**
8551  * sys_sched_yield - yield the current processor to other threads.
8552  *
8553  * This function yields the current CPU to other tasks. If there are no
8554  * other threads running on this CPU then this function will return.
8555  *
8556  * Return: 0.
8557  */
8558 SYSCALL_DEFINE0(sched_yield)
8559 {
8560 	do_sched_yield();
8561 	return 0;
8562 }
8563 
8564 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8565 int __sched __cond_resched(void)
8566 {
8567 	if (should_resched(0)) {
8568 		preempt_schedule_common();
8569 		return 1;
8570 	}
8571 	/*
8572 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8573 	 * whether the current CPU is in an RCU read-side critical section,
8574 	 * so the tick can report quiescent states even for CPUs looping
8575 	 * in kernel context.  In contrast, in non-preemptible kernels,
8576 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8577 	 * processes executing in kernel context might never report an
8578 	 * RCU quiescent state.  Therefore, the following code causes
8579 	 * cond_resched() to report a quiescent state, but only when RCU
8580 	 * is in urgent need of one.
8581 	 */
8582 #ifndef CONFIG_PREEMPT_RCU
8583 	rcu_all_qs();
8584 #endif
8585 	return 0;
8586 }
8587 EXPORT_SYMBOL(__cond_resched);
8588 #endif
8589 
8590 #ifdef CONFIG_PREEMPT_DYNAMIC
8591 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8592 #define cond_resched_dynamic_enabled	__cond_resched
8593 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8594 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8595 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8596 
8597 #define might_resched_dynamic_enabled	__cond_resched
8598 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8599 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8600 EXPORT_STATIC_CALL_TRAMP(might_resched);
8601 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8602 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8603 int __sched dynamic_cond_resched(void)
8604 {
8605 	klp_sched_try_switch();
8606 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8607 		return 0;
8608 	return __cond_resched();
8609 }
8610 EXPORT_SYMBOL(dynamic_cond_resched);
8611 
8612 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8613 int __sched dynamic_might_resched(void)
8614 {
8615 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8616 		return 0;
8617 	return __cond_resched();
8618 }
8619 EXPORT_SYMBOL(dynamic_might_resched);
8620 #endif
8621 #endif
8622 
8623 /*
8624  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8625  * call schedule, and on return reacquire the lock.
8626  *
8627  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8628  * operations here to prevent schedule() from being called twice (once via
8629  * spin_unlock(), once by hand).
8630  */
8631 int __cond_resched_lock(spinlock_t *lock)
8632 {
8633 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8634 	int ret = 0;
8635 
8636 	lockdep_assert_held(lock);
8637 
8638 	if (spin_needbreak(lock) || resched) {
8639 		spin_unlock(lock);
8640 		if (!_cond_resched())
8641 			cpu_relax();
8642 		ret = 1;
8643 		spin_lock(lock);
8644 	}
8645 	return ret;
8646 }
8647 EXPORT_SYMBOL(__cond_resched_lock);
8648 
8649 int __cond_resched_rwlock_read(rwlock_t *lock)
8650 {
8651 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8652 	int ret = 0;
8653 
8654 	lockdep_assert_held_read(lock);
8655 
8656 	if (rwlock_needbreak(lock) || resched) {
8657 		read_unlock(lock);
8658 		if (!_cond_resched())
8659 			cpu_relax();
8660 		ret = 1;
8661 		read_lock(lock);
8662 	}
8663 	return ret;
8664 }
8665 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8666 
8667 int __cond_resched_rwlock_write(rwlock_t *lock)
8668 {
8669 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8670 	int ret = 0;
8671 
8672 	lockdep_assert_held_write(lock);
8673 
8674 	if (rwlock_needbreak(lock) || resched) {
8675 		write_unlock(lock);
8676 		if (!_cond_resched())
8677 			cpu_relax();
8678 		ret = 1;
8679 		write_lock(lock);
8680 	}
8681 	return ret;
8682 }
8683 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8684 
8685 #ifdef CONFIG_PREEMPT_DYNAMIC
8686 
8687 #ifdef CONFIG_GENERIC_ENTRY
8688 #include <linux/entry-common.h>
8689 #endif
8690 
8691 /*
8692  * SC:cond_resched
8693  * SC:might_resched
8694  * SC:preempt_schedule
8695  * SC:preempt_schedule_notrace
8696  * SC:irqentry_exit_cond_resched
8697  *
8698  *
8699  * NONE:
8700  *   cond_resched               <- __cond_resched
8701  *   might_resched              <- RET0
8702  *   preempt_schedule           <- NOP
8703  *   preempt_schedule_notrace   <- NOP
8704  *   irqentry_exit_cond_resched <- NOP
8705  *
8706  * VOLUNTARY:
8707  *   cond_resched               <- __cond_resched
8708  *   might_resched              <- __cond_resched
8709  *   preempt_schedule           <- NOP
8710  *   preempt_schedule_notrace   <- NOP
8711  *   irqentry_exit_cond_resched <- NOP
8712  *
8713  * FULL:
8714  *   cond_resched               <- RET0
8715  *   might_resched              <- RET0
8716  *   preempt_schedule           <- preempt_schedule
8717  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8718  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8719  */
8720 
8721 enum {
8722 	preempt_dynamic_undefined = -1,
8723 	preempt_dynamic_none,
8724 	preempt_dynamic_voluntary,
8725 	preempt_dynamic_full,
8726 };
8727 
8728 int preempt_dynamic_mode = preempt_dynamic_undefined;
8729 
8730 int sched_dynamic_mode(const char *str)
8731 {
8732 	if (!strcmp(str, "none"))
8733 		return preempt_dynamic_none;
8734 
8735 	if (!strcmp(str, "voluntary"))
8736 		return preempt_dynamic_voluntary;
8737 
8738 	if (!strcmp(str, "full"))
8739 		return preempt_dynamic_full;
8740 
8741 	return -EINVAL;
8742 }
8743 
8744 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8745 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8746 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8747 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8748 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8749 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8750 #else
8751 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8752 #endif
8753 
8754 static DEFINE_MUTEX(sched_dynamic_mutex);
8755 static bool klp_override;
8756 
8757 static void __sched_dynamic_update(int mode)
8758 {
8759 	/*
8760 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8761 	 * the ZERO state, which is invalid.
8762 	 */
8763 	if (!klp_override)
8764 		preempt_dynamic_enable(cond_resched);
8765 	preempt_dynamic_enable(might_resched);
8766 	preempt_dynamic_enable(preempt_schedule);
8767 	preempt_dynamic_enable(preempt_schedule_notrace);
8768 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8769 
8770 	switch (mode) {
8771 	case preempt_dynamic_none:
8772 		if (!klp_override)
8773 			preempt_dynamic_enable(cond_resched);
8774 		preempt_dynamic_disable(might_resched);
8775 		preempt_dynamic_disable(preempt_schedule);
8776 		preempt_dynamic_disable(preempt_schedule_notrace);
8777 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8778 		if (mode != preempt_dynamic_mode)
8779 			pr_info("Dynamic Preempt: none\n");
8780 		break;
8781 
8782 	case preempt_dynamic_voluntary:
8783 		if (!klp_override)
8784 			preempt_dynamic_enable(cond_resched);
8785 		preempt_dynamic_enable(might_resched);
8786 		preempt_dynamic_disable(preempt_schedule);
8787 		preempt_dynamic_disable(preempt_schedule_notrace);
8788 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8789 		if (mode != preempt_dynamic_mode)
8790 			pr_info("Dynamic Preempt: voluntary\n");
8791 		break;
8792 
8793 	case preempt_dynamic_full:
8794 		if (!klp_override)
8795 			preempt_dynamic_disable(cond_resched);
8796 		preempt_dynamic_disable(might_resched);
8797 		preempt_dynamic_enable(preempt_schedule);
8798 		preempt_dynamic_enable(preempt_schedule_notrace);
8799 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8800 		if (mode != preempt_dynamic_mode)
8801 			pr_info("Dynamic Preempt: full\n");
8802 		break;
8803 	}
8804 
8805 	preempt_dynamic_mode = mode;
8806 }
8807 
8808 void sched_dynamic_update(int mode)
8809 {
8810 	mutex_lock(&sched_dynamic_mutex);
8811 	__sched_dynamic_update(mode);
8812 	mutex_unlock(&sched_dynamic_mutex);
8813 }
8814 
8815 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8816 
8817 static int klp_cond_resched(void)
8818 {
8819 	__klp_sched_try_switch();
8820 	return __cond_resched();
8821 }
8822 
8823 void sched_dynamic_klp_enable(void)
8824 {
8825 	mutex_lock(&sched_dynamic_mutex);
8826 
8827 	klp_override = true;
8828 	static_call_update(cond_resched, klp_cond_resched);
8829 
8830 	mutex_unlock(&sched_dynamic_mutex);
8831 }
8832 
8833 void sched_dynamic_klp_disable(void)
8834 {
8835 	mutex_lock(&sched_dynamic_mutex);
8836 
8837 	klp_override = false;
8838 	__sched_dynamic_update(preempt_dynamic_mode);
8839 
8840 	mutex_unlock(&sched_dynamic_mutex);
8841 }
8842 
8843 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8844 
8845 static int __init setup_preempt_mode(char *str)
8846 {
8847 	int mode = sched_dynamic_mode(str);
8848 	if (mode < 0) {
8849 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8850 		return 0;
8851 	}
8852 
8853 	sched_dynamic_update(mode);
8854 	return 1;
8855 }
8856 __setup("preempt=", setup_preempt_mode);
8857 
8858 static void __init preempt_dynamic_init(void)
8859 {
8860 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8861 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8862 			sched_dynamic_update(preempt_dynamic_none);
8863 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8864 			sched_dynamic_update(preempt_dynamic_voluntary);
8865 		} else {
8866 			/* Default static call setting, nothing to do */
8867 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8868 			preempt_dynamic_mode = preempt_dynamic_full;
8869 			pr_info("Dynamic Preempt: full\n");
8870 		}
8871 	}
8872 }
8873 
8874 #define PREEMPT_MODEL_ACCESSOR(mode) \
8875 	bool preempt_model_##mode(void)						 \
8876 	{									 \
8877 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8878 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8879 	}									 \
8880 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8881 
8882 PREEMPT_MODEL_ACCESSOR(none);
8883 PREEMPT_MODEL_ACCESSOR(voluntary);
8884 PREEMPT_MODEL_ACCESSOR(full);
8885 
8886 #else /* !CONFIG_PREEMPT_DYNAMIC */
8887 
8888 static inline void preempt_dynamic_init(void) { }
8889 
8890 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8891 
8892 /**
8893  * yield - yield the current processor to other threads.
8894  *
8895  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8896  *
8897  * The scheduler is at all times free to pick the calling task as the most
8898  * eligible task to run, if removing the yield() call from your code breaks
8899  * it, it's already broken.
8900  *
8901  * Typical broken usage is:
8902  *
8903  * while (!event)
8904  *	yield();
8905  *
8906  * where one assumes that yield() will let 'the other' process run that will
8907  * make event true. If the current task is a SCHED_FIFO task that will never
8908  * happen. Never use yield() as a progress guarantee!!
8909  *
8910  * If you want to use yield() to wait for something, use wait_event().
8911  * If you want to use yield() to be 'nice' for others, use cond_resched().
8912  * If you still want to use yield(), do not!
8913  */
8914 void __sched yield(void)
8915 {
8916 	set_current_state(TASK_RUNNING);
8917 	do_sched_yield();
8918 }
8919 EXPORT_SYMBOL(yield);
8920 
8921 /**
8922  * yield_to - yield the current processor to another thread in
8923  * your thread group, or accelerate that thread toward the
8924  * processor it's on.
8925  * @p: target task
8926  * @preempt: whether task preemption is allowed or not
8927  *
8928  * It's the caller's job to ensure that the target task struct
8929  * can't go away on us before we can do any checks.
8930  *
8931  * Return:
8932  *	true (>0) if we indeed boosted the target task.
8933  *	false (0) if we failed to boost the target.
8934  *	-ESRCH if there's no task to yield to.
8935  */
8936 int __sched yield_to(struct task_struct *p, bool preempt)
8937 {
8938 	struct task_struct *curr = current;
8939 	struct rq *rq, *p_rq;
8940 	int yielded = 0;
8941 
8942 	scoped_guard (irqsave) {
8943 		rq = this_rq();
8944 
8945 again:
8946 		p_rq = task_rq(p);
8947 		/*
8948 		 * If we're the only runnable task on the rq and target rq also
8949 		 * has only one task, there's absolutely no point in yielding.
8950 		 */
8951 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
8952 			return -ESRCH;
8953 
8954 		guard(double_rq_lock)(rq, p_rq);
8955 		if (task_rq(p) != p_rq)
8956 			goto again;
8957 
8958 		if (!curr->sched_class->yield_to_task)
8959 			return 0;
8960 
8961 		if (curr->sched_class != p->sched_class)
8962 			return 0;
8963 
8964 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
8965 			return 0;
8966 
8967 		yielded = curr->sched_class->yield_to_task(rq, p);
8968 		if (yielded) {
8969 			schedstat_inc(rq->yld_count);
8970 			/*
8971 			 * Make p's CPU reschedule; pick_next_entity
8972 			 * takes care of fairness.
8973 			 */
8974 			if (preempt && rq != p_rq)
8975 				resched_curr(p_rq);
8976 		}
8977 	}
8978 
8979 	if (yielded)
8980 		schedule();
8981 
8982 	return yielded;
8983 }
8984 EXPORT_SYMBOL_GPL(yield_to);
8985 
8986 int io_schedule_prepare(void)
8987 {
8988 	int old_iowait = current->in_iowait;
8989 
8990 	current->in_iowait = 1;
8991 	blk_flush_plug(current->plug, true);
8992 	return old_iowait;
8993 }
8994 
8995 void io_schedule_finish(int token)
8996 {
8997 	current->in_iowait = token;
8998 }
8999 
9000 /*
9001  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9002  * that process accounting knows that this is a task in IO wait state.
9003  */
9004 long __sched io_schedule_timeout(long timeout)
9005 {
9006 	int token;
9007 	long ret;
9008 
9009 	token = io_schedule_prepare();
9010 	ret = schedule_timeout(timeout);
9011 	io_schedule_finish(token);
9012 
9013 	return ret;
9014 }
9015 EXPORT_SYMBOL(io_schedule_timeout);
9016 
9017 void __sched io_schedule(void)
9018 {
9019 	int token;
9020 
9021 	token = io_schedule_prepare();
9022 	schedule();
9023 	io_schedule_finish(token);
9024 }
9025 EXPORT_SYMBOL(io_schedule);
9026 
9027 /**
9028  * sys_sched_get_priority_max - return maximum RT priority.
9029  * @policy: scheduling class.
9030  *
9031  * Return: On success, this syscall returns the maximum
9032  * rt_priority that can be used by a given scheduling class.
9033  * On failure, a negative error code is returned.
9034  */
9035 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9036 {
9037 	int ret = -EINVAL;
9038 
9039 	switch (policy) {
9040 	case SCHED_FIFO:
9041 	case SCHED_RR:
9042 		ret = MAX_RT_PRIO-1;
9043 		break;
9044 	case SCHED_DEADLINE:
9045 	case SCHED_NORMAL:
9046 	case SCHED_BATCH:
9047 	case SCHED_IDLE:
9048 		ret = 0;
9049 		break;
9050 	}
9051 	return ret;
9052 }
9053 
9054 /**
9055  * sys_sched_get_priority_min - return minimum RT priority.
9056  * @policy: scheduling class.
9057  *
9058  * Return: On success, this syscall returns the minimum
9059  * rt_priority that can be used by a given scheduling class.
9060  * On failure, a negative error code is returned.
9061  */
9062 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9063 {
9064 	int ret = -EINVAL;
9065 
9066 	switch (policy) {
9067 	case SCHED_FIFO:
9068 	case SCHED_RR:
9069 		ret = 1;
9070 		break;
9071 	case SCHED_DEADLINE:
9072 	case SCHED_NORMAL:
9073 	case SCHED_BATCH:
9074 	case SCHED_IDLE:
9075 		ret = 0;
9076 	}
9077 	return ret;
9078 }
9079 
9080 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9081 {
9082 	unsigned int time_slice = 0;
9083 	int retval;
9084 
9085 	if (pid < 0)
9086 		return -EINVAL;
9087 
9088 	scoped_guard (rcu) {
9089 		struct task_struct *p = find_process_by_pid(pid);
9090 		if (!p)
9091 			return -ESRCH;
9092 
9093 		retval = security_task_getscheduler(p);
9094 		if (retval)
9095 			return retval;
9096 
9097 		scoped_guard (task_rq_lock, p) {
9098 			struct rq *rq = scope.rq;
9099 			if (p->sched_class->get_rr_interval)
9100 				time_slice = p->sched_class->get_rr_interval(rq, p);
9101 		}
9102 	}
9103 
9104 	jiffies_to_timespec64(time_slice, t);
9105 	return 0;
9106 }
9107 
9108 /**
9109  * sys_sched_rr_get_interval - return the default timeslice of a process.
9110  * @pid: pid of the process.
9111  * @interval: userspace pointer to the timeslice value.
9112  *
9113  * this syscall writes the default timeslice value of a given process
9114  * into the user-space timespec buffer. A value of '0' means infinity.
9115  *
9116  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9117  * an error code.
9118  */
9119 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9120 		struct __kernel_timespec __user *, interval)
9121 {
9122 	struct timespec64 t;
9123 	int retval = sched_rr_get_interval(pid, &t);
9124 
9125 	if (retval == 0)
9126 		retval = put_timespec64(&t, interval);
9127 
9128 	return retval;
9129 }
9130 
9131 #ifdef CONFIG_COMPAT_32BIT_TIME
9132 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9133 		struct old_timespec32 __user *, interval)
9134 {
9135 	struct timespec64 t;
9136 	int retval = sched_rr_get_interval(pid, &t);
9137 
9138 	if (retval == 0)
9139 		retval = put_old_timespec32(&t, interval);
9140 	return retval;
9141 }
9142 #endif
9143 
9144 void sched_show_task(struct task_struct *p)
9145 {
9146 	unsigned long free = 0;
9147 	int ppid;
9148 
9149 	if (!try_get_task_stack(p))
9150 		return;
9151 
9152 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9153 
9154 	if (task_is_running(p))
9155 		pr_cont("  running task    ");
9156 #ifdef CONFIG_DEBUG_STACK_USAGE
9157 	free = stack_not_used(p);
9158 #endif
9159 	ppid = 0;
9160 	rcu_read_lock();
9161 	if (pid_alive(p))
9162 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9163 	rcu_read_unlock();
9164 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9165 		free, task_pid_nr(p), task_tgid_nr(p),
9166 		ppid, read_task_thread_flags(p));
9167 
9168 	print_worker_info(KERN_INFO, p);
9169 	print_stop_info(KERN_INFO, p);
9170 	show_stack(p, NULL, KERN_INFO);
9171 	put_task_stack(p);
9172 }
9173 EXPORT_SYMBOL_GPL(sched_show_task);
9174 
9175 static inline bool
9176 state_filter_match(unsigned long state_filter, struct task_struct *p)
9177 {
9178 	unsigned int state = READ_ONCE(p->__state);
9179 
9180 	/* no filter, everything matches */
9181 	if (!state_filter)
9182 		return true;
9183 
9184 	/* filter, but doesn't match */
9185 	if (!(state & state_filter))
9186 		return false;
9187 
9188 	/*
9189 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9190 	 * TASK_KILLABLE).
9191 	 */
9192 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9193 		return false;
9194 
9195 	return true;
9196 }
9197 
9198 
9199 void show_state_filter(unsigned int state_filter)
9200 {
9201 	struct task_struct *g, *p;
9202 
9203 	rcu_read_lock();
9204 	for_each_process_thread(g, p) {
9205 		/*
9206 		 * reset the NMI-timeout, listing all files on a slow
9207 		 * console might take a lot of time:
9208 		 * Also, reset softlockup watchdogs on all CPUs, because
9209 		 * another CPU might be blocked waiting for us to process
9210 		 * an IPI.
9211 		 */
9212 		touch_nmi_watchdog();
9213 		touch_all_softlockup_watchdogs();
9214 		if (state_filter_match(state_filter, p))
9215 			sched_show_task(p);
9216 	}
9217 
9218 #ifdef CONFIG_SCHED_DEBUG
9219 	if (!state_filter)
9220 		sysrq_sched_debug_show();
9221 #endif
9222 	rcu_read_unlock();
9223 	/*
9224 	 * Only show locks if all tasks are dumped:
9225 	 */
9226 	if (!state_filter)
9227 		debug_show_all_locks();
9228 }
9229 
9230 /**
9231  * init_idle - set up an idle thread for a given CPU
9232  * @idle: task in question
9233  * @cpu: CPU the idle task belongs to
9234  *
9235  * NOTE: this function does not set the idle thread's NEED_RESCHED
9236  * flag, to make booting more robust.
9237  */
9238 void __init init_idle(struct task_struct *idle, int cpu)
9239 {
9240 #ifdef CONFIG_SMP
9241 	struct affinity_context ac = (struct affinity_context) {
9242 		.new_mask  = cpumask_of(cpu),
9243 		.flags     = 0,
9244 	};
9245 #endif
9246 	struct rq *rq = cpu_rq(cpu);
9247 	unsigned long flags;
9248 
9249 	__sched_fork(0, idle);
9250 
9251 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9252 	raw_spin_rq_lock(rq);
9253 
9254 	idle->__state = TASK_RUNNING;
9255 	idle->se.exec_start = sched_clock();
9256 	/*
9257 	 * PF_KTHREAD should already be set at this point; regardless, make it
9258 	 * look like a proper per-CPU kthread.
9259 	 */
9260 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9261 	kthread_set_per_cpu(idle, cpu);
9262 
9263 #ifdef CONFIG_SMP
9264 	/*
9265 	 * It's possible that init_idle() gets called multiple times on a task,
9266 	 * in that case do_set_cpus_allowed() will not do the right thing.
9267 	 *
9268 	 * And since this is boot we can forgo the serialization.
9269 	 */
9270 	set_cpus_allowed_common(idle, &ac);
9271 #endif
9272 	/*
9273 	 * We're having a chicken and egg problem, even though we are
9274 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9275 	 * lockdep check in task_group() will fail.
9276 	 *
9277 	 * Similar case to sched_fork(). / Alternatively we could
9278 	 * use task_rq_lock() here and obtain the other rq->lock.
9279 	 *
9280 	 * Silence PROVE_RCU
9281 	 */
9282 	rcu_read_lock();
9283 	__set_task_cpu(idle, cpu);
9284 	rcu_read_unlock();
9285 
9286 	rq->idle = idle;
9287 	rcu_assign_pointer(rq->curr, idle);
9288 	idle->on_rq = TASK_ON_RQ_QUEUED;
9289 #ifdef CONFIG_SMP
9290 	idle->on_cpu = 1;
9291 #endif
9292 	raw_spin_rq_unlock(rq);
9293 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9294 
9295 	/* Set the preempt count _outside_ the spinlocks! */
9296 	init_idle_preempt_count(idle, cpu);
9297 
9298 	/*
9299 	 * The idle tasks have their own, simple scheduling class:
9300 	 */
9301 	idle->sched_class = &idle_sched_class;
9302 	ftrace_graph_init_idle_task(idle, cpu);
9303 	vtime_init_idle(idle, cpu);
9304 #ifdef CONFIG_SMP
9305 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9306 #endif
9307 }
9308 
9309 #ifdef CONFIG_SMP
9310 
9311 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9312 			      const struct cpumask *trial)
9313 {
9314 	int ret = 1;
9315 
9316 	if (cpumask_empty(cur))
9317 		return ret;
9318 
9319 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9320 
9321 	return ret;
9322 }
9323 
9324 int task_can_attach(struct task_struct *p)
9325 {
9326 	int ret = 0;
9327 
9328 	/*
9329 	 * Kthreads which disallow setaffinity shouldn't be moved
9330 	 * to a new cpuset; we don't want to change their CPU
9331 	 * affinity and isolating such threads by their set of
9332 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9333 	 * applicable for such threads.  This prevents checking for
9334 	 * success of set_cpus_allowed_ptr() on all attached tasks
9335 	 * before cpus_mask may be changed.
9336 	 */
9337 	if (p->flags & PF_NO_SETAFFINITY)
9338 		ret = -EINVAL;
9339 
9340 	return ret;
9341 }
9342 
9343 bool sched_smp_initialized __read_mostly;
9344 
9345 #ifdef CONFIG_NUMA_BALANCING
9346 /* Migrate current task p to target_cpu */
9347 int migrate_task_to(struct task_struct *p, int target_cpu)
9348 {
9349 	struct migration_arg arg = { p, target_cpu };
9350 	int curr_cpu = task_cpu(p);
9351 
9352 	if (curr_cpu == target_cpu)
9353 		return 0;
9354 
9355 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9356 		return -EINVAL;
9357 
9358 	/* TODO: This is not properly updating schedstats */
9359 
9360 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9361 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9362 }
9363 
9364 /*
9365  * Requeue a task on a given node and accurately track the number of NUMA
9366  * tasks on the runqueues
9367  */
9368 void sched_setnuma(struct task_struct *p, int nid)
9369 {
9370 	bool queued, running;
9371 	struct rq_flags rf;
9372 	struct rq *rq;
9373 
9374 	rq = task_rq_lock(p, &rf);
9375 	queued = task_on_rq_queued(p);
9376 	running = task_current(rq, p);
9377 
9378 	if (queued)
9379 		dequeue_task(rq, p, DEQUEUE_SAVE);
9380 	if (running)
9381 		put_prev_task(rq, p);
9382 
9383 	p->numa_preferred_nid = nid;
9384 
9385 	if (queued)
9386 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9387 	if (running)
9388 		set_next_task(rq, p);
9389 	task_rq_unlock(rq, p, &rf);
9390 }
9391 #endif /* CONFIG_NUMA_BALANCING */
9392 
9393 #ifdef CONFIG_HOTPLUG_CPU
9394 /*
9395  * Ensure that the idle task is using init_mm right before its CPU goes
9396  * offline.
9397  */
9398 void idle_task_exit(void)
9399 {
9400 	struct mm_struct *mm = current->active_mm;
9401 
9402 	BUG_ON(cpu_online(smp_processor_id()));
9403 	BUG_ON(current != this_rq()->idle);
9404 
9405 	if (mm != &init_mm) {
9406 		switch_mm(mm, &init_mm, current);
9407 		finish_arch_post_lock_switch();
9408 	}
9409 
9410 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9411 }
9412 
9413 static int __balance_push_cpu_stop(void *arg)
9414 {
9415 	struct task_struct *p = arg;
9416 	struct rq *rq = this_rq();
9417 	struct rq_flags rf;
9418 	int cpu;
9419 
9420 	raw_spin_lock_irq(&p->pi_lock);
9421 	rq_lock(rq, &rf);
9422 
9423 	update_rq_clock(rq);
9424 
9425 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9426 		cpu = select_fallback_rq(rq->cpu, p);
9427 		rq = __migrate_task(rq, &rf, p, cpu);
9428 	}
9429 
9430 	rq_unlock(rq, &rf);
9431 	raw_spin_unlock_irq(&p->pi_lock);
9432 
9433 	put_task_struct(p);
9434 
9435 	return 0;
9436 }
9437 
9438 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9439 
9440 /*
9441  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9442  *
9443  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9444  * effective when the hotplug motion is down.
9445  */
9446 static void balance_push(struct rq *rq)
9447 {
9448 	struct task_struct *push_task = rq->curr;
9449 
9450 	lockdep_assert_rq_held(rq);
9451 
9452 	/*
9453 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9454 	 */
9455 	rq->balance_callback = &balance_push_callback;
9456 
9457 	/*
9458 	 * Only active while going offline and when invoked on the outgoing
9459 	 * CPU.
9460 	 */
9461 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9462 		return;
9463 
9464 	/*
9465 	 * Both the cpu-hotplug and stop task are in this case and are
9466 	 * required to complete the hotplug process.
9467 	 */
9468 	if (kthread_is_per_cpu(push_task) ||
9469 	    is_migration_disabled(push_task)) {
9470 
9471 		/*
9472 		 * If this is the idle task on the outgoing CPU try to wake
9473 		 * up the hotplug control thread which might wait for the
9474 		 * last task to vanish. The rcuwait_active() check is
9475 		 * accurate here because the waiter is pinned on this CPU
9476 		 * and can't obviously be running in parallel.
9477 		 *
9478 		 * On RT kernels this also has to check whether there are
9479 		 * pinned and scheduled out tasks on the runqueue. They
9480 		 * need to leave the migrate disabled section first.
9481 		 */
9482 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9483 		    rcuwait_active(&rq->hotplug_wait)) {
9484 			raw_spin_rq_unlock(rq);
9485 			rcuwait_wake_up(&rq->hotplug_wait);
9486 			raw_spin_rq_lock(rq);
9487 		}
9488 		return;
9489 	}
9490 
9491 	get_task_struct(push_task);
9492 	/*
9493 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9494 	 * Both preemption and IRQs are still disabled.
9495 	 */
9496 	preempt_disable();
9497 	raw_spin_rq_unlock(rq);
9498 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9499 			    this_cpu_ptr(&push_work));
9500 	preempt_enable();
9501 	/*
9502 	 * At this point need_resched() is true and we'll take the loop in
9503 	 * schedule(). The next pick is obviously going to be the stop task
9504 	 * which kthread_is_per_cpu() and will push this task away.
9505 	 */
9506 	raw_spin_rq_lock(rq);
9507 }
9508 
9509 static void balance_push_set(int cpu, bool on)
9510 {
9511 	struct rq *rq = cpu_rq(cpu);
9512 	struct rq_flags rf;
9513 
9514 	rq_lock_irqsave(rq, &rf);
9515 	if (on) {
9516 		WARN_ON_ONCE(rq->balance_callback);
9517 		rq->balance_callback = &balance_push_callback;
9518 	} else if (rq->balance_callback == &balance_push_callback) {
9519 		rq->balance_callback = NULL;
9520 	}
9521 	rq_unlock_irqrestore(rq, &rf);
9522 }
9523 
9524 /*
9525  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9526  * inactive. All tasks which are not per CPU kernel threads are either
9527  * pushed off this CPU now via balance_push() or placed on a different CPU
9528  * during wakeup. Wait until the CPU is quiescent.
9529  */
9530 static void balance_hotplug_wait(void)
9531 {
9532 	struct rq *rq = this_rq();
9533 
9534 	rcuwait_wait_event(&rq->hotplug_wait,
9535 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9536 			   TASK_UNINTERRUPTIBLE);
9537 }
9538 
9539 #else
9540 
9541 static inline void balance_push(struct rq *rq)
9542 {
9543 }
9544 
9545 static inline void balance_push_set(int cpu, bool on)
9546 {
9547 }
9548 
9549 static inline void balance_hotplug_wait(void)
9550 {
9551 }
9552 
9553 #endif /* CONFIG_HOTPLUG_CPU */
9554 
9555 void set_rq_online(struct rq *rq)
9556 {
9557 	if (!rq->online) {
9558 		const struct sched_class *class;
9559 
9560 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9561 		rq->online = 1;
9562 
9563 		for_each_class(class) {
9564 			if (class->rq_online)
9565 				class->rq_online(rq);
9566 		}
9567 	}
9568 }
9569 
9570 void set_rq_offline(struct rq *rq)
9571 {
9572 	if (rq->online) {
9573 		const struct sched_class *class;
9574 
9575 		update_rq_clock(rq);
9576 		for_each_class(class) {
9577 			if (class->rq_offline)
9578 				class->rq_offline(rq);
9579 		}
9580 
9581 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9582 		rq->online = 0;
9583 	}
9584 }
9585 
9586 /*
9587  * used to mark begin/end of suspend/resume:
9588  */
9589 static int num_cpus_frozen;
9590 
9591 /*
9592  * Update cpusets according to cpu_active mask.  If cpusets are
9593  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9594  * around partition_sched_domains().
9595  *
9596  * If we come here as part of a suspend/resume, don't touch cpusets because we
9597  * want to restore it back to its original state upon resume anyway.
9598  */
9599 static void cpuset_cpu_active(void)
9600 {
9601 	if (cpuhp_tasks_frozen) {
9602 		/*
9603 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9604 		 * resume sequence. As long as this is not the last online
9605 		 * operation in the resume sequence, just build a single sched
9606 		 * domain, ignoring cpusets.
9607 		 */
9608 		partition_sched_domains(1, NULL, NULL);
9609 		if (--num_cpus_frozen)
9610 			return;
9611 		/*
9612 		 * This is the last CPU online operation. So fall through and
9613 		 * restore the original sched domains by considering the
9614 		 * cpuset configurations.
9615 		 */
9616 		cpuset_force_rebuild();
9617 	}
9618 	cpuset_update_active_cpus();
9619 }
9620 
9621 static int cpuset_cpu_inactive(unsigned int cpu)
9622 {
9623 	if (!cpuhp_tasks_frozen) {
9624 		int ret = dl_bw_check_overflow(cpu);
9625 
9626 		if (ret)
9627 			return ret;
9628 		cpuset_update_active_cpus();
9629 	} else {
9630 		num_cpus_frozen++;
9631 		partition_sched_domains(1, NULL, NULL);
9632 	}
9633 	return 0;
9634 }
9635 
9636 int sched_cpu_activate(unsigned int cpu)
9637 {
9638 	struct rq *rq = cpu_rq(cpu);
9639 	struct rq_flags rf;
9640 
9641 	/*
9642 	 * Clear the balance_push callback and prepare to schedule
9643 	 * regular tasks.
9644 	 */
9645 	balance_push_set(cpu, false);
9646 
9647 #ifdef CONFIG_SCHED_SMT
9648 	/*
9649 	 * When going up, increment the number of cores with SMT present.
9650 	 */
9651 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9652 		static_branch_inc_cpuslocked(&sched_smt_present);
9653 #endif
9654 	set_cpu_active(cpu, true);
9655 
9656 	if (sched_smp_initialized) {
9657 		sched_update_numa(cpu, true);
9658 		sched_domains_numa_masks_set(cpu);
9659 		cpuset_cpu_active();
9660 	}
9661 
9662 	/*
9663 	 * Put the rq online, if not already. This happens:
9664 	 *
9665 	 * 1) In the early boot process, because we build the real domains
9666 	 *    after all CPUs have been brought up.
9667 	 *
9668 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9669 	 *    domains.
9670 	 */
9671 	rq_lock_irqsave(rq, &rf);
9672 	if (rq->rd) {
9673 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9674 		set_rq_online(rq);
9675 	}
9676 	rq_unlock_irqrestore(rq, &rf);
9677 
9678 	return 0;
9679 }
9680 
9681 int sched_cpu_deactivate(unsigned int cpu)
9682 {
9683 	struct rq *rq = cpu_rq(cpu);
9684 	struct rq_flags rf;
9685 	int ret;
9686 
9687 	/*
9688 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9689 	 * load balancing when not active
9690 	 */
9691 	nohz_balance_exit_idle(rq);
9692 
9693 	set_cpu_active(cpu, false);
9694 
9695 	/*
9696 	 * From this point forward, this CPU will refuse to run any task that
9697 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9698 	 * push those tasks away until this gets cleared, see
9699 	 * sched_cpu_dying().
9700 	 */
9701 	balance_push_set(cpu, true);
9702 
9703 	/*
9704 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9705 	 * preempt-disabled and RCU users of this state to go away such that
9706 	 * all new such users will observe it.
9707 	 *
9708 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9709 	 * ttwu_queue_cond() and is_cpu_allowed().
9710 	 *
9711 	 * Do sync before park smpboot threads to take care the rcu boost case.
9712 	 */
9713 	synchronize_rcu();
9714 
9715 	rq_lock_irqsave(rq, &rf);
9716 	if (rq->rd) {
9717 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9718 		set_rq_offline(rq);
9719 	}
9720 	rq_unlock_irqrestore(rq, &rf);
9721 
9722 #ifdef CONFIG_SCHED_SMT
9723 	/*
9724 	 * When going down, decrement the number of cores with SMT present.
9725 	 */
9726 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9727 		static_branch_dec_cpuslocked(&sched_smt_present);
9728 
9729 	sched_core_cpu_deactivate(cpu);
9730 #endif
9731 
9732 	if (!sched_smp_initialized)
9733 		return 0;
9734 
9735 	sched_update_numa(cpu, false);
9736 	ret = cpuset_cpu_inactive(cpu);
9737 	if (ret) {
9738 		balance_push_set(cpu, false);
9739 		set_cpu_active(cpu, true);
9740 		sched_update_numa(cpu, true);
9741 		return ret;
9742 	}
9743 	sched_domains_numa_masks_clear(cpu);
9744 	return 0;
9745 }
9746 
9747 static void sched_rq_cpu_starting(unsigned int cpu)
9748 {
9749 	struct rq *rq = cpu_rq(cpu);
9750 
9751 	rq->calc_load_update = calc_load_update;
9752 	update_max_interval();
9753 }
9754 
9755 int sched_cpu_starting(unsigned int cpu)
9756 {
9757 	sched_core_cpu_starting(cpu);
9758 	sched_rq_cpu_starting(cpu);
9759 	sched_tick_start(cpu);
9760 	return 0;
9761 }
9762 
9763 #ifdef CONFIG_HOTPLUG_CPU
9764 
9765 /*
9766  * Invoked immediately before the stopper thread is invoked to bring the
9767  * CPU down completely. At this point all per CPU kthreads except the
9768  * hotplug thread (current) and the stopper thread (inactive) have been
9769  * either parked or have been unbound from the outgoing CPU. Ensure that
9770  * any of those which might be on the way out are gone.
9771  *
9772  * If after this point a bound task is being woken on this CPU then the
9773  * responsible hotplug callback has failed to do it's job.
9774  * sched_cpu_dying() will catch it with the appropriate fireworks.
9775  */
9776 int sched_cpu_wait_empty(unsigned int cpu)
9777 {
9778 	balance_hotplug_wait();
9779 	return 0;
9780 }
9781 
9782 /*
9783  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9784  * might have. Called from the CPU stopper task after ensuring that the
9785  * stopper is the last running task on the CPU, so nr_active count is
9786  * stable. We need to take the teardown thread which is calling this into
9787  * account, so we hand in adjust = 1 to the load calculation.
9788  *
9789  * Also see the comment "Global load-average calculations".
9790  */
9791 static void calc_load_migrate(struct rq *rq)
9792 {
9793 	long delta = calc_load_fold_active(rq, 1);
9794 
9795 	if (delta)
9796 		atomic_long_add(delta, &calc_load_tasks);
9797 }
9798 
9799 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9800 {
9801 	struct task_struct *g, *p;
9802 	int cpu = cpu_of(rq);
9803 
9804 	lockdep_assert_rq_held(rq);
9805 
9806 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9807 	for_each_process_thread(g, p) {
9808 		if (task_cpu(p) != cpu)
9809 			continue;
9810 
9811 		if (!task_on_rq_queued(p))
9812 			continue;
9813 
9814 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9815 	}
9816 }
9817 
9818 int sched_cpu_dying(unsigned int cpu)
9819 {
9820 	struct rq *rq = cpu_rq(cpu);
9821 	struct rq_flags rf;
9822 
9823 	/* Handle pending wakeups and then migrate everything off */
9824 	sched_tick_stop(cpu);
9825 
9826 	rq_lock_irqsave(rq, &rf);
9827 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9828 		WARN(true, "Dying CPU not properly vacated!");
9829 		dump_rq_tasks(rq, KERN_WARNING);
9830 	}
9831 	rq_unlock_irqrestore(rq, &rf);
9832 
9833 	calc_load_migrate(rq);
9834 	update_max_interval();
9835 	hrtick_clear(rq);
9836 	sched_core_cpu_dying(cpu);
9837 	return 0;
9838 }
9839 #endif
9840 
9841 void __init sched_init_smp(void)
9842 {
9843 	sched_init_numa(NUMA_NO_NODE);
9844 
9845 	/*
9846 	 * There's no userspace yet to cause hotplug operations; hence all the
9847 	 * CPU masks are stable and all blatant races in the below code cannot
9848 	 * happen.
9849 	 */
9850 	mutex_lock(&sched_domains_mutex);
9851 	sched_init_domains(cpu_active_mask);
9852 	mutex_unlock(&sched_domains_mutex);
9853 
9854 	/* Move init over to a non-isolated CPU */
9855 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9856 		BUG();
9857 	current->flags &= ~PF_NO_SETAFFINITY;
9858 	sched_init_granularity();
9859 
9860 	init_sched_rt_class();
9861 	init_sched_dl_class();
9862 
9863 	sched_smp_initialized = true;
9864 }
9865 
9866 static int __init migration_init(void)
9867 {
9868 	sched_cpu_starting(smp_processor_id());
9869 	return 0;
9870 }
9871 early_initcall(migration_init);
9872 
9873 #else
9874 void __init sched_init_smp(void)
9875 {
9876 	sched_init_granularity();
9877 }
9878 #endif /* CONFIG_SMP */
9879 
9880 int in_sched_functions(unsigned long addr)
9881 {
9882 	return in_lock_functions(addr) ||
9883 		(addr >= (unsigned long)__sched_text_start
9884 		&& addr < (unsigned long)__sched_text_end);
9885 }
9886 
9887 #ifdef CONFIG_CGROUP_SCHED
9888 /*
9889  * Default task group.
9890  * Every task in system belongs to this group at bootup.
9891  */
9892 struct task_group root_task_group;
9893 LIST_HEAD(task_groups);
9894 
9895 /* Cacheline aligned slab cache for task_group */
9896 static struct kmem_cache *task_group_cache __ro_after_init;
9897 #endif
9898 
9899 void __init sched_init(void)
9900 {
9901 	unsigned long ptr = 0;
9902 	int i;
9903 
9904 	/* Make sure the linker didn't screw up */
9905 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9906 	       &fair_sched_class != &rt_sched_class + 1 ||
9907 	       &rt_sched_class   != &dl_sched_class + 1);
9908 #ifdef CONFIG_SMP
9909 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9910 #endif
9911 
9912 	wait_bit_init();
9913 
9914 #ifdef CONFIG_FAIR_GROUP_SCHED
9915 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9916 #endif
9917 #ifdef CONFIG_RT_GROUP_SCHED
9918 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9919 #endif
9920 	if (ptr) {
9921 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9922 
9923 #ifdef CONFIG_FAIR_GROUP_SCHED
9924 		root_task_group.se = (struct sched_entity **)ptr;
9925 		ptr += nr_cpu_ids * sizeof(void **);
9926 
9927 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9928 		ptr += nr_cpu_ids * sizeof(void **);
9929 
9930 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9931 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9932 #endif /* CONFIG_FAIR_GROUP_SCHED */
9933 #ifdef CONFIG_RT_GROUP_SCHED
9934 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9935 		ptr += nr_cpu_ids * sizeof(void **);
9936 
9937 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9938 		ptr += nr_cpu_ids * sizeof(void **);
9939 
9940 #endif /* CONFIG_RT_GROUP_SCHED */
9941 	}
9942 
9943 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9944 
9945 #ifdef CONFIG_SMP
9946 	init_defrootdomain();
9947 #endif
9948 
9949 #ifdef CONFIG_RT_GROUP_SCHED
9950 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9951 			global_rt_period(), global_rt_runtime());
9952 #endif /* CONFIG_RT_GROUP_SCHED */
9953 
9954 #ifdef CONFIG_CGROUP_SCHED
9955 	task_group_cache = KMEM_CACHE(task_group, 0);
9956 
9957 	list_add(&root_task_group.list, &task_groups);
9958 	INIT_LIST_HEAD(&root_task_group.children);
9959 	INIT_LIST_HEAD(&root_task_group.siblings);
9960 	autogroup_init(&init_task);
9961 #endif /* CONFIG_CGROUP_SCHED */
9962 
9963 	for_each_possible_cpu(i) {
9964 		struct rq *rq;
9965 
9966 		rq = cpu_rq(i);
9967 		raw_spin_lock_init(&rq->__lock);
9968 		rq->nr_running = 0;
9969 		rq->calc_load_active = 0;
9970 		rq->calc_load_update = jiffies + LOAD_FREQ;
9971 		init_cfs_rq(&rq->cfs);
9972 		init_rt_rq(&rq->rt);
9973 		init_dl_rq(&rq->dl);
9974 #ifdef CONFIG_FAIR_GROUP_SCHED
9975 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9976 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9977 		/*
9978 		 * How much CPU bandwidth does root_task_group get?
9979 		 *
9980 		 * In case of task-groups formed thr' the cgroup filesystem, it
9981 		 * gets 100% of the CPU resources in the system. This overall
9982 		 * system CPU resource is divided among the tasks of
9983 		 * root_task_group and its child task-groups in a fair manner,
9984 		 * based on each entity's (task or task-group's) weight
9985 		 * (se->load.weight).
9986 		 *
9987 		 * In other words, if root_task_group has 10 tasks of weight
9988 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9989 		 * then A0's share of the CPU resource is:
9990 		 *
9991 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9992 		 *
9993 		 * We achieve this by letting root_task_group's tasks sit
9994 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9995 		 */
9996 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9997 #endif /* CONFIG_FAIR_GROUP_SCHED */
9998 
9999 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10000 #ifdef CONFIG_RT_GROUP_SCHED
10001 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10002 #endif
10003 #ifdef CONFIG_SMP
10004 		rq->sd = NULL;
10005 		rq->rd = NULL;
10006 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
10007 		rq->balance_callback = &balance_push_callback;
10008 		rq->active_balance = 0;
10009 		rq->next_balance = jiffies;
10010 		rq->push_cpu = 0;
10011 		rq->cpu = i;
10012 		rq->online = 0;
10013 		rq->idle_stamp = 0;
10014 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10015 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10016 
10017 		INIT_LIST_HEAD(&rq->cfs_tasks);
10018 
10019 		rq_attach_root(rq, &def_root_domain);
10020 #ifdef CONFIG_NO_HZ_COMMON
10021 		rq->last_blocked_load_update_tick = jiffies;
10022 		atomic_set(&rq->nohz_flags, 0);
10023 
10024 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10025 #endif
10026 #ifdef CONFIG_HOTPLUG_CPU
10027 		rcuwait_init(&rq->hotplug_wait);
10028 #endif
10029 #endif /* CONFIG_SMP */
10030 		hrtick_rq_init(rq);
10031 		atomic_set(&rq->nr_iowait, 0);
10032 
10033 #ifdef CONFIG_SCHED_CORE
10034 		rq->core = rq;
10035 		rq->core_pick = NULL;
10036 		rq->core_enabled = 0;
10037 		rq->core_tree = RB_ROOT;
10038 		rq->core_forceidle_count = 0;
10039 		rq->core_forceidle_occupation = 0;
10040 		rq->core_forceidle_start = 0;
10041 
10042 		rq->core_cookie = 0UL;
10043 #endif
10044 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10045 	}
10046 
10047 	set_load_weight(&init_task, false);
10048 
10049 	/*
10050 	 * The boot idle thread does lazy MMU switching as well:
10051 	 */
10052 	mmgrab_lazy_tlb(&init_mm);
10053 	enter_lazy_tlb(&init_mm, current);
10054 
10055 	/*
10056 	 * The idle task doesn't need the kthread struct to function, but it
10057 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10058 	 * if we want to avoid special-casing it in code that deals with per-CPU
10059 	 * kthreads.
10060 	 */
10061 	WARN_ON(!set_kthread_struct(current));
10062 
10063 	/*
10064 	 * Make us the idle thread. Technically, schedule() should not be
10065 	 * called from this thread, however somewhere below it might be,
10066 	 * but because we are the idle thread, we just pick up running again
10067 	 * when this runqueue becomes "idle".
10068 	 */
10069 	init_idle(current, smp_processor_id());
10070 
10071 	calc_load_update = jiffies + LOAD_FREQ;
10072 
10073 #ifdef CONFIG_SMP
10074 	idle_thread_set_boot_cpu();
10075 	balance_push_set(smp_processor_id(), false);
10076 #endif
10077 	init_sched_fair_class();
10078 
10079 	psi_init();
10080 
10081 	init_uclamp();
10082 
10083 	preempt_dynamic_init();
10084 
10085 	scheduler_running = 1;
10086 }
10087 
10088 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10089 
10090 void __might_sleep(const char *file, int line)
10091 {
10092 	unsigned int state = get_current_state();
10093 	/*
10094 	 * Blocking primitives will set (and therefore destroy) current->state,
10095 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10096 	 * otherwise we will destroy state.
10097 	 */
10098 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10099 			"do not call blocking ops when !TASK_RUNNING; "
10100 			"state=%x set at [<%p>] %pS\n", state,
10101 			(void *)current->task_state_change,
10102 			(void *)current->task_state_change);
10103 
10104 	__might_resched(file, line, 0);
10105 }
10106 EXPORT_SYMBOL(__might_sleep);
10107 
10108 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10109 {
10110 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10111 		return;
10112 
10113 	if (preempt_count() == preempt_offset)
10114 		return;
10115 
10116 	pr_err("Preemption disabled at:");
10117 	print_ip_sym(KERN_ERR, ip);
10118 }
10119 
10120 static inline bool resched_offsets_ok(unsigned int offsets)
10121 {
10122 	unsigned int nested = preempt_count();
10123 
10124 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10125 
10126 	return nested == offsets;
10127 }
10128 
10129 void __might_resched(const char *file, int line, unsigned int offsets)
10130 {
10131 	/* Ratelimiting timestamp: */
10132 	static unsigned long prev_jiffy;
10133 
10134 	unsigned long preempt_disable_ip;
10135 
10136 	/* WARN_ON_ONCE() by default, no rate limit required: */
10137 	rcu_sleep_check();
10138 
10139 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10140 	     !is_idle_task(current) && !current->non_block_count) ||
10141 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10142 	    oops_in_progress)
10143 		return;
10144 
10145 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10146 		return;
10147 	prev_jiffy = jiffies;
10148 
10149 	/* Save this before calling printk(), since that will clobber it: */
10150 	preempt_disable_ip = get_preempt_disable_ip(current);
10151 
10152 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10153 	       file, line);
10154 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10155 	       in_atomic(), irqs_disabled(), current->non_block_count,
10156 	       current->pid, current->comm);
10157 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10158 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10159 
10160 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10161 		pr_err("RCU nest depth: %d, expected: %u\n",
10162 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10163 	}
10164 
10165 	if (task_stack_end_corrupted(current))
10166 		pr_emerg("Thread overran stack, or stack corrupted\n");
10167 
10168 	debug_show_held_locks(current);
10169 	if (irqs_disabled())
10170 		print_irqtrace_events(current);
10171 
10172 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10173 				 preempt_disable_ip);
10174 
10175 	dump_stack();
10176 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10177 }
10178 EXPORT_SYMBOL(__might_resched);
10179 
10180 void __cant_sleep(const char *file, int line, int preempt_offset)
10181 {
10182 	static unsigned long prev_jiffy;
10183 
10184 	if (irqs_disabled())
10185 		return;
10186 
10187 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10188 		return;
10189 
10190 	if (preempt_count() > preempt_offset)
10191 		return;
10192 
10193 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10194 		return;
10195 	prev_jiffy = jiffies;
10196 
10197 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10198 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10199 			in_atomic(), irqs_disabled(),
10200 			current->pid, current->comm);
10201 
10202 	debug_show_held_locks(current);
10203 	dump_stack();
10204 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10205 }
10206 EXPORT_SYMBOL_GPL(__cant_sleep);
10207 
10208 #ifdef CONFIG_SMP
10209 void __cant_migrate(const char *file, int line)
10210 {
10211 	static unsigned long prev_jiffy;
10212 
10213 	if (irqs_disabled())
10214 		return;
10215 
10216 	if (is_migration_disabled(current))
10217 		return;
10218 
10219 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10220 		return;
10221 
10222 	if (preempt_count() > 0)
10223 		return;
10224 
10225 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10226 		return;
10227 	prev_jiffy = jiffies;
10228 
10229 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10230 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10231 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10232 	       current->pid, current->comm);
10233 
10234 	debug_show_held_locks(current);
10235 	dump_stack();
10236 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10237 }
10238 EXPORT_SYMBOL_GPL(__cant_migrate);
10239 #endif
10240 #endif
10241 
10242 #ifdef CONFIG_MAGIC_SYSRQ
10243 void normalize_rt_tasks(void)
10244 {
10245 	struct task_struct *g, *p;
10246 	struct sched_attr attr = {
10247 		.sched_policy = SCHED_NORMAL,
10248 	};
10249 
10250 	read_lock(&tasklist_lock);
10251 	for_each_process_thread(g, p) {
10252 		/*
10253 		 * Only normalize user tasks:
10254 		 */
10255 		if (p->flags & PF_KTHREAD)
10256 			continue;
10257 
10258 		p->se.exec_start = 0;
10259 		schedstat_set(p->stats.wait_start,  0);
10260 		schedstat_set(p->stats.sleep_start, 0);
10261 		schedstat_set(p->stats.block_start, 0);
10262 
10263 		if (!dl_task(p) && !rt_task(p)) {
10264 			/*
10265 			 * Renice negative nice level userspace
10266 			 * tasks back to 0:
10267 			 */
10268 			if (task_nice(p) < 0)
10269 				set_user_nice(p, 0);
10270 			continue;
10271 		}
10272 
10273 		__sched_setscheduler(p, &attr, false, false);
10274 	}
10275 	read_unlock(&tasklist_lock);
10276 }
10277 
10278 #endif /* CONFIG_MAGIC_SYSRQ */
10279 
10280 #if defined(CONFIG_KGDB_KDB)
10281 /*
10282  * These functions are only useful for kdb.
10283  *
10284  * They can only be called when the whole system has been
10285  * stopped - every CPU needs to be quiescent, and no scheduling
10286  * activity can take place. Using them for anything else would
10287  * be a serious bug, and as a result, they aren't even visible
10288  * under any other configuration.
10289  */
10290 
10291 /**
10292  * curr_task - return the current task for a given CPU.
10293  * @cpu: the processor in question.
10294  *
10295  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10296  *
10297  * Return: The current task for @cpu.
10298  */
10299 struct task_struct *curr_task(int cpu)
10300 {
10301 	return cpu_curr(cpu);
10302 }
10303 
10304 #endif /* defined(CONFIG_KGDB_KDB) */
10305 
10306 #ifdef CONFIG_CGROUP_SCHED
10307 /* task_group_lock serializes the addition/removal of task groups */
10308 static DEFINE_SPINLOCK(task_group_lock);
10309 
10310 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10311 					    struct task_group *parent)
10312 {
10313 #ifdef CONFIG_UCLAMP_TASK_GROUP
10314 	enum uclamp_id clamp_id;
10315 
10316 	for_each_clamp_id(clamp_id) {
10317 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10318 			      uclamp_none(clamp_id), false);
10319 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10320 	}
10321 #endif
10322 }
10323 
10324 static void sched_free_group(struct task_group *tg)
10325 {
10326 	free_fair_sched_group(tg);
10327 	free_rt_sched_group(tg);
10328 	autogroup_free(tg);
10329 	kmem_cache_free(task_group_cache, tg);
10330 }
10331 
10332 static void sched_free_group_rcu(struct rcu_head *rcu)
10333 {
10334 	sched_free_group(container_of(rcu, struct task_group, rcu));
10335 }
10336 
10337 static void sched_unregister_group(struct task_group *tg)
10338 {
10339 	unregister_fair_sched_group(tg);
10340 	unregister_rt_sched_group(tg);
10341 	/*
10342 	 * We have to wait for yet another RCU grace period to expire, as
10343 	 * print_cfs_stats() might run concurrently.
10344 	 */
10345 	call_rcu(&tg->rcu, sched_free_group_rcu);
10346 }
10347 
10348 /* allocate runqueue etc for a new task group */
10349 struct task_group *sched_create_group(struct task_group *parent)
10350 {
10351 	struct task_group *tg;
10352 
10353 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10354 	if (!tg)
10355 		return ERR_PTR(-ENOMEM);
10356 
10357 	if (!alloc_fair_sched_group(tg, parent))
10358 		goto err;
10359 
10360 	if (!alloc_rt_sched_group(tg, parent))
10361 		goto err;
10362 
10363 	alloc_uclamp_sched_group(tg, parent);
10364 
10365 	return tg;
10366 
10367 err:
10368 	sched_free_group(tg);
10369 	return ERR_PTR(-ENOMEM);
10370 }
10371 
10372 void sched_online_group(struct task_group *tg, struct task_group *parent)
10373 {
10374 	unsigned long flags;
10375 
10376 	spin_lock_irqsave(&task_group_lock, flags);
10377 	list_add_rcu(&tg->list, &task_groups);
10378 
10379 	/* Root should already exist: */
10380 	WARN_ON(!parent);
10381 
10382 	tg->parent = parent;
10383 	INIT_LIST_HEAD(&tg->children);
10384 	list_add_rcu(&tg->siblings, &parent->children);
10385 	spin_unlock_irqrestore(&task_group_lock, flags);
10386 
10387 	online_fair_sched_group(tg);
10388 }
10389 
10390 /* rcu callback to free various structures associated with a task group */
10391 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10392 {
10393 	/* Now it should be safe to free those cfs_rqs: */
10394 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10395 }
10396 
10397 void sched_destroy_group(struct task_group *tg)
10398 {
10399 	/* Wait for possible concurrent references to cfs_rqs complete: */
10400 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10401 }
10402 
10403 void sched_release_group(struct task_group *tg)
10404 {
10405 	unsigned long flags;
10406 
10407 	/*
10408 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10409 	 * sched_cfs_period_timer()).
10410 	 *
10411 	 * For this to be effective, we have to wait for all pending users of
10412 	 * this task group to leave their RCU critical section to ensure no new
10413 	 * user will see our dying task group any more. Specifically ensure
10414 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10415 	 *
10416 	 * We therefore defer calling unregister_fair_sched_group() to
10417 	 * sched_unregister_group() which is guarantied to get called only after the
10418 	 * current RCU grace period has expired.
10419 	 */
10420 	spin_lock_irqsave(&task_group_lock, flags);
10421 	list_del_rcu(&tg->list);
10422 	list_del_rcu(&tg->siblings);
10423 	spin_unlock_irqrestore(&task_group_lock, flags);
10424 }
10425 
10426 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10427 {
10428 	struct task_group *tg;
10429 
10430 	/*
10431 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10432 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10433 	 * to prevent lockdep warnings.
10434 	 */
10435 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10436 			  struct task_group, css);
10437 	tg = autogroup_task_group(tsk, tg);
10438 
10439 	return tg;
10440 }
10441 
10442 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10443 {
10444 	tsk->sched_task_group = group;
10445 
10446 #ifdef CONFIG_FAIR_GROUP_SCHED
10447 	if (tsk->sched_class->task_change_group)
10448 		tsk->sched_class->task_change_group(tsk);
10449 	else
10450 #endif
10451 		set_task_rq(tsk, task_cpu(tsk));
10452 }
10453 
10454 /*
10455  * Change task's runqueue when it moves between groups.
10456  *
10457  * The caller of this function should have put the task in its new group by
10458  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10459  * its new group.
10460  */
10461 void sched_move_task(struct task_struct *tsk)
10462 {
10463 	int queued, running, queue_flags =
10464 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10465 	struct task_group *group;
10466 	struct rq *rq;
10467 
10468 	CLASS(task_rq_lock, rq_guard)(tsk);
10469 	rq = rq_guard.rq;
10470 
10471 	/*
10472 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10473 	 * group changes.
10474 	 */
10475 	group = sched_get_task_group(tsk);
10476 	if (group == tsk->sched_task_group)
10477 		return;
10478 
10479 	update_rq_clock(rq);
10480 
10481 	running = task_current(rq, tsk);
10482 	queued = task_on_rq_queued(tsk);
10483 
10484 	if (queued)
10485 		dequeue_task(rq, tsk, queue_flags);
10486 	if (running)
10487 		put_prev_task(rq, tsk);
10488 
10489 	sched_change_group(tsk, group);
10490 
10491 	if (queued)
10492 		enqueue_task(rq, tsk, queue_flags);
10493 	if (running) {
10494 		set_next_task(rq, tsk);
10495 		/*
10496 		 * After changing group, the running task may have joined a
10497 		 * throttled one but it's still the running task. Trigger a
10498 		 * resched to make sure that task can still run.
10499 		 */
10500 		resched_curr(rq);
10501 	}
10502 }
10503 
10504 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10505 {
10506 	return css ? container_of(css, struct task_group, css) : NULL;
10507 }
10508 
10509 static struct cgroup_subsys_state *
10510 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10511 {
10512 	struct task_group *parent = css_tg(parent_css);
10513 	struct task_group *tg;
10514 
10515 	if (!parent) {
10516 		/* This is early initialization for the top cgroup */
10517 		return &root_task_group.css;
10518 	}
10519 
10520 	tg = sched_create_group(parent);
10521 	if (IS_ERR(tg))
10522 		return ERR_PTR(-ENOMEM);
10523 
10524 	return &tg->css;
10525 }
10526 
10527 /* Expose task group only after completing cgroup initialization */
10528 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10529 {
10530 	struct task_group *tg = css_tg(css);
10531 	struct task_group *parent = css_tg(css->parent);
10532 
10533 	if (parent)
10534 		sched_online_group(tg, parent);
10535 
10536 #ifdef CONFIG_UCLAMP_TASK_GROUP
10537 	/* Propagate the effective uclamp value for the new group */
10538 	guard(mutex)(&uclamp_mutex);
10539 	guard(rcu)();
10540 	cpu_util_update_eff(css);
10541 #endif
10542 
10543 	return 0;
10544 }
10545 
10546 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10547 {
10548 	struct task_group *tg = css_tg(css);
10549 
10550 	sched_release_group(tg);
10551 }
10552 
10553 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10554 {
10555 	struct task_group *tg = css_tg(css);
10556 
10557 	/*
10558 	 * Relies on the RCU grace period between css_released() and this.
10559 	 */
10560 	sched_unregister_group(tg);
10561 }
10562 
10563 #ifdef CONFIG_RT_GROUP_SCHED
10564 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10565 {
10566 	struct task_struct *task;
10567 	struct cgroup_subsys_state *css;
10568 
10569 	cgroup_taskset_for_each(task, css, tset) {
10570 		if (!sched_rt_can_attach(css_tg(css), task))
10571 			return -EINVAL;
10572 	}
10573 	return 0;
10574 }
10575 #endif
10576 
10577 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10578 {
10579 	struct task_struct *task;
10580 	struct cgroup_subsys_state *css;
10581 
10582 	cgroup_taskset_for_each(task, css, tset)
10583 		sched_move_task(task);
10584 }
10585 
10586 #ifdef CONFIG_UCLAMP_TASK_GROUP
10587 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10588 {
10589 	struct cgroup_subsys_state *top_css = css;
10590 	struct uclamp_se *uc_parent = NULL;
10591 	struct uclamp_se *uc_se = NULL;
10592 	unsigned int eff[UCLAMP_CNT];
10593 	enum uclamp_id clamp_id;
10594 	unsigned int clamps;
10595 
10596 	lockdep_assert_held(&uclamp_mutex);
10597 	SCHED_WARN_ON(!rcu_read_lock_held());
10598 
10599 	css_for_each_descendant_pre(css, top_css) {
10600 		uc_parent = css_tg(css)->parent
10601 			? css_tg(css)->parent->uclamp : NULL;
10602 
10603 		for_each_clamp_id(clamp_id) {
10604 			/* Assume effective clamps matches requested clamps */
10605 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10606 			/* Cap effective clamps with parent's effective clamps */
10607 			if (uc_parent &&
10608 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10609 				eff[clamp_id] = uc_parent[clamp_id].value;
10610 			}
10611 		}
10612 		/* Ensure protection is always capped by limit */
10613 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10614 
10615 		/* Propagate most restrictive effective clamps */
10616 		clamps = 0x0;
10617 		uc_se = css_tg(css)->uclamp;
10618 		for_each_clamp_id(clamp_id) {
10619 			if (eff[clamp_id] == uc_se[clamp_id].value)
10620 				continue;
10621 			uc_se[clamp_id].value = eff[clamp_id];
10622 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10623 			clamps |= (0x1 << clamp_id);
10624 		}
10625 		if (!clamps) {
10626 			css = css_rightmost_descendant(css);
10627 			continue;
10628 		}
10629 
10630 		/* Immediately update descendants RUNNABLE tasks */
10631 		uclamp_update_active_tasks(css);
10632 	}
10633 }
10634 
10635 /*
10636  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10637  * C expression. Since there is no way to convert a macro argument (N) into a
10638  * character constant, use two levels of macros.
10639  */
10640 #define _POW10(exp) ((unsigned int)1e##exp)
10641 #define POW10(exp) _POW10(exp)
10642 
10643 struct uclamp_request {
10644 #define UCLAMP_PERCENT_SHIFT	2
10645 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10646 	s64 percent;
10647 	u64 util;
10648 	int ret;
10649 };
10650 
10651 static inline struct uclamp_request
10652 capacity_from_percent(char *buf)
10653 {
10654 	struct uclamp_request req = {
10655 		.percent = UCLAMP_PERCENT_SCALE,
10656 		.util = SCHED_CAPACITY_SCALE,
10657 		.ret = 0,
10658 	};
10659 
10660 	buf = strim(buf);
10661 	if (strcmp(buf, "max")) {
10662 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10663 					     &req.percent);
10664 		if (req.ret)
10665 			return req;
10666 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10667 			req.ret = -ERANGE;
10668 			return req;
10669 		}
10670 
10671 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10672 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10673 	}
10674 
10675 	return req;
10676 }
10677 
10678 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10679 				size_t nbytes, loff_t off,
10680 				enum uclamp_id clamp_id)
10681 {
10682 	struct uclamp_request req;
10683 	struct task_group *tg;
10684 
10685 	req = capacity_from_percent(buf);
10686 	if (req.ret)
10687 		return req.ret;
10688 
10689 	static_branch_enable(&sched_uclamp_used);
10690 
10691 	guard(mutex)(&uclamp_mutex);
10692 	guard(rcu)();
10693 
10694 	tg = css_tg(of_css(of));
10695 	if (tg->uclamp_req[clamp_id].value != req.util)
10696 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10697 
10698 	/*
10699 	 * Because of not recoverable conversion rounding we keep track of the
10700 	 * exact requested value
10701 	 */
10702 	tg->uclamp_pct[clamp_id] = req.percent;
10703 
10704 	/* Update effective clamps to track the most restrictive value */
10705 	cpu_util_update_eff(of_css(of));
10706 
10707 	return nbytes;
10708 }
10709 
10710 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10711 				    char *buf, size_t nbytes,
10712 				    loff_t off)
10713 {
10714 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10715 }
10716 
10717 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10718 				    char *buf, size_t nbytes,
10719 				    loff_t off)
10720 {
10721 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10722 }
10723 
10724 static inline void cpu_uclamp_print(struct seq_file *sf,
10725 				    enum uclamp_id clamp_id)
10726 {
10727 	struct task_group *tg;
10728 	u64 util_clamp;
10729 	u64 percent;
10730 	u32 rem;
10731 
10732 	scoped_guard (rcu) {
10733 		tg = css_tg(seq_css(sf));
10734 		util_clamp = tg->uclamp_req[clamp_id].value;
10735 	}
10736 
10737 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10738 		seq_puts(sf, "max\n");
10739 		return;
10740 	}
10741 
10742 	percent = tg->uclamp_pct[clamp_id];
10743 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10744 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10745 }
10746 
10747 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10748 {
10749 	cpu_uclamp_print(sf, UCLAMP_MIN);
10750 	return 0;
10751 }
10752 
10753 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10754 {
10755 	cpu_uclamp_print(sf, UCLAMP_MAX);
10756 	return 0;
10757 }
10758 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10759 
10760 #ifdef CONFIG_FAIR_GROUP_SCHED
10761 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10762 				struct cftype *cftype, u64 shareval)
10763 {
10764 	if (shareval > scale_load_down(ULONG_MAX))
10765 		shareval = MAX_SHARES;
10766 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10767 }
10768 
10769 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10770 			       struct cftype *cft)
10771 {
10772 	struct task_group *tg = css_tg(css);
10773 
10774 	return (u64) scale_load_down(tg->shares);
10775 }
10776 
10777 #ifdef CONFIG_CFS_BANDWIDTH
10778 static DEFINE_MUTEX(cfs_constraints_mutex);
10779 
10780 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10781 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10782 /* More than 203 days if BW_SHIFT equals 20. */
10783 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10784 
10785 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10786 
10787 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10788 				u64 burst)
10789 {
10790 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10791 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10792 
10793 	if (tg == &root_task_group)
10794 		return -EINVAL;
10795 
10796 	/*
10797 	 * Ensure we have at some amount of bandwidth every period.  This is
10798 	 * to prevent reaching a state of large arrears when throttled via
10799 	 * entity_tick() resulting in prolonged exit starvation.
10800 	 */
10801 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10802 		return -EINVAL;
10803 
10804 	/*
10805 	 * Likewise, bound things on the other side by preventing insane quota
10806 	 * periods.  This also allows us to normalize in computing quota
10807 	 * feasibility.
10808 	 */
10809 	if (period > max_cfs_quota_period)
10810 		return -EINVAL;
10811 
10812 	/*
10813 	 * Bound quota to defend quota against overflow during bandwidth shift.
10814 	 */
10815 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10816 		return -EINVAL;
10817 
10818 	if (quota != RUNTIME_INF && (burst > quota ||
10819 				     burst + quota > max_cfs_runtime))
10820 		return -EINVAL;
10821 
10822 	/*
10823 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10824 	 * unthrottle_offline_cfs_rqs().
10825 	 */
10826 	guard(cpus_read_lock)();
10827 	guard(mutex)(&cfs_constraints_mutex);
10828 
10829 	ret = __cfs_schedulable(tg, period, quota);
10830 	if (ret)
10831 		return ret;
10832 
10833 	runtime_enabled = quota != RUNTIME_INF;
10834 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10835 	/*
10836 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10837 	 * before making related changes, and on->off must occur afterwards
10838 	 */
10839 	if (runtime_enabled && !runtime_was_enabled)
10840 		cfs_bandwidth_usage_inc();
10841 
10842 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10843 		cfs_b->period = ns_to_ktime(period);
10844 		cfs_b->quota = quota;
10845 		cfs_b->burst = burst;
10846 
10847 		__refill_cfs_bandwidth_runtime(cfs_b);
10848 
10849 		/*
10850 		 * Restart the period timer (if active) to handle new
10851 		 * period expiry:
10852 		 */
10853 		if (runtime_enabled)
10854 			start_cfs_bandwidth(cfs_b);
10855 	}
10856 
10857 	for_each_online_cpu(i) {
10858 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10859 		struct rq *rq = cfs_rq->rq;
10860 
10861 		guard(rq_lock_irq)(rq);
10862 		cfs_rq->runtime_enabled = runtime_enabled;
10863 		cfs_rq->runtime_remaining = 0;
10864 
10865 		if (cfs_rq->throttled)
10866 			unthrottle_cfs_rq(cfs_rq);
10867 	}
10868 
10869 	if (runtime_was_enabled && !runtime_enabled)
10870 		cfs_bandwidth_usage_dec();
10871 
10872 	return 0;
10873 }
10874 
10875 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10876 {
10877 	u64 quota, period, burst;
10878 
10879 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10880 	burst = tg->cfs_bandwidth.burst;
10881 	if (cfs_quota_us < 0)
10882 		quota = RUNTIME_INF;
10883 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10884 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10885 	else
10886 		return -EINVAL;
10887 
10888 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10889 }
10890 
10891 static long tg_get_cfs_quota(struct task_group *tg)
10892 {
10893 	u64 quota_us;
10894 
10895 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10896 		return -1;
10897 
10898 	quota_us = tg->cfs_bandwidth.quota;
10899 	do_div(quota_us, NSEC_PER_USEC);
10900 
10901 	return quota_us;
10902 }
10903 
10904 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10905 {
10906 	u64 quota, period, burst;
10907 
10908 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10909 		return -EINVAL;
10910 
10911 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10912 	quota = tg->cfs_bandwidth.quota;
10913 	burst = tg->cfs_bandwidth.burst;
10914 
10915 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10916 }
10917 
10918 static long tg_get_cfs_period(struct task_group *tg)
10919 {
10920 	u64 cfs_period_us;
10921 
10922 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10923 	do_div(cfs_period_us, NSEC_PER_USEC);
10924 
10925 	return cfs_period_us;
10926 }
10927 
10928 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10929 {
10930 	u64 quota, period, burst;
10931 
10932 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10933 		return -EINVAL;
10934 
10935 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10936 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10937 	quota = tg->cfs_bandwidth.quota;
10938 
10939 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10940 }
10941 
10942 static long tg_get_cfs_burst(struct task_group *tg)
10943 {
10944 	u64 burst_us;
10945 
10946 	burst_us = tg->cfs_bandwidth.burst;
10947 	do_div(burst_us, NSEC_PER_USEC);
10948 
10949 	return burst_us;
10950 }
10951 
10952 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10953 				  struct cftype *cft)
10954 {
10955 	return tg_get_cfs_quota(css_tg(css));
10956 }
10957 
10958 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10959 				   struct cftype *cftype, s64 cfs_quota_us)
10960 {
10961 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10962 }
10963 
10964 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10965 				   struct cftype *cft)
10966 {
10967 	return tg_get_cfs_period(css_tg(css));
10968 }
10969 
10970 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10971 				    struct cftype *cftype, u64 cfs_period_us)
10972 {
10973 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10974 }
10975 
10976 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10977 				  struct cftype *cft)
10978 {
10979 	return tg_get_cfs_burst(css_tg(css));
10980 }
10981 
10982 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10983 				   struct cftype *cftype, u64 cfs_burst_us)
10984 {
10985 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10986 }
10987 
10988 struct cfs_schedulable_data {
10989 	struct task_group *tg;
10990 	u64 period, quota;
10991 };
10992 
10993 /*
10994  * normalize group quota/period to be quota/max_period
10995  * note: units are usecs
10996  */
10997 static u64 normalize_cfs_quota(struct task_group *tg,
10998 			       struct cfs_schedulable_data *d)
10999 {
11000 	u64 quota, period;
11001 
11002 	if (tg == d->tg) {
11003 		period = d->period;
11004 		quota = d->quota;
11005 	} else {
11006 		period = tg_get_cfs_period(tg);
11007 		quota = tg_get_cfs_quota(tg);
11008 	}
11009 
11010 	/* note: these should typically be equivalent */
11011 	if (quota == RUNTIME_INF || quota == -1)
11012 		return RUNTIME_INF;
11013 
11014 	return to_ratio(period, quota);
11015 }
11016 
11017 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11018 {
11019 	struct cfs_schedulable_data *d = data;
11020 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11021 	s64 quota = 0, parent_quota = -1;
11022 
11023 	if (!tg->parent) {
11024 		quota = RUNTIME_INF;
11025 	} else {
11026 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11027 
11028 		quota = normalize_cfs_quota(tg, d);
11029 		parent_quota = parent_b->hierarchical_quota;
11030 
11031 		/*
11032 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11033 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11034 		 * inherit when no limit is set. In both cases this is used
11035 		 * by the scheduler to determine if a given CFS task has a
11036 		 * bandwidth constraint at some higher level.
11037 		 */
11038 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11039 			if (quota == RUNTIME_INF)
11040 				quota = parent_quota;
11041 			else if (parent_quota != RUNTIME_INF)
11042 				quota = min(quota, parent_quota);
11043 		} else {
11044 			if (quota == RUNTIME_INF)
11045 				quota = parent_quota;
11046 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11047 				return -EINVAL;
11048 		}
11049 	}
11050 	cfs_b->hierarchical_quota = quota;
11051 
11052 	return 0;
11053 }
11054 
11055 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11056 {
11057 	struct cfs_schedulable_data data = {
11058 		.tg = tg,
11059 		.period = period,
11060 		.quota = quota,
11061 	};
11062 
11063 	if (quota != RUNTIME_INF) {
11064 		do_div(data.period, NSEC_PER_USEC);
11065 		do_div(data.quota, NSEC_PER_USEC);
11066 	}
11067 
11068 	guard(rcu)();
11069 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11070 }
11071 
11072 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11073 {
11074 	struct task_group *tg = css_tg(seq_css(sf));
11075 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11076 
11077 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11078 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11079 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11080 
11081 	if (schedstat_enabled() && tg != &root_task_group) {
11082 		struct sched_statistics *stats;
11083 		u64 ws = 0;
11084 		int i;
11085 
11086 		for_each_possible_cpu(i) {
11087 			stats = __schedstats_from_se(tg->se[i]);
11088 			ws += schedstat_val(stats->wait_sum);
11089 		}
11090 
11091 		seq_printf(sf, "wait_sum %llu\n", ws);
11092 	}
11093 
11094 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11095 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11096 
11097 	return 0;
11098 }
11099 
11100 static u64 throttled_time_self(struct task_group *tg)
11101 {
11102 	int i;
11103 	u64 total = 0;
11104 
11105 	for_each_possible_cpu(i) {
11106 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11107 	}
11108 
11109 	return total;
11110 }
11111 
11112 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11113 {
11114 	struct task_group *tg = css_tg(seq_css(sf));
11115 
11116 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11117 
11118 	return 0;
11119 }
11120 #endif /* CONFIG_CFS_BANDWIDTH */
11121 #endif /* CONFIG_FAIR_GROUP_SCHED */
11122 
11123 #ifdef CONFIG_RT_GROUP_SCHED
11124 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11125 				struct cftype *cft, s64 val)
11126 {
11127 	return sched_group_set_rt_runtime(css_tg(css), val);
11128 }
11129 
11130 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11131 			       struct cftype *cft)
11132 {
11133 	return sched_group_rt_runtime(css_tg(css));
11134 }
11135 
11136 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11137 				    struct cftype *cftype, u64 rt_period_us)
11138 {
11139 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11140 }
11141 
11142 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11143 				   struct cftype *cft)
11144 {
11145 	return sched_group_rt_period(css_tg(css));
11146 }
11147 #endif /* CONFIG_RT_GROUP_SCHED */
11148 
11149 #ifdef CONFIG_FAIR_GROUP_SCHED
11150 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11151 			       struct cftype *cft)
11152 {
11153 	return css_tg(css)->idle;
11154 }
11155 
11156 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11157 				struct cftype *cft, s64 idle)
11158 {
11159 	return sched_group_set_idle(css_tg(css), idle);
11160 }
11161 #endif
11162 
11163 static struct cftype cpu_legacy_files[] = {
11164 #ifdef CONFIG_FAIR_GROUP_SCHED
11165 	{
11166 		.name = "shares",
11167 		.read_u64 = cpu_shares_read_u64,
11168 		.write_u64 = cpu_shares_write_u64,
11169 	},
11170 	{
11171 		.name = "idle",
11172 		.read_s64 = cpu_idle_read_s64,
11173 		.write_s64 = cpu_idle_write_s64,
11174 	},
11175 #endif
11176 #ifdef CONFIG_CFS_BANDWIDTH
11177 	{
11178 		.name = "cfs_quota_us",
11179 		.read_s64 = cpu_cfs_quota_read_s64,
11180 		.write_s64 = cpu_cfs_quota_write_s64,
11181 	},
11182 	{
11183 		.name = "cfs_period_us",
11184 		.read_u64 = cpu_cfs_period_read_u64,
11185 		.write_u64 = cpu_cfs_period_write_u64,
11186 	},
11187 	{
11188 		.name = "cfs_burst_us",
11189 		.read_u64 = cpu_cfs_burst_read_u64,
11190 		.write_u64 = cpu_cfs_burst_write_u64,
11191 	},
11192 	{
11193 		.name = "stat",
11194 		.seq_show = cpu_cfs_stat_show,
11195 	},
11196 	{
11197 		.name = "stat.local",
11198 		.seq_show = cpu_cfs_local_stat_show,
11199 	},
11200 #endif
11201 #ifdef CONFIG_RT_GROUP_SCHED
11202 	{
11203 		.name = "rt_runtime_us",
11204 		.read_s64 = cpu_rt_runtime_read,
11205 		.write_s64 = cpu_rt_runtime_write,
11206 	},
11207 	{
11208 		.name = "rt_period_us",
11209 		.read_u64 = cpu_rt_period_read_uint,
11210 		.write_u64 = cpu_rt_period_write_uint,
11211 	},
11212 #endif
11213 #ifdef CONFIG_UCLAMP_TASK_GROUP
11214 	{
11215 		.name = "uclamp.min",
11216 		.flags = CFTYPE_NOT_ON_ROOT,
11217 		.seq_show = cpu_uclamp_min_show,
11218 		.write = cpu_uclamp_min_write,
11219 	},
11220 	{
11221 		.name = "uclamp.max",
11222 		.flags = CFTYPE_NOT_ON_ROOT,
11223 		.seq_show = cpu_uclamp_max_show,
11224 		.write = cpu_uclamp_max_write,
11225 	},
11226 #endif
11227 	{ }	/* Terminate */
11228 };
11229 
11230 static int cpu_extra_stat_show(struct seq_file *sf,
11231 			       struct cgroup_subsys_state *css)
11232 {
11233 #ifdef CONFIG_CFS_BANDWIDTH
11234 	{
11235 		struct task_group *tg = css_tg(css);
11236 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11237 		u64 throttled_usec, burst_usec;
11238 
11239 		throttled_usec = cfs_b->throttled_time;
11240 		do_div(throttled_usec, NSEC_PER_USEC);
11241 		burst_usec = cfs_b->burst_time;
11242 		do_div(burst_usec, NSEC_PER_USEC);
11243 
11244 		seq_printf(sf, "nr_periods %d\n"
11245 			   "nr_throttled %d\n"
11246 			   "throttled_usec %llu\n"
11247 			   "nr_bursts %d\n"
11248 			   "burst_usec %llu\n",
11249 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11250 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11251 	}
11252 #endif
11253 	return 0;
11254 }
11255 
11256 static int cpu_local_stat_show(struct seq_file *sf,
11257 			       struct cgroup_subsys_state *css)
11258 {
11259 #ifdef CONFIG_CFS_BANDWIDTH
11260 	{
11261 		struct task_group *tg = css_tg(css);
11262 		u64 throttled_self_usec;
11263 
11264 		throttled_self_usec = throttled_time_self(tg);
11265 		do_div(throttled_self_usec, NSEC_PER_USEC);
11266 
11267 		seq_printf(sf, "throttled_usec %llu\n",
11268 			   throttled_self_usec);
11269 	}
11270 #endif
11271 	return 0;
11272 }
11273 
11274 #ifdef CONFIG_FAIR_GROUP_SCHED
11275 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11276 			       struct cftype *cft)
11277 {
11278 	struct task_group *tg = css_tg(css);
11279 	u64 weight = scale_load_down(tg->shares);
11280 
11281 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11282 }
11283 
11284 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11285 				struct cftype *cft, u64 weight)
11286 {
11287 	/*
11288 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11289 	 * values which are 1, 100 and 10000 respectively.  While it loses
11290 	 * a bit of range on both ends, it maps pretty well onto the shares
11291 	 * value used by scheduler and the round-trip conversions preserve
11292 	 * the original value over the entire range.
11293 	 */
11294 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11295 		return -ERANGE;
11296 
11297 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11298 
11299 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11300 }
11301 
11302 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11303 				    struct cftype *cft)
11304 {
11305 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11306 	int last_delta = INT_MAX;
11307 	int prio, delta;
11308 
11309 	/* find the closest nice value to the current weight */
11310 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11311 		delta = abs(sched_prio_to_weight[prio] - weight);
11312 		if (delta >= last_delta)
11313 			break;
11314 		last_delta = delta;
11315 	}
11316 
11317 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11318 }
11319 
11320 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11321 				     struct cftype *cft, s64 nice)
11322 {
11323 	unsigned long weight;
11324 	int idx;
11325 
11326 	if (nice < MIN_NICE || nice > MAX_NICE)
11327 		return -ERANGE;
11328 
11329 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11330 	idx = array_index_nospec(idx, 40);
11331 	weight = sched_prio_to_weight[idx];
11332 
11333 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11334 }
11335 #endif
11336 
11337 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11338 						  long period, long quota)
11339 {
11340 	if (quota < 0)
11341 		seq_puts(sf, "max");
11342 	else
11343 		seq_printf(sf, "%ld", quota);
11344 
11345 	seq_printf(sf, " %ld\n", period);
11346 }
11347 
11348 /* caller should put the current value in *@periodp before calling */
11349 static int __maybe_unused cpu_period_quota_parse(char *buf,
11350 						 u64 *periodp, u64 *quotap)
11351 {
11352 	char tok[21];	/* U64_MAX */
11353 
11354 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11355 		return -EINVAL;
11356 
11357 	*periodp *= NSEC_PER_USEC;
11358 
11359 	if (sscanf(tok, "%llu", quotap))
11360 		*quotap *= NSEC_PER_USEC;
11361 	else if (!strcmp(tok, "max"))
11362 		*quotap = RUNTIME_INF;
11363 	else
11364 		return -EINVAL;
11365 
11366 	return 0;
11367 }
11368 
11369 #ifdef CONFIG_CFS_BANDWIDTH
11370 static int cpu_max_show(struct seq_file *sf, void *v)
11371 {
11372 	struct task_group *tg = css_tg(seq_css(sf));
11373 
11374 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11375 	return 0;
11376 }
11377 
11378 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11379 			     char *buf, size_t nbytes, loff_t off)
11380 {
11381 	struct task_group *tg = css_tg(of_css(of));
11382 	u64 period = tg_get_cfs_period(tg);
11383 	u64 burst = tg_get_cfs_burst(tg);
11384 	u64 quota;
11385 	int ret;
11386 
11387 	ret = cpu_period_quota_parse(buf, &period, &quota);
11388 	if (!ret)
11389 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11390 	return ret ?: nbytes;
11391 }
11392 #endif
11393 
11394 static struct cftype cpu_files[] = {
11395 #ifdef CONFIG_FAIR_GROUP_SCHED
11396 	{
11397 		.name = "weight",
11398 		.flags = CFTYPE_NOT_ON_ROOT,
11399 		.read_u64 = cpu_weight_read_u64,
11400 		.write_u64 = cpu_weight_write_u64,
11401 	},
11402 	{
11403 		.name = "weight.nice",
11404 		.flags = CFTYPE_NOT_ON_ROOT,
11405 		.read_s64 = cpu_weight_nice_read_s64,
11406 		.write_s64 = cpu_weight_nice_write_s64,
11407 	},
11408 	{
11409 		.name = "idle",
11410 		.flags = CFTYPE_NOT_ON_ROOT,
11411 		.read_s64 = cpu_idle_read_s64,
11412 		.write_s64 = cpu_idle_write_s64,
11413 	},
11414 #endif
11415 #ifdef CONFIG_CFS_BANDWIDTH
11416 	{
11417 		.name = "max",
11418 		.flags = CFTYPE_NOT_ON_ROOT,
11419 		.seq_show = cpu_max_show,
11420 		.write = cpu_max_write,
11421 	},
11422 	{
11423 		.name = "max.burst",
11424 		.flags = CFTYPE_NOT_ON_ROOT,
11425 		.read_u64 = cpu_cfs_burst_read_u64,
11426 		.write_u64 = cpu_cfs_burst_write_u64,
11427 	},
11428 #endif
11429 #ifdef CONFIG_UCLAMP_TASK_GROUP
11430 	{
11431 		.name = "uclamp.min",
11432 		.flags = CFTYPE_NOT_ON_ROOT,
11433 		.seq_show = cpu_uclamp_min_show,
11434 		.write = cpu_uclamp_min_write,
11435 	},
11436 	{
11437 		.name = "uclamp.max",
11438 		.flags = CFTYPE_NOT_ON_ROOT,
11439 		.seq_show = cpu_uclamp_max_show,
11440 		.write = cpu_uclamp_max_write,
11441 	},
11442 #endif
11443 	{ }	/* terminate */
11444 };
11445 
11446 struct cgroup_subsys cpu_cgrp_subsys = {
11447 	.css_alloc	= cpu_cgroup_css_alloc,
11448 	.css_online	= cpu_cgroup_css_online,
11449 	.css_released	= cpu_cgroup_css_released,
11450 	.css_free	= cpu_cgroup_css_free,
11451 	.css_extra_stat_show = cpu_extra_stat_show,
11452 	.css_local_stat_show = cpu_local_stat_show,
11453 #ifdef CONFIG_RT_GROUP_SCHED
11454 	.can_attach	= cpu_cgroup_can_attach,
11455 #endif
11456 	.attach		= cpu_cgroup_attach,
11457 	.legacy_cftypes	= cpu_legacy_files,
11458 	.dfl_cftypes	= cpu_files,
11459 	.early_init	= true,
11460 	.threaded	= true,
11461 };
11462 
11463 #endif	/* CONFIG_CGROUP_SCHED */
11464 
11465 void dump_cpu_task(int cpu)
11466 {
11467 	if (cpu == smp_processor_id() && in_hardirq()) {
11468 		struct pt_regs *regs;
11469 
11470 		regs = get_irq_regs();
11471 		if (regs) {
11472 			show_regs(regs);
11473 			return;
11474 		}
11475 	}
11476 
11477 	if (trigger_single_cpu_backtrace(cpu))
11478 		return;
11479 
11480 	pr_info("Task dump for CPU %d:\n", cpu);
11481 	sched_show_task(cpu_curr(cpu));
11482 }
11483 
11484 /*
11485  * Nice levels are multiplicative, with a gentle 10% change for every
11486  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11487  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11488  * that remained on nice 0.
11489  *
11490  * The "10% effect" is relative and cumulative: from _any_ nice level,
11491  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11492  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11493  * If a task goes up by ~10% and another task goes down by ~10% then
11494  * the relative distance between them is ~25%.)
11495  */
11496 const int sched_prio_to_weight[40] = {
11497  /* -20 */     88761,     71755,     56483,     46273,     36291,
11498  /* -15 */     29154,     23254,     18705,     14949,     11916,
11499  /* -10 */      9548,      7620,      6100,      4904,      3906,
11500  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11501  /*   0 */      1024,       820,       655,       526,       423,
11502  /*   5 */       335,       272,       215,       172,       137,
11503  /*  10 */       110,        87,        70,        56,        45,
11504  /*  15 */        36,        29,        23,        18,        15,
11505 };
11506 
11507 /*
11508  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11509  *
11510  * In cases where the weight does not change often, we can use the
11511  * precalculated inverse to speed up arithmetics by turning divisions
11512  * into multiplications:
11513  */
11514 const u32 sched_prio_to_wmult[40] = {
11515  /* -20 */     48388,     59856,     76040,     92818,    118348,
11516  /* -15 */    147320,    184698,    229616,    287308,    360437,
11517  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11518  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11519  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11520  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11521  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11522  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11523 };
11524 
11525 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11526 {
11527         trace_sched_update_nr_running_tp(rq, count);
11528 }
11529 
11530 #ifdef CONFIG_SCHED_MM_CID
11531 
11532 /*
11533  * @cid_lock: Guarantee forward-progress of cid allocation.
11534  *
11535  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11536  * is only used when contention is detected by the lock-free allocation so
11537  * forward progress can be guaranteed.
11538  */
11539 DEFINE_RAW_SPINLOCK(cid_lock);
11540 
11541 /*
11542  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11543  *
11544  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11545  * detected, it is set to 1 to ensure that all newly coming allocations are
11546  * serialized by @cid_lock until the allocation which detected contention
11547  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11548  * of a cid allocation.
11549  */
11550 int use_cid_lock;
11551 
11552 /*
11553  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11554  * concurrently with respect to the execution of the source runqueue context
11555  * switch.
11556  *
11557  * There is one basic properties we want to guarantee here:
11558  *
11559  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11560  * used by a task. That would lead to concurrent allocation of the cid and
11561  * userspace corruption.
11562  *
11563  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11564  * that a pair of loads observe at least one of a pair of stores, which can be
11565  * shown as:
11566  *
11567  *      X = Y = 0
11568  *
11569  *      w[X]=1          w[Y]=1
11570  *      MB              MB
11571  *      r[Y]=y          r[X]=x
11572  *
11573  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11574  * values 0 and 1, this algorithm cares about specific state transitions of the
11575  * runqueue current task (as updated by the scheduler context switch), and the
11576  * per-mm/cpu cid value.
11577  *
11578  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11579  * task->mm != mm for the rest of the discussion. There are two scheduler state
11580  * transitions on context switch we care about:
11581  *
11582  * (TSA) Store to rq->curr with transition from (N) to (Y)
11583  *
11584  * (TSB) Store to rq->curr with transition from (Y) to (N)
11585  *
11586  * On the remote-clear side, there is one transition we care about:
11587  *
11588  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11589  *
11590  * There is also a transition to UNSET state which can be performed from all
11591  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11592  * guarantees that only a single thread will succeed:
11593  *
11594  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11595  *
11596  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11597  * when a thread is actively using the cid (property (1)).
11598  *
11599  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11600  *
11601  * Scenario A) (TSA)+(TMA) (from next task perspective)
11602  *
11603  * CPU0                                      CPU1
11604  *
11605  * Context switch CS-1                       Remote-clear
11606  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11607  *                                             (implied barrier after cmpxchg)
11608  *   - switch_mm_cid()
11609  *     - memory barrier (see switch_mm_cid()
11610  *       comment explaining how this barrier
11611  *       is combined with other scheduler
11612  *       barriers)
11613  *     - mm_cid_get (next)
11614  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11615  *
11616  * This Dekker ensures that either task (Y) is observed by the
11617  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11618  * observed.
11619  *
11620  * If task (Y) store is observed by rcu_dereference(), it means that there is
11621  * still an active task on the cpu. Remote-clear will therefore not transition
11622  * to UNSET, which fulfills property (1).
11623  *
11624  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11625  * it will move its state to UNSET, which clears the percpu cid perhaps
11626  * uselessly (which is not an issue for correctness). Because task (Y) is not
11627  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11628  * state to UNSET is done with a cmpxchg expecting that the old state has the
11629  * LAZY flag set, only one thread will successfully UNSET.
11630  *
11631  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11632  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11633  * CPU1 will observe task (Y) and do nothing more, which is fine.
11634  *
11635  * What we are effectively preventing with this Dekker is a scenario where
11636  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11637  * because this would UNSET a cid which is actively used.
11638  */
11639 
11640 void sched_mm_cid_migrate_from(struct task_struct *t)
11641 {
11642 	t->migrate_from_cpu = task_cpu(t);
11643 }
11644 
11645 static
11646 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11647 					  struct task_struct *t,
11648 					  struct mm_cid *src_pcpu_cid)
11649 {
11650 	struct mm_struct *mm = t->mm;
11651 	struct task_struct *src_task;
11652 	int src_cid, last_mm_cid;
11653 
11654 	if (!mm)
11655 		return -1;
11656 
11657 	last_mm_cid = t->last_mm_cid;
11658 	/*
11659 	 * If the migrated task has no last cid, or if the current
11660 	 * task on src rq uses the cid, it means the source cid does not need
11661 	 * to be moved to the destination cpu.
11662 	 */
11663 	if (last_mm_cid == -1)
11664 		return -1;
11665 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11666 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11667 		return -1;
11668 
11669 	/*
11670 	 * If we observe an active task using the mm on this rq, it means we
11671 	 * are not the last task to be migrated from this cpu for this mm, so
11672 	 * there is no need to move src_cid to the destination cpu.
11673 	 */
11674 	guard(rcu)();
11675 	src_task = rcu_dereference(src_rq->curr);
11676 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11677 		t->last_mm_cid = -1;
11678 		return -1;
11679 	}
11680 
11681 	return src_cid;
11682 }
11683 
11684 static
11685 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11686 					      struct task_struct *t,
11687 					      struct mm_cid *src_pcpu_cid,
11688 					      int src_cid)
11689 {
11690 	struct task_struct *src_task;
11691 	struct mm_struct *mm = t->mm;
11692 	int lazy_cid;
11693 
11694 	if (src_cid == -1)
11695 		return -1;
11696 
11697 	/*
11698 	 * Attempt to clear the source cpu cid to move it to the destination
11699 	 * cpu.
11700 	 */
11701 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11702 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11703 		return -1;
11704 
11705 	/*
11706 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11707 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11708 	 * between store to rq->curr and load of prev and next task's
11709 	 * per-mm/cpu cid.
11710 	 *
11711 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11712 	 * rq->curr->mm_cid_active matches the barrier in
11713 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11714 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11715 	 * load of per-mm/cpu cid.
11716 	 */
11717 
11718 	/*
11719 	 * If we observe an active task using the mm on this rq after setting
11720 	 * the lazy-put flag, this task will be responsible for transitioning
11721 	 * from lazy-put flag set to MM_CID_UNSET.
11722 	 */
11723 	scoped_guard (rcu) {
11724 		src_task = rcu_dereference(src_rq->curr);
11725 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11726 			/*
11727 			 * We observed an active task for this mm, there is therefore
11728 			 * no point in moving this cid to the destination cpu.
11729 			 */
11730 			t->last_mm_cid = -1;
11731 			return -1;
11732 		}
11733 	}
11734 
11735 	/*
11736 	 * The src_cid is unused, so it can be unset.
11737 	 */
11738 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11739 		return -1;
11740 	return src_cid;
11741 }
11742 
11743 /*
11744  * Migration to dst cpu. Called with dst_rq lock held.
11745  * Interrupts are disabled, which keeps the window of cid ownership without the
11746  * source rq lock held small.
11747  */
11748 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11749 {
11750 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11751 	struct mm_struct *mm = t->mm;
11752 	int src_cid, dst_cid, src_cpu;
11753 	struct rq *src_rq;
11754 
11755 	lockdep_assert_rq_held(dst_rq);
11756 
11757 	if (!mm)
11758 		return;
11759 	src_cpu = t->migrate_from_cpu;
11760 	if (src_cpu == -1) {
11761 		t->last_mm_cid = -1;
11762 		return;
11763 	}
11764 	/*
11765 	 * Move the src cid if the dst cid is unset. This keeps id
11766 	 * allocation closest to 0 in cases where few threads migrate around
11767 	 * many cpus.
11768 	 *
11769 	 * If destination cid is already set, we may have to just clear
11770 	 * the src cid to ensure compactness in frequent migrations
11771 	 * scenarios.
11772 	 *
11773 	 * It is not useful to clear the src cid when the number of threads is
11774 	 * greater or equal to the number of allowed cpus, because user-space
11775 	 * can expect that the number of allowed cids can reach the number of
11776 	 * allowed cpus.
11777 	 */
11778 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11779 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11780 	if (!mm_cid_is_unset(dst_cid) &&
11781 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11782 		return;
11783 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11784 	src_rq = cpu_rq(src_cpu);
11785 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11786 	if (src_cid == -1)
11787 		return;
11788 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11789 							    src_cid);
11790 	if (src_cid == -1)
11791 		return;
11792 	if (!mm_cid_is_unset(dst_cid)) {
11793 		__mm_cid_put(mm, src_cid);
11794 		return;
11795 	}
11796 	/* Move src_cid to dst cpu. */
11797 	mm_cid_snapshot_time(dst_rq, mm);
11798 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11799 }
11800 
11801 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11802 				      int cpu)
11803 {
11804 	struct rq *rq = cpu_rq(cpu);
11805 	struct task_struct *t;
11806 	int cid, lazy_cid;
11807 
11808 	cid = READ_ONCE(pcpu_cid->cid);
11809 	if (!mm_cid_is_valid(cid))
11810 		return;
11811 
11812 	/*
11813 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11814 	 * there happens to be other tasks left on the source cpu using this
11815 	 * mm, the next task using this mm will reallocate its cid on context
11816 	 * switch.
11817 	 */
11818 	lazy_cid = mm_cid_set_lazy_put(cid);
11819 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11820 		return;
11821 
11822 	/*
11823 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11824 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11825 	 * between store to rq->curr and load of prev and next task's
11826 	 * per-mm/cpu cid.
11827 	 *
11828 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11829 	 * rq->curr->mm_cid_active matches the barrier in
11830 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11831 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11832 	 * load of per-mm/cpu cid.
11833 	 */
11834 
11835 	/*
11836 	 * If we observe an active task using the mm on this rq after setting
11837 	 * the lazy-put flag, that task will be responsible for transitioning
11838 	 * from lazy-put flag set to MM_CID_UNSET.
11839 	 */
11840 	scoped_guard (rcu) {
11841 		t = rcu_dereference(rq->curr);
11842 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11843 			return;
11844 	}
11845 
11846 	/*
11847 	 * The cid is unused, so it can be unset.
11848 	 * Disable interrupts to keep the window of cid ownership without rq
11849 	 * lock small.
11850 	 */
11851 	scoped_guard (irqsave) {
11852 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11853 			__mm_cid_put(mm, cid);
11854 	}
11855 }
11856 
11857 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11858 {
11859 	struct rq *rq = cpu_rq(cpu);
11860 	struct mm_cid *pcpu_cid;
11861 	struct task_struct *curr;
11862 	u64 rq_clock;
11863 
11864 	/*
11865 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11866 	 * while is irrelevant.
11867 	 */
11868 	rq_clock = READ_ONCE(rq->clock);
11869 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11870 
11871 	/*
11872 	 * In order to take care of infrequently scheduled tasks, bump the time
11873 	 * snapshot associated with this cid if an active task using the mm is
11874 	 * observed on this rq.
11875 	 */
11876 	scoped_guard (rcu) {
11877 		curr = rcu_dereference(rq->curr);
11878 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11879 			WRITE_ONCE(pcpu_cid->time, rq_clock);
11880 			return;
11881 		}
11882 	}
11883 
11884 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11885 		return;
11886 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11887 }
11888 
11889 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11890 					     int weight)
11891 {
11892 	struct mm_cid *pcpu_cid;
11893 	int cid;
11894 
11895 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11896 	cid = READ_ONCE(pcpu_cid->cid);
11897 	if (!mm_cid_is_valid(cid) || cid < weight)
11898 		return;
11899 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11900 }
11901 
11902 static void task_mm_cid_work(struct callback_head *work)
11903 {
11904 	unsigned long now = jiffies, old_scan, next_scan;
11905 	struct task_struct *t = current;
11906 	struct cpumask *cidmask;
11907 	struct mm_struct *mm;
11908 	int weight, cpu;
11909 
11910 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11911 
11912 	work->next = work;	/* Prevent double-add */
11913 	if (t->flags & PF_EXITING)
11914 		return;
11915 	mm = t->mm;
11916 	if (!mm)
11917 		return;
11918 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11919 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11920 	if (!old_scan) {
11921 		unsigned long res;
11922 
11923 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11924 		if (res != old_scan)
11925 			old_scan = res;
11926 		else
11927 			old_scan = next_scan;
11928 	}
11929 	if (time_before(now, old_scan))
11930 		return;
11931 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11932 		return;
11933 	cidmask = mm_cidmask(mm);
11934 	/* Clear cids that were not recently used. */
11935 	for_each_possible_cpu(cpu)
11936 		sched_mm_cid_remote_clear_old(mm, cpu);
11937 	weight = cpumask_weight(cidmask);
11938 	/*
11939 	 * Clear cids that are greater or equal to the cidmask weight to
11940 	 * recompact it.
11941 	 */
11942 	for_each_possible_cpu(cpu)
11943 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11944 }
11945 
11946 void init_sched_mm_cid(struct task_struct *t)
11947 {
11948 	struct mm_struct *mm = t->mm;
11949 	int mm_users = 0;
11950 
11951 	if (mm) {
11952 		mm_users = atomic_read(&mm->mm_users);
11953 		if (mm_users == 1)
11954 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11955 	}
11956 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11957 	init_task_work(&t->cid_work, task_mm_cid_work);
11958 }
11959 
11960 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11961 {
11962 	struct callback_head *work = &curr->cid_work;
11963 	unsigned long now = jiffies;
11964 
11965 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11966 	    work->next != work)
11967 		return;
11968 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11969 		return;
11970 	task_work_add(curr, work, TWA_RESUME);
11971 }
11972 
11973 void sched_mm_cid_exit_signals(struct task_struct *t)
11974 {
11975 	struct mm_struct *mm = t->mm;
11976 	struct rq *rq;
11977 
11978 	if (!mm)
11979 		return;
11980 
11981 	preempt_disable();
11982 	rq = this_rq();
11983 	guard(rq_lock_irqsave)(rq);
11984 	preempt_enable_no_resched();	/* holding spinlock */
11985 	WRITE_ONCE(t->mm_cid_active, 0);
11986 	/*
11987 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11988 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11989 	 */
11990 	smp_mb();
11991 	mm_cid_put(mm);
11992 	t->last_mm_cid = t->mm_cid = -1;
11993 }
11994 
11995 void sched_mm_cid_before_execve(struct task_struct *t)
11996 {
11997 	struct mm_struct *mm = t->mm;
11998 	struct rq *rq;
11999 
12000 	if (!mm)
12001 		return;
12002 
12003 	preempt_disable();
12004 	rq = this_rq();
12005 	guard(rq_lock_irqsave)(rq);
12006 	preempt_enable_no_resched();	/* holding spinlock */
12007 	WRITE_ONCE(t->mm_cid_active, 0);
12008 	/*
12009 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12010 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12011 	 */
12012 	smp_mb();
12013 	mm_cid_put(mm);
12014 	t->last_mm_cid = t->mm_cid = -1;
12015 }
12016 
12017 void sched_mm_cid_after_execve(struct task_struct *t)
12018 {
12019 	struct mm_struct *mm = t->mm;
12020 	struct rq *rq;
12021 
12022 	if (!mm)
12023 		return;
12024 
12025 	preempt_disable();
12026 	rq = this_rq();
12027 	scoped_guard (rq_lock_irqsave, rq) {
12028 		preempt_enable_no_resched();	/* holding spinlock */
12029 		WRITE_ONCE(t->mm_cid_active, 1);
12030 		/*
12031 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
12032 		 * Matches barrier in sched_mm_cid_remote_clear_old().
12033 		 */
12034 		smp_mb();
12035 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12036 	}
12037 	rseq_set_notify_resume(t);
12038 }
12039 
12040 void sched_mm_cid_fork(struct task_struct *t)
12041 {
12042 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12043 	t->mm_cid_active = 1;
12044 }
12045 #endif
12046