1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel scheduler code and related syscalls 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 */ 9 #include <linux/highmem.h> 10 #include <linux/hrtimer_api.h> 11 #include <linux/ktime_api.h> 12 #include <linux/sched/signal.h> 13 #include <linux/syscalls_api.h> 14 #include <linux/debug_locks.h> 15 #include <linux/prefetch.h> 16 #include <linux/capability.h> 17 #include <linux/pgtable_api.h> 18 #include <linux/wait_bit.h> 19 #include <linux/jiffies.h> 20 #include <linux/spinlock_api.h> 21 #include <linux/cpumask_api.h> 22 #include <linux/lockdep_api.h> 23 #include <linux/hardirq.h> 24 #include <linux/softirq.h> 25 #include <linux/refcount_api.h> 26 #include <linux/topology.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched/cond_resched.h> 29 #include <linux/sched/cputime.h> 30 #include <linux/sched/debug.h> 31 #include <linux/sched/hotplug.h> 32 #include <linux/sched/init.h> 33 #include <linux/sched/isolation.h> 34 #include <linux/sched/loadavg.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/nohz.h> 37 #include <linux/sched/rseq_api.h> 38 #include <linux/sched/rt.h> 39 40 #include <linux/blkdev.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpuset.h> 43 #include <linux/delayacct.h> 44 #include <linux/init_task.h> 45 #include <linux/interrupt.h> 46 #include <linux/ioprio.h> 47 #include <linux/kallsyms.h> 48 #include <linux/kcov.h> 49 #include <linux/kprobes.h> 50 #include <linux/llist_api.h> 51 #include <linux/mmu_context.h> 52 #include <linux/mmzone.h> 53 #include <linux/mutex_api.h> 54 #include <linux/nmi.h> 55 #include <linux/nospec.h> 56 #include <linux/perf_event_api.h> 57 #include <linux/profile.h> 58 #include <linux/psi.h> 59 #include <linux/rcuwait_api.h> 60 #include <linux/sched/wake_q.h> 61 #include <linux/scs.h> 62 #include <linux/slab.h> 63 #include <linux/syscalls.h> 64 #include <linux/vtime.h> 65 #include <linux/wait_api.h> 66 #include <linux/workqueue_api.h> 67 68 #ifdef CONFIG_PREEMPT_DYNAMIC 69 # ifdef CONFIG_GENERIC_ENTRY 70 # include <linux/entry-common.h> 71 # endif 72 #endif 73 74 #include <uapi/linux/sched/types.h> 75 76 #include <asm/irq_regs.h> 77 #include <asm/switch_to.h> 78 #include <asm/tlb.h> 79 80 #define CREATE_TRACE_POINTS 81 #include <linux/sched/rseq_api.h> 82 #include <trace/events/sched.h> 83 #undef CREATE_TRACE_POINTS 84 85 #include "sched.h" 86 #include "stats.h" 87 #include "autogroup.h" 88 89 #include "autogroup.h" 90 #include "pelt.h" 91 #include "smp.h" 92 #include "stats.h" 93 94 #include "../workqueue_internal.h" 95 #include "../../io_uring/io-wq.h" 96 #include "../smpboot.h" 97 98 /* 99 * Export tracepoints that act as a bare tracehook (ie: have no trace event 100 * associated with them) to allow external modules to probe them. 101 */ 102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 113 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 115 116 #ifdef CONFIG_SCHED_DEBUG 117 /* 118 * Debugging: various feature bits 119 * 120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 121 * sysctl_sched_features, defined in sched.h, to allow constants propagation 122 * at compile time and compiler optimization based on features default. 123 */ 124 #define SCHED_FEAT(name, enabled) \ 125 (1UL << __SCHED_FEAT_##name) * enabled | 126 const_debug unsigned int sysctl_sched_features = 127 #include "features.h" 128 0; 129 #undef SCHED_FEAT 130 131 /* 132 * Print a warning if need_resched is set for the given duration (if 133 * LATENCY_WARN is enabled). 134 * 135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 136 * per boot. 137 */ 138 __read_mostly int sysctl_resched_latency_warn_ms = 100; 139 __read_mostly int sysctl_resched_latency_warn_once = 1; 140 #endif /* CONFIG_SCHED_DEBUG */ 141 142 /* 143 * Number of tasks to iterate in a single balance run. 144 * Limited because this is done with IRQs disabled. 145 */ 146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 147 148 __read_mostly int scheduler_running; 149 150 #ifdef CONFIG_SCHED_CORE 151 152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 153 154 /* kernel prio, less is more */ 155 static inline int __task_prio(struct task_struct *p) 156 { 157 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 158 return -2; 159 160 if (rt_prio(p->prio)) /* includes deadline */ 161 return p->prio; /* [-1, 99] */ 162 163 if (p->sched_class == &idle_sched_class) 164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 165 166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ 167 } 168 169 /* 170 * l(a,b) 171 * le(a,b) := !l(b,a) 172 * g(a,b) := l(b,a) 173 * ge(a,b) := !l(a,b) 174 */ 175 176 /* real prio, less is less */ 177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 178 { 179 180 int pa = __task_prio(a), pb = __task_prio(b); 181 182 if (-pa < -pb) 183 return true; 184 185 if (-pb < -pa) 186 return false; 187 188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ 189 return !dl_time_before(a->dl.deadline, b->dl.deadline); 190 191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 192 return cfs_prio_less(a, b, in_fi); 193 194 return false; 195 } 196 197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) 198 { 199 if (a->core_cookie < b->core_cookie) 200 return true; 201 202 if (a->core_cookie > b->core_cookie) 203 return false; 204 205 /* flip prio, so high prio is leftmost */ 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 207 return true; 208 209 return false; 210 } 211 212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 213 214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 215 { 216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 217 } 218 219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 220 { 221 const struct task_struct *p = __node_2_sc(node); 222 unsigned long cookie = (unsigned long)key; 223 224 if (cookie < p->core_cookie) 225 return -1; 226 227 if (cookie > p->core_cookie) 228 return 1; 229 230 return 0; 231 } 232 233 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 234 { 235 rq->core->core_task_seq++; 236 237 if (!p->core_cookie) 238 return; 239 240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 241 } 242 243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 244 { 245 rq->core->core_task_seq++; 246 247 if (sched_core_enqueued(p)) { 248 rb_erase(&p->core_node, &rq->core_tree); 249 RB_CLEAR_NODE(&p->core_node); 250 } 251 252 /* 253 * Migrating the last task off the cpu, with the cpu in forced idle 254 * state. Reschedule to create an accounting edge for forced idle, 255 * and re-examine whether the core is still in forced idle state. 256 */ 257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 258 rq->core->core_forceidle_count && rq->curr == rq->idle) 259 resched_curr(rq); 260 } 261 262 /* 263 * Find left-most (aka, highest priority) task matching @cookie. 264 */ 265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 266 { 267 struct rb_node *node; 268 269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 270 /* 271 * The idle task always matches any cookie! 272 */ 273 if (!node) 274 return idle_sched_class.pick_task(rq); 275 276 return __node_2_sc(node); 277 } 278 279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 280 { 281 struct rb_node *node = &p->core_node; 282 283 node = rb_next(node); 284 if (!node) 285 return NULL; 286 287 p = container_of(node, struct task_struct, core_node); 288 if (p->core_cookie != cookie) 289 return NULL; 290 291 return p; 292 } 293 294 /* 295 * Magic required such that: 296 * 297 * raw_spin_rq_lock(rq); 298 * ... 299 * raw_spin_rq_unlock(rq); 300 * 301 * ends up locking and unlocking the _same_ lock, and all CPUs 302 * always agree on what rq has what lock. 303 * 304 * XXX entirely possible to selectively enable cores, don't bother for now. 305 */ 306 307 static DEFINE_MUTEX(sched_core_mutex); 308 static atomic_t sched_core_count; 309 static struct cpumask sched_core_mask; 310 311 static void sched_core_lock(int cpu, unsigned long *flags) 312 { 313 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 314 int t, i = 0; 315 316 local_irq_save(*flags); 317 for_each_cpu(t, smt_mask) 318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 319 } 320 321 static void sched_core_unlock(int cpu, unsigned long *flags) 322 { 323 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 324 int t; 325 326 for_each_cpu(t, smt_mask) 327 raw_spin_unlock(&cpu_rq(t)->__lock); 328 local_irq_restore(*flags); 329 } 330 331 static void __sched_core_flip(bool enabled) 332 { 333 unsigned long flags; 334 int cpu, t; 335 336 cpus_read_lock(); 337 338 /* 339 * Toggle the online cores, one by one. 340 */ 341 cpumask_copy(&sched_core_mask, cpu_online_mask); 342 for_each_cpu(cpu, &sched_core_mask) { 343 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 344 345 sched_core_lock(cpu, &flags); 346 347 for_each_cpu(t, smt_mask) 348 cpu_rq(t)->core_enabled = enabled; 349 350 cpu_rq(cpu)->core->core_forceidle_start = 0; 351 352 sched_core_unlock(cpu, &flags); 353 354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 355 } 356 357 /* 358 * Toggle the offline CPUs. 359 */ 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 361 cpu_rq(cpu)->core_enabled = enabled; 362 363 cpus_read_unlock(); 364 } 365 366 static void sched_core_assert_empty(void) 367 { 368 int cpu; 369 370 for_each_possible_cpu(cpu) 371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 372 } 373 374 static void __sched_core_enable(void) 375 { 376 static_branch_enable(&__sched_core_enabled); 377 /* 378 * Ensure all previous instances of raw_spin_rq_*lock() have finished 379 * and future ones will observe !sched_core_disabled(). 380 */ 381 synchronize_rcu(); 382 __sched_core_flip(true); 383 sched_core_assert_empty(); 384 } 385 386 static void __sched_core_disable(void) 387 { 388 sched_core_assert_empty(); 389 __sched_core_flip(false); 390 static_branch_disable(&__sched_core_enabled); 391 } 392 393 void sched_core_get(void) 394 { 395 if (atomic_inc_not_zero(&sched_core_count)) 396 return; 397 398 mutex_lock(&sched_core_mutex); 399 if (!atomic_read(&sched_core_count)) 400 __sched_core_enable(); 401 402 smp_mb__before_atomic(); 403 atomic_inc(&sched_core_count); 404 mutex_unlock(&sched_core_mutex); 405 } 406 407 static void __sched_core_put(struct work_struct *work) 408 { 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 410 __sched_core_disable(); 411 mutex_unlock(&sched_core_mutex); 412 } 413 } 414 415 void sched_core_put(void) 416 { 417 static DECLARE_WORK(_work, __sched_core_put); 418 419 /* 420 * "There can be only one" 421 * 422 * Either this is the last one, or we don't actually need to do any 423 * 'work'. If it is the last *again*, we rely on 424 * WORK_STRUCT_PENDING_BIT. 425 */ 426 if (!atomic_add_unless(&sched_core_count, -1, 1)) 427 schedule_work(&_work); 428 } 429 430 #else /* !CONFIG_SCHED_CORE */ 431 432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 433 static inline void 434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 435 436 #endif /* CONFIG_SCHED_CORE */ 437 438 /* 439 * Serialization rules: 440 * 441 * Lock order: 442 * 443 * p->pi_lock 444 * rq->lock 445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 446 * 447 * rq1->lock 448 * rq2->lock where: rq1 < rq2 449 * 450 * Regular state: 451 * 452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 453 * local CPU's rq->lock, it optionally removes the task from the runqueue and 454 * always looks at the local rq data structures to find the most eligible task 455 * to run next. 456 * 457 * Task enqueue is also under rq->lock, possibly taken from another CPU. 458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 459 * the local CPU to avoid bouncing the runqueue state around [ see 460 * ttwu_queue_wakelist() ] 461 * 462 * Task wakeup, specifically wakeups that involve migration, are horribly 463 * complicated to avoid having to take two rq->locks. 464 * 465 * Special state: 466 * 467 * System-calls and anything external will use task_rq_lock() which acquires 468 * both p->pi_lock and rq->lock. As a consequence the state they change is 469 * stable while holding either lock: 470 * 471 * - sched_setaffinity()/ 472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 473 * - set_user_nice(): p->se.load, p->*prio 474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 475 * p->se.load, p->rt_priority, 476 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 477 * - sched_setnuma(): p->numa_preferred_nid 478 * - sched_move_task(): p->sched_task_group 479 * - uclamp_update_active() p->uclamp* 480 * 481 * p->state <- TASK_*: 482 * 483 * is changed locklessly using set_current_state(), __set_current_state() or 484 * set_special_state(), see their respective comments, or by 485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 486 * concurrent self. 487 * 488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 489 * 490 * is set by activate_task() and cleared by deactivate_task(), under 491 * rq->lock. Non-zero indicates the task is runnable, the special 492 * ON_RQ_MIGRATING state is used for migration without holding both 493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 494 * 495 * p->on_cpu <- { 0, 1 }: 496 * 497 * is set by prepare_task() and cleared by finish_task() such that it will be 498 * set before p is scheduled-in and cleared after p is scheduled-out, both 499 * under rq->lock. Non-zero indicates the task is running on its CPU. 500 * 501 * [ The astute reader will observe that it is possible for two tasks on one 502 * CPU to have ->on_cpu = 1 at the same time. ] 503 * 504 * task_cpu(p): is changed by set_task_cpu(), the rules are: 505 * 506 * - Don't call set_task_cpu() on a blocked task: 507 * 508 * We don't care what CPU we're not running on, this simplifies hotplug, 509 * the CPU assignment of blocked tasks isn't required to be valid. 510 * 511 * - for try_to_wake_up(), called under p->pi_lock: 512 * 513 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 514 * 515 * - for migration called under rq->lock: 516 * [ see task_on_rq_migrating() in task_rq_lock() ] 517 * 518 * o move_queued_task() 519 * o detach_task() 520 * 521 * - for migration called under double_rq_lock(): 522 * 523 * o __migrate_swap_task() 524 * o push_rt_task() / pull_rt_task() 525 * o push_dl_task() / pull_dl_task() 526 * o dl_task_offline_migration() 527 * 528 */ 529 530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 531 { 532 raw_spinlock_t *lock; 533 534 /* Matches synchronize_rcu() in __sched_core_enable() */ 535 preempt_disable(); 536 if (sched_core_disabled()) { 537 raw_spin_lock_nested(&rq->__lock, subclass); 538 /* preempt_count *MUST* be > 1 */ 539 preempt_enable_no_resched(); 540 return; 541 } 542 543 for (;;) { 544 lock = __rq_lockp(rq); 545 raw_spin_lock_nested(lock, subclass); 546 if (likely(lock == __rq_lockp(rq))) { 547 /* preempt_count *MUST* be > 1 */ 548 preempt_enable_no_resched(); 549 return; 550 } 551 raw_spin_unlock(lock); 552 } 553 } 554 555 bool raw_spin_rq_trylock(struct rq *rq) 556 { 557 raw_spinlock_t *lock; 558 bool ret; 559 560 /* Matches synchronize_rcu() in __sched_core_enable() */ 561 preempt_disable(); 562 if (sched_core_disabled()) { 563 ret = raw_spin_trylock(&rq->__lock); 564 preempt_enable(); 565 return ret; 566 } 567 568 for (;;) { 569 lock = __rq_lockp(rq); 570 ret = raw_spin_trylock(lock); 571 if (!ret || (likely(lock == __rq_lockp(rq)))) { 572 preempt_enable(); 573 return ret; 574 } 575 raw_spin_unlock(lock); 576 } 577 } 578 579 void raw_spin_rq_unlock(struct rq *rq) 580 { 581 raw_spin_unlock(rq_lockp(rq)); 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * double_rq_lock - safely lock two runqueues 587 */ 588 void double_rq_lock(struct rq *rq1, struct rq *rq2) 589 { 590 lockdep_assert_irqs_disabled(); 591 592 if (rq_order_less(rq2, rq1)) 593 swap(rq1, rq2); 594 595 raw_spin_rq_lock(rq1); 596 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 598 599 double_rq_clock_clear_update(rq1, rq2); 600 } 601 #endif 602 603 /* 604 * __task_rq_lock - lock the rq @p resides on. 605 */ 606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 607 __acquires(rq->lock) 608 { 609 struct rq *rq; 610 611 lockdep_assert_held(&p->pi_lock); 612 613 for (;;) { 614 rq = task_rq(p); 615 raw_spin_rq_lock(rq); 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 617 rq_pin_lock(rq, rf); 618 return rq; 619 } 620 raw_spin_rq_unlock(rq); 621 622 while (unlikely(task_on_rq_migrating(p))) 623 cpu_relax(); 624 } 625 } 626 627 /* 628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 629 */ 630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 631 __acquires(p->pi_lock) 632 __acquires(rq->lock) 633 { 634 struct rq *rq; 635 636 for (;;) { 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 638 rq = task_rq(p); 639 raw_spin_rq_lock(rq); 640 /* 641 * move_queued_task() task_rq_lock() 642 * 643 * ACQUIRE (rq->lock) 644 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 646 * [S] ->cpu = new_cpu [L] task_rq() 647 * [L] ->on_rq 648 * RELEASE (rq->lock) 649 * 650 * If we observe the old CPU in task_rq_lock(), the acquire of 651 * the old rq->lock will fully serialize against the stores. 652 * 653 * If we observe the new CPU in task_rq_lock(), the address 654 * dependency headed by '[L] rq = task_rq()' and the acquire 655 * will pair with the WMB to ensure we then also see migrating. 656 */ 657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 658 rq_pin_lock(rq, rf); 659 return rq; 660 } 661 raw_spin_rq_unlock(rq); 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 663 664 while (unlikely(task_on_rq_migrating(p))) 665 cpu_relax(); 666 } 667 } 668 669 /* 670 * RQ-clock updating methods: 671 */ 672 673 static void update_rq_clock_task(struct rq *rq, s64 delta) 674 { 675 /* 676 * In theory, the compile should just see 0 here, and optimize out the call 677 * to sched_rt_avg_update. But I don't trust it... 678 */ 679 s64 __maybe_unused steal = 0, irq_delta = 0; 680 681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 683 684 /* 685 * Since irq_time is only updated on {soft,}irq_exit, we might run into 686 * this case when a previous update_rq_clock() happened inside a 687 * {soft,}irq region. 688 * 689 * When this happens, we stop ->clock_task and only update the 690 * prev_irq_time stamp to account for the part that fit, so that a next 691 * update will consume the rest. This ensures ->clock_task is 692 * monotonic. 693 * 694 * It does however cause some slight miss-attribution of {soft,}irq 695 * time, a more accurate solution would be to update the irq_time using 696 * the current rq->clock timestamp, except that would require using 697 * atomic ops. 698 */ 699 if (irq_delta > delta) 700 irq_delta = delta; 701 702 rq->prev_irq_time += irq_delta; 703 delta -= irq_delta; 704 psi_account_irqtime(rq->curr, irq_delta); 705 #endif 706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 707 if (static_key_false((¶virt_steal_rq_enabled))) { 708 steal = paravirt_steal_clock(cpu_of(rq)); 709 steal -= rq->prev_steal_time_rq; 710 711 if (unlikely(steal > delta)) 712 steal = delta; 713 714 rq->prev_steal_time_rq += steal; 715 delta -= steal; 716 } 717 #endif 718 719 rq->clock_task += delta; 720 721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 723 update_irq_load_avg(rq, irq_delta + steal); 724 #endif 725 update_rq_clock_pelt(rq, delta); 726 } 727 728 void update_rq_clock(struct rq *rq) 729 { 730 s64 delta; 731 732 lockdep_assert_rq_held(rq); 733 734 if (rq->clock_update_flags & RQCF_ACT_SKIP) 735 return; 736 737 #ifdef CONFIG_SCHED_DEBUG 738 if (sched_feat(WARN_DOUBLE_CLOCK)) 739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 740 rq->clock_update_flags |= RQCF_UPDATED; 741 #endif 742 743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 744 if (delta < 0) 745 return; 746 rq->clock += delta; 747 update_rq_clock_task(rq, delta); 748 } 749 750 #ifdef CONFIG_SCHED_HRTICK 751 /* 752 * Use HR-timers to deliver accurate preemption points. 753 */ 754 755 static void hrtick_clear(struct rq *rq) 756 { 757 if (hrtimer_active(&rq->hrtick_timer)) 758 hrtimer_cancel(&rq->hrtick_timer); 759 } 760 761 /* 762 * High-resolution timer tick. 763 * Runs from hardirq context with interrupts disabled. 764 */ 765 static enum hrtimer_restart hrtick(struct hrtimer *timer) 766 { 767 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 768 struct rq_flags rf; 769 770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 771 772 rq_lock(rq, &rf); 773 update_rq_clock(rq); 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 775 rq_unlock(rq, &rf); 776 777 return HRTIMER_NORESTART; 778 } 779 780 #ifdef CONFIG_SMP 781 782 static void __hrtick_restart(struct rq *rq) 783 { 784 struct hrtimer *timer = &rq->hrtick_timer; 785 ktime_t time = rq->hrtick_time; 786 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 788 } 789 790 /* 791 * called from hardirq (IPI) context 792 */ 793 static void __hrtick_start(void *arg) 794 { 795 struct rq *rq = arg; 796 struct rq_flags rf; 797 798 rq_lock(rq, &rf); 799 __hrtick_restart(rq); 800 rq_unlock(rq, &rf); 801 } 802 803 /* 804 * Called to set the hrtick timer state. 805 * 806 * called with rq->lock held and irqs disabled 807 */ 808 void hrtick_start(struct rq *rq, u64 delay) 809 { 810 struct hrtimer *timer = &rq->hrtick_timer; 811 s64 delta; 812 813 /* 814 * Don't schedule slices shorter than 10000ns, that just 815 * doesn't make sense and can cause timer DoS. 816 */ 817 delta = max_t(s64, delay, 10000LL); 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 819 820 if (rq == this_rq()) 821 __hrtick_restart(rq); 822 else 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 824 } 825 826 #else 827 /* 828 * Called to set the hrtick timer state. 829 * 830 * called with rq->lock held and irqs disabled 831 */ 832 void hrtick_start(struct rq *rq, u64 delay) 833 { 834 /* 835 * Don't schedule slices shorter than 10000ns, that just 836 * doesn't make sense. Rely on vruntime for fairness. 837 */ 838 delay = max_t(u64, delay, 10000LL); 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 840 HRTIMER_MODE_REL_PINNED_HARD); 841 } 842 843 #endif /* CONFIG_SMP */ 844 845 static void hrtick_rq_init(struct rq *rq) 846 { 847 #ifdef CONFIG_SMP 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 849 #endif 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 851 rq->hrtick_timer.function = hrtick; 852 } 853 #else /* CONFIG_SCHED_HRTICK */ 854 static inline void hrtick_clear(struct rq *rq) 855 { 856 } 857 858 static inline void hrtick_rq_init(struct rq *rq) 859 { 860 } 861 #endif /* CONFIG_SCHED_HRTICK */ 862 863 /* 864 * cmpxchg based fetch_or, macro so it works for different integer types 865 */ 866 #define fetch_or(ptr, mask) \ 867 ({ \ 868 typeof(ptr) _ptr = (ptr); \ 869 typeof(mask) _mask = (mask); \ 870 typeof(*_ptr) _val = *_ptr; \ 871 \ 872 do { \ 873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 874 _val; \ 875 }) 876 877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 878 /* 879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 880 * this avoids any races wrt polling state changes and thereby avoids 881 * spurious IPIs. 882 */ 883 static inline bool set_nr_and_not_polling(struct task_struct *p) 884 { 885 struct thread_info *ti = task_thread_info(p); 886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 887 } 888 889 /* 890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 891 * 892 * If this returns true, then the idle task promises to call 893 * sched_ttwu_pending() and reschedule soon. 894 */ 895 static bool set_nr_if_polling(struct task_struct *p) 896 { 897 struct thread_info *ti = task_thread_info(p); 898 typeof(ti->flags) val = READ_ONCE(ti->flags); 899 900 for (;;) { 901 if (!(val & _TIF_POLLING_NRFLAG)) 902 return false; 903 if (val & _TIF_NEED_RESCHED) 904 return true; 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) 906 break; 907 } 908 return true; 909 } 910 911 #else 912 static inline bool set_nr_and_not_polling(struct task_struct *p) 913 { 914 set_tsk_need_resched(p); 915 return true; 916 } 917 918 #ifdef CONFIG_SMP 919 static inline bool set_nr_if_polling(struct task_struct *p) 920 { 921 return false; 922 } 923 #endif 924 #endif 925 926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 927 { 928 struct wake_q_node *node = &task->wake_q; 929 930 /* 931 * Atomically grab the task, if ->wake_q is !nil already it means 932 * it's already queued (either by us or someone else) and will get the 933 * wakeup due to that. 934 * 935 * In order to ensure that a pending wakeup will observe our pending 936 * state, even in the failed case, an explicit smp_mb() must be used. 937 */ 938 smp_mb__before_atomic(); 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 940 return false; 941 942 /* 943 * The head is context local, there can be no concurrency. 944 */ 945 *head->lastp = node; 946 head->lastp = &node->next; 947 return true; 948 } 949 950 /** 951 * wake_q_add() - queue a wakeup for 'later' waking. 952 * @head: the wake_q_head to add @task to 953 * @task: the task to queue for 'later' wakeup 954 * 955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 957 * instantly. 958 * 959 * This function must be used as-if it were wake_up_process(); IOW the task 960 * must be ready to be woken at this location. 961 */ 962 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 963 { 964 if (__wake_q_add(head, task)) 965 get_task_struct(task); 966 } 967 968 /** 969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 970 * @head: the wake_q_head to add @task to 971 * @task: the task to queue for 'later' wakeup 972 * 973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 975 * instantly. 976 * 977 * This function must be used as-if it were wake_up_process(); IOW the task 978 * must be ready to be woken at this location. 979 * 980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 981 * that already hold reference to @task can call the 'safe' version and trust 982 * wake_q to do the right thing depending whether or not the @task is already 983 * queued for wakeup. 984 */ 985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 986 { 987 if (!__wake_q_add(head, task)) 988 put_task_struct(task); 989 } 990 991 void wake_up_q(struct wake_q_head *head) 992 { 993 struct wake_q_node *node = head->first; 994 995 while (node != WAKE_Q_TAIL) { 996 struct task_struct *task; 997 998 task = container_of(node, struct task_struct, wake_q); 999 /* Task can safely be re-inserted now: */ 1000 node = node->next; 1001 task->wake_q.next = NULL; 1002 1003 /* 1004 * wake_up_process() executes a full barrier, which pairs with 1005 * the queueing in wake_q_add() so as not to miss wakeups. 1006 */ 1007 wake_up_process(task); 1008 put_task_struct(task); 1009 } 1010 } 1011 1012 /* 1013 * resched_curr - mark rq's current task 'to be rescheduled now'. 1014 * 1015 * On UP this means the setting of the need_resched flag, on SMP it 1016 * might also involve a cross-CPU call to trigger the scheduler on 1017 * the target CPU. 1018 */ 1019 void resched_curr(struct rq *rq) 1020 { 1021 struct task_struct *curr = rq->curr; 1022 int cpu; 1023 1024 lockdep_assert_rq_held(rq); 1025 1026 if (test_tsk_need_resched(curr)) 1027 return; 1028 1029 cpu = cpu_of(rq); 1030 1031 if (cpu == smp_processor_id()) { 1032 set_tsk_need_resched(curr); 1033 set_preempt_need_resched(); 1034 return; 1035 } 1036 1037 if (set_nr_and_not_polling(curr)) 1038 smp_send_reschedule(cpu); 1039 else 1040 trace_sched_wake_idle_without_ipi(cpu); 1041 } 1042 1043 void resched_cpu(int cpu) 1044 { 1045 struct rq *rq = cpu_rq(cpu); 1046 unsigned long flags; 1047 1048 raw_spin_rq_lock_irqsave(rq, flags); 1049 if (cpu_online(cpu) || cpu == smp_processor_id()) 1050 resched_curr(rq); 1051 raw_spin_rq_unlock_irqrestore(rq, flags); 1052 } 1053 1054 #ifdef CONFIG_SMP 1055 #ifdef CONFIG_NO_HZ_COMMON 1056 /* 1057 * In the semi idle case, use the nearest busy CPU for migrating timers 1058 * from an idle CPU. This is good for power-savings. 1059 * 1060 * We don't do similar optimization for completely idle system, as 1061 * selecting an idle CPU will add more delays to the timers than intended 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 1063 */ 1064 int get_nohz_timer_target(void) 1065 { 1066 int i, cpu = smp_processor_id(), default_cpu = -1; 1067 struct sched_domain *sd; 1068 const struct cpumask *hk_mask; 1069 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { 1071 if (!idle_cpu(cpu)) 1072 return cpu; 1073 default_cpu = cpu; 1074 } 1075 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); 1077 1078 rcu_read_lock(); 1079 for_each_domain(cpu, sd) { 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1081 if (cpu == i) 1082 continue; 1083 1084 if (!idle_cpu(i)) { 1085 cpu = i; 1086 goto unlock; 1087 } 1088 } 1089 } 1090 1091 if (default_cpu == -1) 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 1093 cpu = default_cpu; 1094 unlock: 1095 rcu_read_unlock(); 1096 return cpu; 1097 } 1098 1099 /* 1100 * When add_timer_on() enqueues a timer into the timer wheel of an 1101 * idle CPU then this timer might expire before the next timer event 1102 * which is scheduled to wake up that CPU. In case of a completely 1103 * idle system the next event might even be infinite time into the 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1105 * leaves the inner idle loop so the newly added timer is taken into 1106 * account when the CPU goes back to idle and evaluates the timer 1107 * wheel for the next timer event. 1108 */ 1109 static void wake_up_idle_cpu(int cpu) 1110 { 1111 struct rq *rq = cpu_rq(cpu); 1112 1113 if (cpu == smp_processor_id()) 1114 return; 1115 1116 if (set_nr_and_not_polling(rq->idle)) 1117 smp_send_reschedule(cpu); 1118 else 1119 trace_sched_wake_idle_without_ipi(cpu); 1120 } 1121 1122 static bool wake_up_full_nohz_cpu(int cpu) 1123 { 1124 /* 1125 * We just need the target to call irq_exit() and re-evaluate 1126 * the next tick. The nohz full kick at least implies that. 1127 * If needed we can still optimize that later with an 1128 * empty IRQ. 1129 */ 1130 if (cpu_is_offline(cpu)) 1131 return true; /* Don't try to wake offline CPUs. */ 1132 if (tick_nohz_full_cpu(cpu)) { 1133 if (cpu != smp_processor_id() || 1134 tick_nohz_tick_stopped()) 1135 tick_nohz_full_kick_cpu(cpu); 1136 return true; 1137 } 1138 1139 return false; 1140 } 1141 1142 /* 1143 * Wake up the specified CPU. If the CPU is going offline, it is the 1144 * caller's responsibility to deal with the lost wakeup, for example, 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1146 */ 1147 void wake_up_nohz_cpu(int cpu) 1148 { 1149 if (!wake_up_full_nohz_cpu(cpu)) 1150 wake_up_idle_cpu(cpu); 1151 } 1152 1153 static void nohz_csd_func(void *info) 1154 { 1155 struct rq *rq = info; 1156 int cpu = cpu_of(rq); 1157 unsigned int flags; 1158 1159 /* 1160 * Release the rq::nohz_csd. 1161 */ 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1163 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1164 1165 rq->idle_balance = idle_cpu(cpu); 1166 if (rq->idle_balance && !need_resched()) { 1167 rq->nohz_idle_balance = flags; 1168 raise_softirq_irqoff(SCHED_SOFTIRQ); 1169 } 1170 } 1171 1172 #endif /* CONFIG_NO_HZ_COMMON */ 1173 1174 #ifdef CONFIG_NO_HZ_FULL 1175 bool sched_can_stop_tick(struct rq *rq) 1176 { 1177 int fifo_nr_running; 1178 1179 /* Deadline tasks, even if single, need the tick */ 1180 if (rq->dl.dl_nr_running) 1181 return false; 1182 1183 /* 1184 * If there are more than one RR tasks, we need the tick to affect the 1185 * actual RR behaviour. 1186 */ 1187 if (rq->rt.rr_nr_running) { 1188 if (rq->rt.rr_nr_running == 1) 1189 return true; 1190 else 1191 return false; 1192 } 1193 1194 /* 1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1196 * forced preemption between FIFO tasks. 1197 */ 1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1199 if (fifo_nr_running) 1200 return true; 1201 1202 /* 1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 1204 * if there's more than one we need the tick for involuntary 1205 * preemption. 1206 */ 1207 if (rq->nr_running > 1) 1208 return false; 1209 1210 return true; 1211 } 1212 #endif /* CONFIG_NO_HZ_FULL */ 1213 #endif /* CONFIG_SMP */ 1214 1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1217 /* 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a 1219 * node and @up when leaving it for the final time. 1220 * 1221 * Caller must hold rcu_lock or sufficient equivalent. 1222 */ 1223 int walk_tg_tree_from(struct task_group *from, 1224 tg_visitor down, tg_visitor up, void *data) 1225 { 1226 struct task_group *parent, *child; 1227 int ret; 1228 1229 parent = from; 1230 1231 down: 1232 ret = (*down)(parent, data); 1233 if (ret) 1234 goto out; 1235 list_for_each_entry_rcu(child, &parent->children, siblings) { 1236 parent = child; 1237 goto down; 1238 1239 up: 1240 continue; 1241 } 1242 ret = (*up)(parent, data); 1243 if (ret || parent == from) 1244 goto out; 1245 1246 child = parent; 1247 parent = parent->parent; 1248 if (parent) 1249 goto up; 1250 out: 1251 return ret; 1252 } 1253 1254 int tg_nop(struct task_group *tg, void *data) 1255 { 1256 return 0; 1257 } 1258 #endif 1259 1260 static void set_load_weight(struct task_struct *p, bool update_load) 1261 { 1262 int prio = p->static_prio - MAX_RT_PRIO; 1263 struct load_weight *load = &p->se.load; 1264 1265 /* 1266 * SCHED_IDLE tasks get minimal weight: 1267 */ 1268 if (task_has_idle_policy(p)) { 1269 load->weight = scale_load(WEIGHT_IDLEPRIO); 1270 load->inv_weight = WMULT_IDLEPRIO; 1271 return; 1272 } 1273 1274 /* 1275 * SCHED_OTHER tasks have to update their load when changing their 1276 * weight 1277 */ 1278 if (update_load && p->sched_class == &fair_sched_class) { 1279 reweight_task(p, prio); 1280 } else { 1281 load->weight = scale_load(sched_prio_to_weight[prio]); 1282 load->inv_weight = sched_prio_to_wmult[prio]; 1283 } 1284 } 1285 1286 #ifdef CONFIG_UCLAMP_TASK 1287 /* 1288 * Serializes updates of utilization clamp values 1289 * 1290 * The (slow-path) user-space triggers utilization clamp value updates which 1291 * can require updates on (fast-path) scheduler's data structures used to 1292 * support enqueue/dequeue operations. 1293 * While the per-CPU rq lock protects fast-path update operations, user-space 1294 * requests are serialized using a mutex to reduce the risk of conflicting 1295 * updates or API abuses. 1296 */ 1297 static DEFINE_MUTEX(uclamp_mutex); 1298 1299 /* Max allowed minimum utilization */ 1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1301 1302 /* Max allowed maximum utilization */ 1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1304 1305 /* 1306 * By default RT tasks run at the maximum performance point/capacity of the 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1308 * SCHED_CAPACITY_SCALE. 1309 * 1310 * This knob allows admins to change the default behavior when uclamp is being 1311 * used. In battery powered devices, particularly, running at the maximum 1312 * capacity and frequency will increase energy consumption and shorten the 1313 * battery life. 1314 * 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1316 * 1317 * This knob will not override the system default sched_util_clamp_min defined 1318 * above. 1319 */ 1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1321 1322 /* All clamps are required to be less or equal than these values */ 1323 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1324 1325 /* 1326 * This static key is used to reduce the uclamp overhead in the fast path. It 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in 1328 * enqueue/dequeue_task(). 1329 * 1330 * This allows users to continue to enable uclamp in their kernel config with 1331 * minimum uclamp overhead in the fast path. 1332 * 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is 1334 * enabled, since we have an actual users that make use of uclamp 1335 * functionality. 1336 * 1337 * The knobs that would enable this static key are: 1338 * 1339 * * A task modifying its uclamp value with sched_setattr(). 1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1341 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1342 */ 1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1344 1345 /* Integer rounded range for each bucket */ 1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 1347 1348 #define for_each_clamp_id(clamp_id) \ 1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 1350 1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 1352 { 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 1354 } 1355 1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 1357 { 1358 if (clamp_id == UCLAMP_MIN) 1359 return 0; 1360 return SCHED_CAPACITY_SCALE; 1361 } 1362 1363 static inline void uclamp_se_set(struct uclamp_se *uc_se, 1364 unsigned int value, bool user_defined) 1365 { 1366 uc_se->value = value; 1367 uc_se->bucket_id = uclamp_bucket_id(value); 1368 uc_se->user_defined = user_defined; 1369 } 1370 1371 static inline unsigned int 1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1373 unsigned int clamp_value) 1374 { 1375 /* 1376 * Avoid blocked utilization pushing up the frequency when we go 1377 * idle (which drops the max-clamp) by retaining the last known 1378 * max-clamp. 1379 */ 1380 if (clamp_id == UCLAMP_MAX) { 1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1382 return clamp_value; 1383 } 1384 1385 return uclamp_none(UCLAMP_MIN); 1386 } 1387 1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1389 unsigned int clamp_value) 1390 { 1391 /* Reset max-clamp retention only on idle exit */ 1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1393 return; 1394 1395 uclamp_rq_set(rq, clamp_id, clamp_value); 1396 } 1397 1398 static inline 1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1400 unsigned int clamp_value) 1401 { 1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1403 int bucket_id = UCLAMP_BUCKETS - 1; 1404 1405 /* 1406 * Since both min and max clamps are max aggregated, find the 1407 * top most bucket with tasks in. 1408 */ 1409 for ( ; bucket_id >= 0; bucket_id--) { 1410 if (!bucket[bucket_id].tasks) 1411 continue; 1412 return bucket[bucket_id].value; 1413 } 1414 1415 /* No tasks -- default clamp values */ 1416 return uclamp_idle_value(rq, clamp_id, clamp_value); 1417 } 1418 1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1420 { 1421 unsigned int default_util_min; 1422 struct uclamp_se *uc_se; 1423 1424 lockdep_assert_held(&p->pi_lock); 1425 1426 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1427 1428 /* Only sync if user didn't override the default */ 1429 if (uc_se->user_defined) 1430 return; 1431 1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1433 uclamp_se_set(uc_se, default_util_min, false); 1434 } 1435 1436 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1437 { 1438 struct rq_flags rf; 1439 struct rq *rq; 1440 1441 if (!rt_task(p)) 1442 return; 1443 1444 /* Protect updates to p->uclamp_* */ 1445 rq = task_rq_lock(p, &rf); 1446 __uclamp_update_util_min_rt_default(p); 1447 task_rq_unlock(rq, p, &rf); 1448 } 1449 1450 static inline struct uclamp_se 1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1452 { 1453 /* Copy by value as we could modify it */ 1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1455 #ifdef CONFIG_UCLAMP_TASK_GROUP 1456 unsigned int tg_min, tg_max, value; 1457 1458 /* 1459 * Tasks in autogroups or root task group will be 1460 * restricted by system defaults. 1461 */ 1462 if (task_group_is_autogroup(task_group(p))) 1463 return uc_req; 1464 if (task_group(p) == &root_task_group) 1465 return uc_req; 1466 1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1469 value = uc_req.value; 1470 value = clamp(value, tg_min, tg_max); 1471 uclamp_se_set(&uc_req, value, false); 1472 #endif 1473 1474 return uc_req; 1475 } 1476 1477 /* 1478 * The effective clamp bucket index of a task depends on, by increasing 1479 * priority: 1480 * - the task specific clamp value, when explicitly requested from userspace 1481 * - the task group effective clamp value, for tasks not either in the root 1482 * group or in an autogroup 1483 * - the system default clamp value, defined by the sysadmin 1484 */ 1485 static inline struct uclamp_se 1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1487 { 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1489 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1490 1491 /* System default restrictions always apply */ 1492 if (unlikely(uc_req.value > uc_max.value)) 1493 return uc_max; 1494 1495 return uc_req; 1496 } 1497 1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1499 { 1500 struct uclamp_se uc_eff; 1501 1502 /* Task currently refcounted: use back-annotated (effective) value */ 1503 if (p->uclamp[clamp_id].active) 1504 return (unsigned long)p->uclamp[clamp_id].value; 1505 1506 uc_eff = uclamp_eff_get(p, clamp_id); 1507 1508 return (unsigned long)uc_eff.value; 1509 } 1510 1511 /* 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1514 * updates the rq's clamp value if required. 1515 * 1516 * Tasks can have a task-specific value requested from user-space, track 1517 * within each bucket the maximum value for tasks refcounted in it. 1518 * This "local max aggregation" allows to track the exact "requested" value 1519 * for each bucket when all its RUNNABLE tasks require the same clamp. 1520 */ 1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1522 enum uclamp_id clamp_id) 1523 { 1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1526 struct uclamp_bucket *bucket; 1527 1528 lockdep_assert_rq_held(rq); 1529 1530 /* Update task effective clamp */ 1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1532 1533 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1534 bucket->tasks++; 1535 uc_se->active = true; 1536 1537 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1538 1539 /* 1540 * Local max aggregation: rq buckets always track the max 1541 * "requested" clamp value of its RUNNABLE tasks. 1542 */ 1543 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1544 bucket->value = uc_se->value; 1545 1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1547 uclamp_rq_set(rq, clamp_id, uc_se->value); 1548 } 1549 1550 /* 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1552 * is released. If this is the last task reference counting the rq's max 1553 * active clamp value, then the rq's clamp value is updated. 1554 * 1555 * Both refcounted tasks and rq's cached clamp values are expected to be 1556 * always valid. If it's detected they are not, as defensive programming, 1557 * enforce the expected state and warn. 1558 */ 1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1560 enum uclamp_id clamp_id) 1561 { 1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1564 struct uclamp_bucket *bucket; 1565 unsigned int bkt_clamp; 1566 unsigned int rq_clamp; 1567 1568 lockdep_assert_rq_held(rq); 1569 1570 /* 1571 * If sched_uclamp_used was enabled after task @p was enqueued, 1572 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1573 * 1574 * In this case the uc_se->active flag should be false since no uclamp 1575 * accounting was performed at enqueue time and we can just return 1576 * here. 1577 * 1578 * Need to be careful of the following enqueue/dequeue ordering 1579 * problem too 1580 * 1581 * enqueue(taskA) 1582 * // sched_uclamp_used gets enabled 1583 * enqueue(taskB) 1584 * dequeue(taskA) 1585 * // Must not decrement bucket->tasks here 1586 * dequeue(taskB) 1587 * 1588 * where we could end up with stale data in uc_se and 1589 * bucket[uc_se->bucket_id]. 1590 * 1591 * The following check here eliminates the possibility of such race. 1592 */ 1593 if (unlikely(!uc_se->active)) 1594 return; 1595 1596 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1597 1598 SCHED_WARN_ON(!bucket->tasks); 1599 if (likely(bucket->tasks)) 1600 bucket->tasks--; 1601 1602 uc_se->active = false; 1603 1604 /* 1605 * Keep "local max aggregation" simple and accept to (possibly) 1606 * overboost some RUNNABLE tasks in the same bucket. 1607 * The rq clamp bucket value is reset to its base value whenever 1608 * there are no more RUNNABLE tasks refcounting it. 1609 */ 1610 if (likely(bucket->tasks)) 1611 return; 1612 1613 rq_clamp = uclamp_rq_get(rq, clamp_id); 1614 /* 1615 * Defensive programming: this should never happen. If it happens, 1616 * e.g. due to future modification, warn and fixup the expected value. 1617 */ 1618 SCHED_WARN_ON(bucket->value > rq_clamp); 1619 if (bucket->value >= rq_clamp) { 1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1622 } 1623 } 1624 1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1626 { 1627 enum uclamp_id clamp_id; 1628 1629 /* 1630 * Avoid any overhead until uclamp is actually used by the userspace. 1631 * 1632 * The condition is constructed such that a NOP is generated when 1633 * sched_uclamp_used is disabled. 1634 */ 1635 if (!static_branch_unlikely(&sched_uclamp_used)) 1636 return; 1637 1638 if (unlikely(!p->sched_class->uclamp_enabled)) 1639 return; 1640 1641 for_each_clamp_id(clamp_id) 1642 uclamp_rq_inc_id(rq, p, clamp_id); 1643 1644 /* Reset clamp idle holding when there is one RUNNABLE task */ 1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1647 } 1648 1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1650 { 1651 enum uclamp_id clamp_id; 1652 1653 /* 1654 * Avoid any overhead until uclamp is actually used by the userspace. 1655 * 1656 * The condition is constructed such that a NOP is generated when 1657 * sched_uclamp_used is disabled. 1658 */ 1659 if (!static_branch_unlikely(&sched_uclamp_used)) 1660 return; 1661 1662 if (unlikely(!p->sched_class->uclamp_enabled)) 1663 return; 1664 1665 for_each_clamp_id(clamp_id) 1666 uclamp_rq_dec_id(rq, p, clamp_id); 1667 } 1668 1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1670 enum uclamp_id clamp_id) 1671 { 1672 if (!p->uclamp[clamp_id].active) 1673 return; 1674 1675 uclamp_rq_dec_id(rq, p, clamp_id); 1676 uclamp_rq_inc_id(rq, p, clamp_id); 1677 1678 /* 1679 * Make sure to clear the idle flag if we've transiently reached 0 1680 * active tasks on rq. 1681 */ 1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1684 } 1685 1686 static inline void 1687 uclamp_update_active(struct task_struct *p) 1688 { 1689 enum uclamp_id clamp_id; 1690 struct rq_flags rf; 1691 struct rq *rq; 1692 1693 /* 1694 * Lock the task and the rq where the task is (or was) queued. 1695 * 1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1697 * price to pay to safely serialize util_{min,max} updates with 1698 * enqueues, dequeues and migration operations. 1699 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1700 */ 1701 rq = task_rq_lock(p, &rf); 1702 1703 /* 1704 * Setting the clamp bucket is serialized by task_rq_lock(). 1705 * If the task is not yet RUNNABLE and its task_struct is not 1706 * affecting a valid clamp bucket, the next time it's enqueued, 1707 * it will already see the updated clamp bucket value. 1708 */ 1709 for_each_clamp_id(clamp_id) 1710 uclamp_rq_reinc_id(rq, p, clamp_id); 1711 1712 task_rq_unlock(rq, p, &rf); 1713 } 1714 1715 #ifdef CONFIG_UCLAMP_TASK_GROUP 1716 static inline void 1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1718 { 1719 struct css_task_iter it; 1720 struct task_struct *p; 1721 1722 css_task_iter_start(css, 0, &it); 1723 while ((p = css_task_iter_next(&it))) 1724 uclamp_update_active(p); 1725 css_task_iter_end(&it); 1726 } 1727 1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1729 #endif 1730 1731 #ifdef CONFIG_SYSCTL 1732 #ifdef CONFIG_UCLAMP_TASK 1733 #ifdef CONFIG_UCLAMP_TASK_GROUP 1734 static void uclamp_update_root_tg(void) 1735 { 1736 struct task_group *tg = &root_task_group; 1737 1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1739 sysctl_sched_uclamp_util_min, false); 1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1741 sysctl_sched_uclamp_util_max, false); 1742 1743 rcu_read_lock(); 1744 cpu_util_update_eff(&root_task_group.css); 1745 rcu_read_unlock(); 1746 } 1747 #else 1748 static void uclamp_update_root_tg(void) { } 1749 #endif 1750 1751 static void uclamp_sync_util_min_rt_default(void) 1752 { 1753 struct task_struct *g, *p; 1754 1755 /* 1756 * copy_process() sysctl_uclamp 1757 * uclamp_min_rt = X; 1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1759 * // link thread smp_mb__after_spinlock() 1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1761 * sched_post_fork() for_each_process_thread() 1762 * __uclamp_sync_rt() __uclamp_sync_rt() 1763 * 1764 * Ensures that either sched_post_fork() will observe the new 1765 * uclamp_min_rt or for_each_process_thread() will observe the new 1766 * task. 1767 */ 1768 read_lock(&tasklist_lock); 1769 smp_mb__after_spinlock(); 1770 read_unlock(&tasklist_lock); 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) 1774 uclamp_update_util_min_rt_default(p); 1775 rcu_read_unlock(); 1776 } 1777 1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, 1779 void *buffer, size_t *lenp, loff_t *ppos) 1780 { 1781 bool update_root_tg = false; 1782 int old_min, old_max, old_min_rt; 1783 int result; 1784 1785 mutex_lock(&uclamp_mutex); 1786 old_min = sysctl_sched_uclamp_util_min; 1787 old_max = sysctl_sched_uclamp_util_max; 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1789 1790 result = proc_dointvec(table, write, buffer, lenp, ppos); 1791 if (result) 1792 goto undo; 1793 if (!write) 1794 goto done; 1795 1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1799 1800 result = -EINVAL; 1801 goto undo; 1802 } 1803 1804 if (old_min != sysctl_sched_uclamp_util_min) { 1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1806 sysctl_sched_uclamp_util_min, false); 1807 update_root_tg = true; 1808 } 1809 if (old_max != sysctl_sched_uclamp_util_max) { 1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1811 sysctl_sched_uclamp_util_max, false); 1812 update_root_tg = true; 1813 } 1814 1815 if (update_root_tg) { 1816 static_branch_enable(&sched_uclamp_used); 1817 uclamp_update_root_tg(); 1818 } 1819 1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1821 static_branch_enable(&sched_uclamp_used); 1822 uclamp_sync_util_min_rt_default(); 1823 } 1824 1825 /* 1826 * We update all RUNNABLE tasks only when task groups are in use. 1827 * Otherwise, keep it simple and do just a lazy update at each next 1828 * task enqueue time. 1829 */ 1830 1831 goto done; 1832 1833 undo: 1834 sysctl_sched_uclamp_util_min = old_min; 1835 sysctl_sched_uclamp_util_max = old_max; 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1837 done: 1838 mutex_unlock(&uclamp_mutex); 1839 1840 return result; 1841 } 1842 #endif 1843 #endif 1844 1845 static int uclamp_validate(struct task_struct *p, 1846 const struct sched_attr *attr) 1847 { 1848 int util_min = p->uclamp_req[UCLAMP_MIN].value; 1849 int util_max = p->uclamp_req[UCLAMP_MAX].value; 1850 1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 1852 util_min = attr->sched_util_min; 1853 1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 1855 return -EINVAL; 1856 } 1857 1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 1859 util_max = attr->sched_util_max; 1860 1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 1862 return -EINVAL; 1863 } 1864 1865 if (util_min != -1 && util_max != -1 && util_min > util_max) 1866 return -EINVAL; 1867 1868 /* 1869 * We have valid uclamp attributes; make sure uclamp is enabled. 1870 * 1871 * We need to do that here, because enabling static branches is a 1872 * blocking operation which obviously cannot be done while holding 1873 * scheduler locks. 1874 */ 1875 static_branch_enable(&sched_uclamp_used); 1876 1877 return 0; 1878 } 1879 1880 static bool uclamp_reset(const struct sched_attr *attr, 1881 enum uclamp_id clamp_id, 1882 struct uclamp_se *uc_se) 1883 { 1884 /* Reset on sched class change for a non user-defined clamp value. */ 1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 1886 !uc_se->user_defined) 1887 return true; 1888 1889 /* Reset on sched_util_{min,max} == -1. */ 1890 if (clamp_id == UCLAMP_MIN && 1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1892 attr->sched_util_min == -1) { 1893 return true; 1894 } 1895 1896 if (clamp_id == UCLAMP_MAX && 1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1898 attr->sched_util_max == -1) { 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 static void __setscheduler_uclamp(struct task_struct *p, 1906 const struct sched_attr *attr) 1907 { 1908 enum uclamp_id clamp_id; 1909 1910 for_each_clamp_id(clamp_id) { 1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 1912 unsigned int value; 1913 1914 if (!uclamp_reset(attr, clamp_id, uc_se)) 1915 continue; 1916 1917 /* 1918 * RT by default have a 100% boost value that could be modified 1919 * at runtime. 1920 */ 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 1922 value = sysctl_sched_uclamp_util_min_rt_default; 1923 else 1924 value = uclamp_none(clamp_id); 1925 1926 uclamp_se_set(uc_se, value, false); 1927 1928 } 1929 1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 1931 return; 1932 1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 1934 attr->sched_util_min != -1) { 1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 1936 attr->sched_util_min, true); 1937 } 1938 1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 1940 attr->sched_util_max != -1) { 1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 1942 attr->sched_util_max, true); 1943 } 1944 } 1945 1946 static void uclamp_fork(struct task_struct *p) 1947 { 1948 enum uclamp_id clamp_id; 1949 1950 /* 1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1952 * as the task is still at its early fork stages. 1953 */ 1954 for_each_clamp_id(clamp_id) 1955 p->uclamp[clamp_id].active = false; 1956 1957 if (likely(!p->sched_reset_on_fork)) 1958 return; 1959 1960 for_each_clamp_id(clamp_id) { 1961 uclamp_se_set(&p->uclamp_req[clamp_id], 1962 uclamp_none(clamp_id), false); 1963 } 1964 } 1965 1966 static void uclamp_post_fork(struct task_struct *p) 1967 { 1968 uclamp_update_util_min_rt_default(p); 1969 } 1970 1971 static void __init init_uclamp_rq(struct rq *rq) 1972 { 1973 enum uclamp_id clamp_id; 1974 struct uclamp_rq *uc_rq = rq->uclamp; 1975 1976 for_each_clamp_id(clamp_id) { 1977 uc_rq[clamp_id] = (struct uclamp_rq) { 1978 .value = uclamp_none(clamp_id) 1979 }; 1980 } 1981 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 1983 } 1984 1985 static void __init init_uclamp(void) 1986 { 1987 struct uclamp_se uc_max = {}; 1988 enum uclamp_id clamp_id; 1989 int cpu; 1990 1991 for_each_possible_cpu(cpu) 1992 init_uclamp_rq(cpu_rq(cpu)); 1993 1994 for_each_clamp_id(clamp_id) { 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id], 1996 uclamp_none(clamp_id), false); 1997 } 1998 1999 /* System defaults allow max clamp values for both indexes */ 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2001 for_each_clamp_id(clamp_id) { 2002 uclamp_default[clamp_id] = uc_max; 2003 #ifdef CONFIG_UCLAMP_TASK_GROUP 2004 root_task_group.uclamp_req[clamp_id] = uc_max; 2005 root_task_group.uclamp[clamp_id] = uc_max; 2006 #endif 2007 } 2008 } 2009 2010 #else /* CONFIG_UCLAMP_TASK */ 2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2013 static inline int uclamp_validate(struct task_struct *p, 2014 const struct sched_attr *attr) 2015 { 2016 return -EOPNOTSUPP; 2017 } 2018 static void __setscheduler_uclamp(struct task_struct *p, 2019 const struct sched_attr *attr) { } 2020 static inline void uclamp_fork(struct task_struct *p) { } 2021 static inline void uclamp_post_fork(struct task_struct *p) { } 2022 static inline void init_uclamp(void) { } 2023 #endif /* CONFIG_UCLAMP_TASK */ 2024 2025 bool sched_task_on_rq(struct task_struct *p) 2026 { 2027 return task_on_rq_queued(p); 2028 } 2029 2030 unsigned long get_wchan(struct task_struct *p) 2031 { 2032 unsigned long ip = 0; 2033 unsigned int state; 2034 2035 if (!p || p == current) 2036 return 0; 2037 2038 /* Only get wchan if task is blocked and we can keep it that way. */ 2039 raw_spin_lock_irq(&p->pi_lock); 2040 state = READ_ONCE(p->__state); 2041 smp_rmb(); /* see try_to_wake_up() */ 2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2043 ip = __get_wchan(p); 2044 raw_spin_unlock_irq(&p->pi_lock); 2045 2046 return ip; 2047 } 2048 2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2050 { 2051 if (!(flags & ENQUEUE_NOCLOCK)) 2052 update_rq_clock(rq); 2053 2054 if (!(flags & ENQUEUE_RESTORE)) { 2055 sched_info_enqueue(rq, p); 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); 2057 } 2058 2059 uclamp_rq_inc(rq, p); 2060 p->sched_class->enqueue_task(rq, p, flags); 2061 2062 if (sched_core_enabled(rq)) 2063 sched_core_enqueue(rq, p); 2064 } 2065 2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2067 { 2068 if (sched_core_enabled(rq)) 2069 sched_core_dequeue(rq, p, flags); 2070 2071 if (!(flags & DEQUEUE_NOCLOCK)) 2072 update_rq_clock(rq); 2073 2074 if (!(flags & DEQUEUE_SAVE)) { 2075 sched_info_dequeue(rq, p); 2076 psi_dequeue(p, flags & DEQUEUE_SLEEP); 2077 } 2078 2079 uclamp_rq_dec(rq, p); 2080 p->sched_class->dequeue_task(rq, p, flags); 2081 } 2082 2083 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2084 { 2085 enqueue_task(rq, p, flags); 2086 2087 p->on_rq = TASK_ON_RQ_QUEUED; 2088 } 2089 2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2091 { 2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; 2093 2094 dequeue_task(rq, p, flags); 2095 } 2096 2097 static inline int __normal_prio(int policy, int rt_prio, int nice) 2098 { 2099 int prio; 2100 2101 if (dl_policy(policy)) 2102 prio = MAX_DL_PRIO - 1; 2103 else if (rt_policy(policy)) 2104 prio = MAX_RT_PRIO - 1 - rt_prio; 2105 else 2106 prio = NICE_TO_PRIO(nice); 2107 2108 return prio; 2109 } 2110 2111 /* 2112 * Calculate the expected normal priority: i.e. priority 2113 * without taking RT-inheritance into account. Might be 2114 * boosted by interactivity modifiers. Changes upon fork, 2115 * setprio syscalls, and whenever the interactivity 2116 * estimator recalculates. 2117 */ 2118 static inline int normal_prio(struct task_struct *p) 2119 { 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 2121 } 2122 2123 /* 2124 * Calculate the current priority, i.e. the priority 2125 * taken into account by the scheduler. This value might 2126 * be boosted by RT tasks, or might be boosted by 2127 * interactivity modifiers. Will be RT if the task got 2128 * RT-boosted. If not then it returns p->normal_prio. 2129 */ 2130 static int effective_prio(struct task_struct *p) 2131 { 2132 p->normal_prio = normal_prio(p); 2133 /* 2134 * If we are RT tasks or we were boosted to RT priority, 2135 * keep the priority unchanged. Otherwise, update priority 2136 * to the normal priority: 2137 */ 2138 if (!rt_prio(p->prio)) 2139 return p->normal_prio; 2140 return p->prio; 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2156 * use the balance_callback list if you want balancing. 2157 * 2158 * this means any call to check_class_changed() must be followed by a call to 2159 * balance_callback(). 2160 */ 2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 2162 const struct sched_class *prev_class, 2163 int oldprio) 2164 { 2165 if (prev_class != p->sched_class) { 2166 if (prev_class->switched_from) 2167 prev_class->switched_from(rq, p); 2168 2169 p->sched_class->switched_to(rq, p); 2170 } else if (oldprio != p->prio || dl_task(p)) 2171 p->sched_class->prio_changed(rq, p, oldprio); 2172 } 2173 2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 2175 { 2176 if (p->sched_class == rq->curr->sched_class) 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class)) 2179 resched_curr(rq); 2180 2181 /* 2182 * A queue event has occurred, and we're going to schedule. In 2183 * this case, we can save a useless back to back clock update. 2184 */ 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 2186 rq_clock_skip_update(rq); 2187 } 2188 2189 #ifdef CONFIG_SMP 2190 2191 static void 2192 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2193 2194 static int __set_cpus_allowed_ptr(struct task_struct *p, 2195 struct affinity_context *ctx); 2196 2197 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2198 { 2199 struct affinity_context ac = { 2200 .new_mask = cpumask_of(rq->cpu), 2201 .flags = SCA_MIGRATE_DISABLE, 2202 }; 2203 2204 if (likely(!p->migration_disabled)) 2205 return; 2206 2207 if (p->cpus_ptr != &p->cpus_mask) 2208 return; 2209 2210 /* 2211 * Violates locking rules! see comment in __do_set_cpus_allowed(). 2212 */ 2213 __do_set_cpus_allowed(p, &ac); 2214 } 2215 2216 void migrate_disable(void) 2217 { 2218 struct task_struct *p = current; 2219 2220 if (p->migration_disabled) { 2221 p->migration_disabled++; 2222 return; 2223 } 2224 2225 preempt_disable(); 2226 this_rq()->nr_pinned++; 2227 p->migration_disabled = 1; 2228 preempt_enable(); 2229 } 2230 EXPORT_SYMBOL_GPL(migrate_disable); 2231 2232 void migrate_enable(void) 2233 { 2234 struct task_struct *p = current; 2235 struct affinity_context ac = { 2236 .new_mask = &p->cpus_mask, 2237 .flags = SCA_MIGRATE_ENABLE, 2238 }; 2239 2240 if (p->migration_disabled > 1) { 2241 p->migration_disabled--; 2242 return; 2243 } 2244 2245 if (WARN_ON_ONCE(!p->migration_disabled)) 2246 return; 2247 2248 /* 2249 * Ensure stop_task runs either before or after this, and that 2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2251 */ 2252 preempt_disable(); 2253 if (p->cpus_ptr != &p->cpus_mask) 2254 __set_cpus_allowed_ptr(p, &ac); 2255 /* 2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2257 * regular cpus_mask, otherwise things that race (eg. 2258 * select_fallback_rq) get confused. 2259 */ 2260 barrier(); 2261 p->migration_disabled = 0; 2262 this_rq()->nr_pinned--; 2263 preempt_enable(); 2264 } 2265 EXPORT_SYMBOL_GPL(migrate_enable); 2266 2267 static inline bool rq_has_pinned_tasks(struct rq *rq) 2268 { 2269 return rq->nr_pinned; 2270 } 2271 2272 /* 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2274 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2275 */ 2276 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2277 { 2278 /* When not in the task's cpumask, no point in looking further. */ 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2280 return false; 2281 2282 /* migrate_disabled() must be allowed to finish. */ 2283 if (is_migration_disabled(p)) 2284 return cpu_online(cpu); 2285 2286 /* Non kernel threads are not allowed during either online or offline. */ 2287 if (!(p->flags & PF_KTHREAD)) 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p); 2289 2290 /* KTHREAD_IS_PER_CPU is always allowed. */ 2291 if (kthread_is_per_cpu(p)) 2292 return cpu_online(cpu); 2293 2294 /* Regular kernel threads don't get to stay during offline. */ 2295 if (cpu_dying(cpu)) 2296 return false; 2297 2298 /* But are allowed during online. */ 2299 return cpu_online(cpu); 2300 } 2301 2302 /* 2303 * This is how migration works: 2304 * 2305 * 1) we invoke migration_cpu_stop() on the target CPU using 2306 * stop_one_cpu(). 2307 * 2) stopper starts to run (implicitly forcing the migrated thread 2308 * off the CPU) 2309 * 3) it checks whether the migrated task is still in the wrong runqueue. 2310 * 4) if it's in the wrong runqueue then the migration thread removes 2311 * it and puts it into the right queue. 2312 * 5) stopper completes and stop_one_cpu() returns and the migration 2313 * is done. 2314 */ 2315 2316 /* 2317 * move_queued_task - move a queued task to new rq. 2318 * 2319 * Returns (locked) new rq. Old rq's lock is released. 2320 */ 2321 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2322 struct task_struct *p, int new_cpu) 2323 { 2324 lockdep_assert_rq_held(rq); 2325 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2327 set_task_cpu(p, new_cpu); 2328 rq_unlock(rq, rf); 2329 2330 rq = cpu_rq(new_cpu); 2331 2332 rq_lock(rq, rf); 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2334 activate_task(rq, p, 0); 2335 check_preempt_curr(rq, p, 0); 2336 2337 return rq; 2338 } 2339 2340 struct migration_arg { 2341 struct task_struct *task; 2342 int dest_cpu; 2343 struct set_affinity_pending *pending; 2344 }; 2345 2346 /* 2347 * @refs: number of wait_for_completion() 2348 * @stop_pending: is @stop_work in use 2349 */ 2350 struct set_affinity_pending { 2351 refcount_t refs; 2352 unsigned int stop_pending; 2353 struct completion done; 2354 struct cpu_stop_work stop_work; 2355 struct migration_arg arg; 2356 }; 2357 2358 /* 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2360 * this because either it can't run here any more (set_cpus_allowed() 2361 * away from this CPU, or CPU going down), or because we're 2362 * attempting to rebalance this task on exec (sched_exec). 2363 * 2364 * So we race with normal scheduler movements, but that's OK, as long 2365 * as the task is no longer on this CPU. 2366 */ 2367 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2368 struct task_struct *p, int dest_cpu) 2369 { 2370 /* Affinity changed (again). */ 2371 if (!is_cpu_allowed(p, dest_cpu)) 2372 return rq; 2373 2374 update_rq_clock(rq); 2375 rq = move_queued_task(rq, rf, p, dest_cpu); 2376 2377 return rq; 2378 } 2379 2380 /* 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread 2382 * and performs thread migration by bumping thread off CPU then 2383 * 'pushing' onto another runqueue. 2384 */ 2385 static int migration_cpu_stop(void *data) 2386 { 2387 struct migration_arg *arg = data; 2388 struct set_affinity_pending *pending = arg->pending; 2389 struct task_struct *p = arg->task; 2390 struct rq *rq = this_rq(); 2391 bool complete = false; 2392 struct rq_flags rf; 2393 2394 /* 2395 * The original target CPU might have gone down and we might 2396 * be on another CPU but it doesn't matter. 2397 */ 2398 local_irq_save(rf.flags); 2399 /* 2400 * We need to explicitly wake pending tasks before running 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr 2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2403 */ 2404 flush_smp_call_function_queue(); 2405 2406 raw_spin_lock(&p->pi_lock); 2407 rq_lock(rq, &rf); 2408 2409 /* 2410 * If we were passed a pending, then ->stop_pending was set, thus 2411 * p->migration_pending must have remained stable. 2412 */ 2413 WARN_ON_ONCE(pending && pending != p->migration_pending); 2414 2415 /* 2416 * If task_rq(p) != rq, it cannot be migrated here, because we're 2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2418 * we're holding p->pi_lock. 2419 */ 2420 if (task_rq(p) == rq) { 2421 if (is_migration_disabled(p)) 2422 goto out; 2423 2424 if (pending) { 2425 p->migration_pending = NULL; 2426 complete = true; 2427 2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2429 goto out; 2430 } 2431 2432 if (task_on_rq_queued(p)) 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2434 else 2435 p->wake_cpu = arg->dest_cpu; 2436 2437 /* 2438 * XXX __migrate_task() can fail, at which point we might end 2439 * up running on a dodgy CPU, AFAICT this can only happen 2440 * during CPU hotplug, at which point we'll get pushed out 2441 * anyway, so it's probably not a big deal. 2442 */ 2443 2444 } else if (pending) { 2445 /* 2446 * This happens when we get migrated between migrate_enable()'s 2447 * preempt_enable() and scheduling the stopper task. At that 2448 * point we're a regular task again and not current anymore. 2449 * 2450 * A !PREEMPT kernel has a giant hole here, which makes it far 2451 * more likely. 2452 */ 2453 2454 /* 2455 * The task moved before the stopper got to run. We're holding 2456 * ->pi_lock, so the allowed mask is stable - if it got 2457 * somewhere allowed, we're done. 2458 */ 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2460 p->migration_pending = NULL; 2461 complete = true; 2462 goto out; 2463 } 2464 2465 /* 2466 * When migrate_enable() hits a rq mis-match we can't reliably 2467 * determine is_migration_disabled() and so have to chase after 2468 * it. 2469 */ 2470 WARN_ON_ONCE(!pending->stop_pending); 2471 task_rq_unlock(rq, p, &rf); 2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2473 &pending->arg, &pending->stop_work); 2474 return 0; 2475 } 2476 out: 2477 if (pending) 2478 pending->stop_pending = false; 2479 task_rq_unlock(rq, p, &rf); 2480 2481 if (complete) 2482 complete_all(&pending->done); 2483 2484 return 0; 2485 } 2486 2487 int push_cpu_stop(void *arg) 2488 { 2489 struct rq *lowest_rq = NULL, *rq = this_rq(); 2490 struct task_struct *p = arg; 2491 2492 raw_spin_lock_irq(&p->pi_lock); 2493 raw_spin_rq_lock(rq); 2494 2495 if (task_rq(p) != rq) 2496 goto out_unlock; 2497 2498 if (is_migration_disabled(p)) { 2499 p->migration_flags |= MDF_PUSH; 2500 goto out_unlock; 2501 } 2502 2503 p->migration_flags &= ~MDF_PUSH; 2504 2505 if (p->sched_class->find_lock_rq) 2506 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2507 2508 if (!lowest_rq) 2509 goto out_unlock; 2510 2511 // XXX validate p is still the highest prio task 2512 if (task_rq(p) == rq) { 2513 deactivate_task(rq, p, 0); 2514 set_task_cpu(p, lowest_rq->cpu); 2515 activate_task(lowest_rq, p, 0); 2516 resched_curr(lowest_rq); 2517 } 2518 2519 double_unlock_balance(rq, lowest_rq); 2520 2521 out_unlock: 2522 rq->push_busy = false; 2523 raw_spin_rq_unlock(rq); 2524 raw_spin_unlock_irq(&p->pi_lock); 2525 2526 put_task_struct(p); 2527 return 0; 2528 } 2529 2530 /* 2531 * sched_class::set_cpus_allowed must do the below, but is not required to 2532 * actually call this function. 2533 */ 2534 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2535 { 2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2537 p->cpus_ptr = ctx->new_mask; 2538 return; 2539 } 2540 2541 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2543 2544 /* 2545 * Swap in a new user_cpus_ptr if SCA_USER flag set 2546 */ 2547 if (ctx->flags & SCA_USER) 2548 swap(p->user_cpus_ptr, ctx->user_mask); 2549 } 2550 2551 static void 2552 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2553 { 2554 struct rq *rq = task_rq(p); 2555 bool queued, running; 2556 2557 /* 2558 * This here violates the locking rules for affinity, since we're only 2559 * supposed to change these variables while holding both rq->lock and 2560 * p->pi_lock. 2561 * 2562 * HOWEVER, it magically works, because ttwu() is the only code that 2563 * accesses these variables under p->pi_lock and only does so after 2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2565 * before finish_task(). 2566 * 2567 * XXX do further audits, this smells like something putrid. 2568 */ 2569 if (ctx->flags & SCA_MIGRATE_DISABLE) 2570 SCHED_WARN_ON(!p->on_cpu); 2571 else 2572 lockdep_assert_held(&p->pi_lock); 2573 2574 queued = task_on_rq_queued(p); 2575 running = task_current(rq, p); 2576 2577 if (queued) { 2578 /* 2579 * Because __kthread_bind() calls this on blocked tasks without 2580 * holding rq->lock. 2581 */ 2582 lockdep_assert_rq_held(rq); 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2584 } 2585 if (running) 2586 put_prev_task(rq, p); 2587 2588 p->sched_class->set_cpus_allowed(p, ctx); 2589 2590 if (queued) 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2592 if (running) 2593 set_next_task(rq, p); 2594 } 2595 2596 /* 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2598 * affinity (if any) should be destroyed too. 2599 */ 2600 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2601 { 2602 struct affinity_context ac = { 2603 .new_mask = new_mask, 2604 .user_mask = NULL, 2605 .flags = SCA_USER, /* clear the user requested mask */ 2606 }; 2607 2608 __do_set_cpus_allowed(p, &ac); 2609 kfree(ac.user_mask); 2610 } 2611 2612 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2613 int node) 2614 { 2615 unsigned long flags; 2616 2617 if (!src->user_cpus_ptr) 2618 return 0; 2619 2620 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node); 2621 if (!dst->user_cpus_ptr) 2622 return -ENOMEM; 2623 2624 /* Use pi_lock to protect content of user_cpus_ptr */ 2625 raw_spin_lock_irqsave(&src->pi_lock, flags); 2626 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2627 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2628 return 0; 2629 } 2630 2631 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2632 { 2633 struct cpumask *user_mask = NULL; 2634 2635 swap(p->user_cpus_ptr, user_mask); 2636 2637 return user_mask; 2638 } 2639 2640 void release_user_cpus_ptr(struct task_struct *p) 2641 { 2642 kfree(clear_user_cpus_ptr(p)); 2643 } 2644 2645 /* 2646 * This function is wildly self concurrent; here be dragons. 2647 * 2648 * 2649 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2650 * designated task is enqueued on an allowed CPU. If that task is currently 2651 * running, we have to kick it out using the CPU stopper. 2652 * 2653 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2654 * Consider: 2655 * 2656 * Initial conditions: P0->cpus_mask = [0, 1] 2657 * 2658 * P0@CPU0 P1 2659 * 2660 * migrate_disable(); 2661 * <preempted> 2662 * set_cpus_allowed_ptr(P0, [1]); 2663 * 2664 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2665 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2666 * This means we need the following scheme: 2667 * 2668 * P0@CPU0 P1 2669 * 2670 * migrate_disable(); 2671 * <preempted> 2672 * set_cpus_allowed_ptr(P0, [1]); 2673 * <blocks> 2674 * <resumes> 2675 * migrate_enable(); 2676 * __set_cpus_allowed_ptr(); 2677 * <wakes local stopper> 2678 * `--> <woken on migration completion> 2679 * 2680 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2681 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2682 * task p are serialized by p->pi_lock, which we can leverage: the one that 2683 * should come into effect at the end of the Migrate-Disable region is the last 2684 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2685 * but we still need to properly signal those waiting tasks at the appropriate 2686 * moment. 2687 * 2688 * This is implemented using struct set_affinity_pending. The first 2689 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2690 * setup an instance of that struct and install it on the targeted task_struct. 2691 * Any and all further callers will reuse that instance. Those then wait for 2692 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2693 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2694 * 2695 * 2696 * (1) In the cases covered above. There is one more where the completion is 2697 * signaled within affine_move_task() itself: when a subsequent affinity request 2698 * occurs after the stopper bailed out due to the targeted task still being 2699 * Migrate-Disable. Consider: 2700 * 2701 * Initial conditions: P0->cpus_mask = [0, 1] 2702 * 2703 * CPU0 P1 P2 2704 * <P0> 2705 * migrate_disable(); 2706 * <preempted> 2707 * set_cpus_allowed_ptr(P0, [1]); 2708 * <blocks> 2709 * <migration/0> 2710 * migration_cpu_stop() 2711 * is_migration_disabled() 2712 * <bails> 2713 * set_cpus_allowed_ptr(P0, [0, 1]); 2714 * <signal completion> 2715 * <awakes> 2716 * 2717 * Note that the above is safe vs a concurrent migrate_enable(), as any 2718 * pending affinity completion is preceded by an uninstallation of 2719 * p->migration_pending done with p->pi_lock held. 2720 */ 2721 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2722 int dest_cpu, unsigned int flags) 2723 __releases(rq->lock) 2724 __releases(p->pi_lock) 2725 { 2726 struct set_affinity_pending my_pending = { }, *pending = NULL; 2727 bool stop_pending, complete = false; 2728 2729 /* Can the task run on the task's current CPU? If so, we're done */ 2730 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2731 struct task_struct *push_task = NULL; 2732 2733 if ((flags & SCA_MIGRATE_ENABLE) && 2734 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2735 rq->push_busy = true; 2736 push_task = get_task_struct(p); 2737 } 2738 2739 /* 2740 * If there are pending waiters, but no pending stop_work, 2741 * then complete now. 2742 */ 2743 pending = p->migration_pending; 2744 if (pending && !pending->stop_pending) { 2745 p->migration_pending = NULL; 2746 complete = true; 2747 } 2748 2749 task_rq_unlock(rq, p, rf); 2750 2751 if (push_task) { 2752 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2753 p, &rq->push_work); 2754 } 2755 2756 if (complete) 2757 complete_all(&pending->done); 2758 2759 return 0; 2760 } 2761 2762 if (!(flags & SCA_MIGRATE_ENABLE)) { 2763 /* serialized by p->pi_lock */ 2764 if (!p->migration_pending) { 2765 /* Install the request */ 2766 refcount_set(&my_pending.refs, 1); 2767 init_completion(&my_pending.done); 2768 my_pending.arg = (struct migration_arg) { 2769 .task = p, 2770 .dest_cpu = dest_cpu, 2771 .pending = &my_pending, 2772 }; 2773 2774 p->migration_pending = &my_pending; 2775 } else { 2776 pending = p->migration_pending; 2777 refcount_inc(&pending->refs); 2778 /* 2779 * Affinity has changed, but we've already installed a 2780 * pending. migration_cpu_stop() *must* see this, else 2781 * we risk a completion of the pending despite having a 2782 * task on a disallowed CPU. 2783 * 2784 * Serialized by p->pi_lock, so this is safe. 2785 */ 2786 pending->arg.dest_cpu = dest_cpu; 2787 } 2788 } 2789 pending = p->migration_pending; 2790 /* 2791 * - !MIGRATE_ENABLE: 2792 * we'll have installed a pending if there wasn't one already. 2793 * 2794 * - MIGRATE_ENABLE: 2795 * we're here because the current CPU isn't matching anymore, 2796 * the only way that can happen is because of a concurrent 2797 * set_cpus_allowed_ptr() call, which should then still be 2798 * pending completion. 2799 * 2800 * Either way, we really should have a @pending here. 2801 */ 2802 if (WARN_ON_ONCE(!pending)) { 2803 task_rq_unlock(rq, p, rf); 2804 return -EINVAL; 2805 } 2806 2807 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 2808 /* 2809 * MIGRATE_ENABLE gets here because 'p == current', but for 2810 * anything else we cannot do is_migration_disabled(), punt 2811 * and have the stopper function handle it all race-free. 2812 */ 2813 stop_pending = pending->stop_pending; 2814 if (!stop_pending) 2815 pending->stop_pending = true; 2816 2817 if (flags & SCA_MIGRATE_ENABLE) 2818 p->migration_flags &= ~MDF_PUSH; 2819 2820 task_rq_unlock(rq, p, rf); 2821 2822 if (!stop_pending) { 2823 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 2824 &pending->arg, &pending->stop_work); 2825 } 2826 2827 if (flags & SCA_MIGRATE_ENABLE) 2828 return 0; 2829 } else { 2830 2831 if (!is_migration_disabled(p)) { 2832 if (task_on_rq_queued(p)) 2833 rq = move_queued_task(rq, rf, p, dest_cpu); 2834 2835 if (!pending->stop_pending) { 2836 p->migration_pending = NULL; 2837 complete = true; 2838 } 2839 } 2840 task_rq_unlock(rq, p, rf); 2841 2842 if (complete) 2843 complete_all(&pending->done); 2844 } 2845 2846 wait_for_completion(&pending->done); 2847 2848 if (refcount_dec_and_test(&pending->refs)) 2849 wake_up_var(&pending->refs); /* No UaF, just an address */ 2850 2851 /* 2852 * Block the original owner of &pending until all subsequent callers 2853 * have seen the completion and decremented the refcount 2854 */ 2855 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 2856 2857 /* ARGH */ 2858 WARN_ON_ONCE(my_pending.stop_pending); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * Called with both p->pi_lock and rq->lock held; drops both before returning. 2865 */ 2866 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 2867 struct affinity_context *ctx, 2868 struct rq *rq, 2869 struct rq_flags *rf) 2870 __releases(rq->lock) 2871 __releases(p->pi_lock) 2872 { 2873 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 2874 const struct cpumask *cpu_valid_mask = cpu_active_mask; 2875 bool kthread = p->flags & PF_KTHREAD; 2876 unsigned int dest_cpu; 2877 int ret = 0; 2878 2879 update_rq_clock(rq); 2880 2881 if (kthread || is_migration_disabled(p)) { 2882 /* 2883 * Kernel threads are allowed on online && !active CPUs, 2884 * however, during cpu-hot-unplug, even these might get pushed 2885 * away if not KTHREAD_IS_PER_CPU. 2886 * 2887 * Specifically, migration_disabled() tasks must not fail the 2888 * cpumask_any_and_distribute() pick below, esp. so on 2889 * SCA_MIGRATE_ENABLE, otherwise we'll not call 2890 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 2891 */ 2892 cpu_valid_mask = cpu_online_mask; 2893 } 2894 2895 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 2896 ret = -EINVAL; 2897 goto out; 2898 } 2899 2900 /* 2901 * Must re-check here, to close a race against __kthread_bind(), 2902 * sched_setaffinity() is not guaranteed to observe the flag. 2903 */ 2904 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 2910 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) 2911 goto out; 2912 2913 if (WARN_ON_ONCE(p == current && 2914 is_migration_disabled(p) && 2915 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 2916 ret = -EBUSY; 2917 goto out; 2918 } 2919 } 2920 2921 /* 2922 * Picking a ~random cpu helps in cases where we are changing affinity 2923 * for groups of tasks (ie. cpuset), so that load balancing is not 2924 * immediately required to distribute the tasks within their new mask. 2925 */ 2926 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 2927 if (dest_cpu >= nr_cpu_ids) { 2928 ret = -EINVAL; 2929 goto out; 2930 } 2931 2932 __do_set_cpus_allowed(p, ctx); 2933 2934 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 2935 2936 out: 2937 task_rq_unlock(rq, p, rf); 2938 2939 return ret; 2940 } 2941 2942 /* 2943 * Change a given task's CPU affinity. Migrate the thread to a 2944 * proper CPU and schedule it away if the CPU it's executing on 2945 * is removed from the allowed bitmask. 2946 * 2947 * NOTE: the caller must have a valid reference to the task, the 2948 * task must not exit() & deallocate itself prematurely. The 2949 * call is not atomic; no spinlocks may be held. 2950 */ 2951 static int __set_cpus_allowed_ptr(struct task_struct *p, 2952 struct affinity_context *ctx) 2953 { 2954 struct rq_flags rf; 2955 struct rq *rq; 2956 2957 rq = task_rq_lock(p, &rf); 2958 /* 2959 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 2960 * flags are set. 2961 */ 2962 if (p->user_cpus_ptr && 2963 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 2964 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 2965 ctx->new_mask = rq->scratch_mask; 2966 2967 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 2968 } 2969 2970 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 2971 { 2972 struct affinity_context ac = { 2973 .new_mask = new_mask, 2974 .flags = 0, 2975 }; 2976 2977 return __set_cpus_allowed_ptr(p, &ac); 2978 } 2979 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 2980 2981 /* 2982 * Change a given task's CPU affinity to the intersection of its current 2983 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 2984 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 2985 * affinity or use cpu_online_mask instead. 2986 * 2987 * If the resulting mask is empty, leave the affinity unchanged and return 2988 * -EINVAL. 2989 */ 2990 static int restrict_cpus_allowed_ptr(struct task_struct *p, 2991 struct cpumask *new_mask, 2992 const struct cpumask *subset_mask) 2993 { 2994 struct affinity_context ac = { 2995 .new_mask = new_mask, 2996 .flags = 0, 2997 }; 2998 struct rq_flags rf; 2999 struct rq *rq; 3000 int err; 3001 3002 rq = task_rq_lock(p, &rf); 3003 3004 /* 3005 * Forcefully restricting the affinity of a deadline task is 3006 * likely to cause problems, so fail and noisily override the 3007 * mask entirely. 3008 */ 3009 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3010 err = -EPERM; 3011 goto err_unlock; 3012 } 3013 3014 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3015 err = -EINVAL; 3016 goto err_unlock; 3017 } 3018 3019 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3020 3021 err_unlock: 3022 task_rq_unlock(rq, p, &rf); 3023 return err; 3024 } 3025 3026 /* 3027 * Restrict the CPU affinity of task @p so that it is a subset of 3028 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3029 * old affinity mask. If the resulting mask is empty, we warn and walk 3030 * up the cpuset hierarchy until we find a suitable mask. 3031 */ 3032 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3033 { 3034 cpumask_var_t new_mask; 3035 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3036 3037 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3038 3039 /* 3040 * __migrate_task() can fail silently in the face of concurrent 3041 * offlining of the chosen destination CPU, so take the hotplug 3042 * lock to ensure that the migration succeeds. 3043 */ 3044 cpus_read_lock(); 3045 if (!cpumask_available(new_mask)) 3046 goto out_set_mask; 3047 3048 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3049 goto out_free_mask; 3050 3051 /* 3052 * We failed to find a valid subset of the affinity mask for the 3053 * task, so override it based on its cpuset hierarchy. 3054 */ 3055 cpuset_cpus_allowed(p, new_mask); 3056 override_mask = new_mask; 3057 3058 out_set_mask: 3059 if (printk_ratelimit()) { 3060 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3061 task_pid_nr(p), p->comm, 3062 cpumask_pr_args(override_mask)); 3063 } 3064 3065 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3066 out_free_mask: 3067 cpus_read_unlock(); 3068 free_cpumask_var(new_mask); 3069 } 3070 3071 static int 3072 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3073 3074 /* 3075 * Restore the affinity of a task @p which was previously restricted by a 3076 * call to force_compatible_cpus_allowed_ptr(). 3077 * 3078 * It is the caller's responsibility to serialise this with any calls to 3079 * force_compatible_cpus_allowed_ptr(@p). 3080 */ 3081 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3082 { 3083 struct affinity_context ac = { 3084 .new_mask = task_user_cpus(p), 3085 .flags = 0, 3086 }; 3087 int ret; 3088 3089 /* 3090 * Try to restore the old affinity mask with __sched_setaffinity(). 3091 * Cpuset masking will be done there too. 3092 */ 3093 ret = __sched_setaffinity(p, &ac); 3094 WARN_ON_ONCE(ret); 3095 } 3096 3097 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3098 { 3099 #ifdef CONFIG_SCHED_DEBUG 3100 unsigned int state = READ_ONCE(p->__state); 3101 3102 /* 3103 * We should never call set_task_cpu() on a blocked task, 3104 * ttwu() will sort out the placement. 3105 */ 3106 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3107 3108 /* 3109 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3110 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3111 * time relying on p->on_rq. 3112 */ 3113 WARN_ON_ONCE(state == TASK_RUNNING && 3114 p->sched_class == &fair_sched_class && 3115 (p->on_rq && !task_on_rq_migrating(p))); 3116 3117 #ifdef CONFIG_LOCKDEP 3118 /* 3119 * The caller should hold either p->pi_lock or rq->lock, when changing 3120 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3121 * 3122 * sched_move_task() holds both and thus holding either pins the cgroup, 3123 * see task_group(). 3124 * 3125 * Furthermore, all task_rq users should acquire both locks, see 3126 * task_rq_lock(). 3127 */ 3128 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3129 lockdep_is_held(__rq_lockp(task_rq(p))))); 3130 #endif 3131 /* 3132 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3133 */ 3134 WARN_ON_ONCE(!cpu_online(new_cpu)); 3135 3136 WARN_ON_ONCE(is_migration_disabled(p)); 3137 #endif 3138 3139 trace_sched_migrate_task(p, new_cpu); 3140 3141 if (task_cpu(p) != new_cpu) { 3142 if (p->sched_class->migrate_task_rq) 3143 p->sched_class->migrate_task_rq(p, new_cpu); 3144 p->se.nr_migrations++; 3145 rseq_migrate(p); 3146 perf_event_task_migrate(p); 3147 } 3148 3149 __set_task_cpu(p, new_cpu); 3150 } 3151 3152 #ifdef CONFIG_NUMA_BALANCING 3153 static void __migrate_swap_task(struct task_struct *p, int cpu) 3154 { 3155 if (task_on_rq_queued(p)) { 3156 struct rq *src_rq, *dst_rq; 3157 struct rq_flags srf, drf; 3158 3159 src_rq = task_rq(p); 3160 dst_rq = cpu_rq(cpu); 3161 3162 rq_pin_lock(src_rq, &srf); 3163 rq_pin_lock(dst_rq, &drf); 3164 3165 deactivate_task(src_rq, p, 0); 3166 set_task_cpu(p, cpu); 3167 activate_task(dst_rq, p, 0); 3168 check_preempt_curr(dst_rq, p, 0); 3169 3170 rq_unpin_lock(dst_rq, &drf); 3171 rq_unpin_lock(src_rq, &srf); 3172 3173 } else { 3174 /* 3175 * Task isn't running anymore; make it appear like we migrated 3176 * it before it went to sleep. This means on wakeup we make the 3177 * previous CPU our target instead of where it really is. 3178 */ 3179 p->wake_cpu = cpu; 3180 } 3181 } 3182 3183 struct migration_swap_arg { 3184 struct task_struct *src_task, *dst_task; 3185 int src_cpu, dst_cpu; 3186 }; 3187 3188 static int migrate_swap_stop(void *data) 3189 { 3190 struct migration_swap_arg *arg = data; 3191 struct rq *src_rq, *dst_rq; 3192 int ret = -EAGAIN; 3193 3194 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3195 return -EAGAIN; 3196 3197 src_rq = cpu_rq(arg->src_cpu); 3198 dst_rq = cpu_rq(arg->dst_cpu); 3199 3200 double_raw_lock(&arg->src_task->pi_lock, 3201 &arg->dst_task->pi_lock); 3202 double_rq_lock(src_rq, dst_rq); 3203 3204 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3205 goto unlock; 3206 3207 if (task_cpu(arg->src_task) != arg->src_cpu) 3208 goto unlock; 3209 3210 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3211 goto unlock; 3212 3213 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3214 goto unlock; 3215 3216 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3217 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3218 3219 ret = 0; 3220 3221 unlock: 3222 double_rq_unlock(src_rq, dst_rq); 3223 raw_spin_unlock(&arg->dst_task->pi_lock); 3224 raw_spin_unlock(&arg->src_task->pi_lock); 3225 3226 return ret; 3227 } 3228 3229 /* 3230 * Cross migrate two tasks 3231 */ 3232 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3233 int target_cpu, int curr_cpu) 3234 { 3235 struct migration_swap_arg arg; 3236 int ret = -EINVAL; 3237 3238 arg = (struct migration_swap_arg){ 3239 .src_task = cur, 3240 .src_cpu = curr_cpu, 3241 .dst_task = p, 3242 .dst_cpu = target_cpu, 3243 }; 3244 3245 if (arg.src_cpu == arg.dst_cpu) 3246 goto out; 3247 3248 /* 3249 * These three tests are all lockless; this is OK since all of them 3250 * will be re-checked with proper locks held further down the line. 3251 */ 3252 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3253 goto out; 3254 3255 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3256 goto out; 3257 3258 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3259 goto out; 3260 3261 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3262 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3263 3264 out: 3265 return ret; 3266 } 3267 #endif /* CONFIG_NUMA_BALANCING */ 3268 3269 /* 3270 * wait_task_inactive - wait for a thread to unschedule. 3271 * 3272 * Wait for the thread to block in any of the states set in @match_state. 3273 * If it changes, i.e. @p might have woken up, then return zero. When we 3274 * succeed in waiting for @p to be off its CPU, we return a positive number 3275 * (its total switch count). If a second call a short while later returns the 3276 * same number, the caller can be sure that @p has remained unscheduled the 3277 * whole time. 3278 * 3279 * The caller must ensure that the task *will* unschedule sometime soon, 3280 * else this function might spin for a *long* time. This function can't 3281 * be called with interrupts off, or it may introduce deadlock with 3282 * smp_call_function() if an IPI is sent by the same process we are 3283 * waiting to become inactive. 3284 */ 3285 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 3286 { 3287 int running, queued; 3288 struct rq_flags rf; 3289 unsigned long ncsw; 3290 struct rq *rq; 3291 3292 for (;;) { 3293 /* 3294 * We do the initial early heuristics without holding 3295 * any task-queue locks at all. We'll only try to get 3296 * the runqueue lock when things look like they will 3297 * work out! 3298 */ 3299 rq = task_rq(p); 3300 3301 /* 3302 * If the task is actively running on another CPU 3303 * still, just relax and busy-wait without holding 3304 * any locks. 3305 * 3306 * NOTE! Since we don't hold any locks, it's not 3307 * even sure that "rq" stays as the right runqueue! 3308 * But we don't care, since "task_on_cpu()" will 3309 * return false if the runqueue has changed and p 3310 * is actually now running somewhere else! 3311 */ 3312 while (task_on_cpu(rq, p)) { 3313 if (!(READ_ONCE(p->__state) & match_state)) 3314 return 0; 3315 cpu_relax(); 3316 } 3317 3318 /* 3319 * Ok, time to look more closely! We need the rq 3320 * lock now, to be *sure*. If we're wrong, we'll 3321 * just go back and repeat. 3322 */ 3323 rq = task_rq_lock(p, &rf); 3324 trace_sched_wait_task(p); 3325 running = task_on_cpu(rq, p); 3326 queued = task_on_rq_queued(p); 3327 ncsw = 0; 3328 if (READ_ONCE(p->__state) & match_state) 3329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 3330 task_rq_unlock(rq, p, &rf); 3331 3332 /* 3333 * If it changed from the expected state, bail out now. 3334 */ 3335 if (unlikely(!ncsw)) 3336 break; 3337 3338 /* 3339 * Was it really running after all now that we 3340 * checked with the proper locks actually held? 3341 * 3342 * Oops. Go back and try again.. 3343 */ 3344 if (unlikely(running)) { 3345 cpu_relax(); 3346 continue; 3347 } 3348 3349 /* 3350 * It's not enough that it's not actively running, 3351 * it must be off the runqueue _entirely_, and not 3352 * preempted! 3353 * 3354 * So if it was still runnable (but just not actively 3355 * running right now), it's preempted, and we should 3356 * yield - it could be a while. 3357 */ 3358 if (unlikely(queued)) { 3359 ktime_t to = NSEC_PER_SEC / HZ; 3360 3361 set_current_state(TASK_UNINTERRUPTIBLE); 3362 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 3363 continue; 3364 } 3365 3366 /* 3367 * Ahh, all good. It wasn't running, and it wasn't 3368 * runnable, which means that it will never become 3369 * running in the future either. We're all done! 3370 */ 3371 break; 3372 } 3373 3374 return ncsw; 3375 } 3376 3377 /*** 3378 * kick_process - kick a running thread to enter/exit the kernel 3379 * @p: the to-be-kicked thread 3380 * 3381 * Cause a process which is running on another CPU to enter 3382 * kernel-mode, without any delay. (to get signals handled.) 3383 * 3384 * NOTE: this function doesn't have to take the runqueue lock, 3385 * because all it wants to ensure is that the remote task enters 3386 * the kernel. If the IPI races and the task has been migrated 3387 * to another CPU then no harm is done and the purpose has been 3388 * achieved as well. 3389 */ 3390 void kick_process(struct task_struct *p) 3391 { 3392 int cpu; 3393 3394 preempt_disable(); 3395 cpu = task_cpu(p); 3396 if ((cpu != smp_processor_id()) && task_curr(p)) 3397 smp_send_reschedule(cpu); 3398 preempt_enable(); 3399 } 3400 EXPORT_SYMBOL_GPL(kick_process); 3401 3402 /* 3403 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3404 * 3405 * A few notes on cpu_active vs cpu_online: 3406 * 3407 * - cpu_active must be a subset of cpu_online 3408 * 3409 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3410 * see __set_cpus_allowed_ptr(). At this point the newly online 3411 * CPU isn't yet part of the sched domains, and balancing will not 3412 * see it. 3413 * 3414 * - on CPU-down we clear cpu_active() to mask the sched domains and 3415 * avoid the load balancer to place new tasks on the to be removed 3416 * CPU. Existing tasks will remain running there and will be taken 3417 * off. 3418 * 3419 * This means that fallback selection must not select !active CPUs. 3420 * And can assume that any active CPU must be online. Conversely 3421 * select_task_rq() below may allow selection of !active CPUs in order 3422 * to satisfy the above rules. 3423 */ 3424 static int select_fallback_rq(int cpu, struct task_struct *p) 3425 { 3426 int nid = cpu_to_node(cpu); 3427 const struct cpumask *nodemask = NULL; 3428 enum { cpuset, possible, fail } state = cpuset; 3429 int dest_cpu; 3430 3431 /* 3432 * If the node that the CPU is on has been offlined, cpu_to_node() 3433 * will return -1. There is no CPU on the node, and we should 3434 * select the CPU on the other node. 3435 */ 3436 if (nid != -1) { 3437 nodemask = cpumask_of_node(nid); 3438 3439 /* Look for allowed, online CPU in same node. */ 3440 for_each_cpu(dest_cpu, nodemask) { 3441 if (is_cpu_allowed(p, dest_cpu)) 3442 return dest_cpu; 3443 } 3444 } 3445 3446 for (;;) { 3447 /* Any allowed, online CPU? */ 3448 for_each_cpu(dest_cpu, p->cpus_ptr) { 3449 if (!is_cpu_allowed(p, dest_cpu)) 3450 continue; 3451 3452 goto out; 3453 } 3454 3455 /* No more Mr. Nice Guy. */ 3456 switch (state) { 3457 case cpuset: 3458 if (cpuset_cpus_allowed_fallback(p)) { 3459 state = possible; 3460 break; 3461 } 3462 fallthrough; 3463 case possible: 3464 /* 3465 * XXX When called from select_task_rq() we only 3466 * hold p->pi_lock and again violate locking order. 3467 * 3468 * More yuck to audit. 3469 */ 3470 do_set_cpus_allowed(p, task_cpu_possible_mask(p)); 3471 state = fail; 3472 break; 3473 case fail: 3474 BUG(); 3475 break; 3476 } 3477 } 3478 3479 out: 3480 if (state != cpuset) { 3481 /* 3482 * Don't tell them about moving exiting tasks or 3483 * kernel threads (both mm NULL), since they never 3484 * leave kernel. 3485 */ 3486 if (p->mm && printk_ratelimit()) { 3487 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3488 task_pid_nr(p), p->comm, cpu); 3489 } 3490 } 3491 3492 return dest_cpu; 3493 } 3494 3495 /* 3496 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3497 */ 3498 static inline 3499 int select_task_rq(struct task_struct *p, int cpu, int wake_flags) 3500 { 3501 lockdep_assert_held(&p->pi_lock); 3502 3503 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) 3504 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); 3505 else 3506 cpu = cpumask_any(p->cpus_ptr); 3507 3508 /* 3509 * In order not to call set_task_cpu() on a blocking task we need 3510 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3511 * CPU. 3512 * 3513 * Since this is common to all placement strategies, this lives here. 3514 * 3515 * [ this allows ->select_task() to simply return task_cpu(p) and 3516 * not worry about this generic constraint ] 3517 */ 3518 if (unlikely(!is_cpu_allowed(p, cpu))) 3519 cpu = select_fallback_rq(task_cpu(p), p); 3520 3521 return cpu; 3522 } 3523 3524 void sched_set_stop_task(int cpu, struct task_struct *stop) 3525 { 3526 static struct lock_class_key stop_pi_lock; 3527 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3528 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3529 3530 if (stop) { 3531 /* 3532 * Make it appear like a SCHED_FIFO task, its something 3533 * userspace knows about and won't get confused about. 3534 * 3535 * Also, it will make PI more or less work without too 3536 * much confusion -- but then, stop work should not 3537 * rely on PI working anyway. 3538 */ 3539 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3540 3541 stop->sched_class = &stop_sched_class; 3542 3543 /* 3544 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3545 * adjust the effective priority of a task. As a result, 3546 * rt_mutex_setprio() can trigger (RT) balancing operations, 3547 * which can then trigger wakeups of the stop thread to push 3548 * around the current task. 3549 * 3550 * The stop task itself will never be part of the PI-chain, it 3551 * never blocks, therefore that ->pi_lock recursion is safe. 3552 * Tell lockdep about this by placing the stop->pi_lock in its 3553 * own class. 3554 */ 3555 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3556 } 3557 3558 cpu_rq(cpu)->stop = stop; 3559 3560 if (old_stop) { 3561 /* 3562 * Reset it back to a normal scheduling class so that 3563 * it can die in pieces. 3564 */ 3565 old_stop->sched_class = &rt_sched_class; 3566 } 3567 } 3568 3569 #else /* CONFIG_SMP */ 3570 3571 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 3572 struct affinity_context *ctx) 3573 { 3574 return set_cpus_allowed_ptr(p, ctx->new_mask); 3575 } 3576 3577 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3578 3579 static inline bool rq_has_pinned_tasks(struct rq *rq) 3580 { 3581 return false; 3582 } 3583 3584 #endif /* !CONFIG_SMP */ 3585 3586 static void 3587 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3588 { 3589 struct rq *rq; 3590 3591 if (!schedstat_enabled()) 3592 return; 3593 3594 rq = this_rq(); 3595 3596 #ifdef CONFIG_SMP 3597 if (cpu == rq->cpu) { 3598 __schedstat_inc(rq->ttwu_local); 3599 __schedstat_inc(p->stats.nr_wakeups_local); 3600 } else { 3601 struct sched_domain *sd; 3602 3603 __schedstat_inc(p->stats.nr_wakeups_remote); 3604 rcu_read_lock(); 3605 for_each_domain(rq->cpu, sd) { 3606 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3607 __schedstat_inc(sd->ttwu_wake_remote); 3608 break; 3609 } 3610 } 3611 rcu_read_unlock(); 3612 } 3613 3614 if (wake_flags & WF_MIGRATED) 3615 __schedstat_inc(p->stats.nr_wakeups_migrate); 3616 #endif /* CONFIG_SMP */ 3617 3618 __schedstat_inc(rq->ttwu_count); 3619 __schedstat_inc(p->stats.nr_wakeups); 3620 3621 if (wake_flags & WF_SYNC) 3622 __schedstat_inc(p->stats.nr_wakeups_sync); 3623 } 3624 3625 /* 3626 * Mark the task runnable and perform wakeup-preemption. 3627 */ 3628 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 3629 struct rq_flags *rf) 3630 { 3631 check_preempt_curr(rq, p, wake_flags); 3632 WRITE_ONCE(p->__state, TASK_RUNNING); 3633 trace_sched_wakeup(p); 3634 3635 #ifdef CONFIG_SMP 3636 if (p->sched_class->task_woken) { 3637 /* 3638 * Our task @p is fully woken up and running; so it's safe to 3639 * drop the rq->lock, hereafter rq is only used for statistics. 3640 */ 3641 rq_unpin_lock(rq, rf); 3642 p->sched_class->task_woken(rq, p); 3643 rq_repin_lock(rq, rf); 3644 } 3645 3646 if (rq->idle_stamp) { 3647 u64 delta = rq_clock(rq) - rq->idle_stamp; 3648 u64 max = 2*rq->max_idle_balance_cost; 3649 3650 update_avg(&rq->avg_idle, delta); 3651 3652 if (rq->avg_idle > max) 3653 rq->avg_idle = max; 3654 3655 rq->wake_stamp = jiffies; 3656 rq->wake_avg_idle = rq->avg_idle / 2; 3657 3658 rq->idle_stamp = 0; 3659 } 3660 #endif 3661 } 3662 3663 static void 3664 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3665 struct rq_flags *rf) 3666 { 3667 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3668 3669 lockdep_assert_rq_held(rq); 3670 3671 if (p->sched_contributes_to_load) 3672 rq->nr_uninterruptible--; 3673 3674 #ifdef CONFIG_SMP 3675 if (wake_flags & WF_MIGRATED) 3676 en_flags |= ENQUEUE_MIGRATED; 3677 else 3678 #endif 3679 if (p->in_iowait) { 3680 delayacct_blkio_end(p); 3681 atomic_dec(&task_rq(p)->nr_iowait); 3682 } 3683 3684 activate_task(rq, p, en_flags); 3685 ttwu_do_wakeup(rq, p, wake_flags, rf); 3686 } 3687 3688 /* 3689 * Consider @p being inside a wait loop: 3690 * 3691 * for (;;) { 3692 * set_current_state(TASK_UNINTERRUPTIBLE); 3693 * 3694 * if (CONDITION) 3695 * break; 3696 * 3697 * schedule(); 3698 * } 3699 * __set_current_state(TASK_RUNNING); 3700 * 3701 * between set_current_state() and schedule(). In this case @p is still 3702 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3703 * an atomic manner. 3704 * 3705 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3706 * then schedule() must still happen and p->state can be changed to 3707 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3708 * need to do a full wakeup with enqueue. 3709 * 3710 * Returns: %true when the wakeup is done, 3711 * %false otherwise. 3712 */ 3713 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3714 { 3715 struct rq_flags rf; 3716 struct rq *rq; 3717 int ret = 0; 3718 3719 rq = __task_rq_lock(p, &rf); 3720 if (task_on_rq_queued(p)) { 3721 /* check_preempt_curr() may use rq clock */ 3722 update_rq_clock(rq); 3723 ttwu_do_wakeup(rq, p, wake_flags, &rf); 3724 ret = 1; 3725 } 3726 __task_rq_unlock(rq, &rf); 3727 3728 return ret; 3729 } 3730 3731 #ifdef CONFIG_SMP 3732 void sched_ttwu_pending(void *arg) 3733 { 3734 struct llist_node *llist = arg; 3735 struct rq *rq = this_rq(); 3736 struct task_struct *p, *t; 3737 struct rq_flags rf; 3738 3739 if (!llist) 3740 return; 3741 3742 rq_lock_irqsave(rq, &rf); 3743 update_rq_clock(rq); 3744 3745 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3746 if (WARN_ON_ONCE(p->on_cpu)) 3747 smp_cond_load_acquire(&p->on_cpu, !VAL); 3748 3749 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3750 set_task_cpu(p, cpu_of(rq)); 3751 3752 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3753 } 3754 3755 /* 3756 * Must be after enqueueing at least once task such that 3757 * idle_cpu() does not observe a false-negative -- if it does, 3758 * it is possible for select_idle_siblings() to stack a number 3759 * of tasks on this CPU during that window. 3760 * 3761 * It is ok to clear ttwu_pending when another task pending. 3762 * We will receive IPI after local irq enabled and then enqueue it. 3763 * Since now nr_running > 0, idle_cpu() will always get correct result. 3764 */ 3765 WRITE_ONCE(rq->ttwu_pending, 0); 3766 rq_unlock_irqrestore(rq, &rf); 3767 } 3768 3769 void send_call_function_single_ipi(int cpu) 3770 { 3771 struct rq *rq = cpu_rq(cpu); 3772 3773 if (!set_nr_if_polling(rq->idle)) 3774 arch_send_call_function_single_ipi(cpu); 3775 else 3776 trace_sched_wake_idle_without_ipi(cpu); 3777 } 3778 3779 /* 3780 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3781 * necessary. The wakee CPU on receipt of the IPI will queue the task 3782 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3783 * of the wakeup instead of the waker. 3784 */ 3785 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3786 { 3787 struct rq *rq = cpu_rq(cpu); 3788 3789 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3790 3791 WRITE_ONCE(rq->ttwu_pending, 1); 3792 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3793 } 3794 3795 void wake_up_if_idle(int cpu) 3796 { 3797 struct rq *rq = cpu_rq(cpu); 3798 struct rq_flags rf; 3799 3800 rcu_read_lock(); 3801 3802 if (!is_idle_task(rcu_dereference(rq->curr))) 3803 goto out; 3804 3805 rq_lock_irqsave(rq, &rf); 3806 if (is_idle_task(rq->curr)) 3807 resched_curr(rq); 3808 /* Else CPU is not idle, do nothing here: */ 3809 rq_unlock_irqrestore(rq, &rf); 3810 3811 out: 3812 rcu_read_unlock(); 3813 } 3814 3815 bool cpus_share_cache(int this_cpu, int that_cpu) 3816 { 3817 if (this_cpu == that_cpu) 3818 return true; 3819 3820 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3821 } 3822 3823 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3824 { 3825 /* 3826 * Do not complicate things with the async wake_list while the CPU is 3827 * in hotplug state. 3828 */ 3829 if (!cpu_active(cpu)) 3830 return false; 3831 3832 /* Ensure the task will still be allowed to run on the CPU. */ 3833 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3834 return false; 3835 3836 /* 3837 * If the CPU does not share cache, then queue the task on the 3838 * remote rqs wakelist to avoid accessing remote data. 3839 */ 3840 if (!cpus_share_cache(smp_processor_id(), cpu)) 3841 return true; 3842 3843 if (cpu == smp_processor_id()) 3844 return false; 3845 3846 /* 3847 * If the wakee cpu is idle, or the task is descheduling and the 3848 * only running task on the CPU, then use the wakelist to offload 3849 * the task activation to the idle (or soon-to-be-idle) CPU as 3850 * the current CPU is likely busy. nr_running is checked to 3851 * avoid unnecessary task stacking. 3852 * 3853 * Note that we can only get here with (wakee) p->on_rq=0, 3854 * p->on_cpu can be whatever, we've done the dequeue, so 3855 * the wakee has been accounted out of ->nr_running. 3856 */ 3857 if (!cpu_rq(cpu)->nr_running) 3858 return true; 3859 3860 return false; 3861 } 3862 3863 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3864 { 3865 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3866 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3867 __ttwu_queue_wakelist(p, cpu, wake_flags); 3868 return true; 3869 } 3870 3871 return false; 3872 } 3873 3874 #else /* !CONFIG_SMP */ 3875 3876 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3877 { 3878 return false; 3879 } 3880 3881 #endif /* CONFIG_SMP */ 3882 3883 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3884 { 3885 struct rq *rq = cpu_rq(cpu); 3886 struct rq_flags rf; 3887 3888 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3889 return; 3890 3891 rq_lock(rq, &rf); 3892 update_rq_clock(rq); 3893 ttwu_do_activate(rq, p, wake_flags, &rf); 3894 rq_unlock(rq, &rf); 3895 } 3896 3897 /* 3898 * Invoked from try_to_wake_up() to check whether the task can be woken up. 3899 * 3900 * The caller holds p::pi_lock if p != current or has preemption 3901 * disabled when p == current. 3902 * 3903 * The rules of PREEMPT_RT saved_state: 3904 * 3905 * The related locking code always holds p::pi_lock when updating 3906 * p::saved_state, which means the code is fully serialized in both cases. 3907 * 3908 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other 3909 * bits set. This allows to distinguish all wakeup scenarios. 3910 */ 3911 static __always_inline 3912 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 3913 { 3914 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 3915 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 3916 state != TASK_RTLOCK_WAIT); 3917 } 3918 3919 if (READ_ONCE(p->__state) & state) { 3920 *success = 1; 3921 return true; 3922 } 3923 3924 #ifdef CONFIG_PREEMPT_RT 3925 /* 3926 * Saved state preserves the task state across blocking on 3927 * an RT lock. If the state matches, set p::saved_state to 3928 * TASK_RUNNING, but do not wake the task because it waits 3929 * for a lock wakeup. Also indicate success because from 3930 * the regular waker's point of view this has succeeded. 3931 * 3932 * After acquiring the lock the task will restore p::__state 3933 * from p::saved_state which ensures that the regular 3934 * wakeup is not lost. The restore will also set 3935 * p::saved_state to TASK_RUNNING so any further tests will 3936 * not result in false positives vs. @success 3937 */ 3938 if (p->saved_state & state) { 3939 p->saved_state = TASK_RUNNING; 3940 *success = 1; 3941 } 3942 #endif 3943 return false; 3944 } 3945 3946 /* 3947 * Notes on Program-Order guarantees on SMP systems. 3948 * 3949 * MIGRATION 3950 * 3951 * The basic program-order guarantee on SMP systems is that when a task [t] 3952 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 3953 * execution on its new CPU [c1]. 3954 * 3955 * For migration (of runnable tasks) this is provided by the following means: 3956 * 3957 * A) UNLOCK of the rq(c0)->lock scheduling out task t 3958 * B) migration for t is required to synchronize *both* rq(c0)->lock and 3959 * rq(c1)->lock (if not at the same time, then in that order). 3960 * C) LOCK of the rq(c1)->lock scheduling in task 3961 * 3962 * Release/acquire chaining guarantees that B happens after A and C after B. 3963 * Note: the CPU doing B need not be c0 or c1 3964 * 3965 * Example: 3966 * 3967 * CPU0 CPU1 CPU2 3968 * 3969 * LOCK rq(0)->lock 3970 * sched-out X 3971 * sched-in Y 3972 * UNLOCK rq(0)->lock 3973 * 3974 * LOCK rq(0)->lock // orders against CPU0 3975 * dequeue X 3976 * UNLOCK rq(0)->lock 3977 * 3978 * LOCK rq(1)->lock 3979 * enqueue X 3980 * UNLOCK rq(1)->lock 3981 * 3982 * LOCK rq(1)->lock // orders against CPU2 3983 * sched-out Z 3984 * sched-in X 3985 * UNLOCK rq(1)->lock 3986 * 3987 * 3988 * BLOCKING -- aka. SLEEP + WAKEUP 3989 * 3990 * For blocking we (obviously) need to provide the same guarantee as for 3991 * migration. However the means are completely different as there is no lock 3992 * chain to provide order. Instead we do: 3993 * 3994 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 3995 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 3996 * 3997 * Example: 3998 * 3999 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4000 * 4001 * LOCK rq(0)->lock LOCK X->pi_lock 4002 * dequeue X 4003 * sched-out X 4004 * smp_store_release(X->on_cpu, 0); 4005 * 4006 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4007 * X->state = WAKING 4008 * set_task_cpu(X,2) 4009 * 4010 * LOCK rq(2)->lock 4011 * enqueue X 4012 * X->state = RUNNING 4013 * UNLOCK rq(2)->lock 4014 * 4015 * LOCK rq(2)->lock // orders against CPU1 4016 * sched-out Z 4017 * sched-in X 4018 * UNLOCK rq(2)->lock 4019 * 4020 * UNLOCK X->pi_lock 4021 * UNLOCK rq(0)->lock 4022 * 4023 * 4024 * However, for wakeups there is a second guarantee we must provide, namely we 4025 * must ensure that CONDITION=1 done by the caller can not be reordered with 4026 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4027 */ 4028 4029 /** 4030 * try_to_wake_up - wake up a thread 4031 * @p: the thread to be awakened 4032 * @state: the mask of task states that can be woken 4033 * @wake_flags: wake modifier flags (WF_*) 4034 * 4035 * Conceptually does: 4036 * 4037 * If (@state & @p->state) @p->state = TASK_RUNNING. 4038 * 4039 * If the task was not queued/runnable, also place it back on a runqueue. 4040 * 4041 * This function is atomic against schedule() which would dequeue the task. 4042 * 4043 * It issues a full memory barrier before accessing @p->state, see the comment 4044 * with set_current_state(). 4045 * 4046 * Uses p->pi_lock to serialize against concurrent wake-ups. 4047 * 4048 * Relies on p->pi_lock stabilizing: 4049 * - p->sched_class 4050 * - p->cpus_ptr 4051 * - p->sched_task_group 4052 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4053 * 4054 * Tries really hard to only take one task_rq(p)->lock for performance. 4055 * Takes rq->lock in: 4056 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4057 * - ttwu_queue() -- new rq, for enqueue of the task; 4058 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4059 * 4060 * As a consequence we race really badly with just about everything. See the 4061 * many memory barriers and their comments for details. 4062 * 4063 * Return: %true if @p->state changes (an actual wakeup was done), 4064 * %false otherwise. 4065 */ 4066 static int 4067 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4068 { 4069 unsigned long flags; 4070 int cpu, success = 0; 4071 4072 preempt_disable(); 4073 if (p == current) { 4074 /* 4075 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4076 * == smp_processor_id()'. Together this means we can special 4077 * case the whole 'p->on_rq && ttwu_runnable()' case below 4078 * without taking any locks. 4079 * 4080 * In particular: 4081 * - we rely on Program-Order guarantees for all the ordering, 4082 * - we're serialized against set_special_state() by virtue of 4083 * it disabling IRQs (this allows not taking ->pi_lock). 4084 */ 4085 if (!ttwu_state_match(p, state, &success)) 4086 goto out; 4087 4088 trace_sched_waking(p); 4089 WRITE_ONCE(p->__state, TASK_RUNNING); 4090 trace_sched_wakeup(p); 4091 goto out; 4092 } 4093 4094 /* 4095 * If we are going to wake up a thread waiting for CONDITION we 4096 * need to ensure that CONDITION=1 done by the caller can not be 4097 * reordered with p->state check below. This pairs with smp_store_mb() 4098 * in set_current_state() that the waiting thread does. 4099 */ 4100 raw_spin_lock_irqsave(&p->pi_lock, flags); 4101 smp_mb__after_spinlock(); 4102 if (!ttwu_state_match(p, state, &success)) 4103 goto unlock; 4104 4105 trace_sched_waking(p); 4106 4107 /* 4108 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4109 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4110 * in smp_cond_load_acquire() below. 4111 * 4112 * sched_ttwu_pending() try_to_wake_up() 4113 * STORE p->on_rq = 1 LOAD p->state 4114 * UNLOCK rq->lock 4115 * 4116 * __schedule() (switch to task 'p') 4117 * LOCK rq->lock smp_rmb(); 4118 * smp_mb__after_spinlock(); 4119 * UNLOCK rq->lock 4120 * 4121 * [task p] 4122 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4123 * 4124 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4125 * __schedule(). See the comment for smp_mb__after_spinlock(). 4126 * 4127 * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). 4128 */ 4129 smp_rmb(); 4130 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4131 goto unlock; 4132 4133 #ifdef CONFIG_SMP 4134 /* 4135 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4136 * possible to, falsely, observe p->on_cpu == 0. 4137 * 4138 * One must be running (->on_cpu == 1) in order to remove oneself 4139 * from the runqueue. 4140 * 4141 * __schedule() (switch to task 'p') try_to_wake_up() 4142 * STORE p->on_cpu = 1 LOAD p->on_rq 4143 * UNLOCK rq->lock 4144 * 4145 * __schedule() (put 'p' to sleep) 4146 * LOCK rq->lock smp_rmb(); 4147 * smp_mb__after_spinlock(); 4148 * STORE p->on_rq = 0 LOAD p->on_cpu 4149 * 4150 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4151 * __schedule(). See the comment for smp_mb__after_spinlock(). 4152 * 4153 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4154 * schedule()'s deactivate_task() has 'happened' and p will no longer 4155 * care about it's own p->state. See the comment in __schedule(). 4156 */ 4157 smp_acquire__after_ctrl_dep(); 4158 4159 /* 4160 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4161 * == 0), which means we need to do an enqueue, change p->state to 4162 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4163 * enqueue, such as ttwu_queue_wakelist(). 4164 */ 4165 WRITE_ONCE(p->__state, TASK_WAKING); 4166 4167 /* 4168 * If the owning (remote) CPU is still in the middle of schedule() with 4169 * this task as prev, considering queueing p on the remote CPUs wake_list 4170 * which potentially sends an IPI instead of spinning on p->on_cpu to 4171 * let the waker make forward progress. This is safe because IRQs are 4172 * disabled and the IPI will deliver after on_cpu is cleared. 4173 * 4174 * Ensure we load task_cpu(p) after p->on_cpu: 4175 * 4176 * set_task_cpu(p, cpu); 4177 * STORE p->cpu = @cpu 4178 * __schedule() (switch to task 'p') 4179 * LOCK rq->lock 4180 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4181 * STORE p->on_cpu = 1 LOAD p->cpu 4182 * 4183 * to ensure we observe the correct CPU on which the task is currently 4184 * scheduling. 4185 */ 4186 if (smp_load_acquire(&p->on_cpu) && 4187 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4188 goto unlock; 4189 4190 /* 4191 * If the owning (remote) CPU is still in the middle of schedule() with 4192 * this task as prev, wait until it's done referencing the task. 4193 * 4194 * Pairs with the smp_store_release() in finish_task(). 4195 * 4196 * This ensures that tasks getting woken will be fully ordered against 4197 * their previous state and preserve Program Order. 4198 */ 4199 smp_cond_load_acquire(&p->on_cpu, !VAL); 4200 4201 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); 4202 if (task_cpu(p) != cpu) { 4203 if (p->in_iowait) { 4204 delayacct_blkio_end(p); 4205 atomic_dec(&task_rq(p)->nr_iowait); 4206 } 4207 4208 wake_flags |= WF_MIGRATED; 4209 psi_ttwu_dequeue(p); 4210 set_task_cpu(p, cpu); 4211 } 4212 #else 4213 cpu = task_cpu(p); 4214 #endif /* CONFIG_SMP */ 4215 4216 ttwu_queue(p, cpu, wake_flags); 4217 unlock: 4218 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4219 out: 4220 if (success) 4221 ttwu_stat(p, task_cpu(p), wake_flags); 4222 preempt_enable(); 4223 4224 return success; 4225 } 4226 4227 static bool __task_needs_rq_lock(struct task_struct *p) 4228 { 4229 unsigned int state = READ_ONCE(p->__state); 4230 4231 /* 4232 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4233 * the task is blocked. Make sure to check @state since ttwu() can drop 4234 * locks at the end, see ttwu_queue_wakelist(). 4235 */ 4236 if (state == TASK_RUNNING || state == TASK_WAKING) 4237 return true; 4238 4239 /* 4240 * Ensure we load p->on_rq after p->__state, otherwise it would be 4241 * possible to, falsely, observe p->on_rq == 0. 4242 * 4243 * See try_to_wake_up() for a longer comment. 4244 */ 4245 smp_rmb(); 4246 if (p->on_rq) 4247 return true; 4248 4249 #ifdef CONFIG_SMP 4250 /* 4251 * Ensure the task has finished __schedule() and will not be referenced 4252 * anymore. Again, see try_to_wake_up() for a longer comment. 4253 */ 4254 smp_rmb(); 4255 smp_cond_load_acquire(&p->on_cpu, !VAL); 4256 #endif 4257 4258 return false; 4259 } 4260 4261 /** 4262 * task_call_func - Invoke a function on task in fixed state 4263 * @p: Process for which the function is to be invoked, can be @current. 4264 * @func: Function to invoke. 4265 * @arg: Argument to function. 4266 * 4267 * Fix the task in it's current state by avoiding wakeups and or rq operations 4268 * and call @func(@arg) on it. This function can use ->on_rq and task_curr() 4269 * to work out what the state is, if required. Given that @func can be invoked 4270 * with a runqueue lock held, it had better be quite lightweight. 4271 * 4272 * Returns: 4273 * Whatever @func returns 4274 */ 4275 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4276 { 4277 struct rq *rq = NULL; 4278 struct rq_flags rf; 4279 int ret; 4280 4281 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4282 4283 if (__task_needs_rq_lock(p)) 4284 rq = __task_rq_lock(p, &rf); 4285 4286 /* 4287 * At this point the task is pinned; either: 4288 * - blocked and we're holding off wakeups (pi->lock) 4289 * - woken, and we're holding off enqueue (rq->lock) 4290 * - queued, and we're holding off schedule (rq->lock) 4291 * - running, and we're holding off de-schedule (rq->lock) 4292 * 4293 * The called function (@func) can use: task_curr(), p->on_rq and 4294 * p->__state to differentiate between these states. 4295 */ 4296 ret = func(p, arg); 4297 4298 if (rq) 4299 rq_unlock(rq, &rf); 4300 4301 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4302 return ret; 4303 } 4304 4305 /** 4306 * cpu_curr_snapshot - Return a snapshot of the currently running task 4307 * @cpu: The CPU on which to snapshot the task. 4308 * 4309 * Returns the task_struct pointer of the task "currently" running on 4310 * the specified CPU. If the same task is running on that CPU throughout, 4311 * the return value will be a pointer to that task's task_struct structure. 4312 * If the CPU did any context switches even vaguely concurrently with the 4313 * execution of this function, the return value will be a pointer to the 4314 * task_struct structure of a randomly chosen task that was running on 4315 * that CPU somewhere around the time that this function was executing. 4316 * 4317 * If the specified CPU was offline, the return value is whatever it 4318 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4319 * task, but there is no guarantee. Callers wishing a useful return 4320 * value must take some action to ensure that the specified CPU remains 4321 * online throughout. 4322 * 4323 * This function executes full memory barriers before and after fetching 4324 * the pointer, which permits the caller to confine this function's fetch 4325 * with respect to the caller's accesses to other shared variables. 4326 */ 4327 struct task_struct *cpu_curr_snapshot(int cpu) 4328 { 4329 struct task_struct *t; 4330 4331 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4332 t = rcu_dereference(cpu_curr(cpu)); 4333 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4334 return t; 4335 } 4336 4337 /** 4338 * wake_up_process - Wake up a specific process 4339 * @p: The process to be woken up. 4340 * 4341 * Attempt to wake up the nominated process and move it to the set of runnable 4342 * processes. 4343 * 4344 * Return: 1 if the process was woken up, 0 if it was already running. 4345 * 4346 * This function executes a full memory barrier before accessing the task state. 4347 */ 4348 int wake_up_process(struct task_struct *p) 4349 { 4350 return try_to_wake_up(p, TASK_NORMAL, 0); 4351 } 4352 EXPORT_SYMBOL(wake_up_process); 4353 4354 int wake_up_state(struct task_struct *p, unsigned int state) 4355 { 4356 return try_to_wake_up(p, state, 0); 4357 } 4358 4359 /* 4360 * Perform scheduler related setup for a newly forked process p. 4361 * p is forked by current. 4362 * 4363 * __sched_fork() is basic setup used by init_idle() too: 4364 */ 4365 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4366 { 4367 p->on_rq = 0; 4368 4369 p->se.on_rq = 0; 4370 p->se.exec_start = 0; 4371 p->se.sum_exec_runtime = 0; 4372 p->se.prev_sum_exec_runtime = 0; 4373 p->se.nr_migrations = 0; 4374 p->se.vruntime = 0; 4375 INIT_LIST_HEAD(&p->se.group_node); 4376 4377 #ifdef CONFIG_FAIR_GROUP_SCHED 4378 p->se.cfs_rq = NULL; 4379 #endif 4380 4381 #ifdef CONFIG_SCHEDSTATS 4382 /* Even if schedstat is disabled, there should not be garbage */ 4383 memset(&p->stats, 0, sizeof(p->stats)); 4384 #endif 4385 4386 RB_CLEAR_NODE(&p->dl.rb_node); 4387 init_dl_task_timer(&p->dl); 4388 init_dl_inactive_task_timer(&p->dl); 4389 __dl_clear_params(p); 4390 4391 INIT_LIST_HEAD(&p->rt.run_list); 4392 p->rt.timeout = 0; 4393 p->rt.time_slice = sched_rr_timeslice; 4394 p->rt.on_rq = 0; 4395 p->rt.on_list = 0; 4396 4397 #ifdef CONFIG_PREEMPT_NOTIFIERS 4398 INIT_HLIST_HEAD(&p->preempt_notifiers); 4399 #endif 4400 4401 #ifdef CONFIG_COMPACTION 4402 p->capture_control = NULL; 4403 #endif 4404 init_numa_balancing(clone_flags, p); 4405 #ifdef CONFIG_SMP 4406 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4407 p->migration_pending = NULL; 4408 #endif 4409 } 4410 4411 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4412 4413 #ifdef CONFIG_NUMA_BALANCING 4414 4415 int sysctl_numa_balancing_mode; 4416 4417 static void __set_numabalancing_state(bool enabled) 4418 { 4419 if (enabled) 4420 static_branch_enable(&sched_numa_balancing); 4421 else 4422 static_branch_disable(&sched_numa_balancing); 4423 } 4424 4425 void set_numabalancing_state(bool enabled) 4426 { 4427 if (enabled) 4428 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4429 else 4430 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4431 __set_numabalancing_state(enabled); 4432 } 4433 4434 #ifdef CONFIG_PROC_SYSCTL 4435 static void reset_memory_tiering(void) 4436 { 4437 struct pglist_data *pgdat; 4438 4439 for_each_online_pgdat(pgdat) { 4440 pgdat->nbp_threshold = 0; 4441 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4442 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4443 } 4444 } 4445 4446 static int sysctl_numa_balancing(struct ctl_table *table, int write, 4447 void *buffer, size_t *lenp, loff_t *ppos) 4448 { 4449 struct ctl_table t; 4450 int err; 4451 int state = sysctl_numa_balancing_mode; 4452 4453 if (write && !capable(CAP_SYS_ADMIN)) 4454 return -EPERM; 4455 4456 t = *table; 4457 t.data = &state; 4458 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4459 if (err < 0) 4460 return err; 4461 if (write) { 4462 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4463 (state & NUMA_BALANCING_MEMORY_TIERING)) 4464 reset_memory_tiering(); 4465 sysctl_numa_balancing_mode = state; 4466 __set_numabalancing_state(state); 4467 } 4468 return err; 4469 } 4470 #endif 4471 #endif 4472 4473 #ifdef CONFIG_SCHEDSTATS 4474 4475 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4476 4477 static void set_schedstats(bool enabled) 4478 { 4479 if (enabled) 4480 static_branch_enable(&sched_schedstats); 4481 else 4482 static_branch_disable(&sched_schedstats); 4483 } 4484 4485 void force_schedstat_enabled(void) 4486 { 4487 if (!schedstat_enabled()) { 4488 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4489 static_branch_enable(&sched_schedstats); 4490 } 4491 } 4492 4493 static int __init setup_schedstats(char *str) 4494 { 4495 int ret = 0; 4496 if (!str) 4497 goto out; 4498 4499 if (!strcmp(str, "enable")) { 4500 set_schedstats(true); 4501 ret = 1; 4502 } else if (!strcmp(str, "disable")) { 4503 set_schedstats(false); 4504 ret = 1; 4505 } 4506 out: 4507 if (!ret) 4508 pr_warn("Unable to parse schedstats=\n"); 4509 4510 return ret; 4511 } 4512 __setup("schedstats=", setup_schedstats); 4513 4514 #ifdef CONFIG_PROC_SYSCTL 4515 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, 4516 size_t *lenp, loff_t *ppos) 4517 { 4518 struct ctl_table t; 4519 int err; 4520 int state = static_branch_likely(&sched_schedstats); 4521 4522 if (write && !capable(CAP_SYS_ADMIN)) 4523 return -EPERM; 4524 4525 t = *table; 4526 t.data = &state; 4527 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4528 if (err < 0) 4529 return err; 4530 if (write) 4531 set_schedstats(state); 4532 return err; 4533 } 4534 #endif /* CONFIG_PROC_SYSCTL */ 4535 #endif /* CONFIG_SCHEDSTATS */ 4536 4537 #ifdef CONFIG_SYSCTL 4538 static struct ctl_table sched_core_sysctls[] = { 4539 #ifdef CONFIG_SCHEDSTATS 4540 { 4541 .procname = "sched_schedstats", 4542 .data = NULL, 4543 .maxlen = sizeof(unsigned int), 4544 .mode = 0644, 4545 .proc_handler = sysctl_schedstats, 4546 .extra1 = SYSCTL_ZERO, 4547 .extra2 = SYSCTL_ONE, 4548 }, 4549 #endif /* CONFIG_SCHEDSTATS */ 4550 #ifdef CONFIG_UCLAMP_TASK 4551 { 4552 .procname = "sched_util_clamp_min", 4553 .data = &sysctl_sched_uclamp_util_min, 4554 .maxlen = sizeof(unsigned int), 4555 .mode = 0644, 4556 .proc_handler = sysctl_sched_uclamp_handler, 4557 }, 4558 { 4559 .procname = "sched_util_clamp_max", 4560 .data = &sysctl_sched_uclamp_util_max, 4561 .maxlen = sizeof(unsigned int), 4562 .mode = 0644, 4563 .proc_handler = sysctl_sched_uclamp_handler, 4564 }, 4565 { 4566 .procname = "sched_util_clamp_min_rt_default", 4567 .data = &sysctl_sched_uclamp_util_min_rt_default, 4568 .maxlen = sizeof(unsigned int), 4569 .mode = 0644, 4570 .proc_handler = sysctl_sched_uclamp_handler, 4571 }, 4572 #endif /* CONFIG_UCLAMP_TASK */ 4573 #ifdef CONFIG_NUMA_BALANCING 4574 { 4575 .procname = "numa_balancing", 4576 .data = NULL, /* filled in by handler */ 4577 .maxlen = sizeof(unsigned int), 4578 .mode = 0644, 4579 .proc_handler = sysctl_numa_balancing, 4580 .extra1 = SYSCTL_ZERO, 4581 .extra2 = SYSCTL_FOUR, 4582 }, 4583 #endif /* CONFIG_NUMA_BALANCING */ 4584 {} 4585 }; 4586 static int __init sched_core_sysctl_init(void) 4587 { 4588 register_sysctl_init("kernel", sched_core_sysctls); 4589 return 0; 4590 } 4591 late_initcall(sched_core_sysctl_init); 4592 #endif /* CONFIG_SYSCTL */ 4593 4594 /* 4595 * fork()/clone()-time setup: 4596 */ 4597 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4598 { 4599 __sched_fork(clone_flags, p); 4600 /* 4601 * We mark the process as NEW here. This guarantees that 4602 * nobody will actually run it, and a signal or other external 4603 * event cannot wake it up and insert it on the runqueue either. 4604 */ 4605 p->__state = TASK_NEW; 4606 4607 /* 4608 * Make sure we do not leak PI boosting priority to the child. 4609 */ 4610 p->prio = current->normal_prio; 4611 4612 uclamp_fork(p); 4613 4614 /* 4615 * Revert to default priority/policy on fork if requested. 4616 */ 4617 if (unlikely(p->sched_reset_on_fork)) { 4618 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4619 p->policy = SCHED_NORMAL; 4620 p->static_prio = NICE_TO_PRIO(0); 4621 p->rt_priority = 0; 4622 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4623 p->static_prio = NICE_TO_PRIO(0); 4624 4625 p->prio = p->normal_prio = p->static_prio; 4626 set_load_weight(p, false); 4627 4628 /* 4629 * We don't need the reset flag anymore after the fork. It has 4630 * fulfilled its duty: 4631 */ 4632 p->sched_reset_on_fork = 0; 4633 } 4634 4635 if (dl_prio(p->prio)) 4636 return -EAGAIN; 4637 else if (rt_prio(p->prio)) 4638 p->sched_class = &rt_sched_class; 4639 else 4640 p->sched_class = &fair_sched_class; 4641 4642 init_entity_runnable_average(&p->se); 4643 4644 4645 #ifdef CONFIG_SCHED_INFO 4646 if (likely(sched_info_on())) 4647 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4648 #endif 4649 #if defined(CONFIG_SMP) 4650 p->on_cpu = 0; 4651 #endif 4652 init_task_preempt_count(p); 4653 #ifdef CONFIG_SMP 4654 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4655 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4656 #endif 4657 return 0; 4658 } 4659 4660 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4661 { 4662 unsigned long flags; 4663 4664 /* 4665 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4666 * required yet, but lockdep gets upset if rules are violated. 4667 */ 4668 raw_spin_lock_irqsave(&p->pi_lock, flags); 4669 #ifdef CONFIG_CGROUP_SCHED 4670 if (1) { 4671 struct task_group *tg; 4672 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4673 struct task_group, css); 4674 tg = autogroup_task_group(p, tg); 4675 p->sched_task_group = tg; 4676 } 4677 #endif 4678 rseq_migrate(p); 4679 /* 4680 * We're setting the CPU for the first time, we don't migrate, 4681 * so use __set_task_cpu(). 4682 */ 4683 __set_task_cpu(p, smp_processor_id()); 4684 if (p->sched_class->task_fork) 4685 p->sched_class->task_fork(p); 4686 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4687 } 4688 4689 void sched_post_fork(struct task_struct *p) 4690 { 4691 uclamp_post_fork(p); 4692 } 4693 4694 unsigned long to_ratio(u64 period, u64 runtime) 4695 { 4696 if (runtime == RUNTIME_INF) 4697 return BW_UNIT; 4698 4699 /* 4700 * Doing this here saves a lot of checks in all 4701 * the calling paths, and returning zero seems 4702 * safe for them anyway. 4703 */ 4704 if (period == 0) 4705 return 0; 4706 4707 return div64_u64(runtime << BW_SHIFT, period); 4708 } 4709 4710 /* 4711 * wake_up_new_task - wake up a newly created task for the first time. 4712 * 4713 * This function will do some initial scheduler statistics housekeeping 4714 * that must be done for every newly created context, then puts the task 4715 * on the runqueue and wakes it. 4716 */ 4717 void wake_up_new_task(struct task_struct *p) 4718 { 4719 struct rq_flags rf; 4720 struct rq *rq; 4721 4722 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4723 WRITE_ONCE(p->__state, TASK_RUNNING); 4724 #ifdef CONFIG_SMP 4725 /* 4726 * Fork balancing, do it here and not earlier because: 4727 * - cpus_ptr can change in the fork path 4728 * - any previously selected CPU might disappear through hotplug 4729 * 4730 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4731 * as we're not fully set-up yet. 4732 */ 4733 p->recent_used_cpu = task_cpu(p); 4734 rseq_migrate(p); 4735 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); 4736 #endif 4737 rq = __task_rq_lock(p, &rf); 4738 update_rq_clock(rq); 4739 post_init_entity_util_avg(p); 4740 4741 activate_task(rq, p, ENQUEUE_NOCLOCK); 4742 trace_sched_wakeup_new(p); 4743 check_preempt_curr(rq, p, WF_FORK); 4744 #ifdef CONFIG_SMP 4745 if (p->sched_class->task_woken) { 4746 /* 4747 * Nothing relies on rq->lock after this, so it's fine to 4748 * drop it. 4749 */ 4750 rq_unpin_lock(rq, &rf); 4751 p->sched_class->task_woken(rq, p); 4752 rq_repin_lock(rq, &rf); 4753 } 4754 #endif 4755 task_rq_unlock(rq, p, &rf); 4756 } 4757 4758 #ifdef CONFIG_PREEMPT_NOTIFIERS 4759 4760 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4761 4762 void preempt_notifier_inc(void) 4763 { 4764 static_branch_inc(&preempt_notifier_key); 4765 } 4766 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4767 4768 void preempt_notifier_dec(void) 4769 { 4770 static_branch_dec(&preempt_notifier_key); 4771 } 4772 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4773 4774 /** 4775 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4776 * @notifier: notifier struct to register 4777 */ 4778 void preempt_notifier_register(struct preempt_notifier *notifier) 4779 { 4780 if (!static_branch_unlikely(&preempt_notifier_key)) 4781 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4782 4783 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4784 } 4785 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4786 4787 /** 4788 * preempt_notifier_unregister - no longer interested in preemption notifications 4789 * @notifier: notifier struct to unregister 4790 * 4791 * This is *not* safe to call from within a preemption notifier. 4792 */ 4793 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4794 { 4795 hlist_del(¬ifier->link); 4796 } 4797 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4798 4799 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4800 { 4801 struct preempt_notifier *notifier; 4802 4803 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4804 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4805 } 4806 4807 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4808 { 4809 if (static_branch_unlikely(&preempt_notifier_key)) 4810 __fire_sched_in_preempt_notifiers(curr); 4811 } 4812 4813 static void 4814 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4815 struct task_struct *next) 4816 { 4817 struct preempt_notifier *notifier; 4818 4819 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4820 notifier->ops->sched_out(notifier, next); 4821 } 4822 4823 static __always_inline void 4824 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4825 struct task_struct *next) 4826 { 4827 if (static_branch_unlikely(&preempt_notifier_key)) 4828 __fire_sched_out_preempt_notifiers(curr, next); 4829 } 4830 4831 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4832 4833 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4834 { 4835 } 4836 4837 static inline void 4838 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4839 struct task_struct *next) 4840 { 4841 } 4842 4843 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4844 4845 static inline void prepare_task(struct task_struct *next) 4846 { 4847 #ifdef CONFIG_SMP 4848 /* 4849 * Claim the task as running, we do this before switching to it 4850 * such that any running task will have this set. 4851 * 4852 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4853 * its ordering comment. 4854 */ 4855 WRITE_ONCE(next->on_cpu, 1); 4856 #endif 4857 } 4858 4859 static inline void finish_task(struct task_struct *prev) 4860 { 4861 #ifdef CONFIG_SMP 4862 /* 4863 * This must be the very last reference to @prev from this CPU. After 4864 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4865 * must ensure this doesn't happen until the switch is completely 4866 * finished. 4867 * 4868 * In particular, the load of prev->state in finish_task_switch() must 4869 * happen before this. 4870 * 4871 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 4872 */ 4873 smp_store_release(&prev->on_cpu, 0); 4874 #endif 4875 } 4876 4877 #ifdef CONFIG_SMP 4878 4879 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 4880 { 4881 void (*func)(struct rq *rq); 4882 struct balance_callback *next; 4883 4884 lockdep_assert_rq_held(rq); 4885 4886 while (head) { 4887 func = (void (*)(struct rq *))head->func; 4888 next = head->next; 4889 head->next = NULL; 4890 head = next; 4891 4892 func(rq); 4893 } 4894 } 4895 4896 static void balance_push(struct rq *rq); 4897 4898 /* 4899 * balance_push_callback is a right abuse of the callback interface and plays 4900 * by significantly different rules. 4901 * 4902 * Where the normal balance_callback's purpose is to be ran in the same context 4903 * that queued it (only later, when it's safe to drop rq->lock again), 4904 * balance_push_callback is specifically targeted at __schedule(). 4905 * 4906 * This abuse is tolerated because it places all the unlikely/odd cases behind 4907 * a single test, namely: rq->balance_callback == NULL. 4908 */ 4909 struct balance_callback balance_push_callback = { 4910 .next = NULL, 4911 .func = balance_push, 4912 }; 4913 4914 static inline struct balance_callback * 4915 __splice_balance_callbacks(struct rq *rq, bool split) 4916 { 4917 struct balance_callback *head = rq->balance_callback; 4918 4919 if (likely(!head)) 4920 return NULL; 4921 4922 lockdep_assert_rq_held(rq); 4923 /* 4924 * Must not take balance_push_callback off the list when 4925 * splice_balance_callbacks() and balance_callbacks() are not 4926 * in the same rq->lock section. 4927 * 4928 * In that case it would be possible for __schedule() to interleave 4929 * and observe the list empty. 4930 */ 4931 if (split && head == &balance_push_callback) 4932 head = NULL; 4933 else 4934 rq->balance_callback = NULL; 4935 4936 return head; 4937 } 4938 4939 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4940 { 4941 return __splice_balance_callbacks(rq, true); 4942 } 4943 4944 static void __balance_callbacks(struct rq *rq) 4945 { 4946 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 4947 } 4948 4949 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4950 { 4951 unsigned long flags; 4952 4953 if (unlikely(head)) { 4954 raw_spin_rq_lock_irqsave(rq, flags); 4955 do_balance_callbacks(rq, head); 4956 raw_spin_rq_unlock_irqrestore(rq, flags); 4957 } 4958 } 4959 4960 #else 4961 4962 static inline void __balance_callbacks(struct rq *rq) 4963 { 4964 } 4965 4966 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 4967 { 4968 return NULL; 4969 } 4970 4971 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 4972 { 4973 } 4974 4975 #endif 4976 4977 static inline void 4978 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 4979 { 4980 /* 4981 * Since the runqueue lock will be released by the next 4982 * task (which is an invalid locking op but in the case 4983 * of the scheduler it's an obvious special-case), so we 4984 * do an early lockdep release here: 4985 */ 4986 rq_unpin_lock(rq, rf); 4987 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 4988 #ifdef CONFIG_DEBUG_SPINLOCK 4989 /* this is a valid case when another task releases the spinlock */ 4990 rq_lockp(rq)->owner = next; 4991 #endif 4992 } 4993 4994 static inline void finish_lock_switch(struct rq *rq) 4995 { 4996 /* 4997 * If we are tracking spinlock dependencies then we have to 4998 * fix up the runqueue lock - which gets 'carried over' from 4999 * prev into current: 5000 */ 5001 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5002 __balance_callbacks(rq); 5003 raw_spin_rq_unlock_irq(rq); 5004 } 5005 5006 /* 5007 * NOP if the arch has not defined these: 5008 */ 5009 5010 #ifndef prepare_arch_switch 5011 # define prepare_arch_switch(next) do { } while (0) 5012 #endif 5013 5014 #ifndef finish_arch_post_lock_switch 5015 # define finish_arch_post_lock_switch() do { } while (0) 5016 #endif 5017 5018 static inline void kmap_local_sched_out(void) 5019 { 5020 #ifdef CONFIG_KMAP_LOCAL 5021 if (unlikely(current->kmap_ctrl.idx)) 5022 __kmap_local_sched_out(); 5023 #endif 5024 } 5025 5026 static inline void kmap_local_sched_in(void) 5027 { 5028 #ifdef CONFIG_KMAP_LOCAL 5029 if (unlikely(current->kmap_ctrl.idx)) 5030 __kmap_local_sched_in(); 5031 #endif 5032 } 5033 5034 /** 5035 * prepare_task_switch - prepare to switch tasks 5036 * @rq: the runqueue preparing to switch 5037 * @prev: the current task that is being switched out 5038 * @next: the task we are going to switch to. 5039 * 5040 * This is called with the rq lock held and interrupts off. It must 5041 * be paired with a subsequent finish_task_switch after the context 5042 * switch. 5043 * 5044 * prepare_task_switch sets up locking and calls architecture specific 5045 * hooks. 5046 */ 5047 static inline void 5048 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5049 struct task_struct *next) 5050 { 5051 kcov_prepare_switch(prev); 5052 sched_info_switch(rq, prev, next); 5053 perf_event_task_sched_out(prev, next); 5054 rseq_preempt(prev); 5055 fire_sched_out_preempt_notifiers(prev, next); 5056 kmap_local_sched_out(); 5057 prepare_task(next); 5058 prepare_arch_switch(next); 5059 } 5060 5061 /** 5062 * finish_task_switch - clean up after a task-switch 5063 * @prev: the thread we just switched away from. 5064 * 5065 * finish_task_switch must be called after the context switch, paired 5066 * with a prepare_task_switch call before the context switch. 5067 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5068 * and do any other architecture-specific cleanup actions. 5069 * 5070 * Note that we may have delayed dropping an mm in context_switch(). If 5071 * so, we finish that here outside of the runqueue lock. (Doing it 5072 * with the lock held can cause deadlocks; see schedule() for 5073 * details.) 5074 * 5075 * The context switch have flipped the stack from under us and restored the 5076 * local variables which were saved when this task called schedule() in the 5077 * past. prev == current is still correct but we need to recalculate this_rq 5078 * because prev may have moved to another CPU. 5079 */ 5080 static struct rq *finish_task_switch(struct task_struct *prev) 5081 __releases(rq->lock) 5082 { 5083 struct rq *rq = this_rq(); 5084 struct mm_struct *mm = rq->prev_mm; 5085 unsigned int prev_state; 5086 5087 /* 5088 * The previous task will have left us with a preempt_count of 2 5089 * because it left us after: 5090 * 5091 * schedule() 5092 * preempt_disable(); // 1 5093 * __schedule() 5094 * raw_spin_lock_irq(&rq->lock) // 2 5095 * 5096 * Also, see FORK_PREEMPT_COUNT. 5097 */ 5098 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5099 "corrupted preempt_count: %s/%d/0x%x\n", 5100 current->comm, current->pid, preempt_count())) 5101 preempt_count_set(FORK_PREEMPT_COUNT); 5102 5103 rq->prev_mm = NULL; 5104 5105 /* 5106 * A task struct has one reference for the use as "current". 5107 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5108 * schedule one last time. The schedule call will never return, and 5109 * the scheduled task must drop that reference. 5110 * 5111 * We must observe prev->state before clearing prev->on_cpu (in 5112 * finish_task), otherwise a concurrent wakeup can get prev 5113 * running on another CPU and we could rave with its RUNNING -> DEAD 5114 * transition, resulting in a double drop. 5115 */ 5116 prev_state = READ_ONCE(prev->__state); 5117 vtime_task_switch(prev); 5118 perf_event_task_sched_in(prev, current); 5119 finish_task(prev); 5120 tick_nohz_task_switch(); 5121 finish_lock_switch(rq); 5122 finish_arch_post_lock_switch(); 5123 kcov_finish_switch(current); 5124 /* 5125 * kmap_local_sched_out() is invoked with rq::lock held and 5126 * interrupts disabled. There is no requirement for that, but the 5127 * sched out code does not have an interrupt enabled section. 5128 * Restoring the maps on sched in does not require interrupts being 5129 * disabled either. 5130 */ 5131 kmap_local_sched_in(); 5132 5133 fire_sched_in_preempt_notifiers(current); 5134 /* 5135 * When switching through a kernel thread, the loop in 5136 * membarrier_{private,global}_expedited() may have observed that 5137 * kernel thread and not issued an IPI. It is therefore possible to 5138 * schedule between user->kernel->user threads without passing though 5139 * switch_mm(). Membarrier requires a barrier after storing to 5140 * rq->curr, before returning to userspace, so provide them here: 5141 * 5142 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5143 * provided by mmdrop(), 5144 * - a sync_core for SYNC_CORE. 5145 */ 5146 if (mm) { 5147 membarrier_mm_sync_core_before_usermode(mm); 5148 mmdrop_sched(mm); 5149 } 5150 if (unlikely(prev_state == TASK_DEAD)) { 5151 if (prev->sched_class->task_dead) 5152 prev->sched_class->task_dead(prev); 5153 5154 /* Task is done with its stack. */ 5155 put_task_stack(prev); 5156 5157 put_task_struct_rcu_user(prev); 5158 } 5159 5160 return rq; 5161 } 5162 5163 /** 5164 * schedule_tail - first thing a freshly forked thread must call. 5165 * @prev: the thread we just switched away from. 5166 */ 5167 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5168 __releases(rq->lock) 5169 { 5170 /* 5171 * New tasks start with FORK_PREEMPT_COUNT, see there and 5172 * finish_task_switch() for details. 5173 * 5174 * finish_task_switch() will drop rq->lock() and lower preempt_count 5175 * and the preempt_enable() will end up enabling preemption (on 5176 * PREEMPT_COUNT kernels). 5177 */ 5178 5179 finish_task_switch(prev); 5180 preempt_enable(); 5181 5182 if (current->set_child_tid) 5183 put_user(task_pid_vnr(current), current->set_child_tid); 5184 5185 calculate_sigpending(); 5186 } 5187 5188 /* 5189 * context_switch - switch to the new MM and the new thread's register state. 5190 */ 5191 static __always_inline struct rq * 5192 context_switch(struct rq *rq, struct task_struct *prev, 5193 struct task_struct *next, struct rq_flags *rf) 5194 { 5195 prepare_task_switch(rq, prev, next); 5196 5197 /* 5198 * For paravirt, this is coupled with an exit in switch_to to 5199 * combine the page table reload and the switch backend into 5200 * one hypercall. 5201 */ 5202 arch_start_context_switch(prev); 5203 5204 /* 5205 * kernel -> kernel lazy + transfer active 5206 * user -> kernel lazy + mmgrab() active 5207 * 5208 * kernel -> user switch + mmdrop() active 5209 * user -> user switch 5210 */ 5211 if (!next->mm) { // to kernel 5212 enter_lazy_tlb(prev->active_mm, next); 5213 5214 next->active_mm = prev->active_mm; 5215 if (prev->mm) // from user 5216 mmgrab(prev->active_mm); 5217 else 5218 prev->active_mm = NULL; 5219 } else { // to user 5220 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5221 /* 5222 * sys_membarrier() requires an smp_mb() between setting 5223 * rq->curr / membarrier_switch_mm() and returning to userspace. 5224 * 5225 * The below provides this either through switch_mm(), or in 5226 * case 'prev->active_mm == next->mm' through 5227 * finish_task_switch()'s mmdrop(). 5228 */ 5229 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5230 lru_gen_use_mm(next->mm); 5231 5232 if (!prev->mm) { // from kernel 5233 /* will mmdrop() in finish_task_switch(). */ 5234 rq->prev_mm = prev->active_mm; 5235 prev->active_mm = NULL; 5236 } 5237 } 5238 5239 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 5240 5241 prepare_lock_switch(rq, next, rf); 5242 5243 /* Here we just switch the register state and the stack. */ 5244 switch_to(prev, next, prev); 5245 barrier(); 5246 5247 return finish_task_switch(prev); 5248 } 5249 5250 /* 5251 * nr_running and nr_context_switches: 5252 * 5253 * externally visible scheduler statistics: current number of runnable 5254 * threads, total number of context switches performed since bootup. 5255 */ 5256 unsigned int nr_running(void) 5257 { 5258 unsigned int i, sum = 0; 5259 5260 for_each_online_cpu(i) 5261 sum += cpu_rq(i)->nr_running; 5262 5263 return sum; 5264 } 5265 5266 /* 5267 * Check if only the current task is running on the CPU. 5268 * 5269 * Caution: this function does not check that the caller has disabled 5270 * preemption, thus the result might have a time-of-check-to-time-of-use 5271 * race. The caller is responsible to use it correctly, for example: 5272 * 5273 * - from a non-preemptible section (of course) 5274 * 5275 * - from a thread that is bound to a single CPU 5276 * 5277 * - in a loop with very short iterations (e.g. a polling loop) 5278 */ 5279 bool single_task_running(void) 5280 { 5281 return raw_rq()->nr_running == 1; 5282 } 5283 EXPORT_SYMBOL(single_task_running); 5284 5285 unsigned long long nr_context_switches(void) 5286 { 5287 int i; 5288 unsigned long long sum = 0; 5289 5290 for_each_possible_cpu(i) 5291 sum += cpu_rq(i)->nr_switches; 5292 5293 return sum; 5294 } 5295 5296 /* 5297 * Consumers of these two interfaces, like for example the cpuidle menu 5298 * governor, are using nonsensical data. Preferring shallow idle state selection 5299 * for a CPU that has IO-wait which might not even end up running the task when 5300 * it does become runnable. 5301 */ 5302 5303 unsigned int nr_iowait_cpu(int cpu) 5304 { 5305 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5306 } 5307 5308 /* 5309 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5310 * 5311 * The idea behind IO-wait account is to account the idle time that we could 5312 * have spend running if it were not for IO. That is, if we were to improve the 5313 * storage performance, we'd have a proportional reduction in IO-wait time. 5314 * 5315 * This all works nicely on UP, where, when a task blocks on IO, we account 5316 * idle time as IO-wait, because if the storage were faster, it could've been 5317 * running and we'd not be idle. 5318 * 5319 * This has been extended to SMP, by doing the same for each CPU. This however 5320 * is broken. 5321 * 5322 * Imagine for instance the case where two tasks block on one CPU, only the one 5323 * CPU will have IO-wait accounted, while the other has regular idle. Even 5324 * though, if the storage were faster, both could've ran at the same time, 5325 * utilising both CPUs. 5326 * 5327 * This means, that when looking globally, the current IO-wait accounting on 5328 * SMP is a lower bound, by reason of under accounting. 5329 * 5330 * Worse, since the numbers are provided per CPU, they are sometimes 5331 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5332 * associated with any one particular CPU, it can wake to another CPU than it 5333 * blocked on. This means the per CPU IO-wait number is meaningless. 5334 * 5335 * Task CPU affinities can make all that even more 'interesting'. 5336 */ 5337 5338 unsigned int nr_iowait(void) 5339 { 5340 unsigned int i, sum = 0; 5341 5342 for_each_possible_cpu(i) 5343 sum += nr_iowait_cpu(i); 5344 5345 return sum; 5346 } 5347 5348 #ifdef CONFIG_SMP 5349 5350 /* 5351 * sched_exec - execve() is a valuable balancing opportunity, because at 5352 * this point the task has the smallest effective memory and cache footprint. 5353 */ 5354 void sched_exec(void) 5355 { 5356 struct task_struct *p = current; 5357 unsigned long flags; 5358 int dest_cpu; 5359 5360 raw_spin_lock_irqsave(&p->pi_lock, flags); 5361 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5362 if (dest_cpu == smp_processor_id()) 5363 goto unlock; 5364 5365 if (likely(cpu_active(dest_cpu))) { 5366 struct migration_arg arg = { p, dest_cpu }; 5367 5368 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5369 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5370 return; 5371 } 5372 unlock: 5373 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 5374 } 5375 5376 #endif 5377 5378 DEFINE_PER_CPU(struct kernel_stat, kstat); 5379 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5380 5381 EXPORT_PER_CPU_SYMBOL(kstat); 5382 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5383 5384 /* 5385 * The function fair_sched_class.update_curr accesses the struct curr 5386 * and its field curr->exec_start; when called from task_sched_runtime(), 5387 * we observe a high rate of cache misses in practice. 5388 * Prefetching this data results in improved performance. 5389 */ 5390 static inline void prefetch_curr_exec_start(struct task_struct *p) 5391 { 5392 #ifdef CONFIG_FAIR_GROUP_SCHED 5393 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 5394 #else 5395 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 5396 #endif 5397 prefetch(curr); 5398 prefetch(&curr->exec_start); 5399 } 5400 5401 /* 5402 * Return accounted runtime for the task. 5403 * In case the task is currently running, return the runtime plus current's 5404 * pending runtime that have not been accounted yet. 5405 */ 5406 unsigned long long task_sched_runtime(struct task_struct *p) 5407 { 5408 struct rq_flags rf; 5409 struct rq *rq; 5410 u64 ns; 5411 5412 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5413 /* 5414 * 64-bit doesn't need locks to atomically read a 64-bit value. 5415 * So we have a optimization chance when the task's delta_exec is 0. 5416 * Reading ->on_cpu is racy, but this is ok. 5417 * 5418 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5419 * If we race with it entering CPU, unaccounted time is 0. This is 5420 * indistinguishable from the read occurring a few cycles earlier. 5421 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5422 * been accounted, so we're correct here as well. 5423 */ 5424 if (!p->on_cpu || !task_on_rq_queued(p)) 5425 return p->se.sum_exec_runtime; 5426 #endif 5427 5428 rq = task_rq_lock(p, &rf); 5429 /* 5430 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5431 * project cycles that may never be accounted to this 5432 * thread, breaking clock_gettime(). 5433 */ 5434 if (task_current(rq, p) && task_on_rq_queued(p)) { 5435 prefetch_curr_exec_start(p); 5436 update_rq_clock(rq); 5437 p->sched_class->update_curr(rq); 5438 } 5439 ns = p->se.sum_exec_runtime; 5440 task_rq_unlock(rq, p, &rf); 5441 5442 return ns; 5443 } 5444 5445 #ifdef CONFIG_SCHED_DEBUG 5446 static u64 cpu_resched_latency(struct rq *rq) 5447 { 5448 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5449 u64 resched_latency, now = rq_clock(rq); 5450 static bool warned_once; 5451 5452 if (sysctl_resched_latency_warn_once && warned_once) 5453 return 0; 5454 5455 if (!need_resched() || !latency_warn_ms) 5456 return 0; 5457 5458 if (system_state == SYSTEM_BOOTING) 5459 return 0; 5460 5461 if (!rq->last_seen_need_resched_ns) { 5462 rq->last_seen_need_resched_ns = now; 5463 rq->ticks_without_resched = 0; 5464 return 0; 5465 } 5466 5467 rq->ticks_without_resched++; 5468 resched_latency = now - rq->last_seen_need_resched_ns; 5469 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5470 return 0; 5471 5472 warned_once = true; 5473 5474 return resched_latency; 5475 } 5476 5477 static int __init setup_resched_latency_warn_ms(char *str) 5478 { 5479 long val; 5480 5481 if ((kstrtol(str, 0, &val))) { 5482 pr_warn("Unable to set resched_latency_warn_ms\n"); 5483 return 1; 5484 } 5485 5486 sysctl_resched_latency_warn_ms = val; 5487 return 1; 5488 } 5489 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5490 #else 5491 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5492 #endif /* CONFIG_SCHED_DEBUG */ 5493 5494 /* 5495 * This function gets called by the timer code, with HZ frequency. 5496 * We call it with interrupts disabled. 5497 */ 5498 void scheduler_tick(void) 5499 { 5500 int cpu = smp_processor_id(); 5501 struct rq *rq = cpu_rq(cpu); 5502 struct task_struct *curr = rq->curr; 5503 struct rq_flags rf; 5504 unsigned long thermal_pressure; 5505 u64 resched_latency; 5506 5507 arch_scale_freq_tick(); 5508 sched_clock_tick(); 5509 5510 rq_lock(rq, &rf); 5511 5512 update_rq_clock(rq); 5513 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 5514 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); 5515 curr->sched_class->task_tick(rq, curr, 0); 5516 if (sched_feat(LATENCY_WARN)) 5517 resched_latency = cpu_resched_latency(rq); 5518 calc_global_load_tick(rq); 5519 sched_core_tick(rq); 5520 5521 rq_unlock(rq, &rf); 5522 5523 if (sched_feat(LATENCY_WARN) && resched_latency) 5524 resched_latency_warn(cpu, resched_latency); 5525 5526 perf_event_task_tick(); 5527 5528 #ifdef CONFIG_SMP 5529 rq->idle_balance = idle_cpu(cpu); 5530 trigger_load_balance(rq); 5531 #endif 5532 } 5533 5534 #ifdef CONFIG_NO_HZ_FULL 5535 5536 struct tick_work { 5537 int cpu; 5538 atomic_t state; 5539 struct delayed_work work; 5540 }; 5541 /* Values for ->state, see diagram below. */ 5542 #define TICK_SCHED_REMOTE_OFFLINE 0 5543 #define TICK_SCHED_REMOTE_OFFLINING 1 5544 #define TICK_SCHED_REMOTE_RUNNING 2 5545 5546 /* 5547 * State diagram for ->state: 5548 * 5549 * 5550 * TICK_SCHED_REMOTE_OFFLINE 5551 * | ^ 5552 * | | 5553 * | | sched_tick_remote() 5554 * | | 5555 * | | 5556 * +--TICK_SCHED_REMOTE_OFFLINING 5557 * | ^ 5558 * | | 5559 * sched_tick_start() | | sched_tick_stop() 5560 * | | 5561 * V | 5562 * TICK_SCHED_REMOTE_RUNNING 5563 * 5564 * 5565 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5566 * and sched_tick_start() are happy to leave the state in RUNNING. 5567 */ 5568 5569 static struct tick_work __percpu *tick_work_cpu; 5570 5571 static void sched_tick_remote(struct work_struct *work) 5572 { 5573 struct delayed_work *dwork = to_delayed_work(work); 5574 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5575 int cpu = twork->cpu; 5576 struct rq *rq = cpu_rq(cpu); 5577 struct task_struct *curr; 5578 struct rq_flags rf; 5579 u64 delta; 5580 int os; 5581 5582 /* 5583 * Handle the tick only if it appears the remote CPU is running in full 5584 * dynticks mode. The check is racy by nature, but missing a tick or 5585 * having one too much is no big deal because the scheduler tick updates 5586 * statistics and checks timeslices in a time-independent way, regardless 5587 * of when exactly it is running. 5588 */ 5589 if (!tick_nohz_tick_stopped_cpu(cpu)) 5590 goto out_requeue; 5591 5592 rq_lock_irq(rq, &rf); 5593 curr = rq->curr; 5594 if (cpu_is_offline(cpu)) 5595 goto out_unlock; 5596 5597 update_rq_clock(rq); 5598 5599 if (!is_idle_task(curr)) { 5600 /* 5601 * Make sure the next tick runs within a reasonable 5602 * amount of time. 5603 */ 5604 delta = rq_clock_task(rq) - curr->se.exec_start; 5605 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5606 } 5607 curr->sched_class->task_tick(rq, curr, 0); 5608 5609 calc_load_nohz_remote(rq); 5610 out_unlock: 5611 rq_unlock_irq(rq, &rf); 5612 out_requeue: 5613 5614 /* 5615 * Run the remote tick once per second (1Hz). This arbitrary 5616 * frequency is large enough to avoid overload but short enough 5617 * to keep scheduler internal stats reasonably up to date. But 5618 * first update state to reflect hotplug activity if required. 5619 */ 5620 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5621 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5622 if (os == TICK_SCHED_REMOTE_RUNNING) 5623 queue_delayed_work(system_unbound_wq, dwork, HZ); 5624 } 5625 5626 static void sched_tick_start(int cpu) 5627 { 5628 int os; 5629 struct tick_work *twork; 5630 5631 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5632 return; 5633 5634 WARN_ON_ONCE(!tick_work_cpu); 5635 5636 twork = per_cpu_ptr(tick_work_cpu, cpu); 5637 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5638 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5639 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5640 twork->cpu = cpu; 5641 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5642 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5643 } 5644 } 5645 5646 #ifdef CONFIG_HOTPLUG_CPU 5647 static void sched_tick_stop(int cpu) 5648 { 5649 struct tick_work *twork; 5650 int os; 5651 5652 if (housekeeping_cpu(cpu, HK_TYPE_TICK)) 5653 return; 5654 5655 WARN_ON_ONCE(!tick_work_cpu); 5656 5657 twork = per_cpu_ptr(tick_work_cpu, cpu); 5658 /* There cannot be competing actions, but don't rely on stop-machine. */ 5659 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5660 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5661 /* Don't cancel, as this would mess up the state machine. */ 5662 } 5663 #endif /* CONFIG_HOTPLUG_CPU */ 5664 5665 int __init sched_tick_offload_init(void) 5666 { 5667 tick_work_cpu = alloc_percpu(struct tick_work); 5668 BUG_ON(!tick_work_cpu); 5669 return 0; 5670 } 5671 5672 #else /* !CONFIG_NO_HZ_FULL */ 5673 static inline void sched_tick_start(int cpu) { } 5674 static inline void sched_tick_stop(int cpu) { } 5675 #endif 5676 5677 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5678 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5679 /* 5680 * If the value passed in is equal to the current preempt count 5681 * then we just disabled preemption. Start timing the latency. 5682 */ 5683 static inline void preempt_latency_start(int val) 5684 { 5685 if (preempt_count() == val) { 5686 unsigned long ip = get_lock_parent_ip(); 5687 #ifdef CONFIG_DEBUG_PREEMPT 5688 current->preempt_disable_ip = ip; 5689 #endif 5690 trace_preempt_off(CALLER_ADDR0, ip); 5691 } 5692 } 5693 5694 void preempt_count_add(int val) 5695 { 5696 #ifdef CONFIG_DEBUG_PREEMPT 5697 /* 5698 * Underflow? 5699 */ 5700 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5701 return; 5702 #endif 5703 __preempt_count_add(val); 5704 #ifdef CONFIG_DEBUG_PREEMPT 5705 /* 5706 * Spinlock count overflowing soon? 5707 */ 5708 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5709 PREEMPT_MASK - 10); 5710 #endif 5711 preempt_latency_start(val); 5712 } 5713 EXPORT_SYMBOL(preempt_count_add); 5714 NOKPROBE_SYMBOL(preempt_count_add); 5715 5716 /* 5717 * If the value passed in equals to the current preempt count 5718 * then we just enabled preemption. Stop timing the latency. 5719 */ 5720 static inline void preempt_latency_stop(int val) 5721 { 5722 if (preempt_count() == val) 5723 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5724 } 5725 5726 void preempt_count_sub(int val) 5727 { 5728 #ifdef CONFIG_DEBUG_PREEMPT 5729 /* 5730 * Underflow? 5731 */ 5732 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5733 return; 5734 /* 5735 * Is the spinlock portion underflowing? 5736 */ 5737 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5738 !(preempt_count() & PREEMPT_MASK))) 5739 return; 5740 #endif 5741 5742 preempt_latency_stop(val); 5743 __preempt_count_sub(val); 5744 } 5745 EXPORT_SYMBOL(preempt_count_sub); 5746 NOKPROBE_SYMBOL(preempt_count_sub); 5747 5748 #else 5749 static inline void preempt_latency_start(int val) { } 5750 static inline void preempt_latency_stop(int val) { } 5751 #endif 5752 5753 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5754 { 5755 #ifdef CONFIG_DEBUG_PREEMPT 5756 return p->preempt_disable_ip; 5757 #else 5758 return 0; 5759 #endif 5760 } 5761 5762 /* 5763 * Print scheduling while atomic bug: 5764 */ 5765 static noinline void __schedule_bug(struct task_struct *prev) 5766 { 5767 /* Save this before calling printk(), since that will clobber it */ 5768 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5769 5770 if (oops_in_progress) 5771 return; 5772 5773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5774 prev->comm, prev->pid, preempt_count()); 5775 5776 debug_show_held_locks(prev); 5777 print_modules(); 5778 if (irqs_disabled()) 5779 print_irqtrace_events(prev); 5780 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 5781 && in_atomic_preempt_off()) { 5782 pr_err("Preemption disabled at:"); 5783 print_ip_sym(KERN_ERR, preempt_disable_ip); 5784 } 5785 if (panic_on_warn) 5786 panic("scheduling while atomic\n"); 5787 5788 dump_stack(); 5789 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5790 } 5791 5792 /* 5793 * Various schedule()-time debugging checks and statistics: 5794 */ 5795 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5796 { 5797 #ifdef CONFIG_SCHED_STACK_END_CHECK 5798 if (task_stack_end_corrupted(prev)) 5799 panic("corrupted stack end detected inside scheduler\n"); 5800 5801 if (task_scs_end_corrupted(prev)) 5802 panic("corrupted shadow stack detected inside scheduler\n"); 5803 #endif 5804 5805 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5806 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5807 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5808 prev->comm, prev->pid, prev->non_block_count); 5809 dump_stack(); 5810 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5811 } 5812 #endif 5813 5814 if (unlikely(in_atomic_preempt_off())) { 5815 __schedule_bug(prev); 5816 preempt_count_set(PREEMPT_DISABLED); 5817 } 5818 rcu_sleep_check(); 5819 SCHED_WARN_ON(ct_state() == CONTEXT_USER); 5820 5821 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5822 5823 schedstat_inc(this_rq()->sched_count); 5824 } 5825 5826 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, 5827 struct rq_flags *rf) 5828 { 5829 #ifdef CONFIG_SMP 5830 const struct sched_class *class; 5831 /* 5832 * We must do the balancing pass before put_prev_task(), such 5833 * that when we release the rq->lock the task is in the same 5834 * state as before we took rq->lock. 5835 * 5836 * We can terminate the balance pass as soon as we know there is 5837 * a runnable task of @class priority or higher. 5838 */ 5839 for_class_range(class, prev->sched_class, &idle_sched_class) { 5840 if (class->balance(rq, prev, rf)) 5841 break; 5842 } 5843 #endif 5844 5845 put_prev_task(rq, prev); 5846 } 5847 5848 /* 5849 * Pick up the highest-prio task: 5850 */ 5851 static inline struct task_struct * 5852 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5853 { 5854 const struct sched_class *class; 5855 struct task_struct *p; 5856 5857 /* 5858 * Optimization: we know that if all tasks are in the fair class we can 5859 * call that function directly, but only if the @prev task wasn't of a 5860 * higher scheduling class, because otherwise those lose the 5861 * opportunity to pull in more work from other CPUs. 5862 */ 5863 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 5864 rq->nr_running == rq->cfs.h_nr_running)) { 5865 5866 p = pick_next_task_fair(rq, prev, rf); 5867 if (unlikely(p == RETRY_TASK)) 5868 goto restart; 5869 5870 /* Assume the next prioritized class is idle_sched_class */ 5871 if (!p) { 5872 put_prev_task(rq, prev); 5873 p = pick_next_task_idle(rq); 5874 } 5875 5876 return p; 5877 } 5878 5879 restart: 5880 put_prev_task_balance(rq, prev, rf); 5881 5882 for_each_class(class) { 5883 p = class->pick_next_task(rq); 5884 if (p) 5885 return p; 5886 } 5887 5888 BUG(); /* The idle class should always have a runnable task. */ 5889 } 5890 5891 #ifdef CONFIG_SCHED_CORE 5892 static inline bool is_task_rq_idle(struct task_struct *t) 5893 { 5894 return (task_rq(t)->idle == t); 5895 } 5896 5897 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 5898 { 5899 return is_task_rq_idle(a) || (a->core_cookie == cookie); 5900 } 5901 5902 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 5903 { 5904 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 5905 return true; 5906 5907 return a->core_cookie == b->core_cookie; 5908 } 5909 5910 static inline struct task_struct *pick_task(struct rq *rq) 5911 { 5912 const struct sched_class *class; 5913 struct task_struct *p; 5914 5915 for_each_class(class) { 5916 p = class->pick_task(rq); 5917 if (p) 5918 return p; 5919 } 5920 5921 BUG(); /* The idle class should always have a runnable task. */ 5922 } 5923 5924 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 5925 5926 static void queue_core_balance(struct rq *rq); 5927 5928 static struct task_struct * 5929 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 5930 { 5931 struct task_struct *next, *p, *max = NULL; 5932 const struct cpumask *smt_mask; 5933 bool fi_before = false; 5934 bool core_clock_updated = (rq == rq->core); 5935 unsigned long cookie; 5936 int i, cpu, occ = 0; 5937 struct rq *rq_i; 5938 bool need_sync; 5939 5940 if (!sched_core_enabled(rq)) 5941 return __pick_next_task(rq, prev, rf); 5942 5943 cpu = cpu_of(rq); 5944 5945 /* Stopper task is switching into idle, no need core-wide selection. */ 5946 if (cpu_is_offline(cpu)) { 5947 /* 5948 * Reset core_pick so that we don't enter the fastpath when 5949 * coming online. core_pick would already be migrated to 5950 * another cpu during offline. 5951 */ 5952 rq->core_pick = NULL; 5953 return __pick_next_task(rq, prev, rf); 5954 } 5955 5956 /* 5957 * If there were no {en,de}queues since we picked (IOW, the task 5958 * pointers are all still valid), and we haven't scheduled the last 5959 * pick yet, do so now. 5960 * 5961 * rq->core_pick can be NULL if no selection was made for a CPU because 5962 * it was either offline or went offline during a sibling's core-wide 5963 * selection. In this case, do a core-wide selection. 5964 */ 5965 if (rq->core->core_pick_seq == rq->core->core_task_seq && 5966 rq->core->core_pick_seq != rq->core_sched_seq && 5967 rq->core_pick) { 5968 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 5969 5970 next = rq->core_pick; 5971 if (next != prev) { 5972 put_prev_task(rq, prev); 5973 set_next_task(rq, next); 5974 } 5975 5976 rq->core_pick = NULL; 5977 goto out; 5978 } 5979 5980 put_prev_task_balance(rq, prev, rf); 5981 5982 smt_mask = cpu_smt_mask(cpu); 5983 need_sync = !!rq->core->core_cookie; 5984 5985 /* reset state */ 5986 rq->core->core_cookie = 0UL; 5987 if (rq->core->core_forceidle_count) { 5988 if (!core_clock_updated) { 5989 update_rq_clock(rq->core); 5990 core_clock_updated = true; 5991 } 5992 sched_core_account_forceidle(rq); 5993 /* reset after accounting force idle */ 5994 rq->core->core_forceidle_start = 0; 5995 rq->core->core_forceidle_count = 0; 5996 rq->core->core_forceidle_occupation = 0; 5997 need_sync = true; 5998 fi_before = true; 5999 } 6000 6001 /* 6002 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6003 * 6004 * @task_seq guards the task state ({en,de}queues) 6005 * @pick_seq is the @task_seq we did a selection on 6006 * @sched_seq is the @pick_seq we scheduled 6007 * 6008 * However, preemptions can cause multiple picks on the same task set. 6009 * 'Fix' this by also increasing @task_seq for every pick. 6010 */ 6011 rq->core->core_task_seq++; 6012 6013 /* 6014 * Optimize for common case where this CPU has no cookies 6015 * and there are no cookied tasks running on siblings. 6016 */ 6017 if (!need_sync) { 6018 next = pick_task(rq); 6019 if (!next->core_cookie) { 6020 rq->core_pick = NULL; 6021 /* 6022 * For robustness, update the min_vruntime_fi for 6023 * unconstrained picks as well. 6024 */ 6025 WARN_ON_ONCE(fi_before); 6026 task_vruntime_update(rq, next, false); 6027 goto out_set_next; 6028 } 6029 } 6030 6031 /* 6032 * For each thread: do the regular task pick and find the max prio task 6033 * amongst them. 6034 * 6035 * Tie-break prio towards the current CPU 6036 */ 6037 for_each_cpu_wrap(i, smt_mask, cpu) { 6038 rq_i = cpu_rq(i); 6039 6040 /* 6041 * Current cpu always has its clock updated on entrance to 6042 * pick_next_task(). If the current cpu is not the core, 6043 * the core may also have been updated above. 6044 */ 6045 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6046 update_rq_clock(rq_i); 6047 6048 p = rq_i->core_pick = pick_task(rq_i); 6049 if (!max || prio_less(max, p, fi_before)) 6050 max = p; 6051 } 6052 6053 cookie = rq->core->core_cookie = max->core_cookie; 6054 6055 /* 6056 * For each thread: try and find a runnable task that matches @max or 6057 * force idle. 6058 */ 6059 for_each_cpu(i, smt_mask) { 6060 rq_i = cpu_rq(i); 6061 p = rq_i->core_pick; 6062 6063 if (!cookie_equals(p, cookie)) { 6064 p = NULL; 6065 if (cookie) 6066 p = sched_core_find(rq_i, cookie); 6067 if (!p) 6068 p = idle_sched_class.pick_task(rq_i); 6069 } 6070 6071 rq_i->core_pick = p; 6072 6073 if (p == rq_i->idle) { 6074 if (rq_i->nr_running) { 6075 rq->core->core_forceidle_count++; 6076 if (!fi_before) 6077 rq->core->core_forceidle_seq++; 6078 } 6079 } else { 6080 occ++; 6081 } 6082 } 6083 6084 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6085 rq->core->core_forceidle_start = rq_clock(rq->core); 6086 rq->core->core_forceidle_occupation = occ; 6087 } 6088 6089 rq->core->core_pick_seq = rq->core->core_task_seq; 6090 next = rq->core_pick; 6091 rq->core_sched_seq = rq->core->core_pick_seq; 6092 6093 /* Something should have been selected for current CPU */ 6094 WARN_ON_ONCE(!next); 6095 6096 /* 6097 * Reschedule siblings 6098 * 6099 * NOTE: L1TF -- at this point we're no longer running the old task and 6100 * sending an IPI (below) ensures the sibling will no longer be running 6101 * their task. This ensures there is no inter-sibling overlap between 6102 * non-matching user state. 6103 */ 6104 for_each_cpu(i, smt_mask) { 6105 rq_i = cpu_rq(i); 6106 6107 /* 6108 * An online sibling might have gone offline before a task 6109 * could be picked for it, or it might be offline but later 6110 * happen to come online, but its too late and nothing was 6111 * picked for it. That's Ok - it will pick tasks for itself, 6112 * so ignore it. 6113 */ 6114 if (!rq_i->core_pick) 6115 continue; 6116 6117 /* 6118 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6119 * fi_before fi update? 6120 * 0 0 1 6121 * 0 1 1 6122 * 1 0 1 6123 * 1 1 0 6124 */ 6125 if (!(fi_before && rq->core->core_forceidle_count)) 6126 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6127 6128 rq_i->core_pick->core_occupation = occ; 6129 6130 if (i == cpu) { 6131 rq_i->core_pick = NULL; 6132 continue; 6133 } 6134 6135 /* Did we break L1TF mitigation requirements? */ 6136 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6137 6138 if (rq_i->curr == rq_i->core_pick) { 6139 rq_i->core_pick = NULL; 6140 continue; 6141 } 6142 6143 resched_curr(rq_i); 6144 } 6145 6146 out_set_next: 6147 set_next_task(rq, next); 6148 out: 6149 if (rq->core->core_forceidle_count && next == rq->idle) 6150 queue_core_balance(rq); 6151 6152 return next; 6153 } 6154 6155 static bool try_steal_cookie(int this, int that) 6156 { 6157 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6158 struct task_struct *p; 6159 unsigned long cookie; 6160 bool success = false; 6161 6162 local_irq_disable(); 6163 double_rq_lock(dst, src); 6164 6165 cookie = dst->core->core_cookie; 6166 if (!cookie) 6167 goto unlock; 6168 6169 if (dst->curr != dst->idle) 6170 goto unlock; 6171 6172 p = sched_core_find(src, cookie); 6173 if (p == src->idle) 6174 goto unlock; 6175 6176 do { 6177 if (p == src->core_pick || p == src->curr) 6178 goto next; 6179 6180 if (!is_cpu_allowed(p, this)) 6181 goto next; 6182 6183 if (p->core_occupation > dst->idle->core_occupation) 6184 goto next; 6185 6186 deactivate_task(src, p, 0); 6187 set_task_cpu(p, this); 6188 activate_task(dst, p, 0); 6189 6190 resched_curr(dst); 6191 6192 success = true; 6193 break; 6194 6195 next: 6196 p = sched_core_next(p, cookie); 6197 } while (p); 6198 6199 unlock: 6200 double_rq_unlock(dst, src); 6201 local_irq_enable(); 6202 6203 return success; 6204 } 6205 6206 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6207 { 6208 int i; 6209 6210 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { 6211 if (i == cpu) 6212 continue; 6213 6214 if (need_resched()) 6215 break; 6216 6217 if (try_steal_cookie(cpu, i)) 6218 return true; 6219 } 6220 6221 return false; 6222 } 6223 6224 static void sched_core_balance(struct rq *rq) 6225 { 6226 struct sched_domain *sd; 6227 int cpu = cpu_of(rq); 6228 6229 preempt_disable(); 6230 rcu_read_lock(); 6231 raw_spin_rq_unlock_irq(rq); 6232 for_each_domain(cpu, sd) { 6233 if (need_resched()) 6234 break; 6235 6236 if (steal_cookie_task(cpu, sd)) 6237 break; 6238 } 6239 raw_spin_rq_lock_irq(rq); 6240 rcu_read_unlock(); 6241 preempt_enable(); 6242 } 6243 6244 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6245 6246 static void queue_core_balance(struct rq *rq) 6247 { 6248 if (!sched_core_enabled(rq)) 6249 return; 6250 6251 if (!rq->core->core_cookie) 6252 return; 6253 6254 if (!rq->nr_running) /* not forced idle */ 6255 return; 6256 6257 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6258 } 6259 6260 static void sched_core_cpu_starting(unsigned int cpu) 6261 { 6262 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6263 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6264 unsigned long flags; 6265 int t; 6266 6267 sched_core_lock(cpu, &flags); 6268 6269 WARN_ON_ONCE(rq->core != rq); 6270 6271 /* if we're the first, we'll be our own leader */ 6272 if (cpumask_weight(smt_mask) == 1) 6273 goto unlock; 6274 6275 /* find the leader */ 6276 for_each_cpu(t, smt_mask) { 6277 if (t == cpu) 6278 continue; 6279 rq = cpu_rq(t); 6280 if (rq->core == rq) { 6281 core_rq = rq; 6282 break; 6283 } 6284 } 6285 6286 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6287 goto unlock; 6288 6289 /* install and validate core_rq */ 6290 for_each_cpu(t, smt_mask) { 6291 rq = cpu_rq(t); 6292 6293 if (t == cpu) 6294 rq->core = core_rq; 6295 6296 WARN_ON_ONCE(rq->core != core_rq); 6297 } 6298 6299 unlock: 6300 sched_core_unlock(cpu, &flags); 6301 } 6302 6303 static void sched_core_cpu_deactivate(unsigned int cpu) 6304 { 6305 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6306 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6307 unsigned long flags; 6308 int t; 6309 6310 sched_core_lock(cpu, &flags); 6311 6312 /* if we're the last man standing, nothing to do */ 6313 if (cpumask_weight(smt_mask) == 1) { 6314 WARN_ON_ONCE(rq->core != rq); 6315 goto unlock; 6316 } 6317 6318 /* if we're not the leader, nothing to do */ 6319 if (rq->core != rq) 6320 goto unlock; 6321 6322 /* find a new leader */ 6323 for_each_cpu(t, smt_mask) { 6324 if (t == cpu) 6325 continue; 6326 core_rq = cpu_rq(t); 6327 break; 6328 } 6329 6330 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6331 goto unlock; 6332 6333 /* copy the shared state to the new leader */ 6334 core_rq->core_task_seq = rq->core_task_seq; 6335 core_rq->core_pick_seq = rq->core_pick_seq; 6336 core_rq->core_cookie = rq->core_cookie; 6337 core_rq->core_forceidle_count = rq->core_forceidle_count; 6338 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6339 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6340 6341 /* 6342 * Accounting edge for forced idle is handled in pick_next_task(). 6343 * Don't need another one here, since the hotplug thread shouldn't 6344 * have a cookie. 6345 */ 6346 core_rq->core_forceidle_start = 0; 6347 6348 /* install new leader */ 6349 for_each_cpu(t, smt_mask) { 6350 rq = cpu_rq(t); 6351 rq->core = core_rq; 6352 } 6353 6354 unlock: 6355 sched_core_unlock(cpu, &flags); 6356 } 6357 6358 static inline void sched_core_cpu_dying(unsigned int cpu) 6359 { 6360 struct rq *rq = cpu_rq(cpu); 6361 6362 if (rq->core != rq) 6363 rq->core = rq; 6364 } 6365 6366 #else /* !CONFIG_SCHED_CORE */ 6367 6368 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6369 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6370 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6371 6372 static struct task_struct * 6373 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6374 { 6375 return __pick_next_task(rq, prev, rf); 6376 } 6377 6378 #endif /* CONFIG_SCHED_CORE */ 6379 6380 /* 6381 * Constants for the sched_mode argument of __schedule(). 6382 * 6383 * The mode argument allows RT enabled kernels to differentiate a 6384 * preemption from blocking on an 'sleeping' spin/rwlock. Note that 6385 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to 6386 * optimize the AND operation out and just check for zero. 6387 */ 6388 #define SM_NONE 0x0 6389 #define SM_PREEMPT 0x1 6390 #define SM_RTLOCK_WAIT 0x2 6391 6392 #ifndef CONFIG_PREEMPT_RT 6393 # define SM_MASK_PREEMPT (~0U) 6394 #else 6395 # define SM_MASK_PREEMPT SM_PREEMPT 6396 #endif 6397 6398 /* 6399 * __schedule() is the main scheduler function. 6400 * 6401 * The main means of driving the scheduler and thus entering this function are: 6402 * 6403 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6404 * 6405 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6406 * paths. For example, see arch/x86/entry_64.S. 6407 * 6408 * To drive preemption between tasks, the scheduler sets the flag in timer 6409 * interrupt handler scheduler_tick(). 6410 * 6411 * 3. Wakeups don't really cause entry into schedule(). They add a 6412 * task to the run-queue and that's it. 6413 * 6414 * Now, if the new task added to the run-queue preempts the current 6415 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6416 * called on the nearest possible occasion: 6417 * 6418 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6419 * 6420 * - in syscall or exception context, at the next outmost 6421 * preempt_enable(). (this might be as soon as the wake_up()'s 6422 * spin_unlock()!) 6423 * 6424 * - in IRQ context, return from interrupt-handler to 6425 * preemptible context 6426 * 6427 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6428 * then at the next: 6429 * 6430 * - cond_resched() call 6431 * - explicit schedule() call 6432 * - return from syscall or exception to user-space 6433 * - return from interrupt-handler to user-space 6434 * 6435 * WARNING: must be called with preemption disabled! 6436 */ 6437 static void __sched notrace __schedule(unsigned int sched_mode) 6438 { 6439 struct task_struct *prev, *next; 6440 unsigned long *switch_count; 6441 unsigned long prev_state; 6442 struct rq_flags rf; 6443 struct rq *rq; 6444 int cpu; 6445 6446 cpu = smp_processor_id(); 6447 rq = cpu_rq(cpu); 6448 prev = rq->curr; 6449 6450 schedule_debug(prev, !!sched_mode); 6451 6452 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6453 hrtick_clear(rq); 6454 6455 local_irq_disable(); 6456 rcu_note_context_switch(!!sched_mode); 6457 6458 /* 6459 * Make sure that signal_pending_state()->signal_pending() below 6460 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6461 * done by the caller to avoid the race with signal_wake_up(): 6462 * 6463 * __set_current_state(@state) signal_wake_up() 6464 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6465 * wake_up_state(p, state) 6466 * LOCK rq->lock LOCK p->pi_state 6467 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6468 * if (signal_pending_state()) if (p->state & @state) 6469 * 6470 * Also, the membarrier system call requires a full memory barrier 6471 * after coming from user-space, before storing to rq->curr. 6472 */ 6473 rq_lock(rq, &rf); 6474 smp_mb__after_spinlock(); 6475 6476 /* Promote REQ to ACT */ 6477 rq->clock_update_flags <<= 1; 6478 update_rq_clock(rq); 6479 6480 switch_count = &prev->nivcsw; 6481 6482 /* 6483 * We must load prev->state once (task_struct::state is volatile), such 6484 * that we form a control dependency vs deactivate_task() below. 6485 */ 6486 prev_state = READ_ONCE(prev->__state); 6487 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { 6488 if (signal_pending_state(prev_state, prev)) { 6489 WRITE_ONCE(prev->__state, TASK_RUNNING); 6490 } else { 6491 prev->sched_contributes_to_load = 6492 (prev_state & TASK_UNINTERRUPTIBLE) && 6493 !(prev_state & TASK_NOLOAD) && 6494 !(prev_state & TASK_FROZEN); 6495 6496 if (prev->sched_contributes_to_load) 6497 rq->nr_uninterruptible++; 6498 6499 /* 6500 * __schedule() ttwu() 6501 * prev_state = prev->state; if (p->on_rq && ...) 6502 * if (prev_state) goto out; 6503 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6504 * p->state = TASK_WAKING 6505 * 6506 * Where __schedule() and ttwu() have matching control dependencies. 6507 * 6508 * After this, schedule() must not care about p->state any more. 6509 */ 6510 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 6511 6512 if (prev->in_iowait) { 6513 atomic_inc(&rq->nr_iowait); 6514 delayacct_blkio_start(); 6515 } 6516 } 6517 switch_count = &prev->nvcsw; 6518 } 6519 6520 next = pick_next_task(rq, prev, &rf); 6521 clear_tsk_need_resched(prev); 6522 clear_preempt_need_resched(); 6523 #ifdef CONFIG_SCHED_DEBUG 6524 rq->last_seen_need_resched_ns = 0; 6525 #endif 6526 6527 if (likely(prev != next)) { 6528 rq->nr_switches++; 6529 /* 6530 * RCU users of rcu_dereference(rq->curr) may not see 6531 * changes to task_struct made by pick_next_task(). 6532 */ 6533 RCU_INIT_POINTER(rq->curr, next); 6534 /* 6535 * The membarrier system call requires each architecture 6536 * to have a full memory barrier after updating 6537 * rq->curr, before returning to user-space. 6538 * 6539 * Here are the schemes providing that barrier on the 6540 * various architectures: 6541 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 6542 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 6543 * - finish_lock_switch() for weakly-ordered 6544 * architectures where spin_unlock is a full barrier, 6545 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6546 * is a RELEASE barrier), 6547 */ 6548 ++*switch_count; 6549 6550 migrate_disable_switch(rq, prev); 6551 psi_sched_switch(prev, next, !task_on_rq_queued(prev)); 6552 6553 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); 6554 6555 /* Also unlocks the rq: */ 6556 rq = context_switch(rq, prev, next, &rf); 6557 } else { 6558 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 6559 6560 rq_unpin_lock(rq, &rf); 6561 __balance_callbacks(rq); 6562 raw_spin_rq_unlock_irq(rq); 6563 } 6564 } 6565 6566 void __noreturn do_task_dead(void) 6567 { 6568 /* Causes final put_task_struct in finish_task_switch(): */ 6569 set_special_state(TASK_DEAD); 6570 6571 /* Tell freezer to ignore us: */ 6572 current->flags |= PF_NOFREEZE; 6573 6574 __schedule(SM_NONE); 6575 BUG(); 6576 6577 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6578 for (;;) 6579 cpu_relax(); 6580 } 6581 6582 static inline void sched_submit_work(struct task_struct *tsk) 6583 { 6584 unsigned int task_flags; 6585 6586 if (task_is_running(tsk)) 6587 return; 6588 6589 task_flags = tsk->flags; 6590 /* 6591 * If a worker goes to sleep, notify and ask workqueue whether it 6592 * wants to wake up a task to maintain concurrency. 6593 */ 6594 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6595 if (task_flags & PF_WQ_WORKER) 6596 wq_worker_sleeping(tsk); 6597 else 6598 io_wq_worker_sleeping(tsk); 6599 } 6600 6601 /* 6602 * spinlock and rwlock must not flush block requests. This will 6603 * deadlock if the callback attempts to acquire a lock which is 6604 * already acquired. 6605 */ 6606 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6607 6608 /* 6609 * If we are going to sleep and we have plugged IO queued, 6610 * make sure to submit it to avoid deadlocks. 6611 */ 6612 blk_flush_plug(tsk->plug, true); 6613 } 6614 6615 static void sched_update_worker(struct task_struct *tsk) 6616 { 6617 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { 6618 if (tsk->flags & PF_WQ_WORKER) 6619 wq_worker_running(tsk); 6620 else 6621 io_wq_worker_running(tsk); 6622 } 6623 } 6624 6625 asmlinkage __visible void __sched schedule(void) 6626 { 6627 struct task_struct *tsk = current; 6628 6629 sched_submit_work(tsk); 6630 do { 6631 preempt_disable(); 6632 __schedule(SM_NONE); 6633 sched_preempt_enable_no_resched(); 6634 } while (need_resched()); 6635 sched_update_worker(tsk); 6636 } 6637 EXPORT_SYMBOL(schedule); 6638 6639 /* 6640 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6641 * state (have scheduled out non-voluntarily) by making sure that all 6642 * tasks have either left the run queue or have gone into user space. 6643 * As idle tasks do not do either, they must not ever be preempted 6644 * (schedule out non-voluntarily). 6645 * 6646 * schedule_idle() is similar to schedule_preempt_disable() except that it 6647 * never enables preemption because it does not call sched_submit_work(). 6648 */ 6649 void __sched schedule_idle(void) 6650 { 6651 /* 6652 * As this skips calling sched_submit_work(), which the idle task does 6653 * regardless because that function is a nop when the task is in a 6654 * TASK_RUNNING state, make sure this isn't used someplace that the 6655 * current task can be in any other state. Note, idle is always in the 6656 * TASK_RUNNING state. 6657 */ 6658 WARN_ON_ONCE(current->__state); 6659 do { 6660 __schedule(SM_NONE); 6661 } while (need_resched()); 6662 } 6663 6664 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6665 asmlinkage __visible void __sched schedule_user(void) 6666 { 6667 /* 6668 * If we come here after a random call to set_need_resched(), 6669 * or we have been woken up remotely but the IPI has not yet arrived, 6670 * we haven't yet exited the RCU idle mode. Do it here manually until 6671 * we find a better solution. 6672 * 6673 * NB: There are buggy callers of this function. Ideally we 6674 * should warn if prev_state != CONTEXT_USER, but that will trigger 6675 * too frequently to make sense yet. 6676 */ 6677 enum ctx_state prev_state = exception_enter(); 6678 schedule(); 6679 exception_exit(prev_state); 6680 } 6681 #endif 6682 6683 /** 6684 * schedule_preempt_disabled - called with preemption disabled 6685 * 6686 * Returns with preemption disabled. Note: preempt_count must be 1 6687 */ 6688 void __sched schedule_preempt_disabled(void) 6689 { 6690 sched_preempt_enable_no_resched(); 6691 schedule(); 6692 preempt_disable(); 6693 } 6694 6695 #ifdef CONFIG_PREEMPT_RT 6696 void __sched notrace schedule_rtlock(void) 6697 { 6698 do { 6699 preempt_disable(); 6700 __schedule(SM_RTLOCK_WAIT); 6701 sched_preempt_enable_no_resched(); 6702 } while (need_resched()); 6703 } 6704 NOKPROBE_SYMBOL(schedule_rtlock); 6705 #endif 6706 6707 static void __sched notrace preempt_schedule_common(void) 6708 { 6709 do { 6710 /* 6711 * Because the function tracer can trace preempt_count_sub() 6712 * and it also uses preempt_enable/disable_notrace(), if 6713 * NEED_RESCHED is set, the preempt_enable_notrace() called 6714 * by the function tracer will call this function again and 6715 * cause infinite recursion. 6716 * 6717 * Preemption must be disabled here before the function 6718 * tracer can trace. Break up preempt_disable() into two 6719 * calls. One to disable preemption without fear of being 6720 * traced. The other to still record the preemption latency, 6721 * which can also be traced by the function tracer. 6722 */ 6723 preempt_disable_notrace(); 6724 preempt_latency_start(1); 6725 __schedule(SM_PREEMPT); 6726 preempt_latency_stop(1); 6727 preempt_enable_no_resched_notrace(); 6728 6729 /* 6730 * Check again in case we missed a preemption opportunity 6731 * between schedule and now. 6732 */ 6733 } while (need_resched()); 6734 } 6735 6736 #ifdef CONFIG_PREEMPTION 6737 /* 6738 * This is the entry point to schedule() from in-kernel preemption 6739 * off of preempt_enable. 6740 */ 6741 asmlinkage __visible void __sched notrace preempt_schedule(void) 6742 { 6743 /* 6744 * If there is a non-zero preempt_count or interrupts are disabled, 6745 * we do not want to preempt the current task. Just return.. 6746 */ 6747 if (likely(!preemptible())) 6748 return; 6749 preempt_schedule_common(); 6750 } 6751 NOKPROBE_SYMBOL(preempt_schedule); 6752 EXPORT_SYMBOL(preempt_schedule); 6753 6754 #ifdef CONFIG_PREEMPT_DYNAMIC 6755 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6756 #ifndef preempt_schedule_dynamic_enabled 6757 #define preempt_schedule_dynamic_enabled preempt_schedule 6758 #define preempt_schedule_dynamic_disabled NULL 6759 #endif 6760 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6761 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6762 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6763 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6764 void __sched notrace dynamic_preempt_schedule(void) 6765 { 6766 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6767 return; 6768 preempt_schedule(); 6769 } 6770 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6771 EXPORT_SYMBOL(dynamic_preempt_schedule); 6772 #endif 6773 #endif 6774 6775 /** 6776 * preempt_schedule_notrace - preempt_schedule called by tracing 6777 * 6778 * The tracing infrastructure uses preempt_enable_notrace to prevent 6779 * recursion and tracing preempt enabling caused by the tracing 6780 * infrastructure itself. But as tracing can happen in areas coming 6781 * from userspace or just about to enter userspace, a preempt enable 6782 * can occur before user_exit() is called. This will cause the scheduler 6783 * to be called when the system is still in usermode. 6784 * 6785 * To prevent this, the preempt_enable_notrace will use this function 6786 * instead of preempt_schedule() to exit user context if needed before 6787 * calling the scheduler. 6788 */ 6789 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 6790 { 6791 enum ctx_state prev_ctx; 6792 6793 if (likely(!preemptible())) 6794 return; 6795 6796 do { 6797 /* 6798 * Because the function tracer can trace preempt_count_sub() 6799 * and it also uses preempt_enable/disable_notrace(), if 6800 * NEED_RESCHED is set, the preempt_enable_notrace() called 6801 * by the function tracer will call this function again and 6802 * cause infinite recursion. 6803 * 6804 * Preemption must be disabled here before the function 6805 * tracer can trace. Break up preempt_disable() into two 6806 * calls. One to disable preemption without fear of being 6807 * traced. The other to still record the preemption latency, 6808 * which can also be traced by the function tracer. 6809 */ 6810 preempt_disable_notrace(); 6811 preempt_latency_start(1); 6812 /* 6813 * Needs preempt disabled in case user_exit() is traced 6814 * and the tracer calls preempt_enable_notrace() causing 6815 * an infinite recursion. 6816 */ 6817 prev_ctx = exception_enter(); 6818 __schedule(SM_PREEMPT); 6819 exception_exit(prev_ctx); 6820 6821 preempt_latency_stop(1); 6822 preempt_enable_no_resched_notrace(); 6823 } while (need_resched()); 6824 } 6825 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 6826 6827 #ifdef CONFIG_PREEMPT_DYNAMIC 6828 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6829 #ifndef preempt_schedule_notrace_dynamic_enabled 6830 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 6831 #define preempt_schedule_notrace_dynamic_disabled NULL 6832 #endif 6833 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 6834 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 6835 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6836 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 6837 void __sched notrace dynamic_preempt_schedule_notrace(void) 6838 { 6839 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 6840 return; 6841 preempt_schedule_notrace(); 6842 } 6843 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 6844 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 6845 #endif 6846 #endif 6847 6848 #endif /* CONFIG_PREEMPTION */ 6849 6850 /* 6851 * This is the entry point to schedule() from kernel preemption 6852 * off of irq context. 6853 * Note, that this is called and return with irqs disabled. This will 6854 * protect us against recursive calling from irq. 6855 */ 6856 asmlinkage __visible void __sched preempt_schedule_irq(void) 6857 { 6858 enum ctx_state prev_state; 6859 6860 /* Catch callers which need to be fixed */ 6861 BUG_ON(preempt_count() || !irqs_disabled()); 6862 6863 prev_state = exception_enter(); 6864 6865 do { 6866 preempt_disable(); 6867 local_irq_enable(); 6868 __schedule(SM_PREEMPT); 6869 local_irq_disable(); 6870 sched_preempt_enable_no_resched(); 6871 } while (need_resched()); 6872 6873 exception_exit(prev_state); 6874 } 6875 6876 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 6877 void *key) 6878 { 6879 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); 6880 return try_to_wake_up(curr->private, mode, wake_flags); 6881 } 6882 EXPORT_SYMBOL(default_wake_function); 6883 6884 static void __setscheduler_prio(struct task_struct *p, int prio) 6885 { 6886 if (dl_prio(prio)) 6887 p->sched_class = &dl_sched_class; 6888 else if (rt_prio(prio)) 6889 p->sched_class = &rt_sched_class; 6890 else 6891 p->sched_class = &fair_sched_class; 6892 6893 p->prio = prio; 6894 } 6895 6896 #ifdef CONFIG_RT_MUTEXES 6897 6898 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 6899 { 6900 if (pi_task) 6901 prio = min(prio, pi_task->prio); 6902 6903 return prio; 6904 } 6905 6906 static inline int rt_effective_prio(struct task_struct *p, int prio) 6907 { 6908 struct task_struct *pi_task = rt_mutex_get_top_task(p); 6909 6910 return __rt_effective_prio(pi_task, prio); 6911 } 6912 6913 /* 6914 * rt_mutex_setprio - set the current priority of a task 6915 * @p: task to boost 6916 * @pi_task: donor task 6917 * 6918 * This function changes the 'effective' priority of a task. It does 6919 * not touch ->normal_prio like __setscheduler(). 6920 * 6921 * Used by the rt_mutex code to implement priority inheritance 6922 * logic. Call site only calls if the priority of the task changed. 6923 */ 6924 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 6925 { 6926 int prio, oldprio, queued, running, queue_flag = 6927 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6928 const struct sched_class *prev_class; 6929 struct rq_flags rf; 6930 struct rq *rq; 6931 6932 /* XXX used to be waiter->prio, not waiter->task->prio */ 6933 prio = __rt_effective_prio(pi_task, p->normal_prio); 6934 6935 /* 6936 * If nothing changed; bail early. 6937 */ 6938 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 6939 return; 6940 6941 rq = __task_rq_lock(p, &rf); 6942 update_rq_clock(rq); 6943 /* 6944 * Set under pi_lock && rq->lock, such that the value can be used under 6945 * either lock. 6946 * 6947 * Note that there is loads of tricky to make this pointer cache work 6948 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 6949 * ensure a task is de-boosted (pi_task is set to NULL) before the 6950 * task is allowed to run again (and can exit). This ensures the pointer 6951 * points to a blocked task -- which guarantees the task is present. 6952 */ 6953 p->pi_top_task = pi_task; 6954 6955 /* 6956 * For FIFO/RR we only need to set prio, if that matches we're done. 6957 */ 6958 if (prio == p->prio && !dl_prio(prio)) 6959 goto out_unlock; 6960 6961 /* 6962 * Idle task boosting is a nono in general. There is one 6963 * exception, when PREEMPT_RT and NOHZ is active: 6964 * 6965 * The idle task calls get_next_timer_interrupt() and holds 6966 * the timer wheel base->lock on the CPU and another CPU wants 6967 * to access the timer (probably to cancel it). We can safely 6968 * ignore the boosting request, as the idle CPU runs this code 6969 * with interrupts disabled and will complete the lock 6970 * protected section without being interrupted. So there is no 6971 * real need to boost. 6972 */ 6973 if (unlikely(p == rq->idle)) { 6974 WARN_ON(p != rq->curr); 6975 WARN_ON(p->pi_blocked_on); 6976 goto out_unlock; 6977 } 6978 6979 trace_sched_pi_setprio(p, pi_task); 6980 oldprio = p->prio; 6981 6982 if (oldprio == prio) 6983 queue_flag &= ~DEQUEUE_MOVE; 6984 6985 prev_class = p->sched_class; 6986 queued = task_on_rq_queued(p); 6987 running = task_current(rq, p); 6988 if (queued) 6989 dequeue_task(rq, p, queue_flag); 6990 if (running) 6991 put_prev_task(rq, p); 6992 6993 /* 6994 * Boosting condition are: 6995 * 1. -rt task is running and holds mutex A 6996 * --> -dl task blocks on mutex A 6997 * 6998 * 2. -dl task is running and holds mutex A 6999 * --> -dl task blocks on mutex A and could preempt the 7000 * running task 7001 */ 7002 if (dl_prio(prio)) { 7003 if (!dl_prio(p->normal_prio) || 7004 (pi_task && dl_prio(pi_task->prio) && 7005 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7006 p->dl.pi_se = pi_task->dl.pi_se; 7007 queue_flag |= ENQUEUE_REPLENISH; 7008 } else { 7009 p->dl.pi_se = &p->dl; 7010 } 7011 } else if (rt_prio(prio)) { 7012 if (dl_prio(oldprio)) 7013 p->dl.pi_se = &p->dl; 7014 if (oldprio < prio) 7015 queue_flag |= ENQUEUE_HEAD; 7016 } else { 7017 if (dl_prio(oldprio)) 7018 p->dl.pi_se = &p->dl; 7019 if (rt_prio(oldprio)) 7020 p->rt.timeout = 0; 7021 } 7022 7023 __setscheduler_prio(p, prio); 7024 7025 if (queued) 7026 enqueue_task(rq, p, queue_flag); 7027 if (running) 7028 set_next_task(rq, p); 7029 7030 check_class_changed(rq, p, prev_class, oldprio); 7031 out_unlock: 7032 /* Avoid rq from going away on us: */ 7033 preempt_disable(); 7034 7035 rq_unpin_lock(rq, &rf); 7036 __balance_callbacks(rq); 7037 raw_spin_rq_unlock(rq); 7038 7039 preempt_enable(); 7040 } 7041 #else 7042 static inline int rt_effective_prio(struct task_struct *p, int prio) 7043 { 7044 return prio; 7045 } 7046 #endif 7047 7048 void set_user_nice(struct task_struct *p, long nice) 7049 { 7050 bool queued, running; 7051 int old_prio; 7052 struct rq_flags rf; 7053 struct rq *rq; 7054 7055 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 7056 return; 7057 /* 7058 * We have to be careful, if called from sys_setpriority(), 7059 * the task might be in the middle of scheduling on another CPU. 7060 */ 7061 rq = task_rq_lock(p, &rf); 7062 update_rq_clock(rq); 7063 7064 /* 7065 * The RT priorities are set via sched_setscheduler(), but we still 7066 * allow the 'normal' nice value to be set - but as expected 7067 * it won't have any effect on scheduling until the task is 7068 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 7069 */ 7070 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 7071 p->static_prio = NICE_TO_PRIO(nice); 7072 goto out_unlock; 7073 } 7074 queued = task_on_rq_queued(p); 7075 running = task_current(rq, p); 7076 if (queued) 7077 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 7078 if (running) 7079 put_prev_task(rq, p); 7080 7081 p->static_prio = NICE_TO_PRIO(nice); 7082 set_load_weight(p, true); 7083 old_prio = p->prio; 7084 p->prio = effective_prio(p); 7085 7086 if (queued) 7087 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7088 if (running) 7089 set_next_task(rq, p); 7090 7091 /* 7092 * If the task increased its priority or is running and 7093 * lowered its priority, then reschedule its CPU: 7094 */ 7095 p->sched_class->prio_changed(rq, p, old_prio); 7096 7097 out_unlock: 7098 task_rq_unlock(rq, p, &rf); 7099 } 7100 EXPORT_SYMBOL(set_user_nice); 7101 7102 /* 7103 * is_nice_reduction - check if nice value is an actual reduction 7104 * 7105 * Similar to can_nice() but does not perform a capability check. 7106 * 7107 * @p: task 7108 * @nice: nice value 7109 */ 7110 static bool is_nice_reduction(const struct task_struct *p, const int nice) 7111 { 7112 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 7113 int nice_rlim = nice_to_rlimit(nice); 7114 7115 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 7116 } 7117 7118 /* 7119 * can_nice - check if a task can reduce its nice value 7120 * @p: task 7121 * @nice: nice value 7122 */ 7123 int can_nice(const struct task_struct *p, const int nice) 7124 { 7125 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 7126 } 7127 7128 #ifdef __ARCH_WANT_SYS_NICE 7129 7130 /* 7131 * sys_nice - change the priority of the current process. 7132 * @increment: priority increment 7133 * 7134 * sys_setpriority is a more generic, but much slower function that 7135 * does similar things. 7136 */ 7137 SYSCALL_DEFINE1(nice, int, increment) 7138 { 7139 long nice, retval; 7140 7141 /* 7142 * Setpriority might change our priority at the same moment. 7143 * We don't have to worry. Conceptually one call occurs first 7144 * and we have a single winner. 7145 */ 7146 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 7147 nice = task_nice(current) + increment; 7148 7149 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 7150 if (increment < 0 && !can_nice(current, nice)) 7151 return -EPERM; 7152 7153 retval = security_task_setnice(current, nice); 7154 if (retval) 7155 return retval; 7156 7157 set_user_nice(current, nice); 7158 return 0; 7159 } 7160 7161 #endif 7162 7163 /** 7164 * task_prio - return the priority value of a given task. 7165 * @p: the task in question. 7166 * 7167 * Return: The priority value as seen by users in /proc. 7168 * 7169 * sched policy return value kernel prio user prio/nice 7170 * 7171 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 7172 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 7173 * deadline -101 -1 0 7174 */ 7175 int task_prio(const struct task_struct *p) 7176 { 7177 return p->prio - MAX_RT_PRIO; 7178 } 7179 7180 /** 7181 * idle_cpu - is a given CPU idle currently? 7182 * @cpu: the processor in question. 7183 * 7184 * Return: 1 if the CPU is currently idle. 0 otherwise. 7185 */ 7186 int idle_cpu(int cpu) 7187 { 7188 struct rq *rq = cpu_rq(cpu); 7189 7190 if (rq->curr != rq->idle) 7191 return 0; 7192 7193 if (rq->nr_running) 7194 return 0; 7195 7196 #ifdef CONFIG_SMP 7197 if (rq->ttwu_pending) 7198 return 0; 7199 #endif 7200 7201 return 1; 7202 } 7203 7204 /** 7205 * available_idle_cpu - is a given CPU idle for enqueuing work. 7206 * @cpu: the CPU in question. 7207 * 7208 * Return: 1 if the CPU is currently idle. 0 otherwise. 7209 */ 7210 int available_idle_cpu(int cpu) 7211 { 7212 if (!idle_cpu(cpu)) 7213 return 0; 7214 7215 if (vcpu_is_preempted(cpu)) 7216 return 0; 7217 7218 return 1; 7219 } 7220 7221 /** 7222 * idle_task - return the idle task for a given CPU. 7223 * @cpu: the processor in question. 7224 * 7225 * Return: The idle task for the CPU @cpu. 7226 */ 7227 struct task_struct *idle_task(int cpu) 7228 { 7229 return cpu_rq(cpu)->idle; 7230 } 7231 7232 #ifdef CONFIG_SMP 7233 /* 7234 * This function computes an effective utilization for the given CPU, to be 7235 * used for frequency selection given the linear relation: f = u * f_max. 7236 * 7237 * The scheduler tracks the following metrics: 7238 * 7239 * cpu_util_{cfs,rt,dl,irq}() 7240 * cpu_bw_dl() 7241 * 7242 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7243 * synchronized windows and are thus directly comparable. 7244 * 7245 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 7246 * which excludes things like IRQ and steal-time. These latter are then accrued 7247 * in the irq utilization. 7248 * 7249 * The DL bandwidth number otoh is not a measured metric but a value computed 7250 * based on the task model parameters and gives the minimal utilization 7251 * required to meet deadlines. 7252 */ 7253 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 7254 enum cpu_util_type type, 7255 struct task_struct *p) 7256 { 7257 unsigned long dl_util, util, irq, max; 7258 struct rq *rq = cpu_rq(cpu); 7259 7260 max = arch_scale_cpu_capacity(cpu); 7261 7262 if (!uclamp_is_used() && 7263 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { 7264 return max; 7265 } 7266 7267 /* 7268 * Early check to see if IRQ/steal time saturates the CPU, can be 7269 * because of inaccuracies in how we track these -- see 7270 * update_irq_load_avg(). 7271 */ 7272 irq = cpu_util_irq(rq); 7273 if (unlikely(irq >= max)) 7274 return max; 7275 7276 /* 7277 * Because the time spend on RT/DL tasks is visible as 'lost' time to 7278 * CFS tasks and we use the same metric to track the effective 7279 * utilization (PELT windows are synchronized) we can directly add them 7280 * to obtain the CPU's actual utilization. 7281 * 7282 * CFS and RT utilization can be boosted or capped, depending on 7283 * utilization clamp constraints requested by currently RUNNABLE 7284 * tasks. 7285 * When there are no CFS RUNNABLE tasks, clamps are released and 7286 * frequency will be gracefully reduced with the utilization decay. 7287 */ 7288 util = util_cfs + cpu_util_rt(rq); 7289 if (type == FREQUENCY_UTIL) 7290 util = uclamp_rq_util_with(rq, util, p); 7291 7292 dl_util = cpu_util_dl(rq); 7293 7294 /* 7295 * For frequency selection we do not make cpu_util_dl() a permanent part 7296 * of this sum because we want to use cpu_bw_dl() later on, but we need 7297 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such 7298 * that we select f_max when there is no idle time. 7299 * 7300 * NOTE: numerical errors or stop class might cause us to not quite hit 7301 * saturation when we should -- something for later. 7302 */ 7303 if (util + dl_util >= max) 7304 return max; 7305 7306 /* 7307 * OTOH, for energy computation we need the estimated running time, so 7308 * include util_dl and ignore dl_bw. 7309 */ 7310 if (type == ENERGY_UTIL) 7311 util += dl_util; 7312 7313 /* 7314 * There is still idle time; further improve the number by using the 7315 * irq metric. Because IRQ/steal time is hidden from the task clock we 7316 * need to scale the task numbers: 7317 * 7318 * max - irq 7319 * U' = irq + --------- * U 7320 * max 7321 */ 7322 util = scale_irq_capacity(util, irq, max); 7323 util += irq; 7324 7325 /* 7326 * Bandwidth required by DEADLINE must always be granted while, for 7327 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism 7328 * to gracefully reduce the frequency when no tasks show up for longer 7329 * periods of time. 7330 * 7331 * Ideally we would like to set bw_dl as min/guaranteed freq and util + 7332 * bw_dl as requested freq. However, cpufreq is not yet ready for such 7333 * an interface. So, we only do the latter for now. 7334 */ 7335 if (type == FREQUENCY_UTIL) 7336 util += cpu_bw_dl(rq); 7337 7338 return min(max, util); 7339 } 7340 7341 unsigned long sched_cpu_util(int cpu) 7342 { 7343 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); 7344 } 7345 #endif /* CONFIG_SMP */ 7346 7347 /** 7348 * find_process_by_pid - find a process with a matching PID value. 7349 * @pid: the pid in question. 7350 * 7351 * The task of @pid, if found. %NULL otherwise. 7352 */ 7353 static struct task_struct *find_process_by_pid(pid_t pid) 7354 { 7355 return pid ? find_task_by_vpid(pid) : current; 7356 } 7357 7358 /* 7359 * sched_setparam() passes in -1 for its policy, to let the functions 7360 * it calls know not to change it. 7361 */ 7362 #define SETPARAM_POLICY -1 7363 7364 static void __setscheduler_params(struct task_struct *p, 7365 const struct sched_attr *attr) 7366 { 7367 int policy = attr->sched_policy; 7368 7369 if (policy == SETPARAM_POLICY) 7370 policy = p->policy; 7371 7372 p->policy = policy; 7373 7374 if (dl_policy(policy)) 7375 __setparam_dl(p, attr); 7376 else if (fair_policy(policy)) 7377 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 7378 7379 /* 7380 * __sched_setscheduler() ensures attr->sched_priority == 0 when 7381 * !rt_policy. Always setting this ensures that things like 7382 * getparam()/getattr() don't report silly values for !rt tasks. 7383 */ 7384 p->rt_priority = attr->sched_priority; 7385 p->normal_prio = normal_prio(p); 7386 set_load_weight(p, true); 7387 } 7388 7389 /* 7390 * Check the target process has a UID that matches the current process's: 7391 */ 7392 static bool check_same_owner(struct task_struct *p) 7393 { 7394 const struct cred *cred = current_cred(), *pcred; 7395 bool match; 7396 7397 rcu_read_lock(); 7398 pcred = __task_cred(p); 7399 match = (uid_eq(cred->euid, pcred->euid) || 7400 uid_eq(cred->euid, pcred->uid)); 7401 rcu_read_unlock(); 7402 return match; 7403 } 7404 7405 /* 7406 * Allow unprivileged RT tasks to decrease priority. 7407 * Only issue a capable test if needed and only once to avoid an audit 7408 * event on permitted non-privileged operations: 7409 */ 7410 static int user_check_sched_setscheduler(struct task_struct *p, 7411 const struct sched_attr *attr, 7412 int policy, int reset_on_fork) 7413 { 7414 if (fair_policy(policy)) { 7415 if (attr->sched_nice < task_nice(p) && 7416 !is_nice_reduction(p, attr->sched_nice)) 7417 goto req_priv; 7418 } 7419 7420 if (rt_policy(policy)) { 7421 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 7422 7423 /* Can't set/change the rt policy: */ 7424 if (policy != p->policy && !rlim_rtprio) 7425 goto req_priv; 7426 7427 /* Can't increase priority: */ 7428 if (attr->sched_priority > p->rt_priority && 7429 attr->sched_priority > rlim_rtprio) 7430 goto req_priv; 7431 } 7432 7433 /* 7434 * Can't set/change SCHED_DEADLINE policy at all for now 7435 * (safest behavior); in the future we would like to allow 7436 * unprivileged DL tasks to increase their relative deadline 7437 * or reduce their runtime (both ways reducing utilization) 7438 */ 7439 if (dl_policy(policy)) 7440 goto req_priv; 7441 7442 /* 7443 * Treat SCHED_IDLE as nice 20. Only allow a switch to 7444 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 7445 */ 7446 if (task_has_idle_policy(p) && !idle_policy(policy)) { 7447 if (!is_nice_reduction(p, task_nice(p))) 7448 goto req_priv; 7449 } 7450 7451 /* Can't change other user's priorities: */ 7452 if (!check_same_owner(p)) 7453 goto req_priv; 7454 7455 /* Normal users shall not reset the sched_reset_on_fork flag: */ 7456 if (p->sched_reset_on_fork && !reset_on_fork) 7457 goto req_priv; 7458 7459 return 0; 7460 7461 req_priv: 7462 if (!capable(CAP_SYS_NICE)) 7463 return -EPERM; 7464 7465 return 0; 7466 } 7467 7468 static int __sched_setscheduler(struct task_struct *p, 7469 const struct sched_attr *attr, 7470 bool user, bool pi) 7471 { 7472 int oldpolicy = -1, policy = attr->sched_policy; 7473 int retval, oldprio, newprio, queued, running; 7474 const struct sched_class *prev_class; 7475 struct balance_callback *head; 7476 struct rq_flags rf; 7477 int reset_on_fork; 7478 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7479 struct rq *rq; 7480 7481 /* The pi code expects interrupts enabled */ 7482 BUG_ON(pi && in_interrupt()); 7483 recheck: 7484 /* Double check policy once rq lock held: */ 7485 if (policy < 0) { 7486 reset_on_fork = p->sched_reset_on_fork; 7487 policy = oldpolicy = p->policy; 7488 } else { 7489 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 7490 7491 if (!valid_policy(policy)) 7492 return -EINVAL; 7493 } 7494 7495 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 7496 return -EINVAL; 7497 7498 /* 7499 * Valid priorities for SCHED_FIFO and SCHED_RR are 7500 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 7501 * SCHED_BATCH and SCHED_IDLE is 0. 7502 */ 7503 if (attr->sched_priority > MAX_RT_PRIO-1) 7504 return -EINVAL; 7505 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 7506 (rt_policy(policy) != (attr->sched_priority != 0))) 7507 return -EINVAL; 7508 7509 if (user) { 7510 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 7511 if (retval) 7512 return retval; 7513 7514 if (attr->sched_flags & SCHED_FLAG_SUGOV) 7515 return -EINVAL; 7516 7517 retval = security_task_setscheduler(p); 7518 if (retval) 7519 return retval; 7520 } 7521 7522 /* Update task specific "requested" clamps */ 7523 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 7524 retval = uclamp_validate(p, attr); 7525 if (retval) 7526 return retval; 7527 } 7528 7529 if (pi) 7530 cpuset_read_lock(); 7531 7532 /* 7533 * Make sure no PI-waiters arrive (or leave) while we are 7534 * changing the priority of the task: 7535 * 7536 * To be able to change p->policy safely, the appropriate 7537 * runqueue lock must be held. 7538 */ 7539 rq = task_rq_lock(p, &rf); 7540 update_rq_clock(rq); 7541 7542 /* 7543 * Changing the policy of the stop threads its a very bad idea: 7544 */ 7545 if (p == rq->stop) { 7546 retval = -EINVAL; 7547 goto unlock; 7548 } 7549 7550 /* 7551 * If not changing anything there's no need to proceed further, 7552 * but store a possible modification of reset_on_fork. 7553 */ 7554 if (unlikely(policy == p->policy)) { 7555 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 7556 goto change; 7557 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 7558 goto change; 7559 if (dl_policy(policy) && dl_param_changed(p, attr)) 7560 goto change; 7561 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 7562 goto change; 7563 7564 p->sched_reset_on_fork = reset_on_fork; 7565 retval = 0; 7566 goto unlock; 7567 } 7568 change: 7569 7570 if (user) { 7571 #ifdef CONFIG_RT_GROUP_SCHED 7572 /* 7573 * Do not allow realtime tasks into groups that have no runtime 7574 * assigned. 7575 */ 7576 if (rt_bandwidth_enabled() && rt_policy(policy) && 7577 task_group(p)->rt_bandwidth.rt_runtime == 0 && 7578 !task_group_is_autogroup(task_group(p))) { 7579 retval = -EPERM; 7580 goto unlock; 7581 } 7582 #endif 7583 #ifdef CONFIG_SMP 7584 if (dl_bandwidth_enabled() && dl_policy(policy) && 7585 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 7586 cpumask_t *span = rq->rd->span; 7587 7588 /* 7589 * Don't allow tasks with an affinity mask smaller than 7590 * the entire root_domain to become SCHED_DEADLINE. We 7591 * will also fail if there's no bandwidth available. 7592 */ 7593 if (!cpumask_subset(span, p->cpus_ptr) || 7594 rq->rd->dl_bw.bw == 0) { 7595 retval = -EPERM; 7596 goto unlock; 7597 } 7598 } 7599 #endif 7600 } 7601 7602 /* Re-check policy now with rq lock held: */ 7603 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 7604 policy = oldpolicy = -1; 7605 task_rq_unlock(rq, p, &rf); 7606 if (pi) 7607 cpuset_read_unlock(); 7608 goto recheck; 7609 } 7610 7611 /* 7612 * If setscheduling to SCHED_DEADLINE (or changing the parameters 7613 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 7614 * is available. 7615 */ 7616 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 7617 retval = -EBUSY; 7618 goto unlock; 7619 } 7620 7621 p->sched_reset_on_fork = reset_on_fork; 7622 oldprio = p->prio; 7623 7624 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 7625 if (pi) { 7626 /* 7627 * Take priority boosted tasks into account. If the new 7628 * effective priority is unchanged, we just store the new 7629 * normal parameters and do not touch the scheduler class and 7630 * the runqueue. This will be done when the task deboost 7631 * itself. 7632 */ 7633 newprio = rt_effective_prio(p, newprio); 7634 if (newprio == oldprio) 7635 queue_flags &= ~DEQUEUE_MOVE; 7636 } 7637 7638 queued = task_on_rq_queued(p); 7639 running = task_current(rq, p); 7640 if (queued) 7641 dequeue_task(rq, p, queue_flags); 7642 if (running) 7643 put_prev_task(rq, p); 7644 7645 prev_class = p->sched_class; 7646 7647 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 7648 __setscheduler_params(p, attr); 7649 __setscheduler_prio(p, newprio); 7650 } 7651 __setscheduler_uclamp(p, attr); 7652 7653 if (queued) { 7654 /* 7655 * We enqueue to tail when the priority of a task is 7656 * increased (user space view). 7657 */ 7658 if (oldprio < p->prio) 7659 queue_flags |= ENQUEUE_HEAD; 7660 7661 enqueue_task(rq, p, queue_flags); 7662 } 7663 if (running) 7664 set_next_task(rq, p); 7665 7666 check_class_changed(rq, p, prev_class, oldprio); 7667 7668 /* Avoid rq from going away on us: */ 7669 preempt_disable(); 7670 head = splice_balance_callbacks(rq); 7671 task_rq_unlock(rq, p, &rf); 7672 7673 if (pi) { 7674 cpuset_read_unlock(); 7675 rt_mutex_adjust_pi(p); 7676 } 7677 7678 /* Run balance callbacks after we've adjusted the PI chain: */ 7679 balance_callbacks(rq, head); 7680 preempt_enable(); 7681 7682 return 0; 7683 7684 unlock: 7685 task_rq_unlock(rq, p, &rf); 7686 if (pi) 7687 cpuset_read_unlock(); 7688 return retval; 7689 } 7690 7691 static int _sched_setscheduler(struct task_struct *p, int policy, 7692 const struct sched_param *param, bool check) 7693 { 7694 struct sched_attr attr = { 7695 .sched_policy = policy, 7696 .sched_priority = param->sched_priority, 7697 .sched_nice = PRIO_TO_NICE(p->static_prio), 7698 }; 7699 7700 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 7701 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 7702 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 7703 policy &= ~SCHED_RESET_ON_FORK; 7704 attr.sched_policy = policy; 7705 } 7706 7707 return __sched_setscheduler(p, &attr, check, true); 7708 } 7709 /** 7710 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 7711 * @p: the task in question. 7712 * @policy: new policy. 7713 * @param: structure containing the new RT priority. 7714 * 7715 * Use sched_set_fifo(), read its comment. 7716 * 7717 * Return: 0 on success. An error code otherwise. 7718 * 7719 * NOTE that the task may be already dead. 7720 */ 7721 int sched_setscheduler(struct task_struct *p, int policy, 7722 const struct sched_param *param) 7723 { 7724 return _sched_setscheduler(p, policy, param, true); 7725 } 7726 7727 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 7728 { 7729 return __sched_setscheduler(p, attr, true, true); 7730 } 7731 7732 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 7733 { 7734 return __sched_setscheduler(p, attr, false, true); 7735 } 7736 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 7737 7738 /** 7739 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 7740 * @p: the task in question. 7741 * @policy: new policy. 7742 * @param: structure containing the new RT priority. 7743 * 7744 * Just like sched_setscheduler, only don't bother checking if the 7745 * current context has permission. For example, this is needed in 7746 * stop_machine(): we create temporary high priority worker threads, 7747 * but our caller might not have that capability. 7748 * 7749 * Return: 0 on success. An error code otherwise. 7750 */ 7751 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 7752 const struct sched_param *param) 7753 { 7754 return _sched_setscheduler(p, policy, param, false); 7755 } 7756 7757 /* 7758 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 7759 * incapable of resource management, which is the one thing an OS really should 7760 * be doing. 7761 * 7762 * This is of course the reason it is limited to privileged users only. 7763 * 7764 * Worse still; it is fundamentally impossible to compose static priority 7765 * workloads. You cannot take two correctly working static prio workloads 7766 * and smash them together and still expect them to work. 7767 * 7768 * For this reason 'all' FIFO tasks the kernel creates are basically at: 7769 * 7770 * MAX_RT_PRIO / 2 7771 * 7772 * The administrator _MUST_ configure the system, the kernel simply doesn't 7773 * know enough information to make a sensible choice. 7774 */ 7775 void sched_set_fifo(struct task_struct *p) 7776 { 7777 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 7778 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7779 } 7780 EXPORT_SYMBOL_GPL(sched_set_fifo); 7781 7782 /* 7783 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 7784 */ 7785 void sched_set_fifo_low(struct task_struct *p) 7786 { 7787 struct sched_param sp = { .sched_priority = 1 }; 7788 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 7789 } 7790 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 7791 7792 void sched_set_normal(struct task_struct *p, int nice) 7793 { 7794 struct sched_attr attr = { 7795 .sched_policy = SCHED_NORMAL, 7796 .sched_nice = nice, 7797 }; 7798 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 7799 } 7800 EXPORT_SYMBOL_GPL(sched_set_normal); 7801 7802 static int 7803 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 7804 { 7805 struct sched_param lparam; 7806 struct task_struct *p; 7807 int retval; 7808 7809 if (!param || pid < 0) 7810 return -EINVAL; 7811 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 7812 return -EFAULT; 7813 7814 rcu_read_lock(); 7815 retval = -ESRCH; 7816 p = find_process_by_pid(pid); 7817 if (likely(p)) 7818 get_task_struct(p); 7819 rcu_read_unlock(); 7820 7821 if (likely(p)) { 7822 retval = sched_setscheduler(p, policy, &lparam); 7823 put_task_struct(p); 7824 } 7825 7826 return retval; 7827 } 7828 7829 /* 7830 * Mimics kernel/events/core.c perf_copy_attr(). 7831 */ 7832 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 7833 { 7834 u32 size; 7835 int ret; 7836 7837 /* Zero the full structure, so that a short copy will be nice: */ 7838 memset(attr, 0, sizeof(*attr)); 7839 7840 ret = get_user(size, &uattr->size); 7841 if (ret) 7842 return ret; 7843 7844 /* ABI compatibility quirk: */ 7845 if (!size) 7846 size = SCHED_ATTR_SIZE_VER0; 7847 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 7848 goto err_size; 7849 7850 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 7851 if (ret) { 7852 if (ret == -E2BIG) 7853 goto err_size; 7854 return ret; 7855 } 7856 7857 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 7858 size < SCHED_ATTR_SIZE_VER1) 7859 return -EINVAL; 7860 7861 /* 7862 * XXX: Do we want to be lenient like existing syscalls; or do we want 7863 * to be strict and return an error on out-of-bounds values? 7864 */ 7865 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 7866 7867 return 0; 7868 7869 err_size: 7870 put_user(sizeof(*attr), &uattr->size); 7871 return -E2BIG; 7872 } 7873 7874 static void get_params(struct task_struct *p, struct sched_attr *attr) 7875 { 7876 if (task_has_dl_policy(p)) 7877 __getparam_dl(p, attr); 7878 else if (task_has_rt_policy(p)) 7879 attr->sched_priority = p->rt_priority; 7880 else 7881 attr->sched_nice = task_nice(p); 7882 } 7883 7884 /** 7885 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 7886 * @pid: the pid in question. 7887 * @policy: new policy. 7888 * @param: structure containing the new RT priority. 7889 * 7890 * Return: 0 on success. An error code otherwise. 7891 */ 7892 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 7893 { 7894 if (policy < 0) 7895 return -EINVAL; 7896 7897 return do_sched_setscheduler(pid, policy, param); 7898 } 7899 7900 /** 7901 * sys_sched_setparam - set/change the RT priority of a thread 7902 * @pid: the pid in question. 7903 * @param: structure containing the new RT priority. 7904 * 7905 * Return: 0 on success. An error code otherwise. 7906 */ 7907 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 7908 { 7909 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 7910 } 7911 7912 /** 7913 * sys_sched_setattr - same as above, but with extended sched_attr 7914 * @pid: the pid in question. 7915 * @uattr: structure containing the extended parameters. 7916 * @flags: for future extension. 7917 */ 7918 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 7919 unsigned int, flags) 7920 { 7921 struct sched_attr attr; 7922 struct task_struct *p; 7923 int retval; 7924 7925 if (!uattr || pid < 0 || flags) 7926 return -EINVAL; 7927 7928 retval = sched_copy_attr(uattr, &attr); 7929 if (retval) 7930 return retval; 7931 7932 if ((int)attr.sched_policy < 0) 7933 return -EINVAL; 7934 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 7935 attr.sched_policy = SETPARAM_POLICY; 7936 7937 rcu_read_lock(); 7938 retval = -ESRCH; 7939 p = find_process_by_pid(pid); 7940 if (likely(p)) 7941 get_task_struct(p); 7942 rcu_read_unlock(); 7943 7944 if (likely(p)) { 7945 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 7946 get_params(p, &attr); 7947 retval = sched_setattr(p, &attr); 7948 put_task_struct(p); 7949 } 7950 7951 return retval; 7952 } 7953 7954 /** 7955 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 7956 * @pid: the pid in question. 7957 * 7958 * Return: On success, the policy of the thread. Otherwise, a negative error 7959 * code. 7960 */ 7961 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 7962 { 7963 struct task_struct *p; 7964 int retval; 7965 7966 if (pid < 0) 7967 return -EINVAL; 7968 7969 retval = -ESRCH; 7970 rcu_read_lock(); 7971 p = find_process_by_pid(pid); 7972 if (p) { 7973 retval = security_task_getscheduler(p); 7974 if (!retval) 7975 retval = p->policy 7976 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 7977 } 7978 rcu_read_unlock(); 7979 return retval; 7980 } 7981 7982 /** 7983 * sys_sched_getparam - get the RT priority of a thread 7984 * @pid: the pid in question. 7985 * @param: structure containing the RT priority. 7986 * 7987 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 7988 * code. 7989 */ 7990 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 7991 { 7992 struct sched_param lp = { .sched_priority = 0 }; 7993 struct task_struct *p; 7994 int retval; 7995 7996 if (!param || pid < 0) 7997 return -EINVAL; 7998 7999 rcu_read_lock(); 8000 p = find_process_by_pid(pid); 8001 retval = -ESRCH; 8002 if (!p) 8003 goto out_unlock; 8004 8005 retval = security_task_getscheduler(p); 8006 if (retval) 8007 goto out_unlock; 8008 8009 if (task_has_rt_policy(p)) 8010 lp.sched_priority = p->rt_priority; 8011 rcu_read_unlock(); 8012 8013 /* 8014 * This one might sleep, we cannot do it with a spinlock held ... 8015 */ 8016 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 8017 8018 return retval; 8019 8020 out_unlock: 8021 rcu_read_unlock(); 8022 return retval; 8023 } 8024 8025 /* 8026 * Copy the kernel size attribute structure (which might be larger 8027 * than what user-space knows about) to user-space. 8028 * 8029 * Note that all cases are valid: user-space buffer can be larger or 8030 * smaller than the kernel-space buffer. The usual case is that both 8031 * have the same size. 8032 */ 8033 static int 8034 sched_attr_copy_to_user(struct sched_attr __user *uattr, 8035 struct sched_attr *kattr, 8036 unsigned int usize) 8037 { 8038 unsigned int ksize = sizeof(*kattr); 8039 8040 if (!access_ok(uattr, usize)) 8041 return -EFAULT; 8042 8043 /* 8044 * sched_getattr() ABI forwards and backwards compatibility: 8045 * 8046 * If usize == ksize then we just copy everything to user-space and all is good. 8047 * 8048 * If usize < ksize then we only copy as much as user-space has space for, 8049 * this keeps ABI compatibility as well. We skip the rest. 8050 * 8051 * If usize > ksize then user-space is using a newer version of the ABI, 8052 * which part the kernel doesn't know about. Just ignore it - tooling can 8053 * detect the kernel's knowledge of attributes from the attr->size value 8054 * which is set to ksize in this case. 8055 */ 8056 kattr->size = min(usize, ksize); 8057 8058 if (copy_to_user(uattr, kattr, kattr->size)) 8059 return -EFAULT; 8060 8061 return 0; 8062 } 8063 8064 /** 8065 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 8066 * @pid: the pid in question. 8067 * @uattr: structure containing the extended parameters. 8068 * @usize: sizeof(attr) for fwd/bwd comp. 8069 * @flags: for future extension. 8070 */ 8071 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 8072 unsigned int, usize, unsigned int, flags) 8073 { 8074 struct sched_attr kattr = { }; 8075 struct task_struct *p; 8076 int retval; 8077 8078 if (!uattr || pid < 0 || usize > PAGE_SIZE || 8079 usize < SCHED_ATTR_SIZE_VER0 || flags) 8080 return -EINVAL; 8081 8082 rcu_read_lock(); 8083 p = find_process_by_pid(pid); 8084 retval = -ESRCH; 8085 if (!p) 8086 goto out_unlock; 8087 8088 retval = security_task_getscheduler(p); 8089 if (retval) 8090 goto out_unlock; 8091 8092 kattr.sched_policy = p->policy; 8093 if (p->sched_reset_on_fork) 8094 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 8095 get_params(p, &kattr); 8096 kattr.sched_flags &= SCHED_FLAG_ALL; 8097 8098 #ifdef CONFIG_UCLAMP_TASK 8099 /* 8100 * This could race with another potential updater, but this is fine 8101 * because it'll correctly read the old or the new value. We don't need 8102 * to guarantee who wins the race as long as it doesn't return garbage. 8103 */ 8104 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 8105 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 8106 #endif 8107 8108 rcu_read_unlock(); 8109 8110 return sched_attr_copy_to_user(uattr, &kattr, usize); 8111 8112 out_unlock: 8113 rcu_read_unlock(); 8114 return retval; 8115 } 8116 8117 #ifdef CONFIG_SMP 8118 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 8119 { 8120 int ret = 0; 8121 8122 /* 8123 * If the task isn't a deadline task or admission control is 8124 * disabled then we don't care about affinity changes. 8125 */ 8126 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 8127 return 0; 8128 8129 /* 8130 * Since bandwidth control happens on root_domain basis, 8131 * if admission test is enabled, we only admit -deadline 8132 * tasks allowed to run on all the CPUs in the task's 8133 * root_domain. 8134 */ 8135 rcu_read_lock(); 8136 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 8137 ret = -EBUSY; 8138 rcu_read_unlock(); 8139 return ret; 8140 } 8141 #endif 8142 8143 static int 8144 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 8145 { 8146 int retval; 8147 cpumask_var_t cpus_allowed, new_mask; 8148 8149 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 8150 return -ENOMEM; 8151 8152 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 8153 retval = -ENOMEM; 8154 goto out_free_cpus_allowed; 8155 } 8156 8157 cpuset_cpus_allowed(p, cpus_allowed); 8158 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 8159 8160 ctx->new_mask = new_mask; 8161 ctx->flags |= SCA_CHECK; 8162 8163 retval = dl_task_check_affinity(p, new_mask); 8164 if (retval) 8165 goto out_free_new_mask; 8166 8167 retval = __set_cpus_allowed_ptr(p, ctx); 8168 if (retval) 8169 goto out_free_new_mask; 8170 8171 cpuset_cpus_allowed(p, cpus_allowed); 8172 if (!cpumask_subset(new_mask, cpus_allowed)) { 8173 /* 8174 * We must have raced with a concurrent cpuset update. 8175 * Just reset the cpumask to the cpuset's cpus_allowed. 8176 */ 8177 cpumask_copy(new_mask, cpus_allowed); 8178 8179 /* 8180 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 8181 * will restore the previous user_cpus_ptr value. 8182 * 8183 * In the unlikely event a previous user_cpus_ptr exists, 8184 * we need to further restrict the mask to what is allowed 8185 * by that old user_cpus_ptr. 8186 */ 8187 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 8188 bool empty = !cpumask_and(new_mask, new_mask, 8189 ctx->user_mask); 8190 8191 if (WARN_ON_ONCE(empty)) 8192 cpumask_copy(new_mask, cpus_allowed); 8193 } 8194 __set_cpus_allowed_ptr(p, ctx); 8195 retval = -EINVAL; 8196 } 8197 8198 out_free_new_mask: 8199 free_cpumask_var(new_mask); 8200 out_free_cpus_allowed: 8201 free_cpumask_var(cpus_allowed); 8202 return retval; 8203 } 8204 8205 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 8206 { 8207 struct affinity_context ac; 8208 struct cpumask *user_mask; 8209 struct task_struct *p; 8210 int retval; 8211 8212 rcu_read_lock(); 8213 8214 p = find_process_by_pid(pid); 8215 if (!p) { 8216 rcu_read_unlock(); 8217 return -ESRCH; 8218 } 8219 8220 /* Prevent p going away */ 8221 get_task_struct(p); 8222 rcu_read_unlock(); 8223 8224 if (p->flags & PF_NO_SETAFFINITY) { 8225 retval = -EINVAL; 8226 goto out_put_task; 8227 } 8228 8229 if (!check_same_owner(p)) { 8230 rcu_read_lock(); 8231 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 8232 rcu_read_unlock(); 8233 retval = -EPERM; 8234 goto out_put_task; 8235 } 8236 rcu_read_unlock(); 8237 } 8238 8239 retval = security_task_setscheduler(p); 8240 if (retval) 8241 goto out_put_task; 8242 8243 user_mask = kmalloc(cpumask_size(), GFP_KERNEL); 8244 if (!user_mask) { 8245 retval = -ENOMEM; 8246 goto out_put_task; 8247 } 8248 cpumask_copy(user_mask, in_mask); 8249 ac = (struct affinity_context){ 8250 .new_mask = in_mask, 8251 .user_mask = user_mask, 8252 .flags = SCA_USER, 8253 }; 8254 8255 retval = __sched_setaffinity(p, &ac); 8256 kfree(ac.user_mask); 8257 8258 out_put_task: 8259 put_task_struct(p); 8260 return retval; 8261 } 8262 8263 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 8264 struct cpumask *new_mask) 8265 { 8266 if (len < cpumask_size()) 8267 cpumask_clear(new_mask); 8268 else if (len > cpumask_size()) 8269 len = cpumask_size(); 8270 8271 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 8272 } 8273 8274 /** 8275 * sys_sched_setaffinity - set the CPU affinity of a process 8276 * @pid: pid of the process 8277 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8278 * @user_mask_ptr: user-space pointer to the new CPU mask 8279 * 8280 * Return: 0 on success. An error code otherwise. 8281 */ 8282 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 8283 unsigned long __user *, user_mask_ptr) 8284 { 8285 cpumask_var_t new_mask; 8286 int retval; 8287 8288 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 8289 return -ENOMEM; 8290 8291 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 8292 if (retval == 0) 8293 retval = sched_setaffinity(pid, new_mask); 8294 free_cpumask_var(new_mask); 8295 return retval; 8296 } 8297 8298 long sched_getaffinity(pid_t pid, struct cpumask *mask) 8299 { 8300 struct task_struct *p; 8301 unsigned long flags; 8302 int retval; 8303 8304 rcu_read_lock(); 8305 8306 retval = -ESRCH; 8307 p = find_process_by_pid(pid); 8308 if (!p) 8309 goto out_unlock; 8310 8311 retval = security_task_getscheduler(p); 8312 if (retval) 8313 goto out_unlock; 8314 8315 raw_spin_lock_irqsave(&p->pi_lock, flags); 8316 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 8317 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 8318 8319 out_unlock: 8320 rcu_read_unlock(); 8321 8322 return retval; 8323 } 8324 8325 /** 8326 * sys_sched_getaffinity - get the CPU affinity of a process 8327 * @pid: pid of the process 8328 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 8329 * @user_mask_ptr: user-space pointer to hold the current CPU mask 8330 * 8331 * Return: size of CPU mask copied to user_mask_ptr on success. An 8332 * error code otherwise. 8333 */ 8334 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 8335 unsigned long __user *, user_mask_ptr) 8336 { 8337 int ret; 8338 cpumask_var_t mask; 8339 8340 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 8341 return -EINVAL; 8342 if (len & (sizeof(unsigned long)-1)) 8343 return -EINVAL; 8344 8345 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 8346 return -ENOMEM; 8347 8348 ret = sched_getaffinity(pid, mask); 8349 if (ret == 0) { 8350 unsigned int retlen = min(len, cpumask_size()); 8351 8352 if (copy_to_user(user_mask_ptr, mask, retlen)) 8353 ret = -EFAULT; 8354 else 8355 ret = retlen; 8356 } 8357 free_cpumask_var(mask); 8358 8359 return ret; 8360 } 8361 8362 static void do_sched_yield(void) 8363 { 8364 struct rq_flags rf; 8365 struct rq *rq; 8366 8367 rq = this_rq_lock_irq(&rf); 8368 8369 schedstat_inc(rq->yld_count); 8370 current->sched_class->yield_task(rq); 8371 8372 preempt_disable(); 8373 rq_unlock_irq(rq, &rf); 8374 sched_preempt_enable_no_resched(); 8375 8376 schedule(); 8377 } 8378 8379 /** 8380 * sys_sched_yield - yield the current processor to other threads. 8381 * 8382 * This function yields the current CPU to other tasks. If there are no 8383 * other threads running on this CPU then this function will return. 8384 * 8385 * Return: 0. 8386 */ 8387 SYSCALL_DEFINE0(sched_yield) 8388 { 8389 do_sched_yield(); 8390 return 0; 8391 } 8392 8393 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 8394 int __sched __cond_resched(void) 8395 { 8396 if (should_resched(0)) { 8397 preempt_schedule_common(); 8398 return 1; 8399 } 8400 /* 8401 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 8402 * whether the current CPU is in an RCU read-side critical section, 8403 * so the tick can report quiescent states even for CPUs looping 8404 * in kernel context. In contrast, in non-preemptible kernels, 8405 * RCU readers leave no in-memory hints, which means that CPU-bound 8406 * processes executing in kernel context might never report an 8407 * RCU quiescent state. Therefore, the following code causes 8408 * cond_resched() to report a quiescent state, but only when RCU 8409 * is in urgent need of one. 8410 */ 8411 #ifndef CONFIG_PREEMPT_RCU 8412 rcu_all_qs(); 8413 #endif 8414 return 0; 8415 } 8416 EXPORT_SYMBOL(__cond_resched); 8417 #endif 8418 8419 #ifdef CONFIG_PREEMPT_DYNAMIC 8420 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8421 #define cond_resched_dynamic_enabled __cond_resched 8422 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 8423 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 8424 EXPORT_STATIC_CALL_TRAMP(cond_resched); 8425 8426 #define might_resched_dynamic_enabled __cond_resched 8427 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 8428 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 8429 EXPORT_STATIC_CALL_TRAMP(might_resched); 8430 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8431 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 8432 int __sched dynamic_cond_resched(void) 8433 { 8434 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 8435 return 0; 8436 return __cond_resched(); 8437 } 8438 EXPORT_SYMBOL(dynamic_cond_resched); 8439 8440 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 8441 int __sched dynamic_might_resched(void) 8442 { 8443 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 8444 return 0; 8445 return __cond_resched(); 8446 } 8447 EXPORT_SYMBOL(dynamic_might_resched); 8448 #endif 8449 #endif 8450 8451 /* 8452 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 8453 * call schedule, and on return reacquire the lock. 8454 * 8455 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 8456 * operations here to prevent schedule() from being called twice (once via 8457 * spin_unlock(), once by hand). 8458 */ 8459 int __cond_resched_lock(spinlock_t *lock) 8460 { 8461 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8462 int ret = 0; 8463 8464 lockdep_assert_held(lock); 8465 8466 if (spin_needbreak(lock) || resched) { 8467 spin_unlock(lock); 8468 if (!_cond_resched()) 8469 cpu_relax(); 8470 ret = 1; 8471 spin_lock(lock); 8472 } 8473 return ret; 8474 } 8475 EXPORT_SYMBOL(__cond_resched_lock); 8476 8477 int __cond_resched_rwlock_read(rwlock_t *lock) 8478 { 8479 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8480 int ret = 0; 8481 8482 lockdep_assert_held_read(lock); 8483 8484 if (rwlock_needbreak(lock) || resched) { 8485 read_unlock(lock); 8486 if (!_cond_resched()) 8487 cpu_relax(); 8488 ret = 1; 8489 read_lock(lock); 8490 } 8491 return ret; 8492 } 8493 EXPORT_SYMBOL(__cond_resched_rwlock_read); 8494 8495 int __cond_resched_rwlock_write(rwlock_t *lock) 8496 { 8497 int resched = should_resched(PREEMPT_LOCK_OFFSET); 8498 int ret = 0; 8499 8500 lockdep_assert_held_write(lock); 8501 8502 if (rwlock_needbreak(lock) || resched) { 8503 write_unlock(lock); 8504 if (!_cond_resched()) 8505 cpu_relax(); 8506 ret = 1; 8507 write_lock(lock); 8508 } 8509 return ret; 8510 } 8511 EXPORT_SYMBOL(__cond_resched_rwlock_write); 8512 8513 #ifdef CONFIG_PREEMPT_DYNAMIC 8514 8515 #ifdef CONFIG_GENERIC_ENTRY 8516 #include <linux/entry-common.h> 8517 #endif 8518 8519 /* 8520 * SC:cond_resched 8521 * SC:might_resched 8522 * SC:preempt_schedule 8523 * SC:preempt_schedule_notrace 8524 * SC:irqentry_exit_cond_resched 8525 * 8526 * 8527 * NONE: 8528 * cond_resched <- __cond_resched 8529 * might_resched <- RET0 8530 * preempt_schedule <- NOP 8531 * preempt_schedule_notrace <- NOP 8532 * irqentry_exit_cond_resched <- NOP 8533 * 8534 * VOLUNTARY: 8535 * cond_resched <- __cond_resched 8536 * might_resched <- __cond_resched 8537 * preempt_schedule <- NOP 8538 * preempt_schedule_notrace <- NOP 8539 * irqentry_exit_cond_resched <- NOP 8540 * 8541 * FULL: 8542 * cond_resched <- RET0 8543 * might_resched <- RET0 8544 * preempt_schedule <- preempt_schedule 8545 * preempt_schedule_notrace <- preempt_schedule_notrace 8546 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 8547 */ 8548 8549 enum { 8550 preempt_dynamic_undefined = -1, 8551 preempt_dynamic_none, 8552 preempt_dynamic_voluntary, 8553 preempt_dynamic_full, 8554 }; 8555 8556 int preempt_dynamic_mode = preempt_dynamic_undefined; 8557 8558 int sched_dynamic_mode(const char *str) 8559 { 8560 if (!strcmp(str, "none")) 8561 return preempt_dynamic_none; 8562 8563 if (!strcmp(str, "voluntary")) 8564 return preempt_dynamic_voluntary; 8565 8566 if (!strcmp(str, "full")) 8567 return preempt_dynamic_full; 8568 8569 return -EINVAL; 8570 } 8571 8572 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 8573 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 8574 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 8575 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 8576 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) 8577 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) 8578 #else 8579 #error "Unsupported PREEMPT_DYNAMIC mechanism" 8580 #endif 8581 8582 void sched_dynamic_update(int mode) 8583 { 8584 /* 8585 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 8586 * the ZERO state, which is invalid. 8587 */ 8588 preempt_dynamic_enable(cond_resched); 8589 preempt_dynamic_enable(might_resched); 8590 preempt_dynamic_enable(preempt_schedule); 8591 preempt_dynamic_enable(preempt_schedule_notrace); 8592 preempt_dynamic_enable(irqentry_exit_cond_resched); 8593 8594 switch (mode) { 8595 case preempt_dynamic_none: 8596 preempt_dynamic_enable(cond_resched); 8597 preempt_dynamic_disable(might_resched); 8598 preempt_dynamic_disable(preempt_schedule); 8599 preempt_dynamic_disable(preempt_schedule_notrace); 8600 preempt_dynamic_disable(irqentry_exit_cond_resched); 8601 pr_info("Dynamic Preempt: none\n"); 8602 break; 8603 8604 case preempt_dynamic_voluntary: 8605 preempt_dynamic_enable(cond_resched); 8606 preempt_dynamic_enable(might_resched); 8607 preempt_dynamic_disable(preempt_schedule); 8608 preempt_dynamic_disable(preempt_schedule_notrace); 8609 preempt_dynamic_disable(irqentry_exit_cond_resched); 8610 pr_info("Dynamic Preempt: voluntary\n"); 8611 break; 8612 8613 case preempt_dynamic_full: 8614 preempt_dynamic_disable(cond_resched); 8615 preempt_dynamic_disable(might_resched); 8616 preempt_dynamic_enable(preempt_schedule); 8617 preempt_dynamic_enable(preempt_schedule_notrace); 8618 preempt_dynamic_enable(irqentry_exit_cond_resched); 8619 pr_info("Dynamic Preempt: full\n"); 8620 break; 8621 } 8622 8623 preempt_dynamic_mode = mode; 8624 } 8625 8626 static int __init setup_preempt_mode(char *str) 8627 { 8628 int mode = sched_dynamic_mode(str); 8629 if (mode < 0) { 8630 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 8631 return 0; 8632 } 8633 8634 sched_dynamic_update(mode); 8635 return 1; 8636 } 8637 __setup("preempt=", setup_preempt_mode); 8638 8639 static void __init preempt_dynamic_init(void) 8640 { 8641 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 8642 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 8643 sched_dynamic_update(preempt_dynamic_none); 8644 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 8645 sched_dynamic_update(preempt_dynamic_voluntary); 8646 } else { 8647 /* Default static call setting, nothing to do */ 8648 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 8649 preempt_dynamic_mode = preempt_dynamic_full; 8650 pr_info("Dynamic Preempt: full\n"); 8651 } 8652 } 8653 } 8654 8655 #define PREEMPT_MODEL_ACCESSOR(mode) \ 8656 bool preempt_model_##mode(void) \ 8657 { \ 8658 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 8659 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 8660 } \ 8661 EXPORT_SYMBOL_GPL(preempt_model_##mode) 8662 8663 PREEMPT_MODEL_ACCESSOR(none); 8664 PREEMPT_MODEL_ACCESSOR(voluntary); 8665 PREEMPT_MODEL_ACCESSOR(full); 8666 8667 #else /* !CONFIG_PREEMPT_DYNAMIC */ 8668 8669 static inline void preempt_dynamic_init(void) { } 8670 8671 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ 8672 8673 /** 8674 * yield - yield the current processor to other threads. 8675 * 8676 * Do not ever use this function, there's a 99% chance you're doing it wrong. 8677 * 8678 * The scheduler is at all times free to pick the calling task as the most 8679 * eligible task to run, if removing the yield() call from your code breaks 8680 * it, it's already broken. 8681 * 8682 * Typical broken usage is: 8683 * 8684 * while (!event) 8685 * yield(); 8686 * 8687 * where one assumes that yield() will let 'the other' process run that will 8688 * make event true. If the current task is a SCHED_FIFO task that will never 8689 * happen. Never use yield() as a progress guarantee!! 8690 * 8691 * If you want to use yield() to wait for something, use wait_event(). 8692 * If you want to use yield() to be 'nice' for others, use cond_resched(). 8693 * If you still want to use yield(), do not! 8694 */ 8695 void __sched yield(void) 8696 { 8697 set_current_state(TASK_RUNNING); 8698 do_sched_yield(); 8699 } 8700 EXPORT_SYMBOL(yield); 8701 8702 /** 8703 * yield_to - yield the current processor to another thread in 8704 * your thread group, or accelerate that thread toward the 8705 * processor it's on. 8706 * @p: target task 8707 * @preempt: whether task preemption is allowed or not 8708 * 8709 * It's the caller's job to ensure that the target task struct 8710 * can't go away on us before we can do any checks. 8711 * 8712 * Return: 8713 * true (>0) if we indeed boosted the target task. 8714 * false (0) if we failed to boost the target. 8715 * -ESRCH if there's no task to yield to. 8716 */ 8717 int __sched yield_to(struct task_struct *p, bool preempt) 8718 { 8719 struct task_struct *curr = current; 8720 struct rq *rq, *p_rq; 8721 unsigned long flags; 8722 int yielded = 0; 8723 8724 local_irq_save(flags); 8725 rq = this_rq(); 8726 8727 again: 8728 p_rq = task_rq(p); 8729 /* 8730 * If we're the only runnable task on the rq and target rq also 8731 * has only one task, there's absolutely no point in yielding. 8732 */ 8733 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 8734 yielded = -ESRCH; 8735 goto out_irq; 8736 } 8737 8738 double_rq_lock(rq, p_rq); 8739 if (task_rq(p) != p_rq) { 8740 double_rq_unlock(rq, p_rq); 8741 goto again; 8742 } 8743 8744 if (!curr->sched_class->yield_to_task) 8745 goto out_unlock; 8746 8747 if (curr->sched_class != p->sched_class) 8748 goto out_unlock; 8749 8750 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 8751 goto out_unlock; 8752 8753 yielded = curr->sched_class->yield_to_task(rq, p); 8754 if (yielded) { 8755 schedstat_inc(rq->yld_count); 8756 /* 8757 * Make p's CPU reschedule; pick_next_entity takes care of 8758 * fairness. 8759 */ 8760 if (preempt && rq != p_rq) 8761 resched_curr(p_rq); 8762 } 8763 8764 out_unlock: 8765 double_rq_unlock(rq, p_rq); 8766 out_irq: 8767 local_irq_restore(flags); 8768 8769 if (yielded > 0) 8770 schedule(); 8771 8772 return yielded; 8773 } 8774 EXPORT_SYMBOL_GPL(yield_to); 8775 8776 int io_schedule_prepare(void) 8777 { 8778 int old_iowait = current->in_iowait; 8779 8780 current->in_iowait = 1; 8781 blk_flush_plug(current->plug, true); 8782 return old_iowait; 8783 } 8784 8785 void io_schedule_finish(int token) 8786 { 8787 current->in_iowait = token; 8788 } 8789 8790 /* 8791 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 8792 * that process accounting knows that this is a task in IO wait state. 8793 */ 8794 long __sched io_schedule_timeout(long timeout) 8795 { 8796 int token; 8797 long ret; 8798 8799 token = io_schedule_prepare(); 8800 ret = schedule_timeout(timeout); 8801 io_schedule_finish(token); 8802 8803 return ret; 8804 } 8805 EXPORT_SYMBOL(io_schedule_timeout); 8806 8807 void __sched io_schedule(void) 8808 { 8809 int token; 8810 8811 token = io_schedule_prepare(); 8812 schedule(); 8813 io_schedule_finish(token); 8814 } 8815 EXPORT_SYMBOL(io_schedule); 8816 8817 /** 8818 * sys_sched_get_priority_max - return maximum RT priority. 8819 * @policy: scheduling class. 8820 * 8821 * Return: On success, this syscall returns the maximum 8822 * rt_priority that can be used by a given scheduling class. 8823 * On failure, a negative error code is returned. 8824 */ 8825 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 8826 { 8827 int ret = -EINVAL; 8828 8829 switch (policy) { 8830 case SCHED_FIFO: 8831 case SCHED_RR: 8832 ret = MAX_RT_PRIO-1; 8833 break; 8834 case SCHED_DEADLINE: 8835 case SCHED_NORMAL: 8836 case SCHED_BATCH: 8837 case SCHED_IDLE: 8838 ret = 0; 8839 break; 8840 } 8841 return ret; 8842 } 8843 8844 /** 8845 * sys_sched_get_priority_min - return minimum RT priority. 8846 * @policy: scheduling class. 8847 * 8848 * Return: On success, this syscall returns the minimum 8849 * rt_priority that can be used by a given scheduling class. 8850 * On failure, a negative error code is returned. 8851 */ 8852 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 8853 { 8854 int ret = -EINVAL; 8855 8856 switch (policy) { 8857 case SCHED_FIFO: 8858 case SCHED_RR: 8859 ret = 1; 8860 break; 8861 case SCHED_DEADLINE: 8862 case SCHED_NORMAL: 8863 case SCHED_BATCH: 8864 case SCHED_IDLE: 8865 ret = 0; 8866 } 8867 return ret; 8868 } 8869 8870 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 8871 { 8872 struct task_struct *p; 8873 unsigned int time_slice; 8874 struct rq_flags rf; 8875 struct rq *rq; 8876 int retval; 8877 8878 if (pid < 0) 8879 return -EINVAL; 8880 8881 retval = -ESRCH; 8882 rcu_read_lock(); 8883 p = find_process_by_pid(pid); 8884 if (!p) 8885 goto out_unlock; 8886 8887 retval = security_task_getscheduler(p); 8888 if (retval) 8889 goto out_unlock; 8890 8891 rq = task_rq_lock(p, &rf); 8892 time_slice = 0; 8893 if (p->sched_class->get_rr_interval) 8894 time_slice = p->sched_class->get_rr_interval(rq, p); 8895 task_rq_unlock(rq, p, &rf); 8896 8897 rcu_read_unlock(); 8898 jiffies_to_timespec64(time_slice, t); 8899 return 0; 8900 8901 out_unlock: 8902 rcu_read_unlock(); 8903 return retval; 8904 } 8905 8906 /** 8907 * sys_sched_rr_get_interval - return the default timeslice of a process. 8908 * @pid: pid of the process. 8909 * @interval: userspace pointer to the timeslice value. 8910 * 8911 * this syscall writes the default timeslice value of a given process 8912 * into the user-space timespec buffer. A value of '0' means infinity. 8913 * 8914 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 8915 * an error code. 8916 */ 8917 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 8918 struct __kernel_timespec __user *, interval) 8919 { 8920 struct timespec64 t; 8921 int retval = sched_rr_get_interval(pid, &t); 8922 8923 if (retval == 0) 8924 retval = put_timespec64(&t, interval); 8925 8926 return retval; 8927 } 8928 8929 #ifdef CONFIG_COMPAT_32BIT_TIME 8930 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 8931 struct old_timespec32 __user *, interval) 8932 { 8933 struct timespec64 t; 8934 int retval = sched_rr_get_interval(pid, &t); 8935 8936 if (retval == 0) 8937 retval = put_old_timespec32(&t, interval); 8938 return retval; 8939 } 8940 #endif 8941 8942 void sched_show_task(struct task_struct *p) 8943 { 8944 unsigned long free = 0; 8945 int ppid; 8946 8947 if (!try_get_task_stack(p)) 8948 return; 8949 8950 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 8951 8952 if (task_is_running(p)) 8953 pr_cont(" running task "); 8954 #ifdef CONFIG_DEBUG_STACK_USAGE 8955 free = stack_not_used(p); 8956 #endif 8957 ppid = 0; 8958 rcu_read_lock(); 8959 if (pid_alive(p)) 8960 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 8961 rcu_read_unlock(); 8962 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", 8963 free, task_pid_nr(p), ppid, 8964 read_task_thread_flags(p)); 8965 8966 print_worker_info(KERN_INFO, p); 8967 print_stop_info(KERN_INFO, p); 8968 show_stack(p, NULL, KERN_INFO); 8969 put_task_stack(p); 8970 } 8971 EXPORT_SYMBOL_GPL(sched_show_task); 8972 8973 static inline bool 8974 state_filter_match(unsigned long state_filter, struct task_struct *p) 8975 { 8976 unsigned int state = READ_ONCE(p->__state); 8977 8978 /* no filter, everything matches */ 8979 if (!state_filter) 8980 return true; 8981 8982 /* filter, but doesn't match */ 8983 if (!(state & state_filter)) 8984 return false; 8985 8986 /* 8987 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 8988 * TASK_KILLABLE). 8989 */ 8990 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 8991 return false; 8992 8993 return true; 8994 } 8995 8996 8997 void show_state_filter(unsigned int state_filter) 8998 { 8999 struct task_struct *g, *p; 9000 9001 rcu_read_lock(); 9002 for_each_process_thread(g, p) { 9003 /* 9004 * reset the NMI-timeout, listing all files on a slow 9005 * console might take a lot of time: 9006 * Also, reset softlockup watchdogs on all CPUs, because 9007 * another CPU might be blocked waiting for us to process 9008 * an IPI. 9009 */ 9010 touch_nmi_watchdog(); 9011 touch_all_softlockup_watchdogs(); 9012 if (state_filter_match(state_filter, p)) 9013 sched_show_task(p); 9014 } 9015 9016 #ifdef CONFIG_SCHED_DEBUG 9017 if (!state_filter) 9018 sysrq_sched_debug_show(); 9019 #endif 9020 rcu_read_unlock(); 9021 /* 9022 * Only show locks if all tasks are dumped: 9023 */ 9024 if (!state_filter) 9025 debug_show_all_locks(); 9026 } 9027 9028 /** 9029 * init_idle - set up an idle thread for a given CPU 9030 * @idle: task in question 9031 * @cpu: CPU the idle task belongs to 9032 * 9033 * NOTE: this function does not set the idle thread's NEED_RESCHED 9034 * flag, to make booting more robust. 9035 */ 9036 void __init init_idle(struct task_struct *idle, int cpu) 9037 { 9038 #ifdef CONFIG_SMP 9039 struct affinity_context ac = (struct affinity_context) { 9040 .new_mask = cpumask_of(cpu), 9041 .flags = 0, 9042 }; 9043 #endif 9044 struct rq *rq = cpu_rq(cpu); 9045 unsigned long flags; 9046 9047 __sched_fork(0, idle); 9048 9049 raw_spin_lock_irqsave(&idle->pi_lock, flags); 9050 raw_spin_rq_lock(rq); 9051 9052 idle->__state = TASK_RUNNING; 9053 idle->se.exec_start = sched_clock(); 9054 /* 9055 * PF_KTHREAD should already be set at this point; regardless, make it 9056 * look like a proper per-CPU kthread. 9057 */ 9058 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY; 9059 kthread_set_per_cpu(idle, cpu); 9060 9061 #ifdef CONFIG_SMP 9062 /* 9063 * It's possible that init_idle() gets called multiple times on a task, 9064 * in that case do_set_cpus_allowed() will not do the right thing. 9065 * 9066 * And since this is boot we can forgo the serialization. 9067 */ 9068 set_cpus_allowed_common(idle, &ac); 9069 #endif 9070 /* 9071 * We're having a chicken and egg problem, even though we are 9072 * holding rq->lock, the CPU isn't yet set to this CPU so the 9073 * lockdep check in task_group() will fail. 9074 * 9075 * Similar case to sched_fork(). / Alternatively we could 9076 * use task_rq_lock() here and obtain the other rq->lock. 9077 * 9078 * Silence PROVE_RCU 9079 */ 9080 rcu_read_lock(); 9081 __set_task_cpu(idle, cpu); 9082 rcu_read_unlock(); 9083 9084 rq->idle = idle; 9085 rcu_assign_pointer(rq->curr, idle); 9086 idle->on_rq = TASK_ON_RQ_QUEUED; 9087 #ifdef CONFIG_SMP 9088 idle->on_cpu = 1; 9089 #endif 9090 raw_spin_rq_unlock(rq); 9091 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 9092 9093 /* Set the preempt count _outside_ the spinlocks! */ 9094 init_idle_preempt_count(idle, cpu); 9095 9096 /* 9097 * The idle tasks have their own, simple scheduling class: 9098 */ 9099 idle->sched_class = &idle_sched_class; 9100 ftrace_graph_init_idle_task(idle, cpu); 9101 vtime_init_idle(idle, cpu); 9102 #ifdef CONFIG_SMP 9103 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 9104 #endif 9105 } 9106 9107 #ifdef CONFIG_SMP 9108 9109 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 9110 const struct cpumask *trial) 9111 { 9112 int ret = 1; 9113 9114 if (cpumask_empty(cur)) 9115 return ret; 9116 9117 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 9118 9119 return ret; 9120 } 9121 9122 int task_can_attach(struct task_struct *p, 9123 const struct cpumask *cs_effective_cpus) 9124 { 9125 int ret = 0; 9126 9127 /* 9128 * Kthreads which disallow setaffinity shouldn't be moved 9129 * to a new cpuset; we don't want to change their CPU 9130 * affinity and isolating such threads by their set of 9131 * allowed nodes is unnecessary. Thus, cpusets are not 9132 * applicable for such threads. This prevents checking for 9133 * success of set_cpus_allowed_ptr() on all attached tasks 9134 * before cpus_mask may be changed. 9135 */ 9136 if (p->flags & PF_NO_SETAFFINITY) { 9137 ret = -EINVAL; 9138 goto out; 9139 } 9140 9141 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 9142 cs_effective_cpus)) { 9143 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus); 9144 9145 if (unlikely(cpu >= nr_cpu_ids)) 9146 return -EINVAL; 9147 ret = dl_cpu_busy(cpu, p); 9148 } 9149 9150 out: 9151 return ret; 9152 } 9153 9154 bool sched_smp_initialized __read_mostly; 9155 9156 #ifdef CONFIG_NUMA_BALANCING 9157 /* Migrate current task p to target_cpu */ 9158 int migrate_task_to(struct task_struct *p, int target_cpu) 9159 { 9160 struct migration_arg arg = { p, target_cpu }; 9161 int curr_cpu = task_cpu(p); 9162 9163 if (curr_cpu == target_cpu) 9164 return 0; 9165 9166 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 9167 return -EINVAL; 9168 9169 /* TODO: This is not properly updating schedstats */ 9170 9171 trace_sched_move_numa(p, curr_cpu, target_cpu); 9172 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 9173 } 9174 9175 /* 9176 * Requeue a task on a given node and accurately track the number of NUMA 9177 * tasks on the runqueues 9178 */ 9179 void sched_setnuma(struct task_struct *p, int nid) 9180 { 9181 bool queued, running; 9182 struct rq_flags rf; 9183 struct rq *rq; 9184 9185 rq = task_rq_lock(p, &rf); 9186 queued = task_on_rq_queued(p); 9187 running = task_current(rq, p); 9188 9189 if (queued) 9190 dequeue_task(rq, p, DEQUEUE_SAVE); 9191 if (running) 9192 put_prev_task(rq, p); 9193 9194 p->numa_preferred_nid = nid; 9195 9196 if (queued) 9197 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 9198 if (running) 9199 set_next_task(rq, p); 9200 task_rq_unlock(rq, p, &rf); 9201 } 9202 #endif /* CONFIG_NUMA_BALANCING */ 9203 9204 #ifdef CONFIG_HOTPLUG_CPU 9205 /* 9206 * Ensure that the idle task is using init_mm right before its CPU goes 9207 * offline. 9208 */ 9209 void idle_task_exit(void) 9210 { 9211 struct mm_struct *mm = current->active_mm; 9212 9213 BUG_ON(cpu_online(smp_processor_id())); 9214 BUG_ON(current != this_rq()->idle); 9215 9216 if (mm != &init_mm) { 9217 switch_mm(mm, &init_mm, current); 9218 finish_arch_post_lock_switch(); 9219 } 9220 9221 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 9222 } 9223 9224 static int __balance_push_cpu_stop(void *arg) 9225 { 9226 struct task_struct *p = arg; 9227 struct rq *rq = this_rq(); 9228 struct rq_flags rf; 9229 int cpu; 9230 9231 raw_spin_lock_irq(&p->pi_lock); 9232 rq_lock(rq, &rf); 9233 9234 update_rq_clock(rq); 9235 9236 if (task_rq(p) == rq && task_on_rq_queued(p)) { 9237 cpu = select_fallback_rq(rq->cpu, p); 9238 rq = __migrate_task(rq, &rf, p, cpu); 9239 } 9240 9241 rq_unlock(rq, &rf); 9242 raw_spin_unlock_irq(&p->pi_lock); 9243 9244 put_task_struct(p); 9245 9246 return 0; 9247 } 9248 9249 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 9250 9251 /* 9252 * Ensure we only run per-cpu kthreads once the CPU goes !active. 9253 * 9254 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 9255 * effective when the hotplug motion is down. 9256 */ 9257 static void balance_push(struct rq *rq) 9258 { 9259 struct task_struct *push_task = rq->curr; 9260 9261 lockdep_assert_rq_held(rq); 9262 9263 /* 9264 * Ensure the thing is persistent until balance_push_set(.on = false); 9265 */ 9266 rq->balance_callback = &balance_push_callback; 9267 9268 /* 9269 * Only active while going offline and when invoked on the outgoing 9270 * CPU. 9271 */ 9272 if (!cpu_dying(rq->cpu) || rq != this_rq()) 9273 return; 9274 9275 /* 9276 * Both the cpu-hotplug and stop task are in this case and are 9277 * required to complete the hotplug process. 9278 */ 9279 if (kthread_is_per_cpu(push_task) || 9280 is_migration_disabled(push_task)) { 9281 9282 /* 9283 * If this is the idle task on the outgoing CPU try to wake 9284 * up the hotplug control thread which might wait for the 9285 * last task to vanish. The rcuwait_active() check is 9286 * accurate here because the waiter is pinned on this CPU 9287 * and can't obviously be running in parallel. 9288 * 9289 * On RT kernels this also has to check whether there are 9290 * pinned and scheduled out tasks on the runqueue. They 9291 * need to leave the migrate disabled section first. 9292 */ 9293 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 9294 rcuwait_active(&rq->hotplug_wait)) { 9295 raw_spin_rq_unlock(rq); 9296 rcuwait_wake_up(&rq->hotplug_wait); 9297 raw_spin_rq_lock(rq); 9298 } 9299 return; 9300 } 9301 9302 get_task_struct(push_task); 9303 /* 9304 * Temporarily drop rq->lock such that we can wake-up the stop task. 9305 * Both preemption and IRQs are still disabled. 9306 */ 9307 raw_spin_rq_unlock(rq); 9308 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 9309 this_cpu_ptr(&push_work)); 9310 /* 9311 * At this point need_resched() is true and we'll take the loop in 9312 * schedule(). The next pick is obviously going to be the stop task 9313 * which kthread_is_per_cpu() and will push this task away. 9314 */ 9315 raw_spin_rq_lock(rq); 9316 } 9317 9318 static void balance_push_set(int cpu, bool on) 9319 { 9320 struct rq *rq = cpu_rq(cpu); 9321 struct rq_flags rf; 9322 9323 rq_lock_irqsave(rq, &rf); 9324 if (on) { 9325 WARN_ON_ONCE(rq->balance_callback); 9326 rq->balance_callback = &balance_push_callback; 9327 } else if (rq->balance_callback == &balance_push_callback) { 9328 rq->balance_callback = NULL; 9329 } 9330 rq_unlock_irqrestore(rq, &rf); 9331 } 9332 9333 /* 9334 * Invoked from a CPUs hotplug control thread after the CPU has been marked 9335 * inactive. All tasks which are not per CPU kernel threads are either 9336 * pushed off this CPU now via balance_push() or placed on a different CPU 9337 * during wakeup. Wait until the CPU is quiescent. 9338 */ 9339 static void balance_hotplug_wait(void) 9340 { 9341 struct rq *rq = this_rq(); 9342 9343 rcuwait_wait_event(&rq->hotplug_wait, 9344 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 9345 TASK_UNINTERRUPTIBLE); 9346 } 9347 9348 #else 9349 9350 static inline void balance_push(struct rq *rq) 9351 { 9352 } 9353 9354 static inline void balance_push_set(int cpu, bool on) 9355 { 9356 } 9357 9358 static inline void balance_hotplug_wait(void) 9359 { 9360 } 9361 9362 #endif /* CONFIG_HOTPLUG_CPU */ 9363 9364 void set_rq_online(struct rq *rq) 9365 { 9366 if (!rq->online) { 9367 const struct sched_class *class; 9368 9369 cpumask_set_cpu(rq->cpu, rq->rd->online); 9370 rq->online = 1; 9371 9372 for_each_class(class) { 9373 if (class->rq_online) 9374 class->rq_online(rq); 9375 } 9376 } 9377 } 9378 9379 void set_rq_offline(struct rq *rq) 9380 { 9381 if (rq->online) { 9382 const struct sched_class *class; 9383 9384 for_each_class(class) { 9385 if (class->rq_offline) 9386 class->rq_offline(rq); 9387 } 9388 9389 cpumask_clear_cpu(rq->cpu, rq->rd->online); 9390 rq->online = 0; 9391 } 9392 } 9393 9394 /* 9395 * used to mark begin/end of suspend/resume: 9396 */ 9397 static int num_cpus_frozen; 9398 9399 /* 9400 * Update cpusets according to cpu_active mask. If cpusets are 9401 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 9402 * around partition_sched_domains(). 9403 * 9404 * If we come here as part of a suspend/resume, don't touch cpusets because we 9405 * want to restore it back to its original state upon resume anyway. 9406 */ 9407 static void cpuset_cpu_active(void) 9408 { 9409 if (cpuhp_tasks_frozen) { 9410 /* 9411 * num_cpus_frozen tracks how many CPUs are involved in suspend 9412 * resume sequence. As long as this is not the last online 9413 * operation in the resume sequence, just build a single sched 9414 * domain, ignoring cpusets. 9415 */ 9416 partition_sched_domains(1, NULL, NULL); 9417 if (--num_cpus_frozen) 9418 return; 9419 /* 9420 * This is the last CPU online operation. So fall through and 9421 * restore the original sched domains by considering the 9422 * cpuset configurations. 9423 */ 9424 cpuset_force_rebuild(); 9425 } 9426 cpuset_update_active_cpus(); 9427 } 9428 9429 static int cpuset_cpu_inactive(unsigned int cpu) 9430 { 9431 if (!cpuhp_tasks_frozen) { 9432 int ret = dl_cpu_busy(cpu, NULL); 9433 9434 if (ret) 9435 return ret; 9436 cpuset_update_active_cpus(); 9437 } else { 9438 num_cpus_frozen++; 9439 partition_sched_domains(1, NULL, NULL); 9440 } 9441 return 0; 9442 } 9443 9444 int sched_cpu_activate(unsigned int cpu) 9445 { 9446 struct rq *rq = cpu_rq(cpu); 9447 struct rq_flags rf; 9448 9449 /* 9450 * Clear the balance_push callback and prepare to schedule 9451 * regular tasks. 9452 */ 9453 balance_push_set(cpu, false); 9454 9455 #ifdef CONFIG_SCHED_SMT 9456 /* 9457 * When going up, increment the number of cores with SMT present. 9458 */ 9459 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9460 static_branch_inc_cpuslocked(&sched_smt_present); 9461 #endif 9462 set_cpu_active(cpu, true); 9463 9464 if (sched_smp_initialized) { 9465 sched_update_numa(cpu, true); 9466 sched_domains_numa_masks_set(cpu); 9467 cpuset_cpu_active(); 9468 } 9469 9470 /* 9471 * Put the rq online, if not already. This happens: 9472 * 9473 * 1) In the early boot process, because we build the real domains 9474 * after all CPUs have been brought up. 9475 * 9476 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 9477 * domains. 9478 */ 9479 rq_lock_irqsave(rq, &rf); 9480 if (rq->rd) { 9481 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9482 set_rq_online(rq); 9483 } 9484 rq_unlock_irqrestore(rq, &rf); 9485 9486 return 0; 9487 } 9488 9489 int sched_cpu_deactivate(unsigned int cpu) 9490 { 9491 struct rq *rq = cpu_rq(cpu); 9492 struct rq_flags rf; 9493 int ret; 9494 9495 /* 9496 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 9497 * load balancing when not active 9498 */ 9499 nohz_balance_exit_idle(rq); 9500 9501 set_cpu_active(cpu, false); 9502 9503 /* 9504 * From this point forward, this CPU will refuse to run any task that 9505 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 9506 * push those tasks away until this gets cleared, see 9507 * sched_cpu_dying(). 9508 */ 9509 balance_push_set(cpu, true); 9510 9511 /* 9512 * We've cleared cpu_active_mask / set balance_push, wait for all 9513 * preempt-disabled and RCU users of this state to go away such that 9514 * all new such users will observe it. 9515 * 9516 * Specifically, we rely on ttwu to no longer target this CPU, see 9517 * ttwu_queue_cond() and is_cpu_allowed(). 9518 * 9519 * Do sync before park smpboot threads to take care the rcu boost case. 9520 */ 9521 synchronize_rcu(); 9522 9523 rq_lock_irqsave(rq, &rf); 9524 if (rq->rd) { 9525 update_rq_clock(rq); 9526 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 9527 set_rq_offline(rq); 9528 } 9529 rq_unlock_irqrestore(rq, &rf); 9530 9531 #ifdef CONFIG_SCHED_SMT 9532 /* 9533 * When going down, decrement the number of cores with SMT present. 9534 */ 9535 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 9536 static_branch_dec_cpuslocked(&sched_smt_present); 9537 9538 sched_core_cpu_deactivate(cpu); 9539 #endif 9540 9541 if (!sched_smp_initialized) 9542 return 0; 9543 9544 sched_update_numa(cpu, false); 9545 ret = cpuset_cpu_inactive(cpu); 9546 if (ret) { 9547 balance_push_set(cpu, false); 9548 set_cpu_active(cpu, true); 9549 sched_update_numa(cpu, true); 9550 return ret; 9551 } 9552 sched_domains_numa_masks_clear(cpu); 9553 return 0; 9554 } 9555 9556 static void sched_rq_cpu_starting(unsigned int cpu) 9557 { 9558 struct rq *rq = cpu_rq(cpu); 9559 9560 rq->calc_load_update = calc_load_update; 9561 update_max_interval(); 9562 } 9563 9564 int sched_cpu_starting(unsigned int cpu) 9565 { 9566 sched_core_cpu_starting(cpu); 9567 sched_rq_cpu_starting(cpu); 9568 sched_tick_start(cpu); 9569 return 0; 9570 } 9571 9572 #ifdef CONFIG_HOTPLUG_CPU 9573 9574 /* 9575 * Invoked immediately before the stopper thread is invoked to bring the 9576 * CPU down completely. At this point all per CPU kthreads except the 9577 * hotplug thread (current) and the stopper thread (inactive) have been 9578 * either parked or have been unbound from the outgoing CPU. Ensure that 9579 * any of those which might be on the way out are gone. 9580 * 9581 * If after this point a bound task is being woken on this CPU then the 9582 * responsible hotplug callback has failed to do it's job. 9583 * sched_cpu_dying() will catch it with the appropriate fireworks. 9584 */ 9585 int sched_cpu_wait_empty(unsigned int cpu) 9586 { 9587 balance_hotplug_wait(); 9588 return 0; 9589 } 9590 9591 /* 9592 * Since this CPU is going 'away' for a while, fold any nr_active delta we 9593 * might have. Called from the CPU stopper task after ensuring that the 9594 * stopper is the last running task on the CPU, so nr_active count is 9595 * stable. We need to take the teardown thread which is calling this into 9596 * account, so we hand in adjust = 1 to the load calculation. 9597 * 9598 * Also see the comment "Global load-average calculations". 9599 */ 9600 static void calc_load_migrate(struct rq *rq) 9601 { 9602 long delta = calc_load_fold_active(rq, 1); 9603 9604 if (delta) 9605 atomic_long_add(delta, &calc_load_tasks); 9606 } 9607 9608 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 9609 { 9610 struct task_struct *g, *p; 9611 int cpu = cpu_of(rq); 9612 9613 lockdep_assert_rq_held(rq); 9614 9615 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 9616 for_each_process_thread(g, p) { 9617 if (task_cpu(p) != cpu) 9618 continue; 9619 9620 if (!task_on_rq_queued(p)) 9621 continue; 9622 9623 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 9624 } 9625 } 9626 9627 int sched_cpu_dying(unsigned int cpu) 9628 { 9629 struct rq *rq = cpu_rq(cpu); 9630 struct rq_flags rf; 9631 9632 /* Handle pending wakeups and then migrate everything off */ 9633 sched_tick_stop(cpu); 9634 9635 rq_lock_irqsave(rq, &rf); 9636 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 9637 WARN(true, "Dying CPU not properly vacated!"); 9638 dump_rq_tasks(rq, KERN_WARNING); 9639 } 9640 rq_unlock_irqrestore(rq, &rf); 9641 9642 calc_load_migrate(rq); 9643 update_max_interval(); 9644 hrtick_clear(rq); 9645 sched_core_cpu_dying(cpu); 9646 return 0; 9647 } 9648 #endif 9649 9650 void __init sched_init_smp(void) 9651 { 9652 sched_init_numa(NUMA_NO_NODE); 9653 9654 /* 9655 * There's no userspace yet to cause hotplug operations; hence all the 9656 * CPU masks are stable and all blatant races in the below code cannot 9657 * happen. 9658 */ 9659 mutex_lock(&sched_domains_mutex); 9660 sched_init_domains(cpu_active_mask); 9661 mutex_unlock(&sched_domains_mutex); 9662 9663 /* Move init over to a non-isolated CPU */ 9664 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 9665 BUG(); 9666 current->flags &= ~PF_NO_SETAFFINITY; 9667 sched_init_granularity(); 9668 9669 init_sched_rt_class(); 9670 init_sched_dl_class(); 9671 9672 sched_smp_initialized = true; 9673 } 9674 9675 static int __init migration_init(void) 9676 { 9677 sched_cpu_starting(smp_processor_id()); 9678 return 0; 9679 } 9680 early_initcall(migration_init); 9681 9682 #else 9683 void __init sched_init_smp(void) 9684 { 9685 sched_init_granularity(); 9686 } 9687 #endif /* CONFIG_SMP */ 9688 9689 int in_sched_functions(unsigned long addr) 9690 { 9691 return in_lock_functions(addr) || 9692 (addr >= (unsigned long)__sched_text_start 9693 && addr < (unsigned long)__sched_text_end); 9694 } 9695 9696 #ifdef CONFIG_CGROUP_SCHED 9697 /* 9698 * Default task group. 9699 * Every task in system belongs to this group at bootup. 9700 */ 9701 struct task_group root_task_group; 9702 LIST_HEAD(task_groups); 9703 9704 /* Cacheline aligned slab cache for task_group */ 9705 static struct kmem_cache *task_group_cache __read_mostly; 9706 #endif 9707 9708 void __init sched_init(void) 9709 { 9710 unsigned long ptr = 0; 9711 int i; 9712 9713 /* Make sure the linker didn't screw up */ 9714 BUG_ON(&idle_sched_class != &fair_sched_class + 1 || 9715 &fair_sched_class != &rt_sched_class + 1 || 9716 &rt_sched_class != &dl_sched_class + 1); 9717 #ifdef CONFIG_SMP 9718 BUG_ON(&dl_sched_class != &stop_sched_class + 1); 9719 #endif 9720 9721 wait_bit_init(); 9722 9723 #ifdef CONFIG_FAIR_GROUP_SCHED 9724 ptr += 2 * nr_cpu_ids * sizeof(void **); 9725 #endif 9726 #ifdef CONFIG_RT_GROUP_SCHED 9727 ptr += 2 * nr_cpu_ids * sizeof(void **); 9728 #endif 9729 if (ptr) { 9730 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 9731 9732 #ifdef CONFIG_FAIR_GROUP_SCHED 9733 root_task_group.se = (struct sched_entity **)ptr; 9734 ptr += nr_cpu_ids * sizeof(void **); 9735 9736 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9737 ptr += nr_cpu_ids * sizeof(void **); 9738 9739 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 9740 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 9741 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9742 #ifdef CONFIG_RT_GROUP_SCHED 9743 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9744 ptr += nr_cpu_ids * sizeof(void **); 9745 9746 root_task_group.rt_rq = (struct rt_rq **)ptr; 9747 ptr += nr_cpu_ids * sizeof(void **); 9748 9749 #endif /* CONFIG_RT_GROUP_SCHED */ 9750 } 9751 9752 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 9753 9754 #ifdef CONFIG_SMP 9755 init_defrootdomain(); 9756 #endif 9757 9758 #ifdef CONFIG_RT_GROUP_SCHED 9759 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9760 global_rt_period(), global_rt_runtime()); 9761 #endif /* CONFIG_RT_GROUP_SCHED */ 9762 9763 #ifdef CONFIG_CGROUP_SCHED 9764 task_group_cache = KMEM_CACHE(task_group, 0); 9765 9766 list_add(&root_task_group.list, &task_groups); 9767 INIT_LIST_HEAD(&root_task_group.children); 9768 INIT_LIST_HEAD(&root_task_group.siblings); 9769 autogroup_init(&init_task); 9770 #endif /* CONFIG_CGROUP_SCHED */ 9771 9772 for_each_possible_cpu(i) { 9773 struct rq *rq; 9774 9775 rq = cpu_rq(i); 9776 raw_spin_lock_init(&rq->__lock); 9777 rq->nr_running = 0; 9778 rq->calc_load_active = 0; 9779 rq->calc_load_update = jiffies + LOAD_FREQ; 9780 init_cfs_rq(&rq->cfs); 9781 init_rt_rq(&rq->rt); 9782 init_dl_rq(&rq->dl); 9783 #ifdef CONFIG_FAIR_GROUP_SCHED 9784 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9785 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 9786 /* 9787 * How much CPU bandwidth does root_task_group get? 9788 * 9789 * In case of task-groups formed thr' the cgroup filesystem, it 9790 * gets 100% of the CPU resources in the system. This overall 9791 * system CPU resource is divided among the tasks of 9792 * root_task_group and its child task-groups in a fair manner, 9793 * based on each entity's (task or task-group's) weight 9794 * (se->load.weight). 9795 * 9796 * In other words, if root_task_group has 10 tasks of weight 9797 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9798 * then A0's share of the CPU resource is: 9799 * 9800 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9801 * 9802 * We achieve this by letting root_task_group's tasks sit 9803 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 9804 */ 9805 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 9806 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9807 9808 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9809 #ifdef CONFIG_RT_GROUP_SCHED 9810 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 9811 #endif 9812 #ifdef CONFIG_SMP 9813 rq->sd = NULL; 9814 rq->rd = NULL; 9815 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 9816 rq->balance_callback = &balance_push_callback; 9817 rq->active_balance = 0; 9818 rq->next_balance = jiffies; 9819 rq->push_cpu = 0; 9820 rq->cpu = i; 9821 rq->online = 0; 9822 rq->idle_stamp = 0; 9823 rq->avg_idle = 2*sysctl_sched_migration_cost; 9824 rq->wake_stamp = jiffies; 9825 rq->wake_avg_idle = rq->avg_idle; 9826 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 9827 9828 INIT_LIST_HEAD(&rq->cfs_tasks); 9829 9830 rq_attach_root(rq, &def_root_domain); 9831 #ifdef CONFIG_NO_HZ_COMMON 9832 rq->last_blocked_load_update_tick = jiffies; 9833 atomic_set(&rq->nohz_flags, 0); 9834 9835 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 9836 #endif 9837 #ifdef CONFIG_HOTPLUG_CPU 9838 rcuwait_init(&rq->hotplug_wait); 9839 #endif 9840 #endif /* CONFIG_SMP */ 9841 hrtick_rq_init(rq); 9842 atomic_set(&rq->nr_iowait, 0); 9843 9844 #ifdef CONFIG_SCHED_CORE 9845 rq->core = rq; 9846 rq->core_pick = NULL; 9847 rq->core_enabled = 0; 9848 rq->core_tree = RB_ROOT; 9849 rq->core_forceidle_count = 0; 9850 rq->core_forceidle_occupation = 0; 9851 rq->core_forceidle_start = 0; 9852 9853 rq->core_cookie = 0UL; 9854 #endif 9855 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 9856 } 9857 9858 set_load_weight(&init_task, false); 9859 9860 /* 9861 * The boot idle thread does lazy MMU switching as well: 9862 */ 9863 mmgrab(&init_mm); 9864 enter_lazy_tlb(&init_mm, current); 9865 9866 /* 9867 * The idle task doesn't need the kthread struct to function, but it 9868 * is dressed up as a per-CPU kthread and thus needs to play the part 9869 * if we want to avoid special-casing it in code that deals with per-CPU 9870 * kthreads. 9871 */ 9872 WARN_ON(!set_kthread_struct(current)); 9873 9874 /* 9875 * Make us the idle thread. Technically, schedule() should not be 9876 * called from this thread, however somewhere below it might be, 9877 * but because we are the idle thread, we just pick up running again 9878 * when this runqueue becomes "idle". 9879 */ 9880 init_idle(current, smp_processor_id()); 9881 9882 calc_load_update = jiffies + LOAD_FREQ; 9883 9884 #ifdef CONFIG_SMP 9885 idle_thread_set_boot_cpu(); 9886 balance_push_set(smp_processor_id(), false); 9887 #endif 9888 init_sched_fair_class(); 9889 9890 psi_init(); 9891 9892 init_uclamp(); 9893 9894 preempt_dynamic_init(); 9895 9896 scheduler_running = 1; 9897 } 9898 9899 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 9900 9901 void __might_sleep(const char *file, int line) 9902 { 9903 unsigned int state = get_current_state(); 9904 /* 9905 * Blocking primitives will set (and therefore destroy) current->state, 9906 * since we will exit with TASK_RUNNING make sure we enter with it, 9907 * otherwise we will destroy state. 9908 */ 9909 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 9910 "do not call blocking ops when !TASK_RUNNING; " 9911 "state=%x set at [<%p>] %pS\n", state, 9912 (void *)current->task_state_change, 9913 (void *)current->task_state_change); 9914 9915 __might_resched(file, line, 0); 9916 } 9917 EXPORT_SYMBOL(__might_sleep); 9918 9919 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 9920 { 9921 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 9922 return; 9923 9924 if (preempt_count() == preempt_offset) 9925 return; 9926 9927 pr_err("Preemption disabled at:"); 9928 print_ip_sym(KERN_ERR, ip); 9929 } 9930 9931 static inline bool resched_offsets_ok(unsigned int offsets) 9932 { 9933 unsigned int nested = preempt_count(); 9934 9935 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 9936 9937 return nested == offsets; 9938 } 9939 9940 void __might_resched(const char *file, int line, unsigned int offsets) 9941 { 9942 /* Ratelimiting timestamp: */ 9943 static unsigned long prev_jiffy; 9944 9945 unsigned long preempt_disable_ip; 9946 9947 /* WARN_ON_ONCE() by default, no rate limit required: */ 9948 rcu_sleep_check(); 9949 9950 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 9951 !is_idle_task(current) && !current->non_block_count) || 9952 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 9953 oops_in_progress) 9954 return; 9955 9956 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9957 return; 9958 prev_jiffy = jiffies; 9959 9960 /* Save this before calling printk(), since that will clobber it: */ 9961 preempt_disable_ip = get_preempt_disable_ip(current); 9962 9963 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 9964 file, line); 9965 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 9966 in_atomic(), irqs_disabled(), current->non_block_count, 9967 current->pid, current->comm); 9968 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 9969 offsets & MIGHT_RESCHED_PREEMPT_MASK); 9970 9971 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 9972 pr_err("RCU nest depth: %d, expected: %u\n", 9973 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 9974 } 9975 9976 if (task_stack_end_corrupted(current)) 9977 pr_emerg("Thread overran stack, or stack corrupted\n"); 9978 9979 debug_show_held_locks(current); 9980 if (irqs_disabled()) 9981 print_irqtrace_events(current); 9982 9983 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 9984 preempt_disable_ip); 9985 9986 dump_stack(); 9987 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 9988 } 9989 EXPORT_SYMBOL(__might_resched); 9990 9991 void __cant_sleep(const char *file, int line, int preempt_offset) 9992 { 9993 static unsigned long prev_jiffy; 9994 9995 if (irqs_disabled()) 9996 return; 9997 9998 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 9999 return; 10000 10001 if (preempt_count() > preempt_offset) 10002 return; 10003 10004 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10005 return; 10006 prev_jiffy = jiffies; 10007 10008 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 10009 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 10010 in_atomic(), irqs_disabled(), 10011 current->pid, current->comm); 10012 10013 debug_show_held_locks(current); 10014 dump_stack(); 10015 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10016 } 10017 EXPORT_SYMBOL_GPL(__cant_sleep); 10018 10019 #ifdef CONFIG_SMP 10020 void __cant_migrate(const char *file, int line) 10021 { 10022 static unsigned long prev_jiffy; 10023 10024 if (irqs_disabled()) 10025 return; 10026 10027 if (is_migration_disabled(current)) 10028 return; 10029 10030 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 10031 return; 10032 10033 if (preempt_count() > 0) 10034 return; 10035 10036 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 10037 return; 10038 prev_jiffy = jiffies; 10039 10040 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 10041 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 10042 in_atomic(), irqs_disabled(), is_migration_disabled(current), 10043 current->pid, current->comm); 10044 10045 debug_show_held_locks(current); 10046 dump_stack(); 10047 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 10048 } 10049 EXPORT_SYMBOL_GPL(__cant_migrate); 10050 #endif 10051 #endif 10052 10053 #ifdef CONFIG_MAGIC_SYSRQ 10054 void normalize_rt_tasks(void) 10055 { 10056 struct task_struct *g, *p; 10057 struct sched_attr attr = { 10058 .sched_policy = SCHED_NORMAL, 10059 }; 10060 10061 read_lock(&tasklist_lock); 10062 for_each_process_thread(g, p) { 10063 /* 10064 * Only normalize user tasks: 10065 */ 10066 if (p->flags & PF_KTHREAD) 10067 continue; 10068 10069 p->se.exec_start = 0; 10070 schedstat_set(p->stats.wait_start, 0); 10071 schedstat_set(p->stats.sleep_start, 0); 10072 schedstat_set(p->stats.block_start, 0); 10073 10074 if (!dl_task(p) && !rt_task(p)) { 10075 /* 10076 * Renice negative nice level userspace 10077 * tasks back to 0: 10078 */ 10079 if (task_nice(p) < 0) 10080 set_user_nice(p, 0); 10081 continue; 10082 } 10083 10084 __sched_setscheduler(p, &attr, false, false); 10085 } 10086 read_unlock(&tasklist_lock); 10087 } 10088 10089 #endif /* CONFIG_MAGIC_SYSRQ */ 10090 10091 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 10092 /* 10093 * These functions are only useful for the IA64 MCA handling, or kdb. 10094 * 10095 * They can only be called when the whole system has been 10096 * stopped - every CPU needs to be quiescent, and no scheduling 10097 * activity can take place. Using them for anything else would 10098 * be a serious bug, and as a result, they aren't even visible 10099 * under any other configuration. 10100 */ 10101 10102 /** 10103 * curr_task - return the current task for a given CPU. 10104 * @cpu: the processor in question. 10105 * 10106 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10107 * 10108 * Return: The current task for @cpu. 10109 */ 10110 struct task_struct *curr_task(int cpu) 10111 { 10112 return cpu_curr(cpu); 10113 } 10114 10115 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 10116 10117 #ifdef CONFIG_IA64 10118 /** 10119 * ia64_set_curr_task - set the current task for a given CPU. 10120 * @cpu: the processor in question. 10121 * @p: the task pointer to set. 10122 * 10123 * Description: This function must only be used when non-maskable interrupts 10124 * are serviced on a separate stack. It allows the architecture to switch the 10125 * notion of the current task on a CPU in a non-blocking manner. This function 10126 * must be called with all CPU's synchronized, and interrupts disabled, the 10127 * and caller must save the original value of the current task (see 10128 * curr_task() above) and restore that value before reenabling interrupts and 10129 * re-starting the system. 10130 * 10131 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 10132 */ 10133 void ia64_set_curr_task(int cpu, struct task_struct *p) 10134 { 10135 cpu_curr(cpu) = p; 10136 } 10137 10138 #endif 10139 10140 #ifdef CONFIG_CGROUP_SCHED 10141 /* task_group_lock serializes the addition/removal of task groups */ 10142 static DEFINE_SPINLOCK(task_group_lock); 10143 10144 static inline void alloc_uclamp_sched_group(struct task_group *tg, 10145 struct task_group *parent) 10146 { 10147 #ifdef CONFIG_UCLAMP_TASK_GROUP 10148 enum uclamp_id clamp_id; 10149 10150 for_each_clamp_id(clamp_id) { 10151 uclamp_se_set(&tg->uclamp_req[clamp_id], 10152 uclamp_none(clamp_id), false); 10153 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 10154 } 10155 #endif 10156 } 10157 10158 static void sched_free_group(struct task_group *tg) 10159 { 10160 free_fair_sched_group(tg); 10161 free_rt_sched_group(tg); 10162 autogroup_free(tg); 10163 kmem_cache_free(task_group_cache, tg); 10164 } 10165 10166 static void sched_free_group_rcu(struct rcu_head *rcu) 10167 { 10168 sched_free_group(container_of(rcu, struct task_group, rcu)); 10169 } 10170 10171 static void sched_unregister_group(struct task_group *tg) 10172 { 10173 unregister_fair_sched_group(tg); 10174 unregister_rt_sched_group(tg); 10175 /* 10176 * We have to wait for yet another RCU grace period to expire, as 10177 * print_cfs_stats() might run concurrently. 10178 */ 10179 call_rcu(&tg->rcu, sched_free_group_rcu); 10180 } 10181 10182 /* allocate runqueue etc for a new task group */ 10183 struct task_group *sched_create_group(struct task_group *parent) 10184 { 10185 struct task_group *tg; 10186 10187 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 10188 if (!tg) 10189 return ERR_PTR(-ENOMEM); 10190 10191 if (!alloc_fair_sched_group(tg, parent)) 10192 goto err; 10193 10194 if (!alloc_rt_sched_group(tg, parent)) 10195 goto err; 10196 10197 alloc_uclamp_sched_group(tg, parent); 10198 10199 return tg; 10200 10201 err: 10202 sched_free_group(tg); 10203 return ERR_PTR(-ENOMEM); 10204 } 10205 10206 void sched_online_group(struct task_group *tg, struct task_group *parent) 10207 { 10208 unsigned long flags; 10209 10210 spin_lock_irqsave(&task_group_lock, flags); 10211 list_add_rcu(&tg->list, &task_groups); 10212 10213 /* Root should already exist: */ 10214 WARN_ON(!parent); 10215 10216 tg->parent = parent; 10217 INIT_LIST_HEAD(&tg->children); 10218 list_add_rcu(&tg->siblings, &parent->children); 10219 spin_unlock_irqrestore(&task_group_lock, flags); 10220 10221 online_fair_sched_group(tg); 10222 } 10223 10224 /* rcu callback to free various structures associated with a task group */ 10225 static void sched_unregister_group_rcu(struct rcu_head *rhp) 10226 { 10227 /* Now it should be safe to free those cfs_rqs: */ 10228 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 10229 } 10230 10231 void sched_destroy_group(struct task_group *tg) 10232 { 10233 /* Wait for possible concurrent references to cfs_rqs complete: */ 10234 call_rcu(&tg->rcu, sched_unregister_group_rcu); 10235 } 10236 10237 void sched_release_group(struct task_group *tg) 10238 { 10239 unsigned long flags; 10240 10241 /* 10242 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 10243 * sched_cfs_period_timer()). 10244 * 10245 * For this to be effective, we have to wait for all pending users of 10246 * this task group to leave their RCU critical section to ensure no new 10247 * user will see our dying task group any more. Specifically ensure 10248 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 10249 * 10250 * We therefore defer calling unregister_fair_sched_group() to 10251 * sched_unregister_group() which is guarantied to get called only after the 10252 * current RCU grace period has expired. 10253 */ 10254 spin_lock_irqsave(&task_group_lock, flags); 10255 list_del_rcu(&tg->list); 10256 list_del_rcu(&tg->siblings); 10257 spin_unlock_irqrestore(&task_group_lock, flags); 10258 } 10259 10260 static void sched_change_group(struct task_struct *tsk) 10261 { 10262 struct task_group *tg; 10263 10264 /* 10265 * All callers are synchronized by task_rq_lock(); we do not use RCU 10266 * which is pointless here. Thus, we pass "true" to task_css_check() 10267 * to prevent lockdep warnings. 10268 */ 10269 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 10270 struct task_group, css); 10271 tg = autogroup_task_group(tsk, tg); 10272 tsk->sched_task_group = tg; 10273 10274 #ifdef CONFIG_FAIR_GROUP_SCHED 10275 if (tsk->sched_class->task_change_group) 10276 tsk->sched_class->task_change_group(tsk); 10277 else 10278 #endif 10279 set_task_rq(tsk, task_cpu(tsk)); 10280 } 10281 10282 /* 10283 * Change task's runqueue when it moves between groups. 10284 * 10285 * The caller of this function should have put the task in its new group by 10286 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 10287 * its new group. 10288 */ 10289 void sched_move_task(struct task_struct *tsk) 10290 { 10291 int queued, running, queue_flags = 10292 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 10293 struct rq_flags rf; 10294 struct rq *rq; 10295 10296 rq = task_rq_lock(tsk, &rf); 10297 update_rq_clock(rq); 10298 10299 running = task_current(rq, tsk); 10300 queued = task_on_rq_queued(tsk); 10301 10302 if (queued) 10303 dequeue_task(rq, tsk, queue_flags); 10304 if (running) 10305 put_prev_task(rq, tsk); 10306 10307 sched_change_group(tsk); 10308 10309 if (queued) 10310 enqueue_task(rq, tsk, queue_flags); 10311 if (running) { 10312 set_next_task(rq, tsk); 10313 /* 10314 * After changing group, the running task may have joined a 10315 * throttled one but it's still the running task. Trigger a 10316 * resched to make sure that task can still run. 10317 */ 10318 resched_curr(rq); 10319 } 10320 10321 task_rq_unlock(rq, tsk, &rf); 10322 } 10323 10324 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 10325 { 10326 return css ? container_of(css, struct task_group, css) : NULL; 10327 } 10328 10329 static struct cgroup_subsys_state * 10330 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10331 { 10332 struct task_group *parent = css_tg(parent_css); 10333 struct task_group *tg; 10334 10335 if (!parent) { 10336 /* This is early initialization for the top cgroup */ 10337 return &root_task_group.css; 10338 } 10339 10340 tg = sched_create_group(parent); 10341 if (IS_ERR(tg)) 10342 return ERR_PTR(-ENOMEM); 10343 10344 return &tg->css; 10345 } 10346 10347 /* Expose task group only after completing cgroup initialization */ 10348 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 10349 { 10350 struct task_group *tg = css_tg(css); 10351 struct task_group *parent = css_tg(css->parent); 10352 10353 if (parent) 10354 sched_online_group(tg, parent); 10355 10356 #ifdef CONFIG_UCLAMP_TASK_GROUP 10357 /* Propagate the effective uclamp value for the new group */ 10358 mutex_lock(&uclamp_mutex); 10359 rcu_read_lock(); 10360 cpu_util_update_eff(css); 10361 rcu_read_unlock(); 10362 mutex_unlock(&uclamp_mutex); 10363 #endif 10364 10365 return 0; 10366 } 10367 10368 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 10369 { 10370 struct task_group *tg = css_tg(css); 10371 10372 sched_release_group(tg); 10373 } 10374 10375 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 10376 { 10377 struct task_group *tg = css_tg(css); 10378 10379 /* 10380 * Relies on the RCU grace period between css_released() and this. 10381 */ 10382 sched_unregister_group(tg); 10383 } 10384 10385 #ifdef CONFIG_RT_GROUP_SCHED 10386 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 10387 { 10388 struct task_struct *task; 10389 struct cgroup_subsys_state *css; 10390 10391 cgroup_taskset_for_each(task, css, tset) { 10392 if (!sched_rt_can_attach(css_tg(css), task)) 10393 return -EINVAL; 10394 } 10395 return 0; 10396 } 10397 #endif 10398 10399 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 10400 { 10401 struct task_struct *task; 10402 struct cgroup_subsys_state *css; 10403 10404 cgroup_taskset_for_each(task, css, tset) 10405 sched_move_task(task); 10406 } 10407 10408 #ifdef CONFIG_UCLAMP_TASK_GROUP 10409 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 10410 { 10411 struct cgroup_subsys_state *top_css = css; 10412 struct uclamp_se *uc_parent = NULL; 10413 struct uclamp_se *uc_se = NULL; 10414 unsigned int eff[UCLAMP_CNT]; 10415 enum uclamp_id clamp_id; 10416 unsigned int clamps; 10417 10418 lockdep_assert_held(&uclamp_mutex); 10419 SCHED_WARN_ON(!rcu_read_lock_held()); 10420 10421 css_for_each_descendant_pre(css, top_css) { 10422 uc_parent = css_tg(css)->parent 10423 ? css_tg(css)->parent->uclamp : NULL; 10424 10425 for_each_clamp_id(clamp_id) { 10426 /* Assume effective clamps matches requested clamps */ 10427 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 10428 /* Cap effective clamps with parent's effective clamps */ 10429 if (uc_parent && 10430 eff[clamp_id] > uc_parent[clamp_id].value) { 10431 eff[clamp_id] = uc_parent[clamp_id].value; 10432 } 10433 } 10434 /* Ensure protection is always capped by limit */ 10435 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 10436 10437 /* Propagate most restrictive effective clamps */ 10438 clamps = 0x0; 10439 uc_se = css_tg(css)->uclamp; 10440 for_each_clamp_id(clamp_id) { 10441 if (eff[clamp_id] == uc_se[clamp_id].value) 10442 continue; 10443 uc_se[clamp_id].value = eff[clamp_id]; 10444 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 10445 clamps |= (0x1 << clamp_id); 10446 } 10447 if (!clamps) { 10448 css = css_rightmost_descendant(css); 10449 continue; 10450 } 10451 10452 /* Immediately update descendants RUNNABLE tasks */ 10453 uclamp_update_active_tasks(css); 10454 } 10455 } 10456 10457 /* 10458 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 10459 * C expression. Since there is no way to convert a macro argument (N) into a 10460 * character constant, use two levels of macros. 10461 */ 10462 #define _POW10(exp) ((unsigned int)1e##exp) 10463 #define POW10(exp) _POW10(exp) 10464 10465 struct uclamp_request { 10466 #define UCLAMP_PERCENT_SHIFT 2 10467 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 10468 s64 percent; 10469 u64 util; 10470 int ret; 10471 }; 10472 10473 static inline struct uclamp_request 10474 capacity_from_percent(char *buf) 10475 { 10476 struct uclamp_request req = { 10477 .percent = UCLAMP_PERCENT_SCALE, 10478 .util = SCHED_CAPACITY_SCALE, 10479 .ret = 0, 10480 }; 10481 10482 buf = strim(buf); 10483 if (strcmp(buf, "max")) { 10484 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 10485 &req.percent); 10486 if (req.ret) 10487 return req; 10488 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 10489 req.ret = -ERANGE; 10490 return req; 10491 } 10492 10493 req.util = req.percent << SCHED_CAPACITY_SHIFT; 10494 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 10495 } 10496 10497 return req; 10498 } 10499 10500 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 10501 size_t nbytes, loff_t off, 10502 enum uclamp_id clamp_id) 10503 { 10504 struct uclamp_request req; 10505 struct task_group *tg; 10506 10507 req = capacity_from_percent(buf); 10508 if (req.ret) 10509 return req.ret; 10510 10511 static_branch_enable(&sched_uclamp_used); 10512 10513 mutex_lock(&uclamp_mutex); 10514 rcu_read_lock(); 10515 10516 tg = css_tg(of_css(of)); 10517 if (tg->uclamp_req[clamp_id].value != req.util) 10518 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 10519 10520 /* 10521 * Because of not recoverable conversion rounding we keep track of the 10522 * exact requested value 10523 */ 10524 tg->uclamp_pct[clamp_id] = req.percent; 10525 10526 /* Update effective clamps to track the most restrictive value */ 10527 cpu_util_update_eff(of_css(of)); 10528 10529 rcu_read_unlock(); 10530 mutex_unlock(&uclamp_mutex); 10531 10532 return nbytes; 10533 } 10534 10535 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 10536 char *buf, size_t nbytes, 10537 loff_t off) 10538 { 10539 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 10540 } 10541 10542 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 10543 char *buf, size_t nbytes, 10544 loff_t off) 10545 { 10546 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 10547 } 10548 10549 static inline void cpu_uclamp_print(struct seq_file *sf, 10550 enum uclamp_id clamp_id) 10551 { 10552 struct task_group *tg; 10553 u64 util_clamp; 10554 u64 percent; 10555 u32 rem; 10556 10557 rcu_read_lock(); 10558 tg = css_tg(seq_css(sf)); 10559 util_clamp = tg->uclamp_req[clamp_id].value; 10560 rcu_read_unlock(); 10561 10562 if (util_clamp == SCHED_CAPACITY_SCALE) { 10563 seq_puts(sf, "max\n"); 10564 return; 10565 } 10566 10567 percent = tg->uclamp_pct[clamp_id]; 10568 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 10569 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 10570 } 10571 10572 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 10573 { 10574 cpu_uclamp_print(sf, UCLAMP_MIN); 10575 return 0; 10576 } 10577 10578 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 10579 { 10580 cpu_uclamp_print(sf, UCLAMP_MAX); 10581 return 0; 10582 } 10583 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 10584 10585 #ifdef CONFIG_FAIR_GROUP_SCHED 10586 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 10587 struct cftype *cftype, u64 shareval) 10588 { 10589 if (shareval > scale_load_down(ULONG_MAX)) 10590 shareval = MAX_SHARES; 10591 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 10592 } 10593 10594 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 10595 struct cftype *cft) 10596 { 10597 struct task_group *tg = css_tg(css); 10598 10599 return (u64) scale_load_down(tg->shares); 10600 } 10601 10602 #ifdef CONFIG_CFS_BANDWIDTH 10603 static DEFINE_MUTEX(cfs_constraints_mutex); 10604 10605 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 10606 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 10607 /* More than 203 days if BW_SHIFT equals 20. */ 10608 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 10609 10610 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 10611 10612 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 10613 u64 burst) 10614 { 10615 int i, ret = 0, runtime_enabled, runtime_was_enabled; 10616 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10617 10618 if (tg == &root_task_group) 10619 return -EINVAL; 10620 10621 /* 10622 * Ensure we have at some amount of bandwidth every period. This is 10623 * to prevent reaching a state of large arrears when throttled via 10624 * entity_tick() resulting in prolonged exit starvation. 10625 */ 10626 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 10627 return -EINVAL; 10628 10629 /* 10630 * Likewise, bound things on the other side by preventing insane quota 10631 * periods. This also allows us to normalize in computing quota 10632 * feasibility. 10633 */ 10634 if (period > max_cfs_quota_period) 10635 return -EINVAL; 10636 10637 /* 10638 * Bound quota to defend quota against overflow during bandwidth shift. 10639 */ 10640 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 10641 return -EINVAL; 10642 10643 if (quota != RUNTIME_INF && (burst > quota || 10644 burst + quota > max_cfs_runtime)) 10645 return -EINVAL; 10646 10647 /* 10648 * Prevent race between setting of cfs_rq->runtime_enabled and 10649 * unthrottle_offline_cfs_rqs(). 10650 */ 10651 cpus_read_lock(); 10652 mutex_lock(&cfs_constraints_mutex); 10653 ret = __cfs_schedulable(tg, period, quota); 10654 if (ret) 10655 goto out_unlock; 10656 10657 runtime_enabled = quota != RUNTIME_INF; 10658 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 10659 /* 10660 * If we need to toggle cfs_bandwidth_used, off->on must occur 10661 * before making related changes, and on->off must occur afterwards 10662 */ 10663 if (runtime_enabled && !runtime_was_enabled) 10664 cfs_bandwidth_usage_inc(); 10665 raw_spin_lock_irq(&cfs_b->lock); 10666 cfs_b->period = ns_to_ktime(period); 10667 cfs_b->quota = quota; 10668 cfs_b->burst = burst; 10669 10670 __refill_cfs_bandwidth_runtime(cfs_b); 10671 10672 /* Restart the period timer (if active) to handle new period expiry: */ 10673 if (runtime_enabled) 10674 start_cfs_bandwidth(cfs_b); 10675 10676 raw_spin_unlock_irq(&cfs_b->lock); 10677 10678 for_each_online_cpu(i) { 10679 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 10680 struct rq *rq = cfs_rq->rq; 10681 struct rq_flags rf; 10682 10683 rq_lock_irq(rq, &rf); 10684 cfs_rq->runtime_enabled = runtime_enabled; 10685 cfs_rq->runtime_remaining = 0; 10686 10687 if (cfs_rq->throttled) 10688 unthrottle_cfs_rq(cfs_rq); 10689 rq_unlock_irq(rq, &rf); 10690 } 10691 if (runtime_was_enabled && !runtime_enabled) 10692 cfs_bandwidth_usage_dec(); 10693 out_unlock: 10694 mutex_unlock(&cfs_constraints_mutex); 10695 cpus_read_unlock(); 10696 10697 return ret; 10698 } 10699 10700 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 10701 { 10702 u64 quota, period, burst; 10703 10704 period = ktime_to_ns(tg->cfs_bandwidth.period); 10705 burst = tg->cfs_bandwidth.burst; 10706 if (cfs_quota_us < 0) 10707 quota = RUNTIME_INF; 10708 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 10709 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 10710 else 10711 return -EINVAL; 10712 10713 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10714 } 10715 10716 static long tg_get_cfs_quota(struct task_group *tg) 10717 { 10718 u64 quota_us; 10719 10720 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 10721 return -1; 10722 10723 quota_us = tg->cfs_bandwidth.quota; 10724 do_div(quota_us, NSEC_PER_USEC); 10725 10726 return quota_us; 10727 } 10728 10729 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 10730 { 10731 u64 quota, period, burst; 10732 10733 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 10734 return -EINVAL; 10735 10736 period = (u64)cfs_period_us * NSEC_PER_USEC; 10737 quota = tg->cfs_bandwidth.quota; 10738 burst = tg->cfs_bandwidth.burst; 10739 10740 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10741 } 10742 10743 static long tg_get_cfs_period(struct task_group *tg) 10744 { 10745 u64 cfs_period_us; 10746 10747 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 10748 do_div(cfs_period_us, NSEC_PER_USEC); 10749 10750 return cfs_period_us; 10751 } 10752 10753 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 10754 { 10755 u64 quota, period, burst; 10756 10757 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 10758 return -EINVAL; 10759 10760 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 10761 period = ktime_to_ns(tg->cfs_bandwidth.period); 10762 quota = tg->cfs_bandwidth.quota; 10763 10764 return tg_set_cfs_bandwidth(tg, period, quota, burst); 10765 } 10766 10767 static long tg_get_cfs_burst(struct task_group *tg) 10768 { 10769 u64 burst_us; 10770 10771 burst_us = tg->cfs_bandwidth.burst; 10772 do_div(burst_us, NSEC_PER_USEC); 10773 10774 return burst_us; 10775 } 10776 10777 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 10778 struct cftype *cft) 10779 { 10780 return tg_get_cfs_quota(css_tg(css)); 10781 } 10782 10783 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 10784 struct cftype *cftype, s64 cfs_quota_us) 10785 { 10786 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 10787 } 10788 10789 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 10790 struct cftype *cft) 10791 { 10792 return tg_get_cfs_period(css_tg(css)); 10793 } 10794 10795 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 10796 struct cftype *cftype, u64 cfs_period_us) 10797 { 10798 return tg_set_cfs_period(css_tg(css), cfs_period_us); 10799 } 10800 10801 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 10802 struct cftype *cft) 10803 { 10804 return tg_get_cfs_burst(css_tg(css)); 10805 } 10806 10807 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 10808 struct cftype *cftype, u64 cfs_burst_us) 10809 { 10810 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 10811 } 10812 10813 struct cfs_schedulable_data { 10814 struct task_group *tg; 10815 u64 period, quota; 10816 }; 10817 10818 /* 10819 * normalize group quota/period to be quota/max_period 10820 * note: units are usecs 10821 */ 10822 static u64 normalize_cfs_quota(struct task_group *tg, 10823 struct cfs_schedulable_data *d) 10824 { 10825 u64 quota, period; 10826 10827 if (tg == d->tg) { 10828 period = d->period; 10829 quota = d->quota; 10830 } else { 10831 period = tg_get_cfs_period(tg); 10832 quota = tg_get_cfs_quota(tg); 10833 } 10834 10835 /* note: these should typically be equivalent */ 10836 if (quota == RUNTIME_INF || quota == -1) 10837 return RUNTIME_INF; 10838 10839 return to_ratio(period, quota); 10840 } 10841 10842 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 10843 { 10844 struct cfs_schedulable_data *d = data; 10845 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10846 s64 quota = 0, parent_quota = -1; 10847 10848 if (!tg->parent) { 10849 quota = RUNTIME_INF; 10850 } else { 10851 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 10852 10853 quota = normalize_cfs_quota(tg, d); 10854 parent_quota = parent_b->hierarchical_quota; 10855 10856 /* 10857 * Ensure max(child_quota) <= parent_quota. On cgroup2, 10858 * always take the min. On cgroup1, only inherit when no 10859 * limit is set: 10860 */ 10861 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 10862 quota = min(quota, parent_quota); 10863 } else { 10864 if (quota == RUNTIME_INF) 10865 quota = parent_quota; 10866 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 10867 return -EINVAL; 10868 } 10869 } 10870 cfs_b->hierarchical_quota = quota; 10871 10872 return 0; 10873 } 10874 10875 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 10876 { 10877 int ret; 10878 struct cfs_schedulable_data data = { 10879 .tg = tg, 10880 .period = period, 10881 .quota = quota, 10882 }; 10883 10884 if (quota != RUNTIME_INF) { 10885 do_div(data.period, NSEC_PER_USEC); 10886 do_div(data.quota, NSEC_PER_USEC); 10887 } 10888 10889 rcu_read_lock(); 10890 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 10891 rcu_read_unlock(); 10892 10893 return ret; 10894 } 10895 10896 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 10897 { 10898 struct task_group *tg = css_tg(seq_css(sf)); 10899 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 10900 10901 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 10902 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 10903 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 10904 10905 if (schedstat_enabled() && tg != &root_task_group) { 10906 struct sched_statistics *stats; 10907 u64 ws = 0; 10908 int i; 10909 10910 for_each_possible_cpu(i) { 10911 stats = __schedstats_from_se(tg->se[i]); 10912 ws += schedstat_val(stats->wait_sum); 10913 } 10914 10915 seq_printf(sf, "wait_sum %llu\n", ws); 10916 } 10917 10918 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 10919 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 10920 10921 return 0; 10922 } 10923 #endif /* CONFIG_CFS_BANDWIDTH */ 10924 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10925 10926 #ifdef CONFIG_RT_GROUP_SCHED 10927 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 10928 struct cftype *cft, s64 val) 10929 { 10930 return sched_group_set_rt_runtime(css_tg(css), val); 10931 } 10932 10933 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 10934 struct cftype *cft) 10935 { 10936 return sched_group_rt_runtime(css_tg(css)); 10937 } 10938 10939 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 10940 struct cftype *cftype, u64 rt_period_us) 10941 { 10942 return sched_group_set_rt_period(css_tg(css), rt_period_us); 10943 } 10944 10945 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 10946 struct cftype *cft) 10947 { 10948 return sched_group_rt_period(css_tg(css)); 10949 } 10950 #endif /* CONFIG_RT_GROUP_SCHED */ 10951 10952 #ifdef CONFIG_FAIR_GROUP_SCHED 10953 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 10954 struct cftype *cft) 10955 { 10956 return css_tg(css)->idle; 10957 } 10958 10959 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 10960 struct cftype *cft, s64 idle) 10961 { 10962 return sched_group_set_idle(css_tg(css), idle); 10963 } 10964 #endif 10965 10966 static struct cftype cpu_legacy_files[] = { 10967 #ifdef CONFIG_FAIR_GROUP_SCHED 10968 { 10969 .name = "shares", 10970 .read_u64 = cpu_shares_read_u64, 10971 .write_u64 = cpu_shares_write_u64, 10972 }, 10973 { 10974 .name = "idle", 10975 .read_s64 = cpu_idle_read_s64, 10976 .write_s64 = cpu_idle_write_s64, 10977 }, 10978 #endif 10979 #ifdef CONFIG_CFS_BANDWIDTH 10980 { 10981 .name = "cfs_quota_us", 10982 .read_s64 = cpu_cfs_quota_read_s64, 10983 .write_s64 = cpu_cfs_quota_write_s64, 10984 }, 10985 { 10986 .name = "cfs_period_us", 10987 .read_u64 = cpu_cfs_period_read_u64, 10988 .write_u64 = cpu_cfs_period_write_u64, 10989 }, 10990 { 10991 .name = "cfs_burst_us", 10992 .read_u64 = cpu_cfs_burst_read_u64, 10993 .write_u64 = cpu_cfs_burst_write_u64, 10994 }, 10995 { 10996 .name = "stat", 10997 .seq_show = cpu_cfs_stat_show, 10998 }, 10999 #endif 11000 #ifdef CONFIG_RT_GROUP_SCHED 11001 { 11002 .name = "rt_runtime_us", 11003 .read_s64 = cpu_rt_runtime_read, 11004 .write_s64 = cpu_rt_runtime_write, 11005 }, 11006 { 11007 .name = "rt_period_us", 11008 .read_u64 = cpu_rt_period_read_uint, 11009 .write_u64 = cpu_rt_period_write_uint, 11010 }, 11011 #endif 11012 #ifdef CONFIG_UCLAMP_TASK_GROUP 11013 { 11014 .name = "uclamp.min", 11015 .flags = CFTYPE_NOT_ON_ROOT, 11016 .seq_show = cpu_uclamp_min_show, 11017 .write = cpu_uclamp_min_write, 11018 }, 11019 { 11020 .name = "uclamp.max", 11021 .flags = CFTYPE_NOT_ON_ROOT, 11022 .seq_show = cpu_uclamp_max_show, 11023 .write = cpu_uclamp_max_write, 11024 }, 11025 #endif 11026 { } /* Terminate */ 11027 }; 11028 11029 static int cpu_extra_stat_show(struct seq_file *sf, 11030 struct cgroup_subsys_state *css) 11031 { 11032 #ifdef CONFIG_CFS_BANDWIDTH 11033 { 11034 struct task_group *tg = css_tg(css); 11035 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 11036 u64 throttled_usec, burst_usec; 11037 11038 throttled_usec = cfs_b->throttled_time; 11039 do_div(throttled_usec, NSEC_PER_USEC); 11040 burst_usec = cfs_b->burst_time; 11041 do_div(burst_usec, NSEC_PER_USEC); 11042 11043 seq_printf(sf, "nr_periods %d\n" 11044 "nr_throttled %d\n" 11045 "throttled_usec %llu\n" 11046 "nr_bursts %d\n" 11047 "burst_usec %llu\n", 11048 cfs_b->nr_periods, cfs_b->nr_throttled, 11049 throttled_usec, cfs_b->nr_burst, burst_usec); 11050 } 11051 #endif 11052 return 0; 11053 } 11054 11055 #ifdef CONFIG_FAIR_GROUP_SCHED 11056 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 11057 struct cftype *cft) 11058 { 11059 struct task_group *tg = css_tg(css); 11060 u64 weight = scale_load_down(tg->shares); 11061 11062 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 11063 } 11064 11065 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 11066 struct cftype *cft, u64 weight) 11067 { 11068 /* 11069 * cgroup weight knobs should use the common MIN, DFL and MAX 11070 * values which are 1, 100 and 10000 respectively. While it loses 11071 * a bit of range on both ends, it maps pretty well onto the shares 11072 * value used by scheduler and the round-trip conversions preserve 11073 * the original value over the entire range. 11074 */ 11075 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 11076 return -ERANGE; 11077 11078 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 11079 11080 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11081 } 11082 11083 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 11084 struct cftype *cft) 11085 { 11086 unsigned long weight = scale_load_down(css_tg(css)->shares); 11087 int last_delta = INT_MAX; 11088 int prio, delta; 11089 11090 /* find the closest nice value to the current weight */ 11091 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 11092 delta = abs(sched_prio_to_weight[prio] - weight); 11093 if (delta >= last_delta) 11094 break; 11095 last_delta = delta; 11096 } 11097 11098 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 11099 } 11100 11101 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 11102 struct cftype *cft, s64 nice) 11103 { 11104 unsigned long weight; 11105 int idx; 11106 11107 if (nice < MIN_NICE || nice > MAX_NICE) 11108 return -ERANGE; 11109 11110 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 11111 idx = array_index_nospec(idx, 40); 11112 weight = sched_prio_to_weight[idx]; 11113 11114 return sched_group_set_shares(css_tg(css), scale_load(weight)); 11115 } 11116 #endif 11117 11118 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 11119 long period, long quota) 11120 { 11121 if (quota < 0) 11122 seq_puts(sf, "max"); 11123 else 11124 seq_printf(sf, "%ld", quota); 11125 11126 seq_printf(sf, " %ld\n", period); 11127 } 11128 11129 /* caller should put the current value in *@periodp before calling */ 11130 static int __maybe_unused cpu_period_quota_parse(char *buf, 11131 u64 *periodp, u64 *quotap) 11132 { 11133 char tok[21]; /* U64_MAX */ 11134 11135 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 11136 return -EINVAL; 11137 11138 *periodp *= NSEC_PER_USEC; 11139 11140 if (sscanf(tok, "%llu", quotap)) 11141 *quotap *= NSEC_PER_USEC; 11142 else if (!strcmp(tok, "max")) 11143 *quotap = RUNTIME_INF; 11144 else 11145 return -EINVAL; 11146 11147 return 0; 11148 } 11149 11150 #ifdef CONFIG_CFS_BANDWIDTH 11151 static int cpu_max_show(struct seq_file *sf, void *v) 11152 { 11153 struct task_group *tg = css_tg(seq_css(sf)); 11154 11155 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 11156 return 0; 11157 } 11158 11159 static ssize_t cpu_max_write(struct kernfs_open_file *of, 11160 char *buf, size_t nbytes, loff_t off) 11161 { 11162 struct task_group *tg = css_tg(of_css(of)); 11163 u64 period = tg_get_cfs_period(tg); 11164 u64 burst = tg_get_cfs_burst(tg); 11165 u64 quota; 11166 int ret; 11167 11168 ret = cpu_period_quota_parse(buf, &period, "a); 11169 if (!ret) 11170 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 11171 return ret ?: nbytes; 11172 } 11173 #endif 11174 11175 static struct cftype cpu_files[] = { 11176 #ifdef CONFIG_FAIR_GROUP_SCHED 11177 { 11178 .name = "weight", 11179 .flags = CFTYPE_NOT_ON_ROOT, 11180 .read_u64 = cpu_weight_read_u64, 11181 .write_u64 = cpu_weight_write_u64, 11182 }, 11183 { 11184 .name = "weight.nice", 11185 .flags = CFTYPE_NOT_ON_ROOT, 11186 .read_s64 = cpu_weight_nice_read_s64, 11187 .write_s64 = cpu_weight_nice_write_s64, 11188 }, 11189 { 11190 .name = "idle", 11191 .flags = CFTYPE_NOT_ON_ROOT, 11192 .read_s64 = cpu_idle_read_s64, 11193 .write_s64 = cpu_idle_write_s64, 11194 }, 11195 #endif 11196 #ifdef CONFIG_CFS_BANDWIDTH 11197 { 11198 .name = "max", 11199 .flags = CFTYPE_NOT_ON_ROOT, 11200 .seq_show = cpu_max_show, 11201 .write = cpu_max_write, 11202 }, 11203 { 11204 .name = "max.burst", 11205 .flags = CFTYPE_NOT_ON_ROOT, 11206 .read_u64 = cpu_cfs_burst_read_u64, 11207 .write_u64 = cpu_cfs_burst_write_u64, 11208 }, 11209 #endif 11210 #ifdef CONFIG_UCLAMP_TASK_GROUP 11211 { 11212 .name = "uclamp.min", 11213 .flags = CFTYPE_NOT_ON_ROOT, 11214 .seq_show = cpu_uclamp_min_show, 11215 .write = cpu_uclamp_min_write, 11216 }, 11217 { 11218 .name = "uclamp.max", 11219 .flags = CFTYPE_NOT_ON_ROOT, 11220 .seq_show = cpu_uclamp_max_show, 11221 .write = cpu_uclamp_max_write, 11222 }, 11223 #endif 11224 { } /* terminate */ 11225 }; 11226 11227 struct cgroup_subsys cpu_cgrp_subsys = { 11228 .css_alloc = cpu_cgroup_css_alloc, 11229 .css_online = cpu_cgroup_css_online, 11230 .css_released = cpu_cgroup_css_released, 11231 .css_free = cpu_cgroup_css_free, 11232 .css_extra_stat_show = cpu_extra_stat_show, 11233 #ifdef CONFIG_RT_GROUP_SCHED 11234 .can_attach = cpu_cgroup_can_attach, 11235 #endif 11236 .attach = cpu_cgroup_attach, 11237 .legacy_cftypes = cpu_legacy_files, 11238 .dfl_cftypes = cpu_files, 11239 .early_init = true, 11240 .threaded = true, 11241 }; 11242 11243 #endif /* CONFIG_CGROUP_SCHED */ 11244 11245 void dump_cpu_task(int cpu) 11246 { 11247 if (cpu == smp_processor_id() && in_hardirq()) { 11248 struct pt_regs *regs; 11249 11250 regs = get_irq_regs(); 11251 if (regs) { 11252 show_regs(regs); 11253 return; 11254 } 11255 } 11256 11257 if (trigger_single_cpu_backtrace(cpu)) 11258 return; 11259 11260 pr_info("Task dump for CPU %d:\n", cpu); 11261 sched_show_task(cpu_curr(cpu)); 11262 } 11263 11264 /* 11265 * Nice levels are multiplicative, with a gentle 10% change for every 11266 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 11267 * nice 1, it will get ~10% less CPU time than another CPU-bound task 11268 * that remained on nice 0. 11269 * 11270 * The "10% effect" is relative and cumulative: from _any_ nice level, 11271 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 11272 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 11273 * If a task goes up by ~10% and another task goes down by ~10% then 11274 * the relative distance between them is ~25%.) 11275 */ 11276 const int sched_prio_to_weight[40] = { 11277 /* -20 */ 88761, 71755, 56483, 46273, 36291, 11278 /* -15 */ 29154, 23254, 18705, 14949, 11916, 11279 /* -10 */ 9548, 7620, 6100, 4904, 3906, 11280 /* -5 */ 3121, 2501, 1991, 1586, 1277, 11281 /* 0 */ 1024, 820, 655, 526, 423, 11282 /* 5 */ 335, 272, 215, 172, 137, 11283 /* 10 */ 110, 87, 70, 56, 45, 11284 /* 15 */ 36, 29, 23, 18, 15, 11285 }; 11286 11287 /* 11288 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 11289 * 11290 * In cases where the weight does not change often, we can use the 11291 * precalculated inverse to speed up arithmetics by turning divisions 11292 * into multiplications: 11293 */ 11294 const u32 sched_prio_to_wmult[40] = { 11295 /* -20 */ 48388, 59856, 76040, 92818, 118348, 11296 /* -15 */ 147320, 184698, 229616, 287308, 360437, 11297 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 11298 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 11299 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 11300 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 11301 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 11302 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 11303 }; 11304 11305 void call_trace_sched_update_nr_running(struct rq *rq, int count) 11306 { 11307 trace_sched_update_nr_running_tp(rq, count); 11308 } 11309