1 /* 2 * kernel/sched/core.c 3 * 4 * Core kernel scheduler code and related syscalls 5 * 6 * Copyright (C) 1991-2002 Linus Torvalds 7 */ 8 #include "sched.h" 9 10 #include <linux/kthread.h> 11 #include <linux/nospec.h> 12 13 #include <asm/switch_to.h> 14 #include <asm/tlb.h> 15 16 #include "../workqueue_internal.h" 17 #include "../smpboot.h" 18 19 #define CREATE_TRACE_POINTS 20 #include <trace/events/sched.h> 21 22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 23 24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 25 /* 26 * Debugging: various feature bits 27 * 28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 29 * sysctl_sched_features, defined in sched.h, to allow constants propagation 30 * at compile time and compiler optimization based on features default. 31 */ 32 #define SCHED_FEAT(name, enabled) \ 33 (1UL << __SCHED_FEAT_##name) * enabled | 34 const_debug unsigned int sysctl_sched_features = 35 #include "features.h" 36 0; 37 #undef SCHED_FEAT 38 #endif 39 40 /* 41 * Number of tasks to iterate in a single balance run. 42 * Limited because this is done with IRQs disabled. 43 */ 44 const_debug unsigned int sysctl_sched_nr_migrate = 32; 45 46 /* 47 * period over which we average the RT time consumption, measured 48 * in ms. 49 * 50 * default: 1s 51 */ 52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 53 54 /* 55 * period over which we measure -rt task CPU usage in us. 56 * default: 1s 57 */ 58 unsigned int sysctl_sched_rt_period = 1000000; 59 60 __read_mostly int scheduler_running; 61 62 /* 63 * part of the period that we allow rt tasks to run in us. 64 * default: 0.95s 65 */ 66 int sysctl_sched_rt_runtime = 950000; 67 68 /* 69 * __task_rq_lock - lock the rq @p resides on. 70 */ 71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 72 __acquires(rq->lock) 73 { 74 struct rq *rq; 75 76 lockdep_assert_held(&p->pi_lock); 77 78 for (;;) { 79 rq = task_rq(p); 80 raw_spin_lock(&rq->lock); 81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 82 rq_pin_lock(rq, rf); 83 return rq; 84 } 85 raw_spin_unlock(&rq->lock); 86 87 while (unlikely(task_on_rq_migrating(p))) 88 cpu_relax(); 89 } 90 } 91 92 /* 93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 94 */ 95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 96 __acquires(p->pi_lock) 97 __acquires(rq->lock) 98 { 99 struct rq *rq; 100 101 for (;;) { 102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 103 rq = task_rq(p); 104 raw_spin_lock(&rq->lock); 105 /* 106 * move_queued_task() task_rq_lock() 107 * 108 * ACQUIRE (rq->lock) 109 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 111 * [S] ->cpu = new_cpu [L] task_rq() 112 * [L] ->on_rq 113 * RELEASE (rq->lock) 114 * 115 * If we observe the old CPU in task_rq_lock, the acquire of 116 * the old rq->lock will fully serialize against the stores. 117 * 118 * If we observe the new CPU in task_rq_lock, the acquire will 119 * pair with the WMB to ensure we must then also see migrating. 120 */ 121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 122 rq_pin_lock(rq, rf); 123 return rq; 124 } 125 raw_spin_unlock(&rq->lock); 126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 127 128 while (unlikely(task_on_rq_migrating(p))) 129 cpu_relax(); 130 } 131 } 132 133 /* 134 * RQ-clock updating methods: 135 */ 136 137 static void update_rq_clock_task(struct rq *rq, s64 delta) 138 { 139 /* 140 * In theory, the compile should just see 0 here, and optimize out the call 141 * to sched_rt_avg_update. But I don't trust it... 142 */ 143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 144 s64 steal = 0, irq_delta = 0; 145 #endif 146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 148 149 /* 150 * Since irq_time is only updated on {soft,}irq_exit, we might run into 151 * this case when a previous update_rq_clock() happened inside a 152 * {soft,}irq region. 153 * 154 * When this happens, we stop ->clock_task and only update the 155 * prev_irq_time stamp to account for the part that fit, so that a next 156 * update will consume the rest. This ensures ->clock_task is 157 * monotonic. 158 * 159 * It does however cause some slight miss-attribution of {soft,}irq 160 * time, a more accurate solution would be to update the irq_time using 161 * the current rq->clock timestamp, except that would require using 162 * atomic ops. 163 */ 164 if (irq_delta > delta) 165 irq_delta = delta; 166 167 rq->prev_irq_time += irq_delta; 168 delta -= irq_delta; 169 #endif 170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 171 if (static_key_false((¶virt_steal_rq_enabled))) { 172 steal = paravirt_steal_clock(cpu_of(rq)); 173 steal -= rq->prev_steal_time_rq; 174 175 if (unlikely(steal > delta)) 176 steal = delta; 177 178 rq->prev_steal_time_rq += steal; 179 delta -= steal; 180 } 181 #endif 182 183 rq->clock_task += delta; 184 185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 187 sched_rt_avg_update(rq, irq_delta + steal); 188 #endif 189 } 190 191 void update_rq_clock(struct rq *rq) 192 { 193 s64 delta; 194 195 lockdep_assert_held(&rq->lock); 196 197 if (rq->clock_update_flags & RQCF_ACT_SKIP) 198 return; 199 200 #ifdef CONFIG_SCHED_DEBUG 201 if (sched_feat(WARN_DOUBLE_CLOCK)) 202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 203 rq->clock_update_flags |= RQCF_UPDATED; 204 #endif 205 206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 207 if (delta < 0) 208 return; 209 rq->clock += delta; 210 update_rq_clock_task(rq, delta); 211 } 212 213 214 #ifdef CONFIG_SCHED_HRTICK 215 /* 216 * Use HR-timers to deliver accurate preemption points. 217 */ 218 219 static void hrtick_clear(struct rq *rq) 220 { 221 if (hrtimer_active(&rq->hrtick_timer)) 222 hrtimer_cancel(&rq->hrtick_timer); 223 } 224 225 /* 226 * High-resolution timer tick. 227 * Runs from hardirq context with interrupts disabled. 228 */ 229 static enum hrtimer_restart hrtick(struct hrtimer *timer) 230 { 231 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 232 struct rq_flags rf; 233 234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 235 236 rq_lock(rq, &rf); 237 update_rq_clock(rq); 238 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 239 rq_unlock(rq, &rf); 240 241 return HRTIMER_NORESTART; 242 } 243 244 #ifdef CONFIG_SMP 245 246 static void __hrtick_restart(struct rq *rq) 247 { 248 struct hrtimer *timer = &rq->hrtick_timer; 249 250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 251 } 252 253 /* 254 * called from hardirq (IPI) context 255 */ 256 static void __hrtick_start(void *arg) 257 { 258 struct rq *rq = arg; 259 struct rq_flags rf; 260 261 rq_lock(rq, &rf); 262 __hrtick_restart(rq); 263 rq->hrtick_csd_pending = 0; 264 rq_unlock(rq, &rf); 265 } 266 267 /* 268 * Called to set the hrtick timer state. 269 * 270 * called with rq->lock held and irqs disabled 271 */ 272 void hrtick_start(struct rq *rq, u64 delay) 273 { 274 struct hrtimer *timer = &rq->hrtick_timer; 275 ktime_t time; 276 s64 delta; 277 278 /* 279 * Don't schedule slices shorter than 10000ns, that just 280 * doesn't make sense and can cause timer DoS. 281 */ 282 delta = max_t(s64, delay, 10000LL); 283 time = ktime_add_ns(timer->base->get_time(), delta); 284 285 hrtimer_set_expires(timer, time); 286 287 if (rq == this_rq()) { 288 __hrtick_restart(rq); 289 } else if (!rq->hrtick_csd_pending) { 290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 291 rq->hrtick_csd_pending = 1; 292 } 293 } 294 295 #else 296 /* 297 * Called to set the hrtick timer state. 298 * 299 * called with rq->lock held and irqs disabled 300 */ 301 void hrtick_start(struct rq *rq, u64 delay) 302 { 303 /* 304 * Don't schedule slices shorter than 10000ns, that just 305 * doesn't make sense. Rely on vruntime for fairness. 306 */ 307 delay = max_t(u64, delay, 10000LL); 308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 309 HRTIMER_MODE_REL_PINNED); 310 } 311 #endif /* CONFIG_SMP */ 312 313 static void hrtick_rq_init(struct rq *rq) 314 { 315 #ifdef CONFIG_SMP 316 rq->hrtick_csd_pending = 0; 317 318 rq->hrtick_csd.flags = 0; 319 rq->hrtick_csd.func = __hrtick_start; 320 rq->hrtick_csd.info = rq; 321 #endif 322 323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 324 rq->hrtick_timer.function = hrtick; 325 } 326 #else /* CONFIG_SCHED_HRTICK */ 327 static inline void hrtick_clear(struct rq *rq) 328 { 329 } 330 331 static inline void hrtick_rq_init(struct rq *rq) 332 { 333 } 334 #endif /* CONFIG_SCHED_HRTICK */ 335 336 /* 337 * cmpxchg based fetch_or, macro so it works for different integer types 338 */ 339 #define fetch_or(ptr, mask) \ 340 ({ \ 341 typeof(ptr) _ptr = (ptr); \ 342 typeof(mask) _mask = (mask); \ 343 typeof(*_ptr) _old, _val = *_ptr; \ 344 \ 345 for (;;) { \ 346 _old = cmpxchg(_ptr, _val, _val | _mask); \ 347 if (_old == _val) \ 348 break; \ 349 _val = _old; \ 350 } \ 351 _old; \ 352 }) 353 354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 355 /* 356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 357 * this avoids any races wrt polling state changes and thereby avoids 358 * spurious IPIs. 359 */ 360 static bool set_nr_and_not_polling(struct task_struct *p) 361 { 362 struct thread_info *ti = task_thread_info(p); 363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); 364 } 365 366 /* 367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 368 * 369 * If this returns true, then the idle task promises to call 370 * sched_ttwu_pending() and reschedule soon. 371 */ 372 static bool set_nr_if_polling(struct task_struct *p) 373 { 374 struct thread_info *ti = task_thread_info(p); 375 typeof(ti->flags) old, val = READ_ONCE(ti->flags); 376 377 for (;;) { 378 if (!(val & _TIF_POLLING_NRFLAG)) 379 return false; 380 if (val & _TIF_NEED_RESCHED) 381 return true; 382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED); 383 if (old == val) 384 break; 385 val = old; 386 } 387 return true; 388 } 389 390 #else 391 static bool set_nr_and_not_polling(struct task_struct *p) 392 { 393 set_tsk_need_resched(p); 394 return true; 395 } 396 397 #ifdef CONFIG_SMP 398 static bool set_nr_if_polling(struct task_struct *p) 399 { 400 return false; 401 } 402 #endif 403 #endif 404 405 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 406 { 407 struct wake_q_node *node = &task->wake_q; 408 409 /* 410 * Atomically grab the task, if ->wake_q is !nil already it means 411 * its already queued (either by us or someone else) and will get the 412 * wakeup due to that. 413 * 414 * This cmpxchg() implies a full barrier, which pairs with the write 415 * barrier implied by the wakeup in wake_up_q(). 416 */ 417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL)) 418 return; 419 420 get_task_struct(task); 421 422 /* 423 * The head is context local, there can be no concurrency. 424 */ 425 *head->lastp = node; 426 head->lastp = &node->next; 427 } 428 429 void wake_up_q(struct wake_q_head *head) 430 { 431 struct wake_q_node *node = head->first; 432 433 while (node != WAKE_Q_TAIL) { 434 struct task_struct *task; 435 436 task = container_of(node, struct task_struct, wake_q); 437 BUG_ON(!task); 438 /* Task can safely be re-inserted now: */ 439 node = node->next; 440 task->wake_q.next = NULL; 441 442 /* 443 * wake_up_process() implies a wmb() to pair with the queueing 444 * in wake_q_add() so as not to miss wakeups. 445 */ 446 wake_up_process(task); 447 put_task_struct(task); 448 } 449 } 450 451 /* 452 * resched_curr - mark rq's current task 'to be rescheduled now'. 453 * 454 * On UP this means the setting of the need_resched flag, on SMP it 455 * might also involve a cross-CPU call to trigger the scheduler on 456 * the target CPU. 457 */ 458 void resched_curr(struct rq *rq) 459 { 460 struct task_struct *curr = rq->curr; 461 int cpu; 462 463 lockdep_assert_held(&rq->lock); 464 465 if (test_tsk_need_resched(curr)) 466 return; 467 468 cpu = cpu_of(rq); 469 470 if (cpu == smp_processor_id()) { 471 set_tsk_need_resched(curr); 472 set_preempt_need_resched(); 473 return; 474 } 475 476 if (set_nr_and_not_polling(curr)) 477 smp_send_reschedule(cpu); 478 else 479 trace_sched_wake_idle_without_ipi(cpu); 480 } 481 482 void resched_cpu(int cpu) 483 { 484 struct rq *rq = cpu_rq(cpu); 485 unsigned long flags; 486 487 raw_spin_lock_irqsave(&rq->lock, flags); 488 if (cpu_online(cpu) || cpu == smp_processor_id()) 489 resched_curr(rq); 490 raw_spin_unlock_irqrestore(&rq->lock, flags); 491 } 492 493 #ifdef CONFIG_SMP 494 #ifdef CONFIG_NO_HZ_COMMON 495 /* 496 * In the semi idle case, use the nearest busy CPU for migrating timers 497 * from an idle CPU. This is good for power-savings. 498 * 499 * We don't do similar optimization for completely idle system, as 500 * selecting an idle CPU will add more delays to the timers than intended 501 * (as that CPU's timer base may not be uptodate wrt jiffies etc). 502 */ 503 int get_nohz_timer_target(void) 504 { 505 int i, cpu = smp_processor_id(); 506 struct sched_domain *sd; 507 508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER)) 509 return cpu; 510 511 rcu_read_lock(); 512 for_each_domain(cpu, sd) { 513 for_each_cpu(i, sched_domain_span(sd)) { 514 if (cpu == i) 515 continue; 516 517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) { 518 cpu = i; 519 goto unlock; 520 } 521 } 522 } 523 524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER)) 525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER); 526 unlock: 527 rcu_read_unlock(); 528 return cpu; 529 } 530 531 /* 532 * When add_timer_on() enqueues a timer into the timer wheel of an 533 * idle CPU then this timer might expire before the next timer event 534 * which is scheduled to wake up that CPU. In case of a completely 535 * idle system the next event might even be infinite time into the 536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 537 * leaves the inner idle loop so the newly added timer is taken into 538 * account when the CPU goes back to idle and evaluates the timer 539 * wheel for the next timer event. 540 */ 541 static void wake_up_idle_cpu(int cpu) 542 { 543 struct rq *rq = cpu_rq(cpu); 544 545 if (cpu == smp_processor_id()) 546 return; 547 548 if (set_nr_and_not_polling(rq->idle)) 549 smp_send_reschedule(cpu); 550 else 551 trace_sched_wake_idle_without_ipi(cpu); 552 } 553 554 static bool wake_up_full_nohz_cpu(int cpu) 555 { 556 /* 557 * We just need the target to call irq_exit() and re-evaluate 558 * the next tick. The nohz full kick at least implies that. 559 * If needed we can still optimize that later with an 560 * empty IRQ. 561 */ 562 if (cpu_is_offline(cpu)) 563 return true; /* Don't try to wake offline CPUs. */ 564 if (tick_nohz_full_cpu(cpu)) { 565 if (cpu != smp_processor_id() || 566 tick_nohz_tick_stopped()) 567 tick_nohz_full_kick_cpu(cpu); 568 return true; 569 } 570 571 return false; 572 } 573 574 /* 575 * Wake up the specified CPU. If the CPU is going offline, it is the 576 * caller's responsibility to deal with the lost wakeup, for example, 577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 578 */ 579 void wake_up_nohz_cpu(int cpu) 580 { 581 if (!wake_up_full_nohz_cpu(cpu)) 582 wake_up_idle_cpu(cpu); 583 } 584 585 static inline bool got_nohz_idle_kick(void) 586 { 587 int cpu = smp_processor_id(); 588 589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK)) 590 return false; 591 592 if (idle_cpu(cpu) && !need_resched()) 593 return true; 594 595 /* 596 * We can't run Idle Load Balance on this CPU for this time so we 597 * cancel it and clear NOHZ_BALANCE_KICK 598 */ 599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu)); 600 return false; 601 } 602 603 #else /* CONFIG_NO_HZ_COMMON */ 604 605 static inline bool got_nohz_idle_kick(void) 606 { 607 return false; 608 } 609 610 #endif /* CONFIG_NO_HZ_COMMON */ 611 612 #ifdef CONFIG_NO_HZ_FULL 613 bool sched_can_stop_tick(struct rq *rq) 614 { 615 int fifo_nr_running; 616 617 /* Deadline tasks, even if single, need the tick */ 618 if (rq->dl.dl_nr_running) 619 return false; 620 621 /* 622 * If there are more than one RR tasks, we need the tick to effect the 623 * actual RR behaviour. 624 */ 625 if (rq->rt.rr_nr_running) { 626 if (rq->rt.rr_nr_running == 1) 627 return true; 628 else 629 return false; 630 } 631 632 /* 633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 634 * forced preemption between FIFO tasks. 635 */ 636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 637 if (fifo_nr_running) 638 return true; 639 640 /* 641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; 642 * if there's more than one we need the tick for involuntary 643 * preemption. 644 */ 645 if (rq->nr_running > 1) 646 return false; 647 648 return true; 649 } 650 #endif /* CONFIG_NO_HZ_FULL */ 651 652 void sched_avg_update(struct rq *rq) 653 { 654 s64 period = sched_avg_period(); 655 656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 657 /* 658 * Inline assembly required to prevent the compiler 659 * optimising this loop into a divmod call. 660 * See __iter_div_u64_rem() for another example of this. 661 */ 662 asm("" : "+rm" (rq->age_stamp)); 663 rq->age_stamp += period; 664 rq->rt_avg /= 2; 665 } 666 } 667 668 #endif /* CONFIG_SMP */ 669 670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 672 /* 673 * Iterate task_group tree rooted at *from, calling @down when first entering a 674 * node and @up when leaving it for the final time. 675 * 676 * Caller must hold rcu_lock or sufficient equivalent. 677 */ 678 int walk_tg_tree_from(struct task_group *from, 679 tg_visitor down, tg_visitor up, void *data) 680 { 681 struct task_group *parent, *child; 682 int ret; 683 684 parent = from; 685 686 down: 687 ret = (*down)(parent, data); 688 if (ret) 689 goto out; 690 list_for_each_entry_rcu(child, &parent->children, siblings) { 691 parent = child; 692 goto down; 693 694 up: 695 continue; 696 } 697 ret = (*up)(parent, data); 698 if (ret || parent == from) 699 goto out; 700 701 child = parent; 702 parent = parent->parent; 703 if (parent) 704 goto up; 705 out: 706 return ret; 707 } 708 709 int tg_nop(struct task_group *tg, void *data) 710 { 711 return 0; 712 } 713 #endif 714 715 static void set_load_weight(struct task_struct *p, bool update_load) 716 { 717 int prio = p->static_prio - MAX_RT_PRIO; 718 struct load_weight *load = &p->se.load; 719 720 /* 721 * SCHED_IDLE tasks get minimal weight: 722 */ 723 if (idle_policy(p->policy)) { 724 load->weight = scale_load(WEIGHT_IDLEPRIO); 725 load->inv_weight = WMULT_IDLEPRIO; 726 return; 727 } 728 729 /* 730 * SCHED_OTHER tasks have to update their load when changing their 731 * weight 732 */ 733 if (update_load && p->sched_class == &fair_sched_class) { 734 reweight_task(p, prio); 735 } else { 736 load->weight = scale_load(sched_prio_to_weight[prio]); 737 load->inv_weight = sched_prio_to_wmult[prio]; 738 } 739 } 740 741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 742 { 743 if (!(flags & ENQUEUE_NOCLOCK)) 744 update_rq_clock(rq); 745 746 if (!(flags & ENQUEUE_RESTORE)) 747 sched_info_queued(rq, p); 748 749 p->sched_class->enqueue_task(rq, p, flags); 750 } 751 752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 753 { 754 if (!(flags & DEQUEUE_NOCLOCK)) 755 update_rq_clock(rq); 756 757 if (!(flags & DEQUEUE_SAVE)) 758 sched_info_dequeued(rq, p); 759 760 p->sched_class->dequeue_task(rq, p, flags); 761 } 762 763 void activate_task(struct rq *rq, struct task_struct *p, int flags) 764 { 765 if (task_contributes_to_load(p)) 766 rq->nr_uninterruptible--; 767 768 enqueue_task(rq, p, flags); 769 } 770 771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 772 { 773 if (task_contributes_to_load(p)) 774 rq->nr_uninterruptible++; 775 776 dequeue_task(rq, p, flags); 777 } 778 779 /* 780 * __normal_prio - return the priority that is based on the static prio 781 */ 782 static inline int __normal_prio(struct task_struct *p) 783 { 784 return p->static_prio; 785 } 786 787 /* 788 * Calculate the expected normal priority: i.e. priority 789 * without taking RT-inheritance into account. Might be 790 * boosted by interactivity modifiers. Changes upon fork, 791 * setprio syscalls, and whenever the interactivity 792 * estimator recalculates. 793 */ 794 static inline int normal_prio(struct task_struct *p) 795 { 796 int prio; 797 798 if (task_has_dl_policy(p)) 799 prio = MAX_DL_PRIO-1; 800 else if (task_has_rt_policy(p)) 801 prio = MAX_RT_PRIO-1 - p->rt_priority; 802 else 803 prio = __normal_prio(p); 804 return prio; 805 } 806 807 /* 808 * Calculate the current priority, i.e. the priority 809 * taken into account by the scheduler. This value might 810 * be boosted by RT tasks, or might be boosted by 811 * interactivity modifiers. Will be RT if the task got 812 * RT-boosted. If not then it returns p->normal_prio. 813 */ 814 static int effective_prio(struct task_struct *p) 815 { 816 p->normal_prio = normal_prio(p); 817 /* 818 * If we are RT tasks or we were boosted to RT priority, 819 * keep the priority unchanged. Otherwise, update priority 820 * to the normal priority: 821 */ 822 if (!rt_prio(p->prio)) 823 return p->normal_prio; 824 return p->prio; 825 } 826 827 /** 828 * task_curr - is this task currently executing on a CPU? 829 * @p: the task in question. 830 * 831 * Return: 1 if the task is currently executing. 0 otherwise. 832 */ 833 inline int task_curr(const struct task_struct *p) 834 { 835 return cpu_curr(task_cpu(p)) == p; 836 } 837 838 /* 839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 840 * use the balance_callback list if you want balancing. 841 * 842 * this means any call to check_class_changed() must be followed by a call to 843 * balance_callback(). 844 */ 845 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 846 const struct sched_class *prev_class, 847 int oldprio) 848 { 849 if (prev_class != p->sched_class) { 850 if (prev_class->switched_from) 851 prev_class->switched_from(rq, p); 852 853 p->sched_class->switched_to(rq, p); 854 } else if (oldprio != p->prio || dl_task(p)) 855 p->sched_class->prio_changed(rq, p, oldprio); 856 } 857 858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 859 { 860 const struct sched_class *class; 861 862 if (p->sched_class == rq->curr->sched_class) { 863 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 864 } else { 865 for_each_class(class) { 866 if (class == rq->curr->sched_class) 867 break; 868 if (class == p->sched_class) { 869 resched_curr(rq); 870 break; 871 } 872 } 873 } 874 875 /* 876 * A queue event has occurred, and we're going to schedule. In 877 * this case, we can save a useless back to back clock update. 878 */ 879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) 880 rq_clock_skip_update(rq); 881 } 882 883 #ifdef CONFIG_SMP 884 885 static inline bool is_per_cpu_kthread(struct task_struct *p) 886 { 887 if (!(p->flags & PF_KTHREAD)) 888 return false; 889 890 if (p->nr_cpus_allowed != 1) 891 return false; 892 893 return true; 894 } 895 896 /* 897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see 898 * __set_cpus_allowed_ptr() and select_fallback_rq(). 899 */ 900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 901 { 902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 903 return false; 904 905 if (is_per_cpu_kthread(p)) 906 return cpu_online(cpu); 907 908 return cpu_active(cpu); 909 } 910 911 /* 912 * This is how migration works: 913 * 914 * 1) we invoke migration_cpu_stop() on the target CPU using 915 * stop_one_cpu(). 916 * 2) stopper starts to run (implicitly forcing the migrated thread 917 * off the CPU) 918 * 3) it checks whether the migrated task is still in the wrong runqueue. 919 * 4) if it's in the wrong runqueue then the migration thread removes 920 * it and puts it into the right queue. 921 * 5) stopper completes and stop_one_cpu() returns and the migration 922 * is done. 923 */ 924 925 /* 926 * move_queued_task - move a queued task to new rq. 927 * 928 * Returns (locked) new rq. Old rq's lock is released. 929 */ 930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 931 struct task_struct *p, int new_cpu) 932 { 933 lockdep_assert_held(&rq->lock); 934 935 p->on_rq = TASK_ON_RQ_MIGRATING; 936 dequeue_task(rq, p, DEQUEUE_NOCLOCK); 937 set_task_cpu(p, new_cpu); 938 rq_unlock(rq, rf); 939 940 rq = cpu_rq(new_cpu); 941 942 rq_lock(rq, rf); 943 BUG_ON(task_cpu(p) != new_cpu); 944 enqueue_task(rq, p, 0); 945 p->on_rq = TASK_ON_RQ_QUEUED; 946 check_preempt_curr(rq, p, 0); 947 948 return rq; 949 } 950 951 struct migration_arg { 952 struct task_struct *task; 953 int dest_cpu; 954 }; 955 956 /* 957 * Move (not current) task off this CPU, onto the destination CPU. We're doing 958 * this because either it can't run here any more (set_cpus_allowed() 959 * away from this CPU, or CPU going down), or because we're 960 * attempting to rebalance this task on exec (sched_exec). 961 * 962 * So we race with normal scheduler movements, but that's OK, as long 963 * as the task is no longer on this CPU. 964 */ 965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 966 struct task_struct *p, int dest_cpu) 967 { 968 /* Affinity changed (again). */ 969 if (!is_cpu_allowed(p, dest_cpu)) 970 return rq; 971 972 update_rq_clock(rq); 973 rq = move_queued_task(rq, rf, p, dest_cpu); 974 975 return rq; 976 } 977 978 /* 979 * migration_cpu_stop - this will be executed by a highprio stopper thread 980 * and performs thread migration by bumping thread off CPU then 981 * 'pushing' onto another runqueue. 982 */ 983 static int migration_cpu_stop(void *data) 984 { 985 struct migration_arg *arg = data; 986 struct task_struct *p = arg->task; 987 struct rq *rq = this_rq(); 988 struct rq_flags rf; 989 990 /* 991 * The original target CPU might have gone down and we might 992 * be on another CPU but it doesn't matter. 993 */ 994 local_irq_disable(); 995 /* 996 * We need to explicitly wake pending tasks before running 997 * __migrate_task() such that we will not miss enforcing cpus_allowed 998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 999 */ 1000 sched_ttwu_pending(); 1001 1002 raw_spin_lock(&p->pi_lock); 1003 rq_lock(rq, &rf); 1004 /* 1005 * If task_rq(p) != rq, it cannot be migrated here, because we're 1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 1007 * we're holding p->pi_lock. 1008 */ 1009 if (task_rq(p) == rq) { 1010 if (task_on_rq_queued(p)) 1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 1012 else 1013 p->wake_cpu = arg->dest_cpu; 1014 } 1015 rq_unlock(rq, &rf); 1016 raw_spin_unlock(&p->pi_lock); 1017 1018 local_irq_enable(); 1019 return 0; 1020 } 1021 1022 /* 1023 * sched_class::set_cpus_allowed must do the below, but is not required to 1024 * actually call this function. 1025 */ 1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask) 1027 { 1028 cpumask_copy(&p->cpus_allowed, new_mask); 1029 p->nr_cpus_allowed = cpumask_weight(new_mask); 1030 } 1031 1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1033 { 1034 struct rq *rq = task_rq(p); 1035 bool queued, running; 1036 1037 lockdep_assert_held(&p->pi_lock); 1038 1039 queued = task_on_rq_queued(p); 1040 running = task_current(rq, p); 1041 1042 if (queued) { 1043 /* 1044 * Because __kthread_bind() calls this on blocked tasks without 1045 * holding rq->lock. 1046 */ 1047 lockdep_assert_held(&rq->lock); 1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 1049 } 1050 if (running) 1051 put_prev_task(rq, p); 1052 1053 p->sched_class->set_cpus_allowed(p, new_mask); 1054 1055 if (queued) 1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 1057 if (running) 1058 set_curr_task(rq, p); 1059 } 1060 1061 /* 1062 * Change a given task's CPU affinity. Migrate the thread to a 1063 * proper CPU and schedule it away if the CPU it's executing on 1064 * is removed from the allowed bitmask. 1065 * 1066 * NOTE: the caller must have a valid reference to the task, the 1067 * task must not exit() & deallocate itself prematurely. The 1068 * call is not atomic; no spinlocks may be held. 1069 */ 1070 static int __set_cpus_allowed_ptr(struct task_struct *p, 1071 const struct cpumask *new_mask, bool check) 1072 { 1073 const struct cpumask *cpu_valid_mask = cpu_active_mask; 1074 unsigned int dest_cpu; 1075 struct rq_flags rf; 1076 struct rq *rq; 1077 int ret = 0; 1078 1079 rq = task_rq_lock(p, &rf); 1080 update_rq_clock(rq); 1081 1082 if (p->flags & PF_KTHREAD) { 1083 /* 1084 * Kernel threads are allowed on online && !active CPUs 1085 */ 1086 cpu_valid_mask = cpu_online_mask; 1087 } 1088 1089 /* 1090 * Must re-check here, to close a race against __kthread_bind(), 1091 * sched_setaffinity() is not guaranteed to observe the flag. 1092 */ 1093 if (check && (p->flags & PF_NO_SETAFFINITY)) { 1094 ret = -EINVAL; 1095 goto out; 1096 } 1097 1098 if (cpumask_equal(&p->cpus_allowed, new_mask)) 1099 goto out; 1100 1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) { 1102 ret = -EINVAL; 1103 goto out; 1104 } 1105 1106 do_set_cpus_allowed(p, new_mask); 1107 1108 if (p->flags & PF_KTHREAD) { 1109 /* 1110 * For kernel threads that do indeed end up on online && 1111 * !active we want to ensure they are strict per-CPU threads. 1112 */ 1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) && 1114 !cpumask_intersects(new_mask, cpu_active_mask) && 1115 p->nr_cpus_allowed != 1); 1116 } 1117 1118 /* Can the task run on the task's current CPU? If so, we're done */ 1119 if (cpumask_test_cpu(task_cpu(p), new_mask)) 1120 goto out; 1121 1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask); 1123 if (task_running(rq, p) || p->state == TASK_WAKING) { 1124 struct migration_arg arg = { p, dest_cpu }; 1125 /* Need help from migration thread: drop lock and wait. */ 1126 task_rq_unlock(rq, p, &rf); 1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 1128 tlb_migrate_finish(p->mm); 1129 return 0; 1130 } else if (task_on_rq_queued(p)) { 1131 /* 1132 * OK, since we're going to drop the lock immediately 1133 * afterwards anyway. 1134 */ 1135 rq = move_queued_task(rq, &rf, p, dest_cpu); 1136 } 1137 out: 1138 task_rq_unlock(rq, p, &rf); 1139 1140 return ret; 1141 } 1142 1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1144 { 1145 return __set_cpus_allowed_ptr(p, new_mask, false); 1146 } 1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 1148 1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1150 { 1151 #ifdef CONFIG_SCHED_DEBUG 1152 /* 1153 * We should never call set_task_cpu() on a blocked task, 1154 * ttwu() will sort out the placement. 1155 */ 1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 1157 !p->on_rq); 1158 1159 /* 1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start 1162 * time relying on p->on_rq. 1163 */ 1164 WARN_ON_ONCE(p->state == TASK_RUNNING && 1165 p->sched_class == &fair_sched_class && 1166 (p->on_rq && !task_on_rq_migrating(p))); 1167 1168 #ifdef CONFIG_LOCKDEP 1169 /* 1170 * The caller should hold either p->pi_lock or rq->lock, when changing 1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 1172 * 1173 * sched_move_task() holds both and thus holding either pins the cgroup, 1174 * see task_group(). 1175 * 1176 * Furthermore, all task_rq users should acquire both locks, see 1177 * task_rq_lock(). 1178 */ 1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 1180 lockdep_is_held(&task_rq(p)->lock))); 1181 #endif 1182 /* 1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 1184 */ 1185 WARN_ON_ONCE(!cpu_online(new_cpu)); 1186 #endif 1187 1188 trace_sched_migrate_task(p, new_cpu); 1189 1190 if (task_cpu(p) != new_cpu) { 1191 if (p->sched_class->migrate_task_rq) 1192 p->sched_class->migrate_task_rq(p); 1193 p->se.nr_migrations++; 1194 perf_event_task_migrate(p); 1195 } 1196 1197 __set_task_cpu(p, new_cpu); 1198 } 1199 1200 static void __migrate_swap_task(struct task_struct *p, int cpu) 1201 { 1202 if (task_on_rq_queued(p)) { 1203 struct rq *src_rq, *dst_rq; 1204 struct rq_flags srf, drf; 1205 1206 src_rq = task_rq(p); 1207 dst_rq = cpu_rq(cpu); 1208 1209 rq_pin_lock(src_rq, &srf); 1210 rq_pin_lock(dst_rq, &drf); 1211 1212 p->on_rq = TASK_ON_RQ_MIGRATING; 1213 deactivate_task(src_rq, p, 0); 1214 set_task_cpu(p, cpu); 1215 activate_task(dst_rq, p, 0); 1216 p->on_rq = TASK_ON_RQ_QUEUED; 1217 check_preempt_curr(dst_rq, p, 0); 1218 1219 rq_unpin_lock(dst_rq, &drf); 1220 rq_unpin_lock(src_rq, &srf); 1221 1222 } else { 1223 /* 1224 * Task isn't running anymore; make it appear like we migrated 1225 * it before it went to sleep. This means on wakeup we make the 1226 * previous CPU our target instead of where it really is. 1227 */ 1228 p->wake_cpu = cpu; 1229 } 1230 } 1231 1232 struct migration_swap_arg { 1233 struct task_struct *src_task, *dst_task; 1234 int src_cpu, dst_cpu; 1235 }; 1236 1237 static int migrate_swap_stop(void *data) 1238 { 1239 struct migration_swap_arg *arg = data; 1240 struct rq *src_rq, *dst_rq; 1241 int ret = -EAGAIN; 1242 1243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 1244 return -EAGAIN; 1245 1246 src_rq = cpu_rq(arg->src_cpu); 1247 dst_rq = cpu_rq(arg->dst_cpu); 1248 1249 double_raw_lock(&arg->src_task->pi_lock, 1250 &arg->dst_task->pi_lock); 1251 double_rq_lock(src_rq, dst_rq); 1252 1253 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1254 goto unlock; 1255 1256 if (task_cpu(arg->src_task) != arg->src_cpu) 1257 goto unlock; 1258 1259 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed)) 1260 goto unlock; 1261 1262 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed)) 1263 goto unlock; 1264 1265 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1266 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1267 1268 ret = 0; 1269 1270 unlock: 1271 double_rq_unlock(src_rq, dst_rq); 1272 raw_spin_unlock(&arg->dst_task->pi_lock); 1273 raw_spin_unlock(&arg->src_task->pi_lock); 1274 1275 return ret; 1276 } 1277 1278 /* 1279 * Cross migrate two tasks 1280 */ 1281 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1282 { 1283 struct migration_swap_arg arg; 1284 int ret = -EINVAL; 1285 1286 arg = (struct migration_swap_arg){ 1287 .src_task = cur, 1288 .src_cpu = task_cpu(cur), 1289 .dst_task = p, 1290 .dst_cpu = task_cpu(p), 1291 }; 1292 1293 if (arg.src_cpu == arg.dst_cpu) 1294 goto out; 1295 1296 /* 1297 * These three tests are all lockless; this is OK since all of them 1298 * will be re-checked with proper locks held further down the line. 1299 */ 1300 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1301 goto out; 1302 1303 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed)) 1304 goto out; 1305 1306 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed)) 1307 goto out; 1308 1309 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1310 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1311 1312 out: 1313 return ret; 1314 } 1315 1316 /* 1317 * wait_task_inactive - wait for a thread to unschedule. 1318 * 1319 * If @match_state is nonzero, it's the @p->state value just checked and 1320 * not expected to change. If it changes, i.e. @p might have woken up, 1321 * then return zero. When we succeed in waiting for @p to be off its CPU, 1322 * we return a positive number (its total switch count). If a second call 1323 * a short while later returns the same number, the caller can be sure that 1324 * @p has remained unscheduled the whole time. 1325 * 1326 * The caller must ensure that the task *will* unschedule sometime soon, 1327 * else this function might spin for a *long* time. This function can't 1328 * be called with interrupts off, or it may introduce deadlock with 1329 * smp_call_function() if an IPI is sent by the same process we are 1330 * waiting to become inactive. 1331 */ 1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1333 { 1334 int running, queued; 1335 struct rq_flags rf; 1336 unsigned long ncsw; 1337 struct rq *rq; 1338 1339 for (;;) { 1340 /* 1341 * We do the initial early heuristics without holding 1342 * any task-queue locks at all. We'll only try to get 1343 * the runqueue lock when things look like they will 1344 * work out! 1345 */ 1346 rq = task_rq(p); 1347 1348 /* 1349 * If the task is actively running on another CPU 1350 * still, just relax and busy-wait without holding 1351 * any locks. 1352 * 1353 * NOTE! Since we don't hold any locks, it's not 1354 * even sure that "rq" stays as the right runqueue! 1355 * But we don't care, since "task_running()" will 1356 * return false if the runqueue has changed and p 1357 * is actually now running somewhere else! 1358 */ 1359 while (task_running(rq, p)) { 1360 if (match_state && unlikely(p->state != match_state)) 1361 return 0; 1362 cpu_relax(); 1363 } 1364 1365 /* 1366 * Ok, time to look more closely! We need the rq 1367 * lock now, to be *sure*. If we're wrong, we'll 1368 * just go back and repeat. 1369 */ 1370 rq = task_rq_lock(p, &rf); 1371 trace_sched_wait_task(p); 1372 running = task_running(rq, p); 1373 queued = task_on_rq_queued(p); 1374 ncsw = 0; 1375 if (!match_state || p->state == match_state) 1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1377 task_rq_unlock(rq, p, &rf); 1378 1379 /* 1380 * If it changed from the expected state, bail out now. 1381 */ 1382 if (unlikely(!ncsw)) 1383 break; 1384 1385 /* 1386 * Was it really running after all now that we 1387 * checked with the proper locks actually held? 1388 * 1389 * Oops. Go back and try again.. 1390 */ 1391 if (unlikely(running)) { 1392 cpu_relax(); 1393 continue; 1394 } 1395 1396 /* 1397 * It's not enough that it's not actively running, 1398 * it must be off the runqueue _entirely_, and not 1399 * preempted! 1400 * 1401 * So if it was still runnable (but just not actively 1402 * running right now), it's preempted, and we should 1403 * yield - it could be a while. 1404 */ 1405 if (unlikely(queued)) { 1406 ktime_t to = NSEC_PER_SEC / HZ; 1407 1408 set_current_state(TASK_UNINTERRUPTIBLE); 1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1410 continue; 1411 } 1412 1413 /* 1414 * Ahh, all good. It wasn't running, and it wasn't 1415 * runnable, which means that it will never become 1416 * running in the future either. We're all done! 1417 */ 1418 break; 1419 } 1420 1421 return ncsw; 1422 } 1423 1424 /*** 1425 * kick_process - kick a running thread to enter/exit the kernel 1426 * @p: the to-be-kicked thread 1427 * 1428 * Cause a process which is running on another CPU to enter 1429 * kernel-mode, without any delay. (to get signals handled.) 1430 * 1431 * NOTE: this function doesn't have to take the runqueue lock, 1432 * because all it wants to ensure is that the remote task enters 1433 * the kernel. If the IPI races and the task has been migrated 1434 * to another CPU then no harm is done and the purpose has been 1435 * achieved as well. 1436 */ 1437 void kick_process(struct task_struct *p) 1438 { 1439 int cpu; 1440 1441 preempt_disable(); 1442 cpu = task_cpu(p); 1443 if ((cpu != smp_processor_id()) && task_curr(p)) 1444 smp_send_reschedule(cpu); 1445 preempt_enable(); 1446 } 1447 EXPORT_SYMBOL_GPL(kick_process); 1448 1449 /* 1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1451 * 1452 * A few notes on cpu_active vs cpu_online: 1453 * 1454 * - cpu_active must be a subset of cpu_online 1455 * 1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 1457 * see __set_cpus_allowed_ptr(). At this point the newly online 1458 * CPU isn't yet part of the sched domains, and balancing will not 1459 * see it. 1460 * 1461 * - on CPU-down we clear cpu_active() to mask the sched domains and 1462 * avoid the load balancer to place new tasks on the to be removed 1463 * CPU. Existing tasks will remain running there and will be taken 1464 * off. 1465 * 1466 * This means that fallback selection must not select !active CPUs. 1467 * And can assume that any active CPU must be online. Conversely 1468 * select_task_rq() below may allow selection of !active CPUs in order 1469 * to satisfy the above rules. 1470 */ 1471 static int select_fallback_rq(int cpu, struct task_struct *p) 1472 { 1473 int nid = cpu_to_node(cpu); 1474 const struct cpumask *nodemask = NULL; 1475 enum { cpuset, possible, fail } state = cpuset; 1476 int dest_cpu; 1477 1478 /* 1479 * If the node that the CPU is on has been offlined, cpu_to_node() 1480 * will return -1. There is no CPU on the node, and we should 1481 * select the CPU on the other node. 1482 */ 1483 if (nid != -1) { 1484 nodemask = cpumask_of_node(nid); 1485 1486 /* Look for allowed, online CPU in same node. */ 1487 for_each_cpu(dest_cpu, nodemask) { 1488 if (!cpu_active(dest_cpu)) 1489 continue; 1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 1491 return dest_cpu; 1492 } 1493 } 1494 1495 for (;;) { 1496 /* Any allowed, online CPU? */ 1497 for_each_cpu(dest_cpu, &p->cpus_allowed) { 1498 if (!is_cpu_allowed(p, dest_cpu)) 1499 continue; 1500 1501 goto out; 1502 } 1503 1504 /* No more Mr. Nice Guy. */ 1505 switch (state) { 1506 case cpuset: 1507 if (IS_ENABLED(CONFIG_CPUSETS)) { 1508 cpuset_cpus_allowed_fallback(p); 1509 state = possible; 1510 break; 1511 } 1512 /* Fall-through */ 1513 case possible: 1514 do_set_cpus_allowed(p, cpu_possible_mask); 1515 state = fail; 1516 break; 1517 1518 case fail: 1519 BUG(); 1520 break; 1521 } 1522 } 1523 1524 out: 1525 if (state != cpuset) { 1526 /* 1527 * Don't tell them about moving exiting tasks or 1528 * kernel threads (both mm NULL), since they never 1529 * leave kernel. 1530 */ 1531 if (p->mm && printk_ratelimit()) { 1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 1533 task_pid_nr(p), p->comm, cpu); 1534 } 1535 } 1536 1537 return dest_cpu; 1538 } 1539 1540 /* 1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1542 */ 1543 static inline 1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1545 { 1546 lockdep_assert_held(&p->pi_lock); 1547 1548 if (p->nr_cpus_allowed > 1) 1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1550 else 1551 cpu = cpumask_any(&p->cpus_allowed); 1552 1553 /* 1554 * In order not to call set_task_cpu() on a blocking task we need 1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1556 * CPU. 1557 * 1558 * Since this is common to all placement strategies, this lives here. 1559 * 1560 * [ this allows ->select_task() to simply return task_cpu(p) and 1561 * not worry about this generic constraint ] 1562 */ 1563 if (unlikely(!is_cpu_allowed(p, cpu))) 1564 cpu = select_fallback_rq(task_cpu(p), p); 1565 1566 return cpu; 1567 } 1568 1569 static void update_avg(u64 *avg, u64 sample) 1570 { 1571 s64 diff = sample - *avg; 1572 *avg += diff >> 3; 1573 } 1574 1575 void sched_set_stop_task(int cpu, struct task_struct *stop) 1576 { 1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1578 struct task_struct *old_stop = cpu_rq(cpu)->stop; 1579 1580 if (stop) { 1581 /* 1582 * Make it appear like a SCHED_FIFO task, its something 1583 * userspace knows about and won't get confused about. 1584 * 1585 * Also, it will make PI more or less work without too 1586 * much confusion -- but then, stop work should not 1587 * rely on PI working anyway. 1588 */ 1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 1590 1591 stop->sched_class = &stop_sched_class; 1592 } 1593 1594 cpu_rq(cpu)->stop = stop; 1595 1596 if (old_stop) { 1597 /* 1598 * Reset it back to a normal scheduling class so that 1599 * it can die in pieces. 1600 */ 1601 old_stop->sched_class = &rt_sched_class; 1602 } 1603 } 1604 1605 #else 1606 1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 1608 const struct cpumask *new_mask, bool check) 1609 { 1610 return set_cpus_allowed_ptr(p, new_mask); 1611 } 1612 1613 #endif /* CONFIG_SMP */ 1614 1615 static void 1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1617 { 1618 struct rq *rq; 1619 1620 if (!schedstat_enabled()) 1621 return; 1622 1623 rq = this_rq(); 1624 1625 #ifdef CONFIG_SMP 1626 if (cpu == rq->cpu) { 1627 __schedstat_inc(rq->ttwu_local); 1628 __schedstat_inc(p->se.statistics.nr_wakeups_local); 1629 } else { 1630 struct sched_domain *sd; 1631 1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote); 1633 rcu_read_lock(); 1634 for_each_domain(rq->cpu, sd) { 1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1636 __schedstat_inc(sd->ttwu_wake_remote); 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 } 1642 1643 if (wake_flags & WF_MIGRATED) 1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate); 1645 #endif /* CONFIG_SMP */ 1646 1647 __schedstat_inc(rq->ttwu_count); 1648 __schedstat_inc(p->se.statistics.nr_wakeups); 1649 1650 if (wake_flags & WF_SYNC) 1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync); 1652 } 1653 1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1655 { 1656 activate_task(rq, p, en_flags); 1657 p->on_rq = TASK_ON_RQ_QUEUED; 1658 1659 /* If a worker is waking up, notify the workqueue: */ 1660 if (p->flags & PF_WQ_WORKER) 1661 wq_worker_waking_up(p, cpu_of(rq)); 1662 } 1663 1664 /* 1665 * Mark the task runnable and perform wakeup-preemption. 1666 */ 1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, 1668 struct rq_flags *rf) 1669 { 1670 check_preempt_curr(rq, p, wake_flags); 1671 p->state = TASK_RUNNING; 1672 trace_sched_wakeup(p); 1673 1674 #ifdef CONFIG_SMP 1675 if (p->sched_class->task_woken) { 1676 /* 1677 * Our task @p is fully woken up and running; so its safe to 1678 * drop the rq->lock, hereafter rq is only used for statistics. 1679 */ 1680 rq_unpin_lock(rq, rf); 1681 p->sched_class->task_woken(rq, p); 1682 rq_repin_lock(rq, rf); 1683 } 1684 1685 if (rq->idle_stamp) { 1686 u64 delta = rq_clock(rq) - rq->idle_stamp; 1687 u64 max = 2*rq->max_idle_balance_cost; 1688 1689 update_avg(&rq->avg_idle, delta); 1690 1691 if (rq->avg_idle > max) 1692 rq->avg_idle = max; 1693 1694 rq->idle_stamp = 0; 1695 } 1696 #endif 1697 } 1698 1699 static void 1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 1701 struct rq_flags *rf) 1702 { 1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 1704 1705 lockdep_assert_held(&rq->lock); 1706 1707 #ifdef CONFIG_SMP 1708 if (p->sched_contributes_to_load) 1709 rq->nr_uninterruptible--; 1710 1711 if (wake_flags & WF_MIGRATED) 1712 en_flags |= ENQUEUE_MIGRATED; 1713 #endif 1714 1715 ttwu_activate(rq, p, en_flags); 1716 ttwu_do_wakeup(rq, p, wake_flags, rf); 1717 } 1718 1719 /* 1720 * Called in case the task @p isn't fully descheduled from its runqueue, 1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1722 * since all we need to do is flip p->state to TASK_RUNNING, since 1723 * the task is still ->on_rq. 1724 */ 1725 static int ttwu_remote(struct task_struct *p, int wake_flags) 1726 { 1727 struct rq_flags rf; 1728 struct rq *rq; 1729 int ret = 0; 1730 1731 rq = __task_rq_lock(p, &rf); 1732 if (task_on_rq_queued(p)) { 1733 /* check_preempt_curr() may use rq clock */ 1734 update_rq_clock(rq); 1735 ttwu_do_wakeup(rq, p, wake_flags, &rf); 1736 ret = 1; 1737 } 1738 __task_rq_unlock(rq, &rf); 1739 1740 return ret; 1741 } 1742 1743 #ifdef CONFIG_SMP 1744 void sched_ttwu_pending(void) 1745 { 1746 struct rq *rq = this_rq(); 1747 struct llist_node *llist = llist_del_all(&rq->wake_list); 1748 struct task_struct *p, *t; 1749 struct rq_flags rf; 1750 1751 if (!llist) 1752 return; 1753 1754 rq_lock_irqsave(rq, &rf); 1755 update_rq_clock(rq); 1756 1757 llist_for_each_entry_safe(p, t, llist, wake_entry) 1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 1759 1760 rq_unlock_irqrestore(rq, &rf); 1761 } 1762 1763 void scheduler_ipi(void) 1764 { 1765 /* 1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1767 * TIF_NEED_RESCHED remotely (for the first time) will also send 1768 * this IPI. 1769 */ 1770 preempt_fold_need_resched(); 1771 1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()) 1773 return; 1774 1775 /* 1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1777 * traditionally all their work was done from the interrupt return 1778 * path. Now that we actually do some work, we need to make sure 1779 * we do call them. 1780 * 1781 * Some archs already do call them, luckily irq_enter/exit nest 1782 * properly. 1783 * 1784 * Arguably we should visit all archs and update all handlers, 1785 * however a fair share of IPIs are still resched only so this would 1786 * somewhat pessimize the simple resched case. 1787 */ 1788 irq_enter(); 1789 sched_ttwu_pending(); 1790 1791 /* 1792 * Check if someone kicked us for doing the nohz idle load balance. 1793 */ 1794 if (unlikely(got_nohz_idle_kick())) { 1795 this_rq()->idle_balance = 1; 1796 raise_softirq_irqoff(SCHED_SOFTIRQ); 1797 } 1798 irq_exit(); 1799 } 1800 1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags) 1802 { 1803 struct rq *rq = cpu_rq(cpu); 1804 1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 1806 1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) { 1808 if (!set_nr_if_polling(rq->idle)) 1809 smp_send_reschedule(cpu); 1810 else 1811 trace_sched_wake_idle_without_ipi(cpu); 1812 } 1813 } 1814 1815 void wake_up_if_idle(int cpu) 1816 { 1817 struct rq *rq = cpu_rq(cpu); 1818 struct rq_flags rf; 1819 1820 rcu_read_lock(); 1821 1822 if (!is_idle_task(rcu_dereference(rq->curr))) 1823 goto out; 1824 1825 if (set_nr_if_polling(rq->idle)) { 1826 trace_sched_wake_idle_without_ipi(cpu); 1827 } else { 1828 rq_lock_irqsave(rq, &rf); 1829 if (is_idle_task(rq->curr)) 1830 smp_send_reschedule(cpu); 1831 /* Else CPU is not idle, do nothing here: */ 1832 rq_unlock_irqrestore(rq, &rf); 1833 } 1834 1835 out: 1836 rcu_read_unlock(); 1837 } 1838 1839 bool cpus_share_cache(int this_cpu, int that_cpu) 1840 { 1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1842 } 1843 #endif /* CONFIG_SMP */ 1844 1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 1846 { 1847 struct rq *rq = cpu_rq(cpu); 1848 struct rq_flags rf; 1849 1850 #if defined(CONFIG_SMP) 1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 1853 ttwu_queue_remote(p, cpu, wake_flags); 1854 return; 1855 } 1856 #endif 1857 1858 rq_lock(rq, &rf); 1859 update_rq_clock(rq); 1860 ttwu_do_activate(rq, p, wake_flags, &rf); 1861 rq_unlock(rq, &rf); 1862 } 1863 1864 /* 1865 * Notes on Program-Order guarantees on SMP systems. 1866 * 1867 * MIGRATION 1868 * 1869 * The basic program-order guarantee on SMP systems is that when a task [t] 1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 1871 * execution on its new CPU [c1]. 1872 * 1873 * For migration (of runnable tasks) this is provided by the following means: 1874 * 1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t 1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and 1877 * rq(c1)->lock (if not at the same time, then in that order). 1878 * C) LOCK of the rq(c1)->lock scheduling in task 1879 * 1880 * Transitivity guarantees that B happens after A and C after B. 1881 * Note: we only require RCpc transitivity. 1882 * Note: the CPU doing B need not be c0 or c1 1883 * 1884 * Example: 1885 * 1886 * CPU0 CPU1 CPU2 1887 * 1888 * LOCK rq(0)->lock 1889 * sched-out X 1890 * sched-in Y 1891 * UNLOCK rq(0)->lock 1892 * 1893 * LOCK rq(0)->lock // orders against CPU0 1894 * dequeue X 1895 * UNLOCK rq(0)->lock 1896 * 1897 * LOCK rq(1)->lock 1898 * enqueue X 1899 * UNLOCK rq(1)->lock 1900 * 1901 * LOCK rq(1)->lock // orders against CPU2 1902 * sched-out Z 1903 * sched-in X 1904 * UNLOCK rq(1)->lock 1905 * 1906 * 1907 * BLOCKING -- aka. SLEEP + WAKEUP 1908 * 1909 * For blocking we (obviously) need to provide the same guarantee as for 1910 * migration. However the means are completely different as there is no lock 1911 * chain to provide order. Instead we do: 1912 * 1913 * 1) smp_store_release(X->on_cpu, 0) 1914 * 2) smp_cond_load_acquire(!X->on_cpu) 1915 * 1916 * Example: 1917 * 1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 1919 * 1920 * LOCK rq(0)->lock LOCK X->pi_lock 1921 * dequeue X 1922 * sched-out X 1923 * smp_store_release(X->on_cpu, 0); 1924 * 1925 * smp_cond_load_acquire(&X->on_cpu, !VAL); 1926 * X->state = WAKING 1927 * set_task_cpu(X,2) 1928 * 1929 * LOCK rq(2)->lock 1930 * enqueue X 1931 * X->state = RUNNING 1932 * UNLOCK rq(2)->lock 1933 * 1934 * LOCK rq(2)->lock // orders against CPU1 1935 * sched-out Z 1936 * sched-in X 1937 * UNLOCK rq(2)->lock 1938 * 1939 * UNLOCK X->pi_lock 1940 * UNLOCK rq(0)->lock 1941 * 1942 * 1943 * However; for wakeups there is a second guarantee we must provide, namely we 1944 * must observe the state that lead to our wakeup. That is, not only must our 1945 * task observe its own prior state, it must also observe the stores prior to 1946 * its wakeup. 1947 * 1948 * This means that any means of doing remote wakeups must order the CPU doing 1949 * the wakeup against the CPU the task is going to end up running on. This, 1950 * however, is already required for the regular Program-Order guarantee above, 1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire). 1952 * 1953 */ 1954 1955 /** 1956 * try_to_wake_up - wake up a thread 1957 * @p: the thread to be awakened 1958 * @state: the mask of task states that can be woken 1959 * @wake_flags: wake modifier flags (WF_*) 1960 * 1961 * If (@state & @p->state) @p->state = TASK_RUNNING. 1962 * 1963 * If the task was not queued/runnable, also place it back on a runqueue. 1964 * 1965 * Atomic against schedule() which would dequeue a task, also see 1966 * set_current_state(). 1967 * 1968 * Return: %true if @p->state changes (an actual wakeup was done), 1969 * %false otherwise. 1970 */ 1971 static int 1972 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1973 { 1974 unsigned long flags; 1975 int cpu, success = 0; 1976 1977 /* 1978 * If we are going to wake up a thread waiting for CONDITION we 1979 * need to ensure that CONDITION=1 done by the caller can not be 1980 * reordered with p->state check below. This pairs with mb() in 1981 * set_current_state() the waiting thread does. 1982 */ 1983 raw_spin_lock_irqsave(&p->pi_lock, flags); 1984 smp_mb__after_spinlock(); 1985 if (!(p->state & state)) 1986 goto out; 1987 1988 trace_sched_waking(p); 1989 1990 /* We're going to change ->state: */ 1991 success = 1; 1992 cpu = task_cpu(p); 1993 1994 /* 1995 * Ensure we load p->on_rq _after_ p->state, otherwise it would 1996 * be possible to, falsely, observe p->on_rq == 0 and get stuck 1997 * in smp_cond_load_acquire() below. 1998 * 1999 * sched_ttwu_pending() try_to_wake_up() 2000 * [S] p->on_rq = 1; [L] P->state 2001 * UNLOCK rq->lock -----. 2002 * \ 2003 * +--- RMB 2004 * schedule() / 2005 * LOCK rq->lock -----' 2006 * UNLOCK rq->lock 2007 * 2008 * [task p] 2009 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq 2010 * 2011 * Pairs with the UNLOCK+LOCK on rq->lock from the 2012 * last wakeup of our task and the schedule that got our task 2013 * current. 2014 */ 2015 smp_rmb(); 2016 if (p->on_rq && ttwu_remote(p, wake_flags)) 2017 goto stat; 2018 2019 #ifdef CONFIG_SMP 2020 /* 2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 2022 * possible to, falsely, observe p->on_cpu == 0. 2023 * 2024 * One must be running (->on_cpu == 1) in order to remove oneself 2025 * from the runqueue. 2026 * 2027 * [S] ->on_cpu = 1; [L] ->on_rq 2028 * UNLOCK rq->lock 2029 * RMB 2030 * LOCK rq->lock 2031 * [S] ->on_rq = 0; [L] ->on_cpu 2032 * 2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock 2034 * from the consecutive calls to schedule(); the first switching to our 2035 * task, the second putting it to sleep. 2036 */ 2037 smp_rmb(); 2038 2039 /* 2040 * If the owning (remote) CPU is still in the middle of schedule() with 2041 * this task as prev, wait until its done referencing the task. 2042 * 2043 * Pairs with the smp_store_release() in finish_task(). 2044 * 2045 * This ensures that tasks getting woken will be fully ordered against 2046 * their previous state and preserve Program Order. 2047 */ 2048 smp_cond_load_acquire(&p->on_cpu, !VAL); 2049 2050 p->sched_contributes_to_load = !!task_contributes_to_load(p); 2051 p->state = TASK_WAKING; 2052 2053 if (p->in_iowait) { 2054 delayacct_blkio_end(p); 2055 atomic_dec(&task_rq(p)->nr_iowait); 2056 } 2057 2058 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 2059 if (task_cpu(p) != cpu) { 2060 wake_flags |= WF_MIGRATED; 2061 set_task_cpu(p, cpu); 2062 } 2063 2064 #else /* CONFIG_SMP */ 2065 2066 if (p->in_iowait) { 2067 delayacct_blkio_end(p); 2068 atomic_dec(&task_rq(p)->nr_iowait); 2069 } 2070 2071 #endif /* CONFIG_SMP */ 2072 2073 ttwu_queue(p, cpu, wake_flags); 2074 stat: 2075 ttwu_stat(p, cpu, wake_flags); 2076 out: 2077 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2078 2079 return success; 2080 } 2081 2082 /** 2083 * try_to_wake_up_local - try to wake up a local task with rq lock held 2084 * @p: the thread to be awakened 2085 * @rf: request-queue flags for pinning 2086 * 2087 * Put @p on the run-queue if it's not already there. The caller must 2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not 2089 * the current task. 2090 */ 2091 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf) 2092 { 2093 struct rq *rq = task_rq(p); 2094 2095 if (WARN_ON_ONCE(rq != this_rq()) || 2096 WARN_ON_ONCE(p == current)) 2097 return; 2098 2099 lockdep_assert_held(&rq->lock); 2100 2101 if (!raw_spin_trylock(&p->pi_lock)) { 2102 /* 2103 * This is OK, because current is on_cpu, which avoids it being 2104 * picked for load-balance and preemption/IRQs are still 2105 * disabled avoiding further scheduler activity on it and we've 2106 * not yet picked a replacement task. 2107 */ 2108 rq_unlock(rq, rf); 2109 raw_spin_lock(&p->pi_lock); 2110 rq_relock(rq, rf); 2111 } 2112 2113 if (!(p->state & TASK_NORMAL)) 2114 goto out; 2115 2116 trace_sched_waking(p); 2117 2118 if (!task_on_rq_queued(p)) { 2119 if (p->in_iowait) { 2120 delayacct_blkio_end(p); 2121 atomic_dec(&rq->nr_iowait); 2122 } 2123 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK); 2124 } 2125 2126 ttwu_do_wakeup(rq, p, 0, rf); 2127 ttwu_stat(p, smp_processor_id(), 0); 2128 out: 2129 raw_spin_unlock(&p->pi_lock); 2130 } 2131 2132 /** 2133 * wake_up_process - Wake up a specific process 2134 * @p: The process to be woken up. 2135 * 2136 * Attempt to wake up the nominated process and move it to the set of runnable 2137 * processes. 2138 * 2139 * Return: 1 if the process was woken up, 0 if it was already running. 2140 * 2141 * It may be assumed that this function implies a write memory barrier before 2142 * changing the task state if and only if any tasks are woken up. 2143 */ 2144 int wake_up_process(struct task_struct *p) 2145 { 2146 return try_to_wake_up(p, TASK_NORMAL, 0); 2147 } 2148 EXPORT_SYMBOL(wake_up_process); 2149 2150 int wake_up_state(struct task_struct *p, unsigned int state) 2151 { 2152 return try_to_wake_up(p, state, 0); 2153 } 2154 2155 /* 2156 * Perform scheduler related setup for a newly forked process p. 2157 * p is forked by current. 2158 * 2159 * __sched_fork() is basic setup used by init_idle() too: 2160 */ 2161 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 2162 { 2163 p->on_rq = 0; 2164 2165 p->se.on_rq = 0; 2166 p->se.exec_start = 0; 2167 p->se.sum_exec_runtime = 0; 2168 p->se.prev_sum_exec_runtime = 0; 2169 p->se.nr_migrations = 0; 2170 p->se.vruntime = 0; 2171 INIT_LIST_HEAD(&p->se.group_node); 2172 2173 #ifdef CONFIG_FAIR_GROUP_SCHED 2174 p->se.cfs_rq = NULL; 2175 #endif 2176 2177 #ifdef CONFIG_SCHEDSTATS 2178 /* Even if schedstat is disabled, there should not be garbage */ 2179 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 2180 #endif 2181 2182 RB_CLEAR_NODE(&p->dl.rb_node); 2183 init_dl_task_timer(&p->dl); 2184 init_dl_inactive_task_timer(&p->dl); 2185 __dl_clear_params(p); 2186 2187 INIT_LIST_HEAD(&p->rt.run_list); 2188 p->rt.timeout = 0; 2189 p->rt.time_slice = sched_rr_timeslice; 2190 p->rt.on_rq = 0; 2191 p->rt.on_list = 0; 2192 2193 #ifdef CONFIG_PREEMPT_NOTIFIERS 2194 INIT_HLIST_HEAD(&p->preempt_notifiers); 2195 #endif 2196 2197 #ifdef CONFIG_NUMA_BALANCING 2198 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 2199 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2200 p->mm->numa_scan_seq = 0; 2201 } 2202 2203 if (clone_flags & CLONE_VM) 2204 p->numa_preferred_nid = current->numa_preferred_nid; 2205 else 2206 p->numa_preferred_nid = -1; 2207 2208 p->node_stamp = 0ULL; 2209 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 2210 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2211 p->numa_work.next = &p->numa_work; 2212 p->numa_faults = NULL; 2213 p->last_task_numa_placement = 0; 2214 p->last_sum_exec_runtime = 0; 2215 2216 p->numa_group = NULL; 2217 #endif /* CONFIG_NUMA_BALANCING */ 2218 } 2219 2220 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 2221 2222 #ifdef CONFIG_NUMA_BALANCING 2223 2224 void set_numabalancing_state(bool enabled) 2225 { 2226 if (enabled) 2227 static_branch_enable(&sched_numa_balancing); 2228 else 2229 static_branch_disable(&sched_numa_balancing); 2230 } 2231 2232 #ifdef CONFIG_PROC_SYSCTL 2233 int sysctl_numa_balancing(struct ctl_table *table, int write, 2234 void __user *buffer, size_t *lenp, loff_t *ppos) 2235 { 2236 struct ctl_table t; 2237 int err; 2238 int state = static_branch_likely(&sched_numa_balancing); 2239 2240 if (write && !capable(CAP_SYS_ADMIN)) 2241 return -EPERM; 2242 2243 t = *table; 2244 t.data = &state; 2245 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2246 if (err < 0) 2247 return err; 2248 if (write) 2249 set_numabalancing_state(state); 2250 return err; 2251 } 2252 #endif 2253 #endif 2254 2255 #ifdef CONFIG_SCHEDSTATS 2256 2257 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 2258 static bool __initdata __sched_schedstats = false; 2259 2260 static void set_schedstats(bool enabled) 2261 { 2262 if (enabled) 2263 static_branch_enable(&sched_schedstats); 2264 else 2265 static_branch_disable(&sched_schedstats); 2266 } 2267 2268 void force_schedstat_enabled(void) 2269 { 2270 if (!schedstat_enabled()) { 2271 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 2272 static_branch_enable(&sched_schedstats); 2273 } 2274 } 2275 2276 static int __init setup_schedstats(char *str) 2277 { 2278 int ret = 0; 2279 if (!str) 2280 goto out; 2281 2282 /* 2283 * This code is called before jump labels have been set up, so we can't 2284 * change the static branch directly just yet. Instead set a temporary 2285 * variable so init_schedstats() can do it later. 2286 */ 2287 if (!strcmp(str, "enable")) { 2288 __sched_schedstats = true; 2289 ret = 1; 2290 } else if (!strcmp(str, "disable")) { 2291 __sched_schedstats = false; 2292 ret = 1; 2293 } 2294 out: 2295 if (!ret) 2296 pr_warn("Unable to parse schedstats=\n"); 2297 2298 return ret; 2299 } 2300 __setup("schedstats=", setup_schedstats); 2301 2302 static void __init init_schedstats(void) 2303 { 2304 set_schedstats(__sched_schedstats); 2305 } 2306 2307 #ifdef CONFIG_PROC_SYSCTL 2308 int sysctl_schedstats(struct ctl_table *table, int write, 2309 void __user *buffer, size_t *lenp, loff_t *ppos) 2310 { 2311 struct ctl_table t; 2312 int err; 2313 int state = static_branch_likely(&sched_schedstats); 2314 2315 if (write && !capable(CAP_SYS_ADMIN)) 2316 return -EPERM; 2317 2318 t = *table; 2319 t.data = &state; 2320 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2321 if (err < 0) 2322 return err; 2323 if (write) 2324 set_schedstats(state); 2325 return err; 2326 } 2327 #endif /* CONFIG_PROC_SYSCTL */ 2328 #else /* !CONFIG_SCHEDSTATS */ 2329 static inline void init_schedstats(void) {} 2330 #endif /* CONFIG_SCHEDSTATS */ 2331 2332 /* 2333 * fork()/clone()-time setup: 2334 */ 2335 int sched_fork(unsigned long clone_flags, struct task_struct *p) 2336 { 2337 unsigned long flags; 2338 int cpu = get_cpu(); 2339 2340 __sched_fork(clone_flags, p); 2341 /* 2342 * We mark the process as NEW here. This guarantees that 2343 * nobody will actually run it, and a signal or other external 2344 * event cannot wake it up and insert it on the runqueue either. 2345 */ 2346 p->state = TASK_NEW; 2347 2348 /* 2349 * Make sure we do not leak PI boosting priority to the child. 2350 */ 2351 p->prio = current->normal_prio; 2352 2353 /* 2354 * Revert to default priority/policy on fork if requested. 2355 */ 2356 if (unlikely(p->sched_reset_on_fork)) { 2357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2358 p->policy = SCHED_NORMAL; 2359 p->static_prio = NICE_TO_PRIO(0); 2360 p->rt_priority = 0; 2361 } else if (PRIO_TO_NICE(p->static_prio) < 0) 2362 p->static_prio = NICE_TO_PRIO(0); 2363 2364 p->prio = p->normal_prio = __normal_prio(p); 2365 set_load_weight(p, false); 2366 2367 /* 2368 * We don't need the reset flag anymore after the fork. It has 2369 * fulfilled its duty: 2370 */ 2371 p->sched_reset_on_fork = 0; 2372 } 2373 2374 if (dl_prio(p->prio)) { 2375 put_cpu(); 2376 return -EAGAIN; 2377 } else if (rt_prio(p->prio)) { 2378 p->sched_class = &rt_sched_class; 2379 } else { 2380 p->sched_class = &fair_sched_class; 2381 } 2382 2383 init_entity_runnable_average(&p->se); 2384 2385 /* 2386 * The child is not yet in the pid-hash so no cgroup attach races, 2387 * and the cgroup is pinned to this child due to cgroup_fork() 2388 * is ran before sched_fork(). 2389 * 2390 * Silence PROVE_RCU. 2391 */ 2392 raw_spin_lock_irqsave(&p->pi_lock, flags); 2393 /* 2394 * We're setting the CPU for the first time, we don't migrate, 2395 * so use __set_task_cpu(). 2396 */ 2397 __set_task_cpu(p, cpu); 2398 if (p->sched_class->task_fork) 2399 p->sched_class->task_fork(p); 2400 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2401 2402 #ifdef CONFIG_SCHED_INFO 2403 if (likely(sched_info_on())) 2404 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2405 #endif 2406 #if defined(CONFIG_SMP) 2407 p->on_cpu = 0; 2408 #endif 2409 init_task_preempt_count(p); 2410 #ifdef CONFIG_SMP 2411 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2412 RB_CLEAR_NODE(&p->pushable_dl_tasks); 2413 #endif 2414 2415 put_cpu(); 2416 return 0; 2417 } 2418 2419 unsigned long to_ratio(u64 period, u64 runtime) 2420 { 2421 if (runtime == RUNTIME_INF) 2422 return BW_UNIT; 2423 2424 /* 2425 * Doing this here saves a lot of checks in all 2426 * the calling paths, and returning zero seems 2427 * safe for them anyway. 2428 */ 2429 if (period == 0) 2430 return 0; 2431 2432 return div64_u64(runtime << BW_SHIFT, period); 2433 } 2434 2435 /* 2436 * wake_up_new_task - wake up a newly created task for the first time. 2437 * 2438 * This function will do some initial scheduler statistics housekeeping 2439 * that must be done for every newly created context, then puts the task 2440 * on the runqueue and wakes it. 2441 */ 2442 void wake_up_new_task(struct task_struct *p) 2443 { 2444 struct rq_flags rf; 2445 struct rq *rq; 2446 2447 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 2448 p->state = TASK_RUNNING; 2449 #ifdef CONFIG_SMP 2450 /* 2451 * Fork balancing, do it here and not earlier because: 2452 * - cpus_allowed can change in the fork path 2453 * - any previously selected CPU might disappear through hotplug 2454 * 2455 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 2456 * as we're not fully set-up yet. 2457 */ 2458 p->recent_used_cpu = task_cpu(p); 2459 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2460 #endif 2461 rq = __task_rq_lock(p, &rf); 2462 update_rq_clock(rq); 2463 post_init_entity_util_avg(&p->se); 2464 2465 activate_task(rq, p, ENQUEUE_NOCLOCK); 2466 p->on_rq = TASK_ON_RQ_QUEUED; 2467 trace_sched_wakeup_new(p); 2468 check_preempt_curr(rq, p, WF_FORK); 2469 #ifdef CONFIG_SMP 2470 if (p->sched_class->task_woken) { 2471 /* 2472 * Nothing relies on rq->lock after this, so its fine to 2473 * drop it. 2474 */ 2475 rq_unpin_lock(rq, &rf); 2476 p->sched_class->task_woken(rq, p); 2477 rq_repin_lock(rq, &rf); 2478 } 2479 #endif 2480 task_rq_unlock(rq, p, &rf); 2481 } 2482 2483 #ifdef CONFIG_PREEMPT_NOTIFIERS 2484 2485 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 2486 2487 void preempt_notifier_inc(void) 2488 { 2489 static_branch_inc(&preempt_notifier_key); 2490 } 2491 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 2492 2493 void preempt_notifier_dec(void) 2494 { 2495 static_branch_dec(&preempt_notifier_key); 2496 } 2497 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 2498 2499 /** 2500 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2501 * @notifier: notifier struct to register 2502 */ 2503 void preempt_notifier_register(struct preempt_notifier *notifier) 2504 { 2505 if (!static_branch_unlikely(&preempt_notifier_key)) 2506 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 2507 2508 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 2509 } 2510 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2511 2512 /** 2513 * preempt_notifier_unregister - no longer interested in preemption notifications 2514 * @notifier: notifier struct to unregister 2515 * 2516 * This is *not* safe to call from within a preemption notifier. 2517 */ 2518 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2519 { 2520 hlist_del(¬ifier->link); 2521 } 2522 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2523 2524 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 2525 { 2526 struct preempt_notifier *notifier; 2527 2528 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2529 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2530 } 2531 2532 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2533 { 2534 if (static_branch_unlikely(&preempt_notifier_key)) 2535 __fire_sched_in_preempt_notifiers(curr); 2536 } 2537 2538 static void 2539 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 2540 struct task_struct *next) 2541 { 2542 struct preempt_notifier *notifier; 2543 2544 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2545 notifier->ops->sched_out(notifier, next); 2546 } 2547 2548 static __always_inline void 2549 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2550 struct task_struct *next) 2551 { 2552 if (static_branch_unlikely(&preempt_notifier_key)) 2553 __fire_sched_out_preempt_notifiers(curr, next); 2554 } 2555 2556 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2557 2558 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2559 { 2560 } 2561 2562 static inline void 2563 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2564 struct task_struct *next) 2565 { 2566 } 2567 2568 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2569 2570 static inline void prepare_task(struct task_struct *next) 2571 { 2572 #ifdef CONFIG_SMP 2573 /* 2574 * Claim the task as running, we do this before switching to it 2575 * such that any running task will have this set. 2576 */ 2577 next->on_cpu = 1; 2578 #endif 2579 } 2580 2581 static inline void finish_task(struct task_struct *prev) 2582 { 2583 #ifdef CONFIG_SMP 2584 /* 2585 * After ->on_cpu is cleared, the task can be moved to a different CPU. 2586 * We must ensure this doesn't happen until the switch is completely 2587 * finished. 2588 * 2589 * In particular, the load of prev->state in finish_task_switch() must 2590 * happen before this. 2591 * 2592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 2593 */ 2594 smp_store_release(&prev->on_cpu, 0); 2595 #endif 2596 } 2597 2598 static inline void 2599 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 2600 { 2601 /* 2602 * Since the runqueue lock will be released by the next 2603 * task (which is an invalid locking op but in the case 2604 * of the scheduler it's an obvious special-case), so we 2605 * do an early lockdep release here: 2606 */ 2607 rq_unpin_lock(rq, rf); 2608 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2609 #ifdef CONFIG_DEBUG_SPINLOCK 2610 /* this is a valid case when another task releases the spinlock */ 2611 rq->lock.owner = next; 2612 #endif 2613 } 2614 2615 static inline void finish_lock_switch(struct rq *rq) 2616 { 2617 /* 2618 * If we are tracking spinlock dependencies then we have to 2619 * fix up the runqueue lock - which gets 'carried over' from 2620 * prev into current: 2621 */ 2622 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 2623 raw_spin_unlock_irq(&rq->lock); 2624 } 2625 2626 /* 2627 * NOP if the arch has not defined these: 2628 */ 2629 2630 #ifndef prepare_arch_switch 2631 # define prepare_arch_switch(next) do { } while (0) 2632 #endif 2633 2634 #ifndef finish_arch_post_lock_switch 2635 # define finish_arch_post_lock_switch() do { } while (0) 2636 #endif 2637 2638 /** 2639 * prepare_task_switch - prepare to switch tasks 2640 * @rq: the runqueue preparing to switch 2641 * @prev: the current task that is being switched out 2642 * @next: the task we are going to switch to. 2643 * 2644 * This is called with the rq lock held and interrupts off. It must 2645 * be paired with a subsequent finish_task_switch after the context 2646 * switch. 2647 * 2648 * prepare_task_switch sets up locking and calls architecture specific 2649 * hooks. 2650 */ 2651 static inline void 2652 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2653 struct task_struct *next) 2654 { 2655 sched_info_switch(rq, prev, next); 2656 perf_event_task_sched_out(prev, next); 2657 fire_sched_out_preempt_notifiers(prev, next); 2658 prepare_task(next); 2659 prepare_arch_switch(next); 2660 } 2661 2662 /** 2663 * finish_task_switch - clean up after a task-switch 2664 * @prev: the thread we just switched away from. 2665 * 2666 * finish_task_switch must be called after the context switch, paired 2667 * with a prepare_task_switch call before the context switch. 2668 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2669 * and do any other architecture-specific cleanup actions. 2670 * 2671 * Note that we may have delayed dropping an mm in context_switch(). If 2672 * so, we finish that here outside of the runqueue lock. (Doing it 2673 * with the lock held can cause deadlocks; see schedule() for 2674 * details.) 2675 * 2676 * The context switch have flipped the stack from under us and restored the 2677 * local variables which were saved when this task called schedule() in the 2678 * past. prev == current is still correct but we need to recalculate this_rq 2679 * because prev may have moved to another CPU. 2680 */ 2681 static struct rq *finish_task_switch(struct task_struct *prev) 2682 __releases(rq->lock) 2683 { 2684 struct rq *rq = this_rq(); 2685 struct mm_struct *mm = rq->prev_mm; 2686 long prev_state; 2687 2688 /* 2689 * The previous task will have left us with a preempt_count of 2 2690 * because it left us after: 2691 * 2692 * schedule() 2693 * preempt_disable(); // 1 2694 * __schedule() 2695 * raw_spin_lock_irq(&rq->lock) // 2 2696 * 2697 * Also, see FORK_PREEMPT_COUNT. 2698 */ 2699 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 2700 "corrupted preempt_count: %s/%d/0x%x\n", 2701 current->comm, current->pid, preempt_count())) 2702 preempt_count_set(FORK_PREEMPT_COUNT); 2703 2704 rq->prev_mm = NULL; 2705 2706 /* 2707 * A task struct has one reference for the use as "current". 2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2709 * schedule one last time. The schedule call will never return, and 2710 * the scheduled task must drop that reference. 2711 * 2712 * We must observe prev->state before clearing prev->on_cpu (in 2713 * finish_task), otherwise a concurrent wakeup can get prev 2714 * running on another CPU and we could rave with its RUNNING -> DEAD 2715 * transition, resulting in a double drop. 2716 */ 2717 prev_state = prev->state; 2718 vtime_task_switch(prev); 2719 perf_event_task_sched_in(prev, current); 2720 finish_task(prev); 2721 finish_lock_switch(rq); 2722 finish_arch_post_lock_switch(); 2723 2724 fire_sched_in_preempt_notifiers(current); 2725 /* 2726 * When switching through a kernel thread, the loop in 2727 * membarrier_{private,global}_expedited() may have observed that 2728 * kernel thread and not issued an IPI. It is therefore possible to 2729 * schedule between user->kernel->user threads without passing though 2730 * switch_mm(). Membarrier requires a barrier after storing to 2731 * rq->curr, before returning to userspace, so provide them here: 2732 * 2733 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 2734 * provided by mmdrop(), 2735 * - a sync_core for SYNC_CORE. 2736 */ 2737 if (mm) { 2738 membarrier_mm_sync_core_before_usermode(mm); 2739 mmdrop(mm); 2740 } 2741 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) { 2742 switch (prev_state) { 2743 case TASK_DEAD: 2744 if (prev->sched_class->task_dead) 2745 prev->sched_class->task_dead(prev); 2746 2747 /* 2748 * Remove function-return probe instances associated with this 2749 * task and put them back on the free list. 2750 */ 2751 kprobe_flush_task(prev); 2752 2753 /* Task is done with its stack. */ 2754 put_task_stack(prev); 2755 2756 put_task_struct(prev); 2757 break; 2758 2759 case TASK_PARKED: 2760 kthread_park_complete(prev); 2761 break; 2762 } 2763 } 2764 2765 tick_nohz_task_switch(); 2766 return rq; 2767 } 2768 2769 #ifdef CONFIG_SMP 2770 2771 /* rq->lock is NOT held, but preemption is disabled */ 2772 static void __balance_callback(struct rq *rq) 2773 { 2774 struct callback_head *head, *next; 2775 void (*func)(struct rq *rq); 2776 unsigned long flags; 2777 2778 raw_spin_lock_irqsave(&rq->lock, flags); 2779 head = rq->balance_callback; 2780 rq->balance_callback = NULL; 2781 while (head) { 2782 func = (void (*)(struct rq *))head->func; 2783 next = head->next; 2784 head->next = NULL; 2785 head = next; 2786 2787 func(rq); 2788 } 2789 raw_spin_unlock_irqrestore(&rq->lock, flags); 2790 } 2791 2792 static inline void balance_callback(struct rq *rq) 2793 { 2794 if (unlikely(rq->balance_callback)) 2795 __balance_callback(rq); 2796 } 2797 2798 #else 2799 2800 static inline void balance_callback(struct rq *rq) 2801 { 2802 } 2803 2804 #endif 2805 2806 /** 2807 * schedule_tail - first thing a freshly forked thread must call. 2808 * @prev: the thread we just switched away from. 2809 */ 2810 asmlinkage __visible void schedule_tail(struct task_struct *prev) 2811 __releases(rq->lock) 2812 { 2813 struct rq *rq; 2814 2815 /* 2816 * New tasks start with FORK_PREEMPT_COUNT, see there and 2817 * finish_task_switch() for details. 2818 * 2819 * finish_task_switch() will drop rq->lock() and lower preempt_count 2820 * and the preempt_enable() will end up enabling preemption (on 2821 * PREEMPT_COUNT kernels). 2822 */ 2823 2824 rq = finish_task_switch(prev); 2825 balance_callback(rq); 2826 preempt_enable(); 2827 2828 if (current->set_child_tid) 2829 put_user(task_pid_vnr(current), current->set_child_tid); 2830 } 2831 2832 /* 2833 * context_switch - switch to the new MM and the new thread's register state. 2834 */ 2835 static __always_inline struct rq * 2836 context_switch(struct rq *rq, struct task_struct *prev, 2837 struct task_struct *next, struct rq_flags *rf) 2838 { 2839 struct mm_struct *mm, *oldmm; 2840 2841 prepare_task_switch(rq, prev, next); 2842 2843 mm = next->mm; 2844 oldmm = prev->active_mm; 2845 /* 2846 * For paravirt, this is coupled with an exit in switch_to to 2847 * combine the page table reload and the switch backend into 2848 * one hypercall. 2849 */ 2850 arch_start_context_switch(prev); 2851 2852 /* 2853 * If mm is non-NULL, we pass through switch_mm(). If mm is 2854 * NULL, we will pass through mmdrop() in finish_task_switch(). 2855 * Both of these contain the full memory barrier required by 2856 * membarrier after storing to rq->curr, before returning to 2857 * user-space. 2858 */ 2859 if (!mm) { 2860 next->active_mm = oldmm; 2861 mmgrab(oldmm); 2862 enter_lazy_tlb(oldmm, next); 2863 } else 2864 switch_mm_irqs_off(oldmm, mm, next); 2865 2866 if (!prev->mm) { 2867 prev->active_mm = NULL; 2868 rq->prev_mm = oldmm; 2869 } 2870 2871 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 2872 2873 prepare_lock_switch(rq, next, rf); 2874 2875 /* Here we just switch the register state and the stack. */ 2876 switch_to(prev, next, prev); 2877 barrier(); 2878 2879 return finish_task_switch(prev); 2880 } 2881 2882 /* 2883 * nr_running and nr_context_switches: 2884 * 2885 * externally visible scheduler statistics: current number of runnable 2886 * threads, total number of context switches performed since bootup. 2887 */ 2888 unsigned long nr_running(void) 2889 { 2890 unsigned long i, sum = 0; 2891 2892 for_each_online_cpu(i) 2893 sum += cpu_rq(i)->nr_running; 2894 2895 return sum; 2896 } 2897 2898 /* 2899 * Check if only the current task is running on the CPU. 2900 * 2901 * Caution: this function does not check that the caller has disabled 2902 * preemption, thus the result might have a time-of-check-to-time-of-use 2903 * race. The caller is responsible to use it correctly, for example: 2904 * 2905 * - from a non-preemptable section (of course) 2906 * 2907 * - from a thread that is bound to a single CPU 2908 * 2909 * - in a loop with very short iterations (e.g. a polling loop) 2910 */ 2911 bool single_task_running(void) 2912 { 2913 return raw_rq()->nr_running == 1; 2914 } 2915 EXPORT_SYMBOL(single_task_running); 2916 2917 unsigned long long nr_context_switches(void) 2918 { 2919 int i; 2920 unsigned long long sum = 0; 2921 2922 for_each_possible_cpu(i) 2923 sum += cpu_rq(i)->nr_switches; 2924 2925 return sum; 2926 } 2927 2928 /* 2929 * IO-wait accounting, and how its mostly bollocks (on SMP). 2930 * 2931 * The idea behind IO-wait account is to account the idle time that we could 2932 * have spend running if it were not for IO. That is, if we were to improve the 2933 * storage performance, we'd have a proportional reduction in IO-wait time. 2934 * 2935 * This all works nicely on UP, where, when a task blocks on IO, we account 2936 * idle time as IO-wait, because if the storage were faster, it could've been 2937 * running and we'd not be idle. 2938 * 2939 * This has been extended to SMP, by doing the same for each CPU. This however 2940 * is broken. 2941 * 2942 * Imagine for instance the case where two tasks block on one CPU, only the one 2943 * CPU will have IO-wait accounted, while the other has regular idle. Even 2944 * though, if the storage were faster, both could've ran at the same time, 2945 * utilising both CPUs. 2946 * 2947 * This means, that when looking globally, the current IO-wait accounting on 2948 * SMP is a lower bound, by reason of under accounting. 2949 * 2950 * Worse, since the numbers are provided per CPU, they are sometimes 2951 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 2952 * associated with any one particular CPU, it can wake to another CPU than it 2953 * blocked on. This means the per CPU IO-wait number is meaningless. 2954 * 2955 * Task CPU affinities can make all that even more 'interesting'. 2956 */ 2957 2958 unsigned long nr_iowait(void) 2959 { 2960 unsigned long i, sum = 0; 2961 2962 for_each_possible_cpu(i) 2963 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2964 2965 return sum; 2966 } 2967 2968 /* 2969 * Consumers of these two interfaces, like for example the cpufreq menu 2970 * governor are using nonsensical data. Boosting frequency for a CPU that has 2971 * IO-wait which might not even end up running the task when it does become 2972 * runnable. 2973 */ 2974 2975 unsigned long nr_iowait_cpu(int cpu) 2976 { 2977 struct rq *this = cpu_rq(cpu); 2978 return atomic_read(&this->nr_iowait); 2979 } 2980 2981 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load) 2982 { 2983 struct rq *rq = this_rq(); 2984 *nr_waiters = atomic_read(&rq->nr_iowait); 2985 *load = rq->load.weight; 2986 } 2987 2988 #ifdef CONFIG_SMP 2989 2990 /* 2991 * sched_exec - execve() is a valuable balancing opportunity, because at 2992 * this point the task has the smallest effective memory and cache footprint. 2993 */ 2994 void sched_exec(void) 2995 { 2996 struct task_struct *p = current; 2997 unsigned long flags; 2998 int dest_cpu; 2999 3000 raw_spin_lock_irqsave(&p->pi_lock, flags); 3001 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 3002 if (dest_cpu == smp_processor_id()) 3003 goto unlock; 3004 3005 if (likely(cpu_active(dest_cpu))) { 3006 struct migration_arg arg = { p, dest_cpu }; 3007 3008 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3009 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 3010 return; 3011 } 3012 unlock: 3013 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 3014 } 3015 3016 #endif 3017 3018 DEFINE_PER_CPU(struct kernel_stat, kstat); 3019 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 3020 3021 EXPORT_PER_CPU_SYMBOL(kstat); 3022 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 3023 3024 /* 3025 * The function fair_sched_class.update_curr accesses the struct curr 3026 * and its field curr->exec_start; when called from task_sched_runtime(), 3027 * we observe a high rate of cache misses in practice. 3028 * Prefetching this data results in improved performance. 3029 */ 3030 static inline void prefetch_curr_exec_start(struct task_struct *p) 3031 { 3032 #ifdef CONFIG_FAIR_GROUP_SCHED 3033 struct sched_entity *curr = (&p->se)->cfs_rq->curr; 3034 #else 3035 struct sched_entity *curr = (&task_rq(p)->cfs)->curr; 3036 #endif 3037 prefetch(curr); 3038 prefetch(&curr->exec_start); 3039 } 3040 3041 /* 3042 * Return accounted runtime for the task. 3043 * In case the task is currently running, return the runtime plus current's 3044 * pending runtime that have not been accounted yet. 3045 */ 3046 unsigned long long task_sched_runtime(struct task_struct *p) 3047 { 3048 struct rq_flags rf; 3049 struct rq *rq; 3050 u64 ns; 3051 3052 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 3053 /* 3054 * 64-bit doesn't need locks to atomically read a 64-bit value. 3055 * So we have a optimization chance when the task's delta_exec is 0. 3056 * Reading ->on_cpu is racy, but this is ok. 3057 * 3058 * If we race with it leaving CPU, we'll take a lock. So we're correct. 3059 * If we race with it entering CPU, unaccounted time is 0. This is 3060 * indistinguishable from the read occurring a few cycles earlier. 3061 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 3062 * been accounted, so we're correct here as well. 3063 */ 3064 if (!p->on_cpu || !task_on_rq_queued(p)) 3065 return p->se.sum_exec_runtime; 3066 #endif 3067 3068 rq = task_rq_lock(p, &rf); 3069 /* 3070 * Must be ->curr _and_ ->on_rq. If dequeued, we would 3071 * project cycles that may never be accounted to this 3072 * thread, breaking clock_gettime(). 3073 */ 3074 if (task_current(rq, p) && task_on_rq_queued(p)) { 3075 prefetch_curr_exec_start(p); 3076 update_rq_clock(rq); 3077 p->sched_class->update_curr(rq); 3078 } 3079 ns = p->se.sum_exec_runtime; 3080 task_rq_unlock(rq, p, &rf); 3081 3082 return ns; 3083 } 3084 3085 /* 3086 * This function gets called by the timer code, with HZ frequency. 3087 * We call it with interrupts disabled. 3088 */ 3089 void scheduler_tick(void) 3090 { 3091 int cpu = smp_processor_id(); 3092 struct rq *rq = cpu_rq(cpu); 3093 struct task_struct *curr = rq->curr; 3094 struct rq_flags rf; 3095 3096 sched_clock_tick(); 3097 3098 rq_lock(rq, &rf); 3099 3100 update_rq_clock(rq); 3101 curr->sched_class->task_tick(rq, curr, 0); 3102 cpu_load_update_active(rq); 3103 calc_global_load_tick(rq); 3104 3105 rq_unlock(rq, &rf); 3106 3107 perf_event_task_tick(); 3108 3109 #ifdef CONFIG_SMP 3110 rq->idle_balance = idle_cpu(cpu); 3111 trigger_load_balance(rq); 3112 #endif 3113 } 3114 3115 #ifdef CONFIG_NO_HZ_FULL 3116 3117 struct tick_work { 3118 int cpu; 3119 struct delayed_work work; 3120 }; 3121 3122 static struct tick_work __percpu *tick_work_cpu; 3123 3124 static void sched_tick_remote(struct work_struct *work) 3125 { 3126 struct delayed_work *dwork = to_delayed_work(work); 3127 struct tick_work *twork = container_of(dwork, struct tick_work, work); 3128 int cpu = twork->cpu; 3129 struct rq *rq = cpu_rq(cpu); 3130 struct rq_flags rf; 3131 3132 /* 3133 * Handle the tick only if it appears the remote CPU is running in full 3134 * dynticks mode. The check is racy by nature, but missing a tick or 3135 * having one too much is no big deal because the scheduler tick updates 3136 * statistics and checks timeslices in a time-independent way, regardless 3137 * of when exactly it is running. 3138 */ 3139 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) { 3140 struct task_struct *curr; 3141 u64 delta; 3142 3143 rq_lock_irq(rq, &rf); 3144 update_rq_clock(rq); 3145 curr = rq->curr; 3146 delta = rq_clock_task(rq) - curr->se.exec_start; 3147 3148 /* 3149 * Make sure the next tick runs within a reasonable 3150 * amount of time. 3151 */ 3152 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 3153 curr->sched_class->task_tick(rq, curr, 0); 3154 rq_unlock_irq(rq, &rf); 3155 } 3156 3157 /* 3158 * Run the remote tick once per second (1Hz). This arbitrary 3159 * frequency is large enough to avoid overload but short enough 3160 * to keep scheduler internal stats reasonably up to date. 3161 */ 3162 queue_delayed_work(system_unbound_wq, dwork, HZ); 3163 } 3164 3165 static void sched_tick_start(int cpu) 3166 { 3167 struct tick_work *twork; 3168 3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3170 return; 3171 3172 WARN_ON_ONCE(!tick_work_cpu); 3173 3174 twork = per_cpu_ptr(tick_work_cpu, cpu); 3175 twork->cpu = cpu; 3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 3178 } 3179 3180 #ifdef CONFIG_HOTPLUG_CPU 3181 static void sched_tick_stop(int cpu) 3182 { 3183 struct tick_work *twork; 3184 3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK)) 3186 return; 3187 3188 WARN_ON_ONCE(!tick_work_cpu); 3189 3190 twork = per_cpu_ptr(tick_work_cpu, cpu); 3191 cancel_delayed_work_sync(&twork->work); 3192 } 3193 #endif /* CONFIG_HOTPLUG_CPU */ 3194 3195 int __init sched_tick_offload_init(void) 3196 { 3197 tick_work_cpu = alloc_percpu(struct tick_work); 3198 BUG_ON(!tick_work_cpu); 3199 3200 return 0; 3201 } 3202 3203 #else /* !CONFIG_NO_HZ_FULL */ 3204 static inline void sched_tick_start(int cpu) { } 3205 static inline void sched_tick_stop(int cpu) { } 3206 #endif 3207 3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 3209 defined(CONFIG_PREEMPT_TRACER)) 3210 /* 3211 * If the value passed in is equal to the current preempt count 3212 * then we just disabled preemption. Start timing the latency. 3213 */ 3214 static inline void preempt_latency_start(int val) 3215 { 3216 if (preempt_count() == val) { 3217 unsigned long ip = get_lock_parent_ip(); 3218 #ifdef CONFIG_DEBUG_PREEMPT 3219 current->preempt_disable_ip = ip; 3220 #endif 3221 trace_preempt_off(CALLER_ADDR0, ip); 3222 } 3223 } 3224 3225 void preempt_count_add(int val) 3226 { 3227 #ifdef CONFIG_DEBUG_PREEMPT 3228 /* 3229 * Underflow? 3230 */ 3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 3232 return; 3233 #endif 3234 __preempt_count_add(val); 3235 #ifdef CONFIG_DEBUG_PREEMPT 3236 /* 3237 * Spinlock count overflowing soon? 3238 */ 3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 3240 PREEMPT_MASK - 10); 3241 #endif 3242 preempt_latency_start(val); 3243 } 3244 EXPORT_SYMBOL(preempt_count_add); 3245 NOKPROBE_SYMBOL(preempt_count_add); 3246 3247 /* 3248 * If the value passed in equals to the current preempt count 3249 * then we just enabled preemption. Stop timing the latency. 3250 */ 3251 static inline void preempt_latency_stop(int val) 3252 { 3253 if (preempt_count() == val) 3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 3255 } 3256 3257 void preempt_count_sub(int val) 3258 { 3259 #ifdef CONFIG_DEBUG_PREEMPT 3260 /* 3261 * Underflow? 3262 */ 3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 3264 return; 3265 /* 3266 * Is the spinlock portion underflowing? 3267 */ 3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 3269 !(preempt_count() & PREEMPT_MASK))) 3270 return; 3271 #endif 3272 3273 preempt_latency_stop(val); 3274 __preempt_count_sub(val); 3275 } 3276 EXPORT_SYMBOL(preempt_count_sub); 3277 NOKPROBE_SYMBOL(preempt_count_sub); 3278 3279 #else 3280 static inline void preempt_latency_start(int val) { } 3281 static inline void preempt_latency_stop(int val) { } 3282 #endif 3283 3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3285 { 3286 #ifdef CONFIG_DEBUG_PREEMPT 3287 return p->preempt_disable_ip; 3288 #else 3289 return 0; 3290 #endif 3291 } 3292 3293 /* 3294 * Print scheduling while atomic bug: 3295 */ 3296 static noinline void __schedule_bug(struct task_struct *prev) 3297 { 3298 /* Save this before calling printk(), since that will clobber it */ 3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 3300 3301 if (oops_in_progress) 3302 return; 3303 3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 3305 prev->comm, prev->pid, preempt_count()); 3306 3307 debug_show_held_locks(prev); 3308 print_modules(); 3309 if (irqs_disabled()) 3310 print_irqtrace_events(prev); 3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 3312 && in_atomic_preempt_off()) { 3313 pr_err("Preemption disabled at:"); 3314 print_ip_sym(preempt_disable_ip); 3315 pr_cont("\n"); 3316 } 3317 if (panic_on_warn) 3318 panic("scheduling while atomic\n"); 3319 3320 dump_stack(); 3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 3322 } 3323 3324 /* 3325 * Various schedule()-time debugging checks and statistics: 3326 */ 3327 static inline void schedule_debug(struct task_struct *prev) 3328 { 3329 #ifdef CONFIG_SCHED_STACK_END_CHECK 3330 if (task_stack_end_corrupted(prev)) 3331 panic("corrupted stack end detected inside scheduler\n"); 3332 #endif 3333 3334 if (unlikely(in_atomic_preempt_off())) { 3335 __schedule_bug(prev); 3336 preempt_count_set(PREEMPT_DISABLED); 3337 } 3338 rcu_sleep_check(); 3339 3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 3341 3342 schedstat_inc(this_rq()->sched_count); 3343 } 3344 3345 /* 3346 * Pick up the highest-prio task: 3347 */ 3348 static inline struct task_struct * 3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 3350 { 3351 const struct sched_class *class; 3352 struct task_struct *p; 3353 3354 /* 3355 * Optimization: we know that if all tasks are in the fair class we can 3356 * call that function directly, but only if the @prev task wasn't of a 3357 * higher scheduling class, because otherwise those loose the 3358 * opportunity to pull in more work from other CPUs. 3359 */ 3360 if (likely((prev->sched_class == &idle_sched_class || 3361 prev->sched_class == &fair_sched_class) && 3362 rq->nr_running == rq->cfs.h_nr_running)) { 3363 3364 p = fair_sched_class.pick_next_task(rq, prev, rf); 3365 if (unlikely(p == RETRY_TASK)) 3366 goto again; 3367 3368 /* Assumes fair_sched_class->next == idle_sched_class */ 3369 if (unlikely(!p)) 3370 p = idle_sched_class.pick_next_task(rq, prev, rf); 3371 3372 return p; 3373 } 3374 3375 again: 3376 for_each_class(class) { 3377 p = class->pick_next_task(rq, prev, rf); 3378 if (p) { 3379 if (unlikely(p == RETRY_TASK)) 3380 goto again; 3381 return p; 3382 } 3383 } 3384 3385 /* The idle class should always have a runnable task: */ 3386 BUG(); 3387 } 3388 3389 /* 3390 * __schedule() is the main scheduler function. 3391 * 3392 * The main means of driving the scheduler and thus entering this function are: 3393 * 3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 3395 * 3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 3397 * paths. For example, see arch/x86/entry_64.S. 3398 * 3399 * To drive preemption between tasks, the scheduler sets the flag in timer 3400 * interrupt handler scheduler_tick(). 3401 * 3402 * 3. Wakeups don't really cause entry into schedule(). They add a 3403 * task to the run-queue and that's it. 3404 * 3405 * Now, if the new task added to the run-queue preempts the current 3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 3407 * called on the nearest possible occasion: 3408 * 3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 3410 * 3411 * - in syscall or exception context, at the next outmost 3412 * preempt_enable(). (this might be as soon as the wake_up()'s 3413 * spin_unlock()!) 3414 * 3415 * - in IRQ context, return from interrupt-handler to 3416 * preemptible context 3417 * 3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 3419 * then at the next: 3420 * 3421 * - cond_resched() call 3422 * - explicit schedule() call 3423 * - return from syscall or exception to user-space 3424 * - return from interrupt-handler to user-space 3425 * 3426 * WARNING: must be called with preemption disabled! 3427 */ 3428 static void __sched notrace __schedule(bool preempt) 3429 { 3430 struct task_struct *prev, *next; 3431 unsigned long *switch_count; 3432 struct rq_flags rf; 3433 struct rq *rq; 3434 int cpu; 3435 3436 cpu = smp_processor_id(); 3437 rq = cpu_rq(cpu); 3438 prev = rq->curr; 3439 3440 schedule_debug(prev); 3441 3442 if (sched_feat(HRTICK)) 3443 hrtick_clear(rq); 3444 3445 local_irq_disable(); 3446 rcu_note_context_switch(preempt); 3447 3448 /* 3449 * Make sure that signal_pending_state()->signal_pending() below 3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 3451 * done by the caller to avoid the race with signal_wake_up(). 3452 * 3453 * The membarrier system call requires a full memory barrier 3454 * after coming from user-space, before storing to rq->curr. 3455 */ 3456 rq_lock(rq, &rf); 3457 smp_mb__after_spinlock(); 3458 3459 /* Promote REQ to ACT */ 3460 rq->clock_update_flags <<= 1; 3461 update_rq_clock(rq); 3462 3463 switch_count = &prev->nivcsw; 3464 if (!preempt && prev->state) { 3465 if (unlikely(signal_pending_state(prev->state, prev))) { 3466 prev->state = TASK_RUNNING; 3467 } else { 3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); 3469 prev->on_rq = 0; 3470 3471 if (prev->in_iowait) { 3472 atomic_inc(&rq->nr_iowait); 3473 delayacct_blkio_start(); 3474 } 3475 3476 /* 3477 * If a worker went to sleep, notify and ask workqueue 3478 * whether it wants to wake up a task to maintain 3479 * concurrency. 3480 */ 3481 if (prev->flags & PF_WQ_WORKER) { 3482 struct task_struct *to_wakeup; 3483 3484 to_wakeup = wq_worker_sleeping(prev); 3485 if (to_wakeup) 3486 try_to_wake_up_local(to_wakeup, &rf); 3487 } 3488 } 3489 switch_count = &prev->nvcsw; 3490 } 3491 3492 next = pick_next_task(rq, prev, &rf); 3493 clear_tsk_need_resched(prev); 3494 clear_preempt_need_resched(); 3495 3496 if (likely(prev != next)) { 3497 rq->nr_switches++; 3498 rq->curr = next; 3499 /* 3500 * The membarrier system call requires each architecture 3501 * to have a full memory barrier after updating 3502 * rq->curr, before returning to user-space. 3503 * 3504 * Here are the schemes providing that barrier on the 3505 * various architectures: 3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. 3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. 3508 * - finish_lock_switch() for weakly-ordered 3509 * architectures where spin_unlock is a full barrier, 3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock 3511 * is a RELEASE barrier), 3512 */ 3513 ++*switch_count; 3514 3515 trace_sched_switch(preempt, prev, next); 3516 3517 /* Also unlocks the rq: */ 3518 rq = context_switch(rq, prev, next, &rf); 3519 } else { 3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); 3521 rq_unlock_irq(rq, &rf); 3522 } 3523 3524 balance_callback(rq); 3525 } 3526 3527 void __noreturn do_task_dead(void) 3528 { 3529 /* Causes final put_task_struct in finish_task_switch(): */ 3530 set_special_state(TASK_DEAD); 3531 3532 /* Tell freezer to ignore us: */ 3533 current->flags |= PF_NOFREEZE; 3534 3535 __schedule(false); 3536 BUG(); 3537 3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 3539 for (;;) 3540 cpu_relax(); 3541 } 3542 3543 static inline void sched_submit_work(struct task_struct *tsk) 3544 { 3545 if (!tsk->state || tsk_is_pi_blocked(tsk)) 3546 return; 3547 /* 3548 * If we are going to sleep and we have plugged IO queued, 3549 * make sure to submit it to avoid deadlocks. 3550 */ 3551 if (blk_needs_flush_plug(tsk)) 3552 blk_schedule_flush_plug(tsk); 3553 } 3554 3555 asmlinkage __visible void __sched schedule(void) 3556 { 3557 struct task_struct *tsk = current; 3558 3559 sched_submit_work(tsk); 3560 do { 3561 preempt_disable(); 3562 __schedule(false); 3563 sched_preempt_enable_no_resched(); 3564 } while (need_resched()); 3565 } 3566 EXPORT_SYMBOL(schedule); 3567 3568 /* 3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 3570 * state (have scheduled out non-voluntarily) by making sure that all 3571 * tasks have either left the run queue or have gone into user space. 3572 * As idle tasks do not do either, they must not ever be preempted 3573 * (schedule out non-voluntarily). 3574 * 3575 * schedule_idle() is similar to schedule_preempt_disable() except that it 3576 * never enables preemption because it does not call sched_submit_work(). 3577 */ 3578 void __sched schedule_idle(void) 3579 { 3580 /* 3581 * As this skips calling sched_submit_work(), which the idle task does 3582 * regardless because that function is a nop when the task is in a 3583 * TASK_RUNNING state, make sure this isn't used someplace that the 3584 * current task can be in any other state. Note, idle is always in the 3585 * TASK_RUNNING state. 3586 */ 3587 WARN_ON_ONCE(current->state); 3588 do { 3589 __schedule(false); 3590 } while (need_resched()); 3591 } 3592 3593 #ifdef CONFIG_CONTEXT_TRACKING 3594 asmlinkage __visible void __sched schedule_user(void) 3595 { 3596 /* 3597 * If we come here after a random call to set_need_resched(), 3598 * or we have been woken up remotely but the IPI has not yet arrived, 3599 * we haven't yet exited the RCU idle mode. Do it here manually until 3600 * we find a better solution. 3601 * 3602 * NB: There are buggy callers of this function. Ideally we 3603 * should warn if prev_state != CONTEXT_USER, but that will trigger 3604 * too frequently to make sense yet. 3605 */ 3606 enum ctx_state prev_state = exception_enter(); 3607 schedule(); 3608 exception_exit(prev_state); 3609 } 3610 #endif 3611 3612 /** 3613 * schedule_preempt_disabled - called with preemption disabled 3614 * 3615 * Returns with preemption disabled. Note: preempt_count must be 1 3616 */ 3617 void __sched schedule_preempt_disabled(void) 3618 { 3619 sched_preempt_enable_no_resched(); 3620 schedule(); 3621 preempt_disable(); 3622 } 3623 3624 static void __sched notrace preempt_schedule_common(void) 3625 { 3626 do { 3627 /* 3628 * Because the function tracer can trace preempt_count_sub() 3629 * and it also uses preempt_enable/disable_notrace(), if 3630 * NEED_RESCHED is set, the preempt_enable_notrace() called 3631 * by the function tracer will call this function again and 3632 * cause infinite recursion. 3633 * 3634 * Preemption must be disabled here before the function 3635 * tracer can trace. Break up preempt_disable() into two 3636 * calls. One to disable preemption without fear of being 3637 * traced. The other to still record the preemption latency, 3638 * which can also be traced by the function tracer. 3639 */ 3640 preempt_disable_notrace(); 3641 preempt_latency_start(1); 3642 __schedule(true); 3643 preempt_latency_stop(1); 3644 preempt_enable_no_resched_notrace(); 3645 3646 /* 3647 * Check again in case we missed a preemption opportunity 3648 * between schedule and now. 3649 */ 3650 } while (need_resched()); 3651 } 3652 3653 #ifdef CONFIG_PREEMPT 3654 /* 3655 * this is the entry point to schedule() from in-kernel preemption 3656 * off of preempt_enable. Kernel preemptions off return from interrupt 3657 * occur there and call schedule directly. 3658 */ 3659 asmlinkage __visible void __sched notrace preempt_schedule(void) 3660 { 3661 /* 3662 * If there is a non-zero preempt_count or interrupts are disabled, 3663 * we do not want to preempt the current task. Just return.. 3664 */ 3665 if (likely(!preemptible())) 3666 return; 3667 3668 preempt_schedule_common(); 3669 } 3670 NOKPROBE_SYMBOL(preempt_schedule); 3671 EXPORT_SYMBOL(preempt_schedule); 3672 3673 /** 3674 * preempt_schedule_notrace - preempt_schedule called by tracing 3675 * 3676 * The tracing infrastructure uses preempt_enable_notrace to prevent 3677 * recursion and tracing preempt enabling caused by the tracing 3678 * infrastructure itself. But as tracing can happen in areas coming 3679 * from userspace or just about to enter userspace, a preempt enable 3680 * can occur before user_exit() is called. This will cause the scheduler 3681 * to be called when the system is still in usermode. 3682 * 3683 * To prevent this, the preempt_enable_notrace will use this function 3684 * instead of preempt_schedule() to exit user context if needed before 3685 * calling the scheduler. 3686 */ 3687 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 3688 { 3689 enum ctx_state prev_ctx; 3690 3691 if (likely(!preemptible())) 3692 return; 3693 3694 do { 3695 /* 3696 * Because the function tracer can trace preempt_count_sub() 3697 * and it also uses preempt_enable/disable_notrace(), if 3698 * NEED_RESCHED is set, the preempt_enable_notrace() called 3699 * by the function tracer will call this function again and 3700 * cause infinite recursion. 3701 * 3702 * Preemption must be disabled here before the function 3703 * tracer can trace. Break up preempt_disable() into two 3704 * calls. One to disable preemption without fear of being 3705 * traced. The other to still record the preemption latency, 3706 * which can also be traced by the function tracer. 3707 */ 3708 preempt_disable_notrace(); 3709 preempt_latency_start(1); 3710 /* 3711 * Needs preempt disabled in case user_exit() is traced 3712 * and the tracer calls preempt_enable_notrace() causing 3713 * an infinite recursion. 3714 */ 3715 prev_ctx = exception_enter(); 3716 __schedule(true); 3717 exception_exit(prev_ctx); 3718 3719 preempt_latency_stop(1); 3720 preempt_enable_no_resched_notrace(); 3721 } while (need_resched()); 3722 } 3723 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 3724 3725 #endif /* CONFIG_PREEMPT */ 3726 3727 /* 3728 * this is the entry point to schedule() from kernel preemption 3729 * off of irq context. 3730 * Note, that this is called and return with irqs disabled. This will 3731 * protect us against recursive calling from irq. 3732 */ 3733 asmlinkage __visible void __sched preempt_schedule_irq(void) 3734 { 3735 enum ctx_state prev_state; 3736 3737 /* Catch callers which need to be fixed */ 3738 BUG_ON(preempt_count() || !irqs_disabled()); 3739 3740 prev_state = exception_enter(); 3741 3742 do { 3743 preempt_disable(); 3744 local_irq_enable(); 3745 __schedule(true); 3746 local_irq_disable(); 3747 sched_preempt_enable_no_resched(); 3748 } while (need_resched()); 3749 3750 exception_exit(prev_state); 3751 } 3752 3753 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 3754 void *key) 3755 { 3756 return try_to_wake_up(curr->private, mode, wake_flags); 3757 } 3758 EXPORT_SYMBOL(default_wake_function); 3759 3760 #ifdef CONFIG_RT_MUTEXES 3761 3762 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3763 { 3764 if (pi_task) 3765 prio = min(prio, pi_task->prio); 3766 3767 return prio; 3768 } 3769 3770 static inline int rt_effective_prio(struct task_struct *p, int prio) 3771 { 3772 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3773 3774 return __rt_effective_prio(pi_task, prio); 3775 } 3776 3777 /* 3778 * rt_mutex_setprio - set the current priority of a task 3779 * @p: task to boost 3780 * @pi_task: donor task 3781 * 3782 * This function changes the 'effective' priority of a task. It does 3783 * not touch ->normal_prio like __setscheduler(). 3784 * 3785 * Used by the rt_mutex code to implement priority inheritance 3786 * logic. Call site only calls if the priority of the task changed. 3787 */ 3788 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 3789 { 3790 int prio, oldprio, queued, running, queue_flag = 3791 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 3792 const struct sched_class *prev_class; 3793 struct rq_flags rf; 3794 struct rq *rq; 3795 3796 /* XXX used to be waiter->prio, not waiter->task->prio */ 3797 prio = __rt_effective_prio(pi_task, p->normal_prio); 3798 3799 /* 3800 * If nothing changed; bail early. 3801 */ 3802 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 3803 return; 3804 3805 rq = __task_rq_lock(p, &rf); 3806 update_rq_clock(rq); 3807 /* 3808 * Set under pi_lock && rq->lock, such that the value can be used under 3809 * either lock. 3810 * 3811 * Note that there is loads of tricky to make this pointer cache work 3812 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 3813 * ensure a task is de-boosted (pi_task is set to NULL) before the 3814 * task is allowed to run again (and can exit). This ensures the pointer 3815 * points to a blocked task -- which guaratees the task is present. 3816 */ 3817 p->pi_top_task = pi_task; 3818 3819 /* 3820 * For FIFO/RR we only need to set prio, if that matches we're done. 3821 */ 3822 if (prio == p->prio && !dl_prio(prio)) 3823 goto out_unlock; 3824 3825 /* 3826 * Idle task boosting is a nono in general. There is one 3827 * exception, when PREEMPT_RT and NOHZ is active: 3828 * 3829 * The idle task calls get_next_timer_interrupt() and holds 3830 * the timer wheel base->lock on the CPU and another CPU wants 3831 * to access the timer (probably to cancel it). We can safely 3832 * ignore the boosting request, as the idle CPU runs this code 3833 * with interrupts disabled and will complete the lock 3834 * protected section without being interrupted. So there is no 3835 * real need to boost. 3836 */ 3837 if (unlikely(p == rq->idle)) { 3838 WARN_ON(p != rq->curr); 3839 WARN_ON(p->pi_blocked_on); 3840 goto out_unlock; 3841 } 3842 3843 trace_sched_pi_setprio(p, pi_task); 3844 oldprio = p->prio; 3845 3846 if (oldprio == prio) 3847 queue_flag &= ~DEQUEUE_MOVE; 3848 3849 prev_class = p->sched_class; 3850 queued = task_on_rq_queued(p); 3851 running = task_current(rq, p); 3852 if (queued) 3853 dequeue_task(rq, p, queue_flag); 3854 if (running) 3855 put_prev_task(rq, p); 3856 3857 /* 3858 * Boosting condition are: 3859 * 1. -rt task is running and holds mutex A 3860 * --> -dl task blocks on mutex A 3861 * 3862 * 2. -dl task is running and holds mutex A 3863 * --> -dl task blocks on mutex A and could preempt the 3864 * running task 3865 */ 3866 if (dl_prio(prio)) { 3867 if (!dl_prio(p->normal_prio) || 3868 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) { 3869 p->dl.dl_boosted = 1; 3870 queue_flag |= ENQUEUE_REPLENISH; 3871 } else 3872 p->dl.dl_boosted = 0; 3873 p->sched_class = &dl_sched_class; 3874 } else if (rt_prio(prio)) { 3875 if (dl_prio(oldprio)) 3876 p->dl.dl_boosted = 0; 3877 if (oldprio < prio) 3878 queue_flag |= ENQUEUE_HEAD; 3879 p->sched_class = &rt_sched_class; 3880 } else { 3881 if (dl_prio(oldprio)) 3882 p->dl.dl_boosted = 0; 3883 if (rt_prio(oldprio)) 3884 p->rt.timeout = 0; 3885 p->sched_class = &fair_sched_class; 3886 } 3887 3888 p->prio = prio; 3889 3890 if (queued) 3891 enqueue_task(rq, p, queue_flag); 3892 if (running) 3893 set_curr_task(rq, p); 3894 3895 check_class_changed(rq, p, prev_class, oldprio); 3896 out_unlock: 3897 /* Avoid rq from going away on us: */ 3898 preempt_disable(); 3899 __task_rq_unlock(rq, &rf); 3900 3901 balance_callback(rq); 3902 preempt_enable(); 3903 } 3904 #else 3905 static inline int rt_effective_prio(struct task_struct *p, int prio) 3906 { 3907 return prio; 3908 } 3909 #endif 3910 3911 void set_user_nice(struct task_struct *p, long nice) 3912 { 3913 bool queued, running; 3914 int old_prio, delta; 3915 struct rq_flags rf; 3916 struct rq *rq; 3917 3918 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 3919 return; 3920 /* 3921 * We have to be careful, if called from sys_setpriority(), 3922 * the task might be in the middle of scheduling on another CPU. 3923 */ 3924 rq = task_rq_lock(p, &rf); 3925 update_rq_clock(rq); 3926 3927 /* 3928 * The RT priorities are set via sched_setscheduler(), but we still 3929 * allow the 'normal' nice value to be set - but as expected 3930 * it wont have any effect on scheduling until the task is 3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 3932 */ 3933 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 3934 p->static_prio = NICE_TO_PRIO(nice); 3935 goto out_unlock; 3936 } 3937 queued = task_on_rq_queued(p); 3938 running = task_current(rq, p); 3939 if (queued) 3940 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 3941 if (running) 3942 put_prev_task(rq, p); 3943 3944 p->static_prio = NICE_TO_PRIO(nice); 3945 set_load_weight(p, true); 3946 old_prio = p->prio; 3947 p->prio = effective_prio(p); 3948 delta = p->prio - old_prio; 3949 3950 if (queued) { 3951 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 3952 /* 3953 * If the task increased its priority or is running and 3954 * lowered its priority, then reschedule its CPU: 3955 */ 3956 if (delta < 0 || (delta > 0 && task_running(rq, p))) 3957 resched_curr(rq); 3958 } 3959 if (running) 3960 set_curr_task(rq, p); 3961 out_unlock: 3962 task_rq_unlock(rq, p, &rf); 3963 } 3964 EXPORT_SYMBOL(set_user_nice); 3965 3966 /* 3967 * can_nice - check if a task can reduce its nice value 3968 * @p: task 3969 * @nice: nice value 3970 */ 3971 int can_nice(const struct task_struct *p, const int nice) 3972 { 3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 3974 int nice_rlim = nice_to_rlimit(nice); 3975 3976 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3977 capable(CAP_SYS_NICE)); 3978 } 3979 3980 #ifdef __ARCH_WANT_SYS_NICE 3981 3982 /* 3983 * sys_nice - change the priority of the current process. 3984 * @increment: priority increment 3985 * 3986 * sys_setpriority is a more generic, but much slower function that 3987 * does similar things. 3988 */ 3989 SYSCALL_DEFINE1(nice, int, increment) 3990 { 3991 long nice, retval; 3992 3993 /* 3994 * Setpriority might change our priority at the same moment. 3995 * We don't have to worry. Conceptually one call occurs first 3996 * and we have a single winner. 3997 */ 3998 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 3999 nice = task_nice(current) + increment; 4000 4001 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 4002 if (increment < 0 && !can_nice(current, nice)) 4003 return -EPERM; 4004 4005 retval = security_task_setnice(current, nice); 4006 if (retval) 4007 return retval; 4008 4009 set_user_nice(current, nice); 4010 return 0; 4011 } 4012 4013 #endif 4014 4015 /** 4016 * task_prio - return the priority value of a given task. 4017 * @p: the task in question. 4018 * 4019 * Return: The priority value as seen by users in /proc. 4020 * RT tasks are offset by -200. Normal tasks are centered 4021 * around 0, value goes from -16 to +15. 4022 */ 4023 int task_prio(const struct task_struct *p) 4024 { 4025 return p->prio - MAX_RT_PRIO; 4026 } 4027 4028 /** 4029 * idle_cpu - is a given CPU idle currently? 4030 * @cpu: the processor in question. 4031 * 4032 * Return: 1 if the CPU is currently idle. 0 otherwise. 4033 */ 4034 int idle_cpu(int cpu) 4035 { 4036 struct rq *rq = cpu_rq(cpu); 4037 4038 if (rq->curr != rq->idle) 4039 return 0; 4040 4041 if (rq->nr_running) 4042 return 0; 4043 4044 #ifdef CONFIG_SMP 4045 if (!llist_empty(&rq->wake_list)) 4046 return 0; 4047 #endif 4048 4049 return 1; 4050 } 4051 4052 /** 4053 * idle_task - return the idle task for a given CPU. 4054 * @cpu: the processor in question. 4055 * 4056 * Return: The idle task for the CPU @cpu. 4057 */ 4058 struct task_struct *idle_task(int cpu) 4059 { 4060 return cpu_rq(cpu)->idle; 4061 } 4062 4063 /** 4064 * find_process_by_pid - find a process with a matching PID value. 4065 * @pid: the pid in question. 4066 * 4067 * The task of @pid, if found. %NULL otherwise. 4068 */ 4069 static struct task_struct *find_process_by_pid(pid_t pid) 4070 { 4071 return pid ? find_task_by_vpid(pid) : current; 4072 } 4073 4074 /* 4075 * sched_setparam() passes in -1 for its policy, to let the functions 4076 * it calls know not to change it. 4077 */ 4078 #define SETPARAM_POLICY -1 4079 4080 static void __setscheduler_params(struct task_struct *p, 4081 const struct sched_attr *attr) 4082 { 4083 int policy = attr->sched_policy; 4084 4085 if (policy == SETPARAM_POLICY) 4086 policy = p->policy; 4087 4088 p->policy = policy; 4089 4090 if (dl_policy(policy)) 4091 __setparam_dl(p, attr); 4092 else if (fair_policy(policy)) 4093 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 4094 4095 /* 4096 * __sched_setscheduler() ensures attr->sched_priority == 0 when 4097 * !rt_policy. Always setting this ensures that things like 4098 * getparam()/getattr() don't report silly values for !rt tasks. 4099 */ 4100 p->rt_priority = attr->sched_priority; 4101 p->normal_prio = normal_prio(p); 4102 set_load_weight(p, true); 4103 } 4104 4105 /* Actually do priority change: must hold pi & rq lock. */ 4106 static void __setscheduler(struct rq *rq, struct task_struct *p, 4107 const struct sched_attr *attr, bool keep_boost) 4108 { 4109 __setscheduler_params(p, attr); 4110 4111 /* 4112 * Keep a potential priority boosting if called from 4113 * sched_setscheduler(). 4114 */ 4115 p->prio = normal_prio(p); 4116 if (keep_boost) 4117 p->prio = rt_effective_prio(p, p->prio); 4118 4119 if (dl_prio(p->prio)) 4120 p->sched_class = &dl_sched_class; 4121 else if (rt_prio(p->prio)) 4122 p->sched_class = &rt_sched_class; 4123 else 4124 p->sched_class = &fair_sched_class; 4125 } 4126 4127 /* 4128 * Check the target process has a UID that matches the current process's: 4129 */ 4130 static bool check_same_owner(struct task_struct *p) 4131 { 4132 const struct cred *cred = current_cred(), *pcred; 4133 bool match; 4134 4135 rcu_read_lock(); 4136 pcred = __task_cred(p); 4137 match = (uid_eq(cred->euid, pcred->euid) || 4138 uid_eq(cred->euid, pcred->uid)); 4139 rcu_read_unlock(); 4140 return match; 4141 } 4142 4143 static int __sched_setscheduler(struct task_struct *p, 4144 const struct sched_attr *attr, 4145 bool user, bool pi) 4146 { 4147 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 4148 MAX_RT_PRIO - 1 - attr->sched_priority; 4149 int retval, oldprio, oldpolicy = -1, queued, running; 4150 int new_effective_prio, policy = attr->sched_policy; 4151 const struct sched_class *prev_class; 4152 struct rq_flags rf; 4153 int reset_on_fork; 4154 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4155 struct rq *rq; 4156 4157 /* The pi code expects interrupts enabled */ 4158 BUG_ON(pi && in_interrupt()); 4159 recheck: 4160 /* Double check policy once rq lock held: */ 4161 if (policy < 0) { 4162 reset_on_fork = p->sched_reset_on_fork; 4163 policy = oldpolicy = p->policy; 4164 } else { 4165 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 4166 4167 if (!valid_policy(policy)) 4168 return -EINVAL; 4169 } 4170 4171 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 4172 return -EINVAL; 4173 4174 /* 4175 * Valid priorities for SCHED_FIFO and SCHED_RR are 4176 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 4177 * SCHED_BATCH and SCHED_IDLE is 0. 4178 */ 4179 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 4180 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 4181 return -EINVAL; 4182 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 4183 (rt_policy(policy) != (attr->sched_priority != 0))) 4184 return -EINVAL; 4185 4186 /* 4187 * Allow unprivileged RT tasks to decrease priority: 4188 */ 4189 if (user && !capable(CAP_SYS_NICE)) { 4190 if (fair_policy(policy)) { 4191 if (attr->sched_nice < task_nice(p) && 4192 !can_nice(p, attr->sched_nice)) 4193 return -EPERM; 4194 } 4195 4196 if (rt_policy(policy)) { 4197 unsigned long rlim_rtprio = 4198 task_rlimit(p, RLIMIT_RTPRIO); 4199 4200 /* Can't set/change the rt policy: */ 4201 if (policy != p->policy && !rlim_rtprio) 4202 return -EPERM; 4203 4204 /* Can't increase priority: */ 4205 if (attr->sched_priority > p->rt_priority && 4206 attr->sched_priority > rlim_rtprio) 4207 return -EPERM; 4208 } 4209 4210 /* 4211 * Can't set/change SCHED_DEADLINE policy at all for now 4212 * (safest behavior); in the future we would like to allow 4213 * unprivileged DL tasks to increase their relative deadline 4214 * or reduce their runtime (both ways reducing utilization) 4215 */ 4216 if (dl_policy(policy)) 4217 return -EPERM; 4218 4219 /* 4220 * Treat SCHED_IDLE as nice 20. Only allow a switch to 4221 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 4222 */ 4223 if (idle_policy(p->policy) && !idle_policy(policy)) { 4224 if (!can_nice(p, task_nice(p))) 4225 return -EPERM; 4226 } 4227 4228 /* Can't change other user's priorities: */ 4229 if (!check_same_owner(p)) 4230 return -EPERM; 4231 4232 /* Normal users shall not reset the sched_reset_on_fork flag: */ 4233 if (p->sched_reset_on_fork && !reset_on_fork) 4234 return -EPERM; 4235 } 4236 4237 if (user) { 4238 if (attr->sched_flags & SCHED_FLAG_SUGOV) 4239 return -EINVAL; 4240 4241 retval = security_task_setscheduler(p); 4242 if (retval) 4243 return retval; 4244 } 4245 4246 /* 4247 * Make sure no PI-waiters arrive (or leave) while we are 4248 * changing the priority of the task: 4249 * 4250 * To be able to change p->policy safely, the appropriate 4251 * runqueue lock must be held. 4252 */ 4253 rq = task_rq_lock(p, &rf); 4254 update_rq_clock(rq); 4255 4256 /* 4257 * Changing the policy of the stop threads its a very bad idea: 4258 */ 4259 if (p == rq->stop) { 4260 task_rq_unlock(rq, p, &rf); 4261 return -EINVAL; 4262 } 4263 4264 /* 4265 * If not changing anything there's no need to proceed further, 4266 * but store a possible modification of reset_on_fork. 4267 */ 4268 if (unlikely(policy == p->policy)) { 4269 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 4270 goto change; 4271 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 4272 goto change; 4273 if (dl_policy(policy) && dl_param_changed(p, attr)) 4274 goto change; 4275 4276 p->sched_reset_on_fork = reset_on_fork; 4277 task_rq_unlock(rq, p, &rf); 4278 return 0; 4279 } 4280 change: 4281 4282 if (user) { 4283 #ifdef CONFIG_RT_GROUP_SCHED 4284 /* 4285 * Do not allow realtime tasks into groups that have no runtime 4286 * assigned. 4287 */ 4288 if (rt_bandwidth_enabled() && rt_policy(policy) && 4289 task_group(p)->rt_bandwidth.rt_runtime == 0 && 4290 !task_group_is_autogroup(task_group(p))) { 4291 task_rq_unlock(rq, p, &rf); 4292 return -EPERM; 4293 } 4294 #endif 4295 #ifdef CONFIG_SMP 4296 if (dl_bandwidth_enabled() && dl_policy(policy) && 4297 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 4298 cpumask_t *span = rq->rd->span; 4299 4300 /* 4301 * Don't allow tasks with an affinity mask smaller than 4302 * the entire root_domain to become SCHED_DEADLINE. We 4303 * will also fail if there's no bandwidth available. 4304 */ 4305 if (!cpumask_subset(span, &p->cpus_allowed) || 4306 rq->rd->dl_bw.bw == 0) { 4307 task_rq_unlock(rq, p, &rf); 4308 return -EPERM; 4309 } 4310 } 4311 #endif 4312 } 4313 4314 /* Re-check policy now with rq lock held: */ 4315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 4316 policy = oldpolicy = -1; 4317 task_rq_unlock(rq, p, &rf); 4318 goto recheck; 4319 } 4320 4321 /* 4322 * If setscheduling to SCHED_DEADLINE (or changing the parameters 4323 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 4324 * is available. 4325 */ 4326 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 4327 task_rq_unlock(rq, p, &rf); 4328 return -EBUSY; 4329 } 4330 4331 p->sched_reset_on_fork = reset_on_fork; 4332 oldprio = p->prio; 4333 4334 if (pi) { 4335 /* 4336 * Take priority boosted tasks into account. If the new 4337 * effective priority is unchanged, we just store the new 4338 * normal parameters and do not touch the scheduler class and 4339 * the runqueue. This will be done when the task deboost 4340 * itself. 4341 */ 4342 new_effective_prio = rt_effective_prio(p, newprio); 4343 if (new_effective_prio == oldprio) 4344 queue_flags &= ~DEQUEUE_MOVE; 4345 } 4346 4347 queued = task_on_rq_queued(p); 4348 running = task_current(rq, p); 4349 if (queued) 4350 dequeue_task(rq, p, queue_flags); 4351 if (running) 4352 put_prev_task(rq, p); 4353 4354 prev_class = p->sched_class; 4355 __setscheduler(rq, p, attr, pi); 4356 4357 if (queued) { 4358 /* 4359 * We enqueue to tail when the priority of a task is 4360 * increased (user space view). 4361 */ 4362 if (oldprio < p->prio) 4363 queue_flags |= ENQUEUE_HEAD; 4364 4365 enqueue_task(rq, p, queue_flags); 4366 } 4367 if (running) 4368 set_curr_task(rq, p); 4369 4370 check_class_changed(rq, p, prev_class, oldprio); 4371 4372 /* Avoid rq from going away on us: */ 4373 preempt_disable(); 4374 task_rq_unlock(rq, p, &rf); 4375 4376 if (pi) 4377 rt_mutex_adjust_pi(p); 4378 4379 /* Run balance callbacks after we've adjusted the PI chain: */ 4380 balance_callback(rq); 4381 preempt_enable(); 4382 4383 return 0; 4384 } 4385 4386 static int _sched_setscheduler(struct task_struct *p, int policy, 4387 const struct sched_param *param, bool check) 4388 { 4389 struct sched_attr attr = { 4390 .sched_policy = policy, 4391 .sched_priority = param->sched_priority, 4392 .sched_nice = PRIO_TO_NICE(p->static_prio), 4393 }; 4394 4395 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 4396 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 4397 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4398 policy &= ~SCHED_RESET_ON_FORK; 4399 attr.sched_policy = policy; 4400 } 4401 4402 return __sched_setscheduler(p, &attr, check, true); 4403 } 4404 /** 4405 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 4406 * @p: the task in question. 4407 * @policy: new policy. 4408 * @param: structure containing the new RT priority. 4409 * 4410 * Return: 0 on success. An error code otherwise. 4411 * 4412 * NOTE that the task may be already dead. 4413 */ 4414 int sched_setscheduler(struct task_struct *p, int policy, 4415 const struct sched_param *param) 4416 { 4417 return _sched_setscheduler(p, policy, param, true); 4418 } 4419 EXPORT_SYMBOL_GPL(sched_setscheduler); 4420 4421 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 4422 { 4423 return __sched_setscheduler(p, attr, true, true); 4424 } 4425 EXPORT_SYMBOL_GPL(sched_setattr); 4426 4427 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 4428 { 4429 return __sched_setscheduler(p, attr, false, true); 4430 } 4431 4432 /** 4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 4434 * @p: the task in question. 4435 * @policy: new policy. 4436 * @param: structure containing the new RT priority. 4437 * 4438 * Just like sched_setscheduler, only don't bother checking if the 4439 * current context has permission. For example, this is needed in 4440 * stop_machine(): we create temporary high priority worker threads, 4441 * but our caller might not have that capability. 4442 * 4443 * Return: 0 on success. An error code otherwise. 4444 */ 4445 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 4446 const struct sched_param *param) 4447 { 4448 return _sched_setscheduler(p, policy, param, false); 4449 } 4450 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck); 4451 4452 static int 4453 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 4454 { 4455 struct sched_param lparam; 4456 struct task_struct *p; 4457 int retval; 4458 4459 if (!param || pid < 0) 4460 return -EINVAL; 4461 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 4462 return -EFAULT; 4463 4464 rcu_read_lock(); 4465 retval = -ESRCH; 4466 p = find_process_by_pid(pid); 4467 if (p != NULL) 4468 retval = sched_setscheduler(p, policy, &lparam); 4469 rcu_read_unlock(); 4470 4471 return retval; 4472 } 4473 4474 /* 4475 * Mimics kernel/events/core.c perf_copy_attr(). 4476 */ 4477 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 4478 { 4479 u32 size; 4480 int ret; 4481 4482 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 4483 return -EFAULT; 4484 4485 /* Zero the full structure, so that a short copy will be nice: */ 4486 memset(attr, 0, sizeof(*attr)); 4487 4488 ret = get_user(size, &uattr->size); 4489 if (ret) 4490 return ret; 4491 4492 /* Bail out on silly large: */ 4493 if (size > PAGE_SIZE) 4494 goto err_size; 4495 4496 /* ABI compatibility quirk: */ 4497 if (!size) 4498 size = SCHED_ATTR_SIZE_VER0; 4499 4500 if (size < SCHED_ATTR_SIZE_VER0) 4501 goto err_size; 4502 4503 /* 4504 * If we're handed a bigger struct than we know of, 4505 * ensure all the unknown bits are 0 - i.e. new 4506 * user-space does not rely on any kernel feature 4507 * extensions we dont know about yet. 4508 */ 4509 if (size > sizeof(*attr)) { 4510 unsigned char __user *addr; 4511 unsigned char __user *end; 4512 unsigned char val; 4513 4514 addr = (void __user *)uattr + sizeof(*attr); 4515 end = (void __user *)uattr + size; 4516 4517 for (; addr < end; addr++) { 4518 ret = get_user(val, addr); 4519 if (ret) 4520 return ret; 4521 if (val) 4522 goto err_size; 4523 } 4524 size = sizeof(*attr); 4525 } 4526 4527 ret = copy_from_user(attr, uattr, size); 4528 if (ret) 4529 return -EFAULT; 4530 4531 /* 4532 * XXX: Do we want to be lenient like existing syscalls; or do we want 4533 * to be strict and return an error on out-of-bounds values? 4534 */ 4535 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 4536 4537 return 0; 4538 4539 err_size: 4540 put_user(sizeof(*attr), &uattr->size); 4541 return -E2BIG; 4542 } 4543 4544 /** 4545 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 4546 * @pid: the pid in question. 4547 * @policy: new policy. 4548 * @param: structure containing the new RT priority. 4549 * 4550 * Return: 0 on success. An error code otherwise. 4551 */ 4552 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 4553 { 4554 if (policy < 0) 4555 return -EINVAL; 4556 4557 return do_sched_setscheduler(pid, policy, param); 4558 } 4559 4560 /** 4561 * sys_sched_setparam - set/change the RT priority of a thread 4562 * @pid: the pid in question. 4563 * @param: structure containing the new RT priority. 4564 * 4565 * Return: 0 on success. An error code otherwise. 4566 */ 4567 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 4568 { 4569 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 4570 } 4571 4572 /** 4573 * sys_sched_setattr - same as above, but with extended sched_attr 4574 * @pid: the pid in question. 4575 * @uattr: structure containing the extended parameters. 4576 * @flags: for future extension. 4577 */ 4578 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 4579 unsigned int, flags) 4580 { 4581 struct sched_attr attr; 4582 struct task_struct *p; 4583 int retval; 4584 4585 if (!uattr || pid < 0 || flags) 4586 return -EINVAL; 4587 4588 retval = sched_copy_attr(uattr, &attr); 4589 if (retval) 4590 return retval; 4591 4592 if ((int)attr.sched_policy < 0) 4593 return -EINVAL; 4594 4595 rcu_read_lock(); 4596 retval = -ESRCH; 4597 p = find_process_by_pid(pid); 4598 if (p != NULL) 4599 retval = sched_setattr(p, &attr); 4600 rcu_read_unlock(); 4601 4602 return retval; 4603 } 4604 4605 /** 4606 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 4607 * @pid: the pid in question. 4608 * 4609 * Return: On success, the policy of the thread. Otherwise, a negative error 4610 * code. 4611 */ 4612 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 4613 { 4614 struct task_struct *p; 4615 int retval; 4616 4617 if (pid < 0) 4618 return -EINVAL; 4619 4620 retval = -ESRCH; 4621 rcu_read_lock(); 4622 p = find_process_by_pid(pid); 4623 if (p) { 4624 retval = security_task_getscheduler(p); 4625 if (!retval) 4626 retval = p->policy 4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 4628 } 4629 rcu_read_unlock(); 4630 return retval; 4631 } 4632 4633 /** 4634 * sys_sched_getparam - get the RT priority of a thread 4635 * @pid: the pid in question. 4636 * @param: structure containing the RT priority. 4637 * 4638 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 4639 * code. 4640 */ 4641 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 4642 { 4643 struct sched_param lp = { .sched_priority = 0 }; 4644 struct task_struct *p; 4645 int retval; 4646 4647 if (!param || pid < 0) 4648 return -EINVAL; 4649 4650 rcu_read_lock(); 4651 p = find_process_by_pid(pid); 4652 retval = -ESRCH; 4653 if (!p) 4654 goto out_unlock; 4655 4656 retval = security_task_getscheduler(p); 4657 if (retval) 4658 goto out_unlock; 4659 4660 if (task_has_rt_policy(p)) 4661 lp.sched_priority = p->rt_priority; 4662 rcu_read_unlock(); 4663 4664 /* 4665 * This one might sleep, we cannot do it with a spinlock held ... 4666 */ 4667 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 4668 4669 return retval; 4670 4671 out_unlock: 4672 rcu_read_unlock(); 4673 return retval; 4674 } 4675 4676 static int sched_read_attr(struct sched_attr __user *uattr, 4677 struct sched_attr *attr, 4678 unsigned int usize) 4679 { 4680 int ret; 4681 4682 if (!access_ok(VERIFY_WRITE, uattr, usize)) 4683 return -EFAULT; 4684 4685 /* 4686 * If we're handed a smaller struct than we know of, 4687 * ensure all the unknown bits are 0 - i.e. old 4688 * user-space does not get uncomplete information. 4689 */ 4690 if (usize < sizeof(*attr)) { 4691 unsigned char *addr; 4692 unsigned char *end; 4693 4694 addr = (void *)attr + usize; 4695 end = (void *)attr + sizeof(*attr); 4696 4697 for (; addr < end; addr++) { 4698 if (*addr) 4699 return -EFBIG; 4700 } 4701 4702 attr->size = usize; 4703 } 4704 4705 ret = copy_to_user(uattr, attr, attr->size); 4706 if (ret) 4707 return -EFAULT; 4708 4709 return 0; 4710 } 4711 4712 /** 4713 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 4714 * @pid: the pid in question. 4715 * @uattr: structure containing the extended parameters. 4716 * @size: sizeof(attr) for fwd/bwd comp. 4717 * @flags: for future extension. 4718 */ 4719 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 4720 unsigned int, size, unsigned int, flags) 4721 { 4722 struct sched_attr attr = { 4723 .size = sizeof(struct sched_attr), 4724 }; 4725 struct task_struct *p; 4726 int retval; 4727 4728 if (!uattr || pid < 0 || size > PAGE_SIZE || 4729 size < SCHED_ATTR_SIZE_VER0 || flags) 4730 return -EINVAL; 4731 4732 rcu_read_lock(); 4733 p = find_process_by_pid(pid); 4734 retval = -ESRCH; 4735 if (!p) 4736 goto out_unlock; 4737 4738 retval = security_task_getscheduler(p); 4739 if (retval) 4740 goto out_unlock; 4741 4742 attr.sched_policy = p->policy; 4743 if (p->sched_reset_on_fork) 4744 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 4745 if (task_has_dl_policy(p)) 4746 __getparam_dl(p, &attr); 4747 else if (task_has_rt_policy(p)) 4748 attr.sched_priority = p->rt_priority; 4749 else 4750 attr.sched_nice = task_nice(p); 4751 4752 rcu_read_unlock(); 4753 4754 retval = sched_read_attr(uattr, &attr, size); 4755 return retval; 4756 4757 out_unlock: 4758 rcu_read_unlock(); 4759 return retval; 4760 } 4761 4762 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 4763 { 4764 cpumask_var_t cpus_allowed, new_mask; 4765 struct task_struct *p; 4766 int retval; 4767 4768 rcu_read_lock(); 4769 4770 p = find_process_by_pid(pid); 4771 if (!p) { 4772 rcu_read_unlock(); 4773 return -ESRCH; 4774 } 4775 4776 /* Prevent p going away */ 4777 get_task_struct(p); 4778 rcu_read_unlock(); 4779 4780 if (p->flags & PF_NO_SETAFFINITY) { 4781 retval = -EINVAL; 4782 goto out_put_task; 4783 } 4784 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 4785 retval = -ENOMEM; 4786 goto out_put_task; 4787 } 4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 4789 retval = -ENOMEM; 4790 goto out_free_cpus_allowed; 4791 } 4792 retval = -EPERM; 4793 if (!check_same_owner(p)) { 4794 rcu_read_lock(); 4795 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 4796 rcu_read_unlock(); 4797 goto out_free_new_mask; 4798 } 4799 rcu_read_unlock(); 4800 } 4801 4802 retval = security_task_setscheduler(p); 4803 if (retval) 4804 goto out_free_new_mask; 4805 4806 4807 cpuset_cpus_allowed(p, cpus_allowed); 4808 cpumask_and(new_mask, in_mask, cpus_allowed); 4809 4810 /* 4811 * Since bandwidth control happens on root_domain basis, 4812 * if admission test is enabled, we only admit -deadline 4813 * tasks allowed to run on all the CPUs in the task's 4814 * root_domain. 4815 */ 4816 #ifdef CONFIG_SMP 4817 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 4818 rcu_read_lock(); 4819 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) { 4820 retval = -EBUSY; 4821 rcu_read_unlock(); 4822 goto out_free_new_mask; 4823 } 4824 rcu_read_unlock(); 4825 } 4826 #endif 4827 again: 4828 retval = __set_cpus_allowed_ptr(p, new_mask, true); 4829 4830 if (!retval) { 4831 cpuset_cpus_allowed(p, cpus_allowed); 4832 if (!cpumask_subset(new_mask, cpus_allowed)) { 4833 /* 4834 * We must have raced with a concurrent cpuset 4835 * update. Just reset the cpus_allowed to the 4836 * cpuset's cpus_allowed 4837 */ 4838 cpumask_copy(new_mask, cpus_allowed); 4839 goto again; 4840 } 4841 } 4842 out_free_new_mask: 4843 free_cpumask_var(new_mask); 4844 out_free_cpus_allowed: 4845 free_cpumask_var(cpus_allowed); 4846 out_put_task: 4847 put_task_struct(p); 4848 return retval; 4849 } 4850 4851 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 4852 struct cpumask *new_mask) 4853 { 4854 if (len < cpumask_size()) 4855 cpumask_clear(new_mask); 4856 else if (len > cpumask_size()) 4857 len = cpumask_size(); 4858 4859 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 4860 } 4861 4862 /** 4863 * sys_sched_setaffinity - set the CPU affinity of a process 4864 * @pid: pid of the process 4865 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4866 * @user_mask_ptr: user-space pointer to the new CPU mask 4867 * 4868 * Return: 0 on success. An error code otherwise. 4869 */ 4870 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 4871 unsigned long __user *, user_mask_ptr) 4872 { 4873 cpumask_var_t new_mask; 4874 int retval; 4875 4876 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 4877 return -ENOMEM; 4878 4879 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 4880 if (retval == 0) 4881 retval = sched_setaffinity(pid, new_mask); 4882 free_cpumask_var(new_mask); 4883 return retval; 4884 } 4885 4886 long sched_getaffinity(pid_t pid, struct cpumask *mask) 4887 { 4888 struct task_struct *p; 4889 unsigned long flags; 4890 int retval; 4891 4892 rcu_read_lock(); 4893 4894 retval = -ESRCH; 4895 p = find_process_by_pid(pid); 4896 if (!p) 4897 goto out_unlock; 4898 4899 retval = security_task_getscheduler(p); 4900 if (retval) 4901 goto out_unlock; 4902 4903 raw_spin_lock_irqsave(&p->pi_lock, flags); 4904 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4905 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4906 4907 out_unlock: 4908 rcu_read_unlock(); 4909 4910 return retval; 4911 } 4912 4913 /** 4914 * sys_sched_getaffinity - get the CPU affinity of a process 4915 * @pid: pid of the process 4916 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4917 * @user_mask_ptr: user-space pointer to hold the current CPU mask 4918 * 4919 * Return: size of CPU mask copied to user_mask_ptr on success. An 4920 * error code otherwise. 4921 */ 4922 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4923 unsigned long __user *, user_mask_ptr) 4924 { 4925 int ret; 4926 cpumask_var_t mask; 4927 4928 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4929 return -EINVAL; 4930 if (len & (sizeof(unsigned long)-1)) 4931 return -EINVAL; 4932 4933 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4934 return -ENOMEM; 4935 4936 ret = sched_getaffinity(pid, mask); 4937 if (ret == 0) { 4938 unsigned int retlen = min(len, cpumask_size()); 4939 4940 if (copy_to_user(user_mask_ptr, mask, retlen)) 4941 ret = -EFAULT; 4942 else 4943 ret = retlen; 4944 } 4945 free_cpumask_var(mask); 4946 4947 return ret; 4948 } 4949 4950 /** 4951 * sys_sched_yield - yield the current processor to other threads. 4952 * 4953 * This function yields the current CPU to other tasks. If there are no 4954 * other threads running on this CPU then this function will return. 4955 * 4956 * Return: 0. 4957 */ 4958 static void do_sched_yield(void) 4959 { 4960 struct rq_flags rf; 4961 struct rq *rq; 4962 4963 local_irq_disable(); 4964 rq = this_rq(); 4965 rq_lock(rq, &rf); 4966 4967 schedstat_inc(rq->yld_count); 4968 current->sched_class->yield_task(rq); 4969 4970 /* 4971 * Since we are going to call schedule() anyway, there's 4972 * no need to preempt or enable interrupts: 4973 */ 4974 preempt_disable(); 4975 rq_unlock(rq, &rf); 4976 sched_preempt_enable_no_resched(); 4977 4978 schedule(); 4979 } 4980 4981 SYSCALL_DEFINE0(sched_yield) 4982 { 4983 do_sched_yield(); 4984 return 0; 4985 } 4986 4987 #ifndef CONFIG_PREEMPT 4988 int __sched _cond_resched(void) 4989 { 4990 if (should_resched(0)) { 4991 preempt_schedule_common(); 4992 return 1; 4993 } 4994 rcu_all_qs(); 4995 return 0; 4996 } 4997 EXPORT_SYMBOL(_cond_resched); 4998 #endif 4999 5000 /* 5001 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 5002 * call schedule, and on return reacquire the lock. 5003 * 5004 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 5005 * operations here to prevent schedule() from being called twice (once via 5006 * spin_unlock(), once by hand). 5007 */ 5008 int __cond_resched_lock(spinlock_t *lock) 5009 { 5010 int resched = should_resched(PREEMPT_LOCK_OFFSET); 5011 int ret = 0; 5012 5013 lockdep_assert_held(lock); 5014 5015 if (spin_needbreak(lock) || resched) { 5016 spin_unlock(lock); 5017 if (resched) 5018 preempt_schedule_common(); 5019 else 5020 cpu_relax(); 5021 ret = 1; 5022 spin_lock(lock); 5023 } 5024 return ret; 5025 } 5026 EXPORT_SYMBOL(__cond_resched_lock); 5027 5028 int __sched __cond_resched_softirq(void) 5029 { 5030 BUG_ON(!in_softirq()); 5031 5032 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) { 5033 local_bh_enable(); 5034 preempt_schedule_common(); 5035 local_bh_disable(); 5036 return 1; 5037 } 5038 return 0; 5039 } 5040 EXPORT_SYMBOL(__cond_resched_softirq); 5041 5042 /** 5043 * yield - yield the current processor to other threads. 5044 * 5045 * Do not ever use this function, there's a 99% chance you're doing it wrong. 5046 * 5047 * The scheduler is at all times free to pick the calling task as the most 5048 * eligible task to run, if removing the yield() call from your code breaks 5049 * it, its already broken. 5050 * 5051 * Typical broken usage is: 5052 * 5053 * while (!event) 5054 * yield(); 5055 * 5056 * where one assumes that yield() will let 'the other' process run that will 5057 * make event true. If the current task is a SCHED_FIFO task that will never 5058 * happen. Never use yield() as a progress guarantee!! 5059 * 5060 * If you want to use yield() to wait for something, use wait_event(). 5061 * If you want to use yield() to be 'nice' for others, use cond_resched(). 5062 * If you still want to use yield(), do not! 5063 */ 5064 void __sched yield(void) 5065 { 5066 set_current_state(TASK_RUNNING); 5067 do_sched_yield(); 5068 } 5069 EXPORT_SYMBOL(yield); 5070 5071 /** 5072 * yield_to - yield the current processor to another thread in 5073 * your thread group, or accelerate that thread toward the 5074 * processor it's on. 5075 * @p: target task 5076 * @preempt: whether task preemption is allowed or not 5077 * 5078 * It's the caller's job to ensure that the target task struct 5079 * can't go away on us before we can do any checks. 5080 * 5081 * Return: 5082 * true (>0) if we indeed boosted the target task. 5083 * false (0) if we failed to boost the target. 5084 * -ESRCH if there's no task to yield to. 5085 */ 5086 int __sched yield_to(struct task_struct *p, bool preempt) 5087 { 5088 struct task_struct *curr = current; 5089 struct rq *rq, *p_rq; 5090 unsigned long flags; 5091 int yielded = 0; 5092 5093 local_irq_save(flags); 5094 rq = this_rq(); 5095 5096 again: 5097 p_rq = task_rq(p); 5098 /* 5099 * If we're the only runnable task on the rq and target rq also 5100 * has only one task, there's absolutely no point in yielding. 5101 */ 5102 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 5103 yielded = -ESRCH; 5104 goto out_irq; 5105 } 5106 5107 double_rq_lock(rq, p_rq); 5108 if (task_rq(p) != p_rq) { 5109 double_rq_unlock(rq, p_rq); 5110 goto again; 5111 } 5112 5113 if (!curr->sched_class->yield_to_task) 5114 goto out_unlock; 5115 5116 if (curr->sched_class != p->sched_class) 5117 goto out_unlock; 5118 5119 if (task_running(p_rq, p) || p->state) 5120 goto out_unlock; 5121 5122 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 5123 if (yielded) { 5124 schedstat_inc(rq->yld_count); 5125 /* 5126 * Make p's CPU reschedule; pick_next_entity takes care of 5127 * fairness. 5128 */ 5129 if (preempt && rq != p_rq) 5130 resched_curr(p_rq); 5131 } 5132 5133 out_unlock: 5134 double_rq_unlock(rq, p_rq); 5135 out_irq: 5136 local_irq_restore(flags); 5137 5138 if (yielded > 0) 5139 schedule(); 5140 5141 return yielded; 5142 } 5143 EXPORT_SYMBOL_GPL(yield_to); 5144 5145 int io_schedule_prepare(void) 5146 { 5147 int old_iowait = current->in_iowait; 5148 5149 current->in_iowait = 1; 5150 blk_schedule_flush_plug(current); 5151 5152 return old_iowait; 5153 } 5154 5155 void io_schedule_finish(int token) 5156 { 5157 current->in_iowait = token; 5158 } 5159 5160 /* 5161 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 5162 * that process accounting knows that this is a task in IO wait state. 5163 */ 5164 long __sched io_schedule_timeout(long timeout) 5165 { 5166 int token; 5167 long ret; 5168 5169 token = io_schedule_prepare(); 5170 ret = schedule_timeout(timeout); 5171 io_schedule_finish(token); 5172 5173 return ret; 5174 } 5175 EXPORT_SYMBOL(io_schedule_timeout); 5176 5177 void io_schedule(void) 5178 { 5179 int token; 5180 5181 token = io_schedule_prepare(); 5182 schedule(); 5183 io_schedule_finish(token); 5184 } 5185 EXPORT_SYMBOL(io_schedule); 5186 5187 /** 5188 * sys_sched_get_priority_max - return maximum RT priority. 5189 * @policy: scheduling class. 5190 * 5191 * Return: On success, this syscall returns the maximum 5192 * rt_priority that can be used by a given scheduling class. 5193 * On failure, a negative error code is returned. 5194 */ 5195 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 5196 { 5197 int ret = -EINVAL; 5198 5199 switch (policy) { 5200 case SCHED_FIFO: 5201 case SCHED_RR: 5202 ret = MAX_USER_RT_PRIO-1; 5203 break; 5204 case SCHED_DEADLINE: 5205 case SCHED_NORMAL: 5206 case SCHED_BATCH: 5207 case SCHED_IDLE: 5208 ret = 0; 5209 break; 5210 } 5211 return ret; 5212 } 5213 5214 /** 5215 * sys_sched_get_priority_min - return minimum RT priority. 5216 * @policy: scheduling class. 5217 * 5218 * Return: On success, this syscall returns the minimum 5219 * rt_priority that can be used by a given scheduling class. 5220 * On failure, a negative error code is returned. 5221 */ 5222 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 5223 { 5224 int ret = -EINVAL; 5225 5226 switch (policy) { 5227 case SCHED_FIFO: 5228 case SCHED_RR: 5229 ret = 1; 5230 break; 5231 case SCHED_DEADLINE: 5232 case SCHED_NORMAL: 5233 case SCHED_BATCH: 5234 case SCHED_IDLE: 5235 ret = 0; 5236 } 5237 return ret; 5238 } 5239 5240 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 5241 { 5242 struct task_struct *p; 5243 unsigned int time_slice; 5244 struct rq_flags rf; 5245 struct rq *rq; 5246 int retval; 5247 5248 if (pid < 0) 5249 return -EINVAL; 5250 5251 retval = -ESRCH; 5252 rcu_read_lock(); 5253 p = find_process_by_pid(pid); 5254 if (!p) 5255 goto out_unlock; 5256 5257 retval = security_task_getscheduler(p); 5258 if (retval) 5259 goto out_unlock; 5260 5261 rq = task_rq_lock(p, &rf); 5262 time_slice = 0; 5263 if (p->sched_class->get_rr_interval) 5264 time_slice = p->sched_class->get_rr_interval(rq, p); 5265 task_rq_unlock(rq, p, &rf); 5266 5267 rcu_read_unlock(); 5268 jiffies_to_timespec64(time_slice, t); 5269 return 0; 5270 5271 out_unlock: 5272 rcu_read_unlock(); 5273 return retval; 5274 } 5275 5276 /** 5277 * sys_sched_rr_get_interval - return the default timeslice of a process. 5278 * @pid: pid of the process. 5279 * @interval: userspace pointer to the timeslice value. 5280 * 5281 * this syscall writes the default timeslice value of a given process 5282 * into the user-space timespec buffer. A value of '0' means infinity. 5283 * 5284 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 5285 * an error code. 5286 */ 5287 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 5288 struct timespec __user *, interval) 5289 { 5290 struct timespec64 t; 5291 int retval = sched_rr_get_interval(pid, &t); 5292 5293 if (retval == 0) 5294 retval = put_timespec64(&t, interval); 5295 5296 return retval; 5297 } 5298 5299 #ifdef CONFIG_COMPAT 5300 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval, 5301 compat_pid_t, pid, 5302 struct compat_timespec __user *, interval) 5303 { 5304 struct timespec64 t; 5305 int retval = sched_rr_get_interval(pid, &t); 5306 5307 if (retval == 0) 5308 retval = compat_put_timespec64(&t, interval); 5309 return retval; 5310 } 5311 #endif 5312 5313 void sched_show_task(struct task_struct *p) 5314 { 5315 unsigned long free = 0; 5316 int ppid; 5317 5318 if (!try_get_task_stack(p)) 5319 return; 5320 5321 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p)); 5322 5323 if (p->state == TASK_RUNNING) 5324 printk(KERN_CONT " running task "); 5325 #ifdef CONFIG_DEBUG_STACK_USAGE 5326 free = stack_not_used(p); 5327 #endif 5328 ppid = 0; 5329 rcu_read_lock(); 5330 if (pid_alive(p)) 5331 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 5332 rcu_read_unlock(); 5333 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 5334 task_pid_nr(p), ppid, 5335 (unsigned long)task_thread_info(p)->flags); 5336 5337 print_worker_info(KERN_INFO, p); 5338 show_stack(p, NULL); 5339 put_task_stack(p); 5340 } 5341 EXPORT_SYMBOL_GPL(sched_show_task); 5342 5343 static inline bool 5344 state_filter_match(unsigned long state_filter, struct task_struct *p) 5345 { 5346 /* no filter, everything matches */ 5347 if (!state_filter) 5348 return true; 5349 5350 /* filter, but doesn't match */ 5351 if (!(p->state & state_filter)) 5352 return false; 5353 5354 /* 5355 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 5356 * TASK_KILLABLE). 5357 */ 5358 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE) 5359 return false; 5360 5361 return true; 5362 } 5363 5364 5365 void show_state_filter(unsigned long state_filter) 5366 { 5367 struct task_struct *g, *p; 5368 5369 #if BITS_PER_LONG == 32 5370 printk(KERN_INFO 5371 " task PC stack pid father\n"); 5372 #else 5373 printk(KERN_INFO 5374 " task PC stack pid father\n"); 5375 #endif 5376 rcu_read_lock(); 5377 for_each_process_thread(g, p) { 5378 /* 5379 * reset the NMI-timeout, listing all files on a slow 5380 * console might take a lot of time: 5381 * Also, reset softlockup watchdogs on all CPUs, because 5382 * another CPU might be blocked waiting for us to process 5383 * an IPI. 5384 */ 5385 touch_nmi_watchdog(); 5386 touch_all_softlockup_watchdogs(); 5387 if (state_filter_match(state_filter, p)) 5388 sched_show_task(p); 5389 } 5390 5391 #ifdef CONFIG_SCHED_DEBUG 5392 if (!state_filter) 5393 sysrq_sched_debug_show(); 5394 #endif 5395 rcu_read_unlock(); 5396 /* 5397 * Only show locks if all tasks are dumped: 5398 */ 5399 if (!state_filter) 5400 debug_show_all_locks(); 5401 } 5402 5403 /** 5404 * init_idle - set up an idle thread for a given CPU 5405 * @idle: task in question 5406 * @cpu: CPU the idle task belongs to 5407 * 5408 * NOTE: this function does not set the idle thread's NEED_RESCHED 5409 * flag, to make booting more robust. 5410 */ 5411 void init_idle(struct task_struct *idle, int cpu) 5412 { 5413 struct rq *rq = cpu_rq(cpu); 5414 unsigned long flags; 5415 5416 raw_spin_lock_irqsave(&idle->pi_lock, flags); 5417 raw_spin_lock(&rq->lock); 5418 5419 __sched_fork(0, idle); 5420 idle->state = TASK_RUNNING; 5421 idle->se.exec_start = sched_clock(); 5422 idle->flags |= PF_IDLE; 5423 5424 kasan_unpoison_task_stack(idle); 5425 5426 #ifdef CONFIG_SMP 5427 /* 5428 * Its possible that init_idle() gets called multiple times on a task, 5429 * in that case do_set_cpus_allowed() will not do the right thing. 5430 * 5431 * And since this is boot we can forgo the serialization. 5432 */ 5433 set_cpus_allowed_common(idle, cpumask_of(cpu)); 5434 #endif 5435 /* 5436 * We're having a chicken and egg problem, even though we are 5437 * holding rq->lock, the CPU isn't yet set to this CPU so the 5438 * lockdep check in task_group() will fail. 5439 * 5440 * Similar case to sched_fork(). / Alternatively we could 5441 * use task_rq_lock() here and obtain the other rq->lock. 5442 * 5443 * Silence PROVE_RCU 5444 */ 5445 rcu_read_lock(); 5446 __set_task_cpu(idle, cpu); 5447 rcu_read_unlock(); 5448 5449 rq->curr = rq->idle = idle; 5450 idle->on_rq = TASK_ON_RQ_QUEUED; 5451 #ifdef CONFIG_SMP 5452 idle->on_cpu = 1; 5453 #endif 5454 raw_spin_unlock(&rq->lock); 5455 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 5456 5457 /* Set the preempt count _outside_ the spinlocks! */ 5458 init_idle_preempt_count(idle, cpu); 5459 5460 /* 5461 * The idle tasks have their own, simple scheduling class: 5462 */ 5463 idle->sched_class = &idle_sched_class; 5464 ftrace_graph_init_idle_task(idle, cpu); 5465 vtime_init_idle(idle, cpu); 5466 #ifdef CONFIG_SMP 5467 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 5468 #endif 5469 } 5470 5471 #ifdef CONFIG_SMP 5472 5473 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 5474 const struct cpumask *trial) 5475 { 5476 int ret = 1; 5477 5478 if (!cpumask_weight(cur)) 5479 return ret; 5480 5481 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 5482 5483 return ret; 5484 } 5485 5486 int task_can_attach(struct task_struct *p, 5487 const struct cpumask *cs_cpus_allowed) 5488 { 5489 int ret = 0; 5490 5491 /* 5492 * Kthreads which disallow setaffinity shouldn't be moved 5493 * to a new cpuset; we don't want to change their CPU 5494 * affinity and isolating such threads by their set of 5495 * allowed nodes is unnecessary. Thus, cpusets are not 5496 * applicable for such threads. This prevents checking for 5497 * success of set_cpus_allowed_ptr() on all attached tasks 5498 * before cpus_allowed may be changed. 5499 */ 5500 if (p->flags & PF_NO_SETAFFINITY) { 5501 ret = -EINVAL; 5502 goto out; 5503 } 5504 5505 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span, 5506 cs_cpus_allowed)) 5507 ret = dl_task_can_attach(p, cs_cpus_allowed); 5508 5509 out: 5510 return ret; 5511 } 5512 5513 bool sched_smp_initialized __read_mostly; 5514 5515 #ifdef CONFIG_NUMA_BALANCING 5516 /* Migrate current task p to target_cpu */ 5517 int migrate_task_to(struct task_struct *p, int target_cpu) 5518 { 5519 struct migration_arg arg = { p, target_cpu }; 5520 int curr_cpu = task_cpu(p); 5521 5522 if (curr_cpu == target_cpu) 5523 return 0; 5524 5525 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed)) 5526 return -EINVAL; 5527 5528 /* TODO: This is not properly updating schedstats */ 5529 5530 trace_sched_move_numa(p, curr_cpu, target_cpu); 5531 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 5532 } 5533 5534 /* 5535 * Requeue a task on a given node and accurately track the number of NUMA 5536 * tasks on the runqueues 5537 */ 5538 void sched_setnuma(struct task_struct *p, int nid) 5539 { 5540 bool queued, running; 5541 struct rq_flags rf; 5542 struct rq *rq; 5543 5544 rq = task_rq_lock(p, &rf); 5545 queued = task_on_rq_queued(p); 5546 running = task_current(rq, p); 5547 5548 if (queued) 5549 dequeue_task(rq, p, DEQUEUE_SAVE); 5550 if (running) 5551 put_prev_task(rq, p); 5552 5553 p->numa_preferred_nid = nid; 5554 5555 if (queued) 5556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 5557 if (running) 5558 set_curr_task(rq, p); 5559 task_rq_unlock(rq, p, &rf); 5560 } 5561 #endif /* CONFIG_NUMA_BALANCING */ 5562 5563 #ifdef CONFIG_HOTPLUG_CPU 5564 /* 5565 * Ensure that the idle task is using init_mm right before its CPU goes 5566 * offline. 5567 */ 5568 void idle_task_exit(void) 5569 { 5570 struct mm_struct *mm = current->active_mm; 5571 5572 BUG_ON(cpu_online(smp_processor_id())); 5573 5574 if (mm != &init_mm) { 5575 switch_mm(mm, &init_mm, current); 5576 current->active_mm = &init_mm; 5577 finish_arch_post_lock_switch(); 5578 } 5579 mmdrop(mm); 5580 } 5581 5582 /* 5583 * Since this CPU is going 'away' for a while, fold any nr_active delta 5584 * we might have. Assumes we're called after migrate_tasks() so that the 5585 * nr_active count is stable. We need to take the teardown thread which 5586 * is calling this into account, so we hand in adjust = 1 to the load 5587 * calculation. 5588 * 5589 * Also see the comment "Global load-average calculations". 5590 */ 5591 static void calc_load_migrate(struct rq *rq) 5592 { 5593 long delta = calc_load_fold_active(rq, 1); 5594 if (delta) 5595 atomic_long_add(delta, &calc_load_tasks); 5596 } 5597 5598 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 5599 { 5600 } 5601 5602 static const struct sched_class fake_sched_class = { 5603 .put_prev_task = put_prev_task_fake, 5604 }; 5605 5606 static struct task_struct fake_task = { 5607 /* 5608 * Avoid pull_{rt,dl}_task() 5609 */ 5610 .prio = MAX_PRIO + 1, 5611 .sched_class = &fake_sched_class, 5612 }; 5613 5614 /* 5615 * Migrate all tasks from the rq, sleeping tasks will be migrated by 5616 * try_to_wake_up()->select_task_rq(). 5617 * 5618 * Called with rq->lock held even though we'er in stop_machine() and 5619 * there's no concurrency possible, we hold the required locks anyway 5620 * because of lock validation efforts. 5621 */ 5622 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf) 5623 { 5624 struct rq *rq = dead_rq; 5625 struct task_struct *next, *stop = rq->stop; 5626 struct rq_flags orf = *rf; 5627 int dest_cpu; 5628 5629 /* 5630 * Fudge the rq selection such that the below task selection loop 5631 * doesn't get stuck on the currently eligible stop task. 5632 * 5633 * We're currently inside stop_machine() and the rq is either stuck 5634 * in the stop_machine_cpu_stop() loop, or we're executing this code, 5635 * either way we should never end up calling schedule() until we're 5636 * done here. 5637 */ 5638 rq->stop = NULL; 5639 5640 /* 5641 * put_prev_task() and pick_next_task() sched 5642 * class method both need to have an up-to-date 5643 * value of rq->clock[_task] 5644 */ 5645 update_rq_clock(rq); 5646 5647 for (;;) { 5648 /* 5649 * There's this thread running, bail when that's the only 5650 * remaining thread: 5651 */ 5652 if (rq->nr_running == 1) 5653 break; 5654 5655 /* 5656 * pick_next_task() assumes pinned rq->lock: 5657 */ 5658 next = pick_next_task(rq, &fake_task, rf); 5659 BUG_ON(!next); 5660 put_prev_task(rq, next); 5661 5662 /* 5663 * Rules for changing task_struct::cpus_allowed are holding 5664 * both pi_lock and rq->lock, such that holding either 5665 * stabilizes the mask. 5666 * 5667 * Drop rq->lock is not quite as disastrous as it usually is 5668 * because !cpu_active at this point, which means load-balance 5669 * will not interfere. Also, stop-machine. 5670 */ 5671 rq_unlock(rq, rf); 5672 raw_spin_lock(&next->pi_lock); 5673 rq_relock(rq, rf); 5674 5675 /* 5676 * Since we're inside stop-machine, _nothing_ should have 5677 * changed the task, WARN if weird stuff happened, because in 5678 * that case the above rq->lock drop is a fail too. 5679 */ 5680 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) { 5681 raw_spin_unlock(&next->pi_lock); 5682 continue; 5683 } 5684 5685 /* Find suitable destination for @next, with force if needed. */ 5686 dest_cpu = select_fallback_rq(dead_rq->cpu, next); 5687 rq = __migrate_task(rq, rf, next, dest_cpu); 5688 if (rq != dead_rq) { 5689 rq_unlock(rq, rf); 5690 rq = dead_rq; 5691 *rf = orf; 5692 rq_relock(rq, rf); 5693 } 5694 raw_spin_unlock(&next->pi_lock); 5695 } 5696 5697 rq->stop = stop; 5698 } 5699 #endif /* CONFIG_HOTPLUG_CPU */ 5700 5701 void set_rq_online(struct rq *rq) 5702 { 5703 if (!rq->online) { 5704 const struct sched_class *class; 5705 5706 cpumask_set_cpu(rq->cpu, rq->rd->online); 5707 rq->online = 1; 5708 5709 for_each_class(class) { 5710 if (class->rq_online) 5711 class->rq_online(rq); 5712 } 5713 } 5714 } 5715 5716 void set_rq_offline(struct rq *rq) 5717 { 5718 if (rq->online) { 5719 const struct sched_class *class; 5720 5721 for_each_class(class) { 5722 if (class->rq_offline) 5723 class->rq_offline(rq); 5724 } 5725 5726 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5727 rq->online = 0; 5728 } 5729 } 5730 5731 static void set_cpu_rq_start_time(unsigned int cpu) 5732 { 5733 struct rq *rq = cpu_rq(cpu); 5734 5735 rq->age_stamp = sched_clock_cpu(cpu); 5736 } 5737 5738 /* 5739 * used to mark begin/end of suspend/resume: 5740 */ 5741 static int num_cpus_frozen; 5742 5743 /* 5744 * Update cpusets according to cpu_active mask. If cpusets are 5745 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 5746 * around partition_sched_domains(). 5747 * 5748 * If we come here as part of a suspend/resume, don't touch cpusets because we 5749 * want to restore it back to its original state upon resume anyway. 5750 */ 5751 static void cpuset_cpu_active(void) 5752 { 5753 if (cpuhp_tasks_frozen) { 5754 /* 5755 * num_cpus_frozen tracks how many CPUs are involved in suspend 5756 * resume sequence. As long as this is not the last online 5757 * operation in the resume sequence, just build a single sched 5758 * domain, ignoring cpusets. 5759 */ 5760 partition_sched_domains(1, NULL, NULL); 5761 if (--num_cpus_frozen) 5762 return; 5763 /* 5764 * This is the last CPU online operation. So fall through and 5765 * restore the original sched domains by considering the 5766 * cpuset configurations. 5767 */ 5768 cpuset_force_rebuild(); 5769 } 5770 cpuset_update_active_cpus(); 5771 } 5772 5773 static int cpuset_cpu_inactive(unsigned int cpu) 5774 { 5775 if (!cpuhp_tasks_frozen) { 5776 if (dl_cpu_busy(cpu)) 5777 return -EBUSY; 5778 cpuset_update_active_cpus(); 5779 } else { 5780 num_cpus_frozen++; 5781 partition_sched_domains(1, NULL, NULL); 5782 } 5783 return 0; 5784 } 5785 5786 int sched_cpu_activate(unsigned int cpu) 5787 { 5788 struct rq *rq = cpu_rq(cpu); 5789 struct rq_flags rf; 5790 5791 set_cpu_active(cpu, true); 5792 5793 if (sched_smp_initialized) { 5794 sched_domains_numa_masks_set(cpu); 5795 cpuset_cpu_active(); 5796 } 5797 5798 /* 5799 * Put the rq online, if not already. This happens: 5800 * 5801 * 1) In the early boot process, because we build the real domains 5802 * after all CPUs have been brought up. 5803 * 5804 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 5805 * domains. 5806 */ 5807 rq_lock_irqsave(rq, &rf); 5808 if (rq->rd) { 5809 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5810 set_rq_online(rq); 5811 } 5812 rq_unlock_irqrestore(rq, &rf); 5813 5814 update_max_interval(); 5815 5816 return 0; 5817 } 5818 5819 int sched_cpu_deactivate(unsigned int cpu) 5820 { 5821 int ret; 5822 5823 set_cpu_active(cpu, false); 5824 /* 5825 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU 5826 * users of this state to go away such that all new such users will 5827 * observe it. 5828 * 5829 * Do sync before park smpboot threads to take care the rcu boost case. 5830 */ 5831 synchronize_rcu_mult(call_rcu, call_rcu_sched); 5832 5833 if (!sched_smp_initialized) 5834 return 0; 5835 5836 ret = cpuset_cpu_inactive(cpu); 5837 if (ret) { 5838 set_cpu_active(cpu, true); 5839 return ret; 5840 } 5841 sched_domains_numa_masks_clear(cpu); 5842 return 0; 5843 } 5844 5845 static void sched_rq_cpu_starting(unsigned int cpu) 5846 { 5847 struct rq *rq = cpu_rq(cpu); 5848 5849 rq->calc_load_update = calc_load_update; 5850 update_max_interval(); 5851 } 5852 5853 int sched_cpu_starting(unsigned int cpu) 5854 { 5855 set_cpu_rq_start_time(cpu); 5856 sched_rq_cpu_starting(cpu); 5857 sched_tick_start(cpu); 5858 return 0; 5859 } 5860 5861 #ifdef CONFIG_HOTPLUG_CPU 5862 int sched_cpu_dying(unsigned int cpu) 5863 { 5864 struct rq *rq = cpu_rq(cpu); 5865 struct rq_flags rf; 5866 5867 /* Handle pending wakeups and then migrate everything off */ 5868 sched_ttwu_pending(); 5869 sched_tick_stop(cpu); 5870 5871 rq_lock_irqsave(rq, &rf); 5872 if (rq->rd) { 5873 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5874 set_rq_offline(rq); 5875 } 5876 migrate_tasks(rq, &rf); 5877 BUG_ON(rq->nr_running != 1); 5878 rq_unlock_irqrestore(rq, &rf); 5879 5880 calc_load_migrate(rq); 5881 update_max_interval(); 5882 nohz_balance_exit_idle(rq); 5883 hrtick_clear(rq); 5884 return 0; 5885 } 5886 #endif 5887 5888 #ifdef CONFIG_SCHED_SMT 5889 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5890 5891 static void sched_init_smt(void) 5892 { 5893 /* 5894 * We've enumerated all CPUs and will assume that if any CPU 5895 * has SMT siblings, CPU0 will too. 5896 */ 5897 if (cpumask_weight(cpu_smt_mask(0)) > 1) 5898 static_branch_enable(&sched_smt_present); 5899 } 5900 #else 5901 static inline void sched_init_smt(void) { } 5902 #endif 5903 5904 void __init sched_init_smp(void) 5905 { 5906 sched_init_numa(); 5907 5908 /* 5909 * There's no userspace yet to cause hotplug operations; hence all the 5910 * CPU masks are stable and all blatant races in the below code cannot 5911 * happen. 5912 */ 5913 mutex_lock(&sched_domains_mutex); 5914 sched_init_domains(cpu_active_mask); 5915 mutex_unlock(&sched_domains_mutex); 5916 5917 /* Move init over to a non-isolated CPU */ 5918 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0) 5919 BUG(); 5920 sched_init_granularity(); 5921 5922 init_sched_rt_class(); 5923 init_sched_dl_class(); 5924 5925 sched_init_smt(); 5926 5927 sched_smp_initialized = true; 5928 } 5929 5930 static int __init migration_init(void) 5931 { 5932 sched_rq_cpu_starting(smp_processor_id()); 5933 return 0; 5934 } 5935 early_initcall(migration_init); 5936 5937 #else 5938 void __init sched_init_smp(void) 5939 { 5940 sched_init_granularity(); 5941 } 5942 #endif /* CONFIG_SMP */ 5943 5944 int in_sched_functions(unsigned long addr) 5945 { 5946 return in_lock_functions(addr) || 5947 (addr >= (unsigned long)__sched_text_start 5948 && addr < (unsigned long)__sched_text_end); 5949 } 5950 5951 #ifdef CONFIG_CGROUP_SCHED 5952 /* 5953 * Default task group. 5954 * Every task in system belongs to this group at bootup. 5955 */ 5956 struct task_group root_task_group; 5957 LIST_HEAD(task_groups); 5958 5959 /* Cacheline aligned slab cache for task_group */ 5960 static struct kmem_cache *task_group_cache __read_mostly; 5961 #endif 5962 5963 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 5964 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask); 5965 5966 void __init sched_init(void) 5967 { 5968 int i, j; 5969 unsigned long alloc_size = 0, ptr; 5970 5971 sched_clock_init(); 5972 wait_bit_init(); 5973 5974 #ifdef CONFIG_FAIR_GROUP_SCHED 5975 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5976 #endif 5977 #ifdef CONFIG_RT_GROUP_SCHED 5978 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 5979 #endif 5980 if (alloc_size) { 5981 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 5982 5983 #ifdef CONFIG_FAIR_GROUP_SCHED 5984 root_task_group.se = (struct sched_entity **)ptr; 5985 ptr += nr_cpu_ids * sizeof(void **); 5986 5987 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 5988 ptr += nr_cpu_ids * sizeof(void **); 5989 5990 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5991 #ifdef CONFIG_RT_GROUP_SCHED 5992 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 5993 ptr += nr_cpu_ids * sizeof(void **); 5994 5995 root_task_group.rt_rq = (struct rt_rq **)ptr; 5996 ptr += nr_cpu_ids * sizeof(void **); 5997 5998 #endif /* CONFIG_RT_GROUP_SCHED */ 5999 } 6000 #ifdef CONFIG_CPUMASK_OFFSTACK 6001 for_each_possible_cpu(i) { 6002 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node( 6003 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6004 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node( 6005 cpumask_size(), GFP_KERNEL, cpu_to_node(i)); 6006 } 6007 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6008 6009 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); 6010 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime()); 6011 6012 #ifdef CONFIG_SMP 6013 init_defrootdomain(); 6014 #endif 6015 6016 #ifdef CONFIG_RT_GROUP_SCHED 6017 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6018 global_rt_period(), global_rt_runtime()); 6019 #endif /* CONFIG_RT_GROUP_SCHED */ 6020 6021 #ifdef CONFIG_CGROUP_SCHED 6022 task_group_cache = KMEM_CACHE(task_group, 0); 6023 6024 list_add(&root_task_group.list, &task_groups); 6025 INIT_LIST_HEAD(&root_task_group.children); 6026 INIT_LIST_HEAD(&root_task_group.siblings); 6027 autogroup_init(&init_task); 6028 #endif /* CONFIG_CGROUP_SCHED */ 6029 6030 for_each_possible_cpu(i) { 6031 struct rq *rq; 6032 6033 rq = cpu_rq(i); 6034 raw_spin_lock_init(&rq->lock); 6035 rq->nr_running = 0; 6036 rq->calc_load_active = 0; 6037 rq->calc_load_update = jiffies + LOAD_FREQ; 6038 init_cfs_rq(&rq->cfs); 6039 init_rt_rq(&rq->rt); 6040 init_dl_rq(&rq->dl); 6041 #ifdef CONFIG_FAIR_GROUP_SCHED 6042 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6043 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6044 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 6045 /* 6046 * How much CPU bandwidth does root_task_group get? 6047 * 6048 * In case of task-groups formed thr' the cgroup filesystem, it 6049 * gets 100% of the CPU resources in the system. This overall 6050 * system CPU resource is divided among the tasks of 6051 * root_task_group and its child task-groups in a fair manner, 6052 * based on each entity's (task or task-group's) weight 6053 * (se->load.weight). 6054 * 6055 * In other words, if root_task_group has 10 tasks of weight 6056 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6057 * then A0's share of the CPU resource is: 6058 * 6059 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6060 * 6061 * We achieve this by letting root_task_group's tasks sit 6062 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6063 */ 6064 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6065 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6066 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6067 6068 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6069 #ifdef CONFIG_RT_GROUP_SCHED 6070 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6071 #endif 6072 6073 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6074 rq->cpu_load[j] = 0; 6075 6076 #ifdef CONFIG_SMP 6077 rq->sd = NULL; 6078 rq->rd = NULL; 6079 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; 6080 rq->balance_callback = NULL; 6081 rq->active_balance = 0; 6082 rq->next_balance = jiffies; 6083 rq->push_cpu = 0; 6084 rq->cpu = i; 6085 rq->online = 0; 6086 rq->idle_stamp = 0; 6087 rq->avg_idle = 2*sysctl_sched_migration_cost; 6088 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6089 6090 INIT_LIST_HEAD(&rq->cfs_tasks); 6091 6092 rq_attach_root(rq, &def_root_domain); 6093 #ifdef CONFIG_NO_HZ_COMMON 6094 rq->last_load_update_tick = jiffies; 6095 rq->last_blocked_load_update_tick = jiffies; 6096 atomic_set(&rq->nohz_flags, 0); 6097 #endif 6098 #endif /* CONFIG_SMP */ 6099 hrtick_rq_init(rq); 6100 atomic_set(&rq->nr_iowait, 0); 6101 } 6102 6103 set_load_weight(&init_task, false); 6104 6105 /* 6106 * The boot idle thread does lazy MMU switching as well: 6107 */ 6108 mmgrab(&init_mm); 6109 enter_lazy_tlb(&init_mm, current); 6110 6111 /* 6112 * Make us the idle thread. Technically, schedule() should not be 6113 * called from this thread, however somewhere below it might be, 6114 * but because we are the idle thread, we just pick up running again 6115 * when this runqueue becomes "idle". 6116 */ 6117 init_idle(current, smp_processor_id()); 6118 6119 calc_load_update = jiffies + LOAD_FREQ; 6120 6121 #ifdef CONFIG_SMP 6122 idle_thread_set_boot_cpu(); 6123 set_cpu_rq_start_time(smp_processor_id()); 6124 #endif 6125 init_sched_fair_class(); 6126 6127 init_schedstats(); 6128 6129 scheduler_running = 1; 6130 } 6131 6132 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6133 static inline int preempt_count_equals(int preempt_offset) 6134 { 6135 int nested = preempt_count() + rcu_preempt_depth(); 6136 6137 return (nested == preempt_offset); 6138 } 6139 6140 void __might_sleep(const char *file, int line, int preempt_offset) 6141 { 6142 /* 6143 * Blocking primitives will set (and therefore destroy) current->state, 6144 * since we will exit with TASK_RUNNING make sure we enter with it, 6145 * otherwise we will destroy state. 6146 */ 6147 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change, 6148 "do not call blocking ops when !TASK_RUNNING; " 6149 "state=%lx set at [<%p>] %pS\n", 6150 current->state, 6151 (void *)current->task_state_change, 6152 (void *)current->task_state_change); 6153 6154 ___might_sleep(file, line, preempt_offset); 6155 } 6156 EXPORT_SYMBOL(__might_sleep); 6157 6158 void ___might_sleep(const char *file, int line, int preempt_offset) 6159 { 6160 /* Ratelimiting timestamp: */ 6161 static unsigned long prev_jiffy; 6162 6163 unsigned long preempt_disable_ip; 6164 6165 /* WARN_ON_ONCE() by default, no rate limit required: */ 6166 rcu_sleep_check(); 6167 6168 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6169 !is_idle_task(current)) || 6170 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 6171 oops_in_progress) 6172 return; 6173 6174 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6175 return; 6176 prev_jiffy = jiffies; 6177 6178 /* Save this before calling printk(), since that will clobber it: */ 6179 preempt_disable_ip = get_preempt_disable_ip(current); 6180 6181 printk(KERN_ERR 6182 "BUG: sleeping function called from invalid context at %s:%d\n", 6183 file, line); 6184 printk(KERN_ERR 6185 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6186 in_atomic(), irqs_disabled(), 6187 current->pid, current->comm); 6188 6189 if (task_stack_end_corrupted(current)) 6190 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 6191 6192 debug_show_held_locks(current); 6193 if (irqs_disabled()) 6194 print_irqtrace_events(current); 6195 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) 6196 && !preempt_count_equals(preempt_offset)) { 6197 pr_err("Preemption disabled at:"); 6198 print_ip_sym(preempt_disable_ip); 6199 pr_cont("\n"); 6200 } 6201 dump_stack(); 6202 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 6203 } 6204 EXPORT_SYMBOL(___might_sleep); 6205 #endif 6206 6207 #ifdef CONFIG_MAGIC_SYSRQ 6208 void normalize_rt_tasks(void) 6209 { 6210 struct task_struct *g, *p; 6211 struct sched_attr attr = { 6212 .sched_policy = SCHED_NORMAL, 6213 }; 6214 6215 read_lock(&tasklist_lock); 6216 for_each_process_thread(g, p) { 6217 /* 6218 * Only normalize user tasks: 6219 */ 6220 if (p->flags & PF_KTHREAD) 6221 continue; 6222 6223 p->se.exec_start = 0; 6224 schedstat_set(p->se.statistics.wait_start, 0); 6225 schedstat_set(p->se.statistics.sleep_start, 0); 6226 schedstat_set(p->se.statistics.block_start, 0); 6227 6228 if (!dl_task(p) && !rt_task(p)) { 6229 /* 6230 * Renice negative nice level userspace 6231 * tasks back to 0: 6232 */ 6233 if (task_nice(p) < 0) 6234 set_user_nice(p, 0); 6235 continue; 6236 } 6237 6238 __sched_setscheduler(p, &attr, false, false); 6239 } 6240 read_unlock(&tasklist_lock); 6241 } 6242 6243 #endif /* CONFIG_MAGIC_SYSRQ */ 6244 6245 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 6246 /* 6247 * These functions are only useful for the IA64 MCA handling, or kdb. 6248 * 6249 * They can only be called when the whole system has been 6250 * stopped - every CPU needs to be quiescent, and no scheduling 6251 * activity can take place. Using them for anything else would 6252 * be a serious bug, and as a result, they aren't even visible 6253 * under any other configuration. 6254 */ 6255 6256 /** 6257 * curr_task - return the current task for a given CPU. 6258 * @cpu: the processor in question. 6259 * 6260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6261 * 6262 * Return: The current task for @cpu. 6263 */ 6264 struct task_struct *curr_task(int cpu) 6265 { 6266 return cpu_curr(cpu); 6267 } 6268 6269 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 6270 6271 #ifdef CONFIG_IA64 6272 /** 6273 * set_curr_task - set the current task for a given CPU. 6274 * @cpu: the processor in question. 6275 * @p: the task pointer to set. 6276 * 6277 * Description: This function must only be used when non-maskable interrupts 6278 * are serviced on a separate stack. It allows the architecture to switch the 6279 * notion of the current task on a CPU in a non-blocking manner. This function 6280 * must be called with all CPU's synchronized, and interrupts disabled, the 6281 * and caller must save the original value of the current task (see 6282 * curr_task() above) and restore that value before reenabling interrupts and 6283 * re-starting the system. 6284 * 6285 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 6286 */ 6287 void ia64_set_curr_task(int cpu, struct task_struct *p) 6288 { 6289 cpu_curr(cpu) = p; 6290 } 6291 6292 #endif 6293 6294 #ifdef CONFIG_CGROUP_SCHED 6295 /* task_group_lock serializes the addition/removal of task groups */ 6296 static DEFINE_SPINLOCK(task_group_lock); 6297 6298 static void sched_free_group(struct task_group *tg) 6299 { 6300 free_fair_sched_group(tg); 6301 free_rt_sched_group(tg); 6302 autogroup_free(tg); 6303 kmem_cache_free(task_group_cache, tg); 6304 } 6305 6306 /* allocate runqueue etc for a new task group */ 6307 struct task_group *sched_create_group(struct task_group *parent) 6308 { 6309 struct task_group *tg; 6310 6311 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 6312 if (!tg) 6313 return ERR_PTR(-ENOMEM); 6314 6315 if (!alloc_fair_sched_group(tg, parent)) 6316 goto err; 6317 6318 if (!alloc_rt_sched_group(tg, parent)) 6319 goto err; 6320 6321 return tg; 6322 6323 err: 6324 sched_free_group(tg); 6325 return ERR_PTR(-ENOMEM); 6326 } 6327 6328 void sched_online_group(struct task_group *tg, struct task_group *parent) 6329 { 6330 unsigned long flags; 6331 6332 spin_lock_irqsave(&task_group_lock, flags); 6333 list_add_rcu(&tg->list, &task_groups); 6334 6335 /* Root should already exist: */ 6336 WARN_ON(!parent); 6337 6338 tg->parent = parent; 6339 INIT_LIST_HEAD(&tg->children); 6340 list_add_rcu(&tg->siblings, &parent->children); 6341 spin_unlock_irqrestore(&task_group_lock, flags); 6342 6343 online_fair_sched_group(tg); 6344 } 6345 6346 /* rcu callback to free various structures associated with a task group */ 6347 static void sched_free_group_rcu(struct rcu_head *rhp) 6348 { 6349 /* Now it should be safe to free those cfs_rqs: */ 6350 sched_free_group(container_of(rhp, struct task_group, rcu)); 6351 } 6352 6353 void sched_destroy_group(struct task_group *tg) 6354 { 6355 /* Wait for possible concurrent references to cfs_rqs complete: */ 6356 call_rcu(&tg->rcu, sched_free_group_rcu); 6357 } 6358 6359 void sched_offline_group(struct task_group *tg) 6360 { 6361 unsigned long flags; 6362 6363 /* End participation in shares distribution: */ 6364 unregister_fair_sched_group(tg); 6365 6366 spin_lock_irqsave(&task_group_lock, flags); 6367 list_del_rcu(&tg->list); 6368 list_del_rcu(&tg->siblings); 6369 spin_unlock_irqrestore(&task_group_lock, flags); 6370 } 6371 6372 static void sched_change_group(struct task_struct *tsk, int type) 6373 { 6374 struct task_group *tg; 6375 6376 /* 6377 * All callers are synchronized by task_rq_lock(); we do not use RCU 6378 * which is pointless here. Thus, we pass "true" to task_css_check() 6379 * to prevent lockdep warnings. 6380 */ 6381 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 6382 struct task_group, css); 6383 tg = autogroup_task_group(tsk, tg); 6384 tsk->sched_task_group = tg; 6385 6386 #ifdef CONFIG_FAIR_GROUP_SCHED 6387 if (tsk->sched_class->task_change_group) 6388 tsk->sched_class->task_change_group(tsk, type); 6389 else 6390 #endif 6391 set_task_rq(tsk, task_cpu(tsk)); 6392 } 6393 6394 /* 6395 * Change task's runqueue when it moves between groups. 6396 * 6397 * The caller of this function should have put the task in its new group by 6398 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 6399 * its new group. 6400 */ 6401 void sched_move_task(struct task_struct *tsk) 6402 { 6403 int queued, running, queue_flags = 6404 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 6405 struct rq_flags rf; 6406 struct rq *rq; 6407 6408 rq = task_rq_lock(tsk, &rf); 6409 update_rq_clock(rq); 6410 6411 running = task_current(rq, tsk); 6412 queued = task_on_rq_queued(tsk); 6413 6414 if (queued) 6415 dequeue_task(rq, tsk, queue_flags); 6416 if (running) 6417 put_prev_task(rq, tsk); 6418 6419 sched_change_group(tsk, TASK_MOVE_GROUP); 6420 6421 if (queued) 6422 enqueue_task(rq, tsk, queue_flags); 6423 if (running) 6424 set_curr_task(rq, tsk); 6425 6426 task_rq_unlock(rq, tsk, &rf); 6427 } 6428 6429 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 6430 { 6431 return css ? container_of(css, struct task_group, css) : NULL; 6432 } 6433 6434 static struct cgroup_subsys_state * 6435 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6436 { 6437 struct task_group *parent = css_tg(parent_css); 6438 struct task_group *tg; 6439 6440 if (!parent) { 6441 /* This is early initialization for the top cgroup */ 6442 return &root_task_group.css; 6443 } 6444 6445 tg = sched_create_group(parent); 6446 if (IS_ERR(tg)) 6447 return ERR_PTR(-ENOMEM); 6448 6449 return &tg->css; 6450 } 6451 6452 /* Expose task group only after completing cgroup initialization */ 6453 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 6454 { 6455 struct task_group *tg = css_tg(css); 6456 struct task_group *parent = css_tg(css->parent); 6457 6458 if (parent) 6459 sched_online_group(tg, parent); 6460 return 0; 6461 } 6462 6463 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 6464 { 6465 struct task_group *tg = css_tg(css); 6466 6467 sched_offline_group(tg); 6468 } 6469 6470 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 6471 { 6472 struct task_group *tg = css_tg(css); 6473 6474 /* 6475 * Relies on the RCU grace period between css_released() and this. 6476 */ 6477 sched_free_group(tg); 6478 } 6479 6480 /* 6481 * This is called before wake_up_new_task(), therefore we really only 6482 * have to set its group bits, all the other stuff does not apply. 6483 */ 6484 static void cpu_cgroup_fork(struct task_struct *task) 6485 { 6486 struct rq_flags rf; 6487 struct rq *rq; 6488 6489 rq = task_rq_lock(task, &rf); 6490 6491 update_rq_clock(rq); 6492 sched_change_group(task, TASK_SET_GROUP); 6493 6494 task_rq_unlock(rq, task, &rf); 6495 } 6496 6497 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 6498 { 6499 struct task_struct *task; 6500 struct cgroup_subsys_state *css; 6501 int ret = 0; 6502 6503 cgroup_taskset_for_each(task, css, tset) { 6504 #ifdef CONFIG_RT_GROUP_SCHED 6505 if (!sched_rt_can_attach(css_tg(css), task)) 6506 return -EINVAL; 6507 #else 6508 /* We don't support RT-tasks being in separate groups */ 6509 if (task->sched_class != &fair_sched_class) 6510 return -EINVAL; 6511 #endif 6512 /* 6513 * Serialize against wake_up_new_task() such that if its 6514 * running, we're sure to observe its full state. 6515 */ 6516 raw_spin_lock_irq(&task->pi_lock); 6517 /* 6518 * Avoid calling sched_move_task() before wake_up_new_task() 6519 * has happened. This would lead to problems with PELT, due to 6520 * move wanting to detach+attach while we're not attached yet. 6521 */ 6522 if (task->state == TASK_NEW) 6523 ret = -EINVAL; 6524 raw_spin_unlock_irq(&task->pi_lock); 6525 6526 if (ret) 6527 break; 6528 } 6529 return ret; 6530 } 6531 6532 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 6533 { 6534 struct task_struct *task; 6535 struct cgroup_subsys_state *css; 6536 6537 cgroup_taskset_for_each(task, css, tset) 6538 sched_move_task(task); 6539 } 6540 6541 #ifdef CONFIG_FAIR_GROUP_SCHED 6542 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 6543 struct cftype *cftype, u64 shareval) 6544 { 6545 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 6546 } 6547 6548 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 6549 struct cftype *cft) 6550 { 6551 struct task_group *tg = css_tg(css); 6552 6553 return (u64) scale_load_down(tg->shares); 6554 } 6555 6556 #ifdef CONFIG_CFS_BANDWIDTH 6557 static DEFINE_MUTEX(cfs_constraints_mutex); 6558 6559 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 6560 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 6561 6562 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 6563 6564 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 6565 { 6566 int i, ret = 0, runtime_enabled, runtime_was_enabled; 6567 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6568 6569 if (tg == &root_task_group) 6570 return -EINVAL; 6571 6572 /* 6573 * Ensure we have at some amount of bandwidth every period. This is 6574 * to prevent reaching a state of large arrears when throttled via 6575 * entity_tick() resulting in prolonged exit starvation. 6576 */ 6577 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 6578 return -EINVAL; 6579 6580 /* 6581 * Likewise, bound things on the otherside by preventing insane quota 6582 * periods. This also allows us to normalize in computing quota 6583 * feasibility. 6584 */ 6585 if (period > max_cfs_quota_period) 6586 return -EINVAL; 6587 6588 /* 6589 * Prevent race between setting of cfs_rq->runtime_enabled and 6590 * unthrottle_offline_cfs_rqs(). 6591 */ 6592 get_online_cpus(); 6593 mutex_lock(&cfs_constraints_mutex); 6594 ret = __cfs_schedulable(tg, period, quota); 6595 if (ret) 6596 goto out_unlock; 6597 6598 runtime_enabled = quota != RUNTIME_INF; 6599 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 6600 /* 6601 * If we need to toggle cfs_bandwidth_used, off->on must occur 6602 * before making related changes, and on->off must occur afterwards 6603 */ 6604 if (runtime_enabled && !runtime_was_enabled) 6605 cfs_bandwidth_usage_inc(); 6606 raw_spin_lock_irq(&cfs_b->lock); 6607 cfs_b->period = ns_to_ktime(period); 6608 cfs_b->quota = quota; 6609 6610 __refill_cfs_bandwidth_runtime(cfs_b); 6611 6612 /* Restart the period timer (if active) to handle new period expiry: */ 6613 if (runtime_enabled) 6614 start_cfs_bandwidth(cfs_b); 6615 6616 raw_spin_unlock_irq(&cfs_b->lock); 6617 6618 for_each_online_cpu(i) { 6619 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 6620 struct rq *rq = cfs_rq->rq; 6621 struct rq_flags rf; 6622 6623 rq_lock_irq(rq, &rf); 6624 cfs_rq->runtime_enabled = runtime_enabled; 6625 cfs_rq->runtime_remaining = 0; 6626 6627 if (cfs_rq->throttled) 6628 unthrottle_cfs_rq(cfs_rq); 6629 rq_unlock_irq(rq, &rf); 6630 } 6631 if (runtime_was_enabled && !runtime_enabled) 6632 cfs_bandwidth_usage_dec(); 6633 out_unlock: 6634 mutex_unlock(&cfs_constraints_mutex); 6635 put_online_cpus(); 6636 6637 return ret; 6638 } 6639 6640 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 6641 { 6642 u64 quota, period; 6643 6644 period = ktime_to_ns(tg->cfs_bandwidth.period); 6645 if (cfs_quota_us < 0) 6646 quota = RUNTIME_INF; 6647 else 6648 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 6649 6650 return tg_set_cfs_bandwidth(tg, period, quota); 6651 } 6652 6653 long tg_get_cfs_quota(struct task_group *tg) 6654 { 6655 u64 quota_us; 6656 6657 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 6658 return -1; 6659 6660 quota_us = tg->cfs_bandwidth.quota; 6661 do_div(quota_us, NSEC_PER_USEC); 6662 6663 return quota_us; 6664 } 6665 6666 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 6667 { 6668 u64 quota, period; 6669 6670 period = (u64)cfs_period_us * NSEC_PER_USEC; 6671 quota = tg->cfs_bandwidth.quota; 6672 6673 return tg_set_cfs_bandwidth(tg, period, quota); 6674 } 6675 6676 long tg_get_cfs_period(struct task_group *tg) 6677 { 6678 u64 cfs_period_us; 6679 6680 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 6681 do_div(cfs_period_us, NSEC_PER_USEC); 6682 6683 return cfs_period_us; 6684 } 6685 6686 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 6687 struct cftype *cft) 6688 { 6689 return tg_get_cfs_quota(css_tg(css)); 6690 } 6691 6692 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 6693 struct cftype *cftype, s64 cfs_quota_us) 6694 { 6695 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 6696 } 6697 6698 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 6699 struct cftype *cft) 6700 { 6701 return tg_get_cfs_period(css_tg(css)); 6702 } 6703 6704 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 6705 struct cftype *cftype, u64 cfs_period_us) 6706 { 6707 return tg_set_cfs_period(css_tg(css), cfs_period_us); 6708 } 6709 6710 struct cfs_schedulable_data { 6711 struct task_group *tg; 6712 u64 period, quota; 6713 }; 6714 6715 /* 6716 * normalize group quota/period to be quota/max_period 6717 * note: units are usecs 6718 */ 6719 static u64 normalize_cfs_quota(struct task_group *tg, 6720 struct cfs_schedulable_data *d) 6721 { 6722 u64 quota, period; 6723 6724 if (tg == d->tg) { 6725 period = d->period; 6726 quota = d->quota; 6727 } else { 6728 period = tg_get_cfs_period(tg); 6729 quota = tg_get_cfs_quota(tg); 6730 } 6731 6732 /* note: these should typically be equivalent */ 6733 if (quota == RUNTIME_INF || quota == -1) 6734 return RUNTIME_INF; 6735 6736 return to_ratio(period, quota); 6737 } 6738 6739 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 6740 { 6741 struct cfs_schedulable_data *d = data; 6742 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6743 s64 quota = 0, parent_quota = -1; 6744 6745 if (!tg->parent) { 6746 quota = RUNTIME_INF; 6747 } else { 6748 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 6749 6750 quota = normalize_cfs_quota(tg, d); 6751 parent_quota = parent_b->hierarchical_quota; 6752 6753 /* 6754 * Ensure max(child_quota) <= parent_quota. On cgroup2, 6755 * always take the min. On cgroup1, only inherit when no 6756 * limit is set: 6757 */ 6758 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 6759 quota = min(quota, parent_quota); 6760 } else { 6761 if (quota == RUNTIME_INF) 6762 quota = parent_quota; 6763 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 6764 return -EINVAL; 6765 } 6766 } 6767 cfs_b->hierarchical_quota = quota; 6768 6769 return 0; 6770 } 6771 6772 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 6773 { 6774 int ret; 6775 struct cfs_schedulable_data data = { 6776 .tg = tg, 6777 .period = period, 6778 .quota = quota, 6779 }; 6780 6781 if (quota != RUNTIME_INF) { 6782 do_div(data.period, NSEC_PER_USEC); 6783 do_div(data.quota, NSEC_PER_USEC); 6784 } 6785 6786 rcu_read_lock(); 6787 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 6788 rcu_read_unlock(); 6789 6790 return ret; 6791 } 6792 6793 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 6794 { 6795 struct task_group *tg = css_tg(seq_css(sf)); 6796 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6797 6798 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 6799 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 6800 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 6801 6802 return 0; 6803 } 6804 #endif /* CONFIG_CFS_BANDWIDTH */ 6805 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6806 6807 #ifdef CONFIG_RT_GROUP_SCHED 6808 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 6809 struct cftype *cft, s64 val) 6810 { 6811 return sched_group_set_rt_runtime(css_tg(css), val); 6812 } 6813 6814 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 6815 struct cftype *cft) 6816 { 6817 return sched_group_rt_runtime(css_tg(css)); 6818 } 6819 6820 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 6821 struct cftype *cftype, u64 rt_period_us) 6822 { 6823 return sched_group_set_rt_period(css_tg(css), rt_period_us); 6824 } 6825 6826 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 6827 struct cftype *cft) 6828 { 6829 return sched_group_rt_period(css_tg(css)); 6830 } 6831 #endif /* CONFIG_RT_GROUP_SCHED */ 6832 6833 static struct cftype cpu_legacy_files[] = { 6834 #ifdef CONFIG_FAIR_GROUP_SCHED 6835 { 6836 .name = "shares", 6837 .read_u64 = cpu_shares_read_u64, 6838 .write_u64 = cpu_shares_write_u64, 6839 }, 6840 #endif 6841 #ifdef CONFIG_CFS_BANDWIDTH 6842 { 6843 .name = "cfs_quota_us", 6844 .read_s64 = cpu_cfs_quota_read_s64, 6845 .write_s64 = cpu_cfs_quota_write_s64, 6846 }, 6847 { 6848 .name = "cfs_period_us", 6849 .read_u64 = cpu_cfs_period_read_u64, 6850 .write_u64 = cpu_cfs_period_write_u64, 6851 }, 6852 { 6853 .name = "stat", 6854 .seq_show = cpu_cfs_stat_show, 6855 }, 6856 #endif 6857 #ifdef CONFIG_RT_GROUP_SCHED 6858 { 6859 .name = "rt_runtime_us", 6860 .read_s64 = cpu_rt_runtime_read, 6861 .write_s64 = cpu_rt_runtime_write, 6862 }, 6863 { 6864 .name = "rt_period_us", 6865 .read_u64 = cpu_rt_period_read_uint, 6866 .write_u64 = cpu_rt_period_write_uint, 6867 }, 6868 #endif 6869 { } /* Terminate */ 6870 }; 6871 6872 static int cpu_extra_stat_show(struct seq_file *sf, 6873 struct cgroup_subsys_state *css) 6874 { 6875 #ifdef CONFIG_CFS_BANDWIDTH 6876 { 6877 struct task_group *tg = css_tg(css); 6878 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6879 u64 throttled_usec; 6880 6881 throttled_usec = cfs_b->throttled_time; 6882 do_div(throttled_usec, NSEC_PER_USEC); 6883 6884 seq_printf(sf, "nr_periods %d\n" 6885 "nr_throttled %d\n" 6886 "throttled_usec %llu\n", 6887 cfs_b->nr_periods, cfs_b->nr_throttled, 6888 throttled_usec); 6889 } 6890 #endif 6891 return 0; 6892 } 6893 6894 #ifdef CONFIG_FAIR_GROUP_SCHED 6895 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 6896 struct cftype *cft) 6897 { 6898 struct task_group *tg = css_tg(css); 6899 u64 weight = scale_load_down(tg->shares); 6900 6901 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); 6902 } 6903 6904 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 6905 struct cftype *cft, u64 weight) 6906 { 6907 /* 6908 * cgroup weight knobs should use the common MIN, DFL and MAX 6909 * values which are 1, 100 and 10000 respectively. While it loses 6910 * a bit of range on both ends, it maps pretty well onto the shares 6911 * value used by scheduler and the round-trip conversions preserve 6912 * the original value over the entire range. 6913 */ 6914 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) 6915 return -ERANGE; 6916 6917 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); 6918 6919 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6920 } 6921 6922 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 6923 struct cftype *cft) 6924 { 6925 unsigned long weight = scale_load_down(css_tg(css)->shares); 6926 int last_delta = INT_MAX; 6927 int prio, delta; 6928 6929 /* find the closest nice value to the current weight */ 6930 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 6931 delta = abs(sched_prio_to_weight[prio] - weight); 6932 if (delta >= last_delta) 6933 break; 6934 last_delta = delta; 6935 } 6936 6937 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 6938 } 6939 6940 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 6941 struct cftype *cft, s64 nice) 6942 { 6943 unsigned long weight; 6944 int idx; 6945 6946 if (nice < MIN_NICE || nice > MAX_NICE) 6947 return -ERANGE; 6948 6949 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 6950 idx = array_index_nospec(idx, 40); 6951 weight = sched_prio_to_weight[idx]; 6952 6953 return sched_group_set_shares(css_tg(css), scale_load(weight)); 6954 } 6955 #endif 6956 6957 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 6958 long period, long quota) 6959 { 6960 if (quota < 0) 6961 seq_puts(sf, "max"); 6962 else 6963 seq_printf(sf, "%ld", quota); 6964 6965 seq_printf(sf, " %ld\n", period); 6966 } 6967 6968 /* caller should put the current value in *@periodp before calling */ 6969 static int __maybe_unused cpu_period_quota_parse(char *buf, 6970 u64 *periodp, u64 *quotap) 6971 { 6972 char tok[21]; /* U64_MAX */ 6973 6974 if (!sscanf(buf, "%s %llu", tok, periodp)) 6975 return -EINVAL; 6976 6977 *periodp *= NSEC_PER_USEC; 6978 6979 if (sscanf(tok, "%llu", quotap)) 6980 *quotap *= NSEC_PER_USEC; 6981 else if (!strcmp(tok, "max")) 6982 *quotap = RUNTIME_INF; 6983 else 6984 return -EINVAL; 6985 6986 return 0; 6987 } 6988 6989 #ifdef CONFIG_CFS_BANDWIDTH 6990 static int cpu_max_show(struct seq_file *sf, void *v) 6991 { 6992 struct task_group *tg = css_tg(seq_css(sf)); 6993 6994 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 6995 return 0; 6996 } 6997 6998 static ssize_t cpu_max_write(struct kernfs_open_file *of, 6999 char *buf, size_t nbytes, loff_t off) 7000 { 7001 struct task_group *tg = css_tg(of_css(of)); 7002 u64 period = tg_get_cfs_period(tg); 7003 u64 quota; 7004 int ret; 7005 7006 ret = cpu_period_quota_parse(buf, &period, "a); 7007 if (!ret) 7008 ret = tg_set_cfs_bandwidth(tg, period, quota); 7009 return ret ?: nbytes; 7010 } 7011 #endif 7012 7013 static struct cftype cpu_files[] = { 7014 #ifdef CONFIG_FAIR_GROUP_SCHED 7015 { 7016 .name = "weight", 7017 .flags = CFTYPE_NOT_ON_ROOT, 7018 .read_u64 = cpu_weight_read_u64, 7019 .write_u64 = cpu_weight_write_u64, 7020 }, 7021 { 7022 .name = "weight.nice", 7023 .flags = CFTYPE_NOT_ON_ROOT, 7024 .read_s64 = cpu_weight_nice_read_s64, 7025 .write_s64 = cpu_weight_nice_write_s64, 7026 }, 7027 #endif 7028 #ifdef CONFIG_CFS_BANDWIDTH 7029 { 7030 .name = "max", 7031 .flags = CFTYPE_NOT_ON_ROOT, 7032 .seq_show = cpu_max_show, 7033 .write = cpu_max_write, 7034 }, 7035 #endif 7036 { } /* terminate */ 7037 }; 7038 7039 struct cgroup_subsys cpu_cgrp_subsys = { 7040 .css_alloc = cpu_cgroup_css_alloc, 7041 .css_online = cpu_cgroup_css_online, 7042 .css_released = cpu_cgroup_css_released, 7043 .css_free = cpu_cgroup_css_free, 7044 .css_extra_stat_show = cpu_extra_stat_show, 7045 .fork = cpu_cgroup_fork, 7046 .can_attach = cpu_cgroup_can_attach, 7047 .attach = cpu_cgroup_attach, 7048 .legacy_cftypes = cpu_legacy_files, 7049 .dfl_cftypes = cpu_files, 7050 .early_init = true, 7051 .threaded = true, 7052 }; 7053 7054 #endif /* CONFIG_CGROUP_SCHED */ 7055 7056 void dump_cpu_task(int cpu) 7057 { 7058 pr_info("Task dump for CPU %d:\n", cpu); 7059 sched_show_task(cpu_curr(cpu)); 7060 } 7061 7062 /* 7063 * Nice levels are multiplicative, with a gentle 10% change for every 7064 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 7065 * nice 1, it will get ~10% less CPU time than another CPU-bound task 7066 * that remained on nice 0. 7067 * 7068 * The "10% effect" is relative and cumulative: from _any_ nice level, 7069 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 7070 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 7071 * If a task goes up by ~10% and another task goes down by ~10% then 7072 * the relative distance between them is ~25%.) 7073 */ 7074 const int sched_prio_to_weight[40] = { 7075 /* -20 */ 88761, 71755, 56483, 46273, 36291, 7076 /* -15 */ 29154, 23254, 18705, 14949, 11916, 7077 /* -10 */ 9548, 7620, 6100, 4904, 3906, 7078 /* -5 */ 3121, 2501, 1991, 1586, 1277, 7079 /* 0 */ 1024, 820, 655, 526, 423, 7080 /* 5 */ 335, 272, 215, 172, 137, 7081 /* 10 */ 110, 87, 70, 56, 45, 7082 /* 15 */ 36, 29, 23, 18, 15, 7083 }; 7084 7085 /* 7086 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. 7087 * 7088 * In cases where the weight does not change often, we can use the 7089 * precalculated inverse to speed up arithmetics by turning divisions 7090 * into multiplications: 7091 */ 7092 const u32 sched_prio_to_wmult[40] = { 7093 /* -20 */ 48388, 59856, 76040, 92818, 118348, 7094 /* -15 */ 147320, 184698, 229616, 287308, 360437, 7095 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 7096 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 7097 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 7098 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 7099 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 7100 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 7101 }; 7102 7103 #undef CREATE_TRACE_POINTS 7104