xref: /linux/kernel/sched/core.c (revision d0096c2f9cfcb4ce385698491604610fcc1a53b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_ENTRY
73 #  include <linux/entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 __read_mostly unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (p->dl_server)
165 		return -1; /* deadline */
166 
167 	if (rt_or_dl_prio(p->prio))
168 		return p->prio; /* [-1, 99] */
169 
170 	if (p->sched_class == &idle_sched_class)
171 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
172 
173 	if (task_on_scx(p))
174 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
200 		const struct sched_dl_entity *a_dl, *b_dl;
201 
202 		a_dl = &a->dl;
203 		/*
204 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
205 		 * __task_prio() can return -1 (for DL) even for those. In that
206 		 * case, get to the dl_server's DL entity.
207 		 */
208 		if (a->dl_server)
209 			a_dl = a->dl_server;
210 
211 		b_dl = &b->dl;
212 		if (b->dl_server)
213 			b_dl = b->dl_server;
214 
215 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
216 	}
217 
218 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
219 		return cfs_prio_less(a, b, in_fi);
220 
221 #ifdef CONFIG_SCHED_CLASS_EXT
222 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
223 		return scx_prio_less(a, b, in_fi);
224 #endif
225 
226 	return false;
227 }
228 
229 static inline bool __sched_core_less(const struct task_struct *a,
230 				     const struct task_struct *b)
231 {
232 	if (a->core_cookie < b->core_cookie)
233 		return true;
234 
235 	if (a->core_cookie > b->core_cookie)
236 		return false;
237 
238 	/* flip prio, so high prio is leftmost */
239 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
240 		return true;
241 
242 	return false;
243 }
244 
245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
246 
247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
248 {
249 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
250 }
251 
252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
253 {
254 	const struct task_struct *p = __node_2_sc(node);
255 	unsigned long cookie = (unsigned long)key;
256 
257 	if (cookie < p->core_cookie)
258 		return -1;
259 
260 	if (cookie > p->core_cookie)
261 		return 1;
262 
263 	return 0;
264 }
265 
266 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
267 {
268 	if (p->se.sched_delayed)
269 		return;
270 
271 	rq->core->core_task_seq++;
272 
273 	if (!p->core_cookie)
274 		return;
275 
276 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
277 }
278 
279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
280 {
281 	if (p->se.sched_delayed)
282 		return;
283 
284 	rq->core->core_task_seq++;
285 
286 	if (sched_core_enqueued(p)) {
287 		rb_erase(&p->core_node, &rq->core_tree);
288 		RB_CLEAR_NODE(&p->core_node);
289 	}
290 
291 	/*
292 	 * Migrating the last task off the cpu, with the cpu in forced idle
293 	 * state. Reschedule to create an accounting edge for forced idle,
294 	 * and re-examine whether the core is still in forced idle state.
295 	 */
296 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
297 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
298 		resched_curr(rq);
299 }
300 
301 static int sched_task_is_throttled(struct task_struct *p, int cpu)
302 {
303 	if (p->sched_class->task_is_throttled)
304 		return p->sched_class->task_is_throttled(p, cpu);
305 
306 	return 0;
307 }
308 
309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
310 {
311 	struct rb_node *node = &p->core_node;
312 	int cpu = task_cpu(p);
313 
314 	do {
315 		node = rb_next(node);
316 		if (!node)
317 			return NULL;
318 
319 		p = __node_2_sc(node);
320 		if (p->core_cookie != cookie)
321 			return NULL;
322 
323 	} while (sched_task_is_throttled(p, cpu));
324 
325 	return p;
326 }
327 
328 /*
329  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
330  * If no suitable task is found, NULL will be returned.
331  */
332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
333 {
334 	struct task_struct *p;
335 	struct rb_node *node;
336 
337 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
338 	if (!node)
339 		return NULL;
340 
341 	p = __node_2_sc(node);
342 	if (!sched_task_is_throttled(p, rq->cpu))
343 		return p;
344 
345 	return sched_core_next(p, cookie);
346 }
347 
348 /*
349  * Magic required such that:
350  *
351  *	raw_spin_rq_lock(rq);
352  *	...
353  *	raw_spin_rq_unlock(rq);
354  *
355  * ends up locking and unlocking the _same_ lock, and all CPUs
356  * always agree on what rq has what lock.
357  *
358  * XXX entirely possible to selectively enable cores, don't bother for now.
359  */
360 
361 static DEFINE_MUTEX(sched_core_mutex);
362 static atomic_t sched_core_count;
363 static struct cpumask sched_core_mask;
364 
365 static void sched_core_lock(int cpu, unsigned long *flags)
366 {
367 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
368 	int t, i = 0;
369 
370 	local_irq_save(*flags);
371 	for_each_cpu(t, smt_mask)
372 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
373 }
374 
375 static void sched_core_unlock(int cpu, unsigned long *flags)
376 {
377 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
378 	int t;
379 
380 	for_each_cpu(t, smt_mask)
381 		raw_spin_unlock(&cpu_rq(t)->__lock);
382 	local_irq_restore(*flags);
383 }
384 
385 static void __sched_core_flip(bool enabled)
386 {
387 	unsigned long flags;
388 	int cpu, t;
389 
390 	cpus_read_lock();
391 
392 	/*
393 	 * Toggle the online cores, one by one.
394 	 */
395 	cpumask_copy(&sched_core_mask, cpu_online_mask);
396 	for_each_cpu(cpu, &sched_core_mask) {
397 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 
399 		sched_core_lock(cpu, &flags);
400 
401 		for_each_cpu(t, smt_mask)
402 			cpu_rq(t)->core_enabled = enabled;
403 
404 		cpu_rq(cpu)->core->core_forceidle_start = 0;
405 
406 		sched_core_unlock(cpu, &flags);
407 
408 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
409 	}
410 
411 	/*
412 	 * Toggle the offline CPUs.
413 	 */
414 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
415 		cpu_rq(cpu)->core_enabled = enabled;
416 
417 	cpus_read_unlock();
418 }
419 
420 static void sched_core_assert_empty(void)
421 {
422 	int cpu;
423 
424 	for_each_possible_cpu(cpu)
425 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
426 }
427 
428 static void __sched_core_enable(void)
429 {
430 	static_branch_enable(&__sched_core_enabled);
431 	/*
432 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
433 	 * and future ones will observe !sched_core_disabled().
434 	 */
435 	synchronize_rcu();
436 	__sched_core_flip(true);
437 	sched_core_assert_empty();
438 }
439 
440 static void __sched_core_disable(void)
441 {
442 	sched_core_assert_empty();
443 	__sched_core_flip(false);
444 	static_branch_disable(&__sched_core_enabled);
445 }
446 
447 void sched_core_get(void)
448 {
449 	if (atomic_inc_not_zero(&sched_core_count))
450 		return;
451 
452 	mutex_lock(&sched_core_mutex);
453 	if (!atomic_read(&sched_core_count))
454 		__sched_core_enable();
455 
456 	smp_mb__before_atomic();
457 	atomic_inc(&sched_core_count);
458 	mutex_unlock(&sched_core_mutex);
459 }
460 
461 static void __sched_core_put(struct work_struct *work)
462 {
463 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
464 		__sched_core_disable();
465 		mutex_unlock(&sched_core_mutex);
466 	}
467 }
468 
469 void sched_core_put(void)
470 {
471 	static DECLARE_WORK(_work, __sched_core_put);
472 
473 	/*
474 	 * "There can be only one"
475 	 *
476 	 * Either this is the last one, or we don't actually need to do any
477 	 * 'work'. If it is the last *again*, we rely on
478 	 * WORK_STRUCT_PENDING_BIT.
479 	 */
480 	if (!atomic_add_unless(&sched_core_count, -1, 1))
481 		schedule_work(&_work);
482 }
483 
484 #else /* !CONFIG_SCHED_CORE */
485 
486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
487 static inline void
488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
489 
490 #endif /* CONFIG_SCHED_CORE */
491 
492 /* need a wrapper since we may need to trace from modules */
493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
494 
495 /* Call via the helper macro trace_set_current_state. */
496 void __trace_set_current_state(int state_value)
497 {
498 	trace_sched_set_state_tp(current, state_value);
499 }
500 EXPORT_SYMBOL(__trace_set_current_state);
501 
502 /*
503  * Serialization rules:
504  *
505  * Lock order:
506  *
507  *   p->pi_lock
508  *     rq->lock
509  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
510  *
511  *  rq1->lock
512  *    rq2->lock  where: rq1 < rq2
513  *
514  * Regular state:
515  *
516  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
517  * local CPU's rq->lock, it optionally removes the task from the runqueue and
518  * always looks at the local rq data structures to find the most eligible task
519  * to run next.
520  *
521  * Task enqueue is also under rq->lock, possibly taken from another CPU.
522  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
523  * the local CPU to avoid bouncing the runqueue state around [ see
524  * ttwu_queue_wakelist() ]
525  *
526  * Task wakeup, specifically wakeups that involve migration, are horribly
527  * complicated to avoid having to take two rq->locks.
528  *
529  * Special state:
530  *
531  * System-calls and anything external will use task_rq_lock() which acquires
532  * both p->pi_lock and rq->lock. As a consequence the state they change is
533  * stable while holding either lock:
534  *
535  *  - sched_setaffinity()/
536  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
537  *  - set_user_nice():		p->se.load, p->*prio
538  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
539  *				p->se.load, p->rt_priority,
540  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
541  *  - sched_setnuma():		p->numa_preferred_nid
542  *  - sched_move_task():	p->sched_task_group
543  *  - uclamp_update_active()	p->uclamp*
544  *
545  * p->state <- TASK_*:
546  *
547  *   is changed locklessly using set_current_state(), __set_current_state() or
548  *   set_special_state(), see their respective comments, or by
549  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
550  *   concurrent self.
551  *
552  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
553  *
554  *   is set by activate_task() and cleared by deactivate_task(), under
555  *   rq->lock. Non-zero indicates the task is runnable, the special
556  *   ON_RQ_MIGRATING state is used for migration without holding both
557  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
558  *
559  *   Additionally it is possible to be ->on_rq but still be considered not
560  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
561  *   but will be dequeued as soon as they get picked again. See the
562  *   task_is_runnable() helper.
563  *
564  * p->on_cpu <- { 0, 1 }:
565  *
566  *   is set by prepare_task() and cleared by finish_task() such that it will be
567  *   set before p is scheduled-in and cleared after p is scheduled-out, both
568  *   under rq->lock. Non-zero indicates the task is running on its CPU.
569  *
570  *   [ The astute reader will observe that it is possible for two tasks on one
571  *     CPU to have ->on_cpu = 1 at the same time. ]
572  *
573  * task_cpu(p): is changed by set_task_cpu(), the rules are:
574  *
575  *  - Don't call set_task_cpu() on a blocked task:
576  *
577  *    We don't care what CPU we're not running on, this simplifies hotplug,
578  *    the CPU assignment of blocked tasks isn't required to be valid.
579  *
580  *  - for try_to_wake_up(), called under p->pi_lock:
581  *
582  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
583  *
584  *  - for migration called under rq->lock:
585  *    [ see task_on_rq_migrating() in task_rq_lock() ]
586  *
587  *    o move_queued_task()
588  *    o detach_task()
589  *
590  *  - for migration called under double_rq_lock():
591  *
592  *    o __migrate_swap_task()
593  *    o push_rt_task() / pull_rt_task()
594  *    o push_dl_task() / pull_dl_task()
595  *    o dl_task_offline_migration()
596  *
597  */
598 
599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
600 {
601 	raw_spinlock_t *lock;
602 
603 	/* Matches synchronize_rcu() in __sched_core_enable() */
604 	preempt_disable();
605 	if (sched_core_disabled()) {
606 		raw_spin_lock_nested(&rq->__lock, subclass);
607 		/* preempt_count *MUST* be > 1 */
608 		preempt_enable_no_resched();
609 		return;
610 	}
611 
612 	for (;;) {
613 		lock = __rq_lockp(rq);
614 		raw_spin_lock_nested(lock, subclass);
615 		if (likely(lock == __rq_lockp(rq))) {
616 			/* preempt_count *MUST* be > 1 */
617 			preempt_enable_no_resched();
618 			return;
619 		}
620 		raw_spin_unlock(lock);
621 	}
622 }
623 
624 bool raw_spin_rq_trylock(struct rq *rq)
625 {
626 	raw_spinlock_t *lock;
627 	bool ret;
628 
629 	/* Matches synchronize_rcu() in __sched_core_enable() */
630 	preempt_disable();
631 	if (sched_core_disabled()) {
632 		ret = raw_spin_trylock(&rq->__lock);
633 		preempt_enable();
634 		return ret;
635 	}
636 
637 	for (;;) {
638 		lock = __rq_lockp(rq);
639 		ret = raw_spin_trylock(lock);
640 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
641 			preempt_enable();
642 			return ret;
643 		}
644 		raw_spin_unlock(lock);
645 	}
646 }
647 
648 void raw_spin_rq_unlock(struct rq *rq)
649 {
650 	raw_spin_unlock(rq_lockp(rq));
651 }
652 
653 #ifdef CONFIG_SMP
654 /*
655  * double_rq_lock - safely lock two runqueues
656  */
657 void double_rq_lock(struct rq *rq1, struct rq *rq2)
658 {
659 	lockdep_assert_irqs_disabled();
660 
661 	if (rq_order_less(rq2, rq1))
662 		swap(rq1, rq2);
663 
664 	raw_spin_rq_lock(rq1);
665 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
666 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
667 
668 	double_rq_clock_clear_update(rq1, rq2);
669 }
670 #endif
671 
672 /*
673  * __task_rq_lock - lock the rq @p resides on.
674  */
675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
676 	__acquires(rq->lock)
677 {
678 	struct rq *rq;
679 
680 	lockdep_assert_held(&p->pi_lock);
681 
682 	for (;;) {
683 		rq = task_rq(p);
684 		raw_spin_rq_lock(rq);
685 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
686 			rq_pin_lock(rq, rf);
687 			return rq;
688 		}
689 		raw_spin_rq_unlock(rq);
690 
691 		while (unlikely(task_on_rq_migrating(p)))
692 			cpu_relax();
693 	}
694 }
695 
696 /*
697  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
698  */
699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
700 	__acquires(p->pi_lock)
701 	__acquires(rq->lock)
702 {
703 	struct rq *rq;
704 
705 	for (;;) {
706 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
707 		rq = task_rq(p);
708 		raw_spin_rq_lock(rq);
709 		/*
710 		 *	move_queued_task()		task_rq_lock()
711 		 *
712 		 *	ACQUIRE (rq->lock)
713 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
714 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
715 		 *	[S] ->cpu = new_cpu		[L] task_rq()
716 		 *					[L] ->on_rq
717 		 *	RELEASE (rq->lock)
718 		 *
719 		 * If we observe the old CPU in task_rq_lock(), the acquire of
720 		 * the old rq->lock will fully serialize against the stores.
721 		 *
722 		 * If we observe the new CPU in task_rq_lock(), the address
723 		 * dependency headed by '[L] rq = task_rq()' and the acquire
724 		 * will pair with the WMB to ensure we then also see migrating.
725 		 */
726 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
727 			rq_pin_lock(rq, rf);
728 			return rq;
729 		}
730 		raw_spin_rq_unlock(rq);
731 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
732 
733 		while (unlikely(task_on_rq_migrating(p)))
734 			cpu_relax();
735 	}
736 }
737 
738 /*
739  * RQ-clock updating methods:
740  */
741 
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745  * In theory, the compile should just see 0 here, and optimize out the call
746  * to sched_rt_avg_update. But I don't trust it...
747  */
748 	s64 __maybe_unused steal = 0, irq_delta = 0;
749 
750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
751 	if (irqtime_enabled()) {
752 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753 
754 		/*
755 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 		 * this case when a previous update_rq_clock() happened inside a
757 		 * {soft,}IRQ region.
758 		 *
759 		 * When this happens, we stop ->clock_task and only update the
760 		 * prev_irq_time stamp to account for the part that fit, so that a next
761 		 * update will consume the rest. This ensures ->clock_task is
762 		 * monotonic.
763 		 *
764 		 * It does however cause some slight miss-attribution of {soft,}IRQ
765 		 * time, a more accurate solution would be to update the irq_time using
766 		 * the current rq->clock timestamp, except that would require using
767 		 * atomic ops.
768 		 */
769 		if (irq_delta > delta)
770 			irq_delta = delta;
771 
772 		rq->prev_irq_time += irq_delta;
773 		delta -= irq_delta;
774 		delayacct_irq(rq->curr, irq_delta);
775 	}
776 #endif
777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778 	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 		u64 prev_steal;
780 
781 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
782 		steal -= rq->prev_steal_time_rq;
783 
784 		if (unlikely(steal > delta))
785 			steal = delta;
786 
787 		rq->prev_steal_time_rq = prev_steal;
788 		delta -= steal;
789 	}
790 #endif
791 
792 	rq->clock_task += delta;
793 
794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
795 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
796 		update_irq_load_avg(rq, irq_delta + steal);
797 #endif
798 	update_rq_clock_pelt(rq, delta);
799 }
800 
801 void update_rq_clock(struct rq *rq)
802 {
803 	s64 delta;
804 	u64 clock;
805 
806 	lockdep_assert_rq_held(rq);
807 
808 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
809 		return;
810 
811 	if (sched_feat(WARN_DOUBLE_CLOCK))
812 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
813 	rq->clock_update_flags |= RQCF_UPDATED;
814 
815 	clock = sched_clock_cpu(cpu_of(rq));
816 	scx_rq_clock_update(rq, clock);
817 
818 	delta = clock - rq->clock;
819 	if (delta < 0)
820 		return;
821 	rq->clock += delta;
822 
823 	update_rq_clock_task(rq, delta);
824 }
825 
826 #ifdef CONFIG_SCHED_HRTICK
827 /*
828  * Use HR-timers to deliver accurate preemption points.
829  */
830 
831 static void hrtick_clear(struct rq *rq)
832 {
833 	if (hrtimer_active(&rq->hrtick_timer))
834 		hrtimer_cancel(&rq->hrtick_timer);
835 }
836 
837 /*
838  * High-resolution timer tick.
839  * Runs from hardirq context with interrupts disabled.
840  */
841 static enum hrtimer_restart hrtick(struct hrtimer *timer)
842 {
843 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
844 	struct rq_flags rf;
845 
846 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
847 
848 	rq_lock(rq, &rf);
849 	update_rq_clock(rq);
850 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
851 	rq_unlock(rq, &rf);
852 
853 	return HRTIMER_NORESTART;
854 }
855 
856 #ifdef CONFIG_SMP
857 
858 static void __hrtick_restart(struct rq *rq)
859 {
860 	struct hrtimer *timer = &rq->hrtick_timer;
861 	ktime_t time = rq->hrtick_time;
862 
863 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
864 }
865 
866 /*
867  * called from hardirq (IPI) context
868  */
869 static void __hrtick_start(void *arg)
870 {
871 	struct rq *rq = arg;
872 	struct rq_flags rf;
873 
874 	rq_lock(rq, &rf);
875 	__hrtick_restart(rq);
876 	rq_unlock(rq, &rf);
877 }
878 
879 /*
880  * Called to set the hrtick timer state.
881  *
882  * called with rq->lock held and IRQs disabled
883  */
884 void hrtick_start(struct rq *rq, u64 delay)
885 {
886 	struct hrtimer *timer = &rq->hrtick_timer;
887 	s64 delta;
888 
889 	/*
890 	 * Don't schedule slices shorter than 10000ns, that just
891 	 * doesn't make sense and can cause timer DoS.
892 	 */
893 	delta = max_t(s64, delay, 10000LL);
894 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
895 
896 	if (rq == this_rq())
897 		__hrtick_restart(rq);
898 	else
899 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
900 }
901 
902 #else
903 /*
904  * Called to set the hrtick timer state.
905  *
906  * called with rq->lock held and IRQs disabled
907  */
908 void hrtick_start(struct rq *rq, u64 delay)
909 {
910 	/*
911 	 * Don't schedule slices shorter than 10000ns, that just
912 	 * doesn't make sense. Rely on vruntime for fairness.
913 	 */
914 	delay = max_t(u64, delay, 10000LL);
915 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
916 		      HRTIMER_MODE_REL_PINNED_HARD);
917 }
918 
919 #endif /* CONFIG_SMP */
920 
921 static void hrtick_rq_init(struct rq *rq)
922 {
923 #ifdef CONFIG_SMP
924 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
925 #endif
926 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
927 }
928 #else	/* CONFIG_SCHED_HRTICK */
929 static inline void hrtick_clear(struct rq *rq)
930 {
931 }
932 
933 static inline void hrtick_rq_init(struct rq *rq)
934 {
935 }
936 #endif	/* CONFIG_SCHED_HRTICK */
937 
938 /*
939  * try_cmpxchg based fetch_or() macro so it works for different integer types:
940  */
941 #define fetch_or(ptr, mask)						\
942 	({								\
943 		typeof(ptr) _ptr = (ptr);				\
944 		typeof(mask) _mask = (mask);				\
945 		typeof(*_ptr) _val = *_ptr;				\
946 									\
947 		do {							\
948 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
949 	_val;								\
950 })
951 
952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
953 /*
954  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
955  * this avoids any races wrt polling state changes and thereby avoids
956  * spurious IPIs.
957  */
958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
959 {
960 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
961 }
962 
963 /*
964  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
965  *
966  * If this returns true, then the idle task promises to call
967  * sched_ttwu_pending() and reschedule soon.
968  */
969 static bool set_nr_if_polling(struct task_struct *p)
970 {
971 	struct thread_info *ti = task_thread_info(p);
972 	typeof(ti->flags) val = READ_ONCE(ti->flags);
973 
974 	do {
975 		if (!(val & _TIF_POLLING_NRFLAG))
976 			return false;
977 		if (val & _TIF_NEED_RESCHED)
978 			return true;
979 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
980 
981 	return true;
982 }
983 
984 #else
985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
986 {
987 	set_ti_thread_flag(ti, tif);
988 	return true;
989 }
990 
991 #ifdef CONFIG_SMP
992 static inline bool set_nr_if_polling(struct task_struct *p)
993 {
994 	return false;
995 }
996 #endif
997 #endif
998 
999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1000 {
1001 	struct wake_q_node *node = &task->wake_q;
1002 
1003 	/*
1004 	 * Atomically grab the task, if ->wake_q is !nil already it means
1005 	 * it's already queued (either by us or someone else) and will get the
1006 	 * wakeup due to that.
1007 	 *
1008 	 * In order to ensure that a pending wakeup will observe our pending
1009 	 * state, even in the failed case, an explicit smp_mb() must be used.
1010 	 */
1011 	smp_mb__before_atomic();
1012 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1013 		return false;
1014 
1015 	/*
1016 	 * The head is context local, there can be no concurrency.
1017 	 */
1018 	*head->lastp = node;
1019 	head->lastp = &node->next;
1020 	return true;
1021 }
1022 
1023 /**
1024  * wake_q_add() - queue a wakeup for 'later' waking.
1025  * @head: the wake_q_head to add @task to
1026  * @task: the task to queue for 'later' wakeup
1027  *
1028  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1029  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1030  * instantly.
1031  *
1032  * This function must be used as-if it were wake_up_process(); IOW the task
1033  * must be ready to be woken at this location.
1034  */
1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1036 {
1037 	if (__wake_q_add(head, task))
1038 		get_task_struct(task);
1039 }
1040 
1041 /**
1042  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1043  * @head: the wake_q_head to add @task to
1044  * @task: the task to queue for 'later' wakeup
1045  *
1046  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1047  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1048  * instantly.
1049  *
1050  * This function must be used as-if it were wake_up_process(); IOW the task
1051  * must be ready to be woken at this location.
1052  *
1053  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1054  * that already hold reference to @task can call the 'safe' version and trust
1055  * wake_q to do the right thing depending whether or not the @task is already
1056  * queued for wakeup.
1057  */
1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1059 {
1060 	if (!__wake_q_add(head, task))
1061 		put_task_struct(task);
1062 }
1063 
1064 void wake_up_q(struct wake_q_head *head)
1065 {
1066 	struct wake_q_node *node = head->first;
1067 
1068 	while (node != WAKE_Q_TAIL) {
1069 		struct task_struct *task;
1070 
1071 		task = container_of(node, struct task_struct, wake_q);
1072 		node = node->next;
1073 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1074 		WRITE_ONCE(task->wake_q.next, NULL);
1075 		/* Task can safely be re-inserted now. */
1076 
1077 		/*
1078 		 * wake_up_process() executes a full barrier, which pairs with
1079 		 * the queueing in wake_q_add() so as not to miss wakeups.
1080 		 */
1081 		wake_up_process(task);
1082 		put_task_struct(task);
1083 	}
1084 }
1085 
1086 /*
1087  * resched_curr - mark rq's current task 'to be rescheduled now'.
1088  *
1089  * On UP this means the setting of the need_resched flag, on SMP it
1090  * might also involve a cross-CPU call to trigger the scheduler on
1091  * the target CPU.
1092  */
1093 static void __resched_curr(struct rq *rq, int tif)
1094 {
1095 	struct task_struct *curr = rq->curr;
1096 	struct thread_info *cti = task_thread_info(curr);
1097 	int cpu;
1098 
1099 	lockdep_assert_rq_held(rq);
1100 
1101 	/*
1102 	 * Always immediately preempt the idle task; no point in delaying doing
1103 	 * actual work.
1104 	 */
1105 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1106 		tif = TIF_NEED_RESCHED;
1107 
1108 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1109 		return;
1110 
1111 	cpu = cpu_of(rq);
1112 
1113 	trace_sched_set_need_resched_tp(curr, cpu, tif);
1114 	if (cpu == smp_processor_id()) {
1115 		set_ti_thread_flag(cti, tif);
1116 		if (tif == TIF_NEED_RESCHED)
1117 			set_preempt_need_resched();
1118 		return;
1119 	}
1120 
1121 	if (set_nr_and_not_polling(cti, tif)) {
1122 		if (tif == TIF_NEED_RESCHED)
1123 			smp_send_reschedule(cpu);
1124 	} else {
1125 		trace_sched_wake_idle_without_ipi(cpu);
1126 	}
1127 }
1128 
1129 void __trace_set_need_resched(struct task_struct *curr, int tif)
1130 {
1131 	trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif);
1132 }
1133 
1134 void resched_curr(struct rq *rq)
1135 {
1136 	__resched_curr(rq, TIF_NEED_RESCHED);
1137 }
1138 
1139 #ifdef CONFIG_PREEMPT_DYNAMIC
1140 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
1141 static __always_inline bool dynamic_preempt_lazy(void)
1142 {
1143 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1144 }
1145 #else
1146 static __always_inline bool dynamic_preempt_lazy(void)
1147 {
1148 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1149 }
1150 #endif
1151 
1152 static __always_inline int get_lazy_tif_bit(void)
1153 {
1154 	if (dynamic_preempt_lazy())
1155 		return TIF_NEED_RESCHED_LAZY;
1156 
1157 	return TIF_NEED_RESCHED;
1158 }
1159 
1160 void resched_curr_lazy(struct rq *rq)
1161 {
1162 	__resched_curr(rq, get_lazy_tif_bit());
1163 }
1164 
1165 void resched_cpu(int cpu)
1166 {
1167 	struct rq *rq = cpu_rq(cpu);
1168 	unsigned long flags;
1169 
1170 	raw_spin_rq_lock_irqsave(rq, flags);
1171 	if (cpu_online(cpu) || cpu == smp_processor_id())
1172 		resched_curr(rq);
1173 	raw_spin_rq_unlock_irqrestore(rq, flags);
1174 }
1175 
1176 #ifdef CONFIG_SMP
1177 #ifdef CONFIG_NO_HZ_COMMON
1178 /*
1179  * In the semi idle case, use the nearest busy CPU for migrating timers
1180  * from an idle CPU.  This is good for power-savings.
1181  *
1182  * We don't do similar optimization for completely idle system, as
1183  * selecting an idle CPU will add more delays to the timers than intended
1184  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1185  */
1186 int get_nohz_timer_target(void)
1187 {
1188 	int i, cpu = smp_processor_id(), default_cpu = -1;
1189 	struct sched_domain *sd;
1190 	const struct cpumask *hk_mask;
1191 
1192 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1193 		if (!idle_cpu(cpu))
1194 			return cpu;
1195 		default_cpu = cpu;
1196 	}
1197 
1198 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1199 
1200 	guard(rcu)();
1201 
1202 	for_each_domain(cpu, sd) {
1203 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1204 			if (cpu == i)
1205 				continue;
1206 
1207 			if (!idle_cpu(i))
1208 				return i;
1209 		}
1210 	}
1211 
1212 	if (default_cpu == -1)
1213 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1214 
1215 	return default_cpu;
1216 }
1217 
1218 /*
1219  * When add_timer_on() enqueues a timer into the timer wheel of an
1220  * idle CPU then this timer might expire before the next timer event
1221  * which is scheduled to wake up that CPU. In case of a completely
1222  * idle system the next event might even be infinite time into the
1223  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224  * leaves the inner idle loop so the newly added timer is taken into
1225  * account when the CPU goes back to idle and evaluates the timer
1226  * wheel for the next timer event.
1227  */
1228 static void wake_up_idle_cpu(int cpu)
1229 {
1230 	struct rq *rq = cpu_rq(cpu);
1231 
1232 	if (cpu == smp_processor_id())
1233 		return;
1234 
1235 	/*
1236 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1237 	 * part of the idle loop. This forces an exit from the idle loop
1238 	 * and a round trip to schedule(). Now this could be optimized
1239 	 * because a simple new idle loop iteration is enough to
1240 	 * re-evaluate the next tick. Provided some re-ordering of tick
1241 	 * nohz functions that would need to follow TIF_NR_POLLING
1242 	 * clearing:
1243 	 *
1244 	 * - On most architectures, a simple fetch_or on ti::flags with a
1245 	 *   "0" value would be enough to know if an IPI needs to be sent.
1246 	 *
1247 	 * - x86 needs to perform a last need_resched() check between
1248 	 *   monitor and mwait which doesn't take timers into account.
1249 	 *   There a dedicated TIF_TIMER flag would be required to
1250 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1251 	 *   before mwait().
1252 	 *
1253 	 * However, remote timer enqueue is not such a frequent event
1254 	 * and testing of the above solutions didn't appear to report
1255 	 * much benefits.
1256 	 */
1257 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1258 		smp_send_reschedule(cpu);
1259 	else
1260 		trace_sched_wake_idle_without_ipi(cpu);
1261 }
1262 
1263 static bool wake_up_full_nohz_cpu(int cpu)
1264 {
1265 	/*
1266 	 * We just need the target to call irq_exit() and re-evaluate
1267 	 * the next tick. The nohz full kick at least implies that.
1268 	 * If needed we can still optimize that later with an
1269 	 * empty IRQ.
1270 	 */
1271 	if (cpu_is_offline(cpu))
1272 		return true;  /* Don't try to wake offline CPUs. */
1273 	if (tick_nohz_full_cpu(cpu)) {
1274 		if (cpu != smp_processor_id() ||
1275 		    tick_nohz_tick_stopped())
1276 			tick_nohz_full_kick_cpu(cpu);
1277 		return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 /*
1284  * Wake up the specified CPU.  If the CPU is going offline, it is the
1285  * caller's responsibility to deal with the lost wakeup, for example,
1286  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1287  */
1288 void wake_up_nohz_cpu(int cpu)
1289 {
1290 	if (!wake_up_full_nohz_cpu(cpu))
1291 		wake_up_idle_cpu(cpu);
1292 }
1293 
1294 static void nohz_csd_func(void *info)
1295 {
1296 	struct rq *rq = info;
1297 	int cpu = cpu_of(rq);
1298 	unsigned int flags;
1299 
1300 	/*
1301 	 * Release the rq::nohz_csd.
1302 	 */
1303 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1304 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1305 
1306 	rq->idle_balance = idle_cpu(cpu);
1307 	if (rq->idle_balance) {
1308 		rq->nohz_idle_balance = flags;
1309 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1310 	}
1311 }
1312 
1313 #endif /* CONFIG_NO_HZ_COMMON */
1314 
1315 #ifdef CONFIG_NO_HZ_FULL
1316 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1317 {
1318 	if (rq->nr_running != 1)
1319 		return false;
1320 
1321 	if (p->sched_class != &fair_sched_class)
1322 		return false;
1323 
1324 	if (!task_on_rq_queued(p))
1325 		return false;
1326 
1327 	return true;
1328 }
1329 
1330 bool sched_can_stop_tick(struct rq *rq)
1331 {
1332 	int fifo_nr_running;
1333 
1334 	/* Deadline tasks, even if single, need the tick */
1335 	if (rq->dl.dl_nr_running)
1336 		return false;
1337 
1338 	/*
1339 	 * If there are more than one RR tasks, we need the tick to affect the
1340 	 * actual RR behaviour.
1341 	 */
1342 	if (rq->rt.rr_nr_running) {
1343 		if (rq->rt.rr_nr_running == 1)
1344 			return true;
1345 		else
1346 			return false;
1347 	}
1348 
1349 	/*
1350 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1351 	 * forced preemption between FIFO tasks.
1352 	 */
1353 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1354 	if (fifo_nr_running)
1355 		return true;
1356 
1357 	/*
1358 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1359 	 * left. For CFS, if there's more than one we need the tick for
1360 	 * involuntary preemption. For SCX, ask.
1361 	 */
1362 	if (scx_enabled() && !scx_can_stop_tick(rq))
1363 		return false;
1364 
1365 	if (rq->cfs.h_nr_queued > 1)
1366 		return false;
1367 
1368 	/*
1369 	 * If there is one task and it has CFS runtime bandwidth constraints
1370 	 * and it's on the cpu now we don't want to stop the tick.
1371 	 * This check prevents clearing the bit if a newly enqueued task here is
1372 	 * dequeued by migrating while the constrained task continues to run.
1373 	 * E.g. going from 2->1 without going through pick_next_task().
1374 	 */
1375 	if (__need_bw_check(rq, rq->curr)) {
1376 		if (cfs_task_bw_constrained(rq->curr))
1377 			return false;
1378 	}
1379 
1380 	return true;
1381 }
1382 #endif /* CONFIG_NO_HZ_FULL */
1383 #endif /* CONFIG_SMP */
1384 
1385 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1386 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1387 /*
1388  * Iterate task_group tree rooted at *from, calling @down when first entering a
1389  * node and @up when leaving it for the final time.
1390  *
1391  * Caller must hold rcu_lock or sufficient equivalent.
1392  */
1393 int walk_tg_tree_from(struct task_group *from,
1394 			     tg_visitor down, tg_visitor up, void *data)
1395 {
1396 	struct task_group *parent, *child;
1397 	int ret;
1398 
1399 	parent = from;
1400 
1401 down:
1402 	ret = (*down)(parent, data);
1403 	if (ret)
1404 		goto out;
1405 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1406 		parent = child;
1407 		goto down;
1408 
1409 up:
1410 		continue;
1411 	}
1412 	ret = (*up)(parent, data);
1413 	if (ret || parent == from)
1414 		goto out;
1415 
1416 	child = parent;
1417 	parent = parent->parent;
1418 	if (parent)
1419 		goto up;
1420 out:
1421 	return ret;
1422 }
1423 
1424 int tg_nop(struct task_group *tg, void *data)
1425 {
1426 	return 0;
1427 }
1428 #endif
1429 
1430 void set_load_weight(struct task_struct *p, bool update_load)
1431 {
1432 	int prio = p->static_prio - MAX_RT_PRIO;
1433 	struct load_weight lw;
1434 
1435 	if (task_has_idle_policy(p)) {
1436 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1437 		lw.inv_weight = WMULT_IDLEPRIO;
1438 	} else {
1439 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1440 		lw.inv_weight = sched_prio_to_wmult[prio];
1441 	}
1442 
1443 	/*
1444 	 * SCHED_OTHER tasks have to update their load when changing their
1445 	 * weight
1446 	 */
1447 	if (update_load && p->sched_class->reweight_task)
1448 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1449 	else
1450 		p->se.load = lw;
1451 }
1452 
1453 #ifdef CONFIG_UCLAMP_TASK
1454 /*
1455  * Serializes updates of utilization clamp values
1456  *
1457  * The (slow-path) user-space triggers utilization clamp value updates which
1458  * can require updates on (fast-path) scheduler's data structures used to
1459  * support enqueue/dequeue operations.
1460  * While the per-CPU rq lock protects fast-path update operations, user-space
1461  * requests are serialized using a mutex to reduce the risk of conflicting
1462  * updates or API abuses.
1463  */
1464 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1465 
1466 /* Max allowed minimum utilization */
1467 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1468 
1469 /* Max allowed maximum utilization */
1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1471 
1472 /*
1473  * By default RT tasks run at the maximum performance point/capacity of the
1474  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1475  * SCHED_CAPACITY_SCALE.
1476  *
1477  * This knob allows admins to change the default behavior when uclamp is being
1478  * used. In battery powered devices, particularly, running at the maximum
1479  * capacity and frequency will increase energy consumption and shorten the
1480  * battery life.
1481  *
1482  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1483  *
1484  * This knob will not override the system default sched_util_clamp_min defined
1485  * above.
1486  */
1487 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1488 
1489 /* All clamps are required to be less or equal than these values */
1490 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1491 
1492 /*
1493  * This static key is used to reduce the uclamp overhead in the fast path. It
1494  * primarily disables the call to uclamp_rq_{inc, dec}() in
1495  * enqueue/dequeue_task().
1496  *
1497  * This allows users to continue to enable uclamp in their kernel config with
1498  * minimum uclamp overhead in the fast path.
1499  *
1500  * As soon as userspace modifies any of the uclamp knobs, the static key is
1501  * enabled, since we have an actual users that make use of uclamp
1502  * functionality.
1503  *
1504  * The knobs that would enable this static key are:
1505  *
1506  *   * A task modifying its uclamp value with sched_setattr().
1507  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1508  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1509  */
1510 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1511 
1512 static inline unsigned int
1513 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1514 		  unsigned int clamp_value)
1515 {
1516 	/*
1517 	 * Avoid blocked utilization pushing up the frequency when we go
1518 	 * idle (which drops the max-clamp) by retaining the last known
1519 	 * max-clamp.
1520 	 */
1521 	if (clamp_id == UCLAMP_MAX) {
1522 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1523 		return clamp_value;
1524 	}
1525 
1526 	return uclamp_none(UCLAMP_MIN);
1527 }
1528 
1529 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1530 				     unsigned int clamp_value)
1531 {
1532 	/* Reset max-clamp retention only on idle exit */
1533 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1534 		return;
1535 
1536 	uclamp_rq_set(rq, clamp_id, clamp_value);
1537 }
1538 
1539 static inline
1540 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1541 				   unsigned int clamp_value)
1542 {
1543 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1544 	int bucket_id = UCLAMP_BUCKETS - 1;
1545 
1546 	/*
1547 	 * Since both min and max clamps are max aggregated, find the
1548 	 * top most bucket with tasks in.
1549 	 */
1550 	for ( ; bucket_id >= 0; bucket_id--) {
1551 		if (!bucket[bucket_id].tasks)
1552 			continue;
1553 		return bucket[bucket_id].value;
1554 	}
1555 
1556 	/* No tasks -- default clamp values */
1557 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1558 }
1559 
1560 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1561 {
1562 	unsigned int default_util_min;
1563 	struct uclamp_se *uc_se;
1564 
1565 	lockdep_assert_held(&p->pi_lock);
1566 
1567 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1568 
1569 	/* Only sync if user didn't override the default */
1570 	if (uc_se->user_defined)
1571 		return;
1572 
1573 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1574 	uclamp_se_set(uc_se, default_util_min, false);
1575 }
1576 
1577 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1578 {
1579 	if (!rt_task(p))
1580 		return;
1581 
1582 	/* Protect updates to p->uclamp_* */
1583 	guard(task_rq_lock)(p);
1584 	__uclamp_update_util_min_rt_default(p);
1585 }
1586 
1587 static inline struct uclamp_se
1588 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1589 {
1590 	/* Copy by value as we could modify it */
1591 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1592 #ifdef CONFIG_UCLAMP_TASK_GROUP
1593 	unsigned int tg_min, tg_max, value;
1594 
1595 	/*
1596 	 * Tasks in autogroups or root task group will be
1597 	 * restricted by system defaults.
1598 	 */
1599 	if (task_group_is_autogroup(task_group(p)))
1600 		return uc_req;
1601 	if (task_group(p) == &root_task_group)
1602 		return uc_req;
1603 
1604 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1605 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1606 	value = uc_req.value;
1607 	value = clamp(value, tg_min, tg_max);
1608 	uclamp_se_set(&uc_req, value, false);
1609 #endif
1610 
1611 	return uc_req;
1612 }
1613 
1614 /*
1615  * The effective clamp bucket index of a task depends on, by increasing
1616  * priority:
1617  * - the task specific clamp value, when explicitly requested from userspace
1618  * - the task group effective clamp value, for tasks not either in the root
1619  *   group or in an autogroup
1620  * - the system default clamp value, defined by the sysadmin
1621  */
1622 static inline struct uclamp_se
1623 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1624 {
1625 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1626 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1627 
1628 	/* System default restrictions always apply */
1629 	if (unlikely(uc_req.value > uc_max.value))
1630 		return uc_max;
1631 
1632 	return uc_req;
1633 }
1634 
1635 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1636 {
1637 	struct uclamp_se uc_eff;
1638 
1639 	/* Task currently refcounted: use back-annotated (effective) value */
1640 	if (p->uclamp[clamp_id].active)
1641 		return (unsigned long)p->uclamp[clamp_id].value;
1642 
1643 	uc_eff = uclamp_eff_get(p, clamp_id);
1644 
1645 	return (unsigned long)uc_eff.value;
1646 }
1647 
1648 /*
1649  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1650  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1651  * updates the rq's clamp value if required.
1652  *
1653  * Tasks can have a task-specific value requested from user-space, track
1654  * within each bucket the maximum value for tasks refcounted in it.
1655  * This "local max aggregation" allows to track the exact "requested" value
1656  * for each bucket when all its RUNNABLE tasks require the same clamp.
1657  */
1658 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1659 				    enum uclamp_id clamp_id)
1660 {
1661 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1662 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1663 	struct uclamp_bucket *bucket;
1664 
1665 	lockdep_assert_rq_held(rq);
1666 
1667 	/* Update task effective clamp */
1668 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1669 
1670 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1671 	bucket->tasks++;
1672 	uc_se->active = true;
1673 
1674 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1675 
1676 	/*
1677 	 * Local max aggregation: rq buckets always track the max
1678 	 * "requested" clamp value of its RUNNABLE tasks.
1679 	 */
1680 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1681 		bucket->value = uc_se->value;
1682 
1683 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1684 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1685 }
1686 
1687 /*
1688  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1689  * is released. If this is the last task reference counting the rq's max
1690  * active clamp value, then the rq's clamp value is updated.
1691  *
1692  * Both refcounted tasks and rq's cached clamp values are expected to be
1693  * always valid. If it's detected they are not, as defensive programming,
1694  * enforce the expected state and warn.
1695  */
1696 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1697 				    enum uclamp_id clamp_id)
1698 {
1699 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1700 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1701 	struct uclamp_bucket *bucket;
1702 	unsigned int bkt_clamp;
1703 	unsigned int rq_clamp;
1704 
1705 	lockdep_assert_rq_held(rq);
1706 
1707 	/*
1708 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1709 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1710 	 *
1711 	 * In this case the uc_se->active flag should be false since no uclamp
1712 	 * accounting was performed at enqueue time and we can just return
1713 	 * here.
1714 	 *
1715 	 * Need to be careful of the following enqueue/dequeue ordering
1716 	 * problem too
1717 	 *
1718 	 *	enqueue(taskA)
1719 	 *	// sched_uclamp_used gets enabled
1720 	 *	enqueue(taskB)
1721 	 *	dequeue(taskA)
1722 	 *	// Must not decrement bucket->tasks here
1723 	 *	dequeue(taskB)
1724 	 *
1725 	 * where we could end up with stale data in uc_se and
1726 	 * bucket[uc_se->bucket_id].
1727 	 *
1728 	 * The following check here eliminates the possibility of such race.
1729 	 */
1730 	if (unlikely(!uc_se->active))
1731 		return;
1732 
1733 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1734 
1735 	WARN_ON_ONCE(!bucket->tasks);
1736 	if (likely(bucket->tasks))
1737 		bucket->tasks--;
1738 
1739 	uc_se->active = false;
1740 
1741 	/*
1742 	 * Keep "local max aggregation" simple and accept to (possibly)
1743 	 * overboost some RUNNABLE tasks in the same bucket.
1744 	 * The rq clamp bucket value is reset to its base value whenever
1745 	 * there are no more RUNNABLE tasks refcounting it.
1746 	 */
1747 	if (likely(bucket->tasks))
1748 		return;
1749 
1750 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1751 	/*
1752 	 * Defensive programming: this should never happen. If it happens,
1753 	 * e.g. due to future modification, warn and fix up the expected value.
1754 	 */
1755 	WARN_ON_ONCE(bucket->value > rq_clamp);
1756 	if (bucket->value >= rq_clamp) {
1757 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1758 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1759 	}
1760 }
1761 
1762 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764 	enum uclamp_id clamp_id;
1765 
1766 	/*
1767 	 * Avoid any overhead until uclamp is actually used by the userspace.
1768 	 *
1769 	 * The condition is constructed such that a NOP is generated when
1770 	 * sched_uclamp_used is disabled.
1771 	 */
1772 	if (!uclamp_is_used())
1773 		return;
1774 
1775 	if (unlikely(!p->sched_class->uclamp_enabled))
1776 		return;
1777 
1778 	/* Only inc the delayed task which being woken up. */
1779 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1780 		return;
1781 
1782 	for_each_clamp_id(clamp_id)
1783 		uclamp_rq_inc_id(rq, p, clamp_id);
1784 
1785 	/* Reset clamp idle holding when there is one RUNNABLE task */
1786 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1787 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1788 }
1789 
1790 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1791 {
1792 	enum uclamp_id clamp_id;
1793 
1794 	/*
1795 	 * Avoid any overhead until uclamp is actually used by the userspace.
1796 	 *
1797 	 * The condition is constructed such that a NOP is generated when
1798 	 * sched_uclamp_used is disabled.
1799 	 */
1800 	if (!uclamp_is_used())
1801 		return;
1802 
1803 	if (unlikely(!p->sched_class->uclamp_enabled))
1804 		return;
1805 
1806 	if (p->se.sched_delayed)
1807 		return;
1808 
1809 	for_each_clamp_id(clamp_id)
1810 		uclamp_rq_dec_id(rq, p, clamp_id);
1811 }
1812 
1813 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1814 				      enum uclamp_id clamp_id)
1815 {
1816 	if (!p->uclamp[clamp_id].active)
1817 		return;
1818 
1819 	uclamp_rq_dec_id(rq, p, clamp_id);
1820 	uclamp_rq_inc_id(rq, p, clamp_id);
1821 
1822 	/*
1823 	 * Make sure to clear the idle flag if we've transiently reached 0
1824 	 * active tasks on rq.
1825 	 */
1826 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1827 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1828 }
1829 
1830 static inline void
1831 uclamp_update_active(struct task_struct *p)
1832 {
1833 	enum uclamp_id clamp_id;
1834 	struct rq_flags rf;
1835 	struct rq *rq;
1836 
1837 	/*
1838 	 * Lock the task and the rq where the task is (or was) queued.
1839 	 *
1840 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1841 	 * price to pay to safely serialize util_{min,max} updates with
1842 	 * enqueues, dequeues and migration operations.
1843 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1844 	 */
1845 	rq = task_rq_lock(p, &rf);
1846 
1847 	/*
1848 	 * Setting the clamp bucket is serialized by task_rq_lock().
1849 	 * If the task is not yet RUNNABLE and its task_struct is not
1850 	 * affecting a valid clamp bucket, the next time it's enqueued,
1851 	 * it will already see the updated clamp bucket value.
1852 	 */
1853 	for_each_clamp_id(clamp_id)
1854 		uclamp_rq_reinc_id(rq, p, clamp_id);
1855 
1856 	task_rq_unlock(rq, p, &rf);
1857 }
1858 
1859 #ifdef CONFIG_UCLAMP_TASK_GROUP
1860 static inline void
1861 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1862 {
1863 	struct css_task_iter it;
1864 	struct task_struct *p;
1865 
1866 	css_task_iter_start(css, 0, &it);
1867 	while ((p = css_task_iter_next(&it)))
1868 		uclamp_update_active(p);
1869 	css_task_iter_end(&it);
1870 }
1871 
1872 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1873 #endif
1874 
1875 #ifdef CONFIG_SYSCTL
1876 #ifdef CONFIG_UCLAMP_TASK_GROUP
1877 static void uclamp_update_root_tg(void)
1878 {
1879 	struct task_group *tg = &root_task_group;
1880 
1881 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1882 		      sysctl_sched_uclamp_util_min, false);
1883 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1884 		      sysctl_sched_uclamp_util_max, false);
1885 
1886 	guard(rcu)();
1887 	cpu_util_update_eff(&root_task_group.css);
1888 }
1889 #else
1890 static void uclamp_update_root_tg(void) { }
1891 #endif
1892 
1893 static void uclamp_sync_util_min_rt_default(void)
1894 {
1895 	struct task_struct *g, *p;
1896 
1897 	/*
1898 	 * copy_process()			sysctl_uclamp
1899 	 *					  uclamp_min_rt = X;
1900 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1901 	 *   // link thread			  smp_mb__after_spinlock()
1902 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1903 	 *   sched_post_fork()			  for_each_process_thread()
1904 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1905 	 *
1906 	 * Ensures that either sched_post_fork() will observe the new
1907 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1908 	 * task.
1909 	 */
1910 	read_lock(&tasklist_lock);
1911 	smp_mb__after_spinlock();
1912 	read_unlock(&tasklist_lock);
1913 
1914 	guard(rcu)();
1915 	for_each_process_thread(g, p)
1916 		uclamp_update_util_min_rt_default(p);
1917 }
1918 
1919 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1920 				void *buffer, size_t *lenp, loff_t *ppos)
1921 {
1922 	bool update_root_tg = false;
1923 	int old_min, old_max, old_min_rt;
1924 	int result;
1925 
1926 	guard(mutex)(&uclamp_mutex);
1927 
1928 	old_min = sysctl_sched_uclamp_util_min;
1929 	old_max = sysctl_sched_uclamp_util_max;
1930 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1931 
1932 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1933 	if (result)
1934 		goto undo;
1935 	if (!write)
1936 		return 0;
1937 
1938 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1939 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1940 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1941 
1942 		result = -EINVAL;
1943 		goto undo;
1944 	}
1945 
1946 	if (old_min != sysctl_sched_uclamp_util_min) {
1947 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1948 			      sysctl_sched_uclamp_util_min, false);
1949 		update_root_tg = true;
1950 	}
1951 	if (old_max != sysctl_sched_uclamp_util_max) {
1952 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1953 			      sysctl_sched_uclamp_util_max, false);
1954 		update_root_tg = true;
1955 	}
1956 
1957 	if (update_root_tg) {
1958 		sched_uclamp_enable();
1959 		uclamp_update_root_tg();
1960 	}
1961 
1962 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1963 		sched_uclamp_enable();
1964 		uclamp_sync_util_min_rt_default();
1965 	}
1966 
1967 	/*
1968 	 * We update all RUNNABLE tasks only when task groups are in use.
1969 	 * Otherwise, keep it simple and do just a lazy update at each next
1970 	 * task enqueue time.
1971 	 */
1972 	return 0;
1973 
1974 undo:
1975 	sysctl_sched_uclamp_util_min = old_min;
1976 	sysctl_sched_uclamp_util_max = old_max;
1977 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1978 	return result;
1979 }
1980 #endif
1981 
1982 static void uclamp_fork(struct task_struct *p)
1983 {
1984 	enum uclamp_id clamp_id;
1985 
1986 	/*
1987 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1988 	 * as the task is still at its early fork stages.
1989 	 */
1990 	for_each_clamp_id(clamp_id)
1991 		p->uclamp[clamp_id].active = false;
1992 
1993 	if (likely(!p->sched_reset_on_fork))
1994 		return;
1995 
1996 	for_each_clamp_id(clamp_id) {
1997 		uclamp_se_set(&p->uclamp_req[clamp_id],
1998 			      uclamp_none(clamp_id), false);
1999 	}
2000 }
2001 
2002 static void uclamp_post_fork(struct task_struct *p)
2003 {
2004 	uclamp_update_util_min_rt_default(p);
2005 }
2006 
2007 static void __init init_uclamp_rq(struct rq *rq)
2008 {
2009 	enum uclamp_id clamp_id;
2010 	struct uclamp_rq *uc_rq = rq->uclamp;
2011 
2012 	for_each_clamp_id(clamp_id) {
2013 		uc_rq[clamp_id] = (struct uclamp_rq) {
2014 			.value = uclamp_none(clamp_id)
2015 		};
2016 	}
2017 
2018 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2019 }
2020 
2021 static void __init init_uclamp(void)
2022 {
2023 	struct uclamp_se uc_max = {};
2024 	enum uclamp_id clamp_id;
2025 	int cpu;
2026 
2027 	for_each_possible_cpu(cpu)
2028 		init_uclamp_rq(cpu_rq(cpu));
2029 
2030 	for_each_clamp_id(clamp_id) {
2031 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2032 			      uclamp_none(clamp_id), false);
2033 	}
2034 
2035 	/* System defaults allow max clamp values for both indexes */
2036 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2037 	for_each_clamp_id(clamp_id) {
2038 		uclamp_default[clamp_id] = uc_max;
2039 #ifdef CONFIG_UCLAMP_TASK_GROUP
2040 		root_task_group.uclamp_req[clamp_id] = uc_max;
2041 		root_task_group.uclamp[clamp_id] = uc_max;
2042 #endif
2043 	}
2044 }
2045 
2046 #else /* !CONFIG_UCLAMP_TASK */
2047 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
2048 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2049 static inline void uclamp_fork(struct task_struct *p) { }
2050 static inline void uclamp_post_fork(struct task_struct *p) { }
2051 static inline void init_uclamp(void) { }
2052 #endif /* CONFIG_UCLAMP_TASK */
2053 
2054 bool sched_task_on_rq(struct task_struct *p)
2055 {
2056 	return task_on_rq_queued(p);
2057 }
2058 
2059 unsigned long get_wchan(struct task_struct *p)
2060 {
2061 	unsigned long ip = 0;
2062 	unsigned int state;
2063 
2064 	if (!p || p == current)
2065 		return 0;
2066 
2067 	/* Only get wchan if task is blocked and we can keep it that way. */
2068 	raw_spin_lock_irq(&p->pi_lock);
2069 	state = READ_ONCE(p->__state);
2070 	smp_rmb(); /* see try_to_wake_up() */
2071 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2072 		ip = __get_wchan(p);
2073 	raw_spin_unlock_irq(&p->pi_lock);
2074 
2075 	return ip;
2076 }
2077 
2078 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2079 {
2080 	if (!(flags & ENQUEUE_NOCLOCK))
2081 		update_rq_clock(rq);
2082 
2083 	/*
2084 	 * Can be before ->enqueue_task() because uclamp considers the
2085 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2086 	 * in ->enqueue_task().
2087 	 */
2088 	uclamp_rq_inc(rq, p, flags);
2089 
2090 	p->sched_class->enqueue_task(rq, p, flags);
2091 
2092 	psi_enqueue(p, flags);
2093 
2094 	if (!(flags & ENQUEUE_RESTORE))
2095 		sched_info_enqueue(rq, p);
2096 
2097 	if (sched_core_enabled(rq))
2098 		sched_core_enqueue(rq, p);
2099 }
2100 
2101 /*
2102  * Must only return false when DEQUEUE_SLEEP.
2103  */
2104 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2105 {
2106 	if (sched_core_enabled(rq))
2107 		sched_core_dequeue(rq, p, flags);
2108 
2109 	if (!(flags & DEQUEUE_NOCLOCK))
2110 		update_rq_clock(rq);
2111 
2112 	if (!(flags & DEQUEUE_SAVE))
2113 		sched_info_dequeue(rq, p);
2114 
2115 	psi_dequeue(p, flags);
2116 
2117 	/*
2118 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2119 	 * and mark the task ->sched_delayed.
2120 	 */
2121 	uclamp_rq_dec(rq, p);
2122 	return p->sched_class->dequeue_task(rq, p, flags);
2123 }
2124 
2125 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 	if (task_on_rq_migrating(p))
2128 		flags |= ENQUEUE_MIGRATED;
2129 	if (flags & ENQUEUE_MIGRATED)
2130 		sched_mm_cid_migrate_to(rq, p);
2131 
2132 	enqueue_task(rq, p, flags);
2133 
2134 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2135 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2136 }
2137 
2138 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2139 {
2140 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2141 
2142 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2143 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2144 
2145 	/*
2146 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2147 	 * dequeue_task() and cleared *after* enqueue_task().
2148 	 */
2149 
2150 	dequeue_task(rq, p, flags);
2151 }
2152 
2153 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2154 {
2155 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2156 		__block_task(rq, p);
2157 }
2158 
2159 /**
2160  * task_curr - is this task currently executing on a CPU?
2161  * @p: the task in question.
2162  *
2163  * Return: 1 if the task is currently executing. 0 otherwise.
2164  */
2165 inline int task_curr(const struct task_struct *p)
2166 {
2167 	return cpu_curr(task_cpu(p)) == p;
2168 }
2169 
2170 /*
2171  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2172  * mess with locking.
2173  */
2174 void check_class_changing(struct rq *rq, struct task_struct *p,
2175 			  const struct sched_class *prev_class)
2176 {
2177 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2178 		p->sched_class->switching_to(rq, p);
2179 }
2180 
2181 /*
2182  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183  * use the balance_callback list if you want balancing.
2184  *
2185  * this means any call to check_class_changed() must be followed by a call to
2186  * balance_callback().
2187  */
2188 void check_class_changed(struct rq *rq, struct task_struct *p,
2189 			 const struct sched_class *prev_class,
2190 			 int oldprio)
2191 {
2192 	if (prev_class != p->sched_class) {
2193 		if (prev_class->switched_from)
2194 			prev_class->switched_from(rq, p);
2195 
2196 		p->sched_class->switched_to(rq, p);
2197 	} else if (oldprio != p->prio || dl_task(p))
2198 		p->sched_class->prio_changed(rq, p, oldprio);
2199 }
2200 
2201 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2202 {
2203 	struct task_struct *donor = rq->donor;
2204 
2205 	if (p->sched_class == donor->sched_class)
2206 		donor->sched_class->wakeup_preempt(rq, p, flags);
2207 	else if (sched_class_above(p->sched_class, donor->sched_class))
2208 		resched_curr(rq);
2209 
2210 	/*
2211 	 * A queue event has occurred, and we're going to schedule.  In
2212 	 * this case, we can save a useless back to back clock update.
2213 	 */
2214 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2215 		rq_clock_skip_update(rq);
2216 }
2217 
2218 static __always_inline
2219 int __task_state_match(struct task_struct *p, unsigned int state)
2220 {
2221 	if (READ_ONCE(p->__state) & state)
2222 		return 1;
2223 
2224 	if (READ_ONCE(p->saved_state) & state)
2225 		return -1;
2226 
2227 	return 0;
2228 }
2229 
2230 static __always_inline
2231 int task_state_match(struct task_struct *p, unsigned int state)
2232 {
2233 	/*
2234 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2235 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2236 	 */
2237 	guard(raw_spinlock_irq)(&p->pi_lock);
2238 	return __task_state_match(p, state);
2239 }
2240 
2241 /*
2242  * wait_task_inactive - wait for a thread to unschedule.
2243  *
2244  * Wait for the thread to block in any of the states set in @match_state.
2245  * If it changes, i.e. @p might have woken up, then return zero.  When we
2246  * succeed in waiting for @p to be off its CPU, we return a positive number
2247  * (its total switch count).  If a second call a short while later returns the
2248  * same number, the caller can be sure that @p has remained unscheduled the
2249  * whole time.
2250  *
2251  * The caller must ensure that the task *will* unschedule sometime soon,
2252  * else this function might spin for a *long* time. This function can't
2253  * be called with interrupts off, or it may introduce deadlock with
2254  * smp_call_function() if an IPI is sent by the same process we are
2255  * waiting to become inactive.
2256  */
2257 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2258 {
2259 	int running, queued, match;
2260 	struct rq_flags rf;
2261 	unsigned long ncsw;
2262 	struct rq *rq;
2263 
2264 	for (;;) {
2265 		/*
2266 		 * We do the initial early heuristics without holding
2267 		 * any task-queue locks at all. We'll only try to get
2268 		 * the runqueue lock when things look like they will
2269 		 * work out!
2270 		 */
2271 		rq = task_rq(p);
2272 
2273 		/*
2274 		 * If the task is actively running on another CPU
2275 		 * still, just relax and busy-wait without holding
2276 		 * any locks.
2277 		 *
2278 		 * NOTE! Since we don't hold any locks, it's not
2279 		 * even sure that "rq" stays as the right runqueue!
2280 		 * But we don't care, since "task_on_cpu()" will
2281 		 * return false if the runqueue has changed and p
2282 		 * is actually now running somewhere else!
2283 		 */
2284 		while (task_on_cpu(rq, p)) {
2285 			if (!task_state_match(p, match_state))
2286 				return 0;
2287 			cpu_relax();
2288 		}
2289 
2290 		/*
2291 		 * Ok, time to look more closely! We need the rq
2292 		 * lock now, to be *sure*. If we're wrong, we'll
2293 		 * just go back and repeat.
2294 		 */
2295 		rq = task_rq_lock(p, &rf);
2296 		/*
2297 		 * If task is sched_delayed, force dequeue it, to avoid always
2298 		 * hitting the tick timeout in the queued case
2299 		 */
2300 		if (p->se.sched_delayed)
2301 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2302 		trace_sched_wait_task(p);
2303 		running = task_on_cpu(rq, p);
2304 		queued = task_on_rq_queued(p);
2305 		ncsw = 0;
2306 		if ((match = __task_state_match(p, match_state))) {
2307 			/*
2308 			 * When matching on p->saved_state, consider this task
2309 			 * still queued so it will wait.
2310 			 */
2311 			if (match < 0)
2312 				queued = 1;
2313 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2314 		}
2315 		task_rq_unlock(rq, p, &rf);
2316 
2317 		/*
2318 		 * If it changed from the expected state, bail out now.
2319 		 */
2320 		if (unlikely(!ncsw))
2321 			break;
2322 
2323 		/*
2324 		 * Was it really running after all now that we
2325 		 * checked with the proper locks actually held?
2326 		 *
2327 		 * Oops. Go back and try again..
2328 		 */
2329 		if (unlikely(running)) {
2330 			cpu_relax();
2331 			continue;
2332 		}
2333 
2334 		/*
2335 		 * It's not enough that it's not actively running,
2336 		 * it must be off the runqueue _entirely_, and not
2337 		 * preempted!
2338 		 *
2339 		 * So if it was still runnable (but just not actively
2340 		 * running right now), it's preempted, and we should
2341 		 * yield - it could be a while.
2342 		 */
2343 		if (unlikely(queued)) {
2344 			ktime_t to = NSEC_PER_SEC / HZ;
2345 
2346 			set_current_state(TASK_UNINTERRUPTIBLE);
2347 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2348 			continue;
2349 		}
2350 
2351 		/*
2352 		 * Ahh, all good. It wasn't running, and it wasn't
2353 		 * runnable, which means that it will never become
2354 		 * running in the future either. We're all done!
2355 		 */
2356 		break;
2357 	}
2358 
2359 	return ncsw;
2360 }
2361 
2362 #ifdef CONFIG_SMP
2363 
2364 static void
2365 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2366 
2367 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2368 {
2369 	struct affinity_context ac = {
2370 		.new_mask  = cpumask_of(rq->cpu),
2371 		.flags     = SCA_MIGRATE_DISABLE,
2372 	};
2373 
2374 	if (likely(!p->migration_disabled))
2375 		return;
2376 
2377 	if (p->cpus_ptr != &p->cpus_mask)
2378 		return;
2379 
2380 	/*
2381 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2382 	 */
2383 	__do_set_cpus_allowed(p, &ac);
2384 }
2385 
2386 void migrate_disable(void)
2387 {
2388 	struct task_struct *p = current;
2389 
2390 	if (p->migration_disabled) {
2391 #ifdef CONFIG_DEBUG_PREEMPT
2392 		/*
2393 		 *Warn about overflow half-way through the range.
2394 		 */
2395 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2396 #endif
2397 		p->migration_disabled++;
2398 		return;
2399 	}
2400 
2401 	guard(preempt)();
2402 	this_rq()->nr_pinned++;
2403 	p->migration_disabled = 1;
2404 }
2405 EXPORT_SYMBOL_GPL(migrate_disable);
2406 
2407 void migrate_enable(void)
2408 {
2409 	struct task_struct *p = current;
2410 	struct affinity_context ac = {
2411 		.new_mask  = &p->cpus_mask,
2412 		.flags     = SCA_MIGRATE_ENABLE,
2413 	};
2414 
2415 #ifdef CONFIG_DEBUG_PREEMPT
2416 	/*
2417 	 * Check both overflow from migrate_disable() and superfluous
2418 	 * migrate_enable().
2419 	 */
2420 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2421 		return;
2422 #endif
2423 
2424 	if (p->migration_disabled > 1) {
2425 		p->migration_disabled--;
2426 		return;
2427 	}
2428 
2429 	/*
2430 	 * Ensure stop_task runs either before or after this, and that
2431 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2432 	 */
2433 	guard(preempt)();
2434 	if (p->cpus_ptr != &p->cpus_mask)
2435 		__set_cpus_allowed_ptr(p, &ac);
2436 	/*
2437 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2438 	 * regular cpus_mask, otherwise things that race (eg.
2439 	 * select_fallback_rq) get confused.
2440 	 */
2441 	barrier();
2442 	p->migration_disabled = 0;
2443 	this_rq()->nr_pinned--;
2444 }
2445 EXPORT_SYMBOL_GPL(migrate_enable);
2446 
2447 static inline bool rq_has_pinned_tasks(struct rq *rq)
2448 {
2449 	return rq->nr_pinned;
2450 }
2451 
2452 /*
2453  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2454  * __set_cpus_allowed_ptr() and select_fallback_rq().
2455  */
2456 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2457 {
2458 	/* When not in the task's cpumask, no point in looking further. */
2459 	if (!task_allowed_on_cpu(p, cpu))
2460 		return false;
2461 
2462 	/* migrate_disabled() must be allowed to finish. */
2463 	if (is_migration_disabled(p))
2464 		return cpu_online(cpu);
2465 
2466 	/* Non kernel threads are not allowed during either online or offline. */
2467 	if (!(p->flags & PF_KTHREAD))
2468 		return cpu_active(cpu);
2469 
2470 	/* KTHREAD_IS_PER_CPU is always allowed. */
2471 	if (kthread_is_per_cpu(p))
2472 		return cpu_online(cpu);
2473 
2474 	/* Regular kernel threads don't get to stay during offline. */
2475 	if (cpu_dying(cpu))
2476 		return false;
2477 
2478 	/* But are allowed during online. */
2479 	return cpu_online(cpu);
2480 }
2481 
2482 /*
2483  * This is how migration works:
2484  *
2485  * 1) we invoke migration_cpu_stop() on the target CPU using
2486  *    stop_one_cpu().
2487  * 2) stopper starts to run (implicitly forcing the migrated thread
2488  *    off the CPU)
2489  * 3) it checks whether the migrated task is still in the wrong runqueue.
2490  * 4) if it's in the wrong runqueue then the migration thread removes
2491  *    it and puts it into the right queue.
2492  * 5) stopper completes and stop_one_cpu() returns and the migration
2493  *    is done.
2494  */
2495 
2496 /*
2497  * move_queued_task - move a queued task to new rq.
2498  *
2499  * Returns (locked) new rq. Old rq's lock is released.
2500  */
2501 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2502 				   struct task_struct *p, int new_cpu)
2503 {
2504 	lockdep_assert_rq_held(rq);
2505 
2506 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2507 	set_task_cpu(p, new_cpu);
2508 	rq_unlock(rq, rf);
2509 
2510 	rq = cpu_rq(new_cpu);
2511 
2512 	rq_lock(rq, rf);
2513 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2514 	activate_task(rq, p, 0);
2515 	wakeup_preempt(rq, p, 0);
2516 
2517 	return rq;
2518 }
2519 
2520 struct migration_arg {
2521 	struct task_struct		*task;
2522 	int				dest_cpu;
2523 	struct set_affinity_pending	*pending;
2524 };
2525 
2526 /*
2527  * @refs: number of wait_for_completion()
2528  * @stop_pending: is @stop_work in use
2529  */
2530 struct set_affinity_pending {
2531 	refcount_t		refs;
2532 	unsigned int		stop_pending;
2533 	struct completion	done;
2534 	struct cpu_stop_work	stop_work;
2535 	struct migration_arg	arg;
2536 };
2537 
2538 /*
2539  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2540  * this because either it can't run here any more (set_cpus_allowed()
2541  * away from this CPU, or CPU going down), or because we're
2542  * attempting to rebalance this task on exec (sched_exec).
2543  *
2544  * So we race with normal scheduler movements, but that's OK, as long
2545  * as the task is no longer on this CPU.
2546  */
2547 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2548 				 struct task_struct *p, int dest_cpu)
2549 {
2550 	/* Affinity changed (again). */
2551 	if (!is_cpu_allowed(p, dest_cpu))
2552 		return rq;
2553 
2554 	rq = move_queued_task(rq, rf, p, dest_cpu);
2555 
2556 	return rq;
2557 }
2558 
2559 /*
2560  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2561  * and performs thread migration by bumping thread off CPU then
2562  * 'pushing' onto another runqueue.
2563  */
2564 static int migration_cpu_stop(void *data)
2565 {
2566 	struct migration_arg *arg = data;
2567 	struct set_affinity_pending *pending = arg->pending;
2568 	struct task_struct *p = arg->task;
2569 	struct rq *rq = this_rq();
2570 	bool complete = false;
2571 	struct rq_flags rf;
2572 
2573 	/*
2574 	 * The original target CPU might have gone down and we might
2575 	 * be on another CPU but it doesn't matter.
2576 	 */
2577 	local_irq_save(rf.flags);
2578 	/*
2579 	 * We need to explicitly wake pending tasks before running
2580 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2581 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2582 	 */
2583 	flush_smp_call_function_queue();
2584 
2585 	raw_spin_lock(&p->pi_lock);
2586 	rq_lock(rq, &rf);
2587 
2588 	/*
2589 	 * If we were passed a pending, then ->stop_pending was set, thus
2590 	 * p->migration_pending must have remained stable.
2591 	 */
2592 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2593 
2594 	/*
2595 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2596 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2597 	 * we're holding p->pi_lock.
2598 	 */
2599 	if (task_rq(p) == rq) {
2600 		if (is_migration_disabled(p))
2601 			goto out;
2602 
2603 		if (pending) {
2604 			p->migration_pending = NULL;
2605 			complete = true;
2606 
2607 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2608 				goto out;
2609 		}
2610 
2611 		if (task_on_rq_queued(p)) {
2612 			update_rq_clock(rq);
2613 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2614 		} else {
2615 			p->wake_cpu = arg->dest_cpu;
2616 		}
2617 
2618 		/*
2619 		 * XXX __migrate_task() can fail, at which point we might end
2620 		 * up running on a dodgy CPU, AFAICT this can only happen
2621 		 * during CPU hotplug, at which point we'll get pushed out
2622 		 * anyway, so it's probably not a big deal.
2623 		 */
2624 
2625 	} else if (pending) {
2626 		/*
2627 		 * This happens when we get migrated between migrate_enable()'s
2628 		 * preempt_enable() and scheduling the stopper task. At that
2629 		 * point we're a regular task again and not current anymore.
2630 		 *
2631 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2632 		 * more likely.
2633 		 */
2634 
2635 		/*
2636 		 * The task moved before the stopper got to run. We're holding
2637 		 * ->pi_lock, so the allowed mask is stable - if it got
2638 		 * somewhere allowed, we're done.
2639 		 */
2640 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2641 			p->migration_pending = NULL;
2642 			complete = true;
2643 			goto out;
2644 		}
2645 
2646 		/*
2647 		 * When migrate_enable() hits a rq mis-match we can't reliably
2648 		 * determine is_migration_disabled() and so have to chase after
2649 		 * it.
2650 		 */
2651 		WARN_ON_ONCE(!pending->stop_pending);
2652 		preempt_disable();
2653 		task_rq_unlock(rq, p, &rf);
2654 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2655 				    &pending->arg, &pending->stop_work);
2656 		preempt_enable();
2657 		return 0;
2658 	}
2659 out:
2660 	if (pending)
2661 		pending->stop_pending = false;
2662 	task_rq_unlock(rq, p, &rf);
2663 
2664 	if (complete)
2665 		complete_all(&pending->done);
2666 
2667 	return 0;
2668 }
2669 
2670 int push_cpu_stop(void *arg)
2671 {
2672 	struct rq *lowest_rq = NULL, *rq = this_rq();
2673 	struct task_struct *p = arg;
2674 
2675 	raw_spin_lock_irq(&p->pi_lock);
2676 	raw_spin_rq_lock(rq);
2677 
2678 	if (task_rq(p) != rq)
2679 		goto out_unlock;
2680 
2681 	if (is_migration_disabled(p)) {
2682 		p->migration_flags |= MDF_PUSH;
2683 		goto out_unlock;
2684 	}
2685 
2686 	p->migration_flags &= ~MDF_PUSH;
2687 
2688 	if (p->sched_class->find_lock_rq)
2689 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2690 
2691 	if (!lowest_rq)
2692 		goto out_unlock;
2693 
2694 	// XXX validate p is still the highest prio task
2695 	if (task_rq(p) == rq) {
2696 		move_queued_task_locked(rq, lowest_rq, p);
2697 		resched_curr(lowest_rq);
2698 	}
2699 
2700 	double_unlock_balance(rq, lowest_rq);
2701 
2702 out_unlock:
2703 	rq->push_busy = false;
2704 	raw_spin_rq_unlock(rq);
2705 	raw_spin_unlock_irq(&p->pi_lock);
2706 
2707 	put_task_struct(p);
2708 	return 0;
2709 }
2710 
2711 /*
2712  * sched_class::set_cpus_allowed must do the below, but is not required to
2713  * actually call this function.
2714  */
2715 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2716 {
2717 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2718 		p->cpus_ptr = ctx->new_mask;
2719 		return;
2720 	}
2721 
2722 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2723 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2724 
2725 	/*
2726 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2727 	 */
2728 	if (ctx->flags & SCA_USER)
2729 		swap(p->user_cpus_ptr, ctx->user_mask);
2730 }
2731 
2732 static void
2733 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2734 {
2735 	struct rq *rq = task_rq(p);
2736 	bool queued, running;
2737 
2738 	/*
2739 	 * This here violates the locking rules for affinity, since we're only
2740 	 * supposed to change these variables while holding both rq->lock and
2741 	 * p->pi_lock.
2742 	 *
2743 	 * HOWEVER, it magically works, because ttwu() is the only code that
2744 	 * accesses these variables under p->pi_lock and only does so after
2745 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2746 	 * before finish_task().
2747 	 *
2748 	 * XXX do further audits, this smells like something putrid.
2749 	 */
2750 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2751 		WARN_ON_ONCE(!p->on_cpu);
2752 	else
2753 		lockdep_assert_held(&p->pi_lock);
2754 
2755 	queued = task_on_rq_queued(p);
2756 	running = task_current_donor(rq, p);
2757 
2758 	if (queued) {
2759 		/*
2760 		 * Because __kthread_bind() calls this on blocked tasks without
2761 		 * holding rq->lock.
2762 		 */
2763 		lockdep_assert_rq_held(rq);
2764 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2765 	}
2766 	if (running)
2767 		put_prev_task(rq, p);
2768 
2769 	p->sched_class->set_cpus_allowed(p, ctx);
2770 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2771 
2772 	if (queued)
2773 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2774 	if (running)
2775 		set_next_task(rq, p);
2776 }
2777 
2778 /*
2779  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2780  * affinity (if any) should be destroyed too.
2781  */
2782 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2783 {
2784 	struct affinity_context ac = {
2785 		.new_mask  = new_mask,
2786 		.user_mask = NULL,
2787 		.flags     = SCA_USER,	/* clear the user requested mask */
2788 	};
2789 	union cpumask_rcuhead {
2790 		cpumask_t cpumask;
2791 		struct rcu_head rcu;
2792 	};
2793 
2794 	__do_set_cpus_allowed(p, &ac);
2795 
2796 	/*
2797 	 * Because this is called with p->pi_lock held, it is not possible
2798 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2799 	 * kfree_rcu().
2800 	 */
2801 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2802 }
2803 
2804 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2805 		      int node)
2806 {
2807 	cpumask_t *user_mask;
2808 	unsigned long flags;
2809 
2810 	/*
2811 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2812 	 * may differ by now due to racing.
2813 	 */
2814 	dst->user_cpus_ptr = NULL;
2815 
2816 	/*
2817 	 * This check is racy and losing the race is a valid situation.
2818 	 * It is not worth the extra overhead of taking the pi_lock on
2819 	 * every fork/clone.
2820 	 */
2821 	if (data_race(!src->user_cpus_ptr))
2822 		return 0;
2823 
2824 	user_mask = alloc_user_cpus_ptr(node);
2825 	if (!user_mask)
2826 		return -ENOMEM;
2827 
2828 	/*
2829 	 * Use pi_lock to protect content of user_cpus_ptr
2830 	 *
2831 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2832 	 * do_set_cpus_allowed().
2833 	 */
2834 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2835 	if (src->user_cpus_ptr) {
2836 		swap(dst->user_cpus_ptr, user_mask);
2837 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2838 	}
2839 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2840 
2841 	if (unlikely(user_mask))
2842 		kfree(user_mask);
2843 
2844 	return 0;
2845 }
2846 
2847 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2848 {
2849 	struct cpumask *user_mask = NULL;
2850 
2851 	swap(p->user_cpus_ptr, user_mask);
2852 
2853 	return user_mask;
2854 }
2855 
2856 void release_user_cpus_ptr(struct task_struct *p)
2857 {
2858 	kfree(clear_user_cpus_ptr(p));
2859 }
2860 
2861 /*
2862  * This function is wildly self concurrent; here be dragons.
2863  *
2864  *
2865  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2866  * designated task is enqueued on an allowed CPU. If that task is currently
2867  * running, we have to kick it out using the CPU stopper.
2868  *
2869  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2870  * Consider:
2871  *
2872  *     Initial conditions: P0->cpus_mask = [0, 1]
2873  *
2874  *     P0@CPU0                  P1
2875  *
2876  *     migrate_disable();
2877  *     <preempted>
2878  *                              set_cpus_allowed_ptr(P0, [1]);
2879  *
2880  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2881  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2882  * This means we need the following scheme:
2883  *
2884  *     P0@CPU0                  P1
2885  *
2886  *     migrate_disable();
2887  *     <preempted>
2888  *                              set_cpus_allowed_ptr(P0, [1]);
2889  *                                <blocks>
2890  *     <resumes>
2891  *     migrate_enable();
2892  *       __set_cpus_allowed_ptr();
2893  *       <wakes local stopper>
2894  *                         `--> <woken on migration completion>
2895  *
2896  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2897  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2898  * task p are serialized by p->pi_lock, which we can leverage: the one that
2899  * should come into effect at the end of the Migrate-Disable region is the last
2900  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2901  * but we still need to properly signal those waiting tasks at the appropriate
2902  * moment.
2903  *
2904  * This is implemented using struct set_affinity_pending. The first
2905  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2906  * setup an instance of that struct and install it on the targeted task_struct.
2907  * Any and all further callers will reuse that instance. Those then wait for
2908  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2909  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2910  *
2911  *
2912  * (1) In the cases covered above. There is one more where the completion is
2913  * signaled within affine_move_task() itself: when a subsequent affinity request
2914  * occurs after the stopper bailed out due to the targeted task still being
2915  * Migrate-Disable. Consider:
2916  *
2917  *     Initial conditions: P0->cpus_mask = [0, 1]
2918  *
2919  *     CPU0		  P1				P2
2920  *     <P0>
2921  *       migrate_disable();
2922  *       <preempted>
2923  *                        set_cpus_allowed_ptr(P0, [1]);
2924  *                          <blocks>
2925  *     <migration/0>
2926  *       migration_cpu_stop()
2927  *         is_migration_disabled()
2928  *           <bails>
2929  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2930  *                                                         <signal completion>
2931  *                          <awakes>
2932  *
2933  * Note that the above is safe vs a concurrent migrate_enable(), as any
2934  * pending affinity completion is preceded by an uninstallation of
2935  * p->migration_pending done with p->pi_lock held.
2936  */
2937 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2938 			    int dest_cpu, unsigned int flags)
2939 	__releases(rq->lock)
2940 	__releases(p->pi_lock)
2941 {
2942 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2943 	bool stop_pending, complete = false;
2944 
2945 	/* Can the task run on the task's current CPU? If so, we're done */
2946 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2947 		struct task_struct *push_task = NULL;
2948 
2949 		if ((flags & SCA_MIGRATE_ENABLE) &&
2950 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2951 			rq->push_busy = true;
2952 			push_task = get_task_struct(p);
2953 		}
2954 
2955 		/*
2956 		 * If there are pending waiters, but no pending stop_work,
2957 		 * then complete now.
2958 		 */
2959 		pending = p->migration_pending;
2960 		if (pending && !pending->stop_pending) {
2961 			p->migration_pending = NULL;
2962 			complete = true;
2963 		}
2964 
2965 		preempt_disable();
2966 		task_rq_unlock(rq, p, rf);
2967 		if (push_task) {
2968 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2969 					    p, &rq->push_work);
2970 		}
2971 		preempt_enable();
2972 
2973 		if (complete)
2974 			complete_all(&pending->done);
2975 
2976 		return 0;
2977 	}
2978 
2979 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2980 		/* serialized by p->pi_lock */
2981 		if (!p->migration_pending) {
2982 			/* Install the request */
2983 			refcount_set(&my_pending.refs, 1);
2984 			init_completion(&my_pending.done);
2985 			my_pending.arg = (struct migration_arg) {
2986 				.task = p,
2987 				.dest_cpu = dest_cpu,
2988 				.pending = &my_pending,
2989 			};
2990 
2991 			p->migration_pending = &my_pending;
2992 		} else {
2993 			pending = p->migration_pending;
2994 			refcount_inc(&pending->refs);
2995 			/*
2996 			 * Affinity has changed, but we've already installed a
2997 			 * pending. migration_cpu_stop() *must* see this, else
2998 			 * we risk a completion of the pending despite having a
2999 			 * task on a disallowed CPU.
3000 			 *
3001 			 * Serialized by p->pi_lock, so this is safe.
3002 			 */
3003 			pending->arg.dest_cpu = dest_cpu;
3004 		}
3005 	}
3006 	pending = p->migration_pending;
3007 	/*
3008 	 * - !MIGRATE_ENABLE:
3009 	 *   we'll have installed a pending if there wasn't one already.
3010 	 *
3011 	 * - MIGRATE_ENABLE:
3012 	 *   we're here because the current CPU isn't matching anymore,
3013 	 *   the only way that can happen is because of a concurrent
3014 	 *   set_cpus_allowed_ptr() call, which should then still be
3015 	 *   pending completion.
3016 	 *
3017 	 * Either way, we really should have a @pending here.
3018 	 */
3019 	if (WARN_ON_ONCE(!pending)) {
3020 		task_rq_unlock(rq, p, rf);
3021 		return -EINVAL;
3022 	}
3023 
3024 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3025 		/*
3026 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3027 		 * anything else we cannot do is_migration_disabled(), punt
3028 		 * and have the stopper function handle it all race-free.
3029 		 */
3030 		stop_pending = pending->stop_pending;
3031 		if (!stop_pending)
3032 			pending->stop_pending = true;
3033 
3034 		if (flags & SCA_MIGRATE_ENABLE)
3035 			p->migration_flags &= ~MDF_PUSH;
3036 
3037 		preempt_disable();
3038 		task_rq_unlock(rq, p, rf);
3039 		if (!stop_pending) {
3040 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3041 					    &pending->arg, &pending->stop_work);
3042 		}
3043 		preempt_enable();
3044 
3045 		if (flags & SCA_MIGRATE_ENABLE)
3046 			return 0;
3047 	} else {
3048 
3049 		if (!is_migration_disabled(p)) {
3050 			if (task_on_rq_queued(p))
3051 				rq = move_queued_task(rq, rf, p, dest_cpu);
3052 
3053 			if (!pending->stop_pending) {
3054 				p->migration_pending = NULL;
3055 				complete = true;
3056 			}
3057 		}
3058 		task_rq_unlock(rq, p, rf);
3059 
3060 		if (complete)
3061 			complete_all(&pending->done);
3062 	}
3063 
3064 	wait_for_completion(&pending->done);
3065 
3066 	if (refcount_dec_and_test(&pending->refs))
3067 		wake_up_var(&pending->refs); /* No UaF, just an address */
3068 
3069 	/*
3070 	 * Block the original owner of &pending until all subsequent callers
3071 	 * have seen the completion and decremented the refcount
3072 	 */
3073 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3074 
3075 	/* ARGH */
3076 	WARN_ON_ONCE(my_pending.stop_pending);
3077 
3078 	return 0;
3079 }
3080 
3081 /*
3082  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3083  */
3084 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3085 					 struct affinity_context *ctx,
3086 					 struct rq *rq,
3087 					 struct rq_flags *rf)
3088 	__releases(rq->lock)
3089 	__releases(p->pi_lock)
3090 {
3091 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3092 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3093 	bool kthread = p->flags & PF_KTHREAD;
3094 	unsigned int dest_cpu;
3095 	int ret = 0;
3096 
3097 	update_rq_clock(rq);
3098 
3099 	if (kthread || is_migration_disabled(p)) {
3100 		/*
3101 		 * Kernel threads are allowed on online && !active CPUs,
3102 		 * however, during cpu-hot-unplug, even these might get pushed
3103 		 * away if not KTHREAD_IS_PER_CPU.
3104 		 *
3105 		 * Specifically, migration_disabled() tasks must not fail the
3106 		 * cpumask_any_and_distribute() pick below, esp. so on
3107 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3108 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3109 		 */
3110 		cpu_valid_mask = cpu_online_mask;
3111 	}
3112 
3113 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3114 		ret = -EINVAL;
3115 		goto out;
3116 	}
3117 
3118 	/*
3119 	 * Must re-check here, to close a race against __kthread_bind(),
3120 	 * sched_setaffinity() is not guaranteed to observe the flag.
3121 	 */
3122 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3123 		ret = -EINVAL;
3124 		goto out;
3125 	}
3126 
3127 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3128 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3129 			if (ctx->flags & SCA_USER)
3130 				swap(p->user_cpus_ptr, ctx->user_mask);
3131 			goto out;
3132 		}
3133 
3134 		if (WARN_ON_ONCE(p == current &&
3135 				 is_migration_disabled(p) &&
3136 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3137 			ret = -EBUSY;
3138 			goto out;
3139 		}
3140 	}
3141 
3142 	/*
3143 	 * Picking a ~random cpu helps in cases where we are changing affinity
3144 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3145 	 * immediately required to distribute the tasks within their new mask.
3146 	 */
3147 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3148 	if (dest_cpu >= nr_cpu_ids) {
3149 		ret = -EINVAL;
3150 		goto out;
3151 	}
3152 
3153 	__do_set_cpus_allowed(p, ctx);
3154 
3155 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3156 
3157 out:
3158 	task_rq_unlock(rq, p, rf);
3159 
3160 	return ret;
3161 }
3162 
3163 /*
3164  * Change a given task's CPU affinity. Migrate the thread to a
3165  * proper CPU and schedule it away if the CPU it's executing on
3166  * is removed from the allowed bitmask.
3167  *
3168  * NOTE: the caller must have a valid reference to the task, the
3169  * task must not exit() & deallocate itself prematurely. The
3170  * call is not atomic; no spinlocks may be held.
3171  */
3172 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3173 {
3174 	struct rq_flags rf;
3175 	struct rq *rq;
3176 
3177 	rq = task_rq_lock(p, &rf);
3178 	/*
3179 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3180 	 * flags are set.
3181 	 */
3182 	if (p->user_cpus_ptr &&
3183 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3184 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3185 		ctx->new_mask = rq->scratch_mask;
3186 
3187 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3188 }
3189 
3190 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3191 {
3192 	struct affinity_context ac = {
3193 		.new_mask  = new_mask,
3194 		.flags     = 0,
3195 	};
3196 
3197 	return __set_cpus_allowed_ptr(p, &ac);
3198 }
3199 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3200 
3201 /*
3202  * Change a given task's CPU affinity to the intersection of its current
3203  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3204  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3205  * affinity or use cpu_online_mask instead.
3206  *
3207  * If the resulting mask is empty, leave the affinity unchanged and return
3208  * -EINVAL.
3209  */
3210 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3211 				     struct cpumask *new_mask,
3212 				     const struct cpumask *subset_mask)
3213 {
3214 	struct affinity_context ac = {
3215 		.new_mask  = new_mask,
3216 		.flags     = 0,
3217 	};
3218 	struct rq_flags rf;
3219 	struct rq *rq;
3220 	int err;
3221 
3222 	rq = task_rq_lock(p, &rf);
3223 
3224 	/*
3225 	 * Forcefully restricting the affinity of a deadline task is
3226 	 * likely to cause problems, so fail and noisily override the
3227 	 * mask entirely.
3228 	 */
3229 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3230 		err = -EPERM;
3231 		goto err_unlock;
3232 	}
3233 
3234 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3235 		err = -EINVAL;
3236 		goto err_unlock;
3237 	}
3238 
3239 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3240 
3241 err_unlock:
3242 	task_rq_unlock(rq, p, &rf);
3243 	return err;
3244 }
3245 
3246 /*
3247  * Restrict the CPU affinity of task @p so that it is a subset of
3248  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3249  * old affinity mask. If the resulting mask is empty, we warn and walk
3250  * up the cpuset hierarchy until we find a suitable mask.
3251  */
3252 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3253 {
3254 	cpumask_var_t new_mask;
3255 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3256 
3257 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3258 
3259 	/*
3260 	 * __migrate_task() can fail silently in the face of concurrent
3261 	 * offlining of the chosen destination CPU, so take the hotplug
3262 	 * lock to ensure that the migration succeeds.
3263 	 */
3264 	cpus_read_lock();
3265 	if (!cpumask_available(new_mask))
3266 		goto out_set_mask;
3267 
3268 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3269 		goto out_free_mask;
3270 
3271 	/*
3272 	 * We failed to find a valid subset of the affinity mask for the
3273 	 * task, so override it based on its cpuset hierarchy.
3274 	 */
3275 	cpuset_cpus_allowed(p, new_mask);
3276 	override_mask = new_mask;
3277 
3278 out_set_mask:
3279 	if (printk_ratelimit()) {
3280 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3281 				task_pid_nr(p), p->comm,
3282 				cpumask_pr_args(override_mask));
3283 	}
3284 
3285 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3286 out_free_mask:
3287 	cpus_read_unlock();
3288 	free_cpumask_var(new_mask);
3289 }
3290 
3291 /*
3292  * Restore the affinity of a task @p which was previously restricted by a
3293  * call to force_compatible_cpus_allowed_ptr().
3294  *
3295  * It is the caller's responsibility to serialise this with any calls to
3296  * force_compatible_cpus_allowed_ptr(@p).
3297  */
3298 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3299 {
3300 	struct affinity_context ac = {
3301 		.new_mask  = task_user_cpus(p),
3302 		.flags     = 0,
3303 	};
3304 	int ret;
3305 
3306 	/*
3307 	 * Try to restore the old affinity mask with __sched_setaffinity().
3308 	 * Cpuset masking will be done there too.
3309 	 */
3310 	ret = __sched_setaffinity(p, &ac);
3311 	WARN_ON_ONCE(ret);
3312 }
3313 
3314 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3315 {
3316 	unsigned int state = READ_ONCE(p->__state);
3317 
3318 	/*
3319 	 * We should never call set_task_cpu() on a blocked task,
3320 	 * ttwu() will sort out the placement.
3321 	 */
3322 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3323 
3324 	/*
3325 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3326 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3327 	 * time relying on p->on_rq.
3328 	 */
3329 	WARN_ON_ONCE(state == TASK_RUNNING &&
3330 		     p->sched_class == &fair_sched_class &&
3331 		     (p->on_rq && !task_on_rq_migrating(p)));
3332 
3333 #ifdef CONFIG_LOCKDEP
3334 	/*
3335 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3336 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3337 	 *
3338 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3339 	 * see task_group().
3340 	 *
3341 	 * Furthermore, all task_rq users should acquire both locks, see
3342 	 * task_rq_lock().
3343 	 */
3344 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3345 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3346 #endif
3347 	/*
3348 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3349 	 */
3350 	WARN_ON_ONCE(!cpu_online(new_cpu));
3351 
3352 	WARN_ON_ONCE(is_migration_disabled(p));
3353 
3354 	trace_sched_migrate_task(p, new_cpu);
3355 
3356 	if (task_cpu(p) != new_cpu) {
3357 		if (p->sched_class->migrate_task_rq)
3358 			p->sched_class->migrate_task_rq(p, new_cpu);
3359 		p->se.nr_migrations++;
3360 		rseq_migrate(p);
3361 		sched_mm_cid_migrate_from(p);
3362 		perf_event_task_migrate(p);
3363 	}
3364 
3365 	__set_task_cpu(p, new_cpu);
3366 }
3367 
3368 #ifdef CONFIG_NUMA_BALANCING
3369 static void __migrate_swap_task(struct task_struct *p, int cpu)
3370 {
3371 	__schedstat_inc(p->stats.numa_task_swapped);
3372 	count_vm_numa_event(NUMA_TASK_SWAP);
3373 	count_memcg_event_mm(p->mm, NUMA_TASK_SWAP);
3374 
3375 	if (task_on_rq_queued(p)) {
3376 		struct rq *src_rq, *dst_rq;
3377 		struct rq_flags srf, drf;
3378 
3379 		src_rq = task_rq(p);
3380 		dst_rq = cpu_rq(cpu);
3381 
3382 		rq_pin_lock(src_rq, &srf);
3383 		rq_pin_lock(dst_rq, &drf);
3384 
3385 		move_queued_task_locked(src_rq, dst_rq, p);
3386 		wakeup_preempt(dst_rq, p, 0);
3387 
3388 		rq_unpin_lock(dst_rq, &drf);
3389 		rq_unpin_lock(src_rq, &srf);
3390 
3391 	} else {
3392 		/*
3393 		 * Task isn't running anymore; make it appear like we migrated
3394 		 * it before it went to sleep. This means on wakeup we make the
3395 		 * previous CPU our target instead of where it really is.
3396 		 */
3397 		p->wake_cpu = cpu;
3398 	}
3399 }
3400 
3401 struct migration_swap_arg {
3402 	struct task_struct *src_task, *dst_task;
3403 	int src_cpu, dst_cpu;
3404 };
3405 
3406 static int migrate_swap_stop(void *data)
3407 {
3408 	struct migration_swap_arg *arg = data;
3409 	struct rq *src_rq, *dst_rq;
3410 
3411 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3412 		return -EAGAIN;
3413 
3414 	src_rq = cpu_rq(arg->src_cpu);
3415 	dst_rq = cpu_rq(arg->dst_cpu);
3416 
3417 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3418 	guard(double_rq_lock)(src_rq, dst_rq);
3419 
3420 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3421 		return -EAGAIN;
3422 
3423 	if (task_cpu(arg->src_task) != arg->src_cpu)
3424 		return -EAGAIN;
3425 
3426 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3427 		return -EAGAIN;
3428 
3429 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3430 		return -EAGAIN;
3431 
3432 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3433 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3434 
3435 	return 0;
3436 }
3437 
3438 /*
3439  * Cross migrate two tasks
3440  */
3441 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3442 		int target_cpu, int curr_cpu)
3443 {
3444 	struct migration_swap_arg arg;
3445 	int ret = -EINVAL;
3446 
3447 	arg = (struct migration_swap_arg){
3448 		.src_task = cur,
3449 		.src_cpu = curr_cpu,
3450 		.dst_task = p,
3451 		.dst_cpu = target_cpu,
3452 	};
3453 
3454 	if (arg.src_cpu == arg.dst_cpu)
3455 		goto out;
3456 
3457 	/*
3458 	 * These three tests are all lockless; this is OK since all of them
3459 	 * will be re-checked with proper locks held further down the line.
3460 	 */
3461 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3462 		goto out;
3463 
3464 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3465 		goto out;
3466 
3467 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3468 		goto out;
3469 
3470 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3471 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3472 
3473 out:
3474 	return ret;
3475 }
3476 #endif /* CONFIG_NUMA_BALANCING */
3477 
3478 /***
3479  * kick_process - kick a running thread to enter/exit the kernel
3480  * @p: the to-be-kicked thread
3481  *
3482  * Cause a process which is running on another CPU to enter
3483  * kernel-mode, without any delay. (to get signals handled.)
3484  *
3485  * NOTE: this function doesn't have to take the runqueue lock,
3486  * because all it wants to ensure is that the remote task enters
3487  * the kernel. If the IPI races and the task has been migrated
3488  * to another CPU then no harm is done and the purpose has been
3489  * achieved as well.
3490  */
3491 void kick_process(struct task_struct *p)
3492 {
3493 	guard(preempt)();
3494 	int cpu = task_cpu(p);
3495 
3496 	if ((cpu != smp_processor_id()) && task_curr(p))
3497 		smp_send_reschedule(cpu);
3498 }
3499 EXPORT_SYMBOL_GPL(kick_process);
3500 
3501 /*
3502  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3503  *
3504  * A few notes on cpu_active vs cpu_online:
3505  *
3506  *  - cpu_active must be a subset of cpu_online
3507  *
3508  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3509  *    see __set_cpus_allowed_ptr(). At this point the newly online
3510  *    CPU isn't yet part of the sched domains, and balancing will not
3511  *    see it.
3512  *
3513  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3514  *    avoid the load balancer to place new tasks on the to be removed
3515  *    CPU. Existing tasks will remain running there and will be taken
3516  *    off.
3517  *
3518  * This means that fallback selection must not select !active CPUs.
3519  * And can assume that any active CPU must be online. Conversely
3520  * select_task_rq() below may allow selection of !active CPUs in order
3521  * to satisfy the above rules.
3522  */
3523 static int select_fallback_rq(int cpu, struct task_struct *p)
3524 {
3525 	int nid = cpu_to_node(cpu);
3526 	const struct cpumask *nodemask = NULL;
3527 	enum { cpuset, possible, fail } state = cpuset;
3528 	int dest_cpu;
3529 
3530 	/*
3531 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3532 	 * will return -1. There is no CPU on the node, and we should
3533 	 * select the CPU on the other node.
3534 	 */
3535 	if (nid != -1) {
3536 		nodemask = cpumask_of_node(nid);
3537 
3538 		/* Look for allowed, online CPU in same node. */
3539 		for_each_cpu(dest_cpu, nodemask) {
3540 			if (is_cpu_allowed(p, dest_cpu))
3541 				return dest_cpu;
3542 		}
3543 	}
3544 
3545 	for (;;) {
3546 		/* Any allowed, online CPU? */
3547 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3548 			if (!is_cpu_allowed(p, dest_cpu))
3549 				continue;
3550 
3551 			goto out;
3552 		}
3553 
3554 		/* No more Mr. Nice Guy. */
3555 		switch (state) {
3556 		case cpuset:
3557 			if (cpuset_cpus_allowed_fallback(p)) {
3558 				state = possible;
3559 				break;
3560 			}
3561 			fallthrough;
3562 		case possible:
3563 			/*
3564 			 * XXX When called from select_task_rq() we only
3565 			 * hold p->pi_lock and again violate locking order.
3566 			 *
3567 			 * More yuck to audit.
3568 			 */
3569 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3570 			state = fail;
3571 			break;
3572 		case fail:
3573 			BUG();
3574 			break;
3575 		}
3576 	}
3577 
3578 out:
3579 	if (state != cpuset) {
3580 		/*
3581 		 * Don't tell them about moving exiting tasks or
3582 		 * kernel threads (both mm NULL), since they never
3583 		 * leave kernel.
3584 		 */
3585 		if (p->mm && printk_ratelimit()) {
3586 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3587 					task_pid_nr(p), p->comm, cpu);
3588 		}
3589 	}
3590 
3591 	return dest_cpu;
3592 }
3593 
3594 /*
3595  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3596  */
3597 static inline
3598 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3599 {
3600 	lockdep_assert_held(&p->pi_lock);
3601 
3602 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3603 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3604 		*wake_flags |= WF_RQ_SELECTED;
3605 	} else {
3606 		cpu = cpumask_any(p->cpus_ptr);
3607 	}
3608 
3609 	/*
3610 	 * In order not to call set_task_cpu() on a blocking task we need
3611 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3612 	 * CPU.
3613 	 *
3614 	 * Since this is common to all placement strategies, this lives here.
3615 	 *
3616 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3617 	 *   not worry about this generic constraint ]
3618 	 */
3619 	if (unlikely(!is_cpu_allowed(p, cpu)))
3620 		cpu = select_fallback_rq(task_cpu(p), p);
3621 
3622 	return cpu;
3623 }
3624 
3625 void sched_set_stop_task(int cpu, struct task_struct *stop)
3626 {
3627 	static struct lock_class_key stop_pi_lock;
3628 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3629 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3630 
3631 	if (stop) {
3632 		/*
3633 		 * Make it appear like a SCHED_FIFO task, its something
3634 		 * userspace knows about and won't get confused about.
3635 		 *
3636 		 * Also, it will make PI more or less work without too
3637 		 * much confusion -- but then, stop work should not
3638 		 * rely on PI working anyway.
3639 		 */
3640 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3641 
3642 		stop->sched_class = &stop_sched_class;
3643 
3644 		/*
3645 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3646 		 * adjust the effective priority of a task. As a result,
3647 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3648 		 * which can then trigger wakeups of the stop thread to push
3649 		 * around the current task.
3650 		 *
3651 		 * The stop task itself will never be part of the PI-chain, it
3652 		 * never blocks, therefore that ->pi_lock recursion is safe.
3653 		 * Tell lockdep about this by placing the stop->pi_lock in its
3654 		 * own class.
3655 		 */
3656 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3657 	}
3658 
3659 	cpu_rq(cpu)->stop = stop;
3660 
3661 	if (old_stop) {
3662 		/*
3663 		 * Reset it back to a normal scheduling class so that
3664 		 * it can die in pieces.
3665 		 */
3666 		old_stop->sched_class = &rt_sched_class;
3667 	}
3668 }
3669 
3670 #else /* CONFIG_SMP */
3671 
3672 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3673 
3674 static inline bool rq_has_pinned_tasks(struct rq *rq)
3675 {
3676 	return false;
3677 }
3678 
3679 #endif /* !CONFIG_SMP */
3680 
3681 static void
3682 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3683 {
3684 	struct rq *rq;
3685 
3686 	if (!schedstat_enabled())
3687 		return;
3688 
3689 	rq = this_rq();
3690 
3691 #ifdef CONFIG_SMP
3692 	if (cpu == rq->cpu) {
3693 		__schedstat_inc(rq->ttwu_local);
3694 		__schedstat_inc(p->stats.nr_wakeups_local);
3695 	} else {
3696 		struct sched_domain *sd;
3697 
3698 		__schedstat_inc(p->stats.nr_wakeups_remote);
3699 
3700 		guard(rcu)();
3701 		for_each_domain(rq->cpu, sd) {
3702 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3703 				__schedstat_inc(sd->ttwu_wake_remote);
3704 				break;
3705 			}
3706 		}
3707 	}
3708 
3709 	if (wake_flags & WF_MIGRATED)
3710 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3711 #endif /* CONFIG_SMP */
3712 
3713 	__schedstat_inc(rq->ttwu_count);
3714 	__schedstat_inc(p->stats.nr_wakeups);
3715 
3716 	if (wake_flags & WF_SYNC)
3717 		__schedstat_inc(p->stats.nr_wakeups_sync);
3718 }
3719 
3720 /*
3721  * Mark the task runnable.
3722  */
3723 static inline void ttwu_do_wakeup(struct task_struct *p)
3724 {
3725 	WRITE_ONCE(p->__state, TASK_RUNNING);
3726 	trace_sched_wakeup(p);
3727 }
3728 
3729 static void
3730 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3731 		 struct rq_flags *rf)
3732 {
3733 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3734 
3735 	lockdep_assert_rq_held(rq);
3736 
3737 	if (p->sched_contributes_to_load)
3738 		rq->nr_uninterruptible--;
3739 
3740 #ifdef CONFIG_SMP
3741 	if (wake_flags & WF_RQ_SELECTED)
3742 		en_flags |= ENQUEUE_RQ_SELECTED;
3743 	if (wake_flags & WF_MIGRATED)
3744 		en_flags |= ENQUEUE_MIGRATED;
3745 	else
3746 #endif
3747 	if (p->in_iowait) {
3748 		delayacct_blkio_end(p);
3749 		atomic_dec(&task_rq(p)->nr_iowait);
3750 	}
3751 
3752 	activate_task(rq, p, en_flags);
3753 	wakeup_preempt(rq, p, wake_flags);
3754 
3755 	ttwu_do_wakeup(p);
3756 
3757 #ifdef CONFIG_SMP
3758 	if (p->sched_class->task_woken) {
3759 		/*
3760 		 * Our task @p is fully woken up and running; so it's safe to
3761 		 * drop the rq->lock, hereafter rq is only used for statistics.
3762 		 */
3763 		rq_unpin_lock(rq, rf);
3764 		p->sched_class->task_woken(rq, p);
3765 		rq_repin_lock(rq, rf);
3766 	}
3767 
3768 	if (rq->idle_stamp) {
3769 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3770 		u64 max = 2*rq->max_idle_balance_cost;
3771 
3772 		update_avg(&rq->avg_idle, delta);
3773 
3774 		if (rq->avg_idle > max)
3775 			rq->avg_idle = max;
3776 
3777 		rq->idle_stamp = 0;
3778 	}
3779 #endif
3780 }
3781 
3782 /*
3783  * Consider @p being inside a wait loop:
3784  *
3785  *   for (;;) {
3786  *      set_current_state(TASK_UNINTERRUPTIBLE);
3787  *
3788  *      if (CONDITION)
3789  *         break;
3790  *
3791  *      schedule();
3792  *   }
3793  *   __set_current_state(TASK_RUNNING);
3794  *
3795  * between set_current_state() and schedule(). In this case @p is still
3796  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3797  * an atomic manner.
3798  *
3799  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3800  * then schedule() must still happen and p->state can be changed to
3801  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3802  * need to do a full wakeup with enqueue.
3803  *
3804  * Returns: %true when the wakeup is done,
3805  *          %false otherwise.
3806  */
3807 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3808 {
3809 	struct rq_flags rf;
3810 	struct rq *rq;
3811 	int ret = 0;
3812 
3813 	rq = __task_rq_lock(p, &rf);
3814 	if (task_on_rq_queued(p)) {
3815 		update_rq_clock(rq);
3816 		if (p->se.sched_delayed)
3817 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3818 		if (!task_on_cpu(rq, p)) {
3819 			/*
3820 			 * When on_rq && !on_cpu the task is preempted, see if
3821 			 * it should preempt the task that is current now.
3822 			 */
3823 			wakeup_preempt(rq, p, wake_flags);
3824 		}
3825 		ttwu_do_wakeup(p);
3826 		ret = 1;
3827 	}
3828 	__task_rq_unlock(rq, &rf);
3829 
3830 	return ret;
3831 }
3832 
3833 #ifdef CONFIG_SMP
3834 void sched_ttwu_pending(void *arg)
3835 {
3836 	struct llist_node *llist = arg;
3837 	struct rq *rq = this_rq();
3838 	struct task_struct *p, *t;
3839 	struct rq_flags rf;
3840 
3841 	if (!llist)
3842 		return;
3843 
3844 	rq_lock_irqsave(rq, &rf);
3845 	update_rq_clock(rq);
3846 
3847 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3848 		if (WARN_ON_ONCE(p->on_cpu))
3849 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3850 
3851 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3852 			set_task_cpu(p, cpu_of(rq));
3853 
3854 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3855 	}
3856 
3857 	/*
3858 	 * Must be after enqueueing at least once task such that
3859 	 * idle_cpu() does not observe a false-negative -- if it does,
3860 	 * it is possible for select_idle_siblings() to stack a number
3861 	 * of tasks on this CPU during that window.
3862 	 *
3863 	 * It is OK to clear ttwu_pending when another task pending.
3864 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3865 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3866 	 */
3867 	WRITE_ONCE(rq->ttwu_pending, 0);
3868 	rq_unlock_irqrestore(rq, &rf);
3869 }
3870 
3871 /*
3872  * Prepare the scene for sending an IPI for a remote smp_call
3873  *
3874  * Returns true if the caller can proceed with sending the IPI.
3875  * Returns false otherwise.
3876  */
3877 bool call_function_single_prep_ipi(int cpu)
3878 {
3879 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3880 		trace_sched_wake_idle_without_ipi(cpu);
3881 		return false;
3882 	}
3883 
3884 	return true;
3885 }
3886 
3887 /*
3888  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3889  * necessary. The wakee CPU on receipt of the IPI will queue the task
3890  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3891  * of the wakeup instead of the waker.
3892  */
3893 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3894 {
3895 	struct rq *rq = cpu_rq(cpu);
3896 
3897 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3898 
3899 	WRITE_ONCE(rq->ttwu_pending, 1);
3900 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3901 }
3902 
3903 void wake_up_if_idle(int cpu)
3904 {
3905 	struct rq *rq = cpu_rq(cpu);
3906 
3907 	guard(rcu)();
3908 	if (is_idle_task(rcu_dereference(rq->curr))) {
3909 		guard(rq_lock_irqsave)(rq);
3910 		if (is_idle_task(rq->curr))
3911 			resched_curr(rq);
3912 	}
3913 }
3914 
3915 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3916 {
3917 	if (!sched_asym_cpucap_active())
3918 		return true;
3919 
3920 	if (this_cpu == that_cpu)
3921 		return true;
3922 
3923 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3924 }
3925 
3926 bool cpus_share_cache(int this_cpu, int that_cpu)
3927 {
3928 	if (this_cpu == that_cpu)
3929 		return true;
3930 
3931 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3932 }
3933 
3934 /*
3935  * Whether CPUs are share cache resources, which means LLC on non-cluster
3936  * machines and LLC tag or L2 on machines with clusters.
3937  */
3938 bool cpus_share_resources(int this_cpu, int that_cpu)
3939 {
3940 	if (this_cpu == that_cpu)
3941 		return true;
3942 
3943 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3944 }
3945 
3946 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3947 {
3948 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3949 	if (!scx_allow_ttwu_queue(p))
3950 		return false;
3951 
3952 #ifdef CONFIG_SMP
3953 	if (p->sched_class == &stop_sched_class)
3954 		return false;
3955 #endif
3956 
3957 	/*
3958 	 * Do not complicate things with the async wake_list while the CPU is
3959 	 * in hotplug state.
3960 	 */
3961 	if (!cpu_active(cpu))
3962 		return false;
3963 
3964 	/* Ensure the task will still be allowed to run on the CPU. */
3965 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3966 		return false;
3967 
3968 	/*
3969 	 * If the CPU does not share cache, then queue the task on the
3970 	 * remote rqs wakelist to avoid accessing remote data.
3971 	 */
3972 	if (!cpus_share_cache(smp_processor_id(), cpu))
3973 		return true;
3974 
3975 	if (cpu == smp_processor_id())
3976 		return false;
3977 
3978 	/*
3979 	 * If the wakee cpu is idle, or the task is descheduling and the
3980 	 * only running task on the CPU, then use the wakelist to offload
3981 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3982 	 * the current CPU is likely busy. nr_running is checked to
3983 	 * avoid unnecessary task stacking.
3984 	 *
3985 	 * Note that we can only get here with (wakee) p->on_rq=0,
3986 	 * p->on_cpu can be whatever, we've done the dequeue, so
3987 	 * the wakee has been accounted out of ->nr_running.
3988 	 */
3989 	if (!cpu_rq(cpu)->nr_running)
3990 		return true;
3991 
3992 	return false;
3993 }
3994 
3995 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3996 {
3997 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3998 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3999 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4000 		return true;
4001 	}
4002 
4003 	return false;
4004 }
4005 
4006 #else /* !CONFIG_SMP */
4007 
4008 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4009 {
4010 	return false;
4011 }
4012 
4013 #endif /* CONFIG_SMP */
4014 
4015 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4016 {
4017 	struct rq *rq = cpu_rq(cpu);
4018 	struct rq_flags rf;
4019 
4020 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4021 		return;
4022 
4023 	rq_lock(rq, &rf);
4024 	update_rq_clock(rq);
4025 	ttwu_do_activate(rq, p, wake_flags, &rf);
4026 	rq_unlock(rq, &rf);
4027 }
4028 
4029 /*
4030  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4031  *
4032  * The caller holds p::pi_lock if p != current or has preemption
4033  * disabled when p == current.
4034  *
4035  * The rules of saved_state:
4036  *
4037  *   The related locking code always holds p::pi_lock when updating
4038  *   p::saved_state, which means the code is fully serialized in both cases.
4039  *
4040  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4041  *   No other bits set. This allows to distinguish all wakeup scenarios.
4042  *
4043  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4044  *   allows us to prevent early wakeup of tasks before they can be run on
4045  *   asymmetric ISA architectures (eg ARMv9).
4046  */
4047 static __always_inline
4048 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4049 {
4050 	int match;
4051 
4052 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4053 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4054 			     state != TASK_RTLOCK_WAIT);
4055 	}
4056 
4057 	*success = !!(match = __task_state_match(p, state));
4058 
4059 	/*
4060 	 * Saved state preserves the task state across blocking on
4061 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4062 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4063 	 * because it waits for a lock wakeup or __thaw_task(). Also
4064 	 * indicate success because from the regular waker's point of
4065 	 * view this has succeeded.
4066 	 *
4067 	 * After acquiring the lock the task will restore p::__state
4068 	 * from p::saved_state which ensures that the regular
4069 	 * wakeup is not lost. The restore will also set
4070 	 * p::saved_state to TASK_RUNNING so any further tests will
4071 	 * not result in false positives vs. @success
4072 	 */
4073 	if (match < 0)
4074 		p->saved_state = TASK_RUNNING;
4075 
4076 	return match > 0;
4077 }
4078 
4079 /*
4080  * Notes on Program-Order guarantees on SMP systems.
4081  *
4082  *  MIGRATION
4083  *
4084  * The basic program-order guarantee on SMP systems is that when a task [t]
4085  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4086  * execution on its new CPU [c1].
4087  *
4088  * For migration (of runnable tasks) this is provided by the following means:
4089  *
4090  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4091  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4092  *     rq(c1)->lock (if not at the same time, then in that order).
4093  *  C) LOCK of the rq(c1)->lock scheduling in task
4094  *
4095  * Release/acquire chaining guarantees that B happens after A and C after B.
4096  * Note: the CPU doing B need not be c0 or c1
4097  *
4098  * Example:
4099  *
4100  *   CPU0            CPU1            CPU2
4101  *
4102  *   LOCK rq(0)->lock
4103  *   sched-out X
4104  *   sched-in Y
4105  *   UNLOCK rq(0)->lock
4106  *
4107  *                                   LOCK rq(0)->lock // orders against CPU0
4108  *                                   dequeue X
4109  *                                   UNLOCK rq(0)->lock
4110  *
4111  *                                   LOCK rq(1)->lock
4112  *                                   enqueue X
4113  *                                   UNLOCK rq(1)->lock
4114  *
4115  *                   LOCK rq(1)->lock // orders against CPU2
4116  *                   sched-out Z
4117  *                   sched-in X
4118  *                   UNLOCK rq(1)->lock
4119  *
4120  *
4121  *  BLOCKING -- aka. SLEEP + WAKEUP
4122  *
4123  * For blocking we (obviously) need to provide the same guarantee as for
4124  * migration. However the means are completely different as there is no lock
4125  * chain to provide order. Instead we do:
4126  *
4127  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4128  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4129  *
4130  * Example:
4131  *
4132  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4133  *
4134  *   LOCK rq(0)->lock LOCK X->pi_lock
4135  *   dequeue X
4136  *   sched-out X
4137  *   smp_store_release(X->on_cpu, 0);
4138  *
4139  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4140  *                    X->state = WAKING
4141  *                    set_task_cpu(X,2)
4142  *
4143  *                    LOCK rq(2)->lock
4144  *                    enqueue X
4145  *                    X->state = RUNNING
4146  *                    UNLOCK rq(2)->lock
4147  *
4148  *                                          LOCK rq(2)->lock // orders against CPU1
4149  *                                          sched-out Z
4150  *                                          sched-in X
4151  *                                          UNLOCK rq(2)->lock
4152  *
4153  *                    UNLOCK X->pi_lock
4154  *   UNLOCK rq(0)->lock
4155  *
4156  *
4157  * However, for wakeups there is a second guarantee we must provide, namely we
4158  * must ensure that CONDITION=1 done by the caller can not be reordered with
4159  * accesses to the task state; see try_to_wake_up() and set_current_state().
4160  */
4161 
4162 /**
4163  * try_to_wake_up - wake up a thread
4164  * @p: the thread to be awakened
4165  * @state: the mask of task states that can be woken
4166  * @wake_flags: wake modifier flags (WF_*)
4167  *
4168  * Conceptually does:
4169  *
4170  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4171  *
4172  * If the task was not queued/runnable, also place it back on a runqueue.
4173  *
4174  * This function is atomic against schedule() which would dequeue the task.
4175  *
4176  * It issues a full memory barrier before accessing @p->state, see the comment
4177  * with set_current_state().
4178  *
4179  * Uses p->pi_lock to serialize against concurrent wake-ups.
4180  *
4181  * Relies on p->pi_lock stabilizing:
4182  *  - p->sched_class
4183  *  - p->cpus_ptr
4184  *  - p->sched_task_group
4185  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4186  *
4187  * Tries really hard to only take one task_rq(p)->lock for performance.
4188  * Takes rq->lock in:
4189  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4190  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4191  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4192  *
4193  * As a consequence we race really badly with just about everything. See the
4194  * many memory barriers and their comments for details.
4195  *
4196  * Return: %true if @p->state changes (an actual wakeup was done),
4197  *	   %false otherwise.
4198  */
4199 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4200 {
4201 	guard(preempt)();
4202 	int cpu, success = 0;
4203 
4204 	wake_flags |= WF_TTWU;
4205 
4206 	if (p == current) {
4207 		/*
4208 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4209 		 * == smp_processor_id()'. Together this means we can special
4210 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4211 		 * without taking any locks.
4212 		 *
4213 		 * Specifically, given current runs ttwu() we must be before
4214 		 * schedule()'s block_task(), as such this must not observe
4215 		 * sched_delayed.
4216 		 *
4217 		 * In particular:
4218 		 *  - we rely on Program-Order guarantees for all the ordering,
4219 		 *  - we're serialized against set_special_state() by virtue of
4220 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4221 		 */
4222 		WARN_ON_ONCE(p->se.sched_delayed);
4223 		if (!ttwu_state_match(p, state, &success))
4224 			goto out;
4225 
4226 		trace_sched_waking(p);
4227 		ttwu_do_wakeup(p);
4228 		goto out;
4229 	}
4230 
4231 	/*
4232 	 * If we are going to wake up a thread waiting for CONDITION we
4233 	 * need to ensure that CONDITION=1 done by the caller can not be
4234 	 * reordered with p->state check below. This pairs with smp_store_mb()
4235 	 * in set_current_state() that the waiting thread does.
4236 	 */
4237 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4238 		smp_mb__after_spinlock();
4239 		if (!ttwu_state_match(p, state, &success))
4240 			break;
4241 
4242 		trace_sched_waking(p);
4243 
4244 		/*
4245 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4246 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4247 		 * in smp_cond_load_acquire() below.
4248 		 *
4249 		 * sched_ttwu_pending()			try_to_wake_up()
4250 		 *   STORE p->on_rq = 1			  LOAD p->state
4251 		 *   UNLOCK rq->lock
4252 		 *
4253 		 * __schedule() (switch to task 'p')
4254 		 *   LOCK rq->lock			  smp_rmb();
4255 		 *   smp_mb__after_spinlock();
4256 		 *   UNLOCK rq->lock
4257 		 *
4258 		 * [task p]
4259 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4260 		 *
4261 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4262 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4263 		 *
4264 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4265 		 */
4266 		smp_rmb();
4267 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4268 			break;
4269 
4270 #ifdef CONFIG_SMP
4271 		/*
4272 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4273 		 * possible to, falsely, observe p->on_cpu == 0.
4274 		 *
4275 		 * One must be running (->on_cpu == 1) in order to remove oneself
4276 		 * from the runqueue.
4277 		 *
4278 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4279 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4280 		 *   UNLOCK rq->lock
4281 		 *
4282 		 * __schedule() (put 'p' to sleep)
4283 		 *   LOCK rq->lock			  smp_rmb();
4284 		 *   smp_mb__after_spinlock();
4285 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4286 		 *
4287 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4288 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4289 		 *
4290 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4291 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4292 		 * care about it's own p->state. See the comment in __schedule().
4293 		 */
4294 		smp_acquire__after_ctrl_dep();
4295 
4296 		/*
4297 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4298 		 * == 0), which means we need to do an enqueue, change p->state to
4299 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4300 		 * enqueue, such as ttwu_queue_wakelist().
4301 		 */
4302 		WRITE_ONCE(p->__state, TASK_WAKING);
4303 
4304 		/*
4305 		 * If the owning (remote) CPU is still in the middle of schedule() with
4306 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4307 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4308 		 * let the waker make forward progress. This is safe because IRQs are
4309 		 * disabled and the IPI will deliver after on_cpu is cleared.
4310 		 *
4311 		 * Ensure we load task_cpu(p) after p->on_cpu:
4312 		 *
4313 		 * set_task_cpu(p, cpu);
4314 		 *   STORE p->cpu = @cpu
4315 		 * __schedule() (switch to task 'p')
4316 		 *   LOCK rq->lock
4317 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4318 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4319 		 *
4320 		 * to ensure we observe the correct CPU on which the task is currently
4321 		 * scheduling.
4322 		 */
4323 		if (smp_load_acquire(&p->on_cpu) &&
4324 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4325 			break;
4326 
4327 		/*
4328 		 * If the owning (remote) CPU is still in the middle of schedule() with
4329 		 * this task as prev, wait until it's done referencing the task.
4330 		 *
4331 		 * Pairs with the smp_store_release() in finish_task().
4332 		 *
4333 		 * This ensures that tasks getting woken will be fully ordered against
4334 		 * their previous state and preserve Program Order.
4335 		 */
4336 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4337 
4338 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4339 		if (task_cpu(p) != cpu) {
4340 			if (p->in_iowait) {
4341 				delayacct_blkio_end(p);
4342 				atomic_dec(&task_rq(p)->nr_iowait);
4343 			}
4344 
4345 			wake_flags |= WF_MIGRATED;
4346 			psi_ttwu_dequeue(p);
4347 			set_task_cpu(p, cpu);
4348 		}
4349 #else
4350 		cpu = task_cpu(p);
4351 #endif /* CONFIG_SMP */
4352 
4353 		ttwu_queue(p, cpu, wake_flags);
4354 	}
4355 out:
4356 	if (success)
4357 		ttwu_stat(p, task_cpu(p), wake_flags);
4358 
4359 	return success;
4360 }
4361 
4362 static bool __task_needs_rq_lock(struct task_struct *p)
4363 {
4364 	unsigned int state = READ_ONCE(p->__state);
4365 
4366 	/*
4367 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4368 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4369 	 * locks at the end, see ttwu_queue_wakelist().
4370 	 */
4371 	if (state == TASK_RUNNING || state == TASK_WAKING)
4372 		return true;
4373 
4374 	/*
4375 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4376 	 * possible to, falsely, observe p->on_rq == 0.
4377 	 *
4378 	 * See try_to_wake_up() for a longer comment.
4379 	 */
4380 	smp_rmb();
4381 	if (p->on_rq)
4382 		return true;
4383 
4384 #ifdef CONFIG_SMP
4385 	/*
4386 	 * Ensure the task has finished __schedule() and will not be referenced
4387 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4388 	 */
4389 	smp_rmb();
4390 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4391 #endif
4392 
4393 	return false;
4394 }
4395 
4396 /**
4397  * task_call_func - Invoke a function on task in fixed state
4398  * @p: Process for which the function is to be invoked, can be @current.
4399  * @func: Function to invoke.
4400  * @arg: Argument to function.
4401  *
4402  * Fix the task in it's current state by avoiding wakeups and or rq operations
4403  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4404  * task_curr() to work out what the state is, if required.  Given that @func
4405  * can be invoked with a runqueue lock held, it had better be quite
4406  * lightweight.
4407  *
4408  * Returns:
4409  *   Whatever @func returns
4410  */
4411 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4412 {
4413 	struct rq *rq = NULL;
4414 	struct rq_flags rf;
4415 	int ret;
4416 
4417 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4418 
4419 	if (__task_needs_rq_lock(p))
4420 		rq = __task_rq_lock(p, &rf);
4421 
4422 	/*
4423 	 * At this point the task is pinned; either:
4424 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4425 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4426 	 *  - queued, and we're holding off schedule	 (rq->lock)
4427 	 *  - running, and we're holding off de-schedule (rq->lock)
4428 	 *
4429 	 * The called function (@func) can use: task_curr(), p->on_rq and
4430 	 * p->__state to differentiate between these states.
4431 	 */
4432 	ret = func(p, arg);
4433 
4434 	if (rq)
4435 		rq_unlock(rq, &rf);
4436 
4437 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4438 	return ret;
4439 }
4440 
4441 /**
4442  * cpu_curr_snapshot - Return a snapshot of the currently running task
4443  * @cpu: The CPU on which to snapshot the task.
4444  *
4445  * Returns the task_struct pointer of the task "currently" running on
4446  * the specified CPU.
4447  *
4448  * If the specified CPU was offline, the return value is whatever it
4449  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4450  * task, but there is no guarantee.  Callers wishing a useful return
4451  * value must take some action to ensure that the specified CPU remains
4452  * online throughout.
4453  *
4454  * This function executes full memory barriers before and after fetching
4455  * the pointer, which permits the caller to confine this function's fetch
4456  * with respect to the caller's accesses to other shared variables.
4457  */
4458 struct task_struct *cpu_curr_snapshot(int cpu)
4459 {
4460 	struct rq *rq = cpu_rq(cpu);
4461 	struct task_struct *t;
4462 	struct rq_flags rf;
4463 
4464 	rq_lock_irqsave(rq, &rf);
4465 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4466 	t = rcu_dereference(cpu_curr(cpu));
4467 	rq_unlock_irqrestore(rq, &rf);
4468 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4469 
4470 	return t;
4471 }
4472 
4473 /**
4474  * wake_up_process - Wake up a specific process
4475  * @p: The process to be woken up.
4476  *
4477  * Attempt to wake up the nominated process and move it to the set of runnable
4478  * processes.
4479  *
4480  * Return: 1 if the process was woken up, 0 if it was already running.
4481  *
4482  * This function executes a full memory barrier before accessing the task state.
4483  */
4484 int wake_up_process(struct task_struct *p)
4485 {
4486 	return try_to_wake_up(p, TASK_NORMAL, 0);
4487 }
4488 EXPORT_SYMBOL(wake_up_process);
4489 
4490 int wake_up_state(struct task_struct *p, unsigned int state)
4491 {
4492 	return try_to_wake_up(p, state, 0);
4493 }
4494 
4495 /*
4496  * Perform scheduler related setup for a newly forked process p.
4497  * p is forked by current.
4498  *
4499  * __sched_fork() is basic setup which is also used by sched_init() to
4500  * initialize the boot CPU's idle task.
4501  */
4502 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4503 {
4504 	p->on_rq			= 0;
4505 
4506 	p->se.on_rq			= 0;
4507 	p->se.exec_start		= 0;
4508 	p->se.sum_exec_runtime		= 0;
4509 	p->se.prev_sum_exec_runtime	= 0;
4510 	p->se.nr_migrations		= 0;
4511 	p->se.vruntime			= 0;
4512 	p->se.vlag			= 0;
4513 	INIT_LIST_HEAD(&p->se.group_node);
4514 
4515 	/* A delayed task cannot be in clone(). */
4516 	WARN_ON_ONCE(p->se.sched_delayed);
4517 
4518 #ifdef CONFIG_FAIR_GROUP_SCHED
4519 	p->se.cfs_rq			= NULL;
4520 #endif
4521 
4522 #ifdef CONFIG_SCHEDSTATS
4523 	/* Even if schedstat is disabled, there should not be garbage */
4524 	memset(&p->stats, 0, sizeof(p->stats));
4525 #endif
4526 
4527 	init_dl_entity(&p->dl);
4528 
4529 	INIT_LIST_HEAD(&p->rt.run_list);
4530 	p->rt.timeout		= 0;
4531 	p->rt.time_slice	= sched_rr_timeslice;
4532 	p->rt.on_rq		= 0;
4533 	p->rt.on_list		= 0;
4534 
4535 #ifdef CONFIG_SCHED_CLASS_EXT
4536 	init_scx_entity(&p->scx);
4537 #endif
4538 
4539 #ifdef CONFIG_PREEMPT_NOTIFIERS
4540 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4541 #endif
4542 
4543 #ifdef CONFIG_COMPACTION
4544 	p->capture_control = NULL;
4545 #endif
4546 	init_numa_balancing(clone_flags, p);
4547 #ifdef CONFIG_SMP
4548 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4549 	p->migration_pending = NULL;
4550 #endif
4551 	init_sched_mm_cid(p);
4552 }
4553 
4554 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4555 
4556 #ifdef CONFIG_NUMA_BALANCING
4557 
4558 int sysctl_numa_balancing_mode;
4559 
4560 static void __set_numabalancing_state(bool enabled)
4561 {
4562 	if (enabled)
4563 		static_branch_enable(&sched_numa_balancing);
4564 	else
4565 		static_branch_disable(&sched_numa_balancing);
4566 }
4567 
4568 void set_numabalancing_state(bool enabled)
4569 {
4570 	if (enabled)
4571 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4572 	else
4573 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4574 	__set_numabalancing_state(enabled);
4575 }
4576 
4577 #ifdef CONFIG_PROC_SYSCTL
4578 static void reset_memory_tiering(void)
4579 {
4580 	struct pglist_data *pgdat;
4581 
4582 	for_each_online_pgdat(pgdat) {
4583 		pgdat->nbp_threshold = 0;
4584 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4585 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4586 	}
4587 }
4588 
4589 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4590 			  void *buffer, size_t *lenp, loff_t *ppos)
4591 {
4592 	struct ctl_table t;
4593 	int err;
4594 	int state = sysctl_numa_balancing_mode;
4595 
4596 	if (write && !capable(CAP_SYS_ADMIN))
4597 		return -EPERM;
4598 
4599 	t = *table;
4600 	t.data = &state;
4601 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4602 	if (err < 0)
4603 		return err;
4604 	if (write) {
4605 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4606 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4607 			reset_memory_tiering();
4608 		sysctl_numa_balancing_mode = state;
4609 		__set_numabalancing_state(state);
4610 	}
4611 	return err;
4612 }
4613 #endif
4614 #endif
4615 
4616 #ifdef CONFIG_SCHEDSTATS
4617 
4618 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4619 
4620 static void set_schedstats(bool enabled)
4621 {
4622 	if (enabled)
4623 		static_branch_enable(&sched_schedstats);
4624 	else
4625 		static_branch_disable(&sched_schedstats);
4626 }
4627 
4628 void force_schedstat_enabled(void)
4629 {
4630 	if (!schedstat_enabled()) {
4631 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4632 		static_branch_enable(&sched_schedstats);
4633 	}
4634 }
4635 
4636 static int __init setup_schedstats(char *str)
4637 {
4638 	int ret = 0;
4639 	if (!str)
4640 		goto out;
4641 
4642 	if (!strcmp(str, "enable")) {
4643 		set_schedstats(true);
4644 		ret = 1;
4645 	} else if (!strcmp(str, "disable")) {
4646 		set_schedstats(false);
4647 		ret = 1;
4648 	}
4649 out:
4650 	if (!ret)
4651 		pr_warn("Unable to parse schedstats=\n");
4652 
4653 	return ret;
4654 }
4655 __setup("schedstats=", setup_schedstats);
4656 
4657 #ifdef CONFIG_PROC_SYSCTL
4658 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4659 		size_t *lenp, loff_t *ppos)
4660 {
4661 	struct ctl_table t;
4662 	int err;
4663 	int state = static_branch_likely(&sched_schedstats);
4664 
4665 	if (write && !capable(CAP_SYS_ADMIN))
4666 		return -EPERM;
4667 
4668 	t = *table;
4669 	t.data = &state;
4670 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4671 	if (err < 0)
4672 		return err;
4673 	if (write)
4674 		set_schedstats(state);
4675 	return err;
4676 }
4677 #endif /* CONFIG_PROC_SYSCTL */
4678 #endif /* CONFIG_SCHEDSTATS */
4679 
4680 #ifdef CONFIG_SYSCTL
4681 static const struct ctl_table sched_core_sysctls[] = {
4682 #ifdef CONFIG_SCHEDSTATS
4683 	{
4684 		.procname       = "sched_schedstats",
4685 		.data           = NULL,
4686 		.maxlen         = sizeof(unsigned int),
4687 		.mode           = 0644,
4688 		.proc_handler   = sysctl_schedstats,
4689 		.extra1         = SYSCTL_ZERO,
4690 		.extra2         = SYSCTL_ONE,
4691 	},
4692 #endif /* CONFIG_SCHEDSTATS */
4693 #ifdef CONFIG_UCLAMP_TASK
4694 	{
4695 		.procname       = "sched_util_clamp_min",
4696 		.data           = &sysctl_sched_uclamp_util_min,
4697 		.maxlen         = sizeof(unsigned int),
4698 		.mode           = 0644,
4699 		.proc_handler   = sysctl_sched_uclamp_handler,
4700 	},
4701 	{
4702 		.procname       = "sched_util_clamp_max",
4703 		.data           = &sysctl_sched_uclamp_util_max,
4704 		.maxlen         = sizeof(unsigned int),
4705 		.mode           = 0644,
4706 		.proc_handler   = sysctl_sched_uclamp_handler,
4707 	},
4708 	{
4709 		.procname       = "sched_util_clamp_min_rt_default",
4710 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4711 		.maxlen         = sizeof(unsigned int),
4712 		.mode           = 0644,
4713 		.proc_handler   = sysctl_sched_uclamp_handler,
4714 	},
4715 #endif /* CONFIG_UCLAMP_TASK */
4716 #ifdef CONFIG_NUMA_BALANCING
4717 	{
4718 		.procname	= "numa_balancing",
4719 		.data		= NULL, /* filled in by handler */
4720 		.maxlen		= sizeof(unsigned int),
4721 		.mode		= 0644,
4722 		.proc_handler	= sysctl_numa_balancing,
4723 		.extra1		= SYSCTL_ZERO,
4724 		.extra2		= SYSCTL_FOUR,
4725 	},
4726 #endif /* CONFIG_NUMA_BALANCING */
4727 };
4728 static int __init sched_core_sysctl_init(void)
4729 {
4730 	register_sysctl_init("kernel", sched_core_sysctls);
4731 	return 0;
4732 }
4733 late_initcall(sched_core_sysctl_init);
4734 #endif /* CONFIG_SYSCTL */
4735 
4736 /*
4737  * fork()/clone()-time setup:
4738  */
4739 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4740 {
4741 	__sched_fork(clone_flags, p);
4742 	/*
4743 	 * We mark the process as NEW here. This guarantees that
4744 	 * nobody will actually run it, and a signal or other external
4745 	 * event cannot wake it up and insert it on the runqueue either.
4746 	 */
4747 	p->__state = TASK_NEW;
4748 
4749 	/*
4750 	 * Make sure we do not leak PI boosting priority to the child.
4751 	 */
4752 	p->prio = current->normal_prio;
4753 
4754 	uclamp_fork(p);
4755 
4756 	/*
4757 	 * Revert to default priority/policy on fork if requested.
4758 	 */
4759 	if (unlikely(p->sched_reset_on_fork)) {
4760 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4761 			p->policy = SCHED_NORMAL;
4762 			p->static_prio = NICE_TO_PRIO(0);
4763 			p->rt_priority = 0;
4764 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4765 			p->static_prio = NICE_TO_PRIO(0);
4766 
4767 		p->prio = p->normal_prio = p->static_prio;
4768 		set_load_weight(p, false);
4769 		p->se.custom_slice = 0;
4770 		p->se.slice = sysctl_sched_base_slice;
4771 
4772 		/*
4773 		 * We don't need the reset flag anymore after the fork. It has
4774 		 * fulfilled its duty:
4775 		 */
4776 		p->sched_reset_on_fork = 0;
4777 	}
4778 
4779 	if (dl_prio(p->prio))
4780 		return -EAGAIN;
4781 
4782 	scx_pre_fork(p);
4783 
4784 	if (rt_prio(p->prio)) {
4785 		p->sched_class = &rt_sched_class;
4786 #ifdef CONFIG_SCHED_CLASS_EXT
4787 	} else if (task_should_scx(p->policy)) {
4788 		p->sched_class = &ext_sched_class;
4789 #endif
4790 	} else {
4791 		p->sched_class = &fair_sched_class;
4792 	}
4793 
4794 	init_entity_runnable_average(&p->se);
4795 
4796 
4797 #ifdef CONFIG_SCHED_INFO
4798 	if (likely(sched_info_on()))
4799 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4800 #endif
4801 #if defined(CONFIG_SMP)
4802 	p->on_cpu = 0;
4803 #endif
4804 	init_task_preempt_count(p);
4805 #ifdef CONFIG_SMP
4806 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4807 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4808 #endif
4809 	return 0;
4810 }
4811 
4812 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4813 {
4814 	unsigned long flags;
4815 
4816 	/*
4817 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4818 	 * required yet, but lockdep gets upset if rules are violated.
4819 	 */
4820 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4821 #ifdef CONFIG_CGROUP_SCHED
4822 	if (1) {
4823 		struct task_group *tg;
4824 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4825 				  struct task_group, css);
4826 		tg = autogroup_task_group(p, tg);
4827 		p->sched_task_group = tg;
4828 	}
4829 #endif
4830 	rseq_migrate(p);
4831 	/*
4832 	 * We're setting the CPU for the first time, we don't migrate,
4833 	 * so use __set_task_cpu().
4834 	 */
4835 	__set_task_cpu(p, smp_processor_id());
4836 	if (p->sched_class->task_fork)
4837 		p->sched_class->task_fork(p);
4838 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4839 
4840 	return scx_fork(p);
4841 }
4842 
4843 void sched_cancel_fork(struct task_struct *p)
4844 {
4845 	scx_cancel_fork(p);
4846 }
4847 
4848 void sched_post_fork(struct task_struct *p)
4849 {
4850 	uclamp_post_fork(p);
4851 	scx_post_fork(p);
4852 }
4853 
4854 unsigned long to_ratio(u64 period, u64 runtime)
4855 {
4856 	if (runtime == RUNTIME_INF)
4857 		return BW_UNIT;
4858 
4859 	/*
4860 	 * Doing this here saves a lot of checks in all
4861 	 * the calling paths, and returning zero seems
4862 	 * safe for them anyway.
4863 	 */
4864 	if (period == 0)
4865 		return 0;
4866 
4867 	return div64_u64(runtime << BW_SHIFT, period);
4868 }
4869 
4870 /*
4871  * wake_up_new_task - wake up a newly created task for the first time.
4872  *
4873  * This function will do some initial scheduler statistics housekeeping
4874  * that must be done for every newly created context, then puts the task
4875  * on the runqueue and wakes it.
4876  */
4877 void wake_up_new_task(struct task_struct *p)
4878 {
4879 	struct rq_flags rf;
4880 	struct rq *rq;
4881 	int wake_flags = WF_FORK;
4882 
4883 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4884 	WRITE_ONCE(p->__state, TASK_RUNNING);
4885 #ifdef CONFIG_SMP
4886 	/*
4887 	 * Fork balancing, do it here and not earlier because:
4888 	 *  - cpus_ptr can change in the fork path
4889 	 *  - any previously selected CPU might disappear through hotplug
4890 	 *
4891 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4892 	 * as we're not fully set-up yet.
4893 	 */
4894 	p->recent_used_cpu = task_cpu(p);
4895 	rseq_migrate(p);
4896 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4897 #endif
4898 	rq = __task_rq_lock(p, &rf);
4899 	update_rq_clock(rq);
4900 	post_init_entity_util_avg(p);
4901 
4902 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4903 	trace_sched_wakeup_new(p);
4904 	wakeup_preempt(rq, p, wake_flags);
4905 #ifdef CONFIG_SMP
4906 	if (p->sched_class->task_woken) {
4907 		/*
4908 		 * Nothing relies on rq->lock after this, so it's fine to
4909 		 * drop it.
4910 		 */
4911 		rq_unpin_lock(rq, &rf);
4912 		p->sched_class->task_woken(rq, p);
4913 		rq_repin_lock(rq, &rf);
4914 	}
4915 #endif
4916 	task_rq_unlock(rq, p, &rf);
4917 }
4918 
4919 #ifdef CONFIG_PREEMPT_NOTIFIERS
4920 
4921 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4922 
4923 void preempt_notifier_inc(void)
4924 {
4925 	static_branch_inc(&preempt_notifier_key);
4926 }
4927 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4928 
4929 void preempt_notifier_dec(void)
4930 {
4931 	static_branch_dec(&preempt_notifier_key);
4932 }
4933 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4934 
4935 /**
4936  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4937  * @notifier: notifier struct to register
4938  */
4939 void preempt_notifier_register(struct preempt_notifier *notifier)
4940 {
4941 	if (!static_branch_unlikely(&preempt_notifier_key))
4942 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4943 
4944 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4945 }
4946 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4947 
4948 /**
4949  * preempt_notifier_unregister - no longer interested in preemption notifications
4950  * @notifier: notifier struct to unregister
4951  *
4952  * This is *not* safe to call from within a preemption notifier.
4953  */
4954 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4955 {
4956 	hlist_del(&notifier->link);
4957 }
4958 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4959 
4960 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4961 {
4962 	struct preempt_notifier *notifier;
4963 
4964 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4965 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4966 }
4967 
4968 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4969 {
4970 	if (static_branch_unlikely(&preempt_notifier_key))
4971 		__fire_sched_in_preempt_notifiers(curr);
4972 }
4973 
4974 static void
4975 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4976 				   struct task_struct *next)
4977 {
4978 	struct preempt_notifier *notifier;
4979 
4980 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4981 		notifier->ops->sched_out(notifier, next);
4982 }
4983 
4984 static __always_inline void
4985 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4986 				 struct task_struct *next)
4987 {
4988 	if (static_branch_unlikely(&preempt_notifier_key))
4989 		__fire_sched_out_preempt_notifiers(curr, next);
4990 }
4991 
4992 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4993 
4994 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4995 {
4996 }
4997 
4998 static inline void
4999 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5000 				 struct task_struct *next)
5001 {
5002 }
5003 
5004 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5005 
5006 static inline void prepare_task(struct task_struct *next)
5007 {
5008 #ifdef CONFIG_SMP
5009 	/*
5010 	 * Claim the task as running, we do this before switching to it
5011 	 * such that any running task will have this set.
5012 	 *
5013 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5014 	 * its ordering comment.
5015 	 */
5016 	WRITE_ONCE(next->on_cpu, 1);
5017 #endif
5018 }
5019 
5020 static inline void finish_task(struct task_struct *prev)
5021 {
5022 #ifdef CONFIG_SMP
5023 	/*
5024 	 * This must be the very last reference to @prev from this CPU. After
5025 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5026 	 * must ensure this doesn't happen until the switch is completely
5027 	 * finished.
5028 	 *
5029 	 * In particular, the load of prev->state in finish_task_switch() must
5030 	 * happen before this.
5031 	 *
5032 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5033 	 */
5034 	smp_store_release(&prev->on_cpu, 0);
5035 #endif
5036 }
5037 
5038 #ifdef CONFIG_SMP
5039 
5040 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5041 {
5042 	void (*func)(struct rq *rq);
5043 	struct balance_callback *next;
5044 
5045 	lockdep_assert_rq_held(rq);
5046 
5047 	while (head) {
5048 		func = (void (*)(struct rq *))head->func;
5049 		next = head->next;
5050 		head->next = NULL;
5051 		head = next;
5052 
5053 		func(rq);
5054 	}
5055 }
5056 
5057 static void balance_push(struct rq *rq);
5058 
5059 /*
5060  * balance_push_callback is a right abuse of the callback interface and plays
5061  * by significantly different rules.
5062  *
5063  * Where the normal balance_callback's purpose is to be ran in the same context
5064  * that queued it (only later, when it's safe to drop rq->lock again),
5065  * balance_push_callback is specifically targeted at __schedule().
5066  *
5067  * This abuse is tolerated because it places all the unlikely/odd cases behind
5068  * a single test, namely: rq->balance_callback == NULL.
5069  */
5070 struct balance_callback balance_push_callback = {
5071 	.next = NULL,
5072 	.func = balance_push,
5073 };
5074 
5075 static inline struct balance_callback *
5076 __splice_balance_callbacks(struct rq *rq, bool split)
5077 {
5078 	struct balance_callback *head = rq->balance_callback;
5079 
5080 	if (likely(!head))
5081 		return NULL;
5082 
5083 	lockdep_assert_rq_held(rq);
5084 	/*
5085 	 * Must not take balance_push_callback off the list when
5086 	 * splice_balance_callbacks() and balance_callbacks() are not
5087 	 * in the same rq->lock section.
5088 	 *
5089 	 * In that case it would be possible for __schedule() to interleave
5090 	 * and observe the list empty.
5091 	 */
5092 	if (split && head == &balance_push_callback)
5093 		head = NULL;
5094 	else
5095 		rq->balance_callback = NULL;
5096 
5097 	return head;
5098 }
5099 
5100 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5101 {
5102 	return __splice_balance_callbacks(rq, true);
5103 }
5104 
5105 static void __balance_callbacks(struct rq *rq)
5106 {
5107 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5108 }
5109 
5110 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5111 {
5112 	unsigned long flags;
5113 
5114 	if (unlikely(head)) {
5115 		raw_spin_rq_lock_irqsave(rq, flags);
5116 		do_balance_callbacks(rq, head);
5117 		raw_spin_rq_unlock_irqrestore(rq, flags);
5118 	}
5119 }
5120 
5121 #else
5122 
5123 static inline void __balance_callbacks(struct rq *rq)
5124 {
5125 }
5126 
5127 #endif
5128 
5129 static inline void
5130 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5131 {
5132 	/*
5133 	 * Since the runqueue lock will be released by the next
5134 	 * task (which is an invalid locking op but in the case
5135 	 * of the scheduler it's an obvious special-case), so we
5136 	 * do an early lockdep release here:
5137 	 */
5138 	rq_unpin_lock(rq, rf);
5139 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5140 #ifdef CONFIG_DEBUG_SPINLOCK
5141 	/* this is a valid case when another task releases the spinlock */
5142 	rq_lockp(rq)->owner = next;
5143 #endif
5144 }
5145 
5146 static inline void finish_lock_switch(struct rq *rq)
5147 {
5148 	/*
5149 	 * If we are tracking spinlock dependencies then we have to
5150 	 * fix up the runqueue lock - which gets 'carried over' from
5151 	 * prev into current:
5152 	 */
5153 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5154 	__balance_callbacks(rq);
5155 	raw_spin_rq_unlock_irq(rq);
5156 }
5157 
5158 /*
5159  * NOP if the arch has not defined these:
5160  */
5161 
5162 #ifndef prepare_arch_switch
5163 # define prepare_arch_switch(next)	do { } while (0)
5164 #endif
5165 
5166 #ifndef finish_arch_post_lock_switch
5167 # define finish_arch_post_lock_switch()	do { } while (0)
5168 #endif
5169 
5170 static inline void kmap_local_sched_out(void)
5171 {
5172 #ifdef CONFIG_KMAP_LOCAL
5173 	if (unlikely(current->kmap_ctrl.idx))
5174 		__kmap_local_sched_out();
5175 #endif
5176 }
5177 
5178 static inline void kmap_local_sched_in(void)
5179 {
5180 #ifdef CONFIG_KMAP_LOCAL
5181 	if (unlikely(current->kmap_ctrl.idx))
5182 		__kmap_local_sched_in();
5183 #endif
5184 }
5185 
5186 /**
5187  * prepare_task_switch - prepare to switch tasks
5188  * @rq: the runqueue preparing to switch
5189  * @prev: the current task that is being switched out
5190  * @next: the task we are going to switch to.
5191  *
5192  * This is called with the rq lock held and interrupts off. It must
5193  * be paired with a subsequent finish_task_switch after the context
5194  * switch.
5195  *
5196  * prepare_task_switch sets up locking and calls architecture specific
5197  * hooks.
5198  */
5199 static inline void
5200 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5201 		    struct task_struct *next)
5202 {
5203 	kcov_prepare_switch(prev);
5204 	sched_info_switch(rq, prev, next);
5205 	perf_event_task_sched_out(prev, next);
5206 	rseq_preempt(prev);
5207 	fire_sched_out_preempt_notifiers(prev, next);
5208 	kmap_local_sched_out();
5209 	prepare_task(next);
5210 	prepare_arch_switch(next);
5211 }
5212 
5213 /**
5214  * finish_task_switch - clean up after a task-switch
5215  * @prev: the thread we just switched away from.
5216  *
5217  * finish_task_switch must be called after the context switch, paired
5218  * with a prepare_task_switch call before the context switch.
5219  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5220  * and do any other architecture-specific cleanup actions.
5221  *
5222  * Note that we may have delayed dropping an mm in context_switch(). If
5223  * so, we finish that here outside of the runqueue lock. (Doing it
5224  * with the lock held can cause deadlocks; see schedule() for
5225  * details.)
5226  *
5227  * The context switch have flipped the stack from under us and restored the
5228  * local variables which were saved when this task called schedule() in the
5229  * past. 'prev == current' is still correct but we need to recalculate this_rq
5230  * because prev may have moved to another CPU.
5231  */
5232 static struct rq *finish_task_switch(struct task_struct *prev)
5233 	__releases(rq->lock)
5234 {
5235 	struct rq *rq = this_rq();
5236 	struct mm_struct *mm = rq->prev_mm;
5237 	unsigned int prev_state;
5238 
5239 	/*
5240 	 * The previous task will have left us with a preempt_count of 2
5241 	 * because it left us after:
5242 	 *
5243 	 *	schedule()
5244 	 *	  preempt_disable();			// 1
5245 	 *	  __schedule()
5246 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5247 	 *
5248 	 * Also, see FORK_PREEMPT_COUNT.
5249 	 */
5250 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5251 		      "corrupted preempt_count: %s/%d/0x%x\n",
5252 		      current->comm, current->pid, preempt_count()))
5253 		preempt_count_set(FORK_PREEMPT_COUNT);
5254 
5255 	rq->prev_mm = NULL;
5256 
5257 	/*
5258 	 * A task struct has one reference for the use as "current".
5259 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5260 	 * schedule one last time. The schedule call will never return, and
5261 	 * the scheduled task must drop that reference.
5262 	 *
5263 	 * We must observe prev->state before clearing prev->on_cpu (in
5264 	 * finish_task), otherwise a concurrent wakeup can get prev
5265 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5266 	 * transition, resulting in a double drop.
5267 	 */
5268 	prev_state = READ_ONCE(prev->__state);
5269 	vtime_task_switch(prev);
5270 	perf_event_task_sched_in(prev, current);
5271 	finish_task(prev);
5272 	tick_nohz_task_switch();
5273 	finish_lock_switch(rq);
5274 	finish_arch_post_lock_switch();
5275 	kcov_finish_switch(current);
5276 	/*
5277 	 * kmap_local_sched_out() is invoked with rq::lock held and
5278 	 * interrupts disabled. There is no requirement for that, but the
5279 	 * sched out code does not have an interrupt enabled section.
5280 	 * Restoring the maps on sched in does not require interrupts being
5281 	 * disabled either.
5282 	 */
5283 	kmap_local_sched_in();
5284 
5285 	fire_sched_in_preempt_notifiers(current);
5286 	/*
5287 	 * When switching through a kernel thread, the loop in
5288 	 * membarrier_{private,global}_expedited() may have observed that
5289 	 * kernel thread and not issued an IPI. It is therefore possible to
5290 	 * schedule between user->kernel->user threads without passing though
5291 	 * switch_mm(). Membarrier requires a barrier after storing to
5292 	 * rq->curr, before returning to userspace, so provide them here:
5293 	 *
5294 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5295 	 *   provided by mmdrop_lazy_tlb(),
5296 	 * - a sync_core for SYNC_CORE.
5297 	 */
5298 	if (mm) {
5299 		membarrier_mm_sync_core_before_usermode(mm);
5300 		mmdrop_lazy_tlb_sched(mm);
5301 	}
5302 
5303 	if (unlikely(prev_state == TASK_DEAD)) {
5304 		if (prev->sched_class->task_dead)
5305 			prev->sched_class->task_dead(prev);
5306 
5307 		/* Task is done with its stack. */
5308 		put_task_stack(prev);
5309 
5310 		put_task_struct_rcu_user(prev);
5311 	}
5312 
5313 	return rq;
5314 }
5315 
5316 /**
5317  * schedule_tail - first thing a freshly forked thread must call.
5318  * @prev: the thread we just switched away from.
5319  */
5320 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5321 	__releases(rq->lock)
5322 {
5323 	/*
5324 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5325 	 * finish_task_switch() for details.
5326 	 *
5327 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5328 	 * and the preempt_enable() will end up enabling preemption (on
5329 	 * PREEMPT_COUNT kernels).
5330 	 */
5331 
5332 	finish_task_switch(prev);
5333 	/*
5334 	 * This is a special case: the newly created task has just
5335 	 * switched the context for the first time. It is returning from
5336 	 * schedule for the first time in this path.
5337 	 */
5338 	trace_sched_exit_tp(true);
5339 	preempt_enable();
5340 
5341 	if (current->set_child_tid)
5342 		put_user(task_pid_vnr(current), current->set_child_tid);
5343 
5344 	calculate_sigpending();
5345 }
5346 
5347 /*
5348  * context_switch - switch to the new MM and the new thread's register state.
5349  */
5350 static __always_inline struct rq *
5351 context_switch(struct rq *rq, struct task_struct *prev,
5352 	       struct task_struct *next, struct rq_flags *rf)
5353 {
5354 	prepare_task_switch(rq, prev, next);
5355 
5356 	/*
5357 	 * For paravirt, this is coupled with an exit in switch_to to
5358 	 * combine the page table reload and the switch backend into
5359 	 * one hypercall.
5360 	 */
5361 	arch_start_context_switch(prev);
5362 
5363 	/*
5364 	 * kernel -> kernel   lazy + transfer active
5365 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5366 	 *
5367 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5368 	 *   user ->   user   switch
5369 	 *
5370 	 * switch_mm_cid() needs to be updated if the barriers provided
5371 	 * by context_switch() are modified.
5372 	 */
5373 	if (!next->mm) {                                // to kernel
5374 		enter_lazy_tlb(prev->active_mm, next);
5375 
5376 		next->active_mm = prev->active_mm;
5377 		if (prev->mm)                           // from user
5378 			mmgrab_lazy_tlb(prev->active_mm);
5379 		else
5380 			prev->active_mm = NULL;
5381 	} else {                                        // to user
5382 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5383 		/*
5384 		 * sys_membarrier() requires an smp_mb() between setting
5385 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5386 		 *
5387 		 * The below provides this either through switch_mm(), or in
5388 		 * case 'prev->active_mm == next->mm' through
5389 		 * finish_task_switch()'s mmdrop().
5390 		 */
5391 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5392 		lru_gen_use_mm(next->mm);
5393 
5394 		if (!prev->mm) {                        // from kernel
5395 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5396 			rq->prev_mm = prev->active_mm;
5397 			prev->active_mm = NULL;
5398 		}
5399 	}
5400 
5401 	/* switch_mm_cid() requires the memory barriers above. */
5402 	switch_mm_cid(rq, prev, next);
5403 
5404 	prepare_lock_switch(rq, next, rf);
5405 
5406 	/* Here we just switch the register state and the stack. */
5407 	switch_to(prev, next, prev);
5408 	barrier();
5409 
5410 	return finish_task_switch(prev);
5411 }
5412 
5413 /*
5414  * nr_running and nr_context_switches:
5415  *
5416  * externally visible scheduler statistics: current number of runnable
5417  * threads, total number of context switches performed since bootup.
5418  */
5419 unsigned int nr_running(void)
5420 {
5421 	unsigned int i, sum = 0;
5422 
5423 	for_each_online_cpu(i)
5424 		sum += cpu_rq(i)->nr_running;
5425 
5426 	return sum;
5427 }
5428 
5429 /*
5430  * Check if only the current task is running on the CPU.
5431  *
5432  * Caution: this function does not check that the caller has disabled
5433  * preemption, thus the result might have a time-of-check-to-time-of-use
5434  * race.  The caller is responsible to use it correctly, for example:
5435  *
5436  * - from a non-preemptible section (of course)
5437  *
5438  * - from a thread that is bound to a single CPU
5439  *
5440  * - in a loop with very short iterations (e.g. a polling loop)
5441  */
5442 bool single_task_running(void)
5443 {
5444 	return raw_rq()->nr_running == 1;
5445 }
5446 EXPORT_SYMBOL(single_task_running);
5447 
5448 unsigned long long nr_context_switches_cpu(int cpu)
5449 {
5450 	return cpu_rq(cpu)->nr_switches;
5451 }
5452 
5453 unsigned long long nr_context_switches(void)
5454 {
5455 	int i;
5456 	unsigned long long sum = 0;
5457 
5458 	for_each_possible_cpu(i)
5459 		sum += cpu_rq(i)->nr_switches;
5460 
5461 	return sum;
5462 }
5463 
5464 /*
5465  * Consumers of these two interfaces, like for example the cpuidle menu
5466  * governor, are using nonsensical data. Preferring shallow idle state selection
5467  * for a CPU that has IO-wait which might not even end up running the task when
5468  * it does become runnable.
5469  */
5470 
5471 unsigned int nr_iowait_cpu(int cpu)
5472 {
5473 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5474 }
5475 
5476 /*
5477  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5478  *
5479  * The idea behind IO-wait account is to account the idle time that we could
5480  * have spend running if it were not for IO. That is, if we were to improve the
5481  * storage performance, we'd have a proportional reduction in IO-wait time.
5482  *
5483  * This all works nicely on UP, where, when a task blocks on IO, we account
5484  * idle time as IO-wait, because if the storage were faster, it could've been
5485  * running and we'd not be idle.
5486  *
5487  * This has been extended to SMP, by doing the same for each CPU. This however
5488  * is broken.
5489  *
5490  * Imagine for instance the case where two tasks block on one CPU, only the one
5491  * CPU will have IO-wait accounted, while the other has regular idle. Even
5492  * though, if the storage were faster, both could've ran at the same time,
5493  * utilising both CPUs.
5494  *
5495  * This means, that when looking globally, the current IO-wait accounting on
5496  * SMP is a lower bound, by reason of under accounting.
5497  *
5498  * Worse, since the numbers are provided per CPU, they are sometimes
5499  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5500  * associated with any one particular CPU, it can wake to another CPU than it
5501  * blocked on. This means the per CPU IO-wait number is meaningless.
5502  *
5503  * Task CPU affinities can make all that even more 'interesting'.
5504  */
5505 
5506 unsigned int nr_iowait(void)
5507 {
5508 	unsigned int i, sum = 0;
5509 
5510 	for_each_possible_cpu(i)
5511 		sum += nr_iowait_cpu(i);
5512 
5513 	return sum;
5514 }
5515 
5516 #ifdef CONFIG_SMP
5517 
5518 /*
5519  * sched_exec - execve() is a valuable balancing opportunity, because at
5520  * this point the task has the smallest effective memory and cache footprint.
5521  */
5522 void sched_exec(void)
5523 {
5524 	struct task_struct *p = current;
5525 	struct migration_arg arg;
5526 	int dest_cpu;
5527 
5528 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5529 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5530 		if (dest_cpu == smp_processor_id())
5531 			return;
5532 
5533 		if (unlikely(!cpu_active(dest_cpu)))
5534 			return;
5535 
5536 		arg = (struct migration_arg){ p, dest_cpu };
5537 	}
5538 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5539 }
5540 
5541 #endif
5542 
5543 DEFINE_PER_CPU(struct kernel_stat, kstat);
5544 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5545 
5546 EXPORT_PER_CPU_SYMBOL(kstat);
5547 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5548 
5549 /*
5550  * The function fair_sched_class.update_curr accesses the struct curr
5551  * and its field curr->exec_start; when called from task_sched_runtime(),
5552  * we observe a high rate of cache misses in practice.
5553  * Prefetching this data results in improved performance.
5554  */
5555 static inline void prefetch_curr_exec_start(struct task_struct *p)
5556 {
5557 #ifdef CONFIG_FAIR_GROUP_SCHED
5558 	struct sched_entity *curr = p->se.cfs_rq->curr;
5559 #else
5560 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5561 #endif
5562 	prefetch(curr);
5563 	prefetch(&curr->exec_start);
5564 }
5565 
5566 /*
5567  * Return accounted runtime for the task.
5568  * In case the task is currently running, return the runtime plus current's
5569  * pending runtime that have not been accounted yet.
5570  */
5571 unsigned long long task_sched_runtime(struct task_struct *p)
5572 {
5573 	struct rq_flags rf;
5574 	struct rq *rq;
5575 	u64 ns;
5576 
5577 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5578 	/*
5579 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5580 	 * So we have a optimization chance when the task's delta_exec is 0.
5581 	 * Reading ->on_cpu is racy, but this is OK.
5582 	 *
5583 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5584 	 * If we race with it entering CPU, unaccounted time is 0. This is
5585 	 * indistinguishable from the read occurring a few cycles earlier.
5586 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5587 	 * been accounted, so we're correct here as well.
5588 	 */
5589 	if (!p->on_cpu || !task_on_rq_queued(p))
5590 		return p->se.sum_exec_runtime;
5591 #endif
5592 
5593 	rq = task_rq_lock(p, &rf);
5594 	/*
5595 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5596 	 * project cycles that may never be accounted to this
5597 	 * thread, breaking clock_gettime().
5598 	 */
5599 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5600 		prefetch_curr_exec_start(p);
5601 		update_rq_clock(rq);
5602 		p->sched_class->update_curr(rq);
5603 	}
5604 	ns = p->se.sum_exec_runtime;
5605 	task_rq_unlock(rq, p, &rf);
5606 
5607 	return ns;
5608 }
5609 
5610 static u64 cpu_resched_latency(struct rq *rq)
5611 {
5612 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5613 	u64 resched_latency, now = rq_clock(rq);
5614 	static bool warned_once;
5615 
5616 	if (sysctl_resched_latency_warn_once && warned_once)
5617 		return 0;
5618 
5619 	if (!need_resched() || !latency_warn_ms)
5620 		return 0;
5621 
5622 	if (system_state == SYSTEM_BOOTING)
5623 		return 0;
5624 
5625 	if (!rq->last_seen_need_resched_ns) {
5626 		rq->last_seen_need_resched_ns = now;
5627 		rq->ticks_without_resched = 0;
5628 		return 0;
5629 	}
5630 
5631 	rq->ticks_without_resched++;
5632 	resched_latency = now - rq->last_seen_need_resched_ns;
5633 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5634 		return 0;
5635 
5636 	warned_once = true;
5637 
5638 	return resched_latency;
5639 }
5640 
5641 static int __init setup_resched_latency_warn_ms(char *str)
5642 {
5643 	long val;
5644 
5645 	if ((kstrtol(str, 0, &val))) {
5646 		pr_warn("Unable to set resched_latency_warn_ms\n");
5647 		return 1;
5648 	}
5649 
5650 	sysctl_resched_latency_warn_ms = val;
5651 	return 1;
5652 }
5653 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5654 
5655 /*
5656  * This function gets called by the timer code, with HZ frequency.
5657  * We call it with interrupts disabled.
5658  */
5659 void sched_tick(void)
5660 {
5661 	int cpu = smp_processor_id();
5662 	struct rq *rq = cpu_rq(cpu);
5663 	/* accounting goes to the donor task */
5664 	struct task_struct *donor;
5665 	struct rq_flags rf;
5666 	unsigned long hw_pressure;
5667 	u64 resched_latency;
5668 
5669 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5670 		arch_scale_freq_tick();
5671 
5672 	sched_clock_tick();
5673 
5674 	rq_lock(rq, &rf);
5675 	donor = rq->donor;
5676 
5677 	psi_account_irqtime(rq, donor, NULL);
5678 
5679 	update_rq_clock(rq);
5680 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5681 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5682 
5683 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5684 		resched_curr(rq);
5685 
5686 	donor->sched_class->task_tick(rq, donor, 0);
5687 	if (sched_feat(LATENCY_WARN))
5688 		resched_latency = cpu_resched_latency(rq);
5689 	calc_global_load_tick(rq);
5690 	sched_core_tick(rq);
5691 	task_tick_mm_cid(rq, donor);
5692 	scx_tick(rq);
5693 
5694 	rq_unlock(rq, &rf);
5695 
5696 	if (sched_feat(LATENCY_WARN) && resched_latency)
5697 		resched_latency_warn(cpu, resched_latency);
5698 
5699 	perf_event_task_tick();
5700 
5701 	if (donor->flags & PF_WQ_WORKER)
5702 		wq_worker_tick(donor);
5703 
5704 #ifdef CONFIG_SMP
5705 	if (!scx_switched_all()) {
5706 		rq->idle_balance = idle_cpu(cpu);
5707 		sched_balance_trigger(rq);
5708 	}
5709 #endif
5710 }
5711 
5712 #ifdef CONFIG_NO_HZ_FULL
5713 
5714 struct tick_work {
5715 	int			cpu;
5716 	atomic_t		state;
5717 	struct delayed_work	work;
5718 };
5719 /* Values for ->state, see diagram below. */
5720 #define TICK_SCHED_REMOTE_OFFLINE	0
5721 #define TICK_SCHED_REMOTE_OFFLINING	1
5722 #define TICK_SCHED_REMOTE_RUNNING	2
5723 
5724 /*
5725  * State diagram for ->state:
5726  *
5727  *
5728  *          TICK_SCHED_REMOTE_OFFLINE
5729  *                    |   ^
5730  *                    |   |
5731  *                    |   | sched_tick_remote()
5732  *                    |   |
5733  *                    |   |
5734  *                    +--TICK_SCHED_REMOTE_OFFLINING
5735  *                    |   ^
5736  *                    |   |
5737  * sched_tick_start() |   | sched_tick_stop()
5738  *                    |   |
5739  *                    V   |
5740  *          TICK_SCHED_REMOTE_RUNNING
5741  *
5742  *
5743  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5744  * and sched_tick_start() are happy to leave the state in RUNNING.
5745  */
5746 
5747 static struct tick_work __percpu *tick_work_cpu;
5748 
5749 static void sched_tick_remote(struct work_struct *work)
5750 {
5751 	struct delayed_work *dwork = to_delayed_work(work);
5752 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5753 	int cpu = twork->cpu;
5754 	struct rq *rq = cpu_rq(cpu);
5755 	int os;
5756 
5757 	/*
5758 	 * Handle the tick only if it appears the remote CPU is running in full
5759 	 * dynticks mode. The check is racy by nature, but missing a tick or
5760 	 * having one too much is no big deal because the scheduler tick updates
5761 	 * statistics and checks timeslices in a time-independent way, regardless
5762 	 * of when exactly it is running.
5763 	 */
5764 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5765 		guard(rq_lock_irq)(rq);
5766 		struct task_struct *curr = rq->curr;
5767 
5768 		if (cpu_online(cpu)) {
5769 			/*
5770 			 * Since this is a remote tick for full dynticks mode,
5771 			 * we are always sure that there is no proxy (only a
5772 			 * single task is running).
5773 			 */
5774 			WARN_ON_ONCE(rq->curr != rq->donor);
5775 			update_rq_clock(rq);
5776 
5777 			if (!is_idle_task(curr)) {
5778 				/*
5779 				 * Make sure the next tick runs within a
5780 				 * reasonable amount of time.
5781 				 */
5782 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5783 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5784 			}
5785 			curr->sched_class->task_tick(rq, curr, 0);
5786 
5787 			calc_load_nohz_remote(rq);
5788 		}
5789 	}
5790 
5791 	/*
5792 	 * Run the remote tick once per second (1Hz). This arbitrary
5793 	 * frequency is large enough to avoid overload but short enough
5794 	 * to keep scheduler internal stats reasonably up to date.  But
5795 	 * first update state to reflect hotplug activity if required.
5796 	 */
5797 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5798 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5799 	if (os == TICK_SCHED_REMOTE_RUNNING)
5800 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5801 }
5802 
5803 static void sched_tick_start(int cpu)
5804 {
5805 	int os;
5806 	struct tick_work *twork;
5807 
5808 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5809 		return;
5810 
5811 	WARN_ON_ONCE(!tick_work_cpu);
5812 
5813 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5814 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5815 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5816 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5817 		twork->cpu = cpu;
5818 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5819 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5820 	}
5821 }
5822 
5823 #ifdef CONFIG_HOTPLUG_CPU
5824 static void sched_tick_stop(int cpu)
5825 {
5826 	struct tick_work *twork;
5827 	int os;
5828 
5829 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5830 		return;
5831 
5832 	WARN_ON_ONCE(!tick_work_cpu);
5833 
5834 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5835 	/* There cannot be competing actions, but don't rely on stop-machine. */
5836 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5837 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5838 	/* Don't cancel, as this would mess up the state machine. */
5839 }
5840 #endif /* CONFIG_HOTPLUG_CPU */
5841 
5842 int __init sched_tick_offload_init(void)
5843 {
5844 	tick_work_cpu = alloc_percpu(struct tick_work);
5845 	BUG_ON(!tick_work_cpu);
5846 	return 0;
5847 }
5848 
5849 #else /* !CONFIG_NO_HZ_FULL */
5850 static inline void sched_tick_start(int cpu) { }
5851 static inline void sched_tick_stop(int cpu) { }
5852 #endif
5853 
5854 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5855 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5856 /*
5857  * If the value passed in is equal to the current preempt count
5858  * then we just disabled preemption. Start timing the latency.
5859  */
5860 static inline void preempt_latency_start(int val)
5861 {
5862 	if (preempt_count() == val) {
5863 		unsigned long ip = get_lock_parent_ip();
5864 #ifdef CONFIG_DEBUG_PREEMPT
5865 		current->preempt_disable_ip = ip;
5866 #endif
5867 		trace_preempt_off(CALLER_ADDR0, ip);
5868 	}
5869 }
5870 
5871 void preempt_count_add(int val)
5872 {
5873 #ifdef CONFIG_DEBUG_PREEMPT
5874 	/*
5875 	 * Underflow?
5876 	 */
5877 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5878 		return;
5879 #endif
5880 	__preempt_count_add(val);
5881 #ifdef CONFIG_DEBUG_PREEMPT
5882 	/*
5883 	 * Spinlock count overflowing soon?
5884 	 */
5885 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5886 				PREEMPT_MASK - 10);
5887 #endif
5888 	preempt_latency_start(val);
5889 }
5890 EXPORT_SYMBOL(preempt_count_add);
5891 NOKPROBE_SYMBOL(preempt_count_add);
5892 
5893 /*
5894  * If the value passed in equals to the current preempt count
5895  * then we just enabled preemption. Stop timing the latency.
5896  */
5897 static inline void preempt_latency_stop(int val)
5898 {
5899 	if (preempt_count() == val)
5900 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5901 }
5902 
5903 void preempt_count_sub(int val)
5904 {
5905 #ifdef CONFIG_DEBUG_PREEMPT
5906 	/*
5907 	 * Underflow?
5908 	 */
5909 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5910 		return;
5911 	/*
5912 	 * Is the spinlock portion underflowing?
5913 	 */
5914 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5915 			!(preempt_count() & PREEMPT_MASK)))
5916 		return;
5917 #endif
5918 
5919 	preempt_latency_stop(val);
5920 	__preempt_count_sub(val);
5921 }
5922 EXPORT_SYMBOL(preempt_count_sub);
5923 NOKPROBE_SYMBOL(preempt_count_sub);
5924 
5925 #else
5926 static inline void preempt_latency_start(int val) { }
5927 static inline void preempt_latency_stop(int val) { }
5928 #endif
5929 
5930 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5931 {
5932 #ifdef CONFIG_DEBUG_PREEMPT
5933 	return p->preempt_disable_ip;
5934 #else
5935 	return 0;
5936 #endif
5937 }
5938 
5939 /*
5940  * Print scheduling while atomic bug:
5941  */
5942 static noinline void __schedule_bug(struct task_struct *prev)
5943 {
5944 	/* Save this before calling printk(), since that will clobber it */
5945 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5946 
5947 	if (oops_in_progress)
5948 		return;
5949 
5950 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5951 		prev->comm, prev->pid, preempt_count());
5952 
5953 	debug_show_held_locks(prev);
5954 	print_modules();
5955 	if (irqs_disabled())
5956 		print_irqtrace_events(prev);
5957 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5958 		pr_err("Preemption disabled at:");
5959 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5960 	}
5961 	check_panic_on_warn("scheduling while atomic");
5962 
5963 	dump_stack();
5964 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5965 }
5966 
5967 /*
5968  * Various schedule()-time debugging checks and statistics:
5969  */
5970 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5971 {
5972 #ifdef CONFIG_SCHED_STACK_END_CHECK
5973 	if (task_stack_end_corrupted(prev))
5974 		panic("corrupted stack end detected inside scheduler\n");
5975 
5976 	if (task_scs_end_corrupted(prev))
5977 		panic("corrupted shadow stack detected inside scheduler\n");
5978 #endif
5979 
5980 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5981 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5982 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5983 			prev->comm, prev->pid, prev->non_block_count);
5984 		dump_stack();
5985 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5986 	}
5987 #endif
5988 
5989 	if (unlikely(in_atomic_preempt_off())) {
5990 		__schedule_bug(prev);
5991 		preempt_count_set(PREEMPT_DISABLED);
5992 	}
5993 	rcu_sleep_check();
5994 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5995 
5996 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5997 
5998 	schedstat_inc(this_rq()->sched_count);
5999 }
6000 
6001 static void prev_balance(struct rq *rq, struct task_struct *prev,
6002 			 struct rq_flags *rf)
6003 {
6004 	const struct sched_class *start_class = prev->sched_class;
6005 	const struct sched_class *class;
6006 
6007 #ifdef CONFIG_SCHED_CLASS_EXT
6008 	/*
6009 	 * SCX requires a balance() call before every pick_task() including when
6010 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
6011 	 * SCX instead. Also, set a flag to detect missing balance() call.
6012 	 */
6013 	if (scx_enabled()) {
6014 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6015 		if (sched_class_above(&ext_sched_class, start_class))
6016 			start_class = &ext_sched_class;
6017 	}
6018 #endif
6019 
6020 	/*
6021 	 * We must do the balancing pass before put_prev_task(), such
6022 	 * that when we release the rq->lock the task is in the same
6023 	 * state as before we took rq->lock.
6024 	 *
6025 	 * We can terminate the balance pass as soon as we know there is
6026 	 * a runnable task of @class priority or higher.
6027 	 */
6028 	for_active_class_range(class, start_class, &idle_sched_class) {
6029 		if (class->balance && class->balance(rq, prev, rf))
6030 			break;
6031 	}
6032 }
6033 
6034 /*
6035  * Pick up the highest-prio task:
6036  */
6037 static inline struct task_struct *
6038 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6039 {
6040 	const struct sched_class *class;
6041 	struct task_struct *p;
6042 
6043 	rq->dl_server = NULL;
6044 
6045 	if (scx_enabled())
6046 		goto restart;
6047 
6048 	/*
6049 	 * Optimization: we know that if all tasks are in the fair class we can
6050 	 * call that function directly, but only if the @prev task wasn't of a
6051 	 * higher scheduling class, because otherwise those lose the
6052 	 * opportunity to pull in more work from other CPUs.
6053 	 */
6054 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6055 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6056 
6057 		p = pick_next_task_fair(rq, prev, rf);
6058 		if (unlikely(p == RETRY_TASK))
6059 			goto restart;
6060 
6061 		/* Assume the next prioritized class is idle_sched_class */
6062 		if (!p) {
6063 			p = pick_task_idle(rq);
6064 			put_prev_set_next_task(rq, prev, p);
6065 		}
6066 
6067 		return p;
6068 	}
6069 
6070 restart:
6071 	prev_balance(rq, prev, rf);
6072 
6073 	for_each_active_class(class) {
6074 		if (class->pick_next_task) {
6075 			p = class->pick_next_task(rq, prev);
6076 			if (p)
6077 				return p;
6078 		} else {
6079 			p = class->pick_task(rq);
6080 			if (p) {
6081 				put_prev_set_next_task(rq, prev, p);
6082 				return p;
6083 			}
6084 		}
6085 	}
6086 
6087 	BUG(); /* The idle class should always have a runnable task. */
6088 }
6089 
6090 #ifdef CONFIG_SCHED_CORE
6091 static inline bool is_task_rq_idle(struct task_struct *t)
6092 {
6093 	return (task_rq(t)->idle == t);
6094 }
6095 
6096 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6097 {
6098 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6099 }
6100 
6101 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6102 {
6103 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6104 		return true;
6105 
6106 	return a->core_cookie == b->core_cookie;
6107 }
6108 
6109 static inline struct task_struct *pick_task(struct rq *rq)
6110 {
6111 	const struct sched_class *class;
6112 	struct task_struct *p;
6113 
6114 	rq->dl_server = NULL;
6115 
6116 	for_each_active_class(class) {
6117 		p = class->pick_task(rq);
6118 		if (p)
6119 			return p;
6120 	}
6121 
6122 	BUG(); /* The idle class should always have a runnable task. */
6123 }
6124 
6125 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6126 
6127 static void queue_core_balance(struct rq *rq);
6128 
6129 static struct task_struct *
6130 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6131 {
6132 	struct task_struct *next, *p, *max = NULL;
6133 	const struct cpumask *smt_mask;
6134 	bool fi_before = false;
6135 	bool core_clock_updated = (rq == rq->core);
6136 	unsigned long cookie;
6137 	int i, cpu, occ = 0;
6138 	struct rq *rq_i;
6139 	bool need_sync;
6140 
6141 	if (!sched_core_enabled(rq))
6142 		return __pick_next_task(rq, prev, rf);
6143 
6144 	cpu = cpu_of(rq);
6145 
6146 	/* Stopper task is switching into idle, no need core-wide selection. */
6147 	if (cpu_is_offline(cpu)) {
6148 		/*
6149 		 * Reset core_pick so that we don't enter the fastpath when
6150 		 * coming online. core_pick would already be migrated to
6151 		 * another cpu during offline.
6152 		 */
6153 		rq->core_pick = NULL;
6154 		rq->core_dl_server = NULL;
6155 		return __pick_next_task(rq, prev, rf);
6156 	}
6157 
6158 	/*
6159 	 * If there were no {en,de}queues since we picked (IOW, the task
6160 	 * pointers are all still valid), and we haven't scheduled the last
6161 	 * pick yet, do so now.
6162 	 *
6163 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6164 	 * it was either offline or went offline during a sibling's core-wide
6165 	 * selection. In this case, do a core-wide selection.
6166 	 */
6167 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6168 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6169 	    rq->core_pick) {
6170 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6171 
6172 		next = rq->core_pick;
6173 		rq->dl_server = rq->core_dl_server;
6174 		rq->core_pick = NULL;
6175 		rq->core_dl_server = NULL;
6176 		goto out_set_next;
6177 	}
6178 
6179 	prev_balance(rq, prev, rf);
6180 
6181 	smt_mask = cpu_smt_mask(cpu);
6182 	need_sync = !!rq->core->core_cookie;
6183 
6184 	/* reset state */
6185 	rq->core->core_cookie = 0UL;
6186 	if (rq->core->core_forceidle_count) {
6187 		if (!core_clock_updated) {
6188 			update_rq_clock(rq->core);
6189 			core_clock_updated = true;
6190 		}
6191 		sched_core_account_forceidle(rq);
6192 		/* reset after accounting force idle */
6193 		rq->core->core_forceidle_start = 0;
6194 		rq->core->core_forceidle_count = 0;
6195 		rq->core->core_forceidle_occupation = 0;
6196 		need_sync = true;
6197 		fi_before = true;
6198 	}
6199 
6200 	/*
6201 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6202 	 *
6203 	 * @task_seq guards the task state ({en,de}queues)
6204 	 * @pick_seq is the @task_seq we did a selection on
6205 	 * @sched_seq is the @pick_seq we scheduled
6206 	 *
6207 	 * However, preemptions can cause multiple picks on the same task set.
6208 	 * 'Fix' this by also increasing @task_seq for every pick.
6209 	 */
6210 	rq->core->core_task_seq++;
6211 
6212 	/*
6213 	 * Optimize for common case where this CPU has no cookies
6214 	 * and there are no cookied tasks running on siblings.
6215 	 */
6216 	if (!need_sync) {
6217 		next = pick_task(rq);
6218 		if (!next->core_cookie) {
6219 			rq->core_pick = NULL;
6220 			rq->core_dl_server = NULL;
6221 			/*
6222 			 * For robustness, update the min_vruntime_fi for
6223 			 * unconstrained picks as well.
6224 			 */
6225 			WARN_ON_ONCE(fi_before);
6226 			task_vruntime_update(rq, next, false);
6227 			goto out_set_next;
6228 		}
6229 	}
6230 
6231 	/*
6232 	 * For each thread: do the regular task pick and find the max prio task
6233 	 * amongst them.
6234 	 *
6235 	 * Tie-break prio towards the current CPU
6236 	 */
6237 	for_each_cpu_wrap(i, smt_mask, cpu) {
6238 		rq_i = cpu_rq(i);
6239 
6240 		/*
6241 		 * Current cpu always has its clock updated on entrance to
6242 		 * pick_next_task(). If the current cpu is not the core,
6243 		 * the core may also have been updated above.
6244 		 */
6245 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6246 			update_rq_clock(rq_i);
6247 
6248 		rq_i->core_pick = p = pick_task(rq_i);
6249 		rq_i->core_dl_server = rq_i->dl_server;
6250 
6251 		if (!max || prio_less(max, p, fi_before))
6252 			max = p;
6253 	}
6254 
6255 	cookie = rq->core->core_cookie = max->core_cookie;
6256 
6257 	/*
6258 	 * For each thread: try and find a runnable task that matches @max or
6259 	 * force idle.
6260 	 */
6261 	for_each_cpu(i, smt_mask) {
6262 		rq_i = cpu_rq(i);
6263 		p = rq_i->core_pick;
6264 
6265 		if (!cookie_equals(p, cookie)) {
6266 			p = NULL;
6267 			if (cookie)
6268 				p = sched_core_find(rq_i, cookie);
6269 			if (!p)
6270 				p = idle_sched_class.pick_task(rq_i);
6271 		}
6272 
6273 		rq_i->core_pick = p;
6274 		rq_i->core_dl_server = NULL;
6275 
6276 		if (p == rq_i->idle) {
6277 			if (rq_i->nr_running) {
6278 				rq->core->core_forceidle_count++;
6279 				if (!fi_before)
6280 					rq->core->core_forceidle_seq++;
6281 			}
6282 		} else {
6283 			occ++;
6284 		}
6285 	}
6286 
6287 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6288 		rq->core->core_forceidle_start = rq_clock(rq->core);
6289 		rq->core->core_forceidle_occupation = occ;
6290 	}
6291 
6292 	rq->core->core_pick_seq = rq->core->core_task_seq;
6293 	next = rq->core_pick;
6294 	rq->core_sched_seq = rq->core->core_pick_seq;
6295 
6296 	/* Something should have been selected for current CPU */
6297 	WARN_ON_ONCE(!next);
6298 
6299 	/*
6300 	 * Reschedule siblings
6301 	 *
6302 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6303 	 * sending an IPI (below) ensures the sibling will no longer be running
6304 	 * their task. This ensures there is no inter-sibling overlap between
6305 	 * non-matching user state.
6306 	 */
6307 	for_each_cpu(i, smt_mask) {
6308 		rq_i = cpu_rq(i);
6309 
6310 		/*
6311 		 * An online sibling might have gone offline before a task
6312 		 * could be picked for it, or it might be offline but later
6313 		 * happen to come online, but its too late and nothing was
6314 		 * picked for it.  That's Ok - it will pick tasks for itself,
6315 		 * so ignore it.
6316 		 */
6317 		if (!rq_i->core_pick)
6318 			continue;
6319 
6320 		/*
6321 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6322 		 * fi_before     fi      update?
6323 		 *  0            0       1
6324 		 *  0            1       1
6325 		 *  1            0       1
6326 		 *  1            1       0
6327 		 */
6328 		if (!(fi_before && rq->core->core_forceidle_count))
6329 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6330 
6331 		rq_i->core_pick->core_occupation = occ;
6332 
6333 		if (i == cpu) {
6334 			rq_i->core_pick = NULL;
6335 			rq_i->core_dl_server = NULL;
6336 			continue;
6337 		}
6338 
6339 		/* Did we break L1TF mitigation requirements? */
6340 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6341 
6342 		if (rq_i->curr == rq_i->core_pick) {
6343 			rq_i->core_pick = NULL;
6344 			rq_i->core_dl_server = NULL;
6345 			continue;
6346 		}
6347 
6348 		resched_curr(rq_i);
6349 	}
6350 
6351 out_set_next:
6352 	put_prev_set_next_task(rq, prev, next);
6353 	if (rq->core->core_forceidle_count && next == rq->idle)
6354 		queue_core_balance(rq);
6355 
6356 	return next;
6357 }
6358 
6359 static bool try_steal_cookie(int this, int that)
6360 {
6361 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6362 	struct task_struct *p;
6363 	unsigned long cookie;
6364 	bool success = false;
6365 
6366 	guard(irq)();
6367 	guard(double_rq_lock)(dst, src);
6368 
6369 	cookie = dst->core->core_cookie;
6370 	if (!cookie)
6371 		return false;
6372 
6373 	if (dst->curr != dst->idle)
6374 		return false;
6375 
6376 	p = sched_core_find(src, cookie);
6377 	if (!p)
6378 		return false;
6379 
6380 	do {
6381 		if (p == src->core_pick || p == src->curr)
6382 			goto next;
6383 
6384 		if (!is_cpu_allowed(p, this))
6385 			goto next;
6386 
6387 		if (p->core_occupation > dst->idle->core_occupation)
6388 			goto next;
6389 		/*
6390 		 * sched_core_find() and sched_core_next() will ensure
6391 		 * that task @p is not throttled now, we also need to
6392 		 * check whether the runqueue of the destination CPU is
6393 		 * being throttled.
6394 		 */
6395 		if (sched_task_is_throttled(p, this))
6396 			goto next;
6397 
6398 		move_queued_task_locked(src, dst, p);
6399 		resched_curr(dst);
6400 
6401 		success = true;
6402 		break;
6403 
6404 next:
6405 		p = sched_core_next(p, cookie);
6406 	} while (p);
6407 
6408 	return success;
6409 }
6410 
6411 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6412 {
6413 	int i;
6414 
6415 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6416 		if (i == cpu)
6417 			continue;
6418 
6419 		if (need_resched())
6420 			break;
6421 
6422 		if (try_steal_cookie(cpu, i))
6423 			return true;
6424 	}
6425 
6426 	return false;
6427 }
6428 
6429 static void sched_core_balance(struct rq *rq)
6430 {
6431 	struct sched_domain *sd;
6432 	int cpu = cpu_of(rq);
6433 
6434 	guard(preempt)();
6435 	guard(rcu)();
6436 
6437 	raw_spin_rq_unlock_irq(rq);
6438 	for_each_domain(cpu, sd) {
6439 		if (need_resched())
6440 			break;
6441 
6442 		if (steal_cookie_task(cpu, sd))
6443 			break;
6444 	}
6445 	raw_spin_rq_lock_irq(rq);
6446 }
6447 
6448 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6449 
6450 static void queue_core_balance(struct rq *rq)
6451 {
6452 	if (!sched_core_enabled(rq))
6453 		return;
6454 
6455 	if (!rq->core->core_cookie)
6456 		return;
6457 
6458 	if (!rq->nr_running) /* not forced idle */
6459 		return;
6460 
6461 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6462 }
6463 
6464 DEFINE_LOCK_GUARD_1(core_lock, int,
6465 		    sched_core_lock(*_T->lock, &_T->flags),
6466 		    sched_core_unlock(*_T->lock, &_T->flags),
6467 		    unsigned long flags)
6468 
6469 static void sched_core_cpu_starting(unsigned int cpu)
6470 {
6471 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6472 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6473 	int t;
6474 
6475 	guard(core_lock)(&cpu);
6476 
6477 	WARN_ON_ONCE(rq->core != rq);
6478 
6479 	/* if we're the first, we'll be our own leader */
6480 	if (cpumask_weight(smt_mask) == 1)
6481 		return;
6482 
6483 	/* find the leader */
6484 	for_each_cpu(t, smt_mask) {
6485 		if (t == cpu)
6486 			continue;
6487 		rq = cpu_rq(t);
6488 		if (rq->core == rq) {
6489 			core_rq = rq;
6490 			break;
6491 		}
6492 	}
6493 
6494 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6495 		return;
6496 
6497 	/* install and validate core_rq */
6498 	for_each_cpu(t, smt_mask) {
6499 		rq = cpu_rq(t);
6500 
6501 		if (t == cpu)
6502 			rq->core = core_rq;
6503 
6504 		WARN_ON_ONCE(rq->core != core_rq);
6505 	}
6506 }
6507 
6508 static void sched_core_cpu_deactivate(unsigned int cpu)
6509 {
6510 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6511 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6512 	int t;
6513 
6514 	guard(core_lock)(&cpu);
6515 
6516 	/* if we're the last man standing, nothing to do */
6517 	if (cpumask_weight(smt_mask) == 1) {
6518 		WARN_ON_ONCE(rq->core != rq);
6519 		return;
6520 	}
6521 
6522 	/* if we're not the leader, nothing to do */
6523 	if (rq->core != rq)
6524 		return;
6525 
6526 	/* find a new leader */
6527 	for_each_cpu(t, smt_mask) {
6528 		if (t == cpu)
6529 			continue;
6530 		core_rq = cpu_rq(t);
6531 		break;
6532 	}
6533 
6534 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6535 		return;
6536 
6537 	/* copy the shared state to the new leader */
6538 	core_rq->core_task_seq             = rq->core_task_seq;
6539 	core_rq->core_pick_seq             = rq->core_pick_seq;
6540 	core_rq->core_cookie               = rq->core_cookie;
6541 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6542 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6543 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6544 
6545 	/*
6546 	 * Accounting edge for forced idle is handled in pick_next_task().
6547 	 * Don't need another one here, since the hotplug thread shouldn't
6548 	 * have a cookie.
6549 	 */
6550 	core_rq->core_forceidle_start = 0;
6551 
6552 	/* install new leader */
6553 	for_each_cpu(t, smt_mask) {
6554 		rq = cpu_rq(t);
6555 		rq->core = core_rq;
6556 	}
6557 }
6558 
6559 static inline void sched_core_cpu_dying(unsigned int cpu)
6560 {
6561 	struct rq *rq = cpu_rq(cpu);
6562 
6563 	if (rq->core != rq)
6564 		rq->core = rq;
6565 }
6566 
6567 #else /* !CONFIG_SCHED_CORE */
6568 
6569 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6570 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6571 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6572 
6573 static struct task_struct *
6574 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6575 {
6576 	return __pick_next_task(rq, prev, rf);
6577 }
6578 
6579 #endif /* CONFIG_SCHED_CORE */
6580 
6581 /*
6582  * Constants for the sched_mode argument of __schedule().
6583  *
6584  * The mode argument allows RT enabled kernels to differentiate a
6585  * preemption from blocking on an 'sleeping' spin/rwlock.
6586  */
6587 #define SM_IDLE			(-1)
6588 #define SM_NONE			0
6589 #define SM_PREEMPT		1
6590 #define SM_RTLOCK_WAIT		2
6591 
6592 /*
6593  * Helper function for __schedule()
6594  *
6595  * If a task does not have signals pending, deactivate it
6596  * Otherwise marks the task's __state as RUNNING
6597  */
6598 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6599 			      unsigned long *task_state_p)
6600 {
6601 	unsigned long task_state = *task_state_p;
6602 	int flags = DEQUEUE_NOCLOCK;
6603 
6604 	if (signal_pending_state(task_state, p)) {
6605 		WRITE_ONCE(p->__state, TASK_RUNNING);
6606 		*task_state_p = TASK_RUNNING;
6607 		return false;
6608 	}
6609 
6610 	p->sched_contributes_to_load =
6611 		(task_state & TASK_UNINTERRUPTIBLE) &&
6612 		!(task_state & TASK_NOLOAD) &&
6613 		!(task_state & TASK_FROZEN);
6614 
6615 	if (unlikely(is_special_task_state(task_state)))
6616 		flags |= DEQUEUE_SPECIAL;
6617 
6618 	/*
6619 	 * __schedule()			ttwu()
6620 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6621 	 *   if (prev_state)		    goto out;
6622 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6623 	 *				  p->state = TASK_WAKING
6624 	 *
6625 	 * Where __schedule() and ttwu() have matching control dependencies.
6626 	 *
6627 	 * After this, schedule() must not care about p->state any more.
6628 	 */
6629 	block_task(rq, p, flags);
6630 	return true;
6631 }
6632 
6633 /*
6634  * __schedule() is the main scheduler function.
6635  *
6636  * The main means of driving the scheduler and thus entering this function are:
6637  *
6638  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6639  *
6640  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6641  *      paths. For example, see arch/x86/entry_64.S.
6642  *
6643  *      To drive preemption between tasks, the scheduler sets the flag in timer
6644  *      interrupt handler sched_tick().
6645  *
6646  *   3. Wakeups don't really cause entry into schedule(). They add a
6647  *      task to the run-queue and that's it.
6648  *
6649  *      Now, if the new task added to the run-queue preempts the current
6650  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6651  *      called on the nearest possible occasion:
6652  *
6653  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6654  *
6655  *         - in syscall or exception context, at the next outmost
6656  *           preempt_enable(). (this might be as soon as the wake_up()'s
6657  *           spin_unlock()!)
6658  *
6659  *         - in IRQ context, return from interrupt-handler to
6660  *           preemptible context
6661  *
6662  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6663  *         then at the next:
6664  *
6665  *          - cond_resched() call
6666  *          - explicit schedule() call
6667  *          - return from syscall or exception to user-space
6668  *          - return from interrupt-handler to user-space
6669  *
6670  * WARNING: must be called with preemption disabled!
6671  */
6672 static void __sched notrace __schedule(int sched_mode)
6673 {
6674 	struct task_struct *prev, *next;
6675 	/*
6676 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6677 	 * as a preemption by schedule_debug() and RCU.
6678 	 */
6679 	bool preempt = sched_mode > SM_NONE;
6680 	bool is_switch = false;
6681 	unsigned long *switch_count;
6682 	unsigned long prev_state;
6683 	struct rq_flags rf;
6684 	struct rq *rq;
6685 	int cpu;
6686 
6687 	/* Trace preemptions consistently with task switches */
6688 	trace_sched_entry_tp(sched_mode == SM_PREEMPT);
6689 
6690 	cpu = smp_processor_id();
6691 	rq = cpu_rq(cpu);
6692 	prev = rq->curr;
6693 
6694 	schedule_debug(prev, preempt);
6695 
6696 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6697 		hrtick_clear(rq);
6698 
6699 	klp_sched_try_switch(prev);
6700 
6701 	local_irq_disable();
6702 	rcu_note_context_switch(preempt);
6703 
6704 	/*
6705 	 * Make sure that signal_pending_state()->signal_pending() below
6706 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6707 	 * done by the caller to avoid the race with signal_wake_up():
6708 	 *
6709 	 * __set_current_state(@state)		signal_wake_up()
6710 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6711 	 *					  wake_up_state(p, state)
6712 	 *   LOCK rq->lock			    LOCK p->pi_state
6713 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6714 	 *     if (signal_pending_state())	    if (p->state & @state)
6715 	 *
6716 	 * Also, the membarrier system call requires a full memory barrier
6717 	 * after coming from user-space, before storing to rq->curr; this
6718 	 * barrier matches a full barrier in the proximity of the membarrier
6719 	 * system call exit.
6720 	 */
6721 	rq_lock(rq, &rf);
6722 	smp_mb__after_spinlock();
6723 
6724 	/* Promote REQ to ACT */
6725 	rq->clock_update_flags <<= 1;
6726 	update_rq_clock(rq);
6727 	rq->clock_update_flags = RQCF_UPDATED;
6728 
6729 	switch_count = &prev->nivcsw;
6730 
6731 	/* Task state changes only considers SM_PREEMPT as preemption */
6732 	preempt = sched_mode == SM_PREEMPT;
6733 
6734 	/*
6735 	 * We must load prev->state once (task_struct::state is volatile), such
6736 	 * that we form a control dependency vs deactivate_task() below.
6737 	 */
6738 	prev_state = READ_ONCE(prev->__state);
6739 	if (sched_mode == SM_IDLE) {
6740 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6741 		if (!rq->nr_running && !scx_enabled()) {
6742 			next = prev;
6743 			goto picked;
6744 		}
6745 	} else if (!preempt && prev_state) {
6746 		try_to_block_task(rq, prev, &prev_state);
6747 		switch_count = &prev->nvcsw;
6748 	}
6749 
6750 	next = pick_next_task(rq, prev, &rf);
6751 	rq_set_donor(rq, next);
6752 picked:
6753 	clear_tsk_need_resched(prev);
6754 	clear_preempt_need_resched();
6755 	rq->last_seen_need_resched_ns = 0;
6756 
6757 	is_switch = prev != next;
6758 	if (likely(is_switch)) {
6759 		rq->nr_switches++;
6760 		/*
6761 		 * RCU users of rcu_dereference(rq->curr) may not see
6762 		 * changes to task_struct made by pick_next_task().
6763 		 */
6764 		RCU_INIT_POINTER(rq->curr, next);
6765 		/*
6766 		 * The membarrier system call requires each architecture
6767 		 * to have a full memory barrier after updating
6768 		 * rq->curr, before returning to user-space.
6769 		 *
6770 		 * Here are the schemes providing that barrier on the
6771 		 * various architectures:
6772 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6773 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6774 		 *   on PowerPC and on RISC-V.
6775 		 * - finish_lock_switch() for weakly-ordered
6776 		 *   architectures where spin_unlock is a full barrier,
6777 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6778 		 *   is a RELEASE barrier),
6779 		 *
6780 		 * The barrier matches a full barrier in the proximity of
6781 		 * the membarrier system call entry.
6782 		 *
6783 		 * On RISC-V, this barrier pairing is also needed for the
6784 		 * SYNC_CORE command when switching between processes, cf.
6785 		 * the inline comments in membarrier_arch_switch_mm().
6786 		 */
6787 		++*switch_count;
6788 
6789 		migrate_disable_switch(rq, prev);
6790 		psi_account_irqtime(rq, prev, next);
6791 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6792 					     prev->se.sched_delayed);
6793 
6794 		trace_sched_switch(preempt, prev, next, prev_state);
6795 
6796 		/* Also unlocks the rq: */
6797 		rq = context_switch(rq, prev, next, &rf);
6798 	} else {
6799 		rq_unpin_lock(rq, &rf);
6800 		__balance_callbacks(rq);
6801 		raw_spin_rq_unlock_irq(rq);
6802 	}
6803 	trace_sched_exit_tp(is_switch);
6804 }
6805 
6806 void __noreturn do_task_dead(void)
6807 {
6808 	/* Causes final put_task_struct in finish_task_switch(): */
6809 	set_special_state(TASK_DEAD);
6810 
6811 	/* Tell freezer to ignore us: */
6812 	current->flags |= PF_NOFREEZE;
6813 
6814 	__schedule(SM_NONE);
6815 	BUG();
6816 
6817 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6818 	for (;;)
6819 		cpu_relax();
6820 }
6821 
6822 static inline void sched_submit_work(struct task_struct *tsk)
6823 {
6824 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6825 	unsigned int task_flags;
6826 
6827 	/*
6828 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6829 	 * will use a blocking primitive -- which would lead to recursion.
6830 	 */
6831 	lock_map_acquire_try(&sched_map);
6832 
6833 	task_flags = tsk->flags;
6834 	/*
6835 	 * If a worker goes to sleep, notify and ask workqueue whether it
6836 	 * wants to wake up a task to maintain concurrency.
6837 	 */
6838 	if (task_flags & PF_WQ_WORKER)
6839 		wq_worker_sleeping(tsk);
6840 	else if (task_flags & PF_IO_WORKER)
6841 		io_wq_worker_sleeping(tsk);
6842 
6843 	/*
6844 	 * spinlock and rwlock must not flush block requests.  This will
6845 	 * deadlock if the callback attempts to acquire a lock which is
6846 	 * already acquired.
6847 	 */
6848 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6849 
6850 	/*
6851 	 * If we are going to sleep and we have plugged IO queued,
6852 	 * make sure to submit it to avoid deadlocks.
6853 	 */
6854 	blk_flush_plug(tsk->plug, true);
6855 
6856 	lock_map_release(&sched_map);
6857 }
6858 
6859 static void sched_update_worker(struct task_struct *tsk)
6860 {
6861 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6862 		if (tsk->flags & PF_BLOCK_TS)
6863 			blk_plug_invalidate_ts(tsk);
6864 		if (tsk->flags & PF_WQ_WORKER)
6865 			wq_worker_running(tsk);
6866 		else if (tsk->flags & PF_IO_WORKER)
6867 			io_wq_worker_running(tsk);
6868 	}
6869 }
6870 
6871 static __always_inline void __schedule_loop(int sched_mode)
6872 {
6873 	do {
6874 		preempt_disable();
6875 		__schedule(sched_mode);
6876 		sched_preempt_enable_no_resched();
6877 	} while (need_resched());
6878 }
6879 
6880 asmlinkage __visible void __sched schedule(void)
6881 {
6882 	struct task_struct *tsk = current;
6883 
6884 #ifdef CONFIG_RT_MUTEXES
6885 	lockdep_assert(!tsk->sched_rt_mutex);
6886 #endif
6887 
6888 	if (!task_is_running(tsk))
6889 		sched_submit_work(tsk);
6890 	__schedule_loop(SM_NONE);
6891 	sched_update_worker(tsk);
6892 }
6893 EXPORT_SYMBOL(schedule);
6894 
6895 /*
6896  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6897  * state (have scheduled out non-voluntarily) by making sure that all
6898  * tasks have either left the run queue or have gone into user space.
6899  * As idle tasks do not do either, they must not ever be preempted
6900  * (schedule out non-voluntarily).
6901  *
6902  * schedule_idle() is similar to schedule_preempt_disable() except that it
6903  * never enables preemption because it does not call sched_submit_work().
6904  */
6905 void __sched schedule_idle(void)
6906 {
6907 	/*
6908 	 * As this skips calling sched_submit_work(), which the idle task does
6909 	 * regardless because that function is a NOP when the task is in a
6910 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6911 	 * current task can be in any other state. Note, idle is always in the
6912 	 * TASK_RUNNING state.
6913 	 */
6914 	WARN_ON_ONCE(current->__state);
6915 	do {
6916 		__schedule(SM_IDLE);
6917 	} while (need_resched());
6918 }
6919 
6920 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6921 asmlinkage __visible void __sched schedule_user(void)
6922 {
6923 	/*
6924 	 * If we come here after a random call to set_need_resched(),
6925 	 * or we have been woken up remotely but the IPI has not yet arrived,
6926 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6927 	 * we find a better solution.
6928 	 *
6929 	 * NB: There are buggy callers of this function.  Ideally we
6930 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6931 	 * too frequently to make sense yet.
6932 	 */
6933 	enum ctx_state prev_state = exception_enter();
6934 	schedule();
6935 	exception_exit(prev_state);
6936 }
6937 #endif
6938 
6939 /**
6940  * schedule_preempt_disabled - called with preemption disabled
6941  *
6942  * Returns with preemption disabled. Note: preempt_count must be 1
6943  */
6944 void __sched schedule_preempt_disabled(void)
6945 {
6946 	sched_preempt_enable_no_resched();
6947 	schedule();
6948 	preempt_disable();
6949 }
6950 
6951 #ifdef CONFIG_PREEMPT_RT
6952 void __sched notrace schedule_rtlock(void)
6953 {
6954 	__schedule_loop(SM_RTLOCK_WAIT);
6955 }
6956 NOKPROBE_SYMBOL(schedule_rtlock);
6957 #endif
6958 
6959 static void __sched notrace preempt_schedule_common(void)
6960 {
6961 	do {
6962 		/*
6963 		 * Because the function tracer can trace preempt_count_sub()
6964 		 * and it also uses preempt_enable/disable_notrace(), if
6965 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6966 		 * by the function tracer will call this function again and
6967 		 * cause infinite recursion.
6968 		 *
6969 		 * Preemption must be disabled here before the function
6970 		 * tracer can trace. Break up preempt_disable() into two
6971 		 * calls. One to disable preemption without fear of being
6972 		 * traced. The other to still record the preemption latency,
6973 		 * which can also be traced by the function tracer.
6974 		 */
6975 		preempt_disable_notrace();
6976 		preempt_latency_start(1);
6977 		__schedule(SM_PREEMPT);
6978 		preempt_latency_stop(1);
6979 		preempt_enable_no_resched_notrace();
6980 
6981 		/*
6982 		 * Check again in case we missed a preemption opportunity
6983 		 * between schedule and now.
6984 		 */
6985 	} while (need_resched());
6986 }
6987 
6988 #ifdef CONFIG_PREEMPTION
6989 /*
6990  * This is the entry point to schedule() from in-kernel preemption
6991  * off of preempt_enable.
6992  */
6993 asmlinkage __visible void __sched notrace preempt_schedule(void)
6994 {
6995 	/*
6996 	 * If there is a non-zero preempt_count or interrupts are disabled,
6997 	 * we do not want to preempt the current task. Just return..
6998 	 */
6999 	if (likely(!preemptible()))
7000 		return;
7001 	preempt_schedule_common();
7002 }
7003 NOKPROBE_SYMBOL(preempt_schedule);
7004 EXPORT_SYMBOL(preempt_schedule);
7005 
7006 #ifdef CONFIG_PREEMPT_DYNAMIC
7007 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7008 #ifndef preempt_schedule_dynamic_enabled
7009 #define preempt_schedule_dynamic_enabled	preempt_schedule
7010 #define preempt_schedule_dynamic_disabled	NULL
7011 #endif
7012 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7013 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7014 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7015 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
7016 void __sched notrace dynamic_preempt_schedule(void)
7017 {
7018 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7019 		return;
7020 	preempt_schedule();
7021 }
7022 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7023 EXPORT_SYMBOL(dynamic_preempt_schedule);
7024 #endif
7025 #endif
7026 
7027 /**
7028  * preempt_schedule_notrace - preempt_schedule called by tracing
7029  *
7030  * The tracing infrastructure uses preempt_enable_notrace to prevent
7031  * recursion and tracing preempt enabling caused by the tracing
7032  * infrastructure itself. But as tracing can happen in areas coming
7033  * from userspace or just about to enter userspace, a preempt enable
7034  * can occur before user_exit() is called. This will cause the scheduler
7035  * to be called when the system is still in usermode.
7036  *
7037  * To prevent this, the preempt_enable_notrace will use this function
7038  * instead of preempt_schedule() to exit user context if needed before
7039  * calling the scheduler.
7040  */
7041 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7042 {
7043 	enum ctx_state prev_ctx;
7044 
7045 	if (likely(!preemptible()))
7046 		return;
7047 
7048 	do {
7049 		/*
7050 		 * Because the function tracer can trace preempt_count_sub()
7051 		 * and it also uses preempt_enable/disable_notrace(), if
7052 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7053 		 * by the function tracer will call this function again and
7054 		 * cause infinite recursion.
7055 		 *
7056 		 * Preemption must be disabled here before the function
7057 		 * tracer can trace. Break up preempt_disable() into two
7058 		 * calls. One to disable preemption without fear of being
7059 		 * traced. The other to still record the preemption latency,
7060 		 * which can also be traced by the function tracer.
7061 		 */
7062 		preempt_disable_notrace();
7063 		preempt_latency_start(1);
7064 		/*
7065 		 * Needs preempt disabled in case user_exit() is traced
7066 		 * and the tracer calls preempt_enable_notrace() causing
7067 		 * an infinite recursion.
7068 		 */
7069 		prev_ctx = exception_enter();
7070 		__schedule(SM_PREEMPT);
7071 		exception_exit(prev_ctx);
7072 
7073 		preempt_latency_stop(1);
7074 		preempt_enable_no_resched_notrace();
7075 	} while (need_resched());
7076 }
7077 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7078 
7079 #ifdef CONFIG_PREEMPT_DYNAMIC
7080 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7081 #ifndef preempt_schedule_notrace_dynamic_enabled
7082 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7083 #define preempt_schedule_notrace_dynamic_disabled	NULL
7084 #endif
7085 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7086 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7087 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7088 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
7089 void __sched notrace dynamic_preempt_schedule_notrace(void)
7090 {
7091 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7092 		return;
7093 	preempt_schedule_notrace();
7094 }
7095 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7096 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7097 #endif
7098 #endif
7099 
7100 #endif /* CONFIG_PREEMPTION */
7101 
7102 /*
7103  * This is the entry point to schedule() from kernel preemption
7104  * off of IRQ context.
7105  * Note, that this is called and return with IRQs disabled. This will
7106  * protect us against recursive calling from IRQ contexts.
7107  */
7108 asmlinkage __visible void __sched preempt_schedule_irq(void)
7109 {
7110 	enum ctx_state prev_state;
7111 
7112 	/* Catch callers which need to be fixed */
7113 	BUG_ON(preempt_count() || !irqs_disabled());
7114 
7115 	prev_state = exception_enter();
7116 
7117 	do {
7118 		preempt_disable();
7119 		local_irq_enable();
7120 		__schedule(SM_PREEMPT);
7121 		local_irq_disable();
7122 		sched_preempt_enable_no_resched();
7123 	} while (need_resched());
7124 
7125 	exception_exit(prev_state);
7126 }
7127 
7128 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7129 			  void *key)
7130 {
7131 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7132 	return try_to_wake_up(curr->private, mode, wake_flags);
7133 }
7134 EXPORT_SYMBOL(default_wake_function);
7135 
7136 const struct sched_class *__setscheduler_class(int policy, int prio)
7137 {
7138 	if (dl_prio(prio))
7139 		return &dl_sched_class;
7140 
7141 	if (rt_prio(prio))
7142 		return &rt_sched_class;
7143 
7144 #ifdef CONFIG_SCHED_CLASS_EXT
7145 	if (task_should_scx(policy))
7146 		return &ext_sched_class;
7147 #endif
7148 
7149 	return &fair_sched_class;
7150 }
7151 
7152 #ifdef CONFIG_RT_MUTEXES
7153 
7154 /*
7155  * Would be more useful with typeof()/auto_type but they don't mix with
7156  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7157  * name such that if someone were to implement this function we get to compare
7158  * notes.
7159  */
7160 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7161 
7162 void rt_mutex_pre_schedule(void)
7163 {
7164 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7165 	sched_submit_work(current);
7166 }
7167 
7168 void rt_mutex_schedule(void)
7169 {
7170 	lockdep_assert(current->sched_rt_mutex);
7171 	__schedule_loop(SM_NONE);
7172 }
7173 
7174 void rt_mutex_post_schedule(void)
7175 {
7176 	sched_update_worker(current);
7177 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7178 }
7179 
7180 /*
7181  * rt_mutex_setprio - set the current priority of a task
7182  * @p: task to boost
7183  * @pi_task: donor task
7184  *
7185  * This function changes the 'effective' priority of a task. It does
7186  * not touch ->normal_prio like __setscheduler().
7187  *
7188  * Used by the rt_mutex code to implement priority inheritance
7189  * logic. Call site only calls if the priority of the task changed.
7190  */
7191 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7192 {
7193 	int prio, oldprio, queued, running, queue_flag =
7194 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7195 	const struct sched_class *prev_class, *next_class;
7196 	struct rq_flags rf;
7197 	struct rq *rq;
7198 
7199 	/* XXX used to be waiter->prio, not waiter->task->prio */
7200 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7201 
7202 	/*
7203 	 * If nothing changed; bail early.
7204 	 */
7205 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7206 		return;
7207 
7208 	rq = __task_rq_lock(p, &rf);
7209 	update_rq_clock(rq);
7210 	/*
7211 	 * Set under pi_lock && rq->lock, such that the value can be used under
7212 	 * either lock.
7213 	 *
7214 	 * Note that there is loads of tricky to make this pointer cache work
7215 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7216 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7217 	 * task is allowed to run again (and can exit). This ensures the pointer
7218 	 * points to a blocked task -- which guarantees the task is present.
7219 	 */
7220 	p->pi_top_task = pi_task;
7221 
7222 	/*
7223 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7224 	 */
7225 	if (prio == p->prio && !dl_prio(prio))
7226 		goto out_unlock;
7227 
7228 	/*
7229 	 * Idle task boosting is a no-no in general. There is one
7230 	 * exception, when PREEMPT_RT and NOHZ is active:
7231 	 *
7232 	 * The idle task calls get_next_timer_interrupt() and holds
7233 	 * the timer wheel base->lock on the CPU and another CPU wants
7234 	 * to access the timer (probably to cancel it). We can safely
7235 	 * ignore the boosting request, as the idle CPU runs this code
7236 	 * with interrupts disabled and will complete the lock
7237 	 * protected section without being interrupted. So there is no
7238 	 * real need to boost.
7239 	 */
7240 	if (unlikely(p == rq->idle)) {
7241 		WARN_ON(p != rq->curr);
7242 		WARN_ON(p->pi_blocked_on);
7243 		goto out_unlock;
7244 	}
7245 
7246 	trace_sched_pi_setprio(p, pi_task);
7247 	oldprio = p->prio;
7248 
7249 	if (oldprio == prio)
7250 		queue_flag &= ~DEQUEUE_MOVE;
7251 
7252 	prev_class = p->sched_class;
7253 	next_class = __setscheduler_class(p->policy, prio);
7254 
7255 	if (prev_class != next_class && p->se.sched_delayed)
7256 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7257 
7258 	queued = task_on_rq_queued(p);
7259 	running = task_current_donor(rq, p);
7260 	if (queued)
7261 		dequeue_task(rq, p, queue_flag);
7262 	if (running)
7263 		put_prev_task(rq, p);
7264 
7265 	/*
7266 	 * Boosting condition are:
7267 	 * 1. -rt task is running and holds mutex A
7268 	 *      --> -dl task blocks on mutex A
7269 	 *
7270 	 * 2. -dl task is running and holds mutex A
7271 	 *      --> -dl task blocks on mutex A and could preempt the
7272 	 *          running task
7273 	 */
7274 	if (dl_prio(prio)) {
7275 		if (!dl_prio(p->normal_prio) ||
7276 		    (pi_task && dl_prio(pi_task->prio) &&
7277 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7278 			p->dl.pi_se = pi_task->dl.pi_se;
7279 			queue_flag |= ENQUEUE_REPLENISH;
7280 		} else {
7281 			p->dl.pi_se = &p->dl;
7282 		}
7283 	} else if (rt_prio(prio)) {
7284 		if (dl_prio(oldprio))
7285 			p->dl.pi_se = &p->dl;
7286 		if (oldprio < prio)
7287 			queue_flag |= ENQUEUE_HEAD;
7288 	} else {
7289 		if (dl_prio(oldprio))
7290 			p->dl.pi_se = &p->dl;
7291 		if (rt_prio(oldprio))
7292 			p->rt.timeout = 0;
7293 	}
7294 
7295 	p->sched_class = next_class;
7296 	p->prio = prio;
7297 
7298 	check_class_changing(rq, p, prev_class);
7299 
7300 	if (queued)
7301 		enqueue_task(rq, p, queue_flag);
7302 	if (running)
7303 		set_next_task(rq, p);
7304 
7305 	check_class_changed(rq, p, prev_class, oldprio);
7306 out_unlock:
7307 	/* Avoid rq from going away on us: */
7308 	preempt_disable();
7309 
7310 	rq_unpin_lock(rq, &rf);
7311 	__balance_callbacks(rq);
7312 	raw_spin_rq_unlock(rq);
7313 
7314 	preempt_enable();
7315 }
7316 #endif
7317 
7318 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7319 int __sched __cond_resched(void)
7320 {
7321 	if (should_resched(0) && !irqs_disabled()) {
7322 		preempt_schedule_common();
7323 		return 1;
7324 	}
7325 	/*
7326 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7327 	 * whether the current CPU is in an RCU read-side critical section,
7328 	 * so the tick can report quiescent states even for CPUs looping
7329 	 * in kernel context.  In contrast, in non-preemptible kernels,
7330 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7331 	 * processes executing in kernel context might never report an
7332 	 * RCU quiescent state.  Therefore, the following code causes
7333 	 * cond_resched() to report a quiescent state, but only when RCU
7334 	 * is in urgent need of one.
7335 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7336 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7337 	 */
7338 #ifndef CONFIG_PREEMPT_RCU
7339 	rcu_all_qs();
7340 #endif
7341 	return 0;
7342 }
7343 EXPORT_SYMBOL(__cond_resched);
7344 #endif
7345 
7346 #ifdef CONFIG_PREEMPT_DYNAMIC
7347 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7348 #define cond_resched_dynamic_enabled	__cond_resched
7349 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7350 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7351 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7352 
7353 #define might_resched_dynamic_enabled	__cond_resched
7354 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7355 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7356 EXPORT_STATIC_CALL_TRAMP(might_resched);
7357 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7358 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
7359 int __sched dynamic_cond_resched(void)
7360 {
7361 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7362 		return 0;
7363 	return __cond_resched();
7364 }
7365 EXPORT_SYMBOL(dynamic_cond_resched);
7366 
7367 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
7368 int __sched dynamic_might_resched(void)
7369 {
7370 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7371 		return 0;
7372 	return __cond_resched();
7373 }
7374 EXPORT_SYMBOL(dynamic_might_resched);
7375 #endif
7376 #endif
7377 
7378 /*
7379  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7380  * call schedule, and on return reacquire the lock.
7381  *
7382  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7383  * operations here to prevent schedule() from being called twice (once via
7384  * spin_unlock(), once by hand).
7385  */
7386 int __cond_resched_lock(spinlock_t *lock)
7387 {
7388 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7389 	int ret = 0;
7390 
7391 	lockdep_assert_held(lock);
7392 
7393 	if (spin_needbreak(lock) || resched) {
7394 		spin_unlock(lock);
7395 		if (!_cond_resched())
7396 			cpu_relax();
7397 		ret = 1;
7398 		spin_lock(lock);
7399 	}
7400 	return ret;
7401 }
7402 EXPORT_SYMBOL(__cond_resched_lock);
7403 
7404 int __cond_resched_rwlock_read(rwlock_t *lock)
7405 {
7406 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7407 	int ret = 0;
7408 
7409 	lockdep_assert_held_read(lock);
7410 
7411 	if (rwlock_needbreak(lock) || resched) {
7412 		read_unlock(lock);
7413 		if (!_cond_resched())
7414 			cpu_relax();
7415 		ret = 1;
7416 		read_lock(lock);
7417 	}
7418 	return ret;
7419 }
7420 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7421 
7422 int __cond_resched_rwlock_write(rwlock_t *lock)
7423 {
7424 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7425 	int ret = 0;
7426 
7427 	lockdep_assert_held_write(lock);
7428 
7429 	if (rwlock_needbreak(lock) || resched) {
7430 		write_unlock(lock);
7431 		if (!_cond_resched())
7432 			cpu_relax();
7433 		ret = 1;
7434 		write_lock(lock);
7435 	}
7436 	return ret;
7437 }
7438 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7439 
7440 #ifdef CONFIG_PREEMPT_DYNAMIC
7441 
7442 #ifdef CONFIG_GENERIC_ENTRY
7443 #include <linux/entry-common.h>
7444 #endif
7445 
7446 /*
7447  * SC:cond_resched
7448  * SC:might_resched
7449  * SC:preempt_schedule
7450  * SC:preempt_schedule_notrace
7451  * SC:irqentry_exit_cond_resched
7452  *
7453  *
7454  * NONE:
7455  *   cond_resched               <- __cond_resched
7456  *   might_resched              <- RET0
7457  *   preempt_schedule           <- NOP
7458  *   preempt_schedule_notrace   <- NOP
7459  *   irqentry_exit_cond_resched <- NOP
7460  *   dynamic_preempt_lazy       <- false
7461  *
7462  * VOLUNTARY:
7463  *   cond_resched               <- __cond_resched
7464  *   might_resched              <- __cond_resched
7465  *   preempt_schedule           <- NOP
7466  *   preempt_schedule_notrace   <- NOP
7467  *   irqentry_exit_cond_resched <- NOP
7468  *   dynamic_preempt_lazy       <- false
7469  *
7470  * FULL:
7471  *   cond_resched               <- RET0
7472  *   might_resched              <- RET0
7473  *   preempt_schedule           <- preempt_schedule
7474  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7475  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7476  *   dynamic_preempt_lazy       <- false
7477  *
7478  * LAZY:
7479  *   cond_resched               <- RET0
7480  *   might_resched              <- RET0
7481  *   preempt_schedule           <- preempt_schedule
7482  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7483  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7484  *   dynamic_preempt_lazy       <- true
7485  */
7486 
7487 enum {
7488 	preempt_dynamic_undefined = -1,
7489 	preempt_dynamic_none,
7490 	preempt_dynamic_voluntary,
7491 	preempt_dynamic_full,
7492 	preempt_dynamic_lazy,
7493 };
7494 
7495 int preempt_dynamic_mode = preempt_dynamic_undefined;
7496 
7497 int sched_dynamic_mode(const char *str)
7498 {
7499 #ifndef CONFIG_PREEMPT_RT
7500 	if (!strcmp(str, "none"))
7501 		return preempt_dynamic_none;
7502 
7503 	if (!strcmp(str, "voluntary"))
7504 		return preempt_dynamic_voluntary;
7505 #endif
7506 
7507 	if (!strcmp(str, "full"))
7508 		return preempt_dynamic_full;
7509 
7510 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7511 	if (!strcmp(str, "lazy"))
7512 		return preempt_dynamic_lazy;
7513 #endif
7514 
7515 	return -EINVAL;
7516 }
7517 
7518 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7519 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7520 
7521 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7522 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7523 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7524 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7525 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7526 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7527 #else
7528 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7529 #endif
7530 
7531 static DEFINE_MUTEX(sched_dynamic_mutex);
7532 
7533 static void __sched_dynamic_update(int mode)
7534 {
7535 	/*
7536 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7537 	 * the ZERO state, which is invalid.
7538 	 */
7539 	preempt_dynamic_enable(cond_resched);
7540 	preempt_dynamic_enable(might_resched);
7541 	preempt_dynamic_enable(preempt_schedule);
7542 	preempt_dynamic_enable(preempt_schedule_notrace);
7543 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7544 	preempt_dynamic_key_disable(preempt_lazy);
7545 
7546 	switch (mode) {
7547 	case preempt_dynamic_none:
7548 		preempt_dynamic_enable(cond_resched);
7549 		preempt_dynamic_disable(might_resched);
7550 		preempt_dynamic_disable(preempt_schedule);
7551 		preempt_dynamic_disable(preempt_schedule_notrace);
7552 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7553 		preempt_dynamic_key_disable(preempt_lazy);
7554 		if (mode != preempt_dynamic_mode)
7555 			pr_info("Dynamic Preempt: none\n");
7556 		break;
7557 
7558 	case preempt_dynamic_voluntary:
7559 		preempt_dynamic_enable(cond_resched);
7560 		preempt_dynamic_enable(might_resched);
7561 		preempt_dynamic_disable(preempt_schedule);
7562 		preempt_dynamic_disable(preempt_schedule_notrace);
7563 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7564 		preempt_dynamic_key_disable(preempt_lazy);
7565 		if (mode != preempt_dynamic_mode)
7566 			pr_info("Dynamic Preempt: voluntary\n");
7567 		break;
7568 
7569 	case preempt_dynamic_full:
7570 		preempt_dynamic_disable(cond_resched);
7571 		preempt_dynamic_disable(might_resched);
7572 		preempt_dynamic_enable(preempt_schedule);
7573 		preempt_dynamic_enable(preempt_schedule_notrace);
7574 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7575 		preempt_dynamic_key_disable(preempt_lazy);
7576 		if (mode != preempt_dynamic_mode)
7577 			pr_info("Dynamic Preempt: full\n");
7578 		break;
7579 
7580 	case preempt_dynamic_lazy:
7581 		preempt_dynamic_disable(cond_resched);
7582 		preempt_dynamic_disable(might_resched);
7583 		preempt_dynamic_enable(preempt_schedule);
7584 		preempt_dynamic_enable(preempt_schedule_notrace);
7585 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7586 		preempt_dynamic_key_enable(preempt_lazy);
7587 		if (mode != preempt_dynamic_mode)
7588 			pr_info("Dynamic Preempt: lazy\n");
7589 		break;
7590 	}
7591 
7592 	preempt_dynamic_mode = mode;
7593 }
7594 
7595 void sched_dynamic_update(int mode)
7596 {
7597 	mutex_lock(&sched_dynamic_mutex);
7598 	__sched_dynamic_update(mode);
7599 	mutex_unlock(&sched_dynamic_mutex);
7600 }
7601 
7602 static int __init setup_preempt_mode(char *str)
7603 {
7604 	int mode = sched_dynamic_mode(str);
7605 	if (mode < 0) {
7606 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7607 		return 0;
7608 	}
7609 
7610 	sched_dynamic_update(mode);
7611 	return 1;
7612 }
7613 __setup("preempt=", setup_preempt_mode);
7614 
7615 static void __init preempt_dynamic_init(void)
7616 {
7617 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7618 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7619 			sched_dynamic_update(preempt_dynamic_none);
7620 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7621 			sched_dynamic_update(preempt_dynamic_voluntary);
7622 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7623 			sched_dynamic_update(preempt_dynamic_lazy);
7624 		} else {
7625 			/* Default static call setting, nothing to do */
7626 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7627 			preempt_dynamic_mode = preempt_dynamic_full;
7628 			pr_info("Dynamic Preempt: full\n");
7629 		}
7630 	}
7631 }
7632 
7633 #define PREEMPT_MODEL_ACCESSOR(mode) \
7634 	bool preempt_model_##mode(void)						 \
7635 	{									 \
7636 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7637 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7638 	}									 \
7639 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7640 
7641 PREEMPT_MODEL_ACCESSOR(none);
7642 PREEMPT_MODEL_ACCESSOR(voluntary);
7643 PREEMPT_MODEL_ACCESSOR(full);
7644 PREEMPT_MODEL_ACCESSOR(lazy);
7645 
7646 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7647 
7648 #define preempt_dynamic_mode -1
7649 
7650 static inline void preempt_dynamic_init(void) { }
7651 
7652 #endif /* CONFIG_PREEMPT_DYNAMIC */
7653 
7654 const char *preempt_modes[] = {
7655 	"none", "voluntary", "full", "lazy", NULL,
7656 };
7657 
7658 const char *preempt_model_str(void)
7659 {
7660 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7661 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7662 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7663 	static char buf[128];
7664 
7665 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7666 		struct seq_buf s;
7667 
7668 		seq_buf_init(&s, buf, sizeof(buf));
7669 		seq_buf_puts(&s, "PREEMPT");
7670 
7671 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7672 			seq_buf_printf(&s, "%sRT%s",
7673 				       brace ? "_{" : "_",
7674 				       brace ? "," : "");
7675 
7676 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7677 			seq_buf_printf(&s, "(%s)%s",
7678 				       preempt_dynamic_mode >= 0 ?
7679 				       preempt_modes[preempt_dynamic_mode] : "undef",
7680 				       brace ? "}" : "");
7681 			return seq_buf_str(&s);
7682 		}
7683 
7684 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7685 			seq_buf_printf(&s, "LAZY%s",
7686 				       brace ? "}" : "");
7687 			return seq_buf_str(&s);
7688 		}
7689 
7690 		return seq_buf_str(&s);
7691 	}
7692 
7693 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7694 		return "VOLUNTARY";
7695 
7696 	return "NONE";
7697 }
7698 
7699 int io_schedule_prepare(void)
7700 {
7701 	int old_iowait = current->in_iowait;
7702 
7703 	current->in_iowait = 1;
7704 	blk_flush_plug(current->plug, true);
7705 	return old_iowait;
7706 }
7707 
7708 void io_schedule_finish(int token)
7709 {
7710 	current->in_iowait = token;
7711 }
7712 
7713 /*
7714  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7715  * that process accounting knows that this is a task in IO wait state.
7716  */
7717 long __sched io_schedule_timeout(long timeout)
7718 {
7719 	int token;
7720 	long ret;
7721 
7722 	token = io_schedule_prepare();
7723 	ret = schedule_timeout(timeout);
7724 	io_schedule_finish(token);
7725 
7726 	return ret;
7727 }
7728 EXPORT_SYMBOL(io_schedule_timeout);
7729 
7730 void __sched io_schedule(void)
7731 {
7732 	int token;
7733 
7734 	token = io_schedule_prepare();
7735 	schedule();
7736 	io_schedule_finish(token);
7737 }
7738 EXPORT_SYMBOL(io_schedule);
7739 
7740 void sched_show_task(struct task_struct *p)
7741 {
7742 	unsigned long free;
7743 	int ppid;
7744 
7745 	if (!try_get_task_stack(p))
7746 		return;
7747 
7748 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7749 
7750 	if (task_is_running(p))
7751 		pr_cont("  running task    ");
7752 	free = stack_not_used(p);
7753 	ppid = 0;
7754 	rcu_read_lock();
7755 	if (pid_alive(p))
7756 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7757 	rcu_read_unlock();
7758 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7759 		free, task_pid_nr(p), task_tgid_nr(p),
7760 		ppid, p->flags, read_task_thread_flags(p));
7761 
7762 	print_worker_info(KERN_INFO, p);
7763 	print_stop_info(KERN_INFO, p);
7764 	print_scx_info(KERN_INFO, p);
7765 	show_stack(p, NULL, KERN_INFO);
7766 	put_task_stack(p);
7767 }
7768 EXPORT_SYMBOL_GPL(sched_show_task);
7769 
7770 static inline bool
7771 state_filter_match(unsigned long state_filter, struct task_struct *p)
7772 {
7773 	unsigned int state = READ_ONCE(p->__state);
7774 
7775 	/* no filter, everything matches */
7776 	if (!state_filter)
7777 		return true;
7778 
7779 	/* filter, but doesn't match */
7780 	if (!(state & state_filter))
7781 		return false;
7782 
7783 	/*
7784 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7785 	 * TASK_KILLABLE).
7786 	 */
7787 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7788 		return false;
7789 
7790 	return true;
7791 }
7792 
7793 
7794 void show_state_filter(unsigned int state_filter)
7795 {
7796 	struct task_struct *g, *p;
7797 
7798 	rcu_read_lock();
7799 	for_each_process_thread(g, p) {
7800 		/*
7801 		 * reset the NMI-timeout, listing all files on a slow
7802 		 * console might take a lot of time:
7803 		 * Also, reset softlockup watchdogs on all CPUs, because
7804 		 * another CPU might be blocked waiting for us to process
7805 		 * an IPI.
7806 		 */
7807 		touch_nmi_watchdog();
7808 		touch_all_softlockup_watchdogs();
7809 		if (state_filter_match(state_filter, p))
7810 			sched_show_task(p);
7811 	}
7812 
7813 	if (!state_filter)
7814 		sysrq_sched_debug_show();
7815 
7816 	rcu_read_unlock();
7817 	/*
7818 	 * Only show locks if all tasks are dumped:
7819 	 */
7820 	if (!state_filter)
7821 		debug_show_all_locks();
7822 }
7823 
7824 /**
7825  * init_idle - set up an idle thread for a given CPU
7826  * @idle: task in question
7827  * @cpu: CPU the idle task belongs to
7828  *
7829  * NOTE: this function does not set the idle thread's NEED_RESCHED
7830  * flag, to make booting more robust.
7831  */
7832 void __init init_idle(struct task_struct *idle, int cpu)
7833 {
7834 #ifdef CONFIG_SMP
7835 	struct affinity_context ac = (struct affinity_context) {
7836 		.new_mask  = cpumask_of(cpu),
7837 		.flags     = 0,
7838 	};
7839 #endif
7840 	struct rq *rq = cpu_rq(cpu);
7841 	unsigned long flags;
7842 
7843 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7844 	raw_spin_rq_lock(rq);
7845 
7846 	idle->__state = TASK_RUNNING;
7847 	idle->se.exec_start = sched_clock();
7848 	/*
7849 	 * PF_KTHREAD should already be set at this point; regardless, make it
7850 	 * look like a proper per-CPU kthread.
7851 	 */
7852 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7853 	kthread_set_per_cpu(idle, cpu);
7854 
7855 #ifdef CONFIG_SMP
7856 	/*
7857 	 * No validation and serialization required at boot time and for
7858 	 * setting up the idle tasks of not yet online CPUs.
7859 	 */
7860 	set_cpus_allowed_common(idle, &ac);
7861 #endif
7862 	/*
7863 	 * We're having a chicken and egg problem, even though we are
7864 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7865 	 * lockdep check in task_group() will fail.
7866 	 *
7867 	 * Similar case to sched_fork(). / Alternatively we could
7868 	 * use task_rq_lock() here and obtain the other rq->lock.
7869 	 *
7870 	 * Silence PROVE_RCU
7871 	 */
7872 	rcu_read_lock();
7873 	__set_task_cpu(idle, cpu);
7874 	rcu_read_unlock();
7875 
7876 	rq->idle = idle;
7877 	rq_set_donor(rq, idle);
7878 	rcu_assign_pointer(rq->curr, idle);
7879 	idle->on_rq = TASK_ON_RQ_QUEUED;
7880 #ifdef CONFIG_SMP
7881 	idle->on_cpu = 1;
7882 #endif
7883 	raw_spin_rq_unlock(rq);
7884 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7885 
7886 	/* Set the preempt count _outside_ the spinlocks! */
7887 	init_idle_preempt_count(idle, cpu);
7888 
7889 	/*
7890 	 * The idle tasks have their own, simple scheduling class:
7891 	 */
7892 	idle->sched_class = &idle_sched_class;
7893 	ftrace_graph_init_idle_task(idle, cpu);
7894 	vtime_init_idle(idle, cpu);
7895 #ifdef CONFIG_SMP
7896 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7897 #endif
7898 }
7899 
7900 #ifdef CONFIG_SMP
7901 
7902 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7903 			      const struct cpumask *trial)
7904 {
7905 	int ret = 1;
7906 
7907 	if (cpumask_empty(cur))
7908 		return ret;
7909 
7910 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7911 
7912 	return ret;
7913 }
7914 
7915 int task_can_attach(struct task_struct *p)
7916 {
7917 	int ret = 0;
7918 
7919 	/*
7920 	 * Kthreads which disallow setaffinity shouldn't be moved
7921 	 * to a new cpuset; we don't want to change their CPU
7922 	 * affinity and isolating such threads by their set of
7923 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7924 	 * applicable for such threads.  This prevents checking for
7925 	 * success of set_cpus_allowed_ptr() on all attached tasks
7926 	 * before cpus_mask may be changed.
7927 	 */
7928 	if (p->flags & PF_NO_SETAFFINITY)
7929 		ret = -EINVAL;
7930 
7931 	return ret;
7932 }
7933 
7934 bool sched_smp_initialized __read_mostly;
7935 
7936 #ifdef CONFIG_NUMA_BALANCING
7937 /* Migrate current task p to target_cpu */
7938 int migrate_task_to(struct task_struct *p, int target_cpu)
7939 {
7940 	struct migration_arg arg = { p, target_cpu };
7941 	int curr_cpu = task_cpu(p);
7942 
7943 	if (curr_cpu == target_cpu)
7944 		return 0;
7945 
7946 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7947 		return -EINVAL;
7948 
7949 	__schedstat_inc(p->stats.numa_task_migrated);
7950 	count_vm_numa_event(NUMA_TASK_MIGRATE);
7951 	count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE);
7952 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7953 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7954 }
7955 
7956 /*
7957  * Requeue a task on a given node and accurately track the number of NUMA
7958  * tasks on the runqueues
7959  */
7960 void sched_setnuma(struct task_struct *p, int nid)
7961 {
7962 	bool queued, running;
7963 	struct rq_flags rf;
7964 	struct rq *rq;
7965 
7966 	rq = task_rq_lock(p, &rf);
7967 	queued = task_on_rq_queued(p);
7968 	running = task_current_donor(rq, p);
7969 
7970 	if (queued)
7971 		dequeue_task(rq, p, DEQUEUE_SAVE);
7972 	if (running)
7973 		put_prev_task(rq, p);
7974 
7975 	p->numa_preferred_nid = nid;
7976 
7977 	if (queued)
7978 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7979 	if (running)
7980 		set_next_task(rq, p);
7981 	task_rq_unlock(rq, p, &rf);
7982 }
7983 #endif /* CONFIG_NUMA_BALANCING */
7984 
7985 #ifdef CONFIG_HOTPLUG_CPU
7986 /*
7987  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7988  * after ensuring that there are no user space tasks left on the CPU.
7989  *
7990  * If there is a lazy mm in use on the hotplug thread, drop it and
7991  * switch to init_mm.
7992  *
7993  * The reference count on init_mm is dropped in finish_cpu().
7994  */
7995 static void sched_force_init_mm(void)
7996 {
7997 	struct mm_struct *mm = current->active_mm;
7998 
7999 	if (mm != &init_mm) {
8000 		mmgrab_lazy_tlb(&init_mm);
8001 		local_irq_disable();
8002 		current->active_mm = &init_mm;
8003 		switch_mm_irqs_off(mm, &init_mm, current);
8004 		local_irq_enable();
8005 		finish_arch_post_lock_switch();
8006 		mmdrop_lazy_tlb(mm);
8007 	}
8008 
8009 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8010 }
8011 
8012 static int __balance_push_cpu_stop(void *arg)
8013 {
8014 	struct task_struct *p = arg;
8015 	struct rq *rq = this_rq();
8016 	struct rq_flags rf;
8017 	int cpu;
8018 
8019 	raw_spin_lock_irq(&p->pi_lock);
8020 	rq_lock(rq, &rf);
8021 
8022 	update_rq_clock(rq);
8023 
8024 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8025 		cpu = select_fallback_rq(rq->cpu, p);
8026 		rq = __migrate_task(rq, &rf, p, cpu);
8027 	}
8028 
8029 	rq_unlock(rq, &rf);
8030 	raw_spin_unlock_irq(&p->pi_lock);
8031 
8032 	put_task_struct(p);
8033 
8034 	return 0;
8035 }
8036 
8037 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8038 
8039 /*
8040  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8041  *
8042  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8043  * effective when the hotplug motion is down.
8044  */
8045 static void balance_push(struct rq *rq)
8046 {
8047 	struct task_struct *push_task = rq->curr;
8048 
8049 	lockdep_assert_rq_held(rq);
8050 
8051 	/*
8052 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8053 	 */
8054 	rq->balance_callback = &balance_push_callback;
8055 
8056 	/*
8057 	 * Only active while going offline and when invoked on the outgoing
8058 	 * CPU.
8059 	 */
8060 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8061 		return;
8062 
8063 	/*
8064 	 * Both the cpu-hotplug and stop task are in this case and are
8065 	 * required to complete the hotplug process.
8066 	 */
8067 	if (kthread_is_per_cpu(push_task) ||
8068 	    is_migration_disabled(push_task)) {
8069 
8070 		/*
8071 		 * If this is the idle task on the outgoing CPU try to wake
8072 		 * up the hotplug control thread which might wait for the
8073 		 * last task to vanish. The rcuwait_active() check is
8074 		 * accurate here because the waiter is pinned on this CPU
8075 		 * and can't obviously be running in parallel.
8076 		 *
8077 		 * On RT kernels this also has to check whether there are
8078 		 * pinned and scheduled out tasks on the runqueue. They
8079 		 * need to leave the migrate disabled section first.
8080 		 */
8081 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8082 		    rcuwait_active(&rq->hotplug_wait)) {
8083 			raw_spin_rq_unlock(rq);
8084 			rcuwait_wake_up(&rq->hotplug_wait);
8085 			raw_spin_rq_lock(rq);
8086 		}
8087 		return;
8088 	}
8089 
8090 	get_task_struct(push_task);
8091 	/*
8092 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8093 	 * Both preemption and IRQs are still disabled.
8094 	 */
8095 	preempt_disable();
8096 	raw_spin_rq_unlock(rq);
8097 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8098 			    this_cpu_ptr(&push_work));
8099 	preempt_enable();
8100 	/*
8101 	 * At this point need_resched() is true and we'll take the loop in
8102 	 * schedule(). The next pick is obviously going to be the stop task
8103 	 * which kthread_is_per_cpu() and will push this task away.
8104 	 */
8105 	raw_spin_rq_lock(rq);
8106 }
8107 
8108 static void balance_push_set(int cpu, bool on)
8109 {
8110 	struct rq *rq = cpu_rq(cpu);
8111 	struct rq_flags rf;
8112 
8113 	rq_lock_irqsave(rq, &rf);
8114 	if (on) {
8115 		WARN_ON_ONCE(rq->balance_callback);
8116 		rq->balance_callback = &balance_push_callback;
8117 	} else if (rq->balance_callback == &balance_push_callback) {
8118 		rq->balance_callback = NULL;
8119 	}
8120 	rq_unlock_irqrestore(rq, &rf);
8121 }
8122 
8123 /*
8124  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8125  * inactive. All tasks which are not per CPU kernel threads are either
8126  * pushed off this CPU now via balance_push() or placed on a different CPU
8127  * during wakeup. Wait until the CPU is quiescent.
8128  */
8129 static void balance_hotplug_wait(void)
8130 {
8131 	struct rq *rq = this_rq();
8132 
8133 	rcuwait_wait_event(&rq->hotplug_wait,
8134 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8135 			   TASK_UNINTERRUPTIBLE);
8136 }
8137 
8138 #else
8139 
8140 static inline void balance_push(struct rq *rq)
8141 {
8142 }
8143 
8144 static inline void balance_push_set(int cpu, bool on)
8145 {
8146 }
8147 
8148 static inline void balance_hotplug_wait(void)
8149 {
8150 }
8151 
8152 #endif /* CONFIG_HOTPLUG_CPU */
8153 
8154 void set_rq_online(struct rq *rq)
8155 {
8156 	if (!rq->online) {
8157 		const struct sched_class *class;
8158 
8159 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8160 		rq->online = 1;
8161 
8162 		for_each_class(class) {
8163 			if (class->rq_online)
8164 				class->rq_online(rq);
8165 		}
8166 	}
8167 }
8168 
8169 void set_rq_offline(struct rq *rq)
8170 {
8171 	if (rq->online) {
8172 		const struct sched_class *class;
8173 
8174 		update_rq_clock(rq);
8175 		for_each_class(class) {
8176 			if (class->rq_offline)
8177 				class->rq_offline(rq);
8178 		}
8179 
8180 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8181 		rq->online = 0;
8182 	}
8183 }
8184 
8185 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8186 {
8187 	struct rq_flags rf;
8188 
8189 	rq_lock_irqsave(rq, &rf);
8190 	if (rq->rd) {
8191 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8192 		set_rq_online(rq);
8193 	}
8194 	rq_unlock_irqrestore(rq, &rf);
8195 }
8196 
8197 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8198 {
8199 	struct rq_flags rf;
8200 
8201 	rq_lock_irqsave(rq, &rf);
8202 	if (rq->rd) {
8203 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8204 		set_rq_offline(rq);
8205 	}
8206 	rq_unlock_irqrestore(rq, &rf);
8207 }
8208 
8209 /*
8210  * used to mark begin/end of suspend/resume:
8211  */
8212 static int num_cpus_frozen;
8213 
8214 /*
8215  * Update cpusets according to cpu_active mask.  If cpusets are
8216  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8217  * around partition_sched_domains().
8218  *
8219  * If we come here as part of a suspend/resume, don't touch cpusets because we
8220  * want to restore it back to its original state upon resume anyway.
8221  */
8222 static void cpuset_cpu_active(void)
8223 {
8224 	if (cpuhp_tasks_frozen) {
8225 		/*
8226 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8227 		 * resume sequence. As long as this is not the last online
8228 		 * operation in the resume sequence, just build a single sched
8229 		 * domain, ignoring cpusets.
8230 		 */
8231 		cpuset_reset_sched_domains();
8232 		if (--num_cpus_frozen)
8233 			return;
8234 		/*
8235 		 * This is the last CPU online operation. So fall through and
8236 		 * restore the original sched domains by considering the
8237 		 * cpuset configurations.
8238 		 */
8239 		cpuset_force_rebuild();
8240 	}
8241 	cpuset_update_active_cpus();
8242 }
8243 
8244 static void cpuset_cpu_inactive(unsigned int cpu)
8245 {
8246 	if (!cpuhp_tasks_frozen) {
8247 		cpuset_update_active_cpus();
8248 	} else {
8249 		num_cpus_frozen++;
8250 		cpuset_reset_sched_domains();
8251 	}
8252 }
8253 
8254 static inline void sched_smt_present_inc(int cpu)
8255 {
8256 #ifdef CONFIG_SCHED_SMT
8257 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8258 		static_branch_inc_cpuslocked(&sched_smt_present);
8259 #endif
8260 }
8261 
8262 static inline void sched_smt_present_dec(int cpu)
8263 {
8264 #ifdef CONFIG_SCHED_SMT
8265 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8266 		static_branch_dec_cpuslocked(&sched_smt_present);
8267 #endif
8268 }
8269 
8270 int sched_cpu_activate(unsigned int cpu)
8271 {
8272 	struct rq *rq = cpu_rq(cpu);
8273 
8274 	/*
8275 	 * Clear the balance_push callback and prepare to schedule
8276 	 * regular tasks.
8277 	 */
8278 	balance_push_set(cpu, false);
8279 
8280 	/*
8281 	 * When going up, increment the number of cores with SMT present.
8282 	 */
8283 	sched_smt_present_inc(cpu);
8284 	set_cpu_active(cpu, true);
8285 
8286 	if (sched_smp_initialized) {
8287 		sched_update_numa(cpu, true);
8288 		sched_domains_numa_masks_set(cpu);
8289 		cpuset_cpu_active();
8290 	}
8291 
8292 	scx_rq_activate(rq);
8293 
8294 	/*
8295 	 * Put the rq online, if not already. This happens:
8296 	 *
8297 	 * 1) In the early boot process, because we build the real domains
8298 	 *    after all CPUs have been brought up.
8299 	 *
8300 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8301 	 *    domains.
8302 	 */
8303 	sched_set_rq_online(rq, cpu);
8304 
8305 	return 0;
8306 }
8307 
8308 int sched_cpu_deactivate(unsigned int cpu)
8309 {
8310 	struct rq *rq = cpu_rq(cpu);
8311 	int ret;
8312 
8313 	ret = dl_bw_deactivate(cpu);
8314 
8315 	if (ret)
8316 		return ret;
8317 
8318 	/*
8319 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8320 	 * load balancing when not active
8321 	 */
8322 	nohz_balance_exit_idle(rq);
8323 
8324 	set_cpu_active(cpu, false);
8325 
8326 	/*
8327 	 * From this point forward, this CPU will refuse to run any task that
8328 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8329 	 * push those tasks away until this gets cleared, see
8330 	 * sched_cpu_dying().
8331 	 */
8332 	balance_push_set(cpu, true);
8333 
8334 	/*
8335 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8336 	 * preempt-disabled and RCU users of this state to go away such that
8337 	 * all new such users will observe it.
8338 	 *
8339 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8340 	 * ttwu_queue_cond() and is_cpu_allowed().
8341 	 *
8342 	 * Do sync before park smpboot threads to take care the RCU boost case.
8343 	 */
8344 	synchronize_rcu();
8345 
8346 	sched_set_rq_offline(rq, cpu);
8347 
8348 	scx_rq_deactivate(rq);
8349 
8350 	/*
8351 	 * When going down, decrement the number of cores with SMT present.
8352 	 */
8353 	sched_smt_present_dec(cpu);
8354 
8355 #ifdef CONFIG_SCHED_SMT
8356 	sched_core_cpu_deactivate(cpu);
8357 #endif
8358 
8359 	if (!sched_smp_initialized)
8360 		return 0;
8361 
8362 	sched_update_numa(cpu, false);
8363 	cpuset_cpu_inactive(cpu);
8364 	sched_domains_numa_masks_clear(cpu);
8365 	return 0;
8366 }
8367 
8368 static void sched_rq_cpu_starting(unsigned int cpu)
8369 {
8370 	struct rq *rq = cpu_rq(cpu);
8371 
8372 	rq->calc_load_update = calc_load_update;
8373 	update_max_interval();
8374 }
8375 
8376 int sched_cpu_starting(unsigned int cpu)
8377 {
8378 	sched_core_cpu_starting(cpu);
8379 	sched_rq_cpu_starting(cpu);
8380 	sched_tick_start(cpu);
8381 	return 0;
8382 }
8383 
8384 #ifdef CONFIG_HOTPLUG_CPU
8385 
8386 /*
8387  * Invoked immediately before the stopper thread is invoked to bring the
8388  * CPU down completely. At this point all per CPU kthreads except the
8389  * hotplug thread (current) and the stopper thread (inactive) have been
8390  * either parked or have been unbound from the outgoing CPU. Ensure that
8391  * any of those which might be on the way out are gone.
8392  *
8393  * If after this point a bound task is being woken on this CPU then the
8394  * responsible hotplug callback has failed to do it's job.
8395  * sched_cpu_dying() will catch it with the appropriate fireworks.
8396  */
8397 int sched_cpu_wait_empty(unsigned int cpu)
8398 {
8399 	balance_hotplug_wait();
8400 	sched_force_init_mm();
8401 	return 0;
8402 }
8403 
8404 /*
8405  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8406  * might have. Called from the CPU stopper task after ensuring that the
8407  * stopper is the last running task on the CPU, so nr_active count is
8408  * stable. We need to take the tear-down thread which is calling this into
8409  * account, so we hand in adjust = 1 to the load calculation.
8410  *
8411  * Also see the comment "Global load-average calculations".
8412  */
8413 static void calc_load_migrate(struct rq *rq)
8414 {
8415 	long delta = calc_load_fold_active(rq, 1);
8416 
8417 	if (delta)
8418 		atomic_long_add(delta, &calc_load_tasks);
8419 }
8420 
8421 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8422 {
8423 	struct task_struct *g, *p;
8424 	int cpu = cpu_of(rq);
8425 
8426 	lockdep_assert_rq_held(rq);
8427 
8428 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8429 	for_each_process_thread(g, p) {
8430 		if (task_cpu(p) != cpu)
8431 			continue;
8432 
8433 		if (!task_on_rq_queued(p))
8434 			continue;
8435 
8436 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8437 	}
8438 }
8439 
8440 int sched_cpu_dying(unsigned int cpu)
8441 {
8442 	struct rq *rq = cpu_rq(cpu);
8443 	struct rq_flags rf;
8444 
8445 	/* Handle pending wakeups and then migrate everything off */
8446 	sched_tick_stop(cpu);
8447 
8448 	rq_lock_irqsave(rq, &rf);
8449 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8450 		WARN(true, "Dying CPU not properly vacated!");
8451 		dump_rq_tasks(rq, KERN_WARNING);
8452 	}
8453 	rq_unlock_irqrestore(rq, &rf);
8454 
8455 	calc_load_migrate(rq);
8456 	update_max_interval();
8457 	hrtick_clear(rq);
8458 	sched_core_cpu_dying(cpu);
8459 	return 0;
8460 }
8461 #endif
8462 
8463 void __init sched_init_smp(void)
8464 {
8465 	sched_init_numa(NUMA_NO_NODE);
8466 
8467 	/*
8468 	 * There's no userspace yet to cause hotplug operations; hence all the
8469 	 * CPU masks are stable and all blatant races in the below code cannot
8470 	 * happen.
8471 	 */
8472 	sched_domains_mutex_lock();
8473 	sched_init_domains(cpu_active_mask);
8474 	sched_domains_mutex_unlock();
8475 
8476 	/* Move init over to a non-isolated CPU */
8477 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8478 		BUG();
8479 	current->flags &= ~PF_NO_SETAFFINITY;
8480 	sched_init_granularity();
8481 
8482 	init_sched_rt_class();
8483 	init_sched_dl_class();
8484 
8485 	sched_smp_initialized = true;
8486 }
8487 
8488 static int __init migration_init(void)
8489 {
8490 	sched_cpu_starting(smp_processor_id());
8491 	return 0;
8492 }
8493 early_initcall(migration_init);
8494 
8495 #else
8496 void __init sched_init_smp(void)
8497 {
8498 	sched_init_granularity();
8499 }
8500 #endif /* CONFIG_SMP */
8501 
8502 int in_sched_functions(unsigned long addr)
8503 {
8504 	return in_lock_functions(addr) ||
8505 		(addr >= (unsigned long)__sched_text_start
8506 		&& addr < (unsigned long)__sched_text_end);
8507 }
8508 
8509 #ifdef CONFIG_CGROUP_SCHED
8510 /*
8511  * Default task group.
8512  * Every task in system belongs to this group at bootup.
8513  */
8514 struct task_group root_task_group;
8515 LIST_HEAD(task_groups);
8516 
8517 /* Cacheline aligned slab cache for task_group */
8518 static struct kmem_cache *task_group_cache __ro_after_init;
8519 #endif
8520 
8521 void __init sched_init(void)
8522 {
8523 	unsigned long ptr = 0;
8524 	int i;
8525 
8526 	/* Make sure the linker didn't screw up */
8527 #ifdef CONFIG_SMP
8528 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8529 #endif
8530 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8531 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8532 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8533 #ifdef CONFIG_SCHED_CLASS_EXT
8534 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8535 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8536 #endif
8537 
8538 	wait_bit_init();
8539 
8540 #ifdef CONFIG_FAIR_GROUP_SCHED
8541 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8542 #endif
8543 #ifdef CONFIG_RT_GROUP_SCHED
8544 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8545 #endif
8546 	if (ptr) {
8547 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8548 
8549 #ifdef CONFIG_FAIR_GROUP_SCHED
8550 		root_task_group.se = (struct sched_entity **)ptr;
8551 		ptr += nr_cpu_ids * sizeof(void **);
8552 
8553 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8554 		ptr += nr_cpu_ids * sizeof(void **);
8555 
8556 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8557 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8558 #endif /* CONFIG_FAIR_GROUP_SCHED */
8559 #ifdef CONFIG_EXT_GROUP_SCHED
8560 		scx_tg_init(&root_task_group);
8561 #endif /* CONFIG_EXT_GROUP_SCHED */
8562 #ifdef CONFIG_RT_GROUP_SCHED
8563 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8564 		ptr += nr_cpu_ids * sizeof(void **);
8565 
8566 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8567 		ptr += nr_cpu_ids * sizeof(void **);
8568 
8569 #endif /* CONFIG_RT_GROUP_SCHED */
8570 	}
8571 
8572 #ifdef CONFIG_SMP
8573 	init_defrootdomain();
8574 #endif
8575 
8576 #ifdef CONFIG_RT_GROUP_SCHED
8577 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8578 			global_rt_period(), global_rt_runtime());
8579 #endif /* CONFIG_RT_GROUP_SCHED */
8580 
8581 #ifdef CONFIG_CGROUP_SCHED
8582 	task_group_cache = KMEM_CACHE(task_group, 0);
8583 
8584 	list_add(&root_task_group.list, &task_groups);
8585 	INIT_LIST_HEAD(&root_task_group.children);
8586 	INIT_LIST_HEAD(&root_task_group.siblings);
8587 	autogroup_init(&init_task);
8588 #endif /* CONFIG_CGROUP_SCHED */
8589 
8590 	for_each_possible_cpu(i) {
8591 		struct rq *rq;
8592 
8593 		rq = cpu_rq(i);
8594 		raw_spin_lock_init(&rq->__lock);
8595 		rq->nr_running = 0;
8596 		rq->calc_load_active = 0;
8597 		rq->calc_load_update = jiffies + LOAD_FREQ;
8598 		init_cfs_rq(&rq->cfs);
8599 		init_rt_rq(&rq->rt);
8600 		init_dl_rq(&rq->dl);
8601 #ifdef CONFIG_FAIR_GROUP_SCHED
8602 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8603 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8604 		/*
8605 		 * How much CPU bandwidth does root_task_group get?
8606 		 *
8607 		 * In case of task-groups formed through the cgroup filesystem, it
8608 		 * gets 100% of the CPU resources in the system. This overall
8609 		 * system CPU resource is divided among the tasks of
8610 		 * root_task_group and its child task-groups in a fair manner,
8611 		 * based on each entity's (task or task-group's) weight
8612 		 * (se->load.weight).
8613 		 *
8614 		 * In other words, if root_task_group has 10 tasks of weight
8615 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8616 		 * then A0's share of the CPU resource is:
8617 		 *
8618 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8619 		 *
8620 		 * We achieve this by letting root_task_group's tasks sit
8621 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8622 		 */
8623 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8624 #endif /* CONFIG_FAIR_GROUP_SCHED */
8625 
8626 #ifdef CONFIG_RT_GROUP_SCHED
8627 		/*
8628 		 * This is required for init cpu because rt.c:__enable_runtime()
8629 		 * starts working after scheduler_running, which is not the case
8630 		 * yet.
8631 		 */
8632 		rq->rt.rt_runtime = global_rt_runtime();
8633 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8634 #endif
8635 #ifdef CONFIG_SMP
8636 		rq->sd = NULL;
8637 		rq->rd = NULL;
8638 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8639 		rq->balance_callback = &balance_push_callback;
8640 		rq->active_balance = 0;
8641 		rq->next_balance = jiffies;
8642 		rq->push_cpu = 0;
8643 		rq->cpu = i;
8644 		rq->online = 0;
8645 		rq->idle_stamp = 0;
8646 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8647 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8648 
8649 		INIT_LIST_HEAD(&rq->cfs_tasks);
8650 
8651 		rq_attach_root(rq, &def_root_domain);
8652 #ifdef CONFIG_NO_HZ_COMMON
8653 		rq->last_blocked_load_update_tick = jiffies;
8654 		atomic_set(&rq->nohz_flags, 0);
8655 
8656 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8657 #endif
8658 #ifdef CONFIG_HOTPLUG_CPU
8659 		rcuwait_init(&rq->hotplug_wait);
8660 #endif
8661 #endif /* CONFIG_SMP */
8662 		hrtick_rq_init(rq);
8663 		atomic_set(&rq->nr_iowait, 0);
8664 		fair_server_init(rq);
8665 
8666 #ifdef CONFIG_SCHED_CORE
8667 		rq->core = rq;
8668 		rq->core_pick = NULL;
8669 		rq->core_dl_server = NULL;
8670 		rq->core_enabled = 0;
8671 		rq->core_tree = RB_ROOT;
8672 		rq->core_forceidle_count = 0;
8673 		rq->core_forceidle_occupation = 0;
8674 		rq->core_forceidle_start = 0;
8675 
8676 		rq->core_cookie = 0UL;
8677 #endif
8678 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8679 	}
8680 
8681 	set_load_weight(&init_task, false);
8682 	init_task.se.slice = sysctl_sched_base_slice,
8683 
8684 	/*
8685 	 * The boot idle thread does lazy MMU switching as well:
8686 	 */
8687 	mmgrab_lazy_tlb(&init_mm);
8688 	enter_lazy_tlb(&init_mm, current);
8689 
8690 	/*
8691 	 * The idle task doesn't need the kthread struct to function, but it
8692 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8693 	 * if we want to avoid special-casing it in code that deals with per-CPU
8694 	 * kthreads.
8695 	 */
8696 	WARN_ON(!set_kthread_struct(current));
8697 
8698 	/*
8699 	 * Make us the idle thread. Technically, schedule() should not be
8700 	 * called from this thread, however somewhere below it might be,
8701 	 * but because we are the idle thread, we just pick up running again
8702 	 * when this runqueue becomes "idle".
8703 	 */
8704 	__sched_fork(0, current);
8705 	init_idle(current, smp_processor_id());
8706 
8707 	calc_load_update = jiffies + LOAD_FREQ;
8708 
8709 #ifdef CONFIG_SMP
8710 	idle_thread_set_boot_cpu();
8711 	balance_push_set(smp_processor_id(), false);
8712 #endif
8713 	init_sched_fair_class();
8714 	init_sched_ext_class();
8715 
8716 	psi_init();
8717 
8718 	init_uclamp();
8719 
8720 	preempt_dynamic_init();
8721 
8722 	scheduler_running = 1;
8723 }
8724 
8725 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8726 
8727 void __might_sleep(const char *file, int line)
8728 {
8729 	unsigned int state = get_current_state();
8730 	/*
8731 	 * Blocking primitives will set (and therefore destroy) current->state,
8732 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8733 	 * otherwise we will destroy state.
8734 	 */
8735 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8736 			"do not call blocking ops when !TASK_RUNNING; "
8737 			"state=%x set at [<%p>] %pS\n", state,
8738 			(void *)current->task_state_change,
8739 			(void *)current->task_state_change);
8740 
8741 	__might_resched(file, line, 0);
8742 }
8743 EXPORT_SYMBOL(__might_sleep);
8744 
8745 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8746 {
8747 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8748 		return;
8749 
8750 	if (preempt_count() == preempt_offset)
8751 		return;
8752 
8753 	pr_err("Preemption disabled at:");
8754 	print_ip_sym(KERN_ERR, ip);
8755 }
8756 
8757 static inline bool resched_offsets_ok(unsigned int offsets)
8758 {
8759 	unsigned int nested = preempt_count();
8760 
8761 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8762 
8763 	return nested == offsets;
8764 }
8765 
8766 void __might_resched(const char *file, int line, unsigned int offsets)
8767 {
8768 	/* Ratelimiting timestamp: */
8769 	static unsigned long prev_jiffy;
8770 
8771 	unsigned long preempt_disable_ip;
8772 
8773 	/* WARN_ON_ONCE() by default, no rate limit required: */
8774 	rcu_sleep_check();
8775 
8776 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8777 	     !is_idle_task(current) && !current->non_block_count) ||
8778 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8779 	    oops_in_progress)
8780 		return;
8781 
8782 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8783 		return;
8784 	prev_jiffy = jiffies;
8785 
8786 	/* Save this before calling printk(), since that will clobber it: */
8787 	preempt_disable_ip = get_preempt_disable_ip(current);
8788 
8789 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8790 	       file, line);
8791 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8792 	       in_atomic(), irqs_disabled(), current->non_block_count,
8793 	       current->pid, current->comm);
8794 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8795 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8796 
8797 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8798 		pr_err("RCU nest depth: %d, expected: %u\n",
8799 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8800 	}
8801 
8802 	if (task_stack_end_corrupted(current))
8803 		pr_emerg("Thread overran stack, or stack corrupted\n");
8804 
8805 	debug_show_held_locks(current);
8806 	if (irqs_disabled())
8807 		print_irqtrace_events(current);
8808 
8809 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8810 				 preempt_disable_ip);
8811 
8812 	dump_stack();
8813 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8814 }
8815 EXPORT_SYMBOL(__might_resched);
8816 
8817 void __cant_sleep(const char *file, int line, int preempt_offset)
8818 {
8819 	static unsigned long prev_jiffy;
8820 
8821 	if (irqs_disabled())
8822 		return;
8823 
8824 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8825 		return;
8826 
8827 	if (preempt_count() > preempt_offset)
8828 		return;
8829 
8830 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8831 		return;
8832 	prev_jiffy = jiffies;
8833 
8834 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8835 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8836 			in_atomic(), irqs_disabled(),
8837 			current->pid, current->comm);
8838 
8839 	debug_show_held_locks(current);
8840 	dump_stack();
8841 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8842 }
8843 EXPORT_SYMBOL_GPL(__cant_sleep);
8844 
8845 #ifdef CONFIG_SMP
8846 void __cant_migrate(const char *file, int line)
8847 {
8848 	static unsigned long prev_jiffy;
8849 
8850 	if (irqs_disabled())
8851 		return;
8852 
8853 	if (is_migration_disabled(current))
8854 		return;
8855 
8856 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8857 		return;
8858 
8859 	if (preempt_count() > 0)
8860 		return;
8861 
8862 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8863 		return;
8864 	prev_jiffy = jiffies;
8865 
8866 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8867 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8868 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8869 	       current->pid, current->comm);
8870 
8871 	debug_show_held_locks(current);
8872 	dump_stack();
8873 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8874 }
8875 EXPORT_SYMBOL_GPL(__cant_migrate);
8876 #endif
8877 #endif
8878 
8879 #ifdef CONFIG_MAGIC_SYSRQ
8880 void normalize_rt_tasks(void)
8881 {
8882 	struct task_struct *g, *p;
8883 	struct sched_attr attr = {
8884 		.sched_policy = SCHED_NORMAL,
8885 	};
8886 
8887 	read_lock(&tasklist_lock);
8888 	for_each_process_thread(g, p) {
8889 		/*
8890 		 * Only normalize user tasks:
8891 		 */
8892 		if (p->flags & PF_KTHREAD)
8893 			continue;
8894 
8895 		p->se.exec_start = 0;
8896 		schedstat_set(p->stats.wait_start,  0);
8897 		schedstat_set(p->stats.sleep_start, 0);
8898 		schedstat_set(p->stats.block_start, 0);
8899 
8900 		if (!rt_or_dl_task(p)) {
8901 			/*
8902 			 * Renice negative nice level userspace
8903 			 * tasks back to 0:
8904 			 */
8905 			if (task_nice(p) < 0)
8906 				set_user_nice(p, 0);
8907 			continue;
8908 		}
8909 
8910 		__sched_setscheduler(p, &attr, false, false);
8911 	}
8912 	read_unlock(&tasklist_lock);
8913 }
8914 
8915 #endif /* CONFIG_MAGIC_SYSRQ */
8916 
8917 #if defined(CONFIG_KGDB_KDB)
8918 /*
8919  * These functions are only useful for KDB.
8920  *
8921  * They can only be called when the whole system has been
8922  * stopped - every CPU needs to be quiescent, and no scheduling
8923  * activity can take place. Using them for anything else would
8924  * be a serious bug, and as a result, they aren't even visible
8925  * under any other configuration.
8926  */
8927 
8928 /**
8929  * curr_task - return the current task for a given CPU.
8930  * @cpu: the processor in question.
8931  *
8932  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8933  *
8934  * Return: The current task for @cpu.
8935  */
8936 struct task_struct *curr_task(int cpu)
8937 {
8938 	return cpu_curr(cpu);
8939 }
8940 
8941 #endif /* defined(CONFIG_KGDB_KDB) */
8942 
8943 #ifdef CONFIG_CGROUP_SCHED
8944 /* task_group_lock serializes the addition/removal of task groups */
8945 static DEFINE_SPINLOCK(task_group_lock);
8946 
8947 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8948 					    struct task_group *parent)
8949 {
8950 #ifdef CONFIG_UCLAMP_TASK_GROUP
8951 	enum uclamp_id clamp_id;
8952 
8953 	for_each_clamp_id(clamp_id) {
8954 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8955 			      uclamp_none(clamp_id), false);
8956 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8957 	}
8958 #endif
8959 }
8960 
8961 static void sched_free_group(struct task_group *tg)
8962 {
8963 	free_fair_sched_group(tg);
8964 	free_rt_sched_group(tg);
8965 	autogroup_free(tg);
8966 	kmem_cache_free(task_group_cache, tg);
8967 }
8968 
8969 static void sched_free_group_rcu(struct rcu_head *rcu)
8970 {
8971 	sched_free_group(container_of(rcu, struct task_group, rcu));
8972 }
8973 
8974 static void sched_unregister_group(struct task_group *tg)
8975 {
8976 	unregister_fair_sched_group(tg);
8977 	unregister_rt_sched_group(tg);
8978 	/*
8979 	 * We have to wait for yet another RCU grace period to expire, as
8980 	 * print_cfs_stats() might run concurrently.
8981 	 */
8982 	call_rcu(&tg->rcu, sched_free_group_rcu);
8983 }
8984 
8985 /* allocate runqueue etc for a new task group */
8986 struct task_group *sched_create_group(struct task_group *parent)
8987 {
8988 	struct task_group *tg;
8989 
8990 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8991 	if (!tg)
8992 		return ERR_PTR(-ENOMEM);
8993 
8994 	if (!alloc_fair_sched_group(tg, parent))
8995 		goto err;
8996 
8997 	if (!alloc_rt_sched_group(tg, parent))
8998 		goto err;
8999 
9000 	scx_tg_init(tg);
9001 	alloc_uclamp_sched_group(tg, parent);
9002 
9003 	return tg;
9004 
9005 err:
9006 	sched_free_group(tg);
9007 	return ERR_PTR(-ENOMEM);
9008 }
9009 
9010 void sched_online_group(struct task_group *tg, struct task_group *parent)
9011 {
9012 	unsigned long flags;
9013 
9014 	spin_lock_irqsave(&task_group_lock, flags);
9015 	list_add_tail_rcu(&tg->list, &task_groups);
9016 
9017 	/* Root should already exist: */
9018 	WARN_ON(!parent);
9019 
9020 	tg->parent = parent;
9021 	INIT_LIST_HEAD(&tg->children);
9022 	list_add_rcu(&tg->siblings, &parent->children);
9023 	spin_unlock_irqrestore(&task_group_lock, flags);
9024 
9025 	online_fair_sched_group(tg);
9026 }
9027 
9028 /* RCU callback to free various structures associated with a task group */
9029 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9030 {
9031 	/* Now it should be safe to free those cfs_rqs: */
9032 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9033 }
9034 
9035 void sched_destroy_group(struct task_group *tg)
9036 {
9037 	/* Wait for possible concurrent references to cfs_rqs complete: */
9038 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9039 }
9040 
9041 void sched_release_group(struct task_group *tg)
9042 {
9043 	unsigned long flags;
9044 
9045 	/*
9046 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9047 	 * sched_cfs_period_timer()).
9048 	 *
9049 	 * For this to be effective, we have to wait for all pending users of
9050 	 * this task group to leave their RCU critical section to ensure no new
9051 	 * user will see our dying task group any more. Specifically ensure
9052 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9053 	 *
9054 	 * We therefore defer calling unregister_fair_sched_group() to
9055 	 * sched_unregister_group() which is guarantied to get called only after the
9056 	 * current RCU grace period has expired.
9057 	 */
9058 	spin_lock_irqsave(&task_group_lock, flags);
9059 	list_del_rcu(&tg->list);
9060 	list_del_rcu(&tg->siblings);
9061 	spin_unlock_irqrestore(&task_group_lock, flags);
9062 }
9063 
9064 static void sched_change_group(struct task_struct *tsk)
9065 {
9066 	struct task_group *tg;
9067 
9068 	/*
9069 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9070 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9071 	 * to prevent lockdep warnings.
9072 	 */
9073 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9074 			  struct task_group, css);
9075 	tg = autogroup_task_group(tsk, tg);
9076 	tsk->sched_task_group = tg;
9077 
9078 #ifdef CONFIG_FAIR_GROUP_SCHED
9079 	if (tsk->sched_class->task_change_group)
9080 		tsk->sched_class->task_change_group(tsk);
9081 	else
9082 #endif
9083 		set_task_rq(tsk, task_cpu(tsk));
9084 }
9085 
9086 /*
9087  * Change task's runqueue when it moves between groups.
9088  *
9089  * The caller of this function should have put the task in its new group by
9090  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9091  * its new group.
9092  */
9093 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9094 {
9095 	int queued, running, queue_flags =
9096 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9097 	struct rq *rq;
9098 
9099 	CLASS(task_rq_lock, rq_guard)(tsk);
9100 	rq = rq_guard.rq;
9101 
9102 	update_rq_clock(rq);
9103 
9104 	running = task_current_donor(rq, tsk);
9105 	queued = task_on_rq_queued(tsk);
9106 
9107 	if (queued)
9108 		dequeue_task(rq, tsk, queue_flags);
9109 	if (running)
9110 		put_prev_task(rq, tsk);
9111 
9112 	sched_change_group(tsk);
9113 	if (!for_autogroup)
9114 		scx_cgroup_move_task(tsk);
9115 
9116 	if (queued)
9117 		enqueue_task(rq, tsk, queue_flags);
9118 	if (running) {
9119 		set_next_task(rq, tsk);
9120 		/*
9121 		 * After changing group, the running task may have joined a
9122 		 * throttled one but it's still the running task. Trigger a
9123 		 * resched to make sure that task can still run.
9124 		 */
9125 		resched_curr(rq);
9126 	}
9127 }
9128 
9129 static struct cgroup_subsys_state *
9130 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9131 {
9132 	struct task_group *parent = css_tg(parent_css);
9133 	struct task_group *tg;
9134 
9135 	if (!parent) {
9136 		/* This is early initialization for the top cgroup */
9137 		return &root_task_group.css;
9138 	}
9139 
9140 	tg = sched_create_group(parent);
9141 	if (IS_ERR(tg))
9142 		return ERR_PTR(-ENOMEM);
9143 
9144 	return &tg->css;
9145 }
9146 
9147 /* Expose task group only after completing cgroup initialization */
9148 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9149 {
9150 	struct task_group *tg = css_tg(css);
9151 	struct task_group *parent = css_tg(css->parent);
9152 	int ret;
9153 
9154 	ret = scx_tg_online(tg);
9155 	if (ret)
9156 		return ret;
9157 
9158 	if (parent)
9159 		sched_online_group(tg, parent);
9160 
9161 #ifdef CONFIG_UCLAMP_TASK_GROUP
9162 	/* Propagate the effective uclamp value for the new group */
9163 	guard(mutex)(&uclamp_mutex);
9164 	guard(rcu)();
9165 	cpu_util_update_eff(css);
9166 #endif
9167 
9168 	return 0;
9169 }
9170 
9171 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9172 {
9173 	struct task_group *tg = css_tg(css);
9174 
9175 	scx_tg_offline(tg);
9176 }
9177 
9178 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9179 {
9180 	struct task_group *tg = css_tg(css);
9181 
9182 	sched_release_group(tg);
9183 }
9184 
9185 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9186 {
9187 	struct task_group *tg = css_tg(css);
9188 
9189 	/*
9190 	 * Relies on the RCU grace period between css_released() and this.
9191 	 */
9192 	sched_unregister_group(tg);
9193 }
9194 
9195 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9196 {
9197 #ifdef CONFIG_RT_GROUP_SCHED
9198 	struct task_struct *task;
9199 	struct cgroup_subsys_state *css;
9200 
9201 	if (!rt_group_sched_enabled())
9202 		goto scx_check;
9203 
9204 	cgroup_taskset_for_each(task, css, tset) {
9205 		if (!sched_rt_can_attach(css_tg(css), task))
9206 			return -EINVAL;
9207 	}
9208 scx_check:
9209 #endif /* CONFIG_RT_GROUP_SCHED */
9210 	return scx_cgroup_can_attach(tset);
9211 }
9212 
9213 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9214 {
9215 	struct task_struct *task;
9216 	struct cgroup_subsys_state *css;
9217 
9218 	cgroup_taskset_for_each(task, css, tset)
9219 		sched_move_task(task, false);
9220 
9221 	scx_cgroup_finish_attach();
9222 }
9223 
9224 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9225 {
9226 	scx_cgroup_cancel_attach(tset);
9227 }
9228 
9229 #ifdef CONFIG_UCLAMP_TASK_GROUP
9230 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9231 {
9232 	struct cgroup_subsys_state *top_css = css;
9233 	struct uclamp_se *uc_parent = NULL;
9234 	struct uclamp_se *uc_se = NULL;
9235 	unsigned int eff[UCLAMP_CNT];
9236 	enum uclamp_id clamp_id;
9237 	unsigned int clamps;
9238 
9239 	lockdep_assert_held(&uclamp_mutex);
9240 	WARN_ON_ONCE(!rcu_read_lock_held());
9241 
9242 	css_for_each_descendant_pre(css, top_css) {
9243 		uc_parent = css_tg(css)->parent
9244 			? css_tg(css)->parent->uclamp : NULL;
9245 
9246 		for_each_clamp_id(clamp_id) {
9247 			/* Assume effective clamps matches requested clamps */
9248 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9249 			/* Cap effective clamps with parent's effective clamps */
9250 			if (uc_parent &&
9251 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9252 				eff[clamp_id] = uc_parent[clamp_id].value;
9253 			}
9254 		}
9255 		/* Ensure protection is always capped by limit */
9256 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9257 
9258 		/* Propagate most restrictive effective clamps */
9259 		clamps = 0x0;
9260 		uc_se = css_tg(css)->uclamp;
9261 		for_each_clamp_id(clamp_id) {
9262 			if (eff[clamp_id] == uc_se[clamp_id].value)
9263 				continue;
9264 			uc_se[clamp_id].value = eff[clamp_id];
9265 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9266 			clamps |= (0x1 << clamp_id);
9267 		}
9268 		if (!clamps) {
9269 			css = css_rightmost_descendant(css);
9270 			continue;
9271 		}
9272 
9273 		/* Immediately update descendants RUNNABLE tasks */
9274 		uclamp_update_active_tasks(css);
9275 	}
9276 }
9277 
9278 /*
9279  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9280  * C expression. Since there is no way to convert a macro argument (N) into a
9281  * character constant, use two levels of macros.
9282  */
9283 #define _POW10(exp) ((unsigned int)1e##exp)
9284 #define POW10(exp) _POW10(exp)
9285 
9286 struct uclamp_request {
9287 #define UCLAMP_PERCENT_SHIFT	2
9288 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9289 	s64 percent;
9290 	u64 util;
9291 	int ret;
9292 };
9293 
9294 static inline struct uclamp_request
9295 capacity_from_percent(char *buf)
9296 {
9297 	struct uclamp_request req = {
9298 		.percent = UCLAMP_PERCENT_SCALE,
9299 		.util = SCHED_CAPACITY_SCALE,
9300 		.ret = 0,
9301 	};
9302 
9303 	buf = strim(buf);
9304 	if (strcmp(buf, "max")) {
9305 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9306 					     &req.percent);
9307 		if (req.ret)
9308 			return req;
9309 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9310 			req.ret = -ERANGE;
9311 			return req;
9312 		}
9313 
9314 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9315 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9316 	}
9317 
9318 	return req;
9319 }
9320 
9321 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9322 				size_t nbytes, loff_t off,
9323 				enum uclamp_id clamp_id)
9324 {
9325 	struct uclamp_request req;
9326 	struct task_group *tg;
9327 
9328 	req = capacity_from_percent(buf);
9329 	if (req.ret)
9330 		return req.ret;
9331 
9332 	sched_uclamp_enable();
9333 
9334 	guard(mutex)(&uclamp_mutex);
9335 	guard(rcu)();
9336 
9337 	tg = css_tg(of_css(of));
9338 	if (tg->uclamp_req[clamp_id].value != req.util)
9339 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9340 
9341 	/*
9342 	 * Because of not recoverable conversion rounding we keep track of the
9343 	 * exact requested value
9344 	 */
9345 	tg->uclamp_pct[clamp_id] = req.percent;
9346 
9347 	/* Update effective clamps to track the most restrictive value */
9348 	cpu_util_update_eff(of_css(of));
9349 
9350 	return nbytes;
9351 }
9352 
9353 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9354 				    char *buf, size_t nbytes,
9355 				    loff_t off)
9356 {
9357 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9358 }
9359 
9360 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9361 				    char *buf, size_t nbytes,
9362 				    loff_t off)
9363 {
9364 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9365 }
9366 
9367 static inline void cpu_uclamp_print(struct seq_file *sf,
9368 				    enum uclamp_id clamp_id)
9369 {
9370 	struct task_group *tg;
9371 	u64 util_clamp;
9372 	u64 percent;
9373 	u32 rem;
9374 
9375 	scoped_guard (rcu) {
9376 		tg = css_tg(seq_css(sf));
9377 		util_clamp = tg->uclamp_req[clamp_id].value;
9378 	}
9379 
9380 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9381 		seq_puts(sf, "max\n");
9382 		return;
9383 	}
9384 
9385 	percent = tg->uclamp_pct[clamp_id];
9386 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9387 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9388 }
9389 
9390 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9391 {
9392 	cpu_uclamp_print(sf, UCLAMP_MIN);
9393 	return 0;
9394 }
9395 
9396 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9397 {
9398 	cpu_uclamp_print(sf, UCLAMP_MAX);
9399 	return 0;
9400 }
9401 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9402 
9403 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9404 static unsigned long tg_weight(struct task_group *tg)
9405 {
9406 #ifdef CONFIG_FAIR_GROUP_SCHED
9407 	return scale_load_down(tg->shares);
9408 #else
9409 	return sched_weight_from_cgroup(tg->scx_weight);
9410 #endif
9411 }
9412 
9413 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9414 				struct cftype *cftype, u64 shareval)
9415 {
9416 	int ret;
9417 
9418 	if (shareval > scale_load_down(ULONG_MAX))
9419 		shareval = MAX_SHARES;
9420 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9421 	if (!ret)
9422 		scx_group_set_weight(css_tg(css),
9423 				     sched_weight_to_cgroup(shareval));
9424 	return ret;
9425 }
9426 
9427 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9428 			       struct cftype *cft)
9429 {
9430 	return tg_weight(css_tg(css));
9431 }
9432 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9433 
9434 #ifdef CONFIG_CFS_BANDWIDTH
9435 static DEFINE_MUTEX(cfs_constraints_mutex);
9436 
9437 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9438 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9439 /* More than 203 days if BW_SHIFT equals 20. */
9440 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9441 
9442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9443 
9444 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9445 				u64 burst)
9446 {
9447 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9448 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9449 
9450 	if (tg == &root_task_group)
9451 		return -EINVAL;
9452 
9453 	/*
9454 	 * Ensure we have at some amount of bandwidth every period.  This is
9455 	 * to prevent reaching a state of large arrears when throttled via
9456 	 * entity_tick() resulting in prolonged exit starvation.
9457 	 */
9458 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9459 		return -EINVAL;
9460 
9461 	/*
9462 	 * Likewise, bound things on the other side by preventing insane quota
9463 	 * periods.  This also allows us to normalize in computing quota
9464 	 * feasibility.
9465 	 */
9466 	if (period > max_cfs_quota_period)
9467 		return -EINVAL;
9468 
9469 	/*
9470 	 * Bound quota to defend quota against overflow during bandwidth shift.
9471 	 */
9472 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9473 		return -EINVAL;
9474 
9475 	if (quota != RUNTIME_INF && (burst > quota ||
9476 				     burst + quota > max_cfs_runtime))
9477 		return -EINVAL;
9478 
9479 	/*
9480 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9481 	 * unthrottle_offline_cfs_rqs().
9482 	 */
9483 	guard(cpus_read_lock)();
9484 	guard(mutex)(&cfs_constraints_mutex);
9485 
9486 	ret = __cfs_schedulable(tg, period, quota);
9487 	if (ret)
9488 		return ret;
9489 
9490 	runtime_enabled = quota != RUNTIME_INF;
9491 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9492 	/*
9493 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9494 	 * before making related changes, and on->off must occur afterwards
9495 	 */
9496 	if (runtime_enabled && !runtime_was_enabled)
9497 		cfs_bandwidth_usage_inc();
9498 
9499 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9500 		cfs_b->period = ns_to_ktime(period);
9501 		cfs_b->quota = quota;
9502 		cfs_b->burst = burst;
9503 
9504 		__refill_cfs_bandwidth_runtime(cfs_b);
9505 
9506 		/*
9507 		 * Restart the period timer (if active) to handle new
9508 		 * period expiry:
9509 		 */
9510 		if (runtime_enabled)
9511 			start_cfs_bandwidth(cfs_b);
9512 	}
9513 
9514 	for_each_online_cpu(i) {
9515 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9516 		struct rq *rq = cfs_rq->rq;
9517 
9518 		guard(rq_lock_irq)(rq);
9519 		cfs_rq->runtime_enabled = runtime_enabled;
9520 		cfs_rq->runtime_remaining = 0;
9521 
9522 		if (cfs_rq->throttled)
9523 			unthrottle_cfs_rq(cfs_rq);
9524 	}
9525 
9526 	if (runtime_was_enabled && !runtime_enabled)
9527 		cfs_bandwidth_usage_dec();
9528 
9529 	return 0;
9530 }
9531 
9532 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9533 {
9534 	u64 quota, period, burst;
9535 
9536 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9537 	burst = tg->cfs_bandwidth.burst;
9538 	if (cfs_quota_us < 0)
9539 		quota = RUNTIME_INF;
9540 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9541 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9542 	else
9543 		return -EINVAL;
9544 
9545 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9546 }
9547 
9548 static long tg_get_cfs_quota(struct task_group *tg)
9549 {
9550 	u64 quota_us;
9551 
9552 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9553 		return -1;
9554 
9555 	quota_us = tg->cfs_bandwidth.quota;
9556 	do_div(quota_us, NSEC_PER_USEC);
9557 
9558 	return quota_us;
9559 }
9560 
9561 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9562 {
9563 	u64 quota, period, burst;
9564 
9565 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9566 		return -EINVAL;
9567 
9568 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9569 	quota = tg->cfs_bandwidth.quota;
9570 	burst = tg->cfs_bandwidth.burst;
9571 
9572 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9573 }
9574 
9575 static long tg_get_cfs_period(struct task_group *tg)
9576 {
9577 	u64 cfs_period_us;
9578 
9579 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9580 	do_div(cfs_period_us, NSEC_PER_USEC);
9581 
9582 	return cfs_period_us;
9583 }
9584 
9585 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9586 {
9587 	u64 quota, period, burst;
9588 
9589 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9590 		return -EINVAL;
9591 
9592 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9593 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9594 	quota = tg->cfs_bandwidth.quota;
9595 
9596 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9597 }
9598 
9599 static long tg_get_cfs_burst(struct task_group *tg)
9600 {
9601 	u64 burst_us;
9602 
9603 	burst_us = tg->cfs_bandwidth.burst;
9604 	do_div(burst_us, NSEC_PER_USEC);
9605 
9606 	return burst_us;
9607 }
9608 
9609 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9610 				  struct cftype *cft)
9611 {
9612 	return tg_get_cfs_quota(css_tg(css));
9613 }
9614 
9615 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9616 				   struct cftype *cftype, s64 cfs_quota_us)
9617 {
9618 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9619 }
9620 
9621 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9622 				   struct cftype *cft)
9623 {
9624 	return tg_get_cfs_period(css_tg(css));
9625 }
9626 
9627 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9628 				    struct cftype *cftype, u64 cfs_period_us)
9629 {
9630 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9631 }
9632 
9633 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9634 				  struct cftype *cft)
9635 {
9636 	return tg_get_cfs_burst(css_tg(css));
9637 }
9638 
9639 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9640 				   struct cftype *cftype, u64 cfs_burst_us)
9641 {
9642 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9643 }
9644 
9645 struct cfs_schedulable_data {
9646 	struct task_group *tg;
9647 	u64 period, quota;
9648 };
9649 
9650 /*
9651  * normalize group quota/period to be quota/max_period
9652  * note: units are usecs
9653  */
9654 static u64 normalize_cfs_quota(struct task_group *tg,
9655 			       struct cfs_schedulable_data *d)
9656 {
9657 	u64 quota, period;
9658 
9659 	if (tg == d->tg) {
9660 		period = d->period;
9661 		quota = d->quota;
9662 	} else {
9663 		period = tg_get_cfs_period(tg);
9664 		quota = tg_get_cfs_quota(tg);
9665 	}
9666 
9667 	/* note: these should typically be equivalent */
9668 	if (quota == RUNTIME_INF || quota == -1)
9669 		return RUNTIME_INF;
9670 
9671 	return to_ratio(period, quota);
9672 }
9673 
9674 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9675 {
9676 	struct cfs_schedulable_data *d = data;
9677 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9678 	s64 quota = 0, parent_quota = -1;
9679 
9680 	if (!tg->parent) {
9681 		quota = RUNTIME_INF;
9682 	} else {
9683 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9684 
9685 		quota = normalize_cfs_quota(tg, d);
9686 		parent_quota = parent_b->hierarchical_quota;
9687 
9688 		/*
9689 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9690 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9691 		 * inherit when no limit is set. In both cases this is used
9692 		 * by the scheduler to determine if a given CFS task has a
9693 		 * bandwidth constraint at some higher level.
9694 		 */
9695 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9696 			if (quota == RUNTIME_INF)
9697 				quota = parent_quota;
9698 			else if (parent_quota != RUNTIME_INF)
9699 				quota = min(quota, parent_quota);
9700 		} else {
9701 			if (quota == RUNTIME_INF)
9702 				quota = parent_quota;
9703 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9704 				return -EINVAL;
9705 		}
9706 	}
9707 	cfs_b->hierarchical_quota = quota;
9708 
9709 	return 0;
9710 }
9711 
9712 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9713 {
9714 	struct cfs_schedulable_data data = {
9715 		.tg = tg,
9716 		.period = period,
9717 		.quota = quota,
9718 	};
9719 
9720 	if (quota != RUNTIME_INF) {
9721 		do_div(data.period, NSEC_PER_USEC);
9722 		do_div(data.quota, NSEC_PER_USEC);
9723 	}
9724 
9725 	guard(rcu)();
9726 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9727 }
9728 
9729 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9730 {
9731 	struct task_group *tg = css_tg(seq_css(sf));
9732 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9733 
9734 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9735 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9736 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9737 
9738 	if (schedstat_enabled() && tg != &root_task_group) {
9739 		struct sched_statistics *stats;
9740 		u64 ws = 0;
9741 		int i;
9742 
9743 		for_each_possible_cpu(i) {
9744 			stats = __schedstats_from_se(tg->se[i]);
9745 			ws += schedstat_val(stats->wait_sum);
9746 		}
9747 
9748 		seq_printf(sf, "wait_sum %llu\n", ws);
9749 	}
9750 
9751 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9752 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9753 
9754 	return 0;
9755 }
9756 
9757 static u64 throttled_time_self(struct task_group *tg)
9758 {
9759 	int i;
9760 	u64 total = 0;
9761 
9762 	for_each_possible_cpu(i) {
9763 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9764 	}
9765 
9766 	return total;
9767 }
9768 
9769 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9770 {
9771 	struct task_group *tg = css_tg(seq_css(sf));
9772 
9773 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9774 
9775 	return 0;
9776 }
9777 #endif /* CONFIG_CFS_BANDWIDTH */
9778 
9779 #ifdef CONFIG_RT_GROUP_SCHED
9780 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9781 				struct cftype *cft, s64 val)
9782 {
9783 	return sched_group_set_rt_runtime(css_tg(css), val);
9784 }
9785 
9786 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9787 			       struct cftype *cft)
9788 {
9789 	return sched_group_rt_runtime(css_tg(css));
9790 }
9791 
9792 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9793 				    struct cftype *cftype, u64 rt_period_us)
9794 {
9795 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9796 }
9797 
9798 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9799 				   struct cftype *cft)
9800 {
9801 	return sched_group_rt_period(css_tg(css));
9802 }
9803 #endif /* CONFIG_RT_GROUP_SCHED */
9804 
9805 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9806 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9807 			       struct cftype *cft)
9808 {
9809 	return css_tg(css)->idle;
9810 }
9811 
9812 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9813 				struct cftype *cft, s64 idle)
9814 {
9815 	int ret;
9816 
9817 	ret = sched_group_set_idle(css_tg(css), idle);
9818 	if (!ret)
9819 		scx_group_set_idle(css_tg(css), idle);
9820 	return ret;
9821 }
9822 #endif
9823 
9824 static struct cftype cpu_legacy_files[] = {
9825 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9826 	{
9827 		.name = "shares",
9828 		.read_u64 = cpu_shares_read_u64,
9829 		.write_u64 = cpu_shares_write_u64,
9830 	},
9831 	{
9832 		.name = "idle",
9833 		.read_s64 = cpu_idle_read_s64,
9834 		.write_s64 = cpu_idle_write_s64,
9835 	},
9836 #endif
9837 #ifdef CONFIG_CFS_BANDWIDTH
9838 	{
9839 		.name = "cfs_quota_us",
9840 		.read_s64 = cpu_cfs_quota_read_s64,
9841 		.write_s64 = cpu_cfs_quota_write_s64,
9842 	},
9843 	{
9844 		.name = "cfs_period_us",
9845 		.read_u64 = cpu_cfs_period_read_u64,
9846 		.write_u64 = cpu_cfs_period_write_u64,
9847 	},
9848 	{
9849 		.name = "cfs_burst_us",
9850 		.read_u64 = cpu_cfs_burst_read_u64,
9851 		.write_u64 = cpu_cfs_burst_write_u64,
9852 	},
9853 	{
9854 		.name = "stat",
9855 		.seq_show = cpu_cfs_stat_show,
9856 	},
9857 	{
9858 		.name = "stat.local",
9859 		.seq_show = cpu_cfs_local_stat_show,
9860 	},
9861 #endif
9862 #ifdef CONFIG_UCLAMP_TASK_GROUP
9863 	{
9864 		.name = "uclamp.min",
9865 		.flags = CFTYPE_NOT_ON_ROOT,
9866 		.seq_show = cpu_uclamp_min_show,
9867 		.write = cpu_uclamp_min_write,
9868 	},
9869 	{
9870 		.name = "uclamp.max",
9871 		.flags = CFTYPE_NOT_ON_ROOT,
9872 		.seq_show = cpu_uclamp_max_show,
9873 		.write = cpu_uclamp_max_write,
9874 	},
9875 #endif
9876 	{ }	/* Terminate */
9877 };
9878 
9879 #ifdef CONFIG_RT_GROUP_SCHED
9880 static struct cftype rt_group_files[] = {
9881 	{
9882 		.name = "rt_runtime_us",
9883 		.read_s64 = cpu_rt_runtime_read,
9884 		.write_s64 = cpu_rt_runtime_write,
9885 	},
9886 	{
9887 		.name = "rt_period_us",
9888 		.read_u64 = cpu_rt_period_read_uint,
9889 		.write_u64 = cpu_rt_period_write_uint,
9890 	},
9891 	{ }	/* Terminate */
9892 };
9893 
9894 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9895 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9896 # else
9897 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9898 # endif
9899 
9900 static int __init setup_rt_group_sched(char *str)
9901 {
9902 	long val;
9903 
9904 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9905 		pr_warn("Unable to set rt_group_sched\n");
9906 		return 1;
9907 	}
9908 	if (val)
9909 		static_branch_enable(&rt_group_sched);
9910 	else
9911 		static_branch_disable(&rt_group_sched);
9912 
9913 	return 1;
9914 }
9915 __setup("rt_group_sched=", setup_rt_group_sched);
9916 
9917 static int __init cpu_rt_group_init(void)
9918 {
9919 	if (!rt_group_sched_enabled())
9920 		return 0;
9921 
9922 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9923 	return 0;
9924 }
9925 subsys_initcall(cpu_rt_group_init);
9926 #endif /* CONFIG_RT_GROUP_SCHED */
9927 
9928 static int cpu_extra_stat_show(struct seq_file *sf,
9929 			       struct cgroup_subsys_state *css)
9930 {
9931 #ifdef CONFIG_CFS_BANDWIDTH
9932 	{
9933 		struct task_group *tg = css_tg(css);
9934 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9935 		u64 throttled_usec, burst_usec;
9936 
9937 		throttled_usec = cfs_b->throttled_time;
9938 		do_div(throttled_usec, NSEC_PER_USEC);
9939 		burst_usec = cfs_b->burst_time;
9940 		do_div(burst_usec, NSEC_PER_USEC);
9941 
9942 		seq_printf(sf, "nr_periods %d\n"
9943 			   "nr_throttled %d\n"
9944 			   "throttled_usec %llu\n"
9945 			   "nr_bursts %d\n"
9946 			   "burst_usec %llu\n",
9947 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9948 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9949 	}
9950 #endif
9951 	return 0;
9952 }
9953 
9954 static int cpu_local_stat_show(struct seq_file *sf,
9955 			       struct cgroup_subsys_state *css)
9956 {
9957 #ifdef CONFIG_CFS_BANDWIDTH
9958 	{
9959 		struct task_group *tg = css_tg(css);
9960 		u64 throttled_self_usec;
9961 
9962 		throttled_self_usec = throttled_time_self(tg);
9963 		do_div(throttled_self_usec, NSEC_PER_USEC);
9964 
9965 		seq_printf(sf, "throttled_usec %llu\n",
9966 			   throttled_self_usec);
9967 	}
9968 #endif
9969 	return 0;
9970 }
9971 
9972 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9973 
9974 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9975 			       struct cftype *cft)
9976 {
9977 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9978 }
9979 
9980 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9981 				struct cftype *cft, u64 cgrp_weight)
9982 {
9983 	unsigned long weight;
9984 	int ret;
9985 
9986 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9987 		return -ERANGE;
9988 
9989 	weight = sched_weight_from_cgroup(cgrp_weight);
9990 
9991 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9992 	if (!ret)
9993 		scx_group_set_weight(css_tg(css), cgrp_weight);
9994 	return ret;
9995 }
9996 
9997 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9998 				    struct cftype *cft)
9999 {
10000 	unsigned long weight = tg_weight(css_tg(css));
10001 	int last_delta = INT_MAX;
10002 	int prio, delta;
10003 
10004 	/* find the closest nice value to the current weight */
10005 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10006 		delta = abs(sched_prio_to_weight[prio] - weight);
10007 		if (delta >= last_delta)
10008 			break;
10009 		last_delta = delta;
10010 	}
10011 
10012 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10013 }
10014 
10015 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10016 				     struct cftype *cft, s64 nice)
10017 {
10018 	unsigned long weight;
10019 	int idx, ret;
10020 
10021 	if (nice < MIN_NICE || nice > MAX_NICE)
10022 		return -ERANGE;
10023 
10024 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10025 	idx = array_index_nospec(idx, 40);
10026 	weight = sched_prio_to_weight[idx];
10027 
10028 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10029 	if (!ret)
10030 		scx_group_set_weight(css_tg(css),
10031 				     sched_weight_to_cgroup(weight));
10032 	return ret;
10033 }
10034 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10035 
10036 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10037 						  long period, long quota)
10038 {
10039 	if (quota < 0)
10040 		seq_puts(sf, "max");
10041 	else
10042 		seq_printf(sf, "%ld", quota);
10043 
10044 	seq_printf(sf, " %ld\n", period);
10045 }
10046 
10047 /* caller should put the current value in *@periodp before calling */
10048 static int __maybe_unused cpu_period_quota_parse(char *buf,
10049 						 u64 *periodp, u64 *quotap)
10050 {
10051 	char tok[21];	/* U64_MAX */
10052 
10053 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10054 		return -EINVAL;
10055 
10056 	*periodp *= NSEC_PER_USEC;
10057 
10058 	if (sscanf(tok, "%llu", quotap))
10059 		*quotap *= NSEC_PER_USEC;
10060 	else if (!strcmp(tok, "max"))
10061 		*quotap = RUNTIME_INF;
10062 	else
10063 		return -EINVAL;
10064 
10065 	return 0;
10066 }
10067 
10068 #ifdef CONFIG_CFS_BANDWIDTH
10069 static int cpu_max_show(struct seq_file *sf, void *v)
10070 {
10071 	struct task_group *tg = css_tg(seq_css(sf));
10072 
10073 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10074 	return 0;
10075 }
10076 
10077 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10078 			     char *buf, size_t nbytes, loff_t off)
10079 {
10080 	struct task_group *tg = css_tg(of_css(of));
10081 	u64 period = tg_get_cfs_period(tg);
10082 	u64 burst = tg->cfs_bandwidth.burst;
10083 	u64 quota;
10084 	int ret;
10085 
10086 	ret = cpu_period_quota_parse(buf, &period, &quota);
10087 	if (!ret)
10088 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10089 	return ret ?: nbytes;
10090 }
10091 #endif
10092 
10093 static struct cftype cpu_files[] = {
10094 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10095 	{
10096 		.name = "weight",
10097 		.flags = CFTYPE_NOT_ON_ROOT,
10098 		.read_u64 = cpu_weight_read_u64,
10099 		.write_u64 = cpu_weight_write_u64,
10100 	},
10101 	{
10102 		.name = "weight.nice",
10103 		.flags = CFTYPE_NOT_ON_ROOT,
10104 		.read_s64 = cpu_weight_nice_read_s64,
10105 		.write_s64 = cpu_weight_nice_write_s64,
10106 	},
10107 	{
10108 		.name = "idle",
10109 		.flags = CFTYPE_NOT_ON_ROOT,
10110 		.read_s64 = cpu_idle_read_s64,
10111 		.write_s64 = cpu_idle_write_s64,
10112 	},
10113 #endif
10114 #ifdef CONFIG_CFS_BANDWIDTH
10115 	{
10116 		.name = "max",
10117 		.flags = CFTYPE_NOT_ON_ROOT,
10118 		.seq_show = cpu_max_show,
10119 		.write = cpu_max_write,
10120 	},
10121 	{
10122 		.name = "max.burst",
10123 		.flags = CFTYPE_NOT_ON_ROOT,
10124 		.read_u64 = cpu_cfs_burst_read_u64,
10125 		.write_u64 = cpu_cfs_burst_write_u64,
10126 	},
10127 #endif
10128 #ifdef CONFIG_UCLAMP_TASK_GROUP
10129 	{
10130 		.name = "uclamp.min",
10131 		.flags = CFTYPE_NOT_ON_ROOT,
10132 		.seq_show = cpu_uclamp_min_show,
10133 		.write = cpu_uclamp_min_write,
10134 	},
10135 	{
10136 		.name = "uclamp.max",
10137 		.flags = CFTYPE_NOT_ON_ROOT,
10138 		.seq_show = cpu_uclamp_max_show,
10139 		.write = cpu_uclamp_max_write,
10140 	},
10141 #endif
10142 	{ }	/* terminate */
10143 };
10144 
10145 struct cgroup_subsys cpu_cgrp_subsys = {
10146 	.css_alloc	= cpu_cgroup_css_alloc,
10147 	.css_online	= cpu_cgroup_css_online,
10148 	.css_offline	= cpu_cgroup_css_offline,
10149 	.css_released	= cpu_cgroup_css_released,
10150 	.css_free	= cpu_cgroup_css_free,
10151 	.css_extra_stat_show = cpu_extra_stat_show,
10152 	.css_local_stat_show = cpu_local_stat_show,
10153 	.can_attach	= cpu_cgroup_can_attach,
10154 	.attach		= cpu_cgroup_attach,
10155 	.cancel_attach	= cpu_cgroup_cancel_attach,
10156 	.legacy_cftypes	= cpu_legacy_files,
10157 	.dfl_cftypes	= cpu_files,
10158 	.early_init	= true,
10159 	.threaded	= true,
10160 };
10161 
10162 #endif	/* CONFIG_CGROUP_SCHED */
10163 
10164 void dump_cpu_task(int cpu)
10165 {
10166 	if (in_hardirq() && cpu == smp_processor_id()) {
10167 		struct pt_regs *regs;
10168 
10169 		regs = get_irq_regs();
10170 		if (regs) {
10171 			show_regs(regs);
10172 			return;
10173 		}
10174 	}
10175 
10176 	if (trigger_single_cpu_backtrace(cpu))
10177 		return;
10178 
10179 	pr_info("Task dump for CPU %d:\n", cpu);
10180 	sched_show_task(cpu_curr(cpu));
10181 }
10182 
10183 /*
10184  * Nice levels are multiplicative, with a gentle 10% change for every
10185  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10186  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10187  * that remained on nice 0.
10188  *
10189  * The "10% effect" is relative and cumulative: from _any_ nice level,
10190  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10191  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10192  * If a task goes up by ~10% and another task goes down by ~10% then
10193  * the relative distance between them is ~25%.)
10194  */
10195 const int sched_prio_to_weight[40] = {
10196  /* -20 */     88761,     71755,     56483,     46273,     36291,
10197  /* -15 */     29154,     23254,     18705,     14949,     11916,
10198  /* -10 */      9548,      7620,      6100,      4904,      3906,
10199  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10200  /*   0 */      1024,       820,       655,       526,       423,
10201  /*   5 */       335,       272,       215,       172,       137,
10202  /*  10 */       110,        87,        70,        56,        45,
10203  /*  15 */        36,        29,        23,        18,        15,
10204 };
10205 
10206 /*
10207  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10208  *
10209  * In cases where the weight does not change often, we can use the
10210  * pre-calculated inverse to speed up arithmetics by turning divisions
10211  * into multiplications:
10212  */
10213 const u32 sched_prio_to_wmult[40] = {
10214  /* -20 */     48388,     59856,     76040,     92818,    118348,
10215  /* -15 */    147320,    184698,    229616,    287308,    360437,
10216  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10217  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10218  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10219  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10220  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10221  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10222 };
10223 
10224 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10225 {
10226         trace_sched_update_nr_running_tp(rq, count);
10227 }
10228 
10229 #ifdef CONFIG_SCHED_MM_CID
10230 
10231 /*
10232  * @cid_lock: Guarantee forward-progress of cid allocation.
10233  *
10234  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10235  * is only used when contention is detected by the lock-free allocation so
10236  * forward progress can be guaranteed.
10237  */
10238 DEFINE_RAW_SPINLOCK(cid_lock);
10239 
10240 /*
10241  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10242  *
10243  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10244  * detected, it is set to 1 to ensure that all newly coming allocations are
10245  * serialized by @cid_lock until the allocation which detected contention
10246  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10247  * of a cid allocation.
10248  */
10249 int use_cid_lock;
10250 
10251 /*
10252  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10253  * concurrently with respect to the execution of the source runqueue context
10254  * switch.
10255  *
10256  * There is one basic properties we want to guarantee here:
10257  *
10258  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10259  * used by a task. That would lead to concurrent allocation of the cid and
10260  * userspace corruption.
10261  *
10262  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10263  * that a pair of loads observe at least one of a pair of stores, which can be
10264  * shown as:
10265  *
10266  *      X = Y = 0
10267  *
10268  *      w[X]=1          w[Y]=1
10269  *      MB              MB
10270  *      r[Y]=y          r[X]=x
10271  *
10272  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10273  * values 0 and 1, this algorithm cares about specific state transitions of the
10274  * runqueue current task (as updated by the scheduler context switch), and the
10275  * per-mm/cpu cid value.
10276  *
10277  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10278  * task->mm != mm for the rest of the discussion. There are two scheduler state
10279  * transitions on context switch we care about:
10280  *
10281  * (TSA) Store to rq->curr with transition from (N) to (Y)
10282  *
10283  * (TSB) Store to rq->curr with transition from (Y) to (N)
10284  *
10285  * On the remote-clear side, there is one transition we care about:
10286  *
10287  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10288  *
10289  * There is also a transition to UNSET state which can be performed from all
10290  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10291  * guarantees that only a single thread will succeed:
10292  *
10293  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10294  *
10295  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10296  * when a thread is actively using the cid (property (1)).
10297  *
10298  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10299  *
10300  * Scenario A) (TSA)+(TMA) (from next task perspective)
10301  *
10302  * CPU0                                      CPU1
10303  *
10304  * Context switch CS-1                       Remote-clear
10305  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10306  *                                             (implied barrier after cmpxchg)
10307  *   - switch_mm_cid()
10308  *     - memory barrier (see switch_mm_cid()
10309  *       comment explaining how this barrier
10310  *       is combined with other scheduler
10311  *       barriers)
10312  *     - mm_cid_get (next)
10313  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10314  *
10315  * This Dekker ensures that either task (Y) is observed by the
10316  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10317  * observed.
10318  *
10319  * If task (Y) store is observed by rcu_dereference(), it means that there is
10320  * still an active task on the cpu. Remote-clear will therefore not transition
10321  * to UNSET, which fulfills property (1).
10322  *
10323  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10324  * it will move its state to UNSET, which clears the percpu cid perhaps
10325  * uselessly (which is not an issue for correctness). Because task (Y) is not
10326  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10327  * state to UNSET is done with a cmpxchg expecting that the old state has the
10328  * LAZY flag set, only one thread will successfully UNSET.
10329  *
10330  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10331  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10332  * CPU1 will observe task (Y) and do nothing more, which is fine.
10333  *
10334  * What we are effectively preventing with this Dekker is a scenario where
10335  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10336  * because this would UNSET a cid which is actively used.
10337  */
10338 
10339 void sched_mm_cid_migrate_from(struct task_struct *t)
10340 {
10341 	t->migrate_from_cpu = task_cpu(t);
10342 }
10343 
10344 static
10345 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10346 					  struct task_struct *t,
10347 					  struct mm_cid *src_pcpu_cid)
10348 {
10349 	struct mm_struct *mm = t->mm;
10350 	struct task_struct *src_task;
10351 	int src_cid, last_mm_cid;
10352 
10353 	if (!mm)
10354 		return -1;
10355 
10356 	last_mm_cid = t->last_mm_cid;
10357 	/*
10358 	 * If the migrated task has no last cid, or if the current
10359 	 * task on src rq uses the cid, it means the source cid does not need
10360 	 * to be moved to the destination cpu.
10361 	 */
10362 	if (last_mm_cid == -1)
10363 		return -1;
10364 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10365 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10366 		return -1;
10367 
10368 	/*
10369 	 * If we observe an active task using the mm on this rq, it means we
10370 	 * are not the last task to be migrated from this cpu for this mm, so
10371 	 * there is no need to move src_cid to the destination cpu.
10372 	 */
10373 	guard(rcu)();
10374 	src_task = rcu_dereference(src_rq->curr);
10375 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10376 		t->last_mm_cid = -1;
10377 		return -1;
10378 	}
10379 
10380 	return src_cid;
10381 }
10382 
10383 static
10384 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10385 					      struct task_struct *t,
10386 					      struct mm_cid *src_pcpu_cid,
10387 					      int src_cid)
10388 {
10389 	struct task_struct *src_task;
10390 	struct mm_struct *mm = t->mm;
10391 	int lazy_cid;
10392 
10393 	if (src_cid == -1)
10394 		return -1;
10395 
10396 	/*
10397 	 * Attempt to clear the source cpu cid to move it to the destination
10398 	 * cpu.
10399 	 */
10400 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10401 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10402 		return -1;
10403 
10404 	/*
10405 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10406 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10407 	 * between store to rq->curr and load of prev and next task's
10408 	 * per-mm/cpu cid.
10409 	 *
10410 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10411 	 * rq->curr->mm_cid_active matches the barrier in
10412 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10413 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10414 	 * load of per-mm/cpu cid.
10415 	 */
10416 
10417 	/*
10418 	 * If we observe an active task using the mm on this rq after setting
10419 	 * the lazy-put flag, this task will be responsible for transitioning
10420 	 * from lazy-put flag set to MM_CID_UNSET.
10421 	 */
10422 	scoped_guard (rcu) {
10423 		src_task = rcu_dereference(src_rq->curr);
10424 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10425 			/*
10426 			 * We observed an active task for this mm, there is therefore
10427 			 * no point in moving this cid to the destination cpu.
10428 			 */
10429 			t->last_mm_cid = -1;
10430 			return -1;
10431 		}
10432 	}
10433 
10434 	/*
10435 	 * The src_cid is unused, so it can be unset.
10436 	 */
10437 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10438 		return -1;
10439 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10440 	return src_cid;
10441 }
10442 
10443 /*
10444  * Migration to dst cpu. Called with dst_rq lock held.
10445  * Interrupts are disabled, which keeps the window of cid ownership without the
10446  * source rq lock held small.
10447  */
10448 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10449 {
10450 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10451 	struct mm_struct *mm = t->mm;
10452 	int src_cid, src_cpu;
10453 	bool dst_cid_is_set;
10454 	struct rq *src_rq;
10455 
10456 	lockdep_assert_rq_held(dst_rq);
10457 
10458 	if (!mm)
10459 		return;
10460 	src_cpu = t->migrate_from_cpu;
10461 	if (src_cpu == -1) {
10462 		t->last_mm_cid = -1;
10463 		return;
10464 	}
10465 	/*
10466 	 * Move the src cid if the dst cid is unset. This keeps id
10467 	 * allocation closest to 0 in cases where few threads migrate around
10468 	 * many CPUs.
10469 	 *
10470 	 * If destination cid or recent cid is already set, we may have
10471 	 * to just clear the src cid to ensure compactness in frequent
10472 	 * migrations scenarios.
10473 	 *
10474 	 * It is not useful to clear the src cid when the number of threads is
10475 	 * greater or equal to the number of allowed CPUs, because user-space
10476 	 * can expect that the number of allowed cids can reach the number of
10477 	 * allowed CPUs.
10478 	 */
10479 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10480 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10481 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10482 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10483 		return;
10484 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10485 	src_rq = cpu_rq(src_cpu);
10486 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10487 	if (src_cid == -1)
10488 		return;
10489 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10490 							    src_cid);
10491 	if (src_cid == -1)
10492 		return;
10493 	if (dst_cid_is_set) {
10494 		__mm_cid_put(mm, src_cid);
10495 		return;
10496 	}
10497 	/* Move src_cid to dst cpu. */
10498 	mm_cid_snapshot_time(dst_rq, mm);
10499 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10500 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10501 }
10502 
10503 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10504 				      int cpu)
10505 {
10506 	struct rq *rq = cpu_rq(cpu);
10507 	struct task_struct *t;
10508 	int cid, lazy_cid;
10509 
10510 	cid = READ_ONCE(pcpu_cid->cid);
10511 	if (!mm_cid_is_valid(cid))
10512 		return;
10513 
10514 	/*
10515 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10516 	 * there happens to be other tasks left on the source cpu using this
10517 	 * mm, the next task using this mm will reallocate its cid on context
10518 	 * switch.
10519 	 */
10520 	lazy_cid = mm_cid_set_lazy_put(cid);
10521 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10522 		return;
10523 
10524 	/*
10525 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10526 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10527 	 * between store to rq->curr and load of prev and next task's
10528 	 * per-mm/cpu cid.
10529 	 *
10530 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10531 	 * rq->curr->mm_cid_active matches the barrier in
10532 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10533 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10534 	 * load of per-mm/cpu cid.
10535 	 */
10536 
10537 	/*
10538 	 * If we observe an active task using the mm on this rq after setting
10539 	 * the lazy-put flag, that task will be responsible for transitioning
10540 	 * from lazy-put flag set to MM_CID_UNSET.
10541 	 */
10542 	scoped_guard (rcu) {
10543 		t = rcu_dereference(rq->curr);
10544 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10545 			return;
10546 	}
10547 
10548 	/*
10549 	 * The cid is unused, so it can be unset.
10550 	 * Disable interrupts to keep the window of cid ownership without rq
10551 	 * lock small.
10552 	 */
10553 	scoped_guard (irqsave) {
10554 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10555 			__mm_cid_put(mm, cid);
10556 	}
10557 }
10558 
10559 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10560 {
10561 	struct rq *rq = cpu_rq(cpu);
10562 	struct mm_cid *pcpu_cid;
10563 	struct task_struct *curr;
10564 	u64 rq_clock;
10565 
10566 	/*
10567 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10568 	 * while is irrelevant.
10569 	 */
10570 	rq_clock = READ_ONCE(rq->clock);
10571 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10572 
10573 	/*
10574 	 * In order to take care of infrequently scheduled tasks, bump the time
10575 	 * snapshot associated with this cid if an active task using the mm is
10576 	 * observed on this rq.
10577 	 */
10578 	scoped_guard (rcu) {
10579 		curr = rcu_dereference(rq->curr);
10580 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10581 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10582 			return;
10583 		}
10584 	}
10585 
10586 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10587 		return;
10588 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10589 }
10590 
10591 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10592 					     int weight)
10593 {
10594 	struct mm_cid *pcpu_cid;
10595 	int cid;
10596 
10597 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10598 	cid = READ_ONCE(pcpu_cid->cid);
10599 	if (!mm_cid_is_valid(cid) || cid < weight)
10600 		return;
10601 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10602 }
10603 
10604 static void task_mm_cid_work(struct callback_head *work)
10605 {
10606 	unsigned long now = jiffies, old_scan, next_scan;
10607 	struct task_struct *t = current;
10608 	struct cpumask *cidmask;
10609 	struct mm_struct *mm;
10610 	int weight, cpu;
10611 
10612 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10613 
10614 	work->next = work;	/* Prevent double-add */
10615 	if (t->flags & PF_EXITING)
10616 		return;
10617 	mm = t->mm;
10618 	if (!mm)
10619 		return;
10620 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10621 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10622 	if (!old_scan) {
10623 		unsigned long res;
10624 
10625 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10626 		if (res != old_scan)
10627 			old_scan = res;
10628 		else
10629 			old_scan = next_scan;
10630 	}
10631 	if (time_before(now, old_scan))
10632 		return;
10633 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10634 		return;
10635 	cidmask = mm_cidmask(mm);
10636 	/* Clear cids that were not recently used. */
10637 	for_each_possible_cpu(cpu)
10638 		sched_mm_cid_remote_clear_old(mm, cpu);
10639 	weight = cpumask_weight(cidmask);
10640 	/*
10641 	 * Clear cids that are greater or equal to the cidmask weight to
10642 	 * recompact it.
10643 	 */
10644 	for_each_possible_cpu(cpu)
10645 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10646 }
10647 
10648 void init_sched_mm_cid(struct task_struct *t)
10649 {
10650 	struct mm_struct *mm = t->mm;
10651 	int mm_users = 0;
10652 
10653 	if (mm) {
10654 		mm_users = atomic_read(&mm->mm_users);
10655 		if (mm_users == 1)
10656 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10657 	}
10658 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10659 	init_task_work(&t->cid_work, task_mm_cid_work);
10660 }
10661 
10662 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10663 {
10664 	struct callback_head *work = &curr->cid_work;
10665 	unsigned long now = jiffies;
10666 
10667 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10668 	    work->next != work)
10669 		return;
10670 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10671 		return;
10672 
10673 	/* No page allocation under rq lock */
10674 	task_work_add(curr, work, TWA_RESUME);
10675 }
10676 
10677 void sched_mm_cid_exit_signals(struct task_struct *t)
10678 {
10679 	struct mm_struct *mm = t->mm;
10680 	struct rq *rq;
10681 
10682 	if (!mm)
10683 		return;
10684 
10685 	preempt_disable();
10686 	rq = this_rq();
10687 	guard(rq_lock_irqsave)(rq);
10688 	preempt_enable_no_resched();	/* holding spinlock */
10689 	WRITE_ONCE(t->mm_cid_active, 0);
10690 	/*
10691 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10692 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10693 	 */
10694 	smp_mb();
10695 	mm_cid_put(mm);
10696 	t->last_mm_cid = t->mm_cid = -1;
10697 }
10698 
10699 void sched_mm_cid_before_execve(struct task_struct *t)
10700 {
10701 	struct mm_struct *mm = t->mm;
10702 	struct rq *rq;
10703 
10704 	if (!mm)
10705 		return;
10706 
10707 	preempt_disable();
10708 	rq = this_rq();
10709 	guard(rq_lock_irqsave)(rq);
10710 	preempt_enable_no_resched();	/* holding spinlock */
10711 	WRITE_ONCE(t->mm_cid_active, 0);
10712 	/*
10713 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10714 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10715 	 */
10716 	smp_mb();
10717 	mm_cid_put(mm);
10718 	t->last_mm_cid = t->mm_cid = -1;
10719 }
10720 
10721 void sched_mm_cid_after_execve(struct task_struct *t)
10722 {
10723 	struct mm_struct *mm = t->mm;
10724 	struct rq *rq;
10725 
10726 	if (!mm)
10727 		return;
10728 
10729 	preempt_disable();
10730 	rq = this_rq();
10731 	scoped_guard (rq_lock_irqsave, rq) {
10732 		preempt_enable_no_resched();	/* holding spinlock */
10733 		WRITE_ONCE(t->mm_cid_active, 1);
10734 		/*
10735 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10736 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10737 		 */
10738 		smp_mb();
10739 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10740 	}
10741 }
10742 
10743 void sched_mm_cid_fork(struct task_struct *t)
10744 {
10745 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10746 	t->mm_cid_active = 1;
10747 }
10748 #endif
10749 
10750 #ifdef CONFIG_SCHED_CLASS_EXT
10751 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10752 			    struct sched_enq_and_set_ctx *ctx)
10753 {
10754 	struct rq *rq = task_rq(p);
10755 
10756 	lockdep_assert_rq_held(rq);
10757 
10758 	*ctx = (struct sched_enq_and_set_ctx){
10759 		.p = p,
10760 		.queue_flags = queue_flags,
10761 		.queued = task_on_rq_queued(p),
10762 		.running = task_current(rq, p),
10763 	};
10764 
10765 	update_rq_clock(rq);
10766 	if (ctx->queued)
10767 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10768 	if (ctx->running)
10769 		put_prev_task(rq, p);
10770 }
10771 
10772 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10773 {
10774 	struct rq *rq = task_rq(ctx->p);
10775 
10776 	lockdep_assert_rq_held(rq);
10777 
10778 	if (ctx->queued)
10779 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10780 	if (ctx->running)
10781 		set_next_task(rq, ctx->p);
10782 }
10783 #endif	/* CONFIG_SCHED_CLASS_EXT */
10784