xref: /linux/kernel/sched/core.c (revision ce63b2c89cc02d8acf7472272016ecd979fb08d5)
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Core kernel scheduler code and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  */
8 #include "sched.h"
9 
10 #include <linux/kthread.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/switch_to.h>
14 #include <asm/tlb.h>
15 
16 #include "../workqueue_internal.h"
17 #include "../smpboot.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/sched.h>
21 
22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
23 
24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
25 /*
26  * Debugging: various feature bits
27  *
28  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29  * sysctl_sched_features, defined in sched.h, to allow constants propagation
30  * at compile time and compiler optimization based on features default.
31  */
32 #define SCHED_FEAT(name, enabled)	\
33 	(1UL << __SCHED_FEAT_##name) * enabled |
34 const_debug unsigned int sysctl_sched_features =
35 #include "features.h"
36 	0;
37 #undef SCHED_FEAT
38 #endif
39 
40 /*
41  * Number of tasks to iterate in a single balance run.
42  * Limited because this is done with IRQs disabled.
43  */
44 const_debug unsigned int sysctl_sched_nr_migrate = 32;
45 
46 /*
47  * period over which we average the RT time consumption, measured
48  * in ms.
49  *
50  * default: 1s
51  */
52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
53 
54 /*
55  * period over which we measure -rt task CPU usage in us.
56  * default: 1s
57  */
58 unsigned int sysctl_sched_rt_period = 1000000;
59 
60 __read_mostly int scheduler_running;
61 
62 /*
63  * part of the period that we allow rt tasks to run in us.
64  * default: 0.95s
65  */
66 int sysctl_sched_rt_runtime = 950000;
67 
68 /*
69  * __task_rq_lock - lock the rq @p resides on.
70  */
71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
72 	__acquires(rq->lock)
73 {
74 	struct rq *rq;
75 
76 	lockdep_assert_held(&p->pi_lock);
77 
78 	for (;;) {
79 		rq = task_rq(p);
80 		raw_spin_lock(&rq->lock);
81 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
82 			rq_pin_lock(rq, rf);
83 			return rq;
84 		}
85 		raw_spin_unlock(&rq->lock);
86 
87 		while (unlikely(task_on_rq_migrating(p)))
88 			cpu_relax();
89 	}
90 }
91 
92 /*
93  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
94  */
95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 	__acquires(p->pi_lock)
97 	__acquires(rq->lock)
98 {
99 	struct rq *rq;
100 
101 	for (;;) {
102 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
103 		rq = task_rq(p);
104 		raw_spin_lock(&rq->lock);
105 		/*
106 		 *	move_queued_task()		task_rq_lock()
107 		 *
108 		 *	ACQUIRE (rq->lock)
109 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
110 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
111 		 *	[S] ->cpu = new_cpu		[L] task_rq()
112 		 *					[L] ->on_rq
113 		 *	RELEASE (rq->lock)
114 		 *
115 		 * If we observe the old CPU in task_rq_lock, the acquire of
116 		 * the old rq->lock will fully serialize against the stores.
117 		 *
118 		 * If we observe the new CPU in task_rq_lock, the acquire will
119 		 * pair with the WMB to ensure we must then also see migrating.
120 		 */
121 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
122 			rq_pin_lock(rq, rf);
123 			return rq;
124 		}
125 		raw_spin_unlock(&rq->lock);
126 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
127 
128 		while (unlikely(task_on_rq_migrating(p)))
129 			cpu_relax();
130 	}
131 }
132 
133 /*
134  * RQ-clock updating methods:
135  */
136 
137 static void update_rq_clock_task(struct rq *rq, s64 delta)
138 {
139 /*
140  * In theory, the compile should just see 0 here, and optimize out the call
141  * to sched_rt_avg_update. But I don't trust it...
142  */
143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 	s64 steal = 0, irq_delta = 0;
145 #endif
146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
148 
149 	/*
150 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 	 * this case when a previous update_rq_clock() happened inside a
152 	 * {soft,}irq region.
153 	 *
154 	 * When this happens, we stop ->clock_task and only update the
155 	 * prev_irq_time stamp to account for the part that fit, so that a next
156 	 * update will consume the rest. This ensures ->clock_task is
157 	 * monotonic.
158 	 *
159 	 * It does however cause some slight miss-attribution of {soft,}irq
160 	 * time, a more accurate solution would be to update the irq_time using
161 	 * the current rq->clock timestamp, except that would require using
162 	 * atomic ops.
163 	 */
164 	if (irq_delta > delta)
165 		irq_delta = delta;
166 
167 	rq->prev_irq_time += irq_delta;
168 	delta -= irq_delta;
169 #endif
170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 	if (static_key_false((&paravirt_steal_rq_enabled))) {
172 		steal = paravirt_steal_clock(cpu_of(rq));
173 		steal -= rq->prev_steal_time_rq;
174 
175 		if (unlikely(steal > delta))
176 			steal = delta;
177 
178 		rq->prev_steal_time_rq += steal;
179 		delta -= steal;
180 	}
181 #endif
182 
183 	rq->clock_task += delta;
184 
185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 		sched_rt_avg_update(rq, irq_delta + steal);
188 #endif
189 }
190 
191 void update_rq_clock(struct rq *rq)
192 {
193 	s64 delta;
194 
195 	lockdep_assert_held(&rq->lock);
196 
197 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
198 		return;
199 
200 #ifdef CONFIG_SCHED_DEBUG
201 	if (sched_feat(WARN_DOUBLE_CLOCK))
202 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 	rq->clock_update_flags |= RQCF_UPDATED;
204 #endif
205 
206 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
207 	if (delta < 0)
208 		return;
209 	rq->clock += delta;
210 	update_rq_clock_task(rq, delta);
211 }
212 
213 
214 #ifdef CONFIG_SCHED_HRTICK
215 /*
216  * Use HR-timers to deliver accurate preemption points.
217  */
218 
219 static void hrtick_clear(struct rq *rq)
220 {
221 	if (hrtimer_active(&rq->hrtick_timer))
222 		hrtimer_cancel(&rq->hrtick_timer);
223 }
224 
225 /*
226  * High-resolution timer tick.
227  * Runs from hardirq context with interrupts disabled.
228  */
229 static enum hrtimer_restart hrtick(struct hrtimer *timer)
230 {
231 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
232 	struct rq_flags rf;
233 
234 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
235 
236 	rq_lock(rq, &rf);
237 	update_rq_clock(rq);
238 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
239 	rq_unlock(rq, &rf);
240 
241 	return HRTIMER_NORESTART;
242 }
243 
244 #ifdef CONFIG_SMP
245 
246 static void __hrtick_restart(struct rq *rq)
247 {
248 	struct hrtimer *timer = &rq->hrtick_timer;
249 
250 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
251 }
252 
253 /*
254  * called from hardirq (IPI) context
255  */
256 static void __hrtick_start(void *arg)
257 {
258 	struct rq *rq = arg;
259 	struct rq_flags rf;
260 
261 	rq_lock(rq, &rf);
262 	__hrtick_restart(rq);
263 	rq->hrtick_csd_pending = 0;
264 	rq_unlock(rq, &rf);
265 }
266 
267 /*
268  * Called to set the hrtick timer state.
269  *
270  * called with rq->lock held and irqs disabled
271  */
272 void hrtick_start(struct rq *rq, u64 delay)
273 {
274 	struct hrtimer *timer = &rq->hrtick_timer;
275 	ktime_t time;
276 	s64 delta;
277 
278 	/*
279 	 * Don't schedule slices shorter than 10000ns, that just
280 	 * doesn't make sense and can cause timer DoS.
281 	 */
282 	delta = max_t(s64, delay, 10000LL);
283 	time = ktime_add_ns(timer->base->get_time(), delta);
284 
285 	hrtimer_set_expires(timer, time);
286 
287 	if (rq == this_rq()) {
288 		__hrtick_restart(rq);
289 	} else if (!rq->hrtick_csd_pending) {
290 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 		rq->hrtick_csd_pending = 1;
292 	}
293 }
294 
295 #else
296 /*
297  * Called to set the hrtick timer state.
298  *
299  * called with rq->lock held and irqs disabled
300  */
301 void hrtick_start(struct rq *rq, u64 delay)
302 {
303 	/*
304 	 * Don't schedule slices shorter than 10000ns, that just
305 	 * doesn't make sense. Rely on vruntime for fairness.
306 	 */
307 	delay = max_t(u64, delay, 10000LL);
308 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 		      HRTIMER_MODE_REL_PINNED);
310 }
311 #endif /* CONFIG_SMP */
312 
313 static void hrtick_rq_init(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 	rq->hrtick_csd_pending = 0;
317 
318 	rq->hrtick_csd.flags = 0;
319 	rq->hrtick_csd.func = __hrtick_start;
320 	rq->hrtick_csd.info = rq;
321 #endif
322 
323 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 	rq->hrtick_timer.function = hrtick;
325 }
326 #else	/* CONFIG_SCHED_HRTICK */
327 static inline void hrtick_clear(struct rq *rq)
328 {
329 }
330 
331 static inline void hrtick_rq_init(struct rq *rq)
332 {
333 }
334 #endif	/* CONFIG_SCHED_HRTICK */
335 
336 /*
337  * cmpxchg based fetch_or, macro so it works for different integer types
338  */
339 #define fetch_or(ptr, mask)						\
340 	({								\
341 		typeof(ptr) _ptr = (ptr);				\
342 		typeof(mask) _mask = (mask);				\
343 		typeof(*_ptr) _old, _val = *_ptr;			\
344 									\
345 		for (;;) {						\
346 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
347 			if (_old == _val)				\
348 				break;					\
349 			_val = _old;					\
350 		}							\
351 	_old;								\
352 })
353 
354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
355 /*
356  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357  * this avoids any races wrt polling state changes and thereby avoids
358  * spurious IPIs.
359  */
360 static bool set_nr_and_not_polling(struct task_struct *p)
361 {
362 	struct thread_info *ti = task_thread_info(p);
363 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
364 }
365 
366 /*
367  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
368  *
369  * If this returns true, then the idle task promises to call
370  * sched_ttwu_pending() and reschedule soon.
371  */
372 static bool set_nr_if_polling(struct task_struct *p)
373 {
374 	struct thread_info *ti = task_thread_info(p);
375 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
376 
377 	for (;;) {
378 		if (!(val & _TIF_POLLING_NRFLAG))
379 			return false;
380 		if (val & _TIF_NEED_RESCHED)
381 			return true;
382 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
383 		if (old == val)
384 			break;
385 		val = old;
386 	}
387 	return true;
388 }
389 
390 #else
391 static bool set_nr_and_not_polling(struct task_struct *p)
392 {
393 	set_tsk_need_resched(p);
394 	return true;
395 }
396 
397 #ifdef CONFIG_SMP
398 static bool set_nr_if_polling(struct task_struct *p)
399 {
400 	return false;
401 }
402 #endif
403 #endif
404 
405 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
406 {
407 	struct wake_q_node *node = &task->wake_q;
408 
409 	/*
410 	 * Atomically grab the task, if ->wake_q is !nil already it means
411 	 * its already queued (either by us or someone else) and will get the
412 	 * wakeup due to that.
413 	 *
414 	 * This cmpxchg() implies a full barrier, which pairs with the write
415 	 * barrier implied by the wakeup in wake_up_q().
416 	 */
417 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
418 		return;
419 
420 	get_task_struct(task);
421 
422 	/*
423 	 * The head is context local, there can be no concurrency.
424 	 */
425 	*head->lastp = node;
426 	head->lastp = &node->next;
427 }
428 
429 void wake_up_q(struct wake_q_head *head)
430 {
431 	struct wake_q_node *node = head->first;
432 
433 	while (node != WAKE_Q_TAIL) {
434 		struct task_struct *task;
435 
436 		task = container_of(node, struct task_struct, wake_q);
437 		BUG_ON(!task);
438 		/* Task can safely be re-inserted now: */
439 		node = node->next;
440 		task->wake_q.next = NULL;
441 
442 		/*
443 		 * wake_up_process() implies a wmb() to pair with the queueing
444 		 * in wake_q_add() so as not to miss wakeups.
445 		 */
446 		wake_up_process(task);
447 		put_task_struct(task);
448 	}
449 }
450 
451 /*
452  * resched_curr - mark rq's current task 'to be rescheduled now'.
453  *
454  * On UP this means the setting of the need_resched flag, on SMP it
455  * might also involve a cross-CPU call to trigger the scheduler on
456  * the target CPU.
457  */
458 void resched_curr(struct rq *rq)
459 {
460 	struct task_struct *curr = rq->curr;
461 	int cpu;
462 
463 	lockdep_assert_held(&rq->lock);
464 
465 	if (test_tsk_need_resched(curr))
466 		return;
467 
468 	cpu = cpu_of(rq);
469 
470 	if (cpu == smp_processor_id()) {
471 		set_tsk_need_resched(curr);
472 		set_preempt_need_resched();
473 		return;
474 	}
475 
476 	if (set_nr_and_not_polling(curr))
477 		smp_send_reschedule(cpu);
478 	else
479 		trace_sched_wake_idle_without_ipi(cpu);
480 }
481 
482 void resched_cpu(int cpu)
483 {
484 	struct rq *rq = cpu_rq(cpu);
485 	unsigned long flags;
486 
487 	raw_spin_lock_irqsave(&rq->lock, flags);
488 	if (cpu_online(cpu) || cpu == smp_processor_id())
489 		resched_curr(rq);
490 	raw_spin_unlock_irqrestore(&rq->lock, flags);
491 }
492 
493 #ifdef CONFIG_SMP
494 #ifdef CONFIG_NO_HZ_COMMON
495 /*
496  * In the semi idle case, use the nearest busy CPU for migrating timers
497  * from an idle CPU.  This is good for power-savings.
498  *
499  * We don't do similar optimization for completely idle system, as
500  * selecting an idle CPU will add more delays to the timers than intended
501  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
502  */
503 int get_nohz_timer_target(void)
504 {
505 	int i, cpu = smp_processor_id();
506 	struct sched_domain *sd;
507 
508 	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
509 		return cpu;
510 
511 	rcu_read_lock();
512 	for_each_domain(cpu, sd) {
513 		for_each_cpu(i, sched_domain_span(sd)) {
514 			if (cpu == i)
515 				continue;
516 
517 			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
518 				cpu = i;
519 				goto unlock;
520 			}
521 		}
522 	}
523 
524 	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
526 unlock:
527 	rcu_read_unlock();
528 	return cpu;
529 }
530 
531 /*
532  * When add_timer_on() enqueues a timer into the timer wheel of an
533  * idle CPU then this timer might expire before the next timer event
534  * which is scheduled to wake up that CPU. In case of a completely
535  * idle system the next event might even be infinite time into the
536  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537  * leaves the inner idle loop so the newly added timer is taken into
538  * account when the CPU goes back to idle and evaluates the timer
539  * wheel for the next timer event.
540  */
541 static void wake_up_idle_cpu(int cpu)
542 {
543 	struct rq *rq = cpu_rq(cpu);
544 
545 	if (cpu == smp_processor_id())
546 		return;
547 
548 	if (set_nr_and_not_polling(rq->idle))
549 		smp_send_reschedule(cpu);
550 	else
551 		trace_sched_wake_idle_without_ipi(cpu);
552 }
553 
554 static bool wake_up_full_nohz_cpu(int cpu)
555 {
556 	/*
557 	 * We just need the target to call irq_exit() and re-evaluate
558 	 * the next tick. The nohz full kick at least implies that.
559 	 * If needed we can still optimize that later with an
560 	 * empty IRQ.
561 	 */
562 	if (cpu_is_offline(cpu))
563 		return true;  /* Don't try to wake offline CPUs. */
564 	if (tick_nohz_full_cpu(cpu)) {
565 		if (cpu != smp_processor_id() ||
566 		    tick_nohz_tick_stopped())
567 			tick_nohz_full_kick_cpu(cpu);
568 		return true;
569 	}
570 
571 	return false;
572 }
573 
574 /*
575  * Wake up the specified CPU.  If the CPU is going offline, it is the
576  * caller's responsibility to deal with the lost wakeup, for example,
577  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
578  */
579 void wake_up_nohz_cpu(int cpu)
580 {
581 	if (!wake_up_full_nohz_cpu(cpu))
582 		wake_up_idle_cpu(cpu);
583 }
584 
585 static inline bool got_nohz_idle_kick(void)
586 {
587 	int cpu = smp_processor_id();
588 
589 	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
590 		return false;
591 
592 	if (idle_cpu(cpu) && !need_resched())
593 		return true;
594 
595 	/*
596 	 * We can't run Idle Load Balance on this CPU for this time so we
597 	 * cancel it and clear NOHZ_BALANCE_KICK
598 	 */
599 	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
600 	return false;
601 }
602 
603 #else /* CONFIG_NO_HZ_COMMON */
604 
605 static inline bool got_nohz_idle_kick(void)
606 {
607 	return false;
608 }
609 
610 #endif /* CONFIG_NO_HZ_COMMON */
611 
612 #ifdef CONFIG_NO_HZ_FULL
613 bool sched_can_stop_tick(struct rq *rq)
614 {
615 	int fifo_nr_running;
616 
617 	/* Deadline tasks, even if single, need the tick */
618 	if (rq->dl.dl_nr_running)
619 		return false;
620 
621 	/*
622 	 * If there are more than one RR tasks, we need the tick to effect the
623 	 * actual RR behaviour.
624 	 */
625 	if (rq->rt.rr_nr_running) {
626 		if (rq->rt.rr_nr_running == 1)
627 			return true;
628 		else
629 			return false;
630 	}
631 
632 	/*
633 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 	 * forced preemption between FIFO tasks.
635 	 */
636 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 	if (fifo_nr_running)
638 		return true;
639 
640 	/*
641 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 	 * if there's more than one we need the tick for involuntary
643 	 * preemption.
644 	 */
645 	if (rq->nr_running > 1)
646 		return false;
647 
648 	return true;
649 }
650 #endif /* CONFIG_NO_HZ_FULL */
651 
652 void sched_avg_update(struct rq *rq)
653 {
654 	s64 period = sched_avg_period();
655 
656 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
657 		/*
658 		 * Inline assembly required to prevent the compiler
659 		 * optimising this loop into a divmod call.
660 		 * See __iter_div_u64_rem() for another example of this.
661 		 */
662 		asm("" : "+rm" (rq->age_stamp));
663 		rq->age_stamp += period;
664 		rq->rt_avg /= 2;
665 	}
666 }
667 
668 #endif /* CONFIG_SMP */
669 
670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
672 /*
673  * Iterate task_group tree rooted at *from, calling @down when first entering a
674  * node and @up when leaving it for the final time.
675  *
676  * Caller must hold rcu_lock or sufficient equivalent.
677  */
678 int walk_tg_tree_from(struct task_group *from,
679 			     tg_visitor down, tg_visitor up, void *data)
680 {
681 	struct task_group *parent, *child;
682 	int ret;
683 
684 	parent = from;
685 
686 down:
687 	ret = (*down)(parent, data);
688 	if (ret)
689 		goto out;
690 	list_for_each_entry_rcu(child, &parent->children, siblings) {
691 		parent = child;
692 		goto down;
693 
694 up:
695 		continue;
696 	}
697 	ret = (*up)(parent, data);
698 	if (ret || parent == from)
699 		goto out;
700 
701 	child = parent;
702 	parent = parent->parent;
703 	if (parent)
704 		goto up;
705 out:
706 	return ret;
707 }
708 
709 int tg_nop(struct task_group *tg, void *data)
710 {
711 	return 0;
712 }
713 #endif
714 
715 static void set_load_weight(struct task_struct *p, bool update_load)
716 {
717 	int prio = p->static_prio - MAX_RT_PRIO;
718 	struct load_weight *load = &p->se.load;
719 
720 	/*
721 	 * SCHED_IDLE tasks get minimal weight:
722 	 */
723 	if (idle_policy(p->policy)) {
724 		load->weight = scale_load(WEIGHT_IDLEPRIO);
725 		load->inv_weight = WMULT_IDLEPRIO;
726 		return;
727 	}
728 
729 	/*
730 	 * SCHED_OTHER tasks have to update their load when changing their
731 	 * weight
732 	 */
733 	if (update_load && p->sched_class == &fair_sched_class) {
734 		reweight_task(p, prio);
735 	} else {
736 		load->weight = scale_load(sched_prio_to_weight[prio]);
737 		load->inv_weight = sched_prio_to_wmult[prio];
738 	}
739 }
740 
741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
742 {
743 	if (!(flags & ENQUEUE_NOCLOCK))
744 		update_rq_clock(rq);
745 
746 	if (!(flags & ENQUEUE_RESTORE))
747 		sched_info_queued(rq, p);
748 
749 	p->sched_class->enqueue_task(rq, p, flags);
750 }
751 
752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
753 {
754 	if (!(flags & DEQUEUE_NOCLOCK))
755 		update_rq_clock(rq);
756 
757 	if (!(flags & DEQUEUE_SAVE))
758 		sched_info_dequeued(rq, p);
759 
760 	p->sched_class->dequeue_task(rq, p, flags);
761 }
762 
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 	if (task_contributes_to_load(p))
766 		rq->nr_uninterruptible--;
767 
768 	enqueue_task(rq, p, flags);
769 }
770 
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 	if (task_contributes_to_load(p))
774 		rq->nr_uninterruptible++;
775 
776 	dequeue_task(rq, p, flags);
777 }
778 
779 /*
780  * __normal_prio - return the priority that is based on the static prio
781  */
782 static inline int __normal_prio(struct task_struct *p)
783 {
784 	return p->static_prio;
785 }
786 
787 /*
788  * Calculate the expected normal priority: i.e. priority
789  * without taking RT-inheritance into account. Might be
790  * boosted by interactivity modifiers. Changes upon fork,
791  * setprio syscalls, and whenever the interactivity
792  * estimator recalculates.
793  */
794 static inline int normal_prio(struct task_struct *p)
795 {
796 	int prio;
797 
798 	if (task_has_dl_policy(p))
799 		prio = MAX_DL_PRIO-1;
800 	else if (task_has_rt_policy(p))
801 		prio = MAX_RT_PRIO-1 - p->rt_priority;
802 	else
803 		prio = __normal_prio(p);
804 	return prio;
805 }
806 
807 /*
808  * Calculate the current priority, i.e. the priority
809  * taken into account by the scheduler. This value might
810  * be boosted by RT tasks, or might be boosted by
811  * interactivity modifiers. Will be RT if the task got
812  * RT-boosted. If not then it returns p->normal_prio.
813  */
814 static int effective_prio(struct task_struct *p)
815 {
816 	p->normal_prio = normal_prio(p);
817 	/*
818 	 * If we are RT tasks or we were boosted to RT priority,
819 	 * keep the priority unchanged. Otherwise, update priority
820 	 * to the normal priority:
821 	 */
822 	if (!rt_prio(p->prio))
823 		return p->normal_prio;
824 	return p->prio;
825 }
826 
827 /**
828  * task_curr - is this task currently executing on a CPU?
829  * @p: the task in question.
830  *
831  * Return: 1 if the task is currently executing. 0 otherwise.
832  */
833 inline int task_curr(const struct task_struct *p)
834 {
835 	return cpu_curr(task_cpu(p)) == p;
836 }
837 
838 /*
839  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840  * use the balance_callback list if you want balancing.
841  *
842  * this means any call to check_class_changed() must be followed by a call to
843  * balance_callback().
844  */
845 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 				       const struct sched_class *prev_class,
847 				       int oldprio)
848 {
849 	if (prev_class != p->sched_class) {
850 		if (prev_class->switched_from)
851 			prev_class->switched_from(rq, p);
852 
853 		p->sched_class->switched_to(rq, p);
854 	} else if (oldprio != p->prio || dl_task(p))
855 		p->sched_class->prio_changed(rq, p, oldprio);
856 }
857 
858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
859 {
860 	const struct sched_class *class;
861 
862 	if (p->sched_class == rq->curr->sched_class) {
863 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
864 	} else {
865 		for_each_class(class) {
866 			if (class == rq->curr->sched_class)
867 				break;
868 			if (class == p->sched_class) {
869 				resched_curr(rq);
870 				break;
871 			}
872 		}
873 	}
874 
875 	/*
876 	 * A queue event has occurred, and we're going to schedule.  In
877 	 * this case, we can save a useless back to back clock update.
878 	 */
879 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 		rq_clock_skip_update(rq);
881 }
882 
883 #ifdef CONFIG_SMP
884 
885 static inline bool is_per_cpu_kthread(struct task_struct *p)
886 {
887 	if (!(p->flags & PF_KTHREAD))
888 		return false;
889 
890 	if (p->nr_cpus_allowed != 1)
891 		return false;
892 
893 	return true;
894 }
895 
896 /*
897  * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898  * __set_cpus_allowed_ptr() and select_fallback_rq().
899  */
900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
901 {
902 	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
903 		return false;
904 
905 	if (is_per_cpu_kthread(p))
906 		return cpu_online(cpu);
907 
908 	return cpu_active(cpu);
909 }
910 
911 /*
912  * This is how migration works:
913  *
914  * 1) we invoke migration_cpu_stop() on the target CPU using
915  *    stop_one_cpu().
916  * 2) stopper starts to run (implicitly forcing the migrated thread
917  *    off the CPU)
918  * 3) it checks whether the migrated task is still in the wrong runqueue.
919  * 4) if it's in the wrong runqueue then the migration thread removes
920  *    it and puts it into the right queue.
921  * 5) stopper completes and stop_one_cpu() returns and the migration
922  *    is done.
923  */
924 
925 /*
926  * move_queued_task - move a queued task to new rq.
927  *
928  * Returns (locked) new rq. Old rq's lock is released.
929  */
930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 				   struct task_struct *p, int new_cpu)
932 {
933 	lockdep_assert_held(&rq->lock);
934 
935 	p->on_rq = TASK_ON_RQ_MIGRATING;
936 	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 	set_task_cpu(p, new_cpu);
938 	rq_unlock(rq, rf);
939 
940 	rq = cpu_rq(new_cpu);
941 
942 	rq_lock(rq, rf);
943 	BUG_ON(task_cpu(p) != new_cpu);
944 	enqueue_task(rq, p, 0);
945 	p->on_rq = TASK_ON_RQ_QUEUED;
946 	check_preempt_curr(rq, p, 0);
947 
948 	return rq;
949 }
950 
951 struct migration_arg {
952 	struct task_struct *task;
953 	int dest_cpu;
954 };
955 
956 /*
957  * Move (not current) task off this CPU, onto the destination CPU. We're doing
958  * this because either it can't run here any more (set_cpus_allowed()
959  * away from this CPU, or CPU going down), or because we're
960  * attempting to rebalance this task on exec (sched_exec).
961  *
962  * So we race with normal scheduler movements, but that's OK, as long
963  * as the task is no longer on this CPU.
964  */
965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 				 struct task_struct *p, int dest_cpu)
967 {
968 	/* Affinity changed (again). */
969 	if (!is_cpu_allowed(p, dest_cpu))
970 		return rq;
971 
972 	update_rq_clock(rq);
973 	rq = move_queued_task(rq, rf, p, dest_cpu);
974 
975 	return rq;
976 }
977 
978 /*
979  * migration_cpu_stop - this will be executed by a highprio stopper thread
980  * and performs thread migration by bumping thread off CPU then
981  * 'pushing' onto another runqueue.
982  */
983 static int migration_cpu_stop(void *data)
984 {
985 	struct migration_arg *arg = data;
986 	struct task_struct *p = arg->task;
987 	struct rq *rq = this_rq();
988 	struct rq_flags rf;
989 
990 	/*
991 	 * The original target CPU might have gone down and we might
992 	 * be on another CPU but it doesn't matter.
993 	 */
994 	local_irq_disable();
995 	/*
996 	 * We need to explicitly wake pending tasks before running
997 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
999 	 */
1000 	sched_ttwu_pending();
1001 
1002 	raw_spin_lock(&p->pi_lock);
1003 	rq_lock(rq, &rf);
1004 	/*
1005 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 	 * we're holding p->pi_lock.
1008 	 */
1009 	if (task_rq(p) == rq) {
1010 		if (task_on_rq_queued(p))
1011 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1012 		else
1013 			p->wake_cpu = arg->dest_cpu;
1014 	}
1015 	rq_unlock(rq, &rf);
1016 	raw_spin_unlock(&p->pi_lock);
1017 
1018 	local_irq_enable();
1019 	return 0;
1020 }
1021 
1022 /*
1023  * sched_class::set_cpus_allowed must do the below, but is not required to
1024  * actually call this function.
1025  */
1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1027 {
1028 	cpumask_copy(&p->cpus_allowed, new_mask);
1029 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1030 }
1031 
1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1033 {
1034 	struct rq *rq = task_rq(p);
1035 	bool queued, running;
1036 
1037 	lockdep_assert_held(&p->pi_lock);
1038 
1039 	queued = task_on_rq_queued(p);
1040 	running = task_current(rq, p);
1041 
1042 	if (queued) {
1043 		/*
1044 		 * Because __kthread_bind() calls this on blocked tasks without
1045 		 * holding rq->lock.
1046 		 */
1047 		lockdep_assert_held(&rq->lock);
1048 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1049 	}
1050 	if (running)
1051 		put_prev_task(rq, p);
1052 
1053 	p->sched_class->set_cpus_allowed(p, new_mask);
1054 
1055 	if (queued)
1056 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1057 	if (running)
1058 		set_curr_task(rq, p);
1059 }
1060 
1061 /*
1062  * Change a given task's CPU affinity. Migrate the thread to a
1063  * proper CPU and schedule it away if the CPU it's executing on
1064  * is removed from the allowed bitmask.
1065  *
1066  * NOTE: the caller must have a valid reference to the task, the
1067  * task must not exit() & deallocate itself prematurely. The
1068  * call is not atomic; no spinlocks may be held.
1069  */
1070 static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 				  const struct cpumask *new_mask, bool check)
1072 {
1073 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 	unsigned int dest_cpu;
1075 	struct rq_flags rf;
1076 	struct rq *rq;
1077 	int ret = 0;
1078 
1079 	rq = task_rq_lock(p, &rf);
1080 	update_rq_clock(rq);
1081 
1082 	if (p->flags & PF_KTHREAD) {
1083 		/*
1084 		 * Kernel threads are allowed on online && !active CPUs
1085 		 */
1086 		cpu_valid_mask = cpu_online_mask;
1087 	}
1088 
1089 	/*
1090 	 * Must re-check here, to close a race against __kthread_bind(),
1091 	 * sched_setaffinity() is not guaranteed to observe the flag.
1092 	 */
1093 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1094 		ret = -EINVAL;
1095 		goto out;
1096 	}
1097 
1098 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1099 		goto out;
1100 
1101 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1102 		ret = -EINVAL;
1103 		goto out;
1104 	}
1105 
1106 	do_set_cpus_allowed(p, new_mask);
1107 
1108 	if (p->flags & PF_KTHREAD) {
1109 		/*
1110 		 * For kernel threads that do indeed end up on online &&
1111 		 * !active we want to ensure they are strict per-CPU threads.
1112 		 */
1113 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1115 			p->nr_cpus_allowed != 1);
1116 	}
1117 
1118 	/* Can the task run on the task's current CPU? If so, we're done */
1119 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1120 		goto out;
1121 
1122 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 		struct migration_arg arg = { p, dest_cpu };
1125 		/* Need help from migration thread: drop lock and wait. */
1126 		task_rq_unlock(rq, p, &rf);
1127 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 		tlb_migrate_finish(p->mm);
1129 		return 0;
1130 	} else if (task_on_rq_queued(p)) {
1131 		/*
1132 		 * OK, since we're going to drop the lock immediately
1133 		 * afterwards anyway.
1134 		 */
1135 		rq = move_queued_task(rq, &rf, p, dest_cpu);
1136 	}
1137 out:
1138 	task_rq_unlock(rq, p, &rf);
1139 
1140 	return ret;
1141 }
1142 
1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1144 {
1145 	return __set_cpus_allowed_ptr(p, new_mask, false);
1146 }
1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1148 
1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1150 {
1151 #ifdef CONFIG_SCHED_DEBUG
1152 	/*
1153 	 * We should never call set_task_cpu() on a blocked task,
1154 	 * ttwu() will sort out the placement.
1155 	 */
1156 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1157 			!p->on_rq);
1158 
1159 	/*
1160 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 	 * time relying on p->on_rq.
1163 	 */
1164 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 		     p->sched_class == &fair_sched_class &&
1166 		     (p->on_rq && !task_on_rq_migrating(p)));
1167 
1168 #ifdef CONFIG_LOCKDEP
1169 	/*
1170 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1172 	 *
1173 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1174 	 * see task_group().
1175 	 *
1176 	 * Furthermore, all task_rq users should acquire both locks, see
1177 	 * task_rq_lock().
1178 	 */
1179 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 				      lockdep_is_held(&task_rq(p)->lock)));
1181 #endif
1182 	/*
1183 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1184 	 */
1185 	WARN_ON_ONCE(!cpu_online(new_cpu));
1186 #endif
1187 
1188 	trace_sched_migrate_task(p, new_cpu);
1189 
1190 	if (task_cpu(p) != new_cpu) {
1191 		if (p->sched_class->migrate_task_rq)
1192 			p->sched_class->migrate_task_rq(p);
1193 		p->se.nr_migrations++;
1194 		perf_event_task_migrate(p);
1195 	}
1196 
1197 	__set_task_cpu(p, new_cpu);
1198 }
1199 
1200 static void __migrate_swap_task(struct task_struct *p, int cpu)
1201 {
1202 	if (task_on_rq_queued(p)) {
1203 		struct rq *src_rq, *dst_rq;
1204 		struct rq_flags srf, drf;
1205 
1206 		src_rq = task_rq(p);
1207 		dst_rq = cpu_rq(cpu);
1208 
1209 		rq_pin_lock(src_rq, &srf);
1210 		rq_pin_lock(dst_rq, &drf);
1211 
1212 		p->on_rq = TASK_ON_RQ_MIGRATING;
1213 		deactivate_task(src_rq, p, 0);
1214 		set_task_cpu(p, cpu);
1215 		activate_task(dst_rq, p, 0);
1216 		p->on_rq = TASK_ON_RQ_QUEUED;
1217 		check_preempt_curr(dst_rq, p, 0);
1218 
1219 		rq_unpin_lock(dst_rq, &drf);
1220 		rq_unpin_lock(src_rq, &srf);
1221 
1222 	} else {
1223 		/*
1224 		 * Task isn't running anymore; make it appear like we migrated
1225 		 * it before it went to sleep. This means on wakeup we make the
1226 		 * previous CPU our target instead of where it really is.
1227 		 */
1228 		p->wake_cpu = cpu;
1229 	}
1230 }
1231 
1232 struct migration_swap_arg {
1233 	struct task_struct *src_task, *dst_task;
1234 	int src_cpu, dst_cpu;
1235 };
1236 
1237 static int migrate_swap_stop(void *data)
1238 {
1239 	struct migration_swap_arg *arg = data;
1240 	struct rq *src_rq, *dst_rq;
1241 	int ret = -EAGAIN;
1242 
1243 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1244 		return -EAGAIN;
1245 
1246 	src_rq = cpu_rq(arg->src_cpu);
1247 	dst_rq = cpu_rq(arg->dst_cpu);
1248 
1249 	double_raw_lock(&arg->src_task->pi_lock,
1250 			&arg->dst_task->pi_lock);
1251 	double_rq_lock(src_rq, dst_rq);
1252 
1253 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1254 		goto unlock;
1255 
1256 	if (task_cpu(arg->src_task) != arg->src_cpu)
1257 		goto unlock;
1258 
1259 	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1260 		goto unlock;
1261 
1262 	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1263 		goto unlock;
1264 
1265 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1266 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1267 
1268 	ret = 0;
1269 
1270 unlock:
1271 	double_rq_unlock(src_rq, dst_rq);
1272 	raw_spin_unlock(&arg->dst_task->pi_lock);
1273 	raw_spin_unlock(&arg->src_task->pi_lock);
1274 
1275 	return ret;
1276 }
1277 
1278 /*
1279  * Cross migrate two tasks
1280  */
1281 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1282 {
1283 	struct migration_swap_arg arg;
1284 	int ret = -EINVAL;
1285 
1286 	arg = (struct migration_swap_arg){
1287 		.src_task = cur,
1288 		.src_cpu = task_cpu(cur),
1289 		.dst_task = p,
1290 		.dst_cpu = task_cpu(p),
1291 	};
1292 
1293 	if (arg.src_cpu == arg.dst_cpu)
1294 		goto out;
1295 
1296 	/*
1297 	 * These three tests are all lockless; this is OK since all of them
1298 	 * will be re-checked with proper locks held further down the line.
1299 	 */
1300 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1301 		goto out;
1302 
1303 	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1304 		goto out;
1305 
1306 	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1307 		goto out;
1308 
1309 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1311 
1312 out:
1313 	return ret;
1314 }
1315 
1316 /*
1317  * wait_task_inactive - wait for a thread to unschedule.
1318  *
1319  * If @match_state is nonzero, it's the @p->state value just checked and
1320  * not expected to change.  If it changes, i.e. @p might have woken up,
1321  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1322  * we return a positive number (its total switch count).  If a second call
1323  * a short while later returns the same number, the caller can be sure that
1324  * @p has remained unscheduled the whole time.
1325  *
1326  * The caller must ensure that the task *will* unschedule sometime soon,
1327  * else this function might spin for a *long* time. This function can't
1328  * be called with interrupts off, or it may introduce deadlock with
1329  * smp_call_function() if an IPI is sent by the same process we are
1330  * waiting to become inactive.
1331  */
1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1333 {
1334 	int running, queued;
1335 	struct rq_flags rf;
1336 	unsigned long ncsw;
1337 	struct rq *rq;
1338 
1339 	for (;;) {
1340 		/*
1341 		 * We do the initial early heuristics without holding
1342 		 * any task-queue locks at all. We'll only try to get
1343 		 * the runqueue lock when things look like they will
1344 		 * work out!
1345 		 */
1346 		rq = task_rq(p);
1347 
1348 		/*
1349 		 * If the task is actively running on another CPU
1350 		 * still, just relax and busy-wait without holding
1351 		 * any locks.
1352 		 *
1353 		 * NOTE! Since we don't hold any locks, it's not
1354 		 * even sure that "rq" stays as the right runqueue!
1355 		 * But we don't care, since "task_running()" will
1356 		 * return false if the runqueue has changed and p
1357 		 * is actually now running somewhere else!
1358 		 */
1359 		while (task_running(rq, p)) {
1360 			if (match_state && unlikely(p->state != match_state))
1361 				return 0;
1362 			cpu_relax();
1363 		}
1364 
1365 		/*
1366 		 * Ok, time to look more closely! We need the rq
1367 		 * lock now, to be *sure*. If we're wrong, we'll
1368 		 * just go back and repeat.
1369 		 */
1370 		rq = task_rq_lock(p, &rf);
1371 		trace_sched_wait_task(p);
1372 		running = task_running(rq, p);
1373 		queued = task_on_rq_queued(p);
1374 		ncsw = 0;
1375 		if (!match_state || p->state == match_state)
1376 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 		task_rq_unlock(rq, p, &rf);
1378 
1379 		/*
1380 		 * If it changed from the expected state, bail out now.
1381 		 */
1382 		if (unlikely(!ncsw))
1383 			break;
1384 
1385 		/*
1386 		 * Was it really running after all now that we
1387 		 * checked with the proper locks actually held?
1388 		 *
1389 		 * Oops. Go back and try again..
1390 		 */
1391 		if (unlikely(running)) {
1392 			cpu_relax();
1393 			continue;
1394 		}
1395 
1396 		/*
1397 		 * It's not enough that it's not actively running,
1398 		 * it must be off the runqueue _entirely_, and not
1399 		 * preempted!
1400 		 *
1401 		 * So if it was still runnable (but just not actively
1402 		 * running right now), it's preempted, and we should
1403 		 * yield - it could be a while.
1404 		 */
1405 		if (unlikely(queued)) {
1406 			ktime_t to = NSEC_PER_SEC / HZ;
1407 
1408 			set_current_state(TASK_UNINTERRUPTIBLE);
1409 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1410 			continue;
1411 		}
1412 
1413 		/*
1414 		 * Ahh, all good. It wasn't running, and it wasn't
1415 		 * runnable, which means that it will never become
1416 		 * running in the future either. We're all done!
1417 		 */
1418 		break;
1419 	}
1420 
1421 	return ncsw;
1422 }
1423 
1424 /***
1425  * kick_process - kick a running thread to enter/exit the kernel
1426  * @p: the to-be-kicked thread
1427  *
1428  * Cause a process which is running on another CPU to enter
1429  * kernel-mode, without any delay. (to get signals handled.)
1430  *
1431  * NOTE: this function doesn't have to take the runqueue lock,
1432  * because all it wants to ensure is that the remote task enters
1433  * the kernel. If the IPI races and the task has been migrated
1434  * to another CPU then no harm is done and the purpose has been
1435  * achieved as well.
1436  */
1437 void kick_process(struct task_struct *p)
1438 {
1439 	int cpu;
1440 
1441 	preempt_disable();
1442 	cpu = task_cpu(p);
1443 	if ((cpu != smp_processor_id()) && task_curr(p))
1444 		smp_send_reschedule(cpu);
1445 	preempt_enable();
1446 }
1447 EXPORT_SYMBOL_GPL(kick_process);
1448 
1449 /*
1450  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1451  *
1452  * A few notes on cpu_active vs cpu_online:
1453  *
1454  *  - cpu_active must be a subset of cpu_online
1455  *
1456  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457  *    see __set_cpus_allowed_ptr(). At this point the newly online
1458  *    CPU isn't yet part of the sched domains, and balancing will not
1459  *    see it.
1460  *
1461  *  - on CPU-down we clear cpu_active() to mask the sched domains and
1462  *    avoid the load balancer to place new tasks on the to be removed
1463  *    CPU. Existing tasks will remain running there and will be taken
1464  *    off.
1465  *
1466  * This means that fallback selection must not select !active CPUs.
1467  * And can assume that any active CPU must be online. Conversely
1468  * select_task_rq() below may allow selection of !active CPUs in order
1469  * to satisfy the above rules.
1470  */
1471 static int select_fallback_rq(int cpu, struct task_struct *p)
1472 {
1473 	int nid = cpu_to_node(cpu);
1474 	const struct cpumask *nodemask = NULL;
1475 	enum { cpuset, possible, fail } state = cpuset;
1476 	int dest_cpu;
1477 
1478 	/*
1479 	 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 	 * will return -1. There is no CPU on the node, and we should
1481 	 * select the CPU on the other node.
1482 	 */
1483 	if (nid != -1) {
1484 		nodemask = cpumask_of_node(nid);
1485 
1486 		/* Look for allowed, online CPU in same node. */
1487 		for_each_cpu(dest_cpu, nodemask) {
1488 			if (!cpu_active(dest_cpu))
1489 				continue;
1490 			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1491 				return dest_cpu;
1492 		}
1493 	}
1494 
1495 	for (;;) {
1496 		/* Any allowed, online CPU? */
1497 		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 			if (!is_cpu_allowed(p, dest_cpu))
1499 				continue;
1500 
1501 			goto out;
1502 		}
1503 
1504 		/* No more Mr. Nice Guy. */
1505 		switch (state) {
1506 		case cpuset:
1507 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 				cpuset_cpus_allowed_fallback(p);
1509 				state = possible;
1510 				break;
1511 			}
1512 			/* Fall-through */
1513 		case possible:
1514 			do_set_cpus_allowed(p, cpu_possible_mask);
1515 			state = fail;
1516 			break;
1517 
1518 		case fail:
1519 			BUG();
1520 			break;
1521 		}
1522 	}
1523 
1524 out:
1525 	if (state != cpuset) {
1526 		/*
1527 		 * Don't tell them about moving exiting tasks or
1528 		 * kernel threads (both mm NULL), since they never
1529 		 * leave kernel.
1530 		 */
1531 		if (p->mm && printk_ratelimit()) {
1532 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 					task_pid_nr(p), p->comm, cpu);
1534 		}
1535 	}
1536 
1537 	return dest_cpu;
1538 }
1539 
1540 /*
1541  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1542  */
1543 static inline
1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1545 {
1546 	lockdep_assert_held(&p->pi_lock);
1547 
1548 	if (p->nr_cpus_allowed > 1)
1549 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1550 	else
1551 		cpu = cpumask_any(&p->cpus_allowed);
1552 
1553 	/*
1554 	 * In order not to call set_task_cpu() on a blocking task we need
1555 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1556 	 * CPU.
1557 	 *
1558 	 * Since this is common to all placement strategies, this lives here.
1559 	 *
1560 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 	 *   not worry about this generic constraint ]
1562 	 */
1563 	if (unlikely(!is_cpu_allowed(p, cpu)))
1564 		cpu = select_fallback_rq(task_cpu(p), p);
1565 
1566 	return cpu;
1567 }
1568 
1569 static void update_avg(u64 *avg, u64 sample)
1570 {
1571 	s64 diff = sample - *avg;
1572 	*avg += diff >> 3;
1573 }
1574 
1575 void sched_set_stop_task(int cpu, struct task_struct *stop)
1576 {
1577 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
1579 
1580 	if (stop) {
1581 		/*
1582 		 * Make it appear like a SCHED_FIFO task, its something
1583 		 * userspace knows about and won't get confused about.
1584 		 *
1585 		 * Also, it will make PI more or less work without too
1586 		 * much confusion -- but then, stop work should not
1587 		 * rely on PI working anyway.
1588 		 */
1589 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1590 
1591 		stop->sched_class = &stop_sched_class;
1592 	}
1593 
1594 	cpu_rq(cpu)->stop = stop;
1595 
1596 	if (old_stop) {
1597 		/*
1598 		 * Reset it back to a normal scheduling class so that
1599 		 * it can die in pieces.
1600 		 */
1601 		old_stop->sched_class = &rt_sched_class;
1602 	}
1603 }
1604 
1605 #else
1606 
1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 					 const struct cpumask *new_mask, bool check)
1609 {
1610 	return set_cpus_allowed_ptr(p, new_mask);
1611 }
1612 
1613 #endif /* CONFIG_SMP */
1614 
1615 static void
1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1617 {
1618 	struct rq *rq;
1619 
1620 	if (!schedstat_enabled())
1621 		return;
1622 
1623 	rq = this_rq();
1624 
1625 #ifdef CONFIG_SMP
1626 	if (cpu == rq->cpu) {
1627 		__schedstat_inc(rq->ttwu_local);
1628 		__schedstat_inc(p->se.statistics.nr_wakeups_local);
1629 	} else {
1630 		struct sched_domain *sd;
1631 
1632 		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1633 		rcu_read_lock();
1634 		for_each_domain(rq->cpu, sd) {
1635 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 				__schedstat_inc(sd->ttwu_wake_remote);
1637 				break;
1638 			}
1639 		}
1640 		rcu_read_unlock();
1641 	}
1642 
1643 	if (wake_flags & WF_MIGRATED)
1644 		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645 #endif /* CONFIG_SMP */
1646 
1647 	__schedstat_inc(rq->ttwu_count);
1648 	__schedstat_inc(p->se.statistics.nr_wakeups);
1649 
1650 	if (wake_flags & WF_SYNC)
1651 		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
1652 }
1653 
1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1655 {
1656 	activate_task(rq, p, en_flags);
1657 	p->on_rq = TASK_ON_RQ_QUEUED;
1658 
1659 	/* If a worker is waking up, notify the workqueue: */
1660 	if (p->flags & PF_WQ_WORKER)
1661 		wq_worker_waking_up(p, cpu_of(rq));
1662 }
1663 
1664 /*
1665  * Mark the task runnable and perform wakeup-preemption.
1666  */
1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 			   struct rq_flags *rf)
1669 {
1670 	check_preempt_curr(rq, p, wake_flags);
1671 	p->state = TASK_RUNNING;
1672 	trace_sched_wakeup(p);
1673 
1674 #ifdef CONFIG_SMP
1675 	if (p->sched_class->task_woken) {
1676 		/*
1677 		 * Our task @p is fully woken up and running; so its safe to
1678 		 * drop the rq->lock, hereafter rq is only used for statistics.
1679 		 */
1680 		rq_unpin_lock(rq, rf);
1681 		p->sched_class->task_woken(rq, p);
1682 		rq_repin_lock(rq, rf);
1683 	}
1684 
1685 	if (rq->idle_stamp) {
1686 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 		u64 max = 2*rq->max_idle_balance_cost;
1688 
1689 		update_avg(&rq->avg_idle, delta);
1690 
1691 		if (rq->avg_idle > max)
1692 			rq->avg_idle = max;
1693 
1694 		rq->idle_stamp = 0;
1695 	}
1696 #endif
1697 }
1698 
1699 static void
1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 		 struct rq_flags *rf)
1702 {
1703 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1704 
1705 	lockdep_assert_held(&rq->lock);
1706 
1707 #ifdef CONFIG_SMP
1708 	if (p->sched_contributes_to_load)
1709 		rq->nr_uninterruptible--;
1710 
1711 	if (wake_flags & WF_MIGRATED)
1712 		en_flags |= ENQUEUE_MIGRATED;
1713 #endif
1714 
1715 	ttwu_activate(rq, p, en_flags);
1716 	ttwu_do_wakeup(rq, p, wake_flags, rf);
1717 }
1718 
1719 /*
1720  * Called in case the task @p isn't fully descheduled from its runqueue,
1721  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722  * since all we need to do is flip p->state to TASK_RUNNING, since
1723  * the task is still ->on_rq.
1724  */
1725 static int ttwu_remote(struct task_struct *p, int wake_flags)
1726 {
1727 	struct rq_flags rf;
1728 	struct rq *rq;
1729 	int ret = 0;
1730 
1731 	rq = __task_rq_lock(p, &rf);
1732 	if (task_on_rq_queued(p)) {
1733 		/* check_preempt_curr() may use rq clock */
1734 		update_rq_clock(rq);
1735 		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1736 		ret = 1;
1737 	}
1738 	__task_rq_unlock(rq, &rf);
1739 
1740 	return ret;
1741 }
1742 
1743 #ifdef CONFIG_SMP
1744 void sched_ttwu_pending(void)
1745 {
1746 	struct rq *rq = this_rq();
1747 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 	struct task_struct *p, *t;
1749 	struct rq_flags rf;
1750 
1751 	if (!llist)
1752 		return;
1753 
1754 	rq_lock_irqsave(rq, &rf);
1755 	update_rq_clock(rq);
1756 
1757 	llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1759 
1760 	rq_unlock_irqrestore(rq, &rf);
1761 }
1762 
1763 void scheduler_ipi(void)
1764 {
1765 	/*
1766 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1768 	 * this IPI.
1769 	 */
1770 	preempt_fold_need_resched();
1771 
1772 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1773 		return;
1774 
1775 	/*
1776 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 	 * traditionally all their work was done from the interrupt return
1778 	 * path. Now that we actually do some work, we need to make sure
1779 	 * we do call them.
1780 	 *
1781 	 * Some archs already do call them, luckily irq_enter/exit nest
1782 	 * properly.
1783 	 *
1784 	 * Arguably we should visit all archs and update all handlers,
1785 	 * however a fair share of IPIs are still resched only so this would
1786 	 * somewhat pessimize the simple resched case.
1787 	 */
1788 	irq_enter();
1789 	sched_ttwu_pending();
1790 
1791 	/*
1792 	 * Check if someone kicked us for doing the nohz idle load balance.
1793 	 */
1794 	if (unlikely(got_nohz_idle_kick())) {
1795 		this_rq()->idle_balance = 1;
1796 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1797 	}
1798 	irq_exit();
1799 }
1800 
1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1802 {
1803 	struct rq *rq = cpu_rq(cpu);
1804 
1805 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1806 
1807 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 		if (!set_nr_if_polling(rq->idle))
1809 			smp_send_reschedule(cpu);
1810 		else
1811 			trace_sched_wake_idle_without_ipi(cpu);
1812 	}
1813 }
1814 
1815 void wake_up_if_idle(int cpu)
1816 {
1817 	struct rq *rq = cpu_rq(cpu);
1818 	struct rq_flags rf;
1819 
1820 	rcu_read_lock();
1821 
1822 	if (!is_idle_task(rcu_dereference(rq->curr)))
1823 		goto out;
1824 
1825 	if (set_nr_if_polling(rq->idle)) {
1826 		trace_sched_wake_idle_without_ipi(cpu);
1827 	} else {
1828 		rq_lock_irqsave(rq, &rf);
1829 		if (is_idle_task(rq->curr))
1830 			smp_send_reschedule(cpu);
1831 		/* Else CPU is not idle, do nothing here: */
1832 		rq_unlock_irqrestore(rq, &rf);
1833 	}
1834 
1835 out:
1836 	rcu_read_unlock();
1837 }
1838 
1839 bool cpus_share_cache(int this_cpu, int that_cpu)
1840 {
1841 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1842 }
1843 #endif /* CONFIG_SMP */
1844 
1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1846 {
1847 	struct rq *rq = cpu_rq(cpu);
1848 	struct rq_flags rf;
1849 
1850 #if defined(CONFIG_SMP)
1851 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 		ttwu_queue_remote(p, cpu, wake_flags);
1854 		return;
1855 	}
1856 #endif
1857 
1858 	rq_lock(rq, &rf);
1859 	update_rq_clock(rq);
1860 	ttwu_do_activate(rq, p, wake_flags, &rf);
1861 	rq_unlock(rq, &rf);
1862 }
1863 
1864 /*
1865  * Notes on Program-Order guarantees on SMP systems.
1866  *
1867  *  MIGRATION
1868  *
1869  * The basic program-order guarantee on SMP systems is that when a task [t]
1870  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871  * execution on its new CPU [c1].
1872  *
1873  * For migration (of runnable tasks) this is provided by the following means:
1874  *
1875  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1876  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1877  *     rq(c1)->lock (if not at the same time, then in that order).
1878  *  C) LOCK of the rq(c1)->lock scheduling in task
1879  *
1880  * Transitivity guarantees that B happens after A and C after B.
1881  * Note: we only require RCpc transitivity.
1882  * Note: the CPU doing B need not be c0 or c1
1883  *
1884  * Example:
1885  *
1886  *   CPU0            CPU1            CPU2
1887  *
1888  *   LOCK rq(0)->lock
1889  *   sched-out X
1890  *   sched-in Y
1891  *   UNLOCK rq(0)->lock
1892  *
1893  *                                   LOCK rq(0)->lock // orders against CPU0
1894  *                                   dequeue X
1895  *                                   UNLOCK rq(0)->lock
1896  *
1897  *                                   LOCK rq(1)->lock
1898  *                                   enqueue X
1899  *                                   UNLOCK rq(1)->lock
1900  *
1901  *                   LOCK rq(1)->lock // orders against CPU2
1902  *                   sched-out Z
1903  *                   sched-in X
1904  *                   UNLOCK rq(1)->lock
1905  *
1906  *
1907  *  BLOCKING -- aka. SLEEP + WAKEUP
1908  *
1909  * For blocking we (obviously) need to provide the same guarantee as for
1910  * migration. However the means are completely different as there is no lock
1911  * chain to provide order. Instead we do:
1912  *
1913  *   1) smp_store_release(X->on_cpu, 0)
1914  *   2) smp_cond_load_acquire(!X->on_cpu)
1915  *
1916  * Example:
1917  *
1918  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1919  *
1920  *   LOCK rq(0)->lock LOCK X->pi_lock
1921  *   dequeue X
1922  *   sched-out X
1923  *   smp_store_release(X->on_cpu, 0);
1924  *
1925  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1926  *                    X->state = WAKING
1927  *                    set_task_cpu(X,2)
1928  *
1929  *                    LOCK rq(2)->lock
1930  *                    enqueue X
1931  *                    X->state = RUNNING
1932  *                    UNLOCK rq(2)->lock
1933  *
1934  *                                          LOCK rq(2)->lock // orders against CPU1
1935  *                                          sched-out Z
1936  *                                          sched-in X
1937  *                                          UNLOCK rq(2)->lock
1938  *
1939  *                    UNLOCK X->pi_lock
1940  *   UNLOCK rq(0)->lock
1941  *
1942  *
1943  * However; for wakeups there is a second guarantee we must provide, namely we
1944  * must observe the state that lead to our wakeup. That is, not only must our
1945  * task observe its own prior state, it must also observe the stores prior to
1946  * its wakeup.
1947  *
1948  * This means that any means of doing remote wakeups must order the CPU doing
1949  * the wakeup against the CPU the task is going to end up running on. This,
1950  * however, is already required for the regular Program-Order guarantee above,
1951  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1952  *
1953  */
1954 
1955 /**
1956  * try_to_wake_up - wake up a thread
1957  * @p: the thread to be awakened
1958  * @state: the mask of task states that can be woken
1959  * @wake_flags: wake modifier flags (WF_*)
1960  *
1961  * If (@state & @p->state) @p->state = TASK_RUNNING.
1962  *
1963  * If the task was not queued/runnable, also place it back on a runqueue.
1964  *
1965  * Atomic against schedule() which would dequeue a task, also see
1966  * set_current_state().
1967  *
1968  * Return: %true if @p->state changes (an actual wakeup was done),
1969  *	   %false otherwise.
1970  */
1971 static int
1972 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1973 {
1974 	unsigned long flags;
1975 	int cpu, success = 0;
1976 
1977 	/*
1978 	 * If we are going to wake up a thread waiting for CONDITION we
1979 	 * need to ensure that CONDITION=1 done by the caller can not be
1980 	 * reordered with p->state check below. This pairs with mb() in
1981 	 * set_current_state() the waiting thread does.
1982 	 */
1983 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 	smp_mb__after_spinlock();
1985 	if (!(p->state & state))
1986 		goto out;
1987 
1988 	trace_sched_waking(p);
1989 
1990 	/* We're going to change ->state: */
1991 	success = 1;
1992 	cpu = task_cpu(p);
1993 
1994 	/*
1995 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997 	 * in smp_cond_load_acquire() below.
1998 	 *
1999 	 * sched_ttwu_pending()                 try_to_wake_up()
2000 	 *   [S] p->on_rq = 1;                  [L] P->state
2001 	 *       UNLOCK rq->lock  -----.
2002 	 *                              \
2003 	 *				 +---   RMB
2004 	 * schedule()                   /
2005 	 *       LOCK rq->lock    -----'
2006 	 *       UNLOCK rq->lock
2007 	 *
2008 	 * [task p]
2009 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2010 	 *
2011 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012 	 * last wakeup of our task and the schedule that got our task
2013 	 * current.
2014 	 */
2015 	smp_rmb();
2016 	if (p->on_rq && ttwu_remote(p, wake_flags))
2017 		goto stat;
2018 
2019 #ifdef CONFIG_SMP
2020 	/*
2021 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 	 * possible to, falsely, observe p->on_cpu == 0.
2023 	 *
2024 	 * One must be running (->on_cpu == 1) in order to remove oneself
2025 	 * from the runqueue.
2026 	 *
2027 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2028 	 *      UNLOCK rq->lock
2029 	 *			RMB
2030 	 *      LOCK   rq->lock
2031 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2032 	 *
2033 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 	 * from the consecutive calls to schedule(); the first switching to our
2035 	 * task, the second putting it to sleep.
2036 	 */
2037 	smp_rmb();
2038 
2039 	/*
2040 	 * If the owning (remote) CPU is still in the middle of schedule() with
2041 	 * this task as prev, wait until its done referencing the task.
2042 	 *
2043 	 * Pairs with the smp_store_release() in finish_task().
2044 	 *
2045 	 * This ensures that tasks getting woken will be fully ordered against
2046 	 * their previous state and preserve Program Order.
2047 	 */
2048 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2049 
2050 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 	p->state = TASK_WAKING;
2052 
2053 	if (p->in_iowait) {
2054 		delayacct_blkio_end(p);
2055 		atomic_dec(&task_rq(p)->nr_iowait);
2056 	}
2057 
2058 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059 	if (task_cpu(p) != cpu) {
2060 		wake_flags |= WF_MIGRATED;
2061 		set_task_cpu(p, cpu);
2062 	}
2063 
2064 #else /* CONFIG_SMP */
2065 
2066 	if (p->in_iowait) {
2067 		delayacct_blkio_end(p);
2068 		atomic_dec(&task_rq(p)->nr_iowait);
2069 	}
2070 
2071 #endif /* CONFIG_SMP */
2072 
2073 	ttwu_queue(p, cpu, wake_flags);
2074 stat:
2075 	ttwu_stat(p, cpu, wake_flags);
2076 out:
2077 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2078 
2079 	return success;
2080 }
2081 
2082 /**
2083  * try_to_wake_up_local - try to wake up a local task with rq lock held
2084  * @p: the thread to be awakened
2085  * @rf: request-queue flags for pinning
2086  *
2087  * Put @p on the run-queue if it's not already there. The caller must
2088  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2089  * the current task.
2090  */
2091 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2092 {
2093 	struct rq *rq = task_rq(p);
2094 
2095 	if (WARN_ON_ONCE(rq != this_rq()) ||
2096 	    WARN_ON_ONCE(p == current))
2097 		return;
2098 
2099 	lockdep_assert_held(&rq->lock);
2100 
2101 	if (!raw_spin_trylock(&p->pi_lock)) {
2102 		/*
2103 		 * This is OK, because current is on_cpu, which avoids it being
2104 		 * picked for load-balance and preemption/IRQs are still
2105 		 * disabled avoiding further scheduler activity on it and we've
2106 		 * not yet picked a replacement task.
2107 		 */
2108 		rq_unlock(rq, rf);
2109 		raw_spin_lock(&p->pi_lock);
2110 		rq_relock(rq, rf);
2111 	}
2112 
2113 	if (!(p->state & TASK_NORMAL))
2114 		goto out;
2115 
2116 	trace_sched_waking(p);
2117 
2118 	if (!task_on_rq_queued(p)) {
2119 		if (p->in_iowait) {
2120 			delayacct_blkio_end(p);
2121 			atomic_dec(&rq->nr_iowait);
2122 		}
2123 		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2124 	}
2125 
2126 	ttwu_do_wakeup(rq, p, 0, rf);
2127 	ttwu_stat(p, smp_processor_id(), 0);
2128 out:
2129 	raw_spin_unlock(&p->pi_lock);
2130 }
2131 
2132 /**
2133  * wake_up_process - Wake up a specific process
2134  * @p: The process to be woken up.
2135  *
2136  * Attempt to wake up the nominated process and move it to the set of runnable
2137  * processes.
2138  *
2139  * Return: 1 if the process was woken up, 0 if it was already running.
2140  *
2141  * It may be assumed that this function implies a write memory barrier before
2142  * changing the task state if and only if any tasks are woken up.
2143  */
2144 int wake_up_process(struct task_struct *p)
2145 {
2146 	return try_to_wake_up(p, TASK_NORMAL, 0);
2147 }
2148 EXPORT_SYMBOL(wake_up_process);
2149 
2150 int wake_up_state(struct task_struct *p, unsigned int state)
2151 {
2152 	return try_to_wake_up(p, state, 0);
2153 }
2154 
2155 /*
2156  * Perform scheduler related setup for a newly forked process p.
2157  * p is forked by current.
2158  *
2159  * __sched_fork() is basic setup used by init_idle() too:
2160  */
2161 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 	p->on_rq			= 0;
2164 
2165 	p->se.on_rq			= 0;
2166 	p->se.exec_start		= 0;
2167 	p->se.sum_exec_runtime		= 0;
2168 	p->se.prev_sum_exec_runtime	= 0;
2169 	p->se.nr_migrations		= 0;
2170 	p->se.vruntime			= 0;
2171 	INIT_LIST_HEAD(&p->se.group_node);
2172 
2173 #ifdef CONFIG_FAIR_GROUP_SCHED
2174 	p->se.cfs_rq			= NULL;
2175 #endif
2176 
2177 #ifdef CONFIG_SCHEDSTATS
2178 	/* Even if schedstat is disabled, there should not be garbage */
2179 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2180 #endif
2181 
2182 	RB_CLEAR_NODE(&p->dl.rb_node);
2183 	init_dl_task_timer(&p->dl);
2184 	init_dl_inactive_task_timer(&p->dl);
2185 	__dl_clear_params(p);
2186 
2187 	INIT_LIST_HEAD(&p->rt.run_list);
2188 	p->rt.timeout		= 0;
2189 	p->rt.time_slice	= sched_rr_timeslice;
2190 	p->rt.on_rq		= 0;
2191 	p->rt.on_list		= 0;
2192 
2193 #ifdef CONFIG_PREEMPT_NOTIFIERS
2194 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2195 #endif
2196 
2197 #ifdef CONFIG_NUMA_BALANCING
2198 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2199 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2200 		p->mm->numa_scan_seq = 0;
2201 	}
2202 
2203 	if (clone_flags & CLONE_VM)
2204 		p->numa_preferred_nid = current->numa_preferred_nid;
2205 	else
2206 		p->numa_preferred_nid = -1;
2207 
2208 	p->node_stamp = 0ULL;
2209 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2210 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2211 	p->numa_work.next = &p->numa_work;
2212 	p->numa_faults = NULL;
2213 	p->last_task_numa_placement = 0;
2214 	p->last_sum_exec_runtime = 0;
2215 
2216 	p->numa_group = NULL;
2217 #endif /* CONFIG_NUMA_BALANCING */
2218 }
2219 
2220 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2221 
2222 #ifdef CONFIG_NUMA_BALANCING
2223 
2224 void set_numabalancing_state(bool enabled)
2225 {
2226 	if (enabled)
2227 		static_branch_enable(&sched_numa_balancing);
2228 	else
2229 		static_branch_disable(&sched_numa_balancing);
2230 }
2231 
2232 #ifdef CONFIG_PROC_SYSCTL
2233 int sysctl_numa_balancing(struct ctl_table *table, int write,
2234 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2235 {
2236 	struct ctl_table t;
2237 	int err;
2238 	int state = static_branch_likely(&sched_numa_balancing);
2239 
2240 	if (write && !capable(CAP_SYS_ADMIN))
2241 		return -EPERM;
2242 
2243 	t = *table;
2244 	t.data = &state;
2245 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2246 	if (err < 0)
2247 		return err;
2248 	if (write)
2249 		set_numabalancing_state(state);
2250 	return err;
2251 }
2252 #endif
2253 #endif
2254 
2255 #ifdef CONFIG_SCHEDSTATS
2256 
2257 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2258 static bool __initdata __sched_schedstats = false;
2259 
2260 static void set_schedstats(bool enabled)
2261 {
2262 	if (enabled)
2263 		static_branch_enable(&sched_schedstats);
2264 	else
2265 		static_branch_disable(&sched_schedstats);
2266 }
2267 
2268 void force_schedstat_enabled(void)
2269 {
2270 	if (!schedstat_enabled()) {
2271 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2272 		static_branch_enable(&sched_schedstats);
2273 	}
2274 }
2275 
2276 static int __init setup_schedstats(char *str)
2277 {
2278 	int ret = 0;
2279 	if (!str)
2280 		goto out;
2281 
2282 	/*
2283 	 * This code is called before jump labels have been set up, so we can't
2284 	 * change the static branch directly just yet.  Instead set a temporary
2285 	 * variable so init_schedstats() can do it later.
2286 	 */
2287 	if (!strcmp(str, "enable")) {
2288 		__sched_schedstats = true;
2289 		ret = 1;
2290 	} else if (!strcmp(str, "disable")) {
2291 		__sched_schedstats = false;
2292 		ret = 1;
2293 	}
2294 out:
2295 	if (!ret)
2296 		pr_warn("Unable to parse schedstats=\n");
2297 
2298 	return ret;
2299 }
2300 __setup("schedstats=", setup_schedstats);
2301 
2302 static void __init init_schedstats(void)
2303 {
2304 	set_schedstats(__sched_schedstats);
2305 }
2306 
2307 #ifdef CONFIG_PROC_SYSCTL
2308 int sysctl_schedstats(struct ctl_table *table, int write,
2309 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2310 {
2311 	struct ctl_table t;
2312 	int err;
2313 	int state = static_branch_likely(&sched_schedstats);
2314 
2315 	if (write && !capable(CAP_SYS_ADMIN))
2316 		return -EPERM;
2317 
2318 	t = *table;
2319 	t.data = &state;
2320 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321 	if (err < 0)
2322 		return err;
2323 	if (write)
2324 		set_schedstats(state);
2325 	return err;
2326 }
2327 #endif /* CONFIG_PROC_SYSCTL */
2328 #else  /* !CONFIG_SCHEDSTATS */
2329 static inline void init_schedstats(void) {}
2330 #endif /* CONFIG_SCHEDSTATS */
2331 
2332 /*
2333  * fork()/clone()-time setup:
2334  */
2335 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2336 {
2337 	unsigned long flags;
2338 	int cpu = get_cpu();
2339 
2340 	__sched_fork(clone_flags, p);
2341 	/*
2342 	 * We mark the process as NEW here. This guarantees that
2343 	 * nobody will actually run it, and a signal or other external
2344 	 * event cannot wake it up and insert it on the runqueue either.
2345 	 */
2346 	p->state = TASK_NEW;
2347 
2348 	/*
2349 	 * Make sure we do not leak PI boosting priority to the child.
2350 	 */
2351 	p->prio = current->normal_prio;
2352 
2353 	/*
2354 	 * Revert to default priority/policy on fork if requested.
2355 	 */
2356 	if (unlikely(p->sched_reset_on_fork)) {
2357 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2358 			p->policy = SCHED_NORMAL;
2359 			p->static_prio = NICE_TO_PRIO(0);
2360 			p->rt_priority = 0;
2361 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2362 			p->static_prio = NICE_TO_PRIO(0);
2363 
2364 		p->prio = p->normal_prio = __normal_prio(p);
2365 		set_load_weight(p, false);
2366 
2367 		/*
2368 		 * We don't need the reset flag anymore after the fork. It has
2369 		 * fulfilled its duty:
2370 		 */
2371 		p->sched_reset_on_fork = 0;
2372 	}
2373 
2374 	if (dl_prio(p->prio)) {
2375 		put_cpu();
2376 		return -EAGAIN;
2377 	} else if (rt_prio(p->prio)) {
2378 		p->sched_class = &rt_sched_class;
2379 	} else {
2380 		p->sched_class = &fair_sched_class;
2381 	}
2382 
2383 	init_entity_runnable_average(&p->se);
2384 
2385 	/*
2386 	 * The child is not yet in the pid-hash so no cgroup attach races,
2387 	 * and the cgroup is pinned to this child due to cgroup_fork()
2388 	 * is ran before sched_fork().
2389 	 *
2390 	 * Silence PROVE_RCU.
2391 	 */
2392 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2393 	/*
2394 	 * We're setting the CPU for the first time, we don't migrate,
2395 	 * so use __set_task_cpu().
2396 	 */
2397 	__set_task_cpu(p, cpu);
2398 	if (p->sched_class->task_fork)
2399 		p->sched_class->task_fork(p);
2400 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2401 
2402 #ifdef CONFIG_SCHED_INFO
2403 	if (likely(sched_info_on()))
2404 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2405 #endif
2406 #if defined(CONFIG_SMP)
2407 	p->on_cpu = 0;
2408 #endif
2409 	init_task_preempt_count(p);
2410 #ifdef CONFIG_SMP
2411 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2412 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2413 #endif
2414 
2415 	put_cpu();
2416 	return 0;
2417 }
2418 
2419 unsigned long to_ratio(u64 period, u64 runtime)
2420 {
2421 	if (runtime == RUNTIME_INF)
2422 		return BW_UNIT;
2423 
2424 	/*
2425 	 * Doing this here saves a lot of checks in all
2426 	 * the calling paths, and returning zero seems
2427 	 * safe for them anyway.
2428 	 */
2429 	if (period == 0)
2430 		return 0;
2431 
2432 	return div64_u64(runtime << BW_SHIFT, period);
2433 }
2434 
2435 /*
2436  * wake_up_new_task - wake up a newly created task for the first time.
2437  *
2438  * This function will do some initial scheduler statistics housekeeping
2439  * that must be done for every newly created context, then puts the task
2440  * on the runqueue and wakes it.
2441  */
2442 void wake_up_new_task(struct task_struct *p)
2443 {
2444 	struct rq_flags rf;
2445 	struct rq *rq;
2446 
2447 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2448 	p->state = TASK_RUNNING;
2449 #ifdef CONFIG_SMP
2450 	/*
2451 	 * Fork balancing, do it here and not earlier because:
2452 	 *  - cpus_allowed can change in the fork path
2453 	 *  - any previously selected CPU might disappear through hotplug
2454 	 *
2455 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2456 	 * as we're not fully set-up yet.
2457 	 */
2458 	p->recent_used_cpu = task_cpu(p);
2459 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2460 #endif
2461 	rq = __task_rq_lock(p, &rf);
2462 	update_rq_clock(rq);
2463 	post_init_entity_util_avg(&p->se);
2464 
2465 	activate_task(rq, p, ENQUEUE_NOCLOCK);
2466 	p->on_rq = TASK_ON_RQ_QUEUED;
2467 	trace_sched_wakeup_new(p);
2468 	check_preempt_curr(rq, p, WF_FORK);
2469 #ifdef CONFIG_SMP
2470 	if (p->sched_class->task_woken) {
2471 		/*
2472 		 * Nothing relies on rq->lock after this, so its fine to
2473 		 * drop it.
2474 		 */
2475 		rq_unpin_lock(rq, &rf);
2476 		p->sched_class->task_woken(rq, p);
2477 		rq_repin_lock(rq, &rf);
2478 	}
2479 #endif
2480 	task_rq_unlock(rq, p, &rf);
2481 }
2482 
2483 #ifdef CONFIG_PREEMPT_NOTIFIERS
2484 
2485 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2486 
2487 void preempt_notifier_inc(void)
2488 {
2489 	static_branch_inc(&preempt_notifier_key);
2490 }
2491 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2492 
2493 void preempt_notifier_dec(void)
2494 {
2495 	static_branch_dec(&preempt_notifier_key);
2496 }
2497 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2498 
2499 /**
2500  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2501  * @notifier: notifier struct to register
2502  */
2503 void preempt_notifier_register(struct preempt_notifier *notifier)
2504 {
2505 	if (!static_branch_unlikely(&preempt_notifier_key))
2506 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2507 
2508 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2509 }
2510 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2511 
2512 /**
2513  * preempt_notifier_unregister - no longer interested in preemption notifications
2514  * @notifier: notifier struct to unregister
2515  *
2516  * This is *not* safe to call from within a preemption notifier.
2517  */
2518 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2519 {
2520 	hlist_del(&notifier->link);
2521 }
2522 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2523 
2524 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2525 {
2526 	struct preempt_notifier *notifier;
2527 
2528 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2529 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2530 }
2531 
2532 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 {
2534 	if (static_branch_unlikely(&preempt_notifier_key))
2535 		__fire_sched_in_preempt_notifiers(curr);
2536 }
2537 
2538 static void
2539 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 				   struct task_struct *next)
2541 {
2542 	struct preempt_notifier *notifier;
2543 
2544 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2545 		notifier->ops->sched_out(notifier, next);
2546 }
2547 
2548 static __always_inline void
2549 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 				 struct task_struct *next)
2551 {
2552 	if (static_branch_unlikely(&preempt_notifier_key))
2553 		__fire_sched_out_preempt_notifiers(curr, next);
2554 }
2555 
2556 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2557 
2558 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2559 {
2560 }
2561 
2562 static inline void
2563 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2564 				 struct task_struct *next)
2565 {
2566 }
2567 
2568 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2569 
2570 static inline void prepare_task(struct task_struct *next)
2571 {
2572 #ifdef CONFIG_SMP
2573 	/*
2574 	 * Claim the task as running, we do this before switching to it
2575 	 * such that any running task will have this set.
2576 	 */
2577 	next->on_cpu = 1;
2578 #endif
2579 }
2580 
2581 static inline void finish_task(struct task_struct *prev)
2582 {
2583 #ifdef CONFIG_SMP
2584 	/*
2585 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2586 	 * We must ensure this doesn't happen until the switch is completely
2587 	 * finished.
2588 	 *
2589 	 * In particular, the load of prev->state in finish_task_switch() must
2590 	 * happen before this.
2591 	 *
2592 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2593 	 */
2594 	smp_store_release(&prev->on_cpu, 0);
2595 #endif
2596 }
2597 
2598 static inline void
2599 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2600 {
2601 	/*
2602 	 * Since the runqueue lock will be released by the next
2603 	 * task (which is an invalid locking op but in the case
2604 	 * of the scheduler it's an obvious special-case), so we
2605 	 * do an early lockdep release here:
2606 	 */
2607 	rq_unpin_lock(rq, rf);
2608 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2609 #ifdef CONFIG_DEBUG_SPINLOCK
2610 	/* this is a valid case when another task releases the spinlock */
2611 	rq->lock.owner = next;
2612 #endif
2613 }
2614 
2615 static inline void finish_lock_switch(struct rq *rq)
2616 {
2617 	/*
2618 	 * If we are tracking spinlock dependencies then we have to
2619 	 * fix up the runqueue lock - which gets 'carried over' from
2620 	 * prev into current:
2621 	 */
2622 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2623 	raw_spin_unlock_irq(&rq->lock);
2624 }
2625 
2626 /*
2627  * NOP if the arch has not defined these:
2628  */
2629 
2630 #ifndef prepare_arch_switch
2631 # define prepare_arch_switch(next)	do { } while (0)
2632 #endif
2633 
2634 #ifndef finish_arch_post_lock_switch
2635 # define finish_arch_post_lock_switch()	do { } while (0)
2636 #endif
2637 
2638 /**
2639  * prepare_task_switch - prepare to switch tasks
2640  * @rq: the runqueue preparing to switch
2641  * @prev: the current task that is being switched out
2642  * @next: the task we are going to switch to.
2643  *
2644  * This is called with the rq lock held and interrupts off. It must
2645  * be paired with a subsequent finish_task_switch after the context
2646  * switch.
2647  *
2648  * prepare_task_switch sets up locking and calls architecture specific
2649  * hooks.
2650  */
2651 static inline void
2652 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 		    struct task_struct *next)
2654 {
2655 	sched_info_switch(rq, prev, next);
2656 	perf_event_task_sched_out(prev, next);
2657 	fire_sched_out_preempt_notifiers(prev, next);
2658 	prepare_task(next);
2659 	prepare_arch_switch(next);
2660 }
2661 
2662 /**
2663  * finish_task_switch - clean up after a task-switch
2664  * @prev: the thread we just switched away from.
2665  *
2666  * finish_task_switch must be called after the context switch, paired
2667  * with a prepare_task_switch call before the context switch.
2668  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2669  * and do any other architecture-specific cleanup actions.
2670  *
2671  * Note that we may have delayed dropping an mm in context_switch(). If
2672  * so, we finish that here outside of the runqueue lock. (Doing it
2673  * with the lock held can cause deadlocks; see schedule() for
2674  * details.)
2675  *
2676  * The context switch have flipped the stack from under us and restored the
2677  * local variables which were saved when this task called schedule() in the
2678  * past. prev == current is still correct but we need to recalculate this_rq
2679  * because prev may have moved to another CPU.
2680  */
2681 static struct rq *finish_task_switch(struct task_struct *prev)
2682 	__releases(rq->lock)
2683 {
2684 	struct rq *rq = this_rq();
2685 	struct mm_struct *mm = rq->prev_mm;
2686 	long prev_state;
2687 
2688 	/*
2689 	 * The previous task will have left us with a preempt_count of 2
2690 	 * because it left us after:
2691 	 *
2692 	 *	schedule()
2693 	 *	  preempt_disable();			// 1
2694 	 *	  __schedule()
2695 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2696 	 *
2697 	 * Also, see FORK_PREEMPT_COUNT.
2698 	 */
2699 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2700 		      "corrupted preempt_count: %s/%d/0x%x\n",
2701 		      current->comm, current->pid, preempt_count()))
2702 		preempt_count_set(FORK_PREEMPT_COUNT);
2703 
2704 	rq->prev_mm = NULL;
2705 
2706 	/*
2707 	 * A task struct has one reference for the use as "current".
2708 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709 	 * schedule one last time. The schedule call will never return, and
2710 	 * the scheduled task must drop that reference.
2711 	 *
2712 	 * We must observe prev->state before clearing prev->on_cpu (in
2713 	 * finish_task), otherwise a concurrent wakeup can get prev
2714 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2715 	 * transition, resulting in a double drop.
2716 	 */
2717 	prev_state = prev->state;
2718 	vtime_task_switch(prev);
2719 	perf_event_task_sched_in(prev, current);
2720 	finish_task(prev);
2721 	finish_lock_switch(rq);
2722 	finish_arch_post_lock_switch();
2723 
2724 	fire_sched_in_preempt_notifiers(current);
2725 	/*
2726 	 * When switching through a kernel thread, the loop in
2727 	 * membarrier_{private,global}_expedited() may have observed that
2728 	 * kernel thread and not issued an IPI. It is therefore possible to
2729 	 * schedule between user->kernel->user threads without passing though
2730 	 * switch_mm(). Membarrier requires a barrier after storing to
2731 	 * rq->curr, before returning to userspace, so provide them here:
2732 	 *
2733 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2734 	 *   provided by mmdrop(),
2735 	 * - a sync_core for SYNC_CORE.
2736 	 */
2737 	if (mm) {
2738 		membarrier_mm_sync_core_before_usermode(mm);
2739 		mmdrop(mm);
2740 	}
2741 	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2742 		switch (prev_state) {
2743 		case TASK_DEAD:
2744 			if (prev->sched_class->task_dead)
2745 				prev->sched_class->task_dead(prev);
2746 
2747 			/*
2748 			 * Remove function-return probe instances associated with this
2749 			 * task and put them back on the free list.
2750 			 */
2751 			kprobe_flush_task(prev);
2752 
2753 			/* Task is done with its stack. */
2754 			put_task_stack(prev);
2755 
2756 			put_task_struct(prev);
2757 			break;
2758 
2759 		case TASK_PARKED:
2760 			kthread_park_complete(prev);
2761 			break;
2762 		}
2763 	}
2764 
2765 	tick_nohz_task_switch();
2766 	return rq;
2767 }
2768 
2769 #ifdef CONFIG_SMP
2770 
2771 /* rq->lock is NOT held, but preemption is disabled */
2772 static void __balance_callback(struct rq *rq)
2773 {
2774 	struct callback_head *head, *next;
2775 	void (*func)(struct rq *rq);
2776 	unsigned long flags;
2777 
2778 	raw_spin_lock_irqsave(&rq->lock, flags);
2779 	head = rq->balance_callback;
2780 	rq->balance_callback = NULL;
2781 	while (head) {
2782 		func = (void (*)(struct rq *))head->func;
2783 		next = head->next;
2784 		head->next = NULL;
2785 		head = next;
2786 
2787 		func(rq);
2788 	}
2789 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2790 }
2791 
2792 static inline void balance_callback(struct rq *rq)
2793 {
2794 	if (unlikely(rq->balance_callback))
2795 		__balance_callback(rq);
2796 }
2797 
2798 #else
2799 
2800 static inline void balance_callback(struct rq *rq)
2801 {
2802 }
2803 
2804 #endif
2805 
2806 /**
2807  * schedule_tail - first thing a freshly forked thread must call.
2808  * @prev: the thread we just switched away from.
2809  */
2810 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2811 	__releases(rq->lock)
2812 {
2813 	struct rq *rq;
2814 
2815 	/*
2816 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2817 	 * finish_task_switch() for details.
2818 	 *
2819 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2820 	 * and the preempt_enable() will end up enabling preemption (on
2821 	 * PREEMPT_COUNT kernels).
2822 	 */
2823 
2824 	rq = finish_task_switch(prev);
2825 	balance_callback(rq);
2826 	preempt_enable();
2827 
2828 	if (current->set_child_tid)
2829 		put_user(task_pid_vnr(current), current->set_child_tid);
2830 }
2831 
2832 /*
2833  * context_switch - switch to the new MM and the new thread's register state.
2834  */
2835 static __always_inline struct rq *
2836 context_switch(struct rq *rq, struct task_struct *prev,
2837 	       struct task_struct *next, struct rq_flags *rf)
2838 {
2839 	struct mm_struct *mm, *oldmm;
2840 
2841 	prepare_task_switch(rq, prev, next);
2842 
2843 	mm = next->mm;
2844 	oldmm = prev->active_mm;
2845 	/*
2846 	 * For paravirt, this is coupled with an exit in switch_to to
2847 	 * combine the page table reload and the switch backend into
2848 	 * one hypercall.
2849 	 */
2850 	arch_start_context_switch(prev);
2851 
2852 	/*
2853 	 * If mm is non-NULL, we pass through switch_mm(). If mm is
2854 	 * NULL, we will pass through mmdrop() in finish_task_switch().
2855 	 * Both of these contain the full memory barrier required by
2856 	 * membarrier after storing to rq->curr, before returning to
2857 	 * user-space.
2858 	 */
2859 	if (!mm) {
2860 		next->active_mm = oldmm;
2861 		mmgrab(oldmm);
2862 		enter_lazy_tlb(oldmm, next);
2863 	} else
2864 		switch_mm_irqs_off(oldmm, mm, next);
2865 
2866 	if (!prev->mm) {
2867 		prev->active_mm = NULL;
2868 		rq->prev_mm = oldmm;
2869 	}
2870 
2871 	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2872 
2873 	prepare_lock_switch(rq, next, rf);
2874 
2875 	/* Here we just switch the register state and the stack. */
2876 	switch_to(prev, next, prev);
2877 	barrier();
2878 
2879 	return finish_task_switch(prev);
2880 }
2881 
2882 /*
2883  * nr_running and nr_context_switches:
2884  *
2885  * externally visible scheduler statistics: current number of runnable
2886  * threads, total number of context switches performed since bootup.
2887  */
2888 unsigned long nr_running(void)
2889 {
2890 	unsigned long i, sum = 0;
2891 
2892 	for_each_online_cpu(i)
2893 		sum += cpu_rq(i)->nr_running;
2894 
2895 	return sum;
2896 }
2897 
2898 /*
2899  * Check if only the current task is running on the CPU.
2900  *
2901  * Caution: this function does not check that the caller has disabled
2902  * preemption, thus the result might have a time-of-check-to-time-of-use
2903  * race.  The caller is responsible to use it correctly, for example:
2904  *
2905  * - from a non-preemptable section (of course)
2906  *
2907  * - from a thread that is bound to a single CPU
2908  *
2909  * - in a loop with very short iterations (e.g. a polling loop)
2910  */
2911 bool single_task_running(void)
2912 {
2913 	return raw_rq()->nr_running == 1;
2914 }
2915 EXPORT_SYMBOL(single_task_running);
2916 
2917 unsigned long long nr_context_switches(void)
2918 {
2919 	int i;
2920 	unsigned long long sum = 0;
2921 
2922 	for_each_possible_cpu(i)
2923 		sum += cpu_rq(i)->nr_switches;
2924 
2925 	return sum;
2926 }
2927 
2928 /*
2929  * IO-wait accounting, and how its mostly bollocks (on SMP).
2930  *
2931  * The idea behind IO-wait account is to account the idle time that we could
2932  * have spend running if it were not for IO. That is, if we were to improve the
2933  * storage performance, we'd have a proportional reduction in IO-wait time.
2934  *
2935  * This all works nicely on UP, where, when a task blocks on IO, we account
2936  * idle time as IO-wait, because if the storage were faster, it could've been
2937  * running and we'd not be idle.
2938  *
2939  * This has been extended to SMP, by doing the same for each CPU. This however
2940  * is broken.
2941  *
2942  * Imagine for instance the case where two tasks block on one CPU, only the one
2943  * CPU will have IO-wait accounted, while the other has regular idle. Even
2944  * though, if the storage were faster, both could've ran at the same time,
2945  * utilising both CPUs.
2946  *
2947  * This means, that when looking globally, the current IO-wait accounting on
2948  * SMP is a lower bound, by reason of under accounting.
2949  *
2950  * Worse, since the numbers are provided per CPU, they are sometimes
2951  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2952  * associated with any one particular CPU, it can wake to another CPU than it
2953  * blocked on. This means the per CPU IO-wait number is meaningless.
2954  *
2955  * Task CPU affinities can make all that even more 'interesting'.
2956  */
2957 
2958 unsigned long nr_iowait(void)
2959 {
2960 	unsigned long i, sum = 0;
2961 
2962 	for_each_possible_cpu(i)
2963 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964 
2965 	return sum;
2966 }
2967 
2968 /*
2969  * Consumers of these two interfaces, like for example the cpufreq menu
2970  * governor are using nonsensical data. Boosting frequency for a CPU that has
2971  * IO-wait which might not even end up running the task when it does become
2972  * runnable.
2973  */
2974 
2975 unsigned long nr_iowait_cpu(int cpu)
2976 {
2977 	struct rq *this = cpu_rq(cpu);
2978 	return atomic_read(&this->nr_iowait);
2979 }
2980 
2981 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2982 {
2983 	struct rq *rq = this_rq();
2984 	*nr_waiters = atomic_read(&rq->nr_iowait);
2985 	*load = rq->load.weight;
2986 }
2987 
2988 #ifdef CONFIG_SMP
2989 
2990 /*
2991  * sched_exec - execve() is a valuable balancing opportunity, because at
2992  * this point the task has the smallest effective memory and cache footprint.
2993  */
2994 void sched_exec(void)
2995 {
2996 	struct task_struct *p = current;
2997 	unsigned long flags;
2998 	int dest_cpu;
2999 
3000 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3001 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002 	if (dest_cpu == smp_processor_id())
3003 		goto unlock;
3004 
3005 	if (likely(cpu_active(dest_cpu))) {
3006 		struct migration_arg arg = { p, dest_cpu };
3007 
3008 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3009 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3010 		return;
3011 	}
3012 unlock:
3013 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3014 }
3015 
3016 #endif
3017 
3018 DEFINE_PER_CPU(struct kernel_stat, kstat);
3019 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3020 
3021 EXPORT_PER_CPU_SYMBOL(kstat);
3022 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3023 
3024 /*
3025  * The function fair_sched_class.update_curr accesses the struct curr
3026  * and its field curr->exec_start; when called from task_sched_runtime(),
3027  * we observe a high rate of cache misses in practice.
3028  * Prefetching this data results in improved performance.
3029  */
3030 static inline void prefetch_curr_exec_start(struct task_struct *p)
3031 {
3032 #ifdef CONFIG_FAIR_GROUP_SCHED
3033 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3034 #else
3035 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3036 #endif
3037 	prefetch(curr);
3038 	prefetch(&curr->exec_start);
3039 }
3040 
3041 /*
3042  * Return accounted runtime for the task.
3043  * In case the task is currently running, return the runtime plus current's
3044  * pending runtime that have not been accounted yet.
3045  */
3046 unsigned long long task_sched_runtime(struct task_struct *p)
3047 {
3048 	struct rq_flags rf;
3049 	struct rq *rq;
3050 	u64 ns;
3051 
3052 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3053 	/*
3054 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3055 	 * So we have a optimization chance when the task's delta_exec is 0.
3056 	 * Reading ->on_cpu is racy, but this is ok.
3057 	 *
3058 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3059 	 * If we race with it entering CPU, unaccounted time is 0. This is
3060 	 * indistinguishable from the read occurring a few cycles earlier.
3061 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3062 	 * been accounted, so we're correct here as well.
3063 	 */
3064 	if (!p->on_cpu || !task_on_rq_queued(p))
3065 		return p->se.sum_exec_runtime;
3066 #endif
3067 
3068 	rq = task_rq_lock(p, &rf);
3069 	/*
3070 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3071 	 * project cycles that may never be accounted to this
3072 	 * thread, breaking clock_gettime().
3073 	 */
3074 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3075 		prefetch_curr_exec_start(p);
3076 		update_rq_clock(rq);
3077 		p->sched_class->update_curr(rq);
3078 	}
3079 	ns = p->se.sum_exec_runtime;
3080 	task_rq_unlock(rq, p, &rf);
3081 
3082 	return ns;
3083 }
3084 
3085 /*
3086  * This function gets called by the timer code, with HZ frequency.
3087  * We call it with interrupts disabled.
3088  */
3089 void scheduler_tick(void)
3090 {
3091 	int cpu = smp_processor_id();
3092 	struct rq *rq = cpu_rq(cpu);
3093 	struct task_struct *curr = rq->curr;
3094 	struct rq_flags rf;
3095 
3096 	sched_clock_tick();
3097 
3098 	rq_lock(rq, &rf);
3099 
3100 	update_rq_clock(rq);
3101 	curr->sched_class->task_tick(rq, curr, 0);
3102 	cpu_load_update_active(rq);
3103 	calc_global_load_tick(rq);
3104 
3105 	rq_unlock(rq, &rf);
3106 
3107 	perf_event_task_tick();
3108 
3109 #ifdef CONFIG_SMP
3110 	rq->idle_balance = idle_cpu(cpu);
3111 	trigger_load_balance(rq);
3112 #endif
3113 }
3114 
3115 #ifdef CONFIG_NO_HZ_FULL
3116 
3117 struct tick_work {
3118 	int			cpu;
3119 	struct delayed_work	work;
3120 };
3121 
3122 static struct tick_work __percpu *tick_work_cpu;
3123 
3124 static void sched_tick_remote(struct work_struct *work)
3125 {
3126 	struct delayed_work *dwork = to_delayed_work(work);
3127 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
3128 	int cpu = twork->cpu;
3129 	struct rq *rq = cpu_rq(cpu);
3130 	struct rq_flags rf;
3131 
3132 	/*
3133 	 * Handle the tick only if it appears the remote CPU is running in full
3134 	 * dynticks mode. The check is racy by nature, but missing a tick or
3135 	 * having one too much is no big deal because the scheduler tick updates
3136 	 * statistics and checks timeslices in a time-independent way, regardless
3137 	 * of when exactly it is running.
3138 	 */
3139 	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3140 		struct task_struct *curr;
3141 		u64 delta;
3142 
3143 		rq_lock_irq(rq, &rf);
3144 		update_rq_clock(rq);
3145 		curr = rq->curr;
3146 		delta = rq_clock_task(rq) - curr->se.exec_start;
3147 
3148 		/*
3149 		 * Make sure the next tick runs within a reasonable
3150 		 * amount of time.
3151 		 */
3152 		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3153 		curr->sched_class->task_tick(rq, curr, 0);
3154 		rq_unlock_irq(rq, &rf);
3155 	}
3156 
3157 	/*
3158 	 * Run the remote tick once per second (1Hz). This arbitrary
3159 	 * frequency is large enough to avoid overload but short enough
3160 	 * to keep scheduler internal stats reasonably up to date.
3161 	 */
3162 	queue_delayed_work(system_unbound_wq, dwork, HZ);
3163 }
3164 
3165 static void sched_tick_start(int cpu)
3166 {
3167 	struct tick_work *twork;
3168 
3169 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3170 		return;
3171 
3172 	WARN_ON_ONCE(!tick_work_cpu);
3173 
3174 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3175 	twork->cpu = cpu;
3176 	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3178 }
3179 
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void sched_tick_stop(int cpu)
3182 {
3183 	struct tick_work *twork;
3184 
3185 	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3186 		return;
3187 
3188 	WARN_ON_ONCE(!tick_work_cpu);
3189 
3190 	twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 	cancel_delayed_work_sync(&twork->work);
3192 }
3193 #endif /* CONFIG_HOTPLUG_CPU */
3194 
3195 int __init sched_tick_offload_init(void)
3196 {
3197 	tick_work_cpu = alloc_percpu(struct tick_work);
3198 	BUG_ON(!tick_work_cpu);
3199 
3200 	return 0;
3201 }
3202 
3203 #else /* !CONFIG_NO_HZ_FULL */
3204 static inline void sched_tick_start(int cpu) { }
3205 static inline void sched_tick_stop(int cpu) { }
3206 #endif
3207 
3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 				defined(CONFIG_PREEMPT_TRACER))
3210 /*
3211  * If the value passed in is equal to the current preempt count
3212  * then we just disabled preemption. Start timing the latency.
3213  */
3214 static inline void preempt_latency_start(int val)
3215 {
3216 	if (preempt_count() == val) {
3217 		unsigned long ip = get_lock_parent_ip();
3218 #ifdef CONFIG_DEBUG_PREEMPT
3219 		current->preempt_disable_ip = ip;
3220 #endif
3221 		trace_preempt_off(CALLER_ADDR0, ip);
3222 	}
3223 }
3224 
3225 void preempt_count_add(int val)
3226 {
3227 #ifdef CONFIG_DEBUG_PREEMPT
3228 	/*
3229 	 * Underflow?
3230 	 */
3231 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3232 		return;
3233 #endif
3234 	__preempt_count_add(val);
3235 #ifdef CONFIG_DEBUG_PREEMPT
3236 	/*
3237 	 * Spinlock count overflowing soon?
3238 	 */
3239 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3240 				PREEMPT_MASK - 10);
3241 #endif
3242 	preempt_latency_start(val);
3243 }
3244 EXPORT_SYMBOL(preempt_count_add);
3245 NOKPROBE_SYMBOL(preempt_count_add);
3246 
3247 /*
3248  * If the value passed in equals to the current preempt count
3249  * then we just enabled preemption. Stop timing the latency.
3250  */
3251 static inline void preempt_latency_stop(int val)
3252 {
3253 	if (preempt_count() == val)
3254 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3255 }
3256 
3257 void preempt_count_sub(int val)
3258 {
3259 #ifdef CONFIG_DEBUG_PREEMPT
3260 	/*
3261 	 * Underflow?
3262 	 */
3263 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3264 		return;
3265 	/*
3266 	 * Is the spinlock portion underflowing?
3267 	 */
3268 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 			!(preempt_count() & PREEMPT_MASK)))
3270 		return;
3271 #endif
3272 
3273 	preempt_latency_stop(val);
3274 	__preempt_count_sub(val);
3275 }
3276 EXPORT_SYMBOL(preempt_count_sub);
3277 NOKPROBE_SYMBOL(preempt_count_sub);
3278 
3279 #else
3280 static inline void preempt_latency_start(int val) { }
3281 static inline void preempt_latency_stop(int val) { }
3282 #endif
3283 
3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285 {
3286 #ifdef CONFIG_DEBUG_PREEMPT
3287 	return p->preempt_disable_ip;
3288 #else
3289 	return 0;
3290 #endif
3291 }
3292 
3293 /*
3294  * Print scheduling while atomic bug:
3295  */
3296 static noinline void __schedule_bug(struct task_struct *prev)
3297 {
3298 	/* Save this before calling printk(), since that will clobber it */
3299 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300 
3301 	if (oops_in_progress)
3302 		return;
3303 
3304 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 		prev->comm, prev->pid, preempt_count());
3306 
3307 	debug_show_held_locks(prev);
3308 	print_modules();
3309 	if (irqs_disabled())
3310 		print_irqtrace_events(prev);
3311 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 	    && in_atomic_preempt_off()) {
3313 		pr_err("Preemption disabled at:");
3314 		print_ip_sym(preempt_disable_ip);
3315 		pr_cont("\n");
3316 	}
3317 	if (panic_on_warn)
3318 		panic("scheduling while atomic\n");
3319 
3320 	dump_stack();
3321 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3322 }
3323 
3324 /*
3325  * Various schedule()-time debugging checks and statistics:
3326  */
3327 static inline void schedule_debug(struct task_struct *prev)
3328 {
3329 #ifdef CONFIG_SCHED_STACK_END_CHECK
3330 	if (task_stack_end_corrupted(prev))
3331 		panic("corrupted stack end detected inside scheduler\n");
3332 #endif
3333 
3334 	if (unlikely(in_atomic_preempt_off())) {
3335 		__schedule_bug(prev);
3336 		preempt_count_set(PREEMPT_DISABLED);
3337 	}
3338 	rcu_sleep_check();
3339 
3340 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341 
3342 	schedstat_inc(this_rq()->sched_count);
3343 }
3344 
3345 /*
3346  * Pick up the highest-prio task:
3347  */
3348 static inline struct task_struct *
3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350 {
3351 	const struct sched_class *class;
3352 	struct task_struct *p;
3353 
3354 	/*
3355 	 * Optimization: we know that if all tasks are in the fair class we can
3356 	 * call that function directly, but only if the @prev task wasn't of a
3357 	 * higher scheduling class, because otherwise those loose the
3358 	 * opportunity to pull in more work from other CPUs.
3359 	 */
3360 	if (likely((prev->sched_class == &idle_sched_class ||
3361 		    prev->sched_class == &fair_sched_class) &&
3362 		   rq->nr_running == rq->cfs.h_nr_running)) {
3363 
3364 		p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 		if (unlikely(p == RETRY_TASK))
3366 			goto again;
3367 
3368 		/* Assumes fair_sched_class->next == idle_sched_class */
3369 		if (unlikely(!p))
3370 			p = idle_sched_class.pick_next_task(rq, prev, rf);
3371 
3372 		return p;
3373 	}
3374 
3375 again:
3376 	for_each_class(class) {
3377 		p = class->pick_next_task(rq, prev, rf);
3378 		if (p) {
3379 			if (unlikely(p == RETRY_TASK))
3380 				goto again;
3381 			return p;
3382 		}
3383 	}
3384 
3385 	/* The idle class should always have a runnable task: */
3386 	BUG();
3387 }
3388 
3389 /*
3390  * __schedule() is the main scheduler function.
3391  *
3392  * The main means of driving the scheduler and thus entering this function are:
3393  *
3394  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395  *
3396  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397  *      paths. For example, see arch/x86/entry_64.S.
3398  *
3399  *      To drive preemption between tasks, the scheduler sets the flag in timer
3400  *      interrupt handler scheduler_tick().
3401  *
3402  *   3. Wakeups don't really cause entry into schedule(). They add a
3403  *      task to the run-queue and that's it.
3404  *
3405  *      Now, if the new task added to the run-queue preempts the current
3406  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407  *      called on the nearest possible occasion:
3408  *
3409  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410  *
3411  *         - in syscall or exception context, at the next outmost
3412  *           preempt_enable(). (this might be as soon as the wake_up()'s
3413  *           spin_unlock()!)
3414  *
3415  *         - in IRQ context, return from interrupt-handler to
3416  *           preemptible context
3417  *
3418  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3419  *         then at the next:
3420  *
3421  *          - cond_resched() call
3422  *          - explicit schedule() call
3423  *          - return from syscall or exception to user-space
3424  *          - return from interrupt-handler to user-space
3425  *
3426  * WARNING: must be called with preemption disabled!
3427  */
3428 static void __sched notrace __schedule(bool preempt)
3429 {
3430 	struct task_struct *prev, *next;
3431 	unsigned long *switch_count;
3432 	struct rq_flags rf;
3433 	struct rq *rq;
3434 	int cpu;
3435 
3436 	cpu = smp_processor_id();
3437 	rq = cpu_rq(cpu);
3438 	prev = rq->curr;
3439 
3440 	schedule_debug(prev);
3441 
3442 	if (sched_feat(HRTICK))
3443 		hrtick_clear(rq);
3444 
3445 	local_irq_disable();
3446 	rcu_note_context_switch(preempt);
3447 
3448 	/*
3449 	 * Make sure that signal_pending_state()->signal_pending() below
3450 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 	 * done by the caller to avoid the race with signal_wake_up().
3452 	 *
3453 	 * The membarrier system call requires a full memory barrier
3454 	 * after coming from user-space, before storing to rq->curr.
3455 	 */
3456 	rq_lock(rq, &rf);
3457 	smp_mb__after_spinlock();
3458 
3459 	/* Promote REQ to ACT */
3460 	rq->clock_update_flags <<= 1;
3461 	update_rq_clock(rq);
3462 
3463 	switch_count = &prev->nivcsw;
3464 	if (!preempt && prev->state) {
3465 		if (unlikely(signal_pending_state(prev->state, prev))) {
3466 			prev->state = TASK_RUNNING;
3467 		} else {
3468 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3469 			prev->on_rq = 0;
3470 
3471 			if (prev->in_iowait) {
3472 				atomic_inc(&rq->nr_iowait);
3473 				delayacct_blkio_start();
3474 			}
3475 
3476 			/*
3477 			 * If a worker went to sleep, notify and ask workqueue
3478 			 * whether it wants to wake up a task to maintain
3479 			 * concurrency.
3480 			 */
3481 			if (prev->flags & PF_WQ_WORKER) {
3482 				struct task_struct *to_wakeup;
3483 
3484 				to_wakeup = wq_worker_sleeping(prev);
3485 				if (to_wakeup)
3486 					try_to_wake_up_local(to_wakeup, &rf);
3487 			}
3488 		}
3489 		switch_count = &prev->nvcsw;
3490 	}
3491 
3492 	next = pick_next_task(rq, prev, &rf);
3493 	clear_tsk_need_resched(prev);
3494 	clear_preempt_need_resched();
3495 
3496 	if (likely(prev != next)) {
3497 		rq->nr_switches++;
3498 		rq->curr = next;
3499 		/*
3500 		 * The membarrier system call requires each architecture
3501 		 * to have a full memory barrier after updating
3502 		 * rq->curr, before returning to user-space.
3503 		 *
3504 		 * Here are the schemes providing that barrier on the
3505 		 * various architectures:
3506 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 		 * - finish_lock_switch() for weakly-ordered
3509 		 *   architectures where spin_unlock is a full barrier,
3510 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 		 *   is a RELEASE barrier),
3512 		 */
3513 		++*switch_count;
3514 
3515 		trace_sched_switch(preempt, prev, next);
3516 
3517 		/* Also unlocks the rq: */
3518 		rq = context_switch(rq, prev, next, &rf);
3519 	} else {
3520 		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 		rq_unlock_irq(rq, &rf);
3522 	}
3523 
3524 	balance_callback(rq);
3525 }
3526 
3527 void __noreturn do_task_dead(void)
3528 {
3529 	/* Causes final put_task_struct in finish_task_switch(): */
3530 	set_special_state(TASK_DEAD);
3531 
3532 	/* Tell freezer to ignore us: */
3533 	current->flags |= PF_NOFREEZE;
3534 
3535 	__schedule(false);
3536 	BUG();
3537 
3538 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3539 	for (;;)
3540 		cpu_relax();
3541 }
3542 
3543 static inline void sched_submit_work(struct task_struct *tsk)
3544 {
3545 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3546 		return;
3547 	/*
3548 	 * If we are going to sleep and we have plugged IO queued,
3549 	 * make sure to submit it to avoid deadlocks.
3550 	 */
3551 	if (blk_needs_flush_plug(tsk))
3552 		blk_schedule_flush_plug(tsk);
3553 }
3554 
3555 asmlinkage __visible void __sched schedule(void)
3556 {
3557 	struct task_struct *tsk = current;
3558 
3559 	sched_submit_work(tsk);
3560 	do {
3561 		preempt_disable();
3562 		__schedule(false);
3563 		sched_preempt_enable_no_resched();
3564 	} while (need_resched());
3565 }
3566 EXPORT_SYMBOL(schedule);
3567 
3568 /*
3569  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570  * state (have scheduled out non-voluntarily) by making sure that all
3571  * tasks have either left the run queue or have gone into user space.
3572  * As idle tasks do not do either, they must not ever be preempted
3573  * (schedule out non-voluntarily).
3574  *
3575  * schedule_idle() is similar to schedule_preempt_disable() except that it
3576  * never enables preemption because it does not call sched_submit_work().
3577  */
3578 void __sched schedule_idle(void)
3579 {
3580 	/*
3581 	 * As this skips calling sched_submit_work(), which the idle task does
3582 	 * regardless because that function is a nop when the task is in a
3583 	 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 	 * current task can be in any other state. Note, idle is always in the
3585 	 * TASK_RUNNING state.
3586 	 */
3587 	WARN_ON_ONCE(current->state);
3588 	do {
3589 		__schedule(false);
3590 	} while (need_resched());
3591 }
3592 
3593 #ifdef CONFIG_CONTEXT_TRACKING
3594 asmlinkage __visible void __sched schedule_user(void)
3595 {
3596 	/*
3597 	 * If we come here after a random call to set_need_resched(),
3598 	 * or we have been woken up remotely but the IPI has not yet arrived,
3599 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 	 * we find a better solution.
3601 	 *
3602 	 * NB: There are buggy callers of this function.  Ideally we
3603 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 	 * too frequently to make sense yet.
3605 	 */
3606 	enum ctx_state prev_state = exception_enter();
3607 	schedule();
3608 	exception_exit(prev_state);
3609 }
3610 #endif
3611 
3612 /**
3613  * schedule_preempt_disabled - called with preemption disabled
3614  *
3615  * Returns with preemption disabled. Note: preempt_count must be 1
3616  */
3617 void __sched schedule_preempt_disabled(void)
3618 {
3619 	sched_preempt_enable_no_resched();
3620 	schedule();
3621 	preempt_disable();
3622 }
3623 
3624 static void __sched notrace preempt_schedule_common(void)
3625 {
3626 	do {
3627 		/*
3628 		 * Because the function tracer can trace preempt_count_sub()
3629 		 * and it also uses preempt_enable/disable_notrace(), if
3630 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 		 * by the function tracer will call this function again and
3632 		 * cause infinite recursion.
3633 		 *
3634 		 * Preemption must be disabled here before the function
3635 		 * tracer can trace. Break up preempt_disable() into two
3636 		 * calls. One to disable preemption without fear of being
3637 		 * traced. The other to still record the preemption latency,
3638 		 * which can also be traced by the function tracer.
3639 		 */
3640 		preempt_disable_notrace();
3641 		preempt_latency_start(1);
3642 		__schedule(true);
3643 		preempt_latency_stop(1);
3644 		preempt_enable_no_resched_notrace();
3645 
3646 		/*
3647 		 * Check again in case we missed a preemption opportunity
3648 		 * between schedule and now.
3649 		 */
3650 	} while (need_resched());
3651 }
3652 
3653 #ifdef CONFIG_PREEMPT
3654 /*
3655  * this is the entry point to schedule() from in-kernel preemption
3656  * off of preempt_enable. Kernel preemptions off return from interrupt
3657  * occur there and call schedule directly.
3658  */
3659 asmlinkage __visible void __sched notrace preempt_schedule(void)
3660 {
3661 	/*
3662 	 * If there is a non-zero preempt_count or interrupts are disabled,
3663 	 * we do not want to preempt the current task. Just return..
3664 	 */
3665 	if (likely(!preemptible()))
3666 		return;
3667 
3668 	preempt_schedule_common();
3669 }
3670 NOKPROBE_SYMBOL(preempt_schedule);
3671 EXPORT_SYMBOL(preempt_schedule);
3672 
3673 /**
3674  * preempt_schedule_notrace - preempt_schedule called by tracing
3675  *
3676  * The tracing infrastructure uses preempt_enable_notrace to prevent
3677  * recursion and tracing preempt enabling caused by the tracing
3678  * infrastructure itself. But as tracing can happen in areas coming
3679  * from userspace or just about to enter userspace, a preempt enable
3680  * can occur before user_exit() is called. This will cause the scheduler
3681  * to be called when the system is still in usermode.
3682  *
3683  * To prevent this, the preempt_enable_notrace will use this function
3684  * instead of preempt_schedule() to exit user context if needed before
3685  * calling the scheduler.
3686  */
3687 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688 {
3689 	enum ctx_state prev_ctx;
3690 
3691 	if (likely(!preemptible()))
3692 		return;
3693 
3694 	do {
3695 		/*
3696 		 * Because the function tracer can trace preempt_count_sub()
3697 		 * and it also uses preempt_enable/disable_notrace(), if
3698 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3699 		 * by the function tracer will call this function again and
3700 		 * cause infinite recursion.
3701 		 *
3702 		 * Preemption must be disabled here before the function
3703 		 * tracer can trace. Break up preempt_disable() into two
3704 		 * calls. One to disable preemption without fear of being
3705 		 * traced. The other to still record the preemption latency,
3706 		 * which can also be traced by the function tracer.
3707 		 */
3708 		preempt_disable_notrace();
3709 		preempt_latency_start(1);
3710 		/*
3711 		 * Needs preempt disabled in case user_exit() is traced
3712 		 * and the tracer calls preempt_enable_notrace() causing
3713 		 * an infinite recursion.
3714 		 */
3715 		prev_ctx = exception_enter();
3716 		__schedule(true);
3717 		exception_exit(prev_ctx);
3718 
3719 		preempt_latency_stop(1);
3720 		preempt_enable_no_resched_notrace();
3721 	} while (need_resched());
3722 }
3723 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724 
3725 #endif /* CONFIG_PREEMPT */
3726 
3727 /*
3728  * this is the entry point to schedule() from kernel preemption
3729  * off of irq context.
3730  * Note, that this is called and return with irqs disabled. This will
3731  * protect us against recursive calling from irq.
3732  */
3733 asmlinkage __visible void __sched preempt_schedule_irq(void)
3734 {
3735 	enum ctx_state prev_state;
3736 
3737 	/* Catch callers which need to be fixed */
3738 	BUG_ON(preempt_count() || !irqs_disabled());
3739 
3740 	prev_state = exception_enter();
3741 
3742 	do {
3743 		preempt_disable();
3744 		local_irq_enable();
3745 		__schedule(true);
3746 		local_irq_disable();
3747 		sched_preempt_enable_no_resched();
3748 	} while (need_resched());
3749 
3750 	exception_exit(prev_state);
3751 }
3752 
3753 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3754 			  void *key)
3755 {
3756 	return try_to_wake_up(curr->private, mode, wake_flags);
3757 }
3758 EXPORT_SYMBOL(default_wake_function);
3759 
3760 #ifdef CONFIG_RT_MUTEXES
3761 
3762 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3763 {
3764 	if (pi_task)
3765 		prio = min(prio, pi_task->prio);
3766 
3767 	return prio;
3768 }
3769 
3770 static inline int rt_effective_prio(struct task_struct *p, int prio)
3771 {
3772 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773 
3774 	return __rt_effective_prio(pi_task, prio);
3775 }
3776 
3777 /*
3778  * rt_mutex_setprio - set the current priority of a task
3779  * @p: task to boost
3780  * @pi_task: donor task
3781  *
3782  * This function changes the 'effective' priority of a task. It does
3783  * not touch ->normal_prio like __setscheduler().
3784  *
3785  * Used by the rt_mutex code to implement priority inheritance
3786  * logic. Call site only calls if the priority of the task changed.
3787  */
3788 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789 {
3790 	int prio, oldprio, queued, running, queue_flag =
3791 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3792 	const struct sched_class *prev_class;
3793 	struct rq_flags rf;
3794 	struct rq *rq;
3795 
3796 	/* XXX used to be waiter->prio, not waiter->task->prio */
3797 	prio = __rt_effective_prio(pi_task, p->normal_prio);
3798 
3799 	/*
3800 	 * If nothing changed; bail early.
3801 	 */
3802 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3803 		return;
3804 
3805 	rq = __task_rq_lock(p, &rf);
3806 	update_rq_clock(rq);
3807 	/*
3808 	 * Set under pi_lock && rq->lock, such that the value can be used under
3809 	 * either lock.
3810 	 *
3811 	 * Note that there is loads of tricky to make this pointer cache work
3812 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3813 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
3814 	 * task is allowed to run again (and can exit). This ensures the pointer
3815 	 * points to a blocked task -- which guaratees the task is present.
3816 	 */
3817 	p->pi_top_task = pi_task;
3818 
3819 	/*
3820 	 * For FIFO/RR we only need to set prio, if that matches we're done.
3821 	 */
3822 	if (prio == p->prio && !dl_prio(prio))
3823 		goto out_unlock;
3824 
3825 	/*
3826 	 * Idle task boosting is a nono in general. There is one
3827 	 * exception, when PREEMPT_RT and NOHZ is active:
3828 	 *
3829 	 * The idle task calls get_next_timer_interrupt() and holds
3830 	 * the timer wheel base->lock on the CPU and another CPU wants
3831 	 * to access the timer (probably to cancel it). We can safely
3832 	 * ignore the boosting request, as the idle CPU runs this code
3833 	 * with interrupts disabled and will complete the lock
3834 	 * protected section without being interrupted. So there is no
3835 	 * real need to boost.
3836 	 */
3837 	if (unlikely(p == rq->idle)) {
3838 		WARN_ON(p != rq->curr);
3839 		WARN_ON(p->pi_blocked_on);
3840 		goto out_unlock;
3841 	}
3842 
3843 	trace_sched_pi_setprio(p, pi_task);
3844 	oldprio = p->prio;
3845 
3846 	if (oldprio == prio)
3847 		queue_flag &= ~DEQUEUE_MOVE;
3848 
3849 	prev_class = p->sched_class;
3850 	queued = task_on_rq_queued(p);
3851 	running = task_current(rq, p);
3852 	if (queued)
3853 		dequeue_task(rq, p, queue_flag);
3854 	if (running)
3855 		put_prev_task(rq, p);
3856 
3857 	/*
3858 	 * Boosting condition are:
3859 	 * 1. -rt task is running and holds mutex A
3860 	 *      --> -dl task blocks on mutex A
3861 	 *
3862 	 * 2. -dl task is running and holds mutex A
3863 	 *      --> -dl task blocks on mutex A and could preempt the
3864 	 *          running task
3865 	 */
3866 	if (dl_prio(prio)) {
3867 		if (!dl_prio(p->normal_prio) ||
3868 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3869 			p->dl.dl_boosted = 1;
3870 			queue_flag |= ENQUEUE_REPLENISH;
3871 		} else
3872 			p->dl.dl_boosted = 0;
3873 		p->sched_class = &dl_sched_class;
3874 	} else if (rt_prio(prio)) {
3875 		if (dl_prio(oldprio))
3876 			p->dl.dl_boosted = 0;
3877 		if (oldprio < prio)
3878 			queue_flag |= ENQUEUE_HEAD;
3879 		p->sched_class = &rt_sched_class;
3880 	} else {
3881 		if (dl_prio(oldprio))
3882 			p->dl.dl_boosted = 0;
3883 		if (rt_prio(oldprio))
3884 			p->rt.timeout = 0;
3885 		p->sched_class = &fair_sched_class;
3886 	}
3887 
3888 	p->prio = prio;
3889 
3890 	if (queued)
3891 		enqueue_task(rq, p, queue_flag);
3892 	if (running)
3893 		set_curr_task(rq, p);
3894 
3895 	check_class_changed(rq, p, prev_class, oldprio);
3896 out_unlock:
3897 	/* Avoid rq from going away on us: */
3898 	preempt_disable();
3899 	__task_rq_unlock(rq, &rf);
3900 
3901 	balance_callback(rq);
3902 	preempt_enable();
3903 }
3904 #else
3905 static inline int rt_effective_prio(struct task_struct *p, int prio)
3906 {
3907 	return prio;
3908 }
3909 #endif
3910 
3911 void set_user_nice(struct task_struct *p, long nice)
3912 {
3913 	bool queued, running;
3914 	int old_prio, delta;
3915 	struct rq_flags rf;
3916 	struct rq *rq;
3917 
3918 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3919 		return;
3920 	/*
3921 	 * We have to be careful, if called from sys_setpriority(),
3922 	 * the task might be in the middle of scheduling on another CPU.
3923 	 */
3924 	rq = task_rq_lock(p, &rf);
3925 	update_rq_clock(rq);
3926 
3927 	/*
3928 	 * The RT priorities are set via sched_setscheduler(), but we still
3929 	 * allow the 'normal' nice value to be set - but as expected
3930 	 * it wont have any effect on scheduling until the task is
3931 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3932 	 */
3933 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934 		p->static_prio = NICE_TO_PRIO(nice);
3935 		goto out_unlock;
3936 	}
3937 	queued = task_on_rq_queued(p);
3938 	running = task_current(rq, p);
3939 	if (queued)
3940 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3941 	if (running)
3942 		put_prev_task(rq, p);
3943 
3944 	p->static_prio = NICE_TO_PRIO(nice);
3945 	set_load_weight(p, true);
3946 	old_prio = p->prio;
3947 	p->prio = effective_prio(p);
3948 	delta = p->prio - old_prio;
3949 
3950 	if (queued) {
3951 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3952 		/*
3953 		 * If the task increased its priority or is running and
3954 		 * lowered its priority, then reschedule its CPU:
3955 		 */
3956 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3957 			resched_curr(rq);
3958 	}
3959 	if (running)
3960 		set_curr_task(rq, p);
3961 out_unlock:
3962 	task_rq_unlock(rq, p, &rf);
3963 }
3964 EXPORT_SYMBOL(set_user_nice);
3965 
3966 /*
3967  * can_nice - check if a task can reduce its nice value
3968  * @p: task
3969  * @nice: nice value
3970  */
3971 int can_nice(const struct task_struct *p, const int nice)
3972 {
3973 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 	int nice_rlim = nice_to_rlimit(nice);
3975 
3976 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977 		capable(CAP_SYS_NICE));
3978 }
3979 
3980 #ifdef __ARCH_WANT_SYS_NICE
3981 
3982 /*
3983  * sys_nice - change the priority of the current process.
3984  * @increment: priority increment
3985  *
3986  * sys_setpriority is a more generic, but much slower function that
3987  * does similar things.
3988  */
3989 SYSCALL_DEFINE1(nice, int, increment)
3990 {
3991 	long nice, retval;
3992 
3993 	/*
3994 	 * Setpriority might change our priority at the same moment.
3995 	 * We don't have to worry. Conceptually one call occurs first
3996 	 * and we have a single winner.
3997 	 */
3998 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999 	nice = task_nice(current) + increment;
4000 
4001 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002 	if (increment < 0 && !can_nice(current, nice))
4003 		return -EPERM;
4004 
4005 	retval = security_task_setnice(current, nice);
4006 	if (retval)
4007 		return retval;
4008 
4009 	set_user_nice(current, nice);
4010 	return 0;
4011 }
4012 
4013 #endif
4014 
4015 /**
4016  * task_prio - return the priority value of a given task.
4017  * @p: the task in question.
4018  *
4019  * Return: The priority value as seen by users in /proc.
4020  * RT tasks are offset by -200. Normal tasks are centered
4021  * around 0, value goes from -16 to +15.
4022  */
4023 int task_prio(const struct task_struct *p)
4024 {
4025 	return p->prio - MAX_RT_PRIO;
4026 }
4027 
4028 /**
4029  * idle_cpu - is a given CPU idle currently?
4030  * @cpu: the processor in question.
4031  *
4032  * Return: 1 if the CPU is currently idle. 0 otherwise.
4033  */
4034 int idle_cpu(int cpu)
4035 {
4036 	struct rq *rq = cpu_rq(cpu);
4037 
4038 	if (rq->curr != rq->idle)
4039 		return 0;
4040 
4041 	if (rq->nr_running)
4042 		return 0;
4043 
4044 #ifdef CONFIG_SMP
4045 	if (!llist_empty(&rq->wake_list))
4046 		return 0;
4047 #endif
4048 
4049 	return 1;
4050 }
4051 
4052 /**
4053  * idle_task - return the idle task for a given CPU.
4054  * @cpu: the processor in question.
4055  *
4056  * Return: The idle task for the CPU @cpu.
4057  */
4058 struct task_struct *idle_task(int cpu)
4059 {
4060 	return cpu_rq(cpu)->idle;
4061 }
4062 
4063 /**
4064  * find_process_by_pid - find a process with a matching PID value.
4065  * @pid: the pid in question.
4066  *
4067  * The task of @pid, if found. %NULL otherwise.
4068  */
4069 static struct task_struct *find_process_by_pid(pid_t pid)
4070 {
4071 	return pid ? find_task_by_vpid(pid) : current;
4072 }
4073 
4074 /*
4075  * sched_setparam() passes in -1 for its policy, to let the functions
4076  * it calls know not to change it.
4077  */
4078 #define SETPARAM_POLICY	-1
4079 
4080 static void __setscheduler_params(struct task_struct *p,
4081 		const struct sched_attr *attr)
4082 {
4083 	int policy = attr->sched_policy;
4084 
4085 	if (policy == SETPARAM_POLICY)
4086 		policy = p->policy;
4087 
4088 	p->policy = policy;
4089 
4090 	if (dl_policy(policy))
4091 		__setparam_dl(p, attr);
4092 	else if (fair_policy(policy))
4093 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4094 
4095 	/*
4096 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4097 	 * !rt_policy. Always setting this ensures that things like
4098 	 * getparam()/getattr() don't report silly values for !rt tasks.
4099 	 */
4100 	p->rt_priority = attr->sched_priority;
4101 	p->normal_prio = normal_prio(p);
4102 	set_load_weight(p, true);
4103 }
4104 
4105 /* Actually do priority change: must hold pi & rq lock. */
4106 static void __setscheduler(struct rq *rq, struct task_struct *p,
4107 			   const struct sched_attr *attr, bool keep_boost)
4108 {
4109 	__setscheduler_params(p, attr);
4110 
4111 	/*
4112 	 * Keep a potential priority boosting if called from
4113 	 * sched_setscheduler().
4114 	 */
4115 	p->prio = normal_prio(p);
4116 	if (keep_boost)
4117 		p->prio = rt_effective_prio(p, p->prio);
4118 
4119 	if (dl_prio(p->prio))
4120 		p->sched_class = &dl_sched_class;
4121 	else if (rt_prio(p->prio))
4122 		p->sched_class = &rt_sched_class;
4123 	else
4124 		p->sched_class = &fair_sched_class;
4125 }
4126 
4127 /*
4128  * Check the target process has a UID that matches the current process's:
4129  */
4130 static bool check_same_owner(struct task_struct *p)
4131 {
4132 	const struct cred *cred = current_cred(), *pcred;
4133 	bool match;
4134 
4135 	rcu_read_lock();
4136 	pcred = __task_cred(p);
4137 	match = (uid_eq(cred->euid, pcred->euid) ||
4138 		 uid_eq(cred->euid, pcred->uid));
4139 	rcu_read_unlock();
4140 	return match;
4141 }
4142 
4143 static int __sched_setscheduler(struct task_struct *p,
4144 				const struct sched_attr *attr,
4145 				bool user, bool pi)
4146 {
4147 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4148 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4149 	int retval, oldprio, oldpolicy = -1, queued, running;
4150 	int new_effective_prio, policy = attr->sched_policy;
4151 	const struct sched_class *prev_class;
4152 	struct rq_flags rf;
4153 	int reset_on_fork;
4154 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4155 	struct rq *rq;
4156 
4157 	/* The pi code expects interrupts enabled */
4158 	BUG_ON(pi && in_interrupt());
4159 recheck:
4160 	/* Double check policy once rq lock held: */
4161 	if (policy < 0) {
4162 		reset_on_fork = p->sched_reset_on_fork;
4163 		policy = oldpolicy = p->policy;
4164 	} else {
4165 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4166 
4167 		if (!valid_policy(policy))
4168 			return -EINVAL;
4169 	}
4170 
4171 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4172 		return -EINVAL;
4173 
4174 	/*
4175 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4176 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4177 	 * SCHED_BATCH and SCHED_IDLE is 0.
4178 	 */
4179 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4180 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4181 		return -EINVAL;
4182 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4183 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4184 		return -EINVAL;
4185 
4186 	/*
4187 	 * Allow unprivileged RT tasks to decrease priority:
4188 	 */
4189 	if (user && !capable(CAP_SYS_NICE)) {
4190 		if (fair_policy(policy)) {
4191 			if (attr->sched_nice < task_nice(p) &&
4192 			    !can_nice(p, attr->sched_nice))
4193 				return -EPERM;
4194 		}
4195 
4196 		if (rt_policy(policy)) {
4197 			unsigned long rlim_rtprio =
4198 					task_rlimit(p, RLIMIT_RTPRIO);
4199 
4200 			/* Can't set/change the rt policy: */
4201 			if (policy != p->policy && !rlim_rtprio)
4202 				return -EPERM;
4203 
4204 			/* Can't increase priority: */
4205 			if (attr->sched_priority > p->rt_priority &&
4206 			    attr->sched_priority > rlim_rtprio)
4207 				return -EPERM;
4208 		}
4209 
4210 		 /*
4211 		  * Can't set/change SCHED_DEADLINE policy at all for now
4212 		  * (safest behavior); in the future we would like to allow
4213 		  * unprivileged DL tasks to increase their relative deadline
4214 		  * or reduce their runtime (both ways reducing utilization)
4215 		  */
4216 		if (dl_policy(policy))
4217 			return -EPERM;
4218 
4219 		/*
4220 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4221 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4222 		 */
4223 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4224 			if (!can_nice(p, task_nice(p)))
4225 				return -EPERM;
4226 		}
4227 
4228 		/* Can't change other user's priorities: */
4229 		if (!check_same_owner(p))
4230 			return -EPERM;
4231 
4232 		/* Normal users shall not reset the sched_reset_on_fork flag: */
4233 		if (p->sched_reset_on_fork && !reset_on_fork)
4234 			return -EPERM;
4235 	}
4236 
4237 	if (user) {
4238 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
4239 			return -EINVAL;
4240 
4241 		retval = security_task_setscheduler(p);
4242 		if (retval)
4243 			return retval;
4244 	}
4245 
4246 	/*
4247 	 * Make sure no PI-waiters arrive (or leave) while we are
4248 	 * changing the priority of the task:
4249 	 *
4250 	 * To be able to change p->policy safely, the appropriate
4251 	 * runqueue lock must be held.
4252 	 */
4253 	rq = task_rq_lock(p, &rf);
4254 	update_rq_clock(rq);
4255 
4256 	/*
4257 	 * Changing the policy of the stop threads its a very bad idea:
4258 	 */
4259 	if (p == rq->stop) {
4260 		task_rq_unlock(rq, p, &rf);
4261 		return -EINVAL;
4262 	}
4263 
4264 	/*
4265 	 * If not changing anything there's no need to proceed further,
4266 	 * but store a possible modification of reset_on_fork.
4267 	 */
4268 	if (unlikely(policy == p->policy)) {
4269 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4270 			goto change;
4271 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4272 			goto change;
4273 		if (dl_policy(policy) && dl_param_changed(p, attr))
4274 			goto change;
4275 
4276 		p->sched_reset_on_fork = reset_on_fork;
4277 		task_rq_unlock(rq, p, &rf);
4278 		return 0;
4279 	}
4280 change:
4281 
4282 	if (user) {
4283 #ifdef CONFIG_RT_GROUP_SCHED
4284 		/*
4285 		 * Do not allow realtime tasks into groups that have no runtime
4286 		 * assigned.
4287 		 */
4288 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4289 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4290 				!task_group_is_autogroup(task_group(p))) {
4291 			task_rq_unlock(rq, p, &rf);
4292 			return -EPERM;
4293 		}
4294 #endif
4295 #ifdef CONFIG_SMP
4296 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
4297 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4298 			cpumask_t *span = rq->rd->span;
4299 
4300 			/*
4301 			 * Don't allow tasks with an affinity mask smaller than
4302 			 * the entire root_domain to become SCHED_DEADLINE. We
4303 			 * will also fail if there's no bandwidth available.
4304 			 */
4305 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4306 			    rq->rd->dl_bw.bw == 0) {
4307 				task_rq_unlock(rq, p, &rf);
4308 				return -EPERM;
4309 			}
4310 		}
4311 #endif
4312 	}
4313 
4314 	/* Re-check policy now with rq lock held: */
4315 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4316 		policy = oldpolicy = -1;
4317 		task_rq_unlock(rq, p, &rf);
4318 		goto recheck;
4319 	}
4320 
4321 	/*
4322 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4323 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4324 	 * is available.
4325 	 */
4326 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4327 		task_rq_unlock(rq, p, &rf);
4328 		return -EBUSY;
4329 	}
4330 
4331 	p->sched_reset_on_fork = reset_on_fork;
4332 	oldprio = p->prio;
4333 
4334 	if (pi) {
4335 		/*
4336 		 * Take priority boosted tasks into account. If the new
4337 		 * effective priority is unchanged, we just store the new
4338 		 * normal parameters and do not touch the scheduler class and
4339 		 * the runqueue. This will be done when the task deboost
4340 		 * itself.
4341 		 */
4342 		new_effective_prio = rt_effective_prio(p, newprio);
4343 		if (new_effective_prio == oldprio)
4344 			queue_flags &= ~DEQUEUE_MOVE;
4345 	}
4346 
4347 	queued = task_on_rq_queued(p);
4348 	running = task_current(rq, p);
4349 	if (queued)
4350 		dequeue_task(rq, p, queue_flags);
4351 	if (running)
4352 		put_prev_task(rq, p);
4353 
4354 	prev_class = p->sched_class;
4355 	__setscheduler(rq, p, attr, pi);
4356 
4357 	if (queued) {
4358 		/*
4359 		 * We enqueue to tail when the priority of a task is
4360 		 * increased (user space view).
4361 		 */
4362 		if (oldprio < p->prio)
4363 			queue_flags |= ENQUEUE_HEAD;
4364 
4365 		enqueue_task(rq, p, queue_flags);
4366 	}
4367 	if (running)
4368 		set_curr_task(rq, p);
4369 
4370 	check_class_changed(rq, p, prev_class, oldprio);
4371 
4372 	/* Avoid rq from going away on us: */
4373 	preempt_disable();
4374 	task_rq_unlock(rq, p, &rf);
4375 
4376 	if (pi)
4377 		rt_mutex_adjust_pi(p);
4378 
4379 	/* Run balance callbacks after we've adjusted the PI chain: */
4380 	balance_callback(rq);
4381 	preempt_enable();
4382 
4383 	return 0;
4384 }
4385 
4386 static int _sched_setscheduler(struct task_struct *p, int policy,
4387 			       const struct sched_param *param, bool check)
4388 {
4389 	struct sched_attr attr = {
4390 		.sched_policy   = policy,
4391 		.sched_priority = param->sched_priority,
4392 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4393 	};
4394 
4395 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4396 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4397 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4398 		policy &= ~SCHED_RESET_ON_FORK;
4399 		attr.sched_policy = policy;
4400 	}
4401 
4402 	return __sched_setscheduler(p, &attr, check, true);
4403 }
4404 /**
4405  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4406  * @p: the task in question.
4407  * @policy: new policy.
4408  * @param: structure containing the new RT priority.
4409  *
4410  * Return: 0 on success. An error code otherwise.
4411  *
4412  * NOTE that the task may be already dead.
4413  */
4414 int sched_setscheduler(struct task_struct *p, int policy,
4415 		       const struct sched_param *param)
4416 {
4417 	return _sched_setscheduler(p, policy, param, true);
4418 }
4419 EXPORT_SYMBOL_GPL(sched_setscheduler);
4420 
4421 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4422 {
4423 	return __sched_setscheduler(p, attr, true, true);
4424 }
4425 EXPORT_SYMBOL_GPL(sched_setattr);
4426 
4427 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4428 {
4429 	return __sched_setscheduler(p, attr, false, true);
4430 }
4431 
4432 /**
4433  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4434  * @p: the task in question.
4435  * @policy: new policy.
4436  * @param: structure containing the new RT priority.
4437  *
4438  * Just like sched_setscheduler, only don't bother checking if the
4439  * current context has permission.  For example, this is needed in
4440  * stop_machine(): we create temporary high priority worker threads,
4441  * but our caller might not have that capability.
4442  *
4443  * Return: 0 on success. An error code otherwise.
4444  */
4445 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4446 			       const struct sched_param *param)
4447 {
4448 	return _sched_setscheduler(p, policy, param, false);
4449 }
4450 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4451 
4452 static int
4453 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4454 {
4455 	struct sched_param lparam;
4456 	struct task_struct *p;
4457 	int retval;
4458 
4459 	if (!param || pid < 0)
4460 		return -EINVAL;
4461 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4462 		return -EFAULT;
4463 
4464 	rcu_read_lock();
4465 	retval = -ESRCH;
4466 	p = find_process_by_pid(pid);
4467 	if (p != NULL)
4468 		retval = sched_setscheduler(p, policy, &lparam);
4469 	rcu_read_unlock();
4470 
4471 	return retval;
4472 }
4473 
4474 /*
4475  * Mimics kernel/events/core.c perf_copy_attr().
4476  */
4477 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4478 {
4479 	u32 size;
4480 	int ret;
4481 
4482 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4483 		return -EFAULT;
4484 
4485 	/* Zero the full structure, so that a short copy will be nice: */
4486 	memset(attr, 0, sizeof(*attr));
4487 
4488 	ret = get_user(size, &uattr->size);
4489 	if (ret)
4490 		return ret;
4491 
4492 	/* Bail out on silly large: */
4493 	if (size > PAGE_SIZE)
4494 		goto err_size;
4495 
4496 	/* ABI compatibility quirk: */
4497 	if (!size)
4498 		size = SCHED_ATTR_SIZE_VER0;
4499 
4500 	if (size < SCHED_ATTR_SIZE_VER0)
4501 		goto err_size;
4502 
4503 	/*
4504 	 * If we're handed a bigger struct than we know of,
4505 	 * ensure all the unknown bits are 0 - i.e. new
4506 	 * user-space does not rely on any kernel feature
4507 	 * extensions we dont know about yet.
4508 	 */
4509 	if (size > sizeof(*attr)) {
4510 		unsigned char __user *addr;
4511 		unsigned char __user *end;
4512 		unsigned char val;
4513 
4514 		addr = (void __user *)uattr + sizeof(*attr);
4515 		end  = (void __user *)uattr + size;
4516 
4517 		for (; addr < end; addr++) {
4518 			ret = get_user(val, addr);
4519 			if (ret)
4520 				return ret;
4521 			if (val)
4522 				goto err_size;
4523 		}
4524 		size = sizeof(*attr);
4525 	}
4526 
4527 	ret = copy_from_user(attr, uattr, size);
4528 	if (ret)
4529 		return -EFAULT;
4530 
4531 	/*
4532 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4533 	 * to be strict and return an error on out-of-bounds values?
4534 	 */
4535 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4536 
4537 	return 0;
4538 
4539 err_size:
4540 	put_user(sizeof(*attr), &uattr->size);
4541 	return -E2BIG;
4542 }
4543 
4544 /**
4545  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4546  * @pid: the pid in question.
4547  * @policy: new policy.
4548  * @param: structure containing the new RT priority.
4549  *
4550  * Return: 0 on success. An error code otherwise.
4551  */
4552 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4553 {
4554 	if (policy < 0)
4555 		return -EINVAL;
4556 
4557 	return do_sched_setscheduler(pid, policy, param);
4558 }
4559 
4560 /**
4561  * sys_sched_setparam - set/change the RT priority of a thread
4562  * @pid: the pid in question.
4563  * @param: structure containing the new RT priority.
4564  *
4565  * Return: 0 on success. An error code otherwise.
4566  */
4567 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4568 {
4569 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4570 }
4571 
4572 /**
4573  * sys_sched_setattr - same as above, but with extended sched_attr
4574  * @pid: the pid in question.
4575  * @uattr: structure containing the extended parameters.
4576  * @flags: for future extension.
4577  */
4578 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4579 			       unsigned int, flags)
4580 {
4581 	struct sched_attr attr;
4582 	struct task_struct *p;
4583 	int retval;
4584 
4585 	if (!uattr || pid < 0 || flags)
4586 		return -EINVAL;
4587 
4588 	retval = sched_copy_attr(uattr, &attr);
4589 	if (retval)
4590 		return retval;
4591 
4592 	if ((int)attr.sched_policy < 0)
4593 		return -EINVAL;
4594 
4595 	rcu_read_lock();
4596 	retval = -ESRCH;
4597 	p = find_process_by_pid(pid);
4598 	if (p != NULL)
4599 		retval = sched_setattr(p, &attr);
4600 	rcu_read_unlock();
4601 
4602 	return retval;
4603 }
4604 
4605 /**
4606  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4607  * @pid: the pid in question.
4608  *
4609  * Return: On success, the policy of the thread. Otherwise, a negative error
4610  * code.
4611  */
4612 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4613 {
4614 	struct task_struct *p;
4615 	int retval;
4616 
4617 	if (pid < 0)
4618 		return -EINVAL;
4619 
4620 	retval = -ESRCH;
4621 	rcu_read_lock();
4622 	p = find_process_by_pid(pid);
4623 	if (p) {
4624 		retval = security_task_getscheduler(p);
4625 		if (!retval)
4626 			retval = p->policy
4627 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4628 	}
4629 	rcu_read_unlock();
4630 	return retval;
4631 }
4632 
4633 /**
4634  * sys_sched_getparam - get the RT priority of a thread
4635  * @pid: the pid in question.
4636  * @param: structure containing the RT priority.
4637  *
4638  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4639  * code.
4640  */
4641 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4642 {
4643 	struct sched_param lp = { .sched_priority = 0 };
4644 	struct task_struct *p;
4645 	int retval;
4646 
4647 	if (!param || pid < 0)
4648 		return -EINVAL;
4649 
4650 	rcu_read_lock();
4651 	p = find_process_by_pid(pid);
4652 	retval = -ESRCH;
4653 	if (!p)
4654 		goto out_unlock;
4655 
4656 	retval = security_task_getscheduler(p);
4657 	if (retval)
4658 		goto out_unlock;
4659 
4660 	if (task_has_rt_policy(p))
4661 		lp.sched_priority = p->rt_priority;
4662 	rcu_read_unlock();
4663 
4664 	/*
4665 	 * This one might sleep, we cannot do it with a spinlock held ...
4666 	 */
4667 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4668 
4669 	return retval;
4670 
4671 out_unlock:
4672 	rcu_read_unlock();
4673 	return retval;
4674 }
4675 
4676 static int sched_read_attr(struct sched_attr __user *uattr,
4677 			   struct sched_attr *attr,
4678 			   unsigned int usize)
4679 {
4680 	int ret;
4681 
4682 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4683 		return -EFAULT;
4684 
4685 	/*
4686 	 * If we're handed a smaller struct than we know of,
4687 	 * ensure all the unknown bits are 0 - i.e. old
4688 	 * user-space does not get uncomplete information.
4689 	 */
4690 	if (usize < sizeof(*attr)) {
4691 		unsigned char *addr;
4692 		unsigned char *end;
4693 
4694 		addr = (void *)attr + usize;
4695 		end  = (void *)attr + sizeof(*attr);
4696 
4697 		for (; addr < end; addr++) {
4698 			if (*addr)
4699 				return -EFBIG;
4700 		}
4701 
4702 		attr->size = usize;
4703 	}
4704 
4705 	ret = copy_to_user(uattr, attr, attr->size);
4706 	if (ret)
4707 		return -EFAULT;
4708 
4709 	return 0;
4710 }
4711 
4712 /**
4713  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4714  * @pid: the pid in question.
4715  * @uattr: structure containing the extended parameters.
4716  * @size: sizeof(attr) for fwd/bwd comp.
4717  * @flags: for future extension.
4718  */
4719 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4720 		unsigned int, size, unsigned int, flags)
4721 {
4722 	struct sched_attr attr = {
4723 		.size = sizeof(struct sched_attr),
4724 	};
4725 	struct task_struct *p;
4726 	int retval;
4727 
4728 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4729 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4730 		return -EINVAL;
4731 
4732 	rcu_read_lock();
4733 	p = find_process_by_pid(pid);
4734 	retval = -ESRCH;
4735 	if (!p)
4736 		goto out_unlock;
4737 
4738 	retval = security_task_getscheduler(p);
4739 	if (retval)
4740 		goto out_unlock;
4741 
4742 	attr.sched_policy = p->policy;
4743 	if (p->sched_reset_on_fork)
4744 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4745 	if (task_has_dl_policy(p))
4746 		__getparam_dl(p, &attr);
4747 	else if (task_has_rt_policy(p))
4748 		attr.sched_priority = p->rt_priority;
4749 	else
4750 		attr.sched_nice = task_nice(p);
4751 
4752 	rcu_read_unlock();
4753 
4754 	retval = sched_read_attr(uattr, &attr, size);
4755 	return retval;
4756 
4757 out_unlock:
4758 	rcu_read_unlock();
4759 	return retval;
4760 }
4761 
4762 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4763 {
4764 	cpumask_var_t cpus_allowed, new_mask;
4765 	struct task_struct *p;
4766 	int retval;
4767 
4768 	rcu_read_lock();
4769 
4770 	p = find_process_by_pid(pid);
4771 	if (!p) {
4772 		rcu_read_unlock();
4773 		return -ESRCH;
4774 	}
4775 
4776 	/* Prevent p going away */
4777 	get_task_struct(p);
4778 	rcu_read_unlock();
4779 
4780 	if (p->flags & PF_NO_SETAFFINITY) {
4781 		retval = -EINVAL;
4782 		goto out_put_task;
4783 	}
4784 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4785 		retval = -ENOMEM;
4786 		goto out_put_task;
4787 	}
4788 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4789 		retval = -ENOMEM;
4790 		goto out_free_cpus_allowed;
4791 	}
4792 	retval = -EPERM;
4793 	if (!check_same_owner(p)) {
4794 		rcu_read_lock();
4795 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4796 			rcu_read_unlock();
4797 			goto out_free_new_mask;
4798 		}
4799 		rcu_read_unlock();
4800 	}
4801 
4802 	retval = security_task_setscheduler(p);
4803 	if (retval)
4804 		goto out_free_new_mask;
4805 
4806 
4807 	cpuset_cpus_allowed(p, cpus_allowed);
4808 	cpumask_and(new_mask, in_mask, cpus_allowed);
4809 
4810 	/*
4811 	 * Since bandwidth control happens on root_domain basis,
4812 	 * if admission test is enabled, we only admit -deadline
4813 	 * tasks allowed to run on all the CPUs in the task's
4814 	 * root_domain.
4815 	 */
4816 #ifdef CONFIG_SMP
4817 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4818 		rcu_read_lock();
4819 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4820 			retval = -EBUSY;
4821 			rcu_read_unlock();
4822 			goto out_free_new_mask;
4823 		}
4824 		rcu_read_unlock();
4825 	}
4826 #endif
4827 again:
4828 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4829 
4830 	if (!retval) {
4831 		cpuset_cpus_allowed(p, cpus_allowed);
4832 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4833 			/*
4834 			 * We must have raced with a concurrent cpuset
4835 			 * update. Just reset the cpus_allowed to the
4836 			 * cpuset's cpus_allowed
4837 			 */
4838 			cpumask_copy(new_mask, cpus_allowed);
4839 			goto again;
4840 		}
4841 	}
4842 out_free_new_mask:
4843 	free_cpumask_var(new_mask);
4844 out_free_cpus_allowed:
4845 	free_cpumask_var(cpus_allowed);
4846 out_put_task:
4847 	put_task_struct(p);
4848 	return retval;
4849 }
4850 
4851 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4852 			     struct cpumask *new_mask)
4853 {
4854 	if (len < cpumask_size())
4855 		cpumask_clear(new_mask);
4856 	else if (len > cpumask_size())
4857 		len = cpumask_size();
4858 
4859 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4860 }
4861 
4862 /**
4863  * sys_sched_setaffinity - set the CPU affinity of a process
4864  * @pid: pid of the process
4865  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4866  * @user_mask_ptr: user-space pointer to the new CPU mask
4867  *
4868  * Return: 0 on success. An error code otherwise.
4869  */
4870 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4871 		unsigned long __user *, user_mask_ptr)
4872 {
4873 	cpumask_var_t new_mask;
4874 	int retval;
4875 
4876 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4877 		return -ENOMEM;
4878 
4879 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4880 	if (retval == 0)
4881 		retval = sched_setaffinity(pid, new_mask);
4882 	free_cpumask_var(new_mask);
4883 	return retval;
4884 }
4885 
4886 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4887 {
4888 	struct task_struct *p;
4889 	unsigned long flags;
4890 	int retval;
4891 
4892 	rcu_read_lock();
4893 
4894 	retval = -ESRCH;
4895 	p = find_process_by_pid(pid);
4896 	if (!p)
4897 		goto out_unlock;
4898 
4899 	retval = security_task_getscheduler(p);
4900 	if (retval)
4901 		goto out_unlock;
4902 
4903 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4904 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4905 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4906 
4907 out_unlock:
4908 	rcu_read_unlock();
4909 
4910 	return retval;
4911 }
4912 
4913 /**
4914  * sys_sched_getaffinity - get the CPU affinity of a process
4915  * @pid: pid of the process
4916  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4917  * @user_mask_ptr: user-space pointer to hold the current CPU mask
4918  *
4919  * Return: size of CPU mask copied to user_mask_ptr on success. An
4920  * error code otherwise.
4921  */
4922 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4923 		unsigned long __user *, user_mask_ptr)
4924 {
4925 	int ret;
4926 	cpumask_var_t mask;
4927 
4928 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4929 		return -EINVAL;
4930 	if (len & (sizeof(unsigned long)-1))
4931 		return -EINVAL;
4932 
4933 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4934 		return -ENOMEM;
4935 
4936 	ret = sched_getaffinity(pid, mask);
4937 	if (ret == 0) {
4938 		unsigned int retlen = min(len, cpumask_size());
4939 
4940 		if (copy_to_user(user_mask_ptr, mask, retlen))
4941 			ret = -EFAULT;
4942 		else
4943 			ret = retlen;
4944 	}
4945 	free_cpumask_var(mask);
4946 
4947 	return ret;
4948 }
4949 
4950 /**
4951  * sys_sched_yield - yield the current processor to other threads.
4952  *
4953  * This function yields the current CPU to other tasks. If there are no
4954  * other threads running on this CPU then this function will return.
4955  *
4956  * Return: 0.
4957  */
4958 static void do_sched_yield(void)
4959 {
4960 	struct rq_flags rf;
4961 	struct rq *rq;
4962 
4963 	local_irq_disable();
4964 	rq = this_rq();
4965 	rq_lock(rq, &rf);
4966 
4967 	schedstat_inc(rq->yld_count);
4968 	current->sched_class->yield_task(rq);
4969 
4970 	/*
4971 	 * Since we are going to call schedule() anyway, there's
4972 	 * no need to preempt or enable interrupts:
4973 	 */
4974 	preempt_disable();
4975 	rq_unlock(rq, &rf);
4976 	sched_preempt_enable_no_resched();
4977 
4978 	schedule();
4979 }
4980 
4981 SYSCALL_DEFINE0(sched_yield)
4982 {
4983 	do_sched_yield();
4984 	return 0;
4985 }
4986 
4987 #ifndef CONFIG_PREEMPT
4988 int __sched _cond_resched(void)
4989 {
4990 	if (should_resched(0)) {
4991 		preempt_schedule_common();
4992 		return 1;
4993 	}
4994 	rcu_all_qs();
4995 	return 0;
4996 }
4997 EXPORT_SYMBOL(_cond_resched);
4998 #endif
4999 
5000 /*
5001  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5002  * call schedule, and on return reacquire the lock.
5003  *
5004  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5005  * operations here to prevent schedule() from being called twice (once via
5006  * spin_unlock(), once by hand).
5007  */
5008 int __cond_resched_lock(spinlock_t *lock)
5009 {
5010 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5011 	int ret = 0;
5012 
5013 	lockdep_assert_held(lock);
5014 
5015 	if (spin_needbreak(lock) || resched) {
5016 		spin_unlock(lock);
5017 		if (resched)
5018 			preempt_schedule_common();
5019 		else
5020 			cpu_relax();
5021 		ret = 1;
5022 		spin_lock(lock);
5023 	}
5024 	return ret;
5025 }
5026 EXPORT_SYMBOL(__cond_resched_lock);
5027 
5028 int __sched __cond_resched_softirq(void)
5029 {
5030 	BUG_ON(!in_softirq());
5031 
5032 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5033 		local_bh_enable();
5034 		preempt_schedule_common();
5035 		local_bh_disable();
5036 		return 1;
5037 	}
5038 	return 0;
5039 }
5040 EXPORT_SYMBOL(__cond_resched_softirq);
5041 
5042 /**
5043  * yield - yield the current processor to other threads.
5044  *
5045  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5046  *
5047  * The scheduler is at all times free to pick the calling task as the most
5048  * eligible task to run, if removing the yield() call from your code breaks
5049  * it, its already broken.
5050  *
5051  * Typical broken usage is:
5052  *
5053  * while (!event)
5054  *	yield();
5055  *
5056  * where one assumes that yield() will let 'the other' process run that will
5057  * make event true. If the current task is a SCHED_FIFO task that will never
5058  * happen. Never use yield() as a progress guarantee!!
5059  *
5060  * If you want to use yield() to wait for something, use wait_event().
5061  * If you want to use yield() to be 'nice' for others, use cond_resched().
5062  * If you still want to use yield(), do not!
5063  */
5064 void __sched yield(void)
5065 {
5066 	set_current_state(TASK_RUNNING);
5067 	do_sched_yield();
5068 }
5069 EXPORT_SYMBOL(yield);
5070 
5071 /**
5072  * yield_to - yield the current processor to another thread in
5073  * your thread group, or accelerate that thread toward the
5074  * processor it's on.
5075  * @p: target task
5076  * @preempt: whether task preemption is allowed or not
5077  *
5078  * It's the caller's job to ensure that the target task struct
5079  * can't go away on us before we can do any checks.
5080  *
5081  * Return:
5082  *	true (>0) if we indeed boosted the target task.
5083  *	false (0) if we failed to boost the target.
5084  *	-ESRCH if there's no task to yield to.
5085  */
5086 int __sched yield_to(struct task_struct *p, bool preempt)
5087 {
5088 	struct task_struct *curr = current;
5089 	struct rq *rq, *p_rq;
5090 	unsigned long flags;
5091 	int yielded = 0;
5092 
5093 	local_irq_save(flags);
5094 	rq = this_rq();
5095 
5096 again:
5097 	p_rq = task_rq(p);
5098 	/*
5099 	 * If we're the only runnable task on the rq and target rq also
5100 	 * has only one task, there's absolutely no point in yielding.
5101 	 */
5102 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5103 		yielded = -ESRCH;
5104 		goto out_irq;
5105 	}
5106 
5107 	double_rq_lock(rq, p_rq);
5108 	if (task_rq(p) != p_rq) {
5109 		double_rq_unlock(rq, p_rq);
5110 		goto again;
5111 	}
5112 
5113 	if (!curr->sched_class->yield_to_task)
5114 		goto out_unlock;
5115 
5116 	if (curr->sched_class != p->sched_class)
5117 		goto out_unlock;
5118 
5119 	if (task_running(p_rq, p) || p->state)
5120 		goto out_unlock;
5121 
5122 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5123 	if (yielded) {
5124 		schedstat_inc(rq->yld_count);
5125 		/*
5126 		 * Make p's CPU reschedule; pick_next_entity takes care of
5127 		 * fairness.
5128 		 */
5129 		if (preempt && rq != p_rq)
5130 			resched_curr(p_rq);
5131 	}
5132 
5133 out_unlock:
5134 	double_rq_unlock(rq, p_rq);
5135 out_irq:
5136 	local_irq_restore(flags);
5137 
5138 	if (yielded > 0)
5139 		schedule();
5140 
5141 	return yielded;
5142 }
5143 EXPORT_SYMBOL_GPL(yield_to);
5144 
5145 int io_schedule_prepare(void)
5146 {
5147 	int old_iowait = current->in_iowait;
5148 
5149 	current->in_iowait = 1;
5150 	blk_schedule_flush_plug(current);
5151 
5152 	return old_iowait;
5153 }
5154 
5155 void io_schedule_finish(int token)
5156 {
5157 	current->in_iowait = token;
5158 }
5159 
5160 /*
5161  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5162  * that process accounting knows that this is a task in IO wait state.
5163  */
5164 long __sched io_schedule_timeout(long timeout)
5165 {
5166 	int token;
5167 	long ret;
5168 
5169 	token = io_schedule_prepare();
5170 	ret = schedule_timeout(timeout);
5171 	io_schedule_finish(token);
5172 
5173 	return ret;
5174 }
5175 EXPORT_SYMBOL(io_schedule_timeout);
5176 
5177 void io_schedule(void)
5178 {
5179 	int token;
5180 
5181 	token = io_schedule_prepare();
5182 	schedule();
5183 	io_schedule_finish(token);
5184 }
5185 EXPORT_SYMBOL(io_schedule);
5186 
5187 /**
5188  * sys_sched_get_priority_max - return maximum RT priority.
5189  * @policy: scheduling class.
5190  *
5191  * Return: On success, this syscall returns the maximum
5192  * rt_priority that can be used by a given scheduling class.
5193  * On failure, a negative error code is returned.
5194  */
5195 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5196 {
5197 	int ret = -EINVAL;
5198 
5199 	switch (policy) {
5200 	case SCHED_FIFO:
5201 	case SCHED_RR:
5202 		ret = MAX_USER_RT_PRIO-1;
5203 		break;
5204 	case SCHED_DEADLINE:
5205 	case SCHED_NORMAL:
5206 	case SCHED_BATCH:
5207 	case SCHED_IDLE:
5208 		ret = 0;
5209 		break;
5210 	}
5211 	return ret;
5212 }
5213 
5214 /**
5215  * sys_sched_get_priority_min - return minimum RT priority.
5216  * @policy: scheduling class.
5217  *
5218  * Return: On success, this syscall returns the minimum
5219  * rt_priority that can be used by a given scheduling class.
5220  * On failure, a negative error code is returned.
5221  */
5222 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5223 {
5224 	int ret = -EINVAL;
5225 
5226 	switch (policy) {
5227 	case SCHED_FIFO:
5228 	case SCHED_RR:
5229 		ret = 1;
5230 		break;
5231 	case SCHED_DEADLINE:
5232 	case SCHED_NORMAL:
5233 	case SCHED_BATCH:
5234 	case SCHED_IDLE:
5235 		ret = 0;
5236 	}
5237 	return ret;
5238 }
5239 
5240 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5241 {
5242 	struct task_struct *p;
5243 	unsigned int time_slice;
5244 	struct rq_flags rf;
5245 	struct rq *rq;
5246 	int retval;
5247 
5248 	if (pid < 0)
5249 		return -EINVAL;
5250 
5251 	retval = -ESRCH;
5252 	rcu_read_lock();
5253 	p = find_process_by_pid(pid);
5254 	if (!p)
5255 		goto out_unlock;
5256 
5257 	retval = security_task_getscheduler(p);
5258 	if (retval)
5259 		goto out_unlock;
5260 
5261 	rq = task_rq_lock(p, &rf);
5262 	time_slice = 0;
5263 	if (p->sched_class->get_rr_interval)
5264 		time_slice = p->sched_class->get_rr_interval(rq, p);
5265 	task_rq_unlock(rq, p, &rf);
5266 
5267 	rcu_read_unlock();
5268 	jiffies_to_timespec64(time_slice, t);
5269 	return 0;
5270 
5271 out_unlock:
5272 	rcu_read_unlock();
5273 	return retval;
5274 }
5275 
5276 /**
5277  * sys_sched_rr_get_interval - return the default timeslice of a process.
5278  * @pid: pid of the process.
5279  * @interval: userspace pointer to the timeslice value.
5280  *
5281  * this syscall writes the default timeslice value of a given process
5282  * into the user-space timespec buffer. A value of '0' means infinity.
5283  *
5284  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5285  * an error code.
5286  */
5287 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5288 		struct timespec __user *, interval)
5289 {
5290 	struct timespec64 t;
5291 	int retval = sched_rr_get_interval(pid, &t);
5292 
5293 	if (retval == 0)
5294 		retval = put_timespec64(&t, interval);
5295 
5296 	return retval;
5297 }
5298 
5299 #ifdef CONFIG_COMPAT
5300 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5301 		       compat_pid_t, pid,
5302 		       struct compat_timespec __user *, interval)
5303 {
5304 	struct timespec64 t;
5305 	int retval = sched_rr_get_interval(pid, &t);
5306 
5307 	if (retval == 0)
5308 		retval = compat_put_timespec64(&t, interval);
5309 	return retval;
5310 }
5311 #endif
5312 
5313 void sched_show_task(struct task_struct *p)
5314 {
5315 	unsigned long free = 0;
5316 	int ppid;
5317 
5318 	if (!try_get_task_stack(p))
5319 		return;
5320 
5321 	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322 
5323 	if (p->state == TASK_RUNNING)
5324 		printk(KERN_CONT "  running task    ");
5325 #ifdef CONFIG_DEBUG_STACK_USAGE
5326 	free = stack_not_used(p);
5327 #endif
5328 	ppid = 0;
5329 	rcu_read_lock();
5330 	if (pid_alive(p))
5331 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332 	rcu_read_unlock();
5333 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5334 		task_pid_nr(p), ppid,
5335 		(unsigned long)task_thread_info(p)->flags);
5336 
5337 	print_worker_info(KERN_INFO, p);
5338 	show_stack(p, NULL);
5339 	put_task_stack(p);
5340 }
5341 EXPORT_SYMBOL_GPL(sched_show_task);
5342 
5343 static inline bool
5344 state_filter_match(unsigned long state_filter, struct task_struct *p)
5345 {
5346 	/* no filter, everything matches */
5347 	if (!state_filter)
5348 		return true;
5349 
5350 	/* filter, but doesn't match */
5351 	if (!(p->state & state_filter))
5352 		return false;
5353 
5354 	/*
5355 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5356 	 * TASK_KILLABLE).
5357 	 */
5358 	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5359 		return false;
5360 
5361 	return true;
5362 }
5363 
5364 
5365 void show_state_filter(unsigned long state_filter)
5366 {
5367 	struct task_struct *g, *p;
5368 
5369 #if BITS_PER_LONG == 32
5370 	printk(KERN_INFO
5371 		"  task                PC stack   pid father\n");
5372 #else
5373 	printk(KERN_INFO
5374 		"  task                        PC stack   pid father\n");
5375 #endif
5376 	rcu_read_lock();
5377 	for_each_process_thread(g, p) {
5378 		/*
5379 		 * reset the NMI-timeout, listing all files on a slow
5380 		 * console might take a lot of time:
5381 		 * Also, reset softlockup watchdogs on all CPUs, because
5382 		 * another CPU might be blocked waiting for us to process
5383 		 * an IPI.
5384 		 */
5385 		touch_nmi_watchdog();
5386 		touch_all_softlockup_watchdogs();
5387 		if (state_filter_match(state_filter, p))
5388 			sched_show_task(p);
5389 	}
5390 
5391 #ifdef CONFIG_SCHED_DEBUG
5392 	if (!state_filter)
5393 		sysrq_sched_debug_show();
5394 #endif
5395 	rcu_read_unlock();
5396 	/*
5397 	 * Only show locks if all tasks are dumped:
5398 	 */
5399 	if (!state_filter)
5400 		debug_show_all_locks();
5401 }
5402 
5403 /**
5404  * init_idle - set up an idle thread for a given CPU
5405  * @idle: task in question
5406  * @cpu: CPU the idle task belongs to
5407  *
5408  * NOTE: this function does not set the idle thread's NEED_RESCHED
5409  * flag, to make booting more robust.
5410  */
5411 void init_idle(struct task_struct *idle, int cpu)
5412 {
5413 	struct rq *rq = cpu_rq(cpu);
5414 	unsigned long flags;
5415 
5416 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5417 	raw_spin_lock(&rq->lock);
5418 
5419 	__sched_fork(0, idle);
5420 	idle->state = TASK_RUNNING;
5421 	idle->se.exec_start = sched_clock();
5422 	idle->flags |= PF_IDLE;
5423 
5424 	kasan_unpoison_task_stack(idle);
5425 
5426 #ifdef CONFIG_SMP
5427 	/*
5428 	 * Its possible that init_idle() gets called multiple times on a task,
5429 	 * in that case do_set_cpus_allowed() will not do the right thing.
5430 	 *
5431 	 * And since this is boot we can forgo the serialization.
5432 	 */
5433 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5434 #endif
5435 	/*
5436 	 * We're having a chicken and egg problem, even though we are
5437 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 	 * lockdep check in task_group() will fail.
5439 	 *
5440 	 * Similar case to sched_fork(). / Alternatively we could
5441 	 * use task_rq_lock() here and obtain the other rq->lock.
5442 	 *
5443 	 * Silence PROVE_RCU
5444 	 */
5445 	rcu_read_lock();
5446 	__set_task_cpu(idle, cpu);
5447 	rcu_read_unlock();
5448 
5449 	rq->curr = rq->idle = idle;
5450 	idle->on_rq = TASK_ON_RQ_QUEUED;
5451 #ifdef CONFIG_SMP
5452 	idle->on_cpu = 1;
5453 #endif
5454 	raw_spin_unlock(&rq->lock);
5455 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5456 
5457 	/* Set the preempt count _outside_ the spinlocks! */
5458 	init_idle_preempt_count(idle, cpu);
5459 
5460 	/*
5461 	 * The idle tasks have their own, simple scheduling class:
5462 	 */
5463 	idle->sched_class = &idle_sched_class;
5464 	ftrace_graph_init_idle_task(idle, cpu);
5465 	vtime_init_idle(idle, cpu);
5466 #ifdef CONFIG_SMP
5467 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5468 #endif
5469 }
5470 
5471 #ifdef CONFIG_SMP
5472 
5473 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474 			      const struct cpumask *trial)
5475 {
5476 	int ret = 1;
5477 
5478 	if (!cpumask_weight(cur))
5479 		return ret;
5480 
5481 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5482 
5483 	return ret;
5484 }
5485 
5486 int task_can_attach(struct task_struct *p,
5487 		    const struct cpumask *cs_cpus_allowed)
5488 {
5489 	int ret = 0;
5490 
5491 	/*
5492 	 * Kthreads which disallow setaffinity shouldn't be moved
5493 	 * to a new cpuset; we don't want to change their CPU
5494 	 * affinity and isolating such threads by their set of
5495 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5496 	 * applicable for such threads.  This prevents checking for
5497 	 * success of set_cpus_allowed_ptr() on all attached tasks
5498 	 * before cpus_allowed may be changed.
5499 	 */
5500 	if (p->flags & PF_NO_SETAFFINITY) {
5501 		ret = -EINVAL;
5502 		goto out;
5503 	}
5504 
5505 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5506 					      cs_cpus_allowed))
5507 		ret = dl_task_can_attach(p, cs_cpus_allowed);
5508 
5509 out:
5510 	return ret;
5511 }
5512 
5513 bool sched_smp_initialized __read_mostly;
5514 
5515 #ifdef CONFIG_NUMA_BALANCING
5516 /* Migrate current task p to target_cpu */
5517 int migrate_task_to(struct task_struct *p, int target_cpu)
5518 {
5519 	struct migration_arg arg = { p, target_cpu };
5520 	int curr_cpu = task_cpu(p);
5521 
5522 	if (curr_cpu == target_cpu)
5523 		return 0;
5524 
5525 	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5526 		return -EINVAL;
5527 
5528 	/* TODO: This is not properly updating schedstats */
5529 
5530 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5531 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5532 }
5533 
5534 /*
5535  * Requeue a task on a given node and accurately track the number of NUMA
5536  * tasks on the runqueues
5537  */
5538 void sched_setnuma(struct task_struct *p, int nid)
5539 {
5540 	bool queued, running;
5541 	struct rq_flags rf;
5542 	struct rq *rq;
5543 
5544 	rq = task_rq_lock(p, &rf);
5545 	queued = task_on_rq_queued(p);
5546 	running = task_current(rq, p);
5547 
5548 	if (queued)
5549 		dequeue_task(rq, p, DEQUEUE_SAVE);
5550 	if (running)
5551 		put_prev_task(rq, p);
5552 
5553 	p->numa_preferred_nid = nid;
5554 
5555 	if (queued)
5556 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5557 	if (running)
5558 		set_curr_task(rq, p);
5559 	task_rq_unlock(rq, p, &rf);
5560 }
5561 #endif /* CONFIG_NUMA_BALANCING */
5562 
5563 #ifdef CONFIG_HOTPLUG_CPU
5564 /*
5565  * Ensure that the idle task is using init_mm right before its CPU goes
5566  * offline.
5567  */
5568 void idle_task_exit(void)
5569 {
5570 	struct mm_struct *mm = current->active_mm;
5571 
5572 	BUG_ON(cpu_online(smp_processor_id()));
5573 
5574 	if (mm != &init_mm) {
5575 		switch_mm(mm, &init_mm, current);
5576 		current->active_mm = &init_mm;
5577 		finish_arch_post_lock_switch();
5578 	}
5579 	mmdrop(mm);
5580 }
5581 
5582 /*
5583  * Since this CPU is going 'away' for a while, fold any nr_active delta
5584  * we might have. Assumes we're called after migrate_tasks() so that the
5585  * nr_active count is stable. We need to take the teardown thread which
5586  * is calling this into account, so we hand in adjust = 1 to the load
5587  * calculation.
5588  *
5589  * Also see the comment "Global load-average calculations".
5590  */
5591 static void calc_load_migrate(struct rq *rq)
5592 {
5593 	long delta = calc_load_fold_active(rq, 1);
5594 	if (delta)
5595 		atomic_long_add(delta, &calc_load_tasks);
5596 }
5597 
5598 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5599 {
5600 }
5601 
5602 static const struct sched_class fake_sched_class = {
5603 	.put_prev_task = put_prev_task_fake,
5604 };
5605 
5606 static struct task_struct fake_task = {
5607 	/*
5608 	 * Avoid pull_{rt,dl}_task()
5609 	 */
5610 	.prio = MAX_PRIO + 1,
5611 	.sched_class = &fake_sched_class,
5612 };
5613 
5614 /*
5615  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5616  * try_to_wake_up()->select_task_rq().
5617  *
5618  * Called with rq->lock held even though we'er in stop_machine() and
5619  * there's no concurrency possible, we hold the required locks anyway
5620  * because of lock validation efforts.
5621  */
5622 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5623 {
5624 	struct rq *rq = dead_rq;
5625 	struct task_struct *next, *stop = rq->stop;
5626 	struct rq_flags orf = *rf;
5627 	int dest_cpu;
5628 
5629 	/*
5630 	 * Fudge the rq selection such that the below task selection loop
5631 	 * doesn't get stuck on the currently eligible stop task.
5632 	 *
5633 	 * We're currently inside stop_machine() and the rq is either stuck
5634 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5635 	 * either way we should never end up calling schedule() until we're
5636 	 * done here.
5637 	 */
5638 	rq->stop = NULL;
5639 
5640 	/*
5641 	 * put_prev_task() and pick_next_task() sched
5642 	 * class method both need to have an up-to-date
5643 	 * value of rq->clock[_task]
5644 	 */
5645 	update_rq_clock(rq);
5646 
5647 	for (;;) {
5648 		/*
5649 		 * There's this thread running, bail when that's the only
5650 		 * remaining thread:
5651 		 */
5652 		if (rq->nr_running == 1)
5653 			break;
5654 
5655 		/*
5656 		 * pick_next_task() assumes pinned rq->lock:
5657 		 */
5658 		next = pick_next_task(rq, &fake_task, rf);
5659 		BUG_ON(!next);
5660 		put_prev_task(rq, next);
5661 
5662 		/*
5663 		 * Rules for changing task_struct::cpus_allowed are holding
5664 		 * both pi_lock and rq->lock, such that holding either
5665 		 * stabilizes the mask.
5666 		 *
5667 		 * Drop rq->lock is not quite as disastrous as it usually is
5668 		 * because !cpu_active at this point, which means load-balance
5669 		 * will not interfere. Also, stop-machine.
5670 		 */
5671 		rq_unlock(rq, rf);
5672 		raw_spin_lock(&next->pi_lock);
5673 		rq_relock(rq, rf);
5674 
5675 		/*
5676 		 * Since we're inside stop-machine, _nothing_ should have
5677 		 * changed the task, WARN if weird stuff happened, because in
5678 		 * that case the above rq->lock drop is a fail too.
5679 		 */
5680 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5681 			raw_spin_unlock(&next->pi_lock);
5682 			continue;
5683 		}
5684 
5685 		/* Find suitable destination for @next, with force if needed. */
5686 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5687 		rq = __migrate_task(rq, rf, next, dest_cpu);
5688 		if (rq != dead_rq) {
5689 			rq_unlock(rq, rf);
5690 			rq = dead_rq;
5691 			*rf = orf;
5692 			rq_relock(rq, rf);
5693 		}
5694 		raw_spin_unlock(&next->pi_lock);
5695 	}
5696 
5697 	rq->stop = stop;
5698 }
5699 #endif /* CONFIG_HOTPLUG_CPU */
5700 
5701 void set_rq_online(struct rq *rq)
5702 {
5703 	if (!rq->online) {
5704 		const struct sched_class *class;
5705 
5706 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5707 		rq->online = 1;
5708 
5709 		for_each_class(class) {
5710 			if (class->rq_online)
5711 				class->rq_online(rq);
5712 		}
5713 	}
5714 }
5715 
5716 void set_rq_offline(struct rq *rq)
5717 {
5718 	if (rq->online) {
5719 		const struct sched_class *class;
5720 
5721 		for_each_class(class) {
5722 			if (class->rq_offline)
5723 				class->rq_offline(rq);
5724 		}
5725 
5726 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5727 		rq->online = 0;
5728 	}
5729 }
5730 
5731 static void set_cpu_rq_start_time(unsigned int cpu)
5732 {
5733 	struct rq *rq = cpu_rq(cpu);
5734 
5735 	rq->age_stamp = sched_clock_cpu(cpu);
5736 }
5737 
5738 /*
5739  * used to mark begin/end of suspend/resume:
5740  */
5741 static int num_cpus_frozen;
5742 
5743 /*
5744  * Update cpusets according to cpu_active mask.  If cpusets are
5745  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5746  * around partition_sched_domains().
5747  *
5748  * If we come here as part of a suspend/resume, don't touch cpusets because we
5749  * want to restore it back to its original state upon resume anyway.
5750  */
5751 static void cpuset_cpu_active(void)
5752 {
5753 	if (cpuhp_tasks_frozen) {
5754 		/*
5755 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
5756 		 * resume sequence. As long as this is not the last online
5757 		 * operation in the resume sequence, just build a single sched
5758 		 * domain, ignoring cpusets.
5759 		 */
5760 		partition_sched_domains(1, NULL, NULL);
5761 		if (--num_cpus_frozen)
5762 			return;
5763 		/*
5764 		 * This is the last CPU online operation. So fall through and
5765 		 * restore the original sched domains by considering the
5766 		 * cpuset configurations.
5767 		 */
5768 		cpuset_force_rebuild();
5769 	}
5770 	cpuset_update_active_cpus();
5771 }
5772 
5773 static int cpuset_cpu_inactive(unsigned int cpu)
5774 {
5775 	if (!cpuhp_tasks_frozen) {
5776 		if (dl_cpu_busy(cpu))
5777 			return -EBUSY;
5778 		cpuset_update_active_cpus();
5779 	} else {
5780 		num_cpus_frozen++;
5781 		partition_sched_domains(1, NULL, NULL);
5782 	}
5783 	return 0;
5784 }
5785 
5786 int sched_cpu_activate(unsigned int cpu)
5787 {
5788 	struct rq *rq = cpu_rq(cpu);
5789 	struct rq_flags rf;
5790 
5791 	set_cpu_active(cpu, true);
5792 
5793 	if (sched_smp_initialized) {
5794 		sched_domains_numa_masks_set(cpu);
5795 		cpuset_cpu_active();
5796 	}
5797 
5798 	/*
5799 	 * Put the rq online, if not already. This happens:
5800 	 *
5801 	 * 1) In the early boot process, because we build the real domains
5802 	 *    after all CPUs have been brought up.
5803 	 *
5804 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5805 	 *    domains.
5806 	 */
5807 	rq_lock_irqsave(rq, &rf);
5808 	if (rq->rd) {
5809 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5810 		set_rq_online(rq);
5811 	}
5812 	rq_unlock_irqrestore(rq, &rf);
5813 
5814 	update_max_interval();
5815 
5816 	return 0;
5817 }
5818 
5819 int sched_cpu_deactivate(unsigned int cpu)
5820 {
5821 	int ret;
5822 
5823 	set_cpu_active(cpu, false);
5824 	/*
5825 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5826 	 * users of this state to go away such that all new such users will
5827 	 * observe it.
5828 	 *
5829 	 * Do sync before park smpboot threads to take care the rcu boost case.
5830 	 */
5831 	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5832 
5833 	if (!sched_smp_initialized)
5834 		return 0;
5835 
5836 	ret = cpuset_cpu_inactive(cpu);
5837 	if (ret) {
5838 		set_cpu_active(cpu, true);
5839 		return ret;
5840 	}
5841 	sched_domains_numa_masks_clear(cpu);
5842 	return 0;
5843 }
5844 
5845 static void sched_rq_cpu_starting(unsigned int cpu)
5846 {
5847 	struct rq *rq = cpu_rq(cpu);
5848 
5849 	rq->calc_load_update = calc_load_update;
5850 	update_max_interval();
5851 }
5852 
5853 int sched_cpu_starting(unsigned int cpu)
5854 {
5855 	set_cpu_rq_start_time(cpu);
5856 	sched_rq_cpu_starting(cpu);
5857 	sched_tick_start(cpu);
5858 	return 0;
5859 }
5860 
5861 #ifdef CONFIG_HOTPLUG_CPU
5862 int sched_cpu_dying(unsigned int cpu)
5863 {
5864 	struct rq *rq = cpu_rq(cpu);
5865 	struct rq_flags rf;
5866 
5867 	/* Handle pending wakeups and then migrate everything off */
5868 	sched_ttwu_pending();
5869 	sched_tick_stop(cpu);
5870 
5871 	rq_lock_irqsave(rq, &rf);
5872 	if (rq->rd) {
5873 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5874 		set_rq_offline(rq);
5875 	}
5876 	migrate_tasks(rq, &rf);
5877 	BUG_ON(rq->nr_running != 1);
5878 	rq_unlock_irqrestore(rq, &rf);
5879 
5880 	calc_load_migrate(rq);
5881 	update_max_interval();
5882 	nohz_balance_exit_idle(rq);
5883 	hrtick_clear(rq);
5884 	return 0;
5885 }
5886 #endif
5887 
5888 #ifdef CONFIG_SCHED_SMT
5889 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5890 
5891 static void sched_init_smt(void)
5892 {
5893 	/*
5894 	 * We've enumerated all CPUs and will assume that if any CPU
5895 	 * has SMT siblings, CPU0 will too.
5896 	 */
5897 	if (cpumask_weight(cpu_smt_mask(0)) > 1)
5898 		static_branch_enable(&sched_smt_present);
5899 }
5900 #else
5901 static inline void sched_init_smt(void) { }
5902 #endif
5903 
5904 void __init sched_init_smp(void)
5905 {
5906 	sched_init_numa();
5907 
5908 	/*
5909 	 * There's no userspace yet to cause hotplug operations; hence all the
5910 	 * CPU masks are stable and all blatant races in the below code cannot
5911 	 * happen.
5912 	 */
5913 	mutex_lock(&sched_domains_mutex);
5914 	sched_init_domains(cpu_active_mask);
5915 	mutex_unlock(&sched_domains_mutex);
5916 
5917 	/* Move init over to a non-isolated CPU */
5918 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5919 		BUG();
5920 	sched_init_granularity();
5921 
5922 	init_sched_rt_class();
5923 	init_sched_dl_class();
5924 
5925 	sched_init_smt();
5926 
5927 	sched_smp_initialized = true;
5928 }
5929 
5930 static int __init migration_init(void)
5931 {
5932 	sched_rq_cpu_starting(smp_processor_id());
5933 	return 0;
5934 }
5935 early_initcall(migration_init);
5936 
5937 #else
5938 void __init sched_init_smp(void)
5939 {
5940 	sched_init_granularity();
5941 }
5942 #endif /* CONFIG_SMP */
5943 
5944 int in_sched_functions(unsigned long addr)
5945 {
5946 	return in_lock_functions(addr) ||
5947 		(addr >= (unsigned long)__sched_text_start
5948 		&& addr < (unsigned long)__sched_text_end);
5949 }
5950 
5951 #ifdef CONFIG_CGROUP_SCHED
5952 /*
5953  * Default task group.
5954  * Every task in system belongs to this group at bootup.
5955  */
5956 struct task_group root_task_group;
5957 LIST_HEAD(task_groups);
5958 
5959 /* Cacheline aligned slab cache for task_group */
5960 static struct kmem_cache *task_group_cache __read_mostly;
5961 #endif
5962 
5963 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5964 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5965 
5966 void __init sched_init(void)
5967 {
5968 	int i, j;
5969 	unsigned long alloc_size = 0, ptr;
5970 
5971 	sched_clock_init();
5972 	wait_bit_init();
5973 
5974 #ifdef CONFIG_FAIR_GROUP_SCHED
5975 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5976 #endif
5977 #ifdef CONFIG_RT_GROUP_SCHED
5978 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5979 #endif
5980 	if (alloc_size) {
5981 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5982 
5983 #ifdef CONFIG_FAIR_GROUP_SCHED
5984 		root_task_group.se = (struct sched_entity **)ptr;
5985 		ptr += nr_cpu_ids * sizeof(void **);
5986 
5987 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5988 		ptr += nr_cpu_ids * sizeof(void **);
5989 
5990 #endif /* CONFIG_FAIR_GROUP_SCHED */
5991 #ifdef CONFIG_RT_GROUP_SCHED
5992 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5993 		ptr += nr_cpu_ids * sizeof(void **);
5994 
5995 		root_task_group.rt_rq = (struct rt_rq **)ptr;
5996 		ptr += nr_cpu_ids * sizeof(void **);
5997 
5998 #endif /* CONFIG_RT_GROUP_SCHED */
5999 	}
6000 #ifdef CONFIG_CPUMASK_OFFSTACK
6001 	for_each_possible_cpu(i) {
6002 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6003 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6004 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6005 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6006 	}
6007 #endif /* CONFIG_CPUMASK_OFFSTACK */
6008 
6009 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6010 	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6011 
6012 #ifdef CONFIG_SMP
6013 	init_defrootdomain();
6014 #endif
6015 
6016 #ifdef CONFIG_RT_GROUP_SCHED
6017 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6018 			global_rt_period(), global_rt_runtime());
6019 #endif /* CONFIG_RT_GROUP_SCHED */
6020 
6021 #ifdef CONFIG_CGROUP_SCHED
6022 	task_group_cache = KMEM_CACHE(task_group, 0);
6023 
6024 	list_add(&root_task_group.list, &task_groups);
6025 	INIT_LIST_HEAD(&root_task_group.children);
6026 	INIT_LIST_HEAD(&root_task_group.siblings);
6027 	autogroup_init(&init_task);
6028 #endif /* CONFIG_CGROUP_SCHED */
6029 
6030 	for_each_possible_cpu(i) {
6031 		struct rq *rq;
6032 
6033 		rq = cpu_rq(i);
6034 		raw_spin_lock_init(&rq->lock);
6035 		rq->nr_running = 0;
6036 		rq->calc_load_active = 0;
6037 		rq->calc_load_update = jiffies + LOAD_FREQ;
6038 		init_cfs_rq(&rq->cfs);
6039 		init_rt_rq(&rq->rt);
6040 		init_dl_rq(&rq->dl);
6041 #ifdef CONFIG_FAIR_GROUP_SCHED
6042 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6043 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6044 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6045 		/*
6046 		 * How much CPU bandwidth does root_task_group get?
6047 		 *
6048 		 * In case of task-groups formed thr' the cgroup filesystem, it
6049 		 * gets 100% of the CPU resources in the system. This overall
6050 		 * system CPU resource is divided among the tasks of
6051 		 * root_task_group and its child task-groups in a fair manner,
6052 		 * based on each entity's (task or task-group's) weight
6053 		 * (se->load.weight).
6054 		 *
6055 		 * In other words, if root_task_group has 10 tasks of weight
6056 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6057 		 * then A0's share of the CPU resource is:
6058 		 *
6059 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6060 		 *
6061 		 * We achieve this by letting root_task_group's tasks sit
6062 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6063 		 */
6064 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6065 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6066 #endif /* CONFIG_FAIR_GROUP_SCHED */
6067 
6068 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6069 #ifdef CONFIG_RT_GROUP_SCHED
6070 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6071 #endif
6072 
6073 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6074 			rq->cpu_load[j] = 0;
6075 
6076 #ifdef CONFIG_SMP
6077 		rq->sd = NULL;
6078 		rq->rd = NULL;
6079 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6080 		rq->balance_callback = NULL;
6081 		rq->active_balance = 0;
6082 		rq->next_balance = jiffies;
6083 		rq->push_cpu = 0;
6084 		rq->cpu = i;
6085 		rq->online = 0;
6086 		rq->idle_stamp = 0;
6087 		rq->avg_idle = 2*sysctl_sched_migration_cost;
6088 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6089 
6090 		INIT_LIST_HEAD(&rq->cfs_tasks);
6091 
6092 		rq_attach_root(rq, &def_root_domain);
6093 #ifdef CONFIG_NO_HZ_COMMON
6094 		rq->last_load_update_tick = jiffies;
6095 		rq->last_blocked_load_update_tick = jiffies;
6096 		atomic_set(&rq->nohz_flags, 0);
6097 #endif
6098 #endif /* CONFIG_SMP */
6099 		hrtick_rq_init(rq);
6100 		atomic_set(&rq->nr_iowait, 0);
6101 	}
6102 
6103 	set_load_weight(&init_task, false);
6104 
6105 	/*
6106 	 * The boot idle thread does lazy MMU switching as well:
6107 	 */
6108 	mmgrab(&init_mm);
6109 	enter_lazy_tlb(&init_mm, current);
6110 
6111 	/*
6112 	 * Make us the idle thread. Technically, schedule() should not be
6113 	 * called from this thread, however somewhere below it might be,
6114 	 * but because we are the idle thread, we just pick up running again
6115 	 * when this runqueue becomes "idle".
6116 	 */
6117 	init_idle(current, smp_processor_id());
6118 
6119 	calc_load_update = jiffies + LOAD_FREQ;
6120 
6121 #ifdef CONFIG_SMP
6122 	idle_thread_set_boot_cpu();
6123 	set_cpu_rq_start_time(smp_processor_id());
6124 #endif
6125 	init_sched_fair_class();
6126 
6127 	init_schedstats();
6128 
6129 	scheduler_running = 1;
6130 }
6131 
6132 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6133 static inline int preempt_count_equals(int preempt_offset)
6134 {
6135 	int nested = preempt_count() + rcu_preempt_depth();
6136 
6137 	return (nested == preempt_offset);
6138 }
6139 
6140 void __might_sleep(const char *file, int line, int preempt_offset)
6141 {
6142 	/*
6143 	 * Blocking primitives will set (and therefore destroy) current->state,
6144 	 * since we will exit with TASK_RUNNING make sure we enter with it,
6145 	 * otherwise we will destroy state.
6146 	 */
6147 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6148 			"do not call blocking ops when !TASK_RUNNING; "
6149 			"state=%lx set at [<%p>] %pS\n",
6150 			current->state,
6151 			(void *)current->task_state_change,
6152 			(void *)current->task_state_change);
6153 
6154 	___might_sleep(file, line, preempt_offset);
6155 }
6156 EXPORT_SYMBOL(__might_sleep);
6157 
6158 void ___might_sleep(const char *file, int line, int preempt_offset)
6159 {
6160 	/* Ratelimiting timestamp: */
6161 	static unsigned long prev_jiffy;
6162 
6163 	unsigned long preempt_disable_ip;
6164 
6165 	/* WARN_ON_ONCE() by default, no rate limit required: */
6166 	rcu_sleep_check();
6167 
6168 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6169 	     !is_idle_task(current)) ||
6170 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6171 	    oops_in_progress)
6172 		return;
6173 
6174 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6175 		return;
6176 	prev_jiffy = jiffies;
6177 
6178 	/* Save this before calling printk(), since that will clobber it: */
6179 	preempt_disable_ip = get_preempt_disable_ip(current);
6180 
6181 	printk(KERN_ERR
6182 		"BUG: sleeping function called from invalid context at %s:%d\n",
6183 			file, line);
6184 	printk(KERN_ERR
6185 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6186 			in_atomic(), irqs_disabled(),
6187 			current->pid, current->comm);
6188 
6189 	if (task_stack_end_corrupted(current))
6190 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6191 
6192 	debug_show_held_locks(current);
6193 	if (irqs_disabled())
6194 		print_irqtrace_events(current);
6195 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6196 	    && !preempt_count_equals(preempt_offset)) {
6197 		pr_err("Preemption disabled at:");
6198 		print_ip_sym(preempt_disable_ip);
6199 		pr_cont("\n");
6200 	}
6201 	dump_stack();
6202 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6203 }
6204 EXPORT_SYMBOL(___might_sleep);
6205 #endif
6206 
6207 #ifdef CONFIG_MAGIC_SYSRQ
6208 void normalize_rt_tasks(void)
6209 {
6210 	struct task_struct *g, *p;
6211 	struct sched_attr attr = {
6212 		.sched_policy = SCHED_NORMAL,
6213 	};
6214 
6215 	read_lock(&tasklist_lock);
6216 	for_each_process_thread(g, p) {
6217 		/*
6218 		 * Only normalize user tasks:
6219 		 */
6220 		if (p->flags & PF_KTHREAD)
6221 			continue;
6222 
6223 		p->se.exec_start = 0;
6224 		schedstat_set(p->se.statistics.wait_start,  0);
6225 		schedstat_set(p->se.statistics.sleep_start, 0);
6226 		schedstat_set(p->se.statistics.block_start, 0);
6227 
6228 		if (!dl_task(p) && !rt_task(p)) {
6229 			/*
6230 			 * Renice negative nice level userspace
6231 			 * tasks back to 0:
6232 			 */
6233 			if (task_nice(p) < 0)
6234 				set_user_nice(p, 0);
6235 			continue;
6236 		}
6237 
6238 		__sched_setscheduler(p, &attr, false, false);
6239 	}
6240 	read_unlock(&tasklist_lock);
6241 }
6242 
6243 #endif /* CONFIG_MAGIC_SYSRQ */
6244 
6245 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6246 /*
6247  * These functions are only useful for the IA64 MCA handling, or kdb.
6248  *
6249  * They can only be called when the whole system has been
6250  * stopped - every CPU needs to be quiescent, and no scheduling
6251  * activity can take place. Using them for anything else would
6252  * be a serious bug, and as a result, they aren't even visible
6253  * under any other configuration.
6254  */
6255 
6256 /**
6257  * curr_task - return the current task for a given CPU.
6258  * @cpu: the processor in question.
6259  *
6260  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6261  *
6262  * Return: The current task for @cpu.
6263  */
6264 struct task_struct *curr_task(int cpu)
6265 {
6266 	return cpu_curr(cpu);
6267 }
6268 
6269 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6270 
6271 #ifdef CONFIG_IA64
6272 /**
6273  * set_curr_task - set the current task for a given CPU.
6274  * @cpu: the processor in question.
6275  * @p: the task pointer to set.
6276  *
6277  * Description: This function must only be used when non-maskable interrupts
6278  * are serviced on a separate stack. It allows the architecture to switch the
6279  * notion of the current task on a CPU in a non-blocking manner. This function
6280  * must be called with all CPU's synchronized, and interrupts disabled, the
6281  * and caller must save the original value of the current task (see
6282  * curr_task() above) and restore that value before reenabling interrupts and
6283  * re-starting the system.
6284  *
6285  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6286  */
6287 void ia64_set_curr_task(int cpu, struct task_struct *p)
6288 {
6289 	cpu_curr(cpu) = p;
6290 }
6291 
6292 #endif
6293 
6294 #ifdef CONFIG_CGROUP_SCHED
6295 /* task_group_lock serializes the addition/removal of task groups */
6296 static DEFINE_SPINLOCK(task_group_lock);
6297 
6298 static void sched_free_group(struct task_group *tg)
6299 {
6300 	free_fair_sched_group(tg);
6301 	free_rt_sched_group(tg);
6302 	autogroup_free(tg);
6303 	kmem_cache_free(task_group_cache, tg);
6304 }
6305 
6306 /* allocate runqueue etc for a new task group */
6307 struct task_group *sched_create_group(struct task_group *parent)
6308 {
6309 	struct task_group *tg;
6310 
6311 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6312 	if (!tg)
6313 		return ERR_PTR(-ENOMEM);
6314 
6315 	if (!alloc_fair_sched_group(tg, parent))
6316 		goto err;
6317 
6318 	if (!alloc_rt_sched_group(tg, parent))
6319 		goto err;
6320 
6321 	return tg;
6322 
6323 err:
6324 	sched_free_group(tg);
6325 	return ERR_PTR(-ENOMEM);
6326 }
6327 
6328 void sched_online_group(struct task_group *tg, struct task_group *parent)
6329 {
6330 	unsigned long flags;
6331 
6332 	spin_lock_irqsave(&task_group_lock, flags);
6333 	list_add_rcu(&tg->list, &task_groups);
6334 
6335 	/* Root should already exist: */
6336 	WARN_ON(!parent);
6337 
6338 	tg->parent = parent;
6339 	INIT_LIST_HEAD(&tg->children);
6340 	list_add_rcu(&tg->siblings, &parent->children);
6341 	spin_unlock_irqrestore(&task_group_lock, flags);
6342 
6343 	online_fair_sched_group(tg);
6344 }
6345 
6346 /* rcu callback to free various structures associated with a task group */
6347 static void sched_free_group_rcu(struct rcu_head *rhp)
6348 {
6349 	/* Now it should be safe to free those cfs_rqs: */
6350 	sched_free_group(container_of(rhp, struct task_group, rcu));
6351 }
6352 
6353 void sched_destroy_group(struct task_group *tg)
6354 {
6355 	/* Wait for possible concurrent references to cfs_rqs complete: */
6356 	call_rcu(&tg->rcu, sched_free_group_rcu);
6357 }
6358 
6359 void sched_offline_group(struct task_group *tg)
6360 {
6361 	unsigned long flags;
6362 
6363 	/* End participation in shares distribution: */
6364 	unregister_fair_sched_group(tg);
6365 
6366 	spin_lock_irqsave(&task_group_lock, flags);
6367 	list_del_rcu(&tg->list);
6368 	list_del_rcu(&tg->siblings);
6369 	spin_unlock_irqrestore(&task_group_lock, flags);
6370 }
6371 
6372 static void sched_change_group(struct task_struct *tsk, int type)
6373 {
6374 	struct task_group *tg;
6375 
6376 	/*
6377 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
6378 	 * which is pointless here. Thus, we pass "true" to task_css_check()
6379 	 * to prevent lockdep warnings.
6380 	 */
6381 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6382 			  struct task_group, css);
6383 	tg = autogroup_task_group(tsk, tg);
6384 	tsk->sched_task_group = tg;
6385 
6386 #ifdef CONFIG_FAIR_GROUP_SCHED
6387 	if (tsk->sched_class->task_change_group)
6388 		tsk->sched_class->task_change_group(tsk, type);
6389 	else
6390 #endif
6391 		set_task_rq(tsk, task_cpu(tsk));
6392 }
6393 
6394 /*
6395  * Change task's runqueue when it moves between groups.
6396  *
6397  * The caller of this function should have put the task in its new group by
6398  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6399  * its new group.
6400  */
6401 void sched_move_task(struct task_struct *tsk)
6402 {
6403 	int queued, running, queue_flags =
6404 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6405 	struct rq_flags rf;
6406 	struct rq *rq;
6407 
6408 	rq = task_rq_lock(tsk, &rf);
6409 	update_rq_clock(rq);
6410 
6411 	running = task_current(rq, tsk);
6412 	queued = task_on_rq_queued(tsk);
6413 
6414 	if (queued)
6415 		dequeue_task(rq, tsk, queue_flags);
6416 	if (running)
6417 		put_prev_task(rq, tsk);
6418 
6419 	sched_change_group(tsk, TASK_MOVE_GROUP);
6420 
6421 	if (queued)
6422 		enqueue_task(rq, tsk, queue_flags);
6423 	if (running)
6424 		set_curr_task(rq, tsk);
6425 
6426 	task_rq_unlock(rq, tsk, &rf);
6427 }
6428 
6429 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6430 {
6431 	return css ? container_of(css, struct task_group, css) : NULL;
6432 }
6433 
6434 static struct cgroup_subsys_state *
6435 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6436 {
6437 	struct task_group *parent = css_tg(parent_css);
6438 	struct task_group *tg;
6439 
6440 	if (!parent) {
6441 		/* This is early initialization for the top cgroup */
6442 		return &root_task_group.css;
6443 	}
6444 
6445 	tg = sched_create_group(parent);
6446 	if (IS_ERR(tg))
6447 		return ERR_PTR(-ENOMEM);
6448 
6449 	return &tg->css;
6450 }
6451 
6452 /* Expose task group only after completing cgroup initialization */
6453 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6454 {
6455 	struct task_group *tg = css_tg(css);
6456 	struct task_group *parent = css_tg(css->parent);
6457 
6458 	if (parent)
6459 		sched_online_group(tg, parent);
6460 	return 0;
6461 }
6462 
6463 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6464 {
6465 	struct task_group *tg = css_tg(css);
6466 
6467 	sched_offline_group(tg);
6468 }
6469 
6470 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6471 {
6472 	struct task_group *tg = css_tg(css);
6473 
6474 	/*
6475 	 * Relies on the RCU grace period between css_released() and this.
6476 	 */
6477 	sched_free_group(tg);
6478 }
6479 
6480 /*
6481  * This is called before wake_up_new_task(), therefore we really only
6482  * have to set its group bits, all the other stuff does not apply.
6483  */
6484 static void cpu_cgroup_fork(struct task_struct *task)
6485 {
6486 	struct rq_flags rf;
6487 	struct rq *rq;
6488 
6489 	rq = task_rq_lock(task, &rf);
6490 
6491 	update_rq_clock(rq);
6492 	sched_change_group(task, TASK_SET_GROUP);
6493 
6494 	task_rq_unlock(rq, task, &rf);
6495 }
6496 
6497 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6498 {
6499 	struct task_struct *task;
6500 	struct cgroup_subsys_state *css;
6501 	int ret = 0;
6502 
6503 	cgroup_taskset_for_each(task, css, tset) {
6504 #ifdef CONFIG_RT_GROUP_SCHED
6505 		if (!sched_rt_can_attach(css_tg(css), task))
6506 			return -EINVAL;
6507 #else
6508 		/* We don't support RT-tasks being in separate groups */
6509 		if (task->sched_class != &fair_sched_class)
6510 			return -EINVAL;
6511 #endif
6512 		/*
6513 		 * Serialize against wake_up_new_task() such that if its
6514 		 * running, we're sure to observe its full state.
6515 		 */
6516 		raw_spin_lock_irq(&task->pi_lock);
6517 		/*
6518 		 * Avoid calling sched_move_task() before wake_up_new_task()
6519 		 * has happened. This would lead to problems with PELT, due to
6520 		 * move wanting to detach+attach while we're not attached yet.
6521 		 */
6522 		if (task->state == TASK_NEW)
6523 			ret = -EINVAL;
6524 		raw_spin_unlock_irq(&task->pi_lock);
6525 
6526 		if (ret)
6527 			break;
6528 	}
6529 	return ret;
6530 }
6531 
6532 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6533 {
6534 	struct task_struct *task;
6535 	struct cgroup_subsys_state *css;
6536 
6537 	cgroup_taskset_for_each(task, css, tset)
6538 		sched_move_task(task);
6539 }
6540 
6541 #ifdef CONFIG_FAIR_GROUP_SCHED
6542 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6543 				struct cftype *cftype, u64 shareval)
6544 {
6545 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6546 }
6547 
6548 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6549 			       struct cftype *cft)
6550 {
6551 	struct task_group *tg = css_tg(css);
6552 
6553 	return (u64) scale_load_down(tg->shares);
6554 }
6555 
6556 #ifdef CONFIG_CFS_BANDWIDTH
6557 static DEFINE_MUTEX(cfs_constraints_mutex);
6558 
6559 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6560 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6561 
6562 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6563 
6564 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6565 {
6566 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6567 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6568 
6569 	if (tg == &root_task_group)
6570 		return -EINVAL;
6571 
6572 	/*
6573 	 * Ensure we have at some amount of bandwidth every period.  This is
6574 	 * to prevent reaching a state of large arrears when throttled via
6575 	 * entity_tick() resulting in prolonged exit starvation.
6576 	 */
6577 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6578 		return -EINVAL;
6579 
6580 	/*
6581 	 * Likewise, bound things on the otherside by preventing insane quota
6582 	 * periods.  This also allows us to normalize in computing quota
6583 	 * feasibility.
6584 	 */
6585 	if (period > max_cfs_quota_period)
6586 		return -EINVAL;
6587 
6588 	/*
6589 	 * Prevent race between setting of cfs_rq->runtime_enabled and
6590 	 * unthrottle_offline_cfs_rqs().
6591 	 */
6592 	get_online_cpus();
6593 	mutex_lock(&cfs_constraints_mutex);
6594 	ret = __cfs_schedulable(tg, period, quota);
6595 	if (ret)
6596 		goto out_unlock;
6597 
6598 	runtime_enabled = quota != RUNTIME_INF;
6599 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6600 	/*
6601 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
6602 	 * before making related changes, and on->off must occur afterwards
6603 	 */
6604 	if (runtime_enabled && !runtime_was_enabled)
6605 		cfs_bandwidth_usage_inc();
6606 	raw_spin_lock_irq(&cfs_b->lock);
6607 	cfs_b->period = ns_to_ktime(period);
6608 	cfs_b->quota = quota;
6609 
6610 	__refill_cfs_bandwidth_runtime(cfs_b);
6611 
6612 	/* Restart the period timer (if active) to handle new period expiry: */
6613 	if (runtime_enabled)
6614 		start_cfs_bandwidth(cfs_b);
6615 
6616 	raw_spin_unlock_irq(&cfs_b->lock);
6617 
6618 	for_each_online_cpu(i) {
6619 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6620 		struct rq *rq = cfs_rq->rq;
6621 		struct rq_flags rf;
6622 
6623 		rq_lock_irq(rq, &rf);
6624 		cfs_rq->runtime_enabled = runtime_enabled;
6625 		cfs_rq->runtime_remaining = 0;
6626 
6627 		if (cfs_rq->throttled)
6628 			unthrottle_cfs_rq(cfs_rq);
6629 		rq_unlock_irq(rq, &rf);
6630 	}
6631 	if (runtime_was_enabled && !runtime_enabled)
6632 		cfs_bandwidth_usage_dec();
6633 out_unlock:
6634 	mutex_unlock(&cfs_constraints_mutex);
6635 	put_online_cpus();
6636 
6637 	return ret;
6638 }
6639 
6640 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6641 {
6642 	u64 quota, period;
6643 
6644 	period = ktime_to_ns(tg->cfs_bandwidth.period);
6645 	if (cfs_quota_us < 0)
6646 		quota = RUNTIME_INF;
6647 	else
6648 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6649 
6650 	return tg_set_cfs_bandwidth(tg, period, quota);
6651 }
6652 
6653 long tg_get_cfs_quota(struct task_group *tg)
6654 {
6655 	u64 quota_us;
6656 
6657 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6658 		return -1;
6659 
6660 	quota_us = tg->cfs_bandwidth.quota;
6661 	do_div(quota_us, NSEC_PER_USEC);
6662 
6663 	return quota_us;
6664 }
6665 
6666 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6667 {
6668 	u64 quota, period;
6669 
6670 	period = (u64)cfs_period_us * NSEC_PER_USEC;
6671 	quota = tg->cfs_bandwidth.quota;
6672 
6673 	return tg_set_cfs_bandwidth(tg, period, quota);
6674 }
6675 
6676 long tg_get_cfs_period(struct task_group *tg)
6677 {
6678 	u64 cfs_period_us;
6679 
6680 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6681 	do_div(cfs_period_us, NSEC_PER_USEC);
6682 
6683 	return cfs_period_us;
6684 }
6685 
6686 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6687 				  struct cftype *cft)
6688 {
6689 	return tg_get_cfs_quota(css_tg(css));
6690 }
6691 
6692 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6693 				   struct cftype *cftype, s64 cfs_quota_us)
6694 {
6695 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6696 }
6697 
6698 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6699 				   struct cftype *cft)
6700 {
6701 	return tg_get_cfs_period(css_tg(css));
6702 }
6703 
6704 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6705 				    struct cftype *cftype, u64 cfs_period_us)
6706 {
6707 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6708 }
6709 
6710 struct cfs_schedulable_data {
6711 	struct task_group *tg;
6712 	u64 period, quota;
6713 };
6714 
6715 /*
6716  * normalize group quota/period to be quota/max_period
6717  * note: units are usecs
6718  */
6719 static u64 normalize_cfs_quota(struct task_group *tg,
6720 			       struct cfs_schedulable_data *d)
6721 {
6722 	u64 quota, period;
6723 
6724 	if (tg == d->tg) {
6725 		period = d->period;
6726 		quota = d->quota;
6727 	} else {
6728 		period = tg_get_cfs_period(tg);
6729 		quota = tg_get_cfs_quota(tg);
6730 	}
6731 
6732 	/* note: these should typically be equivalent */
6733 	if (quota == RUNTIME_INF || quota == -1)
6734 		return RUNTIME_INF;
6735 
6736 	return to_ratio(period, quota);
6737 }
6738 
6739 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6740 {
6741 	struct cfs_schedulable_data *d = data;
6742 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6743 	s64 quota = 0, parent_quota = -1;
6744 
6745 	if (!tg->parent) {
6746 		quota = RUNTIME_INF;
6747 	} else {
6748 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6749 
6750 		quota = normalize_cfs_quota(tg, d);
6751 		parent_quota = parent_b->hierarchical_quota;
6752 
6753 		/*
6754 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
6755 		 * always take the min.  On cgroup1, only inherit when no
6756 		 * limit is set:
6757 		 */
6758 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6759 			quota = min(quota, parent_quota);
6760 		} else {
6761 			if (quota == RUNTIME_INF)
6762 				quota = parent_quota;
6763 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6764 				return -EINVAL;
6765 		}
6766 	}
6767 	cfs_b->hierarchical_quota = quota;
6768 
6769 	return 0;
6770 }
6771 
6772 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6773 {
6774 	int ret;
6775 	struct cfs_schedulable_data data = {
6776 		.tg = tg,
6777 		.period = period,
6778 		.quota = quota,
6779 	};
6780 
6781 	if (quota != RUNTIME_INF) {
6782 		do_div(data.period, NSEC_PER_USEC);
6783 		do_div(data.quota, NSEC_PER_USEC);
6784 	}
6785 
6786 	rcu_read_lock();
6787 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6788 	rcu_read_unlock();
6789 
6790 	return ret;
6791 }
6792 
6793 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6794 {
6795 	struct task_group *tg = css_tg(seq_css(sf));
6796 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6797 
6798 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6799 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6800 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6801 
6802 	return 0;
6803 }
6804 #endif /* CONFIG_CFS_BANDWIDTH */
6805 #endif /* CONFIG_FAIR_GROUP_SCHED */
6806 
6807 #ifdef CONFIG_RT_GROUP_SCHED
6808 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6809 				struct cftype *cft, s64 val)
6810 {
6811 	return sched_group_set_rt_runtime(css_tg(css), val);
6812 }
6813 
6814 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6815 			       struct cftype *cft)
6816 {
6817 	return sched_group_rt_runtime(css_tg(css));
6818 }
6819 
6820 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6821 				    struct cftype *cftype, u64 rt_period_us)
6822 {
6823 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6824 }
6825 
6826 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6827 				   struct cftype *cft)
6828 {
6829 	return sched_group_rt_period(css_tg(css));
6830 }
6831 #endif /* CONFIG_RT_GROUP_SCHED */
6832 
6833 static struct cftype cpu_legacy_files[] = {
6834 #ifdef CONFIG_FAIR_GROUP_SCHED
6835 	{
6836 		.name = "shares",
6837 		.read_u64 = cpu_shares_read_u64,
6838 		.write_u64 = cpu_shares_write_u64,
6839 	},
6840 #endif
6841 #ifdef CONFIG_CFS_BANDWIDTH
6842 	{
6843 		.name = "cfs_quota_us",
6844 		.read_s64 = cpu_cfs_quota_read_s64,
6845 		.write_s64 = cpu_cfs_quota_write_s64,
6846 	},
6847 	{
6848 		.name = "cfs_period_us",
6849 		.read_u64 = cpu_cfs_period_read_u64,
6850 		.write_u64 = cpu_cfs_period_write_u64,
6851 	},
6852 	{
6853 		.name = "stat",
6854 		.seq_show = cpu_cfs_stat_show,
6855 	},
6856 #endif
6857 #ifdef CONFIG_RT_GROUP_SCHED
6858 	{
6859 		.name = "rt_runtime_us",
6860 		.read_s64 = cpu_rt_runtime_read,
6861 		.write_s64 = cpu_rt_runtime_write,
6862 	},
6863 	{
6864 		.name = "rt_period_us",
6865 		.read_u64 = cpu_rt_period_read_uint,
6866 		.write_u64 = cpu_rt_period_write_uint,
6867 	},
6868 #endif
6869 	{ }	/* Terminate */
6870 };
6871 
6872 static int cpu_extra_stat_show(struct seq_file *sf,
6873 			       struct cgroup_subsys_state *css)
6874 {
6875 #ifdef CONFIG_CFS_BANDWIDTH
6876 	{
6877 		struct task_group *tg = css_tg(css);
6878 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6879 		u64 throttled_usec;
6880 
6881 		throttled_usec = cfs_b->throttled_time;
6882 		do_div(throttled_usec, NSEC_PER_USEC);
6883 
6884 		seq_printf(sf, "nr_periods %d\n"
6885 			   "nr_throttled %d\n"
6886 			   "throttled_usec %llu\n",
6887 			   cfs_b->nr_periods, cfs_b->nr_throttled,
6888 			   throttled_usec);
6889 	}
6890 #endif
6891 	return 0;
6892 }
6893 
6894 #ifdef CONFIG_FAIR_GROUP_SCHED
6895 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6896 			       struct cftype *cft)
6897 {
6898 	struct task_group *tg = css_tg(css);
6899 	u64 weight = scale_load_down(tg->shares);
6900 
6901 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6902 }
6903 
6904 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6905 				struct cftype *cft, u64 weight)
6906 {
6907 	/*
6908 	 * cgroup weight knobs should use the common MIN, DFL and MAX
6909 	 * values which are 1, 100 and 10000 respectively.  While it loses
6910 	 * a bit of range on both ends, it maps pretty well onto the shares
6911 	 * value used by scheduler and the round-trip conversions preserve
6912 	 * the original value over the entire range.
6913 	 */
6914 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6915 		return -ERANGE;
6916 
6917 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6918 
6919 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6920 }
6921 
6922 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6923 				    struct cftype *cft)
6924 {
6925 	unsigned long weight = scale_load_down(css_tg(css)->shares);
6926 	int last_delta = INT_MAX;
6927 	int prio, delta;
6928 
6929 	/* find the closest nice value to the current weight */
6930 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6931 		delta = abs(sched_prio_to_weight[prio] - weight);
6932 		if (delta >= last_delta)
6933 			break;
6934 		last_delta = delta;
6935 	}
6936 
6937 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6938 }
6939 
6940 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6941 				     struct cftype *cft, s64 nice)
6942 {
6943 	unsigned long weight;
6944 	int idx;
6945 
6946 	if (nice < MIN_NICE || nice > MAX_NICE)
6947 		return -ERANGE;
6948 
6949 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6950 	idx = array_index_nospec(idx, 40);
6951 	weight = sched_prio_to_weight[idx];
6952 
6953 	return sched_group_set_shares(css_tg(css), scale_load(weight));
6954 }
6955 #endif
6956 
6957 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6958 						  long period, long quota)
6959 {
6960 	if (quota < 0)
6961 		seq_puts(sf, "max");
6962 	else
6963 		seq_printf(sf, "%ld", quota);
6964 
6965 	seq_printf(sf, " %ld\n", period);
6966 }
6967 
6968 /* caller should put the current value in *@periodp before calling */
6969 static int __maybe_unused cpu_period_quota_parse(char *buf,
6970 						 u64 *periodp, u64 *quotap)
6971 {
6972 	char tok[21];	/* U64_MAX */
6973 
6974 	if (!sscanf(buf, "%s %llu", tok, periodp))
6975 		return -EINVAL;
6976 
6977 	*periodp *= NSEC_PER_USEC;
6978 
6979 	if (sscanf(tok, "%llu", quotap))
6980 		*quotap *= NSEC_PER_USEC;
6981 	else if (!strcmp(tok, "max"))
6982 		*quotap = RUNTIME_INF;
6983 	else
6984 		return -EINVAL;
6985 
6986 	return 0;
6987 }
6988 
6989 #ifdef CONFIG_CFS_BANDWIDTH
6990 static int cpu_max_show(struct seq_file *sf, void *v)
6991 {
6992 	struct task_group *tg = css_tg(seq_css(sf));
6993 
6994 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6995 	return 0;
6996 }
6997 
6998 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6999 			     char *buf, size_t nbytes, loff_t off)
7000 {
7001 	struct task_group *tg = css_tg(of_css(of));
7002 	u64 period = tg_get_cfs_period(tg);
7003 	u64 quota;
7004 	int ret;
7005 
7006 	ret = cpu_period_quota_parse(buf, &period, &quota);
7007 	if (!ret)
7008 		ret = tg_set_cfs_bandwidth(tg, period, quota);
7009 	return ret ?: nbytes;
7010 }
7011 #endif
7012 
7013 static struct cftype cpu_files[] = {
7014 #ifdef CONFIG_FAIR_GROUP_SCHED
7015 	{
7016 		.name = "weight",
7017 		.flags = CFTYPE_NOT_ON_ROOT,
7018 		.read_u64 = cpu_weight_read_u64,
7019 		.write_u64 = cpu_weight_write_u64,
7020 	},
7021 	{
7022 		.name = "weight.nice",
7023 		.flags = CFTYPE_NOT_ON_ROOT,
7024 		.read_s64 = cpu_weight_nice_read_s64,
7025 		.write_s64 = cpu_weight_nice_write_s64,
7026 	},
7027 #endif
7028 #ifdef CONFIG_CFS_BANDWIDTH
7029 	{
7030 		.name = "max",
7031 		.flags = CFTYPE_NOT_ON_ROOT,
7032 		.seq_show = cpu_max_show,
7033 		.write = cpu_max_write,
7034 	},
7035 #endif
7036 	{ }	/* terminate */
7037 };
7038 
7039 struct cgroup_subsys cpu_cgrp_subsys = {
7040 	.css_alloc	= cpu_cgroup_css_alloc,
7041 	.css_online	= cpu_cgroup_css_online,
7042 	.css_released	= cpu_cgroup_css_released,
7043 	.css_free	= cpu_cgroup_css_free,
7044 	.css_extra_stat_show = cpu_extra_stat_show,
7045 	.fork		= cpu_cgroup_fork,
7046 	.can_attach	= cpu_cgroup_can_attach,
7047 	.attach		= cpu_cgroup_attach,
7048 	.legacy_cftypes	= cpu_legacy_files,
7049 	.dfl_cftypes	= cpu_files,
7050 	.early_init	= true,
7051 	.threaded	= true,
7052 };
7053 
7054 #endif	/* CONFIG_CGROUP_SCHED */
7055 
7056 void dump_cpu_task(int cpu)
7057 {
7058 	pr_info("Task dump for CPU %d:\n", cpu);
7059 	sched_show_task(cpu_curr(cpu));
7060 }
7061 
7062 /*
7063  * Nice levels are multiplicative, with a gentle 10% change for every
7064  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7065  * nice 1, it will get ~10% less CPU time than another CPU-bound task
7066  * that remained on nice 0.
7067  *
7068  * The "10% effect" is relative and cumulative: from _any_ nice level,
7069  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7070  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7071  * If a task goes up by ~10% and another task goes down by ~10% then
7072  * the relative distance between them is ~25%.)
7073  */
7074 const int sched_prio_to_weight[40] = {
7075  /* -20 */     88761,     71755,     56483,     46273,     36291,
7076  /* -15 */     29154,     23254,     18705,     14949,     11916,
7077  /* -10 */      9548,      7620,      6100,      4904,      3906,
7078  /*  -5 */      3121,      2501,      1991,      1586,      1277,
7079  /*   0 */      1024,       820,       655,       526,       423,
7080  /*   5 */       335,       272,       215,       172,       137,
7081  /*  10 */       110,        87,        70,        56,        45,
7082  /*  15 */        36,        29,        23,        18,        15,
7083 };
7084 
7085 /*
7086  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7087  *
7088  * In cases where the weight does not change often, we can use the
7089  * precalculated inverse to speed up arithmetics by turning divisions
7090  * into multiplications:
7091  */
7092 const u32 sched_prio_to_wmult[40] = {
7093  /* -20 */     48388,     59856,     76040,     92818,    118348,
7094  /* -15 */    147320,    184698,    229616,    287308,    360437,
7095  /* -10 */    449829,    563644,    704093,    875809,   1099582,
7096  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
7097  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
7098  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
7099  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
7100  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7101 };
7102 
7103 #undef CREATE_TRACE_POINTS
7104