xref: /linux/kernel/sched/core.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85 
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92 
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95 
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97 
98 void update_rq_clock(struct rq *rq)
99 {
100 	s64 delta;
101 
102 	lockdep_assert_held(&rq->lock);
103 
104 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 		return;
106 
107 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 	if (delta < 0)
109 		return;
110 	rq->clock += delta;
111 	update_rq_clock_task(rq, delta);
112 }
113 
114 /*
115  * Debugging: various feature bits
116  */
117 
118 #define SCHED_FEAT(name, enabled)	\
119 	(1UL << __SCHED_FEAT_##name) * enabled |
120 
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 	0;
124 
125 #undef SCHED_FEAT
126 
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled)	\
129 	#name ,
130 
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134 
135 #undef SCHED_FEAT
136 
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 	int i;
140 
141 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 		if (!(sysctl_sched_features & (1UL << i)))
143 			seq_puts(m, "NO_");
144 		seq_printf(m, "%s ", sched_feat_names[i]);
145 	}
146 	seq_puts(m, "\n");
147 
148 	return 0;
149 }
150 
151 #ifdef HAVE_JUMP_LABEL
152 
153 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155 
156 #define SCHED_FEAT(name, enabled)	\
157 	jump_label_key__##enabled ,
158 
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162 
163 #undef SCHED_FEAT
164 
165 static void sched_feat_disable(int i)
166 {
167 	if (static_key_enabled(&sched_feat_keys[i]))
168 		static_key_slow_dec(&sched_feat_keys[i]);
169 }
170 
171 static void sched_feat_enable(int i)
172 {
173 	if (!static_key_enabled(&sched_feat_keys[i]))
174 		static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180 
181 static int sched_feat_set(char *cmp)
182 {
183 	int i;
184 	int neg = 0;
185 
186 	if (strncmp(cmp, "NO_", 3) == 0) {
187 		neg = 1;
188 		cmp += 3;
189 	}
190 
191 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 			if (neg) {
194 				sysctl_sched_features &= ~(1UL << i);
195 				sched_feat_disable(i);
196 			} else {
197 				sysctl_sched_features |= (1UL << i);
198 				sched_feat_enable(i);
199 			}
200 			break;
201 		}
202 	}
203 
204 	return i;
205 }
206 
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 		size_t cnt, loff_t *ppos)
210 {
211 	char buf[64];
212 	char *cmp;
213 	int i;
214 	struct inode *inode;
215 
216 	if (cnt > 63)
217 		cnt = 63;
218 
219 	if (copy_from_user(&buf, ubuf, cnt))
220 		return -EFAULT;
221 
222 	buf[cnt] = 0;
223 	cmp = strstrip(buf);
224 
225 	/* Ensure the static_key remains in a consistent state */
226 	inode = file_inode(filp);
227 	mutex_lock(&inode->i_mutex);
228 	i = sched_feat_set(cmp);
229 	mutex_unlock(&inode->i_mutex);
230 	if (i == __SCHED_FEAT_NR)
231 		return -EINVAL;
232 
233 	*ppos += cnt;
234 
235 	return cnt;
236 }
237 
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 	return single_open(filp, sched_feat_show, NULL);
241 }
242 
243 static const struct file_operations sched_feat_fops = {
244 	.open		= sched_feat_open,
245 	.write		= sched_feat_write,
246 	.read		= seq_read,
247 	.llseek		= seq_lseek,
248 	.release	= single_release,
249 };
250 
251 static __init int sched_init_debug(void)
252 {
253 	debugfs_create_file("sched_features", 0644, NULL, NULL,
254 			&sched_feat_fops);
255 
256 	return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260 
261 /*
262  * Number of tasks to iterate in a single balance run.
263  * Limited because this is done with IRQs disabled.
264  */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266 
267 /*
268  * period over which we average the RT time consumption, measured
269  * in ms.
270  *
271  * default: 1s
272  */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274 
275 /*
276  * period over which we measure -rt task cpu usage in us.
277  * default: 1s
278  */
279 unsigned int sysctl_sched_rt_period = 1000000;
280 
281 __read_mostly int scheduler_running;
282 
283 /*
284  * part of the period that we allow rt tasks to run in us.
285  * default: 0.95s
286  */
287 int sysctl_sched_rt_runtime = 950000;
288 
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291 
292 /*
293  * this_rq_lock - lock this runqueue and disable interrupts.
294  */
295 static struct rq *this_rq_lock(void)
296 	__acquires(rq->lock)
297 {
298 	struct rq *rq;
299 
300 	local_irq_disable();
301 	rq = this_rq();
302 	raw_spin_lock(&rq->lock);
303 
304 	return rq;
305 }
306 
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309  * Use HR-timers to deliver accurate preemption points.
310  */
311 
312 static void hrtick_clear(struct rq *rq)
313 {
314 	if (hrtimer_active(&rq->hrtick_timer))
315 		hrtimer_cancel(&rq->hrtick_timer);
316 }
317 
318 /*
319  * High-resolution timer tick.
320  * Runs from hardirq context with interrupts disabled.
321  */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325 
326 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327 
328 	raw_spin_lock(&rq->lock);
329 	update_rq_clock(rq);
330 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 	raw_spin_unlock(&rq->lock);
332 
333 	return HRTIMER_NORESTART;
334 }
335 
336 #ifdef CONFIG_SMP
337 
338 static void __hrtick_restart(struct rq *rq)
339 {
340 	struct hrtimer *timer = &rq->hrtick_timer;
341 
342 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344 
345 /*
346  * called from hardirq (IPI) context
347  */
348 static void __hrtick_start(void *arg)
349 {
350 	struct rq *rq = arg;
351 
352 	raw_spin_lock(&rq->lock);
353 	__hrtick_restart(rq);
354 	rq->hrtick_csd_pending = 0;
355 	raw_spin_unlock(&rq->lock);
356 }
357 
358 /*
359  * Called to set the hrtick timer state.
360  *
361  * called with rq->lock held and irqs disabled
362  */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 	struct hrtimer *timer = &rq->hrtick_timer;
366 	ktime_t time;
367 	s64 delta;
368 
369 	/*
370 	 * Don't schedule slices shorter than 10000ns, that just
371 	 * doesn't make sense and can cause timer DoS.
372 	 */
373 	delta = max_t(s64, delay, 10000LL);
374 	time = ktime_add_ns(timer->base->get_time(), delta);
375 
376 	hrtimer_set_expires(timer, time);
377 
378 	if (rq == this_rq()) {
379 		__hrtick_restart(rq);
380 	} else if (!rq->hrtick_csd_pending) {
381 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 		rq->hrtick_csd_pending = 1;
383 	}
384 }
385 
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 	int cpu = (int)(long)hcpu;
390 
391 	switch (action) {
392 	case CPU_UP_CANCELED:
393 	case CPU_UP_CANCELED_FROZEN:
394 	case CPU_DOWN_PREPARE:
395 	case CPU_DOWN_PREPARE_FROZEN:
396 	case CPU_DEAD:
397 	case CPU_DEAD_FROZEN:
398 		hrtick_clear(cpu_rq(cpu));
399 		return NOTIFY_OK;
400 	}
401 
402 	return NOTIFY_DONE;
403 }
404 
405 static __init void init_hrtick(void)
406 {
407 	hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411  * Called to set the hrtick timer state.
412  *
413  * called with rq->lock held and irqs disabled
414  */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 	/*
418 	 * Don't schedule slices shorter than 10000ns, that just
419 	 * doesn't make sense. Rely on vruntime for fairness.
420 	 */
421 	delay = max_t(u64, delay, 10000LL);
422 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 		      HRTIMER_MODE_REL_PINNED);
424 }
425 
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430 
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 	rq->hrtick_csd_pending = 0;
435 
436 	rq->hrtick_csd.flags = 0;
437 	rq->hrtick_csd.func = __hrtick_start;
438 	rq->hrtick_csd.info = rq;
439 #endif
440 
441 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 	rq->hrtick_timer.function = hrtick;
443 }
444 #else	/* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448 
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452 
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif	/* CONFIG_SCHED_HRTICK */
457 
458 /*
459  * cmpxchg based fetch_or, macro so it works for different integer types
460  */
461 #define fetch_or(ptr, val)						\
462 ({	typeof(*(ptr)) __old, __val = *(ptr);				\
463  	for (;;) {							\
464  		__old = cmpxchg((ptr), __val, __val | (val));		\
465  		if (__old == __val)					\
466  			break;						\
467  		__val = __old;						\
468  	}								\
469  	__old;								\
470 })
471 
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475  * this avoids any races wrt polling state changes and thereby avoids
476  * spurious IPIs.
477  */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 	struct thread_info *ti = task_thread_info(p);
481 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483 
484 /*
485  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486  *
487  * If this returns true, then the idle task promises to call
488  * sched_ttwu_pending() and reschedule soon.
489  */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 	struct thread_info *ti = task_thread_info(p);
493 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 
495 	for (;;) {
496 		if (!(val & _TIF_POLLING_NRFLAG))
497 			return false;
498 		if (val & _TIF_NEED_RESCHED)
499 			return true;
500 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 		if (old == val)
502 			break;
503 		val = old;
504 	}
505 	return true;
506 }
507 
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 	set_tsk_need_resched(p);
512 	return true;
513 }
514 
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 	return false;
519 }
520 #endif
521 #endif
522 
523 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524 {
525 	struct wake_q_node *node = &task->wake_q;
526 
527 	/*
528 	 * Atomically grab the task, if ->wake_q is !nil already it means
529 	 * its already queued (either by us or someone else) and will get the
530 	 * wakeup due to that.
531 	 *
532 	 * This cmpxchg() implies a full barrier, which pairs with the write
533 	 * barrier implied by the wakeup in wake_up_list().
534 	 */
535 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 		return;
537 
538 	get_task_struct(task);
539 
540 	/*
541 	 * The head is context local, there can be no concurrency.
542 	 */
543 	*head->lastp = node;
544 	head->lastp = &node->next;
545 }
546 
547 void wake_up_q(struct wake_q_head *head)
548 {
549 	struct wake_q_node *node = head->first;
550 
551 	while (node != WAKE_Q_TAIL) {
552 		struct task_struct *task;
553 
554 		task = container_of(node, struct task_struct, wake_q);
555 		BUG_ON(!task);
556 		/* task can safely be re-inserted now */
557 		node = node->next;
558 		task->wake_q.next = NULL;
559 
560 		/*
561 		 * wake_up_process() implies a wmb() to pair with the queueing
562 		 * in wake_q_add() so as not to miss wakeups.
563 		 */
564 		wake_up_process(task);
565 		put_task_struct(task);
566 	}
567 }
568 
569 /*
570  * resched_curr - mark rq's current task 'to be rescheduled now'.
571  *
572  * On UP this means the setting of the need_resched flag, on SMP it
573  * might also involve a cross-CPU call to trigger the scheduler on
574  * the target CPU.
575  */
576 void resched_curr(struct rq *rq)
577 {
578 	struct task_struct *curr = rq->curr;
579 	int cpu;
580 
581 	lockdep_assert_held(&rq->lock);
582 
583 	if (test_tsk_need_resched(curr))
584 		return;
585 
586 	cpu = cpu_of(rq);
587 
588 	if (cpu == smp_processor_id()) {
589 		set_tsk_need_resched(curr);
590 		set_preempt_need_resched();
591 		return;
592 	}
593 
594 	if (set_nr_and_not_polling(curr))
595 		smp_send_reschedule(cpu);
596 	else
597 		trace_sched_wake_idle_without_ipi(cpu);
598 }
599 
600 void resched_cpu(int cpu)
601 {
602 	struct rq *rq = cpu_rq(cpu);
603 	unsigned long flags;
604 
605 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 		return;
607 	resched_curr(rq);
608 	raw_spin_unlock_irqrestore(&rq->lock, flags);
609 }
610 
611 #ifdef CONFIG_SMP
612 #ifdef CONFIG_NO_HZ_COMMON
613 /*
614  * In the semi idle case, use the nearest busy cpu for migrating timers
615  * from an idle cpu.  This is good for power-savings.
616  *
617  * We don't do similar optimization for completely idle system, as
618  * selecting an idle cpu will add more delays to the timers than intended
619  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620  */
621 int get_nohz_timer_target(void)
622 {
623 	int i, cpu = smp_processor_id();
624 	struct sched_domain *sd;
625 
626 	if (!idle_cpu(cpu))
627 		return cpu;
628 
629 	rcu_read_lock();
630 	for_each_domain(cpu, sd) {
631 		for_each_cpu(i, sched_domain_span(sd)) {
632 			if (!idle_cpu(i)) {
633 				cpu = i;
634 				goto unlock;
635 			}
636 		}
637 	}
638 unlock:
639 	rcu_read_unlock();
640 	return cpu;
641 }
642 /*
643  * When add_timer_on() enqueues a timer into the timer wheel of an
644  * idle CPU then this timer might expire before the next timer event
645  * which is scheduled to wake up that CPU. In case of a completely
646  * idle system the next event might even be infinite time into the
647  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
648  * leaves the inner idle loop so the newly added timer is taken into
649  * account when the CPU goes back to idle and evaluates the timer
650  * wheel for the next timer event.
651  */
652 static void wake_up_idle_cpu(int cpu)
653 {
654 	struct rq *rq = cpu_rq(cpu);
655 
656 	if (cpu == smp_processor_id())
657 		return;
658 
659 	if (set_nr_and_not_polling(rq->idle))
660 		smp_send_reschedule(cpu);
661 	else
662 		trace_sched_wake_idle_without_ipi(cpu);
663 }
664 
665 static bool wake_up_full_nohz_cpu(int cpu)
666 {
667 	/*
668 	 * We just need the target to call irq_exit() and re-evaluate
669 	 * the next tick. The nohz full kick at least implies that.
670 	 * If needed we can still optimize that later with an
671 	 * empty IRQ.
672 	 */
673 	if (tick_nohz_full_cpu(cpu)) {
674 		if (cpu != smp_processor_id() ||
675 		    tick_nohz_tick_stopped())
676 			tick_nohz_full_kick_cpu(cpu);
677 		return true;
678 	}
679 
680 	return false;
681 }
682 
683 void wake_up_nohz_cpu(int cpu)
684 {
685 	if (!wake_up_full_nohz_cpu(cpu))
686 		wake_up_idle_cpu(cpu);
687 }
688 
689 static inline bool got_nohz_idle_kick(void)
690 {
691 	int cpu = smp_processor_id();
692 
693 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
694 		return false;
695 
696 	if (idle_cpu(cpu) && !need_resched())
697 		return true;
698 
699 	/*
700 	 * We can't run Idle Load Balance on this CPU for this time so we
701 	 * cancel it and clear NOHZ_BALANCE_KICK
702 	 */
703 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
704 	return false;
705 }
706 
707 #else /* CONFIG_NO_HZ_COMMON */
708 
709 static inline bool got_nohz_idle_kick(void)
710 {
711 	return false;
712 }
713 
714 #endif /* CONFIG_NO_HZ_COMMON */
715 
716 #ifdef CONFIG_NO_HZ_FULL
717 bool sched_can_stop_tick(void)
718 {
719 	/*
720 	 * FIFO realtime policy runs the highest priority task. Other runnable
721 	 * tasks are of a lower priority. The scheduler tick does nothing.
722 	 */
723 	if (current->policy == SCHED_FIFO)
724 		return true;
725 
726 	/*
727 	 * Round-robin realtime tasks time slice with other tasks at the same
728 	 * realtime priority. Is this task the only one at this priority?
729 	 */
730 	if (current->policy == SCHED_RR) {
731 		struct sched_rt_entity *rt_se = &current->rt;
732 
733 		return rt_se->run_list.prev == rt_se->run_list.next;
734 	}
735 
736 	/*
737 	 * More than one running task need preemption.
738 	 * nr_running update is assumed to be visible
739 	 * after IPI is sent from wakers.
740 	 */
741 	if (this_rq()->nr_running > 1)
742 		return false;
743 
744 	return true;
745 }
746 #endif /* CONFIG_NO_HZ_FULL */
747 
748 void sched_avg_update(struct rq *rq)
749 {
750 	s64 period = sched_avg_period();
751 
752 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 		/*
754 		 * Inline assembly required to prevent the compiler
755 		 * optimising this loop into a divmod call.
756 		 * See __iter_div_u64_rem() for another example of this.
757 		 */
758 		asm("" : "+rm" (rq->age_stamp));
759 		rq->age_stamp += period;
760 		rq->rt_avg /= 2;
761 	}
762 }
763 
764 #endif /* CONFIG_SMP */
765 
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768 /*
769  * Iterate task_group tree rooted at *from, calling @down when first entering a
770  * node and @up when leaving it for the final time.
771  *
772  * Caller must hold rcu_lock or sufficient equivalent.
773  */
774 int walk_tg_tree_from(struct task_group *from,
775 			     tg_visitor down, tg_visitor up, void *data)
776 {
777 	struct task_group *parent, *child;
778 	int ret;
779 
780 	parent = from;
781 
782 down:
783 	ret = (*down)(parent, data);
784 	if (ret)
785 		goto out;
786 	list_for_each_entry_rcu(child, &parent->children, siblings) {
787 		parent = child;
788 		goto down;
789 
790 up:
791 		continue;
792 	}
793 	ret = (*up)(parent, data);
794 	if (ret || parent == from)
795 		goto out;
796 
797 	child = parent;
798 	parent = parent->parent;
799 	if (parent)
800 		goto up;
801 out:
802 	return ret;
803 }
804 
805 int tg_nop(struct task_group *tg, void *data)
806 {
807 	return 0;
808 }
809 #endif
810 
811 static void set_load_weight(struct task_struct *p)
812 {
813 	int prio = p->static_prio - MAX_RT_PRIO;
814 	struct load_weight *load = &p->se.load;
815 
816 	/*
817 	 * SCHED_IDLE tasks get minimal weight:
818 	 */
819 	if (p->policy == SCHED_IDLE) {
820 		load->weight = scale_load(WEIGHT_IDLEPRIO);
821 		load->inv_weight = WMULT_IDLEPRIO;
822 		return;
823 	}
824 
825 	load->weight = scale_load(prio_to_weight[prio]);
826 	load->inv_weight = prio_to_wmult[prio];
827 }
828 
829 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830 {
831 	update_rq_clock(rq);
832 	sched_info_queued(rq, p);
833 	p->sched_class->enqueue_task(rq, p, flags);
834 }
835 
836 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837 {
838 	update_rq_clock(rq);
839 	sched_info_dequeued(rq, p);
840 	p->sched_class->dequeue_task(rq, p, flags);
841 }
842 
843 void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 {
845 	if (task_contributes_to_load(p))
846 		rq->nr_uninterruptible--;
847 
848 	enqueue_task(rq, p, flags);
849 }
850 
851 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 {
853 	if (task_contributes_to_load(p))
854 		rq->nr_uninterruptible++;
855 
856 	dequeue_task(rq, p, flags);
857 }
858 
859 static void update_rq_clock_task(struct rq *rq, s64 delta)
860 {
861 /*
862  * In theory, the compile should just see 0 here, and optimize out the call
863  * to sched_rt_avg_update. But I don't trust it...
864  */
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 	s64 steal = 0, irq_delta = 0;
867 #endif
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 
871 	/*
872 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 	 * this case when a previous update_rq_clock() happened inside a
874 	 * {soft,}irq region.
875 	 *
876 	 * When this happens, we stop ->clock_task and only update the
877 	 * prev_irq_time stamp to account for the part that fit, so that a next
878 	 * update will consume the rest. This ensures ->clock_task is
879 	 * monotonic.
880 	 *
881 	 * It does however cause some slight miss-attribution of {soft,}irq
882 	 * time, a more accurate solution would be to update the irq_time using
883 	 * the current rq->clock timestamp, except that would require using
884 	 * atomic ops.
885 	 */
886 	if (irq_delta > delta)
887 		irq_delta = delta;
888 
889 	rq->prev_irq_time += irq_delta;
890 	delta -= irq_delta;
891 #endif
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 		steal = paravirt_steal_clock(cpu_of(rq));
895 		steal -= rq->prev_steal_time_rq;
896 
897 		if (unlikely(steal > delta))
898 			steal = delta;
899 
900 		rq->prev_steal_time_rq += steal;
901 		delta -= steal;
902 	}
903 #endif
904 
905 	rq->clock_task += delta;
906 
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 		sched_rt_avg_update(rq, irq_delta + steal);
910 #endif
911 }
912 
913 void sched_set_stop_task(int cpu, struct task_struct *stop)
914 {
915 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917 
918 	if (stop) {
919 		/*
920 		 * Make it appear like a SCHED_FIFO task, its something
921 		 * userspace knows about and won't get confused about.
922 		 *
923 		 * Also, it will make PI more or less work without too
924 		 * much confusion -- but then, stop work should not
925 		 * rely on PI working anyway.
926 		 */
927 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928 
929 		stop->sched_class = &stop_sched_class;
930 	}
931 
932 	cpu_rq(cpu)->stop = stop;
933 
934 	if (old_stop) {
935 		/*
936 		 * Reset it back to a normal scheduling class so that
937 		 * it can die in pieces.
938 		 */
939 		old_stop->sched_class = &rt_sched_class;
940 	}
941 }
942 
943 /*
944  * __normal_prio - return the priority that is based on the static prio
945  */
946 static inline int __normal_prio(struct task_struct *p)
947 {
948 	return p->static_prio;
949 }
950 
951 /*
952  * Calculate the expected normal priority: i.e. priority
953  * without taking RT-inheritance into account. Might be
954  * boosted by interactivity modifiers. Changes upon fork,
955  * setprio syscalls, and whenever the interactivity
956  * estimator recalculates.
957  */
958 static inline int normal_prio(struct task_struct *p)
959 {
960 	int prio;
961 
962 	if (task_has_dl_policy(p))
963 		prio = MAX_DL_PRIO-1;
964 	else if (task_has_rt_policy(p))
965 		prio = MAX_RT_PRIO-1 - p->rt_priority;
966 	else
967 		prio = __normal_prio(p);
968 	return prio;
969 }
970 
971 /*
972  * Calculate the current priority, i.e. the priority
973  * taken into account by the scheduler. This value might
974  * be boosted by RT tasks, or might be boosted by
975  * interactivity modifiers. Will be RT if the task got
976  * RT-boosted. If not then it returns p->normal_prio.
977  */
978 static int effective_prio(struct task_struct *p)
979 {
980 	p->normal_prio = normal_prio(p);
981 	/*
982 	 * If we are RT tasks or we were boosted to RT priority,
983 	 * keep the priority unchanged. Otherwise, update priority
984 	 * to the normal priority:
985 	 */
986 	if (!rt_prio(p->prio))
987 		return p->normal_prio;
988 	return p->prio;
989 }
990 
991 /**
992  * task_curr - is this task currently executing on a CPU?
993  * @p: the task in question.
994  *
995  * Return: 1 if the task is currently executing. 0 otherwise.
996  */
997 inline int task_curr(const struct task_struct *p)
998 {
999 	return cpu_curr(task_cpu(p)) == p;
1000 }
1001 
1002 /*
1003  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1004  * use the balance_callback list if you want balancing.
1005  *
1006  * this means any call to check_class_changed() must be followed by a call to
1007  * balance_callback().
1008  */
1009 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010 				       const struct sched_class *prev_class,
1011 				       int oldprio)
1012 {
1013 	if (prev_class != p->sched_class) {
1014 		if (prev_class->switched_from)
1015 			prev_class->switched_from(rq, p);
1016 
1017 		p->sched_class->switched_to(rq, p);
1018 	} else if (oldprio != p->prio || dl_task(p))
1019 		p->sched_class->prio_changed(rq, p, oldprio);
1020 }
1021 
1022 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 {
1024 	const struct sched_class *class;
1025 
1026 	if (p->sched_class == rq->curr->sched_class) {
1027 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1028 	} else {
1029 		for_each_class(class) {
1030 			if (class == rq->curr->sched_class)
1031 				break;
1032 			if (class == p->sched_class) {
1033 				resched_curr(rq);
1034 				break;
1035 			}
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * A queue event has occurred, and we're going to schedule.  In
1041 	 * this case, we can save a useless back to back clock update.
1042 	 */
1043 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044 		rq_clock_skip_update(rq, true);
1045 }
1046 
1047 #ifdef CONFIG_SMP
1048 /*
1049  * This is how migration works:
1050  *
1051  * 1) we invoke migration_cpu_stop() on the target CPU using
1052  *    stop_one_cpu().
1053  * 2) stopper starts to run (implicitly forcing the migrated thread
1054  *    off the CPU)
1055  * 3) it checks whether the migrated task is still in the wrong runqueue.
1056  * 4) if it's in the wrong runqueue then the migration thread removes
1057  *    it and puts it into the right queue.
1058  * 5) stopper completes and stop_one_cpu() returns and the migration
1059  *    is done.
1060  */
1061 
1062 /*
1063  * move_queued_task - move a queued task to new rq.
1064  *
1065  * Returns (locked) new rq. Old rq's lock is released.
1066  */
1067 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1068 {
1069 	lockdep_assert_held(&rq->lock);
1070 
1071 	dequeue_task(rq, p, 0);
1072 	p->on_rq = TASK_ON_RQ_MIGRATING;
1073 	set_task_cpu(p, new_cpu);
1074 	raw_spin_unlock(&rq->lock);
1075 
1076 	rq = cpu_rq(new_cpu);
1077 
1078 	raw_spin_lock(&rq->lock);
1079 	BUG_ON(task_cpu(p) != new_cpu);
1080 	p->on_rq = TASK_ON_RQ_QUEUED;
1081 	enqueue_task(rq, p, 0);
1082 	check_preempt_curr(rq, p, 0);
1083 
1084 	return rq;
1085 }
1086 
1087 struct migration_arg {
1088 	struct task_struct *task;
1089 	int dest_cpu;
1090 };
1091 
1092 /*
1093  * Move (not current) task off this cpu, onto dest cpu. We're doing
1094  * this because either it can't run here any more (set_cpus_allowed()
1095  * away from this CPU, or CPU going down), or because we're
1096  * attempting to rebalance this task on exec (sched_exec).
1097  *
1098  * So we race with normal scheduler movements, but that's OK, as long
1099  * as the task is no longer on this CPU.
1100  */
1101 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1102 {
1103 	if (unlikely(!cpu_active(dest_cpu)))
1104 		return rq;
1105 
1106 	/* Affinity changed (again). */
1107 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108 		return rq;
1109 
1110 	rq = move_queued_task(rq, p, dest_cpu);
1111 
1112 	return rq;
1113 }
1114 
1115 /*
1116  * migration_cpu_stop - this will be executed by a highprio stopper thread
1117  * and performs thread migration by bumping thread off CPU then
1118  * 'pushing' onto another runqueue.
1119  */
1120 static int migration_cpu_stop(void *data)
1121 {
1122 	struct migration_arg *arg = data;
1123 	struct task_struct *p = arg->task;
1124 	struct rq *rq = this_rq();
1125 
1126 	/*
1127 	 * The original target cpu might have gone down and we might
1128 	 * be on another cpu but it doesn't matter.
1129 	 */
1130 	local_irq_disable();
1131 	/*
1132 	 * We need to explicitly wake pending tasks before running
1133 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1134 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1135 	 */
1136 	sched_ttwu_pending();
1137 
1138 	raw_spin_lock(&p->pi_lock);
1139 	raw_spin_lock(&rq->lock);
1140 	/*
1141 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1142 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1143 	 * we're holding p->pi_lock.
1144 	 */
1145 	if (task_rq(p) == rq && task_on_rq_queued(p))
1146 		rq = __migrate_task(rq, p, arg->dest_cpu);
1147 	raw_spin_unlock(&rq->lock);
1148 	raw_spin_unlock(&p->pi_lock);
1149 
1150 	local_irq_enable();
1151 	return 0;
1152 }
1153 
1154 /*
1155  * sched_class::set_cpus_allowed must do the below, but is not required to
1156  * actually call this function.
1157  */
1158 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1159 {
1160 	cpumask_copy(&p->cpus_allowed, new_mask);
1161 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1162 }
1163 
1164 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1165 {
1166 	struct rq *rq = task_rq(p);
1167 	bool queued, running;
1168 
1169 	lockdep_assert_held(&p->pi_lock);
1170 
1171 	queued = task_on_rq_queued(p);
1172 	running = task_current(rq, p);
1173 
1174 	if (queued) {
1175 		/*
1176 		 * Because __kthread_bind() calls this on blocked tasks without
1177 		 * holding rq->lock.
1178 		 */
1179 		lockdep_assert_held(&rq->lock);
1180 		dequeue_task(rq, p, 0);
1181 	}
1182 	if (running)
1183 		put_prev_task(rq, p);
1184 
1185 	p->sched_class->set_cpus_allowed(p, new_mask);
1186 
1187 	if (running)
1188 		p->sched_class->set_curr_task(rq);
1189 	if (queued)
1190 		enqueue_task(rq, p, 0);
1191 }
1192 
1193 /*
1194  * Change a given task's CPU affinity. Migrate the thread to a
1195  * proper CPU and schedule it away if the CPU it's executing on
1196  * is removed from the allowed bitmask.
1197  *
1198  * NOTE: the caller must have a valid reference to the task, the
1199  * task must not exit() & deallocate itself prematurely. The
1200  * call is not atomic; no spinlocks may be held.
1201  */
1202 static int __set_cpus_allowed_ptr(struct task_struct *p,
1203 				  const struct cpumask *new_mask, bool check)
1204 {
1205 	unsigned long flags;
1206 	struct rq *rq;
1207 	unsigned int dest_cpu;
1208 	int ret = 0;
1209 
1210 	rq = task_rq_lock(p, &flags);
1211 
1212 	/*
1213 	 * Must re-check here, to close a race against __kthread_bind(),
1214 	 * sched_setaffinity() is not guaranteed to observe the flag.
1215 	 */
1216 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1217 		ret = -EINVAL;
1218 		goto out;
1219 	}
1220 
1221 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1222 		goto out;
1223 
1224 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1225 		ret = -EINVAL;
1226 		goto out;
1227 	}
1228 
1229 	do_set_cpus_allowed(p, new_mask);
1230 
1231 	/* Can the task run on the task's current CPU? If so, we're done */
1232 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1233 		goto out;
1234 
1235 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1236 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1237 		struct migration_arg arg = { p, dest_cpu };
1238 		/* Need help from migration thread: drop lock and wait. */
1239 		task_rq_unlock(rq, p, &flags);
1240 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1241 		tlb_migrate_finish(p->mm);
1242 		return 0;
1243 	} else if (task_on_rq_queued(p)) {
1244 		/*
1245 		 * OK, since we're going to drop the lock immediately
1246 		 * afterwards anyway.
1247 		 */
1248 		lockdep_unpin_lock(&rq->lock);
1249 		rq = move_queued_task(rq, p, dest_cpu);
1250 		lockdep_pin_lock(&rq->lock);
1251 	}
1252 out:
1253 	task_rq_unlock(rq, p, &flags);
1254 
1255 	return ret;
1256 }
1257 
1258 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1259 {
1260 	return __set_cpus_allowed_ptr(p, new_mask, false);
1261 }
1262 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1263 
1264 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1265 {
1266 #ifdef CONFIG_SCHED_DEBUG
1267 	/*
1268 	 * We should never call set_task_cpu() on a blocked task,
1269 	 * ttwu() will sort out the placement.
1270 	 */
1271 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1272 			!p->on_rq);
1273 
1274 #ifdef CONFIG_LOCKDEP
1275 	/*
1276 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1277 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1278 	 *
1279 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1280 	 * see task_group().
1281 	 *
1282 	 * Furthermore, all task_rq users should acquire both locks, see
1283 	 * task_rq_lock().
1284 	 */
1285 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1286 				      lockdep_is_held(&task_rq(p)->lock)));
1287 #endif
1288 #endif
1289 
1290 	trace_sched_migrate_task(p, new_cpu);
1291 
1292 	if (task_cpu(p) != new_cpu) {
1293 		if (p->sched_class->migrate_task_rq)
1294 			p->sched_class->migrate_task_rq(p, new_cpu);
1295 		p->se.nr_migrations++;
1296 		perf_event_task_migrate(p);
1297 	}
1298 
1299 	__set_task_cpu(p, new_cpu);
1300 }
1301 
1302 static void __migrate_swap_task(struct task_struct *p, int cpu)
1303 {
1304 	if (task_on_rq_queued(p)) {
1305 		struct rq *src_rq, *dst_rq;
1306 
1307 		src_rq = task_rq(p);
1308 		dst_rq = cpu_rq(cpu);
1309 
1310 		deactivate_task(src_rq, p, 0);
1311 		set_task_cpu(p, cpu);
1312 		activate_task(dst_rq, p, 0);
1313 		check_preempt_curr(dst_rq, p, 0);
1314 	} else {
1315 		/*
1316 		 * Task isn't running anymore; make it appear like we migrated
1317 		 * it before it went to sleep. This means on wakeup we make the
1318 		 * previous cpu our targer instead of where it really is.
1319 		 */
1320 		p->wake_cpu = cpu;
1321 	}
1322 }
1323 
1324 struct migration_swap_arg {
1325 	struct task_struct *src_task, *dst_task;
1326 	int src_cpu, dst_cpu;
1327 };
1328 
1329 static int migrate_swap_stop(void *data)
1330 {
1331 	struct migration_swap_arg *arg = data;
1332 	struct rq *src_rq, *dst_rq;
1333 	int ret = -EAGAIN;
1334 
1335 	src_rq = cpu_rq(arg->src_cpu);
1336 	dst_rq = cpu_rq(arg->dst_cpu);
1337 
1338 	double_raw_lock(&arg->src_task->pi_lock,
1339 			&arg->dst_task->pi_lock);
1340 	double_rq_lock(src_rq, dst_rq);
1341 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1342 		goto unlock;
1343 
1344 	if (task_cpu(arg->src_task) != arg->src_cpu)
1345 		goto unlock;
1346 
1347 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1348 		goto unlock;
1349 
1350 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1351 		goto unlock;
1352 
1353 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1354 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1355 
1356 	ret = 0;
1357 
1358 unlock:
1359 	double_rq_unlock(src_rq, dst_rq);
1360 	raw_spin_unlock(&arg->dst_task->pi_lock);
1361 	raw_spin_unlock(&arg->src_task->pi_lock);
1362 
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Cross migrate two tasks
1368  */
1369 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1370 {
1371 	struct migration_swap_arg arg;
1372 	int ret = -EINVAL;
1373 
1374 	arg = (struct migration_swap_arg){
1375 		.src_task = cur,
1376 		.src_cpu = task_cpu(cur),
1377 		.dst_task = p,
1378 		.dst_cpu = task_cpu(p),
1379 	};
1380 
1381 	if (arg.src_cpu == arg.dst_cpu)
1382 		goto out;
1383 
1384 	/*
1385 	 * These three tests are all lockless; this is OK since all of them
1386 	 * will be re-checked with proper locks held further down the line.
1387 	 */
1388 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1389 		goto out;
1390 
1391 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1392 		goto out;
1393 
1394 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1395 		goto out;
1396 
1397 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1398 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1399 
1400 out:
1401 	return ret;
1402 }
1403 
1404 /*
1405  * wait_task_inactive - wait for a thread to unschedule.
1406  *
1407  * If @match_state is nonzero, it's the @p->state value just checked and
1408  * not expected to change.  If it changes, i.e. @p might have woken up,
1409  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1410  * we return a positive number (its total switch count).  If a second call
1411  * a short while later returns the same number, the caller can be sure that
1412  * @p has remained unscheduled the whole time.
1413  *
1414  * The caller must ensure that the task *will* unschedule sometime soon,
1415  * else this function might spin for a *long* time. This function can't
1416  * be called with interrupts off, or it may introduce deadlock with
1417  * smp_call_function() if an IPI is sent by the same process we are
1418  * waiting to become inactive.
1419  */
1420 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1421 {
1422 	unsigned long flags;
1423 	int running, queued;
1424 	unsigned long ncsw;
1425 	struct rq *rq;
1426 
1427 	for (;;) {
1428 		/*
1429 		 * We do the initial early heuristics without holding
1430 		 * any task-queue locks at all. We'll only try to get
1431 		 * the runqueue lock when things look like they will
1432 		 * work out!
1433 		 */
1434 		rq = task_rq(p);
1435 
1436 		/*
1437 		 * If the task is actively running on another CPU
1438 		 * still, just relax and busy-wait without holding
1439 		 * any locks.
1440 		 *
1441 		 * NOTE! Since we don't hold any locks, it's not
1442 		 * even sure that "rq" stays as the right runqueue!
1443 		 * But we don't care, since "task_running()" will
1444 		 * return false if the runqueue has changed and p
1445 		 * is actually now running somewhere else!
1446 		 */
1447 		while (task_running(rq, p)) {
1448 			if (match_state && unlikely(p->state != match_state))
1449 				return 0;
1450 			cpu_relax();
1451 		}
1452 
1453 		/*
1454 		 * Ok, time to look more closely! We need the rq
1455 		 * lock now, to be *sure*. If we're wrong, we'll
1456 		 * just go back and repeat.
1457 		 */
1458 		rq = task_rq_lock(p, &flags);
1459 		trace_sched_wait_task(p);
1460 		running = task_running(rq, p);
1461 		queued = task_on_rq_queued(p);
1462 		ncsw = 0;
1463 		if (!match_state || p->state == match_state)
1464 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1465 		task_rq_unlock(rq, p, &flags);
1466 
1467 		/*
1468 		 * If it changed from the expected state, bail out now.
1469 		 */
1470 		if (unlikely(!ncsw))
1471 			break;
1472 
1473 		/*
1474 		 * Was it really running after all now that we
1475 		 * checked with the proper locks actually held?
1476 		 *
1477 		 * Oops. Go back and try again..
1478 		 */
1479 		if (unlikely(running)) {
1480 			cpu_relax();
1481 			continue;
1482 		}
1483 
1484 		/*
1485 		 * It's not enough that it's not actively running,
1486 		 * it must be off the runqueue _entirely_, and not
1487 		 * preempted!
1488 		 *
1489 		 * So if it was still runnable (but just not actively
1490 		 * running right now), it's preempted, and we should
1491 		 * yield - it could be a while.
1492 		 */
1493 		if (unlikely(queued)) {
1494 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1495 
1496 			set_current_state(TASK_UNINTERRUPTIBLE);
1497 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1498 			continue;
1499 		}
1500 
1501 		/*
1502 		 * Ahh, all good. It wasn't running, and it wasn't
1503 		 * runnable, which means that it will never become
1504 		 * running in the future either. We're all done!
1505 		 */
1506 		break;
1507 	}
1508 
1509 	return ncsw;
1510 }
1511 
1512 /***
1513  * kick_process - kick a running thread to enter/exit the kernel
1514  * @p: the to-be-kicked thread
1515  *
1516  * Cause a process which is running on another CPU to enter
1517  * kernel-mode, without any delay. (to get signals handled.)
1518  *
1519  * NOTE: this function doesn't have to take the runqueue lock,
1520  * because all it wants to ensure is that the remote task enters
1521  * the kernel. If the IPI races and the task has been migrated
1522  * to another CPU then no harm is done and the purpose has been
1523  * achieved as well.
1524  */
1525 void kick_process(struct task_struct *p)
1526 {
1527 	int cpu;
1528 
1529 	preempt_disable();
1530 	cpu = task_cpu(p);
1531 	if ((cpu != smp_processor_id()) && task_curr(p))
1532 		smp_send_reschedule(cpu);
1533 	preempt_enable();
1534 }
1535 EXPORT_SYMBOL_GPL(kick_process);
1536 
1537 /*
1538  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1539  */
1540 static int select_fallback_rq(int cpu, struct task_struct *p)
1541 {
1542 	int nid = cpu_to_node(cpu);
1543 	const struct cpumask *nodemask = NULL;
1544 	enum { cpuset, possible, fail } state = cpuset;
1545 	int dest_cpu;
1546 
1547 	/*
1548 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1549 	 * will return -1. There is no cpu on the node, and we should
1550 	 * select the cpu on the other node.
1551 	 */
1552 	if (nid != -1) {
1553 		nodemask = cpumask_of_node(nid);
1554 
1555 		/* Look for allowed, online CPU in same node. */
1556 		for_each_cpu(dest_cpu, nodemask) {
1557 			if (!cpu_online(dest_cpu))
1558 				continue;
1559 			if (!cpu_active(dest_cpu))
1560 				continue;
1561 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1562 				return dest_cpu;
1563 		}
1564 	}
1565 
1566 	for (;;) {
1567 		/* Any allowed, online CPU? */
1568 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1569 			if (!cpu_online(dest_cpu))
1570 				continue;
1571 			if (!cpu_active(dest_cpu))
1572 				continue;
1573 			goto out;
1574 		}
1575 
1576 		switch (state) {
1577 		case cpuset:
1578 			/* No more Mr. Nice Guy. */
1579 			cpuset_cpus_allowed_fallback(p);
1580 			state = possible;
1581 			break;
1582 
1583 		case possible:
1584 			do_set_cpus_allowed(p, cpu_possible_mask);
1585 			state = fail;
1586 			break;
1587 
1588 		case fail:
1589 			BUG();
1590 			break;
1591 		}
1592 	}
1593 
1594 out:
1595 	if (state != cpuset) {
1596 		/*
1597 		 * Don't tell them about moving exiting tasks or
1598 		 * kernel threads (both mm NULL), since they never
1599 		 * leave kernel.
1600 		 */
1601 		if (p->mm && printk_ratelimit()) {
1602 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1603 					task_pid_nr(p), p->comm, cpu);
1604 		}
1605 	}
1606 
1607 	return dest_cpu;
1608 }
1609 
1610 /*
1611  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1612  */
1613 static inline
1614 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1615 {
1616 	lockdep_assert_held(&p->pi_lock);
1617 
1618 	if (p->nr_cpus_allowed > 1)
1619 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1620 
1621 	/*
1622 	 * In order not to call set_task_cpu() on a blocking task we need
1623 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1624 	 * cpu.
1625 	 *
1626 	 * Since this is common to all placement strategies, this lives here.
1627 	 *
1628 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1629 	 *   not worry about this generic constraint ]
1630 	 */
1631 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1632 		     !cpu_online(cpu)))
1633 		cpu = select_fallback_rq(task_cpu(p), p);
1634 
1635 	return cpu;
1636 }
1637 
1638 static void update_avg(u64 *avg, u64 sample)
1639 {
1640 	s64 diff = sample - *avg;
1641 	*avg += diff >> 3;
1642 }
1643 
1644 #else
1645 
1646 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1647 					 const struct cpumask *new_mask, bool check)
1648 {
1649 	return set_cpus_allowed_ptr(p, new_mask);
1650 }
1651 
1652 #endif /* CONFIG_SMP */
1653 
1654 static void
1655 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1656 {
1657 #ifdef CONFIG_SCHEDSTATS
1658 	struct rq *rq = this_rq();
1659 
1660 #ifdef CONFIG_SMP
1661 	int this_cpu = smp_processor_id();
1662 
1663 	if (cpu == this_cpu) {
1664 		schedstat_inc(rq, ttwu_local);
1665 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1666 	} else {
1667 		struct sched_domain *sd;
1668 
1669 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1670 		rcu_read_lock();
1671 		for_each_domain(this_cpu, sd) {
1672 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1673 				schedstat_inc(sd, ttwu_wake_remote);
1674 				break;
1675 			}
1676 		}
1677 		rcu_read_unlock();
1678 	}
1679 
1680 	if (wake_flags & WF_MIGRATED)
1681 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1682 
1683 #endif /* CONFIG_SMP */
1684 
1685 	schedstat_inc(rq, ttwu_count);
1686 	schedstat_inc(p, se.statistics.nr_wakeups);
1687 
1688 	if (wake_flags & WF_SYNC)
1689 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1690 
1691 #endif /* CONFIG_SCHEDSTATS */
1692 }
1693 
1694 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1695 {
1696 	activate_task(rq, p, en_flags);
1697 	p->on_rq = TASK_ON_RQ_QUEUED;
1698 
1699 	/* if a worker is waking up, notify workqueue */
1700 	if (p->flags & PF_WQ_WORKER)
1701 		wq_worker_waking_up(p, cpu_of(rq));
1702 }
1703 
1704 /*
1705  * Mark the task runnable and perform wakeup-preemption.
1706  */
1707 static void
1708 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1709 {
1710 	check_preempt_curr(rq, p, wake_flags);
1711 	p->state = TASK_RUNNING;
1712 	trace_sched_wakeup(p);
1713 
1714 #ifdef CONFIG_SMP
1715 	if (p->sched_class->task_woken) {
1716 		/*
1717 		 * Our task @p is fully woken up and running; so its safe to
1718 		 * drop the rq->lock, hereafter rq is only used for statistics.
1719 		 */
1720 		lockdep_unpin_lock(&rq->lock);
1721 		p->sched_class->task_woken(rq, p);
1722 		lockdep_pin_lock(&rq->lock);
1723 	}
1724 
1725 	if (rq->idle_stamp) {
1726 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1727 		u64 max = 2*rq->max_idle_balance_cost;
1728 
1729 		update_avg(&rq->avg_idle, delta);
1730 
1731 		if (rq->avg_idle > max)
1732 			rq->avg_idle = max;
1733 
1734 		rq->idle_stamp = 0;
1735 	}
1736 #endif
1737 }
1738 
1739 static void
1740 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1741 {
1742 	lockdep_assert_held(&rq->lock);
1743 
1744 #ifdef CONFIG_SMP
1745 	if (p->sched_contributes_to_load)
1746 		rq->nr_uninterruptible--;
1747 #endif
1748 
1749 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1750 	ttwu_do_wakeup(rq, p, wake_flags);
1751 }
1752 
1753 /*
1754  * Called in case the task @p isn't fully descheduled from its runqueue,
1755  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1756  * since all we need to do is flip p->state to TASK_RUNNING, since
1757  * the task is still ->on_rq.
1758  */
1759 static int ttwu_remote(struct task_struct *p, int wake_flags)
1760 {
1761 	struct rq *rq;
1762 	int ret = 0;
1763 
1764 	rq = __task_rq_lock(p);
1765 	if (task_on_rq_queued(p)) {
1766 		/* check_preempt_curr() may use rq clock */
1767 		update_rq_clock(rq);
1768 		ttwu_do_wakeup(rq, p, wake_flags);
1769 		ret = 1;
1770 	}
1771 	__task_rq_unlock(rq);
1772 
1773 	return ret;
1774 }
1775 
1776 #ifdef CONFIG_SMP
1777 void sched_ttwu_pending(void)
1778 {
1779 	struct rq *rq = this_rq();
1780 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1781 	struct task_struct *p;
1782 	unsigned long flags;
1783 
1784 	if (!llist)
1785 		return;
1786 
1787 	raw_spin_lock_irqsave(&rq->lock, flags);
1788 	lockdep_pin_lock(&rq->lock);
1789 
1790 	while (llist) {
1791 		p = llist_entry(llist, struct task_struct, wake_entry);
1792 		llist = llist_next(llist);
1793 		ttwu_do_activate(rq, p, 0);
1794 	}
1795 
1796 	lockdep_unpin_lock(&rq->lock);
1797 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1798 }
1799 
1800 void scheduler_ipi(void)
1801 {
1802 	/*
1803 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1804 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1805 	 * this IPI.
1806 	 */
1807 	preempt_fold_need_resched();
1808 
1809 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1810 		return;
1811 
1812 	/*
1813 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1814 	 * traditionally all their work was done from the interrupt return
1815 	 * path. Now that we actually do some work, we need to make sure
1816 	 * we do call them.
1817 	 *
1818 	 * Some archs already do call them, luckily irq_enter/exit nest
1819 	 * properly.
1820 	 *
1821 	 * Arguably we should visit all archs and update all handlers,
1822 	 * however a fair share of IPIs are still resched only so this would
1823 	 * somewhat pessimize the simple resched case.
1824 	 */
1825 	irq_enter();
1826 	sched_ttwu_pending();
1827 
1828 	/*
1829 	 * Check if someone kicked us for doing the nohz idle load balance.
1830 	 */
1831 	if (unlikely(got_nohz_idle_kick())) {
1832 		this_rq()->idle_balance = 1;
1833 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1834 	}
1835 	irq_exit();
1836 }
1837 
1838 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1839 {
1840 	struct rq *rq = cpu_rq(cpu);
1841 
1842 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1843 		if (!set_nr_if_polling(rq->idle))
1844 			smp_send_reschedule(cpu);
1845 		else
1846 			trace_sched_wake_idle_without_ipi(cpu);
1847 	}
1848 }
1849 
1850 void wake_up_if_idle(int cpu)
1851 {
1852 	struct rq *rq = cpu_rq(cpu);
1853 	unsigned long flags;
1854 
1855 	rcu_read_lock();
1856 
1857 	if (!is_idle_task(rcu_dereference(rq->curr)))
1858 		goto out;
1859 
1860 	if (set_nr_if_polling(rq->idle)) {
1861 		trace_sched_wake_idle_without_ipi(cpu);
1862 	} else {
1863 		raw_spin_lock_irqsave(&rq->lock, flags);
1864 		if (is_idle_task(rq->curr))
1865 			smp_send_reschedule(cpu);
1866 		/* Else cpu is not in idle, do nothing here */
1867 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1868 	}
1869 
1870 out:
1871 	rcu_read_unlock();
1872 }
1873 
1874 bool cpus_share_cache(int this_cpu, int that_cpu)
1875 {
1876 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1877 }
1878 #endif /* CONFIG_SMP */
1879 
1880 static void ttwu_queue(struct task_struct *p, int cpu)
1881 {
1882 	struct rq *rq = cpu_rq(cpu);
1883 
1884 #if defined(CONFIG_SMP)
1885 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1886 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1887 		ttwu_queue_remote(p, cpu);
1888 		return;
1889 	}
1890 #endif
1891 
1892 	raw_spin_lock(&rq->lock);
1893 	lockdep_pin_lock(&rq->lock);
1894 	ttwu_do_activate(rq, p, 0);
1895 	lockdep_unpin_lock(&rq->lock);
1896 	raw_spin_unlock(&rq->lock);
1897 }
1898 
1899 /**
1900  * try_to_wake_up - wake up a thread
1901  * @p: the thread to be awakened
1902  * @state: the mask of task states that can be woken
1903  * @wake_flags: wake modifier flags (WF_*)
1904  *
1905  * Put it on the run-queue if it's not already there. The "current"
1906  * thread is always on the run-queue (except when the actual
1907  * re-schedule is in progress), and as such you're allowed to do
1908  * the simpler "current->state = TASK_RUNNING" to mark yourself
1909  * runnable without the overhead of this.
1910  *
1911  * Return: %true if @p was woken up, %false if it was already running.
1912  * or @state didn't match @p's state.
1913  */
1914 static int
1915 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1916 {
1917 	unsigned long flags;
1918 	int cpu, success = 0;
1919 
1920 	/*
1921 	 * If we are going to wake up a thread waiting for CONDITION we
1922 	 * need to ensure that CONDITION=1 done by the caller can not be
1923 	 * reordered with p->state check below. This pairs with mb() in
1924 	 * set_current_state() the waiting thread does.
1925 	 */
1926 	smp_mb__before_spinlock();
1927 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1928 	if (!(p->state & state))
1929 		goto out;
1930 
1931 	trace_sched_waking(p);
1932 
1933 	success = 1; /* we're going to change ->state */
1934 	cpu = task_cpu(p);
1935 
1936 	if (p->on_rq && ttwu_remote(p, wake_flags))
1937 		goto stat;
1938 
1939 #ifdef CONFIG_SMP
1940 	/*
1941 	 * If the owning (remote) cpu is still in the middle of schedule() with
1942 	 * this task as prev, wait until its done referencing the task.
1943 	 */
1944 	while (p->on_cpu)
1945 		cpu_relax();
1946 	/*
1947 	 * Pairs with the smp_wmb() in finish_lock_switch().
1948 	 */
1949 	smp_rmb();
1950 
1951 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1952 	p->state = TASK_WAKING;
1953 
1954 	if (p->sched_class->task_waking)
1955 		p->sched_class->task_waking(p);
1956 
1957 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1958 	if (task_cpu(p) != cpu) {
1959 		wake_flags |= WF_MIGRATED;
1960 		set_task_cpu(p, cpu);
1961 	}
1962 #endif /* CONFIG_SMP */
1963 
1964 	ttwu_queue(p, cpu);
1965 stat:
1966 	ttwu_stat(p, cpu, wake_flags);
1967 out:
1968 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1969 
1970 	return success;
1971 }
1972 
1973 /**
1974  * try_to_wake_up_local - try to wake up a local task with rq lock held
1975  * @p: the thread to be awakened
1976  *
1977  * Put @p on the run-queue if it's not already there. The caller must
1978  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1979  * the current task.
1980  */
1981 static void try_to_wake_up_local(struct task_struct *p)
1982 {
1983 	struct rq *rq = task_rq(p);
1984 
1985 	if (WARN_ON_ONCE(rq != this_rq()) ||
1986 	    WARN_ON_ONCE(p == current))
1987 		return;
1988 
1989 	lockdep_assert_held(&rq->lock);
1990 
1991 	if (!raw_spin_trylock(&p->pi_lock)) {
1992 		/*
1993 		 * This is OK, because current is on_cpu, which avoids it being
1994 		 * picked for load-balance and preemption/IRQs are still
1995 		 * disabled avoiding further scheduler activity on it and we've
1996 		 * not yet picked a replacement task.
1997 		 */
1998 		lockdep_unpin_lock(&rq->lock);
1999 		raw_spin_unlock(&rq->lock);
2000 		raw_spin_lock(&p->pi_lock);
2001 		raw_spin_lock(&rq->lock);
2002 		lockdep_pin_lock(&rq->lock);
2003 	}
2004 
2005 	if (!(p->state & TASK_NORMAL))
2006 		goto out;
2007 
2008 	trace_sched_waking(p);
2009 
2010 	if (!task_on_rq_queued(p))
2011 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2012 
2013 	ttwu_do_wakeup(rq, p, 0);
2014 	ttwu_stat(p, smp_processor_id(), 0);
2015 out:
2016 	raw_spin_unlock(&p->pi_lock);
2017 }
2018 
2019 /**
2020  * wake_up_process - Wake up a specific process
2021  * @p: The process to be woken up.
2022  *
2023  * Attempt to wake up the nominated process and move it to the set of runnable
2024  * processes.
2025  *
2026  * Return: 1 if the process was woken up, 0 if it was already running.
2027  *
2028  * It may be assumed that this function implies a write memory barrier before
2029  * changing the task state if and only if any tasks are woken up.
2030  */
2031 int wake_up_process(struct task_struct *p)
2032 {
2033 	WARN_ON(task_is_stopped_or_traced(p));
2034 	return try_to_wake_up(p, TASK_NORMAL, 0);
2035 }
2036 EXPORT_SYMBOL(wake_up_process);
2037 
2038 int wake_up_state(struct task_struct *p, unsigned int state)
2039 {
2040 	return try_to_wake_up(p, state, 0);
2041 }
2042 
2043 /*
2044  * This function clears the sched_dl_entity static params.
2045  */
2046 void __dl_clear_params(struct task_struct *p)
2047 {
2048 	struct sched_dl_entity *dl_se = &p->dl;
2049 
2050 	dl_se->dl_runtime = 0;
2051 	dl_se->dl_deadline = 0;
2052 	dl_se->dl_period = 0;
2053 	dl_se->flags = 0;
2054 	dl_se->dl_bw = 0;
2055 
2056 	dl_se->dl_throttled = 0;
2057 	dl_se->dl_new = 1;
2058 	dl_se->dl_yielded = 0;
2059 }
2060 
2061 /*
2062  * Perform scheduler related setup for a newly forked process p.
2063  * p is forked by current.
2064  *
2065  * __sched_fork() is basic setup used by init_idle() too:
2066  */
2067 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2068 {
2069 	p->on_rq			= 0;
2070 
2071 	p->se.on_rq			= 0;
2072 	p->se.exec_start		= 0;
2073 	p->se.sum_exec_runtime		= 0;
2074 	p->se.prev_sum_exec_runtime	= 0;
2075 	p->se.nr_migrations		= 0;
2076 	p->se.vruntime			= 0;
2077 	INIT_LIST_HEAD(&p->se.group_node);
2078 
2079 #ifdef CONFIG_SCHEDSTATS
2080 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2081 #endif
2082 
2083 	RB_CLEAR_NODE(&p->dl.rb_node);
2084 	init_dl_task_timer(&p->dl);
2085 	__dl_clear_params(p);
2086 
2087 	INIT_LIST_HEAD(&p->rt.run_list);
2088 
2089 #ifdef CONFIG_PREEMPT_NOTIFIERS
2090 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2091 #endif
2092 
2093 #ifdef CONFIG_NUMA_BALANCING
2094 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2095 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2096 		p->mm->numa_scan_seq = 0;
2097 	}
2098 
2099 	if (clone_flags & CLONE_VM)
2100 		p->numa_preferred_nid = current->numa_preferred_nid;
2101 	else
2102 		p->numa_preferred_nid = -1;
2103 
2104 	p->node_stamp = 0ULL;
2105 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2106 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2107 	p->numa_work.next = &p->numa_work;
2108 	p->numa_faults = NULL;
2109 	p->last_task_numa_placement = 0;
2110 	p->last_sum_exec_runtime = 0;
2111 
2112 	p->numa_group = NULL;
2113 #endif /* CONFIG_NUMA_BALANCING */
2114 }
2115 
2116 #ifdef CONFIG_NUMA_BALANCING
2117 #ifdef CONFIG_SCHED_DEBUG
2118 void set_numabalancing_state(bool enabled)
2119 {
2120 	if (enabled)
2121 		sched_feat_set("NUMA");
2122 	else
2123 		sched_feat_set("NO_NUMA");
2124 }
2125 #else
2126 __read_mostly bool numabalancing_enabled;
2127 
2128 void set_numabalancing_state(bool enabled)
2129 {
2130 	numabalancing_enabled = enabled;
2131 }
2132 #endif /* CONFIG_SCHED_DEBUG */
2133 
2134 #ifdef CONFIG_PROC_SYSCTL
2135 int sysctl_numa_balancing(struct ctl_table *table, int write,
2136 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2137 {
2138 	struct ctl_table t;
2139 	int err;
2140 	int state = numabalancing_enabled;
2141 
2142 	if (write && !capable(CAP_SYS_ADMIN))
2143 		return -EPERM;
2144 
2145 	t = *table;
2146 	t.data = &state;
2147 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2148 	if (err < 0)
2149 		return err;
2150 	if (write)
2151 		set_numabalancing_state(state);
2152 	return err;
2153 }
2154 #endif
2155 #endif
2156 
2157 /*
2158  * fork()/clone()-time setup:
2159  */
2160 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2161 {
2162 	unsigned long flags;
2163 	int cpu = get_cpu();
2164 
2165 	__sched_fork(clone_flags, p);
2166 	/*
2167 	 * We mark the process as running here. This guarantees that
2168 	 * nobody will actually run it, and a signal or other external
2169 	 * event cannot wake it up and insert it on the runqueue either.
2170 	 */
2171 	p->state = TASK_RUNNING;
2172 
2173 	/*
2174 	 * Make sure we do not leak PI boosting priority to the child.
2175 	 */
2176 	p->prio = current->normal_prio;
2177 
2178 	/*
2179 	 * Revert to default priority/policy on fork if requested.
2180 	 */
2181 	if (unlikely(p->sched_reset_on_fork)) {
2182 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2183 			p->policy = SCHED_NORMAL;
2184 			p->static_prio = NICE_TO_PRIO(0);
2185 			p->rt_priority = 0;
2186 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2187 			p->static_prio = NICE_TO_PRIO(0);
2188 
2189 		p->prio = p->normal_prio = __normal_prio(p);
2190 		set_load_weight(p);
2191 
2192 		/*
2193 		 * We don't need the reset flag anymore after the fork. It has
2194 		 * fulfilled its duty:
2195 		 */
2196 		p->sched_reset_on_fork = 0;
2197 	}
2198 
2199 	if (dl_prio(p->prio)) {
2200 		put_cpu();
2201 		return -EAGAIN;
2202 	} else if (rt_prio(p->prio)) {
2203 		p->sched_class = &rt_sched_class;
2204 	} else {
2205 		p->sched_class = &fair_sched_class;
2206 	}
2207 
2208 	if (p->sched_class->task_fork)
2209 		p->sched_class->task_fork(p);
2210 
2211 	/*
2212 	 * The child is not yet in the pid-hash so no cgroup attach races,
2213 	 * and the cgroup is pinned to this child due to cgroup_fork()
2214 	 * is ran before sched_fork().
2215 	 *
2216 	 * Silence PROVE_RCU.
2217 	 */
2218 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2219 	set_task_cpu(p, cpu);
2220 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2221 
2222 #ifdef CONFIG_SCHED_INFO
2223 	if (likely(sched_info_on()))
2224 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2225 #endif
2226 #if defined(CONFIG_SMP)
2227 	p->on_cpu = 0;
2228 #endif
2229 	init_task_preempt_count(p);
2230 #ifdef CONFIG_SMP
2231 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2232 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2233 #endif
2234 
2235 	put_cpu();
2236 	return 0;
2237 }
2238 
2239 unsigned long to_ratio(u64 period, u64 runtime)
2240 {
2241 	if (runtime == RUNTIME_INF)
2242 		return 1ULL << 20;
2243 
2244 	/*
2245 	 * Doing this here saves a lot of checks in all
2246 	 * the calling paths, and returning zero seems
2247 	 * safe for them anyway.
2248 	 */
2249 	if (period == 0)
2250 		return 0;
2251 
2252 	return div64_u64(runtime << 20, period);
2253 }
2254 
2255 #ifdef CONFIG_SMP
2256 inline struct dl_bw *dl_bw_of(int i)
2257 {
2258 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2259 			 "sched RCU must be held");
2260 	return &cpu_rq(i)->rd->dl_bw;
2261 }
2262 
2263 static inline int dl_bw_cpus(int i)
2264 {
2265 	struct root_domain *rd = cpu_rq(i)->rd;
2266 	int cpus = 0;
2267 
2268 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2269 			 "sched RCU must be held");
2270 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2271 		cpus++;
2272 
2273 	return cpus;
2274 }
2275 #else
2276 inline struct dl_bw *dl_bw_of(int i)
2277 {
2278 	return &cpu_rq(i)->dl.dl_bw;
2279 }
2280 
2281 static inline int dl_bw_cpus(int i)
2282 {
2283 	return 1;
2284 }
2285 #endif
2286 
2287 /*
2288  * We must be sure that accepting a new task (or allowing changing the
2289  * parameters of an existing one) is consistent with the bandwidth
2290  * constraints. If yes, this function also accordingly updates the currently
2291  * allocated bandwidth to reflect the new situation.
2292  *
2293  * This function is called while holding p's rq->lock.
2294  *
2295  * XXX we should delay bw change until the task's 0-lag point, see
2296  * __setparam_dl().
2297  */
2298 static int dl_overflow(struct task_struct *p, int policy,
2299 		       const struct sched_attr *attr)
2300 {
2301 
2302 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2303 	u64 period = attr->sched_period ?: attr->sched_deadline;
2304 	u64 runtime = attr->sched_runtime;
2305 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2306 	int cpus, err = -1;
2307 
2308 	if (new_bw == p->dl.dl_bw)
2309 		return 0;
2310 
2311 	/*
2312 	 * Either if a task, enters, leave, or stays -deadline but changes
2313 	 * its parameters, we may need to update accordingly the total
2314 	 * allocated bandwidth of the container.
2315 	 */
2316 	raw_spin_lock(&dl_b->lock);
2317 	cpus = dl_bw_cpus(task_cpu(p));
2318 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2319 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2320 		__dl_add(dl_b, new_bw);
2321 		err = 0;
2322 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2323 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2324 		__dl_clear(dl_b, p->dl.dl_bw);
2325 		__dl_add(dl_b, new_bw);
2326 		err = 0;
2327 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2328 		__dl_clear(dl_b, p->dl.dl_bw);
2329 		err = 0;
2330 	}
2331 	raw_spin_unlock(&dl_b->lock);
2332 
2333 	return err;
2334 }
2335 
2336 extern void init_dl_bw(struct dl_bw *dl_b);
2337 
2338 /*
2339  * wake_up_new_task - wake up a newly created task for the first time.
2340  *
2341  * This function will do some initial scheduler statistics housekeeping
2342  * that must be done for every newly created context, then puts the task
2343  * on the runqueue and wakes it.
2344  */
2345 void wake_up_new_task(struct task_struct *p)
2346 {
2347 	unsigned long flags;
2348 	struct rq *rq;
2349 
2350 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2351 #ifdef CONFIG_SMP
2352 	/*
2353 	 * Fork balancing, do it here and not earlier because:
2354 	 *  - cpus_allowed can change in the fork path
2355 	 *  - any previously selected cpu might disappear through hotplug
2356 	 */
2357 	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2358 #endif
2359 
2360 	/* Initialize new task's runnable average */
2361 	init_entity_runnable_average(&p->se);
2362 	rq = __task_rq_lock(p);
2363 	activate_task(rq, p, 0);
2364 	p->on_rq = TASK_ON_RQ_QUEUED;
2365 	trace_sched_wakeup_new(p);
2366 	check_preempt_curr(rq, p, WF_FORK);
2367 #ifdef CONFIG_SMP
2368 	if (p->sched_class->task_woken)
2369 		p->sched_class->task_woken(rq, p);
2370 #endif
2371 	task_rq_unlock(rq, p, &flags);
2372 }
2373 
2374 #ifdef CONFIG_PREEMPT_NOTIFIERS
2375 
2376 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2377 
2378 void preempt_notifier_inc(void)
2379 {
2380 	static_key_slow_inc(&preempt_notifier_key);
2381 }
2382 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2383 
2384 void preempt_notifier_dec(void)
2385 {
2386 	static_key_slow_dec(&preempt_notifier_key);
2387 }
2388 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2389 
2390 /**
2391  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2392  * @notifier: notifier struct to register
2393  */
2394 void preempt_notifier_register(struct preempt_notifier *notifier)
2395 {
2396 	if (!static_key_false(&preempt_notifier_key))
2397 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2398 
2399 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2400 }
2401 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2402 
2403 /**
2404  * preempt_notifier_unregister - no longer interested in preemption notifications
2405  * @notifier: notifier struct to unregister
2406  *
2407  * This is *not* safe to call from within a preemption notifier.
2408  */
2409 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2410 {
2411 	hlist_del(&notifier->link);
2412 }
2413 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2414 
2415 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2416 {
2417 	struct preempt_notifier *notifier;
2418 
2419 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2420 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2421 }
2422 
2423 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2424 {
2425 	if (static_key_false(&preempt_notifier_key))
2426 		__fire_sched_in_preempt_notifiers(curr);
2427 }
2428 
2429 static void
2430 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2431 				   struct task_struct *next)
2432 {
2433 	struct preempt_notifier *notifier;
2434 
2435 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2436 		notifier->ops->sched_out(notifier, next);
2437 }
2438 
2439 static __always_inline void
2440 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2441 				 struct task_struct *next)
2442 {
2443 	if (static_key_false(&preempt_notifier_key))
2444 		__fire_sched_out_preempt_notifiers(curr, next);
2445 }
2446 
2447 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2448 
2449 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2450 {
2451 }
2452 
2453 static inline void
2454 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2455 				 struct task_struct *next)
2456 {
2457 }
2458 
2459 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2460 
2461 /**
2462  * prepare_task_switch - prepare to switch tasks
2463  * @rq: the runqueue preparing to switch
2464  * @prev: the current task that is being switched out
2465  * @next: the task we are going to switch to.
2466  *
2467  * This is called with the rq lock held and interrupts off. It must
2468  * be paired with a subsequent finish_task_switch after the context
2469  * switch.
2470  *
2471  * prepare_task_switch sets up locking and calls architecture specific
2472  * hooks.
2473  */
2474 static inline void
2475 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2476 		    struct task_struct *next)
2477 {
2478 	trace_sched_switch(prev, next);
2479 	sched_info_switch(rq, prev, next);
2480 	perf_event_task_sched_out(prev, next);
2481 	fire_sched_out_preempt_notifiers(prev, next);
2482 	prepare_lock_switch(rq, next);
2483 	prepare_arch_switch(next);
2484 }
2485 
2486 /**
2487  * finish_task_switch - clean up after a task-switch
2488  * @prev: the thread we just switched away from.
2489  *
2490  * finish_task_switch must be called after the context switch, paired
2491  * with a prepare_task_switch call before the context switch.
2492  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2493  * and do any other architecture-specific cleanup actions.
2494  *
2495  * Note that we may have delayed dropping an mm in context_switch(). If
2496  * so, we finish that here outside of the runqueue lock. (Doing it
2497  * with the lock held can cause deadlocks; see schedule() for
2498  * details.)
2499  *
2500  * The context switch have flipped the stack from under us and restored the
2501  * local variables which were saved when this task called schedule() in the
2502  * past. prev == current is still correct but we need to recalculate this_rq
2503  * because prev may have moved to another CPU.
2504  */
2505 static struct rq *finish_task_switch(struct task_struct *prev)
2506 	__releases(rq->lock)
2507 {
2508 	struct rq *rq = this_rq();
2509 	struct mm_struct *mm = rq->prev_mm;
2510 	long prev_state;
2511 
2512 	rq->prev_mm = NULL;
2513 
2514 	/*
2515 	 * A task struct has one reference for the use as "current".
2516 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2517 	 * schedule one last time. The schedule call will never return, and
2518 	 * the scheduled task must drop that reference.
2519 	 * The test for TASK_DEAD must occur while the runqueue locks are
2520 	 * still held, otherwise prev could be scheduled on another cpu, die
2521 	 * there before we look at prev->state, and then the reference would
2522 	 * be dropped twice.
2523 	 *		Manfred Spraul <manfred@colorfullife.com>
2524 	 */
2525 	prev_state = prev->state;
2526 	vtime_task_switch(prev);
2527 	perf_event_task_sched_in(prev, current);
2528 	finish_lock_switch(rq, prev);
2529 	finish_arch_post_lock_switch();
2530 
2531 	fire_sched_in_preempt_notifiers(current);
2532 	if (mm)
2533 		mmdrop(mm);
2534 	if (unlikely(prev_state == TASK_DEAD)) {
2535 		if (prev->sched_class->task_dead)
2536 			prev->sched_class->task_dead(prev);
2537 
2538 		/*
2539 		 * Remove function-return probe instances associated with this
2540 		 * task and put them back on the free list.
2541 		 */
2542 		kprobe_flush_task(prev);
2543 		put_task_struct(prev);
2544 	}
2545 
2546 	tick_nohz_task_switch();
2547 	return rq;
2548 }
2549 
2550 #ifdef CONFIG_SMP
2551 
2552 /* rq->lock is NOT held, but preemption is disabled */
2553 static void __balance_callback(struct rq *rq)
2554 {
2555 	struct callback_head *head, *next;
2556 	void (*func)(struct rq *rq);
2557 	unsigned long flags;
2558 
2559 	raw_spin_lock_irqsave(&rq->lock, flags);
2560 	head = rq->balance_callback;
2561 	rq->balance_callback = NULL;
2562 	while (head) {
2563 		func = (void (*)(struct rq *))head->func;
2564 		next = head->next;
2565 		head->next = NULL;
2566 		head = next;
2567 
2568 		func(rq);
2569 	}
2570 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2571 }
2572 
2573 static inline void balance_callback(struct rq *rq)
2574 {
2575 	if (unlikely(rq->balance_callback))
2576 		__balance_callback(rq);
2577 }
2578 
2579 #else
2580 
2581 static inline void balance_callback(struct rq *rq)
2582 {
2583 }
2584 
2585 #endif
2586 
2587 /**
2588  * schedule_tail - first thing a freshly forked thread must call.
2589  * @prev: the thread we just switched away from.
2590  */
2591 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2592 	__releases(rq->lock)
2593 {
2594 	struct rq *rq;
2595 
2596 	/* finish_task_switch() drops rq->lock and enables preemtion */
2597 	preempt_disable();
2598 	rq = finish_task_switch(prev);
2599 	balance_callback(rq);
2600 	preempt_enable();
2601 
2602 	if (current->set_child_tid)
2603 		put_user(task_pid_vnr(current), current->set_child_tid);
2604 }
2605 
2606 /*
2607  * context_switch - switch to the new MM and the new thread's register state.
2608  */
2609 static inline struct rq *
2610 context_switch(struct rq *rq, struct task_struct *prev,
2611 	       struct task_struct *next)
2612 {
2613 	struct mm_struct *mm, *oldmm;
2614 
2615 	prepare_task_switch(rq, prev, next);
2616 
2617 	mm = next->mm;
2618 	oldmm = prev->active_mm;
2619 	/*
2620 	 * For paravirt, this is coupled with an exit in switch_to to
2621 	 * combine the page table reload and the switch backend into
2622 	 * one hypercall.
2623 	 */
2624 	arch_start_context_switch(prev);
2625 
2626 	if (!mm) {
2627 		next->active_mm = oldmm;
2628 		atomic_inc(&oldmm->mm_count);
2629 		enter_lazy_tlb(oldmm, next);
2630 	} else
2631 		switch_mm(oldmm, mm, next);
2632 
2633 	if (!prev->mm) {
2634 		prev->active_mm = NULL;
2635 		rq->prev_mm = oldmm;
2636 	}
2637 	/*
2638 	 * Since the runqueue lock will be released by the next
2639 	 * task (which is an invalid locking op but in the case
2640 	 * of the scheduler it's an obvious special-case), so we
2641 	 * do an early lockdep release here:
2642 	 */
2643 	lockdep_unpin_lock(&rq->lock);
2644 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2645 
2646 	/* Here we just switch the register state and the stack. */
2647 	switch_to(prev, next, prev);
2648 	barrier();
2649 
2650 	return finish_task_switch(prev);
2651 }
2652 
2653 /*
2654  * nr_running and nr_context_switches:
2655  *
2656  * externally visible scheduler statistics: current number of runnable
2657  * threads, total number of context switches performed since bootup.
2658  */
2659 unsigned long nr_running(void)
2660 {
2661 	unsigned long i, sum = 0;
2662 
2663 	for_each_online_cpu(i)
2664 		sum += cpu_rq(i)->nr_running;
2665 
2666 	return sum;
2667 }
2668 
2669 /*
2670  * Check if only the current task is running on the cpu.
2671  */
2672 bool single_task_running(void)
2673 {
2674 	if (cpu_rq(smp_processor_id())->nr_running == 1)
2675 		return true;
2676 	else
2677 		return false;
2678 }
2679 EXPORT_SYMBOL(single_task_running);
2680 
2681 unsigned long long nr_context_switches(void)
2682 {
2683 	int i;
2684 	unsigned long long sum = 0;
2685 
2686 	for_each_possible_cpu(i)
2687 		sum += cpu_rq(i)->nr_switches;
2688 
2689 	return sum;
2690 }
2691 
2692 unsigned long nr_iowait(void)
2693 {
2694 	unsigned long i, sum = 0;
2695 
2696 	for_each_possible_cpu(i)
2697 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2698 
2699 	return sum;
2700 }
2701 
2702 unsigned long nr_iowait_cpu(int cpu)
2703 {
2704 	struct rq *this = cpu_rq(cpu);
2705 	return atomic_read(&this->nr_iowait);
2706 }
2707 
2708 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2709 {
2710 	struct rq *rq = this_rq();
2711 	*nr_waiters = atomic_read(&rq->nr_iowait);
2712 	*load = rq->load.weight;
2713 }
2714 
2715 #ifdef CONFIG_SMP
2716 
2717 /*
2718  * sched_exec - execve() is a valuable balancing opportunity, because at
2719  * this point the task has the smallest effective memory and cache footprint.
2720  */
2721 void sched_exec(void)
2722 {
2723 	struct task_struct *p = current;
2724 	unsigned long flags;
2725 	int dest_cpu;
2726 
2727 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2728 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2729 	if (dest_cpu == smp_processor_id())
2730 		goto unlock;
2731 
2732 	if (likely(cpu_active(dest_cpu))) {
2733 		struct migration_arg arg = { p, dest_cpu };
2734 
2735 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2736 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2737 		return;
2738 	}
2739 unlock:
2740 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2741 }
2742 
2743 #endif
2744 
2745 DEFINE_PER_CPU(struct kernel_stat, kstat);
2746 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2747 
2748 EXPORT_PER_CPU_SYMBOL(kstat);
2749 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2750 
2751 /*
2752  * Return accounted runtime for the task.
2753  * In case the task is currently running, return the runtime plus current's
2754  * pending runtime that have not been accounted yet.
2755  */
2756 unsigned long long task_sched_runtime(struct task_struct *p)
2757 {
2758 	unsigned long flags;
2759 	struct rq *rq;
2760 	u64 ns;
2761 
2762 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2763 	/*
2764 	 * 64-bit doesn't need locks to atomically read a 64bit value.
2765 	 * So we have a optimization chance when the task's delta_exec is 0.
2766 	 * Reading ->on_cpu is racy, but this is ok.
2767 	 *
2768 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2769 	 * If we race with it entering cpu, unaccounted time is 0. This is
2770 	 * indistinguishable from the read occurring a few cycles earlier.
2771 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2772 	 * been accounted, so we're correct here as well.
2773 	 */
2774 	if (!p->on_cpu || !task_on_rq_queued(p))
2775 		return p->se.sum_exec_runtime;
2776 #endif
2777 
2778 	rq = task_rq_lock(p, &flags);
2779 	/*
2780 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2781 	 * project cycles that may never be accounted to this
2782 	 * thread, breaking clock_gettime().
2783 	 */
2784 	if (task_current(rq, p) && task_on_rq_queued(p)) {
2785 		update_rq_clock(rq);
2786 		p->sched_class->update_curr(rq);
2787 	}
2788 	ns = p->se.sum_exec_runtime;
2789 	task_rq_unlock(rq, p, &flags);
2790 
2791 	return ns;
2792 }
2793 
2794 /*
2795  * This function gets called by the timer code, with HZ frequency.
2796  * We call it with interrupts disabled.
2797  */
2798 void scheduler_tick(void)
2799 {
2800 	int cpu = smp_processor_id();
2801 	struct rq *rq = cpu_rq(cpu);
2802 	struct task_struct *curr = rq->curr;
2803 
2804 	sched_clock_tick();
2805 
2806 	raw_spin_lock(&rq->lock);
2807 	update_rq_clock(rq);
2808 	curr->sched_class->task_tick(rq, curr, 0);
2809 	update_cpu_load_active(rq);
2810 	calc_global_load_tick(rq);
2811 	raw_spin_unlock(&rq->lock);
2812 
2813 	perf_event_task_tick();
2814 
2815 #ifdef CONFIG_SMP
2816 	rq->idle_balance = idle_cpu(cpu);
2817 	trigger_load_balance(rq);
2818 #endif
2819 	rq_last_tick_reset(rq);
2820 }
2821 
2822 #ifdef CONFIG_NO_HZ_FULL
2823 /**
2824  * scheduler_tick_max_deferment
2825  *
2826  * Keep at least one tick per second when a single
2827  * active task is running because the scheduler doesn't
2828  * yet completely support full dynticks environment.
2829  *
2830  * This makes sure that uptime, CFS vruntime, load
2831  * balancing, etc... continue to move forward, even
2832  * with a very low granularity.
2833  *
2834  * Return: Maximum deferment in nanoseconds.
2835  */
2836 u64 scheduler_tick_max_deferment(void)
2837 {
2838 	struct rq *rq = this_rq();
2839 	unsigned long next, now = READ_ONCE(jiffies);
2840 
2841 	next = rq->last_sched_tick + HZ;
2842 
2843 	if (time_before_eq(next, now))
2844 		return 0;
2845 
2846 	return jiffies_to_nsecs(next - now);
2847 }
2848 #endif
2849 
2850 notrace unsigned long get_parent_ip(unsigned long addr)
2851 {
2852 	if (in_lock_functions(addr)) {
2853 		addr = CALLER_ADDR2;
2854 		if (in_lock_functions(addr))
2855 			addr = CALLER_ADDR3;
2856 	}
2857 	return addr;
2858 }
2859 
2860 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2861 				defined(CONFIG_PREEMPT_TRACER))
2862 
2863 void preempt_count_add(int val)
2864 {
2865 #ifdef CONFIG_DEBUG_PREEMPT
2866 	/*
2867 	 * Underflow?
2868 	 */
2869 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2870 		return;
2871 #endif
2872 	__preempt_count_add(val);
2873 #ifdef CONFIG_DEBUG_PREEMPT
2874 	/*
2875 	 * Spinlock count overflowing soon?
2876 	 */
2877 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2878 				PREEMPT_MASK - 10);
2879 #endif
2880 	if (preempt_count() == val) {
2881 		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2882 #ifdef CONFIG_DEBUG_PREEMPT
2883 		current->preempt_disable_ip = ip;
2884 #endif
2885 		trace_preempt_off(CALLER_ADDR0, ip);
2886 	}
2887 }
2888 EXPORT_SYMBOL(preempt_count_add);
2889 NOKPROBE_SYMBOL(preempt_count_add);
2890 
2891 void preempt_count_sub(int val)
2892 {
2893 #ifdef CONFIG_DEBUG_PREEMPT
2894 	/*
2895 	 * Underflow?
2896 	 */
2897 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2898 		return;
2899 	/*
2900 	 * Is the spinlock portion underflowing?
2901 	 */
2902 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2903 			!(preempt_count() & PREEMPT_MASK)))
2904 		return;
2905 #endif
2906 
2907 	if (preempt_count() == val)
2908 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2909 	__preempt_count_sub(val);
2910 }
2911 EXPORT_SYMBOL(preempt_count_sub);
2912 NOKPROBE_SYMBOL(preempt_count_sub);
2913 
2914 #endif
2915 
2916 /*
2917  * Print scheduling while atomic bug:
2918  */
2919 static noinline void __schedule_bug(struct task_struct *prev)
2920 {
2921 	if (oops_in_progress)
2922 		return;
2923 
2924 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2925 		prev->comm, prev->pid, preempt_count());
2926 
2927 	debug_show_held_locks(prev);
2928 	print_modules();
2929 	if (irqs_disabled())
2930 		print_irqtrace_events(prev);
2931 #ifdef CONFIG_DEBUG_PREEMPT
2932 	if (in_atomic_preempt_off()) {
2933 		pr_err("Preemption disabled at:");
2934 		print_ip_sym(current->preempt_disable_ip);
2935 		pr_cont("\n");
2936 	}
2937 #endif
2938 	dump_stack();
2939 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2940 }
2941 
2942 /*
2943  * Various schedule()-time debugging checks and statistics:
2944  */
2945 static inline void schedule_debug(struct task_struct *prev)
2946 {
2947 #ifdef CONFIG_SCHED_STACK_END_CHECK
2948 	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2949 #endif
2950 	/*
2951 	 * Test if we are atomic. Since do_exit() needs to call into
2952 	 * schedule() atomically, we ignore that path. Otherwise whine
2953 	 * if we are scheduling when we should not.
2954 	 */
2955 	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2956 		__schedule_bug(prev);
2957 	rcu_sleep_check();
2958 
2959 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2960 
2961 	schedstat_inc(this_rq(), sched_count);
2962 }
2963 
2964 /*
2965  * Pick up the highest-prio task:
2966  */
2967 static inline struct task_struct *
2968 pick_next_task(struct rq *rq, struct task_struct *prev)
2969 {
2970 	const struct sched_class *class = &fair_sched_class;
2971 	struct task_struct *p;
2972 
2973 	/*
2974 	 * Optimization: we know that if all tasks are in
2975 	 * the fair class we can call that function directly:
2976 	 */
2977 	if (likely(prev->sched_class == class &&
2978 		   rq->nr_running == rq->cfs.h_nr_running)) {
2979 		p = fair_sched_class.pick_next_task(rq, prev);
2980 		if (unlikely(p == RETRY_TASK))
2981 			goto again;
2982 
2983 		/* assumes fair_sched_class->next == idle_sched_class */
2984 		if (unlikely(!p))
2985 			p = idle_sched_class.pick_next_task(rq, prev);
2986 
2987 		return p;
2988 	}
2989 
2990 again:
2991 	for_each_class(class) {
2992 		p = class->pick_next_task(rq, prev);
2993 		if (p) {
2994 			if (unlikely(p == RETRY_TASK))
2995 				goto again;
2996 			return p;
2997 		}
2998 	}
2999 
3000 	BUG(); /* the idle class will always have a runnable task */
3001 }
3002 
3003 /*
3004  * __schedule() is the main scheduler function.
3005  *
3006  * The main means of driving the scheduler and thus entering this function are:
3007  *
3008  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3009  *
3010  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3011  *      paths. For example, see arch/x86/entry_64.S.
3012  *
3013  *      To drive preemption between tasks, the scheduler sets the flag in timer
3014  *      interrupt handler scheduler_tick().
3015  *
3016  *   3. Wakeups don't really cause entry into schedule(). They add a
3017  *      task to the run-queue and that's it.
3018  *
3019  *      Now, if the new task added to the run-queue preempts the current
3020  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3021  *      called on the nearest possible occasion:
3022  *
3023  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3024  *
3025  *         - in syscall or exception context, at the next outmost
3026  *           preempt_enable(). (this might be as soon as the wake_up()'s
3027  *           spin_unlock()!)
3028  *
3029  *         - in IRQ context, return from interrupt-handler to
3030  *           preemptible context
3031  *
3032  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3033  *         then at the next:
3034  *
3035  *          - cond_resched() call
3036  *          - explicit schedule() call
3037  *          - return from syscall or exception to user-space
3038  *          - return from interrupt-handler to user-space
3039  *
3040  * WARNING: must be called with preemption disabled!
3041  */
3042 static void __sched __schedule(void)
3043 {
3044 	struct task_struct *prev, *next;
3045 	unsigned long *switch_count;
3046 	struct rq *rq;
3047 	int cpu;
3048 
3049 	cpu = smp_processor_id();
3050 	rq = cpu_rq(cpu);
3051 	rcu_note_context_switch();
3052 	prev = rq->curr;
3053 
3054 	schedule_debug(prev);
3055 
3056 	if (sched_feat(HRTICK))
3057 		hrtick_clear(rq);
3058 
3059 	/*
3060 	 * Make sure that signal_pending_state()->signal_pending() below
3061 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3062 	 * done by the caller to avoid the race with signal_wake_up().
3063 	 */
3064 	smp_mb__before_spinlock();
3065 	raw_spin_lock_irq(&rq->lock);
3066 	lockdep_pin_lock(&rq->lock);
3067 
3068 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3069 
3070 	switch_count = &prev->nivcsw;
3071 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3072 		if (unlikely(signal_pending_state(prev->state, prev))) {
3073 			prev->state = TASK_RUNNING;
3074 		} else {
3075 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3076 			prev->on_rq = 0;
3077 
3078 			/*
3079 			 * If a worker went to sleep, notify and ask workqueue
3080 			 * whether it wants to wake up a task to maintain
3081 			 * concurrency.
3082 			 */
3083 			if (prev->flags & PF_WQ_WORKER) {
3084 				struct task_struct *to_wakeup;
3085 
3086 				to_wakeup = wq_worker_sleeping(prev, cpu);
3087 				if (to_wakeup)
3088 					try_to_wake_up_local(to_wakeup);
3089 			}
3090 		}
3091 		switch_count = &prev->nvcsw;
3092 	}
3093 
3094 	if (task_on_rq_queued(prev))
3095 		update_rq_clock(rq);
3096 
3097 	next = pick_next_task(rq, prev);
3098 	clear_tsk_need_resched(prev);
3099 	clear_preempt_need_resched();
3100 	rq->clock_skip_update = 0;
3101 
3102 	if (likely(prev != next)) {
3103 		rq->nr_switches++;
3104 		rq->curr = next;
3105 		++*switch_count;
3106 
3107 		rq = context_switch(rq, prev, next); /* unlocks the rq */
3108 		cpu = cpu_of(rq);
3109 	} else {
3110 		lockdep_unpin_lock(&rq->lock);
3111 		raw_spin_unlock_irq(&rq->lock);
3112 	}
3113 
3114 	balance_callback(rq);
3115 }
3116 
3117 static inline void sched_submit_work(struct task_struct *tsk)
3118 {
3119 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3120 		return;
3121 	/*
3122 	 * If we are going to sleep and we have plugged IO queued,
3123 	 * make sure to submit it to avoid deadlocks.
3124 	 */
3125 	if (blk_needs_flush_plug(tsk))
3126 		blk_schedule_flush_plug(tsk);
3127 }
3128 
3129 asmlinkage __visible void __sched schedule(void)
3130 {
3131 	struct task_struct *tsk = current;
3132 
3133 	sched_submit_work(tsk);
3134 	do {
3135 		preempt_disable();
3136 		__schedule();
3137 		sched_preempt_enable_no_resched();
3138 	} while (need_resched());
3139 }
3140 EXPORT_SYMBOL(schedule);
3141 
3142 #ifdef CONFIG_CONTEXT_TRACKING
3143 asmlinkage __visible void __sched schedule_user(void)
3144 {
3145 	/*
3146 	 * If we come here after a random call to set_need_resched(),
3147 	 * or we have been woken up remotely but the IPI has not yet arrived,
3148 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3149 	 * we find a better solution.
3150 	 *
3151 	 * NB: There are buggy callers of this function.  Ideally we
3152 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3153 	 * too frequently to make sense yet.
3154 	 */
3155 	enum ctx_state prev_state = exception_enter();
3156 	schedule();
3157 	exception_exit(prev_state);
3158 }
3159 #endif
3160 
3161 /**
3162  * schedule_preempt_disabled - called with preemption disabled
3163  *
3164  * Returns with preemption disabled. Note: preempt_count must be 1
3165  */
3166 void __sched schedule_preempt_disabled(void)
3167 {
3168 	sched_preempt_enable_no_resched();
3169 	schedule();
3170 	preempt_disable();
3171 }
3172 
3173 static void __sched notrace preempt_schedule_common(void)
3174 {
3175 	do {
3176 		preempt_active_enter();
3177 		__schedule();
3178 		preempt_active_exit();
3179 
3180 		/*
3181 		 * Check again in case we missed a preemption opportunity
3182 		 * between schedule and now.
3183 		 */
3184 	} while (need_resched());
3185 }
3186 
3187 #ifdef CONFIG_PREEMPT
3188 /*
3189  * this is the entry point to schedule() from in-kernel preemption
3190  * off of preempt_enable. Kernel preemptions off return from interrupt
3191  * occur there and call schedule directly.
3192  */
3193 asmlinkage __visible void __sched notrace preempt_schedule(void)
3194 {
3195 	/*
3196 	 * If there is a non-zero preempt_count or interrupts are disabled,
3197 	 * we do not want to preempt the current task. Just return..
3198 	 */
3199 	if (likely(!preemptible()))
3200 		return;
3201 
3202 	preempt_schedule_common();
3203 }
3204 NOKPROBE_SYMBOL(preempt_schedule);
3205 EXPORT_SYMBOL(preempt_schedule);
3206 
3207 /**
3208  * preempt_schedule_notrace - preempt_schedule called by tracing
3209  *
3210  * The tracing infrastructure uses preempt_enable_notrace to prevent
3211  * recursion and tracing preempt enabling caused by the tracing
3212  * infrastructure itself. But as tracing can happen in areas coming
3213  * from userspace or just about to enter userspace, a preempt enable
3214  * can occur before user_exit() is called. This will cause the scheduler
3215  * to be called when the system is still in usermode.
3216  *
3217  * To prevent this, the preempt_enable_notrace will use this function
3218  * instead of preempt_schedule() to exit user context if needed before
3219  * calling the scheduler.
3220  */
3221 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3222 {
3223 	enum ctx_state prev_ctx;
3224 
3225 	if (likely(!preemptible()))
3226 		return;
3227 
3228 	do {
3229 		/*
3230 		 * Use raw __prempt_count() ops that don't call function.
3231 		 * We can't call functions before disabling preemption which
3232 		 * disarm preemption tracing recursions.
3233 		 */
3234 		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3235 		barrier();
3236 		/*
3237 		 * Needs preempt disabled in case user_exit() is traced
3238 		 * and the tracer calls preempt_enable_notrace() causing
3239 		 * an infinite recursion.
3240 		 */
3241 		prev_ctx = exception_enter();
3242 		__schedule();
3243 		exception_exit(prev_ctx);
3244 
3245 		barrier();
3246 		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3247 	} while (need_resched());
3248 }
3249 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3250 
3251 #endif /* CONFIG_PREEMPT */
3252 
3253 /*
3254  * this is the entry point to schedule() from kernel preemption
3255  * off of irq context.
3256  * Note, that this is called and return with irqs disabled. This will
3257  * protect us against recursive calling from irq.
3258  */
3259 asmlinkage __visible void __sched preempt_schedule_irq(void)
3260 {
3261 	enum ctx_state prev_state;
3262 
3263 	/* Catch callers which need to be fixed */
3264 	BUG_ON(preempt_count() || !irqs_disabled());
3265 
3266 	prev_state = exception_enter();
3267 
3268 	do {
3269 		preempt_active_enter();
3270 		local_irq_enable();
3271 		__schedule();
3272 		local_irq_disable();
3273 		preempt_active_exit();
3274 	} while (need_resched());
3275 
3276 	exception_exit(prev_state);
3277 }
3278 
3279 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3280 			  void *key)
3281 {
3282 	return try_to_wake_up(curr->private, mode, wake_flags);
3283 }
3284 EXPORT_SYMBOL(default_wake_function);
3285 
3286 #ifdef CONFIG_RT_MUTEXES
3287 
3288 /*
3289  * rt_mutex_setprio - set the current priority of a task
3290  * @p: task
3291  * @prio: prio value (kernel-internal form)
3292  *
3293  * This function changes the 'effective' priority of a task. It does
3294  * not touch ->normal_prio like __setscheduler().
3295  *
3296  * Used by the rt_mutex code to implement priority inheritance
3297  * logic. Call site only calls if the priority of the task changed.
3298  */
3299 void rt_mutex_setprio(struct task_struct *p, int prio)
3300 {
3301 	int oldprio, queued, running, enqueue_flag = 0;
3302 	struct rq *rq;
3303 	const struct sched_class *prev_class;
3304 
3305 	BUG_ON(prio > MAX_PRIO);
3306 
3307 	rq = __task_rq_lock(p);
3308 
3309 	/*
3310 	 * Idle task boosting is a nono in general. There is one
3311 	 * exception, when PREEMPT_RT and NOHZ is active:
3312 	 *
3313 	 * The idle task calls get_next_timer_interrupt() and holds
3314 	 * the timer wheel base->lock on the CPU and another CPU wants
3315 	 * to access the timer (probably to cancel it). We can safely
3316 	 * ignore the boosting request, as the idle CPU runs this code
3317 	 * with interrupts disabled and will complete the lock
3318 	 * protected section without being interrupted. So there is no
3319 	 * real need to boost.
3320 	 */
3321 	if (unlikely(p == rq->idle)) {
3322 		WARN_ON(p != rq->curr);
3323 		WARN_ON(p->pi_blocked_on);
3324 		goto out_unlock;
3325 	}
3326 
3327 	trace_sched_pi_setprio(p, prio);
3328 	oldprio = p->prio;
3329 	prev_class = p->sched_class;
3330 	queued = task_on_rq_queued(p);
3331 	running = task_current(rq, p);
3332 	if (queued)
3333 		dequeue_task(rq, p, 0);
3334 	if (running)
3335 		put_prev_task(rq, p);
3336 
3337 	/*
3338 	 * Boosting condition are:
3339 	 * 1. -rt task is running and holds mutex A
3340 	 *      --> -dl task blocks on mutex A
3341 	 *
3342 	 * 2. -dl task is running and holds mutex A
3343 	 *      --> -dl task blocks on mutex A and could preempt the
3344 	 *          running task
3345 	 */
3346 	if (dl_prio(prio)) {
3347 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3348 		if (!dl_prio(p->normal_prio) ||
3349 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3350 			p->dl.dl_boosted = 1;
3351 			enqueue_flag = ENQUEUE_REPLENISH;
3352 		} else
3353 			p->dl.dl_boosted = 0;
3354 		p->sched_class = &dl_sched_class;
3355 	} else if (rt_prio(prio)) {
3356 		if (dl_prio(oldprio))
3357 			p->dl.dl_boosted = 0;
3358 		if (oldprio < prio)
3359 			enqueue_flag = ENQUEUE_HEAD;
3360 		p->sched_class = &rt_sched_class;
3361 	} else {
3362 		if (dl_prio(oldprio))
3363 			p->dl.dl_boosted = 0;
3364 		if (rt_prio(oldprio))
3365 			p->rt.timeout = 0;
3366 		p->sched_class = &fair_sched_class;
3367 	}
3368 
3369 	p->prio = prio;
3370 
3371 	if (running)
3372 		p->sched_class->set_curr_task(rq);
3373 	if (queued)
3374 		enqueue_task(rq, p, enqueue_flag);
3375 
3376 	check_class_changed(rq, p, prev_class, oldprio);
3377 out_unlock:
3378 	preempt_disable(); /* avoid rq from going away on us */
3379 	__task_rq_unlock(rq);
3380 
3381 	balance_callback(rq);
3382 	preempt_enable();
3383 }
3384 #endif
3385 
3386 void set_user_nice(struct task_struct *p, long nice)
3387 {
3388 	int old_prio, delta, queued;
3389 	unsigned long flags;
3390 	struct rq *rq;
3391 
3392 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3393 		return;
3394 	/*
3395 	 * We have to be careful, if called from sys_setpriority(),
3396 	 * the task might be in the middle of scheduling on another CPU.
3397 	 */
3398 	rq = task_rq_lock(p, &flags);
3399 	/*
3400 	 * The RT priorities are set via sched_setscheduler(), but we still
3401 	 * allow the 'normal' nice value to be set - but as expected
3402 	 * it wont have any effect on scheduling until the task is
3403 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3404 	 */
3405 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3406 		p->static_prio = NICE_TO_PRIO(nice);
3407 		goto out_unlock;
3408 	}
3409 	queued = task_on_rq_queued(p);
3410 	if (queued)
3411 		dequeue_task(rq, p, 0);
3412 
3413 	p->static_prio = NICE_TO_PRIO(nice);
3414 	set_load_weight(p);
3415 	old_prio = p->prio;
3416 	p->prio = effective_prio(p);
3417 	delta = p->prio - old_prio;
3418 
3419 	if (queued) {
3420 		enqueue_task(rq, p, 0);
3421 		/*
3422 		 * If the task increased its priority or is running and
3423 		 * lowered its priority, then reschedule its CPU:
3424 		 */
3425 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3426 			resched_curr(rq);
3427 	}
3428 out_unlock:
3429 	task_rq_unlock(rq, p, &flags);
3430 }
3431 EXPORT_SYMBOL(set_user_nice);
3432 
3433 /*
3434  * can_nice - check if a task can reduce its nice value
3435  * @p: task
3436  * @nice: nice value
3437  */
3438 int can_nice(const struct task_struct *p, const int nice)
3439 {
3440 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3441 	int nice_rlim = nice_to_rlimit(nice);
3442 
3443 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3444 		capable(CAP_SYS_NICE));
3445 }
3446 
3447 #ifdef __ARCH_WANT_SYS_NICE
3448 
3449 /*
3450  * sys_nice - change the priority of the current process.
3451  * @increment: priority increment
3452  *
3453  * sys_setpriority is a more generic, but much slower function that
3454  * does similar things.
3455  */
3456 SYSCALL_DEFINE1(nice, int, increment)
3457 {
3458 	long nice, retval;
3459 
3460 	/*
3461 	 * Setpriority might change our priority at the same moment.
3462 	 * We don't have to worry. Conceptually one call occurs first
3463 	 * and we have a single winner.
3464 	 */
3465 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3466 	nice = task_nice(current) + increment;
3467 
3468 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3469 	if (increment < 0 && !can_nice(current, nice))
3470 		return -EPERM;
3471 
3472 	retval = security_task_setnice(current, nice);
3473 	if (retval)
3474 		return retval;
3475 
3476 	set_user_nice(current, nice);
3477 	return 0;
3478 }
3479 
3480 #endif
3481 
3482 /**
3483  * task_prio - return the priority value of a given task.
3484  * @p: the task in question.
3485  *
3486  * Return: The priority value as seen by users in /proc.
3487  * RT tasks are offset by -200. Normal tasks are centered
3488  * around 0, value goes from -16 to +15.
3489  */
3490 int task_prio(const struct task_struct *p)
3491 {
3492 	return p->prio - MAX_RT_PRIO;
3493 }
3494 
3495 /**
3496  * idle_cpu - is a given cpu idle currently?
3497  * @cpu: the processor in question.
3498  *
3499  * Return: 1 if the CPU is currently idle. 0 otherwise.
3500  */
3501 int idle_cpu(int cpu)
3502 {
3503 	struct rq *rq = cpu_rq(cpu);
3504 
3505 	if (rq->curr != rq->idle)
3506 		return 0;
3507 
3508 	if (rq->nr_running)
3509 		return 0;
3510 
3511 #ifdef CONFIG_SMP
3512 	if (!llist_empty(&rq->wake_list))
3513 		return 0;
3514 #endif
3515 
3516 	return 1;
3517 }
3518 
3519 /**
3520  * idle_task - return the idle task for a given cpu.
3521  * @cpu: the processor in question.
3522  *
3523  * Return: The idle task for the cpu @cpu.
3524  */
3525 struct task_struct *idle_task(int cpu)
3526 {
3527 	return cpu_rq(cpu)->idle;
3528 }
3529 
3530 /**
3531  * find_process_by_pid - find a process with a matching PID value.
3532  * @pid: the pid in question.
3533  *
3534  * The task of @pid, if found. %NULL otherwise.
3535  */
3536 static struct task_struct *find_process_by_pid(pid_t pid)
3537 {
3538 	return pid ? find_task_by_vpid(pid) : current;
3539 }
3540 
3541 /*
3542  * This function initializes the sched_dl_entity of a newly becoming
3543  * SCHED_DEADLINE task.
3544  *
3545  * Only the static values are considered here, the actual runtime and the
3546  * absolute deadline will be properly calculated when the task is enqueued
3547  * for the first time with its new policy.
3548  */
3549 static void
3550 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3551 {
3552 	struct sched_dl_entity *dl_se = &p->dl;
3553 
3554 	dl_se->dl_runtime = attr->sched_runtime;
3555 	dl_se->dl_deadline = attr->sched_deadline;
3556 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3557 	dl_se->flags = attr->sched_flags;
3558 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3559 
3560 	/*
3561 	 * Changing the parameters of a task is 'tricky' and we're not doing
3562 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3563 	 *
3564 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3565 	 * point. This would include retaining the task_struct until that time
3566 	 * and change dl_overflow() to not immediately decrement the current
3567 	 * amount.
3568 	 *
3569 	 * Instead we retain the current runtime/deadline and let the new
3570 	 * parameters take effect after the current reservation period lapses.
3571 	 * This is safe (albeit pessimistic) because the 0-lag point is always
3572 	 * before the current scheduling deadline.
3573 	 *
3574 	 * We can still have temporary overloads because we do not delay the
3575 	 * change in bandwidth until that time; so admission control is
3576 	 * not on the safe side. It does however guarantee tasks will never
3577 	 * consume more than promised.
3578 	 */
3579 }
3580 
3581 /*
3582  * sched_setparam() passes in -1 for its policy, to let the functions
3583  * it calls know not to change it.
3584  */
3585 #define SETPARAM_POLICY	-1
3586 
3587 static void __setscheduler_params(struct task_struct *p,
3588 		const struct sched_attr *attr)
3589 {
3590 	int policy = attr->sched_policy;
3591 
3592 	if (policy == SETPARAM_POLICY)
3593 		policy = p->policy;
3594 
3595 	p->policy = policy;
3596 
3597 	if (dl_policy(policy))
3598 		__setparam_dl(p, attr);
3599 	else if (fair_policy(policy))
3600 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3601 
3602 	/*
3603 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3604 	 * !rt_policy. Always setting this ensures that things like
3605 	 * getparam()/getattr() don't report silly values for !rt tasks.
3606 	 */
3607 	p->rt_priority = attr->sched_priority;
3608 	p->normal_prio = normal_prio(p);
3609 	set_load_weight(p);
3610 }
3611 
3612 /* Actually do priority change: must hold pi & rq lock. */
3613 static void __setscheduler(struct rq *rq, struct task_struct *p,
3614 			   const struct sched_attr *attr, bool keep_boost)
3615 {
3616 	__setscheduler_params(p, attr);
3617 
3618 	/*
3619 	 * Keep a potential priority boosting if called from
3620 	 * sched_setscheduler().
3621 	 */
3622 	if (keep_boost)
3623 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3624 	else
3625 		p->prio = normal_prio(p);
3626 
3627 	if (dl_prio(p->prio))
3628 		p->sched_class = &dl_sched_class;
3629 	else if (rt_prio(p->prio))
3630 		p->sched_class = &rt_sched_class;
3631 	else
3632 		p->sched_class = &fair_sched_class;
3633 }
3634 
3635 static void
3636 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3637 {
3638 	struct sched_dl_entity *dl_se = &p->dl;
3639 
3640 	attr->sched_priority = p->rt_priority;
3641 	attr->sched_runtime = dl_se->dl_runtime;
3642 	attr->sched_deadline = dl_se->dl_deadline;
3643 	attr->sched_period = dl_se->dl_period;
3644 	attr->sched_flags = dl_se->flags;
3645 }
3646 
3647 /*
3648  * This function validates the new parameters of a -deadline task.
3649  * We ask for the deadline not being zero, and greater or equal
3650  * than the runtime, as well as the period of being zero or
3651  * greater than deadline. Furthermore, we have to be sure that
3652  * user parameters are above the internal resolution of 1us (we
3653  * check sched_runtime only since it is always the smaller one) and
3654  * below 2^63 ns (we have to check both sched_deadline and
3655  * sched_period, as the latter can be zero).
3656  */
3657 static bool
3658 __checkparam_dl(const struct sched_attr *attr)
3659 {
3660 	/* deadline != 0 */
3661 	if (attr->sched_deadline == 0)
3662 		return false;
3663 
3664 	/*
3665 	 * Since we truncate DL_SCALE bits, make sure we're at least
3666 	 * that big.
3667 	 */
3668 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3669 		return false;
3670 
3671 	/*
3672 	 * Since we use the MSB for wrap-around and sign issues, make
3673 	 * sure it's not set (mind that period can be equal to zero).
3674 	 */
3675 	if (attr->sched_deadline & (1ULL << 63) ||
3676 	    attr->sched_period & (1ULL << 63))
3677 		return false;
3678 
3679 	/* runtime <= deadline <= period (if period != 0) */
3680 	if ((attr->sched_period != 0 &&
3681 	     attr->sched_period < attr->sched_deadline) ||
3682 	    attr->sched_deadline < attr->sched_runtime)
3683 		return false;
3684 
3685 	return true;
3686 }
3687 
3688 /*
3689  * check the target process has a UID that matches the current process's
3690  */
3691 static bool check_same_owner(struct task_struct *p)
3692 {
3693 	const struct cred *cred = current_cred(), *pcred;
3694 	bool match;
3695 
3696 	rcu_read_lock();
3697 	pcred = __task_cred(p);
3698 	match = (uid_eq(cred->euid, pcred->euid) ||
3699 		 uid_eq(cred->euid, pcred->uid));
3700 	rcu_read_unlock();
3701 	return match;
3702 }
3703 
3704 static bool dl_param_changed(struct task_struct *p,
3705 		const struct sched_attr *attr)
3706 {
3707 	struct sched_dl_entity *dl_se = &p->dl;
3708 
3709 	if (dl_se->dl_runtime != attr->sched_runtime ||
3710 		dl_se->dl_deadline != attr->sched_deadline ||
3711 		dl_se->dl_period != attr->sched_period ||
3712 		dl_se->flags != attr->sched_flags)
3713 		return true;
3714 
3715 	return false;
3716 }
3717 
3718 static int __sched_setscheduler(struct task_struct *p,
3719 				const struct sched_attr *attr,
3720 				bool user, bool pi)
3721 {
3722 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3723 		      MAX_RT_PRIO - 1 - attr->sched_priority;
3724 	int retval, oldprio, oldpolicy = -1, queued, running;
3725 	int new_effective_prio, policy = attr->sched_policy;
3726 	unsigned long flags;
3727 	const struct sched_class *prev_class;
3728 	struct rq *rq;
3729 	int reset_on_fork;
3730 
3731 	/* may grab non-irq protected spin_locks */
3732 	BUG_ON(in_interrupt());
3733 recheck:
3734 	/* double check policy once rq lock held */
3735 	if (policy < 0) {
3736 		reset_on_fork = p->sched_reset_on_fork;
3737 		policy = oldpolicy = p->policy;
3738 	} else {
3739 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3740 
3741 		if (policy != SCHED_DEADLINE &&
3742 				policy != SCHED_FIFO && policy != SCHED_RR &&
3743 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3744 				policy != SCHED_IDLE)
3745 			return -EINVAL;
3746 	}
3747 
3748 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3749 		return -EINVAL;
3750 
3751 	/*
3752 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3753 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3754 	 * SCHED_BATCH and SCHED_IDLE is 0.
3755 	 */
3756 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3757 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3758 		return -EINVAL;
3759 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3760 	    (rt_policy(policy) != (attr->sched_priority != 0)))
3761 		return -EINVAL;
3762 
3763 	/*
3764 	 * Allow unprivileged RT tasks to decrease priority:
3765 	 */
3766 	if (user && !capable(CAP_SYS_NICE)) {
3767 		if (fair_policy(policy)) {
3768 			if (attr->sched_nice < task_nice(p) &&
3769 			    !can_nice(p, attr->sched_nice))
3770 				return -EPERM;
3771 		}
3772 
3773 		if (rt_policy(policy)) {
3774 			unsigned long rlim_rtprio =
3775 					task_rlimit(p, RLIMIT_RTPRIO);
3776 
3777 			/* can't set/change the rt policy */
3778 			if (policy != p->policy && !rlim_rtprio)
3779 				return -EPERM;
3780 
3781 			/* can't increase priority */
3782 			if (attr->sched_priority > p->rt_priority &&
3783 			    attr->sched_priority > rlim_rtprio)
3784 				return -EPERM;
3785 		}
3786 
3787 		 /*
3788 		  * Can't set/change SCHED_DEADLINE policy at all for now
3789 		  * (safest behavior); in the future we would like to allow
3790 		  * unprivileged DL tasks to increase their relative deadline
3791 		  * or reduce their runtime (both ways reducing utilization)
3792 		  */
3793 		if (dl_policy(policy))
3794 			return -EPERM;
3795 
3796 		/*
3797 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3798 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3799 		 */
3800 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3801 			if (!can_nice(p, task_nice(p)))
3802 				return -EPERM;
3803 		}
3804 
3805 		/* can't change other user's priorities */
3806 		if (!check_same_owner(p))
3807 			return -EPERM;
3808 
3809 		/* Normal users shall not reset the sched_reset_on_fork flag */
3810 		if (p->sched_reset_on_fork && !reset_on_fork)
3811 			return -EPERM;
3812 	}
3813 
3814 	if (user) {
3815 		retval = security_task_setscheduler(p);
3816 		if (retval)
3817 			return retval;
3818 	}
3819 
3820 	/*
3821 	 * make sure no PI-waiters arrive (or leave) while we are
3822 	 * changing the priority of the task:
3823 	 *
3824 	 * To be able to change p->policy safely, the appropriate
3825 	 * runqueue lock must be held.
3826 	 */
3827 	rq = task_rq_lock(p, &flags);
3828 
3829 	/*
3830 	 * Changing the policy of the stop threads its a very bad idea
3831 	 */
3832 	if (p == rq->stop) {
3833 		task_rq_unlock(rq, p, &flags);
3834 		return -EINVAL;
3835 	}
3836 
3837 	/*
3838 	 * If not changing anything there's no need to proceed further,
3839 	 * but store a possible modification of reset_on_fork.
3840 	 */
3841 	if (unlikely(policy == p->policy)) {
3842 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3843 			goto change;
3844 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3845 			goto change;
3846 		if (dl_policy(policy) && dl_param_changed(p, attr))
3847 			goto change;
3848 
3849 		p->sched_reset_on_fork = reset_on_fork;
3850 		task_rq_unlock(rq, p, &flags);
3851 		return 0;
3852 	}
3853 change:
3854 
3855 	if (user) {
3856 #ifdef CONFIG_RT_GROUP_SCHED
3857 		/*
3858 		 * Do not allow realtime tasks into groups that have no runtime
3859 		 * assigned.
3860 		 */
3861 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3862 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3863 				!task_group_is_autogroup(task_group(p))) {
3864 			task_rq_unlock(rq, p, &flags);
3865 			return -EPERM;
3866 		}
3867 #endif
3868 #ifdef CONFIG_SMP
3869 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3870 			cpumask_t *span = rq->rd->span;
3871 
3872 			/*
3873 			 * Don't allow tasks with an affinity mask smaller than
3874 			 * the entire root_domain to become SCHED_DEADLINE. We
3875 			 * will also fail if there's no bandwidth available.
3876 			 */
3877 			if (!cpumask_subset(span, &p->cpus_allowed) ||
3878 			    rq->rd->dl_bw.bw == 0) {
3879 				task_rq_unlock(rq, p, &flags);
3880 				return -EPERM;
3881 			}
3882 		}
3883 #endif
3884 	}
3885 
3886 	/* recheck policy now with rq lock held */
3887 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3888 		policy = oldpolicy = -1;
3889 		task_rq_unlock(rq, p, &flags);
3890 		goto recheck;
3891 	}
3892 
3893 	/*
3894 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3895 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3896 	 * is available.
3897 	 */
3898 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3899 		task_rq_unlock(rq, p, &flags);
3900 		return -EBUSY;
3901 	}
3902 
3903 	p->sched_reset_on_fork = reset_on_fork;
3904 	oldprio = p->prio;
3905 
3906 	if (pi) {
3907 		/*
3908 		 * Take priority boosted tasks into account. If the new
3909 		 * effective priority is unchanged, we just store the new
3910 		 * normal parameters and do not touch the scheduler class and
3911 		 * the runqueue. This will be done when the task deboost
3912 		 * itself.
3913 		 */
3914 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3915 		if (new_effective_prio == oldprio) {
3916 			__setscheduler_params(p, attr);
3917 			task_rq_unlock(rq, p, &flags);
3918 			return 0;
3919 		}
3920 	}
3921 
3922 	queued = task_on_rq_queued(p);
3923 	running = task_current(rq, p);
3924 	if (queued)
3925 		dequeue_task(rq, p, 0);
3926 	if (running)
3927 		put_prev_task(rq, p);
3928 
3929 	prev_class = p->sched_class;
3930 	__setscheduler(rq, p, attr, pi);
3931 
3932 	if (running)
3933 		p->sched_class->set_curr_task(rq);
3934 	if (queued) {
3935 		/*
3936 		 * We enqueue to tail when the priority of a task is
3937 		 * increased (user space view).
3938 		 */
3939 		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3940 	}
3941 
3942 	check_class_changed(rq, p, prev_class, oldprio);
3943 	preempt_disable(); /* avoid rq from going away on us */
3944 	task_rq_unlock(rq, p, &flags);
3945 
3946 	if (pi)
3947 		rt_mutex_adjust_pi(p);
3948 
3949 	/*
3950 	 * Run balance callbacks after we've adjusted the PI chain.
3951 	 */
3952 	balance_callback(rq);
3953 	preempt_enable();
3954 
3955 	return 0;
3956 }
3957 
3958 static int _sched_setscheduler(struct task_struct *p, int policy,
3959 			       const struct sched_param *param, bool check)
3960 {
3961 	struct sched_attr attr = {
3962 		.sched_policy   = policy,
3963 		.sched_priority = param->sched_priority,
3964 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3965 	};
3966 
3967 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3968 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3969 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3970 		policy &= ~SCHED_RESET_ON_FORK;
3971 		attr.sched_policy = policy;
3972 	}
3973 
3974 	return __sched_setscheduler(p, &attr, check, true);
3975 }
3976 /**
3977  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3978  * @p: the task in question.
3979  * @policy: new policy.
3980  * @param: structure containing the new RT priority.
3981  *
3982  * Return: 0 on success. An error code otherwise.
3983  *
3984  * NOTE that the task may be already dead.
3985  */
3986 int sched_setscheduler(struct task_struct *p, int policy,
3987 		       const struct sched_param *param)
3988 {
3989 	return _sched_setscheduler(p, policy, param, true);
3990 }
3991 EXPORT_SYMBOL_GPL(sched_setscheduler);
3992 
3993 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3994 {
3995 	return __sched_setscheduler(p, attr, true, true);
3996 }
3997 EXPORT_SYMBOL_GPL(sched_setattr);
3998 
3999 /**
4000  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4001  * @p: the task in question.
4002  * @policy: new policy.
4003  * @param: structure containing the new RT priority.
4004  *
4005  * Just like sched_setscheduler, only don't bother checking if the
4006  * current context has permission.  For example, this is needed in
4007  * stop_machine(): we create temporary high priority worker threads,
4008  * but our caller might not have that capability.
4009  *
4010  * Return: 0 on success. An error code otherwise.
4011  */
4012 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4013 			       const struct sched_param *param)
4014 {
4015 	return _sched_setscheduler(p, policy, param, false);
4016 }
4017 
4018 static int
4019 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4020 {
4021 	struct sched_param lparam;
4022 	struct task_struct *p;
4023 	int retval;
4024 
4025 	if (!param || pid < 0)
4026 		return -EINVAL;
4027 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4028 		return -EFAULT;
4029 
4030 	rcu_read_lock();
4031 	retval = -ESRCH;
4032 	p = find_process_by_pid(pid);
4033 	if (p != NULL)
4034 		retval = sched_setscheduler(p, policy, &lparam);
4035 	rcu_read_unlock();
4036 
4037 	return retval;
4038 }
4039 
4040 /*
4041  * Mimics kernel/events/core.c perf_copy_attr().
4042  */
4043 static int sched_copy_attr(struct sched_attr __user *uattr,
4044 			   struct sched_attr *attr)
4045 {
4046 	u32 size;
4047 	int ret;
4048 
4049 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4050 		return -EFAULT;
4051 
4052 	/*
4053 	 * zero the full structure, so that a short copy will be nice.
4054 	 */
4055 	memset(attr, 0, sizeof(*attr));
4056 
4057 	ret = get_user(size, &uattr->size);
4058 	if (ret)
4059 		return ret;
4060 
4061 	if (size > PAGE_SIZE)	/* silly large */
4062 		goto err_size;
4063 
4064 	if (!size)		/* abi compat */
4065 		size = SCHED_ATTR_SIZE_VER0;
4066 
4067 	if (size < SCHED_ATTR_SIZE_VER0)
4068 		goto err_size;
4069 
4070 	/*
4071 	 * If we're handed a bigger struct than we know of,
4072 	 * ensure all the unknown bits are 0 - i.e. new
4073 	 * user-space does not rely on any kernel feature
4074 	 * extensions we dont know about yet.
4075 	 */
4076 	if (size > sizeof(*attr)) {
4077 		unsigned char __user *addr;
4078 		unsigned char __user *end;
4079 		unsigned char val;
4080 
4081 		addr = (void __user *)uattr + sizeof(*attr);
4082 		end  = (void __user *)uattr + size;
4083 
4084 		for (; addr < end; addr++) {
4085 			ret = get_user(val, addr);
4086 			if (ret)
4087 				return ret;
4088 			if (val)
4089 				goto err_size;
4090 		}
4091 		size = sizeof(*attr);
4092 	}
4093 
4094 	ret = copy_from_user(attr, uattr, size);
4095 	if (ret)
4096 		return -EFAULT;
4097 
4098 	/*
4099 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4100 	 * to be strict and return an error on out-of-bounds values?
4101 	 */
4102 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4103 
4104 	return 0;
4105 
4106 err_size:
4107 	put_user(sizeof(*attr), &uattr->size);
4108 	return -E2BIG;
4109 }
4110 
4111 /**
4112  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4113  * @pid: the pid in question.
4114  * @policy: new policy.
4115  * @param: structure containing the new RT priority.
4116  *
4117  * Return: 0 on success. An error code otherwise.
4118  */
4119 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4120 		struct sched_param __user *, param)
4121 {
4122 	/* negative values for policy are not valid */
4123 	if (policy < 0)
4124 		return -EINVAL;
4125 
4126 	return do_sched_setscheduler(pid, policy, param);
4127 }
4128 
4129 /**
4130  * sys_sched_setparam - set/change the RT priority of a thread
4131  * @pid: the pid in question.
4132  * @param: structure containing the new RT priority.
4133  *
4134  * Return: 0 on success. An error code otherwise.
4135  */
4136 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4137 {
4138 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4139 }
4140 
4141 /**
4142  * sys_sched_setattr - same as above, but with extended sched_attr
4143  * @pid: the pid in question.
4144  * @uattr: structure containing the extended parameters.
4145  * @flags: for future extension.
4146  */
4147 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4148 			       unsigned int, flags)
4149 {
4150 	struct sched_attr attr;
4151 	struct task_struct *p;
4152 	int retval;
4153 
4154 	if (!uattr || pid < 0 || flags)
4155 		return -EINVAL;
4156 
4157 	retval = sched_copy_attr(uattr, &attr);
4158 	if (retval)
4159 		return retval;
4160 
4161 	if ((int)attr.sched_policy < 0)
4162 		return -EINVAL;
4163 
4164 	rcu_read_lock();
4165 	retval = -ESRCH;
4166 	p = find_process_by_pid(pid);
4167 	if (p != NULL)
4168 		retval = sched_setattr(p, &attr);
4169 	rcu_read_unlock();
4170 
4171 	return retval;
4172 }
4173 
4174 /**
4175  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4176  * @pid: the pid in question.
4177  *
4178  * Return: On success, the policy of the thread. Otherwise, a negative error
4179  * code.
4180  */
4181 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4182 {
4183 	struct task_struct *p;
4184 	int retval;
4185 
4186 	if (pid < 0)
4187 		return -EINVAL;
4188 
4189 	retval = -ESRCH;
4190 	rcu_read_lock();
4191 	p = find_process_by_pid(pid);
4192 	if (p) {
4193 		retval = security_task_getscheduler(p);
4194 		if (!retval)
4195 			retval = p->policy
4196 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4197 	}
4198 	rcu_read_unlock();
4199 	return retval;
4200 }
4201 
4202 /**
4203  * sys_sched_getparam - get the RT priority of a thread
4204  * @pid: the pid in question.
4205  * @param: structure containing the RT priority.
4206  *
4207  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4208  * code.
4209  */
4210 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4211 {
4212 	struct sched_param lp = { .sched_priority = 0 };
4213 	struct task_struct *p;
4214 	int retval;
4215 
4216 	if (!param || pid < 0)
4217 		return -EINVAL;
4218 
4219 	rcu_read_lock();
4220 	p = find_process_by_pid(pid);
4221 	retval = -ESRCH;
4222 	if (!p)
4223 		goto out_unlock;
4224 
4225 	retval = security_task_getscheduler(p);
4226 	if (retval)
4227 		goto out_unlock;
4228 
4229 	if (task_has_rt_policy(p))
4230 		lp.sched_priority = p->rt_priority;
4231 	rcu_read_unlock();
4232 
4233 	/*
4234 	 * This one might sleep, we cannot do it with a spinlock held ...
4235 	 */
4236 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4237 
4238 	return retval;
4239 
4240 out_unlock:
4241 	rcu_read_unlock();
4242 	return retval;
4243 }
4244 
4245 static int sched_read_attr(struct sched_attr __user *uattr,
4246 			   struct sched_attr *attr,
4247 			   unsigned int usize)
4248 {
4249 	int ret;
4250 
4251 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4252 		return -EFAULT;
4253 
4254 	/*
4255 	 * If we're handed a smaller struct than we know of,
4256 	 * ensure all the unknown bits are 0 - i.e. old
4257 	 * user-space does not get uncomplete information.
4258 	 */
4259 	if (usize < sizeof(*attr)) {
4260 		unsigned char *addr;
4261 		unsigned char *end;
4262 
4263 		addr = (void *)attr + usize;
4264 		end  = (void *)attr + sizeof(*attr);
4265 
4266 		for (; addr < end; addr++) {
4267 			if (*addr)
4268 				return -EFBIG;
4269 		}
4270 
4271 		attr->size = usize;
4272 	}
4273 
4274 	ret = copy_to_user(uattr, attr, attr->size);
4275 	if (ret)
4276 		return -EFAULT;
4277 
4278 	return 0;
4279 }
4280 
4281 /**
4282  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4283  * @pid: the pid in question.
4284  * @uattr: structure containing the extended parameters.
4285  * @size: sizeof(attr) for fwd/bwd comp.
4286  * @flags: for future extension.
4287  */
4288 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4289 		unsigned int, size, unsigned int, flags)
4290 {
4291 	struct sched_attr attr = {
4292 		.size = sizeof(struct sched_attr),
4293 	};
4294 	struct task_struct *p;
4295 	int retval;
4296 
4297 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4298 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4299 		return -EINVAL;
4300 
4301 	rcu_read_lock();
4302 	p = find_process_by_pid(pid);
4303 	retval = -ESRCH;
4304 	if (!p)
4305 		goto out_unlock;
4306 
4307 	retval = security_task_getscheduler(p);
4308 	if (retval)
4309 		goto out_unlock;
4310 
4311 	attr.sched_policy = p->policy;
4312 	if (p->sched_reset_on_fork)
4313 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4314 	if (task_has_dl_policy(p))
4315 		__getparam_dl(p, &attr);
4316 	else if (task_has_rt_policy(p))
4317 		attr.sched_priority = p->rt_priority;
4318 	else
4319 		attr.sched_nice = task_nice(p);
4320 
4321 	rcu_read_unlock();
4322 
4323 	retval = sched_read_attr(uattr, &attr, size);
4324 	return retval;
4325 
4326 out_unlock:
4327 	rcu_read_unlock();
4328 	return retval;
4329 }
4330 
4331 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4332 {
4333 	cpumask_var_t cpus_allowed, new_mask;
4334 	struct task_struct *p;
4335 	int retval;
4336 
4337 	rcu_read_lock();
4338 
4339 	p = find_process_by_pid(pid);
4340 	if (!p) {
4341 		rcu_read_unlock();
4342 		return -ESRCH;
4343 	}
4344 
4345 	/* Prevent p going away */
4346 	get_task_struct(p);
4347 	rcu_read_unlock();
4348 
4349 	if (p->flags & PF_NO_SETAFFINITY) {
4350 		retval = -EINVAL;
4351 		goto out_put_task;
4352 	}
4353 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4354 		retval = -ENOMEM;
4355 		goto out_put_task;
4356 	}
4357 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4358 		retval = -ENOMEM;
4359 		goto out_free_cpus_allowed;
4360 	}
4361 	retval = -EPERM;
4362 	if (!check_same_owner(p)) {
4363 		rcu_read_lock();
4364 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4365 			rcu_read_unlock();
4366 			goto out_free_new_mask;
4367 		}
4368 		rcu_read_unlock();
4369 	}
4370 
4371 	retval = security_task_setscheduler(p);
4372 	if (retval)
4373 		goto out_free_new_mask;
4374 
4375 
4376 	cpuset_cpus_allowed(p, cpus_allowed);
4377 	cpumask_and(new_mask, in_mask, cpus_allowed);
4378 
4379 	/*
4380 	 * Since bandwidth control happens on root_domain basis,
4381 	 * if admission test is enabled, we only admit -deadline
4382 	 * tasks allowed to run on all the CPUs in the task's
4383 	 * root_domain.
4384 	 */
4385 #ifdef CONFIG_SMP
4386 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4387 		rcu_read_lock();
4388 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4389 			retval = -EBUSY;
4390 			rcu_read_unlock();
4391 			goto out_free_new_mask;
4392 		}
4393 		rcu_read_unlock();
4394 	}
4395 #endif
4396 again:
4397 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4398 
4399 	if (!retval) {
4400 		cpuset_cpus_allowed(p, cpus_allowed);
4401 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4402 			/*
4403 			 * We must have raced with a concurrent cpuset
4404 			 * update. Just reset the cpus_allowed to the
4405 			 * cpuset's cpus_allowed
4406 			 */
4407 			cpumask_copy(new_mask, cpus_allowed);
4408 			goto again;
4409 		}
4410 	}
4411 out_free_new_mask:
4412 	free_cpumask_var(new_mask);
4413 out_free_cpus_allowed:
4414 	free_cpumask_var(cpus_allowed);
4415 out_put_task:
4416 	put_task_struct(p);
4417 	return retval;
4418 }
4419 
4420 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4421 			     struct cpumask *new_mask)
4422 {
4423 	if (len < cpumask_size())
4424 		cpumask_clear(new_mask);
4425 	else if (len > cpumask_size())
4426 		len = cpumask_size();
4427 
4428 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4429 }
4430 
4431 /**
4432  * sys_sched_setaffinity - set the cpu affinity of a process
4433  * @pid: pid of the process
4434  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4435  * @user_mask_ptr: user-space pointer to the new cpu mask
4436  *
4437  * Return: 0 on success. An error code otherwise.
4438  */
4439 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4440 		unsigned long __user *, user_mask_ptr)
4441 {
4442 	cpumask_var_t new_mask;
4443 	int retval;
4444 
4445 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4446 		return -ENOMEM;
4447 
4448 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4449 	if (retval == 0)
4450 		retval = sched_setaffinity(pid, new_mask);
4451 	free_cpumask_var(new_mask);
4452 	return retval;
4453 }
4454 
4455 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4456 {
4457 	struct task_struct *p;
4458 	unsigned long flags;
4459 	int retval;
4460 
4461 	rcu_read_lock();
4462 
4463 	retval = -ESRCH;
4464 	p = find_process_by_pid(pid);
4465 	if (!p)
4466 		goto out_unlock;
4467 
4468 	retval = security_task_getscheduler(p);
4469 	if (retval)
4470 		goto out_unlock;
4471 
4472 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4473 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4474 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4475 
4476 out_unlock:
4477 	rcu_read_unlock();
4478 
4479 	return retval;
4480 }
4481 
4482 /**
4483  * sys_sched_getaffinity - get the cpu affinity of a process
4484  * @pid: pid of the process
4485  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4486  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4487  *
4488  * Return: 0 on success. An error code otherwise.
4489  */
4490 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4491 		unsigned long __user *, user_mask_ptr)
4492 {
4493 	int ret;
4494 	cpumask_var_t mask;
4495 
4496 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4497 		return -EINVAL;
4498 	if (len & (sizeof(unsigned long)-1))
4499 		return -EINVAL;
4500 
4501 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4502 		return -ENOMEM;
4503 
4504 	ret = sched_getaffinity(pid, mask);
4505 	if (ret == 0) {
4506 		size_t retlen = min_t(size_t, len, cpumask_size());
4507 
4508 		if (copy_to_user(user_mask_ptr, mask, retlen))
4509 			ret = -EFAULT;
4510 		else
4511 			ret = retlen;
4512 	}
4513 	free_cpumask_var(mask);
4514 
4515 	return ret;
4516 }
4517 
4518 /**
4519  * sys_sched_yield - yield the current processor to other threads.
4520  *
4521  * This function yields the current CPU to other tasks. If there are no
4522  * other threads running on this CPU then this function will return.
4523  *
4524  * Return: 0.
4525  */
4526 SYSCALL_DEFINE0(sched_yield)
4527 {
4528 	struct rq *rq = this_rq_lock();
4529 
4530 	schedstat_inc(rq, yld_count);
4531 	current->sched_class->yield_task(rq);
4532 
4533 	/*
4534 	 * Since we are going to call schedule() anyway, there's
4535 	 * no need to preempt or enable interrupts:
4536 	 */
4537 	__release(rq->lock);
4538 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4539 	do_raw_spin_unlock(&rq->lock);
4540 	sched_preempt_enable_no_resched();
4541 
4542 	schedule();
4543 
4544 	return 0;
4545 }
4546 
4547 int __sched _cond_resched(void)
4548 {
4549 	if (should_resched(0)) {
4550 		preempt_schedule_common();
4551 		return 1;
4552 	}
4553 	return 0;
4554 }
4555 EXPORT_SYMBOL(_cond_resched);
4556 
4557 /*
4558  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4559  * call schedule, and on return reacquire the lock.
4560  *
4561  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4562  * operations here to prevent schedule() from being called twice (once via
4563  * spin_unlock(), once by hand).
4564  */
4565 int __cond_resched_lock(spinlock_t *lock)
4566 {
4567 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4568 	int ret = 0;
4569 
4570 	lockdep_assert_held(lock);
4571 
4572 	if (spin_needbreak(lock) || resched) {
4573 		spin_unlock(lock);
4574 		if (resched)
4575 			preempt_schedule_common();
4576 		else
4577 			cpu_relax();
4578 		ret = 1;
4579 		spin_lock(lock);
4580 	}
4581 	return ret;
4582 }
4583 EXPORT_SYMBOL(__cond_resched_lock);
4584 
4585 int __sched __cond_resched_softirq(void)
4586 {
4587 	BUG_ON(!in_softirq());
4588 
4589 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4590 		local_bh_enable();
4591 		preempt_schedule_common();
4592 		local_bh_disable();
4593 		return 1;
4594 	}
4595 	return 0;
4596 }
4597 EXPORT_SYMBOL(__cond_resched_softirq);
4598 
4599 /**
4600  * yield - yield the current processor to other threads.
4601  *
4602  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4603  *
4604  * The scheduler is at all times free to pick the calling task as the most
4605  * eligible task to run, if removing the yield() call from your code breaks
4606  * it, its already broken.
4607  *
4608  * Typical broken usage is:
4609  *
4610  * while (!event)
4611  * 	yield();
4612  *
4613  * where one assumes that yield() will let 'the other' process run that will
4614  * make event true. If the current task is a SCHED_FIFO task that will never
4615  * happen. Never use yield() as a progress guarantee!!
4616  *
4617  * If you want to use yield() to wait for something, use wait_event().
4618  * If you want to use yield() to be 'nice' for others, use cond_resched().
4619  * If you still want to use yield(), do not!
4620  */
4621 void __sched yield(void)
4622 {
4623 	set_current_state(TASK_RUNNING);
4624 	sys_sched_yield();
4625 }
4626 EXPORT_SYMBOL(yield);
4627 
4628 /**
4629  * yield_to - yield the current processor to another thread in
4630  * your thread group, or accelerate that thread toward the
4631  * processor it's on.
4632  * @p: target task
4633  * @preempt: whether task preemption is allowed or not
4634  *
4635  * It's the caller's job to ensure that the target task struct
4636  * can't go away on us before we can do any checks.
4637  *
4638  * Return:
4639  *	true (>0) if we indeed boosted the target task.
4640  *	false (0) if we failed to boost the target.
4641  *	-ESRCH if there's no task to yield to.
4642  */
4643 int __sched yield_to(struct task_struct *p, bool preempt)
4644 {
4645 	struct task_struct *curr = current;
4646 	struct rq *rq, *p_rq;
4647 	unsigned long flags;
4648 	int yielded = 0;
4649 
4650 	local_irq_save(flags);
4651 	rq = this_rq();
4652 
4653 again:
4654 	p_rq = task_rq(p);
4655 	/*
4656 	 * If we're the only runnable task on the rq and target rq also
4657 	 * has only one task, there's absolutely no point in yielding.
4658 	 */
4659 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4660 		yielded = -ESRCH;
4661 		goto out_irq;
4662 	}
4663 
4664 	double_rq_lock(rq, p_rq);
4665 	if (task_rq(p) != p_rq) {
4666 		double_rq_unlock(rq, p_rq);
4667 		goto again;
4668 	}
4669 
4670 	if (!curr->sched_class->yield_to_task)
4671 		goto out_unlock;
4672 
4673 	if (curr->sched_class != p->sched_class)
4674 		goto out_unlock;
4675 
4676 	if (task_running(p_rq, p) || p->state)
4677 		goto out_unlock;
4678 
4679 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4680 	if (yielded) {
4681 		schedstat_inc(rq, yld_count);
4682 		/*
4683 		 * Make p's CPU reschedule; pick_next_entity takes care of
4684 		 * fairness.
4685 		 */
4686 		if (preempt && rq != p_rq)
4687 			resched_curr(p_rq);
4688 	}
4689 
4690 out_unlock:
4691 	double_rq_unlock(rq, p_rq);
4692 out_irq:
4693 	local_irq_restore(flags);
4694 
4695 	if (yielded > 0)
4696 		schedule();
4697 
4698 	return yielded;
4699 }
4700 EXPORT_SYMBOL_GPL(yield_to);
4701 
4702 /*
4703  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4704  * that process accounting knows that this is a task in IO wait state.
4705  */
4706 long __sched io_schedule_timeout(long timeout)
4707 {
4708 	int old_iowait = current->in_iowait;
4709 	struct rq *rq;
4710 	long ret;
4711 
4712 	current->in_iowait = 1;
4713 	blk_schedule_flush_plug(current);
4714 
4715 	delayacct_blkio_start();
4716 	rq = raw_rq();
4717 	atomic_inc(&rq->nr_iowait);
4718 	ret = schedule_timeout(timeout);
4719 	current->in_iowait = old_iowait;
4720 	atomic_dec(&rq->nr_iowait);
4721 	delayacct_blkio_end();
4722 
4723 	return ret;
4724 }
4725 EXPORT_SYMBOL(io_schedule_timeout);
4726 
4727 /**
4728  * sys_sched_get_priority_max - return maximum RT priority.
4729  * @policy: scheduling class.
4730  *
4731  * Return: On success, this syscall returns the maximum
4732  * rt_priority that can be used by a given scheduling class.
4733  * On failure, a negative error code is returned.
4734  */
4735 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4736 {
4737 	int ret = -EINVAL;
4738 
4739 	switch (policy) {
4740 	case SCHED_FIFO:
4741 	case SCHED_RR:
4742 		ret = MAX_USER_RT_PRIO-1;
4743 		break;
4744 	case SCHED_DEADLINE:
4745 	case SCHED_NORMAL:
4746 	case SCHED_BATCH:
4747 	case SCHED_IDLE:
4748 		ret = 0;
4749 		break;
4750 	}
4751 	return ret;
4752 }
4753 
4754 /**
4755  * sys_sched_get_priority_min - return minimum RT priority.
4756  * @policy: scheduling class.
4757  *
4758  * Return: On success, this syscall returns the minimum
4759  * rt_priority that can be used by a given scheduling class.
4760  * On failure, a negative error code is returned.
4761  */
4762 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4763 {
4764 	int ret = -EINVAL;
4765 
4766 	switch (policy) {
4767 	case SCHED_FIFO:
4768 	case SCHED_RR:
4769 		ret = 1;
4770 		break;
4771 	case SCHED_DEADLINE:
4772 	case SCHED_NORMAL:
4773 	case SCHED_BATCH:
4774 	case SCHED_IDLE:
4775 		ret = 0;
4776 	}
4777 	return ret;
4778 }
4779 
4780 /**
4781  * sys_sched_rr_get_interval - return the default timeslice of a process.
4782  * @pid: pid of the process.
4783  * @interval: userspace pointer to the timeslice value.
4784  *
4785  * this syscall writes the default timeslice value of a given process
4786  * into the user-space timespec buffer. A value of '0' means infinity.
4787  *
4788  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4789  * an error code.
4790  */
4791 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4792 		struct timespec __user *, interval)
4793 {
4794 	struct task_struct *p;
4795 	unsigned int time_slice;
4796 	unsigned long flags;
4797 	struct rq *rq;
4798 	int retval;
4799 	struct timespec t;
4800 
4801 	if (pid < 0)
4802 		return -EINVAL;
4803 
4804 	retval = -ESRCH;
4805 	rcu_read_lock();
4806 	p = find_process_by_pid(pid);
4807 	if (!p)
4808 		goto out_unlock;
4809 
4810 	retval = security_task_getscheduler(p);
4811 	if (retval)
4812 		goto out_unlock;
4813 
4814 	rq = task_rq_lock(p, &flags);
4815 	time_slice = 0;
4816 	if (p->sched_class->get_rr_interval)
4817 		time_slice = p->sched_class->get_rr_interval(rq, p);
4818 	task_rq_unlock(rq, p, &flags);
4819 
4820 	rcu_read_unlock();
4821 	jiffies_to_timespec(time_slice, &t);
4822 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4823 	return retval;
4824 
4825 out_unlock:
4826 	rcu_read_unlock();
4827 	return retval;
4828 }
4829 
4830 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4831 
4832 void sched_show_task(struct task_struct *p)
4833 {
4834 	unsigned long free = 0;
4835 	int ppid;
4836 	unsigned long state = p->state;
4837 
4838 	if (state)
4839 		state = __ffs(state) + 1;
4840 	printk(KERN_INFO "%-15.15s %c", p->comm,
4841 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4842 #if BITS_PER_LONG == 32
4843 	if (state == TASK_RUNNING)
4844 		printk(KERN_CONT " running  ");
4845 	else
4846 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4847 #else
4848 	if (state == TASK_RUNNING)
4849 		printk(KERN_CONT "  running task    ");
4850 	else
4851 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4852 #endif
4853 #ifdef CONFIG_DEBUG_STACK_USAGE
4854 	free = stack_not_used(p);
4855 #endif
4856 	ppid = 0;
4857 	rcu_read_lock();
4858 	if (pid_alive(p))
4859 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4860 	rcu_read_unlock();
4861 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4862 		task_pid_nr(p), ppid,
4863 		(unsigned long)task_thread_info(p)->flags);
4864 
4865 	print_worker_info(KERN_INFO, p);
4866 	show_stack(p, NULL);
4867 }
4868 
4869 void show_state_filter(unsigned long state_filter)
4870 {
4871 	struct task_struct *g, *p;
4872 
4873 #if BITS_PER_LONG == 32
4874 	printk(KERN_INFO
4875 		"  task                PC stack   pid father\n");
4876 #else
4877 	printk(KERN_INFO
4878 		"  task                        PC stack   pid father\n");
4879 #endif
4880 	rcu_read_lock();
4881 	for_each_process_thread(g, p) {
4882 		/*
4883 		 * reset the NMI-timeout, listing all files on a slow
4884 		 * console might take a lot of time:
4885 		 */
4886 		touch_nmi_watchdog();
4887 		if (!state_filter || (p->state & state_filter))
4888 			sched_show_task(p);
4889 	}
4890 
4891 	touch_all_softlockup_watchdogs();
4892 
4893 #ifdef CONFIG_SCHED_DEBUG
4894 	sysrq_sched_debug_show();
4895 #endif
4896 	rcu_read_unlock();
4897 	/*
4898 	 * Only show locks if all tasks are dumped:
4899 	 */
4900 	if (!state_filter)
4901 		debug_show_all_locks();
4902 }
4903 
4904 void init_idle_bootup_task(struct task_struct *idle)
4905 {
4906 	idle->sched_class = &idle_sched_class;
4907 }
4908 
4909 /**
4910  * init_idle - set up an idle thread for a given CPU
4911  * @idle: task in question
4912  * @cpu: cpu the idle task belongs to
4913  *
4914  * NOTE: this function does not set the idle thread's NEED_RESCHED
4915  * flag, to make booting more robust.
4916  */
4917 void init_idle(struct task_struct *idle, int cpu)
4918 {
4919 	struct rq *rq = cpu_rq(cpu);
4920 	unsigned long flags;
4921 
4922 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
4923 	raw_spin_lock(&rq->lock);
4924 
4925 	__sched_fork(0, idle);
4926 	idle->state = TASK_RUNNING;
4927 	idle->se.exec_start = sched_clock();
4928 
4929 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4930 	/*
4931 	 * We're having a chicken and egg problem, even though we are
4932 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4933 	 * lockdep check in task_group() will fail.
4934 	 *
4935 	 * Similar case to sched_fork(). / Alternatively we could
4936 	 * use task_rq_lock() here and obtain the other rq->lock.
4937 	 *
4938 	 * Silence PROVE_RCU
4939 	 */
4940 	rcu_read_lock();
4941 	__set_task_cpu(idle, cpu);
4942 	rcu_read_unlock();
4943 
4944 	rq->curr = rq->idle = idle;
4945 	idle->on_rq = TASK_ON_RQ_QUEUED;
4946 #if defined(CONFIG_SMP)
4947 	idle->on_cpu = 1;
4948 #endif
4949 	raw_spin_unlock(&rq->lock);
4950 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4951 
4952 	/* Set the preempt count _outside_ the spinlocks! */
4953 	init_idle_preempt_count(idle, cpu);
4954 
4955 	/*
4956 	 * The idle tasks have their own, simple scheduling class:
4957 	 */
4958 	idle->sched_class = &idle_sched_class;
4959 	ftrace_graph_init_idle_task(idle, cpu);
4960 	vtime_init_idle(idle, cpu);
4961 #if defined(CONFIG_SMP)
4962 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4963 #endif
4964 }
4965 
4966 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4967 			      const struct cpumask *trial)
4968 {
4969 	int ret = 1, trial_cpus;
4970 	struct dl_bw *cur_dl_b;
4971 	unsigned long flags;
4972 
4973 	if (!cpumask_weight(cur))
4974 		return ret;
4975 
4976 	rcu_read_lock_sched();
4977 	cur_dl_b = dl_bw_of(cpumask_any(cur));
4978 	trial_cpus = cpumask_weight(trial);
4979 
4980 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4981 	if (cur_dl_b->bw != -1 &&
4982 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4983 		ret = 0;
4984 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4985 	rcu_read_unlock_sched();
4986 
4987 	return ret;
4988 }
4989 
4990 int task_can_attach(struct task_struct *p,
4991 		    const struct cpumask *cs_cpus_allowed)
4992 {
4993 	int ret = 0;
4994 
4995 	/*
4996 	 * Kthreads which disallow setaffinity shouldn't be moved
4997 	 * to a new cpuset; we don't want to change their cpu
4998 	 * affinity and isolating such threads by their set of
4999 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5000 	 * applicable for such threads.  This prevents checking for
5001 	 * success of set_cpus_allowed_ptr() on all attached tasks
5002 	 * before cpus_allowed may be changed.
5003 	 */
5004 	if (p->flags & PF_NO_SETAFFINITY) {
5005 		ret = -EINVAL;
5006 		goto out;
5007 	}
5008 
5009 #ifdef CONFIG_SMP
5010 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5011 					      cs_cpus_allowed)) {
5012 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5013 							cs_cpus_allowed);
5014 		struct dl_bw *dl_b;
5015 		bool overflow;
5016 		int cpus;
5017 		unsigned long flags;
5018 
5019 		rcu_read_lock_sched();
5020 		dl_b = dl_bw_of(dest_cpu);
5021 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5022 		cpus = dl_bw_cpus(dest_cpu);
5023 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5024 		if (overflow)
5025 			ret = -EBUSY;
5026 		else {
5027 			/*
5028 			 * We reserve space for this task in the destination
5029 			 * root_domain, as we can't fail after this point.
5030 			 * We will free resources in the source root_domain
5031 			 * later on (see set_cpus_allowed_dl()).
5032 			 */
5033 			__dl_add(dl_b, p->dl.dl_bw);
5034 		}
5035 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5036 		rcu_read_unlock_sched();
5037 
5038 	}
5039 #endif
5040 out:
5041 	return ret;
5042 }
5043 
5044 #ifdef CONFIG_SMP
5045 
5046 #ifdef CONFIG_NUMA_BALANCING
5047 /* Migrate current task p to target_cpu */
5048 int migrate_task_to(struct task_struct *p, int target_cpu)
5049 {
5050 	struct migration_arg arg = { p, target_cpu };
5051 	int curr_cpu = task_cpu(p);
5052 
5053 	if (curr_cpu == target_cpu)
5054 		return 0;
5055 
5056 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5057 		return -EINVAL;
5058 
5059 	/* TODO: This is not properly updating schedstats */
5060 
5061 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5062 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5063 }
5064 
5065 /*
5066  * Requeue a task on a given node and accurately track the number of NUMA
5067  * tasks on the runqueues
5068  */
5069 void sched_setnuma(struct task_struct *p, int nid)
5070 {
5071 	struct rq *rq;
5072 	unsigned long flags;
5073 	bool queued, running;
5074 
5075 	rq = task_rq_lock(p, &flags);
5076 	queued = task_on_rq_queued(p);
5077 	running = task_current(rq, p);
5078 
5079 	if (queued)
5080 		dequeue_task(rq, p, 0);
5081 	if (running)
5082 		put_prev_task(rq, p);
5083 
5084 	p->numa_preferred_nid = nid;
5085 
5086 	if (running)
5087 		p->sched_class->set_curr_task(rq);
5088 	if (queued)
5089 		enqueue_task(rq, p, 0);
5090 	task_rq_unlock(rq, p, &flags);
5091 }
5092 #endif /* CONFIG_NUMA_BALANCING */
5093 
5094 #ifdef CONFIG_HOTPLUG_CPU
5095 /*
5096  * Ensures that the idle task is using init_mm right before its cpu goes
5097  * offline.
5098  */
5099 void idle_task_exit(void)
5100 {
5101 	struct mm_struct *mm = current->active_mm;
5102 
5103 	BUG_ON(cpu_online(smp_processor_id()));
5104 
5105 	if (mm != &init_mm) {
5106 		switch_mm(mm, &init_mm, current);
5107 		finish_arch_post_lock_switch();
5108 	}
5109 	mmdrop(mm);
5110 }
5111 
5112 /*
5113  * Since this CPU is going 'away' for a while, fold any nr_active delta
5114  * we might have. Assumes we're called after migrate_tasks() so that the
5115  * nr_active count is stable.
5116  *
5117  * Also see the comment "Global load-average calculations".
5118  */
5119 static void calc_load_migrate(struct rq *rq)
5120 {
5121 	long delta = calc_load_fold_active(rq);
5122 	if (delta)
5123 		atomic_long_add(delta, &calc_load_tasks);
5124 }
5125 
5126 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5127 {
5128 }
5129 
5130 static const struct sched_class fake_sched_class = {
5131 	.put_prev_task = put_prev_task_fake,
5132 };
5133 
5134 static struct task_struct fake_task = {
5135 	/*
5136 	 * Avoid pull_{rt,dl}_task()
5137 	 */
5138 	.prio = MAX_PRIO + 1,
5139 	.sched_class = &fake_sched_class,
5140 };
5141 
5142 /*
5143  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5144  * try_to_wake_up()->select_task_rq().
5145  *
5146  * Called with rq->lock held even though we'er in stop_machine() and
5147  * there's no concurrency possible, we hold the required locks anyway
5148  * because of lock validation efforts.
5149  */
5150 static void migrate_tasks(struct rq *dead_rq)
5151 {
5152 	struct rq *rq = dead_rq;
5153 	struct task_struct *next, *stop = rq->stop;
5154 	int dest_cpu;
5155 
5156 	/*
5157 	 * Fudge the rq selection such that the below task selection loop
5158 	 * doesn't get stuck on the currently eligible stop task.
5159 	 *
5160 	 * We're currently inside stop_machine() and the rq is either stuck
5161 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5162 	 * either way we should never end up calling schedule() until we're
5163 	 * done here.
5164 	 */
5165 	rq->stop = NULL;
5166 
5167 	/*
5168 	 * put_prev_task() and pick_next_task() sched
5169 	 * class method both need to have an up-to-date
5170 	 * value of rq->clock[_task]
5171 	 */
5172 	update_rq_clock(rq);
5173 
5174 	for (;;) {
5175 		/*
5176 		 * There's this thread running, bail when that's the only
5177 		 * remaining thread.
5178 		 */
5179 		if (rq->nr_running == 1)
5180 			break;
5181 
5182 		/*
5183 		 * Ensure rq->lock covers the entire task selection
5184 		 * until the migration.
5185 		 */
5186 		lockdep_pin_lock(&rq->lock);
5187 		next = pick_next_task(rq, &fake_task);
5188 		BUG_ON(!next);
5189 		next->sched_class->put_prev_task(rq, next);
5190 
5191 		/* Find suitable destination for @next, with force if needed. */
5192 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5193 
5194 		lockdep_unpin_lock(&rq->lock);
5195 		rq = __migrate_task(rq, next, dest_cpu);
5196 		if (rq != dead_rq) {
5197 			raw_spin_unlock(&rq->lock);
5198 			rq = dead_rq;
5199 			raw_spin_lock(&rq->lock);
5200 		}
5201 	}
5202 
5203 	rq->stop = stop;
5204 }
5205 #endif /* CONFIG_HOTPLUG_CPU */
5206 
5207 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5208 
5209 static struct ctl_table sd_ctl_dir[] = {
5210 	{
5211 		.procname	= "sched_domain",
5212 		.mode		= 0555,
5213 	},
5214 	{}
5215 };
5216 
5217 static struct ctl_table sd_ctl_root[] = {
5218 	{
5219 		.procname	= "kernel",
5220 		.mode		= 0555,
5221 		.child		= sd_ctl_dir,
5222 	},
5223 	{}
5224 };
5225 
5226 static struct ctl_table *sd_alloc_ctl_entry(int n)
5227 {
5228 	struct ctl_table *entry =
5229 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5230 
5231 	return entry;
5232 }
5233 
5234 static void sd_free_ctl_entry(struct ctl_table **tablep)
5235 {
5236 	struct ctl_table *entry;
5237 
5238 	/*
5239 	 * In the intermediate directories, both the child directory and
5240 	 * procname are dynamically allocated and could fail but the mode
5241 	 * will always be set. In the lowest directory the names are
5242 	 * static strings and all have proc handlers.
5243 	 */
5244 	for (entry = *tablep; entry->mode; entry++) {
5245 		if (entry->child)
5246 			sd_free_ctl_entry(&entry->child);
5247 		if (entry->proc_handler == NULL)
5248 			kfree(entry->procname);
5249 	}
5250 
5251 	kfree(*tablep);
5252 	*tablep = NULL;
5253 }
5254 
5255 static int min_load_idx = 0;
5256 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5257 
5258 static void
5259 set_table_entry(struct ctl_table *entry,
5260 		const char *procname, void *data, int maxlen,
5261 		umode_t mode, proc_handler *proc_handler,
5262 		bool load_idx)
5263 {
5264 	entry->procname = procname;
5265 	entry->data = data;
5266 	entry->maxlen = maxlen;
5267 	entry->mode = mode;
5268 	entry->proc_handler = proc_handler;
5269 
5270 	if (load_idx) {
5271 		entry->extra1 = &min_load_idx;
5272 		entry->extra2 = &max_load_idx;
5273 	}
5274 }
5275 
5276 static struct ctl_table *
5277 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5278 {
5279 	struct ctl_table *table = sd_alloc_ctl_entry(14);
5280 
5281 	if (table == NULL)
5282 		return NULL;
5283 
5284 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5285 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5286 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5287 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5288 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5289 		sizeof(int), 0644, proc_dointvec_minmax, true);
5290 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5291 		sizeof(int), 0644, proc_dointvec_minmax, true);
5292 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5293 		sizeof(int), 0644, proc_dointvec_minmax, true);
5294 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5295 		sizeof(int), 0644, proc_dointvec_minmax, true);
5296 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5297 		sizeof(int), 0644, proc_dointvec_minmax, true);
5298 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5299 		sizeof(int), 0644, proc_dointvec_minmax, false);
5300 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5301 		sizeof(int), 0644, proc_dointvec_minmax, false);
5302 	set_table_entry(&table[9], "cache_nice_tries",
5303 		&sd->cache_nice_tries,
5304 		sizeof(int), 0644, proc_dointvec_minmax, false);
5305 	set_table_entry(&table[10], "flags", &sd->flags,
5306 		sizeof(int), 0644, proc_dointvec_minmax, false);
5307 	set_table_entry(&table[11], "max_newidle_lb_cost",
5308 		&sd->max_newidle_lb_cost,
5309 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5310 	set_table_entry(&table[12], "name", sd->name,
5311 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5312 	/* &table[13] is terminator */
5313 
5314 	return table;
5315 }
5316 
5317 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5318 {
5319 	struct ctl_table *entry, *table;
5320 	struct sched_domain *sd;
5321 	int domain_num = 0, i;
5322 	char buf[32];
5323 
5324 	for_each_domain(cpu, sd)
5325 		domain_num++;
5326 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5327 	if (table == NULL)
5328 		return NULL;
5329 
5330 	i = 0;
5331 	for_each_domain(cpu, sd) {
5332 		snprintf(buf, 32, "domain%d", i);
5333 		entry->procname = kstrdup(buf, GFP_KERNEL);
5334 		entry->mode = 0555;
5335 		entry->child = sd_alloc_ctl_domain_table(sd);
5336 		entry++;
5337 		i++;
5338 	}
5339 	return table;
5340 }
5341 
5342 static struct ctl_table_header *sd_sysctl_header;
5343 static void register_sched_domain_sysctl(void)
5344 {
5345 	int i, cpu_num = num_possible_cpus();
5346 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5347 	char buf[32];
5348 
5349 	WARN_ON(sd_ctl_dir[0].child);
5350 	sd_ctl_dir[0].child = entry;
5351 
5352 	if (entry == NULL)
5353 		return;
5354 
5355 	for_each_possible_cpu(i) {
5356 		snprintf(buf, 32, "cpu%d", i);
5357 		entry->procname = kstrdup(buf, GFP_KERNEL);
5358 		entry->mode = 0555;
5359 		entry->child = sd_alloc_ctl_cpu_table(i);
5360 		entry++;
5361 	}
5362 
5363 	WARN_ON(sd_sysctl_header);
5364 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5365 }
5366 
5367 /* may be called multiple times per register */
5368 static void unregister_sched_domain_sysctl(void)
5369 {
5370 	unregister_sysctl_table(sd_sysctl_header);
5371 	sd_sysctl_header = NULL;
5372 	if (sd_ctl_dir[0].child)
5373 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5374 }
5375 #else
5376 static void register_sched_domain_sysctl(void)
5377 {
5378 }
5379 static void unregister_sched_domain_sysctl(void)
5380 {
5381 }
5382 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5383 
5384 static void set_rq_online(struct rq *rq)
5385 {
5386 	if (!rq->online) {
5387 		const struct sched_class *class;
5388 
5389 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5390 		rq->online = 1;
5391 
5392 		for_each_class(class) {
5393 			if (class->rq_online)
5394 				class->rq_online(rq);
5395 		}
5396 	}
5397 }
5398 
5399 static void set_rq_offline(struct rq *rq)
5400 {
5401 	if (rq->online) {
5402 		const struct sched_class *class;
5403 
5404 		for_each_class(class) {
5405 			if (class->rq_offline)
5406 				class->rq_offline(rq);
5407 		}
5408 
5409 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5410 		rq->online = 0;
5411 	}
5412 }
5413 
5414 /*
5415  * migration_call - callback that gets triggered when a CPU is added.
5416  * Here we can start up the necessary migration thread for the new CPU.
5417  */
5418 static int
5419 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5420 {
5421 	int cpu = (long)hcpu;
5422 	unsigned long flags;
5423 	struct rq *rq = cpu_rq(cpu);
5424 
5425 	switch (action & ~CPU_TASKS_FROZEN) {
5426 
5427 	case CPU_UP_PREPARE:
5428 		rq->calc_load_update = calc_load_update;
5429 		break;
5430 
5431 	case CPU_ONLINE:
5432 		/* Update our root-domain */
5433 		raw_spin_lock_irqsave(&rq->lock, flags);
5434 		if (rq->rd) {
5435 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5436 
5437 			set_rq_online(rq);
5438 		}
5439 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5440 		break;
5441 
5442 #ifdef CONFIG_HOTPLUG_CPU
5443 	case CPU_DYING:
5444 		sched_ttwu_pending();
5445 		/* Update our root-domain */
5446 		raw_spin_lock_irqsave(&rq->lock, flags);
5447 		if (rq->rd) {
5448 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5449 			set_rq_offline(rq);
5450 		}
5451 		migrate_tasks(rq);
5452 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5453 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5454 		break;
5455 
5456 	case CPU_DEAD:
5457 		calc_load_migrate(rq);
5458 		break;
5459 #endif
5460 	}
5461 
5462 	update_max_interval();
5463 
5464 	return NOTIFY_OK;
5465 }
5466 
5467 /*
5468  * Register at high priority so that task migration (migrate_all_tasks)
5469  * happens before everything else.  This has to be lower priority than
5470  * the notifier in the perf_event subsystem, though.
5471  */
5472 static struct notifier_block migration_notifier = {
5473 	.notifier_call = migration_call,
5474 	.priority = CPU_PRI_MIGRATION,
5475 };
5476 
5477 static void set_cpu_rq_start_time(void)
5478 {
5479 	int cpu = smp_processor_id();
5480 	struct rq *rq = cpu_rq(cpu);
5481 	rq->age_stamp = sched_clock_cpu(cpu);
5482 }
5483 
5484 static int sched_cpu_active(struct notifier_block *nfb,
5485 				      unsigned long action, void *hcpu)
5486 {
5487 	switch (action & ~CPU_TASKS_FROZEN) {
5488 	case CPU_STARTING:
5489 		set_cpu_rq_start_time();
5490 		return NOTIFY_OK;
5491 	case CPU_ONLINE:
5492 		/*
5493 		 * At this point a starting CPU has marked itself as online via
5494 		 * set_cpu_online(). But it might not yet have marked itself
5495 		 * as active, which is essential from here on.
5496 		 *
5497 		 * Thus, fall-through and help the starting CPU along.
5498 		 */
5499 	case CPU_DOWN_FAILED:
5500 		set_cpu_active((long)hcpu, true);
5501 		return NOTIFY_OK;
5502 	default:
5503 		return NOTIFY_DONE;
5504 	}
5505 }
5506 
5507 static int sched_cpu_inactive(struct notifier_block *nfb,
5508 					unsigned long action, void *hcpu)
5509 {
5510 	switch (action & ~CPU_TASKS_FROZEN) {
5511 	case CPU_DOWN_PREPARE:
5512 		set_cpu_active((long)hcpu, false);
5513 		return NOTIFY_OK;
5514 	default:
5515 		return NOTIFY_DONE;
5516 	}
5517 }
5518 
5519 static int __init migration_init(void)
5520 {
5521 	void *cpu = (void *)(long)smp_processor_id();
5522 	int err;
5523 
5524 	/* Initialize migration for the boot CPU */
5525 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5526 	BUG_ON(err == NOTIFY_BAD);
5527 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5528 	register_cpu_notifier(&migration_notifier);
5529 
5530 	/* Register cpu active notifiers */
5531 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5532 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5533 
5534 	return 0;
5535 }
5536 early_initcall(migration_init);
5537 
5538 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5539 
5540 #ifdef CONFIG_SCHED_DEBUG
5541 
5542 static __read_mostly int sched_debug_enabled;
5543 
5544 static int __init sched_debug_setup(char *str)
5545 {
5546 	sched_debug_enabled = 1;
5547 
5548 	return 0;
5549 }
5550 early_param("sched_debug", sched_debug_setup);
5551 
5552 static inline bool sched_debug(void)
5553 {
5554 	return sched_debug_enabled;
5555 }
5556 
5557 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5558 				  struct cpumask *groupmask)
5559 {
5560 	struct sched_group *group = sd->groups;
5561 
5562 	cpumask_clear(groupmask);
5563 
5564 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5565 
5566 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5567 		printk("does not load-balance\n");
5568 		if (sd->parent)
5569 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5570 					" has parent");
5571 		return -1;
5572 	}
5573 
5574 	printk(KERN_CONT "span %*pbl level %s\n",
5575 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5576 
5577 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5578 		printk(KERN_ERR "ERROR: domain->span does not contain "
5579 				"CPU%d\n", cpu);
5580 	}
5581 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5582 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5583 				" CPU%d\n", cpu);
5584 	}
5585 
5586 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5587 	do {
5588 		if (!group) {
5589 			printk("\n");
5590 			printk(KERN_ERR "ERROR: group is NULL\n");
5591 			break;
5592 		}
5593 
5594 		if (!cpumask_weight(sched_group_cpus(group))) {
5595 			printk(KERN_CONT "\n");
5596 			printk(KERN_ERR "ERROR: empty group\n");
5597 			break;
5598 		}
5599 
5600 		if (!(sd->flags & SD_OVERLAP) &&
5601 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5602 			printk(KERN_CONT "\n");
5603 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5604 			break;
5605 		}
5606 
5607 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5608 
5609 		printk(KERN_CONT " %*pbl",
5610 		       cpumask_pr_args(sched_group_cpus(group)));
5611 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5612 			printk(KERN_CONT " (cpu_capacity = %d)",
5613 				group->sgc->capacity);
5614 		}
5615 
5616 		group = group->next;
5617 	} while (group != sd->groups);
5618 	printk(KERN_CONT "\n");
5619 
5620 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5621 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5622 
5623 	if (sd->parent &&
5624 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5625 		printk(KERN_ERR "ERROR: parent span is not a superset "
5626 			"of domain->span\n");
5627 	return 0;
5628 }
5629 
5630 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5631 {
5632 	int level = 0;
5633 
5634 	if (!sched_debug_enabled)
5635 		return;
5636 
5637 	if (!sd) {
5638 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5639 		return;
5640 	}
5641 
5642 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5643 
5644 	for (;;) {
5645 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5646 			break;
5647 		level++;
5648 		sd = sd->parent;
5649 		if (!sd)
5650 			break;
5651 	}
5652 }
5653 #else /* !CONFIG_SCHED_DEBUG */
5654 # define sched_domain_debug(sd, cpu) do { } while (0)
5655 static inline bool sched_debug(void)
5656 {
5657 	return false;
5658 }
5659 #endif /* CONFIG_SCHED_DEBUG */
5660 
5661 static int sd_degenerate(struct sched_domain *sd)
5662 {
5663 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5664 		return 1;
5665 
5666 	/* Following flags need at least 2 groups */
5667 	if (sd->flags & (SD_LOAD_BALANCE |
5668 			 SD_BALANCE_NEWIDLE |
5669 			 SD_BALANCE_FORK |
5670 			 SD_BALANCE_EXEC |
5671 			 SD_SHARE_CPUCAPACITY |
5672 			 SD_SHARE_PKG_RESOURCES |
5673 			 SD_SHARE_POWERDOMAIN)) {
5674 		if (sd->groups != sd->groups->next)
5675 			return 0;
5676 	}
5677 
5678 	/* Following flags don't use groups */
5679 	if (sd->flags & (SD_WAKE_AFFINE))
5680 		return 0;
5681 
5682 	return 1;
5683 }
5684 
5685 static int
5686 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5687 {
5688 	unsigned long cflags = sd->flags, pflags = parent->flags;
5689 
5690 	if (sd_degenerate(parent))
5691 		return 1;
5692 
5693 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5694 		return 0;
5695 
5696 	/* Flags needing groups don't count if only 1 group in parent */
5697 	if (parent->groups == parent->groups->next) {
5698 		pflags &= ~(SD_LOAD_BALANCE |
5699 				SD_BALANCE_NEWIDLE |
5700 				SD_BALANCE_FORK |
5701 				SD_BALANCE_EXEC |
5702 				SD_SHARE_CPUCAPACITY |
5703 				SD_SHARE_PKG_RESOURCES |
5704 				SD_PREFER_SIBLING |
5705 				SD_SHARE_POWERDOMAIN);
5706 		if (nr_node_ids == 1)
5707 			pflags &= ~SD_SERIALIZE;
5708 	}
5709 	if (~cflags & pflags)
5710 		return 0;
5711 
5712 	return 1;
5713 }
5714 
5715 static void free_rootdomain(struct rcu_head *rcu)
5716 {
5717 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5718 
5719 	cpupri_cleanup(&rd->cpupri);
5720 	cpudl_cleanup(&rd->cpudl);
5721 	free_cpumask_var(rd->dlo_mask);
5722 	free_cpumask_var(rd->rto_mask);
5723 	free_cpumask_var(rd->online);
5724 	free_cpumask_var(rd->span);
5725 	kfree(rd);
5726 }
5727 
5728 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5729 {
5730 	struct root_domain *old_rd = NULL;
5731 	unsigned long flags;
5732 
5733 	raw_spin_lock_irqsave(&rq->lock, flags);
5734 
5735 	if (rq->rd) {
5736 		old_rd = rq->rd;
5737 
5738 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5739 			set_rq_offline(rq);
5740 
5741 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5742 
5743 		/*
5744 		 * If we dont want to free the old_rd yet then
5745 		 * set old_rd to NULL to skip the freeing later
5746 		 * in this function:
5747 		 */
5748 		if (!atomic_dec_and_test(&old_rd->refcount))
5749 			old_rd = NULL;
5750 	}
5751 
5752 	atomic_inc(&rd->refcount);
5753 	rq->rd = rd;
5754 
5755 	cpumask_set_cpu(rq->cpu, rd->span);
5756 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5757 		set_rq_online(rq);
5758 
5759 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5760 
5761 	if (old_rd)
5762 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5763 }
5764 
5765 static int init_rootdomain(struct root_domain *rd)
5766 {
5767 	memset(rd, 0, sizeof(*rd));
5768 
5769 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5770 		goto out;
5771 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5772 		goto free_span;
5773 	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5774 		goto free_online;
5775 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5776 		goto free_dlo_mask;
5777 
5778 	init_dl_bw(&rd->dl_bw);
5779 	if (cpudl_init(&rd->cpudl) != 0)
5780 		goto free_dlo_mask;
5781 
5782 	if (cpupri_init(&rd->cpupri) != 0)
5783 		goto free_rto_mask;
5784 	return 0;
5785 
5786 free_rto_mask:
5787 	free_cpumask_var(rd->rto_mask);
5788 free_dlo_mask:
5789 	free_cpumask_var(rd->dlo_mask);
5790 free_online:
5791 	free_cpumask_var(rd->online);
5792 free_span:
5793 	free_cpumask_var(rd->span);
5794 out:
5795 	return -ENOMEM;
5796 }
5797 
5798 /*
5799  * By default the system creates a single root-domain with all cpus as
5800  * members (mimicking the global state we have today).
5801  */
5802 struct root_domain def_root_domain;
5803 
5804 static void init_defrootdomain(void)
5805 {
5806 	init_rootdomain(&def_root_domain);
5807 
5808 	atomic_set(&def_root_domain.refcount, 1);
5809 }
5810 
5811 static struct root_domain *alloc_rootdomain(void)
5812 {
5813 	struct root_domain *rd;
5814 
5815 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5816 	if (!rd)
5817 		return NULL;
5818 
5819 	if (init_rootdomain(rd) != 0) {
5820 		kfree(rd);
5821 		return NULL;
5822 	}
5823 
5824 	return rd;
5825 }
5826 
5827 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5828 {
5829 	struct sched_group *tmp, *first;
5830 
5831 	if (!sg)
5832 		return;
5833 
5834 	first = sg;
5835 	do {
5836 		tmp = sg->next;
5837 
5838 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5839 			kfree(sg->sgc);
5840 
5841 		kfree(sg);
5842 		sg = tmp;
5843 	} while (sg != first);
5844 }
5845 
5846 static void free_sched_domain(struct rcu_head *rcu)
5847 {
5848 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5849 
5850 	/*
5851 	 * If its an overlapping domain it has private groups, iterate and
5852 	 * nuke them all.
5853 	 */
5854 	if (sd->flags & SD_OVERLAP) {
5855 		free_sched_groups(sd->groups, 1);
5856 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5857 		kfree(sd->groups->sgc);
5858 		kfree(sd->groups);
5859 	}
5860 	kfree(sd);
5861 }
5862 
5863 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5864 {
5865 	call_rcu(&sd->rcu, free_sched_domain);
5866 }
5867 
5868 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5869 {
5870 	for (; sd; sd = sd->parent)
5871 		destroy_sched_domain(sd, cpu);
5872 }
5873 
5874 /*
5875  * Keep a special pointer to the highest sched_domain that has
5876  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5877  * allows us to avoid some pointer chasing select_idle_sibling().
5878  *
5879  * Also keep a unique ID per domain (we use the first cpu number in
5880  * the cpumask of the domain), this allows us to quickly tell if
5881  * two cpus are in the same cache domain, see cpus_share_cache().
5882  */
5883 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5884 DEFINE_PER_CPU(int, sd_llc_size);
5885 DEFINE_PER_CPU(int, sd_llc_id);
5886 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5887 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5888 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5889 
5890 static void update_top_cache_domain(int cpu)
5891 {
5892 	struct sched_domain *sd;
5893 	struct sched_domain *busy_sd = NULL;
5894 	int id = cpu;
5895 	int size = 1;
5896 
5897 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5898 	if (sd) {
5899 		id = cpumask_first(sched_domain_span(sd));
5900 		size = cpumask_weight(sched_domain_span(sd));
5901 		busy_sd = sd->parent; /* sd_busy */
5902 	}
5903 	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5904 
5905 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5906 	per_cpu(sd_llc_size, cpu) = size;
5907 	per_cpu(sd_llc_id, cpu) = id;
5908 
5909 	sd = lowest_flag_domain(cpu, SD_NUMA);
5910 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5911 
5912 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5913 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5914 }
5915 
5916 /*
5917  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5918  * hold the hotplug lock.
5919  */
5920 static void
5921 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5922 {
5923 	struct rq *rq = cpu_rq(cpu);
5924 	struct sched_domain *tmp;
5925 
5926 	/* Remove the sched domains which do not contribute to scheduling. */
5927 	for (tmp = sd; tmp; ) {
5928 		struct sched_domain *parent = tmp->parent;
5929 		if (!parent)
5930 			break;
5931 
5932 		if (sd_parent_degenerate(tmp, parent)) {
5933 			tmp->parent = parent->parent;
5934 			if (parent->parent)
5935 				parent->parent->child = tmp;
5936 			/*
5937 			 * Transfer SD_PREFER_SIBLING down in case of a
5938 			 * degenerate parent; the spans match for this
5939 			 * so the property transfers.
5940 			 */
5941 			if (parent->flags & SD_PREFER_SIBLING)
5942 				tmp->flags |= SD_PREFER_SIBLING;
5943 			destroy_sched_domain(parent, cpu);
5944 		} else
5945 			tmp = tmp->parent;
5946 	}
5947 
5948 	if (sd && sd_degenerate(sd)) {
5949 		tmp = sd;
5950 		sd = sd->parent;
5951 		destroy_sched_domain(tmp, cpu);
5952 		if (sd)
5953 			sd->child = NULL;
5954 	}
5955 
5956 	sched_domain_debug(sd, cpu);
5957 
5958 	rq_attach_root(rq, rd);
5959 	tmp = rq->sd;
5960 	rcu_assign_pointer(rq->sd, sd);
5961 	destroy_sched_domains(tmp, cpu);
5962 
5963 	update_top_cache_domain(cpu);
5964 }
5965 
5966 /* Setup the mask of cpus configured for isolated domains */
5967 static int __init isolated_cpu_setup(char *str)
5968 {
5969 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5970 	cpulist_parse(str, cpu_isolated_map);
5971 	return 1;
5972 }
5973 
5974 __setup("isolcpus=", isolated_cpu_setup);
5975 
5976 struct s_data {
5977 	struct sched_domain ** __percpu sd;
5978 	struct root_domain	*rd;
5979 };
5980 
5981 enum s_alloc {
5982 	sa_rootdomain,
5983 	sa_sd,
5984 	sa_sd_storage,
5985 	sa_none,
5986 };
5987 
5988 /*
5989  * Build an iteration mask that can exclude certain CPUs from the upwards
5990  * domain traversal.
5991  *
5992  * Asymmetric node setups can result in situations where the domain tree is of
5993  * unequal depth, make sure to skip domains that already cover the entire
5994  * range.
5995  *
5996  * In that case build_sched_domains() will have terminated the iteration early
5997  * and our sibling sd spans will be empty. Domains should always include the
5998  * cpu they're built on, so check that.
5999  *
6000  */
6001 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6002 {
6003 	const struct cpumask *span = sched_domain_span(sd);
6004 	struct sd_data *sdd = sd->private;
6005 	struct sched_domain *sibling;
6006 	int i;
6007 
6008 	for_each_cpu(i, span) {
6009 		sibling = *per_cpu_ptr(sdd->sd, i);
6010 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6011 			continue;
6012 
6013 		cpumask_set_cpu(i, sched_group_mask(sg));
6014 	}
6015 }
6016 
6017 /*
6018  * Return the canonical balance cpu for this group, this is the first cpu
6019  * of this group that's also in the iteration mask.
6020  */
6021 int group_balance_cpu(struct sched_group *sg)
6022 {
6023 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6024 }
6025 
6026 static int
6027 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6028 {
6029 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6030 	const struct cpumask *span = sched_domain_span(sd);
6031 	struct cpumask *covered = sched_domains_tmpmask;
6032 	struct sd_data *sdd = sd->private;
6033 	struct sched_domain *sibling;
6034 	int i;
6035 
6036 	cpumask_clear(covered);
6037 
6038 	for_each_cpu(i, span) {
6039 		struct cpumask *sg_span;
6040 
6041 		if (cpumask_test_cpu(i, covered))
6042 			continue;
6043 
6044 		sibling = *per_cpu_ptr(sdd->sd, i);
6045 
6046 		/* See the comment near build_group_mask(). */
6047 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6048 			continue;
6049 
6050 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6051 				GFP_KERNEL, cpu_to_node(cpu));
6052 
6053 		if (!sg)
6054 			goto fail;
6055 
6056 		sg_span = sched_group_cpus(sg);
6057 		if (sibling->child)
6058 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6059 		else
6060 			cpumask_set_cpu(i, sg_span);
6061 
6062 		cpumask_or(covered, covered, sg_span);
6063 
6064 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6065 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6066 			build_group_mask(sd, sg);
6067 
6068 		/*
6069 		 * Initialize sgc->capacity such that even if we mess up the
6070 		 * domains and no possible iteration will get us here, we won't
6071 		 * die on a /0 trap.
6072 		 */
6073 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6074 
6075 		/*
6076 		 * Make sure the first group of this domain contains the
6077 		 * canonical balance cpu. Otherwise the sched_domain iteration
6078 		 * breaks. See update_sg_lb_stats().
6079 		 */
6080 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6081 		    group_balance_cpu(sg) == cpu)
6082 			groups = sg;
6083 
6084 		if (!first)
6085 			first = sg;
6086 		if (last)
6087 			last->next = sg;
6088 		last = sg;
6089 		last->next = first;
6090 	}
6091 	sd->groups = groups;
6092 
6093 	return 0;
6094 
6095 fail:
6096 	free_sched_groups(first, 0);
6097 
6098 	return -ENOMEM;
6099 }
6100 
6101 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6102 {
6103 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6104 	struct sched_domain *child = sd->child;
6105 
6106 	if (child)
6107 		cpu = cpumask_first(sched_domain_span(child));
6108 
6109 	if (sg) {
6110 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6111 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6112 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6113 	}
6114 
6115 	return cpu;
6116 }
6117 
6118 /*
6119  * build_sched_groups will build a circular linked list of the groups
6120  * covered by the given span, and will set each group's ->cpumask correctly,
6121  * and ->cpu_capacity to 0.
6122  *
6123  * Assumes the sched_domain tree is fully constructed
6124  */
6125 static int
6126 build_sched_groups(struct sched_domain *sd, int cpu)
6127 {
6128 	struct sched_group *first = NULL, *last = NULL;
6129 	struct sd_data *sdd = sd->private;
6130 	const struct cpumask *span = sched_domain_span(sd);
6131 	struct cpumask *covered;
6132 	int i;
6133 
6134 	get_group(cpu, sdd, &sd->groups);
6135 	atomic_inc(&sd->groups->ref);
6136 
6137 	if (cpu != cpumask_first(span))
6138 		return 0;
6139 
6140 	lockdep_assert_held(&sched_domains_mutex);
6141 	covered = sched_domains_tmpmask;
6142 
6143 	cpumask_clear(covered);
6144 
6145 	for_each_cpu(i, span) {
6146 		struct sched_group *sg;
6147 		int group, j;
6148 
6149 		if (cpumask_test_cpu(i, covered))
6150 			continue;
6151 
6152 		group = get_group(i, sdd, &sg);
6153 		cpumask_setall(sched_group_mask(sg));
6154 
6155 		for_each_cpu(j, span) {
6156 			if (get_group(j, sdd, NULL) != group)
6157 				continue;
6158 
6159 			cpumask_set_cpu(j, covered);
6160 			cpumask_set_cpu(j, sched_group_cpus(sg));
6161 		}
6162 
6163 		if (!first)
6164 			first = sg;
6165 		if (last)
6166 			last->next = sg;
6167 		last = sg;
6168 	}
6169 	last->next = first;
6170 
6171 	return 0;
6172 }
6173 
6174 /*
6175  * Initialize sched groups cpu_capacity.
6176  *
6177  * cpu_capacity indicates the capacity of sched group, which is used while
6178  * distributing the load between different sched groups in a sched domain.
6179  * Typically cpu_capacity for all the groups in a sched domain will be same
6180  * unless there are asymmetries in the topology. If there are asymmetries,
6181  * group having more cpu_capacity will pickup more load compared to the
6182  * group having less cpu_capacity.
6183  */
6184 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6185 {
6186 	struct sched_group *sg = sd->groups;
6187 
6188 	WARN_ON(!sg);
6189 
6190 	do {
6191 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6192 		sg = sg->next;
6193 	} while (sg != sd->groups);
6194 
6195 	if (cpu != group_balance_cpu(sg))
6196 		return;
6197 
6198 	update_group_capacity(sd, cpu);
6199 	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6200 }
6201 
6202 /*
6203  * Initializers for schedule domains
6204  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6205  */
6206 
6207 static int default_relax_domain_level = -1;
6208 int sched_domain_level_max;
6209 
6210 static int __init setup_relax_domain_level(char *str)
6211 {
6212 	if (kstrtoint(str, 0, &default_relax_domain_level))
6213 		pr_warn("Unable to set relax_domain_level\n");
6214 
6215 	return 1;
6216 }
6217 __setup("relax_domain_level=", setup_relax_domain_level);
6218 
6219 static void set_domain_attribute(struct sched_domain *sd,
6220 				 struct sched_domain_attr *attr)
6221 {
6222 	int request;
6223 
6224 	if (!attr || attr->relax_domain_level < 0) {
6225 		if (default_relax_domain_level < 0)
6226 			return;
6227 		else
6228 			request = default_relax_domain_level;
6229 	} else
6230 		request = attr->relax_domain_level;
6231 	if (request < sd->level) {
6232 		/* turn off idle balance on this domain */
6233 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6234 	} else {
6235 		/* turn on idle balance on this domain */
6236 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6237 	}
6238 }
6239 
6240 static void __sdt_free(const struct cpumask *cpu_map);
6241 static int __sdt_alloc(const struct cpumask *cpu_map);
6242 
6243 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6244 				 const struct cpumask *cpu_map)
6245 {
6246 	switch (what) {
6247 	case sa_rootdomain:
6248 		if (!atomic_read(&d->rd->refcount))
6249 			free_rootdomain(&d->rd->rcu); /* fall through */
6250 	case sa_sd:
6251 		free_percpu(d->sd); /* fall through */
6252 	case sa_sd_storage:
6253 		__sdt_free(cpu_map); /* fall through */
6254 	case sa_none:
6255 		break;
6256 	}
6257 }
6258 
6259 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6260 						   const struct cpumask *cpu_map)
6261 {
6262 	memset(d, 0, sizeof(*d));
6263 
6264 	if (__sdt_alloc(cpu_map))
6265 		return sa_sd_storage;
6266 	d->sd = alloc_percpu(struct sched_domain *);
6267 	if (!d->sd)
6268 		return sa_sd_storage;
6269 	d->rd = alloc_rootdomain();
6270 	if (!d->rd)
6271 		return sa_sd;
6272 	return sa_rootdomain;
6273 }
6274 
6275 /*
6276  * NULL the sd_data elements we've used to build the sched_domain and
6277  * sched_group structure so that the subsequent __free_domain_allocs()
6278  * will not free the data we're using.
6279  */
6280 static void claim_allocations(int cpu, struct sched_domain *sd)
6281 {
6282 	struct sd_data *sdd = sd->private;
6283 
6284 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6285 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6286 
6287 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6288 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6289 
6290 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6291 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6292 }
6293 
6294 #ifdef CONFIG_NUMA
6295 static int sched_domains_numa_levels;
6296 enum numa_topology_type sched_numa_topology_type;
6297 static int *sched_domains_numa_distance;
6298 int sched_max_numa_distance;
6299 static struct cpumask ***sched_domains_numa_masks;
6300 static int sched_domains_curr_level;
6301 #endif
6302 
6303 /*
6304  * SD_flags allowed in topology descriptions.
6305  *
6306  * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6307  * SD_SHARE_PKG_RESOURCES - describes shared caches
6308  * SD_NUMA                - describes NUMA topologies
6309  * SD_SHARE_POWERDOMAIN   - describes shared power domain
6310  *
6311  * Odd one out:
6312  * SD_ASYM_PACKING        - describes SMT quirks
6313  */
6314 #define TOPOLOGY_SD_FLAGS		\
6315 	(SD_SHARE_CPUCAPACITY |		\
6316 	 SD_SHARE_PKG_RESOURCES |	\
6317 	 SD_NUMA |			\
6318 	 SD_ASYM_PACKING |		\
6319 	 SD_SHARE_POWERDOMAIN)
6320 
6321 static struct sched_domain *
6322 sd_init(struct sched_domain_topology_level *tl, int cpu)
6323 {
6324 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6325 	int sd_weight, sd_flags = 0;
6326 
6327 #ifdef CONFIG_NUMA
6328 	/*
6329 	 * Ugly hack to pass state to sd_numa_mask()...
6330 	 */
6331 	sched_domains_curr_level = tl->numa_level;
6332 #endif
6333 
6334 	sd_weight = cpumask_weight(tl->mask(cpu));
6335 
6336 	if (tl->sd_flags)
6337 		sd_flags = (*tl->sd_flags)();
6338 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6339 			"wrong sd_flags in topology description\n"))
6340 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6341 
6342 	*sd = (struct sched_domain){
6343 		.min_interval		= sd_weight,
6344 		.max_interval		= 2*sd_weight,
6345 		.busy_factor		= 32,
6346 		.imbalance_pct		= 125,
6347 
6348 		.cache_nice_tries	= 0,
6349 		.busy_idx		= 0,
6350 		.idle_idx		= 0,
6351 		.newidle_idx		= 0,
6352 		.wake_idx		= 0,
6353 		.forkexec_idx		= 0,
6354 
6355 		.flags			= 1*SD_LOAD_BALANCE
6356 					| 1*SD_BALANCE_NEWIDLE
6357 					| 1*SD_BALANCE_EXEC
6358 					| 1*SD_BALANCE_FORK
6359 					| 0*SD_BALANCE_WAKE
6360 					| 1*SD_WAKE_AFFINE
6361 					| 0*SD_SHARE_CPUCAPACITY
6362 					| 0*SD_SHARE_PKG_RESOURCES
6363 					| 0*SD_SERIALIZE
6364 					| 0*SD_PREFER_SIBLING
6365 					| 0*SD_NUMA
6366 					| sd_flags
6367 					,
6368 
6369 		.last_balance		= jiffies,
6370 		.balance_interval	= sd_weight,
6371 		.smt_gain		= 0,
6372 		.max_newidle_lb_cost	= 0,
6373 		.next_decay_max_lb_cost	= jiffies,
6374 #ifdef CONFIG_SCHED_DEBUG
6375 		.name			= tl->name,
6376 #endif
6377 	};
6378 
6379 	/*
6380 	 * Convert topological properties into behaviour.
6381 	 */
6382 
6383 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6384 		sd->flags |= SD_PREFER_SIBLING;
6385 		sd->imbalance_pct = 110;
6386 		sd->smt_gain = 1178; /* ~15% */
6387 
6388 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6389 		sd->imbalance_pct = 117;
6390 		sd->cache_nice_tries = 1;
6391 		sd->busy_idx = 2;
6392 
6393 #ifdef CONFIG_NUMA
6394 	} else if (sd->flags & SD_NUMA) {
6395 		sd->cache_nice_tries = 2;
6396 		sd->busy_idx = 3;
6397 		sd->idle_idx = 2;
6398 
6399 		sd->flags |= SD_SERIALIZE;
6400 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6401 			sd->flags &= ~(SD_BALANCE_EXEC |
6402 				       SD_BALANCE_FORK |
6403 				       SD_WAKE_AFFINE);
6404 		}
6405 
6406 #endif
6407 	} else {
6408 		sd->flags |= SD_PREFER_SIBLING;
6409 		sd->cache_nice_tries = 1;
6410 		sd->busy_idx = 2;
6411 		sd->idle_idx = 1;
6412 	}
6413 
6414 	sd->private = &tl->data;
6415 
6416 	return sd;
6417 }
6418 
6419 /*
6420  * Topology list, bottom-up.
6421  */
6422 static struct sched_domain_topology_level default_topology[] = {
6423 #ifdef CONFIG_SCHED_SMT
6424 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6425 #endif
6426 #ifdef CONFIG_SCHED_MC
6427 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6428 #endif
6429 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6430 	{ NULL, },
6431 };
6432 
6433 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6434 
6435 #define for_each_sd_topology(tl)			\
6436 	for (tl = sched_domain_topology; tl->mask; tl++)
6437 
6438 void set_sched_topology(struct sched_domain_topology_level *tl)
6439 {
6440 	sched_domain_topology = tl;
6441 }
6442 
6443 #ifdef CONFIG_NUMA
6444 
6445 static const struct cpumask *sd_numa_mask(int cpu)
6446 {
6447 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6448 }
6449 
6450 static void sched_numa_warn(const char *str)
6451 {
6452 	static int done = false;
6453 	int i,j;
6454 
6455 	if (done)
6456 		return;
6457 
6458 	done = true;
6459 
6460 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6461 
6462 	for (i = 0; i < nr_node_ids; i++) {
6463 		printk(KERN_WARNING "  ");
6464 		for (j = 0; j < nr_node_ids; j++)
6465 			printk(KERN_CONT "%02d ", node_distance(i,j));
6466 		printk(KERN_CONT "\n");
6467 	}
6468 	printk(KERN_WARNING "\n");
6469 }
6470 
6471 bool find_numa_distance(int distance)
6472 {
6473 	int i;
6474 
6475 	if (distance == node_distance(0, 0))
6476 		return true;
6477 
6478 	for (i = 0; i < sched_domains_numa_levels; i++) {
6479 		if (sched_domains_numa_distance[i] == distance)
6480 			return true;
6481 	}
6482 
6483 	return false;
6484 }
6485 
6486 /*
6487  * A system can have three types of NUMA topology:
6488  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6489  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6490  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6491  *
6492  * The difference between a glueless mesh topology and a backplane
6493  * topology lies in whether communication between not directly
6494  * connected nodes goes through intermediary nodes (where programs
6495  * could run), or through backplane controllers. This affects
6496  * placement of programs.
6497  *
6498  * The type of topology can be discerned with the following tests:
6499  * - If the maximum distance between any nodes is 1 hop, the system
6500  *   is directly connected.
6501  * - If for two nodes A and B, located N > 1 hops away from each other,
6502  *   there is an intermediary node C, which is < N hops away from both
6503  *   nodes A and B, the system is a glueless mesh.
6504  */
6505 static void init_numa_topology_type(void)
6506 {
6507 	int a, b, c, n;
6508 
6509 	n = sched_max_numa_distance;
6510 
6511 	if (sched_domains_numa_levels <= 1) {
6512 		sched_numa_topology_type = NUMA_DIRECT;
6513 		return;
6514 	}
6515 
6516 	for_each_online_node(a) {
6517 		for_each_online_node(b) {
6518 			/* Find two nodes furthest removed from each other. */
6519 			if (node_distance(a, b) < n)
6520 				continue;
6521 
6522 			/* Is there an intermediary node between a and b? */
6523 			for_each_online_node(c) {
6524 				if (node_distance(a, c) < n &&
6525 				    node_distance(b, c) < n) {
6526 					sched_numa_topology_type =
6527 							NUMA_GLUELESS_MESH;
6528 					return;
6529 				}
6530 			}
6531 
6532 			sched_numa_topology_type = NUMA_BACKPLANE;
6533 			return;
6534 		}
6535 	}
6536 }
6537 
6538 static void sched_init_numa(void)
6539 {
6540 	int next_distance, curr_distance = node_distance(0, 0);
6541 	struct sched_domain_topology_level *tl;
6542 	int level = 0;
6543 	int i, j, k;
6544 
6545 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6546 	if (!sched_domains_numa_distance)
6547 		return;
6548 
6549 	/*
6550 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6551 	 * unique distances in the node_distance() table.
6552 	 *
6553 	 * Assumes node_distance(0,j) includes all distances in
6554 	 * node_distance(i,j) in order to avoid cubic time.
6555 	 */
6556 	next_distance = curr_distance;
6557 	for (i = 0; i < nr_node_ids; i++) {
6558 		for (j = 0; j < nr_node_ids; j++) {
6559 			for (k = 0; k < nr_node_ids; k++) {
6560 				int distance = node_distance(i, k);
6561 
6562 				if (distance > curr_distance &&
6563 				    (distance < next_distance ||
6564 				     next_distance == curr_distance))
6565 					next_distance = distance;
6566 
6567 				/*
6568 				 * While not a strong assumption it would be nice to know
6569 				 * about cases where if node A is connected to B, B is not
6570 				 * equally connected to A.
6571 				 */
6572 				if (sched_debug() && node_distance(k, i) != distance)
6573 					sched_numa_warn("Node-distance not symmetric");
6574 
6575 				if (sched_debug() && i && !find_numa_distance(distance))
6576 					sched_numa_warn("Node-0 not representative");
6577 			}
6578 			if (next_distance != curr_distance) {
6579 				sched_domains_numa_distance[level++] = next_distance;
6580 				sched_domains_numa_levels = level;
6581 				curr_distance = next_distance;
6582 			} else break;
6583 		}
6584 
6585 		/*
6586 		 * In case of sched_debug() we verify the above assumption.
6587 		 */
6588 		if (!sched_debug())
6589 			break;
6590 	}
6591 
6592 	if (!level)
6593 		return;
6594 
6595 	/*
6596 	 * 'level' contains the number of unique distances, excluding the
6597 	 * identity distance node_distance(i,i).
6598 	 *
6599 	 * The sched_domains_numa_distance[] array includes the actual distance
6600 	 * numbers.
6601 	 */
6602 
6603 	/*
6604 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6605 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6606 	 * the array will contain less then 'level' members. This could be
6607 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6608 	 * in other functions.
6609 	 *
6610 	 * We reset it to 'level' at the end of this function.
6611 	 */
6612 	sched_domains_numa_levels = 0;
6613 
6614 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6615 	if (!sched_domains_numa_masks)
6616 		return;
6617 
6618 	/*
6619 	 * Now for each level, construct a mask per node which contains all
6620 	 * cpus of nodes that are that many hops away from us.
6621 	 */
6622 	for (i = 0; i < level; i++) {
6623 		sched_domains_numa_masks[i] =
6624 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6625 		if (!sched_domains_numa_masks[i])
6626 			return;
6627 
6628 		for (j = 0; j < nr_node_ids; j++) {
6629 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6630 			if (!mask)
6631 				return;
6632 
6633 			sched_domains_numa_masks[i][j] = mask;
6634 
6635 			for (k = 0; k < nr_node_ids; k++) {
6636 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6637 					continue;
6638 
6639 				cpumask_or(mask, mask, cpumask_of_node(k));
6640 			}
6641 		}
6642 	}
6643 
6644 	/* Compute default topology size */
6645 	for (i = 0; sched_domain_topology[i].mask; i++);
6646 
6647 	tl = kzalloc((i + level + 1) *
6648 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6649 	if (!tl)
6650 		return;
6651 
6652 	/*
6653 	 * Copy the default topology bits..
6654 	 */
6655 	for (i = 0; sched_domain_topology[i].mask; i++)
6656 		tl[i] = sched_domain_topology[i];
6657 
6658 	/*
6659 	 * .. and append 'j' levels of NUMA goodness.
6660 	 */
6661 	for (j = 0; j < level; i++, j++) {
6662 		tl[i] = (struct sched_domain_topology_level){
6663 			.mask = sd_numa_mask,
6664 			.sd_flags = cpu_numa_flags,
6665 			.flags = SDTL_OVERLAP,
6666 			.numa_level = j,
6667 			SD_INIT_NAME(NUMA)
6668 		};
6669 	}
6670 
6671 	sched_domain_topology = tl;
6672 
6673 	sched_domains_numa_levels = level;
6674 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6675 
6676 	init_numa_topology_type();
6677 }
6678 
6679 static void sched_domains_numa_masks_set(int cpu)
6680 {
6681 	int i, j;
6682 	int node = cpu_to_node(cpu);
6683 
6684 	for (i = 0; i < sched_domains_numa_levels; i++) {
6685 		for (j = 0; j < nr_node_ids; j++) {
6686 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6687 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6688 		}
6689 	}
6690 }
6691 
6692 static void sched_domains_numa_masks_clear(int cpu)
6693 {
6694 	int i, j;
6695 	for (i = 0; i < sched_domains_numa_levels; i++) {
6696 		for (j = 0; j < nr_node_ids; j++)
6697 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6698 	}
6699 }
6700 
6701 /*
6702  * Update sched_domains_numa_masks[level][node] array when new cpus
6703  * are onlined.
6704  */
6705 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6706 					   unsigned long action,
6707 					   void *hcpu)
6708 {
6709 	int cpu = (long)hcpu;
6710 
6711 	switch (action & ~CPU_TASKS_FROZEN) {
6712 	case CPU_ONLINE:
6713 		sched_domains_numa_masks_set(cpu);
6714 		break;
6715 
6716 	case CPU_DEAD:
6717 		sched_domains_numa_masks_clear(cpu);
6718 		break;
6719 
6720 	default:
6721 		return NOTIFY_DONE;
6722 	}
6723 
6724 	return NOTIFY_OK;
6725 }
6726 #else
6727 static inline void sched_init_numa(void)
6728 {
6729 }
6730 
6731 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6732 					   unsigned long action,
6733 					   void *hcpu)
6734 {
6735 	return 0;
6736 }
6737 #endif /* CONFIG_NUMA */
6738 
6739 static int __sdt_alloc(const struct cpumask *cpu_map)
6740 {
6741 	struct sched_domain_topology_level *tl;
6742 	int j;
6743 
6744 	for_each_sd_topology(tl) {
6745 		struct sd_data *sdd = &tl->data;
6746 
6747 		sdd->sd = alloc_percpu(struct sched_domain *);
6748 		if (!sdd->sd)
6749 			return -ENOMEM;
6750 
6751 		sdd->sg = alloc_percpu(struct sched_group *);
6752 		if (!sdd->sg)
6753 			return -ENOMEM;
6754 
6755 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6756 		if (!sdd->sgc)
6757 			return -ENOMEM;
6758 
6759 		for_each_cpu(j, cpu_map) {
6760 			struct sched_domain *sd;
6761 			struct sched_group *sg;
6762 			struct sched_group_capacity *sgc;
6763 
6764 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6765 					GFP_KERNEL, cpu_to_node(j));
6766 			if (!sd)
6767 				return -ENOMEM;
6768 
6769 			*per_cpu_ptr(sdd->sd, j) = sd;
6770 
6771 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6772 					GFP_KERNEL, cpu_to_node(j));
6773 			if (!sg)
6774 				return -ENOMEM;
6775 
6776 			sg->next = sg;
6777 
6778 			*per_cpu_ptr(sdd->sg, j) = sg;
6779 
6780 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6781 					GFP_KERNEL, cpu_to_node(j));
6782 			if (!sgc)
6783 				return -ENOMEM;
6784 
6785 			*per_cpu_ptr(sdd->sgc, j) = sgc;
6786 		}
6787 	}
6788 
6789 	return 0;
6790 }
6791 
6792 static void __sdt_free(const struct cpumask *cpu_map)
6793 {
6794 	struct sched_domain_topology_level *tl;
6795 	int j;
6796 
6797 	for_each_sd_topology(tl) {
6798 		struct sd_data *sdd = &tl->data;
6799 
6800 		for_each_cpu(j, cpu_map) {
6801 			struct sched_domain *sd;
6802 
6803 			if (sdd->sd) {
6804 				sd = *per_cpu_ptr(sdd->sd, j);
6805 				if (sd && (sd->flags & SD_OVERLAP))
6806 					free_sched_groups(sd->groups, 0);
6807 				kfree(*per_cpu_ptr(sdd->sd, j));
6808 			}
6809 
6810 			if (sdd->sg)
6811 				kfree(*per_cpu_ptr(sdd->sg, j));
6812 			if (sdd->sgc)
6813 				kfree(*per_cpu_ptr(sdd->sgc, j));
6814 		}
6815 		free_percpu(sdd->sd);
6816 		sdd->sd = NULL;
6817 		free_percpu(sdd->sg);
6818 		sdd->sg = NULL;
6819 		free_percpu(sdd->sgc);
6820 		sdd->sgc = NULL;
6821 	}
6822 }
6823 
6824 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6825 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6826 		struct sched_domain *child, int cpu)
6827 {
6828 	struct sched_domain *sd = sd_init(tl, cpu);
6829 	if (!sd)
6830 		return child;
6831 
6832 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6833 	if (child) {
6834 		sd->level = child->level + 1;
6835 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6836 		child->parent = sd;
6837 		sd->child = child;
6838 
6839 		if (!cpumask_subset(sched_domain_span(child),
6840 				    sched_domain_span(sd))) {
6841 			pr_err("BUG: arch topology borken\n");
6842 #ifdef CONFIG_SCHED_DEBUG
6843 			pr_err("     the %s domain not a subset of the %s domain\n",
6844 					child->name, sd->name);
6845 #endif
6846 			/* Fixup, ensure @sd has at least @child cpus. */
6847 			cpumask_or(sched_domain_span(sd),
6848 				   sched_domain_span(sd),
6849 				   sched_domain_span(child));
6850 		}
6851 
6852 	}
6853 	set_domain_attribute(sd, attr);
6854 
6855 	return sd;
6856 }
6857 
6858 /*
6859  * Build sched domains for a given set of cpus and attach the sched domains
6860  * to the individual cpus
6861  */
6862 static int build_sched_domains(const struct cpumask *cpu_map,
6863 			       struct sched_domain_attr *attr)
6864 {
6865 	enum s_alloc alloc_state;
6866 	struct sched_domain *sd;
6867 	struct s_data d;
6868 	int i, ret = -ENOMEM;
6869 
6870 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6871 	if (alloc_state != sa_rootdomain)
6872 		goto error;
6873 
6874 	/* Set up domains for cpus specified by the cpu_map. */
6875 	for_each_cpu(i, cpu_map) {
6876 		struct sched_domain_topology_level *tl;
6877 
6878 		sd = NULL;
6879 		for_each_sd_topology(tl) {
6880 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6881 			if (tl == sched_domain_topology)
6882 				*per_cpu_ptr(d.sd, i) = sd;
6883 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6884 				sd->flags |= SD_OVERLAP;
6885 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6886 				break;
6887 		}
6888 	}
6889 
6890 	/* Build the groups for the domains */
6891 	for_each_cpu(i, cpu_map) {
6892 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6893 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6894 			if (sd->flags & SD_OVERLAP) {
6895 				if (build_overlap_sched_groups(sd, i))
6896 					goto error;
6897 			} else {
6898 				if (build_sched_groups(sd, i))
6899 					goto error;
6900 			}
6901 		}
6902 	}
6903 
6904 	/* Calculate CPU capacity for physical packages and nodes */
6905 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6906 		if (!cpumask_test_cpu(i, cpu_map))
6907 			continue;
6908 
6909 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6910 			claim_allocations(i, sd);
6911 			init_sched_groups_capacity(i, sd);
6912 		}
6913 	}
6914 
6915 	/* Attach the domains */
6916 	rcu_read_lock();
6917 	for_each_cpu(i, cpu_map) {
6918 		sd = *per_cpu_ptr(d.sd, i);
6919 		cpu_attach_domain(sd, d.rd, i);
6920 	}
6921 	rcu_read_unlock();
6922 
6923 	ret = 0;
6924 error:
6925 	__free_domain_allocs(&d, alloc_state, cpu_map);
6926 	return ret;
6927 }
6928 
6929 static cpumask_var_t *doms_cur;	/* current sched domains */
6930 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6931 static struct sched_domain_attr *dattr_cur;
6932 				/* attribues of custom domains in 'doms_cur' */
6933 
6934 /*
6935  * Special case: If a kmalloc of a doms_cur partition (array of
6936  * cpumask) fails, then fallback to a single sched domain,
6937  * as determined by the single cpumask fallback_doms.
6938  */
6939 static cpumask_var_t fallback_doms;
6940 
6941 /*
6942  * arch_update_cpu_topology lets virtualized architectures update the
6943  * cpu core maps. It is supposed to return 1 if the topology changed
6944  * or 0 if it stayed the same.
6945  */
6946 int __weak arch_update_cpu_topology(void)
6947 {
6948 	return 0;
6949 }
6950 
6951 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6952 {
6953 	int i;
6954 	cpumask_var_t *doms;
6955 
6956 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6957 	if (!doms)
6958 		return NULL;
6959 	for (i = 0; i < ndoms; i++) {
6960 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6961 			free_sched_domains(doms, i);
6962 			return NULL;
6963 		}
6964 	}
6965 	return doms;
6966 }
6967 
6968 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6969 {
6970 	unsigned int i;
6971 	for (i = 0; i < ndoms; i++)
6972 		free_cpumask_var(doms[i]);
6973 	kfree(doms);
6974 }
6975 
6976 /*
6977  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6978  * For now this just excludes isolated cpus, but could be used to
6979  * exclude other special cases in the future.
6980  */
6981 static int init_sched_domains(const struct cpumask *cpu_map)
6982 {
6983 	int err;
6984 
6985 	arch_update_cpu_topology();
6986 	ndoms_cur = 1;
6987 	doms_cur = alloc_sched_domains(ndoms_cur);
6988 	if (!doms_cur)
6989 		doms_cur = &fallback_doms;
6990 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6991 	err = build_sched_domains(doms_cur[0], NULL);
6992 	register_sched_domain_sysctl();
6993 
6994 	return err;
6995 }
6996 
6997 /*
6998  * Detach sched domains from a group of cpus specified in cpu_map
6999  * These cpus will now be attached to the NULL domain
7000  */
7001 static void detach_destroy_domains(const struct cpumask *cpu_map)
7002 {
7003 	int i;
7004 
7005 	rcu_read_lock();
7006 	for_each_cpu(i, cpu_map)
7007 		cpu_attach_domain(NULL, &def_root_domain, i);
7008 	rcu_read_unlock();
7009 }
7010 
7011 /* handle null as "default" */
7012 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7013 			struct sched_domain_attr *new, int idx_new)
7014 {
7015 	struct sched_domain_attr tmp;
7016 
7017 	/* fast path */
7018 	if (!new && !cur)
7019 		return 1;
7020 
7021 	tmp = SD_ATTR_INIT;
7022 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7023 			new ? (new + idx_new) : &tmp,
7024 			sizeof(struct sched_domain_attr));
7025 }
7026 
7027 /*
7028  * Partition sched domains as specified by the 'ndoms_new'
7029  * cpumasks in the array doms_new[] of cpumasks. This compares
7030  * doms_new[] to the current sched domain partitioning, doms_cur[].
7031  * It destroys each deleted domain and builds each new domain.
7032  *
7033  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7034  * The masks don't intersect (don't overlap.) We should setup one
7035  * sched domain for each mask. CPUs not in any of the cpumasks will
7036  * not be load balanced. If the same cpumask appears both in the
7037  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7038  * it as it is.
7039  *
7040  * The passed in 'doms_new' should be allocated using
7041  * alloc_sched_domains.  This routine takes ownership of it and will
7042  * free_sched_domains it when done with it. If the caller failed the
7043  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7044  * and partition_sched_domains() will fallback to the single partition
7045  * 'fallback_doms', it also forces the domains to be rebuilt.
7046  *
7047  * If doms_new == NULL it will be replaced with cpu_online_mask.
7048  * ndoms_new == 0 is a special case for destroying existing domains,
7049  * and it will not create the default domain.
7050  *
7051  * Call with hotplug lock held
7052  */
7053 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7054 			     struct sched_domain_attr *dattr_new)
7055 {
7056 	int i, j, n;
7057 	int new_topology;
7058 
7059 	mutex_lock(&sched_domains_mutex);
7060 
7061 	/* always unregister in case we don't destroy any domains */
7062 	unregister_sched_domain_sysctl();
7063 
7064 	/* Let architecture update cpu core mappings. */
7065 	new_topology = arch_update_cpu_topology();
7066 
7067 	n = doms_new ? ndoms_new : 0;
7068 
7069 	/* Destroy deleted domains */
7070 	for (i = 0; i < ndoms_cur; i++) {
7071 		for (j = 0; j < n && !new_topology; j++) {
7072 			if (cpumask_equal(doms_cur[i], doms_new[j])
7073 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7074 				goto match1;
7075 		}
7076 		/* no match - a current sched domain not in new doms_new[] */
7077 		detach_destroy_domains(doms_cur[i]);
7078 match1:
7079 		;
7080 	}
7081 
7082 	n = ndoms_cur;
7083 	if (doms_new == NULL) {
7084 		n = 0;
7085 		doms_new = &fallback_doms;
7086 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7087 		WARN_ON_ONCE(dattr_new);
7088 	}
7089 
7090 	/* Build new domains */
7091 	for (i = 0; i < ndoms_new; i++) {
7092 		for (j = 0; j < n && !new_topology; j++) {
7093 			if (cpumask_equal(doms_new[i], doms_cur[j])
7094 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7095 				goto match2;
7096 		}
7097 		/* no match - add a new doms_new */
7098 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7099 match2:
7100 		;
7101 	}
7102 
7103 	/* Remember the new sched domains */
7104 	if (doms_cur != &fallback_doms)
7105 		free_sched_domains(doms_cur, ndoms_cur);
7106 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7107 	doms_cur = doms_new;
7108 	dattr_cur = dattr_new;
7109 	ndoms_cur = ndoms_new;
7110 
7111 	register_sched_domain_sysctl();
7112 
7113 	mutex_unlock(&sched_domains_mutex);
7114 }
7115 
7116 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7117 
7118 /*
7119  * Update cpusets according to cpu_active mask.  If cpusets are
7120  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7121  * around partition_sched_domains().
7122  *
7123  * If we come here as part of a suspend/resume, don't touch cpusets because we
7124  * want to restore it back to its original state upon resume anyway.
7125  */
7126 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7127 			     void *hcpu)
7128 {
7129 	switch (action) {
7130 	case CPU_ONLINE_FROZEN:
7131 	case CPU_DOWN_FAILED_FROZEN:
7132 
7133 		/*
7134 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7135 		 * resume sequence. As long as this is not the last online
7136 		 * operation in the resume sequence, just build a single sched
7137 		 * domain, ignoring cpusets.
7138 		 */
7139 		num_cpus_frozen--;
7140 		if (likely(num_cpus_frozen)) {
7141 			partition_sched_domains(1, NULL, NULL);
7142 			break;
7143 		}
7144 
7145 		/*
7146 		 * This is the last CPU online operation. So fall through and
7147 		 * restore the original sched domains by considering the
7148 		 * cpuset configurations.
7149 		 */
7150 
7151 	case CPU_ONLINE:
7152 		cpuset_update_active_cpus(true);
7153 		break;
7154 	default:
7155 		return NOTIFY_DONE;
7156 	}
7157 	return NOTIFY_OK;
7158 }
7159 
7160 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7161 			       void *hcpu)
7162 {
7163 	unsigned long flags;
7164 	long cpu = (long)hcpu;
7165 	struct dl_bw *dl_b;
7166 	bool overflow;
7167 	int cpus;
7168 
7169 	switch (action) {
7170 	case CPU_DOWN_PREPARE:
7171 		rcu_read_lock_sched();
7172 		dl_b = dl_bw_of(cpu);
7173 
7174 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7175 		cpus = dl_bw_cpus(cpu);
7176 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7177 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7178 
7179 		rcu_read_unlock_sched();
7180 
7181 		if (overflow)
7182 			return notifier_from_errno(-EBUSY);
7183 		cpuset_update_active_cpus(false);
7184 		break;
7185 	case CPU_DOWN_PREPARE_FROZEN:
7186 		num_cpus_frozen++;
7187 		partition_sched_domains(1, NULL, NULL);
7188 		break;
7189 	default:
7190 		return NOTIFY_DONE;
7191 	}
7192 	return NOTIFY_OK;
7193 }
7194 
7195 void __init sched_init_smp(void)
7196 {
7197 	cpumask_var_t non_isolated_cpus;
7198 
7199 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7200 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7201 
7202 	/* nohz_full won't take effect without isolating the cpus. */
7203 	tick_nohz_full_add_cpus_to(cpu_isolated_map);
7204 
7205 	sched_init_numa();
7206 
7207 	/*
7208 	 * There's no userspace yet to cause hotplug operations; hence all the
7209 	 * cpu masks are stable and all blatant races in the below code cannot
7210 	 * happen.
7211 	 */
7212 	mutex_lock(&sched_domains_mutex);
7213 	init_sched_domains(cpu_active_mask);
7214 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7215 	if (cpumask_empty(non_isolated_cpus))
7216 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7217 	mutex_unlock(&sched_domains_mutex);
7218 
7219 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7220 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7221 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7222 
7223 	init_hrtick();
7224 
7225 	/* Move init over to a non-isolated CPU */
7226 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7227 		BUG();
7228 	sched_init_granularity();
7229 	free_cpumask_var(non_isolated_cpus);
7230 
7231 	init_sched_rt_class();
7232 	init_sched_dl_class();
7233 }
7234 #else
7235 void __init sched_init_smp(void)
7236 {
7237 	sched_init_granularity();
7238 }
7239 #endif /* CONFIG_SMP */
7240 
7241 int in_sched_functions(unsigned long addr)
7242 {
7243 	return in_lock_functions(addr) ||
7244 		(addr >= (unsigned long)__sched_text_start
7245 		&& addr < (unsigned long)__sched_text_end);
7246 }
7247 
7248 #ifdef CONFIG_CGROUP_SCHED
7249 /*
7250  * Default task group.
7251  * Every task in system belongs to this group at bootup.
7252  */
7253 struct task_group root_task_group;
7254 LIST_HEAD(task_groups);
7255 #endif
7256 
7257 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7258 
7259 void __init sched_init(void)
7260 {
7261 	int i, j;
7262 	unsigned long alloc_size = 0, ptr;
7263 
7264 #ifdef CONFIG_FAIR_GROUP_SCHED
7265 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7266 #endif
7267 #ifdef CONFIG_RT_GROUP_SCHED
7268 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7269 #endif
7270 	if (alloc_size) {
7271 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7272 
7273 #ifdef CONFIG_FAIR_GROUP_SCHED
7274 		root_task_group.se = (struct sched_entity **)ptr;
7275 		ptr += nr_cpu_ids * sizeof(void **);
7276 
7277 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7278 		ptr += nr_cpu_ids * sizeof(void **);
7279 
7280 #endif /* CONFIG_FAIR_GROUP_SCHED */
7281 #ifdef CONFIG_RT_GROUP_SCHED
7282 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7283 		ptr += nr_cpu_ids * sizeof(void **);
7284 
7285 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7286 		ptr += nr_cpu_ids * sizeof(void **);
7287 
7288 #endif /* CONFIG_RT_GROUP_SCHED */
7289 	}
7290 #ifdef CONFIG_CPUMASK_OFFSTACK
7291 	for_each_possible_cpu(i) {
7292 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7293 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7294 	}
7295 #endif /* CONFIG_CPUMASK_OFFSTACK */
7296 
7297 	init_rt_bandwidth(&def_rt_bandwidth,
7298 			global_rt_period(), global_rt_runtime());
7299 	init_dl_bandwidth(&def_dl_bandwidth,
7300 			global_rt_period(), global_rt_runtime());
7301 
7302 #ifdef CONFIG_SMP
7303 	init_defrootdomain();
7304 #endif
7305 
7306 #ifdef CONFIG_RT_GROUP_SCHED
7307 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7308 			global_rt_period(), global_rt_runtime());
7309 #endif /* CONFIG_RT_GROUP_SCHED */
7310 
7311 #ifdef CONFIG_CGROUP_SCHED
7312 	list_add(&root_task_group.list, &task_groups);
7313 	INIT_LIST_HEAD(&root_task_group.children);
7314 	INIT_LIST_HEAD(&root_task_group.siblings);
7315 	autogroup_init(&init_task);
7316 
7317 #endif /* CONFIG_CGROUP_SCHED */
7318 
7319 	for_each_possible_cpu(i) {
7320 		struct rq *rq;
7321 
7322 		rq = cpu_rq(i);
7323 		raw_spin_lock_init(&rq->lock);
7324 		rq->nr_running = 0;
7325 		rq->calc_load_active = 0;
7326 		rq->calc_load_update = jiffies + LOAD_FREQ;
7327 		init_cfs_rq(&rq->cfs);
7328 		init_rt_rq(&rq->rt);
7329 		init_dl_rq(&rq->dl);
7330 #ifdef CONFIG_FAIR_GROUP_SCHED
7331 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7332 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7333 		/*
7334 		 * How much cpu bandwidth does root_task_group get?
7335 		 *
7336 		 * In case of task-groups formed thr' the cgroup filesystem, it
7337 		 * gets 100% of the cpu resources in the system. This overall
7338 		 * system cpu resource is divided among the tasks of
7339 		 * root_task_group and its child task-groups in a fair manner,
7340 		 * based on each entity's (task or task-group's) weight
7341 		 * (se->load.weight).
7342 		 *
7343 		 * In other words, if root_task_group has 10 tasks of weight
7344 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7345 		 * then A0's share of the cpu resource is:
7346 		 *
7347 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7348 		 *
7349 		 * We achieve this by letting root_task_group's tasks sit
7350 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7351 		 */
7352 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7353 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7354 #endif /* CONFIG_FAIR_GROUP_SCHED */
7355 
7356 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7357 #ifdef CONFIG_RT_GROUP_SCHED
7358 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7359 #endif
7360 
7361 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7362 			rq->cpu_load[j] = 0;
7363 
7364 		rq->last_load_update_tick = jiffies;
7365 
7366 #ifdef CONFIG_SMP
7367 		rq->sd = NULL;
7368 		rq->rd = NULL;
7369 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7370 		rq->balance_callback = NULL;
7371 		rq->active_balance = 0;
7372 		rq->next_balance = jiffies;
7373 		rq->push_cpu = 0;
7374 		rq->cpu = i;
7375 		rq->online = 0;
7376 		rq->idle_stamp = 0;
7377 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7378 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7379 
7380 		INIT_LIST_HEAD(&rq->cfs_tasks);
7381 
7382 		rq_attach_root(rq, &def_root_domain);
7383 #ifdef CONFIG_NO_HZ_COMMON
7384 		rq->nohz_flags = 0;
7385 #endif
7386 #ifdef CONFIG_NO_HZ_FULL
7387 		rq->last_sched_tick = 0;
7388 #endif
7389 #endif
7390 		init_rq_hrtick(rq);
7391 		atomic_set(&rq->nr_iowait, 0);
7392 	}
7393 
7394 	set_load_weight(&init_task);
7395 
7396 #ifdef CONFIG_PREEMPT_NOTIFIERS
7397 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7398 #endif
7399 
7400 	/*
7401 	 * The boot idle thread does lazy MMU switching as well:
7402 	 */
7403 	atomic_inc(&init_mm.mm_count);
7404 	enter_lazy_tlb(&init_mm, current);
7405 
7406 	/*
7407 	 * During early bootup we pretend to be a normal task:
7408 	 */
7409 	current->sched_class = &fair_sched_class;
7410 
7411 	/*
7412 	 * Make us the idle thread. Technically, schedule() should not be
7413 	 * called from this thread, however somewhere below it might be,
7414 	 * but because we are the idle thread, we just pick up running again
7415 	 * when this runqueue becomes "idle".
7416 	 */
7417 	init_idle(current, smp_processor_id());
7418 
7419 	calc_load_update = jiffies + LOAD_FREQ;
7420 
7421 #ifdef CONFIG_SMP
7422 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7423 	/* May be allocated at isolcpus cmdline parse time */
7424 	if (cpu_isolated_map == NULL)
7425 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7426 	idle_thread_set_boot_cpu();
7427 	set_cpu_rq_start_time();
7428 #endif
7429 	init_sched_fair_class();
7430 
7431 	scheduler_running = 1;
7432 }
7433 
7434 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7435 static inline int preempt_count_equals(int preempt_offset)
7436 {
7437 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7438 
7439 	return (nested == preempt_offset);
7440 }
7441 
7442 void __might_sleep(const char *file, int line, int preempt_offset)
7443 {
7444 	/*
7445 	 * Blocking primitives will set (and therefore destroy) current->state,
7446 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7447 	 * otherwise we will destroy state.
7448 	 */
7449 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7450 			"do not call blocking ops when !TASK_RUNNING; "
7451 			"state=%lx set at [<%p>] %pS\n",
7452 			current->state,
7453 			(void *)current->task_state_change,
7454 			(void *)current->task_state_change);
7455 
7456 	___might_sleep(file, line, preempt_offset);
7457 }
7458 EXPORT_SYMBOL(__might_sleep);
7459 
7460 void ___might_sleep(const char *file, int line, int preempt_offset)
7461 {
7462 	static unsigned long prev_jiffy;	/* ratelimiting */
7463 
7464 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7465 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7466 	     !is_idle_task(current)) ||
7467 	    system_state != SYSTEM_RUNNING || oops_in_progress)
7468 		return;
7469 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7470 		return;
7471 	prev_jiffy = jiffies;
7472 
7473 	printk(KERN_ERR
7474 		"BUG: sleeping function called from invalid context at %s:%d\n",
7475 			file, line);
7476 	printk(KERN_ERR
7477 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7478 			in_atomic(), irqs_disabled(),
7479 			current->pid, current->comm);
7480 
7481 	if (task_stack_end_corrupted(current))
7482 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7483 
7484 	debug_show_held_locks(current);
7485 	if (irqs_disabled())
7486 		print_irqtrace_events(current);
7487 #ifdef CONFIG_DEBUG_PREEMPT
7488 	if (!preempt_count_equals(preempt_offset)) {
7489 		pr_err("Preemption disabled at:");
7490 		print_ip_sym(current->preempt_disable_ip);
7491 		pr_cont("\n");
7492 	}
7493 #endif
7494 	dump_stack();
7495 }
7496 EXPORT_SYMBOL(___might_sleep);
7497 #endif
7498 
7499 #ifdef CONFIG_MAGIC_SYSRQ
7500 void normalize_rt_tasks(void)
7501 {
7502 	struct task_struct *g, *p;
7503 	struct sched_attr attr = {
7504 		.sched_policy = SCHED_NORMAL,
7505 	};
7506 
7507 	read_lock(&tasklist_lock);
7508 	for_each_process_thread(g, p) {
7509 		/*
7510 		 * Only normalize user tasks:
7511 		 */
7512 		if (p->flags & PF_KTHREAD)
7513 			continue;
7514 
7515 		p->se.exec_start		= 0;
7516 #ifdef CONFIG_SCHEDSTATS
7517 		p->se.statistics.wait_start	= 0;
7518 		p->se.statistics.sleep_start	= 0;
7519 		p->se.statistics.block_start	= 0;
7520 #endif
7521 
7522 		if (!dl_task(p) && !rt_task(p)) {
7523 			/*
7524 			 * Renice negative nice level userspace
7525 			 * tasks back to 0:
7526 			 */
7527 			if (task_nice(p) < 0)
7528 				set_user_nice(p, 0);
7529 			continue;
7530 		}
7531 
7532 		__sched_setscheduler(p, &attr, false, false);
7533 	}
7534 	read_unlock(&tasklist_lock);
7535 }
7536 
7537 #endif /* CONFIG_MAGIC_SYSRQ */
7538 
7539 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7540 /*
7541  * These functions are only useful for the IA64 MCA handling, or kdb.
7542  *
7543  * They can only be called when the whole system has been
7544  * stopped - every CPU needs to be quiescent, and no scheduling
7545  * activity can take place. Using them for anything else would
7546  * be a serious bug, and as a result, they aren't even visible
7547  * under any other configuration.
7548  */
7549 
7550 /**
7551  * curr_task - return the current task for a given cpu.
7552  * @cpu: the processor in question.
7553  *
7554  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7555  *
7556  * Return: The current task for @cpu.
7557  */
7558 struct task_struct *curr_task(int cpu)
7559 {
7560 	return cpu_curr(cpu);
7561 }
7562 
7563 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7564 
7565 #ifdef CONFIG_IA64
7566 /**
7567  * set_curr_task - set the current task for a given cpu.
7568  * @cpu: the processor in question.
7569  * @p: the task pointer to set.
7570  *
7571  * Description: This function must only be used when non-maskable interrupts
7572  * are serviced on a separate stack. It allows the architecture to switch the
7573  * notion of the current task on a cpu in a non-blocking manner. This function
7574  * must be called with all CPU's synchronized, and interrupts disabled, the
7575  * and caller must save the original value of the current task (see
7576  * curr_task() above) and restore that value before reenabling interrupts and
7577  * re-starting the system.
7578  *
7579  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7580  */
7581 void set_curr_task(int cpu, struct task_struct *p)
7582 {
7583 	cpu_curr(cpu) = p;
7584 }
7585 
7586 #endif
7587 
7588 #ifdef CONFIG_CGROUP_SCHED
7589 /* task_group_lock serializes the addition/removal of task groups */
7590 static DEFINE_SPINLOCK(task_group_lock);
7591 
7592 static void free_sched_group(struct task_group *tg)
7593 {
7594 	free_fair_sched_group(tg);
7595 	free_rt_sched_group(tg);
7596 	autogroup_free(tg);
7597 	kfree(tg);
7598 }
7599 
7600 /* allocate runqueue etc for a new task group */
7601 struct task_group *sched_create_group(struct task_group *parent)
7602 {
7603 	struct task_group *tg;
7604 
7605 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7606 	if (!tg)
7607 		return ERR_PTR(-ENOMEM);
7608 
7609 	if (!alloc_fair_sched_group(tg, parent))
7610 		goto err;
7611 
7612 	if (!alloc_rt_sched_group(tg, parent))
7613 		goto err;
7614 
7615 	return tg;
7616 
7617 err:
7618 	free_sched_group(tg);
7619 	return ERR_PTR(-ENOMEM);
7620 }
7621 
7622 void sched_online_group(struct task_group *tg, struct task_group *parent)
7623 {
7624 	unsigned long flags;
7625 
7626 	spin_lock_irqsave(&task_group_lock, flags);
7627 	list_add_rcu(&tg->list, &task_groups);
7628 
7629 	WARN_ON(!parent); /* root should already exist */
7630 
7631 	tg->parent = parent;
7632 	INIT_LIST_HEAD(&tg->children);
7633 	list_add_rcu(&tg->siblings, &parent->children);
7634 	spin_unlock_irqrestore(&task_group_lock, flags);
7635 }
7636 
7637 /* rcu callback to free various structures associated with a task group */
7638 static void free_sched_group_rcu(struct rcu_head *rhp)
7639 {
7640 	/* now it should be safe to free those cfs_rqs */
7641 	free_sched_group(container_of(rhp, struct task_group, rcu));
7642 }
7643 
7644 /* Destroy runqueue etc associated with a task group */
7645 void sched_destroy_group(struct task_group *tg)
7646 {
7647 	/* wait for possible concurrent references to cfs_rqs complete */
7648 	call_rcu(&tg->rcu, free_sched_group_rcu);
7649 }
7650 
7651 void sched_offline_group(struct task_group *tg)
7652 {
7653 	unsigned long flags;
7654 	int i;
7655 
7656 	/* end participation in shares distribution */
7657 	for_each_possible_cpu(i)
7658 		unregister_fair_sched_group(tg, i);
7659 
7660 	spin_lock_irqsave(&task_group_lock, flags);
7661 	list_del_rcu(&tg->list);
7662 	list_del_rcu(&tg->siblings);
7663 	spin_unlock_irqrestore(&task_group_lock, flags);
7664 }
7665 
7666 /* change task's runqueue when it moves between groups.
7667  *	The caller of this function should have put the task in its new group
7668  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7669  *	reflect its new group.
7670  */
7671 void sched_move_task(struct task_struct *tsk)
7672 {
7673 	struct task_group *tg;
7674 	int queued, running;
7675 	unsigned long flags;
7676 	struct rq *rq;
7677 
7678 	rq = task_rq_lock(tsk, &flags);
7679 
7680 	running = task_current(rq, tsk);
7681 	queued = task_on_rq_queued(tsk);
7682 
7683 	if (queued)
7684 		dequeue_task(rq, tsk, 0);
7685 	if (unlikely(running))
7686 		put_prev_task(rq, tsk);
7687 
7688 	/*
7689 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7690 	 * which is pointless here. Thus, we pass "true" to task_css_check()
7691 	 * to prevent lockdep warnings.
7692 	 */
7693 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7694 			  struct task_group, css);
7695 	tg = autogroup_task_group(tsk, tg);
7696 	tsk->sched_task_group = tg;
7697 
7698 #ifdef CONFIG_FAIR_GROUP_SCHED
7699 	if (tsk->sched_class->task_move_group)
7700 		tsk->sched_class->task_move_group(tsk, queued);
7701 	else
7702 #endif
7703 		set_task_rq(tsk, task_cpu(tsk));
7704 
7705 	if (unlikely(running))
7706 		tsk->sched_class->set_curr_task(rq);
7707 	if (queued)
7708 		enqueue_task(rq, tsk, 0);
7709 
7710 	task_rq_unlock(rq, tsk, &flags);
7711 }
7712 #endif /* CONFIG_CGROUP_SCHED */
7713 
7714 #ifdef CONFIG_RT_GROUP_SCHED
7715 /*
7716  * Ensure that the real time constraints are schedulable.
7717  */
7718 static DEFINE_MUTEX(rt_constraints_mutex);
7719 
7720 /* Must be called with tasklist_lock held */
7721 static inline int tg_has_rt_tasks(struct task_group *tg)
7722 {
7723 	struct task_struct *g, *p;
7724 
7725 	/*
7726 	 * Autogroups do not have RT tasks; see autogroup_create().
7727 	 */
7728 	if (task_group_is_autogroup(tg))
7729 		return 0;
7730 
7731 	for_each_process_thread(g, p) {
7732 		if (rt_task(p) && task_group(p) == tg)
7733 			return 1;
7734 	}
7735 
7736 	return 0;
7737 }
7738 
7739 struct rt_schedulable_data {
7740 	struct task_group *tg;
7741 	u64 rt_period;
7742 	u64 rt_runtime;
7743 };
7744 
7745 static int tg_rt_schedulable(struct task_group *tg, void *data)
7746 {
7747 	struct rt_schedulable_data *d = data;
7748 	struct task_group *child;
7749 	unsigned long total, sum = 0;
7750 	u64 period, runtime;
7751 
7752 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7753 	runtime = tg->rt_bandwidth.rt_runtime;
7754 
7755 	if (tg == d->tg) {
7756 		period = d->rt_period;
7757 		runtime = d->rt_runtime;
7758 	}
7759 
7760 	/*
7761 	 * Cannot have more runtime than the period.
7762 	 */
7763 	if (runtime > period && runtime != RUNTIME_INF)
7764 		return -EINVAL;
7765 
7766 	/*
7767 	 * Ensure we don't starve existing RT tasks.
7768 	 */
7769 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7770 		return -EBUSY;
7771 
7772 	total = to_ratio(period, runtime);
7773 
7774 	/*
7775 	 * Nobody can have more than the global setting allows.
7776 	 */
7777 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7778 		return -EINVAL;
7779 
7780 	/*
7781 	 * The sum of our children's runtime should not exceed our own.
7782 	 */
7783 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7784 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7785 		runtime = child->rt_bandwidth.rt_runtime;
7786 
7787 		if (child == d->tg) {
7788 			period = d->rt_period;
7789 			runtime = d->rt_runtime;
7790 		}
7791 
7792 		sum += to_ratio(period, runtime);
7793 	}
7794 
7795 	if (sum > total)
7796 		return -EINVAL;
7797 
7798 	return 0;
7799 }
7800 
7801 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7802 {
7803 	int ret;
7804 
7805 	struct rt_schedulable_data data = {
7806 		.tg = tg,
7807 		.rt_period = period,
7808 		.rt_runtime = runtime,
7809 	};
7810 
7811 	rcu_read_lock();
7812 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7813 	rcu_read_unlock();
7814 
7815 	return ret;
7816 }
7817 
7818 static int tg_set_rt_bandwidth(struct task_group *tg,
7819 		u64 rt_period, u64 rt_runtime)
7820 {
7821 	int i, err = 0;
7822 
7823 	/*
7824 	 * Disallowing the root group RT runtime is BAD, it would disallow the
7825 	 * kernel creating (and or operating) RT threads.
7826 	 */
7827 	if (tg == &root_task_group && rt_runtime == 0)
7828 		return -EINVAL;
7829 
7830 	/* No period doesn't make any sense. */
7831 	if (rt_period == 0)
7832 		return -EINVAL;
7833 
7834 	mutex_lock(&rt_constraints_mutex);
7835 	read_lock(&tasklist_lock);
7836 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7837 	if (err)
7838 		goto unlock;
7839 
7840 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7841 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7842 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7843 
7844 	for_each_possible_cpu(i) {
7845 		struct rt_rq *rt_rq = tg->rt_rq[i];
7846 
7847 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7848 		rt_rq->rt_runtime = rt_runtime;
7849 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7850 	}
7851 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7852 unlock:
7853 	read_unlock(&tasklist_lock);
7854 	mutex_unlock(&rt_constraints_mutex);
7855 
7856 	return err;
7857 }
7858 
7859 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7860 {
7861 	u64 rt_runtime, rt_period;
7862 
7863 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7864 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7865 	if (rt_runtime_us < 0)
7866 		rt_runtime = RUNTIME_INF;
7867 
7868 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7869 }
7870 
7871 static long sched_group_rt_runtime(struct task_group *tg)
7872 {
7873 	u64 rt_runtime_us;
7874 
7875 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7876 		return -1;
7877 
7878 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7879 	do_div(rt_runtime_us, NSEC_PER_USEC);
7880 	return rt_runtime_us;
7881 }
7882 
7883 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7884 {
7885 	u64 rt_runtime, rt_period;
7886 
7887 	rt_period = rt_period_us * NSEC_PER_USEC;
7888 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7889 
7890 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7891 }
7892 
7893 static long sched_group_rt_period(struct task_group *tg)
7894 {
7895 	u64 rt_period_us;
7896 
7897 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7898 	do_div(rt_period_us, NSEC_PER_USEC);
7899 	return rt_period_us;
7900 }
7901 #endif /* CONFIG_RT_GROUP_SCHED */
7902 
7903 #ifdef CONFIG_RT_GROUP_SCHED
7904 static int sched_rt_global_constraints(void)
7905 {
7906 	int ret = 0;
7907 
7908 	mutex_lock(&rt_constraints_mutex);
7909 	read_lock(&tasklist_lock);
7910 	ret = __rt_schedulable(NULL, 0, 0);
7911 	read_unlock(&tasklist_lock);
7912 	mutex_unlock(&rt_constraints_mutex);
7913 
7914 	return ret;
7915 }
7916 
7917 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7918 {
7919 	/* Don't accept realtime tasks when there is no way for them to run */
7920 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7921 		return 0;
7922 
7923 	return 1;
7924 }
7925 
7926 #else /* !CONFIG_RT_GROUP_SCHED */
7927 static int sched_rt_global_constraints(void)
7928 {
7929 	unsigned long flags;
7930 	int i, ret = 0;
7931 
7932 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7933 	for_each_possible_cpu(i) {
7934 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7935 
7936 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7937 		rt_rq->rt_runtime = global_rt_runtime();
7938 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7939 	}
7940 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7941 
7942 	return ret;
7943 }
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7945 
7946 static int sched_dl_global_validate(void)
7947 {
7948 	u64 runtime = global_rt_runtime();
7949 	u64 period = global_rt_period();
7950 	u64 new_bw = to_ratio(period, runtime);
7951 	struct dl_bw *dl_b;
7952 	int cpu, ret = 0;
7953 	unsigned long flags;
7954 
7955 	/*
7956 	 * Here we want to check the bandwidth not being set to some
7957 	 * value smaller than the currently allocated bandwidth in
7958 	 * any of the root_domains.
7959 	 *
7960 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7961 	 * cycling on root_domains... Discussion on different/better
7962 	 * solutions is welcome!
7963 	 */
7964 	for_each_possible_cpu(cpu) {
7965 		rcu_read_lock_sched();
7966 		dl_b = dl_bw_of(cpu);
7967 
7968 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7969 		if (new_bw < dl_b->total_bw)
7970 			ret = -EBUSY;
7971 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972 
7973 		rcu_read_unlock_sched();
7974 
7975 		if (ret)
7976 			break;
7977 	}
7978 
7979 	return ret;
7980 }
7981 
7982 static void sched_dl_do_global(void)
7983 {
7984 	u64 new_bw = -1;
7985 	struct dl_bw *dl_b;
7986 	int cpu;
7987 	unsigned long flags;
7988 
7989 	def_dl_bandwidth.dl_period = global_rt_period();
7990 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7991 
7992 	if (global_rt_runtime() != RUNTIME_INF)
7993 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7994 
7995 	/*
7996 	 * FIXME: As above...
7997 	 */
7998 	for_each_possible_cpu(cpu) {
7999 		rcu_read_lock_sched();
8000 		dl_b = dl_bw_of(cpu);
8001 
8002 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8003 		dl_b->bw = new_bw;
8004 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8005 
8006 		rcu_read_unlock_sched();
8007 	}
8008 }
8009 
8010 static int sched_rt_global_validate(void)
8011 {
8012 	if (sysctl_sched_rt_period <= 0)
8013 		return -EINVAL;
8014 
8015 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8016 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8017 		return -EINVAL;
8018 
8019 	return 0;
8020 }
8021 
8022 static void sched_rt_do_global(void)
8023 {
8024 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8025 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8026 }
8027 
8028 int sched_rt_handler(struct ctl_table *table, int write,
8029 		void __user *buffer, size_t *lenp,
8030 		loff_t *ppos)
8031 {
8032 	int old_period, old_runtime;
8033 	static DEFINE_MUTEX(mutex);
8034 	int ret;
8035 
8036 	mutex_lock(&mutex);
8037 	old_period = sysctl_sched_rt_period;
8038 	old_runtime = sysctl_sched_rt_runtime;
8039 
8040 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8041 
8042 	if (!ret && write) {
8043 		ret = sched_rt_global_validate();
8044 		if (ret)
8045 			goto undo;
8046 
8047 		ret = sched_dl_global_validate();
8048 		if (ret)
8049 			goto undo;
8050 
8051 		ret = sched_rt_global_constraints();
8052 		if (ret)
8053 			goto undo;
8054 
8055 		sched_rt_do_global();
8056 		sched_dl_do_global();
8057 	}
8058 	if (0) {
8059 undo:
8060 		sysctl_sched_rt_period = old_period;
8061 		sysctl_sched_rt_runtime = old_runtime;
8062 	}
8063 	mutex_unlock(&mutex);
8064 
8065 	return ret;
8066 }
8067 
8068 int sched_rr_handler(struct ctl_table *table, int write,
8069 		void __user *buffer, size_t *lenp,
8070 		loff_t *ppos)
8071 {
8072 	int ret;
8073 	static DEFINE_MUTEX(mutex);
8074 
8075 	mutex_lock(&mutex);
8076 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8077 	/* make sure that internally we keep jiffies */
8078 	/* also, writing zero resets timeslice to default */
8079 	if (!ret && write) {
8080 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8081 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8082 	}
8083 	mutex_unlock(&mutex);
8084 	return ret;
8085 }
8086 
8087 #ifdef CONFIG_CGROUP_SCHED
8088 
8089 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8090 {
8091 	return css ? container_of(css, struct task_group, css) : NULL;
8092 }
8093 
8094 static struct cgroup_subsys_state *
8095 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8096 {
8097 	struct task_group *parent = css_tg(parent_css);
8098 	struct task_group *tg;
8099 
8100 	if (!parent) {
8101 		/* This is early initialization for the top cgroup */
8102 		return &root_task_group.css;
8103 	}
8104 
8105 	tg = sched_create_group(parent);
8106 	if (IS_ERR(tg))
8107 		return ERR_PTR(-ENOMEM);
8108 
8109 	return &tg->css;
8110 }
8111 
8112 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8113 {
8114 	struct task_group *tg = css_tg(css);
8115 	struct task_group *parent = css_tg(css->parent);
8116 
8117 	if (parent)
8118 		sched_online_group(tg, parent);
8119 	return 0;
8120 }
8121 
8122 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8123 {
8124 	struct task_group *tg = css_tg(css);
8125 
8126 	sched_destroy_group(tg);
8127 }
8128 
8129 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8130 {
8131 	struct task_group *tg = css_tg(css);
8132 
8133 	sched_offline_group(tg);
8134 }
8135 
8136 static void cpu_cgroup_fork(struct task_struct *task)
8137 {
8138 	sched_move_task(task);
8139 }
8140 
8141 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8142 				 struct cgroup_taskset *tset)
8143 {
8144 	struct task_struct *task;
8145 
8146 	cgroup_taskset_for_each(task, tset) {
8147 #ifdef CONFIG_RT_GROUP_SCHED
8148 		if (!sched_rt_can_attach(css_tg(css), task))
8149 			return -EINVAL;
8150 #else
8151 		/* We don't support RT-tasks being in separate groups */
8152 		if (task->sched_class != &fair_sched_class)
8153 			return -EINVAL;
8154 #endif
8155 	}
8156 	return 0;
8157 }
8158 
8159 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8160 			      struct cgroup_taskset *tset)
8161 {
8162 	struct task_struct *task;
8163 
8164 	cgroup_taskset_for_each(task, tset)
8165 		sched_move_task(task);
8166 }
8167 
8168 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8169 			    struct cgroup_subsys_state *old_css,
8170 			    struct task_struct *task)
8171 {
8172 	/*
8173 	 * cgroup_exit() is called in the copy_process() failure path.
8174 	 * Ignore this case since the task hasn't ran yet, this avoids
8175 	 * trying to poke a half freed task state from generic code.
8176 	 */
8177 	if (!(task->flags & PF_EXITING))
8178 		return;
8179 
8180 	sched_move_task(task);
8181 }
8182 
8183 #ifdef CONFIG_FAIR_GROUP_SCHED
8184 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8185 				struct cftype *cftype, u64 shareval)
8186 {
8187 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8188 }
8189 
8190 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8191 			       struct cftype *cft)
8192 {
8193 	struct task_group *tg = css_tg(css);
8194 
8195 	return (u64) scale_load_down(tg->shares);
8196 }
8197 
8198 #ifdef CONFIG_CFS_BANDWIDTH
8199 static DEFINE_MUTEX(cfs_constraints_mutex);
8200 
8201 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8202 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8203 
8204 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8205 
8206 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8207 {
8208 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8209 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8210 
8211 	if (tg == &root_task_group)
8212 		return -EINVAL;
8213 
8214 	/*
8215 	 * Ensure we have at some amount of bandwidth every period.  This is
8216 	 * to prevent reaching a state of large arrears when throttled via
8217 	 * entity_tick() resulting in prolonged exit starvation.
8218 	 */
8219 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8220 		return -EINVAL;
8221 
8222 	/*
8223 	 * Likewise, bound things on the otherside by preventing insane quota
8224 	 * periods.  This also allows us to normalize in computing quota
8225 	 * feasibility.
8226 	 */
8227 	if (period > max_cfs_quota_period)
8228 		return -EINVAL;
8229 
8230 	/*
8231 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8232 	 * unthrottle_offline_cfs_rqs().
8233 	 */
8234 	get_online_cpus();
8235 	mutex_lock(&cfs_constraints_mutex);
8236 	ret = __cfs_schedulable(tg, period, quota);
8237 	if (ret)
8238 		goto out_unlock;
8239 
8240 	runtime_enabled = quota != RUNTIME_INF;
8241 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8242 	/*
8243 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8244 	 * before making related changes, and on->off must occur afterwards
8245 	 */
8246 	if (runtime_enabled && !runtime_was_enabled)
8247 		cfs_bandwidth_usage_inc();
8248 	raw_spin_lock_irq(&cfs_b->lock);
8249 	cfs_b->period = ns_to_ktime(period);
8250 	cfs_b->quota = quota;
8251 
8252 	__refill_cfs_bandwidth_runtime(cfs_b);
8253 	/* restart the period timer (if active) to handle new period expiry */
8254 	if (runtime_enabled)
8255 		start_cfs_bandwidth(cfs_b);
8256 	raw_spin_unlock_irq(&cfs_b->lock);
8257 
8258 	for_each_online_cpu(i) {
8259 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8260 		struct rq *rq = cfs_rq->rq;
8261 
8262 		raw_spin_lock_irq(&rq->lock);
8263 		cfs_rq->runtime_enabled = runtime_enabled;
8264 		cfs_rq->runtime_remaining = 0;
8265 
8266 		if (cfs_rq->throttled)
8267 			unthrottle_cfs_rq(cfs_rq);
8268 		raw_spin_unlock_irq(&rq->lock);
8269 	}
8270 	if (runtime_was_enabled && !runtime_enabled)
8271 		cfs_bandwidth_usage_dec();
8272 out_unlock:
8273 	mutex_unlock(&cfs_constraints_mutex);
8274 	put_online_cpus();
8275 
8276 	return ret;
8277 }
8278 
8279 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8280 {
8281 	u64 quota, period;
8282 
8283 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8284 	if (cfs_quota_us < 0)
8285 		quota = RUNTIME_INF;
8286 	else
8287 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8288 
8289 	return tg_set_cfs_bandwidth(tg, period, quota);
8290 }
8291 
8292 long tg_get_cfs_quota(struct task_group *tg)
8293 {
8294 	u64 quota_us;
8295 
8296 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8297 		return -1;
8298 
8299 	quota_us = tg->cfs_bandwidth.quota;
8300 	do_div(quota_us, NSEC_PER_USEC);
8301 
8302 	return quota_us;
8303 }
8304 
8305 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8306 {
8307 	u64 quota, period;
8308 
8309 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8310 	quota = tg->cfs_bandwidth.quota;
8311 
8312 	return tg_set_cfs_bandwidth(tg, period, quota);
8313 }
8314 
8315 long tg_get_cfs_period(struct task_group *tg)
8316 {
8317 	u64 cfs_period_us;
8318 
8319 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8320 	do_div(cfs_period_us, NSEC_PER_USEC);
8321 
8322 	return cfs_period_us;
8323 }
8324 
8325 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8326 				  struct cftype *cft)
8327 {
8328 	return tg_get_cfs_quota(css_tg(css));
8329 }
8330 
8331 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8332 				   struct cftype *cftype, s64 cfs_quota_us)
8333 {
8334 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8335 }
8336 
8337 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8338 				   struct cftype *cft)
8339 {
8340 	return tg_get_cfs_period(css_tg(css));
8341 }
8342 
8343 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8344 				    struct cftype *cftype, u64 cfs_period_us)
8345 {
8346 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8347 }
8348 
8349 struct cfs_schedulable_data {
8350 	struct task_group *tg;
8351 	u64 period, quota;
8352 };
8353 
8354 /*
8355  * normalize group quota/period to be quota/max_period
8356  * note: units are usecs
8357  */
8358 static u64 normalize_cfs_quota(struct task_group *tg,
8359 			       struct cfs_schedulable_data *d)
8360 {
8361 	u64 quota, period;
8362 
8363 	if (tg == d->tg) {
8364 		period = d->period;
8365 		quota = d->quota;
8366 	} else {
8367 		period = tg_get_cfs_period(tg);
8368 		quota = tg_get_cfs_quota(tg);
8369 	}
8370 
8371 	/* note: these should typically be equivalent */
8372 	if (quota == RUNTIME_INF || quota == -1)
8373 		return RUNTIME_INF;
8374 
8375 	return to_ratio(period, quota);
8376 }
8377 
8378 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8379 {
8380 	struct cfs_schedulable_data *d = data;
8381 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8382 	s64 quota = 0, parent_quota = -1;
8383 
8384 	if (!tg->parent) {
8385 		quota = RUNTIME_INF;
8386 	} else {
8387 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8388 
8389 		quota = normalize_cfs_quota(tg, d);
8390 		parent_quota = parent_b->hierarchical_quota;
8391 
8392 		/*
8393 		 * ensure max(child_quota) <= parent_quota, inherit when no
8394 		 * limit is set
8395 		 */
8396 		if (quota == RUNTIME_INF)
8397 			quota = parent_quota;
8398 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8399 			return -EINVAL;
8400 	}
8401 	cfs_b->hierarchical_quota = quota;
8402 
8403 	return 0;
8404 }
8405 
8406 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8407 {
8408 	int ret;
8409 	struct cfs_schedulable_data data = {
8410 		.tg = tg,
8411 		.period = period,
8412 		.quota = quota,
8413 	};
8414 
8415 	if (quota != RUNTIME_INF) {
8416 		do_div(data.period, NSEC_PER_USEC);
8417 		do_div(data.quota, NSEC_PER_USEC);
8418 	}
8419 
8420 	rcu_read_lock();
8421 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8422 	rcu_read_unlock();
8423 
8424 	return ret;
8425 }
8426 
8427 static int cpu_stats_show(struct seq_file *sf, void *v)
8428 {
8429 	struct task_group *tg = css_tg(seq_css(sf));
8430 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8431 
8432 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8433 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8434 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8435 
8436 	return 0;
8437 }
8438 #endif /* CONFIG_CFS_BANDWIDTH */
8439 #endif /* CONFIG_FAIR_GROUP_SCHED */
8440 
8441 #ifdef CONFIG_RT_GROUP_SCHED
8442 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8443 				struct cftype *cft, s64 val)
8444 {
8445 	return sched_group_set_rt_runtime(css_tg(css), val);
8446 }
8447 
8448 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8449 			       struct cftype *cft)
8450 {
8451 	return sched_group_rt_runtime(css_tg(css));
8452 }
8453 
8454 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8455 				    struct cftype *cftype, u64 rt_period_us)
8456 {
8457 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8458 }
8459 
8460 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8461 				   struct cftype *cft)
8462 {
8463 	return sched_group_rt_period(css_tg(css));
8464 }
8465 #endif /* CONFIG_RT_GROUP_SCHED */
8466 
8467 static struct cftype cpu_files[] = {
8468 #ifdef CONFIG_FAIR_GROUP_SCHED
8469 	{
8470 		.name = "shares",
8471 		.read_u64 = cpu_shares_read_u64,
8472 		.write_u64 = cpu_shares_write_u64,
8473 	},
8474 #endif
8475 #ifdef CONFIG_CFS_BANDWIDTH
8476 	{
8477 		.name = "cfs_quota_us",
8478 		.read_s64 = cpu_cfs_quota_read_s64,
8479 		.write_s64 = cpu_cfs_quota_write_s64,
8480 	},
8481 	{
8482 		.name = "cfs_period_us",
8483 		.read_u64 = cpu_cfs_period_read_u64,
8484 		.write_u64 = cpu_cfs_period_write_u64,
8485 	},
8486 	{
8487 		.name = "stat",
8488 		.seq_show = cpu_stats_show,
8489 	},
8490 #endif
8491 #ifdef CONFIG_RT_GROUP_SCHED
8492 	{
8493 		.name = "rt_runtime_us",
8494 		.read_s64 = cpu_rt_runtime_read,
8495 		.write_s64 = cpu_rt_runtime_write,
8496 	},
8497 	{
8498 		.name = "rt_period_us",
8499 		.read_u64 = cpu_rt_period_read_uint,
8500 		.write_u64 = cpu_rt_period_write_uint,
8501 	},
8502 #endif
8503 	{ }	/* terminate */
8504 };
8505 
8506 struct cgroup_subsys cpu_cgrp_subsys = {
8507 	.css_alloc	= cpu_cgroup_css_alloc,
8508 	.css_free	= cpu_cgroup_css_free,
8509 	.css_online	= cpu_cgroup_css_online,
8510 	.css_offline	= cpu_cgroup_css_offline,
8511 	.fork		= cpu_cgroup_fork,
8512 	.can_attach	= cpu_cgroup_can_attach,
8513 	.attach		= cpu_cgroup_attach,
8514 	.exit		= cpu_cgroup_exit,
8515 	.legacy_cftypes	= cpu_files,
8516 	.early_init	= 1,
8517 };
8518 
8519 #endif	/* CONFIG_CGROUP_SCHED */
8520 
8521 void dump_cpu_task(int cpu)
8522 {
8523 	pr_info("Task dump for CPU %d:\n", cpu);
8524 	sched_show_task(cpu_curr(cpu));
8525 }
8526