xref: /linux/kernel/sched/core.c (revision d74f87f37672e71457bfcc14eca5eeb1d61b6438)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84 
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88 
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93 
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97 
98 /*
99  * Export tracepoints that act as a bare tracehook (ie: have no trace event
100  * associated with them) to allow external modules to probe them.
101  */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113 
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118  * Debugging: various feature bits
119  *
120  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121  * sysctl_sched_features, defined in sched.h, to allow constants propagation
122  * at compile time and compiler optimization based on features default.
123  */
124 #define SCHED_FEAT(name, enabled)	\
125 	(1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 	0;
129 #undef SCHED_FEAT
130 
131 /*
132  * Print a warning if need_resched is set for the given duration (if
133  * LATENCY_WARN is enabled).
134  *
135  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136  * per boot.
137  */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141 
142 /*
143  * Number of tasks to iterate in a single balance run.
144  * Limited because this is done with IRQs disabled.
145  */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147 
148 __read_mostly int scheduler_running;
149 
150 #ifdef CONFIG_SCHED_CORE
151 
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153 
154 /* kernel prio, less is more */
155 static inline int __task_prio(const struct task_struct *p)
156 {
157 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 		return -2;
159 
160 	if (rt_prio(p->prio)) /* includes deadline */
161 		return p->prio; /* [-1, 99] */
162 
163 	if (p->sched_class == &idle_sched_class)
164 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165 
166 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168 
169 /*
170  * l(a,b)
171  * le(a,b) := !l(b,a)
172  * g(a,b)  := l(b,a)
173  * ge(a,b) := !l(a,b)
174  */
175 
176 /* real prio, less is less */
177 static inline bool prio_less(const struct task_struct *a,
178 			     const struct task_struct *b, bool in_fi)
179 {
180 
181 	int pa = __task_prio(a), pb = __task_prio(b);
182 
183 	if (-pa < -pb)
184 		return true;
185 
186 	if (-pb < -pa)
187 		return false;
188 
189 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
190 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
191 
192 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
193 		return cfs_prio_less(a, b, in_fi);
194 
195 	return false;
196 }
197 
198 static inline bool __sched_core_less(const struct task_struct *a,
199 				     const struct task_struct *b)
200 {
201 	if (a->core_cookie < b->core_cookie)
202 		return true;
203 
204 	if (a->core_cookie > b->core_cookie)
205 		return false;
206 
207 	/* flip prio, so high prio is leftmost */
208 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
209 		return true;
210 
211 	return false;
212 }
213 
214 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
215 
216 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
217 {
218 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
219 }
220 
221 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
222 {
223 	const struct task_struct *p = __node_2_sc(node);
224 	unsigned long cookie = (unsigned long)key;
225 
226 	if (cookie < p->core_cookie)
227 		return -1;
228 
229 	if (cookie > p->core_cookie)
230 		return 1;
231 
232 	return 0;
233 }
234 
235 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
236 {
237 	rq->core->core_task_seq++;
238 
239 	if (!p->core_cookie)
240 		return;
241 
242 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
243 }
244 
245 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
246 {
247 	rq->core->core_task_seq++;
248 
249 	if (sched_core_enqueued(p)) {
250 		rb_erase(&p->core_node, &rq->core_tree);
251 		RB_CLEAR_NODE(&p->core_node);
252 	}
253 
254 	/*
255 	 * Migrating the last task off the cpu, with the cpu in forced idle
256 	 * state. Reschedule to create an accounting edge for forced idle,
257 	 * and re-examine whether the core is still in forced idle state.
258 	 */
259 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
260 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
261 		resched_curr(rq);
262 }
263 
264 /*
265  * Find left-most (aka, highest priority) task matching @cookie.
266  */
267 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
268 {
269 	struct rb_node *node;
270 
271 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
272 	/*
273 	 * The idle task always matches any cookie!
274 	 */
275 	if (!node)
276 		return idle_sched_class.pick_task(rq);
277 
278 	return __node_2_sc(node);
279 }
280 
281 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
282 {
283 	struct rb_node *node = &p->core_node;
284 
285 	node = rb_next(node);
286 	if (!node)
287 		return NULL;
288 
289 	p = container_of(node, struct task_struct, core_node);
290 	if (p->core_cookie != cookie)
291 		return NULL;
292 
293 	return p;
294 }
295 
296 /*
297  * Magic required such that:
298  *
299  *	raw_spin_rq_lock(rq);
300  *	...
301  *	raw_spin_rq_unlock(rq);
302  *
303  * ends up locking and unlocking the _same_ lock, and all CPUs
304  * always agree on what rq has what lock.
305  *
306  * XXX entirely possible to selectively enable cores, don't bother for now.
307  */
308 
309 static DEFINE_MUTEX(sched_core_mutex);
310 static atomic_t sched_core_count;
311 static struct cpumask sched_core_mask;
312 
313 static void sched_core_lock(int cpu, unsigned long *flags)
314 {
315 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
316 	int t, i = 0;
317 
318 	local_irq_save(*flags);
319 	for_each_cpu(t, smt_mask)
320 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
321 }
322 
323 static void sched_core_unlock(int cpu, unsigned long *flags)
324 {
325 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
326 	int t;
327 
328 	for_each_cpu(t, smt_mask)
329 		raw_spin_unlock(&cpu_rq(t)->__lock);
330 	local_irq_restore(*flags);
331 }
332 
333 static void __sched_core_flip(bool enabled)
334 {
335 	unsigned long flags;
336 	int cpu, t;
337 
338 	cpus_read_lock();
339 
340 	/*
341 	 * Toggle the online cores, one by one.
342 	 */
343 	cpumask_copy(&sched_core_mask, cpu_online_mask);
344 	for_each_cpu(cpu, &sched_core_mask) {
345 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
346 
347 		sched_core_lock(cpu, &flags);
348 
349 		for_each_cpu(t, smt_mask)
350 			cpu_rq(t)->core_enabled = enabled;
351 
352 		cpu_rq(cpu)->core->core_forceidle_start = 0;
353 
354 		sched_core_unlock(cpu, &flags);
355 
356 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
357 	}
358 
359 	/*
360 	 * Toggle the offline CPUs.
361 	 */
362 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
363 		cpu_rq(cpu)->core_enabled = enabled;
364 
365 	cpus_read_unlock();
366 }
367 
368 static void sched_core_assert_empty(void)
369 {
370 	int cpu;
371 
372 	for_each_possible_cpu(cpu)
373 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
374 }
375 
376 static void __sched_core_enable(void)
377 {
378 	static_branch_enable(&__sched_core_enabled);
379 	/*
380 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
381 	 * and future ones will observe !sched_core_disabled().
382 	 */
383 	synchronize_rcu();
384 	__sched_core_flip(true);
385 	sched_core_assert_empty();
386 }
387 
388 static void __sched_core_disable(void)
389 {
390 	sched_core_assert_empty();
391 	__sched_core_flip(false);
392 	static_branch_disable(&__sched_core_enabled);
393 }
394 
395 void sched_core_get(void)
396 {
397 	if (atomic_inc_not_zero(&sched_core_count))
398 		return;
399 
400 	mutex_lock(&sched_core_mutex);
401 	if (!atomic_read(&sched_core_count))
402 		__sched_core_enable();
403 
404 	smp_mb__before_atomic();
405 	atomic_inc(&sched_core_count);
406 	mutex_unlock(&sched_core_mutex);
407 }
408 
409 static void __sched_core_put(struct work_struct *work)
410 {
411 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
412 		__sched_core_disable();
413 		mutex_unlock(&sched_core_mutex);
414 	}
415 }
416 
417 void sched_core_put(void)
418 {
419 	static DECLARE_WORK(_work, __sched_core_put);
420 
421 	/*
422 	 * "There can be only one"
423 	 *
424 	 * Either this is the last one, or we don't actually need to do any
425 	 * 'work'. If it is the last *again*, we rely on
426 	 * WORK_STRUCT_PENDING_BIT.
427 	 */
428 	if (!atomic_add_unless(&sched_core_count, -1, 1))
429 		schedule_work(&_work);
430 }
431 
432 #else /* !CONFIG_SCHED_CORE */
433 
434 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
435 static inline void
436 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
437 
438 #endif /* CONFIG_SCHED_CORE */
439 
440 /*
441  * Serialization rules:
442  *
443  * Lock order:
444  *
445  *   p->pi_lock
446  *     rq->lock
447  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
448  *
449  *  rq1->lock
450  *    rq2->lock  where: rq1 < rq2
451  *
452  * Regular state:
453  *
454  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
455  * local CPU's rq->lock, it optionally removes the task from the runqueue and
456  * always looks at the local rq data structures to find the most eligible task
457  * to run next.
458  *
459  * Task enqueue is also under rq->lock, possibly taken from another CPU.
460  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
461  * the local CPU to avoid bouncing the runqueue state around [ see
462  * ttwu_queue_wakelist() ]
463  *
464  * Task wakeup, specifically wakeups that involve migration, are horribly
465  * complicated to avoid having to take two rq->locks.
466  *
467  * Special state:
468  *
469  * System-calls and anything external will use task_rq_lock() which acquires
470  * both p->pi_lock and rq->lock. As a consequence the state they change is
471  * stable while holding either lock:
472  *
473  *  - sched_setaffinity()/
474  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
475  *  - set_user_nice():		p->se.load, p->*prio
476  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
477  *				p->se.load, p->rt_priority,
478  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
479  *  - sched_setnuma():		p->numa_preferred_nid
480  *  - sched_move_task():	p->sched_task_group
481  *  - uclamp_update_active()	p->uclamp*
482  *
483  * p->state <- TASK_*:
484  *
485  *   is changed locklessly using set_current_state(), __set_current_state() or
486  *   set_special_state(), see their respective comments, or by
487  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
488  *   concurrent self.
489  *
490  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
491  *
492  *   is set by activate_task() and cleared by deactivate_task(), under
493  *   rq->lock. Non-zero indicates the task is runnable, the special
494  *   ON_RQ_MIGRATING state is used for migration without holding both
495  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
496  *
497  * p->on_cpu <- { 0, 1 }:
498  *
499  *   is set by prepare_task() and cleared by finish_task() such that it will be
500  *   set before p is scheduled-in and cleared after p is scheduled-out, both
501  *   under rq->lock. Non-zero indicates the task is running on its CPU.
502  *
503  *   [ The astute reader will observe that it is possible for two tasks on one
504  *     CPU to have ->on_cpu = 1 at the same time. ]
505  *
506  * task_cpu(p): is changed by set_task_cpu(), the rules are:
507  *
508  *  - Don't call set_task_cpu() on a blocked task:
509  *
510  *    We don't care what CPU we're not running on, this simplifies hotplug,
511  *    the CPU assignment of blocked tasks isn't required to be valid.
512  *
513  *  - for try_to_wake_up(), called under p->pi_lock:
514  *
515  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
516  *
517  *  - for migration called under rq->lock:
518  *    [ see task_on_rq_migrating() in task_rq_lock() ]
519  *
520  *    o move_queued_task()
521  *    o detach_task()
522  *
523  *  - for migration called under double_rq_lock():
524  *
525  *    o __migrate_swap_task()
526  *    o push_rt_task() / pull_rt_task()
527  *    o push_dl_task() / pull_dl_task()
528  *    o dl_task_offline_migration()
529  *
530  */
531 
532 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
533 {
534 	raw_spinlock_t *lock;
535 
536 	/* Matches synchronize_rcu() in __sched_core_enable() */
537 	preempt_disable();
538 	if (sched_core_disabled()) {
539 		raw_spin_lock_nested(&rq->__lock, subclass);
540 		/* preempt_count *MUST* be > 1 */
541 		preempt_enable_no_resched();
542 		return;
543 	}
544 
545 	for (;;) {
546 		lock = __rq_lockp(rq);
547 		raw_spin_lock_nested(lock, subclass);
548 		if (likely(lock == __rq_lockp(rq))) {
549 			/* preempt_count *MUST* be > 1 */
550 			preempt_enable_no_resched();
551 			return;
552 		}
553 		raw_spin_unlock(lock);
554 	}
555 }
556 
557 bool raw_spin_rq_trylock(struct rq *rq)
558 {
559 	raw_spinlock_t *lock;
560 	bool ret;
561 
562 	/* Matches synchronize_rcu() in __sched_core_enable() */
563 	preempt_disable();
564 	if (sched_core_disabled()) {
565 		ret = raw_spin_trylock(&rq->__lock);
566 		preempt_enable();
567 		return ret;
568 	}
569 
570 	for (;;) {
571 		lock = __rq_lockp(rq);
572 		ret = raw_spin_trylock(lock);
573 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
574 			preempt_enable();
575 			return ret;
576 		}
577 		raw_spin_unlock(lock);
578 	}
579 }
580 
581 void raw_spin_rq_unlock(struct rq *rq)
582 {
583 	raw_spin_unlock(rq_lockp(rq));
584 }
585 
586 #ifdef CONFIG_SMP
587 /*
588  * double_rq_lock - safely lock two runqueues
589  */
590 void double_rq_lock(struct rq *rq1, struct rq *rq2)
591 {
592 	lockdep_assert_irqs_disabled();
593 
594 	if (rq_order_less(rq2, rq1))
595 		swap(rq1, rq2);
596 
597 	raw_spin_rq_lock(rq1);
598 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
599 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
600 
601 	double_rq_clock_clear_update(rq1, rq2);
602 }
603 #endif
604 
605 /*
606  * __task_rq_lock - lock the rq @p resides on.
607  */
608 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
609 	__acquires(rq->lock)
610 {
611 	struct rq *rq;
612 
613 	lockdep_assert_held(&p->pi_lock);
614 
615 	for (;;) {
616 		rq = task_rq(p);
617 		raw_spin_rq_lock(rq);
618 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
619 			rq_pin_lock(rq, rf);
620 			return rq;
621 		}
622 		raw_spin_rq_unlock(rq);
623 
624 		while (unlikely(task_on_rq_migrating(p)))
625 			cpu_relax();
626 	}
627 }
628 
629 /*
630  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
631  */
632 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
633 	__acquires(p->pi_lock)
634 	__acquires(rq->lock)
635 {
636 	struct rq *rq;
637 
638 	for (;;) {
639 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
640 		rq = task_rq(p);
641 		raw_spin_rq_lock(rq);
642 		/*
643 		 *	move_queued_task()		task_rq_lock()
644 		 *
645 		 *	ACQUIRE (rq->lock)
646 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
647 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
648 		 *	[S] ->cpu = new_cpu		[L] task_rq()
649 		 *					[L] ->on_rq
650 		 *	RELEASE (rq->lock)
651 		 *
652 		 * If we observe the old CPU in task_rq_lock(), the acquire of
653 		 * the old rq->lock will fully serialize against the stores.
654 		 *
655 		 * If we observe the new CPU in task_rq_lock(), the address
656 		 * dependency headed by '[L] rq = task_rq()' and the acquire
657 		 * will pair with the WMB to ensure we then also see migrating.
658 		 */
659 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
660 			rq_pin_lock(rq, rf);
661 			return rq;
662 		}
663 		raw_spin_rq_unlock(rq);
664 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
665 
666 		while (unlikely(task_on_rq_migrating(p)))
667 			cpu_relax();
668 	}
669 }
670 
671 /*
672  * RQ-clock updating methods:
673  */
674 
675 static void update_rq_clock_task(struct rq *rq, s64 delta)
676 {
677 /*
678  * In theory, the compile should just see 0 here, and optimize out the call
679  * to sched_rt_avg_update. But I don't trust it...
680  */
681 	s64 __maybe_unused steal = 0, irq_delta = 0;
682 
683 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
684 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
685 
686 	/*
687 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
688 	 * this case when a previous update_rq_clock() happened inside a
689 	 * {soft,}irq region.
690 	 *
691 	 * When this happens, we stop ->clock_task and only update the
692 	 * prev_irq_time stamp to account for the part that fit, so that a next
693 	 * update will consume the rest. This ensures ->clock_task is
694 	 * monotonic.
695 	 *
696 	 * It does however cause some slight miss-attribution of {soft,}irq
697 	 * time, a more accurate solution would be to update the irq_time using
698 	 * the current rq->clock timestamp, except that would require using
699 	 * atomic ops.
700 	 */
701 	if (irq_delta > delta)
702 		irq_delta = delta;
703 
704 	rq->prev_irq_time += irq_delta;
705 	delta -= irq_delta;
706 	psi_account_irqtime(rq->curr, irq_delta);
707 #endif
708 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
709 	if (static_key_false((&paravirt_steal_rq_enabled))) {
710 		steal = paravirt_steal_clock(cpu_of(rq));
711 		steal -= rq->prev_steal_time_rq;
712 
713 		if (unlikely(steal > delta))
714 			steal = delta;
715 
716 		rq->prev_steal_time_rq += steal;
717 		delta -= steal;
718 	}
719 #endif
720 
721 	rq->clock_task += delta;
722 
723 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
724 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
725 		update_irq_load_avg(rq, irq_delta + steal);
726 #endif
727 	update_rq_clock_pelt(rq, delta);
728 }
729 
730 void update_rq_clock(struct rq *rq)
731 {
732 	s64 delta;
733 
734 	lockdep_assert_rq_held(rq);
735 
736 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
737 		return;
738 
739 #ifdef CONFIG_SCHED_DEBUG
740 	if (sched_feat(WARN_DOUBLE_CLOCK))
741 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
742 	rq->clock_update_flags |= RQCF_UPDATED;
743 #endif
744 
745 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
746 	if (delta < 0)
747 		return;
748 	rq->clock += delta;
749 	update_rq_clock_task(rq, delta);
750 }
751 
752 #ifdef CONFIG_SCHED_HRTICK
753 /*
754  * Use HR-timers to deliver accurate preemption points.
755  */
756 
757 static void hrtick_clear(struct rq *rq)
758 {
759 	if (hrtimer_active(&rq->hrtick_timer))
760 		hrtimer_cancel(&rq->hrtick_timer);
761 }
762 
763 /*
764  * High-resolution timer tick.
765  * Runs from hardirq context with interrupts disabled.
766  */
767 static enum hrtimer_restart hrtick(struct hrtimer *timer)
768 {
769 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
770 	struct rq_flags rf;
771 
772 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
773 
774 	rq_lock(rq, &rf);
775 	update_rq_clock(rq);
776 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
777 	rq_unlock(rq, &rf);
778 
779 	return HRTIMER_NORESTART;
780 }
781 
782 #ifdef CONFIG_SMP
783 
784 static void __hrtick_restart(struct rq *rq)
785 {
786 	struct hrtimer *timer = &rq->hrtick_timer;
787 	ktime_t time = rq->hrtick_time;
788 
789 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
790 }
791 
792 /*
793  * called from hardirq (IPI) context
794  */
795 static void __hrtick_start(void *arg)
796 {
797 	struct rq *rq = arg;
798 	struct rq_flags rf;
799 
800 	rq_lock(rq, &rf);
801 	__hrtick_restart(rq);
802 	rq_unlock(rq, &rf);
803 }
804 
805 /*
806  * Called to set the hrtick timer state.
807  *
808  * called with rq->lock held and irqs disabled
809  */
810 void hrtick_start(struct rq *rq, u64 delay)
811 {
812 	struct hrtimer *timer = &rq->hrtick_timer;
813 	s64 delta;
814 
815 	/*
816 	 * Don't schedule slices shorter than 10000ns, that just
817 	 * doesn't make sense and can cause timer DoS.
818 	 */
819 	delta = max_t(s64, delay, 10000LL);
820 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
821 
822 	if (rq == this_rq())
823 		__hrtick_restart(rq);
824 	else
825 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
826 }
827 
828 #else
829 /*
830  * Called to set the hrtick timer state.
831  *
832  * called with rq->lock held and irqs disabled
833  */
834 void hrtick_start(struct rq *rq, u64 delay)
835 {
836 	/*
837 	 * Don't schedule slices shorter than 10000ns, that just
838 	 * doesn't make sense. Rely on vruntime for fairness.
839 	 */
840 	delay = max_t(u64, delay, 10000LL);
841 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
842 		      HRTIMER_MODE_REL_PINNED_HARD);
843 }
844 
845 #endif /* CONFIG_SMP */
846 
847 static void hrtick_rq_init(struct rq *rq)
848 {
849 #ifdef CONFIG_SMP
850 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
851 #endif
852 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
853 	rq->hrtick_timer.function = hrtick;
854 }
855 #else	/* CONFIG_SCHED_HRTICK */
856 static inline void hrtick_clear(struct rq *rq)
857 {
858 }
859 
860 static inline void hrtick_rq_init(struct rq *rq)
861 {
862 }
863 #endif	/* CONFIG_SCHED_HRTICK */
864 
865 /*
866  * cmpxchg based fetch_or, macro so it works for different integer types
867  */
868 #define fetch_or(ptr, mask)						\
869 	({								\
870 		typeof(ptr) _ptr = (ptr);				\
871 		typeof(mask) _mask = (mask);				\
872 		typeof(*_ptr) _val = *_ptr;				\
873 									\
874 		do {							\
875 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
876 	_val;								\
877 })
878 
879 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
880 /*
881  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
882  * this avoids any races wrt polling state changes and thereby avoids
883  * spurious IPIs.
884  */
885 static inline bool set_nr_and_not_polling(struct task_struct *p)
886 {
887 	struct thread_info *ti = task_thread_info(p);
888 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
889 }
890 
891 /*
892  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
893  *
894  * If this returns true, then the idle task promises to call
895  * sched_ttwu_pending() and reschedule soon.
896  */
897 static bool set_nr_if_polling(struct task_struct *p)
898 {
899 	struct thread_info *ti = task_thread_info(p);
900 	typeof(ti->flags) val = READ_ONCE(ti->flags);
901 
902 	for (;;) {
903 		if (!(val & _TIF_POLLING_NRFLAG))
904 			return false;
905 		if (val & _TIF_NEED_RESCHED)
906 			return true;
907 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
908 			break;
909 	}
910 	return true;
911 }
912 
913 #else
914 static inline bool set_nr_and_not_polling(struct task_struct *p)
915 {
916 	set_tsk_need_resched(p);
917 	return true;
918 }
919 
920 #ifdef CONFIG_SMP
921 static inline bool set_nr_if_polling(struct task_struct *p)
922 {
923 	return false;
924 }
925 #endif
926 #endif
927 
928 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
929 {
930 	struct wake_q_node *node = &task->wake_q;
931 
932 	/*
933 	 * Atomically grab the task, if ->wake_q is !nil already it means
934 	 * it's already queued (either by us or someone else) and will get the
935 	 * wakeup due to that.
936 	 *
937 	 * In order to ensure that a pending wakeup will observe our pending
938 	 * state, even in the failed case, an explicit smp_mb() must be used.
939 	 */
940 	smp_mb__before_atomic();
941 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
942 		return false;
943 
944 	/*
945 	 * The head is context local, there can be no concurrency.
946 	 */
947 	*head->lastp = node;
948 	head->lastp = &node->next;
949 	return true;
950 }
951 
952 /**
953  * wake_q_add() - queue a wakeup for 'later' waking.
954  * @head: the wake_q_head to add @task to
955  * @task: the task to queue for 'later' wakeup
956  *
957  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
958  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
959  * instantly.
960  *
961  * This function must be used as-if it were wake_up_process(); IOW the task
962  * must be ready to be woken at this location.
963  */
964 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
965 {
966 	if (__wake_q_add(head, task))
967 		get_task_struct(task);
968 }
969 
970 /**
971  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
972  * @head: the wake_q_head to add @task to
973  * @task: the task to queue for 'later' wakeup
974  *
975  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
976  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
977  * instantly.
978  *
979  * This function must be used as-if it were wake_up_process(); IOW the task
980  * must be ready to be woken at this location.
981  *
982  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
983  * that already hold reference to @task can call the 'safe' version and trust
984  * wake_q to do the right thing depending whether or not the @task is already
985  * queued for wakeup.
986  */
987 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
988 {
989 	if (!__wake_q_add(head, task))
990 		put_task_struct(task);
991 }
992 
993 void wake_up_q(struct wake_q_head *head)
994 {
995 	struct wake_q_node *node = head->first;
996 
997 	while (node != WAKE_Q_TAIL) {
998 		struct task_struct *task;
999 
1000 		task = container_of(node, struct task_struct, wake_q);
1001 		/* Task can safely be re-inserted now: */
1002 		node = node->next;
1003 		task->wake_q.next = NULL;
1004 
1005 		/*
1006 		 * wake_up_process() executes a full barrier, which pairs with
1007 		 * the queueing in wake_q_add() so as not to miss wakeups.
1008 		 */
1009 		wake_up_process(task);
1010 		put_task_struct(task);
1011 	}
1012 }
1013 
1014 /*
1015  * resched_curr - mark rq's current task 'to be rescheduled now'.
1016  *
1017  * On UP this means the setting of the need_resched flag, on SMP it
1018  * might also involve a cross-CPU call to trigger the scheduler on
1019  * the target CPU.
1020  */
1021 void resched_curr(struct rq *rq)
1022 {
1023 	struct task_struct *curr = rq->curr;
1024 	int cpu;
1025 
1026 	lockdep_assert_rq_held(rq);
1027 
1028 	if (test_tsk_need_resched(curr))
1029 		return;
1030 
1031 	cpu = cpu_of(rq);
1032 
1033 	if (cpu == smp_processor_id()) {
1034 		set_tsk_need_resched(curr);
1035 		set_preempt_need_resched();
1036 		return;
1037 	}
1038 
1039 	if (set_nr_and_not_polling(curr))
1040 		smp_send_reschedule(cpu);
1041 	else
1042 		trace_sched_wake_idle_without_ipi(cpu);
1043 }
1044 
1045 void resched_cpu(int cpu)
1046 {
1047 	struct rq *rq = cpu_rq(cpu);
1048 	unsigned long flags;
1049 
1050 	raw_spin_rq_lock_irqsave(rq, flags);
1051 	if (cpu_online(cpu) || cpu == smp_processor_id())
1052 		resched_curr(rq);
1053 	raw_spin_rq_unlock_irqrestore(rq, flags);
1054 }
1055 
1056 #ifdef CONFIG_SMP
1057 #ifdef CONFIG_NO_HZ_COMMON
1058 /*
1059  * In the semi idle case, use the nearest busy CPU for migrating timers
1060  * from an idle CPU.  This is good for power-savings.
1061  *
1062  * We don't do similar optimization for completely idle system, as
1063  * selecting an idle CPU will add more delays to the timers than intended
1064  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1065  */
1066 int get_nohz_timer_target(void)
1067 {
1068 	int i, cpu = smp_processor_id(), default_cpu = -1;
1069 	struct sched_domain *sd;
1070 	const struct cpumask *hk_mask;
1071 
1072 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1073 		if (!idle_cpu(cpu))
1074 			return cpu;
1075 		default_cpu = cpu;
1076 	}
1077 
1078 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1079 
1080 	rcu_read_lock();
1081 	for_each_domain(cpu, sd) {
1082 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1083 			if (cpu == i)
1084 				continue;
1085 
1086 			if (!idle_cpu(i)) {
1087 				cpu = i;
1088 				goto unlock;
1089 			}
1090 		}
1091 	}
1092 
1093 	if (default_cpu == -1)
1094 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1095 	cpu = default_cpu;
1096 unlock:
1097 	rcu_read_unlock();
1098 	return cpu;
1099 }
1100 
1101 /*
1102  * When add_timer_on() enqueues a timer into the timer wheel of an
1103  * idle CPU then this timer might expire before the next timer event
1104  * which is scheduled to wake up that CPU. In case of a completely
1105  * idle system the next event might even be infinite time into the
1106  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1107  * leaves the inner idle loop so the newly added timer is taken into
1108  * account when the CPU goes back to idle and evaluates the timer
1109  * wheel for the next timer event.
1110  */
1111 static void wake_up_idle_cpu(int cpu)
1112 {
1113 	struct rq *rq = cpu_rq(cpu);
1114 
1115 	if (cpu == smp_processor_id())
1116 		return;
1117 
1118 	if (set_nr_and_not_polling(rq->idle))
1119 		smp_send_reschedule(cpu);
1120 	else
1121 		trace_sched_wake_idle_without_ipi(cpu);
1122 }
1123 
1124 static bool wake_up_full_nohz_cpu(int cpu)
1125 {
1126 	/*
1127 	 * We just need the target to call irq_exit() and re-evaluate
1128 	 * the next tick. The nohz full kick at least implies that.
1129 	 * If needed we can still optimize that later with an
1130 	 * empty IRQ.
1131 	 */
1132 	if (cpu_is_offline(cpu))
1133 		return true;  /* Don't try to wake offline CPUs. */
1134 	if (tick_nohz_full_cpu(cpu)) {
1135 		if (cpu != smp_processor_id() ||
1136 		    tick_nohz_tick_stopped())
1137 			tick_nohz_full_kick_cpu(cpu);
1138 		return true;
1139 	}
1140 
1141 	return false;
1142 }
1143 
1144 /*
1145  * Wake up the specified CPU.  If the CPU is going offline, it is the
1146  * caller's responsibility to deal with the lost wakeup, for example,
1147  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1148  */
1149 void wake_up_nohz_cpu(int cpu)
1150 {
1151 	if (!wake_up_full_nohz_cpu(cpu))
1152 		wake_up_idle_cpu(cpu);
1153 }
1154 
1155 static void nohz_csd_func(void *info)
1156 {
1157 	struct rq *rq = info;
1158 	int cpu = cpu_of(rq);
1159 	unsigned int flags;
1160 
1161 	/*
1162 	 * Release the rq::nohz_csd.
1163 	 */
1164 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1165 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1166 
1167 	rq->idle_balance = idle_cpu(cpu);
1168 	if (rq->idle_balance && !need_resched()) {
1169 		rq->nohz_idle_balance = flags;
1170 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1171 	}
1172 }
1173 
1174 #endif /* CONFIG_NO_HZ_COMMON */
1175 
1176 #ifdef CONFIG_NO_HZ_FULL
1177 bool sched_can_stop_tick(struct rq *rq)
1178 {
1179 	int fifo_nr_running;
1180 
1181 	/* Deadline tasks, even if single, need the tick */
1182 	if (rq->dl.dl_nr_running)
1183 		return false;
1184 
1185 	/*
1186 	 * If there are more than one RR tasks, we need the tick to affect the
1187 	 * actual RR behaviour.
1188 	 */
1189 	if (rq->rt.rr_nr_running) {
1190 		if (rq->rt.rr_nr_running == 1)
1191 			return true;
1192 		else
1193 			return false;
1194 	}
1195 
1196 	/*
1197 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1198 	 * forced preemption between FIFO tasks.
1199 	 */
1200 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1201 	if (fifo_nr_running)
1202 		return true;
1203 
1204 	/*
1205 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1206 	 * if there's more than one we need the tick for involuntary
1207 	 * preemption.
1208 	 */
1209 	if (rq->nr_running > 1)
1210 		return false;
1211 
1212 	return true;
1213 }
1214 #endif /* CONFIG_NO_HZ_FULL */
1215 #endif /* CONFIG_SMP */
1216 
1217 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1218 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1219 /*
1220  * Iterate task_group tree rooted at *from, calling @down when first entering a
1221  * node and @up when leaving it for the final time.
1222  *
1223  * Caller must hold rcu_lock or sufficient equivalent.
1224  */
1225 int walk_tg_tree_from(struct task_group *from,
1226 			     tg_visitor down, tg_visitor up, void *data)
1227 {
1228 	struct task_group *parent, *child;
1229 	int ret;
1230 
1231 	parent = from;
1232 
1233 down:
1234 	ret = (*down)(parent, data);
1235 	if (ret)
1236 		goto out;
1237 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1238 		parent = child;
1239 		goto down;
1240 
1241 up:
1242 		continue;
1243 	}
1244 	ret = (*up)(parent, data);
1245 	if (ret || parent == from)
1246 		goto out;
1247 
1248 	child = parent;
1249 	parent = parent->parent;
1250 	if (parent)
1251 		goto up;
1252 out:
1253 	return ret;
1254 }
1255 
1256 int tg_nop(struct task_group *tg, void *data)
1257 {
1258 	return 0;
1259 }
1260 #endif
1261 
1262 static void set_load_weight(struct task_struct *p, bool update_load)
1263 {
1264 	int prio = p->static_prio - MAX_RT_PRIO;
1265 	struct load_weight *load = &p->se.load;
1266 
1267 	/*
1268 	 * SCHED_IDLE tasks get minimal weight:
1269 	 */
1270 	if (task_has_idle_policy(p)) {
1271 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1272 		load->inv_weight = WMULT_IDLEPRIO;
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * SCHED_OTHER tasks have to update their load when changing their
1278 	 * weight
1279 	 */
1280 	if (update_load && p->sched_class == &fair_sched_class) {
1281 		reweight_task(p, prio);
1282 	} else {
1283 		load->weight = scale_load(sched_prio_to_weight[prio]);
1284 		load->inv_weight = sched_prio_to_wmult[prio];
1285 	}
1286 }
1287 
1288 #ifdef CONFIG_UCLAMP_TASK
1289 /*
1290  * Serializes updates of utilization clamp values
1291  *
1292  * The (slow-path) user-space triggers utilization clamp value updates which
1293  * can require updates on (fast-path) scheduler's data structures used to
1294  * support enqueue/dequeue operations.
1295  * While the per-CPU rq lock protects fast-path update operations, user-space
1296  * requests are serialized using a mutex to reduce the risk of conflicting
1297  * updates or API abuses.
1298  */
1299 static DEFINE_MUTEX(uclamp_mutex);
1300 
1301 /* Max allowed minimum utilization */
1302 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1303 
1304 /* Max allowed maximum utilization */
1305 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1306 
1307 /*
1308  * By default RT tasks run at the maximum performance point/capacity of the
1309  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1310  * SCHED_CAPACITY_SCALE.
1311  *
1312  * This knob allows admins to change the default behavior when uclamp is being
1313  * used. In battery powered devices, particularly, running at the maximum
1314  * capacity and frequency will increase energy consumption and shorten the
1315  * battery life.
1316  *
1317  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1318  *
1319  * This knob will not override the system default sched_util_clamp_min defined
1320  * above.
1321  */
1322 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1323 
1324 /* All clamps are required to be less or equal than these values */
1325 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1326 
1327 /*
1328  * This static key is used to reduce the uclamp overhead in the fast path. It
1329  * primarily disables the call to uclamp_rq_{inc, dec}() in
1330  * enqueue/dequeue_task().
1331  *
1332  * This allows users to continue to enable uclamp in their kernel config with
1333  * minimum uclamp overhead in the fast path.
1334  *
1335  * As soon as userspace modifies any of the uclamp knobs, the static key is
1336  * enabled, since we have an actual users that make use of uclamp
1337  * functionality.
1338  *
1339  * The knobs that would enable this static key are:
1340  *
1341  *   * A task modifying its uclamp value with sched_setattr().
1342  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1343  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1344  */
1345 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1346 
1347 /* Integer rounded range for each bucket */
1348 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1349 
1350 #define for_each_clamp_id(clamp_id) \
1351 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1352 
1353 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1354 {
1355 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1356 }
1357 
1358 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1359 {
1360 	if (clamp_id == UCLAMP_MIN)
1361 		return 0;
1362 	return SCHED_CAPACITY_SCALE;
1363 }
1364 
1365 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1366 				 unsigned int value, bool user_defined)
1367 {
1368 	uc_se->value = value;
1369 	uc_se->bucket_id = uclamp_bucket_id(value);
1370 	uc_se->user_defined = user_defined;
1371 }
1372 
1373 static inline unsigned int
1374 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1375 		  unsigned int clamp_value)
1376 {
1377 	/*
1378 	 * Avoid blocked utilization pushing up the frequency when we go
1379 	 * idle (which drops the max-clamp) by retaining the last known
1380 	 * max-clamp.
1381 	 */
1382 	if (clamp_id == UCLAMP_MAX) {
1383 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1384 		return clamp_value;
1385 	}
1386 
1387 	return uclamp_none(UCLAMP_MIN);
1388 }
1389 
1390 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1391 				     unsigned int clamp_value)
1392 {
1393 	/* Reset max-clamp retention only on idle exit */
1394 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1395 		return;
1396 
1397 	uclamp_rq_set(rq, clamp_id, clamp_value);
1398 }
1399 
1400 static inline
1401 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1402 				   unsigned int clamp_value)
1403 {
1404 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1405 	int bucket_id = UCLAMP_BUCKETS - 1;
1406 
1407 	/*
1408 	 * Since both min and max clamps are max aggregated, find the
1409 	 * top most bucket with tasks in.
1410 	 */
1411 	for ( ; bucket_id >= 0; bucket_id--) {
1412 		if (!bucket[bucket_id].tasks)
1413 			continue;
1414 		return bucket[bucket_id].value;
1415 	}
1416 
1417 	/* No tasks -- default clamp values */
1418 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1419 }
1420 
1421 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1422 {
1423 	unsigned int default_util_min;
1424 	struct uclamp_se *uc_se;
1425 
1426 	lockdep_assert_held(&p->pi_lock);
1427 
1428 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1429 
1430 	/* Only sync if user didn't override the default */
1431 	if (uc_se->user_defined)
1432 		return;
1433 
1434 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1435 	uclamp_se_set(uc_se, default_util_min, false);
1436 }
1437 
1438 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1439 {
1440 	struct rq_flags rf;
1441 	struct rq *rq;
1442 
1443 	if (!rt_task(p))
1444 		return;
1445 
1446 	/* Protect updates to p->uclamp_* */
1447 	rq = task_rq_lock(p, &rf);
1448 	__uclamp_update_util_min_rt_default(p);
1449 	task_rq_unlock(rq, p, &rf);
1450 }
1451 
1452 static inline struct uclamp_se
1453 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1454 {
1455 	/* Copy by value as we could modify it */
1456 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1457 #ifdef CONFIG_UCLAMP_TASK_GROUP
1458 	unsigned int tg_min, tg_max, value;
1459 
1460 	/*
1461 	 * Tasks in autogroups or root task group will be
1462 	 * restricted by system defaults.
1463 	 */
1464 	if (task_group_is_autogroup(task_group(p)))
1465 		return uc_req;
1466 	if (task_group(p) == &root_task_group)
1467 		return uc_req;
1468 
1469 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1470 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1471 	value = uc_req.value;
1472 	value = clamp(value, tg_min, tg_max);
1473 	uclamp_se_set(&uc_req, value, false);
1474 #endif
1475 
1476 	return uc_req;
1477 }
1478 
1479 /*
1480  * The effective clamp bucket index of a task depends on, by increasing
1481  * priority:
1482  * - the task specific clamp value, when explicitly requested from userspace
1483  * - the task group effective clamp value, for tasks not either in the root
1484  *   group or in an autogroup
1485  * - the system default clamp value, defined by the sysadmin
1486  */
1487 static inline struct uclamp_se
1488 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1489 {
1490 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1491 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1492 
1493 	/* System default restrictions always apply */
1494 	if (unlikely(uc_req.value > uc_max.value))
1495 		return uc_max;
1496 
1497 	return uc_req;
1498 }
1499 
1500 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1501 {
1502 	struct uclamp_se uc_eff;
1503 
1504 	/* Task currently refcounted: use back-annotated (effective) value */
1505 	if (p->uclamp[clamp_id].active)
1506 		return (unsigned long)p->uclamp[clamp_id].value;
1507 
1508 	uc_eff = uclamp_eff_get(p, clamp_id);
1509 
1510 	return (unsigned long)uc_eff.value;
1511 }
1512 
1513 /*
1514  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1515  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1516  * updates the rq's clamp value if required.
1517  *
1518  * Tasks can have a task-specific value requested from user-space, track
1519  * within each bucket the maximum value for tasks refcounted in it.
1520  * This "local max aggregation" allows to track the exact "requested" value
1521  * for each bucket when all its RUNNABLE tasks require the same clamp.
1522  */
1523 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1524 				    enum uclamp_id clamp_id)
1525 {
1526 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1527 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1528 	struct uclamp_bucket *bucket;
1529 
1530 	lockdep_assert_rq_held(rq);
1531 
1532 	/* Update task effective clamp */
1533 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1534 
1535 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1536 	bucket->tasks++;
1537 	uc_se->active = true;
1538 
1539 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1540 
1541 	/*
1542 	 * Local max aggregation: rq buckets always track the max
1543 	 * "requested" clamp value of its RUNNABLE tasks.
1544 	 */
1545 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1546 		bucket->value = uc_se->value;
1547 
1548 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1549 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1550 }
1551 
1552 /*
1553  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1554  * is released. If this is the last task reference counting the rq's max
1555  * active clamp value, then the rq's clamp value is updated.
1556  *
1557  * Both refcounted tasks and rq's cached clamp values are expected to be
1558  * always valid. If it's detected they are not, as defensive programming,
1559  * enforce the expected state and warn.
1560  */
1561 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1562 				    enum uclamp_id clamp_id)
1563 {
1564 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1565 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1566 	struct uclamp_bucket *bucket;
1567 	unsigned int bkt_clamp;
1568 	unsigned int rq_clamp;
1569 
1570 	lockdep_assert_rq_held(rq);
1571 
1572 	/*
1573 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1574 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1575 	 *
1576 	 * In this case the uc_se->active flag should be false since no uclamp
1577 	 * accounting was performed at enqueue time and we can just return
1578 	 * here.
1579 	 *
1580 	 * Need to be careful of the following enqueue/dequeue ordering
1581 	 * problem too
1582 	 *
1583 	 *	enqueue(taskA)
1584 	 *	// sched_uclamp_used gets enabled
1585 	 *	enqueue(taskB)
1586 	 *	dequeue(taskA)
1587 	 *	// Must not decrement bucket->tasks here
1588 	 *	dequeue(taskB)
1589 	 *
1590 	 * where we could end up with stale data in uc_se and
1591 	 * bucket[uc_se->bucket_id].
1592 	 *
1593 	 * The following check here eliminates the possibility of such race.
1594 	 */
1595 	if (unlikely(!uc_se->active))
1596 		return;
1597 
1598 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1599 
1600 	SCHED_WARN_ON(!bucket->tasks);
1601 	if (likely(bucket->tasks))
1602 		bucket->tasks--;
1603 
1604 	uc_se->active = false;
1605 
1606 	/*
1607 	 * Keep "local max aggregation" simple and accept to (possibly)
1608 	 * overboost some RUNNABLE tasks in the same bucket.
1609 	 * The rq clamp bucket value is reset to its base value whenever
1610 	 * there are no more RUNNABLE tasks refcounting it.
1611 	 */
1612 	if (likely(bucket->tasks))
1613 		return;
1614 
1615 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1616 	/*
1617 	 * Defensive programming: this should never happen. If it happens,
1618 	 * e.g. due to future modification, warn and fixup the expected value.
1619 	 */
1620 	SCHED_WARN_ON(bucket->value > rq_clamp);
1621 	if (bucket->value >= rq_clamp) {
1622 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1623 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1624 	}
1625 }
1626 
1627 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1628 {
1629 	enum uclamp_id clamp_id;
1630 
1631 	/*
1632 	 * Avoid any overhead until uclamp is actually used by the userspace.
1633 	 *
1634 	 * The condition is constructed such that a NOP is generated when
1635 	 * sched_uclamp_used is disabled.
1636 	 */
1637 	if (!static_branch_unlikely(&sched_uclamp_used))
1638 		return;
1639 
1640 	if (unlikely(!p->sched_class->uclamp_enabled))
1641 		return;
1642 
1643 	for_each_clamp_id(clamp_id)
1644 		uclamp_rq_inc_id(rq, p, clamp_id);
1645 
1646 	/* Reset clamp idle holding when there is one RUNNABLE task */
1647 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1648 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1649 }
1650 
1651 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1652 {
1653 	enum uclamp_id clamp_id;
1654 
1655 	/*
1656 	 * Avoid any overhead until uclamp is actually used by the userspace.
1657 	 *
1658 	 * The condition is constructed such that a NOP is generated when
1659 	 * sched_uclamp_used is disabled.
1660 	 */
1661 	if (!static_branch_unlikely(&sched_uclamp_used))
1662 		return;
1663 
1664 	if (unlikely(!p->sched_class->uclamp_enabled))
1665 		return;
1666 
1667 	for_each_clamp_id(clamp_id)
1668 		uclamp_rq_dec_id(rq, p, clamp_id);
1669 }
1670 
1671 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1672 				      enum uclamp_id clamp_id)
1673 {
1674 	if (!p->uclamp[clamp_id].active)
1675 		return;
1676 
1677 	uclamp_rq_dec_id(rq, p, clamp_id);
1678 	uclamp_rq_inc_id(rq, p, clamp_id);
1679 
1680 	/*
1681 	 * Make sure to clear the idle flag if we've transiently reached 0
1682 	 * active tasks on rq.
1683 	 */
1684 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1685 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1686 }
1687 
1688 static inline void
1689 uclamp_update_active(struct task_struct *p)
1690 {
1691 	enum uclamp_id clamp_id;
1692 	struct rq_flags rf;
1693 	struct rq *rq;
1694 
1695 	/*
1696 	 * Lock the task and the rq where the task is (or was) queued.
1697 	 *
1698 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1699 	 * price to pay to safely serialize util_{min,max} updates with
1700 	 * enqueues, dequeues and migration operations.
1701 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1702 	 */
1703 	rq = task_rq_lock(p, &rf);
1704 
1705 	/*
1706 	 * Setting the clamp bucket is serialized by task_rq_lock().
1707 	 * If the task is not yet RUNNABLE and its task_struct is not
1708 	 * affecting a valid clamp bucket, the next time it's enqueued,
1709 	 * it will already see the updated clamp bucket value.
1710 	 */
1711 	for_each_clamp_id(clamp_id)
1712 		uclamp_rq_reinc_id(rq, p, clamp_id);
1713 
1714 	task_rq_unlock(rq, p, &rf);
1715 }
1716 
1717 #ifdef CONFIG_UCLAMP_TASK_GROUP
1718 static inline void
1719 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1720 {
1721 	struct css_task_iter it;
1722 	struct task_struct *p;
1723 
1724 	css_task_iter_start(css, 0, &it);
1725 	while ((p = css_task_iter_next(&it)))
1726 		uclamp_update_active(p);
1727 	css_task_iter_end(&it);
1728 }
1729 
1730 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1731 #endif
1732 
1733 #ifdef CONFIG_SYSCTL
1734 #ifdef CONFIG_UCLAMP_TASK
1735 #ifdef CONFIG_UCLAMP_TASK_GROUP
1736 static void uclamp_update_root_tg(void)
1737 {
1738 	struct task_group *tg = &root_task_group;
1739 
1740 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1741 		      sysctl_sched_uclamp_util_min, false);
1742 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1743 		      sysctl_sched_uclamp_util_max, false);
1744 
1745 	rcu_read_lock();
1746 	cpu_util_update_eff(&root_task_group.css);
1747 	rcu_read_unlock();
1748 }
1749 #else
1750 static void uclamp_update_root_tg(void) { }
1751 #endif
1752 
1753 static void uclamp_sync_util_min_rt_default(void)
1754 {
1755 	struct task_struct *g, *p;
1756 
1757 	/*
1758 	 * copy_process()			sysctl_uclamp
1759 	 *					  uclamp_min_rt = X;
1760 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1761 	 *   // link thread			  smp_mb__after_spinlock()
1762 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1763 	 *   sched_post_fork()			  for_each_process_thread()
1764 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1765 	 *
1766 	 * Ensures that either sched_post_fork() will observe the new
1767 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1768 	 * task.
1769 	 */
1770 	read_lock(&tasklist_lock);
1771 	smp_mb__after_spinlock();
1772 	read_unlock(&tasklist_lock);
1773 
1774 	rcu_read_lock();
1775 	for_each_process_thread(g, p)
1776 		uclamp_update_util_min_rt_default(p);
1777 	rcu_read_unlock();
1778 }
1779 
1780 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1781 				void *buffer, size_t *lenp, loff_t *ppos)
1782 {
1783 	bool update_root_tg = false;
1784 	int old_min, old_max, old_min_rt;
1785 	int result;
1786 
1787 	mutex_lock(&uclamp_mutex);
1788 	old_min = sysctl_sched_uclamp_util_min;
1789 	old_max = sysctl_sched_uclamp_util_max;
1790 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1791 
1792 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1793 	if (result)
1794 		goto undo;
1795 	if (!write)
1796 		goto done;
1797 
1798 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1799 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1800 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1801 
1802 		result = -EINVAL;
1803 		goto undo;
1804 	}
1805 
1806 	if (old_min != sysctl_sched_uclamp_util_min) {
1807 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1808 			      sysctl_sched_uclamp_util_min, false);
1809 		update_root_tg = true;
1810 	}
1811 	if (old_max != sysctl_sched_uclamp_util_max) {
1812 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1813 			      sysctl_sched_uclamp_util_max, false);
1814 		update_root_tg = true;
1815 	}
1816 
1817 	if (update_root_tg) {
1818 		static_branch_enable(&sched_uclamp_used);
1819 		uclamp_update_root_tg();
1820 	}
1821 
1822 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1823 		static_branch_enable(&sched_uclamp_used);
1824 		uclamp_sync_util_min_rt_default();
1825 	}
1826 
1827 	/*
1828 	 * We update all RUNNABLE tasks only when task groups are in use.
1829 	 * Otherwise, keep it simple and do just a lazy update at each next
1830 	 * task enqueue time.
1831 	 */
1832 
1833 	goto done;
1834 
1835 undo:
1836 	sysctl_sched_uclamp_util_min = old_min;
1837 	sysctl_sched_uclamp_util_max = old_max;
1838 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1839 done:
1840 	mutex_unlock(&uclamp_mutex);
1841 
1842 	return result;
1843 }
1844 #endif
1845 #endif
1846 
1847 static int uclamp_validate(struct task_struct *p,
1848 			   const struct sched_attr *attr)
1849 {
1850 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1851 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1852 
1853 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1854 		util_min = attr->sched_util_min;
1855 
1856 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1857 			return -EINVAL;
1858 	}
1859 
1860 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1861 		util_max = attr->sched_util_max;
1862 
1863 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1864 			return -EINVAL;
1865 	}
1866 
1867 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1868 		return -EINVAL;
1869 
1870 	/*
1871 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1872 	 *
1873 	 * We need to do that here, because enabling static branches is a
1874 	 * blocking operation which obviously cannot be done while holding
1875 	 * scheduler locks.
1876 	 */
1877 	static_branch_enable(&sched_uclamp_used);
1878 
1879 	return 0;
1880 }
1881 
1882 static bool uclamp_reset(const struct sched_attr *attr,
1883 			 enum uclamp_id clamp_id,
1884 			 struct uclamp_se *uc_se)
1885 {
1886 	/* Reset on sched class change for a non user-defined clamp value. */
1887 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1888 	    !uc_se->user_defined)
1889 		return true;
1890 
1891 	/* Reset on sched_util_{min,max} == -1. */
1892 	if (clamp_id == UCLAMP_MIN &&
1893 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1894 	    attr->sched_util_min == -1) {
1895 		return true;
1896 	}
1897 
1898 	if (clamp_id == UCLAMP_MAX &&
1899 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1900 	    attr->sched_util_max == -1) {
1901 		return true;
1902 	}
1903 
1904 	return false;
1905 }
1906 
1907 static void __setscheduler_uclamp(struct task_struct *p,
1908 				  const struct sched_attr *attr)
1909 {
1910 	enum uclamp_id clamp_id;
1911 
1912 	for_each_clamp_id(clamp_id) {
1913 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1914 		unsigned int value;
1915 
1916 		if (!uclamp_reset(attr, clamp_id, uc_se))
1917 			continue;
1918 
1919 		/*
1920 		 * RT by default have a 100% boost value that could be modified
1921 		 * at runtime.
1922 		 */
1923 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1924 			value = sysctl_sched_uclamp_util_min_rt_default;
1925 		else
1926 			value = uclamp_none(clamp_id);
1927 
1928 		uclamp_se_set(uc_se, value, false);
1929 
1930 	}
1931 
1932 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1933 		return;
1934 
1935 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1936 	    attr->sched_util_min != -1) {
1937 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1938 			      attr->sched_util_min, true);
1939 	}
1940 
1941 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1942 	    attr->sched_util_max != -1) {
1943 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1944 			      attr->sched_util_max, true);
1945 	}
1946 }
1947 
1948 static void uclamp_fork(struct task_struct *p)
1949 {
1950 	enum uclamp_id clamp_id;
1951 
1952 	/*
1953 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1954 	 * as the task is still at its early fork stages.
1955 	 */
1956 	for_each_clamp_id(clamp_id)
1957 		p->uclamp[clamp_id].active = false;
1958 
1959 	if (likely(!p->sched_reset_on_fork))
1960 		return;
1961 
1962 	for_each_clamp_id(clamp_id) {
1963 		uclamp_se_set(&p->uclamp_req[clamp_id],
1964 			      uclamp_none(clamp_id), false);
1965 	}
1966 }
1967 
1968 static void uclamp_post_fork(struct task_struct *p)
1969 {
1970 	uclamp_update_util_min_rt_default(p);
1971 }
1972 
1973 static void __init init_uclamp_rq(struct rq *rq)
1974 {
1975 	enum uclamp_id clamp_id;
1976 	struct uclamp_rq *uc_rq = rq->uclamp;
1977 
1978 	for_each_clamp_id(clamp_id) {
1979 		uc_rq[clamp_id] = (struct uclamp_rq) {
1980 			.value = uclamp_none(clamp_id)
1981 		};
1982 	}
1983 
1984 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1985 }
1986 
1987 static void __init init_uclamp(void)
1988 {
1989 	struct uclamp_se uc_max = {};
1990 	enum uclamp_id clamp_id;
1991 	int cpu;
1992 
1993 	for_each_possible_cpu(cpu)
1994 		init_uclamp_rq(cpu_rq(cpu));
1995 
1996 	for_each_clamp_id(clamp_id) {
1997 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1998 			      uclamp_none(clamp_id), false);
1999 	}
2000 
2001 	/* System defaults allow max clamp values for both indexes */
2002 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2003 	for_each_clamp_id(clamp_id) {
2004 		uclamp_default[clamp_id] = uc_max;
2005 #ifdef CONFIG_UCLAMP_TASK_GROUP
2006 		root_task_group.uclamp_req[clamp_id] = uc_max;
2007 		root_task_group.uclamp[clamp_id] = uc_max;
2008 #endif
2009 	}
2010 }
2011 
2012 #else /* CONFIG_UCLAMP_TASK */
2013 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2014 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2015 static inline int uclamp_validate(struct task_struct *p,
2016 				  const struct sched_attr *attr)
2017 {
2018 	return -EOPNOTSUPP;
2019 }
2020 static void __setscheduler_uclamp(struct task_struct *p,
2021 				  const struct sched_attr *attr) { }
2022 static inline void uclamp_fork(struct task_struct *p) { }
2023 static inline void uclamp_post_fork(struct task_struct *p) { }
2024 static inline void init_uclamp(void) { }
2025 #endif /* CONFIG_UCLAMP_TASK */
2026 
2027 bool sched_task_on_rq(struct task_struct *p)
2028 {
2029 	return task_on_rq_queued(p);
2030 }
2031 
2032 unsigned long get_wchan(struct task_struct *p)
2033 {
2034 	unsigned long ip = 0;
2035 	unsigned int state;
2036 
2037 	if (!p || p == current)
2038 		return 0;
2039 
2040 	/* Only get wchan if task is blocked and we can keep it that way. */
2041 	raw_spin_lock_irq(&p->pi_lock);
2042 	state = READ_ONCE(p->__state);
2043 	smp_rmb(); /* see try_to_wake_up() */
2044 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2045 		ip = __get_wchan(p);
2046 	raw_spin_unlock_irq(&p->pi_lock);
2047 
2048 	return ip;
2049 }
2050 
2051 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2052 {
2053 	if (!(flags & ENQUEUE_NOCLOCK))
2054 		update_rq_clock(rq);
2055 
2056 	if (!(flags & ENQUEUE_RESTORE)) {
2057 		sched_info_enqueue(rq, p);
2058 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2059 	}
2060 
2061 	uclamp_rq_inc(rq, p);
2062 	p->sched_class->enqueue_task(rq, p, flags);
2063 
2064 	if (sched_core_enabled(rq))
2065 		sched_core_enqueue(rq, p);
2066 }
2067 
2068 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2069 {
2070 	if (sched_core_enabled(rq))
2071 		sched_core_dequeue(rq, p, flags);
2072 
2073 	if (!(flags & DEQUEUE_NOCLOCK))
2074 		update_rq_clock(rq);
2075 
2076 	if (!(flags & DEQUEUE_SAVE)) {
2077 		sched_info_dequeue(rq, p);
2078 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2079 	}
2080 
2081 	uclamp_rq_dec(rq, p);
2082 	p->sched_class->dequeue_task(rq, p, flags);
2083 }
2084 
2085 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2086 {
2087 	enqueue_task(rq, p, flags);
2088 
2089 	p->on_rq = TASK_ON_RQ_QUEUED;
2090 }
2091 
2092 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2093 {
2094 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2095 
2096 	dequeue_task(rq, p, flags);
2097 }
2098 
2099 static inline int __normal_prio(int policy, int rt_prio, int nice)
2100 {
2101 	int prio;
2102 
2103 	if (dl_policy(policy))
2104 		prio = MAX_DL_PRIO - 1;
2105 	else if (rt_policy(policy))
2106 		prio = MAX_RT_PRIO - 1 - rt_prio;
2107 	else
2108 		prio = NICE_TO_PRIO(nice);
2109 
2110 	return prio;
2111 }
2112 
2113 /*
2114  * Calculate the expected normal priority: i.e. priority
2115  * without taking RT-inheritance into account. Might be
2116  * boosted by interactivity modifiers. Changes upon fork,
2117  * setprio syscalls, and whenever the interactivity
2118  * estimator recalculates.
2119  */
2120 static inline int normal_prio(struct task_struct *p)
2121 {
2122 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2123 }
2124 
2125 /*
2126  * Calculate the current priority, i.e. the priority
2127  * taken into account by the scheduler. This value might
2128  * be boosted by RT tasks, or might be boosted by
2129  * interactivity modifiers. Will be RT if the task got
2130  * RT-boosted. If not then it returns p->normal_prio.
2131  */
2132 static int effective_prio(struct task_struct *p)
2133 {
2134 	p->normal_prio = normal_prio(p);
2135 	/*
2136 	 * If we are RT tasks or we were boosted to RT priority,
2137 	 * keep the priority unchanged. Otherwise, update priority
2138 	 * to the normal priority:
2139 	 */
2140 	if (!rt_prio(p->prio))
2141 		return p->normal_prio;
2142 	return p->prio;
2143 }
2144 
2145 /**
2146  * task_curr - is this task currently executing on a CPU?
2147  * @p: the task in question.
2148  *
2149  * Return: 1 if the task is currently executing. 0 otherwise.
2150  */
2151 inline int task_curr(const struct task_struct *p)
2152 {
2153 	return cpu_curr(task_cpu(p)) == p;
2154 }
2155 
2156 /*
2157  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2158  * use the balance_callback list if you want balancing.
2159  *
2160  * this means any call to check_class_changed() must be followed by a call to
2161  * balance_callback().
2162  */
2163 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2164 				       const struct sched_class *prev_class,
2165 				       int oldprio)
2166 {
2167 	if (prev_class != p->sched_class) {
2168 		if (prev_class->switched_from)
2169 			prev_class->switched_from(rq, p);
2170 
2171 		p->sched_class->switched_to(rq, p);
2172 	} else if (oldprio != p->prio || dl_task(p))
2173 		p->sched_class->prio_changed(rq, p, oldprio);
2174 }
2175 
2176 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2177 {
2178 	if (p->sched_class == rq->curr->sched_class)
2179 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2180 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2181 		resched_curr(rq);
2182 
2183 	/*
2184 	 * A queue event has occurred, and we're going to schedule.  In
2185 	 * this case, we can save a useless back to back clock update.
2186 	 */
2187 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2188 		rq_clock_skip_update(rq);
2189 }
2190 
2191 #ifdef CONFIG_SMP
2192 
2193 static void
2194 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2195 
2196 static int __set_cpus_allowed_ptr(struct task_struct *p,
2197 				  struct affinity_context *ctx);
2198 
2199 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2200 {
2201 	struct affinity_context ac = {
2202 		.new_mask  = cpumask_of(rq->cpu),
2203 		.flags     = SCA_MIGRATE_DISABLE,
2204 	};
2205 
2206 	if (likely(!p->migration_disabled))
2207 		return;
2208 
2209 	if (p->cpus_ptr != &p->cpus_mask)
2210 		return;
2211 
2212 	/*
2213 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2214 	 */
2215 	__do_set_cpus_allowed(p, &ac);
2216 }
2217 
2218 void migrate_disable(void)
2219 {
2220 	struct task_struct *p = current;
2221 
2222 	if (p->migration_disabled) {
2223 		p->migration_disabled++;
2224 		return;
2225 	}
2226 
2227 	preempt_disable();
2228 	this_rq()->nr_pinned++;
2229 	p->migration_disabled = 1;
2230 	preempt_enable();
2231 }
2232 EXPORT_SYMBOL_GPL(migrate_disable);
2233 
2234 void migrate_enable(void)
2235 {
2236 	struct task_struct *p = current;
2237 	struct affinity_context ac = {
2238 		.new_mask  = &p->cpus_mask,
2239 		.flags     = SCA_MIGRATE_ENABLE,
2240 	};
2241 
2242 	if (p->migration_disabled > 1) {
2243 		p->migration_disabled--;
2244 		return;
2245 	}
2246 
2247 	if (WARN_ON_ONCE(!p->migration_disabled))
2248 		return;
2249 
2250 	/*
2251 	 * Ensure stop_task runs either before or after this, and that
2252 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2253 	 */
2254 	preempt_disable();
2255 	if (p->cpus_ptr != &p->cpus_mask)
2256 		__set_cpus_allowed_ptr(p, &ac);
2257 	/*
2258 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2259 	 * regular cpus_mask, otherwise things that race (eg.
2260 	 * select_fallback_rq) get confused.
2261 	 */
2262 	barrier();
2263 	p->migration_disabled = 0;
2264 	this_rq()->nr_pinned--;
2265 	preempt_enable();
2266 }
2267 EXPORT_SYMBOL_GPL(migrate_enable);
2268 
2269 static inline bool rq_has_pinned_tasks(struct rq *rq)
2270 {
2271 	return rq->nr_pinned;
2272 }
2273 
2274 /*
2275  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2276  * __set_cpus_allowed_ptr() and select_fallback_rq().
2277  */
2278 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2279 {
2280 	/* When not in the task's cpumask, no point in looking further. */
2281 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2282 		return false;
2283 
2284 	/* migrate_disabled() must be allowed to finish. */
2285 	if (is_migration_disabled(p))
2286 		return cpu_online(cpu);
2287 
2288 	/* Non kernel threads are not allowed during either online or offline. */
2289 	if (!(p->flags & PF_KTHREAD))
2290 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2291 
2292 	/* KTHREAD_IS_PER_CPU is always allowed. */
2293 	if (kthread_is_per_cpu(p))
2294 		return cpu_online(cpu);
2295 
2296 	/* Regular kernel threads don't get to stay during offline. */
2297 	if (cpu_dying(cpu))
2298 		return false;
2299 
2300 	/* But are allowed during online. */
2301 	return cpu_online(cpu);
2302 }
2303 
2304 /*
2305  * This is how migration works:
2306  *
2307  * 1) we invoke migration_cpu_stop() on the target CPU using
2308  *    stop_one_cpu().
2309  * 2) stopper starts to run (implicitly forcing the migrated thread
2310  *    off the CPU)
2311  * 3) it checks whether the migrated task is still in the wrong runqueue.
2312  * 4) if it's in the wrong runqueue then the migration thread removes
2313  *    it and puts it into the right queue.
2314  * 5) stopper completes and stop_one_cpu() returns and the migration
2315  *    is done.
2316  */
2317 
2318 /*
2319  * move_queued_task - move a queued task to new rq.
2320  *
2321  * Returns (locked) new rq. Old rq's lock is released.
2322  */
2323 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2324 				   struct task_struct *p, int new_cpu)
2325 {
2326 	lockdep_assert_rq_held(rq);
2327 
2328 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2329 	set_task_cpu(p, new_cpu);
2330 	rq_unlock(rq, rf);
2331 
2332 	rq = cpu_rq(new_cpu);
2333 
2334 	rq_lock(rq, rf);
2335 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2336 	activate_task(rq, p, 0);
2337 	check_preempt_curr(rq, p, 0);
2338 
2339 	return rq;
2340 }
2341 
2342 struct migration_arg {
2343 	struct task_struct		*task;
2344 	int				dest_cpu;
2345 	struct set_affinity_pending	*pending;
2346 };
2347 
2348 /*
2349  * @refs: number of wait_for_completion()
2350  * @stop_pending: is @stop_work in use
2351  */
2352 struct set_affinity_pending {
2353 	refcount_t		refs;
2354 	unsigned int		stop_pending;
2355 	struct completion	done;
2356 	struct cpu_stop_work	stop_work;
2357 	struct migration_arg	arg;
2358 };
2359 
2360 /*
2361  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2362  * this because either it can't run here any more (set_cpus_allowed()
2363  * away from this CPU, or CPU going down), or because we're
2364  * attempting to rebalance this task on exec (sched_exec).
2365  *
2366  * So we race with normal scheduler movements, but that's OK, as long
2367  * as the task is no longer on this CPU.
2368  */
2369 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2370 				 struct task_struct *p, int dest_cpu)
2371 {
2372 	/* Affinity changed (again). */
2373 	if (!is_cpu_allowed(p, dest_cpu))
2374 		return rq;
2375 
2376 	update_rq_clock(rq);
2377 	rq = move_queued_task(rq, rf, p, dest_cpu);
2378 
2379 	return rq;
2380 }
2381 
2382 /*
2383  * migration_cpu_stop - this will be executed by a highprio stopper thread
2384  * and performs thread migration by bumping thread off CPU then
2385  * 'pushing' onto another runqueue.
2386  */
2387 static int migration_cpu_stop(void *data)
2388 {
2389 	struct migration_arg *arg = data;
2390 	struct set_affinity_pending *pending = arg->pending;
2391 	struct task_struct *p = arg->task;
2392 	struct rq *rq = this_rq();
2393 	bool complete = false;
2394 	struct rq_flags rf;
2395 
2396 	/*
2397 	 * The original target CPU might have gone down and we might
2398 	 * be on another CPU but it doesn't matter.
2399 	 */
2400 	local_irq_save(rf.flags);
2401 	/*
2402 	 * We need to explicitly wake pending tasks before running
2403 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2404 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2405 	 */
2406 	flush_smp_call_function_queue();
2407 
2408 	raw_spin_lock(&p->pi_lock);
2409 	rq_lock(rq, &rf);
2410 
2411 	/*
2412 	 * If we were passed a pending, then ->stop_pending was set, thus
2413 	 * p->migration_pending must have remained stable.
2414 	 */
2415 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2416 
2417 	/*
2418 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2419 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2420 	 * we're holding p->pi_lock.
2421 	 */
2422 	if (task_rq(p) == rq) {
2423 		if (is_migration_disabled(p))
2424 			goto out;
2425 
2426 		if (pending) {
2427 			p->migration_pending = NULL;
2428 			complete = true;
2429 
2430 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2431 				goto out;
2432 		}
2433 
2434 		if (task_on_rq_queued(p))
2435 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2436 		else
2437 			p->wake_cpu = arg->dest_cpu;
2438 
2439 		/*
2440 		 * XXX __migrate_task() can fail, at which point we might end
2441 		 * up running on a dodgy CPU, AFAICT this can only happen
2442 		 * during CPU hotplug, at which point we'll get pushed out
2443 		 * anyway, so it's probably not a big deal.
2444 		 */
2445 
2446 	} else if (pending) {
2447 		/*
2448 		 * This happens when we get migrated between migrate_enable()'s
2449 		 * preempt_enable() and scheduling the stopper task. At that
2450 		 * point we're a regular task again and not current anymore.
2451 		 *
2452 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2453 		 * more likely.
2454 		 */
2455 
2456 		/*
2457 		 * The task moved before the stopper got to run. We're holding
2458 		 * ->pi_lock, so the allowed mask is stable - if it got
2459 		 * somewhere allowed, we're done.
2460 		 */
2461 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2462 			p->migration_pending = NULL;
2463 			complete = true;
2464 			goto out;
2465 		}
2466 
2467 		/*
2468 		 * When migrate_enable() hits a rq mis-match we can't reliably
2469 		 * determine is_migration_disabled() and so have to chase after
2470 		 * it.
2471 		 */
2472 		WARN_ON_ONCE(!pending->stop_pending);
2473 		task_rq_unlock(rq, p, &rf);
2474 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2475 				    &pending->arg, &pending->stop_work);
2476 		return 0;
2477 	}
2478 out:
2479 	if (pending)
2480 		pending->stop_pending = false;
2481 	task_rq_unlock(rq, p, &rf);
2482 
2483 	if (complete)
2484 		complete_all(&pending->done);
2485 
2486 	return 0;
2487 }
2488 
2489 int push_cpu_stop(void *arg)
2490 {
2491 	struct rq *lowest_rq = NULL, *rq = this_rq();
2492 	struct task_struct *p = arg;
2493 
2494 	raw_spin_lock_irq(&p->pi_lock);
2495 	raw_spin_rq_lock(rq);
2496 
2497 	if (task_rq(p) != rq)
2498 		goto out_unlock;
2499 
2500 	if (is_migration_disabled(p)) {
2501 		p->migration_flags |= MDF_PUSH;
2502 		goto out_unlock;
2503 	}
2504 
2505 	p->migration_flags &= ~MDF_PUSH;
2506 
2507 	if (p->sched_class->find_lock_rq)
2508 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2509 
2510 	if (!lowest_rq)
2511 		goto out_unlock;
2512 
2513 	// XXX validate p is still the highest prio task
2514 	if (task_rq(p) == rq) {
2515 		deactivate_task(rq, p, 0);
2516 		set_task_cpu(p, lowest_rq->cpu);
2517 		activate_task(lowest_rq, p, 0);
2518 		resched_curr(lowest_rq);
2519 	}
2520 
2521 	double_unlock_balance(rq, lowest_rq);
2522 
2523 out_unlock:
2524 	rq->push_busy = false;
2525 	raw_spin_rq_unlock(rq);
2526 	raw_spin_unlock_irq(&p->pi_lock);
2527 
2528 	put_task_struct(p);
2529 	return 0;
2530 }
2531 
2532 /*
2533  * sched_class::set_cpus_allowed must do the below, but is not required to
2534  * actually call this function.
2535  */
2536 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2537 {
2538 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2539 		p->cpus_ptr = ctx->new_mask;
2540 		return;
2541 	}
2542 
2543 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2544 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2545 
2546 	/*
2547 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2548 	 */
2549 	if (ctx->flags & SCA_USER)
2550 		swap(p->user_cpus_ptr, ctx->user_mask);
2551 }
2552 
2553 static void
2554 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2555 {
2556 	struct rq *rq = task_rq(p);
2557 	bool queued, running;
2558 
2559 	/*
2560 	 * This here violates the locking rules for affinity, since we're only
2561 	 * supposed to change these variables while holding both rq->lock and
2562 	 * p->pi_lock.
2563 	 *
2564 	 * HOWEVER, it magically works, because ttwu() is the only code that
2565 	 * accesses these variables under p->pi_lock and only does so after
2566 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2567 	 * before finish_task().
2568 	 *
2569 	 * XXX do further audits, this smells like something putrid.
2570 	 */
2571 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2572 		SCHED_WARN_ON(!p->on_cpu);
2573 	else
2574 		lockdep_assert_held(&p->pi_lock);
2575 
2576 	queued = task_on_rq_queued(p);
2577 	running = task_current(rq, p);
2578 
2579 	if (queued) {
2580 		/*
2581 		 * Because __kthread_bind() calls this on blocked tasks without
2582 		 * holding rq->lock.
2583 		 */
2584 		lockdep_assert_rq_held(rq);
2585 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2586 	}
2587 	if (running)
2588 		put_prev_task(rq, p);
2589 
2590 	p->sched_class->set_cpus_allowed(p, ctx);
2591 
2592 	if (queued)
2593 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2594 	if (running)
2595 		set_next_task(rq, p);
2596 }
2597 
2598 /*
2599  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2600  * affinity (if any) should be destroyed too.
2601  */
2602 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2603 {
2604 	struct affinity_context ac = {
2605 		.new_mask  = new_mask,
2606 		.user_mask = NULL,
2607 		.flags     = SCA_USER,	/* clear the user requested mask */
2608 	};
2609 
2610 	__do_set_cpus_allowed(p, &ac);
2611 	kfree(ac.user_mask);
2612 }
2613 
2614 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2615 		      int node)
2616 {
2617 	unsigned long flags;
2618 
2619 	if (!src->user_cpus_ptr)
2620 		return 0;
2621 
2622 	dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2623 	if (!dst->user_cpus_ptr)
2624 		return -ENOMEM;
2625 
2626 	/* Use pi_lock to protect content of user_cpus_ptr */
2627 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2628 	cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2629 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2630 	return 0;
2631 }
2632 
2633 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2634 {
2635 	struct cpumask *user_mask = NULL;
2636 
2637 	swap(p->user_cpus_ptr, user_mask);
2638 
2639 	return user_mask;
2640 }
2641 
2642 void release_user_cpus_ptr(struct task_struct *p)
2643 {
2644 	kfree(clear_user_cpus_ptr(p));
2645 }
2646 
2647 /*
2648  * This function is wildly self concurrent; here be dragons.
2649  *
2650  *
2651  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2652  * designated task is enqueued on an allowed CPU. If that task is currently
2653  * running, we have to kick it out using the CPU stopper.
2654  *
2655  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2656  * Consider:
2657  *
2658  *     Initial conditions: P0->cpus_mask = [0, 1]
2659  *
2660  *     P0@CPU0                  P1
2661  *
2662  *     migrate_disable();
2663  *     <preempted>
2664  *                              set_cpus_allowed_ptr(P0, [1]);
2665  *
2666  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2667  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2668  * This means we need the following scheme:
2669  *
2670  *     P0@CPU0                  P1
2671  *
2672  *     migrate_disable();
2673  *     <preempted>
2674  *                              set_cpus_allowed_ptr(P0, [1]);
2675  *                                <blocks>
2676  *     <resumes>
2677  *     migrate_enable();
2678  *       __set_cpus_allowed_ptr();
2679  *       <wakes local stopper>
2680  *                         `--> <woken on migration completion>
2681  *
2682  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2683  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2684  * task p are serialized by p->pi_lock, which we can leverage: the one that
2685  * should come into effect at the end of the Migrate-Disable region is the last
2686  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2687  * but we still need to properly signal those waiting tasks at the appropriate
2688  * moment.
2689  *
2690  * This is implemented using struct set_affinity_pending. The first
2691  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2692  * setup an instance of that struct and install it on the targeted task_struct.
2693  * Any and all further callers will reuse that instance. Those then wait for
2694  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2695  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2696  *
2697  *
2698  * (1) In the cases covered above. There is one more where the completion is
2699  * signaled within affine_move_task() itself: when a subsequent affinity request
2700  * occurs after the stopper bailed out due to the targeted task still being
2701  * Migrate-Disable. Consider:
2702  *
2703  *     Initial conditions: P0->cpus_mask = [0, 1]
2704  *
2705  *     CPU0		  P1				P2
2706  *     <P0>
2707  *       migrate_disable();
2708  *       <preempted>
2709  *                        set_cpus_allowed_ptr(P0, [1]);
2710  *                          <blocks>
2711  *     <migration/0>
2712  *       migration_cpu_stop()
2713  *         is_migration_disabled()
2714  *           <bails>
2715  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2716  *                                                         <signal completion>
2717  *                          <awakes>
2718  *
2719  * Note that the above is safe vs a concurrent migrate_enable(), as any
2720  * pending affinity completion is preceded by an uninstallation of
2721  * p->migration_pending done with p->pi_lock held.
2722  */
2723 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2724 			    int dest_cpu, unsigned int flags)
2725 	__releases(rq->lock)
2726 	__releases(p->pi_lock)
2727 {
2728 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2729 	bool stop_pending, complete = false;
2730 
2731 	/* Can the task run on the task's current CPU? If so, we're done */
2732 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2733 		struct task_struct *push_task = NULL;
2734 
2735 		if ((flags & SCA_MIGRATE_ENABLE) &&
2736 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2737 			rq->push_busy = true;
2738 			push_task = get_task_struct(p);
2739 		}
2740 
2741 		/*
2742 		 * If there are pending waiters, but no pending stop_work,
2743 		 * then complete now.
2744 		 */
2745 		pending = p->migration_pending;
2746 		if (pending && !pending->stop_pending) {
2747 			p->migration_pending = NULL;
2748 			complete = true;
2749 		}
2750 
2751 		task_rq_unlock(rq, p, rf);
2752 
2753 		if (push_task) {
2754 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2755 					    p, &rq->push_work);
2756 		}
2757 
2758 		if (complete)
2759 			complete_all(&pending->done);
2760 
2761 		return 0;
2762 	}
2763 
2764 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2765 		/* serialized by p->pi_lock */
2766 		if (!p->migration_pending) {
2767 			/* Install the request */
2768 			refcount_set(&my_pending.refs, 1);
2769 			init_completion(&my_pending.done);
2770 			my_pending.arg = (struct migration_arg) {
2771 				.task = p,
2772 				.dest_cpu = dest_cpu,
2773 				.pending = &my_pending,
2774 			};
2775 
2776 			p->migration_pending = &my_pending;
2777 		} else {
2778 			pending = p->migration_pending;
2779 			refcount_inc(&pending->refs);
2780 			/*
2781 			 * Affinity has changed, but we've already installed a
2782 			 * pending. migration_cpu_stop() *must* see this, else
2783 			 * we risk a completion of the pending despite having a
2784 			 * task on a disallowed CPU.
2785 			 *
2786 			 * Serialized by p->pi_lock, so this is safe.
2787 			 */
2788 			pending->arg.dest_cpu = dest_cpu;
2789 		}
2790 	}
2791 	pending = p->migration_pending;
2792 	/*
2793 	 * - !MIGRATE_ENABLE:
2794 	 *   we'll have installed a pending if there wasn't one already.
2795 	 *
2796 	 * - MIGRATE_ENABLE:
2797 	 *   we're here because the current CPU isn't matching anymore,
2798 	 *   the only way that can happen is because of a concurrent
2799 	 *   set_cpus_allowed_ptr() call, which should then still be
2800 	 *   pending completion.
2801 	 *
2802 	 * Either way, we really should have a @pending here.
2803 	 */
2804 	if (WARN_ON_ONCE(!pending)) {
2805 		task_rq_unlock(rq, p, rf);
2806 		return -EINVAL;
2807 	}
2808 
2809 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2810 		/*
2811 		 * MIGRATE_ENABLE gets here because 'p == current', but for
2812 		 * anything else we cannot do is_migration_disabled(), punt
2813 		 * and have the stopper function handle it all race-free.
2814 		 */
2815 		stop_pending = pending->stop_pending;
2816 		if (!stop_pending)
2817 			pending->stop_pending = true;
2818 
2819 		if (flags & SCA_MIGRATE_ENABLE)
2820 			p->migration_flags &= ~MDF_PUSH;
2821 
2822 		task_rq_unlock(rq, p, rf);
2823 
2824 		if (!stop_pending) {
2825 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2826 					    &pending->arg, &pending->stop_work);
2827 		}
2828 
2829 		if (flags & SCA_MIGRATE_ENABLE)
2830 			return 0;
2831 	} else {
2832 
2833 		if (!is_migration_disabled(p)) {
2834 			if (task_on_rq_queued(p))
2835 				rq = move_queued_task(rq, rf, p, dest_cpu);
2836 
2837 			if (!pending->stop_pending) {
2838 				p->migration_pending = NULL;
2839 				complete = true;
2840 			}
2841 		}
2842 		task_rq_unlock(rq, p, rf);
2843 
2844 		if (complete)
2845 			complete_all(&pending->done);
2846 	}
2847 
2848 	wait_for_completion(&pending->done);
2849 
2850 	if (refcount_dec_and_test(&pending->refs))
2851 		wake_up_var(&pending->refs); /* No UaF, just an address */
2852 
2853 	/*
2854 	 * Block the original owner of &pending until all subsequent callers
2855 	 * have seen the completion and decremented the refcount
2856 	 */
2857 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2858 
2859 	/* ARGH */
2860 	WARN_ON_ONCE(my_pending.stop_pending);
2861 
2862 	return 0;
2863 }
2864 
2865 /*
2866  * Called with both p->pi_lock and rq->lock held; drops both before returning.
2867  */
2868 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2869 					 struct affinity_context *ctx,
2870 					 struct rq *rq,
2871 					 struct rq_flags *rf)
2872 	__releases(rq->lock)
2873 	__releases(p->pi_lock)
2874 {
2875 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2876 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
2877 	bool kthread = p->flags & PF_KTHREAD;
2878 	unsigned int dest_cpu;
2879 	int ret = 0;
2880 
2881 	update_rq_clock(rq);
2882 
2883 	if (kthread || is_migration_disabled(p)) {
2884 		/*
2885 		 * Kernel threads are allowed on online && !active CPUs,
2886 		 * however, during cpu-hot-unplug, even these might get pushed
2887 		 * away if not KTHREAD_IS_PER_CPU.
2888 		 *
2889 		 * Specifically, migration_disabled() tasks must not fail the
2890 		 * cpumask_any_and_distribute() pick below, esp. so on
2891 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2892 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2893 		 */
2894 		cpu_valid_mask = cpu_online_mask;
2895 	}
2896 
2897 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2898 		ret = -EINVAL;
2899 		goto out;
2900 	}
2901 
2902 	/*
2903 	 * Must re-check here, to close a race against __kthread_bind(),
2904 	 * sched_setaffinity() is not guaranteed to observe the flag.
2905 	 */
2906 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2907 		ret = -EINVAL;
2908 		goto out;
2909 	}
2910 
2911 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2912 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
2913 			goto out;
2914 
2915 		if (WARN_ON_ONCE(p == current &&
2916 				 is_migration_disabled(p) &&
2917 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2918 			ret = -EBUSY;
2919 			goto out;
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * Picking a ~random cpu helps in cases where we are changing affinity
2925 	 * for groups of tasks (ie. cpuset), so that load balancing is not
2926 	 * immediately required to distribute the tasks within their new mask.
2927 	 */
2928 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
2929 	if (dest_cpu >= nr_cpu_ids) {
2930 		ret = -EINVAL;
2931 		goto out;
2932 	}
2933 
2934 	__do_set_cpus_allowed(p, ctx);
2935 
2936 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
2937 
2938 out:
2939 	task_rq_unlock(rq, p, rf);
2940 
2941 	return ret;
2942 }
2943 
2944 /*
2945  * Change a given task's CPU affinity. Migrate the thread to a
2946  * proper CPU and schedule it away if the CPU it's executing on
2947  * is removed from the allowed bitmask.
2948  *
2949  * NOTE: the caller must have a valid reference to the task, the
2950  * task must not exit() & deallocate itself prematurely. The
2951  * call is not atomic; no spinlocks may be held.
2952  */
2953 static int __set_cpus_allowed_ptr(struct task_struct *p,
2954 				  struct affinity_context *ctx)
2955 {
2956 	struct rq_flags rf;
2957 	struct rq *rq;
2958 
2959 	rq = task_rq_lock(p, &rf);
2960 	/*
2961 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
2962 	 * flags are set.
2963 	 */
2964 	if (p->user_cpus_ptr &&
2965 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
2966 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
2967 		ctx->new_mask = rq->scratch_mask;
2968 
2969 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
2970 }
2971 
2972 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2973 {
2974 	struct affinity_context ac = {
2975 		.new_mask  = new_mask,
2976 		.flags     = 0,
2977 	};
2978 
2979 	return __set_cpus_allowed_ptr(p, &ac);
2980 }
2981 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2982 
2983 /*
2984  * Change a given task's CPU affinity to the intersection of its current
2985  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2986  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
2987  * affinity or use cpu_online_mask instead.
2988  *
2989  * If the resulting mask is empty, leave the affinity unchanged and return
2990  * -EINVAL.
2991  */
2992 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2993 				     struct cpumask *new_mask,
2994 				     const struct cpumask *subset_mask)
2995 {
2996 	struct affinity_context ac = {
2997 		.new_mask  = new_mask,
2998 		.flags     = 0,
2999 	};
3000 	struct rq_flags rf;
3001 	struct rq *rq;
3002 	int err;
3003 
3004 	rq = task_rq_lock(p, &rf);
3005 
3006 	/*
3007 	 * Forcefully restricting the affinity of a deadline task is
3008 	 * likely to cause problems, so fail and noisily override the
3009 	 * mask entirely.
3010 	 */
3011 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3012 		err = -EPERM;
3013 		goto err_unlock;
3014 	}
3015 
3016 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3017 		err = -EINVAL;
3018 		goto err_unlock;
3019 	}
3020 
3021 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3022 
3023 err_unlock:
3024 	task_rq_unlock(rq, p, &rf);
3025 	return err;
3026 }
3027 
3028 /*
3029  * Restrict the CPU affinity of task @p so that it is a subset of
3030  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3031  * old affinity mask. If the resulting mask is empty, we warn and walk
3032  * up the cpuset hierarchy until we find a suitable mask.
3033  */
3034 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3035 {
3036 	cpumask_var_t new_mask;
3037 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3038 
3039 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3040 
3041 	/*
3042 	 * __migrate_task() can fail silently in the face of concurrent
3043 	 * offlining of the chosen destination CPU, so take the hotplug
3044 	 * lock to ensure that the migration succeeds.
3045 	 */
3046 	cpus_read_lock();
3047 	if (!cpumask_available(new_mask))
3048 		goto out_set_mask;
3049 
3050 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3051 		goto out_free_mask;
3052 
3053 	/*
3054 	 * We failed to find a valid subset of the affinity mask for the
3055 	 * task, so override it based on its cpuset hierarchy.
3056 	 */
3057 	cpuset_cpus_allowed(p, new_mask);
3058 	override_mask = new_mask;
3059 
3060 out_set_mask:
3061 	if (printk_ratelimit()) {
3062 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3063 				task_pid_nr(p), p->comm,
3064 				cpumask_pr_args(override_mask));
3065 	}
3066 
3067 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3068 out_free_mask:
3069 	cpus_read_unlock();
3070 	free_cpumask_var(new_mask);
3071 }
3072 
3073 static int
3074 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3075 
3076 /*
3077  * Restore the affinity of a task @p which was previously restricted by a
3078  * call to force_compatible_cpus_allowed_ptr().
3079  *
3080  * It is the caller's responsibility to serialise this with any calls to
3081  * force_compatible_cpus_allowed_ptr(@p).
3082  */
3083 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3084 {
3085 	struct affinity_context ac = {
3086 		.new_mask  = task_user_cpus(p),
3087 		.flags     = 0,
3088 	};
3089 	int ret;
3090 
3091 	/*
3092 	 * Try to restore the old affinity mask with __sched_setaffinity().
3093 	 * Cpuset masking will be done there too.
3094 	 */
3095 	ret = __sched_setaffinity(p, &ac);
3096 	WARN_ON_ONCE(ret);
3097 }
3098 
3099 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3100 {
3101 #ifdef CONFIG_SCHED_DEBUG
3102 	unsigned int state = READ_ONCE(p->__state);
3103 
3104 	/*
3105 	 * We should never call set_task_cpu() on a blocked task,
3106 	 * ttwu() will sort out the placement.
3107 	 */
3108 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3109 
3110 	/*
3111 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3112 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3113 	 * time relying on p->on_rq.
3114 	 */
3115 	WARN_ON_ONCE(state == TASK_RUNNING &&
3116 		     p->sched_class == &fair_sched_class &&
3117 		     (p->on_rq && !task_on_rq_migrating(p)));
3118 
3119 #ifdef CONFIG_LOCKDEP
3120 	/*
3121 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3122 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3123 	 *
3124 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3125 	 * see task_group().
3126 	 *
3127 	 * Furthermore, all task_rq users should acquire both locks, see
3128 	 * task_rq_lock().
3129 	 */
3130 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3131 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3132 #endif
3133 	/*
3134 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3135 	 */
3136 	WARN_ON_ONCE(!cpu_online(new_cpu));
3137 
3138 	WARN_ON_ONCE(is_migration_disabled(p));
3139 #endif
3140 
3141 	trace_sched_migrate_task(p, new_cpu);
3142 
3143 	if (task_cpu(p) != new_cpu) {
3144 		if (p->sched_class->migrate_task_rq)
3145 			p->sched_class->migrate_task_rq(p, new_cpu);
3146 		p->se.nr_migrations++;
3147 		rseq_migrate(p);
3148 		perf_event_task_migrate(p);
3149 	}
3150 
3151 	__set_task_cpu(p, new_cpu);
3152 }
3153 
3154 #ifdef CONFIG_NUMA_BALANCING
3155 static void __migrate_swap_task(struct task_struct *p, int cpu)
3156 {
3157 	if (task_on_rq_queued(p)) {
3158 		struct rq *src_rq, *dst_rq;
3159 		struct rq_flags srf, drf;
3160 
3161 		src_rq = task_rq(p);
3162 		dst_rq = cpu_rq(cpu);
3163 
3164 		rq_pin_lock(src_rq, &srf);
3165 		rq_pin_lock(dst_rq, &drf);
3166 
3167 		deactivate_task(src_rq, p, 0);
3168 		set_task_cpu(p, cpu);
3169 		activate_task(dst_rq, p, 0);
3170 		check_preempt_curr(dst_rq, p, 0);
3171 
3172 		rq_unpin_lock(dst_rq, &drf);
3173 		rq_unpin_lock(src_rq, &srf);
3174 
3175 	} else {
3176 		/*
3177 		 * Task isn't running anymore; make it appear like we migrated
3178 		 * it before it went to sleep. This means on wakeup we make the
3179 		 * previous CPU our target instead of where it really is.
3180 		 */
3181 		p->wake_cpu = cpu;
3182 	}
3183 }
3184 
3185 struct migration_swap_arg {
3186 	struct task_struct *src_task, *dst_task;
3187 	int src_cpu, dst_cpu;
3188 };
3189 
3190 static int migrate_swap_stop(void *data)
3191 {
3192 	struct migration_swap_arg *arg = data;
3193 	struct rq *src_rq, *dst_rq;
3194 	int ret = -EAGAIN;
3195 
3196 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3197 		return -EAGAIN;
3198 
3199 	src_rq = cpu_rq(arg->src_cpu);
3200 	dst_rq = cpu_rq(arg->dst_cpu);
3201 
3202 	double_raw_lock(&arg->src_task->pi_lock,
3203 			&arg->dst_task->pi_lock);
3204 	double_rq_lock(src_rq, dst_rq);
3205 
3206 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3207 		goto unlock;
3208 
3209 	if (task_cpu(arg->src_task) != arg->src_cpu)
3210 		goto unlock;
3211 
3212 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3213 		goto unlock;
3214 
3215 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3216 		goto unlock;
3217 
3218 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3219 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3220 
3221 	ret = 0;
3222 
3223 unlock:
3224 	double_rq_unlock(src_rq, dst_rq);
3225 	raw_spin_unlock(&arg->dst_task->pi_lock);
3226 	raw_spin_unlock(&arg->src_task->pi_lock);
3227 
3228 	return ret;
3229 }
3230 
3231 /*
3232  * Cross migrate two tasks
3233  */
3234 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3235 		int target_cpu, int curr_cpu)
3236 {
3237 	struct migration_swap_arg arg;
3238 	int ret = -EINVAL;
3239 
3240 	arg = (struct migration_swap_arg){
3241 		.src_task = cur,
3242 		.src_cpu = curr_cpu,
3243 		.dst_task = p,
3244 		.dst_cpu = target_cpu,
3245 	};
3246 
3247 	if (arg.src_cpu == arg.dst_cpu)
3248 		goto out;
3249 
3250 	/*
3251 	 * These three tests are all lockless; this is OK since all of them
3252 	 * will be re-checked with proper locks held further down the line.
3253 	 */
3254 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3255 		goto out;
3256 
3257 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3258 		goto out;
3259 
3260 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3261 		goto out;
3262 
3263 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3264 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3265 
3266 out:
3267 	return ret;
3268 }
3269 #endif /* CONFIG_NUMA_BALANCING */
3270 
3271 /*
3272  * wait_task_inactive - wait for a thread to unschedule.
3273  *
3274  * Wait for the thread to block in any of the states set in @match_state.
3275  * If it changes, i.e. @p might have woken up, then return zero.  When we
3276  * succeed in waiting for @p to be off its CPU, we return a positive number
3277  * (its total switch count).  If a second call a short while later returns the
3278  * same number, the caller can be sure that @p has remained unscheduled the
3279  * whole time.
3280  *
3281  * The caller must ensure that the task *will* unschedule sometime soon,
3282  * else this function might spin for a *long* time. This function can't
3283  * be called with interrupts off, or it may introduce deadlock with
3284  * smp_call_function() if an IPI is sent by the same process we are
3285  * waiting to become inactive.
3286  */
3287 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3288 {
3289 	int running, queued;
3290 	struct rq_flags rf;
3291 	unsigned long ncsw;
3292 	struct rq *rq;
3293 
3294 	for (;;) {
3295 		/*
3296 		 * We do the initial early heuristics without holding
3297 		 * any task-queue locks at all. We'll only try to get
3298 		 * the runqueue lock when things look like they will
3299 		 * work out!
3300 		 */
3301 		rq = task_rq(p);
3302 
3303 		/*
3304 		 * If the task is actively running on another CPU
3305 		 * still, just relax and busy-wait without holding
3306 		 * any locks.
3307 		 *
3308 		 * NOTE! Since we don't hold any locks, it's not
3309 		 * even sure that "rq" stays as the right runqueue!
3310 		 * But we don't care, since "task_on_cpu()" will
3311 		 * return false if the runqueue has changed and p
3312 		 * is actually now running somewhere else!
3313 		 */
3314 		while (task_on_cpu(rq, p)) {
3315 			if (!(READ_ONCE(p->__state) & match_state))
3316 				return 0;
3317 			cpu_relax();
3318 		}
3319 
3320 		/*
3321 		 * Ok, time to look more closely! We need the rq
3322 		 * lock now, to be *sure*. If we're wrong, we'll
3323 		 * just go back and repeat.
3324 		 */
3325 		rq = task_rq_lock(p, &rf);
3326 		trace_sched_wait_task(p);
3327 		running = task_on_cpu(rq, p);
3328 		queued = task_on_rq_queued(p);
3329 		ncsw = 0;
3330 		if (READ_ONCE(p->__state) & match_state)
3331 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3332 		task_rq_unlock(rq, p, &rf);
3333 
3334 		/*
3335 		 * If it changed from the expected state, bail out now.
3336 		 */
3337 		if (unlikely(!ncsw))
3338 			break;
3339 
3340 		/*
3341 		 * Was it really running after all now that we
3342 		 * checked with the proper locks actually held?
3343 		 *
3344 		 * Oops. Go back and try again..
3345 		 */
3346 		if (unlikely(running)) {
3347 			cpu_relax();
3348 			continue;
3349 		}
3350 
3351 		/*
3352 		 * It's not enough that it's not actively running,
3353 		 * it must be off the runqueue _entirely_, and not
3354 		 * preempted!
3355 		 *
3356 		 * So if it was still runnable (but just not actively
3357 		 * running right now), it's preempted, and we should
3358 		 * yield - it could be a while.
3359 		 */
3360 		if (unlikely(queued)) {
3361 			ktime_t to = NSEC_PER_SEC / HZ;
3362 
3363 			set_current_state(TASK_UNINTERRUPTIBLE);
3364 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3365 			continue;
3366 		}
3367 
3368 		/*
3369 		 * Ahh, all good. It wasn't running, and it wasn't
3370 		 * runnable, which means that it will never become
3371 		 * running in the future either. We're all done!
3372 		 */
3373 		break;
3374 	}
3375 
3376 	return ncsw;
3377 }
3378 
3379 /***
3380  * kick_process - kick a running thread to enter/exit the kernel
3381  * @p: the to-be-kicked thread
3382  *
3383  * Cause a process which is running on another CPU to enter
3384  * kernel-mode, without any delay. (to get signals handled.)
3385  *
3386  * NOTE: this function doesn't have to take the runqueue lock,
3387  * because all it wants to ensure is that the remote task enters
3388  * the kernel. If the IPI races and the task has been migrated
3389  * to another CPU then no harm is done and the purpose has been
3390  * achieved as well.
3391  */
3392 void kick_process(struct task_struct *p)
3393 {
3394 	int cpu;
3395 
3396 	preempt_disable();
3397 	cpu = task_cpu(p);
3398 	if ((cpu != smp_processor_id()) && task_curr(p))
3399 		smp_send_reschedule(cpu);
3400 	preempt_enable();
3401 }
3402 EXPORT_SYMBOL_GPL(kick_process);
3403 
3404 /*
3405  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3406  *
3407  * A few notes on cpu_active vs cpu_online:
3408  *
3409  *  - cpu_active must be a subset of cpu_online
3410  *
3411  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3412  *    see __set_cpus_allowed_ptr(). At this point the newly online
3413  *    CPU isn't yet part of the sched domains, and balancing will not
3414  *    see it.
3415  *
3416  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3417  *    avoid the load balancer to place new tasks on the to be removed
3418  *    CPU. Existing tasks will remain running there and will be taken
3419  *    off.
3420  *
3421  * This means that fallback selection must not select !active CPUs.
3422  * And can assume that any active CPU must be online. Conversely
3423  * select_task_rq() below may allow selection of !active CPUs in order
3424  * to satisfy the above rules.
3425  */
3426 static int select_fallback_rq(int cpu, struct task_struct *p)
3427 {
3428 	int nid = cpu_to_node(cpu);
3429 	const struct cpumask *nodemask = NULL;
3430 	enum { cpuset, possible, fail } state = cpuset;
3431 	int dest_cpu;
3432 
3433 	/*
3434 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3435 	 * will return -1. There is no CPU on the node, and we should
3436 	 * select the CPU on the other node.
3437 	 */
3438 	if (nid != -1) {
3439 		nodemask = cpumask_of_node(nid);
3440 
3441 		/* Look for allowed, online CPU in same node. */
3442 		for_each_cpu(dest_cpu, nodemask) {
3443 			if (is_cpu_allowed(p, dest_cpu))
3444 				return dest_cpu;
3445 		}
3446 	}
3447 
3448 	for (;;) {
3449 		/* Any allowed, online CPU? */
3450 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3451 			if (!is_cpu_allowed(p, dest_cpu))
3452 				continue;
3453 
3454 			goto out;
3455 		}
3456 
3457 		/* No more Mr. Nice Guy. */
3458 		switch (state) {
3459 		case cpuset:
3460 			if (cpuset_cpus_allowed_fallback(p)) {
3461 				state = possible;
3462 				break;
3463 			}
3464 			fallthrough;
3465 		case possible:
3466 			/*
3467 			 * XXX When called from select_task_rq() we only
3468 			 * hold p->pi_lock and again violate locking order.
3469 			 *
3470 			 * More yuck to audit.
3471 			 */
3472 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3473 			state = fail;
3474 			break;
3475 		case fail:
3476 			BUG();
3477 			break;
3478 		}
3479 	}
3480 
3481 out:
3482 	if (state != cpuset) {
3483 		/*
3484 		 * Don't tell them about moving exiting tasks or
3485 		 * kernel threads (both mm NULL), since they never
3486 		 * leave kernel.
3487 		 */
3488 		if (p->mm && printk_ratelimit()) {
3489 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3490 					task_pid_nr(p), p->comm, cpu);
3491 		}
3492 	}
3493 
3494 	return dest_cpu;
3495 }
3496 
3497 /*
3498  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3499  */
3500 static inline
3501 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3502 {
3503 	lockdep_assert_held(&p->pi_lock);
3504 
3505 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3506 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3507 	else
3508 		cpu = cpumask_any(p->cpus_ptr);
3509 
3510 	/*
3511 	 * In order not to call set_task_cpu() on a blocking task we need
3512 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3513 	 * CPU.
3514 	 *
3515 	 * Since this is common to all placement strategies, this lives here.
3516 	 *
3517 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3518 	 *   not worry about this generic constraint ]
3519 	 */
3520 	if (unlikely(!is_cpu_allowed(p, cpu)))
3521 		cpu = select_fallback_rq(task_cpu(p), p);
3522 
3523 	return cpu;
3524 }
3525 
3526 void sched_set_stop_task(int cpu, struct task_struct *stop)
3527 {
3528 	static struct lock_class_key stop_pi_lock;
3529 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3530 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3531 
3532 	if (stop) {
3533 		/*
3534 		 * Make it appear like a SCHED_FIFO task, its something
3535 		 * userspace knows about and won't get confused about.
3536 		 *
3537 		 * Also, it will make PI more or less work without too
3538 		 * much confusion -- but then, stop work should not
3539 		 * rely on PI working anyway.
3540 		 */
3541 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3542 
3543 		stop->sched_class = &stop_sched_class;
3544 
3545 		/*
3546 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3547 		 * adjust the effective priority of a task. As a result,
3548 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3549 		 * which can then trigger wakeups of the stop thread to push
3550 		 * around the current task.
3551 		 *
3552 		 * The stop task itself will never be part of the PI-chain, it
3553 		 * never blocks, therefore that ->pi_lock recursion is safe.
3554 		 * Tell lockdep about this by placing the stop->pi_lock in its
3555 		 * own class.
3556 		 */
3557 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3558 	}
3559 
3560 	cpu_rq(cpu)->stop = stop;
3561 
3562 	if (old_stop) {
3563 		/*
3564 		 * Reset it back to a normal scheduling class so that
3565 		 * it can die in pieces.
3566 		 */
3567 		old_stop->sched_class = &rt_sched_class;
3568 	}
3569 }
3570 
3571 #else /* CONFIG_SMP */
3572 
3573 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3574 					 struct affinity_context *ctx)
3575 {
3576 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3577 }
3578 
3579 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3580 
3581 static inline bool rq_has_pinned_tasks(struct rq *rq)
3582 {
3583 	return false;
3584 }
3585 
3586 #endif /* !CONFIG_SMP */
3587 
3588 static void
3589 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3590 {
3591 	struct rq *rq;
3592 
3593 	if (!schedstat_enabled())
3594 		return;
3595 
3596 	rq = this_rq();
3597 
3598 #ifdef CONFIG_SMP
3599 	if (cpu == rq->cpu) {
3600 		__schedstat_inc(rq->ttwu_local);
3601 		__schedstat_inc(p->stats.nr_wakeups_local);
3602 	} else {
3603 		struct sched_domain *sd;
3604 
3605 		__schedstat_inc(p->stats.nr_wakeups_remote);
3606 		rcu_read_lock();
3607 		for_each_domain(rq->cpu, sd) {
3608 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3609 				__schedstat_inc(sd->ttwu_wake_remote);
3610 				break;
3611 			}
3612 		}
3613 		rcu_read_unlock();
3614 	}
3615 
3616 	if (wake_flags & WF_MIGRATED)
3617 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3618 #endif /* CONFIG_SMP */
3619 
3620 	__schedstat_inc(rq->ttwu_count);
3621 	__schedstat_inc(p->stats.nr_wakeups);
3622 
3623 	if (wake_flags & WF_SYNC)
3624 		__schedstat_inc(p->stats.nr_wakeups_sync);
3625 }
3626 
3627 /*
3628  * Mark the task runnable.
3629  */
3630 static inline void ttwu_do_wakeup(struct task_struct *p)
3631 {
3632 	WRITE_ONCE(p->__state, TASK_RUNNING);
3633 	trace_sched_wakeup(p);
3634 }
3635 
3636 static void
3637 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3638 		 struct rq_flags *rf)
3639 {
3640 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3641 
3642 	lockdep_assert_rq_held(rq);
3643 
3644 	if (p->sched_contributes_to_load)
3645 		rq->nr_uninterruptible--;
3646 
3647 #ifdef CONFIG_SMP
3648 	if (wake_flags & WF_MIGRATED)
3649 		en_flags |= ENQUEUE_MIGRATED;
3650 	else
3651 #endif
3652 	if (p->in_iowait) {
3653 		delayacct_blkio_end(p);
3654 		atomic_dec(&task_rq(p)->nr_iowait);
3655 	}
3656 
3657 	activate_task(rq, p, en_flags);
3658 	check_preempt_curr(rq, p, wake_flags);
3659 
3660 	ttwu_do_wakeup(p);
3661 
3662 #ifdef CONFIG_SMP
3663 	if (p->sched_class->task_woken) {
3664 		/*
3665 		 * Our task @p is fully woken up and running; so it's safe to
3666 		 * drop the rq->lock, hereafter rq is only used for statistics.
3667 		 */
3668 		rq_unpin_lock(rq, rf);
3669 		p->sched_class->task_woken(rq, p);
3670 		rq_repin_lock(rq, rf);
3671 	}
3672 
3673 	if (rq->idle_stamp) {
3674 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3675 		u64 max = 2*rq->max_idle_balance_cost;
3676 
3677 		update_avg(&rq->avg_idle, delta);
3678 
3679 		if (rq->avg_idle > max)
3680 			rq->avg_idle = max;
3681 
3682 		rq->wake_stamp = jiffies;
3683 		rq->wake_avg_idle = rq->avg_idle / 2;
3684 
3685 		rq->idle_stamp = 0;
3686 	}
3687 #endif
3688 }
3689 
3690 /*
3691  * Consider @p being inside a wait loop:
3692  *
3693  *   for (;;) {
3694  *      set_current_state(TASK_UNINTERRUPTIBLE);
3695  *
3696  *      if (CONDITION)
3697  *         break;
3698  *
3699  *      schedule();
3700  *   }
3701  *   __set_current_state(TASK_RUNNING);
3702  *
3703  * between set_current_state() and schedule(). In this case @p is still
3704  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3705  * an atomic manner.
3706  *
3707  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3708  * then schedule() must still happen and p->state can be changed to
3709  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3710  * need to do a full wakeup with enqueue.
3711  *
3712  * Returns: %true when the wakeup is done,
3713  *          %false otherwise.
3714  */
3715 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3716 {
3717 	struct rq_flags rf;
3718 	struct rq *rq;
3719 	int ret = 0;
3720 
3721 	rq = __task_rq_lock(p, &rf);
3722 	if (task_on_rq_queued(p)) {
3723 		if (!task_on_cpu(rq, p)) {
3724 			/*
3725 			 * When on_rq && !on_cpu the task is preempted, see if
3726 			 * it should preempt the task that is current now.
3727 			 */
3728 			update_rq_clock(rq);
3729 			check_preempt_curr(rq, p, wake_flags);
3730 		}
3731 		ttwu_do_wakeup(p);
3732 		ret = 1;
3733 	}
3734 	__task_rq_unlock(rq, &rf);
3735 
3736 	return ret;
3737 }
3738 
3739 #ifdef CONFIG_SMP
3740 void sched_ttwu_pending(void *arg)
3741 {
3742 	struct llist_node *llist = arg;
3743 	struct rq *rq = this_rq();
3744 	struct task_struct *p, *t;
3745 	struct rq_flags rf;
3746 
3747 	if (!llist)
3748 		return;
3749 
3750 	rq_lock_irqsave(rq, &rf);
3751 	update_rq_clock(rq);
3752 
3753 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3754 		if (WARN_ON_ONCE(p->on_cpu))
3755 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3756 
3757 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3758 			set_task_cpu(p, cpu_of(rq));
3759 
3760 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3761 	}
3762 
3763 	/*
3764 	 * Must be after enqueueing at least once task such that
3765 	 * idle_cpu() does not observe a false-negative -- if it does,
3766 	 * it is possible for select_idle_siblings() to stack a number
3767 	 * of tasks on this CPU during that window.
3768 	 *
3769 	 * It is ok to clear ttwu_pending when another task pending.
3770 	 * We will receive IPI after local irq enabled and then enqueue it.
3771 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3772 	 */
3773 	WRITE_ONCE(rq->ttwu_pending, 0);
3774 	rq_unlock_irqrestore(rq, &rf);
3775 }
3776 
3777 void send_call_function_single_ipi(int cpu)
3778 {
3779 	struct rq *rq = cpu_rq(cpu);
3780 
3781 	if (!set_nr_if_polling(rq->idle))
3782 		arch_send_call_function_single_ipi(cpu);
3783 	else
3784 		trace_sched_wake_idle_without_ipi(cpu);
3785 }
3786 
3787 /*
3788  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3789  * necessary. The wakee CPU on receipt of the IPI will queue the task
3790  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3791  * of the wakeup instead of the waker.
3792  */
3793 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3794 {
3795 	struct rq *rq = cpu_rq(cpu);
3796 
3797 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3798 
3799 	WRITE_ONCE(rq->ttwu_pending, 1);
3800 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3801 }
3802 
3803 void wake_up_if_idle(int cpu)
3804 {
3805 	struct rq *rq = cpu_rq(cpu);
3806 	struct rq_flags rf;
3807 
3808 	rcu_read_lock();
3809 
3810 	if (!is_idle_task(rcu_dereference(rq->curr)))
3811 		goto out;
3812 
3813 	rq_lock_irqsave(rq, &rf);
3814 	if (is_idle_task(rq->curr))
3815 		resched_curr(rq);
3816 	/* Else CPU is not idle, do nothing here: */
3817 	rq_unlock_irqrestore(rq, &rf);
3818 
3819 out:
3820 	rcu_read_unlock();
3821 }
3822 
3823 bool cpus_share_cache(int this_cpu, int that_cpu)
3824 {
3825 	if (this_cpu == that_cpu)
3826 		return true;
3827 
3828 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3829 }
3830 
3831 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3832 {
3833 	/*
3834 	 * Do not complicate things with the async wake_list while the CPU is
3835 	 * in hotplug state.
3836 	 */
3837 	if (!cpu_active(cpu))
3838 		return false;
3839 
3840 	/* Ensure the task will still be allowed to run on the CPU. */
3841 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3842 		return false;
3843 
3844 	/*
3845 	 * If the CPU does not share cache, then queue the task on the
3846 	 * remote rqs wakelist to avoid accessing remote data.
3847 	 */
3848 	if (!cpus_share_cache(smp_processor_id(), cpu))
3849 		return true;
3850 
3851 	if (cpu == smp_processor_id())
3852 		return false;
3853 
3854 	/*
3855 	 * If the wakee cpu is idle, or the task is descheduling and the
3856 	 * only running task on the CPU, then use the wakelist to offload
3857 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3858 	 * the current CPU is likely busy. nr_running is checked to
3859 	 * avoid unnecessary task stacking.
3860 	 *
3861 	 * Note that we can only get here with (wakee) p->on_rq=0,
3862 	 * p->on_cpu can be whatever, we've done the dequeue, so
3863 	 * the wakee has been accounted out of ->nr_running.
3864 	 */
3865 	if (!cpu_rq(cpu)->nr_running)
3866 		return true;
3867 
3868 	return false;
3869 }
3870 
3871 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3872 {
3873 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3874 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3875 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3876 		return true;
3877 	}
3878 
3879 	return false;
3880 }
3881 
3882 #else /* !CONFIG_SMP */
3883 
3884 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3885 {
3886 	return false;
3887 }
3888 
3889 #endif /* CONFIG_SMP */
3890 
3891 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3892 {
3893 	struct rq *rq = cpu_rq(cpu);
3894 	struct rq_flags rf;
3895 
3896 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
3897 		return;
3898 
3899 	rq_lock(rq, &rf);
3900 	update_rq_clock(rq);
3901 	ttwu_do_activate(rq, p, wake_flags, &rf);
3902 	rq_unlock(rq, &rf);
3903 }
3904 
3905 /*
3906  * Invoked from try_to_wake_up() to check whether the task can be woken up.
3907  *
3908  * The caller holds p::pi_lock if p != current or has preemption
3909  * disabled when p == current.
3910  *
3911  * The rules of PREEMPT_RT saved_state:
3912  *
3913  *   The related locking code always holds p::pi_lock when updating
3914  *   p::saved_state, which means the code is fully serialized in both cases.
3915  *
3916  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3917  *   bits set. This allows to distinguish all wakeup scenarios.
3918  */
3919 static __always_inline
3920 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3921 {
3922 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3923 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3924 			     state != TASK_RTLOCK_WAIT);
3925 	}
3926 
3927 	if (READ_ONCE(p->__state) & state) {
3928 		*success = 1;
3929 		return true;
3930 	}
3931 
3932 #ifdef CONFIG_PREEMPT_RT
3933 	/*
3934 	 * Saved state preserves the task state across blocking on
3935 	 * an RT lock.  If the state matches, set p::saved_state to
3936 	 * TASK_RUNNING, but do not wake the task because it waits
3937 	 * for a lock wakeup. Also indicate success because from
3938 	 * the regular waker's point of view this has succeeded.
3939 	 *
3940 	 * After acquiring the lock the task will restore p::__state
3941 	 * from p::saved_state which ensures that the regular
3942 	 * wakeup is not lost. The restore will also set
3943 	 * p::saved_state to TASK_RUNNING so any further tests will
3944 	 * not result in false positives vs. @success
3945 	 */
3946 	if (p->saved_state & state) {
3947 		p->saved_state = TASK_RUNNING;
3948 		*success = 1;
3949 	}
3950 #endif
3951 	return false;
3952 }
3953 
3954 /*
3955  * Notes on Program-Order guarantees on SMP systems.
3956  *
3957  *  MIGRATION
3958  *
3959  * The basic program-order guarantee on SMP systems is that when a task [t]
3960  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3961  * execution on its new CPU [c1].
3962  *
3963  * For migration (of runnable tasks) this is provided by the following means:
3964  *
3965  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
3966  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
3967  *     rq(c1)->lock (if not at the same time, then in that order).
3968  *  C) LOCK of the rq(c1)->lock scheduling in task
3969  *
3970  * Release/acquire chaining guarantees that B happens after A and C after B.
3971  * Note: the CPU doing B need not be c0 or c1
3972  *
3973  * Example:
3974  *
3975  *   CPU0            CPU1            CPU2
3976  *
3977  *   LOCK rq(0)->lock
3978  *   sched-out X
3979  *   sched-in Y
3980  *   UNLOCK rq(0)->lock
3981  *
3982  *                                   LOCK rq(0)->lock // orders against CPU0
3983  *                                   dequeue X
3984  *                                   UNLOCK rq(0)->lock
3985  *
3986  *                                   LOCK rq(1)->lock
3987  *                                   enqueue X
3988  *                                   UNLOCK rq(1)->lock
3989  *
3990  *                   LOCK rq(1)->lock // orders against CPU2
3991  *                   sched-out Z
3992  *                   sched-in X
3993  *                   UNLOCK rq(1)->lock
3994  *
3995  *
3996  *  BLOCKING -- aka. SLEEP + WAKEUP
3997  *
3998  * For blocking we (obviously) need to provide the same guarantee as for
3999  * migration. However the means are completely different as there is no lock
4000  * chain to provide order. Instead we do:
4001  *
4002  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4003  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4004  *
4005  * Example:
4006  *
4007  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4008  *
4009  *   LOCK rq(0)->lock LOCK X->pi_lock
4010  *   dequeue X
4011  *   sched-out X
4012  *   smp_store_release(X->on_cpu, 0);
4013  *
4014  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4015  *                    X->state = WAKING
4016  *                    set_task_cpu(X,2)
4017  *
4018  *                    LOCK rq(2)->lock
4019  *                    enqueue X
4020  *                    X->state = RUNNING
4021  *                    UNLOCK rq(2)->lock
4022  *
4023  *                                          LOCK rq(2)->lock // orders against CPU1
4024  *                                          sched-out Z
4025  *                                          sched-in X
4026  *                                          UNLOCK rq(2)->lock
4027  *
4028  *                    UNLOCK X->pi_lock
4029  *   UNLOCK rq(0)->lock
4030  *
4031  *
4032  * However, for wakeups there is a second guarantee we must provide, namely we
4033  * must ensure that CONDITION=1 done by the caller can not be reordered with
4034  * accesses to the task state; see try_to_wake_up() and set_current_state().
4035  */
4036 
4037 /**
4038  * try_to_wake_up - wake up a thread
4039  * @p: the thread to be awakened
4040  * @state: the mask of task states that can be woken
4041  * @wake_flags: wake modifier flags (WF_*)
4042  *
4043  * Conceptually does:
4044  *
4045  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4046  *
4047  * If the task was not queued/runnable, also place it back on a runqueue.
4048  *
4049  * This function is atomic against schedule() which would dequeue the task.
4050  *
4051  * It issues a full memory barrier before accessing @p->state, see the comment
4052  * with set_current_state().
4053  *
4054  * Uses p->pi_lock to serialize against concurrent wake-ups.
4055  *
4056  * Relies on p->pi_lock stabilizing:
4057  *  - p->sched_class
4058  *  - p->cpus_ptr
4059  *  - p->sched_task_group
4060  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4061  *
4062  * Tries really hard to only take one task_rq(p)->lock for performance.
4063  * Takes rq->lock in:
4064  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4065  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4066  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4067  *
4068  * As a consequence we race really badly with just about everything. See the
4069  * many memory barriers and their comments for details.
4070  *
4071  * Return: %true if @p->state changes (an actual wakeup was done),
4072  *	   %false otherwise.
4073  */
4074 static int
4075 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4076 {
4077 	unsigned long flags;
4078 	int cpu, success = 0;
4079 
4080 	preempt_disable();
4081 	if (p == current) {
4082 		/*
4083 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4084 		 * == smp_processor_id()'. Together this means we can special
4085 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4086 		 * without taking any locks.
4087 		 *
4088 		 * In particular:
4089 		 *  - we rely on Program-Order guarantees for all the ordering,
4090 		 *  - we're serialized against set_special_state() by virtue of
4091 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4092 		 */
4093 		if (!ttwu_state_match(p, state, &success))
4094 			goto out;
4095 
4096 		trace_sched_waking(p);
4097 		ttwu_do_wakeup(p);
4098 		goto out;
4099 	}
4100 
4101 	/*
4102 	 * If we are going to wake up a thread waiting for CONDITION we
4103 	 * need to ensure that CONDITION=1 done by the caller can not be
4104 	 * reordered with p->state check below. This pairs with smp_store_mb()
4105 	 * in set_current_state() that the waiting thread does.
4106 	 */
4107 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4108 	smp_mb__after_spinlock();
4109 	if (!ttwu_state_match(p, state, &success))
4110 		goto unlock;
4111 
4112 	trace_sched_waking(p);
4113 
4114 	/*
4115 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4116 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4117 	 * in smp_cond_load_acquire() below.
4118 	 *
4119 	 * sched_ttwu_pending()			try_to_wake_up()
4120 	 *   STORE p->on_rq = 1			  LOAD p->state
4121 	 *   UNLOCK rq->lock
4122 	 *
4123 	 * __schedule() (switch to task 'p')
4124 	 *   LOCK rq->lock			  smp_rmb();
4125 	 *   smp_mb__after_spinlock();
4126 	 *   UNLOCK rq->lock
4127 	 *
4128 	 * [task p]
4129 	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4130 	 *
4131 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4132 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4133 	 *
4134 	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4135 	 */
4136 	smp_rmb();
4137 	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4138 		goto unlock;
4139 
4140 #ifdef CONFIG_SMP
4141 	/*
4142 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4143 	 * possible to, falsely, observe p->on_cpu == 0.
4144 	 *
4145 	 * One must be running (->on_cpu == 1) in order to remove oneself
4146 	 * from the runqueue.
4147 	 *
4148 	 * __schedule() (switch to task 'p')	try_to_wake_up()
4149 	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4150 	 *   UNLOCK rq->lock
4151 	 *
4152 	 * __schedule() (put 'p' to sleep)
4153 	 *   LOCK rq->lock			  smp_rmb();
4154 	 *   smp_mb__after_spinlock();
4155 	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4156 	 *
4157 	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4158 	 * __schedule().  See the comment for smp_mb__after_spinlock().
4159 	 *
4160 	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4161 	 * schedule()'s deactivate_task() has 'happened' and p will no longer
4162 	 * care about it's own p->state. See the comment in __schedule().
4163 	 */
4164 	smp_acquire__after_ctrl_dep();
4165 
4166 	/*
4167 	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4168 	 * == 0), which means we need to do an enqueue, change p->state to
4169 	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4170 	 * enqueue, such as ttwu_queue_wakelist().
4171 	 */
4172 	WRITE_ONCE(p->__state, TASK_WAKING);
4173 
4174 	/*
4175 	 * If the owning (remote) CPU is still in the middle of schedule() with
4176 	 * this task as prev, considering queueing p on the remote CPUs wake_list
4177 	 * which potentially sends an IPI instead of spinning on p->on_cpu to
4178 	 * let the waker make forward progress. This is safe because IRQs are
4179 	 * disabled and the IPI will deliver after on_cpu is cleared.
4180 	 *
4181 	 * Ensure we load task_cpu(p) after p->on_cpu:
4182 	 *
4183 	 * set_task_cpu(p, cpu);
4184 	 *   STORE p->cpu = @cpu
4185 	 * __schedule() (switch to task 'p')
4186 	 *   LOCK rq->lock
4187 	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4188 	 *   STORE p->on_cpu = 1		LOAD p->cpu
4189 	 *
4190 	 * to ensure we observe the correct CPU on which the task is currently
4191 	 * scheduling.
4192 	 */
4193 	if (smp_load_acquire(&p->on_cpu) &&
4194 	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4195 		goto unlock;
4196 
4197 	/*
4198 	 * If the owning (remote) CPU is still in the middle of schedule() with
4199 	 * this task as prev, wait until it's done referencing the task.
4200 	 *
4201 	 * Pairs with the smp_store_release() in finish_task().
4202 	 *
4203 	 * This ensures that tasks getting woken will be fully ordered against
4204 	 * their previous state and preserve Program Order.
4205 	 */
4206 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4207 
4208 	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4209 	if (task_cpu(p) != cpu) {
4210 		if (p->in_iowait) {
4211 			delayacct_blkio_end(p);
4212 			atomic_dec(&task_rq(p)->nr_iowait);
4213 		}
4214 
4215 		wake_flags |= WF_MIGRATED;
4216 		psi_ttwu_dequeue(p);
4217 		set_task_cpu(p, cpu);
4218 	}
4219 #else
4220 	cpu = task_cpu(p);
4221 #endif /* CONFIG_SMP */
4222 
4223 	ttwu_queue(p, cpu, wake_flags);
4224 unlock:
4225 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4226 out:
4227 	if (success)
4228 		ttwu_stat(p, task_cpu(p), wake_flags);
4229 	preempt_enable();
4230 
4231 	return success;
4232 }
4233 
4234 static bool __task_needs_rq_lock(struct task_struct *p)
4235 {
4236 	unsigned int state = READ_ONCE(p->__state);
4237 
4238 	/*
4239 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4240 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4241 	 * locks at the end, see ttwu_queue_wakelist().
4242 	 */
4243 	if (state == TASK_RUNNING || state == TASK_WAKING)
4244 		return true;
4245 
4246 	/*
4247 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4248 	 * possible to, falsely, observe p->on_rq == 0.
4249 	 *
4250 	 * See try_to_wake_up() for a longer comment.
4251 	 */
4252 	smp_rmb();
4253 	if (p->on_rq)
4254 		return true;
4255 
4256 #ifdef CONFIG_SMP
4257 	/*
4258 	 * Ensure the task has finished __schedule() and will not be referenced
4259 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4260 	 */
4261 	smp_rmb();
4262 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4263 #endif
4264 
4265 	return false;
4266 }
4267 
4268 /**
4269  * task_call_func - Invoke a function on task in fixed state
4270  * @p: Process for which the function is to be invoked, can be @current.
4271  * @func: Function to invoke.
4272  * @arg: Argument to function.
4273  *
4274  * Fix the task in it's current state by avoiding wakeups and or rq operations
4275  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4276  * to work out what the state is, if required.  Given that @func can be invoked
4277  * with a runqueue lock held, it had better be quite lightweight.
4278  *
4279  * Returns:
4280  *   Whatever @func returns
4281  */
4282 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4283 {
4284 	struct rq *rq = NULL;
4285 	struct rq_flags rf;
4286 	int ret;
4287 
4288 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4289 
4290 	if (__task_needs_rq_lock(p))
4291 		rq = __task_rq_lock(p, &rf);
4292 
4293 	/*
4294 	 * At this point the task is pinned; either:
4295 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4296 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4297 	 *  - queued, and we're holding off schedule	 (rq->lock)
4298 	 *  - running, and we're holding off de-schedule (rq->lock)
4299 	 *
4300 	 * The called function (@func) can use: task_curr(), p->on_rq and
4301 	 * p->__state to differentiate between these states.
4302 	 */
4303 	ret = func(p, arg);
4304 
4305 	if (rq)
4306 		rq_unlock(rq, &rf);
4307 
4308 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4309 	return ret;
4310 }
4311 
4312 /**
4313  * cpu_curr_snapshot - Return a snapshot of the currently running task
4314  * @cpu: The CPU on which to snapshot the task.
4315  *
4316  * Returns the task_struct pointer of the task "currently" running on
4317  * the specified CPU.  If the same task is running on that CPU throughout,
4318  * the return value will be a pointer to that task's task_struct structure.
4319  * If the CPU did any context switches even vaguely concurrently with the
4320  * execution of this function, the return value will be a pointer to the
4321  * task_struct structure of a randomly chosen task that was running on
4322  * that CPU somewhere around the time that this function was executing.
4323  *
4324  * If the specified CPU was offline, the return value is whatever it
4325  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4326  * task, but there is no guarantee.  Callers wishing a useful return
4327  * value must take some action to ensure that the specified CPU remains
4328  * online throughout.
4329  *
4330  * This function executes full memory barriers before and after fetching
4331  * the pointer, which permits the caller to confine this function's fetch
4332  * with respect to the caller's accesses to other shared variables.
4333  */
4334 struct task_struct *cpu_curr_snapshot(int cpu)
4335 {
4336 	struct task_struct *t;
4337 
4338 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4339 	t = rcu_dereference(cpu_curr(cpu));
4340 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4341 	return t;
4342 }
4343 
4344 /**
4345  * wake_up_process - Wake up a specific process
4346  * @p: The process to be woken up.
4347  *
4348  * Attempt to wake up the nominated process and move it to the set of runnable
4349  * processes.
4350  *
4351  * Return: 1 if the process was woken up, 0 if it was already running.
4352  *
4353  * This function executes a full memory barrier before accessing the task state.
4354  */
4355 int wake_up_process(struct task_struct *p)
4356 {
4357 	return try_to_wake_up(p, TASK_NORMAL, 0);
4358 }
4359 EXPORT_SYMBOL(wake_up_process);
4360 
4361 int wake_up_state(struct task_struct *p, unsigned int state)
4362 {
4363 	return try_to_wake_up(p, state, 0);
4364 }
4365 
4366 /*
4367  * Perform scheduler related setup for a newly forked process p.
4368  * p is forked by current.
4369  *
4370  * __sched_fork() is basic setup used by init_idle() too:
4371  */
4372 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4373 {
4374 	p->on_rq			= 0;
4375 
4376 	p->se.on_rq			= 0;
4377 	p->se.exec_start		= 0;
4378 	p->se.sum_exec_runtime		= 0;
4379 	p->se.prev_sum_exec_runtime	= 0;
4380 	p->se.nr_migrations		= 0;
4381 	p->se.vruntime			= 0;
4382 	INIT_LIST_HEAD(&p->se.group_node);
4383 
4384 #ifdef CONFIG_FAIR_GROUP_SCHED
4385 	p->se.cfs_rq			= NULL;
4386 #endif
4387 
4388 #ifdef CONFIG_SCHEDSTATS
4389 	/* Even if schedstat is disabled, there should not be garbage */
4390 	memset(&p->stats, 0, sizeof(p->stats));
4391 #endif
4392 
4393 	RB_CLEAR_NODE(&p->dl.rb_node);
4394 	init_dl_task_timer(&p->dl);
4395 	init_dl_inactive_task_timer(&p->dl);
4396 	__dl_clear_params(p);
4397 
4398 	INIT_LIST_HEAD(&p->rt.run_list);
4399 	p->rt.timeout		= 0;
4400 	p->rt.time_slice	= sched_rr_timeslice;
4401 	p->rt.on_rq		= 0;
4402 	p->rt.on_list		= 0;
4403 
4404 #ifdef CONFIG_PREEMPT_NOTIFIERS
4405 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4406 #endif
4407 
4408 #ifdef CONFIG_COMPACTION
4409 	p->capture_control = NULL;
4410 #endif
4411 	init_numa_balancing(clone_flags, p);
4412 #ifdef CONFIG_SMP
4413 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4414 	p->migration_pending = NULL;
4415 #endif
4416 }
4417 
4418 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4419 
4420 #ifdef CONFIG_NUMA_BALANCING
4421 
4422 int sysctl_numa_balancing_mode;
4423 
4424 static void __set_numabalancing_state(bool enabled)
4425 {
4426 	if (enabled)
4427 		static_branch_enable(&sched_numa_balancing);
4428 	else
4429 		static_branch_disable(&sched_numa_balancing);
4430 }
4431 
4432 void set_numabalancing_state(bool enabled)
4433 {
4434 	if (enabled)
4435 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4436 	else
4437 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4438 	__set_numabalancing_state(enabled);
4439 }
4440 
4441 #ifdef CONFIG_PROC_SYSCTL
4442 static void reset_memory_tiering(void)
4443 {
4444 	struct pglist_data *pgdat;
4445 
4446 	for_each_online_pgdat(pgdat) {
4447 		pgdat->nbp_threshold = 0;
4448 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4449 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4450 	}
4451 }
4452 
4453 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4454 			  void *buffer, size_t *lenp, loff_t *ppos)
4455 {
4456 	struct ctl_table t;
4457 	int err;
4458 	int state = sysctl_numa_balancing_mode;
4459 
4460 	if (write && !capable(CAP_SYS_ADMIN))
4461 		return -EPERM;
4462 
4463 	t = *table;
4464 	t.data = &state;
4465 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4466 	if (err < 0)
4467 		return err;
4468 	if (write) {
4469 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4470 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4471 			reset_memory_tiering();
4472 		sysctl_numa_balancing_mode = state;
4473 		__set_numabalancing_state(state);
4474 	}
4475 	return err;
4476 }
4477 #endif
4478 #endif
4479 
4480 #ifdef CONFIG_SCHEDSTATS
4481 
4482 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4483 
4484 static void set_schedstats(bool enabled)
4485 {
4486 	if (enabled)
4487 		static_branch_enable(&sched_schedstats);
4488 	else
4489 		static_branch_disable(&sched_schedstats);
4490 }
4491 
4492 void force_schedstat_enabled(void)
4493 {
4494 	if (!schedstat_enabled()) {
4495 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4496 		static_branch_enable(&sched_schedstats);
4497 	}
4498 }
4499 
4500 static int __init setup_schedstats(char *str)
4501 {
4502 	int ret = 0;
4503 	if (!str)
4504 		goto out;
4505 
4506 	if (!strcmp(str, "enable")) {
4507 		set_schedstats(true);
4508 		ret = 1;
4509 	} else if (!strcmp(str, "disable")) {
4510 		set_schedstats(false);
4511 		ret = 1;
4512 	}
4513 out:
4514 	if (!ret)
4515 		pr_warn("Unable to parse schedstats=\n");
4516 
4517 	return ret;
4518 }
4519 __setup("schedstats=", setup_schedstats);
4520 
4521 #ifdef CONFIG_PROC_SYSCTL
4522 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4523 		size_t *lenp, loff_t *ppos)
4524 {
4525 	struct ctl_table t;
4526 	int err;
4527 	int state = static_branch_likely(&sched_schedstats);
4528 
4529 	if (write && !capable(CAP_SYS_ADMIN))
4530 		return -EPERM;
4531 
4532 	t = *table;
4533 	t.data = &state;
4534 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4535 	if (err < 0)
4536 		return err;
4537 	if (write)
4538 		set_schedstats(state);
4539 	return err;
4540 }
4541 #endif /* CONFIG_PROC_SYSCTL */
4542 #endif /* CONFIG_SCHEDSTATS */
4543 
4544 #ifdef CONFIG_SYSCTL
4545 static struct ctl_table sched_core_sysctls[] = {
4546 #ifdef CONFIG_SCHEDSTATS
4547 	{
4548 		.procname       = "sched_schedstats",
4549 		.data           = NULL,
4550 		.maxlen         = sizeof(unsigned int),
4551 		.mode           = 0644,
4552 		.proc_handler   = sysctl_schedstats,
4553 		.extra1         = SYSCTL_ZERO,
4554 		.extra2         = SYSCTL_ONE,
4555 	},
4556 #endif /* CONFIG_SCHEDSTATS */
4557 #ifdef CONFIG_UCLAMP_TASK
4558 	{
4559 		.procname       = "sched_util_clamp_min",
4560 		.data           = &sysctl_sched_uclamp_util_min,
4561 		.maxlen         = sizeof(unsigned int),
4562 		.mode           = 0644,
4563 		.proc_handler   = sysctl_sched_uclamp_handler,
4564 	},
4565 	{
4566 		.procname       = "sched_util_clamp_max",
4567 		.data           = &sysctl_sched_uclamp_util_max,
4568 		.maxlen         = sizeof(unsigned int),
4569 		.mode           = 0644,
4570 		.proc_handler   = sysctl_sched_uclamp_handler,
4571 	},
4572 	{
4573 		.procname       = "sched_util_clamp_min_rt_default",
4574 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4575 		.maxlen         = sizeof(unsigned int),
4576 		.mode           = 0644,
4577 		.proc_handler   = sysctl_sched_uclamp_handler,
4578 	},
4579 #endif /* CONFIG_UCLAMP_TASK */
4580 #ifdef CONFIG_NUMA_BALANCING
4581 	{
4582 		.procname	= "numa_balancing",
4583 		.data		= NULL, /* filled in by handler */
4584 		.maxlen		= sizeof(unsigned int),
4585 		.mode		= 0644,
4586 		.proc_handler	= sysctl_numa_balancing,
4587 		.extra1		= SYSCTL_ZERO,
4588 		.extra2		= SYSCTL_FOUR,
4589 	},
4590 #endif /* CONFIG_NUMA_BALANCING */
4591 	{}
4592 };
4593 static int __init sched_core_sysctl_init(void)
4594 {
4595 	register_sysctl_init("kernel", sched_core_sysctls);
4596 	return 0;
4597 }
4598 late_initcall(sched_core_sysctl_init);
4599 #endif /* CONFIG_SYSCTL */
4600 
4601 /*
4602  * fork()/clone()-time setup:
4603  */
4604 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4605 {
4606 	__sched_fork(clone_flags, p);
4607 	/*
4608 	 * We mark the process as NEW here. This guarantees that
4609 	 * nobody will actually run it, and a signal or other external
4610 	 * event cannot wake it up and insert it on the runqueue either.
4611 	 */
4612 	p->__state = TASK_NEW;
4613 
4614 	/*
4615 	 * Make sure we do not leak PI boosting priority to the child.
4616 	 */
4617 	p->prio = current->normal_prio;
4618 
4619 	uclamp_fork(p);
4620 
4621 	/*
4622 	 * Revert to default priority/policy on fork if requested.
4623 	 */
4624 	if (unlikely(p->sched_reset_on_fork)) {
4625 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4626 			p->policy = SCHED_NORMAL;
4627 			p->static_prio = NICE_TO_PRIO(0);
4628 			p->rt_priority = 0;
4629 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4630 			p->static_prio = NICE_TO_PRIO(0);
4631 
4632 		p->prio = p->normal_prio = p->static_prio;
4633 		set_load_weight(p, false);
4634 
4635 		/*
4636 		 * We don't need the reset flag anymore after the fork. It has
4637 		 * fulfilled its duty:
4638 		 */
4639 		p->sched_reset_on_fork = 0;
4640 	}
4641 
4642 	if (dl_prio(p->prio))
4643 		return -EAGAIN;
4644 	else if (rt_prio(p->prio))
4645 		p->sched_class = &rt_sched_class;
4646 	else
4647 		p->sched_class = &fair_sched_class;
4648 
4649 	init_entity_runnable_average(&p->se);
4650 
4651 
4652 #ifdef CONFIG_SCHED_INFO
4653 	if (likely(sched_info_on()))
4654 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4655 #endif
4656 #if defined(CONFIG_SMP)
4657 	p->on_cpu = 0;
4658 #endif
4659 	init_task_preempt_count(p);
4660 #ifdef CONFIG_SMP
4661 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4662 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4663 #endif
4664 	return 0;
4665 }
4666 
4667 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4668 {
4669 	unsigned long flags;
4670 
4671 	/*
4672 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4673 	 * required yet, but lockdep gets upset if rules are violated.
4674 	 */
4675 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4676 #ifdef CONFIG_CGROUP_SCHED
4677 	if (1) {
4678 		struct task_group *tg;
4679 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4680 				  struct task_group, css);
4681 		tg = autogroup_task_group(p, tg);
4682 		p->sched_task_group = tg;
4683 	}
4684 #endif
4685 	rseq_migrate(p);
4686 	/*
4687 	 * We're setting the CPU for the first time, we don't migrate,
4688 	 * so use __set_task_cpu().
4689 	 */
4690 	__set_task_cpu(p, smp_processor_id());
4691 	if (p->sched_class->task_fork)
4692 		p->sched_class->task_fork(p);
4693 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4694 }
4695 
4696 void sched_post_fork(struct task_struct *p)
4697 {
4698 	uclamp_post_fork(p);
4699 }
4700 
4701 unsigned long to_ratio(u64 period, u64 runtime)
4702 {
4703 	if (runtime == RUNTIME_INF)
4704 		return BW_UNIT;
4705 
4706 	/*
4707 	 * Doing this here saves a lot of checks in all
4708 	 * the calling paths, and returning zero seems
4709 	 * safe for them anyway.
4710 	 */
4711 	if (period == 0)
4712 		return 0;
4713 
4714 	return div64_u64(runtime << BW_SHIFT, period);
4715 }
4716 
4717 /*
4718  * wake_up_new_task - wake up a newly created task for the first time.
4719  *
4720  * This function will do some initial scheduler statistics housekeeping
4721  * that must be done for every newly created context, then puts the task
4722  * on the runqueue and wakes it.
4723  */
4724 void wake_up_new_task(struct task_struct *p)
4725 {
4726 	struct rq_flags rf;
4727 	struct rq *rq;
4728 
4729 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4730 	WRITE_ONCE(p->__state, TASK_RUNNING);
4731 #ifdef CONFIG_SMP
4732 	/*
4733 	 * Fork balancing, do it here and not earlier because:
4734 	 *  - cpus_ptr can change in the fork path
4735 	 *  - any previously selected CPU might disappear through hotplug
4736 	 *
4737 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4738 	 * as we're not fully set-up yet.
4739 	 */
4740 	p->recent_used_cpu = task_cpu(p);
4741 	rseq_migrate(p);
4742 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4743 #endif
4744 	rq = __task_rq_lock(p, &rf);
4745 	update_rq_clock(rq);
4746 	post_init_entity_util_avg(p);
4747 
4748 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4749 	trace_sched_wakeup_new(p);
4750 	check_preempt_curr(rq, p, WF_FORK);
4751 #ifdef CONFIG_SMP
4752 	if (p->sched_class->task_woken) {
4753 		/*
4754 		 * Nothing relies on rq->lock after this, so it's fine to
4755 		 * drop it.
4756 		 */
4757 		rq_unpin_lock(rq, &rf);
4758 		p->sched_class->task_woken(rq, p);
4759 		rq_repin_lock(rq, &rf);
4760 	}
4761 #endif
4762 	task_rq_unlock(rq, p, &rf);
4763 }
4764 
4765 #ifdef CONFIG_PREEMPT_NOTIFIERS
4766 
4767 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4768 
4769 void preempt_notifier_inc(void)
4770 {
4771 	static_branch_inc(&preempt_notifier_key);
4772 }
4773 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4774 
4775 void preempt_notifier_dec(void)
4776 {
4777 	static_branch_dec(&preempt_notifier_key);
4778 }
4779 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4780 
4781 /**
4782  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4783  * @notifier: notifier struct to register
4784  */
4785 void preempt_notifier_register(struct preempt_notifier *notifier)
4786 {
4787 	if (!static_branch_unlikely(&preempt_notifier_key))
4788 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4789 
4790 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4791 }
4792 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4793 
4794 /**
4795  * preempt_notifier_unregister - no longer interested in preemption notifications
4796  * @notifier: notifier struct to unregister
4797  *
4798  * This is *not* safe to call from within a preemption notifier.
4799  */
4800 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4801 {
4802 	hlist_del(&notifier->link);
4803 }
4804 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4805 
4806 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4807 {
4808 	struct preempt_notifier *notifier;
4809 
4810 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4811 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4812 }
4813 
4814 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4815 {
4816 	if (static_branch_unlikely(&preempt_notifier_key))
4817 		__fire_sched_in_preempt_notifiers(curr);
4818 }
4819 
4820 static void
4821 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4822 				   struct task_struct *next)
4823 {
4824 	struct preempt_notifier *notifier;
4825 
4826 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4827 		notifier->ops->sched_out(notifier, next);
4828 }
4829 
4830 static __always_inline void
4831 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4832 				 struct task_struct *next)
4833 {
4834 	if (static_branch_unlikely(&preempt_notifier_key))
4835 		__fire_sched_out_preempt_notifiers(curr, next);
4836 }
4837 
4838 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4839 
4840 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4841 {
4842 }
4843 
4844 static inline void
4845 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4846 				 struct task_struct *next)
4847 {
4848 }
4849 
4850 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4851 
4852 static inline void prepare_task(struct task_struct *next)
4853 {
4854 #ifdef CONFIG_SMP
4855 	/*
4856 	 * Claim the task as running, we do this before switching to it
4857 	 * such that any running task will have this set.
4858 	 *
4859 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4860 	 * its ordering comment.
4861 	 */
4862 	WRITE_ONCE(next->on_cpu, 1);
4863 #endif
4864 }
4865 
4866 static inline void finish_task(struct task_struct *prev)
4867 {
4868 #ifdef CONFIG_SMP
4869 	/*
4870 	 * This must be the very last reference to @prev from this CPU. After
4871 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4872 	 * must ensure this doesn't happen until the switch is completely
4873 	 * finished.
4874 	 *
4875 	 * In particular, the load of prev->state in finish_task_switch() must
4876 	 * happen before this.
4877 	 *
4878 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4879 	 */
4880 	smp_store_release(&prev->on_cpu, 0);
4881 #endif
4882 }
4883 
4884 #ifdef CONFIG_SMP
4885 
4886 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4887 {
4888 	void (*func)(struct rq *rq);
4889 	struct balance_callback *next;
4890 
4891 	lockdep_assert_rq_held(rq);
4892 
4893 	while (head) {
4894 		func = (void (*)(struct rq *))head->func;
4895 		next = head->next;
4896 		head->next = NULL;
4897 		head = next;
4898 
4899 		func(rq);
4900 	}
4901 }
4902 
4903 static void balance_push(struct rq *rq);
4904 
4905 /*
4906  * balance_push_callback is a right abuse of the callback interface and plays
4907  * by significantly different rules.
4908  *
4909  * Where the normal balance_callback's purpose is to be ran in the same context
4910  * that queued it (only later, when it's safe to drop rq->lock again),
4911  * balance_push_callback is specifically targeted at __schedule().
4912  *
4913  * This abuse is tolerated because it places all the unlikely/odd cases behind
4914  * a single test, namely: rq->balance_callback == NULL.
4915  */
4916 struct balance_callback balance_push_callback = {
4917 	.next = NULL,
4918 	.func = balance_push,
4919 };
4920 
4921 static inline struct balance_callback *
4922 __splice_balance_callbacks(struct rq *rq, bool split)
4923 {
4924 	struct balance_callback *head = rq->balance_callback;
4925 
4926 	if (likely(!head))
4927 		return NULL;
4928 
4929 	lockdep_assert_rq_held(rq);
4930 	/*
4931 	 * Must not take balance_push_callback off the list when
4932 	 * splice_balance_callbacks() and balance_callbacks() are not
4933 	 * in the same rq->lock section.
4934 	 *
4935 	 * In that case it would be possible for __schedule() to interleave
4936 	 * and observe the list empty.
4937 	 */
4938 	if (split && head == &balance_push_callback)
4939 		head = NULL;
4940 	else
4941 		rq->balance_callback = NULL;
4942 
4943 	return head;
4944 }
4945 
4946 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4947 {
4948 	return __splice_balance_callbacks(rq, true);
4949 }
4950 
4951 static void __balance_callbacks(struct rq *rq)
4952 {
4953 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4954 }
4955 
4956 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4957 {
4958 	unsigned long flags;
4959 
4960 	if (unlikely(head)) {
4961 		raw_spin_rq_lock_irqsave(rq, flags);
4962 		do_balance_callbacks(rq, head);
4963 		raw_spin_rq_unlock_irqrestore(rq, flags);
4964 	}
4965 }
4966 
4967 #else
4968 
4969 static inline void __balance_callbacks(struct rq *rq)
4970 {
4971 }
4972 
4973 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4974 {
4975 	return NULL;
4976 }
4977 
4978 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4979 {
4980 }
4981 
4982 #endif
4983 
4984 static inline void
4985 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4986 {
4987 	/*
4988 	 * Since the runqueue lock will be released by the next
4989 	 * task (which is an invalid locking op but in the case
4990 	 * of the scheduler it's an obvious special-case), so we
4991 	 * do an early lockdep release here:
4992 	 */
4993 	rq_unpin_lock(rq, rf);
4994 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4995 #ifdef CONFIG_DEBUG_SPINLOCK
4996 	/* this is a valid case when another task releases the spinlock */
4997 	rq_lockp(rq)->owner = next;
4998 #endif
4999 }
5000 
5001 static inline void finish_lock_switch(struct rq *rq)
5002 {
5003 	/*
5004 	 * If we are tracking spinlock dependencies then we have to
5005 	 * fix up the runqueue lock - which gets 'carried over' from
5006 	 * prev into current:
5007 	 */
5008 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5009 	__balance_callbacks(rq);
5010 	raw_spin_rq_unlock_irq(rq);
5011 }
5012 
5013 /*
5014  * NOP if the arch has not defined these:
5015  */
5016 
5017 #ifndef prepare_arch_switch
5018 # define prepare_arch_switch(next)	do { } while (0)
5019 #endif
5020 
5021 #ifndef finish_arch_post_lock_switch
5022 # define finish_arch_post_lock_switch()	do { } while (0)
5023 #endif
5024 
5025 static inline void kmap_local_sched_out(void)
5026 {
5027 #ifdef CONFIG_KMAP_LOCAL
5028 	if (unlikely(current->kmap_ctrl.idx))
5029 		__kmap_local_sched_out();
5030 #endif
5031 }
5032 
5033 static inline void kmap_local_sched_in(void)
5034 {
5035 #ifdef CONFIG_KMAP_LOCAL
5036 	if (unlikely(current->kmap_ctrl.idx))
5037 		__kmap_local_sched_in();
5038 #endif
5039 }
5040 
5041 /**
5042  * prepare_task_switch - prepare to switch tasks
5043  * @rq: the runqueue preparing to switch
5044  * @prev: the current task that is being switched out
5045  * @next: the task we are going to switch to.
5046  *
5047  * This is called with the rq lock held and interrupts off. It must
5048  * be paired with a subsequent finish_task_switch after the context
5049  * switch.
5050  *
5051  * prepare_task_switch sets up locking and calls architecture specific
5052  * hooks.
5053  */
5054 static inline void
5055 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5056 		    struct task_struct *next)
5057 {
5058 	kcov_prepare_switch(prev);
5059 	sched_info_switch(rq, prev, next);
5060 	perf_event_task_sched_out(prev, next);
5061 	rseq_preempt(prev);
5062 	switch_mm_cid(prev, next);
5063 	fire_sched_out_preempt_notifiers(prev, next);
5064 	kmap_local_sched_out();
5065 	prepare_task(next);
5066 	prepare_arch_switch(next);
5067 }
5068 
5069 /**
5070  * finish_task_switch - clean up after a task-switch
5071  * @prev: the thread we just switched away from.
5072  *
5073  * finish_task_switch must be called after the context switch, paired
5074  * with a prepare_task_switch call before the context switch.
5075  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5076  * and do any other architecture-specific cleanup actions.
5077  *
5078  * Note that we may have delayed dropping an mm in context_switch(). If
5079  * so, we finish that here outside of the runqueue lock. (Doing it
5080  * with the lock held can cause deadlocks; see schedule() for
5081  * details.)
5082  *
5083  * The context switch have flipped the stack from under us and restored the
5084  * local variables which were saved when this task called schedule() in the
5085  * past. prev == current is still correct but we need to recalculate this_rq
5086  * because prev may have moved to another CPU.
5087  */
5088 static struct rq *finish_task_switch(struct task_struct *prev)
5089 	__releases(rq->lock)
5090 {
5091 	struct rq *rq = this_rq();
5092 	struct mm_struct *mm = rq->prev_mm;
5093 	unsigned int prev_state;
5094 
5095 	/*
5096 	 * The previous task will have left us with a preempt_count of 2
5097 	 * because it left us after:
5098 	 *
5099 	 *	schedule()
5100 	 *	  preempt_disable();			// 1
5101 	 *	  __schedule()
5102 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5103 	 *
5104 	 * Also, see FORK_PREEMPT_COUNT.
5105 	 */
5106 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5107 		      "corrupted preempt_count: %s/%d/0x%x\n",
5108 		      current->comm, current->pid, preempt_count()))
5109 		preempt_count_set(FORK_PREEMPT_COUNT);
5110 
5111 	rq->prev_mm = NULL;
5112 
5113 	/*
5114 	 * A task struct has one reference for the use as "current".
5115 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5116 	 * schedule one last time. The schedule call will never return, and
5117 	 * the scheduled task must drop that reference.
5118 	 *
5119 	 * We must observe prev->state before clearing prev->on_cpu (in
5120 	 * finish_task), otherwise a concurrent wakeup can get prev
5121 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5122 	 * transition, resulting in a double drop.
5123 	 */
5124 	prev_state = READ_ONCE(prev->__state);
5125 	vtime_task_switch(prev);
5126 	perf_event_task_sched_in(prev, current);
5127 	finish_task(prev);
5128 	tick_nohz_task_switch();
5129 	finish_lock_switch(rq);
5130 	finish_arch_post_lock_switch();
5131 	kcov_finish_switch(current);
5132 	/*
5133 	 * kmap_local_sched_out() is invoked with rq::lock held and
5134 	 * interrupts disabled. There is no requirement for that, but the
5135 	 * sched out code does not have an interrupt enabled section.
5136 	 * Restoring the maps on sched in does not require interrupts being
5137 	 * disabled either.
5138 	 */
5139 	kmap_local_sched_in();
5140 
5141 	fire_sched_in_preempt_notifiers(current);
5142 	/*
5143 	 * When switching through a kernel thread, the loop in
5144 	 * membarrier_{private,global}_expedited() may have observed that
5145 	 * kernel thread and not issued an IPI. It is therefore possible to
5146 	 * schedule between user->kernel->user threads without passing though
5147 	 * switch_mm(). Membarrier requires a barrier after storing to
5148 	 * rq->curr, before returning to userspace, so provide them here:
5149 	 *
5150 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5151 	 *   provided by mmdrop(),
5152 	 * - a sync_core for SYNC_CORE.
5153 	 */
5154 	if (mm) {
5155 		membarrier_mm_sync_core_before_usermode(mm);
5156 		mmdrop_sched(mm);
5157 	}
5158 	if (unlikely(prev_state == TASK_DEAD)) {
5159 		if (prev->sched_class->task_dead)
5160 			prev->sched_class->task_dead(prev);
5161 
5162 		/* Task is done with its stack. */
5163 		put_task_stack(prev);
5164 
5165 		put_task_struct_rcu_user(prev);
5166 	}
5167 
5168 	return rq;
5169 }
5170 
5171 /**
5172  * schedule_tail - first thing a freshly forked thread must call.
5173  * @prev: the thread we just switched away from.
5174  */
5175 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5176 	__releases(rq->lock)
5177 {
5178 	/*
5179 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5180 	 * finish_task_switch() for details.
5181 	 *
5182 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5183 	 * and the preempt_enable() will end up enabling preemption (on
5184 	 * PREEMPT_COUNT kernels).
5185 	 */
5186 
5187 	finish_task_switch(prev);
5188 	preempt_enable();
5189 
5190 	if (current->set_child_tid)
5191 		put_user(task_pid_vnr(current), current->set_child_tid);
5192 
5193 	calculate_sigpending();
5194 }
5195 
5196 /*
5197  * context_switch - switch to the new MM and the new thread's register state.
5198  */
5199 static __always_inline struct rq *
5200 context_switch(struct rq *rq, struct task_struct *prev,
5201 	       struct task_struct *next, struct rq_flags *rf)
5202 {
5203 	prepare_task_switch(rq, prev, next);
5204 
5205 	/*
5206 	 * For paravirt, this is coupled with an exit in switch_to to
5207 	 * combine the page table reload and the switch backend into
5208 	 * one hypercall.
5209 	 */
5210 	arch_start_context_switch(prev);
5211 
5212 	/*
5213 	 * kernel -> kernel   lazy + transfer active
5214 	 *   user -> kernel   lazy + mmgrab() active
5215 	 *
5216 	 * kernel ->   user   switch + mmdrop() active
5217 	 *   user ->   user   switch
5218 	 */
5219 	if (!next->mm) {                                // to kernel
5220 		enter_lazy_tlb(prev->active_mm, next);
5221 
5222 		next->active_mm = prev->active_mm;
5223 		if (prev->mm)                           // from user
5224 			mmgrab(prev->active_mm);
5225 		else
5226 			prev->active_mm = NULL;
5227 	} else {                                        // to user
5228 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5229 		/*
5230 		 * sys_membarrier() requires an smp_mb() between setting
5231 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5232 		 *
5233 		 * The below provides this either through switch_mm(), or in
5234 		 * case 'prev->active_mm == next->mm' through
5235 		 * finish_task_switch()'s mmdrop().
5236 		 */
5237 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5238 		lru_gen_use_mm(next->mm);
5239 
5240 		if (!prev->mm) {                        // from kernel
5241 			/* will mmdrop() in finish_task_switch(). */
5242 			rq->prev_mm = prev->active_mm;
5243 			prev->active_mm = NULL;
5244 		}
5245 	}
5246 
5247 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5248 
5249 	prepare_lock_switch(rq, next, rf);
5250 
5251 	/* Here we just switch the register state and the stack. */
5252 	switch_to(prev, next, prev);
5253 	barrier();
5254 
5255 	return finish_task_switch(prev);
5256 }
5257 
5258 /*
5259  * nr_running and nr_context_switches:
5260  *
5261  * externally visible scheduler statistics: current number of runnable
5262  * threads, total number of context switches performed since bootup.
5263  */
5264 unsigned int nr_running(void)
5265 {
5266 	unsigned int i, sum = 0;
5267 
5268 	for_each_online_cpu(i)
5269 		sum += cpu_rq(i)->nr_running;
5270 
5271 	return sum;
5272 }
5273 
5274 /*
5275  * Check if only the current task is running on the CPU.
5276  *
5277  * Caution: this function does not check that the caller has disabled
5278  * preemption, thus the result might have a time-of-check-to-time-of-use
5279  * race.  The caller is responsible to use it correctly, for example:
5280  *
5281  * - from a non-preemptible section (of course)
5282  *
5283  * - from a thread that is bound to a single CPU
5284  *
5285  * - in a loop with very short iterations (e.g. a polling loop)
5286  */
5287 bool single_task_running(void)
5288 {
5289 	return raw_rq()->nr_running == 1;
5290 }
5291 EXPORT_SYMBOL(single_task_running);
5292 
5293 unsigned long long nr_context_switches(void)
5294 {
5295 	int i;
5296 	unsigned long long sum = 0;
5297 
5298 	for_each_possible_cpu(i)
5299 		sum += cpu_rq(i)->nr_switches;
5300 
5301 	return sum;
5302 }
5303 
5304 /*
5305  * Consumers of these two interfaces, like for example the cpuidle menu
5306  * governor, are using nonsensical data. Preferring shallow idle state selection
5307  * for a CPU that has IO-wait which might not even end up running the task when
5308  * it does become runnable.
5309  */
5310 
5311 unsigned int nr_iowait_cpu(int cpu)
5312 {
5313 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5314 }
5315 
5316 /*
5317  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5318  *
5319  * The idea behind IO-wait account is to account the idle time that we could
5320  * have spend running if it were not for IO. That is, if we were to improve the
5321  * storage performance, we'd have a proportional reduction in IO-wait time.
5322  *
5323  * This all works nicely on UP, where, when a task blocks on IO, we account
5324  * idle time as IO-wait, because if the storage were faster, it could've been
5325  * running and we'd not be idle.
5326  *
5327  * This has been extended to SMP, by doing the same for each CPU. This however
5328  * is broken.
5329  *
5330  * Imagine for instance the case where two tasks block on one CPU, only the one
5331  * CPU will have IO-wait accounted, while the other has regular idle. Even
5332  * though, if the storage were faster, both could've ran at the same time,
5333  * utilising both CPUs.
5334  *
5335  * This means, that when looking globally, the current IO-wait accounting on
5336  * SMP is a lower bound, by reason of under accounting.
5337  *
5338  * Worse, since the numbers are provided per CPU, they are sometimes
5339  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5340  * associated with any one particular CPU, it can wake to another CPU than it
5341  * blocked on. This means the per CPU IO-wait number is meaningless.
5342  *
5343  * Task CPU affinities can make all that even more 'interesting'.
5344  */
5345 
5346 unsigned int nr_iowait(void)
5347 {
5348 	unsigned int i, sum = 0;
5349 
5350 	for_each_possible_cpu(i)
5351 		sum += nr_iowait_cpu(i);
5352 
5353 	return sum;
5354 }
5355 
5356 #ifdef CONFIG_SMP
5357 
5358 /*
5359  * sched_exec - execve() is a valuable balancing opportunity, because at
5360  * this point the task has the smallest effective memory and cache footprint.
5361  */
5362 void sched_exec(void)
5363 {
5364 	struct task_struct *p = current;
5365 	unsigned long flags;
5366 	int dest_cpu;
5367 
5368 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5369 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5370 	if (dest_cpu == smp_processor_id())
5371 		goto unlock;
5372 
5373 	if (likely(cpu_active(dest_cpu))) {
5374 		struct migration_arg arg = { p, dest_cpu };
5375 
5376 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5377 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5378 		return;
5379 	}
5380 unlock:
5381 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5382 }
5383 
5384 #endif
5385 
5386 DEFINE_PER_CPU(struct kernel_stat, kstat);
5387 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5388 
5389 EXPORT_PER_CPU_SYMBOL(kstat);
5390 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5391 
5392 /*
5393  * The function fair_sched_class.update_curr accesses the struct curr
5394  * and its field curr->exec_start; when called from task_sched_runtime(),
5395  * we observe a high rate of cache misses in practice.
5396  * Prefetching this data results in improved performance.
5397  */
5398 static inline void prefetch_curr_exec_start(struct task_struct *p)
5399 {
5400 #ifdef CONFIG_FAIR_GROUP_SCHED
5401 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5402 #else
5403 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5404 #endif
5405 	prefetch(curr);
5406 	prefetch(&curr->exec_start);
5407 }
5408 
5409 /*
5410  * Return accounted runtime for the task.
5411  * In case the task is currently running, return the runtime plus current's
5412  * pending runtime that have not been accounted yet.
5413  */
5414 unsigned long long task_sched_runtime(struct task_struct *p)
5415 {
5416 	struct rq_flags rf;
5417 	struct rq *rq;
5418 	u64 ns;
5419 
5420 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5421 	/*
5422 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5423 	 * So we have a optimization chance when the task's delta_exec is 0.
5424 	 * Reading ->on_cpu is racy, but this is ok.
5425 	 *
5426 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5427 	 * If we race with it entering CPU, unaccounted time is 0. This is
5428 	 * indistinguishable from the read occurring a few cycles earlier.
5429 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5430 	 * been accounted, so we're correct here as well.
5431 	 */
5432 	if (!p->on_cpu || !task_on_rq_queued(p))
5433 		return p->se.sum_exec_runtime;
5434 #endif
5435 
5436 	rq = task_rq_lock(p, &rf);
5437 	/*
5438 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5439 	 * project cycles that may never be accounted to this
5440 	 * thread, breaking clock_gettime().
5441 	 */
5442 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5443 		prefetch_curr_exec_start(p);
5444 		update_rq_clock(rq);
5445 		p->sched_class->update_curr(rq);
5446 	}
5447 	ns = p->se.sum_exec_runtime;
5448 	task_rq_unlock(rq, p, &rf);
5449 
5450 	return ns;
5451 }
5452 
5453 #ifdef CONFIG_SCHED_DEBUG
5454 static u64 cpu_resched_latency(struct rq *rq)
5455 {
5456 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5457 	u64 resched_latency, now = rq_clock(rq);
5458 	static bool warned_once;
5459 
5460 	if (sysctl_resched_latency_warn_once && warned_once)
5461 		return 0;
5462 
5463 	if (!need_resched() || !latency_warn_ms)
5464 		return 0;
5465 
5466 	if (system_state == SYSTEM_BOOTING)
5467 		return 0;
5468 
5469 	if (!rq->last_seen_need_resched_ns) {
5470 		rq->last_seen_need_resched_ns = now;
5471 		rq->ticks_without_resched = 0;
5472 		return 0;
5473 	}
5474 
5475 	rq->ticks_without_resched++;
5476 	resched_latency = now - rq->last_seen_need_resched_ns;
5477 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5478 		return 0;
5479 
5480 	warned_once = true;
5481 
5482 	return resched_latency;
5483 }
5484 
5485 static int __init setup_resched_latency_warn_ms(char *str)
5486 {
5487 	long val;
5488 
5489 	if ((kstrtol(str, 0, &val))) {
5490 		pr_warn("Unable to set resched_latency_warn_ms\n");
5491 		return 1;
5492 	}
5493 
5494 	sysctl_resched_latency_warn_ms = val;
5495 	return 1;
5496 }
5497 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5498 #else
5499 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5500 #endif /* CONFIG_SCHED_DEBUG */
5501 
5502 /*
5503  * This function gets called by the timer code, with HZ frequency.
5504  * We call it with interrupts disabled.
5505  */
5506 void scheduler_tick(void)
5507 {
5508 	int cpu = smp_processor_id();
5509 	struct rq *rq = cpu_rq(cpu);
5510 	struct task_struct *curr = rq->curr;
5511 	struct rq_flags rf;
5512 	unsigned long thermal_pressure;
5513 	u64 resched_latency;
5514 
5515 	arch_scale_freq_tick();
5516 	sched_clock_tick();
5517 
5518 	rq_lock(rq, &rf);
5519 
5520 	update_rq_clock(rq);
5521 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5522 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5523 	curr->sched_class->task_tick(rq, curr, 0);
5524 	if (sched_feat(LATENCY_WARN))
5525 		resched_latency = cpu_resched_latency(rq);
5526 	calc_global_load_tick(rq);
5527 	sched_core_tick(rq);
5528 
5529 	rq_unlock(rq, &rf);
5530 
5531 	if (sched_feat(LATENCY_WARN) && resched_latency)
5532 		resched_latency_warn(cpu, resched_latency);
5533 
5534 	perf_event_task_tick();
5535 
5536 #ifdef CONFIG_SMP
5537 	rq->idle_balance = idle_cpu(cpu);
5538 	trigger_load_balance(rq);
5539 #endif
5540 }
5541 
5542 #ifdef CONFIG_NO_HZ_FULL
5543 
5544 struct tick_work {
5545 	int			cpu;
5546 	atomic_t		state;
5547 	struct delayed_work	work;
5548 };
5549 /* Values for ->state, see diagram below. */
5550 #define TICK_SCHED_REMOTE_OFFLINE	0
5551 #define TICK_SCHED_REMOTE_OFFLINING	1
5552 #define TICK_SCHED_REMOTE_RUNNING	2
5553 
5554 /*
5555  * State diagram for ->state:
5556  *
5557  *
5558  *          TICK_SCHED_REMOTE_OFFLINE
5559  *                    |   ^
5560  *                    |   |
5561  *                    |   | sched_tick_remote()
5562  *                    |   |
5563  *                    |   |
5564  *                    +--TICK_SCHED_REMOTE_OFFLINING
5565  *                    |   ^
5566  *                    |   |
5567  * sched_tick_start() |   | sched_tick_stop()
5568  *                    |   |
5569  *                    V   |
5570  *          TICK_SCHED_REMOTE_RUNNING
5571  *
5572  *
5573  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5574  * and sched_tick_start() are happy to leave the state in RUNNING.
5575  */
5576 
5577 static struct tick_work __percpu *tick_work_cpu;
5578 
5579 static void sched_tick_remote(struct work_struct *work)
5580 {
5581 	struct delayed_work *dwork = to_delayed_work(work);
5582 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5583 	int cpu = twork->cpu;
5584 	struct rq *rq = cpu_rq(cpu);
5585 	struct task_struct *curr;
5586 	struct rq_flags rf;
5587 	u64 delta;
5588 	int os;
5589 
5590 	/*
5591 	 * Handle the tick only if it appears the remote CPU is running in full
5592 	 * dynticks mode. The check is racy by nature, but missing a tick or
5593 	 * having one too much is no big deal because the scheduler tick updates
5594 	 * statistics and checks timeslices in a time-independent way, regardless
5595 	 * of when exactly it is running.
5596 	 */
5597 	if (!tick_nohz_tick_stopped_cpu(cpu))
5598 		goto out_requeue;
5599 
5600 	rq_lock_irq(rq, &rf);
5601 	curr = rq->curr;
5602 	if (cpu_is_offline(cpu))
5603 		goto out_unlock;
5604 
5605 	update_rq_clock(rq);
5606 
5607 	if (!is_idle_task(curr)) {
5608 		/*
5609 		 * Make sure the next tick runs within a reasonable
5610 		 * amount of time.
5611 		 */
5612 		delta = rq_clock_task(rq) - curr->se.exec_start;
5613 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5614 	}
5615 	curr->sched_class->task_tick(rq, curr, 0);
5616 
5617 	calc_load_nohz_remote(rq);
5618 out_unlock:
5619 	rq_unlock_irq(rq, &rf);
5620 out_requeue:
5621 
5622 	/*
5623 	 * Run the remote tick once per second (1Hz). This arbitrary
5624 	 * frequency is large enough to avoid overload but short enough
5625 	 * to keep scheduler internal stats reasonably up to date.  But
5626 	 * first update state to reflect hotplug activity if required.
5627 	 */
5628 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5629 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5630 	if (os == TICK_SCHED_REMOTE_RUNNING)
5631 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5632 }
5633 
5634 static void sched_tick_start(int cpu)
5635 {
5636 	int os;
5637 	struct tick_work *twork;
5638 
5639 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5640 		return;
5641 
5642 	WARN_ON_ONCE(!tick_work_cpu);
5643 
5644 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5645 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5646 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5647 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5648 		twork->cpu = cpu;
5649 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5650 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5651 	}
5652 }
5653 
5654 #ifdef CONFIG_HOTPLUG_CPU
5655 static void sched_tick_stop(int cpu)
5656 {
5657 	struct tick_work *twork;
5658 	int os;
5659 
5660 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5661 		return;
5662 
5663 	WARN_ON_ONCE(!tick_work_cpu);
5664 
5665 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5666 	/* There cannot be competing actions, but don't rely on stop-machine. */
5667 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5668 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5669 	/* Don't cancel, as this would mess up the state machine. */
5670 }
5671 #endif /* CONFIG_HOTPLUG_CPU */
5672 
5673 int __init sched_tick_offload_init(void)
5674 {
5675 	tick_work_cpu = alloc_percpu(struct tick_work);
5676 	BUG_ON(!tick_work_cpu);
5677 	return 0;
5678 }
5679 
5680 #else /* !CONFIG_NO_HZ_FULL */
5681 static inline void sched_tick_start(int cpu) { }
5682 static inline void sched_tick_stop(int cpu) { }
5683 #endif
5684 
5685 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5686 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5687 /*
5688  * If the value passed in is equal to the current preempt count
5689  * then we just disabled preemption. Start timing the latency.
5690  */
5691 static inline void preempt_latency_start(int val)
5692 {
5693 	if (preempt_count() == val) {
5694 		unsigned long ip = get_lock_parent_ip();
5695 #ifdef CONFIG_DEBUG_PREEMPT
5696 		current->preempt_disable_ip = ip;
5697 #endif
5698 		trace_preempt_off(CALLER_ADDR0, ip);
5699 	}
5700 }
5701 
5702 void preempt_count_add(int val)
5703 {
5704 #ifdef CONFIG_DEBUG_PREEMPT
5705 	/*
5706 	 * Underflow?
5707 	 */
5708 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5709 		return;
5710 #endif
5711 	__preempt_count_add(val);
5712 #ifdef CONFIG_DEBUG_PREEMPT
5713 	/*
5714 	 * Spinlock count overflowing soon?
5715 	 */
5716 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5717 				PREEMPT_MASK - 10);
5718 #endif
5719 	preempt_latency_start(val);
5720 }
5721 EXPORT_SYMBOL(preempt_count_add);
5722 NOKPROBE_SYMBOL(preempt_count_add);
5723 
5724 /*
5725  * If the value passed in equals to the current preempt count
5726  * then we just enabled preemption. Stop timing the latency.
5727  */
5728 static inline void preempt_latency_stop(int val)
5729 {
5730 	if (preempt_count() == val)
5731 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5732 }
5733 
5734 void preempt_count_sub(int val)
5735 {
5736 #ifdef CONFIG_DEBUG_PREEMPT
5737 	/*
5738 	 * Underflow?
5739 	 */
5740 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5741 		return;
5742 	/*
5743 	 * Is the spinlock portion underflowing?
5744 	 */
5745 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5746 			!(preempt_count() & PREEMPT_MASK)))
5747 		return;
5748 #endif
5749 
5750 	preempt_latency_stop(val);
5751 	__preempt_count_sub(val);
5752 }
5753 EXPORT_SYMBOL(preempt_count_sub);
5754 NOKPROBE_SYMBOL(preempt_count_sub);
5755 
5756 #else
5757 static inline void preempt_latency_start(int val) { }
5758 static inline void preempt_latency_stop(int val) { }
5759 #endif
5760 
5761 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5762 {
5763 #ifdef CONFIG_DEBUG_PREEMPT
5764 	return p->preempt_disable_ip;
5765 #else
5766 	return 0;
5767 #endif
5768 }
5769 
5770 /*
5771  * Print scheduling while atomic bug:
5772  */
5773 static noinline void __schedule_bug(struct task_struct *prev)
5774 {
5775 	/* Save this before calling printk(), since that will clobber it */
5776 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5777 
5778 	if (oops_in_progress)
5779 		return;
5780 
5781 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5782 		prev->comm, prev->pid, preempt_count());
5783 
5784 	debug_show_held_locks(prev);
5785 	print_modules();
5786 	if (irqs_disabled())
5787 		print_irqtrace_events(prev);
5788 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5789 	    && in_atomic_preempt_off()) {
5790 		pr_err("Preemption disabled at:");
5791 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5792 	}
5793 	check_panic_on_warn("scheduling while atomic");
5794 
5795 	dump_stack();
5796 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5797 }
5798 
5799 /*
5800  * Various schedule()-time debugging checks and statistics:
5801  */
5802 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5803 {
5804 #ifdef CONFIG_SCHED_STACK_END_CHECK
5805 	if (task_stack_end_corrupted(prev))
5806 		panic("corrupted stack end detected inside scheduler\n");
5807 
5808 	if (task_scs_end_corrupted(prev))
5809 		panic("corrupted shadow stack detected inside scheduler\n");
5810 #endif
5811 
5812 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5813 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5814 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5815 			prev->comm, prev->pid, prev->non_block_count);
5816 		dump_stack();
5817 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5818 	}
5819 #endif
5820 
5821 	if (unlikely(in_atomic_preempt_off())) {
5822 		__schedule_bug(prev);
5823 		preempt_count_set(PREEMPT_DISABLED);
5824 	}
5825 	rcu_sleep_check();
5826 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5827 
5828 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5829 
5830 	schedstat_inc(this_rq()->sched_count);
5831 }
5832 
5833 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5834 				  struct rq_flags *rf)
5835 {
5836 #ifdef CONFIG_SMP
5837 	const struct sched_class *class;
5838 	/*
5839 	 * We must do the balancing pass before put_prev_task(), such
5840 	 * that when we release the rq->lock the task is in the same
5841 	 * state as before we took rq->lock.
5842 	 *
5843 	 * We can terminate the balance pass as soon as we know there is
5844 	 * a runnable task of @class priority or higher.
5845 	 */
5846 	for_class_range(class, prev->sched_class, &idle_sched_class) {
5847 		if (class->balance(rq, prev, rf))
5848 			break;
5849 	}
5850 #endif
5851 
5852 	put_prev_task(rq, prev);
5853 }
5854 
5855 /*
5856  * Pick up the highest-prio task:
5857  */
5858 static inline struct task_struct *
5859 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5860 {
5861 	const struct sched_class *class;
5862 	struct task_struct *p;
5863 
5864 	/*
5865 	 * Optimization: we know that if all tasks are in the fair class we can
5866 	 * call that function directly, but only if the @prev task wasn't of a
5867 	 * higher scheduling class, because otherwise those lose the
5868 	 * opportunity to pull in more work from other CPUs.
5869 	 */
5870 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5871 		   rq->nr_running == rq->cfs.h_nr_running)) {
5872 
5873 		p = pick_next_task_fair(rq, prev, rf);
5874 		if (unlikely(p == RETRY_TASK))
5875 			goto restart;
5876 
5877 		/* Assume the next prioritized class is idle_sched_class */
5878 		if (!p) {
5879 			put_prev_task(rq, prev);
5880 			p = pick_next_task_idle(rq);
5881 		}
5882 
5883 		return p;
5884 	}
5885 
5886 restart:
5887 	put_prev_task_balance(rq, prev, rf);
5888 
5889 	for_each_class(class) {
5890 		p = class->pick_next_task(rq);
5891 		if (p)
5892 			return p;
5893 	}
5894 
5895 	BUG(); /* The idle class should always have a runnable task. */
5896 }
5897 
5898 #ifdef CONFIG_SCHED_CORE
5899 static inline bool is_task_rq_idle(struct task_struct *t)
5900 {
5901 	return (task_rq(t)->idle == t);
5902 }
5903 
5904 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5905 {
5906 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
5907 }
5908 
5909 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5910 {
5911 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
5912 		return true;
5913 
5914 	return a->core_cookie == b->core_cookie;
5915 }
5916 
5917 static inline struct task_struct *pick_task(struct rq *rq)
5918 {
5919 	const struct sched_class *class;
5920 	struct task_struct *p;
5921 
5922 	for_each_class(class) {
5923 		p = class->pick_task(rq);
5924 		if (p)
5925 			return p;
5926 	}
5927 
5928 	BUG(); /* The idle class should always have a runnable task. */
5929 }
5930 
5931 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5932 
5933 static void queue_core_balance(struct rq *rq);
5934 
5935 static struct task_struct *
5936 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5937 {
5938 	struct task_struct *next, *p, *max = NULL;
5939 	const struct cpumask *smt_mask;
5940 	bool fi_before = false;
5941 	bool core_clock_updated = (rq == rq->core);
5942 	unsigned long cookie;
5943 	int i, cpu, occ = 0;
5944 	struct rq *rq_i;
5945 	bool need_sync;
5946 
5947 	if (!sched_core_enabled(rq))
5948 		return __pick_next_task(rq, prev, rf);
5949 
5950 	cpu = cpu_of(rq);
5951 
5952 	/* Stopper task is switching into idle, no need core-wide selection. */
5953 	if (cpu_is_offline(cpu)) {
5954 		/*
5955 		 * Reset core_pick so that we don't enter the fastpath when
5956 		 * coming online. core_pick would already be migrated to
5957 		 * another cpu during offline.
5958 		 */
5959 		rq->core_pick = NULL;
5960 		return __pick_next_task(rq, prev, rf);
5961 	}
5962 
5963 	/*
5964 	 * If there were no {en,de}queues since we picked (IOW, the task
5965 	 * pointers are all still valid), and we haven't scheduled the last
5966 	 * pick yet, do so now.
5967 	 *
5968 	 * rq->core_pick can be NULL if no selection was made for a CPU because
5969 	 * it was either offline or went offline during a sibling's core-wide
5970 	 * selection. In this case, do a core-wide selection.
5971 	 */
5972 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5973 	    rq->core->core_pick_seq != rq->core_sched_seq &&
5974 	    rq->core_pick) {
5975 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5976 
5977 		next = rq->core_pick;
5978 		if (next != prev) {
5979 			put_prev_task(rq, prev);
5980 			set_next_task(rq, next);
5981 		}
5982 
5983 		rq->core_pick = NULL;
5984 		goto out;
5985 	}
5986 
5987 	put_prev_task_balance(rq, prev, rf);
5988 
5989 	smt_mask = cpu_smt_mask(cpu);
5990 	need_sync = !!rq->core->core_cookie;
5991 
5992 	/* reset state */
5993 	rq->core->core_cookie = 0UL;
5994 	if (rq->core->core_forceidle_count) {
5995 		if (!core_clock_updated) {
5996 			update_rq_clock(rq->core);
5997 			core_clock_updated = true;
5998 		}
5999 		sched_core_account_forceidle(rq);
6000 		/* reset after accounting force idle */
6001 		rq->core->core_forceidle_start = 0;
6002 		rq->core->core_forceidle_count = 0;
6003 		rq->core->core_forceidle_occupation = 0;
6004 		need_sync = true;
6005 		fi_before = true;
6006 	}
6007 
6008 	/*
6009 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6010 	 *
6011 	 * @task_seq guards the task state ({en,de}queues)
6012 	 * @pick_seq is the @task_seq we did a selection on
6013 	 * @sched_seq is the @pick_seq we scheduled
6014 	 *
6015 	 * However, preemptions can cause multiple picks on the same task set.
6016 	 * 'Fix' this by also increasing @task_seq for every pick.
6017 	 */
6018 	rq->core->core_task_seq++;
6019 
6020 	/*
6021 	 * Optimize for common case where this CPU has no cookies
6022 	 * and there are no cookied tasks running on siblings.
6023 	 */
6024 	if (!need_sync) {
6025 		next = pick_task(rq);
6026 		if (!next->core_cookie) {
6027 			rq->core_pick = NULL;
6028 			/*
6029 			 * For robustness, update the min_vruntime_fi for
6030 			 * unconstrained picks as well.
6031 			 */
6032 			WARN_ON_ONCE(fi_before);
6033 			task_vruntime_update(rq, next, false);
6034 			goto out_set_next;
6035 		}
6036 	}
6037 
6038 	/*
6039 	 * For each thread: do the regular task pick and find the max prio task
6040 	 * amongst them.
6041 	 *
6042 	 * Tie-break prio towards the current CPU
6043 	 */
6044 	for_each_cpu_wrap(i, smt_mask, cpu) {
6045 		rq_i = cpu_rq(i);
6046 
6047 		/*
6048 		 * Current cpu always has its clock updated on entrance to
6049 		 * pick_next_task(). If the current cpu is not the core,
6050 		 * the core may also have been updated above.
6051 		 */
6052 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6053 			update_rq_clock(rq_i);
6054 
6055 		p = rq_i->core_pick = pick_task(rq_i);
6056 		if (!max || prio_less(max, p, fi_before))
6057 			max = p;
6058 	}
6059 
6060 	cookie = rq->core->core_cookie = max->core_cookie;
6061 
6062 	/*
6063 	 * For each thread: try and find a runnable task that matches @max or
6064 	 * force idle.
6065 	 */
6066 	for_each_cpu(i, smt_mask) {
6067 		rq_i = cpu_rq(i);
6068 		p = rq_i->core_pick;
6069 
6070 		if (!cookie_equals(p, cookie)) {
6071 			p = NULL;
6072 			if (cookie)
6073 				p = sched_core_find(rq_i, cookie);
6074 			if (!p)
6075 				p = idle_sched_class.pick_task(rq_i);
6076 		}
6077 
6078 		rq_i->core_pick = p;
6079 
6080 		if (p == rq_i->idle) {
6081 			if (rq_i->nr_running) {
6082 				rq->core->core_forceidle_count++;
6083 				if (!fi_before)
6084 					rq->core->core_forceidle_seq++;
6085 			}
6086 		} else {
6087 			occ++;
6088 		}
6089 	}
6090 
6091 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6092 		rq->core->core_forceidle_start = rq_clock(rq->core);
6093 		rq->core->core_forceidle_occupation = occ;
6094 	}
6095 
6096 	rq->core->core_pick_seq = rq->core->core_task_seq;
6097 	next = rq->core_pick;
6098 	rq->core_sched_seq = rq->core->core_pick_seq;
6099 
6100 	/* Something should have been selected for current CPU */
6101 	WARN_ON_ONCE(!next);
6102 
6103 	/*
6104 	 * Reschedule siblings
6105 	 *
6106 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6107 	 * sending an IPI (below) ensures the sibling will no longer be running
6108 	 * their task. This ensures there is no inter-sibling overlap between
6109 	 * non-matching user state.
6110 	 */
6111 	for_each_cpu(i, smt_mask) {
6112 		rq_i = cpu_rq(i);
6113 
6114 		/*
6115 		 * An online sibling might have gone offline before a task
6116 		 * could be picked for it, or it might be offline but later
6117 		 * happen to come online, but its too late and nothing was
6118 		 * picked for it.  That's Ok - it will pick tasks for itself,
6119 		 * so ignore it.
6120 		 */
6121 		if (!rq_i->core_pick)
6122 			continue;
6123 
6124 		/*
6125 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6126 		 * fi_before     fi      update?
6127 		 *  0            0       1
6128 		 *  0            1       1
6129 		 *  1            0       1
6130 		 *  1            1       0
6131 		 */
6132 		if (!(fi_before && rq->core->core_forceidle_count))
6133 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6134 
6135 		rq_i->core_pick->core_occupation = occ;
6136 
6137 		if (i == cpu) {
6138 			rq_i->core_pick = NULL;
6139 			continue;
6140 		}
6141 
6142 		/* Did we break L1TF mitigation requirements? */
6143 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6144 
6145 		if (rq_i->curr == rq_i->core_pick) {
6146 			rq_i->core_pick = NULL;
6147 			continue;
6148 		}
6149 
6150 		resched_curr(rq_i);
6151 	}
6152 
6153 out_set_next:
6154 	set_next_task(rq, next);
6155 out:
6156 	if (rq->core->core_forceidle_count && next == rq->idle)
6157 		queue_core_balance(rq);
6158 
6159 	return next;
6160 }
6161 
6162 static bool try_steal_cookie(int this, int that)
6163 {
6164 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6165 	struct task_struct *p;
6166 	unsigned long cookie;
6167 	bool success = false;
6168 
6169 	local_irq_disable();
6170 	double_rq_lock(dst, src);
6171 
6172 	cookie = dst->core->core_cookie;
6173 	if (!cookie)
6174 		goto unlock;
6175 
6176 	if (dst->curr != dst->idle)
6177 		goto unlock;
6178 
6179 	p = sched_core_find(src, cookie);
6180 	if (p == src->idle)
6181 		goto unlock;
6182 
6183 	do {
6184 		if (p == src->core_pick || p == src->curr)
6185 			goto next;
6186 
6187 		if (!is_cpu_allowed(p, this))
6188 			goto next;
6189 
6190 		if (p->core_occupation > dst->idle->core_occupation)
6191 			goto next;
6192 
6193 		deactivate_task(src, p, 0);
6194 		set_task_cpu(p, this);
6195 		activate_task(dst, p, 0);
6196 
6197 		resched_curr(dst);
6198 
6199 		success = true;
6200 		break;
6201 
6202 next:
6203 		p = sched_core_next(p, cookie);
6204 	} while (p);
6205 
6206 unlock:
6207 	double_rq_unlock(dst, src);
6208 	local_irq_enable();
6209 
6210 	return success;
6211 }
6212 
6213 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6214 {
6215 	int i;
6216 
6217 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6218 		if (i == cpu)
6219 			continue;
6220 
6221 		if (need_resched())
6222 			break;
6223 
6224 		if (try_steal_cookie(cpu, i))
6225 			return true;
6226 	}
6227 
6228 	return false;
6229 }
6230 
6231 static void sched_core_balance(struct rq *rq)
6232 {
6233 	struct sched_domain *sd;
6234 	int cpu = cpu_of(rq);
6235 
6236 	preempt_disable();
6237 	rcu_read_lock();
6238 	raw_spin_rq_unlock_irq(rq);
6239 	for_each_domain(cpu, sd) {
6240 		if (need_resched())
6241 			break;
6242 
6243 		if (steal_cookie_task(cpu, sd))
6244 			break;
6245 	}
6246 	raw_spin_rq_lock_irq(rq);
6247 	rcu_read_unlock();
6248 	preempt_enable();
6249 }
6250 
6251 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6252 
6253 static void queue_core_balance(struct rq *rq)
6254 {
6255 	if (!sched_core_enabled(rq))
6256 		return;
6257 
6258 	if (!rq->core->core_cookie)
6259 		return;
6260 
6261 	if (!rq->nr_running) /* not forced idle */
6262 		return;
6263 
6264 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6265 }
6266 
6267 static void sched_core_cpu_starting(unsigned int cpu)
6268 {
6269 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6270 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6271 	unsigned long flags;
6272 	int t;
6273 
6274 	sched_core_lock(cpu, &flags);
6275 
6276 	WARN_ON_ONCE(rq->core != rq);
6277 
6278 	/* if we're the first, we'll be our own leader */
6279 	if (cpumask_weight(smt_mask) == 1)
6280 		goto unlock;
6281 
6282 	/* find the leader */
6283 	for_each_cpu(t, smt_mask) {
6284 		if (t == cpu)
6285 			continue;
6286 		rq = cpu_rq(t);
6287 		if (rq->core == rq) {
6288 			core_rq = rq;
6289 			break;
6290 		}
6291 	}
6292 
6293 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6294 		goto unlock;
6295 
6296 	/* install and validate core_rq */
6297 	for_each_cpu(t, smt_mask) {
6298 		rq = cpu_rq(t);
6299 
6300 		if (t == cpu)
6301 			rq->core = core_rq;
6302 
6303 		WARN_ON_ONCE(rq->core != core_rq);
6304 	}
6305 
6306 unlock:
6307 	sched_core_unlock(cpu, &flags);
6308 }
6309 
6310 static void sched_core_cpu_deactivate(unsigned int cpu)
6311 {
6312 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6313 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6314 	unsigned long flags;
6315 	int t;
6316 
6317 	sched_core_lock(cpu, &flags);
6318 
6319 	/* if we're the last man standing, nothing to do */
6320 	if (cpumask_weight(smt_mask) == 1) {
6321 		WARN_ON_ONCE(rq->core != rq);
6322 		goto unlock;
6323 	}
6324 
6325 	/* if we're not the leader, nothing to do */
6326 	if (rq->core != rq)
6327 		goto unlock;
6328 
6329 	/* find a new leader */
6330 	for_each_cpu(t, smt_mask) {
6331 		if (t == cpu)
6332 			continue;
6333 		core_rq = cpu_rq(t);
6334 		break;
6335 	}
6336 
6337 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6338 		goto unlock;
6339 
6340 	/* copy the shared state to the new leader */
6341 	core_rq->core_task_seq             = rq->core_task_seq;
6342 	core_rq->core_pick_seq             = rq->core_pick_seq;
6343 	core_rq->core_cookie               = rq->core_cookie;
6344 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6345 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6346 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6347 
6348 	/*
6349 	 * Accounting edge for forced idle is handled in pick_next_task().
6350 	 * Don't need another one here, since the hotplug thread shouldn't
6351 	 * have a cookie.
6352 	 */
6353 	core_rq->core_forceidle_start = 0;
6354 
6355 	/* install new leader */
6356 	for_each_cpu(t, smt_mask) {
6357 		rq = cpu_rq(t);
6358 		rq->core = core_rq;
6359 	}
6360 
6361 unlock:
6362 	sched_core_unlock(cpu, &flags);
6363 }
6364 
6365 static inline void sched_core_cpu_dying(unsigned int cpu)
6366 {
6367 	struct rq *rq = cpu_rq(cpu);
6368 
6369 	if (rq->core != rq)
6370 		rq->core = rq;
6371 }
6372 
6373 #else /* !CONFIG_SCHED_CORE */
6374 
6375 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6376 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6377 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6378 
6379 static struct task_struct *
6380 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6381 {
6382 	return __pick_next_task(rq, prev, rf);
6383 }
6384 
6385 #endif /* CONFIG_SCHED_CORE */
6386 
6387 /*
6388  * Constants for the sched_mode argument of __schedule().
6389  *
6390  * The mode argument allows RT enabled kernels to differentiate a
6391  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6392  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6393  * optimize the AND operation out and just check for zero.
6394  */
6395 #define SM_NONE			0x0
6396 #define SM_PREEMPT		0x1
6397 #define SM_RTLOCK_WAIT		0x2
6398 
6399 #ifndef CONFIG_PREEMPT_RT
6400 # define SM_MASK_PREEMPT	(~0U)
6401 #else
6402 # define SM_MASK_PREEMPT	SM_PREEMPT
6403 #endif
6404 
6405 /*
6406  * __schedule() is the main scheduler function.
6407  *
6408  * The main means of driving the scheduler and thus entering this function are:
6409  *
6410  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6411  *
6412  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6413  *      paths. For example, see arch/x86/entry_64.S.
6414  *
6415  *      To drive preemption between tasks, the scheduler sets the flag in timer
6416  *      interrupt handler scheduler_tick().
6417  *
6418  *   3. Wakeups don't really cause entry into schedule(). They add a
6419  *      task to the run-queue and that's it.
6420  *
6421  *      Now, if the new task added to the run-queue preempts the current
6422  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6423  *      called on the nearest possible occasion:
6424  *
6425  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6426  *
6427  *         - in syscall or exception context, at the next outmost
6428  *           preempt_enable(). (this might be as soon as the wake_up()'s
6429  *           spin_unlock()!)
6430  *
6431  *         - in IRQ context, return from interrupt-handler to
6432  *           preemptible context
6433  *
6434  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6435  *         then at the next:
6436  *
6437  *          - cond_resched() call
6438  *          - explicit schedule() call
6439  *          - return from syscall or exception to user-space
6440  *          - return from interrupt-handler to user-space
6441  *
6442  * WARNING: must be called with preemption disabled!
6443  */
6444 static void __sched notrace __schedule(unsigned int sched_mode)
6445 {
6446 	struct task_struct *prev, *next;
6447 	unsigned long *switch_count;
6448 	unsigned long prev_state;
6449 	struct rq_flags rf;
6450 	struct rq *rq;
6451 	int cpu;
6452 
6453 	cpu = smp_processor_id();
6454 	rq = cpu_rq(cpu);
6455 	prev = rq->curr;
6456 
6457 	schedule_debug(prev, !!sched_mode);
6458 
6459 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6460 		hrtick_clear(rq);
6461 
6462 	local_irq_disable();
6463 	rcu_note_context_switch(!!sched_mode);
6464 
6465 	/*
6466 	 * Make sure that signal_pending_state()->signal_pending() below
6467 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6468 	 * done by the caller to avoid the race with signal_wake_up():
6469 	 *
6470 	 * __set_current_state(@state)		signal_wake_up()
6471 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6472 	 *					  wake_up_state(p, state)
6473 	 *   LOCK rq->lock			    LOCK p->pi_state
6474 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6475 	 *     if (signal_pending_state())	    if (p->state & @state)
6476 	 *
6477 	 * Also, the membarrier system call requires a full memory barrier
6478 	 * after coming from user-space, before storing to rq->curr.
6479 	 */
6480 	rq_lock(rq, &rf);
6481 	smp_mb__after_spinlock();
6482 
6483 	/* Promote REQ to ACT */
6484 	rq->clock_update_flags <<= 1;
6485 	update_rq_clock(rq);
6486 
6487 	switch_count = &prev->nivcsw;
6488 
6489 	/*
6490 	 * We must load prev->state once (task_struct::state is volatile), such
6491 	 * that we form a control dependency vs deactivate_task() below.
6492 	 */
6493 	prev_state = READ_ONCE(prev->__state);
6494 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6495 		if (signal_pending_state(prev_state, prev)) {
6496 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6497 		} else {
6498 			prev->sched_contributes_to_load =
6499 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6500 				!(prev_state & TASK_NOLOAD) &&
6501 				!(prev_state & TASK_FROZEN);
6502 
6503 			if (prev->sched_contributes_to_load)
6504 				rq->nr_uninterruptible++;
6505 
6506 			/*
6507 			 * __schedule()			ttwu()
6508 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6509 			 *   if (prev_state)		    goto out;
6510 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6511 			 *				  p->state = TASK_WAKING
6512 			 *
6513 			 * Where __schedule() and ttwu() have matching control dependencies.
6514 			 *
6515 			 * After this, schedule() must not care about p->state any more.
6516 			 */
6517 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6518 
6519 			if (prev->in_iowait) {
6520 				atomic_inc(&rq->nr_iowait);
6521 				delayacct_blkio_start();
6522 			}
6523 		}
6524 		switch_count = &prev->nvcsw;
6525 	}
6526 
6527 	next = pick_next_task(rq, prev, &rf);
6528 	clear_tsk_need_resched(prev);
6529 	clear_preempt_need_resched();
6530 #ifdef CONFIG_SCHED_DEBUG
6531 	rq->last_seen_need_resched_ns = 0;
6532 #endif
6533 
6534 	if (likely(prev != next)) {
6535 		rq->nr_switches++;
6536 		/*
6537 		 * RCU users of rcu_dereference(rq->curr) may not see
6538 		 * changes to task_struct made by pick_next_task().
6539 		 */
6540 		RCU_INIT_POINTER(rq->curr, next);
6541 		/*
6542 		 * The membarrier system call requires each architecture
6543 		 * to have a full memory barrier after updating
6544 		 * rq->curr, before returning to user-space.
6545 		 *
6546 		 * Here are the schemes providing that barrier on the
6547 		 * various architectures:
6548 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6549 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6550 		 * - finish_lock_switch() for weakly-ordered
6551 		 *   architectures where spin_unlock is a full barrier,
6552 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6553 		 *   is a RELEASE barrier),
6554 		 */
6555 		++*switch_count;
6556 
6557 		migrate_disable_switch(rq, prev);
6558 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6559 
6560 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6561 
6562 		/* Also unlocks the rq: */
6563 		rq = context_switch(rq, prev, next, &rf);
6564 	} else {
6565 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6566 
6567 		rq_unpin_lock(rq, &rf);
6568 		__balance_callbacks(rq);
6569 		raw_spin_rq_unlock_irq(rq);
6570 	}
6571 }
6572 
6573 void __noreturn do_task_dead(void)
6574 {
6575 	/* Causes final put_task_struct in finish_task_switch(): */
6576 	set_special_state(TASK_DEAD);
6577 
6578 	/* Tell freezer to ignore us: */
6579 	current->flags |= PF_NOFREEZE;
6580 
6581 	__schedule(SM_NONE);
6582 	BUG();
6583 
6584 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6585 	for (;;)
6586 		cpu_relax();
6587 }
6588 
6589 static inline void sched_submit_work(struct task_struct *tsk)
6590 {
6591 	unsigned int task_flags;
6592 
6593 	if (task_is_running(tsk))
6594 		return;
6595 
6596 	task_flags = tsk->flags;
6597 	/*
6598 	 * If a worker goes to sleep, notify and ask workqueue whether it
6599 	 * wants to wake up a task to maintain concurrency.
6600 	 */
6601 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6602 		if (task_flags & PF_WQ_WORKER)
6603 			wq_worker_sleeping(tsk);
6604 		else
6605 			io_wq_worker_sleeping(tsk);
6606 	}
6607 
6608 	/*
6609 	 * spinlock and rwlock must not flush block requests.  This will
6610 	 * deadlock if the callback attempts to acquire a lock which is
6611 	 * already acquired.
6612 	 */
6613 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6614 
6615 	/*
6616 	 * If we are going to sleep and we have plugged IO queued,
6617 	 * make sure to submit it to avoid deadlocks.
6618 	 */
6619 	blk_flush_plug(tsk->plug, true);
6620 }
6621 
6622 static void sched_update_worker(struct task_struct *tsk)
6623 {
6624 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6625 		if (tsk->flags & PF_WQ_WORKER)
6626 			wq_worker_running(tsk);
6627 		else
6628 			io_wq_worker_running(tsk);
6629 	}
6630 }
6631 
6632 asmlinkage __visible void __sched schedule(void)
6633 {
6634 	struct task_struct *tsk = current;
6635 
6636 	sched_submit_work(tsk);
6637 	do {
6638 		preempt_disable();
6639 		__schedule(SM_NONE);
6640 		sched_preempt_enable_no_resched();
6641 	} while (need_resched());
6642 	sched_update_worker(tsk);
6643 }
6644 EXPORT_SYMBOL(schedule);
6645 
6646 /*
6647  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6648  * state (have scheduled out non-voluntarily) by making sure that all
6649  * tasks have either left the run queue or have gone into user space.
6650  * As idle tasks do not do either, they must not ever be preempted
6651  * (schedule out non-voluntarily).
6652  *
6653  * schedule_idle() is similar to schedule_preempt_disable() except that it
6654  * never enables preemption because it does not call sched_submit_work().
6655  */
6656 void __sched schedule_idle(void)
6657 {
6658 	/*
6659 	 * As this skips calling sched_submit_work(), which the idle task does
6660 	 * regardless because that function is a nop when the task is in a
6661 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6662 	 * current task can be in any other state. Note, idle is always in the
6663 	 * TASK_RUNNING state.
6664 	 */
6665 	WARN_ON_ONCE(current->__state);
6666 	do {
6667 		__schedule(SM_NONE);
6668 	} while (need_resched());
6669 }
6670 
6671 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6672 asmlinkage __visible void __sched schedule_user(void)
6673 {
6674 	/*
6675 	 * If we come here after a random call to set_need_resched(),
6676 	 * or we have been woken up remotely but the IPI has not yet arrived,
6677 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6678 	 * we find a better solution.
6679 	 *
6680 	 * NB: There are buggy callers of this function.  Ideally we
6681 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6682 	 * too frequently to make sense yet.
6683 	 */
6684 	enum ctx_state prev_state = exception_enter();
6685 	schedule();
6686 	exception_exit(prev_state);
6687 }
6688 #endif
6689 
6690 /**
6691  * schedule_preempt_disabled - called with preemption disabled
6692  *
6693  * Returns with preemption disabled. Note: preempt_count must be 1
6694  */
6695 void __sched schedule_preempt_disabled(void)
6696 {
6697 	sched_preempt_enable_no_resched();
6698 	schedule();
6699 	preempt_disable();
6700 }
6701 
6702 #ifdef CONFIG_PREEMPT_RT
6703 void __sched notrace schedule_rtlock(void)
6704 {
6705 	do {
6706 		preempt_disable();
6707 		__schedule(SM_RTLOCK_WAIT);
6708 		sched_preempt_enable_no_resched();
6709 	} while (need_resched());
6710 }
6711 NOKPROBE_SYMBOL(schedule_rtlock);
6712 #endif
6713 
6714 static void __sched notrace preempt_schedule_common(void)
6715 {
6716 	do {
6717 		/*
6718 		 * Because the function tracer can trace preempt_count_sub()
6719 		 * and it also uses preempt_enable/disable_notrace(), if
6720 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6721 		 * by the function tracer will call this function again and
6722 		 * cause infinite recursion.
6723 		 *
6724 		 * Preemption must be disabled here before the function
6725 		 * tracer can trace. Break up preempt_disable() into two
6726 		 * calls. One to disable preemption without fear of being
6727 		 * traced. The other to still record the preemption latency,
6728 		 * which can also be traced by the function tracer.
6729 		 */
6730 		preempt_disable_notrace();
6731 		preempt_latency_start(1);
6732 		__schedule(SM_PREEMPT);
6733 		preempt_latency_stop(1);
6734 		preempt_enable_no_resched_notrace();
6735 
6736 		/*
6737 		 * Check again in case we missed a preemption opportunity
6738 		 * between schedule and now.
6739 		 */
6740 	} while (need_resched());
6741 }
6742 
6743 #ifdef CONFIG_PREEMPTION
6744 /*
6745  * This is the entry point to schedule() from in-kernel preemption
6746  * off of preempt_enable.
6747  */
6748 asmlinkage __visible void __sched notrace preempt_schedule(void)
6749 {
6750 	/*
6751 	 * If there is a non-zero preempt_count or interrupts are disabled,
6752 	 * we do not want to preempt the current task. Just return..
6753 	 */
6754 	if (likely(!preemptible()))
6755 		return;
6756 	preempt_schedule_common();
6757 }
6758 NOKPROBE_SYMBOL(preempt_schedule);
6759 EXPORT_SYMBOL(preempt_schedule);
6760 
6761 #ifdef CONFIG_PREEMPT_DYNAMIC
6762 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6763 #ifndef preempt_schedule_dynamic_enabled
6764 #define preempt_schedule_dynamic_enabled	preempt_schedule
6765 #define preempt_schedule_dynamic_disabled	NULL
6766 #endif
6767 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6768 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6769 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6770 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6771 void __sched notrace dynamic_preempt_schedule(void)
6772 {
6773 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6774 		return;
6775 	preempt_schedule();
6776 }
6777 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6778 EXPORT_SYMBOL(dynamic_preempt_schedule);
6779 #endif
6780 #endif
6781 
6782 /**
6783  * preempt_schedule_notrace - preempt_schedule called by tracing
6784  *
6785  * The tracing infrastructure uses preempt_enable_notrace to prevent
6786  * recursion and tracing preempt enabling caused by the tracing
6787  * infrastructure itself. But as tracing can happen in areas coming
6788  * from userspace or just about to enter userspace, a preempt enable
6789  * can occur before user_exit() is called. This will cause the scheduler
6790  * to be called when the system is still in usermode.
6791  *
6792  * To prevent this, the preempt_enable_notrace will use this function
6793  * instead of preempt_schedule() to exit user context if needed before
6794  * calling the scheduler.
6795  */
6796 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6797 {
6798 	enum ctx_state prev_ctx;
6799 
6800 	if (likely(!preemptible()))
6801 		return;
6802 
6803 	do {
6804 		/*
6805 		 * Because the function tracer can trace preempt_count_sub()
6806 		 * and it also uses preempt_enable/disable_notrace(), if
6807 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6808 		 * by the function tracer will call this function again and
6809 		 * cause infinite recursion.
6810 		 *
6811 		 * Preemption must be disabled here before the function
6812 		 * tracer can trace. Break up preempt_disable() into two
6813 		 * calls. One to disable preemption without fear of being
6814 		 * traced. The other to still record the preemption latency,
6815 		 * which can also be traced by the function tracer.
6816 		 */
6817 		preempt_disable_notrace();
6818 		preempt_latency_start(1);
6819 		/*
6820 		 * Needs preempt disabled in case user_exit() is traced
6821 		 * and the tracer calls preempt_enable_notrace() causing
6822 		 * an infinite recursion.
6823 		 */
6824 		prev_ctx = exception_enter();
6825 		__schedule(SM_PREEMPT);
6826 		exception_exit(prev_ctx);
6827 
6828 		preempt_latency_stop(1);
6829 		preempt_enable_no_resched_notrace();
6830 	} while (need_resched());
6831 }
6832 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6833 
6834 #ifdef CONFIG_PREEMPT_DYNAMIC
6835 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6836 #ifndef preempt_schedule_notrace_dynamic_enabled
6837 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
6838 #define preempt_schedule_notrace_dynamic_disabled	NULL
6839 #endif
6840 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6841 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6842 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6843 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6844 void __sched notrace dynamic_preempt_schedule_notrace(void)
6845 {
6846 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6847 		return;
6848 	preempt_schedule_notrace();
6849 }
6850 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6851 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6852 #endif
6853 #endif
6854 
6855 #endif /* CONFIG_PREEMPTION */
6856 
6857 /*
6858  * This is the entry point to schedule() from kernel preemption
6859  * off of irq context.
6860  * Note, that this is called and return with irqs disabled. This will
6861  * protect us against recursive calling from irq.
6862  */
6863 asmlinkage __visible void __sched preempt_schedule_irq(void)
6864 {
6865 	enum ctx_state prev_state;
6866 
6867 	/* Catch callers which need to be fixed */
6868 	BUG_ON(preempt_count() || !irqs_disabled());
6869 
6870 	prev_state = exception_enter();
6871 
6872 	do {
6873 		preempt_disable();
6874 		local_irq_enable();
6875 		__schedule(SM_PREEMPT);
6876 		local_irq_disable();
6877 		sched_preempt_enable_no_resched();
6878 	} while (need_resched());
6879 
6880 	exception_exit(prev_state);
6881 }
6882 
6883 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6884 			  void *key)
6885 {
6886 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6887 	return try_to_wake_up(curr->private, mode, wake_flags);
6888 }
6889 EXPORT_SYMBOL(default_wake_function);
6890 
6891 static void __setscheduler_prio(struct task_struct *p, int prio)
6892 {
6893 	if (dl_prio(prio))
6894 		p->sched_class = &dl_sched_class;
6895 	else if (rt_prio(prio))
6896 		p->sched_class = &rt_sched_class;
6897 	else
6898 		p->sched_class = &fair_sched_class;
6899 
6900 	p->prio = prio;
6901 }
6902 
6903 #ifdef CONFIG_RT_MUTEXES
6904 
6905 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6906 {
6907 	if (pi_task)
6908 		prio = min(prio, pi_task->prio);
6909 
6910 	return prio;
6911 }
6912 
6913 static inline int rt_effective_prio(struct task_struct *p, int prio)
6914 {
6915 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
6916 
6917 	return __rt_effective_prio(pi_task, prio);
6918 }
6919 
6920 /*
6921  * rt_mutex_setprio - set the current priority of a task
6922  * @p: task to boost
6923  * @pi_task: donor task
6924  *
6925  * This function changes the 'effective' priority of a task. It does
6926  * not touch ->normal_prio like __setscheduler().
6927  *
6928  * Used by the rt_mutex code to implement priority inheritance
6929  * logic. Call site only calls if the priority of the task changed.
6930  */
6931 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6932 {
6933 	int prio, oldprio, queued, running, queue_flag =
6934 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6935 	const struct sched_class *prev_class;
6936 	struct rq_flags rf;
6937 	struct rq *rq;
6938 
6939 	/* XXX used to be waiter->prio, not waiter->task->prio */
6940 	prio = __rt_effective_prio(pi_task, p->normal_prio);
6941 
6942 	/*
6943 	 * If nothing changed; bail early.
6944 	 */
6945 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6946 		return;
6947 
6948 	rq = __task_rq_lock(p, &rf);
6949 	update_rq_clock(rq);
6950 	/*
6951 	 * Set under pi_lock && rq->lock, such that the value can be used under
6952 	 * either lock.
6953 	 *
6954 	 * Note that there is loads of tricky to make this pointer cache work
6955 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6956 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
6957 	 * task is allowed to run again (and can exit). This ensures the pointer
6958 	 * points to a blocked task -- which guarantees the task is present.
6959 	 */
6960 	p->pi_top_task = pi_task;
6961 
6962 	/*
6963 	 * For FIFO/RR we only need to set prio, if that matches we're done.
6964 	 */
6965 	if (prio == p->prio && !dl_prio(prio))
6966 		goto out_unlock;
6967 
6968 	/*
6969 	 * Idle task boosting is a nono in general. There is one
6970 	 * exception, when PREEMPT_RT and NOHZ is active:
6971 	 *
6972 	 * The idle task calls get_next_timer_interrupt() and holds
6973 	 * the timer wheel base->lock on the CPU and another CPU wants
6974 	 * to access the timer (probably to cancel it). We can safely
6975 	 * ignore the boosting request, as the idle CPU runs this code
6976 	 * with interrupts disabled and will complete the lock
6977 	 * protected section without being interrupted. So there is no
6978 	 * real need to boost.
6979 	 */
6980 	if (unlikely(p == rq->idle)) {
6981 		WARN_ON(p != rq->curr);
6982 		WARN_ON(p->pi_blocked_on);
6983 		goto out_unlock;
6984 	}
6985 
6986 	trace_sched_pi_setprio(p, pi_task);
6987 	oldprio = p->prio;
6988 
6989 	if (oldprio == prio)
6990 		queue_flag &= ~DEQUEUE_MOVE;
6991 
6992 	prev_class = p->sched_class;
6993 	queued = task_on_rq_queued(p);
6994 	running = task_current(rq, p);
6995 	if (queued)
6996 		dequeue_task(rq, p, queue_flag);
6997 	if (running)
6998 		put_prev_task(rq, p);
6999 
7000 	/*
7001 	 * Boosting condition are:
7002 	 * 1. -rt task is running and holds mutex A
7003 	 *      --> -dl task blocks on mutex A
7004 	 *
7005 	 * 2. -dl task is running and holds mutex A
7006 	 *      --> -dl task blocks on mutex A and could preempt the
7007 	 *          running task
7008 	 */
7009 	if (dl_prio(prio)) {
7010 		if (!dl_prio(p->normal_prio) ||
7011 		    (pi_task && dl_prio(pi_task->prio) &&
7012 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7013 			p->dl.pi_se = pi_task->dl.pi_se;
7014 			queue_flag |= ENQUEUE_REPLENISH;
7015 		} else {
7016 			p->dl.pi_se = &p->dl;
7017 		}
7018 	} else if (rt_prio(prio)) {
7019 		if (dl_prio(oldprio))
7020 			p->dl.pi_se = &p->dl;
7021 		if (oldprio < prio)
7022 			queue_flag |= ENQUEUE_HEAD;
7023 	} else {
7024 		if (dl_prio(oldprio))
7025 			p->dl.pi_se = &p->dl;
7026 		if (rt_prio(oldprio))
7027 			p->rt.timeout = 0;
7028 	}
7029 
7030 	__setscheduler_prio(p, prio);
7031 
7032 	if (queued)
7033 		enqueue_task(rq, p, queue_flag);
7034 	if (running)
7035 		set_next_task(rq, p);
7036 
7037 	check_class_changed(rq, p, prev_class, oldprio);
7038 out_unlock:
7039 	/* Avoid rq from going away on us: */
7040 	preempt_disable();
7041 
7042 	rq_unpin_lock(rq, &rf);
7043 	__balance_callbacks(rq);
7044 	raw_spin_rq_unlock(rq);
7045 
7046 	preempt_enable();
7047 }
7048 #else
7049 static inline int rt_effective_prio(struct task_struct *p, int prio)
7050 {
7051 	return prio;
7052 }
7053 #endif
7054 
7055 void set_user_nice(struct task_struct *p, long nice)
7056 {
7057 	bool queued, running;
7058 	int old_prio;
7059 	struct rq_flags rf;
7060 	struct rq *rq;
7061 
7062 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7063 		return;
7064 	/*
7065 	 * We have to be careful, if called from sys_setpriority(),
7066 	 * the task might be in the middle of scheduling on another CPU.
7067 	 */
7068 	rq = task_rq_lock(p, &rf);
7069 	update_rq_clock(rq);
7070 
7071 	/*
7072 	 * The RT priorities are set via sched_setscheduler(), but we still
7073 	 * allow the 'normal' nice value to be set - but as expected
7074 	 * it won't have any effect on scheduling until the task is
7075 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7076 	 */
7077 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7078 		p->static_prio = NICE_TO_PRIO(nice);
7079 		goto out_unlock;
7080 	}
7081 	queued = task_on_rq_queued(p);
7082 	running = task_current(rq, p);
7083 	if (queued)
7084 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7085 	if (running)
7086 		put_prev_task(rq, p);
7087 
7088 	p->static_prio = NICE_TO_PRIO(nice);
7089 	set_load_weight(p, true);
7090 	old_prio = p->prio;
7091 	p->prio = effective_prio(p);
7092 
7093 	if (queued)
7094 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7095 	if (running)
7096 		set_next_task(rq, p);
7097 
7098 	/*
7099 	 * If the task increased its priority or is running and
7100 	 * lowered its priority, then reschedule its CPU:
7101 	 */
7102 	p->sched_class->prio_changed(rq, p, old_prio);
7103 
7104 out_unlock:
7105 	task_rq_unlock(rq, p, &rf);
7106 }
7107 EXPORT_SYMBOL(set_user_nice);
7108 
7109 /*
7110  * is_nice_reduction - check if nice value is an actual reduction
7111  *
7112  * Similar to can_nice() but does not perform a capability check.
7113  *
7114  * @p: task
7115  * @nice: nice value
7116  */
7117 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7118 {
7119 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7120 	int nice_rlim = nice_to_rlimit(nice);
7121 
7122 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7123 }
7124 
7125 /*
7126  * can_nice - check if a task can reduce its nice value
7127  * @p: task
7128  * @nice: nice value
7129  */
7130 int can_nice(const struct task_struct *p, const int nice)
7131 {
7132 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7133 }
7134 
7135 #ifdef __ARCH_WANT_SYS_NICE
7136 
7137 /*
7138  * sys_nice - change the priority of the current process.
7139  * @increment: priority increment
7140  *
7141  * sys_setpriority is a more generic, but much slower function that
7142  * does similar things.
7143  */
7144 SYSCALL_DEFINE1(nice, int, increment)
7145 {
7146 	long nice, retval;
7147 
7148 	/*
7149 	 * Setpriority might change our priority at the same moment.
7150 	 * We don't have to worry. Conceptually one call occurs first
7151 	 * and we have a single winner.
7152 	 */
7153 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7154 	nice = task_nice(current) + increment;
7155 
7156 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7157 	if (increment < 0 && !can_nice(current, nice))
7158 		return -EPERM;
7159 
7160 	retval = security_task_setnice(current, nice);
7161 	if (retval)
7162 		return retval;
7163 
7164 	set_user_nice(current, nice);
7165 	return 0;
7166 }
7167 
7168 #endif
7169 
7170 /**
7171  * task_prio - return the priority value of a given task.
7172  * @p: the task in question.
7173  *
7174  * Return: The priority value as seen by users in /proc.
7175  *
7176  * sched policy         return value   kernel prio    user prio/nice
7177  *
7178  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7179  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7180  * deadline                     -101             -1           0
7181  */
7182 int task_prio(const struct task_struct *p)
7183 {
7184 	return p->prio - MAX_RT_PRIO;
7185 }
7186 
7187 /**
7188  * idle_cpu - is a given CPU idle currently?
7189  * @cpu: the processor in question.
7190  *
7191  * Return: 1 if the CPU is currently idle. 0 otherwise.
7192  */
7193 int idle_cpu(int cpu)
7194 {
7195 	struct rq *rq = cpu_rq(cpu);
7196 
7197 	if (rq->curr != rq->idle)
7198 		return 0;
7199 
7200 	if (rq->nr_running)
7201 		return 0;
7202 
7203 #ifdef CONFIG_SMP
7204 	if (rq->ttwu_pending)
7205 		return 0;
7206 #endif
7207 
7208 	return 1;
7209 }
7210 
7211 /**
7212  * available_idle_cpu - is a given CPU idle for enqueuing work.
7213  * @cpu: the CPU in question.
7214  *
7215  * Return: 1 if the CPU is currently idle. 0 otherwise.
7216  */
7217 int available_idle_cpu(int cpu)
7218 {
7219 	if (!idle_cpu(cpu))
7220 		return 0;
7221 
7222 	if (vcpu_is_preempted(cpu))
7223 		return 0;
7224 
7225 	return 1;
7226 }
7227 
7228 /**
7229  * idle_task - return the idle task for a given CPU.
7230  * @cpu: the processor in question.
7231  *
7232  * Return: The idle task for the CPU @cpu.
7233  */
7234 struct task_struct *idle_task(int cpu)
7235 {
7236 	return cpu_rq(cpu)->idle;
7237 }
7238 
7239 #ifdef CONFIG_SMP
7240 /*
7241  * This function computes an effective utilization for the given CPU, to be
7242  * used for frequency selection given the linear relation: f = u * f_max.
7243  *
7244  * The scheduler tracks the following metrics:
7245  *
7246  *   cpu_util_{cfs,rt,dl,irq}()
7247  *   cpu_bw_dl()
7248  *
7249  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7250  * synchronized windows and are thus directly comparable.
7251  *
7252  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7253  * which excludes things like IRQ and steal-time. These latter are then accrued
7254  * in the irq utilization.
7255  *
7256  * The DL bandwidth number otoh is not a measured metric but a value computed
7257  * based on the task model parameters and gives the minimal utilization
7258  * required to meet deadlines.
7259  */
7260 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7261 				 enum cpu_util_type type,
7262 				 struct task_struct *p)
7263 {
7264 	unsigned long dl_util, util, irq, max;
7265 	struct rq *rq = cpu_rq(cpu);
7266 
7267 	max = arch_scale_cpu_capacity(cpu);
7268 
7269 	if (!uclamp_is_used() &&
7270 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7271 		return max;
7272 	}
7273 
7274 	/*
7275 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7276 	 * because of inaccuracies in how we track these -- see
7277 	 * update_irq_load_avg().
7278 	 */
7279 	irq = cpu_util_irq(rq);
7280 	if (unlikely(irq >= max))
7281 		return max;
7282 
7283 	/*
7284 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7285 	 * CFS tasks and we use the same metric to track the effective
7286 	 * utilization (PELT windows are synchronized) we can directly add them
7287 	 * to obtain the CPU's actual utilization.
7288 	 *
7289 	 * CFS and RT utilization can be boosted or capped, depending on
7290 	 * utilization clamp constraints requested by currently RUNNABLE
7291 	 * tasks.
7292 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7293 	 * frequency will be gracefully reduced with the utilization decay.
7294 	 */
7295 	util = util_cfs + cpu_util_rt(rq);
7296 	if (type == FREQUENCY_UTIL)
7297 		util = uclamp_rq_util_with(rq, util, p);
7298 
7299 	dl_util = cpu_util_dl(rq);
7300 
7301 	/*
7302 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7303 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7304 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7305 	 * that we select f_max when there is no idle time.
7306 	 *
7307 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7308 	 * saturation when we should -- something for later.
7309 	 */
7310 	if (util + dl_util >= max)
7311 		return max;
7312 
7313 	/*
7314 	 * OTOH, for energy computation we need the estimated running time, so
7315 	 * include util_dl and ignore dl_bw.
7316 	 */
7317 	if (type == ENERGY_UTIL)
7318 		util += dl_util;
7319 
7320 	/*
7321 	 * There is still idle time; further improve the number by using the
7322 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7323 	 * need to scale the task numbers:
7324 	 *
7325 	 *              max - irq
7326 	 *   U' = irq + --------- * U
7327 	 *                 max
7328 	 */
7329 	util = scale_irq_capacity(util, irq, max);
7330 	util += irq;
7331 
7332 	/*
7333 	 * Bandwidth required by DEADLINE must always be granted while, for
7334 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7335 	 * to gracefully reduce the frequency when no tasks show up for longer
7336 	 * periods of time.
7337 	 *
7338 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7339 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7340 	 * an interface. So, we only do the latter for now.
7341 	 */
7342 	if (type == FREQUENCY_UTIL)
7343 		util += cpu_bw_dl(rq);
7344 
7345 	return min(max, util);
7346 }
7347 
7348 unsigned long sched_cpu_util(int cpu)
7349 {
7350 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7351 }
7352 #endif /* CONFIG_SMP */
7353 
7354 /**
7355  * find_process_by_pid - find a process with a matching PID value.
7356  * @pid: the pid in question.
7357  *
7358  * The task of @pid, if found. %NULL otherwise.
7359  */
7360 static struct task_struct *find_process_by_pid(pid_t pid)
7361 {
7362 	return pid ? find_task_by_vpid(pid) : current;
7363 }
7364 
7365 /*
7366  * sched_setparam() passes in -1 for its policy, to let the functions
7367  * it calls know not to change it.
7368  */
7369 #define SETPARAM_POLICY	-1
7370 
7371 static void __setscheduler_params(struct task_struct *p,
7372 		const struct sched_attr *attr)
7373 {
7374 	int policy = attr->sched_policy;
7375 
7376 	if (policy == SETPARAM_POLICY)
7377 		policy = p->policy;
7378 
7379 	p->policy = policy;
7380 
7381 	if (dl_policy(policy))
7382 		__setparam_dl(p, attr);
7383 	else if (fair_policy(policy))
7384 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7385 
7386 	/*
7387 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7388 	 * !rt_policy. Always setting this ensures that things like
7389 	 * getparam()/getattr() don't report silly values for !rt tasks.
7390 	 */
7391 	p->rt_priority = attr->sched_priority;
7392 	p->normal_prio = normal_prio(p);
7393 	set_load_weight(p, true);
7394 }
7395 
7396 /*
7397  * Check the target process has a UID that matches the current process's:
7398  */
7399 static bool check_same_owner(struct task_struct *p)
7400 {
7401 	const struct cred *cred = current_cred(), *pcred;
7402 	bool match;
7403 
7404 	rcu_read_lock();
7405 	pcred = __task_cred(p);
7406 	match = (uid_eq(cred->euid, pcred->euid) ||
7407 		 uid_eq(cred->euid, pcred->uid));
7408 	rcu_read_unlock();
7409 	return match;
7410 }
7411 
7412 /*
7413  * Allow unprivileged RT tasks to decrease priority.
7414  * Only issue a capable test if needed and only once to avoid an audit
7415  * event on permitted non-privileged operations:
7416  */
7417 static int user_check_sched_setscheduler(struct task_struct *p,
7418 					 const struct sched_attr *attr,
7419 					 int policy, int reset_on_fork)
7420 {
7421 	if (fair_policy(policy)) {
7422 		if (attr->sched_nice < task_nice(p) &&
7423 		    !is_nice_reduction(p, attr->sched_nice))
7424 			goto req_priv;
7425 	}
7426 
7427 	if (rt_policy(policy)) {
7428 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7429 
7430 		/* Can't set/change the rt policy: */
7431 		if (policy != p->policy && !rlim_rtprio)
7432 			goto req_priv;
7433 
7434 		/* Can't increase priority: */
7435 		if (attr->sched_priority > p->rt_priority &&
7436 		    attr->sched_priority > rlim_rtprio)
7437 			goto req_priv;
7438 	}
7439 
7440 	/*
7441 	 * Can't set/change SCHED_DEADLINE policy at all for now
7442 	 * (safest behavior); in the future we would like to allow
7443 	 * unprivileged DL tasks to increase their relative deadline
7444 	 * or reduce their runtime (both ways reducing utilization)
7445 	 */
7446 	if (dl_policy(policy))
7447 		goto req_priv;
7448 
7449 	/*
7450 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7451 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7452 	 */
7453 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7454 		if (!is_nice_reduction(p, task_nice(p)))
7455 			goto req_priv;
7456 	}
7457 
7458 	/* Can't change other user's priorities: */
7459 	if (!check_same_owner(p))
7460 		goto req_priv;
7461 
7462 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7463 	if (p->sched_reset_on_fork && !reset_on_fork)
7464 		goto req_priv;
7465 
7466 	return 0;
7467 
7468 req_priv:
7469 	if (!capable(CAP_SYS_NICE))
7470 		return -EPERM;
7471 
7472 	return 0;
7473 }
7474 
7475 static int __sched_setscheduler(struct task_struct *p,
7476 				const struct sched_attr *attr,
7477 				bool user, bool pi)
7478 {
7479 	int oldpolicy = -1, policy = attr->sched_policy;
7480 	int retval, oldprio, newprio, queued, running;
7481 	const struct sched_class *prev_class;
7482 	struct balance_callback *head;
7483 	struct rq_flags rf;
7484 	int reset_on_fork;
7485 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7486 	struct rq *rq;
7487 
7488 	/* The pi code expects interrupts enabled */
7489 	BUG_ON(pi && in_interrupt());
7490 recheck:
7491 	/* Double check policy once rq lock held: */
7492 	if (policy < 0) {
7493 		reset_on_fork = p->sched_reset_on_fork;
7494 		policy = oldpolicy = p->policy;
7495 	} else {
7496 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7497 
7498 		if (!valid_policy(policy))
7499 			return -EINVAL;
7500 	}
7501 
7502 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7503 		return -EINVAL;
7504 
7505 	/*
7506 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7507 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7508 	 * SCHED_BATCH and SCHED_IDLE is 0.
7509 	 */
7510 	if (attr->sched_priority > MAX_RT_PRIO-1)
7511 		return -EINVAL;
7512 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7513 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7514 		return -EINVAL;
7515 
7516 	if (user) {
7517 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7518 		if (retval)
7519 			return retval;
7520 
7521 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7522 			return -EINVAL;
7523 
7524 		retval = security_task_setscheduler(p);
7525 		if (retval)
7526 			return retval;
7527 	}
7528 
7529 	/* Update task specific "requested" clamps */
7530 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7531 		retval = uclamp_validate(p, attr);
7532 		if (retval)
7533 			return retval;
7534 	}
7535 
7536 	if (pi)
7537 		cpuset_read_lock();
7538 
7539 	/*
7540 	 * Make sure no PI-waiters arrive (or leave) while we are
7541 	 * changing the priority of the task:
7542 	 *
7543 	 * To be able to change p->policy safely, the appropriate
7544 	 * runqueue lock must be held.
7545 	 */
7546 	rq = task_rq_lock(p, &rf);
7547 	update_rq_clock(rq);
7548 
7549 	/*
7550 	 * Changing the policy of the stop threads its a very bad idea:
7551 	 */
7552 	if (p == rq->stop) {
7553 		retval = -EINVAL;
7554 		goto unlock;
7555 	}
7556 
7557 	/*
7558 	 * If not changing anything there's no need to proceed further,
7559 	 * but store a possible modification of reset_on_fork.
7560 	 */
7561 	if (unlikely(policy == p->policy)) {
7562 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7563 			goto change;
7564 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7565 			goto change;
7566 		if (dl_policy(policy) && dl_param_changed(p, attr))
7567 			goto change;
7568 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7569 			goto change;
7570 
7571 		p->sched_reset_on_fork = reset_on_fork;
7572 		retval = 0;
7573 		goto unlock;
7574 	}
7575 change:
7576 
7577 	if (user) {
7578 #ifdef CONFIG_RT_GROUP_SCHED
7579 		/*
7580 		 * Do not allow realtime tasks into groups that have no runtime
7581 		 * assigned.
7582 		 */
7583 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7584 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7585 				!task_group_is_autogroup(task_group(p))) {
7586 			retval = -EPERM;
7587 			goto unlock;
7588 		}
7589 #endif
7590 #ifdef CONFIG_SMP
7591 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7592 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7593 			cpumask_t *span = rq->rd->span;
7594 
7595 			/*
7596 			 * Don't allow tasks with an affinity mask smaller than
7597 			 * the entire root_domain to become SCHED_DEADLINE. We
7598 			 * will also fail if there's no bandwidth available.
7599 			 */
7600 			if (!cpumask_subset(span, p->cpus_ptr) ||
7601 			    rq->rd->dl_bw.bw == 0) {
7602 				retval = -EPERM;
7603 				goto unlock;
7604 			}
7605 		}
7606 #endif
7607 	}
7608 
7609 	/* Re-check policy now with rq lock held: */
7610 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7611 		policy = oldpolicy = -1;
7612 		task_rq_unlock(rq, p, &rf);
7613 		if (pi)
7614 			cpuset_read_unlock();
7615 		goto recheck;
7616 	}
7617 
7618 	/*
7619 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7620 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7621 	 * is available.
7622 	 */
7623 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7624 		retval = -EBUSY;
7625 		goto unlock;
7626 	}
7627 
7628 	p->sched_reset_on_fork = reset_on_fork;
7629 	oldprio = p->prio;
7630 
7631 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7632 	if (pi) {
7633 		/*
7634 		 * Take priority boosted tasks into account. If the new
7635 		 * effective priority is unchanged, we just store the new
7636 		 * normal parameters and do not touch the scheduler class and
7637 		 * the runqueue. This will be done when the task deboost
7638 		 * itself.
7639 		 */
7640 		newprio = rt_effective_prio(p, newprio);
7641 		if (newprio == oldprio)
7642 			queue_flags &= ~DEQUEUE_MOVE;
7643 	}
7644 
7645 	queued = task_on_rq_queued(p);
7646 	running = task_current(rq, p);
7647 	if (queued)
7648 		dequeue_task(rq, p, queue_flags);
7649 	if (running)
7650 		put_prev_task(rq, p);
7651 
7652 	prev_class = p->sched_class;
7653 
7654 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7655 		__setscheduler_params(p, attr);
7656 		__setscheduler_prio(p, newprio);
7657 	}
7658 	__setscheduler_uclamp(p, attr);
7659 
7660 	if (queued) {
7661 		/*
7662 		 * We enqueue to tail when the priority of a task is
7663 		 * increased (user space view).
7664 		 */
7665 		if (oldprio < p->prio)
7666 			queue_flags |= ENQUEUE_HEAD;
7667 
7668 		enqueue_task(rq, p, queue_flags);
7669 	}
7670 	if (running)
7671 		set_next_task(rq, p);
7672 
7673 	check_class_changed(rq, p, prev_class, oldprio);
7674 
7675 	/* Avoid rq from going away on us: */
7676 	preempt_disable();
7677 	head = splice_balance_callbacks(rq);
7678 	task_rq_unlock(rq, p, &rf);
7679 
7680 	if (pi) {
7681 		cpuset_read_unlock();
7682 		rt_mutex_adjust_pi(p);
7683 	}
7684 
7685 	/* Run balance callbacks after we've adjusted the PI chain: */
7686 	balance_callbacks(rq, head);
7687 	preempt_enable();
7688 
7689 	return 0;
7690 
7691 unlock:
7692 	task_rq_unlock(rq, p, &rf);
7693 	if (pi)
7694 		cpuset_read_unlock();
7695 	return retval;
7696 }
7697 
7698 static int _sched_setscheduler(struct task_struct *p, int policy,
7699 			       const struct sched_param *param, bool check)
7700 {
7701 	struct sched_attr attr = {
7702 		.sched_policy   = policy,
7703 		.sched_priority = param->sched_priority,
7704 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7705 	};
7706 
7707 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7708 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7709 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7710 		policy &= ~SCHED_RESET_ON_FORK;
7711 		attr.sched_policy = policy;
7712 	}
7713 
7714 	return __sched_setscheduler(p, &attr, check, true);
7715 }
7716 /**
7717  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7718  * @p: the task in question.
7719  * @policy: new policy.
7720  * @param: structure containing the new RT priority.
7721  *
7722  * Use sched_set_fifo(), read its comment.
7723  *
7724  * Return: 0 on success. An error code otherwise.
7725  *
7726  * NOTE that the task may be already dead.
7727  */
7728 int sched_setscheduler(struct task_struct *p, int policy,
7729 		       const struct sched_param *param)
7730 {
7731 	return _sched_setscheduler(p, policy, param, true);
7732 }
7733 
7734 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7735 {
7736 	return __sched_setscheduler(p, attr, true, true);
7737 }
7738 
7739 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7740 {
7741 	return __sched_setscheduler(p, attr, false, true);
7742 }
7743 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7744 
7745 /**
7746  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7747  * @p: the task in question.
7748  * @policy: new policy.
7749  * @param: structure containing the new RT priority.
7750  *
7751  * Just like sched_setscheduler, only don't bother checking if the
7752  * current context has permission.  For example, this is needed in
7753  * stop_machine(): we create temporary high priority worker threads,
7754  * but our caller might not have that capability.
7755  *
7756  * Return: 0 on success. An error code otherwise.
7757  */
7758 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7759 			       const struct sched_param *param)
7760 {
7761 	return _sched_setscheduler(p, policy, param, false);
7762 }
7763 
7764 /*
7765  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7766  * incapable of resource management, which is the one thing an OS really should
7767  * be doing.
7768  *
7769  * This is of course the reason it is limited to privileged users only.
7770  *
7771  * Worse still; it is fundamentally impossible to compose static priority
7772  * workloads. You cannot take two correctly working static prio workloads
7773  * and smash them together and still expect them to work.
7774  *
7775  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7776  *
7777  *   MAX_RT_PRIO / 2
7778  *
7779  * The administrator _MUST_ configure the system, the kernel simply doesn't
7780  * know enough information to make a sensible choice.
7781  */
7782 void sched_set_fifo(struct task_struct *p)
7783 {
7784 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7785 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7786 }
7787 EXPORT_SYMBOL_GPL(sched_set_fifo);
7788 
7789 /*
7790  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7791  */
7792 void sched_set_fifo_low(struct task_struct *p)
7793 {
7794 	struct sched_param sp = { .sched_priority = 1 };
7795 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7796 }
7797 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7798 
7799 void sched_set_normal(struct task_struct *p, int nice)
7800 {
7801 	struct sched_attr attr = {
7802 		.sched_policy = SCHED_NORMAL,
7803 		.sched_nice = nice,
7804 	};
7805 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7806 }
7807 EXPORT_SYMBOL_GPL(sched_set_normal);
7808 
7809 static int
7810 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7811 {
7812 	struct sched_param lparam;
7813 	struct task_struct *p;
7814 	int retval;
7815 
7816 	if (!param || pid < 0)
7817 		return -EINVAL;
7818 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7819 		return -EFAULT;
7820 
7821 	rcu_read_lock();
7822 	retval = -ESRCH;
7823 	p = find_process_by_pid(pid);
7824 	if (likely(p))
7825 		get_task_struct(p);
7826 	rcu_read_unlock();
7827 
7828 	if (likely(p)) {
7829 		retval = sched_setscheduler(p, policy, &lparam);
7830 		put_task_struct(p);
7831 	}
7832 
7833 	return retval;
7834 }
7835 
7836 /*
7837  * Mimics kernel/events/core.c perf_copy_attr().
7838  */
7839 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7840 {
7841 	u32 size;
7842 	int ret;
7843 
7844 	/* Zero the full structure, so that a short copy will be nice: */
7845 	memset(attr, 0, sizeof(*attr));
7846 
7847 	ret = get_user(size, &uattr->size);
7848 	if (ret)
7849 		return ret;
7850 
7851 	/* ABI compatibility quirk: */
7852 	if (!size)
7853 		size = SCHED_ATTR_SIZE_VER0;
7854 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7855 		goto err_size;
7856 
7857 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7858 	if (ret) {
7859 		if (ret == -E2BIG)
7860 			goto err_size;
7861 		return ret;
7862 	}
7863 
7864 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7865 	    size < SCHED_ATTR_SIZE_VER1)
7866 		return -EINVAL;
7867 
7868 	/*
7869 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
7870 	 * to be strict and return an error on out-of-bounds values?
7871 	 */
7872 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7873 
7874 	return 0;
7875 
7876 err_size:
7877 	put_user(sizeof(*attr), &uattr->size);
7878 	return -E2BIG;
7879 }
7880 
7881 static void get_params(struct task_struct *p, struct sched_attr *attr)
7882 {
7883 	if (task_has_dl_policy(p))
7884 		__getparam_dl(p, attr);
7885 	else if (task_has_rt_policy(p))
7886 		attr->sched_priority = p->rt_priority;
7887 	else
7888 		attr->sched_nice = task_nice(p);
7889 }
7890 
7891 /**
7892  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7893  * @pid: the pid in question.
7894  * @policy: new policy.
7895  * @param: structure containing the new RT priority.
7896  *
7897  * Return: 0 on success. An error code otherwise.
7898  */
7899 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7900 {
7901 	if (policy < 0)
7902 		return -EINVAL;
7903 
7904 	return do_sched_setscheduler(pid, policy, param);
7905 }
7906 
7907 /**
7908  * sys_sched_setparam - set/change the RT priority of a thread
7909  * @pid: the pid in question.
7910  * @param: structure containing the new RT priority.
7911  *
7912  * Return: 0 on success. An error code otherwise.
7913  */
7914 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7915 {
7916 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7917 }
7918 
7919 /**
7920  * sys_sched_setattr - same as above, but with extended sched_attr
7921  * @pid: the pid in question.
7922  * @uattr: structure containing the extended parameters.
7923  * @flags: for future extension.
7924  */
7925 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7926 			       unsigned int, flags)
7927 {
7928 	struct sched_attr attr;
7929 	struct task_struct *p;
7930 	int retval;
7931 
7932 	if (!uattr || pid < 0 || flags)
7933 		return -EINVAL;
7934 
7935 	retval = sched_copy_attr(uattr, &attr);
7936 	if (retval)
7937 		return retval;
7938 
7939 	if ((int)attr.sched_policy < 0)
7940 		return -EINVAL;
7941 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7942 		attr.sched_policy = SETPARAM_POLICY;
7943 
7944 	rcu_read_lock();
7945 	retval = -ESRCH;
7946 	p = find_process_by_pid(pid);
7947 	if (likely(p))
7948 		get_task_struct(p);
7949 	rcu_read_unlock();
7950 
7951 	if (likely(p)) {
7952 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7953 			get_params(p, &attr);
7954 		retval = sched_setattr(p, &attr);
7955 		put_task_struct(p);
7956 	}
7957 
7958 	return retval;
7959 }
7960 
7961 /**
7962  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7963  * @pid: the pid in question.
7964  *
7965  * Return: On success, the policy of the thread. Otherwise, a negative error
7966  * code.
7967  */
7968 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7969 {
7970 	struct task_struct *p;
7971 	int retval;
7972 
7973 	if (pid < 0)
7974 		return -EINVAL;
7975 
7976 	retval = -ESRCH;
7977 	rcu_read_lock();
7978 	p = find_process_by_pid(pid);
7979 	if (p) {
7980 		retval = security_task_getscheduler(p);
7981 		if (!retval)
7982 			retval = p->policy
7983 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7984 	}
7985 	rcu_read_unlock();
7986 	return retval;
7987 }
7988 
7989 /**
7990  * sys_sched_getparam - get the RT priority of a thread
7991  * @pid: the pid in question.
7992  * @param: structure containing the RT priority.
7993  *
7994  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7995  * code.
7996  */
7997 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7998 {
7999 	struct sched_param lp = { .sched_priority = 0 };
8000 	struct task_struct *p;
8001 	int retval;
8002 
8003 	if (!param || pid < 0)
8004 		return -EINVAL;
8005 
8006 	rcu_read_lock();
8007 	p = find_process_by_pid(pid);
8008 	retval = -ESRCH;
8009 	if (!p)
8010 		goto out_unlock;
8011 
8012 	retval = security_task_getscheduler(p);
8013 	if (retval)
8014 		goto out_unlock;
8015 
8016 	if (task_has_rt_policy(p))
8017 		lp.sched_priority = p->rt_priority;
8018 	rcu_read_unlock();
8019 
8020 	/*
8021 	 * This one might sleep, we cannot do it with a spinlock held ...
8022 	 */
8023 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8024 
8025 	return retval;
8026 
8027 out_unlock:
8028 	rcu_read_unlock();
8029 	return retval;
8030 }
8031 
8032 /*
8033  * Copy the kernel size attribute structure (which might be larger
8034  * than what user-space knows about) to user-space.
8035  *
8036  * Note that all cases are valid: user-space buffer can be larger or
8037  * smaller than the kernel-space buffer. The usual case is that both
8038  * have the same size.
8039  */
8040 static int
8041 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8042 			struct sched_attr *kattr,
8043 			unsigned int usize)
8044 {
8045 	unsigned int ksize = sizeof(*kattr);
8046 
8047 	if (!access_ok(uattr, usize))
8048 		return -EFAULT;
8049 
8050 	/*
8051 	 * sched_getattr() ABI forwards and backwards compatibility:
8052 	 *
8053 	 * If usize == ksize then we just copy everything to user-space and all is good.
8054 	 *
8055 	 * If usize < ksize then we only copy as much as user-space has space for,
8056 	 * this keeps ABI compatibility as well. We skip the rest.
8057 	 *
8058 	 * If usize > ksize then user-space is using a newer version of the ABI,
8059 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8060 	 * detect the kernel's knowledge of attributes from the attr->size value
8061 	 * which is set to ksize in this case.
8062 	 */
8063 	kattr->size = min(usize, ksize);
8064 
8065 	if (copy_to_user(uattr, kattr, kattr->size))
8066 		return -EFAULT;
8067 
8068 	return 0;
8069 }
8070 
8071 /**
8072  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8073  * @pid: the pid in question.
8074  * @uattr: structure containing the extended parameters.
8075  * @usize: sizeof(attr) for fwd/bwd comp.
8076  * @flags: for future extension.
8077  */
8078 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8079 		unsigned int, usize, unsigned int, flags)
8080 {
8081 	struct sched_attr kattr = { };
8082 	struct task_struct *p;
8083 	int retval;
8084 
8085 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8086 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8087 		return -EINVAL;
8088 
8089 	rcu_read_lock();
8090 	p = find_process_by_pid(pid);
8091 	retval = -ESRCH;
8092 	if (!p)
8093 		goto out_unlock;
8094 
8095 	retval = security_task_getscheduler(p);
8096 	if (retval)
8097 		goto out_unlock;
8098 
8099 	kattr.sched_policy = p->policy;
8100 	if (p->sched_reset_on_fork)
8101 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8102 	get_params(p, &kattr);
8103 	kattr.sched_flags &= SCHED_FLAG_ALL;
8104 
8105 #ifdef CONFIG_UCLAMP_TASK
8106 	/*
8107 	 * This could race with another potential updater, but this is fine
8108 	 * because it'll correctly read the old or the new value. We don't need
8109 	 * to guarantee who wins the race as long as it doesn't return garbage.
8110 	 */
8111 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8112 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8113 #endif
8114 
8115 	rcu_read_unlock();
8116 
8117 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8118 
8119 out_unlock:
8120 	rcu_read_unlock();
8121 	return retval;
8122 }
8123 
8124 #ifdef CONFIG_SMP
8125 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8126 {
8127 	int ret = 0;
8128 
8129 	/*
8130 	 * If the task isn't a deadline task or admission control is
8131 	 * disabled then we don't care about affinity changes.
8132 	 */
8133 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8134 		return 0;
8135 
8136 	/*
8137 	 * Since bandwidth control happens on root_domain basis,
8138 	 * if admission test is enabled, we only admit -deadline
8139 	 * tasks allowed to run on all the CPUs in the task's
8140 	 * root_domain.
8141 	 */
8142 	rcu_read_lock();
8143 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8144 		ret = -EBUSY;
8145 	rcu_read_unlock();
8146 	return ret;
8147 }
8148 #endif
8149 
8150 static int
8151 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8152 {
8153 	int retval;
8154 	cpumask_var_t cpus_allowed, new_mask;
8155 
8156 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8157 		return -ENOMEM;
8158 
8159 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8160 		retval = -ENOMEM;
8161 		goto out_free_cpus_allowed;
8162 	}
8163 
8164 	cpuset_cpus_allowed(p, cpus_allowed);
8165 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8166 
8167 	ctx->new_mask = new_mask;
8168 	ctx->flags |= SCA_CHECK;
8169 
8170 	retval = dl_task_check_affinity(p, new_mask);
8171 	if (retval)
8172 		goto out_free_new_mask;
8173 
8174 	retval = __set_cpus_allowed_ptr(p, ctx);
8175 	if (retval)
8176 		goto out_free_new_mask;
8177 
8178 	cpuset_cpus_allowed(p, cpus_allowed);
8179 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8180 		/*
8181 		 * We must have raced with a concurrent cpuset update.
8182 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8183 		 */
8184 		cpumask_copy(new_mask, cpus_allowed);
8185 
8186 		/*
8187 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8188 		 * will restore the previous user_cpus_ptr value.
8189 		 *
8190 		 * In the unlikely event a previous user_cpus_ptr exists,
8191 		 * we need to further restrict the mask to what is allowed
8192 		 * by that old user_cpus_ptr.
8193 		 */
8194 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8195 			bool empty = !cpumask_and(new_mask, new_mask,
8196 						  ctx->user_mask);
8197 
8198 			if (WARN_ON_ONCE(empty))
8199 				cpumask_copy(new_mask, cpus_allowed);
8200 		}
8201 		__set_cpus_allowed_ptr(p, ctx);
8202 		retval = -EINVAL;
8203 	}
8204 
8205 out_free_new_mask:
8206 	free_cpumask_var(new_mask);
8207 out_free_cpus_allowed:
8208 	free_cpumask_var(cpus_allowed);
8209 	return retval;
8210 }
8211 
8212 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8213 {
8214 	struct affinity_context ac;
8215 	struct cpumask *user_mask;
8216 	struct task_struct *p;
8217 	int retval;
8218 
8219 	rcu_read_lock();
8220 
8221 	p = find_process_by_pid(pid);
8222 	if (!p) {
8223 		rcu_read_unlock();
8224 		return -ESRCH;
8225 	}
8226 
8227 	/* Prevent p going away */
8228 	get_task_struct(p);
8229 	rcu_read_unlock();
8230 
8231 	if (p->flags & PF_NO_SETAFFINITY) {
8232 		retval = -EINVAL;
8233 		goto out_put_task;
8234 	}
8235 
8236 	if (!check_same_owner(p)) {
8237 		rcu_read_lock();
8238 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8239 			rcu_read_unlock();
8240 			retval = -EPERM;
8241 			goto out_put_task;
8242 		}
8243 		rcu_read_unlock();
8244 	}
8245 
8246 	retval = security_task_setscheduler(p);
8247 	if (retval)
8248 		goto out_put_task;
8249 
8250 	user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
8251 	if (!user_mask) {
8252 		retval = -ENOMEM;
8253 		goto out_put_task;
8254 	}
8255 	cpumask_copy(user_mask, in_mask);
8256 	ac = (struct affinity_context){
8257 		.new_mask  = in_mask,
8258 		.user_mask = user_mask,
8259 		.flags     = SCA_USER,
8260 	};
8261 
8262 	retval = __sched_setaffinity(p, &ac);
8263 	kfree(ac.user_mask);
8264 
8265 out_put_task:
8266 	put_task_struct(p);
8267 	return retval;
8268 }
8269 
8270 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8271 			     struct cpumask *new_mask)
8272 {
8273 	if (len < cpumask_size())
8274 		cpumask_clear(new_mask);
8275 	else if (len > cpumask_size())
8276 		len = cpumask_size();
8277 
8278 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8279 }
8280 
8281 /**
8282  * sys_sched_setaffinity - set the CPU affinity of a process
8283  * @pid: pid of the process
8284  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8285  * @user_mask_ptr: user-space pointer to the new CPU mask
8286  *
8287  * Return: 0 on success. An error code otherwise.
8288  */
8289 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8290 		unsigned long __user *, user_mask_ptr)
8291 {
8292 	cpumask_var_t new_mask;
8293 	int retval;
8294 
8295 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8296 		return -ENOMEM;
8297 
8298 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8299 	if (retval == 0)
8300 		retval = sched_setaffinity(pid, new_mask);
8301 	free_cpumask_var(new_mask);
8302 	return retval;
8303 }
8304 
8305 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8306 {
8307 	struct task_struct *p;
8308 	unsigned long flags;
8309 	int retval;
8310 
8311 	rcu_read_lock();
8312 
8313 	retval = -ESRCH;
8314 	p = find_process_by_pid(pid);
8315 	if (!p)
8316 		goto out_unlock;
8317 
8318 	retval = security_task_getscheduler(p);
8319 	if (retval)
8320 		goto out_unlock;
8321 
8322 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8323 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8324 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8325 
8326 out_unlock:
8327 	rcu_read_unlock();
8328 
8329 	return retval;
8330 }
8331 
8332 /**
8333  * sys_sched_getaffinity - get the CPU affinity of a process
8334  * @pid: pid of the process
8335  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8336  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8337  *
8338  * Return: size of CPU mask copied to user_mask_ptr on success. An
8339  * error code otherwise.
8340  */
8341 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8342 		unsigned long __user *, user_mask_ptr)
8343 {
8344 	int ret;
8345 	cpumask_var_t mask;
8346 
8347 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8348 		return -EINVAL;
8349 	if (len & (sizeof(unsigned long)-1))
8350 		return -EINVAL;
8351 
8352 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8353 		return -ENOMEM;
8354 
8355 	ret = sched_getaffinity(pid, mask);
8356 	if (ret == 0) {
8357 		unsigned int retlen = min(len, cpumask_size());
8358 
8359 		if (copy_to_user(user_mask_ptr, mask, retlen))
8360 			ret = -EFAULT;
8361 		else
8362 			ret = retlen;
8363 	}
8364 	free_cpumask_var(mask);
8365 
8366 	return ret;
8367 }
8368 
8369 static void do_sched_yield(void)
8370 {
8371 	struct rq_flags rf;
8372 	struct rq *rq;
8373 
8374 	rq = this_rq_lock_irq(&rf);
8375 
8376 	schedstat_inc(rq->yld_count);
8377 	current->sched_class->yield_task(rq);
8378 
8379 	preempt_disable();
8380 	rq_unlock_irq(rq, &rf);
8381 	sched_preempt_enable_no_resched();
8382 
8383 	schedule();
8384 }
8385 
8386 /**
8387  * sys_sched_yield - yield the current processor to other threads.
8388  *
8389  * This function yields the current CPU to other tasks. If there are no
8390  * other threads running on this CPU then this function will return.
8391  *
8392  * Return: 0.
8393  */
8394 SYSCALL_DEFINE0(sched_yield)
8395 {
8396 	do_sched_yield();
8397 	return 0;
8398 }
8399 
8400 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8401 int __sched __cond_resched(void)
8402 {
8403 	if (should_resched(0)) {
8404 		preempt_schedule_common();
8405 		return 1;
8406 	}
8407 	/*
8408 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8409 	 * whether the current CPU is in an RCU read-side critical section,
8410 	 * so the tick can report quiescent states even for CPUs looping
8411 	 * in kernel context.  In contrast, in non-preemptible kernels,
8412 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8413 	 * processes executing in kernel context might never report an
8414 	 * RCU quiescent state.  Therefore, the following code causes
8415 	 * cond_resched() to report a quiescent state, but only when RCU
8416 	 * is in urgent need of one.
8417 	 */
8418 #ifndef CONFIG_PREEMPT_RCU
8419 	rcu_all_qs();
8420 #endif
8421 	return 0;
8422 }
8423 EXPORT_SYMBOL(__cond_resched);
8424 #endif
8425 
8426 #ifdef CONFIG_PREEMPT_DYNAMIC
8427 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8428 #define cond_resched_dynamic_enabled	__cond_resched
8429 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8430 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8431 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8432 
8433 #define might_resched_dynamic_enabled	__cond_resched
8434 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8435 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8436 EXPORT_STATIC_CALL_TRAMP(might_resched);
8437 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8438 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8439 int __sched dynamic_cond_resched(void)
8440 {
8441 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8442 		return 0;
8443 	return __cond_resched();
8444 }
8445 EXPORT_SYMBOL(dynamic_cond_resched);
8446 
8447 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8448 int __sched dynamic_might_resched(void)
8449 {
8450 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8451 		return 0;
8452 	return __cond_resched();
8453 }
8454 EXPORT_SYMBOL(dynamic_might_resched);
8455 #endif
8456 #endif
8457 
8458 /*
8459  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8460  * call schedule, and on return reacquire the lock.
8461  *
8462  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8463  * operations here to prevent schedule() from being called twice (once via
8464  * spin_unlock(), once by hand).
8465  */
8466 int __cond_resched_lock(spinlock_t *lock)
8467 {
8468 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8469 	int ret = 0;
8470 
8471 	lockdep_assert_held(lock);
8472 
8473 	if (spin_needbreak(lock) || resched) {
8474 		spin_unlock(lock);
8475 		if (!_cond_resched())
8476 			cpu_relax();
8477 		ret = 1;
8478 		spin_lock(lock);
8479 	}
8480 	return ret;
8481 }
8482 EXPORT_SYMBOL(__cond_resched_lock);
8483 
8484 int __cond_resched_rwlock_read(rwlock_t *lock)
8485 {
8486 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8487 	int ret = 0;
8488 
8489 	lockdep_assert_held_read(lock);
8490 
8491 	if (rwlock_needbreak(lock) || resched) {
8492 		read_unlock(lock);
8493 		if (!_cond_resched())
8494 			cpu_relax();
8495 		ret = 1;
8496 		read_lock(lock);
8497 	}
8498 	return ret;
8499 }
8500 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8501 
8502 int __cond_resched_rwlock_write(rwlock_t *lock)
8503 {
8504 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8505 	int ret = 0;
8506 
8507 	lockdep_assert_held_write(lock);
8508 
8509 	if (rwlock_needbreak(lock) || resched) {
8510 		write_unlock(lock);
8511 		if (!_cond_resched())
8512 			cpu_relax();
8513 		ret = 1;
8514 		write_lock(lock);
8515 	}
8516 	return ret;
8517 }
8518 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8519 
8520 #ifdef CONFIG_PREEMPT_DYNAMIC
8521 
8522 #ifdef CONFIG_GENERIC_ENTRY
8523 #include <linux/entry-common.h>
8524 #endif
8525 
8526 /*
8527  * SC:cond_resched
8528  * SC:might_resched
8529  * SC:preempt_schedule
8530  * SC:preempt_schedule_notrace
8531  * SC:irqentry_exit_cond_resched
8532  *
8533  *
8534  * NONE:
8535  *   cond_resched               <- __cond_resched
8536  *   might_resched              <- RET0
8537  *   preempt_schedule           <- NOP
8538  *   preempt_schedule_notrace   <- NOP
8539  *   irqentry_exit_cond_resched <- NOP
8540  *
8541  * VOLUNTARY:
8542  *   cond_resched               <- __cond_resched
8543  *   might_resched              <- __cond_resched
8544  *   preempt_schedule           <- NOP
8545  *   preempt_schedule_notrace   <- NOP
8546  *   irqentry_exit_cond_resched <- NOP
8547  *
8548  * FULL:
8549  *   cond_resched               <- RET0
8550  *   might_resched              <- RET0
8551  *   preempt_schedule           <- preempt_schedule
8552  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8553  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8554  */
8555 
8556 enum {
8557 	preempt_dynamic_undefined = -1,
8558 	preempt_dynamic_none,
8559 	preempt_dynamic_voluntary,
8560 	preempt_dynamic_full,
8561 };
8562 
8563 int preempt_dynamic_mode = preempt_dynamic_undefined;
8564 
8565 int sched_dynamic_mode(const char *str)
8566 {
8567 	if (!strcmp(str, "none"))
8568 		return preempt_dynamic_none;
8569 
8570 	if (!strcmp(str, "voluntary"))
8571 		return preempt_dynamic_voluntary;
8572 
8573 	if (!strcmp(str, "full"))
8574 		return preempt_dynamic_full;
8575 
8576 	return -EINVAL;
8577 }
8578 
8579 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8580 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8581 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8582 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8583 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8584 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8585 #else
8586 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8587 #endif
8588 
8589 void sched_dynamic_update(int mode)
8590 {
8591 	/*
8592 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8593 	 * the ZERO state, which is invalid.
8594 	 */
8595 	preempt_dynamic_enable(cond_resched);
8596 	preempt_dynamic_enable(might_resched);
8597 	preempt_dynamic_enable(preempt_schedule);
8598 	preempt_dynamic_enable(preempt_schedule_notrace);
8599 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8600 
8601 	switch (mode) {
8602 	case preempt_dynamic_none:
8603 		preempt_dynamic_enable(cond_resched);
8604 		preempt_dynamic_disable(might_resched);
8605 		preempt_dynamic_disable(preempt_schedule);
8606 		preempt_dynamic_disable(preempt_schedule_notrace);
8607 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8608 		pr_info("Dynamic Preempt: none\n");
8609 		break;
8610 
8611 	case preempt_dynamic_voluntary:
8612 		preempt_dynamic_enable(cond_resched);
8613 		preempt_dynamic_enable(might_resched);
8614 		preempt_dynamic_disable(preempt_schedule);
8615 		preempt_dynamic_disable(preempt_schedule_notrace);
8616 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8617 		pr_info("Dynamic Preempt: voluntary\n");
8618 		break;
8619 
8620 	case preempt_dynamic_full:
8621 		preempt_dynamic_disable(cond_resched);
8622 		preempt_dynamic_disable(might_resched);
8623 		preempt_dynamic_enable(preempt_schedule);
8624 		preempt_dynamic_enable(preempt_schedule_notrace);
8625 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8626 		pr_info("Dynamic Preempt: full\n");
8627 		break;
8628 	}
8629 
8630 	preempt_dynamic_mode = mode;
8631 }
8632 
8633 static int __init setup_preempt_mode(char *str)
8634 {
8635 	int mode = sched_dynamic_mode(str);
8636 	if (mode < 0) {
8637 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8638 		return 0;
8639 	}
8640 
8641 	sched_dynamic_update(mode);
8642 	return 1;
8643 }
8644 __setup("preempt=", setup_preempt_mode);
8645 
8646 static void __init preempt_dynamic_init(void)
8647 {
8648 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8649 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8650 			sched_dynamic_update(preempt_dynamic_none);
8651 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8652 			sched_dynamic_update(preempt_dynamic_voluntary);
8653 		} else {
8654 			/* Default static call setting, nothing to do */
8655 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8656 			preempt_dynamic_mode = preempt_dynamic_full;
8657 			pr_info("Dynamic Preempt: full\n");
8658 		}
8659 	}
8660 }
8661 
8662 #define PREEMPT_MODEL_ACCESSOR(mode) \
8663 	bool preempt_model_##mode(void)						 \
8664 	{									 \
8665 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8666 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8667 	}									 \
8668 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8669 
8670 PREEMPT_MODEL_ACCESSOR(none);
8671 PREEMPT_MODEL_ACCESSOR(voluntary);
8672 PREEMPT_MODEL_ACCESSOR(full);
8673 
8674 #else /* !CONFIG_PREEMPT_DYNAMIC */
8675 
8676 static inline void preempt_dynamic_init(void) { }
8677 
8678 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8679 
8680 /**
8681  * yield - yield the current processor to other threads.
8682  *
8683  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8684  *
8685  * The scheduler is at all times free to pick the calling task as the most
8686  * eligible task to run, if removing the yield() call from your code breaks
8687  * it, it's already broken.
8688  *
8689  * Typical broken usage is:
8690  *
8691  * while (!event)
8692  *	yield();
8693  *
8694  * where one assumes that yield() will let 'the other' process run that will
8695  * make event true. If the current task is a SCHED_FIFO task that will never
8696  * happen. Never use yield() as a progress guarantee!!
8697  *
8698  * If you want to use yield() to wait for something, use wait_event().
8699  * If you want to use yield() to be 'nice' for others, use cond_resched().
8700  * If you still want to use yield(), do not!
8701  */
8702 void __sched yield(void)
8703 {
8704 	set_current_state(TASK_RUNNING);
8705 	do_sched_yield();
8706 }
8707 EXPORT_SYMBOL(yield);
8708 
8709 /**
8710  * yield_to - yield the current processor to another thread in
8711  * your thread group, or accelerate that thread toward the
8712  * processor it's on.
8713  * @p: target task
8714  * @preempt: whether task preemption is allowed or not
8715  *
8716  * It's the caller's job to ensure that the target task struct
8717  * can't go away on us before we can do any checks.
8718  *
8719  * Return:
8720  *	true (>0) if we indeed boosted the target task.
8721  *	false (0) if we failed to boost the target.
8722  *	-ESRCH if there's no task to yield to.
8723  */
8724 int __sched yield_to(struct task_struct *p, bool preempt)
8725 {
8726 	struct task_struct *curr = current;
8727 	struct rq *rq, *p_rq;
8728 	unsigned long flags;
8729 	int yielded = 0;
8730 
8731 	local_irq_save(flags);
8732 	rq = this_rq();
8733 
8734 again:
8735 	p_rq = task_rq(p);
8736 	/*
8737 	 * If we're the only runnable task on the rq and target rq also
8738 	 * has only one task, there's absolutely no point in yielding.
8739 	 */
8740 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8741 		yielded = -ESRCH;
8742 		goto out_irq;
8743 	}
8744 
8745 	double_rq_lock(rq, p_rq);
8746 	if (task_rq(p) != p_rq) {
8747 		double_rq_unlock(rq, p_rq);
8748 		goto again;
8749 	}
8750 
8751 	if (!curr->sched_class->yield_to_task)
8752 		goto out_unlock;
8753 
8754 	if (curr->sched_class != p->sched_class)
8755 		goto out_unlock;
8756 
8757 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
8758 		goto out_unlock;
8759 
8760 	yielded = curr->sched_class->yield_to_task(rq, p);
8761 	if (yielded) {
8762 		schedstat_inc(rq->yld_count);
8763 		/*
8764 		 * Make p's CPU reschedule; pick_next_entity takes care of
8765 		 * fairness.
8766 		 */
8767 		if (preempt && rq != p_rq)
8768 			resched_curr(p_rq);
8769 	}
8770 
8771 out_unlock:
8772 	double_rq_unlock(rq, p_rq);
8773 out_irq:
8774 	local_irq_restore(flags);
8775 
8776 	if (yielded > 0)
8777 		schedule();
8778 
8779 	return yielded;
8780 }
8781 EXPORT_SYMBOL_GPL(yield_to);
8782 
8783 int io_schedule_prepare(void)
8784 {
8785 	int old_iowait = current->in_iowait;
8786 
8787 	current->in_iowait = 1;
8788 	blk_flush_plug(current->plug, true);
8789 	return old_iowait;
8790 }
8791 
8792 void io_schedule_finish(int token)
8793 {
8794 	current->in_iowait = token;
8795 }
8796 
8797 /*
8798  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8799  * that process accounting knows that this is a task in IO wait state.
8800  */
8801 long __sched io_schedule_timeout(long timeout)
8802 {
8803 	int token;
8804 	long ret;
8805 
8806 	token = io_schedule_prepare();
8807 	ret = schedule_timeout(timeout);
8808 	io_schedule_finish(token);
8809 
8810 	return ret;
8811 }
8812 EXPORT_SYMBOL(io_schedule_timeout);
8813 
8814 void __sched io_schedule(void)
8815 {
8816 	int token;
8817 
8818 	token = io_schedule_prepare();
8819 	schedule();
8820 	io_schedule_finish(token);
8821 }
8822 EXPORT_SYMBOL(io_schedule);
8823 
8824 /**
8825  * sys_sched_get_priority_max - return maximum RT priority.
8826  * @policy: scheduling class.
8827  *
8828  * Return: On success, this syscall returns the maximum
8829  * rt_priority that can be used by a given scheduling class.
8830  * On failure, a negative error code is returned.
8831  */
8832 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8833 {
8834 	int ret = -EINVAL;
8835 
8836 	switch (policy) {
8837 	case SCHED_FIFO:
8838 	case SCHED_RR:
8839 		ret = MAX_RT_PRIO-1;
8840 		break;
8841 	case SCHED_DEADLINE:
8842 	case SCHED_NORMAL:
8843 	case SCHED_BATCH:
8844 	case SCHED_IDLE:
8845 		ret = 0;
8846 		break;
8847 	}
8848 	return ret;
8849 }
8850 
8851 /**
8852  * sys_sched_get_priority_min - return minimum RT priority.
8853  * @policy: scheduling class.
8854  *
8855  * Return: On success, this syscall returns the minimum
8856  * rt_priority that can be used by a given scheduling class.
8857  * On failure, a negative error code is returned.
8858  */
8859 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8860 {
8861 	int ret = -EINVAL;
8862 
8863 	switch (policy) {
8864 	case SCHED_FIFO:
8865 	case SCHED_RR:
8866 		ret = 1;
8867 		break;
8868 	case SCHED_DEADLINE:
8869 	case SCHED_NORMAL:
8870 	case SCHED_BATCH:
8871 	case SCHED_IDLE:
8872 		ret = 0;
8873 	}
8874 	return ret;
8875 }
8876 
8877 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8878 {
8879 	struct task_struct *p;
8880 	unsigned int time_slice;
8881 	struct rq_flags rf;
8882 	struct rq *rq;
8883 	int retval;
8884 
8885 	if (pid < 0)
8886 		return -EINVAL;
8887 
8888 	retval = -ESRCH;
8889 	rcu_read_lock();
8890 	p = find_process_by_pid(pid);
8891 	if (!p)
8892 		goto out_unlock;
8893 
8894 	retval = security_task_getscheduler(p);
8895 	if (retval)
8896 		goto out_unlock;
8897 
8898 	rq = task_rq_lock(p, &rf);
8899 	time_slice = 0;
8900 	if (p->sched_class->get_rr_interval)
8901 		time_slice = p->sched_class->get_rr_interval(rq, p);
8902 	task_rq_unlock(rq, p, &rf);
8903 
8904 	rcu_read_unlock();
8905 	jiffies_to_timespec64(time_slice, t);
8906 	return 0;
8907 
8908 out_unlock:
8909 	rcu_read_unlock();
8910 	return retval;
8911 }
8912 
8913 /**
8914  * sys_sched_rr_get_interval - return the default timeslice of a process.
8915  * @pid: pid of the process.
8916  * @interval: userspace pointer to the timeslice value.
8917  *
8918  * this syscall writes the default timeslice value of a given process
8919  * into the user-space timespec buffer. A value of '0' means infinity.
8920  *
8921  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8922  * an error code.
8923  */
8924 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8925 		struct __kernel_timespec __user *, interval)
8926 {
8927 	struct timespec64 t;
8928 	int retval = sched_rr_get_interval(pid, &t);
8929 
8930 	if (retval == 0)
8931 		retval = put_timespec64(&t, interval);
8932 
8933 	return retval;
8934 }
8935 
8936 #ifdef CONFIG_COMPAT_32BIT_TIME
8937 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8938 		struct old_timespec32 __user *, interval)
8939 {
8940 	struct timespec64 t;
8941 	int retval = sched_rr_get_interval(pid, &t);
8942 
8943 	if (retval == 0)
8944 		retval = put_old_timespec32(&t, interval);
8945 	return retval;
8946 }
8947 #endif
8948 
8949 void sched_show_task(struct task_struct *p)
8950 {
8951 	unsigned long free = 0;
8952 	int ppid;
8953 
8954 	if (!try_get_task_stack(p))
8955 		return;
8956 
8957 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8958 
8959 	if (task_is_running(p))
8960 		pr_cont("  running task    ");
8961 #ifdef CONFIG_DEBUG_STACK_USAGE
8962 	free = stack_not_used(p);
8963 #endif
8964 	ppid = 0;
8965 	rcu_read_lock();
8966 	if (pid_alive(p))
8967 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8968 	rcu_read_unlock();
8969 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8970 		free, task_pid_nr(p), ppid,
8971 		read_task_thread_flags(p));
8972 
8973 	print_worker_info(KERN_INFO, p);
8974 	print_stop_info(KERN_INFO, p);
8975 	show_stack(p, NULL, KERN_INFO);
8976 	put_task_stack(p);
8977 }
8978 EXPORT_SYMBOL_GPL(sched_show_task);
8979 
8980 static inline bool
8981 state_filter_match(unsigned long state_filter, struct task_struct *p)
8982 {
8983 	unsigned int state = READ_ONCE(p->__state);
8984 
8985 	/* no filter, everything matches */
8986 	if (!state_filter)
8987 		return true;
8988 
8989 	/* filter, but doesn't match */
8990 	if (!(state & state_filter))
8991 		return false;
8992 
8993 	/*
8994 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8995 	 * TASK_KILLABLE).
8996 	 */
8997 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8998 		return false;
8999 
9000 	return true;
9001 }
9002 
9003 
9004 void show_state_filter(unsigned int state_filter)
9005 {
9006 	struct task_struct *g, *p;
9007 
9008 	rcu_read_lock();
9009 	for_each_process_thread(g, p) {
9010 		/*
9011 		 * reset the NMI-timeout, listing all files on a slow
9012 		 * console might take a lot of time:
9013 		 * Also, reset softlockup watchdogs on all CPUs, because
9014 		 * another CPU might be blocked waiting for us to process
9015 		 * an IPI.
9016 		 */
9017 		touch_nmi_watchdog();
9018 		touch_all_softlockup_watchdogs();
9019 		if (state_filter_match(state_filter, p))
9020 			sched_show_task(p);
9021 	}
9022 
9023 #ifdef CONFIG_SCHED_DEBUG
9024 	if (!state_filter)
9025 		sysrq_sched_debug_show();
9026 #endif
9027 	rcu_read_unlock();
9028 	/*
9029 	 * Only show locks if all tasks are dumped:
9030 	 */
9031 	if (!state_filter)
9032 		debug_show_all_locks();
9033 }
9034 
9035 /**
9036  * init_idle - set up an idle thread for a given CPU
9037  * @idle: task in question
9038  * @cpu: CPU the idle task belongs to
9039  *
9040  * NOTE: this function does not set the idle thread's NEED_RESCHED
9041  * flag, to make booting more robust.
9042  */
9043 void __init init_idle(struct task_struct *idle, int cpu)
9044 {
9045 #ifdef CONFIG_SMP
9046 	struct affinity_context ac = (struct affinity_context) {
9047 		.new_mask  = cpumask_of(cpu),
9048 		.flags     = 0,
9049 	};
9050 #endif
9051 	struct rq *rq = cpu_rq(cpu);
9052 	unsigned long flags;
9053 
9054 	__sched_fork(0, idle);
9055 
9056 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9057 	raw_spin_rq_lock(rq);
9058 
9059 	idle->__state = TASK_RUNNING;
9060 	idle->se.exec_start = sched_clock();
9061 	/*
9062 	 * PF_KTHREAD should already be set at this point; regardless, make it
9063 	 * look like a proper per-CPU kthread.
9064 	 */
9065 	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9066 	kthread_set_per_cpu(idle, cpu);
9067 
9068 #ifdef CONFIG_SMP
9069 	/*
9070 	 * It's possible that init_idle() gets called multiple times on a task,
9071 	 * in that case do_set_cpus_allowed() will not do the right thing.
9072 	 *
9073 	 * And since this is boot we can forgo the serialization.
9074 	 */
9075 	set_cpus_allowed_common(idle, &ac);
9076 #endif
9077 	/*
9078 	 * We're having a chicken and egg problem, even though we are
9079 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9080 	 * lockdep check in task_group() will fail.
9081 	 *
9082 	 * Similar case to sched_fork(). / Alternatively we could
9083 	 * use task_rq_lock() here and obtain the other rq->lock.
9084 	 *
9085 	 * Silence PROVE_RCU
9086 	 */
9087 	rcu_read_lock();
9088 	__set_task_cpu(idle, cpu);
9089 	rcu_read_unlock();
9090 
9091 	rq->idle = idle;
9092 	rcu_assign_pointer(rq->curr, idle);
9093 	idle->on_rq = TASK_ON_RQ_QUEUED;
9094 #ifdef CONFIG_SMP
9095 	idle->on_cpu = 1;
9096 #endif
9097 	raw_spin_rq_unlock(rq);
9098 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9099 
9100 	/* Set the preempt count _outside_ the spinlocks! */
9101 	init_idle_preempt_count(idle, cpu);
9102 
9103 	/*
9104 	 * The idle tasks have their own, simple scheduling class:
9105 	 */
9106 	idle->sched_class = &idle_sched_class;
9107 	ftrace_graph_init_idle_task(idle, cpu);
9108 	vtime_init_idle(idle, cpu);
9109 #ifdef CONFIG_SMP
9110 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9111 #endif
9112 }
9113 
9114 #ifdef CONFIG_SMP
9115 
9116 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9117 			      const struct cpumask *trial)
9118 {
9119 	int ret = 1;
9120 
9121 	if (cpumask_empty(cur))
9122 		return ret;
9123 
9124 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9125 
9126 	return ret;
9127 }
9128 
9129 int task_can_attach(struct task_struct *p,
9130 		    const struct cpumask *cs_effective_cpus)
9131 {
9132 	int ret = 0;
9133 
9134 	/*
9135 	 * Kthreads which disallow setaffinity shouldn't be moved
9136 	 * to a new cpuset; we don't want to change their CPU
9137 	 * affinity and isolating such threads by their set of
9138 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9139 	 * applicable for such threads.  This prevents checking for
9140 	 * success of set_cpus_allowed_ptr() on all attached tasks
9141 	 * before cpus_mask may be changed.
9142 	 */
9143 	if (p->flags & PF_NO_SETAFFINITY) {
9144 		ret = -EINVAL;
9145 		goto out;
9146 	}
9147 
9148 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9149 					      cs_effective_cpus)) {
9150 		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9151 
9152 		if (unlikely(cpu >= nr_cpu_ids))
9153 			return -EINVAL;
9154 		ret = dl_cpu_busy(cpu, p);
9155 	}
9156 
9157 out:
9158 	return ret;
9159 }
9160 
9161 bool sched_smp_initialized __read_mostly;
9162 
9163 #ifdef CONFIG_NUMA_BALANCING
9164 /* Migrate current task p to target_cpu */
9165 int migrate_task_to(struct task_struct *p, int target_cpu)
9166 {
9167 	struct migration_arg arg = { p, target_cpu };
9168 	int curr_cpu = task_cpu(p);
9169 
9170 	if (curr_cpu == target_cpu)
9171 		return 0;
9172 
9173 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9174 		return -EINVAL;
9175 
9176 	/* TODO: This is not properly updating schedstats */
9177 
9178 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9179 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9180 }
9181 
9182 /*
9183  * Requeue a task on a given node and accurately track the number of NUMA
9184  * tasks on the runqueues
9185  */
9186 void sched_setnuma(struct task_struct *p, int nid)
9187 {
9188 	bool queued, running;
9189 	struct rq_flags rf;
9190 	struct rq *rq;
9191 
9192 	rq = task_rq_lock(p, &rf);
9193 	queued = task_on_rq_queued(p);
9194 	running = task_current(rq, p);
9195 
9196 	if (queued)
9197 		dequeue_task(rq, p, DEQUEUE_SAVE);
9198 	if (running)
9199 		put_prev_task(rq, p);
9200 
9201 	p->numa_preferred_nid = nid;
9202 
9203 	if (queued)
9204 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9205 	if (running)
9206 		set_next_task(rq, p);
9207 	task_rq_unlock(rq, p, &rf);
9208 }
9209 #endif /* CONFIG_NUMA_BALANCING */
9210 
9211 #ifdef CONFIG_HOTPLUG_CPU
9212 /*
9213  * Ensure that the idle task is using init_mm right before its CPU goes
9214  * offline.
9215  */
9216 void idle_task_exit(void)
9217 {
9218 	struct mm_struct *mm = current->active_mm;
9219 
9220 	BUG_ON(cpu_online(smp_processor_id()));
9221 	BUG_ON(current != this_rq()->idle);
9222 
9223 	if (mm != &init_mm) {
9224 		switch_mm(mm, &init_mm, current);
9225 		finish_arch_post_lock_switch();
9226 	}
9227 
9228 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9229 }
9230 
9231 static int __balance_push_cpu_stop(void *arg)
9232 {
9233 	struct task_struct *p = arg;
9234 	struct rq *rq = this_rq();
9235 	struct rq_flags rf;
9236 	int cpu;
9237 
9238 	raw_spin_lock_irq(&p->pi_lock);
9239 	rq_lock(rq, &rf);
9240 
9241 	update_rq_clock(rq);
9242 
9243 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9244 		cpu = select_fallback_rq(rq->cpu, p);
9245 		rq = __migrate_task(rq, &rf, p, cpu);
9246 	}
9247 
9248 	rq_unlock(rq, &rf);
9249 	raw_spin_unlock_irq(&p->pi_lock);
9250 
9251 	put_task_struct(p);
9252 
9253 	return 0;
9254 }
9255 
9256 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9257 
9258 /*
9259  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9260  *
9261  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9262  * effective when the hotplug motion is down.
9263  */
9264 static void balance_push(struct rq *rq)
9265 {
9266 	struct task_struct *push_task = rq->curr;
9267 
9268 	lockdep_assert_rq_held(rq);
9269 
9270 	/*
9271 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9272 	 */
9273 	rq->balance_callback = &balance_push_callback;
9274 
9275 	/*
9276 	 * Only active while going offline and when invoked on the outgoing
9277 	 * CPU.
9278 	 */
9279 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9280 		return;
9281 
9282 	/*
9283 	 * Both the cpu-hotplug and stop task are in this case and are
9284 	 * required to complete the hotplug process.
9285 	 */
9286 	if (kthread_is_per_cpu(push_task) ||
9287 	    is_migration_disabled(push_task)) {
9288 
9289 		/*
9290 		 * If this is the idle task on the outgoing CPU try to wake
9291 		 * up the hotplug control thread which might wait for the
9292 		 * last task to vanish. The rcuwait_active() check is
9293 		 * accurate here because the waiter is pinned on this CPU
9294 		 * and can't obviously be running in parallel.
9295 		 *
9296 		 * On RT kernels this also has to check whether there are
9297 		 * pinned and scheduled out tasks on the runqueue. They
9298 		 * need to leave the migrate disabled section first.
9299 		 */
9300 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9301 		    rcuwait_active(&rq->hotplug_wait)) {
9302 			raw_spin_rq_unlock(rq);
9303 			rcuwait_wake_up(&rq->hotplug_wait);
9304 			raw_spin_rq_lock(rq);
9305 		}
9306 		return;
9307 	}
9308 
9309 	get_task_struct(push_task);
9310 	/*
9311 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9312 	 * Both preemption and IRQs are still disabled.
9313 	 */
9314 	raw_spin_rq_unlock(rq);
9315 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9316 			    this_cpu_ptr(&push_work));
9317 	/*
9318 	 * At this point need_resched() is true and we'll take the loop in
9319 	 * schedule(). The next pick is obviously going to be the stop task
9320 	 * which kthread_is_per_cpu() and will push this task away.
9321 	 */
9322 	raw_spin_rq_lock(rq);
9323 }
9324 
9325 static void balance_push_set(int cpu, bool on)
9326 {
9327 	struct rq *rq = cpu_rq(cpu);
9328 	struct rq_flags rf;
9329 
9330 	rq_lock_irqsave(rq, &rf);
9331 	if (on) {
9332 		WARN_ON_ONCE(rq->balance_callback);
9333 		rq->balance_callback = &balance_push_callback;
9334 	} else if (rq->balance_callback == &balance_push_callback) {
9335 		rq->balance_callback = NULL;
9336 	}
9337 	rq_unlock_irqrestore(rq, &rf);
9338 }
9339 
9340 /*
9341  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9342  * inactive. All tasks which are not per CPU kernel threads are either
9343  * pushed off this CPU now via balance_push() or placed on a different CPU
9344  * during wakeup. Wait until the CPU is quiescent.
9345  */
9346 static void balance_hotplug_wait(void)
9347 {
9348 	struct rq *rq = this_rq();
9349 
9350 	rcuwait_wait_event(&rq->hotplug_wait,
9351 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9352 			   TASK_UNINTERRUPTIBLE);
9353 }
9354 
9355 #else
9356 
9357 static inline void balance_push(struct rq *rq)
9358 {
9359 }
9360 
9361 static inline void balance_push_set(int cpu, bool on)
9362 {
9363 }
9364 
9365 static inline void balance_hotplug_wait(void)
9366 {
9367 }
9368 
9369 #endif /* CONFIG_HOTPLUG_CPU */
9370 
9371 void set_rq_online(struct rq *rq)
9372 {
9373 	if (!rq->online) {
9374 		const struct sched_class *class;
9375 
9376 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9377 		rq->online = 1;
9378 
9379 		for_each_class(class) {
9380 			if (class->rq_online)
9381 				class->rq_online(rq);
9382 		}
9383 	}
9384 }
9385 
9386 void set_rq_offline(struct rq *rq)
9387 {
9388 	if (rq->online) {
9389 		const struct sched_class *class;
9390 
9391 		for_each_class(class) {
9392 			if (class->rq_offline)
9393 				class->rq_offline(rq);
9394 		}
9395 
9396 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9397 		rq->online = 0;
9398 	}
9399 }
9400 
9401 /*
9402  * used to mark begin/end of suspend/resume:
9403  */
9404 static int num_cpus_frozen;
9405 
9406 /*
9407  * Update cpusets according to cpu_active mask.  If cpusets are
9408  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9409  * around partition_sched_domains().
9410  *
9411  * If we come here as part of a suspend/resume, don't touch cpusets because we
9412  * want to restore it back to its original state upon resume anyway.
9413  */
9414 static void cpuset_cpu_active(void)
9415 {
9416 	if (cpuhp_tasks_frozen) {
9417 		/*
9418 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9419 		 * resume sequence. As long as this is not the last online
9420 		 * operation in the resume sequence, just build a single sched
9421 		 * domain, ignoring cpusets.
9422 		 */
9423 		partition_sched_domains(1, NULL, NULL);
9424 		if (--num_cpus_frozen)
9425 			return;
9426 		/*
9427 		 * This is the last CPU online operation. So fall through and
9428 		 * restore the original sched domains by considering the
9429 		 * cpuset configurations.
9430 		 */
9431 		cpuset_force_rebuild();
9432 	}
9433 	cpuset_update_active_cpus();
9434 }
9435 
9436 static int cpuset_cpu_inactive(unsigned int cpu)
9437 {
9438 	if (!cpuhp_tasks_frozen) {
9439 		int ret = dl_cpu_busy(cpu, NULL);
9440 
9441 		if (ret)
9442 			return ret;
9443 		cpuset_update_active_cpus();
9444 	} else {
9445 		num_cpus_frozen++;
9446 		partition_sched_domains(1, NULL, NULL);
9447 	}
9448 	return 0;
9449 }
9450 
9451 int sched_cpu_activate(unsigned int cpu)
9452 {
9453 	struct rq *rq = cpu_rq(cpu);
9454 	struct rq_flags rf;
9455 
9456 	/*
9457 	 * Clear the balance_push callback and prepare to schedule
9458 	 * regular tasks.
9459 	 */
9460 	balance_push_set(cpu, false);
9461 
9462 #ifdef CONFIG_SCHED_SMT
9463 	/*
9464 	 * When going up, increment the number of cores with SMT present.
9465 	 */
9466 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9467 		static_branch_inc_cpuslocked(&sched_smt_present);
9468 #endif
9469 	set_cpu_active(cpu, true);
9470 
9471 	if (sched_smp_initialized) {
9472 		sched_update_numa(cpu, true);
9473 		sched_domains_numa_masks_set(cpu);
9474 		cpuset_cpu_active();
9475 	}
9476 
9477 	/*
9478 	 * Put the rq online, if not already. This happens:
9479 	 *
9480 	 * 1) In the early boot process, because we build the real domains
9481 	 *    after all CPUs have been brought up.
9482 	 *
9483 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9484 	 *    domains.
9485 	 */
9486 	rq_lock_irqsave(rq, &rf);
9487 	if (rq->rd) {
9488 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9489 		set_rq_online(rq);
9490 	}
9491 	rq_unlock_irqrestore(rq, &rf);
9492 
9493 	return 0;
9494 }
9495 
9496 int sched_cpu_deactivate(unsigned int cpu)
9497 {
9498 	struct rq *rq = cpu_rq(cpu);
9499 	struct rq_flags rf;
9500 	int ret;
9501 
9502 	/*
9503 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9504 	 * load balancing when not active
9505 	 */
9506 	nohz_balance_exit_idle(rq);
9507 
9508 	set_cpu_active(cpu, false);
9509 
9510 	/*
9511 	 * From this point forward, this CPU will refuse to run any task that
9512 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9513 	 * push those tasks away until this gets cleared, see
9514 	 * sched_cpu_dying().
9515 	 */
9516 	balance_push_set(cpu, true);
9517 
9518 	/*
9519 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9520 	 * preempt-disabled and RCU users of this state to go away such that
9521 	 * all new such users will observe it.
9522 	 *
9523 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9524 	 * ttwu_queue_cond() and is_cpu_allowed().
9525 	 *
9526 	 * Do sync before park smpboot threads to take care the rcu boost case.
9527 	 */
9528 	synchronize_rcu();
9529 
9530 	rq_lock_irqsave(rq, &rf);
9531 	if (rq->rd) {
9532 		update_rq_clock(rq);
9533 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9534 		set_rq_offline(rq);
9535 	}
9536 	rq_unlock_irqrestore(rq, &rf);
9537 
9538 #ifdef CONFIG_SCHED_SMT
9539 	/*
9540 	 * When going down, decrement the number of cores with SMT present.
9541 	 */
9542 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9543 		static_branch_dec_cpuslocked(&sched_smt_present);
9544 
9545 	sched_core_cpu_deactivate(cpu);
9546 #endif
9547 
9548 	if (!sched_smp_initialized)
9549 		return 0;
9550 
9551 	sched_update_numa(cpu, false);
9552 	ret = cpuset_cpu_inactive(cpu);
9553 	if (ret) {
9554 		balance_push_set(cpu, false);
9555 		set_cpu_active(cpu, true);
9556 		sched_update_numa(cpu, true);
9557 		return ret;
9558 	}
9559 	sched_domains_numa_masks_clear(cpu);
9560 	return 0;
9561 }
9562 
9563 static void sched_rq_cpu_starting(unsigned int cpu)
9564 {
9565 	struct rq *rq = cpu_rq(cpu);
9566 
9567 	rq->calc_load_update = calc_load_update;
9568 	update_max_interval();
9569 }
9570 
9571 int sched_cpu_starting(unsigned int cpu)
9572 {
9573 	sched_core_cpu_starting(cpu);
9574 	sched_rq_cpu_starting(cpu);
9575 	sched_tick_start(cpu);
9576 	return 0;
9577 }
9578 
9579 #ifdef CONFIG_HOTPLUG_CPU
9580 
9581 /*
9582  * Invoked immediately before the stopper thread is invoked to bring the
9583  * CPU down completely. At this point all per CPU kthreads except the
9584  * hotplug thread (current) and the stopper thread (inactive) have been
9585  * either parked or have been unbound from the outgoing CPU. Ensure that
9586  * any of those which might be on the way out are gone.
9587  *
9588  * If after this point a bound task is being woken on this CPU then the
9589  * responsible hotplug callback has failed to do it's job.
9590  * sched_cpu_dying() will catch it with the appropriate fireworks.
9591  */
9592 int sched_cpu_wait_empty(unsigned int cpu)
9593 {
9594 	balance_hotplug_wait();
9595 	return 0;
9596 }
9597 
9598 /*
9599  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9600  * might have. Called from the CPU stopper task after ensuring that the
9601  * stopper is the last running task on the CPU, so nr_active count is
9602  * stable. We need to take the teardown thread which is calling this into
9603  * account, so we hand in adjust = 1 to the load calculation.
9604  *
9605  * Also see the comment "Global load-average calculations".
9606  */
9607 static void calc_load_migrate(struct rq *rq)
9608 {
9609 	long delta = calc_load_fold_active(rq, 1);
9610 
9611 	if (delta)
9612 		atomic_long_add(delta, &calc_load_tasks);
9613 }
9614 
9615 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9616 {
9617 	struct task_struct *g, *p;
9618 	int cpu = cpu_of(rq);
9619 
9620 	lockdep_assert_rq_held(rq);
9621 
9622 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9623 	for_each_process_thread(g, p) {
9624 		if (task_cpu(p) != cpu)
9625 			continue;
9626 
9627 		if (!task_on_rq_queued(p))
9628 			continue;
9629 
9630 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9631 	}
9632 }
9633 
9634 int sched_cpu_dying(unsigned int cpu)
9635 {
9636 	struct rq *rq = cpu_rq(cpu);
9637 	struct rq_flags rf;
9638 
9639 	/* Handle pending wakeups and then migrate everything off */
9640 	sched_tick_stop(cpu);
9641 
9642 	rq_lock_irqsave(rq, &rf);
9643 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9644 		WARN(true, "Dying CPU not properly vacated!");
9645 		dump_rq_tasks(rq, KERN_WARNING);
9646 	}
9647 	rq_unlock_irqrestore(rq, &rf);
9648 
9649 	calc_load_migrate(rq);
9650 	update_max_interval();
9651 	hrtick_clear(rq);
9652 	sched_core_cpu_dying(cpu);
9653 	return 0;
9654 }
9655 #endif
9656 
9657 void __init sched_init_smp(void)
9658 {
9659 	sched_init_numa(NUMA_NO_NODE);
9660 
9661 	/*
9662 	 * There's no userspace yet to cause hotplug operations; hence all the
9663 	 * CPU masks are stable and all blatant races in the below code cannot
9664 	 * happen.
9665 	 */
9666 	mutex_lock(&sched_domains_mutex);
9667 	sched_init_domains(cpu_active_mask);
9668 	mutex_unlock(&sched_domains_mutex);
9669 
9670 	/* Move init over to a non-isolated CPU */
9671 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9672 		BUG();
9673 	current->flags &= ~PF_NO_SETAFFINITY;
9674 	sched_init_granularity();
9675 
9676 	init_sched_rt_class();
9677 	init_sched_dl_class();
9678 
9679 	sched_smp_initialized = true;
9680 }
9681 
9682 static int __init migration_init(void)
9683 {
9684 	sched_cpu_starting(smp_processor_id());
9685 	return 0;
9686 }
9687 early_initcall(migration_init);
9688 
9689 #else
9690 void __init sched_init_smp(void)
9691 {
9692 	sched_init_granularity();
9693 }
9694 #endif /* CONFIG_SMP */
9695 
9696 int in_sched_functions(unsigned long addr)
9697 {
9698 	return in_lock_functions(addr) ||
9699 		(addr >= (unsigned long)__sched_text_start
9700 		&& addr < (unsigned long)__sched_text_end);
9701 }
9702 
9703 #ifdef CONFIG_CGROUP_SCHED
9704 /*
9705  * Default task group.
9706  * Every task in system belongs to this group at bootup.
9707  */
9708 struct task_group root_task_group;
9709 LIST_HEAD(task_groups);
9710 
9711 /* Cacheline aligned slab cache for task_group */
9712 static struct kmem_cache *task_group_cache __read_mostly;
9713 #endif
9714 
9715 void __init sched_init(void)
9716 {
9717 	unsigned long ptr = 0;
9718 	int i;
9719 
9720 	/* Make sure the linker didn't screw up */
9721 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9722 	       &fair_sched_class != &rt_sched_class + 1 ||
9723 	       &rt_sched_class   != &dl_sched_class + 1);
9724 #ifdef CONFIG_SMP
9725 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9726 #endif
9727 
9728 	wait_bit_init();
9729 
9730 #ifdef CONFIG_FAIR_GROUP_SCHED
9731 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9732 #endif
9733 #ifdef CONFIG_RT_GROUP_SCHED
9734 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9735 #endif
9736 	if (ptr) {
9737 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9738 
9739 #ifdef CONFIG_FAIR_GROUP_SCHED
9740 		root_task_group.se = (struct sched_entity **)ptr;
9741 		ptr += nr_cpu_ids * sizeof(void **);
9742 
9743 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9744 		ptr += nr_cpu_ids * sizeof(void **);
9745 
9746 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9747 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9748 #endif /* CONFIG_FAIR_GROUP_SCHED */
9749 #ifdef CONFIG_RT_GROUP_SCHED
9750 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9751 		ptr += nr_cpu_ids * sizeof(void **);
9752 
9753 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9754 		ptr += nr_cpu_ids * sizeof(void **);
9755 
9756 #endif /* CONFIG_RT_GROUP_SCHED */
9757 	}
9758 
9759 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9760 
9761 #ifdef CONFIG_SMP
9762 	init_defrootdomain();
9763 #endif
9764 
9765 #ifdef CONFIG_RT_GROUP_SCHED
9766 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9767 			global_rt_period(), global_rt_runtime());
9768 #endif /* CONFIG_RT_GROUP_SCHED */
9769 
9770 #ifdef CONFIG_CGROUP_SCHED
9771 	task_group_cache = KMEM_CACHE(task_group, 0);
9772 
9773 	list_add(&root_task_group.list, &task_groups);
9774 	INIT_LIST_HEAD(&root_task_group.children);
9775 	INIT_LIST_HEAD(&root_task_group.siblings);
9776 	autogroup_init(&init_task);
9777 #endif /* CONFIG_CGROUP_SCHED */
9778 
9779 	for_each_possible_cpu(i) {
9780 		struct rq *rq;
9781 
9782 		rq = cpu_rq(i);
9783 		raw_spin_lock_init(&rq->__lock);
9784 		rq->nr_running = 0;
9785 		rq->calc_load_active = 0;
9786 		rq->calc_load_update = jiffies + LOAD_FREQ;
9787 		init_cfs_rq(&rq->cfs);
9788 		init_rt_rq(&rq->rt);
9789 		init_dl_rq(&rq->dl);
9790 #ifdef CONFIG_FAIR_GROUP_SCHED
9791 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9792 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9793 		/*
9794 		 * How much CPU bandwidth does root_task_group get?
9795 		 *
9796 		 * In case of task-groups formed thr' the cgroup filesystem, it
9797 		 * gets 100% of the CPU resources in the system. This overall
9798 		 * system CPU resource is divided among the tasks of
9799 		 * root_task_group and its child task-groups in a fair manner,
9800 		 * based on each entity's (task or task-group's) weight
9801 		 * (se->load.weight).
9802 		 *
9803 		 * In other words, if root_task_group has 10 tasks of weight
9804 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9805 		 * then A0's share of the CPU resource is:
9806 		 *
9807 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9808 		 *
9809 		 * We achieve this by letting root_task_group's tasks sit
9810 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9811 		 */
9812 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9813 #endif /* CONFIG_FAIR_GROUP_SCHED */
9814 
9815 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9816 #ifdef CONFIG_RT_GROUP_SCHED
9817 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9818 #endif
9819 #ifdef CONFIG_SMP
9820 		rq->sd = NULL;
9821 		rq->rd = NULL;
9822 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9823 		rq->balance_callback = &balance_push_callback;
9824 		rq->active_balance = 0;
9825 		rq->next_balance = jiffies;
9826 		rq->push_cpu = 0;
9827 		rq->cpu = i;
9828 		rq->online = 0;
9829 		rq->idle_stamp = 0;
9830 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9831 		rq->wake_stamp = jiffies;
9832 		rq->wake_avg_idle = rq->avg_idle;
9833 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9834 
9835 		INIT_LIST_HEAD(&rq->cfs_tasks);
9836 
9837 		rq_attach_root(rq, &def_root_domain);
9838 #ifdef CONFIG_NO_HZ_COMMON
9839 		rq->last_blocked_load_update_tick = jiffies;
9840 		atomic_set(&rq->nohz_flags, 0);
9841 
9842 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9843 #endif
9844 #ifdef CONFIG_HOTPLUG_CPU
9845 		rcuwait_init(&rq->hotplug_wait);
9846 #endif
9847 #endif /* CONFIG_SMP */
9848 		hrtick_rq_init(rq);
9849 		atomic_set(&rq->nr_iowait, 0);
9850 
9851 #ifdef CONFIG_SCHED_CORE
9852 		rq->core = rq;
9853 		rq->core_pick = NULL;
9854 		rq->core_enabled = 0;
9855 		rq->core_tree = RB_ROOT;
9856 		rq->core_forceidle_count = 0;
9857 		rq->core_forceidle_occupation = 0;
9858 		rq->core_forceidle_start = 0;
9859 
9860 		rq->core_cookie = 0UL;
9861 #endif
9862 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9863 	}
9864 
9865 	set_load_weight(&init_task, false);
9866 
9867 	/*
9868 	 * The boot idle thread does lazy MMU switching as well:
9869 	 */
9870 	mmgrab(&init_mm);
9871 	enter_lazy_tlb(&init_mm, current);
9872 
9873 	/*
9874 	 * The idle task doesn't need the kthread struct to function, but it
9875 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9876 	 * if we want to avoid special-casing it in code that deals with per-CPU
9877 	 * kthreads.
9878 	 */
9879 	WARN_ON(!set_kthread_struct(current));
9880 
9881 	/*
9882 	 * Make us the idle thread. Technically, schedule() should not be
9883 	 * called from this thread, however somewhere below it might be,
9884 	 * but because we are the idle thread, we just pick up running again
9885 	 * when this runqueue becomes "idle".
9886 	 */
9887 	init_idle(current, smp_processor_id());
9888 
9889 	calc_load_update = jiffies + LOAD_FREQ;
9890 
9891 #ifdef CONFIG_SMP
9892 	idle_thread_set_boot_cpu();
9893 	balance_push_set(smp_processor_id(), false);
9894 #endif
9895 	init_sched_fair_class();
9896 
9897 	psi_init();
9898 
9899 	init_uclamp();
9900 
9901 	preempt_dynamic_init();
9902 
9903 	scheduler_running = 1;
9904 }
9905 
9906 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9907 
9908 void __might_sleep(const char *file, int line)
9909 {
9910 	unsigned int state = get_current_state();
9911 	/*
9912 	 * Blocking primitives will set (and therefore destroy) current->state,
9913 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9914 	 * otherwise we will destroy state.
9915 	 */
9916 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9917 			"do not call blocking ops when !TASK_RUNNING; "
9918 			"state=%x set at [<%p>] %pS\n", state,
9919 			(void *)current->task_state_change,
9920 			(void *)current->task_state_change);
9921 
9922 	__might_resched(file, line, 0);
9923 }
9924 EXPORT_SYMBOL(__might_sleep);
9925 
9926 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9927 {
9928 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9929 		return;
9930 
9931 	if (preempt_count() == preempt_offset)
9932 		return;
9933 
9934 	pr_err("Preemption disabled at:");
9935 	print_ip_sym(KERN_ERR, ip);
9936 }
9937 
9938 static inline bool resched_offsets_ok(unsigned int offsets)
9939 {
9940 	unsigned int nested = preempt_count();
9941 
9942 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9943 
9944 	return nested == offsets;
9945 }
9946 
9947 void __might_resched(const char *file, int line, unsigned int offsets)
9948 {
9949 	/* Ratelimiting timestamp: */
9950 	static unsigned long prev_jiffy;
9951 
9952 	unsigned long preempt_disable_ip;
9953 
9954 	/* WARN_ON_ONCE() by default, no rate limit required: */
9955 	rcu_sleep_check();
9956 
9957 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9958 	     !is_idle_task(current) && !current->non_block_count) ||
9959 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9960 	    oops_in_progress)
9961 		return;
9962 
9963 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9964 		return;
9965 	prev_jiffy = jiffies;
9966 
9967 	/* Save this before calling printk(), since that will clobber it: */
9968 	preempt_disable_ip = get_preempt_disable_ip(current);
9969 
9970 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9971 	       file, line);
9972 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9973 	       in_atomic(), irqs_disabled(), current->non_block_count,
9974 	       current->pid, current->comm);
9975 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9976 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9977 
9978 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9979 		pr_err("RCU nest depth: %d, expected: %u\n",
9980 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9981 	}
9982 
9983 	if (task_stack_end_corrupted(current))
9984 		pr_emerg("Thread overran stack, or stack corrupted\n");
9985 
9986 	debug_show_held_locks(current);
9987 	if (irqs_disabled())
9988 		print_irqtrace_events(current);
9989 
9990 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9991 				 preempt_disable_ip);
9992 
9993 	dump_stack();
9994 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9995 }
9996 EXPORT_SYMBOL(__might_resched);
9997 
9998 void __cant_sleep(const char *file, int line, int preempt_offset)
9999 {
10000 	static unsigned long prev_jiffy;
10001 
10002 	if (irqs_disabled())
10003 		return;
10004 
10005 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10006 		return;
10007 
10008 	if (preempt_count() > preempt_offset)
10009 		return;
10010 
10011 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10012 		return;
10013 	prev_jiffy = jiffies;
10014 
10015 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10016 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10017 			in_atomic(), irqs_disabled(),
10018 			current->pid, current->comm);
10019 
10020 	debug_show_held_locks(current);
10021 	dump_stack();
10022 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10023 }
10024 EXPORT_SYMBOL_GPL(__cant_sleep);
10025 
10026 #ifdef CONFIG_SMP
10027 void __cant_migrate(const char *file, int line)
10028 {
10029 	static unsigned long prev_jiffy;
10030 
10031 	if (irqs_disabled())
10032 		return;
10033 
10034 	if (is_migration_disabled(current))
10035 		return;
10036 
10037 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10038 		return;
10039 
10040 	if (preempt_count() > 0)
10041 		return;
10042 
10043 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10044 		return;
10045 	prev_jiffy = jiffies;
10046 
10047 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10048 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10049 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10050 	       current->pid, current->comm);
10051 
10052 	debug_show_held_locks(current);
10053 	dump_stack();
10054 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10055 }
10056 EXPORT_SYMBOL_GPL(__cant_migrate);
10057 #endif
10058 #endif
10059 
10060 #ifdef CONFIG_MAGIC_SYSRQ
10061 void normalize_rt_tasks(void)
10062 {
10063 	struct task_struct *g, *p;
10064 	struct sched_attr attr = {
10065 		.sched_policy = SCHED_NORMAL,
10066 	};
10067 
10068 	read_lock(&tasklist_lock);
10069 	for_each_process_thread(g, p) {
10070 		/*
10071 		 * Only normalize user tasks:
10072 		 */
10073 		if (p->flags & PF_KTHREAD)
10074 			continue;
10075 
10076 		p->se.exec_start = 0;
10077 		schedstat_set(p->stats.wait_start,  0);
10078 		schedstat_set(p->stats.sleep_start, 0);
10079 		schedstat_set(p->stats.block_start, 0);
10080 
10081 		if (!dl_task(p) && !rt_task(p)) {
10082 			/*
10083 			 * Renice negative nice level userspace
10084 			 * tasks back to 0:
10085 			 */
10086 			if (task_nice(p) < 0)
10087 				set_user_nice(p, 0);
10088 			continue;
10089 		}
10090 
10091 		__sched_setscheduler(p, &attr, false, false);
10092 	}
10093 	read_unlock(&tasklist_lock);
10094 }
10095 
10096 #endif /* CONFIG_MAGIC_SYSRQ */
10097 
10098 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10099 /*
10100  * These functions are only useful for the IA64 MCA handling, or kdb.
10101  *
10102  * They can only be called when the whole system has been
10103  * stopped - every CPU needs to be quiescent, and no scheduling
10104  * activity can take place. Using them for anything else would
10105  * be a serious bug, and as a result, they aren't even visible
10106  * under any other configuration.
10107  */
10108 
10109 /**
10110  * curr_task - return the current task for a given CPU.
10111  * @cpu: the processor in question.
10112  *
10113  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10114  *
10115  * Return: The current task for @cpu.
10116  */
10117 struct task_struct *curr_task(int cpu)
10118 {
10119 	return cpu_curr(cpu);
10120 }
10121 
10122 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10123 
10124 #ifdef CONFIG_IA64
10125 /**
10126  * ia64_set_curr_task - set the current task for a given CPU.
10127  * @cpu: the processor in question.
10128  * @p: the task pointer to set.
10129  *
10130  * Description: This function must only be used when non-maskable interrupts
10131  * are serviced on a separate stack. It allows the architecture to switch the
10132  * notion of the current task on a CPU in a non-blocking manner. This function
10133  * must be called with all CPU's synchronized, and interrupts disabled, the
10134  * and caller must save the original value of the current task (see
10135  * curr_task() above) and restore that value before reenabling interrupts and
10136  * re-starting the system.
10137  *
10138  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10139  */
10140 void ia64_set_curr_task(int cpu, struct task_struct *p)
10141 {
10142 	cpu_curr(cpu) = p;
10143 }
10144 
10145 #endif
10146 
10147 #ifdef CONFIG_CGROUP_SCHED
10148 /* task_group_lock serializes the addition/removal of task groups */
10149 static DEFINE_SPINLOCK(task_group_lock);
10150 
10151 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10152 					    struct task_group *parent)
10153 {
10154 #ifdef CONFIG_UCLAMP_TASK_GROUP
10155 	enum uclamp_id clamp_id;
10156 
10157 	for_each_clamp_id(clamp_id) {
10158 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10159 			      uclamp_none(clamp_id), false);
10160 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10161 	}
10162 #endif
10163 }
10164 
10165 static void sched_free_group(struct task_group *tg)
10166 {
10167 	free_fair_sched_group(tg);
10168 	free_rt_sched_group(tg);
10169 	autogroup_free(tg);
10170 	kmem_cache_free(task_group_cache, tg);
10171 }
10172 
10173 static void sched_free_group_rcu(struct rcu_head *rcu)
10174 {
10175 	sched_free_group(container_of(rcu, struct task_group, rcu));
10176 }
10177 
10178 static void sched_unregister_group(struct task_group *tg)
10179 {
10180 	unregister_fair_sched_group(tg);
10181 	unregister_rt_sched_group(tg);
10182 	/*
10183 	 * We have to wait for yet another RCU grace period to expire, as
10184 	 * print_cfs_stats() might run concurrently.
10185 	 */
10186 	call_rcu(&tg->rcu, sched_free_group_rcu);
10187 }
10188 
10189 /* allocate runqueue etc for a new task group */
10190 struct task_group *sched_create_group(struct task_group *parent)
10191 {
10192 	struct task_group *tg;
10193 
10194 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10195 	if (!tg)
10196 		return ERR_PTR(-ENOMEM);
10197 
10198 	if (!alloc_fair_sched_group(tg, parent))
10199 		goto err;
10200 
10201 	if (!alloc_rt_sched_group(tg, parent))
10202 		goto err;
10203 
10204 	alloc_uclamp_sched_group(tg, parent);
10205 
10206 	return tg;
10207 
10208 err:
10209 	sched_free_group(tg);
10210 	return ERR_PTR(-ENOMEM);
10211 }
10212 
10213 void sched_online_group(struct task_group *tg, struct task_group *parent)
10214 {
10215 	unsigned long flags;
10216 
10217 	spin_lock_irqsave(&task_group_lock, flags);
10218 	list_add_rcu(&tg->list, &task_groups);
10219 
10220 	/* Root should already exist: */
10221 	WARN_ON(!parent);
10222 
10223 	tg->parent = parent;
10224 	INIT_LIST_HEAD(&tg->children);
10225 	list_add_rcu(&tg->siblings, &parent->children);
10226 	spin_unlock_irqrestore(&task_group_lock, flags);
10227 
10228 	online_fair_sched_group(tg);
10229 }
10230 
10231 /* rcu callback to free various structures associated with a task group */
10232 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10233 {
10234 	/* Now it should be safe to free those cfs_rqs: */
10235 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10236 }
10237 
10238 void sched_destroy_group(struct task_group *tg)
10239 {
10240 	/* Wait for possible concurrent references to cfs_rqs complete: */
10241 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10242 }
10243 
10244 void sched_release_group(struct task_group *tg)
10245 {
10246 	unsigned long flags;
10247 
10248 	/*
10249 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10250 	 * sched_cfs_period_timer()).
10251 	 *
10252 	 * For this to be effective, we have to wait for all pending users of
10253 	 * this task group to leave their RCU critical section to ensure no new
10254 	 * user will see our dying task group any more. Specifically ensure
10255 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10256 	 *
10257 	 * We therefore defer calling unregister_fair_sched_group() to
10258 	 * sched_unregister_group() which is guarantied to get called only after the
10259 	 * current RCU grace period has expired.
10260 	 */
10261 	spin_lock_irqsave(&task_group_lock, flags);
10262 	list_del_rcu(&tg->list);
10263 	list_del_rcu(&tg->siblings);
10264 	spin_unlock_irqrestore(&task_group_lock, flags);
10265 }
10266 
10267 static void sched_change_group(struct task_struct *tsk)
10268 {
10269 	struct task_group *tg;
10270 
10271 	/*
10272 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10273 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10274 	 * to prevent lockdep warnings.
10275 	 */
10276 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10277 			  struct task_group, css);
10278 	tg = autogroup_task_group(tsk, tg);
10279 	tsk->sched_task_group = tg;
10280 
10281 #ifdef CONFIG_FAIR_GROUP_SCHED
10282 	if (tsk->sched_class->task_change_group)
10283 		tsk->sched_class->task_change_group(tsk);
10284 	else
10285 #endif
10286 		set_task_rq(tsk, task_cpu(tsk));
10287 }
10288 
10289 /*
10290  * Change task's runqueue when it moves between groups.
10291  *
10292  * The caller of this function should have put the task in its new group by
10293  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10294  * its new group.
10295  */
10296 void sched_move_task(struct task_struct *tsk)
10297 {
10298 	int queued, running, queue_flags =
10299 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10300 	struct rq_flags rf;
10301 	struct rq *rq;
10302 
10303 	rq = task_rq_lock(tsk, &rf);
10304 	update_rq_clock(rq);
10305 
10306 	running = task_current(rq, tsk);
10307 	queued = task_on_rq_queued(tsk);
10308 
10309 	if (queued)
10310 		dequeue_task(rq, tsk, queue_flags);
10311 	if (running)
10312 		put_prev_task(rq, tsk);
10313 
10314 	sched_change_group(tsk);
10315 
10316 	if (queued)
10317 		enqueue_task(rq, tsk, queue_flags);
10318 	if (running) {
10319 		set_next_task(rq, tsk);
10320 		/*
10321 		 * After changing group, the running task may have joined a
10322 		 * throttled one but it's still the running task. Trigger a
10323 		 * resched to make sure that task can still run.
10324 		 */
10325 		resched_curr(rq);
10326 	}
10327 
10328 	task_rq_unlock(rq, tsk, &rf);
10329 }
10330 
10331 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10332 {
10333 	return css ? container_of(css, struct task_group, css) : NULL;
10334 }
10335 
10336 static struct cgroup_subsys_state *
10337 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10338 {
10339 	struct task_group *parent = css_tg(parent_css);
10340 	struct task_group *tg;
10341 
10342 	if (!parent) {
10343 		/* This is early initialization for the top cgroup */
10344 		return &root_task_group.css;
10345 	}
10346 
10347 	tg = sched_create_group(parent);
10348 	if (IS_ERR(tg))
10349 		return ERR_PTR(-ENOMEM);
10350 
10351 	return &tg->css;
10352 }
10353 
10354 /* Expose task group only after completing cgroup initialization */
10355 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10356 {
10357 	struct task_group *tg = css_tg(css);
10358 	struct task_group *parent = css_tg(css->parent);
10359 
10360 	if (parent)
10361 		sched_online_group(tg, parent);
10362 
10363 #ifdef CONFIG_UCLAMP_TASK_GROUP
10364 	/* Propagate the effective uclamp value for the new group */
10365 	mutex_lock(&uclamp_mutex);
10366 	rcu_read_lock();
10367 	cpu_util_update_eff(css);
10368 	rcu_read_unlock();
10369 	mutex_unlock(&uclamp_mutex);
10370 #endif
10371 
10372 	return 0;
10373 }
10374 
10375 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10376 {
10377 	struct task_group *tg = css_tg(css);
10378 
10379 	sched_release_group(tg);
10380 }
10381 
10382 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10383 {
10384 	struct task_group *tg = css_tg(css);
10385 
10386 	/*
10387 	 * Relies on the RCU grace period between css_released() and this.
10388 	 */
10389 	sched_unregister_group(tg);
10390 }
10391 
10392 #ifdef CONFIG_RT_GROUP_SCHED
10393 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10394 {
10395 	struct task_struct *task;
10396 	struct cgroup_subsys_state *css;
10397 
10398 	cgroup_taskset_for_each(task, css, tset) {
10399 		if (!sched_rt_can_attach(css_tg(css), task))
10400 			return -EINVAL;
10401 	}
10402 	return 0;
10403 }
10404 #endif
10405 
10406 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10407 {
10408 	struct task_struct *task;
10409 	struct cgroup_subsys_state *css;
10410 
10411 	cgroup_taskset_for_each(task, css, tset)
10412 		sched_move_task(task);
10413 }
10414 
10415 #ifdef CONFIG_UCLAMP_TASK_GROUP
10416 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10417 {
10418 	struct cgroup_subsys_state *top_css = css;
10419 	struct uclamp_se *uc_parent = NULL;
10420 	struct uclamp_se *uc_se = NULL;
10421 	unsigned int eff[UCLAMP_CNT];
10422 	enum uclamp_id clamp_id;
10423 	unsigned int clamps;
10424 
10425 	lockdep_assert_held(&uclamp_mutex);
10426 	SCHED_WARN_ON(!rcu_read_lock_held());
10427 
10428 	css_for_each_descendant_pre(css, top_css) {
10429 		uc_parent = css_tg(css)->parent
10430 			? css_tg(css)->parent->uclamp : NULL;
10431 
10432 		for_each_clamp_id(clamp_id) {
10433 			/* Assume effective clamps matches requested clamps */
10434 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10435 			/* Cap effective clamps with parent's effective clamps */
10436 			if (uc_parent &&
10437 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10438 				eff[clamp_id] = uc_parent[clamp_id].value;
10439 			}
10440 		}
10441 		/* Ensure protection is always capped by limit */
10442 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10443 
10444 		/* Propagate most restrictive effective clamps */
10445 		clamps = 0x0;
10446 		uc_se = css_tg(css)->uclamp;
10447 		for_each_clamp_id(clamp_id) {
10448 			if (eff[clamp_id] == uc_se[clamp_id].value)
10449 				continue;
10450 			uc_se[clamp_id].value = eff[clamp_id];
10451 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10452 			clamps |= (0x1 << clamp_id);
10453 		}
10454 		if (!clamps) {
10455 			css = css_rightmost_descendant(css);
10456 			continue;
10457 		}
10458 
10459 		/* Immediately update descendants RUNNABLE tasks */
10460 		uclamp_update_active_tasks(css);
10461 	}
10462 }
10463 
10464 /*
10465  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10466  * C expression. Since there is no way to convert a macro argument (N) into a
10467  * character constant, use two levels of macros.
10468  */
10469 #define _POW10(exp) ((unsigned int)1e##exp)
10470 #define POW10(exp) _POW10(exp)
10471 
10472 struct uclamp_request {
10473 #define UCLAMP_PERCENT_SHIFT	2
10474 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10475 	s64 percent;
10476 	u64 util;
10477 	int ret;
10478 };
10479 
10480 static inline struct uclamp_request
10481 capacity_from_percent(char *buf)
10482 {
10483 	struct uclamp_request req = {
10484 		.percent = UCLAMP_PERCENT_SCALE,
10485 		.util = SCHED_CAPACITY_SCALE,
10486 		.ret = 0,
10487 	};
10488 
10489 	buf = strim(buf);
10490 	if (strcmp(buf, "max")) {
10491 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10492 					     &req.percent);
10493 		if (req.ret)
10494 			return req;
10495 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10496 			req.ret = -ERANGE;
10497 			return req;
10498 		}
10499 
10500 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10501 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10502 	}
10503 
10504 	return req;
10505 }
10506 
10507 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10508 				size_t nbytes, loff_t off,
10509 				enum uclamp_id clamp_id)
10510 {
10511 	struct uclamp_request req;
10512 	struct task_group *tg;
10513 
10514 	req = capacity_from_percent(buf);
10515 	if (req.ret)
10516 		return req.ret;
10517 
10518 	static_branch_enable(&sched_uclamp_used);
10519 
10520 	mutex_lock(&uclamp_mutex);
10521 	rcu_read_lock();
10522 
10523 	tg = css_tg(of_css(of));
10524 	if (tg->uclamp_req[clamp_id].value != req.util)
10525 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10526 
10527 	/*
10528 	 * Because of not recoverable conversion rounding we keep track of the
10529 	 * exact requested value
10530 	 */
10531 	tg->uclamp_pct[clamp_id] = req.percent;
10532 
10533 	/* Update effective clamps to track the most restrictive value */
10534 	cpu_util_update_eff(of_css(of));
10535 
10536 	rcu_read_unlock();
10537 	mutex_unlock(&uclamp_mutex);
10538 
10539 	return nbytes;
10540 }
10541 
10542 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10543 				    char *buf, size_t nbytes,
10544 				    loff_t off)
10545 {
10546 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10547 }
10548 
10549 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10550 				    char *buf, size_t nbytes,
10551 				    loff_t off)
10552 {
10553 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10554 }
10555 
10556 static inline void cpu_uclamp_print(struct seq_file *sf,
10557 				    enum uclamp_id clamp_id)
10558 {
10559 	struct task_group *tg;
10560 	u64 util_clamp;
10561 	u64 percent;
10562 	u32 rem;
10563 
10564 	rcu_read_lock();
10565 	tg = css_tg(seq_css(sf));
10566 	util_clamp = tg->uclamp_req[clamp_id].value;
10567 	rcu_read_unlock();
10568 
10569 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10570 		seq_puts(sf, "max\n");
10571 		return;
10572 	}
10573 
10574 	percent = tg->uclamp_pct[clamp_id];
10575 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10576 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10577 }
10578 
10579 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10580 {
10581 	cpu_uclamp_print(sf, UCLAMP_MIN);
10582 	return 0;
10583 }
10584 
10585 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10586 {
10587 	cpu_uclamp_print(sf, UCLAMP_MAX);
10588 	return 0;
10589 }
10590 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10591 
10592 #ifdef CONFIG_FAIR_GROUP_SCHED
10593 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10594 				struct cftype *cftype, u64 shareval)
10595 {
10596 	if (shareval > scale_load_down(ULONG_MAX))
10597 		shareval = MAX_SHARES;
10598 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10599 }
10600 
10601 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10602 			       struct cftype *cft)
10603 {
10604 	struct task_group *tg = css_tg(css);
10605 
10606 	return (u64) scale_load_down(tg->shares);
10607 }
10608 
10609 #ifdef CONFIG_CFS_BANDWIDTH
10610 static DEFINE_MUTEX(cfs_constraints_mutex);
10611 
10612 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10613 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10614 /* More than 203 days if BW_SHIFT equals 20. */
10615 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10616 
10617 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10618 
10619 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10620 				u64 burst)
10621 {
10622 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10623 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10624 
10625 	if (tg == &root_task_group)
10626 		return -EINVAL;
10627 
10628 	/*
10629 	 * Ensure we have at some amount of bandwidth every period.  This is
10630 	 * to prevent reaching a state of large arrears when throttled via
10631 	 * entity_tick() resulting in prolonged exit starvation.
10632 	 */
10633 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10634 		return -EINVAL;
10635 
10636 	/*
10637 	 * Likewise, bound things on the other side by preventing insane quota
10638 	 * periods.  This also allows us to normalize in computing quota
10639 	 * feasibility.
10640 	 */
10641 	if (period > max_cfs_quota_period)
10642 		return -EINVAL;
10643 
10644 	/*
10645 	 * Bound quota to defend quota against overflow during bandwidth shift.
10646 	 */
10647 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10648 		return -EINVAL;
10649 
10650 	if (quota != RUNTIME_INF && (burst > quota ||
10651 				     burst + quota > max_cfs_runtime))
10652 		return -EINVAL;
10653 
10654 	/*
10655 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10656 	 * unthrottle_offline_cfs_rqs().
10657 	 */
10658 	cpus_read_lock();
10659 	mutex_lock(&cfs_constraints_mutex);
10660 	ret = __cfs_schedulable(tg, period, quota);
10661 	if (ret)
10662 		goto out_unlock;
10663 
10664 	runtime_enabled = quota != RUNTIME_INF;
10665 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10666 	/*
10667 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10668 	 * before making related changes, and on->off must occur afterwards
10669 	 */
10670 	if (runtime_enabled && !runtime_was_enabled)
10671 		cfs_bandwidth_usage_inc();
10672 	raw_spin_lock_irq(&cfs_b->lock);
10673 	cfs_b->period = ns_to_ktime(period);
10674 	cfs_b->quota = quota;
10675 	cfs_b->burst = burst;
10676 
10677 	__refill_cfs_bandwidth_runtime(cfs_b);
10678 
10679 	/* Restart the period timer (if active) to handle new period expiry: */
10680 	if (runtime_enabled)
10681 		start_cfs_bandwidth(cfs_b);
10682 
10683 	raw_spin_unlock_irq(&cfs_b->lock);
10684 
10685 	for_each_online_cpu(i) {
10686 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10687 		struct rq *rq = cfs_rq->rq;
10688 		struct rq_flags rf;
10689 
10690 		rq_lock_irq(rq, &rf);
10691 		cfs_rq->runtime_enabled = runtime_enabled;
10692 		cfs_rq->runtime_remaining = 0;
10693 
10694 		if (cfs_rq->throttled)
10695 			unthrottle_cfs_rq(cfs_rq);
10696 		rq_unlock_irq(rq, &rf);
10697 	}
10698 	if (runtime_was_enabled && !runtime_enabled)
10699 		cfs_bandwidth_usage_dec();
10700 out_unlock:
10701 	mutex_unlock(&cfs_constraints_mutex);
10702 	cpus_read_unlock();
10703 
10704 	return ret;
10705 }
10706 
10707 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10708 {
10709 	u64 quota, period, burst;
10710 
10711 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10712 	burst = tg->cfs_bandwidth.burst;
10713 	if (cfs_quota_us < 0)
10714 		quota = RUNTIME_INF;
10715 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10716 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10717 	else
10718 		return -EINVAL;
10719 
10720 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10721 }
10722 
10723 static long tg_get_cfs_quota(struct task_group *tg)
10724 {
10725 	u64 quota_us;
10726 
10727 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10728 		return -1;
10729 
10730 	quota_us = tg->cfs_bandwidth.quota;
10731 	do_div(quota_us, NSEC_PER_USEC);
10732 
10733 	return quota_us;
10734 }
10735 
10736 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10737 {
10738 	u64 quota, period, burst;
10739 
10740 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10741 		return -EINVAL;
10742 
10743 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10744 	quota = tg->cfs_bandwidth.quota;
10745 	burst = tg->cfs_bandwidth.burst;
10746 
10747 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10748 }
10749 
10750 static long tg_get_cfs_period(struct task_group *tg)
10751 {
10752 	u64 cfs_period_us;
10753 
10754 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10755 	do_div(cfs_period_us, NSEC_PER_USEC);
10756 
10757 	return cfs_period_us;
10758 }
10759 
10760 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10761 {
10762 	u64 quota, period, burst;
10763 
10764 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10765 		return -EINVAL;
10766 
10767 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10768 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10769 	quota = tg->cfs_bandwidth.quota;
10770 
10771 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10772 }
10773 
10774 static long tg_get_cfs_burst(struct task_group *tg)
10775 {
10776 	u64 burst_us;
10777 
10778 	burst_us = tg->cfs_bandwidth.burst;
10779 	do_div(burst_us, NSEC_PER_USEC);
10780 
10781 	return burst_us;
10782 }
10783 
10784 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10785 				  struct cftype *cft)
10786 {
10787 	return tg_get_cfs_quota(css_tg(css));
10788 }
10789 
10790 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10791 				   struct cftype *cftype, s64 cfs_quota_us)
10792 {
10793 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10794 }
10795 
10796 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10797 				   struct cftype *cft)
10798 {
10799 	return tg_get_cfs_period(css_tg(css));
10800 }
10801 
10802 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10803 				    struct cftype *cftype, u64 cfs_period_us)
10804 {
10805 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10806 }
10807 
10808 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10809 				  struct cftype *cft)
10810 {
10811 	return tg_get_cfs_burst(css_tg(css));
10812 }
10813 
10814 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10815 				   struct cftype *cftype, u64 cfs_burst_us)
10816 {
10817 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10818 }
10819 
10820 struct cfs_schedulable_data {
10821 	struct task_group *tg;
10822 	u64 period, quota;
10823 };
10824 
10825 /*
10826  * normalize group quota/period to be quota/max_period
10827  * note: units are usecs
10828  */
10829 static u64 normalize_cfs_quota(struct task_group *tg,
10830 			       struct cfs_schedulable_data *d)
10831 {
10832 	u64 quota, period;
10833 
10834 	if (tg == d->tg) {
10835 		period = d->period;
10836 		quota = d->quota;
10837 	} else {
10838 		period = tg_get_cfs_period(tg);
10839 		quota = tg_get_cfs_quota(tg);
10840 	}
10841 
10842 	/* note: these should typically be equivalent */
10843 	if (quota == RUNTIME_INF || quota == -1)
10844 		return RUNTIME_INF;
10845 
10846 	return to_ratio(period, quota);
10847 }
10848 
10849 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10850 {
10851 	struct cfs_schedulable_data *d = data;
10852 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10853 	s64 quota = 0, parent_quota = -1;
10854 
10855 	if (!tg->parent) {
10856 		quota = RUNTIME_INF;
10857 	} else {
10858 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10859 
10860 		quota = normalize_cfs_quota(tg, d);
10861 		parent_quota = parent_b->hierarchical_quota;
10862 
10863 		/*
10864 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10865 		 * always take the min.  On cgroup1, only inherit when no
10866 		 * limit is set:
10867 		 */
10868 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10869 			quota = min(quota, parent_quota);
10870 		} else {
10871 			if (quota == RUNTIME_INF)
10872 				quota = parent_quota;
10873 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10874 				return -EINVAL;
10875 		}
10876 	}
10877 	cfs_b->hierarchical_quota = quota;
10878 
10879 	return 0;
10880 }
10881 
10882 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10883 {
10884 	int ret;
10885 	struct cfs_schedulable_data data = {
10886 		.tg = tg,
10887 		.period = period,
10888 		.quota = quota,
10889 	};
10890 
10891 	if (quota != RUNTIME_INF) {
10892 		do_div(data.period, NSEC_PER_USEC);
10893 		do_div(data.quota, NSEC_PER_USEC);
10894 	}
10895 
10896 	rcu_read_lock();
10897 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10898 	rcu_read_unlock();
10899 
10900 	return ret;
10901 }
10902 
10903 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10904 {
10905 	struct task_group *tg = css_tg(seq_css(sf));
10906 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10907 
10908 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10909 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10910 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10911 
10912 	if (schedstat_enabled() && tg != &root_task_group) {
10913 		struct sched_statistics *stats;
10914 		u64 ws = 0;
10915 		int i;
10916 
10917 		for_each_possible_cpu(i) {
10918 			stats = __schedstats_from_se(tg->se[i]);
10919 			ws += schedstat_val(stats->wait_sum);
10920 		}
10921 
10922 		seq_printf(sf, "wait_sum %llu\n", ws);
10923 	}
10924 
10925 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10926 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10927 
10928 	return 0;
10929 }
10930 #endif /* CONFIG_CFS_BANDWIDTH */
10931 #endif /* CONFIG_FAIR_GROUP_SCHED */
10932 
10933 #ifdef CONFIG_RT_GROUP_SCHED
10934 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10935 				struct cftype *cft, s64 val)
10936 {
10937 	return sched_group_set_rt_runtime(css_tg(css), val);
10938 }
10939 
10940 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10941 			       struct cftype *cft)
10942 {
10943 	return sched_group_rt_runtime(css_tg(css));
10944 }
10945 
10946 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10947 				    struct cftype *cftype, u64 rt_period_us)
10948 {
10949 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10950 }
10951 
10952 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10953 				   struct cftype *cft)
10954 {
10955 	return sched_group_rt_period(css_tg(css));
10956 }
10957 #endif /* CONFIG_RT_GROUP_SCHED */
10958 
10959 #ifdef CONFIG_FAIR_GROUP_SCHED
10960 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10961 			       struct cftype *cft)
10962 {
10963 	return css_tg(css)->idle;
10964 }
10965 
10966 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10967 				struct cftype *cft, s64 idle)
10968 {
10969 	return sched_group_set_idle(css_tg(css), idle);
10970 }
10971 #endif
10972 
10973 static struct cftype cpu_legacy_files[] = {
10974 #ifdef CONFIG_FAIR_GROUP_SCHED
10975 	{
10976 		.name = "shares",
10977 		.read_u64 = cpu_shares_read_u64,
10978 		.write_u64 = cpu_shares_write_u64,
10979 	},
10980 	{
10981 		.name = "idle",
10982 		.read_s64 = cpu_idle_read_s64,
10983 		.write_s64 = cpu_idle_write_s64,
10984 	},
10985 #endif
10986 #ifdef CONFIG_CFS_BANDWIDTH
10987 	{
10988 		.name = "cfs_quota_us",
10989 		.read_s64 = cpu_cfs_quota_read_s64,
10990 		.write_s64 = cpu_cfs_quota_write_s64,
10991 	},
10992 	{
10993 		.name = "cfs_period_us",
10994 		.read_u64 = cpu_cfs_period_read_u64,
10995 		.write_u64 = cpu_cfs_period_write_u64,
10996 	},
10997 	{
10998 		.name = "cfs_burst_us",
10999 		.read_u64 = cpu_cfs_burst_read_u64,
11000 		.write_u64 = cpu_cfs_burst_write_u64,
11001 	},
11002 	{
11003 		.name = "stat",
11004 		.seq_show = cpu_cfs_stat_show,
11005 	},
11006 #endif
11007 #ifdef CONFIG_RT_GROUP_SCHED
11008 	{
11009 		.name = "rt_runtime_us",
11010 		.read_s64 = cpu_rt_runtime_read,
11011 		.write_s64 = cpu_rt_runtime_write,
11012 	},
11013 	{
11014 		.name = "rt_period_us",
11015 		.read_u64 = cpu_rt_period_read_uint,
11016 		.write_u64 = cpu_rt_period_write_uint,
11017 	},
11018 #endif
11019 #ifdef CONFIG_UCLAMP_TASK_GROUP
11020 	{
11021 		.name = "uclamp.min",
11022 		.flags = CFTYPE_NOT_ON_ROOT,
11023 		.seq_show = cpu_uclamp_min_show,
11024 		.write = cpu_uclamp_min_write,
11025 	},
11026 	{
11027 		.name = "uclamp.max",
11028 		.flags = CFTYPE_NOT_ON_ROOT,
11029 		.seq_show = cpu_uclamp_max_show,
11030 		.write = cpu_uclamp_max_write,
11031 	},
11032 #endif
11033 	{ }	/* Terminate */
11034 };
11035 
11036 static int cpu_extra_stat_show(struct seq_file *sf,
11037 			       struct cgroup_subsys_state *css)
11038 {
11039 #ifdef CONFIG_CFS_BANDWIDTH
11040 	{
11041 		struct task_group *tg = css_tg(css);
11042 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11043 		u64 throttled_usec, burst_usec;
11044 
11045 		throttled_usec = cfs_b->throttled_time;
11046 		do_div(throttled_usec, NSEC_PER_USEC);
11047 		burst_usec = cfs_b->burst_time;
11048 		do_div(burst_usec, NSEC_PER_USEC);
11049 
11050 		seq_printf(sf, "nr_periods %d\n"
11051 			   "nr_throttled %d\n"
11052 			   "throttled_usec %llu\n"
11053 			   "nr_bursts %d\n"
11054 			   "burst_usec %llu\n",
11055 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11056 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11057 	}
11058 #endif
11059 	return 0;
11060 }
11061 
11062 #ifdef CONFIG_FAIR_GROUP_SCHED
11063 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11064 			       struct cftype *cft)
11065 {
11066 	struct task_group *tg = css_tg(css);
11067 	u64 weight = scale_load_down(tg->shares);
11068 
11069 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11070 }
11071 
11072 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11073 				struct cftype *cft, u64 weight)
11074 {
11075 	/*
11076 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11077 	 * values which are 1, 100 and 10000 respectively.  While it loses
11078 	 * a bit of range on both ends, it maps pretty well onto the shares
11079 	 * value used by scheduler and the round-trip conversions preserve
11080 	 * the original value over the entire range.
11081 	 */
11082 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11083 		return -ERANGE;
11084 
11085 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11086 
11087 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11088 }
11089 
11090 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11091 				    struct cftype *cft)
11092 {
11093 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11094 	int last_delta = INT_MAX;
11095 	int prio, delta;
11096 
11097 	/* find the closest nice value to the current weight */
11098 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11099 		delta = abs(sched_prio_to_weight[prio] - weight);
11100 		if (delta >= last_delta)
11101 			break;
11102 		last_delta = delta;
11103 	}
11104 
11105 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11106 }
11107 
11108 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11109 				     struct cftype *cft, s64 nice)
11110 {
11111 	unsigned long weight;
11112 	int idx;
11113 
11114 	if (nice < MIN_NICE || nice > MAX_NICE)
11115 		return -ERANGE;
11116 
11117 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11118 	idx = array_index_nospec(idx, 40);
11119 	weight = sched_prio_to_weight[idx];
11120 
11121 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11122 }
11123 #endif
11124 
11125 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11126 						  long period, long quota)
11127 {
11128 	if (quota < 0)
11129 		seq_puts(sf, "max");
11130 	else
11131 		seq_printf(sf, "%ld", quota);
11132 
11133 	seq_printf(sf, " %ld\n", period);
11134 }
11135 
11136 /* caller should put the current value in *@periodp before calling */
11137 static int __maybe_unused cpu_period_quota_parse(char *buf,
11138 						 u64 *periodp, u64 *quotap)
11139 {
11140 	char tok[21];	/* U64_MAX */
11141 
11142 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11143 		return -EINVAL;
11144 
11145 	*periodp *= NSEC_PER_USEC;
11146 
11147 	if (sscanf(tok, "%llu", quotap))
11148 		*quotap *= NSEC_PER_USEC;
11149 	else if (!strcmp(tok, "max"))
11150 		*quotap = RUNTIME_INF;
11151 	else
11152 		return -EINVAL;
11153 
11154 	return 0;
11155 }
11156 
11157 #ifdef CONFIG_CFS_BANDWIDTH
11158 static int cpu_max_show(struct seq_file *sf, void *v)
11159 {
11160 	struct task_group *tg = css_tg(seq_css(sf));
11161 
11162 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11163 	return 0;
11164 }
11165 
11166 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11167 			     char *buf, size_t nbytes, loff_t off)
11168 {
11169 	struct task_group *tg = css_tg(of_css(of));
11170 	u64 period = tg_get_cfs_period(tg);
11171 	u64 burst = tg_get_cfs_burst(tg);
11172 	u64 quota;
11173 	int ret;
11174 
11175 	ret = cpu_period_quota_parse(buf, &period, &quota);
11176 	if (!ret)
11177 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11178 	return ret ?: nbytes;
11179 }
11180 #endif
11181 
11182 static struct cftype cpu_files[] = {
11183 #ifdef CONFIG_FAIR_GROUP_SCHED
11184 	{
11185 		.name = "weight",
11186 		.flags = CFTYPE_NOT_ON_ROOT,
11187 		.read_u64 = cpu_weight_read_u64,
11188 		.write_u64 = cpu_weight_write_u64,
11189 	},
11190 	{
11191 		.name = "weight.nice",
11192 		.flags = CFTYPE_NOT_ON_ROOT,
11193 		.read_s64 = cpu_weight_nice_read_s64,
11194 		.write_s64 = cpu_weight_nice_write_s64,
11195 	},
11196 	{
11197 		.name = "idle",
11198 		.flags = CFTYPE_NOT_ON_ROOT,
11199 		.read_s64 = cpu_idle_read_s64,
11200 		.write_s64 = cpu_idle_write_s64,
11201 	},
11202 #endif
11203 #ifdef CONFIG_CFS_BANDWIDTH
11204 	{
11205 		.name = "max",
11206 		.flags = CFTYPE_NOT_ON_ROOT,
11207 		.seq_show = cpu_max_show,
11208 		.write = cpu_max_write,
11209 	},
11210 	{
11211 		.name = "max.burst",
11212 		.flags = CFTYPE_NOT_ON_ROOT,
11213 		.read_u64 = cpu_cfs_burst_read_u64,
11214 		.write_u64 = cpu_cfs_burst_write_u64,
11215 	},
11216 #endif
11217 #ifdef CONFIG_UCLAMP_TASK_GROUP
11218 	{
11219 		.name = "uclamp.min",
11220 		.flags = CFTYPE_NOT_ON_ROOT,
11221 		.seq_show = cpu_uclamp_min_show,
11222 		.write = cpu_uclamp_min_write,
11223 	},
11224 	{
11225 		.name = "uclamp.max",
11226 		.flags = CFTYPE_NOT_ON_ROOT,
11227 		.seq_show = cpu_uclamp_max_show,
11228 		.write = cpu_uclamp_max_write,
11229 	},
11230 #endif
11231 	{ }	/* terminate */
11232 };
11233 
11234 struct cgroup_subsys cpu_cgrp_subsys = {
11235 	.css_alloc	= cpu_cgroup_css_alloc,
11236 	.css_online	= cpu_cgroup_css_online,
11237 	.css_released	= cpu_cgroup_css_released,
11238 	.css_free	= cpu_cgroup_css_free,
11239 	.css_extra_stat_show = cpu_extra_stat_show,
11240 #ifdef CONFIG_RT_GROUP_SCHED
11241 	.can_attach	= cpu_cgroup_can_attach,
11242 #endif
11243 	.attach		= cpu_cgroup_attach,
11244 	.legacy_cftypes	= cpu_legacy_files,
11245 	.dfl_cftypes	= cpu_files,
11246 	.early_init	= true,
11247 	.threaded	= true,
11248 };
11249 
11250 #endif	/* CONFIG_CGROUP_SCHED */
11251 
11252 void dump_cpu_task(int cpu)
11253 {
11254 	if (cpu == smp_processor_id() && in_hardirq()) {
11255 		struct pt_regs *regs;
11256 
11257 		regs = get_irq_regs();
11258 		if (regs) {
11259 			show_regs(regs);
11260 			return;
11261 		}
11262 	}
11263 
11264 	if (trigger_single_cpu_backtrace(cpu))
11265 		return;
11266 
11267 	pr_info("Task dump for CPU %d:\n", cpu);
11268 	sched_show_task(cpu_curr(cpu));
11269 }
11270 
11271 /*
11272  * Nice levels are multiplicative, with a gentle 10% change for every
11273  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11274  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11275  * that remained on nice 0.
11276  *
11277  * The "10% effect" is relative and cumulative: from _any_ nice level,
11278  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11279  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11280  * If a task goes up by ~10% and another task goes down by ~10% then
11281  * the relative distance between them is ~25%.)
11282  */
11283 const int sched_prio_to_weight[40] = {
11284  /* -20 */     88761,     71755,     56483,     46273,     36291,
11285  /* -15 */     29154,     23254,     18705,     14949,     11916,
11286  /* -10 */      9548,      7620,      6100,      4904,      3906,
11287  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11288  /*   0 */      1024,       820,       655,       526,       423,
11289  /*   5 */       335,       272,       215,       172,       137,
11290  /*  10 */       110,        87,        70,        56,        45,
11291  /*  15 */        36,        29,        23,        18,        15,
11292 };
11293 
11294 /*
11295  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11296  *
11297  * In cases where the weight does not change often, we can use the
11298  * precalculated inverse to speed up arithmetics by turning divisions
11299  * into multiplications:
11300  */
11301 const u32 sched_prio_to_wmult[40] = {
11302  /* -20 */     48388,     59856,     76040,     92818,    118348,
11303  /* -15 */    147320,    184698,    229616,    287308,    360437,
11304  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11305  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11306  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11307  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11308  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11309  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11310 };
11311 
11312 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11313 {
11314         trace_sched_update_nr_running_tp(rq, count);
11315 }
11316 
11317 #ifdef CONFIG_SCHED_MM_CID
11318 void sched_mm_cid_exit_signals(struct task_struct *t)
11319 {
11320 	struct mm_struct *mm = t->mm;
11321 	unsigned long flags;
11322 
11323 	if (!mm)
11324 		return;
11325 	local_irq_save(flags);
11326 	mm_cid_put(mm, t->mm_cid);
11327 	t->mm_cid = -1;
11328 	t->mm_cid_active = 0;
11329 	local_irq_restore(flags);
11330 }
11331 
11332 void sched_mm_cid_before_execve(struct task_struct *t)
11333 {
11334 	struct mm_struct *mm = t->mm;
11335 	unsigned long flags;
11336 
11337 	if (!mm)
11338 		return;
11339 	local_irq_save(flags);
11340 	mm_cid_put(mm, t->mm_cid);
11341 	t->mm_cid = -1;
11342 	t->mm_cid_active = 0;
11343 	local_irq_restore(flags);
11344 }
11345 
11346 void sched_mm_cid_after_execve(struct task_struct *t)
11347 {
11348 	struct mm_struct *mm = t->mm;
11349 	unsigned long flags;
11350 
11351 	if (!mm)
11352 		return;
11353 	local_irq_save(flags);
11354 	t->mm_cid = mm_cid_get(mm);
11355 	t->mm_cid_active = 1;
11356 	local_irq_restore(flags);
11357 	rseq_set_notify_resume(t);
11358 }
11359 
11360 void sched_mm_cid_fork(struct task_struct *t)
11361 {
11362 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
11363 	t->mm_cid_active = 1;
11364 }
11365 #endif
11366